THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE

SERVICING•VIDEO.SATELLITE•DEVELOPMENTS JANUARY $1996 £ 2.35$

Toshilba's V3 VCRs

Tatung 120 chassis servicing Luminance playback techniques Test source for LNBs

Japan's Electronics Show report

Television reader ofiter
DMW for just $£ 14.95$

SRRVCNGG MADE SIMPLE

 With Video Sewice Kits from PHHEX

Quality \& Utility High quality parts - the parts that most often need to be replaced

7 Economy Range \qquad Can save you money ital you require are friction parts

8 Genuine Kits \qquad A range of mantacturer's kits are also available

For more details on: Service Kits - Other Products - Distributors Contact Philex plo: Tel: 01812021919 . Fax: 01812020015

JANUARY 1996
VOL. 46 NO. 3

Show report

Consumer electronics seen in Japan
George Cole reports on the latest innovations from Japanese consumer electronics manufacturers, including flat-panel displays and digital camcorders.

Sharp's 28 in liquid crystal display - on show at Japan's Electronics Show, reported on page 168.

Video

Toshiba's V3 Series VCRs

176
Philip Blundell takes a look at the technology used in the latest VCR range from Toshiba.

VCR Signal Processing ||88

Part 3 of Joe Cieszynski's current series deals with luminance signal recording techniques, including methods of improving the signal-to-noise ratio devised by various manufacturers.

NEXT MONTH

Digital Radio from Space Digital sound came to us in 1982, with the compact disc. Since then the domestic uses of digital audio have burgeoned, and now we have radio services from satellite transmitters. Eugene Trundle takes a look at the technology involved. Servicing PC Monitors Some introductory comments on this relatively new line for TV service engineers, along with some feedback on faults encountered with various monitors. VCR Signal Processing Next month's installment in this series deals with chroma signal

Reader Offer

 207A well specified digital multimeter for just $£ 14.95$ - includes transistor gain check.

Television

Servicing the Tatung 120 Series Chassis

John Coombes on how to go about fault diagnosis and repair with these popular sets.

Satellite

LNB Test Signal Source 213

It's a considerable advantage to be able to test LNBs in the workshop instead of up at the dish. For this purpose a spare LNB can be converted to provide a microwave signal output from a satellite i.f. input. Hugh Cocks on how to go about it, with particular reference to a Swedish Microwave LNB.

REGULARS

Leader 167
What a Life! 180
Camcorner 185
Satellite Workshop 186
Test Case 397 187
TV Fault Finding 196
Teletopics 202
Letters 206
Satellite Notebook 208
Long-distance TV 210
VCR Clinic 216
Help Wanted 220
processing in the record mode. Amstrad SRD510 1D Conversion A simple modification to enable these receivers to provide reception from the Astra 1D satellite. Servicing the Tatung 190/195 Series Chassis How to tackle fault experienced with these popular receivers, which feature an FET chopper power supply. A Visit to Sharp George Cole takes a look at the latest technology from Sharp, the world's largest LCD manufacturer.

Our February issue will be published on January 17th

This month's cover shows aspects of the Toshiba V3 series VCRs. See page 176.

Editor

John A. Reddihough Production Editor
Tessa Winford Consultant Editor Martin Eccles Publishing Director Susan Downey
Advertisement Manager Carol Nobbs
01816528330
Advertisement Sales
Executive
Pat Bunce
01816528339
FAX 01816528931
Editorial Office
01816528120
FAX 01816528956
Newsagent Enquiries David Sanders
01816528152
Fax 01816528997

Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than given in our Spares Guide

GRANDATA LTD K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB
 Telephone: 0181-900 2329 Fax: 0181-903 6126

TRANSISTORS / LINEAR ICs

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 10,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities.
Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.
Prices quoted are subject to stock availability and may be changed without notice.
TV \& video parts sold are replacement parts.
LINEAR ICS / JAPANESE TRANSISTORS

Part P	rice	Part	Price	Part Pris	Price	Part		Part											

Part	Price																		
25 A1371	100 p	2SC1008	20 p	25C1730	10p	$25 \mathrm{C2270}$	60 p	2SC2750	300p	2 2c3277	280p	2SC3893	225p	2SD836a	60p	2SD1279	p	2SD1815	100p
2SA138	75	$2 \mathrm{SC1010}$	225p	2SC1735	70 p	2SC2271	30 p	2SC2751	${ }^{2700}$	2SC328	200 p	2 SC 38	400 p	2SD837	p	2SD12	175p	2SD1825	60p
2541381 2541382	${ }^{100} \mathrm{p}^{1}$	${ }^{\text {2SC1012 }}$	755	${ }^{2 S C 1739}$	8000	$2 \mathrm{SC2274}$	${ }^{15 p}$	$2 \mathrm{SC2752}$	1400	$2 \mathrm{SC3281}$	2000	${ }^{25 C 3897}$	4000	2 25838	300 p	2SD1289	250p	2SD1843	100p
${ }_{\text {2SA1382 }}$	120 p 180 p	${ }^{\text {2SC1013 }}$	O	2SC1740	${ }^{10}{ }^{10}$	${ }^{25 \mathrm{SC} 2275}$	${ }^{50 \mathrm{p}}$	${ }^{25 C 2767}$	300 p	${ }^{25 C 3284}$	${ }^{6000}$	${ }^{25 C 3907}$	250	${ }^{25884} 1$	${ }^{110} \mathrm{p}$	${ }^{25 D 1291}$	400 p	2SDD846	${ }^{350}{ }^{\text {p }}$
2SA1385 2SA1386	${ }^{1800}$	- ${ }^{\text {2SC1014 }}$	${ }^{140 \mathrm{p}}$	${ }^{\text {2SC1741 }}$	35p	${ }^{25 \mathrm{SC} 2278}$	70p	${ }^{25 C 2769}$	400 p	${ }^{25 C 3293}$	${ }^{85 p}$	${ }^{25 C 3927}$	250	${ }^{25 D 844}$	200 p	2 2SD 1992	60 p	2SD1849	325p
25A1423	30 p	${ }^{25 C 1047}$	20 p	$2 \mathrm{SC1756}$	${ }^{\text {30p }}$	2SC2290	1800 p 40 p	2SC2773	$700 p$ 5000	2SC3298	50p		120p	2SD845 2 SD850	${ }^{250 \mathrm{p}}$	2SD1297	300p	2SD1850	${ }^{325}$
2SA1489	300 p	2SC1050	280p	2SC1758	30 p	2SC2295	60p	2SC2785	60p	2Sc3300	400 p	2SC3973	210 p	2SD856	48 p	2SD1308	80 p	2SD1877	250p
2SA1491	300 p	${ }^{\text {2SC1060 }}$	70 p	$2 \mathrm{SC1775}$	10 p	2SC2298	35p	${ }_{2 S C 2786}$	${ }_{20} \mathrm{p}^{\text {p }}$	2Sc3303	${ }^{100 p}$	2SC3987	220 p	25 C 588	250p	25D1309	P	2SD1878	230 p
2SA 1493 2	500p	2SC1061	${ }_{65 p}^{85}$	${ }^{25 C 1787}$	20 p	2SC2307	300 p	2SC2787	10p	$2 \mathrm{SC3306}$	130p	2SC3996	1200p	2SD863	23 p	2SD1310	140p	2SD1879	275p
2SA 1516 2SA1535	280 p 175 p	2SC1070 2SC1096	$65 p$ 40 p	2SC1789 2SC1809	100 p 40 p	25C2308	${ }^{10} \mathrm{p}$	2SC2791	500 p	$25 \mathrm{Ca307}$	600p	$2 \mathrm{SC4006}$	1000	${ }^{25 \mathrm{SD864}}$	P	2SD1313	000p	2SD1884	300p
2 SB324	40 p	2SC1098	120 p	2SC1810	${ }_{250 \mathrm{p}}$	${ }^{2 S C 2312}$	$300 p$	2SC2792	220p	$2 \mathrm{SC3} 309$	150p	$2 \mathrm{SC4020}$	${ }^{280}$	2 2S866	120p	2SD1326	200p	2SD1886	450p
2SB546	45p	2SC1106	180p	2SC1815	10 p	${ }_{\text {2SC2314 }}$	70p	${ }^{25 C 2793}$	700 p	${ }^{25 C 3316}$	${ }_{350 \mathrm{p}}^{280 \mathrm{p}}$	${ }^{25 C 4023}$	325 p 350	${ }^{25 D 866 A}$	${ }^{140 \mathrm{p}}$	${ }^{2 S D 1328}$	${ }^{60 p}$	2 2SD1887	450 p
2SB560	25p	2SC1114	${ }^{415 p}$	$2 \mathrm{SC1819}$	70 p	2SC2316	$150 p$ 100	${ }^{\text {2SC2808 }}$	${ }^{40 \mathrm{p}}$	${ }_{\text {2Sc3323 }}$	350 p 480 p	${ }_{\text {2SC4056 }}$	${ }^{3500}$	2SD868 2SD870	260 p 190 p	${ }_{\text {2SD1348 }}$	${ }_{65 p}^{70 p}$	2SD1910	${ }_{3}^{2800 \mathrm{p}}$
2S85661 288562	50 p 250	${ }^{25 \mathrm{SC} 1115}$	${ }^{280}$	2SC1826	${ }_{60 \mathrm{p}}^{60 \mathrm{p}}$	${ }_{2 S C 2324}$	120p	${ }_{2 S C 2812}$	40 p	${ }_{25 C 3327}$	60 p	${ }_{2 S C 4123}$	${ }_{450 p}$	2SD871	300 p	2SD1350	150p	2SD1913	50 p
2S8562 2S8566	${ }_{90 p}^{25 p}$	2SC1116	${ }_{270}^{290 p}$	2SC1827	60p 500 p	2SC2329	480 p	${ }^{2 S C 2814}$	40 p	${ }_{25 c}$	25 p	$2 \mathrm{SC4124}$	250 p	250879	60p	${ }^{25 D 1376}$	125p	2SD1929	${ }^{60}$
${ }_{2}$ SB595	55p	${ }_{2 S C 1161}$	110 p	2SC1833	40 p	${ }^{2 S C 2331}$	50p	${ }^{25 C 2824}$	$75 p$	$2 \mathrm{SC3333}$	${ }^{120} p^{2}$	$2 \mathrm{SC4169}$	60 p	${ }^{25 D 880}$	40 p	${ }^{25 D 1379}$	100 p	2 2S1939	75p
2SB596	50 p	2SC1162	30 p	2SC1834	50 p	${ }^{25 C 2333}$	2000	$2 \mathrm{2Cl28}$	${ }^{900 p}$	${ }^{25 C 3345}$	${ }^{1000}$	${ }^{2 \mathrm{SCC} 4236}$	550 p	${ }^{25 \mathrm{~S} 88}$	${ }^{25 p}$	${ }^{\text {2SD1380 }}$	100 p	2SD1941	500 p
${ }^{258598}$	30p	${ }^{2 S C 1164}$	P	2SC1844	50 p	${ }^{25 C 2334}$	${ }^{80 p}$	${ }^{25 C 2826}$	200 p	2SC3352	200 p	2 2SC4237	${ }^{650} \mathrm{p}$	2SD892A	$100p c100350$	${ }^{25 D 1384}$	50 p	2SD1959	${ }^{2800}$
2S8600	500p	2SC1165	0p	2SC1845	15p	${ }^{25 C 2335}$	$75 p$	${ }^{25 C 2827}$	2000	${ }^{25 \mathrm{SC} 3353}$	280p	${ }^{2 S C 4242}$	170p	2 2S894	${ }^{35 p}$	${ }^{2 S D 1390}$	${ }^{350} \mathrm{p}$	${ }^{2 S D 1961}$	50p
${ }^{258646}$	${ }^{40}$	2SC1166	100p	2SC1846	35 p	${ }^{25 C 2344}$	150p	2 2C2832	300p	${ }^{25 C 3355}$	50 p	${ }^{25 C 4301}$	550 p	$2 \mathrm{2SD8} 8$	200 p	${ }^{\text {2SD } 1391}$	250 p	${ }^{25 D 1978}$	50 p
2S8647	20 p	$2 \mathrm{SC1170}$	op	2SC1847	45p	$2 \mathrm{SC2347}$	${ }^{60}$	2SC2834	400 p	2SC3356	120 p	2SC4742	275p	2SD896	${ }^{200 p}$	2SD1392	150p	2SD1984	450 p
${ }^{258648}$	45 p	$2 \mathrm{2C1172}$	50p	$2 \mathrm{SC1855}$	85 p	$2 \mathrm{SC2353}$	120 p	2SC2837	250p	$2 \mathrm{SC3358}$	50 p	2SC4769	300 p	25D900	400p	2SD1395	150p	2SD2012	50p
2S864	35p	${ }^{25 C 1173}$	40 p	2SC1856		${ }^{2 S C 2360}$	120 p	${ }^{25 C 2839}$	40 p	${ }^{25 C 3361}$	50 p	${ }^{25 D 198}$	140p	2 2S905	450 p	2SD1396	${ }^{120 p}$	${ }^{2 S D 2125}$	225p
${ }^{258688}$	90p	$2 \mathrm{SC1195}$	210p	2SC1865	700p	2SC2361	150p	2SC2853	70 p	2SC3376	${ }^{300} \mathrm{p}$	2SD199	195p	2SD916	130p	2SD1397	${ }^{120}$		300 p
${ }^{258703}$	90 p	${ }^{2 S C 1212}$	35p	$2 \mathrm{SC1870}$	700 p	$2 \mathrm{LC2362}$	50p	25 C 2877	${ }^{120 p}$	$2 \mathrm{SC3377}$	50 p	2SD200	180p	2SD917	300p	2SD1398	120p	2SJ48	425p
${ }^{2588705}$	200 p	${ }^{25 C 1213}$	15p		220 p	${ }^{25 C 2365}$	${ }^{280}$	${ }^{25 C 2878}$	20 p	${ }^{2 S C 3378}$	${ }^{120 \mathrm{p}}$	${ }^{2 S 201}$	${ }^{260 \mathrm{p}}$	2 259921	326 p	2 2SD1399	300 p	25.49	425p
2S8707	200p	${ }^{\text {2SC1214 }}$	15p	2 SC 1881	70 p	$2 \mathrm{SC2369}$	100p	2SC2879	3200p	$2 \mathrm{SC3383}$	${ }^{30}$	2SD257	195p	2SD923	360p	2SD1400	280p	2S.150	425p
2SB716	20p	$2 \mathrm{SC1215}$	25 p	$2 \mathrm{SC1} 1890$	15 p	$2 \mathrm{SC2371}$	25p	2SC2883	60p	2SC3387	550p	2SD313	25p	25D946	120p	2SD1402	150p	2S.J56	700p
${ }_{2}^{258718}$	60p	${ }^{2 \text { 2SC1216 }}$	${ }^{200 p}$	2SC1904	125p	$2 \mathrm{SC2373}$	10p	2SC2898	200p	2SC3393	${ }^{80} \mathrm{p}^{\text {p }}$	2SD315	75 p	${ }^{25 D 947}$	100p	2SD1406	60 p	2S. 74	cop
2S8727 2S8754		$\begin{aligned} & \text { 2SC1222 } \\ & \text { 2SC1226 } \end{aligned}$	$15 p$ $75 p$	2SC1906	5p	$2 \mathrm{SC2383}$	50p	2SC2899	50p	2SC3399	50 p	2 251325	30 p	2SD950	300p	2SD1407	60 p	2S.J75	280p
2SB754 2S8755	${ }^{80 \mathrm{p}}$	${ }^{25 C 1226}$	${ }_{8}^{750}$	2SC1909	20p	${ }^{25 C 2389}$	45 p	${ }^{25 C 2909}$	${ }^{60 p}$	${ }^{25 C 3400}$	${ }^{35 p}$	${ }^{2515330}$	65 p	${ }^{2 S D 951}$	290 p	${ }^{25 D 1408}$	${ }^{125 p}$	${ }^{2 S} 176$	220p
$2 \mathrm{SB772}$	25p	${ }_{2 S C 1278}$	110 p	2SC 1913	90 p	${ }^{25 C 2407}$	110 p	${ }^{25 C 2911}$	${ }^{800}$	${ }_{2}^{2 S C 3401}$	50p	${ }^{25 \mathrm{~S} 348}$	300p	2 2S9957A	520p	2SD 1409	170p	2 2S.77	350p
${ }^{288774}$	50 p	${ }^{25 C 1279}$	${ }^{30 \mathrm{D}}$	${ }_{2}^{25 C 1921}$	15 p	${ }_{\text {2SC2412K }}$	500	${ }^{\text {SSC2921 }}$	650p	2SC3409	${ }^{400}{ }^{40}$	${ }_{2 S 5358}^{250357}$	40 p	2SD965	${ }^{60 p}$	2SD1412	$75 p$ $60 p$	25.79 25103	225p
${ }^{288775}$	100 p	${ }^{25 C 1306}$	90 p	${ }_{2} \mathrm{SCC} 1923$	10p	${ }_{2 S C 2440}$	200 p	${ }_{2 S C 2922}$	${ }^{480}$	${ }_{2 S C} 412$	800 p	2SD371	240p	2SD970	170p	2SD1415	190p	2S.108	Op
${ }_{2}^{258791}$	${ }_{6}^{280 p}$	${ }^{\text {2SCL }}$ 2S08K	${ }^{350 p}$	2SC1929	${ }^{1800}$	${ }^{2 S C 2458}$	10p	${ }^{2 S C 2928}$	550p	$2 \mathrm{SC3416}$	30 p	250380	650p	$2 \mathrm{SD973}$	60 p	$2 \mathrm{SD14} 17$	125p	2SJ115	525p
${ }_{2 S 88825}^{25895}$	${ }_{1}^{66 p}$	${ }_{2 S C 1317}^{25 C 129}$	${ }^{40 p}$	2SC1941	${ }^{110 \mathrm{p}}$	${ }^{\text {SSC2459 }}$	${ }^{50 p}$	${ }^{\text {2SC2929 }}$	${ }^{2800}$	${ }^{2 S C} 3417$	90 p	${ }^{2 \mathrm{LSD} 381}$	50 p	${ }^{250973 A}$	70 p	${ }^{\text {2SD1425 }}$	2660	2SJ117 2 S 119	${ }^{5500}$
258861	110p	${ }^{2 S C 1348}$	\%	2SC1942	350 p	${ }^{25 C 2470}$	120 p	${ }^{25 C 2934}$	${ }^{750}$	$2 \mathrm{SC3419}$	${ }^{120 p}$	${ }^{25 \mathrm{D} 38}$	${ }^{150 p}$	${ }^{2515985}$	${ }^{120 \mathrm{p}}$	${ }^{25 D 1426}$	160 p	${ }^{25} 5119$	${ }^{7000}$
${ }^{258882}$	${ }^{180 p}$	${ }^{25 \mathrm{SC} 1325}$	400 p	2 SC 1944	${ }^{350 \mathrm{p}}$	lele	$120 p$ 200	-	${ }^{250 p}$	2SC3420	80p	2SD389 2SD400	$\begin{aligned} & 60 \mathrm{p} \\ & 14 \mathrm{p} \end{aligned}$	${ }^{\text {2SD986 }}$	$\begin{array}{r} 120 \mathrm{p} \\ 40 \mathrm{o} \end{array}$	2SD1427	${ }_{2}^{180 \mathrm{p}}$	${ }_{\text {2SJJ16 }}$	650p
2SB886	90 p	${ }^{25 C 1327}$	${ }^{20 p}$	$2 \mathrm{SC1945}$	350p	lele 2 2SC2482	${ }_{120 \mathrm{p}}^{20 \mathrm{p}}$	2SC29	${ }^{2300 p}$	${ }_{\text {2Sc3a23 }}$	76p						410	${ }^{25 \mathrm{~K} 19}$	488p
${ }_{2}^{258950}$	${ }^{180 \mathrm{p}}$	$2 \mathrm{SC132}$	${ }^{15}$	2SC1946	450	l $\begin{aligned} & \text { 2SC2483 } \\ & \text { 2SC2484 }\end{aligned}$	120 p 185	2SC2939	400p	${ }_{\text {2SC3446 }}$	60p	${ }^{\text {2SD }}$ 2S0102	50p	2SD1020	120p	2SD1429	${ }_{280 \mathrm{p}}^{410 \mathrm{p}}$	2SK19 2SK40	45p
${ }_{\text {2SB8951 }}^{\text {2S809 }}$	${ }^{190 \mathrm{p}}$	lel $\begin{aligned} & \text { 2SC1342 } \\ & \text { 2SC } 1345\end{aligned}$	15p	${ }_{\text {2SC1957 }}$	450p	${ }_{2 \mathrm{SC} 249}^{2 \mathrm{c}}$	硅	${ }_{2 S C 29}$	\%	2SC3	200p	2SD415		2SD1022	400 p	2SD1431	400	2SK49	为
${ }_{2 S 81077}$	180 p	${ }_{2 \text { SC }}$ 246	150	${ }_{2 S C 1959}$	10 p	2SC2495	1900p	25C2962	800 p	2SC3456	200 p	250424	350p	2SD1024	130p	2SD1432	400 p	2SK55	100p
2SB1109	55p	$2 \mathrm{SC1358}$	270 D	2SC1967	1300p	$2 \mathrm{SC2498}$	50p	2 SC 2979	160p	$2 \mathrm{SC3457}$	${ }^{125 p}$	2 2S426	${ }^{150} \mathrm{p}$	2SD1030	75	2SD1433	${ }^{750 p}$	2SK68	100p
2SC182	75 p	2 2S1359	15p	2SC1969	160 p	2SC2500	25p	$2 \mathrm{SC2987}$	250p	2 2S3459	${ }^{180} \mathrm{p}$	2SD427	350p	${ }^{\text {2SD } 1031}$	70 p	${ }^{2 S D 1438}$	${ }^{140} \mathrm{p}$	2SK73	75p
$2 \mathrm{SC372}$	25p	2SC1360	70p	2SC1970	$100 p$	2SC2502	200p	2SC2988	150p	$2 \mathrm{SC3460}$	${ }^{180} \mathrm{p}$	2SD438	35 p	2SD1946	200p	2SD1439	165p	2SK106	40 p
2SC380	10 p	${ }^{2 S C 1364}$	25p	2SC1971	$400 p^{0}$	$2 \mathrm{SC2519}$	60^{60}	$2 \mathrm{SC2995}$	60^{6}	2SC3461	350p	25D467	15 p	2SD1047	180p	2SD144	${ }^{280} \mathrm{p}$	25K107	20p
${ }^{25 \mathrm{SC3} 382}$	${ }^{50 \mathrm{p}}$	${ }^{25 \mathrm{SCl} 1383}$	25p	2SC1972	${ }^{600}$	${ }^{2 S C 2527}$	300 p	$2 \mathrm{SC2999}$	50p	${ }^{\text {SCC3466 }}$	${ }^{225 p}$	2SD468	15 p	2SD1051	130p	2 2SD1445	200 p	2SK148	50p
${ }^{25 C 3884}$	60 P	${ }^{2 S C 1384}$	${ }^{20} \mathrm{p}$	2SC1973	150p	2 CC 2534	150p	$2 \mathrm{SC3001}$	1400p	2SC3468	70 p	2SD471	20 p	2SD1060	130p	2SD1450	60p	2SK125	00p
$2 \mathrm{SC394}$	60 p	2SC1393	20p	2SC1983	75 p	2 SC2535	$300{ }_{\text {p }}$	$2 \mathrm{SC3012}$	300 p	2SC3481	300p	2SD525	50 p	2SD1062	150p	2SD1451	${ }^{260 p}$	25K133	650p
${ }_{2}^{2 S C 403}$	${ }^{25 p}$	${ }^{2 S C 1394}$	15 p 55	${ }^{\text {2SCC }} 1984$	${ }^{150}$	${ }^{2 S C 2538}$	100p	$2 \mathrm{SC3019}$	${ }^{320}$	2SC3482	275p	2SD526	70 p	2SD1063	200p	2SD1452	350p	2SK134	415p
${ }_{2}^{2 S C 454}$	15 p	${ }^{\text {2SC1398 }}$	55p	2SC1985	${ }^{100 p}$	2SC2540	1900p	2 2c3025	500p	2SC3486	275p	2SD545	18p	2SD1064	250p	2SD1453	140p	2SK135	415p
${ }^{25 \mathrm{C} 458}$	10 p	${ }^{25 C 1400}$	50 p	2SC 1986	${ }^{1000}$	$2 \mathrm{SC2542}$	300p	${ }^{25 C 3026}$	550p	2SC3502	100p	2SD549	${ }^{120} \mathrm{p}^{\text {p }}$	2SD1065	${ }^{160} \mathrm{p}$	2SD1455	250p	2SK147	${ }^{160} p^{\text {p }}$
2SC460	${ }^{10 \mathrm{p}}$	${ }^{\text {2SC1403 }}$	500 p 50 p	2SC2001	15p 15 $15 p$	${ }_{2}$ SCP2545	55 p	${ }^{2} \mathrm{sc} 3030$	${ }^{300 \mathrm{p}}$	${ }^{25 C 3503}$	50 p	${ }^{2 S D 551}$	${ }^{300}$	${ }^{2 S D 1069}$	${ }^{150} \mathrm{p}$	$2 \mathrm{SD1457}$	${ }^{165 p}$	${ }^{25 K 150}$	150p
$2 \mathrm{SC495}$	45 p	$2 \mathrm{SC1413}$	150p	2SC2003,	20 p	$2 \mathrm{SC2546}$	${ }^{25 p}$	${ }^{25 C 3037}$	${ }^{125 p}$	${ }^{2 S C 3504}$	120p	2SD55	500p	2 2SD071	450p	2SDI4	120 p	${ }^{25 K 163}$	p
2SC496	25p	$2 \mathrm{SC1419}$	50 p	$2 \mathrm{SC2} 2004$	20 p	2SC2547	$65 p$ $50 p$	2SC3038	${ }^{125 p}$	${ }^{2 S C 3505}$	240p	2SD5771	${ }_{50}^{50 p}$	2SD1073	350p	2SD1468	${ }_{\text {200p }}^{600}$	${ }^{\text {2SK168 }}$	40p
${ }_{\text {2SC497 }}$	${ }^{85 p}$	- 2SC1429	570p	2SC2021	${ }^{10 \mathrm{p}}$	${ }_{\text {2SC255 }}$	${ }_{70 p}$	2Sc3040	${ }^{260 p}$	${ }_{2 S C 3507}$	${ }_{650 p}^{250 p}$	2 2SD575	${ }_{530 \mathrm{p}}$	${ }_{2}$ 2SD1094	520 p	2SD1487	225 p	${ }_{2 S K 192}^{2}$	45 p
2SC515	${ }^{100 \mathrm{p}}$	2SC1444	275p	2SC2022	${ }^{110 \mathrm{p}}$	$2 \mathrm{SC2552}$	60 p	2 SC 3042	${ }^{300} \mathrm{p}$	2SC3509	750 p	2SD600	30 p	2SD1110	225p	2SD 1491	${ }^{100} \mathrm{p}$	2SK195	150p
${ }_{2 S C 536}$	${ }_{20 \mathrm{p}}$	2SC1447	70p	2SC2026	${ }^{180 p}$	${ }^{25 C 2553}$	${ }^{200 p}$	${ }^{2 S C 3057}$	150 p	${ }^{25 C 3518}$	120 p	${ }^{25 D 601}$	${ }^{40 p}$	2 2SD1111	20 p	2SDP494	${ }^{3000}$	${ }^{25 \mathrm{~K} 197}$	${ }^{140 \mathrm{p}}$
${ }^{2 S C 558}$	275 p	2SC1448	100p	2SC2027	200 p	2 2SC2555	${ }^{120}$	2SC3058	2500 p	${ }^{25 C 3519}$	250p	2SD602	60 p	${ }^{2 S D 1113}$	225 p	2SD 14	${ }^{350 \mathrm{p}}$	${ }^{2 S K 214}$	${ }^{1700}$
${ }_{2} \mathbf{2 S 5 6 6 3}$	${ }^{120 \mathrm{p}}$	2SC1449	${ }^{120 p}$	${ }^{\text {SCC2028 }}$	${ }^{75 p}$			2SC3068 2SC3070		2SC35319		${ }_{\text {2SD6 } 13}^{2 \text { SD12 }}$		${ }_{\text {2SD1128 }}^{\text {2SD133 }}$		${ }_{\text {2SD } 1497}$		-	\%op
${ }^{2 S C 605}$	1000	${ }^{2 S C 1450}$	200p	${ }^{25 C 2029}$	${ }_{5}^{120 p}$	${ }^{25 C 2563}$	${ }^{2030}$	2SC3074	200p	2SC3552		${ }_{\text {2SD636 }}$		${ }_{2 S D 1135}$		2SD1505		${ }_{2 S K}{ }^{254}$	400p
- ${ }_{\text {2SC619 }}$	${ }^{100 p}$	2SC 1454	250p	${ }_{\text {2SC2037 }}$	- ${ }_{\text {50p }}^{120 \mathrm{p}}$	25C2564	${ }^{2300}$	${ }_{\text {2SC3074 }}$	${ }^{200 p}$	${ }^{25 C 35562}$	${ }^{300 p}$	${ }_{\text {2SD637 }}^{2 \text { SD }}$	10 p 15 p	2SD1135	75 p 50 p	2SD1505	${ }^{120 p}$	2SK240 2S312	140p
$2 \mathrm{2S644}$	10p	$2 \mathrm{SC1472}$	40 p	2SC2055	150p	2 SC 2568	${ }^{120 p}$	$2 \mathrm{CC3077}$	120p	$2 \mathrm{SC3584}$	200p	2SD638	${ }^{15 p}$	2SD1140	40 p	2SD1509	100p	2SK315	70 p
${ }_{2}{ }^{\text {SC647 }}$	${ }^{300 p}$	${ }^{25 C 1473}$	15p	2SC2058	20 p	2SC2570	\%	2 2SC3086	150p	2 SC 3595	220p	2SD639	20 p	2SD142	350p	2SD1511	100p	2SK320	120p
${ }^{256681}$	250p	$2 \mathrm{SC1474}$	45 p	2SC2050	60 p	${ }^{2 \mathrm{SC} 2571}$	350p	${ }^{25 C 3089}$	${ }^{130} \mathrm{p}$	$2 \mathrm{SC3605}$	60p	25064	350p	2SD1148	175p	$25 D 1519$	250p	25K323	130p
${ }^{25 C 683}$	35p	${ }^{25 C 1475}$	${ }^{60 p}$	$2 \mathrm{SC2} 261$	75 p	${ }^{\text {2SC2577 }}$	110p	${ }^{\text {SCC3101 }}$	750 p	$2 \mathrm{SC3600}$	${ }^{1000}$	2SD655	${ }^{18 p}$	${ }^{2 S D 1159}$	90 p	${ }^{2 S D 1521}$	70p	2SK386	600p
${ }^{25 \mathrm{C} 708}$	100 p	$2 \mathrm{SC1505}$	80 p	$2 \mathrm{SC2068}$	60^{60}	${ }^{2 S C 2578}$	170 p	${ }^{25 C 3112}$	35 p	${ }^{25 C 360}$	150p	2SD661	${ }^{60 p}$	2SD1160	150 p	2SD1541	${ }^{350 p}$	${ }^{2 S K 405}$	op
2SC710	15 p	2SC1507	45 p	2SC2071	140p	2 SC 2579	110p	$2 \mathrm{CC3114}$	40 p	$2 \mathrm{SC3636}$	280 p	2SD666	25p	2SD1163A	220p	2SD1548	450p	$2 \mathrm{SK413}$	500p
$2 \mathrm{SC7}$	15p	2SC1509	${ }^{35 p}$	2SC2073	40 p	2SC2580	175p	$2 \mathrm{SC3116}$	75p	$2 \mathrm{SC3657}$	400p	2SD667	20 p	2SD1164	75p	2SD1554	170p	2SK415	500p
2 Sc 730	${ }^{350} \mathrm{p}$	2SC1514	5	2SC2075	60 p	2 CC 2581	225p	$2 \mathrm{SC3117}$	120p	2SC3659	$600 p$	2SD668	120p	2SD1168	270p	2SD1555	170p	429	8 p
${ }^{2 \mathrm{SC7} 732}$	40 p	$2 \mathrm{SC1515}$	60 p	2SC2078	${ }^{95 p}$	$2 \mathrm{SC2588}$	600p	2 Sc 3122	50p	$2 \mathrm{SC3668}$	${ }^{120}$	2SD669	35p	2SD1169	280 p	2SD1556	400p	2SK511	450p
2SC733 2SC735	15p	${ }^{25 \mathrm{SC} 1520}$	${ }_{4}^{45 p}$	${ }^{2 S C 2085}$	${ }^{1000}$	${ }^{2 S C 2590}$	${ }^{40 \mathrm{p}}$	${ }_{2 S C 3148}$	185 p	${ }^{25 C 3675}$	100	${ }^{\text {SSD } 673}$	350 p	2SD1173	350 p	2SD 1564	0 p	2SK513	325p
${ }_{2 S C 738}$	${ }^{40 p}$	2SC1545	120 p	${ }^{25 C 2092}$	-60p	${ }^{\text {2SC2591 }}$	${ }^{50 \mathrm{p}}$	${ }^{2 S C 3149}$	180 p	${ }^{25 C 36}$	${ }^{280 p}$	2SD676	250p	2SD1185	400 p	2SD1565	75 p	2SK531	350p
${ }^{25 C 739}$	150p	${ }^{\text {2SC1567 }}$	40 p	${ }^{25 C 2094}$	${ }^{12000}$	${ }_{2 S C 2603}$	${ }_{10 \mathrm{p}}$	${ }_{2 S 3151}$	${ }_{230 p}^{125}$	${ }^{2 S C 3680}$	${ }^{\text {1800p }}$	${ }_{2 S D 717}$	${ }^{180 \mathrm{p}}$	${ }_{\text {2SD1187 }}$	200p	2SD1571	170 p 100 p	2SK537	700p 900 p
${ }^{25} 5761$	${ }^{110} 0^{2}$	2SC1568	${ }^{35 p}$	2SC2097	2300 p	${ }_{\text {2SC2610 }}$	60 p	2 2C3152	130p	${ }_{2 S C 3685}$	450p	$2 \mathrm{SD718}$	85p	2SD1189	55p	2SD1576	250p	${ }_{\text {2SK5 }}^{\text {2S }}$	900p
${ }_{2 S}^{2 S C 762}$	$\stackrel{150 p}{185}$	2SC1569	55 p	2SC2099	2500p	2SC2611	30 p	$2 \mathrm{SC3153}$	230p	$2 \mathrm{SC3687}$	600 p	2SD722	240p	2SD1190	150p	2SD1577	250p	${ }_{2 S K 539}^{2 S 538}$	11000
- $\begin{aligned} & \text { 2SC783 } \\ & \text { SC790 }\end{aligned}$	$85 p$ $50 p$	2SC1570	40 p 50 p	${ }^{2 S C 2118}$	11000 100	$2 \mathrm{SC2621}$	70 p	$2 \mathrm{SC3156}$	350p	$2 \mathrm{SC3688}$	550p	2SD725	270p	2SD191	120p	2SD1579	120p	${ }_{2 S K 555}^{2 S 539}$	400p
${ }^{2 S C 792}$	380 p	2SC1573	25p	2SC2131	550p	${ }^{25 C 2625}$	190p	${ }^{25 C 3157}$	200 p	${ }^{25 C 3692}$	150p	2SD734	${ }_{125 p}^{150}$	${ }^{\text {2SD192 }}$	${ }^{900}$	2SD 1589	${ }^{60} \mathrm{p}$	2SK556	500p
${ }^{25 C 805}$	${ }^{225 p}$	$2 \mathrm{SC1580}$	600 p	2SC2141	${ }^{60 p}$		${ }_{200}^{60 p}$	${ }^{2 S C 3158} \begin{aligned} & \text { 2SC3159 }\end{aligned}$	${ }_{200 p}^{260 p}$	2SC3715	${ }^{480 p}$	2SD741	120 p 130 p	2SD1196 2SD197	750p	2SDD 590 2SD 591	100 p 310 p	2SK557	400p
- $\begin{aligned} & \text { 2SC828 } \\ & \text { 2SC829 }\end{aligned}$	${ }_{15 p}^{20 p}$	2SC1583 2SC 1586	${ }^{\text {25p }}$	${ }_{2 S C 2153}^{2 S C 2}$	${ }_{80 \mathrm{p}}^{40 \mathrm{p}}$	2SC2634	${ }_{10 \mathrm{p}}^{20 \mathrm{p}}$	${ }_{2 S c 3164}$	350 p	${ }_{25 C 3729}$	450 p	2SD756	100 p	2SD 1207	40 p	2SD1593	${ }^{3125 p}$	${ }^{2 S K 566}$	475p
$2 \mathrm{2C839}$	20p	${ }^{2 S C 1617}$	340 p	${ }_{2 S C 2168}$	${ }_{120}$	${ }^{25 C 2636}$	40 p	2SC3169	150p	$25 C 3746$	100p	2SD757	120p	2SD1210	280p	2SD1595	160p	${ }^{2 S K 695}$	550p
$25 \mathrm{C870}$	100 p	2SC1623	50 p	2SC2788	70 p	${ }^{2 S C 2637}$	120 p	${ }^{2 S C 3170}$	300 p	${ }_{2}{ }^{25 C 3747}$	${ }^{120 p}$	${ }^{25 D 758}$	140 p	${ }^{2 S D 1211}$	${ }^{120}$	2SD1608	210p	2SK719	300 p 600 p
25 Cb 988 2 Cc 930	275p	2SC1624	60 p 550	2SC2200	250p							2SD762		2SD 1218			70 p 500 p	${ }_{\text {2SK725 }}$	600 p 600 p
2SC930 2SC941	15p	${ }^{\text {2SC1626 }}$	55p	2SC2221 2SC228A	$650 p$ $60 p$ 6	2SC2653	100 p 180 p	${ }^{\text {2SC3175 }}$	${ }^{150 p}$	${ }_{\text {2SC3783 }}$	150p	${ }_{\text {2SD763 }}$	${ }^{140 \mathrm{p}}$	2SD 1223	75p 120 p	${ }_{\text {2SD1632 }}$	${ }^{500 p}$	${ }^{\text {2SK725 }}$	${ }^{6000}$
$2 \mathrm{2S943}$	160p	2SC1628	75 p	$2 \mathrm{SC2229}$	15p	2SC2655	75p	$2 \mathrm{SC3779}$	70 p	2 2C3787	100p	2SD772	200 p	2SD1227	40 p	2SD1647	40 p	${ }^{25 K 735}$	${ }^{6000}$
${ }_{2 S}^{25 C 944}$	${ }^{140} 0$	${ }^{2 S C 1634}$	${ }^{50 \mathrm{p}}$	${ }^{2 S C 2230}$	${ }^{800}$	$2 \mathrm{SC2656}$	550 p	${ }^{25 C 33181}$	${ }^{200 p}$	${ }^{25 C 3789}$	75p	2 2SD73	20 p	2 2SD1229	250p	25D1649	260p	${ }^{256758}$	300 p
${ }_{2}^{25 C 945}$	${ }^{10 p}$	${ }^{25 C 1669}$	100 p	$2 \mathrm{SC2233}$	1000	2SC2660	100p	$2 \mathrm{SC3182}$	120 p	$2 \mathrm{SC3790}$	${ }^{120}{ }^{\text {p }}$	2SD774	30 p	2SD1237	300p	2SD1650	${ }^{180} \mathrm{p}$	${ }^{25 K} 787$	${ }_{5000}$
2SC950 2SC959	40 p	2SC1674	15p	2SC2235	${ }^{600}$	2SC2665	200 p	${ }^{25 C 3199}$	${ }^{40 \mathrm{p}}$	$2 \mathrm{LC3795}$	175	2SD777	400 p	2 SD 1246	20 p	2SD1651	${ }^{150} \mathrm{p}$	${ }_{\text {2SK872 }}^{2 S}$	${ }_{6}^{500 p}$
2SC959 2S980	2250 40	${ }^{\text {2SC16768 }}$	${ }_{80 \mathrm{p}}^{90 \mathrm{p}}$	2SC2236 2Sc2237	520p	2SC2668	${ }^{100} 100$	${ }_{\text {2SC3209 }}$	120 p 550 p	2SC3798	${ }_{\text {220p }}^{220}$	2SD784	${ }^{6500}$	${ }^{\text {2SD } 1247}$	${ }^{270 \mathrm{p}}$	2SD1663	950p	$2 \mathrm{SK872}$ 2 K 903	650 p 500 p
$2 \mathrm{SC982}$	20 p	2SC1683	100p	2SC2238	45 p	2SC2681	170p	2SC3211	220p	2 SC 3811	20p	2SD787	20p	2SD1251	180p	2SD1667	120p	2SK1057	600p
${ }^{25 C 983}$	${ }^{120 p}$	${ }^{2 S C 1634}$	30 p	$2 \mathrm{SC2240}$	15 p	2SC2582	70 p	2SC3212	260p	25 C 832	${ }^{200}$	2SD788	30 p	2SD1263	90 p	2SD1668	120p	2SK1058	800 p
2SC1000 2SC1001	20p	- ${ }_{\text {2SC1685 }}$	${ }^{300}$	2SC2258 2SC2259	${ }^{30 \mathrm{p}}$	2SC2688	27p	2SC3225	50 p	$2 \mathrm{SC3833}$	250p	2SD789	20p	2SD1264	55p	2SD1677	300p	2SK1117	250p
25C1001			900 p	2SC2259	60p	2SC2690	75 p	2 SC 3244	45 p	2 SC 3853	2200	2SD792	400 p	2SD 1265	75p	2SD1730	350p	2SK1118	225p
ANDATA BARGANS						$2 \mathrm{SC27}$	p	${ }^{25 C 3246}$	50 p	2 2SC3854	250p	$2 \mathrm{SD794}$	${ }^{33 p}$	2SD1266	${ }^{180}{ }^{\text {p }}$	2SD1732	400 p	${ }^{35 K 45}$	${ }^{1000}$
						2 SC 2	50 p	$2 \mathrm{SC3259}$	350p	2 SC 3855	220p	2SD795A	140 p	2SD1267	${ }^{55 p}$	2SD1739	${ }^{275 p}$	35K51	100 p
						$2 \mathrm{SC2}$	${ }^{20 p}$	${ }^{25 C 3260}$	${ }^{220 p}$	${ }^{25 C 36}$	500 p	2SD811	450 p	2SD1271	55p	2SD1740	${ }^{125 p}$	3SK59	${ }^{1000}$
							25p	2SC3261 2 Cc 362	${ }_{280 \mathrm{p}}^{230 \mathrm{p}}$	${ }^{\text {2SC3358 }}$	${ }^{550 p}$	2SD819 2SD820	${ }^{200 p}$	2SD1271	${ }^{225 p}$	2SD1748	90 p	35674	50p
						${ }_{2 S C 27}$	${ }^{20} 20 \mathrm{p}$	${ }_{2 S C 3263}$	280 p	${ }_{2 S C 3883}$	280p	2SD821	550p	2SD1273	50p	2SD1762	${ }_{50 \mathrm{p}}$	35k8!	50p
							200p	25 C 264	390p	2SC3884A	300p	$2 \mathrm{SD822}$	290p	2SD1275	50p	2SD1773	160p	${ }_{35 k 85}$	160p
						${ }^{25 C 2740}$	450 p	${ }_{2}^{25 C 3269}$	50 p	2SC3886A	400p	2SD826	30 p	2SD1276	60 p	2SD1783	100p	3Sk88	70p
						SC2749	350 p	2 SC3270						2SD1277		2SD17		3SK1	

REPLACEMENT VIDEO HEADS

Pricel	Model Pric	Model Price	Mode	Model
			NV366 NV180, NV78 NV48	
	FIDELITY HOS200, VCR600, VCR6100, VR900, VR9100 V500p			
				s
				FM464 FM561
			NOROMENOE460, $9460, ~ V 100,14 i), 200,250,304,341$,$450,550,700 \mathrm{p}$V100, 1005, 1015, 1025, 1035, 1041,	
				SL37E8000,8080, SLC5E.
			$\begin{array}{ll} 301,302, & 700 \mathrm{p} \\ \mathrm{~V} 1205, \mathrm{~V} 1215, \mathrm{~F} 12,3005 & 1235, \mathrm{~V} 1245 \end{array}$	
				, ivit
			vse2 van veve	
			$\begin{array}{ll}\text { VR6441, VR6540, VR6541, VR6540, } \\ \text { VR6642 }\end{array}$ $\begin{array}{l}\text { 2500p }\end{array}$ 1300p	
			cicosom	
				120. V30, vaso. vate.
				Tremmen
			Sisho	

PINCH ROLLERS / VCR BELT KITS

Model Price
AKAI VP770 V9500. vS9500, vs9700, VS9800, VS1, vs2, VS3, VS4, VS5, vs6, vSB vs Vs $105,112,115,116,126,205,220.2465$, VS250. VS512. VS22. 23.25 .25 425. 426 . $427,4,32,35,43,60,75,42$, $490,440,400,455,480,490,497,560$
8600, 8602, 8603, 8604, 8700, 8704, 871
$\begin{aligned} & \text { AINA } \\ & \text { AV66, AV77 } \\ & \text { G700, G900 } \end{aligned}$
ALBA VCF55000, VCR6 6000
AUTHENTIC
V100, 200, 202, 222. 224, 301, 306, 307 309, 311, 312, 315, 316, 317, 319, 320, 328, $404,414,434,444,478,707$, RTX 100 165p ATV211, 214, 321, 322, 348, RTX250, 260 ATV330, 454, 520, 530, 535, 560, 660, 670 $720,730,740,800,810,900,910,920165$
DAEWOOD VCR12, VCR32, VCR52 VCR30, VCR500
FERGUSON 3V00, 3V01, $3 \mathrm{~V} 16,3 \mathrm{~V} 22,3 \mathrm{~V} 23,3 \mathrm{~V} 24$, $3292,8901,8904,8902,8903,8904$, $8909,8912,8922,8923,8924,8925$, 8929 $3 \vee 29.3 V 30,3 V 31,3 V 32,3 V 52,8930,893$ 8933 $3 \vee 35,3 \vee 36,3 \vee 38,3 \vee 39,3 \vee 42,3 \vee 43$, $3 \vee 44,3 \vee 45,3 \vee 48,3 \vee 49,3 \vee 53,3 \vee 54$, $3 \vee 55,3 \vee 56,3 \vee 57,3 \vee 58,3 \vee 59,3 \vee 65$, FV10, FV11 8947, 8948 21R, 26D, $31 \mathrm{R}, 32 \mathrm{~L}, 41 \mathrm{R}$. FV42L, 50B, 51 R , FV44L. FV46T, FV43H
FIDELITY HOS200, VCR100, 600,6100 VTR100
S.E.c.
VHSAH1, 3, VHSVH4, VHSWH 1 , VHSX VHSYH2 VHSVN2 V SHS 42 VHSEH2, VHSEH3, VHSFS1, VHSFS2 VHSEH2. VHSEH3 VHSBY3, VHSCC1 VHSDS2, VMSXN2 Assembly) PS403 (Pressure Rodler VHSEY1, VHSEY2, VHSFY2 VHSFG2, VHSFG3, VHSFG4 VHSFH6 VHSFJ2. VHSFJ4 VHSF63, VBXAS!
SEE OTHER PACES FOR MORE CRANDATA BARCANS

A Welcome Initiative

Ayear or so ago the Department of Trade and Industry launched five, later to become six, 'taskforces' whose aim was to establish ways in which the role of engineers and technicians in industry could be enhanced, for the benefit of us all. It's an old problem of course, but there's a chance that this time the message will get through and result in positive action.

Clearly engineering know-how is vital in a modern industrial economy. Its application calls for suitably trained and qualified people at all levels in industry. The problem is to create a positive attitude to engineering, to align the educational system so that it can produce people with the required knowledge and skills, and to ensure that they then have the fullest opportunity to make use of their abilities. It sounds obvious, but somehow or other we've never managed to get it right in the UK.

There has for a start been a sort of cultural block when it comes to manufacturing. Perhaps because the UK became the first industrialised nation, engineering has tended to be associated in the public's subconscious with satanic mills and metal bashing rather than high technology. This attitude is totally out of place as we approach the twenty-first century.

Looking at things from a different angle, there is a perfectly understandable reluctance amongst those who are interested in engineering to become involved in management, finance and marketing, things they feel to be distractions from what they should and want to be doing. It is a paradox that firms increasingly rely on engineering and technology while being unable to get it right - just think of the millions and millions (yes!) that have been wasted on computer systems that don't work because the technolgy wasn't properly understood by those who had to commission them. The country would have been in a far better state than it is if an appreciation and knowledge of engineering and technology had played a greater part in our basic education.

There are largely self-made problems in all areas. The Japanese Ministry of International Trade and Industry no less, and Japanese firms investing in the UK, have been complaining about the shortage of good-quality engineering candidates for middle and top management positions in Japanese enterprises in the UK. The problem is as great on the shop floor, where lack of engineering know-how and the
right attitude has made it difficult to achieve in the UK the efficient manufacturing, with zero-defect products, achieved in the Far East. If people, because of their training, simply chuck faulty components in the bin without any interest in why they might have failed we are not going to make the most of the ever evolving technical opportunities.

The heart of the problem, once the educational and cultural sides have been sorted out, is the management of manufacturing. It is a sad fact that firms headed by engineers and scientists have tended to perform less well than those headed by accountants and other non-technical people. Yet it should be natural for technically trained people to appreciate that products will sell only if they meet market needs and that efficient production is basic to everything. It has been said that any fool could design a Roller: the art of engineering is to get the same results at a fraction of the cost. How have the Japanese and, increasingly, the Koreans been able to produce advanced products at such affordable prices? We get an inkling of what it's all about from their ability to proceed from incredibly expensive prototypes to cheap, everyday products in such a short time span.

Let's hope then that the DTI's taskforces will be able to get the momentum going, since we all know what needs to be done. They have brought together, under the banner Action for Engineering, representatives of industry, education, the engineering professions and organisations and government, and are industry-led. The purpose is to assess the training and education of engineers and technicians and their potential in indusiry. A number of projects have been set in motion for development and implementation, mainly by the middle of this year when the initiative formally ends. The aims are to promote engineering careers in schools, make better use of engineers, train more technicians and supervisors, achieve standards of engineering excellence and promote the importance of technology. To which one could say "and about time too!"

It's recognised that there are no instant cures, and that getting things right could take a decade or more. The important thing is that a start has been made. Come to think of it, it would be strange if a new generation steeped in technology didn't adopt a more positive approach than that of its predecessors.

COPYRIGHT

© Reed Business Publishing Ltd., 1996. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 45 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 209. Binders that hold twelve issues of Television are available for
$£ 5.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

Annual subscription rates (inclusive of pastage) are as follows: UK $£ 26.00$; overseas $£ 30.00$ (airfreight); Europe $£ 37.00$ (airmail); rest of the world $£ 48.00$ (airmaill. Send orders with payment (make cheques payable to Television) to Television, Subscriptions Dept., PO Box 302, Haywards Heath, West Sussex RH1G 3YY (UK). Telephone 01444445566.

Subscription hotline for 24-hour ordering with Credit Card telephone 01622778000 quoting IMJ.

NEWSAGENT DISTRIBUTION

Enquiries 0181652 8171, fax 01816528997.
Distributed by Marketforce (UK) Ltd., 247 Tottenham Court Road, London W1P 0AU. 01712615555.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each. For further details see box on page 220.

ISSN 0032-647X

REED BUSINESS

Consumer

eectronlas seen in JAPAN

George Cole looks at some of the new technology on display at this year's Japan Electronics Show

A widescreen
 Sony Plasmatron receiver.

This years's Japan Electronics Show, held in Osaka over October 17th-21st, attracted some 350,000 visitors. Although most of the halls were devoted to industrial components, there was plenty to see in the consumer electronics section.
The prices quoted in the following report are an approximate sterling equivalent of the Japanese yen prices. Being intended initially for the Japanese market, most of the models mentioned are not available elsewhere. They do however show how Japanese consumer electronics technology is developing.

TV Display Systems

This year's biggest development was the arrival of large, flatscreen TV displays, with the prospect of hang-on-the-wall TVs in the near future. Japanese companies are divided over which type of display holds out the greatest promise however.
Sharp, the world's largest liquid-crystal display (LCD) manufacturer, had much to show, including a $12 \cdot 5 \mathrm{in}$., 16:9 aspect ratio panel and a prototype dual-screen LCD. But the exhibit that made the biggest impact was the company's 28 in . LCD panel, the world's largest direct-view TFT (thin-film transistor controlled) LC display. It has 921,600 pixels, offers 24 -bit colour and a contrast ratio of $100: 1$. Its power
consumption is about 100 W and its weight 18 kg . The pictures produced were good, but one wonders what the price of such a large LCD will be
Sony had on show TV sets fitted with its Plasmatron display which uses a hybrid LCD and gas-plasma technique called PALC (Plasma Addressed Liquid Crystal). Briefly, PALC uses plasma discharges instead of transistors to switch on the pixels in an active LCD (for further details see Television September 1995, page 780). According to Sony this technology is cheaper to produce than the TFT LCD, which requires clean-room conditions. The Plasmatron sets produced very good pictures - especially as they were being demonstrated under bright lighting conditions. The first 25 in . Plasmatron sets are due to go on sale in Japan this month at about twice the price of a conventional c.r.t. set with the same size picture.
Panasonic (Matsushita), Fujitsu, Pioneer and Mitsubishi showed gas-plasma displayes ranging in size from 21 to 40 in . Picture quality varied. The Panasonic displays were clear and bright with a good viewing angle. In comparison, the Fujitsu and Pioneer plasma displays looked coarse. Panasonic plans to launch its first plasma display TV sets in Japan later this year (1996). Fujitsu is to start mass producing 2 lin. plasma TV sets in February. They will cost around one million yen (about $£ 5,800$) each.

High-definition TV

Although there was much emphasis on flat-screen technology, there was also plenty to be seen in c.r.t. sets and technology. A number of companies had on show TV sets for the Japanese analogue HD-TV standard (MUSE), which has 1,125 picture lines in comparison with NTSC's 525. MUSE is transmitted via the BS satellite, the HD-TV sets being sold under the name HiVision.

Many of the latest HiVision sets use third-generation MUSE decoders. Panasonic's TH36HV30 (priced at the Japanese equivalent of $£ 4,070$) is a 36 in. monster. Hitachi showed Model C39HD50 $(£ 4,650)$ which has a 39 in. backprojection display and connections for three VCRs, a LaserDisc player and a satellite receiver. The Hitachi 55in. Model C55HD 1 comes with storage cabinets, weighs 149 kg and costs around $£ 14,500$! Toshiba's 32 in . Model 32HD3E ($£ 3,080$) uses a Super Brighton high-definition c.r.t.

Conspicuous by its absence was any form of digital TV. This is a sensitive subject for the Japanese, who have invested heavily in their analogue HD-TV system consumers have had to pay a king's ranson for HiVision receivers. Sooner or later however the Japanese broadcasters and electronics companies are going to have to become involved in digital TV services.

Multimedia TV

Almost every stand sported the word multimedia: Japanese companies clearly see the PC and TV coming closer together. A number of companies showed TV sets that could also display computer graphics.
Sony's PowerWide Trinitron sets are designed to link an HD-TV receiver, a PC (via an RGB socket), a games machine, a VCR and a LaserDisc player. The sets provide Wide Clear Vision, which is the NTSC version of PALplus - 16:9 aspect ratio pictures that are cleaner and clearer than conventional NTSC ones. Sony's PowerWide Trinitron sets include the 32 in . Model KV32PW1 at $£ 1,918$ and the 28 in . KV28PW1 at $£ 1,453$.

JVC had on show a prototype TV set that can be linked to a PC. The Hitachi Model C29HMV1 PC Vision at $£ 1,686$ is a 29 in . set with an RGB socket for PC connection. Toshiba MM TVs are also designed for PC connection: models in this series include the 21 in . 21 MM 3 S at $£ 872$ and the 29 in 29 MM 1 B at $£ 2,442$.

PIPs, POPs etc

Many sets had PIP (picture-in-picture), multiple PIP, POP (picfure-outside-picture) and split-screen displays. The Hitachi 32 in. Model C32HE50 at $£ 1,800$ could display two, three, seven or nine PIPs and had three YC sockets.
Toshiba's Double Window set enables the viewer to split the screen into two halves to provide displays with a number of different configurations. Both sides can show same-sized TV pictures for example, or one half of the screen can show nine PIPs or teletext while a half-sized diplay is present on the other side. There are three models in the Double Window range, with screen sizes ranging from 28 to 32 in . The latter model costs $£ 1,977$. Panasonic's 32 in . Model TH32WS40 at $£ 1,850$ also provided split-screen displays.

3D-TV

Sanyo had on show a large 3D-TV display receiver that attracted a lot of attention. Model C32SDI at $£ 2,200$ uses the Sanyo LC77710 DSP (digital signal processor) chip to produce 3D images from a 2D signal. It employs a system called Modified Time Difference (MTD) to separate the 2D signal in time. The viewer has to wear LCD glasses, which offset the focal points for the left and right eyes, his brain interpreting these differences as picture depth.
The MTD system doubles the field frequency (to 120 Hz for NTSC) to reduce flicker, with the LCD glasses acting as left and right shutters that alternately open and close at the same frequency. A single pair of glasses is supplied with the C32SDI, extra pairs costing $£ 145$ each. Despite these prices Sanyo claims that the set is being stocked by 500 shops around Japan and that over 4,000 sets have already been sold.

VCRs

Sharp showed its remarkable dual recording VCR, Model VCBF80, at the equivalent of around $£ 540$. It can record two TV programmes simultaneously and display them togther on a split-screen TV set. The VCBF80 has three tuners (two for terrestrial TV and one far satellite TV) and two timers. It uses an eight-channel drum with six heads.
Two TV programmes are recorded simultaneously on normal tape by dividing the standard track into two sections. For the NTSC system the VHS track is $58 \mu \mathrm{~m}$ wide (for PAL

DVC

Camcorders that conform to the Digital Video Cassette (DVC) format were present in force. DV'C was described in llast month's issue of Television. To recap briefly, up to an hour of digital video is stored on a small cassette, with picture quality (the horizontal resolution is around 500 lines) that far surpasses Hi-8 and S-VHS.
Sony showed an intriguing DVC accessory, the HVLF7 video flash at $£ 60$. It's designed for use with the Sony DCRVX1000 DVC camcorder during the still video or photo-shooting mode, and is activated automatically via a LANC link. The flash is battery powered.
Panasonic showed a couple of DVC models. The NVDRI at $£ 1,280$ has a large colour LCD viewfinder. It can be connected to a video modem, Model VMMD1 ($£ 315$), for faxing still images. A video image is frozen, scanned and then transmitted. To send a video image between two VMMD1 modems takes about 30 seconds. Alternatively the image can be sent to a conventional fax machine, taking about two minutes. The Panasonic Model NVDJ 1 at $£ 1,600$ includes three CCDs, a $\times 20$ digital zoom and a massive vewfinder.
The JVC GRDV 1 pocket-sized DVC camcorder at $£ 1,300$ and the Sharp VLDH5000 (Digital Viewcam) had many admirers. The Sharp model has a 5 in. LCD monitor with nearly 225,000 pixels, three quarter-inch CCDs each with 440,000 pixels, a $\times 30$ zoom ($\times 12$ optional) and a PC connection. It weighs 1.2 kg and has a price ticket of about $£ 2,035$.

the figure is $49 \mu \mathrm{~m}$). When dual recording, the $58 \mu \mathrm{~m}$ track is split into $25 \mu \mathrm{~m}$ and $19 \mu \mathrm{~m}$ sections with guard bands between each section and track. The $25 \mu \mathrm{~m}$ section is used for programme A and the $19 \mu m$ section for programme B. The latter is the same track width that's used in the EP mode, which triples the NTSC recording and playback times. When EP recording the $19 \mu \mathrm{~m}$ tracks are laid down without guard bands.

The head drum arrangement is interesting - see Fig. 1. There are two heads for SP/EP recording ($58 \mu \mathrm{~m} / 19 \mu \mathrm{~m}$), two heads for $25 \mu \mathrm{~m}$ track recording in the dual mode, and two hifi audio heads. I'd hate to think how much a replacement

Sharp's VLDH5000 digital camcorder.

Sharp's 28in. LCD panei.

Sharp's
VCBF80 dual-
recording capability VCR.
would cost! So far the technique is available only for NTSC operation: one wonders whether the same principle could be adopted for PAL, given the narrower video tracks.
JVC demonstrated a massive prototype Data VHS (D-VHS) machine. This format enables a VHS VCR to store large

Fig. I. Head drum arrangement used in the Sharp VCBF80 dualrecording VCR.

Fujitsu's prototype gasplasma display.
quantities of digital data. JVC was also showing its first VCRs that feature the new dynamic drum system (DDS). This has a drum whose angle can be altered in the trick play modes such as picture search or slow motion to give noise-free pictures. The DDS range includes Models HRVX5 at $£ 610$ and HRVXI at $£ 872$. They both include S-VHS, the HRVXI having in addition a built-in BS satellite decoder/receiver.

A format that's unlikely to be seen outside Japan is VHSW, which enables MUSE satellite transmissions to be recorded. JVC's HRW5 and Panasonic's NVWV10 (both priced at $£ 1,976$) are awesome to look at but provide superb picture quality.
Toshiba showed a curious VCR, Model F51PC at $£ 570$, which has an RS232 connector for linking to a PC. Other features include VideoPlus and a Closed Caption decoder (this decodes and displays hidden subtitles in broadcasts and prerecorded tapes to aid viewers with hearing problems).

The Panasonic NVFV7 at $£ 960$ has a built-in LCD screen and stereo speakers. It's been designed for use around the home.

Video Discs

The recent agreement between the Sony/Philips and Toshiba/Time Warner consortia to develop a single standard for the forcoming generation of high-density video CDs came too late for the exhibitors. As a result Sony was pushing its Multimedia CD (MMCD) system and Toshiba the Super Density (SD) disc system. JVC and Pioneer also showed prototype HD players.

Video CD is popular in Japan, its main use being for karaoke. Sony's VCPS55 at $£ 250$ is a stand-alone Video CD deck that conforms to the latest version of the Video CD standard, known as the White Book. This enables it to provide high-resolution still picture displays. Sony also showed a Video CD mini hi-fi system, Model VCMV1C with a five-disc changer at $£ 800$.

JVC also showed a Video CD hi-fi system, Model M500, with a three-disc changer. The price quoted was $£ 808$.
LaserDisc is also strong in Japan. Models on show included the Hitachi VIPK2889 at £574. The Panasonic LXHD20, Hitachi VIPHLD1 and Sony HLC2EX are highdefinition video system (HDVS) versions that provide stunning picture quality at a price to match - around $£ 1,730$.

The Mini Disc System

The Sony Mini Disc was originally designed as a medium for storing high-quality digital audio. It's now finding other applications however. One of these is as a portable data storage system or floppy disc. The PC version is called MD Data. Each disc can hold up to 140Mbytes of data. Sony has launched MD drives and Sharp plans to market a couple.
Sony also showed how Mini Disc can be used as a photo storage device, working in a similar way to Kodak's Photo CD. Each Mini Disc can hold up to 200 high-quality photographic images.
The Sony Model EPX701 Mini Disc picture editor can be used to crop images electronically. The Mini Disc picture system will probably be launched later this year.
Another Mini Disc development is PDF5 or 'Data Eata' which, at $£ 872$, consists of a scanner, an 8 in . LCD screen, an ink-jet printer and a Mini Disc drive. It's used as a document storage system. You can scan up to 1,000 pages of text and graphics, store them on a disc and use the LCD display to view them. If a hard copy is required, press a button and the document is printed out.
Mini Disc sells much better in Japan than in Europe or the USA. The discs and players are readily available. Around 400,000 players were sold during the first year (1992), and it's expected that about 1.3 m will have been sold in Japan in 1995. A number of new Mini Disc machines were shown, including Sharp's dinky MDS45 which measures just 74×16 $\times 100 \mathrm{~mm}$, weighs 135 g and has a price tag of about $£ 350$.

Miscellany

JVC and Hitachi were showing badged versions of Sega's Saturn 32-bit system in the games hall. Panasonic had its 32bit 3DO player. Casio showed a curious toy computer called Loopy, which you connect to a TV set so that kids can watch interactive storybooks and print cartoons.

Finally, though I didn't spot it at the show, Hitachi has been advertising an intriguing combined 21 in . TV set and refrigerator, Model CRK2150, in its promotional literature. The TV set is atop the fridge, which can be used to store beer, wine and other essentials of life. I've no price details, but suspect that the device would go down well with sports viewers!

VCR BELT KITS / REPLACEMENT VIDEO LAMPS

VIDEO SERVICE KITS

AMSTRAD

Contents
BELT SET. PINCH ROLLER. REEL IDLER VIDEO LAMP
Order Code: SK4I
FERGUSON \& JVC
3V42:43
HRD455//
Contents
\qquad CLUTCH MECHANISM TENS BAND CUTCH

Order Code: SK37
$\$ 16.00$
Economy Kit Contents BELT SET PINCH ROLLER
der Code: SK38
58/59,04,65 IRS5000
Contents
BELT SET PINCH ROLLER IDELR ARM TENSION BAND Order Code: SK44
3V29/3V30
HR7200/7300/7350
Contents
BELT SET PINCH ROLLER TENSION BAND. IDLER TYRES
Order Code: SK05
3V35/36 38/39/49

Contents

BELTSET PINCH
Order Code: SK04
$3 V 31 / 3 V 42$
Contents
ontents
BELT SET TU REEL TABLE
DERL. T/UCLUTCH T/UIDLER IDLERTYRE T/UIDERLTYRE TENSIONBAND VIOEO LAM
Order Code: SK33 £11.00 Order Code: SK34 $£ 5.0$
3V35/36/38/39/49
HRD 110/111/720/121/225
Contents
TSET TH TEL TABLE
TYRE SUPPLY REEL TABLE
TYRE. PINCH ROLLER TUU
CLUTCH TUIDLER REEL
DLER TENSIONBAND
$\begin{array}{llll}\text { Order Code: SK35 } & £ 10.00 & \text { IDLER TYRE } & \\ & \text { Order Code: SK36 } & £ 5.50\end{array}$
3V29/3V30
HRT200730077350
Contents
BELT SET TU REEL TABLE
TYRE SUPPLY REEL TABLE
TYRE SUPPLY REEL TABLE
IDLER TU CLUTCH THUIDLER.
Economy Kit Contents TYRE SUPPLY REEL TABLE
TYRE PINCH ROLLER REEL TDLE TYRE TUIDLER TYRE
Order Code: SK31 $£ 10.00$
Order Code: SK32
v44/45/48/53/54/55/57
HRP50/HRD140/150/158//60
HRD250/257/565/566/755
Contents BELT SET PINCH ROLLER
Economy Kit Contents
CLUTCH MECHANISM TENSION
BAND
Order Code: SK39 $\quad £ 15.00 \quad$ Order Code: SK40 $\quad £ 9.50$
FISHER

FVHP905.906/907/908/910/911/916/918			
Contents		Economy Kit Contents	
		BELT SET PINCH ROL	
BELT SET PINCH ROLLER,		IDLER GEARIDLER UN:T IDL	
TENSION BAND			
Order Code: SK57	¢13.00	Order Code: SK58	£5.00
FVHP615/618/620/622/710/711/715/716/720/721/722/725/			
730/830/840			
ContentsBELT SET. PINCH ROLLEF		Econamy Kit Contents	
		BELT SET PINCH ROLLER.	
IDLER GEAR IDLER UNIT			
TENSION BAND			
Order Code: SK68	£11.00	Order Code: SK69	¢3.00
HITACHI			
VT11NT33			
Contents			
BELT SEI PINCH ROLLER TENSION BAND IDLER TYRES			
Order Code: SK08			£5.00

UNIVERSAL TRIPLER

Price: $£ 4.00$ each

AMSTRAD MODE KIT

Price: $£ 2.75$ each

SEE OTHIER PACES

FOR MORE
GRANDATA BARGANS

VIDEO SERVICE KITS (Cont.)

VT11/VT33	
Contents	Economy Kit Contents
belt set tup reel table	BELT SET Pinch rolle
RE SUPPLY REEL TABLE	FF/REW IDLER TYRE T/UP P
YRE, PINCH ROLLER FF/REW	TABLE TYRE SUPPLY REEL
IDLER CLUTCH PLATE	TABLE TYRE
TENSION BAND	
Order Code: SK45 £13.00	Order Code: Sk46

VT52/61/62/63/64/65/85/86/640
Contents
BELT SET. PINCH ROLLER.
fFIREW ARM CLUTCH PLATE
Economy Kit Contents
fonew arm clutch plate fariew idler
Order Code: SK49
£14.00
$510 / 520 / 25 / 26 / 530 / 35 / 36 / 540 / 545 / 46$. 48/570/7/35/48/450/498
Contents
TIMING BELT PINCH ROLLER. FFIREW ARM CLUTCH BASE TENSION BAND
Order Code: SK52
VT $100 / 110 / 111 / 113 / 115 / 118 / 120 / 125 / 128 / 130 / 135 / 138 / 145 / 150 /$ 175/220/225/250/255/258/260NTL30
Contents
BELT SET PINCH ROLLER FFRREW ARM CLUTCH PLATE
Order Code: SK51
\$1400

PANASONIC

Contents
NV7000iNV7200/NV7800
\qquad INCH ROLLER
Contents
FNSION BAND IDIER TYRES TENSION BAND IDLER TYRES $\begin{array}{llll}\text { Order Code: SK03 } & £ 5.00 & \text { Order Code: SK02 } & £ 5.10\end{array}$

NV300/NV330/NV333/NV340/NV366
Cantents
Order Code: SK01
NV2000. NV2010
Contents
Economy Kit Contents
belt set pinch roller ff belt Set pinch roller IDLER PLAY IDLER TENSION IDLER TYRE PULLEY TYRE
BAND VIDEO LAMP
Order Code: SK13 $\quad \mathbf{6} .00$ Order Code: SK14
〔3.50

Contents

Contents	Economy Kit Contents
BELT SET PINCH ROLLER	BELT SET PINCH ROLLER
OLER UNIT PLAY IDLER	IDLER TYRE CLUTCH TYRE
TENSION BAND	

$\begin{array}{llll} & & \\ \text { TENSION BAND } & & \\ \text { Order Code: SK11 } & \mathbf{8 8 . 5 0} & \text { Order Code: SK12 } & £ 3.25\end{array}$
NV300/ NV 330 /NV 333 /NV $340 / \mathrm{NV} 366$

\section*{$\begin{array}{ll}\text { Contents } & \text { Economy Kit Contents } \\ \text { BELT SET PINCH ROLLER } & \text { BELT SET PINCH }\end{array}$
 | IDLER UNIT PLAY IDLER | BELT SET PINCH ROLLER | |
| :--- | :--- | :--- |
| TENSION BAND | IDLER TYRE PLAY IDLER | |
| Order Code: SK15 | $\mathbf{~ T Y R E ~}$ | |
| Order Code: SK16 | | |}

NVG7/NVG9NNG10/NVG1 1/NVG12NVG14/NVG15/NVG16
NVG18/NVG30 NVG 120 NVG130NVG400/NVH65 (PX/AC)
AG1810 (P K)

LOA
BEL
TEN
Orde

NV332 Contents

PLY PINCH ROLLER. LAY IDLER FF/REW IDLER.

NV230,250/260/280/430

Contents

BELT

 \section*{Ord}

 \section*{Ord}
 Order NV6C Conte

LAY SE PINCH ROLLER
ENSION B FFIREW IDLER
Order Code: SK25 $\quad £ 12.00$

NV730/NV7 Contents

SLOT IN BELT	LOADING BELT	SLOT IN BELT LOADING BELT
PINCH ROLLER IDLER UNIT.	PINCH ROLLER IDLER TYRE	
TENSION BAND		
Order Code: SK19	$\mathbb{5 5 . 0 0}$	Order Code: $\mathbf{S K 2 0}$

NV370.NV380/480/630/780/830/850/AG2100PK/AG2200PK Contents Economy Rit Contents IDLER TENSION BAND IDLER TYRE NV777/NV788
Contents
BELT SET PINCH ROLLER
Order Code: SK17

Economy Kit Contents BELT SET PINCH ROLLER IDLER TYRE

VIDEO SERVICE KITS (Cont.)
SHARP
Content
Contents Economy Kit Contents
REEL IDLER TENSIONBAND
Economy Kit Contents REEL IDLER TENSIONBAND REEL IDLER TYRE Order Code: SK47 88.00 Order Code: SK48 $£ 3.25$ VC500NC571NC581NC582NC583/VC584NC5F3 Contents

Economy Kit Contents
BELT SET PINCHROLLER
BELT SET. PINCH ROLLER
$\begin{array}{llll}\text { Order Code: SK60 } & £ 9.50 & \text { Order Code: SK61 } & £ 5.00\end{array}$
VC781NC7810NC7822NC785NC786NC793NC800 VCA 100 NCA 102 NCA 104 NCA202 Contents

Economy Kit Contents BELT SET. PINCH ROLLER BELT SET PINCH ROLLER BAND RIVE UNIT. TENSION Order Code: SK64 \quad £13.50 Order Code: SK65 \quad §3. 75

VC681NC682NC684NC685NC693NC699NC6F3NC700 Contents

Economy Kit Contents BELT SET PINCH ROLLER BELT SET PINCH ROLLE REEL DRIVE UNIT. TENSION BAND

Order Code: SK62	$£ 13.50$	Order Code: SK63	$£ 5.00$

FOR MORE DETAILS OF OVER 500 TYPES OF SERVICE KITS... PLEASE RING US!
 BACKUP BATTERIES
 REPLACEMENT PHILIPS NI-CAD BACKUP BATTERIES

 Replaces Ferguson Part No.
EPLACEMENT

REPLACEMENT
 LINE OUTPUT TRANSFORMERS

Description	Price	Order Code
HITACHI 2433752	1500p	Lotar
ORION 3714002	1500p	Loroz
FIDELITY Z $\times 300$	1500p	Lor03
FE TX100 90 DEG	1500p	LOTO4
SABA 490007182	1500p	LOtos
FE TX90 WHITE	1650p	LOT06
ITT D307/37 EQ	1600p	LOT07
BLAUPUNKT 210	1600p	LOT08
GRUNDIG 2922010	1600p	Lotas
ITT CVC800/1/3	1500p	LOT 10
ITTD218/37 EQ	1600p	LOT11
NORMENDE 5255	1600p	LOT12
SABA 81000200	1600p	LOT13
SALORA T236 EQ	1650p	LOT 14
SABA 811-50-24	1600p	LOT 15
SABA 770223500	1600p	LOT 16
TELEFUNKEN AT	1450p	LOT17
TELEFUNKEN EQ	1400p	LOT18
SALORA FM0218B	1600p	LOT 19
NORMENDE 5255	1600p	LOT 20
ITT CVC 1150/1	1500p	LOT21
IT COMPACT 80	1500p	LOT22
FE TX100 GREEN	1450p	LOT23
HINARI CT4/5 5113	1500p	LOT24
SELECO 6320410	1600p	LOT25
BLAUPUNKT 8667	1600p	LOT26
ITT COMPACT B1	1450p	LOT27
ITT CT3326 MUL	1500 p	LOT28
ITT D066/37 EO	1600p	LOT29
ITT 3546 EQ	1500p	LOT30
LUXOR 5810110	1600 p)	LOT31
SABA 849380920	1600p	LOT32
HITACHI 2434141 CP	1450p	LOT33
FE TX100 110 D	1700p	LOT34
HANTAREX 28021	1600p	LOT35
SHARP C3700 EQ	1600p	LOT36
HITACHI 2432981 CP	?500p	LOT37
FERGUSON 00D3-508-002	1650p	LOT38
Fits Chassis TX99 $41 \mathrm{~cm}+51 \mathrm{~cm}$		
Used On: 51K2, 51J8, 51J7, 41H3, $41 \mathrm{H} 3,41 \mathrm{H} 2,51 \mathrm{~K} 3$		
PANASONIC TLF14567F	1850p	LOT39
Used On: TC2043, TC2243, TX300		
PANASONIC TLF 14568 F	1850p	LOT40
Used On: T×2231, TX2244		
PANASONIC TLF14584F	2350p	LOT41
Used On: TC2210, TC2160,		
TX1752, TX2112		
TX2112. TX2162, TXC22		
PANASONIC TLF14586F	2350p	LOT42
TC1651, TC2051, TC2061,		
TC2253. TC2263. TX5500		
HINARI	1600p	LOT43
Used On: CT15		
HITCHI 2434274	1250p	LOT44
CPT2174, CPT2176, CPT2178, 24342		
We stock line output transformers for over 100 different models. Please ring 0181-900 2329 for more information.		

JUST ARRIVEDII NEW HIEMS

Satellite PSU Repair Kits

Experience shows that 50% of all receiver power supplies 'bounce' unless the correct precautionary measures are taken when being serviced. A kit of all the recommended parts is supplied for the 4 most popular models, which when fitted should overcome this.

MAKE \& MODEL	ORDER CODE	PRICE
PACE PRD800, PRD900	SATPSU1	650 p
PACE SS9000, 9200, 9010, 9020, 9220	SATPSU2	650 p
AMSTRAD SRD510, SRD520	SATPSU3	650 p
AMSTRAD SRD500	SATPSU4	650 p

Replacement Video Heads		
make	mooels	PRICE
HITACHI	VT570, VT575, VT576, VT580, VT585 VT588, VTF70	3100p
1.T.T.	VR3761	3100p
JVC \& FERGUSSON	HRD950, HRD960. HRD980, FV46	5000p
LUXOR	VR3761	3100p
MITSUBISHI	HSE51	3000p
NATIONAL PANASONIC	NVFS 200 , NVFS 90 , NVV8000	4600p
	NVHD100, NVHD101, NVHF100	3100p
	NVSD	1400p
	AG7330, AG7350, AG7355, AG7450	5000p
	NVFS100	5000p
N.E.C.	D5600	3500p
SANYO	TLS $1000 \mathrm{P}, \mathrm{TLS1001P}$,	3100p
	VHR7800, VHR7810, VHR8000SP. VHR8801SP, VHRD4800	3100p
SHARP	VCH80, VCH81, VFH815	2800p
	VCA33, VCA36, VCA43, VCA44. VCA46, VCA49	1500p
	VCA55, VCA63	2200p
SONY	SLV656, SLV715, SLV757, SLV777. SLV815, SLV825	4600p
	SLV353UB	3200p
	CCDF340E, CCDF500E, CCDV90E, CCDV95E, CCDSP5E	4800p

Original Video Heads

MAKE	MODELS	PRICE
NATIONAL	NVG20, NVG21, NVG22, NVG25	3000p
PANASONIC	NVG5, NVG28, NVG200, NVD48	
		PART NO: VEH 0343

Audio Control Head

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600MKIII, 4700, FUNAI VS2, VCR $4600,4800,5200,5600,6600$, VIP 3000,5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AHO1 PRICE: 1350p AMSTRAD ORIGINAL NO: 153134
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600,8602 8603, VCR8604, $8700,8704,8714,8800,9005,8244$
AISOHIS: ANITECH, BONDSTEC, CASIO, CROWN, FIDELITY,
GOLDHAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX GOLDHAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX
SCHNEDIER, SEG, SENTRA, SHINTOM, TASHIKO TATUNG, SCHNEDER, SEG. SENTRA, SHINTOM, TASHIKO, TATUNG,
ORDER CODE: AHO2 PRICE: 1450 P

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	$875 p$
VBR 0050	NV300, NV340 etc	875p
VBR 0061	NV777 etc	875p
VBR 0103A	NV250, NV450 etc	$625 p$
VBR 0125		$625 p$

8 way Preprogrammed Universal Remote

Control

A single remote control to operate Televisions, Videos and Satellite Receivers. Plus Auxilliary Options
Replaces up to 8 remotes with one ' Simple 4 digit setup routine
Controls 1000 s of models * Teletext functions with Fastext

* Clear (lerge key) layout * Code Search Facility
*Stylish and easy to operate " Replace broken or lost remotes - Original Remote not required

Order Code: 8 WAY Price $1450 \mathrm{p}+$ VA

Replacement Video Cassette Housings

make	mODELS	CODE	PRICE
AKAI	VS35, VS53, VS55, VS56, VS75	CH18	2600 p
GRANADA	VHSDP1	CH05	1100p
	VHSYJ2	CH01	2600p
Goldstar	GHV1290P, 1291P, 1295P, 9400, 73401, GSE 1295P, GSE 1891P, 200010, 200510. VCP4200, 4300, 4301, 4305, VCP4306, 4311, 4315, 4316,4320, 4321, 4325	CH25	2000p
	GHV51, 1221, 1232, 1240, 1241, 1242, 1244, 1246, 1248, GHV8000, 8200	CH26	2900p
FERGUSON \& J.V.C.	$3 \mathrm{~V} 38.3 \mathrm{~V} 39,8943,8944,8951,3 \mathrm{~V} 35,3 \mathrm{~V} 36,3 \mathrm{~V} 49$, HRD 110, 111, 120, 121, 225	CH01	2600p
	3V42, 3V43, 3V44, 3V45, 3V48, 3V53, 3V $34,3 \vee 55,3 V 57,8945,8947,8948$, HRD140, 141, 150, 157, 158, 160, 250, HRD257, 455, 565, 566, 725, 755	CHO2	2600p
	8948, 8950, FV10B, 12L, 13H, 14T, 20B, 21R, 22L, 26, 395, HRD230, 430, 530	CH03	2600p
	3V58, 3V59, 3V64, 3V65, FV11R, 8950, 8951, HRD 170, HRD180, HRD370	CH04	2600p
	FV31R	CH19	4300p
	HRD515, 520, 527, 540, 550, 580, 600, 610, 620, 660, 670, HRD830, 840, 850, 860, 4050. 6600, FV37H	CH 2 O	2400p
	HRD540, 580, 830, 860, 910, 960, HRD970, HRDX20, FERGUSON FV57H	CH27	2400p
I.T.T.	VR3605, VR3905	CH01	2600p
	VR3916, 3926, 3946, 3948, 3976, 3986, 3995, 3997, 6948	$\mathrm{CHO2}$	2600p
	VR3916, 3926, 3946, 3948, 3976, 3986, 3995, 3997, 6948	CH02	2600p
NATIONAL PANASONIC	NV730	СН06	4300p
N.E.C.	N830EG. N831EG, N832, N833EG	CH01	2600p
	N895	CH02	2600p
PHILIPS	CASSETTE LIFT ASSEMBLY (69120366\} DV186, 190, 286, 471, 562, 761, VR6180, $6182,6185,6285$, VR6290, 6291, 6293, 6362, 6367, 6393, 6467, 6468, 6470, VR6561, 6670,6760, 6761,6870,6970	CH05	1100p
	VR6443	CH 22	2900p
	VR6448	CH_{23}	2500p
	49SB6	CH24	2500p
SHARP	VCA100, VCH851, VCH852	CH22	2900p
	VCA103, 103GV, 106, 106GVM, 254GVM	CH 23	2500p
	VCS211, 244, 5055, 605, VCB230, VCD806G, 810G, VCT212,310, 410G, 610	CH24	2500p
TELEFUNKEN	VR2970	$\mathrm{CH02}$	2600p
THOMSON	V $320,321,323,326,4200,4300$	$\mathrm{CH01}$	2600 p
	$\mathrm{V} 342,343,352,353,360,364,368,4210,4230,4260,4400, \mathrm{~V} 5500,6000,8540$	CH02	2600p
TOSHIBA	V55, V57	CH01	2600p
	V65, V66	$\mathrm{CHO2}$	2600p

Service Aids

DESCRIPTION	volume	C00E	PRICE
VIDEO HEAD CLEANER	75ML	SP01	140p
SWITCH CLEANER	176 ML	SP02	150p
SILICONE GREASE	200ML	SP03	170p
FREEZE IT	170 ML	SP04	220p
Freeze it	400 ML	SP16	350p
FOAM CLEANER	400 ML	SP05	170p
ANTISTATIC	150ML	SP06	170p
AEROKLEANE	135ML	SP07	200 p
AERODUSTER	150 ML	SP08	220p
AERO DUSTER	400 ML	SP17	425p
PLASTIC SEAL	200 ML	SP09	200p
GLASS CLEANER	250ML	SP10	160p
COLDKLENE	250 ML	SP13	200p
EXCEL POLISH 80	250ML	SP18	150p
ADHESIVE 120	400 ML	SP19	190 p
LABEL REMOVER 130	200 ML	SP20	240 p
REFURB 140	400 ML	SP21	240 p
TUBE SILICON GREASE	50 GRAMMES	SP11	200p
TUBE SILICON SEALANT WHITE	75ML	SP22	280 p
TUBE SILICON SEALANT CLEAR	75 ML	SP23	280p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
DRIVE CLEANER	200 ML	SP24	150p
SCREEN CLEANER	200ML	SP25	150p
COMPUTER CARE KIT	-	SP26	2100p

All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:

$$
\begin{aligned}
& \text { \& package will be charged as follows: } \\
& 300 \mathrm{p} \text { for } 5 \text { cans } 450 \text { p for more than } 5 \text { cans }
\end{aligned}
$$

CD Pick Ups

SONY OPTICAL PICK UP

PART NO: KSS210A SONYCDPC 301M, CDPC 305M 2200p Fits most Sony. Akai \& J.V.C. Portable Hi-Fi and Midi Systems

PART NO: KSS210B

USED ON MODELS
CFD100, 105L, 120, 300, 440, 454, 455, 50, 500, 55, 58, 60 CFD68, 750, 755, 760, 765, 770.775, 440S, W100, 100 S

Cassette DC Motors

MOTOR TYPE	PRICE
6 V MOTOR	170 p
9 V MOTOR	170 p
12 V CW MOTOR	170 p
12 CCW MOTOR	170 p
13.2 CCW MOTOR	290 p

Cassette Tape Heads

HEAD TYPE	PRICE
MONO HEAD	90 p
STEREO-HEAD	10 p
MINI HEAD	150 p
AUTO REVERSE HEAD	200 p

AUTO REVERSE HEAD

Soldering Accessories

DESCRIPTION

25 WATT 240 VAC (XS25W

25 WATT 240 VAC (XS25W 240 V)	S101
15 WATT 240 VAC (XS 15 W 240 V)	S102

SOLDERING STAND (MADE BY ANTEX) S
SPARF SPONGESPARE SPONGES109 55p

SOLDER

2SWG 500 GRAMMES
22 SWG 500 GRAMMES

DESOLDERING AIDS

$\xrightarrow{700}$

SOLDER MOP STANDARD GAUGE $1.2 \mathrm{~mm} \times 1.5 \mathrm{M}$	S 107	70 p
SOLDER MOP $1.2 \mathrm{~mm} \times 10 \mathrm{M}$	S 113	400 p
DESOLDERINGPUMP	S 105	$\mathbf{3 2 0 p}$
SPARE NOZZLE	S 106	60 p

60p

Transistors \& ICS

BU 508A	80 p	MJJ 13009	100p	2SC 388	0p
BU 810	110 p	MJE 18004	125p	2SD 633	70p
BUZ 90A	180p	STK 6982H	600p	2SD 1680	225p
CXA 1044P	550 p	STK 7253	450p	2SK 793	400p
HA 13408	350 p	TDA 2030H	100p	2SK 956	1400p
IRFBC40	400 p	TEA 2019	200 p	2SK 1023	550 p
1272	200p	TMP 47C434N	1250p	2SK 1342	750p
L6210	250p	SAA 1300	200p	2SK 1358	600 p
MC 3423P	100 p	2SA 1540	55p	68000	500p
MJ 15015	250 p	2SC 3788	60 p	82S147	450p

GRANDATA LTD

Tel: 0181-900 2329
Fax: 0181-903 6126

Fig. I: Simplified circuit of the power supply used in mono sound models.

Toshiba's

V3 Series VCRs

The V3 series deck has a third fewer parts than its predecessor while the VCRs have user-friendly features and improved performance. Philip Blundell looks at some of the technology used

The V3 range of VCRs is produced at the International Video Product (IVP) factory, which is jointly owned by Toshiba and Thomson, in Singapore. The designers of the V3 range set out to make the machines easy to use, with the features prople really want, and to have better performance than the previous range. The mechanism has a faster winding speed and a third fewer parts than the previous deck. The current V3 range is as follows:

V204B with two video heads, mono sound and standard-play speed. V254B with two video heads, mono sound and standard/long play.

V404B with four video heads, mono sound and standard/long play.
V454B with four video heads, mono sound and standard/long play.
V804B with four video heads, two hi-fi sound heads, standard/long play, Nicam sound and jog shuttle control.
V854B with four video heads, hi-fi sound heads, a flying erase head, standard/long play, PDC, Nicam sound and jog shuttle control.

Features

All models have Video Plus programming, on-screen programming and on-screen error messages for the seven most common operator errors. These include trying to record on a

cassette with the safety tab removed, mistakes in setting up for a timed recording, trying to change channels while a recording is in progress and setting the timer without a cassette inserted.
The VCRs in the V3 range use the new PRO head drum. With mono sound models the head preamplifier is fitted in the lower drum. In hi-fi sound models a flying preamplifier is fitted in the upper drum. More about this later.
All two-speed models have Auto Speed Adjust - this means that the machine switches to the LP mode automatically if the timer is set to SP but the event is too long to fit on the tape available.
If a wide-screen (16:9 aspect ratio) programme is recorded, this is identified by the changed duty cycle of the pulses on the control track. A change in the scart status voltage occurs, enabling a suitable TV set to switch to the $16: 9$ mode.
All models have a satellite monitor facility: when the sat moni button on the remote control handset is pressed the AV signal is looped between the two video scart sockets, even when the VCR is in standby.
Those who wish to feed the aerial signal on to other rooms will be glad
to know that the aerial mixer can be switched to on or off during play as required. The u.h.f. modulator's output can be tuned from ch. 53 to ch. 67.
All models have satellite receiver control. This enables the VCR to change the satellite receiver's channel when a timed satellite recording is made. For this purpose an infra-red LED is fitted towards the top of the machine, in the display window, to transmit channel commands to the satellite receiver. Most satellite receivers will have to be brought out of standby for this feature to work. An LED pyramid on a short cable can be obtained from Toshiba to avoid problems where the signal might be obscured by a shelf. It plugs into a jack socket on the front panel. Not all satellite brands or models can be controlled however.

Depending on the model, one of three remote control handsets may be supplied. These are as follows:
(1) A basic (normal) remote control unit.
(2) A multi-brand remote control unit. This enables the basic adjustments to be carried out with a number of TV brands. In addition, by routing the command signal through the VCR a
satellite receiver's channel can be changed - subject to the qualification already noted.
(3) A CS (Customer Satisfaction) remote control unit. This can also be used for basic TV set adjustments. If the set is controllable linked functions are possible: for example, if you press the handset's programming screen button the TV will switch out of standby and the VCR will come on showing the VideoPlus screen.

Hi-fi models have front audio sockets and allow audio dubbing on the mono (longitudinal) sound track.
As long as the TV set can cope with a 60 Hz field frequency, the current models will play NTSC 4.43 and 3.56 MHz NTSC tapes of the correct speed format - extended play tapes won't play back via a PAL TV set.

Power Supplies

There are different power supply circuits in the mone sound and hi-fi sound models. Fig. 1 shows in simplified form the power supply used in Models V204B, V254B, V404B and V454B. There are two chips, a U4614B (IP001) for chopper transistor control on the primary side and an LM393 dual voltage comparator (IP(002) on the

For only $\mathbf{£ 6 9 . 9 5}$, you can build a "CUSTOM TELETEST" for yourself.
Your ideal Christmas present! We can even send it gift wrapped to you for December 19th!

At $£ 69.95$ the standard version has 4 TV test patterns, 1 KHz audio, RF tuneable from chs $32-40$ inc PAL I /G sound, and line out audio \& video.

At $£ 89.95$ the deluxe version has cll the standard features plus extra test patterns, 6 KHz audio, S-Video (Super VHS / Hi-8), programmable on screen text, and patterns over external video.

At any time. you can upgrade your standard to a deluxe version for only $£ 29.55$. That's why they're called CUSTOM TELETESTs!

Easy to assemble with only a few basic tools. Adequate calibration can be done with a good TV. Full calibration can be done with an oscilloscope and a TV. A free back up serrice is provided.
Free UK P\&P. Overseas $£ 15$. All prices exclude VAT. All products have a 1 year parts \& labour guara tee.

ALL PARTS ARE INCLUDED! This means the case, sockets, stickers, modulator...everything! The only aing you need to buy is a 9 V battery!

For ready built TV Test Pattern Generators with "textbook accuracy", the TELETEST Quicktest (E99.95) TELETEST (£149.95) and TELETEST PRO (£209.95) are all available from OZAN and good distributors.

Fig. 2: Simplified
circuit of the power supply used in hi-fi sound models.

secondary side. One of the comparators provides a 'power good' pulse signal which is fed to the microcontroller chip. The other comparator forms part of the voltage control system. This is rather unusual - see the eircuit description below.
The outputs obtained on the secondary side of the chopper transformer LP020 (not all are shown in Fig. 1) are as follows:
(1) A fluorescent display filament supply from rectifier DP041.
(2) A 20 V motor supply from rectifier DP061.
3) A 33V varicap tuner tuning supply from rectifier DP071.
(4) A -32 V fluorescent display cathode bias supply from rectifier diode DP05I.
(5) A pulse input for the LM393 comparator that produces the 'power good' pulses for the microcontroller chip. The input pulses arrive via diode DP052.
(6) A $6 \cdot 2 \mathrm{~V}$ supply from rectifier diode DP080 for the servo/logic board. This supply becomes 5 V . The 6.2 V supply is also the second input to the LM393 comparator that produces the powergood pulses.

The PRO Drum

This range of models uses two types of PRO video drum. Both have the head amplifier fitted inside the drum: putting it there improves the signal-to-noise ratio and reduces the crosstalk. Mono sound models have the preamplifier in the lower drum, the drum assembly being avilable only as a complete unit.
With hi-fi models the preamplifier is in the upper drum, which introduces the problem of how to get power and switching signals to a rotating mechanism. Power is supplied via a slip ring, while the r.f. switching signals are passed via the hi-fi transformer to the preamplifier section. An envelope comparator is contained in the preamplifier. During trick-mode playback, i.e. search or still, this produces either a high or a low voltage depending on which head (LP or SP) has the greatest output. This information is passed back via the rotary transformer as the 1.2 MHz envelope comparator signal, then acted on by changing the r.f. switching signal. The r.f. switching signal is a composite one with both amplitude and frequency modulation. The timing of the head switching signal is critical: to minimise any switching noise, it occurs during the line flyback.
The frequencies used for r.f. switching (see Fig. 3) are between 9.4 MHz and 11.4 MHz . These are sufficiently high to avoid crosstalk with the video f.m. signal. Similarly the $1 \cdot 2 \mathrm{MHz}$ envelope comparator signal falls between the 627 kHz chroma signal and the 1.4 MHz and 1.8 MHz hi-fi audio carriers.
In the still mode, if the tape stops on a ch. 1 track the heads will repeatedly scan the same track. To give the smallest noise band on the picture, the switching signal selects the SP and LP ch. 1 heads alternately.
For normal play the LP/SP switching will stay in one state depending on the speed.
In the search mode the LP/SP switching signal changes state at the same rate as the heads cross the tracks, thus maximising the output at all times.
To optimise the LP picture quality the video heads are narrower than usual $(24 \mu \mathrm{~m})$.
(7) The main 14V supply, which is derived from rectifier diode DP090.

At switch on the six series-connected $15 \mathrm{k} \Omega$ resistors feed a start-up voltage to pin 11 of IP001. The chip begins to oscillate at approximately 30 kHz , delivering base drive to the chopper transistor TP001 from pins 9 and 10. When running, IP 001 produces a 3.5 V reference voltage at pin 5.
The chopper transistor's emitter current flows through RP018 (1.5 Ω), the voltage developed across this resistor appearing between pins 12 and 6 of IP001. Should TP001's emitter current exceed $0-4 \mathrm{~A}$, IP001 will cease to produce a drive output for TP001.
Voltage control is centred on one comparator section of IP002 and transistor TP091 on the secondary side of the circuit. The principle is to pass a current pulse, whose amplitude is directly proportional to the voltage on the 14 V line, back to the primary side of the circuit via the transformer.

Pin 5 of IPOO2 is held at 5.6 V by zener diode DP094. Negative-going pulses are fed to the comparator's other, non-inverting input, at pin 6, via diode D093. The pulse output produced at pin 7 drives the base of the pnp transistor TP091, which in turn feeds pulses to pin 17 of the transformer via DP095. The amplitude of these pulses is determined by the bias at TP091's emitter, which is connected to the 14 V supply. The current pulses in the transformer are stepped up by the turns ratio of winding $13 / 17$ to 5/6 and are fed back to pin 3 of IP001 via RPOI3/RP026 to control the on/off time of TP001.

During nomal running the voltage at pin 11 of IPOO1, produced by the rectifier circuit DP007/CP008, is 9.4 V .

It will be higher if the chip is in the over-voltage mode.
Fig. 2 shows in simplified form the power supply used in Models V804B and V854B. It's based on an STRD6802 chopper chip, with regulation from the secondary side of the circuit via optocoupler Q802. The LA5611 chip IC821 on the secondary side of the circuit senses the chopper circuit's output voltages, drives the optocoupler and generates the ever 5 V and other supplies. A d.c.-to-d.c. converter that takes its feed from the ever 6.6 V supply generates filament and cathode bias supplies for the fluorescent display, also the tuning voltage.
The secondary side supplies (not all shown) are as follows:
(1) Ever 14 V from rectifier diode D821. IC821 generates the on/off 12 V , on/off 9 V , on/off 5 V and ever 5 V supplies from the ever 14 V line.
(2) 20 V from D824 for the drum, loading and capstan motors.
(3) Ever 6.6 V , from D822, to feed the d.c.-d.c. converter.
(4) On/off 12 V from Q823 for the tuner, i.f. and Nicam circuits. This source also provides the fluorescent display heater supply.

The primary side circuit acts as a blocking oscillator. At switch on Q1 is turned on by the bias provided by resistors R813 and R807. Current flows via winding NP on the chopper transformer, with feedback to the base of Q1 from winding ND so that Q1 rapidly saturates. The voltage across winding ND then reverses, switching Q1 off for a period that depends on the charge on C807. When this capacitor has discharged sufficiently, Q1 turns on again. The conditions at the base of Q1 and thus the discharge of C807 are determined by Q3 under the control of Q802 and IC821. Two zener diodes D807/8 (not shown) connected across winding ND limit Q1's drive waveform, keeping the drive constant irrespective of mains input voltage variations.
This is a variable-frequency power supply. When the load is light, the chopper transistor conducts only briefly and the oscillation frequency is high it's 160 kHz in standby. When the load is heavier, the chopper transistor conducts for longer periods. In normal operation the oscillation frequency is 75 kHz . IC821 monitors the 14 V supply, in turn controlling Q802. When the phototransistor in Q802 conducts more heavily, the voltage at the base of

Q1's emitter current flows via R810 (0.39 S). The voltage across this resistor is monitored by Q2. If it reaches 0.6 V Q2 switches on, removing the chopper drive. Thus in the event of a fault condition Q1's on time is limited.

Self-diagnosis

If the VCR has a mechanical problem that results in the machine shutting down, a code is stored in the EEPROM. This code can be recalled and displayed by putting the machine into the selfdiagnosis mode.
To recall the error message, press the VCR's ch. up and ch. down buttons simultaneously, holding them down for five seconds or more. Then, within two seconds, press the remote control unit's still button. The front display will then show the error mesage.
Fig. 4 shows an error display. The first two digits/letters show the mode in which the fault occurred, the code being as follows:

00	standby
01	stop
02	rewind
03	review
04	fast forward
05	cue
06	playback
07	still/slow playback
08	$\times 2$ playback
09	stop - dew (moisture) sensed
OA	reverse playback
OB	still/slow reverse playback
0 C	recording
OD	record pause
0 E	power-off eject
OF	eject
10	short FF
11	short rewind

The middle section shows the error found, as follows:

E01	drum stopped
E02	take-up reel stopped
E03	supply reel stopped
E04	cassette load/unload fault
E05	tape threading fault

The final two digits/letters indicate the mechanism position error:

00	front loading in progress
01	front loading out
02	front loading in progress
03	front loading down
04	tape lacing
05	tape lacing
07	reverse rotation with pinch 08
roller on between playback and review	
09	playback with pinch roller on OB stop with main brake on OD
fast forward/rewind	
OF	position detection not possible

The error message must be erased after the repair. Press the counter reset button while the VCR is displaying the self-diagnosis message: the display will then show '-'.

Acknowledgement

I would like to thank the Training Department of Toshiba UK for help in the preparation of this article.

Fig. 3: V3 series head switching waveforms and carrier frequencies (a), frequency spectrum for the various signals (b).

Fig. 4: A typical error display.

What

Donald Bullock recalls some of the troubles that beset him during the month

a Life!

Four or five people called upon me this week for help in resetting their TV sets and VCRs
following a couple of power cuts.
They were well educated people - one a surgeon and another an ex-airline pilot - and three of them had the maker's handbook, yet none of them could operate the equipment they'd paid so much for. And since it's confession time, I have to admit that I was little better off.
I suffer of course from the disadvantage of having had a sensible and practical education by proper people in a proper world. I can't begin to think like today's whizz kids, and tend to throw in the towel when I find that once simple jobs have been turned into complex games. When, I wonder, will manufacturers discover that the bulk of the products they now offer can't be used for their intended purpose by those who have bought them?
My problem these days is not in repairing the stuff that folk bring to me: it's in trying to discover how to operate them. More than once I've spent valuable time trying to repair an apparently dead set only to discover, sometimes from my kids, that it's been child-proofed or that it isn't supposed to come to life until this, that and the other has been pressed or keyed or activated.
If any designer boys are reading this, let me offer them some advice that may well make their companies rich. Design a TV set that anyone can work, with a proper on-off switch coupled to the volume control and a set of knobs for brightness, contrast and colour adjustment. And, not too far from them, a set of easily tuned pushbuttons for programme selection. While these are being snapped up by ninety per cent of the population, sit down again and design a VCR along similar lines. You'd make a lot of people happy and unfurrow a lot of brows, including mine.

Ethel's TXIO

"They calls it a TX10" said Ethel McCrapenny. "It clicks and crackles then the mute light comes on and the picture flickers."
I switched it on to confirm the symptoms then checked carefully for
dry-joints, especially around the chopper and line output transformers. Sadly, every joint was sound and my thoughts of a fast buck quickly evaporated. On switching back on again I thought I could hear a faint crackling from the area of the tube's neck. I was right! A huge bluebottle had wedged itself into the spark gap on the tube base board. When it was removed the set worked well. The bluebottle didn't.

Fred's Sharp VCR

Fred Horsefly brought in his Sharp VCA615HM VCR. It was pink.
"Painted it mesself" he said proudly, "only it won't accept a cassette and the clock is stuck at $10.59 \mathrm{a} . \mathrm{m}$."
"What time did you paint it?" I asked.
In fact the reason for the failure to accept a cassette was the usual one with this deck - the mode switch. And when we'd fitted a replacement the clock started to behave.

Another Sharp

"My boyfriend could mend this if he had a meter thing" pouted Fiona Fossett, who brought in a Sharp VC780HM. "The tape shoots back every time we put one in."
As some of the case screws were missing it seemed sensible to treat the unit as a hostile witness. I soon found that the cassette sensor LED and its holder were broken in half. In view of the fact that the machine had been tampered with, I tried it out before doing any work. To fool the mechanism I switched on, inserted a tape then pulled out the mains plug as soon as the cassette had been accepted. Then, after a few seconds, I plugged it in again and pressed the operate button. The cassette loaded properly and the machine worked well in every way. My fears had been groundless. After ordering a new LED and holder, which arrived from Willow Vale next day, I was able to complete the job.

Mr Emery's Hitachi

As I moved the VC780HM off the bench Mr Emery entered. "I've called for my Hitachi telly" he said. I couldn't find it anywhere. "When did
you bring it in?" I asked. "Half eight this morning. I left it next door, they said you were quick."
I collected his set and put it on the bench. It was a CPT2508 (G7P Mk 2 chassis) and was dead. I opened it and followed my nose, which took me to the pretty blue $4.7 \mathrm{nF}, 2 \mathrm{kV}$ disc capacitor C919 in the chopper transistor's snubber circuit. It had cracked open. The BUT11A chopper transistor had died, so had the fuse. Fortunately the TDA4601 chopper control chip was o.k., and the set worked well after replacing the items just mentioned.

A Bush 2059NTX

"Thrup, dead, thrup. That's all it does" said Mr Renton of the Bush 2059NTX he'd brought in. I carried out some checks and found that there was no 17 V output on the secondary side of the chopper circuit. This was an easy one: the 6.8Ω surge limiter resistor had popped open, just to be awkward and make us a few bob. After fitting a replacement the set ran cool and survived some current checks and a soak test.

Screeching

Steven had written "screeches" on the ticket attached to a Panasonic TX2231. For once he wasn't guilty of understatement. When I plugged it in there was a horrendous noise that I could have sold to Hammer Films.
As far as I could hear, before tugging at the speaker leads, the sound was all right. But I fancied that I could smell some health-giving ozone. So I put out the lights, drew the blind and settled at the set. The line output transformer was producing an impressive e.h.t. display that crawled around the focus and first anode areas. As I disconnected the set Greeneyes came in with my tea.
"Why are you in here alone with the lights off and the blind drawn" she wanted to know. "You're well over sixty you know. And what's that funny smell?"
A new line output transformer from Willow Vale cured the trouble. The original type is no longer available, but Willow Vale supply an alternative that works.

WILLOW VALE
 ELECTRONICS LIMITED
 'The Better Choice'

gives you more...

\author{

- More new products and spares
 - More choice
 - More commitment to higher stock levels
 - More product supprort
 - More technical know-how
 - More dedication to customer care
}

Willow Vale supplies parts for all these household names, with over 290,000 different spares available by letter, phone, fax or C.O.P.S. ('viewdata' based order/enquiry system).
Should you require any technical help, advice is available on our 'TECHLINE' 0891615915 |"oll calls charged at premium rate).
Being Willow Vale, we don't just guarantee the quality of our spares. We also pride ourselves on our prices...and our genuinely friendly and knowledgable staff.

ELECTRONIC TEST EQUIPMENT

Audio - Video - Television - Satellite TV - Telecomunications

The manufacturer who cares about quality \& features rather than being lowest in price !

TV \& Satellite Level Meter
Model MC-944
This meter has everything for the top flight instaier of aerials, dishes, CCTV, MATV. SMATV and others systems. Features include TV monitor, spectrum analyser, sync pulse. teletext, printer output, 99 memories, tuneable audio subcarriers, etc. Full autocorrection for superb, unequalled accuracy!. RS-232 as standard. £ 1895

PROMAX

The company has been producing test equipment in Spain for over thirty years, earning a strong reputation for excellent engineering, quality performance at budget prices. The equipment is supported by Alban Electronics from their St Albans facility. These products are suitable for only professional and educational applications.

CRT Rejuvenator
Model TA-903
Similar to TA-901, but has three meters to monitor cathode current. Special technique allows repeated rejuvenation of CRT. Supplied in attache style case, for easy field and workshop use. £ 498

CRT Rejuvenator Model TA-901

An essential tool for every TV workshop. Promax have made many thousands. Supplied complete with a set of base adaptors. £ 235

Prices shown exclude VAT, but includes UK delivery. Most items available for immediate despatch.

ALBAN ELECTRONIC LIMITED

4 - St Albans Enterprises Centre - Long Spring Porters Wood - St Albans - Hertfordshire - AL3 6EN Tel: 01727832266 - Fax: 01727810546

Normally $\mathcal{1} 199$

Specifically designed for service companies N UW to computing

ServiceBase Lite is easy to use, cost effective and fully upgradable

Abstract

It's good to know that if your business grows or changes direction your favourite computer software can keep pace. With a full upgrade path to the industry standard ServiceBase Professional suite of computer programs there really isn't much this powerful software can't supply.

Straight forward and simple to use ServiceBase Lite is the definitive answer to entry level computing whatever your current or future requirements.

3 Simple Steps to ServiceBase Lite ...
Step 1: Complete a data entry screen to record the customer \& unit details then press a single key to produce a receipt.

Step 2: Enter the engineers screen to create and display the billing information. Write a description of the work carried out and append any spare parts used.

Step 3: A simple print routine will bring all the required information together to produce a professional looking invoice.

SYSTEM SPECIFICATION
486DX4-100 Computer - PCI Board- 256 K Kache - 4 MB RAM - Mini Tower 1 MB Video Card-520MB Hard Disk Drive - 1.44 Floppy Disk Drive $1^{4 *}$ SVGA Multisync Colour Monitor
Panamonic KX-P 1150 DotMarix Printer

Plan A 3 Year System Lease	
Hardware Cost	
Service Base Lite	799.00
Full Day System Training	149.00
Totall System Cost	$\underline{250.00}$
	1.198 .00
Deposit	127.65
Followed By 11 Qtr. Payments of	127.65
Total Paid Over 3 Years	1.531 .80
Amount of Interest	$\mathbf{3 3 3 . 8 0}$
Equivalent Weekly Cost	$\mathbf{9 . 8 2}$

-System specification as detaited ahove
Plan A 3 Year System Lease

ServiceBase Lite Order Form

PROPERTY OF: SCHOOL PRase Pushine a copy of Serviceßase Lite at the special Address: APPLIED ELECTRGHINRSN price of $£ 149.00$ +vat. 14 days. Address:
 mortheru territory mipersity

Post Code:

 PC Control Systems LimitedTel:
Please send me information on the full ServiceBase product array.
Other ServiceBase Products Include:
ServiceBase Professional $£ 399$ - Retail Module $£ 299$. Rental Module $£ 299$
Faults Database (empty) £99 - Faults Database (78,010 Faults) $£ 299$ - Manufacturers Warranty Module £299.00 . Network Prices on Application

Interest Free
Credit
When you are ready to computerise your business speak to PC Control Systems. We will help you choose a computer system and if necessary a finance plan that best suits your requirements.

Our One Stop Team will deliver a pre-configured computer directly to your premises and spend a full day teaching your staff how to maximise its potential.

If it's software only then ServiceBase Lite is the answer

but if you are looking for a complete solution contact the ServiceBase..

ONE STOP SHOP

Plan B 1 Year System Lease	
Hardware Cost*	799.00
Servicelase Lite*	149.00
Full Day System Training	250.00
Total System Cost	1.198 .00
Deposit 50% of Cost	599.00
Followed By 11 Monthly Pityments of 54.45	
Total Paid Over 1 Year	1.198 .00
Amount of Interest	$0.14)$
Equivalent Weekly Cost	12.47

**Upgrade To ServiceBase Pro Add $£ 250$ Plan B 1 Year System Lease
:
$\begin{array}{lr}\text { Plan C } 1 \text { Year Software Lease } \\ \text { ServiceBase Professional } & 399.00 \\ \text { Faults Databasc (78,(n) Faults) } & 299.00 \\ \text { Full Day System Training } & 250.00 \\ \text { Total System Cost } & 948.00 \\ & \\ \text { Deposit } 30 \% \text { of Cost } & 284.40 \\ \text { Followed By } 111 \text { Monthly Payments of } 60.32 \\ \text { Total Paid Over } 1 \text { Year } & 9+8.00 \\ \text { Amount of Interest } & 0.00 \\ \text { Equivalent Weekly Cost } & \mathbf{1 3 . 8 2}\end{array}$
All prices quoted are + vat at current rate

ServiceBase Lite

if you ser vice consumer

 electronics you need to keep accurate records detailing:| Customer Name \& Address
 Booking Date
 Fault Description
 Unit Type, Make \& Model Workshop Repair/Stie Visit Parts List Invoicing Details Contaict Instructions Methorl Of Payment |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

ServiceBrase Lite will breeze through these functions in seconds printing job cards for engineers and invoices for customers.

ServiceBase Pro

rully upgradable from lite Servicel3ase Professional is packed with features other programs only "dream" about
Automatic Parts Orlering
Full Sock Control
Self Building Bill of Materials
Freld Call Diary
IRIS Code Selection Tables
Electronic Nasiling
Contacts Database
Wants Dalabase
Faquiry Source Analysis
Loan Unit Look-up Tables
Report Generator
On Board Word Processor
Mail Merge Facility

Servicellase will finally allow you to computerise In confidence..

PC Control Systems Ltd Hamilton House
66 Paimerston Road Northampton NN1 5EX

Tel.: 01604601677
Fax: 01604601676

A selection of recent camcorder servicing problems

Panasonic NVS20

A 'whining' noise was being recorded on the sound. The cure was to clean and lubricate the drum earthing brush. This is a common problem, once encountered with early JVC designs. D.C.W.

Sanyo VAR30B Adaptor

This unit charged batteries very slowly - it took about four hours for a normal one and a half hour type - and would power a camcorder for only a short time before ceasing to operate. We found that the value of $R 201$ had increased from $0 \cdot 1 \Omega$ to $0 \cdot 3 \Omega$! It's in the excess current detect circuit on the secondary side of the supply. A check on this resistor is worthwhile whenever one of these units comes in for repair. D.C.W.

Sharp VLC790H

The 5 V regulator transistor Q920 in the power supply had failed. As a result there were no E-E or viewfinder pictures. The cause of the failure was $\mathrm{C} 011(220 \mu \mathrm{~F}, 6 \cdot 3 \mathrm{~V})$ on the EVF PCB. It had leaked and carbonised the area between its wire connections - no, it's not a can type this time! The effect was to place a near short-circuit across the 5 V rail. We were able to revive the unit by scraping the affected area, giving it a general clean up and replacing the failed components. D.C.W.

Chinnon VCI500

The viewfinder had fallen off, which is normal with one of these camcorders! We were also asked to check the batteries and the adaptor, as only a short (fifteen-minute) recording could be made before 'BATT' showed in the viewfinder. The unit worked all right when powered via the adaptor. Further checks then showed that the battery down adjustment (R1001) had been set incorrectly. As no fault could be found in this area, we set the unit up as specified in the manual and gave it a long soak test. It seemed to be
perfectly satisfactory - but don't these machines make a noise when loading and unloading! D.C.W.

Panasonic NVMC20

Incorrect capstan control was the problem here. The capstan speed was about right, but the phase wasn't being controlled correctly. Because of this a noise bar rolled through the picture slowly, at a consistent rate. After much testing and probing we found that the voltages around the AN3798NS chip IC2003 were incorrect. Replacing this chip restored accurate capstan control. B.S.

Panasonic NVMI

The camera picture colours produced by this vintage camcorder were incorrect - blue and red predominated. The tube was still o.k., the culprit eventually being identified as IC401 (AN2431LF) in the colour-difference signal processing circuitry. After replacing this item we adjusted the electronic focusing and the beam current. The outcome was a very acceptable picture. B.S.

Panasonic NVS90

There was no playback picture, though recordings were fine. No playback luminance was the basic problem. Checks around the hybrid luminance chip IC3001 showed that the playback luminance signal was o.k. as far as pin 42 , where it leaves via buffer transistor Q3014 to go to the timebase corrector (TBC). On its return it should appear at pin 2 of IC3001. It didn't.

Checks in the TBC circuit showed that everything was fine as far as the output pin (36) of the chip (IC3501). The luminance signal then passes to discrete-component amplifying stages, where it was being lost at Q3511. This transistor's d.c. base voltage was high, upsetting its operation. Further checks brought us to pin 2 of the sync reinsertion chip IC3504, where the voltage was also incorrect, in turn because of the loss of the composite sync input at
pin 4. The pulses were being lost farther back in the circuit, at the 120 pF chip capacior C3562 which was cracked. It's on the back of the main PCB - the side that faces the back of the mechanism. N.B.

Canon A2HiE

Hi8 recordings were marred by phenomenal amounts of dropouts and over-modulation. I wondered whether the fault had occurred suddenly or developed over a period of time. The problem was not present when the machine was used for low-band V8 recording. Obviously such a fault will show first with hi-band recordings, but what a difference! The cause of the problem was the heads, which are Sony DGR62s. If you have a Sony account, you'll probably find that a cheaper source. N.B.

Canon E50E

Playback was o.k. but there was no camera E-E picture. Once again the cause was traced to a leaky electrolytic, this time $\mathrm{C} 2651(47 \mu \mathrm{~F})$ on the camera process PCB. It had leaked over a print run that connects the CAM ON L signal to the PWR ON pin of the camera d.c.-d.c. converter. This meant that the pin was permanently high, thus no E-E picture. A link had to be fitted as the print had been almost completely corroded away.

- At switch on we were surprised to find that we still had no E-E picture, though a healthy burst signal was now present. This time we found that the iris remained closed. Gentle movement of the iris mechanism revealed that the camera circuits worked in general, but when the mechanism was released the iris closed automatically. After a long search in the iris drive circuitry we found that the $0.047 \mu \mathrm{~F}$ chip capacitor C2224 on the SUB PCB was opencircuit. It appears to act as a reservoir for the iris drive circuit. After replacing it we at last had a good picture. D.C.W.

Reports from David C. Woodnott Brian Storm Nick Beer

Up here in the Far North (just 550 miles south of John o' Groats) we get some rather lah-di-dah types. This very week I've been bothered by one of the huntin', shootin' and fishin' crowd. He owns a large tract of land, and likes to lord it over his supposed inferiors. Since I'm a "soldering-iron plonker", as a wellknown chairman of a well-known company once remarked, I clearly fall into this category.

A local shop had installed a Pace MSS1000 and a Churchill D2MAC decoder at his mansion. Everything was fine for a few months then, as Christmas approached, it stopped working. Well, not quite: the receiver still worked, but the D2MAC pictures were not being decoded.

The shop couldn't help, and this was the gentleman's third visit to our premises. On the first he'd brought with him the Churchill decoder. We tested it and couldn't find anything wrong. On the second he brought the decoder and the MSS 1000 . They both worked perfectly for hours in the workshop. This time he'd brought them yet again: I watched him pull them out of his Range Rover, along

with what looked like a gun bag. This time he clearly meant business!

I backed away when he entered, but he thrust the bag towards me. It contained the handset and connecting leads, he explained - he wouldn't be seen dead with a plastic carrier bag. He left the lot on my counter then hurried off to shoot some poor, unsuspecting birds.

The problem

The units worked perfectly when I tested them, with his card in the decoder slot. So I left them to warm up while I had a cup of tea. I then rummaged in the bag to find the handset, and came across a scart lead. It was definitely not the one the shop had supplied when the equipment was installed. I know, because the shop buys them from me. I had a hunch and tried his lead. Sure enough the picture was now scrambled! Just to be silly, I tried his scart lead with a VideoCrypt decoder. It worked perfectly. But it wouldn't work with the D2MAC decoder. The cable was of very wide diameter, which suggested that it was fully screened, and about one and a half metres in length. The plug screen and the pins were gold-plated. With my workshop scart lead - a short, nine-wire cheap thing - the Churchill decoder worked perfectly.

When his Lordship returned I asked him about the scart lead. He admitted, rather sheepishly, that he'd treated himself to a new one for Christmas. In fact it was just about the time that the decoder stopped working! I'm not sure whether the light dawned, but he turned a little pink and left quite hurriedly.

This gold-plating of leads seems to be the in thing at present. My understanding however is that there is no advantage in putting gold-plated pins into a socket which has tin-plated contacts. The connection is no better, and putting dissimilar metals together can cause problems, can't it? Do any experts out there know a bit more about this?

Pace MSS500 Numbers

A Pace MSS500 IRD was brought in the other day with a curious complaint. It worked perfectly, but there were some numbers that
changed from time to time in one corner of the screen. It was almost like a signal-strength display. I rang the Pace Technical help line, assuming that it was some sort of 'hidden' test display. The helpful man explained that this was indeed a factory test function, which indicated correct a.f.c. operation. Pressing ' F ' then ' i ' on the handset turned it off.

The customer couldn't understand how this had happened, and was extremely pleased that there was no repair charge. I'm a soft touch, but have found that customers often come back and spend money later if you treat them right.

Extra channels with the Amstrad SRD400

While browsing through the Usenet section of the Internet I came across some information from a young man called Mike Ginger. Now Mike seems to spend a lot of time experimenting with his Amstrad SRD400 satellite receiver. In doing so he has discovered that more than 48 channels are available, with no modification at all. He writes:
"Selecting the extra eighty channels available is simplicity itself. Go over to the SRD400 and press 'preset' then 'recall'. The display will show a frequency, then the audio mode, then 0 (zero). Extra channels can be selected only sequentially, by pressing the 'channel down' key to scroll through them - you can use tuning up or down however. While in this mode, which we'll call the 'extended mode', you can return to the standard 48 -channel mode by pressing the channel up key or by selecting one of the 48 standard channels. If you press 'channel down' you'll notice that the display changes to channel 95 . Pressing it again will show channel 94 and so on in steps of -1 .

The first eighty of these extended mode channels are extra presets. The next 48 are repeats of the standard 48 . So changing any of them in the extended mode will also change them in the standard mode. The next 80 presets are repeats of the first extended-mode presets. So I suggest that you don't store anything while displaying these, or be aware that any change made will also change the first

80 presets! After scrolling through these you return to the standard (48channel) mode.

If you press 'channel down' in the extended mode until you reach channel 31 you should see Astra 1D channels. Pressing 'recall' will show the frequency to be around 6,297 $(16.297 \mathrm{GHz})$, which is incorrect. Channels 31 through to 20 step -1 show these funny frequencies, also Astra 1D channels 55 and 56. Have fun experimenting".

Mike Ginger goes on to explain that a standard handset can be modified to add the preset and recall functions. Thanks Mike for permission to publish this.

Bits ' n ' Pieces

A few weeks ago my wife dragged me all the way to Shrewsbury. She wanted to shop and visit the 'Cadfael' centre (this was before the sad news that Ellis Peters, the author of the Cadfael books, had died). My wife and children found the centre fascinating. For me however the most interesting part of the trip was the discovery of the Durrants shop in the high street. There are counters full of goodies for the electronics enthusiast. Not exactly satellite TV, but well worth a look. Oddly, my wife didn't find it in the least interesting, and

A Pace MSSIOOO

An old lady brought in an MSS 1000 IRD which had apparently died when her son had tried to tune in Hot Bird after fitting a second LNB on the dish. When I checked it on the bench the set lit up and was clearly not dead. The screen flashed the warning message "LNB short" however, so I disconnected the cable in a hurry. The warning flash continued until I disconnected the mains supply.

On checking the installation menu I found that LNB input two was selected on channel one. When I tried to change the setting to inputs " $1+2$ ", as it should be, I got the warning message again. Before stripping the unit down, I decided to try the factory reset. This is not a problem with the MSSIOOO, because it resets the installation menu and channel one but leaves the tuning of the other channels alone. The receiver worked perfectly as soon as I'd punched in the button sequence. It seems that some of them don't like to have just one input selected.

Another fault I've had is failure of the output chips on the sound board. The result is a ticking noise from the power supply. Check by withdrawing the two-pin connector next to D54.
dragged me off before I had a chance to go inside. I was forced to drive home without spending any money at all!

The Philips STU824

l've had several of these receivers in recently with similar faults, usually no handset response and sometimes no front panel button response. There have been other odd things, such as no V/H switching because the receiver thinks it has skew control instead. In each case there was a dry-joint in the infra-red receiver circuit, but resoldering it didn 1 cure all the problems.

A replacement microcontroller chip
made no difference. In desperation, convinced that it was a microcontroller chip problem, I fitted a 1006 version for the Pace PRD9010. The display then showed -E2, indicating that the EEPROM was being reprogrammed. After that the receiver worked with a PRD handset.

When I replacec the original Philips microcontroller chip I found that -E2 again appeared, after which the receiver worked perfectly. I assume that corruption of the information stored in the EEPROM was the cause of the fault. Was it coincidence that there was an IR module dry-joint, or had this caused the corruption?

Test Case 397

This time of year is a busy one for us. Hence the heavy load of new and repaired equipment our man-on-wheels Doc Colin had with him as he set out on this chilly winter day. One of his calls was to return a newly-repaired large-screen stereo TV set. Having got it into the house, installed and set up, he noticed that the VCR to which it was connected was a new stereo model. But the only link between them was an r.f. cable that linked the VCR to the TV set's aerial input socket. To watch video playback, the customer used the remote control unit's $0 / \mathrm{VCR}$ bution. The signal then went to the receiver via the VCR's modulator, on channel 36.
Ever helpful, Doc Colin suggested that the owner bought and used a scart lead so that he could have the benefits of stereo sound and better picture quality. He pointed out how the AUX button could be used with a link lead, mentioned the type of cable required, and suggested a call at the shop to buy one. If he could have foreseen the consequences he mightn't have been so helpful!
A few days later the Service Department phone rang. It was Doc Colin's customer, with a problem - two in fact. The scart cable had been bought and installed. But when the TV remote control unit's AUX button was used to select video playback the sound and picture were both worse than with the r,f. link! The wonderful results predicted by our man were not forthcoming. Could we come and check it out? Service Manager could see no profit in this job. He nominated Doc Colin to make the call, since he ${ }^{\text {d }}$ recommended the use of the ${ }^{* * * * * *}$ cable in the first place. Service Manager is very money conscious: the profit from the cable sale was probably less than two pounds, but the house call was going to cost over twenty. . .

So it was that a chagrined Colin returned to the house. He inserted a cassette in the VCR, set it to play, and pressed the TV remote control unit's AUX button. While the resultant sound was certainly in stereo, it was at a lower level than that of off-air transmissions received by the set. As a result the volume control had to be advanced, then backed off when returning to TV reception. In addition the treble response of the tape playback sound was poor, and the audio was more 'woolly' than when played back via an r.f. link.
The playback picture degradation took the form of a kind of sparkly ghost image on the screen, with vague unlocked fragments of colour and outlines floating and falling about. The effects were particularly noticeable with dark scenes or a momentarily blank display.

The sound and vision faults were also present in the E-E mode, with the VCR switched on in the stop position. Strangely the vision degradation virtually disappeared when, with AV operation, the aerial lead was withdrawn from the TV set's u.h.f. input socket

Colin had brought with him another scart lead of the same type. But when he tried this the results were exactly the same. He didn't have another VCR to try, and anyway the one involved had been supplied by Doug's Discount on the other side of town. He retreated to the privacy of his van and got on the radio-telephone to his friends in the warmth and calm of the workshop. He was given some good advice. What was it, and how were the problems resolved? Don't go straight to page 212 without giving it some thought!

VCR Signal
 Processing

In part 3 of his series Joe Cieszynski deals with basic luminance signal processing in the playback mode

Fig. I: Basic two-head record/playback switching arrangement.

Part 2 last month covered luminance signal processing in the record mode. We also showed, in Fig. 2 on page 112, a block diagram of a typical VHS luminance playback system and ran through the basic requirements. In this instalment we'll consider the luminance playback processing operations in greater detail.

Record/playback Switching

Fig. l shows in outline form a two video head record/playback arrangement. The iwo heads, labelled Ch. I and Ch. 2, are coupled to two rotary transformers, L1 and L2, which are built into the drum. Record/playback switching is performed by transistors Tr1-4.
In the record mode transistors Tr 3 and Tr 4 are switched on by the record 9 V supply, connecting point A at the end of each rotary transformer secondary winding to chassis. Thus the inputs to the playback amplifiers 1 and 2 are earthed and the record signal from the luminance/chroma mixer is applied to point B at each rotary transformer secondary winding.
In the playback mode the conditions are reversed. This time transistors Tr 1 and Tr 2 are switched on by the playback 9 V supply, connecting point B at the end of each rotary transformer secondary winding to chassis. Thus the signal currents flowing in the secondary windings leave at points B to pass to playback head amplifiers I and 2.

The Playback Head Amplifiers

The f.m. output produced by the heads is very small. Therefore the signal-to-noise ratio is poor. Because of the high input impedance of the head amplifiers, the rotary
transformers that couple the video heads to them behave in effect as radio receiving aerials. This adds to the poor noise performance. Remember also that the signal-to-noise ratio of the recorded f.m: signal is poor to begin with, because of the low modulation index. The head amplifiers must therefore have high gain and a low noise figure, the aim being to boost the f.m. signal (with the superimposed chroma) and maintain a signal-to-noise ratio of around 40 dB .
The head coils are largely inductive. Thus to obtain the required flat response the amplifier input circuit must be tuned. Capacitors Cl and C 2 resonate with the inductance of the rotary transformers. As a result, the amplifers' response peaks at around the centre frequency. The parallel resistors RV1 and RV2 have a damping effect on the tuned circuits, the net result being an overall flat response. Improvements in manufacturing techniques long ago made it unnecessary for these components to be adjustable. But if you look at modern VCR circuits you will still often find that fixed-value peaking capacitors and damping resistors are included.
Where head damping and Q adjustment are possible, it is as well to set them up. The VCR will more than likely be an older model, and someone may well have had a go before the machine arrives on your bench. Misadjustment of these controls results in black-to-white inversion streaks. But, as should be plain from various points made last month, this symptom can arise as a result of a number of possible faults and misadjustments in the luminance signal processing stages of a VCR.
The usual sequence of events is that the heads begin to wear and black-to-white inversion appears. Some 'helpful'

person decides to adjust the head tuning controls to compensate. In many cases this will reduce the effect for a brief period - at least long enough to get out of the house. Then, when the machine is finally brought into the workshop for new heads to be fitted, the result is that the streaking is worse than ever. Peaking and damping adjustment have to be carried out to match the circuit to the new heads.
Most Q adjustment procedures given in service manuals call for the r.f. sweep section of an alignment tape to be played while the f.m. output is scoped. The Q capacitors are set so that the waveform peaks at around 5 MHz . In practice however the Q can be set simply by observing the black-andwhite inversion on the screen when a tape with a large amount of h.f. information is played - anything that contains captions is ideal.

Playback amplifiers 1 and 2 generally employ f.e.t.s. Their high input impedance prevents the rotary transformers and head coils being damped. Playback equalisation is usually carried out in these head amplifier stages (see Fig. 2).

The f.m. channel balance control RV3 (Fig. I) enables the output from each head to be set at the same level. Note that the control won't increase the signal level from the head with the lower output: it simply reduces the signal level from the head with the higher output.
From the point of view of the f.m. signal this amplitude balancing is not essential, as amplitude variations are removed by the subsequent limiter. But if the f.m. levels differ greatly the levels of the chroma signals that ride on them will differ. This could lead to 25 Hz chroma flicker, as the saturation will be different with successive fields. In practice channel balancing is seldom critical because the a.c.c. circuit at the input to the chroma processing channel is able to cater for small differences. If the head outputs are greatly different however a 25 Hz flicker, or patterning, may be evident.

Analogue Switch

The analogue switch is used to pass the output from one head or the other to the next stage on successive tracks. so that during playback the head that's not in contact with the tape is muted. If head switching was not employed, the head not in contact with the tape would, being a tuned circuit, pick up interference that would appear on the picture as speckles.
The switch is driven by the 25 Hz flip-flop signal, whose phase can be adjusted to ensure that switching occurs at the correct point for each head. For standard VHS operation the switching must occur 6.5 lines (± 1 line) before the start of the field sync pulse, see Fig. 3.

If the head switching takes place too early there will be a band of distortion at the bottom of the picture. If it occurs too late, the playback picture will be prone to field bounce or rolling.

Alternative Arrangements

The switching and head amplifier arrangements with a fourhead machine are basically the same, but with circuit duplication. Many variations in detail will be found in practice.

The High-pass Filter

The next requirement after the head amplifier is a high-pass filter to prevent the chroma, the hi-fi sound carriers and the ATF signals (8 mm system) from entering the luminance playback channel. Its passband, f.m. as well as sidebands, is $3.8-4.8 \mathrm{MHz}$ with standard VHS, the cut-off frequency being around 1.2 MHz .

Dropout Compensation

A dropout is a momentary loss of the off-tape f.m., which would result in a white flash on the playback picture. There

Fig. 2: The response (a) of the playback head amplifier is designed to compensate for the $6 \mathrm{~dB} /$ octave rise in the output (b) from the video head. This form of playback equalisation is the same as that employed in audio machines.

Fig. 3: Obtaining a composite f.m. signal from the outputs of the two heads (a). Switching between the heads must occur 6.5 TV lines (VHS system) before the start of the field sync pulse (b). Check the switching by scoping the composite video output at line speed, using the drum flipflop signal to trigger the scope. Switching between the negative and positive waveform slopes enables the switching periods for chs. I and 2 to be observed.

Fig. 4: A recycling dropout compensator arrangement.

Fig. 5: Block
diagram of a duplex limiter, with associated waveforms.

Fig. 6: Effect of using a single limiter to remove a.m. Single limiting will also remove h.f. signal components, leaving an I.f. carrier that gives a black signal. Thus where sudden white peaks occur the VCR produces a black image, i.e. white-to-black inversion.
are several causes of dropouts: missing tape oxide, video head wear, tape oxide thickness variations, dirt on the tape and dirt on the head drum for example.
The purpose of the dropout compensator is to avoid these white flashes by inserting the signal from the previous good line. Fig. 4 shows a recycling dropout compensation arrangement. The f.m. input is taken to three paths. The direct path, shown at the top, is the normal f.m. signal route to the following limiter stage. The centre path leads to a $64 \mu \mathrm{sec}$ delay line. In most VCRs this consists of a glass ultrasonic delay line, though in many modern machines a CCD delay system is used instead. The bottom path goes to the dropout detector, which is followed by a Schmitt trigger.
This operates whenever a significant drop in the level of the off-tape f.m. signal is detected. If the switching level is adjustable, it should be set to operate when the signal level falls by about 20 dB .

When the f.m. signal level is correct, the output from the Schmitt trigger holds the two electronic switches in the positions shown in Fig. 4. Should the level of the f.m. signal fall significantly, the Schmitt trigger changes state and the switches change over to their alternative positions. The output from the dropout compensator circuit now comes from the delay line. The second switch SW2 loops the output from the delay line back to its input.

Fig. 7: Crosstalk attenuation provided by the slant azimuth technique over the range of frequencies within the standard VHS signal spectrum.

This is called recycling dropout compensation. It's not used in all machines. The advantage it has is that the last good section of f.m. of up to one line duration can be continuously recycled. There's a problem however: the recycled signal deteriorates after a number of reinsertions. Thus machines have a maximum number of reinsertion times. This number varies from model to model.
If the dropout period is considerable the picture will break up into snow. In some machines a black level is inserted. In others a coloured raster might be displayed, with on-screen graphics such as the brand name, or an instruction to the customer to operate the head-cleaning mechanism that some machines have.

The AM Limiter

The vast majority of VCRs use a duplex limiter to remove unwanted a.m. from the playback luminance signal. A duplex limiter is simply a double-limiter circuit. Any of the following factors will introduce a.m.:
(1) Luminance bandwidth restrictions.
(2) Low available f.m. power level.
(3) Head response deficiencies.
(4) Dust particles.
(5) Tape-to-head contact problems.
(6) Tape coating deficiencies.

We'll consider these in turn, starting with (1) and (2). When the f.m. carrier deviation is at maximum, the sideband information would want to extend over a considerable bandwidth. But the lower sideband is limited to 1.2 MHz . Since all the power is contained in the sidebands, this means that less power is available at h.f.
(3) Head losses increase as the recorded f.m. approaches the extinction frequency. Thus the playback output falls at the higher frequencies.
(4) and (5) With the VHS system the recorded tape area occupied by one TV line is approximately $33 \mu \mathrm{~m}$ by $49 \mu \mathrm{~m}$. Particles of dust are much larger than this, and thus cause considerable dropout problems. Dust can also lodge on the head drum assembly, with the result that the tape wanders away from the head, producing signal amplitude variations Because of the reduced tape penetration depth, this problem is more acute at h.f.
(6) Even the highest quality tapes can suffer from variations in the thickness of the tape oxide coating. This again results in amplitude modulation, more acute at h.f. because oxide particle size is a greater proportion of the recorded signal cycle.

Fig. 5 shows a duplex limiter in block diagram form, along with waveforms at the various points in the system. The f.m. signal is fed to two filters where the sideband energy, also the amplitude variation, is split into low- and high-frequency components. This separation is important since, with a composite f.m. signal, l.f. amplitude variations will swamp the limiter operation, the result being loss of the h.f. information - see Fig. 6.

Waveform A in Fig. 5 shows the incoming f.m., with an unwanted a.m. component. B and D show the separated h.f. and l.f. signals. C shows the h.f. signal after limiting by limiter 1 . The signal appears to be clear of a.m., so one may wonder why this is not sufficient. The removal of the l.f. component has produced an f.m. carrier phase shift however - remember that the following f.m. demodulator will see a phase shift no differently from a frequency shift. In other
words, the output obtained by demodulating waveform C would not be correct. Restoring the l.f. component, as shown at E, corrects the carrier phase. The second limiter then removes the carrier ripple caused by the restoration of the l.f. component. The final output is shown at F.
Incorrect adjustment of the duplex limiter will result in black-to-white inversion.

FM Noise Cancelling

Since the launch of VHS and Betamax machines in the late Seventies, the section of the VCR that has been most subject to redevelopment is the mechanism. On the electronics side, manufacturers have devoted much time and effort to improving picture quality by means of noise-cancelling systems. Some of the techniques that have been developed are in general use: others remain specific to one manufacturer.
F.M. noise gives the picture a generally grainy look. There are several causes of $\mathrm{f} . \mathrm{m}$. noise in the record/playback process. For a start, background noise is endemic with any magnetic recording system. Add to this the fact that crosstalk between the signals from adjacent tracks is not completely eliminated by the use of the head slant-azimuth technique, and the poor f.m. signal-to-noise ratio as a result of the low modulation index and single-sideband recording, and you have a considerable noise problem.
We'll next take a look at some of the more common noisecancelling techniques.

Line-correlated Noise Cancelling

Fig. 7 shows the crosstalk attenuation (above the line) achieved by the use of the slant-azimuth technique across the standard VHS signal spectrum. It's generally taught that the technique removes luminance crosstalk but is not very effective with the chroma frequencies. As Fig. 7 shows however, the slant-azimuth technique is also largely ineffective at the lower luminance f.m. sideband frequencies. This means that sideband crosstalk in area A will be evident on the picture as fine patterning.
Manufacturers were aware of this problem right from the start of VHS VCR production. By 1981 a method of employing a comb filter to cancel the most prominent and regular crosstalk sideband components in this region, namely the line sync sidebands, had been developed. The basic idea is that the channel $2 \mathrm{f} . \mathrm{m}$. signal is recorded with a frequency shift of 7.8 kHz (half a TV line). This is done by feeding the drum flip-flop signal, at a suitable amplitude, to the f.m. modulator - see Fig. 8.
Cancellation is achieved by passing the playback f.m. through the comb filter arrangement shown in Fig. 9(a). When the incoming carrier frequency is added to a carrier which has been delayed by a period ($128 \mu \mathrm{sec}$) equal to half the line frequency $(7.8 \mathrm{kHz})$, the comb-filter response shown in Fig. 9(b) is obtained. As you can see, at multiples of the line frequency the output falls to zero.

Because the crosstalk between channels is phase shifted by half the line frequency, the large crosstalk sync sidebands occur at the zero points in Fig. 9(b). As there is no output at these frequencies, the crosstalk is cancelled out - see Fig. 9(c) and (d). Unfortunately, any legitimate luminance sidebands at these points in the filter's response will also be lost. This sacrifice is justified by the overall improvement in picture quality achieved.

Tape Characteristic Noise

High-grade or S-VHS tapes may be used to reduce luminance and chrominance noise. When such tapes are used in a standard VHS machine however there may be a loss of resolution caused by the incorrect pre-emphasis level. In a standard VHS machine the pre-emphasis level is optimised

Fig. 8: Feeding the drum flip-flop signal to the f.m. modulator results in a shift in the carrier frequency. The circuit is arranged so that the ch. 2 head's f.m. carrier frequency is ot $3.8 \mathrm{MHz}+7.8 \mathrm{kHz}$. A similar circuit must be employed in the playback processing to shift the d.c. level of the demodulated luminance signal back to the correct level.

Fig. 9: A comb filter arrnagement used to cancel crosstalk between line sync sidebands. Fsc is the carrier frequency, f the line frequency $(15.625 \mathrm{kHz})$. At points $\mathrm{Fsc}+0.5 \mathrm{f}$, $\mathrm{Fsc}+$ $1.5 f$ etc. the crosstalk will cancel.

Fig. 10: Nokia's ASO system removes noise on h.f. transisitions caused by propagation delay. (a) Recorded transition, (b) demodulated transition with noise, (c) effect of ASO processing.

0575

Above, Fig. II: A simple f.m. demodulator arrangement of the frequency doubling and pulse-counting type.

Fig. 12: Pulsecounting f.m. demodulator arrangement using a delay line.

Fig. 13: Typical de-emphasis amplifier response curve.

Fig. 14: A simple sharpness control arrangement.

for use with standard VHS tape. The ability of higher grade tapes to store h.f. signal components at higher energy levels means that, when played back, these will be of far greater amplitude than with standard tape.
The f.m. a.g.c. system will reduce these excessive signal components, which occur predominantly in the lower sideband region. The visible effect produced by this action is poor contrast in areas of the picture with a lot of detail.
Some higher-quality machines incorporate circuits that attempt to overcome this problem.

Active Sideband Optimum

The Active Sideband Optimum (ASO) system was developed by Nokia. It's a picture edge sharpening method that does not, unlike some luminance noise reduction systems, add noise to sharp edges in the picture.
The f.m. signal is subject to phase shift (propagation delay) as it passes through the playback circuits. Because there is a greater shift with the h.f. components of the signal than the I.f. components, edge noise is generated. As a result, what should have been a clean black-white transition becomes a ragged moving edge - see Fig. 10 .
The ASO system uses an active filter circuit to pick out the l.f. signal components and adjust their phase delay to correspond with that of the h.f. components. Restoration of a constant phase relationship across the bandwidth produces much cleaner edges.
The ASO circuit is also designed to overcome the problems that arise when using high-grade or S-VHS tapes in standard VHS machines. This circuit is located in the head amplifier
section of the playback signal path.

Intelligent High Quality

Akai's Intelligent High Quality (IHQ) noise-reduction system is designed to reduce background noise without increasing edge noise. Note that it operates on the demodulated luminance signal, not the f.m. signal.
During playback the noise-reduction system alters its operating threshold to suit the noise level. When a goodquality recording with low noise is played back, the system functions at only low signal levels, leaving the higher signal levels unaffected. When a poor recording is played back the IHQ system raises its threshold to reduce the noise. The drawback here is that there is some reduction of the higher luminance signal levels, the result being a slightly softer picture.
IHQ recording is more complex. The machine carries out a brief record/playback test initially, to determine the type of tape being used - standard, high-grade of S-VHS. It then sets an appropriate l.f. f.m. boost, so that during playback the l.f.will be in correct proportion to the h.f. components.

The FM Demodulator

The f.m. demodulator used in a VCR generally operates on the principle of doubling the incoming carrier frequency then using a pulse counter. This technique is used because the f.m. carrier is recorded without bias and therefore suffers from crossover distortion. It's essential therefore that the demodulator acts on the peaks of the carrier, to avoid operating in the distorted region of the waveform.

Two examples of frequency-doubling systems are shown in Figs. 11 and 12, though it should be pointed out that in practice the demodulator will be contained within a luminance processing chip.
In Fig. 11 the filtered and squared input from the limiter is fed to the RL differentiator formed by Rl and L1. The accompanying waveforms show the action. Trl and Tr 2 provide full-wave rectification (frequency doubling). The amplitude of the charge developed across reservoir capacitor C 2 is proportional to the input signal frequency, i.e. we have frequency-to-voltage conversion. In this way the analogue luminance signal is recreated.
Fig. 12 shows a pulse-counting f.m. demodulator using a delay line. The squared f.m. input is fed to a switch and to a delay line, whose delay time is about a quarter of the f.m. carrier's centre frequency $(4 \cdot 3 \mathrm{MHz})$. Inverted and noninverted outputs from the delay line are fed to the switch. When the switch's toggle input (a - the direct input) is low, delayed waveform (b) is passed to the output. When (a) is high, the inverted delayed signal is passed to the output. The effect of this action is to double the f.m. carrier frequency. Pasing the output (d) through a low-pass filter to provide integration recreates the luminance signal.
As with any demodulator, the output from the filter contains a large carrier component. This is clearly visible when an oscilloscope is connected to the relevant processing chip output pin. This carrier component could cause patterning and must therefore be removed before the luminance and chroma signals are combined to form the composite video signal. A further low-pass filter, with a cutoff at about 3 MHz , is therefore included in the postdemodulator circuit. Because of the higher f.m. carrier frequency $(5.4 \mathrm{MHz})$ the problem is not so acute with S-VHS, but filtering is still necessary.

De-emphasis

De-emphasis is carried out by an amplifier with frequencyselective feedback to provide a response the opposite to that of the record pre-emphasis circuit. A typical response curve is shown in Fig. 13.

Picture Sharpening/Noise Reduction
Loss of the upper luminance signal frequency components with domestic VCR systems naturally leads to loss of definition with sharp edges in the picture. Manufacturers have for many years offered a 'soft/sharp' control facility so that the user can select the type of picture preferred. The basic sharpness control circuit tends to offer the viewer only two options: a grainy, noisy picture with very sharp, if somewhat noisy, edges; or a smeary, low-definition picture that at least appears to be noise free!

A simple sharpening circuit is shown in Fig. 14. The output at the emitter of Q1 is followed by a low-pass filter that removes the h.f. signal components. A second output, from the collector of Q1, is added to the output from the LPF. The amount of h.f. luminance at the collector of Q1 depends on the Q factor of coil L1, which is damped by Q2. Adjustment of the sharpness control alters the conduction of Q2 and thus the damping effect it provides.
The problem with simple VCR sharpness controls is that in addition to highlighting sharp edges they also boost any noise in the signal, the result being ragged verticals. For this reason the sharpness control circuit is generally followed by some form of noise-cancelling circuit.
Fig. 15 shows a typical arrangement. Low- and high-pass filters separate the l.f. and h.f. components of the signal. The former are fed directly to the final mixer stage. The h.f. signal components are fed to the mixer stage via a non-linear filter which removes low-level noise.

The Mixer Stage

The mixer stage enables the processed luminance and 4.43 MHz chroma signals to be combined to provide a lV CCIR-standard composite video output signal. With some formats separate Y and C or component outputs are standard.

In addition to Y and C inputs, the mixer stage will also have a tuning/test signal input or, in many modern machines, an input from an on-screen display graphics generator.

Summary

This completes our examination of VCR luminance signal processing. Individual manufacturers use many variations on the theme, but the block diagrams in Figs. 1 and 2 last month show the basic record/playback signal processing required.
In Part 4 we will go on to chrominance signal processing.■

Fig. 15: A simple noise-cancelling arrangement.

A Complete Guide to Satellite TV Theory and Practice

\checkmark Acknowledged by leading reviewers as the best work of its kind!
\checkmark How to set up a motorised dish in less than five minutes! All angles given.
\checkmark Written in easy-to-read style with over 300 illustrations on more than 300 pages of large A4!
\checkmark Dish angle settings, polar and apex angles of all main towns across Europe, South Africa and Saudi Arabia!
... An impressive book ...
with in a way that leaves no
doubt ... lavish use of very
clear diagrams throughout.
All in all most of the
information you'll ever need or
want to know about satellite
television is at your fingertips
... It's certainly the best work of
its kind.

Diagrams and tables of dish size for your site, EIRP footprints and how to overcome sparkkies!
\checkmark Shows how to avoid intermodulation and interference!
\checkmark Covers directly related practical aspects such as working with ladders, tools for the trade, customer care, wall fixing systems, carrier level meters, types of cables, fault-finding etc!
\checkmark Explains directly related theoretical subjects such as digital TV compression techniques, including

MPEG II techniques, geostationary orbit, IF distribution systems, SMATV techniques, frequency modulation, VideoCryp scrambling methods, ASTRA and EUTELSAT satellites, microwaves, antenna design, link analyses with worked examples, detailed glossary of terms, plus lots more!

Postage:UK: E2.50 Europe: £5 Rest of World: $£$

Interspace
. the most comprehensive, book ever published on book ever publishe
satellite television.

Send stamped, addressed envelope for complete list of satellite books, videas and software
 17 Pittsfield, Gricklade, Wilts, SNG 6AN, England Tel 44 (0) 1793750620 Fax 44 (0)1793 752399
Satellite Trader

B. BAMBER ELECTRONICS

```
Pye Westminster Meapers. &15 each
```


less Mics and Speakers. $£ 15$ each

```
Pye Reporters Type MF6AM, Mid Band, 6CH. complete with mics but less speaker. \(£ 20\) each. Pye Moblie Microphones. \(£ 3\) each.
Pye Mobile Speakers £2 each.
Pye Side Mounts for Reporters/M293 etc. \(£ 3\) each
Farnell Portable Syntheslzed Signat Generator \(10-520 \mathrm{MHz}\), Type PSG520, £475.
Rohde \& Schwarz UHF Power Signat Generator \(275-2750 \mathrm{MHz} . £ 400\)
Marconi Spectrum Analyser Type TF2370
California Invertron Power Unit, 240vac input, 240vac input, 240v Type TF2373, \(30 \mathrm{~Hz}-1250 \mathrm{MHz}, \mathbf{2 0 0 0}\).
Pye Base Station Receivers Type R 4001 , AM, Mrd Band, \(106 \mathrm{MHz}, ~ £ 20\) each \(500 \mathrm{VA}, ~ £ 260\).
Pye Base Station Transmitters Type T4001, AM. Mld Band, 139 MHz , e40
Pye Base Station Receivers Type R7AM, Mid Band, 106MH \(139 \mathrm{MHz}, £ 40\)
Pye Base Station Transmitters Type T30AM, Mid Band, 138MHz, \(£ 20\).
Teiequipment Oscilyskop 11, 100 .
Relequipment Oscilloscope Type D63, \(£ 150\).
Racal 32 MHz Frequency Counter Type \(836, £ 25\)
Marconi RF Power Meters Type TF \(1152 \mathrm{~A} / 1,10 / 25 \mathrm{~W}, 50\) ohm, \(£ 35\)
Racal-Danal UHF Frequency Counter, 520 MHz . Type 9916, E 175 .
Marconi RF Power Meter Type 6460, \(£ 75\).
Panasonic 14 Day 4 Programme Timer T
Bradiey AC Callbrator Type 125B, £45.
Philips Sun Bed, 20 Tube, Type HP3503/HP3504, £250.
Pye Controllers Type PC1, \&15 each.
Pye Oscillator units Type HS400, \(£ 20\) each.
Bradley DC Signal Generator Type 123 S £45.
Tektronix Oscilloscope Type 465B, \(£ 400\).
Hewlett Packard UMF Signal Generator Type 6168, 1 8-4.2GHz, \(£ 75\).
Hewlett Packard SHF Signal Generator Type 6188, \(3.8-7.6 \mathrm{GHz}, ~ £ 75\).
Hewlett Packard SHF Signal Generator Type 6208, 7-11 Ghz, \&75.
Hewlett Packard SHF Slgnal Generator Type \(628 \mathrm{~B}, 15-21 \mathrm{GHz}, ~ £ 75\).
Bryans Chan Aecorder Type BS316, \(£ 125\).
Marconl AM/FM Signal Generator Type TF2.
Lay-Flat Tubing, \(3^{\prime \prime} \times 174 \mathrm{Mts}\), \(£ 3\) per rolf.
Gresham Lion Slow Scan Teievision Transmitter, \(\mathbf{\Sigma 1 5 0}\)
Scopex Osclioscope Type 4D10, \(\mathbf{6 6 0}\).
Marconi Wave Analyser Type TF2330, £150.
Hewlett Packard Channel Selectors Type 3777A. \(£ 150\)
Tektronix Oscilloscope Type 2215, 60 MHz , £450.
Marconi AM/FM Signai Generator Type TF2002As, \(10 \mathrm{KHz} \cdot 72 \mathrm{MHz}, ~ \& 160\)
Marconi CT499/111 RP Watt Meter Absorption 1-3-10-30-100W, \(500 \mathrm{hm}-700 \mathrm{hm}\) Convertor Adaptor, \(£ 350\). Avo Auto Eng. Multimeter Model 12, , 65 .
Marconi AM/FM Signal Generator Type 2015, \(10-520 \mathrm{MHz}, ~ £ 200\).
Philips PAL Colour TV Pattern Generator Type FM5508, £150.
Crypton Tech Dwell Volts Testers, \(£ 35\).
RS isolating Transformer, \(500 \mathrm{VA}, \mathbf{\Sigma 4 0}\).
Racal Frequency Standard Type MA259, £150,
Artech UHF Filter Duplexers, \(£ 25\).
Airtach UHF Filter Duplexers, 525 .
Toroldal Transformer. 20v@ 5 amp. EB each.
Avo Mult minor Model 5 . 1515 .
Ramron 15 Sid May \(5, \underline{E} 15\)
Telequipment Oscilloscope T Ron Ex Board for the BBC Micro. \(£ 10\)
Type D755 opt 66, £250.
```

Harcons RF Electronic Millivolt Meter Type ir Pap3, £76. §16,000
Hewlett Packard Spectrum Analyzer 22 GHz , Type 8566A, $\mathrm{\Sigma} 1$
Hewent Packard Modulation Analyzer Type 8901A. $£ 3,900$.
Hew ent Packard Modulation Analyzer Type 8901A. $£ 3,900$
Round Panel Meters, $1 \mathrm{~mA} \cdot 0.1 \mathrm{~mA}, 21 / 4^{\prime \prime}, \varepsilon 2$ each.
Precision Vanable Capacitor Model PVC2, £40.
Hewlett Packard RMS Voitmeter Type 3400A, £250
Wristo and Checkers, £15.
Pyo Westminster Mains Power Units Type AC15, £10 each. Tektronıx Constant Amplitude Signal Generator Type 191, $£ 150$
Hewiett Packard Pattern Generator Type $3780 \mathrm{~A}, ~ £ 350$.
Tektronix Plug-in Type 7B53A, E75.
Hewlett Packard Spectrum Anatyzer Mainframe Type 141T, £350.
Hewlett Packard Plug-in Tyoe 8694. $£ 95$.
Hewlett Packard Pug-in Type 8694, £95.
Telequipment Oscilloscope Type D83, 2235 .
Plessey H.F Recerver Type PRS2280, Memory, CW, AM, SSB, LED Readout, $£ 1,700$
Racal Universal Counter Type 9837 H, , £75.
Hewlett Packard Peak Power Calibrato Type $8900 \mathrm{~B}, \mathrm{£} 5$
Hewlett Packard Peak Power Calibrator Type 8900B, $£ 95$.
Stepper Motors, 12 volt, $1.8 \mathrm{Deg}, \mathrm{£}$ each.
Racal-Dana Frequency Counter Type 1998, $£ 900$,
Racal-Dana Frequency Counter Type 1998, $£ 900$
Hitachi Video Tuner Type VT. TU70E, £45.
Hitachi Video Tuner Type VT. TU70E, £45.
Mound Panel Meters, $3^{1 / 4 / 4}, 0.500 \mathrm{vac}$ \&2
Round PanelMeters, $3 / 4{ }^{\circ}, 0.500 \mathrm{vac}$ \&2 each.
Pye 10 Way Battery Chargers Type BC29 (PF85), £45.
Pye Singie Way Battery Chargers Type BC210 (PF85), $£ 25$.
Advance Oscilloscope Type OS S50, $£ 120$.
Avo Multimeter Model 8 MK5, $£ 100$.
Pye Controller Type UED6, $£ 50$.
Pye Controller Type M82, $£ 150$.
Tektronix Oscilloscope Type 7603 Maintrame, $£ 200$
Smiths Tachometers, $0-2500$ RPM, $41 / 2{ }^{2}$ Round. 25 esch
Nicolet Digital Storage Oscilloscope Type 3091, $\mathbf{9 9 0 0}$.
Racal Synthesized Slgnal Generator 520 MHz Type $9081, \mathbf{5 5 5 0}$
Taylor Digitai Volt-Ohm Mater Type 1020, £45.
Pye Single Way Battery Charger Type BC21B (PF9), $£ 10$.
Pye Cambndge/Westminster Battery Chargers, $£ 10$.
Pye 10 Way Battery Chargers Type BC11 (PF2), $£ 10$.
Tektronix Oscilloscope Type 7603, 7A26, 7B53A. 8395 .
Schumberger Radio Communcations Test Set Type 4010, 8750.
Charging Units for Dosimeters, Quantz Fibre, $£ 10$.
Pye Battery Pack Power Unit Type P200, £35
BOC AR/He Gas Puntier Unit, $£ 90$.
Storno Starnet Moblio Radio Trunking Contol Slo Starnet Mobile Radio Trunking Control System Type Ra7728,00. Complete with 21 Storno 9000 Series Fixed Stations, UHFNHF. POA

All items subject to availability. Technical information by telephone only.
All prices exclude Carriage and VAT Callers by appointment only

SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustable from $15 \times$ to 60×1 complete with metal tnpod
(imposible to use without this on the higher settings) 66 mm lense. limposible to use without this on the
RADIATION DETECTOR SYSTEM Designed to be wall mounted and connectedinio a PC, ideal for rem ote monitoring, whole building coverage etc Complete with detector, cable and software £19 95 ref BAR75
WIRELESS VIDEO BUG KIT Transmits video and audio signais from a minature CCTV camera (included) to any standard televisionl All the components including a PP3 battery will fit into a cigarette packet with the lens requing a hole about 3 mm diameter Supplied with telescopic aerial but a plece of wire about 4" long will still give a range of up to 100 metres A single PP3 will probably give less than 1 hours use. 699 REF EP79 (probably not licensablel) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 V 100 mA , auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is $1 \mathrm{vp-p}$ (75 ohm) Works directly into a scart ideo input on a tv or video IR sensitive $£ 7995$ ref EF137
IR LAMP KTT Suitable for the above camera enables the camera
to be used in total darkness! $£ 599$ ref EF 138
TANDATA TD1400 VIEWDATA Complete system comprising modem, infra red remote keyboard, psu, UHF and RGB outp phone lead. RS232 output. composite output $£ 995$ ref BAR33. MAGNETIC CARD READERS (Swipes) £9.95 Cased with flyleads, designed to read standard credit cards! they have 3 wires flyleads, designed to read standard credit cards! they have 3 wires
coming out of the head so they may wite as well? complete with coming out of the head so they may write as
control elctronics PCB. just $£ 995$ ref BAR31
PANORAMIC CAMERA OFFER Takes double width PANORAMIC CAMERA OFFER Takes double width
photographs using standard 35 mm film. Use in horizontal orvertcal photographs using standard 35 mm film. Use
mode. Complete with strap $£ 799$ ref BAR1
COIN OPERATED TIMER KIT Complete with coinslot mechanism, adjustable ome delay, relay output, put a coinsiot on
anything you like! N, s, videos, fridges, dnnks cupboards, HIFI anything you like! TV.s, videos, fridges, dnnks cupboards. H1F1
takes 50p's and $£ 1$ coins. DC operated, price just 1 7.99 ref BAR27 ZENTH $900 \times$ MAGNIFICATION MICROSCOPE ZOom. metal construction, built in light, shrimp farm. group viewing screen, lots of accessories $£ 29$ rel ANAYLT.
LUBTEL $166 U^{\prime}$ Twin lens Russian 2 1/4" $^{\prime \prime}$ sq reflex camera supplied with two free rolls of colour film. hip up magnifier. 3 element f4.5 lens. £ 19.99 ref BAR36.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence $\mathbf{E 4 . 9 9}$ ref BAR67
NIGHTSIGHTS Model TZSA with infra red illuminator, views up to
75 metres in full darkness in infrared mode. 150 m range. 45 mm lens. 13 deg angle of view, focussing range 15 m toinf nity. 2 AA batteries requred. 950 g werght E 210 ref BAR61 1 years warranty
FILIN-1 150 m range, 15 deg angle of view, focusing 10 m -infinity. £179 ref BAR62 A separate infra red light is available at $£ 30$ ref BAR63
WHTT E NIGHT SIGHTS Excellent professional night sight, small. hand held with camoflaged carrying case £325 1 years warranty MEGA AIR MOVERS 375 cubic feet per min!. 240V 200 watt. 2.800 pm , reversable. $7^{\circ} \times 7^{\circ}$ UK made, new, Aluminıum, current list pnce about £ 180 ours? $£ 2995$ ref BAR35
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line, $65 \times 14 \mathrm{~mm}$ £ 199 ref SM1612A
16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian. Supert astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for further
details $£ 249$ ref TAL-1 details E249 ref TAL
GOT AN EXPENSIVE BIKETYou need one of our bottle alarms. they look like a standard water bottle, but open the top, insert a key
to activate a motion sensor alarm builtinside Fits all standard bottle to activate a motion sensor alarm built inside Fits all standard bottie carriers. supplied with two keys SALE PRICE E7.99 REF SA32
GOT AN EXPENSIVE ANYTHING? You need one of our cased vibration alarms, keyswitch operated, fully cased just fit it to anything from videos to caravans, provides a years protection from 1 PP3 battery. UK made. SALE PRICE E4.99 REF SA 33
DAMAGED ANSWER PHONES These are probably beyond repair so just 1499 each BT response 200 machines REF SA30 COMMODORE GAMES CONSOLES Just a few of these left to dear at £5 ref SA31 Condition unk nown
COMPUTER DISC CLEAROUT We are left with a lot of sontware packs that need clearing sowe are selling at disc value onlyl 50 dis for $£ 4$, thats just 8 p each! (our choice of discs) $\varepsilon 4$ rel EP66 IBA PS2 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $\mathcal{E} 9.95$ ref EP67 DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyteads and IEC socket
SALE PRICE $\varepsilon 9.99$ ref EP55 SALE PRICE 69.99 rel EP55
1.44 DISC DRIVES Standard PC 3.5° dnves but returns so they will need attention SALE PRICE E4.99 ref EP68
1.2 DISC DRNES Standard 525° dnves but retums so they will need attention SALE PRICE $£ 4.99$ ref EP69
PP3 NICADS Unused but some storage marks £4 99 ref EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fly leads, case and fan. pack of two psus SALE PRICE ES FOR TWO!! rel EP6
GAS HOBS ANDOVENS Brand new gas appliances, perfect for small flats etc. Basic 3 butner hoo SALE PRICE E24.99 ref EP72 Basic small buill in oven SALE PRICE $€ 79$ ref EP73
BTS AND BOBS We have a quantty of cased modems, multiplexers etc different specs but ideal stnppers $\mathbf{E 4}$ each ref EP63
RED EYE SECURTY PROTECTOR 1.000 watt outdoor PIR RED EYE SECURTTY PROTEC
switch SALE PRICE $£ 9.99$ ref EP57
ENERGY BANK KTT $1006^{\circ} \times 6^{\circ} 6 \mathrm{v} 100 \mathrm{~mA}$ panels, 100 diodes. connecton details etc. $£ 69.95$ ref EF 112
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, includes wordprocessor, report wnter. windowing. networkable up to 10 stations, multiple cashi books etc
200 page comprehensive manual 90 days free technical support (0345 - 326009 try before you buy!) Current retail price is $£ 129$, SALE PRICE $£ 995$ ref SA 12 SAVE $£ 120$!!!

WOLVERHAMITON BRANCH NOW OPENAT WORCESTER ST WHAMPTONTEL 0190222039

MINIMICRO FANS $12 \mathrm{~V} 1.5^{\circ}$ sq SALE PRICE $\operatorname{E2}$. Ref SA 13 REUSEABLE HEAT PACKS, Ideal for fishermen, outdo enthuslasts elderly or infim, warming food, drinks etc, defrosting pipes etc reuseable up to 10 times, lasts for up to 8 hours per go. 2.000wh energy, gets up to 90 degC. SALE PRIC EE9.95 REF SAZ9 12V2AMP LAPTOP Psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard IEC socket) and 2 m lead with plug. $100-240 \mathrm{y}$ IP E6.99 REF SA 15 PC CONTROLLED 4 CHANNEL TIMER Controt (onvof times etc) up to 4 items (8A240v each) with this kit. Complele with Soltware. relays. PCB etc $£ 25.99$ Ref $95 / 26$
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your compuler system and valuabie software against mains power fluctuations and cuts New and boxed. UK made Provides up to 5 mins running bime in the event of complete power falure to allow
correcty SALE PRICE just $£ 89.00$.
SOLAR PATH LIGHTS Low energy walkights powered by the sunl buitt In PIR sothey work when you walk past ind udes solar anel \& rechargeable bat. SALE PRICE $£ 19.95$ REF EP62
BIG BROTHER PSU Cased PSU, $6 v 2$ Aoutput. 2 m oplead. 15 m input lead. UK made, 220 V . SALE PRICE E4.99 REF EP7
WANTTOMAKE SOMEMONEY? STUCKFOR AN IDEA? We have collated 140 business manuals that give you information on sething up different businesses. you peruse these at your leisure using the text editor on your PC. Also included is a certificate enabling you to repro
REF EP74
RACALMODEM BONANZAI 1 Racal MPS $12231200 / 75$ modem. telephone lead. mains lead. manual and comms software, the cheapest way onto the netl all this for just E 13 rel DEC13
4.6mw LASER POINTER. BRA ND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also acts as the onvoff switch.) About 60 metres range! Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. just £39.95 ref lovels, gun sights, experiments etc. just
DEC49 TRADE PRICE E28 MIN 10 PIECES

BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions TENS is used for the relief of pain etc in up to 70% of sufferers Drug free pain relief, safe and easy to use, can be used in conjunction with analgesics etc. £49 Ref TEN/1
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (like wyse 50,s) 2xRS232, 20 functon keys. 50 thro to 38.400 baud, menu driven port, screen, cursor. and keyboard setup menus (18 menu's). £29 REF NOV4
RUSSIAN MONOCULARS Amazing 20 times magnification. coated lenses, carrying case and shoulder strap.E29 95 REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with builtin psu, lead and s / w are Ideal for laptops or a cheap upgrade Supplied
assembly SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodlights, built in charger and auto switch. Fully cased 6v 8AH lead acid req'd. (secondhand) $£ 4$ rel MAG4P1
SWINGFIRE GUIDED MISSILE WIRE. 4200 metre reel of Uitra thin 4 core insulated cable, 281 bs breaking strain, less than 1 mm
thickl Ideal alarms, intercoms, dolls house's etc E13.99 ref EP51 ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST E4.99 REF SA28
ASTEC SWTCHED MODE PSU BM4 1012 IIves +5 © $3.75 A$. +12@15A. 12@ 4A 230/110, cased. BM41012. £5 99 ref AUG6P3 AUTOSUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpanel with diode an TOP QUALTY CENTRIFUGAL MAINS MOTORS SALE PRICE2 FOR JUST \&2.60 REF SA38 ECLATRON FLASH TUBE As used in police car flashing lights etc. full spec supplied, $60-100$ flashes a min E6.99 REF SA 15 24v AC 96WATT Cased power supply New $£ 999$ REF SA 40 MILTARY SPECGEIGERCOUNTERS Unused anstraightfrom Her majesty's forces SALE PRICE 644 REF SA 16
MICRODRNE STRIPPERS Small cased tape dnves ideal for stnpping, lots of useful goodies including a smat case, and lots
components SALE PRICE JUST E4.99 FOR FINE REF SAZ6 SOLAR POWER LAB SPECLAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{~V} 130 \mathrm{~m}$ SOLAR POWER LAB SPECLALYou get TWO $6^{\circ} \times 6^{\prime}$ ' 6 V 130mA
solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb solar cells, 4 LED's, wire, buzzer, switch plus 1 rel
value kt SALE PRICE JUST E4.99 REF SA27
RGB/CGA/EGATTL COLOUR MONTTORS 12^{*} in good condition. Back anodised metal case SALE PRICE E49 REF SA16 PLUG IN ACORN PSU 19v AC 14w, £2 99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17% DC 900 mA output Bargain price $£ 5.99$ rel MAG6P9 ACORN ARCH MEDES PSU +5 V e 44 A on/off sw uncased. selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ E 3.99 FEEF MAG7P2

BULL ELECTRICAL

250 POKTH (ND) ROAD, HOVE SUSSEX
 HM, ORDEA TRRMS CASX, POOH QHEOLI

TG1, 11273203509
AN01273323077
13.8V 1.9A PSU cased with leads Just £9.99 REF MAG10P3 200 WATT INVERTER Converts $10-15 \mathrm{v}$ DC into elther 110 v o 240 V AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy
duty power lead. cigar plug. AC outlet socket. Auto overload shutdown auto short circuit shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control. unit shats down if overheated and sounds audible alam. Fused reversed polanty protected. output frequency within 2%, voltage within 10\%. A well built unit at ankeen price Just $£ 6499$ rei AUG65 UNNERSAL SPEED CONTROLLER KTT Designed by us for he C5 motor but ok for any 12 v motor up to 304 . Complete with PCB etc. A heat sink may be required $£ 1700$ REF: MAG 17
COAA FUTER COHMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc Ideal low cost method of communicating between PC's over a long distance Complete kit £8,99.
VIEWDATA SYSTEMS made by Phillips, complete with intemal 1200/5 modem, keyboard, psu etc RGB and composite outputs, menu dnven, autodialler etc. SALE PRICE E12.99 REF SA 18
AIR R FLES . 22 As used by the Chinese ammy for training puposes so there is a lot about! $£ 3995$ Ref EF78 500 pellets $£ 450$ ref EF80 PLUG IN POWER SUPPLY SALE FROM £1.60 Plugs in to 13A socket with outp utlead. 1hree types avalable, $9 v d c$ 150mA 1.50 el SA13. 9vdc 200mA $£ 200$ ref SA20. $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA21 VIDEO SENDER UNTT. Transmits both audio and video signals from eitiser a video camera, video recorder. TV or Computer etc to any standard TV set in a 100^{\prime} range! (tune TV 10 a spare channel) 12 VDC op Price is $£ 15$ REF: MAG15 12v psu is $£ 5$ extra REF: MAG5P2 -FM CORDLESS MICROPHONE Small hand held unit with a 500 rangel 2 transmit power levels. Reqs PP3 9 v battery. Tuneable any FM receiver Pnce is $£ 15$ REF: MAG15P1
MINATURE RADIO TRANSCENERS A pair of walkie takies wha range up to 2 kmin open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$ ndudirig cases and earp'ces 2xPP3 req'd £30.00pr REF: MAG30 FM TRANSMITER KIT housed in a standard working 13A adapter! the bug runs directly off the mains solasts forevert why pay $£ 700$? or price is $£ 15$ REF EF62 (ktt) Transmits to any FM radio FM BUG BUILT AND TESTED superior design to kit. Supplied 10 detective agencies. 9v battery req'd £14 REF• MAG14
TALK\|NG COINBOX STRIPPER COMPLETE WTH COINSLOT MECHAN ISMS originally made to retail at£79 each these units are designed to convert an ordinary phone into a payphone. The unts have the locks missing and sometmes broken inges. How they can beapled for heironginal use or used for CAT AIR PISTOI PACK COmplete with pistol dar
GAT AIR PISTOL PACK complete with pistol, darts and pellets £12.95 Ref EF82B extra pellets (500) £4 50 ref EF80
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA SALE PRICE E4.99 REF SA 24
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ef MAC5P 13 ideal for experimenters! 30 m for $£ 1299$ ref MAG $13 P 1$ MDXED GOODIES BOX OF
MIXED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST $\mathbf{8 6 . 9 9}$
4X28 TELESCOPIC SIGHTS Sutable for all air rifles, ground enses, good light gathering properties $£ 19.95$ ref $R / 7$
RATTLE BACKS Interesting things these, small piece of solid persper like matenal that it you try to spin it on the desk it only spins one wayl in fact if you spin it the 'wrong' way it stops of its ow accord and go's back the other way' $£ 199$ ref G1/JO1
GYROSCOPES Rememberthese? well we have found acompany that stilmanufactures these popular scientific toys. perfect gift or for educational use etc. 66 ref EP70
HYPORHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised oin blanket reflects more than 90% of body heat Also suitable for the construction of two way mirrors! £3 99 each ret O/2041
LENSTATIC RANGER COMPASS oil filled capsule, strong metal case, large luminous points Sight line with magnifying viewer 50 mm clia. 86 gm £ 10.99 ref OK6 604
RECHARGE ORDINARY BATTERIES UPTO 10 TMES With the: Battery Wiz ard Uses the latest pulse wave charge system o charge all popular brands of ordinary batteries AAA. AA. C. D. fou at a umeted syslem shows when battenes are charged. automaticall ejects unsuatable cells,
TALKING WATCH Yes, it actually tells you the tme at the press of a button. Also features a voice alarm that wakes you up and tells you hat the time is Lithium cell induded $£ 799$ ref EP26.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of dnvers from losing their licence Adjustable audible alarm with 8 flashing leds gives instant warning of radar zanes. Detects X. K, and Ka bands, 3 mile range, 'over the hill aroundtends' and 'rear trap facilities. mıcro size just4 25 "x2 5"x 75 Can pay for itself in just one day' $£ 7995$ ref EP3
SANYD NICAD PACKS $120 \mathrm{~mm} \times 14 \mathrm{~mm} 48 \mathrm{v} 270 \mathrm{maH}$ suitable for cordless phones etc Pack of 2 just $£ 5$ ret EP78
3^{18} DISCS As used on older Amstrad machines, Spectrum plus3's etc $£ 3$ each ref BAR 400
STEREO MICROSOPES BACK IN STOCK Russian, 200x complere with lenses. lights, filters etc etc very comprehensive micros is just E299 (full money back guaranlee) ful delails in catalogue Re
$95 / 300$.
SOLAR POWERED CAR VENTILATOR Simply fits along the top of the glass in a side window and provdes a constant supply of fresh at in hot su
E19.95 ref sNent

WE BUY SURPIUS STOCK FOR CASH FREE CATALOGUE

100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

V/ Fault Finding

Panasonic Z3 Chassis

There was no colour in this portable`s display. So we turned our attention to the circuitry around IC101, where amongst other things the colour decoding is carried out. Voltage checks drew our attention to a small ceramic capacitor connected to pin 29. C616 was leaky of course, being one of the dreaded $10 \mathrm{nF}, 50 \mathrm{~V}$ ceramic type capacitors. B.S.

Panasonic Euro-I Chassis

This digital TV set seemed to work all right - until you asked it for the onscreen menus. All that would be displayed over the picture were random numbers and characters. As the information for the on-screen menus is held in an EPROM on the digital board, this was the first thing we checked. Another reason for homing in on it was the fact that it's a plug-in chip. But a replacement made no difference at all. We eventually traced the cause of the trouble to the TPU 2735 teletext processor chip, despite the fact that teletext worked perfectly. B.S.

Panasonic Alpha 2W Chassis

This beast had come from another dealer, who'd given up. It had come to him as a dead set, so he'd replaced the regulator chip IC801. This mace no difference. He then found that the over-voltage protection diode D854 was short-circuit. He 'd removed it and tried again. This is where his problems started. Without the protection, the voltage on the 160 V rail shot up to about 300 V . The reservoir and smoothing capacitors started to smoke. Then the line output transistor winced and went short-circuit, blowing the fusible link R567. This is where I cance in.
I fitted another STR 45051 M chip in position IC801 and checked the circuit around pin 5, which is where the regulation control takes place. R815 (5.68) was open-circuit, and I also replaced C 808 - as a precaution.

After replacing D854 then Q551. C851 and R567 in the line output stage I gingerly powered up the set. Fortunately the friendly rustle of e.h.t. preceded a very good picture. B.S.

Panasonic TCI4SIR (Z5 Chassis)

This portable was completely dead. Should be simple, I thought. But the chopper power supply chip IC801 in this chassis has a standby and a power mode. The standby circuit was completely dead. Voltage checks around IC801 showed no real signs of life - but it was getting hot! After extensive tests in the power supply I found that D806 was leaky. A replacement AU02V0 diode restored normal operation.B.S.

Philips GR2-I Chassis

Dead set was the complaint. In fact it wouldn't turn on, though the power supply was running (phew!). Checks showed that the microcontroller chip wasn't working, but a replacement didn't help. I then did what I should have done to start off with - unplug the text panel. The faulty component was IC7880 (PCA84C81AP/098). If the chip from the earlier version is used, the Fastext keys won't work. G.D.

Ferguson TXIO Chassis with Sweep Tuning

There are still lots of these sets around. A common fault is failure of the tuning to stop, or the LED flashing constantly with no effect. The faulty chip is always IC344 (MC1449-9PB). Many suppliers regard it as obsolete, but SEME still seem to have some left. G.D.

Philips KT4 Chassis

There was sound but no raster. When the tube's first anode voltage was increased we found that the field timebase was working. So the next thing to check was the sandcastle pulse. If it's present, the TDA3561A colour decoder chip is probably faulty. If it's absent, as on this
occasion, replace the TDA3576B timebase generator chip IC7200. But be careful: the drawing on the component side of the board is upside down - the print side diagram is correct. If you install the chip the wrong way round the fault is almost identical! G.D.

Philips GRI-AX Chassis

The symptoms were as follows: very excessive height, non-linearity and field blanking to the extent that only a quarter of the picture was displayed. They were all intermittent.
Replacing the field output and timebase generator chips made no difference. Neither did replacing any relevant electrolytics. We removed and checked every resistor in the field output stage. Several hours later we traced the cause of the trouble to C2043 (82pF), which was intermittently leaky. It feeds pulses from the line output transformer to the field generator section of the TDA8305 timebase generator chip IC7020, at pin 2. D.J.F.

Loewe Opta Profi T28

"It's difficult to start from cold" the customer said. At switch on the standby LED would glow for about three seconds then gradually fade. C626 (100 1 F) in the start-up circuit for the TDA4601 chopper control chip had fallen in value to $50 \mu \mathrm{~F}$. D.J.F.

Sony KVX2I72

This set was brought in because its the volume level couldn't be altered. The cause was the EAROM chip IC072, a replacement putting matters right. M.M.

Matsui 2095

This set was thought to be dead though the power supply was working and there were no shorts across any of the circuits on its secondary side. We quickly found that there was no drive to the line output transistor. In fact there was no line oscillation, because C607 (3.3 nF) which determines the
oscillator's free-running frequency had a $3 \mathrm{k} \Omega$ leak. A replacement restored normal operation. M.M.

Mitsubishi CT25A2STX

This set would sometimes trip when it came out of standby. While I was carrying out some checks the line output transistor went short-circuit. So I fitted a 60 W bulb as a dummy load instead. When the set was brought out of standby the bulb glowed brightly, with the h.t. well above its correct value. The cause of this was traced to C609, the $47 \mu \mathrm{~F}$ capacitor in the chopper transistor*s base circuit. A new capacitor reduced the h.t. voltage to the correct level while a new line output transistor restored the picture. M.M.

Sanyo CBP 2572 (EDI Chassis)

There was intermittent loss of the offair vision signal. For once the fault wasn't on the digital board! There was simply a dry-joint at the emitter of Q173 (2SA608). M.M.

Sharp DV5132H

When one of these sets goes into the protection mode you have approximately five seconds before it reverts to standby. Fortunately all that was wrong with this particular set was that R612, the fusible resistor that feeds the supply to the field output chip, was open-circuit. A replacement restored normal operation. M.M.

JVC AV25SIEK

This set's picture was dim with a slight green tint. The cause was no voltage at IC20I's contrast control pin because capacitor C1206 had become leaky. A new $3 \cdot 3 \mu \mathrm{~F}$ capacitor restored good pictures. M.M.

Toshiba 2 1 I2DB

The reported fault was that this set would go to standby after about half an hour. I couldn't instigate the fault in the workshop, but found that pin 64 of the microcontroller chip appeared to be dry-jointed. After resoldering it and giving the set a long soak test I decided that all was now well. M.M.

Matsui 2092T

A number of different line output transformers that are not interchangeable were used in these sets. This one was fitted with a Philips transformer, part no. 043221008P. It was shortcircuit, a replacement bringing the set back to life. M.M.

Ferguson ICC5 Chassis

Failure of the EW loading coil LGII in models fitted with 110° tubes can
produce the dead set symptom. In addition to replacing LG11, the following items must be replaced. using Ferguson approved components: CL44 330nF: RL44 $56 \Omega+$ 120S2 fusible; J134 22 2 fusible; lG01 TDA4950 EW modalator driver chip. Note that RL44 consists of two resistors in series. Also check the 1 nF ceramic capacitor CGll which may well have gone short-circuit. M.M.

Philips I4TVCR240

This is the Philips contribution to the range of combination TV sets/VCRs available. It was dead with a shortcircuit line output transformer, a replacement restoring normal operation. M.M.

Grundig P37-050

There was no remote control operation, nor did the channel change buttons on the set itself work, though the volume control was o.k. I assumed that the main microcontroller chip was faulty, but on investigation I found that the remote control input line was stuck at 0 V with a shortcircuit across it. Disconnecting the line removed the short, which was cured by replacing the TFMS 4300 infra-red receiver chip. Obviously the channel change is linked to the remote control line and was also being dragged down. T.L.

Matsui 1091

I though the customer who brought this set in was crazy. He claimed that it wouldn't power up unless it was laid on its right-hand side! But he was right. When the set was switched on normally it wouldn't power up even when tapped etc. On its left-hand side it wouldn't work, but turn it over on to its right-hand side and up it came. I removed the back and fortunately the cause of the fault showed up. A wire near the on/off switch was dryjointed. It had been arcing and as a result was conductive on only one side. A good clean up and a resolder cured the problem. I'll never disbelieve a customer again! T.L.

GoldStar CIT2181FG

The complaint with this set was that the colour disappeared after about twenty minutes. On test that's exactly what happened. Good old freezer came to the rescue. Use of this soon established that the chroma delay line was dodgy. A replacement cured the fault. How ever did we manage without freezer?! T.L.

Matsui 2095T

Be careful if distorted sound is the complaint with one of these receivers.

Don't order a new audio chip: reseat the old one, using some hot melt to hold it. T.L.

Philips NC3 Chassis

This set was dead with a blackened mains input fuse. A quick check in the power supply revealed that the BUT11AF chopper transistor Q401 was short-circuit and the 4.7Ω surge limiter resistor R401 open-circuit. There were also various dry-joints around the chopper transformer and the line output transformer. Resoldering these and replacing the failed parts brought the set back to life again. T.L.

Matsui 148IB

There was b.rrely audible sound. Some tapping soon revealed dryjoints at the 6 MHz filter CF301 in the i.f. section. Resoldering brought the sound back to its full level. T.L.

Toshiba 1720RB

If line tearing after a while is the problem with one of these sets, Iry freezing the STRD4412 chopper chip Q801 in the power supply. A replacement should cure the fault. Part no. is 23314510. T.L.

Sanyo CTP3106

This set suffered from extreme bowing at the sides of the raster, especially the last three quarters of the scan. Some one had already replaced most of the capacitors and resistors in the power supply, then given up. A meter check across the mains bridge rectifier's reservoir capacitor produced a reading of only about 113 V instead of the 300 V or so you would expect. On removal this $100 \mu \mathrm{~F}$, 400 V high ripple current capacitor was found to have fallen in value to just $1.5 \mu \mathrm{~F}$. A replacement cured the fault. J.H.

Hitachi C14-P2I6 (G7P Mk 2 Chassis)

This set had been in the workshop twicc during the past month, the complaint being that it would occasionally fail te start up, only the standby LED indicating that there was some life in it. It hadn"t gone wrong during soak tests. The third time it came in the symptom was permanent. R903 and R902 (both $82 \mathrm{k} \Omega$) in the bias feed to the chopper transistor were open-circuit. Note that in the fault condition the mains bridge rectifier's reservoir capacitor is fully charged, at 300 V . Use a $1 \mathrm{k} \Omega$ resistor to discharge it before commencing work. This will avoid accidental destruction of the power supply, turning a simple job into a nightmare. J.E.

Alba CTV4805/Bush VCRI55

Here's a good one for you! The job sheet said "when the TV set is switched off the VCR ejects the tape even when no tape has been inserted" This seemed very hard to believe, but on arrival at the customer's house I found that the description was quite accurate. When the customer unplugged the TV set from the multiadaptor (yuk!), the VCR flew into a frenzy of trying to eject a tape although there wasn't one in the machine. When the TV set was switched off using its own mains switch however the VCR behaved itself. At this point the customer mentioned that the text was "a bit funny".
Switching to text provided a clue. The text over-filled the screen, to the point where it was severely cramped at the bottom. High h.t. and thus high e.h.t. I thought (the set did rustle quite a bit at switch off) $\mathrm{C} 610(47 \mu \mathrm{~F}, 50 \mathrm{~V})$, which couples the drive to the chopper transistor, can cause high h.t. when faulty. But when I removed the set's back the cause of the trouble was immediately apparent. The tube's Aquadag earthing strap had parted company with its spring. As it didn't want to reach the spring I had to extend it with some solderwick (I'm in the field, remember!). This solved the e.h.t. discharge problem, but for good measure I replaced C610 and reset the h.t.

I can only conclude that the micro chip in the VCR was being upset when the receiver used the r.f. lead as a discharge path for the e.h.t.
Incidentally the Alba CTV4805 uses a similar chassis to the Matsui 1455, which was the subject of a servicing feature in the magazine a few montins ago. A.T.

Beko 12220

At switch on there was no colour in the display. But if the set was switched to standby and back, or the channel was changed, the colour would appear and remain until the set was switched off with the mains switch. The cause of the fault was traced to dry-joints on the main board, where the colour decoder panel plugs into it. A.T.

Grundig CUC220 Chassis

This fault could possibly apply to any set that uses a TDA4600 type power supply. The set would squeal and rumble at switch on, with the LED display flashing like a Space Invaders game. But the set would come on if it was repeatedly switched off then on again. A check on the h.t. output from
the power supply when the fault was present showed that it was varying. Although the set could be made to work, I suspected that there was a fault in the power supply. Replacing C633 ($220 \mu \mathrm{~F}, 25 \mathrm{~V}$), which smooths the TDA 4600 chip's 12.5 V supply, and the chip itself cured the fault. I also replaced $\mathrm{C} 631(100 \mu \mathrm{~F}, 40 \mathrm{~V})$ which couples the drive to the BU208A chopper transistor as it looked tired. A.T.

Toshiba 150R6B

This set just emitted a whining noise. Nice and simple for a change: the line output transformer was dead short to chassis. The replacement comes with a couple of capacitors that have to be changed. Once we'd fitted the replacements we had a really excellent picture. R.N.

Philips Gll0 Chassis

This set came in dead, but it wasn't the usual power supply breakdown. When I powered the set it whined. The power supply ran perfectly with the feed to the line output stage disconnected and a 60 W bulb connected across the h.t. line as a dummy load. It turned out that the line output transformer was the cause of the trouble: it's the first one I've had to replace.
The picture was a bit strange when the replacement had been fitted. Part of the on-screen display was shifted to the left, with the first letter missing. It soon became apparent that the width was at maximum and the EW correction circuit wasn't working. Further checks brought me to the $10 \mathrm{k} \Omega$ width control R3525 which was opencircuit. A replacement and setting up corrected the display. R.N.

Ferguson TXIO Chassis

It's amazing how many of these sets are still around, giving really excellent pictures. This ex-rental Baird set (pre 1560 PCB version) was no exception, but the customer complained of intermittent operation and a black bar across the screen.
A good solder up in the power supply and around the line output transformer cured the intermittent operation. The set then ran for several hours, after which a field sync bar would slowly drift down the screen. A check showed that the field hold control was at one end of its travel, after which I found that R773 (330k Ω) had increased in value to around $700 \mathrm{k} \Omega$. A replacement put this final problem right. R.N.

Granada C4IGS5

The complaint was of intermittent operation, with sparking noises and
flashing across the screen. On test the receiver ran for some time without fault, but a good tap around transformer T391 produced a faint arcing noise and severe interference on the screen. With the workshop lights out, a sharp tap produced a corona discharge around one leg of T391. Close inspection then revealed that the riveted connection was loose. I removed the transformer, thoroughly cleaned and tinned the tags, then refitted it using plenty of solder around the rivets. After doing this the set worked perfectly. R.N.

Philips 2A Chassis

This set was eating line output transistors. The dealer who brought it to me had fitted several - the correct BU508V type - and had also replaced the line output stage tuning capacitor. The usual dry-joints had been attended to.

I decided to check the line drive waveform. It didn't look too bad, but every so often there was an odd shake. Although the line driver transformer connections appeared to be all right, I decided to resolder them. When the soldering iron touched one of the legs the solder fell away, leaving a rather blackened tag poking through the board. I removed the transformer, cleaned the legs then refitted it. For good measure I also replaced the damping components R3633 ($6 \cdot 8 \mathrm{k} \Omega$) and C2633 $(1 \cdot 2 \mathrm{nF})$. The set then ran with no further problems. R.N.

NEI TV

There was no identifying model number on this teletext set and I was a bit reluctant to take it on. The set was dead, but my spirits rose when I removed tha back and found a conventional TDA4601 type power supply. There were a number of dry-joints in this area, including the start-up posistor. The main problem was a dryjoint at D805, which is connected to the base of the chopper transistor.
After dealing with these dry-joints the set still seemed a little reluctant to start, sometimes taking eight to ten seconds to get going. This was caused by $\mathrm{C} 810(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ which couples the drive to the base of the chopper transistor. It's mounted very close to a wirewound resistor, and looked rather sad. Much to my relief, a replacement put things right. R.N.
Editorial note: The component reference numbers tie up with the Indiana 100 chassis.

Matsui 6092

This set was dead. There appeared to be a short-circuit line output transformer, but the fault was actually
caused by C312 ($0.056 \mu \mathrm{~F}, 200 \mathrm{~V}$). This capacitor is part of a voltagedoubling circuit in the line output stage. T.A.

Panasonic TX28GI (Alpha 2 Chassis)

The output from the left-hand sound channel was distorted. We traced back to PCB H, where the output at pin I of IC2401 was distorted though its input at pin 22 was without distortion. The d.c. level of the input was low however, because the 100 pF ceramic capacitor C2442 had a $5 \mathrm{k} \Omega$ leak. The circuitry in the right-hand channel is identical. So C2441 could cause a similar problem. T.A.

Sony KVS34I2U (AE2 Chassis)

This set would work for a few minutes, then the picture would collapse into lines in the centre of the screen, with a high-pitched whine coming from the line output transformer. Voltage checks showed that when the fault was present the h.t. was low at 70 V . The cause of the trouble was traced to the audio protection circuit, where Q613 (2SA1162G) shuts the power supply
down should d.c. be present at the audio outputs. The h.t. was being reduced because Q613 had developed an intermittent leak. The type of transistor used in this position seems to be quite critical (part no. 8-729-216-22). T.A.

Sony KVG25I5U (AE2B Chassis)

The satellite section of this receiver didn't work because its 21 V supply was missing. Circuit protector PS605 on PCB D was found to be opencircuit. The circuit diagram shows the rating for this device as 2.7 A , but an $\mathrm{N} 15(600 \mathrm{~mA})$ is the correct replacement. T.A.

Sanyo CBP2I62 (E4 Chassis)

There was sound but no picture. When the first anode control setting was advanced a blank raster appeared. Apparently the picture had disappeared during a thunderstorm. Checks around the colour decoder chip revealed that the amplitude of the sandcastle pulse was low at 0.2 V p-p, the line part of the waveform being absent. Replacing the TDA4505M multifunction chip IC 101 cured the
fault. It produces a sandcastle pulse output at pin 27. M.Dr.

Sony KV2092

If the problem with one of these sets is intermittent failure of the 2SD1398 line output transistor, desolder the base drive coupling coil L801 then retin and refit it. It's also a good idea to go over the connections to the line driver transformer. M.Dr.

Tatung 170/180 Chassis

If you find that the 52000 AF line output transistor is short-circuit you will almost certainly have to replace the BY228 EW modulator diode D404, the BD239C EW modulator driver transistor Q303 and R433 ($1 \cdot 2 \Omega$, safety) in the field timebase power supply. A TIP31 will do in position Q303. M.Dr.

Hitachi C2II8T

At switch on this set tripped back to standby and the e.h.t. sounded rather too healthy - on test it peaked at about 40 kV . Checks in the power supply revealed that R909 ($39 \mathrm{k} \Omega$), which is in series with the set h.t. control, had risen to $45 \mathrm{k} \Omega$. Luckily there was no other damage. M.Dr.

JOULE A-400 ADVANCED CAR RADIO CODE READER

The A-400 is the only system whose software and hardware is designed totally in house and factory produced.

The A-400 currently covers the majority of models and now includes the latest Blaupunkt RDS radios. Ongoing research and development means new models are being added regularly
Full technical backup via a telephone helpline is offered to all registered users. There is also a scheme in place where any radios not currently included within the system will be decoded free of charge and a free copy of that sof ware will be supplied.

Decoding a radio is simple - remove the base plate, place the probe on the PCB, press a key and the code is instantly displayed. Changing the code or fully re-programming is just as easy.
On screen help and PCB layouts showing probe location and information on how to enter the code once the set has been decoded.
Works on any IBM or compatible PC from an Amstrad 1512 to a 486.
As well as its ability to decode and recode, the advanced design of the A-400 permits total re-programming of eeproms, lending itself for use in the servicing of television receivers etc.

Place probe on the PCB and the code is instantly displayed Purchase the A-400 decoding system outright, price for full starter package (covers over 90 models): $-\mathbf{£ 3 7 5 . 0 0}+\mathbf{V A T}$
or, take advantage of the new INDEX system where for a $\mathbf{£ 1 0 0 . 0 0}$ refundable deposit you will be supplied with a complete $\mathbf{A}-400$ system. Decodes are supplied over the phone and are charged at $£ 5.00$ each, no rental charge.

The A-400 is manufactured by a company that has been involved in the servicing of car audio and TV/video for over 20 years and is a service agency for Philips, Grundig and Blaupunkt.
Phone now for a free brochure and demonstration disk
Electronic Sound Systems
Hilton Road, Aycliffe Industrial Estate, Co. Durham DL5 6EN. Tel: 01325301007 Fax: 01325300189

USE YOUR ACCESS OR VISA 覃 TEL 0902773122 FAX 090229052

\begin{tabular}{|c|}
\hline 15880H \& 3.83 \& \(25 C 2073\) \& 0.11 \& \({ }^{2 S 0639}\) \& 0.60 \& 8C2528 \& 0.07 \& Bf470 \& 0.33 \& 84399 \& 0.11 \& HA13119 \& 2.05 \& ME18004 \& 1.80 \& STK7358 \& 5.81 \& TDA1519A \& 2.14 \& TDAB178FS \& 3.81 \\
\hline 1 NaOOH \& 0.4 \& 2SC2078 \& 0.86 \& 250667 \& 0.38 \& BC258 \& 0.09 \& BF493 \& 0.36 \& BY014] \& 0.26 \& HA13403 \& 3.59 \& MJE2955 \& 0.68 \& STR40090 \& 6.28 \& TDA1520B \& 2.48 \& TDA8180 \& 4.87 \\
\hline 1 14002 \& 0.07 \& 2SC2120 \& 0.23 \& 250669 A \& 0.64 \& BC300 \& 0.48 \& BF494 \& 0.12 \& 8 80330 \& 0.43 \& HA1377 \& 2.62 \& M ME29557 \& 0.68 \& STR4211 \& 12.63 \& toA 1521 \& 3.36 \& toas 190 \& 2.91 \\
\hline 1 N 4003 \& 0.05 \& \(2 \mathrm{SC2166}\) \& 1.29 \& 250716 \& 1.46 \& BC301 \& 0.28 \& B5757 \& 0.43 \& 8Y033] \& 0.21 \& HA5 [3388P3 \& 7.69 \& ME3055 \& 0.52 \& STR441 \& 28.40 \& TOA1524A \& 1.88 \& tDA8305 \& 7.21 \\
\hline 1 NaOOS \& 0.01 \& \(25 C 2229\) \& 0.28 \& 250718 \& 2.21 \& BC303 \& 0.24 \& \({ }^{\text {BF7758 }}\) \& 0.32 \& Вүоз3М \& 0.21 \& HM6232 \& 10.46 \& MUE3055T \& 0.74 \& STR451 \& 23.50 \& TDA15530 \& 4.79 \& TDA8380 \& 2.53 \\
\hline 1N4005 \& 0.00 \& 2 SC2230 \& 1.66 \& 250734 \& 0.26 \& BC307 \& 0.06 \& B5759 \& 0.38 \& 8W10-40 \& 2.55 \& HM6251 \& 9.57 \& MIE340 \& 0.50 \& STR50020 \& 9.02 \& toals540 \& 8.12 \& toA9503 \& 2.13 \\
\hline 1 NaOOG \& 0.06 \& \(2 \mathrm{SC2235}\) \& 0.36 \& 250762 \& 1.80 \& BC3078 \& 0.14 \& \({ }_{\text {BF7760 }}\) \& 0.26 \& 8 87995 \& 0.19 \& 108 \& 0.00 \& M N 650 \& 5.98 \& STR50103 \& 4.10 \& TDA1670A \& 2.98 \& TEAL014 \& 1.87 \\
\hline 1 19007 \& 0.06 \& \(25 C 2236\) \& 0.36 \& 250820 \& 5.06 \& BC307C \& 0.15 \& \({ }_{B F 7} 72\) \& 0.30 \& BW995C \& 0.21 \& KA2206 \& 1.32 \& MPSAO6 \& 0.35 \& STR5404] \& 4.36 \& TDA1675A \& 3.85 \& TEA1039 \& 2.14 \\
\hline 1 N4148 \& 0.06 \& 2 SC2240 \& 0.16 \& 2508378 \& 1.12 \& BC308 \& 0.06 \& \({ }_{\text {BF7 } 788}\) \& 0.52 \& 8 W960 \& 0.27 \& kA2223 \& 0.60 \& MPSA42 \& 0.23 \& STR5412 \& 3.68 \& TDA1701 \& 2.65 \& TEA2018A \& 1.70 \\
\hline 1 150661 \& 0.00 \& 25 C 2271 \& 0.67 \& \({ }^{250856}\) \& 1.03 \& BC308A \& 0.09 \& \({ }_{87869}\) \& 0.25 \& \({ }^{8 \times W 56}\) \& 0.31 \& K42263 \& 0.55 \& MPSAA3 \& 0.15 \& STRS8041 \& 6.41 \& TOAI770a \& 30.29 \& TER2029C \& 5.69 \\
\hline 1N5062 \& 0.51 \& \(2 \mathrm{SC2274}\) \& 0.35 \& 250863 \& 0.35 \& \({ }^{\text {BC308C }}\) \& 0.06 \& \({ }^{85870}\) \& 0.29 \& 8WW95C \& 0.65 \& KA8301 \& 1.46 \& MPSA55 \& 0.26 \& STR59041 \& 6.67 \& TDA1872A \& 4.83 \& Itaz2031A \& 3.40 \\
\hline 115400 \& 0.01 \& \(2 \mathrm{SC2314}\) \& 0.38 \& 250869 \& 5.18 \& BC309 \& 0.04 \& \({ }^{\text {BF871 }}\) \& 0.41 \& 8 8w96E \& 0.94 \& KBL08 \& 1.42 \& MPSA56 \& 0.12 \& STR6020 \& \({ }_{5} 8.38\) \& TDA1905 \& 2.12 \& teal 164 \& 3.40
2.96 \\
\hline 1 15401 \& 0.14 \& 2SC2335 \& 1.12 \& 250870 \& 3.81 \& BC309C \& 0.14 \& \({ }^{\text {Bf959 }}\) \& 0.18 \& BYX55600 \& 0.23 \& K146210AH \& 6.15 \& MPSA92 \& 0.18 \& STR6020KI \& 15.05 \& TDA1908A \& 2.14 \& TEA2165 \& 2.96
4.27 \\
\hline 1 N 5402 \& 0.12 \& 2SC2458 \& 0.14 \& 2 S0871 \& 5.08 \& BC327 \& 0.10 \& \({ }_{8}\) \& 0.30 \& BYX71600 \& 1.45 \& KSRLOO1 \& 0.14 \& MR854 \& 0.65 \& STRO4420 \& 11.16 \& TOA1950 \& \& \& \\
\hline \(1 \mathrm{NS404}\) \& 0.13 \& \(2 \mathrm{SC2482}\) \& 0.35 \& 250880 \& 0.36 \& \({ }^{8} \mathrm{C} 3278\) \& 0.17 \& \({ }_{\text {Br966 }}\) \& 0.26 \& \({ }^{\text {B2TO3C120 }}\) \& 0.62 \& KSR1004 \& 0.14 \& MR856 \& 0.11 \& STRO4420 \& 11.16
2.63 \& TDA1950 \& 1.86
1.12 \& TEASAL101A \& \begin{tabular}{l}
9.58 \\
\hline .95
\end{tabular} \\
\hline 1 N 5406 \& 0.12 \& \(25 C 2570 \mathrm{~A}\) \& 0.30 \& 250882 \& 0.43 \& BC328 \& 0.07 \& \({ }^{\text {Br9696 }}\) \& 0.30 \& BZV10 \& 1.34 \& KSR2001 \& 0.14 \& NES45B \& 3.20 \& \({ }^{\text {T60076V }}\) \& 5.04 \& \& \& TEASIIS \& 3.95
2.91 \\
\hline 1 15408 \& 0.99 \& \(2 \mathrm{SC2581}\) \& 3.08 \& 2508988 \& 6.41 \& \(8 \mathrm{BC337}\) \& 0.14 \& \({ }_{\text {BFPr }}\) B4A \({ }^{\text {a }}\) \& 0.30 \& \({ }^{\text {B2V885C5u] }}\) \& 0.15 \& KSR2004 \& 0.14 \& NE555 \& 0.40 \& T6076V \& 5.04
0.93 \& TDA2O03 \& \({ }_{2}^{0.90}\) \& TEASIIS \& 2.91
0.82 \\
\hline 1 N 914 \& 0.04 \& 2SC2603 \& 0.25 \& 250965 \& 0.67 \& BC337 \& 0.22 \& Brr34A \& 0.78 \& \(82 \times 6110\) \& 0.19 \& L200CY \& 2.19 \& Nes56 \& 0.43 \& \({ }^{\text {T }}\) T90564V \& 0.93
1.51 \& toazois \& \({ }_{1}^{2.53}\) \& IIC1065 \& 0.82 \\
\hline 2 N 2222 \& 0.22 \& 2SC2625 \& 2.94 \& 250973 \& 0.38 \& BC338 \& 0.06 \& \({ }^{\text {BrRgo }}\) \& 59 \& \(82 \times 6112\) \& 0.12 \& LA1230 \& 1.95 \& NE592N \& 1.91 \& T50648 \& 1.51 \& toaz005 \& 1.63 \& IIC.105M \& 0.15 \\
\hline 2N2223A \& 0.23 \& \(2 \mathrm{SC2655}\) \& 0.31 \& \(2 S 1115\) \& 1.69 \& BC368 \& 0.11 \& BrR90A \& 0.68 \& \(82 \times 61120\) \& 0.09 \& La: 1503 \& 1.29 \& NE646N \& 4.45 \& TA7109AP \& 3.23 \& TDA2006 \& 1.06 \& TIC225M \& 1.02 \\
\hline 2 N 2365 A \& 0.18 \& 2SC2705 \& 0.22 \& 2SK1117 \& 3.06 \& BC369 \& 0.17 \& BFR99 \& 0.60 \& \(82 \times 6113\) \& 0.11 \& La4261 \& 2.29 \& 0azoo \& 0.22 \& TA7205AP \& 1.68 \& TDA2030H \& 0.74 \& IIC2260 \& 0.68 \\
\hline 2 2 2907 \& 0.20 \& 2SC2724 \& 0.19 \& 2SK192A \& 0.36 \& BC372 \& 0.43 \& BfR91A \& 0.92 \& \(82 \times 6120\) \& 0.19 \& La4270 \& 2.73 \& 0A90 \& 5.23 \& TA7217AP \& 1.46 \& tDA230V \& 0.74 \& TICP1060 \& 1.95 \\
\hline 2 N 353 \& 0.38 \& 2SC2979 \& 2.14 \& 2SK794 \& 6.41 \& BC461 \& 0.31 \& BFR96 \& 0.55 \& 82X6127 \& 0.19 \& La4282 \& 8.89 \& \(0{ }^{\text {c }}\) \& 1.03 \& TA7222P \& 1.28 \& TDA2040H \& 2.11 \& TILII! \& 0.64 \\
\hline \({ }^{2} \times 3055\) \& 0.50 \& \(25 C 3117\) \& 0.60 \& 3SK88 \& 2.57 \& BC517 \& 0.14 \& BrY51 \& 0.39 \& 82X6133 \& 0.19 \& La4422 \& 1.36 \& P600A \& 0.33 \& TA7227P \& 2.29 \& foaz170 \& 7.08 \& TIP110 \& 0.36 \\
\hline 2 N 3440 \& 0.35 \& \(25 C 3153\) \& 2.40 \& 7415247 \& 0.62 \& BC546A \& 0.07 \& BR100 \& 0.21 \& 82x615V6 \& 0.11 \& La4440 \& 1.80 \& PC814 \& 1.29 \& TA7233P \& 1.97 \& TDA2270 \& 2.45 \& TIP12 \({ }^{\text {H }}\) \& 0.95 \\
\hline 2 N 342 \& 1.00 \& 2 SC3156 \& 6.61 \& 7805 \& 0.78 \& BC546B \& 0.12 \& BR103 \& 0.53 \& 82x616V2 \& 0.07 \& 44445 \& 2.99 \& PCilicsixts \& 6.61 \& TA7240P \& 2.74 \& TDA2540 \& 1.12 \& TiP121 \& 0.42 \\
\hline 2N3707 \& 0.12 \& \(2 \mathrm{SC3179}\) \& 0.82 \& 7806 \& 0.60 \& BC547 \& 0.11 \& BR303 \& 1.22 \& B2X61745 \& 0.09 \& La4460 \& 2.31 \& R2M \& 0.67 \& TA7250 \& 4.01 \& TOA2541 \& 0.72 \& IP1 127 \& 0.47 \\
\hline 2 N 3773 \& 1.34 \& \(2 \mathrm{SC3182}\) \& 2.49 \& 7808 \& 0.72 \& BC547A \& 0.04 \& BRX44 \& 1.02 \& 82×61812 \& 0.19 \& La4461 \& 1.11 \& R4050 \& 3.04 \& TA72508P \& 3.74 \& TDA2576A \& 5.95 \& IPP132 \& 0.65 \\
\hline 2 N 3819 \& 0.55 \& 2SC3199 \& 0.43 \& 7809 \& 0.69 \& BC5478 \& 0.11 \& Brxa9 \& 0.43 \& 82x619V1 \& 0.09 \& 144475 \& 2.99 \& R4051 \& 4.80 \& TA7770P \& 1.59 \& TDA2577A \& 2.99 \& T1P137 \& 0.48 \\
\hline 2 N 3904 \& 0.32 \& \(2 \mathrm{SC3225}\) \& 0.60 \& 7812 \& 0.52 \& BC548A \& 0.11 \& BRY55 \& 1.20 \& \(82 \times 7910\) \& 0.30 \& LA4476 \& 2.99 \& RE156 \& 2.40 \& TA7271P \& 11.33 \& IDA2578A \& 2.91 \& TIP2955 \& 0.94 \\
\hline 2N3906 \& 0.00 \& \(2 \mathrm{SC3242}\) \& 0.19 \& 7815 \& 0.92 \& BC5488 \& 0.06 \& BRY56 \& 0.43 \& \(82 \times 7912\) \& 0.10 \& LA4508 \& 2.71 \& RC4558 \& 0.48 \& TA7273P \& 4.10 \& TOA2579A \& 4.91 \& T1P29C \& 0.31 \\
\hline \({ }^{2} \mathrm{Na123}\) \& 0.30 \& 2 SC3310 \& 2.12 \& 78105 \& 0.35 \& BC548C \& 0.06 \& BSR50 \& 0.75 \& \(82 \times 7915\) \& 0.09 \& LA4700 \& 4.27 \& REGBABY 10 \& 11.56 \& TA7274P \& 2.74 \& TDA2581 \& 4.21 \& T1P29E \& \(0: 47\) \\
\hline \({ }^{2} \mathrm{~N} 5296\) \& 0.69 \& \(25 C 3311\) \& 0.29 \& 78405 \& 0.35 \& BC5498 \& 0.11 \& BSS38 \& 1.71 \& \(82 \times 7930\) \& 0.11 \& La6358S \& 0.60 \& RGP10G \& 0.26 \& TA7280p \& 2.74 \& Toa25810 \& 2.99 \& T1P3055 \& 0.94 \\
\hline 2 SA1013 \& 0.35 \& \(25 C 3330\) \& 0.26 \& 7905 \& 0.35 \& BC550 \& 0.15 \& BII39600 \& 1.29 \& \(82 \times 7936\) \& 0.10 \& 146510 \& 2.94 \& RGP159 \& 0.33 \& TA7281P \& 2.98 \& toaz582 \& 2.05 \& T1P30C \& 0.17 \\
\hline 2 2A1015 \& 0.11 \& \(25 C 3355\) \& 0.96 \& 7915 \& 0.82 \& \({ }^{\text {BC550C }}\) \& 0.09 \& BTI51/500R \& 1.44 \& \(82 \times 79417\) \& 0.07 \& LA7520 \& 4.80 \& \({ }^{\text {RGPP15 }}\) 5 \& 0.24 \& TA7288P \& 2.04 \& toA2593 \& 0.76 \& TIP3IA \& 0.33 \\
\hline \(2 \mathrm{2a10156R}\) \& 0.11 \& 2 2C3358 \& 0.69 \& A4119 \& 0.36 \& \({ }^{8 C 5554}\) \& 0.06 \& BT151800 \& 1.15 \& \(827 \times 9556\) \& 0.05 \& La7800 \& 2.41 \& RGP15M \& 0.44 \& TA7299P \& 2.65 \& TDA2594 \& 2.21 \& TIP31C \& 0.71 \\
\hline \({ }^{2 S A 1016}\) \& 0.26 \& 2 SC 3420 \& 0.55 \& \({ }^{\text {Al } 143}\) \& 0.13 \& \({ }^{\text {BC5557 }}\) \& 0.05 \& BU104 \& 1.43 \& \({ }^{82 \times 77962} 8\) \& 0.08 \& 147801 \& 1.41 \& RGP30M \& \({ }^{0.30}\) \& TA7317P \& 3.44 \& tdaz595 \& 3.19 \& TIP32A \& 0.41 \\
\hline \({ }^{2511020}\) \& 0.44 \& \({ }_{2 S C 3543}\) \& 0.60 \& \({ }^{\text {ACL }} 127\) \& 0.52 \& \({ }^{\text {BC557 }}\) \& 0.15 \& BU205 \& 1.01 \& \(82 \times 790339\) \& 0.09 \& LA7820 \& 2.11 \& \({ }_{\text {RM1IC }}\) \& 1.71 \& TA7609P \& 2.19 \& toaz600 \& 4.86 \& \({ }_{11} 32 \mathrm{C}\) \& 0.40 \\
\hline \[
\begin{aligned}
\& \text { 2SA1029 } \\
\& \text { 2SA1048 }
\end{aligned}
\] \& 0.26
0.19 \& \[
\begin{aligned}
\& 2 \text { 2SC3502 } \\
\& 2 S C 3656
\end{aligned}
\] \& 0.45 \& AC15] \& \[
\begin{aligned}
\& 0.52 \\
\& 0.40
\end{aligned}
\] \& BC5578
BC5588 \& 0.06
0.08 \& BU208A \& 1.44 \& \(82 \times 795541\)
828836542 \& 0.05 \& La7830 \& 1.80 \& S2000A \& \[
\begin{aligned}
\& 1.98 \\
\& 1.54
\end{aligned}
\] \& TA77680AP \& 4.55 \& TOA2611A \& 0.64 \& TIP35¢ \& 1.39 \\
\hline 2SA1286 \& 0.60 \& \(2 \mathrm{SC3679}\) \& 4.45 \& AC187\% \& 0.53 \& BC560C \& 0.06 \& BU208AT \& 1.25 \& \({ }^{\text {B27 } 28810}\) \& 0.11 \& LA7837 \& 1.63 \& S2000AF \& 1.68 \& TA7698ap \& 4.60 \& TOA2611AQ \& 1.32 \& TIP36C \& 1.31 \\
\hline 2541370 \& 0.43 \& 2SC3788 \& 0.77 \& AC188 \& 0.40 \& BC635 \& 0.19 \& Bu208D \& 1.61 \& B2Y8811 \& 0.11 \& [C7132 \& 4.70 \& S2055AF \& 2.02 \& TA7769P \& 3.01 \& TDA2653A \& 2.99 \& TIP41C \& 0.43 \\
\hline 2SA1489 \& 2.40 \& \(25 C 3795\) \& 1.97 \& AC188K \& 0.82 \& вC636 \& 0.14 \& 6A \& 1.36 \& BZY8812 \& 0.07 \& LED3G \& 0.10 \& SAA129302 \& 8.20 \& TA7784P \& 2.25 \& TDA26558 \& 19.93 \& T1P42A \& 0.35 \\
\hline 2SA1706 \& 0.52 \& \(25 C 37958\) \& 2.63 \& AD149 \& 0.52 \& BC637 \& 0.11 \& 06 \& 0.69 \& B2Y8813 \& 0.11 \& LED3R \& 0.10 \& S4A129303 \& 10.25 \& TA8201 \& 3.93 \& TDA3190 \& 1.21 \& IPP42C \& 0.35 \\
\hline 2SA562 \& 0.17 \& 2SC3807 \& 0.84 \& AF124 \& 1.75 \& BC639 \& 0.09 \& \({ }^{814060}\) \& 1.02 \& B2Y8824 \& 0.11 \& LM1203 \& 10.41 \& SAA5012 \& 3.34 \& TA8205 \& 3.93 \& toa33018 \& 6.75 \& TiPL761A \& 1.59 \\
\hline 2SA564 \& 0.33 \& \(25 C 3883\) \& 5.92 \& Af125 \& 0.82 \& BC640 \& 0.06 \& \(8 \mathrm{B407}\) \& . 53 \& B2Y8827 \& 0.11 \& LM1303N \& 0.88 \& SA45243PE \& 10.97 \& TA8205A \& 4.50 \& tDA3330 \& 12.29 \& TIPL791A \& 1.20 \\
\hline 254608 \& 0.24 \& 2SC3892A \& 4.79 \& AF126 \& 2.23 \& BC879 \& 0.40 \& BU4070 \& 0.98 \& B2Y882V7 \& 0.11 \& LM317T \& 1.29 \& SAB3035 \& 1.71 \& TA8227 \& 2.74 \& tDA3505 \& 2.40 \& IL062 \& 0.60 \\
\hline 254673 \& 0.12 \& \(25 C 3593\) \& 0.12 \& AF127 \& 0.71 \& \(\mathrm{BCY}^{\text {7 }}\) \& 0.27 \& BU426A \& 1.03 \& BZY8833 \& 0.11 \& LM324N \& 1.48 \& SG264A \& 11.57 \& TA8210H \& 5.28 \& TDA3541 \& 0.98 \& 11071 \& 0.69 \\
\hline 254684 \& 0.43 \& 2 2S4106 \& 2.05 \& AF139 \& 0.29 \& B0131 \& 0.26 \& BU500 \& 1.41 \& B27883\%6 \& 0.11 \& [M339N \& 0.50 \& SGSIIF34 \& 1.28 \& TA8215H \& 5.73 \& TDA3560 \& 2.96 \& TLO71CP \& 0.60 \\
\hline 2 2A733 \& 0.18 \& 2SC4242 \& 2.31 \& AN5265 \& 1.76 \& B0132 \& 0.26 \& BU5050F \& 1.35 \& BzY883V9 \& 0.03 \& (m34075 \& 0.41 \& SL1430 \& 1.92 \& TA8216H \& 8.01 \& toA3561A \& 5.30 \& TL072 \& 1.03 \\
\hline 2SA769 \& 1.29 \& 2 2C4517 \& 4.70 \& AN5435 \& 1.46 \& B0135 \& 0.33 \& BU5060F \& 2.31 \& B2Y88447 \& 0.06 \& LM358 \& 0.60 \& SL1431 \& 2.40 \& TA8220H \& 1.69 \& TDA3562A \& 3.90 \& T1072CP \& 1.03 \\
\hline \({ }^{259844}\) \& 0.26 \& 2 SC4517A \& 2.52 \& AN5512 \& 1.01 \& \({ }^{80136}\) \& 0.20 \& BU508A \& 0.95 \& B7Y8854] \& 0.13 \& [M358N \& 0.42 \& SL1432 \& 6.19 \& TA822:H \& 6.56 \& TDA3562ATF \& 3.34 \& T1074 \& 1.15 \\
\hline \(2 \mathrm{SA872}\) \& 0.35 \& 2 2C458 \& 0.12 \& AN5515 \& 1.29 \& B0137 \& 0.46 \& BU508AF \& 1.08 \& 87Y886V2 \& 0.11 \& LM380N \& 1.03 \& SL47! \& 1.70 \& TA8221L \& 1.19 \& TDA3565 \& 3.40 \& TL082CP \& 0.21 \\
\hline 2SA872A \& 0.35 \& \(2 \mathrm{SC4742}\) \& 4.70 \& AN552] \& 1.66 \& 80139 \& 0.18 \& BU508APH \& 1.99 \& 827888V2 \& 0.27 \& (M386N \& 0.57 \& SN76705A \& 1.70 \& TA84iOK \& 4.27 \& TDA3566 \& 6.41 \& TMP47C \& 8188 \\
\hline \({ }^{2 S A 916}\) \& 0.57 \& \({ }^{2 S C 536}\) \& 0.30 \& AN6610 \& 0.94 \& 80140 \& 0.24 \& BU508D \& 1.32 \& B7Y889V1 \& 0.11 \& IM3914N \& 2.74 \& STA341M \& 3.35 \& TA8691N \& 1.01 \& TDA35768 \& 11.31 \& \& 15.19 \\
\hline \({ }^{2 S A 933}\) \& 1.00 \& \({ }^{2 S C 639}\) \& 0.56 \& AN7161N \& 3.47 \& 80203 \& 0.47 \& BU5080F \& 1.88 \& CARBB \& 9.95 \& LM393N \& 1.19 \& STAA4IC \& 2.82 \& TAA550B \& 0.26 \& tdA3640 \& 5.92 \& TMP47C432A \& 4P8189 \\
\hline \({ }^{2 S A 940}\) \& 0.82 \& \(2 \mathrm{SC7110}\) \& 0.12 \& AN7171K \& 4.74 \& 80232 \& 0.45 \& Bu508y \& 1.51 \& C04001 \& 0.21 \& LM741 \& 2.96 \& STK412211 \& 6.70 \& TAFS50C \& 0.30 \& TDA3650 \& 9.91 \& \& 15.19 \\
\hline 254950 \& 0.18 \& \(2 \mathrm{SC828}\) \& 0.29 \& BA154 \& 0.06 \& 80233 \& 0.23 \& BU526 \& 1.61 \& C04008 \& 0.31 \& M10481 \& 5.30 \& STK413211 \& 10.00 \& TBA120 \& 0.53 \& TDA36538 \& 1.18 \& TPU2732 \& 10.05 \\
\hline \({ }^{254965}\) \& 0.52 \& 2 2c867A \& 7.13 \& BAL57 \& 0.09 \& 80234 \& 0.24 \& Bu536 \& 1.65 \& C040106 \& 0.52 \& M19281 \& 1.88 \& STK414111 \& 8.29 \& TBA120C \& 0.65 \& TDA3653C \& 1.37 \& TPU2735-45 \& 12.30 \\
\hline \({ }^{254966}\) \& 0.54 \& 2 2C945 \& 0.12 \& BA158 \& 0.07 \& 80237 \& 0.31 \& BU608 \& 1.46 \& C04011 \& 0.38 \& M29381 \& 23.49 \& STK41414 \& 11.03 \& TBAL2OS \& 0.89 \& TDA3653C0 \& 2.57 \& UA74ICN \& 0.28 \\
\hline \({ }^{254970}\) \& 0.19 \& 2501071 \& 4.31 \& BA159 \& 0.11 \& 80238 \& 0.24 \& BU801 \& 1.31 \& C04013 \& 0.45 \& M491 \& 7.94 \& STK4142111 \& 9.40 \& IBAL20\% \& 0.51 \& TDA3654 \& 1.34 \& uazzool \& 12.50 \\
\hline 254984 \& 0.38 \& 2501128 \& 1.02 \& \({ }^{845406}\) \& 2.14 \& 80239 \& 0.29 \& \& 0.82 \& \& 0.14 \& \({ }^{M 49481}\) \& 5.65 \& STK415211 \& 10.68 \& TBA120U \& 0.40 \& TDA36540 \& \& UC3842 \& 1.46 \\
\hline 2581010 \& 0.35 \& 2501191 \& 1.49 \& BA5410 \& 2.51 \& 80243 \& 0.45 \& Bu807 \& 0.51 \& C04017 \& 0.47 \& M51387p \& 10.68 \& STT417]111 \& 13.20 \& TBA800 \& 0.51 \& TDOA4420 \& 0.32 \& UC3844 \& 1.00 \\
\hline 2581012 \& 0.71 \& 2501207 \& 0.33 \& BA5412 \& 2.48 \& 802436 \& 0.44 \& BU826A \& 1.06 \& CO40248 \& 0.23 \& M51393AP \& 4.64 \& STK4192II \& 14.64 \& \({ }^{\text {TBA8820M }}\) \& 0.23 \& TDDA4427A \& 3.98 \& UC3844N \& 1.91 \\
\hline 2581143 \& 0.11 \& 2SD1246 \& 0.30 \& BA6109 \& 1.85 \& B0244A \& 0.34 \& \& 1.68 \& C04049 \& 0.26 \& M5218L \& 1.59 \& STKA392 \& 6.43 \& TBA920 \& 2.75 \& TOA4500 \& 4.66 \& lin 2003 an \& 1.58 \\
\hline \({ }_{2 S 81243}\) \& 0.60 \& 2501265 \& 1.08 \& 846209 \& 1.46 \& 802446 \& 0.42 \& BUK4445008 \& 1.51 \& c04050 \& 0.31 \& M5231L \& 0.94 \& STK463 \& 10.87 \& TBA950 \& 1.68 \& TDA4501 \& 1.43 \& UPA81C \& 1.12 \\
\hline 258560 \& 0.35 \& 2501266 \& 0.82 \& BA6209N \& 1.27 \& 80245C \& 0.92 \& \& 2.57 \& C04053 \& 0.69 \& M54519P \& 1.17 \& STK5211 \& 16.12 \& TCA440 \& 2.75 \& TDPA5501H \& \& UPC1188H \& 5.08 \\
\hline 2 2S562 \& 0.26 \& 2501275 \& 1.23 \& 846219 \& 1.76 \& B0246C \& 0.97 \& BUK454600C \& 2.51 \& CO40608 \& 0.76 \& M545a3L \& 1.97 \& STK5331 \& 2.87 \& TCAB000 \& 1.65 \& TDA4501H \& \& UPC1230 \& 2.82 \\
\hline 258600 \& B. 54 \& 2501276 \& 1.39 \& 8462198 \& 1.46 \& 80433 \& 0.29 \& Buk4556008 \& 2.54 \& CD4066 \& 0.30 \& M545441 \& 1.87 \& STK5332 \& 3.59 \& TDALO04A \& 4.35 \& TDA4502A \& \& UPC1230H \& 3.95 \\
\hline 258633 \& 1.31 \& 2501292 \& 0.60 \& 846222 \& 1.70 \& 80434 \& 0.34 \& BUT11 \& 1.71 \& c04070 \& 0.21 \& M54548L \& 3.63 \& STK5333 \& 13.57 \& TDA1011 \& 1.27 \& TDA4503 \& 4.00 \& UPC1238V \& 1.44 \\
\hline 258641 \& 0.21 \& 2501330 \& 0.31 \& 866247 \& 1.95 \& 80435 \& 0.38 \& J11A \& 1.51 \& C04081 \& 0.15 \& M54648L \& 6.87 \& STK5338 \& 3.16 \& tDA1013A \& 1.56 \& TDA4505E \& 6.46 \& UPC1278H \& 2.66 \\
\hline 258642 \& 0.37 \& 2501376 \& 0.60 \& 84718 \& 1.08 \& 80436 \& 0.41 \& butilaf \& 1.18 \& C04093 \& 0.32 \& M56655 \& 4.96 \& STK5342 \& 4.07 \& TDA1015 \& 1.37 \& TDA4505M \& 8.97 \& UPC1335 \& 3.95 \\
\hline 258644 \& 0.35 \& 2501379 \& 0.39 \& 8AT43 \& 0.11 \& 80437 \& 0.28 \& BUT12A \& 0.84 \& C04094 \& 0.36 \& M83730 \& 3.85 \& STK5372 \& 3.51 \& TDA1035T \& 2.48 \& TOA4580 \& 10.05 \& UPCC1363C \& 2.13 \\
\hline \(2{ }^{286646}\) \& 0.23 \& 2501397 \& 2.31 \& 8A185 \& 0.19 \& B0438 \& 0.38 \& BUTI2AF \& 1.08 \& CNX62A \& 3.83 \& M83732 \& 14.89 \& STK5372H \& 6.84 \& TDA 1044 \& 1.43 \& TDA4600 \& 1.88 \& UPC1365C \& 1.70 \\
\hline 258647 \& 0.43 \& 2501398 \& 2.14 \& BAV20 \& 0.26 \& 8044] \& 0.34 \& BUTIBAF \& 1.37 \& CNX82A \& 1.12 \& MC13002P \& 7.69 \& STK5421 \& 2.62 \& TDA1060 \& 1.03 \& TDA4E00/2/3 \& 1.46 \& UPC1378H \& 1.47 \\
\hline 2S8649A \& 0.96 \& 2501409 \& 2.51 \& 8AV21 \& 0.21 \& 80529 \& 1.61 \& BU56A \& 1.19 \& CNX83A \& 0.94 \& MC1310P \& 0.85 \& STK5466 \& 5.66 \& TDA 1082 \& 4.27 \& TDA460020 \& 4.27 \& UPC 1394C \& 1.58 \\
\hline \({ }^{2 S 8686}\) \& 2.05 \& 2501426 \& 1.54 \& BAW62 \& 0.17 \& 80530 \& 1.71 \& BUT56AT \& 2.65 \& CR02am \& 3.16 \& MC1377P \& 1.51 \& STK5471 \& 4.87 \& TDA1085C \& 1.88 \& TDA4601 \& 1.66 \& UPC1420CA \& 7.69 \\
\hline \({ }^{258688}\) \& 1.61 \& 2501427 \& 2.91 \& 8ax 13 \& 0.12 \& 80675 \& 0.32 \& BUY46A \& 0.84 \& DTA14ES \& 0.24 \& MC1391P \& 2.02 \& SIK5473 \& 4.70 \& TDA1170 \& 1.85 \& TDA4601D \& 1.54 \& UPC 1488H \& 2.99 \\
\hline \({ }^{258698}\) \& 0.35 \& 2501432 \& 5.04 \& 8AX14 \& 0.17 \& \({ }^{80677}\) \& 0.32 \& BUY48 \& 2.05 \& dializef \& 0.13 \& MC14426P \& 1.71 \& STK5476 \& 5.03 \& TDA1170N \& 1.35 \& TDA4605 \& 6.10 \& UPC4558C \& 0.65 \\
\hline 288740 \& 0.36 \& 2501439 \& 3.76 \& BAX16 \& 0.09 \& 80678 \& 0.51 \& BUW11 \& 1.51 \& DTAI44EF \& 0.63 \& MC3357P \& 2.14 \& STK5481 \& 8.01 \& TOA1I7OS \& 1.54 \& TDA4950 \& 1.76 \& UPC574) \& 0.86 \\
\hline 258772 \& 0.48 \& 2501441 \& 5.98 \& 88105B \& 0.24 \& 80681 \& 0.47 \& BUWHIA \& 1.63 \& DTAL44ES \& 0.18 \& MDA2062 \& 4.54 \& STK5482 \& 4.51 \& TOA1 1 POP \& 1.69 \& TDA7052 \& 1.70 \& UPD1937C \& 3.85 \\
\hline 258774 \& 0.36 \& 2501453 \& 2.05 \& 8C221 \& 0.09 \& 80839 \& 0.38 \& BUWI3A \& 2.80 \& DTCi24ES \& 0.19 \& M115003 \& 4.02 \& STK5490 \& 7.69 \& TDA1270 \& 1.79 \& TDA7240A \& 2.36 \& X0065CE \& 3.42 \\
\hline \({ }^{2 S 8793}\) \& 0.43 \& 2501497 \& 1.26 \& 8C1078 \& 0.20 \& 80901 \& 0.52 \& BUWaIB \& 1.03 \& DTC144ES \& 0.19 \& W15004 \& 5.08 \& STK6962 \& 2.60 \& TDA1420 \& 3.04 \& TDA7350 \& 5.98 \& X2402 \& 4.62 \\
\hline \({ }^{2 S 88991}\) \& 0.52 \& \({ }^{2501497-02}\) \& 13.96 \& BC108 \& 0.16 \& B0902 \& 0.52 \& BUW8IA \& 2.31 \& HA11423 \& 2.84 \& W2995 \& 0.98 \& STK7226 \& 8.14 \& TDA5510 \& 3.40 \& TDA8140 \& 2.38 \& x2402P \& 5.16 \\
\hline \({ }^{258892}\) \& 0.35 \& 2501541 \& 4.96 \& BC108A \& 0.26 \& B0911 \& 0.47 \& BUW84 \& 1.03 \& HA13001 \& 1.47 \& M13001 \& 1.56 \& STK7253 \& 6.49 \& IDA1515A \& 2.57 \& TDA8153 \& 14.63 \& 2P05.6 \& 0.07 \\
\hline 2SC1008 \& 0.24 \& 2501548 \& 5.95 \& BC108C \& 0.15 \& 80912 \& 0.63 \& BUX84 \& 0.60 \& HA13108 \& 2.57 \& M4502 \& 1.84 \& STK7308 \& 5.13 \& TDA15160 \& 3.59 \& TDA8170 \& 1.97 \& 27 K 338 \& 0.12 \\
\hline \({ }^{25 C 1096}\) \& 0.54 \& 2501554 \& 3.25 \& \({ }^{\text {BC109A }}\) \& 0.28 \& B0939F \& 0.74 \& BuZ11 \& 1.54 \& HA13117 \& 2.05 \& M802 \& 2.40 \& STK7 748 \& 4.65 \& TDA15180 \& 4.27 \& TDA8172 \& 2.65 \& \(27 \times 300\) \& 0.37 \\
\hline \(2 \mathrm{SCl1162}\) \& 0.31 \& 2501555 \& 2.51 \& BC141 \& 0.36 \& \({ }^{80764 C}\) \& 1.18 \& Buz71 \& 0.89 \& HA13118 \& 1.88 \& WJE13005 \& 0.86 \& STK7356 \& 5.66 \& TDA 1519 \& 4.23 \& ToA8175 \& 6.41 \& \(27 \times 650\) \& 0.51 \\
\hline \({ }_{2 S C 1213}\) \& 0.14 \& 2501577 \& 4.64 \& \& \({ }^{0.366}\) \& \& 1.66 \& Buz71A \& 1.03 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }_{2}^{25 C 124}\) \& \({ }^{0.48}\) \& 2501609 \& 0.43
2.05 \& BC147A
BC148A \& 0.06
0.06 \& 80W93C
\(80 \mathrm{W94C}\) \& 0.64
0.60 \& BUZ80A \& 2.57 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \(25 C 1306\)
2SC1318 \& 1.16
0.19 \& 2501649
2501651 \& \({ }_{2}^{2.38}\) \& 8C148A
BC148 \& 0.06
0.04 \& 80W94C
8 F 194 \& 0.60
0.22 \& Buz90 \& 3.90 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 2 CCl 1383 \& 0.32 \& 2501680 \& 3.85 \& \({ }_{8 C 149}\) \& 0.04 \& BF197 \& 0.52 \& Buz90A \& 2.55 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 2SC1413A \& 2.51 \& 2501710 \& 2.52 \& BC157 \& 0.13 \& \({ }^{85199}\) \& 0.04 \& \({ }^{8 Y 1.27}\) 8Y 133 \& 0.14
0.08 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 2SC1473
2SC1573 \& 0.21
0.35 \& 2501877
\(2 S 01878\) \& 2.14
3.59 \& \({ }_{\text {BC1 }}^{\text {BC1 }}\) [181 \& 0.27
0.06 \& \({ }_{\text {BF2 }}^{\text {BF244 }}\) \& 0.43 \& BY1.133
BY/ \& 0.08
0.67 \& \& \& 2 \& \& 1 \& \& - \& \& \& \& \& \\
\hline 2 SC1675 \& 0.09 \& \({ }^{2501884}\) \& 3.16 \& \& 0.06 \& \({ }_{8} 825454\) \& 0.60
0.19 \& 8Y179 \& 0.77 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }_{2 S C 1685}\) \& 0.21 \& 2501911 \& 5.98 \& BC183L \& 0.09 \& BF2458 \& 0.41 \& BY184 \& 0.42 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \(2 \mathrm{SC1730}\) \& 0.26 \& 2502012 \& 0.85 \& BC1841 \& 0.06 \& 82256C \& 0.00 \& 87206 \& 0.20 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 2SC1740 \& 0.16 \& 2502125 \& 4.70 \& \({ }^{8 C 204}\) \& 0.14 \& 8 F 258 \& 0.04 \& 8Y210400 \& 0.19 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \(2 \mathrm{SC1741}\) \& 0.31 \& 2 20350A \& 1.97 \& BC2128 \& 0.06 \& BF324 \& 0.12 \& 87226 \& 0.16 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }^{2 S C 1815}\) \& 0.17 \& 250362 \& 1.02 \& \({ }^{\text {BC2 } 221}\) \& 0.14 \& \({ }^{85337}\) \& 0.34 \& \({ }^{8 Y 227}\) \& 0.08 \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 2 2C1826 \& 1.03 \& 250400 \& 0.34 \& \({ }^{\text {BC2 }} 13\) \& 0.11 \& BF338 \& 0.43 \& 8Y228 \& 0.26 \& \& \& \& \& \& \& \& \& NDS \& \& \& \\
\hline 2 SC1827 \& 0.98 \& 2SD401A \& 0.77 \& BC214C \& 0.08 \& \({ }^{85355}\) \& 0.48 \& 87229600 \& 0.92 \& \& \& \& \& \& \& , \& \& ND \& \& \& \\
\hline 2SC1845 \& 0.26 \& 250438

250468 \& 0.35 \& \& 0.09 \& ${ }_{8 \times 420}$ \& 0.21 \& BY229800 \& 1.02 \& \& and m \& ore video \& repair \& engineers \& \& \& \& conomic \& \& \&

\hline $$
\begin{aligned}
& 2 \mathrm{SCl} 1923 \\
& 2 \mathrm{SCl} 1942
\end{aligned}
$$ \& 0.14

1.48 \& $$
\begin{aligned}
& 2 S 0468 \\
& 250555
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.24 \\
& 8.54
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{BC} 237 \mathrm{~B} \\
& \mathrm{BC} 237 \mathrm{C}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.18
\end{aligned}
$$
\] \& ${ }_{8 F 421}^{88420}$ \& 0.21

0.24 \& $$
\begin{aligned}
& \mathrm{BY2} 238 \\
& \mathrm{BY} 252
\end{aligned}
$$ \& 0.43

0.14 \& supply \& those \& more obs \& scure \& parts, and \& soo \& or lat \& rely \& on us for \& all \& eir video \&

\hline ${ }_{2 S}{ }^{\text {S } 1959}$ \& 0.18 \& 250592 \& 0.21 \& ${ }_{\text {BC238 }}$ \& 0.11 \& ${ }_{B F 422}$ \& 0.19 \& ${ }^{81} 8255$ \& 0.14 \& requir \& ment \& \& \& \& \& \& \& \& \& \&

\hline ${ }^{25 C 1} 1969$ \& 2.48 \& 250613 \& 0.94 \& BC238A \& 0.06 \& ${ }^{\text {B4F423 }}$ \& 0.14 \& BY298 \& 0.15 \& \& \& \& \& \& \& \& \& \& \& \&

\hline ${ }_{2} 2 \mathrm{SC1} 1983$ \& 1.87 \& ${ }^{250636}$ \& 0.19 \& BC2388 \& 0.07 \& ${ }^{85458}$ \& 0.31 \& BY299 \& 0.14 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2SC2001
2Sc2060 \& 0.23
0.29 \& 250637
20638 \& 0.16 \& BC238C
BC239 \& 0.01
0.04 \& BF459
8×469 \& 0.29 \& 87359
87398 \& 1.86
0.18 \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

IF YOU DONT SEE IT LISTED ASK FOR QUBIE GNE MAKE, MODEL, LOCATION. REMEMBER TO ADO $\$ 1.00$ POST \& HANDLING U.K. MANLAND ONLY. HANDLIMG GHARGE TO ALL EXPORT ORDERS AT COST. ADD $171 / 2 \circ$, VAT TO TOTAL of video parts, heads, belt kits etc. of remote controls. etc. etc. over 80,000 database records tohelp find the difficult video parts quickly. Stock availability \& price in seconds

We compete on QUALITY - We compete on SERVICE

 We will not compromise and yet our prices are often less.

Sutellite PSU Repeir / Refurb kits Over 20000 kits sold

 procodure and the consect pmonithonary churges to certain component are made

As last 4 repatr idtu are avallable to cover the mulority of all Amstrad and Pace recelven each with a simple to understand instruction shee: to sude you through the correct way of repadring and refurtiuhing satelyte recelve

	MANIUFACTURER	MODEL NO.		FRICR
SATKKTT 1	PACE	PFIEOC	PRD900	86.95
SATKTE	PACE	SS9000	S\$9200	E6.95
		S59010	559210	
		SS9020	SS9220	
SATKETT3	AMSTREAD	SRDS 10	SRDS20	- 5.95
SATKKTT 4	AMSTRAL	SRD500		te3.95
-18	semer mi.00	motex ${ }^{\text {cim }}$	[-714 +	VATH

yould

(ig ECONOMIC

*EEconomic supply TV \& Video parts. VERY FAST *Our experienced staff WANT to help you !! FWe can give you an instant answer from our database that contains over 80,000 items and we can give that answer IN SECONDS *\&If we cannot find it immediately *We will 'SEARCH THE HEAVENS' *We will hassle our suppliers *We will hassle the manufacturer *We will make phone call after phone call *We will send Fax after Fax on your behalf
*WE WILL DO ALL THIS FOR YOU *We dot twilingy and for free-YOONEED ECONOMCM

32 Temple Street, Wolverhampton WVV2 4 AN, United Kingdom Intennational Phone ++441902773122 Fax ++44190229052 Also available - D2mac Decoders - RTL Decoders - Secam/PAL Transcoders - A/B Switches Tone Switchos - Multiswitches - Please phone for current prices. Larger Quantity Trade enquiries welcomed.

Lloytron

Would readers please note that there is no connection between Lloytron Electronics Ltd. and Key
Electronics. Unfortunately the layout/spacing in the last issue of our Spares Guide (October 1995) suggests, under the Kyoshu entry, that these companies are linked. All orders/enquiries for Key Electronics should be directed to the company at Unit 5, Bow Mills Industrial Estate, Brighouse Road, Hipperholm, Halifax HX3 8EF (01422 203 676), not to Lloytron.

Satellite TV

Eutelsat has signed a contract with Arianespace for the launch of three more of its satellites, Hot Bird 4 and two others known as W24. These will replace two Eutelsat II series satellites. Hot Bird 4 will be placed in orbit at $13^{\circ} \mathrm{E}$, Eutelsat's primary slot for analogue and digital radio and TV transmissions, along with Hot Bird 3 which is due for launch in the first quarter of 1997.
Italian pay-TV operator Telepiù has demonstrated its new digital satellite TV service via transponder 45 aboard Eutelsat II F1 at $13^{\circ} \mathrm{E}$. When the service starts commercially, it is expected to be the first direct-tohome package of basic and premium digital TV channels in Europe. NTL supplied the MPEG-2 equipment used.
The Confederation of Aerial Industries has recommended that in future crimp type F connectors instead of the older twist type should be used for all satellite installations. Satellite Solutions comment that "poorly fitting twist connectors are often responsible for poor signal level and general system difficulties, properly installed crimp connectors being faster, more secure and tamper proof". To help installers make the change, Satellite Solutions (1 Hartburn Close, Crow Lane Industrial Park, Northampton NN3 9UE -

01604787 888) has introduced a "professional strip and crimp F connector kit" at $£ 29.95$ plus VAT. The kit contains 100 crimp F connectors to fit Raydex CT100 coaxial cable, a crimping tool, a fixing tool and coaxial stripper.
Two new satellite TV recievers from Satellite Solutions (address above) are of interest. The Palcom 8000IRD motorised satellite receiver incorporates a VideoCrypt decoder with a smart card reader at the rear of the unit to preserve the neat lines. Its picture-in-picture facility enables two different channels, possibly from different satellites, to be viewed at the same time. Either channel can provide the main display, with the other approximately a quarter of screen size. The viewer can select the position for the PIP display, its size, and can freeze it. The Nokia SAT1800 incorporates a VideoCrypt smart card reader and an industry first, Videoplus+ remote control with advanced PDC/VPC features that automatically adjust a VCR's timer settings should a programme overrun or start late.
LSI Logic has introduced a 100 -pin chip for use in digital satellite TV receivers: the L64704 combines a QPSK demodulator and a decoder for Viterbi and Reed-Solomon error correction.

Flat-screen displays

Cambridge Display Technology Ltd. is raising $£ 4 \mathrm{~m}$ to develop a flat-screen display system that uses light-emitting polymers (LEPs). Such displays are claimed to be cheaper to produce than the active-matrix LCD type. Initial applications are expected to be in mobile phones and hand-held computers, though TV receiver and computer monitor use is a longer-term aim. Present work is directed at
extending the lifetime, at present 1,500 hours, at increasing the brightness of the display and at producing a full range of colours.
A glut in LC displays has been forecast: though the market is growing by 30 per cent a year, production capacity will double this year. A fall in prices is expected, with 10 in. displays falling from about $£ 300$ at present to $£ 230$ in 1997.

BUSINESS NEWS

Chung Hwa, which is the world's largest producer of c.r.t.s and is 91.1 per cent owned by Tatung, is to build a $£ 240 \mathrm{~m}$ c.r.t. plant at Mossend in Lanarkshire. The new plant will increase Chung Hwa's production capacity from the 20 m achieved this year to 30 m and will create over 3,000 jobs. Growth in the PC industry has led to a shortage of c.r.t.s world wide. Production is expected to start in mid 1997. Tatung itself plans to become the world's largest monitor manufacturer, doubling output to 5 m a year by the end of 1996.

Matsushita Electric Industrial of Japan is setting up a joint venture, Shandong Matsushita Television and Visual Co., with three local companies in China to develop and produce colour TV receivers. Production is expected to start this June and the company hopes to manufacture 100,000 sets by the end of the year, with 21,25 and 29 in.

Channel 5 retuning

Channel 5 Broadcasting plans to hire sub-contractors to retune, at $£ 4-5$ a time, the estimated four-five million VCRs, plus other equipment, that will be affected by its transmissions. Up to 1,000 electrical retailers are expected to provide local back-ups. Trade opinion is that this is totally unrealistic. Call-outs are far more costly, and many installations will involve more than one TV set and VCR . Then there is the question of rented equipment being handled by third parties. It's going to cost a lot more than C5B seems to think.

CHS appointed sole AKAI spares distributor

Charles Hyde and Son Ltd., Prospect House, Barmby Road, Pocklington, York YO4 2DP (01759 303 068, fax 01759303620), has been appointed by Akai (UK) Ltd. as sole authorised spares and components distributor to non-Akai account holders in the UK.

Widescreen TV

Nokia and Radio Telefis Eireann (RTE) have introduced widescreen TV in Ireland. During 1996 RTE will transmit at least 250 hours of widescreen TV - the first broadcast, Batman, took place on December 2nd. Sales of widescreen TV sets in France increased from 3,500 in 1992 to over 100,000 in 1994. In Japan, 35 per cent of all large-screen sets produced last year (1995) were of the widescreen type. Philips has introduced a 24 in . widescreen set, Model 24PW6321, at a suggested prince of $£ 800$. Features include a high-contrast Super-flat tube, Nicam and a variety of AV sockets.

Intercasting

A group of companies that includes Intel, Gateway 2000, Packard Bell, CNN and Turner Broadcasting has formed the Intercast Industry Group. Its aim is to promote a system that enables additional information to be sent, during the field blanking interval, to a PC used for TV. The user of a PC equipped with a TV card could receive this information or go to an Internet site. Gateway 2000 and Packard Bell plan to launch PCs with the Intercast system built in. Intel will produce an Intercast card later this year.

QUALITY TV \＆VIDEO SPARES SUPPLIED FOR ENGINEERS BY ENGINEERS

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR

$\star 40$ different patterns and variations．
＊Fully interlaced syne pulses with correct picture blanking
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow，cyan， green，magenta，red，blue and black．
\star Chequerboard．
＊Mono outputs with border castellations，cross hatch，grey scale，vertical lines，horizontal lines and dots．UHF
modulator output plugs straight into receiver aerial socket．
＊Additional video output for CCTV \＆VCR
\star Facilities for sound output
\star Easy to build kit，standard parts．Only 2 adjustments No special test equipment required．
＊Mains operated with stabilised power supply．
＊All kits fully guaranteed with back－up service．
＊Also available with VHF Modulator
Price of Kit
Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4^{\prime \prime}}\right)$ app
Optional Sound Module（ 6 MHz or 5.5 MHz ） $\$ 79.00$ $£ 19.00$

Built \＆Tested in Case including Sound Module $\quad \mathbf{£ 1 3 9 . 0 0}$ Post／Packing $£ 4.50$
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR（Mk4）
\star Output at UHF，applied to receiver aerial socket．
\star In addition to colour bars R－Y．B－Y etc．
\star Cross－hatch，grey scale，peak white and black level
\star Push button controls，battery or mains operated．
＊Simple design，only five i．c．s on colour bar P．C．B
\star Backup service available．
PRICE OF Mk4 COLOUR BAR GENERATOR KIT £39．00． CASE $£ 5.80$ ．BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT £5．80
（Combined P\＆P $\mathbf{i} 4.50$ ）
VHF MODLLLATOR（CH 1 to 4）FOR OVERSEAS $\mathbf{~ f 6 . 8 0}$
EASILY ADAPTED FOR YIDEOOUTPL＇T \＆C．C．R．V

LINE OUTPUT TRANSFORMER TESTER
 \star Service Aid．

＊Saves time and Money
＊Checks short turns．
＊Simple to use．
＊Reliable．
＊Battery operated．
＊Pocket size
PRICE $£ 24.00$
POST／PACKING $£ 2.50$

VIDEO（PAL）TO R．G．B．CONVERTER

 ＊Ready built \＆tested＊R．G．B．＋Sync Out－Scart
 ＊Incl．Power Supply
 ＊Colour／Brightness／
 Contrast Controls
 ＊Size $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$

PRICE $£ 99.00$ POST／PACKING $£ 3.50$

CRT TESTER \＆REACTIVATOR KIT

＊For Colour \＆Mono complete with Case．Panel Meter Indicator－can be adapted for latest CRTs
$\mathbf{£ 5 5 . 0 0}$ P．P．$£ 4.50$

KITS AND PROJECTS

SAW IF AND TURNER UNIT complete and tested for video $\&$ audio oupputs $£ 28.50$ p．p．$£ 1.80$ ．
PAL．DECODER KIT（Video to RGB）for Monitors $£ 27.00 \mathrm{p}$ ．p．£I ． 80 PALENCODER KIT（RGB to Video）£20．00 p．p．$£ 1.801$ ． infra Red remote control．TESTER Intra Red Remone Control rester £10，00 P．P．$£ 2.50$ ．

TV \＆VIDEO SPARES

REMOTE CONTROLS
Replacement for：Ferguson．Hitachi．Phllips．Panasome．Grundig．ITT．Sony，Saisho Granada．Saisho＋many others Phone for make and model no．

IC SEI，ECTION									
14DN187	f15．80	SL 470.471	¢ 4.0 （x）	TAxaxin	¢6．80	1DA ${ }^{\text {（t）}}$	¢6．40	Tradiz	£22．50
AN5521	c．3．80	SL 1×6	c3． 20	Tax739P	¢4． 50	TDAz6ila		T1）A70	${ }^{12.59}$
NS¢（1）	¢2．20	SL 4 ¢ 1	c3．80	thalzl	¢5．80	TDAzo	c． 3.20	mosk	
BAbzine		S1 14311	\｛2．43	［balzas	oup	TDażiza	［2．90	TDAB	
A62	c3．90	S1．1432	¢4． 80	［13A75］	12．20	$1 \mathrm{DPaz64}$	［5．70	IDAK1	£7．80
BAb	E．30	SN762260）		TBA9z0		г0azts5l3		1Daki ${ }^{\text {dit }}$	
13A6238A	80	SN76705	$\underline{9.80}$	TPAY4，	¢2． 20	TDAzza		1DAx	
13＾6239		ST And 1	［2．891）	TBAz\％（6）	£1．80	TDAz6\％	c1．80	TDAsI	
U＇FR	4． 10	St6533	［21． 40	（1－A270	£1．80	TDAztix）	［3． 80	IDAximiki	
NX		STK 5				［DPA 781	¢6，${ }^{\text {d }}$	TDAXIWI	811
H1＾11211	［2．80	STK532		［ip31t	1	IDA3（\％）		11	
HAlldiz	c3． M （	S1K5．31	E．3．40	TDAI03s	［2．40		E6．80	TDA83it	20
HA513．38S	¢21．50	STK5332	E4．80）	ID） 1037	E．3．941	TDAB313	E19．80	TDaskiza	
LA＋14S	¢3．09	STk5333	［13．89	［DA1044	¢2．91）		¢12．50	TDAKıi	
LAL？	f4．95	\＄1653	80	TDAl1060	${ }^{\text {c．}}$ ． 8.80	1DA 354		IT）AM．ts	
L $\mathrm{A}+5{ }^{\text {20 }}$	¢3，40）	Siks334	¢6．80）	TDAlde	¢ 4.00	TDA3sts	£15．80	Tidabin3	
LATM10\％	c1．40	SIK539\％	${ }^{66.80}$	TPA117	cil	TDA3946		TDAvs，	${ }_{4.80}$
－A75 20	¢2．80	STK ${ }_{\text {SK }}$	¢ $\begin{gathered}4.8 .80 \\ ¢ 7.80\end{gathered}$	TDAblki	（2．20	［1DA354］	［2．50）		
LA75	c3． 50	\＄7K5392	${ }_{66.80}$	TDAllwz	c2．20	TDA354	c3． 50	11－A！101	［．5．50
L－A7420	¢3．40	S1K542		［D	E5．	TD		TLAlluz	
LA7830）	¢2．90	STK．5422	${ }_{55} 5$	［DA1512	21	T1DA．36		11．	
L，77835	¢2．20	STK．547	f． 5 So	toalsis	f． 4.50	TDA3St	E7． 80	71.	
			¢5．80	rbalsz1	¢2．50	TDA35	E5．81）	11－ 304	
M243131	f18	Sth	E4．90	PDA15－4	¢6．80	TDA5718		TEA	
	¢18．80	\＄176．4＊＊		IDAlorion	C3．20	TDA ${ }^{\text {a }}$（1）10	${ }_{\text {¢ }}$	$1 \mathrm{~A}^{2185}$	
M 4918 BI	c9， 80	\＄1K	${ }_{c}^{\text {ci，}} 8$	TDA1701		1D）${ }_{\text {ID }}$		－А $=141$	x
${ }^{194}$	¢ 5.8 .80	STK 7 OM	${ }_{5} 4.80$	TD．18\％9	66.80	［1］${ }^{3}+5$ S			
MDAz	${ }_{5}$	STK $73+8$	${ }_{55} 5.41$	［D）A18T2	［9．80）				
M1． 42		SIK			\｛2．8）	［03365313		MP	
N15	E15	ST			c．		£1．84t	＊18x	¢21．95
		STR H\％A）	£13．50			TD	E5．51	TM	15
SAAlliz	¢5．401	STR9412	54.95	1 DAZOL	¢2．80	10Ath	E2．211		115．50
A 10	15.80		15.80	IDAzemk	E2．80	TDAt	23.20	1015	
	63.50	STR		idazm	12	10今			
SAAI	c．${ }^{\text {c，mo }}$	S1	c9．90	TDAZ13\％	E2．mu	TDA＋Hz	E2．80）	$1{ }^{1}$	
5 SAlza	Ex． 0	S1RS（1）20	E6． 80		${ }^{\text {c．3．84 }}$	TPAttri		IMP47く	
A12	E6．00	Strsenlos		toazma	c7 7×18	TDAt	ctick		
AA1293	¢6．80	STR50115	\＄14．50	TDazusis	［4．8，${ }^{\text {a }}$	10Atsi	S5．141		cil
Aas（\％）${ }^{\text {（ }}$	Ef． NXI_{1}	STR Stht $^{\text {d }}$		TDA2151	c． 3.20	10Atsilea		（tazam）	
SAA		S［R590］	f10． 50	IDAzzo	E．3．90	iDatros	77．80	1	5
AAstil2	ES．40）	STR580 ${ }^{\text {S }}$	${ }^{\text {c5 }}$ ． 8181	TDAこ541	¢2．29				5）
AA5020	［5． 8 （ 0	STR 5 ¢ht	${ }^{6.80}$					19PC13630	${ }_{5 S, w}$
AAStisil		STRD）	${ }_{56.80}$	TDAこちフA	E． 20	1Dation	± 2.80	UP（13074．	
		51	E12．80	1DAご	£2．70	［DAdera）	53.85	LPPC137，	［1． 41
SAAS24	£23．50	SIRDAIMK	c5．80	1 D	c．3．60	［DAtal	［2．814	${ }^{1 / 18}$	C3．80
SAB 3035	¢9．80	TA7crulap	${ }_{5}^{5} 5.80$	roazasl		10	c2． 210	1PC118＊	
SA133037	Ex．k．1）	TA7ta	c7．${ }^{\text {cos }}$	－	c．2．50	108tat1）			c3．20
11.2	［4．4．5］	「A76981	（16．40	10Aㄱ⒋	（1） 18		［12．51）	（19013970．	¢4．80
SDALSts	¢9．0	TAstiol	$\sum_{£ 22.50}$	IDAEs95	（1．80		¢2．80		

IINE OUTPUT TRANSFORMERS p р \boldsymbol{q}_{1}

Servicing the Tatung 120 Chassis

John Coombes

The Tatung 120 series chassis went into production in 1981, the run continuing for several years. Large numbers of sets fitted with the chassis were produced, under the Tatung, Decca and other brand names. Decca and Tatung sets that incorporate the chassis can be identified by the fact that the second digit in the model number is 2, e.g. CN1271, DN1251, DN1253, DN 1256 and DN9256.
The circuitry is straightforward, with a TDA4600 based switch-mode power supply (see Fig. 1). Note that the emitter of the BU426A chopper transistor Q801 is at -315 V , the positive side of the mains bridge rectifier's reservoir capacitor C804 being connected to chassis - the chopper transformer does not provide mains isolation in this design. The chassis is designed to drive 90° tubes in sizes 14 to 22in., so there's no EW correction circuitry. A large-screen version, the 130 chassis, was also produced: this incorporates EW correction circuitry and uses a different field timebase chip (TDA1670) but is otherwise virtually the same as the 120 series chassis.

Power Supply Faults

If the 2AT mains fuse F801 has blown, the first item to check is the degaussing posistor R901 - by substitution. If necessary go on to check the mains filter capacitor C801, the mains bridge rectifier diodes D801-4 and their parallel protection capacitors C802/3/5/6.
If the two fuses F801 and F802 are both o.k. but the set fails to start, check the diode (D805) and the resistor (R802) in the start-up circuit.
If the 1 AT d.c. fuse F802 is open-circuit a replacement may well get the set working again. If the replacement blows, check whether the chopper transistor Q801 is short-circuit. If it is check the values of R808 and R810 before fitting a replacement. These are usually both $150 \mathrm{k} \Omega$. They tend to go high in value. Some sets have a lower value resistor in position R808. Also check that I801 is operating corectly. You should get voltage readings of 2.2 V and 1.8 V respectively at pins 4 and 8 , using a $20 \mathrm{k} \Omega / \mathrm{V}$ meter on the 10 V d.c. range these readings are with respect to the chip's heatsink tab. which is at -315 V .
If the set is not in standby but still won't operate, 1801 or D805 could be in an intermittent open-circuit condition.
If the 120 V h.t. supply is missing at the reservoir capacitor C822, check whether D812 is open-circuit. If the h.t. voltage is low, check whether C822 is low in value or open-circuit. If the h.t. voltage is incorrect or varying, check $\mathrm{R} 812(22 \mathrm{k} \Omega)$, D808 (BA157), C814 ($1 \mu \mathrm{~F}$) and R813 ($10 \mathrm{k} \Omega$) whose carbon track can deteriorate. If these items are all o.k., suspect the chip (I800).
If the 12 V supply is missing, check the LM340T-12 12 V
regulator chip 1802 which could be open-circuit. If it's o.k., check that there is 18 V at its input. If this voltage is missing, check R817 and D811.

Line Timebase Faults

If there's no e.h.t., check for h.t. at the collector of the BU500 line output transistor Q402. If this is missing, check whether the fusible feed resistor R430 ($15 \Omega, 2.8 \mathrm{~W}$) is open-circuit. If so, try resoldering it. If it goes open-circuit again, check whether the line output stage tuning capacitor C425 is shortcircuit or leaky. Its value is 8.2 nF in the $120,122,125$ and 126 chassis, $9 \cdot 1 \mathrm{nF}$ in the 121,123 and 124 chassis - ratings $2 \mathrm{kV}, 5$ per cent in both cases. Other things to check if necessary are the line output transistor, then the tripler by disconnecting the lead to the line output transformer. If the sound and h.t. are o.k. with the tripler disconnected, fit a replacement. If this action makes no difference replace the line output transformer T402, which probably has shorted turns. Note that a faulty tripler will nearly always damage R432 and R433 (both $330 \mathrm{k} \Omega$. IW) on the earthy side of the e.h.t. circuit. Replace them if at all suspect.

If there's no raster because the tube's heaters are out, check whether R902 ($1 \Omega, 1.5 \mathrm{~W}$) is open-circuit then, as necessary, for dry-joints at pins 9 and 10 on the tube base and at the relevant connections to the line output transformer.
If there's poor focus or a bright raster, check the focus/AI voltage module Z402 by replacement.
If there's no e.h.t. and no line drive, check for 105 V at the collector of the BF419 line driver transistor Q401. No supply here most likely means that R427 (470Ω, 2 W fusible) is open-circtit or the driver transformer T401 is open-circuit or dry-jointed. If necessary check whether the TDA2576A sync/line generator chip 1401 is providing a line drive output at pin 10 . It should have a 12 V supply at pin 16 . If this is missing, check whether $\mathrm{L} 401(10 \mu \mathrm{H})$ is open-circuit or dryjointed.

Field Timebase Faults

Field collapse is the usual fault here. Check whether the TDA 1170 field timebase chip 1301 is receiving its 23 V supply at pin 2 . It's derived from the line output transformer. If missing, check whether D404 (BA159) or R434 (10S metal film fusible) is open-circuit or C423 $(1,000 \mu \mathrm{~F}, 40 \mathrm{~V})$ shortcircuit. If the supply is o.k. the chip is suspect. But check for dry-joints at the pins, also the flyback boost capacitor C304 $(100 \mu \mathrm{~F}, 50 \mathrm{~V})$. Another possibility is open-circuit field scan coils or dry-joints at the connector M301.
R316 ($1 \mathrm{k} \Omega$, 0.5 W 5 per cent) can cause intermittent field collapse. It's used to introduce a degree of field scan shift and is not fitted in all sets.

For lack of height, check whether R311 (470k Ω) has gone high in value. If necessary check the height control R310 ($470 \mathrm{k} \Omega$) for change of value or a deteriorated track.
For field linearity faults check C308 ($0 \cdot 1 \mu \mathrm{~F}$) and/or C310 $(0.22 \mu \mathrm{~F})$ by replacement. Other possibilities are C305 (10 $\mu \mathrm{F}$, 40 V) and R307 ($220 \mathrm{k} \Omega$).

Sync Faults

Check the d.c. conditions at the pins of the TDA2576A sync/line generator chip I301. The following readings should be obtained: pin 11.35 V ; pin 20.1 V ; pin 34.6 V ; pin 44.5 V ; pin 56.2 V ; pin 64.4 V ; pin 72.4 V ; pin $81 \cdot 1 \mathrm{~V}$; pin 90 V ; pin 101.6 V ; pin 114.1 V ; pin 122.7 V ; pin 1312 V ; pin 140.8 V ; pin 155.2 V (with loss of line hold); pin 1612 V . If any voltages are suspect, check 1301 by replacement.
For no or poor field sync, check R301 and/or R302 (both $10 \mathrm{k} \Omega$) for change of value.

No Picture/Uncontrollable brightness

Check C504 ($10 \mu \mathrm{~F}, 16 \mathrm{~V}$) which is a clamp reservoir capacitor connected to pin 3 of the $\mu \mathrm{PC} 1365 \mathrm{C}$ colour decoder chip I501. It can go open-circuit. It may be necessary to check I501 by replacement.

Colour Faults

For loss of colour, check that the 4.43 MHz oscillator is working correctly. Crystal X502 may be faulty or dry-jointed. The other obvious item to suspect is the μ PCI365C colour decoder chip 1501. Check the pin voltages or check by replacement. There should be a 12 V supply at pin 1 . If this is missing, check whether $\mathrm{C} 502(47 \mu \mathrm{~F}, 16 \mathrm{~V})$ is short-circuit. If the voltage is low, check whether C502 and/or C503 ($0 \cdot 1 \mu \mathrm{~F}$) is open-circuit. Other possibilities for loss of colour are the delay line X501 which may be open-circuit or dry-jointed, and Q501 (2N3906) which can go open-circuit.
I501 can also be responsible for loss of one colour.

Alternatively the transistors in the appropriate output stage may need to be checked. These are Q203 (BF715 or BF787) and Q204 (BC547) red; Q208 (BF715 or BF787) and Q210 (BC547) green; and Q211 (BF715 or BF787) and Q212 (BC547) blue. The output stages are of the cascode type. Another possibility here is the feedback/bias resistors R226 (red), R244 (green) and R251 (blue). These are $100 \mathrm{k} \Omega$ metal film resistors with a 2 per cent tolerance. Check whether the relevant one is high in value or open-circuit.

Tuner and IF Stages

The tuner has proved to be reliable but can be responsible for drift. The TAA550 33V stabiliser 1001 can also be responsible for drift. Check it by substitution. If there is just a snowy display, check whether 1001 is short-circuit and/or $\mathrm{R} 003(10 \mathrm{k} \Omega, 1 \mathrm{~W})$ is open-circuit.
If the picture is slightly grainy, ensure that the tuner a.g.c. control R105 $(47 \mathrm{k} \Omega)$ is correctly set and check the condition of its carbon track.
For a blank screen with no snow suspect the TDA2540 i.f. chip I101. Check that its 12 V supply is present at pin 11 . If not, check L103 which could be open-circuit or dry-jointed. Another possibility is the BF959 SAWF driver transistor Q101. If its collector voltage is missing, check R 103 (10S). If there's a halo effect or double image around figures on the screen, check for dry-joints around the SAWF (Z101).

Sound Faults

For no sound carry out some mechanical checks first. Start with the 8Ω loudspeaker then move back through the connections to pins 3 and 5 of plug'socket M501, looking for open-circuits. The audio coupling capacitor C616 ($220 \mu \mathrm{~F}$, 25 V) is another possibility for being open-circuit.
The TDA3190 sound i.f. amplifier/demodulator/audio output chip 1601 should have 18 V at pin 14. If the device's pin voltages are incorrect, check it by substitution.

Fig. I: The
chopper power supply circuit used in the Totung 120 and 130 series chassis. R805 is not fitted in models with frequencysynthesis tuning, in which R818, R820 and C827 are added.

Letters to Television Quadrant House The Quadrant Sutton Surrey SM2 5AS

LOW-QUALITY

TRANSMISSIONS

What is the point of technical innovations such as digital VCRs and highdefinition TV when during a large percentage of peak viewing time the broadcasters, especially ITV, transmit low-quality pictures that are line converted from US 525-line NTSC video recordings?

The resultant picture quality is reminiscent of that produced by a Seventies hybrid colour TV set with a low-emission tube. Virtually everything that comes from the USA now suffers from this degrading treatment, even programmes that start off on 35 mm film, such as cartoons, TV movies and even some films originally made for the cinema. Couldn't UK broadcasters insist on a good-quality 35 mm film copy whenever possible when they buy programmes from the States. If the programme originates on tape there is obviously no alternative to line conversion.

Possibly work is being carried out somewhere to produce better quality pictures from standards converters. Maybe the broadcasting authorities would be prepared to comment on this.
Martin McCluskey,
Billingham, Cleveland.

HEAT DISSIPATION WITH WIRE-ENDED COMPONENTS

In the December VCR Clinic Paul J. Charlton mentioned that in repairing an Amstrad DD8900 he mounted a 15Ω fusible resistor and a BA157 diode off the board to increase the air circulation. This technique may however result in the component's temperature being higher than if it was mounted close to the PCB. The reason for saying this is that, with the exception of physically large components, the major heat conduction path is usually through the component leads.

For power devices diode manufacturers specify current ratings when a lead length of say a quarter of an inch is used connected to a defined area of copper at each end. The semiconductor material is of course directly connected to the leadout wires, while the body plastic or glass is a poor heat conductor.

Unless the PCB is being locally heated by another component, the best practice is to use the shortest possible leads. Power resistors are sometimes mounted well clear of the PCB by the manufacturer: this same style of mounting should be used for replace-
ments, as the intention may be to keep the solder joint temperature low and thus prevent joint ageing.
Ray Porter, M.Sc., C.Eng., M.I.E.E., Stourbridge, West Midlands.

FREE ESTIMATES ETC

In reply to Rodney Drysdale (Letters, September), perhaps I should have elaborated on the free estimates issue in my previous letter (July).

There are various reasons why a customer may chose to contact a company that offers no call out charge, free estimates, etc. For example, budgeting may be strict for those who have old equipment and a low, fixed income. They may not wish to shell out for an estimate only to find that the repair cost is above their means or in their opinion uneconomical, leaving them out of pocket with just the thought that another estimate may be lower.

Another is the fear of being ripped off. As we all know, there are in this trade cowboys who prey on those with little technical knowledge. An offer of a free estimate etc. can give such customers a sense of security. They know that it will cost them nothing to refuse to have the work done, and will feel that if an engineer is willing to provide the initial service free of charge he is likely to be competent and honest.

Yes, overheads have to be met, but this can be managed. Most of the time it's possible to get some idea of what the customer is prepared to pay for a repair, and whether they will if necessary allow their equipment to be taken to the workshop for attention. Knowing how to handle the customer is obviously a key factor.

I agree that there are those who will take advantage of such an offer, in some cases wasting the time of several companies. A typical example is someone who has purchased equipment at a boot fair. It may well have been tampered with by the owner or his mate who knows all about auto electrics. But personally I find that such people are in a minority, and that over ninety per cent of my estimates are accepted.
I also agree that customers' attitudes and expectations are occasionally unrealistic. But I don't think that charging for estimates will have much effect on this. I'm not suggesting that no one should charge for estimates: it's for the individual to decide, on the basis of what he feels is appropriate. Fixed opinions unfortunately are one of the problems encountered in this,
and no doubt many other, trades. Above all you have to remember that the public is only human, and that we are all somebody's customer.

In closing I would like to express my agreement with P.C. Martin, who wrote in the same issue on a BBC programme that criticised the trade. I believe that the programme's conclusions were partially based on ignorance. The problem when Trading Standards uses engineers from other branches of electronics is their lack experience of the problems in this trade. Had an experienced, reputable engineer within the trade been consulted, different and probably fairer conclusions would in all likelihood have been reached. K. Docwra, DTV Service, Manston, Ramsgate.

VIDEO PLUS PROBLEM

A problem that has come to light with VCRs which have built-in Video Plus is that it's very easy to de-initialise (if that is the right word) the remote control unit and re-initialise it with the wrong programme, for example Channel 3 is recorded instead of Channel 4 but at the correct times. This is especially easy with Philips remote control units, but may be just as simple with others. This 'fault' involved me in several visits to a customer before I realised what was the cause of the trouble. I hope this will help some other engineers. R.F. Maynard, G4YRM, Exmouth, Devon.

MITSUBISHI HSM34

In the December VCR Clinic Paul J. Charlton suggested pushing a cracked capstan pulley back on to save the cost of a new capstan motor. There is no need to resort to this however, the pulley being available from Mitsubishi as a spare part. The replacement is a tight fit: you need to warm the pulley before fitting it, and apply freezer to the capstan where the pulley is to be fitted. The part number for the replacement pulley is 999D126010. Mike Orr,
Bristol.

22kHz SWITCHING

The 22 kHz switching modification article for Pace receivers (November issue) was excellent. In practice however the Cambridge LNB won't switch at 22 kHz in the H mode. The solution is to reduce the value of R 3 to 660Ω, giving a 16 V output.

Ken Suddes,

Welwyn Garden City.

ANY IDEAS?

A customer of mine has a Sony KVG2515U TV/satellite receiver combination. Recently he asked me whether it was possible to wire through to another room so that he could watch satellite TV there. I built a modulator unit so that I could get a u.h.f. feed from the TV scart socket. It worked all right until the Sony equipment was put into standby, when the satellite receiver also goes off. According to Sony the only way round this is to use the TV timer option for satellite timings, then put the set in standby. It works, but if the user wants to change the satellite channel he has to go through the whole procedure again.

Why couldn't Sony have left the satellite section and the IR device powered when the TV is in standby, and also provided a modulated u.h.f. output for use with a distribution system? Does anyone know of a modification to the power board to at least provide the satellite section with power when the set is in standby. My customer is seriously thinking of getting a stand-alone satellite receiver, forgetting the one in the TV set. P. Thorneycroft, Thorneycroft Satellite Systems, Tamworth, Staffs.

DOMESTIC TV DISTRIBUTION

Having read Bill Wright's articles (September and October) I thought it worth mentioning that BBC
Engineering Information has a number of leaflets that give information and advice on obtaining good TV and radio reception. Filters and Combiners and Television Reception the Professional Way are useful to read with the articles. Copies can be obtained from BBC Engineering Information at the address below (telephone 0181231 9191). In addition, page 698 of Ceefax on BBC2 gives information on our transmitters and the introduction of new services.
Simon Lloyd Hughes,
BBC Engineering Information, Villiers House, The Broadway, Ealing, London W5 2PA.

AUDIO TAPE PATH PROBLEM

While listening to one of my audio cassettes I noticed a ticking sound on one channel. This occurred whichever machine was used for playback. In fact over 150 of my tapes are similarly affected, different tapes to different extents. Some have an almost continuous, train-like drone superimposed on the music. My liking for a cassette can almost be gauged by the amount of clicking.

By playing a blank cassette in each of my fifteen or so decks, then playing
it back, I identified a five-year old Aiwa midi system as the culprit. Its tape path was given a thorough scrub and degauss, but the problem remained. In case static discharge was the cause of the trouble, I strapped the capstan bearing, the head mounting plate and the main deck to chassis. Again this had no effect on the symptom.

More careful listening revealed that the clicks were not random. They were in fact regular. So the deck was run while I looked for anything that rotated at the same frequency as the clicks were being laid down. The capstan was too fast, the take-up spool and associated idlers a little too slow, but the pinch roller seemed to fit the bill. Out it came for closer examination.

Although it seemed to be as clean as they come, I noticed that there was a minute oxide-filled pit that had been hidden from view when the roller was in situ. To my relief a replacement provided a complete cure.

This proves how important it is to have a really clean tape path. I now run a few seconds of blank tape through every machine that comes my way for servicing, just in case. Paranoid? Well, maybe - but I have a feeling that this wasn't just a one-off case.
Nicholas P.B. Arnotd,
Birmingham.

OBTAINING SPARES

I read with interest the letter from a Cambridgeshire reader (December) about difficulty in obtaining spare parts from some manufacturers. While I cannot comment directly on his Clarion problem, I would like to point out that the answer is in most cases simple. Wizard Distributors, along with others, regard solving such difficulties as part of our normal service. We have accounts with a multitude of suppliers, and are able to combine many individual enquiries into worthwhile orders for them. This saves the customer having to administer many accounts, some of which are used once in a blue moon; it saves the supplier having to service small and pro-forma accounts; and should prove that Wizard and other component distributors are here to help! The number of times a customer says "I wish I'd come to you first" confirms this.

Distributors of spares and components are here to help: all we ask is the opportunity to do so. Don't leave distributors to the last, try them first - you could be surprised! Ron Blyth, Managing Director, Wizard Distributors.
Empress Street Works,
Empress Street, Manchester M16 9EN.

Television reader offer: Versatile dmm \& tester for just £14.95

Featuring 10A dc measurement capability and transistor $\mathrm{h}_{F E}$ test lacility, the DT830B is a compact, 3.5 -digit multimeter with six measurement functions. This attractive meter normally sells at $£ 23.44$, excluding postage. As a special introductory offer open to all Television readers in the UK*, instrument distributor Vann Draper Electronics is offering this meter for just $£ 14.95$ - fully inclusive of vat and postage.
In addition to reading dc and ac voltage, dc current and resistance, the DT830B has a diode-test function and a transistor $h_{F E}$ range indicating gains from 0-1000. Supplied with test leads and battery, this compact multimeter weighs just 170 g and measures 70 by 126 by 24 mm - truly a pocket sized instrument. Its liquid crystal display has high-contrast 0.5 in high characters.

DT830B key specifications	
DC volitage Basic accuracy Input impedance Max input	$\begin{aligned} & 0.2 / 2 / 20 / 200 / 1000 \mathrm{~V} \\ & \pm 0.5 \% \\ & 1 m \Omega \\ & 1000 \mathrm{Vdc} \end{aligned}$
$A C$ voltage Basic occurocy Input impedonce Frequency range Mox input	$\begin{aligned} & 200 / 750 \mathrm{~V} \\ & 51.2 \mathrm{y} \\ & 0.45 \mathrm{MS} \\ & 45.40 \mathrm{~Hz} \\ & 750 \mathrm{Oac} \end{aligned}$
DC current Basic accuracy Overlood prolection	$\begin{aligned} & 200 \mathrm{\mu} / 2000 \mu / 20 \mathrm{~m} / 200 \mathrm{~m} / 10 \mathrm{~A} \\ & \pm 1 \% \% \\ & 0.2 \mathrm{~A} \text { fosed } \\ & \text { OA nof fused } \end{aligned}$
Resistance Basic accuracy Overlood protection	200/2000/20k/200k/2M $\pm 0.8 \%$ $250 \mathrm{Vdc} / \mathrm{oc}$

Avaialable at the special price of just $£ 14.95$ to Television readers, the DT830B is a six-function DMM including transistor gain measurement.

Use this coupon to order your DT830B DMM
Name
Company (if any)
Address

Phone number/fax

Make cheques payable to Vann Draper Electronics Ltd Or, please debil my Master, Visa or Access card.

Card Na
Expiry date

Please mail this coupor to Vann Draper Electronics, together with payment Alternatively fax credit card details with your order on 01162773945 or telephone on 0116277 1400. Address orders and all correspondence relating to this order to Varn Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester, LE18 2PL.
*Overseas readers can also obtain this discount but details vary according to country. Please rimg, write or fax to Vann Draper Electronics

Satellite Notebook

Reports from

Hugh Cocks
Brian Storm Stephen Leatherbarrow Christopher Nunn
Chris Watton Nick Beer

Pace MSS Series Receivers

The remote control volume adjustment with these receivers seems to confuse many of our customers. It's quite common to find that a "poor sound" complaint means that the signal from the satellite receiver is low, the TV set's sound output having to be turned up to compensate. When we install a system we leave a note telling the customer about this, though problems still arise.

There's a solution with the new MSS 100. This has a 'power on options' menu which enables the volume level to be preset when the receiver is switched on from standby.

Another option with this menu is to stop the LNB supply in standby. In addition a channel to go to after a power cut can be preset. This model seems to run a lot cooler, and because of its shape it's not easy to place things on top of it! H.C.

SVAI VideoCrypt Decoder

The SVAl VideoCrypt decoder is getting a little long in the tooth now. I always seem to get the ones with intermittent dry-joints that produce strange effects and on-screen messages. The sight of one of them with a 'faulty' label attached is

VideoCrypt Decoder Interference

The interference caused by VideoCrypt decoders tends to be much worse at v.h.f. than u.h.f., and is therefore more likely to cause problems in Ireland and Continental Europe than in the UK.

If you get patterning on local Band I or Band III transmissions, unplug the decoder or IRD to see if the interference disappears, thus confirming the diagnosis.

Check that the braid of the coaxial TV aerial downlead is making good contact with the plug body, and that the cable itself is of reasonable quality. In ninety per cent of cases these steps will put matters right. Try moving the decoder or IRD to see if the interference varies. Keeping the terrestrial TV aerial cable well away from the VideoCrypt decoder can also help.

If reception is still poor, check the signal level from the terrestrial TV aerial. With stubborn cases a poor aerial system often gives a just
about viewable picture before the addition of the VideoCrypt decoder.
The Pace MSS series IRDs I've seen here in the Algarve produce quite a high level of interference in Band I - they can cause a nasty crosshatch pattern on ch. E4. Try to use scart leads only. If r.f. has to be used to link the satellite receiver to the TV set, one cure in Band I is to take the output from the IRD via a u.h.f. high-pass filter to the splitter where the inputs to the TV set are combined. The idea is shown in Fig. 1. A u.h.f./v.h.f. diplexer could be used instead of the made-up filter, with a 75Ω terminating resistor connected to the diplexer's v.h.f. input.

At the time of writing this I don't know whether VideoCrypt-2 decoders will produce less interference. MAC decoders give few problems in this area. One wonders what MPEG will bring! H.C.

Fig. 1: Use of a simple u.h.f. high-pass filter to remove spurious v.h.f. signals produced by a VideoCrypt decoder. Capacitors CI and C2 are 4-7pF, 50V. L1 is not critical: say two-three turns of coaxial cable inner conductor, diameter $5-10 \mathrm{~mm}$ spaced over $5-10 \mathrm{~mm}$.
guaranteed to ruin my day.
One that came in recently passed only very weak video and refused to decode. Flexing the board restored normal results, but lack of a circuit diagram didn't help. Video entered at the scart connector but soon died off, around the de-emphasis switch.
Further investigation here showed that the adjacent Toko type coil LA02 was intermittently open-circuit - bending the board hard enough re-established contact. Bypassing the coil didn't degrade the picture noticeably, so I left it at that.

I also resoldered the connections around the mains transformer, as this is often a source of trouble, and replaced the fuses which seem to die of old age.

A problem I had some years ago with one of these decoders was intermittent picture break up. The cause was traced to the 28 MHz crystal associated with the 8052 microcontroller chip IW01. In the process the viewing card was destroyed: I now remove the highvoltage supply to the card to avoid this possibility. To do this, cut the middle leg of TP05 (the regulator on the lefthand side or the metal assembly, looking from the front). Hopefully Sky card issue 10 won't need this voltage they stopped communicating with the card in this way back around issue 5 . H.C.

Panasonic TUSD200

The problem with this receiver was no VideoCrypt decoder operation and no on-screen decoder messages. Because of licensing agreements with Thomson, the decoder circuit is not shown in the Panasonic service manual. We didn't need the circuit in this case however as the cause of the fault was loss of the supply to the digital-to-analogue converter chip U20. There was open-circuit print from one end of L20. B.S.

Panasonic TUSD250

The $47 \mu \mathrm{~F}, 400 \mathrm{~V}$ main reservoir capacitor C2 seems to be causing trouble in these receivers. In the first
one I investigated the chopper transistor had blown and the input fuse was open-circuit. The next one just spluttered about every ten seconds. Despite the different symptoms. C2 was in both cases open-circuit. B.S.

Panasonic TUSD200

No reception with these receivers is usually caused by failure of either Q60 or Q61. These transistors supply LNB voltages to the dish. A replacement FXT749 transistor or two soon restores normal reception. B.S.

Amstrad SRD510

The fault was failure to decode the pay channels, with no corresponding insert-card message on the screen. IC6 (TEA2029C), which is on the daughter board, was the cause of the trouble. As we had little information to go by we had to resort to comparison checks with a working receiver. When we scoped waveforms we found that in the faulty receiver XL 10 produced bursts of oscillation only during the period between a channel change, when the screen blanks. In the working receiver these oscillations were present at all times. S.L.

Pace PRD800

If the problem is intermittently disappearing video signals, the audio not being affected, save yourself time and seek out the $B C 846 A$ surfacemounted transistor Q105 on the underside of the board, at approximately the centre. It tends to go open-circuit base-to-emitter. Because of its intermittent nature, the cause of this fault can be very difficult to track down. S.L.

Editorial note: See page 14 , November about this and the possible need to remove R559 when replacing Q105.

Amstrad SRD5 10

This receiver's LEDs lit up without an LNB connected. As soon as an LNB was connected the receiver went into the trip mode. The culprit turned out to be R609 (4.7 $\mathbf{2}$) in the power supply. Its value had risen to 6.8Ω. R609 is connected to pin 3 (current monitoring) of IC600. C.N.

Amstrad VSI 000

The complaint with this combined $\mathrm{VCR} /$ satellite receiver was poor pictures (bent, with bars moving vertically down the screen) when the signals were in the clear. Scrambled signals were not decoded.

Heating the decoder PCB improved the situation. Since information on the operation of the decoder is not available. I had to proceed by heating and cooling components. This eventually brought me to CA05 $(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ which was opencircuit. A new electrolytic cured both the poor pictures and the failure to decode. Phew! C.N.

Amstrad SRD5IO

There was a blank raster. Sound was present when there were on-screen graphics: it ceased when the graphics disappeared. Checks showed that the video signal was present at the emitter of TR7 but not at TR6. which produced a d.c. reading of 12 V at each electrode. Resistance checks then showed that R9 (470) was open-circuit. This resistor is not easy to find, as it's usually hidden beneath the brown stuff that Amstrad slap here and there in these receivers.

Streaky pictures are a common problem with these receivers. For this fault check R80 (10k Ω), which is also covered with the stickylooking compound.

The reason for failure of these resistors is probably that the brown stuff causes hot spots. C.N.

Amstrad SRD500

The quite common symptom of an odd channel indicator display with the set then going off is usually caused by faulty electrolytics in the power supply. This one showed JI then went to standby. We eventually traced the cause to D3. As we didn't have the type listed in the manual we fitted a BYD33J which made a suitable replacement. C.W.

Amstrad SRD540

You can get various intermittent problems with this model because of trouble with the socket for the large chip in the middle of the main panel. If cleaning the socket doesn 't cure the problem, try removing it and soldering the chip directly to the panel. This will ensure that there are no further connector problems. C.W.

Ferguson SRD4

This receiver permanently displayed a test pattern and the text "no video signal". Our field engineer had confirmed that there was a supply to the LNB and that signals were being received from the dish. The cause of the fault was lack of the switched 15 V supply to the tuner, because the BC369 switching transistor TP71 in the power supply was short-circuit base-to-collector. N.B.

TELEVISION INDEXJDIRECTORY AND FAULTS DISCS PLUS REPRINTS SERVICE

INDEX DISC

Version 4 of the computerised index to TELEVISION magazine covers Volumes 38 to 45 (1988-1995). It has thousands of references to TV/VCR fault reports and articles, with synopses. A TV/NCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K RAM and a hard disc.

Price $£ 30$ (3.5 "HD, alternatively 3.5 DD"or $5.25^{\prime \prime}$ if required)

Those with previous versions can obtain an upgraded version for $£ 15$. Please quote serial number of original disc.

FAULT REPORT DISCS

Each disc contains the full text for TV, VCR, camcorder, satellite TV and CD fault reports published in individual volumes of Television, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hand disc then access it via the Index disc. Fault Report discs are now available for:

Volume 41 (November 1990 - October 1991)
Volume 42 (November 1991 - October 1992)
Volume 43 (November 1992 - October 1993)
Volume 44 (November 1993 - October 1994)
Volume 45 (November 1994 - October1995)
Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime}$ DD or $5.25^{\prime \prime}$ if required)

REPRINTS

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard cooy indexes of TELEVISION are available for Volumes 38 to 45 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC crders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd.

Allow 28 days for delivery (UK).

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 ONU, UK.

Telephone 01242241455

Long-distance Television

A review of DX-TV conditions and reception, also satellite news and sightings and a note on the beginnings of FM radio

There was little tropospheric excitement from the sustained high-pressure systems that developed during October. though better than average conditions were experienced along north-south paths. The best period was over October 11-20th. Sporadic E produced a late season boost, the following reception being logged by Garry Smith in Derby and Peter Schubert in Rainham, Essex:

11/10/95
12/10/95
23/10/95

25/10/95
28/10/95

RAI (Italy) chs. IA, B; TVE (Spain) ch. E2. TVE E2, 3; Canal Plus (France) L2.
+PTT (Switzerland) E2; RAI IA, B, E2; TVE
E2, 3, 4; TVE-2 E2; RTP (Portugal) E3; Canal Plus Corsica L3.
TVE E3.
Radio Vidẹo (Italy) E2.
During the anticyclonic spell mentioned above Garry Smith received a very slow fading (over a

Belgacom Liedekerke, a Belgian SNG identification, inserted in the field blanking period. The identification can be seen by adjusting the field hold control so that the field slips down.
half-hour period) TVE signal on ch. E3. He feels that it must have been SpE. On the south coast TVE chs. E3 and E4 are occasionally received via tropospheric ducting, the latter more often. I've received ch. E3 at Ventnor via tropospheric ducting, using just a 55 MHz vertical helical aerial, the path from Spain being largely a sea one. It's quite possible therefore that TVE could be received farther north via trop ducting.
Solar cycle number 23 has begun. On August 12th a spot was sighted at the Big Bear Solar Observatory, New Mexico, at latitude $21^{\circ} \mathrm{N}$ and of opposite magnetic polarity to all other sunspots since 1984 - sunspots reverse polarity with successive solar cycles. Although this confirms that cycle 23 has started, cycle 22 is still decaying and should end some time in 1996. My thanks to Sir Neu's for this information.

Satellite Sightings

Another Satellite Festival from The Satellite Shop, Holland, took place on the weekend October 20th-22nd. It differed somewhat from the previous festival in August, the event being onair continuously for fifty hours with Country Music Radio, played live from the shop, filling down times. Echosphere and IRTE were amongst the manufacturers featured, along with various equipment suppliers. Demonstrations covered C-band reception and inclined tracking for smaller dishes.
Videos of old pirate radio, factory visits, satellite earth station operations and satellite providers were also included. In all it was an excellent,
informal weekend. Transmission was this time exclusively via Eutelsat II F3 ($16^{\circ} \mathrm{E}, 11 \cdot 159 \mathrm{GHz}$ horizontal), though SNG operator VTN turned up and used a parallel Telecom band downlink at $16^{\circ} \mathrm{E}$. Views within and from the Lopik tower, a well-kown DX-TV transmitter and, it seems, a hot patch for Amateur TV repeater use, were highlights. Amateur TV was in operation throughout the show, with demonstrations and distant picture contacts.
The Paris Metro bomb blast on October 16 th produced high drama. I first saw a warning of an upcoming video on the Reuters' VisEurope transponder aboard Intelsat K ($21.5^{\circ} \mathrm{W}, 11.531 \mathrm{GHz}$ horizontal) but was unable to find any on-the-spot SNG downlinks. The only live coverage was from the TFI broadcast service, via Telecom $2 \mathrm{~B}\left(5^{\circ} \mathrm{W}\right)$. I suppose there are many fibre optic insert points for TV around the French capital, making the use of an SNG truck unnecessary.
On October 18th I saw a test pattern with the caption CBUT - VCR via Intelsat K. A check with the World Radio and Television Handbook showed that this was a TV station in Vancouver, British Columbia. The following two-way interview with a UK TV company revealed a sevenhour time lag behind GMT.

When I first started monitoring satellite TV transmissions I thought that the Asiavision news service via the EBU relay was something quite exciting, what with the simplicity of reception and the huge distances. Now there's an Asian Report daily at 0730 GMT via Reuters' Intelsat K
transponder.
PAS-4 at $68.5^{\circ} \mathrm{E}$ is being well received across the UK. John Locker manages it in Merseyside though the signal elevation is only $2-3^{\circ}$ above the south eastern horizon. Ku band signal levels are relatively high. So too are the seven C band feeds that Ian Waller receives in Lincoln, between $3.79-4 \cdot 19 \mathrm{GHz}$, all in the clear and in English. Ian has also received midday WTN and BSN news feeds. These are weak signals, from a Raguda satellite $\left(3.78 \mathrm{GHz}\right.$ at $60^{\circ} \mathrm{E}$, with the sound at 7.5 MHz). Out in Sri Lanka Bandula Gunasekera manages C band PAS-4 reception using a 1.5 m dish. He has not to date seen any Ku band signals
Roy Carmen has run into planning problems with his 1.2 m dish after moving to Lake, Isle of Wight. Meanwhile Bob French in the midlands is awaiting arrival of a 3.1 m KTI mesh dish from the States for C band experiments.
Finally David Thorpe, publisher of Transponder bulletin, has taken up a job with a satellite company in Canada. We wish him well but regret the loss of the bulletin.

The Birth of FM Radio

The idea of using frequency modulation for radio broadcasting was first put forward by Major Edwin H. Armstrong in the USA. He also undertook much of the early development work. E.H. Armstrong was born in 1890. From 1912 he became active with Dr. Lee DeForest, the valve pioneer, being keenly involved with regenerative and superhet receivers during the Twenties and into the Thirties.
A general concern had been static, the plague of a.m. radio. Armstrong opted against the usual anti-static measures - narrow receiver i.f bandwidths and higher transmitter powers - and in 1930 applied for four patents for a wideband f.m. system. These were granted in late December 1933. Despite its large investment in conventional a.m. radio, in 1934 RCA allowed Armstrong to construct and test his f.m. transmitter alongside the RCA equipment atop the Empire State Building, using the callsign W2XF.
This didn't last for long, as RCA was more interested in using the Empire State facilities for the development of television (despite the depression). In November 1935 Armstrong arranged an impressive demonstration of his f.m. system in New York, for the IRE. This made clear the superiority of f.m. in
providing good quality reception. As a result the Yankee Network offered Armstrong a 50 kW f.m. transmitter at Mount Wachusett, Princeton. This transmitter, W1 XOJ, started broadcasting in January 1938, at 44.8 MHz . At the same time Armstrong started to build his own 50 kW f.m. transmitter (he invested half a million dollars in the project) W2XMN across the Hudson from New York, at Alpine, New Jersey. He used a 400 ft tower that stands to this day, operating at $42 \cdot 8 \mathrm{MHz}$. By 1939 WIOXJ was transmitting sixteen hours of f.m. programming daily, and W2XMN started to broadcast.
In the autumn of 1939 the FCC received over a hundred and fifty applications to open f.m. transmitters, and by 1941 about 48 experimental transmitters were in operation. Zenith was not only making receivers but operating a 5 kW transmitter in Chicago. With the US entry into WW2, narrowband f.m. came into extensive use by the troops. Broadcasting f.m. applications had piled up by the end of the war in 1945. With the simultaneous growth of TV, in 1946 the FCC decided to move the f.m. allocation up to the familiar 88108 MHz , with 200 kHz channel spacing.

By 1949 over 700 commercial f.m. stations were on air, though public interest was minimal in comparision with medium-wave a.m. TV was the main public interest, and by 1954 only about 520 f.m. radio transmitters were still in operation. Armstrong had become involved in legal action against RCA/NBC over patent infringement. The action meandered on for several years, being finally settled in 1955 - a year after Armstrong had leapt to his death from a 13th floor apartment in New York. A tragic end for one so inspired and determined. There are now nearly 6,000 f.m. stations on air in the USA alone.

At the end of WW2 the occupying powers in Germany were reluctant to allow local broadcasters to resume transmissions beyond local borders. So encouragement was given to research into v.h.f. f.m. radio, which would provide limited regional coverage. One of the prime movers in such research was Rhode and Schwarz, which started Band II f.m. broadcasting in the late Forties

The BBC had also been experimenting with f.m. transmission from the late Forties, as a way of providing high-fidelity sound. Its

first f.m. transmitter, at Wrotham, Kent, came on air in May 1955. Thereafter the BBC's f.m. transmitters were, with very few exceptions, co-sited with main TV transmitters, sharing the mast, power and proved service area.

Terrestrial Broadcast News

Finland: SBS (Scandinavian
Broadcasting Systems) plans to start a national commercial TV channel as a rival to the present monopoly

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 01202-738232 Fax: 01202-716951

Herbalife transmits a sales programme via Eutelsat II FI at 13° E several times a week, in clear PAL.
commercial TV operator Mainos TV. DAB: Experimental Digital Audio Broadcasting services are expected to start in Sweden and Germany within the next few months, following the start of the BBC's DAB service across London.
Ireland: There are fresh plans to start a third commercial TV service, with new backers including Ulster TV. Start up could be as early as 1997 , using a mixture of conventional terrestrial transmitters, MMD and cable to reach about eighty per cent of the population within the first year. Latvia: PICCA TV, previously a
mystery identification, turns out to be an independent programme producer that uses Latvian TV2 network time between 0500-0800 GMT daily. The identification has been seen on $\mathrm{ch} . \mathrm{Rl}$ from the 10 kW e.r.p. Kuldiga transmitter during summer SpE openings.

Satellite News

Digitrona, a German company, has introduced a slim multidecoder that will switch between VideoCrypt $1 / 2$ and Eurocrypt M/S. An ADR board is to be made available, also an MPEG1/2 board. It sounds good from a German review, though no price is quoted. We're seeking more information on the unit.
The African Satellite Entertainment Corporation (ASEC) has leased Ku band transponders aboard Intelsat 704 ($66^{\circ} \mathrm{E}$) to provide a four-channel service covering South Africa. Programmes are in the clear or with VideoCrypt for pay-per-view films. The service is to start on an analogue basis: ditigal transmissions will be considered later as an add-on. There will also be twelve radio channels. An IRD plus 90 cm dish is to cost about R1,000 plus VAT.

KoreaSat has been launched into orbit, though failure of a booster rocket
to ignite properly means that stationkeeping fuel had to be used to attain the correct orbital position. This will reduce the expected life of the satellite from twelve to four-five years.
NHK Tok yo has changed its European link from PAS-1 at $45^{\circ} \mathrm{W}$, which involved a trans-US hop, to PAS-4 at $68 \cdot 5^{\circ} \mathrm{E}$. This provides a single hop between Japan and Europe. A France Telecom transponder lease is being used.
Panasonic, Philips and Pace are to produce digital IRDs for the Nethold group's pay-TV operations in Europe, Africa and the Middle East. A record order for over a million units has been placed.
Rome-based Orbit International, which transmits sixteen TV and numerous radio channels across the Arab world, is to introduce monthly subscription charges, ranging from $\$ 50$ depending on the service required. Until now anyone who bought a decoder was able to view the programmes without charge.
Tunisia has lifted its dish ban, though a tax has been imposed.

Rivalry between pay-TV operators in Australia has claimed its first victim: ABC has axed the Australian Information Media. This leaves Galaxy, Foxtel and Optus Vision.

THE SATELLITE NEWSLINE (VOICE)

 0336413413Updated at least once a day this Newslinc is available 24 hours a day. 7 days: a week with all the very latest news in the satellite world including: New Channel Launches; The latest Scams and Cons; New Products and Services; The Latest Rumours and Issucs; Adult Viewing - What's Going On. Simply call the number and listen lo today's News.

THE SATELLITE NEWSFAX (FAX) 0336422888

A Written Copy of the Satellite Newsline (see above), available 24 hours a day, 7 days a week, and updated at least once a day. Use your fax telephone to call the number and follow the simple instructions for today: News.

TRANSPONDER WATCH (FAX)

0336422889

A listing of the latest Transponder changes. Sightings and Feeds, updated at least once a week. Use your fax telephone to call the number and follow the simple instructions.

TRANSPONDER \& CHANNEL LISTING (FAX)

0336422886

A complete listing of all satellites, transponders and TV and radio channels from 71° East to 53° West. Use your fax telephone to call the number and follow the simple instructions.

SMARTCARD NEWS (VOICE)

0336413412

The latest news on ECM's new smarteards and encryption changes, updated every day. Simply call the number and listen to the latest information.

[^0] written permission of the eopyright holder.

Answer to

Test Case 397

- see page 187 -

Colin, browbeaten by Service Manager and the customer, almost regretted suggesting a proper AV link between this VCR and TV set pair. To have a stereo TV set and a stereo VCR yet be able to hear only mono playback sound seemed daft to him, but he was being made to pay dearly for pointing this out.
Workshop Sage suggested that he could solve the vision problem either by using a more expensive scart cable, with individuallyscreened signal conductors, or by dismantling the TV set's scart connector and snipping the wire to pin 19. Colin did the latter, which produced good playback pictures. Pin 19 carries the TV set's video output. In the $A V$ mode this is, in many designs, the demodulated off-air signal. In a two-metre length of unscreened multicore cable there can be crosstalk between the video output and the video input, producing the effect described. It's quite a common problem in fact.
The sound problem was not such an easy one. It stemmed from the TV set's design: the gain and frequency response of the left/right AV sound channels both differed from those of the path from the internal tuner to the audio output stages. Rather than pay an unknown bill for investigation and modification of the TV set, the customer decided to leave things as they were.

LNB
 Test Signal Source

Abstract

An LNB can be converted so that it generates a microwave output from an IF input, thus providing a workshop signal source for testing other LNBs. Hugh Cocks writes on the practicalities and details for converting a Swedish Microwave LNB.

|'d always wanted a quick way of testing LNBs in the workshop, without having to instal the LNB on a dish and point it skywards. After giving the problem some thought, a relatively easy solution became apparent.
An LNB down-converts the incoming microwave signals from the satellite to a lower intermediate frequency band. Why not reverse this, converting the i.f. in the workshop to s.h.f. using a modified LNB? An LNB contains all that's required - a local oscillator, an i.f. amplifier, a mixer and an s.h.f. amplifier. Fig. I shows a basic, conventional LNB block diagram and its adaption to act as an up-converter.
Basically what needs to be done is to rearrange the LNB's innards, so that the $10 / 9.75 \mathrm{GHz}$ local oscillator signal is mixed with a $950-1,750 \mathrm{MHz}$ (or 950 $2,000 \mathrm{MHz}$) i.f. signal, the mixer's output being amplified by the original LNA before exiting at the waveguide flange. To all intents and purposes the modified LNB represents a satellite, providing an output that can be received over short distances without the need for a dish. This makes it possible to check an LNB's sensitivity and oscillator tuning easily on the bench.

Selecting an LNB for
 Modification

I'm quite fortunate in having a stock of used, single-polarisation LNBs with a WR75 flange. When Astra 1A was launched back in 1989, only the vertical channels could be received here in the

Algarve. We sold a lot of installations with a single-polarisation LNB and a prime-focus dish. After the launch of Astra 1B and 1C we carried out several upgrades to dual-polarisation LNBs.
The main difficulty is in reversing the low-noise amplifier section so that the output appears at the waveguide flange.
After inspecting the innards of numerous LNBs, I found that the easiest type to convert is the cylindrical, cream Swedish Microwave LNB with the large black label. The modification will of course in principle work with any LNB. I'd be interested to hear how readers fare with other models.
The noise figure of the LNB to be converted is not critical, so an old one that's been replaced, say with an Astra 1D type, is an ideal candidate. The Marconi blue cap springs to mind, but as there were never many of them here I've not looked into its suitability for
conversion. Sendz has had ex-rental LNBs for $\mathfrak{£} 2$ - if nothing else a source of GaAs FETs!
Some experience with r.f. circuitry is essential. If you don't feel confident, don't attempt LNB conversion.

Initial Steps

To remove the outer cover, take off the black plastic nut on the F connector, then the circlip. Push down on the F connector and out comes the body. The metal cover over the LNA is easily removed. This gives access to the LNA and the mixer on one side. The 10 GHz local oscillator lives inside a cover at the F connector end of the LNB, its frequency being set by the large screw through its internal cover.
The PCB on the other side carries the $950-1,750 \mathrm{MHz}$ i.f. amplifier, which is connected to the F connector, with the power supply assembly alongside. See

Fig. I: Block diagrams showing at (a) the basic LNB arrangement and at (b) the LNB rearranged as an up-converter.

Fig. 2: I.F. amplifier modifications: the initial
arrangement - to clarify the situation most of the components are not shown.

Fig. 3: The i.f. amplifier after modification. Add a coaxial cable link from the F socket to chip capacitor Cl and a further link from the tab by Tr3 to Al (the mixer feed). See text.

Fig. 4: The original LNA/mixer PCB layout. Note that the GaAs FET leads at 90° to the stripline are the source leads. Points marked A are 330Ω chip resistors in the $5 V$ feeds from the supply to each GaAs FET drain. Points marked B are the negative gate bias feeds from the power supply.

Fig. 2. The GaAs FETs require a small negative gate bias which is generated by the i.c. The three co-located presets power each LNA stage, the end one by the 8 V regulator, providing bias for the oscillator FET.

IF Amplifier Modifications

We'll start with the i.f. amplifier as this is the easiest part. What needs to be done here is to couple the input at the F connector (the original output) to Trl and the output from Tr3 to the mixer/LNA.
The final i.f. transistor $\operatorname{Tr} 3$ is connected to the F connector via a chip capacitor and an 18Ω resistor - these are shown as A and B in Fig. 2. The original input from the mixer enters from the other side of the LNB body, being connected to TrI via the chip capacitor identified as C 1 in Fig. 2.
Chip capacitor A, connected to the F socket, must be unsoldered. With the units I've had it can then be soldered to the tab that's conveniently located between Tr 3 's earthed emitter leg and the track to which the tab is connected.
Cut the original input track adjacent to where it is connected to chip capacitor Cl . Solder a short length of coaxial cable between C 1 and the F socket. The braid can be soldered to Trl 's emitter lead. Earth the coaxial cable braid at the F socket end by the nearby fixing screw.
Cut the track between the F socket and the output from Tr 3 . Be careful not to sever the thin track connected to the

F socket - if feeds the incoming d.c. to the voltage regulator.
Use another piece of coaxial cable to link the amplifier's output (from chip capacitor A, see Fig. 3) to the mixer (point Al). Earth the braid via Tr3's emitter at one end and the plated through tab adjacent to point Al at the other end.
I've had no stability problems with the i.f. amplifier altered in this manner.

LNA Modifications

This is the difficult part! Some previous experience with GaAs FETs is helpful. They can be touchy devices. The gate has a negative bias and is a very high impedance connection. The soldering iron bit should be well earthed and linked to the LNB assembly as well.
As reversing the PCB would be difficult, the FETs have to be tumed around instead. A three-stage LNA is used in the Swedish Microwave LNB, see Fig. 4. The gates and drains of the FETs are 180° apart, with the two earthed source leads at 90° to the other two leads. The FET at the input end is often different from the other two, with a lower noise figure. Interstage coupling is via chip capacitors, the probe in the waveguide being connected directly to the first stage. Track width determines circuit impedance. There is often a small stub soldered to the input track to the first stage to optimise the transistor's noise performance.
Turning the FETs round doesn't do wonders for the matching, but some
experimentation afterwards can help to optimise the performance. We're not looking for perfection in this application, just for sufficient signal from the waveguide to travel over a short distance. I tried taking the signal direct from the mixer, but this didn't work very well.
Power for the LNA is connected from the reverse side, through the body. The FET drains are usually at about 3 V , the source leads are earthed and the gates have a small negative bias voltage set by the presets on the power supply PCB. Each stage has a gate and a drain power supply wire that passes through the body of the unit.
Check and note the original voltages before you start, also the effect of varying the presets on the power supply PCB. Avoid connecting the meter to the gates (I've never blown one up in this way, but you never know. . .). Many models now dispense with the presets, though the power supply arrangements are similar. Note that with an H/V switching LNB changeover between the two input stages is carried out by diverting the supply from one to the other as either 13 V or 17 V is applied: the second and third (if present) LNA stages have constant supplies.
It's easiest to reverse the FETs one at a time, starting with the one nearest to the mixer. Use a very fine screwdriver to prize the FET leads away from the PCB track. This is firmly bonded to the Teflon substrate, so there's little danger of the track peeling off. Fortunately with the LNBs I've seen so far the device leads have been long. and not too much solder has been used. Other makes may be different and it may be necessary to unsolder the devices. With some makes it may be easier to turn the LNA PCB section around. If it's possible mechanically, this would be the best approach to adopt.
Note the FET connections before removing the device: they can be very confusing once the FET has been removed from the board.
The gate bias and drain connections are via very fine printed tracks that act as r.f. chokes. Reverse these - see Fig. 5 - by using thin wire at the chip resistor end.
After soldering the first FET back in place, apply power and check that there is about 3 V at its drain and that this voltage varies when the relevant bias preset in the power supply is adjusted. If the voltage is low and doesn't vary, the FET has probably died - if this is the case, invest in a Sendz Components LNB for some spare devices.
If all is o.k., repeat the procedure with the second FET. The results should be the same. After refitting the final FET,
remove the power to the first two before you check the voltages. The reason for this is that if the amplifier becomes unstable, which it may do, strange voltages will be present at the first stage. These will vary dramatically when you place your hand near the waveguide. Stability should be o.k. when the cover is back in place.

Testing

Line powering is required. This can be provided via a modified i.f. splitter, so that d.c. is available from one of the splitter ports (see Fig. 6) along with the satellite i.f. signal from the LNB at the receiving dish (the signal input to your up-converter).
If you have some form of spectrum analyser available, connect a known good LNB to it. Power the up-converter, feeding in the satellite i.f. as well. The LNB should start to produce a display, resembling what comes from a dish. Place the LNB approximately three metres from the up-converter initially.
If you don't have an analyser, power the up-converter in the same way and connect a known good LNB via a short cable to a receiver which is tuned to say the Eurosport i.f. ($1,258 \mathrm{MHz}$, assuming a 10 GHz local oscillator frequency). Place the up-converter about three metres from the receiving LNB, and switch on. All being well, something may be seen on the screen.
Adjust each preset on the power supply PCB for the strongest signal output.
You may find that the response across the band is not flat. In this case try connecting a short stub to the stripline from the mixer - it can be fixed to a piece of plastic and moved around. If an optimum point is found, solder it in position. Make it out of thin tinplate or, failing that, a small piece of wire.
By way of an experiment you can add an i.f. line amplifier in the feed to the up-converter. This seems to degrade the picture, but is worth trying if one is to hand. Don't forget that the output from the amplifier goes to the up-converter, otherwise there will be no results.

If an old feedhorn is available, fix it to the converter. Range is difficult to suggest: I'd be interested in hearing of any results obtained by doing this. The converter can also be placed at the focus of a dish to reflect its output, providing a lot of extra gain.

Using the Converter

Position the up-converter in a convenient. out-of-the-way place in the workshop, at a distance that produces results comparable to those from a known satellite signal source. Low sensitivity LNBs will be obvious, and better noise

Fig. 5: The modified LNA, with the FETs turned around and the power feeds adjusted. Link the 330Ω chip resistors to the points marked A. Apply the gate bias voltages to the tracks marked B. A better output may be obtained by cutting the stubs marked C flush with the track to the first transistor's inpst. Note that there are small pads linked to the thin tracks which feed the bias voltages to the transistors (gates with the transistors connected the original way round). They are for decoupling and are not shown.

(0)

(b)

(c) 0585

Fig. 6: Line powering arrangements. (a) and (b) Modifying an i.f. splitter to pass d.c. to the up-converter. (a) Conventional two-way splitter witi d.c. bypass diodes. C is the connection to the LNB, A and B the split i.f. outputs. Power passes to the LNB from either A or B via the relevant diode. (b) The diode between A and C turned round so that pawer and the i.f. signal are available at A for feeding to the up-converter. B is the signal to the receiver cnd the d.c. source. C is the connection to the dish LNB. (c) A simple d.c. injection system. Items required: two F sockets; a $6.8 \mathrm{pF}, 50 \mathrm{~V}$ ceramic capacitor (CI) - keep the lead lengths short; a $1,000 \mathrm{pF}, 50 \mathrm{~V}$ ceramic decoupling capacitor (C2)-solder the earth lead to the connector tag; a small r.f. choke (LI) - this is not critical, it could consist of four-five turns of coaxial cable inner conductor wound over a small screwdriver blade. Use a small length of 75Ω coaxial cable to link between Cl and the output socket, with the braid soldered to the connector earthing tag at each end. Keep all lead lenghts short. Alternatively use a commercial unit such as the Global DCBF.
figure LNBs immediately apparent with the signal kept to near the receiver threshold. The converter works quite happily with either a 9.75 GHz or a 10 GHz signal source at the dish. If the local oscillator frequencies are the same, Sky News will appear at an i.f. of $1,377 \mathrm{MHz}$. With a 9.75 GHz oscillator at the dish and a 10 GHz oscillator in the up-converter all frequencies will be offset by 250 MHz .
One use of the up-converter is to help an old LNB to work with an Astra ID converter. These old LNBs often work to some extent but the lowest frequencies (Superchannel/ARTE) are poor. A dramatic improvement can be seen if the old LNB's i.f. is shifted up by 50 MHz or so when a 1 D converter is in use (RTL-5 is then tuned in at the bottom end of the band, and CNN ends up at around $1,700 \mathrm{MHz}$). This is normally because the i.f. amplifier's response falls away rapidly at around 700 MHz , the LNA part working reasonably or very well.
To retune an old LNB, point it at the up-converter and turn the local oscillator's tuning screw anticlockwise until
you've moved by four Astra channels say from Sky News to Sky One. The screw is by then often fully outside the case.
Another use for the up-converter is to readjust an Astra 1D LNB to 10 GHz so that it can be used with an old receiver where the customer has no interest in recieving ID and the old LNB has died or a new dual one is being installed. All Astra ID LNBs that I've come across will tune back to 10 GHz , though CMW oscillator tuning screws are very tightly secured.
Normally about two turns clockwise are required. Use an old 10 GHz LNB as a reference on a particular channel, say Sky News. Connecting a 1D LNB will then produce Galavision. Turn the oscillator screw slowly until Sky News appears - you'll pass through intermediate channels of course. Remember to lock the screw with Loctite or something similar afterwards.
The potential for playing about is very good, particularly around April 1st: no dish needed any more, just an LNB - place a hand over the LNB and the picture goes - watch their faces!

VCRCLINIC

Reports from Eugene Trundle Philip Blundell Gerald Smith
David Belmont Bob McClenning V.W. Cox Brian Storm John Pitt-Francis Glyn Dickinson Christopher Nunn Chris Watton Nigel Burton E.J. Edwards Michael Maurice John Edwards

Ferguson FV77

The cause of the problem took us a long time to track down, the fault being very intermittent. When it did appear the machine wouldn't perform any deck functions, even eject, though the clock, E-E operation and channel selection were all o.k. If one was requested, the machine would present a flashing cassette symbol for a few seconds then go back to sleep. The culprit was the cassette-down (FL) switch ST71, which was noisy and sometimes failed to make contact at all. E.T.

Mitsubishi HSBI2

Failure to wind or rewind the tape can be caused by the machine trying to operate through the reel-drive clutch, slide-bar B having failed to latch. We've never had the fault stay long enough to be able to confirm a diagnosis, but have found that replacing the latch magnet coil (part no. 299P124010) and its driver transistor Q5B5 has, along with a check on their interconnections, provided a cure. E.T.

Toshiba VII $0 / 210$

Intermittent loss of playback capstan servo lock was the problem here. We thought that a replacement ACE head had cured the fault but the machine bounced. Further tests showed that the pulses at pin 6 of the U2561B
FG/CTL control pulse amplifier chip IT18 were very weak and noisy. In fact the chip itself was the culprit, as repeated attacks on it with a freezer aerosol and a hairdryer proved. E.T.

Toshiba V423

This machines lives in a house where all the residents smoke like chimneys - the contents of the living room are all nicotine brown, especially the TV set and the VCR. The complaint was that the picture had a horizontal shift which was worse in the record mode. Expecting a sticky guide roller, I marked them all with a fine felt-tip pen. Sure enough the no. 1 guide was
not turning smoothly. A new one improved matters, but the problem was still present.
I pressed pause while playing a known good tape. The shift could be seen. A drum servo problem? All was revealed when the bottom PCB was removed. The drum PG/FG photosensor was contaminated while the plastic interrupter blades were caked with fluff. Cleaning the optical faces with a cotton bud soaked in foam cleaner and removing the fluff from the interrupter restored the picture stability. P.B.

Toshiba V703

Playback was o.k. but there was no E-E picture and no baseband video from the scart sockets. The on-screen graphics and the E-E sound were o.k. Scope checks along the video path showed that the signal was present at pin 8 of ICF01 on the terminal board and TP201 but not at TP203. A visual check revealed a crack in the print to pin 1 of plug 201 on the motherboard. P.B.

Panasonic NVJ47

There was a colour phase fault with playback, which would intermittently became black and white. It looked like a delay line fault, but the cause was IC302. G.S.

Sanyo VHR274

The playback picture had lines on it, because the drum to capstan sync drifted off cyclically. IC351 was the cause of the fault. G.S.

Panasonic NVFSI

There was intermittent colour with this machine's recordings. We found the cause to be dry-joints around the luminance/chroma pack, at pin 34 in particular. G.S.

Nokia VR36/5

This machine worked but the power supply buzzed and ran hot. We found that the voltages on the secondary side of the power supply were too
high, and the over-voltage protection diodes were conductive. The cause of the problem was D804, which was short-circuit. G.S.

Nokia VR36/5

Rewind and fast forward were intermittent, and when eject was operated the machine would sometimes leave the tape hanging out. A replacement mode state assembly cured the problem. G.S.

Finlux VR3400

Distorted Nicam stereo sound was the problem with this machine. Checks revealed that one channel was overmodulated at the input to IC1808. The cause was the TDA1543 DA
converter chip ICl 803. G.S.

Nokia VR36I5

There were hum bars and the E-E picture was too bright (playback was normal). I found dry-joints at various components in the i.f. unit, i.e. Q 102 , Q101, Z103, Z102 and L104. After resoldering these the machine performed correctly. G.S.

Akura VXI40

This machine would intermittently leave tape out on eject or not play or record, with the mechanism overloading and the loading belt slipping. A faulty mode switch was the cause of all these symptoms. G.S.

Panasonic NVSD30

Intermittent tape damage was the complaint. There was also a clicking noise between modes. On close examination I found that the slide cam was damaged. As a precaution I replaced the mode switch as well. G.S.

Samsung VIK306

There was no playback picture, with the drum rotating at excessive speed. The drum FG and PG pulses were present but too fast. When the drum drive from pin 7 of IC 201 was checked it was found to be too high, at a full 5 V , and didn't vary when the
drum was slowed by hand. Replacing IC201 cured the fault. G.S.

Sharp VCA55HM

This machine was totally dead. The cause turned out to be R905 in the power supply. D.B.

ITT VR3938

There was a waving pattern on the EE and playback pictures - it looked as if waves were moving from right to left on the screen. Quite pretty, really The cause was C3 in the power supply. B.McC.

Panasonic NV333

A thick hum bar appeared when play or record was pressed. The cause was failure of one of the diodes in the bridge rectifier circuit that provides the 15 V motor supply. V.W.C.

Panasonic NVSD30

There was a problem in the cue mode: any attempt to cue forward resulted in loss of line lock because the drum speed changed incorrectly. Checks in the system control circuit showed that IC6001 was changing to the NTSC default condition, despite this machine not being fully equipped for NTSC playback.
The cause of the problem was poor head-to-tape contact. Further checks showed that the performance in the review mode was very poor, the top half of the picture being covered with noise. A badly worn and very shiny pressure roller confirmed the diagnosis. The drum was badly worn: because of the relative newness of the machine this was something we hadn't considered initially. B.S.

Toshiba V309

This machine would stop during playback or record, after anything from iwenty minutes to two hours. The cause was high reel motor drain current, though the motor provided very fast rewind and wasn't particularly noisy. A new motor cleared the fault, which can also occur with the V109 and V209. J.P-F.

Ferguson 3V35/JVC HRDI 20

The tuning department wouldn't light up: in fact this VCR behaved as if it was in the camera mode, though the camera/tuner switch was o.k.
Replacing the HD552 088C chip put matters right. J.P-F.

Grundig VS500

This VCR produced the dead machine symptom initially, with very low voltages at the secondary side of the
chopper transformer. Over the course of half an hour however the voltages gradually increased, creating a chatter from the deck soleneid and eventually normal operation. The cause of all this was C1409 $(33 \mu \mathrm{~F})$ in the primary side of the chopper circuit. It had gone low in value. The replacement must be a 105° type. J.P-F.

JVC HRD540

There was a severe tracking error with this machine - about four tracking bars were present towards the top of the screen. On investigation we found that the left-hand guide pole didn't engage with the end stop. A thorough check for a foreign body, i.e. something that might have caused the problem by blocking its path, was carried out. As we couldn't find anything we came to the conclusion that pole was just a bit too loose, snagging before it entered the end stop. The cause of this was stopper 2 (item 17). Because it was a poor fit, it had worked loose. A replacement (part number PQ43525) cured the problem.

An improved pole kit is available to deal with severe cases - part numbers PTU96102E (supply) and PTU96103E (take-up). J.P-F.

Sharp VCAI 05

The mode switch and master cam assembly cause various problems with this model. The suspect cam is black, replacements being white. Unlike earlier models, replacement is not too difficult. To confuse matters, a modified assembly was introduced after serial number 659812 and in later models that have a mode switch with a yellow centre. These require a different cam and switch. They are not interchangeable. G.D.

Samsung S13260

Rewind and fast forward were both o.k., but in play and record there was no capstan drive. A check on the 12 V feed to the capstan motor in play, at pin 15 of CN201, produced a reading of only 2-3V. Replacing L201 and D110 (1N4001) cured the fault. C.N.

GoldStar RQ504I

There was no drum rotation. It was soon apparent that the motor was faulty, as the chip on the motor PCB had a hole in it. This is the second faulty motor we've had in these comparatively new machines. When the cause of the fault is not as obvious as in this case, the important motor connector pins to check are 4 earth, 5 always 12 V and 6 where the control voltage should be present. When this reaches IV the motor should be
turning. The other pins are for the PG and FG pulses, playing no part in starting the motor. Pin 1 of the connector is identifiable by the black wire. The part no. for the lower drum/motor assembly s 413-220A. C.W.

Samsung SI3250

The E-E signal produced by this machine consisted of the blue mute raster. It refused to tune in any stations. A check at the collector of Q401, which supplies the tuner's VT (voltage tuning) pin produced a reading of zero volts. There was no 33 V feed because D105 (1N4001) was open-circuit. C.N.

Philips VR6462

There was no sound in any mode. The cause was traced to $\mathrm{C} 2007(330 \mu \mathrm{~F}$, 16 V) on the audio panel. We've had a number of these blue Philips capacitors on the audio panel fail, causing a number of symptoms. They usually go dead short, so a faulty one is not too hard to find. C.W.

Hitachi VT220

This machine was almost dead, with no clock and no deck functions. But the power supply voltages were all present at the output connector. Circuit protector IC405 (N5) was open-circuit. It's not easy to find, as it hides close to the side of PG604. There was no apparent cause for its failure, and the machine worked perfectly after fitting a replacement. C.W.

Amstrad VCR6000

The loading belt is suspect if the machine goes to standby when a tape function is selected. Often however the control cam's brush assembly is the cause. This fits into the cam. When fitting a replacement, clean the static part of the mode switch and smear a small amount of silicone grease on it.
Another fault you get with these machines is failure $\boldsymbol{\bullet}$ rewind or wind fast forward because the trigger lever sticks. This has been a common problem for several years, and has been mentioned before in these pages. The cause is the rubber damper which becomes soggy with age (like Hitachi drive belts), preventing the trigger from going far enough.
The CPC part no. for the brush is AM153114 and for the damper AMI53091. C.W.

Hitachi VTI 50

There were no playback or E-E pictures, though the sound was o.k. On several occasions we've found
that the cause has been the HT4757 chip IC203 on the YC subpanel. So we carried out a check at pin 1 in the E-E mode. The scope displayed a nice composite video signal, but there was no output at pin 27. Before replacing this very expensive chip I checked for 5 V at pin 6 . The reading here was 0 V . Checks in the power supply revealed that there was no 5 V output at pin 1 of the STK 5476 multiregulator chip IC881. Replacing this item cleared the playback and E-E mode faults. C.W.

Samsung VI7IO

Playback was in monochrome only and there was no vision in the E-E mode. Power supply checks showed that there was no supply to the threepin regulator fixed to the lower drum assembly. The cause was the 2Ω safety resistor FR02 being opencircuit. No cause for its failure could be found. C.W.

Panasonic NV430

The E-E picture was o.k. but there was no colour at the top and bottom of the playback picture. After initially suspecting a fault in the chroma circuitry we turned our attention to the electrolytics in the power supply. Replacing C1001-C1004 and C1101C1 104 cured the fault. N.Bu.

Panasonic NV870 (DI Deck)

When review was selected this machine would sometimes unlace, with the play symbol appearing in the display. Then, after realising its mistake, the machine would lace up again, usually successfully but sometimes with tape chewing.
Replacing the mode switch cured the fault. N.Bu.

Hitachi VTII/I3

There was no playback picture though E-E operation was o.k. We traced the cause of the fault to Q905, a replacement restoring the picture. E.J.E.

Panasonic NV366

There was no rewind and only 2 V at the motor plug. The cause of the fault was traced to Q6022, a replacement putting matters right. E.J.E.

Philips VR6362

The original complaint with this machine was of sound warble. When it arrived on my bench it would eject the tape whenever a deck function was selected. Now before it will allow any functions, the microcontroller chip requires sample capstan FG pulses. When a tape is inserted, the
capstan does a shuffle for about half a second. In this machine the capstan turned for about five seconds.
The capstan FG pulses are picked up by a tacho coil that's mounted close to the capstan flywheel. They are amplified by the tacho amplifier, which is mounted under the sub-plate. It receives an IIV supply that's derived from the +13 a rail via a $1 \mathrm{k} \Omega$ resistor with a $47 \mu \mathrm{~F}, 16 \mathrm{~V}$ decoupling capacitor, C2206. This last item was short-circuit. When a replacement had been fitted we had some FG pulses, but they were too low in amplitude for the micro to recognise them. After replacing the tacho amplifier PCB and the tacho head the machine worked normally - with no trace of any sound warble. M.M.

Sony SLVE25UY

Tape chewing was the complaint with this machine. On investigation I found that the exit guide had parted company with the load arm. Refitting this guide provided a complete cure. M.M.

Matsui VP940I

The customer's complaints were of failure to load a tape and a burning smell. A previous engineer had diagnosed "incorrect data from IC 1001 ": he obviously hadn't noticed the large hole in the loading motor drive chip. Replacing this item cured the trouble. M.M.

Akai VS485

This machine would very intermittently leave a loop of tape hanging out when the cassette was ejected. The cause was the capstan motor, which wasn't turning freely. A replacement motor cured the fault. M.M.

Ferguson FV42

Intermittent cutting out was the reported fault with this machine. On test we found that there was no mechanical fault. When playback was selected however the tape laced up and the play symbol appeared in the display but the machine stayed in the E-E mode. The PB12V supply is derived from pin 4 of the MC14094 chip IW27, via a couple of transistors. There was no voltage at pin 4 of IW27, so we swapped it over with IW18. This restored the playback signals. Replacing IW18 and IW27 cured the trouble. M.M.

Amstrad UF20

This machine wouldn't play prerecorded tapes. Playback of its own SP recordings was o.k., but LP recordings were unwatchable. The upper drum had already been replaced
without producing any improvement. Replacing the lower drum cured the fault. M.M.

Sony SLV373

The customer complained about intermittent tape chewing. He provided three samples that showed they were looping on eject. The cause was the capstan motor, whose base plate had warped. A new motor solved the problem. I understand that Sony is aware of this problem and that replacement base parts are available. M.M.

Hitachi VTM930

An intermittent buzzing noise, especially when the machine was hot, was the complaint with this machine. The mains transformer proved to be the culprit, a replacement ensuring silent operation. M.M.

NEC PXI200K

Playback was o.k., but if a timed or a manual recording was attempted "error" would be displayed followed by either tape eject and/or the machine going into the standby mode. The anti-record inhibit switch mounted on the carriage had come adrift. Its plastic support legs were weak but not broken, so a drop of modelling glue provided the answer to the problem. J.E.

Hitachi VTI 20

This machine wouldn't record or play back in colour. The playback picture also had what can best be described as an "orange peel" effect which was more noticeable in light grey to white areas. In addition white flaring occurred when the picture contained sudden light to dark areas, this symptom being more pronounced when the sharpness control setting was advanced. Slight finger pressure on the HT4539 hybrid decoder module would restore normal colour for an indefinite period. We wasted a lot of time soldering in the area around the module and the module's pins, but in the end it was a new module that restored the colour. The part is available from Charles Hyde but is expensive, the trade price at the time of the fault being nearly $£ 40$. J.E.

Mitsubishi HSM59

Slow rewind and eject was the customers complaint. When we turned the machine upside down and removed the bottom cover to inspect the mechanism the plastic capstan belt pulley fell on to the bench. After fitting a new pulley (Mitsubishi part no. 999D 26010) the machine worked normally. J.E.

Established over 35 years ago, Charles Hyde and Son Ltd is the oldest independent distributor of electronic components in the UK.

AKAI
 With effect from December 1st 1995, AKAI (UK) Ltd have appointed us as their SOLE AUTHORISED non-account distributor for spares and components in the UK.
 All AKAI non-account customers requiring spares and components should now contact us at the address shown below.

Charles Hyde and Son Ltd are also SOLE AUTHORISED non-account spares and
 component distributors for Sanyo and Hitachi. In addition, we are also AUTHORISED spares distributors for Ferguson,

HITACHI
Matsui/Saisho and Philips, and a major distributor of König pattern part components. We also stock extensive ranges for Amstrad, JVC, Samsung, Sony and Toshiba, plus selected popular spares for Alba, Bush,

EடEㄷT・ロNIC Blaupunkt, Fidelity, GEC, Goldstar, ITT Nokia, Luxor, Mitsubishi, Normende, Orion, Panascnic, Saba, Salora, Sharp and Tatung. For fast, efficient service, call

(01759) 303068

Charles Hyde and Son Ltd
Prospect House, Barmby Road, Pocklington, York YO4 2DP
24 Hour Sales Desk (01759) 303068 All Other Enquiries (01759) 304457 Fax (01759) 303620

CHS FOR A FAST EFFICIENT SERVICE

The Help

Wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial depart ment - do not write to or phone the advertisement department about this feature.

HELP WANTED

Wanted: 240 V mains motors for the Tandberg 1600X and Ferguson 2010 reel-to-reel tape recorders. Francis Berry, 6 Woodland Avenue, Hindley Green, Wigan, Lancs WN2 4PN.
Wanted: Service data for the Oritron Jupiter D2-MAC satellite TV decoder. G.D. Betney, 2 Kurtus, Dosthill, Tamworth, Staffs B77 INX. 0121733 5515.

Wanted: Service manual for the Ekco CT100 all-valve colour receiver. Alan Rockett, 216 Ashington Road, Rochford, Essex SS2 4SL. 01702544 641.

Wanted: Circuit diagram for the Questar VR 100 VCR. L.W. High, 26

BACK COPIES
 We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August,
 September, October, November and

December
1993
January, May, June, July, August,
September, October, and December
1994 January, February, March, April, May, June, July, August, September, October, November and December

1995 January, February, April, May, June, July, August, September, October, November and December

Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Publishing,
Television Back Issues,
Room L302, Quadrant House,
The Quadrant, Sutton,
Surrey SM2 5AS.
Make cheques/postal orders payable to Reed Business Publishing Ltd.

Northdene, Chigwell, Essex IG7 5JT. 01815006526.

Wanted: EMOIZVI or equivalent diodes for the Salora SV8800 (Mitsubishi HSB10/20) VCR. Frank Hagan, 2 Stratford Road, Lytham-StAnnes, Lancs FY8 3TF. 01253726780. Wanted: Ipsalo transformer FM237 and BG2000-641 tripler for the Salora J chassis, also a circuit diagram (photocopy will do) for the Toshiba Model C2220B. Kenneth Cargill, I Stradowen Drive, Strathfoyle, Londonderry BT47 IXN. 01504861268.
Wanted: Chopper transformer for the Alba Model CTV711. G. Smith, 83 Avenue Vivian, Fence Houses, Tyne and Wear DH4 6HZ. 01913852316. Wanted: Service manual (photocopy will do) and a teletext board for the Panasonic Model TC2232. D. Kenney, 45 Bicton Avenue, St Peters, Worcester WR5 3TF. 01905357059.
Wanted: Reasonable used replacement 370KRB22 Tatung black stripe tube. A. Tomkinson, 10 Lodge Court, Station Grove, Wembley, Middx HA0 4AP. 01819035574.

Wanted: Service manual for the Grundig Super Colour Cinema 9000GB 50in. projection TV set. K.C. Liu, 33 Dudwell Lane, Skircoat Green, Halifax, W. Yorkshire HX3 OSD. 01422381 002.

Wanted: Information/schematics/tube bases for the 4A tube tester made by CE Developments of High Wycombe, also an A51EBD10X tube. Mike Irving, Sutton Wick House, Sutton Wick, Drayton, Abingdon, Oxon OX14 4HJ. 01235464470.

Wanted: Old copies of World Radio and TV Handbook. Malcolm Shaw, 11 Clarke Court, Lough Road, Antrim, Co. Antrim BT41 4JS.
Wanted: Circuit information and technical specification for the Bischke CCTV camera type CCD-90. T. Wiltshire, UQ Presentations, Bramblings House, Pelican Road,

Pamber Heath, Basingstoke, Hants RG26 3EL. 01734701163.
Wanted: Does anyone know of a supplier of spares for the Huanyu Model 37C-3? H. Preston, 5 Blayberry Close, Lakes Estate, Redcar, Cleveland TSIO 4PX.
Wanted: Service manual or circuit diagram (loan for copying would do) for the NordMende Model UW342U. W.B. Mansell, 48 Bowling Green Road, Thatcham, Newberry RG18 3DA.
Wanted: Circuit diagram for the Rotel RA500 power amplifier and data on the Sunken SI-1725HDF amplifier chip. Vince Stanley, 36 Meadow Court, Littleport, Ely, Cambs CB6 1JW. 01223 203824 days, 01353862076 evenings, 01223441249 fax.
Wanted: Lower drum assembly for the Panasonic NV730 VCR. T.W. Cawte, 69 Dorchester Gardens, Worthing, W. Sussex BN115AY.
Wanted: Circuit diagram (photocopy would do) for the Triumph CTV8210, also details of the AN5610N chip. Does anyone know of an equivalent to this Currys set? E. Longton, 47/49 Back Victoria Street, Fleetwood, Lancs FY7 6EJ. 01253778338.
Wanted: Does anyone know of a parts supplier for the following TV brands: RS, GBI (Korea)? H. Lawson, 49 Duke Road, Silverhill, St Leonards-on-Sea, East Sussex TN37 7DN.
Wanted: Telefunken AC701 valve or any subminiature, single triode wire-in valve. Tony Arnold, Court House Facilities, 27-29 Salisbury Street, Cranborne, Dorset. 01725517359.
Wanted: Circuit diagram for the L+G L2800 audio amplifier. P.J. Shepherd, 25 Tomkins Close, Stamford Le Hope, Essex SS17 8QU. 01375640618.
Wanted: Circuit diagram (photocopy would do) for the Elonex CD1442 VGA computer monitor and any relevant information. E.W. Ingarfill, 44 Pitts Lane, Earley, Reading RG6 1BU. 01734265357.

[^1]

AMSTRAD HANDSETS	TVA	${ }_{1}^{23.15}$	AMSTRAD PCBs		TVR3 Main TV					
VCRA600, 4600 Mkll ${ }_{\text {VCA4700 }} \quad 17.05$	VMC100 SXX 1000200	16.50 4.70	(Complete, thlly yopulatad),		TV3 Head Amp					
VCA5200 11.75	SAX 1002200 SRD400		Display 8	${ }^{31.73}$						
VCRE6100(Barcode Indexer) ${ }_{32}^{32.44}$	SRR550	6.50 3.85 1	4600 vicao 8 Audio		AMSTRAD COMP					
${ }_{8}^{3246}$	Smbiso	20.65								
10.70			4600Mkkll Hybrid L							
		12.00	470							
SRDA00 (Equivalent) 11.05	PC2236		4700 Head Am		CRT 37011822					
	PC3086	11.00			AMSTRAD					
Amstaid tunersif			6100 Hyprid, Chro							
AMSTRAD TUNERS/IF	${ }^{\text {PC55086 }}$				PCW9512 Armature					
47700 $\quad 9.40$	PC7486SLC		CTV1400 Mkil Main TV PCB	31.75	Many AMSTPADCON					
L0002 14.10										
MSTRAD		20.15								
MODULATORS	AMSTRAD COMPU									
	OPERATORS MAN		THiTI COMPATIBLE VIDE0 HEADS							
M Mkl1,400 $\quad 16.45$	PC16	${ }_{1}^{11.75}$								
NTRAD	${ }^{\text {PPCP5 } 512640}$	$\underset{\substack{11.75 \\ 5.50}}{11}$			ghest Quality C					
(PCC1512 (Tech. Refi)	${ }^{6.00}$								
${ }^{\text {a }}$	PC1640(tech, Ree.)		IMPORTED AND DISTRIBUTED BY:							
VCA77000 VCR8700	AMSTRAD SOFTWARE	19.98								
VCABRB00 VCRPoool9004	(Full accounts program for running									
ICES INCLUDE VAT.	AMSTRAD FAX PCB		Harrison							
ALL ITEMS ARE BRAND MEW AND GUARANTEED $\star \star$ SAME DAY DESPATCH * Write or Phone for FULL LIST.						Electronics				
POST \& PACKING										
			LARGE RANGE AVAILABLE TO FIT MOST MODELS							
$*^{* *} 1.18{ }^{* *}$										
Harrlson	AMSTRAD MO	10.28 10.28	HIGH QUALITY AT COMPETITIVE PRICES							
Electronics CENTURY WAY, MARCH, CAMBS PE15 BQW. FAX: (01354) 51416. TEL: (01354) 51289	AMSTRAD LOPTS		WRITE OR PHONE FOR CATALOGUE							
		$\begin{aligned} & 23.50 \\ & 1.59 \end{aligned}$								
	TVR3 18129									

MC
 M.C.E.S. L I M I T E D

ARE STILL IN THE BUSINESS, DOING QUALITY REPAIRS ON:-

TUNERS TUNER/IF MODULES RF/BOOSTERS VIDEO HEADS LNB'S

1996 CATALOGUE NOW AVAILABLE. PLEASE PHONE OR FAX FOR YOUR FREE COPY.

MCES LTD,
15 LOSTOCK ROAD, DAVYHULME, MANCHESTER M41 OSU.
TEL: 01617468037
01617468038
FAX: 01617468136

- TELEVISION \& VIDEO SPARES • RESISTORS \& CAPACITORS - HI-FI GADGETS \& SPEAKERS
- TRANSISTORS \& I.C.'s - AUDIOPHILE CAPACITORS
- IN CAR AUDIO - COMPUTER BOARDS - TOOLS \& TEST EQUIPMENT • PLUGS SOCKETS \& LEADS

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

TV TUBES

VIDEOCOLOR
HITACHI
TOMPSON
TOSHIBA
PANASONIC
SHARP
BEON
ITT
PHILIPS
SONY
NOKIA
SAMSUNG
ORION
MITSUBISHI CHUNGHWA ETC

The largest manufacturer of re-gunned tubes in the UK

Thousands of new and re-gunned tubes in stock covering over 200 types

Suppliers to major users in the UK and Overseas

First class reputation for quality and service

Fast Delivery
BSI Approved

VISTA - THE TUBE EXPERTS

FOR CUSTOMER CARE AND SERVICE CALL TUBES: 01429837100

COMPONENTS: 01429838057
FAX: 01429837101

Test Equipment • Components • Accessories Electromechanical • Mechanical • Engineering

VALVES WANTED

TOP PRICES PAID FOR NEW BOXED VALVES SEE LIST BELOW:

ECC 83/EF86 MULLARD
Px 25 MARCONI OR OSRAM GLOBE SHAPE
Px4 MARCONI OR OSRAM
PP3-250 MAZDA OR OSRAM
805/845/211 USA ORIGINALS
STC 421 2E UK
DA100 G.E.C.

$£ 3 \mathrm{ea}$	DO60	$£ 50 \mathrm{ea}$
$£ 90 \mathrm{ea}$	DA30/DA60 G.E.C.	$£ 80 \mathrm{ea}$
$£ 50 \mathrm{ea}$	KT66 G.E.C.	$£ 35 \mathrm{ea}$
$£ 50 \mathrm{ea}$	KT88 G.E.C.	$£ 50 \mathrm{ea}$
$£ 25 \mathrm{ea}$	EL34 MULLARD	$£ 12 \mathrm{ea}$
$£ 100 \mathrm{ea}$	$300 B$ B.S.A. OR S.T.C.	$£ 150 \mathrm{ea}$
$£ 100 \mathrm{ea}$	EL37 MULLARD	$£ 10 \mathrm{ea}$

ALSO WANTED USED VALVES AND OLD VALVE AMP EQUIPMENT LEAK, QUAD RADFORD, ETC ...

SEND, PHONE, FAX, LIST, INSTANT DECISION

18 SROOKMOOD Telephone:	ROAD, SOUTHFIELDS, L $0181) 8773492$ Fax: 0 NEAREST TUBE STATION - SOUTHFIELDS	NDON, SW185BP $81) 8773518$
Stock items despatched by return	BACK UP BATTERIES	SEMICONDUCTORS
VIDEO HEADS		TKs, STRs, TAs, TDAs, 2SAs, 2SBs, 2SCs, 2SDs, 2SJs, 2SKs, BUs, BDs, BFs and many more types in stock.
Prices start from $£ 7.50$! Hundreds of makes and models from Akai to Toshiba		
-Please Telephone!	0.1 Farad 5 V Capacitor $\mathbf{E 1 . 8 5}$	TV MAINS ON/OFF SWITCHESIN STOCK
VIDEO SERVICE SPARES	SATELLITE SPARES	State Make and Model!
BACK TENSION BANDS! BELT KITS! IDLER ASSEMBLIES AND CLUTCHES! PINCH ROLLERS! VIDEO SERVICE KITS! VIDEO MOTORS!	LNB Standard or Enhanced Frequency Extender for 1D.. $\mathbf{£ 2 5} .00$	VIDEO MODE SWITCHES
Please do not hesitate to call or telephone	LINE OUTPUT TRANSFORMERS	State Make and Model!
TRIPLERS	HR LOPTS NOW AVAILABLE @ ¢ 15.50 OR LESS!!!	
Universal Tripler ...6.20	Bush, Crown, Dawoo, Ferguson, GEC, Goldstar, Goodmans, Granada, Hinari, Hitachi, Ingersol, ITT.	MISCELLANEOUS
Universal Tripler with Focus Unit................... £10.50		Hitachi TV Frame Module HM6251£8.00
Decca 120/130 Series 58.50	Goodmans, Granada, Hinari, Hitachi, Ingersol, ITT, Logik, Luxor, Matsui, Mitsubishi, NEI, Nikkai, Orion, Osaki, Perdio, Philips, Orion, Osaki, Perdio, Philips, Pioneer, Pye, RBM, Saisho, Salora, Schneider, Sentra, Solavox, Sony, Tashiko, TEC, Telefunken, Tensai, Thomson, Toshiba, Triumph etc.	Hitachi TV Frame Module HM623210.00
Grundig Triplers ..POA		Degausing Positor White30
REPAIR KITS - TVISATELLITE/VIDEO		Degausing Positor Blue
AKAI - Power Board VS22, 23 etc.....................£33.00	BUSH - 2020, 2520, 2720 etc HITACHI-CPT1444, 1446, 1455, 1471, 1472, 1473, 1474, 1476 \& Many Other Models	Degausing Positor Hitachi Blue40
AMSTRAD - PSU Kit PRD500, 510 Satellite¢9.00		IC Circuit Protectors Most Values @60
FERGUSON - PSU Kit Video (Thomson)............... $\mathbf{E 7 . 0 0}$		MATSUI Limiter Post .. $\mathbf{1}$. ${ }^{\text {a }}$
PHILIPS - PSU Kit Anubis "A"¢8.50	MITSUBISHI - CT2147, 2154, 2528, 2529 etc	
PSU Kit G110 Chassis $£ 12.00$	SONY - KV16MTU, KV19XMTU, KV2060	
PSU Kit G90AE/G908 Chassis PSU Kit Philins Video	KV21RTU, K2212, KV27XRTU \& Many Other Models!	
PACE - PSU Kit PRD800, 900, 8000,9000 series $£ 7.50$	*** Almost 1000 models covered	Satellite Fault Finding Guide .. $£ 15.00$
PANASONIC - G Deck Repair Kit $£ 14.00$	PANASONIC LOPTS START FROM $£ 17.50$ SONY \& MITSUBISHI ORIGINAL ALSO AVAILABLE Please telephone for quotations	Pace Training Tape ... $£ 21.00$
** A WIDE RANGE OF VIDEO SERVICE KITS AVAILABLE **		
Prices subject to change without notice. Please add $£ 1.25$ per order for $\mathrm{p} \& \mathrm{p}$ and then add 17.5% VAT. POSTAGE VARIES ON HEAVY ITEMS. Cheques and Postal Orders should be crossed and made payable to A.Z. Electrics CALLERS WELCOME		

STARVISION

SUPPLIERS OF HIGH QUALITY EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

> ALL PRICES INCLUDE V.A.T. NO MINIMUM QUANTITY

RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-01215051033

STARVISION

UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS 10 9QR

WIZARD OFFER YOU...

SPARES FOR: Akai, Allba, Amstrad, Bush, Decca, Ferguson, Fidelity, Hitachi, I.T.T., Loewe, Mitsubishi, Matsui, Nikkai, Pace, Philips, Pye, Schneider, Sentra, Sharp, Sony, Saisho, Samsung, Tatung, Toshiba.
MICROWAVE SPARES: Comprehensive range of top quality spares always in stock.
MONITOR SPARES: Tubes, Flyback transformers, components etc.
REMOTE CONTROLS: Hundreds of handsets for thousands of models available.

CATALOGUE: Free comprehensive catalogue to trade customers.

Huge range of supporting components and accessories including C.R.T.S
C_{2} Schneider

Empress Mill, Empress Street Manchester M16 9EN

Tel: 0161-872 5438, 0161-848 0060 Fax: 0161-873 7365

1/3" BM CCD CAMERA ORDER CODE: AV-1210

1/3" COLOUR CCD CAMERA ORDER CODE: AV-1020

COVERT CAMERAS

1/3" BMN PC BOARD CAMERAS ORDER CODE: AV-1180 ORDER CODE:AV-1160
 25" (59cm) DOLBY PRO LOGIC 28" (66cm) DOLBY PRO LOGIC

OFFER VALID UNTIL 31-01-96

ADDRESS:

\square POST CODE:

- THIS VOUCHER IS VALID ONLY AGAINST THE PURCHASES OF 25" DOLBY PRO LOGIC \& 28" DOLBY PRO LOGIC

> TEL:

the BIG company with the BEST prices

TV \& VIDIO WHOLISALIESS
LTD

BIRMINGHAM 208 BROMFORD LANE ERDINGTON BIRMINGHAM B24 8DL TEL: 0121-327 3273 FAX: 0121-322 2011

LONDON
UNIT 2, THE ROYAL LONDON EST. 29/35 NORTH ACTON ROAD LONDON NW10 6PE TEL: 0181-961 5005

PRESTON
UNIT 439, OAKSHOTT PLACE WALTON SUMMIT IND. EST. PRESTON PR5 8AU TEL: 01772312101

CENTRAL TV WHOLESALE DISTRIBUTOR LTD

Thorn TX9, TX10, TX100
FST only.
Please ring now for best prices

Working videos
now from now from
only $£ 30.00$

For all export enquiries TV and Videos call our Birmingham Office now

Graded TVs and Videos P.O.A.

Working portables from only £35.00

New Grade B14" Portables $£ 85.80$		
$20^{\prime \prime}$ Nican TVs $£ 165.00 \quad$ 28" Nlcam TVs $£ 275$		

Ex Rental Satellites - $£ 5.00$
Ferguson Surround Sound Speakers Type 51LS - P.O.A.

Attention All Bulk Buyers

If you are in Business of disposing large quantities of TVs and Videos - Ring Now

CENTRAL TV WHOLESALE DISTRIBUTION LTD

Birmingham contact: Mick
369 Stratford Road, Sparkhill, Birmingham B11
Tel: 01217721591 Fax: 01217666383

London contact: Joshi
Eley Estate, Nobel Road, Edmonton N18
Tel: 01818074090 Fax: 01818841314

C.T.V. (NORTH EAST) 9A/B, 94 Carrmere Road Leechmere Ind. Ist. Sunderland SR2 9TE

No. 1 in the North East for all makes and models of high quality ex-rental televisions and video recorders at very competitive prices

> Now Open Saturday morning by APPOINTMENT ONLY

Telf 0191-5235554 Fax: 0191.5238035 Export Enquiries Welcome. Also supplying Yorkshire Tel: 0114-250 7600 and ask for lan

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL
-SUPPLIERS OF HIGH QUALITY EX-RENTAL
TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRCDUCTS - TVs, VIDEOS, AUDIO \& MICROWANES ALL TESTED \& BOXED
Satellite Receivers and Export Enquiries Welcome $1 / 2$ Mile off Junction 10 M6. Easy Parking Facilites
UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS2 8TL Tel: 01922-724542. Fax: $01922-722208$ Mobile: 0831-246622 (24 Hours) OPEN: MON-FRI, 9-6pm SAT 9-2pm SUNDAY BY APPOINTMENT DELIVERY SERVICE THROUGHOUT THE COUNTRY

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, DROITWICH WR9 ONR TELEPHONE: 01299-251522 0589-888021/0850 486147 (24нR)
SUPPLIERS OF HIGH QUALITY GRANADA AND THORN
EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES

Satellite Receivers
Complete Range of Hand Sets EXPORT ENQUIRIES WELCOME OPEN: MON-FRI - 9.30-5.30

TEL: 01209-251522

SONYTUBES (various grades) at LOW prices

330AB22	$520 S B 22$
350MB22	$570 H B 22$
34JBU10X	$59 \mathrm{JWC61X}$
37JUW10X	$60 L C S 60 X$
49JLV10X	64 JKB 00 X
49JHT00X	$680 \mathrm{DB22}$
51JKQ60X	$680 E B 22$
51JUH60X	68LCT60X
51JXH61X	$68 J Y L 61 X$

Ring Irene or Jane for price and availability

We have a vast range of FIRST CLASS RE-GUNNED TUBES for domestic televisions

We stock a huge range of EX-EQUIPMENT TUBES reclaimed from new or used sets
EXPRESS TV
The Mill, Mill Lane,
RUGELEY, Stafis WS15 2Jw
Tel: $01889-577600$
Fax: $01889-575600$

TV WHOLESALE

mane
 P RIC E

LIMITED

Leaders in the supply of:

Ex-rental, End-of-line, Customer returns and Surplus stocks of Televisions, Video and Audio Equipment, and Domestic Washing Machines, Dryers, Refrigerators, etc.

to the Trade

Contact your nearest Area Manager for latest prices:

Area South East South West North/N.I.

Contact:
Colin Gordon
Tony Lewis lan McClelland

Mobile:
0374738701
0374732784 0831597331

Fax/Tel:
01227741312 01291425018 01244400602

Head Office: Baird House, Arlington Business Park, Theale, Reading, Berks RG7 4SA.
Tel: 01734309933 Fax: 01734309934

BESCO LTD YOUR PREMIER SUPPLIER FOR OVER 30 YEARS Merry Christmas to all our valued customers

ENTIRE RANGE OF EX RENTALTVS, VIDEO, B GRADE HFFI, PORTABLE CD, GHETTO BLASTERS ETC.
F.S.T. remote working
F.S.T. text working
from only $\mathbf{£ 6 0}$
from only $£ 70$
complete with handset, makes inc' Solara, Philips, Sanyo, Hitachi etc

Over 200 working video recorders in stock from $\mathbf{£ 4 0}$ (slim front loaders) 100 s of front loading videos off the pile from $\mathbf{£ 1 2}$ - Fhilips, Hitachi, Sanyo, Sharp, etc.

Good quality working TVs standard only £25 Teletext from £40 Makes in stock - Hitachi, Ferguson, Pye, Philips, GEC etc, RING OUR HOTLINE NOW!

HiFi SPECIAL

Boxed HiFi with C.D., Twin tape, radio etc. from £35 (MIN 3 UNITS)
Car radio/cass, Personal stereo, Personal C.D., Ghetto Blasters, etc

BASEMENT CLEARANCE

300 ex rent colour TVs, mixed std and text, makes include Pye/Philips KT3/K30, Hitachi, GEC series 90 Ferguson TX etc. - ONLY £2,400.00 THE LOT! (DELIVERY ARRANGED)

By special request return of our sensational Cabaret, also our new menu FREE Hamburgers, Pizza, soup, sausage/egg, bacon sandwiches etc. All this and rock bottom prices too! Where else? Bring money!

Visa Welcome \quad| Prices are plus VAT |
| :---: |
| and based on quantity |

Walker House, 16 Bottomley Street, Bradford BD5 7LJ Ring Tony 01274308186 - Open 6 days - 9am-5pm

TELEORSUOCLASSIFIED
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 13.50$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should to sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
PHONE 0181-652 8339 FAX 0181-652 8931
Travisuio VISA

SERVICE MANUALS TECHNICAL BOOKS

COMPUTER MONITOR CIRCUITS VOLUME 2

 This new volume carries on from our previous MP-286 and covers a further range of monitor Servicing and Circuits for makes such as Amstrad, AOC, Atari, Comcen, Commodore, Decca, Dell, Digital, Electrohome, Epson, Galaxy, Goldstar, Hitachi, Hantarex, Hewlett Packard, IBM, JVC, Mitsubishi, Melford, Microvitec, NEC, Olivetti, Opus, Panasonic, Philips, Qume, Research Machines, Samsung, Samtron, Sharp, Sony, Schneider, Sinclair, Tatung, Taxan, Telford \& Wyse.Normal Price $£ 45.00$. Order now for just $£ 40.00$ plus $£ 2.94 \mathrm{p} / \mathrm{p}$. Order MP-327.
Volume 1 (MP-286) Still available at the current price of $£ 45.00$ plus $£ 2.94 \mathrm{p} / \mathrm{p}$. Special Offer:- Order both (MP-328) for $£ 80.00$ inclusive.

We have the largest range of Service Information and Technical Data obtainable anywhere. For Televisions, Video Recorders, Test Equipment, Computer Monitors, Vintage Wireless, Domestic Equipment etc etc.
In fact practically anything electronic. Originals or Photostats as available.
Also available. Our catalogue defailing Hundreds of Tecknical Books and Repair Guides. Retarn cospon for your FREE copy. Also arailable, our intire Index of Servise Manuals available on PC Dise. ICode MP-285) Just $£ 3.50$ * VAT (Total $£ 4.11$) with FREE updates.

MAURITRON TECHNICAL SERVICES (TV)

8 Cierry Tree Rcad, Chinnor, Oxfordshire, OX9 4QY VIA Tel:- 01844-351694. Fax:- 01844352554.
Please forward your latest catalogue for which 1 enclose 2×1 st Class Stamps. I enclose payment for MP-327 (£42.94). MP-285 (£47.94). or Both for $£ 80.00$
 NAME \qquad
\qquad
ADDRESS

POSTCODE \qquad You may pay by Cheque, PO or
Visa, Access, Delta, Efectron, JCB, Mastercard, Eurocard etc

EXPIRES \qquad SIGNATURE

SERVICE MANUALS

Thousands of different models available
For most U.K. European, Far East \& USA makes
Prices (Stock Items):-
VCR $-£ 13.00$
CTV $-£ 8.00$
MTV $\quad £ 6.00$

Other items, prices on request P/P etc. (any quantity) add $£ 2.00$ Do not add any VAT Cheque/PO with order only please.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Davenham Satellite Systems
Satellite Receiver upgrades
Pace PRD800/Grundig STR1 $\rightarrow 199$ chans Pace SS9000/Ferguson SRV1 $\rightarrow 90$ chans Pace PRD upgrade for Astra 1D "Satellite Secrets Revealed" $£ 19.95$ 256 pages of repair \& installation tips We Repair receivers/decoders. Trade enquiries welcome (0589 355411) We specialise in Satellite Accessories Send lor free catalogue NOW! Credit Cards welcome
DAVENHAM SATELLITE SYSTEMS, 1 Firths Fields Davenham, Northwich, Cheshire CW9 9JB 0160649085
email: david@davenham.u-net.com

!TIMEWARP!

ALL VCR \& CTV MANUALS REDUCED TO 1990 PRICES THIS ISN'T A SALE, THIS IS A LONG-TERM REDUCTION

Helping you to fight rising costs
service manuals service sheets circuits fault guides technical books We Have the World's Largest Selection of

$$
\begin{aligned}
& \text { SERVICE } \\
& \text { MANUALS }
\end{aligned}
$$

.Repair-Manuals-Circuits-Fault Guides Etc... service manuals service sheets circuits fault guides technical boors

CTV CIRCUIT COLLECTIONS

A3 SIZE / ALL POPULAR SETS / UPTO 1995

Alba	$£ 22$	Amst'd/Fid	$£ 21$	Baird/Ferg	$£ 45$
Decca	$£ 22$	GEC	$£ 28$	Goldstar	$£ 12$
Grundig	$£ 38$	Hinari	$£ 14$	Hitachi	$£ 45$
ITT	$£ 22$	JVC	$£ 30$	Mitsubishi	$£ 38$
Pansic	$£ 30$	Philips	$£ 40$	Sanyo	$£ 28$
Sharp	$£ 14$	Sony	$£ 49$	Toshiba	$£ 38$

Top Selling Titles

PRACTICAL TV / VCR REPAIRS £16.95 Each / $£ 30.00$ for both Euro' Scrambling Systems/Satellite Book Only $£ 32.00$ Each / $£ 62.00$ for both Principals of CDNHS Video Heads/CD JIg Only $£ 3.95$ Each

Buy,Sell,Service, Used CD's/NCR's/CTV's £9.95 Each, or all for $£ 25.00$ MICROWAVES: Energy \& Ovens Still only £12.95 VCR ServieIng by Beeching

SPECIAI MANUAL OFFERS

ANY 20 MANUALS FOR $£ 200$ (Inc p\&p) All at once, or phone as you need them OR
JOIN THE STREE LIBRARY FOR £75 (£20 yearly renewal) AND BUY ALL MANUALS FOR £10 EACH, OR SWAP AT (1)

PHONE OUR HOTLINES ON: (01698) 883334/884585 Fax: 884825

Technical Information Services 76 CHURCH ST, LARKHALL, LANARKS, ML9 1HE

SEND AN SAF FOR YOUR FREF QUOTE $\$$ GATAL QGUE

PROFIT BOOSTERS

Efficiency in the busy workshop is more important than ever, Increase your productivity with our latest range of Technical publications.
FAULT INDEXES: Edition 15 now available, Over 11,600 references listed in 12 years of Television. covers Tv, video, camcorder, satellite \& CD Thousands of copies sold worldwide - complete set $£ 14.75$ INDEXES ON DISK: PC version 1.1 Now available Covers 15 Years \& over 14,000 references - Complete Program, Data \& manual, A lot of information £17.50 Requires IBM PC or compatible, 8086 upwards, Mono, CGA, EGA, VGA Please specity disk size (3.5 or 5.25 inch HD) when placing your order.

OTHER TITLES AVAILABLE INCLUDE: KWIK TIPS TELEVISION covering a wide range of makes, models \& chassis, Contains over 2500 faults \& solutions. ISBN 1898394008 First edition-E13.95
KWIK TIPS VIDEO an excellent collection of over 2000 video faults \& solutions, Highly recommended. ISBN 1898394016 First edition - £10.95
Chassis \& equivalent identification made easy with the E.C.S. Television \& video equivalents, TV model to chassis guide \& camcorder equivalents A massive 4500 entries in 1 book. First edition - only $£ 4.95$
E.C.S.

31, PRENTON ROAD WEST, PRENTON, BIRKENHEAD,
Technical publishing MERSEYSIDE. L42 9PY.
Please add $£ 1.75 \mathrm{P}$ \& P to total (europe $£ 2.75$, r.o.w please enquire).
TV/VIDEO/SATELLITE/HI-FI FRYERNS
Most makes covered Old and New.
This Service offers Workshop Service Sheets
and Technical Advice Fault Guidance
Prices from $£ 3.50$ plus $£ 2.50 \mathrm{P} / \mathrm{P}$ \& handling.
On 2 iterms or more P / P free.,
but add $£ 1.50$ per item handling chat
but add $£ 1.50$ per item handling charge.
i.e. 1 tem - total $\varepsilon 6.2$ items- total $£ 10$.
e. 1 item- total E 6.2 iterms - total
3 items $-\mathrm{E15} .4$ items - E 20. P PAYMENTBYCFEDITCARD OR FOSTAL ORDER
Telephone 01268558938 Fax 01268558938
Phone anytime, 7 days a week.
4 PINCEY MEAD, BASILDON, ESSEX SS13 3EW.
Fryerns wishes to thank all its regular users for
their custom and support in the launch of the
business and hope they continue to be profitable
in the future (James)
SERVICE INFORMATION CIRCUITS and SERVICE MANUALS from 1930s-1990s radios, amps, radiograms, tuners, CDs, TVs, videos, cassette radios, ICE etc.
LARGE QUANTITY USED TV \& VIDEO PANELS
BACK COPIES PW \& TV MAG
Give details of your needs to:
DAVE WILLIAMS India Lodge. Horsefair Green. Thorne. Doncaster. South Yorks DN8 5EE Tel/Fax: 01405814548

SERVICE MANUALS - Have you turned work away for want of a Sevvic
Manual? - Have you ever boulla Sevice Manual and never use it moe than once?

- Then why not ton

THE MANUALS LIBRARY
For defais sand wembershyp Appolication form
HARVEY ELECTRONICE
 Tol: 0120 VISA, ACCESS accopted

Fax: (01403) 783519

COPY DEADLINE FOR FEB '96 ISSUE
PUBLISHED 17TH JAN '96
IS 14THDEC '95
01816528339

[LASSIFIED CLASSIFIED CLASSIFIED CLRSSIFIED CLR5SIFIED

Security Coded Car Radios

C.D.II. Electromios are able to decode wbotutely any radio on the market. We can atso decode the lates Ford 2000 late 1994 models fitted with a Texas In.strumemts mirroprocessor. We are in the forpfrom of technology and are in a position to supply softarare to decode all knowm radios. All of our softarare is arritten on (:.1).H. Electronics, the information is not bought from ex-colleqgues of oums. Our wituare packages start from $£ 275$ and amy other models may be added at a bater date if required. Please phone nowe for a FREE demomstration disk or if freferred a FREE: on-site demonstration with no obligation. Nearly all Blaupankt radion may be decoded just by quoting the verial number. this also applies to Memphis SORS\&. CDP'(O). Kaln, Symphom, CD3(1) (Vauxhall), SC202 (V'anxhall) and many more. This servier to trate only, for E / l phus V'AT (11.75 inchusize) and must be FAXED). (Accomen holders anly).
All refnom. of any descriptuon are decoded for $£ 5$ inchusize (trade or mot).
Please send all epproms in a puadded miophoper to stope damage A large range of serial epprom.s also in sock, fully progranmed or not. If you hate any qurrips on radio decoding, please tatk to the experta. not these whe jus profess oo be!

C.D.H. ELECTRONICS
 (New Address)

"Four Winds", Stafford Road, Huntington, Cannock, Staffordshire WS12 4LZ Telephone
01543467588 or 01543572523

INFRA RED SENSOR CARDS

These cards detect infra red light from remote controls etc. Two types are credit card size and key fob, both priced at $£ 7.66$ each + VAT
See article in "Television" October 1995
Finlux Dealers! TDA 2450-2 in stock only $£ 5.95$ each + VAT. All Dealers! TDA 8180 original $£ 5.95$ each + VAT BY 133 pack of 50 only $£ 3.75$ + VAT. BUT11AF \&/or BUT18AF 5 for $£ 4.95+$ VAT.
All items are sent Post and Packing FREE, UK only Cheque or Postal Order only to:
E C S, 6 Nethersole Street, Polesworth, Tamworth B78 1EE. Tel: 01827330392 Fax: 01827331041

RECRUITMENT

CAMCORDER ENGINEER (SONY SERVICE CENTRE)

Minimum 5 years experience on all makes. Commencing salary $£ 15 \mathrm{~K}$ reviewed after 3 months.

Please reply in hand-writing enclosing full CV to:
Central Audio Visual Ltd 5 Thornhill Road, North Moons Moat, Redditch, Worcs B989ND

BEAUTIFUL MID-WALES COAST SEA ! BEACHES ! MOUNTAINS ! RURAL TRANOUILLITY ! HIRAETH ?

We Need Experienced
TV VIDEO AUDIO SERVICE TECHNICIAN
To join small service shop, most major manufacturers, member Nationwide Service Group, lots of potential for the right person.

Interested?

01654711541

DAEWOO ELECTRONICS SALES UK LIMITED
Daewoo Electronics, one of the fastest growing electronic companies in the world, are now looking to expand their operation in the UK.

We now require a

QC/SERVICE ENGINEER

The ideal candidate will be an experienced brown goods engineer, with a bias towards quality and will be responsible for ensuring that the quality of all incoming shipments are reported and where necessary corrected.

The successful applicant must be qualified to City \& Guilds 224 and will have held a similar position for at least five years.

To apply please send a full CV with details of your current remuneration package to:

Mr Paul Martindale
Daewoo Electronics Sales UK Limited
Daewoo Building, Wharfdale Road Winnersh Triangle, Wokingham Berkshire RG41 5TP

OCHRE MILL Technical Services, Grundig TV spares for most models to 1985, fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton Nr , Malmesbury, Wilts SN16 9DR. Tel: 01666823228

AVO MULTIMETER Model 8, £45.00. 500 volt meters $£ 30.00$. Prices plus VAT and p \& p. Send SAE for lists of Surplus instruments \& Scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 01132496048.

DECODER TO COMPUTER Interface cand with smart card connectors and diagram £9.00. E.M.O. 62 Bridge Street, Ramsbottom, Lans, BL0 9AG. Tel: 01706 823036.

TECHNICAL CAMCORDER REPAIRS requires more clients/contracts. Phone write to the proprietor: Mr Morris, 29 High Plash, Stevenage, Herts. Tel: 01438 359316.

PRIVATE RETAILER has exceilent part exchange colour televisions and videos to clear. Tel: 01494814317

GRUNDIG TELEVISION always wanted any quality. Tel: 01229582557
WANTED PROJECTION Television tubes type ACB 22 R/G/B suitable for Philips models. Tel: 01229 582557/584458.

[LA5SIFIED CLASSIFIED CLRSSIFIED CLRSSIFIED CLRSSIFIED

NEW YEAR BONANZA FOR 60 DAYS 10% DISCOUNT ON ALL ORDERS OVER £10

Diodes - 5p, Transistors NPN/PNP - 20p, High power 60p, LEDs all colours and shapes - 25p, Digital clock displays - $£ \mathbf{2} .50$, RF/TV sound filters - 30p, Capacitors ceramic and mylar - 20p, Electrolitic - 35p, Fixed resistors - 5p, Variable rotary slide and preset types with or without switch - 40p, IF/OSC/Aerial MW/LW/FW/TV sound coils and Spring choke inductor coils - 35p, Loudspeakers 200 mW to 4 watts (rms) 4/8/16/32 ohms various sizes silvertip HiFi - 90p, Transformers 240AC/6/9/12 secondary - £1.40, Audio/Driver/Output/Choke - 40p, Switches slide/rotary/push/tact - 50p, Sockets Chassis and PCB mount earphone/headphone/mains/DC speakers all types - 30p, Ferrite bars/rods - 80p, Telescopic antena Japanese various sizes - $\mathbf{£ 1 . 0 0}$, All types of battery connectors/springs/terminals/plates/doubles 25p, Bulbs small glass $6 / 9 / 12 \mathrm{~V}-30 \mathrm{p}$, Mains leads $B S$ standard - 50p, Various fuses, Cassette decks complete £3.50, Cassette tape heads play/record/erase Japanese 20 types - £2.50, Cassette belts - 30p, High quality DC motors $2.4 / 3 / 6 / 9 / 12 \mathrm{~V}$ CW \& CCW - $£ 1.50$, Vumeters $\mathbf{£ 3 . 0 0}$, Counters - $\mathbf{£ 1 . 5 0}$. Condenser Mic 20 types - 60p, Headphone/Earphone, adaptors - 50p, TV tubes $5^{\prime \prime}$ mono Japanese - $\mathbf{£ 1 0 . 0 0}$, TV tuner UHF - $\mathbf{£ 4 . 0 0}$, Scancoils $\mathbf{£} \mathbf{2 . 0 0}$, Loptxs 7 kv - $\mathbf{£ 3 . 0 0}$, TV/Car adaptors - $£ 1.25$, Oddments, screws/nuts/washers/dialcords/shafts/pulleys/ eyelets/springs etc.
All prices quoted are minimum upwards per one unit and excluding VAT. Postage \& packing $£ 1.50$ (large or bulk orders may varyl.

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM General Trading Tel:01827873311 Fax:01827874835

SPARES + MODERN REPAIRABLE STOCK!

We are currently breaking modern TV's Vidoos (Inc Nicam) + Audio Equipment
Goodmans - Hitachi - Decks Cabinets - Carriage Heads etc

We also supply pallet loads of modern mixed scrap-repairable at ex prices direct from sources

For Further Details Contact:
Trade Disposals
TEL/FAX: 01745337738

FOR SALE

MÜTER, BMR 95 AT2, BMR 700

Best quality test and regenerating equipment at Best prices.
P. E. Services

34 Glan- y-Mor Road, Penrhyn Bay Llandudno LL30 3PF
Tel: 01492549246
Fax: 01492547880

Trade Only	
Televisions	from $£ 5.00$
Teletext	from £20.00
Videos	from $£ 20.00$
Twin Speed	from $£ 25.00$
Minimum	- 10 units
BOURNEMO 0120	$\begin{aligned} & \text { OLESALERS } \\ & 143 \end{aligned}$
For all requir Tel: Fax:	ssified ontact 8339 8931

TV LINE OUTPUT TRANSFORMERS

PHONE: 0181-948 3702 FAX: 0181-332 0583

FULL RANGE OF KONIG: VIDEO HEADS, BELT KIIS, IDLERS, PINCH ROLLERS, TENSION BANDS.
 LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Approx. 1 mile from Kew Bridge.
Mon-Fri 9 am to $12.30 \mathrm{pm} z$
$1.30-4.30 \mathrm{pm}$

SOPWARE

DO YOU RENT TELEVISIONS?

DO YOU STHL USE A CARD SYSTEM?
DO YOU FIND IT DIFFICULT TO KNOW YONR ARREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* total arrears immedialely available
* easy to use and operate

NEW HRR PURCHASE PROCRAMNE NON AVALLABIE AS WEL
These programmes operate on all IBM compatibles running under MS-DOS Free demonstration discs available

WILLIAM J THOMPSON
Donaghanie Post Office Beragh Co. Tyrone Telephone Beragh 58214 (0662 7)

BUSINESS FOR SALE

TELEVISION TUBE REBUILDING PLANT FOR SALE

Ovens - Pumps - Glass work machines-R.F. Heaters - Tension strapping equipment Debanding Equipment Scratch Polishing Machines - Spot Welder Associated Electrical Equipment Phone: 01817660114

TELE/NIDEO/HI FI SALES/REPAIR WITH WORKSHOP (WINDSOR, BERKS) Leasehold lock-up shop till 2002, rent $£ 6 \mathrm{k}$ per annum, excellent position with parking, approx 45 k T/O per annum
Price $£ 25 k$ fully inclusive, with parts and as seen, workshop equipment and spares.

Tel: 01753831608
Fax: 01753733003

[^0]: TV Live Limited, 78 Shepherds Way, Rickmansworth, Herts WD3 2NR
 Providing Satellite News \& Information since 1990
 All calls to all the services above cost 39 p per min cheap and 49 p per min at all other times.
 The Copyright in these services is owned by TV LIVE Limited. No part of these recordings may be reproduced or transmitted in any form without the

[^1]: Published on the third Wednesday of each month by Reed Business Publishing Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Wace Publication Imaging, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by Marketforce (UK) Ltd., 247 Tottenham Court Road, London W1P OAU (0171 261 5555). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

