THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE

SERVICING.VIDEO.SATELLITE.DEVELOPMENTS NOVEMBER $1995 £ 2.35$ New series VCR signal processing

Add 22 kHz tone switching to Pace's PRD

Pinding faults in line outputs

14 Satellite Workshop

Jack Armstrong

The phone brings calls to some odd fault situations.
16 Line Output Stage Fault Diagnosis Ray Porter, M.Sc., C.Eng., M.I.E.E.

An account of basic line output stage operation and the stresses to which the main components are subjected, with notes on breakdown mechanisms and a suggested diagnostic procedure.
22 Inside the Ferguson TX90E Chassis, Part 2
Mark Paul
This time a look at the video signal processing cifcuitry, including the operation of the auto grey-scale system.

26 Domestic Multi-channel TV Distribution Systems,
 Part 2 Bill Wright

How to design a system using cuirrent best practice with channelpass filtering.

39 Satellite Notes

Hugh Cocks
Installation and receiver faults, in particylar cables and the use of an LNB cover.

46 Consumer Electronics at Berliñ
 George Cole

At this year's Berlin consumer electronics show a number of significant developments were presented in practical form, including the new high-density digital discs, digital camcorders and flat-screen displays.

$54 \mathbf{2 2 k H z}$ Tone Switching for Pace PRD Series Satellite Receivers
 John Woolman

The use of Universal LNBs was not taken into account when the popular Pace PRD series receivers were being designed. There is nevertheless capacity in the control system to add this feature, and a simple circuit can be built on Veroboard to generate the 22 kHz tone. Full details of how to incorporate this facility.

REGULAR FEATURES

Camcorner. 30
Help Wanted. 59
Leader. 13
Letters. 51
Long-distance Television:. 36
Next Month in Television. 49
Teletopics 20
Test Case 395. 38
TV Fault Finding. 32
VCR Clinic 42
What a Life! 50

The December issue will be published on November 15 th

COPYRIGHT

© Reed Business Publishing Ltd., 1995. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 44 arre available at $£ 3.50$ each from Video Interface Products Ltd., who can also supply a sevenyear consolidated index on computer disc. For further details see page 55.
Binders that hold twelve issues of Television are available for $£ 5.50$ each from Television Binders, 78 Whalley Road,

Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

Annual subscription rates (inclusive of postage) are as follows: UK $£ 26.00$; overseas $£ 30.00$ (airfreight); Europe $£ 37.00$ (airmail); rest of the world $£ 48.00$ (airmail). Send orders with payment (make cheques payable to Television) to Television, Subscriptions Dept., PO Box 302, Haywards Heath, West Sussex RH16 3WY (UK). Telephone 01444445566.

Subscription hotline for 24 -hour ordering with Credit Card telephone 01622778000 quoting INJ.

NEWSAGENT DISTRIBUTION

Enquiries 0181652 8171, fax 01816528997.
Distributed by Marketforce (UK) Ltd., 247 Tottenham Court Road, London W1P 0AU. 01712615555.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each. For further details see box on page 29.

ISSN 0032-647X

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126
TRANSISTORS / LINEAR ICs

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part \& Price \& Part \& Price \& Part \& Price \& Part \& Price \& Part \& Price \& Part \& rice \\
\hline AAY32 \& 9 p \& 80246A \& Sop \& BFY64 \& 25p \& M 315004 \& 300 p \& 2N1613 24p \& \(3.276115 p\) \& 37p \& \(6502 \mathrm{~A} \quad 360 \mathrm{p}\) \& AN7156 \& p \& 06 \& 3509 \\
\hline AC107 \& 40p \& 80265 \& 45 p \& BFY90 \& 45 p \& M L 2501 \& \({ }^{1009}\) \& 2 N 113113 \& \(\begin{array}{ll}3.0 \& 1109 \\ 50 \& 1300\end{array}\) \& 430 \& 65c02 \& AN7168 \& \& \begin{tabular}{l}
HA13412 \\
H 1342 \\
\hline
\end{tabular} \& 00 \\
\hline AC125
AC126 \& 30 p \& 80267
80269 \& 45 p \& BLY48
BR100 \& 8 \& M 32955
\(M .3000\) \& 550p \& \(\begin{array}{ll}\text { 2N1893 } \& 30 p \\ 2 \mathrm{~N} 2102\end{array}\) \& \(\begin{array}{ll}5.0 \& 1309 \\ 10.0 \& 1400\end{array}\) \& BR886D
\(24 / 600 \mathrm{~V}\) \& \(\begin{array}{ll}6532 \& 2300 \\ 6800 \& 2100\end{array}\) \& AN7178 \& 8 \& \({ }^{\text {Hal }}\) \& 2050p \\
\hline AC12 \& 30p \& 60278 \& 50 p \& 8R103 \& 37 p \& M 33001 \& 100p \& 2N2218A 24p \& 11.0 \& 30 V 43p \& 6802 220p \& AN7254 \& 1500 \& ICL7106 \& 650p \\
\hline AC128K \& 400 \& 80311 \& 100p \& 8R303 \& 85p \& MUE29a \& 300 \& 2N2219 24p \& \(\begin{array}{ll}12.0 \& 120 \mathrm{p} \\ 12.756\end{array}\) \& 2N800V \& 680 5000 \& 77256 \& 250 \& ICL \& \\
\hline \({ }_{\text {AC141K }}\) \& \(45 p\) \& 8 P 314 \& 1000 \& 6S574 \& \({ }^{33 \mathrm{p}}\) \& MUE30A \& \({ }^{0 p}\) \& \({ }^{2 N} 2223\) 23p \& \(\begin{array}{ll}14.756 \& 2000 \\ 150 \& 1800\end{array}\) \& 8R232
2AJ200V \& \(\begin{array}{ll}36808 \& 500 p \\ 6800 \& 5000\end{array}\) \& AN7310 \& \({ }_{900} 90\) \& KA2102 \& 1500
150
150 \\
\hline \({ }_{\text {ACl17 }}{ }_{\text {ACY1 }}\) \& 229 \& 80315 \& 150p \& \({ }_{\text {BT1 }}{ }^{\text {BS }} 100 \mathrm{~A}\) \& \({ }_{700}^{150}\) \& MUE340 \& \({ }^{250}\) \& \(\begin{array}{ll}\text { 2N2222 } \\ \text { 2N2389 } \& \\ \end{array}\) \& \begin{tabular}{ll}
150 \\
24.0 \& \\
\hline 2509
\end{tabular} \& BR34 439 \& 8810 150p \& AN7410 \& H50p \& Ka2206 \& 150p \\
\hline ACY19 \& 489 \& BD331 \& 40 p \& 8T106 \& 180p \& MJE520 \& 30 p \& 2N2484 15p \& \& 2A400V \& 6818 3809 \& AY3.1015 \& 2900 \& Kazzo9 \& 129p \\
\hline AD149 \& \({ }^{60 p}\) \& 80332 \& \({ }^{40 p}\) \& Br109 \& 900 \& MP8112 \& 45 p \& 2 N 2646 \& voltag \& \& \begin{tabular}{ll}
6821 \& 1300 \\
6840 \& \\
\hline 890
\end{tabular} \& AY3 1270 \& 88009 \& KA2210 \& 230p \\
\hline AF125 \& 50p
30 p \& 80361
80362 \& 600
\(60 p\) \& 8T119
B7145 \& \({ }_{\text {gep }}^{\text {T00p }}\) \& MPSA05 \& \(15 p\)
\(15 p\) \& 2N2904 200 \& REGULATOAS \& 620 800 \& \(\begin{array}{ll}6840 \& 2900 \\ 6845 \& 2000\end{array}\) \& AY3-6910 \& 3500 \& Kaz212
KA2213 \& 130 p \\
\hline AF239 \& 309 \& 80370 \& 30 p \& BM79 \& 1400 \& MPSA13 \& 15p \& 2 N 2906 18p \& 7805 \& 6A 200 V \& 6850 \& Ar3*912 \& 400 p \& KA2214 \& 150p \\
\hline \({ }^{881058}\) \& \(18 p\) \& 80371 \& 30 p \& \(8 \mathrm{8U105}\) \& O \& MPSA20 \& 15p \& 2N2907 18p \& 7806 \& T2p \& 8085a \({ }^{8085}\) \& 84301 \& 55 \& Ka2261 \& 100p \\
\hline \({ }^{882058}\) \& 240 \& 8010 \& 50 p \& BU108 \& 1000 \& MPSA42 \& 159 \& \(\begin{array}{ll}\text { 2N3019 } \& \text { 28p } \\ \text { 2N3053 } \& 18 p\end{array}\) \& \(\begin{array}{ll}7809 \& \text { 250 } \\ 7812 \& 250\end{array}\) \& 6A4400V 150p \& \(\begin{array}{ll}8085 \& 500 \\ 8088 \& 430 p\end{array}\) \& 8A311 \& \({ }_{80} 800\) \& Ka2263 \& 1000
\(100 p\) \\
\hline \({ }_{8 C 108}^{8 C 107}\) \& \({ }_{80}\) \& ED433 \& 380 \& Bu109 \& 90p \& MPSA70 \& 15 p \& 2N3054 40p \& 7815 25p \& \(25 \times 100 \mathrm{~V}\) \& 8158 \& BA333 \& 80 p \& KA2284 \& 100p \\
\hline 8 8109 \& 8 p \& BD435 \& 31p \& BU111 \& 100\% \& MPSA92 \& 200 \& 2N3055 38p \& 7818 25p \& Br252 165p \& 24 240p \& 84401 \& 60p \& KA2401 \& 1500 \\
\hline BC109C \& \(10 p\) \& BD436 \& 30 p \& BU124 \& 800 \& MPSA93 \& 200 \& \(2 \mathrm{~N} 3055 \mathrm{H} \quad 50 \mathrm{p}\) \& 7824 \& 25A200 \& 8226 240p \& 88402 \& 50 p \& KA2412 \& 3500 \\
\hline 8C140 \& 200 \& BDa37 \& 28p \& BU126 \& Esp \& MR510 \& 35 p \& 2N3442 \& 7905 25p \& BR254 185p \& 8250 150p \& 84581 \& 3145 p \& A2912 \& 1250 \\
\hline BC 141 \& 200 \& 80438 \& 380 \& 8U180 \& 1000 \& MR856
\(0-28\) \& 369
350 \& \(\begin{array}{ll}\text { 2N3702 } \& \\ \text { 2N3703 } \& \text { 9p }\end{array}\) \& \(\begin{array}{ll}7906 \& 30 p \\ 7908 \& 30 p\end{array}\) \& RR256 200 p \& 8253 180p \& 8. 514 \& 150 p \& La1130 \& 2400 \\
\hline \({ }_{\text {BCL14 }}\) \& 209 \& 80440 \& \(40 p\) \& BU204 \& \({ }_{6}\) \& OC29 \& 2500 \& 2 N 3704 9 \& 7912 30p \& 254800 V \& 8257 220p \& 8A521 \& 100p \& La1150 \& 150p \\
\hline BC147 \& 8 \& 80441 \& 40 p \& BU205 \& 30 p \& OC35 \& 350 p \& 2N3705 90 \& 7915 30p \& BR258 240p \& 8271 \& 84524 \& 2400 \& LA1185 \& 150, \\
\hline \(8 \mathrm{BC149}\) \& 8 \& 8D533 \& 50 p \& 8U206 \& 1000 \& OC36 \& 250p \& 2N3706 \& \(\begin{array}{ll}7918 \& 30 p \\ 7924 \& 300\end{array}\) \& \& \(\begin{array}{ll}8279 \& 270 \\ 8283\end{array}\) \& 8A526 \& \({ }^{1800}\) \& Lat201 \& 140p \\
\hline \({ }_{8 C 159}^{\text {BC159 }}\) \& \% \({ }_{30 p}\) \& 80534
B0535 \& \({ }_{38} 38\) \& 8U208
BU289 \& 70 p \& 0 OC200 \& 1800 \& \(\begin{array}{ll}\text { 2N3710 } \& 12 p\end{array}\) \& 78105 \& \(35 \mathrm{~V} / 100 \mathrm{~V}\) \& 8284 440p \& QA532 \& 1000 \& La1222 \& sop \\
\hline BC171 \& 10 p \& \(8{ }^{\text {85 }} 36\) \& 38p \& bu208ar \& 2000 \& A2008B \& 100p \& 2N3719 12p \& 78L08 \& 8R352 \& \(8287 \quad 26\) \& 84534 \& 2200 \& LA1230 \& 300 \\
\hline \(8 \mathrm{Cl172}\) \& 100 \& B0537 \& 40p \& BU2080 \& 130p \& R20108 \& 100p \& 2N377 85p \& \(78 \mathrm{~L} 12 \quad 24 \mathrm{p}\) \& 35 V 220 \& 8288 星509 \& 8A536 \& 1509 \& CA1364 \& 2009 \\
\hline BC17 \& 14p \& 80538 \& 409 \& 84209 \& \(90 p\) \& S2000A3 \& 1775 \& 2N3772 \& \(\begin{array}{ll}78 L 15 \& 24 p \\ 78218 \& 240\end{array}\) \& 8R354 220 p \& \(\begin{array}{ll}8748 \& 700 \\ 8755 \& 8000\end{array}\) \& 84612 \& 1200 \& 141388 \& \% \\
\hline \({ }_{8 C 179}\) \& 14 p \& 80645 \& 50 p \& \({ }_{\text {BU22 }}\) \& S20p \& S2055A \& \(175 p\) \& 2N3799 18p \& 78124 24p \& BR356 230, \& 8128 \& B4656 \& 1100 \& L41385 \& 1700 \\
\hline BC182 \& 7 p \& BD647 \& \({ }_{50} \mathrm{p}^{\text {p }}\) \& 8U312 \& 90 p \& S2055AF \& 2009 \& 2N3819 29p \& \(\begin{array}{ll}79205 \& 35 p\end{array}\) \& \& 8728 1100 \& 9A8588 \& 350 p \& La2000 \& 150p \\
\hline BC182L \& 7 p \& B0649 \& 50 p \& \(8 \cup 325\) \& 50 \& S2530A \& 100 p \& 2N3903 11p \& 79108 350 \& Brass 280p \& \& bacrs \& 4000 \& Lazaiot \& \({ }_{190}\) \\
\hline BC183 \({ }_{\text {BC183 }}\) \& \(7{ }_{7}\) \& 80675
80676 \& \({ }_{40 p}^{40 p}\) \& BU326a \& \({ }_{60 \mathrm{p}} \mathbf{7 5 p}\) \& \({ }_{\text {T1P29 }}\) \& 729
\(15 p\) \& 2N3906 \& \(\begin{array}{ll}79 L 12 \& 35 p \\ 79 L 15 \& 359\end{array}\) \& 8Y764 1.5N \& LINEAR \& \({ }^{\text {BAA1310 }}\) \& 1800 \& L43160 \& 1209 \\
\hline BC184 \& 7 p \& BD677 \& 38 p \& BU406D \& \(85 p\) \& TIP29A \& 22 p \& \(2 \mathrm{~N} 4401-120\) \& LM3 309K 100p \& 100V 409 \& AN203 2100 \& 821320 \& 780 \& 143210 \& \({ }^{65 p}\) \\
\hline BC1842 \& 7 p \& 8D878 \& 40 p \& 8u407 \& 55 p \& TP29C \& 25 p \& 2Na403 12p \& LM317 1000 \& 1.5 \& AN210 153 \& 8A1330 \& 120 p \& La3300 \& 1409 \\
\hline \({ }_{8 C 212}\) \& 7 P \& \({ }^{80679}\) \& 40 p \& Bu4070 \& 750 \& TP23E \& 400 \& \(\begin{array}{ll}\text { 2N5061 } \& 20 \mathrm{p} \\ \text { 2N5088 } \& 200\end{array}\) \& \& 40 p \& \({ }_{\text {AN228 }}{ }^{\text {AN2 }}\) \& 8A4403 \& \({ }_{220 p}\) \& L43361 \& 1000 \\
\hline \({ }_{\text {BC213 }}\) \& 78 \& BD681 \& 45 p \& BU408D \& 759 \& TIP30C \& \(25 p\) \& 2N5192 50p \& 79H12KC 700p \& \& AN252 150p \& 845101 \& 350p \& La3375 \& 300p \\
\hline BC213L \& \(7 p\) \& BD68 \& 45p \& BU409 \& \(85 p\) \& TP31A \& 220 \& 2 2N5241 500p \& T9HGKC 800p \& THuACS 0 \& AN259 250p \& 8A5302 \& 140p \& L44030 \& 1800 \\
\hline \(\mathrm{BCO}^{14}\) \& 7 P \& 8D705 \& 50p \& BU426a \& 700 \& np31c \& 27 p \& 2N5245 45p \& \& ncreod 60p \& ANz63 \({ }^{\text {a }}\) \& 885203 \& 2000 \& LA+31 \& \\
\hline \({ }_{8 C 237}\) \& 78 \& BD707 \& 50 \& BU505 \& 900 \& \({ }_{7 P 3} 712 \mathrm{~A}\) \& 24 p \& 2N5296 30p \& valves \& 69p \& ANV274 250p \& BA5406 \& 1800 \& L44051 \& 160 \\
\hline BC238 \& 7 p \& \(8 \mathrm{B711}\) \& 50 p \& BU505D \& 990 \& TP32C \& 28 p \& 2N5448 12p \& Daf96 100p \& 6A 400 V \& AN301 330p \& QA5409 \& 180p \& La4100 \& \(85 p\) \\
\hline BC239 \& 7 p \& 80736 \& \(50 p\) \& 8U505DF \& \(90 p\) \& Tp33 \& 50 p \& \(2 \mathrm{N6107}\) - 40 p \& OY87 80p \& 71c2260 888 \& An303 250p \& 8A6194 \& zsp \& L44101 \& 80 \\
\hline BC300 \& 20 \& 8D826 \& 50 p \& 8u506 \& 1000 \& \({ }_{7 P 34}\) \& \({ }_{500}\) \& 2N6292 \({ }_{2}\) \& \(\begin{array}{ll}\text { EBF80 } \& 60 p \\ \text { ECCS4 } \& 80 p\end{array}\) \& \& \(\begin{array}{ll}\text { AN304 } \& 350 p \\ \text { AN315 } \& \text { 210p }\end{array}\) \& 846208 \& 1750 \& Las1io \& 1200 \\
\hline \& 200 \& \({ }^{\text {BDP828 }}\) \& 50 p \& 8U5060 \& 1700 \& \(\mathrm{TPP34}_{\text {7Pa }}\) \& \({ }_{600}^{600}\) \& \(\begin{array}{ll}\text { 2N6385 } \& 1209 \\ \text { 2N8403 } \& 160 p\end{array}\) \& \(\begin{array}{ll}\text { ECC34 } \\ \text { ECH34 } \& \text { 90p } \\ \end{array}\) \& 12 L 400 V 85p \& \({ }_{\text {AN316 }}{ }^{\text {AN3 }}\) \& BA6304 \& 1200 \& Lasizo \& \\
\hline \(\mathrm{BCO}^{1} 3\) \& 200 \& BD897 \& \(50 \%\) \& BU508A \& 700 \& 7P35C \& 65p \& \& ECL84 1000 \& TIC2460 105p \& AN 360 100p \& 846305 \& 140p \& La4140 \& 60p \\
\hline \({ }^{\text {BC304 }}\) \& 25p \& 8D8ss \& 500 \& bu508AF \& 95p \& TP36C \& 85 \& RECTIFI \& EF183 750 \& 164400 V \& An362 140p \& 8A6430 \& 2200 \& L44160 \& 1000 \\
\hline \(8 \mathrm{BC327}\) \& 70 \& 8Dg7/ \& \(50 p\) \& 8U5090 \& 909 \& TP41A \& 200 \& DVODES \& EF184 85p \& TIC2530 190p \& AN366 150p \& \({ }^{8164993}\) \& 20p \& Lat82 \& 1809 \\
\hline \(8 \mathrm{BC328}\) \& 78 \& BDx33 \& 600 \& Bu508DF \& 1150 \& TIP41C \& 220 \& BY127 8p \& EY88 \& 17 T 2630 D 205 p \& AN3312 350p \& 8A7009 \& 1500 \& La4122 \& 1409 \\
\hline 8.337
\(B C 338\) \& 7p \& BDXES
aDW24 \& \(80 p\)
50 \& BU508V \& 1000 \& TP42C \& 20 \& \({ }_{\text {8Y } 133}\) \& EY87 70p \& 25A/400V \& AN3821K 800p \& 8A7004 \& 2000 \& LA4200 \& 130 p \\
\hline \({ }^{8 C 441}\) \& 28p \& sDW93 \& 500 \& BU526 \& 75p \& TP47 \& \(40 p\) \& BY164 40p \& 88 \& \& AN3822K 600p \& BA7007 \& \(200 \%\) \& La4z01 \& 1200 \\
\hline 8C446 \& \({ }^{8 p}\) \& 80W94 \& 500 \& BU536 \& 100 \& T1P48 \& 40 p \& OY479 35p \& PC37 \& THYFdSTORS \& AN3990K \({ }^{\text {AN309, }} 3000\) \& aA7021 \& 1800
350 \& la4260 \& 230\% \\
\hline 3C477 \& \({ }^{18 p}\) \& 8DY92 \& \({ }^{1000}\) \& 8U546 \& \({ }_{1250}^{125}\) \& TPP5 \& 80p \& \begin{tabular}{ll}
BY184 \\
BY206 \& 32p \\
\hline 110
\end{tabular} \& \(\begin{array}{ll}\text { PCC85 } \& 100 p \\ \text { PCF80 } \& 1000\end{array}\) \& 2N5061 20p \& \& BA77515 \& 150 p \& L44270 \& 3000 \\
\hline OC537 \& \({ }_{25 p}\) \& \({ }_{8 F 167}\) \& \({ }^{30 p}\) \& \(8 \cup 625\) \& 1200 \& TP95 \& \({ }_{80 p}\) \& BY207 9p \& PCr801 1100 \& 0.84/60V \& AN5033 400p \& BA7752 \& 250p \& Las420 \& 160p \\
\hline BC546 \& 8 p \& BF181 \& 18p \& \(8 \cup 705\) \& 130 p \& TiP54 \& 85p \& BY227 19p \& PCF896 115p \& TIC168C 59p \& AN5132 250 \& BA7755 \& 1500 \& La4423 \& 1300 \\
\hline 8C547 \& 8 p \& BF183 \& 200 \& 8U706D \& 175 p . \& TPP105 \& 65p \& \(8 Y 228\) 23p \& PCH200 100p \& 8A3300 \& AN5150 400p \& 8AT767a \& 1559 \& La4430 \& 1309 \\
\hline \begin{tabular}{l}
BC548 \\
\hline \(8 C 549\)
\end{tabular} \& \(8 \mathrm{8p}\) \& BF 195
\(8 F 199\) \& 7p \& BU706F
Bu801 \& \(150 p\)
\(70 p\) \& TPP106 \& \(65 p\) \& (180 \& \(\begin{array}{ll}\text { PCL81 } \& 859 \\ \text { PCL82 } \& 30 p\end{array}\) \& \& \begin{tabular}{|ll}
ANS751 \& A00p \\
AN5215 \& 1000
\end{tabular} \& \({ }^{\text {ca }}\) CA3011 \& 1100 \& L44445 \& 1550 \\
\hline - \(\mathrm{BC550}\) \& 8 p \& BFF200 \& 8pp \& \(8 \cup 806\) \& \({ }^{70 p}\) \& TP110 \& 40 p \& \(\begin{array}{ll}\text { BY448 } \& \\ \\ \text { B } 40 \mathrm{p}\end{array}\) \& PCLIS4 600 \& TC1280 75p \& AN5256 150p \& CA3052 \& 190p \& L44460 \& 120p \\
\hline BC556 \& 8 p \& BF225 \& 30 p \& BU807 \& 60p \& TP111 \& \(40 p\) \& B7x10 15 \& Pel200 110p \& 124/400V \& AN5222 675 \& ca3054 \& \& - 4.4561 \& 1200 \\
\hline BC557 \& 7 p \& \({ }^{\text {Br240 }}\) \& \({ }^{16 p}\) \& Bug02 \& 170 \& 7P112 \& 35 p \& \& \(\begin{array}{ll}\text { Pl36 } \& 1200 \\ P 183\end{array}\) \& THC126M 900 \& \begin{tabular}{ll}
AN5265 \\
AN5352 \& 800 \\
\hline 000
\end{tabular} \& CA3385
CA3083E \& \({ }_{2000}^{1350}\) \& L44505 \& \\
\hline 8.5588
\(8 C 559\) \& \({ }_{8 p}^{8 p}\) \& \& 25p \& BU903
84920 \& 1109
1000 \& \({ }_{\text {TP112\% }}\) \& \({ }_{30}\) \& \& P184 \& Closo 280 \& AN5411 450p \& CA3089E \& 150 p \& LA4508 \& 2009 \\
\hline \({ }_{8 C 560}\) \& 9p \& 8F255 \& 12p \& BU922 \& 1100 \& TIP116 \& 30 p \& OA91 10p \& PL95 180p \& 4N400 \& AN5421 180p \& Ca3090a \& 250 p \& LA4510 \& 5009 \\
\hline BC637 \& 200 \& BF256 \& \(12 p\) \& BU930 \& 130p \& TP117 \& 300 \& OA202 10p \& Pr81 \& 88103 37p \& ANS 429 200 \& CA3130S \& 1000 \& L4A520 \& 1700 \\
\hline \(8 \mathrm{C633}\) \& \({ }_{200}\) \& \({ }^{\text {BF257 }}\) \& 18 l \& BU2509a \& 1300
1300 \& TP120 \& 370 \& IN4001 30, \& PY500A 190p \& \(\begin{array}{cc}\text { 8R303 } \& \text { 85106 } \\ \\ 1809\end{array}\) \& AN5515 150p \& CA3140E \& 389 \& LA4555 \& 1209 \\
\hline 8Cr33 \& 2000 \& 8F262 \& 25p \& BU25080 \& 130p \& TP122 \& 300 \& IN4003 3p \& \& 87119 \& AN5520 550p \& CA3150 \& \({ }^{850}\) \& 44570 \& 1300 \\
\hline 8CY34 \& 2000 \& BF270 \& \(18 p\) \& BU25089F \& 150,9 \& TIP125 \& 300 \& 1N4004 3p \& LED \& 17098 200p \& AN5321 \& Ca3189E \& 2300 \& LA5112 \& 2000 \\
\hline 8 BCY 70 \& \(18 p\) \& B273 \& \(15 p\) \& bu2520af \& \({ }_{2250}^{2250}\) \& T1P126 \({ }_{\text {TIP127 }}\) \& 409 \& IN4005 \& 3 mm \& \(\begin{array}{ll}17089 \& 2009 \\ 17127 \& 2009\end{array}\) \& \begin{tabular}{|ll}
AN5612 \\
AN5613 \& 2000 \\
2000
\end{tabular} \& CA3193E \& 12300 \& \(\stackrel{\text { LA5523 }}{ }\) \& 150p \\
\hline BCY71 \& \({ }_{18 p}^{160}\) \& \({ }_{\text {8F311 }}^{\text {8F336 }}\) \& \({ }_{20 p}^{21 p}\) \& BU2520DF
BU2525AF \& 2250 \& \(7 \mathrm{TP130}\) \& 350
30 \& IN4007 \& YEUNOW 8p \& 15880H 2300 \& AN5615 300\% \& CA3290E \& 150p \& LA5700 \& 300p \\
\hline B0115 \& 30p \& 8F337 \& 209 \& BUH515 \& 200p \& TP131 \& 30 p \& INA148 2p \& GREEN \% \& 15/85R 2300 \& AN5620 250p \& cx108 \& 9500 \& LA7017 \& 2200 \\
\hline BD1249 \& 500 \& \({ }^{87338}\) \& 200 \& Butilaf \& 55 \& T1P132 \& 30 p \& N5400 90 \& 50nm \& \& AN5622 4050 \& CX136
CX1394 \& \({ }_{7500}\) \& L47042 \& \({ }_{2800}\) \\
\hline \begin{tabular}{l}
BDI \\
8Di32 \\
\\
\hline
\end{tabular} \& \({ }_{250} \mathbf{2 5}\) \& \({ }_{\text {BF3s }}{ }_{\text {BF3 }}\) \& 30p \& Surt2 \& 800 7 \& TPP142 \& \({ }_{\text {\% }}^{50}\) \& (1N5401 \& YELLOW \& \& AN5 212 1800 \& Cx141 \& T00 \& La7046 \& 3009 \\
\hline 80133 \& 500 \& BF371 \& \(17 p\) \& BU18 \& 80 p \& \(7 \mathrm{TP145}\) \& 50p \& IN5403 \& GREEN \%p \& COMPUTERIC: \& AN5722 \(\begin{array}{ll}\text { AN5730 } \& \text { 140p } \\ \text { AN0 }\end{array}\) \& CX145
\(\mathrm{CX1508}\) \& 7250 \& La7224 \& 150\% \\
\hline 80135
80136 \& 200 \& BF421
B4422 \& \({ }_{21 p}^{18 p}\) \& 8U8AF \& 800
1509 \& \({ }_{\text {HP147 }}\) \& 80p \& (1N5405 \& \& 2BOACPU 100p \& AN5732 120 \& Cx175 \& 3250 \& LA7507 \& 2500 \\
\hline BD137 \& 200 \& BF423 \& 259 \& Bux11 \& 2000 \& TP150 \& 90 p \& 1 N 5406 12p \& \[
\begin{aligned}
\& \text { RECT } \\
\& \text { LEDE }
\end{aligned}
\] \& Zgaadma 200 p \& AN5753 1300 \& \({ }^{\text {cxa }}\) \& 8 \& La7520 \& 2000 \\
\hline 8D138 \& 200 \& 8 F 455 \& 12 P \& BUX12 \& 1500 \& 7 TP 151 \& \({ }_{50} 50\) \& IN5407 \& \& \(289 A C T C\) \& AN5763
AN5790
A \& Cx3014
\(\mathrm{C} \times 367\) \& \& La7620 \& \({ }_{900}\) \\
\hline 80139
BDi40 \& 200 \& 8F459 \& 190 \& Bux20 \& 350
4500 \& 7P2955 \& 50p \& \& \({ }_{\text {RED }} 5 \times 2.5 \mathrm{mma}\) \& 280AS10-1 \& \({ }^{\text {AN5791 }}\) \& C×898 \& 525p \& LA7801 \& 100p \\
\hline BD144 \& 90 p \& 8F471 \& 289 \& BUx 22 \& 450\% \& TIPL763A \& 200p \& RGP30 18p \& YELIOW \& \& 75107 859 \& AN5836 4500 \& cxa7 \& 3009, \& L47802 \& 300p \\
\hline BD157 \& 38 p \& BF472 \& 290 \& 8Ux37 \& 2200 \& TPIT91A \& 80 p \& \& GREEN 8p \& 75110 \& AN5990 1309 \& HA1125 \& 120 p \& 147888 \& 2800 \\
\hline 80 \& 300 \& \({ }^{\text {Bra }}\) \& 30p \& Buxal \& 2100 \& TIS90 \& 15 \& SKE4F2110 100 \& \& 75122 1100 \& AN6247 2000 \& HA1199 \& 1300 \& La7820 \& 100p \\
\hline \(8 \mathrm{BD177}\) \& 30 p \& BF495 \& \(16 p\) \& BUX42 \& 200 p \& HS93 \& 20 p \& SR2M 60p \& OPTO \& 75154 \& AN6270 400, \& H41319 \& 2000 \& L47823 \& 2000 \\
\hline 80179 \& 32p \& 8F595 \& 16p \& BUX47A \& 2209 \& VK1010 \& 88p \& \& \& 75162 7000 \& AN6300 600] \& HA1338 \& 3000 \& La7910 \& 150 p \\
\hline 80181
80182 \& 459 \& \(8 F 59\)
\(8 F 615\) \& 16 p
30 p \& BUx48A
Bux \& 1509
1800 \& VN10KM \& \({ }_{110}^{60 p}\) \& 1.C. SOCKETS \& \& \(\begin{array}{ll}75162 \& 95 p \\ 76183 \& 95 p\end{array}\) \& \(\begin{array}{ll}\text { AN } 6306 \\ \text { AN } 620 \& 380 \\ \& 1300\end{array}\) \& HA1339A
HA137 \& 3000 \& LC7131 \& 2060 \\
\hline 80182 \& 800 \& 8F615 \& 30 p
30 p \& Bux80
Bu
P4 \& 1800 \& (\({ }^{21 \times 107}\) \& 110 \& 8 PIN \(5 p\) \& AN203 2100 \& 75195 185p \& ANG332 3200 \& HA1398 \& 320 p \& LC7132 \& \(400 p\) \\
\hline 80187 \& 30 p \& \& 40 p \& BUX85 \& 50 p \& 21x109 \& 12 p \& 14 PIN \& \& 2114 150p \& ANE341 200p \& HA1389 \& \(210 p\) \& LC7137 \& 4509 \\
\hline 80201 \& 33p \& 8F763 \& 400 \& BUX88 \& 30 p \& \(\underline{1 \times 212}\) \& 20p \& 16 PIN 7p \& \& 2532 200p \& AN6344 400 \& Hat3g2 \& 1200 \& 15347 \& 119 \\
\hline BD220 \& \({ }^{38}\) \& \(8 \mathrm{BF77}\) \& 22p \& BUX87 \& 50 p \& \(27 \times 300\) \& 100 \& 18PN \({ }^{\text {din }}\) \& REECTIERS \& 2716 \& ANG350 610p \& HA1394 \& 1700 \& LF353 \& 480 \\
\hline 80203
80204 \& 420 \& BF871
8 F960 \& 22p \& BUXS8A \& 35000 \& \(\frac{27 \times 301}{21 \times 302}\) \& \({ }_{100}^{160}\) \& 22PIN \({ }_{\text {2PIN }}\) \& woos 16p \& \(\begin{array}{ll}2732 \& \\ 2732 \mathrm{~A} \& 2000 \\ 220 \mathrm{p}\end{array}\) \& AN6359
ANG360

3009 \& H41397
$H-13988$ \& 200p \& ${ }^{1}$ \& 700

\hline 80222 \& 31 p \& ${ }_{\text {BF961 }}$ \& 350 \& BUY1 \& 2500 \& ZTX303 \& 20 p \& $24 \mathrm{PIN} \quad 16 \mathrm{p}$ \& 3ASOV \& 2764 150p \& AN6362 400p \& HA11219 \& 290p \& Li398 \& 3009

\hline 80225 \& 31 p \& Qf964 \& 38 p \& BUZ19 \& 2000 \& $2 \mathrm{C} \times 304$ \& 100 \& $28 P 1 \mathrm{~N}$ 16p \& W01 18p \& $27 \mathrm{C64} \quad 2000$ \& ANG371 3500 \& MA11221 \& 1800 \& LM301 \& ${ }_{350}^{26 p}$

\hline 80232 \& 31 p \& Bffiso \& 85p \& BUZ77 \& 75p \& $\underline{21 \times 320}$ \& 20 p \& $40 \mathrm{PIN} \quad 18 \mathrm{P}$ \& 1A100V \& $\begin{array}{ll}27128 & 150 p \\ 27256-25 & 1500\end{array}$ \& $\begin{array}{ll}\text { AN } 6387 \\ \text { AN6884 } & \text { 2800 } \\ & 2000\end{array}$ \& HA11235 \& 1300 \& LM319 \& 165p

\hline 80233 \& 300 \& $8 F R 91$
8743 \& 950
300 \& BU280

BY4s8 \& $\xrightarrow{2009}$ \& | 27x501 |
| :--- |
| 21×502 |
| |
| 1050 | \& 139 \& \& W/A200V 19p \& ${ }_{27512}$ \& ANTIO5 170p \& HA11251 \& 190p \& LM324 \& 300

\hline BD235 \& 28p \& 8FXZ9 \& 20 p \& BYT11 \& 250 \& 2TX503 \& 18p \& ZENERS \& Wes 21p \& 4116 40p \& AN7110 75p \& HA11423 \& 140p \& La33352 \& 1200

\hline 80236 \& 30p \& BF884 \& 20p \& C1060 \& 29 p \& 21X504 \& 25p \& 400 mWasts \& TA/400V \& 4164.15 800 \& AN7114 1200 \& HA11724 \& 6509 \& LM339 \& $35 p$

\hline BD237 \& 21p \& $8 \mathrm{~F} \times 85$ \& 20p \& IRF630 \& 150p \& 2N696 \& 26 p \& 2 V 1039 V 5p \& Wos 23 s \& 4164-12 \& AN715 ${ }^{\text {AN7115 }}$ \& HA12002 \& ${ }_{2200}^{2200}$ \& LM3488 \& ${ }^{50 p}$

\hline 80238
80239 \& 249
300 \& \& 15p \& ${ }^{J 1746}$ \& 38p \& 2N697 \& 220 \& \& 1/feaOV
W08 \& (1256-15 \& $\begin{array}{ll}\text { AN7116 } \\ \text { AN7120 } & \text { rop }\end{array}$ \& HA12003
Hal2005 \& 250p \& LM389 \& 80

\hline 80239 \& 300 \& ${ }^{81}$ \& 60p \& ${ }^{\text {M }}$ M 1900 \& 2009 \& 2N788 \& 20 \& 24tossh sp \& 3arbon en \& 41256 -10 110p \& AN7130 75p \& HA12017 \& 1000 \& LM381 \& 1509

\hline 80241A \& 40 p \& 8 F 50 \& 14p \& M 11000 \& 2000 \& $2 \mathrm{Na914}$ \& ${ }^{28 p}$ \& Caystals \& 8R810 ${ }^{23}$ \& $4145412 \quad 150 \mathrm{p}$ \& AN140 179 \& HA13001 \& 8109 \& LM3322 \& 1300

\hline 80243A \& ${ }_{50} 5$ \& 8FY51 \& 14p \& $\mathrm{MLS}_{\text {M } 1003}$ \& 2009 \& 2N930 \& 18p \& Cavsials \& 2N100V 3882D \& $\begin{array}{ll}6116 \\ 5264.10 & \\ \\ 2000\end{array}$ \& $\begin{array}{ll}\text { AN7145 } & 1950 \\ \text { ANT146 } & 2100\end{array}$ \& HA13002
HA13006 \& 2009 \& LM 3836
LM337 \& ${ }_{1000}$

\hline 80244
80245 \& 50p
50p \& BFY52
BFY \& ${ }_{259}^{149}$ \& - \& 300
250% \& 2N1731 \& ${ }_{28 p}^{28 p}$ \& (880p \& 2A8200V 33p \& $\begin{array}{ll}6264.10 & 2109 \\ 62256-12 & 300 p\end{array}$ \& AN7154 1800 \& HA13007 \& 400p \& LM393 \& ${ }_{4}{ }^{0} \mathrm{p}$

\hline
\end{tabular}

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 10,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

Please send £1 P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Ouotations given for large quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.

TV \& video parts sold are replacement parts.
 Access \& Visa Card accepted

LINEAR ICs / JAPANESE TRANSISTORS

Part	Price	Part	Price	art	ric	Par	Pric	ar	Pric	Par	ric	Par	fic	ar	ric	Par	ic	art	rice
LMA31		STK	${ }^{680} 0$	$\sin _{c}$		STP30115				TDA	125	TDA				$58 \mathrm{H}$		2S4937	
	${ }^{45 p}$	STK443 STKas7	470p	STKS431 STK5434	$\begin{aligned} & 50 \mathrm{p} \\ & 70 \mathrm{p} \end{aligned}$	STR30120 STR30123	$400 \mathrm{p}$	TA8132 TA8205	$200 p$	TDA1576 TDA1578	$170 \mathrm{p}$ $210 p$	TDA3590 TDA3597	$300 \mathrm{p}$	TDA8172 TDA8173	$\begin{aligned} & 170 p \\ & 250 \mathrm{p} \end{aligned}$	UPC1178H UPCI180C	$\begin{aligned} & 750 \\ & 2500 \\ & 20 \end{aligned}$	2SA939	$\begin{aligned} & 20 \mathrm{p} \\ & 100 \mathrm{p} \end{aligned}$
LM7410	18 p	STK459	6760p	STK5436		STR30123	450p 550	TA3205	2500 3000	TDA1579	2100 2000	TDA3597	360 p 350 p	TDA8873	2800 3000	UPC1180C UPC1 185 H 2	$\begin{aligned} & 200 \mathrm{p} \\ & 400 \mathrm{p} \end{aligned}$	2SA990	50p 600
LM74ME	\%	STK460	6800	STK5461	0 p	STR30130	250p	TA8215	3000	rDA1596	2000	toaz640	3500	TDAB175	300p		${ }_{800}$	2SA949	700
LM747	550 3000	STK451 STK463	${ }_{6200}$	STK5451	Op	STR40090 STPA1090	3509	TA8216H	3759 3500	TDA159	2509	tDA3651	200p	toas178	4009	PC118	1509	2SA950	$18 p$
LM1894N	200 p	STK465	720 p	STK5462		STR41090	400p	tasagin	5500	TDA1600	2750 $230 p$	toa3652	500 p 8000	TDA8185	3000 2000	UPC 1188 H	${ }^{350}$	2SA952	${ }_{600}^{500}$
LM3900	400	STK501	550	STK5464	$300 p$	STR45111	550 p	TA8718i	S50p	TDA1675	$250 p$	TDA3653	1500	TDA8191	4890	UPC1198\%	2000	2SA954	75
1 M 3909	1009	STK561	450 p	STK5466	s00p	STP50020	450 p	TAA550	25%	tDai701	300p	TDA3654	90p	TOAB192	275p	UPC1222	130p	2SA958	p
LM3914	1600	STK563	4150	STKS457	400	STR50092	550p	TBA120S	40 p	tDA17n1	250p	tDa370	300 p	TDAB1	150 p	UPC1225	220p	2SA963	120p
LM3915	1600	STK593	500	STK 5468	3000	STR50103A	A 280 p	T8A396	70 p	TDA1870a	$200 p$	TDA3720	175	TOA92148	2250	UPC1z30	200 p	2SA965	40 p
${ }_{1}^{2} 1200$	2700	STK760	600 p	STK5471	3300	STR50113-	500p	T8A520	120 p	T0A1872A	235p	TDA3724	5000	TOAB2:58	300p	UPC1238	1200		35 p
M4918B	5000	Stri728	4800	STK5476		STRS 1041	5000	TBA540	90p	TDA1904		tDa3730	500 p	${ }^{\text {TDAP8303 }}$	350	UPC1270H	250 p		5p
M494		STK780	575p	STK5478	3800	STR50213	5000	T8A560	90p	TDA1908A	90 p	tDa3740	480 p	TDAB305	500\%	UPC1277	2400		25p
M50115P	320p	STK1039	460 p	STK5479	3000	STR53041	500 p	T8AB00	40p	TDA1910	225 p	IDA3750	4009	TDAB340	200\%	UPC1278	${ }_{240}^{240}$	2SAS94	$35 p$ $25 p$
M5017P	500p	STK1040	8400	STK5481		STR54041	${ }^{3500}$	teabioas	40p	TDA1940	180p	tDA3760	3509	TDA8341	2500	UPC1288V	2300	2SA985	60 p
M50113P	525 p	STK1049	7000	STK5482	285p	StR55041	500p	TBA820	55p	TDA1941	300p	TDA3771	460 p	tDA8330	200 p	UPCi299V	320 p	254988	250
${ }_{\text {M }}$	30	STk1050	${ }^{65000}$	STK5483	0	STR56041	00	TBAB20M	5p	TDA9950		TDA3791	3000	IDA83904	${ }^{850}$	UPC1318	300 p	2SA992	30p
8150796 M5079	600p	STK1070	8050p	STK5488		STR5S041 STR59043	325p	TBA920	100p	TDA2002	${ }_{\text {85P }}$	IDA3300	350 500	TDA8405	550p	UPC138	320 1150	2SA993	500 300
M51161	3000	STK1080	9400	STK5490	4500	STH60001	525 p	184990	60 p	TDA2004	150 p	tDA3910	200,	TDA8413	550p	UPC1363	190p	2SA1006	0\%
MS1381P	2000	STK2025	6200	STK5632		STRE1001	550 p	TC5020	2000	TDA2005	150p	TDA3825	225 p	TDA8427	500p	UPC1353C	300 p	2SA1006	125p
M51387P	8000	STK2028	5009	STK5725	450p	STRP0145	550 p	TC5081/	80 p	TDA2006	70 p	TDA3840	3000	TDA8245	500%	UPC1354C	350p	2SA1009	$200 p$
M51848	1500	STk2029	4800	STK5730	00	STR81445	${ }^{00 \mathrm{p}}$	TC9106	500 p	TDA2007	120 p	TDA3843	200 p	TDA8A32	5500		250p	2SA1010	25p
M54523P	200	STK2048	950p	STK63248	50	STRDİisob	${ }_{6000}$	TC9134	7500	TDA2009	1600	TDA3855	3250	TDAB433		UPC1370	$300 p$	2SA1019	${ }^{30 p}$
	200	STK21	55	STK6431	0	STRO1706	4500	TC9142	320 p	TDA2010	150p	TDA3857	350 p	TDasss 2	200	UPC1377C	2000	2SA1013	
${ }^{\text {A458484 }}$	500p	SIK2125	580p	STK6722		STRD1806	400 p	TCS143	300 p	TDA2020	120p	TDA3950	225p	TDAS443	350 p	UPC1378	180 p	2SA1015	15 p
M51516	2600	STK2129	610p	STK6732	1000\%	STRD1816	400 p	JC9145	150p	IDA2030	800	TDA4050	150p	TDAB459	400p	UPC138	110 p	2SA1016	30 p
M51518	2000	STK2139	675p	STK6822	900p	STRD303	3000	TC9148	200%	tDA2040	1409	tDac092	350 p	TDAB452	200p	UPC1384	425 p	2SA1018	1000
M83712	140 p	STK2155	900p	STK6922	5000	STRDE412	500p	TC149	225p	TDA2048	6000	TDA4100	225 p	TDA8453	350 p	UPC1387C	250 p	2SA1020	30 p
M83713	1300	STk2330	\%p	STK5932		STRO45	4009	TC9150	425	TDA2054,	100	TDA4180	145 p	T0Assig	350 p	UPC1394	1200	2SA1021	35p
M83714	270 p	STK2240	740 p	STK6992	2750	TA7054	190p	TC9152	425p	TDA210	2500	toacigo	$180 p$	TDAB702	2750	UPC13		2SA1023	Op
Ne3715	${ }_{280 p}^{250 p}$	STK2250 STK3041	650p	STKGE972		TA7061	1159	TC9159	300 p	TOA2148	3509	TDAS200	3600	TDAB7O3	soop	UPC1403CA	${ }^{6500}$	2SA1026	p
M83730	160p	STK3042	3750	STK6988	600	JA70	${ }^{1200}$	${ }_{\text {TCGIV3 }}$	375p	TDA15170	2750p	TDA4282	3200	TDAB7G8 TDAB732	9000 4000	UPC1420	450\%	2SA1029 2SA1036	${ }_{60 \mathrm{p}}^{60}$
M83731	220 p	STK3044	500p	STk7216	4200	TA7119	150p	TC9164	400p	tDA 2220	200 p	TDA4290	200 p	tDa9045	400 p	UPC1423C	550p	${ }^{2 S A 1037}$	p
м83758	${ }^{1600}$	STK3062		S1K237	0 D	TA7120	P	TCS172P	${ }^{300 p}$	TDA2270	2500	TDA4400	195	TDA906	550 p	UPC1470	200p	2SA1038	0
M88719	${ }_{360} 200$	STK3082	53	STKJ225		TA7137	${ }^{600}$	TCA9940	${ }^{1000}$	TDA3320	${ }^{80}$	TDA4420	1200	tDas	1800	UPC1488H	150p	2SA1048	Sp
MC14	450.	STK315211	900 p	STKJ251	500p	TA7157	$100 p$	1062308A	200p	TDA2503	200p	TDA4426	300p	TDAS503	300p	UPCC505C	${ }^{400} \mathrm{p}$	2SA1051	300p
MC1496	65 p	STK3156	500p	STK7308	3500	TA7193	320p	TD62382	200p	TDA2504	200p	TDA4a27	200p	TEA 1002	6500	UPC1515C	250p	2SA1069	150p
MC340	45p	STK4017	40	STK7309	4009	TA7200	200p	TD62506	200 p	TDA25	300	tDA4431	150p	TEA1007	1200	UPC1520C	250p	2SA1078	230p
NES55	20 p	STK4019	480	STK7310	470	TA7205	110	TD62705	250 p	tDa25	500 p	TDA437	300	TEA10	100p	UPC153	550 p	2SA1077	00\%
NE556	${ }_{400}$	STK4021	${ }^{380}$	STK7348	4000	ral207	150 p	TD6304AP	${ }^{30}$	TDA2510	4500	TDA4439	${ }^{2209}$	TEA1017	28000	ZN423	1000	2SA1081	30 p
NESE5	${ }_{110}^{80}$	STK4024		S7CO356	425	TA7208	${ }^{125}$	TD6306P	3500	IDA2534	500 p	TDA4	180	IEA1019	${ }^{130} p^{\text {p }}$	ZN424	${ }^{1000}$	2SA1082	80
	125	STK4026	48	STKT402	00p	TA7217	145p	TD6359P	300p	TDA2530	450	TDAS443	2200	TEA1024	1509 3000	ZN425		2SA1084 2SA1085	750
NE571	2900	STK4028	5500	St\%r404	4000	TA7220	220 p	TDA1001	200 p	TDA2532	120 p	tDa4445	220	TEAIO	225 p	ZN427	580 p	2 SA1093	¢0p
NE592	p	STM403211	510p	STK7406	65	TA7222	900	TDAT002	2000	TDA2540	85p	TDA44	225	TEAIOE	150p	ZN429	215p	2 SA1094	1900
NE5532P	${ }^{1400}$	STK4038	4700	STTV408	5	A7223	z10p	TDAT003	${ }^{150}$	TDA2541	120p	toasa	250	TEA8080p	170p	ZN459	190p	2SA1095	300 p
SAA1006	300 p	STK4038	68	STK7410		TA7225	${ }^{300}$	TDA1005A	175p	TOA2542	110p	TDA4453	275p	TEA1087	40 p	ZN1040	840 p	2SA1096	80p
SAA101	450 p	Stik404011	6509	STK755a		TA7276	2900	TOA1010A	80 p	TDA2543	2100	TDA4480		TEA1101	${ }^{425}$	ZNA134	2350p	2SA1102	130p
SAA102	25	STK4043		ST	1000	TA7230	1009	TDA1012	120p	ToA	200p	TDA	300 p	TEA1330					
SAA1025	250 p	STK4046	9500	S7K7563		TAT2	P	TDA101	110p	IDA	300 p	TDAS		TEA20	${ }_{275}$	sap		2SA	140 p 2500
SAA1075	350 p	STK4048	1280 p	STK8050	S0p	TA7233	${ }^{120 p}$	TDA1015	85 p	TDA2565	175p	TDA4502	550 p	TEA2014	80p	trams		2SA1106	1600
SAA1124	2000	STK4060	510	STK8250	00p	TA7237	300	tDA1016	140p	TDA2556	230 p	TDA45	300p	TEA2018A	200p	2SA473	29p	2SA1111	0p
SAA1250	${ }^{280}$	STK4065		STK8200	12000	TA7238	400 p	tDa 1020	1100	TDA2557	225p	TDA4505	300p	TEA2174	200 p	2SA490	$45 p$	2SA1112	150\%
SAA1274	3800 $280 p$	STK4101	500p 5000	STK8280 STK73410	1850 350	TA7240	${ }_{165} 86$	TDA1022	3300	TDA2558	1500	TDAC5	${ }_{4000}$	TEA21	2009	2SA496 2SA505	${ }^{300}$		30p
SAA1293	550p	STK4112	500 p	STKT342031		TA7242	1900	TDA1024	150 p	TDA2577A	2000	IDA4556	3700	TL431	${ }_{4}{ }^{40} \mathrm{p}$	2SA509	${ }_{350}$	2SA1723	
SAA 3004	40	STK4121	48	STK73505	3750	TA7243	3200	TDA1025	320p	T0a25784	200p	TDA4557	450 p	T061	40 p	2SA537	170	2SA1127	50 p
SAA5000	20	STK4122	500	STR370		TA7245	2250	TDA1028	175p	tDa2579A	250 p	TDA4560	p	TLO64	30p	2SA544		2SA1133	120 p
SAA5010	2200	STK4137	600p	STR371	400 p	TA7267	220 p	TDA1029	200 p	TDA2582	${ }^{130}$	T0A4600	140p	TLP71	38p	2SA550	1500	2 2SA141	2000
SAA5020	350 p	STK414711	62	Sth381	350p	TA7269	280 $170 p$	TDA1035	160p	TDAZS	17700	IDA46	160 120 p	TL074	80 p 55	2SA5S ${ }^{\text {2SA5 }}$	${ }_{6500}^{300}$	2SA1142	${ }_{400}$
SAPS	440 p	STK4142	5300	STR383	410 p	TA7271	220 p	TDA1041P	180p	TDA2593	300 p	TDA4605	200 p	TLO84	70	2SA603	100 p	2SA1152	
SAA5040A	$280 p$	STK4151		STR384	50p	TA7272	280p	tDa1044	110p	TDA2595	200p	TDA4610	370p	TMS 1000	400	2SA60	200 p	2 SA1156	0 p
SAA5040B	40	STK4152	Esop	SIT440	700p	TA7273	300p	IDA1047	200p	TDA2600	250 p	TDA4660	370p	TM5 10000	2000	2SA608	15p	2SA1152	30p
AA5050	65	STK4161	5	Stpaso	5200	TA7274	210 p	TDA1048	200p	toaz611a	100	TDA\&800	350p	TMS100-233	400 p	2SA614	150p	2SA1169	$500 p$
SAA523	30	STK4162	${ }^{5500}$	STR547	800 p	TA7280	1903	TOA1053	300 p	TDA2630	300p	TDA4935	300p	TMS1024	3000	${ }^{254634}$	50p	2SA1170	500 p
SAB3013		STK417211	Op	STR452	600p 5000	TA7281 Ta7282	${ }^{2000}$	TDA1054	${ }_{180}^{1800}$	TDA26	220	TDAA9	$325 p$ 1200	TMS1025	35 35	2SA636	p	2SA1175 2SA1184	0p
SAB3035	600,	STK4187	680 p	STR454	$400 p$	YA7283	200p	IDA1060	140	TDA2654	200p	TDA5330T	3000	TMS37018	300 p	${ }_{2 S A 642}$	509	${ }^{2 S A 1186}$	${ }_{500}$
STA ${ }^{\text {STA }}$ S01A	200	STK4182111	750 p	STR455	5009	TA7288	220 p	TDA1062	140p	TDA2670	1500	TDA5600	4500	TMS3712	350\%	${ }_{\text {2SA673 }}$	$15 p$	2SA1198	40.9
STA401A	270	STK4191 STK4192	${ }_{7000} 7$	(${ }^{\text {STP456 }}$	70p	TA7299	0 p	TDA 1072	150 2800	TDA2690	100p	TDA5660f	2500	TMS3891	5509	2SA677	5	2SA1206 2SA7209	p
STA405A	280p	STK423111	7009	STR470	400 p	TA7312	1200	TDA1077	${ }_{250} 280$	tDA2730	200p	TDAS700	200p	TPU2732	12000	2SA678	$8{ }^{5}$	2SA1209 2SA1209	p
STA431A	250p	STK4241	1050	STR1096	275 p	TAP313	70p	tpa1082	275p	TDA2780	600 p	TDA5709	4500	U1118	250p	2SA684	$25 p$	2SA1210	${ }_{120}$
STA432A	220 p	STK4241V	12500	STh1195	350	TA7314	175p	TDA1083	95p	TDA2791	275p	TDA5800	600p	U217日	300 p	${ }^{254699}$	1000	2SA1215	
STA434A	2700	STK4272	500 p	STR12	3250	TA7315	200	TDA1085	${ }^{170}$	TDA2795	2000	TDA588	370 p	U2548	${ }^{1509}$	2 2SA708	2400	2 2SA1216	5509
STA ${ }^{\text {STA4AA }}$	2700	STK4273 STK 4301	550p	STR2005	${ }_{4000}$	${ }_{\text {TA7317P }}^{\text {TA7324 }}$	${ }_{7}^{1200}$	TDA1087 TDA1092	${ }_{\text {cop }}^{600}$	TDA28221	${ }_{2000}^{600}$	TDA5850 TDA6200	175p 100	U318M	350 450	2SA711	280p	2SA1217	1009
STA456C	2400	STK4311	650 p	STR2013	300 p	TA7325	90 p	TDA1097	475	TDA3047	100 p	TDA7000	170\%	U329M	350 p	2SA719	50p	2SA1232	Op
STA471	210 p	STK4332	365 p	STR2015	550 p	TA7328	110 p	TDA115\%	40 p	TDA3048	1300	TDA7010T	120 p	U338M	300p	2SATz	20p	2SA1242	800
STASO1M STK0025	280p	STK ${ }^{\text {S }}$ S 52	50	STR2105	600p	TA7335	859	TDA1154	50p	TOA3082	200 p	TDA7050	200p	U4208	70p	2 2SA725	80 p	2SA1244	120 p
STK0029	3600	STK4362 STK4372	\%	STR3173	Sp	TA7336	1850	TDA1170	${ }^{\text {85p }}$	TDA3083	200 p	TDA7052	120p	$\cup 4278$	70p	2SA726	200	2 SA1246	80 p
STK0039	S00p	STK4392	500p	STR3115	400 p	TAT341	250p	tDA1180	1200 1900	TDA3190 TDA3300	1090 4800	TDA7053 TDA7056	2000	U6648	${ }_{1}^{1750}$	2SA733 2SA747A	150 250	2SA1249 2SA1261	1000 1500
STKO	520 p	STK4432	8000	STR3125	4800	TA7357	340 p	TDA1190	80 p	TDA33018	2880	TDA7072	1759	U28298	130 p	2SA748	600	2SA1282	1100
STK0049	510 p	STK4773	820 p	STR3135	2500	TA7358	85p	IDA1200B	80 p	TDA3310	120p	TDA7077	$175 p$	U48068	600 p	2SAJEA	200\%	2SA1263	2800
STK0050	4400	STK4793	8800	STR3212	275	TA7401	250 p	TDA1220	750	tpa3330	500	IDA7211	1500	UC3842N	125 p	2SA769	80p	2SA1264	2800
STK0059 STK0060	${ }_{8200}^{8200}$	STK4803 STK4813	${ }_{8500} 8$	STR3214 STR3215	275p	TA7607	200p	TDA1235	300 p 2400	TDA3410	150 p	TDA7220	100	UC3844	100 p	2SATO	2000	2SA1265	2000
STK0070	1100 p	STK4833	2000	STR3315	275	TA7609	360 1700	TDA1256	2400 150		340 p	TDA7230A	${ }_{2}^{2005}$	ULN2002	790p	25A771	900 350	2SA12	500
STK0090	580 p	STK4843	720 p	STR4090A	${ }^{8509}$	TA7611	210p	TDA1270	150 p	TDA3502	450p	TDA7233	150 p	UiN2068	270 p	2 SA778	$100 p$	2SA1286	op
STK011 STK015	300	STK4853 STK4863	7300	STR4142	450p	TA7612	300 p	TDA1327	200 p	TDA3504	3009	TDA7240	175	ULN2804	170p	2SA791	150 p	2SA1290	150p
STK076	760p	STK4883 STK4873	7000	STR4211	370 p 400 p	TA7614	1700 3000	TDA1410	$220 p$ 350	TDA3505	275p	TDA7241		UPC20C	$220 p$ 1300	2SA78	250	2SA1294 2SA1295	4500p
STK025	6500	STK4893	1000p	STR5015	5000	TA7621	3000	tDA1510	1700	TDA3507	450 p	TDA7255	500 p	UPC555	600	2SA798	300	2SA1309	2600
STK050	1600 p	STK4913	9000	STR5100	$550 p$	TA7622	420 p	TDA1512	180p	TDA3510	350 p	TDA7256	600 p	UPC5561	80\%	2SA814	600	2SA1302	$300 p$
STK07	5200	STK5314	4750	STR5214	475 p	TA7628	110p	TDA1514A	450p	tDA3520	650 p	TDA7272	170p	UPC571	2200	2SA817	200	2SA1303	400 p
STK078 STK080	580 p	STK 5315 STK5322	5000	STR5315 STR5412	50,	TA7629	2200	TPA 1515 A	200p	TDA3	3509	TDA7273	80 p	UPC574	60 p	2 2AB36	209	${ }^{2 S A 1304}$	1100
STK092	540 p	STK5324	450	STR6020	325	TA7632	2000	TDA1517	3500 250	TDA3540	175	TDA7274	${ }_{75 p}^{80}$	UPC575]	90p	2SA839	1109 200	$2 S A 13$ $2 S A 13$	
STK084	800 p	STK 5325	3700	STR9005	400 p	TA7640	90 p	tDal519	200p	TDA35	260 p	TDA7284	100 p	UjPC59?	$95 p$	254872	25p	25A1309	50 p
STK085	${ }_{8000}^{900}$	STX 5331 STK5332	300p	STR0012	500	TA7541	140 p	TDA1519A	200 p	TDA3561	3000	TDA7350	${ }^{650 p}$	UPC595	1900	2SA872	500	${ }^{2 S A 1315}$	1000
STK0100	${ }^{8009}$	STK5333	${ }_{1000 \mathrm{p}}$	STR10006 STR11006	4509 400 p	TA75588	100 p 100 p	TDA1520	2750 $250 p$	TDA3561 TDA3562	300 p 260 p	TDA73s9 TDA7360	300 700	UPC596	${ }^{1900}$	${ }^{2 S A 88}$	40p	2SA1317 2SA1318	300 200
STK0100	12000	STK5335	350p	STA12006	450p	TA7680ap	2250	TDA1522	110p	tDA3562TFK	300 p	TDAZI70	225 p	UPC1016	170 p	2SAs07	8509	${ }^{2 S A 1321}$	800
STK420	${ }^{400} \mathrm{p}$	STK5537	500 p	STR13006	500 p	TA7688	150p	TDA1524	2000	TDA3563	3500	TDAB114	2259	UPC1020	200 p	2SA909	500 p	${ }^{\text {2SA1329 }}$	2009
SKK430 STK433	5000	STK5338 STK 5339	295p	STR15006		TATE38	450,	TDA 1540	420	T0A356	325 p	TOAB175	200 p	UPC 1023	${ }^{80}$	2SA913	100p	A	20p
STK435	375	STK 5342	245	STH20005	450p	TA7709	${ }^{600 p}$	TDA154	750 O 2509	TDA3565	275p	TDAB740	2009 160	UPC1025 UPC1026	230 95 95	2SA916	$30 ¢$ 400	2SA1352 2SA1353	1009 1000
STK435	430p	STK 5361	240	STR20012	450 p	TA7750	2000	TDA1543	300 p	TDA3567	${ }_{350}$	TDAB145	120 p	UPC1028	990	2SA933	${ }_{30}$	2SA1356	${ }^{1000}$
STK433	460 p	STK5372		STR20015	00	TA7757	200 p	TDA1571	300 p	TDA3570	375p	TDA8153	250 p	UPC 1031 H	1500	25A934	30 p	25A1358	130p
TK439	5000	STK5421	esop	STR30110	400 p	TA7769	130 p	TDA1572	175p	TnA3580	4000	TDAB160	125 p	UPC1032	60p	2 SA335	400	2SA1370	1009

JAPANESE TRANSISTORS

REPLACEMENT VIDEO HEADS

PINCH ROLLERS / VCR BELT KITS

AKAI VS10, VS9300, vS $9500, ~ v 59700, ~ v S ~$ VF7 100, VPF1 VS1, VS2, VS3, VSA, VS5, vS6, vSB, VS9 VS105, 112, 115, 118, 128, 205, 220, 240 , V4, $245,247,248,250,512,515,516,166 \mathrm{p}$ VS× vS $410,440,400,455,480,490,497,580$.		N.E.C. N830,831,832,833, 895 , 165 , 760,764 PVC2300, 2400, 740, 744, 746, 760, 764, DX1000, 1600, 2000, 3000. N9012, 9913. $9014,9016,9033,9034$, N9053, 9054 , $9055,9066,9110,9120,9510.9520,9530$, 9610 TE5p		
			SONY SLC5, 7, SL3000, 8000, 8080, 8200. ${ }_{802}{ }^{\text {SLV201, 202, 301, 302, 401, 402, } 801}$ 	
	Golvestar , 42015,43066, 4230,4231, 4325,4338			
			1200, บท925, $930,940,950,971,975,960$. 2930. 2931, 2935. 2941, 2960. 2970. 2677.	
ABTHENTIC				
Bazwood				
 3v52 B950.8951, FV108. 114. $134,14 \mathrm{~T}, 208.165 \mathrm{~F}$ 1655 1659				
			VCR BELTKITS akal VP7100, v59300, v59500, vg700, VSS VST, VS2, VSA, VS5 VS10, VSi0 VSXS.VS $105,112,115,116,205,220,24$. $244,245,247,248, V 5250,512,515$, vS33. VS55, VS66 VS4, V56 VSAT	
		SHARP 381, 384, 385, 338, 398, 390,393 . $800,2300,3300,6000,6200,7300.7100$ $7750,8300,9100,9300,9500$ $7750,8300,9100,9300,9500,481,1800$		
	TH207650.755 HRO 16.11, $1160,225,257,455,565,566,725,755$ HAPP5 HRP50 MRO5 MRD520, 540, 550, 580, 600, 620, 637, 641, HRD170, $180,210.230,300,320.321,330$, $337,350,370,400_{2} 430,420,450$. $530,700,750,950$, HRS 5000,5500, 9000 HRS 10 $165 p$ $165 p$	 		aruxic
		VC600, 651, 681, 682, 684, 685. 593, 699. C00,772750,779780 781782		
(tale				
	Leaik		$\underset{\sim}{\text { AUTHENTC }}$	
	Matsul ${ }_{\text {OBSo }}$			
	MITSURSHIHS200, HS 300, HS301, HS302, HS303, HS304, HS 310, HS320, HS330.HS700165p HS306, HS307, HS318, HS319, HS337,HS338, MS347, HS 349 HS H00, HS 410 , HSA11, HSA12, HSA21, HS710, HSB10, 20 , 30, HSE10, 20, 30, 70HSE 11, MSE 12, HSE 21, HSE22, MSE31,HSE 22 , HSEA1, HSE51, HSE52 HSE32, HSE 4, HSE51, HSE52 16Ep			
20115	 NGG: NVGI20 NVDAS, NVOBSO, NVGC21. NVGG5			
				s.v.C. HR330, HR3330

VCR BELT KITS / REPLACEMENT VIDEO LAMPS

Description	Order Code	Price	Description	Order Code	Price
GRUNDIG			PHILIPS (continued)		
TP160E	RC 107	900p	RC38	RC 301	750p
TP200, TP300	RC 380	800p	KT3 TEXT	RC5301	750p
TP400	RC 401	$675 p$	RC5352	RC 5352	800p
TP590-600	RC 600	850p	RC5375	RC 5375	850p
TP390,TP610	RC610	850 p	RC5 STANDARD	RC 5534	850p
TPb21	RC 621	850 p	RC5901	RC5901	850p
TP630, TP650	RC 650	850p	RC5903	RC5903	700p
TP660	RC 660	850 p	SABA		
TP661	RC 661	850 p	T6772	RC 149	900p
HITACH			TC319-320	RC 328	875p
CLE800-CLE830	RC 140M	700 p	TC356	RC 356	875p
A617402/655602	RC 192	$875 p$	TC358	RC 358	850p
A5121201230	RC 900	800 p	TC360	RC 360	800 p
A514790	RC 901	800p	TC365	RC 365	800p
A5088470	RC 902	800p			
A518612	RC903	900p	SALORA		
SCL002	RC904	850p	SERIES L	RC 190	$875 p$
C2096	RC 905	850p	86173	RC 882	850p
A511940	RC 906	750 p	SANYO		
655602 H	RC907	800p	RC218, RC222, RC228, RC238	RC 140M	700p
ITI			JXGE	RC 878	850p
IFB13, 14, 15	RC 143	875p	JXDE	RC 884	850p
FS4	RC 148	850p	VHR2300	RC890	850p
RG305	RC 305	675 p	RC628	RC 865	900p
RG306	RC 306	825 p	SHARP		
FSS/1-1011 VS5 RUK	RC 307	850 p	G0121CESA, 123CESA, 204, 251	RC 140M	850p
VS5 R	RC 308	$825 p$ 850 p	SIEMENS		
MULTICONTROL (17C20)	RC 311	800p	FC616	RC 130	850p
KORTING			FC631	RC 132	850p
18279, 18396, 18460, 1852 ${ }^{\text {S }}$ SE	RC 108	850p	FC742	RC 164	900p
40540 VTS	RC 108	900 p	SONY		
LOEWE			RM604, RM605, RM606	RC 140	700 p
DC11	RC 146	850p	32 CHANNEL	RC 140M	700p
MATSUI			RM613	RC 141	750p
010270601	RC 889	850 p	RM632, RM636	RC 160	675p
VX770	RC 892	850p	TATUNG		
METZ			FXA.	RC 877	850p
JAVA COLOR (6890)	RC 166	850p	RC70	RC 883	750p
COLOR (7156)	RC 183	850 p	FX70 FASTTEXT	RC 894	850p
JAVA (7180)	RC 184	850 p	TELEFUNKEN		
MTTSUBISHI			FB632	RC632 ST	850p
939P/03607, 939P/03609	RC 140M	850 p	FB639	RC 639 ST	850p
NOKIA					
SATELLITE NORDMENDE	RC 550	850p	$3 V 35-42$	RC 342	650 p
TC2336			3V31-32	RC 344	800p
CMC1, TC3519	RC 356	875 p	3V57-58	RC 628	800p
OCEANIC		875	TX10 TEXT TX10 STEREO TE	RC 732	575 p
390C9500	RC 339	900p	TX9-90-100	RC740	6750
ORION			3V55, FV11	RC 783	800p
RC53	RC 892	850p	TX100 FASTTEXT	RC785	6550 p
PANASONIC			TX100 STEREO FASTTEXT	RC 789	650 p
EUR51200	RC200	800p	PROFESSIONAL	RC790	650 p
TC2200	RC201	850 p			
VS00357/NV730	RC 202	875 p	CT937		
TNQ1621	RC 203	900p	CT9117	$\begin{aligned} & \text { RC } 950 \\ & \text { RC } 951 \end{aligned}$	8500p
PHILCO			201R4B	RC 952	800p
MERCURY TEIESTAR	RC 108	850p			
TC10	RC 152	900 p	UNIVERSAL PROGRAMMABLEREMOTE CONTROL Controls up to 4 different devices which use infra red remote controls including TV , audio, VCR and satellite. (need original remote control TC program)		
PHILIPS					
RC5002,5154	RC 134	850 p			
KT3 NON TEXT	RC 135	$825 p$	Order code: IR100R Price: 1950p		
69117032	RC178	875p	We stock Remote Controls for over 5000 different models. Ring for further detalls on 081-900-2329.		
69117194	RC 180	875 p			
RC5991-UNIV	RC 300	580p			

FUSES

Value	TIME LAG (20 mm)		QUICK BLOW (20 mm)	
	Order Code	Price	Order Code	Price
160 mA	FUSE01	75P	FUSE17	609
250 mA	FUSE02	75P	FUSE18	60P
315 mA	FUSE03	75P	FUSE19	60P
400 mA	FUSE04	75P	FUSE20	60p
500 mA	FUSE05	75P	FUSE21	60P
630 mA	FUSE06	75P	FUSE2?	60P
800 mA	FUSE07	60P	FUSE23	60P
1A	FUSE08	60P	FUSE24	60P
1.25A	FUSE09	608	FUSE25	608
1.6A	FUSE10	60P	FUSE26	60P
2A	FUSE11	50P	FUSE27	60P
25A	FUSE12	50P	FUSE28	60P
3.15A	FUSE 13	55P	FUSE29	50P
4A	FUSE14	55P	FUSE30	50 P
5A	FUSE15	60P	FUSE31	50P
6.3A	FUSE16	60P	FUSE32	50P

FUSES
CURRENT RATING ORDERCODE PRICE

CERAMIC PLUETOP		
3 A	FUSE33	100P
54	FUSE34	100P
13A	FUSE35	100P
2OMA CERAMIC THELAG		
3.15A	FUSE41	100P
4 A	FUSE42	100P
5A	FUSE43	100P
6.3A	FUSE38	100P
8 A	FUSE39	100P
10A	FUSE40	100P
32MM CERANIC SLOW BLOW		
8 A	FUSE44	210P
10A	FUSE45	210P
15A	FUSE46	210 P
20A	FUSEA7	210P
38MM CERAMHIC SLOW BLOW		
10A	FUSE48	8759

ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-9036126
OPEN Monday to Saturday. Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

JUST ARRIVEDII NEW ITEMS

Satellite PSU Repair Kits

Experience shows that 50% of all receiver power supplies 'bounce' unless the correct precautionary measures are taken when being serviced. A kit of all the recommended parts is supplied for the 4 most popular models, which when fitted should overcome this.

muxe a model	ORAEA COOE	PRICE
PACE PRD800, PRDSO0	SATPSU1	${ }_{85} 0 \mathrm{p}$
PACE SS9000. 9200.9010 .9020 .9220	SATPSU2	${ }_{650}{ }^{5}$
AMSIRAD SRD510, SRD520	SATPSU3	650p
AMSTRAD SRO500	SATPSU4	${ }_{0} 0$

Replacement Video Heads

MUKE	MODELS	Paxice
HITACM	VT570, VT575, VT576, VT580, VT585 VT588, VTF70	3100p
TT.T.	vR3761	31000
JVC \& FERGUSSON	HRD950. HRD960, HRO980, FV46	5000p
LUXOR	VR3761	31000
MTSUBISH	HSE5?	30000
national PANASONIC	NVFS200, NVFS 90 , NVV8000	4800 p
	NVHD100, NVHO103, NVHFi00	31000p
	NVSD	14000
	AG7330, AG7350, AG7355,AG7450	50000
	NYFS100	5000 p
N.EC.	D5600	${ }^{35000}$
SANYÓ	TLS1000P, TLS 10019.14 IT100	$3100{ }^{\text {3 }}$
	VHR7800, VHR7810, VHR8000SP. VHR8801SP. WHRD4850	3100p
SMARP	VCH80, VCH81, VFH815	28809
	VCA33, VCA36, VCAA3, VCA44. VCAA6, VCAA9	1500p
	VCA55, VCA63	22000
SONY	SLV656, SLV715, SLV757, SLVT]. SLV815, SLV825	4500 p
	SLV353U8	3200 p
	CCDF340E, CCDF500E, CCDVSOE. CCOVSSE CCDSPSE	8800p

Original Video Heads

maxe	modas	P8HCE
NATIONAL PANASONIC	NVG20, NVG21. NVG22, NVG25 NVG25, NVG28, NVG200, NVDas PART NO: VEH 0343	3000p
	NVG33. NVG45, NVG46̂, NVil23 NVL25. NVL28 PART NO: VEH 0417	29000
	NVJ30, NVHJ33, NVL2D, NVL21, NVG30, NVG31, NVG40, NVG130 PART NO: VEH 0416	2700

Audio Control Head

AMSTRAD ORIGINAL NO: 150751

Amd on AMSTRAD TVR1, 2 , 3, VCR 4600,4600 MKII, 4700 ,
OHAIVS2, VCR4600, $4800,5200,5600,6600$, VIP3000, 5000
ASO fits: FIDEUTY, FUNAI, HINARI, PROUNE, SCHNEIDER
AMSTRAD ORIGINAL NO: 153134 COD: AHO1 PFICE: 1350p
AMSTRAD ORIGINAL NO: 153134
Used on: AMSTRAD 009300,8904, VCR2000, $6000,6100,8600,8602$. S503. VCR8604, 8700, 8704, 8714, 8800, 9005, 8244
OIDSHA ANITECH. BONDSTEC, CASIO, CROWN, FDELTY OLDHAND, GRANADA HINARI, MARQUANT. OME GE, PROFEX SOANEDER, SEG, SENTRA, SHINTOM, TASHIKO. TATUNG,
ORDER CODE: AHO2 PRICE: Y 2 SOD
Replacement Audio Control Video Sound Head for National Panasonic

part numajer	MOBELS	PPICE
1880091	NVG7 eic	875p
LSR 0 0050	NV300. NV340etc	875p
	NVTIT etc	875p
2 T3R0103A	NV250, NV450 etc	6259
VGIS0125		8259

8 way Preprogrammed Universal Remote

Control

asingle remote control to operate Televisions. Videos and Satellite - fiecervers. Plus Auxilliary Options!! - Repisces up to 8 remotes with one " Simple 4 digig setup ro - Ceser iberge key) layout * Code Search Facifity

- SPVist and easy to operate * Replace broken or lost remotes - Oniginal Remote not required

Order Code: 8 WAY Price 1450 p + VAT

maxe	mo0ers	COOE	PRME
AKA	VS35, VS53, VS55. VS56, VS7	CHIE	2600p
GRaNADA	VHSDP1	CH05	1100 p
	VHSYJ2	C+401	28600
GOLDSTAR	GHV1290P. 1291P, 1295P, 9400, 73401, GSE1295P, GSE1891P, 200010, 200510. VCP4200, 4300, 4301, 4305, VCP4306, 4311, 4315, 4316.4320, 4321. 4325	CH25	2000p
	GHV51, 1221.1232, 1240, 1241, 1242, 1244, 1246, 1248, GHV 8000,8200	CH 26	2900p
FERGUSON \& J.V.C.	3V38, 3V39, 8943, 8944, 8951, 3V35, 3V36, 3V49, HRD 110, 111, 120, 121, 225	CHOT	2800 p
	3V42, 3V43, 3V44, 3V45, 3V48, 3V53. 3V54, 3V55, 3V57, 8945, 8947, 8948, HRD 140 , 141, 150, 157, 158, 180, 250, HRD257, 455, 565,566, 725, 755	CHO2	2600p
	8948.8950, FV108, 12L, 13H, 14T, 20B, 21R. 22L, 26, 395, 4R0230, 430, 530	CH03	2600p
	3V59, 3V59, 3V64, 3V65, FV11R. 8950,8957 , HRD170, HRD180, HRD370	CHO4	2600p
	FV31R	CH 19	4300p
	HRO515. 520. 527.540, 550,580, 600, 610, 620.660, 670. HRD830, $540,850,860,4050$. 6800, FV37H	CH2O	2400p
	HRD540, 580, 830, 860, 910, 960. HRD970, HRDX20, FERGUSON FV57H	$\mathrm{CH27}^{2}$	2400\%
LT. 7	Vh3605, VR3905	CHOT	2600p
	VR3916, 3926, 3946, 3948, 3976, 3986, 3995, 3997, 6948	CH0?	2500p
	VR3916, 3926, 3546, 3948,3976, 3986, 3995, 3997,6948	CHO2	2800 p
NATIONAL PANASONIC	NV730	CH06	4300 p
N.EC.	N830EG, N831EG, N832, N833EG	CHO1	25000
	N895	CH02	2800 p
PHLLPS	CASSETTE LFTT ASSEMBLY (69120386) DV186, 190, 285, 471, 562, 761, VR6180, $5182,6185,6285$, VR6290, $6291,6293,6362,6367,6393,6467,6468,6470$, VR6563, $6670.6760,8761,6870,6970$	CH05	1100p
	VR6443	CH22	2900 p
	VRB448	CH_{2}	25000°
	$49 \mathrm{SB6}$	CH24	25000
SHARP	VCA100, VCH851. VCH852	CH22	29000
	VCA103, $103 \mathrm{GV}, 105,105 \mathrm{GVM}, 254 \mathrm{GVM}$	CH23	$2500 \mathrm{P}^{2}$.
	VCS211, 244, 5055, 605. VCB230, VCD806G, 810G, VCT212 310, 410G. 610	CH24	2500p
TELEFUNKĖN	VR2970	CH02	2600p
THOMSON	V320, 321, 323,326, 4200,4300	CH01	2600p
	V342, 343, 352, 353, 360, 364, 368, 4210, 4230, 4260, 4400, V5500, 6000, 8540	CH02	28000
TOSHIBA	V55, V57	CHOI	2600 p
	V65. V66	CH02	2600p

Service Aids

DESCRIPTIOM	VOLume	CODE	PRICE
VIDEOHEAD CLEANER	75ML	SP01	140p
SWITCHCLEANER	176ML	SP02	150 p
SILCONE GREASE	200ML	SP03	1700
FREEZEIT	170 ML	SP04	220 p
FREEZE IT	400 ML	SP16	350 p
FOAM CIEANER	400 ML .	SPO5	1700
ANTISTATIC	150ML	SPO6	170p
AEROKLEANE	135ML	SP07	200 p
AERO DUSTER	$160 \mathrm{M}, \mathrm{L}$	SPO8	220 p
AERODUSTER	400 ML	SP17	4250
PLASTIC SEAL	200 MLI	SP09	200p
GIASS CLEANER	250MML	3 Pr 0	1600
COLOKLENE	250ML	\$P13	200p
EXCEL POUSH 80	250 ML	SP18	150 p
ADHESIVE 120	400 ML	SP19	190p
LABEL REMOVER 130	200 ML	SP20	240p
REFURB 140	400 AL	SP21	2409
TUËE SILICON GREASE	50 GRAMMES	SP11	200p
TUBE SILICON SEALANT WHITE	75ML	SP22	28090
TUBE SILICON SEALANT CLEAR	75ML	SP23	280 p
TUBE HEAT SINK COMPOUND	25 GAAMMES	SP12	150p
DRIVECLEANER	200 ML	SP24	150p
SCREENCLEANER	200ML	SP25	150p
COMPUTER CAREKIT	-	SP26	2100p

All the above fiems are manulactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:

CD Pick Ups

SONY OPTICAL PICX UP

PART NO: KSS210A SONY COPC 301M, COPC 305M 2200p Fits most Sony, Akal \& J.V.C. Portable Mi-Fi and Midis Systems

PART NO: KSS210B

USEDON MODELS:

CFD100, $105 \mathrm{~L}, 120,300,440,454,455,50,500,55,58,60$ CFDE8, 750, 755, 760, 765, 770, 775, 440S. W100, 100S

GRANDATA LTD
Tel: 0181-900 2329
Fax: 0181-903 6126

Cricklewomd Elcotronics Lict, 4) 42 (ricklewood Broadway 1.omdon NW2 3ET. Tal: 0181-450 0x095 Fax: 0181-208 $1+11$

MARAPET ELECTRONIC COMPONENTS Tel: (01452) $532253 \quad \begin{gathered}\text { 24hr Answering Service } \\ \text { for out of hours ordering }\end{gathered}$

SEMI CONDUCTOR SELECTION										
128535	${ }_{249}^{3.97}{ }^{\text {LM }}$		TDAG60-2	3.70						
		${ }_{2} 1.75$	T0 ${ }_{\text {T }}$	${ }^{3} .25$						
istikerd			Teats	2292	27.256					
CPF_{4389}			T 74397		Eprom					
	${ }_{0}^{7.78}$		7497164	3921	${ }^{1} \mathrm{~N} \times 5$					
		0.27	${ }^{\text {TMS }}$	${ }_{234} 0$	2SA1					
COPSSSEAEAE		288	U 4	${ }_{6}^{4 \times 3}$						
CO239	${ }^{10.03} 12$	10	UTC5	- 310						
DSILEP	0.79		${ }^{1}$	${ }_{6}^{1055}$	${ }_{\text {zSCl }}$					
DS575is	1.99 SN/4L		1480×276		zsczizoy					
			${ }^{40022}$	${ }_{1}^{0.68}$	<sca					
	128			${ }_{0}^{1088}$						
			8	15.03	${ }_{\text {scsusis }}$	025				
	212		74ist		$3 F 241$					
	270 TगA3E		74+C.		8F435					
LATEST ECA CHOS										
 Envibipe for orr lisest Newstenar										
EQUIPMENT MANUALS			TVIMONITOR LINE OUTPUT TRANSFORMERS							
			OSMCDOAE							
Lew Compurer Equpemenm exa			W-111120008							
Anaster PCWostr Sence		(1653								
Anstrad PPCH365SX Se			${ }_{\text {Fersusum }}$				E19.82			
		¢183					20.48			
			Fraty (curat						
CBM C+AUSE			itracmCPI	642788217						
		790	Panasomic							
${ }^{\text {PTi }}$			Wo can also supoly LOPTx's for many other makes. MATSU. MITSUBISAI. SAASHO. SONY-to name just a few others. Please supply Model info. \& No. on part.							
		${ }_{8}$								
Pras Cubirs suris										
	Nus.									
We are Unable to accept callers at present PLEASE ORDER BYPOST OR PHONE				MAIL ORDER ONLY to:						
				M.E.C. (Dept.TV) 1 HORNBEAM MEWS						
-	We sccept payment									
	by VISA, Accesss, OELTA, SWITCH,		ves	1 HORNBEAM MEWS GLOUCESTER GL 2 OUE						

TE

Then and Now

A significant anniversary occurred this month while we were preparing the current issue of Television for press: forty years ago, on September 22nd 1955, regular ITV broadcasting began in the UK. The Croydon transmitter started to do its stuff, and Associated Rediffusion was on air. As with the BBC's services, ITV started in London then spread gradually across the UK.

By 1953, boosted by the Coronation, some three million TV sets had come into use in the UK. On that day in September 1955 about 190,000 sets could receive the new transmissions. TV was slowly becoming a major part of people's lives in the UK, but the real growth in TV set ownership and viewing was still to come.

Looking back at the technical writings of the time, one might today be puzzled by the sense of alarm at what was in store. Would the 'small' Band III aerials be able to pick up enough signal? Would what was picked up be lost during its passage down the coaxial cable? Would sets be stable enough at such frequencies? Would everything be drowned by all sorts of horrible radiation and interference?

There was in fact some cause for concem. Sets were then incredibly primitive by today's standards - not only with respect to the circuitry but also the quality of the components. Flywheel line sync was just about to appear, and in many areas you required a 'fringe' receiver with an extra i.f. stage. Even the
valveholders could do nasty things (though some chip holders in later generation sets weren't all that hot either). The broadcasters were also struggling with primitive equipment. Cameras had to be set up individually before use, and the transmitters required continuous attention. Looking at contemporary pictures of the Croydon station, one wonders how anything was kept going at all. Just a few weeks after the start of ITV, the transmitter lost its sound output for over an hour. Would you believe it, a screen grid feed resistor in the tetrode sound modulator output stage had gone open-circuit? Those on duty spent the best part of that hour checking the power supply.

But to have got anything up and going in time was an achievement. The Independent Television Authority, which was responsible for the transmitters, couldn't be set up officially until the Television Act, which established independent television, became law in July 1954. That didn't leave much time to undertake the design and engineering of the equipment required for the new services at the new, higher frequencies. It was fortunate for ITV that it could acquire engineering knowledge and skill from those who had learnt it at the BBC.

The start of ITV had greater social than technological consequences however. It helped bring about a change from the cultural stuffiness that predominated in much of the media up to that time. You might not think that an
extra channel could make all that much difference. But with TV still in its infancy, it did. The debate on the Television Act had been long and bitter. Those who felt they had the right to set the cultural tone of the time were justifiably apprehensive about what might lie in store for them.

The forty years since 1955 have seen extraordinary changes in consumer electronic technology. One wonders what those who worried about oscillator stability in Band III would have thought of the idea of today's stable LNB oscillators, and of the current situation and the wonders on the immediate horizon? There was then no video recording even for the broadcasters: now we are about to have hand-held digital camcorders. A digital anything other than a one-off computer was inconceivable in 1955. Yet now we have the domestic PC and 32-bit games systems. F.M. as a transmission technique had been around for some years in 1955, but no one would have anticipated digital transmissions. For video this remained impossible until the communications boffins started to work on signal compression techniques. In 1955 the start of a second TV channel was a major step forwards. Today we are blazé about the prospect of hundreds of channels, with interactive operation on some, coming to us from satellites and via fibre-optic cable systems.

It will be interesting to see what the next forty years bring!

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

CONSULTANT EDITOR

Martin Eccles

EDITORIAL OFFICE

01816528120
Fax 01816528956
Note that we are unable to answer technical queries over ghe telephone and cannot provide information on spares other than that given in our Spares Guide.
PUBLISHING DIRECTOR
Susan Downey

ĀDVERTISEMENT MĀNAGER

Carol Nobbs
01816528330

ADVERTISEMENT SALES EXECUTIVE AND PRODUCTION

Pat Bunce
01816528339
Fax 01816528931

SUBSCRIPTIONS

01444445566

Fax 01444445599
Ordering hotline for subscriptions with credit card phone 01622
778000 and quote reference INJ. 24 hour service

NEWSAGENT ENQUIRIES

David Sanders
0181652 8152, Fax 01816528997

COVER PHOTO

This month's cover photograph shows the YC signal processing PCB used in the Mitsubishi HS-M50VB, a Hi-Fi VCR with auto-tuning, Video Plus and teletext.

Jack Armstrong

Although I don't install satellite systems now I often receive calls about installation faults. Sometimes I can help while sometimes I provide the number of a local installer. On this particular occasion I was intrigued, because the system concerned had been installed by a firm that always does an excellent job. Here's how the customer described the problem to me over the telephone:
"I can't get Sky One, though everything else is all right."

I asked him to tell me what he saw instead of the Sky One picture. "Nothing" he replied firmly.

Getting Nowhere

Now some customers exasperate me, and I could tell that this was going to be one of them. "I need to know exactly what you see on the TV screen when you select Sky One" I explained, as patiently as I could. "Nothing" he maintained.

A woman's eyesight is sometimes better than a man's. Having established that his wife was present, I asked whether I could speak to her. Although suspicious, he passed the handset over.
"Your husband has problems with describing colours" I said kindly, "so I want you to tell me exactly what colours you see on the TV screen right now."
"Just black and white lines and the whole picture keeps jumping" she replied.
"Any decoder messages?" I asked hopefully. "Does it say "Please insert card' or anything like that?"
"No - oh, yes - but it's gone again."
"And the other channels are all right?"
"Yes, but he wants his Star Trek, so you've got to fix it quick."

As this particular customer lived only half a mile away, I suggested that the receiver was brought along to me for testing.

The husband arrived within minutes, clutching a Nokia SAT1700 to his chest. It was still warm.

İ connected it up and selected Sky Onc. The message 'Please insert card' immediately appeared. When I did so the picture cleared, producing a nice,
stable picture with no obvious fault. Since it was almost lunchtime, I offered to call at the house to see the actual problem.

An Extension

When I arrived we reconnected the receiver and, sure enough, the Sky One channel gave every appearance of a very weak signal. The other channels were almost perfect, with just a few sparklies on Sky News. This was unusual, because in the UK Sky News is one of the strongest signals.

I connected my spectrum analyser and found that a marked dip in the signal level was apparent with some transponders.
"When did the problem start?" I enquired.
"Last week, after we moved it from the dining room to here."
"Who actually moved it?"
"Harry did. The cable wasn't long enough, but he used the proper stuff with 'satellite' written on it."

I could visualise the problem and knew exactly what I was going to find before I entered the dining room. Sure enough, the cable had been extended by soldering an additional length to the original. The joint caused a massive impedance mismatch - in fact I was amazed that any signal reached the receiver.

As a temporary measure I fitted an in-line threaded barrel with F connectors to join the two lengths of cable. This improved the picture enormously. My final advice was to call in the original installers to replace the entire cable length if they were still unhappy with the signal quality.

Thankfully, with only the first five minutes of Star Trek missed, the customer was happy to pay my callout fee.

Another Call

I'd just arrived back at the workshop when the telephone rang again. "You've got to help me - my neighbour has threatened violence."

Apparently whenever the caller moved his dish it caused interference to his neighbour's television receiver. A lengthy discussion suggested that the dish actuator motor was the cause
of the intereference, to both the caller's and his neighbour's TV set.
"Are you sure that you've connected the cable screens to earth at the back of your positioner?" I asked.
"Of course! I've done everything right."

The receiver/positioner combination was, he said, of Uniden manufacture. I offered to inspect the installation for a nominal call-out fee and we arranged for an evening visit.

Pace PRD800/900 Receivers

A Pace PRD900 receiver came into the workshop recently with a curious fault. The picture obtained via each scart socket was perfect. It was very dim when the r.f. output was used. I noticed that tapping the receiver changed the brightness.

I carried out all the usual checks around the modulator, looking for broken joints and cracked tracks. As visual examination didn't reveal anything amiss I resorted to the scope. The level of the video input at the modulator was seen to be very low. But why? It was a fairly simple task to trace the signal back to buffer transistor Q105 in the feed to the modulator. This is a surface-mounted npn device near the centre of the board. A good, healthy signal at its base contrasted with a very low one at its emitter. Replacing the transistor cured the fault, but why should tapping the unit have had an effect?

Since then two other receivers with the same problem have come in. One produced no video at all from the r.f. socket. The other one would work for a while but would then start to modulate the picture, turning it from bright to dark as though someone was scrolling through the contrast settings. In both cases replacing Q105 cured the fault.

A subsequent call to Pace produced the advice that when Q105 fails in a PRD800 or PRD900 receiver with a serial number above 345100000 the 330Ω surface-mounted resistor R559 in Q105's emitter circuit should, if fitted, be removed. Only PCBs with part numbers that end in 204, 214 or 224 (printed on the top of the panel, next to the card reader) are affected Removing R559, which was origi=

you can build for yourself! New range, new features!

For only $£ 69.95$, you can build a "CUSTOM TELETEST" for yourself.

Your ideal Christmas present! We can even send it gift wrapped to you for December 19th!

Abstract

At $£ 69.95$ the standard version has 4 TV test patterns, 1 KHz audio, RF tuneable from chs $32-40$ inc PAL I/G sound, and line out audio \& video.

At $£ 89.95$ the deluxe version has all the standard features plus extra test patterns. 6 KHz audio, S-Video (Super VHS / Hi-8),
programmable on screen text, and patterns over external video.

At any time, you can upgrade your standard to a deluxe version for only $£ 29.95$. That's why they're called CUSTOM TELETESTs!
Easy to assemble with only a few basic tools. Adequate calibration can be done with a good TV Full calibration can be done with an oscilloscope and a TV. A free back up service is provided. Free UK P\&P. Overseas $£ 15$. All prices exclude VAT. All products have a 1 year parts \& labour guarantee.

ALL PARTS ARE INCLUDED!
This means the case, sockets, stickers,
modulator....everything! The only
For ready built TV Test Pattern Generators with "textbook accuracy", the TELETEST Quicktest (£99.95) TELETEST (£149.95) and TELETEST PRO (£209.95) are all available from OZAN and good distributors.

nally added to meet a particular setmaker's requirements, reduces Q105's dissipation by increasing its emitter load resistance.

A Pace SS9200

A Pace SS9200 IRD that was brought in would flash its LEDs in sequence, but that was all. The flashing slowed down when the LNB was disconnected and the decoder was removed. This suggested that there might be a current overload somewhere.

The usual cause of this problem is the 0.22Ω fusible current-sensing resistor R 13 being of incorrect value, People often fit a 2.2Ω resistor by mistake. This unit had not received any previous service attention however. I replaced R13 to be on the safe side, but this made no difference. I then measured R11, which was correct at exactly 4.7Ω, and checked all the diodes in the power supply. As $\mathrm{Cl} 11(1 \mu \mathrm{~F})$ sometimes causes the problem I replaced it and made sure that its connecting tracks were all right. Next I measured the value of the 100Ω surface-mounted resistor that takes current from the feedback winding on the chopper transformer
to the control chip. It was fine.
I measured all the tracks on primary side of the power supply circuit and disconnected the diodes on the secondary side. The power supply still pulsed. I recalled that on one occasion the fault had been caused by an open-circuit feedback winding on the chopper transformer. So I replaced the chopper trans former, though the original one measured all right. Still no luck

I then thought hard about this. If there wasn't a short across one of the outputs, and the feedback circuit was definitely working, the only other possibility was the resistance that sets the output voltages. This consists of two parallel-connected surfacemounted components with values of $1 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$. When measured, the value of the combination was $1.8 \mathrm{k} \Omega$. Bingo! Replacing R7, the $1 \mathrm{k} \Omega$ resistor, cured the fault.

Back to the Uniden

After tea I drove to the house of the man with the Uniden system. On arrival I was somewhat surprised to find that the nearest neighbouring house was some twenty metres away. Quite a distance to be suffering from
interference radiated by screened cable. Inspection of the wiring made the cause of the problem obvious however. Four-core caravan cable had been used for the motor and reed switch feeds, with twin bell wire for the polariser.
"It loses its position too" the man said helpfully. I wasn't surprised. Without any screening, the cable would not only radiate motor interference to any nearby equipment, it would also interfere with the positioner pulse-count circuitry.

I offered to replace the entire cable run - about fifty metres - with properly screened motorised ribbon cable. The owner quibbled about my price until he spotted his neighbour peering over the hedge. As I don't do installations I arranged for an installer I know to do the job, and still make a profit.

At least the man had the courtesy to phone me the following week to say that the new installation had cured his problems and that the picture was actually better than before. I can't say why, though screening the polariser wires had probably helped matters. Dithering the skew at 50 Hz wouldn't do anything for the picture quality!

Line Output Stage Fault Diagnosis

Ray Porter, M.Sc., C.Eng., M.I.E.E.

The line output stage is a common cause of set failure. Sometimes the faulty component is readily identifiable. Often however components are changed on spec and then either fail immediately when power is applied or during a soak test. To be better equipped to deal with such situations, it's desirable to understand basic line output stage operation and the limitations of the various components involved.

Line Output Stage Operation

Fig. 1 shows the essential elements of a line output stage. It doesn't include a line output transformer, because in modern sets the transformer is primarily a convenient way of generating extra voltages, in particular the e.h.t.: it does not play a part in the actual c.r.t. scanning.

When the line output transistor Tr is switched on by its drive signal, the current that flows through the line scan coils

Fig. 1: Basic elements of a line output stage.

L increases linearly with time. The corresponding linearly increasing magnetic field in the coils deflects the spot on the screen from the centre to the right-hand side as viewed from the front.

After about $26 \mu \mathrm{sec}$ (depending on the transistor's switchon time) the current, with a 110° set, has reached about $2 \cdot 2 \mathrm{~A}$. The output transistor is then switched off. Because of the inductance of the scan coils, a declining current continues to flow. As a result capacitor C, which with L forms a resonant circuit tuned to the flyback speed, is charged. At the point when the transistor is switched off the coil, which has an inductance of about $1.8 \mu \mathrm{H}$, has stored about 4.4 mJ of energy (calculated from energy $=0.5 \mathrm{LI}^{2}$). This energy is transferred to C . L and C form a parallel tuned circuit, since CR behaves as an a.c. short-circuit.

While the circuit energy is being transferred to C , the spot moves back to the centre of the screen. This is the first part of the flyback, which ends when the current flowing in L falls to zero. At this point the voltage across C (and the transistor) has risen to about 1.2 kV , and all the energy is stored in the capacitor. Because of the resonant action, the capacitor now starts to transfer its energy back to the coils. After $6 \mu \mathrm{sec}$ the current through the coils has again built up to $2 \cdot 2 \mathrm{~A}$, but this time the current is flowing in the reverse direction from L to C. The spot is thus deflected from the centre of the screen to the left-hand side.

The flyback is now complete, having taken $12 \mu \mathrm{sec}$, and C is fully discharged. Since L and C form a resonant circuit,
the energy would next be returned from L to C, with C recharging, this time with reverse polarity. When the voltage at the junction of C and L tries to swing negatively however the efficiency diode D switches on, providing a clamp action. The declining current in L passes through D and $C R$. Since the efficiency diode shorts out C , the current decreases linearly. After about 26usec the energy stored in L has been dissipated and the spot is back at the centre of the screen. The drive circuit now switches the line output transistor on again, and the cycle is repeated. The relevant waveforms are shown in Fig. 2. Note that because of losses in the circuit the timing departs slightly from the ideal. The transistor's switch on time is adjusted to compensate.

The arrangement shown in Fig. 3 takes us a couple of steps towards practical circuitry. The scan coils are capacitively coupled to the rest of the circuit. and the supply current flows through the primary winding of the added line output transformer. The line output transformer's inductance is about 4 mH , and at the end of the forward scan about 1 A is flowing through its primary winding. As a result energy is stored in the transformer and is subsequently used to produce the e.h.t. and various other supplies. All the energy used to generate these supplies is stored in the line output trans-

Fig. 2: Basic line output stage current and voltage waveforms.
former's inductance during the $26 \mu \mathrm{sec}$ centre screen to righthand side part of the forward scan, since this is the only time when current is taken from the main power supply in the set.

The line output transformer delivers the energy stored in it to the auxiliary loads during the following $38 \mu \mathrm{sec}$ period.

WILLOW VALE ELECTRONICS LIMITED

Willow Vale gives you more...

 parts in stock than you may have realised!- More commitment to higher stock levels
- More technical know-how
- More flexibility
- More peripheral product support
- More dedication to customer care

Willow Vale supplies pants for all these household names, with over 230,000 different spares available on our C.O.P.S. database system.

Being Willow Vale, we don't just guarantee the quality of our spares. We also pride ourselves on our prices... and our genuinely friendly and knowledgable staff.

Reading (01734) 876444 Manchester (0161) 68214155

The line output transistor's supply voltage is about 150 V , its average current being about 0.5 A with a duty cycle of 40 per cent. Thus about 30 W is delivered to the transformer's load circuits. The polarity of the e.h.t. winding is arranged to take advantage of the highest rate of change of flux in the transformer, during the flyback: thus the e.h.t. is generated using

Fig. 3: Addition of a line output transformer and scan coupling capacitor to the arrangement shown in Fig. 1.
one quarter of the turns that would be required if the forward scan was used instead.

Line Output Transistor Operation

The line output transistor has to be able to pass the full current of 4 A and withstand the 1.2 kV peak voltage that occurs across the tuning capacitor during the flyback. Junction heating in the transistor occurs mainly when it is switched off, i.e. as the flyback begins, and is caused by switching losses. The other time when the transistor can heat up is when it's switched on, but it is driven rapidly to saturation. Once in this condition there is virtually no voltage across the transistor and thus very little dissipation. Averaged over the full $64 \mu \mathrm{sec}$ scan cycle, the transistor's dissipation is less than a watt. A critical factor is the transistor's Safe Operating Area Characteristic (SOAC). This takes into account all circuit conditions.

Besides over-current, over-voltage and excessive junction temperature, transistors fail when they are subjected to excessive instantaneous power pulses. These initiate second breakdown failure. This is a thermally triggered avalanche effect that's similar to the results which would be obtained if several transistors were operated in parallel, some having a lower voltage drop for the same current than others: these would pass more current, overheat, pass even more current (thermal runaway) ending in device destruction.

Fig. 4 shows a typical SOAC curve. It indicates how the instantaneous power must stay within strict duration limits. Transistors with similar current and voltage ratings won't always survive in power switching circuits if their SOACs differ.

Base Current Turn Off

The speed at which the transistor's base current is turned off when it is brought out of saturation at the end of the forward scan has to be carefully controlled to reduce stress in the transistor. A very rapid base current switch off will result in rapid but only partial collector current switch off, as current carriers will be trapped in the high-resistance collector region. As a result there will be maintained collector current flow at the time when the collector voltage is rising rapidly, and thus excessive dissipation. To prevent this, the base current switch off is slowed down by adding an inductor in series with the base - generally the driver transformer's secondary winding fulfils this function.

The components used in the line output transistor's base
circuit are always of low value, as the base current can be as high as 2 A in a 110° set. The transistors are not guaranteed to have a gain of more than about two when saturated with a high current flowing. It follows that all base circuit components must be robust and well soldered.

The Line Output Transformer

It's well known that the line output transformer, particularly the e.h.t. section, operates under high-voltage stress. Remember that the primary winding carries pulse voltages in excess of 1 kV . All this is taken into account in the design and construction of the transformer. Yet line output transformer failure is still quite common. Internal heating produces mechanical stress in the winding insulation and at the terminals, because of thermal expansion. As some of the heat is conducted to the PCB via the soldered joints, these must be properly made. Otherwise the result will be further increase in temperature and stress.

The Efficiency Diode

The efficiency diode is also a highly stressed component, as it has to withstand a reverse voltage of 1.2 kV . Again it's important that the soldered connections are good. The diode's average forward current is 1 A , with peaks up to

Fig. 4: Safe operating area characteristic for the BU508 line output transistor. D.C. operation must be below the line $A B C$.
A: Operation limited by the maximum d.c. collector current.

B: Operation limited by the maximum power rating

 (125W).C: Operation limited by d.c. second breakdown.
D: Permitted limits for pulses, with one per cent duty cycle and the durations shown.

2-2A. If the connections are not good the resistance introduced will lead to overheating, making reverse breakdown more likely.

In some practical arrangements the efficiency diode is encapsulated with the line output transistor. In circuits that use an EW diode modulator, the efficiency diode function may be accomplished by the two high-voltage diodes in series.

Capacitors

The flyback tuning capacitor was once a notorious component. Experience has taught manufacturers how to make reliable ones. Since the peak charging current is 2.2 A ,

AN5320	-285	STK 435	= 350	TDA 15580	- 365		ELECTR	ROLYTIC	
${ }_{\text {AN }}$ AN512	$=121$ $=075$	STK439 STK 463	$=399$ $=799$	TDA2577	$=899$ $=499$		CAPAC	ITORS	
AN5700	$=075$ $=125$	STK 463 STK 463	$=799$ $=799$	TDA 3500 TDA 4504 B	$\begin{aligned} & =499 \\ & =790 \end{aligned}$				
AN7200 BA841	$=125$ $=150$	STK 463 STK 563	$=799$ $=400$	TDA 4800	$\begin{aligned} & =790 \\ & =650 \\ & =60 \end{aligned}$		High	Temp	DUE TO INCREASED
BA 1335	$=100$	STK 1040	$=635$	TEA 5101	= 209		105°	grees	
${ }^{\text {BA }} 7767$	$=180$	STK 1050	$=630$	TEA 8170	$=299$ $=1499$	$25 v$		100 V	DEMANDSATELLTE
CA3189E	$=200$ $=135$	STK 1070	= 845	U464478	$=1499$ $=1480$	100ut	$\rightarrow \quad 50.50$	rout $\rightarrow 50.60$	
$\begin{aligned} & \text { HA } 11223 \\ & H A 11724 \end{aligned}$	$\begin{aligned} & =135 \\ & =750 \end{aligned}$	STK 2129 STK 2155	$\begin{aligned} & =599 \\ & =895 \\ & =895 \end{aligned}$	UN427E	$\begin{aligned} & =1480 \\ & =1299 \end{aligned}$		$\rightarrow \quad 50.75$	100uf \rightarrow 54.65	REPAIRKITSAT
HA 13117	-345	STK 2250	= 625	2SA 4784	$=190$ $=020$		$\rightarrow \quad 50.45$	Phullps Capelaa	
IRF 840 KıA 6283	$=250$ $=250$	STK 3102/2	$=899$ $=1500$	${ }_{\text {2SA }} 1249$	= 090 $=350$	22 at	$\overrightarrow{2}$ $-\quad 50.60$	16 V	$E 5.65=A C$
1297	- 500	STK 41422	$=1500$ $=650$	2SA 1516 2SB54	$=350$ $=340$		$\overrightarrow{+} \quad 50.65$ $\rightarrow \quad 50.70$	688ut \rightarrow Each 1.95	
LA 4108	$=280$	STK 41522	= 610	2 2S875	- 100	100ut	$\vec{\square} \quad 50.75$	$25 v$	RINEOR MODE
LA4162 LA 7837	$=090$ $=499$	STK 416212 STK 41812	$\begin{aligned} & =515 \\ & =735 \end{aligned}$	2S8 11156 2SC 1185	$\begin{aligned} & =350 \\ & \\ & \hline 225 \end{aligned}$		$\rightarrow 5 / 1.50$		
LM 1011	$=180$	STK 4853	= 699	2sc 1454	=699		$\rightarrow \quad 50.40$	6800 $1500 u t \rightarrow$ Eacho. 70	
LM 1889	$=300$ $=799$	STK 4893	= 999	2SC 1827 2SC 2732	$=65$ $=399$	suf	$\rightarrow \quad 50.40$	6800ut \rightarrow Each 1399	
$\begin{aligned} & \text { M } 1048 \\ & M 20681 \end{aligned}$	$=799$ $=1210$	STK 5332 STK 5972	$\begin{aligned} & =180 \\ & =415 \end{aligned}$	2SC 3405	= $=210$	2.2ut	$\rightarrow \quad 50.45$	40V	
M 490881	= 1299	STK 5471	= 325	${ }^{\text {2SD } 818}$	=300	3.3uf	$\rightarrow \quad 50.48$	150ut \rightarrow Eactr1. 10	
M71081 $M 51172$	$=610$ $=260$	STK 5490 STK 7410	$=450$ $=899$	2SD 11279 $2 S 087$	$=699$ $=435$		$\rightarrow \quad 50.50$ $\rightarrow \quad 50.52$	${ }^{635}$	
M 1521	= 290	STK 8250	$=890$ $=500$	BCws	= 020		$\rightarrow \quad 50.55$		
M58657P	= 599	TA7440	= 100	${ }_{\text {BC }}^{\text {BCIT }}$	$=020$ $=050$		$\overrightarrow{5} \quad 50.60$ $\rightarrow \quad 50.68$	150ut \rightarrow Eacti 110	D E-SOLDERNE
MDA 2061	- 799	TA7207	${ }^{1} 140$	80682	= 043		$\overrightarrow{ }{ }^{+} 51.1 .65$		
MDA 2062	$=300$ $=095$	TA7336	\#180	B0792	= 065	1000ut	\rightarrow Eacko. 75	100ut \rightarrow Eachz.99	
NE 612N SAA 1251	$=095$ $=699$	TA TA 7601	$\begin{aligned} &=250 \\ &=200 \end{aligned}$	$\begin{aligned} & \text { BF } 680 \\ & \text { BR } 90 \mathrm{~A} \end{aligned}$	$\begin{aligned} & =050 \\ & =055 \end{aligned}$				Allo
SAA 1233-3	$=515$	ta 8200	-350	BFW61V	$=250$				
SAA 1351 SAA 5010	$=925$ $=425$	TA 8205 TA8207	$=300$ $=155$	BU 2888 (TOSH) BU 2084 (ST)	$=325$ $=085$		NOR	MAL	Correct at time of going to prass - SUBJECT TO ALTERATION
SAA 5235	$=715$ $=7$	tas210	$=165$ $=300$	BU 508 DF	=089		ELECTR	OLYTIC	
SAA 52433PR	$=1540$	ta 8214	$=300$	BU 5080 AF (PHL)	$=125$ $=199$	250v		$22 \mathrm{ut} \rightarrow$ Eactv0.70	
SAB 3035P	$\begin{aligned} & =545 \\ & =2099 \end{aligned}$	TA 8215	$=300$ $=699$	BUL 2508 FAF (SAN)	$=199$ $=250$		$\rightarrow \quad 51.00$ $\rightarrow \quad 51.50$	33uf \rightarrow Eadvo.70	Please phone
SAA 1111	$=2099$ $=825$	TA8718 TBA 2800	= $=209$ $=250$	BU2525AF	$=410$		$\vec{\rightarrow} \quad 51.50$	lout \rightarrow Each 100	post \& packing and then add 17.5% VAT to st Callers by appointment only.
SDA 3002	$=1115$	TDS104P	= 115	Bux 88	$=315$ $=095$	2204	\rightarrow Eacto. 40	400v	
SL442	= 1510	TDA 1027	-530	BUZ ${ }^{\text {B }}$ A	$=095$ $=399$	33 t	\rightarrow Eactro. 56	Tuf \rightarrow 5/2.10	OVIPONENTS
SL 1020A	$=325$	TDA 1170S	$=135$	BUZ91A	= 350	47uf	\rightarrow Eacro. 65	$2.2 \mathrm{WH} \rightarrow 5 / 100$	63 THE CHASE, EDGWARE,
STA 451 STK.0040	$=395$ $=500$	TDA 1515AO TDA 15520	$=200$ $=499$	$\begin{aligned} & \text { MU } 15015 \\ & \text { NU5025 } 150 \end{aligned}$	$=295$ $=700$		\rightarrow Eactr1.28		MIDDX. HA8 5DN, ENGLAND
STK0050	-400	TDA 15530	$=475$	WE 18004	= 185	4.7uf	$\Rightarrow 5 / 100$	2zut \rightarrow Eacho. 75	line No: 0181-381 1700/0181-952 464 ree fax ordertine ONLY: 0800318498
STK 0060	- 799	TDA $1557 Q$	$=450$	MJF 18004	$=185$	10ut	$\Rightarrow \quad 5050$	47uf \rightarrow Each 1.40	tax orderine ONLY: 0800378498

good soldered joints are also essential here to prevent overheating which could result in failure of the highly stressed dielectric.

The reservoir capacitor CR is a medium-value electrolytic. It must be robust and well soldered, otherwise the 2 A ripple current will dry it out prematurely.

Causes of Soak Test Failure

If the values of relevant components have drifted from their nominal ones, the voltages and currents in the line output stage will differ from their design values. The new stress level will result in failure of the weakest part.

If the value of the flyback tuning capacitor falls by twenty per cent for example, the peak voltage across it will increase by ten per cent (the energy stored $-0.5 \mathrm{CV}^{2}$ - will remain the same, as it comes from the scan coils). Another example is the extra stress caused by excessive h.t. voltage: the result is higher than normal scan coil current and thus more stored energy.

Failures that occur during a soak test are likely to be the result of a component value change with time or temperature. The resulting alteration to operating conditions could for example push the output transistor to its SOAC limit, or increase its switch-off dissipation, leading to its destruction.

Inadequate attention to heatsink compound or tightness of fitting will contribute to overheating and subsequent failure.

Diagnostic Procedure

When dealing with a dead line output stage, the following procedure is suggested:
(1) Check the line output transistor for shorts.
(2) Check that the h.t. voltage is correct. If the power supply has shut down, disconnect the feed to the line output transformer and see if it works when loaded with a 60 W bulb instead.
(3) Check whether there are any shorts across the line output transformer's secondary windings. The first things to test are the rectifier diodes and their reservoir capacitors.
(4) Check whether any of the line output transformer windings are open-circuit and whether there are any shorts between pins other than earth pins - there can be shorts between windings or to the core. Check the soldering to the pins. Then use a line output transformer tester to check for shorted turns.
(5) Check the components in the output transistor's collector circuit, e.g. the flyback tuning capacitor(s) for shorts or value change, and the efficiency diode(s) for the short- or opencircuit condition. These high-voltage components are often best checked by substitution - they may read normally but fail when power is applied. Check that all soldered connections are good.
(6) Check the value of the components in the output transistor's base circuit. Look for damaged base circuit inductors and for poor quality soldering - this includes the condition of the line driver transformer and the soldering to it.

After carrying out these checks the magnitude of the failure can be assessed and all suspect parts replaced before switching on again.

Teletopics

HD Disc Agreement

A systems war between the Philips/Sony MMCD and the Toshiba consortia's SD high-density disc systems has been averted. Both sides have agreed to adopt a common format for high-density digital discs. The new discs will use the basic SD technology and error correction system with MMCD's EFM Plus signal modulation system. No definite launch dates for the discs or equipment have so far been announced. It is unlikely that systems will become available until late next year at the earliest. Players at about $£ 700$ initially have been suggested, with the discs at around $£ 15$ for a recorded film. The initial systems will be playback only.

The new discs will be available in single- or doublesided versions with each side having one or two data layers, the storage capacity being 4.7Gbytes per layer. This is slightly less than the basic SD system (5Gbytes per layer). The slightly reduced storage capacity is expected to offer better backwards compatibility with existing audio CDs, Video CDs, CDi and CD-ROM discs.

Later versions of the system will include record facilities, but this could be some time off. Apart from the need to perfect an erasable record phase-change disc, for full system compatibility the player/recorder would need to incorporate an MPEG-2 encoder. This is at present an expensive proposition.

PLASMA TV DISPLAYS

We reported in the September issue (page 780) on the Sony Plasmatron, a plasma-based display system for TV use. Sony plans to launch sets that use the screen next year, in Japan. Since then announcements have been made by several other companies.

Matsushita has unveiled prototype 26 and 40 in . plasma displays and expects to introduce sets using them next year. The panels have been developed in conjunction with Du Pont, Texas Instruments and NHK.

Fujitsu has demonstrated a 42in. plasma display and plans to start production in October 1996, at an initial rate of 10,000 a month. The intention is increase production to 100,000 a month by the year 2000 . Sets fitted with the Fujitsu devices are expected to sell for about
$£ 3,400$ initially, falling to around $£ 1,700$ by 2000 .

NEC has also announced that it expects to start producing plasma display panels mext year, in sizes up to 60 in . Plans are for production to increase to 150,000 a month by 2000 .

Fujitsu expects one in ten widescreen TV sets on sale in 2000 to use plasma display technology, representing sales of 3.3 m a year.

Although plasma, an electronic discharge in gas, is the common element in these various displays, several quite distinct technologies are involved. Matsushita uses d.c. plasma technology while Fujitsu and NEC use a.c. plasma technology. Sony's approach is quite different: the plasma discharges are used for switching, in conjunction with an LCD system.

It's likely that the life of a plasma display panel would be inherently less than that of a c.r.t.

Video News

Sharp has launched, in Japan, a couple of VCRs that can record two programmes simultaneously on a single tape. Models VCBF70 and VCBF80 incorporate three tuners, two terrestrial and one satellite, and two timer systems. The user can view the two programmes at the same time either by splitting the TV screen vertically, or in picture-in-picture form. Alternatively the programmes can be watched at separate times. Apparently prices start at around $£ 520$, which
seems remarkable.
Olivetti has launched Envision, a box that looks like a VCR but contains a 486 or Pentium microprocessor chip, a hard disc and a CD-ROM drive. It plugs into a domestic TV set and can be used for playing CD audio, Video $C D$ and CD-ROM discs. Operation is via a wireless keyboard. Owners can also use Windows programs and a modem. Princes start at around £1,300.

Apple Computer and Compaq are the latest companies to launch computers with built-in tuners and an MPEG video board.

Digital TV

The BBC carried out digital terrestrial TV engineering tests from the Ogmore Vale relay transmitter in Mid Glamorgan during September. The transmitter serves viewers in the Ogmore Vale and Nantymoel areas. It was hoped to be
able to visit every residential and business address to check whether the temporary test signals affected picture quality with VCRs.

Pace began production of MPEG-2 digital Pay-TV receivers during the summer. The company is thought to be producing some 15,000 units per week.

Catalogues

CPC's new 1996 catalogue was introduced on September 1st. It has over 1,600 full-colour pagès covering everything from OEM spares to the latest electronics and mechanical components and accessories. There are over 39,000 products, including nearly 10,000 new items. Several new product sections have been added. These include opto-electronics, PCB prototyping, surface-mounted devices, motor control, and datacomms/networking. The catalogue is available free of charge to CPC account holders. To open an account, ring one of the telephone sales operators on 01772654 455.

The 1995/1996 Wizard Distributors catalogue is now available free of charge to trade customers. This latest edition has been expanded to include many new items and illustrations. Existing customers will receive a copy automatically. Those who have not previously dealt with the company can obtain a copy from Wizard Distributors, Empress Mill, Empress Street, Manchester M16 9EN - telephone 0161872 5438, fax 01618737365.

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR
TEST
\vdots DEMONSTRATIONS
AT I72
$\star 40$ different patterns and variations.
\star Fully interlaced syne pulses with correct picture blanking.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit

Built \& Tested in Case including Sound Module
£139.00 Post/Packing $£ 4.50$
Add VAT 17.5\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.

* Cross-hatch, grey scale, peak white and black level
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
\star Backup service available.
PRICE OF Mk4 COLOUR BAR GENERATOR KIT £39.00. CASE $£ 5.80$. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $\mathbf{£ 5 . 8 0}$
(Combined P\&P £4.50)
VHF MODULA TOR (CH 1 to 4) FOR OVERSEAS 66.80
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.R.V

LINE OUTPUT TRANSFORMER TESTER

 \star Service Aid.
\star Saves time and Money \star Checks short turns
\star Simple to use.
\star Reliable.

* Battery operated
\star Pocket size
PRICE $£ 24.00$
POST/PACKING $£ 2.50$

VIDEO (PAL) TO R.G.B. CONVERTER
 *Whe Ready built \& tested \star R.G. B. + Sync Out - Scart
 \star Incl. Power Supply \star Colour/Brightness/
 \star Video \ln - Phono
 Contrast Control
 * 5-VHS Adaptable
 \star Size $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$

PRICE $£ 99.00$ POST/PACKING $£ 3.50$

CRT TESTER \& REACTIVATOR KIT

* For Colour \& Mono complete with Case. Panel Meter Indicator - can be adapted for latest CRTs
£55.00 P.P. $£ 4.50$

KITS AND PROJECTS

SAW IF AND TURNER UNTT completc and tested for video \& audio outputs £28.50 p.p. $£ 1.80$.
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ P.p. $£ 1.80$
PAL ENCODER KIT (RGB to Video) £20.00 p.p. $£ 1.80$.
INFRA RED REMOTE CONTROL TESTER Infra Red Remote Control Tester £10.00 P.P. $£ 2.50$

TV \& VIDEO SPARES

REMOTE CONTROLS

Replacement for: Ferguson. Hitachi. Philips, Panasonic, Grundig. ITT. Sony, Saisho Granada. Saisho + many othcrs Phone for make and model no.

IC SELECTION

14DN+87	15.	SL	64.00	TA	0	TD	c6.80	TDA6200	522.50
N55	3	S1,	53.20	TAB	So				
N59	62	SL4	¢3.80						
BA62	E6.	SL						TDA8	20
BA62	53.	SL1s?	¢6.	TB	22	IDAz6	55	TDAS	E7.80
BA62.	83.80	SN76226	¢1.8	t8ag2	$\underline{5}$	TDA26		TDAX	
BA6238,	c6. 80	SN76705	59.8	TBA9S		TD		tDa8	
8.46239	13.80	STA41	c2. 8		¢1.80			TD	
UF	14		21.		¢1.8	ID	33	TDAS	
		STK33	E6.	тCas	C6.8	TDAz	26.	IDA	
HA1127	\%20	STKS32	56.80	TD6316A	54.8	IDA3	4	TDA	
HA114	E3.80	STK5331	c3.8	IDA1035	¢2.4	TDA3301	c6.80	Tida	
HAS13		STK 3332	c4. 80	tDa1037	3	TDA33		ID	
A4433	63.00	STKS333	13	TDA10	E2.9	TDA3	¢12.5		
		STK533	54.	TDAIO	$\underline{51.8}$	TDA3	86.	TDA	2
LAAS20	63.80	STK 5338	56.8	TDAlo	E.	IDA3	115.8	IDA	
La7800		STK5339	56.80	TDA11	¢1.8	IDA3		TDA	
LA7s	80	STX539	c4.80	TDA1	12.20	TDA3		TDA	
LA75	. 50	STK 5372	\$7.80		23.20				
La78	. 50	STK5392	66.8	TD	E2.20	TDA3	83.5	TEAIO	-
La7200	80	STK421	¢5.80	ID		I			
LA78		STK5422		TDA1512	13	TD	L	TEA	
LA78		S1K547	ct. 50	IDA1S15		ID		TEA	
M104	56.80	STKS481	65.80	1521	92.50				
	18.80	STK 4×12		TDA152	56.	TD		TE	11
M	¢18.80	STK549	7.8	TDA					
M 49 IBE	89.80	STK69		ID	ع3.80	IDA36		TEA	
	.80	STK723	.00	TDA1700				TEAS	
MC1300	55	STK7308		TDA1870	56.	TDA3651	12.5	TEAS	
MDaz		ST3		TD		TDA36			18
ML9		STKR48	c_{6}.	TPA19	$\underline{52} 8$	TDA	83.20	TM	
$\mathrm{MVP}^{\text {P4 }}$	E15.80	STR3125				IDA36			
PCD8572P		STR4090	113.50	TDA1950	E3.5	TD 438	5		
SAA1024	E5.80	STRS 412	24.95	TDAzvos	E2.	IDA4	52		
	55.	STR100							
SMAII2	c3.50	STR 400	c6.	TDA2009	E2. 8	TDA	63.20		
5 SAAI25		Stratils		TDAz0		IDA4	12	TMP	
SAAILS	88.40	STR 50020	5.8	TDA2030	¢3.80	TDA4	E		
SAA129	26.00	STR 0103	c4. 8	TDAzamo	67.2	硡		TMP4	
SAAIS	56	STR5013	E14.		ct.	TDA			
SANs0	${ }_{86} 86.80$	STRS4001		TDA21	E3.20				
SAAS	55.80	STRS5041	¢10	TDA2	E3,9	TI	57.2	82	
SAA	\$5.80	STR 58041	c5.80	TDA?	E2. 20	TDAesose	cs. 0	U 46	14
SAA	E5.80	STRS9041	26.80	2DATS48	E5.80	TDAs510	c3		
	E6.80	RR	5	TDA2576					
S	${ }^{111.80}$	STR		IDA	83	ID		UPC	
SAAS31]		硡)	TDA		TDA	33.85	UPC1378	
SAAS233	53.50	STRD		TDAz	83.60	ID	5280	UPC13	8
SAB3035	69.80	TA7680AP	55.80	TDAz581	63.80	TDA ${ }^{\text {d }}$	$\underline{2.20}$	UPCIS	12
SAB3037	88.80	818	¢7.80		c2. 50	-			
	case		${ }^{56.85}$						
SAF1039				TD		TD	2.	UPD1397C	
A>46	9.0	TAB6	22.50	1DA2	E4.80	TDASRSO			

LINE OUTPUT TRANSFORMERS ${ }_{\text {P.p- }-1.80}$

THER LOPTS IN STOCN, FLEASE PHONE WITH MAKE AND MODEL.
TRIPLERS EHT MULTTPLIERS p.p. 11.80
 TVK $9-1$ E13.80

GRENDIG 8G $2077-642-10031004$ f14.80 GRUNNDG BG 2087-642-1001/1002/1006 $£ 14.80$ GRUNDIG BG 2090-6 51 £ 13.80
THORV 9000×9.80 OUS p.p. $£ 1.80$
VHF/UHF upcunnvertor 540.00 p.p. $\mathbf{~} 350$ MALNS TRANSFORMERS: 6.3 Volts CRT boost Es. 80 P. p. $£ 1.50$
 DEGAUSSING ROD handsets. \ddagger for $£ 2.00$ p.p. 80 p DEGAUSSINGROD E33.75 p.P. EB S0 PSETTE
TRANSPARENT VIDEO SERVICE, CASSETTE
E6. 80 P.P. E1. 80
HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5% TOTHE TOTAL
PRICES ARE SUBJECT TO CHAKGE WITHOUT NOTHCE
Telephone 0171-794 8751/794 7346 Fax 0171-431 5778
172 WEST END LANE, LONDON NW6 1SD
CALLERS WELCOME AT SHOP
Mon-Fi $9.30-6 \mathrm{pm}$ - Thurs 9.30 - Ipm - Sat $9.30-5 \mathrm{pm}$

Inside the Ferguson TX90E Chassis

Part 2

Mark Paul

This month we'll look at the video processing circuitry in the chassis. There are two chips involved, the bus-controlled TEA5040S video processor IV01 and the TEA5640F colour decoder chip IC01. Their links with the rest of the circuitry used in the chassis can be seen from the block diagram shown in Fig. 1 last month. We will look at each of these chips in turn and the functions they perform.

The Video Processor

To simplify matters we'll describe the various sections of this chip separately.

Fig. 6 shows, in block diagram form, the composite video inputs and outputs and the associated switching and switch

Switching is controlled by the two-way, three-line serial data bus. The lines are for the clock signal, the data and an enable signal. These inputs have to be decoded to carry out the required switching. The selected composite video signal appears at pin 42. It's passed via an external buffer transistor (TV02) to a high-pass filter to separate the chroma signal and a combined chroma trap and delay line to separate the luminance signal. The chroma signal is fed to pin 25 of the colour decoder chip IC01, while the luminance signal is returned, via another external buffer transistor (TV09), to pin 12 of IV01. The composite video output to the scart socket is taken from pin 40, via internal and external (TV01) buffer stages.

The timebase chip $I L 01$ receives an input from pin 42 of

Fig. 6: The composite video switching arrangement used in the video processing chip IV01.
control arrangements. The off-air composite video (CVBS) signal is fed to pin 39 via a sound trap, buffer transistor TV03 and the $10 \mu \mathrm{~F}$ coupling capacitor CV28. External composite video from the scart socket enters the chip at pin 37 , again via a $10 \mu \mathrm{~F}$ coupling capacitor (CV02). Pin 41 receives a composite sync input from the teletext module.

Fig. 7: The contrast/brightness/colour control, matrixing and RGB output sections of the chip.

Fig. 8: The RGB inputs are converted to luminance and colour-difference form for feeding to the contrast etc. control section of the chip.

...we'll make you feel better.

Buying from your present supplier may feel like money down the drain. Buying from CPC is money in your pocket.

You get a choice of 39,000 quality products from ove: 300 leadlng manufacturers.

At CPC we only stock quality products from quality manufacturers. All ine biggest equipmen names are represented in our catalogue including TDK, 3M, Duracell, MK, Weller, Sony, CK etc.

Over 27,000 companies get a better deal with us.

And the list is growing by the day. From our inception in 1967, we have enjoyed year on year growth, seeing our dient base of 2,000 in 1986 boosted by a further 25,000 companies who have switched to CPC - and stayed!

The catalogue couldn't be easier to use.

Whether you are a service engineer, OEM, school or manufacturer, whatever your component needs, you'll find them all listed in our easy to use index and cross reference section. Audio products, batteries, computer products, hardware, motor control, semiconductors, surface mount, tools and original manufacturers spares are just some of the sections included.
 is now available

Ordering couldn't be simpler.

Our sales office is open Monday to Saturday taking orders by phone, fax and post.

Diamond Service means

 same day despatch is guaranteed.CPCI Sh.000 xpuert jers trodaportrs in Protion Ouf yindtry nufy Representing the ulimate in customer service, CPC's Diamond Service ensures all orders received before 5.30 pm , are despatched the same day - guaranted

How to open

an account today.

Just pick up the phone, give us the details and the iob's done. And once you're on our database well send you bullecins on all the latest products and great offers from CPC, four umes a month.

Free catalogue, free cariage.

Once you've opened an account, we will send you a complimentary 1,700 page catalogue and with all orders over $£ 30$ carriage is absolutely free! So, if you want to stop your money going down the drain, call us tody. surdetron uerer

Open YOUR account today, tel 01772654455 or fax 01772654466

CPC. Faraday Drive, Fulwood, Preston, Lancashire.

Fig. 9: One of the RGB channels, showing the auto grey-scale tracking system.

IV01, the tap-off point being after buffer transistor TV02: this input may be the off-air or scart composite video or the sync signal from the teletext module.

Fig. 7 shows the section of IV01 that receives the delayed luminance signal (at pin 12) and the decoded chroma inputs from IC01. The latter are now in colour-difference signal form, and are fed in at pins $10(B-Y)$ and $11(R-Y)$. This is followed by colour, contrast and brightness adjustment as required, again under bus control. The actual control action is carried out by internal digital potentiometer circuits. The colour and contrast levels are ganged electronically to avoid desaturation when the contrast is adjusted.

This is followed by matrixing to produce the RGB signals for the output stages on the c.r.t.'s base panel. Peak beam limiting is carried out by high-clip circuits in the output section of the chip. The R output is at pin 25 , the green output at pin 28 and the blue output at pin 31 .

As shown in Fig. 8, there is provision for feeding two sets of RGB signals into the chip, scart RGB at pins 3,5 and 7 , or text/on-screen display RGB at pins 2,4 and 6 . Which signals are selected is determined by the fast blanking inputs at pins 8 and 9 , assuming that the bus has carried out RGB/CVBS mode selection. When pin 8 is active, the scat RGB signals are routed through: when pin 9 is active either teletext or an OSD appears on the screen.

An important input is the super sandcastle pulse at pin 32, see Fig. 9. The SSC pulse detector circuit produces burst blanking pulses, line flyback and composite line and field blanking pulses from its input.

A new, longer blanking signal is generated from the composite blanking section of the SSC pulse - field blanking lasts for 23 lines, to overcome the line counter effect used in the now standard automatic form of greyscale adjustment. We'll now turn to this.

Automatic Grey-scale Adjustment

With the current generation of video processing and colour decoder chips the traditional six tube cut-off and drive controls are no longer necessary. These chips use sample-and-hold feedback loops to set the basic level of the RGB drive signals applied to the tube. The RGB channels
right up to the tube itself form part of these loops.
The technique involves the insertion, during the field blanking period, of a sequence of check pulses in the tube's RGB drives. Fig. 10 shows the pulse arrangement used here. Drive and quasi cut-off pulses for each primary colour (G, R and B) are inserted on lines $17,18,19$ and $21,22,23$ respectively. The pulses on lines 17 and 21 are used to check the tube's green gun conditions, the pulses on lines 18 and 22 the red gun conditions and lines 19 and 23 the blue gun conditions. All three channels are blanked during line 20.

A php emitter-follower transistor is included between each RGB output stage and the relevant tube cathode. Fig. 9 shows the arrangement, for one channel, with transistor Tr the emitter-follower. This transistor's collector current is used as the measure for automatic grey-scale correction.

During lines 17,18 and 19 one cathode's current is about $500 \mu \mathrm{~A}$. The resultant voltage at the relevant emitterfollower's collector appears at pin 34 of IV01, where it's

Fig. 10: The pulses used for auto grey-scale tracking. They are generated within IV01 and added to its RGB outputs.
compared with an internally generated voltage (VO) of 0.5 V - switches SW1 sud SW2 are both in position A. The relevat 'drive memory' capacitor (CV09 red, CV10 green, CV11 blue) then receives a charge which determines the gain of the relevant channel.

During line 20 , the RGB outputs from IV 01 are blanked. Thus only c.r.t. leakage currents flow. As the impedance at
pin 34 of IV01 is now high (SW2 is in position B), even a low total leakage current produces a measurable voltage. Since SW1 is in position B, a charge is developed across CV39 at pin 35.

During the following lines 21-23 SW2 remains in position B while SW1 returns to position A. The three 'cut-off' cathode currents are measured in sequence, at pin 34, each voltage being compared with that previously stored by CV39. The relevant 'cut-off memory' capacitors (CV12 red, CV13 green, CV14 blue) are then charged, subsequently providing a black-level clamp action.

Note that SW1 is in position B on only line 20 , while SW2 is in position B on only lines 20-24. At all other times the switches are in position A.

As a result of the action of these sampling feedback loops, carried out once per frame to set up the RGB drive levels, correct grey-scale tracking is maintained throughout the life of the tube.

Beam Current Limiting

There is 'average' beam current limiting and the usual beam current limiting based on the voltage at the earthy end of the e.h.t. section of the line output transformer. Fig. 11

Fig. 11: The beam current limiting systems.
shows the relevant details. The integrating circuit RV62/DV25/CV19 develops across the capacitor a voltage that corresponds with the total instantaneous beam current. This voltage is applied via pin 36 of IV01 to a comparator whose other input, at pin 38 , is obtained from the 12 V line. When the voltage across CV19 reaches a level that corresponds with 78 per cent of the maximum permissible beam current, the RGB drives are reduced via the contrast and brightness control circuits.

Conventional beam current limiting is carried out by transistor TV04, whose base is linked to the earthy end of the e.h.t. generator system via RV59, zener diode DV24 and RV61. Should the voltage across RV60 reach DV24's zener voltage TV04 will switch on, reducing the voltage at pin 38 of IV01. The action is again via the comparator - whether one input is increased or the other decreased the result is the same.

The Colour Decoder Chip

The TEA5640F colour decoder chip IC01 incorporates a digitally controlled PAL/SECAM signal identification system. At switch on it operates in the SECAM mode, with an external bandpass filter that's tuned by internal capacitors to the $4 \cdot 286 \mathrm{MHz}$ SECAM carrier. If it doesn't detect a

SECAM signal by the end of a set waiting period it switches to the PAL mode, with the bandpass filter now tuned to 4.43 MHz . Again, if no colour signal is detected by the end of the waiting period it switches back to SECAM. This sequential signal scanning continues until a signal is recognised. The waiting period is derived from a 62.5 kHz signal that's fed in at pin 15. This reference signal comes from the microcontroller chip IR01.

Colour decoding is carried out conventionally, with system switching as necessary. A separate regulator circuit provides an 8 V supply for the chip at pin 9 . The series regulator transistor TC01 is external while its control circuit is internal. TC01 receives a 13 V supply derived from the line output stage at its collector. Its emitter supplies pin 9 of the chip. An internal comparator and current source transistor control TC01's base via pin 10.

THE SATELLITE BOOK

A thoroughly revised and updated fourth edition of The Satellite Book has been published by Swift Television Publications, 17 Pittsfield, Cricklade, Wilts SN6 6AN - telephone 01793750 620, fax 01793752 399. The large A4 format book, with 302 pages, provides information on all aspects of satellite TV theory and practice and is copiously illustrated. The new universal LNBs are covered, also how to switch satellites without any moving parts. There are chapters on such subjects as digital compression techniques and MPEG2 broadcasts. The book costs $£ 32$ plus carriage $-£ 2.50$ UK, $£ 5$ Continental Europe, $£ 16$ to the rest of the world - from the above address.

BPL BRAND TV SETS

We understand that spares and service information on BPL brand TV sets are available from Falmouth Hi Fi, 14 Market Strand, Falmouth, Cornwall TR11 3DE. Telephone 01326 313412.

ECONOMICALLY PRICED SCOPES

A new range of economically priced scopes has been intro= duced under the Mr Analog name. There are at present five models, with frequency responses up to 100 MHz , sensitivities down to $2 \mathrm{mV} / \mathrm{div}$ and timebase speeds from $500 \mathrm{msec} / \mathrm{div}$ to $20 \mathrm{nsec} / \mathrm{div}$, all with an accuracy of ± 2 per cent. A $\times 10$ multiplier reduces the shortest timebase speed to 2 nsec/div, with an accuracy of ± 3 per cent. All models have a six-inch screen. Three models have auto set-up on all three input channels. There is also a full on-screen parameter display, a frequency counter and cursor measurement capability. Further models are expected shortly, including a 200 MHz version. For further details and current prices, apply to Hesing Technology, 41 Bushmead Road, East Socon. St. Neots, Cambs PE19 3BT. Telephone 01480386 156, fax 01480386157.

OZAN TELETEST KITS

Ozan has launched a range of Custom Teletests - TV test pattern generators that you can build yourself. With full features, the prices start at $£ 69.95$ plus VAT. They can be upgraded to suit your needs. An ideal Christmas present for all TV engineers! For further details Freecall Ozan on 0500 009070 - or refer to the advertisement on page 15 of this issue.

Domestic Multi-channel TV Distribution Systems

Part 2

In Part 1 last month I described the TV/video arrangements at the Clutter household - the system that had been giving them such poor results. It had evolved gradually over the years as various additions had been made. This time we'll describe the design and installation of the new system, based on current best practice.

Off-air Reception

The first thing we did was to check whether good reception could be obtained from the local high-power transmitter (Emley Moor). Unfortunately it couldn't. This was a great pity, because the use of strong local signals, including the correct regional ITV, would have greatly simplifed matters.

Bill Wright

range. But because the police transmissions were of short duration and not very frequent, it was not possible to tune the filter to them directly. Instead, a frequency analyser was used to determine the exact frequency: the filter was then connected between a broadband noise source and the analyser and tuned to produce a notch at the relevant frequency. The filter had to be fitted ahead of the masthead amplifier of course. Its through loss was about 1 dB on ch. 23.

The Clutter clan insisted on reception of Yorkshire TV, but seemed to be oblivious to regional differences on BBC-1 and BBC-2. Of the local channels therefore I decided to put only Yorkshire ITV on the system, removing the others. This was done at the channel-pass filter stage - see later and Fig. 1, which shows the new system in outline. This course of action

Fig. 1: New distribution system for the Clutters. Compare with Fig. 1 last month.

Use of a third possible transmitter, Belmont, was considered but was ruled out. The field strengths were little better than those from Bilsdale, the transmitter we decided to use, while in this area reception from Belmont is susceptible to cochannel interference from Europe - an aerial that points at Belmont also points at Holland and Belgium.

A good-quality, high-gain aerial was duly installed, pointing due north to Bilsdale some sixty miles away. This provided signals of $-9 \mathrm{~dB} / \mathrm{mV}$ to $-11 \mathrm{~dB} / \mathrm{mV}$, with which I was happy. Because Bilsdale is to the north we can use it without fear of interference from Europe, even when the field strength is low. So $-11 \mathrm{~dB} / \mathrm{mV}$ is o.k.

A standard Band IV notch filter was used to remove the police transmissions, 450 MHz being just within its tuning
has several advantages. First, the fewer channels there are on the system the better, because the cross-modulation ceiling rises 3 dB every time the number of channels is halved. As the Emley Moor signal levels varied widely, reducing them to one channel greatly reduced the potential for intermittent cross-modulation. Furthermore, had I left dodgy versions of BBC-1, BBC- 2 and Channel 4 available, the Clutters would undoubtedly have tuned in to them - and then moaned. As it was, I stressed to them that YTV should be regarded as a secondary service, to be used only when there was a different programme on Tyne-Tees from Bilsdale.

Careful positioning of an 18 -element aerial for Emley Moor produced a YTV signal of $17 \mathrm{~dB} / \mathrm{mV}$. This was about 12 dB below the line-of-sight figure. The aerial was aligned
with reference to YTV reception only. There was noticeable ghosting on YTV: the other channels were very poor, one being virtually unwatchable.

Channel-pass Filters

With a difficult system like this one, where the available off-air signals are not good and there are a number of domestic modulator derived signals, each and every signal input must be filtered before it is combined with the others. Since we are dealing with 8 MHz wide TV channels, the filters used should have a bandwidth just sufficient to-accept one such channel without distorting the signal.

Channel-pass filters are available from a number of sources. The types with which I am most familiar are imported by Taylor Brothers of Oldham and are sold as the TCFL series. They come in units that contain one, two, four or six separate channel-pass filters. Each channel is passed through three tuned stages and a variable attenuator. Through loss is usually 2 or 3 dB . Fig. 2 shows a typical frequency response for a four-channel unit. With all units the channels accepted appear at the same output socket, though any input configuration is possible. With a fourchannel unit for example you can have four separate inputs, two inputs each with two channels, or one single-channel input and one three-channel input.

The input configuration required should be specified when ordering, but altering it is easy enough. The channels should also be specified, but can again be altered afterwards - within a limit of about ± 7 channels. Further retuning is possible, but the through loss may become excessive. As it's impossible to stock every conceivable filter, a certain amount of re-configuring and retuning is often necessary. Accurate retuning is not possible without a spectrum analyser and a noise generator. Simply retuning for maximum output using a signal-strength meter will give very poor results, as the tuned stages must be aligned for the correct bandwidth.

Signal-level Planning

The signals that pass through an amplifier or other active device must do so at a level that is within the device's operating range. With a domestic system, a single broadband amplifier will be used to bring the signals up to the correct level for distribution. If the signal levels are too low, excessive noise will be introduced; if they are too high, crossmodulation and other undesirable effects will appear. As a rule of thumb, run the amplifier at a maximum gain of about 10 dB below the level where cross-modulation becomes visible.

The distribution amplifier will usually be of the multioutput type, with separate cables run between the amplifier and each outlet socket. I'm in the habit of planning my signal levels backwards; that is, I start at the outlets and calculate back towards the signal sources. At no point should the signal level in the system drop below $3 \mathrm{~dB} / \mathrm{mV}$, or noise will be introduced. To allow the level to become really low at some point and then increase it by using additonal amplification is no good at all.

When calculating the input signal level required by the distribution amplifier, take into account the loss introduced by the longest downlead and the gain at each amplifier output. Although it's supposed to be acceptable to provide a TV set with a signal level of $0 \mathrm{~dB} / \mathrm{mV}$, I always plan for no less than $8 \mathrm{~dB} / \mathrm{mV}$ at each outlet. The amplifier input required, plus the filtering and combining losses, give the signal level that should be provided by each signal source.

In the Clutters' system the Amstrad satellite receiver provided an output of only $5 \mathrm{~dB} / \mathrm{mV}$, which was not sufficient. A small set-back booster amplifier with a gain of 10 dB was used to bring the level up to $15 \mathrm{~dB} / \mathrm{mV}$. It's most important to incorporate any such gain before the relevant channel-pass filter. Where severar inputs to a filter unit are low it's tempting to fit one amplifier after the filter rather than several before it, but this negates the whole point of using channel filters, which is to keep each channel clean, without noise and interference contamination from other sources.

Use the variable attenuators in the filters for final signallevel adjustment. Normally all outputs will be set at the

Fig. 2: A four channel-pass filter unit frequency response. One channel has been set at $\mathbf{- 1 2 d B}$.
same level, but if cable runs are long, and channels at both ends of the band are used, some slope might be applied say 4 dB across the whole band.

With this particular system I was concerned that the ch. 47 Emley Moor signal might rise sufficiently to affect reception of the other channels. Careful aerial alignment had produced a signal 12 dB below the line-of-sight figure, so I was confident that in practice the level was unlikely to rise by more than about 6 dB . Accordingly I set the ch. 47 level at -4 dB relative to the other channels. What if the off-air level was to drop dramatically? Well, in this case the Clut $=$ ters don't get to watch YTV - unless they want to pay me to move the aerial to suit the changed reception conditions. Make sure your customer understands that reception cannot be guaranteed when the incoming signal is unreliable.

If your signal-level planning is about right, it's likely that you will use the variable attenuators to reduce each channel by about 4 dB . If you have to leave any channel at maximum you are obviously pushing your luck. If you have to reduce any previously amplified signal by more than about 10 dB you are using unnecessary amplification which will add noise, introduce the potential for instability and be a waste of money. Always use just enough amplification. Do not for example use a two-stage masthead amplifier only to discover that a 12 dB attenuator is required at the distribution amplifer's input: plan your signal levels, and in this example use a single-stage masthead amplifier.

Signal Combination

Because each path within a block of channel-pass filters consists of a series of tuned filters, the outputs can be
connected together inside the unit without impedance mismatching. Up to six channels can be combined in this way with virtually no loss. Compare this with the altemative - the use of a six-way inductive splitter to combine the signals, with losses of about 10 dB .

In many cases all the channels can be passed through a single block of filters whose output can go straight into the distribution amplifier. Two filter blocks were used in the Clutters' system, so an inductive splitter was required to combine the two outputs. The splitter used should be a topquality item in a metal case. The ones with F sockets are ideal. There's no point in using a diplexer, even where this is possible. Three-, four-, six- or eight-way splitters can be used where necessary, but the lowest signal losses will be achieved by using the smallest possible number of channel-pass units, each carrying the maximum number of channels.

VCR Input

When the output from a VCR is fed into a distribution system a difficulty can arise if the VCR takes its aerial input from the system, as will normally be the case. A signal loop will exist, and if the overall loop gain is unity or more the system will oscillate. For this reason a notch filter tuned to the VCR's output channel should be fitted between the distribution amplifier and the VCR's input. The unsuppressed lower sideband of the VCR modulator's output will need to be notched out, even though it will have been attenuated somewhat by the channel-pass filter. Because of this a double notch is best, with the tuning slightly staggered, as shown in Fig. 3.

As an additional precaution, ensure that the signal levels at the VCR's input are not unnecessarily high. Also ensure that the notch filter doesn't affect the VCR's reception of the channels just above and below its output channel. This is easy to arrange with the use of a spectrum analyser, not so easy without one. If channel space allows, it's helpful to have two unused channels rather than one at each side of the VCR's output channel. This makes notch filter adjustment less critical. The VCR's r.f. output will include all the other channels in the system, but these will be removed by the channel-pass filter tuned to its output.

If the system carries nothing but off-air terrestrial channels which are all received via one aerial, there's no need to feed the VCR from a distribution amplifier output. It can be fed from the aerial directly, via a splitter. This avoids the complications just described.

Channel Planning

There are 47 channels in the u.h.f. TV band. This sounds a lot when your system requires only six or eight active channels. So what's the problem? There are various constraints that must be observed in order to avoid various types of interference. It's in fact surprisingly easy to 'run out of channels'.

No two signals should be present in the same channel of course. But I've seen it done, more than once! Adjacent channels shouldn't be used. You may feel that you can get away with adjacent-channel working, but in a domestic situation don't do it.

As far as possible avoid five- and nine-channel spacing. Some TV sets are very prone to image interference and other spurious responses. Local oscillator interference can also be a problem, though this is less common. In practice it's not necessary to consider the finer technical details: you will keep out of trouble 99 per cent of the time by simply avoiding $n \pm$ 5 and $n \pm 9$ channel spacing. If there is a real shortage of channels, risk five-channel spacing: this is less likely to cause
problems than nine-channel spacing.
All signals should be on exactly the nominated channel. When setting the carrier frequency of the modulator in a VCR or whatever, tune it to a known reference frequency. This usually means using the frequency-synthesised tuner in a spectrum analyser.

The frequencies we normally can't alter are those of the terrestrial broadcast channels. So these form the fixed points in the channel plan. In an extreme case it might be necessary to use a channel changer to translate a channel to another frequency. This is common practice with commercial systems, but is best avoided in a domestic installation - if only because of the cost.

When planning a system it's my practice to draw up a u.h.f. band chart - see Table 1. The first things to insert are

Fig. 3: Double-notch filter frequency response with the tuning slightly staggered. A deeper and narrower notch is obtained when the two stages are tuned to precisely the same frequency.
the terrestrial channels to be carried, and all their $n \pm 5$ and n ± 9 relations. Include any strong local signals that are not to be carried, and any other channels that represent an obvious interference possibility. A spectrum analyser scan will often reveal these.
You can then slot in the channels to be used by VCR etc. modulators, making sure that you obey the rules just outlined. If at all possible, VCRs and satellite receivers at distribution system outlets should be connected to the accompanying TV set via a scart lead, with the r.f. output tuned somewhere where it will do no harm.

With the Clutters' system, the chart (Table 1) showed that in theory there was no available channel for the bedroom VCR. Had it not been possible to connect this to the TV set via a scart lead I would have used ch. 31 or 35 , checking for n ± 5 or $n \pm 9$ problems (channels 26 and 40) with the TV set.

Modulator Frequencies

It's unfortunate that the modulators in most VCRs and satellite receivers will tune across only a limited range of channels in the middle of the band - roughly from ch. 30 to ch. 40 . Because of this it's often difficult to find suitable channels where they are required, while vast tracts of unused space are present at the top and bottom ends of the band. The Clutters' system is a good example, with nothing above ch. 47 but a problem in finding a spot for the second VCR within its modulator's tuning range. The channel chart showed up this problem immediately. I thought I was going to have to put the Betamax machine's output on ch. 31, which would have constituded an $n \pm 5$ clash with Bilsdale BBC-2 and an n ± 9 clash with the satellite receiver's output on ch. 40 . To my
surprise and delight however I found that the Betamax would tune up to ch. 43 - just. Otherwise I would have had a problem.

A great advantage with Pace satellite receivers is that the modulator output can be tuned to any channel in the range 2168. About a month after Mr Clutter's system had been installed he rang up to say that the satellite reception was very poor. During the installation period I'd avoided discussion of the merits or otherwise of the aged Amstrad satellite set-up. But I was fairly sure that a satellite sale would materialise in due course.

When I called round 'to have a look' I found that reception of the terrestrial channels was extremely good. This meant that the Clutters now knew what good reception looked like, and was the main reason for the dissatisfaction with satellite reception - together with a week of very rainy weather. Mr Clutter eventually decided to fork out, and the possibility thus arose of installing a Pace receiver with its r.f. output set to a channel at the top end of the band. In the event I decided to keep to ch. 40. This had been entirely satisfactory, and I didn't feel like fitting a new channel-pass filter. Had a Pace receiver been installed at the start, I would certainly have put its output on ch. 58 or thereabouts.

Four-channel Groupings

Another cause of channel congestion is the broadcasters' use of the standard four-channel groupings $-\mathrm{n}, \mathrm{n}+3, \mathrm{n}+6, \mathrm{n}$ +10 and $n, n+3, n+7, n+10$. This came about because it was felt that adjacent-plus-one channel spacing would cause problems. The next option was $n, n+3, n+6, n+9$: this was rejected because of the $n+9$ clash. The groupings used thus spread across eleven channels. Had adjacent-plus-onc spacing been used, the four transmissions could have been accommodated within a bandwidth of seven channels.

This would have greatly simplified channel planning with multi-channel distribution systems where fully tunable modulators are used because, in cases where only one four-channel group is carried, the adjacent-plus-one sequence could be extended across the entire band. With the standard groupings, à sequence of adjacent-plus-one channels can be added but where these clash with $n \pm 5$ or 9 transmitted channels the channel has to be left out. Aerial performance would also have been better with adjacent-plus-one channel spacing.

The standard groupings allow the insertion of one channel per group, for example ch. 29 can be added to the group 21 , $24,27,31$, and channel 28 can be added to the group 23,26 , 30 and 33 . But there will always be an $n \pm 5$ channel clash.

In Conclusion

The complexity and cost of domestic TV distribution systems varies greatly. At one end of the scale there's a simple multi-outlet amplifier in the loft, supplying terrestrial signals to three or four TV sets. At the other end there are systems that carry the outputs from say three VCRs, three satellite receivers and a couple of surveillance cameras (via modulators) as well as a variety of terrestrial channels, supplying a number of outlets. Most jobs fall somewhere between these extremes.

The first steps are to find out what the customer wants and requires; if necessary to make him aware of the possibilities; and to establish how much he is willing to spend. Because of the many possible permutations, it's a good idea to have a separate rough price in mind for each part of an installation. ln this way you can add up a total price quite easily. A decent job can be worth ten or more simple aerial rigging jobs. The heyday of aerial rigging is now long gone, and today those

Table 1: Channel plan for the Clutter System

Channel	Situation	Channel	Situation
21	X	37	VHS VCR
22	Adjacent ch.	38	Adjacent ch. +X
23	Ch 4 Bilsdale	39	Adjacent ch.
24	Adjacent ch. +X	40	Satellite TV
25	Adjacent ch.	41	Adjacent ch + Emley Moor ch.
26	BBC-2 Bilsdale	42	X
27	Adjacent ch.	43	Betamax VCR
28	Adjacent ch. +X	44	Emley Moor ch.
29	ITV Bilsdale	45	X
30	Adjacent ch.	46	Adjacent ch. +X
31	X	47	ITV Emley Moor
32	Adjacent ch. +X	48	Adjacent ch.
33	BBC-1 Bilsdale	49	X
34	Adjacent ch. $+X$	50	Free ch.
35	X	51	Emley Moor ch.
36	Adjacent ch.	52	X

$X=n \pm 5$ or $n \pm 9$ clash.
Chs. 53-68 not used. Ch. 56 is an X clash.
Three Emley Moor chs. not carried.
active in the field of domestic installations are a bit short of work most of the time. Domestic TV distribution system work is thus a valuable source of extra income.

If you go about each job methodically, plan in advance exactly what you are going to do and use good test equipment, the jobs should be trouble-free and profitable. I know of no other aspect of our trade where recommendations come so readily.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August,
 September, November and December

1993 January, May, June, July, August,

September, October, and December

1994 January, February, March, April,

May, June, July, August, September,
October, November and December
1995 January, February, April, May, June, July; August, September and October

Copies are available at $£ 2.75$ each
including postage. Send orders to: Reed Business Publishing,
Television Back Issues,
Room L302, Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing

Sony CCDF555E

The customer had complained about the viewfinder picture: it could almost be focused, but wasn't quite up to standard. After checks in the relevant circuitry proved fruitless we decided to replace the line output transformer. This did the trick. Note that some Sony viewfinder tubes are electrostatically and others magnetically focused.
D.C.W.

JVC GRC1E

This oldie would power up for a few seconds then power down. There were no noises from the mechanism or other clues. As a start we checked the various power supply circuit protectors. They were all in order. We then noticed that one of the tape guides was positioned incorrectly, the unit being in the stop mode. As a result the loading motor had jammed and the mechacon decided to abort the start-up sequence. Loading gear realignment restored the unit to working order.
D.C.W.

Orion CMV392

This VHS-C model wouldn't function, the message "EMG. CYL" being present in the viewfinder. A quick look showed that the middle guide pole had broken off, something that's not uncommon with this type of mechanism, which is based on a JVC model. Simply fitting a replacement guide didn't cure the problem of course. Further investigation revealed several dry-joints in the drum-drive PWM circuit, around the 37.5 Hz filter. The circuitry here is very similar to that in JVC models of the same period. After carrying out the resoldering required we gave the machine a long soak test. All was well.
D.C.W.

Sanyo VMD6P

Intermittent autofocus operation was the problem with this one. Board TC1 receives a 4 fsc input at pin 1 of CN952. It was missing, because of a faulty connector at board CA1 (the source of the 4fsc signal). Remaking the connection put matters right.
D.C.W.

Canon A10E (Sony FL Mechanism)

A tape would load until the LS deck moved to the point where the tape comes into contact with the head drum. At this instant the tape would be ejected. It wasn't immediately obvious that the brakes within the cassette weren't being released. When we realised that this was the situation it took only an instant to see the cause - the cassette brake release pin was missing from the mechanism. A replacement put matters right.
D.C.W.

Sony TR105E

The cause of the reported fault, cutting out after a few seconds in any mode, was lack of the capstan FG signal. It's not uncommon for the capstan waveshaping/amplifier/etc. chip IC159 in this model to fail, producing this symptom. But it had already been replaced! The FG signal from the capstan motor was correct at IC159's input pins, but was
missing at pin 25 . As the chip had been replaced we decided to carry out some cold checks around pin 25.

The resistance between pin 25 and chassis was 350Ω, which was patently incorrect. But what was the cause? Pin 25 feeds the FG signal to the syscon and servo chips: checks at the relevant pins confirmed the low resistance reading. We then noticed that the capstan FG signal takes one other path, to the check pin of socket CN002. An inspection at this socket revealed a solder bridge between pins 2 and 4. When this was cleared all was well with the capstan FG signal.
D.C.W.

JVC GRS99

There was no output from the camera section, playback was in mono only, there was no viewfinder display and noise on playback. Very few will touch this camcorder, as you can't operate it with the cover removed - unless you have the Bodgett set of special extension leads. Action: replaced an open-circuit protector in the camera head, sussed out that mono meant no colour and not mono as opposed to stereo, and set the YC switch to CVBS.
S.B.

JVC GRS707

This machine powered up but there was no picture in the viewfinder or via any of the outputs. The 8 V regulator transistor had failed and, by the looks of the soldering, someone had replaced it before. I'll bet it fails only when the owner is copying. Make phone call to owner to check. He's astounded that Bodgett knew what had happened. Owner told in no uncertain terms to get a new JVC AV lead and stop using crap pattern accessories. Write out large bill to include AV lead.
S.B.

JVC GRAX2

"Cracked and a smell of burning" it said. I think you have to be psychic to be able to decipher some of these fault reports. We replaced the burnt out d.c.-d.c. converter and associated circuit fuse (the cause of the 'crack' when it blew up), then the loading motor which had been the cause of it all. Added psycho levy charge to the bill - for a new crystal ball. S.B.

JVC GRAX5

The picture was negative and out of focus. This meant that there was little or no luminance, just chroma and syncs. The usual cause is the CCD delay line chip in the camera head. Replacing it cured the trouble.
S.B.

JVC GFS1000

The record on/off button was broken, the lens and PCBs were pushed back, the lens frame was warped, there was no iris control, a PCB support pillar had broken and the camera operation PCB connector was also broken. Had it been dropped? "Understatement" is probably the word to use here, along with "pillock" to describe the owner. Anyway we were able to put matters right. We replaced the camera frame, the iris amplifier's drive transistor and the PCB connector, then glued the damaged stop/start switch. S.B.

TV Fault Finding

> Reports from Philip Blundell, AMIEEIE, Chris Watton, John Edwards, Mike Leach, Andrew Tebbutt, Robert Marshall, Michael Maurice, Paul J. Charlton and Stephen Leatherbarrow

Philips GR2.4AA Chassis

A dead set with the power supply producing a weak beepbeep sound usually means that there's a fault in the line output stage. Disconnect plug M71 and check the voltage at coil L5631. If it's steady at around 150 V , the next place to look is the line output stage. So far we've had the following: the BU508AF line output transistor leaky; the line output transformer faulty; or, if fuse F1534 is opencircuit, diode 6546 (BY226) is probably leaky. If D6546 is leaky it will have damaged diodes 6560 (LL4148) and 6561 (BZX79C68) as well.
P.B.

Tatung 165 Chassis

At switch on the power supply seemed to be tripping. But a check showed that the 117 V supply was steady. The set could be switched in and out of standby with the remote control unit, but in the on condition the display pulsed bright then dim. We soon found that there was no line drive because the 11.5 V supply was missing at pins 7 and 22 of ICl 01 . It comes from transistor Q501, whose base is biased by R507, R508 and the 12 V zener diode D503. R507 ($12 \mathrm{k} \Omega$) was open-circuit.
C.W.

Matsui 2590

This set was dead with the standby LED out. H.T. was present at the collector of the line output transistor but there was no 24 V supply at the line driver stage. It was switched off because the 5 V standby supply was missing. Replacing D807 (BY29.9) restored normal operation.
C.W.

Finlux 3000 Chassis

This set produced a weird display: there was a bar down the screen and the picture was split and superimposed on another picture that was twice the correct width. When teletext was tried the characters were about three inches wide. Scope checks in the line output stage showed that the flyback pulse signal, from the collector of the line output transistor to the base of transistor TZ1, was missing. The cause of the trouble was $R Z 21$ ($220 \mathrm{k} \Omega$) which was opencircuit.
C.W.

Hitachi CS2852TA (Salora Digital Chassis)

This set was dead because the S2000AF line output transistor was short-circuit. The whole line output section appeared to be dry-jointed, so a good solder up was carried out. This restored the set to life.
C.W.

Panasonic Alpha 1 Chassis

The mains input circuit and rectifiers were o.k. as there was 320 V across the reservoir capacitor, but the power supply
produced no output voltages. Checks on the outputs revealed that the h.t. rectifier D851 was short-circuit. C.W.

Hitachi CPT2888 (Salora K Chassis)

This set wouldn't start up when asked. Various checks were made in the power supply circuitry, but the cause of the fault turned out to be in the line output stage. C509 was dry-jointed.
C.W.

Sanyo A1-A14 Chassis/Datsuri

This Sanyo set was found under the Datsuri guise where do they get these names from?! It was dead apart from the standby LED, which went off when the remote control was operated. The line output stage was receiving its 130 V supply and the line driver stage its 24 V supply, but there was no 12 V supply at pin 8 of IC201 which, amongst other things, produces the line drive. When we traced back from this point we came to a three-legged regulator which was getting quite hot. There was only about 12 V at its input. Checks for heavy loading on this supply soon brought us to C422 ($0.0033 \mu \mathrm{~F})$ which was as leaky as a collander.
C.W.

Telefunken A415 Chassis

The BU208D line output transistor had gone short-circuit. When we disconnected the scan coil plug and connected a 60 W bulb as a dummy load between pin 2 and chassis we obtained an h.t. reading of 180 V , which is much higher than it should be $(122.5 \mathrm{~V}$ is the specified figure). Checks in the power supply revealed that D528 was open-circuit. Replacing it restored the correct h.t. voltage, so a new line output transistor could be fitted with confidence. I crossed my fingers and switched on - perfect!
C.W.

JVC AU21F1

The signals would disappear intermittently, leaving the screen covered in snow - as if the aerial had been disconnected. We found that the fault came and went when the large metal heatsink that's mounted across the centre of the motherboard was flexed and twisted. All three legs of the 5 V regulator IC522, which is fixed to the heatsink, were dry-jointed. Resoldering restored normal operation. J.E.

Sanyo CTP6131

Several equally-spaced horizontal flyback lines covered the top quarter of the picture. The cause was C440 $(4.7 \mu \mathrm{~F}$, 250 V) which was open-circuit.
J.E.

Hitachi G8Q Chassis

The complaint was no picture. When the first anode control was turned up we found that there was field collapse. Checks around the TDA2579A timebase generator chip showed that there was no field drive at pin 1 though there was a linear sawtooth waveform at pin 3. Just about every component that could have caused the loss of field drive
was checked, but no faults were found. What now? On switching the set back on again I was amazed to find that there was a full picture. No amount of tapping or heating/freezing would make it misbehave. Perhaps a poor joint had unwittingly been repaired? 1 hate not knowing!

I then noticed that the raster had some pincushion distortion. Not a lot, but it was there. The presets altered the raster geometry, but not by enough. Again every possible component was tried, even the TDA2031A correction chip.

After soak testing the set for two days to make sure that the field fault had been cleared we returned the set. The customer didn't seem to be too bothered about the pincushion distortion but said that it hadn't been there before. It was one of those sets you can't help feeling you'll see again. Has anyone out there any ideas in case we do? If so, please write in to the editor.
J.E.

Grundig CUC52KT Chassis

This set was dead with a blown mains fuse. Bridge rectifier D621 and C633 ($220 \mu \mathrm{~F}$), which is connected between pins 6 and 9 of the TDA4600- 2 chopper control chip, were both short-circuit.
J.E.

Hitachi NP81CQ Chassis

The standby indicator was on but the set was otherwise dead. We found that the main board fuse was blackened though there were no obvious shorts in the chopper circuit or the line output stage. A small voice in the back of my mind told me to check the 98009 posistor. Sure enough when it was removed and shaken it made the give-away rattling noise. With a new posistor fitted the set burst into life. I do wish that small voice would put in a more frequent appearance.
J.E.

Grundig M95-490 (CUC3850 Chassis)

This giant of a set was dead. The h.t. supply was present but there was no drive at the base of the line output transistor. We then found that there were no voltages around the TDA8140 line generator/driver chip IC550. This took us back to the chopper circuit, which provides the required 12 V suppy. The $0 \cdot 2 \Omega$ surge limiter resistor R661 was opencircuit. A replacement burnt out immediately when power was applied. We checked the associated BYW72 rectifier diode D661 and checked it again, using both digital and analogue meters, but it insisted on its innocence. The set nevertheless worked when a replacement was fitted. We found that the original diode had slight but definite reverse leakage when checked with our scope component tester. J.E.

Sanyo CTP2180

If the customer complains about varying brightness and an occasional fizzing noise, check for a dry-joint at the focus control's earthing tag. I've had several of these sets with this fault.
A.T.

Tatung Series A Chassiśs

This set was dead with a squeal that came from the direction of the power supply. Suspecting that a faulty line output transistor or transformer was loading the power supply heavily, I turned the chassis over to make some measurements. As there were no shorts I decided to check the h.t. When the set was switched on again the cause of the trouble became obvious. The large, wirewound resistor
in the snubber circuit had become dry-jointed.
It then dawned on me that I'd had a problem with this component, in a portable version of the chassis, some two years back. On that occasion however the symptom had

Fig. 1: Improved method of mounting R808. Add a piece of stiff wire to its shorter leg and pass this through the board. You may have to do this with both leadouts, though in most cases only one will need attention.
been varying h.t. The resistor concerned (R808) is stood up off the chassis by means of built-in legs (see Fig. 1). Its leadouts are rather short. To improve the reliability, and the connection quality, I adopted the approach shown in Fig. 1.
A.T.

Salora 24L5H

A blank raster with no snow and no sound is often caused by failure of the multi-purpose TDA4505 chip ICB101. A set that came in recently produced similar symptoms, but this time the chip wasn't responsible for the fault. No great technical wizardry was involved in finding the cause, just a hairdryer and some freezer. The culprit turned out to be CB117 (22nF), which is connected between pin 10 of ICB101 and chassis. It was intermittently leaky from cold. A replacement restored reliable pictures and sound. M.L.

Hitachi CPT2524T

We've had total power supply failure with several of these sets. If the 6.8Ω surge limiter resistor is open-circuit, you can usually assume that the chopper transistor is shortcircuit. The over-voltage protection diode is also usually short-circuit, due to a sudden rise in the h.t. voltage. If the power supply again blows up after replacing all the usual components (see below), including the $39 \mathrm{k} \Omega$ resistor, check and if necessary replace the $2 \cdot 2 \Omega$ resistors connected across the base and emitter of Q760.

In short, if the power supply has suffered a major failure it will usually be o.k. after replacing all the following components: Q903, Q904, R909, R912, R902, R903, ZD903, R760, R761, R762, R766 and R901 if it's opencircuit. Before switching on, check Q781, D781 and D782 in the line output stage.
M.L.

Hitachi CPT2578

The MDA2062 (blue spot) memory chip IC1502 is usually the cause of channel tuning problems. If the complaint is no teletext however suspect the memory chip first, not the teletext decoder which is very reliable.
R.M.

Amstrad CTV1410

We noticed that occasional field roll coincided with a bright picture. A scope check showed that the TA870IN i.f. chip produced a good output waveform at pin 19. After passing through a 6 MHz crystal filter (CF301) the signal is coupled by C304 ($2 \cdot 2 \mu \mathrm{~F}$) to an emitter-follower stage.

When checked this capacitor was found to be very low in value, causing the loss of field sync. Most TV designs don't use a coupling capacitor here.
R.M.

Hitachi CPT2198 (G8Q Chassis)

Complete failure was caused by cracked print at the chopper transformer.
R.M.

Samsung CVB4587 Computer Monitor

The problem was no blue output. I checked every component in the blue channel on the tube base before I found the faulty one: R708 ($1.8 \mathrm{k} \Omega$) was open-circuit. It's a base bias resistor and was nestling under a swathe of brown glue.
R.M.

Telefunken MR25

This set thought it was a night-club lighting effects generator: instead of a picture there was a bright screen of one colour or another. The colour decoder is on a separate plugin board. We found that the U4646B output chip was the cause of the trouble. The circuitry is similar to that in the Ferguson ICC5 chassis, which uses a U4647B chip. That's where the similarity ends - the two chips are not pin compatible.
R.M.

Amstrad TVR3

The TV section of this unit was dead. We found that the 3.3 nF snubber capacitor C310 and the STK7348 chip in the power supply were both short-circuit. As the replacement capacitor supplied by Amstrad didn't look capable of withstanding 100 V , let alone 1 kV , I made up a replacement consisting of two 1.5 nF capacitors connected in parallel. The set bounced within two weeks.

This time we obtained the chip from another source. After a long soak test the set was pronounced fit. It could be that there's a bad batch of STK7348s around. M.M.

Matsui 1436

The customer's report said "loud fizz then went pop!" On investigation I found that the degaussing posistor had exploded, taking with it the standby mains transformer, relay RL650 and the degaussing coils. All was well after replacing these items.
M.M.

Sony KVX2172

This set would select only ITV. If any other channel was tried it would be displayed for a couple of seconds then the set would revert to ITV. The cause of the trouble was the ST24C16 EAROM, which had become corrupted. As with all the new sets that have digital control, everything has to be set up after replacing the chip
M.M.

Hitachi C2858

This set had a strange colour fault: the picture would go red and green after about twenty minutes. The TDA3562 colour decoder chip was the cause, a replacement clearing the trouble.
M.M.

JVC AV28S1EK

The picture had come right in at the sides and it seemed that the EW correction system wasn't working. Before
diving into the circuitry I realised that this is a JVC example of electronic screwdriver technology. There are two memory chips, one of which takes care of tuning and customer preferences while the other is the electronic screwdriver. For good measure I replaced both chips. After setting it up the set then performed faultlessly.
M.M.

GoldStar CIT2170F

We've had a few calls to these sets when they won't power up from standby. The cause has in each case been dryjoints on the main relay. As you find that the pins have charred, the relay has to be removed and the pins cleaned prior to refitting.
P.J.C.

Mitsubishi CT3703STX

This monster had to be dealt with in the customer's home! The symptoms were intermittent tuning memory loss together with all the picture adjustment values going to maximum. The set would tune but not store. We eventually traced the cause of the problem to T951. The -31V read/write supply to EAROM IC702 was missing. P.J.C.

Amstrad TVR2

The TV section of this combined TV/VCR unit wouldn't come out of standby. We found that $\mathrm{C} 1507(1 \mu \mathrm{~F}, 50 \mathrm{~V})$ on the main transformer was open-circuit. P.J.C.

Mitsubishi CT21A3STX

This set had forgotten that it had teletext! The cause was the EEPROM chip, which had become corrupted. You can prove this by reprogramming it, but Mitsubishi recommends fitting a replacement. IC702-KIT contains the EEPROM, a few additional components and fitting details. It's wise to note the option and VCJ settings before you remove the suspect chip - this helps with reprogramming.
The EEPROM can also be reponsible for intermittent picture geometry faults, loss of Nicam sound, and occasionally loss of audio playback from a mono VCR! P.J.C.

Goodmans CTV2T

The complaint with this set was very severe ringing which was particularly noticeable at the top of the screen, the effect diminishing slowly as the scan developed. A scope check on the field output waveform revealed a characteristic ring that was superimposed on the scan. The obvious thing to do was to check the damping components across the field scan coils. C483 and R448, which are connected in series, are the items to go for. In this case R448 ($1-2 \mathrm{k} \Omega$) was open-circuit.
S.L.

Ferguson TX10 Chassis (1515H Remote Panel)

There was no ch. 3 LED display with this venerable set. Otherwise it worked perfectly. We found that the MC14493P chip responded to freezer/heating and a replacement cured the fault.
S.L.

Ferguson 59K4 (ICC5 Chassis)

EW distortion is a common problem with this chassis. You usually find that RL44 is open-circuit and burnt. It consists of two resistors connected in series, a 120Ω section and a
56Ω safety type. It's the latter section that fails, as it is designed to do. The next thing you will find is a large dryjoint on the line scan coupling capacitor CL44 ($0 \cdot 3 \mu \mathrm{~F}$ in this particular model). This can result in the capacitor bubbling up because of the heat at the joint. The TDA4950 EW correction chip IG01 always fails, taking its feed resistor with it. It is also worth checking the EW coil LG11, which has been known to fail.
S.L.

Panasonic Alpha 2 Chassis

The video would disappear intermittently, leaving only the sound. As I've had similar problems before I carried out a quick check on the waveforms around the M51326P scart switching chip IC2601. Video should enter at pin 5 and reappear at pin 12. In the fault condition it didn't. Temporarily linking the two pins proved the point. S.L.

Ferguson IKC2 and ICC7 Chassis

A set fitted with the IKC2 chassis came in dead. The outputs from the power supply were correct at switch on, but there was no line output stage operation because the line drive was missing. After a few seconds the power supply outputs decayed and it seemed that the set was in the trip mode.

In this situation pin 40 of the TA8659CN signal and timebase processing chip IV01 is the place to check: $9 \mathrm{~V}=$ on, $0 \mathrm{~V}=$ standby/trip state. The voltage comes from TR17 (BC558C) which turned out to be open-circuit.

The same symptom in the ICC7 chassis tends to be caused by a faulty TDA8178F field output chip. The line drive is then removed by the trip action. You would think that merely disconnecting the field output chip would override the trip action, producing a nice white line. As the trip senses the field current however the diagnosis isn't as clear cut. Replacing the chip is sometimes necessary to prove the point.
S.L.

Ferguson TX90 Chassis

This set incorporated the PC1 139 remote control panel. It wouldn't power up unless the on/off switch was held on. If the switch was released, the set lapsed back to standby. Checks revealed that the 9 V supply to the TMS1000N2LL microcontroller chip IC901 was missing. Of the components involved in providing this supply, TR901 was shortcircuit and TR906 open-circuit.
S.L.

Sony KVFX29

The problem with this set was field foldover at the top. As we didn't have the manual we had to rely on cold checks. We eventually found that diode D506 (GI08D) was leaky, giving a reverse reading of 30Ω.

Orion 14ARX

A dead set or one that fails to be awakened from the standby state would probably have you giving the power supply suspicious looks, especially as it uses an STR50103 chip. Before you change this item however, take a look at the supply to the 5 V regulator (IC105) at the front of the chassis. It's derived from the mains supply via a half-wave rectifier and a suitably substantial resistor, with C530 $(3 \cdot 3 \mu \mathrm{~F}, 250 \mathrm{~V})$ to provide decoupling at the hot end. On a couple of occasions recently we've found this capacitor to be open-circuit or very low in value.
S.L.

EURAS SYSTEM FOR WINDOWS

How valuable is your time?
How much time do you waste trying to find a
solution for a rare repair or an unusual appliance?
With the EURAS Database for Video,TV and Hi -fi Technicians you can save time and money:
Subscribe to the EURAS System for only £18 a month and you will save a lot of time and hassle searching for rare faults. If you only save one hour of your valuable working time a month using EURAS, the System will have paid for itself.

Just consider for a minute, how much money could you save if you used the EURAS System several times a month?

BE SMART USE EURAS

Thousands of Technicians all over the world are using EURAS already.
Supported by major manufacturers, the data
 base is also updated and upgraded regularly.

30 Day Money Back Guarantee: Gives you the chance to test and evaluate the complete System without further obligation. Just return the coupon below or give us a ring and you will find out more about it.

Please return to: EURAS international, EURAS House, 51 Bristol Road, Keynsham, Bristol BS182BA or give us a ring on 01179860900 (Fax:0117 9860343)

Name:
Company:
Address:

Please note: EURAS International only supplies AUTHORISED Technicians, i.e. if you are a member of RETRA or have an account with a manufacturer (Please enclose proof of your authorisation with the above coupon).

Long-distance Television

Roger Bunney

August produced a return to relatively quiet propagation conditions. There were some low-level tropospheric lifts during the very hot weather, with signals mainly from the Benelux countries and, for those in the south west, Spain. The Perseids meteor shower produced few signals in Band I and III, and there were just a few Sporadic E sparkles. The SpE log is as follows:

5/8/95 TVE (Spain) ch. E2.
7/8/95
TVE E3.
8/8/95 TVE E2, 3; RAI (Italy) IA.
9/8/95 RAI IA; TVE E4; NRK (Norway) E4.
12/8/95 DR (Denmark) E3; SVT (Sweden) E3.
13/8/95 RAI IA, B; TVE E2, 3.
16/8/95 TVE E2, 3.
18/8/95 SVT E2, 3, 4; NRK E2, 3, 4.
19/8/95 SVT E2, 3, 4.
20/8/95 TVEE3; RAI IA, B.
21/8/95
26/8/95
29/8/95

TVE E2.

SVT E3; DR E3.
DR E3; TVE E2, 3.
In a previous column I mentioned a report from Cyril Willis (King's Lynn) of North American reception, across channels A2-5, on July 7th. This was perhaps the best day of the year: record SpE conditions were present in the 50 MHz amateur band, with contacts between Europe and North America over a twelve-hour period. The ham publication Six News also mentions an historic SpE opening between the US West Coast and Japan on July lst, for around four hours between 0550-1000. During both openings the signals reached levels 5 and 9 , which is very strong.

Satellite TV Receiver

Bandula Gunasekera, Colombo, Sri Lanka is marketing an inexpensive but very effective L band (u.h.f.) receiver for the Russian 1/Apna TV services via the Ekran satellite at $99^{\circ} \mathrm{E}$. It employs a helical aerial that feeds an LNA and in turn a receiver (via F sockets). There's switch selection between the two channels. Output is video and audio via phono plugs or a modulated ch. E3 carrier. The compact unit is a.c. operated. It's simple to install and easy to operate. We will be happy to pass any enquires on to Bandula.

News Items

MMDS: The Kenyan Broadcasting Association (KBA) has started a second pay-TV channel using MMD. Three scrambled channels will eventually be available to subscribers. Senegal recently hosted a broadcasting fair at which a new, inexpensive MMD system was demonstrated, offering three-channel capacity with a radius of 15 km .

Malaysia: A fourth TV network, TV12, has opened in Kuala Lumpur with plans to go nationwide.
Finland: The regional TV operation PTV hopes to become the fourth national network.
Belgium: BRTN should by now have started widescreen TV transmissions. The old $4: 3$ test pattern will be discontinued. The Wavre transmitter radiates only BRTN-1, on ch. E10: BRTN-2 is transmitted from the St. Pieters, Leeuw site.
Poland: The ch. R2 TVP-2 service from Warsaw has closed down. Channels at present available in Warsaw include TVP-1 ch. R11, TVP-2 ch. R27, WOT ch. R51, Polsat ch. R35, Canal Plus Polska ch. R36 and TV Ostankino ch. R41. The latter continues to use SECAM: all the others use PAL.

Satellite Reception

An increasing number of satellite users are adopting MPEG-2 video compression. Unfortunately no receivers or decoders are at present available in the UK. If anyone knows of a source of equipment, please write in to me via the magazine.

The EBU continues to use sound in sync (SIS) for news feeds despite an announcement some time ago that there would be a change to digitally encoded transmissions. SIS sync inserter units that produce steady and fairly clear pictures, though with no sound, have been available for a long time. A Dutch company, Satellite Supply Point, Spakenburg, has now released an SIS decoder that produces sound as well. I've seen an advertisement for this unit at $£ 145$ inclusive. I you are thinking of buying one however, bear in mind that the SIS system may not be around for long.

The Netherlands Satellite Festival was held on August 10-12th. It was a short-notice, fifty-hour live event run from The Satellite Shop, sponsored by TESUG and Chaparral. The European downlink was via Orion Atlantic 1 at $37.5^{\circ} \mathrm{W}$, using the 11.497 GHz horizontal transponder vacated that day by TV10 Gold/Music Factory, which have moved to Eutelsat II F3 at $16^{\circ} \mathrm{E}$ (apparently at 11.015 GHz horizontal, with MPEG-2 compression. Goonhilly was also involved, dual beaming the programme via Intelsat 601 at $27.5^{\circ} \mathrm{W}$ on a similar frequency. The programme content was a satellite enthusiast's dream, including a trip around the Chaparral factory.

Answers have been received from C. Stephens (Uckfield) and Bandula Gunasekera (Colombo) to my query in the August column about the CPT CARAJEGO identification seen via Eutelsat II F4 at $7^{\circ} \mathrm{E}$. They both
confirm that in Cyrillic letters this stands for SRT SARAJEVO. My thanks for this help.

Bob French is re-equipping for \mathbf{C} band reception, with an integrated heavy-weight motor that gives tracking down to the horizon. He received the SSVC programme feed via TDRS-4 at $41^{\circ} \mathrm{W}$ (3.720 GHz , horizontal) recently, dual beaming with Intelsat 601 at 27.5° $(11 \cdot 15 \mathrm{GHz}$, vertical). Apparently SSVC is to adopt MPEG compression via TDRS-4, with the 601 feed ending once all the receiving sites have been suitably equipped.

There seem to be fewer news feeds from the Yugoslavia area, though the Newsforce digital SNG is still operating from Split and is seen at $7^{\circ} \mathrm{E}$ via the EBU leased link. UKI 71 often uses this circuit. Starbird, another SNG facility company, is operating from Zagreb with links via Eutelsat II F1 at $13^{\circ} \mathrm{E}$ in the telecom band.

Roy Carmen (Reigate) reminds us that there is still life aboard Eutelsat I F5 at $21-5^{\circ} \mathrm{E}$. He recently saw dog racing at 11.504 GHz (vertical), an OB link that normally uses I F4 at $25.5^{\circ} \mathrm{E}$.

Intelsat K at $21.5^{\circ} \mathrm{W}$ seems to carry many sports offerings. The NTV Reuters lease at $11 \cdot 499 \mathrm{GHz}$ horizontal is a good one to check out.

Although most of the occasional news and OB feeds are seen between Eutelsat I F4 at $25.5^{\circ} \mathrm{E}$ and Orion at $37.5^{\circ} \mathrm{E}$ there are other possibilities, including Turksat at $42^{\circ} \mathrm{E}$ which often carries sports OBs. Ian Waller (Lincoln) recently saw football via this satellite at 10.970 GHz vertical.

Arabic Radio and Television (ART) is now running a full European service. Check Eutelsat II F3 at $16^{\circ} \mathrm{E}$, on 11.095 GHz vertical, for more information.

The Overmoded/Elliptical Waveguide

A recent newsletter from RFS (UK) Ltd., High Wycombe describes the company's new overmoded and elliptical waveguide technology. The losses introduced by a waveguide system depend on the material used, the design and the connections/terminations involved. They range from $1-2 \mathrm{~dB} / 100 \mathrm{~m}$ at 2 GHz to $60-$ $100 \mathrm{~dB} / 100 \mathrm{~m}$ at 40 GHz . The RFS Flexwell elliptical waveguide has a similar performance to standard rectangular waveguide: its advantages are greater flexibility and the fact that it can be cut to the length required, so there are no joins.

Problems can arise when a waveguide is used to feed a relatively small dish (to keep the wind loading down) on a high mast, or when a very low transmitter

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 01202-738232 Fax: 01202-716951
power is used. A form of internal resonance can occur, producing higher frequency modes within the wavgeuide. The result is distortion of the fundamental signal because of ripple - a form of multipath ringing/standing wave is set up along the waveguide and is imposed on all the signals present. The problem can be reduced, at the cost of slight attenuation, by mode filtering at the waveguide terminations. The Flexwell overmoded waveguide has been introduced to reduce this problem within the $12 \cdot 7-38 \mathrm{GHz}$ spectrum. Figures provided by RFS quote attenuation of $14 \mathrm{~dB} / 100 \mathrm{~m}$ at $14 \cdot 5 \mathrm{GHz}$ and $28 \cdot 3 \mathrm{~dB} / 100 \mathrm{~m}$ at 22.4 GHz with standard single-mode Flexwell waveguide, falling to $7 \mathrm{~dB} / 100 \mathrm{~m}$ and $13.7 \mathrm{~dB} / 100 \mathrm{~m}$ at the same frequencies

Left: The standard TVS (Germany) NHK identification - the TVS feed is to NHK's Paris öffice via Eutelsat II F1 at $13^{\circ} \mathrm{E}$. Centre: The RTM (Morocco) test pattern, received via Eutelsat II F3 at 16° E. Right: An unidentified test pättern caption received via Eutelsat II F1.

THE SATII,IITE NEWSIINE (VOICE)

0336413413

Updated at least once a day this Newsline is available 24 hours a day, 7 days a week with all the very latest news in the satellite world including: New Channel Launches; The latest Scams and Cons; New Products and Scrvices; The Latest Rumours and Issues; Adult Viewing - What's Going On. Simply call the number and listen to today's News.

TIIE SATELIITE NEWSFAX (IPAX)

0336422888

A Written Copy of the Satellite Newsline (see above), available 24 hours a day, 7 days a week, and updated at least once a day. Use your fax telephone to call the number and follow the simple instructions for today's News.

TRANSPONDER WATCH (FAX)

0336422889
A listing of the latest Transponder changes, Sightings and Fecds, updated at least once a week. Use your fax telephonc to call the number and follow the
simple instructions.

TRANSPONDER \& CHANNEL, IISTING (FAX)
 0336422886

A complete listing of all satellites, transponders and TV and radio channels from 66% East to 53% West. Use your fax telephone to call the number and follow the simple instructions.
SMARTCARD NEWS (VOICE) 0336413408
The latest news on ECM's new smartcards and encryption changes, updated every day. Simply call the number and listen to the latest information.

TV Live Limited, 78 Shepherds Way, Rickmansworth, Herts WD3 2NR
Providing Satellite News \& Information since 1990
All calls to all the services above cost 39 p per min cheap and 49p per min at all other times.
The Copyright in these scrvices is owned by TV LIVE Limited. No part of these recordings may be reproduced or transmitted in any form without the written permission of the copyright holder
when overmoded waveguide, with mode filters, is used.
Keeping water out of waveguide is a science in its own right. I'll provide a few lines next month on how the professionals keep the insides of their waveguides dry!

Satellite TV News

PanAmSat's PAS-4 satellite is now operational at $68.5^{\circ} \mathrm{E}$. A UK enthusiast first saw signals on August 19 th, at 11.578 GHz vertical.

There are moves to adopt a standard European digital TV decoder. Deutsche Telekom, Canal Plus and Bertlesmann are amongst those involved in the project.

JSAT-3 was due for launch in late August carrying a full load of C and Ku band transponders: the orbital position is $128^{\circ} \mathrm{E}$, a prime location for coverage of SE Asia and the Pacific basin as far as Hawaii.

Thomson is to produce broadcast MPEG-2 equipment and domestic decoders for France Telecom, which intends to transmit forty programmes in five conventional channel bandwidths starting in early 1996, intended mainly for cable head ends.

Asianet, which is New York based, has changed its Orion Atlantic transponder from 11.622 to 11.594 GHz . No mention of going digital yet with this service.

Intelsat K at $21.5^{\circ} \mathrm{W}$ is to be used to transmit the Emirates' Dubai Television service across South America.

The Australian Galaxy Pay-TV operator is now testing set-top decoders prior to distributing them to its subscribers - at least 40,000 up to early August. Galaxy seems to have cornered the world market for digital decoding chips for the present time.

Test Case 395

At this time of the year the Test Case workshop deals with about twenty jobs a day. Most of them pass through quite quickly: some get stuck for a day or two; and some seem to take up residence for one reason or another. Our tale this month concerns a TV set that fell into the second category. It was a 20 in . rental set fitted with the Tatung 170 chassis.

The cause of the fault seemed to lie somewhere in the sync or line timebase sections of the receiver. It took an hour or two for the symptom, line tearing across the middle of the picture together with a slight sideways displacement of the image, to appear. Cathode Ray, who's luck it was to be in charge of the repair, noticed that the effect disappeared at low brightness and contrast levels. As the picture was turned up, the symptom became progressively worse - until, at maximum brightness and contrast settings, the line scan began to collapse, with a squiggly vertical line down the centre of the screen in some sections of the picture.

Ripple on a supply line, because of faulty smoothing, is sometimes the cause of this sort of thing. Ray checked the h.t. feed to the line output stage (at C 425) when the fault was present, also the 18 V and 12 V supplies at each side of stabiliser I802. Each voltage was at the correct level, with no significant ripple or hash. As the severity of the fault seemed to depend on the beam current, attention was next turned to the e.h.t. generating department. These days there's very little that's visible or accessible here. Ray checked the e.h.t. connector, the earthing of the tube bowl's outer conductive coating and the components at the earthy end of the line output
transformer's e.h.t. winding - C427, R432 and zener diode D503. Everything was o.k. Time to replace the line output transformer then.

But a new line output transformer made no difference. There followed a long and weary session of trial-and-error component substitution tests in and around the line output stage. A new line output transistor (Q403) altered the nature of the symptom a little, but didn't remove it. The situation with the efficiency diode D401, which was suspected of breaking down under load, was the same. Other items that were replaced included the scan coupling capacitor C422, the flyback tuning capacitor C421, and the two parallel-connected resistors R435 and R436 which are in series with Q403's base drive. The PCB was closely examined. C425 which smooths the suppiy to the line output stage was replaced. The point was reached where there was a cat's cradle of wires and components under the board. The picture's horizontal instability persisted.

What to do now? Cathode Ray got the scope out and started again. With the brightness and contrast settings turned up to produce the fault, Ray could see the effect of the disturbance when he monitored the pulses produced by the line output transformer. The line drive output from the timebase generator chip was relatively free from any disturbance, and the drive pulses at the base of Q403 were, as far as he could see; all right - the waveform here is always a 'messy' one. Ray thought that it was time to enlist the help of Television Ted.

TV Ted knew about Tatung TV sets. Within a few minutes, using Ray's meter and oscilloscope, he'd found the culprit. It wasn't in the line output stage, nor the power supply, and had nothing to do with the timebase generator chip. Its cost is measured in pennies. What was it? For the solution, turn to page 59.

Satellite Notes

Hugh Cocks

Coaxial Cable Troubles

High-quality coaxial cable should of course be used for satellite TV installations - especially since the arrival of Astra 1D has increased the higher end of the band by 250 MHz .

I remember that some years ago there was a brand of coaxial cable we used to refer to as 'Pro 7 Special'. It would be happy enough with most channels but would more or less remove Pro 7 at an i.f. of around $1,407 \mathrm{MHz}$. Neighbours, Sky News and Sky Movies could look distinctly sparkly too. Frequencies above and below these channels were o.k.

We occasionally get call-outs to fairly old installations because of complaints that one or two channels are poor while the rest are o.k. If reception of the higher-frequency channels is much worse, this often indicates cable trouble. Sometimes reception of just a particular frequency block is poor. If the LNB and receiver seem to be o.k. when checked by substitution, run a new length of coaxial cable from the dish to the receiver. This invariably restores normal results.

Sometimes a small nick occurs in the cable's outer sheath: water gets in slowly and all sorts of strange effects are seen across the band. Beware of connectors in the line done up with tape: sooner or later poor contact introduces a voltage drop that either removes the higher channels or leads to their intermittent appearance. Cable trouble will become much more common as systems age.

Black Museum

Perhaps someone should start a black museum for long (thankfully) dead relics of what we had to put up with in the early days of satellite TV.

One exhibit would surely be the made in Taiwan servo motor (usually black) that used to drive the old mechanical Polarotor assemblies. They would buzz, hunt and jitter as the internal cogs wore. The 'party trick' was when the motor would start to rotate continuously, giving simultaneous reception of the horizontally and vertically polarised channels.

I recall having to decouple the 5 V supply at the motor end, because with most receivers the servo pulse drive is present for only a few seconds after changing channels. Any mains spike that came along meanwhile turned the servo motor a little, gradually ending up 90° out until a channel change restored normal polarisation. Inserting a lowish-value resistor in the line assisted with the decoupling and slowed the motor down, helping the dubious gearing mechanism to last longer - though the time taken to change polarisation could be a bit on the slow side!

A larger bodied model appeared a little later. It behaved better mechanically, but was very susceptible to any electrical storms in the area and would then refuse to work at all - often only a few days after being installed. At least the earlier ones never did this! Don't confuse these motors with the Chaparral type, which is very reliable.

The loss introduced by Polarotors seemed very bad, despite the impressive specification sheets. As there wasn't much signal to start with in those days, tough remedies were called for. I recall removing the existing signal probe and replacing it with a piece of coaxial cable inner conductor, bent appropriately to give the greatest signal pick up when
inserted into the waveguide. This helped matters no end! Why not use another type? Well few were available, and the magnetic type was still a year or two away.

With very early installations the viewer had to go and turn the LNB manually, which is remarkable when you look back on it now!

The least lossy solution was the use of an orthomode transducer (OMT) coupled to two LNBs, with a changeover switch. But this was costly at the time.

Another item in the museum would have to be the CX2450 satellite receiver dating from 1985-6. Old hands will remember it. Perhaps some will even have fond memories (it did produce constant servo motor drive). I remember nothing but a running battle to keep them going however even to get them started out of the box!

Any more ideas for suitable exhibits? How about the Skyscan K1 receiver-positioner?

LNB Covers

Moisture causes a lot of LNB trouble. One way to prevent this is to fit a cover over the LNB, leaving the front and undemeath open. This prevents rain falling on the LNB, and has the additional advantage with an offset dish that the cover slightly shields the front feed. Thus with light to medium drizzle less rain builds up on the feed cover and there is less attenuation of the incoming satellite signal.

A cover also helps to keep a magnetic polariser dry. Our experience is that these have a habit of going open-circuit: rain falling on them can't help. The cover also overcomes the problem of water getting into the LNB/polariser flanges.

Until recently we manufacturered dishes and made a fibreglass feed/cover for MTI/Marconi type LNBs. The covers reduced LNB and F connector water ingress problems to nil. We still make the covers, and when carrying out an installation fix one to the top of the LNB with hot glue and some plastic spacers. It has always puzzled me why no manufacturers have ever produced LNB covers.

Connexions 8520R

Though they are becoming a little long in the tooth quite a few of these upmarket, motorised receivers that date from 1988-89 are still around. They were also sold under the Tee Com name.

They seem to suffer from a software bug however. After a while it's quite common to find that there is a problem with storing certain audio carriers. Frequencies above 7.56 MHz , either mono or stereo, can be stored quite happily. Below this exact frequency the carriers can be tuned in but the receiver may not remember them - it happens with only some channels, others being o.k.

To restore normal results the settings for the satellite concemed have to be erased then everything reprogrammed. To do this, go to the parental lock mode, enter the four-digit pin number then keep pressing the parental lock button until 'erase sat?' is displayed. Enter the pin number again and the receiver will return to the factory reset for that satellite. Don't select 'erase all?' If you do, all the programmed satellites will disappear!

Finally, reprogram all the channels for the satellite concerned. Audio carrier storage problems seem to occur only when the frequencies have been changed. The video settings are not affected. You don't have to do anything specific with this receiver to store the channels: the action of channel changing seems to store new information.

This receiver isn't at all keen on Astra 1D converters but will tune from about 920 MHz to $1,880 \mathrm{MHz}$, which allows direct tuning as far as the CNN frequency with a ID LNB.

Seftollifo PSU Repair / Refurb Lits

	MANUEACTUREER	MODEL NO.		PRICE
SATMATI	PACE	PRD800	PRD900	8.8 .95
SATIKTI2	PACE	\$ $\$ 9000$	S59200	86.95
		559010	\$59210	
		S59020	SS9220	
SATRCETS	AMSTREAD	SRDS10	SRDS20	98.95
SATKCTT 4	AMSTRAO	SRD500		18.95

Yould
 (iliconomic

Economic supply TV \& Video parts. VERI FAST Four experienced staff WANT to help you!! ${ }^{}$ We can give you an instant answer from our database that contains over 80,000 items and we can give that answer IN SECONDS *If we camnot find it immediately

* We will 'SEARCH THE HEAVENS' *We will hassle our suppliers *We will hassle the manufacturer *We will make phone call after phone call *We will send Fax after Fax on your behalf *WE WILL DO ALL THIS FOR YOU *FHe do it willingly and for free - YOU NEED ECONOMC!!

Ecenomic Devices

PHONE (01902) 773122 FAX (01902) 20052
32 Temple Street, Wolverhampton WV2 4 AN, United Kingdomn. International Phone $++441902773122 \mathrm{Fax}+t 44190229052$ Also available - D2mac Decoders - RTL Decoders - Secam/PAL Transcoders - AB Switches Tone Switches - Multiswitches - Please phone for current prices. Larger Quantity Trade enquiries welcomed.

VCR Clinic

Philips VR231

If the power supply is dead and the start-up voltage for the control chip is low, check whether diode 6115 is leaky. The type fitted in this position depends on the model. If it's a UG06B, the part no. is 482213083307.
P.B.

Panasonic NVG21

When replacing post P5, make sure that you use the correct part for the machine on which you are working. After fitting a new post we found that it caught on the securing screws for the capstan motor. This resulted in a tape loop on eject. The new post looked identical to the old one but was about 1 mm thicker. It would seem that different ones are used in the deck.
M.Dr.

Panasonic NVG7

Stations could be tuned in and stored, but on channel change they disappeared. We suspected the MN1220 memory chip, but checks took us to the -30 V supply which was rather high at -57 V ! Q1101 and D11 in the power supply were found to be short-circuit. Despite this high voltage the memory chip was perfectly o.k.
M.Dr.

Sanyo VHR3300

The effect produced by this fault suggested that its cause lay in the i.f. or a.g.c. circuits. Symptoms were a grossly distorted, soot-and-whitewash E-E picture with patterning and loss of sync. In fact the signal that emerged from the vision detector was perfectly good! The cause of the trouble was a faulty vision switching chip, IC1001 (LA7223). E.T.

Sanyo VHR190

To all intents and purposes this machine was completely dead. When we checked around in the power supply section with an oscilloscope however we found that there were needle pulses at the chopper transformer. The cause of the failure was the 14 V rectifier D5101 which was shortcircuit.

Panasonic NVG21

This machine originally came in for a service. In addition to replacing all the gears, the pinch roller and the mode switch we had to replace the side plate and connection gear. Two months later the machine came back, the complaint being that when it was switched on the carriage moved forwards then ejected, repeating this until the machine went back to standby. You often get this fault when there's a wom carriage mode switch or a bent lever. Not this time however. The cause of the trouble was that all the joints of the new carriage's connector were dry-jointed. Resoldering put matters right.
D.B.

Sanyo VHR135

There was intermittent failure to take up in play or rewind. The cause of the problem was that the idler was sticking on

Reports from Philip Blundell, AMIEEIE, Michael Dranfield, Eugene Trundle, David Belmont, Steve Hague, Terry Lamoon, Michael Harris, Stephen Leatherbarrow, Richard Newman, John Pitt-Francis and Simon Bodgett
its shaft. A drop of oil on the pivot shaft was all that was required to restore correct operation.
D.B.

Matsui VX730/Saisho VR3200

This machine appeared to be dead. The power supply was working, but there was no AT6V supply because of a break in the ribbon cable that connects Q505 to the power supply. A new cable loom put matters right.
D.B.

Ferguson FV70

This machine had a tape stuck in it. As the loading motor had partially seized, its drive chip had a large hole in it. Replacing the chip and the loading motor enabled us to retrieve the tape.
D.B.

JVC HRD580

We seem to be getting quite a few of these machines in which a previous engineer has replaced the mode switch but fitted the wrong type. The symptoms are that the tape laces up and the machine then plays for a few seconds before shutting down. The part number for the mode switch, which has a black body, is PU60973. Don't fit the red type. D.B.

Sanyo VHR251

The E-E and playback pictures were poor, with what appeared to be hum bars and a rolling effect. A check via the scart lead showed that the video signal was good. When we opened the r.f. converter we saw two small $1 \mu \mathrm{~F}$ capacitors. Replacing them restored a good picture.
D.B.

Aiwa HVG110K

This machine went dead intermittently. When we examined the power transformer we found that pins 15,16 and 17 were dry-jointed. Resoldering them restored reliable operation.
D.B.

JVC HRD910

This tip could save you a lot of heartache - as well as money! The symptom we had was an unstable picture in the top half of the screen and just snow in the bottom half. Scope checks showed that the output from one head was greatly reduced. Replacing the upper drum marginally improved the top half of the picture, but had no effect on the snow. . . Logically, the cause of the problem had to be the lower drum. But before we frightened the customer with the price of a new one we rung JVC Technical. We were told that there's a $3.3 \mu \mathrm{~F}$ capacitor, which is not shown in the service manual, on the lower drum PCB. Replacing this cured the fault.
S.H.

Ferguson 3V23/JVC HR7700

It's not often that one of these venerable machines turns up, but this one was extremely clean. Its noisy picture was
simply the result of worn out heads, which the owner thought it worth replacing. He also said that the machine didn't always load, especially with a timed recording. A new loading belt cured that. We also replaced the cassette lamp as it appeared to be the original one.
M.H.

Fisher FVH715

A nice easy one: this machine produced a picture with two hum bars that tripped the field lock each time they arrived at the bottom of the screen. Two bars indicates 100 Hz hum, so we had a quick look around the main electrolytics. C906 $(1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$) turned out to be almost open-circuit. It took longer to take the cover off the machine and find the power supply than to do the repair!
M.H.

Saisho VR1200/Matsui VX800A

This machine had no eject, fast forward or rewind operation, though it would load. We noticed that there was no capstan rotation, and a quick check showed that there was no 16 V feed from the power supply. This led us to the good old circuit protector ICP201 which was open-circuit. Replacing this and giving the machine a good clean up completed the repair. I love the easy ones!
T.L.

JVC HRFC100F

This model is unusual in that it will work with both normal VHS and VHS-C camcorder tapes. Its loading mechanism is therefore slightly more complicated, and this is where you get most of the problems. The machine I had in recently was no exception - there was a tape jammed in it.

I managed to extract the tape, and on inspection noticed that the half-load arm was quite badly twisted and in need of replacement. It is always worth checking that the carriage is not sloppy in its down position: it might also need to be replaced, and is an expensive item. Fortunately in this case the carriage was o.k. and replacement of the half-load arm and the gear assembly was all that was required.
T.L.

Matsui VX1100

There was intermittent E-E sound. Getting out my faithful old screwdriver, I did some highly technical fault tracing by tapping around the boards. This soon led me to a very sensitive scart panel, and on closer examination I noticed that C4513 was dry-jointed. Resoldering it cured the fault. T.L.

Hinari VXL6

In both the E-E and playback modes the video signal was very crushed and distorted, and of low amplitude. Not having a manual, I was forced to follow the print. This brought me to Q306 (2SC1740), whose base voltage was too low for it to switch on properly. The cause of the trouble was C353 ($47 \mu \mathrm{~F}, 16 \mathrm{~V}$) which was short-circuit. We've had problems with other 16 V electrolytics in these machines. Symptoms have included no drum rotation and excessive capstan speed.
S.L:

Amstrad VCR4600

There seemed to be two problems with this machine, but they proved to have the same cause. If any deck mode was selected while the machine was in the E-E mode, the sound would be either muted or its level would vary momentarily. Deck mode changes also produced video signal level varia-
tions. The obvious thing to do seemed to be to check the supply voltages. When I did this I found that the AL12V supply was at 18 V and varying. This supply is produced by Q802, along with the 5 V regulator IC801 and the 8.2 V zener diode D810. The culprit was Q802.
S.L.

Sharp VCA46 - Video Plus Handset

There was a problem with this machine's Video Plus remote control handset. If a Video Plus code for any previous day was entered, the LCD would display the correct start/stop day/month. If a code for the current or any subsequent day was entered, the wrong start/stop day etc. would be displayed. The cure was to remove the handset's batteries then discharge the internal capacitor by shorting the battery terminals together for a few seconds. The problem had arisen after fitting replacement batteries.
M.Dr.

Ferguson 3V36/JVC HRD225

Playback of a prerecorded tape was o.k., but when a recording made by the machine was played back the capstan speed was slow. Checks showed that the capstan FG comparison signal was missing at pin 6 of IC408 (BA6305) though the input to this section, at pin 5, was o.k. The obvious thing seemed to be to replace the chip, but this made no difference. After checking the chip's peripheral components I did what I should have done in the first place - check the amplitude of the pulses at pin 5 . It was low of course (200 mV). When I checked back to pin 1 I found that the signal from the capstan flywheel FG coil was also low.

An inspection of the flywheel revealed that the two screws which hold the bracket were chewed up, and that someone had already fitted a new set of belts. The cause of the trouble was excessive clearance between the flywheel and the FG coil. I think that whoever had fitted the belts was unable to undo the screws and bent the flywheel bracket to get the new belt on.
M.Dr.

Philips VR6462

There was no playback sound though the E-E sound was normal. I like to use a signal tracer. So I lifted out audio panel P502 to make checks. There was plenty of signal from the head, at the base of transistor 7010, but nothing at its collector. A few further quick checks showed that although there was 11 V at the top end of R3037 (3.3kS2) there were no voltages around transistors 7010 and 7009. The decoupling electrolytic C2027 ($330 \mu \mathrm{~F}, 16 \mathrm{~V}$) was dead short, a replacement restoring full sound.
R.N.

Philips VR6585

There was neither E-E nor playback sound with this Nicam machine. Initial checks were carried out around the audio switching panel, but everything seemed to be o.k. here. What I did notice was that the level indicator on the front panel barely moved. It's driven by the f.m. audio panel, where there was no supply to the audio processor chip because the 80 mA Wickman fuse F1201 was open-circuit. All that was required to restore the sound was a new fuse.
R.N.

Sharp VCA113HM

This machine belonged to a heavy smoker and needed a good clean up. I was told that it had failed quite suddenly while playing back one of the soaps. On test it was found to be reluctant to thread, with the arms going only about half
way; the half-load arm moved in odd jerks, and the machine wouldn't wind tape back into the cassette. The mode switch was the cause of all this. When I removed it and took it apart the contacts were seen to be suffering badly from nicotine poisoning. They cleaned up all right, and the machine worked when reassembled, but I decided to change the switch to be on the safe side
R.N.

Philips VR6462

There were no signals, either E-E or playback, nor was it possible to obtain a test signal as there seemed to be no output from the modulator. Mechanically the machine was o.k. A substitute i.f. panel failed to restore the signals, so I checked the voltages at pins 4 and 6 of socket P5 on interface panel P005: these are the supplies to the modulator. The switched 12 V supply (12b) at pin 4 was missing. It comes from transistor 7002, which had correct voltages at its base and emitter but nothing at its collector. The 'on' line to IC7150 seemed to be working correctly.

Component replacement on panel P005 can be carried out only after removing it. Remove the i.f. and chroma panels, then the three screws that secure the mains transformer. After unplugging the transformer, release the plastic clips that hold the pancl, raising it gently as you do so. The panel can be worked on by resting it on its side, and you can plug the transformer back in. All deck functions will then remain operational. Once transistor 7002 had been replaced normal operation was restored. It's a BD678 Darlington type transistor.
R.N.

Toshiba V309B etc

This machine would stop in playback or record after anything from twenty minutes to two hours. The cause was high reel motor current, though the motor rewound very fast and wasn't particularly noisy. We've also had the fault with the V109B and V209B.
J.P-F.

Panasonic NVG20

No power up with this machine was caused by C39 in the power supply. It had gone low in value.
J.P-F.

Ferguson 3V35/JVC HRD120

The tuning department wouldn't light up, behaving as though it was in the camera mode. The tuner/camera switch was o.k. however. Replacing the HD552-088C chip cured the fault.
J.P-F.

JVC HRD580/Ferguson FV43H/44L/46T

This machine stopped intermittently, usually at start up. As a replacement clutch unit failed to restore reliable operation I removed the deck terminal PCB and cassette housing in order to give the deck a thorough inspection. While looking for a foreign object I noticed that the brake pad on the subbrake assembly was dislocated. A replacement, part no. PQ43583A, cleared the fault.
J.P-F.

Hinari VXL90 etc

No fast forward or rewind, everything else working normally, is becoming a stock fault with the deck used in this machine (and many others, see note at end). The cause is unreliable trigger lever action (item 260, see Fig. 1). In order to engage the fast forward/rewind action after a
command, this lever must have returned to its rest position. Instead, it tends to remain protruding about 1 mm towards the front of the deck. To improve reliability:
(1) Carefully round off the sharp edges of the trigger lever and brake plate mouldings in the areas indicated by an X in Fig. 1, using a sharp knife in a scraping action.

Fig. 1: Trigger/brake components, 259 trigger hook, 260 trigger lever, 261 brake plate, 262 brake actuate base. Round off the edges of items 260 and 262 in the areas marked X.
(2) Increase the spring torque by bending the bottom end of the spring an extra 60°.
(3) Clean off all dirt and reassemble, lubricating the rubber parts with a small amount of plastic grease such as Electrolube or Mycote.

Note: Other machines that use the deck include the Hinari VXL8/9, Sentra VX8500/8600, Amstrad VCR6000/6100, Tashiko VVF933/934, Proline VCR9100, Goodmans TX1100, Osaki VCR35 and many more. J.P-F.

JVC HRS5800

This machine came in with a list of faults: intermittent sound; picture not stable; and the left VU meter not working. There was no sample tape, and I had little to go on as the machine had come from another dealer. I checked the tape path and set it up. This cured most of the problems. I then braced myself for a complicated VU meter drive problem. There was relief when I discovered that it had been selected as a tracking indicator.
S.B.

Grundig VS340

Sound warble was the complaint. It was caused by tight capstan motor bearings, a new motor curing the trouble. Unlike some who would strip the motor down and lubricate it, "to save the customer some money", I prefer to work to manufacturers' standards.
S.B.

JVC HRS4700

Faulty functions. What a brilliant fault report! Says it all, doesn't it? Normal operation was restored by replacing the CAT chip. To non-JVC types, that's the memory i.c. S.B.

JVC HRS5800

Loading difficulties was the complaint with this machine. Its cause was a broken spring in the idler/brake control. All suspect gears and cams were replaced to restore reliable operation.
S.B.

ELECTRONIC TEST EQUIPMENT

Audio - Video - Television - Satellite TV - Telecomunications

The manufacturer who cares about quality \& features rather than being lowest in price !

Television Pattern
Generator
Model GV-698/11
32 patterns, 32 internal memories. PAL NTTSC/SECAM standards, with 1,
B, G, H, M, M, N, D \& K, NICAM, tele-
fext all in one instrument.
Optional on screen logotype. (Other pattern generators available from £ 210). £ 1428
Television Pattern Generator Model GV-298

Compact high performance generator, RF and video outputs. Frequency range same as GV$698 / 11,37$ to 865 MHz . Circle pattern included £ 433

Frequency counters
Models FD-250 \& FD-252
FD- 250 covers 20 Hz to 160 MHz and FD-252 covers same plus, 100 MHz to 2.4 GHz . Large L.E.D. display. Wide performance at low cost. $\subseteq 153$ \& $£ 206$

TV \& Satellite Level Meter Model MC-944
This meter has everything for the op flight instaler of aerials, dishes. CCTV, MATV. SMATV and others systems. Features include TV monitor, spectrum analyser, sync pulse, teletext, printer output. 99 memones, tuneabie audio subcarriers, etc. Full autocorrection for superb, unequalled accuracy!. RS-232 as standard. £ 1895

PAOMAX

The company has been producing test equipment in Spain for over thirty years, earning a strong reputation for excellent engineering, quality performance at budget prices The equipment is supported by Alban Electronics from their St Albans facility. These products are suitable for only professional and educational applications.

Functions Generators
Models GF-230 \& GF-232
Two versions available: 0.1 z to 1 MHz and 0.2 Hz to 2 MHz . Producing sine, triangular and square waveforms, with variable symmetry. Excellent performance. £ 153 \& $£ 206$

CRT Rejuvenator
Model TA-903
Similar to TA-901, but has three meters to monitor cathode current. Specia! technique aliows repeated rejuvenation of CRT. Supplied in attache style case. for easy field and workshop use. $£ 498$

Prices shown exclude VAT, but includes UK delivery. Most items available for immediate despatch.

ALBAN ELECTRONIC LIMITED

4-St Albans Enterprises Centre - Long Spring Porters Wood - St Albans-Hertfordshire - AL3 6EN Tel: 01727832266 -Fax: 01727810546

Consumer Electronics at Berlin

George Cole

This year's Berlin consumer electronics show, known as the Internationale FunkAusstellung (IFA), was held in late August. It was dominated by digital playback, recording and broadcasting systems. A number of interesting technological developments for the future, including flat-screen TV sets and tapeless audio and video recording systems, were also on show.

Digital TV

Digital TV conforming to the European Digital Video Broadcasting (DVB) standard should reach much of Europe next year, via satellite or cable distribution. DVB receivers were being demonstrated by a number of companies, including Philips, Hitachi, Pace and Thomson. Pioneer's DVB IRD (no model number has been assigned to it) is designed for satellite or cable TV systems: it can handle MPEG-2 audio and video, has a DVB descrambler and an IOS smart-card slot, is 4:3/16:9 capable and incorporates a modem and a computer and peripheral interface. Nokia's DVB9500S is designed for digital TV and many other digital services and systems - more on this when we come to multimedia equipment.

Dr Helmut Stein, vice-president of Nokia's technology division, provided an interesting insight into the DVB strategy for HDTV broadcasting. Apparently the original plan was to introduce an hierarchical, or 'scalable', transmission system: a standard-resolution picture would be incorporated within an HDTV picture in such a way that owners of ordinary digital sets would receive the standard picture while those with HDTV sets would see the high-definition images. But this approach has been deemed a waste of valuable transmission resources, also putting up the cost of digital TV sets for little or no immediate benefit. No broadcaster plans to offer HDTV during the next five years or more, there are no HDTV chip sets in production, and a scalable system would involve transmitting twenty per cent more data. Thus the present plan is to offer standard/HDTV simulcasting when appropriate. This would require only some 6Mbits of extra data capacity

Non-digital TV

Despite the growing interest in digital TV, there were plenty of interesting analogue TV developments on show in Berlin. A combined TV and telephone was included amongst some novel technology being demonstrated by Philips. The 32 PW 977 A is a 32 in . widescreen TV receiver incorporating an analogue cordless telephone base station that conforms to the CT1 $(900 \mathrm{MHz})$ standard. When a call is received the screen displays a message. The call can then be answered by pressing a button on the remote control handset to mute the TV sound. A built-in microphone and speaker provide the phone operation. Other features include caller ID, a 150 -name directory and an alphanumeric keypad. Up to six handsets can be operated from the base station. There were no launch or price details however.

Level 2.5 teletext was also demonstrated by Philips. This offers a number of improvements. Each Level 2 page can contain up to 32 colours, chosen from a palette of 4,092 . There
can be up to 56 characters per line (the present system has 40), and the graphics are better. It's also possible to mix letters of different colours on the same line. The Level 2.5 system is designed for $16: 9$ sets but can also be displayed by $4: 3$ sets that use Level 1 or 1.5 teletext. This is possible because the first 40 characters in a line are used for the text, the remainder for graphics that can be displayed on panels at each side.

The Philips Widescreen Plus system improves the picture quality with 432 -line letterbox pictures that are expanded to fill a $16: 9$ screen. It uses line interpolation to generate extra lines to form a 576 -line display.

Philips has also improved the picture quality with 100 Hz displays, which can produce judder with moving objects. A system called Natural Motion works by analysing the picture in real time. This enables it, using measurements based on the speed and direction of an object, to predict where the object should be in the next frame. An intermediate picture based on these calculations is then created. The system cannot operate where the object is too small or is moving too fast however. It

JVC's prototype digital camcorder, which measures just $150 \times 80 \times 45 \mathrm{~mm}$ and has been designed for leftor right-hand use.
will be built into Philips' widescreen sets as a switchable option. From what I saw, Natural Motion works well. Another system, called Dynamic Contrast, analyses the luminance picture content forty times a second to improve the contrast ratio.

Other products shown by Philips included a prototype 20 in . widescreen set due for launch in 1996, and a 32 in . PALplus set, Model PW9761.

There were plenty of other widescreen sets at the IFA. Panasonic's TXW28D1F has a 71 cm super-flat black-matrix tube, a 100 Hz display and PIP. Panasonic also announced an interpolation-based system to improve expanded letterbox pictures. It's called Wide Digital Plus. Sony showed a family of new widescreen sets with screen sizes ranging from 16 to 32in. Some include a PALplus decoder.

Although PALplus at present has a low profile in the UK (between them, Channel 4 and Granada TV will transmit only around 500 hours this year), the format is in much wider use in mainland Europe. The German ZDF network for example will have transmitted some 1,000 hours by the end of this year, while across Europe some 10,000 hours of PALplus broadcasts will have been transmitted.

Nokia showed 28 and 32in. PALplus home cinema sets while Samsung is to introduce a 32 in . PALplus set, Model WS3220, this month (November). Smaller screen versions
(24 and 28in.) will be introduced next year. These sets will all include PALplus Motion Adaptive Colour Plus Processing and Film Mode Processing systems to remove interference effects such as cross-colour.

Miscellaneous TV Developments

Other TV developments on show included Hitachi's VTCCD1 closed caption decoder. This displays subtitles hidden in prerecorded video tapes - the system is designed to help deaf and hard-of-hearing viewers. The decoder is PAL and NTSC compatible and includes caption positioning (at the top or bottom of the screen) and see-through captioning.

Sharp showed sets with its AFS (Automatic First Start-up) system. This includes automatic tuning and an on-screen help system for setting up. A double-screen set was shown by Samsung. It's a widescreen set that can provide two separate displays. There were also combi products, including Nokia's VideoTV which is a combined 20 in . TV set with a two-head mono sound VCR that features ASO Plus. Its features include two tuners, front AV sockets and teletext. Samsung's CDT2500 combines a 25 in . TV set with a CD player that can handle CD audio, CD Plus Graphics and Video CD discs.

Future TV Developments

For the last quarter of a century the large, flat-screen TV has always been 'just around the comer'. It looks as if such sets really will be with us during the next two or so years.

The show gave us the opportunity to see Sony's flatscreen, Plasmatron sets for the first time. This technique was described in the September issue of Television. To recap briefly, it uses a system known as Plasma Addressed Liquid Crystal (PALC) which was first developed by the US company Tektronix. Plasma discharges are used instead of an array of thin-film transistors to switch on the screen's LCD cells. Several Plasmatron sets were on display, each with a screen of about 25 in . across. They looked very impressive. The biggest problem is that, being LCD sets, the viewing angle isn't as good as with conventional displays. Despite this the sets caused much comment. Sony plans to start selling Plasmatron sets in Japan next year. They probably won't reach Europe until late 1997 or early 1998.

As part of its future technology show, Thomson demonstrated a 50 in . plasma display. But there are no plans so far to market sets using it.

Sanyo generated a lot of interest with its 3D TV system that doesn't require the viewer to wear glasses. It works by projecting images from two LCD sources on to a lenticular lens screen which acts as an image splitter to keep the images separate. Because the eyes are presented with two separate images, a 3D effect is created. It's pretty effective, though your position in front of the screen is critical and you have to keep your head still.

Nokia has signed an agreement with Texas Instruments to use a projection TV technology called Digital Light Processing (DLP). The heart of the system is a digital micromirror device (DMD). This is a large chip (about $1.5 \times$ 1 cm) whose upper surface is covered by an array of half a million digitally-controlled micromirrors. These produce the display pixels. Each mirror is mounted on a hinge that enables it to be tilted, at a rate of 1,000 times a second. The mirrors are controlled by digital signals via memory cells one per mirror, positioned beneath it.

Light from a $100-120 \mathrm{~W}$ metal-halide lamp is directed on to the DMD, which reflects it via a projection lens to form the image. A colour wheel that rotates at around 70 Hz is positioned between the lens and the screen. It uses two colours,
red and blue, to produce a complete range of colours by additive and subtractive mixing.

Nokia plans to introduce rear-projection sets using DLP technology in 1997. A 50 in . set would measure only 15 in . from the front to the back and weigh around 35 kg . A prototype $4: 3$ set was shown, but production models will use the

This prototype tapeless camcorder shown by Hitachi can record up to half an hour of video in its 400Mbyte multilayered flash memory. Weight is just 350 g .

16:9 format. The picture quality was impressive, though not quite as bright as the pictures produced by a c.r.t. There was no sign of line structure, mainly because the DMD's mirrors are only one micron apart, and the viewing angle was good. Computer images were also displayed, and again the text and graphics were clear and sharp.

VCRs

JVC showed a Super VHS PALplus VCR, Model HRS9200, whose recordings can be watched using either a 16:9 or a $4: 3$ set for the display. The VCR is able to record the vertical helper signal that's transmitted with PALplus broadcasts, being used by PALplus sets to build up the 576line widescreen display. Other features include hi-fi VHS, insert editing, a flying erase head and a jog-shuttle dial. Samsung also has an S-VHS PALplus machine, Model SV200X. JVC was also showing its Data VHS (D-VHS) system, which enables VHS machines to record digital data.

The Philips Video Index system is designed to make it easier for users to find out what's on their tapes. It works by scanning a cassette that uses VASS (VHS Address Search System) then storing its contents in memory. When programmes are added or erased, the information is updated. To use the system you press a remote control handset button: the information is then displayed on screen.

The information shown depends on how a programme was recorded. When a programme is recorded using PDC or VideoPlus, the programme title, date, time and length are shown. When a recording is made manually, or with a timer, the channel name replaces the programme title. Users can edit the tape information however, replacing the programme with the channel name for example. Each cassette has its own on= screen contents page: programmes can be selected by scrolling up and down the page. Once a programme has been selected the VCR winds to it and begins the playback. Up to a hundred cassettes can be indexed.

DVC

A number of companies showed camcorders that conform to the new Digital Video Cassette (DVC) format. More details of this system will be provided in a separate article
next month. Briefly, DVC camcorders can record up to an hour of digitally-compressed video on quarter inch metal evaporated tape. The cassette is smaller than the DAT type. The picture quality with the camcorders on show conformed to the standard rather than the high-definition DVC standard, but is still an improvement of Hi-8 and S-VHS - the horizontal resolution is over 500 lines. Twelve-bit PCM is used for the audio.

Sony had two DVC camcorders on show, the top-of-therange DCR-VX1000E which has three CCD image sensors and the DCR-VX700E which is aimed more at 'mainstream' consumers. Both incorporate an image stabilisation system called Super Steady Shot and have a digital output jack cable for both the audio and video data. The video data can be transferred to a digital VCR or a PC. Model DCRVX1000E also offers Photo-Mode shooting, which records a seven-second still image.

The demonstrations were good, with stunning picture quality, but the camcorders are going to be on the expensive side - the DCR-VX1000E will probably sell at around $£ 3,500$ and the DCV-VX700E at over $£ 2,000$. There is also concern as to whether the new camcorders will be compatible with existing edit decks, with respect to time codes for example. The answer to this seems to be that the camcorders will work with other equipment from the same manufacturer, but if for example you buy a Sony DVC camcorder it may not work properly with say a Panasonic edit deck.

JVC showed a lovely prototype DVC camcorder whose size was just $150 \times 80 \times 45 \mathrm{~mm}$ with a weight of less than 500 g . It has an 0.5 in . colour viewfinder and is designed for both right- and left-handed users.

Panasonic had its Model DVC NV-DJ1 on display and Samsung also announced plans to launch a DVC camcorder.

Tapeless Recording

Hitachi had on show an interesting prototype camcorder that records up to half an hour of video in a 400 Mbyte multilayered flash memory system. This retains its memory when the power is switched off. Weight of the camcorder is 350 g .

Samsung's AVC2 tapeless audio recorder can reproduce up to seventeen minutes of CD-quality music from a 24Mbyte flash memory card or record the same amount of music from a PC. The snag is that flash memory is not cheap - a 24 Mbyte card at present costs around $£ 173$. According to Samsung the price should fall to about $£ 70$ within the next three years. A MASK ROM card, which can be used for playback only, costs about $£ 40$. This should fall to around $£ 10$ over the same time scale. Samsung plans to introduce a record/playback version of the AVC2 by 1998.

Digital Video CDs

At a press conference a couple of days before the opening of the show Sony and Philips demonstrated their dual-layer Multimedia CD (MMCD) system using, for the first time, video material - previous demonstrations had used audio tracks. I was unable to attend this, but other reporters said that the results were excellent, with a seamless switchover between the two video layers.

The press conference held by the competing SD disc system developed by Toshiba revealed some interesting information. There's a whole series of SD discs, ranging from the SD5 which holds up to 5Gbytes of data or 142 minutes of MPEG-2 video to the SD18 which stores up to 18 Gbytes of data on a double-sided, dual-layer disc. There are also recordable and rewritable discs. The discs can store
entertainment material (Digital Video Discs) or be used as high density ROMs for computer data or as rewritable CDs. Although SD is a digital format, there will be PAL and NTSC players and discs. Discs intended for NTSC markets will use Dolby AC-3 sound while European discs will have MPEG-2 Surround sound. Thus European DVD users will

Sony's digital camcorder Model DCR-VX700, which is expected to be available in Europe this November.
not be able to import titles from the USA in the way that they can with with the Laser Disc, Video CD and VHS.

According to the SD Alliance DVD players will include systems to prevent digital-to-digital and digital-to-analogue copying, while consumer players will not be able to handle recordable or rewritable discs.

Thomson announced plans to launch an SD player in mid-1996. Toshiba, Thomson and Hitachi displayed prototype players while Pioneer had a prototype that also plays Laser Discs. The SD alliance expects some twenty million players to be sold by the year 2000. This will depend on whether consumers are prepared to fork out for a video disc system that cannot record, even if it does offer broadcast quality pictures. Interestingly, the SD alliance believes that its system will have a marginal effect on the VCR market.

During the course of the show the MMDS and SD groups announced agreement to a common standard.

Multimedia Developments

The Nokia DVB9500S Multimedia Terminal is an add-on box designed to send data to or receive it from a variety of digital sources. These include digital TV broadcasts, PCs, printers, games consoles, digital radio, digital video discs and players. It can link up to a telephone line for access to computer networks like the Intemet.

The DVB9500S incorporates some clever technology. It can for example adapt automatically to different satellite bandwidths (from $2-54 \mathrm{MHz}$). Its video decoder can handle data rates from 1.5 to $15 \mathrm{Mbits} / \mathrm{sec}$, i.e. MPEG-1 and -2 . It also caters for the $4: 3$ and 16:9 formats and pictures that are not full sized, e.g. Photo CD. Other CD formats that are compatible with it include CD audio, CD-ROM-XA and Video CD.

The electronics include a Motorola 68340 processor that runs at $16 \mathrm{MHz}, 1.5 \mathrm{Mbyte}$ of RAM and 1 Mbyte of flash memory. The system hardware is stored in the flash memory instead of being held in RAM or ROM. This means that it can be updated by downloading from a cable or satellite source. This helps to ensure that the terminal is future-proof.

TV connections include scart with RGB, composite video and audio options while the VCR connection is via another scart with composite video. There is also a decoder scart socket with RGB and composite video connections. Two phono sockets offer left and right audio connections. Other connectors include an RS232 data interface, a high-speed SCSI-2 port and a telephone socket. There's a VCR control interface and slots for smart cards, used by conditional access systems, are provided. The multitude of connections would enable someone to watch a digital TV broadcast while, for example, downloading into a PC extra programme data.

Nokia wants the DVB9500S to become the European standard for multimedia terminals and has already signed an agreement to supply a million terminals by next spring to the German service provider BetaTechnik. They will be used by BetaTechnik to offer new digital services. A taste of these was presented at Berlin. Viewers could for example select the camera angle during a Grand Prix race or even the driver to follow. Another idea is near-video-ondemand, which makes the same film available on a number of channels at different start times.

Nokia demonstrated the DVB9500S's electronic programme guide, an on-screen menu system that will make it much easier to select channels from the hundreds that digital TV is likely to bring.

Philips showed a number of interesting CDi developments. Philips Media has formed CD-Online, an Internet service provider, and has launched a starter pack which will enable a CDi player equipped with a digital video cartridge to explore the Internet via a TV set. The $£ 99$ pack consists of a 14,400 modem that plugs into any CDi player and a CD-Online disc that contains the software required to get into the Internet. Users can also send and receive electronic mail, though typing involves letter selection from a virtual keyboard displayed on the screen. Philips intends to introduce a small plug-in keyboard. Also on show were the 21TCD130, a combined 21 in . TV set and CDi player; the CD-470 mid-sized player; the FW380i CDi/mini hi-fi system; and a PC CDi card that enables CDi discs to be played on a CD-ROM drive. The card includes MPEG-1 playback.

GoldStar was showing a portable CDi player, Model GPI1200, which includes a 4 in. LCD screen.

Despite the interest in high-density CDs, several companies were demonstrating Video CD players. Panasonic had three: the SLVP50 portable; the SCVC1180 mini hi-fi; and the SLVM500 five-disc changer. Samsung's range of Video CD machines included the CDT2500 TV, DVC650 Video CD player, DVK350 LCD/Video CD portable, and several Video CD audio systems. The Samsung Multi-CD player connects with a TV set and plays CD audio, CD+G, Video CD, CD-ROM, Photo CD and CDi movie discs!

Panasonic and GoldStar had 3DO players on show. The new generation of 32 -bit computer games systems were represented by Sony's PlayStation and Sega's Saturn.

Finally, to demonstrate that the computer and consumer electronics worlds are converging. Philips showed the 29PX8001, a 29 in . TV set that can also display VGA computer graphics. Hitachi had a similar product called PC Vision. Panasonic's Woody PD, Model CF32GP, is a multimedia PC. with a built-in tuner and fax/modem. It incorporates a 15 in . monitor, a 486 DX 4 processor, 8 Mbytes of RAM and a 540 Mbyte hard disc and sound card. It also offers PD drive, which can play CD-ROM and Video CD discs and rewritable PD optical discs. The CF32GP is already on sale in Japan and could reach Europe next year.

Next Month in TELEVISION

SERVICING THE PHILIPS G110 CHASSIS

The G110 chassis was used in many Philips models released during the period 1989-91. It was one of the first to make extensive use of surface-mounted components. There are a number of them in the power supply, and because of this these sets are not looked upon favourably in the servicing trade. Problems should not arise however if you follow the advice given in Richard Newman's coverage of the chassis. A look is also taken at the projection version.

THE DIGITAL CAMCORDER FORMAT

The consumer electronics industry is about to offer us a new wonder, the digital camcorder. Agreement on a domestic standard for recording video digitally on tape was reached in early 1994. Now the hardware is about to appear. George Cole describes the basic features of the system.

MTI LNB TROUBLES

MTI LNBs provide above-average performance and have therefore been quite widely used. They can however give trouble, mainly in the local oscillator section. Hugh Cocks explains how to check and repair these units, also how to upgrade them for Astra 1D reception.

BLACK AND WHITE DAYS

As Christmas approaches you'll want to settle down for a good read. Amongst the seasonal offerings next month is Malcolm Scott's evocation of the servicing world in the early Seventies.

VCR SIGNAL PROCESSING

In Part 2 of his new series Joe Cieszynski will start to investigate the luminance signal processing aspects of VCR operation.

PLUS ALL THE REGULAR FEATURES

ORDER FORM
To.
(Name of Newsagent)
Please reserve/deliver the December issue of TELEVISION ($£ 2.35$), on sale November 15th, and continue every month until further notice.

What a Liffe!

Donald Bullock

It's over twenty years since I was last in the United States, in Connecticut to be more precise. One day I wandered from my favourite bar - the one where every fourth drink was free - and into Fran's Radio and TV shop on Main Street, Southington. He was a Zenith dealer - "Selling the Best, Servicing the Rest" was his motto. I was given a great welcome and wonder how Fran is fareing today. Coming across his card in some old papers reminded me of the visit.

Apart from the genuine friendliness and helpfulness of the folk there, from the television point of view I remember that visit for two reasons. First, the awful quality of the colour reception - I watched a cow in a field turn from brown to purple to red all within a minute. And secondly the equally awful programmes. There seemed to be little of a cultural nature, and there was no way of escaping the advertisements. These occurred constantly during sponsored programmes.

A Bang and Olufsen 7733

I could see that Mr Thesp was an oddball as soon as I caught sight of him trotting towards the shop carrying a B and $O 7733$.
"You'll be Mr Bullock" he bawled, "I know all about you."
"Good God" I said, "let's talk about your set."
"Keeps cutting out. And when it does work the colour keeps disappearing."

When he'd departed I pulled his set on to the bench. The mains lead was only about a foot long, so to work on the set I'd no choice but to replace it. Getting the back off wasn't easy, and when I did it fell on to my foot, half crippling me.

The chroma panel nestled in the centre left of the chassis. It was full of dry-joints. I reached for the soldering iron and Steven's reel of romantic solder. This led to a double achievement: I cured the intermittent colour fault, and made the workshop smell like a Casablanca ladies powder room. At this point Phyllis Puke came in carrying an Hitachi VT150E VCR.
"Good heavens!" she sniffed, "that smell won't get into my machine, will it?" I filled in one of Steven's job cards, then waved her out and returned to the B and O .

The second fault was that the vision would disappear, leaving a snowy raster. But the sound remained! At this point I almost felt like searching for the manual, but decided not to because I can't read B and O circuit diagrams. Nor Philips ones, come to that. Instead, I tapped about on the signal panels and found that this produced and cleared the fault. There were a number of dry-joints, which I resoldered, in the area. But this didn't cure the fault. I eventually found, on the control panel, a $1 \mathrm{k} \Omega$ potentiometer with a wiper that made intermittent contact with the track. A new one put matters right. It was R33. Next time I'm feeling really spry I'll look out the circuit diagram and try to find out what it does.

Phyllis's Hitachi VT150E

Then I picked up Phyllis's VCR, when smelt like Phyllis. It was dead and kept blowing the 2.5 A power fuse F851

The last time I had this the cause had been capstan motor failure. So I sniffed around the one in this machine. It smelt all right, but it was very stiff to turn. When I'd cleaned and lubricated the motor the machine still blew the fuse. I found that the M54648L-D motor driver chip IC602 was the cause of the trouble. It had probably died trying to drive the tight armature.

Bud's Decca

Bud Blowfly came in next. He's an inveterate hoarder who buys strange things for which he has no need. Then he spends money on them before finally storing them away. He boasts that if he keeps this up long enough his wife will divorce him. This time he'd got a Decca DV1259 with him.
"Cost me twenty five quid" he said, "but the colour, brightness and volume controls only work sometimes."

Because I like old Bud, I took a look at his set while he produced clouds of St Bruno from his pipe. There were some dry-joints at plug/sockets MR11 and MR12 on board 306A, to the left of the chassis. As I soldered them Bud skipped about, coughing.
"Where's that poncy smell coming from?" he enquired, looking under the bench and into the corners of the room.

A Ferguson 3V55

Cuthbert Wirewound came in next, with a Ferguson 3V55. "It just died on me" he announced.

When he'd loped off I opened the machine and looked towards the power pack. Fuse $1(315 \mathrm{~mA})$ was open-circuit. As we've had some awful thunder storms recently I fitted another fuse and started the machine up, gingerly, via the variac. The fuse stayed intact, but no current was drawn. Then I noticed a plasticy smell, mixed with the smell of the solder flux, Phyllis and the St Bruno. The mains transformer was cooking.

The clock lit up when a replacement was fitted, but there were no functions and the machine wouldn't accept a cassette. So I took a look at the main board where I found that C605 was short-circuit. After replacing this the machine powered up but the E-E picture was poor. A tap on the tuner PCB brought it up to full strength. One of the joints was starved of solder.

Gladys's Fergie

My last visitor that day was Gladys Winegum. "Me little Fergie has turned into a tiny line" she complained.
"Sorry to hear that" I replied. "This might be a silly thing to say, but, er, have you got it with you?"
"It's in the car" she said.
When I'd brought it in I found that it was a TX100 with field collapse. As the 12V line was low I disconnected it and checked the regulator, IC8. It was o.k. Then I took out the TDA3652 field output chip, which doesn't seem to be available any longer. So I fitted a TDA3654, making sure that pin 7 was left disconnected, and changed R 96 to $3.3 \mathrm{k} \Omega$. When I switched on again there was a full frame and an excellent picture.

My Own Problem

Finally to my own problem. It took me three attempts to produce this article. I lost the first two about half way through, by selecting the 'save and continue' option in order to save what I'd written while I slipped into the house for a
cup of tea. Each time when I returned the screen said "disc format not recognised". When I selected 'retry operation' or 'ignore error and continue' I lost the output of the disc, which then refused to reload.

I'm not yet sure what's gone wrong. This third attempt is being written on another machine, a PCW9512, with a different set of discs. If any Amstrad word processor buffs are reading this and could throw any light on these happenings, I'd like to hear from them - write in via the magazine.

The machine that gave me the trouble is a PCW8512, and at present I don't know whether it's the discs, the disc drive or a problem with the memory board.

I've been wondering lately whether to upgrade to another word-processing system, but I'm not sure of my way around the jungle out there. In addition it took me about three years to get the hang of Locoscript, though I think a great deal of the trouble here was with the presentation of the original manual.

Letters

MONITOR REPAIRS

Ás a former TV engineer currently working for a major monitor refurbishment company I'd like to appeal for coverage of monitors in your columns. There are plenty of PC glossy magazines that can tell you everything about price, availability and delivery of particular display products, but nothing about how the circuitry works and certainly not on how to fix it! This is where Television could help.

The need for monitor circuit analysis has never been greater: today's computer apprentices/trainees receive next to no instruction on how analogue circuitry operates, the emphasis being placed on digital electronics. And there seem to be no regular fault reports on monitors anywhere.

Many business PCs have now been passed on for domestic use, where they replace typewriters and games machines. As a result, the number of faulty monitors being taken to small repair shops is increasing significantly. Hence the need for fault information. There is also a need for documented fault reports in a firm like mine, with a warehouse full of processor-driven SVGA multi-mode monitors.

I hope you will be able to give us some help! Donald M. Henry,

Kirkcudbright.

Editorial note: We'd be happy to expand into this field and are already aware that our readers are increasingly being asked to repair faulty monitors. But to get going we depend on fault feedback. We'd like to hear from any readers with experience in this field.

HI-FI COMPATIBILITY ETC

I'd like to add by views to the comments on hi-fi compatibility and Macrovision protection in previous letters.

The burbling noise problem experienced with these tapes is related to the inherent weakness in using depth multiplexing to record hi-fi sound on a VHS cassette - the low signal-to-noise ratio, which will always be at least 12 dB less than with the corresponding video signal. This is the reason why hi-fi recorded tapes provide a much more critical way of assessing a machine's performance. If the head azimuth is even slightly off, almost any machine will produce these noises. The same goes for tracking errors and head wear. I have measured the noise figures with my own machine during each yearly service, and can see the noise level increase year by year as the heads wear.

To my mind the main cause of the trouble is incorrect head azimuth setting at the copy houses, in conjunction with
the same errors with domestic machines. I know that the copy houses take a lot of care over their machines, but it's impossible to believe that all their recorders can be perfectly set up all the time. This is borne out by checking machines that have partly worn heads and are noisy with even their own recordings. What I do with such a machine is to adjust the head azimuth for minimum noise (headphones are brilliant for this!) using a reference tape. I then do the same while playing back a prerecorded cassette. When I've done this in the past there have been differences in the azimuth settings on more than one occasion.

As Steve Beeching says (September), there are no problems with these noises until the time when the signal level is at or below the threshold level. The point here is that with incorrect azimuth setting there will, even with spot-on tape tracking, be reduced signal (hi-fi or video) at the two ends

Fig. 1: Signal reduction caused by azimuth errors.
of the track - see Fig. 1. This can in some cases cause those burbling noises. The problem is made worse by the lower signal level to start off with and the ear's ability to pick out transients.

There are many other possible causes of this problem (recorded video level too high, incorrect head switching points, hi-fil level too low, etc.), but VCRs are mechanical devices and most of the problems associated with them are mechanical in origin.

Incidentally the reason why my own VCR (a Ferguson FV57H) has increased noise levels is increased susceptibility to dropouts as the head wears. The point has been reached where even its own recordings burble sometimes. I think it's time to buy and fit a new head!
Tony Fitzpatrick, Service Director, Television Services, London NW5.

CORRECTION

My attention hàs been drawn to an error in one of my VCR Clinic fault reports - in the August issue (page 727). There
is no $47 \mu \mathrm{~F}$ chopper base coupling capacitor in the Grundig VS510. The cause of the symptoms described is the chopper chip's $47 \mu \mathrm{~F}$ supply smoothing capacitor C1326. I was confusing this model with the later VS540 which does have a chopper base coupling capacitor ($\mathrm{C} 420,100 \mu \mathrm{~F}$) that causes the dead machine symptom when it fails. My apologies to all concerned.

In reply to R.J. Goodman's letter (October), I can't think of any transmission signal that could cause the fault he mentions (a 'purring' sound with some types of tape). According to Sony - the machine was an SLV777 - the cause of the problem is wear in the upper drum. Presumably the tapes that cause the trouble provide a slightly lower output than other types. Low output would certainly cause crackling.
David Belmont,
Wembley, Middx.

A REMOTE CONTROL PROBLEM

A customer complained that the sound volume produced by his GEC C2004 TV set would intermittently increase to maximum. In the workshop however the set behaved itself no matter how much tapping, freezing or heating I inflicted on it. So the set and the remote control unit were returned.

I switched on and, while I was chatting to the customer, the volume suddenly increased to maximum. But operation of the handset had no effect - the sound still blared out. I then noticed at the side of the channel display the flickering dot that told me a remote command was being received. From where?

On my way to the set's on/off switch I knocked against a coffee table on which a couple of remotes for the VCR, satellite receiver etc. had been left, and noticed that the set's indicator stopped flashing. One of the remotes was a universal type. It was intended for use with the VCR, but according to the customer it was "never any good". It was, in fact, intermittently transmitting a volume-up command to the TV set. After taking it apart and removing gunge from the PCB it at last worked only when told to do so. Needless to say it had been programmed for the TV set, not the VCR!

After reprogramming his VCR handset the customer was pleased that he could now control it remotely while the TV set's sound remained stable. But he took a very dim view that a no-charge delivery had turned into a chargeable repair. You just can't win.
John Edwards,
Welling, Kent.

ELECTROLYTIC CAPACITORS

I cannot agree with much of what Martin Pickering has to say on the subject of electrolytic capacitors in his article on Designing for Reliability (September). For many years I was in charge of electrolytic capacitor development at the Dubilier company, so I feel well qualified to comment on the subject.

Martin Pickering stated that to prevent loss of capacitance aluminium electrolytics are best operated at close to their rated voltage. This is quite untrue. Any derating of the operating voltage will considerably increase the working life, just as reducing the working temperature will generally extend it.

In the Fifties and early Sixties we carried out many life test trials on Japanese electrolytics. We usually found that when they were operated under their rated conditions they failed within a week. At this time it was normal for UK and European electrolytics to last for between six and ten thou-
sand hours when operated at their rated values. As a result, the Japanese were forced to derate their components in order to get equipment out of the factories. They then found that the reliability of their derated components exceeded that of their European competitors.

Many of us in the industry at that time had tried to persuade set manufacturers to at least partially derate in order to improve the reliability of their products and reduce servicing costs. As Martin Pickering will recall, in those days the average TV set was operated at such high temperatures that we used to say you could fry an egg on them! Until the Japanese latched on to the concept of reliability, our entreaties fell on deaf ears - any component derating might increase the cost of a set by a few more pence.

We carried out many tests on derating during this period, and in all cases operation at lower voltages increased the working life. At that time there was a theory that derating the working voltage would result in an increase in the capacitance of electrolytics, but our tests proved that the tendency for the capacitance to increase was reduced as the original anodisation voltage was increased. We ran some of these tests as low as 0.5 V d.c.: only the $6-12 \mathrm{~V}$ types showed any significant capacitance increase. The 500 V capacitors were extremely stable. Only when a ripple current was applied did we find that there was an improvement in working life, which increased initially as the ripple current was increased. The reason for this improvement was related to the rule that the capacitor should not be operated under conditions where the peak of the applied ripple, plus the d.c. bias, exceeds the capacitor's nominal rated voltage. Thus the average applied voltage amounted to a derating. As the ripple current was progressively increased, a point would be reached where the increased working temperature caused by the ambient conditions combined with the ripple power dissipation would counter the beneficial effect of reduced average voltage. From this point on the working life of the capacitor would begin to fall.

When a capacitor is left on the shelf for a long time the leakage current shows a progressive rise. This calls for an applied d.c. voltage to reform the barrier layer. This is why the application of the rated voltage for a short period can return the capacitor to its original low leakage current condition. This may not be effective with a poor quality device: the leakage current may remain high and, with a high-voltage capacitor, the result may be a runaway temperature rise. Poor shelf life is usually the result of contamination, either in the electrolyte or the aluminium electrodes.
RJ. Everitt,
Epsom, Surrey

LIGHT BULB TIP

I wonder why the humble domestic lamp bulb is so little appreciated as a means of protecting faulty equipment? An incandescent bulb has a low resistance when cold and a high resistance when hot. A suitable-wattage bulb connected in series with the a.c. supply will stop those 'blinding flashes' and avoid the need to replace all those fuses, diodes and chopper transistors. When there's a short the lamp will light and its increased resistance will protect the circuit under test.

An immediate TV receiver degaussing circuit check is provided by the lamp lighting to full brilliance at switch on, then dying to less than half brightness as the posistor heats up.
H. Keighley,

Riddlesden, West Yorks.

WEEKIV. UPTO-DATE. EVERY THURSDAY.

ERT helps you make informed business decisions

There's only one way to ensure you are keeping pace with your industry - ERT, Electrical \& Radio Trading. Without it you could be missing out on vital information affecting you and your business.

Every week ERT contains comprehensive information on all aspects of the electrical retailing industry including TV's, VCR's and satellite systems. Reporting on important industry developments, reviewing new products and equipment and examining topical issues in-depth.

We'd like you to tegt ERT for yourself, so are offering the chance to receive ERT for just £1 a week for one year, meaning a cash saving of $£ 18$ off the normal subscifition rate of $£ 70$.

All this every week

- NEWS - ANALYSIS
- BUSINESS BRIEF - financial news - EDITORIAL COMMENT
- NEW PRODUCTS
- JOBS
- LETTERS
- DIARY OF EVENTS

DON'T MISS OUT ON VITAL INEORMATION AFFECTING YOU AND YOUR BUSINESS SUBSCRIBE TODAY

TO START YOU SUBSCRIPTION IMMEDIATELY CALL 01622-778000

Name:
Job title:
Company name:
Address:
\qquad
\qquad
Postcode:
Country:
Tel No:
Stuscribers to ERT are covered by our Full Money Back Guarantee. You can cancel your biscription at anytime, for whatever reason and we will refund you the value of all unmailed ees. No questions asked.
Tese return to ERT, Reed Business Publishing Limited, FREFPOST RCC2619, Haywards Heath, IISt Susser RHIG 3 BR. NO SAMP REQURED

SAVE 25\% - SUBSCRIBE TODAY
Please enter my subscription to ERT for: (please tick as appropriatē)
\square $£ 70$ £52 UK \& Eire $£ 71.25 / \$ 127.50$ Overseas Airmail

3 WAYS TO PAY

1. I enclose a cheque/money order made payable to ERT for $£$ \qquad
2. Please charge my Mastercard/AccessNisa/Diners Club/American Express (please underline appropriate card) for the sum of $£$ \qquad
Card Number: \square
\square
\square
\square
Card expiry date:
Signature: Date:
3. Please invoice me/my company for $£$ \qquad
Purchase order number: \qquad
Company VAT registration number: \qquad
\square Please tick here if you do not wish to receive direct mail from other compānies.

22 kHz Tone Switching for Pace PRD Series Satellite Receivers

John Woolman

It's some three years since the Pace PRD series satellite receivers and their clones were first introduced. They give good service apart from the occasional power supply problem.

Some of the design features are not used in Astra only models. An option that's not included and was not really thought about was the provision of a 22 kHz switching signal on the LNB's supply.

Now, as Universal LNBs are becoming available, there's a growing demand for 22 kHz tone switching. Universal LNBs have two local oscillators, which run at 9.75 and 10.6 GHz . Local oscillator selection is controlled by the 22 kHz tone. The result is a tuning range of $10.7-12.75 \mathrm{GHz}$ (Astra 1A-G) when used with a 2 GHz bandwidth tuner. It seemed worthwhile to see whether these Pace receivers could be adapted to operate with 22 kHz switching. The result is the circuit shown in Fig. 1.

The microcontroller chip U 2 in the receiver has various options that are not used in standard receivers. These options can be obtained by fitting resistors R550-R556. When R555 ($4.7 \mathrm{k} \Omega$) is fitted, U2 thinks it has control of a dual-bandwidth tuner. Pin 26 of U2 drives pin 3 of the buffer chip U3, whose output at pin 14 controls pin 14 of the tuner. As the vast majority of receivers are not fitted with a dual-bandwidth tuner, this option can be used to control the 22 kHz tone.
H / V switching in the receiver is carried out by adjusting Q2's base bias. The control line comes from pin 28 of U2, via pin 1 then pin 16 of U3. Q2 will not be used when the modification described below is carried out.

New LNB Power Supply Circuit

The circuit shown in Fig. 1 takes as the source of power for the LNB the H supply produced by the rectifier circuit

Fig. 1: Circuit diagram of the Universal LNB power supply for Pace PRD series receivers.

D15/C23 in the receiver. This is at approximately 20 V . It's fed via IC1, which is switched for H / V polarisation and adds the 22 kHz tone, then L 3 (in the receiver) to the LNB(s).

The LNB supply from ICl must be fed back into the receiver. This can be done by desoldering the leg of L3 at the junction of D17/Q2 and connecting it instead to the output from IC1.

Setting up and using the new arrangement is very easy. You will have gained an extra feature in the tuning menu option 4, 'i.f. bandwidth'. In the normal setting pin 14 of U3 is low, and the 555 timer chip IC2 in the new circuit is off. When the selection is changed to 'narrow', pin 14 of U3 (with the pull-up resistor R511 fitted) goes high, turning on IC2 which runs at 22 kHz . Its output is fed to the base of Tr 1 in IC1's adjustment circuit.

The LM317 chip IC1 is a standard variable regulator whose output depends on the voltage at its adjustment pin. This is set by the resistor network R1-4. With Tr 2 and Tr 3 both off, the output from ICl is 17 V .

If Tr 2 is switched on (via Tr 3) the resistor network consists of R1, R2 and R4. IC1 then gives the vertical polarisation output (13 V).

When Trl is driven by the 22 kHz output from IC2 the voltage across R4 is varied. As a result the output from IC1 will be modulated at 22 kHz - the variation is about 600 mV peak-to-peak.

Before you carry out this modification it's as well to check the receiver's software by fitting R511 and R555 and then checking the menus and the functions of pins 1 and 14 of U3.

The circuit can be laid out on Veroboard and fixed to the top of the modulator can by the two mounting holes shown in Fig. 2.

Use

When using a Universal LNB with receivers that have only the 10 GHz FSS band on-screen display, the frequency conversion is as follows:

No 22 kHz tone: LNB oscillator at 9.75 GHz , i.e. 250 MHz lower. Tuning ranges are $950-2,100 \mathrm{MHz}$ i.f., $10 \cdot 7-11-8 \mathrm{GHz}$ r.f. So when tuning to a station, add 250 MHz to the tuning frequency, i.e. for CMT at 11.567 GHz dial in 11.817 GHz .

Tone on: LNB oscillator at 10.6 GHz , i.e. 600 MHz higher. Tuning ranges are $950-2,100 \mathrm{MHz}$ i.f., as before, and $11.55-$ 12.7 GHz r.f. When tuning to a station subtract 600 MHz from the tuning frequency, i.e. for CMT at 11.567 GHz dial in 10.967 GHz .

COMPONENT DETAILS

 555 timer chip
TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS REPRINTS SERVICE

INDEX DISC

Version 3 of the computerised index to TELEVISION magazine covers Volumes 38 to 44 (1988-1994). It has over 6,000 references to TV/VCR fault reports and articles, with synopses. Includes a TV/VCR spares guide, an advertisers list and a directory of trade and professional organisations. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K RAM and a hard disc.

Price $£ 30$ (specify $5.25^{\prime \prime}$ or $\mathbf{3 . 5}{ }^{\prime \prime}$)
Those with version 1 or 2 dises can have them upgraded for $£ 12$ each: return the disc quoting its serial number.

FAULT REPORT DISCS

Each disc contains the full text for TV, VCR, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index dise: you load the contents of the Fault Report disc on to your computer's hard dise then access it via the Index disc. Fault Report dises are now available for:

Volume 41 (November 1990-October 1991)
Volume 42 (November 1991 - October 1992)
Volume 43 (November 1992 - October 1993)
Volume 44 (November 1993 - October 1994)
Price $£ 15$ each (specify $5.25^{\prime \prime}$ or $\mathbf{3 . 5 \prime}$)

REPRINTS

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 44 at $£ 3.50$ each.
All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to Video Interface Products. Allow 28 days for delivery (UK).

Video Interface Products Ltd., 1 Vineries Close, Cheltenham GL53 0NU, UK. Telephone/fax 01242241455

Q1	BC547	C1	$10 \mathrm{nF}, 25 \mathrm{~V}$
Q2	BC547	C2	$10 \mathrm{nF}, 25 \mathrm{~V}$
Q3	BC557	C3	$1 \mathrm{nF}, 1 \%, 25 \mathrm{~V}$
R1	$220,1 \%$	R7	$4: 7 \mathrm{k} \Omega, 5 \%$
R2	$1.4 \mathrm{k} \Omega, 1 \%$	R8	$10 \mathrm{k} \Omega, 5 \%$
R3	$910 \Omega, 1 \%$	R9	$4.7 \mathrm{k} \Omega, 5 \%$
R4	$560 \Omega, 1 \%$	R10	$1 \mathrm{k} \Omega, 5 \%$
R5	$2.2 \mathrm{k} \Omega, 5 \%$	R11	$33 \mathrm{k} \Omega, 1 \%$
R6	$10 \mathrm{k} \Omega, 5 \%$		

All 0.25W. R1-4 and R11 can be selected or made up.
Add $4.7 \mathrm{k} \Omega$ surface-mounted resistors R511 and R555 in the receiver, the former at pin 14 of U3, the latter at pin 18 of U2. Also remove C91 and C298 (both $100 \mu \mathrm{~F}$) which decouple the LNB supplies.

A piece of 0.1 in . Veroboard with 14 strips 23 holes long can be used for the new circuit.

Fig. 2: Layout of the circuit on Veroboard.

VCR Signal Processing

Part 1

Joe Cieszynski

In this series we shall be taking a detailed look at the signal processing carried out in domestic VCRs. Many engineers are familiar with such terms as 'dark and white clip' and 'carrier balance'. Often however the familiarity has come from making these adjustments: what we aim to do in this series is to establish why such things are necessary and explain what the circuitry involved actually does. Where possible we shall mention fault symptoms relating to specific circuits and explain why the symptom appears in the way it does.

We will deal mainly with the standard VHS format, since this remains the most widely used one. Comparisons with the other current domestic VCR formats, S-VHS and 8 mm , will be included where relevant.

To start off we'll consider magnetic tape recording basics and frequency modulation, as these determine the reasons for much of the signal processing circuitry used in a VCR.

Magnetic Tape Recording

The principles of magnetic recording on tape have been established for a long time. Video signal recording on tape was being carried out as far back as 1958, using equipment such as the BBC's VERA (Vision Electronic Recording Apparatus). This machine recorded the signal on 0.5 in . magnetic tape, the all-important head-to-tape speed being $200 \mathrm{in} . / \mathrm{sec}$. With $1,500 \mathrm{ft}$ of tape per reel, each one had a playing time of 15 minutes.

The working life of this machine was extremely short.

Such equipment forms a strange comparison with today's domestic VCRs, yet it's a fact that many of the techniques adopted all those years back are still in use. Perhaps the two most fundamental are the rotating video head drum and the use of f.m. to record the luminance signal. VERA used f.m., though not for the full bandwidth recorded. The Ampex VR1000A used f.m. and a four-head drum that scanned the tape transversely, from the top to the bottom edge, so that the tape speed could be reduced while still having a high tape-to-head speed. Meanwhile helical tape scanning with a two-head drum was being developed by Toshiba in Japan: a colour capable machine was first demonstrated in 1962.

Helical scanning is now the norm for all video tape equipment. As with transverse scanning, it is used to provide a high tape-to-head speed with a manageable basic tape speed. Why is tape speed so important? With any magnetic tape recording system the upper cut-off frequency, which is known as the extinction frequency (F ext), depends on two factors: the width of the record/playback head gap, and the speed of the tape past the head. In a modern VCR the width of the head gap is typically $0 \cdot 2-0 \cdot 3 \mu \mathrm{~m}$. This means that, even with a tape speed of $30 \mathrm{~cm} / \mathrm{sec}$, the maximum frequency that could be recorded on and recovered from the tape would be about 1.5 MHz , which is far short of the $5 \cdot 5 \mathrm{MHz}$ bandwidth signal transmitted with the UK terrestrial TV system I.

It was clear to the early developers of video tape recording that a high tape speed was not a practical solution to the problem. The answer was obvious: if the tape can't be

Fig. 1: The effects of different modulating signals on an f.m. carrier. The modulating signal frequency is the same in (a) and (b), but the modulating signal amplitude is greater in (b). In (c) the modulating signal amplitude is the same as in (b) but the frequency has been doubled. The result is an increase in the rate of deviation.

Six months after its introduction it was upstaged by the far superior Ampex VR1000A, which offered such features as long play (one hour!). The BBC was so impressed with this format that by 1961 it had invested in the portable version, which came complete with a three-ton chassis on which to move it! Note that these machines recorded in monochrome only, and were designed for use with the 405 -line system.
moved at sufficient speed, move the head as well. Hence the rotating head drum. With the basic VHS system, the tape-tohead speed is in the order of $4.8 \mathrm{~m} / \mathrm{sec}$.

Frequency modulation was adopted for luminance signal recording to overcome two problems. The first was constant signal variations caused by irregulatities in the thickness of the tape's oxide coating. Back in the late Fifties someone
was given the task of developing an a.g.c. system that could compensate for these variations with an analogue, luminance signal waveform. After three years he came up with an answer: forget the idea of recording baseband luminance signals, use an f.m. carrier instead.

The second problem was that of the bandwidth required. Because of basic physical laws, a magnetic recording system can have a bandwidth of only ten octaves, i.e. ten times a doubling of frequency. An alteration to the tape speed or head gap will move Fext, but the lower cut-off frequency will move as well and the octave bandwidth will remain ten.

A bandwidth of $25 \mathrm{~Hz}-3 \cdot 277 \mathrm{MHz}$ is 17 octaves, which cannot be handled. If however we use the video signal to modulate the frequency of an h.f. carrier, the octave range is greatly reduced.

Frequency Modulation

We'll start with the basic principles. With frequency modulation (f.m.), the frequency of the modulating signal (video in this case) governs the rate of deviation of the carrier, while the amplitude of the modulating signal governs the amount of deviation of the carrier. This is illustrated in Fig. 1.

When described in this way, f.m. doesn't seem to be very

Fig. 2: Between time 0 and 11 the carrier frequency is 1 MHz . At time $\mathbf{t 1}$ it is asked to rise instantly to 2 MHz . As this is impossible, what happens is that a number of frequencies between $1-2 \mathrm{MHz}$ are generated between times t1 and t2, when the carrier frequency becomes 2 MHz .
complicated. In practice however nothing could be farther from the truth. When a carrier at a certain frequency is deviated, an infinite number of sinusoidal frequency components (sidebands) is produced. The f.m. process can be analysed mathematically. This would produce expressions that would fill a quarter of one of these pages. We've no intention of looking at f.m. from the mathematical point of view, but it's worth mentioning this point in order to highlight the complexity of the process.

First, let's see why f.m. results in a theoretically infinite number of sidebands. Fig. 2 shows a 1 MHz sinewave whose frequency is increased to 2 MHz . The period of interest is the time between t 1 and t 2 , when the carrier is in the process of being deviated. During this period, the sinewave is never at the same frequency for more than an instant. Thus a range of frequencies between 1 MHz and 2 MHz , the sidebands, is being genetated. This is still a finite number of sidebands however.

The infinite number of sidebands is best explained by considering the shape of the waveform between times $t l$ and t2. Because the signal frequency is increasing continuously, at no time is its waveform sinusoidal. In other words, it's a distorted sinewave.

How is a sinewave distorted? By adding harmonics, i.e. multiples of the fundamental frequency, to it. In theory there
could be an infinite number of harmonics added while the 1 MHz signal is being deviated to 2 MHz . Hence the possibly infinite number of sidebands with an f.m. system.
If we return for a moment to the mathematical way of looking at this, when values for the carrier frequency, its deviation and the modulating frequency are specified the

Fig. 3: A frequency-modulated carrier with sidebands that extend below 0 MHz . As this is impossible, the sideband energy folds back, reappearing above OHz . The result is distortion of the demodulated signal.
frequency of each and every sideband can be worked out. This exercise would prove that the sidebands extend infinitely in each direction. You may wonder how the lower sidebands can extend to infinity when it's clearly impossible to have a frequency below 0 Hz (d.c.): in fact however once the lower sidebands reach 0 Hz they begin to 'fold back', taking up positions above 0 Hz in the frequency spectrum. Fig. 3 is an attempt to illustrate this. The point is not purely theoretical: this can actually occur with f.m., and system designers have to take steps to avoid it happening.

The avoidance of lower sideband foldback is fortunately not as difficult as it might at first seem. Further analysis reveals that though the number of sidebands is potentially infinite, the energy in all but the first few sideband pairs closest to the carrier is so small that they would be almost impossible to detect, even with sensitive measuring equipment. Such equipment is not used in a radio or TV receiver or a VCR to detect the sidebands. All that's used is a simple discriminator or a pulse-counting circuit. So the problem does not arise.

To summarise the points so far: a frequency-modulated carrier is a complex signal with a theoretically infinite number of sidebands, but only a small number of the side= bands have significant strength. Thus the bandwidth is determinable. What determines the number of significant sidebands?

Sideband Power

Although f.m. didn't come into wide use for broadcasting until after World War II, much of its development took place before and during that war. Early experiments established that sideband components with a value of less than one per cent of the carrier can be ignored. The band= width of an f.m. signal thus came to be taken as that between the two outer sidebands with amplitudes of one per cent of the carrier.

An unmodulated carrier contains a certain amount of power. When the carrier is deviated in an f.m. system, some of this power is transferred to create the sidebands. The number of sidebands and the power in each of them depends on two things: the amount of deviation, and the frequency of the deviation. Thus the point at which the sideband power falls below one per cent of the carrier power depends on these two factors. Put simply, the bandwidth of an f.m. signal depends on the amount and frequency of its deviation.

A table known as the table of Bessel functions gives us,
for any given carrier deviation and modulating frequency, the number of significant sidebands in an f.m. system.

The sidebands are separated by multiples of the modulating frequency. If, for example, a signal has ten pairs of

Fig. 4: Sideband signal spectrum for an f.m. signal. Each sideband is separated from the carrier frequency by the modulating signal frequency, which in this example is 10 kHz . The number of significant sideband pairs can be found from the Bessel functions table.
significant sidebands (twenty sidebands in all) and the modulating frequency is 10 kHz , the system bandwidth is $20 \times 10 \mathrm{kHz}=200 \mathrm{kHz}$ (see Fig. 4).

To use the table of Bessel functions, the ratio of the deviation to the modulating frequency has first to be calculated. This is given by the modulation index (M). The formula is:

$\mathbf{M}=$ carrier deviation/modulating frequency.

For example, with v.h.f. radio transmissions in the UK the maximum deviation is $\pm 75 \mathrm{kHz}$ and the maximum modulating frequency 15 kHz . Thus the modulation index is $75 / 15 \mathrm{kHz}=5$. Reference to the table of Bessel functions shows that with a modulation index of five there are sixteen significant sideband pairs. As the sidebands are separated by 15 kHz , the bandwidth is $15 \mathrm{kHz} \times 16=240 \mathrm{kHz}$.

Further consideration of the f.m. technique reveals that the higher the modulation index, the better the signal-tonoise ratio. To explain this in simple terms, when the modulation index is increased more power is moved from the carrier to the sidebands, which are what we recover at the demodulator. A purist would say that to achieve a good signal-to-noise ratio the modulation index should be at least ten. This would result in a bandwidth far in excess of 240 kHz however. It was therefore necessary to arrive at a compromise between spectrum space allocation and signal-to-noise ratio. You now know why v.h.f. radio is prone to a degree of h.f. hiss.

To summarise again, an f.m. signal consists of a carrier and a number of sideband pairs which are separated from the carrier by a frequency that's the same as the frequency of the modulating signal. The number of significant pairs is determined by the modulation index, which is a function of carrier deviation and modulating frequency. The higher the modulation index, the better the signal-to-noise ratio but the wider the bandwidth.

VCR FM Principles

The carrier frequency used by an f.m. system should ideally be at least ten times higher than the maximum modulating frequency. Thus with a TV luminance bandwidth of 0.5 .5 MHz , the ideal carrier frequency would be around 55 MHz . This is impossible with today's magnetic recording technology.

The video tapes available when the VHS and Betamax systems were being developed in the late Seventies were unable to retain frequencies much higher than 6 MHz - the magnetic coating was such that higher frequencies became
self-demagnetised soon after being recorded. Because of this, the f.m. carrier frequency had to be kept quite low if space was to be available for carrier deviation and the recording of upper sidebands.

A low carrier frequency leaves little space for the lower sidebands however. This introduces the possibility of 'negative frequency' sidebands folding back into the required frequency spectrum. The way to avoid this is to greatly reduce the number of significant sidebands, i.e. use a low modulation index.

If frequency modulation with an audio signal is compared to that with a luminance signal however a major difference becomes apparent. Because an audio signal is by nature a.c., the carrier is deviated above and below its nominal frequency to represent the two halves of the audio waveform. A luminance signal on the other hand is unidirectional, sitting on a d.c. level. Thus when it's used to frequency modulate a carrier the deviation is in only one direction. This factor can be exploited to reduce the modulation index.

Further reduction can be achieved only by restricting both the permitted deviation and the luminance signal bandwidth. Taking all these factors into consideration, the developers of the VHS system settled on an f.m. carrier frequency of 3.8 MHz , a maximum deviation of 1 MHz and a luminance signal bandwidth of 2.8 MHz (generally taken as 3 MHz). The result is a modulation index of $1 / 3 \mathrm{MHz}=$ 0.3 .

Reference to the table of Bessel functions tells us that with a modulation index of around 0.3 there will be just one pair of significant sidebands. Taking the VHS figures

Fig. 5: Standard VHS signal frequency spectrum. The upper cut-off frequency is shown as 7 MHz . This may vary slightly, depending on the width of the video head gap in the particular VCR model.
just quoted, the lower sideband will be at $3.8-2.8 \mathrm{MHz}=$ 1 MHz and the upper sideband at $3 \cdot 8+2 \cdot 8 \mathrm{MHz}=6 \cdot 6 \mathrm{MHz}$. Fig. 5 shows the standard VHS signal spectrum.

These parameters result in an f.m. system with barely sufficient bandwidth to recover the information but an octave range that can be recorded on magnetic tape. Note also that the reduced luminance signal bandwidth results in considerable loss of horizontal resolution and sharp-edge definition.

Chrominance Recording

We'll conclude this instalment with a brief look at the chroma recording process used in VHS and other nonbroadcast quality systems.

The term 'colour under' is used to describe the fact that with a VCR the chroma signal carrier frequency is lower than the luminance signal frequency spectrum. In the PAL system the chroma signal modulates a 4.43 MHz subcarrier. This is done to keep it out of the way of the majority of the
luminance sideband frequencies and thus reduce lumi-nance-chrominance patterning. With a VCR the f.m. luminance signal bandwidth is above the chrominance signal (see Fig. 5), whose frequency must therefore be shifted.

This is done by using a heterodyne technique very much like that employed in superhet radio receivers. The chroma subscarrier frequency chosen for the VHS system is 627 kHz , which places it neatly in the $0-1 \mathrm{MHz}$ space below the lowest luminance f.m. sidebands. However the $2 \cdot 2 \mathrm{MHz}$ bandwidth of a PAL colour signal has to be reduced to just 1 MHz . The result is a chroma signal at $627 \mathrm{kHz} \pm 500 \mathrm{kHz}$ see Fig. 5.

Help Wanted

The Help Wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement about this feature.

Wanted: Can anyone help with a source of supply for a peculiar chip in a computer monitor, Model 7133D, made in Malaysia? The number on the chip is WT8043 N204 446. It works as a field oscillator and may have other functions. The only indication of the monitor make is on the box it came in, as follows: EPA Energy Star Pollution Preventer. K. Hodgett, Cooper TV, 86 Windle Street, St. Helens, Merseyside WA10 2BL. 0174429622.
Wanted: Miniature c.r.t. type DH391. Tony Arnold, Courthouse Facilities, 27-29 Salisbury Street, Cranborne, Dorset. 01725517359.

Wanted: Remote control/information on a de Graaf VCR WHS GP1 (Philips chassis?). It's stuck in the child-lock mode. Does anyone know how to open the RC-V11A remote control unit for the Akai Model VS-F15EK?! T.M. Summerwill, 62 Clivedale Road, Woodley, Reading, Berks RG5 3RD.
Wanted: LOPT for the 20 in ., 90° Hinari CD/TV2. Ian Purves, Tellyman, 9 Overbrook, Hythe, Southampton SO4 5BE. 01703845476.
For disposal: 29 years' issues of Television, from 19661995, plus a few issues of Practical Television from 19631966. They are available for a nominal sum plus carriage. L. Burge, 40 Arch Road, Wyken, Coventry CV2 5AB. 01203 613783.

Wanted: Circuit diagram for the Luxton Hi-Fi/TV combina= tion or the type number of the audio chip. P. Wilkie, Castle Television, 16-18 Lady Lawson Street, Edinburgh. 0131229 7706.

Wanted: LOPT for the NEC Model FS1502 or CT1416. Part no. is 47105230 . D. Grant, The Hollies, Pandy, Abergavenny, Gwent NP7 8ED. 01873890291.
Wanted: Circuit diagram for the Toshiba Model C2290-B1. J.M. Thomas, 19 Cwmgelli Close, Treboth, Swansea SA5 9BY.
Wanted: Help with repairing a Russian-made oscilloscope, Model C1-5Y, and any general advice about repairing valve equipment. Laurence Steingold, 12 Chartham House, Weston

Next Month

We've made an ambitious start by looking at magnetic recording principles and f.m. theory in one go. Each of these subjects is quite complex. If more in-depth coverage is required, there are several textbooks that can be consulted. Our aim has been to provide enough information on the basic principles to enable the problems involved in recording and playing back colour TV signals to be understood.

Next month we'll start on f.m. luminance signal processing.

Street, Bermondsey, London SE1 4DX. 0589975661 (mobile).
Wanted: Service data for the Triumph CTV8000 and the Saisho VR3600 VCR. Will stat and return if required. K. Smith, 43 Lourdes Avenue, Preston, Lancs PR5 5TB. 01772 321709.

Wanted: Circuit diagram/construction details for the Intracept Electronics N7118 PAL colour bar generator - it's about 10-15 years old. Nicholas P.B. Amold, 19 Bond Street, Bournville, Birmingham B30 2LB. 01214581187.
Wanted: Teletext panel with fitting instructions for the Sony Model KV2052UB. Also a circuit diagram (photocopy will do) for the Sakura SR800ER. J. McLeod, 41 Washington Road, Haywards Heath, West Sussex RH16 3HL.

Answer to Test Case 395

\author{

- see page 38 -
}

Tatung TV faults don't elude Television Ted for long! In retrospect, Cathode Ray's component-substitution tests in the line output stage were a waste of time. It's usually far better to try to diagnose the cause of a fault by making test readings and following a logical reasoning process rather than to keep changing components in the hope that you will hit on the right one - even though some faults and symptoms seem to defy logical analysis. It is also sometimes difficult, even when the faulty component has been located and replaced, to see why or how it caused the problem!

There are two reasons why this was to some degree true here. First, because by rights the fault should have stopped the line output stage working at all. And secondly because it's hard to understand why the symptom depended on the brightness of the picture.

When the pulses at the collectors of the line driver transistors Q401/2 were examined (waveform 410) they were seen to be of low amplitude and distorted. This led to a check on R423, in the feed to the line driver transformer's primary winding. Its value had risen from 22Ω to more than 300Ω. As a result, the driver transistors were not passing sufficient collector current. Once a new 22Ω resistor had been fitted the picture problem disappeared regardless of the brightmess and contrast control settings.

Similar symptoms can occur with other makes and models when the resistor in this position fails.

[^0]BULL CLEAROUT SALE

WIRELESS VIDEO BUC KIT Transmits video and audio signals from a minature CCTV camera (induded) to any standard
television! All the components including a PP3 battery will fit into a digarette packet with the lens requiring a hole about 3 mm diameter. Suppled with telescopic aerial but a plece of wire about $4^{\circ} \mathrm{long}$ will suit glvea range of up to 100 metres. A single PP3 whil probably give
less than 1 hours coerating time. E9P REF.EP79. (probably not less than 1
licensablel)
GOTAM DXPENSNE BIKE? You need one dourbottle alarms. they lock like a standard water bottle, but open the top, insert a key to activate a motion sensor alarm buitinside. Fits all standard bottle cemlers, supplled with two keys. SALE PRICE $£ 7.99$ REF SA32. GOT AM EXPENSIVE ANYTHING? You need one of our cased vibration alams. keyswitch operated, fully cased juss if it io anything from videos to caravans, provides a years protec
1 PP3 battery, UK made. SALE PRICE E4.9P REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repalr so they are just $£ 4.99$ each. Madnly response 200 machines. REF SA30.
COMMODORE GAMES CONSOLES Just a fow of these left to diear at $£ 5$ ref SA31. Condition unknown
COMPUTERDISC CLEAROUTW are left with a bot of software packs that need cleaing sowe are seling at dlsc value ondyl 50 discs for f4, thats just 8p eachl! (our choice of discs) SALE PRICE EA ref EP66
IBA P32 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with
EQ 85 ref EPGT
DELL PC POWER SUPPLEE 145 wat $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, nyleads and IEC socket. 150x ${ }^{\text {SALE PRICE } 59.89 \text { ref EP55 }}$
1.44 DISC ORIVES Standard PC 3.5° drives but returns so they will need attention SALE PRICE EA.00 ref EP6B
12 DISC DRNES Standard 5.25° difives but reaums so they will need attention \$ALE PRTCE EA.99 ref EP69
PP3 NICADS New and unused but some storage marks. SALE PRICEE4.93 rel EPS2
SOLAR PANELS 3 v output with twoflyeads. $100 \times 60 \mathrm{mmpack}$ of 10 SALE PRICE E6. 89 ref EP56
DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fiy leads, case and tan. pack of two psus SALE PRICE CS FOR TWO! ref EP61
GAS HOBS ANDOVENS 8 rand new gas appliances. pertectior smal flats etc. Basic 3 burner hob SALE PRICE E24.99 ref EP72. smal fiats etc. Basic 3 burner hoo salle PRICE E24
Basic small built in oven SALE PRICE e79 ref EPT3
 multiplexers etc different specs butideal strippers. SALE PRICE E4 sach ref EP53
RED EYE SECURTY PROTECTOR 1,000 watt outdoor PIR switch SALE PRICE E9.89 ref EPST
ENERGY BANK KTT $1006^{\circ} \times 6^{\circ}$ ov 100 mA panels, 100 dodes. connection details etc. $£ 69.95$ rat EF112.
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, i2v 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 plxels, video output is iv p-p (75 ohm). Works directly Into a sca video Input on a tv or video. IR sensitive. $£ 79.95$ ref EF 137.
IR LAMP KIT Suitzble for the above camera onables the camera to be used in total dankness! E5. 99 ref EF 138 .
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses. Includes wordp roces sor, report witer, windowing, networkable up to 10 statlons. multiple cash books etc. 200 page comprehensive manual. 90 days free technical support
($0345-326009$ try before you buyi) Current retail price lo $£ 129$, (0345-326009 try before you buyi) Current
SALE PRICE $£ 9$ 95 ref SA12 SAVE $£ 120!1$
MINI MICRO FANS 12V 1.5° sq 8ALE PRICE E2. Rel SA13. REUBEABLE HEAT PACKS Ideal for fishermen, outcoo enthusiasts elderly or inimm, warming food, drinks otc, defrosting pipes etc. reuseable up to 10 times, tasts for up to 8 hours per go,
2000 wh energy, gets up to 90 degC SALE PRICE $£ 9.85$ REF SAZ 2.000 wh energy. gets up to 90 degC. $8 A L$ E PRICE $£ 9.85$ REF SAZ
$12 V$ 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standard 12V 2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standand
IEC socket) and 2mlead with ptug. $100-240 \mathrm{~V}$ (P. SALEPRICE £6. 99 REF SA 15.
PC CONTROLLED 4 CHANNELTEMER Control (onvor umes etc) up to 4 items (84240 V each) with this kit. Complete with etc) up to 4 htents (8 A 240 V each) with th
Sonware, relays, PCB etc. $£ 2599$ Ref $95 / 25$
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power Iuctuations and cuts. New and boxed, UK made Provides up to 5 mins running tme in the event of complete power failure to allow y
correcty. SALE PRICE just E 8.00 .
SOLAR PATH LICHT8 Low energy waldigits powered by the surt built In PIR so they work when you walk past. Indudes solar panel \& rechargeable bat SALE PRJCE E19.8REF EPG2 BIG BROTHER PSU Cased PSU, ov 2A output, 2 m op lead. 1.5 m Imput lead. UK made. 220 V . SALE PRICE $\mathrm{E4.99}$ RĒF EP7

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on seting up different ousinesses, you peruse these at your leisure using the text editor on your PC. Also included is a IVkel SALE PRTCE E14 REF EP74

RACAL MODEM BONANZAI 1 Racal MPS1223 1200/75 modem, telephone lead, mains lead, manual and comms software the cheapest way omo the nett all this for just $£ 13$ ref DEC13.

RADIO PAGERSBrand new. UK made pocket pagers dearance price is just EA. 99 each $100 \times 40 \times 15 \mathrm{~mm}$ packed with btst Ref SEP5. BULL TENS UNTT Fully buit and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the retief of pain etcic in up to 70% of sifferers. Drug free pain relied. safe and easy to use, can be used in conjunction with analgesics etc. E49 Ref TENM
COMPUTER RS232 TERTMMALS. (LIBERTY)Excellent quality modern units, (uike wyse 50,5) 2xRS232 20 function keys, 50 thro to 38,400 baud, menu dilven port, screen, cursor, and keyboard setup menus (18 menu's) $£ 29$ REF NOV4.
PC PAL VGA TO TV CONVERTER Converts a colour TVinto a basic VGA screen. Complete with builtinpsu. lead and sware.. Ideal a basic VGA screen Comptete winhbuitinpsu. lead and sware... 1 deal
for laptops or a cheap upgrade. Supplied in kit form for home assembly. SNLE PRACE E2S REF SA34
EMERGENCY LIGHTHG UNIT COMplete unit with 2 double bub hoodlights, buitin charger and auto switch. Fully cased. 6 v 8 AH bub floodlights, buitin charger and auto switch
lead acid req'd. (secondhand) 44 ref MAGAP 11.
SWNGFIRE GUIDED MISSILE WRE. 4,200 metre reel of ultra thin 4 cora insulated cable, 28bs breaking strain, less than 1 mm thick Ideal alarms, intercoms, fishing, dolls house's etc. SALE PRICE E13.08 ref EP51
ELECTRIC CAR WNDON DE-HCERS Complete with cable. plug otc 8ALE PRICE JUST EA.89 REF SAZB
ASTEC SWITCH ED MODE PSU BM4 1012 Gives +5 © 3.75A +12@1.5A. -12@.4A. 230/110, cased. BM41012 E5. 99 ref AUG6P3. AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ schar panel with diode and 3 metrelead tited with acigar plug. 12v 2watt. SALE PRICEE8.88 REF metrele
SAZS.
SAZS. QUALTY CENTRIFUGAL MANS MOTORS SALE PRICE2 FOR JUST E2.60 REF 8A3s
ECLATROM FLASH TUBE As used In polloe cer fiashing lights etc. tull spec suppled. 60 -100 inashes a min. 8ALE PRICE $£ .89$ REF SA15.
24v AC SNWATT Cased power supply. New. SALE PRICE JUST £9.99 REF SA40
MLTARY SPECGEGER COUNTERS Unused anstraightifom
Her meiest's forces. SALE PRICE EAA REF SA16
MICRODRNE STRPPER8 Smail cased tape dives ideal fo: stripping. lots ol usefui goodies Including a smart case, and fots of stripping. lots of usefui goodles including a smart case, and io
SOLAR POWER LAB SPECIAL You get TWO $5 \times 6.6130 \mathrm{~mA}$ solar celks, 4 LED's. wire, buzzer, switch pius 1 relay or motor. Supert value lot SALE PRICE JUST EA.99 REF SA2
RGBICGALEATTL COLOUR MONITORS 12° in good condition. Back anodised metal case. \$ALE PRICE E48 REF SA16 8WITCHED MODE PSU ex equip. 60w +5Y Q5A. 5 V . 5 FA . +12ve2A-12vesA 120 Z20v cased $245 \times 38 \times 55 \mathrm{~mm}$ IECInput socket +12VQ2A-12VESA
E6.99REF MAG7P?
PLUG IN ACORN P8U 19V AC 14w . E299 REF MAG3P 10
POWER SUPPLY fully cased with mains and op leads 17v DC
POWER SUPPLY fully cased with mains and
900 mA output. Bargain price $\varepsilon 5.99$ ref MAG6Pg
900 mA output. Bargain price $£ 5.99$ ref MAC
ACORN ARCH
4 Al oruoft sw uncased, selectable malns Input. $145 \times 100 \times 45 \mathrm{~mm}$ SALE PRICE E4.9P REF SA1
13.8V 1.9A psu cased with leads. Just 99.99 REF MAG10P3

PPC MODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
200 WATT INVERTER Converts $10-95 \mathrm{~V}$ DC into either 110 V or 240 V AC. Fuly cased $115 \times 3 \times 156 \mathrm{~mm}$, complete with heavy dutypower lead. cigar plug, AC outtet socket.Auto overioad shutsown auto short dravit shif down, auto input over voitage shutdown, auto input under voltage shut down (vith audible alam), auto temp control. unit shuts down if overteated and sounds audible alam. Fused reversed polanty protected. output frequency within 2\%, voitage within 10%. A well buit unit at an keen price. Just $£ 64.99$ ref A UC65. UNNERSAL 8PEED CONTROLLER KTT Designed by us for the C5 motor but ok for any 12v motor up to 304 . Comple
otc. A heat sink may be required $£ 17.00$ REF: UAG 17
COMPUTER COMMUNICATKONS PACK Kit contains 100 m of 6 core cable, 100 cable clips 2 line divers with RS232 interfaces and as connectors etc. Idoal low cost mothod of communicating between PC s over a long asiance. Completo lot $£ 8.99$.
ELECTRIC MOTOR KI Comprehensive educational lit in
ciudes ail you need to build an electric motor. 29.99 red MAR 10 P4.
VENDATA 3 SYTEMS made by Philips, complete with Intemal 120075 modem, keytoard, pSU by RC8 and composite outputs. \$200/75 modem, keyboard. PSU etc RCS and composite out
menu driven, autodlatler atc. SALE PRICE $£ 12.99$ REF SA18
AR R FLES . 22 As used by the Chinese amy for training puposes, so there is a lot aboutl 839.95 Ref EF78. 500 pellets $£ 4.50$ ref EF80 PLUG IN POWER 8UPPLY SALE FROM E1.60 Plugs in to 13A socket with outputiead. three types availabie $9 \mathrm{Vdc} 150 \mathrm{mAE1} .50$ ref SA19, 9voc 200mA 2.00 re SA20, 6.5 vdc 500 mA £2 rel SA21. VIDEO SEMDER UMIT. Trensmits both audio and video signals from either avideocamera video recorder. WorComputer etcto any standard TV set in a 100 rangel (tune TV to a spare channel) 12v DC \propto. Price is $£ 15$ REF: MACO 15 12v PSU is $£ 5$ extra REF: MAGSP2

BULL ELECTRICAI

TEN: 012732435100

*FM CORDLESS MICROPHONE Small hand hedd unit with a 500 rangel 2 transmit power levels. Reqs PP3 9v battery. Tuneable to any FM rectiver. Price is ह15 REF: MAG15P1
*MNATURE RADF TRAN8CENERS A pair of wallie tallies with a rangeup to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. $2 \times P$ P3 req'd. $£ 30.00$ pr.REF: MAG30 FUTURE PC POWER SUPPLIES These are 295x $135 \times 50 \mathrm{~mm}$ 4 drive connectors 1 mother boand connector. 150watt 12 v fan, iec iniet and onfoft switch. SALE PRTCE E7.99 REF SA 22

- ${ }^{7}$ II TRANgeiITER KIT housed in a standard working 13A adapter! the bug runs directly on the malns solasts forever! why pay adapter! the bug runs directy on the mains solasts forever! why pay
$£ 700$? or price is $£ 15$ REF: EF62 Transmits to any FM radio. (this ts £700? or price is $£ 15$ REF: EF62
in kot form with full instructions.)
*FA BUG BUILT AND TESTED superior design to kit. Supplied "FI BUG BUILT AND TESTED superior design to kit. S
to detective agencies. 9v battery read $£ 14$ REF: MAG14
TALKING COINBOX STRPPPER COMPLETE WITH COINSLOT MECHANISM8 orginally made toretail at£ 79 aach these units are designed to convert an ordinary phone into payphone. The units have the locks missing and sometimes broken hinges. How ever they can be adapted for their original use or used for something else?? SALE PRICE JUST E2 50 REF SAZ3
GAT AIR PISTOL PACK Complete with pistol, darts and petlets £12.95 Ref EF82 extra pelets (500) £4.50 rof EF80.
$6^{-} \times 12^{-\omega}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 13 mA SALE PRACE E4.S9 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $\mathbf{5 4} 99$ FIBRE OPTIC CA BLE BUMPER PACK 10 metres for $£ 4.99$
ref MAGSP13 ideal for experimenters 30 m for $£ 12.99$ ref MAG $13 P 1$

SIDE LEVER . 177 AIR RIFLE Superb, low priced general purpose rite. 18° tapered, rited barrel. foly adjustable cpen sights, wooden stock, very accurate with low. recoll. 41°. 239.95 ref R/3 4×28 TELESCOPIC SKGKTS Sutabte for ail air nifes, ground lenses, good light gathering properties $£ 19.95$ rel R/7.
RATTLE BACKS interesting things these, smal piece of solid perspex like material that it you try to spln it on the desk it onty spins one wayt in fact if you spin it the wrong' way it stops of its own accord and go's back the other wayl $£ 1.99$ ref GUJol.
GYROSCOPES Rememberthese? well we have found acompany that stil manulactures these popufar scientific toys, perfect git or for that stil manulactures these popur
educational use etc. $£ 6$ ref EPTO
EDBLE LONGLIE CANDLES Made from Oleo Beer Stearnso you can eat them in an energency athematvery, you could just ingt themi Each candie burns for approx 10 hours. 2 for $E 299$ ref ONN326. HYPOTHERAMA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foll blanket, reflects more than 90% of body heat. Asso suttable for the construction of two way miftorsl E3.99 each ref OLO4 1
LENSTATIC RANGER COMPASS OA filled capsule, strong motal case, large luminous points Sight line with magnitying viewer. 50 mm dia, 86 gm . 10.99 rel OKK 604 .
RECHARGE ORDINARY BATTERIES UP TO 10 TEAES! With the Battery Wizardl Uses the latest putse wave charge systern to charge all popular brands of ordinary bateries AAA, AA, C, D, four atatimelLed system shows when batteries arecharged, eutomatically rejects unsutable cells, complete with mains adaptor. BS approved. Price is $£ 21.96$ ref EP31.
TALKING WATCH Yes, it actually tels you the time at the press of a button. Also features a voice alamn that wakes you up and tells you Ime is! Lithum cell induded. $£ 7.99$ ref EP26.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU
YOUR LICENCE! The new mutioand 2000 radar detector can prevent even the most responsible of divers fromlosing their licencel Adustable audible alamm with 8 flashing leds gives instant waming of radar zones. Detects $X . K$ and $K a$ bands, 3 mile range, 'over the hir 'around bends' and 'raar trap facirdes. micro size just $4.25^{\prime} \times 25^{\prime} \times .75^{\prime}$. Can pay for itseff in just one dayl $£ 79.96$ ref EP3.
SNOREBUSTERI A smal wristyath style device that detects the noise of snoring and instanty produces a stmulation to the wrist of the snorer without waking them. The blo feedback effectivery prevents future bouts of snoring. thus reducing Snorebuster to only occasional use. 10 of 1,000 's sold. $\sum 24.99$ ret LA15999.
HORLDS SMALLEST TAPELESS MEMO PENI Notonly is the a smart pen but wil record 20 seconds of memos etc. No more
scatching about for scaps of paper! $£ 39.99$ ref AA21381.
ELECTRICTYREINFLATOR Highpower micro air compressor inf ates tyres, airbeds foothalls etc. Includes pressure gauge . $£ 14.99$ inflates tyres
ref J 2331.
MAMODSTEAM ENGINE SP2 Pow erful compact model steam engine complete with fuel etc. E39. 95 ref SP2.
englne complete with fuel etc. $£ 39.95 \mathrm{ref}$ SP2.
SANYO NICAD PACKS 120 mmx 14 mm 4.8 v 270 maH sultable for cordess phones etc. Pack of 2 just ES ref EPTB.
WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE 559 A Hand held personal Gamma and X Ray detec tor. This unit contains two Geiger Tubes, has a digit LCD display with a Plezo speaker. giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 KV to over 1.2 M eV and a measuring
range of $5-9999$ UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. ref NOVI8

		CTRO	ANESE OMPON R 8,000	ONE DIST REN	$\begin{aligned} & \text { ECIAL } \\ & \text { ORS (II } \\ & \text { S IN S } \end{aligned}$		
			NSISTO	NTEG	CIRC		
	2SA	BDW	BUY	1 N	LA	NE	TA
	2SB	BDX	DTA	2 N	LB	SAA	TBA
	2SC	BF	DTC	1 S	LC	SAB	TC
	2SD	BT	IRF	TIP	LM	SI	TCA
	2SJ	BU	IRFBC	AN	M	SLA	TD
	2SK	BUK	IRFPE	BA	MB	STA	TDA
	3SK	BUT	IRFP	CX	MC	STK	TEA
	AD	BUV	IRFZ	CXA	MDA	STR	TTL
VISA	$B C$	BUW	MJ	HA	MEA	STRD	UPC
V10,	BD	BUX	MJE	KA	MN	STRS	UPD
	BDT	BUZ	SGSF	KIA	MP	STRM	CMOS
ASK FOR OUR CATALOGUE - MAILTTELEPHONE/ORDERING • COUNTER SALES							
NIKKO ELECTRONICS LTD. DALBANI DALBANI HOUSE, 257 BURLINGTON ROAD, NEW MALDEN, SURREY KT3 4NE, ENGLAND Tel: 0181-336 0566 • Fax:0181-336 0579-0181-395 6003							

Test Equipment • Components • Accessories Electromechanical • Mechanical • Engineering

VALVES WANTED

TOP PRICES PAID FOR NEW BOXED VALVES SEE LIST BELOW:

ECC 83/EF86 MULLARD
Px 25 MARCONI OR OSRAM GLOBE SHAPE
PX4 MARCONI OR OSRAM
PP3-250 MAZDA OR OSRAM
805/845/211 USA ORIGINALS
STC $4212 E$ UK
DA100 G.E.C.

$£ 3$ ea	DO60	$£ 50$ ea
$£ 90$ ea	DA30/DA60 G.E.C.	$£ 80$ ea
$£ 50$ ea	KT66 G.E.C.	$£ 35$ ea
$£ 50$ ea	KT88 G.E.C.	$£ 50$ ea
$£ 25$ ea	EL34 MULLARD	$£ 12$ ea
$£ 100$ ea	$300 B$ U.S.A. ORS.T.C.	$£ 150$ ea
$£ 100$ ea	EL37 MULLARD	$£ 10$ ea

ALSO WANTED USED VALVES AND OLD VALVE AMP EQUIPMENT LEAK, QUAD RADFORD, ETC...

SEND, PHONE, FAX, LIST, INSTANT DECISION

SATELLITE - BOOKS, VIDEOS, SOFTWARE

SATELLITE TELEVISION - [NSTALLATION GUIDE (ISBN 1.87256709 6)
John Breeds. Install your own satelite systeml Written in crear non-mathematical terms on large A4 format. Lavish use of diagrams throughout. The official study manual used in City \& Guilds courses. New updated 5th edition. Acclaimed by the Press and Trade as the best work of its kind EUROPEAN SCRAMBLUNG SYSTEMS 4
John McCormac, Discover how to construct commercial descrambling systems that work! Gain a hacker's insight into piracy and counter-piracy. Explicit circuit diagrams glven. Offered to enthusiasts for educational purposes only
THE SATELLITE BOOX A Complete Guide to Satellite TV Theory and Practice
John Breeds. Generally acclaimed as the 'Bible' to the satellite Industry. Written in easy-to-read style with over 300 illustrations on more than 300 large format A4, 26 chapters. New edition 4 completely updated for 1996. Unconditionally recommended. (ISBN 187256708 8) WORLD SATELLITE TV \& SCRAMBLING METHDDS
R Madoox, J McCormac \& F Baylin. A thorough text for technicians and curious do-it-yourselfers. More than 300 pages provide an in depth study of many commercial scrambling methods. Many circuits and block diagrams.
THE SATELLITE VIDEO (Plus free bookdet)
Professional quality video presented by BBC Tomorrow's World Peter McCann. Includes dish set up, site survey equipment etc. Ideal companion to the Installation Guide. A 50 min video vihich gives sound practical advice. Pleass noto postage:- UK $£ 1.50$; Europe $£ 3.00 ;$ RoW $£ 8$. MPEG - DIGITAL TELEVISION FOR ALL
An authoratitive quide from NTL on leading edge techniques for future television. Describes compression and bit rate reduction techniques. Analyses Quantisation techniques and compressed audio in MPEG. Please note postage:- UK £1.50; Europe £3; Rest of World $£ 6$. KU-BAND SATELLITE TV
Thsory, Installation and Repair. Frank Baylin \& Brent Gale. Completely revised and updated edition. More than 400 pages provide a comprehensive introduction to satellite television. Highly recommended.
SATELLITE SERVICING 1987-90
SATELLITE SERVICING 1991-92

E55

SATELUTE SERVICING 1993.94
Circuit diagrams. oscifloscope readings, voltage tables, essential part numbers, troubleshooting guides, alignments, etc; in fact everything for serious service technicians. Top quality-produced hardback manuals in large format. Please note postage:- UK £5; Europe £15; R of W £35.
HOME SATELLITE TV INSTALLATION
\& TROUBLESHOOTING MANUAL
B Gale, F Baylin \& Ron Long. This could be described as the C-Band companion to its Ku-Band book by the same authors. Approx 500 pages cover how to Install large dishes and troubleshoot many faults
WIRELESS CABLE \& SMATV
Steve Berkoff \& Frank Baylin. Wireless Cabje \& SMATV covers MMDS, cable system design, Yagi stacking, dishes, programming, system operation, project bidding and contracts.

1995/96 WORLD SATELLITE YEARLY
Dr Frank Baytin. Latest edition, 780 page reference book that provides essential information about the characteristics and footprints of all the world's broadcast satellites; plus most recent detalls about compressed digital video and audio methods. Divided by easy-to-use tabs into four sections. echnical, satellites, programming and reference materials. Excellent value.
Please note postage:- LK £5; Europe £9; Rest of World $£ 76$
SATELUTE COMMUNICATION SYSTEMS
G Maral \& M Bousquet. This mammoth 688 page tome extaustivaly deals with radiowave propagation, satellite installation and launchers, antennas and signal processing. Fully illustratod throughout. Unreservedy recommended for serious students of satellite technology.
WORLD of SATELLITE TV - EUROPE, AFRICA
255
and THE MIDOLE EAST
Mark Long \& Jeftrey Keating. Written in a 'down-to-earth' style, thirteen chapters cover areas such as installation, feedhorns, LNBs. polarisers, receivers, scrambling, digital video compression, HDTV and most of the satellite footprints covering the titled areas. Recommended reading.
SATMASTER PRD PC SOFTWARE PACKAGE (DOS) (specisl offor while stocks tast)
SATMASTER FOR WINDOWS (new version 3.2)
DJ Stephenson. Calculates full link budget including dish siza requlred. Gives set up angles, polar and apex elevation for motorised systems, elevation, azimuth, polarisation offset, from any location in the World for any geo-satellite now and in the future. The program includes a 20,000 word technlcal heipline with many graphics and footprints. This work is easily the best of its kind in the world, and is unreservedly recommended. Post UK £1.00; Europe $£ 2.00$; RoW $£ 4$. Try it free on:-
http:/hwww.n-neicom/arrowe/pub/swinhtm
1995 INTERNATIOMAL SATELLITE DIRECTORY

Whopping, 15 section, 1000 plus page, comprehensive reference; footprints, uplinks. charts, mobile systems, contacts, loading reports, manufacturers, operators, Agencies, buyer's guide, maps, etc. An authoratitive tome. Please note postage:- UK £5; Europe £19; R of World £36. HOME SATELLITE TV INSTALLATION
VIDEO TAPE (Approx 40 min)
Brent Gale \& Frank Baylin. A very popular video that provides a thorough overview on all aspects of instailing large motorised dishes on both C and Ku band systems. Ideal companion to the Home Satellite Installation Manual.

175

AMSTRAD HANDSETS
VCR4500
VCR4600, 4600MkII
VCR4700
VCR5200
VCR6100 (Indexer)
VCR6100 (Barcode Indexer)
VCR6200 Barcode
VCR9000 (OId type)
TVR2
TVR 3 (Equivalent)
SRD400
SRD400 (Equivalent)
SRD500
SRD510/520
TS90/99 Tower System GOODMANS VCR102 PROLINE 5100TX
AMSTRAD LOPTS
CTV1000 FB182K CTV1400 FB165KA CTV2000 FB171 CTV2000 FB171K TVR3 181297
PCW9512,8256,8512

AMSTRAD TUNERS

UE33-B01 VCR4600/4700
UE2.B31F CTV2200/2210
1810829 VCR5200
ENV67509F2 CTV1400
UVE33-FO1 VHF-UHF
UVE33-F02 VHF-UHF
1813766 VHF-UHF

AMSTRAD IF UNITS

TPS7-B0006 VCR4600/4700 TPS7-L0002 1813766

AMSTRAD FAX
18.08
1175
11.75
11.75
11.75
25.85
25.85
32.44
32.44
32.44
11.75
11.75
8.46
8.46
10.70 MCRUAL 4700
18.15 VCR4600MkII,4700
11.05 VCR6000/6100
11.75 VCR7000
13.81 VCR8700
11.75 VCR8800
11.75 VCRg000/9004
${ }_{17.63}$ VMC100
SRX100/200
SRX100/200 SRD400
12.93 SRD510/520
${ }_{23.50}^{12.93}$ SRD550
${ }_{10.58}$ SRD600
15.58 PC1512
14.69 PC2086
7.05 PC2286

PC2386
PC3086
9.40 FX9600 FAX
5.88
7.05 AMSTRAD COMPUTER
5.88 OPERATORS MANUAL
14.10
14.10
14.10
14.10

PC1640
PC2286/2386
PPC512/640
ZX SPECTRUM +2
PC1512 (Tech. Ref.)
9.40 PC1640 (Tech. Ref.)
14.10

Harrison
 Electronics

CENTURY WAY, MARCH, CAMBS PE15 8OW.
FAX: (01354) 51416. TEL: (01354) 51289
AMSTRAD VCR CABINET PARTS
VCR6000 Cabinet Front VCR6100 Cabinet Front
AMSTRAD MOUSE
51/4"-31/2" FDD KIT
PCW9512 Armature

AMSTRAD VCR 4500

29.38

4600,4700,TVR1,2,3
HEADBASE ASSY. (Audio)
7.05 FRICTIONGEAR 779
5.88

VMC100-Various parts available,
please phone for prices.
9.00
11.50

Loading Motor MCB9B02
9.00 Drum Motor E20EL05
8.00 Capstan Motor LLA4B02
9.75 Capstan Motor LLN4B21
9.00 Capstan Motor JLN4BO2
16.50 Tape Loading MCF9B02
4.70 AMSTRAD PCB's
13.25 (Complete, fully populated)
6.504500 Timer
3.854500 Systems Control
20.654600 Systems Control/Servo
11.50 Display \& Control PCB's
12.004600 Display
19.504600 Control
15.004600 Video \& Audio
11.004600 Power Supply
20.15 4600Mkli Main PCB Assy* $4600 \mathrm{Mk} \mid 1$ Timer
$4600 \mathrm{Mk} \mid \mathrm{I}$ Control
4600 Mkll Head Amp
11.75 4600Mkll Power Supply
11.75 4600Mkll Hybrid, Luminance
11.75 4700 Main PCB Assy.
11.75 4700 Timer
5.504700 Control
6.004700 Head Amp Assy.
8.004700 Power Supply

5200 Timer \& Channel Disp.
5200 Video
5200 Switch Panel
12.936000 Power Supply
15.286100 Main PCB
7.64 WE ALSO STOCK MANY
7.05 SEMICONDUCTORS, RESISTORS,
4.70 FUSES ETC.

PRICES INCLUDE VAT. aLL ITEMS ARE BRAMD NEW aND GUARANTEED $\star \star$ SAME DAY DESPATCH $\star \star$
Write or Phone for FULL LIST.
POST \& PACKING

EST. 1977 YOUR ONESTOPSHOP

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

\Rightarrow DIAMOND AERIALS UHF/FM
CLOBAI

Labgear Cablevision SMATV
THLENSON HEATH SATELLITE

SATELLITE
PACE RECEIVERS
DECODERS

SATELLITE RECEIVERS

A PROMAX

 TEST EQUIPMENT

Telestie sMATV
TRIAX U.K. UHFNHF
TOWER cLIPs UNI(DFIX CLIPS VOYEX

- WE PROVIDE FUU TECHNICAL ASSISTANCE AND SERVICE BACK UP ON ALI OUR PRODOUCTS

Trace Price Lint arailabie to bons fide TV Aerial and Satellite Deaiers
J.W. Herdy, 271 Station Road, Stechford.
Bimangham B33 8BB Telephone: 01217848479

Q LONGREACH SUPERMSIIOM
 Unit 231 Lee Valley Technopark

 Ashley RoadLondon, N17 9LN
DISPOSAL DIVISION

as the UK's leading satellite distributor we inevitably have stock which we need to dispose of at well under normal trade prices.
below is a list of disposal stock which is available from our London depot.

RECEIVERS	Ex Rental refurbished
Pace 800 IRD Type	$£ 59.00$
Pace 9000 IRD Type	$£ 45.00$
Furgusan IRD	$£ 33.00$
Amstrad IRD	$£ 40.00$
Grundig 20A, non IRD	$£ 30.00$

RECEIVERS Graded Stock

Grundig GRD 150	$£ 89.00$
Echostar 5700 including positioner	
and built in D2 MAC receiver	$£ 345.00$
Technisat 3004 S	$£ 119.00$

RECEIVERS Non Working IRD \& non IRD.
We have a number of non working receivers
Ideal for repair or spares,
from £5.00

DISHES New Stock	
60 cm Bulk pack Lenson Heath	
Dishes Boxes of 10	$£ 99.00$
1 off of above(collection only)	£ 13.45
80 cm pole mount Lenson Heath	£ 24.00
35 cm Concentric dish	£ 4.95
LNB'S New Stock	
Triple band 10.9/12.75 1.3DB	£ 24.00
Voltage switching C120 flange	£ 15.00
Cambridge 1.DB Voltage switching	£ 16.95

MISC ITEMS New Stock

Amstrad AM/Pm clock radio £ 8.95
Amstrad Walkman AM/FM Radio $£ 11.06$
Amstrad Radio CD Alarm clock £ 52.00
Amstrad UF 40 Auto set video plus VCR $£ 11.06$
Amstrad 3 Band stereo-radio twin cassette $£ 20.00$
IR Remote Control Aerial rotator, complete kit ideal cheap motorised dish system normal price $£ 99.00$ offered at $£ 54.00$

Tel: 01818804000 Fax 01818804001

AUTOGARD (U.K.) LTD

\rightarrow
Tel/Fax: 01922613654 Unit 3, Acorn Firms Centre, Ablewell Street, Walsall, West Midlands WS1 2EG

.	Nesszan8-8	188	TA727
2.97	NE646	437	tazz
3.79	52000A	225	
5.99	52000A3	231	TA72
3.12	S2000aF	2.47	
	S2055AF	2.95	
1.25	S44129308	8.55	TA7317P
	SLA1293-03	9.96	
	SL14	15	
	SL477		
. 5	SN5418	2.45	TA
5.95	SN760		TA7769
4.35	SN76709AN	1.68	tan
1.29	STA341M	3.33	TA8201
236	STA4	4.4	
257	STK4039 ${ }^{\text {a }}$	18.98	TAB2
199	STK4121-2	7.68	
290	STK4352	587	TASO
3.68	STK5331	2.79	TABA
3.98	STK5332	3.48	
288	STK5338	40	
14.71	STK5339	3.4	tbali
200	STK5342	$4{ }^{4}$	TBA
1	STK5372	7.57	тa
	STK5421	4.49	
	STK5422		

NOTLISTED CALLUS

All prices plus $£ 1$ post/packing $+17.5 \%$ VAT to the total minimum order $£ 5$. Prices and stock may change without notice due to worldwide availability

TV TUBES

VIDEOCOLOR
HITACHI
TOMPSON
TOSHIBA
PANASONIC
SHARP
BEON
ITT

PHILIPS
SONY NOKIA SAMSUNG ORION MITSUBISHI CHUNGHWA ETC

The largest manufacturer of re-gunned tubes in the UK

Thousands of new and re-gunned tubes in stock covering over 200 types

Suppliers to major users in the UK and Overseas

First class reputation for quality and service

Fast Delivery
BSI Approved
VISTA-THE TUBE EXPERTS

FOR CUSTOMER CARE AND SERVICE CALL TUBES: 01429837100 COMPONENTS: 01429838057 FAX:01429837101

Vista Electronics Ltd
Unit IB, Wingate Grange Industrial Estute, Wingate, Co.Durham, TS28 5AH.

Get those portable T.Vs ready for the Christmas market.
10" Tube to fit Hinari, Samsung, Nikkai $£ 29$
14" wide-necked tube to fit most makes $£ 29$
14" narrow neck tube £39
16" narrow neck tube £25
$16^{\prime \prime}$ wide neck tube £19

We have a vast range of FIRST CLASS RE-GUNNED TUBES for domestic televisions. (Your original tube may be required in advance).

We stock a huge range of EX-EQUIPMENT TUBES reclaimed from new or used sets
 WANTED the following T.Vs with faulty tubes:Large screen - any make Sony $21^{\prime \prime}$ FST
 Ferguson 21" FST 51K7

5 Carriage and VAT extra VSA
EXPRESS
The Mill, Mill Lane,
RUGELEY, Staffs WS15 2JW
Tel: $01889-577600$
FaX: $01889-575600$

Tel: 01889-577600

WILTSGROVE LTD

28-29 RIVER STREET, DIGBETH, BIRMINGHAM, B5 5SA

YOUR FIRST CHOICE FOR QUALITY SPARES

AIWA
AKAI
AMSTRAD
BLAUPUNKT
DECCA
FERGUSON
FIDELITY
FINLUX
FISHER
FUNAI
GOLDSTAR
GOODMANS
GRUNDIG
HINARI
HITACHI
ITT
JVC
LOEWE
MATSUI

YOUR MAIN SUPPLIER FOR GRADED AND EX-RENTALTVS + VIDEOS

+ MDI SYSTEMS. UNTESTED STOCK AVAILABLE.
CALL NOW FOR UNBEATABLEOFFRS.
I2WORKING MIXEDT.VSBASIC, MIXED NONTHORN
REMOTE CONTROL,TEXT SLMVIDEOS

	NOW IN STOCK RANGE OF KAMASA TOOLS \& CCTV PRODUCTS
TEL	

IRWIN EIECTIGONHCS

UNIT 200 ALBYN COMPLEX, BURTON ROAD, SHEFFIELD S3 8BX TEL: 01142739622 FAX: 01142759909

CHANGE THE SWITCH:
TRANSFER THE EXISTING BRACKET!

SUITABLE FOR USE IN.
AKAI.....GOLDSTAR....GRUNDIG....ITT....PHILIPS SAISHO \& SALORA!
WILL REPLACE SWITCH TYPES SHOWN IN
OUR CATALOGUE AS..MS46.64...80.101..102.128

SUITABLE FOR USE IN. \qquad
GOLDSTAR....GRUNDIG....HITACHI....SAISHO.... SALORA \& SANYO!
WILL REPLACE SWITCH TYPES SHOWN IN OUR
CATALOGUE AS..MS37...40...52..73.766.77..78..92.103.. 125

1.85 each 4.95 pk. of 3

SATELLITE PSU MOD EITS
AMSTRAD

CONTENTS : R1...R2...R3...R9...D1....D8....C55...Q1...IC1
MODK20....3.95

SRD510520

CONTENTS : FUSE TR600...IC600...D607...R602...R603 R604...R608....R609....R610...C611 C612...C615

MODK21....4.45

PACE

PRDSOO SEAIES PSR800 \& 900 SERIES

CONTENTS:1A Q/B FUSE...FUSE LABEL....R1....R2
R8..... R14...C7 ... C8....Q1....U1....D11
MODK23....4.75
MRDSL20. SS9000 SERIESS" SS9200 SERIES.
CONTENTS......Q1...U23....R12....R13....T1A...D6...C9...C11
MODK22A..3.65
CONTENTS.......Q1....U23....R12...R13....T1A.....D6
C9....C11...C29....C128....C200....C416
MODK22....4.45

PACE

SWITCH MODE TRANSFORMER

MRD920/SS9000/9200.
SMTI...7.45
TUNER
MRD920/SS9000/9200
STTI...27.50

ORDERING:
GOODS ARE SUPPLIED TO TRADE ENGINEERS ONLY.

PRICES:
PLEASE ADD V.A.T. AT STANDARD RATE. ORDERS UNDER $£ 15.00$ PLEASE ADD £0.95 P \& P. AND THEN ADD V.A.T.

V.A.T. REG. NO. 127-2207-01

CentreVision

Suppliers of Surplus TVs to the Trade CENTREVISION HOUSE • SLOPER ROAD - LECKWITH CARDIFF CF1 8AB TELEPHONE: 01222344754

Make Money this Xmas Visit CentreVision
Over 50 FST working on display 100s in stock
FST Remote from $£ 50.00$ FST Text from $£ 55.00$ Philips, Salora, Thorn, Toshiba, ITT, Finlandia, Grundig Philips Wastline machine working $£ 80.00$

Phone: 01222344754

MANUFACTURERS 'B' GRADED STOCK

Televisions, Videos Audio, Music Centres Microwave Ovens

Complete, reboxed, working Current model stock

Turner Lyons Enterprises Ltd 9 Howard Place, Shelton Stoke on Trent ST1 4NN

Phone David 01782285416

NORTHERN IRELAND

EX RENTAL T.V.s and VIDEO

AVAILABLE : \star REFURBISHED

* WORKING
\star OFF THE PILE
* DIRECT FROM SOURCE

DISCOUNTS FOR PURCHASES OVER $£ 1000$ NEW REMOTE CONTROLS FROM $£ 5-£ 7$ ALSO WHITE GOODS AVAILABLE EXPORT ENQUIRIES WELCOME

COLOUR SOUND 66 HIGH STREET, BANGOR

TEL/FAX: 01247453000

TELEPLACE SCOTLAND

TV \& VIDEO WHOLESALE

LARGE QUANTITY OF EX RENTAL STOCK ALWAYS AVAILABLE

GRADED TV \& VIDEO MAJOR BRANDS

8, COLQUHOUN PARK

 HILLINGTON IND ESTATE GLASGOW G52 1XX0141-883-2610

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK

MAIN DISTRIBUTORS

FOR ANTIFERENCE, LABGEAR, WOLSEY, FRINGE, IKUZI
MAXVIEW, VOLEX-RAYDEX, KUBLER + MANY MORE

CDASTIAI

 AIEIRIIAL SUIDIDIUIES UNIT X2, Rudford Industrial Estate, Ford, Arundel 01903723726
STARVISION

SUPPLIERS OF HIGH QUALITY EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

ALL PRICES INCLUDE V.A.T.
NO MINIMUM QUANTITY
RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-01215051033

STARVISION
 UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS10 9QR

CENTRAL TV WHOLESALE DISTRIBUTOR LTD

[irect loads from source. Ring now

Graded TVs
and Videos.
P.O.A.

Working portables from only £35.00

Large selection of FST TVs from $£ 45$

Thorn TX9, TX10 TX100 FST only.
Please ring now for best prices

For best deals on
Dorics Mk4, MK4a Basics.
Ring now

Phillips K35
K40 Teletext TVs
from £40 working
\square
Working videos now from only $£ 30.00$

For all export enquiries. TV and Videos call our Birmingham Office now

Suppliers of high quality THORNEX-RENTALSTOCK Direct from source

$$
01818030505
$$

UNIT E2/3, Stonehill Business Park, Lea Yalley Trading Estate, ANGEL ROAD, LONDON NI8 $3 L D$

01299-251522
0836-585829/0850-486147 (24HR)
Fax:01299-251543 TEL:

0836-585829/0850 486144 (24HR)
SUPPLIERS OF HIGH QUALITY EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE ALL AT COMPETITIVE PRICES Also available: ‘B’ Grade Products,
Satellite Receivers Complete Range of Hand Sets EXPORT ENQUIRIES WELCOME OPEN: MON-FRI - 9.30-5.30
UNIT 5, THE PHOENIX BUILDING, RUSHOCK
TRADING ESTATE, DROITWICH ROAD, DROITWICH WR9 ONR
TELEPHONE: 01299-251522

Ferguson Surround Sound Speakers Type 51LS - P.O.A.
Attention All Bulk Buyers If you are in Business of disposing large quantities of TVs and Videos - Ring Now

CENTRAL TV WHOLESALE DISTRIBUTION LTD

Birmingham contact: Mick
369 Stratford Road, Sparkhill, Birmingham B11
Tel: 0121-772 1591
Fax: 0121-766 6383

London contact: Joshi
Eley Estate, Nobel Road, Edmonton N18
Tel: 0181-807 4090
Fax: 0181-884 1314
 HHOLESALIE CENRE

EX-RENTAL COLOUR TV'S AND VIDEO
RECORDERS

WORKING COLOUR TELEVISIONS

- BASIC FROM £14
- REMOTE CONTROL FROM £25
- TELETEXT FROM £35

WORKING VHS VIDEO

 RECORDERS- TOP LOADING FROM £35

- FRONT LOADING FROM £45

[^1]
REPO WHOLESALE

DASY WORKS, 345 STOCKPORT ROAD LONGSIGHT, MANCHESTER M13 OLF 0161-273-2854/274-3409/Fax 273-4486

TOP QUALITY CLEAN WORKING FST

GOOD QUALITY "TOP RANGE" WORKING VIDEOS COMPETITIVE PRICES
\star REGULAR SUPPLIES \star PLEASE PHONE FOR CURRENT STOCK POSITION \star NEW HANDSETS IN STOCK \star No order too small - If you are new to the business call in and let us help you CHEQUE/CASH/ACCESSMSNAMEXEIC

Large stock of B Grade T/Vs Top Brand Names Boxed \& Working 20" R/C E99 Portables 889 25" Fastext £225 Videos from $£ 99$

THIS MONTH'S SPECIAL

21" Ferguson R/C FST - Working $£ 49$
C/D Radio Cassettes - Working £29
EX RENTAL TVs
Direct from source. Untouched
Basic TVs $£ 5, £ 10$ and $£ 15$, R/C $£ 20$
Teletext $£ 30$. Videos from $£ 25$
Mini Micro Systems with CD from $£ 25$ various makes. Hi-fi Midi System from £12 Boxed.
Stereo Radio Casseftes. Boxed £10.
W TREE WAREHOUSE
UNIT 1,SUNSHINE MILLS, WORTLEY RD, LEEDS 12
TEL: 01132638804 FAX: 01132310275

the BIG company WITH THE BEST PRICES

TOP QUALITY GRADED VIDEOS NOW IN STOCK!

COLOURTRADE

ESTABLISHED 1973 - WHOLESALE ONLY

NEW 'B' GRADE

Major Brands ONLY TV's - Video - Audio. Microwaves, Satellite Receivers, Decoders COMPLETE BOXED - WITH STAND - HANDSET - BOOK ETC MINT LATEST NICAM FASTEXT F.S.T.

들⽇U@

FULL RANGE-ALL CURRENT MODELS OF TV-VIDEO IN STOCK
No minimum quantity
NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT

Phone 0121-3597020

FAX 0121-3596344 221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2HU - JUST OFF M6-J6

RENTAL FINANCE

Expand your CTV and VCR rental business with no capital outlay and increase your profitability.

Broughfame has the solution and their rental finance plan will provide facilities from £2,500 upwards.

For further details ring or write to Bob Wickham at the address below:

BROUGHFAME LIMITED

115A ST JOHN'S HILL SEVENOAKS KENT TN13 3PE

Telephone: (0732) 743400 Fax: (0732) 743335
C.T.V. (NORTH EAST) 9A/B, 94 Carrmere Road Leechmere Ind. Est. Sunderland SR2 9TE

No. 1 in the North East for all makes and models of high quality ex-rental televisions and video recorders at very competitive prices

> Now Open Saturday morning by APPOINTMENT ONLY

Tel: 0191-5235554 Fax: 0191-523 8035
Export Enquiries Welcome.
Also supplying Yorkshire Tel: 0114-250 7600 and ask for lan

BESCO LTD YOUR PREMIER SUPPLIER FOR OVER 30 YEARS Merry Christmas to all our valued customers

ENTIRE RANGE OF EX RENTALTVs, VIDEO, B GRADE HIFI, PORTABLE CD, GHETTO BLASTERS ETC.

F.S.T. remote working from only $\boldsymbol{£ 6 0}$
 complete with handset, makes inc' Solara,
 F.S.T. text working
 from only $£ 70$
 Philips, Sanyo, Hitachi etc.

Over 200 working video recorders in stock from $\boldsymbol{£ 4 0}$ (slim front loaders) 100s of front loading videos off the pile from $£ 12$ - Philips, Hitachi, Sanyo, Sharp, etc.

Good quality working TVs standard only £25 Teletext from £40 Makes in stock - Hitachi, Ferguson, Pye, Philips, GEC etc, RING OUR HOTLINE NOW!

HIFI SPECIAL

Boxed Hifi with C.D., Twin tape, radio etc from $£ 35$ (MIN 3 UNITS)
Car radio/cass, Personal stereo, Personal C.D.,
Ghetto Blasters, etc.

BASEMENT CLEARANCE

300 ex rent colour TVs, mixed std and text, makes include Pye/Philips KT3/K30, Hitachi, GEC series 90, Ferguson TX etc. - ONLY $£ 2,400.00$ THE LOTI (DELIVERY ARRANGED)

By special request return of our sensational Cabaret, also our new menu FREE Hamburgers, Pizza, soup, sausage/egg, bacon sandwiches etc. All this and rock bottom prices too! Where else? Bring money!

Visa Wèlcome
Prices are plus VAT and based on quantity

> Walker House, 16 Bottomley Street, Bradford BD5 7LJ Ring Tony 01274308186 - Open 6 days - 9am-5pm

W.M.T.V.
THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL

TVs AND VIDEOS TO THE TRADE ATCOMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS

- TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED
Satellite Receivers and Export Enquiries Welcome
$1 / 2$ Mile off Junction 10 M6. Easy Parking Facilfties
UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS2 8TL
Tel: 01922-724542. Fax: 01922-722208 Mobile: 0831-246622 (24 Hours) OPEN: MON-FRI 9-6pm
SAT 9-2pm
SUNDAYBY APPOINTMENT DELIVERY SERVICE
THROUGHOUT
THE COUNTRY

MANCHESTER'S No. 1 WHOLESALER HAS MOVED!!
BIGGER PREMISES, MORE CHOICE WORKING TELETEXT FROM £25

Televisions from $£ 5$. Videos from $£ 25$ Portables from $£ 30$, FST from $£ 40$

ALL STOCK SOLD WORKING

New Hand Sets from $£ 6$
Open Mon to Sat 10am till 5pm CHEQUE - ACCESS - VISA - SWITCH

345 Stockport Road Ground Floor South Area Daisy Works Longsight Manchester

$\square \square \square$

Leaders in the supply of:

Ex-rental, End-of-line, Customer returns and Surplus stocks of Televisions, Video and Audio Equipment, and Domestic Washing Machines, Dryers, Refrigerators, etc.
to the Trade Contact your nearest Area Manager for latest prices:

Area	Contact:	Mobile:	Fax/Tel:
South East	Colin Gordon	0374738701	01227741312
South West	Tony Lewis	0374732784	01291425018
North/N.I.	lan McClelland	0831597331	01244400602

Head Office: Baird House, Arlington Business Park, Theale, Reading, Berks RG7 4SA.
Tel: 01734309933 Fax: 01734309934

BOOKS Pocket Book

by John Davies, 240pp, hardback
Order - ISBN 0750617381 Price $£ 1299$

Contains: Propagation; decibel scale; transmission lines; antennas; resonant circuits; oscillators; piezo-electric devices: bandwidth requirements and modulation; frequency planning; radio equipment; Microwave communications; information privacy and encryption; multiplexing; speech digitisation and synthesis; vhf and uhf mobile communication; signalling; channel occupancy, availability and trunking; mobile radio systems; base station management: radio systems; base station manage
instrumentation; Batteries; satellite instrumentation; Batteries; satellite
communications; connectors and interiaces; communications; connectors and interfaces
broaocasting; abbreviations and symbots; tables and data; glossary

Covers all aspects of radio and communications engineening from very low frequencies lo microwaves, with particular emphasis on mobile communications. Wave principles and the decibel scale, instrumentation and power supplies, equipment types and encryption methods. connectors and interiaces, are all included in this book.

Servicing Video Cassette Recorders

by Steve Beeching, 250pp, hardback
Order - ISBN 0750609354
Price £25 00
Contains: Ver systems; azimuth tilt;-Frequency modulkation: servomechanisms; colour systems; systems control; long play; VHS-C \& camcorders; $\mathrm{a}-\mathrm{v}$ sockets.

Covers Written for students and people involved with ver servicing, this book is an invaluable guide and reference covering ail aspects of modern vcrs. Contains new material on basic magnetic theory to C\&G 224.

Servicing Personal Computers

by Michael Tooley, 304pp, hardback

Order - ISBN 0750617578

Price $£ 25.00$
Contalns: Microcomputyer systems; test equipment; fault diagnosis; tape and disk drives; printers and monitors; servicing IBM pc compatibles and 68000 -based computers.

Covers: this completely rewritten fourth edition still covers the whole range of microcomputer equipment but now also
includes a guide to developments and trends such as the new generation of diagnostic software - code included in the book - and applications such as serial communication, and memory and hard disk management..

Build Your Own PC

by lan Sinclair, 256pp, paperback
Order - ISBN 0750620064 Price $£ 1695$

Contains: Assembly from scratch - mainly for masochists; fundamentals and buying guide; case, motherboard and keyboard; disk-dnive details; imporovers and modifiers for graphics and VO; DOS operation and for graphics and vo:
hints; Windows; connecting printers; glossary.

Covers Building your own pc from scratch or from modules. Written at a level suitable for beginners and those with experience of computers or electronics. In addition, this work provides a useful guide for anyone wanting to save money by upgrading their pc themselves.

EMC for Product Designers

by Tim Williams, 304pp, hardback
Order - ISBN 0750612649 , Price $£ 2500$
Contains: What is EMC? standards: EMC measurements: interference coupling mechanisms; circuits; layout and grounding; interfaces: fillering and shielding-
Covers: 'This book is likely to become essential reading for those designing electronic products for the European market,' according to New Electronics. EMC, providing all the information needed to meet requirements of the EMC Directive.

Servicing Audio and Hi-Fi Equipment

by Nick Beer, 304pp, hardback
Order - 0750621176
Price $£ 2500$
Contents: Introduction: toots and test equip. ment: radio receivers: amplitiers; power supply circuits; portable audio; cassette deck mechanics: cassette electronics; turntables; system control; motors and servo circuits; compact disc: mini disc; digital audio tape; digital compact cassette; speakers, headphones and microphones; repair techniques, addresses.

As a bench-side companion and guide, this work has no equal. Its purpose is to ease and speed up the processes of fault diagnoand speed up the processes of faul diagno-
sis. repair and testing of all classes of home sis. repair and lesting of an classes of
audio equipment: receivers, amplifiers, recorders and playback machines.

Troubleshooting Analog Circuits

Robert A Pease, 217pp, paperback Order-0750694998 Price $\{1795$

Contents: Introduction; Troubleshooting linear circuits - the beginning; choosing the right equipment; getting down to the component level; solving capacitor-based troubles; preventing material and assembly problems: sotving active-component problems; identifying transistor troubies; operational amplifiers - the supreme aclivators; quashing spurious oscillations: the anaiog-digital boundary: troubleshooting charts.

Bob Pease is one of the legends of anaiog design. Based on his popular series in EDN Magazine, the book contains advice on using simple equipment to troubleshoot.

Numerous tables summarising troubleshooting approaches are included. Shows where problems are likely to show up and how to positively identify them.

Masts, Antennas and Service Planning

by Geoff Wiskin, 256 pp, hardback
Order - ISBN 0240513363, Price $£ 4950$

Contains: Antennas; antenna support structures; service planning

Covers: All aspects of information conveyance via radio-wave transmission. Invaluable to anyone planning for broadcast and mobile-radio coverage, or designing, instaling and maintaining antenna systems

Audio Engineer's
 Reference Book

by Michael Talbot-Smith, 600pp, hardback
Order - 0750603860
Price $£ 6000$
Contents: Basic principles; acoustics and acoustic devices; recording and reproduction; digital equipment; studios and their facilities; distribution and audio signals: miscellaneous topics.

Readable, fully comprehensive book written by acknowledged expents in audio engineering. Provides authoritative accounts and explanations of almost all aspects of audio engineering and technology.

TV \& Video Engineer's

 Reference Bookby Boris Twonsend. 876pp, paperback
Order - ISBN 0750619538
Price $£ 4000$
Contalns: Materials; components and construction; colour tv fundamentals: bradcast transmission; distributing broadband; DBS; tv studios; mobile and portable equipment; iv sound; iv receivers; servicing tws: video recorders; teletext etc: HDTV; other applications of tv ; performance measurements.

Covers Information on every aspect o fmodern broadcast technology. Of value to all practicing engineers and managers involved with broadcast, cable and satyellite services.

Return to Jackie Lowe, Room 1333, Quadrant House, The Quadrant, Sution, Surrey, SM2 5AS

Please supply the following titles:

PLEASE ADD FOR POSTAGE $£ 2.50$ UK $£ 5.00$ Europe $£ 7.50$ Rest of World

Total
Name.
Address

Postcode
Telaphone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Publishing
Credit card no
Card expiry date
Signed

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 13.50$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should to sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

SERVICE MANUALS \& TECHNICAL BOOKS

 Television Chassis Guide. MP18. $\mathfrak{£ 6 . 5 0 .}$ Television Equivalents. MP150. £6.50. Fault Lists for Televisions. MP205. $£ 8.50$. Television Remote Control Circuits. MP167. £11.50. Video Recorder Beginners Fault Guide. MP5. £3.50. Switch Mode TDA4600 Power Supplies. MP37. £6.50. Teletext Repair Guide. MP38. £7.50.We have the largest range of Service Information and Technical Data obtainable anywhere.
For Televisions, Video Recorders, Test Equipment, Computer Monitors, Vintage Wireless, Domestic Equipment etc etc.
In fact practically anything electronic. Originals or Photostats as available.

THIS MONTHS
 NEW RELEASE

Also available. Our catalogue detailing Hundreds of Technical Books and Repair Guides. Return coupon for your FREE copy.

Now Available.
Full Index on PC Disc of our Service Manuals available. £3.50 with FREE updates.

MAURITRON TECHNICAL SERVICES (TV)

8 Cherry Tree Road, Chinnor, Oxfordshire, 0X9 4QY VSA Tel:- 01844-351694. Fax:- 01844352554. Please forward your latest catalogue for which 1 enclose $2 \times$ Ist Class Stamps. or $£ 3.50$ for the Technical Boors Catalogue plus Manuals Index on PC Disc(s). NAME \qquad
ADDRESS \qquad

POSTCODE \qquad You may pay by Cheque, Po or Visa, Access, Delta, Flectron, JCB, Mastercard. Eurocard ete
\square EXPIRES $\quad \square \square \square \square \square \square$

SERVICE MANUALS

Thousands of different models available
For most U.K. European, Far East \& USA makes Prices (Stock Items):-
VCR - $£ 13.00$
CTV - £8.00
MTV - $\mathbf{E 6 . 0 0}$
Other items, prices on request
P/P etc. (any quantity) add $£ 2.00$ Do not add any VAT
Cheque/PO with order only please.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Davenham Satellite Systems

Satellite Receiver upgrades

Pace PRD800/Grundig STR1 $\rightarrow 199$ chans Pace SS9000/Ferguson SRV $\rightarrow 90$ chans Pace PRD upgrade for Astra 1D
"Satellite Secrets Revealed" £19.95 256 pages of repair \& installation tips

We Repair recelvers/decoders. Trade enquiries welcome (0589 355411) We specialise in Satellite Accessories Send for free catalogue NOW!
DAVENHAM SATELLITE SYSTEMS. 1 Firths Fields Davenham. Northwich, Cheshire CW9 9JB 0160649085 email: david@davenham.u•nẹt.com

!TIMEWARP!

ALL VCR \& CTV MANUALS REDUCED TO 1990 PRICES

 THIS ISN'T A SALE, THIS IS A LONG-TERM REDUCTION Helping you to fight rising costsservice manuals service sheets circuits fault guides technical books We Have the World's Largest Selection of

SERVICE MANUALS

.Repair-Manuals-Circuits-Fault Guides Etc.. SERVICE MANUALS SERVICE SHEETS CIRCUITS FAULT GUIDES TECHNICAL BOORS

CTV CIRCUIT COLLECTIONS

A3 SIZE / ALL POPULAR SETS / UPTO 1995

Alba	$£ 22$	Amst'd/Fid	$£ 21$	Baird/Ferg	$£ 45$
Decca	$£ 22$	GEC	$£ 28$	Goldstar	$£ 12$
Grundig	$£ 38$	Hinari	$£ 14$	Hitachi	$£ 45$
ITT	$£ 22$	JVC	$£ 30$	Mitsubishi	$£ 38$
Pansic	$£ 30$	Philips	$£ 40$	Sanyo	$£ 28$
Sharp	$£ 14$	Sony	$£ 49$	Toshiba	$£ 38$

Top Selling Titles

PRACTICAL TN / VCR REPAIRS Buy,Sell,Service, Used CD's NCR's/CTV's £16.95 Each / $£ 30.00$ for both
Euro' Serambing Systems/Satelite Book Only $£ 32.00$ Each / $£ 62.00$ for both
Princlpais of CDNHS VIdeo Heads/CD Jig Only £3.95 Each £9.95 Each, or all for $£ 25.00$ MICROWAVES: Energy \& Ovens Still only $£ 12.95$ VCR Servicing by Beeching

SPECIAL MANUAL OFHERS

ANY 20 MANUALS FOR $£ 200$ (Inc p\&p) All at once, or phone as you need them OR
JOIN THE STREE LIBRARY FOR £75
(£20 yearly renewal) AND BUY ALL
MANUALS FOR $£ 10$ EACH, OR SWAP AT

PHONE OUR HOTLINES ON: (01698) 883334/884585 Fax: 884825

Technical Information Services 76 CHURCH ST, LARKHALL, LANARKS, ML9 1HE

PROFIT BOOSTERS

Efficiency in the busy workshop is more important than ever, increase your productivity with our latest range of Technical publications.
FAULT INDEXES: Edition 14 now available, Over 10,000 references listed in 12 years of Television. Covers TV, video, camcorder, satellite \& CD. Thousands of copies sold worldwide - complete set £14.75.
INDEXES ON DISK: PC version 1.0 Now available. Covers 15 Years \& over 12,000 references Complete Program, Data \& manual, A lot of information £17.50.
Requires IBM PC or compatible, 8066 upwards, Mono, CGA, EGA, VGA. Please specify disk size (3.5 or 5.25 inch HD) when placing your order.
OTHER TITLES AVAILABLE INCLUDE:
KWIK TIPS TELEVISION covering a wide range of makes, models \& chassis. Contains over 2500 faults
\& solutions. ISBN 1898394008 First edition - £13.95.
KWIK TIPS VIDEO an excellent collection of over $\mathbf{2 0 0 0}$ video faults \& solutions. Highly recommended.
ISBN 1898394016 First edition - £10.95.
Chassis \& equivalent identification made easy with the E.C.S: Television \& video equivalents, TV model to chassis guide \& camcorder equivalents. A massive 4500 entries in 1 book. First edition - only £4.95.

31, PRENTON ROAD WEST, PRENTON, BIRKENHEAD,
Technical publishing MERSEYSIDE. L42 9PY.
Please add $£ 1.75 \mathrm{P} \& \mathrm{P}$ to total (Europe $£ 2.75$, r.o.w. please enquire).

Security Coded Car Radios

C.D.H. Electronics are able to decode absolutely any radio on the market. We can also decode the latest Ford 2006 late 1994 models filted with a Texas Instruments microprocessor. We are in the forefront of technology and are in a position to supply software to decode all known radios. All of our software is uritten br C.D.H. Electronics, the information is not bought from ex-colleagues of ours. Our software packages start from $£ 275$ and any other models may be added at a later date if required. Please phone now for a FREE demonstration disk or if preferred a FREE on-site demonstration with no ohligation. Nearly all Blaupunkt radios may be decoded just by quoting the serial number, this also applies to Memphis SQRS8, CDPO9, Koln, Symphony, CD300 (Vauxhall), SC202 (Varxhall) and many more. This service to trade only, for $£ 10$ plus VAT (l1.75 inclusive) and must be FAXED. (Account holders only).
All eeproms of any description are decoded for $£ 5$ inclusive (trade or not).
I'lease send all eeproms in a pudded envelope to stop damage. A large range of serial eeproms also in stock, fully programmed or not. If you have uny queries on radio decoding, please talk to the experts, not those uhho just profess to be!

C.D.H. ELECTRONICS (New Address)

"Four Winds", Stafford Road, Huntington, Cannock, Staffordshire WS12 4LZ Telephone
01543467588 or 01543572523

TV LINE OUTPUT TRANSFORMERS

PHONE: 0181-948 3702 FAX: 0181-332 0583
ALBA AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDEL ITY - GEC - GRUNDIG - GRANADA HITACHI - HINARI - INDESIT • ITT - KIMARA - NIKKAI MATSUI - MURPHY OSAKI NORDMENDE - LOEWE-OPTA PANASONIC • PYE - PHILIPS - SANYO -SAISHO - SHARP SONY-SOLOVOX•SUSUMU TANDBERG - TELEFUNKEN THORN - TRIUMPH • THOMSON - GOLDSTAR • BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KIIS, IDLERS, PINCH ROLLERS, TEASION BANDS
LARGE RANGE OF REMOTE CONTROLS INSTOCK
TIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND - SURREY - TW9 2EQ

Approx 1 mils from Kew Bridge.
antris am to 1230 om 2 $1.33-4.38 \mathrm{~m}$
(2)
 yactremphuw แ

WELL ESTABLISHED AND

RECENTLY EXPANDED

Tel/Video/Sales/Rental/Repairs lockup shop \& workshop
Woking W. Sussex area)
10 year lease, rent 6k per annum.
exceliont expansion opportunity for person with existing business. $19 k+$ SAV, T/O approx 50 k per annum

BOX NO A7587

BUSINESS FOR SALE

East London
Established, unfimited repairs, very busy, reason for sale owners health. Low rent and rates, parking facilityAccommodation one bedroomed flar
behind the shop. 11 years lease.
Offers invited for quick sale.
Ht's 100 good to be missed.
Tel 01715385620 0956396534

LEADER LBO522-20mhz dual trace scope Mint $£ 150$ Precision Dynascan tube res torer Mint £150. 012914150047

PRIVATE RETAILER has excellent part ex change colour televisions and videos to clear. Tel: 01494814317.

WANTED B.K. 3 Meter Tube Booster. Tel: 01344886315 (Eve) 01662242929 (Day).

DECODER TO COMPUTER Interface card with smart card connectors and diagram f9.00. E.M.O. 62 Bridge Street, Ramsbottom, Lancs, BLO 9AG. Tel: 01706823036.

OCHRE MILL Technical Services, Grundig TV spares for most models to 1985, fast. friendly, helpful, sensible prices. Gt Lype Farm, Charlton, Nr. Malmesbury, Wits SN16 9DR. Tel: 01666823228
hilay
OMAGHLTD COMPUTER SOFTWARE

DO YOU RENT TELEVISIONS?

DO YCU STHL USE A CARD SYSTEM?

do You fion in dffclle to kiw your arpears total at aiy given time?
If you do then we recormmend our computer T.V and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* tótal arrears immediately available
\star easy to use and operate.

These programmes operate on all IBM compatibles running under MS-0OS. Free demonstration discs available.

WILLIAM J THOMPSON
Donaghanie Post Office
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

If you know what VITS and PDC are, we need you PDQ.

While the accurate measurement of the audio and visual qualities of electronic products demands technical expertise, it takes a subjective ear and eye to complete the evaluation. This is the type of work you will be involved in at our Research and Testing Centre where the work carried out forms the basis of reports in Which? magazines and books.

You will be responsible for the technical and subjective evaluation of a wide range of consumer electronics products, but with a special interest in video. Your tasks will also include reviewing and developing test methods and writing clear reports.

You must be experienced in testing and evaluating AV products and you will have used relevant laboratory test equipment. You'll need good, practical knowledge of laboratory measurement, which you'vc probably gained in a consumer orientated testing, technical production or other broadcast environment. Your practical knowledge will also extend to consumer AV equipment currently on the market.

Milton Keynes
Senior
Technologist
c. $£ 20,000$

The right technical and creative skills are essential, as is your ability to work well in a team. In return, we'll provide further training and support and a benefits package including 28 days' holiday, frec life assurance and a contributory pension scheme.

To apply, please send in a postcard for an application form and job description, quoting reference 102/T, to: Maggie Miles, Consumers' Association Research and Testing Centre, Davy Avenue, Knowhill, Milton Keynes, Buckinghamshire MK5 8NL.

CONSUMERS' ASSOCIATION

MISCELLANEOUS

LG ELECTRONICS UK LTD (GOLDSTAR)

One of the world's leading Electronics Companies, with a strong record of major growth within the UK,

REQUIRES A:

VCR/TV ENGINEER

negotiable salary dependent upon experience
The ideal candidate will have a minimum of 7 years experience, a sound technical knowledge supported by relevant trade qualifications, have a good telephone manner and communication skills.
Working in a very busy environment, duties will include Telephone Technical Support, Technical Training, Monitoring quality issues and repairs.
Please reply in writing only, enclosing your CV to:

Mike Burns
 Service Manager, LG ELECTRONICS UK LTḊ, LG HOUSE, 264 BATH ROAD, SLOUGH SLI 4DT

IF YOUR COMP ANY HAS A V AC ANCY

For Experienced TECHNICIANS Or ENGINEERS EtC
Why not let TELEVISION help you find the right person
by placing your recruitment advertisement with us
For Further Information Call PAT BUNCE on
Tel: 01816528339 Fax: 01816528931

ADVERTISERS' INDEX

Aerial Techniques........................ 37	J.J. Components.......................... 19
Alban Electronic Lid..................... 45	
ATV ... 69	Longreach Marketing Lid............... 63
AZ̃ Electrics.....-...........-..-....... 64	Manor Supplies ___ - 21
Autogard..................................... 64	Marapet..................................... 12
	Muter, Ulrichu.u.-.-................... 79
Besco.. 74	
Broughframe.............................. 73	Nikko.. 61
Bull Electrical.............................. 60	
	OZAN__
Campion Wholesale TV Lid............ 71	
Central TV Wholesale 70	Philex...--i................................IFC
Centrevision............................... 68	
Coastal Aerial Supplies................. 69	Red Bank.................................... 75
Colour Sound.............................. 68	Repo TV.................................... 71
Colour Trade.............................. 73	
CPC pic..................................... 23	SEME Ldd.................................. 68
Cricklewood Electronics...........-... 12	Sendz Components............. IBC \& BC
CTV (Midlands).......................... 70	Star Vision.................................. 69
CTV (N.E.).......-....................... 73	Stewarr of Reading........................ 63
	Sussex Surplus............................. 61
East London Components...-.......... 12	Swift Television Publications.......... 62
East London Wholesale............_-71	
Economic Devices.......-........40-41	Telnet.. 31
Electronic Sound Systems 31	Teleplace 69
Euras ._........... 35	Teleprice LId............................... 75
Express TV................................. 65	Tree, W....................................... 71
	Tumer \& Lyon.............................. 68
Gogglebox.................................. 74	TV Live.......-................an- 38
Grandata Led.............................2-11	
Hardy, J.W...-...-........................ 63	Vista Electromics.......................... 65
Harrison Electronics...................... 62	
HCTV.....................-............... 72	West Midlands TV.......................... 74
HST Distributors London............... 70	Willow Vale Electronics Ltd........... 17
	Wiltsgove Ltd.
Irwin Electronics.......................... 67	Wizard....................................... 31

[^0]: Published on the third Wednesday of each month by Reed Business Publishing Ltd., Quadrant House, The Quadrant, Sutton, Suirrey SM2 5AS. Filmsetting by Wace Publication Imaging, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by Marketforce (UK) Ltd., 247 Tottenham Court Road, London W1P 0AU (0171 2615555). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Tolevision is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: WHY NOT COME TO SEE US AT
 UNIT 16; BOW ENTERPRISE PARK, CRANWELL CLOSE BOW. LONDON E3 3 QY

