

SERVICING VIDEO SATELLITE DEVELOPMENTS

THE I2C BUS

VARIABLE VOLTAGE REGULATOR CHIP

VCR clinic

TV fault finding Long-distance tv
Camcorner

WILLOW VALE ELECTRONICS LIMITED

Willow Vale gives you more...

 parts in stock than you may have realised!- More commitment to higher stock levels
- More technical know-how
- More flexibility
- More peripheral product support
- More dedication to customer care

Willow Vale supplies parts for all these household names, with over 230,000 different spares available on our C.O.P.S. database system

Being Willow Vale, we don't just guarantee the quality of our spares. We also pride ourselves on our prices...and our genuinely friendly and knowledgable staff.

'The Better Choice'
Reading (0734) 876444 Manchester (061) 6821415

COPYRIGHT

© Reed Business Publishing Ltd., 1994 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at £3.50 each from Video Interface Products Ltd., who can also supply a six-year consolidated index on computer disk. For further details see page 507.
Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, £37 for Eire/Europe airmail (postage included for all rates) Rest of the world airmail availabe upon request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH 16 3DH
Subscription hotline for 24 -hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 482.

ISSN 0032-647X

Servicing the Philips GR1-AX Chassis
Steve Cannon
A survey of the circuitry used, fault conditions you could encounter and modifications.

Test Case 377
Amstrad SRD400 Service Tip
Hugh Allison
Camcorner
Reports from Keith T. Keeton and David C. Woodnott.

479 The Panasonic Alpha 3 Chassis, Part 3
Ray Meadows
The microcontroller system, video signal processing and the RGB output stages.

Replacing S-M Components, Part 2 Steve Beeching, T.Eng. Test reports on equipment designed for soldering and desoldering surface-mounted devices.

Next Month in Television

CD Player Repairs
Les Austin
Modern TV Receiver Techniques, Part 17 Eugene Trundle How microcomputer/microcontroller chips operate, the I2C bus and the way in which today's remotecontrol systems work.

493 Correction and Service Tip
VCR Clinic
Reports from Philip Blundell, AMIEIE, Eugene Trundle, Mike Leach, Michael Dranfield, Richard Newman, Dave Mackrill, Keith Evans and John Edwards.
TV Fault Finding
Reports from Philip Blundell, AMIEIE, Nick Williams, John Edwards, Geoff Fardon, Brian Storm, Terry Lamoon, Richard Newman, Nick Beer, Michael Dranfield and Chris Watton

501 Satellite Receiver Tuning Made Easy Gordon McCrea, B.Sc. Use of an EEPROM to store and transfer programme data.

502 Long-distance Television
Roger Bunney
DX conditions and reception, news from abroad and
what's going on in the satellite belt. Also a simple
u.h.f. sateilite receiver circuit.

508 The Versatile LM317T
Gordon Haigh
A review of applications for this useful variablevoltage regulator.
510 What a Life!
Donald Bullock
511 Letters
512 Help Wanted
 \qquad

罗界路男罗男里3 －8910

 UPC1358

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice. rv \& video parts sold are replacement parts.

JUST ARRIVED

VIDEO HEADS

AKAI
VSF600, VSF650
VP7100, VP7200, VP77
VS155, VS 165 VS425,VS4, VS24, VS25, VS26, VS27, VS422. VS425, VS426, VS427, VSF10, VSP8, VSP9
VS240, VSP82, VS202
V S33
VSR9
AMSTRAD
VCR8800, VCR8804, VCR9340
VCR8800, VCR8804, VCR9340 2400, VCR86 200
DD8900, DD8904, TVR4, VCR6200, VCR8600,
VCR8602, VR8700
VCR8602, VR8700
1300 P
1350 P
BAIRD
VC14L
VHS82
BLAUPUNKT
BLAUPUNKT
CR1000, CR1200, CR1500
CR1800
RTV321, RTV322
RTV330
RTV333
RTV333
RTV33B
RTV348
RTV404, RTV414
RTV635
RTV640
RTV750, RTV800, RTV900
RTV810
RTV910
JVC
HRD330, HRD337, HRD440, HRD637, HRD641,
HRD660, HRFC100
JVC AND FERGUSON
8902/8903/8909/8912/8922
8923/8925/8929/8935
8931/8933
FV43H, HRD860
VC141L, HRD190, HRD610
FV44L
FV44L. HRD 142. HRD156, HRD152 2200 P
BR1600, HRD142, HRD156, HRD152 1550P
HRD154, HRD217, HRD321, HRD350, HRD521,
HRD522, HRD525, HRD527, HRD550 1700 P
HRD580, HRD620, HRD650
2900P
FIDELITY
FISHER
FVHD140, FVHD40, FVHP1, FVHP10, FVHP20
FVHP40, FVHS 10 , 1600
FVHP200, FVHP210, FVHP300, FVHP310 2100 P
FVHP500, FVHP5100, FVHP730, FVHP830 1200P

FVHP98

E1100, VIP5000
VCR5840, VCR8007, VIP2500A, VIP3000A
VIP6000. VIP150
VCR4530, VCR6000, VCR6100
VCR8103, VCR600, VCR6100
VCR8103, VCR8107
VIP300A MKII
GEC
V4005H

GOLDSTAR

GHV1232, 1233, 1241, 1242, 1243, 1244, 1290, 1291, 1295, 1296, 1891, VCP4130, 4300, 4301,
$4305,4306,4310,4311,4315,4316,4320,4321$,
4326

GRUNDIG

VS456 SE9100 TVR4510 TVR5510 VS500 1700
SE6110, SE9100, TVR4510, TVR5510, VS500,
VS510, VS5 180 VS6190, VS700, VS $900 \quad 1800 \mathrm{P}$
VS510, VS5180, VS6190, VS700, VS900 1800 P VS790, VS930, VS940
MVS660, SE6160, VERONA, VS660,

VS6690

MVS710, MVS720, MVS910, SE9120 VS800 3500 P
VSB10, VS910, VS920, SE7120, VS710.
VS720
VS160, VS740
VS170
VS680
HINARI
VCR3\&H, VTV200, VXL90

HITACHI

VT15, VTP10, VTP30
VT16B, VT260 VT498
VT570, VT575, VT576, VT580, VT585,
VT588
VT5600
VT60
VT6700, VT6800
VTL30

VT522, VTM620, VTM622, VTM720, VTM722 VTM822

2000P VTM725, VTM726, VTM72B

1600 P
$1 T T$
VR3520, VR3701, VR3719, VR3720, VR3721.
VR3759, VR9720
VR3730, VR3731, VR3749.
VR3730, VR3731, VR3749, 2700P
VR3907, VR3908 1600P
VR3918, VR3919, VR3938 1800P
VR396B
VR3958, VR4993
VR3958, VR4993
VR4913, VRP3833

LUXOR

9245, 9251, 9254
9255, 9256
9270,9271,9273
9272,928217
9252
9252172700 P
928017, 928077, 928097,929107,929117 1700P
9253
9284, 9295, VR3701, VR3721, VR3731,
VR3761
MATSUI
V $\times 600$
$\vee \times 750$
V $\times 990$
MITSUBISHI
HSE 12, HSE 22 MX1
HSE 12, HSE22, MX1
HS411EZ, HS411GZ
HS411EZ, HS411GZ 2400P
HS273 2900P
HSB10, HSB20, HSE 10, HSE20, HSE21,
HSE41
HSB11, HSB21
HSB30
HSE31, HSE31, HSE32
HSE50
NATIONAL
NV8050, NV8051
AG1000 AG1050 NV260 2800P
AG6010, AG6015, NV260 1650 P
AG6010, AG6015 2500P
AG6840
NV200
NVD80
NVD80
NVF51
NVG19
NVJ33, NVL21, NVJ30
NVJ35
NVM1, NVM3, NVM5
AG2100, AG2200
NVF65
N.E.C.

D×2000
D×1000, D×1600, N9040, N9053, N9055 2000 P
$\begin{array}{lll}\text { DX1000, DX1600, N9040, N9053, N9055 } & 2000 \mathrm{P} \\ \text { DX4000, N9610, D } \times 3000 & 3200 \mathrm{P}\end{array}$
N9052, N9530
N9110, N9120, N914C 2700 p
VCP7 1700 p
PVC2300, PVC240, PVC740, PVC744, PVC760,
PVC764
1600 P
SAMSUN
VM1560, VN1561 2200P
SANYO
VHR7900
SHARP
VC585, VC685
VC90ET
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509G
V9680
$\vee 300 \mathrm{G}, ~ \sqrt{201, V 305, ~ V 309 G} \quad 2900 \mathrm{P}$
V61, V63 1700 P
V110, V120, V130, V140, V210, V220 1800P
TELEVISION ON/OFF
MAINS SWITCHES
Baur, Normende, Nova, Pioneer, Quelle, Saba,
Salora, TEC, Thomson \& Vega

VIDEO MOTORS

HITACHI

VT11, VT14, VT15, VT16, VT17, VT19, VT35,
VT39, VT57, VT88 (capstan motor) 3100P
BANG \& OLUFSEN
VHS65, VHS 90 (capstan motor)

LOADING MOTOR UNITS

ITT
VR3605, VR3905, VR3955, VR3985 V2826 VR3906, V43926 VR3976 1500P VP3946, VR3906, VR3948, VR3986, VR3995
VP3946, VR3906, VR3948, VR3986, VR3995, 1500 P
VR6948
JVC
HRD110, HRD111, HRD120, HRD121.
HRD225
1500 P
HRD140, HRD150, HRD157M, HRD158MS.
HRD160, HRD250, HRD257MS, HRD566.
HRP50
1250P
HRD455, HRD725, N895 1500P
SABA
VR6005, VR6014, VR7004, VR7011, VR8011,
VR8014
VR6006, VR6007, VR608, VR6009, VR6018,
VR6006, VR6007, VR608, VR6009, VR6018,
VR7007, VR7018, VR9006
VR00,
VR6016, VR6038, VR7016 1500 P
TELEFUNKEN
VR1925, VR1930, VR1940, VR1950, VR925,
VR930, VR940, VR950
A920, VR2920, VR12970, VR7921, VR7926
VR7931, VR7971, VR975 1250
VR1970, VR1980, VR7970, VR7980, VR970
VR1970, VR1980, VR7970, VR7980, VR970, 1500 VR980
V320, V321, V323, V326, V4200, V4300 1500 P
V342, V343, V352, V353, V360, V4210, V4230
V4260
V364, V368, V4400, V6000 1500 P

THORN-FERGUSON
$3 \vee 35,3 \vee 35,3 \vee 38,3 \vee 39,3 \vee 49,8943,89441500 \mathrm{P}$
$3 \vee 44,3 \vee 45,3 \vee 48,3 \vee 54,3 \vee 55,3 \vee 57,8947$
8947B, 8948 1250 p

3V43,9845
1500P
TOSHIBA
$\vee 55, \vee 57$
1500 P
V65, V66, V67
1250 P
V61, V63
1500P
CASSETTE HOUSING
AKA
VS35, VS53, VS55, VS66, VS75 2600P
FERGUSON
FV31R
4300 P

JVC \& FERGUSON

HRD515, HRD520, HRD527, HRD540, HRD550,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD670, HRD830, HRD840, HRD850, HRD860,
HRD4050 HRD6600 \& FV37H
IC TRANSISTORS

M4918B1	500 P
SAA5243PE	800 P
TIP112H	50 P
UPC1488H	150 P
STR4090A	650 P

IC AND TRANSISTORS

BU506DF 120 P
$\begin{array}{ll}\text { BUZ11 } & 200 \mathrm{P} \\ \text { BUZ80 }\end{array}$
BUZ80 200P
$\begin{array}{ll}\text { M494B1 } & 700 \mathrm{P} \\ \text { SAA5231 } & 300 \mathrm{P}\end{array}$
$\begin{array}{ll}\text { SAA1293 } & 550 \mathrm{P} \\ \text { S2000A3 } & 175 \mathrm{P}\end{array}$
S2000AF 175 P
S2055A $\quad 175 \mathrm{P}$
$\begin{array}{ll}\text { S2000AF } & 200 \mathrm{P} \\ \text { S2530A } & 100 \mathrm{P}\end{array}$
TEA201BA 200 P
TEA201BA
UPC1185H2

REMOTE CONTROLS

AKAI		
RC.V10A	RC 876	850p
RCV378	RC891	$850 p$
$\checkmark 25 A$	RC 896	850p
AMSTRAD		
D08900	R 65132	1400p
VCR4700	RC 2009	1400p
BUSH		
2020T, 2114T, 2321T, 2514T	RC 304	850p
2020, 2114، 2321, 2514	RC 313	900p
DECCA		
RC70	RC 894	850p
FISHER		
RC905B	RC 879	900 p
GRANADA/REDIFFUSION		
UNIVERSAL, 79500C, 986700	RC 309	800p
SATELLITE	RC 550	850 p
MK4 TEXT, 70115G, 70133G, 357E	RC 880	800p
MK4A TEXT, 70375C	RC 881	800 p
95288 E	RC 882	850p
944900	RC 884	850p

VIDEO SERVICE KITS

AMSTRAD
VCR700
BELTSET PINCH ROLLER. REEL IDLER VIDEO LAMP
Order Code: SK41
FERGUSON \& JVC
3V42,43
HRD455/HRD725
Contents Economy Kit Contents CLUTCHMECHANISM TENSION BELTSETYCLUTCH TAKE UP $\begin{array}{llll}\text { BAND } & & \begin{array}{l}\text { CLUTCH } \\ \text { Order Code: } 5 K 37\end{array} & £ 17.50 \\ \text { OLder Code: SK38 } & & & \end{array}$
3458/59 64/65
HRD $170 / 180210 / 230 / 300 / 320 / 370 / 400 / 430: 530 / 700 / 750$
HRS5000
Contents
Contents
BELTSET PINCH ROLLLER. IDELR ARM TENSION BAND
Order Code: SK44
3V29/3v30
HR7200/730017350
Contents
BELT SET PINCH ROLLER. TENS ON BAND IDLER TYRES
Order Code: SK05
3V35/36 38:39/49
Contents
Contents
BELT SET PINCH ROLLER TENSION BAND IDLER TYRES
Order Code: SK04
HR76007610.765077655
Contents
BELT SET TUU REEL TAELE
$\begin{array}{ll}\text { TYRE PINCHROLLER REEL } & \text { TYRE PINCH ROLLER REEL } \\ \text { IDERL TACLUTCH TUIDLER } & \text { IDLERTYRE TUIOERI TYRE }\end{array}$
$\begin{array}{lll}\text { Order Code: SK33 } & \text { E12.00 } & \text { TUU CLUTCH } \\ \text { Order Eode. SK34 }\end{array}$
3V35 36/38/39/49
HRD110/11//120/122.225
Contents
Contents
BELTSFT
TVRE SUPPLY REEL TABLE
TVRE PINCH ROLLER TA
CLUTCH. TUIDLER. REE
TDLER TENSION BAND

3 V29/3V30
4

+R7200 7300:7350

Contents	Ecoaomy Kit Contents	
BELISET TIU REEL TABLE	BELTSET T UREE ID	
TYRE SUPPLY REEL TABLE	TYRE SUPPLY REEL TABLE	
TYRE. PINCH POLLER R REEL	TYRE PINCH ROLLER REEL	
IDLER TUCLUTCH TUIDLER	IDLE TYRE TU IDLER TYRE	
TENSION BAND. VIDEO LAMP	,	
Order Code: SK31 ¢11.00	Order Code: SK32	£5.10
3V44/45:48:52/54:55/57 HRP50/MRD140:150/158/160 HRD250:257'565 566/755		
Contents	Economy fit Contents BELT SET PINCH ROLLER	
BELT SET PINCH ROLLER		
CLUTCH MECHANISM TENSION		
BAND		
Order Code: SK39 E15.00	Order Code. SK40	¢9.50

FISHER

FVHP905:906/907/908/910/911/916918

FVHP615/618/620622/710/711/715/715/720/7217722:725/
 730,8301840
 Contents Economy hit Contents

BELT SET PINCH ROLLER
DLER GEAR IDLER UNIT

HITACH

M11NT33
Contents BEISET PINCH ROLLER TENSION BAND IDLER TYRES
Order Code: SK08

VT11NT33 Contents

Contents
BELT SET TUP REEL TABLE
TYRE SUPPLY REEL TABLE TYRE SUNPLY REEL TABLE IDLER CLUTCH PLATE
TENSION BAND
Order Code: SKA5

Economy Kit Contents
BELT SET PINCH ROLLER TABLE TYRE SUPPI Y REEL TABLE TYRE SUPPLYREEL
§14.00 Order Code: SK46
-- _ـ_

VIDEO SERVICE KITS (Cont.)
HITACHI
T52/61/62/63/64/65:85/86/640
ELI SET PINCHROLER Economy Kit Contents FFREW ARM CLUTCH PLATE EFREWIDLER $\begin{array}{lll}\text { Order Code: SK49 } & \$ 14.00 \quad \text { Order Code. SK50 } & \text { £ } 3.25\end{array}$ VT $400 / 405 / 410 / 13 / 14 / 15 / 18 / 420 / 25 / 26,28 / 430 / 31 / 35 / 48 ; 450 / 498 /$ $510520: 25 / 266530 / 35 / 36,5401545 ; 46 / 48 / 570 / 75 / 5765801 / 5 / 88$ Contents
TIMING BELT PINCH ROLLER FFREW ARM CLUTCHBASE Order Code: SK52

VT $100 / 10 / 111 / 1+31+5 / 11 / 1 / 120 / 125 / 128 / 130 / 135 / 138 \quad 145 / 150$
175 220:225/250/255/258:260NTL30
Contents
BELI SET PINCH ROLLER FFIREN ARM CLUTCH PLATE TENSION BANO

PANASONIC

NV2000NV2010	NV7000 ${ }^{\text {NV7200/NV7800 }}$
Contents	Contents
BELT SET PINCH ROLLER	BELT SET
TENSIONBAND IDLER TYRES	TENSION BAND IDLER TYP
	Order Code SkO2

NV300 NV330 NV333/NV340 NV 366

Contents BELT SET PINCH ROLLER TENSION BAND IDLERTYRE
Order Code: Sk01
NV2000 NV2010
NV2000 NV2010
COntents
BELTSE PINCH ROLLER FF
IDLER PLAYIDLER TENSON
BAND VIDEO LAMP
Order Code: SK13
NV7000'NV7200NV7800
COntents
BELISET PINCH ROLLER.
IDLERUNIT PLAYIDLER
TENSIONBANO

Economy Kit Contents

Contents

NV300:NV330 N V 333 /NV340/NV366

STK461	$\mathbf{£ 5 . 5}$	STK7563F	$\mathbf{£ 8 . 0 0}$
STK5332	$\mathbf{£ 1 . 8 0}$	STK73410	$\mathbf{£ 3 . 5 0}$
STK 5333	$£ 5.50$	TA8205AH	$\mathbf{£ 2 . 5 0}$
STK5422	$\mathbf{£ 3 . 7 5}$	TA8210AH	$\mathbf{£ 3 . 0 0}$
STK5476	$\mathbf{£ 3 . 5 0}$	TA8215H	$\mathbf{8 3 . 0 0}$
STK7308	$\mathbf{£ 3 . 5 0}$	TA8216H	$\mathbf{E 3 . 7 5}$
STK7348	$\mathbf{£ 4 . 0 0}$	TIPL791A	$\mathbf{£ 0 . 8 0}$
STK7358	$\mathbf{£ 4 . 4 0}$		

SONY FUNCTION SWITCH (2 LEG)
SPECIAL PRICE E0.50

I.C. PROTECTOR

ICPF10 ICPF38 ICPN10 ICPN38 ICPF15 ICPF50 ICPN15 ICPN50 ICPF20 ICPF75 ICPN20 ICPN75 ICPF25

SHARP

VC381		
Contents	Economy Kit Contents	
BEL SET, PINCHROLLER.	BELT SET PINCH ROLLER	
REELIDLER FENSIONEAND	REEL IDLER TYRE	
Order Code: SK47 $¢ 9.00$	Order Code: Sk48	¢4.75
VC500NC571 NC581 VC582 VC583 VC5B4, VC5F3		
Contents	Ecanomy Kit Contents	
BELT SET PINCH ROLLER	BELT SET PINCH ROLLEF	
REELIDLER TENSION BAND	REEL IDLER	
Order Code: SM60 $¢ 9.50$	Orter Code: SK61	£6.50
VC781.VC7810NC7822VC785.VC 786NV793NC800, CA100NCA102NCA1T4NCA202		
Contents Economy Kit Contents BELTSET PINCHROLI 2 BELTSET PIACHROLIER		
REEL DRIVE UNIT TENSION REEL DRIVE UNITTYRE		
BAND		
Order Code: SM64 £ \quad 13.50	Order Code: SM65	£6.25
VC681/VC682NC684/VC685NC693NC699NC6F3NC700		
Contents Economy Rit Conte		
BELT SET, PINCH ROLER. BELT SET		
REEL DRIVE UNIT TENSION REEL DRIVE UNIT TYRE		
BAND		
Order Code: SK62 ¢13.50	Order Code: SK:63	£6.0

C	
	P. HOUSE, UNIT 15
POP IN	COMMERCIAL CENTRE, SOUTHWAY
WEMBL	EY, MIDDLESEX, ENGLAND HA9 OHB
Telepho	one: 081-900 2329 Fax: 081-903 6126

Access \& Visa Card accepted.
Open Monday to Saturday

AMSTRAD HANDSETS VCR4600, 4600MkII	11.75	AMSTRAD IF UNITS TPS7-B0006 VCR4600/4700	9.40	AMSTRAD PCB'		AMSTRAD SER			
VCR5200 (Not long play	$1 . .63$	TPS7-L0002	14.10	4500 Timer	1.75	VCR460	9.00		
VCR56100 (Indexer)	11.75 25.85	1813766	14.10	4500 Systems Control	9.40	VCR4600MkII,4700	9.00		
VCR6100 (Barcode Indexer)	29.38	AMSTRAD		Display \& Control PCB's	29.38	VCR6000/6100	11.50		
VCR6200 Barcode	32.44	MODULATORS		4600 Display	11.75	VCR70			
VCR9000 (Old type)	11.75	18196221 VCR5200	7.05	4600 Control	5.88	VCR8800	0		
TVR2	8.46	ENP-E730-2 VCR7000	5.88	4600 Video \& Audio	17.63	VCR9000/9004	6.00 9.00		
TVR 3	14.10	VCR4600Mkl1,4700	5.88	4600 Power Supply	14.63	VMC100			
SDR400 (Equivalent)	11.05	SRD100/200/400	5.88	4600MkII Main PCB Assy	40.82	SRX100/200	16.50 4.70		
SRD500	11.75				14.10 5	AMSTRAD CO			
SRD510/520	13.81	HYBRID-LUMINANCE	9.40	4600MkII Control 4600Mkll Head Amp	5.888				
TS90/99 Tower System GOODMANS VCR102	11.75 11.75	AMSTRAD VCR	9.40	4600MkII Power Supply	5.88 4.70				
PROLINE 5100TX	17.63	MECHANISN		4700 Main PCB Assy.	40.82	PC2286/2386	$\begin{aligned} & 11.75 \\ & 11.75 \end{aligned}$		
		4500,9000 (Old model)		4700 Control	14.10 5 58				
AMSTRAD LOPTS		CASSETTE HOUSING ASSY.	28	4700 Head Amp Assy.	5.88	AMSTRAD PC12MD			
FB1821	11.75	CYLINDER ASSY. (incl. Video		4700 Power Supply	4.70	VGA MONO MONITOR			
FB171		heads)	25.26	5200 Timer \& Channel Disp.	17.63	Sutabie tor use with $2000 / 3000$series and any other VGA compatible			
CTV2000 FB171K	9.40	CYLINDER LOWER DRUM ASSY		5200 Video	14.				
CTV2200 3722002	14.10	(Excl Motor)	9.99	5200 Switch Panel	4.70	PC 64.63			
CTV22103722002				6000 Power Supply	7.05	AMSTRAD SOFTWARE			
TVR 3181297	13.51	4600, 4700, TVR1,2,3 MECHANISM DECK (Excl Cass.		6100 Mains PCB	29.38	ACCOUNTSMASTER 17.63			
PC12-HRCD/D MSH1FCT31				6100 Audio PCB	7.05				
PCW9512,8256,8512	05	MECHANISM DECK (ExcI Cass.		6100 Power Supp	7.05	(Full accounts program for runningsmall business on any PC)			
FERGUSON LOPT		CYLINDERAS		6100 Hybrid, Chrominanc	9.40	LINKMASTER 11.75			
		Video heads)	25.26	6100 Hybrid, Lum		Many AMSTRAD COMPUTER \& PRINTER SPARES available, please			
	4.70	CYLINDER ASSY. (excluding		7000 Switch PCB no:7	2.35				
AMSTRAD TUNERS		Video heads) CYLINDER LOWER DRUM ASSY		CTV1400 Switches, Presets \& Tuner		phone for price.			
UE33-B01 VCR4600/4700	9.40	(Excluding Motor) HEAD BASE ASSY. (Audio)		CTV1400 Switches, Presets \& Tuner					
UE2-B31F CTV2200/2210	5.88								
1810829 VCR5200	7.05	VMC100-Various parts available,		CTV2200 PCB no:3 3.53					
ENV87358F2 VCR7000	7.05								
ENV87509F2 CTV1400	5.88	please phone for prices.		CTV2200 PCB no:4 4.70 TVR2 Main TV PCB 37.60		PRICES INCLUDE VAT.			
		AMSTRAD MOTORS		TVR3 Main TV PCB	43.4815.22				
Marrisom		Loading Motor MCB9B02 Drum Motor E20EL05	3.53	TVR 3 TV Power Supply		all Items are brand new and guarahteed * * SAME DAY DESPATCH **			
			TVR 3 Head Amp Assy. TVR 3 Video Power Sujply	$\begin{aligned} & 5.88 \\ & 4.70 \end{aligned}$	Write or Phone for FULL LIST.				
Electromics			Capstan Motor LLN4B21 Capstan Motor JLN4BO2 Tape Loading MCF9B02	9.99	10.95-11.7GHz LNB 2.3dB NF. 'N' CONNECTOR (DRAKE, NO FEED HORN)	17.63	**POST \& PACKING** **EXTRA**		
century way, March, CAMBS PE15 8QW FAX: (0354) 51416. TEL: (0354) 51289		$\begin{aligned} & 9.99 \\ & 9.99 \end{aligned}$							

NEW LISTS NOW
AVAVAILABLE．
PLEASE REQUEST

ALBA VIDEO SPARES VCR4000

BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.85
CAPACITOR BACK－UP．．．．．．．．． 1.85
CAPACITOR BACK－UP．．．．．．．．．．．．．．．8． 3.15
REEL PLER．
AMSTRAD VIDEO SPARES
VCR4500
BELT KIT．
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
MODIFICATION KIT ．．．．．．．．．．．．．．．．．． 5.50
PINCH ROLLER
PINCH ROO
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
MODIFICATION KIT ．．．．．．．．．．．．．．．．．5．50
VCR6000
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
PINCH ROLIFR
CLUTCH ．．
3V29／30
CAPSTAN MOTOR ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．55
LOADING BELTS（5）．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
REEL IDLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
TAKE UP IDLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
3 V35／39
BELT KIT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
CASSEITE HOUSNG．．．．．．．．．．． 28.95
LOADING BELTS（5）．．．．．．．．．．．．．．．． 1.95
MAINS TRANSFORMER ．．．．． 23.95

PINCH ROLLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
REEL IOLER．．．．．．．．．．．．

REEL IOLER．．．．．．
TAKE UP
BELT KIT
ASSETTE HOUSING－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 28
V65／FV1
CAPSTAN MOTOR ．．． ASSETTE HOUSING．．．．．．．．．．．． 27.50 REEL IDLER．

FISHER VIDEO SPARES

FVH5000

PINCH ROLLER ．．．．．．．．．．．．．．．．．．．．．． 3.50
FVH6157720
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
PINCH ROLLER ．．．．．．．．．．．．．．．．．．．．．．．．．．． 4.50
REEL IDLER．
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95 REEL IDLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．9．95
HITACHI VIDEO SPARES
BELT KIT ．．．．．． FF／REW IOLER．． ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.95 PINCH ROLLER ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3.95
PLAY IDLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
VT9300／9700E
BELT KIT ．．．．
FF／REW IDLER \qquad
PINCH ROLLER ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 35

VT11／33E

CAPSTAN MOTOR VT11E ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
CAPSTAN MOTOR VT11E.. .27 .50 CLUTCH ASSEMBLY．．．．．．．．．．．．．．．7．95
FF／REW IDLER GenuIne．．．．．．．．．． 2.50
PINCH ROLLER

T63／64E

CAPSTAN MOTOR ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．55
CLUTCH ASSEMBLY．．．．．．．．．．．．．．． 7.95
PINCH ROLER ．．．．．．．．．．．．．．．．．．．．．．．．．50
VT120／430E
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
CAPSTAN MOTOR ．．．．．．．．．．．．．．．．．．． 4.95
CLUTCH ASSEMBLY．．．．．．．．．．．95
FFIREW IDIER

PINCH ROLLER

PANASONIC VIDEO SPARES

NV230／43

BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
PINCH ROLLER．．．．．．．．．．．．．．．．． 3.95
REEL IDLER GENUINE ．．．．．．．．．．．．．．．．．．30

NV333／366

PINCH ROLLER ．．
PLAY IDLER GENUINE ．．．．．．．．．．．5．50

NV370
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
MODE SWITCH．．．．．．．．．．．．．．．．．．．395
SHARP VIDEO SPARES VC9300／38
REEL IDLER GENUIME ．．．．．．．．．．．．．．．．．30

NV730 BELTKIT

PINCH ROLLER
REEL IDLER GENUINE．．．．．．．．．．．．4．30
BELT KIT
PINCH ROLLER ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
REEL IDLER GENUIRE．．．．．．．．．．．．．．．4．30 NV2000／2010）
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
PINCH ROLLER．．．．．．．．．．．．．．．． 35
PLAY PLAY IDLER GENUINE ．．．．．．．．．．．1．35 NV7000i7200
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
PINCH ROLER ．．．
PLAY CLUTCH GENUNE ．．．．．．6．15
REEL IDLER GENUINE ．．．．．．．．．．．．1．35
NVG7／10／12
BELT KIT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.95
MODE SWITCH．．．．．．．．．．．．．．．．． 3.95
REEL IDLER GENUINE ．．．．．．．．．．．．．．．．．．．．．．．．35
NVG19／NVJ35／NVL2

PINCH ROLLER \quad ．．$\quad 5.25$
PHILIPS VIDEO SPARES
VR6460／6520

VR6460／6520
BELTKIT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．95
PINCH ROLIER
REEL IDLER．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3．30
REPAIR KIT．
VR6462／6560
RREPAIR KIT
CASSETTE HOUSING．．．．．．．．．．．．．．．．．．．．．．．．14 145
PINCH ROLLER．．．．．．．．．．．．．．．．．．．．．．．．． 3.95
REEL IDLER GENUINE ．．．．．．．．．．． 4.95
VR6467／6760
REPAIR KIT GENUINE ．．．．．．．．．．． 21.50
BELT KIT
BELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2．95 PINCH ROLLER ARM ASSY ．．．7．50

SANYO VIDEO SPARES

VIC5000

REEL MOTOR GENUINE ．．．．．．．．．．．．．．．．．．．．．．．．．． 75
REEL PULLEY GENUINE ．．．．．．．． 5.95
VHR1100／1300
VHR1100／1300
BELT KIT ．．．．．．．．
PINCH ROLLERE．．．35
REEL DRIVE ROLLEA．．．．．．．．．．．．． 5.95
VHR3100／3700
BELT KIT
PINCH RO
REEL DRIVE ROL．．．．．．．．．．．．．．．．．．．． 3.50
.1 .95
.3 .50
5.95
BEIT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.50
REEL IDLER GENUINE ．．．．．．．．．．．．．．．．．95
TENSION BAND．．．．．．．．．．．．．．．．．．．．．．2．95
VC4B1／482
BELT KIT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.50
REEL IDLER GENUINE ．．．．．．．．．．．．．．．．．．．．．．．．．95
REEL MOTOR GENUINE ．．．．．． 17.95
EELT KIT ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.50
REEL IDLER GENUINE ．．．．．．．．．．．．．95
VC681
BELT KIT
PINCH ROLLER ．．． 2.
REEL PULLEY JENUINE ．．．．．．．．．．．．．．．．．95
VCAI40／VCT72
BELT KIT．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
PINCH ROLIEF ．．．．．．．．．．．．．．． 35
REEL PULLEY SENUINE ．．．．．．．．．．．．7．95
5／6／7

VIDEO LAMPS

FERGUSON $3 V 30 / 22 ~$
FERGUSON $3 V$
F $39 \ldots ~$

PANASONIC NY2000 SHARP 9300. SHARP 9300

VIDEO LEADS

SCART LEAD F JLLY WIRED．．．4．95 SCART LEAD TD 6 PHONO．．．．4．95 SCART TO 2 SC．ART SKT ．．．．．．．．．．．95 IDEO COPYING KIT ．．．．．．．．．．．．．．．．959

VIDEO REPAIR KIT

 ALBA 4000 ．．．．．．．．． ERGUSON 3V23．．．．．．．．．．．．．．．．．．．．．15．50 FERGUSON 3V35／39．．．．．．．．．．．．．．．．．．12．95 FERGUSON 3V44／45．．．．．．．．．．．．．．．．．． 12.95 FERGUSON $3 V 44 / 65 ~$FISHER FVH615／95
FIST15．．．．．．．．．． 12.75 FISHER FVH905 ．．．．．．．．．．．．．．．．．．．．．．． 12.75 HITACHI VT9301．．．．．．．．．．．．．．．．．．．．． 12.95 HITACHI VT11／ミ3E

PT2246
ITT FS9／10 DIGIVISION．．．．．．．．13．25
ITT RG3．35．．．．．．．．．．．．．．．．．．．．．．．．．． 10.75
ITT RG336 ．．．．．．．．．．．．．．．．．．．．．．．．．． 10.75
ITT VS4 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．10．75
ITT VS5 TEXT ．．．．．．．．．．．．．．．．．．．．．．． 10.75
MATSUI 1440 ．．．．．．．．．．．．．．．．．．．．．．． 12.75
PACE 6C00 11.95
PANASONIC TNQ1411／2．．．．．．14．95
PANASONIC TNQ1499．．．．．．．．．13．95
PHILIPS G11 I／R TEXT ．．．．．．．．．13．95
PHILIPS KT3／30 NON TEXT ．．12．95
PHILIPS KT3／30 TEXT ．．．．．．．．．．12．50
PHILIPS RC5991．．．．．．．．．．．．．．．．． 12.95
PHILIPS FC59903 GENUINE ．．12．95
PHILIPS MINIA TURE ．．．．．．．．．．．．．9．95
PHILIPS VR6462 11.50
PHILIPS VR6467 ．．．．．．．．．．．．．．．．．．11．50
PROGRP MMABLE ．．．．．．．．．．．．．．． 22.50
REDIFFLSION MKIV ．．．．．．．．．．．． 10.95
REDIFFLSION MKIVA ．．．．．．．．．．12．45
SAISHO こT142R．．．．．．．．．．．．．．．．．11．50
SAISHO こTI49TX．．．．．．．．．．．．．．． 12.95
SANYO ${ }^{12}+4 \mathrm{P}$ 1100／1200 ．．．．．．．14．25
SONY RM615．．．．．．．．．．．．．．．．．．．．．．12．75
SONY RH632／636 ．．．．．． 10.75
SONY RM670／672／676．．．．．．．．．．10．75
TATUNG RC40／45．．．．．．．．．．．．．．．．10．25
TATUNG：RC70．．．．．．．．．．．．．．．．．．．． 10.25
TATUNG RC90．．．．．．．．．．．．．．．．．．．．11．95
TOP TEL ${ }^{\text {＊＊＊＊＊．．．．．．．．．．．．．．．．．．．} 24.95}$
VIDEO HEADS
AKAI VS1／5．．．．．．．．．．．．．．．．．．．．．．．．．．．8．50
ALBA 4010X ．．．．．．．．．．．．．．．．．．．．．．．16．95
AMSTRAD 4500／9000 ．．．．．．．．．．．14．70
AMSTRAD 4600／4700 ．．．．．．．．．．．．14．50
AMSTRAD 6000 ．．．．．．．．．．．．．．．．．．．17．50
AMSTRAD $700014 .95 ~$
FERGUSDN 3 V00／39 ．．．．．．．．．．．．．．8．50
FERGUSON 3V42／55．．．．．．．．．．．17．25
FERGUSDN 3V59／FV12 ．．．．．．．．27．95
FERGUSDN 3V65／FV11 ．．．．．．．17．95
FERGUSDN FV12U32L．．．．．．．．．27．95
FERGUSJN FV31．．．．．．．．．．．．．．．． 27.95
FERGUSDN FV42L ．．．．．． 48.05
FISHER F VH6 15／910 ．．．．．．．．．．．．．16．50
FISHER F VH725 ．．．．．．．．．．．．．．．．． 28.95
FISHER F VH906／916 ．．．．．．．．．．．．18．50
GOLDSTAR V1221／1290 ．．．．．．．16．25
HITACHI 3000／9700 ．．．．．．．．．．．．．．15．00
H：TACHI ：T11／33．．．．．．．．．．．．．．．．．15．70
HITACHI ： 1 T $17 / 1924 .50 ~$
HITACHI \T63／64．．．．．．．．．．．．．．．．．．19．25
HITACHI／T65．．．．．．．．．．．．．．．．．．．．28．50
HITACHI／／T120E／220E．．．．．．．．． 21.25

HITACHI VT150E
JVC HRD250．．．．．．
LOGIK VR955 LOGIK VR955．．．． MITSUBISHI HS31 NEC 9034／9053．．． PANASONIC NV230 PANASONIC NV333
PANASONIC NV366 PANASONIC NV366 PANASONIC NV370． PANASONIC NV430 PANASONIC NV688
PANASONIC NV730 PANASONIC NV777 PANASONIC NV788 PANASONIC NV2000．．．．．．．．．．． 18.95 PANASONIC NVG7／9 PANASONIC NVG10／12 PANASONIC NVG18．． PANASONIC NVG21／25．．．．．．．．．．． 29.50 PANASONIC NVG30／40 PANASONIC NVG45． PHIIIPS 6460\％620．．．．．．．．．．．．．．．．．9．50 PHILIPS $6467 / 6468$ GEN WHE39．50 SAMSUNG VI730．．．．．．．． SAMSUNG VX510／97 SANYO VHR $1100 / 1300$ SANYO VHR $2300 / 32$
SENTRA 800018400 SHARP VC9300，381／48 SHARP VC581／681 SHARP VCA140． TOSHIBA V55／57． TOSHIBA $\vee 73 / 83$ B TOSHIBA V93B．．．

VIDEO HEADS ARE OF THE BES QUALITY AND ARE BRANDED
OR MANUFACTURERS OWN

SERVICE AIDS

\qquad ANTEX 25W IRON ．．．．．．．．．．．．．．．．．．． 8.75 EANING PEN．．．．．．．．．．．．．．-.95 HEATSINK COMPOUND ONYX SOLDER PUMP ．．．．．．．．．．．．9．95 ONYX TIPS．．．
SILICON GREA
SOLDER O 5KG 18SWG WELLER GUN TIPS（2）．．．．．．．．．．．．．． 1.65

HITACHI VT120／130E ．．．．．．．．．．．16．95
PANASCVIC G DECK（GEN）．．8．50
PANASCVIIC NV230（GEN）．．．14．50
PANASCNIC NV333（GEN）．．． 14
PANASCNIC NV370（GEN）．．． 14
ASCNIC NV430（GEN）．．
PANASCNIC NV730（GEN
PANASCNIC NV777（GEN
PANASONIC NV2000（GEN）
PANASONIC NV7000（GEN）．20．4
PANASONIC NVG10／12（GEN）12
PHILIPS 1 R6460
PHILIPS \／R6462．．．．．．．．．．．．．．．．．． 12
PHILIPS／R6467．．．．．．．．．．．．．．．．．．21．5
SONY C5／7 ．．．．．．．．．．．．．．．．．．．．．．．．． 11
N
LULAR SPA ANTENNAE

3DB BOCY MOUNT ．．．．．．．．．．．．．． 14.25
3DB GLASS MOUNT ．．．．．．．．． 15.95 MOTORCLA TIPORT ．．．．．．．．．．．．． 19.95 MOTORCLA 8500X 1／4 WAVE 9.95 MOTORCLA $8500 \times$ BUTTON．．9．50 MOTORCLA $8800 \times \ldots$ PANASOVIC H SERIES．．．．．．．．．．．．．．．．．．．9．95
NOKIA 101 ．．95
BATTERIES
ERICSSCNN HOTLINE ．．．．．．．．．．．．23．50
MITSUBISHI MT3．．．．．．．．．．．．． 24.50
MTSUBISHI MT3．．．．．．．．．．．．．．．．．．．．．．．24．50
MITSUBISHI MT5．．．．．．．．．．．．．． 24.50

MITSUBELSHI MT5 TOOMAH．．．．．．．．．．．24．50 MOTORGLA 4500X SIM 27.50 MOTORCLA $8000 \times$ ．．．．．．．．．．． 24.50 MOTORCLA B500X 1000MAH23．50 MOTORCLA B500X 1500MAH29．50 MOTORCLA B800X 1000MAH23．95
MOTORCLA B800X 1500 MAH 29.50 MOTORCLA PSNL 700MAH． 23.50 MOTORCLA PSNL SLIM ．．．．．． 39.50 MOTORC．A $9800 \times$ 600MAH．19．50 MOTORC＿A $9800 \times$ SLIM ．．．．． 39.50 NEC P3 F20MA ．．．．．．．．．．．．．．．．．．．．．． 23.50 NEC P4 TJOMAH．．．．．．
NOKIA 1 C1
NOKIA 197.

NOKIA 1 PZO CITYMAN．．．．．．．．．．．．．．．．．．．． 23.95 | PANASONIC EIH SERIES ．．．． $\mathbf{3 2 . 5 0}$ |
| :--- |
| PANASONIC F： 700 MAH |
| $\mathbf{2 3} 50$ | PANASONIC F： 700 MAH ．．．．．．．23．50 SONY CNH 1

TECHNOPHONE TP2 ．．．．．．．．．．．．．．．．．．．24．50
TECHNOFHONE TP405 700MAH

NEW EASY TOP TEL
NOW AVAILABLE $£ 16.95$
CONTROLS UP TO 5 UNTS

BATTERY CHARGERS

DESK TOP TRICKLE
MOTOROLA T／PORTABLE．．．． 38.95 MOTOROLA 8000／8800X．．．．．．． 23.95 MOTOROLA MICROTAC ．．．．．．． 24.50 NEKIA 10
PANASONIC E／H SERIES ．．．． 39.95 PANASONIC F ．．．．．．．．．．．．．．．．．．．．24．50

DESK TOP RAPID／COND．
MOTOROLA 8000 SERIES ．．．． 42.50 MOTOROLA $9800 X$ ．．．．．．．．．．．．．．．． 42.50 NEC P3．．．．．．
NOKIA 10
PANASONIC F SERIES．．．．．．．．．．．．．．．．．．．．．．．． 425
SONY CMH333．
BATTERY ELIMINATORS
ERICSSON HOTLINE ．．．．．．．．．．．． 14.50 MOTOROLA 8000／8800X．．．．．．． 12.95 MOTOROLA 9800X

NEC P3．

NEC NO
PANASONIC F SERIES．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
SONY CMH 1 ．．．．．．．．．．．．．．．．．．．．．．． 14.95
SONY CMH－333
TECHNOPHONE TP2 ．．．．．．．．．．．．．． 12.95
TECHNOPHONE TP405
－PIPCHARGES
COMPONENTS $£$ ： 00 PER ORDER
SERVICEMANUALS $\{125$ EACH
CELLULAR TELEPHONES $£ 500$
EXPORT ORDERS PIP CHARGED
WHEN ORDERING：
PLEASE ADD P／P VALUE TO
ORDER TOTAL THEN ADD 175% VAT TO THIS TOTAL
DELIVERY BY RETURN ON ALL STOCK ITEMS
＊＊minimum order value
Cellular dealers wanted

TECHNICAL BOOKS

A selection from our range of books for the repair trade

TELEVISION CHASSIS GUIDE
 Full cross reference for all models. Order MP-18. $\{6.00$
 TELEVISION EQUNALENTS
 Lists models which are the same. Order MP-150. $£ 6.00$
 FAULT LISTS FOR TELEVISIONS

Hundreds of specific faults for dozens of different makes and models. Order MP-205. \$7.00 TELETEXT REPAIR MANUAL
Covers SAA range of boards. Order MP-38. £7.00
TELEVISION REMOTE CONTROL

CIRCUITS

Dozens of Diagrams on many remotes. Order MP-167. £10.00
TV POWER SUPPLY CIRCUITS
Dozens of P.S. circuit stages. Order MP-219, 10.00
SCART EUROCONNECTOR SYSTEM
Comprehensive details of the system. Order MP-21. £3.00 P.C. HARD DISC DRIVE REFERENCE MANUAL
Comprehensive Drive Details. Order MP-84. £5.00
P.C. DIAGNOSTICS SOFTWARE

Dozens of programs to aid you in diagnostics of PC's and Drives etc. 2 sets of $7 \times 3.5^{\prime \prime}$ Discs per set. Set 1. Order MP-250. 12.50 Set 2. Order MP.251. 112.50 VIDEO RECORDER AND
CAMCORDER EQUIVALENTS
Full Cross-reference guides. Makes A-J. Order MP-218. £6.00
Makes K-Z. Order MP-219. £6.00
FAULT LISTINGS FOR VIDE 0
Lists Hundreds of Faults for dozens of makes and models.
Volume I. MP-206. $£ 7.00$
Volume 2. MP-228. 17.00
VHS VIDEO RECORDER PRINCIPLES
Detailed guide on how it works. Order MP-58. £4.00 VIDEO TEST JIG
Special cassette lets you operate the machine in test mode. Order VTJ. $\mathfrak{S} 15.00$
VIDE0 HEAD CLEANING KIT
Special kit with comprehensive
instructions on how to service heads. Order VHCK. $£ 5.00$
VIDEO RECORDER FAULTS
Unique repair guide for beginners Order MP-5. £3.00

WIRE ANTENNAS FOR H.F. OPERATORS

THE Aerial book for Amateurs. Order MP-243. 55.95 REEL T0 REEL TAPE RECORDER SERVICING
Theory and circuits for repairs. Order MP-201. £4.95
TRANSISTOR RADIO REPAIR GUIDE
Comprehensive servicing charts. Order MP-7. 1.95
RECORDER PLAYER SPEED DISC
Get your phonograph up to speed. Order MP-8. $\{0.95$
SWITCH MODE POWER SUPPLY I.C. TYPE TDA-4600

Circuitry and operation explained. Order MP-37. 26.00
VOLTAGE REGULATORS, STABILISERS \& POWER SUPPLIES
Identification and specifications. Order MP-9. £3.00 CMOS DATABOOK
Pinouts and circuits for 4000 series. Order MP-10. 55.00 TTL DATABOOK
Pinouts and circuits for 7400 series. Order MP-34. 55.00
TRANSISTOR EQUIVALENTS
Includes details on testing them. Order MP-24. £3.00
OFFICE EQUIPMENT EQUIVALENTS
Photocopiers \& Fax machines covered. Order MP-200. $£ 6.00$
TELEPHONE CODE LOCATION GUIDE
Find the Town from the Phone Code. Order MP-19. 4.00
MANUFACTURERS EQUIVALENTS
What makes are the same. Order MP-220. £3.00
The above selection are just a few of the Hundreds of Unique Repair and Data Guides shown in our FREE catalogue Yours for the asking. Sent FREE with all orders or send 2×1 st class stamps for your copy TODAY!

Order TODAY using AccessVisa for immediate despatch. All order plus 22.35 Post and Packing. (Overseas $£ 5.00$) MAURITRON TECHNICAL SERVICES (4TVI)

47A High Street, Chinnoor, Oxdordshire OX9 4DJ. Te: 0844.331694. Fax $084433^{2} 2534$. ALL DAY MON-FRI 9-5pm

BRAND NEW TVs and VIDEOS
We have a full range of TVs and Videos - Multisystems and PAL sets available in stock now. $25^{\prime \prime}$ and $29^{\prime \prime}$ Stereo Nicam sets including stand plus full warranty
beat the burglars
NOW A REMOTE CONTROL HOME SECURITY SYSTEM WITH CORDLESS DETECTORS
COMPLETE STARTER KIT E $183.00+$ VAT
COMPLETE STAR

- Advancediaadio \& Microchip Technology Transmitting on FM wavelength
Fully protected against radio Fully protected against radio signal jamming
Expandable to most requirements including smoke detection
Intelligent keypad control panel
- Full step by step instructions

Instaliation Helpline
Conforms to
BS6707 and Wireless Struder Alarm Standards

NEW COMPLETE D.I.Y. BURGLAR ALARM SYSTEM - ALL YOU NEED. DETECTORS AND THE RESTIIONL (2 £99+VAT

VALVES
NEW - Branded Boxes - full range -- Branded Boxes - full range
(matched pairs available)
 Pace 900 \& 60 cm dish/LNB $\mathbf{£ 2 2 0 . 0 0}$ Full range of cable, connectors etc. Akai Sat System
with 60 cm Dish/LWB
£170.00
REMOTE CONTROLS

PACE 800/900	£12.95
AMSTRAD SRX 200/SRD400	£12.95
MASPRO 250/350	£12.95
FERGUSON SRAI	£12.95
AMSTRAD SRD 510/520	£12.95
PLEASE ASK FOR OTHERS	
One for all 4 remote control	£19.95
Degaussing Coil	£27.50

HOW TO OROER: Up to $1 K$ ADD E2 00 per order P+P (U.K.). Heavier parcels, og cables, service sids, degausing coils please allow E4.00 $P+P$ (U.K). Export orders charged at cost. First Class Mail is used whenever possible. Add 17.5% VAT to total except where it states zero rate. Over 3 K will be sent by carrier $\mathrm{f12.00+}$ + VAT up to $15 k$ (except tubes) Wo do not despatch on Saturdays.	WANTED IWSTALIERS FOR WIRELESS
Goods are despatched on the day we receive your order if for any reason we are out of stock we will try to inform you as quickly as possible. We try our best to give a speedy, fair and efficient service. VAT invoice on request. Give us a ring - we'tl give you service. Please ask it what you need is not listed - we will try to help. Prices are subject to change without notice In some cases we may have to supply an equivalent. We need expiry dates for credit card orders. MIN. ORDER E5	

THE ULTIMATE

 SCART DIAGNOSTIC TOOLScartMaster rapidly identifies problems when interconnecting AV equlpment using Scart or Euroconnector sockets.

Scartillaster also shows broken or faulty wiring In Scart leads. adaptors and switch-boxes.

- Connect to slgnal sources (TVs, video recorders, satelite receivers and decoders, ete) to check audio and vidoo outputs and status command lines.
- Connect to TVs and monitors

10 check correct signal switchover.

- Confirm video and audio inputs using built-in test pattern and tone generators.

The Pocket-sized Scirtiluster is an essential aid for field service or workshop use.

- Verifies correct Scart socket operation in seconds
- Status LEDs show outputs, test signals check inputs
- Low power consumption, surface mount technology
Special
Introductory
Offer !

In INTERCOMMS
Box 434, Ascot, Berkshire SL5 0QY Mail Order Sales Hotline 034420234

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

EDITORIAL OFFICE

0816528120
Fax 0816528956
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES
 0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone ()622 721666 and quote reference INJ .

COVER PHOTO

This month's cover photograph shows the Philips GR1-AX chassis. See servicing article on pages 472-477.

REED
BUSINESS
PUBLISHING

The Look of the Thing

Do people care much about what their TV sets look like? Alain Prestat, chairman of Thomson Consumer Electronics (TCE), certainly seems to think so. As part of his increasingly successful effort to restore to profitability TCE, one of the world's largest TV manufacturers with brands that include RCA. Telefunken, NordMende, Saba, Brandt and Ferguson, he has hired the French designer Philippe Starck to oversee a product design programme. Prestat is convinced that imaginative design could give Thomson an advantage over its contemporaries Philips, Matsushita, Sony etc. in the intensely competitive consumer electronics market: he feels that consumers are bored with the "grey boxes" that overwhelmingly predominate in the market. "Appealing products with their own identities" is to be the aim at TCE.

Philip Starck has been appointed arnistic director of TCE but works as a consultant to the company, feeling that it's important to be able to look at what is being done at TCE as an outsider. So far he has spent a year on the project working in conjunction with the company's marketing and technological specialists and a new 16 -strong European design team at TCE's Paris headquarters. Their first task has been the redesign of TCE's European TV ranges. The new designs will start to appear this month, with launches continuing during the coming year. So far two Starck designs have appeared, one-off Saba and Telefunken sets that were introduced last autumn. The Saba one certainly looks different. Starck aims to give each brand a different personality - Saba is supposed to be "young and funky". The set just mentioned uses green plastic for the tube surround and control panel, with recycled woodchips for the rest of the apparently moulded case. To this observer it's a strange set with virtually no appeal whatsoever. But then I can't claim to be "young and funky". Starck comments that "there's no reason why televisions should have to come in boring cardboard (that's what he's quoted as saying) boxes. We want our products to be fun to buy - just like opening a Christmas present".

Angela Dean, European electronics analyst at Morgan Stanley, is reported as commenting that "there probably is a demand for better-looking products: TCE can have a go - but it isn't going to be easy". One can feel reasonably sure about that, anyway. The fact is that design has never really had much impact in the TV market. Looking back, the original Murphy Radio company was probably the first and virtually the only UK setmaker to emphasise design. Bang and Olufsen is the outstanding European example of the design-conscious approach to consumer electronics. There have been occasional attempts at something new and innovatory, for example the Keralacolour sphere, but so far as the mass market is concerned keeping things simple and relatively inoffensive has been the basic approach in recent decades.

Design is of course a notoriously difficult subject. Something that excels in one person's eyes is plain awful to many others. Beauty is, as they say, in the eye of the beholder. Appreciating this, or maybe just not giving the matter much if any thought, setmakers and those who market own-brand sets have tended to play safe. Over the past few years the "monitor look" has been widely adopted those "black boxes" that many view with disdain. Personally, this approach seems to me to be reasonable and acceptable. Visually, $80-90$ per cent of what one sees when one looks at a TV set is the screen. There's not much one can do about that other than fit doors, which seem to be clumsy and a bit pointless. Since a blank screen is not a particularly wondrous sight, the best that can be done is to make it relatively inconspicuous. The monitor-style receiver set on a convenient shelf does just that. If you want the set to play a more dominant role as part of an interior setting the Bang and Olufsen approach seems appropriate. But what to do if the interior is traditional rather than modern? The set can always be hidden away in an appropriate cabinet - with those doors! (What if you've a house full of pine: I've yet to see a set with a pine cabinet - Philippe Starck can have that idea for free!) The last thing, I suspect, that most people want is for their TV sets to be too intrusive. If what people want is inoffensive, inconspicuous sets, design means keeping it simple and appropriate, for example with controls that are easy to operate and do their job without fuss Recycled woodchips, bright colours and that sort of thing is unlikely to be widely acceptable. TCE could be on to something or not, depending on how carefully design is handled.

Teletopics

INTERACTIVE-TV

British Telecom's interactive-TV system trial is now underway at Kesgrave, Suffolk, involving about seventy installations. It's called Interactive Multimedia Services and uses software developed by the US company Oracle. Oracle's Media Server is a multimedia library that stores, retrieves and manages various types of programme matter including sound, video and text. The link to the user is via existing copper telephone lines, using a system that's referred to as an asymmetric digital subscriber loop (ADSL). This simply means that a narrow-band, low bit-rate channel is used for the user requests while a wideband, high bit-rate (up to just over $6 \mathrm{Mbits} / \mathrm{sec}$) channel is used for the programme link to the user. Two different modulation systems have been used for this type of link. Carrierless amplitude/phase (CAP) modulation, developed by AT\&T Paradyne, is being used by Bell Atlantic in its Washington trials. BT however is using a system called discrete multi-tone (DMT) modulation. This offers better line resilience and is being developed by a goup that includes reseachers at Stanford University, Motorola and Nothern Telecom. It now seems that cost is likely to be a problem: BT is tending to regard I-TV via copper wires as an interim technology, broadband optical-fibre technology offering a better long-term solution. The set-top decoderreceiver being used in the BT trial has been developed by Apple Computer. Companies that are providing programme material for the trial include the BBC, Carlton TV, EMI Records, Granada TV, LWT and Thames TV.

Tele-Communications, the largest US cable TV operator, is to start I-TV trials later this year in Seattle, using technology being developed jointly with Microsoft. Bill Gates, Microsoft's chairman, believes that systems offering a wider range of information than simple domestic services are more likely to succeed in the long run. Microsoft hopes to test a cable TV network dedicated to personal computing from April 1995. The aim is to develop an easy-to-use interface with a lot of applications.

Time Wamer, the second largest US cable TV operator, has delayed the start of its I-TV system trial at Orlando, Florida until the end of the year. The postponement is to enable additional system software and set-top terminal refinements to be developed.

A small US company is developing a laser-based remote control unit, called the LaserMouse, as a low-cost data input device for use with I-TV set-top terminals and other interactive systems. It employs a patented process that detects angular motion, so that the user can wave the device in the air to control the position of a cursor on the screen. It does not require line-of-sight operation. Because of its motiondetecting feature the device is particularly suited to video games use.

BUSINESS NEWS

Philips is to pay its first dividend since 1990 following a return to profitable operation in 1993. Cost cutting and reduced financing charges rather than any improvement in market conditions produced the tumaround. Losses made by Philips' largest business, consumer electronics, fell to just Fl73m: continuing heavy losses at the company's affiliate Grundig prevented a return to profit in this sector. Losses at Grundig
have actually increased: Philips is seeking a drastic reduction in costs, including the loss of 4,000 out of 15,000 jobs.

At the operating level Thomson Consumer Electronics, which is owned by the French government, returned to profitable operation in 1993. As a result of restructuring and debt charges however the company remained in the red. Alain Prestat expects a return to full profitability to take another eighteen months. Last year employment in the company, whose brands include RCA, Telefunken and Ferguson, fell by ten per cent to 49,000 .

Scottish Power is to buy fifty superstores from the receivers of Clydesdale. The deal will safeguard about 600 of the 800 jobs at risk. Clydesdale was the UK's third largest electrical retailer when it went into receivership in January.

Marco Trading of Wem, Shrewsbury has called in the receivers.

Gooding Consumer Electronics and Grundig A.G. have set up a joint venture, Grundig Satellite Communications Ltd., to manufacture and market satellite receiving equipment. The company is owned seventy per cent by GCE and thirty per cent by Grundig. Production at its Llantrisant, Mid Glamorgan plant was due to start at the end of March. Employment is expected to reach 400 by the end of the first year and 600 by the end of year three, when production should be running at a million sets a year.

Seleco brand TV sets are to return to the UK market, where they were last sold in 1989. Owl Video Systems, 8/9 Horstead Square, Bellbrook Industrial Park, Uckfield, Sussex TN22 IQW (0825 766 123) will be responsible for distribution of the Italian manufactured sets.

SERVICE NOTES

Toshiba has available, at $£ 33$ including VAT and a free-ofcharge annual update, a binder that includes in easy to refer to form all TV and VCR fault conditions known to Toshiba not just those issued in the company's Technical Bulletins. It's called the Toshiba Technical Repair Data Book, part no. TTRD93

We understand that spares for Huanyu products are available from Huanyu (UK) Ltd., 43 Skyline, Isle of Dogs, London E14 9TS, telephone number 0713630213.

Carlton Television is providing current transmitter information on ITV (London) teletext page 690. It's part of Carlton Plus, the company's ancillary broadcast support service, which started in January. There's also a clock cracker on page 699. Cariton Television is moving towards full implementation of a PDC service: at the moment there are PDC compatible listings, with sufficient data for timer control, on pages 601 and 602.
xBase Computing, 19 Great George Street, Bristol BSI 5QT (0272 290 846, fax 0272290 807) has released at $£ 99.95$ plus VAT a budget version of its F4 service software package, which is designed for consumer electronics and electrical trade use. Called F4 Junior, the new version is intended for the small workshop or retail outlet that handles up to 500 jobs a month. All the usual job and customer tracking facilities are included.

NEW AMSTRAD SATELLITE RECEIVERS

Amstrad has launched a series of 'enhanced wideband' satellite receivers that will enable viewers to receive transmissions from the Astra 1D satellite without LNB modification or the use of a switching box. Prices of the new receivers start at $£ 150$ exluding the dish. Amstrad is also offering, at $£ 50$, an Astra 1D switching box that can be used by owners of earlier models.

ELECTRONIC TEST EQUIPMENT

Audio - Video- Television - Satellite TV - Telecommunications

 The manufacturer who cares about quality \& features rather than being just lowest in price !

Audio Analyser

 Model AA-930Multi-function meter. Measures
distortion, wow \& flutter, stereo distortion, wow \& flutter, stereo power, signal levels in of out
oenerates audio test signals generates audio test signals marked analogue meters. Performs the work of many individual
instruments. $£ 490$

Television Pattern Generator
Model GV-698/11
32 patterns, 32 internal standards, with I, B, G, H, M N, D \& K, NICAM, teletext all
 in one instrument.

Optional on screen logotype. (Other pattern generators availabie from $£ 210$). £ 1428

Television Pattern
Generator
Model GV-298

Compact high performance generator, RF and video outputs. Frequency range same as GV. $698 / 11,37$ to 865 MHz . Circle pattern included. £ 433

TV \& Satellite Level Meter Model MC-360

Ideal instru nent for the professional installer of FMTV aerials and satellite TV dishes. Covers 48 to 856 MHz and 950 ic 2050 MHz . Lighweight, compact ind rechargeable battery operater E654

Frequency counters

Models FD-250 \& FD-252
FD-250 cuvers 20 Hz to 160 MHz and FD-252 covers same, plus 100 MHz to 2.4 GHz . Large L.E.D. display. Wide performance at low cost. £ $153 \& \& 206$

TV \& Satellite Level Meter Model MC-944

This meter has everything for the top flight installer of aerials, dishes, CCTV, MATV, SMATV and other systems. Features include TV monltor, spectrum analyser, sync pulse, teletext, printer output, 99 memories, tuneable audio
subcarriers, etc. Full autocorrection for superb, unequalled accuracyl. RS-232 as standard. £ 1895

The company has been producing test equipment in Spain for over thirty years, earming a strong reputation for excellent engineering, quality performance at budget prices. The equipment is supported by Alban Electronics from their St Albans facility. These products are suitable for only professional and educational applications and enquiries.

Low Distorsion
Low Frequency Generator

Model GB-212
20 Hz to 200 kHz , harmonic distorsion 0.02% 20 Hz to 200 kHz , harmonic distorsion 0.02%
maximum over audio band. Frequency counter maximulm over audio band. Frequency counter
'esolution as high as 0.1 Hz .600 ohms impedance. Output lavel attenuation range 60 dB , with analogue meter tor setting accuracy. Excellent output level platness. £ 219

Function Generators Models GF-230 \& GF-232

Two versions available: 0.1 Hz to 1 MHz and 0.2 Hz to 2 MHz . Producing sine, triangular and squane Hz to 2 MHz . Producing sine, triangular end squane
waveforms, with variable symmetry. Excellemt performance. £ 153 \& $£ 206$

CRT Rejuvenator Model TA-903

Similar to TA-901, but has three meters to monitor cathode current. Special mochnique allows repeated rejuvenation of
CRT. Suppolied in attache style case, for CRT. Suppliad in attache style case, fo

R.F. Spectrum Analyser Model AE-566

1 to 1000 MHz with 950 to 1750 MHz 1 to 1000 MHz , with 950 to 1750 MHz
option. Builtin tracking generator. Offers spanwidths from 1 MHz to 1000
MHz Includes rormalizer. This MHz . Includes normalizer. This
analyser is ideal for production and educational applications, as well as R+D. § 2800

CRT Rejuvenator Model RT-501 B

An essential tool for every TV workshop. Promax have made many thousands. Supplied complete with a set of base adaptors. £ 235

TV/FM Level Meter Model MC-160 B
The aerial installers best friend. Calibrated fo accurate signal level measurements. Digital requency display ensures correct signa salection and identinication
auith-in demodulator for easy station ident, and audible tone for easy positioning. This meter is light in weight,

Os zilloscopes
We are able to supply a complete range of oscilloscopes. These include both analog and digita types, covering bandwidths of 20 MHz to 100 MHz . We are able to prepare quotations for a specified quartity.

Prices shown exclude VAT, but includes UK delivery. Most items available for immediate despatch.

ALBAN ELECTRCNICS LIMITED
4 - St Albans Enterprise Centre - Long Spring Porters Wood - St Albans - Hertfordshire - AL 3 GEN Tel: 0727832266 - Fax: 0727810546

Servicing the Philips GR1-AX Chassis

Steve Cannon

The GR1-AX was designed to drive 90° tubes with screen sizes from 14 to 2 lin . Although it was introduced back in 1989, many engineers are still not familiar with it. The unusual power supply - a self-oscillating series chopper that uses a power f.e.t. device - could be one reason for this. When it comes to repairing a switch-mode power supply with a BU508 or one with a f.e.t., the latter will tend to be put to one side.

There were several versions of the chassis, with quite a number of differences. They depend mainly on the country of origin and the serial number. The service manual lists the main component differences. There are also some differences in the plugs and sockets. The following description and service notes should however apply to all sets.

The Power Supply

The basic power supply circuit is shown in Fig. 1. It's known, curiously, as a BUCSO type. This stands for Buck Converter Self-Oscillating type. There is no sync feedback from the line output stage. Note in particular that the chassis is not mains isolated. Thus caution is required when fault-finding in the power supply or indeed anywhere in the set.

The power supply generates three outputs: a 95 V h.t. supply for the line output stage, a 9 V supply for the audio output stage and a 5 V supply for the microcomputer control chip and related circuitry. This latter supply is derived from a potential divider network connected across the output from the mains bridge rectifier.

The main thing that stands out is the chopper transistor itself, $\operatorname{Tr} 7610$, since it's a f.e.t. This type of transistor is now becoming more common in power supplies. But basically, f.e.t. or no f.e.t., the power supply operates on similar lines to any other type of switch-mode power supply.

Circuit Operation

At switch on Tr7610's gate is forward biased via R3610 and R3613 and it conducts. Zener diode D6613 sets the voltage at the junction of R3610 and R3613, with R3613 and R3611 acting as a potential divider to further reduce the voltage at $\operatorname{Tr} 7610$'s gate to approximately $4 \cdot 8 \mathrm{~V}$. $\operatorname{Tr} 7610$ is connected as a blocking oscillator, with positive feedback to its gate via the secondary winding (pins 2-13) on the chopper transformer T5610, C2613 and R3612. Zener diode D6610 limits the gate voltage.

We now have to switch $\operatorname{Tr} 7610$ off. This is where the pulse-width modulator circuit, transistor $\operatorname{Tr} 7614$ and its associated components, comes in. The error sensing transistor $\operatorname{Tr} 7628$ sets the d.c. conditions at the base of $\operatorname{Tr} 7614$. Its other input consists of a sawtooth produced by the integrating circuit R3618/C2616 from the pulse developed across winding 4-11 of the transformer when $\operatorname{Tr} 7610$ conducts. When the sawtooth rises to a sufficiently positive value, $\operatorname{Tr} 7614$ conducts, shorting to chassis the gate of Tr7610 which is thus switched off. At this point the voltage at pin 2 of the transformer swings negatively and diode

D6620 conducts, providing an efficiency diode action. During this part of the cycle the energy in the transformer charges the h.t. reservoir capacitor C2660. The voltage at pin 4 of the transformer also swings negatively, discharging C2616 via R3617 and D6617. Thus Tr7614 switches off.

Once the energy in the transformer has been transferred to C2660, D6620 switches off. C2620 then charges, producing a positive pulse which, via C2613, switches the chopper transistor $\operatorname{Tr} 7610$ on again. The cycle has thus been completed and the process continues, with $\operatorname{Tr} 7610$ being switched on and off. Regulation is achieved by controlling the point at which $\operatorname{Tr} 7610$ switches off. This is determined by the error sensing transistor $\operatorname{Tr} 7628$ which sets the d.c. voltage at the base of $\operatorname{Tr} 7614$, and can be adjusted by means of the set-h.t. control R3625.

Tr7614 is also used to provide the standby condition. When standby is requested pin 19 of the microcomputer control chip IC7700 goes low, switching Tr7631 on. The positive voltage at its collector then switches $\operatorname{Tr} 7614$ on and, since this shorts to chassis the gate of $\operatorname{Tr} 7610$, the power supply shuts down. It starts up again when $\operatorname{Tr} 7631$ and $\operatorname{Tr} 7614$ switch off. This feature is included only in sets with remote control.

Overvoltage Protection

Overvoltage protection is provided by thyristor Thy6641 and its associated components. Zener diodes D6638/39/40 monitor the h.t. voltage. If this rises above the combined zener level the diodes conduct, firing Thy6641 which thus shorts the h.t. to chassis. The power supply senses the overcurrent condition via winding $4-11$ on the transformer, switching on Tr7614 to shut the power supply down. In earlier sets the conditions in the line output stage are also monitored, via zener diodes D6646/47 and the 1N4148 diode D6645 whose anode is connected to one side of the heater winding on the line output transformer.

The Microcomputer Chip

The microcomputer chip IC7700 is type TMP47C4343559. It carries out the usual functions such as remote control and keyboard decoding, tuning control, video and sound control, standby selection and on-screen display generation, with connections via an I2C bus to the X2402 EEPROM IC7785 which stores the tuning and preset information.

For these chips to operate correctly they must be provided with a rock-steady 5 V supply, a power-on-reset (POR) pulse must be correctly applied and the 4 MHz oscillator must be running at the right frequency. Transistor Tr7674 in the power supply acts as a series regulator for the 5 V supply. The power supply also provides the reset pulse for pin 33 of IC7700 - it's generated at the collector of Tr7673.

Once a supply voltage is present, for IC7700 to be initialised at switch on the reset line should remain low for 1 msec . At switch on $\operatorname{Tr} 7673$ is in its off state and the reset

Fig. 1: The switch-mode power supply circuit used in the Philips GR1-AX chassis. Some component types/values vary and there were several alterations in circuit detail during the production run.
line is low. Once the voltage at its base rises to 5.6 V zener diode D6671 and $\operatorname{Tr} 7673$ conduct and the reset line rises to 4.7 V . By this time the 4 MHz oscillator (pins 31 and 32) has been kick-started and initialisation has been completed. The following checks are made within IC7700 during initialisation:
(1) The internal RAM is tested. If a fault is found, a flashing LED displays error code F0.
(2) The presence of a diode between pins 10 and 14 is checked. This tells the chip whether or not the set has remote control. If D6737 is present the set doesn't have remote control and can't be put in standby.
(3) The presence of a diode between pins 11 and 14 is checked. If diode D6736 is fitted here only u.h.f. operation is possible.
(4) The presence of a diode between pins 12 and 14 is checked. If diode D6735 is present the set comes on with programme 2 instead of programme 1 . This is apparently for Australian sets, though why the Aussies want their sets to switch on with programme 2 escapes me for the moment. . .
(5) The internal dividers and remote input are released.
(6) The status of the set when it was last switched on is checked. If it was in standby when switched off, it comes on in standby.
(7) The stored volume, brightness, colour and contrast settings are read from the EEPROM and supplied to output pins 2, 3, 4 and 5 respectively.

The chip's internal timers are tested. If they are not working correctly a flashing LED displays error code F1.

At the end of this sequence the microcomputer chip should, provided no errors have occurred, be fully operative.

Tuning

The tuning voltage data, a pulse-width modulated (PWM) signal, appears at pin I. It's used to switch transistor Tr7706. This is connected to the 33 V tuning supply and establishes the required tuning voltage output in conjunction with an integrating filter.

Once tuning has been mitiated, pin 2 of the chip goes low to mute the sound. The a.f.c. action needs to be overridden, so pin 41 goes high. This switches on transistor Tr 7786 which produces 6 V , the nominal a.f.c. voltage, at its collector for application to the a.f.c. pin 9. The PWM tuning signal's duty cycle then starts to decrease and the tuning voltage, via Tr 7705 , increases. When a station is found, pin 16 receives a high input from pin 22 of IC7020 (the TDA8305 multi-function chip) via transistor $\operatorname{Tr} 7046$. The output at pin 41 then goes low so that the chip can measure the a.f.c. voltage. Once this reaches 4.5 V fine tuning begins, i.e. the chip varies the duty cycle of its PWM tuning output at a slower rate. The tuning voltage is gradually increased until the a.f.c. voltage at pin 9 is 7.5 V : it is then decreased to produce a 6 V a.f.c. level. The tuning is then spot on and the micro is ready for a programme number to be entered and stored.

Other Controls

Volume, brightness, contrast and colour are adjusted via an on-screen display menu. The micro chip has four 6-bit
registers available for these settings. Thus the customer controls can be at any one of 64 settings between minimum and maximum. The PWM outputs at pins 2-5 are integrated to produce the control voltages which vary between 0 V (minimum) and 5 V (maximum).

The chip has a sleep-timer function that operates via the remote control system. When this function is activated the set goes to standby after a given time. Maxımum time. which can be reduced in steps of fifteen minutes, is ninety minutes.

On-screen Display

The green on-screen display (OSD) provides a search tuning bar, timer information, the programme number and the customer control value settings. It's synchronised by a field sync pulse that's fed in at pin 27 and a sandcastle pulse input at pin 26 . The OSD output, at pin 23, is applied to $\operatorname{Tr} 7760$ whose output is fed to the green output stage on the c.r.t. base PCB. An LC network connected between pins 28 and 29 determines the frequency of the OSD generator. The fast-blanking output at pin 25 is used to suppress the TV signal where the OSD is to be shown.

Hotel Mode

If you're a landlord, a useful function with early sets is the 'hotel' mode. This has probably caught out many an unwary engineer, myself included. It can be switched on by selecting programme 38 then pressing the store and prog + keys at the same time. Once in this mode it's not possible to store either tuning information or the values of the customer control settings, the sound won't adjust louder than the previously stored value and when the set is switched out of standby it will come on with programme 1 rather than the last one selected. Now the useful bit. To disable the hotel mode, select programme 38 again and this time press the store and control + keys simultaneously.

Error Messages

The micro chip can generate three error messages which are displayed by the front LED flashing. The error is indicated by the LED's off time, the on time always being 50 msec . These messages are as follows:
(1) F0, LED off time 50 msec . Internal RAM fault - replace IC7700.
(2) F1, LED off time 100 msec . Internal timer fault replace IC7700.
(3) F2, LED off time 150 msec . EEPROM fault. Either the EEPROM chip is faulty or the +5 B voltage is incorrect.

Video Signal Path

After passing through the tuner and the i.f. section of the TDA8305 chip IC7020 the video signal is buffered by Tr7040 and fed to the TDA3565 colour decoder chip IC7300. Pin 3 is the chroma input, pin 8 the luminance input, pin 5 sets the colour level, pin 6 the contrast and pin 9 the brightness. Pin 6 is also used for beam-current limiting, via R3552 and D6551. The reference oscillator operates at 8.8 MHz (the crystal is connected to pin 16) and the sandcastle input is at pin 7. The red, green and blue outputs appear at pins 10,11 and 12 respectively. These are fed to class A output stages, operated with a 160 V supply,
on the c.r.t. base panel. Tr7402 provides a stable bias source for the RGB drives, setting the black-level.

The Timebases

The TDA8305 chip IC7020 provides i.f. amplification and demodulation, audio and sync processing and produces line and field drive outputs. For the line timebase and hence the set to get going a kick has to be delivered to the line generator part of the chip from the power supply. There's nothing new about this, but the unique thing here is that the pulse is delivered to the the volume control input, pin 11. When the set is first switched on C2058 ($22 \mu \mathrm{~F}$) charges from the 95 V line, applying a pulse for a short time to pin 11. This enables the line oscillator to get going, and the line output stage comes into operation. A 12 V supply derived from the line output transformer then takes over, providing a feed to pin 7 . The chip is now fully operational.

The composite video input signal is fed to the sync separator via pin 25 . As well as going to the sync circuits the output from the sync separator is fed to an identification stage which tells the microcomputer chip, whilst tuning, whether a station has been found. This output appears at pin 22, where it's applied to the base of transistor Tr 7046. A sandcastle putse output at pin 27 goes to the colour decoder and micro chips.

The line drive output appears at pin 26 and is fed via the line driver and buffer transistors $\operatorname{Tr} 7521$ and $\operatorname{Tr} 7523$ (no line driver transformer) to the base of the line output transistor Tr 7528 . The type of transistor found here depends on the set's screen size. With a 14 in . tube it's a BUT1IAF while with a 21 in. tube it's either a BUT12AF or, in later versions, a 2 SC3795B.

The line output stage is very simple, with no EW modulator. The 95 V h.t. is fed to pin 6 of the transformer via R3530 (4.7) and L5532. Taps on the transformer produce, with the associated rectifiers and filters, 160 V for the RGB output stages (pin 1), 26 V for the field output stage (pin 2). the +5 B supply (pin 4), the heater supply (pins 8 and 9) and a 12 V supply (pin 3) which is separately filtered to provide the $+12 \mathrm{~A},+12 \mathrm{~B},+12 \mathrm{E}$ and +12 F lines. The e.h.t., focus and first anode voltages are obtained from the diode-split section of the transformer, pin 7 at the chassis end of this section providing a beam monitoring point.

Pin 3 of IC 7020 provides the field drive output which is fed to the TDA3553B field output chip IC7500. Again this is all very straightforward. Pin 5 drives the field scan coils. If the voltage at pin 8 falls below 2 V , indicating no flyback or deflection current, a positive voltage is produced at pin 7. This is linked via diode D6515 to the sandcastle pulse line, blanking the screen to prevent phosphor burn.

Fault Finding

As with any chassis, most faults occur in either the power supply or the line output stage. Great care must be taken around the f.e.t. chopper transistor when fault-finding in the primary side of the power supply - the transistor will probably be destroyed if an attempt is made to measure the voltages at its connections. The power supply won't run with a 60 W or 100 W bulb as a dummy load. But if there's no fault in the power supply it will run quite happily, producing the correct h.t. voltage, when the h.t. smoothing coil L5660 is disconnected to give an off-load condition.

Tracing the cause of a dead set when the h.t. is present can be quite perplexing. This condition usually means that there's a line timebase fault, but the cause could be in the line drive/oscillator section or the output stage. As we've

MANOR SUPPLIES
 MKV PAL COILOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

LINE OUTPUT TRANSFORMER TESTER

 \star Service Aid.

* Saves time and money.
* Checks short turns.
* Simple to use.
* Reliable.
* Battery operated.
* Pocket size.

PRICE £24.00
POST/PACKING 22.50
INFRA RED REMOTE CONTROL, TESTER * Powkelsize.

* LEI + audible indication.
* Simple to use.

PRICE £20.00
P(OST/PACKINGif2.5)

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for viden \& atudio outputs $£ 28.50 \mathrm{p}$.p. £ 1.80 .
PAI. DECOIERK KIT (Video to R(iß) for Monitors $\{27.00 \mathrm{p} . \mathrm{p}$. El. El .
PAL ENCOIOER KIT (R(iß 0) Video) $£ 20.00$ p.p. $\mathfrak{E} \mid .80$.
CRT TESTER \& REACTIVATOR KIT FOr Colour \& Mono complete with case. Panel Meter Indicator - call he adiapted for latest (RTs $\mathbf{£ 4 5 . 0 0} \mathrm{p}$.p. £ 4.50).

LINE OUTPUT TRANSFORMERS $p_{p \nmid} \mid \$$

TRIPLERS EHT MULTIPLIERS p.p. f1.80

continental tiviversal. TVK \& bG

RAMCE (Oucke cxuct no) E13.80
TVK \%-1 113.80
TVK \%-3 f18.00
U.K. UAIVERSAL (best qushty) 57.80 DECCATATUNG BG 200/44 TYPE $£ 7.80$ (RRUNDIG BG; 2077-642-1003/100 £ 16.80 GRUNDIGBG 2087-642-1001/1002/1606 E16.80 CRLNDIG BG 2000-641 £13.80

MISCELLANEOUS p.p. f1.80
MAINS TRANSFORMERS; 6.3 Volb CRT beosi VCR FALLLT FINDING GLIIDE £ 14.80 e6. 80 p.p. 21.30
Manm lsolatirg 5(x)VA $£ 51.25$ p.p. $£ 5.25$ 455 CRYSTAlS S tor handsels. 4 tor $\mathrm{Ez} .00 \mathrm{p} . \mathrm{p}$. 8 Lp DEGALSSING; RODE33. 75 p.p. 13.30 TRANSPARENT VIDEO SERVICE CASSETTL so. 80 p.p. $£ 1$ su HITACHIRRAME MODLLE HM 625 HM6232 £9.80
HITACHI THERMISTOR TH902 £2.40 FERGUSON TX10 FOCUS UNIT 88.50 pp fl 80 PHILIPS BACK LP BATTERY: 2.4 V £.00, $1.2 \mathrm{~V} £ 2.00 \mathrm{p}$.p. 90 p

HOW TO ORDER: ADD p\&ip TO ORDER + VAT 17.5\% TO THE TOTAL
PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE
Telephone 071-794 875 I/794 7346
Fax 071-43I 5778
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1SD
CALLERS WELCOME AT SHOP
Mon-Fri 9.30-6pm - Thurs $9.30-1 \mathrm{pm}$ - Sat 9.30 -5pm
seen, the TDA8305 chip requires a start-up pulse at its volume control pin to get the line oscillator going. A scope check at pin 26 when the set is switched on should show the presence of line pulses for a brief period. If these are present, the cause of the fault is likely to be in the line output stage. If the pulses are not present, the fault is probably in the line driver stage or the line oscillator. A check should of course be made to ensure that the kick-start pulse is present at pin 11.

A fault in the line output stage derived 12 V supply could be the cause of the condition just described, i.e. no results with line drive pulses present for a brief period at switch on. So D6542, C2542, R3060 and C2060 should be checked. The line oscillator will run with the set switched off and an external 12 V supply connected to the TDA8305 chip (pin 7 positive, pin 6 negative), and in this condition line drive pulses will be seen at pin 26. It will also run and provide line drive pulses when the set is switched on, h.t. is present and an external 12 V supply is connected to the chip. This is a helpful test to check whether the cause of the fault is in the LOPT-derived 12 V supply. It can also help in determining where the cause of the fault lies when the oscillator, driver and output stages are suspect.

Faults List

H.T. variations and the volume intermittently increasing to maximum: Replace C2631 (22nF) at the base of the standby switching transistor $\operatorname{Tr} 7631$.

Set dead, h.t. low and the 9 V rail at 5 V : The line output transformer is faulty.

Blank raster and no sound after four hours or longer:

 Faulty TDA8305 chip.H.T. goes high: R3627 (33 kS) has gone high in value.

Failure to lock to a signal when sweep tuning: A.F.C. coil L5045 faulty.

Poor line sync: C2051 ($10 \mu \mathrm{~F}, 25 \mathrm{~V}$) associated with pin 24 of the TDA8305 chip is faulty.

Set dead, h.t. correct: Several possibilities here. C2519 $(150 \mathrm{pF})$ at pin 26 of the TDA8305 chip or the 12 V zener diode D6030 in the kick-start circuit associated with pin 11 could be faulty. If necessary check the 1 N 4148 diode D6523 in the line driver stage's start-up supply.

Intermittent destruction of the line output transistor: Replace $\operatorname{Tr} 7521$ and $\operatorname{Tr} 7523$. They are both usually type BC337, but check in the relevant service manual.

Intermittent sound buzz: 6 MHz filter CF 1036 is faulty.
Low 5V supply to the micro chip: Diode D6644 (1N4148) in the power supply is leaky.

Intermittent loss of the picture: C2045 (22nF) in the a.g.c. circuit, connected to pin 10 of the TDA8305 chip, is faulty.

Intermittent dead set or intermittently shuts down with the h.t. line at $8 \mathbf{V}$: Zener diode D6613 (15V) in the power supply is faulty.

Field collapse (blank screen): Usually caused by failure
of the TDA3653B field output chip IC7500 but check for dry-joints at the scan coil plug.

Set dead, no h.t. supply: Check zener diodes D6638/39/40 and thyristor Thy 6641 in the overvoltage protection circuit circuit. D6638/39 are usually 36 V types and D6640 30 V but check in the relevant service manual. Thy 6641 is type SF2D41.

Line tearing, especially with bright scenes: Replace C2542 (220 $\mu \mathrm{F}$) and C2060 ($680 \mu \mathrm{~F}$).

Set intermittently fails to come on: Replace C2058 $(22 \mu \mathrm{~F}, 100 \mathrm{~V})$ in the kick-start circuit associated with the TDA8305 chip.

Set dead or power supply tripping: Replace R3614 ($6.8 \mathrm{k} \Omega$) in the power supply (primary side).

Set goes off after a couple of hours, with h.t. present: Replace D6523 (1N4148), Tr7251 and Tr7523 (both usually type BC 337) and change C 2523 from $6.8 \mu \mathrm{~F}$ to $68 \mu \mathrm{~F}, 63 \mathrm{~V}$. Any of these components can cause the fault.

Poor field and line sync from cold: Change R3052 from $1 \mathrm{k} \Omega$ to $1.8 \mathrm{k} \Omega$ and C 2053 from 22 nF to 150 nF .

Sound intermittently increases or starts popping, especially with bright scenes: Change C 2030 from $47 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}, 16 \mathrm{~V}$ and fit a 6.2 V zener diode in position 6031 or in place of link 9511.

Philips' Service Tips

To improve reliability D6613 was changed to type BZV85-C15, part no. 482213033732.

The following production changes were introduced to prevent the set coming on in the store lock mode when switched on from standby. EEPROM IC7785 changed to type ST24C02CP, with a shield, part no. 482231031886. L5786 in the 5 V supply connected between pin 8 of IC7785 and R3797 instead of R3770/3767, using a spare print pad adjacent to R3793. Position the shield over the i.c. and solder in place of link 9020.

For improved reliability C2523 was changed to $68 \mu \mathrm{~F}$, 63 V , part no. 482212440754 . Make this change whenever the line output transistor (Tr7528) has to be replaced. A rope or barber's-pole effect on the picture can be cured by carrying out this modification.

If the set won't tune to high-frequency channels and lower-frequency channels appear to be higher up the tuning band Tr 7705 (part no. 482213041594) could be defective, causing incorrect tuning voltages at pin 11 of the tuner.

In the event of the failure of R3616, R3680, $\operatorname{Tr} 7610$ or D6610 in the power supply, all four components should be replaced. Do not, when fault-finding, connect any probe to Tr7610's gate - this will destroy it.

For colour drop-out with prerecorded tapes change C2322 from 220 nF to $1 \mu \mathrm{~F}$, part no. 482212440242.

The following modifications will provide a considerable improvement in avoiding avoid adverse effects caused by copy-protected tapes: change C2050 to 47 nF (part no. 4822 12142491), R 3050 to $75 \mathrm{k} \Omega$ (part no. 482211652301), R3051 to $1.5 \mathrm{k} \Omega$ (part no. 482211652243) and C 2322 to $1 \mu \mathrm{~F}$ (part no. 4822124 40242).

To improve safety in the event of a short across the 9 V supply R3100 was changed to 1.5Ω (safety type, part no.

482211680691) and the following components were added: R3646 150Ω part no. 482211652211, C2110 470 nF part no. 4822 121 51252. Tr7100 BC558 part no. 482213040941 . The extra components are fitted directly to the 9 V rail, wired as an over-current protection circuit to monitor the 9 V supply. If excess current is detectèd thyristor Thy6641 is fired and the power supply shuts down. This is not intended as a service modification.

The following modification was introduced to improve the operation of the line drive circuit: R3059 changed to $1 \mathrm{k} \Omega$ (part no. 482211652204), R3520 to 33Ω (part no. 482211652191), R3521 to $477 \mathrm{k} \Omega$ (part no. 4822116 52283), R3525 and R3527 to 15Ω (part no. 4822116 82098). D6521 BYD33D (part no. 482213042488) and

C252110nF (part no. 482212233307) added. Again this is not intended as a service modification.

Finally a service manual correction. In both the circuit diagram and the PCB layout the 160 V supply winding on the line output transformer is shown incorrectly. The winding is between pins \mathbb{a} and 6 (h.t. feed point), not 1 and 5.

Acknowledgement

I would like to thank all the engineers at the Philips Competence Centre in Heywood for their help in compiling this information, especially Brian, Tony and of course the Frank Bevins.

Test Case 377

This month's saga started when Mr. Smith came into the workshop to collect his newly-repaired Grundig radio receiver. Pam. who runs our office, had been watching a chat show whilst taking a rare break. As she made out his receipt, Mr. Smith's attention turned to the TV set.
"You don't seem to get the widescreen programmes here" he commented. Pam wondered what widescreen programmes he was on about. Mr. Smith, it subsequently transpired, was under the impression that the broadcasters had all gone over to the new widescreen format. But what was happening was that his set displayed letterbox-style pictures because it was faulty. Would he care to bring it along? Next day he appeared with a Sony KV2092, which is fitted with the XE4 chassis.

Now the KV2092 is something of an exception to the general rule that Sony's chassis are very reliable, safe and perform well. There has been trouble with the on-off switch, and with the connections to certain resistors. Modifications were made in other parts of the chassis, and in Television Ted's circuit diagram many components are highlighted in yellow - to remind him of previous diagnostic battles fought and won against Secret Agent XE4. Despite all this the cause of Mr. Smith's widescreen effect was not one that any of us had come across before.

The symptom indicated lack of field scan amplitude of course: there were black bands at the top and bottom of the screen. What was significant - in retrospect! - was that the workshop test pattern also showed up a barrel-distortion effect at the
sides: the edges of the picture bowed out, as if someone had advanced the setting of the EW pincushion-correction potentiometer too far. If some brainy technician had at this point sat down and actually thought about these symptoms he might well have come up with the answer straight away. How about you?

Certainly the members of the workshop staff who were present that day failed to produce any such instant diagnosis. Sherlock (whose nickname we're thinking of changing - suggestions on a postcard, please) merely adjusted the height control to obtain an almost full picture and the pincushion amplitude (EW parabola amplitude; control for a reasonably linear display - provided it wasn't examined too critically while a test pattern was being shown. And there the set sat for a day or two, with only a little bit of picture height jitter to betray the fact that the symptoms had been disguised rather than the fault repaired. No doubt the easy-going Mr. Smith would have been quite happy to take the set back in this condition. But wiser workshop counsels prevailed.

Counsels are one thing. a concrete diagnosis quite another. When Sherlock returned to the set he restored the two presets to their original positions and began to bang the set's B panel, where the timebase circuits live, with the handle of a screwdriver. As this had no effect he got out his hairdryer and raised several square inches of the board to the point where you could have used it to fry an egg. He then had a go with freezer: after a few seconds the field output chip was at the centre of an icy waste, glistening under the bench light like Antarctica under a December sun. The lack of height remained.

We'll spare you a lengthy account of all the various components that were changed, save to say that some of them had more than two legs and that
they included the height control and its $240 \mathrm{k} \Omega, 1 \%$ series resistor. Neither will we tire you with details of the meter and scope checks that were carried out. There was however one key point in the field scan circuit where, had Sherlock ventured, he would have found more rather than less of the waveform amplitude he was so short of! Don't turn straight to page 509 for the solution to this one. . .

Amstrad SRD400 Satellite Receiver

A lot of ex-rental Amstrad SRD400 satellite receivers are around at present. When installing them we often find that where there's a long cable length between the dish and the receiver the vertical/horizontal polarisation switching doesn't work. This is because of the voltage drop along the cable, the most abvious outcome being reception of only half the channels, each one occupying the space of two channels.

The cause of this is the fairly marginal 18 V feed to the LNB it often measures 17.5 V at the SRD400's F connector with no load. To cure, add a standard silicon diode, 1 N 4001 or whatever, in series with DP504. To avoid having to remove the board, cut the earthy end of DP504, leaving the maximum lead length at the diode. Then solder the new diode from here to the earth lead of CP507, an $0.022 \mu \mathrm{~F}$ ceramic capacitor that's conveniently near. The anode of the new diode goes to DP504, its cathode to CP507.

Hugh Allison

Camcorner

Reports from Keith T. Keeton and David C. Woodnott

Sony V50

We've had two faults recently with this one, as follows:
(1) No E-E colour, no date/time, superimpose intermittent. The cause of the fault was on board RZ1P which was not providing a 5V supply for board DS24P. Transistor Q118 was faulty.
(2) The E-E display had pink colouring at the top left-hand corner. Prior to the appearance of the fault the lens had been replaced. Because its earth lead had been laid near the CCD's output pin the signal was being distorted. The cure was to move the earth lead away from the output pin. K.T.K.

Sony CCDF555

This camcorder produced a grainy E-E image. Checks on board VC96P showed that the EVR didn't change the voltage at pin 5 of IC301 (type M62352GP, part no. 875963527). Replacing IC301 cured the fault.
K.T.K.

Sony ACV30

(1) This unit produced no output and the LEDs weren't lit. A voltage check at pin 4 of board CT produced a reading of 13.5 V . R104 had gone high in value, a replacement curing the fault.
(2) The output was o.k. but no LEDs were lit. There was zero voltage at pin 3 of IC251 which was faulty. Board CH had to be replaced as IC251 is not available separately.
(3) This one failed to charge. The power light was out and the d.c. output was low. We found that the d.c. output socket was faulty. The cabinet top had to be replaced as the socket is not available separately.
(4) The power light was on but the unit failed to charge, its d.c. output being low. PS201 on board MA had gone high-resistance. Replacing PS201 restored normal operation.
K.T.K.

Akai PVC40E

This palmcorder produced camera pictures but little else: no mechanical functions operated. The cause of this was damage to part of the mechanism that positions the pinchroller assembly. We replaced cam T and lever cam T and retimed the mechanism. Then, using the Sony mode box, we found that the original cause of the damage was still present. If the audio/control head stack is set slightly too high the 'assembly stopper - TG' will mess up the loading/unloading sequence. The cure was to set things up as per the manufacturer's instructions.
D.C.W.

JVC GR323E

This camcorder produced very poor camera pictures. Playback etc. was fine. The picture was dark and pulled to the right-hand side of the display, with colour smearing. We found that the picture signals leaving the SSG PCB were
incorrect. Dry-joints around IC3 were suspected, but none could be found. During their path from source to further processing stages the signals pass through intermediate PCB layers: once again, application of hot-air rework methods in the IC3 area cured the problem.
D.C.W.

Philips 22AV5150 Adaptor

This adaptor failed to charge: the $2 \mathrm{~A}, 115^{\circ} \mathrm{C}$ thermal fuse TF2 had failed and switch SW2 was faulty.
D.C.W.

JVC GRS505E

The rather unusual symptom with this S-VHS model was that the viewfinder picture became blurred, with a noticeable lack of width, after a period of use. Monitor pictures remained normal however, with no noticeable degradation. The fault condition would be followed by shut-down to power off. A 9.6 V battery powers this model.

When we tried the camcorder out with a variable power supply we found that the voltage could be reduced to about 8 V , at which point shut-down occurred. We also noticed that there was no battery-low indication on either the rear LCD operation display or the viewfinder when the fault occurred. The cause of all this turned out to be something quite simple. Pin 5 of the mechacon microcontroller chip IC301 is used to monitor the battery voltage, the feed being from a potential divider network across the supply. R325, a $68 \mathrm{k} \Omega$ chip resistor in this network, was open-circuit neither damaged nor dry-jointed.
D.C.W.

Philips VKR6847

This camcorder is based on the Panasonic NVG1. The fault we had was no record or playback sound, though E-E was o.k. R4001 turned out to be open-circuit. D.C.W.

Sony CCDF355

Playback was o.k. but there was no camera picture nor were graphics available. The cause was that the trigger/standby PCB RC04 was broken. We often find that this assembly has been damaged because of excessive pressure on the trigger button.
D.C.W.

Sanyo VMD90P

The E-E and playback colour were o.k. but there was no record colour. We found that L1361, a low-pass filter in the record chroma path via Q1361 to the head amplifier chip, was open-circuit. A replacement fixed it good and proper! This little machine is around with other brand badges on it.
D.C.W.

JVC GR323E

Problems with the dew sensor seem to be the flavour of the month with this and similar models at present. If a replacement sensor fails to provide a cure, check the plug/socket connection to the main PCB.
D.C.W.

The Panasonic Alpha 3 Chassis

Part 3

Ray Meadows
In this instalment we'll deal with the microcomputer chip that's the heart of the control system and the video processing circuitry. This is all on panel E. We ${ }^{\prime} l$ also take a look at the RGB output stages which, as usual, are mounted on the c.r.t. base panel (the Y PCB).

The Microcontroller Chip

The microcomputer chip used, in position IC1213, is a Matsushita type MN1871611. Its processor section is a 6502. All Alpha 3 models use it, though the TX37A2G has a version with a different mask, suffix -TKM.

This 64-pin customised chip contains 16 K of RAM and has seven control ports, an infra-red remote-control input, RGB on-screen display outputs, four seven-bit D-A outputs

Fig. 1: Block diagram of the control system.
and eight six-bit D-A outputs. Pin connections are listed in Table 1. Peripheral components include a dual output crystal module that's connected to pins 62 and 63, a reset timer chip (IC1212) that's connected to pin 54 and an EEROM (IC1211) for factory and customer preset control information. This chip is linked to the microcontroller chip via the S bus. The input from the IR infra-red remote control system, at pin 1, comes from an amplifier chip (IC1051) on board M. Fig. 1 shows the system in block diagram form. Series inductors are included in most of IC1213's input and output control lines to provide protection.

Depending on the options incorporated in the particular model some of IC1213's pins may or may not be connected to external circuitry. Even when externally connected some functions operate only with certain models: for example
pins 9 and 48 operate only with satellite-equipped receivers.
The purpose of some other pins deserves a word of explanation. Links and capacitors connected to pins 2, 3 and 4 set up the receiven's audio modes: Zweitone, Nicam and dual Zwietone/Nicam models use different combinations. With UK receivers the scart slow switch function is disabled by connecting pin 6 to the positive supply via a resistor. Pins 8,51 and 52 select the received broadcast mode: pin 8 switches between PAL and Secam while pins 51 and 52 provide transmission standard selection. either PAL I, PAL B/G or Secam L/L’. Some sets also have manual colour and system buttons on their control panels. NTSC and modified-NTSC signals are decoded by the PAL circuitry and are handled by all sets including UK models. Pins 29 and 30 are used only with sets for the French market, pin 29 selecting positive video while pin 30 switches the sound i.f. to select the low audio carrier with Secam L’ transmissions.

These functions are enabled by a diode matrix attached to IC 1101 on panel M, i.e. on whether or not certain diodes are present - see Fig. 2 and Table 2. This determines a set's 'identity', i.e. whether a set will work with French or German signals, with satellite signals etc. ICl101 also manages the local key commands. Identity information and local key commands are sent from ICl101 to the microcontroller chip (1 C 1213 , pins 28,57 and 58) via the S bus. As we've seen, an EEROM is also connected to this bus. As some of the channel and preset information varies from country to country, differently programmed EEROMs are fitted at the factory - they usually have coloured lines or dots to indicate the program type.

Some features that the hardware makes possible are not implemented in UK models. As an example, the colour transient improvement circuitry is included in the picture signal improvement chip but the CTI option is turned off by the diode matrix: removal of a single diode will bring the CTI feature into operation should you want to try this. Most extra features will however require additional hardware to be added.

The Self-test Mode

Another feature of the microcontroller chip is the selftest mode. To bring it into operation, press the set's

Fig. 2: Local key/options matrix.
volume down button and the remote control unit's offtimer button simultaneously. This produces five results via the on-screen display. In normal circumstances they should all read "ok'. The first three results are followed by numbers. The test checks relate to the tuner, DBS (the satellite tuner), the picture signal improvement (PSI) chip, the teletext decoder and the EEROM. The numbers vary with tuner type, the satellite pack and how the PSI chip is set up (CTI functional or not). Note that the DBS test merely checks the path for the DBS system in the microcontroller chip: as this path is present in all micro chips the reading obtained should be "ok' whether the set is satellite equipped or not. To exit the self-test mode, press any local or remote control unit key. The user analogue controls are then reset to their factory conditions, i.e. contrast at 80 per cent. colour and brightness at 50 per cent. bass and treble flat etc.

During production a special set up is programmed into the EEROM to pretune the programme positions to the factory's internal signals and set all the analogue remotecontrol functions (volume, colour etc.) to the high-speed mode so that they can be adjusted rapidly. This once-only set up is cleared by entering the normal self-test mode, which is done before the set leaves the factory.

Video Processing

Fig. 3 shows a block diagram of the video processing system. The circuit is made more complicated by the numerous AV and S-video modes and, in Continental sets. the Secam facility.

The video signal arrives at panel E from the AV switch described last month. It's first spilt into separate luminance and chrominance components by the luminance delay line/filter DL301 and the chroma bandpass filler LC601. Both filters have control pins that enable them to be switched for operation with different standards, the control signal being provided by the multistandard colour decoder chip IC6(0). For example the luminance delay line's trap frequency is set to 3.58 MHz when the decoder senses an NTSC signal. Secam-equipped sets have an additional path for the Secam chroma signal. The outputs from LC601 and DL301 are passed via buffer stages to the colour decoder chip IC601 and the black-level expander (BLE) chip IC30t respectively.

When an S-video signal is being processed however the luminance delay line is not required. In this mode the microcontroller chip produces an output at pin 5 to forward bias

Fig. 3: Video processing block diagram.

Fig. 4: The chroma, luminance and S-video input signal paths in the video processing section of the receiver.
diode D304 and reverse bias diode D309 (see Fig. 4). The luminance is thus forced to take the alternative route via R300), bypassing the delay line.

The Black-level Expander

The Sony CX20125 black-level expander chip is more commonly found in Sony sets. The idea is to 'stretch' the luminance information in dark areas of the picture artifically, enhancing its visibility. It does this by comparing the average signal black level with a sample produced during the blanking interval. The result is used to adjust the luminance gain nonlinearly.

It's really a form of variable gamma correction that works best with a grey picture but not with a picture that contains peak white and black (a test pattern for example). While the circuit is useful in many cases it can be confused when, for example, white subtitles appear on a dark picture. This can result in an undesirable 'pumping' of the average picture brightness. The value of R306 controls the BLE effect: the lower its value, the greater the effect. The value was changed duing the production life of the chassis. IC301's output is buffered and then passed to the PSI chip IC302.

The Multistandard Colour Decoder

While black-level expansion is laking place in the luminance channel the chroma signal is being processed by the Philips TDA4650 (version 3) multistandard colour decoder

Table 1: Microcomputer chip pin connections

Pin	Function	Pin	Function	Pin	Function
1	Remote control input	23	Tint DAC output	44	Red OSD output
2	Nicam mode M1/2 select	24	Contrast DAC output	45	Volume DAC output
3	Nicam/f.m. select	25	Brightness DAC output	46	Mute 1 output
4	Stereo/mono	26	Sharpness DAC output	47	RGB switching control
5	Text/S-video switch	27	Chassis	48	Satellite select
6	Scart slow-switch enable	28	RC receiver bus control	49	AV2 control input
7	Search stop input	29	-l+ video select	50	AV1 control input
8	Colour system select	30	VHF low select	51	System 2 output
9	Polariser skew DAC output	31	Picture noise reduction	52	System 1 output
10	AFC input		on/off	53	EEROM select output
11	50/60Hz switch	32	Standby/on output	54	Reset input
12	Chassis	33	V defeat (n/c)	55	Field sync input
13	No connection	34	Nicam/f.m. select	56	High-speed switch
14	Bass DAC output	35	Zwietone select	57	S bus data (SBD)
15	Treble DAC output	36	No connection	58	S bus clock (SBT)
16	Balance DAC output	37	+5V supply	59	I2C bus data (SDA)
17	Horiz. centre adjust (text)	38	+5V supply	60	I2C bus clock (SCL)
18	Music/speech output	39	Line sync input	61	+5V supply
19	No connection	40	Mute 2 output	62	Clock oscillator 1
20	Ambience control output	41	Blanking output	63	Clock oscillator 2
21	Colour DAC output	42	Blue OSD output	64	Chassis
22	+5V supply	43	Green OSD output		

chip IC601. This device can process PAL and NTSC signats and. with the addition of a bell filter circuit and extra bandpass filtering in parallel with the main chroma bandpass filter, Secam signals. System selection is automatic, the chip checking all new signats for 80 msec in each mode to establish their type. When the chip has reached its decision. system sense output signals appear at pins 25. 26, 27 and 28 for M-NTSC, NTSC, Secam and PAL respectively. These outputs control the bandpass filtering and the luminance delay line. A CMOS switch. IC603. is also connected to these lines to provide manual system selection via the microcontroller chip's colour system. SYSI and SYS2 outputs, by forcing the selected system pin high.

Despite the advanced features provided by this chip there are few peripheral components. Most pins are connected to capacitors to set the options or for clamping. Pins 19 and 21 are connected to the 7.16 MHz and 8.86 MHz crystals for the NTSC and PAL/Secam reference oscillators. IC60I's outputs consist of $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ colour-difference signals which are passed to a digital electronic delay line.

The Digital Delay Line

The TDA4660 delay line chip uses digital, switched capacitors to adjust the relative delay between the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals, cancelling out phase errors. The signals are clocked through the chip by a 3 MHz clock signal that ${ }^{\text {s }}$ synchronised with the line-frequency component of the sandcastle pulses. After passing through the delay elements the colour-difference signals are fed via an internal 1 MHz bandpass filter to the next, PSI chip.

The Picture Signal Improvement Chip

The TDA4670 picture signal improvement chip IC302 contains noise coring. colour transient improvement, aperture correction and picture sharpness control.

When a colour-difference signal that will benefit from

PSI is detected, i.e. one with a clearly-defined transient, a sample is differentiated, rectified and used to open a switch that isolates the output from the input. This signal isolation maintains the last transmitted value for the duration of the transient, after which the input is reconnected to the output. The result is the well-known CTI effect. i.e. sharpened colour transients.

The luminance signal is fed to a switchable delay line arranged as thirteen $90 n s e c$ cells. This selective delay enables the total luminance delay to be equalised with that of the colour-difference signals following the CTI circuit. thus helping to eliminate Y-C fringeing. After this, aperture correction is applied to the luminance signal: delayed. peaked 2.6 MHz and 5 MHz signals are added to the luminance signal to sharpen it (the 'aperture' is reduced). The

Table 2: Diode matrix options

Diode Function
D1101 Sat standby off (out)/on (in)
D1105 Text (out)/no text (in)
D1106 Loudness off (out)/on (in)
D1107 AV1 RGB auto (out)/not auto (in)
D1108 SIF single (out)/multi (in)
D1109 France (in)/other models (out)
D1110 4-step sharpness (out)/64-step (in)
D1111 CTI on (out)/off (in)
D1112 OSD English (out)/symbols (in)
D1116 2 AV inputs (out)/3 AV inputs (in)
D1118 Fine tune on (out)/off (in)
D1119 No sat pack (out)/sat pack (in)
D1120 UHF tuner (out)NHF-UHF tuner (in)
D1121 Ecom (out)/Philips (in) tuner
D1122 Secam L off (out)/on (in)
D1123 PAL/NTSC (out)/PAL/NTSC/Secam (in)
D1124 PAL/NTSC (out)/PAL/NTSC/Secam (in)
noise-coring system then filters random noise from 'flat' parts of the signal where no h.f. information is present. This works well, since noise is most noticeable in areas of the picture that don't change. A peaking circuit finally adjusts the mid- to high-frequency gain, giving the frequency response a boost.

These functions can all be controlled via the I2C bus. Note that the PNR (Picture Noise Reduction) button on the remote control unit activates the noise-coring circuit only when the picture sharpness is set above the mid position. As a result the effect may not always be obvious, especially when a set has been despatched with the sharpness control set below the mid position.

Video Control

The luminance and colour-difference signals finally pass to the TDA 3505 (later TDA4680) video control chip IC303. where they are matrixed to produce the RGB tube drive signals. Switching between the off-air picture and the text, OSD generator and AVI inputs is carried out by this chip. also adjustment of the brightness. contrast and colour levels (under the control of the microcomputer chip). Presets for factory contrast and brightness adjustment are provided: they can be readjusted in accordance with the instructions given in the service manual.

The RGB drive signals for the output stages on panel Y emerge at pins 1,3 and 5 respectively. A feedback input is provided to enable the chip to carry out automatic greyscale correction over the life of the tube. Flashover protection at the output pins is provided by zener diodes that are normally connected to chassis via the service switch. When the switch is opened, the RGB outputs rise and the base of transistor Q402 is earthed, blocking the field feedback and thus stopping the field scan. The resultant horizontal white line can be used to adjust the 'low-light' white balance.

RGB Output Stages

Fig. 5 shows the type of RGB output circuit employed. Cascode circuits are used, the lower transistor (Q365/6/7) in each channel having in its emitter circuit a cut-off control to set the biasing. In addition a drive adjustment preset is included in the R and G channels. Between them these controls enable correct cut-off and white balance to be achieved. The output stages are powered by a 210 V supply derived from the line output stage.

White balance adjustment is straightforward. Operation of the service switch kills the field scan and the RGB signals. The first anode (screen) control on the line output transformer is then turned to minimum to extinguish the horizontal white line across the screen. Connect a highimpedance voltmeter to the tube's blue cathode and adjust the blue cut-off control for a reading of approximately 180 V . Advance the setting of the first anode control until a white line is just visible. Cancel any coloured tint present by using the red and green cut-off controls. With the display restored to normal, adjust the high-lights (if necessary) using a Minotta or similar light meter.

Switch-off Spot Supression

Q354/5 provide switch-off spot suppression. The operation of this circuit makes use of the fact that at switch off the 16 V supply decays faster than the 210 V supply. In normal operation C361 is charged by the 16 V supply, which is also applied to the base of Q354 via zener diode D375 and R380. Thus neither Q354 nor Q355 is conductive. At

Fig. 5: The green output stage and switch-off spot suppression circuits on the c.r.t. base panel.
switch off the 16 V supply decays rapidly, leaving Q354's emitter at a higher voltage than its base. Both Q354 and Q355 conduct, removing the bias from the bases of the upper transistors in the RGB output stages. Because of the high beam currents used with invar-mask c.r.t.s. it's important that the spot suppression works correctly. Otherwise spot burn can very easily occur.

Next Month

In Part 4 we'll look at the audio, scan and remaining circuitry.

Soldering and Desoldering Surface-mounted Components

Part 2

Steve Beeching, T.Eng.

An advantage of the Pace system described last month is that you can start with a budget power unit and one handpiece and add to this as the need arises. 1 was lent a top-of-the-range MBT250 power unit (see Fig. 1) with a selection of handpieces so that I could try each one out and get a feel for its operation.

On Test

The first thing 1 set out to do was to remove some surface-mounted quad flatpack chips - the ones with legs on all four sides. There was a limitation to what 1 could do as 1 didn't have every type of tip ayailable - it was not possible to tell Pace in advance which types of chip happened to be on the scrap boards 1 used for test purposes.

The first i.c. 1 tried was the main system control chip on an old Hitachi VM200 camcorder PCB. It measures 22.9 x 16.8 mm and has 64 legs. The tool selected for this job was the thermopik TP65, which has a suction pad, with the correct tip. I chose this tool because it would not be possible, in view of its size, to lift the i.c. by the surface tension of the solder alone. The tip temperature was set to $300^{\circ} \mathrm{C}$, with a $35^{\circ} \mathrm{C}$ offset to compensate for the effect of

Fig. 1: Front panel, Pace MBT250 power unit.
the large tip. To aid the solder reflow I coated the legs with flux and tinned the quad tip with solder. My first attempt to lift the chip was a failure, as not all the legs had been reflowed. This however illustrated the safe design of the suction pad: it was not strong enough to tear the i.c. off the PCB , letting go so that there was no print damage. My second attempt was successful and, fired with enthusiasm, I searched for another board and had a go at the same i.c., again successfully.

I then used the SX70 solder extractor tool to clean the print and the legs of the chips, then neatly refitted them. Because of possible damage as a result of heat or static charges chip refitting is not recommended, but as these were not working panels I decided to try it out.

To do so 1 first cleaned the board with 'Micro Care' circuit cleaner supplied by Pace. A dispenser with a stiff brush attached is used to squirt the cleaner on to the PCB. The board is then vigorously scrubbed. After wiping off the excess fluid with a paper kitchen towel I brushed some flux on to the print. The i.c. was then placed on the PCB and, to
maintain alignment, its corners were secured with small dabs of solder. The legs were coated with flux and solder was applied from the tip of the IR70 soldering iron: a tip of about 2 mm was used, providing a solder reservoir sufficient for soldering five or six legs at a time. It was very difficult to blob two legs together but, by way of experimentation you understand, I managed to do so. I used the extractor to remove excess solder from the legs and finally tidied up the joints with the soldering iron. Resoldering without blobbing adjacent legs together was achieved because of the relatively low working temperature: the solder didn't short across to an adjacent leg as just enough flowed into the connection. The final result was perfect - as if the chip had never been removed!

I next used the SX70 solder extractor to remove some large motor-drive chips with thick legs. Although the tip wasn't quite the right one there were no problems. I was able to place the tip over the leg so that it went inside. Once the solder melted it started to flow into the tip even before I started the vacuum pump.

A good test of low-temperature working is removal of a plastic connector from a PCB. Using the SX70 solder extractor operating at $300^{\circ} \mathrm{C}$ I managed this with remarkable ease and efficiency - there was not a single burn mark on the connector.

The convenience of having three handpieces in operation together, so that the extractor or soldering iron can be selected immediately, cannot be overstressed.

My next test was to remove a chip from a difficult position. I selected a camera panel with a 44 -pin flatpack chip in a confined space. It was in a screening can with just 10 mm spacing on two sides and surface-mounted components close to the other sides. In this situation simple hot-air equipment is difficult to use as adjacent components are likely to be dislodged. This time I used the IR70 soldering iron with a $12 \times 12 \mathrm{~mm}$ tip. Again the chip's pins were coated with flux and the tip was tinned with solder. After reflowing its legs the chip, with a twist and a lift, came off in the tip.

After cleaning the prunt and its legs I refitted the chip, using the 2 mm soldering iron tip as a reservoir for resoldering the legs. Only two legs blobbed together, where one was a corner leg on a large print land: as heat conduction via the print occurred, the solder bridged. I was able to resolve the problem by using the solder extractor and iron to clean and resolder the leg. As mentioned above, it's very helpful to have both handpieces operational at the same time.

The TT65 thermotweezers make removal of surfacemounted components easy. I fitted two flat surface-mount tips with a width of 2 mm at the blade tips. All that was necessary to remove resistors and capacitors was to grip, heat, twist and lift - almost all in one go! Use of a single iron to remove large surface-mounted electrolytic capacitors has always been a problem because the relatively large PCB pads and component tabs cool quickly. The tweezers again made this easy: grip, wait to heat then twist and lift. The tip temperature with offset was about $300^{\circ} \mathrm{C}$, so there
was no print damage or lifting.
The same tips can be used to remove three-terminal devices. With a transistor the base and emitter can be bridged with one tip while the other is used for the collector. While playing about I whipped transistors off a surfacemounting board as if I was just picking them up.

Some of the time I didn't use exactly the right tip for the job. This illustrates the flexibility of the Pace tools in that the tips are able to cope with a wide range of tasks.

As a Grundig service centre I often encounter leadless quad chips. They are normally fitted in holders but you sometimes find them soldered directly to the PCB. These i.c.s are difficult to remove and even more difficult to replace as the legs fold back on themselves beneath the chip. One way to remove such a chip is to cut each leg with fine cutters. Another is to use the TT65 thermotweezers with triangular tips. Chip removal is the same with all types. Flux the legs, tin the tips and approach the device from opposite corners: clamp with the heated tweezers and lift.

Component Replacement

The technique to use when fitting replacement components is a matter of personal preference. I prefer to flux the legs and print, then apply the solder from a soldering iron tip used as a reservoir. If the finish is not too good the hotair stream from the thermojet TJ65 can be used to make it look neater. My son is much happier applying solder paste from a syringe then using the thermojet hot-air pencil to reflow it. Where there are a lot of surface-mounted components close to an i.c. the use of hot air may not be such a good idea: some of them may go walkabouts!

A problem that can occur when using a temperaturecontrolled soldering iron at such low temperatures is rapid cooling of the tip. I've encountered this before: the soldered joint conducts heat away from the tip and then takes a long time to reflow, if it does at all. The construction of the Pace handpieces along with the SensaTemp system prevent this happening. When heat is conducted away from the tip on its application to the joint, considerable power is applied to the heater to compensate. This is done very quickly, maintaining work continuity, and may not be noticed. It is this ability to maintain a constant low tip working temperature, with an offset to adjust for the larger tip sizes, that makes working at $300^{\circ} \mathrm{C}$ possible.

Test Summary

For general bench use the MBT201 power unit with the IR70 iron and a range of tips to suit your needs, an $\mathrm{SX70}$ solder extractor plus some tips and a TJ65 thermojet hot-air pencil is a good choice. The TT65 thermotweezers or TP65 thermopick and a range of tips could be added where a lot of work on surface-mounting boards is done: in this case however the MBT250 power unit would be more suitable.

As I already have a Weller hot-air pencil I opted for the MBT201 with an IR70 iron, SX70 solder extractor and the TT65 tweezers. While the SX70 comes with a set of tips and cleaning brushes the tweezers had no tips at all! So having spent about $£ 1,000$ on the kit I had to spend another $£ 150$ on tips. Who said you can repair a camcorder for ten quid?!!

Quad Flatpack Chips

We've so far discussed surface-mounted component removal using the least expensive method, cutters, and the more expensive method with specialised tools and tips. There are two problems when shaped tips are used to remove
a quad flatpack (QFP) chip: contact and accessibility.
To remove the i.c. without print damage you have to ensure that the solder on all the pins has reflowed before the physical act of removing the chip is tried. With a large chip that has a considerable number of legs there is a greater chance of damage. And the more legs, such as with a 100 pin QFP chip, the smaller and more delicate the PCB pads will be. With regard to access, once the tool has been placed around the chip it's not possible to see whether all the connections have reflowed: 99 may have done so but one may not. If the tool is then twisted the print will suffer.

The danger is reduced, but not eliminated, when the Pace thermopick or another tip with a small suction pad is used. Unlike the chips used in computers, those used in brown goods products may be stuck to the PCB. This makes it difficult to judge whether a chip has not been fully reflowed or is just stuck.

The method outlined so far requires flux to be applied to the chip's legs and a generous layer of solder tinning on the tip. If the tip or the tinning is irregular, one or more legs may be not fully contacted and therefore not reflowed, and this cannot be seen. Some solder equipment suppliers recommend that with the larger types of QFP chips this reflow problem is overcome by first soldering all the legs together. Then, when a quad tip is applied to the four solder strips, reflow at all the legs is guaranteed. It's questionable however whether the thermal inertia of this relatively large amount of solder is good for the print pads, bearing in mind the extra heat required to remove the excess solder. I have to admit to losing a print pad or two when using shaped tips. So the chance to review the Leister Hot Jet hot-air system was welcome.

Leister Hot Jet System

I am wary of blowing hot air on to high-density surfacemounting PCBs as it's always possible for adjacent small components to go astray. So it was a challenge to be converted to this system.

The Welwyn Tool Co. Ltd. supplies the Leister Hot Jet Rework Station in a wooden case that has a preformed base with compartments to hold the various tools supplied with it. At the rear there's a metal holder for up to eight nozzles. At the front there's a compact PCB holder that consists of a horizontal bar and two clamps. The Hot Jet hot-air blower, for the removal and replacement of surface-mounted components, is on the right-hand side. At first sight it looks large and heavy, but first impressions are not always right: it's in fact deceptively light in use. The blower generator, on the left-hand side, contains the heater, motor and controls. These consist of a small on/off switch, a temperature controller and an air-flow regulator. The mains cable is connected to this unit and the air intake is here.

The Hot Jet blower has a working end that's about 20 mm in diameter and 60 mm long, with an output grill. On to this can be fitted the largest range of nozzles every devised. There are far too many to list. I stopped counting at ninety, but the manufacturers say that there are some 400 in all. Each nozzle (tip! is shaped to suit a particular type of device. For a QFP chip the nozzle has four side vents that match the size of the i.c. During use I found that there's a degree of flexibility here: i.c.s that are a couple of millimetres larger or smaller than a particular nozzle can be successfully removed with it.

The nozzles are made of high-grade stainless steel and are very tough. Unless you run over one with a steam roller or subject it to similar abuse a nozzle will probably last for life. This means that they are not cheap: a $16.7 \times 16.7 \mathrm{~mm}$
nozzle costs about flot. A nozzle hire service could possibly be set up by manufacturers to suit the range of chips they use

Use

In use there is no direct contact with the chip being removed. The method is simple. Hold the tool above the chip with one hand, hold a pair of tweezers in your other hand, watch the solder reflow, then lift the chip off the PCB.

The temperature calibration is not intended to be accurate. You soon learn that a reading of $3 / 4$ on the temperature knob is about right for the average video/audio/camcorder QFP. Air-flow control is excellent - smooth dowr to the lowest setting. At the other end the air flow is very high: it's unlikely that you will ever need this unless you want to clear a PCB of components in a red-hot, howling gale.

In tests I found that a fairly light air flow enabled me to remove a QFP chip that was surrounded by a large number of high-density passive components without any of them going walkabouts. As with all SMD tools there is need for practice and learning takes time.

A nozzle with a small pipe for use as a hot-air pencil is supplied with the work station. It can be used to remove and replace passive components. The hot-air pencil nozzle can also be used, with the solder paste and syringes that are supplied with the workstation, to replace QFP and DIL chips. If the chip is heat-sensitive however it would be better to use the method previously described, i.e. apply flux to the legs then apply solder via a soldering iron as a reservoir. Again it's a matter of what suits you best and the equipment available. I have to say that the Leister Hot Jet works well as a hot-air pencil.

The Leister Hot Jet system from Welwyn Tools is excellent value for money. The complete work station is less than $£ 500$, the blower on its own $£ 243$, both plus VAT. Most QFP nozzles cost about $£ 104$. This rises to $£ 121$ for the type that will deal with chip, whose legs curl beneath them.

In Conclusion

With just a couple of nozzles the Leeister Hot Jet work station will suit as a starter kit for SMD work. It is fair to say that the Pace and Leister equipment complement one another very well. A professional service department that does regular SMD work would do well to consider having them both.

Addresses

For details of Leister equipment apply to the Welwyn Tool Co. Lid.. 4 South Mindells. Welwyn Garden City, Herts AL7 IEH. Telephone 0707 331111 , fax 0707372175.

For details of Pace equipment apply to Pace Europe Ltd., Sherbourne House. Sherbourne Drive, Tillbrook. Milton Keynes. Telephone (0908 277666 . fax 0908277777.

Weller tools are manufactured by Cooper Tools Ltd., Sedling Road. Wear 6. Tyne and Wear NE38 9BZ. Telephone 091+166326, fax 0914179421 .

The Denon SC7000 desoldering tool was described in a previous test report in this magazine, see the August 1993 issue, page 718. It's available, along with Weller equipment and general soldering tools, from Farnell Electronic Components, Canal Road, Leeds LSI2 2TU. Telephone 0532636 311, fax $05.32633+11$.

Next Month in TELEVISION

SERVICING THE HITACHI C2118R/T

These colour sets were launched in 1990. Picture quality is excellent and reliability reasonably good. Like even the most reliable of sets however there are some common problems. Fortunately they are fairly straightforward and can be fixed economically. Mike Leach provides the necessary know-how.

100Hz FIELD RATE DISPLAYS

Flicker has always been a drawback with 50 Hz interlaced displays. Use of a field-store memory enables the rate to be increased to 100 Hz , but there is more to it than just that as Eugene Trundle explains in the concluding instalment of his Modern TV Receiver Techniques series. The field store can also be used for digital noise reduction and to implement special effects such as picture zoom and PIP.

NV QUALIFICATIONS

Dramatic changes are about to take place in Brown Goods industry training and qualifications, with the move to NVQs (National Vocational Qualifications). There is good and bad in the changes as so far proposed and much remains to be settled, but they will affect us all. Joe Cieszynski sums up the present situation.

SERVICING THE HANTAREX MTC9000

Now here's something different - an RGB monitor that's widely used in games arcades. Repairing this type of equipment could provide an additonal source of revenue for the TV service engineer. Peter Hubbard explains what's required.

TOSHIBA SERVICE BRIEFS

More know-how from Toshiba - held over from the May issue because of space problems but definitely to appear next month.

THE PANASONIC ALPHA 3 CHASSIS

There are still some novel aspects of this complex chassis to be covered, including the CCD comb filter system used in some models.

ORDER FORM

To.
(Name of Newsagent)
Please reserve/deliver the June issue of TELEVISION ($£ 2-20$), on sale May 18th, and continue every month until further natice.

Name
Address \qquad
\qquad

CD Player Repairs

Les Austin

My dealer friend John asked me to fix a Pioneer PDZ82M. That same day my elder son arrived with an identical player that belonged to his pal. Probably the spindle motors, I thought: should be a couple of easy repairs. Now those of you with an interest in CD players will know that Pioneer machines and faulty spindle motors seem to go together. At another manufacturer's one-day course I attended recently the technical expert was all too keen to tell us that Pioneer has problems with spindle motors. He did admit, though only in a whisper, that his firm also had problems with spindle motors. So it's not only Pioneer then. What exactly is the problem with those Pioneer motors?

The Pioneer Spindle Motor Problem

The problem is with spindle motor part no. PYY1109. As a replacement, Pioneer now supply motor part no. PEA1233. To the best of my knowledge, it's not possible to distinguish between the two. Models that had the PYY1109 fitted when new include the PDM410/510/610/710, the PDT303, PDX950M, PDZ62M/62T/82M/83M/ 560 T and XDZ53T/63T. There may be others.

As the motor deteriorates, it loses its ability to accelerate to the required maximum speed - about 400 r.p.m. for the innermost part of the track. This is of course where the table of contents (TOC) is to be found. So when you receive the player the ticket will probably say 'dead' or 'will not play'.

The first step to take is to enter the test mode. Do this by pressing the 'test' button then switching the player on. Some models don't have this button: instead you'll find a pair of links marked 'test'. Shorting them together with a screwdriver has the same effect. Once in the test mode press fast forward. This moves the sled towards the outer edge of the disc. Release the button when the sled is at the centre disc position. Next press PGM or, if the player doesn't have this, press the forward track-jump button. This will load the no. I disc, the laser will light and the focus search will begin, hopefully ending up with a locked focus
servo. Press play and the disc will rotate at about 300 r.p.m. - assuming that the motor still has some life in it. When the disc has reached this speed, press pause. This will lock the tracking and spin servos and should produce some nice music. So is there really anything wrong with the motor?

Since we didn't start at the inner part of the track, it follows that the TOC won't have been read. Also, one of the advantages of the test mode, the disc motor has to spin at only 300 r.p.m., which it managed, instead of 400 r.p.m. How do we confirm that the motor is faulty?

The following procedure is recommended by Pioneer. Disconnect the motor leads and connect them to an Avometer switched to its low-ohms range. The motor should rotate and you should get a reading of more than 20Ω. Carefully stall the motor with a finger. Note the new reading, which should not be less than 10Ω. Continue releasing and stalling the motor until you're sure that the reading never falls below 10Ω. If one or more of these conditions isn't met, the motor is faulty. This test method has never let me down. It's not uncommon to get meter readings of only a few ohms: sometimes when you allow the motor to rotate you may get a dead short reading. A PEA1233 replacement motor will almost certainly provide a cure.

Sometimes you find that a player which arrives with a 'dead' ticket will not load a disc or won't unload one that's inside. When you've dismantled the player you may find that circuit protectors ICP30 and ICP31 are opencircuit. This is usually because the motor has a spot with a dead short. The circuit protectors are not fitted in all units.

It's important, when the disc motor has been replaced, to set the turntable height. This is usually for a clearance of 0.9 mm beneath the turntable, but all mechanisms have a moulded-in setting tool. The exact method is clearly explained in leatlet $\mathrm{PGB} / 141$ which Pioneer sends out with replacement motors.

If you are not the sort of ageing engineer who possesses an Avometer you can use the following variation of the above procedure. Connect a 20Ω resistor in series with a 1.5 V cell (D or

R6) and your newfangled digital meter switched to its d.c. range (current). A short-circuit motor will take 75 mA : 10 , 20 and 50Ω readings correspond with 48,36 and 20 mA respectively.

Back to the Faulty Players

So what about my two faulty Pioneer players? The first one had a faulty spindle motor and was easily repaired. Not so the second one.

This one didn't read the TOC but was all right in the test mode. A quick Avo check showed that there was nothing wrong with the disc motor. Back to the test mode and get the machine playing again. This time 1 left it to run for a while. Until, that is, 1 realised that about every forty seconds it jumped back and repeated the music. The sled rail wasn't very clean - it was obviously a heavy smoker's machine, as the colour and smell indicated. So I cleaned the rail with swabs and isopropyl alcohol and tried again. Still the same, and time to check the sled motor.

Using the same procedure as for a spindle motor, 1 initially obtained 50Ω readings. Patient checking revealed an open-circuit spot however. This is the first time I've had a sled motor problem with a Pioneer machine. A replacement, part no. PXM1002, was obtained and I decided to replace the spindle motor at the same time as a precaution - I don't like bouncers.

About twenty years ago I had a problem with a Pioneer motor: new big-end rollers, piston, rings and gudgeon pin cured that one, a Model 600A chainsaw, but I don't suppose that you want to hear about that sort of Pioneer!

A Couple of Aiwas

When I took his Aiwa back John handed me an Aiwa Model DX740 midi unit with a faulty $C D$ section. "The disc spins slowly. I think it's a faulty motor" he said. Next I called in on Stan. He presented me with an Aiwa Model CX800E midi, also with a faulty CD unit. "The disc doesn't spin. I think it needs a new motor" said Stan. It seems that things are coming in pairs at the moment. I didn't have a manual for either of these machines, but thought that l'd be able to do something.

The DX740, actually a DXM740 player, being part of a CX740K system, contained the Sanyo chip set, with an LA9201 r.f. chip and LC7863 processor. The nearest circuit I could find was for a Samsung RCD2500 which has an LA9200 r.f. chip. With this model if you locate pin 22 of the

LA9200 chip and follow through a $10 \mathrm{k} \Omega$ resistor you come to the r.f. test point. I connected the scope to the same point in the Aiwa machine and found a nearby chassis point. After setting the scope to $50 \mathrm{mV} / \mathrm{div}$ and $500 \mathrm{nsec} / \mathrm{div}$ with a $10: 1$ probe, I inserted a disc and pressed play. As John had said, the disc rotated slowly. The scope displayed a low-amplitude, incoherent mess. There was no way that the processor was going to make any sense of that. A laser power meter check produced a reading of some 0.1 mW , about right. but I was not convinced that the Sony KSSI50 laser unit was o.k. I have a good second-hand spare that I use for testing. When I fitted this there was a clean r.f. signal, the TOC was read and I could listen to nice music.

Do you recall my previous comments about the Sony laser units? The KSS210 replacement that arrived cost $£ 24$ and was marked 'made in Singapore'. This unit produced an r.f. signal with an amplitude of about 3 V peak-to-peak. I reduced this to 1.6 V p-p with preset SFR156, which I had correctly guessed was the laser power adjustment. I cannot find a definitive figure, but think this is about right for the Sanyo chip set. By cribbing further from the Samsung manual I was able to complete the adjustments as follows.

E-F balance: Connect the scope to TP13 (signal) and TPI-1 (chassis), set to $50 \mathrm{mV} / \mathrm{div}$ and $2 \mathrm{msec} / \mathrm{div}$ with d.c. coupled 10:1 probe. Use SFR151 to centralise about the d.c. zero axis the waveform obtained during a track jump.

Focus bias: Reset the scope's sensitivity to $10 \mathrm{mV} / \mathrm{div}$, move the probe to TP2-1 (signal) and use SFR155 to set this to +200 mV .

Whenever I work on a player I've not come across before and for which I have no manual, such as this one. I create a single-sheet manual which I place in a loose-leaf file for future use. In this case the player is fed from the mother unit via a 10 -wire umbilical cable. I located the power supply and found that the transformer has $10-0$ 10 V a.c. outputs to pins 1,2 and 3 of the cable. Often I receive a CD player without the mother unit. Having this sort of information on file can save the hassle of getting the rest of the equipment brought along. The fact that this is a symmetrical supply is worth noting: it suggests that the earth reference for the r.f., focus and tracking adjustments will be at true earth level. The Samsung RCD2500 whose manual I'd been cribbing from does not have a symmetrical
supply, so the reference for adjustments is not zero. Moreover the reference for the r.f. adjustment is different from that for focus and tracking. If you don't have the manual and don't appreciate this you'll never be able to align such a player.

Next to the Aiwa CX800E. This time there was a Sony chip set, also another KSS 150 laser unit. The r.f. chip is the CXA1081S, which is quite commonly encountered. My crib this time was the manual for a Goodmans player (model not known but obviously, as with some other Goodmans machines, a Samsung unit with a different label). When I asked it to play the unit tried a focus search but failed to lock. I connected the scope to pin 2 of the CXA1081S chip, using a convenient adjacent chassis point and the settings described for the previous machine, and tried again. There was absolutely nothing to be seen. Time to try my spare laser unit again. Bingo, another successful diagnosis. Order a second KSS210 and set it up as follows.

First check that the r.f. output is $1 \cdot 2-$ 1.5 V p-p - this shouldn't need adjustment. Next use SFR 102 to set the focus bias to +200 mV at pin 19 of the chip, in the stop mode. The same test point is used if you need to adjust the focus gain. This is usually for +100 mV , using SFR104, during play: the waveform should just loose its 'sharpness' (h.f.) and should have a little slow d.c. wobble visible. E-F balance is checked at pin 20 of the chip, using SFR 101 for adjustment. Use the same test point and SFRI03 if the tracking gain needs to be adjusted.

Both John and Stan were hoping for motor replacements. Instead they got laser replacements.

A Kenwood Discman

A little Kenwood discman, Model DPC55, awaited my attention. The ticket said "doesn"t work - repair only if not more than $£ 25^{\prime}$ ". My first reaction was to send it straight back to its owner, but a combination of curiosity and not too many outstanding jobs led me to insert a disc and ask it to play. The result was a funny whirring noise accompanied by failure to read the TOC. I held the machine in my hand, removed the disc and saw the optical unit move quickly to the outer edge. When I moved it so that I could see it better the sled moved back to the inner edge. I realised that gravity was involved here somehow - tilting the machine set the sled off on its unre-
quested traverse. When I dismantled the player I saw that a plastic arm was fixed to the Toshiba manufactured laser unit: this was shaped so that as the traverse worm shaft turned the laser would move across to the required position. But the threads in the plastic had worn away.

Kenwood supplied a replacement, part no. 21 W 8184 , for the princely sum of 39 p. When I fitted it the player worked perfectly. This time the customer got his way - at just £25 (plus VAT of course).

The Soap Bit

And now for the soap, episode one.
I think I was about twelve. I was playing about with the electric kettle plug. It was a Wylex type which, some of you might remember, had a circular central earth pin and two rectangularsection outer pins for the supply. I'd connected it piggyback on to the 15A Wylex plug for the boiler. When I unplugged it I forgot to switch off and, since for some reason the plug's cover had been removed, I received my first real 'grand-daddy' of a shock. You might expect someone so young to be put off electricity for life - I very nearly was, permanently. But like everyone else in this trade I must be just too stupid: I suppose, without realising it, I was getting my first addict's fix.
I continued to get shocks from the loudspeaker grille of our Raymond radio receiver, without knowing the cause. And I played with batteries, bulbs, electric motors and suchlike, never having a clue about what was actually going on. I think I was thirteen when I built the mandatory crystal set: the first sound I heard was Eartha Kitt singing 'I love Paris’ - I can almost hear it now. Next came a one-valve (3 S 4) radio receiver. It was, I seem to recall, a kit that another lad in my class never touched. This was followed by a three-valve kit. It had been bought by my unbelievably rich brother (he was a boy entrant into the RAF, and certainly seemed rich at the time) who had sent for it then left it alone. So I got it working.

A school pal and I then each bought an ex-WD no. 38 transceiver. His worked properly but mine would only receive - and not very well at that. It had cost me all my hard-earned wages as a paperboy. My inadequate skills at servicing were now evident: I never did fix it.

I might have done but I started work, and next came the first of a succession of love affairs. I bought my first motorcycle, and dirty oil-stained hands took over from electric shocks.

Modern TV Receiver Techniques

Part 17: Control and Communication

For many years TV sets managed perfectly well without any form of 'intelligent' internal control. The knobs on the front turned them on and off and regulated what we've now come to call the analogue functions, such as volume, brightness and contrast: originally the actual signal or bias voltage was taken to the controlling potentiometer. Even when cordless remote control began to be used, all that was required at the receiving end was a simple command-decoder chip that could close say eight channel selector switches plus an onoff or standby switch and provide three-four voltage control lines for the analogue functions just mentioned.

Enter the Micro

With the advent of such features as voltage- and frequency-synthesis tuning systems, described last month, and advanced forms of teletext it became essential to provide TV sets with the sort of control system that VCRs had to have from the start. Working with a set of built-in instructions, a microcomputer chip can control and co-ordinate all the TV set's functions in accordance with viewer commands and feedback it receives from within the set. Use of such a chip in conjunction with a memory store enables a comprehensive and flexible control system to be devised, tailored to the set's price, type and features specification.

Microcomputer Basics

All digital computers operate in the same way, whether they are used in a pocket calculator, a missile tracking system or a TV set. The work is carried out by the central processor unit (CPU), alternatively known as an arithmetic and logic unit (ALU), which consists of gates. inverters, adders and some registers to store the results of calculations.

Fig. 1: Internal arrangement of a typical TV microcomputer chip: some of the custom blocks are optional.

Ports are required to enable data to enter and leave the CPU. Operating instructions have to be provided: these are stored in a read-only memory (ROM) within the chip. The ROM, programmed by the chipmaker, tells the microcomputer what to do, in what order, how to respond to the data and

Fig. 2: Basic software program for TV system control.
commands it receives and how to control the system, in this case a TV set, of which it forms a part. A certain amount of random-access memory (RAM) is incorporated - this is the basic difference between a microcomputer/microcontroller chip and a microprocessor - giving the device increased flexibility and in fact making it self-contained as a computing system (though additional external memory, and extra expansion port chips to increase the number of connections to the system, may be required). The internal RAM enables instructions and in-bound/out-bound data to be stored temporarily. Microcontroller chips for use in TV sets and VCRs go further than this, incorporating such things as serial-data interfaces, DA converters, instruction decoders and key-scan generators. On-screen display generators are often included nowadays.

Fig. 1 shows a typical TV microcomputer chip in simplified block diagram form. The internal data is in 8-bit byte form and is shunted around via a main highway that's referred to as a bus. A master oscillator has to be provided to time the control logic. This is called a clock and is controlled by an external crystal. The ROM's program is fixed during manufacture of the chip. One of the masks used during the fabrication of the i.c. does this, giving the chip its particular characteristics - each version of the i.c., distinguished by a suffix number, is made using a different mask at one or more stages during its manufacture. In sets that employ frequency-synthesis tuning, part of the ROM is used
as a look-up table for the standard CCIR carrier frequencies.
A typical microcomputer chip for TV receiver use contains 4 Kbyte of ROM and 128 bytes of RAM: generally eight or sixteen of the 8 -bit registers in the RAM are used for internal working purposes, leaving the rest free for the temporary storage of data. The ROM program configures the input/output ports as required by the setmaker and governs the operation of the internal system.

The Reset

When the microcomputer chip is first powered the data in its RAM and the conditions at its input/output port latches and instruction decoder will all be randomly arranged. Thus something has to be done to prevent the behaviour of the set being unpredictable. This is the purpose of the externallygenerated reset pulse, which is applied after the chip's correct supply voltage has been established. The pulse lasts for several cycles of the CPU's operation and sets the program counter to zero to initialise the operation of the chip and thus the whole of the TV set.

Flowchart

Fig. 2 shows a generalised software flowchart for a TV microcontroller chip, providing an idea of its mode of operation. At switch on the power supply is brought out of standby and the contents of an external EEPROM (electrically erasable and programmable read-only memory) are read, its data with respect to preferred analogue settings and the last programme number being passed to the relevant signal processing chips around the set. The memory has to be erasable and programmable so that preset control settings, channel selection etc. can be changed as required. Nowadays the memory is a non-volatile type, i.e. one that retains its data when the power has been switched off: with some earlier memory devices a back-up battery had to be provided. After this initial procedure the microcomputer chip operates as a control loop, with a main routine (loop A) and several subroutines that are triggered when user instructions arrive.

With sets in which a text decoder is controlled by the main microcomputer chip there are further subroutines for text acquisition and channel change to provide initial page entry etc. In sophisticated sets like these and those that incorporate software setting up (service) data, up to 8 Kbytes of ROM are provided,

Application-specific Blocks

A TV microcontroller chip incorporates, as Fig. 1 shows, application-specific blocks to configure the input/output ports for specific purposes. Six DACs (digital-to-analogue converters) are shown in Fig. 1: they take the form of pulsewidth modulation (PWM) generators whose duty cycle (the relative output pulse on/off times) is set by a binary number that's derived from the EEPROM or a user command. Five of them have 64 possible output levels, corresponding with their 6-bit data inputs. Externally, the PWM outputs are passed to RC integrators that produce the d.c. control voltages required by the sound and video processing chips to set the volume, brightness etc. level. The user keys, local or remote, increment or decrement an internal counter, which takes about eight seconds to go from zero to the maximum count. During this period the chip can if required generate an on-screen display, in bar or dot form, along with a caption. The on-screen display generator shown in Fig. 1 is synchronised to the normal line and field scan rates by the

Fig. 3: Basic key-scan arrangement.
set's sync pulses. The fifth PWM DAC typically operates with a 13 -bit data input to provide 8,192 possible output levels for varicap tuning as described last month.

A very common assignment for one input/output port is the provision of key scanning. This is done to reduce the number of chip connections required for use with an onboard keypad. The arrangement is shown in Fig. 3. An internal key-scan generator produces sequential output pulse

Fig. 4: Key-scan combined with LED drive and strobe. The keys are scanned at about 10 msec intervals.
trains at connections P0 to P3. When a key is pressed, one of the pulse trains is refurned via connections P4-P7 where it's fed to a decoder. This identifies the command, which is referred to the instruction register then processed and carried out. Further economy in pin use can be achieved by arranging for the key-scan port connections to have a dual use. They can be used to drive a multiplexed LED display as well, as shown in Fig. 4.

Other microcomputer input/output connections are arranged as 1-bit input or output status and control lines. Typical inputs are a.f.c. high/low, TV signal identification
and scart pin 8 status for AV switching. Typical outputs drive LEDs, provide audio and/or video muting and control signal routing, TV standard switching and standby operation. If the on-screen display is multicoloured, three output pins are required for R, G and B signals (plus a blanking output pin). Alternatively the OSD generator may, as described in Part 15 (March), be in the teletext decoder chip, under the control of the microcomputer, or a separate char-acter-generator chip may be used.

Another input/output arrangement shown in Fig. 1 is the

Fig. 5: Open-drain 12C bus configuration. In the rest state all the chips present a very high impedance to the data and clock lines.

I2C bus interface. The I2C system can be regarded as the ultimate port-expansion arrangement. It enables a two-track serial data bus to control scores of external chips and hundreds of functions. But before we go on to describe this, let's round up our description of basic TV microcontrollers.

Microcontroller chips are generally powered by a 5 V supply that needs to be held within $\pm 0.5 \mathrm{~V}$ for reliable operation. They are generally fabricated in CMOS or NMOS form, which makes them vulnerable to damage by static charges built up during handling, transportation or use. Reliability is good however, though when a replacement is required it's vital to ensure that the new chip contains the correct (or updated) software, identified by the suffix to the basic type number. So long as the full type number or part number is quoted, replacements should be available from the setmaker or an authorised distributor. Correct operation of a microcontroller chip depends on three vital factors: that the supply voltage is present and within the specified limits, that a reset pulse is provided at switch-on and that the clock oscillator is up and running.

The I2C Bus

Unlike the lines in a true computer system the control lines in a TV set are quiet for most of the time. Thus an eight-track parallel bus system would be hard to justify. It would add greatly to the number of control and peripheral pins required by each chip connected to the system. The board area required for the connections and chips and the wire/plug/socket count would all increase, as would the cost, complexity and risk of failure. The I2C bus provides an appropriate solution. It's a simple two-track system, along which data is sent in serial form.

One I2C line is called SDA (serial data). The other one, which carries clock pulses for synchronisation, is called SCL (serial clock). When the bus is not carrying information both lines are held in the logic one condition by means of pull-up resistors connected to the positive supply line. All the devices linked to the I2C bus must have open-drain or open-collector connections so that the wired-and function
can be used, which simply means that turning on any one (or more than one) device can pull down the line. Fig. 5 shows the basic arrangement.

Addressing

The I2C bus is bi-directional and allows more than one device to be used as the master. The master device starts the data transmission on the bus and generates the clock signals for transmission along it. It addresses another chip which, until the end of the transaction, remains the slave - even though it and the master may be the transmitter and receiver in turns. Thus all the chips that use the bus for communication must have individual addresses: the address for the SAA5241 computer-controlled teletext chip for example is 00100010 . The last bit is the read/write command, zero for write (feed data into) and one for read (extract data from). Thus for data fed to the SAA5241 chip the address is 00100010 while for read out the address is 00100011 . Naturally the microcontroller chip has its own I2C read and write addresses. Storage chips have programmable addresses: the first four bits of the byte are fixed by the hardware while the next three are pin programmable at the chip, the final bit being the read/write indicator. All the data on the I2C bus is in 8 -bit serial form, partitioned off by stop and start bytes.

The addressing procedure is such that the first 8 -bit byte of data sent along the data line determines which slave chip has been selected by the one acting as the master. The most significant seven bits of the byte convey the slave address, the least significant bit indicating whether data reading or writing is required. If two chips try to use the bus as masters simultaneously an arbitration process takes place. This gives priority to the master addressing the slave with the lowest address: when the transaction has been completed, the second master device is allowed to use the bus.

Fig. 6: How 12C messages are started and terminated by the master device.

For each clock pulse on the SCL line there's a corresponding pulse on the SDA line. When the SCL line is at logic one, the level on the SDA line must be stable: thus SDA data can change only when the SCL line is at zero. If the SDA level changes when SCL is high, a start or stop condition is indicated. This is illustrated in Fig. 6.

Thus the beginning of a message is indicated by the master device (whichever chip this may be, usually in practice the microcomputer chip) pulling down the SDA line while the SCL line is high. At this point all chips connected to the bus are alerted in readiness for the first byte, the address word that indicates which device is being called up. All the chips compare the first seven bits with their own addresses. Unless coincidence is found, they go back to sleep. The selected slave chip comes to life and at the eighth bit switches to read or write. On the ninth bit it signals its presence and readiness to the master chip by pulling the SDA line low during a one period on the SCL line. If this
acknowledgement signal is not received by the master it knows that the message is either not being received or that there is no slave at the address used. In either case the master device generates a stop condition (see Fig. 6 again) to terminate the message. Thereafter the bus is free for other business.

The Data Format

Fig. 7 shows the I2C bus data format. Everything is done in 8 -bit bytes: at the end of every byte the master gets an acknowledgement from the slave as just outlined. A message starts with the slave address and the read/write bit, followed by data. The first data byte may well consist of a register address within the slave chip, after which the actual

Fig. 7: I2C data format. When a read command occurs data flows from the slave to the master device.
data that carries the information comes. There is no limit to the number of bytes that can be used for a message. At the end of the transaction, business is terminated by the master generating a stop condition.

Fig. 8 shows how this works in practice. Should the viewer want to increase the picture brightness by remote control, the microcomputer chip detects the request then sets up the start condition and puts on the data line the address of the video-processing chip, say 10001010 , Fig. 8(a), the last bit indicating the write (data in) condition. This is acknowledged by the slave chip, inviting further data. It comes in the form of sub-address 00100010 , see Fig. 8(b), which is the location of the register for brightness data. Acknowledgement comes during the next clock pulse after the 8 -bit word. Finally the data for the brightness level requested by the user is loaded into the selected register,

Fig. 8: A typical 12C bus transaction: (a) start and address data; (b) sub-address for the brightness register; (c) brightness level data.
overwriting the information previously held there. In this case the request, shown in Fig. 8(c), is for maximum brightness which corresponds with 00111111. It's loaded during the eight clock pulses of the word and acknowledged on the ninth. Stof (end of message) is indicated by the master chip releasing the SDA line which goes high during the next SCL line high. The new information in the brightness control data register raises the d.c. voltage fed to the luminance clamp within the slave chip and up goes the brightress level.

I2C Network

Almost any number of devices can be connected to an I2C bus, the main limiting factor being that the bus capacitance per track must not exceed 400 pF . The maximum data rate is $100 \mathrm{kbits} / \mathrm{sec}$ - slower devices and transmission rates can be used. While any chip connected to the bus can take the role of master and address any other chip, most TV chips act as slaves, passing data to the microcomputer only when asked. Some devices are by their nature passive, without any need to send data elsewhere, for example char-acter-generator and video-processing chips. Others have constant two-way communication with the microcomputer

Fig. 9: An I2C bus network. Chips can be omitted or added, and updated, as required. The arrangement shown here would form part of a current highspecification TV set.
chip, e.g. the tuning system, while the EEPROM, though never taking over the role of master device, talks to the microcomputer at switch-on and when a channel change takes place and is addressed during set-up and memorisation. In some sets the EEPROM data is regularly sent to appropriate slave registers during normal operation. A typical I2C network in a modern TV set is shown in Fig. 9.

I2C Developments

The I2C system, which was devised by Philips Components, has been very successful and is popular with setmakers both within and beyond Europe. The latest generations of I2C chips have an increased data rate capability of $400 \mathrm{kbits} / \mathrm{sec}$ and an address word upgrade, which is compatible with earlier designs, to ten bits. This enables up to 512 bi-directional or 1,024 passive chips to be connected to the same bus system.

Remote Control

A remote control system has to use serial data because the link between the transmitter and the receiver is via a beam of infra-red (IR) radiation that's switched on and off.

Handset Circuit

A typical IR remote-control transmitter employs a circuit like that shown in Fig. 10. The chip is a low-voltage device,

Fig. 10: Typical remote-control handset circuit. All modern RC transmitters operate on the same principle.
powered by a 3 V battery. In the quiescent state it consumes less than $10 \mu \mathrm{~A}$. When a key is pressed one of pins 13-20 goes low and the oscillator, based on the 455 kHz ceramic resonator connected to pins 2 and 3, starts up. As a result, scanning pulses appear at pins 5-12. Depending on which key has been pressed, one of pins 13-20 receives a key-scan pulse which is decoded and then passed to the instruction encoder to produce the appropriate code to apply to the modulator. The 455 kHz clock frequency is divided by twelve in the timing section to produce a 38 kHz carrier for the modulator.

The circuit connected to pins 4,21 and 22 of the i.c. sets the transmission code: it's programmable by means of hardware (wire links, diodes or a slide switch) connected to pins 4 and 21 , setting the code for the type of receiver with which it is to be used, while the $10+$ and $20+$ channel selection keys operate via pin 22 to set the sixth bit of the func-tion-code byte to one (more on this below).

The chip's output, at pin 23. drives $\operatorname{Tr} 1$ and Tr 2 on and off, pulsing the GaAs IR-emitting LED Dl. The peak current is over 1A, and up to four such LEDs may be used in a single handset. Such a current cannot easily be provided by the small batteries used, but the large reservoir capacitor C3 helps out. As the pulse duty cycle is short however the average current demand when the handset is operated is only $14-20 \mathrm{~mA}$.

The IR Link

The wavelength of the IR carrier is about 940 nm . Typically the -6 dB beamwidth of the LED is 60°. The control range is about 12 m on the beam's axis, some 8 m at 45° offbeam.

Precautions must be taken at the receiving end against the many forms of interference present: incandescent and fluorescent lamps, sunlight and heat sources all produce outputs in the 940 nm band. The first line of defence is a low-pass optical filter that's placed in front of the photodetector diode. As Fig. 11 shows, the photodiode current is modulated by the IR radiation, the wanted signal being selected by a sharply-tuned LC filter that's resonant at 38 kHz . An IR preamplifier chip is mounted close to the photodiode: the tuned amplifier can provide a gain of over 100 dB and has a wide-range a.g.c. loop. The slicer/limiter in the chip produces a clean, squarewave output for the microcomputer chip.

The remote-control pulse train is generally fed to the latter's interrupt input pin. The appearance of the first (start) pulse diverts the microcomputer chip from whatever it's doing and routes the following data to the remote-command decoder's input register.

IR Command Codes

There are many ways in which the IR data can be arranged to provide coded commands. Generally, pulseposition modulation is used. Each pulse consists of a burst of the 38 kHz carrier, with a spacing of say 7.6 msec representing one and 5 msec zero. The first byte in the data stream is a custom code that identifies the make, group and type of equipment being addressed. The next byte conveys the

Fig. 11: Typical remote-control receiver arrangement.
control data. These two bytes are repeated continually, at intervals of about 100 msec , while the key is held down.

Typical codes may include a.g.c. and corruption check systems. With Philips RC5 codes a digital one is represented by a rise in potential during a one-bit period while zero is represented by a similar fall. Transmissions begin with two start bits to set the operating point of the a.g.c. circuit in the IR receiver. These are followed by a control/toggle bit that indicates the start of a new transmission. Next come a 5 -bit address and a 6-bit command. A coding system used by Toshiba and Panasonic amongst others commences with a start pulse which is followed by custom and data codes in normal and inverted form: this provides a simple corruption check by inverting all the bits in each byte and comparing

this with its predecessor. An alternative, later format uses 48 bits per message: in theory it can cater for four billion different product codes! With this format the final 8 -bit parity code is used for truth checks by the microcomputer chip.

Variants

The more exotic types of handset all use the technologies we've described in this and the previous instalment. Switchable (VCRI/VCR2/TV) units have programmable digits in the address word. Bar-code scanners log the digital code picked up from the paper, store it in an internal register and transcode it to produce IR commands. 'Learning' handsets store the sampled code in a sustainable memory and then use it as necessary. 'Universal' remote-control units, and the VideoPlus stand-alone unit, contain a vast range of control codes in a ROM: once the right code has been found and locked in (usually by trial and error) the appropriate section of the look-up table is thereafter used. With the VideoPlus unit every combination of date, time, programme length and channel is given a unique code consisting of up to seven digits. These are published in the programme guides, banged in by the user and then translated, when the moment comes, into IR coding by reference to a ROM look-up table that's separate from the one which determines the custom code.

The type of handset that offers LCD programming for timed VCR recordings incorporates an on-chip LCD segment decoder/driver and a 'long' register in the handset chip, with a corresponding decoder chip at the receiver. A typical stored data stream, released when the transmit key is stroked, starts with the usual custom code and truth check then provides a date byte, mode byte and a day/week byte to
indicate timer, daily/weekly cycle, clock mode and programme number. The following five bytes convey channel and stop/start time data. Subsequent byte groups carry similar data for the other programmed events as necessary. On receipt by the microcomputer the data is decoded for display (user confirmation) then logged in protected memory for release (perhaps along an I2C bus) when coincidence between real time and memorised start time is detected.

Next Month

In the next instalment we'll be taking a look at digital picture processing, mainly in relation to 100 Hz flicker-free displays.

CORRECTION AND SERVICE TIP

CD Player Casebook, page 435, April: Nick Beer tells us that as a result of computer corruption the Sony CDX5080 fault report was incorrect as published. The error display was ER4, not ER\$. This indicates a focus problem, not low output from the laser unit, though checks proved that the laser's output was in fact low.

Ferguson ICC5 Chassis: With reference to David C.J. Tilley's letter (April, page 396) Nick Beer points out that if the PIN is not known the child lock can be released by pressing the four fastext buttons on the handset in sequence, holding the last, yellow one in for four seconds.

VCR Clinic

Toshiba V110B

If the machine won't take in a cassette (no capstan rotation) check whether transistor TT68, type BC557, is opencircuit.
P.B.

JVC HRD640

If the machine is dead with 'Set Clock *' in the display the child lock is set. To clear it use the remote control handset to send a power-on command - the customer did send you the remote control unit, didn't he?
P.B.

Sharp VCH84

This is a newish machine that boasts a single-chip (TB1204F) Nicam decoder. Unfortunately for most of the time the output from the right-hand channel was lost in a sea of crackle and hiss. Resoldering a bad joint at pin 24 of the TB1204F wonder-chip IC1701 restored good sound.
E.T.

Mitsubishi HSB31/41

This machine would be brought into the workshop about once a month with its mechanism jammed in the fully-laced position. One touch was sufficient to release it, after which the machine would be o.k. for another month. The mode switch can cause this but had already been replaced. Cleaning, degreasing and then lightly lubricating the loading mechanics, including the half-loading arm pivot, joint gear, main cam and the vertical shafts that carry the pinch roller and pinch roller spiral cam, provided a permanent cure. E.T.

JVC HRD830

This was a strange and unusual fault! The capstan motor would rattle and roar in the play mode, the playback picture showing that there was no capstan phase lock (noise bars cycled over the picture at a rate of about three a second). If the CTL pulses were removed - by playing a blank tape, lifting the tape from the ACE head or shorting out the CTL head winding - the motor would settle down. After a long search we found that C405 in the servo circuit was leaky - it read about 800Ω.
E.T.

Akai VS22

The design of the power supply section of this machine is not of the best. As they age, we are getting lots of these VCRs in for repair with symptoms that range from ripple, hum and interference on the picture to intermittent and 'weary' deck operation or complete loss of functions. Akai can supply a reasonably-priced replacement PSU board, part no. 99002209 , but I find it less trouble to replace all the electrolytics on the board. There are lots of them, but they are small, inexpensive ones. No machines have bounced after this treatment.
E.T.

Hitachi VT520

Printed flexible ribbons are used to link the tape-end sensors to the main PCB in this model. A common cause of prob-

Reports from Philip Blundell, AMIEIE, Eugene Trundle, John Edwards, Richard Newman, Mike Leach, Michael Dranfield, Dave Mackrill and Keith Evans

lems, mainly concerning the end sensors, is poor contact with the edge connector at one end or other of a ribbon. The usual symptom is failure to accept a cassette or retraction of the cassette after ejection; or alternatively deck shutdown a few seconds after entering the forward mode. The cure is to clean the connectors and ribbon ends.

We are now starting to find worn audio/control heads in these machines. The first indication of this is loss of capstan servo lock with a machine's own recordings.
E.T.

Philips VR6470

There was no i.f. output from the tuner. Checks showed that the tuner and SAB3036 CITAC chip supply voltages were o.k. but the tuning voltage remained at zero. 33 V was present at pin 9 of the CITAC chip but there was no output at pin 8 . As the I2C bus lines were o.k. we changed the chip. That did the trick, and the tuning points were still stored in the memory - all four channels were available straight away.
E.T.

Amstrad VCR6000

If the complaint is that the machine keeps changing from SP to LP at random, replace the 14DN363 chip IC402. It's the control pulse amplifier. If the customer complains that the sound is also poor, suspect the audio/control head. Mind you, it could be both!
J.E.

Panasonic NVJ35/G Deck

This G deck machine came in with a jammed mechanism. Thanks to Nick Beer's excellent article on the deck (May 1991) I now rebuild them with confidence. It's important to check the rack assembly on the right-hand cassette housing side. With the arm in the down (horizontal) position, the arrow on the nylon gear should line up with the one on the rack. If it's out by just one tooth you can get nasty crunching noises when ejecting the cassette because the switch on the side piece is in the wrong position and the capstan motor isn't switched off in time. As a result it tries to force the housing beyond its stop, crunching the gears. This occurs with any machine that uses the G deck.

With this particular machine the rack was two teeth out. This is the reason why a complete rebuild was required.
The right-hand side piece is also prone to damage: it's available as a complete assembly.
R.N.

Philips VR6542

This Sharp based machine was in permanent rewind. After checking the light sensors I removed the cam assembly to get at the mode switch and found that it had fallen apart. When a new mode switch had been fitted the machine would wind and rewind but wouldn't play as the capstan refused to turn in this mode. I made various checks and was beginning to suspect the system control chip IC801, though I've never known one of these to fail.

There were some peculiar voltages around pins 25-28they were varying slightly up and down. A look at the print
side of the board showed that these pins are covered with a piece of sticky foam that's used to isolate a couple of capacitors from the PCB. I decided to remove the foam to check whether the chip's pins were dry-jointed. They weren't, but when I checked the voltages at pins 25-28 they were now correct. Not only that, but the machine now worked. I looked at the piece of foam and checked it with a meter: it had a resistance of a few $k \Omega$!

There was another fault with the machine: the counter didn't work (though pulses were present) and it wouldn't change channels. The cause? You've guessed it! A similar piece of foam fitted to the back of the front control panel. Once this had been removed the machine worked perfectly.
R.N.

Samsung SI1260

This machine could be switched on and produced normal displays. It wouldn't respond to any key operation or accept a tape however. IC206 has given trouble in these machines, so voltage checks were made here. A low supply voltage led us back to D212 (1N4001) which was open-circuit. Normal operation was restored after fitting a replacement. R.N.

Saisho VR905S

This ageing machine produced very poor E-E and recorded pictures. It gave the impression that there was an a.g.c. fault somewhere in the i.f. strip. This turned out to be the case: when heat was applied to $\mathrm{C} 10(0 \cdot 47 \mu \mathrm{~F}, 50 \mathrm{~V})$ on the i.f. panel the E-E and record pictures were o.k. All was well after fitting a replacement capacitor.
M.L.

Philips VR6460

The display lit but there was no other operation. If the machine was powered up it would immediately shut down. There was also no capstan motor shuffle when the mains voltage was applied. As a tape couldn't be inserted, I started by making some cold checks in the power supply. Basically the 12 V supply was missing, or rather it was being dragged down to approximately 1.2 V , because of a short on the audio board. The cause turned out to be C2024 (330 $\mathrm{F}, 16 \mathrm{~V}$) which was very leaky. Replacement of this item cured the power supply problem and restored normal operation. M.L.

Hitachi VTM830E

The customer's complaint was of not being able to get a tape out and poor pictures. As an aside, why is it that when a customer complains about failure to eject tapes there's hardly ever a cassette inside the machine? I think we all know the answer to that one! Anyway, back to the fault. The loading was very slow, and when the cassette had reached its down position in the carriage the machine immediately started a slow rewind. We connected it to a monitor and found that a very bad hum bar was present in all modes. The cause was traced to $\mathrm{C} 857(4,700 \mu \mathrm{~F}, 25 \mathrm{~V})$ on the power supply panel. It had become very leaky. A replacement restored normal eject operation without having to dig the cassette out with a screwdriver or whatever else it is that customers use!
M.L.

Ferguson FV43H

There was intermittent loss of the signals from the tuner, leaving only snow. As fitting a replacement tuner (very expensive) failed to provide a cure further investigation was carried
out. This showed that during the fault condition the 5 V supply to the tuner's internal prescaler dropped to 2.5 V . No single component in the 5 V regulator circuit seemed to be responsible for this, so to be on the safe side we replaced the lot Q2, R7, D4, C16, D3 and C15. This cured the fault. M.Dr.

Toshiba V110

This machine was dead with no 12 V standby supply. We found that resistor RPI4 in the power supply was hot: well it would be with a dead short across the 12 V rail. The cause was the 15 V zener diode DP011, which is connected across the 12 V line to provide protection in the event of TP03 going short-circuit. A check showed that TP03 was all right, and a long soak test brought no other possible cause of DP011's failure to light.
M.Dr.

Ferguson 3V29/30/JVC HR7200/7300

One of these machines intermittently refused to load. All the usual things - the load switches, sliding plate under the supply reel and of course the loading motor and belt - were checked and it was only when, in desperation, I was about to replace the complete loading block that I noticed several broken strands on one of the motor leads. Presumably it had become fatigued over the years, during successive belt changes, reducing the motor current.

I find that with these machines it pays to remove and inspect, with a magnifying glass, the mechacon panel: you will usually find several ringed and crystalised joints. Resoldering these will prevent a number of confusing, intermittent fault symptoms.
D.M.

Sharp VC750HM

Our friend Malcolm reported that the playback picture would sometimes disappear, leaving a fuzzy display. He said that initially the picture would return to normal when he tapped the top, front left-hand side of the machine. More recently he'd found it necessary to place a house brick on the right-hand side of the metal case, with a 3lb club hammer on top of that! As this no longer restored normal operation and no amount of banging, thumping or leaning on the case would do the trick he decided that it was perhaps time to seek professional assistance.

When I checked the machine with a test tape it worked normally for some time. Then, during an assault on the righthand corner of the case, the display suddenly disappeared behind a sheet of noise. I whipped off the top and tapped the f.m. preamplifier can at the rear of the lower drum assembly. As this brought the picture back I removed the module and found that all the connections to plug ZA, which fits on to the lower drum, were fatigued. The soldered joints had fractured, leaving a ring between the pins and the print. After resoldering these and the connections, which appeared to be almost as bad, to plug XA none of Malcolm's efforts would bring the fault back. He departed happily with the poor old machine tucked under his arm.
D.M.

Sony EVA300

We don't see many of these very nicely engineered Video 8 machines so there was some headscratching when this one appeared with an inoperative cassette compartment door. On a hunch, and without the aid of a service manual, we checked a couple of the more obvious circuit protectors (PS101 and PS102) mounted at the rear of the top PCB. The N 5 value protector was open-circuit.
K.E.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

 0.80
2.70
0.72
0.54
0.36
0.26
0.09
0.21
0.14
0.17
0.17
0.72
1.00
0.26
0.51
0.14
3.51
0.11
2.46
1.87
0.22
0.71
0.85
1.48
1.27
0.85
0.36
0.36
0.31
0.31
0.33
1.43
0.12
0.34
0.24
6.01
0.99
9.99
3.05
0.43
0.31
0.68
0.52
0.36
5.44
1.53

 BF8959
BF960
BF966
BF970
BFR39
BFR41
BFR90
BFR90A
BFR91
BFR96
BFW92A
BRX85
BFY50
BFY51
BR100
BRI01
BR103
BR303
BRX44
BRYS6
BSS38
BT120
BIT29
BT13960
BT151/50
BT15180
BU05
BU208A
BU2080
BU326A

 0.27
0.46
0.20
0.78
3.06
0.21
0.21
0.34
0.14
0.43
0.29
0.39
0.30
0.17
0.21
3.83
3.44
2.17
1.49
7.05
0.13
0.17
6.45
1.95
5.04
0.98
2.81
3.46
3.43
2.12
9.48
5.49
1.89
3.56
1.87
2.03
5.98
2.62
2.63
2.52
1.61
2.63
2.33
4.86
10.46
9

 SS 2 SG
SG6
SGS
SKE
SKE
SKE
SLI
SL1
SL1
SL4
SL4
SN2
SN
SN
SN
SN
SN
STA
STA
STA
STK
ST
SI
ST
ST
ST
 11.00
10.62
18.79
6.93
0.97
0.87
1.68
1.57
1.70
8.54
1.70
2.64
1.99
0.38
7.99
1.07
2.20
1.70
2.54
4.10
2.80
12.04
7.11
7.40
9.75
10.58
7.19
8.88
7.79
12.46
8.21
9.51
13.20
15.97
12.46
5.98
1.70
10.58
5.92
14.43
11.17
11.29
15.46
15.78
6.35
59.15

 TOA9503 2.13

SPECIAL OFF
 ERS
 - ENDS 30/05/94 OR WHILE STOCKS LAST

BU208A $\times 5$	3.99	TDA 3654×2	2.50
BU 426A $\times 5$	3.75	TDA 4601×2	2.55
BU 508A $\times 5$	3.60	STR 54041×2	6.00
BU 508AF $\times 5$	5.00	STANDARD VIDEO SENSOR LAMP $\times 10$	2.50
BUT 11 AF $\times 5$	3.25	STANDARD VIDEO SENSOR LAMP	
TVFAULT FINDING GUIDE	9.99	+ PLUG $\times 10$	4.00
VIDEO FAULT FINDING GUIDE	9.99	VTIIE ETC. BELT KIT $\times 5$	5.50
SATELLITE FAULT FINDING GUIDE	14.95	3V29 ETC. BELT KIT $\times 5$	4.50
CO AXIAL AERIAL PLUGS $\times 25$	3.75	3V35'6 ETC. BELT KIT $\times 5$	4.25

2SA1175	0.25	$2 S$	2.31	AD161	1.02	BC3078	0.06	B0x32	1.70	Bu705	1.61	HM7103	16.44	MPSAA2	0.23	STK5326	6.76	TBA120	0.53	TDA261.A0	2.57	3555	87
2SA1186	1.20	2SC3156	6.61	40162	0.96	BC308	0.11	BDY20	2.13	BU806	0.82	1 CH 281	0.26	MPSA56	0.12	STK5331	2.31	TBAI20AS	0.90	TDA2540	4.13	UC3844	4.19
2SA1208	0.34	$25 C 3182$	2.49	AF124	0.71	BC308A	0.09	BF115	0.41	BU806A	0.80	K22101	0.83	HPSA93	0.09	STK5332	2.99	ibalzos	0.89	TDA2652	14.32	UPABIC	1.12
2SA1265	2.96	$2 \mathrm{SC3225}$	0.50	AF127	0.71	BC308C	0.06	8F179	0.31	BU80796	0.51	K8108	0.47	Mr854	0.65	STK5333	12.63	ibalzot	0.51	TDA2653A	3.26	UPC1181H	6.80
2SA1286	0.55	$25 C 3795$	1.95	AF139	0.29	BC327	0.10	BF184	0.41	BU826A	2.40	KSR1004	0.09	MSM5840H	15.36	STK5372	3.40	[BA]20U	0.39	TDA2680	5.10	UPC1182H	5.95
254473	0.71	$2 \mathrm{SC380}$	0.12	AF239	0.43	BC3278	0.17	8F185	0.29	BU908	1.17	1200 CV	2.19	MVS240	0.53	STK5421	2.60	TBA2800	3.30	TDA3190	1.27	UPC 1185H	10.20
2SA562	0.17	2SC388A	0.59	AF279	0.34	8C328	0.01	BF194	0.22	BUK444	2.38	LA1201	0.56	NE5458	3.20	STK5422	6.38	tBA395	0.68	TDA3190P	1.36	UPC1188	3.83
2 2SA634	0.54	2 2C458	0.10	Al 102	6.35	BC337	0.19	BF196	0.15	BUT11	0.89	LA1230	1.95	NE555	0.21	STK5451	5.77	tBa520	0.85	TDA33008	20.88	UPC1212C	0.83
2SA639S	0.83	2 2C536	0.14	AN3821K	1.23	BC3371	0.22	BF197	0.34	BUTILA	1.95	LA1385	2.51	NE555N	0.37	STK5466	5.66	tBa540	1.97	TDA3330	10.78	UPC1228HA	0.56
2SA673	0.09	$25 C 710$	0.12	AN5265	1.75	BC338	0.06	BF198	0.17	BUTILAF	0.85	LA3161	0.40	NE592	1.85	STK5471	4.87	TBA5400	0.71	TDA3541	0.95	UPC1230	2.82
2 2SA684	0.60	25C867A	5.25	AN5435	1.45	BC368	0.25	BF199	0.04	BUTI2A	1.13	LAA140	0.37	NE646N	3.39	STK5476	5.00	tBA560C	2.02	TDA3560	3.65	UPC1230H	3.95
2 2SA33	0.17	$25 C 945$	0.12	AN5512	1.83	8C369	0.17	8F200	0.39	BUT56A	1.19	LA4182	1.75	NP1106	11.86	STK5481	7.55	tBa570A	1.17	TDA3561A	4.79	UPC1278H	2.66
2SA769	1.27	2S01051	0.48	AM5515	2.79	BC372	0.62	BF240	0.11	BLWII	0.99	LA4192	1.59	DA47	0.25	STK5482	6.41	TBA65!	1.01	TDA3562A	4.91	UPC1318	2.96
2 2A798	0.56	2501128	1.02	AN5521	2.14	BC546A	0.06	BF244	0.43	BLWILA	0.90	(44220	W/	da90	0.59	STK6962	4.91	tBa7500	5.10	TDA3565	2.85	UPCI335V	3.91
258872	0.14	2501138	0.94	AN5612	4.15	BC547	0.11	BF245A	0.19	BUWAIB	1.02	LA4261	2.29	DA9]	0.15	STK7216	7.28	tba800	0.51	TDA3566	3.40	UPC1351C	1.70
2SA872A	0.28	2501207	0.35	An5900	1.4	BC547A	0.04	BF2458	0.41	BUW81A	2.29	LA4270	2.13	R2540	2.98	STK7226	8.14	tbabiop	1.66	TDA35718	3.40	UPC1353	1.34
2SA940	0.82	2501265	0.71	AN6310	4.69	BC5478	0.11	8F255	0.11	BUW84	1.11	LA4282	2.65	R2540X	1.92	STK7308	5.50	TBA810S	0.66	TDA3576	11.90	UPC1363C	1.06
2 2S952	0.17	2501273	1.14	An6326	5.08	BC548A	0.29	BF256	0.24	BUX84	0.4	LA4422	1.36	R2M	1.15	STK7348	4.91	TBA820	0.85	TDA3640	5.92	UPC1363CA	2.13
2 2A958	1.4	2501275	0.88	AN634]	3.20	BC5488	0.18	BF2561.	1.67	BUX85	0.92	LA9440	2.40	R3297	6.06	STK7356	8.31	tBa820L	0.55	TDA3650	11.11	UPC1365C	1.70
$2 \mathrm{SA966Y}$	0.41	2501276	0.85	AN6610	0.93	BC548C	0.12	BF257	0.36	BUZ71	0.52	LA4445	1.61	R4050	2.38	STK7358	5.81	TBA820M	0.4	TDA3653AD	1.92	UPC 1378	2.52
$2 \mathrm{SA970}$	0.36	2501279	7.62	AN6671K	8.66	8C549	0.11	BF258	0.04	8 Br 127	0.17	LA4460	1.48	R4051	3.18	STR1096	4.67	tBA920	2.75	TDA36538	1.86	UPC139]H	0.52
2 2SA984	0.38	2501292	0.41	AN7158	3.30	BC556B	0.15	8F259	0.31	8 Y 133	0.08	LA446]	1.48	R8156	2.24	STR40090	8.71	TBA950	1.68	TDA3654	1.89	UPC1394	1.55
2581010	0.34	2501308	0.94	AN716:	3.56	BC557	0.01	8F324	0.12	BY164	0.67	144475	3.09	RGP15	0.41	STR4090	16.36	TBa970	4.88	TDA3810	2.55	UPCIA20CA	1.69
258546	0.94	2501397	1.89	AN717JK	4.68	BC5578	0.06	8F337	0.34	BY179	0.80	LA4476	2.79	RGP15]	0.35	STR4211	4.72	tcazios	1.03	TDA4420	1.21	UPC1488H	1.78
258633	1.31	2501398	2.13	BA145	0.11	BC557C	0.11	8F338	0.43	8Y184	0.42	LA4500	2.17	RGP30M	0.30	STR440	11.54	TCA440	2.73	TDA4427	3.18	UPC2002	2.08
$2 \mathrm{SB643S}$	0.29	$2 \mathrm{SD1426}$	2.54	BA156	0.06	BC5588	0.06	BF355	0.48	$8 Y 206$	0.20	LA4505	2.52	RM1IC	1.11	STR441	15.95	TCA6608	0.43	TDA4442	3.49	UPC324C	4.03
258644	0.34	2501427	2.89	BA157	0.07	8C559	0.11	BF392	0.23	$8 Y 207$	0.18	la4508	2.29	\$2000AF	1.46	STR451	15.13	TCA8000	1.65	TDA4500	4.66	UPC4558C	0.65
258688	1.61	2 S01432	4.88	8 8158	0.07	${ }^{8 C 560 C}$	0.21	BF393	0.17	$8 Y 210400$	0.19	La4520	1.49	\$2055AF	1.81	\$TR50020	9.02	тCA910	1.21	TDA4501	5.08	UPC574	1.07
2 SB772	0.43	2 SO1439	3.05	BA!59	0.25	8C635	0.19	8F422	0.19	$8 Y 224600$	5.10	La4700	4.27	2530A	1.98	STRS0103	6.92	TCa940	3.40	TDA4503	3.38	UPC580C	2.55
2587720	0.43	2501453	1.87	BA317	0.19	BC637	0.15	BF423	0.14	8 P 226	0.16	LAS112	5.89	SAA1004	W/	STR54041	5.99	TD3F900H	6.51	TDA4505E	4.54	UPD1937C	3.15
258793	0.43	2S01497-0		BA318	2.03	BC639	0.14	BF435	1.97	8 Y 227	0.14	LA5512	0.61	SAA1121	11.22	STR5412	6.15	TDA 1004 A	4.35	TDA4600	2.29	$\times 0065 C E$	2.20
258819	0.48		8.03	BA5102A	2.00	8C640	0.06	BF450	0.19	8Y228	0.38	LA7223	2.54	SAA1174	5.10	STR58041	6.35	TDA1011	1.21	TDA4600/2	2.72	$\times 2402$	4.62
258861	1.10	2SD1497-		BA536	2.00	8C879	0.38	BF458	0.30	8×229	1.64	LA7520	2.15	SAA1250	2.92	STR6020	10.15	TDAL011A	1.41	TDA460020	3.54	2PY120	W/
258891	0.52		7.06	BA5406	2.12	BC880	0.38	8F459	0.29	8Y229600	0.92	LA7800	1.4	SAA1251	6.30	STR6020	15.05	tDal013A	1.56	TDA4600F	1.70	TX650	0.51
$25 C 1008$	0.24	2S0154]	5.56	BA6109	1.85	8CY70	0.07	8F469	0.34	8Y229800	1.02	LA7801	1.27	SAA1351	8.23	T6064V	2.63	TDA1015	1.31	TDA4601	1.80	[1x753	1.12
$25 C 1061$	0.83	2501555	2.80	BA6209	1.46	80131	0.28	8F470	0.33	8 Br 238	0.31	La7820	2.11	SAM3027P	7.62	T6076V	5.45	TDA1020	1.21	TDA46010	2.42		
$25 C 1096$	0.50	2501577	4.64	B46219	1.76	80132	0.21	BF480	1.10	8 Z 255	0.14	La7830	1.27	SAM5010	4.60	T9013V	9.33	TDA 103558	4.15	TDA4605	3.00	OVER	
$2 \mathrm{2Cl114}$	1.16	$2 \mathrm{SO1649}$	2.03	${ }^{\text {B46222 }}$	1.61	80135	0.33	BF493S	N/	8 Y 298	0.15	LM1303N	0.88	SAA5012	4.85	T9034V	1.45	TDA1035T	1.87	TDA4950	1.71		
2 2C1162	0.31	2501650	2.47	84656N	0.84	80136	0.20	BF597	0.16	BY299	0.19	LM1877	1.45	SAA5030	6.42	T9035V	1.50	TDA1037	8.50	TDA 7240 A	2.36	,00	
$2 \mathrm{SC1213}$	0.14	2 2S1876	6.07	8A718	0.71	80137	0.45	BF757	0.43	BY476A	0.68	LM317T	0.52	SAA5050	0.49	T9038V	6.09	TDA1044	1.43	TDA7270S	10.17		
${ }_{2 S C 124}$	0.44	$2 \mathrm{SD1877}$	2.12	BASII	W/	80139	0.41	BF758	0.32	BYO14]	0.31	LM324N	1.48	SAB3013	5.81	T9053V	0.92	TDAI060	1.73	TDAB140	2.38	DIFFERE	ENT
2SC1306	1.16	2 SO 1911	5.06	8aV18	0.07	80140	0.24	8 F 759	0.36	8Y0336	0.68	LM339N	0.15	SAB3021	6.15	T9054V	1.65	[DA1082	4.25	TDAB153	3.61		
$2 \mathrm{SC1318}$	0.19	2 SO234	0.89	bavzo	0.26	80168	0.76	8F760	0.24	BYO33)	0.21	LM358	0.60	SAB3035	6.35	T9064	1.39	TDA1083	1.19	TDAB170	2.58	EVIC	
2 2C1364	W/A	250313	0.56	BAV21	0.19	80175	0.29	B7762	0.29	BrVi0-40	2.20	LM358N	0.42	SAF1032P	11.11	T9065V	6.06	TDA1151	0.51	TDA8180	4.87		
$2 \mathrm{SC1384}$	0.34	2S0350A	1.1	BAW62	0.17	B0179	0.34	BF869	0.25	BYV95C	0.4	IM380N	1.03	SAF1039	2.44	TA7063P	1.14	TDA1170	1.95	TDA8190	3.30	N STO	OCK

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Nick Williams, John Edwards, Geoff Fardon, Brian Storm, Terry Lamoon, Richard Newman, Nick Beer, Michael Dranfield and Chris Watton

Philips CP90 Chassis

For a dead set with no standby LED or channel indicator display, check for oscillation at pins 31 and 32 of the TMP47C432 microcontroller chip IC7840. If there's no oscillation check C2934 and C2935 (both 27pF) which can become leaky.
P.B.

Toshiba 219T9B

For a dead set with the STR54041 chopper chip IC801 in the power supply inactive, check for 5 V at pin 6 of connector P587. If this is missing R843 (15S) is probably open-circuit. Note that it's a safety resistor.
P.B.

Philips 2A Chassis

For a dead set with the over-voltage thyristor firing, check whether C2698 $(4.7 \mu \mathrm{~F})$ is open-circuit.

For field cramping at the bottom of the picture, replace C2575 (4.7 $\mu \mathrm{F}$).

If the problem is ragged verticals and the 140 V h.t. supply is low, replace the h.t. reservoir and smoothing capacitors C 2697 and C 2701 . They are both $47 \mu \mathrm{~F}$ types.
P.B.

Ferguson TX99 Chassis

This set suffered from either loss of colour or intermittent colour when warm. A new TDA3301B colour decoder chip appeared to cure the fault but the set came back next morning. The cause of the trouble turned out to be 4.433 MHz oscillator drift. We replaced the crystal XL1, R60 (100) and C63 (22pF).
N.W.

Ferguson TX100 Chassis

There was a bright raster with flyback lines. Checks showed that the 200 V and first anode supplies were correct so we decided to investigate the beam-limiter circuit where transistor TR60 (BC308) was found to be short-circuit. N.W.

Bush 2714 (11AK03 Chassis)

If you get a dead set with the 2.5 A mains fuse blown you will find that the BU508A chopper transistor TR801 is shortcircuit and the $2 \cdot 2 \Omega$, 5 W surge limiter resistor R 801 is opencircuit. In addition to these items replace R 809 ($270 \mathrm{k} \Omega$), the TDA4601 chip IC801 and thermistor TH802 (CHS part no. 12001GT) in the start-up circuit. Failure of the thermistor is usually the basic cause of this fault. You get the same thing with Grundig, Hitachi and other types of receiver that use a TDA4601 chip in the power supply.
N.W.

Sony KV1460 (GP1 Chassis)

There was neither picture nor sound and the channel indicator LEDs were not alight. User controls such as channel preset, tuning etc. had no effect. The h.t. and e.h.t. voltages were o.k., and increasing the first anode voltage produced a
blank raster with flyback lines. Scope checks showed that there were no key scan pulses at pins 5, 6, 32 and 33 of the M50431-511SP microcontroller chip. As its 5 V supply was present we replaced the chip. This restored normal operation.
J.E.

Philips 2A Chassis

The job card read 'bang, dead!' There was a short-circuit across the mains bridge rectifier's reservoir capacitor C2659 but the chopper transistor $\operatorname{Tr} 7687$ was all right. The shortcircuit was caused by diode D6664 (BYD33J) and pulse capacitor C2664 ($1.5 \mathrm{nF}, 1 \mathrm{kV}$) - the capacitor had split in half.
J.E.

Philips CTX-E Chassis

The symptom with this set was insufficient width with bowing at the right-hand side of the screen. We found that the fusible resistor R3483 ($6 \cdot 2 \Omega$) was open-circuit. As a result there was no drive to the EW diode modulator. J.E.

Toshiba 175R9B

This set was dead with just a faint whine coming from the power supply. We found that there was a short-circuit in the line output stage, the culprit being C464 ($680 \mathrm{pF}, 2 \mathrm{kV}$). It's connected in parallel with the line output transistor. J.E.

Sony KVM2121 (BE1 Chassis)

Field collapse was the fault with this set. We found that the μ PC1488H field output chip IC501 had failed, taking with it R801 ($0 \cdot 47 \Omega$), the surge limiter in the line output stage derived 24 V supply. The circuit diagram shows protector PS501 connected to pin 3 of this chip. In fact it's connected to pin 4 - and was open-circuit.
J.E.

Grundig CUC2201 Chassis

Tripping off/on, sometimes very intermittently, is usually caused by a faulty set-h.t. control (R637, $1 \mathrm{k} \Omega$). We renew this item as a routine measure whenever one of these sets comes into the workshop.
J.E.

Fidelity CTV2022 (ZX3000 Mk 2 Chassis)

This set suffered from field jitter. It would sometimes start at switch on and continue until the set was switched off. At other times the display would be o.k. for about an hour, then the fault would appear. Its cause was the TDA1170S field timebase chip IC4.
J.E.

Toshiba C2020B

When the set was cold there was a noise bar that looked like an interference line across the centre of the screen: it cleared
as the set continued in operation. To start with the line would be about $3 / 8$ ths of an inch high, gradually decreasing. Use of heat and freezer led us to C317 $(2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V})$ in the field output stage.
G.F.

Ferguson TX86 Chassis

This set suffered from lack of height. A check at the collector of the upper transistor TR8 in the field output stage showed that only 39 V was present here. Its 27Ω feed resistor R62 was open-circuit.
G.F.

Panasonic TX28W2 (Alpha 3 Chassis)

This set's fault proved to be a bit of a problem. R822, the $4 \cdot 7 \Omega, 10 \mathrm{~W}$ surge limiting resistor associated with the mains bridge rectifier, had blown. As no obvious shorts could be measured I fitted a replacement. Then, filled with apprehension, I switched on. Instead of the friendly rustle of e.h.t. as the set came on it squeaked and blew R822 again. This time the safety resistor R555 in the feed to the line output stage had also expired. So R822 was again replaced but R555 was left open-circuit. Up came the 150 V h.t. supply, but when the line output stage was reconnected both resistors blew again.

The growing pile of 10 W resistors convinced me that I had to be brief with my next checks. R822 was replaced but the line output stage was left disconnected. The line drive waveform was then checked. It was bizarre, consisting of just high-frequency spikes. A new TDA2579A timebase generator chip (IC501) was fitted and another quick check was made: the waveform was as before. Eventually I found that C501, a friendly $0 \cdot 1 \mu \mathrm{~F}$ brown Mylar capacitor in the line oscillator circuit, was leaky. A replacement, along with a new line output stage feed resistor, restored normal operation and an excellent picture.
B.S.

Mains Fuse Problem

Sets that produce the no results symptom intermittently certainly add to my grey hairs. This Panasonic TCl485 (Z4 chassis) was no exception. After an hour on the soak test bench it would splutter, go off and on then die. I hooked a meter to the main 100 V line and awaited developments. After a few minutes the voltage started to vary all over the place then the set shut down. The obvious thing to do was to replace the power regulator chip IC801. But, much to my disgust, this made no difference: after a suitable interval the set coughed and died again. While casting murderous glances at various ceramic capacitors I tried checking the voltages around IC801. All that happened was that the set sprang to life! It later transpired that no voltages at all were present in the fault condition. Why? Because the 13A mains fuse was intermittent, that's why! The set was entirely blameless.
B.S.

Matsui 1436

For the first ten minutes after switch on this set displayed a bright white raster. The contrast then slowly increased until a nice picture was present. Use of freezer soon took me to the culprint, the TA8691N multi-function chip. A replacement restored normal operation.
T.L.

Toshiba 140E4B

Good sound and a good picture were present when this set was switched on. After a few seconds however the picture
disappeared. I had a quick tap around (the blunt end of a screwdriver, wisely wielded, produces amazing results) and the picture reappeared. A check on the print side of the panel then revealed a nice dry-joint at pin 2 of the line output transformer. After this and a few more connections that looked dodgy had been resoldered the set worked perfectly.
T.L.

Matsui 1422

If there's no display and no tuning with one of these portables it's worth checking D403 on the front panel and the associated circuitry.
T.L.

Matsui 1466

Intermittent failure to switch on was the problem with this set. 1 decided to replace the STR50103 chip in the power supply and the $330 \mathrm{k} \Omega$ start-up resistor. After that it wouldn't switch on at all. As checks on the rest of the components in this area failed to reveal anything amiss I refitted the original power supply chip. The set then worked normally at every switch on. Next time I do it the simple way.
T.L.

Matsui 209

There was a nasty i.f.-type buzz. I tend to be wary of these 20 in . sets and look first for dry-joints. Sure enough a visual check in the i.f. area showed that filter CFIOI had never been soldered in. Once this had bee put right the sound was as clear as a bell.
T.L.

Philips Anubis A Chassis

A squeaking noise came from the line output transformer and the h.t. was low at about 40 V . As the power supply worked correctly when the line output stage was disconnected and a dummy load was substituted we decided to carry out some checks in the line output stage. For want of something better to do we changed the transformer. This made no difference at all. We drew a blank with various other components, then hit on the idea of disconnecting the scan coils. This produced the line scan collapse symptom. It couldn't be the scan coils, could it? It was, and the c.r.t. had to be replaced as well - they come as an assembly. R.N.

Philips 2A Chassis

This set came in with a short-circuit chopper transistor. The usual repair job put that right but there was a standby problem. When the set was cold it would go into the standby mode but the LED flickered. When the set was warm it would still go into standby but wouldn't come out: the power supply would buzz loudly and the LED's flicker rate was faster. We eventually found that R3689 (39ת) was open-circuit. It's in series with D6689 in the chopper transistor's drive circuit. Both components were replaced, though the diode measured o.k. on test.
R.N.

Granada C20DZ4 (Salora L Chassis)

There was no sound or vision, just a blank raster. Replacing the TDA4505 signal processor chip cured that, but we then found that the set couldn't be programmed. BBC-1 and Channel 4 could be stored in memory, but we couldn't store ITV and BBC-2. They could be tuned in manually, but no amount of button pressing would store them or the personal
preferences. As I've not dealt with many of these sets and thought that I might be doing something wrong, I sought the advice of an expert. After replacing the MDA2062 memory chip all channels and preferences could be stored. My thanks to Nick Beer for his help with this one.
R.N.

Philips G110 Chassis

This set had been fitted with the recommended power supply kit and worked well - unless you put it in standby. You would then, after two to three seconds, be rewarded with a pop and a short-circuit BUT18AF chopper transistor. There was obviously a drive problem in the standby mode, but how would one check this? We switched to normal operation and carried out some scope checks in the power supply. These showed that the BUT18AF's base drive waveform was incorrect - the switch-on delay was missing. Replacing D6612 and D6614 again cured that (they are part of the kit, so maybe we had a dud one). But the set still failed in standby. We eventually replaced D6646, D6649, Tr7655, Tr7656 and $\operatorname{Tr} 7654$ together. This cured the fault. There remained the problem of the bill. .
R.N.

Samsung Cl537V

We've had an interesting fault with some of these sets recently: no vision, just a blank raster, as the set is permanently taking its vision input from the AV phono input sockets. Inject a video signal here and up comes the picture. The cause of the fault is in the tuner, where the video switching is carried out. A different tuner is supplied as a replacement. Two of its pins have to be cut off before insertion.
N.B.

Hitachi CPT2082

The customer said that there was an intermittent buzz over the sound. I listened to the set for several minutes in the house but didn't hear anything untoward. When I dismantled it and poked around the fault appeared. PL401 in the audio section hadn't been pushed home properly - in fact it had barely been fitted at all. I was told that the set had recently been repaired by a national company.
N.B.

Bang and Olufsen MX2000 (31XX Chassis)

Because of the link between the line and field output circuits in these sets, intermittent field collapse is commonly caused by dry-jointed EW modulator diodes. Another cause is now becomming quite common - a dry-joint at the top end of CL1 2 in the EW circuit.
N.B.

Panasonic TX28W3 (Euro 1 Chassis)

Although this is a digital TV chassis I feel that the picture it produces is inferior to that provided by its analogue predecessor, Model TX28W2 (Alpha 3 chassis). Interesting that it produces the same faults! If the set comes on with no sound or picture, returning to standby a few seconds later, R561 (ERQ12HJIR5) is open-circuit: it's the fusible resistor in the supply to the TDA8175 field output chip IC561, which goes short-circuit.
N.B.

Toshiba 215T8B

Intermittent line or field collapse - or both - is becoming increasingly common with these sets. The cause is dry-
joints at the scan coil connector. They can be quite a problem, with arcing and print burning.
N.B.

Bang and Olufsen MX2000 (31XX Chassis)

The symptoms were familiar: the channel number was displayed atop the front of the set but there was no sound or raster. This usually indicates that the fuse or RP14 is opencircuit because of a short-circuit in the line output stage, usually the transistor or the transformer. Not this time however. The fault was misleading: when the set was switched off h.t. was present and could be seen decaying at the collector of the line output transistor, but when it was switched on there was no h.t. at this point. All was explained by a dry-joint at one end of LL04, which is in the h.t. feed to the line output stage.
N.B.

Philips K35 Chassis

There was no field scan. It didn't take us long to find that the 1.2Ω safety resistor R 590 in the supply to the field output stage was open-circuit. The field output transistors tested o.k., but we replaced them nonetheless along with R590. At switch-on R590 immediately went open-circuit. The culprit turned out to be the $1,500 \mu \mathrm{~F}, 25 \mathrm{~V}$ field scan coupling capacitor C521 which was dead short. M.Dr.

ITT CVC1175 Chassis

The output from the power supply was low at about 50 V . When the feed to the line output stage was disconnected and a 100 W bulb was connected as a dummy load it lit up and the h.t. rose to around 100 V . From this you might suspect that there was a fault in the line output stage, but the actual cause of the problem was the $10 \mu \mathrm{~F}, 350 \mathrm{~V}$ h.t. reservoir capacitor C 716 which had dried up.
M.Dr.

Philips System 4 Chassis

There was sound but no raster. A check in this case is to connect a $1 \mathrm{k} \Omega$ resistor between one of the tube's cathodes and chassis. When we did this the cause of the fault was revealed - field collapse. If you find that the 3.9Ω safety resistor R3168 in the feed to the field output stage has gone open-circuit, replace it along with the TDA 3650 field output chip IC7110 and the $100 \mu \mathrm{~F}, 50 \mathrm{~V}$ field flyback boost capacitor C2017. The heat from R3107 dries out C2017, with the result that IC7110 fails.
M.Dr.

Panasonic TX1752 (U5 Chassis)

The power supply was squealing and the h.t. was low at only 55 V . When the feed to the line output stage was disconnected and a 60 W bulb was connected as a dummy load the power supply worked correctly. Various items in the line output stage were checked before we condemned the transformer, which had an internal short.
C.W.

Huanyu 37C3

This set was dead with a blackened mains fuse. As no shorts could be detected I fitted a new fuse and powered the set via a variac. It worked fine, so I left it on soak test for a couple of hours then switched in off and on a few times. It continued to work normally. I then left it switched off for an hour. When it was switched on again from cold the fuse exploded. The cause of this fuse blowing was eventually traced to a faulty thermistor in the degaussing çircuit. C.W.

Tuning Satellite Receivers the Easy Way

Gordon McCrea, B.Sc.

With the ever increasing number of channels in use, more and more satellite TV installations are being slowed by the need to tune the receiver's presets to suit the customer's requirements. If it's necessary to rename presets and add radio channels this retuning can sometimes take as long as the rest of the installation. Even if you manage to persuade the customer that the factory presetting is the most suitable arrangement, the introduction of new channels will lead to calls for retuning - as with Astra 1C and ID when this one eventually arrives. Thus a quick, easy method of updating a receiver's tuning to include all the latest frequencies would be a very useful addition to the installer's armoury.

With some of the receivers now on the market the menlory contents can be transferred from one to another identical one by using a fully-wired scart cable to connect the decoder scart sockets. But to take advantage of this possibility the installer would have to have available a considerable number of different receivers - and keep them all regularly updated. And this approach would rapidly become much too expensive for most installers as new models replace older ones.

The more elegant solution described below is for use with one popular upmarket receiver, the Nokia SAT1700. A very simple memory unit for connection to the receiver can be built in the service department: it enables the channel setup to be stored and carried in the tool case to each installation job, where the tuning can be unloaded into the customer's receiver. If a new channel arrangement is required the memory can be reprogrammed and the process repeated.

Enter the EEPROM

Fig. 1 shows the circuit of the memory unit, which employs a 24C164 EEPROM (Electrically Erasable and Programmable Read Only Memory). According to the data sheet for this device, it's guaranteed for 100,000 erase/write cycles and data retention for a hundred years (no backup batteries are required). Communication with it is via the standard two-wire I2C serial bus link. The device is readily available at a price that should enable the complete unit to be built for $£ 10$ or maybe less.

The circuit can be built using a small piece of Veroboard, with a short 4 -way ribbon cable taken to a plug for connection to the receiver. The board could be enclosed in a plastic case smaller than a matchbox or, even simpler, a piece of heat-shrink sleeving could be used.

The Nokia SAT1700

A 4-pin connector that provides connections for clock (SCL - serial clock), data (SDA), 5 V and chassis lines is included on the Nokia SAT1700's main PCB. Software in the receiver's microcontroller chip makes it possible to use this connector to feed data to an external EEPROM for storage it's just a nuisance that you have to remove the top cover to gain access to the connector. The procedure is as follows.

Disconnect the receiver from the mains supply, then remove the top cover - you'll need a Torx T10 screwdriver to do this. Find connector XC23, which is located towards
the front at the left-hand side - it's often obscured by a ribbon cable. Plug in your memory unit (take care about the polarity) then reconnect the receiver to the mains supply. The letters 'dp' should appear in the front display. If they don't, switch off immediately and double-check everything.

Now press the following buttons, in the order listed, on the remote control handset store, $/--$, TV-SAT. This should

Fig. 1: Circuit diagram of the 24C164 memory unit.
change the front display to read 'out'. Congratulations! You are now copying the receiver's entire memory into your external EEPROM - you did of course make sure that you had up-to-date channel presetting. When this process has been completed the front display will read ' α '. Disconnect the mains supply before you remove the connector from XC23.

If you next make a few changes to the contents of the receiver's memory you'll see how easy it is to restore the original contents. Disconnect the mains supply, reconnect the external memory unit. reconnect the mains supply then press the ' $p+$ ' button under the central flap. The front display will read 'in'. This indicates that the memory unit is feeding its contents back into the receiver: the display will read 'oc' when the operation has been completed.

Want more set-ups? Build a few more units or, better still, put them all on one piece of Veroboard with a selection switch. You can connect all the clock and data pins to common clock and data lines, switching an address pin to select the required chip: say one set-up for the movie buff, another for the sports fan, one for teenagers and one for the geriatrics!

Parts

The 24 C 164 EEPROM chip is available from RS under part number 311-366. This company also stocks a connector that fits on to XC23 in the SAT1700: part number 467-611 is the shell housing and part number 467-598 the crimp terminal. TV sets use lots of these connectors, so you may find one on the junk shelf.

What Next?

A follow-up article will explain how the computer buffs amongst you can connect your memory unit to a PC and read/write information as required.

Long-distance Television

Roger Bunney

Although there was a slight increase in reception, February was again a quiet month. Perhaps the most exciting moments reported by enthusiasts were some more sustained meteorscatter pings and an aurora on the 6th. Two letters from down under indicate that the sporadic E season in Australia has been extremely good: we'll keep our fingers crossed for a similar season in the northern hemisphere. The rather sparse February $\mathrm{SpE} \log$ is as follows:

6/2/94	TVE (Spain) ch. E3; DR (Denmark) E3.
8/2/94	RAI (Italy) IA.
$12 / 2 / 94$	TVE E2, 3.
$13 / 2 / 94$	Unidentified ch. E2/R1/E3 signals (late
	morning).
$19 / 2 / 94$	NRK (Norway) E2.
$23 / 2 / 94$	SVT (Sweden) E3.
$27 / 2 / 94$	TVE E2, 3.
$28 / 2 / 94$	TVE E2, 3.

During the late afternoon aurora on the 6th Brian Williams (Penarth) received back-reflection signals from Austria, the Czech Republic and Scandinavia of the usual 'hummy', poor quality.

A Set for DX Reception

Recently a 14in., PAL system I Nokia TV receiver, Model 3724 , has been on sale in the UK at prices from about $£ 164$ upwards. Fastext is included and I've bought one intending to use it for satellite TV reception via the scart connector. The receiver should however be excellent for terrestrial DX-TV reception: it has full Band I/IIl coverage and the 59 memory positions should make it easy to program the main Band I channels for selection via the remote control handset. There's also a scan facility with on-screen graphics. The handbook is clearly written, and a degree in computer programming shouldn't be necessary to get the beast to do what you want.

Satellite Reception

Developments in Bosnia have led to increased SNG activity. A new uplink appeared via Intelsat $603\left(34.5^{\circ} \mathrm{W}\right)$ on
the 19th, from Pale to the south east of Sarajevo at 10.970 GHz (vertical). providing feeds to various European networks. Apart from the usual Sarajevo airport source at $11 \cdot 142 \mathrm{GHz}(\mathrm{V})$, Pale was also noted at $11 \cdot 006 \mathrm{GHz}$. Eutelsat II F4 ($16^{\circ} \mathrm{E}$) has been used for US bound output from Bosnia. An Italian SNG truck with the identification 'ITA57 AVIANO' appeared via Eutelsat II F2 ($10^{\circ} \mathrm{E}$) at 11.006 GHz (V), just above the RAI Uno transponder: Aviano is an air force base used by planes patrolling over Bosnia.

The Israeli massacre at Hebron on the 25th also fired up the satellite feeds: Jerusalem Capital Studios used the Reuters $12 \cdot 521 \mathrm{GHz}$ transponder aboard Eutelsat II FI ($13^{\circ} \mathrm{E}$).

For me personally the most unusual sighting this month was 'UKI- 312 Lundy' via Eutelsat II F4 at $12 \cdot 523 \mathrm{GHz}-$ camera shots of the island and VTR material.

Alan Smith has equipped himself for C and Ku band reception in Thailand. He missed the opening ceremony for the Thaicom 1 satellite on the lst but saw weak test transmissions on the 2 nd . Alan has been campaigning to get Star TV to provide stereo sound with its transmissions. He's received a new C-band satellite at between $125-128^{\circ} \mathrm{E}$ carrying an Indian channel, Sun TV, in Tamil. The source could have been Statsionar-15 at $128^{\circ} \mathrm{E}$. Further to the west, Intelsat 505 ($66^{\circ} \mathrm{E}$) has been busy carrying the Winter Olympics from Lillehammer.

John Locker has been busy with the Jason educational project at the Liverpool Maritime Museum. Maxat has provided a 2.4 m dish and PanAmSat (owner of the PAS-1 satellite) has been very helpful with material and information. The PAS-l satellite at $45^{\circ} \mathrm{W}$ is being used to provide a link from South America to Europe with compressed video.

Ian Waller (Lincoln) reports that Eutelsat I F4 $\left(25.5^{\circ} \mathrm{E}\right)$ has been carrying CNNI via its east spot beam at 11.092 GHz , thought to be for a Turkish cable system. Ian has also seen the Sky coverage of the West Indies cricket tour via Intelsat $\left(50^{\circ} \mathrm{W}\right.$) at $4 \cdot 18 \mathrm{GHz}$.

Geoff Stocks (Plymouth) has been enjoying Italian football via Eutelsat II F3 ($16^{\circ} \mathrm{E}$) at $11 \cdot 163 \mathrm{GHz}(\mathrm{H})$ on Sundays from 1230-1600GMT. He's using a 1.2 m offset dish with a Connexions 8220 receiver and would be delighted to hear from other West Country enthusiasts. You can phone him on 0752668015 - he has several Continental sound carrier conversion boards for sale.

Bandula Gunasekera reports that u.h.f. transmissions from the Russian Ekran satellite are being enthusiastically received in Sri Lanka - the Orbita- 1 (Secam) service at 714 MHz and Indian Asianet (PAL) service at 754 MHz . In response to local enquiries a simple but effective receiver has been designed (see Fig. 1): he tells us that it really works, giving excellent results. An ELC1043 or ELC2004 u.h.f. tuner is used (others would do), followed by two transistors that provide voltage gain and then an NE564 amplifier/demodulator chip. The

Feeds from the Lillehammer Winter Olympic games received by John Locker at the Wirral. Left via Telecom 2B at $5^{\circ} \mathrm{W}$, centre via Kopernikus at $28.5^{\circ} \mathrm{E}$ and right via PAS-1 at $45^{\circ} \mathrm{W}$.
output from this chip, at pin 14 , is fed to a video emitterfollower stage and a sound amplifier/demodulator circuit the video and audio outputs can be fed to a monitor, a VCR or an r.f. modulator. Bandula uses a fifteen-tum helical aerial with this receiver. Alternatively crossed Yagis (mounted at 90° to each other) with 14 or more director elements could be used, phased for circular polarisation.

News Items

UK: Successful digital audio broadcasting (DAB) tests in Bands III and IV have been carried out by the BBC in London at fixed locations and with moving vehicles. The DTI has confirmed that DAB will operate within the band 217.5230 MHz and it's possible that services could start as early as mid-1995. To encourage listeners to adopt the new technology there will be some simulcasting of Band II f.m. transmissions in DAB form in Band III. As a TV spectrum Band III seems to be doomed in the UK. A review of mobile radio (PMR) in Band $I I$ is to be undertaken with a view to increasing the number frequencies in use: there are to be three extra regional licences.

The Netherlands: DAB is also being tested in the Netherlands, using ch. E7 $(189 \cdot 25 \mathrm{MHz})$. A 1 kW transmitter at Haarlem and a 40W transmitter at Hilversum are being used. Tests are soon to be extended to Rotterdam. Polarisation is vertical. ZH-TV (Zuid-Holland TV) is now in operation on ch. E49, using a 10 kW e.r.p. transmitter at Rotterdam. Polarisation is horizontal.

Germany: PRO 7 has been awarded a terrestrial service licence for the Schleswig-Holstein region.

Israel: Plans for a Palestinian TV station have been delayed as a result of a dispute between the Jordanian and the Israeli governments over the location of the studio

Bangladesh: A second TV service is to be opened later this year in Dhaka. It will be primarily educational.

Ireland: There have been discussions between RTE and the UK authorities over the possible extension of RTE-1 and -2 coverage, also the new Telefis na Gaeilge service, to Northern Ireland. Des Walsh (Co. Cork) reports that there is considerable hostility to the use of high-powered MMDS

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951
transmitters in southern Ireland, on health grounds. Some run at 1 kW .

Czech Republic: TV Nova is now in operation, using the former CT2 network and PAL colour. CT2 now uses the CT3/OK3 network which will be supplemented later this year with transmitters at Brno (ch. R46, 200kW). Chomutov (R35, 50 kW), Hradec Kralove (R57, 200kW), Jesenik (R50, 200 kW), Jihlava (R42, 100kW), Plzen (R48, 200kW) and Trutnov (R40) 200 kW). Transmitter powers e.r.p.

Fig. 1: Simple circuit for reception of the u.h.f. transmissions from the Ekran satellite. CF1/2 are 6.5MHz ceramic filters. TC1 is a miniature $2-20 \mathrm{pF}$ trimmer. The three coils consist of six 2.5 mm diameter turns of $40 \mathrm{~s} . \boldsymbol{w} . \mathrm{g}$. wire.

COLOUR TELEVISION TUBES

SPECIAL OFFER
$14^{\prime \prime}$ $£ 40$

A $36^{\prime / s}{ }_{\text {MININECK }}^{\quad E 49}$ A $\left.4\right|^{\prime s}{ }_{\text {MINNECK }} \quad \mathbf{E 5 5}$ A $51^{\text {/s }}$ minineck $f 55$

PLUS CARRIAGE AND VAT A HUGE RANGE OF OTHER TYPES AVAILABLE

VISTA ARE BSI APPROVED SUPER QUALITY AND PERFORMANCE

12 MONTHS FREE WARRANTY
OLD GLASS NOT REQUIRED (ON SOME TYPES)

FOR Customer care and service call TUBES: 0429837100 COMPONENTS: 0429838057

FAX: 0429837101

Vista Electronics Ltd
Unit IB, Wingate Crange Industrial Estate. Wingate, Co.Durham. TS28 SAH.

EST. 1977

YOUR ONESTOP.SHOP

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

\Rightarrow DIAMOND AERIALS UHF/FM

CLOBAI

\qquad FIRST IF. SMATV
D.W.HARD7 ${ }^{\text {communatanas }}$ UHFAERALIS

Labgear Cablevision smatv TH LENSON HEATH SATELLTE PACE SATELITE RECEVERS, PICQM SATELITE

N PFDMAX TEST EQUIPMENT
Tllforines BOLTS
 BOLTS PLUGS
Telester SMATV
TRIAX U.K. UHERALIF TOWER CLIPS UNIDFIX CLIPS VOLEX

- WE PROVIDE FULL TECHNICAL ASSISTANCE AND SERVICE BACK UP - SMAIL OUR -DISH SHARING - DESIGN CONSULTANT Trace Price Listavailable to bona fide TV Aerial and Satelline Dealars
on oraef of trading. Trace Price List avail
on proof of trading.

JW. Herdy. 231 Station Road. Stechford
Birmingham B33 888 . Telephione: 021--784 8478

183 ACRE LANE, NORTHAMPTON NN2 8DX Tel./Fax: 0604841871 - Mail Order ONLY - No Callers

TELEUISION

Subscribe to the magazine that experienced electronics professionals never miss

Whatever your imerest in the world of television electronics there's a wealth of news advice and hard information for you in TELEVISION
TELEVISION offers you a definitive guide to today TV electronics business
keeping you up-to-date with new developments in TV, video and satellite - whilst furnishing you with hands-on' advice and information on the tatest equipment.

SUBSCRIBING IS SIMPLE,
Complete the coupon and return it to us at TELEVISION. Reed Business Publishing, FREEPOST, 9th Floor, Quadrant House, The Quadrant. SUTTOX. Surrey CM2 5BR

Please send me TELEUISIDI
One Year at a cost of £26
Two Years at a cost of £49
SAVE £3
Three Years at a cost of $£ 70$
SAVE £8
Name
Title
Company
Address
Postcode
Telephone Number

Reed Business Publishing Company Registered in England (registered number 151535) VAT no: 2.35T2.3565

- Servicing solutions	Readers' letters
TV fault finding	CD players casebook
- New Products	Components
VCR clinic	News and comment
- Equtelite TV	And much more!

4 WAYS TO PAY

$1 \square I$ enclose a cheque for $£ \quad$ made payable to Reed Business Publishing Ltd
2 Please charge my:
Access
Visa
\square Diners Club
\square American Express

Expiry Date
$\square \square \square$
3
Please invoice me/my company Order No.

Or alternatively just ring our credit card hot-line on 0622721666 and quote reference IJ2

Are you registered for VAT, Yes \square No
If yes, please supply your registration Number

Please send a VAT receipt \square

Signature
Date
Prices apply to UK, Isle of Man, and Channel Islands

Slovakia: TV Sever (Zilina) is in operation on ch. R52 at IkW, with PAL colour.

Russia: There are plans to change to a single national public TV service plus three national commercial services.

Sri Lanka: ETV-1 (BBC WSTV) ch. E33 and ETV-2 (Prime Sports) ch. E56 are now in operation at Kandy. Coverage is to be extended later this year. Rupavahini Sri Lanka (ch. E5) is to reopen two relays in the north, at Kokavil and Palali.

Satellite TV

The Marco Polo-1 satellite has been renamed Sirius after being sold to the Swedish Space Corporation. It has been moved to $5 \cdot 2^{\circ} \mathrm{E}$, next to Tele-X. The following transponders are in operation: $4(11.785 \mathrm{GHz}), 8(11.862 \mathrm{GHz}), 12$ $(11.983 \mathrm{GHz}) .16(12.015 \mathrm{GHz})$ and $20(12.092 \mathrm{GHz})$, atl with right-hand circular polarisation and, to date, clear PAL. Because of the tight beamwidth centred on Scandinavia the signal levels in the UK are weak.

Loss of the Ariane V63 rocket was apparently caused by damage to an immersed bearing in the third stage engine because of insufficient cooling of a liquid oxygen pump. Rectifying this defect will delay planned launches. Eutelsat II F6 may now be launched prior to Astra 1D, which may have to wait until Christmas or early 1995.

Music Choice Europe is now on air with CD quality digital audio free from advertising. It's uplinked from the USA via Intelsat K for cable distribution in Europe. All 56 music programmes are compressed for transmission.

The UN has leased additional Intelsat links for communications with troops in troable areas. Much use is being made of 22 portable stations operating in the Kıl band via the Intelsat craft at $63^{\circ} \mathrm{E}$.

France has beers testing Nicam via the Telecom 2B TF1 and TMC channels. A 5.58 MHz subcarrier is used, with the f.m. mono audio moved from $5.8 \mathrm{MHz} / \mathrm{J} 17$ to $6.6 \mathrm{MHz} / 50) \mu \mathrm{sec}$. RTL via Telecom is likely to use Smartcrypt, a cut and rotate system. The subscriber requires two cards, one with the control access code and the other with the algorithm. Decoders are expected to cost the equivalent of about $£ 100$. including a three-year free access per od to the channel.

Knife-edge Refraction

Last month we mentioned propagation of distant signals via refraction at the top of high ground/mountains that otherwise provide screening. This has been experienced in the Rocky Mountains, with propagation over hundreds of miles. George Gaskin writes from Gibraltar to suggest that shortrange refraction can produce similar effects. The Gibraltar fire brigade installed a $\bar{i}(0-80 \mathrm{MHz}$ repeater at the top of the Rock. At the northern end of the Rock there's a sheer $1,300 \mathrm{ft}$ drop, which shouid have meant that contact with mobiles below would be impossible. In fact it was found that contact, though not one hundred per cent, was possible in many places. The repeater now operates in the 150 MHz band, with similar results.

I recall that during the mid-Fifties/early Sixties signal refraction at Ventnor, Isle of Wight, via the 750ft St. Boniface Down resulted in aerials being sited in the oddest of places.

The Versatile LM317T

Gordon Haigh

The adjustable-output, three-terminal LM317T positive voltage regulator has been available for a good many years now. You find it advertised for as little as 50 p plus VAT. Since it can get you out of some tricky situations it's worth keeping some in stock. For repair work we usually have in stock the standard positive 5 V and 12 V regulators, and maybe also the 15 V and 18 V versions: but could you lay your hands on an 8 V or 10 V regulator if you needed one? Keep some LM317Ts on the shelf and you won't have to worry. We'll also mention one or two other uses for the device in this article.

Features and Basic Application

Motorola and National Semiconductor have been the principal producers of the LM317T chip, which features internal current limiting, thermal shutdown and safe-area compensation - these make it difficult to blow the device. The LM317T (TO220 case) superseded the earlier steelpack LM117 version. Some other common versions are as follows: the LM317K is a 1.5 A type in a TO3 case, while the LM317MT and LM317MP are 0.5 A plastic types. There's also a version that provides a negative output voltage, type LM337T. But the following notes apply to the LM317T.

Fig. 1 shows the basic circuit for providing any output voltage between 1.2 V and 37 V . The input voltage range is from 4 V to 40 V and the regulator can handle up to 1.5 A . R1 is nearly always the value shown, 240Ω, though many users bend the rules a bit and make it 220Ω, a value that's more

Fig. 1 (left): Basic regulation circuit.
Fig. 2 (right): Pin connections.
widely stocked. You can of course use two 120Ω resistors connected in series. The output is set by R2, which can be a small preset or a fixed resistor - the required value can be determined by using a temporary preset and a dummy load. If a value of $1 \mathrm{k} \Omega$ provides the required fixed output voltage, use of a $2.2 \mathrm{k} \Omega$ preset would be appropriate so that the wiper can be set at a nearly central position. As the value of R2 is increased, the output voltage rises.

When an LM317T is used for replacement purposes the electrolytic capacitor on the input side can be an existing capacitor, e.g. a mains bridge rectifier's reservoir capacitor or a reservoir capacitor on the secondary side of a chopper circuit. The $0.1 \mu \mathrm{~F}$ capacitor is required only where the regulator is an appreciable distance from the input electrolytic capacitor. The $1 \mu \mathrm{~F}$ output electrolytic capacitor can also be an existing component. Its presence improves the transient
response rather than the stability. This capacitor also improves the output impedance.

Pin connections are shown in Fig. 2, some electrical characteristics in Table 1.

Use as a Motor Regulator

Some motors in audio cassette players have a regulator chip in series, taking its input from an unregulated supply. An LM317T can be pressed into service if the original device has failed. To obtain the correct motor speed an

Table 1: Electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	
Output voltage	$1.2-37 \mathrm{~V}$
Output current (max.)	1.5 A
Input voltage range	$4-40 \mathrm{~V}$
Maximum dissipation	15 W
Typical load regulation	0.1%
Ripple rejection	65 dB
Typical line regulation	0.01%
Current via pin 1, typical	$50 \mu \mathrm{~A}$

unusual voltage may be used, while the type code on the original device may be meaningless. No problem with a LM317T! Retain the interference suppression capacitors.

With some motors the regulator chip is in the steel motor case instead of being separate. Motor faults such as bearing or winding troubles etc. can turn the chip into a low resistance or a piece of wire. The motor then runs fast or erratically. An LM317T should never be added externally to mask this condition.

The LM317T can be used in a similar manner as a lowvoltage d.c. audio turntable motor regulator. A strobe pattern, if present, can be used with R2 to set the speed correctly. Two switched presets are required in position R2 for $33 / 45$ r.p.m. operation.

Bench Uses

As an inspection lamp (also as a dummy load) a 60 W mains bulb on a wooden base has disadvantages. If you point it into a VCR the infra-red radiation it gives off confuses the sensors. The VCR may then shuttle about! In addition the lamp flicker at close range does you no good over a period of time. It's far better to use a c.r.t. heater transformer winding with full-wave rectification and smoothing followed by an LM317T to supply a pocket torch. With its reflector, the

Fig. 4: Use of the LM317T in the Hitachi NP84CO chassis (Models CPT1444, CPT1644 etc.). In some sets a single $62 \Omega, 15 \mathrm{~W}$ resistor is used in positions R911/2.
torch is much more directional. For this application R2 would need to be around 600Ω to supply a 4.5 V flashlamp.

Older variable bench power supplies like the Amtron kits used a discrete series regulator transistor such as a 2 N 3055 plus many other components. Although mine has been quite reliable, because of wear and tear a fair number of replacement BC 107 s have had to be fitted. Anyone starting afresh might care to consider using an LM317T as the basis of a variable bench supply. Fig. 3 shows a circuit devised by Marshall's. The LM317T should be mounted on a heatsink. D1 and D2 are incorporated to provide protection when the output is connected to an inductive load.

High-voltage Use

A customer of mine lost part of his metal watch (one of the metal bars, where the strap fastens) inside an Hitachi CPT1646R television receiver (NP84CQ chassis). In addition to blown fuses the BU806 series regulator transistor was short-circuit, zener diode ZD901 was also short-circuit and the LM317T regulator chip IC901 appeared to have been damaged (a comparison was made with a new one). On obtaining the circuit diagram I was surprised to find that although 40 V is quoted as being its maximum input voltage the LM317T is used in the regulated 100 V supply. Fig. 4 shows the circuit. The trick here is to arrange that the voltage across the LM317T is only about 20 V . An industrial quality zener diode (ZD901) connected in parallel with the LM317T prevents the voltage across it exceeding 36V. The LM317T is used as a second regulator - the following
description is based on that given in the Hitachi manual.
The mains bridge rectifier produces about 130 V across C904. Q902, a Darlingten power device, and its associated components form a preregulator. With a high mains input voltage, most of the current flows via R911/2, IC901 then being the main regulator. As the mains input voltage falls, R911/2 are progressively bypassed by Q902 until, at 220 V a.c. (the lower limit of operation), they pass little current. The output from the preregulator varies from approximately 111 V with a low mains input voltage to approximately 120 V with a high input - these figures apply with normal beam currents. 1 C 901 provides a regulated 100 V output, set by VR901. ZD901 provides protection under certain fault conditions.

Incidentally, after repairing the power supply in the faulty set I found that the programme buttons didn't respond correctly. The set needed reprogramming (see page 732, Television August 1991).

Ni-Cad Battery Charger

Ni -Cad batteries are best charged from a constant-current source. The LM317T can be used for this purpose, as shown

Fig. 5: Simple Ni-Cad battery charger circuit.

Rate (mA)	Specification for
10	$120 \Omega, 0.5 \mathrm{~W}$
25	$47 \Omega, 0.5 \mathrm{~W}$
50	$27 \Omega, 0.5 \mathrm{~W}$
100	$12 \Omega, 0.5 \mathrm{~W}$
200	$6.2 \Omega, 0.5 \mathrm{~W}$
250	$4.7 \Omega, 0.5 \mathrm{~W}$
375	$3.3 \Omega, 2 \mathrm{~W}$

in Fig. 5. Up to seven 1.2 V cells can be charged at rates up to 375 mA , up to ten cells at lower current rates. Charge rates can be calculated from $\mathrm{I}=1 \cdot 25 / \mathrm{R}(\Omega)$.

Answer to Test Case 377

- see page 477 -

Sherlock got there in the end - with a little help from his friend. The lack of height was obviously caused by insufficient current in the field scan coils. The drive to these comes from pin 2 of the $\mu \mathrm{PC} 1378 \mathrm{H}$ field output chip IC552. As usual the scan current path includes a coupling capacitor, C527 in this case, and a low-value sampling resistor, R567. This $1.8 \Omega, 1 \mathrm{~W}$ resistor has a series-connected resistor and thermistor combination across it to provide compensation for temperature changes. Indeed the thermistor was doing its job correctly, keeping the display virtually constant while Sherlock thermally cycled the timebase board.

The sampling resistor serves two purposes: the waveform generated across it provides negative feedback for field
linearity correction while, in conjunction with the coupling capacitor C527, a parabolic waveform is produced for the EW pincushion correction circuit. What had happened was that the value of R567 had increased somewhat. This had detracted from the scan-coil current not only directly, by increasing the resistance in series with the coils, but also indirectly via the feedback circuit. Since the increased-value resistor produced a larger sample waveform, the feedback circuit was being given the false impression that the scan current was too great.

In addition to R567, which has to be exactly the right type obtained from Sony or one of its agents, the electrolytic capacitors in this area - C521, C527 and C537 - were replaced, if only because the set is several years old and our test meter wasn't sure about them.

The result of all this was an excellently-proportioned picture and a delighted Mr. Smith.

What a Life!

Donald Bullock

When I started in this trade there were no transistors. There were wireless sets, electric gramophones with pickups that weighed a ton, and radiograms - a wireless set and a gramophone in one huge box. There were a few television sets as well of course. They were full of valves, had tiny screens and also weighed a ton. And they received just one programme, BBC . 'cos that's all there was.

I had no idea at that time what I was letting myself in for. These thoughts came to me the other day when I heard Steven happily accepting a CD player for repair. It's sometimes hard to appreciate how the trade has managed to cope with the dozens of complex developments and the ever-increasing multiplicity of domestic electronics equipment.

The Hitachi DA58

The CD player, an Hitachi DA58, would read a disc only once in about ten attempts. I was trying to read a B \& O circuit diagram and claimed to have a headache (that would figure!) and to be too busy to even think about it. So Steven took down the manual and went about it with no apparent concern. He found some dry-joints around a clutch of transistors - Q007, Q008, Q011 and Q012. When he'd resoldered these the player worked correctly.

An Amstrad STV20

He next applied himself to an Amstrad STV20, which is a 20 in . TV set with a built-in satellite receiver and decoder. The job card said 'intermittent blue screen'.

In this model the satellite receiver/decoder is vertically mounted at the right-hand side (viewed from the back), with the cable connections and the card insert slot at the back. The main panel and power circuitry are on separate panels on the floor of the cabinet, in plastic slots. Steven soon found that the tube's voltages varied when the signal panel was pressed and lifted. The power and signals panels have to be pulled out together, then separated for service attention. In this particular set the PCB slots were very rough, so much so that the print at the extreme edges of the panels had worn shiny through ordinary cabinet movement.

It's quite a new model. Working without a circuit diagram, Steven concentrated on the circuit connector that links the signals panel to the tube's base panel. He found that a 170 V voltage at pin 2 disappeared when the fault was present. Steven could find no hairline cracks but noticed that the rear. right-hand corner of the panel showed signs of running hot. Resoldering the components in this area-C75, C86, R85 and D15 - cured the intermittency.
"Didn't like that Amstrad" he said as he boxed it up. "You can do the next one."

An Old Bush

While he was lifting the set down, quiet Norman Glutton glided in with an old Bush TV set - one fitted with the T22A chassis. I saw that it was one which had been
adapted for remote control operation, and prayed that I wouldn't have to take out the mass of ironwork and circuitry behind the front cabinet controls. Norman works at the local pub, mainly because he gets all the unsold pies and pasties and something to wash them down with. I've never seen him without a pie.
"You seem to be coming here a lot recently Norman" I said, "you must have a television set and a VCR in every room!""

The Bush set displayed three obvious symptoms. What there was of the raster was green, it had collapsed into a bright horizontal line, and there was no digital display. Were there three separate faults, or one that caused all these symptoms? Surely there had to be a single fault. I made for the 12 V line, which is derived from the line output stage and is stabilised by an LM7812 regulator, IC701. It feeds the field generator and the signals circuitry, the LM7812 being mounted on a large heatsink at the rear, right-hand side of the chassis, close to the edge. It had originally been dry-jointed, probably because of stress due to its position. But the solder had melted and shorted the 12 V line to chassis. As a result the $2 \Omega, 2 \mathrm{~W}$ fusible resistor R422 had given up. The resultant voltage loss was the cause of the various symptoms.

As Norman doesn't have much income, 1 felt kindly towards him when he returned. "Here it is Norman" I said, "good as new - but no better I'm afraid. Fifteen quid to you!"
"Oh good" he mumbled through a piece of pork pie. "I'll charge old Woody thirty quid. He'd reckoned on having to pay about forty."

A Ferguson 14M2

Meanwhile Steven was working on a Ferguson 14M2 (TX89 chassis) whose display symbols flashed and constantly changed. Most of the time the display was nonsense, but when it did make sense and settled on a local channel a good picture came up. Then the set would switch itself to standby. Steven stood their poleaxed.
"What's up with this one then?"
"God knows" I replied, "but remember - adopt a logical approach." Then I slunk out to make the tea.

A big murder enquiry was going on in our area at the time. Umpteen bodies had been found and more were being sought. I stayed in the house awhile to see all about it on the box. which I normally never watch. Then I took Steven's cold tea out to the workshop. He'd got the set working and was also watching the murder enquiry.
"What was it?" I asked, pointing to the Ferguson.
"Someone seems to have done in a lot of women" he answered.
"No - the fault on the Ferguson" I said.
"Oh, that. A carbonised on-off switch. l've wired one in temporarily and have ordered the right one from HRS."
"Yeah" I said, "I suppose it had to be that."
"No. It could have been caused by IC13 and IC14: as they're data linked, you have to replace them both. Another possibility could have been e.h.t. arcing, particularly under the e.h.t. cap."
"You 've been on to Ferguson!" I exclaimed.
"Wouldn't speak to me" he said.
"Then where did you get all that?"
"Worked it all out and tried the most likely thing first. You did say to be logical!"

I'm still puzzled about how much he's picked up in such a short time. The bits I know took me a lifetime to absorb.

Letters

POSSIBILITIES

The report on the Las Vagas CES was interesting. But it seems that the gismo manufacturers are overlooking one point: how many different formats can one fit into the average home?

Here's something that might be more worthwhile. Computer programs that claim to be able to provide good translation between French and English. English and German etc. have been advertised recently. By using the teletext subtitles for the hard of hearing it's possible to get a foreign language into ASCII form quite easily. A computer could then do the transtation so that foreign subtitles could be replaced with English ones and vice versa. Unfortunately not many broadcasters use teletext. let alone subtitling, but the possibility is there. The software packages are not expensive. If the technology was incorporated into a TV set one could truly claim to have a multistandard receiver!
D. Benyon,

Bude. Cormall.

LEADS IN CASSETTE PLAYERS

A while ago a reader wrote in complaining about the leads used in cassette players to connect the heads to the electronics. The lead used to connect the heads in most floppy disc drives makes a good replacement. It's generally a fourcore screened cable about 20 cm long, which should do for most players. Drives are easy to obtain as scrap units from local computer repair depots - they are generally free as non-workers. A source for longer leads is the old 8 in . drives, but these are very difficult to find.
S. Beukes,

Durban, South Africa.

TECHNICAL BACK-UP

Two letters in the April issue refer to the subject of technical back-up (or lack of it). There are several reasons why manufacturers that decide not to provide technical advice to independent workshops are not doing themselves any favours.

First, during an average week $[$ 'm asked three or four times for advice on which make of TV set or VCR to buy. I base my reply not only on reliability and price but also on the help I'm likely to get should I have to do any servicing. This must be quite an influential factor taken nationwide.

Secondly there's customer frustration when an intermittent fault takes weeks to rectify, though quick reference to a manufacturer's fault information may be all that's required. The setmaker may say "take the equipment to one of our service centres for repair". But for various reasons including distance, cost and convenience the customer may not wish to do this.

Next there's the possibility that some engineers may declare a product to be beyond economic repair, or provide a high quotation, simply because of lack of manufacturer support. This doesn't generate brand loyalty.

Last year I contacted all the major manufacturers prior to launching the monthly Fault-Fact-Files system (advertised in Television), inviting them to contribute for the benefit of all engineers. Some adopted a very positive attitude, but two
in particular decided against participation, giving as reasons the need for specilised training and the investment in equipment their agents are expected to undertake.

My thoughts however are that if one engineer has spent several hours diagnosing the cause of a fault, or if a component was initially underrated and has since been up-graded, why can't we all be told about it? If fault information is readily available, engineers won't have to phone manufacturers' service departments so often, taking up their engineers' valuable time. Media such as Television and Fault-Fuct-Files can disseminate this information.
Paul S. Smith, Vision-On,
Newtownabbey.

PROGRAMME DELIVERY CONTROL

In dealing with programme delivery control in his Modern TV Receiver Techniques article in the March issue Eugene Trundle refers to the MV1820 chip from GEC Plessey Semiconductors. His description of its function was not quite accurate however.

The chip doesn't compare the data on the incoming label with the preset recording instructions. Comparison is carried out by the software within the VCR. This also turns the VCR on and off to make the recordings. The MV1820's function is to extract packet $8 / 30$ format 2 from the teletext data strean. This contains the programme information and the timing data. The MV1820 converts this into a format that the VCR can recognise, storing it in the oulput registers where the VCR's software constantly checks it for a match with the preset recording instructions.

GEC Plessey Semiconductors also has the MV1821 VPS/VDC chip that automatically checks which system is being broadcast. Use of this dual-standard device means that VCR manufacturers don't have to produce two separate designs to cover the European market.
Jim Wallace, Teletext Products Marketing Manager.
GEC Plessey Semiconductors. Cheney Manor, Swindon. Wilts SN2 2QU.

FEEDBACK FROM SAMSUNG

In the March TV Fault Finding column Michael Dranfield mentions a no teletext sync fault with the Samsung Model CI-5013T. He says that he has devised a simple modification which is not recognised by Samsung. I write to confirm that there has been no reference to such a fault in our warranty labour claims or returned goods since this model was first launched. In fact the only reference to it we have is in a letter to me from Michael Dranfield dated 2nd December 1992.

I have to make it clear that, since the modification has not been approved by our Technical Division, Samsung cannot accept any liability when it has been carried out following Michael Drantield s instructions.
A.C. Coton, Commercial Operations Manager,

Samsung Electronics (UK) Ltd., Euro Service Centre,
Stafford Park 12. Telford. Shropshire.

ELECTRONICS AT SCHOOL

I am 16 and intend, after leaving school, to go to technical college to do the City \& Guilds 224 course. My purpose in writing is to comment on a recent letter about young people's interest in electronics. I think that the number of those interested is underestimated. What puts many young people off is the way in which electronics is presented at
school. We either use a breadboard or a preassembled board, simply connecting a wire to form different gates. There would be greater interest if we could make our own PCBs and deal with circuits that would be of use to us (a radio, timer etc., not just a gate). The emphasis at school is on digital circuits: the national curriculum doesn't seem to appreciate that analogue circuits are just as interesting as digital ones. It is not the school's fault for failing to make electronics interesting. It's the government's failure to provide the cash required.
Tony llewelyn Jones,
Bangor, Gwynedd.

SERIES REGULATORS

In reply to K.J. Treeby, the type of series regulator circuit shown and described in Modern TV Receiver Techniques (Part 13 January) was selected simply because it's so widely used. The emitter-fed system does in practice have certain advantages over a collector-fed system. The error sensing system that can be used, with the reference zener diode connected directly to the output, improves the loop gain and the ripple reduction performance - the zener diode's low
impedance at ripple frequencies feeds any ripple directly to the error sensing point (Tr 2 's emitter). Furthermore, because the series regulator transistor is operated as a common-emitter stage the value of R1 can be much lower: thus the voltage across it will be much less before regulation is lost - this is an advantage where the input is from a 12 V battery.
Eugene Trundle.
St. Leonards on Sea, East Sussex.

STEVE REPLIES

Ooops! At least Ray Porter isn't asleep. In may article on auto grey-scale faults (March) Q4 is in fact a voltage-reference source. In answer to Michael Dranfield, who referred to no playback colour in LP cue and review (letters April), what can one expect for $£ 210$? A special 'jump circuit' is required to compensate for the massive colour errors in LP picture search. Most low-cost VCRs are low cost because the manufacturers have saved by not incorporating correction circuits. Fair enough?
Steve Beeching,
Barnby in the Willows. Notts.

Help Wanted

The aim of the Help Wanted column is to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: U4 (Z86E21) for the Grundig GIRD2000 satellite receiver; capstan PCB for the Hitachi VTF70; IC503 (BU2735AS) for the Akai VS23EK. P. Lowe, 5 Lingfield Green, Darlington, Co. Durham DL1 IDD.

Wanted: Service manuals for: JVC timer/tuner TU20E; JVC U-matic CR6060ET VCR; Panasonic AG6200 VCR; Funai/Technicolor 212E VCR. T. Martini, 6 Levant House, Mile End Road, London E1 4RB. 0717906807.

Wanted: Stand-alone teletext decoder. Mike Barnett, 15 Iris Avenue, Birstall, Leicester LE4 4HP. 0533671076.

Wanted: Manual or circuit diagram for the Ferguson 3V37 2 3/4in. colour monitor. J. Farrer, 37 Priory Grove, Ditton, Maidstone, Kent ME20 6BB. 0622716294.

Wanted: Circuit diagram (photocopy would do) for the Toshiba Model IK-1900PFD camera. S. Beukes, PO Box 5963, Durban, South Africa, 4000.

Wanted: Operating or service instructions for the Sky Scan K1 satellite receiver. Could photostat and return. I have several multistandard receivers for disposal for nominal
sums. G.D. Stocks, 62 Ridge Park Avenue, Mutley, Plymouth, Devon PL4 6QA. 0752668015.

Wanted: Operating panel for the Philips receiver/audio amplifier Model 70FR260 - or a scrap machine. Jim Littler, 363 Atherton Road, Hindley Green, Wigan, Lancs WN2 3XD. 094258794.

Wanted: Good home for a Sony Profeel monitor/component TV system. G. Baskerville, 33 Chapel Street, Warminster, Wilts BA12 8BZ. 0985216488.

Wanted: Circuit diagram for the Telequipment S5I scope, also any spares, PCBs and drum motors for the Philips VR6462 and Ferguson 3V54 VCRs. E.J. Edwards, 43 Hoose Court, Market Street, Hoylake, Wirral L47 5AB.

Wanted: Circuit diagram or technical information for the Panasonic TX1450 and TX1424 monitors. S. Lemon, 186a Farnborough Road, Farnborough, Hants GUl4 7JL. 0252 546398.

Wanted: Signal panel (part no. 503-372D) for the GoldStar GHV1246I VCR and a 16DB22 6in. colour tube for the Saisho CTR6. Peter J. Lane, Frost Industrial Estate, Bidewell Close, Drayton, Norwich NR8 6AP. 0603867 264.

Wanted: Two $\mu \mathrm{ECl} 817$ transistors for the Telequipment D1011 scope. John Hibbs, PO Box 816. Amanzimtoti, 4125, Natal, S. Africa.

Wanted: Manual for the Philips VR6470, also replacement drum. Manual and YM2201K chip for the Mitsubishi DP107 CD player. Ian Ruddock, 294 Willow Field Tower, Harlow, Essex CM18 6SD.

VIEWDATA RETURNSE6 madeby Tandata, includes 1200.75 modem. khod, RGB and comp op, printer port. No PSU. £6MAG6P7 IBM PC CASE AND PSU ideal base for building your own PC Ex equipment but OK. $£ 14.00$ each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ}$ ov 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert value kit just £5 99 REF: MAG6P8
SOLID STATE RELAYS Will switch 25A mains. Input 3.5-26 DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 399$ REF MAG4P 10 300DPI A4 DTP MONTTOR Brand new. TTLECL inputs. 15^{*} landscape, 1200×4664 pixe complete with dreuit diag to help you interface with your projects. JUST £24.99. REF MAG25P1
ULTRANINI BUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made Dy AKG. 5-12V electret condenser. Cost£12 ea, Our? fourfor£9.99 REF MAG10P2 RGB/CGAEGATTL COLOUR MONTORS 12 in good condition. Back anodised metal case. £99 each REF MAG99P1 GX4000 GAMES MACHINES returns so ok for spares or repar $£ 9$ each (no games). REF MAG9P1
C64 COMPUTERS Retums, so ok for spares etc 59 ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4^{\prime} panel $1 / 8^{\prime \prime}$ thick with 3 panels that glow green when a voltage is applied. Good for night lights, front paneis, signs.disco etc. $50-100 \mathrm{~V}$ per strip. $£ 25$ ref MAG25P2
ANSWER PHONES Returns with 2 faults. we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's £18 ea REF MAG18P1, BT Response 400's $£ 25$ ea REF MAG25P3 Suitable power supply $£ 5$ REF MAG5P 12
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{v}$ © 5 A , -5 ve .5 A , $+12 v @ 2 A-12 v @ 5 A \quad 120 / 220 \mathrm{v}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput sodet £6.99 REF MAG7P1
PLUG IN PSU 9V 200 mA DC $£ 2.99$ each REF MAG3PG
PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and o/p leads 17 vDC 900 mA output. Bargain pnce $£ 599$ ref MAG6P9
ACORN ARCH MEDES PSU +5v @ 4.4A. on/oft sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm} £ 7$ REF MAG7P2 GEIGER COUNTER KT Low cost protessional twin tube, complete with PCB and components. £29 REF MAG29P1 SINCLAIR C6 13° wheel s complete with tube, tyre and cyde style bearing £6 ea REF MAG6P 10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. £3 a pack. REF MAG3P11 13.8 V 1.9A psu cased with leads. Just £9.99 REF MAG10P3 360K 5.25 brand new half height noppy dives IBMcompatible industry standard. Just $£ 6.99$ REF MAG7P3
PPCMODEM CARDS. These are high spec plug in cards made for the Amstrad laptop computers, 2400 Daud dial up unit complete with leads. Clearance price Is E5 REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginaliy made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our clearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding
etc. $£ 20$ REF: MAG20P1
SINCLAIR C6 MOTORS We have a few left without gearboxes These are $12 \mathrm{v} D C 3,300 \mathrm{rpm} 6^{\prime} \times 4^{\prime}, 1 / 4^{\circ}$ OP shat $£ 25$ REF: MAG25 UNNERSAL SPEED CONTROLLER KIT Designed by us for the above motor but sutable for any 12 v motor up to 30 A . Complete with PCB efc. A heat sink may be required. $£ 17.00$ REF: MAG17
VIDEO SENDER UN TT. Transmits both audio and video signals from either a video camera, video recorder, TV or computer etc to any standard TV set in a 100 range! (tune TV to a spare channel) 12 V DCop. Price is $£ 15$ REF: MAG15 $12 v$ psu is $£ 5$ extra REF: MAG5P2 *FN CORDLESS MICROPHONE Small hand held unit with a 500^{\prime} rangel 2 transmit power levels. Reqs PP3 9v battery Tuneable to any FM receiver. Price is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200°. Ideal for garden use or as an educational toy. Price is $£ 8$ a par REF: MAG 8P1 $2 \times P P 3$ req'd.
"MINATURE RADIO TRANSCENERS A pair of walke takies with a range of up to 2 kiometres in open country Units measure $22 \times 52 \times 156 \mathrm{~mm}$. Complete
req'd. $£ 30.00$ pair REF: MAG30
req' $\begin{aligned} & \text { COMPOSITE VIDEO KIT. Converts composite video into }\end{aligned}$ separate H sync, V sync. and video. 12 V DC. $£ 8.00$ REF: MAG8P2. LQ3600 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical pniter assemblies including printhead, stepper motors etcetc In facteverything bar the case and electronics, a good stnpper £5 REF: MAGSP3 or 2 for $£ 8$ REF: MAGBP3
SPEAKERWIRE Brown 2 core 100 foot hank \&2 REF: MAG2P1 LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4 JUG KETTLE ELENENT good general purpose heating efe ment (about 2 kw) ideal for heating projects. 2 for $£ 3$ REF. MAG3 UNNERSAL PC POWER SUPPLY complete with flyleads, switch, fan etc. Two types available 150w at £15 REF:MAG15P2 *FMTRANSMITTER housed in a standard working 13A adapter!! "FMTRA NSMTTER housed in a standard working 13A adapter!
the bug runs directy off the mains so lasts foreverl why pay $£ 700$ or the bug runs directy off the mains so lasts forever why
price is $£ 26$ REF: MAG26 Transmits to any FM radio

- FM BUG KTT New design with PCB embedded coil for extra stability. Works to any FM radio. $9 v$ battery req'd £5 REF: MAG5P5 - FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. $9 v$ battery req"d. $£ 14$ REF: MAG14 TALKING COINBOX STRPPER originally made to retail at $£ 79$ each, these units are designed to convert and ordinary phone into a payphone. The units have the looks missing and sometimes broken hinges. However they can be adapted fitheir origina 100 WATT MOSFET PAIR Same spec as 2SK343 and 2SJ413 ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel, 1 P channel, £3 a pair REF: MAG3P2 (8A, 14OV. 100 w) 1 N channel, 1 channe, E3 a par REF: (quick way of
VELCRO 1 metre length of each side 20 mm wide (quik VELCRO 1 metre length of each side 20 mm wi
fixing for temporary jobs etc) $E 2$ REF: MAG2P3
MAGNETIC AGTATORS Consisting of a cased mains motor with lead. The motor has wo magnets fixed to a rotor that spin round inside. There are al so 2 plastic covered magnets supplied. Made for remotely string liquids! you may have a use? E3 eachREF:MAG3P3

BUCL'S BULEETOK BOARD
 100MHZ DUAL TRACE OSCILLOSCOPES
 JUST £259 RING FOR DETAILS

MASSIVE

warehouse clearance FANTASTIC £20.00 REDUCTION

REFURBISHED PC BASE UNITS COMPLETE WITH KEYBOARD
from onir $£ 29.00$
AMSTRAD 1512 BASE UNITS GUARANTEED
PERFECT WORKING ORDER.
A

AMSTRAD 1512SD

1512 BASE UNIT, 5.25" FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONTOR AND POWER SUPPLY. WAS $£ 49.00$

NOW ONLY £29.00
REF: MAG29
AMSTRAD 1512DD
1512 BASE UNIT AND KEYBOARD AND TWO 5.25 " 360 K DRIVES . AIL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY $£ 39.00$

SOLAR POWER PANELS

3FT X IFT IOWAT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
 NOW AVAILABLE BY MAIL ORDER £33.95

TOP QUALITY AMORPHOUS SHICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WTHH AN INFINITE NUMEER OF POSSIBLE APPLICAIIONS, SOME OF WHICH MAY BE CAR BATTERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABLE $12 V$ SUPPLYIS REQUIRED. REF: MAGSA

FREE SOFTWARE!

Brand now, UNUSED top quallity Fomous brond licensed software discs. Available in $5.25^{\prime \prime}$ OSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE. We are actually selling you the floppy disc for yourown "MEG A CHEAP" shorage facillies, if you happen fo getsoftware that you want/need/like as well....... you get a "MEGA BARGAIN" tool
DSDD PKT10 \$2.99 REF: MAG3P7 PKT100 \$16.00 REF: MAG16
££££££WE BUY SURPLUS STOCK£f£eє££
TURN YOUR SURPLUS STOCK INTO CASH.
IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

1994 CATALOGUE

PLEASE SEND 45P, A4 SIZED SAE FOR YOUR FREE COPY
 OUK CONDTHONS OF SALE AND UNLESS OTHERWIEE STATED GUARANTEDD FOR 30
DAYS RIOHTS RESFIVED TO CFANGE PRICES A SFECITCATIONS WITHOUT PRIOR NOTTCE ORDERS SURECT TOSTOCK
TIES HOHER THAN THOSE STATED

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 50T
 MAIL ORDER TERMS: CASH PO OR CHEQUE

 WITH ORDER PLUS £3.00 POST PLUS VAT.PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
TELEPHONE ORDKRS WLLCOME
TEL: 0273203500
FAX: 0273323077

TOP QUALITY SPEAKERS Made for HI Fl televisions these are 10 watt $4 R$ Jap made 4^{\prime} round with large shielded magnets. Good quality general purpose sp
E2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAGSP2
TWEETERS 2° diameter good quality tweeter 140R (ok with the above speaker) 2 for £2 REF: MAG2P5 or 4 for £3 REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need just a small modification to run on any AT, they work perfectly but you will have to put up with 1 or 2 foreign keycaps! Price $£ 6$ REF MAGGP3
XT KEYBOARDS Mixed types, some returns, some good. some foreigr etc but ail good for spares! Price is £2 each REF:MAG2P6 loreigrict but all good for
or 4 for $£ 6$ REF: MAG $8 P 4$
PC CASES Again mixed types so you take a chance next one off PC CaSES Again mixed types so you take a chance next one off
the pile £12 REF:MAG12 or two the same for£20 REF: MAG20P4 the pile £12 REF:MAG12 or two the same for £20 REF: MAG20
COMMODORE MICRODRNE SYSTEM mini storage devioe for C64's 4 times faster than disc drives, 10 times faster than tapes. Complete unit just £12 REF:MAG12P1
SCHOOL STRIPPERS we have quite a few of the above units which are 'returns' as they are quite comprehensive units need at just 50 p a unit (minimum 10).
HEADPHONES 16P These are ex Virgin Atlantic. You can have 8 pairs, for £2 REF: MAG2P8
PROXMITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with fly leads. Pack of $5 £ 3$ REF: MAG:
3P5 or 20 for E8 REF: MAG8P4 3P5 or 20 for $£ 8$ REF: MAG8P4
SNODPERS EAR? Onginal made to dip over the earpiece of teleohone to amplify the sound-it also works quite well on the cable runnirg along the wall! Pnce is $£ 5$ REF: MAGSP7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very comprehensive manua! 5.25° only.
DOS PACK Microsoff version 5 Onginal s
als hence only £3 REF: MAG3P6 5.25° only FOREIGN DOS 3.3-Gernan. French,italian etc $E 2$ a pack with manual. $5.25^{\prime \prime}$ only. REF:MAG2P9
CTMG44 COLOUR MONTOR Made to w ork with the CPC464 home computer. Standand RGB input so will work with other machine: Refurtished £59.00 REF:MAG58
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec, long range internal units. 12 v operation Slight marks on case and unboxed (although brand new) £8 REF: MAG8P5 WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar pane! £14 REF: MAG14P1
CONIMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF: MAG4P9 Fully tested and working units are£12 REF MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS 232 input/output. Ex equipment. Price is $£ 27$ REF: MAG27 MAIMS CABLES These are 2 core standard black 2 metre mains cable: fitted with a 13 A plug on one end, cable the other. Ideal for
projects. low cost manufacturing etc. Pack of 10 for £3REF:MAG3P8 Pack $1100 \lessdot 20$ REF: MAG20P5
SURFACEMOUNT STRIPPER Originally made as some form of high frequency amplifier (main chip is a TSA5511T 1.3 GHz synthasiser) but good stripper value, an excellent way to play with synthasiser) but good stripper value, an excellen
surface mount components $£ 1.00$ REF: MAG1P1
MICROWAVE TIM ER Electronic timer with reday output sutable to make enlarger timer etc £4 REF: MAG4P4
MOEILE CAR PHONE E5.99 Well almost! complate in car phone excluding the box of electronics normally hidden under seat Can be made to illuminate with 12 V also has buiit in light sensor so display only illuminates whendark Totally convincingl REF: MAG6P6 ALARM BEACONS Zenon strobe made to mount on an extemal bell trox but could be used for caravans etc. 12v operation. Just connect up and it fashes regulary) $£ 5$ REF: MAG5P11
FIRE ALARM CONTROL PANEL High quality metal cased alamm pane $350 \times 165 \times 80 \mathrm{~mm}$ With key Comes
no information sale price 7.99 REF: MAG8P6
SUFER SRE HEATSNK Supert quality aluminium heatsink $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enable high heat dissipation. No holes $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enable
sale price $£ 5.99$ REF: MAG6P11
sale price £5.99 REF: MAG6P 11
RENOTE CONTROL PCB
RENOTE CONTROL PCB These are receiver boards for garage door opening systems You may have another use? £4 ea REF: MAG4P5
$6^{\prime \prime} X \mid 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $42 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130mA. Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ refMAG5P13 ideal for experimenters! 30 mfor $£ 12.99$ ref MAG $13 P 1$ LOFTX Line output transformers believed to be for hi res colour monitors but uselul for getting high voltages from low ones! £2 eac REF: MAG2P12 bumper pack of 10 for £12 REF: MAG12P3

SHOP OPEN 9-5.30 SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR $£ 49.99$

A Hand held personal Gamma and X Ray detec tor. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

Video technology is changing fast. New models get introduced with alarming regularity, each with the latest enhancement. So it's not surprising to find models and faults you've not encountered before.

The problem is you can spend costly, unchargeable time searching for elusive faults, which is where Euras System can help.

The Euras System is Europe's largest repair tips database for Video, Television and CD.

With over 120,000 repair tips for 14,000 models from 270 manufacturers you are sure to find the solution quickly. And because it is frequently updated, it always covers the latest models.

For a FREE demonstration diskette to run on your PC or details of Euras System in manual form, clip the coupon or phone 0272860900.

EURAS INTERNATIONAL LTD EURAS HOUSE, 51 BRISTOL ROAD, KEYNSHAM, BRISTOL, BS18 2BA

PLEASE SEND ME A FREE DEMONSTRATION DISKETTE \square PLEASE SENO ME DETAILS OF EURAS SYSTEM IN MANUAL FORM \square NAME
TITLE
COMPANY
ADDRESS

KWIK KOOK we mend mictowaves

We are looking for agencies in selected areas to complete our highly successful network of microwave servicing outlets.
In recognition of our success and strength MASSIVE DISCOUNTS are now given by the main spares suppliers ONLY TO KWIK KOOK MEMBERS, making
Kwik Kook unbeatable in the vast and still increasing microwave servicing market place.

A Kwik Kook agency run along side your existing servicing business is guaranteed to substantially increase your profits.
A nominal $£ 950$ plus VAT to cover your start-up pack (including training) and thereafter a modest monthly payment are all that you require to enjoy all the benefits of belonging to the Kwik Kook network.
WOULD YOU LIKE TO JOIN US? For an informal chat and information pack TEL/ FAX: NEIL FRANKLIN 0912724646

INFRA RED REMOTE CHECK CARDS

EXPORT ENQUIRIES INVITED

RENTAL FINANCE

Expand your CTV and VCR rental business with no capital outlay and increase your profitability

Broughfame has the solution and their rental finance plan will provide facilities from £2,500 upwards.

For further details ring or write to Bob Wickham at the address below:

BROUGHFAME LIMITED 39 SOUTH STREET, TARRING WORTHING, WEST SUSSEX BN14 7LG

TEL: Worthing (0903) 821020
FAX: Worthing (0903) 821194

SONY TUBES RE Processed with oricimal sonv guns

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes.

SPECIAL OFFER - Clearance while stocks last

\begin{tabular}{|c|c|c|c|c|c|}
\hline 37018
37028
370 K
37
37 LH
51068
51098
510 YU \& \& ... \(£ 20.00\) .. \(£ 38.00\) . \(£ 38.00\) . \(£ 38.00\) - \(\mathrm{E}_{28.00}\) £38.00
\(£ 38.00\) £38.00 \& \begin{tabular}{l}
5600 YB \\
A34EAC \\
A51 JCC \\
A51 JFC \\
A51 JXS \\
AXM37-
\end{tabular} \& \& \\
\hline 400EF822 Sony \& £64.00 \& A56-701× 17 \& £48.00 \& A51JAR00X \& ¢58.00 \\
\hline 5205822 Sony \& £64.00 \& A66-540x Mullard \& £56.00 \& A51 JKC00X Sony \& ¢74.00 \\
\hline 570HB22 Sony \& £64.00 \& A67-701×1T \& \({ }^{556.00}\) \& A51JUH10X Sony \& ¢74.00 \\
\hline 6800822 Sony \& £85.00 \& A34JBU10X Sony \& ¢64.00 \& A53JBWOOX Sony \& £64.00 \\
\hline 680EB22 Sony \& £85.00 \& A44JF210x Sony \& ¢78.00 \& A59EAFDOX \& £64.00 \\
\hline A36JAR00X01 \& £48.00 \& A493HTIox Sony \& £64.00 \& A59EAK00X Phlios \& £64.00 \\
\hline A38EAPP0X01 \& £48000 \& A49JLV10x Sony \& ¢74.00 \& A59,WCOOX Sony \& £95.00 \\
\hline A51-231x \(\square^{\text {a }}\) \& £46.00 \& A51EAFOOX \& ¢58.00
c5800 \& \begin{tabular}{l}
A5swWCOOX Sony \\
A64JK.J10X Sony
\end{tabular} \& ¢95.00

¢95.00

\hline A51-570X Mullard \& £46.00 \& A51EAK00X \& ¢58.00 \& \& ¢95.00

\hline A51-580X Mulard \& £46.00 \& A51EALDOX \& £58.00 \& A66EAF00X \& ¢74.00

\hline A51-590x Mullard \& £46.00 \& A51ebdoox \& £58.00 \& A66EAK00X Philips \& ¢74,00

\hline A56-540X Mullard \& £52.00 \& A51EBV10X01 \& ¢58.00 \& AXT51-001 \& £46.00

\hline \multicolumn{2}{|l|}{All Tubes Guaranteed 12 Months} \& \multicolumn{2}{|l|}{Please add

$$
171 / 2 \% \text { VAT }
$$} \& \multicolumn{2}{|l|}{Callers welcome Please phone tirst.}

\hline
\end{tabular}

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips on your CRT screens All you require is an electric drill. Written instructions are provided Guaranteed to work. Worldwide Delivery Total Price $\mathbf{£ 3 . 0 0}$ includes PaP and VAT

TV RENTAL ARREARS?

By fitting Alberice Teletime coin meters, you'll keep your customer - and your money!

Packed full of features,

- Uses $£ 1$ coins

Teletime will even recover
past arrears for you! At the same time, its attractive design ensures your customer will find the unit acceptable in the home.

- Compatible with all modern sets
- Counts coins used for added security
- 50,000 already installed in UK by major rental companies

* Albcrice

Alberice Meters Ltd, 38 Nuffield Road, Poole, Dorset BHI 7 7RA Telephone: (0202) 674272

PHONE FOR FULL DETAILS TODAY!

Brings You all this

- At least 150 TV \& VCR faults, colour coded and collated for fast, easy access.
- Equivalents Guides for TV Chassis and VCR Decks.
- Time Saving tips - complex procedures made simpler
- Money Saving tips - reduce repair and spares costs
- Substantial Discounts when using the Vision-On HelpDesk

For more information and samples send a SAE (TV1), 16 Hillview Park, Newtownabbey, BT36 8HW

A COMPANY WHO CAN REPAIR/REALIGN ANY UHF TUNER.
A COMPANY WHO CAN REPAIR ALMOST ANY BOOSTER/MODULATOR BE IT VIDEO OR SATELLITE.
A COMPANY WHO CAN REMANUFACTURE ALMOST ANY VHS VIDEO HEAD.
A COMPANY WHO CAN REMANUFACTURE ALMOST ALL POPULAR LNB'S ON THE MARKET.
A COMPANY WHO CAN REPAIR AND TURN ROUND 90\% OF GOODS RECEIVED THE SAME DAY BY 1ST POST.
A COMPANY THAT CAN CONSISTENTLY CUT YOUR SERVICING COSTS
PHONE OR FAX THE NUMBERS BELOW FOR YOUR FREE WALL CHARTS/PRICE LIST.

PHONE:

ServiceBase
 The Complete TV/Video Service Manager

The ServiceBase Progress System

Without doubt ServiceBase is the premier workshop progress system. No other available software will deliver the array of functions available in this powerful yet easy
to operate professional computer program.

Parts Orders ~Field Call Schedules \sim Minimum Stock Levels Mail Merge Letters \sim Progress Reports \sim Diary Bookings
 The List goes on and on yet all these features and much, much more are included within the basic module.

Customer Receipts \sim Invoice Production \sim Statements \sim Estimates \sim Service Histories

Amazingly this powerful product is available from

ServiceBase will store \& retrieve customer details:

New to the ServiceBase product array this impressive technical fault database module will turn the power of your ServiceBase

Engineers Screen administration program into a working tool for the engineer. Delivering masses of manufacturers textual and diagrammatic fault data, complete with replacement part number listings, directly to the service man's work bench.

Electronic Booking Form

The Warranty Module

ServiceBase will store all the information necessary to compile a warranty claim.

The Warranty Module will recall this information, automatically producing a fully completed facsimile of 26 manufacturers Claim Forms.

Additional Modules:

- Fault Database [Avalable Now]

■ Warranty Module [Available Now]

- Rental Module [Available May94]
- Retail Module [Available June 94]
- Maintenance Contracts [Available June 94]

図 Full Accounts [Available July 94]

Easy to Locate Fault Diagnosis

Order Your Programs Today

If in doubt ask any leading manufacturer or trade association for their opinion of the best software available.

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES B \& K PRECISION CRT ANALYSER-RESTORER

HAMEG are Europe s top seling DUAL TRACE OSCILLOSCOPES. Select from lour superb modeis. All, with the exception of the MM 1005 , incorporate a usetul COMPONENT TESTER Size - all models $\cdot 285 \mathrm{~mm} \times 145 \mathrm{~mm}$ All suppliear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: $110 / 220.240 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$

HM203-7 20MHz STANDARD

SPECIFICATION
2 Channels
Bandwidth: DC -20 MHz Sens: Ch. $1, \mathrm{Ch} .2,1 \mathrm{mv} / \mathrm{cm}$ *Triggering: DC - 40 MHz Active TV-Sync-Separator Variable hold-otf Trigger LED indicator Calibrator: 1 KHz Square wav Component tester Plus many features
Price c362.00 + c63.35 V.A.T. FREE Specialist Carrier Delivery
SPECIFICATIONS
HM604 60MHz UNIVERSAL
2 Channels
Bandwidth: DC - 60 MHz
Sens: Ch. 1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$
Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: $D C-80 \mathrm{MHz}$
Active TV - Sync-Separato
After delay trigger
Sweep delay
Delay line
Trigger LED indicator
Crigger LED indicator
Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MHz}$ Sq. Wave
Component tester
Price $\mathbf{£ 6 5 3 . 0 0}+\mathbb{C 1} 14.28$ V.A.T. FREE Specialist Carrier Delivery
HM1005 100MHz UNIVERSAL 3 CHANMELS-UPTO B TRACES SPECIFICATION 3 Channels Bandwidth: DC - 100 MHz Sens: Ch.1, Ch.2, Ch. $3,1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC -130 MHz After delay trigger Delay line

* Trigger LED indicator Overscan LED indicator - Active TV - Sync - Separator

Price 5847.00 + C148.23 V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Balogue real time (Same as 203-7)

- Bandwidth: DC - 20 MHz

Sens: Ch. 1 , Ch.2, $1 \mathrm{mV} / \mathrm{cm}$

- Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$

Active TV. Sync. ${ }^{\text {Samz }}$

- Max sampling rate: $2 \times 20 \mathrm{MHz}$

Memory: $2 \times 2048 \times 8$ Bit
Dot joiner

Price C653.00 - C114.28 V.A.T. FREE Specialist Carrier Delivery

> BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

In addition to a switchable sound carrier laculity which allows use with the maiority of PAL TV sys
In
tems. the Orion provides highly flexible TGB outputs, ensuring compatibitity with most video monitors.
More than 50 pattern combinations can More than 50 pattern combinations can be selected. including those for lesting static and dynamic
divergence. video amplifier linearity, colour purity, general colour peritormance focus etc A separate video input to modulate camera signals: fully variable RF and video output le
ing AGC testing, trigger output allowing easy triggering of difficull oscillioscope waveforms: external sound modulation input via DIN connector for frequency response lesting of TV sound systems; adjus
table wide frequency labie wide irequency coverage of VHF and UHF TV bands
monitors.
FEATURES

- Colour bars, purity, greyscale, crosshatch.
dots tocus, etc.
5.5 MHz Channels
.5MHz. 6.0MHz, 6.5MHz Sound Carriers
External Video Output.
Trigger Output.
Separate R, G, B and sync. O/P's
RGB a TTL \& $1 V$.
Green- $0.3 V$ Syncs.
Composite Video Output.
Switchable Video Polarity
- Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Size: $98 \times 219 \times 240 \mathrm{~mm}$.

Price $\mathbf{2 2 9 . 0 0}+$ \&40.08V.A.T. NEW! DEGAUSSING COIL A very effective degaussing coil, ideal for degaussing TV tubes, computer monitors, oscilloscopes etc. Mains Power: 220/240 50/60Hz. Size: $355 \times 355 \times 24 \mathrm{~mm}$.

Price $\mathbf{8} 46.00+$ E8.05V.A.T.

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

all CRT's checked identically, including all in-line and one gun types: Tests all three guns of colour CRT's simultaneousiy under actual operating conditions (model 490) * Exclusive multiplex fechnique current that actually passes through G1 aperture to screen. Measures all shorts and leaks - preserving more CRT's. Tests focus electrodes lead continuity finding faults that other testersmiss "Uses mos powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years up chart updated and new protual sel developed. Tests and rejuvenates vpurs and oscilloscope tubes A range ot over 40 CRT base adaptors available * Increase profit * Pays for itself in months.

Prices
Model 490 Tri-dynamic threa meter instrument inc. 6 common adaptors........$\{559.00$ - $£ 97.83$ V.A.T.
Without adaptors.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish atignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal
levels can be accurately measured on the TC402.D. TC90 AND TC80 allowing the evaluation signal conditions for satisfactory operation. All models have a clear LCO direct trequency readout, coupled to a multiturn tuning control enabling precise channel identification.
TC402-D VHF \& UHF
FEATURES

- Three bands

Low VHF: $\mathbf{4 5}-170 \mathrm{MHz}$
High VHF: $170-450 \mathrm{MHz}$
UHF : $450-862 \mathrm{MHz}$
Digital display for direct frequency readout Built-in monitor loudspeaker AM/FM.
Signal measurement from $20 \mu \mathrm{~V}$ to 3 V - Powered by eight 1.5 V AA batteries.

Fully portable with sturdy carrying case.
Price £289.00 + E50.57 V.A.t.

TC90 VHF-UHF-SAT.

FEATURES

Five bands:
Low VHF
High VHF $\quad 45-110 \mathrm{MHz}$
Hyper VHF $110-300 \mathrm{MHz}$
VHF $: 470-862 \mathrm{MHz}$
Satellite : $950-1750 \mathrm{MHz}$
Digital display for direct frequency readout Signal mea surement satellite $70 \mu \mathrm{Vm}$ to -10 dBm .
Audible indication of satellite signal leve Built-in-monitor loudspeaker AM/FM (not satellite)
Powered by rechargable battery (complete with charger $220 / 240 \mathrm{VAC}$)
Fully portable with sturdy carry case.

NEW! TC80 SATELLITE

TC-80 IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique leatures video composite output; audio output with built in
loudspeaker; ramp and RF signal outputs. which enable an oscilloscope to be used as a spectrum analyzer.

* 4 digit LCD rreq. display
- Freq. range 950 to 1750 MHz
Sweep mode sweeps entire freq. band for rapid satellite location audible tone proportional to signal strength * Measurement trom 40 to 100 dBuV
Audio demodulation with * Video demodulation
* Rear SCAAT connector for A/V connection * Oscilloscope/spect analyzer output * Sound tuning 5 to 8 MHz - LNC PSU 14V or 18V * LNC current measuremen * Internal rechargeable

Price 5490.00 ع85.75V.A.T. U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with order. payable B. K. Electronics. OHticial Orders welcome from Govt. Depts.. range. Credit card orders are accepted by phone lax or post complete Delivery normally within seven days.

[^0]
TUBES
 Spring Stock Clearance

```
\(14^{\prime \prime}\) tube to replace 37-570, 37-573, 37-554, 3701B22 only £19
```

$14^{\prime \prime}$ tube to replace almost any
narrow-necked ct only £39
17" FST tube to replace 41JAR, 41EAM only 269

14 "tube to replace 37-590
370HFB22 3708B22
AXT37-001, 370HUB22
only £29
$16^{\prime \prime}$ tube to replace
42-590, AXT42-001, 4202B22
only £29
$16^{\prime \prime}$ tube to replace 38EAC, 420FSB, 420GAB, 420GJB, 420GUB
only £29

20" tube 51-580 AXT51-001
New only $£ 69$
21" FST tube for Tashiko, Hinari etc
51JAR21X, 51JAR65X, 51JAR96X
only £45
New Mono Tubes
$20^{\prime \prime}$ only £10
$14^{\prime \prime}$ only $\varepsilon 5$
$12^{\prime \prime}$ only $E 5$

Ring Irene or Jane with your tube number for latest price and availability

TELEPRICE

LIMITED

THE LEADING SUPPLIER OF EX-RENTAL TELEVISION, VIDEO AND AUDIO EQUIPMENT TO THE WHOLESALE TRADE

CALL US FOR LATEST PRICES AND NEAREST CONTACT ON:

Tel: 0793421141 Fax: 0793432478

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS -
TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED
$1 / 2$ Mile of Junction 10 M6. Easy Parking Facilities
UNIT 3, BENTLEY LANE BUSINESS PARK
BENTLEY LANE, WALSALL WS2 8TL
Tel: 0922 724542. Fax: 0922722208
Mobile: 0860499495 (24 Hours)
OPEN:
MON-FRI,
9-6pm
SAT 9-2pm SUNDAY BY APPOINTMENT DELIVERY SERVICE THROUGHOUT THE COUNTRY

VISION CARE

DEAR TRADERS
DO NOT BE DISAPPOINTED.
WE ARE AT YOUR SERVICE FOR
GOOD QUALITY BRAND NEW AND
EX-RENTAL, GRADED STOCK
OF CTVs, VCRs, AUDIO ETC
IN THE (EX-TELEPRICE) UNIT.
40 INVINCIBLE ROAD FARNBOROUGH
HAMPSHIRE GU14 7QU
RING FOR PRICES
TELEPHONE 0252-512161 or FAX 0252-524388
CONTACT PHIL OR MARTIN
OPENING OFFER BRAND NEW PORTABLE WITH GUARANTES 599.95 + VAT

STOCK ALSO AVAILABLE DIRECT FROM SOURCE

TELEPLACE SCOTLAND TV \& VIDEO WHOLESALE.

Working Faulty Refurbished Stock Delivered.

8, Colquhoun Park Hillington Industrial Estate Glasgow G52 1XX

041-883 2610

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829/086.0-809673 (24HR)
SUPPLIERS OF HIGH QUALITY EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES

Also available: 'B' Grade Products, Audio, Microwaves and Complete Range of Televisions and Videos OPEN: MON-FRI -9.30-5.30
TE : 0836-58582908660-809673 (244F)
Fax:0299-251543 EXPORT ENQURIES WELCOME

WILTSGROVE LTD

28-29 RIVER STREET, DIGBETH BIRMINGHAM B5 5SA
TEL: 021 772-2733 FAX: 021 766-6100

> HIGH QUALITY EX-RENTAL THORN AND GRANADA STOCK PLUS GRADED STOCK AUDIO, TVs, VCR etc. RING IN FOR PRICES

FREE DELIVERY FOR MOST AREAS OF U.K.

SHARP PERSONAL CASSETTE PLAYERS/CAR RADIO'S Model Description Retail Price Our Price JC105 CASSPLAYER $£ 14.50$ $\mathrm{JCl10}$ CASS/PLAYER £ $14.99 \quad £ 5.99$ JC130 CASS/PLAYER/RADIO JC510 CASS/PLAYER/RADIO RG296 CAR RADIO/CASS RG292 CAK RADIO/CASS
NEW Definition BRAND PORTABLE 14' REMOTE TV ON SCREEN DISPLAY,
VHF/UHF TUNER, SPECIAL I2 MONTHS GUARANTEE etc. \quad PRICE

* GUARANTEED LOWEST PRICE *

EXPORT ENQUIRIES WELCOME

ORDER YOUR FREE
CATALOGUE TODAY

VIDEO HEADS, REMOTE'S, IC'S, BELT KITS,
IDLERS, PINCH ROLLERS, LOPT'S, MICROWAVE PARTS, TV + VIDEO TRIMS, CASSETTE HOUSINGS, FUSES ETC

E-180 VIDEO
TAPES $\mathbf{~} 0.79$
MIN QTY 50
REGISTRATION FORM
COMPANY/NAME: .
ADDRESS: ..
...
TELEPHONE:
..................... FAX:
CONTACT NAME:

TRADE ANNOUNCEMENT

Gamma (UK) Ltd have a new warehouse opened in Nottingham. Over 1,000 Televisions and Videos in stock. Refurbished, working and un-tested stock always available. Fresh deliveries every week.
Specialists in export to the African Continent (export enquiries welcome)

HEAD OFFICE:
1501-1503 Pershore Road, Stirchley, Birmingham B30 2JH
Tel: 021-458-4093 Fax: 021-486-2980
Opening Hours: 10 am to 6 pm Monday to Saturday

Nottingham Branch:
256 Derby Road, Stapleford, Nottingham NG9 7BG
Tel: 0602392231
Opening Hours: 10am to 5pm Monday to Friday

MASSIVE PRICE REDUCTIONS - SPECIAL STOCK CLEARANCE ON MANUFACTURERS B-GRADE STOCK
 $$
\begin{array}{ccccc} 21^{\prime \prime} \text { R/C }-£ 110 & 21^{\prime \prime} \text { TEXT }-£ 150 & 21^{\prime \prime} \text { NICAM }-£ 185 \\ 25^{\prime \prime} \text { TEXT }-£ 175 & 25^{\prime \prime} \text { NICAM }-£ 215 & 28^{\prime \prime} \text { TEXT }-£ 225 & 28^{\prime \prime} \text { NICAM }-£ 250 \end{array}
$$

Home Computers	Radios	Satellites	CD Mini Systems
Telephones	Still Cameras	Televisions	VCRs
Clock Radios	Car Radios	Electric Fires	CD-Radio Cassettes
Calculators	Toasters	Personal CDs	Home Security Systems
CD Midi Systems	Personal Stereos	Midi Systems	Portable Audio

DON'T MISS OUT, PAY US A VISIT

PRESTON
139 Oakshott Place
Walton Summit Ind Est
Preston (M6 Junc 29)
Tel: 0772312101

BIRMINGHAM 208 Bromford Lane Erdington Birmingham B24 8DL

Tel: 021-327 3273 Fax: 021-322 2011

LONDON
Unit 2
The Royal London Est 29/35 North Acton Road London NW10
Tel: 081-961 5005

WESTERN TRADE SERVICES

EST 14 YEARS

SUPPLIERS OF EX-RENTAL
TV \& VIDEO
THORN AND NON THORN

SOUTH WEST

2A Barton Hill Road, Torquay,
Devon TO2 8JH
Tel: 0803312222
Fax: 0803326767
Delivering throughout Devon and Cornwall weekly

WALES

Unit 6, Islwyn Workshop, Portymaester Ind Est, Risca, Gwent
Tel: 0633612667

ADVERTISERS' INDEX	
Aerial Techniques 503	Henry's Audio Elec. 504
Alban Electronics Ltd ... 471	Hussein Central TV 523
Albrice Meters Ltd 515	
Anglian TV Wholesale . 526	Intercomms 468
A. R. International...... 526	J.J. Components 493
A-Z Electronics	
Besco Ltd 524	
BK Electronics 518	Manor Supplies........... 475
Broughfame Ltd 515	Marapet 519
Bull Electrical 513	Mauritron................. 468
Campion Wholesale TV	MCES 516
Ltd...................... 526	PC Control Systems Ltd 517
Central TV Wholesale	P.V. Tubes 468
ies	edbank 522
Colourtrade 525	Sendz Components 532, IBC \& OBC
CTV (Mids) 521	
CTV (N.E.) 527	Stewart of Reading \& OBC
Datapart Ltd 525	Swift TV Publications.... 506
East London Components	Teleplace 521
466	Teleprice Ltd 520
Economic Devices...496-497	Tepco Electronics 525
E.C.S. 514	Vison Care 520
Euras International Ltd 514	
Express TV's.............. 519	Vision On.................. 516
Gamma 522	
GGL Components 467	Wellview 515
Gogglebox 527	Western Trade Services 524
Grandata Ltd 458-465	West Mids. TV 520
Hardy, J.W 504	Ltd..................... IFC
Harrison Electronics 466	Wiltsgrove 521

COLOURTRAD

Major Brands ONLY Satellite, Receivers, Decoders, Microwaves TV - Video - AUDIO COMPLETE BOXED - WITH STAND - HANDSET - BOOK ETC MINT LATEST NICAM FASTEXT F.S.T.

FERGUSON

FULL RANGE - ALL CURRENT MODELS OF TV-VIDEO IN STOCK

NATION-WIDE NEXT DAY DELIVERY SERVICE-VISITORS BY APPOINTMENT

$$
\begin{aligned}
& \text { Phone O21-359 } 7020 \\
& \text { FAX 021-359 } 6344 \\
& \text { 221-222 BRIDGE ST WEST, HOCKLEY, } \\
& \text { BIRMIGGAM B19 2HU - JUST OFF M6-J6 }
\end{aligned}
$$

SOUTH LONDON TRADE WAREHOUSE NOW OPEN
 MAJOR BRAND BEST
 WHOLESALERS

OF THORN + NON-THORN EX-RENTAL TV's E V.C.R., TESTED + UNTESTED 'B' GRADE + LIQUIDATION STOCK

AUDIO: Stocks of Audio, Midi + Mini Hi-Fi CD's
Radio Cassettes, Walkmans, ALL TOP BRAND NAMES AT FRACTION OF RETAIL PRICE
STOCK ALWAYS CHANGING
TEPCO ELECTRONICS LTD

TEL 081-769 6149 071-924 1606 081-677 5749
FAX 081-769 4952
OPEN MON-SAT 9.30 TO
Ask for Chris Ask for Tony Warehouse Line

DO YOU REPAIR WHITE GOODS?
then you should know about

DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :WASHING MACHINES
 KETTLES IRONS TOASTERS MICRO-WAVE OVENS
\star NEW $\star 535$ page pactern parts catalogue now available at a cost of $£ 6$ to non-account customers
$-\perp$ DATAPART LTD
 BIRMINGHAM B9 4BB

SALES DESK 0217665551

FAX FREE 0800373459

BEST POSSIBLE PRICES RING FOR DETAlLS ANGLIAN TV WHOLESALE, UNIT 4, BRECKLANDS BUSINESS CENTRE, TAVERN LANE, EAST DEREHAM, NORFOLK
TEL/FAX (0362) 691611 Open Mon-Fri 9.30am-5.30pm

ANGUMNTV

To advertise in Television magazine please ring

Pat Bunce

 081-652 8339
AERIALS

FOR TV \& FM RADIO. PLUS
10以's OF MASTS
BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS
FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK

MAIN DISTRIBUTORS
FOR ANTIFERENCE.
LABGEAR, WOLSEY
FRINGE, TRIAX, TELEVES,
VOLEX-RAYDEX, KUBLER + MANY MORE
COASIIAIL AIEIRIAIL

UNIT X2 Rudford Industrial Estate Ford, Arundel
0903723726
NO MINIMUM ORDER VALUE NEXT DA Y DELIVERY ACROSS UK CARRIAGE FREE ON ORDERS E250+

NOW OPEN

 ON....
TEESSIDE

\star Ex-rental TV \& Videos
\star Best deals on working and nonworking stock

SUPERSCREEN

184 Linthorpe Road, Middlesbrough

Telephone: 0642-250850

TRADETVs EX RENTALTV \& V.C.R.s

BASICS FROM $£ 7.00$
REMOTES FROM £15.00
TEXT FROM £25.00
VCRs FROM $£ 25.00$

TELEPHONE ROY SMITH

0302-349583
10AM - 5PM MON-FRI

A.R. INTERNATIONAL BUILDING UNION ST, DONCASTER, DN1 3AE

OFF ST SEPULCHRE GATE WEST

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY T.V.'s from $£ 3.00$ Videos from $£ 30.00$ Prices Ex-VAT
Free Delivery Service to most areas of the U.K.
UNIT 75, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worcs North

For your export requirements contact us.

0299.89964201899643 FAX:029987984

C.T.V. (NORTH EAST) 9A/B, 94 Carrmere Road Leechmere Ind. Est. Sunderland SR2 9TE

No. 1 in the North East for all makes and models of high quality ex-rental televisions and video recorders at very competitive prices

For Further Information
Please Contact Nick or Brian on 091-523 5554
Fax: 091-523 8035
Export Enquiries Welcome.

SWITCH ON TO B' GRADE AT PRICES SECOND TONONE

14" Remote Portables 85
14" Teletext Portables 105
14" Fastext Portables 115
20" Remote CTVs 110
20" Teletext CTVs 125
20" Fastext CTVs 135
21" Fastext CTVs 145
20" Nicam Fastext 160
21" Nicam Fastext 175
All stock tested \& working and boxedwith remote \& instructions

Also $7000 \mathrm{sq} \mathrm{ft} \mathrm{of} \mathrm{returned} \mathrm{TV}$, Video \& Hi-Fi. Too many to list Don't delay phone today to make an appointment

GOGGLEBOX
TEL: LEEDS 0532-310359
DISCOUNT ELECTRICAL WAREHOUSE ASK FOR ROBERT

ALL ABOVE PRICES PLUS VAT AT 17.5\%

'B' GRADE

SWITCH ON TO TOP QUALITY BRANDS OF PHONE TODAY FOR BEST RESULT

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra. All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

SERVICE DATA

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere
From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio, in fact practically anything.
Originals or Photostats as available.
Also available. Our FREE catalogue detailing Hundreds of Technical Books PRES ${ }^{5}$ and Repair Guides available.

Now Available Our Service Manuals index on P.C. Disc (3.5 ') for use on you Computer lust $£ 3.50$ with FREE everlasting Updates. Order MP-285.

Mauritron Technical Services (5TV), 47A High Street, Chinnor, Oxon OX9 4DI Tel: 0844351694 Fax: 0844352554.
Please forward your latest catalogue for which l enclose 2 x Ist Class Stamps. or £ 3.50 for the Technical Books Catalogue plus Manuals Index on PC Disc(s).
NAME \qquad
Address

- INFOTECH

76 Church Street, Larkhall, Lanarkshire ML9 1HE Tel: (0698) 883334-(0698) 888343

Fax: (0698) 884825
Send a large SAE for your FREE catalogue of our other publications
HOW WOULD YOU LIKE TO GET ANY SERVICE MANUAL YOU WANTED FOR ONLY $£ 8.50$?

WELL, NOW YOU CAN!
We are running a very special offer of any 20 manuals for only $£ 170$. No catches! Order as you need them (no time limit) including all those expensive manuals you couldn't previously afford. No hidden expenses like post \& packing (that's included in the price). And if that isn't enough!
We are giving away our Data Reference Manual FREE with every subscription to this $\mathbf{2 0}$ manuals for $£ 170$ offer!

EUROPEAN SCRAMBLING SYSTEMS NEW 3rd Edition
European Scrambling Systems is the "bible" of the black arts of signal security. Now in Euro' Scrambling 3, John McCormac analyses all of the latest hacks and scrambling systems Only $\mathbf{£ 3 2 . 0 0}$ inc. P\&P PRACTICAL GUIDE TO BUYING, SELLING, REPAIRING AND SERVICING USED CD's, TVs and VCRs They cover everything from choosing good ex-rentals to covering more stock faults for common ex-rentals than elsewhere at many times the cost. These are brilliantly practical and inexpensive repair and service systems

Only $£ 9.95$ each or $£ 25.00$ for all three the fundamentals of electronics, either to begin a career, pursue a hobby, or refresh your knowledge, a BASIC ELECTRONICS course, from the Direct Personal Learning scheme, could be just what you're looking for. Contact K. Sparrow etc . . . 11 Claydon Green Whitchurch BRISTOL Avon BS14 ONG Telephone: (0275) 835669

SERVICE MANUALS
 For most U.K. European, Far East \& USA makes

 Thousands of different models available Prices (Stock Items):VCR, VCP, Camcorder, TVNid - $£ 13.50$ CTV, Colour Monitor, Camera - $£ 8.50$ MTV, Mono Monitor, SAT, MWV - £6.00Add P/P £1.50 for first item then 5Cp
for each additional item - no VAT
Cheque/PO with order only please.
D-TEC
PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 0202870656

INDEXES! INDEXES!
 THOUSANDS SOLD WORLDWIDE

EDITION 10 of the complete indexes now published containing over 8,000 Faults listed in 12 Years of Television Magazine

Indexes are alphabetically listed by Make, Model, Fault,Ref and are now Available for just
£8.00 For Television \& Satellite Faults
\&8,00 For Video, Camcorder \& CD Faults
Or
$\$ 15,00$ For both sets complete
Please add E1.50 (UK), £3.00 (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE is also avallable.
FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to:

左 131 PRENTON ROAD WEST. PRENTON,BIRKENHEAD. MERSEYSIDE L42 9PY

Nol For Fault/Repair Guides © Circuits Giant Fault Guide
 Firlux, Fisher, GEC, Grundig, Mitachi,' Hinor, In, JVC, Koring, Lowe, LUxor/Skontic, Mirssubish, Murphy, Nordmende, Orlo
Triumph, Zonussi.
(Fauth \& Diagnostics Pendum fors all of the above for only E9.95 (Normaly E16.95)

TV AR Fault \& Servicing Guides ($£ 16.95$ each)

VOL 1: The CTV's covered by this vatume inctude:- Albo 10-14, Conic, Decca/Totung to ' 89 , Etron, tange from Albo to Sony incorporating Philips, Ferg', Hitachi and others, Lostly, there are over 50 mod different austio sets covered os well os the LD ployers.
VOL 2: Covers - The CTV's covered in this walume include Ferg' TX- 85 to TX- 100 (pius all varionts ond whe ICC5), Phitips 2A \& 3 A chassis, Sharr's PS7 Chassis and others including Telefunken and
Nordmende This volume also hos into' on varius sateilites including Amstrad Ferguson and Poce The Nordmende this volume also hos into' on varmus sotelitits including Amstrad, Ferguson ond Poce The
Atari ST ($520 / 1040$ is covered as well as a wide selection of VH - C camcorders including Ferguson, Amstrod and Philips.
Each book has a binder full of the matching Circuits Available at £39.50 each

CTV CIRCU|T COLLECTIONS

```
Alba
DECCA.TATU 
GRANADA
MRUNDIG
lon
MPHIPS
MRIIPSUSION
TELEFUNKEV
```


BERGUSON-BAIRD

Video Fauli Finding Guides (5 books per series)
Series 1: Ferguson 3V00/01, 3V16, 3V22/23 Boird 8924, JVC HR-4001, Philips N-1500/N-1502, Series 2: Ferguson $3 \mathrm{~V} 29 / 30$, Boird $8930 / 40$, Philips 2000 , Sonyo, VTC5000/5300, VTC9300. Series 3: Baird $8931 / 42$, Fern 3 V31/32, Pon' NV7000/8000, Phillps 22VP600/700, Shorp Series 4: Fidelity VTR 1000 \& Clones, Pan' NVV100, NV8600/8610, Philips VR6460, VR6560, Sharp
 Series 6: GVundig VS 300 to 380 , Hinari VxL8/9/10, Hir VT410 to VT450, Pon' NV730 to 788 , Series 7: Ferg' VV58 to FV11/2, Goldstar GHV/CSE 1290-1296, Pan' D-Deck, G/G1 Decks, Sharp VC381 to VC337 Only $£ 12.95$ per Series or $£ 79.95$ for all

INFOTECH

76 Church Street, Larkhall, Lanarkshire ML9 1HE
Tel: (0698) 883334 - (0698) 888343 - Fax: (0698) 884825
Please add $£ 2.00$ for Post $\&$ Handling

P.C. DIAGNOSTICS SOFTWARE

 Now Available - What is probably the most COMPREHENSIVE selection of diagnostics software Wis for the P.C. currently available. A vast collection of programs and utilities to help you get the most from your 3 system. Covers such useful information as IDE Drive parameters, PC System memory diagnostics, Low Level formats for Hard Discs, Jumper settings, Compatibility tests for modems, Data recovery programs. FAT Table analysis, Analyse modify disk boot sectors, Keyboard buffer tests, Motherboard diagnostics System Exercisers, Setting up CD-ROM's etc etc etc. In all over 20 Mb of useful information compacted onto 14 Discs with 2 reference books. If you need to get more information from your PC then this set is for you. Order TODAY.

Just $£ 25.00+\mathrm{p} / \mathrm{p}$. Order MP-250/251.
All orders will include a copy of our FREE catalogue detailing the full range of Technical Books and Repair Guides we publish.

MAURITRON TECHNICAL SERVICES (TV2501),

47A High Street, Chinnor, Oxon, OX9 4DJ. VISA Tel:- 0844-351694. Fax:- 0844352554.

Please forward ___ sets of MP-250/251 at $£ 25.00$ each $+\mathrm{p} / \mathrm{p}$
I enclose Cheque/Postal Order or please debit my Visa/Access Card
Card No. \qquad Expires
NAME ADDRESS \qquad
\qquad

POSTCODE
Please add $£ 2.35$ (Overseas $£ 5.00$) to all orders to cover Postage \& Packing

Phone/Fax or write for a FREE quote on any model Orders usually sent "same day" as the order is placed

\qquad $\ldots{ }^{\prime}$ and Cross-refarences on every piece Domestic and Test Equipment we can find! It is still the best guide on the market.

We Also Run the Largest Data Library in the United Kingdom (Please ask for details)

MISCELLANEOUS

JOULE A-400 CAR RADIO DECODER/RE-PROGRAMMER
 features

Plugs directly into your IBM or compatible computer. Remove the baseplate from the radio, place the probe onto the PCB and the security code is instantly displayed. Changing the code or even fully re-programming is just as easy.

ABSOLUTELY NO MODIFICATIONS TO YOUR COMPUTER ARE REQUIRED

The A-400 can use either Comms 1 or Comms 2, connected via the serial lead supplied
Two levels of password protection (user selectable) to prevent unauthorised use.
Each decode is recorded and may be accessed at any time, again, to prevent unauthorised use
Operates from 12 volt supply, either from mains (via any regulated mains adapter) for bench use or, via vehicle cigarette lighter socket, for on site use.
Easy to use software includes on-screen PCB layouts for probe location, very detailed help screens and information on how to enter codes into the radio once the set has been decoded.
Supplied complete with connecting lead, purpose designed probes and a comprehensive instruction manual.
Technical help Ilne avallable to all reglstered users
PRICE: $£ 375.00$ + VAT
Package includes software for most popular brands of radio PHONE NOW FOR FREE DEMONSTRATION DISK AND INFORMATION PACK

The Joule A-100 is a factory built Hi -Tech design made to a very high standard of workmanship which is set to become the industry standard for car radio decoding equipment and is available from:

ELECTRONIC SOUND SYSTEMS
62 HIgh Northgate, Darllngton, Co. Durham DL1 1UW Tel: 0325484089 Fax: 0325465921 Moblle: 0860221099

 REBUILT CRTs

VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphors B.S.I. Certification
N.G.T. ELECTRONICS LTD

120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

CRT FOR MONITOR, SCOPES, RADAR ETC (not tomestle TV)			
2) 30 P 1	£1200	1424aG1	£4350
CV3946	£1200	D14-270GH50	17950
F21-12LC	£12500	M131-190GR	$£ 6150$
31 P 1	£1800	95447GM	£7950
CV8897	£6900	D15-100GH/97	£79 50
F31-12LO	£13200	M31-191GW	$¢ 6150$
3RP1A	POA	CME1431W	£2100
D10-210GH	5.5300	DI6-100GH/67	$\underline{57950}$
L0708	56160	M 31.271 W	$¢ 6150$
$3 W P 1$	£18.00	CME1523W	£2700
013-611GH	15300	DC7-5	55300
LD729	16150	M $31-3258 \mathrm{H}$	£29 00
5AP7	POA	CME2024W	£21.00
013-611GM	£79 50	DG7-6	£61 50
M7-120w	£15 75	M $=6$-141W	£6150
7ABP33A	¢1800	CNE3132GH	£3150
D13-630GM	$£ 53.00$	DC7-32	£.2880
M14-100GH	£1800	Ma0-120W	56150
$12 \mathrm{CSP4} 4$	£2700	CFEE1400	¢2700
D14-150GH	£7950	DG7-36	£1200
M14-100LC	£23 50	M4.4-120LC	16150
891	£2700	CV1587	£2900
D14.1736M	£79 50	E4712-8-9	$£ 2900$
M17-151GVR	£1120	MV6-5	$£ 4700$
$190 C 84$	£4350	CV1976	£47.00
D14-173GR	$\underline{5950}$	F15-101GM	£6150
M 23 -112GV	¢61 50	SE5FP31	£4100
1074 H	¢4350	CV2302	£7950
D14-181GM	$£ 7950$	F21-130GR	£4100
M31-182V	£4100	SE5JP31	£4100
1396P	£4350	CV2472	£61.50
D14-200GM	£7950	F28-130LDS	$\underline{241.00}$
M31-184W	£4100	SE328P31	$£ 4100$

Please add $£ 5$ p\&p. in UK and 17.5% Vat. For
overseas $p \& p$ please enquire. 10,000 preces in stock, 400 types. Please enquire for any type not listed above We also have in stoch camera tubes, image intensifiers, magnetrones, viditions and audio valves We wish to purchase valves t巨gpe KT66, KI77, KT88, PX4, PX25, DA100. Mınimurt order $£ 50$ UKK, $£ 100$ Export. Callers strictly by appointment only. BILLINGTON EXPORT LIMITED UNH IE, ©ilimans Industrial Estate, Billingshurst, W suseex,

RH14 9EZ, UK.
Tel: 0403784961
Fax: 0403783519

LINEAGE

[^1]RCS YAPABE YOATAEE B.C. BEICH POWER SUPPLY

 Tor nstant vorage and
fully varable Doperales
trom 2uOV A

WEW mooct. Up to 38 volts DC at 6 amp 10 amps

RADO COMPONENT SPECIALISTS

List, Lurge SME Delvery 7 amnt Cullers Welcome ciased Woal.
SURPLUS REDUNDANT EECTROIIC COMPONETS WAJTED
VCs - Tuners - Transistors - Valves -
Diodes etc. any quantity considered -
immediate payment.
ADM Electronic Supplies
Tel. 0827873311 . Fax 0827874835

WIZARD DISTRIBUTORS

Spares + Components Always in stock
Video heads for over 500 models
Spares for over 20 manufacturers
Hand sets for over 200 models
TV Tubes new + regunned
Plus much much more Empress St Works Empress St
Manchester MI6 9EN $061-872$ 5438, 061 -848 0060 Fax: 061-873 7365

[^2]
CLASSIFIED CLASSIFIED CLASSIFIED CLASSIFIED CUASSIHEL

- SERVICE DATA

manm

Vintage Service Data. For all your requirements on valve \& early transistor equipment. Contact "Savoy Hill Publica tions", Warrens View. Wrington Hilt Wrington, Bristol BS 18 7PR. Tel: 0934863491 10.00am to 7.00 pm .

TTVIDEO STTELAITE FADLIT

 GLIDE LINEFRYERNS

Host makes couered old and new

 This service offers lechnical advice and cure plus Schemande diagram all for the price of $\mathbf{2} 3.50$Access and lisa Fas Sonier
Phone 0268558938 Anvlime 4 Pince, Mead, Basildon, Lisser Ssi3 3HW

TEK-HELP

HOTLINE FOR TV \& VIDEO REPAIRS THOUSANDS OF FAULTS \& CURES ALL MAKES JUST THE COST OF A PHONE CALL
0891516434
48p PER MIN $36 p$ CHEAP RATE

FOR SALE

> BUSINESS FOR SALE/PROPERTY OR BUSINESS ONLY
> 15 years trading 10,000 customers on record very busy.
> T.V.Video, Audio and Satellite repairs/sales + hotel work + trade work.
> Legitimate reason for selling contact Graham on 0613702083.

Superb Opportunity!

to Expand \& Diversify Your Business in Security
Installing an international award winning wirefree alarm system. Buy direct from UK manufacturer at the lowest possible prices.

Massive demand - over 17 million untapped customers. Very high profit margins available. Excellent Free Factory Training
Tel: 0612573175
or Fax: 0612563024 or write to PAS, Bankley House, Bankley Street, Levenshulme, Manchester, M19 3PQ.

[^3]

[^0]: STEWART of READING
 WYKEHAM ROAD, READING, BERKS RG6 I
 Telephone: 0734268041 Fax: (0734) 351696
 Callers Welcome 9 am-5.30pm Mon-Fri (until 8pm Thurs)

[^1]: AVO MULTMETER MOd日1 8, EA5.00. 500 Volt maters
 E 30.00 . Pricas plus VAT and p\&ti. Send SAE for lists of Surplus instruments \& Scopes tic. A.C. Electronics, 17 Apleton Grove, Leeds LS9 gen Tel: 0532496048 . VDEOCRYPT DECODER Servica sheel with smstrard
 contact detan Eurocyp cerd interfice E12. EM.O.
 OCHRE MiLL Technical Services GGuncig TV speres for
 most models to 1985 , fast, Triendly, heipful, sensible prises. Git Lype Farm, Chariton, Nr. Malmesbury, Wits SN16 90R Teli: 0666' 823228.
 PRIVATE RETAILER has excelliert part exchange colour
 teievisions and videos to clear Tel: 049481437 .

[^2]: WANTED:
 1000 lamps, $14 \mathrm{~V} 40 \mathrm{~mA} \mathrm{~T}-1$, for car audio work - would import if necessary. Other non-specific car audio spares also wanted.

 Geoff Davies,
 13 Bowen Road,
 Rugby CV22 5LF
 Tel: 0788574774

[^3]: CAR RADIO SECURITY DECODING SOFTWARE
 A comprehensive software package for only $£ 299.00+$ VaT
 This package is fully upgradeable to any model of radio currently on our radio decodın Ist. Please phone for comprehensive radio decoding list and free demonstration disk ($31 / 22^{\prime \prime}$) 5. Upgrades will even cover the latest radios on the market. We can supplyidesign a packape to decode any radto that you choose
 Package comprises models including:
 Ford, Phillps, Blaupunkt, Clanon, Pioneer. Panasonic, Volvo. J.V.C. In fact nearly 50 model covered.
 Interlace and all necessary probes for connection to the radios are also suppled.

 ## Features:

 Fully IBM or compatible, to run on all computers including laptops, notebooks and even palm tops. Requres graphics capability for P.C.B. layouts. Runs from parallel port on LPTI. 1.) Full user triendly menus
 2.) Help screens with P.C.B. layouts for exact positioning of probes
 3.) Error messages to advise possible fault occurrences (e.g. Incorrectly fitted probe)
 4.) Adjustable for etther b\&w or colour monitors (Useful for notebooks. laptops ttc)
 5.) Fully reprograms blank or corrupted eeproms (using internal database)
 6.) Customised with your company detals
 7.) Security coded with your choice of code to stop unauthorised access
 8.) Runs from either floppy drive A. B or C drive
 9.) Keeps a record of all codes (date, time, make, model)

 ## 10.) Fully upgradeable.

 Upgrades
 Ford 2006/7 RDS range $£ 299.00+$ VAT. Only $£ 199.00+$ VAT if purchased together
 Grundıg SC303 $£ 299.00+$ VAT. Only $£ 199.00+$ VAT if purchased together.
 radio decoding service
 WE COVER ALL MODELS STARTING FROM $£ 10.00+$ CARRIAGE ($£ 4.20$ EACH WAY) + HAT
 That's only $£ 16.69$ or $£ 21.62$ if we arrange collection, all you have to do is make sure its boxed and adequately protected.
 Eeprom recoding service
 All eeproms are decoded for as little as $£ 4.99$ including vat
 Please send all eeproms in a padded envelope, to stop damage.
 CDH ELECTRONICS, keeping up with the times 3 Common Walk, Huntington, Cannock, Staffs. WS12 4NB TEL: 0543 572523. VAT Reg No 836876011

