SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

 FREE TV STANDARDS GUIDE

The Pace PRD800 Satellite Receiver

 Introduction to Teletext CircuitryThe Dolby Surround Sound System

Notes on the Bush 2521T . DX-TV Screen Entertainment 2000 Report VCR Clinic - TV Fault Finding

Tune to an exciting new range of Philex catalogues

 VIDEO \& TV CAATHEUT NEA comprehensige Cross reference, listing over 160 brands \& thousands of (approx 4,000 to 5,000) Video models both UK \& European

Illustrations and original part numbers. Individual cross reference for video heads, video belts \& TV line output transformers. PRODUCTS FOR VIDEO INCLUDE:

* An extensive range of heads, belts, idler tyres, pinch rollers, clutches, gears, idlers, pulleys, spools, switches, tension bands, motors, service kits.

PRODUCTS FOR TV INCLUDE:

* An extensive range of line output transformers and mains switches.

REMOTE CONTROL CATALOCVE

124 replacement remote controls for

 TV, Video \& Satellite contains:* A comprehensive cross reference listing 92 brands approx 6000 models, both UK and European.
* Listings include model name and number, chassis numbers \& original remote control type and number.
* Line drawings of original rembtes and the corresponding Philex replacement remotes.

February 1994

On sale January 19th

COPYRIGHT

(C) Reed Business Publishing Ltd., 1994. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM 2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at $£ 3.50$ each from Video Interface Products Ltd., who can also supply a five-year consolidated index on computer disk. For further details see page 279.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, $£ 37$ for Eire/Europe airmail (postage included for all rates) Rest of the world airmail availabe upon request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 253.

ISSN 0032-647X
Leader
Teletopics
VCR Clinic
Reports from Eugene Trundle, Terry Lamoon, Brian
Storm, Gerald Smith, Chris Watton, Michael
Dranfield, Nick Beer, Simon Bodgett, J.K. Potts,
Fauz Ahmed Sumar, John Edwards, John Hopkins
and Bob McClenning.

The Pace PRD800 Satellite Receiver

J. LeJeune
this satellite receiver.
What a Life! Donald Bullock
lan Martin

The techniques used to provide centre and
tional stereo left and right and the way in which
they are implemented

Help Wanted

Screen Entertainment 2000
George Cole
A look at what lies ahead in the video field.
Modern TV Receiver Techniques: Teletext
Eugene Trundle
Basic prinicples of teletext transmission, reception and decoding.

Next Month in Television

TV Fault Finding
Reports from Philip Blundell, AMIEIE, Brian Storm, Edward Joyce, J.G. Grieve, Ntichael Dranfield.,John Edwards, Richard Flowerday, John Hepworth and Terry Lamoon.

Camcorner
Reports from David C. Woodnott and Keith T. Keeton.

Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad.

Notes on the Bush 2521T
Chris Watton
The reprogramming procedure and general service notes.

Back to Basics
Chris Avis reports on the video courses run by Steve Beeching, T. Eng.

Satellite Scene
Modification and fault notes from David Finan,
Steve Cannon, Chris Watton and Graham Rees
Letters

OUR NEXT ISSUE DATED MARCH WILL BE PUBLISHED ON FEBRUARY 16

รจ

 \qquad

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice. tv \& video parts sold are replacement parts.

REMOTE CONTROLS
GRUNDIG
TP160E
TP200, TP300
TP400
TP590-600
TP390. TP610
TP621
TP630, TP650
TP660
HITACHI
CLE800-CLE830
A617402/655602
A512120/230
A514790
A5088470
A518612
SCL002
C2096
A51940
655602
$\operatorname{lif}_{\text {IFB13, }} 14,15$
FS4
RG306
FS9/1. 10/1
VS5 RUK
VS4-1
MULTICONTROL (17C20)
KORTING
18279, 18396, 18460, 18521 SE
40540 VTS
LOEWE
DC11
MATSUI
V $\times 770$
METZ
JAVA COLOR (6890)
COLOR (7156)
JAVA (7180)
M39P/03607,939P/03609
NOKIA
SATELLITE
NORDMENDE
TC2336
CMC1, TC3519
OCEANIC
390 C9500
ORION
PANASONIC
EUR51200
TC2200
VSO0357
VSQ0357/NV730 1050P
TNQ1621
PHILCO
CARVEL, CO
TELESTAR
TC10
TC10
PHILIPS
RC5002, 5154
KT3 NON TEXT
69117032
69117194
RC5991 UNIV
BC3B
KT3 TEXT
RC5352
RC5375
RC5 STANDARD
RC5901
SABA
T6772
TC319-320
TC356
TC356
TC358
TC360
TC365
SALORA
86173
SANYO
RC218, RC222, RC228, RC238
JXGE
JXDE
VHR2300
RC628
SHARP
G0121CESA, 123CESA, 204, 251
SIEMENS
FC616
FC631
FC742
1050P
1000P
850 P
1050P
1050P
1050P
1000P
1050P 1050P

900P
1000 P
1000 P
1000P
1000 P
1000P
1000P
1000p
1000P
1000P
900P
850 P
900 P
900P
900P
900 P
900P

SONY
RM604, RM605, RM606 900P
$\begin{array}{ll}32 \text { CHANNEL } & 900 \mathrm{P} \\ \text { RM613 } & 900 \mathrm{P}\end{array}$ 900 P
RM632, RM636 900P
TATUNG
FXA
RC70
1000P
RC70
FX70 FASTTEXT
TELEFUNKEN
FB632
FB639
THORN/FERGUSON
3V35-42
3V31-32
3V57-58
TX 10 STEREO TEXT
XT

- 850P

TX9-90-100
3V55, FV11
TX 100 STEREO FASTTEXT
PROFESSIONAL
\qquad
850P
50P

TOSHIBA
CT937
CT9117
UNIVERSAL PROGRAMMABLE REMOTE

CONTROL

Controls up to 4 different devices which use
infra red remote controls including TV, audio.
VCR and satellite. (Need original remote control to program)
Order code:IR100R Price: 1950P
We stock Remote Controls for over 5000
different models. Ring for further details on 081-900-2329.

BACKUP BATTERIES

REPLACEMENT PHILIPS NI-CAD BACKUP BATTERIES
Replaces Philips Part No's:
138-10138, 138-10313.1.2V-90mAh 160 P Replaces Philips Part No's:
$138-10229.2 .4 \mathrm{~V}-90 \mathrm{mAh} \quad 240 \mathrm{P}$
REPLACEMENT FERGUSON NI-CAD BACKUP BATTERIES
Replaces Ferguson Part No: 00E6-067-001 1.2 V

Used on: TX10 150P
Replaces Ferguson Part No's: 00E6-066-001. 2.4 V

Used on: $3 \vee 35,3 \vee 56,3 \vee 58,3 \vee 65$
280P

LINE OUTPUT

TRANSFORMERS

Description

HITACHI 2433752	1500P	LOT01
ORION 3714002	1500 P	LOT02
FIDELITY ZX300	1500P	LOT03
FE TX10090 DEG	1500P	LOT04
SABA 490007182	1500 P	LOT05
FE TX90 WHITE	1650P	LOT06
ITT D307/37 EQ	1600P	LOT07
BLAUPUNKT 210	1600 P	LOT08
GRUNDIG 2922010	1600 P	LOT09
ITT CVC800/1/3	1500 P	LOT10
ITTD218/37EQ	1600P	LOT11
NORMENDE 5255	1600 P	LOT12
SABA 81000200	1600 P	LOT13
SALORA T236 EQ	1650 P	LOT14
SABA 811-50-24	1600 P	LOT15
SABA 770223500	1600 P	LOT16
TELEFUNKEN AT1	1450 P	LOT17
TELEFUNKENEQ	1400P	LOT18
SALORA FM0218B	1600 P	LOT19
NORMENDE 5255	1600 P	LOT20
ITT CVC 1150/1	1500 P	LOT21
$1 T$ COMPACT 80	1500 P	LOT22
FE TX100 GREEN	1450 P	LOT23
HINARI CT4/5 5113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600 P	LOT26
ITT COMPACT B1	1450 P	LOT27
ITT CT3326 MUL	1500P	LOT28
ITT D066/37 EQ	1600P	LOT29
ITT 3546 EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600 P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100 110 D	1700 P	LOT34
HANTAREX 28021	1600 P	LOT35
SHARP C3700 EQ	1600P	LOT36
HITACHI 2432981 CP	1500P	LOT37

We stock line output transformers for over 100 different models. Please ring 081-900 2329 for

FAULT FINDING GUIDE BOOK

Video Fecorders Edition 2
Lists more than 2200 faults for 43 different brands
Price: $£ 945$ p Only. No VAT Order Code: BOOK01

Television Edition 3
Lists more than 3500 faults for 50 different brands
Price: $£ 945$ p Only. No VAT Order Code: BOOK02

VIDEO HEAD CLEANING STICKS

FUSES

	TIME LAG (20mm)		QUICK BLOW (20mm)	
Value	Order Code	Price	Order Code	Price
160 mA	FUSE01	75P	FUSE17	60P
250 mA	FUSE02	75P	FUSE18	60P
315 mA	FUSE03	75P	FUSE19	60 P
400 mA	FUSE04	75P	FUSE20	60 P
500 mA	FUSE05	75P	FUSE21	60 P
630 mA	FUSE06	75P	FUSE22	60P
800 mA	FUSE07	60P	FUSE23	60 P
1 A	FUSE08	60P	FUSE24	60P
1.25A	FUSE09	60 P	FUSE25	60 P
1.6A	FUSE10	60P	FUSE26	60P
2A	FUSE11	50P	FUSE27	60 P
2.5A	FUSE12	50P	FUSE28	60 P
3.15A	FUSE13	55P	FUSE29	50P
4A	FUSE14	55P	FUSE30	50P
5A	FUSE15	60 P	FUSE31	50P
6.3A	FUSE16	60P	FUSE32	50P

CERAMIC PLUG TOP

$3 A$	FUSE33	100 P
$5 A$	FUSE34	100 P
$13 A$	FUSE35	100 P

ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES

Solder Mop $1.2 \mathrm{~mm} \times 10$ metres	300 P
Tubed Silicon Grease 50 gram	200 P
Tubed Heat Sink Compound 25 gram	150 P

UNIVERSAL HEAD EXTRACTOR TOOL
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various brand heads.

VIDEO HEADS

AKAI
VSF600, VSF650
VP7100, VP7200, VP77
VS155, VS165 VS425, VS426, VS427, VSF 26, VS27, VS422. VSP9
VS240, VSP82, VS202
VS33
VSR9
AMSTRAD
VCRB800, VCR8804, VCR9340
DD8900, DD8904, TVR4, VCR6200, VCR 8600
VCR8602, VR8700
VCR8603, VCR8604, VCR8704, VCR8714
BAIRD
VHS82
BLAUPUNKT
CR1000, CR1200, CR1500
CR1800
RTV321, RTV322
RTV330
RTV333
RTV33B
RTV348
RTV404, RTV414
RTV635
RTV640
RTV750, RTV800, RTV900
RTV810
JVC
HRD330, HRD337, HRD440, HRD637, HRD641,
HRD660, HRFC100
JVC AND FERGUSON
8902/8903/8909/8912/8922
8923/8925/8929/8935
8931/8933
FV43H, HRD860
VC141L, HRD190, HRD610
V44L
BR1600, HRD142, HRD156, HRD152
R6200
HRD154, HRD217, HRD321, HRD350, HRD521
HRD522, HRD525, HRD527, HRD550 1700 P
HRD580, HRD620, HRD650
FIDELITY
VR900, VR910
FISHER
FVHD140, FVHD40, FVHP1, FVHP10, FVHP20 FVHP40, FVHS10
FVHP200, FVHP210, FVHP300, FVHP310 1600 P
FVHP500, FVHP5100, FVHP730, FVHP830 1200P

FVHP98

E1100, VIP5000

VCR5840, VCR8007, VIP2500A, VIP3000A
VIP6000, VIP150
VIP6000, VIP150 2200P
VCR4530, VCR6000, VCR6100 1600P
VCR8103, VCR600, VCR6100 1600P
$\begin{array}{ll}\text { VCR8103, VCR8107 } & \text { 2200P } \\ \text { VIP300A MKII } & 1900 \mathrm{P}\end{array}$
GEC
V4005H
2000P
GOLDSTAR
GHV 1232, 1233, 1241, 1242, 1243, 1244, 1290
291, 1295, 1296, 1891, VCP4130, 4300, 4301
$4305,4306,4310,4311,4315,4316,4320,4321$, 1650 p
4326

GRUNDIG

S456
E6110, SE9100, TVR4510, TVR5510, VS500 1700
S510, VS5180, VS6190, VS700, VS900 1800P V5790, VS930, VS940
MVS660, SE6160, VERONA, VS660
VS6690
MVS710 MVS720 MVS910, SE9120, 3500P
VSB10, VS910, VS920, SE7120, VS710,
VS720
VS160, VS740
VS680
HINARI
VCR34H, VTV200, VXL90
HITACHI
VT15, VTP10, VTP30
VT16B, VT260, VT498
VT570, VT575, VT576, VT580, VT585,
T5600
$\checkmark 15600$
VT60
VT660E
VT6700, VT6800
VT6700
VTL30
200P
1000P

VT522, VTM620, VTM622, VTM720, VTM722 V VTN
ITT
VR3520, VR3701, VR3719, VR3720, VR3721
VR3730, VR3731, VR3749,
VR3907, VR3908
VR3918, VR3919, VR3938
VR396B
$\begin{array}{ll}\text { VR3984 } & 1800 \mathrm{P} \\ \text { 1000P }\end{array}$
VR3958, VR4993 2300P
VR4913, VRP3833
LUXOR
9245, 9251,9254
9245, 9251,9
9255,9256
9255,9256
$9270,9271,9273$
$9270,9271,92$
9272,928217
9252
2700P
2500 P
$928017,928077,928097,929107,929117$ 1700P
00P 9253 2500P
1700P 9281 2700P
2300P 9284, 9295, VR3701, VR3721, VR3731,
1000P VR3761
2800P
2700P
3000P
3000P
3000P
3500P
400P 00P

NVM1, NVM3, NVM5
AG2100, AG2200
AG2100
N.E.C.

DX2000
DS6000

Dx 4000 , D $\times 1600$, N9040
N9052, N9530
LOADING MOTOR UNITS
IT
VR3605, VR3905, VR3955, VR3985 1100 P VP2826, VR3906, V43926, VR3976 1250 VP3946, VR3906, VR3948, VR3986, VR3995, VR6948

1500P
JVC
HRD110, HRD111, HRD120, HRD121,
HRD225
HRD140, HRD150, HRD157M, HRD158MS,
1100 P
HRD140, HRD150, HRD157M, HRD158MS
HRD160, HRD250, HRD257MS, HRD566.
HRD160, HRD250, HRD257MS, HRD566,
HRP50
HRD455, HRD725, N895
1500 P
SABA
VR6005, VR6014, VR7004, VR7011, VR8011,
VR8014 1100 P
VR6006, VR6007, VR608, VR6009, VR6018,
VR7007, VR7018, VR9006 1250 P $\begin{array}{ll}\text { VR7007, VR7018, VR9006 } & 1250 \mathrm{P} \\ \text { VR6016, VR6038, VR7016 } & 1500 \mathrm{P}\end{array}$ TELEFUNKEN
VR1925, VR1930, VR1940, VR1950, VR925, VR930, VR940, VR950 1 A920, VR2920, VR12970, VR7921, VR7926.
VR7931, VR7971, VR975
VR1970, VR1980, VR7970, VR7980, VR970, VR980

1500P
THOMSON
V320, V321, V323, V326, V4200, V4300 1100p
V342, V343, V352, V353, V360, V4210, V4230,
V364, V368, V4400, V6000
1250P THORN-FERGUSON
3V35, 3V36, 3V38, 3V39, 3V49, 8943, 8944 1100P $3 \vee 44,3 \vee 45,3 \vee 48,3 \vee 54,3 \vee 55,3 \vee 57,8947$.
3V44, 3V45, 3V48, 3V54, 3V55, 3V57, 8947 .
8947B, 8948
1250p
3V43, 9845
TOSHIBA
V55, V57 1100p
V65, V66, V67 1250P
V61, V63
1500P

CASSETTE HOUSING

AKAI
VS35, VS53, VS55, VS66, VS75 2600P
FERGUSON

FV31R

4300P

JVC \& FERGUSON

HRD515, HRD520, HRD527, HRD540, HRD550,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD670, HRD830, HRD840, HRD850, HRD860,
HRD4050, HRD6600 \& FV37H
2400P

IC TRANSISTORS

REMOTE CONTROLS

AKA

RC-V10A
RCV37B
V25A
BUSH
2020T, 2114T, 2321T, 2514T 1000P
$2020,2114,2321,25141100 \mathrm{P}$

DECCA
RC70
FISHER
RC905B 1000P
GRANADA/REDIFFUSION
UNIVERSAL, 79500C, 986700
SATELLITE $\mathbf{M K 4 ~ T E X T , ~ 7 0 1 1 5 G , ~ 7 0 1 3 3 G , ~ 7 0 3 5 7 E ~}$
MK4A TEXT, 70375 C ,
95288E
850P
94490D
1000P

VCR700
Contents
BELT SET. PINCH ROLLER. REEL IDLER. VIDEO LAMP
BELT SET. PINCH
Order Code SK41
FERGUSON \& JVC
VV4243
Contents Economy Kit Contents
$\begin{array}{ll}\text { Economy Kit Contents } \\ \text { BELTSET PINCH ROLIER } & \text { BELTSET. PINCHROLLER } \\ \text { CLUTCHMECHANISM. TENSION } & \text { SUPDY CUTCH TAKEUP }\end{array}$
BAND
Order Code: $5 \times 37 \quad £ 17.50 \quad$ Order Code: $\$ \mathrm{KK} 38 \quad$ £9.50
3V58:59:64/65
HRD $1701880 / 210 / 2303300320 / 370: 400430 / 530 / 700 / 750$ HRS5000
Contents
Contents
BELT SET. PINCH ROLLER IOELR ARM. TENSION BAND
Order Code: Sk44
3V29/3v30
HR7200:7300:7350
Contents
BELT SET PINCH ROLLER TENSION BAND IDLERTVRES
Order
Order Code: SK05
$3 V 35 / 36.38 / 39 / 49$
HRD1101
Contents
BELT SET. PINCH ROLLER TENSION BAND IDLER TYRES
Order Code: SK04
3V31/3v42
HR7600:76
Contents
BELISET TU REEL TABLE
TYRE PINCH ROL TYRE PINCH ROLLER. REEL
IDERL. TU CU UTCH TA IDERL T/U CLUTCH. TA DLER Order Code: $\$ 333 \quad £ 12.00$
3V35/36/38/39:49
HRD 10/111/420:121/225
Contents
BELTSET TNREEL TABLE
TYRE SUPPLY REEL TABLE
TRRE PINCH ROLLER. TN CLUTCH. TNIDLER REEL IDLER TENSION BAND CLUTCH. TN IDLER TYRE. RE Order Code: SK35
£10.50
$3 \mathrm{~V} 29 / 3 \mathrm{~V} 30$
Contents 000
Comtens
TYRE SUPP YREL TABLE YRE PINCLY REEL TABLE DLER. TM C ROLCH REEL TENSION BAND VIDEO TALER
Order Code: SM31 E11.50
Economy Kit Contents BELTSET. TM REELIDLER TYRE SUPPLY REEL TABLE TVRE PINCH ROLER AEEL IDLE TVRE TN IDLER TYRE. TNU CLUTCH
Order Code: SK32 $£ 5.60$
3V44/45/48:53/54/55/57
HRP 50:HRD $1401550 / 158 / 160$
HRD250:257/565:566:755
Contents
BELT SET. PINCH ROLLER.
Economy kit Contents
CLUTCH MECHANISM. TENSION
BAND
Order Code: $\$ \times 39 \quad$ £15.00 Onder Code: SK40 \quad [9.50
FISHER
FVHP905/906/907/908/910/9:1/916/9:8
Contents Economy kit Contents

IDLER. GEAR IDLER UNIT
IENSION BAND IDLER TYPE

£5.00
FVHP615/618/620/622711/711/715/716/720/721/722725/
$730 / 830 / 840$
Contents
BELT SET PINCHROLLER
BELT SET. PINCH ROLLER. BELTSET. PINCH ROLLER
IDLER GEARIDLER UNIT. IDUER TYRE TENSION BAND
Order Code: SK68 \quad £12.50 Order Code: $\mathbf{S K} 69 \quad £ 3.60$

HITACHI

VTINT33
Connents
BELTSET PINCH ROLLER TENSION BAND. IDLER TYRES
Order Code: SK08 £6.00
VT11NT33
$\begin{array}{ll}\text { Contents } & \text { Economy hit Contents } \\ \text { BELT SET. TAP REEL TABLE } & \text { BELT SET. PINCH ROLER. }\end{array}$ TYAE SUPP Y REEL TABLE FFREW IOLER TYRE TAPRREEL TYRE PINCH ROLLER. FF/REW TABLE TYRE SUPPE Y REEL
IDLER CLUTCH PLATE
TENSTON BAND
TENSIONBAND
£15.00 Order Code: $\$ \mathbf{K 4 6}$

HITACHI
VT52/61:62:63/64:65/85/86:640
Contents
BELT SET.
BELT SET PINCH ROLER.
Econony Rit Contents FFREW ARM CLUTCHPLATE. BELTEWIDLER SET ROLLER Order Code: 5 N149 $\quad £ 14.00$ Order Code: SK50 $£ 3.25$

VT400/405/410;13/14/15/18/420/25/26/28/430/31/35/48/450/49 510:520/25/26/530/35/36/540/545/46/48/570/75/576/580:85/88
Contents TAMNG BELT PINCH ROLLER. FF/REW ARM. CLUTCH BASE. TENSION BAND

V100/110/111113/115/118/20/125:128:130135/138/45/15\% 175:220:225250:255/258/260 YIL30
BELT SET PNCH ROLLER FFRREW ARM CLUTCH PLATE. TENSIONBAND
Order Code: SKS1
PANASONIC
NV2000 NV 2010 Contents
BELT SET. PINCH ROLLER Contents TENSION BAND. IDLER TYRES BELT SET. PINCH ROLLER Order Code: SK03 \quad E6.25 $\begin{array}{llll}\text { Ordér Code: SK02 } & \text { E5.50 }\end{array}$

NV300NV330:NV333 NV 340 NV 366
Contents BELT SET. PINCH ROLLER. TENSION BAND. DLER TYRE
Order Code: Skel
NV2000NV2010
Contents
BELT SET PINCHROLLER.FF

IDLER. PLAY IOLER TENSION

BEL SET. PINCH ROLLER.
IDLER TVRE. PULLEY TYRE Order Code 5×13

Contents

BELT SET FINCH ROLLER.
TDLERUNIT. PLAYIDLEA.
TENSION BAND ILLER TYRE. CLUTCHTYRE
$\begin{array}{llll}\text { TENSIONBANO } \\ \text { Order Code: SKI1 } & £ 10.00 & \text { Order Code: SK12 }\end{array}$ NV300NV330: WV333NV340NV366 Contents

Econony hat Contents BLERUNIT PLAYIDLER. BELT SET PINCH ROLLEQ. $\begin{array}{lll}\text { TENSIONBAND } & \text { TVRE } \\ \text { Order Code: SK15 } & \text { E8.00 } & \text { Order Code: SKIG }\end{array}$ NVG7 NVG9NNG10NVG 1 1/NVG 2 2NVG14/NVG 15 NVG 16: NVG18/NVG3GNVG120NVG130NVG400:NVH65 (PX/ACY AG1810(PKK)

Contents Economy Kit Contents

LOADING BELT. CAPSTAN
BELT PINCHAOLLER IDLER Order Code: SK27

${ }^{\text {NV }} 332$

BELT SET. PINEH ROLLER Economy Got Contents
PLAY IDLER. FF/MEW IDLER. PELT SET. PINCHROLEA TENSIONB.AND FFREW TYR Order Code: $\$ \times 29 \quad \$ 13.00$ NV230/250/260/280/430
AG1200P
Contents EConomy Fit Contents
IOLER TENSION BAND BELT SET. PINCH ROLIER
Ordar Code: SK23 \quad £7.00 \quad Order Code: Sk24
Nv600NV688
Contents
BELT SET PINCH ROL ER EConomy Nit Contents
BELT SET PINCH ROLIER. BELTSET. PINCH ROLLER,
$\begin{array}{lll}\text { TENSION BAND } & \text { IDLER TYRE } \\ \text { Order Code: SN25 } & \$ 13.00 & \text { Order Code: } \$ * 26\end{array}$

NV730inv77O

Contents	Econony Kit Contents
SLOT/NBEL LOADING BELT.	SLOT IN BELT. LOADING BELT.
PANCH ROLER. IDLER UNIT.	PINCH ROLLER IDLER TVRE

TENSION BAND DLER UNIT.
Order Code: $\mathbf{S K}^{2} 19$
NV370/NV380:480:630780,9301850

$\begin{array}{ll}\text { BEL SEI. PAMCH ROLLER } & \text { BEL SET. PINCH ROLLER. } \\ \text { IDLER. TENSION BAND } & \text { IDLER TYRE }\end{array}$
Order Code: SK21 $\quad \$ 7.00$ Order Code: SK22
NV777 NV788
Contents
BELT SET. PINCH ROLLER. ECOnomy Kit COntents
$\begin{array}{lll} & \text { E4.50 OLERUNIT. TENSION BAND } & \text { Order Code: SK17 } \\ \text { I7.50 } & \text { Order Tode: SK18 }\end{array}$

SHARP
VC381
Confests

¢5.00

VC5 2)NC57.1/TC581NC582NC583NC584NC5F3 $\begin{array}{ll}\text { Conteats } & \text { Economy Mit Contents } \\ \text { BELT SEI. FINCH ROLLER. } & \text { BELT SET. PINCH ROLLER } \\ \text { REEI IDIEF. TENSIONBAND } & \text { REELIDLER }\end{array}$

VC73INC7BKiNC7822NC785NC786VC793NC800
 BAND OrderCode: $\mathbb{\$ 1 6 4} \quad £ 13.50$ Order Code: $\boldsymbol{S K 6 5}$ £6.25
VC68 1 NCBBCAC C684NC685NC693NGG99NC6F3NC700 $\begin{array}{ll}\text { COntents } \\ \text { BELJSE: FIPNCH ROLLER. } & \text { Economy Kit Contents } \\ \text { BELTSET. PANCHROLLE }\end{array}$ $\begin{array}{ll}\text { BELI SE: FINCH ROLLER. } & \text { EELTSET. PINCH ROLLER } \\ \text { REEL DFUE UNIT. TENSION } & \text { REELDRIVE UNUT TYRE }\end{array}$ $\begin{array}{llll}\text { BANE } \\ \text { Order Codat: St } 52 & £ 13.50 & \text { Order Code: } \boldsymbol{\$ K 6 3} & £ 6.25\end{array}$

STK 151	¢6.00	STK7563F	¢8.00
STK $33=$	¢1.80	STK73410	£3.50
STK533	¢5.50	TA8205AH	£2.50
S7K5722	¢3.75	TA8210AH	¢3.00
S7K517E	¢3.50	T48215H	53.00
STK 3 PE	¢3.50	T48216H	£3.75
STK 315	¢4.00	IIPL791A	¢0.80
STK 35 E	¢4.40		

SOV = INCTION SWITCH (2 LEG) SPLCO PL PRICE $\mathbf{E 0 . 5 0}$

VIEE3 REEL MOTOR PU51381V	£15.00
3v9, 3 人 0, 3v31, 3v32, 3v39	

 HR23TC. HR7600. HR7610. HR7EC, HR7655
HITAD-1 dIDEO HEAD \quad E11.00
VT11 VT14, 16, 30.33
$3 \times \mathrm{C}, \mathrm{Se}, 640,5030$

£17.00
£17.00
HITA ЗHI TRANSFORMER 2434274 E14.00
OUTP JT TV MODULE HM6251

FHILS

2AS $5=-1 F$ LIFT ASSEMBL Y 69120366

51100 Vre. 191, 286, 411, 562, 761, VR5180, 6182, 6185,

I.C. PROTECTOR

ICPFIO ICPN5 IMPORTANT NOTICE

ICPN10
ICPN15
ICPN20
ICPN25
ICPN38
ICPN50
ICPN75
attention all customers whe purchased the WOOLEH HANDLE SOLDERING IRONS. BRNM WITSUKO - MODEL MX-34 (30, 40 AND 50 WATTS) tom us. Please LIO NOT USE this tool. We would like you to return this item to us immediately and we vilif refund your money together with the postage. We apologise lor any iaconvenience

GRANDATA HTD
K.P. HOUSE, UNIT 15

POP IN COMMERCIAL CENTRE, SOUTHWAY WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 081-900 2329 Fax: 081-903 6126

${ }^{2}$
 FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

囲 Walsey SMATV
\Rightarrow DIAMOND AERIALS UHFF/FM
CLOBA ${ }_{\text {commumaranons }}$ FIRST IF, SMATV
D.W.HARDI ${ }^{\text {cammumations UHF AERALS }}$ UHF AMPLIERS
Labgear Cablevision SMATV
LENSON HEATH SATELITE
ANTENNA

Teleste SMATV
TRIAX U.K. UEFNHF TOWER CLIPS UNi(iFix
VOLEX
COAX CABLES

- WE PROVIDE FULL TECHNICAL ASSISTANCE AND SERVICE BACK UP
- SMATV -DISH SHARING - DESIGN CONSULTANT

BRANDED COM REPUTATION COU	$\begin{aligned} & \text { NTIS. } \\ & \text { with } \end{aligned}$	IT 7, SOUTH JO 93/20358 Fax:			
Amatilitin					
				Marsility	Nic
					Sos
			BU807.... \qquad		
				$\begin{aligned} & \text { PHILIPS MINIATURE9.95 } \\ & \text { PHILIPS VR6462 } \\ & \text { PHILIPS VR6467....................... } 12.95 \end{aligned}$	PANASONIC NVG $+829 .50$
			(tosey	Reobamait	PANASONC NGE300.0.21.95
					Stin
			NEW RANGEOFPANASONIC LOPTS ASK/RING FOR		
				Stan	
					IDEO HEADS ARE OF THE BEST OR MANUFACTURERS OWN
					SERVIC
			ceile	cere	(eateren
		$\frac{\text { FERGUSONFV11) }}{\text { SWITCHES }}$		FISHER FVH725 28.95FISHER FVH906/916 18.50GOLDSTAR V1221 1290 16.25	ONYX TIP \qquad.95 .50 85
			(ex		
			Comele	HITACHI 8000/9700	
	ASHER VIDEO SPARES	вELTKT.	\qquad		Cellulardealers wanted
		OUEF.... ${ }^{\text {a }}$. 395			
	PINCH ROLLER 3.50TENSION BAND.................... 2.60FVH615/720	$\begin{aligned} & \text { REEL IDLER GENL INE } \\ & \text { NV730 } \\ & \text { BELT KIT } 95 \end{aligned}$			
		(encholer	vcaliga	(eat	
		AR20002010)	PINCH ROLLER3.95REEL IDLER GENUINE3.95REEL MOTOR GENUINE17.95		
Er					
	5				
	VT93009700EBELT KIT..	BELT KIT PINCH ROLLER.... \qquad	REEL PULLEY GENUINE95		
		VR6460/6520		BATTERIESERICSSON HOTLINE23.50	
	VT11/33E BELT KIT 1.95				NEC P3 NEC P4 $\underset{\substack{12200 \\-1295 \\-1250}}{1}$
			$\begin{aligned} & \text { FERGUSON 3V29................................. } 80 \\ & \text { PANASONIC NV2000 } \\ & \text { SHARP } 9300 . ~ \\ & \hline \end{aligned}$		
		REPAIR KIT GENUSNE 21.50 CASSETTE HOUSNG			
					$\begin{aligned} & \text { PONENTS E1.00 PER } \\ & \text { ORDER UK } \\ & \text { VICE MANUALS } £ 1.25 \\ & \text { EACH } \end{aligned}$
			SCART TO 5 SCART SKT6.95 VIDEO COP ${ }^{-}$ING KIT5.95		Llan elephones
	PANASONIC VIDEOSPARESNV230/430				
	 REEIOLEF				IVEAY BY RETUAN ON ..- MIN MUM ORDE VALUE 85.00 ...
	PLAY IOLERGENUNE $\quad .50^{5}$				

A selection from our range of books for the repair trade

TELEVISION CHASSIS GUIDE.
Full cross reference for all models Order MP-18. £5.95.

TELEVISION EQUIVALENTS
Lists models which are the same Order MP-150. £5.95.

FAULT LISTS FOR TELEVISIONS.
Hundreds of specific faults for dozens of different makes and models.
Order MP-205. £6.95.
TELETEXT REPAIR MANUAL. Covers SAA range of boards. Order MP-38. $£ 6.95$.

TELEVISION REMOTE CONTROL CIRCUITS.
Dozens of Diagrams on many remotes.
Order MP-167. £10.00.
TV POWER SUPPLY CIRCUITS. Dozens of P.S. circuit stages. Order MP-219. £10.00.

SCART EUROCONNECTOR SYSTEM.
Comprehensive details of the system. Order MP-21. $£ 3.00$.
P.C. HARD DISC DRIVE REFERENCE MANUAL.
Comprehensive Drive Details. Order MP-84. £5.00.
P.C. DIAGNOSTICS SOFTWARE.

Dozens of programs to aid you in diagnostics of PC's and Drives etc. 2 sets of $7 \times 3.5^{\prime \prime}$ Discs per set.
Set 1. Order MP-250. $£ 12.50$.
Set 2. Order MP-251. £12.50.

RECORDER AND
CAMCORDER EQUIVALENTS.
Full Cross-reference guides.
Makes A-J. Order MP-217 £5.95.
Makes K-Z. Order MP218 $£ 5.95$.
FAULT LISTINGS FOR VIDEO.
Lists Hundereds of Faults for dozens of makes and models. Volume 1. MP-206. £6.95.
Volume 2. MP-228. £6.95.
VHS VIDEO RECORDER PRINCIPLES.
Detailed guide on how it works. Order MP-58. $£ 3.95$.

VIDEO TEST JIG.
Special cassette lets you operate the machine in test mode. Order VTJ. £15.00.

VIDEO HEAD CLEANING KIT.

Special kit with comprehensive instructions on how to service heads. Order VHCK. $£ 4.00$.

VIDEO RECORDER FAULTS.
Unique repair guide for beginners. Order MP-5. $£ 3.95$.

WIRE ANTENNAS FOR H.F. OPERATORS.

THE aerial book for Amateurs. Order MP-243. £5.95

REEL TO REEL TAPE RECORDER SERVICING.
Theory and circuits for repairs. Order MP-201. £5.00.

TRANSISTOR RADIO REPAIR GUIDE.
Comprehensive servicing charts. Order MP-7. £2.50.

RECORD PLAYER SPEED DISC. Get your phonograph up to speed. Order MP-8. £1.00.

SWITCH MODE POWER SUPPLY
I.C. TYPE TDA-4600.

Circuitry and operation explained. Order MP-37. £6.00.

VOLTAGE REGULATORS, S'IABILISERS
\& POWER SUPPLIES. Identification and specifications. Order MP-9. £3.00:

CMOS DATABOOK.
Pinouts and circuits for 4000 series. Order MP-10. £5.00.

TTL DATABOOK.
Pinouts and circuits for 7400 series. Order MP-34. £5.00.

TRANSISTOR EQUIVALENTS. Includes details on testing them. Order MP-24. £3.00.

OFFICE EQUIPMENT EQUIVALENTS.
Photocopiers \& Fax machines covered.
Order MP-200. £6.00.
TELEPHONE CODE LOCATION GUIDE.
Find the Town from the Phone Code. Order MP-19. £4.00.

MANUFACTURERS EQUIVALENTS.
What makes are the same.

SERVICE MANUALS available for most equipment.

Order TODAY using Access/Visa for immediate despatch.

All orders plus £2.35 Post and Packing. (Overseas £5.00)

The above selection are just a few of the Hundreds of Unique Repair and Data Guides shown in our FREE catalogue - Yours for the asking. Sent FREE with all orders or send $2 \times$ lst class stamps for your copy TODAY!

MAURITRON TECHNICAL SERVICES (TV) 47A High Street, Chinnor, Oxfordshire, OX9 4DJ.

Tel:- 0844-351694. Fax:- 0844-352554.

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Wintord

EDITORIAL OFFICE

0816528120
Fax 0816528956
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528.327

FIELD SALES EXECUTIVE
Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
()81 6528339

Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES
 ()444 445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622 721666 and quote reference INJ.

COVER PHOTO

This month's cover photograph shows an internal view of the Pace PRD800 satellite receiver. See articte on pages 248-251.

Japanese Sandman

The Japanese economy is in a mess. Consider one or two facts. The recession has now lasted for over 32 months, the longest period of economic decline since World War II. and shows no signs of any improvement. With production falling, employment is decreasing and consumers are reluctant to spend. Even if they felt contident enough to borrow, the fact that there is at present a credit sqeeze would bloch this possible means of improving the performance of the economy. There's a credit squeeze not for the usual reason, high interest rates because of economic overheating, but because Japan`s banhing system is suffering as a result of massive bad dehs. There are times in economic life when nothing seems to go right. We've experienced this sort of thing often enough in the UK, though generally for rather different reasons. The Japanese economic boom of the Eighties led to asset overvaluation of a type that can be likened only to the Wall Street bubble of the late Twenties. In the Eighties Japanese share prices rose to astronomic levels that had little to do with the comparative economic performance of firms, the only realistic way of valuing them. This was observed in the West, but we lended to assume that the Japanese had their own ways of doing things and that somehow these gross overvaluations were acceptable. They weren't, of course: reality will intrude sooner or later. But the problem was that Japanese banks had over-invested in securities as prices rose. So had the firms to which they lent: during the boom years some major firms were making greater profits from share dealing than from their core activitics. To make matters a great deal worse there was, again lihe the USA in the Twenties, a simultaneous property boom which the banks fuelled by lending to speculators.

The bubble bursts when an excessive rise in asset values is no longer sustainable and when confidence. which is all that underpins an asset-value boom, for one reason or another declines. Several scandals helped to start the collapse. And once a collapse starts you get the domino effect. The banks have been left with a mass of bad debts, hence the present credit squeeze. Unfortumately the bat debs. are still building up faster than the banks are able to write them off. There are reputed to be something like $£ 300$ bn of bad debts amongst the leading banks, and it's expected that this will affect their performance for the next five-ten years.

Under normal circumstances you can reverse a recession by lowering interest rates. But Japanese interest rates are already negligible - the official discount rate is 1.75 per cent. It's tronical that Japan's trade surplus continues unabated. Because of this the value of the yen can`t be lowered to stimulate industry and interest rates can't be lowered even if there was room for this. There are indeed times in economic affairs when it's difficult to know which way to turn. Generally one has to wat for economic conditions to sort themselves out naturally, which can be a painfully slow process. Who would have imagined all this in the Seventies and Eighties, when the Japanese economy was forging ahead and taking over the role of the engine of world trade? There was talh of the 21 st century being the century of Japanese world domination - that, anyhow, was how the chairmen of Sony and Matsushita saw things. For the West it was a worrying prospect. But at least the Japanese realised that they couldn`t monopolise production, which in conseduence was spread abroad. In a way it's reassuring to know that Japan is subject to the sane economic laws as the rest of us. Now the worry is that the Japanese economy could tip from recession to a full-blown depression because of waning demand, over capacity and excessive stocks. Though their profitability has fallen dramaticatly, the major Japanese firms seem to be secure enough for the present: the pressure is being felt by the smaller firms and subcontractors, which are losing work as the major firms rely more on their own off-shore plants.

There"s no solace to be gained from Japm"s economic woes. But at least the threat of Japanese economic hegemony has been removed, for the present at any rate. It is now up to Western manufacturess to make the most of their opportunities. Unfortunately the problem of mature markets and a lack of new developments affects us all. Will the much-vaunted multimedia revolution and increasing opportunities in the service sector provide a way out?

Teletopics

EUROPEAN TV PRODUCTION EXPANDS

Several recent moves suggest that Europe is about to become an increasingly important base for the production of TV receivers. First Gooding Consumer Electronics (GCE), a Welsh firm, has acquired Grundig's factory at Creutzwald in north east France. GCE intends to increase production from the present capacity of 500,000 sets a year to a million within three years. As part of the agreement the factory will continue to produce sets for Grundig until the end of 1994. GCE will then switch to the production of 14,20 and 21 in . sets of its own design for the volume market. The company starts with the advantages of a high-quality, recently modernised factory and a trained workforce. At present, most smaller-screen sets sold in Europe are imported from east Asia. Alfred Gooding, joint owner of GCE with Koen van Driel, a former managing director of Grundig UK, says that with modern, sophisticated production equipment and a well-managed labour force it should be possible to compete with east Asia, which has the disadvantage of having to ship sets half way round the world. GCE has also bought the Minerva brand name from Grundig and the Continental Edison brand name from Thomson of France.

Alfred Gooding has other electronics interests, based in south Wales: Gooding Sanken, a jointly owned company that manufactures power supply units, and Race Electronics, a contract manufacturer that is at present manufacturing, amongst other things, 10,000 satellite TV receivers a week customers include Dixons and Comet. The satellite receiver activity is significant since it will enable GCE to put together satellite/TV set packages. The group expects to achieve a turnover of $£ 130 \mathrm{~m}$ this year.

Meanwhile Daewoo has taken an interest in a TV plant at Pruszkow, near Warsaw, Poland. Production of Daewoo TV sets at a rate of 250,000 a year is due to start next month. Further investment over the next few years could boost output to 600,000 sets a year, eighty per cent of which would be exported, mainly to western Europe.

And as part of Samsung's plans to expand production in Europe the company has recently acquired an east German manufacturer of glass for colour TV tubes.

DEVELOPMENTS

Intel and General Instrument have jointly developed equipment to link personal computers to cable TV networks. The technology enables data to be transmitted a thousand times faster than using standard telephone lines. Two leading US cable TV operators are to field test the equipment later this year.

British Telecom is to carry out a field/commercial trial of its video-on-demand system later this year. It will involve some 2,500 houses in the Colchester, Essex area. BT has already demonstrated the transmission of goodquality TV pictures via ordinary telephone lines while these are also in use for ordinary telephone conversations. The aim is to offer subscribers a wide range of entertainment and information services from a central data base for a fee. In the USA Bell Atlantic plans to have a similar service in operation by the end of the year, covering a million households. The aim is to extend this to eight million households by the year 2000 .

NTL and Pace Micro Technology Ltd. have formed a partnership to work together on digital TV reception equipment. NTL will be supplying the video compression technology and Pace the design, manufacturing and distribution. Initial production units should be available later this year. Satellite broadcasters plan to start direct-to-home digital services next year.

AT\&T Microelectronics, LSI Logic and SGS-Thomson Microelectronics have all announced details of chip sets for MPEG-2 video decoders.

FIRST W-VHS VCR

JVC recently launched the world's first W-VHS VCR. The W-VHS format is designed to handle Japanese HiVision HDTV signals, using metal powder instead of the conventional ferric oxide tape. Model HR-W1 has several recording modes however. The HD mode is used for recording HiVision transmissions when connected to a HiVision TV receiver - the JVC HV-32Z3 TV set has an AV Compulink system for timer recordings. The SD mode is used for recording NTSC signals and is claimed to offer improved picture quality in comparison with a conventional VCR system. The HR-Wl can also record and playback in the S-VHS and VHS modes. It has newly-developed, fivelayer Sendust heads and the hi-fi VHS audio system. Dimensions are $445 \times 182 \times 463 \mathrm{~mm}$, power consumption 84 W and the price in Japan the equivalent of about $£ 3,875$. A three-hour W-VHS tape costs $£ 37$, a two-hour version $\mathfrak{£ 3 0}$. There are no plans at present for a European launch of the system.

DISC SYSTEMS

Kodak has developed an 80 cm version of its Photo CD disc. The new disc holds up to 36 photographic images and is intended for use with notebook and laptop computers and personal digital assistants - the standard 120 cm disc holds 100 images. The 80 cm discs are compatible with CD-ROM, Photo CD and CD-i players, most of which have a disc tray slot for smaller discs. A plastic ring adaptor enables the miniature discs to be used with older machines. The new discs are expected to be available by the end of the year.

The Philips digital video cartridges that enable CD-i decks to play full-motion video titles are at present in short supply.

CONGRATULATIONS RICHARD!

Richard Flowerday, who contributes to our fault finding pages, has been named Sony European Video Technician of the Year. Richard runs Harborne TV Services, Birmingham which he set up after being made redundant in 1986. The award was won in Amsterdam after answering questions on video engineering and tracing three video faults in thirty seven minutes.

IN BRIEF

Philips' Voice Commander, a voice-operated remote control unit, has gone on sale in the UK at $£ 99$. . . A new conference entitled 'Television Distribution Technology' will run alongside the Cable and Satellite '94 Exhibition which is being held at Olympia on April 11-13th. . . Mauritron Technical Services, 47A High Street, Chinnor, Oxfordshire OX9 4DJ (0844 351 694) has issued a new technical publications catalogue (edition 18). It's full of items that should be of interest to readers.

WILLOW VALE ELECTRONICS LIMITED

${ }^{2}$

the answer to the spares puzzle

Akai Kamasa
Altai Konig
Amstrad Labgear
Antex Leader
Antiference Ledu
A.D.S. Link Hamson
Aiphone Microtec
Ambersil Mitsubishi
Aiwa Nikkai
Alba Oryx
AWI Pye
Baldwin Boxall Philips
Bose Portasol
BK Precision Ross
Blackstar Saisho
Celtel Samsung
Celtek Sansui
DNH Satfinder
Electrolube Seaward
ERL Servisol
Ferguson Sharp
Fidelity Shure
G.E.C. Sony
Goldstar Thander
Grundig Thompson
Hameg Toshiba
Inkel Trantec
J.V.C. Weller
\section*{'The Better Choice'}

HEAD OFFICE:
11 Arkwright Road, Reading, RG2 OLU.
Tel: 0734876444 Fax: 0734867188
ACCOUNTS DEPARTMENT:

Tel: 0734860158

NOTTINGHAM BRANCH:
11 Marhill Road, Carlton,
Nottingham, NG4 3AJ,
Tel: 0602870789 Fax: 0602878772

Mitsubishi HSB21

The same deck is used in a wide range of Mutsubishi HSB models, so the following problem could probably happen with any of them. When the machine was set to play it would lace up then produce a broken-up still picture (tape stationary) before shutting down again. Sometimes the tape would struggle forwards, producing a very mistracked picture with no sound and no tape-counter action. It didn't touch the capstan or the audio-control head. The cause of all this was that the half-loading arm (C033 in the exploded diagram of the deck) didn't retract fully at eject, so that it was unable to catch and pull the tape when a cassette was next loaded. It was caught behind the take-up tension regulator arm (C031) which moved too far to the left because its brake pad had come adrift, allowing the metal shoe to bear on the rim of the take-up turntable.
E.T.

Hitachi VTM820

A long search for the cause of a very intermittent squealing noise from this machine's deck, accompanied by a rippled picture, led us to the shaft of the white plastic impedance roller just upstream from the entry tape guide. Giving it a clean, a polish and a single tiny drop of light oil cured the problem.
E.T.

JVC HRD520

This machine produced off-tape pictures that were marred by multiple thin mistracking bars spaced progressively closer towards the top of the screen. The cause was failure of the entry guide to go fully home - its base jammed in the plastic guide rails that had become distorted or warped. Some careful paring with a file or a very sharp knife gets things moving again.
E.T.

Samsung SI/SX7220

It took us weeks to find the cause of this machine's very intermittent fault: the tape would run at very high speed to give a search-forward effect, with the sound still present fast and high-pitched. A dry-joint in the capstan FG feedback line on the 'deck-joint' PCB which sits behind the capstan motor was responsible. It wasn't obvious to the eye: re-make the joints between the board and motor connector CN213.
E.T.

Hitachi VT63/64

Two other firms had attempted to repair this old-timer, which would sometimes fail to play or record when asked. Between them they had replaced all the belts, the reel idler, the capstan motor drive chip and the thermistor that feeds power to this chip. The real culprit was the capstan motor, which when put on test drew over 1 A from a 4 V supply!
E.T.

Panasonic K Deck

The first machine fitted with this new deck came into the workshop recently. It was damaging tapes. When we opened

Reports from Eugene Trundle, Terry Lamoon, Brian Storm, Gerald Smith, Chris Watton, Michael Dranfield, Nick Beer, Simon Bodgett, J.K. Potts, Fauz Ahmed Sumar, John Edwards, John Hopkins and Bob McClenning

it up and watched the loading we saw that the loading arm pulled the tape up to the control head but didn't lock into place fully. On careful examination it could be seen that the arm was slightly bent over. Realigning it provided a complete cure. It wouldn't surprise us if this became a regular problem with the deck, especially if users try to retrieve tapes from semi-loaded machines as some do. The construction of this arm (P5) is not rigid.
T.L.

JVC HRD860

The problem with this machine was no E-E sound while the recorded sound buzzed. I checked the sound along to IC6 where it disappeared. Further checks showed that the supply here was low at only 2 V . Following this back I found that the full voltage appeared at the connector to the panel. The plug was covered with a gluey substance, presumably to stop it moving. When this had been cleaned off the fault was no longer present. What amazes me is how the machine could work for months before the substance decided to foul up the sound completely. Funny business!
T.L.

Panasonic NVL20

There was a very poor picture in the review mode while, more seriously, the machine would sometimes throw out tape into the mechanism, much to the detriment of the tape. A careful check on the tape's progress along its path failed to reveal any obstructions or resistance: all the brakes and soft brakes were working faultlessly. The culprit was eventually found to be the head drum entry guide, which had seized. As the guide didn't rotate, the tape's progress was somewhat unstable as it stuck and jumped randomly over the guide. A replacement guide, part no. VXP0863, restored correct operation.
B.S.

Panasonic NVJ40

This machine intermittently powered down when a tape was inserted. Preliminary checks showed that the head drum didn't start as the tape was loaded - in this machine the tape is fully loaded round the head in the stop mode. Inserting the tape a couple of times would get the machine to work.

As the condition and alignment of the mode switches seemed to be o.k. suspicion fell on the systems and servo control, in particular the microcontroller chip IC6001, but again the verdict was not guilty. I still felt that there had to be a problem with the mode switches. A look at the carriage mode switch, which I'd already replaced, showed that it seemed to be less securely mounted than usual. Holding it securely with my finger as I loaded a tape proved the point: the machine worked faultlessly. A replacement right side cassette housing, part no, VXA4468, cured the problem. The cause of the trouble was the excessive play in the mode switch mounting.
B.S.

GoldStar GHV1244

This machine wouldn't accept tapes and kept going into the standby mode. An examination showed that the shaft-
connect cog on the right-hand side of the lift had a broken pin and spring. A replacement cog and spring assembly and alignment of the lift cogs cured the problem.
G.S.

Nokia 3722/42

There were no functions and the machine wouldn't accept a tape or power up. The clock display showed four small zeros. A check showed that the back-up 5 V supply was low. D7001 was found to be open-circuit while the back-up capacitor C7001 was gradually discharging and not being recharged via D7001. Replacing D7001 cured the problem. You get the same fault when C7001 is leaky.
G.S.

JVC HRD400

There was no play, fast forward, rewind or eject, the machine going to standby after a few seconds. We found that the reel brakes were jammed on hard and the idler was jammed on the brake mechanism. The clutch spring, which is used along with the 'windmill' to release the reel brakes, was broken and when the mechanism had been stripped down I found that the main cam was also damaged. The slide encoder, the main cam and the clutch spring were replaced and after realignment of the mechanism everything worked correctly.
G.S.

Nokia 3722/42

A fault we've had with a number of these machines is loops of tape left hanging out when the cassette is ejected. There are two common causes. First a stiff capstan motor. As a result there's no take-up on eject. The cure is to replace the capstan motor. The second cause is a faulty mode switch. This switch can also be responsible for erratic functions, failure to accept tapes and failure to eject them.
G.S.

Sanyo VHR3100

The cassette would go in only about a quarter of an inch then come out again. On investigation we found that the capstan to idler belt had become very soggy: it had glued itself to the capstan pulley which couldn't turn. A good clean up and some new belts made the machine as good as new.
C.W.

Ferguson 3V44/JVC HRD140/NordMende V1001

This machine was brought to us because of loss of colour. A tap on the top panel would restore it temporarily, but even after a mass soldering operation the colour was still tapsensitive. So methodical checks had to be carried out. This brought me to filter BP301, which must have had a poor internal contact. Anyway a replacement restored reliable colour.
C.W.

Sanyo VHR1100

For tracking errors check both the supply and take-up guide rollers which tend to become loose at the pole base. In the past we've tried to glue them back but this is not a good idea. Replacement of the pole base assemblies gives a reliable cure.
M.Dr.

Akai VS967

If the capstan motor works in the fast forward and rewind
modes but won't turn in the play mode check the fusible resistor FR4 in the power supply. It will almost certainly be open-circuit.
M.Dr.

Saisho VR3600/Matsui VX755

When this machine had been running for about an hour the capstan motor would momentarily stop for about a second then start to turn, repeating the sequence about every six revolutions to give a play/pause symptom. We've had this fault on many occasions, also with Sharp/Philips machines that use the same (M51782ASP) capstan motor drive chip. Cooling the chip will cure the fault for a while, but beware: on the first occasion we spent some $£ 18$ on a new chip only to find that the replacement didn't provide a cure - despite the fact that cooling it restored normal operation. We now replace the motor, which is not much dearer than the chip.
M.Dr.

Samsung V1910

Field roll was the complaint with this playback-only machine. The cause was insufficient back tension because of sticky grease on the back-tension post bearing. Cleaning and relubrication provides a cure - the cleaning needs to be thorough.
N.B.

Panasonic NVJ35B

This machine came in dead. That there was no operation on the primary side of the power supply was indicated by absence of the squeal at switch on. We found that diode D1 104 (type AP01C) in the snubber network was shortcircuit.
N.B.

Sony SLC30

These machines now suffer from a common affliction that's often not mentioned by the customer. When the machine is repowered after being unplugged the E-E and playback vision are sometimes marred by severe diagonal patterning, at both r.f. and baseband, the latter usually being better. The cause is $\mathrm{C} 319(22 \mu \mathrm{~F}, 16 \mathrm{~V})$ in the power supply. It goes low in value or open-circuit.
N.B.

Philips VR6180/Pye DV186

There was no playback f.m., just noise. The cause of this was the fact that the lower drum earthing bracket's securing screw was very loose. When this was tightened there was a nice clean picture but no colour. Recordings were fine when played back on another machine. I found that the f.m. from the head amplifier was about fifty per cent down and rather noisy: this was triggering the colour killer, though the luminance seemed to be perfectly all right. After much searching around I found the cause of the problem. Someone had soldered the leads from pins 1 and 2 of L6 to the print side of the PCB. Fitting them to the connector itself restored the colour. Perhaps a previous attempt to cure the loss of f.m. had gone awry?
N.B.

Toshiba V209

There was no mechanical action. Checks showed that the 9 V output from the power supply was very low. Disconnecting this supply restored the voltage, but there was no excessive load. A replacement STK7253 multiregulator chip cured the fault.
N.B.

Panasonic NVJ40/42/45/47

In this range of machines a drum motor that appears to be lazy or is mechanically noisy is rarely due to the drum itself. The cause of the fault usually lies in the drive circuit on the small PCB behind the mechanism. You will probably find that one of the three electrolytic capacitors $\mathrm{C} 204 / 5 / 6(0 \cdot 1 \mu \mathrm{~F}$, 50 V) is faulty.
N.B.

JVC HRD820

This machine suffered from an intermittent loading fault: it would also stop dead in play for no obvious reason. We suspected the syscon sensors but it was the microcontroller chip itself that was faulty.
S.B.

Panasonic NVJ40

This machine came in with a tape stuck inside. The cause of the trouble turned out to be the capstan motor. Tape loading was o.k., driven by the capstan motor, but once loading was complete and play commenced the motor wouldn't run at the slower speed.
S.B.

Panasonic NVL25HQ

If there is no output from this machine's power supply it's as well to go straight to $\mathrm{C} 9(1 \mu \mathrm{~F}, 350 \mathrm{~V})$. It's positioned between two high-wattage resistors that cook it gently, drying it out.
J.K.P.

Hitachi VT410

There was sound but only a blank white raster. I inserted our colour-bar test tape and checked at the video output socket with a scope. Only a chroma signal was present. This was strange, as one would have expected to see flickering colour on the monitor's screen. The scope was next used to check the luminance signal path. The signal was present at pin 7 of the HT4848B chip IC202 but didn't emerge at pin 1. After confirming that its supply was present we replaced the chip. This restored normal operation.
F.A.S.

Hitachi VT9500

Fast forward and rewind were o.k. but when play was selected the tape loaded to the heads then unloaded as there was no drum rotation. A check on the supply at pin 4 of the drum chip IC503 produced a reading of 0 V instead of 9 V . The cause of the fault was the STK5720 regulator chip IC901 on the syscon PCB.
F.A.S.

JVC HRD211

There was a fast forward/rewind fault with this machine. These modes could be selected and worked, but when stop was selected the tape would thread to the drum and no tape end was sensed - the loading motor would start to screech, then the machine would switch off. The cure was to replace the M50731-626SP mechacon chip.
F.A.S.

Ferguson FV12L/JVC HRD230

In the E-E and playback modes a single, large hum bar travelled from the bottom to the top of the display on the monitor's screen. A check on the switched 5 V line showed that a distorted $500 \mathrm{mV}, 50 \mathrm{~Hz}$ squarewave was present. We initially suspected Cl4 which decouples the switched 5 V
output at pin 3 of the STK5481 chip ICl. It was o.k. however, the cause of the fault being the chip itself. J.E.

Panasonic NV830B

There were snowy E-E and loop-through pictures. This time the cause wasn't the r.f. booster module itself but absence of the 12 V supply at its ANT BS input because the RD13EB3 zener diode D1110 was short-circuit. Note that there are two 12 V supplies to the module, the always 12 V supply and the ANT BS supply which is switched - this is why the fault didn't affect tape playback.
J.E.

Sanyo VHR3100

The fault with this machine was no rewind. I tackled it the hard way. First I checked the idler assembly and all the parts around it, then I ordered the service manual. This isn't exactly comprehensive, so it took quite a lot of observation to discover what was wrong.

On the underside of the mechanism there's an assembly that consists of a main slide on top of which (with the unit upside down) there's a sub-slide. This has an elongated hole and is held in place by a pin, washer and plastic retaining clip. In the fault condition the sub-slide rode over the pin because the space between the washer and the sub-slide was too great. I carried out a temporary repair by fitting a compression spring between the washer and the plate to hold the sub-slide tighter against the main slide. This worked very well.

I then sent a fax to Sanyo to ask what I should have done. A short time later I received a phone call from Sanyo's Technical Department to tell me that the fault was not an unusual one and that all that was necessary was to push the retaining pin back against the sub-slide and fit a circlip on the other side of the deck to hold it in place. Many thanks Sanyo for a prompt, efficient and polite service. J.H.

Mitsubishi HS337

The customer's complaint was that while the sound was o.k. the picture had slowly "evaporated". There was no E-E or playback output though there was a signal at the scart connector. So we knew that the signal was there but wasn't getting to the modulator. The cause of the fault was C2E5 $(100 \mu \mathrm{~F}, 25 \mathrm{~V})$. Being close to a power transistor it had slowly and surely baked dry!
B.McC.

Ferguson 3V48/JVC HRD565

The following fault caused us some sleepless nights. The machine came in with a damaged timer door and PCB. Putting this right was quite easy but when we tested the machine we found that while instant and normal recording worked fine all we got with a timer recording was garbage. The mechanism sprang into action correctly, and checks showed that all the record voltages were the same as with an instant or normal recording. A clue was that when coming out of the timer record mode the E-E display had swirling interference on it: this cleared when the machine was set for another function.

We eventually traced the cause of the fault to C 10 which is connected to the switched 5 V rail. It allowed parasitic oscillation to get into the f.m. modulator with a timed recording only, destroying any chance of a successful recording. The display gave the impression that there were the remnants of a picture behind the scrambled garbage.
B.McC.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

* 40 different patterns and variations.
* Fully interlaced synce pulses with correct picture blanking
\star EBU colour hars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and black
\star Chequerboard
* Mono outputs with border castellations. cross hatch. grey scale, vertical lines, horizontal lines and dots. UHF modulator output plags straight into receiver aerial socket.
* Additional video output for CC'IV \& VCR
* Facilities for sound output
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service
* Also available with VIfF Modulator.

Price of Kit $£ 79.00$
Cilsc (10$\left.)^{\prime \prime} \times 60^{\prime \prime} \times 21 / 4{ }^{\prime \prime}\right)$ app
Optional Sound Module (6 MH tz or 5.5 MHz)
Built \& Tested in Case including Sound Module
£19.00
$£ 5.90$
$£ 129.00$ Post/Packing ± 4.50
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF applied to receiver acrial socket.
* In addition to colour bars R-Y, B-Y etc.
* Cross-hatch. grey scale, peak white and black level
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour har P.C.B
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT
£39.00. CASE £5.80. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P £4.50)
VHF MODOHLATOR (CHI TO 4) FOR ONERSEAS \& 6.80.

LINE OUTPUT TRANSFORMER TESTER \star Service Aid.

* Saves time and money * Checks short turns. * Simple to use * Reliable. * Battery operated * Pocket size. PRICE $£ 24.00$
POST/PACKING £2.50

INFRA RED REMOTE CONTROL TESTER

 * Pocket sizi
 * LED + audible indication.
 * Simple to use
 PRICE £20.00
 POST/PACKING $£ 2.50$

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& audio outputs £28.50 p.p. £1.80).
PAI DECODER KITT (Video to RGB) for Monitors $£ 27.00$ p.p E1. Kl .
PAL ENCOIDER KIT (RGB to Video) $\mathbf{£ 2 0 . 0 0}$ p.p. £1. 8 (t).
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Casc, Panel Meter Indicator - can be aclapted for latest (RT's $\mathbf{\$ 5 . 0 0}$ p.p. $£ 4.5($).

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacment for. Ferguson, Hitachi, Philips, Punasunic, Grundig, ITT. Sony, Salsho, Griulnada, Wone for make and model
PHILIPS SPARES
MANUAISCFI, (TX-E, CTX-S. CPM, (PIIO, GRIAX, GMIAL, 2B, 3A, N(3-(R G110£7.50p.p. $£ 1.80$, 2A $£ 10.50$ p.p. $£ 1.80$, BACK UP BATT. 2. $4 \mathrm{~V} £ 3.801 .2 \mathrm{~V} £ 2 . \mathrm{omp.p} \%$. K30, KT4, CTX-EHT Lcad $£ 4.90$ p.p. £. 10

THORN/FERGUSON SPARES
TXIO Focus contro £8.50 p.p. 1.80
TX9/10 Remote duning I5ISN $\mathbf{5 5 . 0 0}$ p.p f 1.80
TX 10 Sterco Audio Bourd 8.50 p.p 22.50
TX100 Chupper TX $£ 15.80$ p.p. 2.50
IC SELECTION

TRIPLERS EHT MULTIPLIERS p.p. 11.81
CONTINENTAI. UNIVERSAL TVK \& BG GRUNDIGBG 2077.-622.1009/1004fig.80 RANGE (Cuute exact no.) $£ 13.80$ U.K. C.

GRUNDIG BG 2077-642-1003/1004 $£ 16.80$
GRUNDIG BG; 2087.642-1001/1002/1006 $£ 16.80$ GRUNDIG BG; 2087-642-1001/1002 1006 E16.80 DECCATATUNG BG; 200/4 TYPE $£ 7.80$

MISCELLANEOUS p.p. £1.80 MAINS TRANSFORMERS: 63 Vols CRT b.wost 56.80 p.p. $£ 1.80$ f6.80 p.p. E1.8u
Mains Isolating 500 VA E51.25 p.p 15.25 455 CRYSTALS fur handsets. 4 for $12.00 \mathrm{p} . \mathrm{p} .80 \mathrm{p}$ DEGAUSSING ROD £33.75 p.p. 53.50

TV FALILT FINDING GUIDE EIA 80 VCR FAULT FINDING GUIDE 114.30 HITACHI FRAME MODLLE HM 6251, HM6232 £9.80 HITACHI THERMISTOR TH902 2240

I.INE OUTPUT TRANSFORMERS $p p .11$ su

+ VAT 17.5% TOTHE TOTAL

HOW T0 ORDER: ADD p\&FTO ORDER + VAT 17.5\% TOTHE TOTAL PRICES aRE Subject to change witholt notice

Telephone 071-794 8751/794 7346 Fax 071-431 5778
MANOR SUPPLIES

172 WEST END LANE, LONDON NW6 1SD

CALLERS NELCOME AT SHOP
Mon-Frj 9.30-6pm - Thurs 9.30-1pm - Sat 9.30.5pm

The Pace PRD800 Satellite Receiver

Over the years many TV receiver chassis have been described in these pages. We have not to date undertaken a similar exercise with a satellite receiver. The one selected as an introduction to satellite receiver technology is the Pace PRD800, an integrated receiver-decoder with true Wegener Panda- 1 sound processing, 120 -programme capability, three scart sockets, a tunable u.h.f. modulator, full satellite radio coverage, parental lock, a four-event 14-day VCR timer and remote control with a sophisticated menu-led system. It has been included in the ranges of several well-known setmakers. For the purposes of this article we examined a Ferguson SRD5.

The complete circuit diagram is quite daunting at first sight, so the general overview shown in Fig. 1 may help you to get a grip on things. Pace use the letter U for their i.c. circuit reference numbers and, in common with many other manufacturers, Q for transistors. Where to start? What better place than the usual one, the power supply circuit.

Chopper Power Supply

The power supply circuit is shown in Fig. 2. It's a conventional chopper arrangement that operates at about 26 kHz and provides mains isolation. This is an important point with satellite receivers because of possible access to the outdoor unit and the desirability of having a direct video feed to the main TV set via a scart lead. The circuit operates with a.c. inputs over the range $198-264 \mathrm{~V}$, the receiver's

J. LeJeune

maximum power consumption being 35 W .
Tl and Cl form a filter to prevent hash from the power supply being fed back into the mains. Diodes DI-4 form the usual bridge rectifier, charging the reservoir capacitor C 2 to

Fig. 1: Simple overview of the Pace PRD800 satellite receiver.
approximately 330 V . Rl provides switch-on surge limiting. This mains rectified supply provides a feed for the chopper transformer T2's primary winding (pins 7-13) and a start-up feed via R2.

At switch on R2 charges C6 to establish a supply for the TEA2018 chopper control chip Ul. This is fed to pin 6 . As the voltage at pin 6 rises, U l begins to supply drive pulses to

Fig. 2: The chopper power supply circuit.

Fig. 3: Block diagram showing the post-demodulator video signal path.
the base of the BUTIIA chopper transistor Q1. The capacitance value of C6 is sufficient to provide Ul's current demand until the chopper circuit gets going, when D8 comes into operation to maintain the supply across C6 by rectifying the output from winding $9-11$ on the transformer. The values of R13 and C4 determine the supply's basic operating frequency.

Two other rectifiers are connected to pin 11 of the transformer. D9 charges C5 which supplies pin 8 of UI via the potential divider network R10/11/12. This is the voltage sensing pin for supply regulation. When the supply is running normally at full power the voltage at pin 8 is approximately $2 \cdot 4 \mathrm{~V}$.

The chopper transistor Q 1 is very effectively switched off by the negative voltage generated by D 10 and C 8 , regulated by the 3.9 V zener diode D11. This voltage is fed to pin 4 of the chip. Ql `s base is driven from pin 5 via R6.

The low-value (1Ω) resistor R8 connected in series with Q1 generates a voltage proportional to Q1’s current. This is fed via RI4 to pin 3 of the chip to provide current limiting. The operating principle of this circuit is similar to that of a beam-current limiter. In the event of excess current flowing via $\mathrm{R} 8, \mathrm{Q} 1$ and the primary winding of T 2 , the rising negative voltage at pin 3 of U1 reduces the mark-space ratio of Q1's drive waveform so that QI conducts for a shorter time during each on/off cycle.

There are four rectifiers on the secondary side of the circuit. D12-D15. D13 produces a standby 5 V supply across C15. D14 and C21 provide an input for the 12 V regulator REGI. Q3 provides a switched 5 V supply for the modulator. In the standby mode pin 15 of U3 in the control circuit goes high. This voltage is connected to the base of Q3 which, being a pnp device, switches off. As D19 is also switched off the supply to LEDl and LED6 is no longer shorted out and these diodes light to give the standby indication - note that the indicator circuit is present in some models and not others, including the PRD800. During full-power operation, when Q3 is conductive, zener diode D78 stabilises its collector voltage at 5 V .

The $14 / 18 \mathrm{~V}$ switched supply for the L.NB comes via either D16/17 or Q2 depending on whether Q2 is switched on or off. Q2 is controlled by pin 16 of U3. When Q2 is switched on the LNB receives 18 V from the rectifier circuit D15/C23. D16/17 then being biased off.

There are no adjustments, the operation of the circuit being preset by R10/11/12.

Control Circuit

The heart of the control circuit is the microcomputer chip U2 which is a Z8 family device. It runs at a clock frequency of 4 MHz , controlled by crystal X1. There are four other chips in this section of the circuit. U3 and U4 are buffers that limit the
current drain on U2. U5 is a multiplexer for the front-panel character display while U6 is an EEPROM which stores the information set by the on-screen menus. There are also two transistors, Q96 and Q98, that act as inverters. Pin 6 is U2's reset pin, D20 and C31 giving the reset action. C31 is rapidly discharged by D20 at swich-off, charging slowly at power-up so that pin 6 is held low for a few milliseconds to reset U 2 .

Video Path

Frequency-synthesis tming is used. The detected video passes from the tuner-demodulator block via the emitterfollower buffer transistor Q100 to pin 3 of U9, see Fig. 3. A video preamplifier within this chip raises the signal level, the amplified output emerging at pin 2. Video gain is set by the feedback resistor R134 uhile R145, R149 and C114 provide de-emphasis. The signal returns to U9 at pin 4, after which an internal switch selects either external or internal video. Further amplification is then provided, the video signal finally leaving U9 at pin 20. The following low-pass filter (L10/11. C103/4/5/6) has a 5.5 MHz cut-off frequency. Correction for the group-delay effects (phase shift varying with frequency) introduced by this filter is provided by the circuitry around Q31. The circuitry associated with Q18/19 filters out the sound subcarriers.

Up to this point the video signal still has imposed on it the triangular 'energy-dispersal` signal that's added before transmission to prevent interference with other microwave services. If the 25 Hz energy-dispersal waveform was not removed the picture would suffer from intolerable flicker and VideoCrypt decoding would be impossible. Very tight video signal clamping to a stable d.c. level is carried out, line-by-line, by field-effect transistor Q92 in Q23's base circuit Q23 is an emitter-follower buffer transistor. Fig. 4 illustrates the action of this clamp.

Clamping is dore at the start of every line, during the back porch that carries the colour burst. A pulse from pin 12 of U18 switches Q92 on, setting Q23's base voltage at a d.c. level which is determined by D44 and Q22 - D44 is a 2.4 V zener diode that's within the VideoCrypt decoder. The f.e.t. Q92 has a low on and a very high off resistance, so that once Q23's base voltage has been set Q92 will not leak away the clamp charge on the video coupling capacitors C132/C313. This circuit provides the accurate clamping required for the VideoCrypt decoder to produce noise-free, unscrambled pictures

After clamping the video signal goes four ways. One path is to pin 19 of U18, which provides the gating pulses for the energy-dispersat clamp at pin 12, field sync pulses for the VideoCrypt decoder at pin 15, and at pin 7 line sync pulses for pin 39 of U2 which uses them to identify the presence of a station for muting purposes. A second feed goes to Q24/5 which form a sync separator circuit that feeds composite sync

Fig. 4: Action of the clamp that removes the 25 Hz energy-dispersal signal.
to pin 30 of U10, the graphics generator. The third and fourth feeds both end up at the switch in U19B, one feed going there directly while the other one goes via the VideoCrypt decoder. The output from U19B goes to pin 13 of the graphics generator chip U10 where the colour graphics are inserted into the picture or replace it. U10's output, at pin 12, is fed to pin 19 of the VCR scart socket SK6 via Q26 and Q103, to pin 4 of the modulator chip U7 via Q105, and to switch element U35B: this feed ends up, via Q90 and Q89, at pin 19 of the TV scart socket SK7.

The Modulator

The modulator module includes the r.f. bypass circuit for off-air signals passing through the receiver and the r.f. combiner circuit which adds the modulator's output to the off-air spectrum. A two-stage, broad-band circuit with a gain of about 3 dB amplifies the off-air signals: this low gain is provided simply to compensate for the losses incurred in the
combining process.
The modulator itself is within U7. Fig. 5 shows a block diagram of this chip and the tuning system. Varicap diode D21 and its associated components tune the video carrier oscillator. D2I's cathode is biased by a $0-24 \mathrm{~V}$ supply from pin 14 of U9 via Q9/Q97. Prescaler U8 takes an output from video carrier oscillator, producing a divided-down output in the range $7-14 \mathrm{MHz}$. This is fed to the phase-locked loop

Fig. 5: Block diagram of the u.h.f. modulator and its tuning system.
tuning system in U9. The 4 MHz clock signal from pin 29 of the microcomputer chip U2 provides the reference for the PLL system. Control of the PLL in U9 is from U2 via the I2C bus. The audio section is tuned and frequency modulated by varicap diode D79 and its associated components.

Colour Graphics

The colour graphics chip U10 is controlled by the microcomputer chip U2 via the I2C bus. Fig. 6 shows the circuitry in this area. The 17.734 MHz crystal X 2 is resonant at four times the colour subcarrier frequency. It uses a PLL to lock to the received colour burst. L12, C119 and C120 tune the character generator readout clock oscillator.

Fig. 6: The colour graphics chip circuitry.

Fig. 7: The left-hand audio channel signal-processing circuitry.

The presence of scrambled video is detected by the decoder which produces an output to control the video source select switch U19B. When a clear transmission is detected this switch passes the direct video feed from Q23 to pin 13 of U10. When there is no video signal U2 detects the absence of line sync pulses and tells U10 to insert a blue background for the white characters. The video/graphics output at pin 12 is passed to the modulator via emitter-follower Q105. There are also feeds to the TV and VCR scart sockets as shown.

The sync tip, signal black and peak white levels and other parameters for the graphics are set by the networks connected to pins $9,14,15,16,17,19$ and 20 of U10.

VideoCrypt

Because of the confidential nature of VideoCrypt decoding the circuitry used is not divulged.

Audio

The demodulator's output contains a spectrum of signals from 50 Hz to nearly 8 MHz . Video occupies the spectrum up to 5.5 MHz , the audio subcarriers beginning at 6.5 MHz . They are frequency modulated and consist of single mono carriers and pairs of stereo carriers grouped in the standard way: the main mono subcarrier is at 6.5 MHz , the first stereo pair at 7.02 MHz and 7.20 MHz and the second pair at 7.38 MHz and 7.56 MHz .

Ull performs audio selection by up-conversion of the audio subcarriers to 10.52 MHz and 10.70 MHz . The switching is controlled by software, the left-hand channel only being selected for mono operation. U1I also carries out limiting and demodulation.

Many satellite broadcasters use Wegener Panda stereo. This is catered for by a Dolby-like expander and sliding highpass filter, the latter depending on the audio signal's h.f. content. In addition a noise-cancelling system which uses filtering and inversion improves the signal-to-noise ratio before signal de-emphasis. This filters off the noise, inverts it and adds it to the unfiltered audio to cancel the noise content

- a similar process is used in VCRs. Fig. 7 shows the lefthand audio processing circuitry.

U14C, U14D and U16D provide a 24 dB per octave roll-off above 15 kHz . The mono signal is taken from U16D and passed via U15B to the audio switching circuits. The lefthand stereo signal goes via R227 and C175 to U16A which has a gain of around 17 dB . U13A contains a variable-gain amplifier which is controlled by bias from an internal rectifier circuit: the larger the output from the rectifier, the greater the amplifier's gain. This brings about the volume range expansion. U16C is an active variable low-pass filter that's driven by U16B. U15C receives the filtered and full-bandwidth signals, cancelling the noise and carrying out audio deemphasis.

In Conclusion

This concludes our look at some of the circuitry used in the Pace PRD800 and its clones. We've found that the unit is very reliable in operation, with few problems. Possibly the biggest problem was radiation that affected low-end u.h.f. channels up to about Channel 42: later production units are markedly better in this respect and we can get around the few problems we do encounter by using high-quality r.f. leads and carefully positioning the unit. Replacement lead sets for use with earlier receivers are available to bona fide dealers/service companies free of charge from Pace Micro Technology Ltd., Victoria Road, Shipley, W. Yorkshire BD18 3LF (0274 532 000, fax 0274532 010). Blown chopper transistors were apparently a problem with early models, and because of this the value of R8 was changed from 0.75Ω to 1Ω, but we ve never experienced any failures in this part of the receiver. Because the coaxial connectors for the terrestrial TV aerial and the r.f. output lead are soldered directly to the PCB you may encounter dry-joints should frequent disconnections and reconnections be made. The electronic failures we've encountered have been too few to mention. In fact it's an excellent unit all round.

For a short review of the PRD800, see the December 1992 issue of Television.

What a Life!

Donald Bullock
Les Lawry-Johns' death was a great loss to us all. In a practical sense he was a technical wizard of his time. But the reason for his great popularity amongst readers - I suspect that most long-term readers turned to his article first when the latest magazine arrived - went deeper than this. He was one of us, a fellow sufferer at the hands of Joe Public. We knew those who caused him such trouble: thinly disguised, they circulate amongst us all. Like the rest of us, Les knew exactly what they were up to. Yet he continued to suffer because his tormentors - our tormentors - have no code of honour. Like us all he constantly resolved to harden, to make the most of his experience so that he would come off best in future. But he seldom did, and nor do we. It isn't in our stars. We're born losers.

Les's troubles were ours. But he was a bit more honest, a bit more vulnerable and a great deal more decent than most of us. His writing left us all richer. I, for one, am grateful to him.

Grundig Troubles

Kevin Bentun brought his Grundig colour set in the other day - a CUC2401 type. "It's gone mental" he announced. "All right at first, then the sound and picture fade, leaving the screen bright. After a while the picture comes back and flutters at me. Enough to get a chap's dander up, I can tell you." And off he minced.

Hoping to resolder a few dry-joints and make some quick money I got cracking. There would, I figured, probably be a line output transformer derived supply playing up. An hour later I'd got nowhere, so I decided to stop and try to think about it. Well, it could be the line output transformer. We had one like it in stock, so I fitted it. This made no difference. I next connected a voltmeter to the tuner's 12 V supply. When the fault returned, the voltage swung about. On opening the tuner I saw several suspect joints, but resoldering them didn't help. As the supply remained stable when it was connected to a dummy load I carried out a more detailed examination of the tuner and soon found a $220 \mu \mathrm{~F}$, 10 V electrolytic that had dried up. A replacement cured the trouble.
"Then, surprise, surprise, Mr. Fussie fidgeted in with another Grundig set that was just the same.
"It's never been right since you mended our wireless" he bickered. "I took it to Snoddies and they fitted some parts and charged me $£ 40$, but it's still the same."
"Why don't you take it back to them?"
"They recommended you."
As the fault was identical to the pervious one I mended it in no time. He returned shortly after I'd phoned him with the news.
"What was it?" he moaned, looking at me as though I was a bad drain.
"A condenser" I said. "Twenty five pounds."
"How much was the part?" he asked.
"Tuppence" I replied.
"That's sixty five pounds in all" he whined, "Snoddies said you might be expensive. Can you guarantee that another part won't go? Could this have damaged anything else in the house?"

I gave him a deranged look and he departed, leaving me wondering why, all those years ago, my people put me in
this trade when the local paper beckoned me. The extra pound a week I suppose. Oh to start again!

Video Problems

Mrs. Tubby rolled in from the Forest of Dean with something in a plastic bin liner. "How much to mend this?" she asked, eyeing me as though I was a sneak thief.
"What is it?" I asked.
"Wonky" she said.
After a delay she extracted the item from its bag. It was a Philips/Pye DV286 VCR that was matted with greasy dust and had strands of tape hanging from its mouth.
"Help" I muttered as I waved her out. Then I called Steven in from the van. "Your job" I said.
"What's up with it?" he asked.
"Wonky" I replied. He gave me an odd look and took it over to his bench.

Having unloaded that one I pulled a Ferguson 3V47 portable VCR on to the bench. "Picture was intermittent, now gone. Sound o.k." said the card. The machine was full of dust and tape debris. So I gave it a thorough service and tried it again. It was no better. I took the video heads out and found that the leads hadn't taken to the solder when the machine was produced. They were held only by the resin. After resoldering them I tried the machine again. The results were excellent. As I was boxing it up I looked over at Steven. He'd finished the Philips video and was doing the bill.
"What was it?" I asked.
"A jammed Chinese cassette and a missing spring which should have held the back-tension arm by the tail. I found it in the works. It's o.k. now. What shall I charge?"
"Up to you" I said. "But you won't win. If you charge enough you'll be a rogue. If you make a small charge it was easy and you shouldn't have charged anything at all. And God help you if it goes wrong again or another of her Happy Friend tapes jams. And don't phone her yet, because that will mean that there couldn't have been anything much wrong with it."
"I wouldn't mind a cup of tea" said Steven. I got the message. Never mind. Who sits on pride after a forty year battering?

Miscellaneous Faults

As I set about making the tea Steven pulled a Panasonic TX5500 (U5 chassis) on to the bench. The card said "no brightness". He stood there pondering.
"IC601" I said.
"You see what?" he asked.
"It won't be a no brightness fault" I said. "Almost certainly it'll be no luminance because the TDA3562A chip IC601 on the upright panel to the right of the main chassis has failed. Don't forget the A" I added as he looked in the i.c. drawer. "You'll get nowhere if you fit one that doesn't have the A suffix."

So that's what he fitted, curing the trouble.
Then he pulled a Neff 6007 microwave oven on to his bench. When he operated it the counter worked but the rest didn't.
"What do you think's up with this?" he asked.
"Dunno" I said, "and when you find out, shield me from the answer."

A short while later he had it working. The switch at the top of the door had burnt out. Whilst at it he replaced them all.

As I was washing up he got busy with an Hitachi VT8300 that wouldn't accept a tape. It didn't take him long
to discover that the loading motor wasn't working. "There's 6 V on the pink supply lead" he said "and only 0.4 V on the white. I'll check around IC905 and 906."
"Check R081 while you're doing that" I said. It was open-circuit, a replacement restoring normal operation.

Visitors

Just then the door flew open and an RAF chappie from the nearby estate breezed in. He was carrying a cardboard box that contained a dismantled television set.
"Ah!" he said. "They tell me you're good with a screwdriver! I got this set for nothing in Germany. When I brought it back the sound needed twiddling. So I had a go and swapped some of those things with legs. Some smoke came out of there, where it's gone black. I don't mind letting you do it, but I don't want to spend. .."

I opened the door and jerked my head. Off he went. I felt the need for some air and wandered out to have a word with Brian who does a bit of gardening for us. He always looks well and smart and as usual had a cigar wedged in his mouth. He was clipping at some bushes. A van spluttered up and out leapt this all-in wrestler with a Ferguson 3V00 video, also dismantled.
"Where's Mr. Bullock mate?" he asked me thickly. Then he saw B-ian and shot over to him.
"Ah Mr. Bullock. This thing's got a volt gone wrong. It isn't much and won't take long. Don't wanna spend much, see. . ."

I sauntered off and Steven appeared. Later I came in at the back of the workshop and found him putting it together. "What do you think of this trade?" I asked him.
"It's good fun" he replied.
That's what I used to think. What's gone wrong with me?

Test Case 374

In the early Eighties the Ferguson TX range of TV sets was all the rage: Sage still has a TX tie that was presented to him by a sales rep. or a TLO in those far-off days. It's a tribute to the design of these sets that many of them are still going strong. One, now well into its second decade of operation, found its way on to Dylan's bench the other day. It was a TX9 of the later sort, with a chopper power supply and PCl044 main panel.

The complaint was about 'green faces'. Sure enough Anne Diamond, who was on at the time, looked as though she had just crossed the North Sea in a force ten gale. Everyone else on the show had the same bilious look. This meant a lack of red in the set's display. As a check the output from a colour-bar generator was fed to the set. The red bar was very muted, and some of the other colours looked a bit strange: blue and green were bright and clear however, despite the fact that the tube was probably a bit tired.

Dylan thought that the tube was likely to be responsible for the lack of red in the display. Out came the wonderful tube tester and, after some rooting about in the box, a base to match the tube. On test the emission of all three guns was found to be a little low, but the red gun was the second best one. All three were brought up to scratch by using the tester/reactivator's 'clean-and balance' facility. When the set was tested the picture was a degree brighter but the lowred fault remained the same. A reasonable monochrome picture was present with the colour control turned to minimum but, as TV Ted said, red is the colour you miss least with a monochrome display.

Dylan switched on his scope and pulled his multimeter across the bench. The first check he made was at the tube's red cathode, where the voltage was rather higher than the 125 V specified in the manual. He felt the red output transistor's collector load resistor R132 and found that it was cooler than those in the blue and green output stages. Dylan decided to check the resistor's value, which was correct at $12 \mathrm{k} \Omega$, so he went on to twiddle the red gain and background controls RV136 and RV138. The red in the colour-bar display changed a bit as these controls were wound from one end to the other, but at no point was it correct. Dylan began to suspect the BF460 red output transistor itself, TR56. As a check he swapped it over with the corresponding transistor in the blue channel, TR55. This made no difference at all, the transplanted transistor working perfectly well in its new position.

A scope check on the red output signal at pin 12 of the TDA3560 colour decoder chip IC52 was then carried out. For comparison purposes the green and blue output signals at pins 14 and 16 were also looked at. There was certainly something wrong with the red output: its amplitude was low, and the d.c. level was below the specified 3.8 V . Could something external to the chip be loading down the red output? R113 and R107 in the feed to TR56 were checked and found to be o.k., as were all the components in the transistor's emitter circuit including the frequency-selective decoupler C95. What else was there to suspect other than the chip itself?

Dylan trotted off to the component store and came back with a pristine TDA3560. When he'd finished installing it he had no doubt in his mind that he'd cured the fault: the diagnosis had been thorough, and every other possible culprit had been eliminated, hadn't it? With a flourish he flung the old chip in the bin and switched the set on. There was Father Christmas on the screen, in a pale, luminous green coat. The fault wa: still there! Dylan hastily retrieved the TDA3560 chip, which was still warm, from the bin. If you can't work out what was the cause of the fault, turn to page 281.

[^0]
Dolby Surround Sound

Ian Martin
Several TV models equipped with Dolby Surround sound have been introduced during the last couple of years. This feature had previously been available only with professional cinema and audio products, such as the Pioneer AV amplifier reviewed in the August 1991 issue of Television. Widescreen video releases, Laserdiscs and large-screen TV sets have all stimulated interest in 'home cinema'. Toshiba and Hitachi at present have models with Dolby Surround and the more sophisticated Dolby Pro Logic Surround sound: other setmakers will doubtless follow

Fig. 1: Dolby Stereo Surround sound encoder block diagram.
suit. In addition Pace has a satellite receiver with VideoCrypt and Pro Logic decoders, aimed at the subscription movie channel market. And why not? What better way for viewers to get maximum value for money from their premium movie subscriptions?

It's not only consumer awareness that has led to the sale of the almost nine million Dolby Surround sound systems now in use worldwide (Dolby's figures). Advancing chip technology has also played a part. Just
two years ago a simple passive decoder such as that used in the Toshiba Models 2505DB and 2805DB needed several different chips for signal processing, noise reduction, memory and the control logic. Because active Pro Logic decoders require even more sophisticated electronics, their introduction in cost-efficient TV designs was held back pending the arrival of custom Dolby chips. Such devices are now available from several manufacturers, including Analogue Devices and Mitsubishi.

The situation has changed again over the past year or so as Digital Sound Processor chips (DSPs) have become more widely available. Initially they offered only acoustic and pre-programmed effects, but it was only a matter of time before a Dolby Pro Logic algorithm was incorporated and approved. Such devices, licensed by Dolby, are now available from Motorola and Yamaha amongst others. They can be easier and cheaper to produce than a bipolar ASIC (application specific integrated circuit) chip, as the Dolby processing is controlled by a program that's within the device.

Before we consider a typical decoder design we'll outline how the surround system works.

Dolby Stereo

The system stems from cinema requirements. In a cinema, traditional stereo sound is effective only for viewers sitting near the centre axis of the screen. For those seated off axis the output from one loudspeaker or the other will predominate, giving an unbalanced stereo image. The stereo sound 'sweet spot', i.e. the area in which a realistic, balanced effect is obtained, is in fact quite small. It was found that if a centre channel was added, primarily for dialogue, driving a loudspeaker mounted behind the screen speech was effectively fixed within the picture. This gave acceptable results even for viewers sat near the edges of the theatre. In other words the 'sweet spot' became much larger. The addition of a rear surround channel boosted the effect further by giving the sound a three-dimensional quality. Several surround speakers could be used for this purpose.

Although some film formats enable four or more sound channels to be used, for 35 mm films with optical stereosound tracks it was necessary to devise a system that encoded four channels as two. The system that came into use was called Dolby Stereo. Fig. 1 shows a block diagram of the encoder. The left and right sound channel signals pass straight through, the centre and surround channel signals being added to them, the latter as phaseshifted signals. As the left and right channels produce the

Fig. 2: Passive Surround sound decoder block diagram.

Fig. 3: Pro Logic decoder block diagram.
left total and right total outputs there's no reduction in the basic stereo channel separation.

Dolby Surround

In the decoder, see Fig. 2, the centre and surround channels are recovered by addition and subtraction. Provided the left total and right total signals remain balanced, crosstalk is kept at a minimum. Because the left total and right total channels also carry the centre channel information, for domestic use the centre channel was considered to be optional - the left and right speakers together create a 'phantom' centre channel. The enlarged 'sweet-spot' effect is reduced, but this is not as significant in the home as in an auditorium. This is the system that was used in the first Toshiba Dolby Surround TV models.

To reduce unwanted effects - sibilants could for example be decoded as surround information - filtering is used in the surround channel. For similar reasons a modified Dolby B noise-reduction circuit is used: this reduces hiss, which might otherwise be enhanced. An audio delay is also available. This introduces an artificial lag in the surround channel to give, in accordance with the Hass effect principle, the impression of a larger listening room. Dolby Laboratories recommend various delay times for differently sized rooms. For the average UK living room the delay is in the range $15-25 \mathrm{msec}$.

Because this system uses a simple difference signal to produce the surround channel it's described as a 'passive' surround system.

Dolby Pro Logic

Dolby Pro Logic Surround is a second-generation
system that employs additional circuitry to enhance the spatial positioning of sound effects. This is done by continuously monitoring the encoded sound track and evaluating the direction and intensity of dominant sound effects, which are then enhanced in the same direction in proportion to the sound's dominance. To do this a signal dominance vector` that tells the decoder in which direction the current effect is positioned has to be generated.

Fig. 3 shows a block diagram of a Pro Logic decoder while Fig. 4 shows some of the elements of the adaptive matrix, which is the heart of Pro Logic processing. The relative intensities of the left, right, centre and surround signals are assessed in the adaptive matrix by first fullwave rectifying them then feeding the outputs to log difference amplifiers which compare these to provide left-right and centre-surround difference signals. Representations of the left-right and centre-surround axes are thus obtained. When a signal appears front left, the leftright and centre-surround difference signals both become positive. A vector is in this way be produced, indicating the sound effect's direction and intensity. When an effect exceeds a certain intensity threshold the decoder switches to 'fast mode', in which polarity splitters convert the two dominance signals to four control voltages, EL, ER, EC and ES, that represent each of the primary directions. These drive four voltage-controlled amplifiers in each of the left and right channels. These eight VCA components and the two left and right components are then weighted and combined in a network. The result is an enhanced effect that remains directionally accurate. As the adaptive matrix contains active operational circuitry, Pro Logic is referred to as an 'active' surround system.

The rest of the Pro Logic decoder is similar to the

Fig. 4: Pro Logic adaptive matrix block diagram.

Fig. 5: Operation of the M69032P Dolby Pro Logic Surround processor.
simple passive type except that a noise sequencer is provided. This, when activated, sends pink noise sequentially to each of the channels so that the user can set up his system's balance controls. Pro Logic systems usually have automatic input balance circuits as well.

Centre and Surround Modes

A few options are available when a Dolby Surround sound system is being designed or set up. Most depend on loudspeaker availability.

A 'phantom' centre speaker arrangement was mentioned earlier. Best results will be achieved however if a separate centre speaker is used. As this channel carries mainly speech information, with a limited bandwidth, a low-cost speaker will suffice. Another centre channel mode, called 'wide', is provided for use with a high-quality, full-range centre speaker: this ensures that the high- and low-frequency signals are distributed across the left, right and centre channels.

The positioning of the centre speaker is one of the
biggest problems a TV receiver manufacturer faces when Dolby Surround sound is to be incorporated. Though a small, low-cost unit may suffice it will have to be mounted close to the screen, so magnetic shielding or cancellation must be provided. For this reason many models use the 'phantom' centre speaker arrangement, though provision may be made for the customer to connect an external centre speaker.

The Dolby 3 Stereo system is quite popular in North America. This has left, right and centre channel speakers installed in the receiver but no surround speakers. It gives the benefit, in comparison with normal stereo, that speech is always fixed close to the screen. Optional rear channel speakers can be added later and the set switched to surround operation.

A Practical Pro Logic Decoder

Designers of consumer electronics products have the choice previously mentioned: to use either a custom chip (ASIC) or a DSP. Digital sound processors are becoming
cheaper but are most suitable for use where the signals are already in digital form, e.g. from a CD, Laserdisc or a D2MAC source. In most cases the DSP will also require a microcontroller chip and external memory. Thus as a stand-alone solution the simplest approach, which we'll describe here, is to use a custom chip.

One such device is the Mitsubishi M69032P, a custom Pro Logic decoder chip that, apart from the anti-alias filter and the delay, contains all the circuit blocks required in a single package. A separate CMOS chip that incorporates a 16Kbit static RAM, the Mitsubishi M65830P, provides the filter and delay features.

Figs. 5 and 6 show the system: the blocks can be compared with Figs. 3 and 4. Note that the M69032P provides $L+R$ and $L-R$ as well as L, R, C and S outputs: these are not necessary for the Pro Logic application but may be useful for other purposes. The recommended supply voltage for the M 69032 P is 12 V , the chip generating a 4 V reference voltage internally. Depending on function, many of the external components are connected to the reference voltage rather than chassis. In the interests of avoiding digital noise it's important to have separate analogue and digital chassis connections, linking them together at a single point.

The decoder options are set by connecting various control pins to the reference voltage or chassis. For example when pin 31 is connected to chassis the 'ordinary' stereo mode is obtained, when it's connected to the reference voltage the Surround mode is selected while leaving it open-circuit gives the Dolby 3 Stereo mode. Likewise pin 30 selects centre channel on/off while pin 36 selects the normal, phantom or wide centre channel mode.

Left total and right total inputs from a VCR. Nicam decoder etc. are fed to pins 15 and 22 respectively. After automatic balancing they are fed to unity-gain amplifiers where they are mixed with the signals from the noise sequencer (when this is selected). They next pass to the Pro Logic adaptive matrix. Here part of the signal goes to the voltage-controlled amplifier (VCA) and combining network blocks while another part is fed to the bandpass filters. These consist of external filter components and internal unity-gain amplifiers, connected at pins 7 and 10.

The rest of the adaptive matrix blocks are all internal.
The left, right and centre outputs from the combining network block go to the operation and centre mode control block before leaving the chip at pins 32,33 and 38 respectively. The surround sound output from the combining block goes straight to pin 39 for application to an optional delay circuit to which we'll return in a moment. After passing through a 7 kHz low-pass filter the surround sound signal re-enters the chip at pin 47 , emerging again at pin 46 then returning at pin 42 to go to the modified Dolby B type noise reduction block. After this it passes to the operation and control section, finally leaving the chip at pin 29.

Delay Chip

The M65830P digital delay chip contains an input analogue-to-digital converter (ADC), a memory, delay control and an output digital-to-analogue converter (DAC). There's a serial port for delay adjustment - it's not used in this application. One-bit adaptive delta modulation (ADM) gives simple single-bit encoding. A 2 MHz resonator connected to pins 2 and 3 provides the master clock frequency - ADM coding requires a much higher frequency than that of the analogue input signal.

The input to this chip enters at pin 23, with low-pass filtering via pin 22 . The signal is then passed to the control block, where analogue-to-digital conversion takes place. Leaving pins 4,5 and 6 open-circuit and earthing pin 7 sets the delay time. After digital-to-analogue conversion the delayed signal emerges from the control block and returns to the decoder chip via pin 13, with low-pass filtering via pin 14.

If delay is not required pins 39 and 42 of the decoder chip can be connected together, with the digital chip omitted.

With the delay chip included, the number of external components required with the M69032P decoder chip is approximately eighty. Most of these are small capacitors and resistors. Probably the most expensive items are the electrolytic capacitors that provide the coupling for the inputs and outputs.

Fig. 6: Operation of the M65830P digital delay chip.

After testing an evaluation board that uses this circuit I must say that it works very well. The solutions offered by other chip makers differ in complexity or circuit configuration, but all must have the same basic functional blocks. This also applies with DSP systems, where the circuit operation is more difficult to see as it's achieved using software.

Surround Licensing

Dolby Laboratories protects its copyright by allowing the technology to be used only by companies that have signed a licence agreement. Even when a licence has been obtained all new products must be approved and their
performance checked for adherence to the specifications before they can be marketed bearing the Dolby logo. A fee has to be paid for each use of the copyright mark on the product and, via the supplier, on the relevant components inside. This ensures that only licensed companies with approved designs can obtain the necessary parts. It also means that it is difficult to obtain parts for home construction or experimental purposes.

Acknowledgements

My thanks to Dolby Laboratories Inc., Wooton Bassett and Mitsubishi Electric U.K. Ltd., Hatfield for supplying help and information.

HELP WANTED

Wanted: $250-0-250 \mathrm{~V}, 370-0-370 \mathrm{~V}$ and $425-0-425 \mathrm{~V} 80-$ 250 mA Electrovoice, Osmabet etc. h.t. transformers. May buy batches for cash. M.J. Evans, 7 Shap Drive, Warndon, Worcester WR4 9NY.

Wanted: Four Hitachi 8611A E3AF 14A607ClA chips for a Ford car power amplifier type 86AB-18T805 used with the ECU2 tuner/cassette deck. Geoff Davies, 13 Bowen Road, Rugby CV22 5LF. 0788574774.

Wanted: A TDAl104SP and an AN247P chip. L. Mawdsley, One Way TV, 82 Sandhurst Road, Rainhill, Prescot, Merseyside L35 8NQ. 0514264152.

Wanted: Aerial/i.f. amplifier in screening cans for a Grundig VS510GB VCR. Ian Burnell, 88 Weaverham Road, Norton, Stockton on Tees, Cleveland TS20 IQL. 0642554 690.

Wanted: Remote/tuning panel (part no. 3113108 67260) on which the back-up battery sits for a Philips 20CT4626 TV set (KT4 chassis). Sarah Burton, Circuit Services (Lincs), 3la High Street North, Ruskington, Lincs NG34 9DY. 0526833023.

Wanted: TMS3529 chip or programme tuning module part no. 29502-003-21 for the Grundig GSC200 chassis or intact, non-working chassis for parts. H. Ben, 6 Talbot Road, East Ham, London E6 2RZ. 0814716348.

Wanted: TDA2653 i.c. for the Grundig Model B7681 (CUC740 chassis). G. Orchard, Orchard's Electrical, Whitstone, Holsworthy, Devon EX22 6TZ. 028884522 or 0836 317092.

Wanted: TDA2655 (not TDA2655B) for a Saba colour set. Gay Hannon, Moylena, Tullamore, Co. Offaly, Eire. 010 35350621407.

Wanted: Decoder and RGB panels for the Philips K35 chassis and the chopper transformer for the Fidelity ZX3000 chassis. J. Levy, 19 Totternhoe Close, Kenton, Harrow, Middx HA3 OHS. 0819073620.

Wanted: UE30-B22 tuner for a Goodmans R1400 portable TV set sold by Comet. R. Thomas, Thomas TV Video Repairs, 4 Jolly Road, Garnant, Ammanford, Dyfed SA18 INE. 0269823711.

Wanted: New or used complete front PCB for a Panasonic NVG40 VCR. Also service information for the Toshiba V73DC VCR bought in Hong Kong. K.J. Woolley, 35 Wenthill Close, High Ackworth, Pontefract, W. Yorks. 0977 708408.

Wanted: Service manual for the Sanyo VTC-NX100 VCR. And can anyone help with a Marconi TF144H/4 standard a.m. signal generator. R. Baker, 17 Chapel Lane, Upwey, Weymouth, Dorset DT3 5NA. 0305208815.

Wanted: Operating manual or any other information for the Telequipment DM53A scope. Can anyone date a Bush T76C valve TV set? Thomas McGhee, 86 Haldane Terrace, Dundee DD3 0JF. 0382810072.

Wanted: Manual or photocopy of one for the Amstrad TVR3. Bill Pattison, Glenmore TV, 42 John Greekie Road, Durban, 4001, Natal, RSA.

Wanted: Manuals/circuits for the Advance OS 1000A and Scopex 4S6 scopes. Nicholas Arnold, Flat 190/31 Griffin Close, Bristol Road South, Northfield, Birmingham B31 2UT.

Wanted: Service manual for the ITT VR3919 VCR. Copy would do. John R. Taylor, 14 Lastigar, Westray, Orkney KW17 2DJ. 08577235.

Wanted: Service manuals for the Technicolor/Funai 212E VCR, the Telefunken FK500 video camera (or JVC equivalent) and the Philips VP700 laser disc player. T. Martini, 6 Levant House, Mile End Road, London E1 4RB. 071790 6807.

Wanted: Service manual (loan or photocopy) for the JVC GXN5E video camera. Geoff Darby, 69 Churchill Road, Earls Barton, Northampton. 0604811438 (evenings).

Wanted: Philips laser disc players, working or not, condition not important but must have working laser. R. Lewis, 59 Lawfield Avenue, West Kilbride, Ayrshire KA23 9DH. 0294823550.

Wanted: Working main PCB for the Sony KVM2121U. Barry Tuttiett, 28 Queen Street, Barwell, Leicester LE9 8EA. 0455851599.

Wanted: Secam/PAL transcoder, preferrably in-line type, modulator not required. R. Lawrence, 31 Goldstone Road, Hove BN3 3RN.

See also page 267.

Screen Entertainment 2000

George Cole

What will television be like in the next century? At the end of October around 300 delegates gathered in London at the Screen Entertainment 2000 conference to hear the views of people involved in the electronics, consumer, broadcast and telecommunications industries. The common theme was 'convergence', the way in which these various industries are forming closer links with one another: the factor that's bringing them together is digital electronic technology.

Multimedia

Part of the first day was devoted to consumer multimedia systems. Philips' director of interactive media systems John Hawkins announced that some $100,000 \mathrm{CDi}$ decks have now been sold world wide. The figure was expected to double by the end of the year and sales of a million decks were forecast by the end of 1994. CDi should be available at over 13,000 retail outlets by the end of 1993. Over 850 companies are now involved in CDi development, publishing, studio production and hardware manufacture. More than a hundred titles are now available and a further 250 are in the course of production.

Philips sees the new Video CD standard as a boost to CDi. At the recent Japan Electronics Show nine companies showed dedicated Video CD players: three Korean companies have also demonstrated machines. The digital video upgrade cartridge that enables a base type CDi deck to play full-motion video titles costs $£ 150$ and has been released in the USA, the UK, Japan, France and the Benelux countries. It will be available throughout Europe in 1994. Ten studios around the world are encoding digital video, and real-time encoders are expected to be in use in early 1994. When this happens, the CDi encoding price will be comparable with that of putting video on tape.

Hal Josephson of the 3DO company said that software licences have been taken out by over 340 companies and that 106 titles are in the production stage. Unfortunately a technical failure prevented the demonstration of 3DO software. It's understood that Panasonic intends to launch 3DO equipment in the UK during 1994.

Interactive TV

Bill Andrews of Interactive Network Ltd. said that interactive TV will offer a variety of services including entertainment (movies on demand and computer games for example), education, commercial (such as home shopping) and information (data downloading). They will arrive at homes via a variety of paths - cable (coaxial and fibreoptic), off-air (satellite and terrestrial), telephone and cellular.

MPEG

A close look at digital technology took up the second day. Ed Thomson from Compression Labs began by describing the MPEG standard for digital video. MPEG is concerned with three main areas. First the data bit stream: for MPEG-1 the top rate is $1.5 \mathrm{Mbits} / \mathrm{sec}$ while MPEG-2 offers 2-15Mbits/sec. Secondly audio: MPEG offers two or
more near CD-quality sound channels. Thirdly broadcasting: MPEG is concerned with the integration of video and audio in a broadcast TV system, covering such things as synchronisation and multiplexing. MPEG does not however stipulate the type coding to be used, so companies can use their own compression algorithms. MPEG-1 has been optimised for storage media such as CD-ROMs while MPEG-2 is optimised for broadcasting - and is also 15 per cent more efficient than MPEG-1. Another group (MPEG4) is looking at slower data rates for applications such as videophones. What about domestic MPEG encoding? Current MPEG encoders cost around $£ 50,000-£ 100,000$, but Dr. Alex Ballanski of C-Cube Microsystem thinks that the price will halve within a year and be as low as $£ 10,000$ in eighteen months. Home MPEG encoders won't be available for three-four years however.

Typical video system resolution figures, assuming the use of PAL, are 352 pixels x 288 lines for VHS, 480 pixels x 576 lines for TV display and 720 pixels x 576 lines for CCIR 601 studio quality. Examples of bit rates required are $10-64 \mathrm{kbits} / \mathrm{sec}$ for a videophone, 1-2Mbits/sec for VHS movie quality, $3-8 \mathrm{Mbits} / \mathrm{sec}$ for entertainment TV and 15$25 \mathrm{Mbits} / \mathrm{sec}$ for HDTV. Ed Thomson suggested that the term 'compression ratio' is meaningless as the bit rate required depends on a number of factors including the resolution, whether the source is film or video (film is easier to compress) and programme content (a sports programme requires a faster rate than say a discussion programme). Compression Labs has developed a prototype MPEG decoder and is working on a number of digital TV projects with Thomson, Philips and Hughes - it's also part of the US digital HDTV project. The company thinks that DBS digital TV services will be available in the second quarter of 1994 (Hughes plans to launch its DirectTV satellite service in the USA during 1994, giving viewers hundreds of digital TV channels to choose from), that digital cable TV and video-on-demand (VOD) services will become available in late 1994, while digital HDTV services won't start before late 1996.

Digital Transmissions

Dr. John Forrest of NTL spoke on digital broadcasting. He began by pointing out that digital video compression isn't new - during the Seventies the IBA's engineering division (forerunner of NTL) had developed coders and decoders for inter-studio links and the satellite distribution of programmes in connection with the then only proposed fourth u.h.f. channel. The compression system was demonstrated at the 1980 IBC but wasn't adopted when Channel 4 started in 1982 as in those days satellite TV distribution was considered to be too risky.

Dr. Forrest then explained the principles of compression. A single PAL frame consists of around 700×570 pixels $(400,000)$. This has to be tripled to include RGB information, giving a total of 1.2 million bits of information per frame. The image is compressed by breaking it into blocks of pixels, e.g. 8×8, and analysing these for regular patterns and colour and brightness levels. Because there is only one twenty-fifth of a second between each frame there is little
difference between one frame and the next: a subtraction system is used to find the differences and only these are transmitted, greatly reducing the data rate required. Compression systems also take advantage of the fact that the human eye is less sensitive to fine detail and colour variations. Most companies at work in the compression business are aiming for a data rate of around $8 \mathrm{Mbits} / \mathrm{sec}$, which gives studio quality pictures: acceptable broadcast picture quality can be achieved with a data rate as low as 2Mbits/sec.

Although Dr. Forrest's talk was mainly concerned with broadcast systems he also mentioned a system for transmitting digital video images via ordinary telephone lines. Known as Asymmetric Digital Subscriber Line (ADSL), it involves the transmission of high-quality (140Mbits/sec) video images after compression at the local telephone switching centre to $1.5 \mathrm{Mbits} / \mathrm{sec}$. ADSL would offer domestic users a very limited VOD service but the technology looks as if it has potential. Companies such as Bell Atlantic are carrying out ADSL trials.

Satellites currently use a 36 MHz bandwidth transponder to transmit a single analogue channel: digital compression will enable such a transponder to carry $4-16$ channels (depending on picture quality). Likewise a 30 -channel cable system could use digital compression to increase the number of channels to 120 .

The terrestrial u.h.f. system used in the UK requires around 4,000 transmitters to broadcast four national services. This involves the use of some forty channels. Digital TV would allow each channel to carry four programmes. The simultaneous transmission of analogue and digital services is possible, which would allow the PAL system to be phased out in the same way that the 405 -line system was brought to an end. NTL's SPECTRE digital compression system has been developed for u.h.f. transmissions, but it will be up to the ITC to decide how the new services will operate.

All digital TV systems will use MPEG compression, but different modulation systems will be required for satellite, cable and terrestrial services. Dr. Forrest doesn't think we will see a standard conditional access system. Thus decoders will need to have several card slots. But a common coding system will be necessary to identify programmes and services. Likewise viewers will want to have a user-friendly system for navigation through the hundreds of channels. Dr. Forrest thinks that the TV receiver of the future will take on the appearance of a computer/terminal, be modular and upgradable.

AT\&T Trials

Ken Trojniar of AT\&T described several trials that have provided viewers with pay-per-view (PPV) and vision-ondemand (VOD) services. PPV enables viewers to select programmes from a schedule and pay for what they watch: VOD is more flexible, giving viewers greater choice and control over what they see and pay for. AT\&T's first trial, using a system called viewer-controlled cable TV (VCTV), was carried out in Denver in 1991. AT\&T and Telecommunications and US West offered viewers PPV and movies-on-demand services. A recent trial in Chicago linked the homes of fifty employees to a computer server in New York: the server provided programmes and services such as games, consumer reports, interactive sports programmes, home shopping and electronic mail. Later this year AT\&T will start the Castro Valley trial, which will put Viacom's two-way cable system in 1,000 homes. Users will be able to stop, pause, rewind and fast-forward TV programmes, will
be able to browse through 'video catalogues', ordering products by using a remote control handset, and there will be full-motion video games.

There have been interesting results from the Chicago trial. It established that people like the idea of a 24 -hour service that provides programmes on a PPV basis. Eighty per cent of the viewers used the service actively, with half the total group using the system to plan their viewing. Those with children tended to plan their viewing more than those without. It was also found that people prefer to use a remote control unit rather than having to call up programmes over the telephone. One result was that viewers spent less on other forms of entertainment, including video rental. Not surprisingly, films and games were the most popular items. Ken Trojniar admitted that it was early days for VOD, and that the system faces two big obstacles - the provision of broadband cable to a large enough number of homes, and whether consumers are prepared to pay for these extra services.

Astra

Marcus Bicknell of the Vision Consultancy Group surveyed the current Astra satellite plant. The present three satellites $1 \mathrm{~A}, 1 \mathrm{~B}$ and 1 C at $19^{\circ} \mathrm{E}$ provide fifty transponders that are used for analogue channels (some are used for back-up purposes however). Astra 1D, to be launched in September 1994, will increase the number of transponders to 64: it could provide a mix of analogue and digital services. Astra currectly uses the $10 \cdot 7-11.7 \mathrm{GHz}$ FSS band, but space in the $11 \cdot 7-12.5 \mathrm{GHz}$ BSS band could be used for an extra forty digital transponders. Astra's owner SES plans to have six co-located satellites by 1996. Depending on picture quality, a sixteen-transponder satellite using digital technologuy could provide 80-160 channels. Marcus Bicknell suggested that there could be around 3,500 digital satellite channels by the year 2004, and that by then satellite and cable systems could be in 110 million European homes.

Reception of digital satellite TV services will require new equipment. At present an LNB with a 750 MHz bandwidth can be used for Astra $1 \mathrm{~A} / \mathrm{B} / \mathrm{C}$: the bandwidth will need to be increased to 1 GHz to receive 1D. For reception of both analogue and digital services a switchable LNB with a 1 GHz bandwidth will be required. A 'universal' LNB is under development and should be ready by 1995.

Astra is likely to face stiff competition from other companies offering digital services, for example Eutelsat, regional services such as Telecom and Tele-TV and international operators such as Intelsat. Marcus Bicknell added that while agreement has been reached on setting a common European digital transmission standard (by the Digital Video Group, see the Berlin report in the December issue) there is no agreement on conditional access. Will there be a single box that accepts smart cards from a number of programme providers or will viewers have to have lots of different decoder boxes next to their sets? One hopes that there will be a one-box solution.

3-D Systems

Toshio Motoki of NHK's science and technical research laboratories described two 3-D systems. The first uses two HDTV cameras to record left- and right-eye images which are recorded by two HDTV VCRs: the images are projected on to a 110 in . screen and polarisation glasses are required to see the 3-D effect. The second system doesn't require the use of glasses. The 'auto-stereoscopic' display system is
based on lenticular stereoscopic photos, which produce a 3D effect with still pictures. The 3-D TV version uses an LCD screen and works by projecting left and right images on to the screen as a series of vertical stripes. Light from the pixels is refracted by a series of small lenses: when this is viewed at an appropriate distance a 3-D effect is seen. NHK has developed a prototype system which uses a 50 in . lenticular screen and four cameras. Sanyo, which developed the technique with NHK, plans to launch a system in Japan during 1994.

Video Storage

Dr. Tae Seok Park from Samsung's advanced institute of technology discussed storage systems for domestic video. Tape offers many advantages: as it is cheap to produce and has a high storage capacity it's likely to be the main medium for the coming generation of consumer digital video recorders, but it can't be used for interactive systems because it doesn't offer random access. Discs can offer random access, but there are problems. Today's CD-ROMs have a storage capacity of around 650 Mbytes and use infrared lasers to read them. The use of smaller pits in the disc would increase storage capacity but would require a shorter wavelength laser. Use of a red laser, with a $67(\mathrm{~nm}$ wavelength compared with the $780-830 \mathrm{~nm}$ of today's lasers, would increase the disc capacity by a factor of 1.5 ; a green laser (532 nm) would give an increase of 2.5 times while a blue laser (415 nm) would give an increase of four times. A 30 mW red laser and a 20 mW green laser for high-density recording have been developed, and a blue-green laser has also been produced, but these are all expensive. Dr. Park thinks that shorter-wavelength lasers for domestic machines
will be available at around the turn of the century.
Other ways of increasing storage capacity include superresolution technology: this increases the recording density beyond the limit set by the wavelength of the laser. One process, called magnetically-induced super-resolution (MSR), increases storage capacity by up to four times. Improved signal processing, which reduces the need for error detection, can increase disc capacity by up to 1.5 times.

The day when discs and tape are replaced by solid-state memory storage devices is a long way off in the future. The capacity of today's EPROMs and EEPROMs is around 16Mbytes, which is fine for still video cameras but not for video with movement. Dr. Park suggests that the storage capacity will be increased to around lGbytes by the year 2000 , enough for storing an hour of compressed video on a chip device the size of a credit card. This sounds impressive but is still some way behind the capacity offered by tape - and the chips wouldn't be cheap.

In Conclusion

A discussion on likely winners and losers took place at the end of the conference. The panel felt that software producers, the providers of direct-to-home services, and companies like NTL that produce digital compression systems should do weil. Sony, Bell Atlantic and TimeWarner were seen as companies to watch. Virtual reality (VR) could also become a big market, especially for entertainment and theme parks. One panellist suggested that the first company to develop a VR sex system will clean up! On a more sombre note, no one thought that consumer systerns like CDi and 3DO would be successful.

Modern TV Receiver Techniques

Part 14: Teletext

Eugene Trundle

Teletext is the oldest form of digital broadcasting technology. It has now been in use in the UK for twenty years, during which period teletext decoders have steadily shrunk in size and cost and the service has been improved. Teletext uses spare capacity in the field blanking interval to transmit data in the form of pulses that provide "typing instructions" for pages of text and graphics. A TV set that contains a teletext decoder extracts this data from the overall transmission and stores it so that, when requested by the viewer, page readouts appear on the screen.

There are five teletext 'levels' that offer progressively better presentation of text and graphics on the screen. The 'higher' the level, the larger the memory and the more sophisticated the decoder required. Perhaps because of lack of enthusiasm amongst viewers we have, in the UK, progressed barely further than level 1 , which is the most basic form of broadcast text. Access time however has been reduced by transmitting more data per TV field, by clever arrangement of the transmitted page sequences and by increasing the receiver"s memory capacity.

The Field Blanking Interval

In Part 10 we saw that the field blanking period, during which the beams return from the bottom of the screen to the top to start a new field scan, lasts for a period equivalent to

Fig. 1: Teletext data levels.

25 lines, i.e. $1 \cdot 6 \mathrm{msec}$. The field sync pulse group occupies 7.5 lines $/ 480 \mu$ sec of this space, leaving a period of 17.5 lines $/ 1 \cdot 12 \mathrm{msec}$ before the start of the video information for the first line of the next displayed TV field. This generous amount of time was originally allocated because early TV sets had a rather slow field flyback. Subsequently, with field timebases that had a faster flyback and advantages in technology at both ends of the transmission chain, it became possible to put some of these spare lines to good use: they were used to carry video insertion test signals (VITS) that provide signal identification, network switching and performance appraisal. The VITS occupy lines 19 and 20 in even fields and lines 332 and 333 in odd fields. The preceding twelve lines, 7-18 and 320-331, are used for text data.

Each text data line carries a colour burst to maintain the colour decoder subcarrier oscillator synchronisation and the usual line sync pulse. The text pulses occupy the rest of the line. This is the same period as the ordinary picture signat: $52 \mu \mathrm{sec}$.

To prevent intercarrier buzz with f.m. sound systems the
amplitude of the text pulses is limited to 66 per cent of the peak white signal, see Fig. 1. Binary zero is represented by the text signal hitting black level, binary one by the signal rising to the 66 per cent level. This represents 462 mV with a standard 1 V peak-to-peak video signal. The pulses are not square: they are filtered before transmission and further rounded in the receiver's i.f. and demodulator circuits. Thus by the time they reach the text decoder they are of approximately sinusoidal shape. In addition the pulses are transmitted in NRZ (non return to zero) form. This means that the signal remains high to indicate a string of binary ones and low when a string of binary zeros is being transmitted.

Text Data Format

The text data rate is 6.9375 Mbits per second, which is 444 times the 625 -line scan frequency. The pulses are not necessarily locked to the scan rate however. A data train representing 01010101 etc. to the end of the line will thus give rise to a quasi-sinewave at $3 \cdot 46875 \mathrm{MHz}$. At this rate there s room for 360 data bits on each TV line used for the purpose. These 360 bits produce a single row of text characters or graphics in the teletext screen display.

The 360 bits per line are divided into 45 eight-bit bytes. The first five of these bytes synchronise the decoder and provide an 'address' that indicates where the row is to be located in the text display. The remaining 40 bytes determine the characters in the row, which can thus have a maximum of 40 letters, numbers or graphic blocks. Where there's to be a blank or gap in the display the code for a blank space is sent so that data is always present.

The text display has 23 rows: thus a maximum of 23×40 $=920$ characters can be displayed on a single page to make up simple maps, diagrams and alphanumeric text. Upperand lower-case letters can be produced as well as figures, symbols and 'building blocks' for graphics, in any of eight colours formed by the three primaries plus black and white.

Fig. 2 shows the code table. Starting at the top on the left-hand side the first four bits define the row number and the next three the column number. The codes are then used to determine the character so that capital A for example would be called up by byte 1000001 (bits 1-7) while byte 1111101 produces the symbol \#. Notice that to change from a capital to a lower-case letter only bit six changes, and that the codes for numbers consist of their binary equivalents followed by the code 011 .

The 32 codes in columns 0 and 1 are control codes that indicate whether the codes in the following columns represent alphanumeric characters or graphics and give some 'attribute', such as a colour, to the characters in the row. These control codes all have bits 6 and 7 at zero: they produce no display themselves, occupying a single blank space in the displayed row - usually in the background colour of the preceding character.

Protection

Because the data is subject to interference and noise during its journey from the transmitter to the decoder protection against data corruption is required. It's provided

$\mathrm{b}_{76} \mathrm{~b}_{65} \longrightarrow$					${ }^{0}{ }_{0}$	${ }^{0}{ }_{1}$						${ }^{1} 0_{0}$	${ }^{1} 0_{1}$			${ }^{1} 1_{1}$	
Bits b	b4 b3	b2	b	$\xrightarrow{\perp} \stackrel{\text { Col }}{\text { Row }}$	0	1		2	2a	3	3 a	4	5	6	63	7	7 a
	00	0	0	0	NUL ${ }^{(1)}$	DLE ${ }^{(1)}$				0			P			P	
	00	0	1	1	$\begin{aligned} & \text { Alphan } \\ & \text { Red } \end{aligned}$	Graphics Red				1		A	Q	a		9	
	00	1	0	2	Alphan Green	Graphics Green				2		B	R	b		P	
	00	1	1	3	$\begin{aligned} & \text { Alphan } \\ & \text { Yellow } \end{aligned}$	Graphics Yellow				3		C	S	c		5	
	01	0	0	4	$\begin{aligned} & \text { Alphan }^{n} \\ & \text { Blue } \end{aligned}$	Graphics Blue			\square	4		D	T	d		t	
0	0	0	1	5	Alphan ${ }^{n}$ Magenta	Graphics Magenta				5		E	U	θ		4	
	01	1	0	6	Alphan Cyan	Graphics Cyan				6		F	V	1	π	V	E
	01	1	1	7	Alphan ${ }^{\text {² }}$ White	Graphics White			-	7		G	W	g		W	
1	10	0	0	8	Flash	Conceal Display		1		8		H	X	h		X	
1	10	0	1	9	Steady ${ }^{3}$	Contiguous Graphics Graphics			\square	9	-	1	Y	1		y	
1	10	1	0	10	End Box ${ }^{(3)}$	Separated Graphics						J	Z			2	
1	10	\dagger	1	11	Start Box	$\mathrm{ESC}^{(1)}$			-			K	\leftarrow	k		4	
1	11	0	0	12	$\begin{gathered} \text { Normal } \\ \text { Height } \end{gathered}$	$\begin{array}{r} \text { Black (2) } \\ \text { Background } \end{array}$				$<$		L	1_{2}	1		II	
1	11	-	1	13	Double Height	New Background				$=$	-	M	\rightarrow	m		34	
1	11	1	0	14	SO ${ }^{(1)}$	Hold Graphics				$>$		N	\uparrow	n			
1	11	1	1	15	SI ${ }^{(1)}$	Release ${ }^{(3)}$ Graphics		1		$?$		0	\#	0			

Fig. 2: ASCII codes used for teletext data transmission. Codes can be referred to by their column and row, e.g. $2 / 5=\%$. Control characters marked (1) are reserved for compatibility with other data codes; those marked (2) are presumed before each row begins.
by adding an 'odd-parity bit' at the end of each of the sevenbit codes shown in Fig. 2 so that each becomes an eight-bit byte. The idea is that the parity bit added always results in an odd number of one bits in the byte. The decoder can then check whether any bytes with an even number of ones have been received and reject these as being corrupt. This simple system has two limitations: it doesn't work if an even number of bits in the byte are incorrect. and it doesn ${ }^{\text {t }}$ provide data correction. Despite this it is adequate for use with text symbols, where a minor error often goes unnoticed. and is anyway corrected when the page is cyclically updated.

Some of the transmitted data requires greater protection however. If anything goes wrong with the data that determines the page number the wrong page could appear on the screen when it's called up by the viewer, while if the row address data is wrong the row will appear in the wrong place on the screen. To avoid this the bytes that provide this
information and the real-time clock data are heavily protected by means of a Hamming code, in which every alternate bit is a parity hit: bits 2, 4, 6 and 8 convey data while bits $1,3,5$ and 7 provide protection - see Table 1. This enables single-bit errors to be detected and corrected by inversion. The penality incurred is that the amount of information conveyed by the byte is reduced.

Row Coding

The first row of a transmitted page, row 0 , is the most important one since it contains the magazine and page numbers, the service nanue, the date and time. It's called the header row. To capture a page for display the viewer keys in the magazine and page numbers: when this keyed-in data corresponds with the transmitted code the relevant page is selected and displayed on the screen.

The data format for the header row is shown towards the

Fig. 3: Teletext row coding. The 'diamond-crossed' bytes carry display data, 32 characters in the header row and 40 in the others.
top in Fig. 3. There's first a clock run-in sequence that consists of two bytes carrying a series of ones and zeros 101010 etc. This synchronises the decoder's bit-sampling clock oscillator. Next comes a framing code byte whose purpose is to identify the start of the data bytes in the following pulse train. Its pattern is 11100100 , chosen to give a reliable reset signal to the rest of the decoder and to be amenable to correction by a circuit that's able to put right single-bit errors. Fig. 4 shows the principle of the framing code detector: when the and gate's output goes high it signats to the decoder that the next bit is the first one of the first data byte. Thereafter the circuit is reset at eight-bit intervals by a byte clock, thus individually partitioning off the bytes.

The next two bytes, which are Hamming-protected. provide the magazine and row-address information. In the header row this is followed by page number and time code (not necessarily real time) bytes to enable the viewer to select a particular page at a specified time. Two bytes that provide control information relating to the whole page follow - the codes that govern news flash, subtitle, update and similar functions, all with Hamming protection.

Eight data bytes of the header row have thus been used, leaving 32 for the display of characters. Except for the page number, the header row text is the same for all the pages of any one transmission: it shows the name of the service
(Ceefax. Skytext, etc.) and the day, date and real time in hours, minutes and seconds.

The following rows have the same clock run-in and framing codes as the header row. These are followed by individual magazine and row-address bytes, which are the only ones that have Hamming protection in an 'ordinary' row. Bytes 6 to 45 contain eight-bit codes for the text or graphics in the line. Each byte is transmitted with the LSB (least significant bit) first and the parity bit last.

Control Codes

Some further explanation is required for columns 0 and 1 in Fig. 2. At the beginning of each transmitted row the decoder assumes that what follows will be steady, normalheight white alphanumeric characters on a black background, also that any graphic blocks will be contiguous (joined together). Any change from this, at any point along the line, requires the insertion of a control byte to tell the decoder. Thus if the second half of a row is to be concealed (say it's a quizz answer), the 'question' text will be followed by the code 0001100 then the answer code. The answer will then be revealed only when the viewer keys 'reveal'. The next row will be reset automatically. Thus if this is to be concealed the first byte must again be 0001100 . Similarly if one word in a row is to flash it must be

Fig. 4: Framing code detector: only the bit pattern 11100100 can open the and gate to produce a 0.5 V transition. The clock pulses step the bits rightwards through the shift register.
preceded by code 0001100 then code 1001000 .
Suppose that we want to transmit a row with red graphics at the left changing to green graphics half way across, perhaps as part of a map or diagram. After the row coding the first byte will be 1000100 to set the display mode followed by the graphics codes. Just before the transition to green point code 0100100 is sent to change the colour. followed by more graphics codes. There doesn't have to be a gap in the display where the control byte is inserted: in the graphics-hold mode (column 1, row 14, Fig. 2) the decoder repeats the previous graphic symbol in the control code space. This can't be done with alphanumeric characters, so the control byte in this case produces a gap in the display: it appears in the background colour.

Because bits 6 and 7 of these control codes are both at zero they are sent straight to the character generator at the output end of the decoder.

Page Transmission and Access Time

We've seen that each text line transmitted during the field blanking period can produce one row of tex: on the screen. So with 24 rows in the display 24 lines will be required. As the current rate is 12 teletext lines per field, it takes two fields to transmit a single teletext page. At a field rate of 50 per second, 25 pages a second can be transmitted - 1,500 pages a minute. Thus access time - the period between requesting a page and its appearance on the screen - largely depends on the number of pages being transmitted. If 750 pages are being transmitted the worst-case access time will be 30 seconds and the average wait 15 seconds this is with the pages transmitted repeatedly in sequence.

To improve the system's 'user-friendliness' high-priority pages such as indexes and commonly-used pages are transmitted more often than others. Another time saver is the 'row-adaptive" feature, which enables the totally blank rows that occur in many text pages to be omitted from the data stream. It's also possible to interleave the text rows of several pages to give a perceived improvement in the access time: this is why each row has a magazine number (see Fig. 3). Subtitles (page 888) have the highest priority: they are transmitted on the first available line after the cueing point.

These techniques are limited in their effectiveness: in most cases they shorten the access time to some pages while lengthening the wait for others. From the user's point of view the most effective reduction in page access time comes from the use of the Fastext system.

Memory Capacity and Fastext

As the parity bits don't have to be stored the memory capacity required for a single page of text is 24 (rows) $\times 40$
(characters) $\times 7$ (bits), which comes out at 6.720 bits. This is the amount of memory that was provided in the earliest text decoders. Later types have a two-page memory ($2 \mathrm{~K} \times 7$ bits in practice) and automatically store the page following the one being displayed. Thus if you select page 100, page 101 will also be captured and held and can be called up for immediate display. This action prompts the decoder to search for, acquire and store the next page (102) in the now unused half of the memory, overwriting the stored page 100 with the page 102 data. Philips Components uses this system in the popular Euro-CCT (Computer Controlled Teletext) decoder.

A Fastext decoder incorporates a larger memory that can hold the selected page and the next seven, which are automatically loaded in sequence by the decoder. This is based on the premise that viewers usually step through pages sequentially. As each page is discarded the next page in the sequence is loaded. Thus virtually instantaneous page display is achieved.

The broadcaster's text editor can assist with the Fastext function by anticipating the user's requirements and sending additonal instructions to the decoder, based on the current page and its contents, for extra page acquisition. This works as follows. The bottom row of the text page has four colourcoded prompts which may typically be news. sports, travel and financial information. The remote control handset has four buttons with corresponding colours. Pressing any one of these selects magazine and page numbers simultaneously, loading appropriate pages into the memory for instant selection. If travel is selected for example the coloured prompts may change to air, sea, road delays and continue, the latter providing an escape from the travel menu.

A 'packet' system, in which additional data rows are transmitted but not necessarily displayed on screen, is used for Fastext data acquisition. The packets contain additional control data rather than characters and are sent before the teletext pages (which become packets 0 to 23) so that the control data arrives before the actual page. Packet 24, which is displayed as a row, is used for the Fastext prompts while packet 27 provides the page-linking data.

There are eight packets in the text specification for various purposes that include extended character sets (primarily for other languages) and general-purpose data

Table 1: Hamming code protection.

Message Hamming coded bits

0	1	0	1	0	1	0	0	0
1	0	1	0	0	0	0	0	0
2	1	0	0	1	0	0	1	0
3	0	1	1	1	1	0	1	0
4	0	0	1	0	0	1	0	0
5	1	1	0	0	1	1	1	0
6	0	0	0	1	1	1	0	0
7	1	1	1	1	0	1	0	0
8	0	0	0	0	1	0	1	1
9	1	1	1	0	0	0	1	1
10	0	1	1	0	0	0	1	1
11	1	1	0	1	1	0	0	1
12	1	0	0	0	0	1	0	1
13	0	1	0	1	1	0	1	1
14	1	0	1	1	1	1	1	1
15	0	1	0	1	0	1	1	1

Fig. 5: Basic decoder block diagram to show the working principle.
transmission. Packet 30 is an interesting one, providing PDC (Programme Delivery Control) for VCRs. More on this later.

Decoder Overview

Fig. 5 shows a teletext decoder in the simplest possible block diagram form. The first block removes the data pulses from the video signal and decodes them. The next block selects the data requested by the viewer, according to instructions sent via the control logic block, and passes it to the page memory (RAM) whose write-in control signal also comes from the control block. Read-out from the RAM is again governed by the control block: it occurs at a slower rate, a complete field scan period being required for a page in the memory to be read out - it's written in during short $52 \mu \mathrm{sec}$ bursts at varied intervals. The data from the RAM is passed to a character-generator ROM which uses it to produce the characters. graphics and symbols shown in the body of Fig. 2 and to give them the colours and attributes dictated by the control
data stored with the character codes. The ROM chip`s outputs consist of RGB signals in serial data form plus a blanking pulse train. They are all passed to an RGB signal processing chip of the type described in Parts 6 and 7 of this series, after which the RGB signals are applied to the picture tube.

Decoder Operation

Fig. 6 provides a more detailed idea of the internal workings of the decoder. A composite video signal (video plus sync) at about 2 V peak-to-peak is fed in at the left-hand side. The sync pulses are stripped from it and fed to field sync and line divider stages. They are also passed to the set's timebase generators and continue (generated within the decoder) when there's no TV signal present so that stored pages can, if required, be viewed 'after hours'.

The two clock run-in bytes synchronise and phase lock the data clock, which supplies 6.9375 MHz pulses to the data separator to enable it to make zero or one decisions with each received bit. An adaptive slicer is used here, like the one described on page 505 of the June 1993 issue. The serial pulse train produced in this way must next be converted to parallel form. This is done by clocking the pulses into an eight-bit shift register then stepping them out into an eightline bus each time the clock divider is reset by the framing code detector shown in Fig. 4. The eight data bits in the byte thus captured are held in the data latch (centre of Fig. 6) ready for transfer into the memory.

The bytes are checked for corruption, one at a time, in the parity-check block which puts up an error-inhibit flag in the read/write control block when a byte with incorrect parity is detected.

The Hamming-coded bytes are similarly checked, and

Fig. 6: A more detailed decoder block diagram to show the basic operation: practical processing arrangements are much more complex than this.
corrected if necessary, in the Hamming checker. This again inhibits the write-into-memory cycle should it detect an uncorrectable byte error. The data output from the Hamming block is in four-bit parallel form - four bits because, as we saw in Table 1 and Fig. 3, the other four bits in the byte are parity bits. It passes to the row address decoder which tells the memory, via the address generator, where the following 40 bytes of data are to be stored: and also to the row 0 detector which comes to life when it sees the row 0 code in the two bytes immediately after the framing code. The row 0 detector produces magazine, page and time-code data which are latched into comparators for updating each time a new header row is transmitted. The other input to each comparator consists of data entered by the viewer. When the magazine and page numbers at both sides of the comparator match exactly a WOK (Write OK) signal is passed to the read/write section, permitting data to be written into the memory from the seven-bit data latch. In the timed-page mode, transmitted and user-logged time codes are compared to produce the WOK command.

Thus the conditions required for a write-into-memory operation are: that the magazine and page numbers (and if required the time code) matches that requested by the viewer; that the data is complete and uncorrupted; and that the control bits in the header row are present and correct. When all these conditions have been satisfied the data is written into a memory address specified by the row and column address lines. In most decoders the memory has a two- or eight-page capacity that's automatically filled with data representing one or more linked pages as described earlier. Memory access time must be well under 1μ sec, which is the nominal period between displayed characters.

Data from the viewer's infra-red remote control handset is fed into the command decoder in serial form, typically via an I2C bus. After serial-to-parallel conversion it's passed to the comparators and to the character output contol section to operate such functions as reveal and superimpose.

Next Month

We've now seen how the text data is acquired and stored in memory: next month we'll look at readout and character generation, then relate all this to practical teletext decoders and the chips they use.

HELP WANTED

Wanted: Scan coils for the NEI Model 1451 and an M5142 audio demodulator/driver chip for the Sony Model KV1320. Jeff Smalley, EVA Services, 39b Rodmell Avenue, Saltdean, East Sussex BN2 8PG. 0273301514.

Wanted: Tuner for the Hitachi Model CNP190 (type ET512B B21-25 with connection to the contrast control and press-buttons). Also a BU508A transistor. Donald Bills, 69 Greenfields Road, Kingswinford DY6 8EG.

Wanted: RGB panel (part no. 29301-046-02) for the Grundig Model 8632 or a TDA2800 chip. Andy Rashid. 23 Crawley Road, Leyton, London El0 6RJ.

Wanted: BX3983 chip for a Sony SLC9UB VCR - a scrap machine, board or just the chip would do. Adrian Howman, 32 Dereham Road. Pudding Norton, Fakenham, Norfolk NR21 7NA. 0328864348.

Next Month in TELEVISION

SERVICING THE SONY TR55

Keith T. Keeton reports on his servicing/fault experiences with this palmcorder: introduced in 1989, this compact camcorder was remarkable in being the first full-feature machine to break though the lkg barrier with battery and tape is weighs 990 g .

THE PANASONIC ALPHA 3 CHASSIS
The Alpha 3 was probably the most complex chassis produced by Panasonic at Cardiff. Its many features include black-level expansion, which stretches the contrast curve in the dark picture areas to reveal hidden detail, extensive on-screen displays and a selftest mode to help the service engineer. A new series will look at the chassis' features and circuitry.

AUTO GREY-SCALE FAULTS

Steve Beeching looks at the operation of a typical automatic grey-scale correction circuit and describes the fault conditions he has experienced.

CD PLAYER REPAIRS

Les Austin starts an occasional series on CD player servicing. Initial points dealt with include the cost of replacement laser units, the type of scope required and some fault notes.

teletext - CONTINUED

In the concluding part of his account of teletext decoder operation Eugene Trundle describes the way in which the retrieved data stored in the page memory is read out and converted by the character generator ROM to form a screen display, some current decoder chip sets and a couple of related services including programme delivery control for VCR timer operation.

To. I
(Name of Newsagent)
Please reserve/deliver the March issue of TELEVISION ($£ 2.20$), on sale February 16th, and continue every month until further notice.

Name

Address
ORDER FORM
\qquad
\qquad

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

		2SC1398	0.80	2S0468C	0.00	88105B	0.24	80190	0.31	$8 F 959$	0.18	BWW5	0.46	M1928	1.86	S6.3	18.79		30	IDA1 1902	OB	Teal009	61
$15 / 85 R$	$\begin{aligned} & 3.83 \\ & 3.84 \end{aligned}$	$2 \text { SC1413A }$	$\begin{aligned} & 0.80 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 2034886 \\ & 2 S 0476 \end{aligned}$	0.97	BC107B	0.20	B0201	0.40	BF960	0.27	BY $\times 55600$	0.20	M21C	1.65	SGSIF344	6.62	TA7193AP	3.36	TDA1200	0.91	TEA1014	87
17052	3.85	2SC1509	0.51	250525	1.27	BC108	0.15	BD203	0.46	BF966	0.61	CAl310E	0.78	M293	14.65	SKE4F104	0.97	Ta7193P	7.09	TDA1270	1.79	TEA1039	15
17053	2.38	$2 \mathrm{SC1520}$	0.54	2S0551	5.81	BC109A	0.16	BD232	0.28	BF970	0.30	CA3094	3.06	M490	15.31	SKE4F210	0.87	Ta7205AP	1.51	TOA1412	0.11	TEA2018A	1.49
17088	2.38	$2 \mathrm{SC1573}$	0.36	2 S0613	0.63	BC109B	0.15	B0234	0.25	BFR39	0.35	CD4001	0.14	M491	7.94	SKE5F310	1.68	TA7207P	1.68	TOA1506	4.59	TEA2164	2.68
17089	3.39	2SC15730	0.26	$2 S 0636$	0.14	BC117	0.14	B0237	0.30	BPR41	0.44	C040:11	0.21	M50115AP	3.24	SL1430	1.41	TA7210P	1.50	TDA1510	2.54	TEA2165	6.26
17127	1.71	2SC1675	0.09	$2 S 0637$	0.12	BC139	0.33	B0238	0.11	BFR90	0.61	CO4013	0.34	M51102	1.71	\$1.1431	1.70	TA7214P	3.74	T0A1512	3.17	TC1060	0.55
ina00]	0.04	2SC1685	0.11	$2 S 0667$	0.26	BC140	0.21	B0239	0.29	bergoa	0.71	C04016	0.14	M51231P	2.03	SL1432	2.10	TA7217AP	1.27	TDA1515A	2.54	TIC105M	0.75
[N 4002	0.07	$25 C 1740$	0.12	2SD669	0.63	BC141	0.34	BD241	0.41	BFR91	0.43	CD4021	0.43	M5:393AP	4,64	\$1471	1.70	TA7222	1.24	TDA15160	3.56	TIC45	0.59
[N4003	0.05	2SC174!	0.11	2S0669A	0.63	BC147A	0.06	80203	0.39	BFR96	0.53	C04052	0.29	M51515	2.01	SL490	2.31	TA72224P	1.21	TDA 15180	332	T1L.100	0.52
[N 4004	0.07	2SC1815	0.14	2 SD716	1.46	BC148	0.12	B0243A	0.43	BFW92A	0.48	C04053	0.20	M5152.1	0.54	SN29764AN	1.99	TA7227P	2.29	TOA1670A	2.81	TIP:10	0.36
1N4005	0.06	2SC1826	0.72	$2 S D 718$	1.45	BC148A	0.06	BD243C	0.44	B6X85	0.55	CD4066	0.30	M5218L	0.43	SN7474N	0.38	TA7230p	1.60	TOA1701	4.86	T\|P1 12	0.00
iN4006	0.06	$2 \mathrm{SC1827}$	1.00	$2 S 0734$	0.24	BC148B	0.04	BD244A	0.34	BFY50	0.34	C04069	0.11	M523iL	0.5.5	SN76013ND	7.99	1A7233P	1.95	TDA1870	3.31	TIP 112 H	0.58
[N4007	0.06	2SC1845	0.20	250762	1.51	BC 149	0.04	80244C	0.42	BfY51	0.34	CD4070	0.21	M53216P	1.418	SN76227N	1.07	TA7240P	2.46	TDA1904	1.21	TIP120	0.57
IN4148	0.04	2SC1846	0.51	250774	0.43	BC149C	0.04	BD245C	0.72	BR100	0.17	CNX62A	2.95	M54543L	1.6	SN76666N	1.26	TA7241	2.30	TOA1905	0.94	TPP121	0.42
[N4448	0.06	$2 \mathrm{SC1923}$	0.14	2S0787E	0.36	BC157	0.13	80246C	0.71	BR10]	0.98	CR3CM	2.62	M54544L	1.81	SN76705AN	1.70	TA7250	4.03	TDA1908A	1.14	TIPI26	0.48
:N5061	0.38	2SC1942	3.33	2 2S837	0.90	BC159	0.06	B0278A	0.56	8R103	0.53	CR02AM	2.17	M54548L	3.24	STA341M	2.54	TA7267P	2.02	TDA1940	2.71	TIP132	0.46
IN5402	0.12	2 SC1959	0.11	250841	1.34	BC161	0.27	B0317	0.87	BR303	1.22	CV12E	2.70	M546448l	3.31	STA401	2.46	TA7270	1.68	TDA1950	1.86	TiP137	0.48
1 N 5404	0.13	2SC1969	2.46	250856	0.94	BC157	0.42	BD318	110	BRX44	1.02	Cxiog	7.05	M54648L	6.62	STA441C	2.80	TA7270p	1.73	T0A2002	0.85	TIP2955	0.83
1 N 540	0.12	2SC1983	1.78	$25 D 869$	3.28	BC171B	0.14	BD380	0.34	BRY56	0.43	DTA124EF	0.13	M54898AP	20.4.	STK0029	5.88	TA7271P	1.76	TDA2004	1.27	TIP29C	0.30
[15408	0.12	2SC2001	0.14	250870	3.81	BC. 77	0.14	80433	0.29	BSS38	0.23	DTA144EF	0.17	M58485P	5.95	STK0039	7.11	TA7273	3.21	TDA2005	1.36	T1P29	0.46
1 N91	0.04	$2 \mathrm{SC2} 073$	0.51	250871	5.08	BC178	0.11	80434	0.34	BT120	1.28	ER1400	2.15	MB3730	2.33	STK0040	7.40	TA7274P	2.72	TDA2006	1.06	-	0.77
1S1555	0.22	2SC2078	0.17	250880	0.48	BC182L	0.06	B0435	0.38	BT129	3.26	HA11235	1.95	MB3731	2.211	STK0059	9.75	TA7280	2.11	TDA2009	2.29	300	0.17
15	0.29	2SC214:	1.48	250882	0.43	BC1821B	0.06	B0436	0.32	BT139600	1.14	HA11244	3.83	M83732	2.86	STK025	9.61	TA7299	2.34	T0A2020	3.72	$31 /$	0.32
2N2219A	0.27	2SC2166	1.27	2S0898B	4.23	BC184	0.09	80437	0.32	BII51/500R	1.10	HAL124A	1.21	MC13002	5.74	STK3042	6.90	TA7313AP	0.62	230	0.61	TP318	0.30
2N2222	0.22	2SC2168	0.85	2SD904	5.95	BC184t	0.04	BD438	0.31	BT151800	115	HA11423	2.02	MC1310P	0.8\%	STK3062	8.88	TA7317P	0.93	2030 V	1.05	TP31C	0.44
2N2905	0.21	2SC2236	0.25	250973	0.38	BCI84L	0.10	B0441	0.34	BU205	1.07	HA11440	2.92	MC1327AP	1.64	STK4131	7.79	TA7325P	0.45	TDA2170	2.55	$\underline{T}+13^{2 /}$	0.39
2N2926G	0.37	2SC227.	0.22	741500	0.21	BC204	0.14	B0442	0.29	BU208A	1.16	HA1.66X	3.43	MC1330AIP	1.2	STKA141	9.31	TA7343AP	0.12	TOA2270	1.68	TIP32C	0.38
2N3053	0.36	$2 \mathrm{SC2} 274$	0.22	7805	0.28	8С2078	0.23	BD510	1.34	BU2080	1.53	HA11713	1.24	MC1350P	1.87	STK 142	8.21	TA7358P	0.78	TDA2530	3.76	TIP33A	0.92
2N3054	0.98	2SC2274K	0.22	7808	0.30	BC212B	0.06	B0529	0.97	BU326A	1.36	HA11741	6.71	MC1352P	1.45	STK4162M	9.51	TA75358P	0.68	TDA2540	0.88	TIP33C	0.80
2N3055	0.77	2 SC2314	0.33	7812	0.30	BC2.21	0.06	BD530	1.10	BU406	068	HA11745	5.10	MC1358P	1.55	STK4171	10.50	TA7607AP	2.62	TDA2541	0.72	TIP34	0.00
2N3442	1.00	2 SC2335	1.43	7815	0.30	BC213	0.11	BD535	0.43	BU4060	1.02	HAL3001	1.12	MC145288CP	1.710	STK4181	12.85	TA7609P	1.95	TDA2560	4.46	T1P34C	0.89
2N3702	0.11	$25 C 2458$	0.12	7818	0.41	BC214L	0.09	B0536	0.48	BU407	0.53	HA13108	3.56	MDA2062	2.21	STK4181A	12.46	TA7630P	1.87	TDA2576A	5.95	TIP41A	0.38
2N3704	0.14	$25 C 2482$	0.34	7905	0.34	BC237	0.10	B0675	0.30	BU407D	0.97	HR13118	1.87	M 2955	0.97	STK4332	5.54	TA7640AP	0.98	TDA2577A	4.25	TIP41C	0.37
2N3773	1.27	2SC2547E	0.24	7912	0.43	BC237B	0.05	B0677	0.32	BU426A	0.96	HA13119	2.03	M802	2.3	STK4352	1.70	TA7676P	4.25	10A2578A	2.55	TIP428	0.39
2N3819	0.34	2SC2565	8.46	AA119	0.36	BC238	0.11	BD707	0.51	BU426E	2.13	HA13403	4.66	M.E13005	0.85	STK437	8.30	TA7680AP	3.81	TDA258.	5.75	TIP42C	0.37
2 N 394	0.11	2SC2570A	0.29	A1143	0.13	BC238B	0.05	B0839	0.51	BU500	1.32	HA1377	2.42	MJE2955	0.68	STK4392	5.92	TA7698AP	5.93	TOA25810	10.15	T1P47	0.51
2 $\mathrm{N}_{4} 44$	3.22	2SC2577	1.45	AC127	0.11	BC239	0.04	BD901	0.51	BU508A	0.95	HA1388	2.63	Mje3055	0.51	STK441	11.81	TA7705P	1.68	TOA2582	1.95	TIP1791	1.24
2N6292	0.62	2SC2581	3.05	AClalk	0.46	BC252B	0.07	B0902	0.51	BU508AF	1.27	HA1389	2.52	MES340	$0.5 t$	STK459	11.17	TA7769P	1.43	T0A2591	1.15	TIS43	0.66
2SA1015	0.10	$25 C 2632$	043	AC176K	0.30	BC300	048	B0911	0.65	BU5080	1.21	HA1392	1.01	M1923	14.26	STK461	10.49	TA8205	3.89	TDA2593	0.75	TLO11CP	1.36
2SA1016	0.17	2SC2655	0.25	AC187	0.16	8C301	028	B0912	0.63	BU5080F	1.81	HA1397	2.63	MN1405VKF	11.08	STK4843	11.10	Ta8210H	4.74	TDA2594	2.21	TL071CP	0.38
1020	0.43	$25 C 2671$	0.68	AC187K	0.33	BC302	0.36	B0V658	1.16	BU508V	1.43	HA1398	2.33	MN1435Vx	14.35	STK521]	15.78	TA8215	4.57	TDA2595	2.41	TL494	1.61
Al020y	0.43	$25 C 2688$	0.30	AC188	0.36	BC303	0.22	BOW84C	1.28	BU526	1.41	HA1452	4.86	MNI435VXB	10.66	STK5322	6.35	TA8691N	6.67	TDA2600	3.08	TMP47C432dP	11.24
2SA1095	7.44	$25 ¢ 2785$	0.12	AC188K	0.82	BC307	0.06	B0W93C	0.59	BU536	1.60	HM6232	10.36	MN650	2.50	STK5325	5.92	TAG626	1.05	TOA2611A	0.64	11947casar 355	81787
2SA102	2.54	25C2791	5.44	A0149	0.52	BC307A	0.06	B0W94C	0.46	BU608	1.44	HM6251	9.52	MPSA42	0.25	\$TK5326	6.20	TBA120	0.53	TDA2611AQ	2.03	UC3844	1.78
2SA1143	0.17	2 SC3150	1.44	AD161	1.02	BC3078	0.06	BDX32	1.70	BU705	1.61	HM7103	14.07	MPSA56	0.12	STK5331	3.02	TBAI20AS	0.90	T0A2640	4.13	UPABIC	0.94

USE YOUR ACCESS OR VISA

TV Fault Finding

Philips GR1-AX Chassis

With most Philips chassis the h.t. supply to the line output stage is removed when the scan coils plug is disconnected. Beware! On some versions of the GR1-AX chassis this is not the case. I was caught out by a set that was dead with a whistling noise coming from the power supply. A resistance check across the 95 V supply reservoir capacitor C2660 produced a reading of 600Ω. I figured that removing the scan coils plug should have disconnected the line output stage so, as the leak was still there, I chased around the power supply for a while. Finally I resorted to following the 600Ω leak along the print and ended up at the line output transformer, not the scan coils plug as I would have expected. All that was wrong was a leaky BUT11AF line output transistor. Fitting a new one and attending to some dry-joints in the line driver stage got things working again.
P.B.

Philips 2A Chassis

If the power supply is slow to start check whether R3670 still reads 33Ω. When its resistance value goes high the power supply takes a few seconds to start.
P.B.

Grundig Cinema 9050

There was a fault with the screen drive motor in this projection set - in this model the screen rises up out of the cabinet like Reginald Dixon at the Tower Ballroom! Usually when you switch the set on the channel display appears, the screen rises then the line timebase starts up. With this set however the channel display appeared, the screen began to rise, then the display went to standby and the screen weent down again. If you held the mains switch down the screen would move up jerkily with the channel display constantly going from 1 to standby.

The set has to be out of standby for the screen to rise. A check showed that the out-of-standby signal from the tuning board was pulsing when it should have been steady. The tuning board is powered by a mains transformer, rectifier and regulator. There was 1 V of 50 Hz ripple on the output from this arrangement. The regulator is on the Omniplatte (convergence etc.) board. As the rectifier D6013 is a fullwave type there shouldn't have been a 50 Hz ripple. Resistance checks on the transformer solved the problem: one half was open-circuit because of a dry-joint where the leads are soldered to the mains fuse board.
P.B.

Panasonic TC1485 (Z3 Chassis)

Intermittently dead faults are not exactly my favourites. So it was with a heavy heart that I lifted this portable on to the work bench. To start with the set worked perfectly. Subsequently it lapsed into an inoperative state. A check showed that there was no power-on signal from the system microcontroller chip ICl101, but further checks in this area revived the set which continued to work faultlessly all day. Next day the set couldn't be prodded into life. Everything appeared to be fine except that IC1101's reset line seemed to be slightly lower than usual. Suspicion then fell on a

> Reports from Philip Blundell, AMIEIE, Brian Storm, Edward Joyce, J.G.Grieve, Michael Dranfield, John Edwards, Richard Flowerday, John Hepworth, and Terry Lamoon

small yellow component, $\mathrm{C} 1122(0 \cdot 01 \mu \mathrm{~F})$, which proved to be leaky. A replacement restored reliable operation.
B.S.

Samsung CI5013T (P58SC Chassis)

If one of these sets won't start, with no standby light, or possibly trips check R811 ($100 \mathrm{k} \Omega$) which tends to go high in value. It's connected to pin 8 of the TDA4601 chopper control chip.
E.J.

Hitachi CPT2044/46/48

If the field size varies or there's field collapse, replace the $1 \mu \mathrm{~F}$ capacitor C 603 - it's a blue tantalum type!
E.J.

Philips GR1-AX Chassis

A fault you sometimes get with these sets is no go with the standby LED flashing after a few seconds. If the cause is not the line output transistor it could be the 15 V zener diode D6613.
E.J.

Ferguson 59M5 (ICC5 Chassis)

The picture looked as though the tube's emission was low: it lacked blue until the brightness was turned up, when blue flared across the picture. We found that RV73 ($47 \mathrm{k} \Omega$, 1W), the d.c. feedback resistor in the blue output stage, had risen to a very high value.
E.J.

Ferguson B14C (TX90 Chassis)

No sound has become a common fault with these sets. Fusible resistor R509 (1.8Ω) goes open-circuit or high in value. Note that this is the Thomson, not the earlier TX90 chassis.
E.J.

Panasonic TX21T1 (Alpha 2 Chassis)

The fault with one of these sets was that the picture went red after a short while in operation. We checked this and that and froze everything on the c.r.t. base panel, none of which helped. It turned out that a disc ceramic capacitor, C353 $(220 \mathrm{pF})$, was going leaky. It decouples the emitter of the red output transistor.
E.J.

Ferguson ICC7 Chassis

If the set is dead but not tripping you'll probably find that RP62 $(0 \cdot 1 \Omega)$ is open-circuit and the BA157 rectifier diode DL09 short-circuit. DL09 takes its feed from the line output transformer, generating the 65 V supply across CL09. RP62 is in the chopper circuit.
E.J.

Philips CTX Chassis

There was an off-tune, slightly distorted picture with buzz on sound, higher channels being worse. Teletext consisted
of garbled gobbledegook. The scan tuning wouldn't lock, though you could use the fine tuning. The cause of the trouble on this occasion was a leaky capacitor within i.f. transformer 5158. It's best to replace the whole can. Don't be tempted to tweak cores: this may appear to help, but the teletext doesn't like the result.
J.G.G.

Osaki P10R

This set was dead but there were no blown fuses. The cause of the fault was no output from the 12 V regulator IC402, a big, square block. I fitted the Nikkai AL2711K and all was well during a long test run. The set is similar to the Nikkai Baby 10.
J.G.G.

Sony KV2212

This set was permanently in the search tuning mode. When we removed the back we saw that the channel search button was stuck down. A call to our Sony dealer friend proved to be fruitful. He didn't have the switch but provided us with the part number and recommended replacement of all ten pushbuttons on this panel to prevent further trouble. When we removed the panel we found that six of the buttons were stuck down. The Sony part no. is 1-552-774-00. M.Dr.

NEI 2131

There was sound but no vision, just a blank raster. A scope check showed that the amplitude of the sandcastle pulse at pin 8 of the TDA3561A colour decoder chip was low. The cause was traced to the TDA3653 field output chip (pin 7). Replacing this restored the video information.
M.Dr.

Toshiba 2100TBT

This set would develop a ripple on the picture. It got worse as the set warmed up. Many tins of freezer, much heating with a hairdryer and extensive component replacement failed to cure the problem. We eventually found that connecting a $2 \cdot 2 \mu \mathrm{~F}, 63 \mathrm{~V}$ capacitor between the tuner's VT pin and chassis cleared the effect. Solder the capacitor as close to the VT pin as possible.
M.Dr.

Osume CTV1486T

When it was warm this set would keep flicking between the picture and teletext. In addition text characters would intermittently flash up on the screen. We found that the expensive SAA5243P/E VIP chip on the teletext PCB was running very hot. As its supply voltage was correct we replaced the chip, curing the fault.
M.Dr.

Philips CF1 Chassis

One of these sets had several fault symptoms - no line or field sync, no sound output and flyback lines across the entire screen. The culprit was the TDA2577A sync/timebase generator chip. We had a TDA2577 in stock but when this was fitted there was normal sound but field collapse, so the A suffix is obviously important.
J.E.

Finlux 1632

There was excessive width, severe EW bowing and the EW amplitude and width controls had no effect. We found that inductor Lz4 was badly dry-jointed at one end, where there were burn marks on the PCB around the joint, Rz26 ($10 \mathrm{k} \Omega$)
was open-circuit and the BD241A EW modulator driver transistor $\mathrm{T} x 4$ was short-circuit base-to-emitter.

Hitachi CPT2278 (NP83CQ-2 Chassis)

One of these sets screamed at me until I disconnected pins 6 and 10 of the line output transformer. This stopped the screaming and restored the correct h.t. output from the power supply, thus proving that the transformer had failed.
J.E.

Logik 4090/Ferguson TX90 Chassis

A corrugated ripple effect on all vertical contents of the picture could be reduced by lowering the brightness or contrast level, i.e. the beam current. The cause of the fault was C189 ($22 \mu \mathrm{~F}, 50 \mathrm{~V}$) which when checked measured only $0.5 \mu \mathrm{~F}$
J.E.

Solavox 22R09/ITT CVC1215 Chassis

The job card said "bang then dead". When you get this look no farther than $\mathrm{C} 701(10 \mu \mathrm{~F}, 350 \mathrm{~V})$ which explodes. It's quite a common fault.
J.E.

Bush 2520

It took several attempts before this set would switch on. We found that the positive temperature coefficient thermistor R802 in the power supply was dry-jointed while R800 $(820 \mathrm{k} \Omega)$ read just under $2 \mathrm{M} \Omega$. When these components had been replaced the set started up with no further problems.

Another of these sets suffered from low-gain, noisy reception, as if the tuner had failed. The cause of the fault was the TDA4505 chip IC100 however.
J.E.

Matsui 2180TT/Saisho FST212T

This set was dead. The mains bridge rectifier was providing a supply for the STR 58041 chip in the power supply but the latter provided no output. A new chip plus mica washer and heatsink compound got the set going.
J.E.

Goodmans 2043T

The power supply was working, providing the correct h.t. voltage at pin 17 of the chopper transformer, but the set remained lifeless because there was no h.t. at the B+ terminal of the line output transformer. Diode D8035 was open-circuit.
J.E.

Panasonic TC21M1R (Z4 Chassis)

Intermittent field collapse was the fault with this set. It appeared at random and didn't seem to be affected by time or temperature. Must be a capacitor, we thought! When the fault was present the trigger input at pin 2 of the field output chip IC451 was missing. In addition the voltage at this pin rose to 5.8 V .

Attention was turned to the field oscillator, which is part of the video processor chip IC601 on board C. Although the voltages here were correct there was no ramp waveform at pin 34 , to which the oscillator's timing components are connected. The culprit was the $3 \cdot 3 \mu \mathrm{~F}$ tantalum capacitor C402. Remember - beware of blue tants!
R.F.

Ferguson A51F (ICC7 Chassis)

One of these sets would very intermittently revert to the
standby mode. The customer said that "it went off every five minutes", but it took over a week of soak testing for the problem to show up in the workshop. When it did, we found that the line oscillator's supply at pin 40 of IV01 was missing, though the voltage at the power control pin of the microcontroller chip IR01 was low - the correct state for a running set. Attention was turned to the standby switching transistors TR16/17. The latter turned out to be open-circuit, though freezing it brought the set back to life. A replacement transistor cured what was an extremely vexing problem.

Incidentally TR 18 is not to be found in the set though it's shown in the circuit diagram.
R.F.

Akura CX26

Although this set would produce stereo sound with a Nicam broadcast there was no f.m. sound with video playback at r.f., nor from a test pattern generator. There was plenty of demodulated f.m. sound at pin 5 of the i.f. chip IC101, but this disappeared into the Nicam board, where all the audio switching takes place, and didn't come out again. Swapping parts with another set proved that the EEPROM chip IC002 was responsible, though we couldn't work out why! When changing this chip much time can be saved by first going into the service mode and noting the various adjustment levels.
R.F.

Bush 2814T

I had no service manual for this Turkish manufactured set, which had no e.h.t. and no tube heater supply. Fortunately it didn't take long to establish that R603 ($3.9 \mathrm{k} \Omega$, 5 W) was open-circuit. It's in the h.t. feed to the line driver stage. Be warned: replacing the back on these sets would try the patience of a saint!
J.H.

JVC CX500ME

This is a multi-standard 5 in . colour set with a radio and a cassette player section. The radio and tape sections worked but the TV section was dead. When TV was selected the voltage from the power supply fell to 4 V . Disconnecting various things proved to be fruitless. The cause of the fault was a high-resistance section of the function selector switch.
J.H.

Hitachi C25-P819 (G7P Mk II Chassis)

These sets are in the Images range of FST models. Failure to start usually means that one or more of the following resistors has gone high in value or open-circuit: R931 ($150 \mathrm{k} \Omega$), R932 ($120 \mathrm{k} \Omega$), R919 and R920 (both $100 \mathrm{k} \Omega$). If one of them goes only $20-30 \mathrm{k} \Omega$ high it can cause intermittent starting. These resistors are connected in series pairs to pins 4 and 5 of the TDA 4601 chopper control chip. J.H.

Mitsubishi Euro 4 Chassis

This set's memory, which is an EAROM, wasn't working. Following the usual practice, the chip operates with a -30 V supply. We found that this supply was missing because of an open-circuit winding on transformer T951 (pins 1 and $4)$.

Pioneer SV2102

This was the first Pioneer TV set I've come across. There
was e.h.t. but no sound or vision. The chassis is rather a daunting sight and the set weighed a ton. I decided to phone Pioneer for advice and was told to replace an i.c., type U4606 (they didn't give the circuit reference number, mind). Doing this cured the fault, but take note: if you order the chip from SEME you'll find that it is reasonably priced in the general spares list, but if you use the Pioneer part number you'll need a mortgage to pay for it.
J.H.

Matsui 1455

The problem with this set was field collapse, though the output stage seemed to be working normally. Checks around the jungle chip were inconclusive and a replacement made no difference. So it was back to the driver and output stages. The power supply arrangement here is a bit unusual. By making cold checks I eventually found that the 10Ω safety resistor R310, which acts as a surge limiter, was opencircuit. This stopped the driver stage working.
T.L.

ITT TX3126 (Monoprint B Chassis)

At switch on this set would trip, with a momentary display. I decided to check the outputs from the power supply and found that the 16 V line showed no signs of life at switch on. The reason for this was that the $1,000 \mu \mathrm{~F}$ reservoir capacitor C715 was short-circuit. Make sure you use the correct capacitance value - if it's too high it will hold the set off after an initial switch on, as I found out.
T.L.

Matsui 1466

There was no sound or vision with this portable set, though the channel indicator was working. I went straight to the regular culprit with this model, R502 $(330 \mathrm{k} \Omega)$ in the power supply. It goes high in value. Fitting a replacement restored normal operation.
T.L.

Mitsubishi CT25M1TX

When this set was switched on there was virtually no contrast in the display and flyback lines were present. A check on the voltages around IC251 produced a reading of 1.2 V instead of 2.9 V at pin 7 . On tracing the supply back to Q704 I found that the 12 V line was very low. When tested Q704 turned out to be leaky, a replacement restoring a perfect display.
T.L.

Matsui 2160

If the fault is no sound or picture with normal channel change lights. check the output from the STR58041 chopper chip IC501. If this is missing fit a replacement.
T.L.

Ferguson 51P7 (TX98 Chassis)

This set was brought in with the complaint that the channels would change on their own, the sound would mute and the text would do odd things. We had it on test for several days without any fault putting in an appearance, but the customer insisted that it was faulty. So we phoned a Ferguson expert who suggested an answer. All you have to do is to cut the print at pin 11 of the infra-red preamplifier chip and add an $0 \cdot 1 \mu \mathrm{~F}$ capacitor across the cut. This was done and the set was sent back, never to return. So the modification worked. If it doesn't you replace the tube base.
T.L.

Amstrad VMC100

For no colour check the 2 SC 3929 transistor Q517 on the camera PCB. It buffers the chroma signal feed to the deck section.
D.C.W.

Ferguson FC07

This JVC-designed camcorder had no camera E-E picture. A common cause of this symptom (a blank white viewfinder screen) is lock-up of the microcontroller chip: removing then refitting the clock battery normally provides a cure. Not so this time! On inspection we found that the iris remained closed -- pictures were obtained when the iris mechanism was manually operated. The cause of the fault was traced to D4 on the IMG SSG panel. It was open-circuit. In fact this glass-type diode was literally shattered. An interesting point is that it's shown in the manual as a chip component.

No cause for the failure of this component could be found and a replacement provided a complete cure. The diode's physical position on the PCB puts it in contact with the rear edge of the deck mechanism. It seems possible that a knock to the optical block could produce a mechanical shock that was transferred to the D4 area, cracking the glass.
D.C.W.

Panasonic NVMS2

The problem with this camcorder was incorrect white balance. We traced the cause to poor soldering at P001 on the camera operation PCB.
D.C.W.

Sony CCDF250

The reported fault was "viewfinder and E-E camera pictures disappear after a few minutes' use". Sure enough they did! We traced the camera picture signals, both Y and C , through to the output pins of the encoder chip IC606 on board CV9. At this point they are applied to a Y/C mixing and buffering circuit consisting of Q602, Q617 and Q619, a composite video signal appearing at the emitter of Q619. This signal disappeared intermittently, causing the fault symptom.

The Y/C mixer stages are direct coupled, and voltage checks here showed that the d.c. conditions varied wildly. Static checks and the replacement of several components in this area didn't help. The voltages at the pin connections varied even when the three transistors were removed from the board! Sabotage was suspected. . . The cause of the problem turned out to be a $120 \mu \mathrm{~F}, 6 \cdot 3 \mathrm{~V}$ electrolytic capacitor (C 704) that decouples the 5 V rail. It had leaked over part of the print in the Y / C mixer section. I suppose the moral is that if odd symptoms that defy logic persist, look for a leaky capacitor. D.C.W.

Amstrad VMC100

The fault report with this point-and-shoot model said "no functions with the cassette housing open". We found that CP403 and the 9.6 V regulator transistor Q402 on the main PCB were both open-circuit. We
checked for shorts then fitted replacement components. This provided a cure - until eject was pressed. CP403 then failed, but this time Q402 was all right. As no likely cause could be discovered CP403 was replaced, a tape was loaded and a recording was started. Everything was o.k., even when eject was pressed: the recordings were found to be o.k. when checked in a playback machine. But after much soak testing CP403 again failed while the machine was in the eject mode.

In sheer desperation I dismantled the unit once more and connected an analogue ammeter in series with CP403. Tape loading was achieved without mishap, but when the eject button was pressed the ammeter showed that there was an excessively heavy overload, far in excess of normal. The cause of the trouble was finally traced to the loading motor, which was going shortcircuit to chassis intermittently, thus explaining why the fault occurred only in the eject mode.
D.C.W.

Sony V900

These camcorders are very reliable and are easy to fix once they are opened up, but a very large number of patch leads are required. Once you are able to power the machine the assembly looks like spaghetti. Repair is not a job for the beginner. We've had the following faults:
(1) There was playback/recording for a few seconds, then a warning symbol appeared. We found that in fast forward the take-up reel didn't move while the clutch was slipping. A new take-up reel restored correct operation.
(2) There were horizontal stripes on the playback picture. We found that the tape path couldn't be adjusted. There was a faulty tape guide, a new roller assembly putting matters right.
(3) The LCD was o.k. but there was no power to the camera/VCR section, with the electronic viewfinder dead. Checks around IC101 on board FDIOP showed that the 5 V supply was present at pin 54 , there was oscillation at pins $55 / 58$ but the VTR power-on output didn't go low. IC101 was faulty, a replacement restoring normal operation. This is a fairly common fault.
K.T.K.

Sony V700

Here are a couple of faults we've had with this model:
(1) There was no playback picture (black screen) and no sound. Checks showed that the 5 V PB supply was low at 1.5 V . The cause was transistor Q280 (type 2SC4081R, part no. 872990535).
(2) No playback picture (black screen) but this time the sound was o.k. Checks showed that there was an input signal at pin 41 of IC650. which turned out to be faulty. It's type CXA1207R (part no. 875203619). K.T.K.

Long-distance Television

Roger Bunney

This column first appeared over thirty years ago, when the magazine was called Practical Television. It was initially written by Charles Rafarel, who carried out much research on long-distance television reception techniques in the early days. When Charles died in 1971 I was asked to take over and have written the column ever since. The aim has been to carry on in the way that Charles would have approved - describing experimentation and innovation and providing news.

There have been rapid advances in reception technology over the last twenty years. These include solid-state receivers, the varicap tuner and improved ways of resolving weak signals. At the same time it has become much easier to obtain suitable equipment. Thus receiver modification, the norm in the Sixties, is no longer necessary. The ATS-6 SITE experiment in 1975/6 gave us the first chance to sample satellite TV reception: reports on the success of several enthusiasts in receiving these weak signals were reported in this column. V.H.F. TV in the UK is now but a memory: Bands I and III are at present wastelands of PMR, baby alarms and other 'officially sanctioned' intruders despite being allocated as broadcast bands in Europe. Along with these developments, DXing has also changed. We have to exploit new TV signal reception possibilities as they arise.

Satellite TV is now an established and growing consumer market. Satellites offer a mass of TV and radio programmes, video feeds of various sorts and news links that can be received using simple equipment and aerials. You don't need massive aerials on tall masts, simply a clear view of the sky from the south east through to the south west. Many DX enthusiasts are now monitoring the various satellite bands and birds. This may not be true DX, being line-of-sight rather than over-the-horizon, but there is much of a DX nature to see and with the weaker signals DX techniques still apply.

From next month I intend to include satellite loggings, with a view to encouraging readers to investigate the various signals that can be received; also to provide information on the equipment required, with the emphasis on practical and inexpensive ways of satellite DXing. Our terrestrial DX-TV coverage will of course continue, and readers letters will as always be welcome. If you do write to tell us about satellite
receptions, please mention the equipment being used.
November was a very quiet month for conventional DX reception. There were a few Sporadic E signals, a couple of auroral events and one day of exceptional tropospheric reception - and that was about it! No reports have come in of reception as a result of the Leonids meteor shower. The collated $\mathrm{SpE} \log$ is as follows:

6/11/93 TVE (Spain) chs. E2. 3.4: RAI (Italy) chs. IA. B; TVA (Italy) ch. IA.
7/11/93 +PTT (Switzerland) E2, 3, 4: RAI IA.
8/11/93 TVE E2, 3, 4.
13/11/93 DR (Denmark) E3; TVE E2.
15/11/93 DRE3: TVE E2.
20/11/93 NRK (Norway) E3.
27/11/93 TVE E2; RAI IA; +PTT E2.
Iain Manzies logged auroral events on the nights of the 14th and 19th, with signal 'manifestations' in Band I.

There was an excellent tropospheric lift on the 8th, with signals from ARD (Germany), DR/TV2 (Denmark) and SVTI/2/TV4 stations (Sweden) in Band III and at u.h.f. More exotic signals were logged by Simon Hamer in Powys, including TVPl (Poland) ch. R8 and YLE (Finland) ch. E6. Two extremely good catches in an otherwise dull month.

My thanks to lain Menzies (Aberdeen), Simon Hamer (Powys), Roger Fussell (Torpoint), Brian Williams (Penarth) and Peter Schubert (Rainham) for sending in reports.

News Items

Ireland: A new Gaelic language TV channel, Telefis na Gaeilge, will come on air during 1994 with three hours of programmes a day to start with.
UK: The ITC is offering a local delivery licence, as the cable franchises are now called, for the west Kent area, including Tonbridge, Tunbridge Wells and Sevenoaks. Use of both cable and broadcast transmission is envisaged. For the latter a 40 MHz bandwidth in the 40 GHz band will be allocated though no equipment for this is currently available.
India: Doordashan is currently transmitting five channels via Insat 2B, but most viewers remain tuned to Star TV from Hong Kong via AsiaSat 1 . To encourage viewing the fivechannel Doordashan service will be duplicated via terrestrial transmitters in the main urban areas: low-power transmitters are to be installated in Calcutta, Madras, Bombay and Delhi using channels E5, 7, 23, 26 and 29.
Zambia: Independent radio and TV transmission licences are to be issued - bids were to be received by the end of 1993. Radio stations will use Band II, with f.m.

[^1]Belgium: Because of severe financial problems RTBF is curtailing its contributions to the ARTE channel.
Malta: The authorities have made strong complaints about the use of their allocated u.h.f. channels, 21 and 29, by ltalian stations. An unlicensed Maltese station, Super One Television, has been carrying out tests on ch. E43.
Poland: The satellite channel Polsat has been given a tenyear licence for terrestrial broadcasting throughout the country.

Transmitter Updates

Belgium: Liege ch. E39 e.r.p. increased to 315 kW , ch. E42 reduced to 500 kW .
France: The following stations are now in operation. Avignon TDF-3 ch. E33, TDF-6 ch. E36, both 55 kW e.r.p.; Saint Raphael TDF-5 ch. E36 80kW e.r.p.; Caen TDF-6 ch. E61, TDF-5 ch. E64, both 100 kW e.r.p. All with horizontal polarisation.
Belgium: ARTE-21 transmissions, Leglise ch. Ell 10 kW , Liege ch. E42 500 kW , Profondeville ch. E49 200 kW , Anderlues ch. E61 200kW. Sports-2I transmissions, Wavre ch. E28 500 kW , Leglise ch. E60 200 kW , Tournai ch. E63 20kW (vertical). AFN-TV transmissions, Everberg ch. E33 2kW, Casteau-Shape ch. E34 4.5kW (vertical). Canal Plus transmissions, Liege ch. E39 315 kW , Wavre ch. E50 500 kW . Anderlues ch. E 58200 kW . ARTE-21 programmes are scrambled from 1900 local time. Canal Plus transmissions are scrambled all the time.

Our thanks to the EBU and the BDXC for the above information.

Meteor Showers 1994

Many thanks to Neil Bone, Director of the Meteor Section, the British Astronomical Association, for providing the dates of the main meteor showers during 1994 and the related notes as follows:

Lyrids shower April 19-25th, peaking on the 22nd. May Aquarids May 1st-20th, peaking on the 5th. Cetids May 7th-June 10th, peaking May 14-25th. Delta Aquarids July 15th-August 20th. peaking August 1st. Perseids July 25th-August 20th, peaking August 11-12th. Giacobinids - little activity expected this year. Orionids October 16-27th, peaking on the 20-22nd. Taurids November 1st-30th, peaking on the 3rd-8th. Leonids November 15-20th, peaking on the 17-18th. Geminids December 7-15th, peaking on the 13th.

The Quadrantids shower occurred in early January. The most active showers are the Quadrantids, Perseids and Geminids. In recent years the Perseids have provided a double peak (August 11-12 and 12-13th), associated with the return of the parent comet. Activity is moderate with the May Aquarids and Orionids. Leonids are uncertain: outbursts every 33 years suggest that 1998/9 will produce a major shower, with the preceding years showing enhanced activity. There is activity at six-yearly intervals with the Giacobinids, 1998 being the next date. The other showers listed produce low but steady activity.

Satellite TV

Once a sought after station TV Shqiptar, Albania will be an every-day signal now that the Albanians have signed a one-year lease for transponder facilities aboard Eutelsat II F3 at $16^{\circ} \mathrm{E}$. Another new channel at $16^{\circ} \mathrm{E}$ is Quorum Satellite

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951

Network, which has been transmitting captions. Frequency is $11 \cdot 163 \mathrm{GHz}$ with horizontal polarisation. This business programme is uplinked from London.

There have been suggestions of overheating problems with Astra 1.4. leading to transponder allocation reshuffles and power reductions with some downlinks. There were stability problems with this satellite in the early days and it is possible that its estimated life will be shortened.

Singapore Television International has commenced operation in the Far East as a rival to Star TV.

Peace at last over the dispute about the satellite slot at $78.5^{\circ} \mathrm{E}$. The Thaicom-1 satellite is to occupy this position while Asiasat-2 will be at $100.5^{\circ} \mathrm{E}$. The back-up Thaicom-2 satellite will also be at $78.5^{\circ} \mathrm{E}$.

Eutelsat Il F5 should now be in orbit at 36° E with 16 Ku band transponders while the elderly Eutelsat 1 Fl is to be moved to either 36° or $56^{\circ} \mathrm{E}$ to give greater coverage of the Middle East and Central Russia.

An interesting fault condition has occurred on Intelsat 601 at $27.5^{\circ} \mathrm{W}$. The C band Canal France International service for Africa is also present at 11.155 GHz , the old CNNI transponder, presumably because of a defect in the crossstrapping circuitry. The signal is not strong but with care can be clearly seen.

TV wars are breaking out across France: in conjunction with Canal Plus, Tele Monte Carlo is offering a programme package to compete with the offerings of the RTL (CLT) group. The latter has wheeled out RTL-TV. RTL+ and RTL2/3/5 as complementary channels to compete with the TMC/Canal Plus package. Talks are understood to be in progress between the competing parties.

Finally NKM, a German company, has just introduced a

CD technology is changing fast. New models get introduced with alarming regularity, each with the latest enhancement. So it's not surprising to find models and faults you've not encountered before.

The problem is you can spend costly, unchargeable time searching for elusive faults, which is where Euras System can help.

The Euras System is Europe's largest repair tips database for Video, Television and CD.

With over 120,000 repair tips for 14,000 models from 270 manufacturers you are sure to find the solution quickly. And because it is frequently updated, it always covers the latest models.

For a FREE demonstration diskette to run on your PC or details of Euras System in manual form, clip the coupon or phone 0272860900.

EURAS INTERNATIONAL LTD EURAS HOUSE, 51 BRISTOL ROAD, KEYNSHAM, BRISTOL, BS18 2BA

Solutions at your fingertips

PLEASE SEND ME A FREE DEMONSTRATION DISKETTE \square PLEASE SEND ME DETAILS OF EURAS SYSTEM IN MANUAL FORM \square NAME

TITLE
COMPANY
ADORESS

PAYS.UT.V.

SUPPLIERS OF WORKING USED TV'S, VIDEOS, MICROWAVES, FRIDGE FREEZERS, COOKERS + WASHING MACHINES

IDN: NOTTINGHAM 0602-500002

WE DELIVER ALL AREAS! $\stackrel{\text { PHONE }}{ } 5$ VORDETAILS

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP TEL: 081-877 3492/877 3518 FAX: 081-877 3518

 Tix

 ใหzz\%B条
 (2)

風

special satellite receiver with a static threshold below 2.5 dB . The SRX200E features digital signal processing and is intended as a monitoring or test receiver. Price is DM5,500, in Germany - carriage extra. For further information write to NKM-Eleektronik GmbH. PO box 1705. D-79507 Loerrach, Germany.

TV-DXing for Beginners

Last month we described suitable aerials for Band I reception. The choice of aerials for Band III and u.h.f. reception is perhaps more difficult. For Band III, various imported aerials such as those in the Triax range are available while Jaybeam still produce Band III aerials in the UK, mainly for the Irish market. An eight- or eleven-element aerial is best for DXing, to provide adequate forward gain and directivity, minimising pick-up from Band III mobile radio services. The potential for Band III DX reception is high, particularly if you live in the east or north east where signals from Scandinavia. Germany, France and the Benelux countries are frequent when tropospheric conditions are suitable. Those to the west often receive signals from Spain, Portugal. France and Ireland.
U.H.F. aerial systems are more readily available. For maximum forward gain and directivity, to discriminate against local and often strong UK transmissions, a Yagi aerial with half-wave elements or multiple (X formation) directors is a good choice. Well-known systems include the Fuba XC391, the Triax Unix 92, the Antiference XG range and the Jaybeam full-wave system. An alternative approach is to use a stacked bow-tie array. This consists of a reflector panel with perhaps four full-wave dipoles in front. Examples include the Triax Grid and Wolsey Colour King range. The gain over the bandwidth is flatter with this type of aerial.

There are locations where the chance of tropospheric DX reception in Band III and at u.h.f. is not good - where mountains, hills or heavily forested slopes obstruct likely signal paths for example. In such a situation it's best to devote whatever funds are available to an improved Band I installation the alternative is satellite reception!

Band I reception is prone to interference - from thermostats, ignition, electric motors, CB harmonics, overloading etc. Because of this it's best to provide filtering before any amplification is added. Amplifiers should be installed indoors, adjacent to the receiver. High-gain Band III and

Fig. 1: A simple, easy-to-build v.h.f. amplifier. Typical voltage gain figures 16 dB at $50 \mathrm{MHz}, 13 \mathrm{~dB}$ at 100 MHz , 11 dB at 200 MHx . The coils (L) consist of ten $1 / 8$ th inch diameter turns, close spaced, of 24 s.w.g. enamelled wire. The supply requirement is $9-12 \mathrm{~V}$ at 5 mA .
u.h.f. aerial systems usually have head amplifiers fitted, to overcome cable losses and improve the signal/noise performance. Note that a low noise figure is more important than maximum gain, i.e. an amplifier that provides a gain of 12 dB with a 1.5 dB noise figure will give better results than an amplifier with a gain of 40 dB but a noise contribution of 5 dB . Many Band III/u.h.f. amplifiers are available from specialist dealers. Manufacturers include Fringe, Triax, Labgear, Teldis and Antiference. Head amplifiers are normally powered via the coaxial downlead.

A few Band I amplifiers are available commercially. At these frequencies constructional techniques are less demanding than in Band III and at u.h.f. Fig. I shows a simple preamplifier circuit that will work throughout Bands I/III. Its cost to build is minimal. Use normal v.h.f. construction techniques, i.e. keep component leads short. There are no tuned circuits and provided care is taken with assembly the amplifier will work at up to 450 MHz .

An aerial used for the reception of weak signals should be mounted clear of obstructions and in the open. This may give rise to complaints from neighbours. Explain to them what the purpose is and that the aerials won't cause interference or attract lightning. Most will be understanding. Council planning departments can be less tolerant.

An aerial rotator system will generally be required. Radio dealers and specialist firms can supply them. Finally remember that each aerial installation will be unique, to cater for the needs and possibilities at a particular location. We can only generalise here. If you have a specific problem. write in with a stamped-addressed envelope and we'll try to help.

TELEVISION INDEX \& DIRECTORY

 and REPRINTS SERVICE

A computerised index to TELEVISION magazine covering volumes 38 to $42(1988-1992)$ is now available. It contains over 3500 references to TV/VCR fault reports and articles, with synopses. It includes a TV/VCR spares guide, an advertisers list and a directory of trade \& professional organisations. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512K RAM and a hard disc.

Price: $\mathfrak{£ 3 0}$ (specify $\mathbf{5 . 2 5}$ " or $\mathbf{3 . 5}{ }^{\prime \prime}$ format)

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of
TELEVISION are available for volumes 38 to 42 at $£ 3.50$ each.
Please allow up to 28 days for delivery. All the above prices include UK postage and VAT where applicable.
Cheques should be made payable to Video Interface Products.
Video Interface Products Ltd., 1 Vineries Close, Cheltenham GL53 0NU, UK.

Notes on the Bush 2521T

Chris Watton

One of these teletext sets gave us some trouble recently. It worked fine in the TV mode but when it was put into the text mode there was no display. It had entered the text mode, because the programme buttons no longer changed the channels. Putting it in the mixed mode produced a picture with black text on it - no colours at all. The cause of the trouble was corrupt memory in the control section. It was giving the order to produce teletext with no contrast. You get a similar problem with some Hitachi sets that lose memory, the MDA2062 EEPROM becoming stupified. What you have to do is to reprogram the set. This involves using the buttons on the remote control handset to toggle various bits on or off. The sequence is as listed below. Figs. 1-7 show the relevant bits: the numbers shown against the segments are the handset button numbers that toggle them on or off.

Reprogramming

(1) You first have to fit a temporary press-button switch between pins 15 and 23 of the SAA 1250 chip in the handset (connect it between pins 3 and 12 if an OSH2006P chip is used). The small switch from the front of an old VCR is ideal. Switch the set on and select channel 1 . The set must be tuned to a station, and it must be in the TV mode.
(2) Press the 'service button' - the extra one added to the handset - and hold it until the display shows CH. Press again to get OP, then select option 1 by pressing the volume up button once. You should now have the display shown in Fig. 1. If any of the segments are incorrect, use buttons 1-8 on the handset to correct them. For example pressing button 1 will toggle the top, right-hand segment on or off.
(3) When the display is correct, press the memory button. Two brackets will appear, as shown in Fig. 2. Now press

Fig. 1 (left): Option one. Fig. 2 (centre): Brackets (memory). Fig. 3 (right): Option two.
volume up to get to step two. The display should be as shown in Fig. 3. Use the handset buttons to make any corrections required. When the display is correct, press the memory button. The brackets will reappear.
(4) Press volume up again to get to option three, see Fig. 4. Correct any errors and press memory. The brackets will be back.
(5) Press volume up for option four. If the display is not as shown in Fig. 5 correct it with the buttons. Press the memory button then exit the service mode by pressing standby on the handset. This completes the basic programming.
(6) With teletext sets there are two more settings to be carried out before you leave the service mode. After memorising option 4 , press the service button again. The display will be HP as shown in Fig. 6 and the set will go into the

Fig. 4 (left): Option three. Fig. 5 (centre): Option four. Fig. 6 (right): Text position.
mixed (text and picture) mode. Using the volume buttons, centralise the text field at the top of the screen. When satisfactory, press the memory button.
(7) The last operation is text contrast. Press the service button: the display will be CO as shown in Fig. 7. Use the volume buttons to set the text contrast. Then press memory to get the brackets. Finally exit the service mode by pressing the handset's standby button. You may have to carry out the text contrast adjustment a couple of times as it's difficult to judge this with a mixed display.

When the set is switched on again all should be well. Test all functions with the remote control unit, including teletext. If any don't work properly, recheck the settings in the service mode. If some information hasn't been stored the MDA2062 memory chip may be faulty, but it's worth going through the reprogramming procedure a couple of times as the information doesn't always get written in.

Fig. 7: Text contrast.

If you have an old ITT or Granada handset it may be worth fitting a switch to it to save having to take the customer's handset to pieces. Most remote control units that have an SAA1250 chip seem to be suitable.

General Service Notes

The h.t. should be set (R811) for 115 V at TP 13 (junction of C813/L803).

A chopper power supply with a TDA4601B control chip (IC800) is used. The usual cause of power supply failure where the BU508A chopper transistor Q800 has gone shortcircuit is that R 809 ($270 \mathrm{k} \Omega$) has gone high in value or opencircuit. When Q800 goes short-circuit the $2.7 \Omega, 4 \mathrm{~W}$ surge limiter resistor R801 will almost certainly have gone opencircuit. As a matter of course we also replace the following electrolytic capacitors: $\mathrm{C} 809100 \mu \mathrm{~F}, 25 \mathrm{~V}: \mathrm{C} 810100 \mu \mathrm{~F}$, uprating it from 16 V to 25 V : $\mathrm{C} 819100 \mu \mathrm{~F}, 16 \mathrm{~V}$; and C 820 $1 \mu \mathrm{~F}, 100 \mathrm{~V}$.

The h.t. preset R811 ($4.7 \mathrm{k} \Omega$) can cause width fluctuations. R605 $(5.6 \mathrm{k} \Omega, 4 \mathrm{~W})$ in the h.t. feed to the line driver stage can fail, giving the sound but no raster symptom. Dryjoints around the chopper and line output transformers are common.

The chassis used in this model is sometimes referred to
as the Indiana 100. It's used in a number of other sets including the Bush 2514, 2514T, 2515, 2515T, 2520, 2520T and 2521 (models with suffix T have teletext); the Alba CTV704, CTV744 and CTV752; the NEI 1451R, 1451TX, 1551TX, 2131R and 2131TX; and the Perdio P1408, P2004, P2005, P2101 and P2102.

aciKto

Steve (centre) with some of his recent weekend VCR servicing course students.

It's easy for those of us who spend many bench hours coping with Joe Public's assorted sick VCRs to mistake practical experience for basic knowledge - until we are confronted with a baffling fault symptom that calls for theoretical reasoning before we start on the practical repair.

That may sound a bit pompous, which Steve Beeching is not. Five of us discovered this in July when we attended a weekend VCR training course arranged and conducted by Steve near his home at Barnby in the Willows, Notts. Barnby boasts a phone box, a friendly inn called The Willow Tree and a village hall, once a schoolroom, where the course sessions were held. The accompanying photograph shows Andrew, Roy, Phil and Alan with Steve in the middle - now you know what he looks like. Me? - just behind the camera.

Packing video information on to a slow-moving tape is one thing, packing all that theory into a slow-moving brain like mine without head saturation is something else. But with Steve's expert and entertaining tuition we all managed to improve our grey cell tracking. The concentrated coverage included tape track patterns, f.m. and luminance
signal recording, colour recording/playback, servos, systems control, tape transport and hi-fi sound. This rich diet was washed down with welcome cups of coffee provided by Steve's wife Elaine, while lunch breaks were sandwiches at The Willow Tree.

Saturday evening was 'half term', when brain bashing was relieved by an excellent fine-weather barbecue provided by Steve and Elaine at Grove Farm. This included an opportunity to inspect the workshop where camcorders and VCRs surrender their faults.

We all have gaps in our knowledge - mine are chasms and few would find that they had nothing to learn on Steve's courses. A customer complains about bent, wobbly pictures when he views hired tapes. Yes, he's not using his TV set's AV channel: but are you sure why a shorter line sync time-constant is necessary for VCR use, and why there is usually no problem with a machine's own recordings? These and many other mysteries were solved during the course. I now have a much lower IQ (Ignorance Quota).

A few hours spent with Steve is more profitable than weeks of inefficient bench work. At $£ 50$ the weekend was an excellent investment. I recommend it!
C.A.

Solution to Test Case 374

- see page 253 -

Nobody could accuse the Ferguson TX9 chassis of being complicated, certainly not in its colour output amplifier and tube drive department. The RGB outputs from the colour decoder chip are d.c.-coupled to simple class A output stages and then go via $2.7 \mathrm{k} \Omega$ flashover protection resistors to the tube's cathodes. Dylon, by now thoroughly demoralised, was left wondering where he'd gone wrong in his diagnosis with this most basic of colour-tube drive circuits.

Perusal of the circuit diagram and the manual's parts list which, unusually and very helpfully, gives the functions of all the components finally provided the answer.

There are three video signal clamps within the TDA3560 chip, one each for the R, G and B channels. The clamp voltages are stored by separate $0 \cdot 1 \mu \mathrm{~F}$ capacitors, C 68 , C65 and C64 for R, G and B respectively. C68 was faulty of course, a replacement providing a complete cure once the gain and background presets in all three channels had been set up.

Even then the long-suffering Dylan was not quite through. Now that the drives were present in full measure there was a distinct lack of contrast despite the tube rejuvenation. But we won't turn this into Test Case 374b. The cause of this symptom was R263 ($820 \mathrm{k} \Omega$) in the beamcurrent limiter circuit - it had gone high in resistance value. By the time that Dylan had finished with the set the lovely Anne Diamond had long since departed from the screen. The early evening newsreader looked o.k. though.

Satellite Scene

Amstrad SRX200 Tuning Modifications

The following modification, which is made to the remote control unit and not the receiver itself, enables the Amstrad SRX200 to tune through all 48 channels. When the remote control unit is opened you'll see a D6121G502 chip as shown in Fig. 1(a). Solder leads to pins 4 and 14, and another one to the adjacent resistor R3, as shown. A suggested colour coding is also shown. Next drill two small holes in the base of the remote control unit and fit two small touch switches. I used two switches from an old Sony C5 VCR. Connect them to the

Fig. 1: Modification to the Amstrad SRX200's remote control unit to enable the receiver to tune through all 48 channels.
previously added leads as shown in Fig. l(b).
Because of its original design, channels 17-48 are of opposite polarity to that selected automatically by the receiver. This is why the additional H/V button has to be pressed. You will find that channels $32(1,685 \mathrm{MHz})$ and $33(965 \mathrm{MHz})$ cannot be obtained: the receiver will pull these in however if the H / V button is not pressed. When this modification is carried out the channel frequency (less 10 GHz) is displayed by the receiver.

It's also easy to modify these receivers to enable the 'out-of-band' channels 62 (RTL5) and 61 (Filmnet) to be selected. This is done by adding a switch and $47 \mathrm{k} \Omega$ preset as shown in Fig. 2. When the switch contact is linked to R120 normal channel selection is obtained. With the switch in the other

Fig. 2: Modification to enable the Amstrad SRX200 to select channels 61 and 62.
position, adjust the $47 \mathrm{k} \Omega$ preset for an RTL5 picture (make sure that the H/V lamp is lit). A press on the H / V switch should then bring in Filmnet - scrambled of course, but you can hear the sound! D.F.

Fault Reports

Philips STU802: One of these receivers came to us because it was dead. On inspection we found that the power supply's 5 V output was low at 3 V . As all the other outputs were o.k. we came to the conclusion that something was loading the 5 V line, but a 5 V reading could be obtained only with no load at all connected. Although there was no ripple on the line we
replaced the $2,200 \mu \mathrm{~F}$ smoothing capacitor C 15 . This provided a complete cure.

Another STU802 was sent to us with a report that there was "no picture and the power supply whined". Checks on the outputs at the secondary side of the power supply suggested that it was working all right, but the whining did seem to come from this area where quite a bit of work had been carried out. I thought it best to eliminate the whining first. After replacing D8 and D9 (both type 1 N 4148) the power supply worked without making any noise at all and, lo and behold, we had sound and a picture as well. These two diodes provide supplies for the power supply chip. They read o.k. out of circuit, but presumably one or other of them was breaking down under load and causing misoperation of the chip. S.C.

Amstrad SRD510: This dead IRD had a blown power supply. A fair crop of parts was required to put it right IC600 (3284), C612 (220 1 F), C613 (lnF), C611 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$), TR600 (MJF18004), R610 (2.2), R609 (4.7), R604 (2.2Ω), R602 ($47 \mathrm{k} \Omega$) and R601 (10Ω). Quite a bang, but the fuse hadn't blown. The joints around the chopper transformer didn't look too great: perhaps this was the reason for the mass destruction.
C.W.

Pace SS9200: The customer's complaint was of poor video, with pulling and cogging. Scope checks showed that the video waveform was o.k. from the tuner to the emitter of Q29, but there was virtually no waveform at the modulator's video input. The only component between these two points is the $10 \mu \mathrm{~F}$ electrolytic C163. Close examination showed that during manufacture it had been inserted the wrong way round. A replacement put matters right - the capacitor had taken eighteen months to break down.
G.R.

Pace PRD800: This receiver wouldn't tune in any stations and had Sky One on every channel with vertical polarisation. As resetting the microcontroller chip didn't have any effect I monitored the voltage at pin 15 of the tuner (Mod 1) and found that it didn't vary when I scanned through the tuning. This tuning voltage comes from pin 16 of chip U9. A new chip cured the fault.
G.R.

Amstrad SRD400: The customer complained that he couldn't store any of the new channels on the lower numbers. The channels could be tuned in, but not stored. As a first step I checked the supply at pin 8 of the SDA2516 channel memory chip IC104. There should be 5 V here but the reading was zero. I then realised that the chip had been inserted the wrong way round during manufacture. Putting it in the right way round cured the fault.
G.R.

Pace SS9200: The customer complained that there were "no pictures". A check on the outputs from the power supply showed that they were all about 30 per cent low. This suggested that there was a fault on the primary side of the supply, so I started to check the various components here. All but one read correctly. The reading I obtained with R13 was 0.8Ω, but as my meter is not too reliable at such a low value I didn't think much of it. After a lot of other component checks I rang Pace Technical who advised me to treble check R13. As I obtained a reading of 0.5Ω with a new component 1 replaced the resistor in the receiver. It then worked all right, with all the voltages correct.
G.R

Letters

CUSTOMERS

The owner of an Amstrad TVR3 came into the workshop requesting a second opinion after being quoted about $£ 85$ plus VAT to repair his set, the problem being that when a tape was inserted the machine would immediately go into the play mode, no other function being possible. There's a switch marked 'repeat' at the back and it was in the 'on' position. Simply flicking it to 'normal' cured the problem the switch provides continuous playback of tapes such as advertisements etc. if required. The customer was delighted that his equipment wasn't faulty, but argued about paying a token charge of $£ 5$.

When he'd left the workshop I thought it a pity that Carlton Television hadn't been present. Mind you it wouldn't have been newsworthy to film Joe Public getting the skilled, cheap, excellent service this trade provides. For anyone wondering why $£ 5$ was charged for flicking a switch, the flick took three seconds but it then took twenty minutes to explain to the owner what had happened - he just couldn't accept the reason for the switch - followed by five minutes spent haggling over the fiver! Like you. I'm in business to make an honest living. Many more like that customer and I'll call it a day.

When he was well clear I phoned the dealer who'd given him the quote. Apparently it was given over the phone because the 'customer' had insisted that any competent engineer should know what was wrong with the equipment without looking at it: after a long conversation that was getting nowhere he'd been given the figure to get him off the phone.
John Edwards.
Welling, Kent.
A local lady came into the shop recently with a modern Hitachi VCR for repair. We gave it a service then phoned her to say that it was ready. While we had it we discovered that the lady worked for a high street multiple where all kinds of electrical goods and cameras, along with computers and everything else, are sold (for nothing) and serviced. When our customer returned we quizzed her as to why she hadn't taken the video to her own place of work, where she'd actually bought it. Her reply was instant: "Good God man, do you think I could afford the prices they charge?"
Chris Watton.
Boston. Lincs.

A FAX REPAIR

After a letter of mine complaining about the high cost of some companies' service manuals was published some months back I was contacted by several engineers with offers of help. They also agreed with my views. By that time I'd already obtained a second-hand manual for the Amsirad FX9600T fax machine. For the benefit of other engineers who may find one of these machines on the bench, here are the details of what is apparently one of its most common faults.

The power supply board seems to work for a couple of years or so then fails to start up again when mains power has been switched off for a while. It can be started by placing a hairdryer or fan heater near the back of the machine, where the PSU resides. Sometimes the power
supply will hunt, lighting various LEDs and producing messages on the display, before springing to life. Once in operation it will continue to work until the next power cut. A replacement power supply PCB, which was available from Amstrad stockists for around $£ 30$ until a short while ago, would have been the easy answer. But it has now been declared obsolete. It would have been a shame to write off such a modern machine with so many useful functions because of lack of spares, so 1 decided to try to repair it.

A look at the chopper power supply circuit revealed a number of components that could cause failure to start up. The cause of the fault was eventually traced to $\mathrm{C} 7(220 \mu \mathrm{~F})$, which is very close to the main transformer. As the transformer runs quite warm, it had obviously dried out the electrolytic whose value had fallen by over fifty per cent. Replacing C11 ($10 \mu \mathrm{~F}$) and any other small electrolytics while they are accessible is a good idea. The larger smoothing electrolytics don't seem to be affected by the heat generated nearby.

All FX9600) range machines (T/AT/TP/ATP) seem to use this power supply.
Mike Goodall.
Littlepart. Cambridgeshire.

SATELLITE RX MODIFICATION

The circuit shown in Fig. 1 is a modified version of the one devised by David Finan (November issue. page 43) for adding extra sound channels with Amstrad SRX100/200 satellite receivers. With the original version the receiver powered up in the new mode each time so that the user had

Fig. 1: Amstrad SRX100:200 modification
to operate the TV/SAT button to obtain the normal sound channels. The reason for this is that the TV/SAT LED (used to control the added board) always powers up with the LED alight. The revised circuit overcomes this disadvantage by some rearrangement of the gates - the control signal is diverted to a nand gate that controls the receiver's internal oscillator and is inverted to switch the added on-board oscillator.
Allan Mitchell.
Enfield. Middx.

ASBESTOSIS

I am helping an elderly lady who has contracted an asbestos disease and believes that her work at GEC in

Coventry in the late Fifties may have exposed her to asbestos. One of her jobs was TV receiver assembly. I am keen therefore to hear from any readers who are familiar with the internal construction of TV sets manufactured by GEC in Coventry between 1956 and 1960 and could possibly confirm whether or not the sets ever contained asbestos-based thermal or electrical insulating material and, if so, where such material was located. Both asbestosbased composites and woven or fibrous material are of interest. Another point of interest is whether any other exGEC, Coventry employees have been diagnosed as suffering from asbestos-related diseases. The cost of photostats of any relevant manuals, parts lists etc. would be refunded. I can be reached on 0742586899 (answerphone) or the address below.
Seb Schmoller, 312 Albert Road,
Sheffield S8 9RD.

LES LAWRY-JOHNS

It was with incredulity that I read the obituary to Les Lawry-Johns in the December issue. Although I'd never seen, spoken or corresponded with him his death feels like that of a close acqaintance. His name first came to my attention when, as a young boy, I came across his book Radio Repair: Questions and Answers in my local Public Library. It was the first and, in my opinion, only book I've come across that provides a truly practical, down-to-earth treatment of the subject: its subtle humour brings the subject to life. I sensed in the author a kindred spirit, and saved over two months of my pocket money to buy myself a copy.

My interest in such matters was stirred and, nearly ten years later, as a medical student with a keen interest in audio-visual servicing I still use the book as a source of inspiration when my repair efforts come to a dead end. Although by the time I started to read Television Les no longer contributed regularly, imagine my delight when a friend lent me some back issues and I was able to read in his column about the day-to-day antics of this legendary figure of my childhood. His humorous, amiable character made a change from the 'we don't fix those any more' attitude that so often prevails today. He will be sorely missed, but his name and larger-than-life personality will undoubtedly live on.
Edmond Aviglia.
Birmingham.
Editorial note: We have received a number of letters from readers who found Les's articles a source of enlightenment, amusement and inspiration. He cheered us all up no end.

HAMEG REPAIRS

We feel that we must reply to the letter from Roger Burchett in your November issue. It gave a simplified account of what happened and was in places factually inaccurate. We also feel that it was unfairly critical of our practices.

The repair to which Mr. Burchett refers was sent to us back in June 1987. We advised him that an investigation
charge of $£ 30$ would be applied if he decided, following our fault investigation, not to have his oscilloscope repaired - such a charge simply reflects work already carried out. Our estimate consisted of $£ 30$ for parts, $£ 30$ for labour, $£ 30$ for a full calibration to manufacturer’s specification plus $£ 11$ for return carriage. Mr. Burchett declined to go ahead and was charged only the $£ 30$ investigation charge, Hamig having waived the carriage and storage charges.

It is our policy to carry out complete recalibration after every repair. This ensures that the many thousands of satisfied Hameg scope users can depend on their equipment always meeting its full specification, our aim being to provide our customers with a quality service. Mr. Burchett's repair would not have included complete recalibration.

We hope that this letter will make our viewpoint clear to your readers.
Hameg Instruments Ltd.,
Luton, Beds.

CITY AND GUILDS REPLY

A recent letter from Darren Coyle of Derry, Northern Ireland made some critical comments about the City and Guilds Certificate in Electronics Servicing (224). According to Mr. Coyle he was told during an interview for a job that his City and Guilds qualifications were not recognised and were considered to be 'Micky Mouse' qualifications. At the same time he praised the college course he took as being one of the best he has come across - a curious contradiction. Mr. Coyle also suggested that City and Guilds needs to market its qualifications to employers more.

The City and Guilds Electronics Servicing certificate, which is available at three levels, was developed specifically for the electronics servicing industry and is widely recognised as being the most relevant qualification for those who want to make a career out of servicing radio, television and electronic equipment. Trainees from companies such as Mastercare and Homeserve, which provide servicing for major high street stores, are sent to colleges to gain this qualification. Having spoken to the personnel departments at several electronics firms, including one in Derry, Northern Ireland, I feel that the job Darren Coyle may have applied for required higher level qualifications than City and Guilds at Level 3 - maybe an HND or a Degree in Electronics. In this case his City and Guilds qualification would not have been appropriate. But to say that the qualifications are considered to be 'Micky Mouse' is an extremely sweeping statement: our research indicates exactly the opposite.

With respect to marketing, while we do market our qualifications to employers - market research indicates that there is almost 100 per cent awareness of City and Guilds amongst employers - inevitably we cannot reach everyone and some people may be misinformed about the range and quality of the qualifications we offer.
Anne Nicholls.
Marketing and Public Relations Department,
City and Guilds.

[^2]

STEWART of READING
HO WYKEHAM ROAD, READING, BERKS RG6 IPL
Telephone: 0734268041 Fax: ((7344351696
Callers Weicome 9 am- 5.30 pm Mon-Fri (until 8pm Thurs)

TUBES

NEW 14" narrow neck
portable tube $£ 49$

NEW 14" wide neck portable tube \qquad from £29
NEW 17" narrow neck portable tube FST $£ 89$

NEW 21" narrow neck tube FST £79

NEW 25" tube FST..............£189
NEW 28" tube FST.... from £189

We offer a wide range of guaranteed re-gunned tubes, also manufacturers ‘ B ' grade. Also in stock a large quantity of ex-equipment tubes (salvaged from new and used sets).

Ring IRENE or JANE for friendly, helpful advice.

Carriage and VAT extra

EXPRESS TV The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 0889-577600 Fax: 0889-575600

HAMEG are Europe s lop seting dual trace oscilloscopes select from four superb models. All, with the exception of the HM 1005, incorporate a uselul COMPONENT TESTER. Size - all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times$ 380 mm . Clear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: 110.220 .240 V AC $50 / 60 \mathrm{H}$
All suppled winh PROBES, a COMPREEENSNE MANUAL and

ATION

 ${ }^{2}$ ChannelsBandwidth: DC - 20MHz Sens: Ch.1. Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ *Triggering: DC-40MHz

* Active TV - Varive TV - Sync - Trigger LED indicato Calibrator: 1 KHz Square wave Component tester Plus many teatures
Price [362.00 + E63.35 V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS 2 Channels 2 Channels
Bandwidth: $\mathrm{DC}-60 \mathrm{MHz}$ Sens: Ch.1. Ch. $2.1 \mathrm{mV} / \mathrm{cm}$
Timebase: $2.5 \mathrm{~s} \cdot 5 \mathrm{~ns} / \mathrm{cm}$ Timebase : $2.5 \mathrm{~s} \cdot 5 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC $\cdot 80 \mathrm{MHz}$ Triggering: DC - 80 MHz
Active TV Sync.Separato After delay trigger Sweep delay
Delay line
Trigger LED indicato
Trigger LED indicato
Calibrator: $1 \mathrm{KHz} \& 1$
Component lester
Price ع653.00 + E114.28 V.A.T. FREE Specialist Carrier Delivery
HM1005 $100 \mathrm{MHz} \mathrm{UNIVERSAL} \mathrm{3} \mathrm{CHANNELS-UPTO} 6$ TRACES SPECIFICATION
Bandwidth: DC $\cdot 100 \mathrm{MHz}$ Sens: Ch.1. Ch.2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ - Triggering DC - 130 MHz
- After delay trigger - After delay trigger Trigger LE
Trigger LED indicator Active TV - Sync-Separator - Calibrator: 1 KHz \& 1 MHz Sq. Wave Price $8847.00+\varepsilon 148.23$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Same as 203-7 Bandwidth: DC - 20 MHz Sens: Ch. 1 . Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Triggering DC -40 MHz Active TV - Sync-Samplin Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory $2 \times 2048 \times 8$ Bit Dot joiner

- Printer/plotter output

Price ع653.00 + E114.28 V.A.T. FREE Specialist Carrier Delivery BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

In addition to a switchable sound carrier tacility which allows with ems, the Orion provides highly flexible TGB outputs, ensuring compatibility with most video monitors.
More than 50 pattern combinations can be selected. including those tor testing static and dynamic divergence. video amplifier linearity, colour purity, general colour perlormance, tocus etc.
A separate video inpul 10 modulate camera signals: tully variable RF and video A separate video input to modulate camera signals; tully variable RF and video output levels facilitatsound modulation inpul via Din connector for trequency response tesling of TV sound systems: adjustable wide frequency coverage of VHF and UHF TV bands.
Indispensible in the manutacture. test. and servicing ol tetevisions. and computer and video Indispensib
monitors.
Features
Colour bars, purity. greyscale, crosshatch
dots. focus, etc.
VHF/UHF
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers.
Internal/External Sound.
External Video Output.
Trigger Output.
PAL B.D.G.H.I.K
Separate R, G. B and sync
Separate R, G. Ba
RGB a TTL \& VV.
RGB a TTL \& IV.
Green $\quad 0.3 \mathrm{~V}$ Syncs
Composite Video Output.

- Variable RF/Video Output

Switchable Video Polarity
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
Size: $98 \times 219 \times 240 \mathrm{~mm}$

Price $5229.00+$ E40.08V.A.T. NEW! DEGAUSSING COIL

A very effective degaussing coil, ideal for degaussing TV lubes, computer monitors, oscilloscopes etc. Mains Power: $220 / 24050 / 60 \mathrm{~Hz}$. Size: $355 \times 355 \times 24 \mathrm{~mm}$.

Price ع46.00 + ع8.05V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

all Chis checked idenically. incluaing all in-line and one gun types. Tests all under actual operating conditions (model 490) Exclusive multiplex technique (model 490) : Measure true dynamic beam current that aclually passes through G1 aperture to screen * Measures all shorts and leaks - preserving more CRT's *Tests focus electrodes lead continuity finding faults that other testers miss "Uses most minimum danger to CRT . Rejuvenated CRT's guaranteed as new for two years up Chart updated and perpetual set up chart updated and new adaptors developed* Tests and rejuvenates VDU's 40 CRT base adaptors available " Increase 40 CRT base adaptors available " Increase

Prices
 Without adaptors.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of
satelilite TV systems and aerial alignment of VFF/UFF television and radio systems. Signal levels can be accurately measured on the TC402-D. TC90 AND TCBO, allowing the evaluation of

TC402-D VHF \& UHF

features

Three bands
Low VHF: $45-170 \mathrm{MHz}$
$\begin{array}{ll}\text { UHF } \\ \text { UHF: } & 170-450 \mathrm{MHz} \\ 450-862 \mathrm{MHz}\end{array}$
Digital display for direct frequency readout.
Buill-in monitor loudspeaker AM/FM.
Signal measurement from $2 G \mu V$ to $3 V$.
Powered by eight 1.5 V AA batteries.
Fully portable with sturdy catrying case.
Price £289.00 + 550.57 V.A.T.
TC90 VHF-UHF-SAT.
FEATURES
Five bands:
Low VHF $: 45-110 \mathrm{MHz}$
$\begin{array}{ll}\text { High VHF }: 110.300 \mathrm{MHz} \\ \text { Hyper VHF } & 300-470 \mathrm{MHz}\end{array}$
VHF $: 470-862 \mathrm{MHz}$
Satellite: $950-1750 \mathrm{MHz}$.
Digital display for direct trequency readout. Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V - Signal measurement satellite $\cdot 70 \mathrm{dBm}$ to -10 dBm .
Audible indication of satellite signai leve (not satellite).
Powered by rec hargable battery
(complete with charger $220 / 240 \mathrm{~V}$ AC) Fully portable with sturdy carry case.

NEW! TCBO SATELLITE

TC-BO IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique leatures: video composite output; audio output with built in loudspeaker; ramp and whicignal oulputs oscilloscope to be used as a spectrum analyzer.

- 4 digit LCO treq. display * Freg. range 950 to 1750 MHz
- Sweep mode sweeps entire freq. band for rapid satellite location -
audible tone proportiona to signal strength - Measurement Irom 40 to 100 dBuV
* Audio demodulation with
internal loudspeaker
- Video demodulation
* Rear SCART connector
for A/V connection
* Oscilloscope/spectru
analyzer output
* LNC PSU 14 V or 18 V
* LNC current measurement
* internal rechargeable

Price 8490.00
E85.75V.A.T.
U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with order, payable B. K. Electronics. Otricial Orders welcome rom Govt. Depts.,
colleges. P.L.C.s etc. Large (AS) S.A.E. for technical leaflets of complete range. Credit card orders are accepted by 'phone, fax or post. Oelivery normally within seven days.

${ }^{2}$ cecess

K Kinnics
 ELECTRAロNIC
 QUALITY

VIDEO

IRWIN

SERVICE
GIVGMMEONTCS

Trade Enquiries To:-
Unit 200, Albyn Complex, Burton Road, Sheffield S3 8BX Phone: (0742) 739622/759909. Fax: (0742) 759909

COLOUR TELEVISION TUBES

SPECIAL OFFER

ASI-EAL ASI-JAR A5I-JRU ASI-JVJ A5I-JPE ASI-EAM A5I-EAK A5I-EBD OUTGTANDING VALUE AT £52.50

RUS CARRIAGE \& VAT
SUPER QUALITY AND PERFORMANCE
12 months guarantee

OVER 150 VIDEJ HEAD TYPES MANUFACTURED BY VISTA TO CJVER MORE THAN 2000 VCR'S FIFST CLASS QUALITY

LaRGE STOCK DF TV AND VCR SERVICE OMPONENTS AND ACCESSORIES AVAILABLE FROM OUR TRADE COUNTER

FOR CUSTOMER CARE AND SERVICE CALL TU: COMPONENTS: 0429838057

FAK: 0429837101

ista. Electranics Lto
Unit B, Wingate Crange-Indastriol Istate, Wingate, Co.Durham, TS2B SAH

2 MILLION PEOPLE USE M.C.E.S. PRODUGTS DAILY.

REMANUFACTURED:-

T.V. TUNERS, RF MODULATORS/BOOSTERS, GRUNDIG TUNER/I.F., ITT TUNER I.F. SAT TUNERS, L.N.B.s, VIDEO HEADS.

FREE PRICE LIST AVAILABLE.

RING 061-746 8037 FAX 061-746 8136

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes.				
3701822.....................525.00	A51-231x ${ }^{\text {IT }}$	£46.00	A51Ebdoox	c58.00
$3702822 \quad$ - ${ }^{\text {a }}$-00	A51-570X Muliard	£46.00	A51E8V10X01	¢58.00
370KRE22	A51-580X Mullard	£46.00	A51JAROOX	¢64.00
370LHB22	A51-590x Mullard	£46.00	A51JK000X Sony	. 874.00
400EFB22 Sony .-. 564.00	A56-540X Mullard	. $£ 52.00$	A51JUH10X Sony	¢74.00
$510 Y$ YB22 (brand new) 546.00	A56-701X 17	¢48.00	A53 BWOOX Sony	. 864.00
$520 S B 22$ Sony - \quad [64.00	A66-540x Mullard	£56.00	A59EAFOOX	. 664.00
560EGB22 Hitachi ¢ \quad 48.00	A67.701x 17	£56.00	A59EAK00X Priip	$\underline{564.00}$
$5600 \mathrm{YB} 22 \times \quad$ 248.00	A34EAC00X	£48.00	A64JKJ10X Sony	£95.00
5704 B 22 Sony 564.00	A34JBU10X Sony	¢64.00	A66EAF00X	974.00
6900B22 Sonyc85.00	A44JJ210X Sony	¢78.00	A66EAK00X Philip	974.00
680EB2 Sony 885.00	A49, ${ }^{\text {atioox Sony }}$. 664.00	A68UMT10X Sony	c95.00
	A49JLV10X Sony	¢74.00	A68, YK $10 \times$ Sony	c95.00
	A51EAF00X	¢58.00	AXM37-001	£48.00
	A51EAK00X	£58.00	AXT51-001	£46.00
	A51EALOOX	¢58.00		
For tube types not listed please enquire All Tubes Guaranteed 12 Months	All prices quo excluding Exchange require		Callers wel Please phon Delive Availab	
NEW TUBES IN STOCK - PLEASE PHONE FOR YOUR REQUIREMENTS				
Very competitive, nationwide delivery and collection service				
D.I.Y. Television Tube Polishing Kit Contains everything you need to Polish scratches and small chips on your CRT screens. All you require is an electric drill. Written instructions are provided Guaranteed to work. Woridwide Delivery Total Price $\mathbf{£ 6 3 . 0 0}$ includes P\&P and VAT Available from Luton only				
Your focal stockists are:				
WEST ONE	WELL VIEW		WELL VIEW	
Distributors Lid. Chesham. Bucks Tel. 0494778197	114-134 Midiand Road. Luton. Beds. U.K. LU2 0BL			
			Southampto Tel. 0703	

If your business is servicing TV/Video or electronic equipment then you need to keep accurate records detailing:

ServiceBase will breeze through these routine functions in seconds printing job cards for the engineer and invoices for your customer.

ServiceBase is packed with features other programs can only "dream" about.

Fill Details On request
\square

Report Generator Graphical Analysis Full Stock Control Contacts Database Electronic Mailing Wants Database Enquiry Source Analysis Loan Unit Look-up Tables Deposit/Delivery Payments IRIS Code Selection Tables Field Call Diary \& Schedule Automatic Parts Ordering Word Processor/Mail Merge

ServiceBase will finally allow you to computerise your business in complete confidence.
Without doubt.......
No other computer program can supply all the features available in ServiceBase, Yet amazingly this powerful product is available for...

Or Alternatively,

> Only £399 + vat

[^3]Please send a free ServiceBase demonstration pack to:
NAME:
TITLE:
COMPANY: \qquad
ADDRESS: \qquad
\qquad POST CODE -

\square

PC Control Systems Limited Hamilton House 66 Palmerston Road Northampton NN1 5EX Tel: 0604601677 FAX 0604601676

Additional Modules will Include:

- Fault Database
- Warranty Module
- Rental Module
- Retail Module
- Maintenance Contracts
- Full Accounts

AMSTRAD DMP 4000 Entire primer assemblies including printhead, platen, cables, stepper musors etc. Eiverything bar the electroncis and case Good stripper!! Clearance price just 55 REF: MAGS or for 18 REF: MAG: 8
VIEWDATA SYSTEMS Brandnew units made by TANDATA complete with 1200/75 built in modem, infra red remote controlled keyboard. BT approved, Prestel compatible Centronice printer por RGB cotour and composite output (works with any TV) complete with power supply and fully cased Price is iust E20 REF: MAG20 Also some customer returned units available at $£ 10$ each REF: MAG 10 PPC MODEM CARDS These are high spec plug in cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads Clearance price is E5 REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally madefor hi spec satellite equipment but perfect for all sorts of remote control projects Our dearance price is just E2 REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useftu book for finding equivalent transistors, leadouts specs etc $£ 20$ REF: MAG2OP1
SINCLAIR C5 MOTORS We have a few lefl without gearboxes These are $12 v \mathrm{DC} 3,300 \mathrm{rpm} 6^{*} \times 4^{\prime}, 1 / 4^{*}$ OP shan . £25REF: MAG25 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the above motor but sutable for any 12 v motor up to 30 A Complete with PCB etc. A heat sink may be required $£ 17.00$ REF: MAG17
VIDEO SENDER UNIT. Transmits both audi and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV set in a 100 ' range! (tune TV to a sparechannel) 12 v DCop Price is £15REF: MAG15 12vpsuis E5extra REF: MAGSP2 - FM CORDLESS MICROP HONE Small hand held unit with a 500^{\prime} ' range 2 transmit power levels. Reqs PP3 9v battery Tuneable to any FM recelver Pnce is E. 15 REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200^{\prime} ideal for garden use or as an educational toy Pnce is $£ 8$ a parr REF: MAG $8 P 12 \times P P 3$ req'd
-MINATURE RADIO TRANSCEIVERS A pair of walkle talkes with a range of up to 2 kalometres in open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases and earpleces. $2 \times$ PP3 ea E 30.00 pair REF: MAG30
COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync. and video. 12v DC operation $£ 8.00$ REF: MAG8P2
LQ3600 PRINT ER ASSEMBLIES Made by Amstrad they are entre mechanical pnnter assemblies induding pnnthead, stepper motors etc efc in fact everything bar the case and electromics, a good stnpper $£ 5$ REF: MAGSP3 or 2 for $£ 8$ REF: MAG8P3
PHILIPS LASER 2MW nelium neon tube Brand new full spec £40 REF: MAG40. Mains power supply kit $£ 20$ REF. MAG20P2 Fully bult and tested unit $£ 75$ REF: MAG 75
SPEAKER WIRE Brown two core. 100 foot hank $£$ REF MAG2P1
LED PACK of 100 standand red 5 mm leds $£ 5$ REF: MAG5P4 JUG KETTLE ELEMENTS good general pupose heating element (about 2 Kw) ideal for allsorts of heating projects etc 2 for $£ 3$ REF MAG3
UNNERSAL PC POWER SUPPLY complete with fyleads. switch, fan etc. Two types available 150 w at £ 15 REF: MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF. MAG20P $3(23 \times 23 \times 23 \mathrm{~mm})$ OZONE FRIENDLY LATEX $250 \mathrm{~m} /$ bottle of liquid rubber, sets in 2 hours Ideal for mounting PCB's. fixing wires etc $£ 2$ each REF MAG2P2
*FM TRA NSMTTER housed in a standard working 13A adaptert the bug runs directy off the mains solasts forever' why pay $£ 700$? of price is E26 REF. MAG26 Transmits to any FM radio

- FM BUG KIT New design with PCB embedded coll for extra stability Transmits to any FM rado. gv battery req'd 65 REF MAC5P5
*FM BUG BUILT AND TESTED superior design to kit, as supplied to detective agencies etc. $9 v$ battery req'd $£ 14$ REF MAG14
TA LKING COINBOX STRIPPER onginally made to
retail at $£ 79$ each. these units are designed to convert and ordinary phone into a payphone The unts we have generally have the locks missing and sometimes broken hinges However they can be adapted for ther ongunal pupose or used for something else? $?$ Pnce is just $£ 3$ REF: MAG3P1
100 WATT MOSFET PAIR Same spec as 2SK343 and 2SJ4 13 (8 A . 140 v .100 w) i Nchannel and 1 P channel. $£ 3$ apar REF: MAG3P2
VELCRO 1 metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) E2 REF: MAG2P3
MAGNETIC AGITATORS Cosisting of a cased mains motor with lead. The motor has two magnets fixed to a rotor that spin round inside There are also 2 plastic covered magnets supplied Made for inside There are also 2 plastc covered magnets supplied Made for
remotely stmngliquidsl youmay have a use? $£ 3$ each REF: MAG3P3 2 for ES REF: MAGSPG
TOP QUALTTY SPEAKERS Made for HIFI televisions these are 10 watt $4 R$ Japmade 4^{\prime} round with large shielded magnets $G o o d$ quality general purpose speaker E 2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS $2^{\prime \prime}$ diameter good quality tweeter 140R (would be good with the above speaker) 2 for $£ 2$ REF: MAG2PS or 4 for $£ 3$ REF: MAG3P4
AT KEYBOA RDS made by Apnoot these quality keyboards need just a small modificaton to run on any AT. they work perfectyy but you will have to put up with 1 or 2 foreign keycaps! Price E6 REF MAG6P3
XT KEY BOARDS Mixed types, some retums some good, some foreign etc but all good for spares' Pice is $£ 2$ each REF:MAG2P6 or 4 for E6 REF: MAG6P4
PC CASES Again mixed types so you take a chance next one off the pile E12REF: MAG12 or twordentical ones for E20REF: MAG20P4 component pack bargain 1.000 resistors +1.000 capacitors (all same value) $£ 2.50$ a pack REF:MAG2P7

1994 CATALOGUE
 OUT NOW

Bucc's
 BUCEETOU BOARD MASSIVE

WAREHOUSE CLEARANCE FANTASTIC £20.00 REDUCTION

REFURBISHED PC BASE UNITS
COMPLETE WITH KEYBOARD
from only $£ 29.00$
AMSTRAD 1512 BASE UNITS GUARANTEED
PERFECT WORKING ORDER.

AMSTRAD 1512SD

1512 BASE UNIT, 5.25" FLOPPY DRIVE AND keybo ard. all you need is a montor and POWER SUPPLY. WAS $£ 49.00$
now Only $£ 29.00$
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25 " 360 K DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

REF. MAG39

SOLAK POWEK PANELS

3FT X IFT IOWATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
NOW AVAILABLE BY MAIL ORDER £33.95

TOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A TOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOST A
TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE TIMELESS LIFESP AN WITH AN INFINITE NUMBER OF POSSIBLE
APPLICATIONS. SOME OF WHICH MAY BE CAR BATTERY APPLICAIIONS. SOME OF WHICH MAY BE CAR BATTERY
CHARGING. FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABIE 12V SUPPLYISREQUIRED REF: MAG34

ALSO IFTX IFT GLASS SOLAR PANELS 12 V 200 mA
ONIY \&1500.RE: MAG15P3

FREE SOFTWARE!

Brand new, UNUSED top quality Famous brand licensed sof fware discs. Avalable in $5.25^{\prime \prime}$ DSDD or 5.25° HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE We are actually selling you the floppy disc for your own "MEGA CHEAP" storage fac illites if you happen to get software that you want/need /like as well......you get a "MEGA BARGAIN" to!
DSDD PKTIO £2.99 REF: MAG3P7 PKTIOO S16.00 REF: MAG 16 HD PKT10 $\$ 3.99$ REF: MAG4P3 PKT100 $\$ 26.00$ REF: MAG $26 P 1$

LARGER QANTITY PRICES AVALLABLE ON APPLICATION
££££££WE BUY SURPLUS STOCK
TIIRN YOUR SURPLUS STOCK INTO CASH
IMMEOIATE SETTLEMENT WE WILL AL SO QUOTE FOR
COMPIETE FACTORY CIEARANCE
COMING SOON
1994 CATALOGUE
PLEASE SEND 42 . A4 SZZED SAE FOR YOUR FREE COPY

 NOTICE ORDERS SUAECT TO STOCK QUOTATIONS WILLHOLY GVEN FOR QUANTI

-SOME OF OUR PRODUCTS MAY BE UNLICEMSABLE W THE UK

BULL ELECTRICAL

 250 PORTLAND ROAD HOVESUSSEX BN3 SQT
MAH ORDER TERMS CCAS POOR CHEQUE

HLEASE ALLOWT - 10 DAYS FOR OELIVERY
TCLEPITONE ORDERA WRCCOMS
TELN 3200300
FAX: 0273323077

COMMODORE MICRODRNE SYSTEM mini storage device for C64's 4 tmes faster than disc drives. 10 tmes faster than tapes Complete unit just $£ 12$ REF: MAG12P1 SCHOOL STRIPPERS We have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other progects etc. Let us know how many you need at just 50p a unt (minimum 10).
HEA DPHONES 16P These are ex Virgin Atlantic. You can have 8 pairs for £2 REF: MAG2P8
PROXMTTY SENSORS These are smail PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB Complete with fly leads. Pack of $5 £ 3$ REF: MAG: 3P5 or 20 for $£ 8$ REF: MAG8P4
FIBRE OPTIC CABLE Made for Hewlett Packard so pretty good stum you can have any length you want (min5m) first 5 m £ 7 REF MAG7 thereafter E1 a metre (ie 20 m is E22) REF: MAG1 Maxlength 250 m
SNOOPERS EAR? Onginall made to clip over the earpiece of telephone to amplity the sound-it also works quite well on the cable running along the wall Price is ES REF: MAGSP7
DOS PACKS Microsoft version 33 or higher complete with ail manuals or pnce just $£ 5$ REF: MAGSP8 Worth it just for the very comprenensive manuall 5.25° only
DOS PACK Microsoft version 5 Original software but no manuals hence only $£ 3$ REF: MAG3P6 525° only
FOREIGN DOS 3 3-German. French, italian etc $£ 2$ a pack with manual. 525° only. REF:MAG2P9
MONO VGA MONITOR Made by Amstrad, refurtished $£ 49$ REF:MAG49
CTM644 COLOUR MONITOR Made to work with the CPC464 home computer. Standard RGB input so will work with othermachines home computer. Standard RGB inpul
Refurtushed E.59.00 REF:MAG58
JUST A SMA LL SELCTION of what we have to see more get our 1994 catalogue (42 p stamp) or call in Mon-Sat $9-530$
HAND HELD TONE DLALLERS ideal for the control of the Response 200 and 400 machunes. £5 REF MAG5P9
PIR DET ECTOR Made by famous UK alamm manufacturer these are hi spec, long range intemal units. 12 V operabon Silght ma WINDUP SOLAR POWERED RADIO AM/FM radio Wlete with hand charger and solar panel $£ 14$ REF MAG14P 1 COMMODORE 64 Customer returns but ok for spares etc E. 12 REF MAG12P2 Tested and working units are $£ 69.00$ REF MAG69 COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF MAG4P9 Fullytested and wonking units are $£ 12$ RE= MAG12P5 COMPUTER TERMINALS complete with screen keyboard and RS232 input/output Ex equipment. Price is $£ 27$ REF MAG27 MA INS CABLES These are 2 core standard black 2 metremains cables fitted with a $13 A$ plug on one end. cable the other Ideal for projects. low costmanufacturing etc Pack of 10 for £ 3 REF MAG3P8 Pack of $100 £ 20$ REF: MAG20P5
SURFACE MOUNT STRIPPER Originally made as some form of high frequency amplifier (mann chip is a TSA5511T 1.3 GHz synthasiser) but good stripper value, an excellent way to play with surface mount components E1.00 REF MAG1P1
MICROWAVE TIMER Electronic bmer with relay output suitable to make enlarger timer etc E4 REF MAG4P4
PLUG 420? showing your age? pack of 10 with leads for £2 REF MAG2P 11
MOBILE CAR PHONE $£ 5.99$ Well almost! complete in ca phone excluding the box of electronics normally hidden under seat Can be made to illuminate with 12 v also has buit in light sensor so display oniy illuminates when dark Totally convincing! REF MAG6P6 A LARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used foi caravans ete 12v operation Just connect up and it flashes regulary) E5 REF MAG5P11
FIRE A LA RM CONT ROL PANEL High qualty metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$ Comes with electronics but no information £15 REF MAG15P4
SUPER SIZE HEATSINK Supert quality auminum neatsink $360 \times 183 \times 61 \mathrm{~mm}$. 15 fins enamble high heat dissipation No holes! £9 99 REF MAG10P1P
REMOTE CONTROL PCB These are receiver bcards for garage door opening systems You may have another use? $£ 4$ ea REF MAGAP5
LOPTX Line output transformers believed to be for hi res colou monitors but useful for getting high voltages from low ones! $£ 2$ each REF MAG2P 12 bumper pack of 10 for $£ 12$ REF MAG12P3

PORTABLE RADIATION DETECTOR

£49.99

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit de tects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Sup plied complete with handbook.

REF: MAG50

AMSTRAD HANDSETS

VCR $4600,4600 \mathrm{MkII}$
VCR4700
VCR5200
VCR6100 (Indexer)
VCR6100 (Barcode Indexer)
VCR6200 Barcode
VCR9000 (Old type)
TVR 2
TVR 3
SDR400 (Equivalent) SRD500
SRD510/520
TS90/99 Tower System GOODMANS VCR 102 PROLINE 5100TX
AMSTRAD LOPTS
CTV1000 FB182K CTV1400 FB165KA CTV2000 FB171 CTV2000 FB171K CTV2200 3722002 CTV2210 3722002
TVR 3181297
CTM644 Mkll 3714009 PC12-HRCD/D MSH1FCT31 PCW9512,8256,8512
FERGUSON LOPT
MM06 00D4242001
AMSTRAD TUNERS UE33-B01 VCR4600/4700 UE2-B31F CTV2200/2210 1810829 VCR5200 ENV87358F2 VCR7000 ENV87509F2 CTV1400

Harrison

 Electronics CENTURY WAY, MARCH, CAMBS PE15 80W. FAX: (0354) 51416. TEL: (0354) 51289AMSTRAD IF UNITS
11.75 TPS7-B0006 VCR4600/4700
17.63 TPS7-L0002
11.751813766
25.85 AMSTRAD
32.44 MODULATORS
11.7518196221 VCR5200
8.46 ENP-E730-2 VCR7000
14.10 VCR4600MkII,4700
11.05 SRD100/200/400
11.75 AMSTRAD VCR
11.75 MECHANISMS
11.75 4500,9000 (Old model)
17.63 CASSETTE HOUSING ASSY.

CYLINDER ASSY. (incl. Video heads)
11.75 CYLINDER LOWER DRUM ASSY
11.75 (Excl)
9.40 4600, 4700, TVR1, 2,3
4.10 COMPLETE MECHANISM ASSY
14.10 *(Excluding Video Heads)
13.51 *COMPLETE MECHANISM ASSY.
14.10 (Excluding cylinder assy.) 29.38
14.10 MECHANISM DECK (Excl Cass.
7.05 housing \& Cylinder assy.) CYLINDER ASSY. (incl. Video heads)
CYLINDER ASSY. (excluding Video heads)
9.40 CYLINDER LOWER DRUM ASSY
5.88 (Excluding Motor)
7.05 HEAD BASE ASSY (Audio)
7.05 VMC 100 - Various parts available,
5.88

AMSTRAD MOTORS Loading Motor MCB9B02 Drum Motor E20EL05 Capstan Motor LLN4B21 Capstan Motor JLN4B02 Tape Loading MCF9B02
25.26

AMSTRAD PCB's

9.40 (Complete, fully populated)
14.104500 Timer
14.10 4500 Systems Control 4600 Systems Control/Servo, Display \& Control PCB's 4600 Display
7.054600 Control
5.884600 Video \& Audio
5.884600 Power Supply
5.88 4600Mkll Main PCB Assy. 4600 Mkll Timer
4600MklI Control $4600 \mathrm{Mk} \|$ Head Amp 4600Mkll Power Supply 4700 Main PCB Assy. 4700 Timer
9.99 TVR 3 Video Power Supply
$10.95-11.7 \mathrm{GHz}$ LNB
9.99 2.3dB NF. 'N' CONNECTOR

4700 Head Amp Assy.
4700 Power Supply 5200 Timer \& Channel Disp. 5200 Video 5200 Switch Panel 6000 Power Supply 6100 Mains PCB 6100 Audio PCB 6100 Power Supply 6100 Hybrid, Chrominance 6100 Hybrid, Luminance 000 Switch PCB no:7 (ENV87358F2) CTV1400 Switches, Presets \& Tuner (ENV87509F2) CTV2200 PCB no:3 CTV2200 PCB no:4 TVR 2 Main TV PCB TVR 3 Main TV PCB TVR 3 TV Power Supply

AMSTRAD SERVICE MANUALS

11.75 VCR4600

9.40 VCR4600MkII, 4700

VCR6000/6100
29.38 VCR7000
11.75 VCR8700
5.88 VCR8800
17.63 VCR9000/9004
14.63 VMC 100
40.82 SRX100/200
4.10
5.88

AMSTRAD COMPUTER
OPERATORS MANUAL
4.70 PC1640 11.7
40.82 PC2286/2386 $\quad 11.75$
14.10 AMSTRAD PC12MD

VGA MONO MONITOR

5.88
4.70 Suitable for use with 2000/3000
17.63 series and any other VGA compatible
14.10 PC
64.63
4.70 AMSTRAD SOFTWARE
7.05 ACCOUNTSMASTER 17.63
29.38. (Full accounts program for running
7.05 small business on any PC)
7.05 INFOMASTER 17.6
9.40 (Easy to use Database, runs on PC)
9.40: LINKMASTER 11.75
2.35 Many AMSTRAD COMPUTER \& PRINTER SPARES available, please 8.23 phone for price.

WORKSHOP MANAGER PLUS
 For all your Job Tracking, Invoicing \& Reporting needs at the hit of a button

User Friendly, Complete with On Disk Manual Fully IBM compatable from Dos 2
Customer Receipts, Job Cards, Estimates \& Invoices
Dealer \& Insurance Reports
Full Reports on Customer \& Equipment records
Full IRIS Code \& Warranty ClaimBack Reports
Market FeedBack Report
Spares Database containing over 11,000 items
Parts Ordering system
History Look-up File
Data Backup \& Restore Routines
F1 On-line Help Screens
Full Support \& Backup
Complete package, 12 months Free Upgrades

Please rush me a disk

PRICES INCLUDE VAT.

al items are brand hew and guaranteed

* * SAME DAY DESPATCH **

Write or Phone for FULL catalogue.
POST \& PACKING **EXTRA**

Name:
Company:
Address:
Town:
Town:
PostCode:
Tel No:
Fax No:

For your FREE evaluation disk cut out coupon and FaxBack or Post to WMGR, 5 Ladymeade, IIminster Somerset TA190EA

For tomorrow's technology today call

NEW PRODUCT LAUNCH A GREAT SUCCESS

Engineers across the Country and beyond are reaping the benefits of subscribing to the new diagnosis system 'FAULT-FACT-FILES' which provides technical information that's relevant, up-to-date, inexpensive and easy to use.

Each month 'FAULT-FACT-FILES' publishes at least 150 of the latest faults on TV and VCR equipment, collated in an easy to use format that slots straight into your filing system.

You don't need to buy revised editions because 'FAULT-FACT-FILES' updates itself every month and grows with the new information to build into a comprehensive reference library.

For just $£ 2.50$ per month (or less - see right) you will receive almost 2,000 faults each year plus time saving tips and a substantial discount when you use our Help-Desk Service*

For more information and samples send a SAE (A5 size)
*Help-Desk Service costs $£ 2.50$ for subscribers to 'FAULT-FACT-FILES' and $£ 7.50$ for non-subscribers with a money back guarantee if we are unable to provide at least one possible solution for the symptoms described.

YOU COULD WIN £100 WORTH OF SPARE PARTS IN OUR PRIZE DRAWI

JUST SEND YOUR NAME, ADDRESS \& POSTCODE WITH A CHEQUE/PO FOR REQUIRED AMOUNT TO:
'VISION-ON' (TV1)
16, HILLVIEW PARK NEWTOWNABBEY BT36 8HW

1YR - £30 (MINIMUM)
2YRS- £55 (SAVE £5.00)
3YRS- £80 (SAVE £10.00)
4YRS- £100 (SAVE £20.00)
OVERSEAS ADD £10 PER
ANNUM (AIRMAIL POSTAGE)
WE ALSO ACCEPT PAYMENT BY
ACCESSIVISA
(SIMPLY SEND YOUR CARD NUMBER AND EXPIRY DATE)

RENTAL FINANCE

Expand your CTV and VCR rental business with no capital outlay and increase your profitability．

Broughfame has the solution and their rental finance plan will provide facilities from $£ 2,500$ upwards．

For further details ring or write to Bob Wickham at the address below：

BROUGHFAME LIMITED

39 SOUTH STREET，TARRING
WORTHING，WEST SUSSEX BN14 7LG
TEL：Worthing（0903） 821020
FAX：Worthing（0903） 821194

TELEPLACE SCOTLAND．

 TV \＆VIDEO WHOLESALE．Working Faulty Refurbished Stock
Delivered．
8，Colquhoun Park，Hillington Industrial Estate， Glasgow G52 1XX．

TELEUISION
Subscribe to the magazine that experienced electronics professionals never miss
Whatever your interest in the world of television electronics，there＇s a wealth of news，advice and hard information for you in TELEVISION．
TELEVISION offers you a definitive guide to today＇s TV electronics business，
keeping you up－to－date with new developments in TV，video and satellite－whilst furnishing you with＇hands－on＇advice and information on the latest equipment．

SUBSCRIBING IS SIMPLE
Complete the coupon and return it to us at TELEVISION，Reed Business Publishing， FREEPOST，9th Floor，Quadrant House，The Quadrant，SLTTON，Surrey EM2 5BR

Please send me TELEVISION
\square One Year at a cost of $£ 26$
\square Two Years at a cost of $£ 49$
SAVE E3
\square Three Years at a cost of $\mathbf{£ 7 0}$ SAVE £8 Name \qquad
Title \qquad Company
Address \qquad

Postcode

Telephone Number

－Servicing solutions
－TV fault finding
－New Products
－VCR clinic
－Satellite TV
－Equipment reviews

－Readers＇letters
－CD players casebook
－Components
－News and comment
－And much more！

4 WAYS TO PAY

$1 \square I$ enclose a cheque for $£$ \qquad made payable to Reed Business Publishing Ltd
Please charge my：
\square Access
\square Visa
\square Diners Club
\square American Express
Expiry Date

ロロロロロロロロロロロロロロロロ

3 Please invoice me／my company Order No．

4 Or alternatively just ring our credit card hot－line on 0622721666 and quote reference IJ2

Are you registered for VAT，Yes $\square \quad$ No \square
If yes，please supply your registration Number

Please send a VAT receipt \square
Signature \qquad Date

Prices apply to UK，Isle of Man，and Channel Islands only．

SOUTH LONDON

TRADE WAREHOUSE NOW OPEN

WHOLESALERS

OF THORN + NON-THORN EX-RENTAL TV's
\& V.C.R., TESTED + UNTESTED 'B' GRADE + LIQUIDATION STOCK

AUDIO: Stocks of Audio, Midi + Mini Hi-Fi CD's Radio Cassettes, Walkmans, ALL TOP BRAND NAMES AT FRACTION OF RETAIL PRICE STOCK ALWAYS CHANGING

TEPCO ELECTRONICS LTD

TEL 081-769 6149 071-924 1606 081-677 5749 Warehouse Line
FAX 081-769 4952
OPEN MON—SAT 9.30 TO 6pm

WILTSGROVE LTD

NEW Definition BRAND PORTABLE 14^{\prime} REMOTE TV 21 PIN SCART O) SCREEN IOISPLAY

VHF/UHF TUNER
12 MONTHS (YUARANTVE etc. * GUARANTELD LOWIST PRICE *

WORKING GRADEDSTOCK $\begin{gathered}\text { F-IRiITIFOTWHS } \\ \text { (ni ()rder KEp }\end{gathered}$ AII. BOXED WITH INSTRUCTIONS

SHARP K6:292 stereo ear radio cassette, 2 bathe with anss
\&17.0111
SHARPRG296 stereo ear radio cassette, 3 hand with anss
SHARI'IC105 personal cassette player
\&19.99
SHARP.IC131 personal radioleassette player
E6. 50
SHARP JC 2 ow personal cassette player with autores
SHARP JC"5l0 personal cass/athorev/2 band radio
UHDISYSTEMS
13asie Systems from $£ 25.100$ Remote controlsos. from $£+10.00$ Systems with (D) from tion.0t
WHDED W WORKINGEX-RENTILSTOCK TV Toploader video $£ 35.00$ Rasic colour TV's from $£ 25.110$ Front loaders with r/e from $\mathfrak{i t 5 . 0 0}$ Remote TV's with r/e from $£ 35.01$ Twinspeed V(R with r/c from \mathbf{t}^{55}. (M) Teletext TV's with r/e from 45.00 Thorn 8947 VCR with r/c £65.011

EX-RENTAL FERGLSOX 3CDI CANCORDER

Back-space edit facility, records on standard VHS, recording time: 2+1 minules, date insert facility, atutomatic Iris control, 6:1 motarized zoom lens, tape play bach facility. Onty $f 199$

28-29 RIVER STREET, DIGBETH BIRMINGHAM B5 5SA
TEL: 021 772-2733 FAX: 021 766-6100
EXPORT ENQUIRIES WELCOME
AUL STOCK SL BJIECT TO AVAILABILITY, YAT \& CIRRIGGE

MANCHESTER'S NO 1 WHOLESALER

HCTV WISHES ALL IT'S CUSTOMERS A HAPPY NEW YEAR

NEW GRADED STOCK

MANUFACTURER TESTED, BOXED AND SEALED AS NEW

$14^{\prime \prime}$ STD	$20^{\prime \prime}$ R/C	$25^{\prime \prime}$ R/C
$14^{\prime \prime}$ R/C	$20^{\prime \prime}$ FASTEXT	$25^{\prime \prime}$ FASTEXT
$16^{\prime \prime}$ STD	$21^{\prime \prime}$ R/C	$25^{\prime \prime}$ NICAM
$16^{\prime \prime}$ R/C	$20^{\prime \prime}$ FASTEXT	$28^{\prime \prime}$ FASTEXT
$20^{\prime \prime}$ STD	$21^{\prime \prime}$ NICAM	$28^{\prime \prime}$ NICAM

PLUS A RANGE OF LONG PLAY AND NICAM VIDEO'S

DONT MISS OUT! PAY US AVISTT

	BIRMINGHAM
	208 Bromford Lane
	on
	gham B24

[^4]
BESCO LIMITED T/A
 NORTH WEST ELECTRONICS ENTIRE RANGE OF EX-RENTAL TVS \& VIDEOS

NEW STOCKS EVERY DAY, WORKING OR OFF THE PILE

makes Include: Sharp, Hitachi, Ferguson, Pye, NAT PAN, ITT etc.
Late models always available.

KNOCKOUT PRICES ON COLOUR TVs

FERGUSION, PYE, HITACHI, PHILIPS, BUSH, ITT, etc.
TELETEXT BARGAINS FROM $£ 30.00$ (WORKING) FERGUSON TX TELETEXT ONLY £45. PHILIPS/PYE TEXT ALWAYS AVAILABLE OVER 1000 COLOUR TV AND VIDEOS AVAILABLE

RING OUR HOTLINES NOW FOR PRICES OR CALL IN, YOU WILL BE DELIGHTED
WorkIng Ex-Equipment Panels
IF
T20//22X
T26 X
Phillps G11 14.50
Converger
5
5
5

LIne scan
Power
Frame
141817

17
20
All prices include Postage \& Packing. But + VAT
\star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *
Prices are plus VAT and based on quantity

Cheques accepted
Walker House, 16 Bottomley Street, Bradford BD5 7LJ
Ring Tony 0274308186 - Open 6 days - 9am-5pm

WESTERN TRADE SERVICES

EST 14 YEARS
SUPPLIERS OF EX-RENTAL
TV \& VIDEO
THORN AND NON THORN

SOUTH WEST

2A Barton Hill Road, Torquay,
Devon TQ2 8JH
Tel: 0803312222
Fax: 0803326767
Delivering throughout Devon and Cornwall weekly

WALES

Unit 6, Islwyn Workshop, Portymaester Ind Est, Risca, Gwent
Tel: 0633612667

TVINTERNATIONAL FOR 'B' GRADE AUDIO - VIDEO
 - MICROWAVES
 LARGE STOCKS, NEW - BOXED - COMPLETE. SOLD FULLY TESTED OR DIRECT - UNTESTED ALL MINT
 TEL. 0384482575 ASK FOR TRADE DEPT FAX. 0384265236
 PEARTREE LANE, DUDLEY, WEST MIDLANDS
 OPEN 9.00-6.00
 MONDAY - SATURDAY

COLOURTRADE

 ESTABLISHED 1973 - WHOLESALE ONLY
NEW 'B' GRADE

Major Brands ONLY Satellite, Receivers, Decoders, Microwaves TV - Video - AUDIO

COMPLETE BOXED - WITH STAND - HANDSET - BOOK ETC MINT LATEST NICAM FASTEXT F.S.T.

Phone 021-359 7020

$$
\text { FAX 021-359 } 6344
$$

221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2HU

CentreVision
SLOPER ROAD • LECKWITH CARDIFF EST•1964

START THE NEW YEAR WITH A VISIT TO CENTREVISION WORKING TV'S NON FST

TEXT - £45.00
REMOTE - £35.00
BASIC - $£ 30.00$
100'S OF TV'S + VIDEO'S
IN STOCK
50 TV'S ON DISPLAY FOR DIRECT RE-SALE

0222344754

DO YOU REPAIR WHITE GOODS?
THEN YOU SHOULD KNOW ABOUT

DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :-

WASHING MACHINES
 KETTLES IRONS TOASTERS MICRO-WAVE OVENS
\star NEW $\star 535$ page pattern parts catalogue now available at a cost of $£ 6$ to non-account customers
$-\perp$ DATAPART LTD

ELECTRON HOUSE, 100 GREAT BARR STREET BIRMINGHAM B9 4BB

[^5]
AERIALS

ANCLIANTV WHOLESALE EXRRENTALTVs\&VCRs

NEW 'B' GRADE T.V. UIDEO AUDIO, MICROWAVE

FOR TV \& FM RADIO, PLUS 1oor's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC. MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE.
LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

UNIT X2 Rudford Industrial Estate Ford, Arundel
0903723726
NO MINIMUM ORDER VALUE NEXT DA Y DELIVERY ACROSS UK CARRIAGE FREE ON ORDERS $£ 250+$ $\frac{2}{25154}$

New WHOLESALE TV and VIDEO Warehouse

Vision World (Cardiff) has just opened for business in the Cardiff Bay area.
Many makes kept in stock
including Thorn and
Granada. If you're the type of business that likes competitive prices and a good service, then contact:

VISION WORLD (Cardiff) Unit 89
Portmanmoor Road Industrial Estate East Moors
Cardiff CF2 2HB
Tel: 0222458989

TRADE TVs EXRENTAL TV \& V.C.R.s

BASICS FROM $£ 7.00$
REMOTES FROM $£ 15.00$

TEXT FROM	$£ 25.00$
VCRs FROM	$£ 25.00$

TELEPHONE

 ROY SMITH0302-349583
10AM - 5PM MON-FRI

A.R. INTERNATIONAL BUILDING
 UNION ST,
 DONCASTER, DN1 3AE

OFF ST SEPULCHRE GATE WEST

For your export requirements contact us.

LEADERS IN THE SUPPLY OF EX-RENTAL TV, VIDEO \& AUDIO

0452372808

U11D Barnwood Field Business Pk Barnett Way Barnwood Glos GL4 7RT

FARNBOROUGH COLIN GORDON

0252540814

40 Invincible Road Farnborough Hants GU14 7QU

CALL US FOR LATEST PRICES

C.T.V. UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829/0860-809673 (24HR)	
SUPPLIERS OF HIGH QUALITY EX-RENTAL TELEVISIONS AND VIDEOS	
LARGE STOCKS ALWAYS AVAILABLE	
ALL AT COMPETITIVE PRICES Also available: 'B' Grade Products,	
Audio, Microwaves and Complete Range	
of Televisions and Vide	
OPEN: MON-FRI - 9.30-5.30	
Fax:0299-251543	IES

WOODHAM IVLTD

Wish all their customers a Happy \& Prosperous New Year Wholesalers of Thorn \& Granada ex-rental TVs and Videos *Working - Non-working
*Many Special Offers Open Mon-Sat 9.30-5.30 PHONE NOW

$$
\begin{aligned}
& \text { (1) } 45-395: 5 \\
& \text { UNTT 8, CUTLERS RD, } \\
& \text { SOUIH WOODHAMFERRERS, } \\
& \text { CHELMSFORD, ESSEX }
\end{aligned}
$$

[LASSIIFIED CLASSIFIED CLASSIFIED CLAS5IFIED CLASSIFIED
 those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton Surrey SM2 5AS

SERVICE DATA

© INFOTECH

 hat76 Church Street, Larkhall, Lanarkshire ML9 1HE Tel: (0698) $883334-(0698) 888343$

Fax: (0698) 884825
Send a large SAE for your FREE catalogue of our other publications
HOW WOULD YOU LIKE TO GET ANY SERVICE MANUAL YOU WANTED FOR ONLY $£ 8.50$? WELL, NOW YOU CAN!
We are running a very special offer of any 20 manuals for only $£ 170$. No catches! Order as you need them (no time limit) including all those expensive manuals you couldn't previously afford. No hidden expenses like post \& packing (that's included in the price)
And if that isn't enough!
We are giving away our Data Reference Manual FREE with every subscription to this $\mathbf{2 0}$ manuals for $\mathbf{£ 1 7 0}$ offer!

EUROPEAN SCRAMBLING SYSTEMS NEW 3rd Edition
European Scrambling Systems is the "bible" of the black arts of signal security. Now in Euro' Scrambling 3, John McCormac analyses all of the latest hacks and scrambling systems Only £32.00 inc. P\&P

PRACTICAL GUIDE TO

BUYING, SELLING, REPAIRING AND SERVICING USED CD's, TVs and VCRs
They cover everything from choosing good ex-rentals to covering more stock faults for common ex-rentals than elsewhere at many times the cost. These are brilliantly practical and inexpensive repair and service systems

Only $£ 9.95$ each or $£ 25.00$ for all three

PANASONIC "G" DECK

Disassembly and reassembly on the easy to follow video
Made by engineers for engineers only 19.95 FREE P\&P (Else £6. Overseas)

Make cheques/PO's to: Paul Stuhlfelder Pulse Video (Dept TVAI)
2 Greenacres Drive, Morfa Bychan, Porthmadog. Guynedd, N. Wales LL 4991 G

SERVICE INFORMATION

CIRCUITS \& SERVICE MANUALS FROM 1940s 990s: radios, amps, radiograms, tuners, CD's, TVs Videos cassette, radios, ICE etc LARGE QUANTITY USED N PANELS BACK COPIES PW, RADCOM TV MAG Give details of your needs to DAVE WILLIAMS Tel \& Fax 0302857526 23 Florence Ave, Balby,
Doncaster, South Yorkshire ON4 OQB

SERVICE MANUALS

For most U.K. European, Far East \& USA types of TV - VIDEO - CAM - SAT - MNAVE - CD and all at reasonable prices
VCR circuits also available separately for some models Some examples from thousands of video manuals available These are all complete at $£ 10$ each $+£ 1.50 \mathrm{p} / \mathrm{p}$, no VAT.
PANASONIC NV-FS100, L20, NV-MC10, MC20, MC30, ORION D500, D1000/1100, D1200, D1500, D2000, D9000 GRANADATTASHIKO - any VCR after 1988. For other makes \& models phone for price \& availability. LSAE brings free list of what's available this month.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9 YG Tel: 0202870656

AMSTRAD, LOGIK,

 MATSUI-SAISHO
FAULT FINDING GUIDE

Covers hundreds of faults on a wide range of television and video recorders. Professionally compiled in easy to locate for mat. SAVES TIME AND MONEY by pin pointing faults in record time

SEND $19.95+£ 1.00 \mathrm{p} . \mathrm{p}$ TO
R. ROWLAND

438 Poynters Rd, Luton, Beds. LU4 OTW

RLASSIFIED CLRSSIFIED CLRSSIFIED CLASSIFIED CLASSIIIED

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere

From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio, in fact practically anything.

Originals or Photostats as available.
Also available. Our FREE catalogue detailing Hundreds of Technical Books and Repair Guides available.

Send 2×1 st class stamps for your copy TODAY. Mauritron Technical Services (TV),

47A High Street,

Chinnor,
Oxfordshire,
VISA OX9 4DJ
Tel: 0844351694 Fax: 0844352554.

No. I For Fault Guides \& Repair Data Pick-\&-Mix Fault Guides
Our selection of common stock and standard faults for various manufacturers
Choose any TEN manufacturers for only £4.95!
Akat Alba, Amstrad, wiston, Bendix, B8\%, Bust/Rank, Decca/Tatung. Dortic, Ekco, Fidelity, Finlux Akat Alba, Amstrad. Aiston, Bendix, B8\%, Bust Kank, Decca/atung. Donc.
Fisher, GEC. Grundig Hitachi, Hinon, IT, JC, Korting. Lowe, Luxor-Skantic. Mitsubishi, Murphy, Nordemende, Orlon, ponasonic (basic). Philips, Sanyo. Sentra. Sharp. Sony (basic), Teleitunken Koshibo, Trumph, Zanussi

Giant Coinpendium (all abave + Ferguson) only $£ 995$ (normally $£ 16.95$)
(Faut \& Dlognostics Pocketbook for Forguson PX90/TX100 only 54.95)
TV AR Fauit and Servicing Guides ($£ 16.95$ each)
Vol. 1: (includes Cris, CD's, Assorment of Audios)
Vol. 1: (Includes CTris, CD's, Assorment of Audios)
fust some of the models: CiVs - Hincri CT4 to 7 . Decco/Tatung 130/140/150/160 series.

CD's. Albo CD2 10 , CDS200A, Fisher AD-M Series, Philips CDioo/150, FCD
Sony CDP101/102/103
Audio. Automatic Tumtables to Synmesizers and from Akai to Toshiba
Vol. 2: (includes CTV's. Computers, Soleilite Recelvers, VHS-C Comeorders)
Just some models: CNs - Ferguson TX85/86, TY $80 / 100$, Panasonic Alpha 1/IW Chassis,
Philips 2A3A.
Computers: Alarl ST zersions $520 / 1040$
Sotellite: Amstrod SR': 100/200, SRD400, Ferguson SRB-I. SRD2/4, Pace $\$ 53300$
Each book has a binder full of the matehing Clrculls Avallable of $£ 39.50$ wach Video Foult Finding Guides (5 books per serles)
Serios 1: Ferguson 3600, 3VO1, 3V16, 3V22, 3V23, Baird 8924, JRR HR-4001, Philips N-1500/N-1502. N-1700/N-1702
Serles 21 Fergen sy29/30, Baird 8930/40, Philips system 2000, Sanyo. VIC5000, VIC5300 series 3. Baird version), Joshiba V5970 and Clones.
hillps/Pye Baird 8931 8942. Ferguson 3V31/32. Panasonic NV7000, NV8000
Sentes in Fidellty VTR1000 and Clones. Ponasonic NVI00, NV8600, NV8610, Philips VR6460, VR6560
sharp VC108/408/651/081.
Serles 51 Ferguson 3V35/36/38/39/43/45/48/53. Hitochi VIII. Vi8000. Vi8500, GEC V4100.
 Ponasonic MV730/777/778/788. Sanyo VHR3100, VHR 3800
series 7, Ferguson 3 V55 to FV11/12. Goldstor GHV/GSE1290-1296. Panasonic later D-Deck
G/G1 Decks, Sharp VC381 to VC387
(Please note the abcue ofe not full listings. only the man modets tiom each series. they actualy

76 Church Street, Larkhall, Lanarkshire ML9 1HE Tel: (0698) 883334 - (0698) 888343

Fax: (0698) 884825
Please add $£ 2.00$ for post \& handling (orders over $£ 30.00$ FREE POSTAGE)

FAST FIX

Fancilt Incodex Now in NEW A4 Book Format, containing over 200 pages. Still thumbing through back issues of 'Televs,ion':
looking tor the cure to that vustratung tault? Why nol looking tor the cure to that rustrating fault?
let the FAST FIX Fault index find it for you? Covering the years 1982-Dec 1993 and listing over 3000 TV, Video, Camcorder. CP and satellite tault symptorms + hundreds of technical reterences from Television. FAST FIX could pay to tself after just one repair. All references are arranged alphabetically listting make medel, taut symptom
and page reference. Regular updating takes place and page reference. Regular upda Complete FAST FIX index $\Sigma 16.00$ inclusive. Overseas orders please add $£ 3.00$.
MONEY BACK GUARANTEE IF YOU ARE NOT COMPLETELY SATISFIED
Send Cheques/Postal Orders, payable to.
J. Humphreys, 13 Manstreid Avenue, St. Johns Park Hawarden, Clwyd CH5 353 N Wale

Vintage Service Data. For all your requirements on valve \& early transistor equipment. Contact "Savoy Hill Publications' 'Warrens View, Wrington 0934863491 10.00am to 700 pm
For CTVs, VCRs, CDs, Satellites, Midi Systems, Computers, Amps, Oscilloscopes, Mono TV's, Radios, Camcorders, Walkmans, Car Stereos, Tape Decks, Printers, Photocopiers and almost everything else!

!!We've got the lot!!

Data Reference Guide (4th Edn.) Only $£ 5.95$ With over 120 pages and incorporating a full "chassis guide" and Cross-references on every piece of CTV, CVR, Audio, Domestic and Test Equipment we can find! It is still the best guide on the market.

We Also Run the Largest Data Library
 in the United Kingdom (Please ask for details)

Phone/Fax or write for a FREE quote on any model Orders usually sent "same day" as the order is placed

TY VIDeo fal lt guide ine

FRYERNS

Most makes covered old and new.
This service offers technical advice and cure plus Schematic diagram all for the price of $£ 3.50$
Access and lisa fax Service
Phone 0268558938 Anvtime
4 Pncey Mead, Rasildon. Esser Ssi3 3EW

=SPARES \& COMPS $=$

SURPMUS REDUNOANT EIECTRONIC

COMPONEITS WATTED
I / Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM Electronic Supplies Tel. $0827873311 . \quad$ Fax 0827874835

WIZARD DISTRIBUTORS

Spares + Components Always in stock
Video heads for over 500 models
Spares for over 20 manufacturers
Hand sets for over 200 models
TV Tubes new + regunned
Plus much much more Empress St Works Empress St
Manchester M16 9EN
061-872 5438, 061-848 0060 Fax: 061-873 7365

REBUILT CRTS

VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphors B.S.I. Certification
N.G.T. ELECTRONICS LTD 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

TRANSFORMERS
 TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA AMSTRAD . BUSH . DECCA . DORIC . BLAUPUNKT. FERGUSON . FIDELITY. GEC. GRUNDIG . GRANADA HITACHI . HINARI . INDESIT . ITT . KIMARA . NIKKAI. MATSUI MURPHY OSAKI NORDMENDE . LOEWE-OFTA PANASONIC. PYE. PHILIPS SANYO SAISHO . SHARP. SONY. SOLOVOX. SUSUMU TANDBERG . TELEFUNKEN THORN . TRIUMPH . THOMSON . GOLDSTAR . BINATONE.

FULL RANGE OF KONIG: VIDEO HEADS, BELTT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS.
LARGE RANGE OF REMOTE CONTROLS IN STOCK
TIDMAN MAIL ORDER LTD. 236 SANDICOMBE ROAD
RICHMOND . SURREY . TW' 2EQ. Mon-Fri9amto 12.30 pm g
Approx. 1 mile from Kew Bridge.
Sat 10 am to 11.45 am

\square TEST EQUIPMENT

AT 2, Audi-Multi-Tester, 16 test-circuits for loudspeakers, tuners, amplifiers. headphones, tape recor ders, mikes, boosters

car radios, CD-players; measurment of millivolt, dift, watt, performance, with generator, radio. signal tracer/injector, 13 volt supply etc.

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up ard, short repair: exhausted CRT's becomes bright and sharp again even if all other machines do no: succeed.

United Kingdom: P\&E Services, Llandudno, Tel (0492) 54946, Fax 547880

Ireland: Dönberg Electronics, Ranafast, Co. Donegal Tel: 3537548275 and 48532. Fax: 3537571031 New Zealand: TDON Lid., Onehunga, Auckland Tel. 6 68-9 07, Fax 668-4 99.
Germany: Ulrich Müter, Oer-Erkenschwick, Fax 1023 68! 57017

MISCELLANEOUS

CAR RADIO DECODING EQUIPMENT

Plug our decoder into your IBM or compatible computer, remove the base plate from the radio, place our probe onto the PCB and the code is instantly displayed Changing the code or even fully reprogramming the eeprom is just as easy. Easy to use software includes PCB layouts and help screens with full backup from PHONE US NOW FOR INFORMAIION PACK AND FREE DEMO DISK (Please state either $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ disk)
Starter kit covering the three most popular brands $\mathbf{£ 3 0 0}+\mathbf{c a r r} \&$ VAT
EEPROM DECODING SERVICE: only $£ 5+$ VAT (just send us the chip)
FORD 2006, 2007, 2008, 2040 DECODED FOR $£ 15$ + VAT
FORD 2006 front panel DECODED FOR $£ 10+$ VAT GRUNDIG SC-303 DECODED FOR $£ 15$ + VAT Prices INCLUDE return carriage
Electronic Sound Systems
62 High Northgate, Darlington, Co. Durham DL1 1UW Tel: 0325484089 Fax: 0325465921 Mobile: 0860221099

TEK-HELP

HOT LINE FOR TV \& VIDEO REPAIRS THOUSANDS OF
FAULTS \& CURES ALL MAKES Just the costof A PHONE CALL

0891516434
48p PER MIN $36 p$ CHEAP RATE

INTAGE

FOR SALE: Video Camera/camer servicing equipment system vidamcorder scope, unused test charts (log grey scale and colour) unused lix meter, over 250 current model service manuals from various manufacturers, 100 plus training manuals e.g. Panasonic, Hitachi, Grundig, Sanvo etc, Vectorscope in excellent working order, charts cost over E 350 alone, manuals worth over $£ 2000$, to be sold as a package for $£ 2500$ ovno. Tel: (0533) 640787 after 6pm.
WANTED, VALVES TRANSISTORS especially UK manufactured EL.34, KT66, KT77, KT88, PX4, P×25. Please post list of what you have, cash waiting. Billington Export, 1 E Gillmans Ind Estate, Billingshurst, Sussex RH14 9EZ. Callers strictly by appointment only. Telephone 0403 7849 ,
VIDEOCRYPT DECODER Service sheet with smartcard contact details Eurocrypt card interlace £12. E.M.O. Ramsbottom, Lancs BL0 9AG. Tel: 0706823036.

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!
Designed specifically for
Domestic Appliance Engineer who want to enter the fast growing microwave Industr Packed full of useful
information, presented in a simple yet informative style with comprehensive diagrams and illustrations
Fault finding procedures are included at the end
of each section
The book contains easy to

follow electronic control systems
SWIFTPARK LIMITED
113 LONDON ROAD. HORNDEAN, WATERLOOVILLE, HANTS. PO8 OBJ

Microwave Oven Component Parts

Guaranteed Quality

Guaranteed Products

Competitive Price

AWI Lfd Samuel Whites Estate, Medina Road. Cowes. Iste of Wight, PO31 7LPP Tel (0148.3) 29612 Telex (86736) Sortex G Fax: (0983) 296122

[^0]: BACK COPIES
 We rave available a limited stock of the following back issues of Television:

 1992 February, April, May, July, August,
 September, October, November and
 December
 1993 All issues currently available
 1994 January
 Copies are available at $£ 2.75$ each including postage. Send orde-s to:

 Reed Business Publishing,
 Television Back Issues,
 Room L323,
 Quadrant House,
 The Quadranz,
 Sutton,
 Surrey SM2 5 AS.
 Make cheques/postal orders payable to Reed
 Business Publishing Ltd.

[^1]: Left: Canal Satellite from Telecom 2B at $5^{\circ} \mathrm{W}$. Signals from this satellite are easy to receive in the southern UK with a $60-80 \mathrm{~cm}$ dish. Centre: Nile TV, a new Egyptian channel transmitted via Eutelsat II F3 at 16° E. Reception by Andrew Sykes in Halifax, using a standard Pace receiver and an 80 cm dish. Right: Another photograph from Andrew Sykes, showing a typical news feed menu transmitted by the EBU, usually via Eutelsat II F4 at 70 . Items come from various European broadcasters.

[^2]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9 LS (071 2615000). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. "Television " is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^3]: Lease a 386 Computer: Printer \& ServiceBase for Under $£ 10$ PW

[^4]: Tel: 021-327 3273 Fax: 021-322 2011

[^5]: SALES DESK 021766555124
 FAX FREE 0800373459 HOURS

