JANUARY 1994

SERVICING.VIDEO.SATELLITE.DEVELOPMENT

The Rediffusion Mk 4 Chassis Power Supplies for TV Receivers All about Fuses . UPS Review Panasonic's Cardiff TV Chassis Symptoms without Faults • DX-TV VCR Clinic . TV Fault Finding

WILLOW VALE ELECTRONICS LIMIIED

mF

the answer to the sp"ares puzzle

Akai Kamasa
Altai Konig
Amstrad Labgear
Antex Leader
Antiference Ledu
A.D.S. Link Hamson
Aiphone Microtec
Ambersil Mitsubishi
Aiwa Nikkai
Alba Oryx
AWI Pye
Baldwin Boxall Philips
Bose Portasol
BK Precision Ross
Blackstar Saisho
Celtel Samsung
Celtek Sansuil
DNH Satfinder
Electrolube Seaward
ERL Servisol
Ferguson Sharp Fidelity Shure
G.E.C. Sony
Goldstar Thander
Grundig Thompson
Hameg Toshiba
Inkel Trantec
J.V.C. Weller
ELECTRONICS LIMITED
\section*{'The Better Choice'}

MANCHESTER BRANCH:

Unit 4 Enterprise Park, Reliance Street Manchester, M10 0AL.
Tel: 061-682 1415 Fax: 061-682 9031

HEAD OFFICE:
11 Arkwright Road, Reading, RG2 OLU. Tel: 0734876444 Fax: 0734867188

ACCOUNTS DEPARTMENT:
Tel: 0734860158

NOTTINGHAM BRANCH:
11 Marhill Road, Carlton, Nottingham, NG4 3AJ.
Tel: 0602870789 Fax: 0602878772

COPYRIGHT
(C) Reed Business Publishing Ltd., 1994 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at £3.50 each from Video Interface Products Ltd., who can also supply a five-year consolidated index on computer disk. For further details see page 186.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, £37 for Eire/Europe airmail (postage included for all rates) Rest of the world airmail availabe upon request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 203.

ISSN 0032-647X

Leader

Modern TV Receiver Techniques, Part 13
A look at the operation of the various types of
power supply circuitry used in modern TV receivers.

Teletopics

VCR Clinic
Reports from Philip Blundell, AMIEIE, Eugene Trundle
Trundle, Richard J. Avis, Adrian Farnborough, John
Edwards, Alfred Damp, Mike Leach, John Coombes,
Chris Avis, Steve Cannon, Chris Watton and Simon
Bodgett.

Faults that Aren't There
Many symptoms are present because of equipment
misuse rather than a fault. This can lead to wasted
time. Some examples as a warning to others and a
call for more information on this subject.

Letters

Servicing the Rediffusion Mk 4 Zhassis
Chris Watton A guide to common problems with this generally reliable and well-built chassis.

Next Month in Television

Long-distance Television
Roger Bunney
Test Case 373
Camcorner
Reports from Simon Bodgett and David C.
Woodnott.
Panasonic's Cardiff Chassis
Ray Meadows
A look at the various TV chassis produced since
Panasonic set up production lines in South Wales.
Help Wanted
Ottowa HDTV '93
Geoff Lewis, B.A., M.Sc.
Latest HDTV and other developments in N. America.
Help Wanted

TV Fault Finding
Reports from Philip Blundell, AMIEIE, Nick Beer,
Eugene Trundle, Richard Newman, Steve Cannon, Mike Leach and Edward Joyce.

Test Report: Emerson Model 20 UPS
Donald Bullock
An uninterruptible power supply can be essential to prevent loss of data. This one is well suited to the needs of individuals and small businesses.

All About Fuses
Ray Porter, M.Sc., C.Eng., MIEE
Characteristics and use of the various types of fuse available.

Adding a Bubblejet Printer to the Amstrad PCW Keith Wevill, B.Sc.

Donald Bullock
주ㄴㅜㅜ re

罟等寞

 UPC1352
UPC 1358 H

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice. Tv \& video parts sold are replacement parts.

VIDEO SERVICE KITS (Cont.)
HITACHI

FISHEA

FVFP615.6 730830.840

Contents Ecomony Kit Contents
$\begin{array}{lll}\text { BELTSET PINCHROLLEF } & \text { BELT SET PINCH ROLLER } \\ \text { OLER GCAR DLER UNIT } & \text { IOLERTYRE } & \\ \text { TENSONBAND } & & \\ \text { Order Code: } \$ K 68 & £ 12.50 & \text { order Code: } \$ K 69\end{array}$
HITACHI
Contents
BELL SE PINCH ROLLER TENSION BAND IOLLRTYRES

VT11VI33
Contents
BEL SET TAUPREEL TABLE
TYRE PINCH ROLLER FF REW
OLER CIUTCH PTE
ENSIONBAND
ENS CodBAND

Economy Kit Contents
BELT SET PIMCHAOLER
TF ACW IVLERTYAE LUP REEL
TABLE TAE SUPPLY AEEL
$£ 15.00 \quad$ Order Code: $\$ \mathbf{\$ K 4 6} \quad £ 4.50$

Contents 5.50

PANASONIC

+N:	AV7000 NV7200NV7800
Contents	Contents
Bi-T SET P WGHROLLER	BELT SET PINCHROLLER
TESIONBANO IOLER TYRES	TENSION EAND DLEA TYRES
Order Code: SK03 ¢6. 25	Order Code: $\$$ K02 $£ 5.50$

NV 300 N Contents

Order Code: SK01

NVG7 NVG9 VNG 10 NVG 11. NVG12 NVG14 NVG15NVG 16
NVGI8 NVG30NG:20 NVG130 NVG400N

Contents

Orde

SONY FUNCTION SWITCH (2 LEG) SPECMAL PRICE 5050 SPECLAL PRICE EO.50

I.C. PROTECTOR

ICPF10 ICPF15 ICPFZO
 ICPF25
 ICPF38
 ICPF75

£3.50 ICPF5D

E4.00 PRICE: DNEY 30p EACH

K.P. HOUSE, UNIT 15

POP IN COMMERCIAL CENTRE, SOUTHWAY WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 081-900 2329 Fax: 081-903 6126

Access \& Visa Card accepted

Open Monday to Saturday

JUST ARRIVED

VIDEO HEADS
AKAI
VSF600, VSF650
VP7100, VP7200, VP77
VS155, VS165
2600P VS425, VS426, VS427, VSF10, VSP8
VSP9
VS240, VSP82, VS202
VS33
VSR9
AMSTRAD
VCR8800, VCR8804, VCR9340
DD8900, DD8904, TVR4, VCR6200, VCR8600
VCR8602, VR8700
VCR8603, VCR8604, VCR8704, VCR8714
BAIRD
VHS82
BLAUPUNKT
CR1000, CR1200, CR1500
CR1800
RTV321, RTV322
RTV330
RTV333
RTV33B
RTV404, RTV414
RTV635
RTV750, RTV800, RTV900
RTV810
RTV910
JVC
HRD330, HRD337, HRD440, HRD637, HRD641
HRD660, HRFC100
JVC AND FERGUSON
8902/8903/8909/8912/8922
8923/8925/8929/8935
8931/8933
FV43H, HRD860
VC141L, HRD190, HRD610
FV44L
BR1600, HRD142, HRD156, HRD152
BR6200
HRD154, HRD217, HRD321, HRD350, HRD521 720 I
HRD522, HRD525, HRD527, HRD550 1700P
HRD580, HRD620, HRD650
FIDELITY
VR900, VR910
FISHER
FVHD140, FVHD40, FVHP1, FVHP10, FVHP20
FVHP40, FVHS 10 10
FVHP200, FVHP210, FVHP300, FVHP310 2100 P
FVHP500, FVHP5100, FVHP730, FVHP830 1200P FVHP980
FUNAI
E1100, VIP5000
VCR5840, VCR8007, VIP2500A, VIP3000A, VIP6000, VIP150
VCR4530, VCR6000, VCR6100 2200P
VCR8103, VCR600, VCR6100 1600P
VCR8103. VCR8107
VIP300A MKII
GEC
V4005H
GOLDSTAR
GHV1232, 1233, 1241, 1242, 1243, 1244, 1290,
1291, 1295, 1296, 1891, VCP4130, 4300, 4301.
4305, 4306, 4310, 4311, 4315, 4316, 4320, 4321.
43261650 P
GRUNDIG
VS456
SE6110, SE9100 TVR4510 TVR5510 VS500 1700 P VS510 VS5180, VS6190 VS700 VS900 1 , VS790, VS930, VS940
MVS660, SE6160, VERONA, VS660,
VS6690
MVS710, MVS720 MVS910, 3500P
M, 710, MVS720, MVS910, SE9120, VS800,
VSB10, VS910, VS920, SE7120, VS710.
VS720
VS160, VS740
VS170
VS680
HINARI
VCR34H, VTV200, VXL90
HITACHI
VT15, VTP10, VTP30
VT16B, VT260, VT498
VT570, VT575, VT576, VT580, VT585,
VT588
VT5600
VT60
VT660E
VT6700, VT6800
VTL30
4400 P
4600P
4600P
1850 P
1100P
2700P
3400P
1200P
1500 P
1500P
1200P
2100 P

VT522, VTM620, VTM622, VTM720, VTM722, VTM822 VTM726, VTM72B 2000P ITT VR3520, VR3701, VR3719, VR3720, VR3721, VR3730, VR3731 VR3749 2000P VR3730, VR3731, VR3749, 2700 P
VR3907, VR3908 VR3907, VR3908 1600 P VR3918, VR3919, VR3938 1800P VR396B
VR3984
VR3958, VR4993
VR4913, VRP3833
LUXOR
9245, 9251, 9254
9255,9256
9270, 9271,9273
9272, 928217
9252
928017, $928077,928097,929107,929117$
9253
9281
9284, 9295, VR3701, VR3721, VR3731,
VR3761
MATSUI
VX600
$\checkmark \times 750$
V $\times 990$
MITSUBISHI
HSE 12, HSE22, MX1
HS411EZ, HS411GZ
HS273
HSB10, HSB20, HSE 10, HSE20, HSE21,
HSE41
HSB11, HSB21
HSE31, HSB31, HSE32
HSE50
NATIONAL
NV8050, NV8051
AG1000. AG1050, NV260 2800P
AG6010, AG6015 1650P
AG6840. AG6015
NV200
NVD80
NVF65, NVH75
NVF51,
NVG19
NVJ33, NVL21, NVJ30
NVJ35
NVM1, NVM3, NVM5
AG2100, AG2200
NVF65
N.E.C.

DS6000
D $\times 1000$, DX1600, N9040, N9053, N9055
D×4000, N9610, DX3000
N9052, N9530
N9110, N9120, N914C
VCP1
PVC2300, PVC240, PVC740, PVC744, 1700 pVC
PVC764
SAMSUNG
VM1560, VN 1561 2200P
SANYO
VHR7900
VC585, VC685
VC90ET
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509G
V9680
V300G, V301, V305, V309G

V61, V63
V110, V120, V130, V140, V210, V220
TELEVISION ON/OFF
MAINS SWITCHES
Baur, Normende, Nova, Pioneer, Quelle, Saba;
Salora, TEC, Thomson \& Vega
VIDEO MOTORS
VT11, VT14, VT15, VT16, VT17, VT19, VT35,
VT39, VT57, VT88 (capstan motor) 3100P
BANG \& OLUFSEN
VHS65, VHS90 (capstan motor)

LOADING MOTOR UNITS

ITT

VR3605, VR3905, VR3955, VR3985 1100 P VP2826, VR3906, V43926, VR3976 1250 P VP3946, VR3906, VR3948, VR3986, VR3995 VR6948 1500 JVC
HRD1 10, HRD111, HRD120, HRD121.
HRD110, HRD111, HRD120, HRD121,
HRD225
HRD140, HRD150, HRD157M, HRD158MS
HRD160, HRD250, HRD257MS, HRD566,
HRP50
1250P
HRD455, HRD725, N895
1500P
SABA
VR6005, VR6014, VR7004, VR7011, VR8011,
VR8014
VR6006, VR6007, VR608, VR6009, VR6018.
VR7007, VR7018, VR9006 1250 P
$\begin{array}{ll}\text { VR7007, VR7018, VR9006 } & 1250 P \\ \text { VR6016, VR6038, VR7016 } & 1500 \text { P }\end{array}$
TELEFUNKEN
VR1925, VR1930, VR1940, VR1950, VR925,
VR930, VR940, VR950
A920, VR2920, VR12970, VR7921, VR7926
VR7931, VR7971, VR975
1100 P

VR1970, VR1980, VR7970, VR7980, YR970 VR980

1250 P
1500 P
THOMSON
V320, V321, V323, V326, V4200, V4300 1100 P
V342, V343, V352, V353, V360, V4210, V4230.
V4260 1250 P
V364, V368, V4400, V6000 1500P
THORN-FERGUSON
3V35, 3V36, 3V38, 3V39, 3V49, 8943, 8944 1100P 3V44, 3V45, 3V48, 3V54, 3V55, 3V57, 8947
3V44, $3 \vee 45,3 \vee 48$
$\begin{array}{ll}8947 \mathrm{~B}, 8948 & 1250 \mathrm{p} \\ 3 \vee 43,9845 & 1500 \mathrm{P}\end{array}$
TOSHIBA
V55, V57 1100P
V65, V66, V67 1250P
V61, V63
1500 P
CASSETTE HOUSING
AKAI
VS35, VS53, VS55, VS66, VS75 2600P
FERGUSON
FV31R
4300P
JVC \& FERGUSON
HRD515, HRD520, HRD527, HRD540, HRD550,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD670, HRD830, HRD840, HRD850, HRD860,
HRD4050, HRD6600 \& FV37 H
2400P
IC TRANSISTORS

M491BB7	500P
SAA5243PE	800P
TIP112H	50P
UPC1488H	150P
STR4090A	650P
ICANDTRANSISTORS	
BU506DF	120P
BUZ11	200P
BUZ80	200P
M494B1	700P
SAA5231	300P
SAA1293	550 P
S2000A3	175P
S2000AF	175P
S2055A	175P
S2000AF	200P
S2530A	100P
TEA201BA	200P
UC3844	100P
UPC1185H2	400P

REMOTE CONTROLS
AKAI
RC-V10A 1000 P
RCV37B
1000P
V25A
BUSH
2020T, 2114T, 2321T, 2514T 1000P
2020,2114,2321,2514 1000P
DECCA
FISHER
RC905B
GRANADA/REDIFFUSION
UNIVERSAL, 79500C, 986700 850P
SATELLITE 1000 P
MK4 TEXT, 70115G, 70133G, 70357E 850 P
MK4ATEXT, 70375 C
95288 E
94490D
850 P
1000 P
$1000 P$
1000 P

REMOTE CONTROLS

TP160E

TP200, TP300
TP400
TP590-600
TP390, TP610
TP62
TP630, TP650
TP660
HITACHI
CLE800-CLE830
A617402/655602
A512120/2
A514790
A518612
ASL002
${ }^{\text {SCLO }} \mathrm{C} 2096$
A511940
655602 H
ITT
FS4
RG305
FS9/1-10/1
FS9/1-10/1
VS4-1
MULTICONTROL (17C20)
KORTING
18279, 18396, 18460, 18521 SE
40540 VTS
LOEWE
DC11
MATSUI
010270601
VX770
MAVTZ COLOR (6890)
JALOR (7156)
JAVA (7180)
MITSUBISHI
939P/03607,939P/03609
NOKIA
SATELLITE
NORDMENDE
CMC1, TC3519
OCEANIC
390C9500
ORION
RC53
PANASONIC
TC2200
VSQ0357/NV730
TNQ1621
PHILCO
CARVEL, CONCORDE, MERCURY
TELESTAR
TC10
PHILIPS 5154
KT3 NON TEXT
69117032
RC5991 UNIV
RC3B
KT3 TEX
RC5352
RC5375
RC5 STANDARD
RC5901
RC5903
SABA
TC319-320
TC356
TC358
TC365
SALORA
SERIES L
86173
SANYO
RC218, RC222, RC228, RC238
JXGE
VHR2300
RC628
SHARP
G0121CESA, 123CESA, 204, 251
SIEMENS
FC616
FC631

SONY
RM604, RM605, RM606
900P
32 CHANNEL
RM613
RM636
TATUNG
FXA
FXA
FX70 FASTTEXT
TELEFUNKEN
FB632
FB639
THORN/FERGUSON
3V35-42
3V31-32
3V57-58 \qquad
TX10 TEXT
TX10 STEREO TEXT
TX9-90-100
3V55, FV11
TX100 FASTTEXT
TX 100 STEREO FASTTEXT
PROFESSIONAL
TOSHIBA
TOSHIBA
CT937
CT9117
201R4B

UNIVERSAL PROGRAMMABLE REMOTE

CONTROL
Controls up to 4 different devices which use
infra red remote controls including TV, audio,
VCR and satellite. (Need original remote control to program)
Order code: IR100R
Price: 1950P
We stock Remote Controls for over 5000
different models. Ring for further details on 081-900-2329.

BACKUP BATTERIES

REPLACEMENT PHILIPS NI-CAD BACKUP

BATTERIES

Replaces Philips Part No's
138-10138, 138-10313.1.2V-90mAh 160P
Replaces Philips Part No's:
260P
REPLACEMENT FERGUSON NI-CAD BACKUP BATTERIES
Replaces Ferguson Part No: 00E6-067-001
1050P
1050P
Used on: TX10
150 P
Replaces Ferguson Part No's: 00E6-066-001 2.4 V

Used on: 3V35, 3V56, 3V58,3V65 280P
LINE OUTPUT TRANSFORMERS

Description	Price	Order Code
HITACHI 2433752	1500P	LOT01
ORION 3714002	1500P	LOT02
FIDELITY ZX300	1500P	LOT03
FE TX10090 DEG	1500P	LOT04
SABA 490007182	1500P	LOT05
FE TX90 WHITE	1650P	LOT06
ITT D307/37 EQ	1600P	LOT07
BLAUPUNKT 210	1600P	LOT08
GRUNDIG 2922010	1600P	LOTO9
1 TT CVC800/1/3	1500P	LOT10
ITTD218/37 EQ	1600P	LOT11
NORMENDE 5255	1600P	LOT12
SABA 81000200	1600P	LOT13
SALORA T236EQ	1650P	LOT14
SABA 811-50-24	1600P	LOT15
SABA 770223500	1600P	LOT16
TELEFUNKEN AT1	1450P	LOT17
TELEFUNKENEO	1400P	LOT18
SALORA FM0218B	1600P	LOT19
NORMENDE 5255	1600P	LOT20
1 CT CVC 1150/1	1500P	LOT21
1 TT COMPACT 80	1500P	LOT22
FE TX 100 GREEN	1450P	LOT23
HINARI CT4/5 5113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600P	LOT26
$1 T \mathrm{COMPACT}$ B1	1450P	LOT27
ITT CT3326 MUL	1500P	LOT28
$1 T \mathrm{D} 066 / 37 \mathrm{EO}$	1600P	LOT29
ITT 3546 EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100 1100	1700P	LOT34
HANTAREX 28021	1600P	LOT35
SHARP C3700 EO	1600P	LOT36
HITACHI 2432981 CP	1500 P	LOT37

We stock line output transformers for over 100 different models. Please ring 081-900 2329 for more information

FALLLT FINDING GUIDE BOOK

Video Recorders Edition 2 Lists more than 2200 faults for 43 different brands Price: $£ 945 p$ Only. No VAT Order Code: BOOK01
Television Edition 3
Lists more than 3500 faults
for 50 different brands
Price: $£ 945 p$ Only. No VAT
Order Code: BOOK02

VIDEO HEAD CLEANING STICKS

FUSES				
	TIME LAG (20 mm)		QUICK BLOW (20 mm)	
Value	Order Code	Price	Order Code	Price
160 mA	FUSE01	75P	FUSE17	60P
250 mA	FUSE02	75P	FUSE18	60P
315 mA	FUSE03	75P	FUSE19	60P
400 mA	FUSE04	75P	FUSE20	60P
500 mA	FUSE05	75 P	FUSE21	60P
630 mA	FUSE06	75P	FUSE22	60P
800 mA	FUSE07	60P	FUSE23	60P
1A	FUSE08	60P	FUSE24	60P
1.25A	FUSE09	60P	FUSE25	60P
1.6A	FUSE10	60P	FUSE26	60P
2A	FUSE11	50P	FUSE27	60P
2.54	FUSE12	50P	FUSE28	60P
3.15A	FUSE13	55P	FUSE29	50P
4A	FUSE14	55P	FUSE30	50P
5A	FUSE15	60P	FUSE31	50P
6.3A	FUSE16	60P	FUSE32	50P

CERAMIC PLUG TOP

3A	FUSE33	100P
5A	FUSE34	100 P
13A	FUSE35	100 P

ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES

Solder Mop $1.2 \mathrm{~mm} \times 10$ metres	300P
Tubed Silicon Grease 50 gram	200 P
Tubed Heat Sink Compound 25 gram	150 P

UNIVERSAL HEAD EXTRACTOR TOOL
Hand togl designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various brand heads

PRICE - $\mathbf{f 7}$

CRANDATALTD

K.P. HOUSE, UNIT 15 .

POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY,
MIDDLESEX, ENGLAND HA9 OHB
Tel: 081-900 2329 Fax: 081-903 6126

 N
 ᄃᄃᄃ두ำcccccccccccccco
信

Iaw low pivigal Ingonitider Bils from Antix

Removing larger components from PCB boards can be a problem in rework and repair shoos. The new Antex range of 10 SMT Desolder Bits have been produced to fit

WE WILL ONLY SUPPLY TOP QUALITY
BRANDED COMPONENTS.
REPUTATION COUNTS WITH US
G.G.L. COMPONENTS

PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL. TEL: (0228) 39693/20358 Fax: (0228) 515127

AERIAL ACCESSORIES

CONNECTOR
FLY LEAD 2M........................... 75
VIDEOLEAD 2M...
4 WaY distribution
AMPLIFIER MAINS19.95
8 WAY Distribution
AMPLIFIER MAINS 21.75
batteries
AA (pht of 4)...........................
AAA(pkt of 4)1.20
FERGUSON 3V554.95
PHILIPS MEMORY 1V21.90
PHILIPS MEMORY 2V4 $42 .75$
CAPACITOR
$0.1155 v^{\text {(back-up). }}$
63 v
47ut at 63 v ...
100uf at 63 v 22
220uf at 63v.......................... 35
250v
Iut at 250
4.7ut at 250v............................. 25
1Ouf a 250 v 35
22 uf at 250 v .
47ufat 250 v............................ 65
100ut at 250v....................... 1.25
400 V
Iut at 400v....
4.70 at 400 v
10 uf at 400 v
22 ufat 400 v
(ALL PCB MO
diodes
BY133...................................... 15
BY227..
N $15408 .$.
BZX61C (pkt of 5)6v8 7v5
15 v
CONTINENTAL 30AX FOCUS 8.95
DECCA 120/130
GRUNDIG CUC2410 14*.......16.95
GRUNDIG CUC2410 22\%-..-....16.95
IPS $\mathrm{KT}^{\text {a }}$
VERSAL 5.9

NEW LISTS NOW
AVAVAILABLE.
PLEASE REQUEST

ALBA VIDEO SPARES VCRALOOO

BELT KIT.........................95
CAPACITOR BACK. CAPACITOR BACK-UP..............85 PINCH ROLLER
REEL IDLER....3 .95

AMSTRAD VIDEO SPARES

 VCR4500BELT
GEAR
GEAR ASSEMBL..............................95 9.95
MODIFIGATION KIT 5.50
VCR4600
BELT KIT 1.95
GEAR ASSEMBLY..................9.95
PINCH ROLLER 3.50
VCR6000
BELT KIT
PINCH ROLLER ...95
FERGUSON VIDEO SPARES
3V29/30
CELT KTT 325
CAPSTAN MOTOR 32.50

REEL IDLER.....................................95
TAKE UP CLUTCH2.95 TAKE UP
3V35/39
BELT KIT 1.95 CAPSTAN MOTOR21.50 LOADING BELTS (5)..................1.95
 REEL IDLER.......
TAKE UP IDLER.
TAKE UP CLUTC TAKE UP
3V44/45
BELTKIT 150
CASSETTE HOUSING..................50 25.95 PINCH ROLLER............................95 3V65/FV11
BELT KIT... BEET KIT1.75 CASSETTE HOUSING..............27.50 REEL IDLER......................................35

20 mm AS (PKTS OF 10) $250 \mathrm{MA}, 315 \mathrm{MA}, 500 \mathrm{MA}, 630 \mathrm{MA} . .1 .20$ $800 \mathrm{MA}, 1 \mathrm{~A} .1 .6 \mathrm{~A}, 2 \mathrm{~A} .2 \cdot 5 \mathrm{~A}, 3.15 \mathrm{~A}$ 20 mm Q (PKTS OF 10) $500 \mathrm{MA}, 630 \mathrm{MA}, 800 \mathrm{MA}, 1 \mathrm{~A}$. 1.6A.2A, $2.5 \mathrm{~A}, 3.15 \mathrm{~A}$.. \qquad .80	
I.C's	
	CNX62A.
SAA1293-025.95	
	SAA1293.03.........................6.95
SAA1293A-03...............................8.35	
	SL14321.95
STK5331..............................4.95	
STK5332..............................4.95	
	STK5333..............................5.75
STK5421.............................4.95	
	STK5422.............................6.95
STK5481...............................6.95	
	STK5482..............................4.95
STK5490...............................7.95	
	STK7308.................................5.50
STK7348.............................5.50	
	STR4211..............................4.50
STR5412 4.95	
	STR500207.35
STR50103A5.95	
	STR540416.95
STR580415.95	
	TDA1170S...........................1.95
TDA1770A3.95	
TDA20301.95	
	TDA21702.95
TDA22702.75	
TDA2576A3.50	
TDA2577A3.50	
	TDA2578A2.95
TDA25793.95	
	TDA25814.50
TDA25822.50	
TDA2600 5.50	
	TDA2653AQ2.95
TDA33308.50	
TDA35604.95	
TDA3561A4.95	
	TDA3562A (TFK).................. 4.95
TDA35653.95	
TDA3571BQ8.95	
TDA3576B 12.95	
	TDA36508.95
TDA3651/32.95	
TDA3651AQ 4.75	
	TDA3653A3.50
TDA3654A 2.95	
TDA45004.50	
	TDA45015.25

VT8000/8700E
BELT KIT .. 2.95 FF/REW PULLEY....................... 95
PLAY IDLER.......................................
REEL TABLE..............
TENSION BAND..................................955
VT9300/9700E
BELT KIT95
FF/REW PULLEY 95
PLAY IDLER..............................95
VT11/33E

BELT KIT1.95
CAPSTAN MOTOR VT33E23.95
CLUTCH ASSEMBLY...............7.95
PINCH ROLLER..........................3.95
VT63/64E
CAPSTAN MOTOR 27
CLUTCH ASSEMBLY............... 7.95
PINCH ROLLER.................................95
VT $120 / 130 \mathrm{E}$
BELT KIT1.95 CLUTCH ASSEMBLY.....................7.95
PINCH ROLLER................................3.9

SPARES

NV230/430

BELT KIT 1.95
REEL IDLER GENUINE30
NV $333 / 366$
BELT KIT
PELTCH ROLLER 1.95
PLAY IDLER GENUINE5. 5
REEL IDLER GENUINE 5.50

NV370
BELT KIT95
MODE SWITCH..................3.95
PINCH ROLLER
PINCH ROLLER3.95 NV730
BELT KIT1.95
PINCH ROLLER.....................
REEL IDLER GENUINE3.30
NV777
NVFLT KIT...
PINCH ROL
..
REEL IDLER GENUINE4.30
NV2000(2010) NV2000/2010)

BELT KIT95
PINCH ROLLER 3.95

PLAY IDLER GENUINE 1.35
REEL IDLER GENUINE
NV7000/7200
BELTKIT

PLAY CLUTCH GENUINE1.15
REEL IDLER GENUINE1.35
REEL IDLER GENUINE
NVG7/10/12
NVG7/10/12
BELT KIT..........
$\begin{array}{r}.1 .95 \\95 \\ \hline\end{array}$
PINCH ROLLER3.95
PHILIPS VIDEO SPARES

BELT KIT
PINCH ROLLER ...95
REEL IDLER.............................3.30
VR6462/6560
12.95

REPAIR KIT..
.12 .95
CASSETTE HOUSING16.95
REEL IDLER GENUINE 3.95

VR6467/6760

REPAIR KIT GENUINE 21.50
CASSETTE HOUSING95
PINCH ROLLER ARM ASSY ... 7.50
SANYO VIDEO SPARES
VTC5000 VTC5000
RELT KIT 1.00
REEL PULLEY GENUIINE.......... 5.95
REEL PULLEY GENUINE5.95
VHR1 100/1300

REEL DRIVE ROLLER............. 5.95
VHR3100/3700
BELT KIT ..
PINCH ROLLER
PINCH ROLLER3.50
REEL DRIVE ROLLER.......... 5.95

REMOTE CONTROLS FERGUSON T725......................75 FERGUSON T7429.75 FERGUSON T789 FAST TEXT11.95 FERGUSON T789 FAST TEXT11.95
FERGUSON TX10 NON TEXT11.50 FERGGUSON TX10 NON TEXT11.50 FERGUSON TX 100 STEREO.....71.95 FERGUSON TX 140 TEXT 10.95
FERGUSON ICC5............... 17.95 FERGUSON SRA FIDELITY CTV14S 13.50 FIDELITY CTV22T 12.75 FINLUX 1101 TO 2386........... 11.50 GOODMANS TX $1100 / 1200 \ldots . .18 .95$
GRANADA UNIVERSAL GRANADA UNIVERSAL 12.95
GRUNDIG TP400 TEXT. $\quad 12.90$ GRUNDIG TP650 TEXT........... 14.25 GRUNDIG TP66011.45
SHARP VIDEO SPARES

9300/381
BELT KIT2.50
PINCH ROLLER3.95
REEL IDLER GENUINE 3.95
REEL MOTOR GENUINE16.95
TENSION BAND....................2.95
481/482
BELT KIT2.50
PINCH ROLLER.
EEL IDLER GENUINE3.95
REEL MOTOR GENUINE17.95
VC581/582
BELT KIT2.50
REEL IDLER GENUINE3.95
PINCH ROLLER3.95
VC681
BELT KIT 2.50
PINCH ROLLER 3.95
REEL PULLEY GENUINE7.9
VCA140/VCT72
BELT KIT2.95
PINCH ROLLER3.95
REEL PULLEY GENUINE7.95
SONY VIDEO SPARES

 BELT KIT C61.95 REWIND KIT C $5 / 7$...........................4.95 REWIND KIT C69.95

VIDEO LAMPS
FERGUSON 3VCO/22. FERGUSON 3VZ9.... PANASONIC NV2000........................ 95 UHARP 9300 1.50

VIDEO LEADS SCART LEAD FULLY WIRED...4.95
SCART LEAD TO 6 PHONO...4.95 SCART COPYING KIT5.95 SCART TO 2 SCART SKT5.95 SCART TO 5 SCART SKT6.95
VIDEO COPYING KIT5.95

VIDEO REPAIR KIT

 FERGUSON 3 V a9/30....................12.95 ERGUSON 3 V35/39 12.95 ERGUSON 3V44/45.............14.95 FISHER FVH 6151715 11.95 FISHER FVH905 HITACHI VT 8000 HITACHI VT8000
HITACHI VT 9300 HITACHI VT1 $1 / 3.3 \mathrm{~F}$ HITACHI VT120/130

PANASONIC GDECK (GEN) 8.50 PANASONIC NV230 (GEN) ...14.50 PANASONIC NV333 (GEN) ...14.50 PANASONIC NV370 (GEN) ...14.50 PANASONIC NV430 (GEN) ...14.50 PANASONIC NV730 (GEN) ... 13.9 PANASONIC NV777 (GEN) ... 13.50 PANASONC NV77 (G) (GEN). 23.45 PANASONIC NVG10/12(GEN)12.95 PHILIPS VR6460.................... 12.95 PHILIPS VR6462.......................... 12.50 PHILIPS VR6
SONY C5/7..

SONY CG.

CELLULAR SPARES

ANTENNAE
3DB BODY MOUNT 14.25 MDB GLASS MOUNT 15.95 MOTOROLA $8500 \times 1 / 4$ WAVE 9.95 MOTOROLA 8500 X BUTTON..9.50 MOTOROLA 8800X. MOTOROLA 9800X....................19.95 PANASONIC H SERIES.......... 14.95 NEC P3......

ALBA 4000x6.95

 AMSTRAD 4500/9000............ 14.70 AMSTRAD 6000 14.50 MSTRAD 7000 . FERGUSON $3 V 00 / 39$ FERGUSON 3V59/FF..............17.25 FERGUSON 3V65/FV11 17.95 FERGUSON FV12L/32L 27.95 FERGUSON FV31................ 27.95FISHER FVH725 28.95
ISHER FVH906/91618.50

OLDSTAR V1221/129016.25 HITACH 1 V0/9700 15.00 HITACHI VT $17 / 19$....................... 24.50
HITACHI VT63/64..................... 19.25
HITACH VT65 HITACHIVT120ER20E 21 ITACHIVT120E/220E...........21.2

BATTERIES

MITSUBISHIMT3 MITSUBISHI MTS MTSUBHI MT5 MOTOROL MOTOROLA 4800X SLIM59.50 MOTOROLA $8000 \times$................. 24.50 MOTOROLA $8500 \times 1000 \mathrm{MAH} 23.50$ MOTOROLA B800X 1000 MAH 23.95 MOTOROLA 8800X 1500 MAH 29.50 MOTOROLA PSNL 700MAH.. 23.50 MOTOROLA PSNL SLIM 39.50 MOTOROLA 9800X 600MAH.19.50 MOTOROLA $9800 \times 700 \mathrm{MAH} .23 .50$ MOTOROLA 9800X SLIM 39.50 NEC P3 700MA... NOKIA 101 700MAH NOKIA 19023.5 PANASONIC EH SERIES 32.50 PANASONIC FI 700MAH 23.50 PANA SONIC I SERIES25.50 SONY CMH1....
SONY CMH. 333 TECHNOPHONE TECHNOPHONE TP324.50 TECHNOPHONE TP 405 70OMAH

HITACHI VT 150E36.50 JVC HRD250...................................33.50 MATS U 5 5535a..................... 21.70 MITSUBISHI HS318........................24.50 NEC 9034/9053.. PANASONIC NV230 16.95 PANASONIC NV3338.50 PANASONIC NV370 9.50 PANASONIC NV430 13.95 PANASONIC NV688 27.70 PANASONIC NV730 PANASONIC NV777 PANASONIC NV788 25.95 PANASONIC NV2000/70008.50 PANASONIC NVG7/9............. 17.30 PANASONIC NVG10/12......... 17.30 PANASONIC NVG18............. 29.50 PANASONL NVG21/25......... 29.5 PANASONIC NVG45 PHILIPS 6460/6520 PHILIPS 64626560 GENUINE 43.50 PHILIPS 6467/6468 GENUINE 38.75 SAMSUNG VI730 19.65 SAMSUNG VX510/97
SANYO VHR 1100/130018.50
SANYO VHR $2300 / 3200$.......... 18.50
SENTRA $8000 / 8400 \ldots16 .75$
SHARP VC9300/381/481 14.95
SHARP VC9300/381/481 14.95
SHARP VCA1 40
SONY C5/6/7....
TOSHIBA V55/57
TOSHIBA V73/83B
VIDEO MEADS14.75
VIDEO HEADS ARE OF THE BEST
OR MANUFACTURERS OWN
SERVICE AIDS ANTEX 1TW IRON 8.50 CLEAR TEST TAPE FIBRE CLEANING PEN $\quad . \quad . \quad7 .95$ HEATSINK COMPOUND1.55 ONYX SOLDER PUMP 9.95 ONYX TTPS
SILICON GR
SILICON GREASE
SOLDA MOP
SOLDER O.5KG 18SWG 80 SOLDER 0.5KG 22SWG
WELLER GUN TIPS

Cellular
 dealers wanted

BATTERY CHARGERS
DESK TOP TRICKLE
MOTOROLA TIPORTABLE.... 38.95 MOTOROLA $8000 / 8800 \times$....... 23.95 MOTOROLA MICROTAC 24.50 NOKIA 101
PANASONIC E
E/H SERIE NY CMH-333..................... 24.95

DESK TOP RAPID/COND.
MOTOROLA 8000 SERIES.... 42.50 MOTOROLA $9800 \times$................42.50 NEC P3...
NOKIA 101
SONY CMH333
BATTERY ELIMINATORS
ERICSSON HOTLINE 14.50
MOTOROLA 8000/8800X....... 12.95 MOTOROLA 9800 K NEC 9A..
NEC P3..
NOKIA 10
F SERIES 12.50
SONY CMH-333
TECHNOPHONE TP2............. 12.95
TECHNOPHONE TP405 12.95
P/P CHARGES:
COMPONENTS $£ 1.00$ PER
ORDER UK
SERVICE MANUALS $£ 1.25$

CELLULAR TELEPHONES

£5.00 PER ITEM
EXPORT ORDERS P/P
CHARGED AT COST
PLEASE ADO P/P VALUE TO
ORDER TOTAL THEN ADD
17.5% VAT TO THIS TOTAL DELIVERY BY RETURN ON

ALL
M ORDER
VALUE $55.00^{* * *}$

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES B \& K PRECISION CRT ANALYSER-RESTORER

HAMEG are Europe's lop selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All, with the exception of the HM 1005, incorporale a usetul COM PONENT TESTER. Size - all models $\mathbf{2 8 5 \mathrm { mm }} \boldsymbol{\ldots} 145 \mathrm{~mm}$ All
All supplied with 2 PQOBES, COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY
HM203-7 20MHz STANDARD

SPECIFICATION
Bandwidth: DC - 20MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC -40 MHz Active TV. Sync. Separator Variable hold-off Trigger LED indicato Calibrator: 1 KHz Square wave pius many features
Price ع362.00 + ع63.35 V.A.T. FREE Specialist Carrier Delivery

SPECIFICATIONS
2 Channels
Bandwidth: DC. 60 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering: $D C-80 \mathrm{MHz}$ Active TV. Sync-Separator After delay trigger
Sweep delay
Delay tine
Trigger LED indicator Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MHz} \mathrm{Sq}$. Wave Component tester
Price C653.00 + ع114.28 V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL 3 channels up to traces SPECIFICATION Bandwidth: DC -100 MHz Sens: Ch.1, Ch.2,Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: 2.5s. $5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC -130 MHz After delay trigger
Delay line
Trigger LED indicator Overscan LED indicator
Active TV-Sync-Separat Active TV - Sync-Separator Price $\mathbf{C 8 4 7 . 0 0}+$ E148.23 V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Same as 203-7)
Bandwidth: DC - 20MHz
Sens: Ch. $1, \mathrm{Ch} .2,1 \mathrm{mV} / \mathrm{cm}$ Timebase Digital: $5 \mathrm{~s} .1 \mu \mathrm{~s} / \mathrm{cm}$ Triggering DC - 40MHz Max sampling rate $2 \times 20 \mathrm{MH}$ Memory: $2 \times 2048 \times 8$ Bit Dol joiner
Printer/plotter outpu
Price $\mathbf{E 6 5 3 . 0 0}+$ E114.28 V.A.T. FREE Specialist Carrier Delivery
BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

The ost.

in addition to a switchable sound carrier lacility which allows use with the majority of PAL TV sys
ems the Orion provides highly thexible FGB outputs, ensuring compatibility with mosi video monitors. divergence, video amplifier linearity, colour purity, general colour pertormance, focus etc. a separate video inpul to modulate camera signals; fully variable Rf and video output levels facilitat-
 ble wide trequency coverage VMF and UHF TV bands Indispensible in the manulacture, test, and servic

monitors.

eatures

Colour bars, purity. greyscale. crosshatch
dots, tocus. etc.
VHF/UHF Channels
.5MH2, 6 MHz, 6.5MHz Sound Carriers.
External Video Output
Trigger Output.
PAL B.O.G. H.I.K

- Separate R. G. B and sync. O/P's

RGE a TTL \& $1 V$
Green + $0.3 V$ Syncs
Composite Video Output.
Variable RF/Video Output

- Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Size: $98 \times 219 \times 240 \mathrm{~mm}$

Price $£ 229.00+$ E40.08V.A.T. NEW! DEGAUSSING COIL

A very effective degaussing coil, ideal for degaussing TV tubes, computer monitors, oscilloscopes etc. Mains Power: 220/240 50/60Hz Size: $355 \times 355 \times 24 \mathrm{~mm}$.

Price $\mathbf{E 4 6 . 0 0}$

The number one CRT Pest Instrument. Over 5000 U.K. Television engineers wouldn't be without it

AII CRT's checked Identically, inciuding all in-line and one gun types. Tests all under guns of colour CRT's simuitaneously 490) : Exclusive miltiplex technique (model 490) * Measure true dynamic beam current that actually passes through G1 aperture to screen *Measures all shorts
and leaks - preserving more CRT's * Tests focus electrodes lead continuity finding faults that other testers mizs Uses most powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years
Obsolescence proof - perpetual set up chart updated and new adaptors developed - Tests and rejuvenates VDU's and oscilloscope tubes * A range of over profit * pays for itself in months. Increase

Prices
Withoul adaptors
Model $\mathbf{4 8 0}$ Single meter instrument inc. 6 common adaptors Without adaptors.
559.00 - 597.83 V.A.T
£498.00-E86.80V.A.T
c425.00 $\mathbf{~ c 7 4 . 3 8 V . A . T . ~}$
E360.00 + E63.00V.A.T.

SADELTA SIGNAL STRENGTH METERS

he Sadelta Field Strength Meters have been designed to facilitate the dish alignment of
 signal conditions for satisfactory operation. All models have a clear LCO direct frequency readout, coupled to a multiturn tuning control enabling precise channel identification.
TC402-D VHF \& UHF
FEATURES
Three bands:
Low VHF: $45-170 \mathrm{MHz}$
Low VHF: $\mathbf{4 5 - 1 7 0 \mathrm { MHz }}$
High VHF:
$170-450 \mathrm{MHz}$
UHF : $450-862 \mathrm{MHz}$.
Oigital display for direct frequency readout. Signal measurement from 20 V /FM Powered by eight 1.5V AA batteries. Fully portable with sturdy carrying case Price $\mathbf{c 2 8 9 . 0 0}+\mathrm{c} 50.57$ V.A.T.

TC90 VHF-UHF-SAT.

FEATURES

* Five bands

Low VHF : 45.110 MHz High VHF $: 110-300 \mathrm{MHz}$
Hyper VHF $: 300-470 \mathrm{MHz}$ $\begin{array}{l:l}\text { Hyper VHF: } & 300-470 \mathrm{MHz} \\ \mathrm{VHF}: & 470-862 \mathrm{MHz}\end{array}$ Satellite : $950-1750 \mathrm{MHz}$
Digital display for direct frequency readou Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V Signal measurement satellite $\cdot \mathbf{7 0 d \mathrm { dm }}$ to -10 d m.
Audible indication of satellite signal level. Built-in-monitor loudspeaker AM/FM (not satellite).
owered by rechargable battery complete with charger $220 / 240 \mathrm{~V} \mathrm{AC}$

NEW! TC80 SATELLITE

TC-80 IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique features:
video composite output: audio output with built in loudspeaker; ramp and RF signal outputs, which enable an oscilloscope to be used as a spectrum analyzer.

* 4 digit LCD Ireq. display *Freq. range 950 to 1750 MHz
- Sweep mode sweeps entire freq. band for rapid satellite location
Tone select switch for audible tone proportional to signal strength * Measurement from 40 to dBuV
internal loudspeaker with - Video demodulation - Rear SCART connector for A/V connection Oscilloscope/spectrum analyzer output - Sound tuning 5 to 8 MHz LNC currat mer * Internal rechargeable battery with charger

Price 490.00 C85.75V.A.T

VISA

 U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with colleges PIC S. Electronics. OHicial Orders welcome from Govt. Depis.: range. Credit card orders are accepted by 'phone, fax or post range. Credit card orders are acce
$\stackrel{y}{x}$

PROPERTY OF:
 DEPTAPPLIED ELECTR
 SCHDOL OF TECHNOLOGY
 morthern territory unil

EDITOR
John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

EDITORIAL OFFICE

0816528120
Fax 0816528956

Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES

0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622721
666 and quote reference $[\mathrm{N} J$.

COVER PHOTO

This month's cover photograph shows the Rediffusion Mk. 4 chassis. See servicing article on pages $180-183$.

REED
BUSINESS PUBLISHING

Modern TV Receiver Techniques

Part 13: Power Supply Circuits

Eugene Trundle

The various different sections of a TV receiver we‘ve looked at in previous instalments all require operating power. This month we'll examine the power supply section of a TV set: basically it's used to convert the mains (or other) energy input to one or more closely stabilised and regulated d.c. supply lines.

Power Supply Requirements

Because of load and distribution factors the domestic mains supply, which is nominally 240 V a.c., can vary by ± 6 per cent. So an important function of the power supply is stabilisation, i.e. providing a constant output voltage despite mains voltage variations. Regulation is also required: this means holding the output voltage steady regardless of the load imposed on it by the various other sections of the set - within the normal operating limits. Variable loads are presented in particular by the beam current consumption, which can vary from zero to 25 W over the possible picture content range in a large screen set, and the audio output stage whose current demand varies with sound volume, again from virtually zero to around 25 W in a set with a highpower stereo sound system.

If the voltages supplied to the timebases are not stabilised and regulated there will be changes in picture size and proportion with image brightness and mains supply variations. Sound distortion will be the result if the voltage supply to the audio amplifier isn't held stable. To avoid tuning drift the varicap tuning voltage supply must be constant. And microcontroller and logic circuits can make wrong decisions and corrupt the dat a passing through them unless their operating voltages are held within a few per cent of the nominal figure. Hence the need for close stabilisation of virtually every supply line in a TV set.

Most TV receiver power supplies must also be able to adjust the stabilised output so that, for example, a chassis can be used to drive different types of tube. Another requirement is protection circuitry to ensure safe operation. The protection circuits incorporated must be able to cut off the power if a short-circuit or overload raises the set's consumption to a dangerous level or the voltages in the set rise by more than a few per cent above their nominal levels. Higher than normal

Fig. 1: Use of a zener diode as a shunt stabiliser (a), zener diode reverse voltage/current characteristic (b).
working voltages could lead to excessive dissipation and the emission from the tube of X-ray radiation in excess of the normal minimal level.

Ideally the power supply should draw current from the mains throughout both half cycles (positive- and negativegoing). It should not pollute the mains supply by adding spikes and interference, while at the same time being immune to
anything of the same sort present in the mains a.c. supply. It must not generate radiation in the form of strong magnetic or r.f. fields as these could be picked elsewhere in the set, causing sound interference and patterning on the picture. This is particularly important with non-synchronous power supply circuits and, in view of its wide dynamic range and high signal-to-noise ratio, where Nicam sound is incorporated in the set. The more efficient the power supply's conversion process the better, since this will conserve energy and contribute to good reliability through cool running.
We haven't completed the list of requirements yet! In most modern sets there's electrical isolation between the live mains input to the receiver and the outputs from the receiver's power supply. This makes it easier to link the set to other equipment. Finally the outputs from the set's power supply must be free from ripple, hum and hash, and have a low source impedance (or the effect of this) to ensure good decoupling between different sections of the receiver that use the same supply line.

From the practical design viewpoint many of these characteristics and features are interdependent: the same circuitry provides regulation and stabilisation; mains isolation, voltage conversion and energy storage use a single transformer; and so on. But unlike other circuit sections of a TV set, where the operating principles mean that the circuitry used is to some extent standardised, there is tremendous variation in the power supply designs used in different makes and models. We'll look at the principles and consider the most common types of power supply circuit in current use in TV sets. First however we must briefly examine the basic regulators and stabilisers on which more sophisticated designs are based.

The Zener Diode

The simplest form of voltage stabiliser is shown in Fig. 1 (a). It consists of a series resistor R1 and a zener diode DI. The important feature of a zener diode is the sharp knee in its voltage/current characteristic when the device is operated with reverse bias, see Fig. l(b). This means that the voltage across the diode remains constant over a wide range of current flow through it. The most common application for this simple arrangement in a TV set is in the provision of a stable tuning voltage for a varicap tuner. In this case the zener diode is usually in practice a two-terminal i.c. with built-in thermal compensation: unlike the simple zener diode, the two-terminal voltage regulator chip has virtually zero temperature coefficient.
All power supplies that provide regulation must have an internal voltage reference source of some form with which the output or a proportion of the output can be compared. It generally takes the form of a zener or similar diode, though it may be hidden away within a regulator/stabiliser chip of one sort or another.

Series and Shunt Regulators

An absorption circuit that compensates fully for supply and demand variations is easy to arrange. Fig. 2(a) shows the basic shunt regulator principle, with regulator transistor Tr connected across the load and both fed from an unstabilised

A selection from our range of books for the repair trade

TELEVISION

CHASSIS GUIDE.
Full cross reference for all models Order MP-18. £5.95.

TELEVISION EQUIVALENTS
Lists models which are the same Order MP-150. £5.95.

FAULT LISTS FOR TELEVISIONS. Hundreds of specific faults for dozens of different makes and models.
Order MP-205. £6.95.
TELETEXT REPAIR MANUAL. Covers SAA range of boards. Order MP-38. £6.95.

TELEVISION REMOTE CONTROL CIRCUITS.
Dozens of Diagrams on many remotes. Order MP-167. £10.00.

TV POWER SUPPLY CIRCUITS. Dozens of P.S. circuit stages. Order MP-219. £10.00.

SCART EUROCONNECTOR SYSTEM.
Comprehensive details of the system. Order MP-21. £3.00.
P.C. HARD DISC DRIVE REFERENCE MANUAL. Comprehensive Drive Details. Order MP-84. £5.00.
P.C. DIAGNOSTICS SOFTWARE. Dozens of programs to aid you in diagnostics of PC's and Drives etc. 2 sets of 7×3.5 " Discs per set.
Set 1. Order MP-250. £12.50.
Set 2. Order MP-251. $£ 12.50$.

RECORDER AND
CAMCORDER EQUIVALENTS.
Full Cross-reference guides.
Makes A-J. Order MP-217 £5.95.
Makes K-Z. Order MP218' $£ 5.95$.
FAULT LISTINGS FOR VIDEO. Lists Hundereds of Faults for dozens of makes and models.

Volume 1. MP-206. £6.95.
Volume 2. MP-228. £6.95.
VHS VIDEO RECORDER PRINCIPLES.
Detailed guide on how it works. Order MP-58. £3.95.

VIDEO TEST JIG.
Special cassette lets you operate the machine in test mode. Order VTJ. $£ 15.00$.

VIDEO HEAD CLEANING KIT.
Special kit with comprehensive instructions on how to service heads. Order VHCK. $£ 4.00$.

VIDEO RECORDER FAULTS.
Unique repair guide for beginners. Order MP-5. $£ 3.95$.

WIRE ANTENNAS FOR H.F. OPERATORS.

THE aerial book for Amateurs. Order MP-243. £5.95.

REEL TO REEL TAPE
RECORDER SERVICING.
Theory and circuits for repairs. Order MP-201. £5.00.

TRANSISTOR RADIO REPAIR GUIDE.
Comprehensive servicing charts. Order MP-7. $£ 2.50$.

RECORD PLAYER SPEED DISC. Get your phonograph up to speed. Order MP-8. $£ 1.00$.

SWITCH MODE POWER SUPPLY
I.C. TYPE TDA-4600.

Circuitry and operation explained. Order MP-37. $£ 6.00$.

VOLTAGE REGULATORS,

S'IABILISERS

\& POWER SUPPLIES.
Identification and specifications. Order MP-9. £3.00:

CMOS DATABOOK.
Pinouts and circuits for 4000 series. Order MP-10. £5.00.

TTL DATABOOK.
Pinouts and circuits for 7400 series. Order MP-34. £5.00.

TRANSISTOR EQUIVALENTS. Includes details on testing them. Order MP-24. £3.00.

OFFICE EQUIPMENT EQUIVALENTS.
Photocopiers \& Fax machines covered.
Order MP-200. £6.00.

TELEPHONE CODE LOCATION

 GUIDE.Find the Town from the Phone Code. Order MP-19. £4.00.

MANUFACTURERS EQUIVALENTS.

What makes are the same. Order MP-220. £3.00.

SERVICE MANUALS available for most equipment.

Order TODAY using Access/Visa for immediate despatch.
All orders plus £2.35 Post and Packing. (Overseas £5.00)
The above selection are just a few of the Hundreds of Unique Repair and Data
Guides shown in our FREE catalogue - Yours for the asking. Sent FREE with all orders or send 2 x lst class stamps for your copy TODAY!

MAURITRON TECHNICAL SERVICES (TV)
47A High Street, Chinnor, Oxfordshire, OX9 4DJ.
Tel:- 0844-351694. Fax:- 0844-352554.

Fig. 2: Basic absorption regulator arrangements, (a) shunt type (compare with Fig. 1) and (b) series type. Both are closed-loop systems.
source via the ballast resistor R1. Feedback to the base of Trl varies its conduction to compensate for load variations, maintaining a constant voltage across its collector-emitter terminals. With this arrangement zero load corresponds with maximum dissipation in Trl .

The series regulator idea, shown in Fig. 2(b), is less wasteful of energy. Here the regulating transistor is in series with the load. Feedback is used to alter its resistance as the current demand by the load varies, once again maintaining a constant output voltage. Series regulators are no longer used as the main stabiliser in large-screen TV receiver power supplies though many VCR power supplies, where the loading is lighter and more even than that of a TV receiver, continue to use them, often in heatsinked i.c. form. Series regulators are commonly used in both TV and video equipment for the auxiliary supplies, e.g. the provision of a 5 V supply for logic circuitry. They are often packaged in the

Fig. 3: A practical series voltage regulator circuit.
form of a three-legged i.c., for example the well-known 78 series.

The principle of a series regulator, using two transistors and a zener diode, is shown in Fig. 3. Trl is the series element, whose conduction/resistance is governed by comparator transistor Tr 2 's collector current. The emitter of Tr 2 is held at exactly 7.5 V below the regulator's output voltage by zener diode D1, which provides the voltage reference. A proportion of the output, set by R4, is applied to $\operatorname{Tr} 2$'s base. If, because of increased current demand by the load, Trl's collector voltage starts to fall, this voltage reduction appears across R 2 in Tr 2 's emitter circuit and, in attenuated form, at its base. The effects of these voltage changes on Tr 2 's collector current are opposite but the change at Tr2's emitter, being larger, predominates. Thus in this example Tr2's emitter voltage falls and, being an npn device, its collector current increases, with a corresponding decrease in its collector voltage. Trl's base-emitter current increases, in turn increasing its emitter-collector current. Thus Trl's resistance is decreased, it supplies a greater current to the load and
the output voltage is stabilised. R4 enables the output voltage to be set up. R3 serves two purposes. It provides a start-up feed for the output side of the circuit and shares the dissipation with Tr 1 .

This type of circuit provides a very low effective output impedance and, because of the very low dynamic resistance of the zener diode, excellent ripple suppression. The regulating action works up to quite high frequencies. Thus the circuit can be looked at as an active ripple filter, whether the ripple consists of mains-rate hum on the unstabilised supply at Trl 's emitter or is the result of short-term changes in current demand by the load.

The Switch-mode Concept

The regulator arrangements described so far have the advantage of simplicity but are wasteful of energy, which is dissipated as heat by the regulating device itself and any ballast resistor present, for example R1 in Fig. I(a) and Fig. 2(a) and R3 in Fig. 3. Heat is not conducive to the reliability of either the device that generates it or the components that share its environment. Other disadvantages of the absorption type of regulator are that it cannot provide a voltage step-up while isolation between the input and output cannot be provided. A more efficient approach uses a control element that absorbs virtually no power itself as it acts as a switch. There is obviously no power dissipation when the switch is open-circuit: when the switch is closed it presents a very low impedance so that the dissipation is minimal.

In a switch-mode power supply (SMPS) the ratio of the on time to the off time of a driven switch (usually an npn transistor) that's used to chop the input is varied to suit the load demand. When little energy is required the switch remains in the on position for only a short time during each cycle of operation, briefly topping up an inductive or capacitive reservoir that supplies the load during the chopper's off period. When the load's energy demand is large a monitoring circuit automatically reduces the mark-space ratio of the chopper device so that it remains on for a longer period during each cycle, thus increasing the energy supplied to the reservoir. In this way the energy drawn from the primary power source almost exactly matches the energy required by the load with minimal wastage. The energy reservoir, whether in inductive or capacitive form, need not be large or bulky: if the chopping switch is operated at 20 kHz or more small, light inductors and capacitors can be used.

Fig. 4 shows the principle of the switch-mode ('chopper') power supply. The incoming mains voltage is full-wave rectified by the bridge rectifier DI-4 to produce an unregulated supply of around 320 V across its reservoir capacitor Cl . This supply feeds the primary winding of transformer Tl , the electronic switch Sl being in series with this winding. Each time

Fig. 4: Essentials of a switch-mode (chopper) power supply.

Fig. 5: Typical self-oscillating switch-mode power supply, often known as a ringing-choke converter. Note that T801 provides mains isolation, there being no electrical connection between the circuitry on its primary and secondary sides.
the switch is closed, a current ramp builds up in Tl's primary winding and magnetic energy is stored in its core. When the switch is opened, say $50 \mu \mathrm{sec}$ later, the magnetic field collapses, transferring energy to the secondary side of the circuit - rectifier diodes D5 and D6 conduct, current flowing in the transformer's secondary windings to charge C2 and C3. The phasing of the windings is arranged so that there is no conduction on the secondary side of the circuit when S1 is closed. The loads are continuously supplied by the reservoir capacitors C2 and C3.

Since the total loading affects all the secondary-side supplies, because they are all activated when the transformer's magnetic field collapses, only one output need be monitored for control purposes - this is normally the one that supplies the major proportion of the total load. The output voltage here is monitored to provide feedback to the chopper control circuit. A comparator compares the feedback voltage with a reference voltage, producing an error voltage that's proportional to the load. This error voltage in turn controls a pulse-width modulator whose output pulses, of width proportional to the load, determine the on/off timing of the switch. Thus the switch's duty cycle is varied to suit the current demand.

In most modern circuits the frequency as well as the dutycycle is varied to suit different load conditions. Many circuits are self-oscillating, with feedback from the transformer to the transistor to produce oscillation. Others use a purposedesigned i.c. as the control element to provide current drive to the base of a bipolar transistor, or voltage drive to the gate of a power field-effect transistor (FET), that contributes the switching action. The power transistor may be incorporated in the i.c., the result being a simple circuit with few peripheral components.

R1 is an important item in all rectifier circuits: it's included to limit the current surge when Cl charges at switch on, protecting the rectifier diodes.

Self-oscillating SMPSs

Discrete component SMPS circuits with the chopper transistor and transformer acting as an oscillator have been in and out of favour over the years and are still used in modern TV sets. Fig. 5 is representative of a large number of such designs - the same operating principle is used in most of the large, heatsinked i.c. packages that incorporate the power switch in the chip.

When power is first applied, the chopper transistor Q803 begins to conduct because of the forward base bias applied
via R803. As a result, current flows in the primary winding of the chopper transformer T801. This induces a current flow in the feedback winding $\mathrm{F} 2-\mathrm{Bl}$. The signal generated here is coupled back to the base of Q803 via C809 and R812, and as a result Q803 is driven rapidly to saturation. In this condition the current in the primary winding of T801 soon stabilises and the positive feedback ceases (this is the classic blocking oscillator configuration). During this process C809 acquires a negative charge so that Q 803 is cut off and held off - until the capacitor has discharged via R812 and R803. At this point Q803 begins to conduct again and the process repeats itself. Continuous oscillation occurs, and energy is fed to the loads across the secondary supplies produced by the transformer and the associated rectifier circuits.

In this arrangement regulation is achieved by monitoring the voltage developed by feedback winding F1-F2 and the associated rectifier circuit D807/C808. This voltage is proportional to those produced across the secondary supply lines. It's applied to the emitter of the comparator transistor Q801 and to the base of this transistor via the potential divider R806/8/9. Q801 acts in exactly the same way as Tr2 in Fig. 3 therefore, its conduction being governed by the negative voltage developed across C808. This transistor's operating point, and thus the circuit's output voltages, is set by R808 which forms the 'set h.t.' control.

Q801 in turn controls the conduction of Q802, which sets the d.c. level at the base of Q803 and thus the discharge time for C809: the effect is to control Q803's turn-on timing and hence the duty cycle of the oscillator. We thus have a complete control loop which regulates and stabilises the three output lines.

The voltage developed across resistors R811 and R812 is proportional to the current that flows in Q803 and T801. In the full design this voltage is fed to an overload trip circuit (not shown here) that shorts out the feedback drive to the base of Q803 in the event of an excess current overload. Overvoltage protection is provided by diac D855 whose breakover voltage is reached when the h.t. output rises to about 110 per cent of the normal figure. It then conducts and latches on, shorting out the windings on the secondary side of T801. This brings the excess-current trip into operation. The power supply then shuts down until the mains power is switched off and on again to reset the trip.

T801 also provides mains isolation, there being no electrical connection between the windings and circuitry on its primary and secondary sides. In this particular circuit the surge limiter resistor R802 is included at the chassis return

Fig. 6: A high-frequency, i.c.-controlled chopper power supply, using a MOSFET transistor and a dual-loop feedback system. Mains isolation is provided bt T1 and the optocoupler OP1.
side of the mains bridge rectifier instead of the live feed side.

IC-controlled SMPSs

Many different types of switch-mode power supply chips have been used in TV sets over the last decade. The early ones operated line synchronously, that is they were locked to the 15.625 kHz line scan rate. There were two reasons for this: the avoidance of beat-pattern interference on the picture, and the supply of power when it's most needed - when the line output transistor switches on and current is drawn through the transformer. Later and current SMPS control chips run at a frequency that depends on the load. In the design shown in Fig. 6 the operation of the circuit varies between 32 kHz at maximum load and 150 kHz at minimum load, i.e. with the set in the standby condition.

The switching is done by the power FET Tr , which earths and isolates pin 2 of the chopper transformer Tl allernately as it switches on and off. Circuit operation is basically as described above, though unlike the previous design (Fig. 5) the circuit doesn't oscillate. When Tr 1 switches on, the 320 V supply developed across Cl by the mains bridge rectifier BR 1 is applied to Tl's primary winding (pins 1-2). As a result there's a ramp current build up in the winding, and energy is stored in the transformer's ferrite core in the form of a magnetic field. The phasing of the secondary windings is such that rectifiers D3 and D4 don't conduct at this stage. After a few microseconds CCl switches Trl off at its gate. The magnetic flux in T 1 then reverses, producing current flows in the transformer's secondary windings via the now conductive rectifiers D3, D4 etc. (there are others, but these have been omitted in the interests of providing a simple circuit description). When TI's magnetic energy has been dissipated, Trl is switched on again and the cycle is repeated.

Thus Tl is being continuously charged and discharged with magnetic energy. When Tl is being charged, the reservoir capacitors on the secondary side of the circuit, $\mathrm{C} 10, \mathrm{C} 11$ etc., are being discharged by their loads. When Tl discharges, the charge stored by Cl 0 etc . is replenished. It's important to appreciate that with this particular circuit the time scale is very short: there are typically six or seven 'pump' actions by the power supply during the period of a single line scan. This storage period of a few microseconds means that not much capacitance is required, so $\mathrm{Tl}, \mathrm{Cl} 0$ and C 11 do not have to be large or heavy. But the circuit, especially Tl , has to be well screened and decoupled to prevent radiation to other sections of the receiver.

The snubber network D3, C9, R14 and R15 across the primary winding of the transformer prevents excessive reverse voltage rise at the moment when Tr 1 switches off, so that the dissipation in Trl during the brief transition from its on to its off state is reduced to a safe level. D810, R813, C810 and C811 serve the same purpose in Fig. 5.

The Control Chip

The heart of the circuit is the TDA4605-3 control chip ICl. At switch on it's powered from the mains supply via R10 and C8, which form an integrating network. Once the circuit is up and running its operating voltage is provided by winding 3-4 on the transformer in conjunction with rectifier diode D2 and the reservoir capacitor C8. The pulses generated at pin 3 of the transformer serve two other purposes: they are fed via R9 and R8 to pin 8 of the chip to indicate that the transformer's magnetic energy has been expended, so that a new switch cycle should be started, while rectifier circuit Dl and C6 generates a voltage that's proportional to the output voltages. This is applied via R5 and R4 to pin 1 for regulation

MANOR SUPPLIES

MKV PAL COIIOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

* +1 different patterns and variations.
* Fully interlaced syme pulses with correct picture blanking
* EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yeflow. cyan, green, magenta, red, blue and black
* Chequerboard
* Monocoutputs with border castellations. cross hatch. grey scale. vertical lines, horizontal lines and dots. Uht modulator output plugs straight into receiver aerial socket
* Additional video output for C("IV \& VCR
* Facilitics for sound output.
* Fasy to build kit. sandard parts. (Only 2 adjusments. No special test equipment required.
* Mains operated with sabilised power supply
* All kits fully guaranteed with back-up service
* Also a arailable with VHIF Modulator.

Price of Kit
Casc ($\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4 "}\right)$ app
Optional Sound Modulc (6 MHz or 5.5 MHz) $\mathbf{5 5 . 9 0}$ £19.00 Built \& Tested in Case including Sound Module $£ 129.00$ Pont/Packing ty
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR (GENERATOR (Mk4)

* Output at LHIF, applied to receiver acrial socket.
* In addition to colour bars R-Y. B-Y etc
* Cross-hatch, grey seale, peak white and black leved.
* Pushbuton controls, Battery or mains operated.
* Simple design. only five i.c.s on colour bar P.(.B.
* Bachup service available

PRICE OF MK4 COLOUR BAR GENERATOR KIT £39.00. CASE $£ 5.80$. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P £ 4.50)

LINE OUTPUT TRANSFORMER TESTER

- Service Aid.
* Saves time and money
* Checks short turns.
* Simple to use.
* Reliable.
* Battery operated.
* Pocket size

PRICE $£ 24.00$
POSTIPACKING £2.50
INFRA RED REMOTE CONTROL TESTER

- Pockersiz
* LLEI + audible indication.
* Simple to use

PRICE £20.00
POST/PACKING £2.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& audio sutput. $£ 28.50$ p.p. $£ 1.80$.
PAL DECOIDER KIT (Video (o RGB) for Momitor $£ 27 .(10)$ p.p. £1. 80 .

CRT TESTER \& REACTINATOR KIT For Colour \& Mono complete with (asce. Pancl Meter Indiator - can be adapted for lates (RTi $\mathbf{8 4 5 . 0 0}$ p.p. Et. 50 (

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement tor: Ferguson. Hitacha. Philips, Pinasons Grundig, IJI Sony, Sansto, Granada, Sausho + many others
lihone for make and model no.
PHILIPS SPARES
MANUAISCFI, (TX-E, (TX-S.CPM!, CPIII. GRIAX. GMIAE, 2B3. 3A, NC•-('R (11111 £ 7.50 p.p. $£ 1.80,2 \mathrm{~A} £ 10.50$ p.p. 11.80 , BACKUP BATT. $2.4 \vee £ 3.801 .2 \mathrm{~V} £ 2.10 \mathrm{p}$ p. 90 p
K30, КT4. ('TX-EHT Lead £4.90 p.p. E1.(K)
THORN/FERGUSON SPARES
TX $9 / 10$ Remote \& tuning 1515 N \&5.(N) $\mathrm{O}, \mathrm{p} \pm 1.80$

TRIPLERS EHT MUL,TIPIIERS p.p. $£ 1.80$
 RANGE (OUNE Cxict no.) $£ 13.80$ GRUNDIG BG; 2087-6.82-100 $/ 101012 / 1006 £ 16.81$ Li.K. UNIVERSAL. (best quality) i7. 80 THORY 9010 E9.80
DECCATATI'NGBG; 200/4 TYPE 97.80
MISCELLANEOUS pp $£ 1.81$
MAINS TRANSORMERS: 6 Y Volt CRT hows \quad c6. 80 p p. El .80 E6.80pp $\{180$
Mans Isolsting jof 1 VA 551.25 p p. $£ 5.25$
155 (RYSTALS tor handsels. + fur 22.00 pp . X (p
DEGALSSNG ROD £33.75 p p 13.50
TV FAUI.T FINDIVG GUDOE f1 + . 8 TCREALIT FINDING (CDIDE 1 S

TRANSPARENT 'IIIEO SERVICE CASSETTE HITACHI FRAME MODLLE HM 6251 , HM6232 5980 HITACHI THERMISTOR TH902 E? 40

HOW TO ORDER: ADD P\& F TO ORDER + VAT 17.5% TO THE TOTAI.
 PRICES ARE SLBJECT TO CHAVGE WITHOLT NOTICE

Telephone 071-7948751/7947346
MANOR SUPPLIES

V/SA

172 WEST END LANE, LONDON NW6 1SD
CAILERS WELCOME AT SHOP
Mon-Fri 9.3 l -6pm - Thurs 9.30 l -1pm - Sat $9.30-5 \mathrm{pm}$
purposes. Thus the basic feedback loop is formed, with a sample voltage applied to pin 1 and a reference voltage generated within the chip.

When mains power is first applied the secondary reservoir capacitors $\mathrm{C} 10, \mathrm{C} 11$ etc. are all discharged. To limit stress on the power supply during the initial charging surge a soft-start system is provided within ICI. It brings up the duty cycle of the drive pulse output at pin 5 at a slow rate, governed by the charging time of capacitor C 3 at pin 7 . The driver stage behind pin 5 takes the form of a push-pull amplifier which switches the output between chassis and the chip's supply potential. Although the power MOSFET Tr 1 is a voltage-operated device a drive current capability of $\pm 1 \mathrm{~A}$ is required for rapid charge and discharge of its gate capacitance.

Most of the chip's other pins are concerned with circuit and component protection. Pin 3 samples the mains derived supply via potential divider R6/7: if the voltage developed across Cl becomes too low for normal operation of the circuit the power supply shuts down. Excessive mains voltage is sensed at pin 6, the circuit similarly shutting down.

The main overload protection centres on pin 2 however. When Trl is off, pin 2 is earthed (to pin 4) by a switch inside the chip - it's in the block labelled primary current simulator. During Trl's on periods the switch is opened so that C 2 can charge from the 320 V line via R1. Thus C2 generates a sawtooth voltage whose peak amplitude is proportional to the chopper transistor's duty cycle. This waveform is monitored within the chip: if the peak voltage exceeds a certain threshold excessive energy demand is indicated and Trl's duty cycle is limited to reduce the output from the power supply.

While this energy-limitation system provides good general protection, its position on the primary side of the power supply cannot guard against overloads in individual circuits supplied by the secondary side. For example a situation could arise where the line output stage draws excessive current without increasing the set's total power consumption beyond the preset limit. To guard against this the current in the 135 V line is monitored by the low-value resistor R16 which is connected in series with winding 7-8 of the transformer. A negative voltage that's proportional to the current is developed at the junction of pin 8 and R16: if this voltage exceeds a certain level a switch is triggered, disabling the line oscillator so that the line output stage shuts down.

Apart from such extra arrangements the power supply is inherently short-circuit proof. If a secondary winding on the chopper transformer is shorted out for example the energy stored by the primary winding is very quickly transferred to the secondary side, leading to high-frequency operation with a minimal switching duty cycle and low energy dissipation.

We have already seen that feedback from the transformer via rectifier circuit DI/C6 and resistors R5 and R4 to pin 1 of the chip is used to provide stabilisation. There's an additional feedback loop that's also linked to pin 1 but monitors the 135 V h.t. supply. A sample of the h.t. voltage is taken via the potential divider R17/18/19 to the input terminal of IC2, which acts as a variable zener diode. It's connected across the stabilised 12 V supply produced by R22 and zener diode ZD1. Part of IC2's current flows through R20 and the optocoupler OPI: this current will vary with any increase or decease in the h.t. voltage. The light produced by the LED section of the optocoupler shines on and varies the conduction/resistance of the phototransistor in the package. This phototransistor is connected across R5, thus varying the voltage applied to pin 1 of ICl to improve the stabilisation characteristic.

Isolation between the primary and secondary sides of the circuit is provided by Tl and OPl .

Power supplies like this continue to run in the standby mode, operating at high frequency. This represents minimum
load, with a typical mains power consumption of about 6 W . In the arrangement shown in Fig. 6 transistor Tr 2 provides a switched 15 V line. When the standby command is given the microcontroller chip in the set switches $\operatorname{Tr} 2$ off: removal of the switched 15 V line shuts down the line output stage and other essential sections of the set while the control department remains operational to receive further commands.

Bipolar Transistor Circuits

The circuit we've been looking at is properly known as a free-running flyback converter. It's a development of the well-known configuration using a TDA4600/4601 series control chip. The latter has been very widely used by setmakers in conjunction with a bipolar switching transistor. The main difference with the arrangement shown in Fig. 6 is the much higher operating frequency, which is made possible by the fast-switching power MOSFET and the transformer's specially-developed ferrite core.

Degaussing

In dealing with picture tubes in Part 8 (August) we mentioned that the magnetic shield and shadowmask within the tube and the rimband are demagnetised by applying a decaying burst of mains a.c. to a coil that's wound round the bowl of the tube. The provision of this degaussing energy is another function of the receiver's power supply.

Fig. 7 shows the simple circuit generally used. At switch on mains current is passed through the two posistors (thermistors with a positive temperature coefficient) PTCl and PTC 2 and the degaussing coil/coils (depending on the tube type). The two posistors are mounted in intimate thermal contact in a small, three-legged package. Initially, when the dual posistor is cold, a relatively heavy current flows. PTCl acts as a heating element while PTC2 contributes a switch-like

Fig. 7: Basic tube degaussing circuit. The current flowing through the degaussing coil falls from 400 mA to less than $100 \mu \mathrm{~A}$ within a few seconds of the application of the mains supply to the dual-posistor PTC1/2. In some designs the thermistor that acts as the heating element is connected in series with the supply to the rest of the receiver instead of being in parallel as shown here: it has to have a negative temperature coefficient therefore, and can contribute to switch-on surge limiting.
action. The device warms up rapidly, its resistance rising substantially: PTC2 goes very high, virtually cutting off the current flow through the coil(s), while PTCl's resistance rises to a stable point so that it runs warm enough to keep PTC2 in its high-resistance state.

The usual practice has been to connect the degaussing circuit after the mains on/off switch so that the tube is degaussed each time the set is switched on. Where the set alternates between on and standby modes, with all or part of the power supply running continuously, a triac or relay triggered by the power-up or /standby line may be used to switch power to the degaussing circuit.

Next month: The digital bits

Teletopics

US HDTV PROGRESS

The Grand Alliance of firms developing the US HDTV system has reached broad agreement on three of the four main technical specifications. The MPEG-2 video compression system, with B Frames, will be used. There will be two scanning formats, 1,080 sequential lines with 1,920 square pixels per line at 24,30 and 60 frames $/ \mathrm{sec}$; and 787.5 sequential lines variable to 1,050 interlaced at similar pixel and frame rates. For sound, Dolby AC-3 has been adopted. The main area of contention lies in the transmission system: several different techniques are to be tested in early 1994. The FCC has given approval for a prototype system for evaluation to be built. It's expected that a complete prototype system with all the final technical specifications agreed should be ready by the third quarter of 1994.

SERVICING NVOs

National Vocational Qualifications in consumer electrical/electronic product servicing should be available for award within a year. Standards of competence have been drawn up but not finalised: the Department of Employment is responsible for this and is to appoint a consultant to undertake the task. NVQs are intended as industry-led competence qualifications that are recognised as national standards. The City and Guilds of London Institute and the Electronics Examination Board will be the joint awarding bodies. Employers will be responsible for putting forward staff. There will be three levels.

CABLE TV

Channel One, a new cable channel for the London area carrying light entertainment and features, sports programmes and news, is to be launched in April. The London Interconnect Group, a consortium of the capital's six largest cable TV operators, has awarded a ten-year licence to Channel One, which will be run by Associated Newspapers and SelecTV. Initially there will be about twelve hours a day of programmes. Associated Newspapers has an 80 per cent stake while SelecTV will be mainly responsible for the provision of entertainment programming. An investment of $£ 30 \mathrm{~m}$ is to be undertaken over the next few years and the group will be building a television studio.

The ITC has issued the first invitation for four years to apply for a new UK cable TV licence: the franchise will cover Sevenoaks, Tonbridge and Tunbridge Wells in west Kent and will be the first to be advertised under the 1990 Broadcasting Act.

The latest cable figures show that for the first time the number of UK subscribers to modern, broadband cable services has exceeded half a million.

INTERACTIVE TV

Swedish public broadcaster Sveriges Television (SVT) is the first in Europe to plan an interactive TV system, with digital transmission capable of terrestrial, cable or satellite operation at standard or HDTV line rates. The system, being developed in conjunction with the Swedish Institute of Computer Science, is called Idun. It will provide teletext type displays though the quality will be much higher than
standard teletext, and output to a laser printer is envisaged: both still and moving pictures can be presented. Receivers will need to be able to store about 100 Mbytes of information. The system works like a Windows program, controlled by the TV handset. A feedback channel is incorporated for viewer interactive use and/or pay TV operation. Philips' Postscript decoder development could be used.

BUSINESS NEWS

Amstrad chairman Alan Sugar sees no evidence of a preChristmas spending boom. At the company's annual general meeting he commented that "trading conditions are not very good: people just aren't spending money". October produced worse results than anticipated, particularly in the UK where volumes and margins have been under pressure. The company expected November and December to reflect "relatively weak demand". Amstrad is losing money on its remaining high street personal computer sales, and has seen satellite television margins plunge.

Satellite TV equipment distributor Longreach Marketing Ltd. of Bath has agreed to buy Supervision from the administrative receivers. A new company, Longreach Supervision, has been set up.

Daewoo has set up the headquarters for its UK electronics sales company at Winnersh Triangle near Reading. Full address is Daewoo Electronic Sales UK Ltd., Daewoo Building, Wharfdale Road, Winnersh Triangle, Wokingham, Berks RGll 5TP, telephone 0734272 272, fax 0734699 922. An alteration to our spares guide entry is required - the spares/service fax no. is now 0734699900 . The company is building a plant for the production of colour TV sets and tubes at Fameck, France.

Grundig has shut its TV receiver assembly plant at Creutzwald, France.

PUBLICATIONS

U-View, 4 South Parade, Bawtry, Doncaster, Yorkshire DN10 6JH (0302 719 997, fax 0302719 995) has now published Video Servicing 1991-2 at $£ 195$. This massive three-volume set provides circuit diagrams and other essential servicing data for 322 models from 44 manufacturers.

GDN Publications, Longmeadow, Miles Lane, Cobham, Surrey KTll 2EA (0932 862 592) has published Hacker Radio. There is a special price to Television readers of $£ 3.20$ inclusive of post and paiking from the above address. This well-illustrated, 28 -page book by Geoffrey Dixon-Nutall and Gordon Bussey is a fascinating account of the Hacker brothers' involvement in the UK radio industry, first with the Dynatron company and later Hacker Radio.

NEWS ROUND-UP

The colour television licence fee is to rise from $£ 83$ to $£ 84.50$ from April 1st 1994, an increase of 1.8 per cent.

Kodak is now offering higher-capacity, writable CDs that store up to 17 per cent more information in digital form. The new discs can hold up to 680 Mbytes of data or 74 minutes of digital audio and cost $£ 18.50$ each (the original discs hold $580 \mathrm{Mbytes} / 63$ minutes of audio).

Dixons has issued a recall for the 20 in . Matsui Models 209R and 209T for a safety modification because of possible overheating. About 50,000 sets have been sold. Owners can contact Mastercare's Customer Relations Department on freephone 0500234558.

Matsushita and Sony have both entered the video games market.

VCR Clinic

Philips VR6761

In the E-E and playback modes there was sound but just a blank raster. Checks on the record/playback switching voltages showed that there was only 2 V instead of 12 V at D6403 on signals board P306 in the E-E and playback modes. This voltage comes from mother board P606, where the BC328/40 transistor $\operatorname{Tr} 7607$ was found to be opencircuit base-to-emitter.
P.B.

Ferguson 3V35/JVC HRD120

Check for h.f. ripple on the 12 V supply, at pin 1 of connector CN 4 , if the playback picture suffers from herringbone patterning. A ripple voltage of 0.5 V here should lead to a check on C16 $(47 \mu \mathrm{~F})$ which you will probably find is open-circuit.
P.B.

Samsung SI/SX7220/Goodmans VCR2500

If one of these machines fails to eject the tape or dies as it completes the tape loading process it's likely that the loading motor is weak. On a couple of occasions recently however we've found that poor regulation by the STK5333 chip on the power regulator PCB was the cause.
E.T.

Tatung TVR6111/Amstrad VCR9410/etc

There are doubtless other Amstrad VCRs and more makes and models that use this mechanism. A very common fault with it now is intermittent failure to rewind or wind fast forwards. The motor whirrs but the reel-drive gears don't

Fig. 1: Where to file the trigger lever - see Tatung TVR6111/Amstrad VCR9410/etc.
move into engagement. The cause of the problem is failure of the trigger lever (item 260 in the exploded view of the deck) to flip back into position in the stop mode. Cure it by filing a fraction of a millimetre off the end of its skirt, as shown in Fig. 1.
E.T.

JVC HRD520

This machine had been to several service departments, always with the complaint of intermittent tape looping. After a great deal of time we traced the cause of the fault to the mode switch, which is available from CPC under part no. TNPU60622-1-1.
R.J.A.

Ferguson 3V32/JVC HR7655

The 3V32 is not a common visitor to our workshop. In view of this and its complex circuitry we tend to be apprehensive when one comes along. The fault with this one was complete

Reports from Philip Blundell, AMIEIE, Eugene Trundle, Richard J. Avis, Adrian Farnborough, John Edwards, Alfred Damp, Mike Leach, John Coombes, Chris Avis, Steve Cannon, Chris Watton and Simon Bodgett
absence of the fluorescent display. Not surprisingly we found that the filament supply voltage was missing. It comes from a 37 kHz oscillator which is mounted on a small subpanel behind the main display, the main items here being T201 and Q205. There should be 3 V p-p at the centre-tapped secondary winding but a scope check showed that the oscillator had stopped. It tumed out that the oscillator transistor's $22 \mathrm{k} \Omega$ base bias resistor R281 was open-circuit.
A.F.

Akai VS22

The tape loaded correctly but there was no drum or capstan rotation in either direction because the BU2735AS chip IC503 was faulty. We've had failure of this chip on a number of occasions.
J.E.

Ferguson 3V23/JVC HR7700

A tape was stuck in this machine: the eject button had no effect because there was no voltage across the carriage loading motor. We found that fuse F5 had blown because C36 was short-circuit. Replacing these items put matters right.
J.E.

Panasonic NV370/830/850

If you get one of these machines that's dead with no displays and no functions check the 0.39Ω resistor R 1001 in the small power area on the main board. It will probably be open-circuit with no contributory cause - it feeds the 5 V regulator. A new resistor should provide a cure. J.E.

Hitachi VT8000

All functions worked in this old machine, but only for about five seconds. It would then shut down. The cause was a stretched take-up spool carrier to counter belt - so the counter and the take-up spool rotation pulses stopped. A new belt solved the problem.
J.E.

Philips VR6362

In rewind or fast forward this machine would stop and eject the tape after a few seconds. In the play mode it would lace up then unlace and eject the tape. All this was because the drum didn't rotate as the 3.3Ω resistor R 3142 , which is in the 13 V feed to the drum drive circuit, had failed. J.E.

Philips DMP2 Deck

Shortly after we'd fitted a service kit to one of these machines the customer returned it with the complaint that although it now worked it would occasionally refuse to load a tape. The machine worked all right for several days before the fault showed up. When we called up the fault status from the machine's software we got an indication that tape loading was too long, heavy loading, etc., in other words a service kit was required. In an attempt to see what was happening we examined the machine from all angles. Nothing was obvious until I peered into the loading motor and pulley housing:
while a tape was being loaded the pulley moved from side to side. When the top deck was dismantled we found that the shaft on which the differential gear sits was loose in its chassis mount. We got over the problem by fitting a chassis from a scrap machine - otherwise the machine would have been beyond economic repair.
A.D.

NEC DX1000K

This machine was brought in for a new idler and service. When we obtained and fitted the necessary parts we found that the E-E video was overloaded - there was a gradual improvement as the machine warmed up. This machine has a digital still TV picture mode. When this was selected we got a good still E-E picture. The cause of the fault was traced to pin 3 of IC207, where the voltage didn't go low enough for E-E video. There was leakage here, due to the glue that had been applied to the PCB to secure cables. A.D.

Panasonic NVG21

There was no audio playback. We found that the audio mute line was high, the cause of this being absence of the CTL pulses. We checked back to the servo pack where C240 in the 'AGC CTL' circuit was defective.
A.D.

Saisho VR1000/Matsui VX800

The complaint was that the 2.5AT fuse F502 would blow intermittently. While the machine sat on the bench it behaved normally, but as soon as it was moved the fuse blew. We found that the bottom PCB had warped beneath the power supply. As a result the fuse blew every time the PCB came into contact with the metal bottom case.
A.D.

Crown VRS200/Alba VCR7000/8000

The capstan speed would slow and the machine would switch from the SP to the LP mode. Scope checks showed that the control pulses were curved and that there were 1 V negative-going pulses on the 6 V line. The bridge rectifier was the cause of the fault.

A.D.

Samsung SI1260

There was a blank raster and no playback. After removing the top cover we saw that there was neither drum nor capstan rotation: the blank raster gave the impression that the machine was stuck in the AV mode, though it wasn't. Voltage checks showed that the switched 5 V supply was missing at D109 (1N4001) which had gone open-circuit. A replacement restored normal operation.
M.L.

Ferguson 3V54

The clock worked but there was no other operation. None of the front controls had any effect. As the circuit protectors in the main body of the power supply were all in order we turned our attention to the main PCB where we found that the switched 5 V supply was missing. The cause of the fault was C605 on the top panel - it was leaky, a replacement restoring normal operation.
M.L.

Akai VSC200

If there's no playback check that the video lock is not in the on position. To unlock, press the remote control unit's play button and hold it down for ten seconds then do the same
with the stop button. If this fails to restore playback check that the cassette is accepted correctly. If not, check or replace the cassette loading block.
J.C.

Mitsubishi HS337

For no rewind or fast forward operation and failure to record check the record inhibit switch. It may be misaligned, broken or damaged as the result of use of a C format cassette.
J.C.

JVC HRD540

There was no E-E sound, The cause was failure of the $4 \cdot 7 \Omega$ safety resistor R47 in the l.t. feed to the audio circuit. J.C.

JVC HRD520

For muted sound with lines on the picture check the f.m. waveform. This will show that the guide poles are misaligned. Under these conditions the VCR may record and play back its own tapes all right but it won't play back prerecorded tapes.
J.C.

Toshiba V110

If the tuning is off, check the 2.7 V zener diode DT53 in the video 5 V supply regulator circuit. It tends to become leaky. Other possible symptoms when this diode is leaky are no playback colour or distorted playback and E-E pictures. J.C.

Amstrad TVR2

It's difficult to decide whether to list this fault in the TV or VCR section. The symptom was severe 100 Hz hum on the TV picture and sound, though tape playback was o.k. Its cause was in the video power supply however, where the $2,200 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitor C 606 was almost opencircuit. It smooths the 20 V supply to the 12 V regulator chip IC601.
C.A.

Hitachi VT410

An obscure fault caused this machine to lace up, play briefly, then unlace. The counter was working, and the waveforms around the syscon chip IC901 were all o.k. except for the 25 Hz signal at pin 23 which was found to be of low amplitude when a comparison check was carried out with a working machine. The signal comes from the servo chip IC601, where a comparative resistance reading to chassis revealed that the faulty machine had a 400Ω leak. The cause of this was C23, a surface-mounted capacitor on the video head preamplifier PCB!
C.A.

JVC HRD540

The problem was intermittent E-E and playback sound. Application of freezer anywhere around Q5 and Q6 on the tuner/i.f. PCB instigated the fault, as did any attempt to measure the voltages around Q6 (FMS2) which proved to be the culprit. This tiny, five-legged surface-mounted device is not listed by any of our usual suppliers, but a replacement was obtained from JVC without difficulty.
C.A.

Philips VR422

There was intermittent mistracking and generally very poor playback. As there were no obvious mechanical faults and
the deck had been realigned a few times we suspected an electronic fault. A scope check on the drum PG/FG pulses at the head amplifier showed, when a comparison was made with the oscillogram, that there was no synchronising pulse. The oscillogram shows this as a gap in the drum pulse waveform. After replacing the TDA5 140 drum motor driver chip IC7301 and carrying out slight realignment of the deck we obtained an excellent picture.
S.C.

Bush VCR185

There were no E-E signals. Checks showed that the u.h.f. tuner received a $0-30 \mathrm{~V}$ ramp voltage while search tuning but, as voltage UB was missing, no signals were selected. R132 ($10 \mathrm{k} \Omega$) in the band-switching system was opencircuit.
C.W.

Logik VR950/Samsung VI611

This machine wouldn't play. We found that the drum didn't rotate and the operate LED didn't light up. Although some of the power controlled circuits were working, the PC12 line was low. The cause of the trouble was D4 (1N4002) on the power supply PCB.
C.W.

Akai VSF33

When any operation was selected, via either the machine's own controls or the remote control unit, the power went off leaving just the clock. When the machine was switched on again it would stay on until a tape was inserted or the channel was changed. It would then power down again. The cause of the fault lay in the 23.5 V regulator circuit, where R221 (120) had gone high in value.
C.W.

Hitachi VTM740

The customer complained that there were lines on the picture and that the tracking light flashed, mostly at the start of a tape. When we ran a test tape the symptoms were as described: the tape speed varied, being mostly slow. Checks on the pinch roller, the back tension and the tape path led us to the capstan motor, whose upper bush was bone dry. Dismantling the motor, lubricating the bush then reassembling the unit provided a complete cure.
C.W.

Pye 65VR20/Philips VR6520

This machine sometimes stopped after only a few minutes, but only in the record mode. It turned out to be a nice easy job for a change: the recording tab switch was as black as your hat! A new switch restored normal operation. C.W.

Amstrad VCR8600

There was no drum rotation. The cause was traced to tiny cracks on the signal panel, where the YC subpanel is joined. This is a very flimsy area, and the print is quite tricky to repair. I applied a few blobs of glue to help support the subpanel.
C.W.

Panasonic NVG21

The lift was jammed half way in and the machine was dead - no clock display or power-on LED indication. A check in the power supply showed that the 1Ω safety resistor R15 was open-circuit. This was the cause of the dead machine, and I assume that the jammed lift was responsible for its
failure. Once the lift had been extracted I found that various plastic tabs had broken off, so a new side plate (part no. VXA2677) was obtained from SEME. If you have to fit one of these I recommend that you read Nick Beer's article (May 1991) on servicing this model: without his advice I'm sure that I would still be trying to align the gears. C.W.

Hitachi VT430

This machine was stuck in pause. When a cassette was inserted the pause indicator lit up. Other functions could be selected, e.g. play, but this produced only a still picture. A check at pin 56 of IC 901 produced a reading of 3.2 V instead of 0 V . This led us to 11581 , a $100 \mu \mathrm{H}$ choke that's in series with the camera pause socket.
C.W.

JVC HRD880

A tape was stuck in the cassette housing and there were no functions. We found that a key scan port associated with ICl was stuck high. Everything worked correctly when the chip had been replaced.
S.B.

S-VHS Instability

The complaint with a JVC HRD4700 was that it wouldn't record via the S-VHS sockets while the S-VHS output signals were inherently unstable. We found that it recorded and played back very well in the S-VHS mode. The playback instability occurred with titles that had been added by the amateur film maker who owned the VCR. We told him that the black-level clamping in his titling machine wasn't up to much - if indeed it had such a thing.
S.B.

JVC HRD560

One of these machines wouldn't tune. We replaced the tuner, the tuning memory chip, then the tuner/timer chip for key scan control all to no avail. Finally we replaced the system control chip. That did it!

Another of these machines came in dead. We replaced circuit protector CP1 in the power supply then, on final test, noticed that the capstan motor was inclined to act erratically - in fact at one time it went into reverse. A new motor had to be fitted.
S.B.

Panasonic WJMX12 Mixer

This mixer caused us a lot of trouble. The alleged fault was loss of channel 2 colour after some time - a tape was supplied as proof. We were unable to confirm the fault and got a second opinion from Panasonic who ran the machine on test for a week then concluded that it wasn't faulty. The report said that the VXOs and VCOs were all set up correctly and that full genlock was consistently obtained. We eventually discovered that the fault did exist when the mixer got hot. The cause of the fault was a crystal in the channel 2 input colour decoder. It went off frequency when hot, i.e. very hot.
S.B.

Grundig 2×4 Super

I rarely see one of these machines. This one came in with a power supply fault. After removing the 25A car fuse and replacing the intermittent on/off switch I eventually found the real cause of the fault - the coupling capacitor between the TDA4600 chopper control chip and the chopper transistor.
S.B.

Faults that Aren't There

D.A. Chaplin

Because of the complexity of many modern consumer electronic products the service engineer must, when faultfinding, take great care to check on the basics before plunging in at the deep end. A careful check on control settings, both mechanical and electronic, can save a lot of time that might otherwise be spent on searching for the cause of a fault that isn't actually there. Here are some examples where a fault was initially thought to be present but it wasn't necessary to use any tools to put matters right. Most of them are based on my personal experience, and I admit that with hindsight some of them look like blunders. But it's easy to assume that a fault is present when some of these conditions are met for the first time, and I doubt whether I'm alone in this respect.

A Handset Problem

There were two symptoms with an ITT Trimline receiver that came in. The main one was intermittent loss of the signals. This was quickly diagnosed as being caused by dryjoints in the tuner/i.f. module: a quick rework of all the connections here restored reliable operation. I was also told that the remote control system hadn't worked for months. As the batteries were flat I cleaned and retensioned the contacts and fitted new ones. But there was still no action when the unit was tried.

A couple of fruitless hours were then spent stripping the unit more than once, replacing the remote-control receiver assembly in the set and the associated i.c.s. Finally in desperation I pointed the handset at the receiver and pushed each button in turn. Suddenly everything began to work normally. The next few minutes were spent working out what had happened. Then the penny dropped. It was one of those TV sets that come with a teletext handset even though there's no text panel. Someone had pushed the text button, after which the normal functions weren't available until the picture button had been pressed. To make matters worse the markings on the buttons had worn off, so it was not obvious that the handset was a teletext one. I tried removing the batteries with the text mode selected: when they were replaced several minutes later the unit was still in the text mode.

Standby Problems

My first brush with the Ferguson ICC5 chassis occurred when a friend gave me a set that bore the Model number 5IL5BQ - incidentally in every list of ICC5 sets I've come across this model is omitted, does anyone know why? Anyway the set was in a really bad way, hence the gift.

After repairing much damage and many faults the set finally sprang to life. But the second time I switched it on the set went into the standby mode before a picture appeared. Several more attempts produced the same result. I eventually found, to my great relief, that the set could be brought back to life by holding in the channel-up button. I
subsequently learnt that when the set is switched off in the standby mode this fact is stored in the memory, the result being that it returns to the standby mode when next switched on. The set can of course also be brought out of standby by using the handset in the normal way.

I've heard that some sets behave in a similar fashion when switched off manually while programmed in the timer-off mode. The next time the set is used it switches off after the period for which the timer was set on the previous occasion. Those unaware of this could waste much time looking for a non-existent fault.

Play Problem

An Amstrad TVR3 televideo unit I had in for repair had a badly cracked control PCB in the video section. When I tested the machine after carrying out the repair I found that it went into play as soon as a tape was inserted and the stop button was ineffective. I stripped the unit down twice more and rechecked the panel but no further faults were found. Luckily the last time I inserted the video section into the cabinet I noticed a switcn, marked 'repeat play', at the rear of this section. Normal operation was obtained when this switch was flicked to 'off'.

Store Lock/Hotel Mode

I carry out TV/VCR repairs for local hospitals. A recent addition to my list of customers is the private wing at the District General Hospitai. Eighteen Philips GRI-AX portables had been installed here. The first one to cause problems produced only very limited volume. Fortunately I hadn't wasted much time on fault-finding before something began to stir at the back of my mind. I searched through my copies of Philips' Service Link and eventually found details of the store lock/hotel mode that's a feature of this chassis.

This facility is used to prevent alteration to stored TV and VCR programme turings, to prevent alteration to sound and picture personal-preference values, and to limit the available volume range to a preset maximum. Store lock is made operative by selecting programme 38 . Adjust the volume to the maximum desired level, then press the store and programme-up buttons simultaneously. To unlock, you select programme 38 then press the store and control-up buttons simultaneously. The set worked normally when this unlocking procedure had been followed.

The Philips GR2.1 chassis also has a hotel mode and channel 38 again has to be selected when locking and unlocking. But with this chassis you press programme '-' or volume '+' to lock or unlock respectively.

Child Lock

A Toshiba V411B VCR wouldn't respond to any key commands. The cure was simple but not obvious. Someone had accidentally activated the child-lock function. When the machine is in this mode the only clue is the stop indication in the VCR display. Normal operation is restored by pressing the handset's tuner button until the stop indication goes out. To set the child-lock function, press the standby button for more than eight seconds - until the stop indicator lights up.

In Conclusion

In conclusion I hope that these examples will be helpful in saving some of you time and would welcome information from other readers on similar potential time-wasters.

Letters

COWBOYS ETC

Much has been written in recent issues on the subject of what makes a cowboy. It's not the qualifications they do or don't have but their attitude and approach to the work they handle. My business deals with brown and white goods and in both these fields we have to compete with various self-employed engineers who have worked for national TV rental companies or domestic appliance manufacturers' service depots. You wouldn't expect men from such backgrounds to be cowboys, but in my experience they certainly are. Here are some examples.

One TV man is notorious for quoting around $£ 90$ to repair simple little faults. He was well known by his colleagues at his previous employer for being lazy. He probably quotes high because he doesn't want many of those who approach him to go ahead with a repair. If say three people a week accept a $£ 90$ quote he has $£ 270$ in his hand. Working from home, the only overhead he has is his ad. in the paper. Another TV man seems to be capable of repairing only Ferguson products. We've seen numerous items that he has botched up then told the customer that parts aren't available. He told the owner of a set fitted with the Philips KT3 chassis that it had a duff tube when the cause of the trouble was faulty RGB output stage operation because of a small print crack in the line output stage.

Two guys from the same previous employer compete with us in the domestic appliance field. They both appear to have gone into business to make the maximum amount of money for the least effort. They charge for parts they've not fitted at prices that would be too high if they had fitted them, and in some cases have invented names for things they claim to have fitted. They never turn up when they get a call-back, and both have been known to return items they either couldn't fix or for which they had an estimate refused with bits missing.

A man you would call a skip scavenger has brought me numerous items that had been dumped though they had only minor faults. I can't help wondering whether they were dumped because their owners had been misled by these real cowboys.
Name and address supplied.
I'm appalled by the increasing number of manufacturers that refuse to give advice to non-account holders. Often the only response I get is "buy a $£ 30-£ 35$ manual" to help with the repair. I always mention such lack of support to my customers and hope that the message gets through.

I've been in the business of servicing TV sets, VCRs etc. for over twenty five years and have worked for a manufacturer. I always gave advice, technical or not, as I felt that you should look after your products, not just sell them. We're not all cowboys.
J.R. Luniss.

Swindon, Wilts.

NICAM ON A SHOESTRING POSTSCRIPT

I'd like to add the following postscript to Keith Wevill's article in the February 1993 issue. Like Mr. Wevill I bought a Nicam unit from Sendz Components, though there was no Nicam service in this area at the time. Once Nicam became available I got the article out and studied it. The suggested
interface was more complex than necessary for my purposes: all I required was for my set to switch to stereo automatically when this was present and back to mono otherwise. The following modifications - additional to the filter, crystal etc. modifications in the previous article - make this possible.
(1) Fit a link between pins 16 and 20 of input plug BS 15 . This makes IS 12 (4053) switch between Nicam (pins 2 and 12) and second scart (pins 1 and 13) inputs in accordance with the status of the N line.
(2) Lift the IS04 side of R524 and connect the freed end to pins 1 and 3 of the second scart socket. This supplies the mono signal.
(3) Lift the ISO4 side of J031 and J008. These provide the right- and left-channel outputs respectively. Because of the values of C557 and C556 a fairly high-impedance load is needed: I fitted emitter-followers here.

Not having any way of applying I2C control I decided to use IS06, IS16 and IS07 on their own. The modifications required to do this are as follows.
(1) Lift CW28 and CW25 on the IS05 side. These are the inputs to IS06 and IS16 respectively. Note the polarity of these capacitors to ensure that this is compatible with your interfacing arrangements.
(2) To use IS07, lift the IS05 sides of J033 (right) and J020 (left). These feeds require a bias of about 6 V .

I won't provide details of the gain-controlled interface I use between IS12 and IS06/16 as it employs an obscure Japanese chip that happened to be in my junk box. The output from IS12 does need a small amount of amplification to drive IS06/16, but none is necessary for IS07.
Philip Lane.
Aberaeron, Dyfed.

CAR RADIO-CASSETTE PLAYERS

As I spend my time repairing car radio-cassette players I found Alan Bouskill's article in the October issue and B.D. Andrews' letter in the November issue interesting.

My experience with the Philips P1 and P6 decks is that the belts do need to be replaced - I do it as a matter of course. In these mechanisms the belt provides drive during play and wind/rewind and also moves the head and pinch roller(s) into the cassette when one is inserted. If the belt is at all slack the head/pinch roller assembly will stall before this movement is complete and it will then be impossible to eject the cassette. Should this happen while the owner is using it and he employs strong-arm methods to force out the cassette a plastic lug will as often as not break off, rendering the deck fit only for the bin! In addition the corners of the square-section belt used in the P6 deck become rounded after a time: the result can be intermittent rotation of the belt along its length, which in turn causes unpleasant speed variations.

I agree that it's now uneconomic to replace the on/off switch in the Ford RST2 1 P unit, which was made in Brazil by Blaupunkt. When it was a current model however I replaced over a hundred. The job takes about one and a half hours. Everything has to come out of the case, including the pushbutton/tuner unit! What finally finished this a.m. only model for me was the demise of Radio 2 on the medium wave (so customers lost interest) and the increasingly expensive deck spares (available from Motorola stockists).

It's possible to wire across the legs of the switch. Remove the left-hand spring clip (one of the pair that secures the unit in the car), the left-hand upper PCB (the one over the volume control) and the cassette deck. Getting a soldering iron in isn't easy - but is possible! Alternatively the switch can be bypassed by shorting out two points on the rear socket-panel PCB , or by connecting the $12 \mathrm{~V}+$ and electrical aerial terminals together and feeding power to their junction via a 3 A fuse. Despite some loss of supply filtering, these bypass methods don't seem to create interference problems. But I don't personally wire across or bypass switches any more, because what happens when a unit develops a fault and starts to emit smoke while the owner is driving in the outside lane of a motorway and the only method of switching the unit off is to use the ignition key?!
Geoff Davies.
Rugby, Warwickshire.

SCOPE REPAIRS

Roger Burchett's letter (November) on the high cost of scope repairs reminded me of a problem we had with the popular Philips PM3055. A few years ago the company I work for bought ten of these scopes. Earlier this year they all started to fail. The symptom was always the same: the scope would be running all right at the end of one day, but wouldn't start at the beginning of the next. The screen remained blank, the cursor illumination didn't work and the power supply made a singing noise.

The cause of the fault proved to be very elusive. We sent a scope to a local calibration and maintenance company, but they couldn't fix it. Meanwhile, other scopes were failing in the same way. Some could be persuaded to work after a few off-on switchings, and the situation became so acute that if a scope was working all right we left it on for 24 hours a day. We spoke to Philips, who told us that it was a power supply fault which they fixed by simply replacing the power supply. Their standard charge for doing this for us would be about $£ 800$ a time!

As this was more than the value of the ageing scopes I decided to have a go and, to cut a long story short, discovered that most of the electrolytic capacitors in the power supply had gone low in value. The main culprits were C6011, which caused the control loop to hunt, and C6103, which resulted in the -6.4 V supply dropping to about -5.8 V : this was sufficient for the protection circuit to become trigger happy and fire the crowbar thyristor. Also the ripple voltages were inconsistent. So we replaced all the reservoir capacitors, using highfrequency, high-ripple types. Ten scopes were fixed in this way. We didn't have to spend $£ 8,000$, just fit a hundred capacitors. Materials and labour came to about $£ 400$, a 95 per cent cost saving!

The capacitors required for this repair are listed below. Note that the high-frequency, high-ripple current types marked * have radial, not axial, leads. They can be easily fitted however but the leads must be sleeved to prevent shorting to adjacent tracks.

C6011	$22 \mu \mathrm{~F}, 63 \mathrm{~V}$	RS $107-094$
C6103/6/8	$470 \mu \mathrm{~F}, 16 \mathrm{~V}^{*}$	RS $105-925$
C6111	$220 \mu \mathrm{~F}, 25 \mathrm{~V}^{*}$	RS $105-975$
C6113	$100 \mu \mathrm{~F}, 25 \mathrm{~V}^{*}$	RS $105-969$
C6116	$100 \mu \mathrm{~F}, 63 \mathrm{~V}^{*}$	RS $106-114$
C6119	$22 \mu \mathrm{~F}, 63 \mathrm{~V}^{*}$	RS $106-091$
C6132	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$	RS $107-022$

C6011 was $33 \mu \mathrm{~F}$ originally. We also added an $0.1 \mu \mathrm{~F}$ capacitor (RS124-178) across the emitter and base of V6137
in the protection circuit to prevent spurious transients triggering the crowbar thyristor. This capacitor is small enough to fit on the back of the PSU board.

Keith Cummins,

Holbury, Hants.
Because of a leak in the roof a drop of water had fallen into our Hameg HM203-6 scope. This caused a lot of grief, as the scope is an old friend and I'm lost without it. So I removed the top cover, inspected and dried the panel, replaced the 50 mA fuse 701 and switched on. Almost instantly there was a spark between various components in the high-voltage circuit. I then cleaned the panel and made sure that no further tracking could occur. The unit then operated after a fashion, with only a single spot on the screen. The spot moved, the timebase started to run then stopped again. I switched off, started to check the silicon in this area and noticed that R525 was burnt. After fitting a new $1 \mathrm{k} \Omega$ resistor I thought that the scope might work, but that would have been too easy.

On checking more components in this area I found that transistors T506/7/8 were all faulty. When these had been replaced I had a display, with two very bright dots on the left of the trace and a narrow X scan. I connected the probes (both channels) to the squarewave test pin at the front of the unit: though the display now worked it looked as though it was in a chopped mode. After more testing T504/5 were found to be faulty and were replaced. This removed the chopped effect but there was still lack of width. Closer inspection of the display showed that the Y and X amplitudes were both reduced. This led me to the conclusion that the e.h.t. was too high. Transistors T506/7/8 which had previously been replaced are part of an e.h.t. regulating system, along with the 741 operational amplifier chip IC502. Replacing this chip cured the last fault. The scope was now back to full health and after using some equipment that was close by to test it I put it back together, gave it a loving kiss and wrapped it in cotton wool!
Chris Watton,
Boston, Lincs.

A PR!NTER REPAIR

Here's another story about manufacturers' high repair charges. When I upgraded my old computer system to an IBM compatible for my wordprocessing I was given a Canon PW-1080A dot-matrix printer to go with it. Unfortunately the printer wouldn't print anything: it just fed out blank sheets until it was switched off. It would print out a test pattern in its test mode however. I decided to phone Canon and ask for advice. After chatting to the technical department for a few minutes about correct connections etc. I was told that repair would cost $£ 120$ labour plus parts. I told them I'd think about it and rang off.

I managed to get a service manual from a colleague, and after looking at the circuit and going through the circuit description narrowed the cause of the fault to four chips. One of these was a Canon special but the other three were standard items (and gates, nor gates and a RAM) that are available from RS Components for $£ 5.50$ the lot. I decided that this small sum was worth a gamble and replaced all three chips, leaving the Canon special alone. The printer has worked perfectly ever since. I thus saved $£ 120$: total time for the repair was a few hours one evening, not counting the oneday wait for the chips to arrive. So repairing your own equipment is well worth it if you possibly can. Maybe I should extend my business to the repair of printers!
Richard Newman.
Croydon, Surrey.

Servicing the Rediffusion Mk 4 Chassis
 Chris Watton

On a recent visit to an ex-rental TV receiver outlet I was amazed to see so many Doric/Rediffusion Mk 4 sets. As they were originally used mainly as rental models many engineers may be unfamiliar with them. So here's a short survey of some of the areas that cause problems and how to deal with them.

One thing that's unusual is the fact that many of these sets have a three-core mains lead. This earths the chassis instead of leaving it floating, as is usually the case. Any set with an isolated power supply could have its chassis earthed of course, but the fact that this one sometimes has a solid earth connection to the mains plug should be borne in mind when doing any servicing without a mains isolating transformer, the point being that live mains will be present along with an earthed metal frame.

The power supply is on the right-hand side of the chassis. It's a chopper circuit with a TDA 1060 control chip, a twotransistor (4TR1/2) driver stage and a start-up circuit with a thyristor (4THY1) and a wirewound, spring-off resistor (4R2). The circuit is shown in Fig. 1. Chopper transformer 4 Tl provides mains isolation. The timebase panel is mounted at the bottom. It provides field and line drive, e.h.t. from a tripler and scan correction. Note that there are two versions, one for use with 90° the other for 110° tubes. There are also two different types of field timebase (the chip type was changed in later production). Moving over to the left-hand side the next panel, which is hidden behind the aerial socket, is the audio/video interface board. The colour decoder/RGB output panel is mounted above this, facing a text interface board in sets that have teletext. To the left of this there's the tuner/i.f./audio output panel: there are several types, some with separate v.h.f. and u.h.f. tuners and some with a prescaler can for use with frequency-synthesis tuning, in which case a large panel at the extreme left-hand side of the chassis provides tuner control and remote control operation. The teletext decoder panel, where this is fitted, is fixed to the side of the cabinet.

Faults

There are quite a few common faults, but fortunately they are in the main easy to remedy. Provided the tube is in good condition the set should display a good picture and provide reliable operation. The following notes provide guidelines on fault tracing: a fault summary with the usual cures is provided at the end of the article.

The Power Supply

A dead set usually means that there's a power supply fault. You will probably find that either 4R2 is open-circuit or the fuse has blown because the BU326A chopper transistor 4TR3 is short-circuit. If the fuse is o.k. and 4R2 is intact but hot check 4C6 which may have dried up. If 4TR3 has failed check whether 4 Cl 6 in the snubber circuit is dryjointed, the transformer for dry-joints and 4TR2 in the driver stage for leakage. If 4 R 2 is open-circuit check whether 4D6 is short-circuit then move over to the line output stage and check the BU208A output transistor.

It's quite common to find that 4 R 2 is open-circuit. As a result the set won't start up. The cause may be an overload in another circuit, usually the line output stage - more on this later. 4R2 fails when there's no l.t. supply from the chopper transformer. Any fault that reduces the voltage developed across winding G-A on the transformer will have this effect: the power supply then tries to run on the start-up voltage and after a short while 4R2's spring opens as the solder melts.

If the fuse is open-circuit, usually blackened, and the chopper transistor 4TR3 is short-circuit the cause is almost certainly on the power supply panel, dry-joints being the usual culprit. These may be obvious - disastrous-looking scorch marks, though these can usually be cleaned off and a successful repair carried out. If 4 Cl 6 in the snubber network is badly jointed a trail of destruction may be left behind check $4 \mathrm{TRI} / 2 / 3,4 \mathrm{ICl}$ and resistors $4 \mathrm{R} 30,4 \mathrm{R} 23,4 \mathrm{R} 22$ and 4 R 26 . When these components have all been replaced the power supply should run. It's advisable to check the connections to 4 C 16 whenever one of these sets is serviced. Another common source of dry-joints is the transformer: it may look as though it's connected perfectly, but faults start to occur when the set has been on for a while. Also tiny cracks can appear close to the transformer, blowing 4TR3. A leaky BD433 transistor (4TR2) in the chopper driver stage can cause a trail of component failures.

If the set is dead, 4TR3 and 4R2 are o.k. but the fault is in the power supply, check that 4 ICl is receiving its 14 V supply at pin 1 . If this is o.k., check that the chip is producing output pulses at pin 15 . On a few occasions I've found that the chopper transistor is open-circuit. All voltage checks on this side of the circuit should be made with respect to the power supply earth line (the negative side of $4 \mathrm{C} 5 / 6 / 7$ etc.), not the main chassis earth line (the negative side of 4C20/21 etc.). The rectifiers on the secondary side of the circuit (4D20/21 etc.) and their associated reservoir capacitors ($4 \mathrm{C} 20 / 21$ etc.) can be responsible for the dead set symptom, but in this case 4 R 2 will normally be open-circuit.

Note that there are two power supply panels, one for 90° and the other for 110° sets. The former provides a 125 V h.t. output while the latter provides 150 V . Different transformers are used, and the connection plug is arranged so that a 110° panel can't be connected to a 90° set and vice versa.

In most sets the power supply unit can be removed from the chassis and disconnected from its load: provided there's no major fault and a suitable dummy load is provided (a 60 W or 100 W bulb connected between 4L5 and the chassis on the secondary side) the supply will run when connected to the mains. There's an earth connection point with a pushon plug which is normally connected to the chassis frame. This serves as as earth test point for checking the output voltages when the panel has been removed.

The Timebase Panel

There are different timebase panels for 90° and 110° sets. In addition in later production a TDA1670 field timebase chip is used instead of a TDA1470. Earlier version panels can be interchanged with later ones and vice versa, but the

Fig. 1: The power supply circuitry.
correct type must be used to drive either 90° or 110° tubes. The 110° type can be recognised by the extra components fitted for EW correction. Fault finding in this part of the set can be tricky. The panel is difficult to work on when in the chassis, and the short leads mean that the set can't be operated with the panel removed. Only small areas of the print are accessible from the bottom.

The tripler, which has a built-in focus control, often fails. It either goes short-circuit internally or a crack or hole appears in the case. With the latter fault you get sparks and bangs as the e.h.t. jumps to the fixing screws. Care is required when removing the tripler as the solder tag on the transformer isn't the strongest thing in the world and the lead to the tripler is wrapped through the hole.

The BU208A line output transistor will fail in 110° sets if there are any dry-joints around the EW modulator transformer 3T3 or diodes 3D4 (BYW96D) and 3D3 (BY228). These components should be resoldered whenever a set is repaired. In all sets a dry-jointed chopper transformer can kill the line output transistor. The screws that hold this transistor can be extremely tight, a stout screwdriver being needed to remove them. Be sure to support the panel when doing this as it can crack.

EW faults are usually caused by failure of the BDW23C output transistor 3TR6. Failure of $3 \mathrm{C} 24(3 \cdot 3 \mathrm{nF}, 2 \mathrm{kV})$ can cause lack of width with overheating.

The beam current trip on this panel operates when the beam current exceeds about 3 mA . It uses thyristor $3 \mathrm{THY1}$ as a crowbar across the 12 V supply. When it fires there's no supply to the line oscillator and the set shuts down. The trip
is reset by switching the mains supply off. False tripping can be caused by the tripler. The beam current limiter circuit is also connected to the colour decoder panel for normal limiting via the contrast control.

The line drive comes from pin 2 of the TDA 1950 chip 3IC1. Between this point and the base of the line output transistor there's a conventional line driver stage with a BF819 transistor (3TR1) and transformer (3T1). 3ICl contains the line and field sync circuits, the video input being at pin 11 and the field sync output at pin 9. There's also a sandcastle pulse output at pin 4. This goes to the decoder panel and, in sets with remote control, the frequency-synthesis tuning circuit. Pin 5 of the chip is used for VCR sync adjustment: it's linked to either the tuner pushbutton unit or the remotecontrol panel. The chip is quite reliable, but can be responsible for a ragged picture or no line sync. Before changing it check capacitors $3 \mathrm{C} 4(0.1 \mu \mathrm{~F})$ and $3 \mathrm{C} 5(0.01 \mu \mathrm{~F})$. The line hold control 3RV2 (10 kQ) can also be faulty. To set the line hold short together the two pins next to the i.c. and adjust 3RV2 for a stationary picture.

The most common fault in the field timebase is loss of scan because of a dry-jointed deflection coil plug. The fault may be intermittent of course. Poor joints can also be present around the chip itself, whichever type is used, though the TDA 1670 version seems to be more prone to this. Field collapse can also be caused by failure of 4D22 (BY298) on the power supply panel, since this provides the field timebase chip's 27 V supply. Failure of the safety resistor 3R53 (4.7 $)$ is another cause of field collapse, though this usually goes open-circuit only when the chip is
faulty with an internal short. If you find that the field timebase chip has failed, check for dry-joints around the chopper transformer and the scan coil plug.

The Colour Decoder Panel

The decoder panel is almost certainly the most reliable part of the set. The main items here are the TDA3300B chip, which provides auto grey-scale tracking as well as colour decoding, and the RGB output stages. Each of these has three transistors. You get occasional trouble here, such as one colour missing or a predominance of one colour. We've found it best to replace all three transistors and any burnt resistors in the faulty channel - changing single transistors usually leads to further breakdowns. No colour can be caused by the 4.43 MHz crystal 2 XLl , but the chip is more often responsible for this symptom. Another fault that can be blamed on the chip is when the colour level increases as the set warms up, until the colour is at maximum with the control at minimum.

The Signal Panel

As previously mentioned there are various versions of this panel. The most common problem is drift and/or loss of signals caused by cracked earthing in the u.h.f. tuner, where its internal PCB meets the metal frame. Resoldering will often provide a cure but a new tuner is sometimes required. If you suspect a low-gain tuner, it's worth checking the TDA2540 i.f. chip 0IC3 and the SL1430 SAWF driver chip $0 I C 2$ first: they can both be responsible for a snowy picture that gives the impression of a low-gain tuner.

Tuning drift can be caused by the ZTK33B 33V regulator $0 I \mathrm{Cl}$, but in most cases the tuner or, in manual control models, the pushbutton unit is responsible.

The TDA 1035 T chip 0 IC 4 and the $33 \mu \mathrm{~F}, 16 \mathrm{~V}$ capacitor 0 C 33 are the usual causes of no sound.

Control Units

The basic set has an eight-button tuning selector that has given more than its fair share of trouble. It can be responsible for drifting or sudden loss of signals. In most cases a successful repair is possible as the cause of the problem is the spring contacts, which become tarnished. Clean them and the unit will be all right. It's a waste of time using miracle spray or even (joke) WD40 as the cause of the fault will still be there.

Care is required when separating the pushbutton unit as the plastic snap-fit parts can easily be broken. At first sight getting the unit apart may look difficult. Remove a couple of wires from the a.f.c. switch, gently ease the plastic catches outwards, then pull the potentiometer pack from the latch section. You will now have a piece with spring contacts that stick out: they must be as bright as new pins before reassembly. If you feel that the contact area is too worn it's possible to remove the springs and turn them over. I clean them with a soft fibre stick, but a cotton bud and meths will do. The latch assembly also has a contact plate in it. This can be removed but is difficult to replace. If a cotton bud is used the contact area can be cleaned without any

Fig. 2: Waveform at the collectors of the RGB output transistors when using a scope to set 6RV1. Check which transistor has the highest amplitude trace, then use this to set V to 160 V .
need for removal. Reassemble the unit when every part is clean: take care to position the a.f.c. switch and its button (which is easily lost) correctly otherwise it will work the wrong way round, i.e. when the door is open.

Remote Control Versions

The remote control and frequency-synthesis tuning circuitry is on a large panel at the left-hand side. The chips used are of the same type as in many ITT sets produced at that time. This panel also drives the release solenoid for the on-off switch.

Knowing the functions of the chips can be helpful when looking for the causes of faults in this area. 8ICl (SAA1 174) provides frequency-synthesis control, 8IC2 (SAA1075) is a non-volatile memory, 8IC3 (SAA1276) provides the onscreen display while 8IC4 (SAA1251) decodes the remotecontrol signals. There's also a TEA 1009 chip in the remote-control receiver can - circuit reference 9IC1.

The supplies in this section are as follows: 18 V , which is derived from the 25 V rail via 8 R 81 (12Ω) and the three-pin 7818 regulator 8 IC 5 , and 5 V which is used by the prescaler module and comes via 8Rl (56), with zener diode 8Dl (1 N 5338) providing regulation.

Remote control handsets are available quite cheaply from most major component suppliers. Many ITT remote control units will work with these sets as similar chips are used.

Setting Up

Power supply: There's only one adjustment, for the h.t. voltage. Set 4RVI for 125 V (90° sets) or 150 V (110° sets) at the top of coil 4 L 5 on the power supply panel.

Tube drive: 2 RV3/4/5 on the colour decoder panel are the drive controls for the RGB output stages. They should be set for maximum drive then if necessary one or two of them can be adjusted to correct the picture highlights. The first anode preset 6 RVI is on the tube base panel. It's important that this is correctly adjusted, which is best done using a scope. Turn down the colour, brightness and contrast controls, then check the waveforms at the collectors of the RGB output transistors 2 TR $1 / 2 / 3$ to find which one has the greatest amplitude. The traces will be as shown in Fig. 2. Set voltage V to 160 V . The voltage can be set using a meter, but this is not as accurate. The method is as follows. Switch to the video mode, turn the brightness to minimum then check at the collectors of the three RGB output transistors 2TR $1 / 2 / 3$ to find out which one gives the highest reading. Adjust 6 RVI to bring this reading to 185 V .

All other controls in the set are straightforward.

Use with a VCR

On receivers with manual control the VCR line sync time-constant is set by a small switch at the back of the pushbutton unit (at position 8). With remote-control receivers four programmes can be used, $7,8,15$ and 16. Alternatively direct audio and video can be fed in via sockets at the back, with selection by a switch at the front of the set - it's behind a small flap at the bottom of the speaker grill. A red LED comes on when this mode is selected.

Fault Summary

No signals: The U341 tuner unit, the pushbutton unit, the TDA2540 chip or the SL1430 chip may be responsible. If
the pushbutton unit is replaced it may be necessary to fit link 2 (u.h.f.) on the signal panel. With remote-control sets the SAA 1174 chip may be responsible for loss of the tuning voltage.

Tuner drift: The ZTK33B stabiliser OIC1, the U341 tuner unit or the pushbutton unit may be responsible

AFC pulls off when the door is closed: The switch on the tuner unit may be incorrectly fitted or 0L7 might need slight adjustment.

No colour: Check the TDA3300B chip and crystal 2 XL 1 .
Can't turn the colour down: The colour control may be open-circuit or the TDA 3300 B chip faulty.

No sound: Check the TDA 1035 T chip and capacitor 0C33 $(33 \mu \mathrm{~F})$.

Distorted sound: Check 0C33 (33 $\mu \mathrm{F}$).
No picture, raster o.k.: The TDA 1950 chip may not be providing a sandcastle pulse output or the TDA3300B chip may be faulty.

No raster: Tripler faulty.
No sync: Replace the TDA 1950 chip.
Field collapse: Check for dry-joints at the scan coil plug and around the field timebase chip 3IC2. 4D22 or 3R53 could be open-circuit. If 3R53 is open-circuit 3 IC 2 is probably shorted internally.

Lack of width: Check the $3 \cdot 3 \mathrm{nF}, 2 \mathrm{kV}$ capacitor $3 \mathrm{C} 24\left(110^{\circ}\right.$ sets).

Concave picture: Check 3TR6 (BDW23C) and 3D4 (BYW96D). Cause could be dry-joints, which could also have been responsible for failure of the semiconductor devices (110° sets).

Line shimmer: Check $3 \mathrm{C} 4(0 \cdot 1 \mu \mathrm{~F}), 3 \mathrm{C} 5(0.01 \mu \mathrm{~F})$ and 3 ICl (TDA 1950).

Dead set with $4 R 2$ open-circuit: Check the tripler, the BU208A line output transistor, 4D6, 4C6, 4ICl and the chopper transformer for dry-joints.

Dead set with fuse open-circuit: Check the bridge rectifier diodes 4D1-4 and the associated reservoir capacitor 4C5. Then check the BU326A chopper transistor. If it's shortcircuit check for dry-joints or cracks around the chopper transformer, for dry-joints at the connections to 4 C 16 , and $4 T R 2$ for leakage. If 4 C 16 is dry-jointed or $4 T R 2$ is leaky check 4 TR $1,4 \mathrm{IC} 1,4 \mathrm{R} 22,4 \mathrm{R} 23$ and 4 R 26.

Dead set with fuse and 4R2 o.k.: Check 4TR2 (BD433), 4THYI (MCR100-7), 4C6 and for a cracked connection at the feed to the chopper transformer (pin R).

Line output transistor keeps blowing: Look for dry-joints on the EW modulator drive transformer 3T3: they may look o.k. but open when hot. Also check the EW modulator diodes $3 \mathrm{D} 3 / 4$. These items are in 110° sets only. Poor joints around the chopper transformer can also lead to the destruction of 3TR2. Again, they may look o.k.

Next Month in TELEVISION

THE PACE PRD800 SATELLITE RECEIVER

A detailed look at the circuitry used in this popular satellite TV receiver, which is also the basis of the Ferguson SRD5 and other wellknown models.

DOLBY SURROUND SOUND

Several TV receivers now incorporate Dolby Surround and Pro-Logic Surround Sound, so it's time to get acquainted with these systems and the way in which they are implemented in TV sets.

INTRODUCTION TO TELETEXT

The next instalment in Eugene Trundle's series brings us to the digital circuitry used in modern TV receivers. We make a start with teletext.

SCREEN ENTERTAINMENT 2000
George Cole reports on a technical conference that considered the video and TV prospects for the year 2000.

> SATELLITE SCENE More modifications and fault reports.
> THE BUSH 2521T

Chris Watton on programming this model, which has been sold under a number of other guises, and some common faults.

PLUS ALL THE REGULAR FEATURES

ORDER FORM

To.
(Name of Newsagent)
Please reserve/deliver the February issue of TELEVISION ($\mathbf{£ 2} 20$), on sale January 19th, and continue every month until further notice.

Name.
Address.

Long-distance Television

Roger Bunney
Pressure over the UK during much of October was high and stable, producing overcast skies here in the south. Fortunately tropospheric conditions improved during the final week of the month, particularly in the north. I spent a week's holiday at Croyde Bay near Barnstaple in late October: despite the sloping site to the west across the sea there was no sign of RTE (Ireland), which I suspect was screened by the rocky headland nearby. Apart from the local vertically-polarised relay signals the TV bands were largely empty - an ideal spot for Band I TV DXing! Given time and patience Sporadic E reception was possible on most days, as the following collated log testifies:
5/10/93
TVE (Spain) ch. E2.
6/10/93
9/10/93
10/10/93
12/10/93
13/10/93
14/10/93
15/10/93
16/10/93
17/10/93
18/10/93
19/10/93
22/10/93
24/10/93
25/10/93
30/10/93
TVE E2, 3.
TVE E2.
(Germany) E2, 4; RAI (Italy) IA.
TVE E2, 3, 4.
TVE E2, 3, 4. TVE-2 E2; RAI IA.
DR E3; TVE E2, 3. 4.
RAIIA, B; TVE E2, 3, 4.
+PTT E3; TVE E2, 3.
+PTT E3; TVE E2, 3, 4.
TVE E2; TVP R1, 2.
DR E3; +PTT E2.
DR (Denmark) E3; TVE E3; ARD
NRK (Norway) E2, 3; RUV (Iceland) E4. RTP (Portugal) E2, 3; TVE-1 E2, 3, 4;
TVE E2, 3, 4; DR E3; +PTT (Switzerland) E3. TVP (Poland) R1, 2. 3; CST (Czech
Republic) R1, 2; ARD E2, 3; TVE E2, 3, 4.

There was a good tropospheric opening on the 19 th, with Band III/u.h.f. signals from Germany, Scandinavia and the Benelux countries - Simon Hamer sent in an impressive log of Swedish and Norwegian reception at his location in midWales. From the 25th the prolonged high-pressure system
produced reception from the same countries/areas across much of England and into Scotland - David Glenday reported very strong signals, his highlight being an RTL (Luxembourg) test pattern with the identifications CH 24 and RTL - TVI on November 1st. Oddly, conditions in Scotland were much better than in the south.

My thanks to Peter Schubert (Rainham), David Glenday (Arbroath), Simon Hamer (Powys), lain Menzies (Aberdeen), Roger Fussell (Torpoint) and Brian Williams (Penarth) for sending in logs and reports.

News Items

Portugal: A new ch. E2 transmitter, location not known, is in operation. The first RTP service is now called Canal 1 , a small ' Cl ' being inserted at the top left of the screen during programmes; the second service is called TV2, again with logo at top left. Our thanks to the Benelux DX Club for this information. Outside programme times RTP transmits either a FubK test pattern, with or without clock, or a black/white pattern. The third service, SIC, is a commercial one that comes on in the early afternoon. A fourth service is run by Catholic Radio Renascenaca, which also runs an f.m. radio service.
Canal Plus: The French broadcaster has applied to run a national service in Poland, also local services in ten major towns. It has also entered into a partnership with an organisation called EKO to provide services to the five largest cities in Turkey - the Syster scrambling system will be used.
Sri Lanka: The ETV-2 service is now transmitting 'Prime Sports' on ch. E35 while ETV-1 is transmitting BBC WSTV, both taking their feeds from Star TV Hong Kong via AsiaSat-1. ETV-2 is Colombo's sixth TV channel. For FM DXers, TNL-FM is at 90 MHz and 101.7 MHz stereo while the TNL-TV audio channel is transmitted in stereo at 89 MHz . Our thanks to Bandula Gunasekera for this information.
Israel: Palestinian radio and TV broadcasting has started from Ramallah on the West Bank. The Israeli Broadcasting Authority proposes to start a third channel operating in Hebrew, Arabic and Russian: it would probably be distributed via satellite.
Estonia: There are now five terrestrial channels the most recent, a commercial one, being Kanal Kaks (Channel Two).
The Netherlands: Nozema plans to start scrambled Pay-TV services via NED1 and NED2 during the night (0200-0700). DX catch ZH-TV continues with test transmissions on ch. E49.
Czech Republic: The country's first commercial service,

Left: The French ARTE test pattern, received by Tim Anderson (St. Leonards, East Sussex). Centre: An NTSC news feed received by D.J. Hunt (Brighton) from Eutelsat II F1 at $13^{\circ} \mathrm{E}$, using a 60 cm dish and a Pace 9210 IRD. Right: F2 layer reception of the IRIB (Iran) ch. E2 test pattern by Tim Anderson.
the Prague-based Nova, plans to open in February using the present Fl channels.
Russia: There's a new channel, NTV, in Moscow.
China: The commercial City Network Corporation is to provide an evening service to areas with a population of some 55 m . These include Guangdonng, Chengdu, Ningbo, Hangzhou, Nanjing and Harbin City. China hopes to start an HDTV service by 1999, with test transmissions from 1996 onwards.

TV-DXing for Beginners - 2

This time we'll consider the equipment required for DXTV reception. First the receiver itself. There are three options here: (1) a multistandard set, (2) a standard u.h.f.only UK set with a v.h.f.-u.h.f. converter, (3) use of an outboard tuning system that provides a u.h.f. output for feeding to a standard UK set.

The first option is the simplest. Though more expensive it will cater for the different vision and sound standards and, if it includes system L, the unusual French standard (with positive-going vision modulation and a.m. sound). You should be able to get a small-screen monochrome system $B / G / I / L$ receiver for under $£ 100$, though a colour set will cost around $£ 250$. Multistandard sets have v.h.f. and u.h.f. coverage and can handle several different sound carrier spacings. Such sets are available from specialist dealers. Asda often has v.h.f./u.h.f. sets on sale, while Nikkai markets a relatively inexpensive multistandard colour receiver. A set that also caters for the US NTSC standard is likely to be on the expensive side.

The second option is a much cheaper way of getting v.h.f./u.h.f. coverage. It works best with a u.h.f. receiver that has a single rotary tuning knob or one with lots of memory channels. The converter is a small box that converts 40 250 MHz to a similar chunk of the u.h.f. spectrum. Connect a v.h.f. aerial to its input and feed its output to the main receiver's aerial socket. Then, by tuning the receiver between about chs $30-60$, using either a rotary knob or memories, you have v.h.f. coverage. The converter changes only the frequency, not the standard, so a UK set will display foreign pictures, in colour if they are PAL ones, but will not provide sound reproduction (unless the signal is a system I one). You will not be able to resolve French transmissions. A new upconverter costs around $£ 50$. Labgear produces converters for use with cable systems: some have an r.f. amplifier, others may not - you want one with an r.f. amplifier.

The third option operates in a similar manner to the second but the separate v.h.f./u.h.f. tuner provides an output on a single u.h.f. channel. Thus all the tuning is done by the outboard unit. Several systems have been described in past

Fig. 1: DX aerial designs for Band I reception. (a) Wideband ($48-68 \mathrm{MHz}$) dipole. (b) Dipole plus reflector. Use 1 in. outside diameter aluminium tubing for the boom, 0.5 in . aluminium tubing for the aerial elements.

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202733232 Fax: 0202716951

issues. One advantage is that the tuner unit can incorporate variable i.f. selectivity - much better results are obtained with weak signal reception when the i.f. bandwidth is reduced. Surplus tuners etc. are available from suppliers such as Sendz Components. A commercial tuning system, Model D100, is available from HS Publications, 7 Epping Close, Mackworth Estate, Derby DE 34 FR at around $£ 100$. For further details send an s.a.e. to HS Publications.

While multiband aerial arrays are available they are expensive. For Band I reception it's not difficult to make a suitable aerial. We need something that will pick up all the Band I channels. Fig. I shows two designs. The wideband dipole (a) works well but doesn't provide any gain. It should be mounted horizontally (though SpE signals have no respect for polarisation and will need to be rotated by hand or motor. The addition of a reflector, see (b), adds gain and directivity. It will also need to be rotated. If you don't want to rotate the aerial, make or buy two wideband dipoles and mount them at right-angles to each other. Connect them either via separate feeders to an indoor selector switch or via similar lengths of coakial feeder to a wideband combiner. e.g. a triax, Fringe or Antiference ferrite combiner, taking the output from this to the receiver. If you can weatherproof it, the cheap Taiwan-type Y splitter/combiner can be used. Make sure that the unit is ferrite cored, not the resistive version. The two female sockets are for the aerial inputs, the male plug providing the output.

Satellite TV

Starting this summer the London-based Middle Eastern Broadcasting Centre (MBC) is to provide a five-channel
package for the Arabic states. Other services due to start this year include Orbit Satellite Television Network, a Pay-TV service for North Africa and the Middle East, and a German Channel devoted to travel, Reise-TV, which will use a Eutelsat transponder.

Intelsat has brought its first series 7 satellite into operation at $174^{\circ} \mathrm{E}$ to provide a trans-Pacific communications link for telephone and TV services.

Berry Habekotte (Holland) recently tried using a Triax offset feedhorn and magnetic polariser with a 65 cm Maspro dish. Sadty the results were disappointing. When a Triax dish was used however the performance was impressive. He suggests that it's important to use a feed assembly recommended by the manufacturer of the dish being used. The Triax feedhorn is manufactured by Fuba.

Test Case 373
Dylan wearily walked up the path of number 16. Rother View. It was getting near the end of the day, was dark and the call promised no joy at all - jumbled teletext it said on the card. Once in the living room he was confronted with a large TV set that produced a very corrupted text display. Some of the pages were half readable. and at each transmitted update the form of the corruption changed. It was the same on all channels. There was no way in which he was going to tackle this one on the spot! Into the van with it then, and away to the workshop.

As it happened there were few calls next day, so Dylan was given the set to repair himself. It had a CCT (computercontrolled teletext) decoder, using the well-known SAA5230/SAA5240-41 chip combination in conjunction with an MAB-series microcontroller. This arrangement was very common in sets produced a few years ago.

The fact that the fault was the same in the workshop eliminated Dylan's first suspect. the aerial system. Although reception and aerial faults can upset text reception, they seldom affect all four channels equally - and here the fault was present with the set run from the workshop distribution system, alongside others with clear text displays.

The symptom, randomly incorrect or missing characters that changed with each update, suggested to Dylan that the cause was data corruption. So he started by hooking an oscilloscope to the decoder's video input - pin 27 of the VIP chip - to check the waveform. It looked perfectly all right, but how could he be sure? He switched off the a.f.c. and adjusted the tuning so that it was spot-on. He then made slight experimental adjustments to the vision demodulator coil. This produced no improvement in either the waveform displayed
on the scope or the jumbled teletext display - indeed the clock readout at the top right of the page started to change from numbers to letters when the coil's core was moved more than a quarter of a turn. Dylan next had the bright idea of carrying out an eyeheight test on the video signal. But when he checked up on the procedure in a servicing book he hastily concluded that neither he nor his modestly-specified oscilloscope was up to it! He decided that the decoder's input signal was not the cause of the problem.

Into the decoder itself then. His first check here was on the supply lines. The needle of the AVO meter swung over to show that they were within ten per cent of the correct 5 V and 12 V for the logic and analogue sections respectively. Were the chips getting a reset, Dylan wondered? He couldn't find any reset pins around the SAA-series chips, but there was one at the MAB microcontroller chip: this was being reset all right. Maybe the frequency of the text clock was incorrect? A new 13.875 MHz crystal was found and fitted at pin 11 of the VIP chip, but this made not the slightest improvement to the decoding process. Dylan didn't check the dot clock because he knew that this is concerned with synchronisation of the text display rather than the data-decoding process.

There seemed nothing for it but to replace the VIP chip, so in went another SAA5230. The results were little different from before, and while his soldering iron was still smoking Dylan had another CCT/decoder chip in there. The display was still garbled in exactly the same way as it had been on initial inspection at the house in Rother View. Enquiries around the workshop produced the suggestion that the decoder's chassis line was not properly earthed to the rest of the set, but it was.

Where had Dylan been too hasty with his checks? See page 208 for the answer.

PROPERTY OF:
 CRHCOMPO DEPTAPPLIED ELECTRONIC Beports from Simon Bodgett
 SCHDOL OF TECHMO! OGY ITAFE
 northern territory university

Ferguson FC31

The complaint with one of these cancorders was of intermittent no functions with a drip showing in the viewfinder: a dodgy dew sensor was the cause of the problem.

Another FC3l suffered from random operation, a permanent dew indication and a warped cassette housing, the latter probably because of forced cassette extraction. As first steps we fitted a new dew sensor and cassette housing. The cause of the random operation was a noisy record safety switch. S.B.

Sony CCDF380

There was a cassette stuck in this camcorder. At least the customer hadn't used too much force in trying to get it out: the damage was restricted to a poor eject damper. while the cause of the trouble was failure of a circuit fuse buried deep inside, on the main deck PCB.
S.B.

Ferguson FC06

This machine had suffered at the hands of an incompetent. As a result of previous 'repairs' all the circuit protectors had blown and there was some print damage. After replacing the circuit protectors and tidying things up a bit we found that the loading motor drive chip was the cause of the original fault.
S.B.

JVC GRS70

The cause of very intermittent luminance was traced to R339 in the camera encoder section. A second machine came in with the complaint that the picture went green, red then black-and-white. This was not as serious as it sounds: all that was required was to set up the camera phase-locked loop.
S.B.

Panasonic NVMS2

We had two of these camcorders in recently from the same customer. Both had the same fault symptom: no functions. The cause was also the same - reversed battery supply connections. You know what happens: this one doesn't work so we'll try the other one! Naturally the cure was the same in both cases, replacement of the fusible link (VSF0059) and the M54543L loading motor control chip. This restored normal operation though further checks were carried out to ensure that no other damage had been sustained.
D.C.W.

Sanyo VMD6P

There was no viewfinder picture because the viewfinder focus control was open-circuit. Its lower end feeds the brightness circuits.
D.C.W.

Panasonic NVMC6

The complaint was of a loud 'shrieking' noise from the mechanism, with picture wobble and warbling sound. When we inspected the capstan motor's rotor we found that the plating material which covers the magnetic disc had almost completely lifted. The remaining material scraped against
the motor's windings, causing the noise and damage to the varnish. Motor drive signals in the windings were being conducted to chassis via the plating material. A new motor restored normal operation.
D.C.W.

Sanyo VMD3P

There were no viewfinder pictures. The cause was yet another electrolytic capacitor, this time C9911. Maybe it's best to replace all the electrolytics in these camcorders. Nearly every day seems to bring a 'new one'.
D.C.W.

Sharp VLC690

The cause of intermittent operation, cutting out and various other symptoms was traced to broken connections at the junction of the main PCB and the operation PCB. If there's a shock at the rear end because one of these cameras has been dropped, as this one had, the connectors at this point are easily detached from their respective print points. D.C.W.

Panasonic NVM7

This camcorder would intermittently go into the pause mode, with 'tape' showing in the viewfinder, when recording. The cause was a corroded contact on the 'rec. prevent tab switch'.
D.C.W.

Sony CCDTR55

There was a cassette stuck in the mechanism and the 'caution' warning was being displayed. No functions were available. The cause of the trouble was a short-circuit loading motor (the short was to chassis). There was also an open-circuit circuit protector (type PS602-N25). D.C.W.

Panasonic NVMS2

The customer's complaint was that batteries lasted for only a very short time. We checked the charger and batteries and found that they were o.k. On test a fullycharged battery gave a recording time of about two hours. Nothing wrong then - except that the viewfinder display said that the battery was low after only a very short period of operation! We checked and set up the supply rails and R6002 (battery low detect). This provided a complete cure.
D.C.W.

Sony CCDTR50

Playback was o.k. but there was no camera picture. We found that Q501 on the main camera PCB was open-circuit all ways.
D.C.W.

Panasonic NVMC6

The complaint was that this camcorder cut out after a few seconds in both the record and playback modes. Checks on the sensor inputs to the syscon microcontroller chip showed that the supply-reel pulses were intermittent. This was because R6075 had gone open-circuit.
D.C.W.

Panasonic's Cardiff Chassis

Ray Meadows

In recent issues we've taken a look at Panasonic's new Euro 1 digital TV chassis. Readers may find it helpful if we provide a short survey of its predecessors, particularly some of the older types that sometimes cause confusion. We'll go back in time to the first models produced by National Panasonic, as it was then known, at the Cardiff plant.

The very first sets were assembled from kits prepared in Japan, using almost all Japanese components. The first models to use the Sl chassis were the TC2201, a 22in. set fitted with the Philips A56-120X tube, and the TC262G which was fitted with a 20 in . Japanese tube. Very shortly afterwards a new chassis specifically for the European market was introduced. This used a large proportion of locally-sourced parts and was known as the UI chassis.

The U1 Chassis

The U referred to the approximate shape of the chassis: it has a main base board with a vertical panel at the left-hand side for the signals, colour decoder and RGB output stages and a vertical right-hand frame that supports the line output transformer and power supply protection circuit panel, see Fig. 1. Introduced in 1979, it used mainly Philips chips for signal processing and a Philips line output transformer. Most models, for example the TC2203 and the remote

Fig. 1: The U1 chassis. Panels are as follows: Epower supply, timebases, audio, EW correction and mains filter; A tuner, i.f., colour decoder and RGB output stages; F NS correction and line linearity; N local controls and the remote-control receiver; Y tube base; S protection; Z mains switch. Models include the TC9200, TC2203, TC2204 and TC2206.
control versions TC2206 and TC2002, were fitted with Philips 510X type tubes, but the TC2204 had a Matsushita tube. This was a Quintrix tube, an early black-matrix type. All models bore the Quintrix logo however, regardless of the tube type fitted. There were 20 and 22 in . models. One popular low-cost model, the TC9200, had simple mechanical pushbuttons for channel selection, a throwback to the Sl chassis.

Memorable features include a mains lead that's soldered to two hollow pins at the rear of the chassis, just at the point where most people grab the metalwork to pull it out. The live chassis design has a discrete-component power supply with a 2 SCl 875 chopper transistor. Over-voltage protection of the 160 V h.t. line is provided by two diodes (diacs actu-
ally) that tend to protect the set rather too often. As a result, service engineers sometimes simply removed them. Another thing to watch out for is the two large copper heatsinks near the centre of the main panel: they carry h.t.! All models have a 'magic-line' tuning system: the a.f.c. system drives a green, on-screen vertical bar that narrows as the optimum tuning point is reached.

A separate control block screwed to the inside of the front panel carries the mains switch, local controls and, where fitted, remote-control receiver. One model (TC2292UR) which was designed for the Italian market had two panels back-to-back, joined by not quite flexible wires that easily break when the panels are hinged apart. This set was the first and for quite some time only one to be equipped with search tuning, with two AA batteries for memory back-up. A problem could occur when a set was manually degaussed, as a strong magnetic field applied close to the side of the cabinet would stop the dynamic memory's oscillator circuit with loss of the tuning information. Nevertheless the performance of all these models was excellent.

The U2 Chassis

The U2 chassis. see Fig. 2, was introduced around 19801. From the servicing point of view the most useful features were the adoption of an isolated chassis and the fact that the main cord is directly attached to the switch itself, on the control block. The base model, TC2205, has remote control but still used manual thumbwheel tuning, the controls being hidden in a long push-open drawer. Standby power is provided by a transformer that's screwed to the inside of the cabinet. As before, all models have the magic-line feature to assist with manual tuning. Model TC2207 is the non-remote control, touch-sensor version.

The design was again based largely on European compo-

Fig. 2: The U2 chassis. Panels are as follows: E power supply, timebases, EW correction, audio; A tuner, i.f., colour decoder and RGB output stages; N user controls and remote-control receiver; Y tube base; Z mains switch and filter. Models include the TC2205 and TC2207.
nents, though a Japanese line output transformer is used. The discrete-component power supply has a BU326A chopper transistor and two crowbar thyristors to provide over-voltage and excess-current protection.

A weak point in this chassis is the Thomson TDAl104SP

Fig. 3: The U3 chassis. Panels are as follows: E power supply, timebases, tuner and i.f.; B colour decoder; T remote-control receiver and tuning; Y tube base with $R G B$ output stages; Z mains switch and filter. Text models incorporate the V text module, U buffers and S interface panel. Models include the TX2284.
field output chip. Failure of this device results in field collapse, with or sometimes without beam limiting. It was also quite easy to short the chip's output pins when connecting probes to them, thereby destroying the chip, so silicon bond was used on the foil side of the PCB to cover the chip's sensitive pins.

There were 20 and 22 in . models, also some 26 in . ones later mostly for export markets. As with the Ul chassis, Philips tubes (540 X series) were used in most models.

The U3 Chassis

Perhaps because of reliability problems with some of the European sourced components used in the U2 chassis the U3, see Fig. 3, uses Japanese semiconductor devices for almost every function. This isolated chassis has a complex power supply with an AN5900 control chip, a 2SD792 chopper transistor and five signal transistors. It was the first Panasonic chassis to use a SAW filter in the i.f. strip, eliminating the block filter with its many alignment cores. A discrete-component field output stage was used for improved reliability. There are two versions of the chassis, the U3 for models fitted with 90° tubes (20in. and Japanese 22 in .) and the U3W for models with 110° tubes. The latter incorporate EW correction.

One model, the TX2284, was equipped with a teletext decoder. It was added to the basic U3W chassis by using a Philips VM6101 module and three small interfacing panels. By this time remote control and voltage-synthesis search tuning were standard on all models. So the magic line was dropped, as auto and manual search tuning were available. Auto was of little use in practice however, as it tuned and hence stored all the channels in frequency order: this is not how most people like them. Rather infuriatingly it immediately cleared all existing memory positions, so a moment of carelessness could wipe out all the stored channel settings.

On reflection this chassis was probably more reliable than its predecessors had been, though it didn't seem to offer quite the same picture quality.

The U4 Chassis

The U4 chassis (Fig. 4), introduced in 1983, saw a move back to the use of European components, being designed around a mixture of Philips and Matsushita devices. At last the teletext decoder was fully integrated as a single panel which was mounted adjacent to the i.f. panel. There was a simpler, discrete-component isolated power supply with a 2SD1391 chopper transistor and three signal transistors.

Field output was provided by an AN5521 chip. This device has remained in use, being employed in some Alpha 2 chassis sets. All U4 sets have a Matsushita line output transformer with integral focus and first anode (screen) presets.

As the chassis is quite small the first model was a portable, the TC 1631, which later became available with text as the TX1632. Prior to this all portables had been imported, being based on the Japanese M series chassis. One major addition appeared on the U4 chassis: AV inputs.

An early problem that was troublesome, particularly with small sets, was memory loss. This could usually be attributed to electrostatic damage to the CITAC tuning processor chip. As the control panel on which this item is mounted is very close to the tube an antistatic plastic barrier was fitted.

While most 22 and 26 in . models continued to be fitted with Philips 540X series tubes a new low-cost model with a $90^{\circ}, 22 \mathrm{in}$. Japanese tube was introduced. This was the TX2200, which as the number indicates was text equipped: many of these sets are still in service.

The U4 sets were the first to drop the National badge from the model designation, the company at this time shortening its name to just Panasonic in Europe, though the National bit was retained for white goods. Shortly after this two Saisho

Fig. 4: The $U 4$ chassis (the $U 5$ is similar). Panels are as follows: E power supply, timebases and (U4W) EW correction; B tuner, i.f., audio and colour decoder; T text; M user controls and remote-control receiver; Y tube base and RGB output stages; P mains switch and filter. Models include the TX2200 and TX1632 (U4) and the TXC22 and TX5500 (U5).
(Japanese for first) models were produced exclusively for Dixons, using older cabinet designs and colours. These were the CT20S and CT22S. the former being fitted with the U4 chassis and the latter the U4W (with added EW circuit).

The U5 Chassis

The next chassis in the series, the U5, again used a discrete-component, isclated power supply, of very similar design to that in the U4 chassis. There were no major changes apart from those required to drive the new FS type of tube. As a result of the new glass shape, cabinet design was changed from the older push-through tube presentation to the mask type with which we are familiar today. Some small-screen models began to be fitted into monitor-style cabinets, with a symmetrical layout and beneath the screen controls.

There were two main versions of the chassis, the U5 for use with $17 \mathrm{in} .90^{\circ}$ tubes and the U5N for 21,24 and 28 in . 110° tubes.

The Alpha 1 Chassis

What was to have been called the U6 chassis was eventually produced as the Alpha 1 chassis (see Fig. 5). This

Fig. 5: The Alpha 1 and Alpha 1W chassis. Panels are as follows: E power supply, timebases/EW correction, audio, AV1, tuner, i.f., colour decoder; H AV2, sound i.f., Nicams; T text; M local controls, remote-control receiver, mains switch and filter; N LED display; Z int/ext speakers (stereo models); Y tube base with RGB output stages; A Nicam adaptor option; G graphic equaliser option. Models include the TXC78, TX2 and TX3.
change of name was probably a good idea as the Alpha 1 was quite different from its predecessors.

The power supply employs a Sanken STR54041 chopper chip with relatively few other components. Philips chips are used extensively for signal processing and CITAC tuner control. A Philips MAB84XX series microcomputer chip is used for remote and on-board control, a second one being used for text control. On-screen displays are generated by the text system, though a few models such as the 28 in. TXC78 have an extra graphic equaliser panel with an OSD chip. There's extensive AV switching with provision for two external inputs and two outputs. The internal and external AV signals take a rather laborious route around the set: as a result there was an increase in the quantity of interconnecting wires, something that Panasonic has been trying to reduce ever since.

Some models incorporate Nicam reception circuitry while an add-on kit was available for others. For Nicam reception a different H panel, with a new sound i.f. circuit and Nicam demodulator, is required. Also required are an X panel with a PCM decoder and DA converters, and an A panel to interface the lot. It was not an elegant solution, but worked fine. As Nicam was then in its infancy, it was often necessary to realign the H panel to cater for local conditions. This problem was not unique to Panasonic.

Black monitor styling was used for many models, some with stereo sound from front- and side-facing speakers. With these sets the model numbering scheme changed, though older-style sets such as the TX2488 continued to use the previous scheme. A low-cost, 21 in . mono-sound monitor-style model, the TX2, proved popular, as did its successor the TX3. These used the basic Alpha 1 chassis while models with 110° tubes used the Alpha IW variant.

The Alpha 2 Chassis

The Alpha 2 chassis (Fig. 6) was introduced in about 1988. At the time of writing some of these models are still in production, this being the longest-lived chassis of them all. Internally the chassis is of similar design to the Alpha 1 , but the Nicam arrangement is much simpler and next-generation colour decoder and video control chips (the TDA4510 and TDA3505 respectively) are used. There were originally two chassis variants, the Alpha 2 and Alpha 2N.

Monitor-style sets continued with models such as the 28 in . TXC88 and 24 in . TXC84, some with Nicam built in while others were adaptable. Two new mono-sound sets had all-plastic cabinets. These were the TX21T1 and TX24T1
and their non-text equivalents the TC21R1 and TC24R1. The most interesting models however were the W1 and A1 series. These stereo-sound sets have invar-shadowmask tubes, two or three AV inputs and high-quality sound. The TX24W1 and TX28W1 (W for wide) feature full-size, twoway speakers for each channel and a removable glass faceplate while the TX24A1 and TX28AI have slimline coaxial speakers sealed in enclosures that are wrapped around the rear of the tube. Panasonic promoted the Als under the name 'dome sound'. A 33in. model, the TX33AIG, which is made in Japan and has a Mitsubishi tube, completes this range. A locally-designed 21 in ., 90° stereo model, the TX21V1, with 'mini-dome' speakers and a Toshiba tube, was later introduced. It's the company's smallest stereo set to date.

Although the Alpha 3 was subsequently introduced as a replacement for the Alpha 2, some Alpha 2 variants continue to be produced as they offer excellent cost-performance ratios. One example is the TX24T1, which was fitted

Fig. 6: The Alpha $2 / 2 M / 2 N$ chassis. Panels are as follows: E power supply, timebases, tuner, audio, AV1, colour decoder; B vision and sound i.f./Nicam; H AV2, S-VHS, text; V video buffer; F beam limiter; Y tube base with RGB output stages; M user controls, remote-control receiver; Z int/ext speakers (stereo models); P mains switch; A Nicam option; L front AV (where fitted); K audio (prism model only). Models include the TX25T1, TX21V1, TX25A1 and TXC88.
with a Toshiba tube and later became the TX25T2. Later still the tube was changed to a Philips black-matrix type, the model number becoming TX25BMI.

In 1991 a modified $A 2 N$ chassis called the A2M appeared. The main changes were the use of a Philips IVT text decoder and a Toshiba Nicam decoder. This chassis was used in two low-cost stereo models, the TX25G1 and TX28GI, and in some cost-reduced variants of A1 models (renamed JI) which are fitted with iron-mask tubes.

The Alpha 3 Chassis

The Alpha 3 chassis (Fig. 7) represented another big design change, being significantly more complex than the Alpha 2. The first models appeared in early 1990. This time the main chassis was split in two, with separate signals and power/deflection base panels. The vision i.f./Nicam and text/AV panels plug into the left-hand signals panel. Improved mains filtering was achieved by splitting the line filters between the P and the Z panels. Scan velocity modulation was added, with the tube-neck hung S panel.

Models fitted with this chassis include the TX25W2. TX28W2, TX25A2, TX28A2 and TX33A2, the latter having a more powerful deflection circuit. Other variants appeared during the life of the chassis, to take advantage of changing tube technology and other advances. Because of the large physical size of this chassis and its cost, there were

Fig. 7: The Alpha 3 chassis. Panels are as follows: D power supply, timebases, EW correction; E AV1, colour decoder and RGB switching, microcontroller chip; B tuner, i.f.s and Nicam; H AV2, text, S-VHS; K audio amplifiers; M user controls, remote-control receiver; P mains switch and filter; Z mains filter; C int/ext speakers, ambience; EV video buffer; L AV3, headphone; Y tube base with RGB output stages; S scan-velocity modulation. Models include the TX25A2, TX28A2 and TX33A2.
no small- or medium-screen models. An Astra tuner was included in the very first model, the TX25W2A, and is also a standard feature of the Japanese-made TX37A2G.

More information on the Alpha 3 chassis will follow in later articles.

The Alpha 4 Chassis

The Alpha 4 chassis, see Fig. 8, is the current mid-/largescreen analogue chassis. There are two variants, the Alpha 4 for 90° tubes and Alpha 4 H for 110° tubes. The base panel returns to being a single item, though the plug-in board system and the actual circuitry are similar to the Alpha 3. New developments such as a single Nicam chip and integration of the audio amplifiers back on to the main panel help to simplify things and reduce costs.

The current Model TX21V2 is fitted with the Alpha 4 chassis while the TX25X1 and TX28X1 have the Alpha 4H chassis.

Euro 1

The Euro 1 digital chassis was introduced at the end of 1992. taking over from the Alpha 3 for top-of-the-range sets. Current models include the TX25W3. TX28W3. TX25A3 and TX28A3. The W3s are fitted with the Philips Black-Line Super tube and are 'conventional' in appearance, the A3s continuing the 'dome-sound' tradition with, in addition, the new Philips Superflat tubes.

The Z3 Chassis

As mentioned above the first UK-produced portable set. Model TC1631. was fitted with the U4 chassis. This was an expensive solution, as a large-screen chassis was being used in a small cabinet. The 73 single-panel chassis was developed as a better solution, being introduced with Model TC1480. Because it was a live chassis, a simple composite AV input could be added only by using opto-isolators. When the requirement for a small-screen model with teletext and RGB inputs arose, the Z 3 T chassis was introduced. This is similar to the $Z 3$ but has an isolated power supply and a full-scart AV specification. Models include the TX1786 and TX2195.

There have been many 14,17 and 21 in . models, including some monitor-only versions, and as with the

Alpha 2 chassis the introduction of a new chassis failed to kill off the earlier one as it offered excellent cost-performance ratios. Thus models with the Z 3 and Z 4 chassis have been produced side by side.

The $Z 4$ Chassis

The 74 is really a mini Alpha 3, being aimed at the highquality, multi-feature portable TV market. Models include the TX15M1T and TX2IMIT, which have 'top-dome' speakers and curious on-screen displays including calculator, calendar and 'mood-light' modes. The subsequent M2

Fig. 8: The Alpha 4/4H chassis. Panels are as follows: E power supply, timebases, AV1, microcontroller chip, audio and EW correction (Alpha 4H); B tuner, i.f.s, Nicam; H text, AV2, S-VHS; C colour decoder, video switching; M user controls, remote-control receiver, AV3, mains switch and filter; Y tube base and RGB output stages. Models include the TX21V2 and TX25X1.
models are basically the same except that the 'soft' paint finish has been changed to a harder wearing and less costly one while the 15 in . tube has been changed from an invar- to a cheaper iron-mask type.

Current Line-up

The present Panasonic line-up includes Alpha $2 \mathrm{~N}, 2 \mathrm{M}$, Z3, Z4 and Euro 1 based models. Possibly the best performer however. and certainly the most complex, was the Alpha 3. We shall be returning to it in later articles.

Chassis Identification

Figs. 1-8 will enable the various chassis to be identified. In all cases small subpanels that carry LEDs, a headphone socket etc. have been omitted in the interests of clarity. Shaded areas are heatsinks.

HELP WANTED

Wanted: Help in enabling the stereo switching with a Loewe Model T26 (C900) chassis), also a circuit to emulate the 54.7 kHz pilot tone - the receiver is being converted to the Television Nican stereo sound project. P. Hill, 3 Mayfair Avenue, Halifax HX4 9JH. 0422370338.

Wanted: Circuit diagram and any other information on ADE alarm panels Logic 4, Optima Mk. 2. Optima Plus, also any information on the chips used, and can anyone provide details of and suggest a supplier of the TDA1070P chip used in a Hoover washing machine motor PCB? D. Lee, 16 Devonshire Place, Claughton. Birkenhead, Merseyside L43 1 TU16.

Wanted: Fidelity M20 ZX3000/M Mk. 2 chassis or chopper transformer, also a circuit. M.J. Levy, 19 Totternhoe Close, Kenton, Harrow, Middx HA3 OHS. 0819073620.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

15/80	3.83	$2 \mathrm{CC1398}$	0.80	2SD468C	0.00	B8105B	0.24	BD190	0.31	BF959	0.18	BYW56	0.46	M192B1	1.86	SG6I3	18.79	TA7176P	1.30	TDAl1902	4.98	TEA1009	
15/85R	3.84	2SC1413A	1.30	250476	0.97	8C1078	0.20	BD201	0.40	8F960	0.21	BY $\times 55600$	0.20	M21C	1.65	SGSIF344	6.62	TA7193AP	3.36	TDA1200	0.91	TEA1014	1.61 1.87
17052	3.85	2 SC1509	0.51	$2 S 0525$	1.27	BC108	0.15	BD203	0.46	BF966	0.61	CA1310E	0.78	N293	14.63	SKE4F 104	0.97	TA7193P	${ }^{3.09}$	TOA1270	1.79	TEA1039	1.87 2.15
17053	2.38	$2 \mathrm{SC1520}$	0.54	2S0551	5.81	BC109A	0.16	BD232	0.28	BF970	0.30	CA3094	3.06	M490	15.30	SKE4F210	0.87	TA7205AP	1.51	TDA1412	0.71	TEA2018A	1.49
17088	2.38	$2 \mathrm{SC1573}$	0.36	$2 S 0613$	0.63	BC1098	0.15	B0234	0.25	BFR39	0.35	C04001	0.14	M491	7.94	SKE5F310	1.68	TA7207P	68	TDA 1506	4.59	TEA2	1.49
17089	3.39	2 SC15730	0.26	250636	0.14	8C117	0.14	80237	0.30	BFR41	0.44	C04011	0.21	M50115AP	3.24	SL1430	1.41	TA7210	50	TDA1510	2.54	TEA2165	2.68
17127	1.71	2SC1675	0.09	250637	0.12	BC139	0.33	B0238	0.11	BfR90	0.61	C04013	0.34	M51102L	1.11	SL1431	1.70	TA7214P	3.74	TDA1512	3.17	Til 1060	6.26 0.55
1 N 4001	0.04	$2 \mathrm{SC1685}$	0.17	2 20667	0.26	BC140	0.21	BD239	0.29	BFR90A	0.71	C04016	0.14	M51231P	2.03	SL1432	2.10	TA7217ap	1.27	TDA1515A	2.54	TIC106M	0.55
JN4002	0.07	2 SC1740	0.12	2 20669	0.63	BC141	0.34	BD241	0.41	BFR91	0.43	CO4021	0.43	M51393AP	4.64	SL471	1.70	Ta7222	124	TDA15160	3.56	TIC45	0.75
1N4003	0.05	2SC1741	0.17	2S0669A	0.63	BC147A	0.06	80243	0.39	BFR96	0.53	C04052	0.29	M51515L	2.01	SL490	2.31	ta7222ap	1.27	TDA15180	3.32	TIL100	0.59
IN4004	0.07	2SC1815	0.14	250716	1.46	8C148	0.12	80243A	0.43	BFW92A	0.48	CD4053	0.20	M5152]L	0.54	SN29764AN	1.99	TA7227P	2.29	TDA16704	2.81	TIP110	0.52
1 N 4005	0.06	$2 \mathrm{SC1826}$	0.72	$2 S 0718$	1.45	BC148A	0.06	8D243C	0.44	BFX85	0.55	C04066	0.30	M5218L	0.48	SN7474N	0.38	TA7230p	1.60	TDA] 701	4.86	TIP 12	0.36 0.00
1 N 4006	'0.06	2 SC1827	1.00	2SD734	0.24	BC1488	0.04	BD244A	0.34	BFY50	0.34	C04069	0.17	M523IL	0.55	SN76013ND	7.99	TA7233P	1.95	TDA1870	3.37	TP1 112 H	0.58
IN4007	0.06	2SC1845	0.20	2 20762	1.51	BC149	0.04	BD244C	0.42	BFY51	0.34	CD4070	0.21	M53216P	1.48	SN76227N	1.07	TA7240P	2.46	TDAIgO4	1.21	TP120	0.57
1N4148	0.04	2SC1846	0.51	$2 S 0774$	0.43	BC149C	0.04	B0245C	0.72	8R100	0.17	CNX62A	2.95	M54543L	1.61	SN76666N	1.26	TA7241	2.30	TDA1905	0.94	T\|P121	0.42
1 N4448	0.06	2SC1923	0.14	2S0787E	0.36	BC157	0.13	80246C	0.71	8R101	0.98	CR3CM	2.62	M54544L	1.87	SN76705AN	1.70	TA7250	4.03	TDA1908A	1.14	TIP 126	0.48
1 N506]	0.38	2SC1942	3.33	250837	0.90	BC159	0.06	B02784	0.56	BR103	0.53	CRO2AM	2.17	M54548L	3.29	STA341M	2.54	TA7267P	2.02	TDA1940	2.11	TIP132	0.46
1 N5402	0.12	2 SC1959	0.11	250841	1.34	BC161	0.27	80317	0.87	BR303	1.22	CVI2E	2.70	M54644BL	3.30	STAPOI	2.46	TA7270	1.68	TDA1950	1.86	TiP137	0.48
IN5404	0.13	$2 \mathrm{SC1} 969$	2.46	$2 S 0856$	0.94	BC167	0.42	80318	1.10	BRX44	1.02	C×109	7.05	M54648L	6.62	Stalaic	2.80	TA7270P	1.73	TDA2002	0.85	T\|P2955	0.83
1N5406	0.12	$2 \mathrm{SC1} 1983$	1.78	250869	3.28	BC1718	0.14	80380	0.34	BRY56	0.43	DTAI24EF	0.13	M54898AP	20.45	STK0029	5.88	TA7271P	1.76	TDA2004	1.27	TiP29C	0.30
1N5408	0.12	2SC2001	0.14	$2 S 0870$	3.81	BC177	0.14	80433	0.29	BSS38	0.23	DTAI44EF	0.17	M58485P	5.95	STh0039	7.11	1A7273	3.21	TDA2005	1.36	TIP29E	0.46
1 N914	0.04	2SC2073	0.51	250871	5.08	BC178	0.11	B0434	0.34	BTI 20	1.28	ER1400	2.15	MB3730	2.38	STK0040	7.40	TA7274P	2.72	TDA2006	1.06	TIP3055	0.71
1\$1555	0.22	2 SC2078	0.71	250880	0.48	BC182L	0.06	80435	0.38	BT129	3.26	HA11235	1.95	MB3731	2.20	STK0059	9.75	TA7280	2.11	TDA2009	2.29	TIP30C	0.17
152076	0.29	2SC2141	1.48	250882	0.43	BC182LB	0.06	80436	0.32	BT139600	1.14	HA11244	3.83	MB3732	2.88	STKO25	9.61	TA7299	2.34	TDA2020	3.72	TiP31A	0.32
2 N 2219 A	0.27	2SC2166	1.27	250898B	4.23	BC184	0.09	80437	0.32	BTI51/500R	1.10	HA1124A	1.21	MC13002P	5.74	STK3042	6.90	TA7313AP	0.62	TDA2030H	0.61	TIP31B	0.30
2N2222	0.22	2SC2168	0.85	250904	5.95	BC:84L	0.64	80438	0.31	87151800	1.15	HA11423	2.02	MC1310P	0.85	STK3062	8.88	TA7317P	0.93	TDA2030V	1.05	TIP3IC	0.44
2N2905	0.21	2SC2236	0.25	250973	0.38	BC184LC	0.10	8044]	0.34	BU205	1.07	HA11440	2.92	MC1327AP	1.62	STK4131	7.79	TA7325P	0.45	TOA2170	2.55	TIP32A	0.39
2N2926G	0.37	2SC2271	0.22	741500	0.21	BC204	0.14	80442	0.29	BU208A	1.16	HA1166X	3.43	MC1330AP	1.26	STK4141	9.31	TA7343AP	0.72	TDA2270	1.68	TiP32C	0.38
2 N3053	0.36	2SC2274	0.22	7805	0.28	BC2078	0.23	80510	1.34	BU2080	1.53	HA11713	1.24	MC1350P	1.82	STK4142	8.21	TA7358P	0.78	TDA2530	3.76	TIP33A	0.92
2N3054	0.98	2SC2274K	0.22	7808	0.30	BC2128	0.06	80529	0.97	BU326A	1.36	HA11741	6.71	MC1352P	1.45	STK4162M	9.51	TA75358P	0.68	TDA2540	0.88	T1P33C	0.80
2 N3055	0.11	$2 \mathrm{SC2314}$	0.33	7812	0.30	BC212L	0.06	80530	1.10	BU406	0.68	HALI745	5.10	MC1358P	1.59	STk4171	10.50	TA7607AP	2.62	TDA254]	0.72	TIP34	0.00
2 N3442	1.00	2 SC 2335	1.43	7815	0.30	BC213	0.11	80535	0.43	BU4060	1.02	HR13001	1.72	MC145288CP	1.70	STK4181	12.85	TA7609P	1.95	TDA2560	4.46	TIP34C	0.89
2 N3702	0.11	$2 \mathrm{SC2458}$	0.12	7818	0.41	${ }^{8 C 214 L}$	0.09	80536	0.48	BU407	0.53	HA13108	3.56	MDA2062	2.21	STK4181A	12.46	TA7630P	1.87	TDA2576A	5.95	TPP4IA	0.38
2 N3704	0.14	$2 \mathrm{SC2482}$	0.34	7905	0.34	8C237	0.10	80675	0.30	BU4070	0.97	HA13118	1.87	M 2955	0.97	STK4332	5.54	TA7640AP	0.98	TDA2577A	4.25	TIP4iC	0.37
2N3773	1.27	2SC2547E	0.24	7912	0.43	BC2378	0.05	80677	0.32	BU426A	0.96	HA13119	2.03	N802	2.37	STK4352	1.70	TA7676P	4.25	TDA2578A	2.55	TTP42A	0.39
2N3819	0.34	2SC2565	8.46	AA119	0.36	BC238	0.11	80707	0.51	BU426E	2.13	HA13403	4.66	NJE13005	0.85	STK437	8.30	TA7680AP	3.81	TDA2581	5.75	T1P92C	0.37
$2 N 3904$	0.11	2SC2570A	0.29	A8143	0.13	BC2388	0.05	80839	0.51	BU500	1.32	HA1377	2.42	MJE2955	0.68	STK4392	5.92	TA7698AP	5.93	TDA25810	10.15	T1P47	0.51
2N4444	3.22	2SC2577	1.46	AC127	0.11	BC239	0.04	80901	0.51	BU508A	0.95	HA1388	2.63	M LE3055	0.51	STK441	11.81	TA7705p	1.68	TDA2582	1.95	tip 791 A	1.24
2N6292	0.62	2SC2581	3.05	AC141k	0.46	BC252B	0.07	80902	0.51	BU508AF	1.27	HA1389	2.52	ME340	0.50	STK459	11.17	TA7769P	1.43	TDA2591	1.15	TIS43	0.66
2SA1015	0.10	2SC2632	0.43	AC176K	0.30	BC300	0.48	80911	0.65	BU5080	1.27	HAL392	1.61	ML923	14.26	STM46]	10.49	TA8205	3.89	TDA2593	0.75	TRO11CP	1.36
2 2A1016	0.17	2SC2655	0.25	AC187	0.16	BC301	0.28	80912	0.63	BU5080F	1.87	HA1397	2.63	MN1405VKF	11.08	STK4843	11.10	TA8210H	4.74	TDA2594	2.21	TLO7]CP	0.38
2541020	0.43	2SC2671	0.68	AC187K	0.33	BC3D2	0.36	B0V658	1.16	Bu508V	1.43	HA1398	2.33	MN1435VX	14.35	STK52.1	15.78	TA8215	4.57	TDR2595	2.41	TL494	1.61
2SA1020Y	0.43	2SC2688	0.30	AC188	0.36	BC303	0.22	BDW84C	1.28	BU526	1.41	HA1452	4.86	MN1435VXB	10.66	STK5322	6.35	TA8691N	6.67	TDA2600	3.08	TMP47C432.ap	11.24
2 SA1095	7.44	2SC2785	0.12	AC188K	0.82	BC307	0.06	BDW93C	0.59	BU536	1.60	HM6232	10.36	MN650	2.50	STK5325	5.92	tag626	1.05	TDA2611A	0.64	Taf4C33443555	1787
2SA1 102	2.54	$2 \mathrm{SC2791}$	5.44	AD149	0.52	BC307A	0.06	80W94C	0.46	8U608	1.44	HM6251	9.52	MPSA42	0.23	STK5326	6.20	tbal20	0.53	TDA2611AQ	2.03	UC3844	1.78
2SA1143	0.17	2 SC3150	1.44	A0161	1.02	BC3078	0.06	80×32	1.70	8U705	1.61	HM7103	14.07	MPSA56	0.12	STK5331	3.02	TBA120AS	0.90	TDA2640	4.13	UPA81C	0.94

Ottawa HDTV '93

Geoff Lewis, B.A., M.Sc.

The great advantage of this Canadian event lies in the compact venue. It's always easy to have individual discussions with the authors of the technical papers and the other delegates, making it much easier to gain a clear appreciation of the current situation. There have been many conflicting statements recently on the situation in North America, and I hoped that HDTV ' 93 would provide some definitive answers. After much discussion however it appears that there are still many problems to be resolved before a digital highdefinition (HDTV) service can be brought into operation.

The three-day programme included sessions on both the broadcasting and the non-broadcasting applications of HDTV and the implications for satellite. terrestrial and multi-channel use. To further complicate the issue there were a significant number of papers on ultra-definition TV (UDTV), which is defined as systems with resolutions in excess of 2,000 lines, and three-dimensional TV (3DTV). These, together with papers on new bit-rate reduction and coding techniques for broadcast, cable and recording systems, confirm that a considerable amount of research is going on.

US HDTV System

The Advisory Committee on Adanced Television Systems (ACATS) and the Federal Communications Commission (FCC) recently said that to enable a decision on the US HDTV system to be made before the end of 1994 they expected final hardware to be laboratory and field tested before next June. It was therefore expected that the Grand Alliance (GA) formed by those who have developed the various proposals would be able to present a definitive system for consideration by the assembled experts. This was not to be however.

A number of problems have arisen because of the sometimes conflicting interests of the broadcast, cable, satellite and computer industries involved. As a sop to the latter, square pixels have been included in the specification, even though the analogue nature of the display device will round the corners. Then there is the fear that each member of the GA will expect elements of their original proposals to be included in the final specification in order to safeguard their patent and intellectual property rights. Such in-fighting could lead to a less than best final choice.

The proposed US digital TV system has now been defined in terms of a four-layer model, with some layers more precisely defined than others.

Layer one, the picture or image, provides a future-proof, flexible strategy that includes 24,30 and 60 frames per second (f / s) with progressive scanning. The original 1,050 line resolution has been uprated to 1,080 lines, with 1,920 digital samples per line. Because $60 \mathrm{f} / \mathrm{s}$ is not currently practicable, the initial specification is based on 24 and $30 \mathrm{f} / \mathrm{s}$ progressive. To cater for live video feeds and provide backwards compatibility, the specification includes 787.5 lines progressive and 1.050 lines with interlaced scanning. With this degree of flexibility there's a need to define a common image format (CIF).

Layer two, the compression system, is based on the MPEG-2 standard, as far as the video signal is concerned at least. After testing the European Musicam system the ACATS decided that Dolby AC-3 running at $384 \mathrm{kbits} / \mathrm{sec}$,
as used by many current cinema feature films, suits North America better. Further tests are being carried out by the MPEG committee in Seoul. Korea however, so it's just possible that the final specification will include both as alternative sound systems.

Layer three, the transport layer of the MPEG-2 standard, specifies the arrangement of the data stream, the data packets, priorities and universal headers.

Layer four, which relates to transmission, specifies the use of either quadrature amplitude modulation (QAM) or vestigial sideband (VSB) after rejection of the European coded orthogonal frequency-division multiplex (COFDM) system. Further tests will lead to a decision on whether to adopt 32QAM, which provides five bits per transmitted symbol, or 4 or 6 VSB . With the latter the carrier signal is amplitude modulated to one of four or six discrete levels, the carrier being positioned half way down the lower band edge of the 6 MHz channel.

The Wider Scene

A report that the MPEG-4 committee is close to producing a draft report dealing with the future needs of audio-visual processing suggests that ideas about compression and coding techniques are not yet ready to be cast in concrete. This body is considering the applications and operational conditions with bit rates as low as a few tens of kHz . With all the variations that have now been put forward, a future world digital HDTV standard will almost certainly have to be based on an open and smart receiver. Fortunately this problem can be easily resolved with digital systems: by including special code patterns in the transmitted bit stream the receiver can automatically switch to the correct system.

With a view to the possible introduction of wide-screen NTSC as an interim measure the Communications Research Centre (CRC) of Canada reported on the results of a survey it had carried out on the scan-and-pan and the letter-boxing techniques used in Europe. This involved a relatively small sample - a hundred professional and non-professional viewers. Whilst a majority of both groups preferred to view a full-screen image and disliked the black banding with letterbox displays, the latter were found to become more acceptable after a period of viewing. In all cases however pan-and-scan was preferred to letter-boxing. Although the report didn't mention the display screen size, one wonders whether the same results would hold for PAL-Plus in the UK and mainland Europe.

Miscellaneous Problems

Several concerns became apparent during private discussions with authors and delegates.

Many of the 1,600 or so US TV transmitter stations operate in the v.h.f. band. With ageing masts, there were doubts as to whether many would meet current construction standards. The point about this is that because HDTV is to be introduced using simulcasting the extra v.h.f. aerials could overload the structures. As an alternative a new service using smaller, u.h.f. aerials could be introduced. But this would reduce service areas and the incomes of the broadcasters. However this is resolved, it amounts to more bucks per bit! Could a similar situation arise in those parts
of Europe that still use the v.h.f. bands for TV broadcasting?
Concern was also expressed about the multi-channel possibilities with digital TV: how could profitability be achieved with perhaps 150 or more channels of video-ondemand becoming available, and what effect would this have on the introduction of the new HDTV services?

The wide use of personal and home computers and video games has created serious r.f. interference problems for lowpower mobile and amateur communications. Will this problem get out of hand when every TV receiver becomes a digital processor?

HELP WANTED

Wanted: A line output transformer for the Sanyo CTP3131 and for the CTP5101. Keith Docwra, DTV Service, 38 Kent Road, Margate, Kent CT9 3SN. 0843231 408/220 773.

Wanted: LOPT for the ITT CVC40 chassis and any information on converting a Sony SL-HF100 PAL/Secam (Beta) B/G machine to PAL I. Bill Harris, 13 Bridle Drive, Clapham. Beford MK41 6BB. 0234363813.

Wanted: Handbook/circuit for the Tektronix 561A scope and 3A1, 3B3 plug-in units. Phil Lacey, 12 Chaworth Road, Ottershaw, Surrey KT16 OPE. 0932872730.

Wanted: KEF 8in. B200 bass-mid driver (SP1039). P. Brown, 14 The Moat, Weston Coyney, Stoke-on-Trent ST3 6NB. 078232234.

Wanted: Circuit diagram (or copy) for the Finlandia Model C22TZ5. A. Tomkinson, 10 Lodge Court, Station Grove, Wembley, Middx HA0 4AP. 0819035574.

Wanted: Handset for the B and O 30AX chassis (Beovision 5100 etc .). T. Jarman, Acme TV Repairs, 7 Cadet Way,

Pirates have demonstrated that it's possible to use a computer monitor's electromagnetic radiation to copy its display. If this could be done with an encrypted TV signal. it would be possible for pirates to bypass the need for an authorised decoder. This introduces a further problem that might need to be considered in the design of an HDTV receiver.

After three days of intensive discussions it was clear that even if a worldwide cigital HDTV standard came to be adopted TV engineering would continue to be a field full of interest.

Church Crookham, Fleet. Hants GU13 0UG. 0252616938.
Wanted: LOPT for the Network Model 1410 and a chrominance panel for the Osaki Model P50G. B. Potter, 10 Holmbury Close. Southgate West, Crawley RH11 8TG. 0293513787 (evenings).

Wanted: Service manual for the Philips Model 3570. I have for disposal copies of Television for the years 1949 to 1990 except 1960. I.R. Holmes, 33 Avenue Road, Winslow, Buckingham MK 18 3DH. 0296722462.

Wanted: Circuit diagram and layout or service manual (photocopy will do) for the Rollie P3800 dual-slide projector. Fred Hay, 27 Crayke Road, Stockton-on-Tees, Cleveland TS18 4EY. 0642674560.

Wanted: Data sheet or any information on the General Instrument 72522-1 on-screen display chip. S. Duddridge, 53 Burgoyne Road, Thornhill, Southampton, Hants SO2 6 PA .

Wanted: Service manual/sheet for the Matsui VX800 (Currys). I have the VX850 sheet but this model differs. George Pond, 57 Summerwood Lane, Clifton, Nottingham NGll 9FU.

TV Fault Finding

Philips Anubis A AC Chassis

There was a blank raster and no sound with this new set, though the on-screen display worked. An external video signal fed in at the front sockets proved that the set was in the external mode with the u.h.f. program positions. A check on the status voltage at pin 18 of IC7015 produced a reading of 3 V instead of 0 V . This voltage comes from transistor 7877, where we found that the earth line was floating because the jumper by the scart socket had never been soldered.
P.B.

Panasonic Alpha 2W Chassis

This set was almost dead: there was no sound or vision, but the power supply was making a ticking noise. Checks showed that the 155 V supply's protection diode D854 was short-circuit, indicating an over-voltage problem, while R567. the fusible resistor that`s in series with the supply to the line output stage, was open-circuit. I replaced the protection diode, removed R567, connected a dummy load and powered the set via a variac. A check on the voltage at TPEI as the input was increased showed that there was no regulation - the voltage would have passed 160 V if l'd let it. A new STR 54041 chip restored regulation, and the h.t. voltage could now be stabilised at 155 V . So a replacement was fitted in the R567 position, the dummy load was removed and the set was tried with the full mains input. R567 went open-circuit and the line output transistor Q551 went short-circuit. A new line output transformer, transistor and R567 completed the repair.
P.B.

Philips 24CE7570/05S (3A Chassis)

For no sound when cold, or the picture and sound flashing on and off every second or so, check by substitution the electrolytic capacitors in the FE644 tuner/i.f. module. P.B.

Toshiba 201T4B

If the set is slow to go into the standby mode, check whether R819 or R820 is open-circuit. These resistors both have a value of $110 \mathrm{k} \Omega$. P.B.

Philips GR1-AX Chassis

If you get the dead set symptom because the line oscillator isn't working, check whether the 12 V zener diode D6030 is open-circuit.

For no sound or vision, just a blank screen. check whether C2044 ($4 \mu \mathrm{~F}$) is short-circuit.
P.B.

Grundig Cinema 9050

This projection set produced a washed out picture. We decided to carry out checks on the RGB board. The supplies and the beam-limiter signals were o.k. but the data switching signal at pin 7 was suspect, the voltage here being 0.6 V . This point is connected to pin 31 of the abstimm (tuning) module. When this pin was disconnected the
picture was restored. The 0.6 V was coming from the TMS3743 chip on the tuning board, a replacement solving the problem.
P.B.

Philips CP110 Chassis

This set had no sound or vision, with FI showing in the channel display. We found that the line oscillator had stopped as there was no supply at pin 12 of the sync/i.f. module. The cause of the trouble was a crack in the print beside the line output transformer.

Panasonic TX28W3 (Euro 1 Chassis)

This is the fearsome digital chassis that has been featured in recent issues of Television. This one intermittently lost signals, on any preset channel, as you watched it. It was not a memory problem - the data for each preset remained correct. Calling up the self-test display during the few seconds when the fault was present showed that there were no errors, so no help here. Despite the fact that the tuner address was o.k. the fault was in the tuner, though obviously nothing to do with the bus. A new tuner restored correct operation.
N.B.

Samsung Cl5013T (P58 Chassis)

This set would drift off tune about five seconds after selecting a channel stored in the memory. If sweep tuning was tried the set wouldn't stop when a channel was found. There's precious little by way of voltages or waveforms in the manual, but I decided to check the voltage at pin 9 , the a.f.c. input, of the microcontroller chip RIC01. There was nothing much by way of d.c. here. The input comes from pin 18 of ICl 101 via a potential divider that consists of two $120 \mathrm{k} \Omega$ resistors, RR26 and R116. The latter was opencircuit.
N.B.

Ferguson 51J7 (TX99 Chassis)

The picture would intermittently go pink or bright green. The cause was dry-joints on the green output transistor.
N.B.

Salora 22K37 (K Chassis)

This set operated in standby but was otherwise dead. A check on the S2000A line output transistor showed that it was very leaky. The set worked when a replacement had been fitted but after soak testing for a few hours the fault returned. This time the line output transistor was o.k., but the tuning capacitor CB507 was low in value at only 55 pF instead of $15.5 \mathrm{nF}(1.5 \mathrm{kV})$.
N.B.

Philips GR90AE Chassis

This set is used as a computer monitor in a local school. The complaint was of no red in the display with an RGB input. I found that the cause was the BAS32 surface-mounted diode

D6854 which is connected between the R input and chassis - it was short-circuit.

Sony KV21XRTU

When teletext was selected we obtained only TV chroma. When mix was selected there was TV vision but no text. When TV was selected all was well. The cause of the problem was a high-impedance connection at pin 5 of connector D3, the blanking output from the text decoder. Cleaning cured the fault.
N.B.

Salora 24K7H (K Chassis)

Every few hours this set would quitely revert to standby. There would be no clues - no effect on the picture or sound prior to the event. The usual dry-joints had been attended to and it wasn't the mains switch, as is often the case. I eventually traced the cause of the fault to a hairline crack around one leg of CB613.
N.B.

Samsung C15012Z (P58 Chassis)

This set wouldn't produce any signals: the tuning voltage showed that it swept, but no station was ever found. A check at the tuner showed that the tuning voltage was missing. There was 33 V at the cathode of DZ824 but nothing at the collector of the integrating transistor RQ04. Its tiny 0.25 W feed resistor $\mathrm{RR} 05(10 \mathrm{k} \Omega)$ was opencircuit.
N.B.

B and O 39XX Chassis

Spitting from the left-hand speaker at switch on has twice been traced to a poor connection between the earthing braid, its spring, the c.r.t.'s Aquadag coating and the rimband. A rusty deposit forms under the spring on the right-hand side as viewed from the back of the set, i.e. behind the left-hand speaker as viewed from the front. Also clean dust from behind the speaker frets.
N.B.

Fidelity C14M06/C14R06

Intermittent field collapse was the problem with one of these sets. We found that D25 (1 N 4002) which is connected to pin 6 of the TDA 3653 field output chip IC10 was going open-circuit.
N.B.

Saisho CT142RX/Matsui 1440A

This set suffered from very severe tuning drift. The cause of this was the the BT amplifier transistor Q501 which had a varying collector-emitter leak.
N.B.

Panasonic TX21M1T (Z4 Chassis)

There was a strange fault with this set: if you stored a channel in a tuning memory position that already stored information the same information would be stored in all other locations in use. The cause of the fault lay on the text PCB, which had been subjected to previous damage. Link Jl0 was broken. In other circumstances it would be worth looking for a dry-joint in this area.
N.B.

Boots CTV1417

This set wouldn't go into the standby mode properly: the light didn't come on and although there was no sound or
vision a raster was still present and the audio output stage continued to operate. Standby switching is applied to the base of transistor Q607 in the power supply. This transistor was switching correctly. When it switches on Q605 should turn on and Q606, which is in series with the 108 V h.t. supply, should switch off. The cause of the trouble was that Q606 was short-circuit: a new 2SC2335 transistor put that right.

We ran the set on soak test and two days later the fault returned. The new transistor had bitten the dust and the h.t. was now very high and couldn't be set. In fact the h.t. was at over 200 V in standby, which is why Q606 had again failed. When the set warmed up however the h.t. fell and could be set. A spot of freezer on $\mathrm{C} 607(47 \mu \mathrm{~F}, 25 \mathrm{~V})$ which couples the drive to the base of the chopper transistor made the h.t. go high again, with lass of control. A new electrolytic finally put an end to these pranks.

What usually happens with capacitors in this position is that they dry up then reform at a higher capacitance value when warm. Often the chopper transistor will fail as a result, being left on for too long. Electrolytic capacitors in higher temperature and frequency circuits are prime suspects when a fault is present. If 1 find that a capacitance-coupled chopper transistor has gone short-circuit I always replace the capacitor as well, believing that this saves a lot of potential recalls.
N.B.

NEI 2031TX

This set wouldn't come on from standby via the remote control unit. It would start if precise action was applied to the mains switch, but this didn't seem to be quite right. The cause of the trouble was the start circuit in the SAA1293A remote control decoder chip, a replacement restoring normal operation.
N.B.

Tatung 170/180 Series Chassis

The symptom with one of these sets was described as "yellow faces - sometimes". We put it on soak test and after a few hours the colour bars looked strange indeed: the red bar turned to an orange hue and the blue bar was brighter than it should have been. The cause was traced to intermittent leakage in $\mathrm{C} 531(1 \mu \mathrm{~F}, 50 \mathrm{~V})$, which is in the colour decoder`s a.p.c. loop.
E.T.

Philips G110 Chassis

On test this set behaved exactly as the fault report said "intermittent start and no standby". The on-off switch sometimes had to be operated half a dozen times before the set would come on. Everything then worked normally until the set was put into the standby mode, when it shut down without even the standty LED being alight.

In the fault condition the h.t. voltage fell to almost zero and a slight whistle came from the chopper transformer. This suggested that the power supply was in the protection state, which was confirmed by measuring the voltage at the base-collector connection between transistors T7656/7655. The voltage here should be zero or slightly negative but was 0.7 V , enough to turn on the transistors and thus the optocoupler, shutting down the power supply. Disconnecting the line output stage made no difference to the fault condition, so 1 checked the 20 V zener diode D6657 which monitors the 16 V supply. It read perfectly when checked with the diode test facility of a digital meter but produced a $1 \mathrm{M} \Omega$ reverse leakage reading when checked with the good old Avo. A new
diode cured both problems with the set.
I've had this diode fail before, but on previous occasions the set shut down completely. All this confirms my belief that digital meters are no substitute for a good analogue meter when it comes to testing diodes and transistors. R.N.

Akai CT2125/Samsung P58SC Chassis

The complaint was of an intermittent blank raster with flyback lines. We found that the fault cleared when connector TD203 on the teletext board was removed. Scope checks then showed that the 27 MHz crystal TZ01 wasn't oscillating properly. A replacement cured the problem. R.N.

JVC AV25F1EK

The customer complained about various intermittent faults. He said that the remote control sometimes locked up and didn't appear to work, the signals would disappear briefly and then come back again, and other things. I removed the back cover and tapped around the tuner section. This instigated the fault condition, which was caused by dry-joints at the 7805 regulator chip IC522. A good solder-up here cured all the intermittencies, including the apparent remotecontrol problem.
M.L.

Alba CTV743

The channel numbers on the front control panel lit up but there was no h.t. supply. As we didn't have a circuit diagram we poked around a bit and stumbled across the cause of the fault: D806 in the power supply was shortcircuit. We fitted a new BYD33M in place of the original 1N4936 and our problem was solved.
M.L.

GEC C2201 (Tatung 146 Chassis)

The initial problem was field collapse. We found that R434 was open-circuit, which seems to be a common fault these days. With the full field scan restored the set produced only a blank raster. The TDA3561 colour decoder chip was getting warm but a replacement made no difference. Checks around this chip showed that the voltage at pin 7 was very low. This brought us to the BZX79C5V6 zener diode D502 which was short-circuit. A replacement restored the picture.
M.L.

Panasonic TX25W2A (Alpha 3 Chassis)

This set was stuck in standby, a fault we've had on several occasions in sets fitted with this chassis. This time however the fault was related to the microcontroller chip. Transistor Q825, which drives the optocoupler in the power supply, was hard on. By removing R843, which links the base of this transistor to the microcontroller chip's power on/off pin, the set was able to start up. Full h.t., e.h.t. etc. were obtained but there was no sound, picture or on-screen display - total failure of the microcontroller section. We checked the supplies to the microcontroller chip and found that they were o.k. When we checked the reset line however we found that it was stuck at 2 V instead of being at 5 V . What notorious component is connected to this line? A 10 nF capacitor, C 1251 . It read about $2 \mathrm{k} \Omega$ in and out of circuit. A replacement cured the fault.
S.C.

Philips FL1.1AA Chassis

This fault took us a while to pin down. The set would go into the protection mode, i.e. with the standby, mute and
stereo LEDS flashing but the set otherwise dead. Unfortunately the fault was extremely intermittent - it might happen only once a week! We suspected a fault in the protection circuitry, but as the protection provided in this chassis is comprehensive it took us a while to find the culprit. This turned out to be the 18 V zener diode D6376 that monitors the chopper transformer derived 17 V supply (it feeds the 13 V regulator). Sanity was restored when a new surfacemounted zener diode had been fitted.
S.C.

Hitachi CPT2188 (Salora Ipsalo 3/K Chassis)

There was line tearing and the screen would intermittently go bright blue. Was it a single fault or two separate ones? At first I suspected faulty decoupling. The 12 V line goes to the sync/timebase generator and the colour decoder chips, but it was rock steady with an insignificant line-frequency content. What else could be common to the two symptoms? The sync/timebase generator's validate pin was the answer. It's pin 13 of the TDA2579 chip ICB500. With a 50 Hz signal there should be 11 V here, falling to 7.5 V with a 60 Hz signal and 0 V with no signal at all. A check showed that the voltage was stuck at zero even though the set was tuned in, with sound and a picture present. This line also goes to the auto grey-scale correction circuit in the colour decoder chip ICB200, hence the video fault. A new TDA2579 chip cured the trouble.
S.C.

Sony KVX2162U

The problem with this almost new set was intermittent sound, which cut out when the volume control was turned up. Its cause was a dry-jointed crystal, X1101, on the Nicam sub-PCB.
E.J.

Philips CP110 Chassis

This set had a very misleading fault: there was no picture for a few minutes then when it did appear it looked as though the tube's emission was low. I had the feeling that the tube was probably o.k. however, and so it was. The cause of the fault turned out to be the $22 \mu \mathrm{~F}, 250 \mathrm{~V}$ h.t. reservoir capacitor C2670. For good measure we replaced the associated $22 \mu \mathrm{~F}$ smoothing capacitor C 2621 as well. E.J.

Osaki P10R

The fault with this nice little set was field collapse. We found that $\mathrm{C} 428(0 \cdot 022 \mu \mathrm{~F})$ was leaky.
E.J.

Philips 2A Chassis

There were black lines on the picture - it looked as though every other line of picture content was missing. After a long time had been spent carrying out scope checks etc. we finally found that C2050 ($47 \mu \mathrm{~F}, 50 \mathrm{~V}$) was open-circuit. It's off the 12 V rail, in the i.f. can.
E.J.

Panasonic TX24A1 (Alpha 2W Chassis)

I was asked to look at this set as a colleague had run out of ideas with the fault he now had. The set had originally been dead. After replacing R815 (5.6 6 fusible), Q801. Q802 and the STR54041 chopper chip it would start up and then immediately turn off again. This was because the wire attached to plug V2 had been fitted to socket H 16 (factory preset) instead of socket M2 on the front PCB - a case of more haste, less speed!
E.J.

Test Report: The Emerson Model 20 UPS

Donald Bullock

Almost every aspect of our lives nowadays depends on electronics. The importance of the reliability of electronic systems is thus evident. But this depends in turn on the reliability of the mains supply. A sudden power cut or even a voltage reduction can cause havoc with a mains-driven computer system. Since most of the power used in the UK is dsiributed via landlines, none of us is immune.

As a writer, the advent of the wordprocessor has been a great boon. But it wasn't long before I learnt, the hard way, that it has one major disadvantage compared with the typewriter. Anything you've typed is yours. Anything you've written into a wordprocessor is yours only once you've printed or saved it. A sudden power blip can rob you of at least some work that may be hard if not impossible to recreate.

Having one day lost half a chapter of carefully prepared prose because of a sudden, momentary power cut, I decided to equip myself with an uninterruptible power supply (UPS). The one I chose is made by Emerson, which produces an extremely wide range of UPS units to cater for almost every possible requirement. The AccuPower Model 20 , rated at 300 VA , should be suitable for most individual users and small offices.

I've used my Model 20 daily for well over a year, including trips to rural Spain where voltage fluctuations are common and it's not unusual to suffer at least one power cut a day. If it weren't for the musical warning chirps that the 20 emits when the mains power is interrupted or falls to an unacceptable level. I would not even notice these hiccups.

Description

The 20 requires no installation. It operates with a 220 V or $240 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase a.c. mains supply, its output being the same with a power rating of 300 VA . Dimensions are $93 \times 140 \times 380 \mathrm{~mm}$ (width, height and depth respectively), weight being 6.8 kg . The finish is a pleasant fine matt light grey. At the back there's a pair of recessed sockets, that can't be confused, for the input and output. The unit comes with a heavy input lead that has a moulded 13A plug and an output lead that's terminated with a 13A, foursocket terminal strip.

The simple front panel has a recessed lift-for-on mains switch and an 'on' beacon that lights up green unless the mains input is reversed (easy on the Continent, where nonpolarised two-pin mains plugs are used) when it lights up
amber. Emerson advise against using an incorrectly polarised mains input.

Use

You simply plug the unit in series with the mains connection to, in my case, the wordprocessor. When settling down to use this I simply lift the UPS switch as well as switching on my machine. If a power cut occurs the unit bleeps softly for as long as it lasts and my wordprocessor continues unabashed, giving me time to save everything I've written and in fact to work on. The specified time for operation without the mains supply being present is eight to ten minutes, with continuous use, but I've worked on through power cuts lasting well over twice as long. The unit has never failed me and since buying it I've not lost a word.

Electronics

After rectification the input from the mains supply is filtered to reduce spikes, transients and general noise. It's then stabilised and processed for application to an electronic 'fast-transfer' switch. When the unit detects a significant fall in the input voltage it immediately switches on the inverter section of its a.c./d.c./a.c. converter system. This

The Emerson Accupower Model 20 uninterruptible power supply.
draws power from the built-in, maintenance-free battery, converting it to a.c. which is passed via the transfer switch to continue feeding the load. When the power cut ends, the UPS switches off the inverter. Under normal running conditions the internal battery is kept charged by a d.c. supply.

The Emerson Model 20) is the last word in careful design and manufacture. A glance at the circuit shows the lengths that have been taken to provide tight voltage stabilisation at every stage. I've never seen so many voltage stabilisers before in any piece of equipment!

In Conclusion

I have complete confidence in the unit. Time and time again it has done its job, bleeping away and giving me ample time to complete and save work in hand. I wouldn't, in fact couldn't, be without it.

Finally 1 am indebted to Darren Jell of Emerson Computer Power who supplied me with circuits and advice on my requirements, also to Javier Nogales Moran, commercial director of Emerson’s Spanish distributors Itisa Investigacion Tecnica Industrial, S.A.

Enquiries in the UK should be sent to Emerson Computer Power, Elgin Drive, Swindon, Wilts SN2 6DX, telephone 0793553 355, fax 0793553401 . The current list price of the AccuPower Model 20 is $£ 271.00$ plus VAT.

Video technology is changing fast. New models get introduced with alarming regularity, each with the latest enhancement. So it's not surprising to find models and faults you've not encountered before.

The problem is you can spend costly, unchargeable time searching for elusive faults, which is where Euras System can help.

The Euras System is Europe's largest repair tips database for Video, Television and CD.

With over 120,000 repair tips for 14,000 models from 270 manufacturers you are sure to find the solution quickly. And because it is frequently updated, it always covers the latest models.

For a FREE demonstration diskette to run on your PC or details of Euras System in manual form, clip the coupon or phone 0272860900.

EURAS INTERNATIONAL LTD EURAS HOUSE, 51 BRISTOL ROAD, KEYNSHAM, BRISTOL, BS 18 2BA
此

Solutions at your fingertips

PLEASE SEND ME A FREE DEMONSTRATION DISKETTE \square PLEASE SEND ME DETAILS OF EURAS SYSTEM IN MANUAL FORM \square NAME
TITLE
COMPANY
ADDRESS
.

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP TEL: 081-877 3492/877 3518 FAX: 081-877 3518

All About
 Fuses

Ray Porter, M.Sc., C.Eng., M.I.E.E.

The first patent on fusing was filed by Edison in 1880. Ever since fuses have been used as current interrupters in electrical and electronic systems, being low-cost devices that always go open-circuit when subjected to the overload level at which they are designed to trip. It gives you a feeling of safety when a piece of equipment is fitted with a fuse, which is the first item an engineer checks when confronted with a completely dead circuit. There are several different types of fuse: this article explains the forms of protection they provide.

Miniature Wire Fuses

The fuse most commonly seen by the electronics technician is the miniature wire type. They are made to meet the varying national standards that exist throughout the world. Should an excessive current flow the wire overheats, melts and finally evaporates. An arc occurs at the melting point:

Fig. 1 (left): The conventional cartridge fuse.
Fig. 2 (right): How the current rating changes with change in the ambient temperature.
as a result the temperature rises to several thousand degrees and molten metal particles shoot away from the arc region. With a cartridge fuse, see Fig. 1, the pre-arcing heat and metal spray are contained by a glass or ceramic tube. PCBmounted Wickman fuses are very similar to the tubular cartridge type in their ratings and characteristics.

Current Rating

The current rating marked on a fuse is the current it will carry continuously, at an ambient temperature of $23^{\circ} \mathrm{C}$ or

Fig. 3 (left): IEC and UL fuse ratings.
Fig. 4 (right): Time-current fuse characteristics.
whatever the relevant approval standard specifies, without blowing. As Fig. 2 shows, the rating changes when the fuse is operated at a different ambient temperature. It's important to note that the relationship between the current which will blow a fuse and the current which the fuse is rated to carry continuously differs with the standards organisation that gives it approval. European fuses are rated in accordance with IEC standards while American equipment uses UL (Underwriters' Laboratories) approved fuses. Fig. 3 shows that a 1 A IEC fuse would be rated at 1.4 A by UL.

Time-current Characteristics

Fuses don't blow instantly: it takes time for the wire to heat to its melting point. Delayed-action fuses are made by adding more cooling to the wire. Fig. 4 shows curves for TT (very slow), T (slow), M (medium or normal), F (fast) and FF (very fast) fuses. T fuses are often used in domestic electronic equipment to avoid fuse blowing when there's a current surge at switch on - as the power supply capacitors charge initially and when degaussing posistors are cold.

The energy a fuse allows through into a circuit depends on its $\mathbb{I}^{2} \mathrm{t}$ value. $\mathrm{I}^{2} \mathrm{Rt}$ is the energy a fuse dissipates during a time period t, where R is the fuse's resistance. Thus a fuse with a small $I^{2} t$ value imposes less stress on the circuit being protected. Circuit designers also take this into account.

Voltage Drop

Voltage drop is the voltage developed across a fuse when it is carrying its rated current. The voltage drop across a 1 A , 20 mm fuse is a few hundred mV . Up to half a watt may be dissipated by a high-current 20 mm fuse. In most electronic equipment this causes an insignificant local temperature rise.

Current Breaking Capacity

When maximum fault current is present the wire heats so rapidly that there's a risk of fuse explosion and fire within the fuse holder. To ensure a safe shut-off, circuit designers specify a fuse that has a breaking capacity greater than the maximum prospective short-circuit fault current. To increase their breaking capacity fuses can be filled with heat-resistant material and enclosed in a ceramic tube. So that it doesn't flash over a fuse's voltage rating has to be taken into account - don't use a 125 V fuse in a 240 V circuit.

Cut-off Characteristic

To minimise arcing a fuse must shut off the fault current rapidly, before the voltage maximum of the sinusoidal a.c. mains supply is reached. A poorly designed fuse could arc for a complete half cycle, i.e. 10 msec with a 50 Hz supply, allowing considerable energy to enter the faulty circuit. Fig. 5 shows how a poorly-designed fuse will fail to cut off the fault current. A similar situation arises when a fuse is used at a voltage above its rating.

Deterioration with Age

The passage of current pulses through a time-delay fuse will wear it out. Thus the number of pulses such a fuse can survive is limited. The rate of deterioration depends on the $I^{2} t$ value of the current pulses, see Fig. 6. Note that a fuse could fail after 3,000 pulses of ten times the normal overload surge. This explains why fuses can fail when there is

Fig. 5 (left): Fuse arcing to the end of an a.c. half cycle.
Fig. 6 (right): Ageing of time-delay fuses.
no overload fault. For example if a mains switch is operated 3,000 times in three years and the switch-on surges haven't been taken into account a fuse could fail, much to the user's annoyance.

Colour Coding

International standard IEC 127A specifies fuse ratings and an optional colour code that's similar to the three-band resistor colour code. The first two bands are in mA , the third band being the multiplier. Thus a fuse marked like a $1 \mathrm{k} \Omega$ resistor has a 1 A rating. A fourth band, twice the width of the other three, signifies the speed of the fuse: brown is FF, red is F, yellow is M and blue is T.

Integrated Circuit Protectors

ICPs are miniature fuses packaged for easy assembly on PCBs that carry low-voltage circuitry. The N type looks like a two-legged signal transistor while the F type looks like a two-legged single in-line chip. Their voltage rating is 50 V , the voltage drop being less than 100 mV at the rated current. To determine the current rating, multiply the last two digits of the type number by 40: for example, an ICP-F10 has a 400 mA rating and blows in 100 msec when a three-times overload occurs. Thus the characteristics are similar to those of an F type cartridge fuse. The N and F versions are similar electrically, the only difference being in the packaging. Never use an ICP where there's more than 50 V .

Thermal Fuses

The thermal fuse doesn't offer protection against an excess-current condition until the fault produces heat that warms the outside of the fuse's body. Construction and application are similar to those of a thermostat, an internal switch opening when a preset temperature is reached. A thermal pellet inside melts at a calibrated temperature, allowing a spring to open contacts that remain open when the temperature falls back. Typical current ratings are 115 A , usually at 250 V . Temperature settings can be in the range $60-240^{\circ} \mathrm{C}: 100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ units are commonly used to provide insulation protection, in a transformer for example.

Don't try to substitute a conventional wire fuse for this type of component, as the protection the two types provide is different. And don't try to solder to them - the temperature of the iron can melt the pellet inside, catastrophically.

Fusible Resistors

The fusible type of resistor is similar in appearance to a
conventional carbon resistor, but the construction is such that the device goes open-circuit readily when severely overloaded, with no fire hazard. Fusible resistors are used in power supplies as surge limiters, providing safe fusing when the associated reservoir/smoothing capacitor goes shortcircuit. The fusible resistor fails open without a long hightemperature period. Philips' fusible resistors are the size of a conventional 0.33 W resistor: they are coloured grey and go open-circuit in thirty seconds when 4 W is applied or ten seconds when 6 W is applied.

Fault-finding is simple: there's an open-circuit to trace, though there won't be any charred board to home in on.

Polymer Fuses

The polymer fuse is a relatively new device. It consists of a mixture of carbon black and plastic and operates like a PTC thermistor, i.e. it heats up when excess current is present, its resistance increasing dramatically but slowly, then resets automatically when left to cool. Polymer fuses have more closely defined resistance characteristics than a normal thermistor, and a very low cold resistance, e.g. $10 \mathrm{~m} \Omega$ for an 8 A device. The voltage rating is usually 60 V or less, but some low-current 250 V types are now available. The current rating is included in the marking on the body: an MF090 type for example is rated at 900 mA continuous current.

Safety

Fuses are included in circuits to protect the user and his equipment in the event of a malfunction. If you fit a device with different current cut-off features to the original one designed into the circuit there is an increased risk of injury, to yourself and others. So the correct type as specified by the equipment manufacturer must always be used. Remember that the manufacturer will have carried out extensive product testing, with faults intentionally introduced, and chosen fusing critically to ensure that the user is protected. If you alter a fusing system, will you have considered all the effects that an increased current flow could cause?

Adding a Bubblejet Printer to the Amstrad PCW

Keith Wevill, B.Sc.

There are probably many Television readers who use one of the Amstrad PCW series of word processors. Originally introduced in 1985, they consist of a keyboard, monitor and printer, with Locoscript word-processing software. The original PCW8256 had a single 3 in . 180Kbyte capacity disc drive, 256 K bytes of RAM and a dot-matrix printer. Later additions were the PCW8512 which had two 3 in. disc drives with 180 K and 720 K capacity and 512 K of RAM, and the PCW9512 with one 3 in . 720 K capacity disc drive, 512 K of RAM and a daisy-wheel printer instead of a dotmatrix type. The original Locoscript 1 and later Locoscript 2 were described in the December 1986. March 1989 and May 1989 issues. The latest version of Locoscript 2 is v2.32.

The 3 in . discs, with a capacity of 180 K in the singlesided, single-density format or 720 K in the double-sided, double-density format, never really caught on with the computer industry, which adopted the $3 \cdot 5 \mathrm{in}$. disc as its standard. It's possible to add a $3 \cdot 5 \mathrm{in}$. disc drive to a PCW8256 - many companies supply suitable drives. An article in the December 1992 issue dealt with this. 3.5 in . discs are cheaper and more readily available than the 3 in . type. The more recent Amstrad pcw series word processors have a $3 \cdot 5 \mathrm{in}$. disc drive as standard. The pcw9256 has 256 K of RAM and a dot-matrix printer, the pcw9512 512K of RAM and either a daisy-wheel or a bubblejet printer.

Types of Printer

The types of printer supplied with the various versions of the PCW differ in their print quality and versatility. This is because of the method used to produce the characters. With a dot-matrix printer the characters are formed, as the name suggests, from a series of dots. A daisy-wheel printer has solid characters on the 'petals' of the wheel. Bubblejet printers shoot small dots of ink on to the paper.

The PCW dot-matrix printer uses nine pins in one of two modes. In the draft mode the dots are visible and the printing speed is around 90 characters per second (c.p.s.). For the Near Letter Quality (NLQ) mode the paper is shifted up by half the vertical inter-dot gap after each line is printed and the characters are then reprinted. This fills in the gaps, improving the appearance of the text but slowing the print rate to about 20 c.p.s. Other dot-matrix printers that use 24 pins are available, giving finer text in a single printing.

The daisy-wheel printer produces solid characters on the paper like a typewriter, but the wheel has to be changed should a different font, e.g. italics, be required. It cannot handle graphics and tends to be noisy.

The bubblejet printer forms small ink droplets by heating the ink in a nozzle, ejecting the droplets on to the paper. Characters are formed in a similar manner to the dot-matrix printer, but there are many more nozzles than pins. The bubblejet printer supplied with the PCW9512 has 64 nozzles and is capable of very high-quality printing at high speed.

It's also much quieter than a dot-matrix or daisywheel printer.

There is another type of printer, the laser type, that's now the standard for many offices and businesses. It works in a similar way to a photocopier and is capable of extremely high-quality printing. But it is much more expensive. So for the time being the bubblejet is fast becoming the standard low-cost, high-quality printer.

The Canon BJ10ex Printer

The bubblejet printer supplied with the PCW9512 is a Canon BJ10, which is available separately for under $£ 200$ plus VAT. It can, with the appropriate interface and software, be used with any PCW series word processor. Once installed it can print all the characters and fonts available with Locoscript 2.

In order to match many laptop type computers the BJl0ex is physically small ($310 \times 216.5 \times 47.5 \mathrm{~mm}$), weighing 1.8 kg . It's powered by an a.c. adaptor but has space for an optional NiCd battery pack for portable use. There is a parallel Centronics interface, and the print speed in either the high-quality or economy mode is 83 c.p.s. - the economy mode puts less ink on the paper, making the text lighter.

Front-panel controls select high quality/economy, pitch, line/form feed, forward and reverse paper feed adjustment. Other functions are available by using these controls details are contained in the user's manual.

The BJ10ex can emulate several different types of printer in one of three modes that are set by eleven DIL switches and has various built-in fonts. By using a program such as Microdesign 2 or 3 in the PCW graphics and drawings can be printed. A slot at the back enables envelopes to be printed and an optional sheet feeder to be fitted.

The ink is supplied in a cartridge that also contains the print nozzles. So you get a new printhead whenever the cartridge is replaced. This makes the cartridges more expensive than the ribbons for a dot-matrix or daisywheel printer, but the print quality is consistent over the life of a cartridge - which is more than can be said of a ribbon. Cartridge life is quoted as approximately 700,000 characters, but it's possible to refill a cartridge and many firms can supply a refill kit at about half the price of a new cartridge.

Note that the BJ10e is similar but has only two modes and one less DIL switch. It is otherwise compatible with the following installation instructions.

Installing the Printer

To use a BJ10ex with a PCW the software required to drive the printer has to be installed and the appropriate hardware interface connected. The PCW has neither a parallel Centronics nor a serial RS232 port but does have an expansion port, in the form of an edge connector, to enable different interfaces to be fitted. Many different interfaces
are available from various manufacturers. The most popular types are the RS232/Centronics and extra memory interfaces. Each just plugs into the exposed edge connector at the back of the PCW. Many have a through-port facility so that more than one interface can be added. The memory interfaces enable up to 1.5 Mbytes of extra memory to be added, and some have a built-in Centronics port. The extra memory is useful when copying B-drive discs as the disc can be copied in one go instead of having to keep on changing over the source and destination discs. The graphics and desk-top publishing (DTP) programs also benefit from the extra memory. The PCW can use a maximum 2 Mbytes of memory.

Those with a PCW8256 or PCW9256 can easily fit an extra 256 K of memory internally by installing eight extra RAM chips in the eight empty sockets on the PCB and switching over two internal DIL switches. Many firms can supply a kit with full instructions for under $£ 20$.

Once a parallel Centronics port has been installed an external printer can be used by converting the document to a page-image ASCII file. Run CP/M, use the command DEVICE LST = CEN to set the list device (the printer) to the Centronics port, then transfer the ASCII file to the printer by using the command PIP LST:= drive filename where drive is the disc drive, A or B , that the file is on and filename is the name of the ASCII file. This is a longwinded method and is not recommended to any but the most desperate or computer-literate CP / M enthusiast. It will print out the text but won't allow such things as underlining or italics. The font and pitch have to be set on the printer, and it may take more than one attempt to get it right.

To get the full character set, styles and layouts available with Locoscript 2 the Start Of Day disc must contain suitable printer drive files. This calls for the Locomotive Software Printer Support Pack, which contains all the files needed to drive a number of types of printer including the dot-matrix (both 9- and 24-pin), bubblejet and laser types. Full installation instructions are supplied with the support pack - it's advisable to read through the booklet before attempting to install the files.

The following procedure however is the one I used when installing a BJl0ex with my PCW. My first attempt took over two hours but, once the problems had been sorted out, subsequent installations took 10-15 minutes.

There are two posible modes of operation for the printer, download and built-in character set. The latter uses the printer's own character set when printing and cannot print all the characters available with Locoscript. In the download mode the computer sends details of the character set to the printer before printing starts, so it can print any of the available characters including the Greek and Cyrillic alphabets. This is the mode for which the following procedure is intended.

My PCW system consists of a PCW8256 expanded to 512 K of memory, an external 3.5 in . B drive, a Centronics and RS232 interface, a BJ10ex bubblejet printer, the standard dot-matrix printer and a Keymouse for use with MicroDesign 2 and 3.

Installation Procedure

You will need your Locoscript 2 Master disc, the Printer Support Pack discs and at least one blank A drive disc that doesn't need to be formatted. If Locospell, Locomail or Locofile are to be installed, either the MATRIX.\#SS or MATRIX.\#ST file will have to be deleted to make room on the disc. These are font files for use with the internal dot-
matrix printer. There's an easy way of overcoming this if a B disc drive is available - more on this later. The procedure will have to be followed for each different Start Of Day disc made. The installation program is fairly easy to follow, and will prompt you to insert your master disc(s) and the blank disc(s) when required.
(1) Switch on the computer and insert the Installation Program for Locoscript 2 - at the time of writing the latest version for the PCW is $v 2 \cdot 32$. A message will appear on the screen, with the amount of memory found. If this is correct, press ENTER.
(2) Select OPTION 6 - Multiple Products. Insert your Locoscript 2 Master disc and press ENTER. The screen menu will then prompt you to select the additional programs required - Locospell, Locomail or Locofile. Select the required programs and press ENTER. When prompted, install these programs from the appropriate master discs.
(3) When the printer menu comes up select 'Built in matrix' and 'External printers using downloaded characters'. Press ENTER.
(4) Insert a blank disc in the A drive and press ENTER. Press ENTER again to format the disc and copy the files to it. This is now your Start Of Day disc.
(5) Once the files have been written on to the disc press ENTER to return to the initial options menu. Select OPTION 9 - Quit Installer. Then press any key to restart the computer, using the new disc just created? Check that the file LQ24.DRV the 24 -pin printer drive file) is in group 0 of drive A .

Now the printer files have to be installed.
(6) Insert the Printer Support Disc 1, Side 1, and copy file 24BJl0El.PRI to the M drive group 0 . This is the BJIO driver file.
(7) Insert the Printer Support Disc 2, Side 1, and copy one of the 24 PIN fonts to the M drive group 0 . There are four font files on the disc in group 7 (24FONTS) - 24PIN.\#LS, 24PIN.\#LT, 24PIN.\#SS and 24PIN.\#ST. \#LT and \#ST are the standard fonts, \#LS and \#SS the sans-serif ones (the type used, in italic form, for captions in Television). \#LS and \#LT are lighter versions. Select one of the fonts and copy it to the M drive group 0 .
(8) Insert the new Start Of Day disc just created and copy file 24BJIOE1.PRI to group 0 of drive A. Copy a font file 24PIN.\#XX to group 0 of drive A and rename it to 24BJI0E1.\#XX where XX is either LS, LT, SS or ST.

The font and .PRI files must have the same file name up to the dot. The instructions recommend renaming the .PRI file, but I chose to rename the font file as this enables me to see which printer I've chosen.
(9) Press SHIFT + EXTRA + EXIT simultaneously to restart the computer. Check that group 0 of the M drive now contains files LQ24.DRV, 24BJ10E1.PRI and 24BJ10E1.\#XX where XX is the font selected in (7).

The settings now have to be updated. Note that to select or deselect most of the options in this section you use the + or - selection keys at either side of the space key followed by the ENTER key.
(10) Select the 'settings' option by pressing f6.
(11) Select 'For printer' then option 24BJ10E1.
(12) Select 'Standard printer' then option 24BJ10E1.
(13) Select 'Printer defaults', then 'Printer options' then 'Sheet feeder'. This simplifies the printing procedure when changing paper, as the PCW cannot tell when a new sheet of paper has been inserted in the BJ10 and needs to be told by pressing the PTR key followed by the + selection key and the ONLINE button on the printer when the new sheet of paper has been loaded. By selecting the sheet feeder option all that's needed is to load a new sheet of paper then press the printer's ONLINE button.
(14) Select 'EXIT' then 'Write SETTINGS.STD'. Press ENTER to write the SETTINGS.STD file on the Start Of Day disc.

Your Start Of Day disc is now set up with its standard printer as the BJl0ex with the selected font. Set the write protect hole on the disc to prevent accidental erasure. If you print any existing documents you'll get a warning message that the current and intended printers don't match and will have the option to use the current (BJ 10 ex) or the intended (matrix) printer. To avoid this, the document set-up for the document must be changed as follows:
(15) Select the document and edit it with E .
(16) Select 'f1 Actions’.
(17) Select the ‘Document set up’ option.
(18) Select 'f6 Printing'.
(19) Select 'Printer' then 24BJI0E1.
(20) Check that the character set is the one chosen in step (7). If the character sets are different a warning message will be displayed when the document is to be printed. This is not serious, as the character sets available are compatible and either one can be used. Other character sets, available as a LocoFont disc, may not be compatible and could cause problems when printing. So it's advisable to ensure that the character set is the same as that chosen in step (7).

(21) Select 'Exit', then 'Exit' and return to the document.

The document and computer are now set up for the bubblejet printer with a single Start Of Day disc. All that remains is to set the DIL switches in the printer. These tell it, when it has been switched on, how to respond to the data sent to it. The factory settings are with all eleven switches at off. For use with the PCW and Locoscript, set switch 8 to on. This sets the download memory to 34 K and the receive buffer to 3 K , enabling the character set to be downloaded from the PCW. All the other switches should be off.

If you intend to use the printer with other programs it may be worth setting switch 4 to on. This sets the page length to 12 rather than 1 lin. For use with MicroDesign 2 the Alternate Graphics Switch 7 must be set to on. For MicroDesign 3 this switch must be off.

The user manual contains more information on the functions of all the switches.

Two Disc Drive Systems

If you have two disc drives it's possible to use the printer in more than one mode and to have more than one font available. Follow the instructions given above but, instead of copying the .PRI and .\#XX files to the A drive, copy them to group 0 of the B drive. In this way you can load both the standard and sans-serif fonts and their lighter versions if necessary.

You can use the printer's own built-in character set as well by selecting the 'External printer using built in characters' option when initially setting up the Start Of Day disc. Then copy file BJI30E.PRI to group 0 of the B drive. When you examine the printer options you will find that there are now three printers available.

Using the B drive like this has advantages and disadvantages. One disadvantage is that you need the disc in the B drive when you start up the system, but this is no real problem if you put the files on all your B discs. Another disadvantage is that the files take up space on the discs, but this is typically less than ten per cent of the space available. I've yet to succeed in filling a B disc - yet! The advantage is that you can set up each B disc for a different printer and font that suits the documents on the disc.

Back-up Copies

It's a good idea to make a note of the procedure you used, and which files you used, on each Start Of Day disc in case the disc gets damaged and a new copy has to be made, or changes are made to the disc such as adding Locospell, Locofile, Locomail or a new printer. I've included a copy on one of my B drive discs, with a print out stored in a separate file, along with other useful notes on the computer. Keep your master discs in a safe place, and make back-up copies of the Start Of Day discs.

Installing Other Printers

To install a printer other than the BJ10ex the procedure is the same except that the .PRI files appropriate to that printer have to be used. There is a list of printers and their .PRI files in the PCW External Printers Guide that's supplied with the Printer Support Pack.

Switching on/off Procedure

There's a recommended procedure for applying the mains supply to the printer and the computer. Switch on the mains supply to the printer first, then switch it on using its own on/off switch. Finally switch on the computer. The switch off procedure is the reverse. If the printer is switched on when the computer has been powered the printer can affect it. At worst the result will be a complete lock-up, with possible loss of files being edited.

To allow it to clean the print head, switch the printer off with its own on/off switch before you switch off at the mains.

Postcript

Since this article was written the BJI0sx printer has replaced the BJIOex and Locoscript 2 has been superseded by Locoscript 3. The BJIOsx has a higher print speed than the BJloex: the same installation procedure can be used. Locoscript 2 and the Locoscript 2 Printer Support Pack are no longer generally available, but you may still be able to obtain a copy. Otherwise you could upgrade to Locoscript 3 with its own Printer Support Pack.

What a Life!

Donald Bullock

A dead Hitachi colour portable came in the other day - it was fitted with the NP84CQ chassis. When I opened it up I found the most crowded little chassis I've seen for some while. As I didn't have a circuit diagram I started to make checks in the power supply and immediately found that Q902, a BU806 Darlington power transistor, was shortcircuit. I replaced it then checked the 2SD1453 line output transistor Q703 which was also short-circuit. So I replaced this too then switched on. The set grunted, but that was all. At this point a circuit was really needed and an idea came to me. I took down Mike Lyon's ECS model-chassis guide and found that the chassis is also used in the GEC Model Cl 405 H , for which we do have a manual.

The BU806 is part of a sort of pre-regulator, or initial regulator, circuit. It's followed by an LM317 variable voltage regulator chip, IC90I, that lives at the other end of the giant heatsink. A check showed that it had also failed. I replaced it and switched on again. Once more the set grunted, and that was all.

Then I stopped and thought. I'd been silly, hadn't I? I hadn't checked the replacement BU806 after replacing the LM317. They'd both be useless now. I checked them and they were.

As I'd just one more BU806 and LM317 I carefully checked the resistance between the h.t. line and chassis. The reading was respectable, so the remaining BU806 and LM317 were fitted. Then I checked the line output transistor again. The new one was all right.

I took down my variac arrangement - I've added a voltmeter, an ammeter and a 2 A mechanical cutout (from a Thorn 3500 chassis) to the variac itself - and used this to supply power to the Hitachi portable. All went well as I wound up the voltage. The ammeter's hand shuddered a bit at switch-on, then settled back happily against its stop. I wound on cautiously, darting my eyes about like a weights and measures pest. Then the hand suddenly flew over to the other stop as the set grunted again and died.

Mrs Tubby

It was at this point that Mrs. Tubby rolled in from the Dean Forrest. She talks in riddles and a visit from her was the last thing I wanted.
"I've parked my car in the road. It's faulty" she said.
I looked up wearily. "I can't mend cars Mrs. Tubby" I said.
"The telly's faulty" she said, leaning towards me as though I was an idiot, "the one you mended the other day. It's never been right since you did it. But we thought we'd give it a chance. It didn't settle down though. You'll have to get it out of the car."

I followed her out from the drive, wishing I'd been an optician or a rich and aloof car mechanic. She walked on. Her car was a hundred yards away. I pulled out the weighty Sony KV2217UB and started the treck back to the workshop. When I got there I was tottering.
"I want you to do me a favour Mr. Bullock" she then said. "My son Walpole leaves school soon. He seems to have some electrical questions to answer. Perhaps I could pop him in tomorrow. This workshop could do with a clean
up. He'll do it while you answer his little questions." And off she went.

Back to the Hitachi

I took another look at the Hitachi/GEC circuit and noticed that there's a bit of the power supply that's right over at the other side of the chassis, as far away from the rest as could be. It's an over-voltage trip that removes the 12 V supply to the line driver transistor and various other parts of the set. Maybe something here was causing the grunting. There's a crowbar thyristor and a 36 V zener diode (ZD903), which turned out to be short-circuit. I'd have to order one. So I phoned JJ Components and placed an order for this and various other items.

They arrived next morning. After fitting the zener diode in the Hitachi set I started it up again. This time it came on perfectly. The faulty line output transistor must have killed ZD903 as well as causing the damage in the power supply. Anyway the birds were now singing and the sun was shining. Then a cloud appeared. It was Mrs. Tubby and her son Walpole.

Walpole's Questions

Sure enough Walpole had the workshop tidy in no time. He then made some tea and we sat down for his questions.
"What's electricity, voltage and current?" he asked, with his pencil poised.
"Steady" I said, "first things first. Electricity is the movement of electrons. Got that?" He looked blank.
"Everything - pear-drops, elephants, copper wires consists of lots of atoms which in turn consist of a nucleus with some little electrons bumbling around it. The atoms are each like a tiny solar system."
"Can't see it" Walpole said blankly.
"Look" I said, "imagine a long tunnel full of footballs. Each one has a dozen tennis balls jostling around it. You're at one end with an enormous basket of tennis balls and I'm at the other with an empty basket. And 1 just love tennis balls. You lob a tennis ball into your end of the tunnel. This attaches itself to the nearest football which now has say thirteen tennis balls surrounding it, an unlucky number. So it jettisons a tennis ball farther into the tunnel. This in turn enters the orbit of another football which in turn kicks one out. The chain reaction carries on all along the tunnel and I wind up with a tennis ball in my basket - though not the one you tossed in. Then you lob the rest of your tennis balls in, as fast as you can, and I get an equal number out at my end. Call the tennis balls electrons. You've created a flow of electricity."
"But what's current and voltage?"
"Current is the number of electrons - er, tennis balls you're lobbing in" I said, "and voltage is the force with which you're lobbing them in."

He made some notes, then looked at me thoughtfully.
"Where do all these electrons come from?"
"There's an enormous reservoir of them" I replied, "and your standing on it - the earth. They are cruelly dragged out of it at the power station and can't wait to get back. We send them all over the place before they get there, to wherever we want work done, and make them flow through our gadgets as they fight their way back home."

Walpole looked even more thoughtful. "What's resistance, capacitance and inductance then?"
"Walpole" I said, "I've got sets to fix, and your ma's just entered the drive. Bring the rest of your questions along next time."

I humped the Sony set (YE2 chassis) on to the bench, hoping that I could mend it. I'd fitted a new mains switch six months earlier. When I switched it on the power supply sang like a kettle for a few seconds then fell silent. There were no voltages at its outputs.

I headed for the usual culprits, R607 and R618, but they were all right. C 12 also proved to be o.k. when checked on my capacitance bridge. So I disconnected plug F6 and connected a 100 W bulb across pins 1 and 2 - the 135 V output and chassis - then switched on again. The bulb lit up. Checks showed that the other output voltages were also present and correct. So the cause of the fault had to be an overload on the 135 V line, which supplies the line output stage.

I turned to the line output panel and checked the resistance between the h.t. input and chassis. It was down at 5Ω. So I rushed to the line output transistor which was all right. I traced the short to pin 1 of the line output transformer. The circuit shows that it's connected only to pins 10 and 11 , so I isolated these by nicking the print. But the short remained. There was nothing for it. Out came the transformer, and I then found that pins 1,10 and 11 read continuously with nearly every other winding. A new line output transformer restored normal operation.

Mr Flighty's Mitsubishi CT1447BM

Just as Greeneyes brought in my tea Mr. Flighty danced in with a Mitsubishi CT1447BM TV set. He ignored me, put the set down with part of it on my hand, and grinned at Greeneyes, asking how she was and had she been on holiday yet. He went on and Greeneyes chortled. I waited. When he'd run down I pointed to my trapped hand with my good one and he moved the set off it.
"Sorry old chap" he said, "it's stuck in standby."
"I know the feeling" I replied.
He then danced out, waving at Greeneyes. Muttering something about ferrets I applied myself to the set. I checked the STR 44115 chopper chip IC901 and found that its pins were all shorted together. So I fitted a replacement. The set again failed to start up and I noticed that the chip's
heatsink was getting hot. In this chassis (Euro 3) D906, a 132 V zener diode, acts as a crowbar in the event of excessive h.t. voltage. It was short-circuit. I fitted a replacement and started the set up with the variac. It drew current but that was all: there was still an h.t. short-circuit. So I disconnected the 115 V supply at pin 2 of the line output transformer. This cleared the short. I checked and cleared the 2SD1426 line output transistor Q551, then the two rectifier diodes D552 and D553 which were also o.k. I then took out the line output transformer to check its windings with the circuit. The primary winding (pins 1-2) was shorted to the two secondary windings. A replacement cured the trouble.

Another Visit from Mr Pearshape

Mr. Pearshape's Jaguar sang into the drive. He tumbled out in a cloud of cigar smoke. A shy but well-built little lady hung in the background. She might have been his cleaner, but wasn't. . .
"Set in the boot. Bad back you know" he rasped. I carried it in and he propelled the young lady in with his finger.
"Blue picture wasn't it m'dear?" he croaked. She nodded at the ground. He handed me his card and added "mend it quick and ring me, right?" Then they departed.

The set was a 14 in . Sony Model KVM14TU. Its picture had scarcely any blue content and the red was smeary. In addition the chroma seemed to be far too intense. When I changed channels the blue content improved. I decided that the actual fault was a dark picture with a varying chroma balance but I had no means of adjusting it - the remote control unit hadn't been brought along.

A check showed that the tube's first anode voltage was low at 150 V . I traced its source back to the line output transformer where R852 was powdered and white while D852 was sooty. When these items had been replaced I had full brightness and correct colour balance. A relatively simple cause of symptoms that had threatened to baffle me.

A phone call to Pearshape brought a hoarse chuckle. "I like to keep her happy you know" he rasped.

Answer to Test Case 373

\author{

- see page 186 -
}

Teletext problems are not usually too difficult to sort out: the circuitry runs at low energy levels, and apart from the control and RAM chips there are, in the type of decoder used in this example, only two processing chips to worry about. What do you do when you've replaced them both and the fault is still present? With
this particular fault you don't consider replacing either the control or the memory chip because they cannot really cause this type of random data corruption or decoding error. A sensible course of action would be to replace the entire decoder if it's separate from the rest of the set and a substitute is available. But this was not the case here! In fact the fault would have remained the same had the entire decoder been replaced.

Sage was called in. He examined the decoder's video input signal and agreed that it was free of defects. He next transferred the scope's probe to
the supply lines. The 12 V supply was fine, but the 5 V line carried a mass of hash and noise whose peak-to-peak amplitude, riding on a mean voltage level of about 4.8 V , averaged about 1V! This supply comes from a 5 V stabiliser that consists of a three-legged, heatsinked chip on the main panel. The 9 V input to this chip was correct, and the fault was cured when a new regulator had been fitted. The previous one must have been grumbling mightily inside! Dylan would have found the culprit himself of course if he hadn't made such a cursory check on the 5 V supply.

[^0]
Design your own satellite system!

You can with the belp of this brilliant new program by DJ Stephenson

SATMASTER Version 4 Only 43
Allows you to design a system and tew it

Prondes essential dish serup angles polat and apex elevation for monurised symem: elevation, azimuth, pelartation ofleet. from any location in the World for any
includer magnetic map and lomprimes for
alt popular vatellices acrow Europe

- Easy-lo-use pop-up menu merflice makes redious lash sumple for everyyonle
- Complete with User Insiruciom Mamualt

Conlains 20.(x) word on-wreen lechnics contex tsensitive heipline with faut
inding. cable spers and sue survey gurde Caiculates tull link budger including dish we optumbiation to ensure the hevt yualliy picture' Swift Television Publication ications 17 Pitssfield, Cricklade, Swindon SN6 6AN Tel: 0793750620 Fax: 0793752399

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS -
TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED $1 / 2$ Mile of Junction 10 M6. Easy Parking Facilities
UNIT 3, BENTLEY LANE BUSINESS PARK
BENTLEY LANE, WALSALL WS2 8TL
Tel: 0922 724542. Fax: 0922722208
Mobile: 0860499495 (24 Hours)
OPEN:
MON-FRI, 9-6pm SAT 9-2pm SUNDAYBY APPOINTMENT DELIVERY SERVICE THROUGHOUT THE COUNTRY

TUBES

TUBES

TUBES

A Merry Christmas and a
Prosperous New Year to all our Friends and Customers

Possibly the largest range of television tubes, at the right price, in the $U K$.

Ring Irene or Jane for a quote

Callers Welcome

0Carriage and VAT extra

EXPRESS TV The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 0889-577600 Fax: 0889-575600

AMSTRAD HANDSETS

VCR4700
VCR5200
VCR6100 (Indexer)
VCR6200 Barcode
VCR9000 (Old type)
TVR 2
SDR400 (Equivalent)
RRD500
SRD510/520
TS90/99 Tower System PROUNE $5100 T X$

AMSTRAD LOPTS
TV1000 FB182K
400 FB165KA
CTV2000 FB171
CTV2000
CTV2210 3722002
TVR 3181297
CTM644 Mkll 3714009 PCW9512,8256,8512
FERGUSON LOPT
MM06 00D4242001
ARTRAD TUNERS
UE33-BO1 VCR4600/4700
1810829 VCR5200
ENV87509F2 CTV1400

Harrison Eectronics

FAX: (0354) 51416. TEL: (0354) 51289

AMSTRAD IF UNITS

TPS7-B0006 VCR4600/4700
17.63 TPS7-L0002
11.751813766
29.38 AMSTRAD
32.44 MODULATORS

17518196221 VCR5200
8.46 ENP-E730-2 VCR7000
11.05 SAD 1001201400
11.75 AMSTRAD VCR
11.75 MECHANISMS
11.75 4500,9000 (Old model)
17.63 CASSETTE HOUSING ASSY. heads)

4600, 4700, TVR1,2,3
4.10 COMPLETE MECHANISMASSY
3.51 *COMPLETE MECHANISM ASSY
14.10 (Excluding cylinder assy.) $\quad 29.38$
14.10 MECHANISM DECK (Excl Cass.

Cyinder assy.)
Video heads)
INDER ASSY. (excluding Video heads)
20.56

CYUNDER LOWER DRUM ASSY.
5.88 (Excluding Motor) 9.99
7.05 HEAD BASE ASSY. (Audio)

VMC100-Various parts available. please phone for prices.

RAD MOTORS
Drum Motor E20EL05 Capstan Molor LLN4B21

Tape Loading MCF9B02

QUALITY

E\&ERTMロNIC

IRWIN
SERVICE
Mang chain (0)NT(CS)

Trade Enquiries To:-
Unit 200, Albyn Complex, Burton Road, Sheffield S3 8BX Phone: (0742) 739622/759909. Fax: (0742) 759909

PAYS-UT.V.

SUPPLIERS OF WORKING USED TV'S, VIDEOS, MICROWAVES, FRIDGE FREEZERS, COOKERS + WASHING MACHINES

TDLL: nottingham 0602:s0002

WE DELIVER ALL AREAS!

VISA

B.W.HARD7 YOUR ONESTOP.SHOP

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

四W민톤ㄴ SMATV
DIAMOND AERIALS UHFIFM

cIOBAI

communcations FIRST IF, SMATV

 UHF AMPLIFIERS
Labgear Cablevision SMATV \square LENSON HEATH SATELLITE
PACE
RECEIVERS DECODERS
SATELLITE RECEIV $=R S$

A PROMAX
TEST EQUIPMENT

Illtrixings BOLTS PLUGS
 BOLTS PLUGS Telerte TRIAX U.K SMATV
UHFNHF
TOWER cups UNI(j)FIX CLIPS

VOLEX
RAYDEX COAXCABLES

- we provide full technical assist tance and service back up - SMATLOUR PRODUCTS Trace Price List available to bona fíde TV Aerial and Satelitite Dealers

JW. Hardy, 231 Station Road, Stachford,
Birmingham B33 8BE. Telephone: 021-784 8478

COLOUR TELEVISION TUBES

SPECIAL OFFER

ASI-EAL A5I-JAR ASI-JRU ASI-JVJ ASI-IPE ASI-EAM ASI-EAK ASI-EBD

OUTSTANDING VALUE AT

f52.50

plus carrlage a vat
SUPER QUALITY AND PERFORMANCE
12 months guarantee

OVER 150 VIDEO HEAD TYPES MANUFACTURED BY VISTA TO COVER MORE THAN 2000 VCR'S FIRST CLASS QUALITY

LARGE STOCK OF TV AVD VCR SERVICE COMPONENTS AND ACCESSORIES AVAILABLE FROM OUR TRADE COUNTER

FOR CUSTOMER CARE AND SERVICE CALL TUBES: 0429837100 COMPOMENTS: 0429838057 FAX: 0429837101

Fista Electronics Ltd
Unit IB, Wingate Grange Industrial Estate, Wingate, Co.Durham, TS28 5AH.

P119 UISION-ON NEUS UPDATE JAN 1994 A PROSPERODS NEW MEAR?

To make 1994 even more successful than 1993 you need to turn-round more repairs in less time.

That's where 'FAULT-FACT-FILES' can help.
Each month you will receive at least 150 of the latest faults found on TV and VCR

SPECIAL INTRODUGTORY OFFER FIRST TMO ISSUES FREE!
 (Ends 31st Dec 1993)

 equipment, collated in an easy to use format and designed so that each new set slots straight into your filing system for fast easy access.There's also our Help-Desk* for those really elusive faults plus top tips giving you time-saving ideas

Applications received before 31st Dec 1993 qualify for our special introductory offer of two FREE issues (14 for the price of 12) so act immediately.

After all, why spend hours on a repair if your competitors can do it in minutes This could be the best resolution you make for 1994.

Happy New Vear!

For more information send a large $(81 / 2 \times 6)$ SAE.
*Help Desk costs $£ 2.50$ per fauth for subscribers to "FAULT-FACT-FILES' and $£ 7.50$ for non-subscribers. Money-back guarantee if we are unable to provide at least one possible solution for the symptoms described.

WHEN YOU SUBSCRIBE TO 'FAULT-FACT-FILES'
1 Yr - $£ 30$ (min) 2 Yrs - £55 Save $£ 5.00$ 3 Yrs - $£ 80$ Save $£ 10.00$ 4 Yrs - $£ 100$ Save $£ 20.00$

TO APPLY SIMPLY SEND YOUR NAME, ADDRESS AND POSTCODE WITH A

CHEQUE/P.O.FOR
REQUIRED AMOUNT
TO
'VISION ON' (TV1) 16 HILLVIEW PARK NEWTOWNABBEY

BT36 8HW.
Overseas add £10 per annum

SONY TUBES pe processed with oricinal sony cuns

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, MIni (22.5) Neck and FST Tubes.				
3701822 $£ 25.00$	A51-231XIIT	¢46.00	A51EBD00X	¢58.00
$3702 \mathrm{B22}$ …… $£ 48.00$	A51-570X Mullard	¢46.00	A51EBV10X01	£58.00
370KRB22 548.00	A51-580X Mullard	£46.00	A51JAR00X	£64.00
370 LHB22 \quad - 548.00	A51-590X Mullard	£46.00	A51JKQ00X Sony	\$74.00
400EFB22 Sony 564.00	A56-540X Mullard	£52.00	A5IJUH10X Sony	. 874.00
510 YUB22 (brand new) 546.00	A56-70 $\times 1 / \mathrm{T}$	¢48.00	A53JBW00X Sony	. 664.00
$520 S 822$ Sony $\quad \mathbf{5 6 4 . 0 0}$	A66-540X Mullard	¢56.00	A59EAF00X	¢64.00
560EGB22 Hitachi $£ 48.00$	A67-701X IT	\$56.00	A59EAK00X Philips	. 964.00
$5600 \mathrm{YB22}$ …….... $£ 48.00$	A34EACOOX	¢48.00	A64JKJ10X Sony	. 895.00
570HB22 Sony …...... 564.00	A34JBUT0X Sony.	¢64.00	A66EAFLOX	. 974.00
6800B22 Sony 885.00	A44JFZ10X Sony	¢78.00	A66EAK00X Philips	174.00
680EB22 Sony 885.00	A49JHTOOX Sony	. 664.00	A68JMTt0X Sony	195.00
	A49JLV10X Sony	¢74.00	A68JYK10X Sony	¢ $¢ 9500$
	A51EAF00X	£58.00	AXM37-001	¢48.00
	A51EAK00X	£58.00	AXT51-001	\$46.00
	A51EAL00X	. $£ 58.00$		
For tube types not listed please enquire All Tukes Guaranteed 12 Months	All prices quoted are exciuding VAT Exchange CRT is required		Callers welcome Please phone first Delivery Avalable	

NEW TUBES IN STOCK - PLEASE PHONE
FOR YOUR REQUIREMENTS
Very competitive, nationwide delivery and collection service

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips on your CRT screens. All you require is an electric drill. Written instructions are provided. Guaranteed to work. Worldwide Delivery Total Price $\mathbf{£ 6 3 . 0 0}$ includes P\&P and VAT Available from Luton only

WILTSGROVE LTD

NEW Fefinition BRAND

PORTABLE 14' REMOTE TV 21 PINSCART
onscreen display,
VHF/UHF TUNER,
12 MONTHS GUARANTEE etc.

* GUARANTEED LOWEST PRICE *,

WORKING GRADED STOCK
 ALL BOXED WITH INSTRUCTIONS

SHARP RG292 sterco car radio cassette, 2 band with anss £17.01 SHARI RG296 stereo car radio cassette, 3 band with anss $\$ 19.99$ SIIARP JCIO5 personal cassette player
SHARP JCI 30 personat radio/cassette player
SHARI' JC200) personal cassette player with auto/re
26.50
uto rev/2 band radio
$£ 9.50$
akp JC510 personal cass/auto rev/2 band radio
$\uparrow 12.50$
MIDI-SYSTEMS
Basic Systems from $£ 25.00 \quad$ Remote control sys. from $£ \pm 0.101$ Systems with CD) from $£ 50.00$
VIDEO WORKINGEX-RENTALSTOCK
Top loader video $£ 35.00$ Basic colour TV's from $£ 25.04$ Front loaders with r/c from $£ 45.001$ Remote TV's with r/c from $£ 35.00$ Twin speed VCR with r/c from $£ 55.00$ Teletext TV's with r/c from 45.00 Thorn 8947 VCR with r/c $\mathbf{~} 65.00$

Back-space edit facility, records on standard VHS recording time: 240 minutes, date insert facility, automatic Iris contrul, 6:I motorized zoom lens, lapc play back facility. Only $£ 199$
 28-29 RIVER STREET, DIGBETH BIRMINGHAM B5 5SA
TEL: 021 772-2733 FAX: 021 766-6100
EXPORT ENQUIRIES W EICOME

AMSTRAD DMP4000 Entare printer assemblies ancluding prithead, plater. cables. stepper muturs etc. Everythung bar the electronfor 68 REF: MAGB
VIEWDATA SYSTEMS Brandnew units made by TANDATA complete with $1200 / 75$ built in modem, infra red remote controlled keyboard. BT approved. Prestel compatibie Centonice printerport RGB colour and composite output (works with any TV) complet with power supply and fuly cased. Price is just $£ 20$ REF: MAG20 Also some customer returned units available at $£ 10$ each REF. MAG10 PPC MODEM CARDS These are high spec plug in caros made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance pnce is $E 5$ REF: MAG5P1 INFRA RED REMOTE CONTROLLERS
hi spec satellite equipment but perfect for al sot Onginally madefor hi spec satelite equipment but perfect for all sorts of remote control projects Our dearance pnce is just $\Sigma 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs etc $£ 20$ REF: MAG20P1
SINCLAIR C6 MOTORS We have a few left without geartoxes These are 12 V DC $3,300 \mathrm{pm} / 6^{\prime \prime} \times 4^{\circ}$. $1 / 4^{\circ}$ OP shaft £25REF: MAG25 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the above motor but suitable for any 12 v motor up to 30 A . Complete with PCB etc. A heat sink may be required $£ 17.00$ REF: MAG17
VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV set in a 100 range! (tune TV to a spare channel) 12 v -FM CORD - FM CORDLESS MICROP HONE Small hand held Unit with a 500 range! 2 transmit power levels Reqs PP3 gv battery Tuneable to any FM receiver Price is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair or battery operated units with a range of about 200° ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG $8 P 12 \times$ PP3 req'd
*MINATURE RADIO TRANSCEIVERS A pair of walkle talloes with a range of up to 2 kilometres in open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Completewith cases and earpieces $2 \times P \mathrm{PP} 3$ req'd $£ 30.00$ parr REF: MAG30
COMPOSTTE VIDEO KT. Converts composite video into separate H sync V sync, and video $12 v$ DC operation $£ 8.00$ REF: MAG8P2
LQ3600 PRINTER ASSEM BLIES Made by Amstrad they are entre mechanical printer assemblues induding printhead, stepper molors etc etcin fact everything bar the case and electrorucs, a good tnpper 55 REF: MAG5P3 or 2 for $£ 8$ REF: MAG8P3
PHILIPS LASER 2MW helium neon tube. Brand new full spec £40 REF MAG40 Mains power supply kit £20 REF: MAG20P2 Fully bull and tested unit £75 REF: MAG 75
SPEAKER WIRE Brown two core, 100 foot thank $£ 2$ REF MAG2P1
LED PACK of 100 standand red 5 mm leds $£ 5$ REF MAG5P4 JUG KETTLE ELEMENTS good general purpose heating element (about 2 kw) ideal for allsorts of heating projects etc. 2 for $\varepsilon 3$ REF MAG3
UNNERSAL PC POWER SUPPLY complete with flyeads switch, fan etc. Two types avalable 150w at $£ 15$ REF:MAG15P2 $23 \times 23 \times 23 \mathrm{~mm}$) and 200 w at $£ 20$ REF MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$) OZON F RIENDLY LATEX 250 ml botte of liquid rubber, sets in 2 hours ideal for mounting PCB's. fixing wires etc £2 each REF MAG2P2

- FM TRA NSMITTER housed in a stand ard working $13 A$ adapten! the bug runs directy of the mains solasts forever' why pay $£ 700$? or pnce is $£ 26$ REF MAG26 Transmits 10 any FM radio
- FM BUG KIT New design with PCB embedded coil for extra stability Transmits to any FM radio gV battery req'd $£ 5$ REF
-FM BUG BUILT AND TESTED supenor design to kit as supplied to detective agencies etc $9 v$ battery req'd $£ 14$ REF MAG14
TALKING COINBOX STRIPPER onginally made to
retail at $£ 79$ each these units are designed to convert and ordinary retail at $£ 79$ each. these units are designed to Convert and ordinary
phone into a payphone. The units we have generally have the locks phone into a payphone. The units we have generally have the locks missing and sometimes broken hinges. However they can be adapted REF: MAG3P1 100 WATT
100 WATT MOSFET PAIR Same spec as $25 K 343$ and 2SJ4 13 ($84.140 \mathrm{v}, 100 \mathrm{w}$) 1 N channel and 1 P channel. £3 a pair REF:
MAG 3 P2 MAG3P2
VELCRO ; metre length of each side 20 mm wide (quick way of fixing for temporary jobs etc) $£ 2$ REF: MAG2P3
MAGNETIC AGITATORS Cosisting of a cased mains motor with lead The motor has two magnets fixed to a rotor that spin round inside. There are also 2 plastic covered magnets supplied. Made for remotely stming liquids' youmay have a use? $£ 3$ each REF: MAG3P3 2 for 55 REF: MAG5P6
TOP QUALTTY SPEAKERS Made for Hi FI televisions these are 10 watt 4R Jap made 4 " round with large sheided magnets Good quality general purpose speaker £2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAG6P2
TWEETERS 2. diameter good quaity tweeter 140 R (would be good with the above soeaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4
AT KEYBOAROS Made by Apricol these quality keyboards need just a small modification to run on any AT, they wonk perfectly but you will have to put up with 1 or 2 foreign keycaps! Price E6 REF MAG6P3
XT KEYBOARDS Mixed ypes. some retums, some good some foreign etc but all good for sparesi Price is $£ 2$ each REF:MAG2P6 or 4 for $£ 6$ REF: MAG6P4
PC CASES Again muxed types so you take a chance next one off the pile $£ 12$ REF:MAG 12 or twoidentcal ones for $£ 20$ REF: MAG20P4 component pack bargain 1,000 resistors $* 1,000$ capacitors (ail same value) $£ 250$ a pack REF:MAG2P7

1994 CATALOGUE OUT NOW

Bucc's
BUCECTSU BOARD MASSIVE
WAREHOUSE CLEARANCE FANTASTIC $£ 20.00$ REDUCTION

REFURBISHED PC BASE UNITS
COMPLETE WITH KEYBOARD

from only $£ 29.00$
AMSTRAD 1512 BASE UNITS guaranteed
PERFECT WORKING ORDER.

AMSTRAD 1512SD
1512 BASE UNIT, 5.25" FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONTIOR AND POWER SUPPLY. WAS $£ 49.00$

NOW OMIY $£ 29.00$
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO 5.25 " 300 K DRIVES ALLYOUNEED IS A MOMTOR AND POWER SUPPIY WAS ES9.00

NOW ONLY £39.00

REF MAG39

SOLAR POWER PANELS

3FT X IFT IOWATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
NOW AVAILABLE BY MAIL ORDER £33.95

IOP QUALITY AMORPHOUS SILICON CEILS HAVE AIMOST A TIMELESS LIFESPAN WIIH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATIERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABLE $12 V$ SUPPLY IS REQUIRED. REF: MAG 34

ALSO IFTX IFT GLASS SOLAR PANELS $12 \vee 200 \mathrm{~mA}$ ONLY £15.00 RE: MAG15P3

FREE SOFTWARE!

Brand now, UNUSED top quality famous brand licensed soffware discs. Available in $5.25^{\prime \prime}$ DSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with tree BRAND NEW UNUSED SOFWARE. We are actually selling you the floppy disc for your own "MEGA CMEAP" storage facillie: if you happen to get sottware that you want/need/like cs well.......you get a "MEGA BARGAIN" tol DSDD PKTIO £2.99 REF: MAG3P7 PKT100 16.00 REF: MAG16 HO PKTIO 53.99 REF: MAGAP3 PKTIOO £25.00 REF: MAG 26 PI

LaRger oantity prices available on application
££££££WE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH
immediate settlement we wrl al so quote for
COMPLETE FACTORY CLEAR ANCE coming soon

1994 CATALOGUE

'LEASE SEND 12P AA SUED SAE FOR YOUR FREE COPY
 TNVEESTIES QLOCAL AUTHORITES WELCOME ALLOCOOS SUPP LIED SUB ECT TO
 NOTICE ORD RS SMEECT TO STOCK
TIES HOHER THAN THOSE STATED
'SOME OF OUR PRODUCTS MAY BE UNLICENSABLE W THE UK
BULL ELECTRICAL
250 PORTLAND ROAD HOVE SUSSEX BN3 50

MAM ORDER TERMS CASH PO OR CHEQUE

 WTTHORDERPLUSEZ OOPOST PL US VGT.PLEASE ALLOW 7-TO DAYS FOF OELIVERY
TELEPLONE ORDEF WELCOME
T1L $0=3200500$
TAX: 0273 $32307 ?$

COMMODORE MICRODRNE SYSTEM mini storage device for C64's 4 tmes faster than disc drives. 10
than tapes. Complete unit just $£ 12$ REF:MAG12P1
SCHOOL STRPPERS We have quit a
units which are 'returns' as they are quite comprehens above Units which are 'returns' as they are quite comprehensive units
they could be used for other progects etc Let us know how many they could be used for other profects etc. Let us know how many you
need at just 50 p a unt (minimum 10) need at just 50p a unit (minimum 10)
HEA DPHONES 16P These are ex Virgin Atlantic You can have

8 pars for £2 REF: MAG2P8

PROX MTTY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with fly leads Pack of $5 £ 3$ REF: MAG. 3P5 or 20 for E8 REF: MAG8P4
FIBRE OPTIC CA BLE Made for Hewlett Packard sopretty good stuft you can have any length you want (min5m) first 5 m £ 7 REF: MAG7 thereafter $£ 1$ a metre (ie 20 m is $£ 22$) REF: MAG1 Maxiength SMO
SNOOPERS EAR? Onginall made to clip over the earpiece of telephone to amplify the sound-it also wonks quite well on the cable running aiong the wall! Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with afl manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very comprehensive manual 525° only
DOS PACK Microsoft version 5 Onginal software but no manuals hence only 23 REF: MAG3P6 5.25° only
FOREIGN DOS 3 3-German, French, italian etc $£ 2$ a pack with manual 5.25° only REF:MAG2P9
MONO VGA MONTTOR Made by Amstrad refurbished £49
CTM644 COLOURMONITOR Made lo work with the CPC464 home computer Standard RGB input so will work with other machines Refurbished $£ 59.00$ REF:MAG59
JUST A SMA LL SELCTION of what we have to see more get our 1994 catalogue (42p stamp) or call in Mon-Sat 9-5 30
HAND HELD TONE DIALLERS ideal for the control of the Response 200 and 400 machines. $£ 5$ REF MAG5P9
PIR DETECTOR Made by famous UK alam manufacturer these are hi spec. long range intemal unts. 12v operaton Slight marks on case and unboxed (although brand new) 18 REF: MAG8P5 WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar panel! £14 REF: MAG14P1 COMMODORE 64 Customer returns but ok for spares etc $£ 12$ REF MAG12P2 Tested and wonking units are $£ 69.00$ REF: MAG69 COMMODORE 64 TAPE DRNES Customer returns at $£ 4$ REF MAG4P9 Fullytested and working units are $£ 12$ RE= MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS232 input/output. Ex equipmem. Pnce is E27 REF MAG27 MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13 A plug on one end, cable the other. Ideal for projects. IOw cost manufactunng etc. Pack of 10 for E3 REF MAG3P8 Pack of 100 E20 REF MAG20P5
SURFACE MOUNT STRIPPER Orignally made as some form of hign frequency amplifier (main chip is a TSA5511T 1.3 GHz synthasiser) but good stripper value, an excellent way to play with sufface mount components $£ 1.00$ REF MAG1P1
MICROWAVE TIMER Electronicomer with relay outputsultable to make enlarger bmer etc $£ 4$ REF MAGAP4
PLUG 420 ? showing your age? pack of 10 with leads for $£ 2$ REF MAG2P 1
MOBILE CAR PHONE $£ 5.99$ Well almost! complete in car phone exduding the box of electronics nomally hidden under seat Can be made to illummate with 12 v also has built in light sensor so display only illuminates when dank Totally convinang! REF MAG6P6 A LARM BEACONS zenon strobe made to mount on an extemal bell box but could be used for caravans etc 12 V operation. Just connect up and it lashes regulany) E5 REF MAG5P11 FIRE A LARM CONTROL PANEL High quality metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$ Comes with electronics but no information £15 REF MAG15P4
SUPER SIZE HEATSINK Supert quality alumınium heatsink $368 \times 183 \times 61 \mathrm{~mm}, 15$ fins enamble high heat dissipation. No holes!
£ 9.99 REF MAG10PiP 9.99 REF MAG10P1P

REMOTE CONTROL PCB These are receiver boards for garage door poening systems. You may have another use? £4 ea REF: MAG4P5
LOPTX Line output transformers believed to be for hi res colour nonitors but useful for getting high vortages from low ones! $£ 2$ each REF MAG2P12 bumper pack of 10 for $£ 12$ REF MAG12P3

PORTABLE RADIATION DETECTOR

£49.99

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Sup plied complete with handbook.

REF: MAG50

1.5 MILLION PEOPLE USE M.C.E.S. PRODUGTS DAILY.

REMANUFACTURED:-

 \section*{FREE PRICE LIST AVAILABLE.
 \section*{FREE PRICE LIST AVAILABLE.

 RING 061-746 8037

 RING 061-746 8037 FAX 061-746 8136} FAX 061-746 8136}See next month's issue on how to get your FREE disk
or call now for details on WorkShop Manager Plus

The complete computer Job Tracking, Invoicing \& Reporting system.
Specially designed for the TV, Audio, Video \& Electronic Service Departments.
Cut out this coiupon and see below

send your details to: WMGR, 3 Ladymeade, Ilminster, Somerset TA 19 OEA
Tel: (0460) 55166 or Fax to: (0460) 54808

MANCHESTER'S NO 1 WHOLESALER

RED BANK "\%

HERE

OVER A 1000 SETS IN STOCK BASIC TELEVISIONS FROM................... £5 WORKING TELETEXT FROM £35 WORKING PANASONIC TEXT £40 WORKING GEC/HITACHI TEXT £40 FRONT LOADING VIDEOS FROM £20 REFURBISHED STOCK AVAILABLE OPENING HOURS FROM
10AM TILL 5PM MONDAY TO FRIDAY UNIT 20, RED BANK ARCHES, RED BANK MANCHESTER M4 4HF - CHEQUE - ACCESS - VISA

	HAPPY NEW YEAR
	RE-STOCK AND SAVE
	£ff's
50 WORKING FST INCLUDING	
NICAM ON DISPLAY READY	
FOR DIRECT RE-SALE	
SALORA 5902 RECEIVERS	
WORKING - £25.00	
	PHO

MANUFACTURERS 'B' GRADED STOCK

Televisions, Videos
Audio, Music Centres Microwave Ovens

Complete, reboxed, working Current model stock

Turner Lyons Enterprises Ltd 9 Howard Place, Shelton
Stoke on Trent ST1 4NN Phone David or John 0782285416

TV WHOLESALE

EURQVISION

25 Bradford Street, Walsall WS1 1PN
Tel: 092222279 Fax: 092222279

TV VIDEO AUDIO MICROWAVE WHOLESALERS

TOP QUALITY EX-RENTALS ALWAYS IN STOCK
DELIVERIES THROUGHOUT THE UK CALL NOW AND START SAVING WITH EUROVISION

092222279
 MULTI LINE

 24 HOUR ORDERING SERVICE EXPORT ENQUIRIES WELCOMEB-grade Stock All Boxed, working If you require one item please read on:

10" R/C Portable $14{ }^{\prime \prime}$ Basic Portab	£95				
14" R/C Portable	£95	DISCOUNT			
20"R/C	£119				
$20^{\prime \prime}$ Text	£139	ON QUANTITY			
21 "FST R/C	$£ 145$				
$21^{\prime \prime}$ Fastext FST	£165				
$21^{\prime \prime}$ Nicam	£219				
25" Nicam	£259				
L/P Videos	£99				
Stereo Midi System	£110				
Microwave Oven					
TV \& Video Stands	£3				
CD Mifil Systems working (RRP E279) all boxed $\mathrm{E129}$					
CD radio cassette, working ${ }^{\text {E49 }}$					
Free Standing Gas Cookers $£ 155$					
Gas Hobs 239 Calor Gas Hobs $£ 35$					
All items unused \& working					
Customer returns in block. Example. Untested $3 \times 21^{\prime \prime}$ FST $3 \times 25^{\prime \prime}$ FST $6 \times F / L$ Videos $£ 40$ each. Total $£ 480+$ VAT This price does not include handsets. Some in need of repair. Some working.					

[^1]

DIRECT LOADS AVAILABLE FROM SOURCE

EXPORT ENQUIRIES WELCOME

SOUTH LONDON TRADE WAREHOUSE NOW OPEN
 MAJOR BRAND NAMES

WHOLESALERS

OF THORN + NON-THORN EX-RENTAL TV's
\& V.C.R., TESTED + UNTESTED 'B' GRADE + LIQUIDATION STOCK

AUDIO: Stocks of Audio, Midi + Mini Hi-Fi CD's
Radio Cassettes, Walkmans, ALL TOP BRAND
NAMES AT FRACTION OF RETAIL PRICE
STOCK ALWAYS CHANGING
TEPCO ELECTRONICS LTD

TEL 081-769 6149 071-924 1606 081-677 5749

Ask for Chris Ask for Tony Warehouse Line
FAX 081-769 4952

TVINTERNATIONAL

FOR

'B' GRADE AUDIO - VIDEO - MICROWAVES LARGE STOCKS, NEW - BOXED - COMPLETE. SOLD FULLY TESTED OR DIRECT - UNTESTED ALL MINT

> TEL. 0384482575 ASK FOR TRADE DEPT FAX. 0384265236

PEARTREE LANE, DUDLEY, WEST MIDLANDS
OPEN 9.00-6.00
MONDAY - SATURDAY
VBM

C.T.V.

UNIT 5. THE PHOENIX BUILDING. RUSHOCK TRADING ESTATE. DROITWICH ROAD. NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829/0860-809673 (24HR)
SUPPLIERS OF HIGH QUALTTY EX-RENTAL TELEVISIONS AND VIDEOS

LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES

Also available: ‘B’ Grade Products, Audio, Microwaves and Complete Range of Televisions and Videos OPEN: MON-FRI - 9.30-5.30

E	$\begin{gathered} 0299-251522 \\ 0836-5858290860-809673(\text { (24н) }) \end{gathered}$
Fax:0299-251543	EXPORT ENQuIRIES WELCOME

BRITAINS LARGEST INDEPENDENT

 PRESENTS THE LARGEST STOCK OF ‘B’ GRADE

LTD

HCTV WISHES ALL IT'S CUSTOMERS A HAPPY NEW YEAR

NEW GRADED STOCK

MANUFACTURER TESTED, BOXED AND SEALED AS NEW

$14^{\prime \prime} \mathrm{S}+\mathrm{D}$	$20^{\prime \prime}$ R/C	$25^{\prime \prime}$ R/C
$14^{\prime \prime}$ R/C	$20^{\prime \prime}$ FASTEXT	$25^{\prime \prime}$ FASTEXT
$16^{\prime \prime}$ STD	$21^{\prime \prime}$ R/C	$25^{\prime \prime}$ NICAM
$16^{\prime \prime}$ R/C	$20^{\prime \prime}$ FASTEXT	$28^{\prime \prime}$ FASTEXT
$20^{\prime \prime}$ STD	$21^{\prime \prime}$ NICAM	$28^{\prime \prime}$ NICAM

PLUS A RANGE OF LONG PLAY AND NICAM VIDEO'S

DON'T MISS OUT! PAY US AVISTT

PRESTON	BIRMINGHAM	LONDON
139 Oakshott Place	208 Bromford Lane	Unit 2
Walton Summit Ind Est	Erdington	The Royal London Est 29/35 North Acton Road
Preston (M6 Junc 29)	Birmingham B24	London NW10
Tel: 0772312101		Tel: 081-9615005

BESCO LIMITED
 T/A

NORTH WEST ELECTRONICS entire range ofex-rental tvs \& videos
NEW STOCKS EVERY DAY, WORKING OR OFF THE PILE makes Include: Sharp, Hitachi, Ferguson, Pye, NAT PAN, ITT etc.

Late models always available.

KNOCKOUT PRICES ON COLOUR TVs

FERGUSION, PYE, HITACHI, PHILIPS, BUSH, ITT, etc.
TELETEXT BARGAINS FROM $£ 30.00$ (WORKING).
FERGUSON TX TELETEXT ONLY £45. PHILIPS/PYE TEXT ALWAYS AVAILABLE
OVER 1000 COLOURTV AND VIDEOS AVAILABLE
RING OUR HOTLINES NOW FOR PRICES OR CALL IN, YOU WILL BE DELIGHTED
Working Ex-Equipment Panels
IF
T20//22X

Walker House, 16 Bottomley Street, Bradford BD5 7LJ
Ring Tony 0274308186 - Open 6 days - 9am-5pm

New WHOLESALE TV and VIDEO Warehouse

Vision World (Cardiff) has just opened for business in the Cardiff Bay area. Many makes kept in stock including Thorn and Granada. If you're the type of business that likes competitive prices and a good service, then contact:
VISION WORLD (Cardiff) Unit 89 Portmanmoor Road Industrial Estate

East Moors
Cardiff CF2 2HB
Tel: 0222458989

WOODHAM TVLDD

Wish all their customers a Happy \& Prosperous New Year

Wholesalers of

Thorn \& Granada ex-rental TVs and Videos *Working - Non-working
*Many Special Offers
Open Mon-Sat 9.30-5.30
PHONE NOW

$$
\begin{aligned}
& \text { UY } 45-535: 5 \\
& \text { UNIT 8, CUTLERS RD, } \\
& \text { SOUTH WOODHAMFERRERS, } \\
& \text { CHELMSFORD, ESSEX }
\end{aligned}
$$

COLOURTRADE

 ESTABLISHED 1973 - WHOLESALE ONLY
NEW ' B ' GRADE

Major Brands ONLY Satellite, Receivers, Decoders, Microwaves TV - Video - AUDIO

COMPLETE BOXED - WITH STAND - HANDSET - BOOK ETC

 MINT LATEST NICAM FASTEXT F.S.T.
Phone 021-359 7020 FAX 021-359 6344 221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2 HU

WESTERN TRADE SERVICES EST 14 YEARS
 SUPPLIERS OF EX-RENTAL
 TV \& VIDEO
 THORN AND NON THORN

SOUTH WEST

2A Barton Hill Road, Torquay, Devon TO2 8JH
Tel: 0803312222
Fax: 0803326767
Delivering throughout Devon and Cornwall weekly

WALES

Unit 6, Islwyn Workshop, Portymaester Ind Est, Risca, Gwent
Tel: 0633612667

DO YOU REPAIR WHITE GOODS?
THEN YOL SHCUULD KNOW ABOUT

DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :-

WASHING MACHINES
 KETTLES IRONS TOASTERS MICRO-WAVE OVENS
\star NEW $\star 535$ page pattern parts catalogue now available at a cost of $£ 6$ to non-account customers
$-\perp$ DATAPART LTD
ELECTRON HOUSE,
100 GREAT BARR STREET BIRMINGHAM B9 4BB

```
SALES DESK 0217665551 24
    FAX FREE 0800 373459 HOURS
```


ANCLIAN TV WHOLESALE EX-RENTALTVs\&VCRs THORN GRANADA STOCK

NEW 'B' GRADE T.V., VIDEO AUDIO,MICROWAVE

BEST POSSIBLE PRICES EXPORT ENQUIRIES WELCOME \&DELIVERY AVAILABLE RINGFORDETALS ANGLIAN TV WHOLESALE, NOW AT UNIT 4, BRECKLANDS BUSINESS CENTRE TAVERNLANE, EAST DEREHAM, NORFOLK (0362) 691611

TELECENTRE

NOW OPEN
7 DAYS A WEEK FOR TOP QUALITY EX-RENTAL AND 'B' GRADE TV'S AND VIDEOS.

WEEKDAYS OPEN TILL 9PM. WEEKENDS \& EVENINGS BY APPOINTMENT.
15 MINS FROM JUNCTION 16 M6
79A COLERIDGE WAY, CREWE.
TEL: 0270589392
ACCESS AND VISA WELCOME

AERIALS

FOR TV \& FM RADIO, PLUS 10OO's OF MASTS. BRACKETS, LASHING KITS. CLAMPS, PLUGS, CABLES. OUTLETS, DIPLEXERS ETC.

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC. MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES. AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE,
LABGEAR, WOLSEY
FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE
CDASTIAIL AIEIIIIAL

UNIT X2 Rudford Industrial Estate Ford, Arundel
0903723726
NO MINIMUM ORDER VALUE NEXT DA Y DELIVERY ACROSS UK CARRIAGE FREE ON ORDERS $£ 250+$

STHYMiSCOMNMA VIDSOS

EF-RNNTAL TV
d VIDEOS
THORN \& GRANADA
Great deals on working and nonworking videos and TV's
Direct loads of white goods available

UK DAMTV파

 AVATMABLE- EEPORT FNQUIRISS -
- WTHCONI:

24 GOLD STRTM TIVEBTON DEVON PEE16 6PY TNㅐㄷㅜPHONT: 0884256257

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF
T.V.'s AND VIDEOS

MOST MAKES AND
MODELS AVAILABLE
STOCK ARRIVING DAILY
T.V.'s from $£ 3.00$

Videos from $£ 30.00$ Prices Ex-VAT
Free Delivery Service to most areas of the U.K.
UNIT 75, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVER, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.

> 0299-879642 or 879643 FAX: 0299827984

LEADERS IN THE SUPPLY OF EX-RENTAL TV, VIDEO \& AUDIO

CALL US FOR LATEST PRICES

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

PHONE 081-652 8339 FAX 081-652 8931

SERVICE DATA

INDEXES! INDEXES! THOUSANDS SOLD WORLDWIDE

EDITION 10 of the complete indexes now published containing over 8,000 Faults listed in 12 Years of Television Magazine

Indexes are alphabetically listed by Make, Model, Fault, Ref and are now Available for just
£8,00 For Television \& Satellite Faults
\&8,00 For Video, Camcorder \& CD Faults
Or
\$15,00 For both sets complete
Please add £1.50 (UK), £3.00 (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE is Also AVAILABLE.
FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to:
E.C.S. 31 PRENTON ROAD WEST PRENTON, BIRKENHEAD, MERSEYSIDE L42 9PY

TIS, 76 Church St, Larkhall, Lanarks ML9 1HE, U.K. offers you
The Largest collection of SERVICE MANUALS TECHNICAL \& REPAIR MANUALS published anywhere on Earth: The Data Reterence Manual lists \& prices them for only 55.95 - with it you get FREE vouchers and the most comprehensive cross referencing of models to the correct chassis and manucturers known,
What's more, we'll supply circuits for any listed VCR @ £7, CTV model @ $£ 4$ or chassis @ $£ 6$ ($+£ 2$). Even better, we can supply Service Manuals costing up to $£ 70$ for little more than $£ 7$ each!

Some bargains from our huge stocks

Tunbridge's Pract TV Repairs \& KIngs CTV Servicing £16.95 each or both for only $£ 30$ McCormac's IBlack Bookl Euro Scrambling for £32 3 Pract. Guides on How to Buy, Sell, Service and RepairVCR's - TV's - CD's $£ 9.95$ each or all 3 for $£ 25$ Thorn's own The PAL System' for only $£ 9.95$ Huge illustrated IC Data Reference Manuals only $£ 12.95$ ea

Send your order now, or ask for full details, or Phone 0698 883334/888343 Fax:0698 884825
or Visa/Access details for immediate despatch

> FAST FIX
> Fancult In ciex Now in NEW A4 Book Format, containing over 200 pages. Stilt thumbing through back issues of 'Television"
looking tor the cure to that frustrating tauth? Why let the FAST FIX Faull Index find it for you? Covering the years $1982-$ Dec 1993 and listing over
3000 T Video Camcorde 3000 TV, Video, Camcorder, CP and satellite tauth symptoms + hundreds of technical references from
Television. FAST FIX could pay for 1 tsef tater iust Television, AAST Fix could pay for itseff alphabetically isting make, model, faut symptom and page reference. Reguiar updating takes place and all customers will be nottified.
> Complete FAST FIX index $£ 15.00$ nclusive
Overseas orders Overseas orders please add $\mathcal{3} .00$ MONEY BACK GUARANTEE IF YOU ARE NOT
COMPLETELY SATISFIED COMPLETELY SATISFIED
> Send Cheques/Postal Orders. payable to
J. Humphreys, 13 Manstield A Aerwe 3. Humphreys, 13 Manstield Averue, SI Johns Park
Hawarden. CIMyo Ch5 3 SB N Waies Hawarcen. CImo CHS 3SB N Wales
For further delails. tel 0244532961

SERVICE MANUALS

Available for most makes of
CTV - MTV - VCR - CAM - SAT - M/WAVE - AUDIO all at reasonable prices - and no VAT, WRITE OR TELEPHONE WITH YOUR REQUIREMENTS.

For comprehensive catalogue in the form of a floppy disc for use on IBM or compatible PC, and including money-saving vouchers, Send $£ 2.50 \& £ 1.00 \mathrm{p} / \mathrm{p}-$ No VAT.
But please state size \& format of disc reqd.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 0202870656

TEK-HELP

HOT LINE FOR TV \& VIDEO REPAIRS THOUSANDS OF FAULTS \& CURES ALL MAKES JUST THE COST OF A PHONE CALL 0891516434
48p PER MIN 36p CHEAP RATE

STREECARDS CAN SAVE YOU £100's, EVEN £1000's, EVERY YEAR
 Each STREECARD entitles you to unlimited exchanges (1 at a time) for 1 year in either Library of your choice The 1st card in any Library costs $\mathfrak{£ 5 9 . 9 5}$ Each card thereafter costs $£ 49.95$

DATA LIBRARY TERMS

You can now exchange manuals from the largest known collection of service/repair data in the world! Giant manual supplied FREE updated yearly, lists all the 1000's of available manuals.
Single exchanges (1 card) cost £3.95
Extra cards exchanges at the same time £2.95

PC Games Library terms

Your 1st choice can be anything on the market up to $\mathbf{£ 6 0}$ inc.
CD-ROM, thereafter from big regularly updated lists with well over 100 of the latest games, FREE hints/tips/Guides. Each single exchange (1 Streecard held) only $£ 4.95$
Further exchanges at the same time $£ 3.95$ each
Join now using Access, Visa, etc. by phone or write for full details to:

STREE (Est 1968)

76 Church St, Larkhall, Lanarks ML9 1HE Tel: 0698 883334/888343Fax: 0698884825 \qquad V/SA

0 INFOTECH SYSTEMS Special UK Offers this Month

TV Repairs to 1989
10-12"x17" binders ($£ 299$ set) containing circuits for every major CTV chassis PLUS 17 Big TV Repair Manuals ($£ 150$ set) PLUS Practical TV Repairs, Servicing TV \& The PAL System for $£ 399$

TV Repair \& Service

The above system PLUS your choice of $£ 300$ worth of CTV Service Manuals for $£ 445$

VCR Repair \& Service to 1989
35 Fault Guides (E79.95 set) PLUS 7 Giant binders of VCR Diagrams (£225 set) PLUS Thorn's VCR Technical Manuals ($£ 59.50$) PLUS your choice of $£ 200$ worth of VCR Service Manuals + Beeching VCR Servicing
for only £359

The TVAR System

3 Huge binders packed with circuits \& layouts + 3 big Manuals cover servicing \& repair data for hundreds of models; Audio systems, CD, Computers, CTV, HiFi, Satellite, Radio, VCR for late 1890's to 1993. (Vols 182 by return, Vol. 3 in Docember 1993 after updating!)
only $£ 149$
For full details \& FREE Catalogue, write phone or fax to 76 Church St., Larkhall, Lanarks ML9 1HE, Tel:0698 883334/888343 Fax:0698 884825

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere

From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio, in fact practically anything

Originals or Photostats as available
Also available. Our FREE catalogue detailing Hundreds of Technical Books and Repair Guides available.

Send 2 x Ist class stamps for your copy TODAY Mauritron Technical Services (TV),

47A High Street,
 Chinnor, Oxfordshire, OX9 4DI
Tel: 0844351694
Fax: 0844352554.

GERMAN SERVICE SHEET

SPECIALISTS

DÖNBERG ELECTRONICS
Schoolmasters House, Rannalast, Co. Donegal, Republic of freland. Phone: 07548275

PLEASE ADDRESS
 ALL BOX NUMBER ENQUIRIES TO:

BOX NO: TELEVISION $11^{\text {TH }}$ ELOOR QUADRANT HOUSE THE QUADRANT SUTTON, SURREY SM2 5AL"

TRAINING

If you require a home study course in the fundamentals of electronics, either to hegin a career, pursue a hobby, or refresh your knowledge, a BASIC ELECTRONICS course, from the Direct Personal Learning scheme. could be just what you're looking for. Contact K. Sparrow etc . . . 11 Claydon Green Whitchurch BRISTOL Avon BSI40NG Telephone: (0275) 835669

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA. AMSTRAD BUSH . DECCA . DORIC BLAUPUNKT FERGUSON FIDELITY. GEC. GRUNDIG GRANADA HITACHI HINARI INDESIT . ITT KIMARA NIKKAI MATSUI MURPHY OSAKI NORDMENDE LOEWE-OPTA PANASONIC. PYE. PHILIPS SANYO SAISHO SHARP SONY SOLOVOX. SUSUMU TANDBERG TELEFUNKEN THORN TRIUMPH. THOMSON GOLDSTAR BINATONE

> FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PLNCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

[^2]
LLASSIFIED CLRSSIFIED CLRSSIFIED CLRSSIFIED CLRS5IFIED

SPARES \& COMPONENTS

SURPLUS REDUNDANT EIECTRMNIC COMPONENTS WANTED

ICs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM Electronic Supplies
Tel. $0827873311 . \quad$ Fax 0827874835

TUBES
 REBUILT CRTs

VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphors B.S.I. Certification N.G.T. ELECTRONICS LTD 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

\square SOFTWARE

REWA

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?

DO YOU FIMD IT DIFFICHLT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEM TIME?
If you do then we recommend our computer TV and Video Rental package. This package includes
\star automatic updating of each customer's record

* alphabetical print-out of each customer's arrears and payments missed * total arrears immediately available
* easy to use and operate

NEW HIRE PLRCHASE PROGRAMME NON AVALLABLE AS WELL
These programmes operate on all IBM compatibles running under MS-DOS Free demonstration discs avallable

WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone Telephone Beragh 58214 (0662 7)

BUY DIRECT

From manufacturer C.E.D. 7A CRT Tester reactivator $£ 195$ inc base sockets or triple meter type $£ 320$ inc base sockets, satellite Signal strength meters professionat selective tuning type $£ 180$ or Digital type $£ 275$. UHF Signal Strength meters $£ 140$ or Digital rechargeable and come complete with ni-cad batleries.
nechargeable and come corm
nill
All brand new 12 months guarantee, p\&p FREE, Callers welcome by appointment
CAPENER ELECTRONICS 0296682030 Used Satellite Receivers from 130 .

FULLY REFURBISHED GAMA UK
 Mint condition slim line front loader Videos for disposal to the trade, for further details ring 0214584093
 or Fax 0214862980

MISCELLANEOUS

WIZARD DISTRIBUTORS

Spares + Components Always in stock
Video heads for over 500 models
Spares for over 20 manufacturers Hand sets for over 200 models
TV Tubes new + regunned
Plus much much more Empress St Works Empress St
Manchester M16 9EN $061-8725438,061-8480060$ Fax: 061-8737365

Microwave Oven Component Parts

Guaranteed Quality

AWI Lid Samuel Whites Estate, Medina Road.
Cowes, Isle of Wight, PO317LP Tel (0983) 296121 Telex (86736) Sortex G Fax: (0983) 296122

CAR RADIO DECODING EOUIPMENT

Plug our decoder into your IBM or compatible computer, remove the base plate from the radio, place our probe onto the PCB and the code is instantly displayed. Changing the code or even fully reprogramming the eeprom is just as easy.
Easy to use software includes PCB layouts and help screens with full backup from our telephone helpline.
PHONE US NOW FOR INFORMATION PACK AND FREE DEMO DISK (Please state either $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ disk)
Starter kit covering the three most popular brands $£ 300+$ carr \& VAT
EEPROM DECODING SERVICE: only $£ 5$ + VAT (just send us the chip)
FORD 2006 RDS DECODED: for $£ 10+$ VAT (send front panel only)
Electronic Sound Systems
62 High Northgate, Darlington, Co. Durham DL1 1UW Tel: 0325484089 Fax: 0325465921

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!
Designed specifically for
Domestic Appliance Engineers who want to enter the fast growing microwave Industry Packed full of useful
information, presented in a simple yet informative style with comprehensive diagrams and illustrations
Fault finding procedures are
included at the end
of each section

The book contains easy to

follow electronic control systems

SWIFTPARK LIMITED

113 LONDON ROAD, HORNDEAN, WATERLOOVILLE, HANTS. PO8 OBI

TESESOTSDOTCLASSIFED LIMERCE
adventisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing, Television Classified Room 11 th Floor. Quadrant House The Quadrant Sutton. Surrey SM2 5AS. The charge is $£ 8.40$ per line plus 1712% (minimum $£ 33.60+$ VAT)

For Issue Dated \qquad Total insertion \qquad
.........
\qquad

\square Debit my Access/
Debit my Access)
Visa Card (delete)
VSA

= LINEAGE

AVO MULTIMETER Model 8, $£ 45.00 .500$ volt megers, f 30.00 . Prices plus VAT and p\&p. Send SAE for lists of surplus instruments and scopes etc. A.C. Electronics, 17 Appleton Grove, Leeds LS9 9EN. Te!: 0532 496048.

OCHRE MILL Technical Services. Grundig TV spares for most models to 1985. Fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, N. Malmesbury, Wilts. SN16 9DR. Tel: 0666823228.
PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 0494814317.
VIDEOCRYPT DECODER Service sheet with smartcard contact details, Eurocrypt card interface, £ 12.00 . E.M.O. Ramsbottom, Lancs. BLO 9AG. Tel: 0706 823036.

WANTED. VALVES TRANSISTORS especially manufactured EL34, KT66, KT77, KT88, PX4, PX25. Please post list of what you have, cash waiting. We also supply CRT for radars, scopes, monitors (not domestic TV) plus camera tubes, vidicon, magnetrons, image intensifiers and valves for audio, transmitting and televi valves for audio, Exansmitting and Gilmans
sion. Billington Export Lid., Gill Industrial Estate, Billingshurst. Sussex RH14 9EZ. Callers strictly by appointment
RH1 only telephone 0403784961 . Fax 0403 783519.

CRT FOR MONITOR, SCOPES RADARETC (not domestlc TV)

$\begin{array}{llll}\text { CV3946 } & £ 1200 & \text { D14-270GH/50 } & £ 7950 \\ \text { F21 } & 5120\end{array}$

F31-12LD \quad £13200 M31-191GW $£ 6150$
3RP1A POA CME1431W $£ 2100$

D10-210GH			
D708	f53 00	D16-100GH/67	$£ 7950$
6160	M31-271W	$£ 6150$	

3WP1 16160 M31-271W
D13.611GH
L0729
L0729
5AP
D13-611GM
M7.120W
7A8P33A
013-630GM

| M14-100GH | 51800 | MG7-32 |
| :--- | :--- | :--- | :--- |
| | | |

$\begin{array}{lll}12 C S P 4 & £ 2700 & \text { CRE } 4400 \\ \text { D14-150GH } \\ \text { 17950 }\end{array}$
D14-150GH $£ 7950$ DG7-36

$\begin{array}{llll}\text { 89L } & £ 2700 & \text { CV1587 } & £ 2900 \\ \text { O14-173GM } & £ 7950 & \text { E4412-B-9 } & £ 2900\end{array}$

$\begin{array}{llll}\text { 190CB4 } & \text { £4350 CV1976 } & £ 4700 \\ \text { D14-173GR } & \text { £7950 } & \text { F16-101GM } & £ 6150\end{array}$
$\begin{array}{llll}\text { O14-173GR } £ 7950 \text { F16-101GM } \\ \text { M } 23 \text {-112GY } & 6150 \text { SE5FP31 }\end{array}$
$1074 \mathrm{H} \quad £ 4350$ CV2302
D14-181GM £7950 F21-130GR
$\begin{array}{llll}\text { M31.182V } & \text { £4100 } & \text { SESJP31 } \\ 1396 \mathrm{P} & \text { £4350 } & \text { CV2472 }\end{array}$ $\begin{array}{llll}1396 \\ 014-200 G M & \text { £ } 7350 & \text { FV28-1301DS }\end{array}$ $\begin{array}{lllll}\text { O14-200GM } & £ 7950 & \text { F28-130LDS } & \text { £410 } \\ \text { M31-184W } & £ 4100 & \text { SE32BP31 } & \text { £410 } \\ & & \end{array}$

£61 50
$£ 2700$
£

56150 M $31-325 \mathrm{BH}$ POA CME2O24W f 7950 DG7. 6 £79 50 DG7.6 £15 75 M36-141W £2900 £21 00
$£ 6150$ 66150

$£ 6150$ | $£ 6150$ |
| :---: |
| $£ 3150$ | £2880 6150 2700

1200 6150 $\begin{array}{r}2900 \\ 4700 \\ \hline\end{array}$
overseas $p \& p$ please enquire 10,000 preces in stock, 400 types. Please enquire for any type not listed
above We al so have in stock camera tubes, Image intensifiers, magnetrones, vididens and audio valves. We wish to purchase valves type KT66, KT77, KT88,
PX4, PX25, DA100 Minumum order $£ 50$ UK, $£ 100$
Export Callers strictly by appointment only.
BILLINGTON EXPORT LIMITED UnIt 1E, Gllimans Industrial Estate, BIIIIngshurst, W Sussex, RH14 9EZ, UK.
Tel: 0403784961
Fax: 0403783519

[^0]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9 LS (071 2615000). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. "Television " is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: Ex-rental TV \& Videos, all untouched.
 Basic £10 \& £15 R/C £20 \& £25 Text £25 \& £30
 Videos T/L $£ 20$ F/L $£ 25$. All untouched.
 W TREE WAREHOUSE
 UNIT 1, SUNSHINE MILLS, WORTLEY RD, LEEDS 12
 TEL: 0532638804 FAX: 0532310275

[^2]: IIIMAN MAIL, ORDER LTD, 236SANI)Y(OMBEROAD
 RICHMOND. SURREX. TWG 2EQ. Mon-Fri9am to 12.30 pm
 Approx. 1 mile from Kew Bridge.
 Sat 10 am to 11.45 am

