

SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

FREE 164-page CATALOGUE

The Panasonic K VCR Deck

Line Output Stage Operation

Satellite Receiver Modifications
The Apple Newton MessagePad
Toshiba Video Fault Notes - DX-TV
TV Fault Finding - VCR Clinic

Tune to an exciting new range of Philex

VIDEO \&TV CATATOTAT

A comprehensive Qross reference, listing over 160 brands \& thousands of (approx 4,000 to 5,000) Video models both UK \& European

Illustrations and original part numbers. Individual cross reference for video heads, video belts \& TV line output transformers.

PRODUCTÉ FOR VIDEO INCLUDE:

* An extensive range of heads, belts, idiler tyres, pinch rollers, clutches, gears, idlers, pulleys, spools, switches, tension bands, motors, service kits

PRODUCTS FOR TVINCLUDE:

* An extensive range of line output transformers and mains switches.

REMOTE CONTPOL CATALOCVE

124 replacement remote controls for TV, Video \& Satellite contains:

* A comprehensive cross reference listing 92 brands approx 6000 models, both UK and European.
* Listings include model name and number, chassis numbers \& briginal remote control type and number.
* Line drawings of original rembtes and the corresponding Philex replacement remotes.

COPYRIGHT

(C) Reed Business Publishing Ltd., 1993 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at £3.50 each from Video Interface Products Ltd., who can also supply a five-year consolidated index on computer disk. For further details see page 25 .
Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, £30 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH 16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 35.

Camcorner

Reports from lan Bowden, Brian Storm, Simon Bodgett, Brian Davidson and Savio Da Costa.

16 Panasonic's Digital TV Chassis, Part 3
The sound and deflection processing circuits and the scan-velocity modulation board.

20 Teletopics

21 Next Month in Television

Letters

24 Help Wanted

Modern TV Receiver Techniques, Part 11 Eugene Trundle
Operation of the line output stage, diode-modulator
circuits and deflection processing with 12C control.
VCR Clinic
Reports from Nick Beer, Richard Newman, Brian
Storm, Ian Bowden, Eugene Trundle, Mike Leach, Fauz Ahmed Sumar, John Coombes, Chris Wattón, John Hepworth and John Edwards.

What a Life!
Donald Bullock
Test Case 371

Introduction to the Panasonic K Deck
Simon Nash
Advances in deck technology have led to the K deck
which is used in the latest range of Panasonic VCRs.
Features of the deck and servicing aspects.
42 Satellite Scene
Items from Steve Beeching, T.Eng., Chris Watton, D.J. Long, David Finan and Brian Storm.

44 TV Fault Finding
Reports from Philip Blundell, AMIEIE, Brian Storm,
Denis Foley, Terry Lamoon, Richard Flowerday,
Richard Newman, John C. Priest, Mike Leach, John Hepworth and John Edwards.

47 The One that Beats Us
Roy Baines
50 Long-distance Television
Roger Bunney
51 Book Review

52 Service Briefs from Toshiba
54

Personal Digital Assistants
George Cole

8\％\％

 \qquad 0
 －

教

罳
Q UPCI

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.

VIDEO SERVICE KITS (Cont.)

SHARP

VC381
Contents
BEL SET. PINCH ROLLER EConomy NT Contents
REELIDLER TENSION BAND. BELT SET, PINCH ROLLER
Order Code: $\mathrm{SK47} \quad £ 9.00$ Order Code: $\mathbf{S K 4 8} \quad \mathbb{\$ 5 . 0 0}$
VC500VC571NC581NC582:VC583:VC584,VC5F3
Contents Economy lit Contents
BELT SET. PINCH ROLLER. BEETSET PINCHROLLER
$\begin{array}{ll}\text { REEL IDLER. TENSION BAND } & \text { REEL IOLER } \\ \text { Order Code: SK60 } & \text { Is. } 50 \\ \text { Order Code: SK61 }\end{array}$
VC781NC7810NC7822NC785NC786NC793NC800: VCA100VCA102 VCA 104 NCA202 Contents

Economy Kit Contents
BELT SET PINCHROLLER BELT SET, PINCHROLLER REEL DRIVE UNIT. TENSION REEL DRIVE UNIT TYFE $\begin{array}{llll}\text { Order Code: SKE4 } & \text { E13.50 Order Code: SK65 } \\ \text { E6. } 25\end{array}$
VC681NC682VC68SNC685NC693NC699NC6F3NC700 Contents Economy at Contents BELT SET PINCH ROLLER BELT SET. PINCH ROLLER REEL DRIVE UNIT. TENSION REEL DRIVE UNIT TYRE Order Code: SK62 $£ 13.50 \quad$ Order Code: 5×63 £6. 25

VIDEO SERVICE KITS

AMSTRAD
VCR700
COnterfs BELT SET PINCH ROLLER REEL IDLER VIDEO LAMP Order Code: SKal

FERGUSON \& JVC
HRDA55/HROT25
$\begin{array}{ll}\text { Contents } \\ \text { BELT SET. PINCH ROLLER } & \text { EELT SET. PNNCH ROLLER }\end{array}$ CLUTCH MECHANISM TENSION SUPPLYCLITCH. TAKEUP BAND CLUTCH Order Code: SK37 $\quad 117.50$ Order Code: SK38 59.50

3V58/59\%64:65
HRD 170/180:210/230/300/320/370/400/430/530/700/750 HRS5000
Contents BELT SET, PINCH ROLLER. IDELR ARM. TENSION BAND Order Code: SK44

3V29/3V30
HR7200:730007350
BELT SET. PINCH ROLLER. TENSION BAND. IDLER TYRES
Order Code: Sk05
3V35536.38/39/49
HRD $110 / 111$
Contents
Contents BELT SET. PINCH ROLLER. TENSION BAND IDLER TYRES Order Code. SMO4

3V31/3V42
Contents
BELT SET TU TEELTABLE
YRE PIN TUREEL TABLE
IDERL BELT SET TUREEL TABLE TENSION BAND VIDEO AMP. IDLER TVRE TA IDERL TVRE ENSION BAND VIDEO LAMP. Order Code: SM3 £5.50

3V35/36/38/39:49 MRD110/1
Contents
BELT SET. TU REEL TABLE TYRE. SUPPLY REEL TABLE
TYRE PINCHROLLER TN CLUTCH. TNIDLER. REEL DLER TENSIONBAND Order Code: SK35
$\$ 10.50$
3v29/3V30
HRT200
Contents
Contents TVRE SUPPLYREEL TABLE TVRE SUPP Y YEEL TABLE TREE PINCHROLLER. REEL TYRE PINCHROLLER. REEL IDLER. TU CLUTCH. TNIDLER IDLE TYRE TNIDLER TYRE $\begin{array}{ll}\text { TENSION EAND. VIDEO LAMP } & \text { TIU CLUTCH } \\ \text { Order Code: } S K 31 & \text { E11.50 } \\ \text { Order Code: SK32 }\end{array}$

3V44/45/48/53/54/55/57
3V44/45/48/53554/55/57
HRP50/HRD140/150/158/160
HRD250/257/565/566/755
Contents

CLUTCH MECHANISM. TENSION
BAND
$\begin{array}{llll}\text { Order Code: } \mathbf{S K} 39 & \mathbf{8 1 5 . 0 0} & \text { Order Code: SK40 } \\ \text { K9.50 }\end{array}$

FISHER

PVHP905/906:9079089101911,916918
Contents PINCH ROLIER. ECOnomy Kit Contents
BELT SET PINCH ROLIER BELTSET. PINCH ROLLER
DLER GEAR IDLER UNIT. IDLERTYRE
$\begin{array}{llll}\text { Order Code: SK5 } & £ 13.00 & \text { Order Code: } 5 \mathbf{5 K 5 8} & £ 5.00\end{array}$
FVHP615/618620.622710/711/715/716720/721/722725i
$730: 830: 840$
Contents
BELT SET PINCH ROLLER
OLEA GEARIDLER UNIT
TENSIONBAND
Order Code: SK68
Econony hat Contents
BELTSET PINCHROLLER

HITACHI
VT11NT33
Contents
BELT SET. PINCH ROLLER. TENSION BAND. IDLER TYRES
Order Code: $\mathbf{S K 0 8}$

VT11NT33

Contents Economy Na Contents
BELTSET T/UP REEL TABLE
Economy fir Contents
TYRE SUPPLY REEL TABLE $\begin{array}{ll}\text { TYRE SUPPLYREELTABLE } & \text { FFREWIDER TVRE TNPREEL } \\ \text { TYRE PINCHROLLER. FFRREW } & \text { TABLE TRRE SUPPL YREEL }\end{array}$ IDLER CLUTCH PLATE.
TENSION BAND TABLE TYRE SUPPLYREEL TABLE TYRE
©6. 50

HITACHI
V/52:61/62/63/64:65/85:86:640
Contents
BELT SET PINCHROLLER.
Econony Kit Conteats
FFRREW ARM. CLUTCH PLATE BELT SET PINCH ROLLE FFAREW IDLER

Order Code: SK49
VT400/405/410/13/1415/18i420/25/26:28:430/31/35/48/450/498: $510: 520 \cdot 25 / 26 \cdot 53035 / 36640 / 545 / 46 / 48: 570 / 75 / 576 \cdot 580 \cdot 85 / 88$
Contents
TMMING BELT. PINCH ROLLER. FF.REW ARM. CLUTCH BASE TENSION BAND
Order Code: SK52
VT100/110/11/1113/15/118i120/125/128/130:135/138/45/150 175/220:225/250:255/258;260NTL30

Conteats

BELT SET. PINCH ROLLER. FFREW ARM. CLUTCH PLATE. Order Code: SK51

PANASONIC

NVZODONVZO10

Contents
NV7000/NV7200NV7800 Contents BELT SET. PINCH ROLLER
TENSION BAND. IDLER TVRES SET PINCH ROLLER
TENSIONBAND TOLER TYRES

NV300NV330NV333NV340NV366
Contents
BELT SET. PINCH ROLLER. TENSION BAND. IDIER TYRE
Order Code: SKO1

NV2000:NV2010

Contents

BELT SET PINCH ROLLER FF
IDLER. PLAYIDLER TENSION
IDLER TYRE. PULLEY TVRE
Order Code. SK13
Contents
COMtents BELT SET. PINCH ROLLER
IDLER UNIT. PLAY IDLER
TENSION SAND
Order Code: $\$ \mathrm{~K} 11 \quad \mathbb{1} 0.00$
Economy for Contents BELT SET PINCH ROLLER NV300~NV330:NV333AN 340 NV 366

Contents

GELT SET. PINCH ROLLER
Economy Kit Contents IDLER UNIT PLAYIDLER. BELT SET PINCHROLLER. $\begin{array}{lll}\text { Order Code: SK15 TYRE } \\ \text { O8.00 } & \\ \text { Order Code SK16 }\end{array}$

NVG7NVG9VNG10NVG11/NGG12NVG14NVG15NVG16:
NVG18NVG3ONVG12ONVG130NGG400NVH65 (PXACY

AG1810(PK)
 Contents
 LOADING BELT CAPSTAN Ecanomy Fit Contents
 BELT. PINCH ROLLER DIDER LOADING BELT. CAPSTAN
 BELT PANCHRCLLER IDLER

Order Code: SK27
$£ 9.50$
Order Code: SK28
$£ 4.50$

Contents
BELT SET. PINCH ROLLER
PLAY IDLER FFREW IOLER
TENSION BAND FFIREN TRE
Economy Kit Contents

NV23022502 2602801430
AG1200PK/AG 1500 PK
AG1200PK/AG 1500 PK
COntents
BELT SET. PINCH ROLLER
IOLER TENSION BAND

Econony Xit Contents
BELT SET. PINCH ROLLER. BELT SET PINCH ROLLER
Order Code: SK23 £7.00 Order Code: SK24 £3.50

NV600~NV688

Contents
BELT SET. PINCH ROLLER Eeonony Kit Contents
PLAYIDLER.FFREWIDLER. PELTSET PINCHROLLER.
TENSION EAND
Order Code: SR25
$\$ 13.00$
NV730:NV770

Contents	Econony hi Contents
SLOT IN BELT. LOADING BELT.	SLOTIN BELT LOADING BELT.
PINCH ROLLER. IDLER UNIT.	PINCHROLLER IDLER TYRE
TENSION BAND	
Order Code: SK19 $\quad £ 7.00$	Order Code: SK20

NV37ONY380/480:630780/830/850/AG2100PKAGZ200PK
$\begin{array}{ll}\text { Contents } \\ \text { BELT SET. PINCH ROLLER. } & \text { Etonomy Kit Contents } \\ \text { BELTSET PNNCHROL }\end{array}$
BELT SET. PINCH ROLLER. BELT SET. PINCHROLLER.
IDLER. TENSION BAND
$\begin{array}{lll}\text { IDLER. TENSION BAND } & & \text { IDLER TYRE } \\ \text { Order Code: SK21 } & £ 7.00 & \text { Order Cote: SK22 }\end{array}$
NV777NV788
Contents Economy Kit Contents
3ELT SET, PINCH ROLLER. BELTSET. PINCHROLLER.
$\begin{array}{ll}\text { IOLER UNIT. TENSIONBAND } & \text { IDLER TYRE } \\ \text { Order Code: SK17 } & \text { E7.50 } \\ \text { Order Code:SE18 }\end{array}$

THIS MONTHS SPECIAL OFFERS

STK461	\$6.00	STK7563F	\$8.00
STK5332	£1.50	STK73410	£3.50
STK5333	E5.50	TA8205AH	£2.50
STK5422	¢3.75	TA8210AH	£3.00
STK5476	£3.50	TA8215H	¢3.00
STK7308	\$3.50	TA8216H	E3.75
STK7348	£2.80	TIPL791A	10.80
STK7358	¢ 4.40		

SONY FUNCTION SWITCH (2 LEG) SPECIAL PRICE E0.50

VIDEO REEL MOTOR PU51381V E15.00
$3 v 29,3 v 30,3 v 31,3 v 32,3 \vee 39$,
$8930,8931,8941,8942$, HR7300, HR7600, HR7610.
HR7650, HR7655
HITACHI VIDEO HEAD
E11:00
VT11, VT14, 16, 30, 33, 34, 330.
340, 503, 640, 5030
MITSUBISHI VIDEO HEAD : $\$ 16.00$
${ }^{\prime}$ HS303, 304, 320, 700

HS300, 301, 302, 310 $£ 17.00$

HITACHI TRANSFORMER 2434274 E17.50 OUTPUTTV MODULE HM6251 £5.00
PHILIPS
CASSETTE UTT ASSEMBLY 69120366 E11.00 VR 186, 190, 286, 471.562, $6290,6291,6293,6362,6367,6393$, VR6467, 6468 $6470,6561,6670,6760,6761,6870,6970$
PRESSUREROLLER ASSEMBLY
PVESSUREROLLERASSEMBLY
DV 190, DV286, DV436, DV $471, ~ D V 582 ~ D V 571 ~$ 5 DV186, DV190, DV286, DV436, DV 471, DV582, DV571, VR6291, VR6293, VR6362, VF6367, VR6390, VR6391,
VR6393, VR6467, vRG468, VRG470, VR6567. VR6570, VR6581, VR6670, VR6676, VRG760, VR6761, VR6762, VR6870, VRE970, VR6975. VR86B1, 63SB7, 68SB4,
71SB4, 72SE8, 925831

I.C. PROTECTOR

ICPF10	ICPN5
ICPF15	ICPN10
ICPF20	ICPN15
ICPF25	ICPN20
ICPF38	ICPN25
ICPF50	ICPN38
ICPF75	ICPN50
	ICPN75
PRICE: ONLY 30p EACH	

GRANDATA LTD K.P. HOUSE, UNIT 15

POP IN COMMERCIAL CENTRE, SOUTHWAY WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 081-900 2329 Fax: 081-903 6126

JUST ARRIVED

VIDEO HEADS

VSF600, VSF650
VP7100, VP7200, VP77
VS15, VS165
VS20, VS22, VS24, VS 25, VS26, VS27, VS 422
VS425, VS426, VS427, VSF10, VSP8,
VSP9
VS240, VSP82, VS202
VS33
AMSTRAD
VCR8800, VCR8804, VCR9340
DD8900, DD8904, TVR4, VCR6200, VCR8600
VCR8602, VR8700
VCR8603, VCR8604, VCR8704, VCR8714

BAIRD VC14L

VHS82
BLAUPUNKT
CR1000, CR1200, CR1500
CR1800
RTV321, RTV322
RTV330
RTV333
RTV338
RTV404, RTV414
RTV635
RTV640
RTV750, RTV800, RTV900
RTV810
RTV910
JVC
HRD330, HRD337, HRD440, HRD637, HRD641,
HRD660, HRFC100
JVC AND FERGUSON
8902/8903/8909/8912/8922
8923/8925/8929/8935
8931/8933
FV43H, HRD860
VC141L, HRD190, HRD610
FV44L
BR1600, HRD 142, HRD156, HRD152 2200P BR6200
HRD 154, HRD217, HRD321, HRD350, HRD521
HRD522, HRD525, HRD527, HRD550 1700 HRD580, HRD620, HRD650 2900
FIDELITY
VR900, VR910
FISHER
FVHD140, FVHD40, FVHP1, FVHP10, FVHP20
FVHP40, FVHS 10
FVHP200, FVHP210, FVHP300, FVHP310
FVHP500, FVHP5100, FVHP730, FVHP830 1200P FVHP980
FUNAI
E1100, VIP5000
VCR5840, VCR8007, VIP2500A, VIP3000A, VIP6000, VIP150
VCR4530, VCR6000, VCR6100
VCR8103, VCR600, VCR6100
VCR8103, VCR8107
VIP300A MKII
GEC
V4005H
GOLDSTAR
GHV 1232, 1233, 1241, 1242, 1243, 1244, 1290,
1291, 1295, 1296, 1891, VCP4130, 4300, 4301,
$4305,4306,4310,4311,4315,4316,4320,4321$. 4326
GRUNDIG
VS456
1650P
SE6110, SE9100, TVR4510, TVR5510, VS500
VS510, VS5180, VS6190, VS700, VS900 1800P VS790, VS930, VS940
MVS660, SE6160, VERONA, VS660,
VS6690
MVS710 3500P
VSB10 VS910 VS922,
VSB10.
VS160, VS740 1800P
VS160, VS740 4400P
VS170
HINARI
VCR34H, VTV200, VXL90
HITACHI
VT15, VTP10, VTP30
VT16B, VT260, VT498
VT570, VT575, VT576, VT580, VT585,
VT588
VT5600
VT60
VT660E
VT6700, VT6800
VTL30

P
P

-

-
+

Cr
P
P
-

VT522, VTM620, VTM622, VTM720, VTM722,

IT

9252
$928017,928077,928097,929107,929117$
9253
9281
9284, 9295, VR3701, VR3721, VR3731,
VR3761
MATSUI
V 6600
VX750
V×990

MITSUBISHI

HSE12, HSE22, MX1
HS411EZ, HS411GZ
HS273
HSB10, HSB20, HSE10, HSE20, HSE21,
HSE41
HS811, HSB21
HS830
HSE31, HS831, HSE32
HSE50
NATIONAL
NV8050, NV8051 50, NV26
AG1000, A
AG6010, AG6015 2500P
AG6840 2400P
AV6840
NV200
NVF65, NVH75
NVF51
NVG19
NVJ33, NVL21, NVJ30
NVJ35
NVM1, NVM3, NVM5
AG2100, AG2200
NVF65
N.E.C.

DX2000
DS6000
DX1000, DX1600, N9040, N9053, N9055
DX4000, N9610, DX3000
N9052, N9530
N9110, N9120, N914C VCP1
PVC2300, PVC240, 1700p PVC764
SAMSUNG
VM1560
VM1560, VN1561 2200P
SANYO 3600 P
VHR7900
SHARP
VC585, VC685 2300P
VC90ET 3900 P
VFH815
SONY
SLV373UB

TOSHIBA

V660
V700G
V500G, V509G
V9680
V300G, V301, V305, V309G
V61, V63

TELEVISION ON/OFF
 MAINS SWITCHES

Baur, Normende, Nova, Pioneer, Quelle, Saba,
Salora, TEC, Thomson \& Vega 375P
VIDEO MOTORS
HITACHI
VT11, VT14, VT15, VT 16, VT17, VT19, VT35,
VT39, VT57, VT88 (capstan motor)
BANG \& OLUFSEN
VHS65, VHS90 (capstan motor)
3400 P
3400 P
4200 P
4200P
2300P
$1800{ }^{\circ}$
3000P
4200P
700 P
3200P

LOADING MOTOR UNITS

TT

VR3605, VR3905, VR3955, VR3985 1100P VP2826, VR3906, V43926, VR3976 1250P VP3946, VR3906, VR3948, VR3986, VR3995, VR6948
JVC
HRD110, HRD111, HRD120, HRD121.
HRD225 HRD 150 HRD157M HRD158MS
HRD140, HRD150, HRD
HRD160, HRD250, HRD257MS, HRD566,
HRP50
HRD455, HRD725, N895
1500 P
SABA
VR6005, VR6014, VR7004, VR7011, VR8011,
VR8014
VR6006, VR6007, VR608, VR6009, VR6018, 1250 P VR7007, VR7018, VR9006

1500P
VR6016, VR6038, VR7016

TELEFUNKEN

VR1925, VR1930, VR1940, VR1950, VR925,
VR930, VR940, VR950
A920, VR2920, VR12970, VR7921, VR7926.
VR7931, VR7971, VR975
100 P

VR1970, VR1980, VR7970, VR7980, VR970, VR980
. 1500 P THOMSON
V320, V321, V323, V326, V4200, V4300 1100 P V342, V343, V352, V353, V360, V4210, V4230. V342, V343, V352, V353, V360, V4210, V4230,
V4260
1250 P $\vee 4260$
V364, V368, V4400, V6000
1500 P THORN-FERGUSON
3V35, 3V36, 3V38, 3V39, 3V49, 8943, 8944 1100P 3V44, 3V45, 3V48, 3V54, 3V55, 3V57, 8947
89478,8948 1250p
3V43,9845 1500P
TOSHIBA
TOSHIBA
V55, V57
1100 P

V65, V66, V67	1250 P
V61, V63	1500 P

CASSETTE HOUSING

AKAI
VS35, VS53, VS55, VS66, VS75 2600P
FERGUSON
FV31R
4300P
JVC \& FERGUSON
HRD515, HRD520, HRD527, HRD540, HRD550,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD670, HRD830, HRD840, HRD850, HRD860,
HRD4050, HRD6600 \& FV37H
CTRANSISTORS
M4918B1 500P

SAA5243PE
TIP112H
UPC1488H
STR4090A
500P
800P

IC AND TRANSISTORS
8U506DF 120 P
BUZ11
200P
BUZ80
M49481
SAA5231
SAA1293
S2000A3
S2000AF
S2055A
S2055A
S2000AF
S2000AF
TEA201BA
TEA2018A
UC3844
UPC1185H2
UPC1185H2 100P

REMOTE CONTROLS

AKAI
RC-V10A 1000 P
RCV378
V25A
2020T, 2114T, 2321T, 2514T. 1000P
2020, $2114,2321,2514$
DECCA
RC70
FISHER
RC905B
GRANADA/REDIFFUSION
UNIVERSAL, $79500 \mathrm{C}, 986700$
SATELLITE
MK4 TEXT 70115G, 70133G, 70357E 1000P
$\begin{array}{lll}\text { MK4 TEXT, 70115G, 70133G, 70357E } & 850 \mathrm{P} \\ \text { MK4A TEXT 70375C }\end{array}$
MK4A TEXT, 70375C
95288E
94490D
1000P

REMOTE CONTROLS

GRUNDIG

TP160E
TP200, TP30
TP400
TP590-600
TP621
TP630, TP650
TP660
HITACHI
CLE800-CLE830
A617402/655602
A514790
A5088470
A518612
SCLO
C2096
A511940
655602 H
ITT
IFB13, 14, 15
FS4
RG305
RG306
RG306
FS9/1-10/1
VS5RUK
VS4-1
MULTICONTROL (17C20)
KORTING
18279, 18396, 18460, 18521 SE
40540 VTS
LOEWE
DC11
MATSUI
VX770
METZ
JAVA COLOR (6890)
COLOR (7156)
JAVA (7180)
939P/03607, 939P/03609
NOKIA
SATELLITE
NORDMENDE
CMC1. T
OCEANIC
390C9500
ORION
PANASONIC
EUR51200
VSQ0357
TNQ 1621
PHILCO
CARVEL, CONCORDE, MERCURY
TELESTAR
TC10
PHILIPS
RC5002, 5154
RC5002, 5154
KT3 NON TEXT
69117032
69117194
RC5991 UNIV
RC3B
KT3 TEXT
RC5352
RC5 STANDARD
RC5901
SABA
$T 6772$
TC319-320

TC356
TC358

TC360
TC365
SALORA
SERIES
86173
SANYO
RC218, RC222, RC228, RC238
JXGE
VHR2300
RC628
SHARP
G0121CESA, 123CESA, 204, 251.
SIEMENS
FC616
FC631

1050P 1000P 850P
1050 P
1050P 1050P 1000P 1050P 1050P
900P
1000 P
1000 P
1000P
1000P
1000P
1000P
1000P
1000P
1000P
900P
850 P
900P
900 P
900 P
900 P
900P
1000P
1000P
1000p
1000P
1000P
1000P
1000 P
1000P
1000P
900P
1000P

1050 P
1050P
1000P
1000P
900P
900P
1050 P
1000 P

1000P
1000P
900P
900 P
1050P
1050P
850 P
900 P
900 P
900 P
900 P
900P
900P
300P
1000P
1050 P
1050P
1050P
1000 P
1000 P
1000P
1000P
900P
1000P
1000P
1000P
1000 P
900P
1000P
1000P
1000P

SONY
RM604, RM605, RM606
900P
900P
900P
900P

1000P

900P
850P
1000 P
1000P
900P
900 P
1050 P
850 P
850 P
850 P
850P
900 P
900 P
850P

1000P
1000P
1000 P
UNIVERSAL PROGRAMMABLE REMOTE
CONTROL
Controls up to 4 different devices which use infra red remote controls including TV, audio, VCR and satellite. (Need original remote control to program)
Order code: IR100R
Price: 1950P
We stock Remote Controls for over 5000
different models. Ring for further details on 081-900-2329.

BACKUP BATTERIES

REPLACEMENT PHILIPS NI-CAD BACKUP BATTERIES
Replaces Philips Part No's:
138-10138, 138-10313.1.2V-90mAh 160P
Replaces Philips Part No's:
138-10229. 2.4V-90mAh
260 P
REPLACEMENT FERGUSON NI-CAD BACKUP BATTERIES
Replaces Ferguson Part No: 00E6-067-001. 1.2 V

Used on: TX10 180P
Replaces Ferguson Part No's: 00E6-066-001.
2.4 V

Used on: 3V35, 3V56, 3V58, 3V65
375P
LINE OUTPUT TRANSFORMERS

Description	Price	Order Code
HITACHI 2433752	1500 P	LOT01
ORION 3714002	1500P	LOTO2
FIDELITY 2×300	1500 P	LOT03
FE TX100 90 DEG	1500 P	LOT04
SABA 490007182	1500 P	LOT05
FE TX90 WHITE	1650P	LOT06
ITT D307/37 EQ	1600 P	LOT07
BLAUPUNKT 210	1600P	LOT08
GRUNDIG 2922010	1600 P	LOT09
ITT CVC800/1/3	1500 P	LOT10
ITTD218/37 EQ	1600 P	LOT11
NORMENDE 5255	1600 P	LOT12
SABA 81000200	1600P	LOT13
SALORA T236EQ	1650P	LOT14
SABA 811-50-24	1600 P	LOT15
SABA 770223500	1600 P	LOT16
TELEFUNKEN AT1	1450P	LOT17
TELEFUNKENEQ	1400P	LOT18
SALORA FM02188	1600P	LOT19
NORMENDE 5255	1600P	LOT20
ITT CVC 1150/1	1500P	LOT21
ITT COMPACT 80	1500P	LOT22
FE TX100 GREEN	1450P	LOT23
HINARI CT4/5 5113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600P	LOT26
ITT COMPACT B1	1450P	LOT27
ITT CT3326 MUL	1500P	LOT28
ITT D066/37 EQ	1600P	LOT29
ITT 3546 EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100110 D	1700P	LOT34
HANTAREX 28021	1600P	LOT35
SHARP C3700 EO	1600 P	LOT36
HITACHI 2432981 CP	1500P	LOT37

We stock line output transformers for over 100 different models. Please ring 081-900 2329 for more information

CASSETTE HOUSING

AMSTRAD

VCR6000, VCR6100, VCR8600, VCR8602
VCR8603, VCR8604, VCRB700, VCRB7704,
VCR8714
AIWA
G900, HVG900, HVZ 10
FUNAI
IV89, VCR2100, VCR2800, VCR4530, VCR4540
VCR5653 VCR5800 VCR5840, VCR5843
VCR6000, VCR6100, VCR6800, VCR6803 VCR7000, VCR6100, VCR6800, VCR6803, VCR8007, VCR8100, VCR8103, VCR8200 VCR8007, VCR8100, VCR8103, VCR8200, VCR8500, VIP150, VR68, VR150

VR3009

GRANADA
VHSF63
HINARI
VCR34, VTV100, VTV200, VXL200, VXL7, VXL8,
VXL9, VXL10, VXL11, VXL19, VXL34, VXL90,
VXL100, VXL200
SHINTOM
VCR4540
TASHIKO
VVF933, VVF93
TATUNG
TVR6111
TENSA
TVP1000, TVP1050, TVP2000, TVP2050, TVR130, TVR140, TVR1800, TVR1900, TVR2000 TVR2100, TVR2600, TVR2700, VR2300, VR2350, VR2450, VR2500, VR4100
Order code: CH21
Price: 1450P
FUSES

	TIME LAG (20 mm)		QUICK BLOW (20 mm)	
Value	Order Code	Price	Order Code	Price
160 mA	FUSE01	75P	FUSE17	60P
250 mA	FUSE02	75P	FUSE18	60P
315 mA	FUSE03	75P	FUSE19	60P
400 mA	FUSE04	75P	FUSE20	60P
500 mA	FUSE05	75P	FUSE21	60P
630 mA	FUSE06	75P	FUSE22	60P
800 mA	FUSE07	60P	FUSE23	60P
1A	FUSE08	60P	FUSE24	60P
1.25A	FUSE09	60P	FUSE25	60P
1.6A	FUSE10	60P	FUSE26	60P
2A	FUSE11	50P	FUSE27	60P
2.5A	FUSE12	50P	FUSE28	609
3.15A	FUSE13	55P	FUSE29	50P
4A	FUSE14	55P	FUSE30	50P
5A	FUSE15	60P	FUSE31	50P
6.3A	FUSE16	609	FUSE32	50P

CERAMIC PLUG TOP

3A	FUSE33	100P
5A	FUSE34	100 P
13A	FUSE35	100 P

ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES

Solder Mop $1.2 \mathrm{~mm} \times 10$ metres	300 P
Tubed Silicon Grease 50 gram	200 P

Tubed Heat Sink Compound 25 gram 150P
UNIVERSAL HEAD EXTRACTOR TOOL
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various brand heads.

GRANDATA LTD K.P. HOUSE, UNIT 15 ,

POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY,
MIDDLESEX, ENGLAND HAS OHB
Tel: 081-900 2329 Fax: 081-9036126

ELC EAST LONDON COMPONENTS AUDIO TEIEVISION VIDEO COMPONENTS AT VERY KEEN PRICES TEL：081－472 4871 FAX： $081-503.5926$

 REMOTE CONTROLS FROM 19.99 MDEOBET KKTS Over 200 models at very atracive AMSTRAD FTRGUSON FISHER ALBA AKAI，AMSTRAD，FERGUSON，FISHER，VCRA000
GOLOSTAR HNARI，HTACH， GOLDSTAR，HNARI，HTACHI，LOGI，AMSTRAD
MATSUI，ORION，PANASONIC，SAISHO，VCR4600
 3 V59 65 FV 10141 IDIER 3V23 LOADING ROLLEA BAA SHARP $0005 \& 0006$
SHARP VC551 ASSEMBLY VT11／14／17｜OLER VT11 CLUTCH ASSEMBLY
VT100225260 IDIER NEC 90131 IDER SANYO VHR 3300 IDLER SANSHO VR380 CLUTCH MTSUEISHI H5337 FFIFIDER MATSUI UMATER POST PANASONK NV37OIDLER ASHER 615 IDLER ASHER GEARASSEMBLY AMSTPAD PINCH WHEEL MODKIT
UNVERSAL TRIPLER UNIVERSAL TPIPEA W HTACHI MCDULE HME25！ CUC2410 TRIPLER TENSION BAND FOR MOST MOD FROM CIRCUIT PROTECTOR ICP PHILIPS BACK－UP BATTERY TVSWTCHES FOA MOST MOD．FROM

ELC EAST LONDON COMPONENTS LONDON E6 1 AD．TEL：081－472 487 two minutes walk from Upton Park Tube Station PLEASE PHONE US IF WHAT YOU NEED IS NOT LISTED AS WE HOLD THOUSANDS ADD £f P／P ADD 17．5\％VAT
ALL GOODS DESPATCHED SAME DAY
PRICE SUBJECT TO CHANGE WITHOUT NOTICE
VISA ACCESS ACCEPTED．MIN ORDER $£ 5.00$

UNE OUTPUT
TRANSFORMERS TRANSFORMERS FX3548 19.99 AN

旗號为
雷

为

WE WILL ONLY SUPPL Y TOP QUALITY,
BRANDED COMPONENTS.

REPUTATION COUNTS WITH US

G.G.L. COMPONENTS

PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL. TEL: (0228) 39693/20358 Fax: (0228) 515127.

AERIAL ACCESSORIES COAX PLUG................................. 18	
	F CONNECTOR 20
FLYLEAD 2M......................... 75	
	VIDEO LEAO 2M.................... 75
4 WAY DISTRIEUTION	
AMPLIFIER MAINS 19.95	
8 WAY DISTRI位UTION AMPLIFIER MAINS. 21.75	
BATTERIES	
	kt of 4)
	AAA (pkt of 4)1.20
	FERGUSON 3V554.95
	PH:LIPS MEMORY 1V21.90
	PHILIPS MEMORY 2V42.75
CAPACITORS 0.145 .5 v (back-up) \qquad	
$63 v$	
	47uf at 63v............................. 18
	100 uf at 63v............................ 22
	220 ut at 63v............................ 35
250v	
	$1 \mathrm{ut} \mathrm{at} \mathrm{250v.............................}$.
4.7 ut at 250 v 25	
	10ut at 250v........................... 35
22 uf at 250 v 40	
	47uf at 250v............................ 65
100uf at 250v.........................1.25	
400 v	
	1 Lf at 400v............................. 23
	4.704 at 400 N 35
	$10 \mathrm{ut} \mathrm{at} \mathrm{400v...........................}$.
22uf at 400 v (ALL PCB MOUNTING) \qquad	
DIODES	
	R2M 95
	BY133................................... 15
	ВҮ²7.................................... 20
	BY299/800 35
	IN4007 10
	IN5408................................. 20
B2X61C (pkt of 5) 6 ve 7 v 512 v	
EHT TRAYS	
CONTINENTAL SOAX FOCUS 8.95	
	DECCA 120/930 7.95
GRUNDIG CUC2410 14\%.......18.75	
GRUNDIG CUC2410 22".......17.95	
PHILIPS KT37.95	
	UNIVERSAL5.95

NEW LISTS NOW pLEASE REQUEST

ALBA VIDEO SPARES VCR4000

BELT KIT...............................95
CAPACITOR EACK-UP......... 1.85 PINCH ROLLER REEL IDLER...
REEL PULLEY

AMSTRAD VIDEO SPARES VCR4500
BELT KIT1.95
GEAR ASSEMBLY 9.95
MODIFICATION KIT6.00
PINCH ROLLER 3.50
VCR4600
BELT KIT1.95
GEAR ASSEMBLY9.95
MODIFICATION KIT6.00
PINCH ROLLEA.................... 3.50
VCR6000
BELT KIT..............................1.95
PINCH ROLLER....................3.95
Clutch.

FERGUSON VIDEO SPARES 3V29/30
BELTK|T
BELT KIT 1.95
CAPSTAN MOTOR 32.50
CASSEITE LAMP...................... 70
PINCH ROLLER..
REEL IDLER........
TAKE UP IDLER.
3V35/39
EELT KIT................................... 1.95
GASSETE HOUSING $\quad . \quad . \quad . \quad . \quad . \quad 25.50$ OADING BELTS (5)..............95
MAINS TRANSFORMER 23.95

PINCH ROLLER
REEL IDLER......
. 3.95
AKE UP IDLER........................95
3V44/45
BELT KIT............................... 1.50
INCH ROUOUSING...........25.95 3V65/FV11

ELT KIT..

APSTAN MOTOR $\quad1 .75$
CASSETTE HOUSING.......... 29.95
NCH ROLIEA 3.95
REEL IDL.ER.

S	TDA4501H
20 mm A 'S (PKTS OF 10)	TDA4503 4.95
250MA 315MA. 5c0MA. 630MA ..1.20	TDA4505E5.45
800MA. 1 A. 1 6A, $2 \mathrm{~A}, 25 \mathrm{C} .315 \mathrm{~A}$	TDA4600/3 2.95
$20 \mathrm{~mm} \mathrm{O/B} \mathrm{(PKTS} \mathrm{OF} \mathrm{10)}$	TDA4600/2D...........................3.95
500MA, 630 MA, 日00MA, 1 A.	TDA4601 2.95
1.6A,2A.2.5A,3.15A 80	TDA4601 OIL3.75
	TEA1039.............................1.95
CNX62A..............................4.7	TMP47C434N-3414..............14.95
SAA1293-025.95	TMP47C434N-34;5..............14.95
SAA1293-036.95	TMP47C434N-3537.............. 14.95
SAA1293A-03........................ 9.95	TMP 47C434N-3555.............. 15.55
SL1432...............................1.95	TMP47C434N-3558..............15.55
STK5331 4.95	TMP47C434N-3559..............13.95
STK5332..............................4.95	CIRCUIT PAOTECTORS
STK5333.............................. 4.95	N10,N20,N25 (each).................. 50
STK5421 4.95	
STK5422................................6.95	LINE O/P TRANSFORMERS
STK5481............................6.95	FERGUSON TX90 20'......... 15.95
STK5482.............................. 4.95	FERGUSON TX9451P7....... 23.50
STK5490...............................7.95	FERGUSON TX100 900.......18.25
STK7308.............................6.50	FERGUSON TX100 1100 15.25
STK7348..............................6.75	FERGUSON TX100 FST........17.75
STR421: 4.50	FIDELITY $\mathrm{ZX} 2000+$ MOD
STR5412 4.95	FIDELITY XX3000 12.95
STR50020 7.7 .95	HINARI CT 4 5.....................16.95
STA50103A 5.50	
STR540419.95	HITACHI CPT2:7476:78....... 17.95
STR58041 5.95	HITACHI CPT2276.2278.......18.25
TDA1 170S...........................1.95	$1 T T$ COMPACT $8018 .50$
TDA17704 3.95	$1 \mathrm{IT} \mathrm{CVC1200} \mathrm{\% 1...................19.95}^{\text {a }}$
TDA2030 1.95	ITT MONOPRINT B(MN) 18.85
TDA2170 2.95	MATSUI 1410:20,4018.95
TDA2270 2.75	PHILIPS CF1 23.50
TDA2576A3.50	PHILIPS CP90.....................17.95
TDA2577 3.75	PHILIPS CTX:4*20 ${ }^{\circ}$............18,50
TDA2577A............................ 3.50	PHILIPS 2A 18.50
TDA2578A............................ 2.95	SHARP C1410................... 25.95
TDA2579 3.95	
TDA2581 2.95	SERVICE MANUALS
TDA2582 2.50	AMSTRAD 46009.95
TDA2600 5.50	AMSTRAD 6000 9.95
TDA2653AO 2.95	FERGUSON TX85.................. 9.95
TDA3330 8.50	FERGUSON 3V59.................11.95
TDA3560 4.95	FERGUSON 3V65................11.95
TDA3561A 4.95	FERGUSON FV19...................9.95
TDA.3562A (TFK)....................4.95	
TOA3565 3.95	SWITCHES
TDA35718Q8.95	FIDELITY CTVI40............... 9.50
TOA3576B 12.95	GRUNDIG CUC 731................ 3.50
TDA3650 8.95	ITT TX SERIES4.95
TDA3651.3 2.95	K-4.CTX REMOTE1.75
TDA3651AQ4.75	TX9/10 STANOARD 1.00
JDA3653A3.50	TX9 \% 70 REMOTE.................. 1.75
TDA3654A 2.95	TX90:100 STANDARD 1.50
4500 4.50	TX90/100 REMOTE................1.75

FISHER VIDEO SPARES

RELEL IDLER...50 PINCH ROLLER 3.50
TENSION EAND................. 2.60 FVH615/720
BELT KIT.....
BELT KIT95 CLUTCH ASSEMBLY....................... 4.50 REEL IDLER.. FVH905/910
CLUTCH ASSEMBLY...................................... REEL IDLER..............................5.95
HITACHI VIDEO SPARES UT8000/8700
BEETKIT..................................95
FF/REW PULLEY95

REEL TABLE.. 35
TENSION BAND................. 2.95

TENSION BAND
VT9300:9700E
BELT KIT......... \qquad
FFR REW PULLEY 95
PINCH ROLLER 95

 CAPSTAN MOTOR VT33E 23.9 CLUTCH ASSEMELY7.95 FF AEW IOLER Genvine...........2.50
PINCH ROLLER................ 3.95 VT6364E
BELT KIT95 CAPSTAN MOTOR 27.50 PINCH ROLLEA 3.95 VT120130E
BELTKIT.......
CAPSTAN MOTOR95
CLIJTCH ASSEMGLY................7.95
PINCH ROLLER............................... 3.9

PANASONIC VIDEO
NV230/430 (GEN)

BELT KIT
PINCH ROL........................... 1.95

REEL IOLER GENUINE2.95
NV333/366 (GEN)
BELT KIT..
PINCH ROLLEA 3.95
PLAY IDLER GENUUNE95

LOGIK VR960....................17.95	
MATSUI VX735A..................17.50	
	MITSUBISHI HS318
NEC 9034/9053 19.95	
PANASONIC NV23017.50	
	PANASONIC NV333
PANASONIC NV36619.95	
	PANASONIC NV370
PANASONIC NV430 14.25	
	PANASONIC NV68827.70
PANASONIC NV730	
	PANASONIC NV777 18.
PANASONIC NV788 25.95	
PANASONLC NV2000/700088.95	
	PANASONIC NVG7/9...........17
PANASONIC NVG10/42........17.30	
	PANASONIC NVG18
PANASONIC NVG20/29.........24.95	
	FANASONIC NVG30:40........ 24
PANASONIC NVG45............ 34.50	
	PHIL.LPS 6460:6520.
PHILIPS 6462/6560 GENUINE44	
PHILIPS 6467 GENUINE........ 40.4	
	SAMSUNG V1730.................23.50
SAMSUNG VX520/710..........17.50	
	SANYO VHA 1100/130018.95
SANYO VHR 2300,320023.50	
SHARP VC9300/38:/481 14.75	
SHARP VC581/68114.75	
SHARP VCA14014.75	
	SONY C5 6.7.
TASHIKO VVE921/2.............19.95	
TOSHIBA V55 578.75	
TOSHIBA V73/83B...........................95	
VIDEO HEADS ARE OF THE BEST QUALITY AND ARE BRANDED OR MANUFACTURERS OWN	
SERVICE AIDS	
ANTEX : 7 W IRON 8.50	
ANTEX 25W IAON 8.75	
FIBRE CLEANING PEN 3.50	
HEATSINK COMPOUND 1.55	
ONYX SOLDER PUMP9.95	
	ONYX TIPS 1.50
SILICON GREASE1.85	
SOLDA MOP 80	
SOLDER O.5KG 18SWG 8.50 SOLDER 0 5KG 22SWG 8.75	
WELLER GUN TiPS (2)1.25	
Cellular dealers wanted	

BATTERY CHARGERS
DESK TOP TRICKLE
MOTOROLA T/PORTABLE.... 38.95
MOTOROLA $8000 / 8800 \mathrm{X}$....... 23.95 MOTOROLA MICROTAC 24.50 NEC P3.....
PANASONIC E/H SERIES39.95 PANASONIC F
SONY CMH-333

DESK TOP RAPID/COND.
MOTORO_A 8000 SERIES.... 42.50 MOTOROLA 9800X............... 42.50 NEC P3.
NEC $P 4$
NEC P4.
PANASONIC F SERIES SONY CMH333

BATTERY ELIMINATORS ERCSSON HOTLINE 14.50 MOTOROLA 9800X NEC 9A... NEC P4..
NOKIA 10 PANASONIC F SERIES................12.50 SONY CMH
TECHNOPHONE TP2....... 1295 TECHNOPHONE TP405 12.95

P/P CHARGES
COMPONENTS E1.00 PER ORDER UK EACH
CELLULAR TELEPHONES
£5.00 PER ITEM
OFFICE MACHINES $£ 5.00$ PER ITEM EXPORT ORDERS P/P CHARGED AT COS WHEN ORDERING: PLEASE ADD P/P VALUE TO
ORDER TOTAL THEN ADD 17.5\% VAT TO THIS TOTAL DELIVERY BY RETURN ON

ALL STOCK ITEMS
MINHUM ORDER

HOW TO INGREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES
 B \& K PRECISION CRT ANALYSER-RESTORER

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Seleci from four supert models. All, with the exception of the HM 1005, incorporale a useful COMPONENT TESTER. Stze. all models. $285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 天 All suppled with 2 PROEES, a COMPREHENSIVE MANUAL Ind 2 YE
HM203-7 20MHz STANDARD

specification
Bandwidth: DC -20 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC -40 MHz Active TV-Sync-Separato Trigger LED indic
Calibrator: 1 KHz Square wave Component tester
Plus many feature
Price $\mathbf{C 3 6 2 . 0 0}$ + £63:35 V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS HM604 60MHz UNIVERSAL 2 Channels Band width: DC - 60 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC - 80 MHz Active TV - Sync. Separator After delay trigger Sweep delay
Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \&$

Price $\mathbf{6} 653.00+\mathbb{C} 14.28$ V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL 3 chanNels.up to 6 traces
 SPECIFICATION 3 Channels
Bandwidth: DC -100 MHz Sens: Ch.1, Ch.2, Ch.3,1mV/cm Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ After delay irigger Atter delay
Delay line
Trigger LED indicator Active TV - Sync - icator Calibrator: 1 KHz \& 1 MHz So Price $8847.00+E 148.23$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE
SPECIFICATIOR
Digital Storage
Analogue reat time (Same as 203-7) Bandwidth: DC -20 MHz Sens: Ch.1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Trimebase Digital: $\mathbf{S S}-1 \mu \mathrm{~s} / \mathrm{cm}$ Active TV - Sync - Samplin Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory: $2 \times 2048 \times 8$ Bit
Dot joiner
Printer/platter output

Price $\mathbf{6} 63.00+$ E114.28 V.A.T. FREE Specialist Carrier Delivery

BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE

PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

The

The Orion is a compact, bench Instrument offering a wide range of patterns and facillties at a truly low
In addition to a swltchable sound carrier lacility which allows use with the majority of PAL TV sys
tems, the Orion provides highly flexible TGB outputs, ensuring compatibility with most video monitors. lems, the Orion provides highly flexible TGB outputs, ensuring compatibility with most video monitors.
More than 50 pattern combinations can be setected. including those for testing static and dynamic divergence, video amplifier tinearity, colour purlity general colour performance, focus etc. A separate video input to modulate camera signals; fully variable RF and video output ievets facifital-
ing AGC testing: trigger output allowing easy trlggering of difficult ing AGC testing: trigger output allowing easy triggering of difficult oscilloscope wavelorms: externa
sound modulation input via DIN connector for frequency response testing of TV sound systems: adjus sound modulation input via DiN connector for trequency response testing of TV sound systems; adjus
table wide frequency coverage of VHF and UHF TV bands lable wide frequency coverage of VHF and UHF TV bands
Indispensible in the manulacture, lest, and servic monitors.
FEATURES
Colour bars, purity, greyscale, crosshatch. dots, focus, etc.
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{Mz}$
Internal/External Sounz Sound Carriers
External Video Output.
Trigger Outpur.
PAL B,D.G,M,I,K
Separate R, G, B and sync. O/P's
RGB@TTL \& 1V.
Composite Video Output.
Composite Video Output.
Switchable Video Potarity.
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ Size: $98 \times 219 \times 240 \mathrm{~mm}$

Price ع229.00 + £40.08V.A.T. NEW! DEGAUSSING COIL

A very effective degaussing coil, ideal for degaussing TV tubes, computer monitors, oscilloscopes etc Mains Power: $220 / 240$ 50/60Hz. Size: $355 \times 355 \times 24 \mathrm{~mm}$

Price $£ 46.00+£ 8.05$ V.A.T.

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

All CRT's checked identically, including all in-line and one gun types. Tests all three guns of colour CAT's simuitaneousiy 490) actual operating conditions (model (model 490)* Measure true dynamic beam current that actually passes through G1 aperture to screen" Measures all shorts and leaks - preserving more CRT's * Tests focus electrodes lead continuity finding faults that other testers miss "Uses most powerful restoration method known with minimum danger to CRT Rejuvenated CRT's guaranteed as new for two years up chart updated and perpetual set developed - Tests and rejuvenates VDU's and oscilloscope tubes * A range of over 40 CRT base adaptors available * Increase profit * Pays for itself in months.

Prices
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors....... . $559.00+$ C97.83V.A.T.
 Without aditors meier instrument inc. 0 common adapiors

SADELTA SIGNAL STRENGTH METERS
The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal
levels can be accurately measured on the TC402-D. TC90 AND TC80, allowing the evaluation of signal conditions for satislactory operation. All models have a clear LCD direct frequency readout, coupled to a multiturn tuning control enabling precise channel identification.
TC402-D VHF \& UHF
features
Three bands
Low VMF: $55-170 \mathrm{MHz}$
High VHF: $170-450 \mathrm{MHz}$
High VHF: $170-450 \mathrm{MHz}$
UHF $: 450-862 \mathrm{MHz}$.
Digital display for direct trequency readou Built-In monitor loudspeaker AM/FM Signal measurement from $20 \mu \mathrm{~V}$ to 3 V Fully portable with sturdy carrying case

Price $2289.00+850.57$ V.A.T.
TC90 VHF-UHF-SAT.

FEATURES

Five bands:
Low VHF $: 45-110 \mathrm{MHz}$
$\begin{array}{ll}\text { Low VHF } & : 45-110 \mathrm{MHz} \\ \text { High VHF } & : 110-300 \mathrm{MHz}\end{array}$
Hyper VHF: $: 300-470 \mathrm{MHz}$
HMF
$\begin{array}{l:l}\text { VHF } & : 470-862 \mathrm{MHz} \\ \text { Satelitite } & : 950-1750 \mathrm{MHz}\end{array}$
Digital display for direct frequency readoul.
Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V Signal measurement satellite -70 dBm to 10 dBm .
Audible indication of satellite signal level Bullt-in-monitor loudspeaker AM/FM (not satellite).

NEW! TC80 SATELLITE

TC-8O IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique features: video composite output; audio output with built in loudspeaker ramp and RF signal outputs which anab oscilloscope to be used as a spectrum analyzer.

* 4 diglt LCD treq. dtsplay - Freq. range 950 to
* Sweep mode sweep entire freq. band for rapid satellite location * Tone select switch fo audible tone proportiona to signal strength * 1000 dBuV

Audio demodulation with internal loudspeaker Video demodulation * Rear SCART connector for AlV connection Oscilloscope/spectrum analyzer output * Sound tuning 5 to 8 MH * INC current measure * Intemal rechargeable battery with charger
Price 2490.00 + £85.75V.A.T.

EDITOR

John A．Reddihough

PRODUCTION EDITOR

Tessa Winford

EDITORIAL OFFICE

0816528120
Fax 0816528956
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide．

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

FIELD SALES EXECUTIVE

Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR

Susan Downey

SUBSCRIPTION ENQUIRIES

0444445566

SUBSCRIPTION HOTLINE

24－hour subscription ordering with credit card number phone 0622721666 and quote reference INJ ．

COVER PHOTO

This month＇s cover photograph shows the K deck，which is used in the latest range of Panasonic VCRs．See article on pages 36 － 39.

てら引ら

The Pursuit of Economic Success

The government should do something about it！That＇s a common and understandable response when things are not going as well as one feels that they should．After all， govermments have power and resources．Right now the world is suffering from a prolonged recession（of the seven leading industrial economies，only three have grown－not very much－over the past twelve months while four，including Germany and Japan，have actually shrunk）．What are governments doing about it？Well，holding some meetings and discussions，and creating documentation．Not a great deal else．Should they be？Perhaps we expect more than we should of what we regard as these omnipotent agencies．

What governments can in practice do is important but rather limited．An interesting book，National Innovation Systems，a Comparative Analysis，recently published by the Oxford University Press，highlights this．In it，contributors from most of the relevant countries describe the policies that their governments have adopted and their success or lack of it．One thing that stands out is the fact that a government is only one factor in determining the success or failure of an economy to respond to opportunities and thus grow．There are institutional factors，i．e．how things are done，and cultural ones，i．e．how people react．To do anything about such factors and create helpful conditions takes time．It can＇t be done ovemight．but a degree of urgency is relevant in today＇s situation．

The authors of the book emphasise the vital role of education and training in economic success．Governments can contribute to this by ensuring that adequate resources are made available－not only for education itself，but for its extension into research．Unfortunately the latter is something that＇s tricky to handle，with success often elusive．There has been much brilliant academic research in the UK in the past，but not a great deal of success in the all－important progression from research to practical development in the form of saleable goods and services．In the past the USA has been more successful in this respect． The well－known example of Silicon Valley，where the combination of relevant research and an entrepreneurial ethos led to an explosive growth in the electronics industry，springs to mind．That it doesn＇t always work out as easily as this sounds is borne out by the rather sad example of Philips．a company that has always invested heavily in research，has come up with many firsts but has not been all that successful in terms of sustained economic growth．In the past Philips has suffered from those institutional problems－a rather ponderous management and communications style．Silicon Valley itself has gone through different phases of growth．Nowhere do you get sustained success all the time．That＇s something we just have to live with．

The book quotes Korea and Taiwan as examples of＂education－led growth＂，where a highly educated workforce has enabled manufacturers to move rapidly from the production of basic commodities to more sophisticated products with greater added value．The lesson here is obvious：invest in education，but also ensure that it is by and large relevant to economic needs．To establish the right educational balance to succeed in this respect is not easy．One can say that in the UK this is a matter that calls for attention．Money poured into education can all too easily be wasted．

Whether defence expenditure has over the years helped various economies－the famous spin－off effect－is something that has been debated at length in the past．The book throws some interesting light on the subject．Basically it seems that defence－led research can have beneficial side－effects－the classic examples are probably the US electronics and aerospace industries in the Fifties and Sixties－but as such research becomes more and more devoted to specific technological requirements so its ability to contribute to general economic activity and growth becomes less．

The other major factor that the authors of the book highlight as being vital to economic success is free trade．Here again it＇s not enough on its own－the UK has generally in the past adopted free trade policies．But without it there＇s no exposure to fresh ideas and new technology．One has only to reflect on the sad state of the ex－communist economies to appreciate the vital importance of free trading amongst innovative，internationally orientated companies to economic progress．The latter point，an international outlook，is another important factor today．It＇s essential for manufacturers to think in terms of global markets．

So what can governments do？Generally the aim must be to foster an atmosphere that encourages entrepreneurship and innovation．The trouble is that this is rather a nebulous aim．It＇s a matter of trying to achieve the right institutional．educational，financial and entrepreneurial mix．But at least we have some pointers to what can lead to success．

Camcorner

Panasonic NVMS90

We've had a few of these come in with intermittent colour and/or luminance, maybe with flickering in the electronic viewfinder, all caused by damage to the ribbon cable between the hi-fi sound head amplifier CBA and the main board. It rubs on the corner of the chassis, with the result that a black burn mark eventually shows on the ribbon lead. Replace the cable, part no. VWJ0394, and to prevent further damage insulate the chassis corner with tape.
B.S.

Sony CCDF250

This machine had a damaged cassette carrier: the customer must have forced it open, breaking the carrier locking mechanism in the process. When the carrier had been replaced the machine appeared to work well, but when it was powered for the first time after being fully reassembled the machine laced up without a cassette being inserted, the mode motor could be heard to shunt backwards and forwards, then the machine switched off. With the cases removed the machine again worked correctly. Back on with the cases and the fault condition was restored.

We removed the cover screws and after much careful flexing and prodding discovered that the small, flexible PCB (FP89) that connects the mechanism and mode switch to the CC15P PCB was bent in a S shape. As a result it touched the aluminium mechanism base. The mode problems were caused by the fact that the PCB covering had worn through, connection 4 (mode switch 2) shorting to chassis. I.B.

Panasonic NVMC6

The cassette carrier was damaged: because it was bent out of shape it wouldn't close. We replaced the carrier and tested the unit. When playback was selected the machine started to pull the tape from the cassette then stopped and unlaced. When record was selected the machine went into the rewind mode. It seemed that the unit was detecting the end of the tape.

There's only one photodetector on the supply reel side of the tape path. This detector is exposed to the infra-red emitter before tape lace-up, its view being blocked when the tape is pulled out. The emitter should be switched off before the tape starts to move, so that the detector isn't activated. The top loading ring that's attached to the supply side guide assembly was found to be one tooth too far anticlockwise however. Thus when the emitter was switched on the tape hadn't moved far enough to block the beam. With the ring aligned correctly all was well
I.B.

Sony CCDF355

There was no sound output when this machine's own recordings or known good ones were played back, though audio was produced when the camera's output was monitored. We checked the r.f. playback signal at pin 11 of IC401 on the f.m. modulator/demodulator sub-PCB. A signal was present here but as no level is specified we were not sure whether it was sufficient. We took a feed from pin 15 of IC401 - this is after the f.m. demodulator - to an external audio amplifier and obtained correct audio. But there was no output from either

Reports from Brian Storm, lan Bowden, Simon Bodgett, Brian Davidson and Savio DaCosta

pin 29 (line audio) or pin 27 (earphone audio). The fault was cured by replacing the chip.
I.B.

Sony CCDTR55

The camera section wouldn't turn on properly. You got a blank screen with increasingly scrambled lines that turned into a misty picture which became magenta and was then o.k. It took us some time to trace the cause. We suspected missing clamp pulses at the colour encoder and discovered that L302 was dry-jointed.

Another of these machines wouldn't wind the tape into the cassette fully when ejecting it. We replaced both spool carriers and the idler gear as a kit. This was perhaps a bit over the top, but when these mechanisms are in bits it's not worth taking a chance.
S.B.

Ferguson 3C03

The owner complained that the picture twitched and flashed and there was no colour recording. A vectorscope check showed that the colour carrier frequency was miles out. After replacing the SSG circuit's clock crystal without putting matters right I came to the conclusion that the SSG chip was faulty. Replacing it is not an easy job. I was pleased that the results looked perfect.
S.B.

Akai PVC4

This camcorder had a white-balance fault - the camera picture was pink. It turned out to be a bit of a job. Poor red/blue separation was producing a magenta bias. This is normally caused by a faulty delay line, and one had to be fitted before the real culprit could be tracked down - the R / B separation control.
S.B.

Panasonic NVS1E

The symptoms with this machine were intermittent colour from the video output and a blue line down the centre of the picture. They had started after the customer had dropped the camera. I phoned Panasonic to check on the price of a new side panel for the camera and the availability of replacement PCBs. As these are no longer available we carried out a careful visual check and found that delay line DL8001 was cracked. A replacement provided a complete cure. B.D.

Panasonic NVM7

The owner was furious with this unit - it shut off while he was changing tapes when filming Niagara Falls. The tape was stuck: it wouldn't unwind from the loading point. IC6004 was the cause of the fault. All inputs were present but there was no output to the loading motor.
S.DaC.

Panasonic NVM5

The VCR/camera select door switch was inoperative, so you couldn't record. A new switch restored full operation - the old one had cracked in half.
S.DaC.

WILLOW VALE ELECTRONICS LIMITED

me

the answer to the

 spares puzzle
Akai Kamasa
Altai Konig
Amstrad Labgear
Antex Leader

A:D.S. Link Hamson
Aiphone Microtec
Ambersil Mitsubishi
Aiwa Nikkai
Alba Oryx
AWI Pye
Baldwin Boxall Philips
Bose Portasol
BK Pregision Ross
Blackstar Saista
(Geltol) Samsung
Celtek Sansui
DNH Satfinder
Electrolube Seaward
ERL Servisol
Ferguson Sharp
Fidelity Shure
G.E.C. Sony

Goldstar Thander
Grundig Thompson
Hameg Toshiba
Inkel Trantec d.V.G. WeHer
'The Better Choice'

MANCHESTER BRANCH:

Whit 4 Enterprise Park/Reliance Street, Manchester, M10 OAL Tat $0611682-415$ Fax: $1-6829031$

HEAD OFFICE:

Arkwright Road, Reading, RG2 OLU, Tel: 0734876444 Fax: 0734867188 ACCOUNTS DEPARTMENT:

Tel: Q734 860158

NOTTINGHAM BRANCH

 11 Marhill Road, Carlton. Nottingham, NG4 3AJ Fel: 0602870789 Fax: 0602 818772
Panasonic's Digital TV Chassis

Part 3

Ray Meadows

This month we'll deal with the text, audio and scan processor sections of the chassis. In the concluding instalment next month we'll take a look at various features incorporated in some of the models sold in Continental European markets.

Teletext

The text decoder is based on the ITT-Intermetall TPU2735 teletext processor chip. Apart from peripheral components all that it requires in addition is a RAM chip. It provides full level-one functions (FLOF) plus TOP text, the alternative text magazine structure used by some German broadcasters. As its internal ROM contains a full Continental character set, the correct text can be displayed with all European satellite transmissions. With D2-MAC equipped models the chip can also decode MAC vertical blanking interval type text such as that transmitted by Filmnet Plus via Astra.

The teletext processor chip (TPU) operates in the same way as a conventional text processor but expects a digital video input. An advantage is that this digital input allows it to provide ghost cancellation, which can improve text reception when short-term multipath signals with a delay of up to $0.8 \mu \mathrm{sec}$ are present. Other internal features include a small dynamic RAM buffer for the external memory, and RGB switching between the text and any external RGB signals entering via the AV1 scart connector. These 'external' signals can include picture-in-picture information in a suit-

Fig. 1: Block diagram of the teletext circuit.
ably-equipped receiver. The TPU chip's character generator section also provides the many on-screen display messages available - in up to six languages.

Conventional page memory is provided by an MN41256 DRAM, which is arranged as 32 K by 8 bits. This is enough to store sixteen pages of text though there will be a reduction, depending on the text mode, because of the FLOF index and TOP table.

Fig. 1 shows a block diagram of the text system.

Audio Processing

The Audio Control Processor (ACP), the Multi Sound Processor (MSP), the Audio Multiplex Unit (AMU) and a few peripheral components, including an 18.432 MHz audio clock crystal, take care of the audio processing. Fig. 2 shows the arrangement. Models that can receive only basic f.m. sound and the German Zwietone signals use just the ACP chip: for Nicam reception the MSP and AMU chips have to be added.

The ACP chip processes all the audio signals -- analogue f.m., external via the AV inputs, digital Nicam and D2MAC. It has inputs for the demodulated mono f.m. carrier, stereo or second-language f.m., Secam a.m. and D2-MAC sound. When unused, these inputs are connected to chassis

Fig. 2: Block diagram of the audio processing system (full options).
via capacitors. Any audio option can thus be selected. With sets intended for sale in the UK the demodulated f.m. inputs are not used, since there are no analogue multisound services. Instead, the f.m. signal is processed with the Nicam signal in the MSP and AMU chips, reducing the number of filters required.

When the audio section in a Continental model receives demodulated f.m. and Zwietone signals each input is gainadjusted to avoid distortion, then de-emphasised and dematrixed as necessary. The left- and right-channel signals are digitised by two pulse-width modulators, producing two single-bit data streams. A third pulse-width modulator is included for digitising the pilot tone with Zwietone transmissions.

At this point in the chain any digital Nicam signals from the AMU chip appear on the digital sound bus (the S-bus). Information on which analogue and digital audio options are available is sent to the CCU chip via the IM bus: the CCU then enables selection of mono f.m., Nicam, etc. as required. The ACP chip carries out this input selection then digitises
the signal which is passed to the chip's audio control block for balance, tone and ambience adjustment. Ambience effects are achieved by using frequency-selective filtering for each channel then phase-shifting and feeding the result back to the opposite channel. The final sections of the ACP chip provide volume control and then DA conversion, after which the signals leave the chip to head for the audio amplifiers.

The Nicam signal is decoded and sorted out inside the MSP and AMU chips. All UK receivers are fitted with these two i.c.s. The Nicam and f.m. sound signals from the i.f. strip arrive at pin 41 of the MSP chip via a simple CR filter network. Internal functional blocks within this device include a 17.7 MHz Nicam clock, AD conversion for the f.m. signal, a quadrature mixer and a Nicam decoder. The audio output from this chip, in the form of 64 -bit data sequences, is passed to the AMU chip via the S-bus. This bus has three lines, for separate data, clock and ident signals. The AMU chip is used to provide further deemphasis and filtering for the Nicam signal, which leaves via another section of S-bus to pass to the ACP chip for selection as required.

Scan Processing

The Deflection Processor Unit (DPU) chip is responsible for generating and processing the scan signals: it contains line, field and EW parabola generators and protection circuits, and requires very few peripheral components. Its IM bus interface with the CCU chip enables software adjustments of the scan parameters to be carried out in Service Mode 1. Fig. 3 shows a simplified block diagram.

The digital video signal from the video analogue-todigital converter chip (SAD, see Fig. 5 last month) is fed to pins 32-38 of the DPU chip. Though the SAD chip provides an 8 -bit video output, only seven bits are fed to the DPU chip, the least significant bit (V0) being ignored. The DPU chip low-pass filters the video input then passes it to independent line and field sync separators. This parallel processing results in excellent sync performance - I've found for example that the receivers lock perfectly to scrambled satellite TV signals. There's also a composite sync input, at pin 29, for use with MAC signals - pre-processing is required in this case because the DPU chip cannot decode digital packet sync. Since UK sets are not equipped for MAC reception this pin is simply linked to chassis via a small capacitor.

An internal counter that calculates the number of fields from the received line frequency provides field synchronisation. During normal 'coupled' operation this is fixed at 50 or 60 Hz . 'Uncoupled' operation occurs when the received sync signals are weak. In this mode a range of operation is allowed: with a PAL signal it's $45-55 \mathrm{~Hz}$ while with an NTSC signal it's $54-66 \mathrm{~Hz}$. The same range is used for VCR operation, where the signal is strong but of unstable frequency: in this mode the trigger window is narrower. The DPU chip determines the appropriate mode of operation and constantly monitors it.

The sync signals are then used to generate line and field waveforms. An internal high-speed processor also produces an EW parabolic waveform. The field and EW signals leave the DPU chip in the form of pulse-width modulation, being integrated by the external circuits described in Part 1.

When the set is first powered no external sync signals are available. In this situation the DPU chip divides the 4 MHz clock signal from the CCU chip to produce a line-frequency output at 15.25 kHz . Since the frequency is low there's slight overscan, which is useful under warm-up conditions. Once

Fig. 3: Simplified block diagram of the DPU chip.
standard sync data is read from the EEROM via the I2C bus the line frequency is raised to 15.625 kHz . As soon as external signals are available the DPU chip locks to them, using the sandcastle pulses as a reference. To avoid onscreen disturbances these changes take place during the field blanking interval. The 4 MHz clock is also used as a fallback when the video source is changed from PAL to NTSC. A 15.25 kHz scan is maintained during the brief period when the system clock is being switched over.

Other signals generated by the DPU chip include a combined chroma burst and line blanking pulse (at pin 43) which is used by the ACVP chip for chroma switching and by this chip and the VDU chip to produce the vertical blanking interval drive pulses for black and peak-white correction. A composite field and delayed line pulse output at pin 3 is used by the VDU chip for blanking, while a line blanking pulse output is provided at pin 5 for DTI and DFU operations. A special pulse is provided at pin 21 in the fullscreen text mode. It produces a small vertical shift on every other field, the effect being to merge the two fields to avoid interlace flicker. Because of this a text/mix mode is not available. though interlaced text is allowed for subtitles and newsflash displays.

To operate correctly the DPU chip requires two further inputs. The first of these is a flyback pulse from the line output transformer. It's obtained from pin 1 of the transformer, where the pulse amplitude is typically around 60 V peak-to-peak. After passing through D1506 and R1506 and being clamped by D1507 the pulse amplitude at pin 4 of the DPU chip should be 5 V . The second input is a flyback pulse from the field output stage (see Fig. 4 last month). This is fed in at pin 6 and, as previously explained, is used to prevent excessive current in the field scan coils in the event of failure of the output coupling capacitor. Note however that the chip is only looking for the presence of a 2 V d.c. signal at pin 6 , so it can be made to operate if one is provided.

It's common practice in TV receiver servicing to check the field output waveform provided by the sync/timebase generator or the jungle chip. As the output from the DPU chip consists of pulse-width modulation, it will be displayed as a difficult to view digital waveform. A better place to check is at the junction of C567 and R566 (see Fig. 4 last month) where the signal is integrated.

When any type of scan problem occurs it's worth checking the 4 MHz clock pulses from the CCU chip as a first step.

Fig. 4: The SVM board circuitry, simplified and with only the red channel is shown.

Scan-velocity Modulation

An item not previously mentioned is the Scan-velocity Modulation (SVM) board. This modulates the line scan speed in accordance with the content of the video signal to improve the sharpness of black-to-white and white-to-black transitions. It's not something new, but the SVM board used in the Euro 1 chassis is significantly more complicated than that used in the Alpha 3 chassis. Fig. 4 shows a simplified circuit of the red channel and the SVM system.

The RGB outputs from the VDU chip pass from the digital panel to the c.r.t. base panel (board Y) via the SVM panel (board S) - Fig. 6 in Part 2 last month was incorrect in this respect. When the RGB signals arrive at the S panel they are delayed by three 100 nsec delay lines. An emitter-follower and two-stage amplifier in each channel return the signals to their initial level, after which they are fed to panel Y.

The SVM circuit needs to know when luminance transitions occur. So a sample of the undelayed signals is fed via the $2 \cdot 2 \mathrm{pF}$ capacitor C 3101 , which acts as a high-pass filter, to the emitter-follower Q3109. After amplification by Q3108/3111 the signal is a.c. coupled to Q3122 by C3122. At this point the signal consists of positive and negative pulses that coincide with black-white and white-black transitions respectively. Q3126 and Q3127 form a push-pull amplifier, with Q3131 and Q3136 as the output transistors that drive positive and negative needle pulses through the SVM coil. This is positioned on the neck of the tube.

During a black-white transition the positive pulse accelerates the line scan slightly. Conversely with a white-black transition the scan is decelerated. The net processing delay in the SVM circuit is 100 nsec , which is matched by the delay added to the RGB signals.

Next Month

In the concluding instalment next month we'll take a look at some of the features incorporated in various Continental models that use the Euro 1 chassis.

OBITUARY

We deeply regret having to report the death of George R. Wilding on July 30th. George had been a regular contributor to the magazine for many years, both under his own name and various pen-names such as M.G. Hull and H.K. Hills. His articles concentrated on the circuit techniques used in TV receivers and on various aspects of servicing - all based on his own considerable experience. George had written for Practical Television/Television almost from the start, and was a great help to successive editors, always ready to give friendly advice whenever asked. We shall greatly miss him.

George started as a radio and public address engineer. He joined the Automatic Telephone Co. Ltd. as a radio/electrical inspector, testing apparatus for radio controlled aircraft and allied equipment. This was followed by a period during which he taught basic radio and a.c. theory at the Central Technical College, Liverpool. During the war he taught similar subjects at the RAF Technical College, Shrewsbury. Then for over twenty years after the war he ran his own specialist radio and TV servicing business in Liverpool. He also continued with his teaching activities by running radio and TV servicing courses at the Maghull Centre for Further Education. When he retired, he moved to Paignton, Devon, where he continued with his writing and also ran a TV repair operation. J.A.R.

MANOR SUPPLIES MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations

* Fully interlaced sync pulses with correct picture blanking
* EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red. blue and black
* Chequerboard
* Mono outputs with border castellations, cross hatch. grey scale. vertical lines, horizontal lines and dots. UHF modulator output plags straight into receiver aerial socket
* Additional video output for CCTV \& VCR.
* Facilities for sound output
\star Easy to build kit. standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply
* All kits fully guaranteed with back-up service
\star Also available with VHF Modulator.
Price of Kit
$£ 79.00$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module Post/Packing £4.50
Add VAT 17.5\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF. applied to receiver aerial socket.
\star In addition to colour bars R-Y. B-Y etc

* Cross-hatch. grey scale, peak white and hack lesel.
\star Push button controls, battery or mains operated.
* Simple design. only five i.c.s on colour bar P.C.B
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT £39.00. CASE $£ 5.80$. BATT HOLDERS $\mathfrak{£ 4 . 2 0}$ MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P $£ 4.50$)
thr modllator ich I to fifor OUERSEAS 66.80
EASII, ADAPTEI FOR VIDEO OLTPLTA C.CT.V

LINE OUTPUT TRANSFORMER TESTER
Service Aid
\star Saves time and money
\star Checks short turns.
\star Simple to use.

- Reliable
\star Battery operated.
\star Pocket size
PRICE $£ 24.00$
POST/PACKING $£ 2.50$
INFRA RED REMOTE CONTROL TESTER

* Pucket size
* LED + audibie indication
* Simple to use

PRICE £20.00
POST/PACKING £2.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video d audio outputs $£ 28.50$ p.p. $£ 1.80$
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p £1.80.
PAL ENCODER KIT (RGB to Vide $)$) $\mathbf{£ 2 0 . 0 0}$ p.p. £ 1.80
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 45.00$ p.p. $£ 4.50$

TV \& VIDEO SPARES
REMOTE CONTROLS
Replacement for: Ferguson. Hitachi. Philips, Panasonic Grundig, ITT, Sony, Saisho, Granada,

Saisho + many others
Phone for make and model no.
PHILIPS SPARES
MANUALS CF1, CIX-E, CTX-S, CP90, CP110, GR1AX. G90AE, 2B, 3A, NC3-CR £7.50 p.p. $£ 1.80 .2 \mathrm{~A} £ 10.50$ p.p. $£ 1.80$, KT3 $£ 25.00$ p.p. $£ 1.80$ SYSTEM 4 KT4, K40 $£ 22.00$ P. P. $£ 3.00$
BACK UP BATT. 2.4 V £ $£ .801 .2 \mathrm{~V}$ £2.00 p.p. 90 p
K30, KT4, CTX-EHT Lead $£ 4.90$ p.p. $£ 1.00$
K30, KT4, CTX-EHT Lead $£ 4.90$ p.p. $£ 1.00$
THORN/FERGUSON SPARES
9000 Series IF/Decoder tested $£ 10.00$ p.p. $£ 2.80$
TX10 Focus control 88.50 P.p. $£ 1.80$
TX9/10 Remote \& tuning $1515 \mathrm{~N} £ 5.00$ p.p. $£ 1.80$
TX100 Chopper TX $£ 15.80$ p.p. $£ .50$
IC SELECTION

TRIPLERS EHT MULTIPLIERS p.p. $£ 1.80$
CONTNENTAL LNIVERSAL TVK \& BG GRUNDIG BG 2077-6-42-1003/1004 516.80
RANGE (Quote exact no.) 13.80 GRUNDIG BG 2087.642•1001/1002/1006 $£ 16.80$ U.K. LAVERSAL (best quality) $£ 7.80$
DECCATATLXG BG $200 / 4$ TYPE $£ 7.80$

THORN $9000 £ 9.80$

MISCELLANEOUS p.p. $£ 1.80$

MAINS TRALSFORMERS: 6.3 Volts CRT boos: DEGAUSSING ROD £33.75p.p. $\mathbf{6 3 . 5 0}$ £6.80 p.p. $£ 1.80$
Mains Isolating $500 \mathrm{VA} £ 51.25$ p.p. $£ 5.25$
TRANSPARENT VIDEO SERVICE CASSETTE
86.80 p.p. $£ 1.80$

HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5\% TO THE TOTAL PRICES ARE SUBJECTTO CHANGE WTTHOLT NOTICE
 Telephone 071-794 8751/794 7346
 Fax 071-431 5778

 MANOR SUPPLIES

 MANOR SUPPLIES

 172 WEST END LANE, LONDON NW6 1SD

 172 WEST END LANE, LONDON NW6 1SD}

CALLERS WELCOME AT SHOP
Mon-Fri $9.30-6 \mathrm{pm}$ - Thurs $9.30-1 \mathrm{pm}$ - Sat $9.30-5 \mathrm{pm}$

Teletopics

DIGITAL TV

Over eighty organisations including governments, broadcasters, setmakers and other electronics manufacturers have signed a memorandum of understanding (MOU) which sets out a programme for establishing digital video broadcasting (DVB) in Europe by the end of the present decade. It covers satellite, cable and terrestrial TV, setting out a market-driven approach. Signatories include the BBC, Channel 4 and the ITV companies, the ITC, BSkyB. the Cable Association. National Transcommunications (NTL), Philips. Nokia, Thomson, the European subsidiaries of Matsushita, JVC. Sony and Toshiba. Pace. Amstrad. Hewlett-Packard, General Instruments - and seven governments including the UK.

The MOU follows almost two years work by a loose. preliminary organisation, called the European Launching Group for Digital Video Broadcasting, which was set up in 1991 to co-ordinate the considerable research work on digital TV being carried out in Europe. Three groups will be responsible for most of the detailed work: they will be concerned with the technical, satellite/cable commercial and terrestrial commercial aspects respectively. The key objectives that have been laid down are as follows: (1) to agree on standards for satellite and cable TV by the end of 1993, enabling services to begin in 1995: (2) to agree on standards for terrestrial broadcasting by the end of 1995: (3) to produce standards for receiving equipment: (4) to develop a strong, competitive DVB technology base in Europe; (5) to contribute to EC and government policy. with the aim of removing obstacles to a market-led introduction of DVB services; (6) to promote the exchange of information between all those involved, leading to commercial agreements for exploiting DVB; and (7) to build links with projects in the USA and Japan. The MPEG-2 video and audio compression standard will be the basis of all European digital TV standards agreed upon under the DVB project. Modulation techniques will vary between different media and have yet to be decided - an EBU sub-group has been asked to come up with proposals. Quadrature phase-shift keying is likely to be adopted for satellite transmissions. 16 or 64 quadrature amplitude modulation for cable use and coded orthogonal frequencydivision multiplexing for terrestrial TV. DVB members will pay an annual fee that has been set initially as 10,000 ECUs (about $£ 7,700$).

CHANNELS 35 AND 37

The ITC has released some preliminary results of the investigation it comnissioned from NTL on the consequences of using u.h.f. channels 35 and 37 for digital TV in the UK. The frequency-planning work has shown that while four or more digital TV channels could be provided for most viewers, using the currently planned Channel 5 transmitting sites, in some areas fewer than four channels could be provided. Coverage would be better than with previously planned services however, and higher powers could be used - the latter could make more digital services available.

While it had been hoped that low-power digital transmissions would reduce interference to VCRs and other
equipment to negligible proportions, the study has shown that this is unlikely to be the case. For example in London the number of VCRs that would suffer interference from digital transmissions with an effective radiated power of 1 kW is likely to be as much as half the number that would suffer interference from an analogue Channel 5 transmission with an e.r.p. of 250 kW . This is a disappointing result - and the situation would be worse if higher-powered digital transmissions were used to increase the channel capacity. The ITC comments that more work is needed on how VCR problems could be minimised should channels 35 and 37 be used for digital TV at some future date, the main preliminary conclusion being that the VCR problem is one that cannot be ignored.

VIDEOS BY PHONE

British Telecom has been carrying out trials of a prototype system. developed by Philips, that would enable video programmes to be sent to subscribers via digital telephone lines. Viewers would use an IR remote control unit and an on-screen menu to select from hundreds of films held in a central store. The technique is known as asynchronous digital subscriber loop technology. The Philips Home Interactive Multimedia Terminal converts an MPEG-1 format compressed digital video signal, sent at $1.5 \mathrm{Mbits} / \mathrm{sec}$, to an analogue PAL or NTSC signal - the line can still be used for normal phone calls while a film is being received. There are three main items in the terminal: a standard TI communications interface, a control system, and an MPEG-1 decoder that uses a Philips/Motorola chip set developed for CD-i player use. BT says that there are no plans at present for public trials. Such a system would of course raise political and commercial questions.

In a similar vein Tele-Communications Inc., the largest cable TV operator in the USA, and Bertelsmann have announced plans for an interactive cable channel that enables viewers to choose pop videos: it's claimed that the new channel will be the first of its kind. Customers will initially use the telephone to order their selections. Use of a remote control handset for the purpose should be possible in two-three years' time.

W-VHS TECH SPEC

JVC has released technical specifications for its W-VHS system. which was announced earlier this year. The format is designed for use with the Japanese Hi-Vision analogue HDTV system, and is also compatible with NTSC and SVHS/VHS systems. There are three recording options: (1) Hi-Vision recording/playback (HD mode); (2) enhanced NTSC recording/playback (SD mode); and (3) simultaneous two-channel NTSC broadcast recording (SD2 mode). Metal-powder tape is used, housed in a VHS-sized cassette. Each cassette gives up to three hours' recording time in the HD and SD2 modes, 540 minutes in the SD mode. The cassettes cannot be played by VHS and S-VHS machines.

In the HD and SD 2 modes the tape speed is $33.35 \mathrm{~mm} / \mathrm{sec}$, the head speed $5.8 \mathrm{~m} / \mathrm{sec}$ and the track pitch $58 \mu \mathrm{~m}$. In the SD mode the tape speed is reduced to $11 \cdot 12 \mathrm{~mm} / \mathrm{sec}$ and the track pitch to $19 \mu \mathrm{~m}$.

A time-compressed integration (TCI) system is used to record baseband Hi -Vision signals. The f.m. carrier deviation is $2.5 \mathrm{MHz}, 8 \mathrm{MHz}$ being the sync tips and 10.5 MHz peak white. White clip is 240 per cent. dark clip 110 per cent. Azimuth is $\pm 15^{\circ}$. In the SD and SD2 modes NTSC, Y / C or component signals can be handled. With the HD
and SD2 modes the VHS f.m. recording system is used, with PCM as an option. The SD mode has no PCM option.

The W-VHS format has been been adopted by Hitachi, Matsushita, Mitsubishi and Sharp.

BBC's DAB TRIALS

The BBC has begun major engineering tests of its Digital Audio Broadcasting system in London, using high-power transmitters. At present a 10 kW transmitter at Crystal Palace is being used, but 1 kW transmitters at Alexandra Palace, Reigate and Wrotham are to be added shortly. All the transmitters operate at 226 MHz . Specially-equipped vehicles are being used for the tests. DAB services are not expected to be launched before 1995.

SATELLITE TV

Our comments about BSkyB's profitability in last month's leader should have mentioned that the figures given relate to operating profit before interest. There is interest on external debt to be taken into account, also notional interest on the money the company has invested in setting up the operation. The latter could be converted to equity. These factors make it difficult to assess the exact situation. It's interesting however that consultants Booze Allen and Hamilton forecast in a recent report that by 1996 BSkyB could have revenues greater than the entire ITV system and be well ahead by 2000 .

Philips has developed a set of four new chips that perform all the functions required in a satellite TV receiver, from second i.f. conversion to baseband video demodulation, with improved performance and reliability and a reduced peripheral component count. The four chips carry out the following functions: (1) mixer/oscillator; (2) gain-controlled i.f. amplifier; (3) PLL f.m. demodulator; (4) I2C-bus controlled frequency-synthesis tuning.

Toshiba has brought into production an HEMT (high electron-mobility transistor) with a noise figure of just 0.45 dB at 12 GHz . The main source of noise in an HEMT is the resistance of the channel layer, which normally consists of gallium arsenide. To reduce the noise Toshiba uses indium-doped gallium arsenide, the doping level being adjusted to create a lattice structure that minimises the resistance. The crystal structure at the source has also been improved, using an aluminium gallium arsenide layer. This results in a 40 per cent higher electron flow. Sensitivity is increased and gate resistance reduced by using the company's electron-beam processing technology to create a T-shaped gate structure with a gate length of only $0.1 \mu \mathrm{~m}$.

MTV has signed a contract to lease transponder 39 $(11.658 \mathrm{GHz})$ on Eutelsat II F1 at $13^{\circ} \mathrm{E}$. The channel plans to upgrade to the Hot Bird (Eutelsat II F6) when this is brought into operation next autumn (1994).

Pace has developed a tuner for use in its receivers. Tuners had previously been imported from the Far East.

MULTIMEDIA NEWS

The recently agreed Video CD format that puts up to 74 minutes of MPEG-1 video on a compact disc (see September, page 780) is to offer two extra options: (1) two still-picture quality levels, high- and normal-resolution; and (2) recorded codes for playback control.

Philips has announced that its first CD-i movie titles will retail at about $£ 15$ each. A new, lower-priced player, Model CDI210, has been released with a suggested price

Next Month in TELEVISION

LOWDOWN ON THE ICC7 CHASSIS

The Ferguson ICC7 has been introduced as an updated replacement for the ICK2 chassis. J. LeJeune describes the technical features, with particular reference to the unusual bits of circuitry that could cause confusion.

SERVICING THE FC08 AND FC28

A large number of these Ferguson-branded, full-size VHS camcorders have recently been released, having been sold off via Thorn Rental outlets. David Woodnott provides a servicing and fault rundown.

TEST REPORT: BECKMAN 9020 SCOPE David Botto puts the Beckman 9020 20MHz, dual-trace scope through a bench test and finds it well suited to the needs of the modern service department.

MODERN FIELD TIMEBASE CIRCUITS

In Part 12 of his series Eugene Trundle describes the operation of modern field timebase circuits including the thyristor type used in some Thomson chassis.

SERVICING THE GOODMAN
 CTV9200/SAMSUNG CI125R

These compact 5 in. colour sets proved particularly popular with caravan users, incorporating in addition an m.w./f.m. radio. John Riggs lists the various fault conditions that may be encountered.

ADDING A BUBBLEJET PRINTER

Many readers probably use an Amstrad PCW series wordprocessor. The results obtained with earlier versions can be much improved by adding a bubblejet printer. Keith Wevill describes how to go about doing this.

of $£ 400$: a new games touch pad will cost $£ 25$. Kodak has reduced the recommended prices of its Photo CD decks: Model PCD265 is now £149 (down from £299), Model PCD865 is £199 (from £369), Model PCD885 (the portable) is $£ 249$ (from £399) and the multi-disc Model PCD5865 is also $£ 249$ (previously $£ 429$).

Pioneer has launched a new range of four Laser Disc players.

In the USA Panasonic is now supplying its Model FZ1REAL 3DO multimedia players which have a suggested retail price of $\$ 700$ (about $£ 460$). 3DO is the $32-$ bit competitor to CD-i.

DISPLAY TECHNOLOGY

In mentioning Matsushita's Flat Vision display device last month we referred to "an electron source". In fact in its initial 14 in . form the device uses a matrix of 9,746 electron beam sources. Each source scans six lines of two sets of RGB elements. A sophisticated control and deflection system is required.

A device using cold-cathode field emission, invented by the French Atomic Energy Commission, has been licensed to Texas Instruments. The plan is to use it in lap-top computers. A 6 in . version less than 2.5 mm thick has been demonstrated. The field emission display (FED) uses coldcathode elements that emit electrons when energised by an electromagnetic field. There's an electron gate for each element, which has a diameter of about $1 \mu \mathrm{~m}$. Since the elements are less than $200 \mu \mathrm{~m}$ from the phosphor screen there's no need for electrical focusing. Resolution is determined by the number of cathodes per pixel.

PRODUCT NEWS

The new GoldStar Model RDD10i VCR is of particular interest in incorporating both a VHS and a Video-8 deck. In addition to being able to handle both formats it can transfer recordings from one to the other, with the ability to edit them via a dual remote control unit as you do so. The idea is to appeal to camcorder users. Suggested retail price is $£ 630$.

Panasonic has launched a new S-VHS-C camcorder, Model NVS85, whose features include a times ten optical zoom, a times twenty digital zoom, programmed autoediting, long play operation and VITC. Suggested price is $£ 1,200$. Canon has introduced two camcorders with optical image stabilisers: Models UC40Hi and UC5Hi have suggested prices of $£ 1,200$ and $£ 1,400$ respectively.

Toshiba has launched two new TV receivers, Models 2939DB (68 cm screen) and 2539 DB (59 cm screen), with Dolby Pro-Logic, a Dolby Surround processor and Dolby3 stereo. Suggested prices are $£ 1,000$ and $£ 900$ respectively.

The Akura Quartet, with a suggested price of $£ 400$, is a combined 14 in . TV receiver and stereo CD system.

BUSINESS NEWS

Hitachi is to close its VCR assembly plant in Germany, where production has fallen from a monthly peak of 45,000 in 1989 to 13,000 machines a month this year. Last year Hitachi's consumer products division made a Y42.6bn loss (about $£ 27 \mathrm{~m}$), following a Y $14 \cdot 6 \mathrm{bn}$ loss in the previous year. Its US VCR plant has been closed, production for the US market being moved to Malaysia. VCR production for European markets will be met by its UK and, if necessary, Malaysian plants.

JVC has revised its profit forecast for the year ending March 1994: instead of breaking even a loss of Y25bn is expected. There are to be staff cuts and the headquarters is to be moved from Tokyo to Yokohama.

Nokia is to move production of its small-screen TV sets to Bochum in Germany, where two new production lines are being set up. Previously it had obtained small-screen sets from Sanyo's Singapore plant. The company says that concentrating production in Germany will cut costs and improve quality.

PUBLICATIONS

HRS has recently published its 1994 Components Catalogue, which has a separate price list to enable the company to issue regular pricing updates throughout the year. A comprehensive range of spares and components is available with same-day despatch, guaranteed next-day delivery and a free fax ordering service. A new Electrical Accessories catalogue was issued in the summer and a new Sound and Security catalogue is to be made available during October. For details contact HRS Electronics, Garretts Green Lane, Birmingham B33 0UE. Telephone 0217897171.

The second edition of Radio! Radio! by Jonathan Hill, a well illustrated, 244-page (A4 size) history of the British radio receiver, has been published by Sunrise Press, 2-4 Brook Street, Bampton, Devon EX16 9LY (0398 331 532) at $£ 25$ including postage.

THE BERLIN CONSUMER ELECTRONICS FAIR

New items on show at the recent Berlin International Consumer Electronics Show included a Philips VCR with a voice-operated remote control unit (the Voice Commander) and a TV receiver range from Grundig featuring a parental lock system. The Voice Commander is to be introduced in the UK shortly at about $£ 99$. A full report on the Fair will be included next month.

VIRTUAL REALITY DEVELOPMENTS

A virtual-reality games machine with three-dimensional graphics that can be manipulated and updated in real time is being developed by Nintendo and Silicon Graphics. The new system, called Project Reality, should be available for use in arcades next year. It will use a Silicon Graphics chip set consisting of a 64 -bit R4400 microprocessor, a graphics co-processor chip and custom video, audio and graphics chips. A domestic version at about $\$ 250$ could follow a year later.

SATELLITE STEREO SOUND

BPD Marketing Ltd., PO Box 1104, Glasgow G3 7ER (telephone 0800626040) is marketing a device called the StereoSender that enables stereo sound transmissions picked up by a satellite receiver to be conveyed to an f.m. radio receiver or hi-fi tuner. It consists of a scart-to-scart lead which incorporates a small, low-power modulator/transmitter providing an output at 107 MHz . The lead replaces the existing satellite receiver-to-TV set scart lead. F.M. receivers anywhere in the house can pick up the 107 MHz transmissions. The device is powered by an internal AAA-size battery that gives forty hours operation or alternatively a mains power unit is available. Oneoff price of the StereoSender is $£ 49.95$ plus $£ 2.95$ post and packing; the power supply costs $£ 9.95$.

Letters

QUESTIONS

Can anyone help to solve a few puzzles? First why do the producers of children's television programmes on saturday mornings put shiny new Japanese TV sets into dull old Bush cabinets? Perhaps if they'd put Bush sets in Bush cabinets fifteen years ago we would have had UK-made Bush sets today. Secondly why, when the same programme is shown a second or third time by ITV or the BBC, is it called a repeat while when Sky does the same thing it may be called an 'encore' performance?

Finally another Sky TV question. If you look at dealer text on the Sky text service one of the first things you'll notice, along with the adverts for all the new channels, is the boast of increased support for authorised Sky agents. Reading this gave us such a warm feeling - to know that, as a small outfit, we had the support and backing of this huge TV programme producer. We'd backed them in the early days: when Sky was making heavy losses, we little chaps battled to sell all the contracts we could. Unfortunately the letter I opened only some minutes after reading the dealer text left us with a chill. As we haven't sold enough contracts, we're not required any more. I wrote to ask whether our agency could be continued but didn't even receive a reply. Is it right that, after supporting Sky when it was struggling. now that it's profitable small dealers are treated in this cavalier way?
Chris Watton.
Boston, Lincs.

SERVICE FEEDBACK

I'd like to make a couple of points in connection with Panasonic equipment mentioned in the VCR Clinic and Camcorner sections last month (October). First the buzzing NVJ47B VCR. The cause of this is excessive mains voltage, the cure being to add an $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$ capacitor (part no. ECUM1H103KBN) across pins 3 and 4 of Q1103 in the power supply. Secondly the cause of no focus or zoom operation with the NVS5B camcorder is a sticky focus motor: a sharp tap on the lens unit can cure the fault but it's best to replace the focus motor (the correct part no. is VEM0413).
Rob Tarrant,
Slough, Berks.
Further to my note on the Samsung SI1240/1260 in the September issue VCR Clinic (page 776), there is now a modification to prevent failure of IC206 in these machines (the fault was no loading motor drive). If there's a black earth lead from the top right-hand side of the power supply PCB to the deck, fit a shorting link from the bottom end of W109 to the bottom end of W110 (to the right of CN102). Nick Beer,
Bideford, N. Devon.

CD PLAYERS

On reading the CD Player Casebook items in the September issue I was yet again moved to wonder whether I live on a different planet from those who apparently have customers willing to pay to have laser units replaced in Sony, Pioneer, Goodmans etc. machines. Since the trade price of these units is generally in excess of $£ 50$, the cost of such a repair
has to be about $£ 100$. Please, where can I find people willing to pay this sort of price to have a CD player repaired?

In my experience perhaps one customer in ten is willing to have a laser unit replaced - despite the fact that this is, as CD Player Casebook reports, the most common fault.

I wish that other manufacturers would match Philips' prices in this area!
S.R. Hogue,

Redruth. Cornwall.

TESTING TRANSFORMERS

In the September issue Ian Rees described a useful circuit for ringing an inductive device. It's possible however to employ the timebase in the oscilloscope used to display the waveform to do the job. Fig. 1 shows the idea. C 2 resonates the transformer or inductor being tested, as in the original circuit, but with coupling to the oscilloscope's timebase via C 1 . To test a line output transformer, a value of $0.1 \mu \mathrm{~F}$ for Cl and about $2 \mu \mathrm{~F}$ for C 2 will normally be satisfactory. Set the timebase to about $2 \mathrm{msec} / \mathrm{cm}$, the Y attenuator to about $0.3 \mathrm{~V} / \mathrm{cm}$, the sync to +ve internal and adjust for a steady trace. Then follow Ian's instructions.

To test many line output transformers it's necessary only

Fig. 1: Use of an oscilloscope to test inductive components.
to disconnect the focus and e.h.t. leads. The value of C 2 will need to be changed to test other inductors.
Geoff Lewis, B.A., M.Sc.,
Canterbury, Kent.

SERVICING CAR AUDIO EQUIPMENT

I'd like to add a few words following Alan Bouskill's article on servicing car audio equipment (October).

I've serviced mainly Philips equipment. When ordering items for these radios/cassette players you must in addition to the radio/cassette player model number quote the three following numbers as these indicate the make and model number of the car in which the equipment is fitted. Failure to quote them will result in the wrong item being sent.

The main fault with the Philips P1 and P6 cassette decks is to do with the flywheel - the plastic on the outside of this wheel breaks. It takes five minutes at most to do the job. The good people at SEME can supply this item at $£ 5.91$, their part no. being MECHA137B - the Philips part no. is 52880984. It's worth keeping three in stock.

The deck is held in place by three screws. After removing them the deck lifts out. But remember that once the deck is out the earth return is lost - use a crocodile-clip lead when testing out of circuit. Don't forget to clean the heads and roller. The belts fail, but not often.

One fault that foxed me for a bit was a LED readout that was all over the place. The cause turned out to be the flexible PCB cable between the LED and the main PCB - it had become twisted where it's connected to the PCB. All you need to do is to slacken the clamp screws, straighten the cable to make proper contact then tighten the screws.

For checking speed, use a 10 kHz prerecorded tape, as you did in the days of spool-to-spool decks - remember?!

Once I spent all morning fitting suppressors on a car to cure interference, then gave up. When the bonnet was closed there was no radio interference. So don't get caught out!

If you meet a Ford radio from somewhere in South America and only one lid is fitted, it's not worth repairing. You would have to unsolder the PCB to do any work on the radio, though the cassette side is not too bad. In 95 per cent of the cases we've had the on/off switch has been the trouble, but replacing it costs more than the radio is worth. You can't even short it out. . .
B.D. Andrew,

Devizes, Wilts.

CITY AND GUILDS QUALIFICATIONS

I would like to comment on the letter from Di Walster of the City and Guilds of London Institute in the August issue. He had written in reply to an earlier letter concerning training inadequacies, and sang the praises of the C \& G 224 course. I too believe that this course is one of the best I've come across, catering for those who have an interest in electronics through to those who would like to pursue a career in this field.

The only inadequacy I've found doesn't lie with the course itself but with the Institute. It's up to the City and Guilds of London Institute to market its courses to employers, letting them know, as BTEC has done, about the courses and the qualifications. BTEC qualifications are regarded as being prestigious: C \& G 's are considered to be 'Mickey Mouse' qualifications.

I recently applied for a position at a new electronics factory that is to open in this area and was told that my City and Guilds qualifications were not recognised. I wish I had been aware of this before spending a lot of time, effort and money on passing parts I, II and 2 part III of course 224. Would the response have been different if I'd had a BTEC certificate? Come on City and Guilds, get your finger out! Darren C. Coyle.
Derry, N. Ireland.

SIGNALS FROM TDF1/2

In his October column Roger Bunney suggests that there are now only two radio and no TV channels available from the TDF1/2 satellites. In fact there are three radio channels plus the ARTE and Canal Plus TV channels, the latter often scrambled. The French music channel MCM is also present. though it did go off for a few weeks. Only Supervision has ceased transmission from these satellites and I understand that it may reappear, depending on French government funding for D2-MAC. All these radio and TV channels can be received with modified ex-BSB equipment.

With regard to DMAC, MTV has just started using this system via the Thor satellite, joining CNN, Eurosport, Children's Channel and Filmnet Movies.
Colin McCormick,
Plymouth, Devon.

SCOPE REPAIR

Some weeks ago my scope failed. As it had not long since been repaired I sent it to Hameg at Luton. Shortly afterwards I received a demand for a fee of $£ 30$ for investigation plus $£ 11$ return carriage if I didn’t want the work done. When the estimate arrived it was for over $£ 100$ plus VAT,
with a $£ 60$ labour charge and $£ 30$ for parts. I declined and on top of the return carriage charge was asked for $£ 11$ for "storage".

In the end I replaced the faulty Y amplifier transistors myself - a matched pair of BF459s obtained from Hameg for $£ 12.92$. The repair took me just over an hour. So much for a prospective bill of around $£ 120$, though I admit that this is a simplified version of the story. But the moral is to repair your scope yourself if you possibly can, or seek an alternative repair service.
Roger Burchett.
Hythe, Kent.

Help Wanted

Wanted: A.C. adaptor or T03 (small blue plastic impregnated 4 V a.c. $/ 4 \mathrm{~V}$ a.c. $/-12 \mathrm{~V}$ transformer) for the Mitsubishi Model HS700B VCR. R.G. Coates, 35 Tetbury Hill, Avening, Nr. Tetbury, Glos GL8 8LT. 0453832720.

Wanted: Service information/instruction book for the Ferranti Model TP1009. Brian Simms, 63 Kingfisher Road, Worle, Weston-Super-Mare, Avon BS22 8TX.

Wanted: Search tuning module for the Grundig Model 6445 GB (GSC200 chassis) or alternatively complete working or non-working set that includes this module. Mr. Ben, 6 Talbot Road, East Ham, London E6 2RZ. 081471 6348.

Wanted: Used mains transformer (part no. 5213725) or full power panel (REG 594148) for the Hitachi VT63E VCR and serviceable used i.f. and colour decoder panels for the Hitachi CNP190. T.J. Steel. 185 Charter Road, Chippenham, Wilts SN15 2RF.

Wanted: Service information for the Sanyo VCT5300 (excellent picture, no sound even in standby). R. Payne, 13 Molyneux Road, Ashley, New Milton, Hants BH25 5AU. 0425617786.

Wanted: Tapes new or used and an instruction manual for the Philips N1700/15. Call Nigel Woolf on 0815724326.

Wanted: LOPT and circuit diagram for the Network NWC 1402. The original transformer is a Murata type 3701, MSHIFAK13. MHF029-18. D. Benyon, Marshland View, St. Anne's Hill. Bude, Cornwall EX23 0LT. 0288353373.

Wanted: Mains isolating transformer (at least 500 VA) and a variac, both in good working order. Brian Ecclestone, 10 Stone Road, Norton Bridge, Mr. Stone, Staffs ST15 0NS. 0785760315.

Wanted: U465B prescaler chip or prescaler module for a Granada Model 514058 (Rediffusion chassis with frequency-synthesis tuning). Chris Kentch, 55 Melrose Avenue, Worthing. Sussex BN13 INZ. 0903240147.

The wires that connect the phono/jack assembly to the r.f. PCB (plug in/out r.f. unit type RU-E3E) in my Canon camcorder have come adrift from the PCB. Can anyone tell me the correct connection sequence? - Canon is unwilling to provide this information. Steve Cocker, PO Box 31, Ampthill Road, Bedford MK42 9QQ.

Modern TV Receiver Techniques

Part 11: Line Output Stage Operation

This month we'll examine the operation of the line output stage, whose basic job is to generate a sawtooth current in the line scan coils so that the beams are deflected horizontally across the picture tube's screen. The beams are deflected from the left-hand side to the right-hand side to give the forward line scan: this is followed by a rapid, blanked flyback to the left-hand side ready to trace out the next viewed line. Because of the way in which the tlyback is achieved, the line output transformer generates various pulse voltages which are rectified to produce the e.h.t. required by the tube and other supplies.

The line output stage is not just any sort of amplifier. The active device, almost always a transistor though valves, thyristors and gate-controlled switches have been used in the past, operates as a switch, the inductive components in the stage being mainly responsible for generating the sawtooth current waveform. Tuning is used to generate and control the flyback. The line drive waveform controls the output transistor's on/off switching and thus determines the timing of the cycle of operations, keeping them phase synchronised with the transmitted picture signal.

Basic Operation

Fig. 1 shows in most basic form the main elements in the line output stage, the active device (transistor) being shown as a switch. When the switch is closed, capacitor C and diode D are shorted out and the 150 V supply is connected across coil L. Now it's a basic law of inductance that when a d.c. voltage is connected across a coil the current flowing through the coil builds up linearly from zero. Fig. 2(a) shows this as a positive-going ramp that starts at time tl , when the switch is closed. After about $26 \mu \mathrm{sec}(\mathrm{t} 2)$, roughly the time required to deflect the beams from screen centre

Fig. 1 (left): Theoretical representation of the bare essentials of a TV line output stage.

Fig. 2 (right): Basic line output stage waveforms, (a) the sawtooth scan current and (b) the pulse voltage at the junction of C, D and L (see Fig. 1) when the switch is opened.
(the starting point of the cycle) to the right-hand side of the screen, the switch is opened. This action removes the voltage that had been driving current through the coil. While the current had been flowing, a magnetic flux had built up in the coil's ferrite core. This flux is now released: as it collapses, the coil becomes a current generator. The current
flows via the large-value capacitor CR, charging the tuning capacitor C with the result that the voltage at its 'upper' plate (the one connected to the coil) rises to a relatively high positive value. When all the energy in coil L has been transferred to capacitor C (time $t 3$) the latter begins to discharge. passing the energy back the other way to L via CR which, as far as the circuit's a.c. operation is concemed, can be

Fig. 3: The switching and energy-interchange phases during one complete cycle of operation of the circuit shown in Fig. 1.
regarded as a short-circuit. At time $t 4$ the capacitor has discharged, having transferred the energy back to the coil. This to-and-fro interchange of energy between L and C , which from the a.c. point of view are in parallel (CR representing a short-circuit), is the normal action of a tuned/resonant/oscillatory circuit. The resonant frequency is determined by the values of L and C. These are selected so that when time $t 4$ is reached, i.e. after a half cycle of oscillation, the sawtooth current has passed through zero to a negative point on the ramp and the beams have been deflected to the left-hand side of the screen ready for the next active line scan.

To complete the oscillatory cycle (the normal resonant circuit action) the voltage at the upper plate of capacitor C would have to move negatively with respect to chassis. It can't do so because of the presence of diode D, which is called the efficiency diode - we'll explain that in a minute. When the voltage at the cathode of D tries to swing negatively it conducts, i.e. switches on, providing a discharge path for the coil. Once again because of the inductance in the circuit there's a gradual, linear current discharge, the enegery being returned to the supply's reservoir capacitor CR. During this discharge, the beams are deflected back towards the centre of the screen (times $t 4$ to 5). At this point the magnetic flux (energy) in L has been dissipated. C is still in its discharged state, being shorted out by diode D. So at time 55 , with the beams at screen centre (zero deflection), the switch has to be closed so that the cycle of operation can be repeated. The action of diode D has, with the inductance in the circuit, provided half the scan power while in the process returning the energy (minus inevitable circuit losses) to the reservoir capacitor. No wonder it's called the efficiency diode.

It's important to note that the beam flyback period t2 to $t 4$ is governed by the time-constant of L and C, consisting of

Fig. 4 (left): Basic elements of a practical line output stage. The scan coils are capacitively coupled and the output transformer acts as a loading choke.

Fig. 5 (right): The S-correction effect, shown with broken line, introduced by the coupling capacitor when its value is such that it resonates with the line scan coils at about 5 kHz .
one half cycle of oscillation. To achieve a flyback time of $12 \mu \mathrm{sec}$ the duration of one cycle needs to be $24 \mu \mathrm{sec}$: so the resonant frequency of L and C works out at 41.67 kHz .

Fig. 3 illustrates the four phases in the operation of the line output stage.

Now the voltage developed across an inductor is proportional to the rate of change of the current flowing through it. Thus the voltage across L is relatively low during the forward scan period but correspondingly high during the flyback, when the current flow is faster because of the circuit resonance. The voltage developed at the positive plate of capacitor C is shown in Fig. 2(b), typically peaking at $1,200 \mathrm{~V}$. Both the line output transistor and the efficiency diode must be capable of withstanding this high reverse voltage.

As we've seen, the circuit action is highly efficient as the energy stored in L is returned to the supply during the first half of the forward scan: indeed with 'perfect' components there would be no net demand on the power supply at all! In practice because of the resistance of the inductor and the losses in the diode, switch and capacitor the circuit takes out a little more than it puts back, while the practice of loading the transformer with rectifier circuits to provide power for other sections of the set increases the stage's current demand. To make up for these losses, the line output transistor is switched on slightly before instead of at the centre of the forward scan.

In a practical circuit L is the primary winding of the line output transformer and the deflection coils are connected across it via a d.c. blocking capacitor, CB, as shown in Fig. 4. This coupling capacitor also provides scan-correction (often referred to as S-correction). Why is this required? If a linear deflection current was used to control the scanning with a relatively flat-faced picture tube the sides of the picture would be stretched out in comparison with the centre section. Hence S-correction: the value of the coupling capacitor is chosen so that it resonantes with the inductance of the scan coils at about 5 kHz . This has the effect of adding a sinewave component to the sawtooth current, as shown in Fig. 5. Thus the deflection power is tailored to suit the length of the beam paths as the screen is scanned, correcting the horizontal linearity of the display.

At the line scanning frequency the scan coils behave as an almost perfect inductor, but their small d.c. resistance is in series with the fixed voltage that should be present across the coil. It has the effect of introducing an asymmetric sensitivity loss during the forward scan. To counteract it a further component is added in series with the scan coils - an inductor with a saturable magnetic core, biased by a permanent magnet so that its inductance falls as the scan current

Fig. 6: Practical line output stage circuit used to drive 90° 20 and 22in. tubes. All the components in the brokenline box are encapsulated within the line output transformer T4. The value of the flyback tuning capacitor C95 varies with tube size: it's 10nF with a 22in. tube and 9.1nF with a 20 in . tube.
increases. The voltage drop across this inductor, which is known as the linearity coil, varies in the opposite sense to that produced by the resistance of the coils, thus providing an equal-but-opposite cancellation effect. In some TV sets the permanent magnet can be adjusted to trim the linearity correction, though many modem sets use components with such tight tolerances that a sealed linearity-correction coil can be used. With some very small-screen sets the horizontal non-linearity effect is small enough to be ignored.

Practical Line Output Stage

Fig. 6 shows a relatively simple line output stage circuit used with a 90°-deflection tube. Tr5 is the line output transistor, which incorporates the efficiency diode in the same package. The primary winding of the line output transformer T4 is the section between pins 2 and 10, C95 being the flyback tuning capacitor. Scan coil coupling and Scorrection are provided by C94, the line linearity coil L14 being connected in series on the chassis side of the scan current path. L14 is damped by R110 to prevent it ringing when the line flyback pulse occurs - the effect of an undamped linearity coil is velocity modulation of the beams at the beginning of their sweeps, showing up as black-andwhite vertical striations at the left-hand side of the screen. C92 is the reservoir capacitor, the h.t. feed being via R105. R106 and R109 feed pulses to the second phase-locked loop (APC2) in the sync chip - we dealt with this in last month's instalment. A second pulse feed from the same point goes to
the colour decoder chip to provide line blanking, burst gating and PAL switch drive - this particular set doesn't use the sandcastle pulse approach.

Secondary Supplies

So much for the generation and control of the sawtooth scanning current. The rest of the components in this circuit

0158
Fig. 7: Use of a parabolic field-frequency waveform to amplitude modulate the line-scan current - not to scale.
are used to hamess the energy in the transformer to provide power supplies for other sections of the receiver. The winding between pins 4 and 8 pulse energises the picture tube's heaters at 6.3 V r.m.s. The other supplies make use of the transformer as the heart of a d.c.-to-d.c. converter system, by means of secondary windings that provide pulse feeds to diode/capacitor rectifier circuits. Small-value (0.68Ω) resistors in the 25 V and 200 V supplies provide surge limiting and protection (by going open-circuit) in the event of a short-circuit in one of these supplies.

The most significant supply is obtained from the diodesplit winding that starts at pin 9 . Although not shown in full detail it consists of several 'cells', each of which consists of an electrically isolated secondary winding, a built-in highvoltage rectifier diode and, as the reservoir capacitor, the carefully contrived capacitance that's present between adjacent, highly-insulated winding layers. These cells are connected in series to form a voltage-multiplier system capable of providing an e.h.t. supply for the tube's final anode of typically 24 kV - it may be as high as 30 kV in some designs. There's a built-in surge limiter resistor at the output end of the chain of cells. An important part of the e.h.t. multiplier system is the final reservoir capacitor that

Fig. 8: Basic form of diode modulator. Transistor Tr2 controls its operation.
consists of the capacitance formed by the glass bowl of the tube as the dielectric and its inner and outer conductive coatings as the plates: in a large tube this capacitance can be some $2,500 \mathrm{pF}$, which forms a very effective voltage reservoir at 15.625 kHz . A tap a third of the way up the diode-
split chain provides about 8 kV to a built-in potential-divider chain that contains two presets: the one at the top provides the supply for the tube's focus electrode while the one near the bottom provides its first anode supply of about 800 V .

The bottom of the diode-split chain (pin 9) is returned to chassis via a diode/capacitor/resistor network (not shown here). The voltage developed across this network is proportional to the total beam current, since this flows from the tube's cathodes via the e.h.t. connector and the diode-split chain to chassis. Above a certain threshold the voltage at pin 9 reduces the picture brightness and/or contrast via the colour decoder/matrixing chip, limiting the beam current and hence the dissipation in the tube's shadowmask to safe levels.

The winding between pins 10 and 7 of the transformer produces $50-70 \mathrm{~V}$ pulses that sit on the h.t. voltage present at pin 10 . When rectified by D23 and C100 a 200 V supply is provided for the RGB output stages that drive the tube's cathodes. Secondary winding 4-6 feeds D24 and C99 which provide a 25 V supply for the field timebase. In some designs supplies for the audio output stage and the signal sections of the receiver are also obtained from the line output transformer: in this particular chassis they are obtained from the chopper transformer in the power supply instead. Incidentally there have been one or two designs, the Ferguson TX10 chassis being a well-known example, where the e.h.t. is also obtained from the chopper transformer, the line output transformer then acting mainly as a load for the line output transistor. In earlier designs a separate diodecapacitor multiplier unit (tripler) was fed from a single line output transformer overwiding to provide the e.h.t.

Scan Rectification

The e.h.t., focus and 200 V supplies derived from the transformer are relatively lightly loaded, i.e. no great current demand is placed on them. They can therefore be obtained by rectifying the pulses present during the flyback period (time t2-t 4 in Fig. 2), which is about twenty per cent of the scan cycle. Where the current demand is greater, e.g. in a supply for the field timebase or an audio output stage, the phasing of the relevant transformer winding is often arranged so that the rectifier diode conducts during the scan rather than the flyback period. Although the voltage available is much lower, it's present for a longer period (about eighty per cent of the scan/duty cycle). As a result the output regulation is much better. The relatively high peak reverse voltage has to be taken into account in the rectifier diode's specification.

EHT Regulation

The internal impedance of a diode-split e.h.t. supply is typically about $1 \mathrm{M} \Omega$. Thus with a total beam current of 1 mA , present when a bright picture is being displayed on a 22 in . picture tube, the e.h.t. voltage will drop by about 1 kV or five per cent. The result of this is some ballooning, i.e. increase in picture size. Compensation can be provided by reducing the line scanning power. Careful choice of the value of the resistor that feeds the line output transformer R105 in Fig. 6 - gives automatic compensation in the horizontal direction, while deriving the supply for the field output stage from the line output transformer tends to cancel out the ballooning in the vertical plane.

Various 'anti-breathing' arrangements are used in TV receiver design. Most operate via the diode-modulator circuit we'll come to shortly. With any line output stage circuit the picture width and e.h.t. voltage depend on the

Fig. 9 (left): The inner pincushion distortion (exaggerated) inherent with some tube/yoke designs when simple pincushion-distortion correction is applied.

Fig. 10 (right): Diode-modulator circuit adapted to compensate for inner pincushion distortion.
stage's h.t. supply, so this must be well regulated and set up correctly. In the circuit shown in Fig. 6 the h.t. voltage has to be 119 V with a 20 in . tube and 145 V with a 22 in . tube.

Pincushion Distortion

The raster produced on an almost-flat faced picture tube by constant-amplitude scan currents has pincushion distortion at all four sides. This is because of the disparity between the image plane and the screen's profile - see Fig. 4, Part 8 (August). As a general rule the deflection yokes used with modern 90° tubes have built-in correction for both NS (vertical) and EW (horizontal) pincushion distortion while 110° tubes (generally above 22 in . screen size) have in-yoke correction for NS distortion but cannot fully compensate for the pincushion effect at the sides of the screen. Thus with these the line scan current has to be amplitude-modulated by a parabolic waveform at field frequency as shown in Fig. 7. With present-day tube designs a modulation depth of about seven per cent is required, the peak-to-peak scan current being typically $4 \cdot 1 \mathrm{~A}$ at the top and bottom of the screen and $4 \cdot 4 \mathrm{~A}$ towards the centre of the screen, where the deflection power is greatest.

Amplitude modulation of the line scan current can be achieved by including a saturable-reactance transformer in series with the scan coils, but this is expensive. You could put a suitably-shaped ripple on the supply to the line output stage, but the parabola would be superimposed on any secondary supplies derived from the line output transformer. The most widely used solution is to employ a diode-modulator circuit, since this gives full control of the raster shape and scan amplitude while providing a constant load current and flyback time.

The Diode Modulator

Fig. 8 shows the essence of a diode-modulator arrangement. The efficiency diode is split in two, D1 and D2, which perform the same clamping action as before. The flyback tuning capacitor is also split in two, C1 and C2: the upper one tunes the transformer and scan coils (Ll) as before while the lower one tunes a bridge coil, L2, via C4 to the same flyback frequency of about 42 kHz . C3 is the scan coupling capacitor, which corresponds with CB in Fig. 4. Modulation is achieved by using transistor $\operatorname{Tr} 2$, whose conduction governs the scan width, to vary the load across C4.

When $\operatorname{Tr} 2$ is off, the scan energy is shared between the the two series LC combinations C3/Ll and L2/C4. The charge on C 3 and C 4 is in the ratio of about $7: 1$, the scan
current being reduced in proportion. When $\operatorname{Tr} 2$ is fully conductive, C4 is effectively shorted out and acquires no charge. Thus a greater proportion of the energy is present in $\mathrm{C} 3 / \mathrm{Ll}$ and the scan current and picture width are increased. By varying the conduction of Tr 2 during the forward scan in a parabolic manner, EW pincushion correction is achieved. The basic picture width can be controlled by varying Tr 2 's standing bias. Choke L3 and the large-value capacitor C5 filter the line-frequency energy so that it doesn't reach Tr 2 . And because both sections of the load ($\mathrm{L} 1 / \mathrm{Cl}$ and $\mathrm{L} 2 / \mathrm{C} 2$) are individually tuned to the flyback frequency the flyback time, and hence the e.h.t. and the other line output trans-former-derived supplies, remain constant over the field period despite the line scan current variation.

There are several different versions of the diode-modulator arrangement. Some tube/yoke combinations have a scan-geometry characteristic such that when the line scan current is modulated by a simple parabolic waveform as described above the raster has inner pincushion distortion as shown in Fig. 9. Because of this. the EW-correction system also has to modulate the S-correction. Fig. 10 shows, in skeleton circuit form. how this can be done. There are two coupling/S-correction capacitors, C3 and C3A. C3 is the usual S-correction capacitor, but C3A has an increasing influence as the diode modulator begins to have maximum effect towards the centre of the screen. Critical choice of the value of C3A ensures that the inner curved verticals shown in Fig. 9 are straightened out to give a raster completely free from geometric distortion.

Although all diode modulators work on the same basic principle. in some designs a transformer is used in place of the bridge coil to give better impedance matching and balance. Fig. 11 shows such an arrangement, used by Bang and Olufsen. The EW correction waveform is applied to transformer T6, whose winding 1-2 takes the place of L2 in Figs. 8 and 10 . This circuit also provides inner-pincushion distortion correction as just described. the supplementary Scorrection capacitor being C36.

Diode Modulator Drive

The parabolic EW drive waveform required is easily obtained by feeding the field-scan sawtooth waveform to a double integrator. By adding a sawtooth component the shape of the parabolic waveform can be tilted in either direction to give keystone-distortion correction if required - this is not generally necessary with modern tube/yoke designs.

Fig. 11: Diode-modulator circuit with a coupling transformer, used to drive a Philips 110° tube.

These EW correction characteristics are adjustable by preset resistors or, in the case of bus-programmable sets, remote control commands to the deflection processor. Very often the EW modulator is used to correct the previously mentioned picture breathing effect: this is done by feeding

Fig. 12: Bus-controlled deflection system: the lower, deflection processor chip is controlled by the serial data on the SDA line (the other bus line, SCL, carries clock pulses to synchronise the digital data operations). An interesting example of slave-master communication is provided by the mute line that's connected to pin 11 of the TDA8432 chip. When the voltage on this line goes low, signifying loss of the video input to the TDA2579 chip, this fact is signalled back to the main microcomputer control chip via the I2C bus's data line. The circuit shown is used in a Finlux TV chassis.
to the EW modulator's control circuit a voltage that's proportional to beam current.

Deflection Processors

In previous instalments we've encountered several examples of signal-processing and -switching chips that have built-in I2C control-bus interfaces so that their operation can be controlled by the set's microcomputer chip, via commands if necessary from the remote-control system. This technique can also be used in the timebases by incorporating a deflection processor chip that provides an interface and various waveform-shaping operations.

Fig. 12 shows an example, where a TDA8432 deflection processor chip is used in conjunction with the TDA2579 sync/timebase generator chip described last month.

Field sync pulses from the TDA2579 chip enter the deflection processor chip at pin 2. This chip generates a field scan waveform across capacitor C18. It's passed to the geometry control block, whose operation is controlled by the I2C bus via the built-in interface and digital-toanalogue converter (DAC). The output obtained at pin 19 is the field-parabola EW drive, whose amplitude, tilt and bias can all be set by remote control and memorised. This is
also the case with the field drive output at pin 20, and the d.c. control voltages at pins 8 and 7. These control the frequency and phase respectively, via pins 15 and 14 of the TDA2579 chip, of the line drive output at pin 11 of this chip. The output at pin 20 of the TDA8432 chip drives the field output stage.

Thus it's possible to adjust and lock all the picture geometry characteristics without having to remove the set's rear cover: the line frequency, line phase/horizontal centring, width, keystone-trapezoid correction, pincushion correction, EW corner correction, S-correction, breathing correction, field shift and height (at both 50 and 60 Hz rates) and field linearity can all be set up in this way, saving the need for a dozen or more unreliable preset resistors - and a mirror!

The TDA2579 chip is designed to provide a field drive as well as a line drive output, but in this application the field drive section is not used as the TDA8432 chip takes care of this requirement.

Next Month

Mention of the deflection processor chip has brought us to the field timebase section, which we'll examine thoroughly in the next instalment.

Reports from Nick Beer, Richard Newman, Brian Storm, lan Bowden, Eugene Trundle, Mike Leach, Fauz Ahmed Sumar, John Coombes, Chris Watton, John Hepworth and John Edwards

Panasonic NVG40

This machine had been in several times with the complaint of intermittent loss of sound and counter operation in the playback mode, but the fault wouldn't put in an appearance in the workshop. As the picture apparently remained perfectly o.k., loss of control pulses, at least to the servo, was not the cause. This time however the fault was present, and the customer had been perfectly correct about the symptoms.

There was loss of control pulses at the microcontroller chip IC6001 - in fact there was no activity at the relevant pin. The pulses come from the servo section on the sub main PCB via connection 11, where the pulses were present. The soldering on the wire hoop, so often dry, was fine. From here the pulses pass, via both sides of the PCB, to the base of transistor Q2003. We found that there was no output at the collector of Q2003, though it was not open-circuit. In addition the d.c. conditions around Q2003 and the following transistor Q2004 were correct. Careful checks showed that the pulses at the base of Q2003 were of about 35 per cent lower amplitude than those at pin 11 of the sub main PCB. This disparity was detected across the $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ coupling capacitor C2022 which turned out to be low in value. N.B.

Panasonic NVJ40

The job card said "no playback for the first half hour, then bad patterning". It turned out to be an accurate description. Checks showed that from cold transistor Q3204, which provides the 'except record 5 V ' supply to the head amplifier playback circuits, wasn't fully conductive. The supply would gradually increase from about 2 V (no picture) to 3 V (poor picture with lines across) then 4 V (reasonable picture with patterning). After much investigation in the switching and biasing circuits, all to no avail, I finally found that C1127 ($330 \mu \mathrm{~F}$) in the power supply was the cause of the trouble. It decouples the 5 V feed to the system circuit. B.S.

Panasonic NVFS90

This all-singing, all-dancing editing machine would refuse to play back S-VHS recordings after about half an hour. Checks in the S signal channel brought me to IC303 (part no. VEFH05BT) which proved to be heat sensitive. A replacement restored the excellent picture.
B.S.

Philips VR6760

Distorted sound was the complaint with this machine. When we tried it out we found that the sound was very distorted it was rather like an output stage with no bias. There was perfect sound however when we checked at the scart socket. This simple test saved us a lot of time. Both linear and hi-fi audio are fed to pins 1 and 3 of the scart socket via a couple of 470Ω resistors. As the sound was o.k. here everything up to this point, including the switching chip IC7061, could be ruled out.

The sound feed to the modulator is via a couple of $100 \mathrm{k} \Omega$ resistors and a buffer stage with a single transistor, $\operatorname{Tr} 7904$. Checks showed that there was a clean signal at one side of the two resistors R3925/6 but a very distorted one at the
base of $\operatorname{Tr} 7904$. The transistor was o.k. but its $3 \cdot 3 \mu \mathrm{~F}$ coupling capacitor C2917 had a $2 \mathrm{k} \Omega$ leak. A replacement cured the distortion.
R.N.

Panasonic NVL20

This fault had been very intermittent and didn't show up in the workshop until it was provoked. The complaint was that the machine would stop during playback or record then power off. We found that pins 14 and 15 of connector P2001 were dry-jointed. These are connections to the capstan motor: when we flexed the joints during playback the capstan motor started to make a knocking noise then stopped, after which the machine tried to unlace then powered off.
I.B.

Ferguson FV51R

This machine produced no results at all and the BD202 12 V regulator transistor TP03 overheated mightily. As the 12 V line feeds many circuits it took us a time to find that the u.h.f. tuner was responsible for the trouble, with an internal short-circuit across its 12 V supply pin. Meanwhile the BC327 switching transistor TW41 had overheated and gone short-circuit.
E.T.

Panasonic G Deck

This mechanism often seems to throw up new faults - new to us, anyway! The trouble this time was a very intermittent raucous squeal at the completion of tape threading or during unthreading. It came from the brake pad that operates on the capstan flywheel. Clean the pad or replace the arm.
E.T.

Sharp VCA140HM

If the complaint with one of these machines is that it scrunches the tape once in a while - you're unlikely to see this actually happening - check whether the movement of the half-load arm is free. It can stick on dry grease.
E.T.

Nikkai NVR3/Cathay VCR7110

This machine displayed a number of fault symptoms: the front loading, drum rotation and eject were slow and there was no play. We did very little before we obtained a service manual, then found that all the voltages at plug P801 in the power supply were low - this included the ever 5 V , ever 12 V , ever 5.8 V and MTR 12 V lines. The cause was a leaky 5.1 V zener diode, D812. in the power supply. A replacement restored normal operation.
M.L.

Samsung VI710

When this machine ejected a cassette it chewed the tape, which of course was not being wound back in. We assumed that the cause of the fault was mechanical and replaced the idler/clutch assembly, then checked the brake and soft-brake assemblies. None of this made any difference. As the
subpanel at the back of the deck is prone to dry-joints, causing various symptoms, this was next removed and checked. Once again we drew a blank. Eventually the cause of the trouble turned out to be the BA6209 capstan motor drive chip IC206 - it's on the subpanel we'd just soldered up. A replacement cleared the fault.
M.L.

Hitachi VT120

The complaint with this machine was low E-E sound. We traced the cause to a leaky $4.7 \mu \mathrm{~F}, 35 \mathrm{~V}$ capacitor. C 08 , in the i.f. block.
M.L.

Sharp VC585H

There were very smeary, low-gain E-E and recorded pictures. It could have taken some time to get to the bottom of this, but I'd had much the same symptom with a Sharp TV set a couple of years previously and the i.f. units looked alike. When the i.f. module in the VCR was heated with a hairdryer, the fault almost cleared and normal pictures were obtained. The cause of the trouble in the TV set had been a dried up $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic capacitor. When this same component in the VCR was replaced the fault again cleared. As there are no component reference numbers on the board 1 can't identify the component in this way. It's easy to find however, being the only red one on the board - all the other ones are blue.
M.L.

JVC HRDX22

The cause of no E-E and playback sound was traced to dryjoints at several of IC301's pins. A good solder up is all that's required.
M.L.

Panasonic NVG10

There was no playback colour with this machine. We traced the chroma signal as far as C8002 ($0.01 \mu \mathrm{~F}$) which couples the signal to pin 31 (playback chroma input) of the luminance/chrominance pack. There was a signal at one end of C8002 but not at the other. A new capacitor restored the colour.
F.A.S.

JVC HRD171

Fast forward and rewind were ail right but when playback was selected the tape laced up then, within a few seconds, unlaced because there was no drum rotation. After wasting a lot of time we found that the voltage at pin 20 (drum start/stop) of the VC2025 chip IC1 didn't go high when play was selected. Pin 20 was internally shorted to chassis. A complete stator/MDA unit cured the problem.
F.A.S.

Panasonic NV8600

This old tank sometimes wouldn't complete the threading process and on occasions the functions couldn't be selected as the keys were stiff. We'd have wasted a lot of time if we hadn't noticed the changing intensity of the light from the cassette lamp. The cause of the problem was that the cassette lamp leadouts were intermittently shorting in the holder. Straightening the leadouts provided a complete cure.
F.A.S.

JVC HRD171

This machine worked in all modes except play, when a
cyclical tracking bar would travel from the bottom to the top of the screen with a slur on the sound as the bar passed. A check on the control pulse at pin 6 of IC2 (M51796P) showed that a nice 5.2 V peak-to-peak squarewave was present here. It should be passed to pin 20 of the V2023A servo chip IC2 via a $10 \mathrm{k} \Omega$ resistor but was missing at this point. A voltage check here produced a reading of 5.2 V instead of 3.4 V : pin 20 had shorted internally to the 5 V line. A new chip cured the fault.
F.A.S.

Panasonic NV333

There were severe tracking bars that couldn't be removed by adjustment of the tracking control - though the control was effective with some tapes. After wasting time cleaning the tape path and adjusting the tape guides we found that the tracking shifter control R2035 was at one end of its travel. Adjusting it with the tracking control at its centre 'click' position provided compatibility with all tapes.
F.A.S.

JVC HRD171

The complaint with this machine was no functions. It took some time before we realised that the four circuit protectors in the power supply were going open-circuit intermittently - sometimes you would get a voltage reading, sometimes not.
F.A.S.

Panasonic NVJ45

This machine would cut out after a few seconds in the record mode. A check on the main PCB showed that the delay record 12 V (D Rec 12V) supply was missing. The 2SB1321AR transistor Q6203 turned out to be faulty. J.C.

Toshiba V83

A faulty cam switch can cause various problems such as fast in play, fast in record/slow in playback, review changes to pause or maybe the arms stop in the half-loaded position. If however the tape loads around the drum at switch on but the machine then returns to standby check for dry-joints at the cam switch sockets on the main PCB, at the cam switch itself and at the pull-up resistors.
J.C.

Panasonic NVL25

The complaint with this machine was no results. Because of its cause the fault had been present for some time, unnoticed. Cl $109(1 \mu \mathrm{~F})$ was open-circuit. As long as the machine remained plugged into the mains supply it was all right. When the mains supply was disconnected then reconnected the power supply wouldn't start up.
J.C.

Mitsubishi HSB27

This machine worked correctly in all modes except the higher times-nine speed cue mode. We noticed that in this mode the capstan motor was stopping and starting. The cause of the trouble was a worn lower drum assembly - this was making the tape drag.
J.C.

Hitachi VTM753

There was a cassette jammed in this machine which at switch on just switched off again. We found that the 1.6 A fuse F852 was open-circuit. A replacement restored operation but the capstan flywheel made a loud screeching noise
and caused considerable tape drag. Lubricating the capstan flywheel spindle put this right.

Mitsubishi HSB27

A worn lower drum assembly can cause many problems such as poor cue and review. picture jumping, poor tracking and no picture. The diagnosis can be confirmed by monitoring the f.m. waveform envelope, which will usually be impossible to set correctly. The fault can give trouble in the SP and LP modes.
J.C.

Toshiba V312

The complaint was of no results and no display. We were surprised to find that all the voltages in the power suppiy were at half the correct level. The ZPD3V9 zener diode DP15, which is not shown in the circuit diagram, was short-circuit. It's located beneath the 1.5Ω wirewound resistor RP33. J.C.

Matsui VX2000Y

There was no remote control operation. As the handset worked all right with another machine I connected a scope to the output from the IR receiver can. This showed a healthy waveform. I followed the signal along the print and found that it disappeared when it passed (or should have passed) through the hinge-type edge connector. C.W.

Grundig VS440

Playback was o.k. but there was no vision in the E-E mode. The tuning worked in that the channel numbers were right. but one of the 12 V supplies was missing. Transistor T685 (BC548) was open-circuit.
C.W.

Matsui VX770/Saisho VR3700

More often than not the deck would load then stop. It wouldn't unload until switched on again. The loading seemed to operate correctly and the drum rotated at the right speed. But when the capstan should have started the machine went into the standby state and didn't unload. This was all caused by the mode switch, which had poor contacts. Replacement is quite easy in these machines. C.W.

Hitachi VT120

All functions except play and stop worked perfectly. The play and stop buttons had to be held or pressed repeatedly before they would operate - sometimes. Suspicions that there was something sinister in the system control or timer microcontroller circuit turned out to be unfounded: both switches were faulty. I wonder why?
C.W.

Samsung Sl1260

This machine powered up and the clock and E-E system worked, but there were no motor functions at all. The always 15 V rail supplies the motor drive circuits via the 1 N 4001 diode D212 on the main PCB. It was open-circuit. C.W.

Toshiba V209

This machine was dead with the tape still fully loaded. The power supply was in trouble: the switched 9 V supply was missing at pin 2 of the power regulator chip, there was around 20 V at input pins 1 and 15 , and when an on/off
signal was received at pin 4 there was still only 2.7 V at the output (pin 2). A replacement chip restored the 9 V line and full operation.
C.W.

Hitachi VT120

There were no functions at all, only a clock display that randomly changed from bright to dim and light from the operate LED. Checks in the power supply indicated that the STK5471 regulator chip was faulty. A replacement restored the machine to life.
C.W.

Amstrad VCR6000

The complaint was of poor playback pictures. It turned out that the heads were faulty, but the symptoms were misleading. Playback of a test tape with colour bars produced a display that was clear but with violently juddering verticals, as though there was a shuddering drum motor or a bent drum motor shaft, while a recording made by the machine could be played back on another good machine at an acceptable level. Quite some time was spent before we got round to trying a new drum: why don't we invest in a head-checking machine? C.W.

Hitachi VT130

During playback of this machine's own recordings or prerecorded tapes the picture was covered with a fish-net type of interference irrespective of picture content. The cause of the fault was the HT4757 chip/module on the YC panel. A replacement and a deck service brought a smile to the customer's face - until he received the bill. .
C.W.

Ferguson 3V58/JVC HRD370

This machine wouldn't respond to remote control commands. We found that D501 on the infra-red receiver panel was open-circuit.
J.H.

Orion VCP150

The cause of no colour was eventually traced to the fact that the low-pass filter PF4003 was open-circuit. It took us longer than it should to discover this because the filter is shown as PF4002 in the manual.
J.H.

Ferguson 3V59/JVC HRD180

This machine's drum rotated in the reverse direction. Replacing the VC2023A chip IC2 cured the fault. J.H.

Mitsubishi HS306

Poor sound with intermittent failure to record the sound was cured by replacing the REC bias preset VR3A1 J.H.

Toshiba V 73

The cause of no rewind was traced to the TMP4746 chip IC601.
J.H.

JVC HRD210

When this machine was plugged in the left-hand spool carrier would rotate for a few seconds then the machine would shut down, with the mode motor running. The cause of the problem was that the mode-motor drive belt was slipping. A new belt cured it.
J.E.

What a Life!

Donald Bullock

More and more I seem to have the feeling that it's all happened before. It came over me the other day when Walter Wingnut called in with a Brittania 14 in . colour portable that was dead. It had a paper label underneath, of all places, with B14M11 printed on it. When I opened the set up it looked very much like a Fidelity chassis, though it was not identical with any one that I knew. To my surprise we had an appropriate circuit diagram, for Model C14R06. I soon spotted a BUTl1A, a tiny but tough power transistor, which had bitten the dust. So I replaced it and left the set running.

The Grundig CUC70

I then pulled up and plugged in a Grundig C7410 22in. set that Snoddies had kept for a fortnight before handing it back as unrepairable. It's fitted with the CUC70 chassis. No sound, the ticket said. Unlike Snoddies to pass up an easy buck I thought. Ought to be easy! Then, as I was thinking about it, up came a brilliant clean raster followed by line collapse.

With my understanding of Snoddies growing, I dismantled the set and studied the chassis carefully for dry-joints or other obvious clues that would save me the bother of looking out circuits - or thinking. All the joints were perfect but I did notice that R528. a 10Ω resistor, was a bit hot and bothered. It feeds a BY268 diode. D529, which turned out to be dead short. Replacing both items restored normal operation and I was impressed by the excellent picture.

Back to the Brittania

Meanwhile the Brittania had stopped working, and I found that the BUT11A had passed away at its post. There's a $4 \cdot 7 \mu \mathrm{~F}$ electrolytic capacitor in its base circuit, while its emitter is returned to the negative side of the supply via two resistors, R120 (3.3ת) and R115 (0.68 $)$, which are connected in parallel. When I checked them I found that the value of the electrolytic had fallen to $1 \mu \mathrm{~F}$ while both resistors were high - the 0.68Ω one was nearly 4Ω.

I replaced these items and, before switching on, checked some associated ones. Up came a good picture, so I set about tidying up the bench and shelves for a while before boxing the set up. I hate boxing up then unboxing sets that seem to last just long enough to keep me on a loser! After twenty minutes or so it was still behaving, so I boxed it up and put it on soak test.

The Samsung VI626

Next was a Samsung VI626 VCR that was dead. I checked the power pack and found that both the 9 V and 5 V supplies were missing. A study of the circuit diagram led
me to an MC7809C 9 V regulator which had voltage at its input but nothing at its output. Fitting a replacement restored both supplies. A quick repair, I thought. But I was wrong: the mechanism was running haywire.

In a case like this, analysing the sequence of events is always a good idea. So I switched on, noticed that the clock and channel numbers lit up, then tried to insert a cassette. The machine wouldn't accept it. A look at the top-deck mechanism showed that the lacing up claws were stuck an inch from the back of their grooves. So I hand turned the loading motor until the claws retracted and fed in the cassette again. As it was accepted the loading motor whirred, the stop button lit up and the claws came to rest in their previous position.

The mechanism was lively but out of sync. I reckoned that the most likely cause of the trouble would be in the cann system. So 1 turned my attention there and dismantled the mechanism to gain access. Sure enough the walls had broken down. As a result the tape lacing mechanism was not controlled. We keep a stock of the more common cams, and before long I had the recorder behaving properly and delivering excellent results.

Return of Walter Wingnut

It was at this point that Walter Wingnut called in for his Brittania. I glanced at it as he arrived. It was working well and atter greeting him I pointed to it and gave him the good news.
"It wasn't easy, Walter, but my cleverness won the day" I said cheerfully. "Twenty five quid to you!"
"A lot of money. I hope it'll last" said Walter. "Chap I bought it off said you mended it for the same trouble a while back."

As he was about to hand me the browns and a blue, the set pinged and died.

Walter stowed his money away. "Didn't make a very good job of it this time either" he said. "You"d better have another try' - and I'm not paying more than you said, mind."

So I got no money, had to take Wingnut's abuse, and had to face up to tackling the Brittania yet again.

The Ladies

Then slender old Miss Briske came in, carrying a piece of sheet music and a hot-water bottle. She was followed by Mrs. Ruff, a mouthy roughneck who calls me Mr. Billhook and keeps on about her lodger Old Pukey. She was carrying an old toaster. I didn't feel up to either of them. I had Wingnut's Brittania on my mind and needed some peace while I worried about it. A further visitor, Miss Fussie, then arrived. She also had a hot-water bottle. I was beginning to feel nasty.

Miss Briske put the hot-water bottle down and smiled. "It's jammed solid. Old Mrs. Talbot advised me to see you about it. Would you have a go?"

I looked at her in silence. Then her face lit up. "Do you sing, Mr. Bullock?" she asked.
"Not a lot, Miss Briske" I replied.
"I do Mr. Bullock" she smiled. She closed her eyes and began to warble.

I coughed and Mrs. Rough snorted. "Look Billhook" she rasped, "I'm here to put money in your pocket - if you can spend a minute. Old Pukey's jammed a doughnut in the toaster. I've had a go with a fork, but no good. You're supposed to be the expert."

I turned the toaster upside down and the doughnut fell
out. Then, checking that no debris were left inside, I plugged it in and switched on. The workshop quickly filled with dense smoke. As it cleared, I pushed the toaster back to Mrs. Ruff. "No charge" I said wearily.
"Pukey, start packing" she said as she left.
"Leave the door open" I said as the first two ladies departed. Miss Fussie then stepped forward and handed me her hot-water bottle, which was full of water. Two in one day!
"I can't undo it" she said. "Would you undo it and test it please?"

TEST CASE 371

Philips is not a brand in which the Test Case workshop specialises, though we're familiar enough with the company's VCRs - they appear on our benches under so many different aliases. Philips' TV sets are not badged and fostered in the same way, but so long as we have a service manual we re ready to have a go at anything that comes our way, especially in these hard times.

So it was that a set fitted with the Philips 2A chassis arrived on Roger's bench one bright autumn moming. It had come in because of loss of both sound and vision: the screen stayed black and the loudspeaker was silent. At switch-on there was a momentary squeak, followed by a continuous low squawk - discernible when an ear was turned to the chopper transformer. It sounded very much as if the overload protection circuit had come into operation. So Roger's first step was to check for short-circuits in the line output stage. The BU508V transistor measured correctly, as did the two diodes in the EW modulator circuit. The transformer feeds four rectifier diodes: they were checked in turn, likewise the safety resistors that protect them. All were intact.

Since everything seemed to be well in the line output stage, our beady-eyed technician turned his attention to the power supply, starting with checks on all the rectifier diodes fed from the chopper transformer T5663. No shortcircuit or leaky readings were obtained. Maybe the cause of the trouble lay on the primary side of the chopper transformer? Ohmmeter checks were carried out on the BUT11 transistor, out of circuit: the readings were correct. There were no discernible dry-joints around the chopper transformer, or anywhere else in the power supply.

Advice was sought from Television Ted, who suggested disconnecting plug M to isolate the line output stage from the power supply then wiring a 60 W bulb across the 140 V line to act as a dummy load. This, he said, would establish in which department the fault lay. If the bulb lit up, there was probably a fault in the line output stage: if it didn't, the power supply was suspect. Roger did as he was told and the bulb lit up, quite brightly. There seemed to be no doubt then that the fault was beyond the power supply section.

Roger removed the bulb, reconnected plug M and went back into the line output stage with his meter. Many suspect components had already been tested, but each one was checked out again. A new tuning capacitor (C2609) was fitted in case the original one was faulty, and a new BY228 efficiency diode (D6609, part of the EW modulator circuit) was fitted in case the original was breaking down under load. Out came the scan correction/coupling capacitor C2612 to unload the deflection coils, which might have had shorted turns. But each time the set was

I undid the stopper with my pliers. poured some of the water into my tea mug then studied it carefully. I dipped a finger into the mug and smelled it thoughtfully.
"Absolutely perfect, Miss Fussie" I said. "No charge. Goodbye."

Another go at the Brittania

Time to open up the Brittania again. I studied it afresh. Id already checked or replaced just about everything that could be the cause of the trouble. Then I noticed that the
tried while these tests were being carried out the fault symptoms remained the same. By now Roger had become convinced that the line output transformer had shorted turns. He fitted a replacement, which lay as dormant as the old one.

Most of the morning had now passed, and a solution to the puzzle seemed to be as far away as ever. Service Manager began to hover about and ask silly questions, as was his custom when a job got stuck on anyone's bench. At his behest. Uncle Ted was once again called in for consultation. Ted looked at the circuit and asked for the 60 W bulb to be reinstated. It glowed as before. When Ted measured the voltage across it he was immediately able to identify the area in which the cause of the fault lay. Furthermore he suggested replacement of a specific component. Sure enough he was right.

Where had Roger gone astray, and what should he have done by way of testing? Had he been wasting his time in the line output stage? Which component finally went into the workshop bin? For the answer, turn to page 55.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August, September, October, November and December

1993 January, February, March, April, May, June, July, August, September and October

Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Publishing,
Television Back Issues,
Room L323,
Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing Ltd.

Introduction to the Panasonic K Deck

Simon Nash*

Over the past six years Panasonic VCRs have used the G deck. When this was launched it was the first VCR mechanism to use the capstan motor for two purposes: the major one was for tape transport, the secondary one being to move the mechanism between the various mode positions. Because of this dual capstan-motor use, mode selection between certain operations was considered to be rather slow. Later versions (the G2 deck) have an additional review motor to improve the mode-switching time, but this deck is used in only top-of-the-range models. What was needed was a new mechanism with the following features: faster mode switching; easy alignment of the gears; and less gearing.

As a result of advances in the technology, the K deck has been introduced as a replacement for the G deck in the latest series of Panasonic VCRs. UK VCRs that use this new deck, which is sometimes referred to as the Super Drive mechanism, include the NV-SD30/40B and the NVHD100B.

Improvements

K deck VCRs incorporate many improvements. Amongst other things these make servicing much easier. Some of
them can be seen in Figs. 1 and 2, which show top and bottom views of the mechanism respectively. The main ones are as follows:
(1) There's an overall reduction of 51 per cent in the number of mechanical parts. This makes alignment easier. Since fewer spares have to be held in stock, servicing costs are reduced.
(2) A new loading motor moves only the mechanism, leaving the capstan to move the tape.
(3) The main lever assembly is responsible for moving the main mechanical items, i.e. the loading arms, the brakes and the back-tension lever.
(4) Because of the added loading motor the solenoid is no longer required. As a result the mechanism is quieter and quicker.
(5) Circlips are no longer used. Instead, self-locking tabs are used on some gears, e.g. the reel turntables.
(6) There are fewer wire connections: all the sensors are on

Fig. 1: Top view of the K mechanism.

Fig. 2: Bottom view of the K mechanism.
the mechanism-connection PCB, i.e. in one location.
(7) Fewer alignment points. While the G deck has twelve phase alignment points the K deck has only six.
(8) There is no longer need for P5 post height adjustment as it auto-locates at the correct height.
(9) For easy phase alignment a diagram is stamped on the mechanism's plastic chassis.
(10) Seven service modes give the service engineer ready information on a faulty machine. More on these later.

Gearing

The type of gearing used differs from that in the G deck. Fig. 3 illustrates the new tooth arrangement, which is known as 'helical gearing'. It has two advantages. First, as the gear

Fig. 3: Difference between the type of gear used in the G mechanism (a) and the helical gears used in the K mechanism (b).
teeth are longer the gears can withstand a greater applied force. Secondly, because the teeth engage and disengage gradually the meshing noise is significantly reduced. These helical gears are used extensively in the area of the play idlers, reel turntables etc.

Fig. 3 also shows the new method of gear fixing. Use of fixing clips instead of circlips makes servicing easier. Care must however be taken not to apply too much force to the clips: when one of them breaks the gear has to be replaced. Two clips, one at either side, are used to fix some of the gears. Should one of these be damaged it's best, in the interests of long-term reliability, to replace the gear.

Servicing

The K deck is not fully serviceable when fitted in the VCR. A servicing position is provided however to enable engineers to gain easy access to carry out repair or alignment as required. To take the deck out, simply remove three large brass screws and disconnect seven connectors. The deck can then be fixed in the service position - see Fig. 4.

Although removal of the deck is simple, if a cassette is jammed in the mechanism access to one of the three screws mentioned above is not possible. The jammed cassette must first be removed therefore. There are two ways of doing this.

The first method involves loading motor rotation, either by hand or by using an external supply - you can connect 4.5 V to the motor while it's in circuit without damaging the

Fig. 4: Service position for the K deck. The mechanism can be easily fixed by standing it up in the main frame as shown.
drive chip. Once the mechanism is in the unloaded state, rotate the capstan motor so that the slack tape is taken up. See Fig. 5.

The second method is to use service mode seven. This mode gives you manual loading-motor drive. using the play and stop keys to control the loading motor. Once the machine is in service mode seven there is also a drive to the capstan motor. This is very useful as the slack tape is automatically taken up. An explanation of the service modes is given bejow.

Fig. 5: Battery operation of the loading motor.

(There is a hole on the Sub-Cam Gear and a hole

Fig. 6: Gear phase alignment, top view.

Fig. 7: Gear phase alignment, bottom view.

Aiignment

There are two main aspects of alignment: (1) gear phase alignment and (2) main-lever assembly positioning.

Phase alignment of the gears is much easier than with the G mechanism, there being only six points instead of twelve. Figs. 6 and 7 show the phase alignment.

The Main-lever Assembly

Correct positioning of the main-lever assembly is critical for proper operation of the mechanism. Phase alignment of the lever is not difficult but must be correct for the tension posts to locate in their appropriate positions. Fig. 8 shows the post positions for different modes of operation.

As a basic rule when replacing/aligning the main-lever assembly, ensure that the lever is positioned so that it sits as flatly as possible and doesn't feel springy. Poor post positioning is the main cause of incorrect alignmment.

One final point on the main lever. When the mechanism is powered for testing, either from an external supply or in service mode seven the main lever will flex under load. The reason for this is that under microcontroller chip and modeswitch control the mechanism never reaches the extreme positions that occu: with manual operation. To prevent misaligment, make sure that you install the loading-motor bracket and the belt-tension assembly: both of these act as fixing points to hold the main lever in position.

The Service Modes

To make servicing easier with the latest range of Panasonic VCRs the number of service modes has been increased. For access to the service modes turn the shuttle ring to the fast-forward mode then select the eject mode simultaneously. The service mode information will then be displayed for sixty seconds. If you require a continuous service mode, connect a shorting link between TP GROUND and TP SERVICE on the main PCB. Fig. 9

Fig. 8: Post and main-lever position in each mode.
shows a typical service-mode display. The seven modes are as follows:

Mode 1: This checks the sensor LED, the supply and takeup phototransistors and the connections to IC6001.

Mode 2: This mode indicates the mechanical position, with a corresponding display'.

Mode 3: This checks the mode-switch operation. When the switch is in a position. e.g. play. the display will show ' 00 ' irrespective of the mode.

Mode 4: This checks the operation of the key scanning on the front panel. also the data being transmitted from the remote-control unit. A corresponding display is given on the front panel.

Mode 5: This checks and shows whether IC6001 has received a capstan-motor start request.

Mode 6: This checks and shows whether IC6001 has received a drum-motor start request.

Fig. 9: A typical service mode display. The left-hand digit is the service mode number, indicating the operation being checked. The next two digits (03 here) indicate the circuit condition and/or the position of the mechanism.

Mode 7: This mode is used for manual loading-motor drive, as explained earlier, using the stop and play keys. It can be entered in two ways. dependingon whether the machine is an early or later production version - refer to the service manual for full details.

As mentioned above, selection between the various service modes can be achieved by selecting fast forward and eject simultaneously.

Dealer Support

A video tape that shows the dismantling/reassembling procedure is being prepared as an aid to dealers' service departments. There's also a training manual for the K mechanism, part no. VRD9302D101.

[^0]
ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

$\stackrel{15 / 80 \mathrm{O}}{158}$

㐾,

 SPECIAL OFFERS
Buzobax 5
BU $426 \mathrm{~A} \times 5$
3.50 3.95
Bu 508A×5
Bu 508AFx
3.60
TDA 3562×2 3.99
TV FAULT FINDING GUIDE 3.25
9.99
9.99
14.95
3.75

SATELLITE FAULT FINDING GUIDE

CO AXIAL AERIAL PLUG x 25
3.00

Satellite Scene
 Contributions from Steve Beeching, T.Eng., Chris Watton, D.J. Long, David Finan and Brian Storm

This month mainly modifications to provide additional features.

Grundig GRD2000

Our Darron was thinking about updating his satellite system. He had a Grundig STR22 stereo receiver and wanted a VideoCrypt decoder. A customer of ours was having some trouble with his receiver - intermittent tuning drift and decoding. He decided to update to an STR1 so we took his GRD2000, which has a VideoCrypt decoder, in part exchange. After some time had been spent testing it the picture took a iurn for the worse: white areas went spotty. It looked as though the video heads were down - but this was a satellite receiver! A new tuner kit cured the fault, which was due to restricted bandwidth. Then for some day's Darron had problems with the VideoCrypt decoder section breaking down to produce a noisy picture. Various cures were tried cleaning the connector contacts and checking for dry-joints. A permanent solution was achieved when Darron went over all the i.c. pins with a hot-air pencil. No wonder the previous owner had got fed up with it!

Once the receiver's operation had been stabilised there was a request for polar switching. Darron was unable to get the horizontal channels. His STR22 had been used with a magnetic polariser having an extra wire to the dish to switch the polarisation. But the GDR2000 is designed for use with the Marconi LNB, whose polarisation is switched by the supply voltage. So it was a case of "dad, can you design some sort of adaptor circuit?" "No." "But you could always send it to Television."

So here's the circuit (see Fig. 1) to convert the dualvoltage LNB supply to rotate a magnetic polariser. A transistor within the receiver switches between $12 / 13 \mathrm{~V}$ and $17 / 18 \mathrm{~V}$ to change the polarisation at the LNB. The circuit must sense this without contributing any significant loading. A 15 V zener diode, D1, is used as the d.c. level sensing device. When the supply voltage exceeds $15 \mathrm{~V} . \mathrm{D} 1, \mathrm{Tr} 1$ and

Fig. 1: Circuit for providing magnetic polariser switching with the Grundig GRD2000 satellite receiver.
Tr 2 switch on supplying power to Tr 3 which acts as a constant-current source. VR1 adjusts the current, which can be varied between 40 mA and about 90 mA . This allows for cable loss and provides fine adjustment for reception of horizontally-polarised signals.

There's nothing special about this circuit. Other transistors could be used, provided that the one in the Tr 2 position has a collector current rating of 200 mA and the one in the

Tr3 position is a power device - it warms up a bit. The value of R5 is not critical. but it does serve to provide current stabilisation as $\operatorname{Tr} 3$ warms up.

Darron built the circuit on a piece of Veroboard and used some sticky-backed strip to fit it in the receiver. He also added an ICPF20 circuit protector in the supply, muttering something about having used my designs before. S.B.

Amstrad SRX200

The circuit shown in Fig. 2 enables the remote control system to provide a simple form of channel stepping with this model - Fig. 3 shows how it can be added to the receiver. As more and more channels have become available from Astra, the ability to step through them has become more desirable.

One could buy one of the excellent upgrade kits or memory extensions. but this circuit provides a simple, cheap solution. Note that the TV/SAT key is used, so this function will no longer be available when the receiver has been modified.

Fig. 2: Circuit for providing simple channel stepping with the Amstrad SRX200 receiver.

The circuit can be built up on a small piece of Veroboard - about fifteen by fifteen holes. The relay came from the audio panel of an Hitachi VCR. Most of the components were obtained from my scrap box, but even if you have to

Fig. 3: Connection points and suggested position for the circuit shown in Fig. 2. A small hole in the case will enable the step speed to be adjusted easily. If a scart lead is used the control wire at pin 8 must be removed.
buy them all the cost shouldn't exceed a couple of quid.
The basic idea is to pulse the tuning button every twothree or so seconds: the period can be varied to suit personal preferences - anything from half a second to half a minute. You might think that a pulse is not required as simply shorting the button connection would do. But although this
will start the operation it won't stop it, as only one button can be pressed at a time. So the short-duration pulse is used to step the tuning, the long off period allowing another button to be pressed to stop it. When the TV/SAT button on the handset is pressed the tuning will continue to scan the channels until told to stop.

I've not provided a board layout as the component positioning is not critical.
C.W.

Amstrad SRX100

I was asked to look at a satellite installation that was used in an office to receive only Sky News. The problem was that every so often the service would fail, usually overnight, the

Fig. 4: Circuit to select channel one on powering the Amstrad SRX100. A small RS DIL relay with a normallyopen contact was used: wire the contact across the channel 1 pushbutton.
maintenance man finding that the receiver was in standby. The cause of the problem was short mains failures. As these receivers run up into standby, a small Veroboard circuit (see Fig. 4) was added to select channel one after the initial synthesiser chip resetting. It was fitted in the receiver using the mains transformer fixing screw.
D.J.L.

Amstrad SRX100/200

One of the limitations of these receivers is the fact that they can select only the following audio subcarriers: 7.02 MHz (AU3, L), 7.2 MHz (AU4, R), 7.38 MHz (AU5. L) and 7.56 MHz (AU6, R). AU1 has $7 \cdot 02 / 7 \cdot 2 \mathrm{MHz}$ combined and AU2 $7.38 / 7.56 \mathrm{MHz}$ combined. Quite a few radio stations now broadcast using 7.74 MHz and 7.92 MHz subcarriers. The following modification enables these to be received.

The SRX100 and SRX200 use two crystal oscillators to obtain the four signals listed above. Their outputs are fed to a f.e.t. mixer stage that provides difference frequencies of 10.52 MHz and 10.7 MHz which are passed to a dual f.m. demodulator. For AU1 and AU2 both demodulator outputs are available at the output sockets or added together to give the r.f. modulator a mono signal. For AU3-6 the output from only one demodulator is selected and fed to the output sockets or r.f. modulator.

The modification involves fitting an additional crystal oscillator so that the 7.74 MHz and 7.92 MHz channels can be obtained. Selection of these extra channels is achieved by using the TV/SAT touch button at the front of the receiver or on the remote control handset. Fig. 5 shows the circuit, which was built on a small piece of Veroboard. Use screened cable for the leads to and from L308. Connect the screen to pin 7 of the 74 HCOON chip in the receiver (IC301). The $18 \cdot 432 \mathrm{MHz}$ crystal can be obtained from Maplin. All resistors are $5 \%, 0 \cdot 25 \mathrm{~W}$ types.

To carry out the modification, proceed as follows. Remove the receiver's cover (three screws secure it to the

Fig. 5: Circuit to enable extra sound channels to be received with the Amstrad Models SRX100 and SRX200.
base). Find the 74 HCO 0 N chip, which is at approximately the centre of the PCB. Lift one end of L308 (next to pin 7 of the 74 HC 000 N chip). Connect a screened lead from pin 1 of the 74 HCOON chip on the modification board to the hole vacated by the lifted end of L308, with the screen connected to pin 7 (next to the L 308 hole) of the 74 HC 00 N chip in the receiver. Connect a screened lead from pin 6 of the 74 HC 00 N chip on the modification board to the lifted end of L308. with the screen earthed as before. Take a 5 V feed from pin 14 of the 74 HCOON chip in the receiver to the modification board. Finally connect the switching control input to the modification panel (input end of the $3.9 \mathrm{k} \Omega$ resistor) to pin 9 of CY152 (socket on the front vertical panel).

Once this has been done the extra two channels can be obtained by pressing the remote control unit's TV/SAT button (LED lights). ALl and AU2 give 7.74 MHz and 7.92 MHz in the stereo mode, AU3/5 give 7.74 MHz while AU4/6 give 7.92 MHz . Pressing the TV/SAT button again returns the receiver to normal operation - when switched on the receiver operates in this mode.

Extra channels that can be received include Supergold (transponder 12), BBC Radio 1 and 5 (transponder 23) CNN Radio (transponder 28), Radio 538 (transponder 8), RTL-4 (transponder 13) and Asda f.m. (transponder 16), also numerous foreign language broadcasts via other transponders.

The crystal frequency should ideally be 18.44 MHz , but such crystals are not readily available. Although the 18.432 MHz Maplin crystal is 8 kHz low it can be used since the f.m. demodulator's ceramic filters have a passband of 30 kHz . which is well outside the minor frequency difference.

If you want to continue to use the TV/SAT button to control the TV receiver's switching. the wire going to pin 9 of socket CY152 will need to be removed and a switch fitted instead to provide manual selection of the additional audio channels.
D.F.

Panasonic TUSD200

This Pace manufactured satellite receiver displayed a menu and produced good sound, but there was no picture. When I removed the board for examination I saw a small blue capacitor, C313, that was tacked on the bottom. One leg was dry, Resoldering this restored normal operation.
B.S.

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Brian Storm, Denis Foley, Terry Lamoon, Richard Flowerday, Richard Newman, John C. Priest, John Hepworth Mike Leach and John Edwards

Philips FL1.1 Chassis

Causes of the no results symptom with these sets can be many and varied, but if the set is in standby and when you switch it on via the remote control handset the mute, stereo and standby LEDs light up try checking the resistance between the 141 V line and chassis. If you are lucky you will get a low-resistance reading because C2504 is leaky (my circuit says it's 2404, but the PCB is marked 2504). It's a blue, disc-ceramic capacitor similar to the type used in the 2A and CP90 chassis: the value varies between models but is around 1 nF .

Handle the PCBs carefully when they are in the slides: if they are left hanging out too far without support cracks can occur at the edges of the large signal panel.

Faults we've had so far include a 'dead' set with all the front LEDs on, caused by lack of the POR signal because of an open-circuit in the track from the collector of Tr 7272 to the small-signal panel jumper, and intermittent low width with no EW correction because of a crack in the track between R3608 and R3607.
P.B.

Philips G110 Nicam Chassis

If you get one of these sets with short-circuit chopper and line output transistors, remove and inspect C2546 ($8 \cdot 2 \mathrm{nF}$, 2 kV). Replace it if there is any evidence of heat stress. P.B.

Philips GR2.1AA Chassis

This was a saga worthy of Noggin the Nog (remember him?), caused I suspect by lightning damage. At switch on I had e.h.t. but no sound, nothing on the screen and a flashing standby LED. The flashing LED indicates that a microcomputer error message is being generated. The manual gives the possible cause as an internal fault in the microcomputer chip, but I was not convinced about this as the set could be switched to standby and the LED's flash rate changed when a remote control command was given, indicating that the chip was at least partly working. Checks on the supply lines, the reset pulses, the brightness, contrast and beam limiter signals showed that these were all o.k., but the sandcastle pulse was wrong. A new TDA2579B sync/timebase generator chip corrected this. The LED stopped flashing and a blank raster appeared - still no sound. As a picture and sound were produced when external signals were applied, attention was turned to the i.f. (mono sound) module. A new TDA2549 brought back the picture while a new TDA3827 restored the sound. Thank goodness the teletext still worked!
P.B.

Panasonic TX15M1T (Z4 Chassis)

The fault symptom was loss of sync. In this chassis the sync separator is on the teletext board. A check here showed that its video input was missing. It should come from the SAA5243 text processor chip IC3501, but didn't. So this many-legged beast was replaced. Unfortunately the fault remained as before. Checks on the serial clock and data lines showed that the pulses were of rather lower than normal amplitude. When pins 2 and 3 of the MAB8461PW216 text control chip IC3507 were disconnected they
were restored to a decent level. A new MAB8461-PW216 chip produced a nicely locked picture. I've since had this same fault with a TX25X1 (Alpha 4 chassis).
B.S.

Panasonic TX28A2X (Alpha 3 Chassis)

This set generated little green and red 'glitches' across the screen at irregular intervals. Perfect results were obtained with a text display, so the RGB output stages were ruled out. Eventually, and not surprisingly in this chassis, the cause of the trouble turned out to be a leaky ceramic capacitor, C649 (120pF). It's connected between pin 3 ($\mathrm{R}-\mathrm{Y}$ input) of the picture transient improvement chip IC302 and chassis.
B.S.

Panasonic TX28A1 (Alpha 2 Chassis)

This set would shut down after about twenty minutes and not come to life again unless pins 3 and 4 of the ON3 105 optocoupler D811 were linked together. The set would then work perfectly. D811 is used as an isolator to couple the power-on signal to the live side of the power supply. In the fault condition this signal didn't get there. A new ON3105 put matters right.
B.S.

Panasonic TX28A2 (Alpha 3 Chassis)

Poor teletext performance was the problem here: lines of text would be missing, or jumbled letters would come and go at random. The obvious suspect in this chassis is a small, yellow ceramic capacitor. And so it proved to be. C3507 was guilty as charged (or rather not as it was leaky!). It's connected to pin 9 of IC3501, the value being 100 pF . B.S.

Philips CP110 Chassis

Sound was o.k. but there was no vision for the first ten minutes after switching on. In the fault condition e.h.t. was present and the tube's heaters were alight, but a check at the c.r.t. cathodes showed that the tube was cut off. A fruitless search in the luminance-chroma circuits and the microcomputer section got us nowhere. We eventually found that there was excessive ripple on the 1.t. and h.t. supplies when the fault was present. Further investigation in the power supply lead us to the CNX62A optocoupler $\operatorname{Tr} 7670$ which turned out to be the culprit.
D.F.

Hitachi NP81CQ Chassis

Excessive brightness occurred very intermittently with one of these sets - the fault was so intermittent that it sometimes didn't show up for several weeks. We eventually found that the $5 \cdot 1 \mathrm{~V}$ zener diode ZD802 on the tube base was the cause - it would sometimes 'zener' at 3 V , thus overdriving the tube.
D.F.

Philips G90AE Chassis

Intermittent tuning drift was the problem with this set. I started by changing the tuner unit, then the microcomputer
chip. As this made no difference it was time to think about the fault. A check on the varicap voltage showed that it varied when it shouldn't. Why don't I check the obvious things first? The ZTK33B regulator D6770 was the cause of the problem.

Akura CX26

As this was the first 21 in . Akura set I'd seen I took the back off and had a good look. The layout is quite tidy, with no real surprises. "Intermittently switches off" said the fault report. So I put the set, displaying a good picture, on the test bench. After about twenty minuts it started to cut out. I noticed that there was a severe line foldover as the set went off, so I concentrated on the line output stage. Some careful 'technical tapping' here narrowed the cause of the fault to the line scan coil plug which, on close inspection, turned out to be very badly soldered. Desoldering all the pins, cleaning and then resoldering them provided a complete cure. It wouldn't surprise me to see more of these sets with this particular problem.
T.L.

Toshiba 175T9B

All that I could see when this set was switched on was about two inches of field scan lines. The rest of the screen was blank. I removed the back and had a tap around the field timebase area. Up came the full picture. On closer inspection I found a perfect dry-joint on C306, which is connected to pin 3 of the TDA2579-N6 sync/timebase generator chip Q340. After resoldering this joint I was rewarded with full scanning.
T.L.

Matsui 1466

This set was completely dead. When I looked at it I found that it has a standard TDA4601-type power supply. Checks showed that the BU208 chopper transistor was short-circuit while the fuse was blackened. I replaced these items then checked the $270 \mathrm{k} \Omega$ resistor associated with the TDA4601 chip. As usual it had gone high in value. After fitting a replacement I switched on and up came the picture. A nice, easy repair I thought. But the picture then slowly collapsed to a bright line. Checks showed that the 25 V supply to the field timebase was o.k. but the 9 V supply slowly disappeared due to the regulator breaking down. I replaced it and, with crossed fingers, switched on. This time the picture remained.
T.L.

Akura CX26

We've repaired several of these sets with intermittent faults ranging from text problems to intermittently dead. The cause is usually dry or poorly soldered joints on the digital signals board, particularly where the top of the board is linked through to the bottom. The most common cause of problems is J746, which is a wire link under IC703. It becomes dry-jointed, the result being intermittent line drive. IC703 has to be removed to resolder the through-board links beneath it. Take every precaution against static when you do this - these chips are very sensitive to it.
R.F.

Philips G110 Chassis

The owner of this Nicam set came to me with a tale of woe: it had apparently been elsewhere for six months and been returned as not worth repair because of major failure in the power supply. The set was very dead indeed. Anyone who
has worked on these sets will know that they use surfacemounted components in the power supply, and that the print doesn't take kindly to rough handling. Fortunately the state of the print wasn't too bad, but much work had been done in this area.

I decided to start at the beginning and fit the recommended power supply kit. When this had been done a dummy load was fitted in place of the feed to the line output stage and the set was connected to a variac. At around 110 V the power supply started up then faded away again. I soon discovered that the voltage provided by the mains bridge rectifier was low. This was because the wrong degaussing thermistor had been fitted - one section is used as a surge limiter.

When the correct type had been fitted the power supply started up but wouldn't regulate as the mains input was increased. Checks around the optocoupler revealed that $\operatorname{Tr} 7652$ (BC857C) was open-circuit. After fitting a replacement the power supply stabilised but the set-h.t. control was at one end of its travel. I checked the comparator circuit but everything here was o.k. Eventually I found that R3652 (220Ω) had almost doubled in value, affecting the operation of $\operatorname{Tr} 7654$ (BC817) and thus the current flowing through the optocoupler. A new chip resistor put this right and the set was returned to its delighted owner.
R.N.

Philips GR1-AX Chassis

Here's a good one! This 14 in . portable came in dead. Checks showed that the line output transistor was shortcircuit, so a replacement was fitted. As there were no other obvious problems the set was then powered up. An odd squeak came from the line output transformer and the set promptly went dead. The line output transistor had failed again. I looked suspiciously at the line output transformer I've had quite a few fail in this chassis. After fitting a new transistor and transformer the set worked. Feeling confident, I picked up the telephone to give the customer an estimate. But before I'd finished dialling the set had once more gone dead.

With a sinking feeling I found that yet another line output transistor had failed. Checks were made on various components in the line output stage, but the set could be kept on for only about two minutes otherwise the output transistor would fail. Scope checks showed that the line drive waveform at pin 27 of the TDA8305 sync/timebase generator chip IC7020 was very spiky and of incorrect shape. The chip itself was o.k., as were C2519 and C2059 in the output coupling circuit (to the line driver stage). It turned out that the faulty component was the small $3.3 \mu \mathrm{H}$ choke L5519, which is in series with the output from the chip. It presumably had a shorted turn. Anyway a choke salvaged from a scrap chassis restored the drive waveform to its normal shape and the set then ran with no further problems. R.N.

Philips CP110 Chassis

This set had a dead power supply. There was 300 V at the collector of the BUT11AF chopper transistor but the startup voltage at pin 9 of the TEA1039 chopper control chip was low at barely $1 \cdot 2 \mathrm{~V}$. This voltage, which should be about 11 V , can be checked only at switch on. It comes from the junction of $\mathrm{C} 2656(150 \mu \mathrm{~F})$ and $\mathrm{C} 2661(2,200 \mu \mathrm{~F})$ which are connected in series across the 300 V supply. The chip was checked by substitution and proved to be o.k. I noticed that the 300 V supply decayed very quickly at switch off, which provided the clue. C2656 was virtually open-circuit, a replacement restoring normal operation.
R.N.

Mitsubishi CT25M1 (M1 Chassis)

Intermittent loss of sound and picture - just a blank screen is a fault we've had several times with sets that use the M1 chassis. It may at first look like a fault in the tuner/i.f. section but the thing to do is to look for a video input and output at the AV analogue switch chip IC2A2. If there's no output with either an off-air or scart input suspect this chip, type M5132P, part no. 260P543050. If there's an output with a scart input but not an off-air signal suspect the JC501-QR transistor Q2A2 (pant no. 266P064010) which drives IC2A2. If there's loss of the picture but the sound is o.k. check the JC501-QR video amplifier transistor Q104. Where the fault is very intermittent, replace all three devices.
J.C.P.

Hinari CT15 and TVA1

The main PCBs used in these sets are almost identical, the differences between them being mainly in the front control panel (selector board). Both sets have remote control: the TVA1 also has a built-in LED clock display and a timer. The Sentra Model GX9000 uses the same main PCB.

A common problem with these sets is intermittent failure to come out of the standby mode. The basic circuit diagram shows the mains on/off switch as being on the power panel (mains fuse and filter board). It's actually on the front panel (selector board), feeding a small mains transformer, rectifier and 5 V regulator. These supply the SAA 1290 tuning and analogue control chip IC001 and a pair of transistors (Q010 and Q011) that form a latch to drive relay T003 which in turn supplies 240 V a.c. to the power supply on the main PCB.

If the set fails to come on, first check the mains input fuse F801 on the small mains input board and for 240 V a.c. at points 83 and 84 on the main board (brown and blue wires). Listen to hear whether the mains on/off relay clicks when the standby button is pressed. If it doesn't operate, check the 5 V supply on the front panel PCB, transistors Q010/011, the relay contacts and the relay itself. If the mains supply is present at the main board, check R801 and the bridge rectifier D801.

If 310 V d.c. is present at pin 1 of the STR 5412 regulator chip, check the start-up resistors R802/3 (both $100 \mathrm{k} \Omega, 0.5 \mathrm{~W})$. Replace them if they have gone high in value. If they measure o.k., try shunting the pair with a single $470 \mathrm{k} \Omega$ resistor. Where the fault has been intermittent this will probably restore normal operation, but the STR5412 should be replaced and the start-up circuit should be restored to its original state, i.e, fit a new pair of $100 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ resistors in positions $\mathrm{R} 802 / 3$ and discard the $470 \mathrm{k} \Omega$ resistor.
J.C.P.

Toshiba 202T5B

The picture and sound were o.k. but the teletext display was very poor - it was illegible and all blue in colour. In addition the clock in the top right-hand comer wasn't running. I can't pretend that finding the cause was simple: we had to resort to chip substitution. The culprits were the two TMM2114AP-15 chips IC9 and IC10. Replacing them restored normal text.
M.L.

Tatung 170 Chassis

One of these sets suffered from many very intermittent faults. The sync, brightness level, sound, tuning and various other things were affected. I've known the teletext panel to
be responsible for intermittent faults in this chassis, so 1 resoldered the plug and socket on the text PCB. This made no difference at all - in fact the trouble was even worse. The faults were now much more intermittent and could be rectified by only slight pressure on any part of the main panel. After much panel flexing, prodding, soldering and tapping the cause of the fault was traced to the soldered rivets that connect the outer chassis to the main board. After desoldering, tightening and resoldering these rivets the intermittent faults had been cleared.
M.L.

Sharp C095

We seem to be getting a lot of amnesia trouble lately with TV sets. This one regained its memory when R1072 (33k 2) had been replaced.
J.H.

Alba CTV743

The problems here were no sound and field collapse. R435, a 2Ω safety resistor, was open-circuit because D406 was short-circuit.
J.H.

Mitsubishi CT2627

This set suffered from varying height and sometimes total field collapse. After much time had been spent soldering and tapping around in the field timebase a complete cure was achieved by replacing C 412 and C 413 .
J.H.

Loewe C8000

There was an ear-piercing whistle and we found that the h.t. was high and couldn't be controlled. C638 was leaky, a replacement providing a cure and relief for the ears. J.H.

NordMende F8 Chassis

A previous engineer had condemned the tube because the blue component of the picture was smeary. It read o.k. on the Dynascan however. So I began to carry out comparison checks in the RGB output stages and found that RV43 had gone high in value. A replacement restored a good picture for the set's age.
J.H.

Ferguson 16A2 (TX90 Chassis)

This set was dead though the power supply was working. The cause of the fault was absence of the 150 V h.t. supply because of an open-circuit between pins 6 and 9 of the line output transformer. A new transformer brought the set to life, but though stations could be searched for and found the set wouldn't memorise them. The M293B1 chip IC902 had failed. All was well when this chip had been replaced.
J.E.

Samsung Cl348Z

The complaint with this 14 in . portable was no sound. We found that there were no voltages at any of the TDA2006 audio output chip's pins. There should be an 18 V supply at pin 5 . This comes via the standby relay, which provides a 125 V supply via separate contacts. The 125 V supply was present and correct of course but the 18 V supply was present at only one contact. When we removed the relay and took the cover off we found that the contacts were very pitted. Redressing them carefully with a nail file restored normal operation and sound.
J.E.

The one that beats us all

Roy Baines

We can deal with the Yakahami that rolls every Wednesday half way through Neighbours. can fix the one that records in monochrome when starled by the remote control unit but works correctly when the on-board controls are used, and can bluff our way around the one that usually works all right but sometimes doesn't. The one that beats us all is the allsinging, all-dancing and never makes the tea when you want it customer.

One can only assume that the research and development department responsible for this model didn't invest enough, certainly not in standardisation. They all seem to differ and function in their own unique way. There are however some basic types. The ones I generally come across are as follows.

Type One

The first functions at peak performance in the sort of dwelling with which we re all too familiar. Approach is usually via the back gate, which is normally obscured by a rust highlighted Ford Cortina with fur sears. a whip aerial, hanging dice and a rear window sticker proudly proclaiming that they ve fed the lions at Longleat. The back gate swings on one hinge but is held back by either a bike wheel or an expired lawnmower. The back door is fitted with hardboard so that the glass can be kept in safe custody.

After freeing yourself from the hanging-bead curtain that separates the kitchen from the lounge you finally encounter the customer. Sitting on a patched PVC couch wearing a string vest and braces, he clutches a Guinness bottle in one hand and the Racing Times in the other. He grunts something to the effect that the TV is u / s, and gestures at it with the fag hanging from the corner of his mouth.

Now you have to try to get to it. It's flanked on one side by a gold-
flaked glass cocktail cabinet with authentic Sellotaped glass doors and a built-in clock with its hands missing. topped off with a Spanish flamenco dancer and various artifacts from a holiday in Majorca. On the other side there's a nondescript midi hi-fi system complete with cracked plastic lid and pile upon pile of Pickwick. Music for Pleasure and Columbia (remember them?) LPs made by pop stars now drawing their pensions. Under the TV there's a vast collection of shoes. always totalling an odd number. Perched on the top of the set. surrounded by pools coupons. fag coupons. broken jewellry and piles of unopened envelopes. you spot the customer's pride and joy - a copy of the CB User's Guide.

Why didn't you spot that clue to start off with? Why didn't you strike up a conversation initially to try to find out the nature of the problem?' Why did you wait until you moved everything out. taken the back off and started the tap. tap please go wrong' session before being told by the customer. as he stands up and adjusts his lower clothing to a more suitable level. that the problem shou's up only when he " $10-4$'s his Good Buddy" on the CB ? Back on. tools packed and out the door. leaving a call-out bill you know you ve as much chance of getting paid as receiving those Hinari spares you've got on order. We never learn.

Type Two

This is the most normal of the various types: not too bothered when you call. reasonably understanding about your charges but always forgets having called you when you knock at the door. They are usually fairly talkative about things while you are working. coming out with such gems as "did you have to go to school to learn that?", "I wouldn't know where to start" and, after peering in the back. "and they call it wireless" or "is it just the valve'?".

They then go on to tell you that their first set was a Bush, or was it a Murphy. that they had for thirty two years and never had a thing go wrong with it - it's still going strong in the spare room. You are asked if you are new to the job and. not listening to your answer. are then for no apparent reason told where they used to live. In my particular town the whole population at one time or another must have lived in Gladstone Street and were the first to have a television. It must have been one heck of a big house. When
the repair is completed the bill is paid and everyone is happy.

Type Three

We now come to the Half Crown end of the market - stockbrokers, bank managers. yuppies etc. The Nicam. SVHS and camcorder crowd. I often wonder who makes the most money out of camcorders - the manufacturers or Jeremy Beadle. When the door is answered you are normally left with the impression that you should have gone round to the back.

Wishing that you'd brought a machete to fight back the tufted Wilton, you find the entertainment comer, with either Queen Anne or black ash furnishing. both as easily marked. and switch on the grand's worth of equipment. You then stand and wait for a fault to show as Type Three has disappeared to the phone to arrange another dinner party or weekend trip. letting the other end know that he can't talk too long because "some chap has arrived to fix the box".

So you try all the functions. flicking the channels back and forth. in and out of the text mode. up and down with the sound. You take off the back. check for drys. solder here and there. Then Type Three reappears and matter-of-factly tells you that it's the video that is the problem. Before you get the chance to ask what this is he's back on the phone.

After finding the elusive problem you decide that it's a workshop job. You wait for the phone call to finish to say so and are greeted with "we ve had it for only six months. it shouldn thave gone wrong already". Before you get back to the shop he's been on that wretched phone again. saying that the engineer didn't know what he was doing and that he wants a replacement as he paid $£ 1.000$ for his package. Why is it always £1.000? My answer to these is that "if you didn't expect it to go wrong why did you take out an extended warranty?" They can't answer that one - try it!

In Conclusion

When it comes to customers there are many types and variations. This brief. light-hearted survey should have shown that you're not the only one to come across these strange beings. Although life in our trade would be much easier without the customers, they do provide first-class entertainment. And. let's face it - to someone else we re the customers.

Video technology is changing fast. New models get introduced with alarming regularity, each with the latest enhancement. So it's not surprising to find models and faults you've not encountered before.

The problem is you can spend costly, unchargeable time searching for elusive faults, which is where Euras System can help.

The Euras System is Europe's largest repair tips database for Video, Television and CD.

With over 120,000 repair tips for 14,000 models from 270 manufacturers you are sure to find the solution quickly. And because it is frequently updated, it always covers the latest models.

For a FREE demonstration diskette to run on your PC or details of Euras System in manual form, clip the coupon or phone 0272860900.

EURAS INTERNATIONAL LTD EURAS HOUSE, 51 BRISTOL ROAD,

KEYNSHAM; BRISTOL, BS18 2BA

Solutions at your fingertips

PLEASE SEND ME A FREE DEMONSTRATION DISKETTE \square PLEASE SEND ME DETAILS OF EURAS SYSTEM IN MANUAL FORM \square
NAME
tITLE
COMPANY
ADDRESS

MAKE YOUR INTERESTS PAY!

Train at home for one of these Career Opportunities
Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help You. Post or phone today for FREE INFORMATION on the course of your choice. (Tick one box only!!

Electronics \square	TV, Video \& Hi-Fi Servicing	\square
Basic Electronic Engineering (City \& Guilds)	 Air Conditioning	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
CCSE/CCE/SCE over 40 examination subjects to choose from		

[^1]\qquad
Address: \qquad

International Correspondence Schools, Dept. EGSB3 312/314 High Street, Sutton, Surrey SM1 1PR. or 041-221 7373 (24 hours). - - - -

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW185BP TEL: 081-877 3492/877 3518 FAX: 081-877 3518

Long-distance Television

The excellent RUV loggings on the 22nd were by Simon Hamer in Powys: the signals consisted of teletext pages.

Meteor scatter (MS) propagation was active mid-month, peaking on the 13th with Band I and the occasional Band III pings. Tropospheric reception had its moments, with Band III/u.h.f. reception from the Benelux countries on the 14th and from France, Germany and the Benelux countries during the 17-19th, improving towards the 19th with Swiss reception as well. Roger Fussell (Torpoint) received Spanish ch. E5, E34 and E37 signals. Settled high pressure over the 29th-31st produced another boost, with reception from France and the Benelux countries and RTE (Ireland) chs. D, $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}$ and E43. The new DX flavour of the month is 'ZUID HOLLAND TV' on ch. E49 from Rotterdam, seen twice by Tim Anderson - it's only a 10 kW e.r.p. transmitter.

Towards the end of the month I departed to Cornwall on holiday. On my return I noticed an obvious reduction in the level of my satellite signals: a family of spiders had taken up residence in the scalar rings of the feedhorn assembly!

News Items

Portugal: New identifications for the first and second TV services are Canal 1 and TV2 respectively.
Switzerland: A new channel, S-Plus, should now be on air. Germany: The following transmitter e.r.p. increases have been notified: Chemitz ch. E8 500 kW , Leipzig ch. E9 500 kW , Dresden ch. E10 500kW, Schwerin ch. E11 500 kW , Dequede ch. E12 2kW (all MDR-1), Hohbeck ch. E51 100kW (ORB-1). In addition Ochsenkopf ch. E4 (BR1) is now vertical only.

Russia: The current electronic test pattern, type G204, has the facility for individual identification letters to be included.
France: TF1 is to launch a news channel next spring. The planned educational channel should also start next year, using ARTE network transmitters (formerly the La Cinq network) during the daytime hours.
Israel: It looks increasingly unlikely that the second TV channel will go on air this November as planned. The problems are to do with government financial and programmemaking requirements.
Sri Lanka: Our correspondent Bandula Gunasekera reports that East-West TV is now on air. The initial service, provided by a 1 kW transmitter atop the Star Building,

[^2]Bambalapitiya, covers a twenty mile radius around Colombo. It's to be extended throughout the country during 1994. Channel allocations are E31, E32, E33 and E58.

Satellite TV

MTV has taken the last transponder aboard the ex-BSB satellite Marco Polo 1, now named Thor and restationed at $0.8^{\circ} \mathrm{W}$. The satellite also offers CNN, Eurosport, Filmnet. Discovery and The Childrens' Channel, beaming its output towards Scandinavia

According to media reports the European Space Agency satellite Olympus has been shut down: at the time of writing this (early September) a carrier can be received from the craft but no programming has been seen for some weeks.

MCM-Euromusic is once more available from TDF at $19^{\circ} \mathrm{W}$: Eurocrypt scrambling should be in use by the time that this is read.

Dutch Regional Channels

The following is a list of proposed channels for regional broadcasting in Holland.

Site	Ch.	Pol.	E.R.P.
Goes	E7	H	30 kW
Dan Helder	E10	H	1 kW
Franeker	E22	H	30 kW
Eys	E22	H	10 kW
Lelystad	E23	H	100 kW
Franeker	E25	H	300 kW
Franeker	E28	H	300 kW
Amsterdam	E34	H	200 kW
Markelo	E36	H	20 kW
Groningen	E36	H	20 kW
Ameland	E40	V	1 kW
Gennup	E40	H	30 kW
Roosendaal	E48	H	30 kW
Brielle	E49	H	100 kW
Roosendaal	E51	H	30 kW
Ameland	E52	V	1 kW
Brielle	E52	H	100 kW
Roosendaal	E54	H	30 kW
Alkmaar	E55	H	100 kW
Lopik	E57	H	$1,000 \mathrm{~kW}$
Ameland	E58	V	1 kW
Arnhem	E58	H	32 kW
Mierlo	E60	H	30 kW

Wartime TV Reception in the UK

Andrew Emmerson of the 405-Alive group has recently been carrying out research into whether the German TV transmissions from the Eiffel Tower, Paris during the occupation were monitored in the UK for military intelligence purposes, in particular by the Post Office or any other government department, at a south coast receiving site. There was a TV receiving station at Beachy Head (we ran an article on the subject in the September 1983 issue) but it's thought that this was in operation for only a short time, on an experimental basis. The Paris transmissions were at 46 MHz (ch. F1), with 441 lines. During the war there were claims that the transmissions were received at Alexandra Palace and Bulford Camp, Dorset. Several correspondents have mentioned a GPO repeater station at St. Margaret's Bay, near Dover.

The use of a very long coaxial cable link to London is most unlikely at that time. Equalised, balanced pairs were

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951
normally used for long-distance video transmission before the war, though there were several coaxial circuits around London to feed live OB signals to Alexandra Palace. Andrew and other researchers feel that reception of the Paris TV transmissions was not undertaken seriously on the south coast, and that there was almost certainly no relay back to London.

If any reader can shed any light on this subject, please write in. All letters will be passed on to Andrew.

Book Review

A Basic Guide to Colour TV and VCRs, by David Botto. Published by Electronics Australia.

David Botto will be well known to readers of this magazine as a technical writer who adopts a down-to-earth approach to his subject matter. This new 90 -page paperback book of his was originally published as two series of articles in Electronics Australia. Its aim is to help newcomers and the relatively inexperienced to gain a sound knowledge of colour television, colour receivers, video recording and VCRs. The CTV part contains a clear account of PAL colour decoder operation while the video recorder section deals with signal processing, servo operation and system control. The book provides a basic introduction to these subjects and is a sound starting point for more detailed studies. Readers in the UK can obtain it by ordering from the Federal Publishing Co., Mail Order Department, PO Box 199, Alexandra, 2015, NSW, Australia. Enclose payment for Australian $\$ 10$ in favour of Electronics Australia - the price includes postage and handling.

Service Briefs from Toshiba

As a follow-up to last month's briefs, the notes below provide additional information on various Toshiba TV models and a section on VCRs, again based on information published in Toshiba's Technical Bulletins.

TELEVISION

Models 2505DBT/2805DBT

Motorboating noise can be heard from all speakers in the standby mode - this fault is very intermittent: Cause is poor earth contact of the black anodised heatsink for IC609 and IC610 (which is incorrectly identified as IC601 on the underside of the PCB). The heatsink is earthed only by the location pin at the opposite end to the earth tag. Move the green earth wire fitted between socket M002A pin C and M002B pin C to fit between M002A pin C and the adjacent, surrounding area of already tinned earth print, after shortening the wire to approximately 3 cm .

Low level of hum in the left-hand surround speaker in all modes, noticeable when Dolby Surround is slected and the volume is set low (two segments of the volume scale): Cause of the problem is that earth loops induce hum in the surround sound amplifier IC610. Carry out the action described above in connection with motorboating. Then add a PVC covered wire between pin C of M002A and pin C of M001A. In the unlikely event that the hum is still present, remove link JP403 adjacent to the Dolby PCB (near R676).

Very quiet ticking noise comes from the right-hand surround speaker. Present only when using Dolby Surround and noticeable only when the surround speakers go quiet with no signal: Cause is pick-up from the I2C data bus at pin 1 of IC611. Remove R610 ($68 \mathrm{k} \Omega$) and jumper link J109 which is under the heatsink for IC611/IC608. Refit R610 in the J109 position. Fit a wire link in the position previously occupied by R610. To gain access to jumper J109 it's advisable to remove the heatsink and chips.

Blank raster and no sound. No response to remote control commands. No SDA and SCL outputs from the CX80424 microcontroller chip ICA01, both lines being stuck at 2V d.c.: The TA78L009AP 9V regulator QV22 for the TA8777N AV switch chip ICV01 on the back terminal PCB has become unsoldered. Resolder and ensure that the back terminal cover plate isn't pressing on QV22.

If failure of the TDA2030A chips (part no. 23319009) used in positions IC608/609/610/611 is experienced, check the speaker wiring as shorts here will damage them. A short-circuited TDA2030A will in some cases damage the chopper transformer T803, giving the dead set (current trip) condition.

Models 2527DB/2927BB/3327DB

Stuck in standby: The SFRN5A circuit protector ZP82 is open-circuit, possibly because the surround sound output chip ICS01 is faulty. Replace ZP82 (part no. 23144450) and if necessary ICS01 (part no. B0376856). If ICS01 has failed
it's very important to replace the following four diodes (all type 1N4148, part no. 23115599) which may well have been damaged: DS01/2/3/7.

Model 215T8B

Low brilliance/contrast/poor focus - looks as if the c.r.t. has lost emission: The 3Ω resistor R 920 in the c.r.t.'s heater supply tends to go high in value (may rise to 6Ω).

VCRs

Model V77B

Tuning drift or no tuning at all: Replace the $0 \cdot 1 \mu \mathrm{~F}$ capacitor connected across C 025 in the VT line to the tuner. It tends to become leaky. Note that it's not shown in the circuit diagram (use the V83B service manual).

Model V83B

No playback colour: Can be caused by IC401, type BA72675, part no. 70119508.

Model V93B

Fuses F802 (1.25A) and F803 (1.6A) blow intermittently when the unit is switched from standby to on: Replace the ERC04-02F bridge rectifier diode D802, part no. 23118485. which can go open-circuit intermittently.

Models V110B and V210B

Mains transformer is noisy in standby: Fit a self-adhesive spacer, part no. 70050434 , to the transformer so that it projects from the coil former through the plastic inner case to the cabinet. The cause of the problem is that the transformer's magnetic field resonates the VCR's cabinet: pressure on the right-hand side of the cabinet reduces the noise.

Fuse $\mathrm{FP} 01 \mathbf{(6 3 0 \mathrm { mA })}$ fails for no apparent reason: Replace the $0 \cdot 1 \mu \mathrm{~F}$ mains filter capacitor CP 01 with a $4,700 \mathrm{pF}$ capacitor that has a working voltage rating of 275 V a.c. Quote RIFACAP as the part number. Cause of the problem is spikes on the mains supply or a poor quality wall socket.

Patterning on the screen in the standby mode/distorted playback and E-E pictures/no playback colour/an offtune effect with playback and E-E signals/static interference even in standby (Model V210B)/no functions, machine laced up, crazy display - no data at IW18 from the KDB microcomputer chip: Replace the 2.7 V zener diode DT53, part no. 70010160 , in the Video +5 V supply regulator circuit. The diode goes leaky, the fault symptoms varying with the output voltage from the regulator. Note that the circuit was altered in later production: refer to the service data for Models V211B/V411B for the later version.

Tuning drift or failure to tune in the higher channels: Replace the ZTK33B 33 V regulator DP04, part no. 70010628 , in the power supply.

Failure of the r.f. modulator: This is usually caused by customer misuse, the result being broken channel adjusiment resistors.

For some faults with these models a full micro reset may be necessary to remove information memorised under the fault condition, otherwise the repaired unit may not operate correctly. Full reset is achieved by pressing and holding the timer and '-' buttons while applying a.c. power.

Note that two different drum assemblies have been used in Model V210B. Complete assemblies are interchangeable but parts of them, i.e. the upper drum. are not. If the letter M follows the model number on the rear label and the upper drum carries the letters MF, use complete drum assembly part no. 70030922 (upper drum part no. 70030918 . lower drum part no. 70030921). If there are no extra letters use complete drum assembly part no. 70050148 (upper drum part no. 70030006, lower drum part no. 70030618).

Models V212B, V312B and V412B

Dead with no display, all power supply output voltages being at about half the correct figure, e.g. the 14 V line being at 6-7V: Replace the ZPD3V9 zener diode DP15 which is short-circuit. Note that this zener diode is not shown on the circuit diagram. It's located under the 1.5Ω cement wire-wound resistor RP33 (difficult to see) on the component side of the power supply PCB.

No mechanical operation: Cam gear ref. B710. part no. 70011070, is probably jammed with stripped teeth. Replace this item (see pages 2-22 and 2-23 in the service manual for the correct assembly and alignment) and also the supply soft brake lever (an improved type, coloured black. comes with the replacement cam gear).

Failure to erase the previous sound track and slight coloured patterning on recorded pictures: The bias oscillator is inoperative - the symptom can be very intermittent. Improving the connection between the full-width erase head and its connecting cable will usually provide a cure.

Erasure of sound on prerecorded tapes and own recordings: Though the erase off command from the microcomputer chip is o.k. the bias oscillator continues to run in the playback mode because CL05 ($0.01 \mu \mathrm{~F}$) in the oscillator stage is open-circuit. Replace it.

The cassette loads and the drum rotates but the machine won't play, going to standby. The cassette is then ejected but without the tape being reloaded into it: Resolder dryjoints at pins 8,9 and 10 of connector BT06 - the +5 V supply to the logic/servo chip IT01 is missing.

Slow rewind and fast forward: The MPS750 transistors TP81 and TP83, part no. 70010939, in the power supply are both leaky base-to-collector. As a result the power supply is not providing the capstan +14 V and +18 V supplies at pin 3 (UCAPST) of connector BP03. Replace TP81 and TP83. which are surface-mounted devices.

Intermittent poor playback (loss of output from one head) in the SP mode. Tapping the head preamplifier unit may clear the fault: Replace the surface-mounted capacitors CQ05 and/or CQ06, part no. 70040991. They go open-circuit (normally cracked). The wire-ended type can be used.

Model V300B

Dew sensor operates mistakenly, ' -d - ' appearing in the display: Resolder dry-joints at the connections on the loading-motor PCB.

Models V300B and V500B

Warble on sound: Replace the TD6361N servo chip IC501. Part no. is B0272617 with the V300B and B0272616 with the $V 500 \mathrm{~B}$.

Intermittent audio recording: Replace the lead between the ACE head and the full-erase head with new type, part no. 70160889 .

Model V411B

Drum fails to rotate, just twitching when the tape is being loaded: Check that the capstan CTL drive is present at pin 3 of plug 152 on the capstan motor PCB. If this is o.k.. replace the whole drum assembly, part no. 70050435.

The machine goes into a lock-up condition or ejects the tape if rewind or fast forward is used for approximately one minute or more in the LP mode only and play instead of stop is then pressed: An improvement is needed in the logic/servo chip circuit - add an extra transistor between pins 8 and 12 of IT01. Details are available from Technical Advice on 0276694555.

Model V610B

Faint white flashing lines are present across the screen with E-E pictures, playback of prerecorded tapes being o.k. Symptom is like that produced by poor aerial connections and is present only on channels above 45: Data bus noise is being picked in the Matsushita tuner. Replace with an Alps tuner, part no. 70121102.

Machine is dead with no Ever $+6 \mathbf{5 V}$ supply: IC811's load coil L814 has shorted turns and is overheating. Replace coil, part no. 23103961. or the PCB if this has burnt.

Model V711B

Intermittently snowy picture, symptom looks like that produced by faulty heads: Resolder dry-joints at the lower end of the head connections on the lower drum.

Popping noise with Nicam reception: Replace the 6 MHz filter ZD02. type TCF1073, with improved type TCF1083 (part no. 23303054).

Noises (popping, crackling) with hi-fi playback: F.M. envelope is poor because of incorrect entry S-guide setting or incorrect head switching position. Adjust as necessary using an alignment tape.

Servo Chip IC501

In Model DV90B this is type TD6361-C5. part no. B0272638: in Model V93B it's type TD6361-D5, part no. B0272628: in Model V300B it's type TD6361N-E5, part no. B0272617: in Model V500B it's type TD6361N-A6, part no. B0272616. It is not possible to interchange these chips.

Personal Digital Assistants

George Cole

The growing market for desktop, laptop, notebook and palmtop computers has been joined by a new machine, the Personal Digital Assistant (PDA). These are small portable computers that use a touch screen and an electronic pen or stylus instead of a keyboard or mouse. The term PDA covers a wide range of machines however, from upmarket electronic organisers to hand-held communications devices that offer fax, cellular and electronic mail (E-mail) facilities.

The first PDAs are being aimed at the mobile business user, but manufacturers hope and expect that they will establish a position in the consumer electronics market. The idea is that the PDA will help us to cope with the massive amount of information we use in our everyday lives, such as addresses, telephone numbers, details of meetings and appointments and diary dates. Many of the world's largest computer, consumer electronics and communications companies have jumped aboard the PDA bandwagon, and a number of models are to be launched in the UK later this year. One of these is Apple's Newton MessagePad.

The Apple MessagePad

Newton is the name that has been given to a technology developed by Apple Computer. It uses artificial intelligence to sort, store, organise and transmit information. The technology has been licensed to Matsushita, Motorola, Sharp and Siemens, and a number of business and consumer electronic products, such as telephones, faxes and VCRs, are expected to use it. Newton will make these products 'smarter' and easier to use. For example a VCR could have a touch screen and stylus, enabling you to enter programmes to be recorded by name: you could write say 'Coronation Street' and the machine would set its timer automatically to record the programme.

The first Newton product, which was launched in the USA on August 3rd, is the MessagePad, a hand-held device that weighs just 400 g and measures $185 \times 114 \times 19 \mathrm{~mm}$. Power can come from the mains supply, four AAA batteries or a Nicad pack. A lithium battery preserves the stored data when the batteries are being charged. Apple says that alkaline batteries will provide enough power for two weeks' use, while a Nicam battery should last for about a week. Normal use is defined as six hours' operation per day.

The heart of the MessagePad is the powerful 32-bit ARM610 RISC (Reduced Instruction Set Computer) processor chip, which is being manufactured by VLSI, GEC Plessey Semiconductors and Sharp. It has 366,000 transistors packed inside a 144 -pin package that's just 1.4 mm thick. ARM is actually a consortium of companies set up by Acorn Computers, Apple Computer and VLSI in November 1990 to build on the work done by Acorn during the devel-
opment of its Archimedes range of computers. These machines are mainly used in schools, and also employ 32bit RISC processors. ARM's aim is to develop a family of RISC processors for various applications, one of them being the 3DO interactive multimedia player. RISC processors are faster and more power efficient than conventional microprocessors such as Intel's 80386 and 80486, which are known as Complex Instruction Set Computer (CISC) devices. This means that in comparison with RISC devices they use large numbers of instructions to carry out various processes. Newton requires a powerful processor that won't drain battery power, and the ARM610 fits the bill. This processor also switches off when MessagePad's operating system is idle. The ARM610 runs at 20 MHz and is comparable with a 486 processor. On the storage side the MessagePad has 640 K bytes of RAM and 4 Mbytes of ROM.

MessagePad is operated by a touch screen and stylus (see accompanying photograph). Beneath the touch screen there's a 336×240 pixel LCD screen produced by Sharp. The touch screen is a three-layer sandwich that consists of a mylar sheet with a transparent metal coating on its underside, a gel containing small plastic balls, and a glass plate with a transparent metal coating on its top side. When the stylus is pressed against the touch screen the plastic balls are pushed aside and the two metal coatings come into contact. Special software detects the resulting electrical resistance and calculates which pixels need to be switched on in the LCD screen to display the jottings.

MessagePad uses handwriting recognition software that can handle printed or cursive writing. Before you can use MessagePad you have to train it to recognise your writing. The unit uses a writing game to help it to do this. If MessagePad isn't sure about a word, it guesses. If the word is the wrong one you can select alternatives from a list. If the word isn't on the list you can use a built-in electronic keypad, tapping out the required word with the stylus.

MessagePad is the first commercial device to recognise

The Apple Newton MessagePad PDA.
cursive handwriting, which is an impressive feat. Apple cautions however that while a third of users will have few problems with their handwriting another third will require some training and the final third will need hours of training before Newton can understand their writing. Apple plans to offer free training sessions for owners who are struggling to cope with MessagePad.

You can draw diagrams on your MessagePad, which will smarten them up automatically. Words are erased simply by scribbling through them, while pages are scrolled through.

Newton intelligence is able to organise your information For example you can write a message and then ask MessagePad to fax it to your colleague John - simply by writing "fax John". If it knows of more than one John, MessagePad will display a list of names that can be selected by pointing the stylus at them. Once the correct John has been identified MessagePad will type your scrawled message, generate a cover sheet and fax the contents. MessagePad will also automatically store names and telephone numbers in an address book, and appointments in a diary.

MessagePad uses PCMCIA (Personal Computer Memory Card Industry Association) cards which slot into the top. They are roughly the size of a credit card: MessagePad uses type II cards, which are 5 mm thick. The cards can provide extra RAM (1 or 2 Mbytes), ROM software such as guides and games, and extra features - a fax modem for example. Type III cards are 10.5 mm thick and can include a miniature hard-disc drive. Future Newton designs may make use of them.

Features

MessagePad's strongest selling point is likely to be its communications features, which allow the user to send (and in some cases receive) information from a variety of sources. The simplest communication facility is an infra-red system that enables one MessagePad to beam information to another one.

The MessagePad can be connected to a printer or an Apple Macintosh or PC/Windows computer via a special connecting kit. while an optional fax/modem can be used to send (but not receive) faxes or to transmit and receive data. Also promised are paging and cellular communications addons.

Later this year Apple will start a Newton Electronic mail (E-mail) service in the USA, also an on-line system that will provide a variety of services. It sounds good - until you add up the cost of buying all the peripherals and subscriptions to the various services. One thing is for sure: keeping in touch whilst on the move is not going to be cheap. What's more European paging and wireless communications systems are in a state of flux. MessagePad will not be able to offer such facilities here until many issues have been resolved.

Apple says that it has many more Newton products in the pipeline. There are plans to introduce an optional keyboard for wordprocessing and a CD-ROM add-on.

As things stand, MessagePad is an interesting piece of technology that should appeal to many business users. But even Apple admits that it will have to become much cheaper before it can be a viable proposition in the consumer market. Meanwhile other companies are introducing PDAs.

Other PDAs

Apple isn't the first company to launch a PDA. That honour goes to Alan Sugar, whose Amstrad company introduced PenPad last March. It's a sophisticated electronic organiser with a pen interface. PenPad can't recognise cursive writing however: you have to print each letter in a separate box. Its communications facilities are limited but include an optional fax/modem. At $£ 299$ however PenPad is very appealing. It's much easier to use than electronic organisers that have a tiny keyboard.

Casio and Tandy have introduced a similar PDA called Zoomer. It costs $\$ 699$ in the USA (about $£ 460$).

EO, a consortium of companies that includes AT\&T, Matsushita and Olivetti, has launched the Personal Communicator in the USA. There are two A4-sized models at $\$ 1,999$ ($£ 1,300$) and $\$ 2,999$ ($£ 1,999$). The more expensive version includes a built-in cellular phone, a fax/modem and a voice annotation system.

IBM, Microsoft and Hewlett-Packard are also understood to be developing a range of PDAs.

Apple hopes that Newton will become the world standard for PDAs, allowing all such machines to communicate with one another. But the present mishmash of incompatible communications standards and a confusing choice of PDAs won't make this an easy task.

ANSWER TO TEST CASE 371

While all switch-mode power supply circuits work on the same principle of chopping the rectified mains input energy into pulses, there is a great deal of variation in circuit details between different makes and models. The test procedure and checks carried out by Roger in his attempts to track down the cause of the trouble would have probably been successful with many other chassis, but not with the Philips 2A and kindred chassis from this manufacturer.

When Ted measured the voltage across the 60W bulb he found that it was well in excess of the correct 140 V . Application of this voltage to the line output stage resulted in higher than normal voltages being generated on all the LOPTderived lines. One of these is sampled by the protection circuit, which triggers the crowbar thyristor Thy 6698 in the event of excessive voltages in the line output stage. With the link between the power supply and the line output stage broken by disconnecting plug M , over-voltage protection was lost. That was why the power supply worked with a bulb as its load, even though it was producing much higher than normal outputs. With the line output stage connected, the initial squeak was produced as the power supply ran up to normal output, the following squawk occurring as the power supply changed to low-frequency operation under the influence of the damping action of thyristor Thy6698.

As Ted had suspected, the cause of the trouble was the CNX62 optocoupler, circuit reference 7668, which seemed to have gone partially open-circuit inside. It provides feedback regulation coupling between the secondary and primary sides of the supply. With a new CNX62 installed the set sprang to life, leaving Roger to set it up and puzzle about how much time to enter on the job card. . .

[^3]
AMAZING PC BASE SALE

WE HAVE ACQUIRED A SELECTION OF HLGH gUALITY AMSTRAD PC BASE UNITS AT MEGA discount prices. LOOK What you can buy FROM ONLY £19.00!
 UNTESTED AMSTRAD PC BASE UNITS COMIPLETE WITH MOTHER -BOARD, VIDEO CONTROLLER, DISK CNTRLR, \& 5.25" DRIVE(S).

AMSTRAD 1512SD £19.00 REF: TV/AM19P1 AMSTRAD 1512DD $£ 25.00 \quad$ REF:TVAM25P1 AMSTRAD 1640SD $£ 25.00$ REF: TVAM25P2 AMSTRAD 1640DD $£ 30.00$ REF: TV/AM30P1

NEW Or REFURBISHED PC BASES

COMPLETE WITH KEYBOARD,
MOUSE, and 5.25" DRIVE.
RUNS UNDER MS-DOS VER 3 noos aф mppual
All sold guaranteed as new. All you
need is a power supply unit $\&$ monitor.

AMSTRAD 1512 SD AMSTRAD 1512 DD AMSTRAD $16405 D$ AMSTRAD 1640DD
£49.00 $\$ 59.00$ £69.00 $£ 79.00$

REF: TViAM49P1 REF: TV/AM59P1 REF: TV/AM69P1 REF: TV/AM79P1

AMSTRAD LAPTOP OPTIONS

AMSTRAD PPC 1512 SD (512 k memory Single $3.5^{\prime \prime}$ disc drive) $£ 99.00$ тV/AM99P1 AMSTRAD PPC 1512 DD (512 k memory Two 3.5" disc drive) $£ 109.00$ TV/AM109P1 AMSTRAD PPC 1640 SD (640k memory one $3.5^{\prime \prime}$ drive modem) £129.00 TV/AM129P1 AMSTRAD PPC 1640 DD (640k memory two $3.5^{\prime \prime}$ drive modem) \& 139.00 TV/AM139P1

MAINS POWER SLPPLY FOR ALL ABOVE LAFTOP UNITS ONLY \&10.00

AMAZING SALE OF BT ANSWERPHONES

As NEW, fully guaranteed BT Product as LESS than Half the original retail price!!!

RESPONSE 200 AND 400 MODELS
Each Response Unit is supplied with a Micro cassette. PSU and User Detatls. The following features are found on the 400 Model and the 200 has almost as many features.:-

Micro Cassette Call Screening Call Count Answer only Last No redial On hook dialling BT Network Services Mute Facility

Ren 1.0. Memo Facility Remote Facility 20 Memories Variable volume Hands free speach PABX Compatible LCD Display

RESPONSE $200 \boldsymbol{\$ 3 5 . 9 9 R e f : T V 3 6 P 1}$ RESPONSE $400 \mathbf{8 4 9 . 9 9 R e f : T V 4 9 P 1}$ (plus vat)

FCOHIS RESER VBUTOCHANGERRIOES:

 HYQSE Syaten

10 WATT SOLAR CELL

($3^{\prime} \times 1$ ') $\mathbf{1 4 . 5 v} / 700 \mathrm{~mA}$
Now available by mail order
Coated with exceptionally efflcient amorphous silicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells. a few of which could be: for Car Battery Charging, for useon Boats or on Caravans, in fact anywhere a portable 12V supply is required. Several of our overseas Mediterranean customers with homes in remote hilly sites, use these solar cells as a daytime power source to backup generators. The solar cells can be comnected in serles or parallel to give higher voltages or larger current capacity. REF: TV34P2

PRICED at only

PLUS an additional $\mathbf{2 2 . 0 0}$ special packaging charge

BULL ELECTRICAI 250 AORSUAHDROAD HOHESUSEEX

TELEPTHONE ORDERS WMACOK 174. 0273203100 FAX. 0273323077

PORTABLE RADIATION DETECTOR
 SPECIAL OFFER $£ 49.99$
 (pilus var)

NEVER OFFERED BEFORE \qquad We can now supply a unique handheld persana portable Gamma and X-Ray detector. This Radiation detector contains two Geiger Tubes ncs a 4 digit LCD display with a plezo speaker, giving an audio visual indication The fadiation detectors detect high energy electromagnetic quanta with an energy from 30 Kev to over 1.2 MeV and ameasuring rate 5-9999 UR/h (sampling rate 2555) or $10-99990$ NR/h (sampling rate 2.55) Sources of radiation could be Granite Kerbstones old Luminous Watch dials or even a Jewellery shop where mineral ore is sold to rock collectors. A piece of uranium Ore would be ideal.
Only $£ 49.99$ Each Ret: TV50p 1
TURN YOUR SURPLUS STOCK ENTO CASH INDMEDIATE SETHLEMENT WE WIL. AESO GHOTE FOR COMRUETS FACTORY CHEARAFCE Much Muctumore no Or 1993 CATALOCHE PLEASE SEND 4IF: A4 Stzen sur For YOUA FREE COFY

STEWART of READING

10 WYKEHAM ROAD, READING, BERKS RG6 IPL EMCIAKCRID Telephone: 0734268041 Fax: $(0734) 351696$ Callers Welcome 9am-5.30pm Mon-Fri (until 8pm Thurs)

TUBES

Get those portable TV's ready for the Christmas market
$41 / 2^{\prime \prime}$ mono tube (4ADC4)
only £15

14" narrow necked tube New only £49 (limited quantity of exequipment tubes at $£ 35$
$14^{\prime \prime}$ wide necked tube (low
focus) regun only £19.
New $£ 29$
$16^{\prime \prime}$ wide necked tube (high focus). New only £29

We offer a wide range of guaranteed re-gunned tubes, also manufacturers ' B ' grade. Also in stock a large quantity of ex-equipment tubes (salvaged from new and used sets).

RING IRENE or JANE for friendly, helpful advice.

Carriage and VAT extra VISA CISA EXPRESS TV The Mill, Mill Lane, RUGELEY, Staffs WS15 2.JW Tel: 0889-577600 Fax: 0889-575600

REBUILT TV TUBES

. . . direct from the

 manufacturerWe also supply video-heads, remote-controls and TVNCR spares

OUTSTANDING VALUE

from one of the UK's largest BSl approved manufacturers of rebuilt tubes

Tel: 0429837100 - Tubes 0429838057 - Spares
Fax: 0429837101
Unit 1B, Wingate Grange Industrial Estate, Co. Durham, TS28 5AH

TECHNICAL BOOKS

A selection from our range for the TV and Video Servicing Trade.
Video and Camcorder Equivalents. Lists all-known models and their equiviants.
2 Volume set. Makes A-J Order MP-217. Makes K-Z Order MP-218. Price 55.95 Each. Television Chassis Guide. Order MP-18. Price E595. Television Equivalents Order MP-150. Price £5.95.
Video Recorder Faults. Repair Guide for Beginers. Order MP.S. Price $£ 3.95$. VHS Video Recorder Principles. Order MP-58. Price $£ 3.95$.
Fault Lists for Televisions. Hundereds of fauits and their causes. Order MP-205. $£ 6.95$. Fault Lists for Video Recorders. 2 Voume Set. Order MP-206 \& MP-22. Price E6.95 each. Teleext: Repair Manual. Details extensive eppairs to Teleext Panels. Order MP.38. 66.95 . Order TODAY using Access/Visa for Immediate Despatch.
All orders plus $£ 235$ Post and Packing. (Overseas 55.00).
 Mauritron Technical Services (TV), 47A High Street, Chinnor, Oxfordshire, OX9 4DJ. Tel:- 0844-351694. Fax:- 0844-352554.

DO YOU REPAIR WHITE GOODS?

THEN YOU SHOULD KNOW ABOUT

DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :WASHING MAChines
 kettles
irons
TOASTERS
micro-wave ovens
*NEW $\star 535$ page pattern parts catalogue now available at a cost of $£ 6$ to non-account customers
$-\perp$ DATAPART LTD

ELECTRON HOUSE, 100 GREAT BARR STREET BIRMINGHAM B9 4BB

SALES DESK $0217665551 \quad 24$
FAX FREE 0800373459 HOURS

Antex thermally balanced irons are available with a wide selection of soldering bits. There are also adjustable temperature controlled irons for low temperature work.
Solder Stations with optional digital temperature read-out are also available.

Ask for Antex at leading

 Electronic Distributors.

[^4]

2 Westbridge Industrial Estate, Tavistock, Devon PL19 8DE Telephone: (0822) 613565 Fax: (0822) 617598

DO YOU SELL EX RENTAL OR REFURBISHED VCR's? BRING THEM UP TO DATE

 WITH

Take full advantage of this 'Product of the Year' and increase your sales margins by offering the VIDEO \qquad hand set with your VCRs (those without built in VIDEO 倩总 technology) - It's got to be cheaper - also note that the VIDEOMP hand set is essential for full satellite compatibility
Look what the trade is saying!
'People can relate to Videoplus and are prepared to pay a premium for it' (Samsung ERT 6/5/93)
'People buy Videoplus for ease of use'
(Ferguson ERT 6/5/93)
'All the excitement over Videoplus has left other programmers out in the cold'
(ERT 6/5/93)
To ensure your supply of 'Product of the Year' Ring us on

PHONE 0492860881 or FREE FAX 0800220681

We might have a surprise for you
The Diamond Stylus Co, Council Street West, Llandudno, Gwynedd LL30 1ED

How to expand your TV Rental business with

 no capital outlay(AND STILL KEEP THE PROFIT) HOW CAN I FIND OUT MORE?

Just ring or write to Henry Jones at the address below. He will be delighted to answer your queries and give you full details of the Rental Finance Plan.

39 SOUTH STREET • TARRING WORTHING • WEST SUSSEX • BN14 7LG TEL: WORTHING (0903) 821020
FAX: WORTHING (0903) 821194

PAYS-UT.V.

SUPPLIERS OF WORKING

 USED TV'S, VIDEOS, MICROWAVES, FRIDGE FREEZERS, COOKERS + WASHING MACHINES
TTN , NOTTINGHAM O6I2-500002 LONDON 081-5688182

WE DELIVER ALL AREAS!

ms

TRAINING DIVISION

MIS have held approved service training courses for industry, local government and health authorities throughout the UK since 1984. The following are designed for all domestic and commercial appliance service technicians. Please contact us for venue dates within the UK and Ireland.

ELECTRICAL SAFETY TRAINING (All Appliances)

This practical course covers appliance and workshop equipment using Portable Appliance Tester, Earth Loop Impedance Tester, and Earth Insulation. Inc. manual of test charts; regulations and essential documentation.

MICROWAVE OVEN SERVICE TRAINING

Covers all commercial/domestic ovens. Inc. MIS publication "Microwave Oven Servicing" ISBN 0.9513783.0.9.

MIS Training Division

1 South Lane, Clanfield, Hants PO8 0RB Tel: 0705596272 Fax: 0705592499

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere.

From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio in fact practically anything.

Originals or Photostats as available.

> Also available. Our FREE catalogue detailing Hundreds of Technical Books and Repair Guides available.

Send 2 x 1st class stamps for your copy TODAY.

Mauritron Technical Services (TV),
47A High Street, Chinnor, Oxfordshire, OX9 4DJ.
Tel:- 0844-351694. Fax:- 0844-352554.

P119 UISION-ON NEUS UPDATE NOU 1993 HELP DESK FOR ENGINEERS

TV and VCR faults that are intermittent or difficult to trace are a drain on resources and profits.

That's where 'FAULT-FACT-FILES' can help.
For just $£ 2.50^{*}$ we can contact engineers all over the country, many of whom may already have the diagnosis you need for that elusive fault.

Plus as a subscriber to 'FAULT-FACT-FILES' you will receive at least 150 collated faults each month.

Can you afford to miss it?
SEND A LARGE S.A.E. FOR MORE INFORMATION.
-Available to 'FAULT-FACT-FILES' subscribers only at this special rate. Non-subscribers may use this facility at a cost of $£ 7.50$ for each diagnosis sought.

SPECIAL BNTRODUCTORY OFFER FIRST TWO ISSUES FREE!

[^5]
AMSTRAD HANDSETS

VCR4500
VCR $4600,4600 \mathrm{Mk}$ II
VCR4700
VCR5200
VCR6100 (Indexer) VCR6100 (Barcode Indexer) VCR6200 Barcode
VCR9000 (Old type)
TVR 2
TVR 3
SDR400 (Equivalent)
SRD500
TS90/99 Tower System
AMSTRAD LOPTS
CTV1000 FB182K CTV1400 FB165KA CTV1401 3714002 CTV1409 3714002 CTV2000 FB171 CTV2000 FB171K CTV2200 3722002 CTV2210 3722002
TVR 21810951
TVR 3181297
CTM644 Mkl| 3714009 PC12-HRCD/D MSH1FCT31 PCW9512,8256,8512
FERGUSON LOPT MM06 00D4242001

AMSTRAD IF UNITS

TPS7-B0006 VCR4600/4700 TPS7-L0002
1813766

Harrison

 ElectronicsCENTURY WAY, MARCH, CAMBS PE15 8QW FAX: (0354) 51416. TEL: (0354) 51289
14.10

AMSTRAD MODULATORS
 AMSTRAD MOTORS

11.7518108221 VCR5200
11.75 ENP-E730-2 VCR7000
17.63 VCR4600Mkli,4700
11.75 SRD100/200/400
25.85 AMSTRAD SERVICE
32.44 MANUALS
11.75 VCR4600
8.46 VCR4600MkII,4700
14.10 VCR6000/6100
11.05 VCR8700
11.75 VCR8800
11.75 VCR9000/9004

AMSTRAD COMPUTER

11.75 OPERATORS MANUAL
11.75 PC1640
$14.10 \mathrm{PC} 2286 / 2386$
9.40 AMSTRAD VCR
9.40 MECHANISMS
14.10 4500,9000 (Old model)
14.10 CASSETTE HOUSING ASSY
13.51 CASSETTE HOUSING ASSY
13.51 4600,4700,TVR1,2,3
14.10 COMPLETE MECHANISM ASSY
14.10 (Excluding Video Heads)
7.05 COMPLETE MECHANISM ASSY
(Excluding cylinder assy.)
MECHANISM DECK
4.70 (Excluding Cass housing assy. \& Cylinder assy.)
9.40 CASSETTE HOUSING ASSY,
14.10 CYLINDER ASSY. (incl. Standard
4.10 play Video heads) CYLINDER ASSY. (excluding Video heads) CYLINDER LOWER DRUM ASSY (Excluding Motor) HEAD BASE ASSY. (Audio) VMC100-Various parts available, please phone for prices
7.05 Loading Motor MCB9B02
5.88 Drum Motor E20EL05
5.88 Capstan Motor LLN4B21
5.88 Tape Loading MCF9B02

AMSTRAD PCB's

(Complete, fully populated)
9.004500 Timer
9.004500 Systems Contro
11.504600 Systems Control/Servo,
8.00 Display \& Control PCB's
6.004600 Display
9.004600 Contro

4600 Video \& Audio
4600 Power Supply
4600Mkll Main PCB Assy
11.75 4600Mk|l Timer
11.75 4600Mk ll Controi

4600Mk|I Head Amp Assy
4600Mk |I Power Supply
4700 Main PCB Assy.
4700 Timer
15.28 4700 Contro

4700 Head Amp Assy
4700 Power Supply
5200 Timer \& Channel Disp
35.255200 Video

5200 Switch Pane|
29.387000 Switch PCB no: 7

CTV1400 Switches, Presets \& Tune
(UE2-B31F)
18.80 CTV 1400 Switches, Presets \& Tuner
5.28 (ENV87358F2) 8.23

CTV1400 Switches, Presets \& Tuner
25.26 (ENV87509F2)

CTV2200 PCB no:3
CTV2200 PCB

CV200 PCB no. 4
TVR 2 Main TV PCB
5.88 TVR 3 TV Power Supply TVR 3 Head Amp Assy TVR 3 Video Power Supply

AMSTRAD TUNERS
3.53 UE33-B01 VCR4600/4700 10.58 UE2-B31F CTV2200/2210
9.991810829 VCR5200
9.99 ENV87358F2 VCR7000

Various Videos PCB's and Cassette
Housings available - see our full
9.40 list for parts and prices.

BSR DECK

SM103/104 Linear Tracking Record
Deck
SANYO VHR1110
$1150,1300,1700,2300$
FUTEK F501 Replacement Video
Heads
AMSTRAD PC12MD
VGA MONO MONITOR
Suitable for use with 2000/3000
series and any other VGA compatible

```
PC 64.63
```

AMSTRAD SOFTWARE
ACCOUNTSMASTER 17.63
(Full accounts program for running
small business on any PC)
NFOMASTER
17.63
(Easy to use Database, runs on PC) LINKMASTER 11.75
AMSTRAD COMPUTER \& PRINTER
SPARES - Many spares available,
please phone for price.

PRICES INCLUDE VAT.

all items are brand new and guaranteed

* * SAME DAY DESPATCH $\star \star$

Write or Phone for FULL catalogue.
POST \& PACKING
EXTRA

TVINTERNATIONAL FOR
 'B' GRADE AUDIO - VIDEO - MICROWAVES

LARGE STOCKS, NEW - BOXED - COMPLETE SOLD FULLY TESTED OR DIRECT - UNTESTED ALL MINT

TEL. 0384482575
 ASK FOR TRADE DEPT FAX. 0384265236

PEARTREE LANE, DUDLEY, WEST MIDLANDS
 OPEN 9.00-6.00 MONDAY - SATURDAY

LEADERS IN THE SUPPLY OF EX-RENTAL TV, VIDEO \& AUDIO ARE PROUD TO ANNOUNCE

YES, WE'RE MOVING SOME WAREHOUSES TO GIVE YOU THE BEST SERVICE AT PRICES YOU CAN PROFIT FROM CALL US FOR MOVING DATES AND DIRECTIONS

MANCHESTER'S NO 1 WHOLESALER

CentreVision ${ }^{2}$

SLOPER ROAD - LECKWITH • CARDIFF Exit 33 off the M4

COLLECT YOUR CHRISTMAS

FREE DELIVERY IN SELECTIVE AREAS PHONE FOR DETAILS

100's OF TV's \& VIDEO's IN STOCK OVER 50 TV's ON DISPLAY READY FOR DIRECT RE-SALE INCLUDING FST, NICAM STEREO

PHONE 0222344754

WESTERN TRADE SERVICES
ES'T 14 YEARS
SUPPLIERS OF EX-RENTAL
TV \& VIDEO
THORN AND NON THORN

SOUTH WEST

2A Barton Hill Road, Torquay,
Devon TQ2 8JH
Tel: 0803312222
Fax: 0803326767
Delivering throughout Devon and Cornwall weekly

WALES

Unit 6, Islwyn Workshop, Portymaester Ind Est, Risca, Gwent
Tel: 0633612667

BITEI SOUTHWAIES

GOOD DEALS ON TV \& VIDEOS ALSO USED SPARES INC TUBES

Unit 11 , Taveners Estate, Caerleon, Newport, Gwent. (3 miles from M4, Junc. 25)

Ring Bob for prices on: 0633430040

STIVERECMTMFN VIDEOS

EX-RINTALL TV \& VIDEOS thomi d Grantida Great deals on working and nonworking videos and TV's
Direct loads of white goods available

UK DFHTVERY AVAILABLE

- ERPORT ENQULRISS -- WIMCONE -

24 GOLD STAEETT TIVERTON
DEVON ER16 6PY TEMEPIONL: 0884256257

HAVE YOU A PARTICULAR COMPONENT THAT YOU WISH TO SELL ??
Then why not let "TELEVISION" help you to achieve this by placing your advertisement with us.
Over 73\% of our circulation buy directly from advertisements which appear in "TELEVISION" every month.
To find out more on current rates and circulation call:
PAT BUNCE ON: 081-652 8339 or FAX:
081-652 8931.

14" REMOTE TV With direct access remote control, 32 channel presels, on-screen display

PORTABLE CD 'GHETO' BLASTER Whi progrermabole OD player, 3 band graphic equaliser, 2 band strieo there, win cassethe f? deck, 2 way 44 speoker system f 40.00

CD MINI NI-FI With programmable CD ployer, 3 band graphic equaliser, 3 band stereo tuner, twin cassette deck

ALL GOODS ARE READY FOR SHOWROOM ALL PRICES SUBJECT TO VAT

TELEPHONE 041-353 1665 ASK FOR STEPHEN

TV's DIRECT
14 PAYNE ST, PORT DUNDAS, GLASGOW G4 OLF all products subject to availability

CO MINI HI-FI With programmable CD player, 3 band graphic equaliser, 2 band stereo tuner, cassette deck with autostop. \qquad
CD MINI HI-FI With programmable CD player, 3 band graphic equaliser, 3 band stereo tuner, cassette deck with autostop.

MULII-PLAY CD MIDI HI-FI With 5 disc multip ploy programmable CD ployere, intra-red remote controd 3 bond grophic equaliser. ${ }^{7} 75$ 2 bond stereo tiner, wwin cosserte deck . I/ 5.00

WHY NOT FAX YOUR ORDER TO US ON 041-3531124

B-grade Stock All Boxed, working If you require one item please read on:

10" R/C Portable 14" Basic Portable	£95	
14" R/C Portable	¢95	
$20^{\prime \prime} \mathrm{R} / \mathrm{C}$	$\underline{8119}$	DISCOUNT
$20^{\prime \prime}$ Text	£139	
21" FST R/C	£145	ON
21 "Fastext FST 21" Nicam	£165	
21" Nicam	£219	QuANIIT
L/P Videos	$£ 99$	
Stereo Midi System	£110	
Microwave Oven	£50	
TV \& Video Stands	-	

B Grade Electric Built-in ovens £125 Free Standing Gas Cookers £155 Gas Hobs £39 Calor Gas Hobs £35 All items unused \& working
Customer returns in block.
Example. Untested 3x21" FST 3×25" FST 6xF/L Videos $£ 40$ each. Total $£ 480+$ VAT This price does not include handsets.
Some in need of repair. Some working,
Ex-rental TV \& Videos, all untouched.
Basic £ 10 \& £ 15 R/C £20 \& £25 Text £25 \& £30 Video's T/L £20 F/L £25. All üntouched.

W TREE WAREHOUSE

UNIT I, SUNSHINE MILLS, WORTLEY RD, LEEDS 12
TEL: 0532638804 FAX: 0532310275

BRITAINS LARGEST INDEPENDENT PRESENTS THE LARGEST STOCK OF ‘B’ GRADE

THE TV \& VIDEO WHOLESALERS WITH A FRIENDLY SERVICE

EX RENTAL! INCREASED SELECTION THIS MONTH

A selection of Nicam TVs \& Nicam videos are available

AUTUMN SPECTACULAR CONTINUES

CLEARANCE BARGAINS AVAILABLE

See Next Months Issue for an Important Announcement

Graded TVs available:
DECCA, ITT, MITSUBISHI, SANYO, TATUNG

Graded VCRs available:

> AKAI,

FERGUSON ITT, PANASONIC SONY ETC.

DONTMSSOUT, PHONENOW!

(PRICES EXCLUDE VAT)
PRESTON
139 Oakshott Place
Walton Summit
Ind Est
Preston (M6 Junc 29)
Tel: 0772312101

BIRMINGHAM
208 Bromford Lane Erdington Birmingham B24 8DL
Tel: 021-327 3273 Fax: 021-322 2011

LONDON Unit 2 The Royal London Est 29/35 North Acton Road London NW10
Tel: 081-961 5005

INSTAVISION LTD

UNIT 1-19 LOWER HIGH STREET, WEDNESBURY, WEST MIDLANDS, WS10 7AL Tel: 021-556 6434 Fax: 021-505 2619

$\begin{aligned} & \text { Tx text } \\ & \text { £45 } \end{aligned}$	$\begin{gathered} \text { Stereo } \\ \text { text } \\ \mathbf{£ 6 0} \end{gathered}$	Redifusion MARK IV text E45	$\begin{gathered} \text { Panasonic } \\ \text { text } \\ \mathbf{£ 4 5} \end{gathered}$
Basic sets From $£ 15$	F.S.T. POA while in stock	Portable E50	Faulty TV's From f5
Top Loaders $\mathbf{£ 4 0}$	Front Loaders $£ 55$	Long Play £65	Faulty Videos From $£ 10$

ALL PRICES ARE SUBJECT TO VAT AND BASED ON QTY EXPORT ENQUIRIES WELCOME

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS,
BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE

LARGEST RANGES, AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE.
LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE
CDASTIA\|
AUEIRUAU
SUUD\|D\|UES

UNIT X2 Rudford Industrial Estate Ford, Arundel

0903723726

NO MINIMUM ORDER VALUE
NEXT DA Y DELIVERY ACROSS UK CARRIAGE FREE ON ORDERS $£ 250+$

C\&KELECTRONCS

Good range of
TV's \& Videos
Off the Pile or Working

WORKING

Top Loaders from $£ 35.00$
Front Loaders from $£ 45.00$
Teletext TV's with
remote
£45.00
Basic TV's from $£ 15.00$
Portables from $£ 45.00$
Used Video Spares
Available
24/26 High Street
Brownhills, Walsall
West Midlands WS8 6EO
(Near A5 Cannock)
850543-376689

INDEXES! INDEXES!

THOUSANDS SOLD WORLDWIDE
EDITION 10 of the complete indexes now published containing over 8,000 Faults listed in 12 Years of Television Magazine

Indexes are alphabetically listed by Make, Model, Fault, Ref and are now Available for just :
£8.00
For Television \& Satellite Faults
\&8,00 For Video, Camcorder \& CD Faults
Or
£15.00 For both sets complete
Please add £1.50 (UK), £3.00 (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE IS ALSO AVAILABLE.
FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to:
EI $\begin{aligned} & 31 \text { PRENTON ROAD WEST, } \\ & \text { PRENTON, BIRKENHEAD, } \\ & \text { MERSEYSIDE L42 9PY }\end{aligned}$

STREECARDS CAN SAVE YOU £100's, EVEN £1000's, EVERY YEAR

Each STREECARD entitles you to unlimited exchanges
(1 at a time) for 1 year in either Library of your choice The 1st card in any Library costs $£ 59.95$

Each card thereafter costs $£ 49.95$

DATA LIBRARY TERMS

You can now exchange manuals from the largest known collection of service/repair data in the world! Giant manual supplied FREE updated yearly, lists all the 1000's of available manuals.
Single exchanges (1 card) cost $£ 3.95$
Extra cards exchanges at the same time $£ 2.95$

PC Games Library terms

Your 1st choice can be anything on the market up to $£ 60$ inc. CD-ROM, thereafter from big regularly updated lists with well over 100 of the latest games, FREE hints/tips/Guides.
Each single exchange (1 Streecard held) only $£ 4.95$
Further exchanges at the same time $£ 3.95$ each
Join now using Access, Visa, etc. by phone or write for full details to: STREE (Est 1968)
76 Church St, Larkhall, Lanarks ML9 1HE Tel: 0698 883334/888343Fax: 0698884825

페NㅔN V/SA

GERMAN SERVICE SHEET SPECIALISTS

Ous commections are murld-wide. We furnith any
kind of German. Eurupean and Japanese wentige kind of German. Eurupoin and Japanese wenige
shee or manual. Thoucamds of different sheen and manuals in staxh. For any enquiries:
DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast,
Co. Donegal, Republic of Ireland.
Phone: 07548275

> SERVICE INFORMATION
> CIRCUITS \& SERVICE MANUALS FROM 1940s1990s: radios, amps, radiograms, tuners, CD's, T/s, Videos, cassette, radios, ICE etc LARGE QUJANTITY USED N PANELS BACK COPIES PW, RACCOM TV MAG

> Give details of your needs to:
> dave williams
> Tel \& Fax 0302857526 Doncaster, South Yorkshire DN4 DQB

cLA55ified classifien clahsifien classifien clascified

D INFOTECH SYSTEMS Special UK Offers this Month

TV Repairs to 1989

10-12"x17" binders (£299 set) containing circuits for every major CTV chassis PLUS 17 Big TV Repair Manuals ($£ 150$ set) PLUS Practical TV Repairs, Servicing TV \& The PAL System for $£ 399$

TV Repair \& Service

The above system PLUS your choice of $£ 300$ worth of cTV Service Manuals
for $£ 445$
VCR Repair \& Service to 1989
35 Fault Guides ($£ 79.95$ set) PLUS 7 Giant binders of VCR Diagrams ($£ 225$ set) PLUS Thorn's VCR Technical Manuals ($£ 59.50$) PLUS your choice of $£ 200$ worth of VCR Service Manuals + Beeching VCR Servicing for only £359

The TVAR System

3 Huge binders packed with circuits \& layouts +3 big Manuals cover servicing \& repair data for hundreds of models; Audio systems, CD, Computers, CTV, HiFi, Satellite, Radio, VCR for late 1890's to 1993. (Vols 182 by return, Vol. 3 in December 1993 after updating!)
only $£ 149$
For full details \& FREE Catalogue, write phone or fax to 76 Church St., Larkhall, Lanarks ML9 1HE, Tel:0698 883334/888343 Fax:0698 884825

TIS, 76 Church St, Larkhall, Lanarks ML9 1HE, U.K. offers you
The Largest collection of SERVICE MANUALS TECHNICAL \& REPAIR MANUALS published anywhere on Earth: The Data Reference Manual lists \& prices them for only $\mathbf{\varepsilon 5} 5.9$ - with it you get FREE vouchers and the most comprehensive cross referencing of modets to the correct chassis and manucturers known, What's more, we'll supply circuits for any listed VCR @ £7, CTV model @ £4 or chassis @ £6 (+£2). Even better, we can supply Service Manuals costing up to $£ 70$ for little more than $£ 7$ each!

Some bargains from our huge stocks

Tunbridge's Pract TV Repairs \& Kings CTV Servicing £18.95 each or both for only $£ 30$
McCormac's IBlack Bookl Euro Scrambling for £32 3 Pract. Guides on How to Buy, Sell, Service and RepairVCR's - TV's - CD's $£ 9.95$ each or all 3 for $£ 25$ Thorn's own The PAL System' for only $£ 9.95$ Huge illustrated IC Data Reference Manuals only $£ 12.95$ ea

Send your order now, or ask for full details, or Phone 0698 883334/888343 Fax:0698 884825 or Visa/Access details for immediate despatch

RECRUITMENT
 D \& J Henry Ltd require

Experienced Bench Engineer
To work in the Coventry area. Must be qualified in City \& Guild 224 minimum part 3 To work on TV/HI FI Video etc, using the latest technology and equipment We are ASC, ASD for most major manufacturers. Salary will be negotiable depending on experience. To apply send your CV to: David Henry,
D \& J Henry Ltd, Henry House, Grange Avenue, Binley, Coventry CV3 2ED or Telephone: 0203 431393/440402.

If you require a home study course in the fundamentals of electronics, either to begin a career, pursue a hobby, or refresh your knowledge. a BASIC ELECTRONICS course, from the Direct Personal Learning scheme, could be just what you re looking for. Contact: Whitchurch BRISTOL Avon BSId ONG Telephone: $(0275) 835669$
Tel Telephone: (0275) 835669

Microwave Oven Component Parts

Guaranteed Quality

Guaranteed Products Competitive Price
 MISCELLANEOUS

Samuel Whites Estate, Medina Road, Cowes, Isle of Wight, PO31 7LP
Tel (0983) 296121 Telex (86736) Sortex G Fax: (0983) 296122

CAR RADIO DECODING EQUIPMENT
Plug our decoder into your IBM or compatible computer, remove the base plate from the radio, place our probe onto the PCB and the code is instantly displayed. Changing the code or even fully reprogramming the eeprom is just as easy
Easy to use software includes PCB layouts and help screens with full backup from our telephone helpline.
PHONE US NOW FOR INFORMATION PACK AND FREE DEMO DISK (Please state either $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ disk)
Starter kit covering the three most popular brands $\mathbf{£ 3 0 0}+$ carr \& VAT
EEPROM DECODING SERVICE: only $£ 5$ + VAT
(just send us the chip)
FORD 2006 RDS DECODED: for $f 10+$ VAT (send front panel only)
Electronic Sound Systems
62 High Northgate, Darlington, Co. Durham DL1 1UW Tel: 0325484089 Fax: 0325465921

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA AMSTRAD . BUSH . DECCA . DORIC BLAUPUNKT FERGUSON FIDELITY. GEC GRUNDIG GRANADA. HITACHI HINARI INDESIT . ITT KIMARA . NIKKAI. MATSUI MURPHY. OSAKI NORDMENDE . LOEWE-OPTA PANASONIC PYE PHILIPS . SANYO. SAISHO SHARP. SONY. SOLOVOX. SUSUMU. TANDBERG. TELEFUNKEN. THORN . TRIUMPH . HUANYU GOLDSTAR . BINATONE.

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD
RICHMOND. SURREY. TW9 2EQ. Mon-Fri9 am to 12.30 pm \&
Apprex. 1 mile from Kew Bridge.

WIZARD DISTRIBUTORS

Spares + Components Always in stock
Video heads for over 500 models
Spares for over 20 manufacturers
Hand sets for over 200 models
TV Tubes new + regunned
Plus much much more Empress St Works Empress St
Manchester M169EN
061 -872 5438,061-8480060 Fax: 061-873 7365

1.5 MILLION PEOPLE USE M.C.E.S. PRODUCTS DAILY.

REMANUFACTURED:-

T.V. TUNERS, RF MODULATORS/BOOSTERS, GRUNDIG TUNER/I.F., ITT TUNER I.F. SAT TUNERS, L.N.B.s, VIDEO HEADS.

FREE PRICE LIST AVAILABLE.

RING 061-746 8037
FAX 061-746 8136

VIDEO HEADS FROM $£ 8.00$
ALL MAJOR BRANDS
SERVICE KITS
FROM $£ 6.00$
ALL MAJOR BRANDS
IDLERS
FROM $£ 1.00$
PULLEY BLOCKS
FROM $£ 4.00$
PINCH ROLLERS
FROM £2.00
CASSETTE LAMPS
FROM $£ 0.38$

PARTS AT KNOCKOUT PRICES

WIDE RANGE OF REMOTE CONTROLS FROM $£ 7.00$

LOPTY'S
FERGUSON, HINARI
AND HITACHI FROM $£ 12.00$

BELT KITS
LARGE SELECTION FROM $£ 0.55$

ORION LIMITER POSTS FROM £0.90

PHILIPS BACK-UP BATTERIES
$1.2 \mathrm{~V} \quad £ 1.39$
2.4v £2.38

EASINGTON ELECTRONIC CENTRE
11 BEDE ST., EASINGTON COLLIERY
PETERLEE, COUNTY DURHAM, SR8 3RT
PLEASE ADD $£ 1.50$ P\&P $+17.5 \%$ VAT, MIN ORDER $£ 5.00$

Phone your Credit Card Order
for Immediate Despatch

TEL: 091-527 0903

TOP BRAND NAME RETURNS.

Colour Televisions, Microwaves, Camcorders, De-humidifiers, Video Recorders, Freezers, Fridges. All current models.
Phone 0227-786350 Fax 0227-786349

FOR QUICK SALE

15 A41EAM01 X01 (Phillips) 9 A51EAL20X02 (Mallard) 8 A59EAK00X01 (Mallard)
5 AX37-001 YVO1 FREG. Ail CRTS as new (Offer invited) Call Harry 081-363 2399 (Eve.) 081-209 0911 (Day)

> PLEASE ADDRESS ALL BOX NUMBER ENQUIRIES TO:
> BOX NO: TELEVISION 11^{TB} FLOOR QUADRANT HOUSE THE QUADRANT SUTTON SURREY SM2 5AD

RILEAY
 OMAGK LTD I:OMINUIFK SUL TWAKI

DO YOU RENT TELEVISIONS?

DO YOU STIL USE A CARD SYSTEM?

DO YOU FIND IT DIFFICHIT TO KHOW YOUR ARREARS TOTAL AT ANY GIVEN TIME? If you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
* easy to use and operate

NEW HIRE PURCHASE PRCGRAMME NOW AVAILABLE AS WELL.
These programmes operate on all IBM compatibles funning under MS-DOS. Free demonstration discs available.

WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone Telephone Beragh 58214 (0662 7)

TUBES

REBUILT CRTs

VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphors
B.S.I. Certification
N.G.T. ELECTRONICS LTD 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535
 Britain's Oldest Established Tube Rebuilder

Abstract

ANan

VIDEOCRYPT DECODER Service sheet Chassis, Issues of Television from 1973 with smartcard contact details, Eurocrypt 1990 some tubes $£ 200$ The Lot for further with smartcard contact details, Eurocrypt Rams-bottom, Lancs. BLO 9AG. Tel: 0706 Rams-bo 823036. WANTED. VALVES TRANSISTORS especially manufactured EL34. KT66, KT77, KT88, PX4, PX25. Please post list of what you have. cash waiting. We also supply CRT for radars, scopes, monitors (not domestic T/) plus camera tubes, vidicon, magnetrons, image intensifiers and vaives for audio, transmitting and television. Billington Export Lid., IE Gilmans Industrial Estate, Billingshurst, Sussex RH14 9EZ. Callers, please phone 0403 784961 for quote or catalogue prices.

WORKSHOP CLEARANCE Non working TV's, Oscilloscopes, Boxed Boards/

Chassis, Issues of television from fubes E200 The Lot for further details call Peter on 0734789579. AVO MULTIMETER Model 8, f45.00. 500 volt megers, $£ 30.00$. Prices plus VAT and p\&p. Send SAE for lists of surplus instru ments and scopes etc. A.C. Electronics, 17 Appleton Grove, Leeds LS9 9EN. Tel: 0532 496048.

FOR SALE Reconditioned slot meters for Television rental. Tel: 0790763245. OCHRE MILL Technical Services. Grundig $T V$ spares for most models to 1985 . Fast friendly, helpful, sensible prices. Gt Lype Farm, Chariton, N. Malmesbury, Wilts SN16 9DR. Tel: 0666823228. PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 0494814317.

New public telephone exchange original price cost $£ 299.00$ Network exchange line (at home or in a small business) has two telephones and cables and NS5107 control unit SPECIAL PRICE $\mathbf{E} 54$ Send for data

DISH AND LNB SUITABLE FOR D2 MAC £15 POST£5 + VAT

New Eprom for converting Ferguson BSB Receivers to D2 MAC and PAL - 99 channel is tunable and each one can be put into memory - also has menu. £20 PAL panel (to convert to PAL) $£ 20$ SEND FOR DATA.

CHASSIS SUITABLE FOR CONVERSION TO D2 MAC £10 HANDSET £1.50 POST £4 + VAT

SENDZ COMPONENTS

63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 8AF
NORMALLY SAME DAY SERVICE • SUBJECT TO AVAILABILITY
No accounts - Technjcal information by telephone only - No credit cards
Unless specified add $£ 1.70$ P/P to small orders \bullet Additional charges for heavier items - Specific P/P charges are PER ITEM - For UK addresses please add P/P TO ORDER THEN $171 / 2 \%$ VAT TO TOTAL • This applies for the EC unless VAT No. is given - EXPORTS - P/P at cost • Postal Order/Cheque with order.

Callers to shop - 212 London Road, Southend - Open 9.30-1, 2.15-5.

[^0]: * Simon Nash is with Panasonic Technical Support.

[^1]: Name:

[^2]: Left: A satellite TV OB sports feed via Eutelsat II F1 at 13° E. Photographed by Johin Locker, Mersyside. Centre: CKCOTV, Kitchener, Ontario close-down colour bars, ch. A2 - a possible for double-hop reception in the UK! Right: Goodnight from Global TV, Ontario, ch. A7. Our thanks to Andrew Sykes of Halifax, Yorkshire for these last two shots, taken during a holiday in August.

[^3]: Published on the third Wednesday of each month by Reed Business Publishing Led, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9 LS (071261 5000). Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television "is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^4]: Antex (Electronics) Ltd.

[^5]: WHEN YOU SUBSCRIBE TO 'FAULT-FACT-FILES' FOR ONE YEAR. TO APPLY SIMPLY SEND YOUR NAME, ADDRESS AND POSTCODE WITH A CHEQUE/P.O. FOR £25 (normal subscription £30)

 TO:
 'VISION ON' (TV1) 16 HILLVIEW PARK NEWTOWNABBEY BT36 8HW.
 Overseas add £10 per annum.

