SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

FREE TV/VIDEO SPARES GUIDE

Servicing the Philips 3A Chassis Sync and TB Generator Circuits Fault Notes from Toshiba - DX-TV Servicing Car Audio Equipment Satellite Faults - Test Report VCR Clinic - TV Fault Finding

WILLOW VALE ELECTRONICS LIMITED

MF

the answer to the spares puzzle

WVE

Akai Kamasa
Altai Konig
Amstrad Labgear
Antex Leader
Antiference Ledu
A.D.S. Link Hamson

Aiphone Microtec
Ambersil Mitsubishi
Aiwa Nikkai
Alba Oryx
AWI Pye
Baldwin Boxall Philips
Bose Portasol
BK Precision Ross
Blackstar Saisho
Celtel Samsung
Celtek Sansuí
DNH Sattinder
Electrolube Seaward
ERL Servisol
Ferguson Sharp
Fidelity Shure
G.E.C. Sony

Goldstar Thander
Grundig Thompson
Hameg Toshiba
Inkel Trantec
J.V.G. Weller

ELECTRONICS LIMITED

'The Better Choice'

HEAD OFFICE:
11 Arkwright Road, Reading, RG2 OLU. Tel: 0734876444 Fax: 0734867188

ACCOUNTS DEPARTMENT:
Tel: 0734860158

NOTTINGHAM BRANCH:
11 Marhill Road, Carlton,
Nottingham, NG4 3AJ.
Tel: 0602870789 Fax: 0602878772

MANCHESTER BRANCH:

Unit 4 Enterprise Park, Reliance Street, Manchester, M10 OAL
Tel: 061-682 1415 Fax: 061-682 9031

On sale September 15th

COPYRIGHT

© Reed Business Publishing Ltd., 1993 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at f3.50 each from Video Interface Products Ltd., who can also supply a five-year consolidated index on computer disk. For further details see page 853.
Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, £30 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 863.

849 Leader

850 Service Briefs from Toshiba
852 Test Report: W'avetek Series 2000 DMMs
David Botto
856 Letters

857 Servicing the Philips 3A Chassis
Richard Newman
This top-of-the range chassis has a reputation for being difficult to deal with. Guidance on handling and fault-finding.

862 Long-distance Television
Roger Bunney
864 What a Life!
Donald Bullock
865 Test Case 370
866 VCR Clinic
Reports from John Edwards, Michael Dranfield, Stephen Leatherbarrow, Hugh Allison, Terry Lamoon, Eugene Trundle, Philip Blundell, AMIEIE, Brian Storm, Chris Watton, Bob McClenning and Nick Beer.

869 Satellite Scene
Fault-finding and a way of lowering an LNB's frequency range. Contributions from Graham Rees,
M. Cordner and Hugh Allison.

870 Modern TV Receiver Techniques, Part 10
Eugene Trundle
All about timebase synchronisation in modern receivers. Also the line driver stage.

874 Teletopics
875 Next Month in Television
878 TV Fault Finding
Reports from Philip Blundell, AMIEIE, Ian Bowden, Terry Lamoon, Keith Evans, Chris Watton, Michael Dranfield, John Edwards, J.K. Potts and Gordon Haigh.

881 Camcorner
Reports from Brian Storm and Simon Bodgett.
882 Servicing Car Audio Equipment
Alan Bouskill
Hints on tackling faulty car audio equipment with notes on some specific problems.

886 Panasonic's Digital TV Chassis, Part 2
Ray Meadows
Mainly this month the buses and CCU, the signal
routeing arrangements and the digital video process-
ing system, including the colour decoder
890 Help Wanted

VIDEO SERVICE KITS

AMSTRAD
VCR700
BELT SET PINCH ROLLER. REEL IDLER. VIDEO LAMP
Order Code: SK41
$£ 5.50$
FERGUSON: JVC
$3 V 4243$
HRD 455
Contants
BELT SET PINCH ROLLER
Economy Rit Contents BELT SET PINCH ROLLER C.UTCH MECHANISM. TENSION

SUPPLYCLUTCH TAKEUP

3V50/5964/65
HRD $770 / 480 / 210 / 23013001320 / 370 / 400 / 430 / 530,700 / 50$
HRS 5000 HRS5000
Contents
Contents
BELT SET PINCH ROLLER DELR ARM TENSION BANO
Order Code: SK44
3V2913V30
HR72007300;7350
Contents
BELT SET. PINCH ROLLER. TENSION BAND IDLER TYRES
Order Code: SK05
$3 v 35 / 36.38 / 39 / 49$
HROIIO
Contents
BELT SET PINCH ROLLER TENSION BAND. IOLER TYRES
Order Code: SK04

$3 v 31 / 3 V 42$

HR7600/7

Contents
BEL I SET TH REEL TABE TYRE PNCH ROLLER REEL IDLERTVAE TUIDERL TYRE Order Code: SK33 £12.00 Order Code: SM34 $£ 5.50$

3V35:36/38:39/49
HRD $110,111 / 120 / 121 / 225$
Contents
BELTSET TU REEL TABLE
TYRE SUPPLY REEL TABLE YRE PINCH ROLLER T/U CLUTCH. TUIDLER. REEL
Order Code: SK35 $£ 10.50$
3V29/3V30
Harzonar300 1350
Contents
BELT SET. TTUREEL TABLE
YRE PINCH ROH.LER REEI
IDLER TUCLUTCH TA IDLER
ENSION BAND VIOEO LAMP
Order Code: SK31 $\quad \mathbf{1 1 . 5 0}$ Order Code: SH32 55.60
V44/45/48553/54/55/57
ARP50HRD140150/158;960
Contents
Econamf Kit Contents
BELT SET PINCH ROLLER
CLUTCH MECHANISM TENSION
BAND
Order Code: SK39 $\quad \$ 15.00 \quad$ Order Code: SK40 $\quad £ 9.50$

FISHER

FVHP905/906/907/908/910/911/916/918
Contents Economy Kit Contents
BELT SET PINCH ROLLER BELT SET. PINCH ROLLER
LER GEARIDLER UNIT IDLER TYRE
Order Code: SK 57
$\$ 13.00$
Economy Kit Contents BELTSET.TM REEL TABLE TYRE PINCH ROLLER TA CLUTCH. TJU IDLER TYRE. REEL Order Code: SM36

〔6.50

73018301840
Ontents
BELTSET PINCH ROLLER Economy Kit Contents
DLER GEAR IDEERUNIT BELT SET. PINCHROLLER

HITACHI

Contents
BELTSET PINCHROLLER TENSION BAND IDLER TYRES
Order Lode:
VT11NT33
Contents
BELT SET, TYUP REEL TABLE
YRE SUPPLY REEL TABLE TMRE PINCH ROLIER FFREW DLER CLUTCH PLATE
Oriar Code: SM45

Economy hit Contents
BELTSET, PINCHROLLER FFREWIOLER TYRE TUP REEL TABLE TYRE SUPPLY REEL TABLE TYRE
TABLE TYRE
£15.00 Order Code: SK46

VIDEO SERVICE KITS (Cont.)
HITACHI
VT52/61/62/63/64/65/85/86/640
BELT SET. PINCH ROLIER
FTREWARM CLUTCH PIATE
Econony kit Contents
TFREW ARM. CLUTCH PLATE BELF SET. PINCH ROLLER $\begin{array}{llll}\text { Order Code: SK43 } & \text { E14.00 } & \text { Order Code: SK50 } & \mathbf{\$ 3 . 2 5}\end{array}$

VT400/405/410/3/3/4/45/18/420/25/26 28/4303/35/48/450,498/ 510/520/25/26/530/35/36/540/545/46:48/570/75/576/580/85/88
Contents TMMING BELT. PINCH ROLLER FF/REW ARM CLUTCHBASE IENSION BAND
Order Code: SK52

VT100/110/11//1 13/115/118/120/125/128/130/135/138/145/450 VT100:11/0/11/113/115/118/120/125

Contents

BELT SET. PINCH ROLLER. FFRREW ARM CLUTCH PLATE TENSION BAND
PANASONIC
$\begin{array}{ll}\text { PANASONIC } & \text { NV7000NV7200/NV7800 } \\ \text { NV200NN2010 } \\ \text { Contents } & \text { Contents }\end{array}$ $\begin{array}{ll}\text { Contents } & \text { Contents } \\ \text { BELT SET PINCH ROLLER. } & \text { BET SET PINCH ROLLER }\end{array}$ TENSION BAND. IDLER TYRES TENSION BAND, IDLER TVRES

NV300/NV330/NV333NV340NV 366
Contents
BELT SET. PANCH ROLLER TENSION BAND. IDLER TYRE
Order Code: SK01

NV2000 NV2010 Contents

Contents
 BELTSET. PINCH ROLLER FF Economy lit Contents

 IDLER. PLAYIDLER TENSION BELTSET PINCH ROLLER BAND VIDEO LAMPOrder Code: SK13

Contents

Contents
BEL SET. PINCH ROLLER.
Economy kit Contents BEL SET PINCH ROLLER
IDLER TYRE CLUTCH TYRE
TENSIONBAND
Order Code: 5K12

AV300:NV330 NV333 NV 340 NV 366
 Contents

Contents
BELTSET PINCH ROLLER
Economy Kit Cantents
BELT SET PINCH ROLLER
IDLER UNT PLAY IDLER SET PINCH ROLLER
BLER TYRE PLAY DLER
 NVG7 NVG9NNG 10/NVG11/NVG12/NVG14/NVG15/NVG16 NVG18NVG30NVG120/NVG130/NVG400NVH 65 (PX/AC)/ AG1810 (PiK)

Contents Economy Kit Contents

LOADING BELT CAPSTAN BELT. PINCH ROLLER IDLER BELT PINGE ROLIER DAPS

BELT. PINCH ROLLER IDLER Order Code: SK27
$\$ 9.50$

NV332

EELTSET Economy Kit Contents
BELT SET PINCH ROLLER BELT SET. PINCHROLLER PLAY IDLER FFREW ROLER
TENSION BAND FFREW TVRE PLAYIDLER TYRE FFRREW DLER TVRE

NV230:250/260/280/430 450/460:470/650/810/890/
NV230:250/260/280:43
Contents Economy Kit Contents

$\begin{array}{llll}\text { Order Code: SK23 } & & \text { IDLER TYRE } & \\ \text { O7.00 } & \text { Order Code: SK24 } & £ 3.50\end{array}$
NV600NVG88
Contents Economy Kit Contents
BELT SET. PINCH ROLLER
PLAYIDLER FFRREWIDLEA. PET. PINCH ROLER
PLAYIDLER TYRE FFREW

$\begin{array}{lll}\text { Order Code: SK25 } \\ \text { £13.00 } & \text { Order Code: SK26 }\end{array}$
NV730NV770

$\begin{array}{llll}\text { TENSION BAND } \\ \text { Order Code: SK1s } & £ 7.00 & \text { Order Code: SK20 }\end{array}$

NV777NV788
Contents Economy Kit Contents
BELT SET PINCH ROLLER BELTSET PINCH ROLLER
Order Code $\operatorname{SK17}$ E 7.50 Order Code: SK18

VIDEO SERVICE KITS (Cont.)
SHARF

Contents	Economy hit Contents
BELTSET PIECH ZOLLER	BELTSET PINCH ROLLER

VC781 VTBTHMC7822NC-85NC7
Conters
Conters
 Order Coth SNat $\quad £ 13.50 \quad$ Order Code: SK65 66.25

Contwnts Econony Kit Contents
 REELDRIVE JNT TEVSHI REELORIVE UNIT TYRE
BAN?

THIS MONTHS SPECIAL OFFERS

STKAC1	S6. 00	STK 7563F	¢8.00
STKE3E2	E1.50	STK73410	¢3.50
STKS1E3	£2.40	TA8205AH	£2.50
STK542	E3. 75	TA8210AH	£3.00
STK5476	E350	TA8215H	£3.00
STK:305	E3.50	TA8216H	E3.75
STK734E	E280	TIPL791A	c0.80

SONY FUNCTION SWITCH (2 LEG) SPECIAL PRICE EO 50

VIEAREEL MOTOR PU51381V KIR \& 15.00
3v29. 3v30, 3v31. 3v32. 3v39.
8930, 3331, 8941 8942. HR7200
HR7350 HR7600. HR7610.
HB7650 HR7655
HIT AGAI TIDEO HEAD Eve $\mathbf{~} 11.00$
$V^{-11} \mathrm{~V}^{-14}, 16.30,33,34,330$.
$340,503.640,5030$
$\begin{array}{lc}\text { MITSUEGHI VIDEC HEAD } & \mathbf{£ 1 6 . 0 0} \\ \text { HS } 302 & 534,320.700\end{array}$
HS30Z, 534, 320, 700
HS30E, 378, 710

HS3EF, $\mathbf{3 4 7}$

£17.00 $\epsilon 17.50$

OJTP JT IV MODULE HM6251
E5 00
PHLIPS

Vist a ratera, vish
I.C. PROTECTOR

ICPF1:	ICPN5
ICPF15	ICPN10
ICPR2	ICPN15
ICPF25	ICPN20
ICP185	ICPN25
CPF 54	ICPN38
ICP 75	ICPN50
	ICPN75

GRANDATAMMID

K.P. HOUSE, UNIT 15

POP IN COMMERCIAL CENTRE, SOUTHWAY WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 081-900 2329 Fax: 081-903 6126

VIDEO HEADS

AKAI

VSF600, VSF650
VP7100, VP7200, VP77
VS155, VS165
VS155,
VS20,
VS425
VSP
VS2
VS3
VSR
VS20,VS22, VS24, VS25, VS26, VS27, VS422
VSP9
VS240, VSP82, VS202
VS33
AMSTRAD
VCR8800, VCR8804, VCR 9340
DD8900, DD8904, TVR4, VCR6200, VCR 8600
VCR8602, VR8700
VCR8603, VCR8604, VCR8704, VCR8714
BAIRD
VC14L
VHS82
BLAUPUNKT
CR1000, CR 1200, CR1500
CR1800
RTV321, RTV322
RTV330
RTV333
RTV33B
RTV348
RTV404, RTV414
RTV635
RTV750, RTV800, RTV900
RTV810
RTV910
JVC
HRD330, HRD337, HRD440, HRD637, HRD64
HRD660, HRFC100

JVC AND FERGUSON

8902/8903/8909/8912/8922
8923/8925/8929/8935
$8931 / 8933$
FV43H, HRD860
VC141L, HRD190. HRD610
FV441
BR1600, HRD142, HRD 156, HRD 152
R6200
HRD154, HRD217, HRD321, HRD350, HRD52
HRD522, HRD525, HRD527, HRD550 1700 P HRD580, HRD620, HRD650
FIDELITY
VR900, VR910
1600P
FISHER
FVHD140, FVHD40, FVHP1, FVHP10, FVHP20
FVHP40, FVHS 10
FVHP200, FVHP210, FVHP300, FVHP310 2100 P FVHP500, FVHP5100, FVHP730, FVHP830 1200 P FVHP980

FUNAI

E1100, VIP5000
VCR5840, VCR8007, VIP2500A, VIP3000A
VIP6000, VIP150
$\begin{array}{ll}\text { VIP6000, VIP150 } & 2200 P \\ \text { VCR4530, VCR6000 VCR6100 }\end{array}$
VCR8103, VCR600, VCR6100 1600P
$\begin{array}{ll}\text { VCR8103, VCR600, VCR6100 } & 1600 \mathrm{P} \\ \text { VCR8103, VCR8107 } & 2200 \mathrm{P}\end{array}$
$\begin{array}{ll}\text { VIP300A MKII } & \text { 2200P } \\ & 1900 \mathrm{P}\end{array}$
GEC
2000P
GOLDSTAR
GHV1232, 1233, 1241, 1242, 1243, 1244, 1290
1291, 1295, 1296, 1891. VCP4130, 4300, 4301
4305, 4306, 4310, 4311, 4315, 4316, 4320, 4321. 4326

1650 P
GRUNDIG
VS456
1700P
SE6110, SE9100, TVR4510, TVR5510, VS500
VS510, VS5180, VS6190, VS700, VS900 1800P VS790, VS930, VS940
MVS660, SE6160, VERONA, VS660
VS6690
MVS710 MVS720 MVS910 SE9120 3500P VSB10, VS910, VS920, SE7120, VS710
VSB10,
\checkmark S160, VS740
VS170
VS680
HINARI
VCR34H, VTV200, VXL90
HITACHI
VT15, VTP10, VTP30
VT16B VT260 VT498
VT570, VT575, VT576, VT580, VT585,
T588
VT5600
VT60
VT660E
VT6700, VT6800
VTL 30
4100P
1700P

2800P
2700P
3000P
3000 P
3000 P
3000 P
3500 P
3500P
4400 P

VT522, VTM620, VTM622, VTM720, VTM722, ITT
VR3520, VR3701, VR3719, VR3720, VR3721
VR3759, VR9720, VR3719, VR3720, VR3721,
VR3730, VR3731 VR3749
VR3730, VR3731, VR3749, 2700P
VR3907, VR3908 1600 P
VR3918, VR3919. VR3938 1800P
VR396B
VR3984
7000 P
VR3958, VR4993
VR4913, VRP3833
LUXOR
9245, 9251,9254
9245, 9251
9255,9256
9255,9256
$9270,9271,9273$
$9270,9271,92$
9272,928217
9272
9252
9252
$928017,928077,928097,929107,929117$ 9253
2300P 9284, 9295, VR3701, VR3721, VR3731
1000P VR3761
MATSUI
V $\times 600$
$\checkmark 750$
VX990
MITSUBISHI
HSE12, HSE 22, MX1
HS411EZ, HS411GZ
HS273
HSB10, HSB20, HSE 10, HSE20, HSE21
HSE41
HSB11, HSB2
HSB30'
HSE31, HSB31, HSE32
HSE50
NATIONAI
NATIONAL
NV8050, NV805
NV8050, NV8051
AG1000, AG1050, NV260
AG6010, AG6015
AG6840
NV200
NVD80
NVF65, NVH75
NVF51
NVJ33, NVL21, NVJ30
NVJ35
NVM1, NVM3, N
AVF65
N.E.C.

D×2000
DS6000
D $\times 1000$, $\mathrm{D} \times 1600$, N9040, N9053, N9055
DX4000, N9610, DX3000
N9052, N9530
N9110, N9120, N914C
PVC2300, PVC240, PVC740 PVC744 PVC760 1700 p
PVC764 1600 P
SAMSUNG
VM1560, VN1561 2200P
VHR7900 3600P
SHARP
VC585, VC685 2300P
V C90ET 3900 P
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509
V9680
V300G, V301, 2500P
V61, V63
V110, V120, V130, V140, V210, V220

TELEVISION ON/OFF

MAINS SWITCHES
Baur, Normende, Nova, Pioneer, Quelle, Saba, Salora, TEC, Thomson \& Vega 375P

VIDEO MOTORS

HITACHI

VT11, VT14, VT15, VT16, VT17, VT19, VT35
VT39', VT57, VT88' (capstan motor) 3100
BANG \& OLUFSEN
VHS65, VHS90 (capstan motor)

3100 P
3100P

LOADING MOTOR UNITS

ITT
VR3605, VR3905, VR3955, VR3985 1100 P VP2826, VR3906, V43926, VR3976 1250 VP3946, VR3906, VR3948, VR3986, VR3995, VR6948
JVC
HRD110. HRO 111, HRD120, HRD121.
HRD225 1100 HRD140, HRD150, HRD $157 \mathrm{M}, \mathrm{HRD} 158 \mathrm{MS}$, HRD160, HRD25C, HRD257MS, HRD566,
HRD160, HRD25C. HRD257MS, HRD566,
HRP50
HRP50
HRD455, HRD725, N895
1250 P
SABA
VR6005, VR6014, VR7004, VR7011, VR8011
VR8014 VR6007 VR608 VR6009 VR6018
VR7007. VR7018, VR9006 , 1250 ,
VR6016, VR6038, VR7016 1500
TELEFUNKEN
VR1925, VR1930, VR1940, VR1950, VR925,
VR930, VR940, VR950
A920, VR2920, VR12970, VR7921, VR7926, VR7931, VR7971, VR975
VR1970, VR1980, VR7970, VR7980, VR970, VR980 THOMSON
V320, V321, V323, V326, V4200, V4300 1100
V342, V343, V352, V353, V360, V4210, V4230.
$V 342, V 343, V 352, V 353, V 360, V 4210, V 4230,1250 P$
$V 4260$ 4260

1500P THORN-FERGUSON
3V35, 3V36, 3V38, 3V39, 3V49, 8943, 8944 1100P $3 \vee 44,3 \vee 45,3 \vee 48,3 \vee 54,3 \vee 55,3 \vee 57,8947$.
8947B, 8948 1250p

$3 V 43,9845$	1500 P

3V43
1500 P
TOSHIBA
$\vee 55, V 57$ 1100P

V 65, V66, V67	1250 P
$\mathrm{V} 61 . \mathrm{V} 63$	1500 P

CASSETTE HOUSING

AKAI
VS35, VS53, VS55, VS66, VS75 2600 P FERGUSON
FV31R
4300 P
JVC \& FERGUSON
HRD5 15 HRD520 HRD527 HRD540 HRD550
HRO515, HRD520, HRD527, HRD540, HRD550,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD580, HRD600, HRD610, HRD620, HRD660,
HRD670, HRD830, HRD840, HRD850. HRD860,
HRD670, HRD830, HRD840, HRD850, HRD860,
HRD4050, HRD6600 \& FV37H
IC TRANSISTORS

M4918B1	500 P
SAA5243PE	800 P
TIP112H	50 P
UPC1488H	150 P
STR4090A	650 P

IC AND TRANSISTORS

BU506DF 120 P
$\begin{array}{ll}\text { BUZ11 } & 120 \mathrm{P} \\ 200 \mathrm{P}\end{array}$
BUZ11
BUZ80
SAA5231
SAA1293
S2000A3
S2000AF
S2055A
S2000AF
S2530A
TEA201BA
UC3844
UPC1185H2
200P
200P
700 P
300 P
300 P
550 P
550P
175 P
175 P
175 P
200P
100 P
200P
400 P

REMOTE CONTROLS

AKAI

AKAI	
RC-V10A	1000 P
RCV37B	1000 P
V25A	1000 P

V25A
BUSH
2020T, $2114 \mathrm{~T}, 2321 \mathrm{~T}, 2514 \mathrm{~T} 1000 \mathrm{P}$
2020. $2114,2321,2514100 \mathrm{P}$

DECCA
RC70
RC70
FISHER
RC905B
RC905B 1000P
GRANADA/REDIFFUSION
UNIVERSAL, 79500C, 986700
SATELLITE
MK4 TEXT, 70115G, 70133G, 70357E
MK4A TEXT, 70375C 850 850P
95288E
944900

1000P
1000 P
1000P
$1000 P$
$1000 P$
850P

850P
1000 P
850 P
850P
1000P
1000P

REMOTE CONTROLS
GRUNDIG
TP200, TP300
TP400
TP590-600
TP390, TP610
TP621
TP630, TP650
TP660
TP661
HITACHI
CLE800-CLE 830
A617402/655602
A512120/230
A514790
A5088470
A518612
SCL002
C2096
A511940
A511940
655602 H
ITT
1FB13, 14, 15
FS4
RG305
RG306
FS9/1-10/1
V5 RU
VS4-1
KORTING
18279, 18396, 18460, 18521 SE 40540 VTS
LOEWE
DC1 1
MATSUI
010270601
VX770
METZ
JAVA COLOR (6890)
COLOR (7156)
JAVA (7180)
MITSUBISHI
939P/03607, 939P/03609
NOKIA
SATELLITE
NORDMENDE
TC2336
CMC1, TC3519
OCEANIC
390C9500
ORION
RC53

PANASONIC

EUR51200
VSQ0357/NV730
TNQ1621
PHILCO
CARVEL, CONCORDE, MERCURY
TELESTAR
TC10

PHILIPS

RC5002, 5154
KT3 NON TEXT
69117032
69117194
RC5991 UNIV
RC3B
KT3 TEXT
RC5352
RC5375
RC5375
RC5 STANDARD
RC5901
RC5903
SABA
TC319-320
TC356
TC 358
TC358
TC360
TC365
SALORA
SERIES L
86173

SABA 770<23500	1600P	LOT16
TELEFUNKEEN AT1	1450 P	LOT17
TELEFUNKENEQ	1400P	LOT18
SALORA F ${ }^{\text {N0218B }}$	1600P	LOT19
NORMENDE 5255	1600 P	LOT20
ITT CVC $1150 / 1$	1500 P	LOT21
ITT COMPACT 80	1500P	LOT22
FE TX100 GREEN	1450 P	LOT23
HINARI CT4/5 5113	1500P	LOT24
SELECO 6320410	1600 P	LOT25
BLAUPUNKT 8667	1600P	LOT26
ITT COMPACT 11	1450P	LOT27
1 TT CT3326MUL	1500 P	LOT28
1 TT D066/37 EQ	1600 P	LOT29
ITT 3546 EO	1500 P	LOT30
LUXOR 58:0110	1600 P	LOT31
SA8A 849080920	1600P	LOT32
HITACHI 2\$34141 CP	1450P	LOT33
FE TX100 110 D	1700 P	LOT34
HANTARE $\times 28021$	1600P	LOT35
SHARP C3700 EQ	1600P	LOT36
HITACHI 2432981 CP	1500P	LOT37

We stock tine output transformers for over 100 different models. Please ring 081-900 2329 for more information

CASSETTE HOUSING

amstrad
VCR6000, VCR6100, VCR8600, VCR8602
VCR8603, VCR8604, VCR8700, VCR8704,

VCR8714

AIWA
G900, HVG900, HVZ10
FUNAI
IV89, VCR2100, VCR2800, VCR4530, VCR4540, VCR5653, VCR5800, VCR5840, VCR5843, VCR6000, VCR6100, VCR6800, VCR6803 VCR7000, VCR8000, VCR8002, VCR8003 VCR8007, VCR8100, VCR8103, VCR8200, VCR8500, VIP150, VR68, VR150
FINLUX
VR3009
GRANADA
VHSF63
HINARI
VCR34, VTV100, VTV200, V)KL200, VXL7, VXL8, VXL9, VX 10, VXL11, VXL19, VXL34, VXL90, VXL100, V'XL200
SHINTON
VCR4540
TASHIKO
VVF933, VVF93
TATUNG
TVR6111
TENSAI
TVP1000; TVP1050, TVP2000, TVP2050,
TVR130, TVR140, TVR1800, TVR1900, TVR2000, TVR2100, TVR2600, TVR2700, VR2300, VR2350, VR2450, VR2500 VR4 100
Order code: CH21
Price: 1450 P

Solder Mop $1.2 \mathrm{~mm} \times 10$ metres	300 P
Tubed Silicon Grease 50 gram	200 P
Tubed Heat Sink Compound 25 gram	150 P

UNIVERSAL HEAD EXTRACTOR TOOL
Hand too designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various brand heads.

SEE PREMIOUS PAGES FOR MORE家

ELC EAST LONDON COMPONENTS AUDIO TELEVISION VIDEO COMPONENTS AT VERY KEEN PRICES TEL: 081-472 4871 FAX: 081-503 5926				$\begin{aligned} & \text { DECCO } \\ & 100 \end{aligned}$	MERS 9.99 19.99		$\begin{aligned} & 19.99 \\ & 19.99 \\ & 19.99 \\ & 19.99 \\ & 19.99 \\ & 19.99 \\ & 19.99 \\ & 19.99 \end{aligned}$						8.00 8.000 5.80 8.50 8.50 4.55 9.00	TDA TDA TDA TDA TDA TDA TDA	$\begin{aligned} & 4.00 \\ & 4.00 \\ & 4.00 \\ & .3 .50 \\ & 3.90 \\ & .300 \\ & 4.00 \\ & 4.00 \end{aligned}$				
REMOTE CONTROLS FROM 99.99 IDLER TYRES 50p VIDEO HEADS FROM 66.99		VIDEOBETIT																	
									${ }_{2} 2.50$		4.50		8.590 5		1.30		30		${ }_{3}^{0.25}$
									1.80		3199		5.59		,		O.e0		${ }^{90}$
Over 200 models at very attractive prices. AKAI, AMSTRAD, FERGUSON, RSHER, GOLDSTAR, HNARI, HTACHI, LOGI,								${ }_{\text {BAA }}$	${ }_{1}^{1.99}$	M54	1993		4.50	TIA			0.89	2SC	
		ALBA					21.99	${ }_{\text {BAG }}^{\text {BA }}$	${ }_{2}^{2.59}$										
		AMST					. 00			м ${ }^{\text {a3 }}$	299								析
MATSUI, OPHON, PANASONIC, SALSHO, SHARP AND MANY MORE		VCR4600	1.80						${ }_{1.99}^{2.98}$	MDA	9.99		6.50	TDA	3.0		1.100		
		ССА6600					${ }^{21.99}$		1,90				${ }_{8}^{4.95}$		-		1.85	${ }_{2}^{25 C}$	
SHARP AND MANY MOEO SPARES		Ferguson					${ }_{19}^{19.99}$			STT							${ }^{1.20}$	${ }_{2}$	
									${ }_{2}^{2} 19$	STK457							20		
3V5955 FV1 14 IDER	82800	3 V 2930		HTMAA	16.99	CTXE	19.99		20	STK45	${ }^{7} 5$				3.00	Bux	0.65		
		HRO520/8	1.20				19.99		2.20										
	${ }_{61.950}$	fshers							2.99	StKo	399	SAA	${ }_{6}^{6.00}$	toa3	7.00	DTA	dof		40
SHARP 0005 \& 0006 \%	66.99p	15																	
								CNX	2.99	STK20	599	SAA	3.00	TDA	20	OTC			
	66.980	GRUN			29.99				1.99		11.00		9.0						
VT11 CLUTCH ASSEMBLY VT1002252501DI ER	27	S180			19.99	CTP	35.00												
		S380			9.9		35.00	HA112	2.20	STK3	\%00	SAA	2.50	tDA	${ }_{3}^{5.75}$				
NEC GYOM10LR SANYO VHR3300 IDLER AKA VS 105250 CLUTCH ASSEMBLY											850		4.30		4.75				
	f1																		
SASHO VB38 CLLUTCH	${ }_{\square}$				19.9				4.7	STK	70	SA	4.99	TDA4	1.00				
	.350	TACH1			${ }_{19.99}$	SENT		HA11	5		65	TAP1	100	TPA45	5.99		50		
MATSU LIMTTER POST PANASONIC NV370 IDLER	23p	VT52/65								STK	0,								
	${ }^{\text {c1. }} 1.55$				19.9				150	STK4					1.99				
ASHER 1 ISIDER	${ }^{23.500}$	MTTSUBISH																	
ASHER GEAA ASSEMBLY	${ }_{\text {Ef5 }}$					20			2.9		7,00	TAP	5.50						
	${ }_{\text {f4.99p }}$	PHILPS		CPT2478	.00					STK4	9,00	TAP	250			2 SA	1.30		
UNNERSAL TRIP LER	T00																		
HTACHI MODULE HM6251	E699p	SAMSUNG			13.99	KV	19.99	las	1.99	STK41711		TAP2	4.00		6.00	${ }_{2} 2$	0.65	2SD	
CUCC2410 TRAPER	189	V×510/520					19.99					A)							
	E1.99p	SAN			19.99		19.99		220	STK	㖪	TAP	2.		1.20	25 A	0.30		
CIRCUIT PROTECTOR ICP	50p	VHR1300	2.15		19999				2.80	Stik		Ta							
TX10FOCUSUNIT PHILIPS BACK-UP	Ef.99p			D1613	19.99	KV2	19.99	Lass	${ }^{1.60}$	STK	8.0	tap	${ }_{3} .35$		2.95	${ }_{2}^{25 A}$		${ }^{\text {S }}$	
ALBA BATTERY. $1 F 5.5 \mathrm{~V}$ TV SWTCHES FOR MOST MOD. FOM										ST			4.00						
	f1.00p	VC651/G			19.99		35.00		2			TA82	${ }_{4}^{4.50}$		1.10	${ }_{2 S}$	200		
Function swit	f1.00p																		
									3.9		3.50		3.5		8	${ }_{25 \mathrm{AS}}^{25}$			
ELC EAST LONDON COMPONENTS 63 PLASHET GROVE, EAST HAM, LONDON E6 1AD. TEL: 081-4724871 two minutes walk from Upton Park Tube Station				V1			${ }^{24} 24.99$			STK	3.9	ta	3.50				1.50		
				VT	OLP	CASSETE	17.00		${ }^{2} 2.6$				4.2	upta	2.20		27		${ }^{2}$
two minutes walk from Upton Park rube Station															2.40	2			
IS NOT LISTED AS WE HOLD THOUSANDS					CAPS											${ }_{2}^{288}$			
OFITEMS IN STOCK					CAPST									UPCL		2585	0.40		
				vT600a00	S	M Motor											0.40		
ALL GOODS DESPATCHED SAME DAY				Mrsisuish					${ }_{1.50}^{1.95}$		19		${ }_{2}^{2.20}$		5				500
				vro3. Charle loading gear VIIEOHEAPPULLER							4,9,	TDA 15		(1)	${ }_{3} 3.25$			SD1	50
PRICE SUBJECT TO CHANGE VISA ACCESS ACCEPTED. MIN ORDER £5.00							¢												

(1)			Please note - from 1 Sept Trade counter CA will close all day Wednesday		WELCOME ECOUNTER fil $9-5 \mathrm{pm}$				
SEMD Large s.a.e. for trade ca									
BRAND NEW TV's and VIDEDS		"If you think your set is PAST IT, don't							
14^{14} remote control..................		put it in the bin. Ring and ask for Sue or							
stereo Nicam l / c	$\begin{array}{r}18165.00 \\ \hline \times . \quad \begin{array}{r}\text { ¢ } 259.00\end{array} \\ \hline\end{array}$	they're sure to have it							
		NEW - Branded Boxes - full range -							
		ECC81	E2.90	ECC82	£2.90				
COMPLETE SECURITY We have a complete range of security products and sell items individually or can tailor make a package to your own requirements. E.G. this bed house		ECC8	¢4.90	ECC85	£3.00				
		ECC88	¢3.24	ECL82	¢3.37				
		ECL86	¢3.50		¢6.50				
		EL84	¢3.00	EL519	¢6.50				
		GZ34	f5.00	KT66	¢9.75				
		KT88	£18.0	PCL805	1.50				
COST f115 PACK INCLUDES (Typical 3 bed house)		PCL86	£3.00	PC504	¢2.02				
(Two zone keyswitched, panel * Polyprop bell		PLS19	£5.25	PY500A	£2.95				
		128Y7A	¢5.50	6L6GC	E5.3				
Externel sounder * Two passive infra red		6L6GT	¢5.3	6KD	E12				
100 m 4 core cable and clips \# Internal sounder * Buzzer for editentry timer * Panic button TELLUS YOURNEEDS - WE DELIVERFAST		SATELLITE EQUIPMEN							
				B Grade					
WIRELESS SECURITY SYSTEM Remote control/cordless infra red detectors £170.00		Pace 900 receiver only			£158.00				
		Pace 900 \& 60cm dish/LNB $\quad £ 220.00$ Full range of cable, connectors etc.							
 	- the compair	CORDLESS TELEPHON							
	Where no ouera								
	100 smin	(e)			559.				
	Ex-Reitan ws avaluale from trade coumit				¢76.				
				lock radi					
		FULL RANGE OF PHONE ACCESSORIES							
		One for all 4 remote control Rabbit Video Sender Periswitch Scart Distribution Degaussing Coil							
					5				
					¢63				
					E27.50				
How TO ORDER: Up to 1 K ADD E2.00 per order $P+P$ (UK) Mail is used whenever possibia. Acd 175% VAT to total except where it states zero rate. Over 3 K will be sent by cerrer $\mathrm{E} 12.00+$									
Goods are despatched on the day we receive your order If for any reason we are out of stock we will try to inform you as quickly as possibte. We try our best to give a speedy, fair and weticient service. VAT invoice on reauest. Give us a ring-we'll give you service. Please ask if In some cases we may have to supply an equivalent We need expry dates for credit card orders. MIN. ORER ES									

MAKE YOUR INTERESTS PAY!
 Train at nome for one of these Career Opportunities

Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 vears experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone todav for FREE INFORMATION on the course of your choice. \{Tick one box only!\}

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming
CCSE / GCE / SCE over 4 subjects to choose from	examination m
Name:	
Address:	
P. Code	
$1 \quad 2$International Corresp $312 / 314$ High Street, $041-2217373$ (24 no	pondence Schools, Dept. EGSA3 Sutton, Surrey SM1 1PR. or urs).

AERIAL ACCESSORIES
COAXPLUG

 15 v 24 v 33 v 68v 120 v 130 v
$100 \mathrm{ol} . ~$ EHT TRAYS
CONTINENTAL 30AX FOCUS 8.95
DECCA 120/130................... 7.95 GRUNDIG CUC2410 14"................98.75 GRUNDIG CUC2410 $22^{\prime \prime}17 .95$
PHILIPS KT375
ALBA VIDEO SPARES

REEL IDLER........................ 3

AMSTRAD VIDEO SPARES VCR4500 VCR4500 BELT KIT .-

BELT KIT95
GEAR ASSEMBLY...............9.95
MODIFICATION KIT............... PINCH ROLLER............................... 3.50
VCR4600
VCRA600
BELT KIT.
GEAR ASSEMELY
MODIFICA

... .1 .95
. .95

PINCH ROLER

FERGUSON VIDEO SPARES

 3V29/30BELT KIT
BELT KIT95 CAPSTAN MOTOR 32.50 LOADING BELTS (5). REEL IDLER.. A....................................... 3.95 TAKE UP CLUTCH....................................
TAKE UP IDLER.................. 1.95 3V35/39
BELT KIT1.95 CASSENE HOUSING...........25.95 MAINS TRANSFORMER PINCH ROLLER395 TAKE UPIDLER.. TAKE UP CLUTCH...................2.95 3V44/45
BELTKIT................................ 1.50 PINCH ROLLER3. 35 3V65/FV11
BELT KIT....
 CASSETTE HOUSING
PINGH ROLLER......

.. .1 .75
27.50

$\begin{aligned} & \text { Ren } \\ & \hline \end{aligned}$

FISHER VIDEO SPARES

 FVH5000 BELT KIT......
HOW TO INGREASE YOUR PROFITS, IMPROVE YOU' SERVICE, WITM OOST EFFECTNE TEST EQUIPMENT. HAMEG OSCILLOSCOPES
 B \& K PRECISION CRT ANALYSER-RESTORER

HANEG are Europe's top selling DUAL. TRACE OSCILLOSCOPES. Select from lour superb models. All, with the exception of the HM 1005, incorporste a useful COMPONENT TESTER. Size - all models 285 mm \& 145 mm \& A.

All supolited with 2 PROBES, 3 COMPQEMEMSIVE MANUAL and 2 YEAR WARRANTY
HM203-7 20MHz STANDARD

SPECIFICATION
Bandwidth: DC - 20MHz Sens: Ch.1, Ch.2,1mV/cm TImebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC - 40 MHz Active TV-Sync - Separator Variable hold-off Callbrator: 1 KHz Square wave Component tester
Plus many features
Price $\mathbf{2} \mathbf{3 2 . 0 0}+\mathbf{C 6 3 . 3 5}$ V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS
2 Channels
2 Channels
Bandwidth: DC -60 MHz
Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC-80MHz
Active TV-Sync-Separator
After delay trigger
Sweep delay

* Delay line

Calibrator: $1 \mathrm{KHz} \&$
Price E653.00 + \&114.28 V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL 3 CHANNELS-UP TO 6 TRACES SPECIFICATION
Channels
Bandwidth: DC - 100 MHz Sens: Ch.1, Ch.2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Tlmebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC -130 MHz After delay Delay tine
Trigger LED indicator Overscan LED indicator Active TV - Sync-Separator
Calibrator: 1 KHz Price $\mathbf{5 8 4 7 . 0 0}+\mathbb{E 1 4 8 . 2 3}$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE SPECIFICATION
Digital Storage
Analogue real time (Same as 203-7) Bandwidth: OC -20MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase Diglfal: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$ Active TV-Sync-Samplin Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory: $2 \times 2048 \times 8$ Bit
Dot joiner
Printer/plotter output

Price $ع 653.00$ + £114.28 V.A.T. FREE Specialist Carrier Delivery

BLACK STAR COLOUR PATTERN GENERATOR

 THE 'ORION' THREE-IN-ONE
PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B

The ost.

In addition 10 a switchable sound carrier facility which allows use with the majority of PAL TV sys More than 50 pattern combinations can be selected, Including those for festing static and dynamic divergence, video amplifier Hnearity, cotour purity, generat colour pertormance, tocus etc.
A separate video input to modulate camera signals; fully variable $\mathcal{R} F$ and video output levels facilitat ing AGC testing; trigger output allowing easy triggering of dificult oscilloscope waveforms; externa sound modulation input via DIN connector for frequency response testing of TV sound systems; adjus indispensible in the manufacture, test, monitors.

FEATURES

Colour bars, purity, greyscale, crosshatch
dots, locus, etc.
VHFIUHF Channels.
5.5 MHz . $6.0 \mathrm{MHz}, 6.5 \mathrm{M}$
.5MHz, $6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers. External Video Output.
Trigger Output.
PAL. B,D,G,H,I,K
Separate R, G, B and sync. O/P's.
RGB@TTL \& IV.
Green $+0.3 V$ Syncs.
Composite Video Output
Switchable Video Polarity
Mains powered 220/240V AC $50 / 60 \mathrm{~Hz}$
Price $£ 229.00+$ £40.08V.A.T
NEW! DEGAUSSING COIL
A very effective degaussing coil, ideal for degaussing TV lubes, computer monitors, oscilloscopes etc.
Mains Power: $220 / 24050 / 60 \mathrm{~Hz}$.
Size: $355 \times 355 \times 24 \mathrm{~mm}$.
Price $\mathbf{8 4 6 . 0 0}+$ ع8.05V.A.T.
the number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

All CRT's checked identically, including all In-line and one gun types* Tests all three guns of colour CRT's simultaneously under actual operating conditions (model (model 490) " Measure true dynamic beame current that actually passes through G1 aperture to screen * Measures all shorts and leaks - preserving more CRT's * Tests focus electrodes lead continuity finding laults that other testers mise "Uses mosi poweriul restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years * Obsolescence proof - perpetual set up chart updated and new adaptors developed Tests and reluvenates Vous 40 CRT base adaptors avallable * Increase proflt * Pays for lisell in months.

Prices

Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors....... . $559.00+$ ع97.B3V.A.T.
 Without an . $\mathbf{4 2 5 . 0 0}$

SADELTA SIGNAL STRENGTH METERS
The Sadelta Field Strength Meters have been designed to lacilitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal levels can be accurately measured on the IC402-D, TC90 AND IC80, allowing the evaluation of readout, coupled to a multiturn tuning control enabling preclse channel identification

TC402-D VHF \& UHF

FEATURES

Three bands:
Low VHF: 45 -170MHz
High VHF: $170-450 \mathrm{MHz}$
UHF $: 450-862 \mathrm{MHz}$

- Dlgital display for direcl trequency readout

Built-in monitor loudspeaker AM/FM.
Signal measurement from $20 \mu \mathrm{~V}$ to 3 V .
Powered by eight 1.5 V AA batteries.
Fully portable with sturdy carrying case.
Price $2289.00+$ £50.57 V.A.T.
TC90 VHF-UHF-SAT.

features
Five bands:
Low VHF $: 45-110 \mathrm{MHz}$
High VHF $: 110-300 \mathrm{MHz}$
Hyper VHF

$300-470 \mathrm{MHz}$
Hyper VHF
VHF
$300-470 \mathrm{MHz}$
$470-862 \mathrm{MHz}$
$470-862 \mathrm{MHz}$
$950-1750 \mathrm{MHz}$
Digltal display for direct frequency readout.
Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V
Signal meas urement satellite .70 dBm to
Audible
Audible indication of satelite signal level Built-in-monitor loudspeaker AM/FM (not satellite)
Price $\mathbf{2 4 9 9 . 8 0}+\mathbf{~} 87.47$ V.A.T.
(complete with charger 220 bery Fully portable with sturdy carry case.

NEW! TC80 SATELLITE

TC-8O IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique features: video composite output; audio output with built in loudspeaker; ramp and RF signal outputs, oscilloscope to be used oscilloscope to be used analyzer.

- 4 digit LCD freq. display - Freq. range 950 to
- Sweep mode sweeps entire freq. band for rapid satellite location Tone select switch for audible tone proportional
lo signal strength * Measuremen
- Audia demadulation with internal loudspeaker
- Video demodulation
* Rear SCART connector
for A/V connection * Oscilloscope/spe
- Sound tuning 5 to - LNC PSU 14 V or 18 M - LNC current measure * Internal rechargeable battery with charger
Price 8490.00
+ ع85.75V.A.T.
U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with order, payable B. K. Electronics. OHticial Orders welcome trom Govt. Depts.,
colleges, P.L.C.s etc. Large (A5) S.A.E. for technical leatlets of complete colieges, P.L.C.s etc. Large (AS) S.A.E. for technical leattets of
range. Credit card orders are accepted by'phone, fax or post. Delivery normally within seven days.

EDITOR
John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

EDITORIAL OFFICE

0816528120
Fax 0816.628956
Note that we are unable to ansuer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Givide.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

FIELD SALES EXECUTIVE

Patrick Irwin
081652.3732

SALES EXECUTIVE

Pat Bunce
(081 652×339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
()816528681

Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES

0444445566

SUBSCRIPTION HOTLINE

24-hour subseription ordering with credit card number phone 0622721666 and guote reference INJ .

COVER PHOTO

This month's cover photograph shows a Philips 3A chassis receiver. See servicing article on pages 857-861.

The Multichannel World

So BSkyB has turned out to be a financial success. In the year to this June it contributed a profit of $£ 26.7 \mathrm{~m}$ to News International in comparison with a loss of $£ 13.3$ for the previous year. Since News International owns fifty per cent of BSkyB, it seems that the satellite broadcaster must have made a profit of about $£ 53$ for the year. Good going. From September Ist, BSkyB's viewers have had the option of paying between $£ 4$ and $£ 20$ a month for the broadcaster’s services, depending on the number and type of channets taken. If all goes well for BSkyB. this will further enhance its profitability. While dish sales have hardly been booming in recent months. BSkyB has only to hold on to its present market share to do well. There are considerable prospects for improvement however. At present 80 per cent of households in the UK are not able to receive satellite TV. BSkyB is certain to be able to increase its viewer base.

Although BSkyB doesn't face much competition from other satellite broadcasters at present, this situation is unlikely to last. Ted Turner for one is increasing his portfolio of Astra channels. Then there will be Eutetsat's Hot Birds at $13^{\circ} \mathrm{E}$. with transmissions starting about this time next year. Powers are going up all the time. Eutelsat II Fl-5 have 50W travelling-wave output amplifier tubes: F6 (the Hot Bird) is to have 70W tubes while Hot Bird Plus, at present in the planning stage, would be equipped with 110 W tubes. It is of course one thing to launch satellites, another to lease channels. We shall have to see what will be on offer from $13^{\circ} \mathrm{E}$ - the wide footprints indicate that Eutelsat is thinking more in terms of transeuropean services.

What's at present on offer from the skies could pale into insignificance once digital transmission for direct hroadcasting arrives. This will bring with it $150-$ channel satellites. Sorting cut the signals at the receiver end shouldn't be a problem - one big chip along Nicam lines is likely to do most of the work. What use will be made of all these channels, since it's unlikely that there will be anything like that number of broadcast services? David Elstein, BSkyB`s director of programmes, envisages 50 channels being allocated to one premium film, providing ten-minute film start intervals. If you couldn't be bothered to watch the film through, you could see the beginning and end at the flick of a switch!

The interesting question is how cable will respond to all this. It's an old battle. Back in the Forties there was considerable debate about whether to use cables or radiowaves for broadcasting. Some felt that the simpler terminals would make cable operation cheaper. On that occasion the off-air services won the argument. Cable was left to serve the few locations that presented geographical problems for radio transmissions

This time round the situation is far more open. Fibre-optic cables carrying multiplexed digital signals can handle as many channels and services as satellites can. There is, in addition, the possibility of integrating TV/radio distribution with telephony and other services. In the USA AT\&T is holding preliminary talks with leading cable television and local telephone companies with a view to AT\&T providing the basis of a national. interactive multimedia communications network. Then again, all this could be provided via satellites, though cable possibly has an advantage in simplifying the provision of local services.

However it turns out. the whole business of domestic communications could be very different in even ten years" time. It will be interesting to see whether direct satellite transmissions and cable can provide complementary services. This is likely to resolve around the question of comparative costs - and one can expect a lot of political lobbying. There will certainly be some considerable business opportunities. With these timing wall be all important to success. To get back to BSkyB. it increasingly appears that this was an example of the right decision being made at the right time - with a bit of luck as well of course!

Service Briefs from Toshiba

The following information has been provided by Toshiba in the interests of carrying out correct, effective repairs to the company's products. It's based on Toshiba's Technical Bulletins.

Models 155R9B/T9B

Set reverts to the standby mode after fifteen minutes (usually longer). Will work normally if switched off and on again: The cause is static charge building up on the core of the line output transformer until, under dry-humidity conditions, it finally discharges to the adjacent resistor R440. As a result the microcontroller chip QA01 temporarily stops. The cure is to fit repair kit part no. TCP00742.

No raster because of field collapse: If R327 ($10 \Omega, 0.5 \mathrm{~W}$) has gone open-circuit to cause this fault replace it with a 13 , 1W resistor, part no. 24532130.

Model 156T9B

Set reverts to standby: See note under Models 155R9B/T9B above.

Model 175T9B

Audio buzz at u.h.f. near ch. 33: Coils L601 and L602 are too close to each other. Move them apart.

Model 210T6B

No teletext and the on-screen display is in monochrome: 12 V supply to the $\mu \mathrm{PC} 1417 \mathrm{CA}$ RGB/text switch chip ICV02 is low at 10.3 V because R447 that shunts the TA78012AP 12 V regulator Q408 is open-circuit or dryjointed. Replace R447 (20』, 3W, part no. 24007649).

Model 215T9B

Comes on o.k. but if channels are changed when the set has warmed up the tuning won't lock to any station: Replace diode DA07 (1N4148) which is leaky.

Model 218D9B

No colour with an 0.5 in . wide vertical black band at the left-hand side of the screen, 4 in . from the edge: Sandcastle pulse is incorrect because R219 ($4 \cdot 7 \mathrm{k} \Omega$) at pin 35 of the TA8659N chip IC501 is open-circuit. Replace or resolder R219.

Model 219T9B

Buzz on sound at low level: Separate the cables that are loomed together across the i.f. screening can.

Models 255R7B/T7B

Dull blank raster with no sound when standby is selected: The 145 V h.t. switch is permanently on. Check

Q803 (2SC2023, part no. 23314246), Q804 (2SA1321, part no. A6547303) and Q806 (BC557B, part no. 23114546) for shorts and replace as necessary.

Models 255R7B/255T7B/255R8B/ 255T8B/256T9B/284T8B/285T8B

TDA8170 field output chip IC303 fails, normally shortcircuit sometimes with outer case damage. Simple replacement may result in repeated failure: Replace IC303 (TDA8170, part no. 23318301), the 6.8 V zener diode D303 (part no. 23118102T), and the 2.7Ω resistor R327 (part no. 24557279). Remove D305 (BYD33J) and fit a 47Ω, IW resistor (part no. 24553470) in this position. Refit D305, with the same polarity as before, on the print side of the PCB: stick vinyl tape betwen the PCB and the diode to prevent it shorting.

Model 258T7B

Bright white raster with no picture: Replace D205 (IN4148) which is open-circuit and probably physically broken.

No luminance with teletext: Replace D204 (IN4148) which is open-circuit and probably physically broken.

Poor contrast with the control having no effect and pin 15 of the μ PD6336C chip ICA03 stuck at $5 \cdot 2 \mathrm{~V}$: Replace DA70 (1N4148) which is open-circuit.

Intermittent flashing and a negative picture when set has warmed up, raster eventually going blank: Replace the $0.01 \mu \mathrm{~F}$ disc ceramic capacitor CV03 which is leaky. It's connected to pin 5 of the TA8628N chip ICV01 on the back terminal PCB.

Poor TV and teletext contrast: Replace R549 (470 , 0.5 W , part no. 24552471) which is open-circuit.

Field jitter: Replace D301 (1N4148) which is open-circuit.

Model 259D9B

Picture permanently blanked off in all modes (r.f./video/scart): Replace QV07 (BC547A, part no. 23114689) which is short-circuit base-to-emitter. It's on the back terminal PCB.

Loss of colour with some pictures when using a Sega Megadrive video games computer: Line sync pulses from the Sega computer are wider than broadcast pulses. Change C371 to $0 \cdot 1 \mu \mathrm{~F}$ (from $6,800 \mathrm{pF}$).

Crackling on Nicam sound: Replace R111(10)) which is open-circuit. It's on the rear terminal PCB.

Note that the circuit references for CG60/RG34 and CG48/RG30 in the Nicam circuit diagram at the rear of the manual are reversed - correct the diagram.

Model 285T8B

Very intermittently fails to come on from standby. Replacing the TDA4601 chip IC801 may provide a temporary cure: Change R818 from $20 \mathrm{k} \Omega, 3 \mathrm{~W}$ to $15 \mathrm{k} \Omega$. 3 W - note that this is a safety resistor. Change the $22 \mu \mathrm{~F}$, 16 V capacitor fitted in parallel with diode DF80 but on the print side of the PCB to $100 \mu \mathrm{~F}, 16 \mathrm{~V}$. Add a $5 \cdot 1 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}$ resistor in parallel with D812, on the print side of the PCB. All three components are available as a kit, part no. 23305114

Power supply fails to start after replacing a faulty TDA4601 chopper control chip (IC801): Incorrect chip fitted - it must be a Siemens device.

Reduced height initially. Gradually increases as the set warms up until picture is approximately twice the normal size: Replace the 7.5 V zener diode D315, part no. A7110160. It's the vertical drive limiter at pin 31 of IC501.

Search tuning fails to stop: Replace the $0.01 \mu \mathrm{~F}$ disc ceramic capacitor CA31 which is leaky.

No field lock: Replace the TA8659N chip IC501 (part no. B0379470).

Intermittent audio screeching at switch on: Replace the AN7171NK chip IC606 (part no. 23318195).

Note that early sets didn't select Nicam sound automatically on changing channels. To correct this remove diode DA36 which is near the microcontroller chip ICA01.

Model 1400TBT

No line or field sync: Print break at pin 10 and/or pin 11 of the teletext unit. In later sets the fitting was improved.

Models 2100RBT/2100TBT/2101TBT/2500TBT

Dead set due to chopper transistor Q802 going shortcircuit: Replace Q802 with revised type 2SD1556(E), part no. A6871313, and remove R822 (399) from its base circuit.

Hum bars, mainly on colour (red): Cause of the problem is pick-up of 50 Hz on the tuner's tuning line from the adjacent power supply earth. Modifications details are available from Toshiba Technical Advice (0276 694 555).

Model 2100TBT

Power supply pulsating, h.t. low: Replace C820 ($120 \mu \mathrm{~F}$. part no. 24086871) which is open-circuit.

Intermittent display of the AV symbol on the screen: Resolder dry-joint on the red lead on the component side of the PCB, between points identified as C and C .

Models 2100TBT/2101TBT/2500TBT

Red and blue diagonal lines on the screen on certain u.h.f. channels (31, 45 and 69). Worse under poor signal conditions: Cause is interference generated by the internal 55.5 MHz clock in the text unit. Fit a CF72308 chip (part no. 23319586) in position ICF01 in place of the original CF72303 chip and connect two 1 N4148 diodes in parallel
but with opposite polarity between pins 11 and 12 of ICF01. on the print side of the PCB (insulate them from the print to avoid shorts). Note that the original type of chip won't work with these diodes fitted.

Model 2112DBT

Set trips after a few minutes. Prior to this the picture is too wide: There is no feedback for h.t. control because the TLP621 optocoupler D830) is faulty. Replace it (part no. A8643106).

No colour at switch on. Colour appears after a few minutes. Freezing and heating does not instigate fault condition: Replace the BC547A transistor Q546 (part no. 23114689) which is open-circuit base-to-emitter when cold.

Set turns off intermittently (line oscillator shuts down): The TA8783N colour decoder and timebase generator chip IC501 senses sudden increases in beam current at pin 52, disabling the line drive. To prevent spurious operation of this circuit, remove R 844 (1M Ω) and fit a $330 \mathrm{k} \Omega$ resistor in parallel with C543.

Model 2500TBT

Diagonal black or coloured lines on colour. Lines vary with the setting of the colour control: Replace C515 $(22 \mu \mathrm{~F})$ which is open-circuit. Use a 50 V type. Original capaciter may show rust-trpe contamination.

Failure of the TDA8170 field output chip IC303 normally goes short-circuit. Replacement may result in repeated failure: Replace IC303 (TDA8170, part no. 23318301). Remove the 5.8 V zener diode D303 and fit a link in this position. Add a $47 \mu \mathrm{~F}, 35 \mathrm{~V}$ capacitor (part no. 24796470) with its positive terminal to pin 7 of IC303 and its negative terminal to chassis. Add an 820Ω resistor (part no. 24552821) between pins 6 and 7 of IC303. Fit these two components on the print side of the PCB, with vinyl tape to provide insulation between them and the print.

Models 2505DBT/2805DBT

Field collapse with a couple of lines of scan visible above the centre line: Check for a ramp waveform at pin 15 of the TA8739P EW correction chip IC371. If the waveform is missing replace IC371 (part no. B0383680).

Cracking noises from the surround sound speakers when very loud noises, e.g. explosions, occur: Excessive audio input to the Dolby decoder is being clipped. Contact Toshiba Technical Advice (0276 694 555) for modification details.

Models 2527DB/2927BB/3327DB

Blank grey screen, no remote control operation, no LEDs alight, no on-screen graphics, no sound: The TA8218 sound output chip IC670 has failed (usually pins 9 and 13 going short-circuit), as a result of which circuit protector ZP81 has gone open-circuit. Replace IC670 (part no. B0377305) and ZP81 (part no. 23144451). With this fault it's very important to replace the following six diodes (all type 1N4148, part no. 23115599) which may well have been damaged: D670/1/2/3/4/5.

MORE TO FOLLOW, INCLUDING VCR NOTES

Test Report: Wavetek Series 2000 DMMs

David Botto

The major claim for Wavetek's new-generation 2000 series digital multimeters is that they have greater measurement and trouble-shooting ability than any other hand-held meters. They certainly offer a wealth of functions and features, including an impressive fault-finder mode that's unique to the Wavetek Corporation.

There are three versions. Models 2010 and 2020 both have a basic d.c. accuracy of 0.25 per cent while the d.c. accuracy of the top-of-the-range Model 2030 is 0.10 per cent. Models 2010 and 2020 have the same ranges and functions as the 2030 however. For the purposes of this test report we were provided with a 2030 . Complete with holster and battery it weighs 525 g . Without the holster it measures $175 \times 90 \times 34 \mathrm{~mm}$. Size is a factor to be considered: every workshop I visit seems to suffer from an acute shortage of bench space. You can slot either one or both of the test probes into the back of the holster (see photograph) for 'third-hand’ operation. The tilt-stand has two positions so that its angle on the bench can be varied. A specially designed Flex-Strap enables the meter to be hung vertically from any convenient fixing point.

An MN1604 alkaline or equivalent 9 V battery provides the power required, its life time being typically two hundred hours. There's a low-voltage annunciator that provides a warning when only twenty hours* use remains. If the meter is left on, an auto power-down circuit shuts it off after half an hour of inactivity.

Digital Count

Today's professional service engineer needs a quality DMM with at least a 3.75- or 4-digit readout. If you

The Wavetek Model 2020 DMM in its holster with tilt stand, showing one probe slotted into the back.
measure 9.627 V with a 3.5 -digit meter for example it will register a misleading 9.6 V . This is not sufficiently accurate when dealing with the complex equipment that can nowadays arrive on the bench.

The series 2000 DMMs have a $4 \cdot 5$-digit, 10,000 -count, solid-black LCD readout. The extra-large 15 mm digits are at joy to read and can be seen clearly from across the workshop. A nice touch is the little range indicator number that appears above the decimal point. The display has the best set of function annunciators I've come across. Rapid autoranging ensures maximum resolution at all times.

Bar-graph Pointer

The 40 -digit analogue bar-graph 'pointer' in the display is fast and is equal to or better than a well-damped, quality moving-coil movement. It updates twenty times a second, displaying information faster than the digital display. 1 found it excellent for circuit peaking and nulling, for locating noisy resistances and the presence of a.c. on a d.c. voltage.

Range Protection and Safety

Professional service engineers appreciate the importance of safety and overload protection with a DMM. The series 2000 is designed to meet the demanding specifications of UL1244, CSA, IEC348 and ICE1010. The meters are housed in robust, flame-retardant, high-impact resistant thermoplastic cases and are protected against shock and vibration to the tough standards of MIL-T-28800, class II. Further protection is provided by the sturdy, grey rubber holster.

In addition the meters provide visual and audible warnings of dangerous measurements. OL in the display, accompanied by a continuous tone, indicates the presence of an overload on the selected voltage or current range. Measured a.c. or d.c. voltages in excess of 25 V are accompanied by a lighting bolt symbol and a double audio tone (it's now recognised that voltages as low as 25 V can in certain circumstances be dangerous). If you connect a test probe to the 10 A socket and select anything other than current there's a continuous 'peep-peep' sound and FErr appears in the display.

The maximum permitted voltage between any terminal and earth is 1 kV . The resistance and voltage ranges are protected against voltage transients in conformity with IEEE-587 STD category B ($1.25 \times 50 \mu \mathrm{sec}, 6 \mathrm{kV}$). Highenergy, 600 V fuses of either 0.25 A or 15 A rating protect the current ranges. When a factory recommended fuse is installed the high-current input is protected to an energy limit of $100,000 \mathrm{~A}$.

Ranges and Functions

A sturdy rotary switch is used to select the required range while a set of clearly-labelled buttons gives access to the powerful features incorporated. Models 2020 and 2030 have
an amber backlight that illuminates the display at the touch of a button: in my view this is an essential when working in poor lighting conditions.

The five a.c. voltage ranges cover from 0.01 mV to 1 kV . On both the a.c. and the d.c. voltage ranges the input impedance is $10 \mathrm{M} \Omega$. With all models the accuracy is 2 per cent + eight digits over the specified range of 45 Hz to 2 kHz $(45 \mathrm{~Hz}$ to 400 Hz on the 100 mV range).

Model 2010 is an average-responding r.m.s. instrument. Most digital multimeters use this technique: an averageresponding converter determines the average value of an a.c. signal by rectifying and smoothing it then multiplying the result by $1 \cdot 11$ to obtain the r.m.s. value. This 'scaling factor" of 1.11 is accurate when a sinewave signal is being measured, but in TV, VCR and microcomputer servicing complex waveforms are often present. With these, significant errors can occur when an average-responding instrument is used.

Models 2020 and 2030 use true-r.m.s. conversion to measure two types of r.m.s. values. When both a.c. and d.c. voltages are present, the user sets the instrument to 'd.c. volts' and then presses the second function button: the display shows the total effective a.c.-plus-d.c. voltage present. To measure true a.c.-only r.m.s. values, the range switch's a.c. position is selected.

An important aspect of true-r.m.s. a.c. measurements is the 'crest factor'. The crest factor of an a.c. waveform is the ratio of its peak to its r.m.s. value. It varies with the shape of the waveform. With a sinewave signal the crest factor is 1.414, with a squarewave it's 1 and with a triangular waveform it's 1.733. A full-wave rectified sinewave has a crest factor of 1.414 true r.m.s. a.c. on d.c., 3.247 true r.m.s. a.c. only.

A meter that uses true-r.m.s. conversion is given a crestfactor specification, which indicates its ability to measure the r.m.s. value of different a.c. waveforms correctly - to

Table 1: Typical d.c. voltage checks.

Precision source	Measured value
1.2 V	1.206 V
5 V	5.002 V
10 V	10 V
12 V	1.2 V
24 V	24 V
30 V	30 V

handle a signal with large peak values compared to its r.m.s. value without saturation and degradation of the stipulated accuracy. At half scale Models 2020 and 2030 measure signals with a crest factor between 1 and 3 with no loss of performance. At or below 2,500 counts, signals with crest factors up to 5 can be measured accurately.

To find an unknown crest factor, measure the peak voltage using the meter's peak-hold feature. Divide this reading by the measured r.m.s. voltage. Few DMMs offer this facility, which is extremely useful.

For d.c. voltages there are five ranges from 0.01 mV to 1 kV . With Model 2030 the accuracy is 0.10 per cent + two digits. Table 1 shows the results of some of my test checks with the 2030. You'll see that the measured values are far better than the claimed ones.

The seven resistance ranges cover from 0.01Ω to $20 \mathrm{M} \Omega$. A good feature is that in the autorange mode an open-circuit is indicated by the appearance of the word 'open' in the display rather than by some ambiguous symbol. In the range-lock mode OL is displayed. In the autorange mode the relative mode setting enables you to compensate for the resistance of the test probe leads. This is an exceptionally useful facility when, for example, checking the windings of VCR motors. It's also possible to zero the meter to a known

TELEVISION INDEX \& DIRECTORY and REPRINTS SERVICE

A computerised index to TELEVISION magazine covering volumes 38 to 42 (1988-1992) is now I available. It contains over 3500 references to TV/VCR fault reports and articles, with synopses. It includes a TV/VCR spares guide, an advertisers list and a directory of trade \& professional organisaI tions. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512 K RAM and a hard disc. See the May 1993 edition of TELEVISION for a full description. Reprints of articles from TELEVISION back to 1986 are also available: ordering information is

Price: $£ 30$ (specify $5.5^{\prime \prime}$ or $3.5^{\prime \prime}$ format)

provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for volumes 38 to 42 at $£ 3.50$ each.
I Please allow up to 28 days for delivery. All the above prices include UK postage and VAT where applicable. Cheques should be made payable to Video Interface Products.

Table 2: Pulse detector readings.

Frequency	Pointer range	Percentage
1 Hz	$1-4.75$	55.3
1 kHz	2.75 average	55.7
100 kHz	3.25 average	65.8

Table 3: Frequency checks.

Precision counter
Model 2030

1 Hz	1 Hz
22 Hz	0.022 kHz
30 Hz	0.030 kHz
50 Hz	0.050 kHz
200 Hz	0.200 kHz
1000 Hz	1.000 kHz
20 kHz	20.00 kHz
70 kHz	70.00 kHz
1.401 MHz	1.4011 MHz
2 MHz	2.000 MHz
3.5 MHz	3.500 MHz
3.880 MHz	3.880 MHz
4 MHz	4.000 MHz
4.019 MHz	4.019 MHz
4.022 MHz	4.021 MHz
4.2 MHz	No response

input value then check for deviation and tolerance.
Tests showed that the accuracy on the $\mathrm{k} \Omega$ ranges is as good or better than my precision standards. The two $\mathrm{M} \Omega$ ranges were found to be well within the claimed 0.7 per cent and 1.2 per cent.

The 100 mV test voltage used on the $\mathrm{k} \Omega$ ranges is low enough to allow in-circuit component tests without switching on semiconductor devices. A special conduction test provides both visual and audible diode and transistor checks.

The pulse detector function, which is standard with all three models, removes the need for a separate logic probe and the bother of having to find and make connections to 5 V or 12 V supplies in the equipment being tested. TTL and CMOS logic circuits are easily checked. So are the logic levels and clock oscillator signals with microcprocessor and microcontroller chips. Pulses as fast as 50 nsec can be measured.

The bar graph shows percentage of range for d.c. volts. Using a pulse generator, I checked digital pulses at frequencies as low as 1 Hz both visually and audibly. At this frequency individual pulses peep and are clearly shown by the bar-graph pointer. In excess of 20 Hz the tone changes, sounding continuously. The bar-graph pointer shows percentage of range - see Table 2.

Many DMMs have capacitance ranges, but most stop short at a range of around $20 \mu \mathrm{~F}$. The 2000 series instruments measure from 100 pF to $2,000 \mu \mathrm{~F}$ - though I felt that an additional range covering values between 10 pF and 100 pF would have been an advantage.

Three frequency ranges cover from 1 Hz to 1.9999 MHz . I found however that I could measure sine and squarewave signals from a signal generator up to slightly above $4 \mathrm{MHz}-$ see Table 3. When used with the frequency prescaler project described in my article in the February 1992 issue of Television the 2030 will measure frequencies up to 150 MHz or 199 MHz .

To make duty-cycle measurements set the instrument to 'frequency' and press a function button: duty cycle then reads out as a percentage.

Special Features

Range lock enables you to lock the meter scale to the currently displayed range with all functions except frequency. The probe hold feature enables you to make a measurement and disconnect the probes from the circuit, the measured value remaining in the display until the next measurement is made (the exceptions here are on the capacitance and frequency ranges). The relative mode enables you to measure values with respect to a reference value other than zero: it operates with all functions.

Auto min-max enables you to measure and record the minimum, maximum and running average with signals of either positive or negative polarity. Peak hold works with a.c. and d.c. voltages and current checks - it's a technique for reading voltage and current signals as short as Imsec.

Fault Finder

I found the fault finder an exceptionally useful feature, especially when tracing the cause of intermittent faults. When it's enabled, the fault-finder function produces a tone whose pitch changes in accordance with the value being displayed. It can be used with the a.c. and d.c. voltage. current. resistance and capacitance ranges.

If you suspect that there's an intermittent connection or PCB link, switch the meter to ohms and press the menu buttons to select the fault-finder function. You'll then hear a low-pitched multi-frequency oscillation. A short-circuit produces a low, grumbling clicking noise while with an open-circuit there's no sound. A scratchy sound indicates a short-to-open transition, a high-pitched oscillation revealing an open-to-short transition.

The fast response time of the fault-finder function makes it easy to peak and null r.f. circuits. The function is also ideal for carrying out supply line checks in places that are hard to reach: a 5 V d.c. reading has a lower pitch than a 9 V d.c. reading for example, a 12 V d.c. reading having a higher pitch. You soon get used to these tones, and are able to distinguish easily between say 5 V and 12 V d.c. readings without having to look at the display.

Summary

The meters are guaranteed for three years, and each one receives a thorough burn-in run and exhaustive computerised testing on all ranges before leaving the factory. The operator's manual is well printed, comprehensive and written in simple, understandable English. In addition a whole section in the manual deals with safety information. Manuals are important: a well-written handbook extends considerably the usefulness of any piece of test gear.

Should you decide to buy a series 2000 DMM, I'd recommend the top-of-the-range Model 2030. Its additional features and greater accuracy are well worth the extra cost. The current price of the 2030 , complete with holster, an excellent set of test leads, a battery and operator's manual is $£ 275$ plus VAT. The 2020 comes at $£ 231$ and the 2010 at $£ 187$, both plus VAT. A range of optional accessories is available.

The meters are available from Wavetek Ltd., Astec Building, High Street, Woolaston, Stourbridge, West Midlands DY8 4PG (telephone 0384442 394). My thanks to Sue Round for the loan of the 2030 and the photograph.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

TEST demonstrations AT 172 WEST END LANE

$\star 40$ different patterns and variations

* Fully interlaced sync pulses with correct picture blanking
\star EBU colour bars. BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
* Chequerboard
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR
* Facilities for sound output
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranted with back-up service.
\star Also available with VHF Modulator.
Price of Kit
Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}\right)$ app

PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver acrial socket.
* In addition to colour bars R-Y, B-Y ctc.
* Cross-hatch, grey scale, peak white and black level
* Push button controls, battery or mains operated.
* Simple design. only five i.c.s on colour bar P.C.B
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT
£39.00. CASE £5.80. BATT HOLDERS £4.20

MAINS SUPPLY KIT $£ 5.80$

(Combined P\&P 4.50)

FASIL, IDAPTED FOR VIDEOOUTPLIG \& (: (.T.V.

LINE OUTPUT TRANSFORMER TESTER

Service Aid.

\star Saves time and money.
\star Checks short turns.

- Simple to use.

Reliable.
\star Battery operated.
\star Pocket size.
PRICE $£ 24.00$
POST/PACKING £2.50
INFRA RED REMOTE CONTROL TESTER

\star Pocket size.

* I.ED + audible indication.
* Simple to use.

PRICE £20.00
POST/PACKING $£ 2.50$

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& atudio outputs £28.50 p.p. £1.8().
PAL DECODER KIT (Video to RGB) for Monitors £27.00 p.p. £. 8 ($)$.
PAI ENCODER KIT (RGB o Video) $\mathbf{£ 2 0 . 0 0}$ p.p. $\mathfrak{£} 1.80$)
CRT TESTER \& REACTIVATOR KIT For Colour \& Momo complete with Case, Panel Meter Indicator - can be adapted for latest CRT's $\mathbf{4 5 . 0 0}$ p.p. $\mathfrak{£ 4 . 5 0 .}$

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement for: Ferguson, Hitachi, Philips, Panasonic Grundig, ITT, Sony, Saisho, Granada Saisho + many others

PHILIPS SPARES
MANUALS CF1, CTX-E, CTX-S, CP90, CP110, GR1AX, G90AE, 2B, 3A, NC3-CR £7.50 p.p. £1.80, 2A $£ 10.50$ p.p. $£ 1.80, \mathrm{KT3} £ 25.00$ p.p. $£ 1.80$
SYSTEM 4 KT4, K40 £22.00 p.p. $£ 3.00$
BACK UP BATT. $2.4 \mathrm{~V} £ 3.801 .2 \mathrm{~V} £ 2.00$ p.p. 90 p
K30, KT4, CTX-EHT Lead $£ 4.90$ p.p. $£ 1.00$

THORN/FERGUSON SPARES

9000 Series IF/Deeoder tested $£ 10.00$ p.p. $£ 2.80$
TX10 Focus control 88.50 P.p. $£ 1.80$
TX9/10 Remote \& tuning $1515 \mathrm{~N} £ 5.00 \mathrm{p} . \mathrm{p} £ 1.80$
TX10 Stereo Audio Board $£ 3.50 \mathrm{p} . \mathrm{p}$. 52.50
TX100 Chopper TX $£ 15.80$

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ANS521 | E3.80 | | |
| SAAS243 | | | |

TRIPLERS EHT MULTIPLIERS p.p. $£ 1.80$

CONTINENTAL UNIVERSAL TVK \& BG

RANGE (Quote Exact no.) £13.80 U.K. UNVERSAL (best quality) $£ 7.80$ DECCATATLNG BG 200/44 TYPE 57 ,30

MISCELLANEOUS

MAINS TRANSF ORMERS: 6.3 Volts CRT boos

 E6.80 p.p. 11.80Mains Isolating $900 \mathrm{VA} £ 51.25$ p.p. $£ 5.2$
55 CRYSTALS for handsets. 4 for $£ 2.00$ p.p. 80

GRUNDIG BG 2077-642-1003/1004 £16.80 GRUNDIG BG 2087-642-1001/1002/1006 $£ 16.80$ THORN $9000 £ 9.80$

DEGAUSSING ROD £33.75 p.p. $£ 3.50$ TRANSPARENT VIDEO SERVICE CASSETTE £6. 80 p.p. $£ 1.80$

HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5\% TO THE TOTAL PRICES ARE SLBJECT TO CHANGE WITHOUT NOTICE

Telephone 071-794 8751/794 7346
Fax 071-4315778
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1SD
CALLERS WELCOME AT SHOP
Mon-Fri 9.30-6pm - Thurs 9.30 -1pm - Sat 9.30 -5pm

Letters

COST OF MANUALS

Following recent letters about the Technical Service departments of major manufacturers being unwilling to supply information to those who are not main, registered dealers or haven't passed their stringent capability tests, here's another annoyance - the price of service manuals. I recently had to delve into an Amstrad FX9600T fax machine. As it turned out to be in a dire state I rang my regular component supplier to enquire about the availability of a service manual for the unit. "Yes sir, a stock item at $£ 20 \cdot 16$ " I was told. Being somewhat taken aback, I said I'd let them know. A phone call to a service manual specialist produced a quote of $£ 18.65$ plus $£ 2.35$ post and packing. So no saving there Job temporarily abandonded!

A subsequent call about a VCR manual produced a similar price, so it was not a one-off situation. Looking through my supplier's catalogue, I noticed a wide variation in the price of service manuals, some below $£ 2$ and some over $£ 20$ according to manufacturer. I realise that a lot of work has to go into the production of a service manual, but after all what are they for? They exist to help us to try to repair the unit for the customer so that he continues to be satisfied with the manufacturer's product. I can imagine the customer's reaction if told that in addition to our standard service charge and the cost of spares he will have to pay $£ 20$ for a manual to enable us to carry out the repair. He'd tuck the unit under his arm and disappear out of the door.

A few years back, when manuals were priced at $£ 1$ or so, the cost could be absorbed in the repair charge. But at $£ 20$, no way! And the chance of getting another repair to do with the same model is becoming quite rare. Do manufacturers really want us to write off their products, some only a year or two old, because we can't afford the service information? With so much competition in the consumer electronics market, I think this policy needs to be reassessed.
Mike Goodall.
Littleport, Ely, Cambridgeshire.

NIKKAI BABY 10 AGAIN

With reference to Chris Avis's comments on the TA7680AP i.f. chip IC101 in the Nikkai Baby 10 overheating (August), we've had this problem on a number of occasions, producing the hum-bar like symptom described and others. There has usually been a cause however. Amongst those we have traced have been a leaky or short-circuit audio coupling capacitor ($\mathrm{C} 111,0.47 \mu \mathrm{~F} 35 \mathrm{~V}$), a short-circuit f.e.t. in the a.f.c. circuit (Q103, type 2SK30A), faults within the tuner and IC101 itself being faulty internally. There are other possibilities.
L. Mackenzie, T.Eng.,

Edinburgh

SAMSUNG CD PLAYERS

Mike Leach has been busy fitting laser units (CD Player Casebook, September). He seemed to be a bit uncertain about the one he fitted in the Samsung RCD995, and I think he was right to be doubtful - I bet it's bounced already! The laser unit in this model does fail, but not too often. From the other observations made I would think that the problem was
to do with the pickup leads. There are two sets of leads from the pickup. The one consisting of a black and seven white wires provides the laser supply and monitoring and the links to the tracking and focus servos. The end of this lead, which is soldered into the PCB, goes intermittently high-resistance at its crimps. The simple solution is to dismantle it carefully and solder the wires at the crimps. There's another approach: Samsung is aware of the problem and will supply a replacement lead (part no. 13052.901.880). All other Samsung models that use the same CD mechanism, including the RCD990, RCD1300, RCD1350 and RCD2600, suffer from this fault

I've had the same problem with CD players produced by a number of different manufacturers. Generally Technical Departments either don't know of or admit to it. Only Samsung seems to supply a better lead.
Les Austin,
Stone, Staffs.

FOR DISPOSAL

I have for disposal a full set of Television magazines going back to 1983. also a similar set of Electronics and Wireless World and a few VCR manuals, including those for the Ferguson 3V29 and Grundig V2000. If anyone is interested, a call to the number below to arrange collection is all that's necessary.
Geoff Lewis, Canterbury, Kent
Tel. 0227769 567, fax 0227768338.

THOSE NICE SONY PEOPLE

I read Peter Delaney's letter (August) regarding a Sony Model KV2090 with great interest. The last KV2090 that appeared in my workshop was suffering from amnesia. I was told that the channels had to be retuned and stored regularly. In fact the set refused to operate at all unless the mains switch was held in physically. When I consulted the manual I found a technical bulletin stating that a modification kit should be fitted to replace the original Preh switch

I phoned the number given but was told to ring another one. Some time later this was successful. The set's serial number was checked and the owner's details were requested. I was told that a modification kit would be sent and that the owner would be informed about what was happening. I was then asked for my account number. When I said that I didn't have an account I was told that a kit couldn't be sent and that my customer would be told to take the set to a Sony dealer! So after I'd gone to the trouble and expense of making three trunk calls in an effort to make the set safe, those "nice Sony people" were so pleased with me that they decided to take my business away. I was so angry I told them I'd have to fit another original type switch, which I had in stock, and put the phone down.

In the event I managed to obtain the plastic bracket required from a colleague, and fitted an Alps switch which I also had in stock. After replacing the M58658P EAROM chip and carrying out some resoldering, including the five standup wirewound resistors which had been resoldered previously but not with high melting-point solder, I ran the set on test and finally returned it, in a safe condition, to its owner.

So Sony refuses to supply the items necessary to make its sets safe, and these don't seem to be available elsewhere. This idiotic policy doesn't encourage the cowboy element in the trade, which seems to be on the increase in this area, or anyone else to fit the correct component.

Dave Mackrill,

St. Leonards-on-Sea, East Sussex.

Servicing the Philips 3A Chassis

Richard Newman

The 3A chassis was used in Philips' flagship models during the 1986-88 period - they carry the Matchline banner on the front. The chassis had a lot of 'firsts' for Philips, the basic idea being that it could be integrated into a full audio/visual system when coupled to a hi-fi setup. It was the first Philips chassis in the UK to have the picture geometry controlled by a microcomputer chip, making it possible for the service engineer to adjust the height, width, EW and trapezium correction etc. by means of a service remote control unit, then store the settings in memory. It's also possible to give names to programme selections and have an on-screen menu that displays them.

Later sets have Nicam and picture-in-picture (PIP for short). There were some monitor only versions: a Matchline tuner was available to go with these. There was also a monster 33 in . version - without the lifting tackle supplied! Another feature that was new at the time was the sets' ability to accept Secam and NTSC signals fed in via the scart sockets.

Colour transient improvement (CTI) to improve colour transitions, mainly between greens and reds, is another feature. The effect is quite remarkable when you look at green and magenta with a colour-bar display - there's virtually no cross-colour.

In short it's a chassis with all the 'bells and whistles'. It's not the easiest chassis to work on however, though reliability is good. The following notes are intended to help engineers who are not too familiar with these sets. Use them in conjunction with the 3A chassis manual, part no. 4822 727 15742. A supplement to cover the model being worked on will also be required.

Access

A lot of the models that use this chassis have a smoked glass screen in front. It's best to remove this first, by sliding the fixing tabs at each comer. You can then put the glass and the tabs to one side. Be careful - the glass is quite heavy.

The first thing that strikes you after removing the back is that the chassis is fairly crowded. The PCBs are mounted in a plastic framework. A main 'monocarrier' panel carries the power supply, the line and field timebases, the sync and picture geometry control circuits, the tuning system and EEPROM memory. To the left of this there's a large upright source-selection panel (SSP) that carries all the interface switching associated with the two scart sockets. Two

MODEL LIST

Philips	27CE7790/05R
	33CE7533/05B
21CE7550/05S	
21CE7650/05S	Pye
24CE7570/05S	68KE7807/05R
27CE7590/05S	68KE7827/45R
27CE7593/45R	

smaller panels that are plugged into the monocarrier are used for the multistandard colour decoder (MSD) and the teletext decoder. The audio power amplifier with its large heatsink is mounted at the rear centre. Alongside it, but not attached to the main panel, there's the mains filter panel.

If the set is equipped with Nicam, this feature will be found on a subpanel adjacent to the source-select panel. The external speaker connections are next to the two scart sockets.

The microcomputer control panel is mounted at the front of the set and has to be slid out from the front. If you require access to only the control panel the main chassis can be left in the cabinet. Turn the set on its side and remove the two screws from each speaker grille. Remove the grilles. The whole panel can then be withdrawn after removing the two screws at either side.

The chassis as a whole can be slid out, see Fig. 1. The front control panel has to be left in place however. If the set has not been worked on previously you'll find that there's a screw, A, which has to be removed at either side of the plastic frame, towards the rear. Release the mains cable from its relief and unlock tabs B. Lift the rear of the chassis slightly and pull it towards you. Place it as far as possible behind the set. There should be enough slack in the cables to enable the chassis to be tilted to the left and rested on the source-select panel. Some access to the print side of the main panel is possible in this position.

The plastic frame has to be removed to gain complete access to the main panel. See Fig. 1. First remove the cover plate and reinforcement bracket from the scart and speaker sockets by releasing tabs F. Remove the speaker socket subpanel then, by releasing its fixing tabs, the bracket that supports the chroma and teletext boards. Remove the screws from the power amplifier's heatsink and unclip the mains filter panel. Finally unlock tabs I at either side of the frame, release tab J at bottom centre and slide the frame away.

Take care now when working on the main panel as there's no support for the source-select or power amplifier boards.

When you do all this for the first time you'll find that it pays to make a note of where everything goes!

Circuitry

A block diagram of the basic receiver is shown in Fig. 2.

Fig. 1: The chassis assembly.

Fig. 2: Simplified block diagram of the receiver.

While the set is complex, most of the circuitry is conventional, particularly in the line, field and power supply sections. As most faults are likely to be in the power supply area we'll look at this first, see Fig. 3 .

The Power Supply

As with the previous Philips chassis we've dealt with in these pages in recent months, the power supply is of the self-oscillating chopper type (SOPS). It follows the same basic principles as previously described but has additional protection. It has proved to be very reliable. A start-up supply is obtained by using R3656, R3657 and C2658 to integrate the mains supply. As a result, 22 V is available at the zener diode side of R3686. This provides base bias for $\operatorname{Tr} 7674$ and the chopper transistor $\operatorname{Tr} 7687$ via R3682 and R3687. Tr7670 helps to control Tr7674/7687's switch on by ensuring that Tr7687 switches on at a collector voltage of about 100 V . This reduces its switch-on dissipation, increasing the device's life.

It's sometimes difficult to decide where to start looking when there's a fault in the power supply. If R3684 is removed however the optocoupler will no longer affect the control action. The mains input can then be reduced to about 70 V by using a variac. Under these conditions the power supply should start to oscillate, allowing measurements to be made. Take care not to increase the variac's setting above 70 V , as the main h.t. voltage could then rise excessively. In addition the line output stage should be disconnected by removing plug M17 which is by the line output transformer: connect a dummy load (60 W bulb) in its place across the 140 V rail - C2701 is a good place to connect it.

You may find it easier to work on the main panel with
the power amplifier removed. It can simply be unplugged from sockets M6 and M7. To maintain supply continuity however pin 3 of M6 will have to be linked to pin 4 of M7. Otherwise the set won 't work.

Thyristor Thy6698 is the heart of the protection circuit. Its gate monitors four circuits: the audio amplifier is monitored directly, line pulses with an amplitude of 13 V are fed via D6701, EW information comes via diodes D6706 and D6702 while the state of the e.h.t. supply is monitored via transistor Tr7499. Excessive current/voltage in any of these circuits will fire the thyristor, shorting out the h.t. line. The power supply will then shut down.

Standby Mode

During normal operation line pulses are rectified by D6642, producing about 7 V across C2726. Transistor Tr7735 then provides a 5 V supply for the microcomputer chips. $\operatorname{Tr} 7738$ provides a power-on reset.

In the standby mode the microcomputer chip IC7831 switches $\operatorname{Tr} 7731$ on by taking its base low. Thy 6727 then acts as a rectifier and the 7 V supply to $\operatorname{Tr} 7735$ begins to rise. The voltage developed across R3732 when Tr7731 conducts in turn switches Tr7742/3 on, increasing the current through the optocoupler. As a result the chopper transistor $\operatorname{Tr} 7687$ switches off for longer periods, reducing all the supply line voltages. The 5 V supply via $\operatorname{Tr} 7735$ is maintained by the rectifying action of Thy 6727 however.

The Line Output Stage

A conventional line output stage is used. The transformer tends to suffer from dry-joints which can cause all sorts of

Fig. 3: The power supply circuit. Note that R3653's circuit position varies with different tube/degaussing systems.
intermittent faults. Flyback tuning capacitor C2618 (its value varies with tube size) can split with the result that the line output transistor fails. Use a good-quality capacitor rated at 2 kV .

A common problem is failure of the Wickman fuse F1642. This produces a blank raster with flyback lines. It was originally rated at 800 mAT and was subsequently rerated to 1.25 AT . The trouble is most common in sets with Nicam and PIP. If you are very lucky you'll find that the fuse is plugged in. So the old one can simply be removed and a higher-rated one fitted. In most sets however the fuse is soldered in and the chassis and plastic frame have to be removed.

The EW diode modulator is driven by $\operatorname{Tr} 7602$ and Tr7599. Note that $\operatorname{Tr} 7599$ is a BD678 Darlington transistor - not a single pnp device as: shown on the circuit diagram.

The Field Output Stage

A standard TDA3654 field output chip (IC7552) is used in larger-screen models (24-33in.), a TDA3653 chip being used in 21 in . sets. Luttle gøes wrong here apart from C2555 $(100 \mu \mathrm{~F})$ drying out, the symptom being intermittent field scan. As with most modern receivers, the screen is blanked in the event of field collapse. In this condition the voltage at pin 7 of the field output chip goes high. The increased
voltage is fed to the colour decoder chip to produce the blanking action. Note that there's an error in the original circuit diagram where pin 1 of IC7552 is shown being connected to pin 5: the link should be shown between pins 1 and 3 .

Geometry Control

The TDA8432 chip IC7571 provides geometry control. It does quite a lot of work, controlling the height. field linearity, S correction, centring and vertical beam current correction on the field side, and the width, EW and corner correction, trapezium and horizontal beam current correction on the line side. The selected values for these characteristics are stored in the EEPROM memory chip IC7300 in the control circuit.

The TDA8432 geometry processor chip is digitally controlled via the I2C bus. It also ensures that the height remains the same when a 60 Hz NTSC signal is fed into the receiver via the scart socket. The chip receives field sync pulses from IC7531 and provides the field drive for IC7552.

Synchronisation

A standard TDA2579/N6 chip is used for sync pulse processing and to provide the line drive, automatic correction for VCR operation, identification of the presence of a transmission, sandcastle pulse generation and $50 / 60 \mathrm{~Hz}$ recognition. At switch-on the chip is powered by a 27.5 V supply from the SOPS circuit. This enables the line oscillator to start up. Once the line timebase gets going a 13 V supply derived from the output transformer is used. In some sets these two supplies are fed to pin 10 , pin 16 receiving a 9 V supply from Tr 7720 in the SOPS circuit. In others the start-up supply is applied to pin 16 and the running supply to pin 10.

Luminance and Chroma Circuits

Three chips are used in the luminance/chroma section on the MSD panel U1010. The TDA4555 chip IC7250 is a multistandard colour decoder able to handle NTSC 4.43, NTSC 3.58, PAL or Secam signals depending on whichever arrives at its input pin. One of four output pins goes high to switch into circuit the appropriate input filter and crystal. The decoded colour-difference output signals are then passed, along with the luminance signal, to the TDA4565 CTI chip IC7310 which uses a series of delay lines to processes them, virtually eliminating the cross-colour effect as previously mentioned. The luminance signal is then fed to a switched crispener circuit. All three signals finally go to the TDA4580 control chip IC7355. This controls the saturation, brightness and contrast. carries out matrixing, beam limiting and cut-off stabilisation, and enables RGB inputs to be switched through. The RGB outputs are passed to the output amplifiers on the tube base panel.

The Sound Circuits

Most of the sound circuitry is on the source-select panel (SSP). The switching is fairly complex, and I find that the only way to locate the source of an audio problem in this area is to use an audio signal tracer. 1 prefer this to a signal injector. The sound circuitry looks complex, but fortunately UK sets are not fitted with the part that contains the German-type stereo decoder: the demodulated audio goes straight to the HEF4052 switching chip IC7152, from there to a buffer and then to the power amplifier (PAS) panel.

The circuitry here is conventional. A TDA8420 chip (1C7180) is responsible for tone control, spatial stereo (for Nicam sets) and pseudo-stereo with mono transmissions. These operations are controlled via the 12C bus line. From this chip the audio passes to two TDA1514 power amplifier chips.

The power amplifier panel is difficult to work on, as the heatsink has to be removed to gain access to the print side. This results in swift destruction of the power chips when you start fault-finding! I do however know of one dealer who has made up a test jig to enable the power amplifier to be worked on separately. It consists of two sockets salvaged from a scrapped chassis, with leads attached so that connections can be made to the power amplifier. You have to use a centre-tapped supply connected to pin 5 (positive) and 3 (negative) of L07, with the earth connection to pin 4. The centre-tapped supply should not exceed 12 V . Under these conditions the power amplifier won't get too hot whilst fault-finding.

The headphone amplifier is completely separate. It consists of a couple of TDA2611 chips that receive inputs from the tone control chip on the PAS board.

The Control Section

Two microcomputer chips are used in the control section. Microcomputer chip one (IC7831) sends the geometry parameters to the geometry processor chip IC7571 at switch on. It also deals with tuning and the analogue controls. The mask code is W068. Microcomputer chip two (IC7830) deals with the on-screen displays (OSD), keyboard scanning and remote control. The mask code is W050. Earlier versions can be replaced by later ones. These two chips communicate with any other i.c. connected to the I2C control line. The system incorporates a self-test, monitoring all 'slave' devices. If there's a fault with any of these, flashing LEDs on the front panel indicate what it is by means of a code. A table in the manual gives details of the fault code.

The memory is an X2404 type EEPROM (IC7900) which is on the main panel. It stores the geometry parameters, the tuning information, personal preferences, OSDs, teletext page number preferences and system options such as PAL I, PAL B/G, Secam etc. It follows that if this chip has to be replaced. every parameter has to be reset.

For these adjustments to be carried out the set has to be put into the service mode. A remote control unit with a print or sleeptimer function must be used (the type supplied with the set is, intentionally, not suitable for this purpose). The following remote control units can also be used: RC5 standard, RC5375 and RC5610.

To select the service mode press the mono button on the front of the set (not the one associated with the headphone socket), at the same time pressing the print or sleeptimer button on the remote control unit. A black box with four dashes (- - -) then appears on the screen. The left-hand pair of dashes indicates the parameter to be adjusted, the right-hand pair indicating the selected value. The service manual contains a complete list of all options and adjustments.

Picture height is 02 for example. So if you key in 02 for the left-hand pair, using the number buttons on the remote control unit, the right-hand pair will indicate the set value. This can be adjusted by using the remote control unit's volume plus or minus buttons: the numbers will then run up or down and the height will vary. When the required level has been reached you press the remote control unit's personal preference button (green) and the new value is
stored in the EEPROM. You can then select the next adjustment to carry out.
been discussed in detail in previous issues: it"s incorporated in only certain models and shouldn't cause problems.

Monitor Versions

The monitor versions were designed to be integrated into a complete audio-visual system and don't have a front end. As mentioned earlier a Matchline tuner was available separately. The control system is much simpler, with only one microcomputer chip. Most of the other functions are the same as with the receiver version, but there are fewer of them. Once again errors on the I2C bus are indicated by flashing LEDs at the front.

Modifications

There were very few modifications to this chassis. With later versions there are microcomputer chip software changes, the mask codes becoming W090 for chip one and W092 for chip two. The fault codes remain the same, but the set remains operational instead of locking out.

The rating of fuse F 1642 has already been mentioned.
Sound hum in standby was a problem with some receivers. The cure is to fit a wire link between pin 3 of LO6 and pin 4 of L 07 on the power amplifier panel. Also change the value of R 3741 on the main panel to 820Ω.

The keyboard and foil assembly is not available for Model 27CE7790. Only the foil is supplied: use the original housing.

The video input processor chip on the teletext decoder board was changed from version two to version three. There are five associated component value changes: R3772 becomes $1 \cdot 2 \mathrm{k} \Omega, \mathrm{R} 3780$ 82S, R3800 $68 \mathrm{k} \Omega, \mathrm{C} 277347 \mathrm{nF}$ and C2780 $47 \mu \mathrm{~F}$.

The RGB output stages, on the tube base panel, are conventional, as is the teletext module. The only other panels are the Nicam and PIP ones. PIP is found in only the 33 in. monster and is unlikely to give troubles. Nicam has

Other Panels

The front end consists of a tuner/i.f. module. type FE644Q, that's not considered to be serviceable. It's the same module that was used in the $2 B$ chassis, which was covered in a previous article. The SAB3037 CITAC (Computer Interface for Tuning and Analogue Controls) chip IC7905 provides an interface between the front end and microcomputer chip one. The tuning system is based on frequency synthesis. Briefly, when a channel change is requested microcomputer chip one generates a frequency which the CITAC chip compares with the output of a prescaler within the tuner. The difference between the two is then adjusted until it's less than 150 kHz . The system is then locked in and the CITAC chip switches on the a.f.c. If the set doesn't lock in, a replacement front-end module will usually provide a cure.

The source-select panel (SSP) is basically concerned with signal routeing. Audio and video signals, either internal or external, are switched via this panel under the control of microcomputer chip one. If you have a no-sound or novision problem and all the other circuits seem to be o.k. it's possible that one of the switching chips is defective. Try connecting an extemal input from a signal generator to either extemal one or two. If signals are then present you'll know where to start looking. Remember to select the relevant input with the remote control unit

 -

Long-distance Television

Roger Bunney

There were Sporadic E openings on most days during June and July, though the season has hardly been one for the record books. Amateur radio activity in the 50 MHz band has produced some remarkable results during recent months however. As a result of a combination of SpE and transequatorial skip propagation, signals from Brazil were received in southern Europe, Africa and Holland on May 12th. On June 10th the m.u.f. reached into the 144 MHz band, with reception in the UK from various parts of Europe. In theory Band III TV propagation must have been possible, but there have been no reports of such reception. 50 MHz transatlantic signals were received on the 3 rd , 7 th and 12 th. Dramatic as this reception has been, one has to remember that amateur transmissions are narrow-band f.m., with bandwidths of perhaps $5-10 \mathrm{kHz}$: for TV reception a bandwidth of several MHz is required, and the signals have to be vastly stronger to obtain recognisable, locked pictures. From the TV point of view there was a fall off in reception during July in comparison with the previous two months. Tropospheric reception was poor, and though there were several intense, long-duration SpE openings there were quite a few days in between with no reception. Here's the TV SpE log:

$5 / 7 / 93$	TVE (Spain) ch. E2.
$7 / 7 / 93$	DR (Denmark) E3.
$8 / 7 / 93$	SVT (Sweden) E2; NRK (Norway) E2-4; YLE
	(Finland) E2; RUV (lceland) E4; DR E3; 4;
	CST/CTV (Czech Republic) R1; ARD
	(Germany) E2-4; ORF (Austria) E2a, 4; CIS
	(Russia) R1-4; TVP (Poland) R2; RAI (Italy)
	IA, B; TVE E2-4.
$10 / 7 / 93$	DR E3; TVE E2, 3; RAI IA, B.
$11 / 7 / 93$	DR E3.
$15 / 7 / 93$	C+ (France) L2-4; TVE E2-4; RAI IA, B; RTP
	(Portugal) E2, 3; NRK E4.
$16 / 7 / 93$	DR E3, 4; ARD E2; +PTT (Switzerland) E2;
	Eesti (Estonia) R1; TVR (Rumania) R2, 3;
	MTV (Hungary) R1-4; RTSH (Albania) IC;

RAI IA, B; TVA (Italy) E2, IA; TVE E3. DR E3; RAI IA, B; TVE E2-4; YLE E2; NRK E2. 3; SVT E2-4.
TVE E2-4; RTP E3.
CIS R2: TVE E2-4.
TVE E2-4; RAI IA; RTP E3.
RAI IA, B; TVA IA; TVE E2-4; TVE-2 E2; RTP E2; CIS R2; Eesti R2.
TVE E2-4; TVE-2 E2; RAI IA; RTP E2, 3; C+ L2, 3; DR E3.
RAI IA; TVE E2, 3; JRT (Yugoslavia) E3; MTV R2; TVR R2.
TVE E2, 3.

No exotic signals were received during the period, and few matters for discussion arose! Hopefully August will bring more dramatic results. Meanwhile, my thanks to David Glenday (Arbroath), Simon Hamer (Powys), Roger Fussell (Torpoint), Tim Anderson (St. Leonards) and Peter Schubert (Rainham) for sending in reception reports.

Finnish DX-TV expert Petri Popponen paid a visit to the UK recently. During his travels in connection with his work he visited the Channel 3 studio centre in Thailand, whose Ch. E2 transmitter has been received in Europe via F2 propagation in recent winters. He provided the accompanying photographs.

From our Correspondents. . .

Robert Copeman has sent us details of channel allocation changes that will "eventually" come into use across Australia. The Band III changes are as follows: Ch. 9A 203.25 MHz vision, 208.75 MHz sound (new channel); Ch. 10) 210.25 MHz vision, 215.75 MHz sound (channel shifted up 1 MHz); Ch. 11217.25 MHz vision, 222.75 MHz sound (channel shifted up 1 MHz); Ch. 12224.25 MHz vision, 229.75 MHz sound (new channel).

Bud Lloyd-Bennett has written to us about the TV scene in Bahrain. Individuals are now allowed to own their own satellite TV receiving systems, though permission has to be obtained from the authorities. Installation is in the hands of a monopoly supplier and equipment is expensive. The microwave services transmitted by Bahrain TV in the 2 GHz band provide a cheaper approach.

Bandula Gunasekera has sent us up-dated information on services in Sri Lanka. Telshan TV operates the following transmitters: Nuwara-Eliya ch. E4 40 kW , Colombo (Piliyandala) ch. E3 12kW, Kandy ch. E21 2kW, Deniyaya

Left: The WDAF-TV, Kansas City test card. Centre: A transmitter list shown during the Thailand Channel 3 programme opening sequence. Right: This Channel 9 logo is similar to and originates from the same Bangkok TV centre as Channel 3. Photographs courtesy Petri Popponen.
ch. E4 40kW, Colombo (Tower Building) ch. E21 2 kW (all powers are e.i.r.p.). Because of interference problems the Kandy tramsmitter is to move to ch. E26. At present all transmitters are operating at 30 per cent power. Telshan also relays stereo TV sound in Colombo at 101.7 MHz and runs a radio station called FM99 (99 MHz stereo). The Ekran satellite at $99^{\circ} \mathrm{E}$ continues to provide a ch. E54 service. A fifth TV service, East-West TV. is likely to be given a licence shortly. It plans to transmit from the Star Tower Building, Bambalapitiya.

News Items

Israel: The commercial Channel 2 service is to start this month. Three franchises have been awarded: each franchisee will provide programmes for two days a week, Saturdays being shared between the operators (Telrad, Reshet and Keshnet) over successive weeks.
Thailand: The government has given permission for a commercial TV station to operate.
Italy: RAI and Fininvest are likely to lose their third networks.
Lithuania: Vilnius ch. R26 has closed: ch. R11 has been reactivated, relaying SAT-1 programming.
Moldavia: Turkish (TRT) news is being relayed at cerlain times. The Chisinau TV ch. R3 transmitter at Straseni has an e.r.p. of 800 kW

Russia: Moscow ch. R3 now carries a teletext service called MOSTEXT. The TELEINF text service on the OK1 network has an increased number of pages.
Germany: The RTL-2 network centre in Cologne may move to Munich

Satellite TV

Eutelsat I FI is to be moved to either $36^{\circ} \mathrm{E}$ or $50^{\circ} \mathrm{E}$ to extend coverage deeper into the CIS republics. Eutelsat plans to position a third satellite at $13^{\circ} \mathrm{E}$ in early 1996 , alongside II F1 and F6. It will be dedicated to TV services, the idea being to rival Astra at $19 \cdot 2^{\circ}$ E. A new Polish uplink station is to operate via Eutelsat II F4 at $16^{\circ} \mathrm{E}$.

The BBC is using digital compression for a programme link to CBC , Canada via Intelsat at $53^{\circ} \mathrm{W}$. The Gl DigiCipher system enables four video channels and up to sixteen audio chamnels to be carried by a single analogue TV transponder. Further planned World Service links to Japan. the USA and Central America will use the system.

Astra $1 F$ is to be launched in 1996. again at $19.2^{\circ} \mathrm{E}$. While ID and IE will operate in the band $11.7-12 \cdot 1 \mathrm{GHz}$, IF will extend the coverage to the band $12 \cdot 1-12 \cdot 5 \mathrm{GHz}$. 1 D is to be launched in the autumn of 1994 and IE in the following spring.

Digital compression is spelling the death of MAC: D2MAC transmissions via TDFI/2 at $18.5^{\circ} \mathrm{W}$ ceased on June 30th - these satellites now carry just two radio stations.

Bad news for BSkyB: German satellite magazines are openly advertising and reviewing chips that can be fitted into VideoCrypt decoder boards to unscramble the signals. The August issue of TeleSatellit contained a two-page review or a replacement chip set that sells for the equivalent of $£ 90$. There was also news of a very smart card that can be bought to hack VideoCrypt.

Thaicom 1. Thailand's first commercial satellite, is to be launched on December 5 th, followed by Thaicom 2 next summer. There is a dispute about Thaicom I's position at $101^{\circ} \mathrm{E}$ however because AsiaSat 2 is due to be located at $100.5^{\circ} \mathrm{E}$ a year later. AsiaSat wants Thaicom to be moved to $120 / 122^{\circ} \mathrm{E}$.

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951

Interesting that series 1 and 2 smart cards for the Japanese JSTV service have been used to decode Red Hot Television`s Enigma (a VideoCrypt clone) transmissions, though with the inlay 'incorect card' on the screen!

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August, September, October, November and December

1993
January, February, March, April, May, June, July, August and September

Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Publishing, Television Back Ilssues,
Room L323,
Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.
Make cheques/postal orders payable to Reed
Business Publishing Ltd.

What a Life!

Donald Bullock

Mrs. Ruff, a large no-nonsense woman, barged into the workshop the other day followed by her lodger Old Pukey. He was struggling with a $24 i n$. Granada teletext set. She strode to the bench, clasped the underside of her sleeve with her fingers, and used her arm as a huge duster to clear the end of my bench.
"Put it here, Pukey" she ordered. Pukey did as he was told.
"I've told him time and time again not to play with the tuner thing while the set's on" she said. "Now he's gone and blown the set up, Mr. Billhook. I wish he'd get out of my house, I do. Straight."

I plugged the set in and switched on. The sound was o.k., but the picture had a series of vertical black lines, about half an inch wide, superimposed on it. I'd never seen a set like it before and had no circuit diagram. Then, as we watched, the lines faded - taking the luminance with them.

Mrs. Ruff looked hard at Old Pukey, muttered a bad word, then pushed him out ahead of her. "Give us a ring, Mr. Billboard" she rasped.

Sorting out the Granada CTV

When I examined the chassis I found that the chroma panel contained a TDA3300B chip that obviously processed the signal. I looked for the luminance delay line but couldn't see it - the chroma one was obvious enough. It seemed best to phone Granada at Bristol. I spoke to Eddie Conway who was most helpful. Looking at the circuit diagram, he advised me to scope the luminance signal as it emerged at pin 35 of the chip then follow it back, suitably delayed by the delay line DL1, via $2 R 5(1 \mathrm{k} \Omega)$ and 2 C 5 ($10 \mu \mathrm{~F}, 25 \mathrm{~V}$). So I searched again for DLI. It was so positioned that it hid its reference number, and looked like a small, square-edged, capacitor. I scoped the signal as Eddie advised and found that it was present up to 2C5 but not thereafter. 2C5 was open-circuit of course, a replacement restoring the picture.

My thanks to Eddie for that - drop in for a cup of tea sometime!

Mr Smallpiece's Video

Our next caller was the thin-faced Victor Smallpiece, who had brought his Amstrad VCR4600 Mk. 2 video machine with him. Sensitive and timid, he moved his shoulders around inside his jacket and cleared his throat.
"lt's dead, Mr. Bullock" he said. "Belongs to the wife's brother - he uses it for Certain Things." After that he stole away.

I put the machine on the bench and hoped that it would talk to me. But it didn't. It even refused to accept a cassette, switching itself off. When I opened it up I saw that the threading arms stopped too soon. After a few preliminary tests I handwound the mechanism ready to start again, connected a meter across the loading motor and pressed the start button. Up came the d.c. motor voltage and the loading sequence started. Then it stalled, and the voltage rose. The motor had stopped drawing current. A replacement motor fixed the machine, and when Victor phoned I told him that it was working again. "Hump" he said.

Mrs Gunge and the 3V46

Mrs. Gunge walked in with her spotty son Oscar, who was carrying a Ferguson 3V46 VCR. These machines produce excellent results, I know, but around here they seem to be rather accident prone.
"Hi Oscar" I said, "what's eating the Fergy?" Mrs. Gunge poked him aside and answered.
"The picture's faulty, ain't it Oscar?" Oscar made to nod and breathed in to speak.
"And the sound, right Oscar"" Mrs. Gunge continued. As Oscar opened his mouth, his mother's voice hit the air.
"My Oscar just can't watch it Mr. Butcher" she continued.

Oscar breathed in quickly and looked up at me "The tracking. . ."
"Oscar thinks it's the tracking" Mrs. Grunge explained. Oscar studied the floor.

I escorted them to the door then put the machine on the bench. The symptom made it look as though the auto-tracking was out, but this machine doesn't have it. So I busied myself around the control circuitry. Eventually I found a $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic capacitor, Cl, whose value had fallen to half the correct figure. A replacement cured the fault and I was impressed by the excellent picture and sound quality. All that remained to be done was to get the chassis cased up again without any casualties. I managed this and later on Mrs. Gunge and Oscar called back. She paid up and smiled at Oscar.
"Say thank you to Mr. Bloater, Oscar." He raised his chin and opened his mouth, but once again his mother beat him to it.
"Such a funny boy. Mr. Buster. He hardly says a word. Can't think why."

The Sharp VC681HM

A Jaguar crunched into the drive and came to a halt. Out struggled the greasy Mr. Pearshape, in a cloud of cigar smoke. A demure young lady got out of the other side, carrying a Sharp VC681HM VCR. He pointed to the open workshop door. "In there" he said.

Jane obeyed and 1 took the VC681HM from her.
"Jane's video's playing up" Mr. Pearshape growled, tossing his business card on to the bench. He was a money lender. "Fix it and phone me. I'll do the paying." He turned to Jane and jerked his thumb at the Jaguar. "Into the car, girl" he said.

When they'd gone 1 put the recorder on the bench and tried it. I selected rewind search. The machine went into fast-forward search for a few seconds then stopped, unlaced and switched off. The cassette remained in place. As l've had mode switch problems with this model and the VC750HM I fitted a replacement. It cured the trouble - a quick repair for a change. Jane would be pleased, and Mr. Pearshape too as it wouldn't cost much. How nice to be able to dispense such happiness.

Another Sharp VCR

My next visitor, Mrs. Tubby the forester, always puts me on edge.
"Ah Mr. Bull" she said. "This set's faulty." She was carrying a

Sharp VCR like the one I'd just repaired.
"What's wrong with it?" I asked.
"It jams and stops."
"Ring me teatime" I said.
When I tried it the machine behaved much as the other one had. Oh dear, I'd used my last mode switch. To prove the point I decided to borrow the switch from Jane's machine. So I set about doing the swap, which took me longer than I expected. When I tried Mrs. Tubby's machine it behaved exactly as before, so the switches had to be put back. I resolved never to be so silly again. I'd wasted time, and this made me feel nasty.

When I'd got Jane's machine right again and Mrs. Tubby's as it was when she brought it in, I looked into it in greater detail and ended up by taking out the master cam. Sure enough its rather thin walls had broken down, a new one completing the repair. The cams are cheap and fitting a replacement always gives me a feeling of satisfaction.

When Mrs. Tubby called I handed
her the recorder and gave her the bill.
"You read it, Mr. Borax - my glasses are in the car."

I read it out then came to the bottom line. "Thirty pounds" I said.

She took a blue and a brown from her purse then picked up the machine. When she got to the door she stopped. "This repair is guaranteed" she commented.
"For ever, Mrs. Tubby" I said.

The Panasonic NVJ30

Later that day nice old Arthur Ball dropped in with his Panasonic NVJ30 VCR. His family firm uses it as part of their shop security system.
"I think it needs one of your wash-and-brush-up services" he said. "If you ring when it's ready we'll pick it up."
"I'll have it done in an hour" I said.

When he'd gone I set to. After cleaning the heads and the tape guides I gave the machine a general check over. Just as I'd finished testing it Greeneyes came in. I
switched on the phone amplifier and asked her to ring the number. She did so and the phone at the other end was picked up.
"Balls" shouted a voice. Greeneyes slammed the phone down and spun round. "I suppose that was another of your twisted jokes" she fumed.
"That was Arthur Ball's firm" I said. "They'll be wondering who's playing about. Then our phone rang. I picked it up, feeling a bit put out. "Bullocks" I barked. The line went dead. Then it rang again. "Bullock's Television" I cooed.
"Oh. hello Donald. Arthur Ball here. Did you ring us?"
"Yes Arthur, but things seemed to go wrong."
"That's funny. Same here. Gremlins on the line I suppose. We get a lot of it with incoming calls. Just got a foul-mouthed wag when I dialled you. Anyhow, if the recorder's done we'll slip down and collect it."
"See you shortly, Arthur" I replied.

Test Case 370

Our receptionist Pam's husband is a farmer. Thus when it comes to harvest time the long-suffering lady abandons the test case workshop for the open fields and the baling machine. In her absence Service Manager normally mans the phones and the counter. But on this day he was elsewhere - no one in the workshop ever quite knows where he gets to during his frequent absences. So it was that Sage found himself in the front office, and after just one day he decided that dealing with the innards of VCRs and TV sets was far preferable to dealing with their owners and renters.

Sage's particular burden this morning was a Mrs. Twither who told him on the phone, all in one breath, that the TV man had said the video was rolling up, so it must have broken down, and could we come up or should she bring it down? . . . people are always rolling up here. Mrs. Twither subsequently brought the machine to the workshop and explained, in one ten-minute sentence. that its playback pictures were rolling.

Because of Sage's absence from the bench the repair job became a joint project between two of the workshop's lesser lights, Sherlock and Roger. They inserted a known good tape and selected playback. The picture rolled vertically as though there were no field sync pulses at all. A scope connected to the video output socket confirmed that there was nought but noise where the field sync pulses should be, though the E-E picture was rigidly locked when the stop key was pressed and its waveform contained good field sync pulses.

Since only the off-tape pictures were impaired, it seemed that there was a tracking problem of some sort at the point where the tape started the head wrap. If the entry guide's height setting was wrong, the machine would perhaps be able to play back its own recordings even though they
didn't conform, from the track geometry point of view, with the VHS format. So said Sherlock, and Roger was impressed. To check on this they made a short recording and played it back. The picture rolled as badly as with the prerecorded tape. This being the case, declared Roger, the back tension was possibly too low. They used Sage's spring-loaded gauge cassette to check the back tension and found that it was within specification at $50 \mathrm{gm} / \mathrm{cm}$.

Next the pair of them did what perhaps they should have done at the outset: they connected an oscilloscope to a test point where the off-tape r.f. envelope could be seen and, while using the head flip-flop signal (SW25) to trigger the scope's sweep, they played a good recording. They found that the playback signal was virtually absent at the beginning of each head's sweep: the waveform in fact had a bottle-neck shape, which indicates poor signal transfer from the tape to the playback head. As the signals from both heads were affected to the same extent, there was little doubt that the cause of the fault was some mechanical problem. They cleaned the heads and the lower drum, especially its rabbet (the narrow spiral shelf on which the tape sits), but there was no improvement.

Time to twiddle the guide then! Roger slackened the grubscrew, then watched the scope's screen while Sherlock carefully adjusted the entry guide. The shape of the signal envelope improved a bit as the guide was turned, then deteriorated again. It never became good. In this model the veeblocks that locate the guide posts are part of the lower-drum casting, so they couldn't have moved. Let's see then: the test tape was o.k., the back tension was correct, and no adjustment of the entry-guide's height would produce correct tracking. The machine was put to one side to await Sage's return. When he came to it and heard the story he cured the trouble in about two seconds, then gave it back to a shame-faced Sherlock to realign. What was the cause of the problem? For the answer turn to page 883.

VCR Clinic

Ferguson 3V35/JVC HRD120

This machine would go dead after a few minutes or sometimes days. There would be no functions and no displays nothing. We found that slight movement of the rear, verti-cally-mounted power supply board would initiate the fault. So we removed the board and examined it with a magnifying glass. This showed that pin 4 of CN1, which supplies the board via the mains transformer, was dry-jointed - a slight ring was just noticeable around the solder joint on the PCB. Resoldering cured the fault but for good measure we went over the whole board as some other joints looked a bit dodgy.
J.E.

JVC HRD720/640/860 etc

We've had the following problem with several of these machines. When the machine is plugged into the mains supply the loading motor attempts to lower the carriage then, after a few seconds, gives up and attempts to return the carriage to the eject position. This is accompanied by buzzing, clanging and crunching noises. We can't be sure of the cause, but the cure is always the same.

Remove the carriage housing and note the position of the alignment hole in the large rotary cam beneath the pinch roller. The hole should be at approximately the 12 o'clock position and over the hole in the deck chassis. If this is not the case, which is likely, rotate the worm drive that runs alongside the cam until the holes line up. When the carriage has been refitted normal operation will in all likelihood have been restored. If not the carriage is suspect - check for faulty end sensors or the mechanics being broken or out of alignment.
J.E.

Akai VS2

The problem was intermittent sound in the playback and EE modes. Its cause was an open-circuit screened lead connected to socket J8. As there was plenty of slack we were able to cut back beyond the break, redress the lead then resolder it to the socket pin. Our fault-finding was aided by the fact that movement of the lead made the sound come and go.
J.E.

Samsung VI1260

The following fault is beginning to show up regularly on these machines: after a few seconds the VCR returns to standby, with no capstan motor rotation. The cause of the fault is always diodes D109, D110, D212, D213. Always check by measuring the voltage across the diode - with a good diode the cathode voltage will be 0.7 V less than the voltage at the anode. We have found that with some diodes there is as much as 4 V or more across the device, though the diode reads correctly when checked with a meter. Any diode from 1 N 4001 to 1 N 4007 will work all right in these positions. It's best to replace all four diodes to prevent comebacks.
M.Dr.

Ferguson FV33H

When a recording was made and played back the sound switched between Nicam and mono at a cyclic rate. The

Reports from John Edwards, Nick Beer, Michael Dranfield, Stephen Leatherbarrow, Hugh Allison, Philip Blundell, AMIEIE, Terry Lamoon, Eugene Trundle, Brian Storm, Chris Watton and Bob McClenning

changes were accompanied by a servo twitch on the picture. A colleague suggested that cleaning the audio/control head might be a good idea. Doing this provided a complete cure. M.Dr.

Sharp VCA105HM

Two of these machines have been regular visitors to the workshop over the past couple of months, both with the same intermittent fault: during ejection the tape would get stuck before the process was completed. If the tape was wound out manually everything would be all right until some weeks later when the customer would return the machine with another tape jammed inside.

We approached Sharp Technical on several occasions, as a result of which various parts were replaced, including some kind of modification PCB on the cassette housing, but the fault persisted. As we'd never seen the fault occur it was difficult to know what to do. Finally both machines arrived at the shop together. A careful examination with the machines side by side, one with the tape ejected and the other with the tape stuck, showed that both main decks were in the same position mechanically. This could mean only one thing, that the cause of the fault was the cassette carriage. Very careful investigation of the housing showed that just before the cassette lift arm, item 308, came to the vertical position the clutch could jump out, disengaging the drive to the lift assembly. It seemed certain that the clutch latching bar, item 319, was the cause of the trouble but to be on the safe side and avoid further comebacks we ordered two new cassette housings. Examination of the new housings showed that the latching bar and clutch operating lever (item 321) have been redesigned. We have subsequently fitted just these two items, with no further problems. Part nos. are latching bar MLEVP0140GEZZ (item 319); operating lever MLEVP0139GEZZ (item 321). The new latching bar has a rectangular cutout, the cutout in the old latching bar being angled at one side.
M.Dr.

Samsung VI611

Here's a quickie on this range of models. For no signals check R6 ($3.9 \mathrm{k} \Omega$) on the power supply PCB - it feeds the 33 V regulator. We've had this resistor go open-circuit on a number of occasions.
S.L.

Ferguson 3V30/JVC HR7300

Because the optical reel sensor produced no reel pulses this machine would stop in any mode. The IIV supply that should be present at pin 3 of the sensor PCB was missing. It comes via pin 63 on the small subpanel that's mounted to the right of the deck (viewed from above). The track between pins 25 and 63 on this PCB was open-circuit. On another of these machines the same fault was caused by the fact that the lead from pin 63 to the sensor PCB was opencircuit.
S.L.

Amstrad TVR1

Two well-defined lines, approximately half and two-thirds of the way down the screen, were present during playback.

They looked very much like head switching point signals. Initial panic was followed by recollection that we'd come across this one before: $\mathrm{C} 2(10 \mu \mathrm{~F}, 16 \mathrm{~V})$ on the lower drum PCB assembly was open-circuit. This fault could well occur with the similar drums fitted to other TVR models.
S.L.

Ferguson 3V35/JVC HRD120

This machine didn't play back audio because the playback level potentiometer was open-circuit. The result was no audio signal but a very noisy output of crackles, pops and white noise.
S.L.

Sharp VC9300

I thought everyone knew this dodge, but when a friend rang up and said that he'd undone the screws but couldn't remove the head I thought I'd better pass it on. In this machine there's a little cover over the wires that connect the heads and the rotating transformer. To change the drum you have to remove this cover, which is held by quarter-inch long screws. You can then get to and undo the half-inch long head securing screws. If the head won't budge, simply put the longer screws down the screening cover holes. The thread is the same but as the head screws are longer they bottom on the housing and thus force the head off. I suggest tightening the screws to the bottom by hand, then a further quarter of a turn to them alternately with a screwdriver until the head breaks free.
H.A.

Toshiba V312

This machine was jammed. On investigation we found that the main cam gear was damaged. The new one came with a modified soft-brake lever enclosed, so it would seem that this is a common problem.
T.L.

Philips VR522

When a tape was loaded a very nasty noise came from the vicinity of the video heads. I stopped the machine and inspected the heads. There was a very nasty groove in the upper drum. Wondering what could have caused such damage, I looked at the rest of the mechanism and noticed that the left guide arm was at a peculiar angle, pointing into the drum. It locked back into position with a push. I then saw that the impedance roller was loose. After tracing the holding spring and rebuilding the assembly the machine worked normally - except for the need for new heads as they were by now totally useless. I assume that the damage had been done by someone using extreme force to extract a jammed tape.
T.L.

Akai VS485

When this machine was switched on we found that it was in limbo, with a tape stuck inside. When the tape was released and the machine was once more powered up it worked perfectly. But it's wise with these machines to check the loading gear on the cassette carriage. We found that the half-moon gear was in poor condition while the metal running gear that operates it was very sloppy. A replacement gear cured the first problem, but the other fault required a simple modification that comes from Akai. It consists of a small U -shaped piece of plastic which you glue into position just beneath the metal gear retaining clip. This has the effect of tightening up the gears and preventing damage to the plastic ones. Once it
was dry we replaced the carriage and the machine worked perfectly.

JVC HRD640

Don't get caught out like I did with this machine! It came in with a faulty mode switch. We fitted a replacement but the machine bounced back with all these symptoms: momentary formation of a tape loop while unlacing; failure to come out of the pause mode, followed by shutdown; and intermittent tape spillage during eject. What we'd fitted was slide switch PU60973 which looks right and fits perfectly but is intended for an earlier model. The correct part number for the HRD640's mode switch is PU61247.
E.T.

Panasonic NV730

These machines are now old but since we've had a couple in recently both with the same nasty intermittent fault the following note may be useful to others. The symptom is that the machine suddenly stops during record or playback: when the cassette is ejected you find that there's a crumpled loop of tape hanging from it. The cause of the fault is dryjoints at the connections te the reel-motor voltage-regulator transistor Q1504 which is mounted on an L-shaped heatsink in the rear right-hand corner of the machine.
E.T.

Philips VR6670

This machine was dead: the $3 \cdot 3 \Omega$ resistor R3024 was opencircuit and the BUT11AF chopper transistor was shortcircuit. Cold checks on the rest of the circuit showed that the BC547 transistor $\operatorname{Tr} 7001$ was open-circuit. Replacing all three items restored normal operation.
P.B.

Ferguson FV33

This machine worked normally in the SP mode. In the LP mode however there was a blank screen, though the sound was normal. Embarrassment prevents me from disclosing the full extent of the testing that ensued. Suffice it to say that in the LP mode the FV33 is an audio only machine. If Ferguson manuals included the details in the customers' instruction book I'd have realised this sooner.
P.B.

Panasonic NVJ47

The complaint we've had with some of these VCRs has been of whistling or buzzing when the machine is switched off. Although I'm unable to confirm the exact nature of the sound, perhaps because of deafness to line and field scan noise as a result of length of time spent in this trade, I can report that a squirt of sealant on T1101 in the power supply puts an end to the trouble.
B.S.

Hitachi VT33

The ticket said that this one worked for only a few seconds. Simple idler replacement and service I thought. But when I inserted a cassette the lift moved so quickly that it almost pulled me in. Then the power LED went off. When I switched on again and ejected the cassette it came out very fast. I decided to check the power supply to the cassette lift motor and found that the voltage was high. A check around the STK5421 power supply chip then showed that the 9.5 VA and 9.5 VB lines were both at 17 V . A new STK 5421 restored normal operation but a new idler and deck service were required.
C.W.

Hitachi VT17/B and O VHS80

This early Hitachi machine suffered from intermittent capstan motor drive. As it's not uncommon I expected to find a dead spot in the capstan motor. The cause of the fault turned out to be diode D511 on the top panel however. It responded to the hairdryer and freezer every time. C.W.

Sharp VC9700

When this machine was first plugged in the clock came on but went off again after about thirty seconds. A large red thing on the print side of the audio panel was getting very hot: a shot of freezer here would bring back the clock for a few seconds after which it would fade away again. A check on the resistance of this positive-temperature coefficient thermistor, which is marked 4R7, produced a reading of $50 \Omega 2$ when cold and a few hundred ohms when hot. A replacement obtained from a scrap machine restored the correct display brightness.
C.W.

ITT VR3918

Rewind and fast forward were perfect, but when play was selected the machine would instantly unload. The drum didn't rotate, hence no pulses to the microcontroller chip. During play pin 14 of IC4001 was low at only 0.8 V instead of 2.5 V . Fitting a new LC7142-8017 chip (very expensive) restored the correct voltage and drum rotation.
C.W.

Matsui VX3000

The cassette went in then came straight back out again. Checks on the switching at the lift and on the end sensors were fruitless. A new OEC0017B system control chip had to be fitted.
C.W.

Tashiko VVE921/GoldStar GHV12211

Play and fast forward were o.k., but when rewind was selected the machine would run for about thirty seconds then stop. If rewind was pressed again you got another thirty seconds of operation. I followed the usual procedures - changed the reel drive parts such as the idler and belt, and cleaned and lubricated the various parts - but the fault remained the same. Turning attention to the electrical side, I checked the voltage feed to the capstan motor which also drives the reel system. Nothing wrong here, even during rewind. So suspicion fell on the capstan motor itself. When I'd removed it and taken it to pieces I found that the bearings were as dry and tight as could be. Lubrication gave new life to the motor: rewind now worked, and fast forward was much faster.
C.W.

Philips VR6462

This machine wouldn't accept a cassette. If the cassette was placed in the slot however and a key such as play or stop was pressed, the tape went in and the machine worked normally. The cause of the problem was a shorted switch in the lift housing - as a result the machine thought that a cassette had already been inserted.
C.W.

ITT VR3907

This machine wouldn't switch off. The channel indicator was lit, so was the power-on LED. If the machine was playing and the power button was pressed the tape would unload but the lights remained on and the E-E voltages
remained. We found that a transistor, TR2, in the power supply was leaky. A TIP42 is a suitable replacement. C.W.

Panasonic NVG40

There was sporadic loss of sound with this machine's own recordings. The recordings themselves were o.k., as a check with another machine proved, and playback of prerecorded tapes was all right. The answer to the problem lay in realigning the audio/control head assembly in order to provide the microcontroller chip with better pulses. It was muting the sound at pin 18 of IC4001.
B.McC.

Tashiko VVE922/GoldStar GHV21401

The problem with this mahine was occasional wobbly pictures. The cause was found to be the $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ decoupling capacitor C712 in the i.f. unit. Curiously, this changes the action of the a.g.c. potentiometer.
B. МсС.

Grundig VS200

The problem here was occasional tape damage and loading problems. With a little perseverance we found that the switch behind the brake solenoid didn't make contact every time. Thus the machine locked up. Cleaning cured the problem.
B.McC.

Sharp VC780HM

A colleague had been looking at this one but couldn't work out why it would jam when unlacing. On dismantling the mechanism and carrying out a closer examination I found that one of the two cams - not the cam-switch one - had a broken wall on its hidden side. Replacement and retiming got the mechanism working properly again.
N.B.

Salora SV8600/Mitsubishi HS337

There was no reel drive as the brakes weren't being released in the fast forward and rewind modes - playback was o.k. The cause of the trouble was that the brake release bar latching lever spring beneath the mode motor assembly was disconnected at one end.
N.B.

Sharp VC781HM

It's not uncommon to get tape riding in these machines because the pinch roller is worn and deformed or the arm is bent. With this one however the problem was bad riding in the cue mode because of excessive friction prior to the exit guide. Reducing the back tension alleviated the problem, but the cause was the surface of the lower drum.
N.B.

Salora SV8600/Mitsubishi HS337

This one came in from another dealer who was having difficulty with it - the cassette carriage was up, the guide poles were forward and the pinch roller wasn't engaged! I stripped down the mechanism, cleaned and regreased everything, put the lot back together again in the correct timing sequence and replaced the mode switch. The result: a working machine.
N.B.

Logik VR960A

A common problem with these small machines is poor/low sound. The cause is simply a worn audio/control head. N.B.

Satellite Scene

Comments from regular contributors

Fault Round-up

The following fault reports have been received from Graham Rees:

Amstrad SRD400: The problem with one of these receivers was no video, i.e. a blank raster. When the input/output to the decoder was shorted across the picture was o.k. The cause of the fault was no 5 V supply to the decoder because zener diode DP28 was short-circuit. As it's fed from a $2.7 \mathrm{k} \Omega$ resistor (PR 3 A) no damage was done.

The cause of the channel display flashing at random was the microcontroller ship IC101.

If you can't set the four-digit pin number, getting only three of them, try replacing the EPROM IC104.

Amstrad SRD510: For a dead receiver check the $47 \mathrm{k} \Omega$ start-up resistors R602 and R603 which can go open-circuit. Take care as the smoothing block 'remains fully charged. Alternatively check C612 ($220 \mu \mathrm{~F}$).

If the MJF18004 transistor TR600 blows, check C615 $(1 \mathrm{nF})$ which can fall in value.

For no 13 V supply check whether D607 is short-circuit.
When checking for shorts across the 5 V supply remember that the resistance to chassis is approximately 8Ω.

Ferguson SAP4S: The cause of no tuning was traced to the SDA3202-3X chip IT01.

Ferguson SRV1: If there's no 9 V supply to the tuner and thus no output, check whether Q2's collector feed resistor R323 (4.7) is open-circuit.

Pace PRD800: There were no on-screen graphics and the microcontroller chip wouldn't reset. The chip itself was at fault: it's mounted on a sub-assembly board.

Pace SS9200: A dead receiver with a blown fuse can be caused by a short-circuit chopper transformer. Alterratively if the BUT1IA chopper transistor Q1 has failed make sure that you replace $\mathrm{C} 9(1 \mu \mathrm{~F})$ as well as a precaution. For tripping check whether CI7 $(470 \mu \mathrm{~F})$ is open-circuit. For slight mains hum running down the picture, noticeable on certain scenes only, check whether $\mathrm{C} 7(47 \mu \mathrm{~F})$ is open-circuit.

For lines on the picture check whether Cl34 is opencircuit.

If the receiver powers down after five minutes, check the microcontroller chip U4 (it can get very hot).
M. Cordner writes: Vertical white lines over the picture on all channels due to failure of the $2.2 \mu \mathrm{~F}$ electrolytic capacitor C416 in the tuner in Pace SS9000 series receivers (Ferguson SRV1) has been mentioned before. I fit the replacement with a little heatsink compound against the tuner's case and find that this works very well.

Receiving Lower-frequency Channels

Hugh Allison has been experimenting with LNBs to lower the frequency coverage. He writes as follows:

The average Astra type satellite installation tunes over
the band $10.96-11.68 \mathrm{GHz}$. There are however interesting signals available just below these frequencies. Astra 1C for example has two channels below the usual band. There are several satellites that transmit low at or close to 0°. Of particular note is an occasional relay showing scenes through the window of, presumably, a Russian spacecraft. So the question arises, can we modify a standard LNB to lower its frequency coverage?

LNBs incorporate a local oscillator that operates at 10 GHz . It's remarkable really that the frequency is held, give or take a few tens of kHz , from freezing cold in winter to the heat of a summer's day. This minor miracle is achieved by the use of a dielectric resonant oscillator (DRO). Its output is mixed with the incoming signals to produce an i.f. output of $960-1,680 \mathrm{MHz}$. The indoor receiver tunes across this band. To tune lower, we need to lower the DRO's frequency.

Since we're talking about experimentation, it's best to obtain a second-hand LNB. Apart from the special screws inside, the original Amstrad blue-cap type is ideal - a second-hand one shouldn't cost more than a tenner. Whatever you do, don't go ripping the family Sky system apart in the hope of finding something better to watch!

Open up your LNB. This has often to be done by drilling out four rivets (no wonder they leak), or alternatively by undoing millions of screws, depending on type. With the cover off you'll usually see a 6BA- or 4BA-sized screw which often has a touch of sealant on it. This is the frequency-set screw for the DRO. Doing the screw up reduces the space within the DRO's cavity and thus ups the frequency. You can try undoing it, which will normally take you down a couple of hundred MHz or so. This is enough to get a few oddball channels and you might care to stick at that.

You can go down father however. It's quite amazing how wideband the front-end bit of some LNBs is. Many will work quite well in the 10 GHz amateur band. To get down to these frequencies you'll have to get to the DRO itself.

Depending on the type of LNB, this will mean undoing more screws. With the blue-cap LNB about a dozen of the previously mentioned special screws will have to be undone. At first glance they look like Allen-key headed screws, but on closer examination the cut-out is more starshaped. You'll generally find that the DRO is a muddycoloured object the shape and size of a small Asprin. It will reside more or less under the adjusting screw.

Hunt about in the junk box. You need a small chunk (about an eighth of an inch) of sleeving that will be a tight fit over the DRO. Selastomer sleeving is best, but the outer of coaxial cable will do. Reassemble the LNB.

Results

If you now fit the LNB to a dish pointing at Astra you'll find that the channels have all gone up. So Eurosport for example comes in where CNN used to be. I've been surprised at what can be found simply by pointing a 60 cm dish to the south. A 2 m dish will obviously bring in more signals. Sound may or may not be present - a receiver with a tuneable sound system is an advantage. Happy hunting!

Modern TV Receiver Techniques

Part 10: Sync and TB Generator Circuits

Eugene Trundle

At any given instant an analogue TV signal describes the brightness and colour of a single picture element (pixel). The picture itself consists of the total number of pixels on the screen: for it to be assembled correctly as an intelligible display, sync pulses that determine the precise screen position of each pixel have to be added to the video signal. The picture is scanned out line-by-line from the top to the bottom of the screen. What are required therefore are time references that determine the start and end of each line and its position on the screen vertically. This is called synchronisation. Sync pulses are added to the video signal generated by the camera so that the signal will produce a locked display whenever it's called up on a screen.

The amount of detail in a picture depends on pixel size and the number of lines used. In Europe the picture repetition rate is 25 per second: in some countries, including the USA, Canada and Japan, it's 30 per second. We'll stick to the European rate in the following summary of the basics.

Interlaced Scanning

While the rate of 25 pictures per second is adequate to give the illusion of continuous, smooth movement in a TV picture, it's not fast enough to avoid a flicker effect: the persistence of vision characteristic of the human eye calls for a 'flash rate' of at least 50 Hz (better 60 or 70 Hz) if flicker is to be avoided. Later in this series we'll examine how faster rates of field scanning are achieved in flickerfree TV sets. It would however be wasteful of spectrum space to transmit 50 complete pictures per second when 25 are all that are required. Hence the interlace technique, an ingenious and universally-used solution to the problem.

The complete picture (known as a frame) is transmitted in the form of two consecutive fields, each lasting for 20 msec . There are 625 lines in a frame, 312.5 in each 20 msec field. Not all of these carry video information however, because a period has to be allowed for the beams (three in a colour tube) to return from the bottom of the screen to the top (the blanking period, since the viewer doesn't want to see this). Lines that carry a video signal are referred to as 'active' lines: there are 287.5 active lines per field.

During the first transmitted field 287.5 lines are scanned out from the top to the bottom of the screen, producing a coarse, 'liny' picture. The next field consists of the remaining 287.5 active lines. These are traced out in the gaps between the lines of the first field. For the system to be effective, it's essential that the second set of lines is scanned out precisely between the lines of the first set.

We thus have a field frequency of $50 \mathrm{~Hz} / 20 \mathrm{msec}$, while complete pictures are produced at a rate of $25 \mathrm{~Hz} / 40 \mathrm{msec}$. The persistence characteristics of the tube's phosphors and the human eye result in the scanned out frame being integrated as a complete, stationary picture in the viewer's mind - then as moving pictures as successive fields are scanned out.

Synchronisation

The sync pulses added to the video information during
the blanking periods (line and field - the beams have to return from the right-hand side to the left-hand side as well as from the bottom to the top of the screen) ensure that, when everything is working properly, the scanning is correct. The line scan duration is approximately $64 \mu \mathrm{sec}$, consisting of a $52 \mu \mathrm{sec}$ active period and a $12 \mu \mathrm{sec}$ blanking/flyback period. During each line flyback period a precisely-timed $4.7 \mu \mathrm{sec}$ line sync pulse is inserted into the waveform. It serves as a reference marker for the start of the flyback.

Field synchronisation is a bit more complicated. The lines that comprise the picture slope downwards slightly from the left-hand side of the screen to the right-hand side because of the effect of the field deflection on them. Because of this odd fields ($1,3,5$ etc.) end half way through a line while even fields start half way through a $64 \mu \mathrm{sec}$ line period. For this and other reasons correct interlacing was particularly difficult to achieve with the old 405-line receivers. When the 625 -line system was introduced, a more complex field sync pulse train was adopted. There are five equalising pulses; then five broad ($28 \mu \mathrm{sec}$) field sync pulses, followed by five more equalising pulses. These fifteen pulses last for a period that's equal to 7.5 line scans. There is then a further blanking period that lasts for 17.5 line scans, the total field sync/blanking period lasting for 25 lines.

There's a line-rate component throughout the field sync/blanking period. Its purpose is (or was!) to keep the line timebase synchronised during the field sync/blanking interval.

The sync pulses occupy the 'blacker-than-black' region of the video waveform, extending downwards to -0.3 V when the black level is taken as 0 V . Since the peak-to-peak level of the overall waveform is taken as IV, the sync to peak white ratio is $3: 7$. In principle the TV set's sync circuitry can regard all that's below the zero line as consisting of sync pulses and all that's above it as video information.

Blanking

Because, in a practical circuit, the video signal cannot drop to zero instantaneously, particularly from peak white, and because the leading edge of the line sync pulse is the crucial timing marker, each TV line is blanked for $1.5 \mu \mathrm{sec}$ prior to the advent of the line sync pulse. This 'front porch', as it's known, forms a boundary between the picture information and the pulse. The $4.7 \mu \mathrm{sec}$ line sync pulse is followed by a 'back porch' period of $5.8 \mu \mathrm{sec}$ to give the beams time to return to the left-hand side of the screen before the picture information starts again. The colour burst, which is used to synchronise the receiver's colour decoder, is inserted in this back-porch period - see Fig. 1, Part 6.

For similar reasons there are blanking periods before and after the field sync pulses (a group of five per field). The relatively long 17.5 -line interval after the field sync pulses in the field sync/blanking period was originally provided to accommodate the slow flyback action of many early field timebase circuits. It subsequently came to be used for network switching signals, engineering test waveforms

Fig. 1: Basic flywheel line sync arrangement.

Fig. 2: Dual-loop flywheel line sync arrangement used in all modern TV receivers. In practice the circuitry is much more complex than this basic block diagram suggests.
(known as VITS - vertical interval test signals) and the teletext system, which we'll examine in a later instalment in this series.

Sync Separation

For precise control of the line and field timebase generators it's important that the steep leading edges of the sync pulses are preserved and that no picture information is present in the separated sync pulses. Nowadays the process of separating the sync pulses from the transmitted video waveform is carried out within an i.c., an adaptive slicer being used. This continually samples the pulse amplitude to find the mid-point between black and the sync-tip level, then identifies the timing and direction of all transitions across this point. Many chips also contain a noise inverter/gate that shuts down the sync separator when noise or interference is momentarily present - in the short term lack of sync is less disturbing to the picture than the presence of spurious pulses.

Line Synchronisation

Very early TV sets used direct line synchronisation: the line oscillator free ran at a frequency slightly lower than normal, being triggered to initiate the flyback by the arrival of a sync pulse. This arrangement is very susceptible to noise and interference however, so 'flywheel' systems came into use. These in effect average a large number of pulses over a period of time so that the absence or corruption of one or a few received pulses has little effect on the picture.

The idea is depicted in Fig. 1. A voltage-controlled oscillator (VCO) that free runs at the correct line frequency of 15.625 kHz is used. Pulses tapped from the line output transformer provide feedback to the phase detector. These pulses are integrated to produce a sawtooth waveform. The phase detector's other input is the separated line sync pulses. These in effect switch the phase detector on, so that it samples the sawtooth waveform at its other input. If the sawtooth waveform is passing through zero when the sync pulse arrives, synchronisation is correct and the phase
detector produces zero output to add to the voltage that sets the line oscillator's frequency. If the synchronisation of the line timebase is incorrect, the sawtooth waveform will be at either a positive or a negative voltage when the sync pulse arrives. This value is detected and fed to the line oscillator via a filter, to speed up or slow down the oscillator as required. To minimise the effect of noise or interference, the filter's time-constant is refatively long. This 'lazy' action gave rise to the term 'flywheel sync'. The requirements differ somewhat with VCR use, as we shall see in a moment.

The i.c.-based line sync systems nowadays used employ two phase-locked loops (PLLs) as shown in Fig. 2. The first (APC1) phase-locks the line oscillator to the incoming sync pulses in the way just described. The second loop (APC2) maintains a constant phase relationship between the output from the line oscillator and the flyback pulses in the line output stage. Loop APC2 compensates for phase/timing errors caused by variations in picture content and brightness. These can be a problem when the e.h.t. and other supplies are derived from the line output transformer.

The advantages of a dual-loop flywheel system are better noise immunity, a symmetrical pull-in and hold-in range, no change in picture position or geometry with variations in picture content or loss of signal/sync, and adaptability to different reception and signal-source conditions. Picture centring in the horizontal plane is easily arranged by including a phase control in the second loop. It sets the position of the picture within the raster, taking up tolerances in the scanning circuit and the picture tube, whose purity adjustment affects picture positioning.

Different signal characteristics and reception conditions call for different characteristics in the flywheel loop. These are catered for by varying the system gain, control range limits and filter response. For DX-TV reception for example a fast lock-in and high noise immunity thereafter are required. With VCR and video-disc operation a short timeconstant is required so that there's a quick response to cope with signal timing jitter and the line phase jump at the head switchover points. These can be catered for in the timebase generator chip by automitic adaptation based on sampling and/or programming, either directly or via an I2C bus line. Typically three time-constants are provided: for normal offair reception; for reception with weak and noisy signals; and for VCR/disc operation. In addition the phase detector in loop one may be gated at line rate to prevent pulses that occur outside the normal timing window for the broadcast sync pulse having any effect.

Field Synchronisation

In its simplest form - one that survived far longer than direct line sync - field synchronisation relied on detecting the broad field sync pulses which were separated then integrated to form a single pulse to trigger the field flyback. Use of an integrator means that the short-duration line pulses have little effect while the broader field sync pulses rapidly build up the output, see Fig. 3. Integration can be followed by a level detector which generates a sharp pulse to initiate the flyback. The field oscillator free-runs at about 47 Hz , its catch-and-hold range depending on the width of the window during which the oscillator is responsive to sync pulses. Trade-offs here are noise/interference immunity, provision for oscillator drift, and 'worst-case' frequency error with a VCR used in its 'trick-play' modes. With this type of direct synchronisation good interlacing is crucially dependent on the trigger level, which can be upset by stray line-frequency pulses or noise/hash/hum on the video signal.

Many modern timebase generator chips use an alternative, better field sync system. A divider gircuit is used to count the line scans, the field flyback being triggered every 312.5 lines. Once the system is lined $\mu \mathrm{p}$ with the timing of the broadcast signals it can manage without any field sync pulses at all. As it's not easy to count half lines the line oscillator runs at double speed, $3 \cdot 125 \mathrm{kHz}$. Its output is divided by two for line drive and flywheel sync operation. and by 625 to provide field drive. The advantages are a stable, jitter-free display even when the sync pulses are corrupted or temporarily absent, perfect interlacing because of the precise flyback timing, no oscillator drift and no field hold/frequency adjustment, and automatic recognition of $50 / 60 \mathrm{~Hz}$ standards, sync and scan amplitude being correct in either case. The divider/reset system has three modes of working, with wide, narrow or extra-narrow search windows, the latter just one clock pulse wide.

A development of this approach is used by chips like the TEA2028, whose scan timing, both line and field, is derived from a 500 kHz ceramic-resonator based VCO , with counting down to 15.625 kHz and 50 Hz for the line and field drives and a PLL that works at line rate. In this case there are neither line nor field hold presets.

Interlace Switching

As we've seen, the interlace system is essential with conventional, analogue TV broadcasting systems to conserve spectrum space (channel bandwidth). With text and computer displays however interlacing produces an objectionable inter-line flicker on the horizontal edges of captions and graphics. Sequential scanning provides a more stable image for these purposes. With a TV set designed for broadcast reception sequential scanning can be achieved by triggering each field at the end of a line, so that the lines of the odd and even fields are overlaid. The fact that this halves the vertical resolution is not important with relatively coarse images such as teletext pages. Interlace switching is normally carried out automatically when text is selected. With some sets it can be programmed for use with external signals from a caption generator or computer.

Signal Recognition

A coincidence detector that puts up a flag when the primary PLL (APCl) is locked to a transmission is often incorporated in a timebase generator chip. It has two purposes: to terminate the channel sweep with a self-seek tuning system and to de-activate an inter-station hiss muting gate in the sound channel.

Sets with on-screen menu and caption facilities need a stable free-running line oscillator to avoid ragged displays when there's no signal input. So some of them incorporate a noise detector to earth the video input pin for the sync separator under no-signal conditions. In other designs the longest available flywheel sync time-constant is used in these circumstances.

Another link between the timebase generator chip and the signal-processing section of the receiver carries the sandcastle pulses, which were described and illustrated in Part 6 (June).

Typical Timebase Chips

As a practical example of the techniques we have been considering this month, Fig. 4 shows a block diagram of the widely-used TDA2579A sync/ timebase generator chip. The peripheral circuitry applies to a Bang and Olufsen chassis.

The composite video signal enters at pin 5. Its black level is then measured and stored in capacitor C42 which is connected to pin 7. The sync slicing level is set by R70 and stored in C41 at pin 6. A noise-inverter circuit in this section of the chip shuts down the sync separator when interference pulses that exceed an internally-set threshold of 0.3 V are detected.

Phase detector 1 compares the frequency of the separated line sync pulses with the output from the line oscillator. This is PLL one, the error output from the detector locking the line oscillator by voltage control. The flywheel sync time-constant components C39, C40 and R68 are connected to pin 8. Although this is not shown in Fig. 6, phase detector 1 consists of three different discriminators connected in parallel, each with its own active resistance: the most appropriate one for the conditions present is switched in automatically by a circuit that consists of noise-level and sync ident detectors. Pin 13 provides a three-level output for muting and switching: 0 V for no signal; 7.8 V for 60 Hz sync; and 10 V for 50 Hz sync.

The free-running line oscillator frequency is set by R77, C 76 and the d.c. voltage applied to pin 15 of the chip via R78.

Phase detector 2 compares the timing of the signal produced by the line oscillator with that of line output transformer derived flyback pulses that enter at pin 12. The error voltage thus produced controls, in conjunction with the preset phase control (horizontal centring) voltage applied to pin 14, a phase shifter: this consists of a pulse-width modulator that's in the path between the line oscillator and the line drive output at pin 11. The RC network C33, R57 provides a time-constant for this second PLL.

The field sync pulse generator (output at pin 3) is basically a divider that works with a double line-rate clock signal derived from the line oscillator. It's reset by a sevenstage field coincidence logic circuit that samples the field sync pulses in the manner previously described. The division ratio is switched automatically by the incoming video signal for $50 / 60 \mathrm{~Hz}$ operation. The sandcastle pulse generator, whose tri-level output appears at pin 17, produces the required timings and levels from waveforms available within the chip plus a field flyback pulse input at pin 2 . In the absence of this input the sandcastle pulse output is reduced to a continuous level of 2.5 V . This, applied to the colour decoder chip, blanks the screen to prevent phosphor burn in the event of field collapse.

Fig. 5 shows a block diagram of the sync/timebase generator section of a Japanese chip, type M51308SP, that does much else as well, incorporating a video processor and PAL/NTSC decoder. The timebase section is of interest in using a 500 kHz ceramic resonator as part of the line oscillator.

Composite video enters at pin 16, where C211 removes h.f. noise with weak signals. X501, connected to pin 11, is the 500 kHz ceramic resonator. The line count-down circuit divides the 500 kHz VCO's output by 32 , producing 15.625 kHz pulses whose phase is compared with that of the incoming, noise-gated line sync pulses in block AFCl. This is PLLI: C503 is the filter capacitor, across which the voltage to control the oscillator is produced. The gain of the AFCl section is controlled by the coincidence detector block which determines the charge across C502 at pin 9. When loss of sync is detected the AFCl loop gain is increased by a factor of three while the width of the line sync pulse detection period (the search window) is increased by a factor of four.

The second PLL (AFC2) compares the timing of the internally-generated line pulses with that of line output

Fig. 3: Use of an integrating circuit (a) and a differentiating circuit (b) to sort out the field and line sync pulses. The time-constant of the integrating circuit is made long in comparison with the duration of the line sync pulses which thus have little effect on the output. If the time-constant of the differentiating circuit is made short in comparison with the duration of the line sync pulses the output will consist of sharp spikes that correspond with the pulse transitions.
transformer-derived flyback pulses that enter the chip at pin 12. An internal capacitor is used as the reservoir. If the flyback pulse is late, the voltage across this capacitor falls. As a result the phase of the drive pulse output at pin 6 is advanced to compensate. The circuit is sufficiently fast-
acting to eliminate very short-term picture 'bending' effects.
An output from the line count-down circuit is fed to the field counter which controls a ramp generator. The output from this passes via a driver stage to pin 13.

The Line Driver Stage

The line drive pulses fom a timebase generator chip typically have a mark-space timing ratio of $29: 35 \mu \mathrm{sec}$, the $35 \mu \mathrm{sec}$ 'on' period being the time during which the beams are deflected from roughly screen centre to the point when the flyback occurs. With ar npn transistor as the line output device an impedance-matching stage is required. It usually consists of a driver transistor and a step-down transformer. The functions of this stage are twofold: it isolates the line generator from the switching impedance of the line output transistor, and provides power amplification to drive the necessary base current into the output transistor.

Fig. 6 shows a typical circuit. The squarewave output from the line generator chip switches Trl fully on and off via R1. R2 and C1 damp the primary winding of the driver transformer T1 to prevent excessive overshoots on the drive waveform. R3 limits the base current flowing via the line

Fig. 4: Block diagram showing the basic arrangements used in the TDA2579A sync/timebase generator chip.

Fig. 5: Block diagram of the sync/timebase generator sections of the M51308S ${ }^{\text {P }}$ chip, which also provides video signal processing and PAL/NTSC colour decoding. Line and field hold controls are not required, the basic timing being set by the ceramic resonator X501.

Fig. 6: Typical line driver stage circuit. In practice circuit design varies considerably.
output transistor $\operatorname{Tr} 2$, which is operated as a switch.
A low-impedance drive is essential for the line output transistor to switch on and off rapidly. It would otherwise dissipate excessive power during its transitions between the two states. The charge that builds up in $\operatorname{Tr} 2$'s base region capacitance must be removed by the drive circuit, the
process taking 5-10 $\mu \mathrm{sec}$ (depending on transistor type) from the start of the switch-off pulse to the transistor starting to cut off. This time must be allowed for in the PLL2 section of the line sync circuit. R4 damps $\operatorname{Tr} 2$'s base circuit. preventing spurious oscillation during the flyback, while C2 bypasses any flashover current that may reach Tr 2 's base.

There are many variations in practice in the detail of base-coupling circuitry: some circuits use diodes and small inductors to tailor the drive current waveform shape and timing to suit the type of line output transistor in use. With some types of line output transistor a transformer is not required.

Next Month

It's taken almost the whole of this instalment to get to a transistor switch that opens and closes in synchronism with the video signal! Next time we'll wade into the operation of the line output stage and its peripheral bits and pieces.

Teletopics

MATSUSHITA'S FLAT SCREEN

Matsushita is to start selling a 14 in. flat-screen set this month in Japan at $Y 288,000$ (about $£ 1,800$). Production will initially run at 1,000 sets a month. The display is not of the liquid-crystal type but is a development, called Flat Vision, that was first announced by Matsushita in 1985. It uses an electron source and a phosphor screen, but the electrons are focused on to sections of the screen by a matrixed electrostatic deflection system. This results in a display less than 10 cm deep. Matsushita says that its Flat Vision technology provides the brightness of an LCD with the picture quality of a c.r.t.. while being simpler to manufacture than an LCD. Larger, wall-mounted versions are to be developed and HDTV versions are a further prospect. Matsushita expects that its Flat Vision system will take ten per cent of the total world display market by the year 2000 .

SATELLITE TV

National Transcommunications Ltd, and Eutelsat have completed joint tests which show that wideband satellite transponders can carry both analogue f.m. TV and digitallycompressed TV signals produced by NTL's System 2000, a multi-channel video compression system. A single Eutelsat transponder was able to carry one analogue and four digi-tally-compressed channels, or alternatively eight digital channels, at broadcast quality. With a data rate of $8 \mathrm{Mbits} / \mathrm{sec}$, four digital channels can be accommodated in the space normally occupied by one analogue channel. Use of a lower bit rate will give even more channels.

Eutelsat's Hot Bird (II F6), to be launched in the autumn of 1994 as a DBS TV satellite, was mentioned last month. Eutelsat is now planning a further DBS TV satellite to be known as Hot Bird Plus, with a proposed launch in early 1996, again at $13^{\circ} \mathrm{E}$. It will have either fourteen or twenty transponders and will be equipped with 110 W travellingwave tube output amplifiers so that 40 cm dishes can be used for reception in the service area.

Competition from SES will be provided by Astra IF, which is also due to be launched in 1996. It will be SES's
second satellite at $19 \cdot 2^{\circ} \mathrm{E}$ dedicated to digital TV and audio transmissions. Astra 1D and IE will operate in the band $11 \cdot 7-12 \cdot 1 \mathrm{GHz}$ while 1 F will cover the upper part of the DBS band, $12 \cdot 1-12 \cdot 5 \mathrm{GHz}$. SES plans to use digital compression so that hundreds of TV channels and even more radio and data services can be provided.

Cambridge Industries has confirmed that it has been awarded the contract to supply satellite receivers and dishes which British Telecom will be selling. The custom-designed receivers will use the latest ASIC technology.

FERGUSON RECALL

A recall of seven colour TV models within certain serial number ranges has been announced by Ferguson. The sets are as follows (Model no. first):

51K5 ANT	serial nos. $500001-510158$
51K7 ANT	serial nos. $500001-534578$
51L5 B	serial nos. $500001-502500$
51L7 GREY	serial nos. $500001-502500$
59K5 ANT	serial nos. $500001-04122$
59K7 ANT	serial nos. $500001-525863$
59K5QANT	serial nos. $500001-500501$

No other Fergsuon sets are involved. The problem is deterioration of the on-off switch over a long period of time. Symptoms are overheating or the set occasionally switching itself on while unattended. There have been cases where the corner of the cabinet has burnt away. The sets were produced between September 1988 and March 1989. Ferguson has placed advertisements in the national press asking owners/renters to contact their local Ferguson dealer/rental company for a replacement switch to be fitted free of charge. In the interim, users should disconnect the set from the mains supply at night or when the set is unattended.

VIDEO NEWS

Thomson-CSF has developed an experimental static-head VCR system that can in theory record up to a thousand digi-tally-compressed TV signals in parallel on metal-evaporated Hi-8 tape. At present nine MPEG-1 channels can be stored. Track width is $18 \mu \mathrm{~m}$, tape speed being $2.6 \mathrm{~cm} / \mathrm{sec}$. Data is stored at a rate of $20 \mathrm{Mbits} / \mathrm{sec}$, of which $12 \mathrm{Mbits} / \mathrm{sec}$ are available for video signals. The system uses magnetic
recording and a magneto-optical playback system based on a 50 mW laser, a Kerr transducer and a CCD sensing chip. Basically, laser light reflected via the Kerr transducer is modulated by the information stored magnetically on the tape the lightss plane of polarisation is rotated by the magnetic fields). This works only with digital (two-state) information of course. The system has potential in both the professional and consumer markets.

Toshiba has launched a range of VideoPlus VCRs. Model V213B at $£ 340$ is a two-head machine and Model V423B at $£ 380$ a four-head version. Both include on-screen programming. Model V513B at $\mathfrak{£ 4 0 0)}$ includes PDC while Model V813B at $£ 530$ has Nicam, PDC and front-mounted sockets.

Hitachi has launched a new Video 8 camcorder. Model VM-E53, whose features include a 24 -times digital zoom, a $320.00(0)$-pixel CCD imager and remote control. Price is $£ 70$).

APPLE LAUNCHES ITS PDA

Apple Computer has launched its first Personal Digital Assistant (PDA) in the USA. It's a portable pen-operated computer designed to organise personal information. Apple`s PDA. called MessagePad, will offer a variety of communications facilities including fax. electronic mail. wireless and an infra-red link - some of these will require additional hardware and software however. Price of the MessagePad is $\$ 699$ ($£ 466$), or $\$ 799(£ 530)$ with an optional fax/modem. It uses ROM card software that includes games, business guides and puzzles. These cost between $\$ 4(1-\$ 120$ ($£ 26-£ 80$). Around fifteen titles are available initially - Apple promises fifty by Christmas. The company says that over 1.500 developers are interested in producing Newton (PDA) software.

Sharp. which makes Apple's MessagePad at its Japanese plants. plans to market its own PDA called ExpertPad. Price is expected to be around $\$ 899(\mathrm{E} 6(0)$). Apple plans to launch the MessagePad in the UK shortly at around $£ 599$. It will be launched in Japan and Germany later this year and France in 1994. Sharp has not revealed its European launch plans.

SMALLEST DAT PLAYER

Sony has launched what is claimed to be the world's smallest DAT player, Model WMD-DT1. It's about the size of the smallest conventional Walkman and uses a mechanical loading system to reduce size and power consumption. Two AA-size batteries provide a playing time of up to four hours. Price is $\mathfrak{£ 2 5 0}$.

WORDPERFECT 6.0

Details of the WordPerfect 6.0 wordprocessor poogram, mentioned in David Botto's article last month, have now been released. It uses a GUl (graphical interface) ard looks like a Windows program while being DOS based. There are all the features of WordPerfect 5.1 plus many more. The Grammatik 5 grammar/spell checker, now a WordPerfect product, is included. You can choose between three editing modes. The QuickFinder function speedily finds any word or phrase in a document. Up to nine documents can be handled simultaneously, and you can switch between them. With a suitable sound card the user can include audio/speech sound files anywhere in a document. The print preview function enables up to 32 pages of text and graphics to be viewed. Fit a fax card in your PC and you can send a fax. These are just a few of the new, advanced features. The suggested retail price is $£ 329$ plus VAT.

Next Month in TELEVISION

FREE 164-PAGE CATALOGUE

The November issue comes with a free 164page banded catalogue from Marco Trading.

THE PANASONIC K DECK

The latest Panasonic VCRs use the new, improved K deck, whose features include faster mode switching, easy gear alignment and less gearing. Simon Nash provides a technical introduction to the new deck.

LINE OUTPUT STAGE OPERATION

Although the line output transistor acts as a simple switch, the operation of the line output stage is complex. For efficient operation and to generate the e.h.t. the stage is tuned, and for EW correction modulation is required. Eugene Trundle explains it all in the next instalment of his current series.

SATELLITE RECEIVER MODIFICATIONS

Some modifications to enable various satellite TV receivers to provide extra features.

THE APPLE NEWTON MESSAGEPAD
Apple's MessagePad, recently introduced in the USA and due for release in the UK by the end of the year, is a sophisticated, pen-operated, handheld computer. George Cole explains what's in it and the features it provides.

PLUS PLUS PLUS

More on the Panasanic digital TV chassis, more Toshiba servicing guidance and all the regular features.

ECONOMIC DEVICES 32 TEMPLE STREET，WOLVERHAMPTON，WV2 4AN

0．31 BF959
0.40
0.46
0.28
0.2
0.46
0.28
0.25
0.30
0.11

0.18 BYW56 0.27 LM393
$\begin{array}{llll}16 & \text { LM393N } & 0.27 & \text { SOA } \\ \text { M192B1 }\end{array}$
0.27 SDA2112

 TDA1170N

TDA170S \begin{tabular}{ll}
1.38 \& TDA9503

1.16 \& IFA1002

\hline

 $\begin{array}{cc}\text { TDA9503 } & 2.1 \\ \text { TEA1002 } & 4.9\end{array}$

2.13

4.98

1.61

1.87

2.15

1.49

2.68

6.26

0.55

0.55

0.59

0.52

0.36

0.58

0.57

0.42

0.48

0.46

0.48

0.83

0.30

0.46

0.77

0.17

0.32

0.30

0.44

0.39

0.38

0.92

0.80

0.89

0.38

0.37

0.39

0.37

0.51

1.24

0.66

1.36

0.38

1.61

$2 A P$

11.24

\hline
\end{tabular}

SPECIAL OFFERS

BU $208 A \times 5$	
BU $426 A \times 5$	3.50
BU 508A $\times 5$	3.50
BU 508AF $\times 5$	5.00
BUT 11AF $\times 5$	5.00
U 321 TUNER $\times 2$	3.25
VIDEO FAULT FINDING GUIDE	$\mathbf{3 . 0 0}$
SEMI CONDUCTOR DATA BOOK	$\mathbf{9 . 9 9}$
SATELLITE FAULT FINDING GUIDE	$\mathbf{9 . 9 9}$
14.95	

 BC307

$\begin{array}{lll}1.70 & \text { BU705 } \\ 2.13 & \text { BU806 }\end{array}$ 13 BU806 1 BU806A 1 BU80796 B BU826A
Bu908 $\begin{array}{ll}0.29 & \text { BU908 } \\ 0.22 & \text { BUK444 }\end{array}$ $\begin{array}{ll}0.22 & \text { BUK444 } \\ 0.15 & \text { BUT11 }\end{array}$ 0.34
0.17
BUTIIIA $B U T 1 / A A$
$B U T 112 A$
$B U 564$

1	HM7103	14.07	MPSA42	0.23	STK5326	6.20	TBA120
2	ICH281	0.26	MPSA56	0.12	STK5331	3.02	TBA120AS
KA2101	0.83	MPSA93	0.09	STK5332	274	TBA120S	

管品。

0.19 BlWid $1 B$
0.11 BUW8

KA2101

 엉

53 TDA2611AO 203 （10

 UC38
UPA8
UPC1
UPC
UPC
UPC1
UPC
UPC
UPC
UPC1
UPC
UPC
UPC
UPC
UPC
UPC
UPC
UPC1
UPC
UPC
UPC1
UPC1
UPC1
UPC2
UPC3

TV/VCR SPARES GUIDE 1993

The following list gives spares department addresses and telephone numbers or, where these are the same, service department or head office addresses and telephone numbers. Also included are details of various spares distributors.

Aiwa UK Ltd., Unit 5, Heathrow Summit Centre, Skyport Drive, West Drayton, Middx UB7 OLY.
081-8972425
Fax 081-899 0055.
Akai UK Ltd.,
Haslemere Heathrow Estate, 12 Silver Jubilee Way, Parkway, Hounslow, Middx TW4 6NF.
081-8976388
Fax 081-7596118.
See also Thorn EMI UK Rental.

Akura. Spares available from Akura Components Ltd., 44, Deerdykes View,
Westfield,
Cumbernauld, Glasgow G68 9HP
0236-457 022
Fax 0236-457 333.
Alba Radio Ltd.,
Harvard House, 14-16
Thames Road, Barking, Essex.
$081-0815945533$
Fax 081-591 0962.
Ambassador. Brand name used by Sentra Electronics.

Amstrad. Spares available from CPC Ltd., Chas Hyde \& Son Ltd. and Amstrad PLC, Brentwood House, 169 Kings Road,
Brentwood, Essex
CM14 4EF
0277-228888
Fax 0277-209559.
ASA. Spares can be ordered from Finlux.

Autovox. See Comet Group plc.

Baird. See Thorn EMI UK Rental.

Benkson. B. Benkert Ltd., Benkson House, 26 Thames Rcad,
Barking, Essex IG11
0JA.
081-5947532
Fax 081-594 9919.
Trade only.

Beovision/Beocord.

Bang and Olufsen UK Ltd., Eastbrook Road, Gloucester GL4 7DE.
0452-307377
Fax 0452303859.
Trade only.
Binatone International Ltd., Binatone House, 1 Beresford Avenue, Wembley, Middx HAO $1 Y X$.
081-9035211
Fax 081-903 5521.
Trade only.
Blaupunkt. Merrivale
Television Services, 1 Lockside, Tatbank Road, Oldbury, Warley, W. Midlands.

021-5446250
Fax 021-552 1503.
Trade only.
Bush Radio Plc., Harvard House, 14-16 Thames Road, Barking, Essex IG11 OHX.
081-0815945533
Fax 081-591 0962.
See also HRS.
Canon UK Ltd., Unit 4, BrentTrading Centre, North Circular Road, London NW10.
081-4591266
Fax 081-459 4202.

Cathay. Spares from MG Services, Return Centre, BSS House, Cheyney Manor,
Swindon, SN2 2PJ.
0793-497591
Fax 0793-431 687.
Classic monochrome portables. Spaıes available from HRS Electronics plc.

Colmmodore. Spares available from CPC.

Comet Group plc.,

Service Dept., Unit 5,
City Park Ind. Estate,
Gelderd Road, Leeds LS 12 6DR.
0532-311 024
Fax 0532-310 567.
Connexions UK plc.,
Unit 3, Travellers
Close, Travellers Lane,
Welham Green, Herts
AL9 7LE.
0707-272091
Fax 0707-269 444
Contec CTVs sold by Dixons. Spares available from
Mastercare
Components.
CPC Ltd., Component House, Faraday Drive, Fulwood, Preston,
Lancs PR2 4PP.
0772-654455
Fax 0772-654 466.
Official spares stockists for Alba/Bush, Amstrad, Commodore, Epson, Ferguson, Fidelity, GEC, GoldStaı, Hinari, Ingersoll, Logic. Matsui, Olympia, Olivetti, Orion, Pace, Philips, Pye, Saisho, Sinclair, Sony and Triumph. Other spares available.

Crown. Spares

available from
Datapart, Electron
House, 100 Great Barr
Street, Birmingham B94 BB.
021-7665551
Fax 021-7665819.
Daewoo Electronic
Sales UK Ltd., Unit 640, Winnersh Triangle, Wokingham, Berks RG115TP.

0734-695666

Fax 0734-699 922.
Note: Daewoo brand prodacts only, not OEM products. For the latter, refer to the original distributor.

Dansai TV and Video spares available from Nikkai. Audio spares available from NG Services, Return Centre, BSS House, Cheyney Manor, Swindon.

0793-497591
Fax 0793-431 687.
Decca. See Tatung (UK) Litd and Wizard Distributors. Spares for chassis up to and including the 110/115 series available from D\&S Electronic Services, Building 15, Unit 4, Stanmore Industrial Estate, Bridgnorth, Salop WV15 5HR.
0746-766 641.
Definition. Spares available from Wiltsgrove Ltd.

Denon. Hayden
Laboratories Ltd., Hayden House, Chiltern Hill, Chalfont St Peter, Gerrards Cross, Bucks SL9 9UG.
0753-888447
Fax 0753-880 109.
DER. Spares available from Thorn EMI UK Rental.

Doric. Some spares availbale from UK Rental and Retail Ltd.

Dwektron. Spares available from HRS.

Dynatron. Pre 1981
sets see Philips
Service, post 1981 sets spares from SEME.

Elftone Electronics
Ltd., 4 Beresford Avenue, Wembley,
Middx HAO 1 YZ
081-9026222
Fax 081-903 5011.
Etron. Brand name used by Nikkai Imports Ltd.

Expert. Spares from Tatung, GEC, or Luxor depending on chassis.

FERGUSON

Ferguson Ltd.,Service Division, Crown Road, Enfield, Middx EN1 1DZ.

WILLOW VALE ELECTRONICS LIMITED

WME

the answer to the spares puzzle

Akai Kamasa
Altai Konig
Amstrad Labgear
Antex Leader
Antiference Ledu
A.D.S. Link Hamson
Aiphone Microtec
Ambersil Mitsubishi
Aiwa Nikkai
Alba Oryx
AWI Pye
Baldwin Boxall Philips
Bose Portasol
BK Precision Ross
Blackstar Saisho
Celtel Samsung
Celtek Sansúi
DNH Satfinder
Electrolube Seaward
ERL Servisol
Ferguson Sharp
Fidelity Shure
G.E.C. Sony
Goldstar
Grundig Thander
Hameg Toshibson
Inkel Trantec
J.V.C. Weller
Ther

Thorn EMI UK Rental,
Glaisdale Drive, Bilborough, Nottingham NG8 4LA. 0602-290 433/44 Fax 0602-295 899. Spares for Akai, Ferguson, Finlux, GoldStar, Grundig, ITT, JVC, Mitsubishi, NordMende, Osaki, Panasonic, Philips, Samsung, Sanyo, Sony and Toshiba. Wide range of spares for other manufacturers also available. Spares supplier for receivers branded Baird, DER and Focus etc. Specialist in satellite TV spares.

Toshiba (UK) Ltd.,
Toshiba Technical
Centre, Units 6/7 Admiralty Way, Southern Trading Centre, Camberley, Blackwater, Surrey GU15 3DT.
0276-694000
Fax 0276-600 521.
Trade only. See also Chas Hyde, CPC, Thorn EMI UK Rental, UK Rental and Retail Ltd.
Trical. Brand name
used by Hinari
Consumer Products Ltd.
Trio-Kenwood (UK)
Ltd., Kenwood House, Dwight Road, Watford, Herts WD1 8EB.
0923-816444
Fax 0923-819 131.
Triumph. Brand name used by Currys. See Mastercare Components, CPC.

UK Rental and Retail
Ltd., Unit 37, Roman
Way Industrial Estate,
Preston, Lancs PR2 5BD.
0772-651551
Fax 0772-655 801.
Spares for Ferguson, Finlandia, Granada, Hitachi, Mitsubishi, Salora, Sanyo, Sony, Tashiko, Toshiba.
Trade only.
Ultra. See Ferguson Lid.

Uniden. Crystal
Communications, 33
Baker Street,
Weybridge, Surrey
KT13 8AE.
0932-821711.

Willow Vale

Electronics Lid., 11
Arkwright Road,
Reading Berks RG2 OLU.
0734-876444
Fax 0734-867 188. Official spares stockists for Ferguson, Fidelity, GEC, Grundig, Philips, Pye, Sansui, Sharp, Thomson. Other spares available.
Also at Enterprise Park, Reliance Street,
Newton Heath,
Manchester M10 OAL.
061-682 1415
Fax 061-682 9031
and 11 Marhill Road,
Carlton, Nottingham
NG4 3AJ.
0602-870 789
Fax 0602-878 772.
Wiltsgrove Ltd., 28-
29 River Street,
Digbeth, Birmingham B5 5SA.
021-772 2733.
Sole distributor for Definition brand.
Official distributor for CME, Futek, Ironda, Konig, Nikkai, Philex and Thorn. Other products stocked.
Wintronics. Limited
amount of spares available from Lloytron Electronics Ltd.

Wizard Distributors, Empress Street Works, Empress Street, Manchester M16 9EN
061-8725438 or
061-848 0060
Fax 061-873 7365.
Spares stocked include Akai, Alba, Amstrad, Decca, Ferguson, Fidelity, Hitachi, ITT, Loewe, Mitsubishi, Philips, Pye, Schneider, Sentra, Sharp, Sony, Tatung, Toshiba. Some spares for other makes stocked. Trade only.

Yamaha Electronics
(UK) Ltd., Yamaha
House, 200
Rickmansworth Road,
Watford, Herts WD1
7JS.
0923-233 166
Fax 0923-244930.
Zanussi TV Spares
available from Mets, 37
Padgets Lane,
Redditch, Worcs B98
ORB.
0527-510785.

Ceneral/miscellaneous parts suppliers

Allparts Distributors,
101 Rocky Lane,
Tuebrook, Liverpool.
051-260 4825.

AZ Electric,

18 Brookwood Road, Southfields, London SW185BP.
$081-877$ 3492/9064.
Chromavision,
95 Langworthy Road,
Salford, Manchester M6 5 PH .
061-736 6333.
Economic Devices,
32 Temple Street,
Wolverhampton WV2
4AN.
0902-712 083
Fax 0902-29 052.

East London

Components, 63
Plashet Grove, East
Ham, London E6 1AD.
081-472 4871.
Electrovalue Ltd., 28
St Judes Road,
Englefield Green,
Egham, Surrey TW20
OHB.
0784-434 757
Fax 0784-435 216.
Northern branch 680

Burnage Lane,
Manchester M19 1NA.
061-432 4945
Fax 061-432 4127.

Express TV Supplies,

The Mill, Mill Lane,
Rugeley, Staffs WS 15
2JW.
0889-577 600.
GGL Components, PO
Box 72, Unit 7, South
John Street, Carlisle,
Cumbria CA2 5AL.
0228-39 693/20 358
Fax 0228-515 127.
Grandata Ltd.,
KP House, Unit 15, Pop
In Commercial Centre,
Southway, Wembley,
Middx HA9 0HB.
081-900 2329
Fax 081-903 6126.
J.W. Hardy,

231 Station Road,
Stechford, Birmingham
B33 8BB.
021-784 8478.
Harrison Electronics,
Century Way, March.
Cambs PE 15 80W.
0354-51 289
Fax 0354-51 416.

Irwin Electronics,
Unit 200, JC Albyn
Complex, Burton Road,
Sheffield S3 8BX.
0742-739 622.
JJ Components,
63 The Chase, Edgware, Middx HA8 5DN.
081-952 4641 also 081-381 1700.

KSA Wholesale

Components, 582 Green
Lane, Small Heath,
Birmingham B9 50G.
021-772 2834.
LRC (Spares),
3-5 Whitfield Street,
London W1P 5RA.
071-3232107.

Manor Supplies,
172 West End Lane, London NW6 1SD.
071-794 8751/7346.

Marapet,

1 Hornbeam Mews, Gloucester GL2 OUE. 0452-526 883.

Nikko Electronics,
Dalbani House, 257
Burlington Road, New
Malden, Surrey KT3
4NE. 081-336 0566.
4NE, 081-336 0566.
T. Powell, 16

Paddington Green,
London W2 1LG.
071-723 9246.
PV Tubes, 104 Abbey
Street, Accrington,
Lancs BB5 1EE.
0254-236 52 1/232
611
Fax 0254-395 361.

Thrifty Spares

(Wales), Centrevision
House, Sloper Road,
Leckwith, Cardiff CF1
8AB.
0222-344 218.
Visions (GB) Ltd.,
Unit 4, Rainstar
Industrial Estate, Eley
Estate, Nobel Road,
Edmonton, London N18
OAA.
081-807 7476/7579.

Vista Electronics,

Unit 1B, Wingate
Grange Industrial Estate,
Wingate, Co. Durham
TS28 5AH. 0429-837
100.

TV Fault Finding

Reports from Philip Blundell, AMIEIE, lan Bowden, Terry Lamoon, Keith Evans, Chris Watton, Michael Dranfield, John Edwards, J.K. Potts and Gordon Haig

Philips G90AE Chassis

This set was almost dead - there was a blank raster, no sound, no on-screen display and the remote control received LED didn't flash in answer to a command. As all the supplies were present we carried out checks around the microcontroller chip and found that the reset line was stuck at 2 V . Disconnecting the reset pin (IC7720, pin 33) proved that the chip had an internal leak. A new TMP47C434N3555 restored normal operation.
P.B.

Grundig CUC2410 Chassis

A tripler arc over had caused quite a lot of damage. The dealer had replaced the microcontroller, colour decoder and i.f. chips and a picture was now present, but there was no sound, either from the speakers or the scart socket. The reason for this was that the Koin line (inter-station mute) was low all the time because the TDA2595 chip was faulty. A new TDA2595 completed the repair. P.B.

Mitsubishi CT2965STX

If the set is dead check whether circuit protector Z950 is open-circuit. Originally an SOC3150 was fitted. Mitsubishi recommend fitting a PRF5000 instead, part no. 299P132010.
P.B.

Philips CM11342 CGA Monitor

This monitor was dead: a squealing noise was heard coming from the power supply when it was switched on. We found that there was no 128 V supply to the line output stage as the X-ray protection thyristor was being fired. Use of a variac enabled us to establish that there was no power supply regulation. $\mathrm{R} 3412(33 \mathrm{k} \Omega)$ was opencircuit.
P.B.

Grundig CUC70 Chassis

There was no e.h.t. because the line oscillator wasn't running. The reason for this was loss of the $12 \mathrm{~V} \mathrm{~B}+$ supply as D689 (1 N 4001) was open-circuit.
P.B.

Panasonic TX21M1T

This set displayed four symptoms: the tuning would appear to drift off very slightly, the sound was muted, there was no volume on-screen display (the picture ones were all o.k.) and if the sweep tuning was started it didn't stop when a channel was found. The cause of all these symptoms was that the 'signal/noise' switching circuit, which consists of Q1272/3/4 and the associated components, was giving a low (no signal) output all the time. All the components in this circuit were o.k. however. It seemed that the cause of the trouble was insufficient sync drive at the base of Q1272. The sync separator that provides this drive is in IC521, which is on the teletext PCB. Comparison with another set showed that the output at pin 14 of this chip should consist of 8.3 V pulses sitting on a d.c. level of
1.7V. In the faulty set the amplitude of the pulses was only 5.5 V . We found that the cause of the trouble was C524 (180 pF) which is connected between pin 14 and chassis it was leaky, measuring just over $4 \mathrm{k} \Omega$. As a result pin 14 couldn't rise to the full supply level, as it should. The reason for the symptoms was that the set failed to detect that it was on a signal. So the a.f.c. was switched off and the sound muted, which also removes the on-screen display.
I.B.

Hitachi CPT2118 (G6P Chassis)

When this set was switched on it went to standby. Back off and straight to the two $82 \mathrm{k} \Omega$ resistors $\mathrm{R} 902 / 3$ in the power supply start-up network. Sure enough one of them was high in value at some $110 \mathrm{k} \Omega$. To be on the safe side I replaced them both.
T.L.

Abstract

Akura CX10 Here are some quickies on this portable. If the set cuts out intermittently with no standby light, check whether R402 has gone high in value. For no picture check the efficiency diode FR605. For no picture and no sound, or works intermittently, change the d.c. converter chip. You can't miss this - it has a massive heatsink. Overheating of this chip is most of the problem. For repeated failure of D410 (going short-circuit) check the value of R320. It should be 33Ω : if higher, change it. T.L.

\section*{Fidelity AVS2000}

Because of their size these entertainment centres are not our favourite pieces of equipment. This one came into the workshop with a dead TV section. As all the power supplies were in order attention was turned to the line timebase. We found that there was no drive to the line output transistor as the TDA8180 timebase generator chip was faulty. K.E.

Salora K Chassis

This chassis seems to crop up under many guises - in this case the set was a Finlandia C59C27. The intriguing symptom was of thick, black horizontal bars that almost obliterated the picture when the set was switched on from cold. After several minutes the bars would gradually disappear, revealing a perfect picture. We didn't have a manual but did have knowledge of a similar fault some years previously. So we proceeded to the field timebase, armed with a can of freezer. Our efforts here revealed that the culprit was C574 ($100 \mu \mathrm{~F}, 40 \mathrm{~V}$) which is next to the field output chip.
K.E.

Alba CTV711

The dead set symptom was the result of several damaged components in the chopper power supply, notably the

BU508A transistor, a diode in the mains bridge rectifier circuit and R801 (2.7Ω) which was open-circuit. After replacing these items and the mains fuse we decided to check a few components around the TDA4600 chopper control chip before we switched on. Our efforts were rewarded when we found that R 809 (270k Ω) which feeds pin 4 was open-circuit.
K.E.

Huanyu 37C-3

We hadn't seen one of these Chinese portables before so we were relieved when the customer handed us a dog-eared piece of paper with the comment "here's the instructions". It turned out to be the circuit diagram. Although the circuit wasn't essential in this case, it does save time poking around identifying components. The problem was line collapse - a bright, thin vertical white line. A resistor in the horizontal centring circuit was badly burnt. It proved to be open-circuit as it had been carrying the full line scan current. The root cause of the problem was the line linearity coil. Repairing and resoldering the coil connections and replacing the 220 , IW resistor (R 783) restored the line scan.
K.E.

ITT 80R/90 ${ }^{\circ}$ Chassis

This set would cut out after about half an hour. If you switched it off and on again it might continue to run all day. We eventually found that the cause of the fault was D772 (1 N 4148) in the h.t. adjustment circuit.
C.W.

Amstrad CTV1400

This old-age pensioner was dead and looked very grotty when we removed the back. The cause of the fault was soon found to be no drive at the base of the line output Iransistor. The line driver transformer was dry-jointed: its legs were so black that it wouldn't solder until they had been scraped clean.
C.W.

Finlux 3021F

The fault with this set was field collapse. Checks showed that all the components in the field output stage were o.k. The chip had been replaced, but the voltage at the input pins was wrong. After some time had been spent getting nowhere I swapped the whole signal panel with one from a good set. As the fault was still present I suspected a fault on the power/line output panel. Wrong again. The cause of the fault was on the control panel beneath the tube, where the microcontroller and memory chips reside. The SDA2526 memory chip had failed. How silly of me - I really should have looked there first for a field fault!
C.W.

Genexia CTV1001

This set is very similar to the Nikkai Baby 10. So when hum bars, although faint, began to appear after about half an hour I suspected that the infamous regulator chip was faulty. A replacement didn't cure the fault however. What did provide a cure was slight adjustment of the a.g.c. to the tuner. C.W.

Sony KV2215UB

This set was dead. A check showed that the 135 V supply to the line output stage was missing at pin 4 of plug D1. When the plug was disconnected a resistance check showed that
there was a dead short on the line output stage side. This cleared when pin 1 of the line output transformer was disconnected. The short was between pins 1 and 12 of the transformer. It's worth checking around on transformer prices. I found that the cost of some compatibles varies from $£ 15$ to $£ 30$, while a genuine original can cost up to some £70.
C.W.

Ferguson ICC7 Chassis

The line output transistor was short-circuit. As we couldn't find an obvious cause for this we fitted a replacement and switched on. Ten minutes later the transistor failed again. The cause turned out to be a poor connection at the line driver transformer.
C.W.

Fidelity CTV140

This set had an obscure name on it but appeared to be the Fidelity CTV140. The fault was no contrast. We found that R113 ($100 \mathrm{k} \Omega$) in the beam limiter network was opencircuit. Also check R111 ($100 \mathrm{k} \Omega$) and R106 ($10 \mathrm{k} \Omega$). The Fidelity manual shows a single resistor R106, with a value of $110 \mathrm{k} \Omega$, in this position.
M.Dr.

Ferguson TX85 Chassis

If the set is dead or intermittently dead, check for dry-joints on the vertical add-on filter panel next to the line output transformer, especially the lead-out wires. They tend to pull away from the print because of stress caused by the cable tie around the transformer being too tight.
M.Dr.

Goodmans 2180

If the set is dead check R105 ($150 \mathrm{k} \Omega$), R106 ($150 \mathrm{k} \Omega$), R 107 ($270 \mathrm{k} \Omega$) and R108 ($270 \mathrm{k} \Omega$). These resistors are near the CNX82 optocoupler in the power supply. M.Dr.

Sanyo CBP2145 (E2 Chassis)

When this set was switched on from cold the picture would break up into horizontal lines, with bad 'twitching'. The sound would buzz and pop. If you've not come across these symptoms before, you would be forgiven for switching the set off and reaching for another set to repair. But don't panic! Just replace C $364(10 \mu \mathrm{~F}, 16 \mathrm{~V}$) which decouples the 12 V supply. It's mounted close to a highwattage resistor that runs warm, thus drying out the capacitor.
J.E.

ITT TX3326 (Monoprint B Chassis)

When this set was switched on a sizzling noise came from within, followed by a thump from the loudspeaker. Then the set went dead. This all happened within a couple of seconds. We found that pin G of the chopper transformer was badly dry-jointed - to the extent that the board had carbonised. A thorough clean up and resoldering job cured the problem.
J.E.

Philips K30 Chassis

The sound was o.k. but there was a completely blank screen. A check on the tube voltages showed that they were all present and correct. The culprit turned out to be $\mathrm{C} 1586(100 \mu \mathrm{~F}, 35 \mathrm{~V})$, which is the reservoir capacitor for the -20 V supply.

Hitachi G7P Chassis

This set would sometimes start then cut out after a few minutes, or run for hours then stop. Tins of freezer and much time with the hairdryer failed to reveal the cause. We eventually found that the two $100 \mathrm{k} \Omega$ resistors R 919 and R920 which feed pin 5 of the TDA4601 chopper control chip had gone high in value - R920 read about $600 \mathrm{k} \Omega$ and R919 $130 \mathrm{k} \Omega$. They are rated at 0.5 W . When both had been replaced the set worked perfectly.
C.W.

Grundig GSC100 Chassis

This set was dead and once again we found that the fusible resistor R607 was open-circuit. Resoldering it brought the set back to life. I've had dozens of these sets come in dead. Usually the cause is faulty thyristors or insulation in the line output stage, and often Di511. Recently however the cause turned out to be $\mathrm{C} 2502(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ on the e.h.t. control (regel baust) panel. That was a new one to me. The curious thing was that tapping the panel would produce line break up, as though there was a dry-joint.
C.W.

Huanyu 37C-3

This Chinese set had no picture, though the power supply lines were all at the correct voltages and the line output stage was working. The cause of the fault was the $100 \mu \mathrm{H}$ coil L509, which is in the 12 V feed to the colour decoder chip IC501. It had gone open-circuit.
C.W.

Boots CTV1411R (Tatung 190 Chasis)

This set was dead. There was an h.t. supply to the chopper but no drive. The two $15 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ resistors R802/3 that provide the start-up feed looked a bit flaky on the surface and when tested one of them turned out to be open-circuit. Replacing them both brought the set back to life. C.W.

Hikona RM2002

This remote-control set had no sound, although the onscreen display showed that the volume control was operating and there was an audio output. The TA7680 chip IC101 provides the audio output: pin 1 is the volume control pin. A check here produced a reading of 5.8 V , which is normal when the volume is turned down (maximum volume is at 0 V). The voltage didn't decrease when the control was adjusted. Transistor Q201 was faulty, holding the line high. We found that a BC238 was a suitable replacement once its legs had been arranged to suit the panel.
C.W.

Alba CTV743

This 14 in . portable of Turkish origin came in with the symptoms no start-up and only channel 7 showing in the display. As the chopper circuit was o.k. we turned attention to the line output stage where D406 was found to be shortcircuit (fit a BY228) and R435 open-circuit (1 $\Omega, 1 \mathrm{~W}$). Before we could switch on a number of solder splashes and dry-joints required attention. All was well when these had been put right.
J.K.P.

Nikkai Baby 10

This sturdy little set was dead. Both fuses were intact and the relay latched, so attention was turned to the voltage
regulator chip IC401 which was found to have a very low output. A quick check with the bench power supply confirmed that IC401 was the cause of the fault. J.K.P.

Panasonic TX2 (Alpha 1 Chassis)

If the set is dead and the mains fuse is intact it may save time to go straight for the STR54041M chopper control chip IC801-it's the usual culprit.
J.K.P.

Sony KV2215UB

At switch on there was just a low buzz, no sound or vision. Operating the power supply with a lamp as its load showed that it was o.k., so attention was turned to the line output stage. No shorts were found when cold checks were made here. A new line output transformer had to be fitted to restore normal operation.
J.K.P.

Ferguson TX9 Mk 2 Chassis

There was an intermittent fault on this set: no manual or remote channel change and only the mute light on. We found that the two voltage regulator chips IC102 and IC103 on the PC1551 remote control subpanel were dryjointed.
J.K.P.

Hinari CT4

If the symptom with one of these sets is a loud whining noise from the left-hand side, don't waste any time. Just order a new line output transformer. The failure rate is high.
J.K.P.

Matsui 1480A

If the picture is intermittently blanked off, check that the teletext board is making good electrical contact via its leads. With the method used you may find that the plastic instead of the bare wire is gripped.
G.H.

Ferguson TX100 Chassis

The voltage at the 119 V output from the chopper power supply was slightly negative because the $47 \mu \mathrm{~F}, 160 \mathrm{~V}$ reservoir capacitor C121 was faulty. If the relay chatters all the time the line output transistor is usually short-circuit. You can risk fitting a replacement without a repeat.
G.H.

Grundig CUC70 Chassis

The electrolytic capacitors on the field timebase plug-in module can deteriorate. For reduced height/a non-linear picture with a kink at the bottom on both sides, check $\mathrm{C} 2791(2,200 \mu \mathrm{~F}$ or $3,300 \mu \mathrm{~F}$, both values are used). If the height cannot be set without about half an inch of foldover (shading) check $\mathrm{C} 2757(1,000 \mu \mathrm{~F})$. If the chip has failed, always check $\mathrm{C} 2758(100 \mu \mathrm{~F})$. As a clue, you will often find the associated safety resistor open-circuit.

On the signals side, for a multiple image with crinkly verticals and a sort of off-tune effect at switch on check C 2217 and C2221 in the tin i.f. module. C2217 is $10 \mu \mathrm{~F}$, 16 V on the circuit diagram but we usually find that the value is $47 \mu \mathrm{~F}$. C2221 is shown as $4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$ while $1 \mu \mathrm{~F}$, 50 V is usually fittec.

If R661 ($0 \cdot 15 \Omega$) on the secondary side of the chopper power supply goes open-circuit it's the end for the chopper transistor, the TDA4600-2 chip and the fuse.
G.H.

Reports from Simon Bodgett and Brian Storm

Panasonic NVS5B

The fault with this palmcorder was no focus or zoom operation. With a camcorder 1 always suspect the worst and check for any signs of lens damage due to misuse. This time the user was not guilty. The cause was a faulty zoom motor, part no. VEM0314.
B.S.

Sony CCDTR45

There was either very poor rewind or no rewind at all. The fault also affected the cassette eject operation as a loop of tape was left. Replacing both turntables and the intermediate gear restored correct operation.
S.B.

Hitachi VM200

The complaint with this one was of viewfinder flicker. A new connecting cable put matters right.
S.B.

Grundig VSC45

This machine is a Panasonic clone: the cassette door wouldn't close because the mechanism was in the eject mode. A new loading motor and mode switch restored normal operation.
S.B.

JVC GRS77

The problem was picture break-up, but only with S-VHS recordings. We traced the cause of the fault to a THE326A non-linear pre-emphasis chip.
S.B.

JVC GR65

Following impact there was no viewfinder operation - fortunately the problem was confined to the viewfinder. There's a scan-correction capacitor attached to the PCB by long legs that tend to fracture. Careful repair by scraping away the varnish in the winding and resoldering the connection provides a cure. The capacitor can be secured by tape or by use of a hot-glue gun.
S.B.

Grundig VS8250/Sony CCDF375

There were no camera functions. Tests soon showed that the camera d.c.-d.c. converter wasn't being switched on by the microcontroller chip. The camera/off/play switch was o.k. as the machine would play back, and the switch was being scanned by the microcontroller chip. We eventually isolated the cause of the fault to the circuit that scans the record lock switch on the side case. As the K out line from the microcontroller chip had no scanning pulses on it we fitted a replacement. This was not a good decision: the conditions were the same with the new chip installed. What we found after further investigation was open-circuit print beneath the audio and video output connectors, due to minor corrosion. The scanning pulses were absent because the pull-up resistor for the output port was on the input side of the K in 6 line, the opencircuit giving the impression that the chip wasn't working. Microsurgery was used to repair the damaged
print: the alternative would have been a new PCB and a lot of software setting up!
S.B.

Ferguson FC31

Because of a damaged record switch there were no record functions. I managed to replace the switch and secure it with glue - otherwise the whole cable would have had to be replaced, at great expense to the customer.
S.B.

JVC GRS70

The fault report said "no recordings and nothing on the viewfinder". Checks showed that the camera power supply circuits were all working correctly, but there was no output from the CCD image sensor because of a bias problem. R24 failed to make contact at one end.
S.B.

Panasonic NVS5

The complaint with this machine was that it was "stuck in the cue mode". This was not the case. The problem was that the capstan motor was running at a very high speed because of loss of FG control pulses to the servo control circuits. A replacement capstan motor, part no. VEM0384, put matters right.
B.S.

Panasonic NVMC6

We've had a few of these camcorders in recently with various capstan faults. Symptoms have been wowing, grating noises and, in bad cases, an unlocked capstan. In all cases the cause has been the capstan motor itself. Apparently the metallic coating on the rotor flakes off and rubs on the stator coils. I've found that it is best to replace the complete motor assembly (part no. VEM0284).
B.S.

Panasonic NVS5

This machine had two intermittent faults. First on occasions the drum wouldn't start to rotate from cold. Secondly there was sometimes bad playback picture disturbance, as if one head was faulty. Fitting a new drum and motor assembly, part no. VEG0927, cured both faults.
B.S.

Panasonic NVS6

We've had a few of these in with no electronic viewfinder display. In each case the cause has been an open-circuit in the EVF connecting cable, part no. VEE8055.

Panasonic NVS5

A fault we've had several times with these palmcorders is no zoom. The cause of the problem is that an earthing clip on the process PCB slips out of position: as a result its three 'fingers' short out various points beneath the process board. Presumably onset of the fault is helped by a sharp knock in use. Refitting the clip cures the fault.
B.S.

Servicing Car Audio Equipment

Abstract

Alan Bouskill Even in a recession most TV and video technicians baulk at the thought of repairing car audio equipment. The sight of digital displays and cassette mechanisms in small metal boxes seems to be off-putting. My own experience suggests that it's possible to undertake this type of work profitably however. The aim of the following article is to offer advice on diagnosis and take some of the mysteries out of various older models that may come the way of the free-lance engineer once the equipment is out of guarantee.

Power Supply

One basic requirement is a stabilised power supply that provides a nominal 12 V output, preferably variable between $10-14 \mathrm{~V}$ to simulate the varying nature of car electrical systems, for testing motor control circuits. A variable current limit is desirable. Otherwise a $12 \mathrm{~V}, 21 \mathrm{~W}$ indicator bulb in series with the supply will limit the current to a safe value. It can be switched out when the correct connections have been established. Ability to make incorrect connections is not confined to beginners: you find that some imported models use blue as power positive and red wires for the speakers - take nothing for granted!

With quality car audio the connections are all usually marked. If the positive power lead isn't obvious, trace the dial lamp supply. If it's 12 V , apply power to identify the power input - see Fig. 1. Beware as with some Blaupunkt models the dial lamps are fed from a 5 V line. If in doubt, check the bulb voltage. Units with a digital display usually have a separate permanent live feed to retain the 'station memory" when the unit is switched off.

Testing

An old car radio aerial will be adequate for test purposes. To reduce interference with weak signals the continuity of the outer screen of an aerial is important. You get the same symptoms when there's a poor earth contact between the aerial base and the car wing. When bench testing low-power

Fig. 1 (left): Identifying the positive power supply connection.

Fig. 2 (right): Dummy cassette for loading and autoreverse checks.
units it's feasible to use the outer screen of the aerial as an earth return - this avoids the risk of the chassis connection dropping off when the unit is handled. Don't use this method with high-power systems however as 10A can flow to earth.

When separate, large amplifiers are used in a vehicle they are often separately fused and connected directly to the battery - they require a very 'stiff' supply. Ensure that test speakers are isolated from chassis, as with high-power systems both speaker leads are live. Shorts to earth will usually destroy. output chips. Two large electrolytic capacitors connected back-to-back in each test speaker lead will provide some protection in the event of faulty output stages.

Beware of the joystick faders that in some cars transfer power from front to rear. Some use a commoned earth line that shorts out high-power units with disastrous results. For you and your customer's peace of mind, label identified leads - wiring diagrams are easily mislaid. My own preference for speaker connections is two-pin DIN speaker plugs with a range of adaptors and flyleads to suit. Note that in many units standard DIN speaker plugs won't fit side by side. Obtain some of the smaller plugs from a car audio specialist.

Azimuth alignment of tape recorder heads is best done with a good make of test tape. Around 6 kHz is an optimum frequency which will show uneven wear with stereo heads. Speed accuracy and stability can be checked by connecting a speaker output to a frequency counter. You can make your own test tapes using a good audio cassette, an audio generator and a first-class deck that's known to be accurate. A simple way of checking speed is to use the circuit shown in Fig. 3 (a variation on a disco flashing-lights circuit) and a quality cassette on which the 50 Hz mains frequency has been recorded. When the speed is accurate the bulb is either on or off or beats every few seconds: it flutters rapidly when the speed is very fast or slow.

To check loading and auto-reverse with mechanisms that are difficult to get at an old cassette can be emptied of its innards and cut as shown in Fig. 2.

On-off Switches

Car audio on-off switches are prone to going opencircuit. The contacts erode more rapidly because of currents of up to 2 A . Combined switches/volume controls are often complicated and expensive - $£ 25$ in one case we had recently. Customers are sometimes unwilling to pay such a price. A compromise measure is to short out the switch within the unit and take the power input lead to the ignition switch so that the unit is on when the engine is running. Better still use the auxiliary position, i.e. the first one when the switch is turned. Note that some cars don't have such a position. Resist the temptation to run the unit from the electric aerial feed as this will be unfused.

Earthing

Always ensure that a separate earth lead is connected between the car chassis and the unit's case, as earthing through the aerial screen cannot be relied on.

Some Faults

A ticking noise from the speakers with the engine off but the radio on proved to be caused by the instrument stabiliser, a bimetallic strip device. Fitting a suppressor capacitor across this two-terminal device provided a cure.

Another memorable installation fault, the symptom being

Fig. 3: Speed check circuit. Mains transformer T1 should have a minimum rating of 10VA. T2 is a small audio transformer with a step-up ratio of 3:1 - a transistor amplifier output transformer was used.
described as "the tape slows down on corners", proved to be due to the unit's feed being taken from the indicator wiring. The efforts of the mechanical speed control within the motor to keep up the speed had to be heard to be belived!

Old fuses and fuseholders can go high-resistance and intermittent. leading to bizarre effects. The moral here is not to take anything for granted, especially when the customer fitted the unit.

The Philips AC400 series were particularly popular radio-cassette players. Most had a.m. only, but the AC730 included f.m. Many of them are still in use as the cassette deck is reliable and almost customer proof and features music search. The on-off switch is prone to going opencircuit. Replacement is easy, but don't remove any screws from the front of the unit as some of them hold the channel-selection mechanism together - this makes putting everything back together interesting to say the least! Resolder the speaker sockets as they can work loose, and note that the heatsink above the volume control provides the earth return for the speakers. Clean the pinch roller, the capstan spindle and the head. The speed adjustment is on a small PCB near the rear of the case, accessible through a small hole in the unit's cover. Uneven volume from tapes can be caused by head wear, but the thick-film unit on the tape preamplifier board is not above suspicion and can cause crackles and problems with the music search system. There are different thick-film units - they vary with date of manufacture.

A common problem with the Pioneer KP2940/2950/2980 is that the flat drive belt drops off with the result that the tape gets entangled in the mechanism. The head working loose is another problem. Realign it then secure it with Loctite or similar glue. Check that the main PCB is firmly soldered to the metal chassis near the aerial socket.

Apart from the facia and the control knobs the Ford SRT32P is similar to the Blaupunkt Oxford M26. Always quote the full Bosch number (7643546 231) to obtain spares from a Blaupunkt dealer as the Oxford name was used for different models. The Ford RST2IP was made in Brazil. Its switch very often goes open-circuit. Willow Vale stock a replacement, part no. 17000). Fitting is difficult because the PCB is soldered into the case. Model ESRT32 uses Grundig electronics made in Portugal. The tape is often reluctant to engage with the mechanism as it loads upwards: shorten the two springs that hold the cassette in position, otherwise gravity will win and eject the tape. Lubricate the fast forward/rewind/play lever. Note that while the f.m. performance is good the a.m. bandwidth is wide, leading to interference problems. Some later Ford units have small presets to set the volume on each channel. They are accessible through the side of the case and are often misadjusted by customers.

The Volvo/Mitsubishi RX912 is prone to oscillation with f.m. reception, especially stereo. A cure is to connect a $47 \mathrm{k} \Omega 2$ resistor and $3,900 \mathrm{pF}$ capacitor in series between pins

3 and 12 of the M51011P chip on the right-hand panel.
The Philips Models 751/752/660 are very good electrically, but a piece of green plastic often breaks off bracket 124 (part no. 4822259 80209). This results in a variety of tape faults. Make sure that you remove the broken piece from the mechanism.

With older Sharp tape mechanisms, where the tape enters widthways and is ejected some seconds later. check whether the two wires (usually grey and black) to the tape rotation switch SW203 have broken. Replace the entire wire length with a flexible type.

I've encountered more than one Amstrad radio-cassette unit with a smoking decoupling capacitor. Fortunately the large amount of smoke is usually confined to the capacitor area.

Voxson units fitted to some Fiat cars have four DIN speaker sockets, one blank. two for the outputs to the speakers and one for the power input. Open up to find out which one is which, or the unit will also provide smoke!

Early Pioneer units with a moving bar of LEDs instead of a coventional dial cord give good results, but if one of them has been wrenched from the dashboard there will be hairline cracks across the PCBs because of chassis flexing. Repair is not something for the faint-hearted!

In Conclusion

I hope that this article will encourage service engineers to undertake car audio repairs. But a final word of warning is necessary: never underestimate the short-circuit current from a car battery - metal watch straps under dashboards can be very dangerous.

Answer to Test Case 370

- see page 865 -

Lack of signal transfer from the tape to the playback head at the very start of its scan will delete the field sync pulses from the video signal. The result is invariably a picture that rolls or judders vertically. What Roger and Sherlock needed to find out was why the f.m. envelope was so bad at the entry side of the wrap. They had confirmed that the back tension was sufficient., and had adjusted the height of the guide from the roof to the cellar without improving matters. Apart from the possibulity that the heads were worn - this, they reasoned, could cause poor tape penetration as the scans commenced - they were stumped for ideas.

Sage, whose capacity for logical reasoning had not left him completely during his sojourn in the reception office. took the view that if the tape's tautness was sufficient and the guide was at the right height, it was either in the wrong place or it or its slant pole was damaged or bent. There was no sign of damage, but close examination showed that the guide didn't go home fully into the vee-block. It's guided in by a metal tongue that locates - or should locate - snugly in a socket just below the vee. In this machine it stopped a millimetre or so short, because the socket was obstructed by a sticky something that resembled brown wax.

Once this had been removed and the tongue and socket had been cleaned up, no difficulty was experienced in setting the entry guide to produce a flat and continuous offtape signal envelope waveform. Now to try to explain to Mrs. Twither why the pictures produced by her most recent recordings will continue to roll. . .

The Euras System
is the largest
repair tips database
for CD, TV and
video in Europe.

Solutions

at your fingertips.

The System

has over 100,000
repair tips for
10,000 models
from 250
manufacturers
and is conveniently available as manuals, stand alone PC or videotext.
The System now also boasts technical service data for computers from SAMS Computerfacts, available as manuals.

Euras International Limited Euras House, 51 Bristol Rd
Keynsham, Bristol BS18 2BA
England
Telephone 0272860900
Fax 0272860343

EST. 1977

D.W.HARD YOUR ONESTOP.SHOP

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

間 Wallerel smatv
DIAMOND AERIALS UHFFM
CLOBAI communications FIRSTIF, SMATV

Labgear Cablevision SMATV \square LENSON HEATH SATELLTTE

SATELLITE ZECELVERS
DECODERS
Pacom
Satelute RECEIVERS

PRIMAX
TEST EQUIPMENT

Teleste SMATV

TRIAX U.K. UHFNHF
TOWER CLIPs

UNI(S)FIX CLIPS VOLEX

WE PROVIDE FULL TECHNICAL ASSISTANCE AND SERVICE BACK UP

- SMATV - CISH SHARING - DESIGN CONSULTANT Trace Prike List available to bona fide TV Aerial and Satellite Dealers
on proot : t trading. on proot 3 trading.

Panasonic's Digital TV Chassis

Part 2

Ray Meadows

This time we'll take a look at the tuner, i.f., AV switching and digital video circuits in the Euro 1 chassis, also the microcontroller functions.

Tuner and IF

Four different tuner and i.f. pack types are used in the chassis, depending on the country in which the receiver is to be sold. The UK version has a u.h.f. only tuner from Ecom, covering $\quad 471 \cdot 25-847.25 \mathrm{MHz}$. Continental versions equipped to receive v.h.f. and cable channels as well usually have a Philips or Telefunken tuner - one other version featuring D2-MAC reception uses a combination tuner/i.f. pack of Loewe manufacture. We'll concentrate on the UK version except where the differences make circuit explanation easier.

The tuner and i.f. modules are both mounted on the main, analogue circuit board (PCB E). The tuner is an I2C-bus controlled type whose output is fed to the i.f. module via the E PCB. Fig. 1 shows the arrangement in simplified form. The tuner's unbalanced i.f. output passes first to a dual SAW filter, X4704, which supplies separate, filtered outputs
to the vision and sound i.f./demodulator chips, IC700 and IC800 respectively. IC700, type TDA3853T, contains all the circuitry required to provide a composite, analogue video output. It also provides an a.g.c. output for the tuner. IC800, type TDA3857, is a complete quasi-split sound demodulator that provides an f.m. audio plus Nicam carrier output which is passed to the digital board for decoding. There is no need to go into the operation of the i.f. section in detail as it follows conventional analogue practice, the differences starting once the signals have left this module. IC502 is not used in UK sets.

The next point to consider is the analogue signal routeing through the AV switching system.

Signal Routeing

When the composite video signal from the i.f. module arrives at the digital board it enters the video/luminance switching chip IC1101, see Fig. 2. This is a TEA6415 crosspoint switch which has eight inputs (only five are used in UK sets), five fixed outputs and one variable output. Apart from the video from the i.f. module there are four AV inputs. As the device is connected to an I2C bus, the Central Control Unit (CCU) can control which video (or luminance) signal is passed to the digital circuits for processing, also which signal goes out via AV1 or AV2. A similar chip, ICl106, takes care of chroma switching with S-VHS signals.

A third switching chip, IC1021, is used for the audio signals. This is a TEA6420 which is slightly different, being a dual, five-input, four-output cross-point switch. The point to remember here is that the audio from the tuner doesn't come straight from the i.f. module: it's digitally processed before it reaches this switch, whereas the video signal is processed after it leaves the switch. This is done so that AV signals routed through the scart and S-video sockets are not processed unnecessarily.

The chroma and audio switching circuits are similar to the video/luminance switch shown in Fig. 2.

Fig. 1: Simplified block diagram showing the tuner and i.f. arrangements.

Fig. 2: The analogue video signal path, simplified.
Before we go on to the video processing we should consider some of the CCU's functions: this is the device that manages the complete system.

The CCU and the Buses

The CCU3000 chip, to quote its device type number, is a custom-designed microcontroller chip from ITT-Intermetall. Its core is the familiar 65028 -bit microprocessor. Internal features include three timers, two IM bus interfaces, four input/output control ports and a 16 -bit memory address bus. A 4 MHz clock is used, controlled by crystal X1853. This clock also synchronises the deflection processor. A simple reset circuit, consisting of a CR network, is connected to pin 6 - a separate reset circuit based on Q1963 and Q1967, which are connected to the 5 V and 12 V lines, is used to reset most of the other digital chips at power up.

The CCU chip controls the set's operations via three data buses, see Fig. 3. These are arranged as two I2C buses (two lines each, data and clock) and one IM bus (three lines, data, identify and clock). A second IM bus is used in D2-MACand PIP-equipped sets.

The first I2C bus is used for tuner and i.f. control. It's connected to IC1941, an EEPROM chip that holds the tuning data and preset values stored in service modes 1 and 2. It's here that the CCU looks first at switch on. Thus a faulty or missing EEPROM chip will effectively disable the set.

The second 12 C bus is connected to the cross-point switches mentioned above and to pins 10 and 12 of scart socket AV2. This bus is used for reading from and storing in the memory module during service modes 1 and 2 . Satelliteequipped sets also tag on to it.

The IM bus runs around all the digital processing chips, some of which have already been mentioned. Table 1 provides a complete list of their names and functions.

The Main Clock Unit (MCU) and Video Display Unit (VDU) chips are not connected to the IM bus: they receive modified control signals via the ACVP chip. Continental

Table 1: The digital circuitry chips.

Position/type
IC1801 CCU3000 IC1301 ACP2371 IC1401 MSP2410 IC1431 AMU2481 IC1501 DPU2553

IC1601 SAD2140
IC1631 ACVP2205
IC1651 MCU2600 IC1661 DTI2223

IC1671 VDU2146
IC1761 MN8333
IC1771 TPU2735

Name and function

CCU - Central Control Unit
ACP - Audio Control Processor
MSP - Multi Sound Processor
AMU - Audio Multiplexer Unit
DPU - Deflection Processor
Unit
SAD - S-VHS/composite video ADC
ACVP - Comb filter and video processor
MCU - Master Clock Unit
DTI - Digital Transient Improvement
VDU - Video Display Unit
DFU - Digital Features Unit TPU - Teletext Processor Unit
variants of the chassis may also include a Secam Processor Unit (SPU).

In addition to the EEPROM there's a lMbit EPROM (IC1871) for system software and a 256 K byte dynamic RAM (IC1786) that's used as the teletext memory.

One of the most important functions of the CCU is to protect the major components in the set in the event of a fault condition. Field collapse or excessive beam current are, as mentioned in Part 1, sensed at the protection circuit input pin 43 of the CCU. If a fault is detected by the CCU it shuts the set down then attempts a restart five seconds later. If the fault persists, the standby LED will flash at five second intervals but there will be no further attempt to restart. Remember that any fault which results in loss of scan will produce this symptom. Failure of the main 5 V line fuse for example will result in the deflection processor

Fig. 3: The main buses. Items shown with broken lines are not incorporated in basic UK models.

Fig. 4: The main elements in the CCU chip.
being inoperative. Hence no scan (amongst other things), so the CCU shuts the set down.

Another major function of the CCU is to carry out remote control commands. So that it can operate at all times, during standby and power rail failures, the CCU, unlike the other digital chips, is powered by the 5 V standby supply. Remote control commands are received by a preamplifier (U6301) at

Table 2: CCU chip pin connections.

Pin(s)	Use
1	Supply voltage
2	Chassis connection
3,4	4MHz clock crystal
5	Standby supply
6	Reset
$7-9$	IM bus 1
$10-12$	IM bus 2
13	n/c
14	Delayed H + V pulses from DPU chip
15	n/c
16	Inverted V pulse input (search tuning
	stop and OSD sync in absence of
	signals)
17	Read/write control output
$18-25$	D0-D7 data bus
$26-40,51$	A0-A15 address bus
$44-47$	AV slow switch input from scart sockets
	(inc. Gold scart 16:9 specification)
$48-50$	n/c
52	D2-MAC mode on output
53	I2C bus 2 data
54	I2C bus 1 data
55	I2C buses 1 and 2 clock
56	Fast blanking output for external
	decoder with RGB outputs
57	Reset output for text decoder
58	Reset output for audio circuits
59	Satellite tuner momentary input
60	Remote control input
$61,63-66$	On-board controls
62	On/standby command output
67	Standby LED drive
68	Satellite tuner standby LED drive

Some connections are not used in UK sets. Pins 44-50 are used by input/output ports 5-8.
the front of the set on the M PCB, which is fitted inside the on-board control drawer. Signals from this are fed to the digital module via connector W1833. They then pass via an amplifier transistor, Q1839, to pin 60 of the CCU chip. The signal at this pin should be at 5 V peak-to-peak - it's only IV peak-to-peak at the output from U6301. There are no remote control receiver adjustments.

The on-board keys and standby LED in the control drawer are connected to one of the CCU chip's control ports via the same connector, W1833.

On/standby control signals are produced at pin 62 of the CCU chip. They control the operation of the power supply by switching Q1723 on the digital PCB then Q697 in the power supply (see Fig. 2 last month). As an aid to faultfinding, the set can be forced on via Q1723.

Fig. 4 shows the CCU chip's main elements and Table 2 the pin connections.

Now that we have outlined how the signals are controlled we can start to look at the digital processing.

The Video Signal

After leaving the video source switching the composite video or separate S-VHS luminance and chroma signals, depending on source, enter the SAD chip IC1601 (see Fig. 5). To maintain synchronisation, the video chips are all clocked by the MCU chip. This uses two reference crystals, a 17.7 MHz one for PAL and a 14.3 MHz one for NTSC. A D2-MAC-equipped set must in addition have a 20.25 MHz crystal. These frequencies are approximate multiples of the PAL and NTSC colour subcarrier frequencies.
17.7 MHz is not an exact multiple of 4.43 MHz . This is deliberate. The difference is small enough to lock to a 4.43 MHz signal, but in the absence of such a signal, for example at first switch on, the derived frequency results in a reduced line frequency and thus slight overscan. The same applies with the 14.3 MHz crystal. During normal PAL reception the burst received from the ACVP chip locks the MCU to $17.72 \mathrm{MHz}(4 \times 4.43 \mathrm{MHz})$. Likewise an NTSC AV signal locks the system to 14.32 MHz . When the colour killer is in operation and no burst is received the system free-runs at 17.7 MHz . This also occurs with Secam reception.

The SAD chip converts the analogue composite video or separate luminance and chroma signals to 8 -bit digital signals. To reduce the effect of bit errors the signals are Grey rather than binary coded. These signals are then timemultiplexed together so that only eight bus lines are required. The relationship between the clock and the digitised, multiplexed YC signal is illustrated in Fig. 5. This 8bit bus leads to the ACVP chip, where to start with the signal is converted back to binary form and demultiplexed. The bus also provides feeds to the teletext and deflection processor chips (TPU and DPU) which we'll return to later.

The ACVP chip then filters the Y and C signals, using either a bandpass/stop filtering system or a three-line comb filter depending on the video content. Delay and level adjustment are then applied to the luminance signal while the chroma signal is decoded to produce the two colourdifference signals (U and V). Before these leave the chip they are multiplexed together so that a 4-bit bus can be used. At this point the automatic grey-scale control signals (black and peak white plus c.r.t. leakage) generated during the field blanking interval are added. Because of a certain 'bottlenecking' of information, there's a delay of a few seconds between adjustment of the RGB cut-off points in service mode 1 and the actual colour changes seen in the display. The use of this 4-bit bus saves on panel space and chip pins

Fig. 5: Block diagram of the first part of the digital video processing chain.
without compromising on the quality of the colour-difference signals.

The Secam processor in Continental models is fitted in parallel with the ACVP chip, processing the Secam chroma separately for reinsertion after the ACVP.

After leaving the ACVP chip the digital luminance and chrominance signals enter the DTI chip, see Fig. 6. As Digital Transient Improvement is also built into the DFU (Digital Features Unit) chip, the DTI chip is used simply as a delay line to compensate for the processing delays in the DFU. It has one other main purpose: the nibble demultiplexer converts the 4 -bit colour-difference signals back to 8 bit form.

Next comes the DFU chip, which carries out the picture processing functions LTI (Luminance Transient Improvement). CTI (Chroma Transient Improvement) and Scene Control (or "artificial intelligence'). Unfortunately little information is available on this Matsushita chip. We can assume however that the LTl function is conventional in that the luminance signal is sharpened by being delayed during level changes, from black to white for example. This has the effect of crispening the transients without recourse to peaking circuits. Adjustment of the picture sharpness control varies the symmetry of the luminance transient improvement, thereby altering the visual effect obtained.

Colour transient improvement is carried out by processing the chroma signal and delaying the luminance signal to match. Scene control on the other hand works by numerical analysis of the luminance signal, as described in my introductory article on the chassis in the July issue (see page 654). Black-level expansion, where necessary, and gamma correction are then applied, the output being passed to the VDU (Video Display Unit) chip.

This chip is the final device in the chain, being the one that converts the signals back to analogue form so that the tube can be driven. It also controls the beam current and carries out conventional RGB matrixing. In addition to the digital video signal inputs this chip receives RGB plus blanking signals from the text processor chip, and the external RGB inputs. We'll return to these next time.

Because the VDU chip isn't connected to the CCU's IM bus, it's controlled via the ACVP chip. This is done by storing the IM bus commands in a buffer and then transferring them, during the field blanking period, to the VDU chip via two of the digital chroma signal lines.

Possible Problems

Finally this time a few comments about the video processing system and some possible problems. For

Fig. 6: The transient improvement, DA conversion and matrixing part of the video signal chain.
anatogue-to-digital conversion to be carried out correctly by the SAD chip its video input signal must be clamped at the correct levels. The chip has only a 2 V window for signal slicing, so 5 V line-frequency clamp pulses are fed in at pin 35. This ensures that the video signal at the input pin 13 sits between 5 V and 7 V . If the clamp pulses aren't present the video d.c. level will increase and the result will be a grey or white picture.

Missing video data signals can cause a resolution loss that's best described as 'pixelisation' of the image. Take for example the 8 -bit video bus link between the SAD and ACVP chips. Loss of the least significant bit (V0, SAD pin 32) may not be noticeable, as the resolution reduction is small. Loss of the next least significant bit (V1, SAD pin 33) would be noticeable as pixelisation. At the other end of the scale loss of the most significant bit (V7, SAD pin 40)
would result in loss of the picture as the sync pulses would disappear.

The ACVP chip requires, at pin 1 , a burst gating signal from the DPU chip. If this is missing the colour is lost and the contrast is reduced. Pin 19 is a voltage reference input. No voltage here means that the picture will slowly darken, as the grey-scale level drifts. If the luminance signal is lost within the ACVP chip the screen image looks as if 'solarisation' effects have been added.

To Follow

In following instalments we'll deal with audio processing, teletext decoding, the digital deflection processor and the other remaining bits of the chassis.

Help Wanted

Wanted: A 6in. 16DB22 colour tube for the Saisho CTR6 CTV/radio receiver. Peter J. Lane, Frost Industrial Estate, Bidewell Close, Drayton, Norwich NR8 6AP. Tel. 0603867 264.

Wanted: Circuit diagram for the Cascade TV510 14in. portable. Or can anyone identify R418 (value, function) which is just a charred lump on the board? A.A. Duxbury, 169 Warbank Crescent, New Addington, Croydon CR0 0AZ.

Wanted: A PCl130B motherboard and c.r.t. for a Ferguson TX90 chassis 14 in . portable. Ken Partington, 14 Napier Road, Monton, Eccles, Salford M30 8AG. Tel. 061789 2088.

Wanted: The following issues of Television. Sept. 1984; Feb. and May 1986; May and Sept. 1988; Jan. 1990 and Jan. 1991. I've a complete Vol. 42 available if anyone is interested. Chris J. Davies, 52 The Close, Johnston, Haverfordwest, Dyfed SA62 3QQ. Tel. 0437890561 ,

Wanted: Ferguson TX98 chassis PCB (Model 51P7). J. Taylor, Cheriton, Chilworth Road, Southampton. Tel. 0703 769876 or fax 0703769875.

Wanted: Philips VR6460 upper drum (rotary transformer only); LOPT for a National Model TC2201; Salora IF3 RC conversion (boards/circuit); Advent Videobeam projection TV circuit/manual; rec/play heads for a Revox A77. Also Radio and Television Servicing books 1975/6, 1976/7, 1979/80, 1981/2. Parts are wanted for repair of OAP's equipment. Malcolm Lambert, 1 Dundale Farm Cottages, Dundle Lane, Bells Yew Green, Tunbridge Wells, Kent. Tel. 0892824657.

Wanted: Scan coils for the Mitsubishi 2607 or equivalent; Philips Gll IR sets/20in. sets for scrap parts. I have a Grundig 6632 (complete) and a Rediffusion Mk 4 chassis
(cabinet and c.r.t. only) free for collection (both tubes good). M.J. Levy, 19 Totternhoe Close, Kenton, Harrow, Middx HA3 0HS. Tel. 0819073620.

Wanted: Service manual for the Sanyo VTC9300 VCR; 12pin lead for the Ferguson 3V06D camera: lacing wire cable for the Philips 2021 VCR. Desmond Casey, Cloonloo, via Boyle, Co. Sligo, Ireland.

Wanted: Working power supply PCB (no. S75-94V-0 CK20101-A01) for the JVC AV20 me, or unmodified board for it or any information on modifications - the original PCB has lots of print missing. D. Granger, Whitelodge, Sheephatch Lane, Tilford, Surrey GU10 2AQ. Tel. 0252 782692.

Wanted: TDA1 104/6 or NPI 105/6 field timebase chip for the Panasonic U2 chassis. Arthur Hopkinson, 6 Swan Close, Dunholme, Lincoln LN2 3SB. Tel. 0673860990.

Wanted: Circuits for a Cantabrian basketball scoreboard Model C578C, including PCBs Y2585A, Y2586A, Y2587A, Y2589C, Y2590A and Y2592A. Sandy Hewat, 30 Fullarton Drive, Troon, Ayrshire KA 10 6LE. Tel. 0292314 190.

Wanted: Working Toshiba 17in. Fastext Model 175T9B. M. Heran, 28 Island Road, Handsworth, Birmingham B21 8NP. Tel. 0215540660 (evenings).

Wanted: Details of transformer secondary windings for the Heathkit-Daystrom Model C-3U RC bridge - secondary voltages, circuit diagram. Transformer (type 54/506) gladly purchased. Ron Dark, 14 Northdene, Bideford, Devon EX39 3NZ. Tel. 0237471042.

Wanted: Working battery back-up board for the Hitachi VT17E VCR. D.R. Webster, 37 Eemins Place, Bishopmill, Elgin, Moray, Grampian IV30 2PA. Tel. 0343550932.

Wanted: Serviceable A56-615X and A56-120X (two of these required) 22 in . tubes for economical repair of OAP sets. A.F. Sheen, 132 Heol Llanishen Fach, Rhiwbina,

[^0]
WAUPITIRON TECHNCA L PIBICAIONS

A selection from our range of Technical Books and Guides for the TV \& Video Trade

TELEVISION EQUIVALENTS. New Book lists Exact Equivalent for Many differerit Makes. TELEVISION CHASSIS GUIDE. Identify your TV chassis from the model number. Order MP-18. $£ 5.00$ VIDEO RECORDER \& CAMCORDER EQUIVALENTS.

Lists all known models and their Equivalents. New 2 Volume Set. VIDEO RECORDER FAULTS Repair Guide for Beginners. Know where to start looking! VHS VIDEO RECORDER PRINCIPLES Essential Theory on the Principles of operation of VHS Order MP-58. £3.00 CMOS DATABOOK Detailed Specification on the 4000 Series with circuits. TTL DATABOOK. Detailed Specification on the 7400 Series with circuits. TRANSISTOR EQUIVALENTS AND TESTING MANUAL. Inc/udes Testing Procedure. POWER SUPPLIES, STABILISERS \& VOLTAGE REGULLATORS. Inciudes Circuits REMOTE CONTROL CIRCUITS - TV. Dozens of Remote Control Circuits for Cobour TV's. MANUFACTURERS EQUIVALENTS. Know which Makers Trade Names are the Same. Order MP-220. 23.00 VIDEO HEAD CLEANING KIT. Unique Kit with Comprehensive Instructions on how to do it right. Order VHCK. £4.00 VIDEO TEST JIG. Run the machine and gain access to the mechanics as well. Order VTJ. $£ 15.00$ SCART EUROCONNECTOR SYSTEM. Detaliled Pinout Specifications of this interface. Order MP-21. £3.00 SWITCH MODE PSU IC TYPE TDA-4600. Comprehensive Details of this popular TV PSUIC. Order MP-37. £6.00 TELETEXT REPAIR MANUAL. Covers the SAA range as used in many Sets. Order MP-38. £6.00 P.C. HARD DISC DRIVE REFERENCE MANUAL. Specifications of Hundrads oí Hard Discs. Order MP-84. £5.00 CITIZENS BAND RADIO CIRCUITS MANUAL. Covers Dozens of popular mode's. Order MP-40. $£ 10.00$ RECORD PLAYER SPEED DISC. Lets you accurately align any turntable speed. Order MP-8. £1.00 CITIZENS BAND RADIO DATA REFERENCE BOOK. Technical Specifications of C.B. IC's. Order MP-165. $£ 5.00$ TELEPHONE CODE LOCATION GUIDE. Find the Town from the Phone Code. Order MP-19. £5.00 VALVE AMPLIFIERS CONSTRUCTION MANUAL. Full Building Dotails for Vintage Buffs. Order MP-173. $£ 5.00$ VINTAGE WIRELESS SERVICING. 2 Volume set covers Vintage Servicing in deteil. Order MP-22+35. £6.00 OFFICE EQUIPMENT EQUIVALENTS. Complate Cross Reference for all Photocopier or Fax. Order MP-200. $\mathbf{\varepsilon 6 . 0 0}$ REEL TO REEL TAPE RECORDER SERVICING. Details on Reel Servicing for Collectors. Order MP-201. £5.00 SERTICEMANUALS
WE HAVE THE MOST COMPREHENSIVE LIBRARY OF SERVICE MANUALS AVAILABLE ANYWHERE From the Earliest Valve Wireless to the Latest Video Recorder. Originals or Photostats as available. Colour Televisions, Video Recorders, Test Gear, Audio, Computers, in fact practically anything. If you need a Service Manual, Give us a call.
MAURITRONPUBLICATIONS (TV) Patackina Overseas $£ 5.00$ Surface
or $£ 15.00$ Airmail. 8 Cherry Tree Road,
Chinnor, Oxfordshire, Phone your Credit Card Order for Immediats Despatch

Access, Visa, Mastercard, Eurocard, Connect.

$$
\text { Fax:- (0844) } 352554
$$ Further Tites detailed in our FREE Catloguv. Send A5 S.AE. For your copy TooAll

MICROWAVE CONTROL PANEL. Mains operated, with touch switches. Complete with 4 digit display. digital clock, and 2 relay outputs one for power and one for pulsed power (programmable). Ideal for all sorts of precision timer applications etc. Now only £4.00 ref 4P151. Good experimenters board
FIBRE OPTIC CABLE. Stranded optical ibres sheathed in black PVC. Five metre length $£ 7.00$ rel $7 P 29 R$ or $£ 2$ a metre 12 V SOLAR CELL. 200 mA output idea for tnokle charging etc. 300 mm square. Ourpnce $£ 15,00$ ref 15P42R. Gives $u p$ to 15
PASSIVE INFRA-RED MOTION SENSOR.
Complete with daylight sensor, adjustable lights on
timer (8 secs - 15 mins), 50° range with a 90 deg coverage. Manual ovende facility. Complete with wail breckets, bub holders etc. Brand new and guaranteed. How only $£ 12.00$ ref $18 p 29$
Pack of two PAR38 bulbs for above unit $\mathbf{£ 1 2 . 0 0}$ rel 12P43R
VIDEO SENDER UNIT. Transmit both audio and video signals from either a video camera, video reconder or computer to any standard TV set within a 100^{\prime} range! (tune TV to a spare channel) 12v DC Op £15.00 ref 15P39R Surtable mains adaptor $£ 5.00$ ref 5P 191R. Turn your camcorder into a cordless camera FM TRANSMITTER Housed in a standard working 13 (bug is mains driven). E26.00 ref 26P2R. Good range MINAT URE RADIO TRANSCEIVERS A pair of walk talides with a range of up to 2 kilometres. Units moasure ref 30P12R

10 WATT SOLAR CELL

 (3" x 1") $14.5 \mathrm{v} / 700 \mathrm{~mA}$ Now available by mail order Coated with exceptionally efficient amorphous silicon these glass solar cells have an almost timeless lifespan and will not suffer with discolouration. There are possibly hundreds of uses for these cells, a few of which could be: for Car Battery Charging, for use on Boats or on Caravans. in fact anywhere a portable 12 V supply is required. Several of our overseas Mediterranean customers with homes in remote hilly sites, use these solar cells as a daytime power source to backup generators. The solar cells can beconnected in series or parallel to give higher voltages or larger current capacity. REF: TV34P1

PRICED at only

 £33.95. PLUS an additional 22.00 specile packaging charge on thts Item in addition to $\mathbf{8 3 . 0 0} \mathrm{PP}$ charge.
OTHER SOLAR PANELS:

12V 200 mA GLASS SOLAR PANEI.
$12^{*} \times 12^{\prime \prime}$ in dimension $£ 15.00 \mathrm{EACH}$. ref: 15 P 42 .45 V 700 mA SOLAR CELI.
silicon plastic encapsulated. $95 \times 65 \times 7.5 \mathrm{~mm}$ in dims. $\mathbf{5 3 . 0 0} \mathbf{E A C H}$. ref: 3P42.
.45 V 400 mA SOLAR CELL
silicon plastic encapsulated. $75 \times 45 \times 7.5 \mathrm{~mm}$ in dims £2.00 EACH. ref: 2 P199.
$.45 V 100 \mathrm{~mA}$ SOLAR CELL.
silicon plastic encapsulated $45 \times 26 \times 7.5 \mathrm{~mm}$ in dims. £1.00 EACH. ref: BD631
SOME OF OUR PRODUCTS MAY BE UNLICEMSABLE W THE UK

BULL ELECTRICAL
 2 PORTLAWD ROAD TOME SUSSEX Bns sat

MAM. ORDER TERMS, CHEH PO OR CHEQUE WTACRDERPLUSE3.00POSTPE $\}$

PLEASA ALLOW 7 , 19 QAYB FORGENVECY
TGE RTHONE ORORASWELCOM
TEL 0 0 7 7228300
EAX 0273323077
Y64.

INDUCTIVE AMPS $£ 5.00$

Made for amplifying a telephone handset for the hard of hearing. However if you hold one against a plece of wire carrying a telephone conversation you can hear both sides of the conversation! It can also be used for tracing live wires in a wall or detecting cables carring mains etc. Fully cased complete with battery and fixting strap. Aprox 2.5" diameter 1" thick.
Our Price : $\mathbf{2 5} .00$ Our Ref :TVSP 11
CTM644 COLOUR MONITOR 279.00 Refurbished monitor suitable for many home computers standard RGB input. Our Price : 279.00 Our Ref :TV79P11

ARCHEMEDIES A3000 PSU 210.00
A compact switch mode PSU with on / off switch. selectable voltage input $110 / 240$. NEW O/P via fly leads. GOOD STOCKS AVAIIABLE Our Price: : 210.00 Our Ref :TV10P11

ANSWERPHONES from only 218.00
Yes its true BT approved push button dialling. These are customer returned units and have two faults. We will supply you with a chip to cure one fault then you have to sort out the other problem! NON RETURNABLE.
Prices:
218.00 each. REF: TV18P21
260.00 PKT 4. REF: TVBOP2 1

PORTABLE ALARM SY8TEM 217.00
'PAL' Portable Multı Beam Scanning System lockable Stand-alone PIR untt with removable keys (3 supplled). This unit uses a PP3 battery and when activated emits a plercing SHRDL! The unit scans the room and memorises the layout. Should this change. the alarm is triggered. There is a 60 second exit delay.
Our Price : $\mathbf{2 1 7 . 0 0}$ Our Ref :TV17P11
PIR MOVEMENT DETECTOR 215.00 Once again we have aquired stocks of this popula line and are able to offer you a very high quality and professional detector at only ** $£ 15^{* * *}$. Range 20 m with a 90) arc, Day and Night Mode Dims: $15 \mathrm{~cm} \times 9 \mathrm{~cm} \times 11 \mathrm{~cm}$. New and boxed. complete with installation gride.
Our Price : $£ 15.00$ Our Ref :TV15P21
MANY MORE SPECIAL OFFERS IN OUR REGULAR NEWSLETTERS

```
WE HAVE HUNDREDS AND HUNDREDS
MORE STOCK LINES - TOO MANY TO
LIST IN ONE ADVERT : CHOOSE FROM
AERIAL AMPLIFIERS
AEROSOLS
ALARMS
AMPLIFIED SPEAKERS
ANALOGUE MULTIMETERS
appliance leads
BATTERES AND HOLDERS
BATTERY CHARGERS
BOOKS
boxes and cases
CAMCFRDER a ITS
capacitors
CAR AMPS, RADIOS \& SPKRS
CB SPEAKERS AND PSU's
COMPUTER BITS
CONNECTORS
CONNECTORS
DESOLDER PUMP
DIGITAL MULTIMETERS
discolighting
displays
DUBBING hit
priles
FANS
FUSES
GLuE GUN AND GlUE
HEADPHONES
heatshrink sleeving
HI FI SPEAKERS
HI FI SPEAK
IONISERS
IONISER
LED's
LED's
LASERS AND L
LOGIC PROBES
LOUD AND MARINE SPKRS
MICROPHONES
MICROPHONES
PIR LIGHTS AND DETECTORS
PIR LIGHTS AND DE
POWERS SUPPLIES
POWERS SUPPLIES
RADIOS
RADIOS
SERVICE AIDS
SOLDERING EQUIPMENT
STEAM ENGINES
STEAM ENGINE
TRANSEIVERS
TRANSEIVERS
TRANSFORMERS
TRANSFORMERS
WIRELESS MICROPHONES
```

IN SUSSEX?
CALL IN AND SEE US!!

TURN YOUA SURPLUS STOCK INTO

 CASII MAMEDATY SETTLEMENT.WL WUI AS SO OUOTE FOR
COMPLETE FACTORY CLEARANCE
Much much More notr 1993
CA TALOGUE RLEASE SEMD 4FP, A4
SIZED SAE FOR YOUR PREF COPY

Une Eqed Equipment - Guarniseed. Manuais supp ied ! p pasubie:

AMSTRAD HANDSETS		AMSTRAD MODULATORS	AMSTRAD MOTOR		AMSTRAD TUNERS		
VCR4500	11.75	18108221 VCR5200 7.05	Loading Motor MCB9B02	3.53	UE33-B01 VCR4600/4700 9.40		
VCR4600, 4600MkII	11.75	ENP-E730-2 VCR7000 5.88	Drum Motor E20EL05	10.58	UE2-B31F CTV2200/2210 $\quad 5.88$		
VCR4700	17.63	VCR4600Mkll,4700 5.88	Capstan Motor LLN4B21.	9.99	1810829 VCR5200 $\quad 7.88$		
VCR5200	11.75	SRD100/200/400 5.88	Tape Loading MCF9B02	9.99	ENV87358F2 VCR7000 7.05		
VCR6100 (Indexer) VCR6100 (Barcode Indexer)	25.85 29.38	AMSTRAD SERVICE	AMSTRAD PCB's		ENV87509F2 CTV1400 $\quad 5.05$		
VCR6200 Barcode	32.44	MANUALS			MITSUBISHI/SALORA		
VCR9000 (Old type)	11.75	VCR4600 9.00	(Complete, fully populated)				
TVR2	8.46	VCR4600MkII, 4700 9.00	4500 Systems Control	$\begin{array}{r} 11.75 \\ 9.40 \end{array}$	Housings available - see our full		
TVR 3	14.10	VCR6000/6100 11.50	4600 Systems Control/Servo.		list for parts and prices.		
SDR400 (Equivalent)	11.05	VCR8700 8.00				BSR DECK	
SRD500	11.75	VCR8800 $\quad 6.00$	4600 Display	11.75	SM103/104 Linear Tracking Record		
TS90/99 Tower System	11.75	VCR9000/9004 9.00	4600 Control	+5.88	Deck 1763		
AMSTRAD LOPTS		AMSTRAD COMPUTER	4600 Video \& Audio	17.63	SANYO VHR1110,		
CTV1000 FB182K.	11.75		4600 Power Supply	14.6	FUTEK F501 Replacement Video		
CTV1400 FB165KA	11.75	OPERATORS MANUA	4600Mkll Main PCB Assy.	40.82			
CTV1401 3714002	14.10	PC1640.	4600Mkll Timer	14.10	Heads 7.05		
CTV1409 3714002	14.10	PC2286/2386 11.75	4600MkII Control	5.88	VGA MONO MONITOR		
CTV2000 FB171	9.40	AMSTRAD VCR	4600MkII Head Amp Assy.	5.88			
CTV2000 FB171K	9.4	MECHANISMS	4600MkII Power Supply	4.70	Suitable for use with 2000/3000		
CTV2200 3722002	14.10		4700 Main PCB AsSy.	40.82	series and any other VGA compatible		
CTV22103722002	14.10	4500,9000 (Old model)	4700 Timer	14.10	PC 64.63		
TVR 21810951	13.51	CASSETTE HOUSING ASSY. 15.28	4700 Control Amp Ass	5.88	AMSTRAD SOFTWARE		
TVR 3181297	13.51	4600,4700,TVR1,2,3	4700 Power Supply	5.88 4.70	ACCOUNTSMASTER 17.63		
CTM644 Mk\|I 3714009	14.10	COMPLETE MECHANISM ASSY.	5200 Timer \& Channel Disp.	4.70 17.63	(Full accounts program for running small business on any PC)		
PC12-HRCD/D MSH1FCT31	14.10	(Excluding Video Heads) $\quad 35.25$ COMPLETE MECHANISM ASSY.	5200 Video	14.10			
PCW9512,8256,8512	7.05		5200 Switch Panel	4.70	17.63(Easy to use Database, runs on PC)		
FERGUSON LOPT MM06 00D4242001		(Excluding cylinder assy.) MECHANISM DECK (Excluding Cass. housing assy.	7000 Switch PCB no: 7	2.35			
	4.70		CTV1400 Switches, Presets \& Tuner (UE2-B31F)		LINKMASTER		
	AMSTRAD IF UNITS				AMSTRAD COMPUTER \& PRINTER		
				(Excluding Cass. housing assy. \& Cylinder assy.) 18.80	CTV 1400 Switches, Presets \& Tuner		SPARES - Many spares available, please phone for price.
TPS7-B0006 VCR4600/4700	9.40	CASSETTE HOUSING ASSY. 15.28 CYLINDER ASSY. (incl. Standard	(ENV87358F2)	8.23			
TPS7-L0002	14.10		CTV1400 Switches, Presets \& Tuner				
1813766	14.10	play Video heads) 25.26 CYLINDER ASSY. (excluding Video heads) 20.56 CYLINDER LOWER DRUM ASSY. (ExCluding Motor) 9.99 HEAD BASE ASSY. (Audio) 5.88 VMCt00 - Various parts available, please phone for prices.	(ENV87509F2)	8.23	PRICES INCLUDE VAT. all items are brand new and guaranteed * * SAME DAY DESPATCH * * Write or Phone for FULL catalogue.		
			CTV2200 PCB no:3	3.53			
Marrigom			CTV2200 PCB no:4	4.70			
			TVR 3 Main TV PCB	43.48			
			TVR 3 TV Power Supply	15.22	*POST \& PACKING**		
CENTURY WAY, MARCH, CAMBS PE15 80W. FAX: (0354) 51416. TEL: (0354) 51289			TVR 3 Head Amp Assy. TVR 3 Video Power Supply	5.88			
		4.70		**EXTRA**			

DO YOU REPAIR WHITE GOODS?

 THEN YOU SHOULD KNOW ABOUT
DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :washing machines
 DISHWASHERS REFRIGERATORS COOKERS
vacuum cleaners
 kettles IRONS TOASTERS micro-wave ovens
*NEW $\star 535$ page pattern parts catalogue now available at a cost of $£ 6$ to non-account customers

ELECTRON HOUSE, 100 GREAT BARR STREET

REPRINTS a ready made sales aid

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther
Room 1006
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229
Fax: 081-652 4728

It's Out!

 The 1994 HRS Electronic Components Catalogue and SEPARATE Price List has arrived. If you're "recognised trade" its yours for the asking. It comes Packed with an even bigger and better stccklisting of over 20,000 lines If you're in the Electronics Repair or Retail Business you can't afford to be without them.As an Industry "First", and by popular trade demand, HRS's Catalogue is accompanied by a SEPARATE Price List, and to celebrate the catalogue launch we're guaranteeing prices on all items ("except Manufacturer's specific spares) to the end of 1993!

If you're "recognised trade" obtain your copy of the Hottest Catalogue in the Trade simply by calling our SALES DESK ON 021 7897171.

Our "Same day" despatch, FREEFAX (0800 212179), and friendly staff (always on line) provide you with HRS's renowned dependable, continuous, and uninterrupted service.

HRS Electronics, A Division of the Ring Lamp Co. Ltd., Garretts Green Lane, Birmingham B33 OUE.

DIRECT FROM THE MANUFACTURER

RE-BUILT TV TUBES VIDEO-HEADS

 REMOTE-CONTROLS SUPPLIERS OF TV/VCR SPARESOUTSTANDING VALUE FROM ONE OF THE UK'S LARGEST BSI APPROVED MANUFACTURERS OF RE-BUILT TUBES

STOCKS AVAILABLE

VISTA VISA

 ELECTRONICSUnit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
Tel: 0429837100
Fax:0429 837101

BROUGHFAME LTD

 How to expand your TV Rental business with no capital outlay (AND STILL KEEP THE PROFIT) HOW CAN I FIND OUT MORE?Just ring or write to Henry Jones at the address below. He will be delighted to answer your queries and give you full details of the Rental Finance Plan.

39 SOUTH STREET • TARRING WORTHING • WEST SUSSEX • BN14 7LG

TEL: WORTHING (0903) 821020
FAX: WORTHING (0903) 821194
(

Design your own satellite system!

You can uith the belp of this brilliant new program by DJ Stephenson

SATMASTER Version 4 Onty £35 Alou youlo devgn a syutem and tev ith performance before you install it:

Provides essential dish celup angle polar and apex elevation for mowned wytemelevation, armmuth. pelarmation offet. from any locatun in Whe World for any geo-satellite - nou and on the luture' sou can judge potential interference from nemghoruring satellite
Revulis and graphs can be ourpur to file acreen or primer'
ncludev magnetic map and foomprints for
all popular satellite acron Eurupe
SATMASTER PRO Only £69 -

- Contans addnional country/town filer
redious tash a mimple for eversone
Complete with ('aer liveruction Manual'
Contaim 20,000) word on-screen techncal contexi-senstive helpine. with fuult
- Supports liver prinicra
- Doplay CCIR ran-chamatic mone map?

Tahes account of circular or linear
finding, cable specs and site survey guide polarmation in linh budget analyuis
Calculates full link budget including dish - L心N polar and apex anglen per whit
ate optimisation to ensure the beyt
quality picture! - Calculates ran fade margin attomanically
Avoid guesswork ... order SATMASTER V4 or SATMASTER PRO today! Swift Television Publications
17 Pittsfield, Cricklade, Swindon SN6 6AN Tel: 0793750620 Fax:0793 752399

PAYS.UTTV.

SUPPLIERS OF WORKING USED TV'S, VIDEOS, MICROWAVES, FRIDGE FREEZERS, COOKERS + WASHING MACHINES

TWNI , NOTTINCHAMOOO2:50002 LONDONO81.568882

WE DELIVER ALL AREAS!

It's Out!

 The 1994 HRS Electronic Components Catalogue and SEPARATE Price List has arrived. If you're "recognised trade" its yours for the asking. It comes Packed with an even bigger and better stocklisting of over 20,000 lines. If you're in the Electronics Repair or Retail Business you can't afford to be without them.As an Industry "First", and by popular trade demand, HRS's Catalogue is accompanied by a SEPARATE Price List, and to celebrate the catalogue launch we're guaranteeing prices on all items (*except Manufacturer's specific spares) to the end of 1993 !

If you're "recognised trade" obtain your copy of the Hottest Catalogue in the Trade simply by calling our SALES DESK ON O21 7897171.

Our "Same day" despatch, FREEFAX (0800 212179), and friendly staff (always on line), provide you with HRS's renowned dependable, continucus, and uninterrupted service.

HRS Electronics, A Division of the Ring Lamp Co. Led., Garretts Green Lane, Birmingham B33 OUE

The Man who didnt get his '94 HRS Catalogue 8 price List

UNDER SEPARATE Coverl

INDUSTRY FIRST BY DEMAND SEPARATE PRICE LISTI

CATALOGUE PRICES' GUARANTEED UNTIL THE END OF 93

COMNG SOON\& SOUND \& SECURITY CATALOGUE with separate Price List

P119 UISION-ON UORLD NEWS OCT 1993 GREAT NEWS FOR TM/VDEO ENGNEERS
Experience shows that fault diagnosis guides can cut down the time spent on a repair from hours to minutes, resulting in higher turnove' and profits.

Most guides, however, are not up to date and their usefulness is the efore limited; but here's exciting news which will be of enormous benefit to everyone in the servicing industry.
'FAULT-FACT-FILES' is a new product to be launched this Autumn. Each monthly set of fact sheets will contain at least 150 of the latest faults found on TV and VCR equipment, collated in an easy to use format.

Designed so that they can be added to as your collection grows; 'FAULT-FACT-FILES' will prove to be an invaluable aid in all Service Depts. You can even slot them into your existing filing system.
'FAULT-FACT-FiLES' is only available by mailorder on subscription at a cost of just $£ 2.50$ per month. Reply now to take advantage of our special introductory offer.

SEND A LARGE S.A.E. FOR MORE INFORMATION.

WHEN YOU SUBSCRIBE TO 'FAULT-FACT-FILES' FOR ONE YEAR. TO APPLY SIMPLY SEND YOUR NAME, ADDRESS AND POSTCODE WITHA CHEQUE/P.O. FOR £25 (normal subscription £30)

TO

'VISION ON' (TV1) 16 HILLVIEW PARK NEWTOWNABBEY BT36 8HW.
Overseas add $£ 10$ per annum.

mis
 TRAINING DIVISION

MIS have held approved service training courses for industry, local government and health authorities throughout the UK since 1984. The following are designed for all domestic and commercial appliance service technicians. Please contact us for venue dates within the UK and Ireland.

ELECTRICAL SAFETY TRAINING (All Appliances)

This practical course covers appliance and workshop equipment using Portable Appliance Tester, Earth Loop Impedance Tester, and Earth Insulation. Inc. manual of test charts; regulations and essential documentation.

MICROWAVE OVEN SERVICE TRAINING

Covers all commercial/domestic ovens. Inc. MIS publication "Microwave Oven Servicing" ISBN 0.9513783.0.9.

MIS Training Division
1 South Lane, Clanfield, Hants PO8 0RB Tel: 0705596272 Fax: 0705592499

ADVERTISERS' INDEX

Aerial Techniques 863 Anglian TV Wholesale .. 906
A-Z Electronics 885
Besco 902
BK Electronics 848
Broughfame 896
Bull Electrical 892
C\&K Electronics.......... 906
Campion Wholesale TV
Ltd............................. 906
Central TV Wholesale
Ltd............................ 901
Centrevision 905
Coastal TV's 906
Colourtrade 904
Crewe Wholesale TV
Ltd............................ 901
CTV 900
Datapart Ltd 894
East London Components
…............................ 846
Economic Devices
876 \& 877
Euras International Ltd 884
Euro Vision 902
Express TV's................ 893
GGL Components 847
Gogglebox................... 905
Grandata Ltd 838-845
Hardy, J.W................. 884
Harrison Electronics 894
Henry's Audio Elec. 893

HRS Electronics 895 \& 897 Hussein Central TV 903 ICS Intertext Group 846 Instavision 907
J.J. Components 861

Manor Supplies............ 855
Marapet 884
Mauritron.................... 891
M.I.S. Training............ 898

Pays UTV.................... 896
P.V. Tubes 846

Redbank 904
Repo TV 902
Sendz Components 911,
$912, \mathrm{IBC} \& \mathrm{OBC}$
Silverscreen 901
Stewart of Reading 893
Swift TV Publications.... 896
Telecentre 906
Teleprice Ltd................ 899
Turner Lyons 907
TV's Direct 905
TV International 907
Vision On.................... 898
Vista Electronics 896
Western Trade Services 900
Willowvale Electronics
Ltd............................ IF
Woodham's TV Ltd 904
W. Tree Trade

Warehouse

TELEPRICE LIMTEB

B-grade Stock All Boxed, working ifyou require one item please read on:	
10' R/C Portable	£95
14" Basic Portable	£85
14" R/C Portable	¢95
$20^{\prime \prime} \mathrm{R} / \mathrm{C}$	£119 DISCOUNT
$20^{20}{ }^{\prime \prime}$ Text	£139 DISCOUNT
21" FST R/C	£145
21" Fastext FST	£165
21" Nicam	£219 QUANTI
25" Nicam L/P Videos	£259
Stereo Midi System	£110
Microwave Oven	£50
TV \& Video Stands	£3
B Grade Elecrric Built-in ovens $£ 125$ Free Standing Gas Cookers $£ 155$ Gas Hobs $£ 39$ Calor Gas Hobs $£ 35$ All items unused \& working	
Customer returns in block. Example. Untested 3×21 " FST $3 \times 25^{\prime \prime}$ FST 6xF/L Videos $£ 40$ each. Total $£ 480+$ VAT This price does not include handsets. Some in need of repair. Some working.	
Ex-rental TV \& Videos, all unfouched. Basic \&10 \& E15 R/CE20 \& E25 Text E25 \& \&30 Videos T/L E20 Th 825 . All untouched.	
WTREE WAREHOUSE UNIT I, SUNSHINE MIL TEL: 0532638804 FAX	, WORTLEY RD, LEEDS 12 532 310275

$$
\begin{gathered}
\text { SUPPIERS OF EX RENTAL } \\
\text { THORN \& NON THORN } \\
\text { TV \& VIDEO }
\end{gathered}
$$

9
 CREWE WHOLESALE TV LTD.

Large selection of working TVs including working F.S.T.s
Videos - working or untested

> | EMPORT | $\begin{array}{c}\text { Willam St., Crewe, Cheshire } \\ > \text { Tel: 0270 582924 } \\ \text { Fax:0270 505470 } \\ > \text { Open Mon-Frl 9.30-5.30 }\end{array}$ > |
| :--- | :--- |

Guaranteed untested stock Plus selection of working TVs

Deliveries every Monday and Thursday

School Lane, Guide, Lancashire Tel/Fax: 0254264489

Working and untested
Prices lists available
Open Mon, Tue, Thu, Fri 10.00-4.00 Sat 10.00-1.00

SILVMISCRIMA VIDSOS
 LEHRNMHALTV \& VIDEOS THORN G GRANADA

Great deals on working and nonworking videos and TV's

UR DAMTVRY AVAMA:BL

- DEPORT ENQULRIXS-
- WIELCONE -

24 GOLD SHRTEXTE THEHEON DEVONLE166PY स쟆FHONI: 0884256257

HAVE YOU A PARTICULAR COMPONENT
THAT YOU WISH TO SELL ??

Then why not let "TELEVISION" help you to achieve this by placing your advertisement with us.

Over 73\% of our circulation buy directly from advertisements which appear in "TELEVISION" every manth.

To find out more on current rates and circulation call:
PAT BUNCE ON 081-6528339 or FAX: 081-652 8931.

- SUPERB RANGE OF TV's \& VCR'S - THORN \& GRANADA - DIRECT LOADS AVAILABLE FROM SOURCE
- Camcorder

C-Format full size
\& 8 mm , from $£ 200$.
O Microwaves from $£ 35$
© Portable TV from $£ 40$

- HIF from $£ 35$
- Satalite ex-rentals irom $£ 20$ -
- Large stock of Sanyo

Walkman stereo from E5 + Sony CD
Many more in stock Bateries all sizes. POA TVViseo cabinet, POA TV Video stand Oly price from E^{3}
TVIVideo remote from 85 If you need used parts for TV Video, or none working, please phone us!!!

EXPORTS ENQUIRIES WELCOME

ALL SIZES OF SCREEN TV AVAILABLE BOTH IN FAST TEXT \& DIGITAL NICAM STEREO VIDEOS: CURRENT MODEL
SINGLE, TWIN SPEED, NICAM S-VHS
all prices are subject to vat

\section*{ANV/, BESCO LIMITED T/A NORTH WEST ELECTRONICS ENTIRERANGE OF EX-RENTAL TVS \& VIBEOS NEW STOCKS EVERY DAY, WORKING OR OFF THE PILE makes Include: Sharp, Hitachl, Fertuson, Pyo, NAT PAN, ITT otc. Working VHS video from £35.00. Late models always available.
 KNOCKOUT PRICES ON COLOUR TVS
 FERQUSION, PYE, MITACHI, PHILJPS, BUSH, ITT, etc.
 TELETEXT BARGAINS FROM £30.00 (WORKING) FERGUSON TX TELETEXT ONLY \&A6. PHILIPS/PYE TEXT ALWAYS AVAILABLE
 OVER 1000 COLOUR TV AND VIDEOS AVAILABLE
 RING OUR HOTLINES NOW FOR PRICES OR CALL IN, YOU WILL BE DELIGHTED
 WorkIng Ex-Equipment Panels
 | T20//22X | Converger | Decoder | Line scan | Power | Frame |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 5 | 14 | 18 | 17 | 14 |
| T26 X | 5 | 16 | 20 | 17 | X |
| Phillps G11 14.50 | 5 | 12 | 20 | 20 | 11.50 |
| All prices Include Postage a Packing. But + VAT F THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK * | | | | | |
| Visa Welcome | | Prices a and based | VAT ntity | | epted |
 Walker House, 16 Bottomley Street, Bradford BD5 7LJ Ring Tony 0274308186 - Open 6 days - 9am-5pm}

REPO

WE HAVE A NEW SOURCE OF EXCELLENT SETS. WHY NOT CALL IN FOR A CHAT?

We supply good quality working stock from a range of makes and models of both TV and video.

We have been here for many years and generally supply people on a regular basis.
We hold large stocks - but no order is too smali.
REPOSSESSED TV CENTRES LTD, DAISY WORKS 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER M13 OLF.

Easy parking. Almost opposite main police station.

[^1]
EUROVISION

25 Bradford Street, Walsall WS1 1PN
Tel: 092222279 Fax: 092222279
TV VIDEO AUDIO MICROWAVE WHOLESALERS
 TOP QUALITY EX-RENTALS ALWAYS IN STOCK
DELIVERIES THROUGHOUT THE UK CALL NOW AND START SAVING WITH EUROVISION

092222279 MULTI LINE

24 HOUR ORDERING SERVICE
EXPORT ENQUIRIES WELCOME

TOP QUALITYEX-RENTAL TV's \& VCR's
MASSIVE STOCK OF EX-RENTAL UNITS AVAILABLE AT EXCELLENT PRICES

DONTMSSOUT, PHONENOW!

(PRICES EXCLUDE VAT)
PRESTON
139 Oakshott Place
Walton Summit
Ind Est
Preston (M6 Junc 29)
Tel: 0772312101

Tel: 0772312101

BIRMINGHAM
208 Bromford Lane Erdington Birmingham B24 8DL Tel: 021-327 3273 Fax: 021-322 2011

LONDON Unit 2 The Royal London Est 29/35 North Acton Road London NW10
Tel: 081-9615005

MANCHESTER'S NO 1 WHOLESALER

$$
B \text { D }
$$

MANCHESTER

AZ REF
PAGE 50
$2 A$

YOUR SHOWROOM? LESS HASSLE MORE PROFIT!

WOODHAM TVLTD

- NOW OPEN -

New wholesalers of Thorn \& Granada ex-rental TVs and Videos

* Working - Non-working * Many Opening Offers

Open Mon-Sat 9.30-5.30

PHONE NOW

0245-325383
UNIT 8, CUTLERS RD, SOUTH WOODHAM FERRERS ${ }^{\prime}$, CHELMSFORD, ESSEX

BEST POSSIBLEPRICES EXPORT ENQUIRIES WELCOME \&DELIVERY AVAILABLE RINGFORDETALS ANGLIAN TV WHOLESALE, NOW AT UNIT 4, BRECKLANDS BUSINESS CENTRE TAVERNLANE, EAST DEREHAM, NORFOLK (0362) 691611

TELECENTRE

NOW OPEN
7 DAYS A WEEK FOR TOP QUALITY EX-RENTAL AND 'B' GRADE TV'S AND VIDEOS.
WEEKDAYS OPEN
TILL 9PM. WEEKENDS \& EVENINGS BY APPOINTMENT.
15 MINS FROM JUNCTION 16 M6
79A COLERIDGE WAY, CREWE.
TEL: 0270589392
ACCESS AND VISA WELCOME

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY T.V.'s from $£ 3.00$ Videos from £30.00 Prices Ex-vat
Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.
0299-8796420 or 899643
FAX:029982984

AERIALS
FOR TV \& FM RADIO, PLUS 10N's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC MAST HEAD OR SET BACK

WE HAVE ONE OF THE LARGEST RANGES. AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE,
LABGEAR. WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

UNIT X2 Rudford Industrial Estate Ford, Arundel
0903723726
NO MINIMUM ORDER VALUE NEXT DA Y DELUVERY ACROSS UK CARRUAGE PREE ON ORDERS E250+
\qquad V/SA VINA.

CZKELECTRONCS

Good range of
TV's \& Videos
Off the Pile or Working

WORKING

Top Loaders from $£ 35.00$
Front Loaders from $£ 45.00$
Teletext TV's with remote
$£ 45.00$
Basic TV's from $£ 15.00$
Portables from $£ 45.00$
Used Video Spares
Available
24/26 High Street
Brownhills, Walsall
West Midands WS8 6EO
(Near A5 Cannock)
๖. 0543-376689

INSTAVIIION LTD
 UNIT 1-19 LOWER HIGH STREET WEDNESBURY WEST MIDLANDS WS107AL
 Tel: 021-556 6434 Fax: 021-505 2619

TELETEXT
From $\mathbf{E} 40$

F.S.T.
From E 60

VIDEOS
From E 35

MAY I EXPLAIN SOME GOOD REASONS WHY YOU SHOULD COME TO US

1. GOOD STOCK OF CLEAN SETS ALREADY SWITCHED ON JUST READY FOR YOUR SELECTION. IT MAKES SO EASY TO CHOOSE YOUR STOCK.
2. WE NEVER EXAGGERATE OUR STOCK AND UNNECESSARILY CALL YOU IN.
3. WE ARE VERY COMPETITIVE IN OUR PRICES AND FAIR DISCOUNT ON QUANTITY PURCHASE
4. UNTESTED STOCK IS GENUINE NO CHEATING AT ALL.
5. STOCK VARIES FROM VERY CHEAP RANGE TO VERY MODERN SETS
6. VERY FRIENDLY TEAM TO ASSURE YOU BEST POSSIBLE SERVICE

SELF RECOMMENDATION IS NO PRAISE, YOU SHOULD FIND OUT YOURSELF BY PAYING US A VISIT

TVINTERNATIONAL

FOR

'B' GRADE AUDIO LARGE STOCKS
ALL BOXED - COMPLETE SOLD FULLY TESTED OR DIRECT - UNTESTED

- ALL MINT -

TEL. 0384482575
FAX. 0384265236
PEARTREE LANE, DUDLEY, WEST MIDLANDS

OPEN 9.00-6.00 MONDAY - SATURDAY

VSA

MANUFACTURERS 'B' GRADED STOCK

Televisions, Videos Audio, Music Centres Microwave Ovens

Complete, reboxed, working Current model stock

Turner Lyons Enterprises Ltd 9 Howard Place, Shelton Stoke on Trent ST1 4NN

Phone David or John 0782285416

TELEUTSIOTCLA5SIFIEDNo other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

VIDEO HEADS
FROM £8.00
ALL MAJOR BRANDS

SERVICE KITS
FROM $£ 6.00$
ALL MAJOR BRANDS

IDLERS
FROM £1.00
PULLEY BLOCKS
FROM £4.00

PINCH ROLLERS
FROM £2.00
C.ASSETTE LAMPS

FROM $£ 0.38$

PARTS AT KNOCKOUT PRICES

WIDE RANGE OF REMOTE CONTROLS FROM $£ 7.00$

LOPTY'S
FERGUSON, HINARI AND HITACHI FROM£12.00

BELT KITS
LARGE SELECTION FROM £0.55

ORION LIMITER POSTS
FROM £0.90
PHILIPS BACK-UP BATTERIES
$1.2 \mathrm{~V} \quad £ 1.39$
$2.4 \mathrm{v} \quad £ 2.38$
EASINGTON ELECTRONIC CENTRE
11 BEDE ST., EASINGTON COLLIERY
PETERLEE, COUNTY DURHAM, SR8 3RT PLEASE ADD $£ 1.50$ P\&P $+17.5 \%$ VAT, MIN ORDER $£ 5.00$

Phone vour Credit Card Order for Immediate Despatch

VISA

TEL: 091-527 0903

TWO RETAIL/REPAIR TVNCR/ETC SHOPS FOR SALE

IN BEAUTIFUL HISTORIC YORK Leasehold, one with luxury one-bed flat above Ill-health forces reluctant sale. Taking $£ 2,500$ plus per week Very high profits. Two full time, one part time staff Sound profitable business with no hidden snags Sensibly priced for quick sole at
$\mathfrak{£ 4 , 0 0 0}$ plus SAV
To include all fixtures, fittings, tools, test gear, etc.
Serious enquiries only, initially to Box A2994, "Television". Sutton. Surrey SM2 5AS

TV/VIDEO FREEHOLD BUSINESS FOR SALE
North London Contractors to the Trade
Takings over $\& 130.000$ per annum
The , ky s the lunit Selling due to retirem The thy's the lunit Selling due to retirement Offers in the region of $\left\{390,000\right.$, to include ${ }^{3}$
room flar, plus siock and vehtcles. Please reply
 Publishing, I1th Floor, Quadrant House, The
Quadrant, Suton, Surrey SM2 5AS

For Fast
Effective Advertising
Ring Pat Bunce 081-652 8839

WIZARD DISTRIBUTORS

Spares + Components Always in stock
Video heads for over 500 models Spares for over 20 manufacturers
Hand sets for over 200 models
TV Tubes new + regunned
Plus much much more Empress St Works Empress St Manchester M16 9EN 061-872 5435, 061-848 0060 Fax: 061-87.3 7365

SUPPUUS REDUWOANT EIECTROMC COMPONEITS WATTED

VCS - Tuners - Transistors - Valves Didese etc. any quantity considered immediate payment.

ADM Electronic Supplies
Tel. $0827873311 . \quad$ Fax 0827874835

YOUR PROCUREMENT SINGAPORE TV \& VIDEO SPARES ELECTRONICCOMPONENTS CONSUMER EIECTRONICS TV's. VCR's, CAMERAS ABS BULLDING, SINGAPORE 0105

CLRS5IFIED LLRSSIFIED CLRSSIFIED CLAS5IFIED CLRSSIIFIED

SERVICE DATA

INDEXES! INDEXES!

 thousands sold worldwideEDITION 10 of the complete indexes now published containing over 8,000 Faults listed in 12 Years of Television Magazine

Indexes are alphabetically listed by Make, Model,Fault, Ref and are now Available for just

£8,00
For Television \& Satellite Faults
\$8,00 For Video, Camcorder \& CD Faults

Or

£15.CO For both sets complete

Please add £1.50 (UK), £3.00 (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE is ALSO AVAILABLE.
FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to:

$$
\begin{aligned}
& 31 \text { PRENTON ROAD WEST, } \\
& \text { PRENTON,BIRKENHEAD, } \\
& \text { MERSEYSIDE L42 9PY }
\end{aligned}
$$

GERMAN SERVICE SHEET SPECIALISTS

Out connctions are worldt-unde He furmh ans
 manualk in atoh For ant enquires.

DÖNBERG ELECTRONICS

Schoolmasters House, Rannafast, Co. Donegal, Republic of Ireland. Phone: 07548275

TV VIDEO FAULT GUIDE LINE

 Most makes covered, old and new. This service offers technical advice and cure plus schematuc diagram, all for the price of $£ 3.50$.ACCESS \& VISA.
Fax service phone
0268558938
ANYTIME

THE VINTA GE WIRELESS COMPANY LTD FOR EVERYTHING IN VINTAGE VALVE TECHNOLOGY
Everything for Vintage Radio, Electronics and Audio by Mail Order Valves, Books, Magazines, Components, Service Sheets, Radios, Amplifiers, Tuners, etc
Send $£ 3.25$ for Catalogue Pack and Sample Newsheet.

VSA

 Credit cardsVintage Wireless Company Tudor House, 20A Cossham Street, Mangotsfield, Bristol BS17 3EN.

Retail showroom open every Saturday 10 am to 1 pm .
Tel: 0272565472 (24 hours)
Fax: 0272575442 (24 hours).
IT'S EASY TO
PLACE YOUR
CLASSIFIED ADS
IN TELEVISION
MAGAZINE.
JUST RING PAT ON:
081-652 8339 OR
FAX: 081-652 8931

AT 2, Audi-Multi-Tester, 16 test-circuits for loudspeakers, tuners, amplifters, headphones tape recorders, mikes, boosters,

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up aid, short repair; exhausted CRT's becomes bright and sharp again even if alli, other machines do not succeed.

United Kingdom: P \& E Services, Llandudno, Tel (0492) 549246, Fax 547880

Ireland: Dönberg Electronics, Ranafast, Co. Donegal Tel: 3537548275 and 48532. Fax: 3537571031. Now Zealand: TDON Ltd., Onehunga, Auckland. Tel. 6 Now zealand: TDON Ltd.
Germany: Ulrich Müter, Oer-Enkenschwick, Fax (0 23 Germany: UIr
6810%

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA . AMSTRAD . BUSH . DECCA . DORIC . BLAUPUNKT. FERGUSON . FIDELITY. GEC. GRUNDIG. GRANADA. HITACHI . HINARI . INDESIT . ITT . KIMARA . NIKKAI. MATSUI. MURPHY. OSAKI NORDMENDE . LOEWE-OPTA. PANASONIC. PYE . PHILIPS. SANYO. SAISHO. SHARP. SONY. SOLOVOX. SUSUMU. TANDBERG. TELEFUNKEN. THORN . TRIUMPH . HUANYU . GOLDSTAR . BINATONE.

> FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS.
> LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER ITTD . 236 SANDYCOMBE ROAD) . RICHMOND . SURREY. TW9 EEQ. Approx. 1 mile from Kew Bricge. Mon-Fri. 9 am to $12.30 \mathrm{pm} \downarrow$ Sat 10 amm to 11.45 am	

TRADE ONLY
 MICROWAVE OVEN PARTS

MAGNETRONS • DIODES • TRANSFORMERS LAMPS • FUSES • MICROSWITCHES PHONE NOW FOR PRICE LIST A.W.I. MICROWAVE OVEN COMPONENTS Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Telephone: 0983296121 Fax: 0983296122

[^2]
LIRS5IFIEB CLASSIFIED CLASSIFIED CLRSSIFIED CLASSIFIED

EAST LONDON TV/VIDEO SUPPLIER
Working Basic From $£ 25.00$ SPARES FOR GRANADA STOCK
Working Text From $£ 50.00$
Working VCR From $£ 50.00$
Non Working VCR From $£ 25.00$
Non Working TV From $£ 15.00$
VHF/UHF CONVERTERS
ELECTRONIC SIGNBOARDS
NEW HI-FI EQUIPMENT
DOUBLE CASSETTE WITH CD S.E.C.A.M. TRANSCODER

THE EXPORT SPECIALIST
JOMILL ENTERPRISES
UNIT A
357 MILE END ROAD
LONDON E1 4PA
TEL/FAX: 0819834792 or TEL: 0819830517

CAR RADIO DECODING EQUIPMENT

Plug our decoder into your IBM or compatible computer, remove the base plate from the radio, place our probe onto the PCB and the code is instantly displayed. Changing the code or even fully reprogramming the eeprom is just as easy.
Easy to use software includes PCB layouts and help screens with full backup from our telephone helpline SEND FOR FREE DEMO DISK
Recent national press coverage has resulted in increased sales, so we can now offer a starter kit enabling you to decode the three most popular brands of radio for only $£ 300+$ carr \& VAT EEPROM DECODING SERVICE: only E5 + VAT (just send us the chip)
Electronic Sound Systems
62 High Northgate, Darlington, Co. Durham DL1 1UW Tel: 0325484089 Fax: 0325465921

REBUILT CRTS

VDU - MONITOR - TV
Image Burn-In Removed From Screen Phosphors
B.S.I. Certification
N.G.T. ELECTRONICS LTD

120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

TELEOTSLORCLASSIFIEDLINEREE

advertisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing, Television Classified Room 11 th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The charge is $£ 8.40$ per line plus $171 / 2 \%$ (minimum $£ 33.60+$ VAT.)

For Issue Dated \qquad .or next available. Total insertions \qquad
Name.
\qquad

DISH AND LNB SUITABLE FOR D2 MAC £15 POST £5 + VAT

New Eprom for converting
Ferguson BSB Receivers to
D2 MAC and PAL - 99
channel is tunable and each one can be put into memory

- also has menu. £20

PAL panel (to convert to
PAL) £20
SEND FOR DATA.

[^0]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA145DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9LS 10712615000). Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television "is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: A TOZ ref. DI 61
 06127434090612732854 Fax: 0612734486 ACCESS - VISA - CHEQUE - SWITCH - CASH

[^2]: IF YOU REQUIRE A HOME STUDY COURSE in the fundamentals of electronics, either to begin a career, pursue a hobby, or refresh your knowledge, a

 ## BASIC ELECTRONICS COURSE

 from the Direct Personal Learning Scheme, could be just what you're looking for. Contact:
 K. SPARROW, 11 CLAYDON GREEN, WHITCHURCH, BRISTOL, AVON BS14 ONG Tel: (0275) 835669

