SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

Servicing the Philips VR6462 VCR
Digital Television Broadcasting
Modern Colour Signal Processing
Panasonic's Digital CTV Chassis
Bush 2114 Fault Notes - DX-TV
VCR Clinic - TV Fault Finding

EUT WILLOWVALE ELECTRONICS LTD

CALL NOW

On sale June 16th

COPYRIGHT

© Reed Business Publishing Ltd., 1993 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 42 are available at £3.50 each from Video Interface Products Ltd., who can also supply a five-year consolidated index on computer disk. For further details see page 623
Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, $£ 30$ overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24-hour ordering with Credit Card telephone 0622721666 quoting INJ .

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 641.

Gordon Haigh

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.

VIDEO SERVICE KITS (Cont.)

 HITACHIT52/61/62/63/64/65/85/86/640
Contents
BELT SET PINCH ROLLER
FIREW ARM CLUTCH PLATE
Economy kit Contents Order Code: SK49 $£ 14.00 \quad$ Order Code: SK50 $£ 3.25$ TT400/405/410/13/44/15/18/420/25/26/28/43031/35/38/450/498 510/520/25/26/530/35/36/540/545/46/48/57075/576/58085/88 Contents

TIMING BELT PIVCH ROLLER. FF/REW ARM CLUTCH BASE

 TENSION BANOOrder Code: SK5:
$£ 11.50$
T100/1 10/111/113/115/118/120/125/128/130/135'38/145/150 Content
BELT SET PINCH ROLLER FFFREW ARM CLUTCH PLATE Order Code: SK51

PANASONIC

$\begin{array}{ll}\text { NV7000/NV7200/NV7800 } \\ \text { Contents } & \text { Contents }\end{array}$ BELT SET. PINCHROLLER COATENTS PINCHROLLER

 $\begin{array}{llll}\text { ENSION BAND. IDLER TYRES } & \text { TENSION BA VD. IOLER TYRES } \\ \text { Order COde: } \text { SKO3 } & £ 6.25 & \text { Order COde: } \text { SKO2 } & £ 5.50\end{array}$ NV300 Nv330/N $\times 333$ Nv340/Nv366Contents
BELT SET. PINCH ROLLER TENSION BAND IDLER TVRE Order Code: SKOI NV2000/n
Contents ELT SET. PINCH ROLLER FF BAND VIDEOLAMP. Order Code: SK13 NV7000/
ELT SET PINCH ROLLEF
DLER UNIT PLAY IDLER
Order Code: SK11
£10.00 NV300/N Conten

DLER UNIT. PLAY IDLER

ENS ON BAND

NVG7/NVG9/NVG10/NVG11/NVG12/NVG14nv1 1 IVG IVG18/NVG30/NVG120/NVG130NVG400 NVH65 (PV/AC)

GG1810 (P/K) NVG120NVG130NVG400NVH65 (PXAC

 Contents BELT PINCH ROLLER IDLER Order Code: SK27 £9.5 NV332
Contents
 ELT SET PINCH ROLLER.
 NO FFREW TYR

 Order Code: Sk29Economy Kir Contents PLAY IDLER TVRE FF/REW NV230/250/260/280/430/450/460/470/650/810/890 AG1200PKAG 1500 PK

Contents

Economy Kit Contents Order Code: Sk23 £7.00 NV600/NV6
Contents

Conle SET
 LAY IDLER FF/REW IOLER

order Code Skz

\qquad NCHIROLLER IDLER UNIT
Order Code: SK1

Economy Kir Contents

 LOADING BELT CAPSTANBELT PINCH ROLLER IDLER $£ 4.00$ Economy Kir Contents
BELT SET PNCH RDLLER IDLER TYRE PU FY TYR

Order Code: Sk14 Economy Kif Contents BELT SET P NCH ROLLER IDLER TYRE. CLUTCH TYRE Order Code: SK12 £4.20 Economy kif Contents Economy kill LIER TYRE PLAY IDLER TYR \&der Code: SK28 $£ 4$ £4.50

PHILIPS

CASEETTE LIFT ASSEM3_Y 69120366
DVIE6, 190, 286, 473, 56, 761 , VR6 180, 6182,6185
HITACHI VIDEO HEAD
$360,503,640,5050$
MTTSUBISHI VIDEO HEAD

H5303, 304, 320
$\begin{array}{lr}\text { HS306, 318,710 } & E 18.00 \\ \text { HS300, 301,302310 } & £ 17.00\end{array}$
30231
$\mathbf{£ 2 0 . 0 0}$

DVE6, 190, 286, 477, 562 761 , VA6 180, 6182,6185 , 1,00 | VRE $85,6290,6293,6253,6362,6367,6393$ |
| :--- |
| 64π |

PRESSURE ROLLER ASSEMBLY
DV1-6, DV 190, DV236, [1486, DV47t, DV582, DV57
DV71, VR6180, VR618E, FR6185, VR6285, VR6290.

VREA81, VR6670, VR6676, VR6760, VR6761, VR6
VRS 70, VR6970, VR695, VR86B $1,63 S B 7,68 S B 4$

VIDEO HEAD TESTER

Mochanical

Pointer
Moasuring Sock
Power ON/OFF and Battery Check Switch
Renge Soliactor Rotary Switct
a. CAl. ADJ (callbration volume)

YF-225 VHS PRICE
YF-225 VHS
YF-225B BETAMAX
$\mathbf{2 3 0 . 0 0}+$ VAT
$\mathbf{2 9 . 0 0}$ +VAT

JUST ARRIVED

VIDEO HEADS
AKAI
VSF600, VSF650
AMSTRAD
VCR8800, VCR8804, VCR9340
JVC
HRD330, HRD337, HRD440, HRD637
HRD641, HRD660, HRFC100
MITSUBISHI
HSE12, HSE22, MX1
HS411EZ, HS411GZ
NATIONAL
NV8050, NV8051
N.E.C.

D×2000
DS6000
SAMSUNG
VM1560, VN1561
SANYO
VHR7900
SHARP
VC585, VC685
VC90ET
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509G
V9680
V300G, V301, V305, V309G
V61, V63
V110, V120, V130, V140, V210,
V220

TELEVISION ON/OFF

MAINS SWITCHES

Baur, Normende, Nova, Pioneer, Quelle, VIDEO MOTORS
HITACHI
VT11, VT14, VT15, VT16, VT17, VT19, VT35, VT39, VT57, VT88 (capstan motor)
BANG \& OLUFSEN
VHS65, VHS90 (capstan motor)
CASSETTE HOUSING
AKAI
VS35, VS53, vS55, VS66, vS75 FERGUSON
FV31R
JVC \& FERGUSON
HRD515, HRD520, HRD527, HRD540, HRD550, HRD580, HRD600, HRD610, HRD620, HRD660, HRD670, HRD830',
HRD840, HRD850, HRD860, HRD4050,
HRD6600 \& FV37H
IC TRANSISTORS
M4918B1
SAA5243PE
TIP112H
UPC1488H
STR4090A
REMOTE CONTROLS
AKAI
RC-V10A
RCV37B
V25A
BUSH
2020T, 2114T, 2321T, 2514 T
2020, 2114, 2321, 2514
DECCA
RC70
FISHER
RC905B
GRANADA/REDIFFUSION
UNIVERSAL, 79500C. 986700
SATELLITE
MK4 TEXT, $70115 \mathrm{G}, 70133 \mathrm{G}, 70357 \mathrm{E}$
MK4A TEXT, 70375C
95288E
95288 E
94490 D

GRUNDIG TP160E
TP200, TP300
TP400
TP590-600
TP390, TP610
TP621
TP630, TP650
2200P
2400P
2900P
TP661
HITACHI

2800P
A617402/65560
A517402/655602
A514790
A5088470
3400 P 3500 P

A518612
C2096
C2096
A511940
655602 H
3600P
FB13, 14, 15
2300P RS4
3900P RG306
2800P FS9/1-10/1
VS5 RUK
VS4-1
MULTICONTROL (17C20)
2350P
$\begin{array}{ll}2600 \mathrm{P} & 18279,18396,18460,18521 \mathrm{SE} \\ 3700 \mathrm{P} & 40540 \mathrm{VTS}\end{array}$
2500P LOEWE
2900P DC11
2550P MATSUI
010270601
V $\times 770$
JAVA COLOR (6890)
COLOR (7156)
JAVA (7180)
375P
939P/03607,939P/03609
SATELLITE
NORDMENDE
TC2336
3100 P
3100P

2600P
4300P

1350P
500 P
800 P
69117194
150 P RC5991 UNIV
650P

	$\begin{aligned} & \text { RC5375 } \\ & \text { RC5 STANDARD } \end{aligned}$
1000P	RC5901
1000P	RC5903
1000P	$\begin{aligned} & \text { SABA } \\ & \text { T6772 } \end{aligned}$
1000P	TC319-320
1000P	$\begin{aligned} & \text { TC356 } \\ & \text { TC358 } \end{aligned}$
850P	$\begin{aligned} & \text { TC360 } \\ & \text { TC365 } \end{aligned}$
1000P	SALORA SERIES L 86173
850P	SANYO
850 P	RC218, RC222, RC228, RC238
850P	JXGE
1000P	JXDE
1000P	$\text { VHR } 2300$ RC628

SEE PREVIOUS PAGES FOR MORE \leftarrow GRANDATA BARGAINS

1050P 1000 P 850 P 850P 1050P
1050P
1050 P
1000 P
1000P 1050P
900P
9000
000P
1000P
1000P
1000 P
1000 P
1000 P
1000P
1000 P
1000 P
1000 P

SHARP
G0121CESA, 123CESA, 204, 251

SIEMENS	
FC616	1000 P
FC631	1000 P
FC742	1000 P
SONY	
RM604, RM605, RM606	900 P
32 CHANNEL	900 P
RM613	900 P
RM632, RM636	900 P
TATUNG	
FXA	1000 P
RC70	900 P
FX70 FASTTEXT	850 P
TELEFUNKEN	
FB632	1000 P
FB639	1000 P
THORN/FERGUSON	
3V35-42	900 P
3V31-32	900 P
3V57-58	$1050 P$
TX10 TEXT	$850 P$
TX10 STEREO TEXT	$850 P$
TX9-90-100	$850 P$
3V55, FV11	$1050 P$
TX100 FASTTEXT	$900 P$
TX100 STEREO FASTTEXT	$900 P$
PROFESSIONAL	$850 P$
TOSHIBA	
CT937	$1000 P$
CT9117	$1000 P$
201R4B	$1000 P$

UNIVERSAL PROGRAMMABLE REMOTE CONTROL
Controls up to 4 different devices which use
infra red remote controls including TV, audio,
VCR and satellite. (Need original remote control to program) Order code: IR100R
We stock Remote Controis for over 5000 different models. Ring for further details on 081-900-2329

LINE OUTPUT

TRANSFORMERS

Description	Price	Order Code
HITACHI 2433752	1500 P	LOT01
ORION 3714002	1500 P	LOT02
FIDELITY ZX300	1500P	LOT03
FE TX100 90 DEG	1500P	LOT04
SABA 490007182	1500P	LOT05
FE TX90 WHITE	1650P	LOT06
ITT D307/37 EQ	1600 P	LOT07
BLAUPUNKT 210	1600 P	LOT08
GRUNDIG 2922010	1600P	LOT09
ITT CVC800/1/3	1500P	LOT10
ITTD218/37 EQ	1600 P	LOT11
NORMENDE 5255	1600P	LOT12
SABA 81000200	1600P	LOT13
SALORA T236EQ	1650P	LOT14
SABA 811-50-24	1600 P	LOT15
SABA 770223500	1600P	LOT16
TELEFUNKEN AT1	1450P	LOT17
TELEFUNKENEQ	1400P	LOT18
SALORA FM0218B	1600P	LOT19
NORMENDE 5255	1600P	LOT20
ITT CVC 1150/1	1500P	LOT21
ITT COMPACT 80	1500P	LOT22
FE TX 100 GREEN	1450P	LOT23
HINARICT4/5 5113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600P	LOT26
ITT COMPACT B1	1450P	LOT27
ITT CT3326 MUL	1500P	LOT28
ITT D066/37EO	1600P	LOT29
IT3546EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100 110 D	1700P	LOT34
HANTAREX 28021	1600P	LOT35
SHARP C3700 EO	1600P	LOT36
HITACHI 2432981 CP	1500P	LOT37
We stock line output transformers for over 100 different models. Please ring 081-900 2329 for more information.		
CBANDDABAD		
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE,		
SOUTHWAY, WEMBLEY.		
MIDDLESEX, ENGLAND		
Tel: 081-9002329	: 081	0361

MAKE YOUR INTERESTS PAY!
 Train at home for ore of these Career Opportunities

Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more monev and have more fun out of life! ICS rias over 100 vears experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where vou want under the guidance of expert 'personal' tutors. Find out how we can help You. Post or phone today for FREE INFORMATION on the course of vour choice. (Tюck one box only!)

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds) \square	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics \square
Elec. Contracting: Installation \square	Computer Programming
GCSE/GCE/SCE over 4 subjects to choose fro	examination m
Name:	
Address:	
P. Code	
Internationad Corres 312/314 High Stree 041-221 7373 (24	pondence Schools, Dept. EGS73 Sutton, Surrey SM1 1PR. or urs).

	FERGUSON TXIO	NEC N-831/33G-	RANK T26A...-		PANASONIC NV688.
		NEC RBB3EGUEP............11.50	RANK T524A...............13.95	AMSTRAD 4500/900014.95	PANASONIC NV730 18.95
	FERGUSON TX10 TEXT11.95	NIKKAI NT14/20/21.............23.50	RANK T528A.................. 19.95	AMSTRAD 4600,4700........14.50	PANASONIC NV777 18.95
	FERGUSON TX10 STEREO. 15.95	ORION VH1204................ 21.95	REDIFFUSION MKIV12.95	AMSTRAD 6000 17.95	PANASONIC NV78825.95
	FERGUSON TX100 TEXT....111.95	ORION VH3050/60RC..........21.95	REDIFFUSION MKIVA.........12.95	AMSTRAD $7000 . \ldots \ldots \ldots \ldots \ldots \ldots . . .15 .25$	PANASONIC NV87037.30
	FERGUSON ICC5.............16.95	ORION VR2949/2957.........21.95	SABA FS60211.95	FERGUSON 3V00/39..............7.75	PANASONIC NV200077000....8.95
	FERGUSON 3V32/35.........11.95	ORION VSP20................19.95	SABA FS603/4 . . \quad - 11.95	FERGUSON 3V32....	PANASONIC NVG79.........17.30
	FERGUSON 3V43............14.50	ORION VXL20.................21.95	SAiSHO CI142R.............14.50	FERGUSON 3V425517.50	PANASONIC NVG10112.......17.30
	FERGUSON 3V55..............15.30	PANASONIC EUR51200......14.95	SAISHO CT149TX.............14.95	FERGUSON 3V59,FV12....... 26.95	PANASONIC NVG18...........28.70
	FERGUSON SRA1	PANASONIC EUR51142......36.50	SAISHO VR1000/1100.........15.25	FERGUSON 3V65\%FV1117.95	PANASONIC NVG20121........24.95
	FIDELTY CTV14S . . . \quad _ \quad. 12.95	PANASONIC EUR64142.......21.50	SALORA 16U10/20 - - $\quad 15.90$	FERGUSONFVI2..........34.50	PANASONIC NVG3040.......24.50
	FIDELITY CTV22T14.95	PANASONIC C71/C7421.50	SALORA 20/20/304015.90	FERGUSON FVi3....	PANASONIC NVG45...- $\quad 34.50$
	FIDELITY CTV2210...........12.95	PANASONIC TNQ $14111 / 2 . . .1 .14 .95$	SALORA 86173...............16.50	FERGUSON FV26............... 28.50	PANASONIC NVL2538.50
TOP TEL	FINLUX 1000 SERIES......... .22 .95	PANASONIC TNQ1419.........13.95	SALORA C20XZ1.............17.95	FERGUSONFV31............26.50	PHILIPS VR6185.................42.50
PREPROGRAMED REMOTE	FINLUX RC3001 -	PANASONIC TNQ1621......17.95	SALORA SATELITEE......... 19.95	FERGUSONFV31R $\quad 27.95$	PHiLIPS VR6367..... ${ }^{\text {a }}$ -
CONTROLS 5 INDIVIDUAL	FISHER FTS 5610TX . .	PANASONIC TX2112	SAMSUNG SV715........15.50	FERGUSON FV32............. 27.95	PHILIPS 6460,6520.......... 9.95
APPLIANCES	FISHER FTS 6310TX22.95		SAMSUNG SV717...........15.50	FISHER FVH5000 . $\quad 24.5$	PHILPS 646216560
V.VCR \& SATELLITE ETC. 24.95	FISHER FTS 110 TX FISME........22.95	PANASONIC TX2200...........21.95	SAMSUNG VX616/617.......15.50	FISHER FVH6159910..........15.95	GENUINE......44.95
	FISHER FVHP 905/910....... 22.95	PANASONIC TX2234.........21.95	SAMSUNG VX619/E26.......15.50	FISHER FVH725 34.50	PHILIPS 6467 GENUINE 40.70
	GOLDSTAR OTMF $7110 \ldots \ldots . .17 .95$	PANASONIC TX2244......... 21.95	SAMSUNG VX627/E2915.150	FISHER FV H906/916	PHILIPS 6760 GENUINE 41.70
	GOLDSTAR 105-5200........ 24.95	PANASONIC TX2464	SANYO CPT3144...........1795	GOLDSTAR V1221/1290 15.95	PYE DV464-
	GOLDSTAR 105-523C.........24.95	GENUINE.....................34.95	SANYO E2 SERIES17.95	GRUNDIG VS400/500.........17.30	
	GOLDSTAR GHV $122121 .95$	PANASONIC TX2470,72......21.50	SANYO VHR $1100 / 1200{ }^{\text {a }} 115.95$	HINARI VTR $200 \ldots \ldots \ldots \ldots \ldots \ldots$	
	GOODMANS TX1100/1200....18.95	PANASONIC TX2482/92......21.50	SANYO VHR 1300/230015.99	HINARI VXL2/4/20/35..........17.95	SAISHO VR705.80515.25
	GRANADA UNIVERSAL12.95	PANASONIC TX3300 $\ldots \ldots \ldots \ldots$	SANYO VHR $2700 / 310015 .15 .95$	HINARI VXL6...................19.50	SAIS H0 VR320017.50
	GRUNDIG TP400 TEXT........12.90	Panasonic	SENTRA VCR80000810017.50	HINARI VXLE99990.......... 17.95	SAISHO VR3500....
	GRUNDIG TP650 TEXT........14.25	GENUINE12.50	SENTRA V $\times 8400$...........14.50 14		SA1SHO VR3600............ 19.50
	GRUNDG TP660.............21.95	PANASONIC NV73015.25	SOLAVOX 16R19.............13.95	HITACH1 8000,970015.70	SAMSUNG VIT30...............23.50
PHILIPS UNIVERSAL		Panasonic nvb7o		HITACHI VT11/33..............15.70	SAMSUNG VX5200710.........17.50
REMOTE		GENUINE	SOLAVOX 26R09..........15.95	HITACHI VT 17/19.................. 24.70	SANYO VHR 1100/1300 18.95
It CARD SIZE 9	HINARI VXL- $7 / 8$ HINARI VXL- 20 $-\quad . \quad . \quad . \quad . \quad . \quad 18.95$	PANASONIC NVG10 GENUINE 28.95	SOLAVOX CML 1415.95	HITACHI VT63/64.................. 20.30	SANYO VHR1110:1200 21.50 SANYO VHR 2300/3200 23.50
WORKS MOST PHILIPS SEIS BASIC FUNCTIONS	HITACHI CLE862F...............19.95	PANASONIC NVG12	SONY RM613...................19.50	HITACHIVT120E................21.95	SCHNEIDER SVC2021.50
ENGIN	-887	genuine	SONY RM615/632.............14.1.	HITACHI VT130E................ 24.9	SCHNEIDER SVC246.......... 21.95
	HITACHI CLEE74A...........17.95	panason	SONY RM650/651/652........17.95	HITACHIVT150E..............33.95	SENTRA $8000 . . . \ldots \ldots \ldots \ldots16 .9 .95$
	HITACHI CPT1446............17.50	GENUINE)	SONY RM654/657.........17.95	HITACHIVTT2OE . .-.	SENTRA 8400-...16.95
	HITACHI CPT1556..............17.95	PANASONIC NVG21	SONY RM662/663.............24.95		SENTRA 8600 -
	HITACHI CPT2038.............14.95	GENUINE23.45	SONY RM664/665.............21.95	JVC HRD250..................23.50	SHARP VC9300/381/48114.75
	HITACHI CPT2174............17.95	Panasonic nvg40	SONY RM670..................14.95	JVC HRD470..................27.50	SHARP VC581/68114.75
	HITACHI CPT2 $188 . . . \ldots \ldots \ldots \ldots 115.25$	GENUINE -...	TASHIKO 14D96216.95	JVC HRO540...................17.95	SHARP VC78732.50
	HITACHI CPT T218.............17.50	PANASONIC NVG45	TASHIKO 14D966.........16.95	JVC HRD725...	SHARP VCA 140...............14.75
	HITACHI CPT2246............15.25	GENUINE.......... ${ }^{\text {a }}$. 29.95	TATUNG RC40,45...........14.9	JVC HRD755.................34.50	SOLAVOX $1000 \ldots \ldots \quad 16.9{ }^{\text {a }}$
	HITACHI CPT2508............. 15.95	PANASONIC NVL28	TATUNG RC60.................14.95	LOGII VR950,95522.50	SONY C516,7................14.95
WERMID	HITACHI CPT2596............17.95	GENUINE44.50	TATUNG RC70.................12.50	LOGGK VR960..................17.95	SONY SLC3021.50
Res, Just plugin and	HITACHI CPT2888............15.25	PACE 6000×15.95	TATUNG RC90......	MATSUI VX60017.95	SUSUMIXR5...................18.95
SMIT BY YOUR REMOTE		PHLLPS G11 UR TEXT..... 13.95	TELEFUNKEN FB12027.50	MATSUI VX770	TASHIKO VVE92 1/2..........19.95
CONTROL TO ANY ROOM IN	HITACHI VT9300...............17.50	PHILIPS KT3/30 NON TEXT. 12.95	TOP TEL.....................24.9	MATSUI VXT35A........-	TASHIKO VVE932...-
	HITACHI VT17...............15.	PHILIPS KT3/30 TEXT.........12.50	TOSHIBA CT995/6............16.95	MATSUU VX820...............15.25	TASHIKO VVE934..............22.50
REMOTE CONTROLS	HITACHI VT63/64 HITACHI VT.............. 13.25	PHHLIPS RC5991.................. $\mathbf{1 2 . 9 5}$	TOSHIBA CT9128.................. 17.95 TOSHIBA V5511.95	MITSUBISHI HS301/302........22.70 MITSUBISHI HS $3033305 \ldots21 .50$	TOSHIIA V55/57..............7.75
	IT FS9/10 DIGIVIIION......\|3.95		TOSHIBA T534AB..........15.95	MITSUBISHI HS30623.95	TOSHIBA V938.............18.95
FERGUSON T725...............11.50	1T RG305......).-..........13.95	PHILIPS SIMPLE.............10.95		MITSUBISHI HS318 24.50	Video heads are of the
FERGUSON T732............11.95	ITT RG306.....................13.95	PHILIPS MINIATURE..........9.95	REMOTES SUPPLIED ARE	NEC 9034/9053...............19.95	St quality and are
FERGUSON T734..........12.50	ITT TX3126.....................20.95	PHILIPS VR63627...........13.25	EITHER -KONIG", "CME"OR	ORION VH1......................19.50	
FERGUSON T738.......... 11.95		PHHLIPS VR6462\|	manuFactufers own	ORION VH3......................19.99	manufacturers own
FERGUSON T74213.70					
FERGUSON 7785 FAST TEXT		PIONEER 505/525 17.50	VIDEO HEADS 	PANASONIC NV333 8.95 PANASONIC NV366 19.95	MANUFACTURERS COSTS, WE
FAST TEXT 13.95	MATSUI 146518. 185	PROGRAMMABLE.................22.50		PANASONIC NV366 19.95	beserve the hight to increase
FAST TEXT13.	TSU1 2890	PYE DV662/0514.50		PANASONIC NV43014.25	PRICES WITHOUT PRIOR NOTICE
		dvantage of cheape			
CASSETTE HOUSINGS		TELEPHONE COSTS		C,NOKIA, MITSUBISHI	PANASONIC EH SERIIES 32.50
FERGUSON 3V65.FV11R . 22.50		PHOTOCOPY FACILITY		TECHNOPHONE.	PANASONIC F1 700MAH ...23.50
FERGUSON FV31/FV317. 36.45		SAMSUNG SFF1700...... 2275.00		FROM NEW \& USED HAND	PANASONIC G SERIES
FERGUSON FV37/FV37H ...17.50		5 SHEET AUTOMATIC		portables to	PANASONIC I SERIES25.50
HITACHI VT11E 16.50		DOCUMENT FEEDER		MOBLLES AND	SONY CMH1 SONY 1.95
HITACHI VT64E $\quad 21.50$		TOMATIC FAX RECEPTION.		TRANSPORTABLES	SONY CMH-333-_-
PANASONIC NV333366 [.. 18.20		control settings.		NO LONG TERM CONTRACTS \&	TECHNOPHONE TP2 $\quad 27.50$
PANASONIC NV230 $\quad 32.85$				RANGE OF BILLING PLAA	TECHNOPHONE TP3.......24.50
PANASONIC NV730 34.50	SCART SWITCHING			TO SUITE EVERYBODY PART EXCHANGE \&	TECHNOPHONE TP4C5 700MAH
SERVICE AIDS	KIT 16.95		ED. BOLD PRINT INE FACILITY	RECONNECTIONS ARE	BATTERY CHARGERS
	SCART TO 5 SCART SKT.....6.95		Nomater	WELCOME WE ALSO PURCHASE SECOND	DESK TOP TRICKLE MOTOROLA TRANSPORTABLE 36.95
ANTEX 17W IRON 8.50 ANTEX $25 W$ IRON 8.75	VIDEO COPYING KIT5.95 VIDEO FLY LEAD 75			WE ALSO PURCHASE SECOND HAND EQUIPMENT	$\begin{array}{ll}\text { TRANSPOATABLE } & 36.95 \\ \text { MOTOROLA } \\ 8000.88 C O X . . .23 .95\end{array}$
ANTEXIRON STAND $\quad 4.95$		FOR EASE OF	50 K MEMORY		MOTOROLA MICROTAC $\quad 24.50$
CIRCLIP KIT $\mathbf{5 . 9 5}$ CLEAR TEST TAPE 7.95	VIDEO REPAIR KIT	USE TOCOPY FACILITY	0. 12, 15, PS CHARACTER	ELIULAR SPAR ANTENNAE	NEC P3......................................24.95
$\begin{array}{ll}\text { COLCLENE WIPES } & 95\end{array}$	ALBA 4000 ALBA $6000 .11 .50 ~$ 12.95	ANON FAXPHONE 5325.00		3DB BodY MOUNT $\quad 14.25$	PANASONIC EH SERIES . 39.95
FIBAE CLEANING PEN $\quad 2.95$	FERGUSON 3V23..........15.95	10 SHEET AUTOMATIC		3DB GLASS MOUNT.	PANASONIC F $\quad \begin{array}{r}\text { 24.95 } \\ \hline\end{array}$
HEATSINK COMPOUND ONY OLOLDER PUMP	FERGUSON 3V29/30......12.1295	DOCUMENT FEEDER			
ONYX SOLDER PUMP9.95 ONYX TIPS	FERGUSON 3V31/32.......15.95	HIGH VOLUME RECEPTION		MOTOROLAT/PORT.........19.95	TECHNOPHONE TP2
PERMABOND ADHESIVE ...3.95				MOTCROLA ASOOX 1/4 WAVE 9.95	DESK TOP RAPIDICOND
PORTASOL	FERGUSON 3V64/65..........11.95			MOTOROLA B500x BUTION9.50	MITSUEISHL MT5 $\quad 4.4 .50$
	FISHER FVH61571512.75			MOTOROLA $8800 X$ MOTOROL	MOTOROLA 8000 SEFIIES 42.50
PORTASOL TIP...... 3.95	FISHER FVH99512.95		1080	MOTOROLA $9800 X$ PANASONIC F19.95	MOTOROLA 9800X \quad NEC P3................................. 42.95
TAPE........................3.45	GOLDSTAR GVVI221......12.50 GOODMANS VCR1000			PANASONIC HSERIISS...14.95	
SILICON GREASE.............1.85	HITACHI VTB00012.95			PANASONIC I SERIES $\quad 23.50$	NOK1A $101 \quad 42.95$
SOLDA MOP.................. 80	HITACHI VT9300 $\ldots \ldots \ldots \ldots . .12 .95$		VERIIER	NEC P3 NOKIA 101	
	HITACHIVT11/33E.........14.95		LCD DISPLA		PANASONIC F SERIES.... .42 .959
SOLDER 0.5KG 22SWG.......8.75			5 CHARACTERS PER	EATTEAIES CLEARTONE CTN5000 $\quad 19.50$	SONY CMH333 $\begin{gathered}\text { EATTERY EIIMINATORS }\end{gathered}$
SPRING KIT..................6.95	MITSUBISHI HS306........17.95 PANASONIC G DECK7.75	WTH 100 METRE PAPER ROLL	SECOND BIDIRECTIONAL		
UTLITY KNIFE...............1.45	PANASONIC NV23012.95	- 16 AUTODIALS FOR EASE OF	3.5 MS DOS DISK DRIVE FOR	ERICSSON HOTIINE \quad....23.50	ERICSSON HOTLINE.......14.50
WELLER GUN TIPS (2)1.25	PANASONIC NV333..........12.95		UNLIMITED MEMORY	KOKUSAI KE101	MITSUBISHH MT5..... 12.95
WATCHMAKERS	PANASONIC NV37012.95	omatic guillotine.		MITSUEISHIM MTS._........24.50	
	PANASONIC NV430 PANASOVIC PV730 12.12 .95 12.50	PHOTOCOPY FACLILTY		MITSUEISH1 MTS..........24.50	
X10 PROBE KIT...............14.95		FORFLAT FAXES.	ALL MACHINES ARE COVERED	MOTOROLA 4500X..........39.50	NEC 9A.
	PANASONIC NV20002010 ...22.50	ON FAX T50...... . 469.00		MOTOROLA 4800X SLIM 27.50	NEC P3.....
SUNDRIES	PANASONIC NV7000........18.95	ORTABI.E	Se are a small rang	MOTOROLA 8000X............. 24.50	NEC P4
CTX ERT LEAD GENUINE8.25	PANASONIC NVG10/1211.45		UR BUSINE:SS MACHIN	MOTOROA AS500	NOK1A 109 NOKIA 190
TX10 FOCUS UNIT8.50			THAT WESELINC:	MOTOPOLA 8800X 1000МАН. 23.95	OK1 70012.95
98003 POSITOR-.-.-1...1.35	PHILIPS VR6467.............. ${ }_{21.50}$		FAX MACHINES,	MOTOAOLA $8800 \times 1500 \mathrm{MAH} 29.50$	PANASONIC D SERIES 12.95
	SENTRA $8000 \ldots \ldots \ldots \ldots \ldots \ldots .11 .50$			MOTOROLA PERSONAL COOMAH 19.50	PANASONIC F SERIES 12.50
98012 POSITOR3.35			PROCES OORS	MOTOROLA PEASONAL 70 OMAH 19.50	SONY CMH $1 \times 1 . . . \quad 14.95$ SONY CMH-333 14.50
TUNERS	SONY C5/7.........................11.15		PLEASE RING FOR DETAILS cellular teephones	- ${ }^{\text {a }}$	TECHNOPHONE TP2.....12.95
NASONIC TNV87510F2 208/TC225/TC2000/TC2024				MOTOROLA PERSONAL SLIM39.50	TECHNOPHONE TP4C5....12.95
TC208TC225TCL20001TC2024	DOCUMENT FEEDER		** SPECIAL OFFE	MOTOROL $9800 \times 700 \mathrm{MAH} 23.50$	
PHILIPS ELC2003............24.45				MOTOROLA 9800X SLIM ...39.50	
				NEC 9A 700 MAH $\quad 24.50$	SERVICE MANUALS E1.25 EACH
U411 (PHONO SKT)18.50		WORD DELETION \&	bILE PHCNES INC.	NEC 9A 1000MAF .	
U411 (COAX SKT)19.75				NEC P3 700 MA $\quad 23.3 .50$	
				50	
VIDEO LEADS		NS3		NOKIA 19023.50	
MGORDER COPYING KITT				NOKIA G20 TALKMAN $\quad 39.50$	HEN ORDE RING: PLEASE ADD PP alue to obdeb total then ado
SCART LEAD FULLY WIRED4.95 SCART LEAD TO 6 PHONO.. 4.95				NOKIA 1320 CITYMAN 29.50 NOVATEL NVT $4400700 \mathrm{MAH} \mathbf{2 4 . 5 0}$	
SCART LEAD TIIG $\mathrm{CHONO} . .4 .95$		14 CHARACTER PER SECOND DAISYWHEEL PRINTING.		OKI 700 1000MAH 24.95	deliveray by return ow al stock
SCART TO 2 SCART SKT -.... 5.95	mercuar bution to take	HECK FACILIT + 16 K		OK1900 1000MAH $\quad \begin{aligned} & \text { 24.95 }\end{aligned}$	--- minimum order value es.00 -..

MICROWAVE CONTROL PANEL. Mains operated, with touch switches. Complete with 4 digit display. digital clock, and 2 relay outputs one for power and one for pulsed power (programmable) Ideal for all sorts of precision timer applications etc. Now only E4.00 ret 4P151. Good experimenters board
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre length $£ 7.00$ ref 7P29R or $£ 2$ a metre.
12 V SOLAR CELL. 200 mA outputideal for trickle charging etc. 300 mm square. Ourpnce $£ 1500$ ret 15P42R. Gives up to 15 v
PASSIVE INFRA-RED MOTION SENSOR Complete with dayight sensor, adjustable lights on timer (8 secs -15 mins), 50° range with a 90 de coverage Manual ovende faclity. Complete with wall brackets, bulb holders etc. Brand new and guaranteed. Now only E19.00 ref 19P29
Pack of two PAR38 bulbs for above unit $£ 12.00$ re
12P43R
VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera video recorder or computer to any standard TV set within a 100° range! (tune TV to a spare channel) 12V DC op. $£ 15.00$ ref 15P39R Suitable mains adaptor $£ 500$ ref 5P193R. Turn your camcorder into a cordless cameral
FM TRANSMITTER Housed in a standard working 13A (bug is mains driven). $£ 26.00$ ref 26P2R Good range MINATURE RADIO TRANSCEIVERS A palr of walkie talkes with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases and earpieces. $£ 30.00$ ret 30
FM CORDLESS MICROPHONE. Small hand held unit with a 500' rangel 2 transmit power levels. Reqs PP3 battery Tuneable to any FM receiver Our price $£ 15$ rel 15P42AR 12 BANDCOMMUNICATIONSRECEIVER. 9 shortbands, TIT FM. AM and LW DXIocal switch, tuning 'eye' mains or battery Complete with shoulder strap and malns lead. £ 19 ref 19P 14R Ideal for listening all over the world.
CAR STEREO AND FM RADIO. Low cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45 db , wow and flutter less than . 35%. Neg earth. E19.00ref 19P30 LOW COST WALIKIE TALKIES. Pair of battery operated units with a range of about 200' Our pnce $£ 8.00$ a pair 8P50R. Ideal for garden use or as an educational toy 7 CHANNEL GRAPHIC EQUALIZER plus a 60 watl pow e amp 20-21KHZ 4-8R 12-14v DC negative earth. Cased. $£ 25$ ref 25P14R NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ref 4P44R. $2 \times$ C's $£ 4.00$ ref 4 P73R, 4×0 © $£ 9.00$ ref 9P12R, $1 \times$ PP3 £6.00 rel 6P35R Pack of 10 AAA.s $£ 4.00$ ref 4P92R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. New ed $£ 2000$ ref 20 P $32 R$ G EIG ER COUNT ER KIT. Complete with tube PC8 and all compo nents to build a battery operated geiger counter. $₹ 39.00$ ref 39P1R FM BUG KIT. New design with PCB embedded coll. Transmits to any FM radlo. $9 v$ battery req'd. $£ 5.00$ ref 5 P 158 R 35 mm square. FM BUG Bult and tested supenor 9 voperation $£ 14.00$ ret 14P3R COMPOSITE VIDEO KITS. These convert composite video into COMPOSITE VIDEO KIT S. These convert composite video
separate H sync, V sync and video. $12 \mathrm{VDC} £ 8.00$ ref 8 P 39 R . separate H sync, V sync and video. 12 V DC $£ 8.00$ ref 8 P $39 R$. SINCLAIR C5 MOTORS 12v 29A (full load) 3300
O/P shaft New. $£ 22.00$ ref 20P22R. Limited stocks.
OPP shaft New. £22.00 ret 20P22R. Limited stocks.
As above but with fitted 4 to 1 inline reduction box (800 rmm) and As above but with fitted 4 to 1 inline reduction box (800
toothed nylon belt drive cog E 4500 ref 40 P 8 R . 800 pm ELECT RONIC SPEED CONTROL KIT .for C5 motor. PCB and al ELECT RONIC SPEED CONTROL KIT. for C5 motor. PCB and all components to buitd a speed controller ($0-95 \%$ of speed). Uses SOLAR POWERED NICAD CHARGER Charget 4 con SOLAR POWERED NICAD CHARGER. Charges 4 AA nicads in 8 hours.
cell model $£ 600$
cell model $£ 6.00$
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Includes mains adapter, leads and book E15.00 ref 15P43R
VIDEO TAPES. Three hour superior quality tapes made under licence from the famous JVC company. Pack of 10 tapes New low price E15.00 ref J15P4
PHILIPS LASER. 2MW HELIUMNEON LASERTUBE. BRAND NEW FULL SPEC £40.00 REF 40P10R. MAINS POWER SUPPLY KIT £20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE $£ 75.00$ REF 75P4R
12 TO 220V INVERT ER KIT. As supplied it will handie up to about $15 w$ at 220 v but with a larger transformer it will handle 80 watts. Basic kit $£ 12.00$ ref 12P17R. Larger transformer $£ 12.00$ ref 12P41R WIND UP SOLAR POWERED RADIOI FM/AM Radio takes rechargeable battenes Complete with hand charger and sola panel E 14.00 REF 14P200RA
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 10 £4.00 REF 4P92R, PACK OF $100 £ 30.00$ REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1,00$ ref BD $827 R$ 12V 19A TRANSFORMER EX equipment $£ 20$ but OK POWER SUPPLIES Made for the Spectrum plus 3 give +5 @ $2 A_{1}+12 @ 700 \mathrm{~mA} \&-12$ 50mA. \& 8 ref G8P3
UNIVERSAL BATTERY CHARGER. Takes AA's, C's, O's and PP3 nicads. Holds up to 5 batteries at once. New and cased. malns operated. $\mathbf{E 6 . 0 0}$ ref 6P36R.
IN CAR POWER SUPPLY. Piugs imo cigar socket and gives 3.4 .5 .6 .7 .5 , . and $12 v$ outputs at 800 mA Complete with universal spider plug. $£ 5.00$ ref 5 P 167 R .
QUICK CUPPA? 12v immersion heater with lead and agarlighter plug $£ 3.00$ ref 3P92R. Ideal for tea on the move!
LED PACK . 50 ned. 50 green, 50 yellow all 5 mm E8.00 ref 8P52
MINIMUM GOODS ORDER 5500 . TRADE ORDERS FROM GOVERNMENT, SCHOOLS, UNIVERSTTIES, \& LOCAL AUTHORTTIES WELCOME ALL GOODS SUPPLIED SUBJECT TO OUR CONDITIONS OF SALE AND UNLESS OTHERWISE STATED GUARANTEED FOR 30 DAYS
RIGHTS RESER VED TO CHANGE PRICES \& SPECFICATIONS WITHOUT PRIOR NOTICE ORIDERS SUBIECT TO STOCK QUOTATIONS WILLINGL Y GIVEN FOR QUANTITIES HIGHER. THAN THOSE STATED

THIS MONTHS SPECIAL OFFERS

AMSTRAD MP3 \#19,00

VHFUHF TV Receiver, converts RGB or composite monitor into colour TV. Brand new and cased. \#19.00 each. REF: TV19P1

MAINS CABLE WITH PLUG from 30 cach

You can have a 2 Mtr length of mains cable with a fitted 13A plug (with sleeved pins) for just 30 p ! Minimum quantity: PKT 10 \#3.00 REF: TV3P1 or you can have PKT 100 \#27.00 REF: TV27P2

CORDLESS PHONES (non working) \#30,00 for 3

These are BT Curlews. They are not new and have been stored in sunlight so the plastic cases are discoloured. They also have handset aerial missing. This is a standard telescopic aerial piece of wire will do! These are NON
RETURNABLE
PKT 3 for \#30.00. REF: TV30P1

ANSWER PHONES from only

\#18.00
Yes its true BT approved push button dialling. These are customer returned units and have two faults. We will supply you with a chip to cure one of the faults then you have to sort out the other problem! NON RETURNABLE

Price \#18.00 each REF: TV18P2
or $\# 60.00$ PKT 4 REF: TV60P2

ANSWER PHONES - HIGH SPEC LCD DISPLAY

Once again, BT approved push button dialling answerphones. LCD display, digital speech chip, fast rewind, memories plus all the features found on a BT Response 400 machine. Again, we will supply you with a chip to cure one of the faults then you have to sort out the other problem NON RETURNABLE.

Price \#28.00 each REF: TV28P2 or \#100.00 PKT 4 REF: TV 100P1

POWER SUPPLIES for ANSWER PHONES above

If you need a DC plug in power supply for the above ans wer phones they are \#4.00 each. Price \#4.00 each REF: TV4P5
or \#12.00 PKT 4 REF: TV12P1

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT

MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS $£ 3.00$ POST PLUSVAT, PLEASEALLOW 7 - 10 DAYS FOR DELIVERY TELEPHONE ORDERS WELCOM

TEL: 0273203500
FAX: 0273323077
Un

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 609 or faxed to 081 6528956.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327
FIELD SALES EXECUTIVE
Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528970

PUBLISHING DIRECTOR
 Susan Downey

SUBSCRIPTION ENQUIRIES
 0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622721666 and quote reference INJ.

COVER PHOTO

This month's cover photograph shows an internal view of the Tatung VRH8490, a Philips VR6462 clone. See servicing article on pages 622-3.

REED
BUSINESS
PUBLISHING

Educashun

A letter in our correspondence pages this month casts doubt on the relevance of the National Vocational Qualifications (NVQs) being introduced and suggests that those involved are on to a good thing. The writer probably has a point. Some comments in a recent City and Guilds publication tend to confirm one's suspicions. We are told that schools and colleges which intend to offer C\&G NVQs from September "will be working hard to ensure that everything is in place when the first students enrol. Once an NVQ co-ordinator and teaching team have been appointed they will need to consider a number of issues relating to the implementation of NVQs, such as the training and appointment of internal verifiers and vocational assessors. . . . and how NVQs will fit alongside other provision in the centre". In other words, no one at present has much of a clue about what they are supposed to be doing. This seems to be par for the course when it comes to anything to do with education.

It is obviously not an easy matter to set up new training arrangements, to decide what is to be taught and how to go about it. That said, the authorities do seem to flounder about and end up with questionable syllabuses. I recall seeng some of the efforts when colour television was first introduced. Educationalists who had no idea what a PAL decoder did or how a shadowmask tube worked and had to be set up scratched their heads and came up with reams of theory on the properties of light and so on. I wondered how anyone introduced to the subject in this way would ever be able to cope with a faulty colour TV set. What happened of course was that the trade had to take on the initial training.

There have long been complaints that education fails to keep abreast of what's going on in the real world. A correspondent put this brilliantly last month in asking "when was the last time you had to refer to atomic valency numbers in order to diagnose a faulty transistor?" Do you remember all that business about holes? And how one could think of the action of a transistor as being akin to empty bottles of milk going one way and full ones the other? Brilliant! But then the transistor was a classic case - like early electronic TV cameras - of experiment leading to the production of workable devices before the theory of operation was fully understood. Yet educationalists latched on to and kept on about all the irrelevant bits.

And so it goes on. I recall many years ago being involved in the production of a book that covered the PMG syllabus for marine radio officers. A good friend and well-known ham to whom I showed the proofs commented "all sound stuff maybe, but I'd rather 1 wasn't in a lifeboat depending on one of those officers". Educational courses tend to be classic examples of Parkinson's First Law - "work expands to fill the time available for its completion". If the educationalists can extend a course from a year to two or maybe three years they've got it made. The opposite of Churchill's famous belief that nothing should take more than one side of a sheet of paper to explain! It maybe wouldn't matter so much if the results were not so baleful.

We are all aware that far too many who leave school have difficulty with basic communicative skills. A recent article in The Independent by Michael Dummett, emeritus professor of logic at the University of Oxford, pointed out that many students arrive at universities with a poor grasp of English. "Since they are assumed to know these things" (grammar, punctuation, spelling) he wrote, "it is nobody's business to teach them; it is therefore only by unusual luck that students who have failed to master them before they come to university will be any better at them when they obtain their degrees." Does this perhaps throw a bit of light on the failures of the educational system? Many of these students become involved in education.

It seems to me that this matters particularly when it comes to electronics, since English is the international language of the subject. It has this status because of the pioneering work done in English-speaking countries and because, being a flexible language, English lends itself to the presentation of new knowledge. We benefit from this, but the situation could change. If our use of the language becomes so sloppy that it can no longer be used as a way of precisely recording knowledge, then some other language will take over the role. Japanese maybe? Who'll be laughing then about Janglese?

It's hard to know what can be done aboat the mental sloppiness that seems to pass from the outside world to education and back again, and the irrelevancies that seem to infect the world of education. Government intervention only seems to make matters worse, while teachers and educationalists cannot be trusted. Well perhaps a few of them, like the good professor, can. Let's hope they can make themselves heard.

Servicing the Philips VR6462 and Clones

Chris Watton

The Philips VR6462 was released during the mid-Eighties. Clones include the Finlux VR1010, Pye DV464, Tatung VRH8490 and GEC V4006. It was quite different from the mainstream, Japanese-based machines with which we'd become familiar, including for example auto-tracking and the ability to revert to a function if the mains supply is interrupted - this is unlike most machines which assume the standby condition when this happens. There are also some in-built test programmes that can be used to check the machine's condition in the event of a failure - various codes are displayed on the clock display. To call them up, press two buttons on the operating panel whilst connecting the power supply (this is known as power-on reset, or POR).

One of these functions reveals the number of hours' use the machine has had, which can be useful in assessing wear etc. since the last service. To call up this feature you disconnect the machine from the mains supply then press and hold in the forward search and ITR keys whilst reconnecting the mains supply. The clock then shows the machine's use in hours. To leave this function, disconnect the machine from the mains.

Another point to note is that the machine reverts to standby if not operated for eight minutes. This obviously rules out long-term E-E use. Thus customers with manual control TV sets cannot use the VCR's remote control as an upgrade.

The Mechanical Side

As with most VCRs, the problems that commonly occur arise in the mechanical section, where the lubrication applied to the moving parts dries out and the surfaces of rubber drive components wear down or become hard and

View of the deck mechanism.
misshapen. The cleanliness of the tape path and the condition of the pinch roller and back-tension band are very important.

Servicing is reasonably straightforward once you know certain things about this type of machine. When the unit is first plugged in the deck goes through a cycle known as initialisation: the lift goes down, then the take-up and supply reels spin and finally the lift returns to the upper position. The machine is then ready to accept a cassette. You can test it in all modes with the top cover removed and no cassette inserted. For the record mode the protection switch must first be opened. This can be done by inserting a piece of paper between the contacts. The condition of the deck can thus be assessed without the possibility of tape damage. You can for example see if the reel drive is in order and whether the guide blocks move smoothly and reach their destinations.

Méchanical Service

The reel discs and idler parts can be serviced after removing the lift mechanism. To do this take off the front operating panel, which is secured by three plastic snap-fit clips, unclip the cassette flap then set the deck to the eject position. To remove the lift, bend slightly outwards the sides of the frame around the deck, at the same time raising the lift about half an inch. Then use a medium-sized screwdriver to press in gently the two operating levers which are engaged in the holes at the bottom of the lift. Once these levers have been freed the lift can be withdrawn. The deck is still operational, which can be helpful when dealing with such faults as noisy reel movement. A twin lead is connected to the lift's cassette-in switch: be careful not to damage it when removing the lift.

The reel discs can now be removed for cleaning and lubrication. They are held on their spindles by three locking tabs that drop into a groove at the top. There's a special tool for removing these, but with care you can do it using a small screwdriver, pulling the disc up as each tab is prized out of the groove. The important thing here is to be careful, as the tabs can easily be broken when removed in this manner. A soft brake fits under the reel disc on the take-up side: take care not to lose or damage it. Hold it in place with small pliers when refitting the disc. The back-tension band is beneath the supply disc.

It's common to find that both spindles are like glue, as the old lubricant has dried. I clean it all off using a cloth moistened with methylated spirit, then polish with chamois leather. Don't forget to clean out the bore in the discs as well. Apply new lubricant then refit the reels. Simply push them down on to the shafts, but ensure that the brakes are held clear when you do this.

The idler/swivelling wheel should next be replaced, along with the omega spring. A replacement comes with the new idler. It's secured by two small plastic sleeves which are also supplied. Take care when fitting these sleeves as it's possible to break off the pin that secures the spring. The spring locates in a groove beneath the idler wheel. Once this has been fitted, check for freedom of movement side-toside. If the spring is located incorrectly this movement will be impaired.

The runners for the blocks that carry the guides and slant poles should be cleaned and lubricated. Finally the entire tape path must be cleaned and a new pinch roller fitted. This should have completed the upper deck service, and the lift can now be refitted.

Turn over the machine, remove three screws from the bottom and take off the metal cover. Be careful as the deck
is now loose in the cabinet. A worm drive is connected to the end of the threading motor shaft. Its spindle becomes dry. As a result there's an awful noise when the lift is moving or a cassette is being loaded. A little light oil will cure this - just a spot on both ends. Except where there's a fault, most of the other items under this cover seldom require attention. Replace the cover and the machine is ready for testing. All should be well. If not, the following fault list may be of help.

Fault List

(1) Machine dead, no clock operation: Check the BZX79C30 zener diode D6103. If necessary check transistor $\operatorname{Tr} 7125$ in the reset circuit and the microcontroller chip IC7091.
(2) Test signal present during play: Check the BC548 transistor $\operatorname{Tr} 7508$.
(3) No drum rotation: Check the L272 chip IC7001.
(4) Drum spins too fast: Check the optocoupler on the drum and the IR cassette LED.
(5) Cassette lift doesn't rise: Pin of lever 242 lost. Replace lever.
(6) Won't tune: Check transistors $\operatorname{Tr} 7601$ (BC556A) and Tr7420 (BC547).
(7) Function faults, e.g. no fast forward/rewind, intermittent play, tape tangling: The brake solenoid sticking can cause such troubles. It's best to fit a replacement. Slug-
gish brake solenoid operation can be caused by dry-joints in the power supply.
(8) Insufficient reel torque in fast forward/rewind, cue/review: There's an official modification - add a 22Ω resistor in parallel with $\mathrm{R} 3101 / \mathrm{R} 3103$. Make sure there's no friction between the reel idler and the guide plate below and that the reel disc spindles are clean (see mechanical service).
(9) Unstable r.f. output or r.f. output only up to channel 23: Check the ZTK 18 stabiliser D6601.
(10) Poor sound: Check the pinch roller and for dry-joints on the audio head.
(11) No reel drive in play: Check the BA317 diode D6147.
(12) Failure of IC7201 (L272M): The loading motor probably has shorted turns.
(13) Squeals during loading: Dry shaft on worm gear from motor.
(14) Knocking in fast wind: Idler is worn.
(15) Exit side of tape guide block doesn't reach the V block: Dry shaft on take-七p reel disc.
(16) No functions or clock, drum spinning too fast: Check fuse F1 109.
(17) No rewind: The photodiode on board P672 at the righthand side of the deck could be leaky.

Modern TV Receiver Techniques

Part 7

Eugene Trundle

The colour decoder system we examined last month is representative of current analogue signal technology in the postvideo demodulator section of a TV set. The main variations, found in high-performance and large-screen sets, relate to multi-standard decoding, video signal routeing and switching, and various refinements such as noise reduction and picture sharpening. In the present instalment we'll take a look at these then consider the tube-drive (RGB) amplifiers.

Video Noise Reduction

Poor signal-to-noise ratio results in a grainy picture. Fig. 1 shows a noise reduction system that's used in the luminance channel in some JVC receivers. After differentiation by C222 and R221 the luminance signal enters the M51494L chip at pin 1, where the coring circuit deletes all but the highest signal frequencies. Its output consists of mainly the noise component, plus signal transients that represent sharp edges and outlines in the picture. The next block in the chip (outline correct) amplitude limits the transients so that they are at the same peak-to-peak level as the

Fig. 1: An analogue video noise reduction system used by JVC.
noise. The 'pure noise' signal thus obtained is inverted and added to the main luminance input via pin 6. As a result, the noise is cancelled on an equal-and-opposite basis.

It's difficult to avoid softening of the picture edges with this type of circuit: a trade-off between noise reduction and picture sharpness is involved. In this case the action of the circuit can be overridden by using a switching voltage to turn Q221 on and Q222 off.

Aperture Correction

A technique for sharpening the edges in pictures, born in the earliest days of TV cameras, is much used in TV and video equipment. Sometimes called contour enhancement, it involves giving luminance transients a negative-going preshoot and an overshoot. In a TV set it can be incorpo-

Fig. 2: An aperture-correction system: (a) block diagram, (b) waveforms that show the operation of the system, which is also widely used in VCR playback circuits.
rated as part of the luminance delay circuit. One approach is shown in Fig. 2.

The luminance signal (waveform 1) passes via RI into a 150 nsec delay fine, emerging time-delayed as waveform 2 to the right of R2. It bounces back through the unterminated delay line, producing a 300 nsec delayed signal (waveform 3) at the junction of R1 and R3, where real-time waveform 1 is also present, attenuated by 6 dB by the action of the resistors. Thus at point A we get waveform 4. Waveforms 2 and 4 are subtracted to produce waveform 5 , which is buffered and then added to waveform 2 . The result is waveform 6 , where you can see that preshoot and overshoot are present. These provide artificial sharpening of the edges of picture features. One 68 cm screen set that uses this technique has a horizontal resolution of 630 lines.

Auto Grey-scale Correction

Fig. 4 last month showed a simplified block diagram of a colour decoder chip that incorporates automatic tube cut-off regulation to avoid tinting in the low-light parts of the picture and thus remove the need for manual black-level adjustment presets. Fig. 3 this month shows the output

Fig. 3: Auto grey-scale correction pulse waveforms produced by the HA11498/U4646B chip. The test pulses are used to control both the black and peak white levels. Feedback is to pin 33 of the chip.

Fig. 4: Block diagram showing the operation of a BBD chrominance delay line.
waveforms of a later chip design in which the tube's cut-off and drive levels are both governed by a feedback loop that includes the tube itself, so that picture highlights and white areas don't vary in hue as the tube's electron guns age at different rates. Thus the need for drive adjustment is also eliminated throughout the life of the set.

A vertical sync pulse applied to pin 31 of this chip triggers an internal counter which produces a one TV line duration white-level pulse for the green gun on line 17 , for the red gun on line 18 and for the blue gun on line 19. These outputs occur during the field blanking interval, and are thus invisible - they are above the viewed area of the screen. Beam current information is returned to the chip at pin 33, and is used to set the potential on separate reservoir capacitors in sequence, thus governing the drive level for each gun throughout the following field period. All three guns are blanked on line 20 to provide a reference level. Then lines 21,22 and 23 are pulsed in sequence to measure the blacklevel currents, as described, last month. The chip has seven capacitors to store auto-grey scale information: three for RGB white level, three for RGB black level and one for reference.

This chip, type HAl1498/U4646B, is not a colour decoder like the previous example. It's a processor, containing the RGB matrixes, external RGB switching and the brightness, contrast and colour control circuits. These operations are controlled by an I2C data bus - we'll look a the way in which this works in a later instalment in the series. The use of separate chips for these groups of operations in up-market TV models gives greater versatility, as we'll soon see.

Electronic Delay Lines

Analogue chip delay lines, known as bucket-brigade devices (because their operation is akin to filling and emptying a series of buckets), are now being used in some colour decoders to replace the expensive, delicate and adjustment-fussy glass chroma delay line that has to date been the centre of the signal phase correction system in PAL receivers and the means of storing the chroma signal in Secam sets. These BBD delay lines are mainly used in multi-standard sets.

Fig. 4 shows the basic technique used in a dual-chroma BBD delay line - with this type of circuit the delay line is in the post-demodulation section of the colour signal decoding/processing department. The chip incorporates two sets of 192 capacitors in a 'switched ladder' arrangement. The incoming colour-difference signal is clamped and is then chopped into time segments by the first switch in the
chain. Each segment in turn forms the charge on the first capacitor in the series. The charges are stepped along the chain by progressive switching, passing from one capacitor to the next one. Clearly the delay introduced by this action is determined by the clock rate, which in this case is 3 MHz . This rate is equivalent to the line frequency multiplied by the number of capacitors in the chain, 192. A delay time of exactly one line is thus obtained - and different line rates can be catered for automatically.

At the output end the BBD device has adders to obtain the required comb filter and phase correction effects. It also has a clock oscillator that's controlled by the sandcastle pulse input, and built-in low-pass filters of the sample-andhold type to remove the clock signal from the output. With a capacity of 192 samples per TV line the maximum bandwidth of this purpose-designed device is 1.5 MHz , which is wide enough for the PAL colour-difference signals that, after filtering, demodulation and processing, extend to about 800 kHz . It is because of this characteristic that the delayline system works at baseband, downstream from the demodulators. In the previously described system (see Figs. 3 and 5 last month) the ultrasonic glass delay line operates at the chrominance subcarrier frequency, ahead of the demodulators. Fig. 5 shows a typical circuit/chip arrangement with an electronic chroma delay line.

Colour Transient Improvement

The limited chroma signal bandwidth is the price paid for economical use of transmission spectrum space and the need for compatibility, also the tape storage capacity of a VCR where the chroma bandwidth is even more limited, to about 450 kHz . While the human eye is relatively insensitive to fine colour detail, the bandwidth limitation does mean that

Fig. 5: Block diagram of a decoder using a baseband chroma delay line and a CTI chip.
signals corresponding to coloured edges in the picture have relatively slow rise and fall times. The idea of colour transient improvement (CTI) is to remove the resulting smear effect on the screen.

Fig. 6 shows in simplified block diagram form the arrangement within the Philips TDA4670 CTI chip. There are parallel processing paths for the $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and Y signals. The actual CTI process is carried out in the lower part of the diagram. Negative-going colour-difference signals enter the chip at pins 3 and 7, where they are clamped and then monitored for transients by differentiator circuits. When a sudden (relatively sudden, see above!) change is detected the storage switches open, isolating the output bulfer amplifiers from the colourdifference signals. The hold capacitors C 1 and C 2 then maintain the outputs at the level corresponding to the start of the transient. At the end of the transient the switches are closed again and the hold capacitors charge very

Fig. 6: Internal arrangements in a Philips CTI chip.
rapidly (150 nsec) to the new signal level. This charge rate is equivalent to the rise time of a 6.5 MHz sinewave signal, so the 'edge hardness' of a coloured image becomes equal to that of the luminance signal to which it is added - even though the chroma chain's resolution capability is no greater than before.

Inevitably this process delays the colour-difference signals: the new sharp transition occurs at the time when the original signal would have finally made it to the new level. Thus to avoid misregistration it's necessary to delay the luminance signal, and this delay must be governed by what's happening in the CTI section of the chip. Hence the electronic delay lines in the luminance path through the chip, arranged in $450,180,90,45$ and 100 nsec blocks to give a fastly switchable luminance delay with a maximum duration of $1,135 \mathrm{nsec}$. Switches S1 to S 5 select the required delay time.

The delay time control block within the chip is governed by an output from the comparator in the CTI section and by the I2C bus decoder, which receives inputs at pins 9 and 10 .

To improve the signal-to-noise ratio the luminance output signal is mixed with a peaking signal that's derived from a circuit with switchable peaking centres of 5 MHz and 2.6 MHz , under I2C bus control.

The Y output at pin 12 and the colour-difference signal outputs at pins 4 and 6 pass via an RGB matrixing, switching and control chip to the RGB output stages (see Fig. 5).

Fig. 7 shows the effect of CTI on the luminance and colour-difference signals. In the receiver a broadcast-standard luminance signal has a rise time of about 150 nsec from black to peak white, see waveform A. Without improvement the corresponding colour-difference signal, waveform C , takes about 800 nsec for the transition from zero to
producing say bright red. The traditional compromise solution is to delay the luminance signal by a fixed time, about 32.5 nsec , so that the centres of transients coincide in time and on the screen - see waveform B. The sharpened colourdifference transient shown at D is delayed by 475 nsec with respect to the basic luminance signal delay, so the corresponding luminance transient has to be delayed by this additional amount so that both edges are brought back into registration on the screen.

Multi-standard Decoders

Last month we touched on how the TDA3562 decoder

Fig. 7: Waveform delay timings for CTI operation.

MANOR SUPPLIES

MKV PAL. COI,OUR TEST (IENERATOR FOR DOMESTIC TV \& VCR.

* 40 different patterns and variations.
* Fully interlaced sync pulses with correct picture blanking
* EBU colour bars. BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and black
* Chequerboard
* Mono outputs with border castellations, cross hateh, grey scale. vertical lines. horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for C (${ }^{2}$ TV \& VCR.
* Feacilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required
* Mains operated with stabilised power supply
* All kits fully guaranted with back-up service
* Also avalable with V IHF Modulator.

Price of Kit
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app
$£ 19.00$
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module
£129.00 Post/Packing et.50
Add VAT 17.5% TO ALI. PRICES

PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF. applied to receiver aeriat socket.
* In addition to colour hars R-Y. B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour bar P.C.B.
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT
£39.00. CASE $£ 5.80$. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P £4.50)

LINE OUTPUT TRANSFORMER TESTER

* Saves time and money
* Checks short turns.
* Simple to use

Reliable

* Battery operated.
* Pocket size.

PRICE $£ 24.00$
POST/PACKIN(; £2.50)

INFRA RED REMOTE CONTROL TESTER

* Pocket size
* 1.1:1) + auditle indication
* Simple to usc.

PRICE £20.00
POST/PACKIN(; £2.50

KITS ANI) PROJECTS

SAW IF AND TUNER L'NIT complete and tested for video \& audio outputs $£ 28.50$ p.p. £1.80.
PAL DECODER KIT (Video to RGB) tor Monitors £27.1M p.p. £1.80.
PAL ENCODER KIT (R(iß to V'ideo) $£ 20.00$ p.p. \&1. 80 .
CRT TESTER \& REACTIVATOR KIT For (obour \& Mono complete with Case, Pancl Meter Indicator - can be adapted for latest CRT's $\mathbf{8 5} .00$ p.p. £4..50.

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement tor: Ferguson, Hitachi, Philips, Panasonic ment for: Ferguson, Hitachi, Philips, Pa
Grundig, ITG, Sony, Saisho, Granada, ore for make and madel no.
PHILIPS SPARES
MANUALS CF1, CTX-E, CTX-S, CP90, CP110, GR1AX, G90AE, 2B, 3A, NC3-CR £7.50 p.p. $11.80,2 \mathrm{~A} £ 10.50$ p.p. $£ 1.80, \mathrm{KT} 325.00$ p.p. $£ 1.80$
SYSTEM 4 KT4, K41 £22.00 F .p. $£ 3.00$
BACK UP BATI. $2.4 \mathrm{~V} £ 3.80 \mathrm{~L} .2 \mathrm{~V}$ £2.00 p.p. 90 p
K 30, KT4, CTX-EHT Lead $£ 490$ p.p. $£ 1$.(M)
THORN/FERGUSON SPARES
9000 Series IF/Decoder tested $£ 10.00$ p.p. $£ 2.80$
TX10 Focus control 88.50 P.p.e E1. 80
TX9/10 Remote \& tuning $155 \mathrm{~N} £ 5.00$ P. $\mathrm{p} £ 1.80$
TX10 Stereo Audio Board £3.50 p.P\&2.
TX100 Chopper TX $£ 15.30$ p.p. $£ 2.50$
IC SELECTION

CALLERS WELCOME AT SHOP
Mon-Fri 9.30-5pm - Thurs $9.30-1 \mathrm{pm}$ - Sat $9.30-5 \mathrm{pm}$

Fig. 8: Basic video output circuit for cathode drive.
chip caters for NTSC signals. Where this is required, Secam signals would be transcoded to PAL form in a chip such as the TDA3592A then decoded to RGB form in the normal way.

A more recent approach to multi-standard operation splits the various functions between chips in the way shown in Fig. 5. The TDA4650 decoder chip can handle PAL, Secam, NTSC/3.58 and NTSC/4.43 signals, recognising them by an initialisation process in which each decoding mode is entered in sequence. Once the system has been identified, the appropriate input filter is selected and the requisite (double-frequency) crystal is switched in. For NTSC reception a d.c. voltage to provide hue control can be applied to pin 17: it varies the phase of the reference signal fed to the chroma demodulators by $\pm 30^{\circ}$. Earthing pin 17 puts the chip in the service mode, in which the colour killer is disabled and the burst signal is deleted. This enables the external subcarrier crystal oscillator circuits to be set for the correct free-running frequency.

Signal Routeing and Switching

Most modern TV receivers cater for many video signal sources apart from the set's own tuner/receiver section. RGB signals from a text decoder, a computer, a videodisc player or a satellite receiver can be applied to the postdemodulator section of the decoder chip or a separate processor chip, being switched in either by the status flag applied to pin 16 (fast blanking) of a scart socket or by a serial control bus like the I2C system shown in Fig. 5.

Fig. 9: High-performance, wideband video drive circuit used in some Finlux receivers. The basic arrangement is found in large numbers of models from various manufacturers.

For composite video and Y / C inputs a switching matrix must be provided upstream from the decoder. Audio switching is also involved, so the signal-routeing system is quite complex. It can involve three or four separate chips to cater for the various possibilities. A wide variety of switching circuits is in current use by different setmakers.

RGB Output Stages

Whatever form the decoder takes its RGB outputs consist of low-level drives from three separate i.c. pins. These must be raised to a high level to drive the tube's three cathodes. A typical tube requires peak-to-peak drive voltages of 70 V . So three voltage amplifiers, each with a gain of about 35 and a bandwidth stretching from d.c. to about 6 MHz , are required. They must be closely matched in terms of gain, frequency response and linearity if brightness-dependent tinting effects and coloration of luminance features like sharp vertical edges and areas of fine detail are to be avoided. For hard, sharply-defined captions and graphics with RGB signal sources like a computer or text decoder a bandwidth extending to 10 or 12 MHz is desirable.

The basic video output circuit shown in Fig. 8 consists of two stages, an emitter-follower buffer ($\operatorname{Tr} 1$) and a voltage amplifier/inverter (Tr2) that operates with a collector supply of around 200 V . Tr 2 is a class A amplifier with R2 as its load. Because R3 is only partially decoupled by Cl it provides frequency-selective negative feedback, boosting the gain towards the top end of the stage's response.

One problem with this type of amplifier is the effect that stray capacitance has on its output. The tube's input characteristics plus wiring etc. contribute to this capacitance. When Tr 2 is rapidly turned on to provide a black-to-white picture transition the stray capacitance is quickly discharged via the transistor. With a white-to-black transition however the transistor is driven towards cut-off, R2 then providing a charging path for the stray capacitance. This relatively long RC time-constant results in blurring of the right-hand edges of white objects in the picture and fudging of fine detail. To prevent this the video amplifier needs to have a low output impedance in both directions as it were, swamping the stray capacitance presented by the tube's gun, the connection system and amplifier wiring.

This brings us to Fig. 9, a type of circuit that's widely used in current TV sets. It's actually the R output stage the G and B ones are identical. Tr3 is the output transistor, whose load consists of R1 and R2. With a negative-going output signal (picture becoming brighter) diode D1 is forward biased and the voltage across it, about 600 mV , is insufficient to turn on both D2 and Tr1 (D2 is on to provide an output signal path). With a positive-going output signal (picture becoming darker) Tr 3 moves towards cut-off, reverse biasing D1 and D2. Trl is now forward biased, providing a low-impedance charging path for the stray capacitance via R3 which is present simply to provide current limiting. R4 provides d.c. stabilisation by applying negative feedback to the base of Tr 3 . C 2 provides enhancement of the stage's h.f. response.

Tr 2 couples the signal to the tube's cathode by emitterfollower action, aided by D3 on positive-going transitions. The network in $\operatorname{Tr} 2$'s collector circuit is used for black-level adjustment. In sets without automatic white-level regulation R6, or part of it. would be made variable to act as a drive control for setting up the highlight conditions as part of manual grey-scale adjustment.

The emitter of $\operatorname{Tr} 3$ and the other two (B and G) output transistors is returned to chassis via Trs which acts as a constant-current source. R9 and R11 are included to ssolate the drive circuit in the event of a flashover in the tube.

In-tube Crispening

We have already looked at two techniques for artiticially sharpening the luminance signal in order to crispen vertical edges in the picture. A third method, sometimes used in conjunction with those already described, involves manipulation of the electron beams within the tube. It's relevant mainly with larger sized tubes since poor transitions are more noticeable with these.

A small coil called the VM (velocity modulation) yoke is mounted on the tube's neck, with its magnetic field aligned with that of the line scan coils so that their fields oppose or reinforce one another depending on the direction of the current flowing through the VM yoke. If this yoke is fed with a waveform that's obtained by differentiating the luminance signal, the effect it has is to speed up the scanning velocity of the beams as a black-to-white transition is approached then slow it down as the transition is passed. The converse also applies of course. Since brightness is proportional to scan velocity, or beam dwell time, the effect is to "darken" the black edge and brighten the adjacent white edge, emphasising the borderline. Another way of looking at it is to think of the cathode drive waveform as having a finite rise time, the progress of the scanning spot across the screen being delayed until the new waveform level has been achieved.

Because current has to flow in both directions through the VM yoke, it's driven by a push-pull pulse output circuit.

Some CTI chips provide a specially-timed output pulse to feed to the VM processing circuit.

Next Month

Having reached the subject of picture displays, next month we'll take a detailed look at the subject, with coverage of direct-view tubes and, subsequently, LCD projection systems.

PUBLICATIONS

A completely updated third edition of DX-TV for Beginners. by Simon Hamer, has been published by HS Publications, 7 Epping Close. Derby DE3 4 HR at $£ 3.95$ plus 85 p UK postage. It's aimed at both newcomers to the hobby of longdistance TV reception and more experienced enthusiasts who want to get the most out of it. There are 32 A.5-size pages.

An updated and thoroughly revised edition of John Breeds" The Satellite TV Book - a Complete Guide to the Theory and Practice of Satellite Television has been published by Swift Television Publications, 17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN. This 300-page reference work, which covers the entire field in considerable detail, is available from the publishers at $£ 30$ plus $£ 2.50$ UK postage.

We have been sent a sample copy of The Eurosat Repair Manual (see letters pages for Eurosat's address). It contains a good deal of fault-finding information on the products handled by Eurosat (all the main brands). What is particularly nice is the informal approach adopted throughout.

TV Fault Finding

Reports from Philip Blundell, AMIEIE, John Edwards, Michael Dranfield, Nick Beer, Brian Storm, Richard Newman, Chris Watton, Alfred Damp and Roger Burchett

Philips GR1-AX Chassis

This set was dead with just 5 V on the 95 V line. The standby LED was alight but attempts to bring the set on using the front controls or the remote control unit failed. I disconnected the scan coil plug (you can't use a dummy load with this chassis) and tried again - with the same result. Next I tried powering the set via a variac. With a 100 V a.c. input the power supply produced an output of about 80 V , but when the a.c. input was increased to 110 V the power supply shut down and the standby line began to pulse. I left the a.c. input at this level and checked around the microcontroller chip where I found that the reset line was pulsing. Reset is generated by transistor $\operatorname{Tr} 7673$, whose base should be at $4 \cdot 3 \mathrm{~V}$. The voltage here was higher. Replacing the BZX79F4V3 zener diode D6671 solved the problem.
P.B.

Tatung 145 Chassis

If you find that there's no picture, with just a loud humming noise on the sound, check whether $\mathrm{C} 808(100 \mu \mathrm{~F})$ in the power supply is open-circuit.
P.B.

Sony KV2000 Mk 2

This set was dead. The mains fuse had blown and the chopper transistor Q607 was short-circuit. When these parts had been replaced the power supply worked with a dummy load, but there was a 50Ω resistance to chassis at pin 2 of plug F3 - the 135 V feed to the line output stage. C901 ($330 \mathrm{pF}, 2 \mathrm{kV}$) was leaky.
P.B.

Philips G110 Chassis

This set was dead. The mains fuse (1600) was shattered, the BUT18AF chopper transistor (7625) was short-circuit, the CNX83A optocoupler (7614) had failed and the four bridge rectifier diodes (6602-5) were short-circuit. It's the fourth time we've had this problem. Replacing the defective components has so far restored normal operation without any bouncers, but we can't help wondering whether there's something else lurking there!
J.E.

Samsung CI541ZG

This set was dead with its relay clicking. We found that C411 $(100 \mathrm{pF}, 2 \mathrm{kV})$, one of the tuning capacitors in the line output stage, was short-circuit. Its body was badly cracked. J.E.

Sony KV2217

The sound and picture were normal but when text was called up the screen went blank. There was a normal picture and black text in the mix mode. The cause of the problem was the preset RV3 (100) on the text panel: it read over $10 \mathrm{k} \Omega$.
J.E.

Orion 14PS

After about three hours there was intermittent loss of height. We found that when warm the 500Ω vertical preset
measured open-circuit between its slider and one leg.
J.E.

Panasonic TC1785

The colour on this set couldn't be controlled: it was permanently at maximum, though the on-screen indicator moved. A voltage check at pin 31 of the microcontroller chip IC1 101 produced a reading of 3.25 V which didn't vary when adjustment was attempted. Disconnecting pin 31 proved that the chip was o.k. Control is carried out at pin 21 of ICl 101 on the i.f./decoder panel. When this pin was connected to chassis a monochrome picture was obtained. So this chip also worked correctly and the fault was between the two i.c.s. It was traced to D1 149 in the pull-up and biasing circuit. This MA165 diode was leaky.
N.B.

Tatung TYS9824 (180 Chassis)

This set intermittently developed a watery picture - weak with wobbly edges. More recently it had taken to loss of sound and vision, leaving a blank raster. Both faults were caused by a nastily cooked dry-joint at pin 15 of the AV/RGB PCB connector M152 on the daughter board. N.B.

Hitachi CPT2050

This set displayed only red chrominance - there was no G. B or Y picture content. Because the set was not set up correctly the symptom was not what you usually get (no picture) when the top-end resistor in the potential divider that supplies the tube's first anode goes open-circuit. A new $470 \mathrm{k} \Omega$ resistor plus setting up restored a super picture.

A new volume control was also required: the original one was so noisy that the sound went up as you turned the control down past half way.
N.B.

Panasonic TX3300 (U4 Chassis)

As these sets get older the most common cause of an overloaded line output stage is the output transformer (part no. TLF14567F). Often the short/leak cannot be read using an ohmmeter. Lift R551 and load the h.t. line with a bulb to ensure that the power supply is o.k., then check the line output transistor and the supplies derived from the line output transformer. If everything is o.k. here you can be reasonably sure that the transformer is the cause of the trouble. With this particular set the tube was excellent, but be careful when quoting - tube life is on average not brilliant with these sets.
N.B.

ITT CVC20

A lesson learnt here on a chassis that shouldn't have any more tricks up its sleeve! There was partial field collapse: the lower half of the scan was completely missing and the upper half was severely reduced. The field output transistors were likely suspects but read o.k. Voltage checks suggested that there was a fault earlier in the circuit, but nothing could be found - D7/8 and the usual electrolytics were blameless.

The TIP31/TIP33 output transistors were in fact the cause of the fault though both read perfectly. Change them anyway next time - if there is one.
N.B.

Samsung Cl3312Z

A couple of dry-joints are becoming common in these sets. Check R 823 in the feed to the 12 V regulator and R 411 which is connected across the primary winding of the line driver transformer.
N.B.

Mitsubishi CT2230TX

There was no sound, not even a hiss from the two speakers. Checks showed that the 15 V supply at pin 5 of the audio output chip was missing. R371 ($2 \cdot 2 \Omega$), the safety resistor in the feed to the supply's bridge rectifier, had gone opencircuit of its own accord - current monitoring and soak testing proved that no other fault was present.
N.B.

Philips KT4/K40 Chassis

You often find that a set which has the 1021 VST module, using an MSM5840H microcontroller chip in the 7101 position, has no tuning, channel number etc. with the standby indicator on all the time. This is usually due to a failure within the hybrid thick-film reset generator module U1101.
N.B.

Fidelity ZX3000 Chassis

We have on several occasions traced the cause of field expansion at the top of the screen to loss of capacitance in C59. Its value depends on screen size: $1,000 \mu \mathrm{~F}$ with 14 and 20 in . sets, $2,200 \mu \mathrm{~F}$ with 22 in . sets.
N.B.

Rediffusion Mk 3 Chassis

The tuning drift with this set was particularly bad at the low end of the band, which displeased the customer as it affected the video channel. The set also produced an excruciating whistle. We cured the whistle by sealing the line linearity coil. Resoldering the chassis and input connections inside the U321 tuner and cleaning its case earthing contacts cured the drift.
N.B.

Fidelity ZX3000 Chassis

Excessive width with a number of dark bands down the lefthand side of the raster usually suggests a lack of damping across the line linearity coil. On several occasions I've found that the cause has been a dry-joint on the upper leg of the damping resistor ($\mathrm{R} 103-220 \Omega, 1 \mathrm{~W}$) rather than the resistor being open-circuit.
N.B.

Ferguson TX89 Chassis

This set was tripping. It didn't take us long to find that the main reservoir capacitor $\mathrm{C} 69(100 \mu \mathrm{~F}, 400 \mathrm{~V})$ was opencircuit.
A.D.

Hinari CT5

Intermittently distorted sound was the fault with this set. On investigation we found that one of the audio output transistors, Q602, was leaky. A replacement cured the fault but after a few minutes it was too hot to touch. As we had another of these sets in for a replacement line output trans-
former (a very common fault) we checked with this one and found that Q602 should run cool. While carrying out further checks I noticed that the legs of two resistors were shorting together. A look at the circuit diagram showed that this shorted out the $470 \mu \mathrm{~F}$ audio output coupling capacitor C608. No wonder Q602 was so hot!
M.Dr.

Panasonic TX21T1 (Alpha 2 Chassis)

There was no text although the channel flags were normal, indicating that part of the teletext circuitry was working. Approaching this fault with the knowledge that the manylegged devices (chips) are more reliable than the small, brown two-legged ones (ceramic capacitors), I soon discovered that the culprit was C3517 (10nF) at pin 15 of IC3501 - it feeds teletext data to IC3502. A replacement restored all those nice little characters on the screen.
B.S.

Panasonic TX37A2 (Alpha 3 Chassis)

It took four of us to get this 37 in . monster on to the work surface for repair. The complaint was of low brightness, getting steadily worse. After much checking around we decided that the RGB drives were all a bit on the high side. Checks on the c.r.t. base panel then revealed that transistor Q355 (2SC3311) was keaky. It supplies the black-level reference voltages to the RGB output transistors. A replacement restored the set to its former glory.
B.S.

Panasonic TX28G1 [Alpha 2 Chassis)

If the problem with one of these sets is an intermittent or permanent EW fault, be sure to turf out C754 (180pF) in the EW parabola circuit.
B.S.

Panasonic TX28W3 (Euro 1 Chassis)

The complaint with this set was of a yellow picture: sure enough the blue was missing. I gingerly checked to see if the RGB drives were emerging from the digital pack. Fears of chasing around many-legged flatpack chips receded when I found that the drives were present and correct. One of the blue drive biasing resistors, R 3374 ($100 \mathrm{k} \Omega$), turned out to be open-circuit, a replacement restoring the normal colour range.
B.S.

Philips G110 Chassis

This set had come from another dealer who had given up. Basically it was dead. The power supply had been repaired, using the official service kit, but stubbornly refused to start. I ran the set with a reduced mains supply - about 90 V a.c. from the variac - and connected a dummy load in place of the line output stage. I also shorted across pins 1 and 2 of the optocoupler to disable the control circuit. In this condition the power supply produced a normal 140 V h.t. output.

This suggested that in normal operation the optocoupler was being turned hard on, shutting down the power supply. There's a protection circuit that consists of $\operatorname{Tr} 7655$ and Tr7656, with several feeds - from the line output, EW, beam current and audio circuits. When this circuit operates the optocoupler is turned hard on, shutting down the pulsewidth modulator. It was operating, as about 0.8 V was measured at the collector of Tr7656 - there would normally be zero or a slightly negative voltage here. As the line output stage had been disconnected, the first three feeds could be ignored. Only the sound protection system was still in operation, via the LLZ-C20 diode D6657. A check on this
chip diode showed that it measured 500Ω both ways. The set worked normally when a replacement was fitted, the short was removed from the optocoupler and the line output stage was reconnected.
R.N.

Goodmans 2180

A nice easy one for a change. This set, which was dead, uses a Nikkai chassis. The power supply didn't work and checks soon showed that R801 ($270 \mathrm{k} \Omega$) in the start-up section was open-circuit. A replacement restored normal operation.
R.N.

Philips G110 Chassis

I've had a couple of cases where the BUTI8AF chopper transistor fails again a few hours, days or even weeks after fitting the recommended power supply repair kit. There's a further recommended modification that can be carried out. It consists of fitting two BYD73B diodes (Philips part no. 482213060778) in series between the base and emitter of the BUT18AF transistor, with the anodes on the base side. You must also ensure that $\operatorname{Tr} 7654$ is a BC817, not a BC847. This modification certainly seems to work: I've had no further problems after doing it.
R.N.

Philips FL1.0 Chassis

This set came in dead. There was 300 V at the collector of the BUT12AF chopper transistor but no sign of oscillation. Further checks showed that the 17 V start-up supply was missing. This comes from a separate power supply, which is also active in the standby mode, called micro SOPS. Checks here showed that $\operatorname{Tr} 7201, \operatorname{Tr} 7250$ and $\operatorname{Tr} 7251$ were shortcircuit, also D6201 and D6251. Not surprisingly, fuse F1250 was open-circuit. When replacements were fitted the micro SOPS supply made some effort to run but the start-up supply was low at $3 \cdot 2 \mathrm{~V}$. Further checks in this area showed that R 3250 had risen in value from 68Ω to about $3 \mathrm{k} \Omega$. Replacing this restored the correct start-up supply voltage but the main power supply still refused to work. Philips supply a repair kit but you have to make sure that you order the correct version. When this had been obtained and fitted the set powered up.

My problems were not over however. There was a good picture but no sound. Pressing the install button showed that the receiver was set for the wrong system. To get it to the UK system you have to call up the service menu by briefly shorting together pins S23 and S24 on the signal panel. When I did this the set promptly went to standby and refused to operate further!

After checking around I decided to replace the X2404 EEPROM chip under the control module. This restored operation and I was able to call up the service menu and reset the options to complete the repair. The question remains as to why there were so many faults on a fairly new set and what did what to whom and why? We'll never know!
R.N.

Nikkai NT20

"Only snow" it said on the card that accompanied this set. In addition to the snowy raster there was no on-screen display of the channel number or customer controls and the search tuning didn't operate. A check showed that the 5 V supply was missing at pin 52 of the microcontroller chip. It comes from a sub power supply, where the 220Ω safety resistor R830 was open-circuit. There was quite a scorch around it, indicating that it had blown violently. A lot of dry-joints on
the pins of the sub power supply transformer and transistor may have been the cause of the failure as no other fault was found.
C.W.

Philips K35 Chassis

This set produced a very dark picture. Checks on the c.r.t. base panel showed that the cathode voltages were a little high. C583 ($4.7 \mu \mathrm{~F}, 250 \mathrm{~V}$) which is the reservoir capacitor for the h.t. supply to the RGB output stages was opencircuit.
C.W.

Finlux 3021F

The problem was intermittent loss of signals: in addition the set would sometimes go dead. Its cause was traced to Du21 in the power supply. This BY299 diode provides the 7V supply but was going open-circuit intermittently.
C.W.

ITT Compact $80 \mathrm{R} / 90^{\circ}$ Chassis

The electronic fuse in this set was operating, though it ran all right with a $15 \mathrm{k} \Omega$ resistor connected between test points 701 and 702 . The cause of the trouble was that the 20 V feed to the drive circuit on the primary side of the power supply was low at about $13 \mathrm{~V} . \mathrm{C} 703(100 \mu \mathrm{~F}, 40 \mathrm{~V})$ was to blame.
C.W.

Hitachi 14P218 (G7P Mk 2 Chassis)

There are two $82 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ resistors (R902 and R903) that provide base bias for the BUT11AF series chopper transistor Q903. It is quite common to find that these are either opencircuit or high in value, the result being a dead set. C.W.

Toshiba 258T7B

Although this set had no field scan the cause of the fault was not in the field circuit. Its supply resistor had failed, but the cause of the failure was the TDA8145 chip IC361 on the DPC panel - it was dead short from pin 6 to chassis. C.W.

Ferguson TX85 Chassis

Repeated failure of the line output transistor can be caused by a break in the track of the h.t. preset control. As a result the h.t. suddenly goes sky high. This seems to be a common fault, so it would be wise to replace the preset as a precaution whenever one of these sets comes in for repair. R.B.

Panasonic TX2284 (U3W Chassis with teletext)

This ex-rental set had every stock fault going. We were finally left with this odd fault: although the LED channel indicator displayed the selected channel, and the channel appeared on the screen, the on-screen display was wrong. Selecting teletext revealed all. One produced five, two produced six etc. We accused the text decoder but a swap with one from another set proved that it was innocent.

The cause of the fault was obviously after the point where the LED is driven by IC 1104 , in other words where the parallel data is converted back to serial form for the text decoder. This led us to plugs/sockets U4 and U5 on panel U. Plug U4 hadn't been pushed fully home - in fact judging from the dust and the fact that that these connections clip home quite firmly it would seem that it had never been assembled correctly.
R.B.

Teletopics

HDTV BREAKTHROUGH

The three consortia that had been working on rival digital HDTV systems in the USA have agreed to establish a joint standard for submission to the FCC. Testing of the four separate proposals put forward by the consortia had been due to start just before the business and technical agreement was announced - the FCC had for some time been pressing the consortia to agree to a single system. The agreement should speed up the start of HDTV in the USA - it's hoped that HDTV broadcasting could be ready to go in time for the Atlanta Olympic Games in the summer of 1996. The three consortia consist of GI with the Massachusetts Institute of Technology; NBC with Philips, Thomson, the David Sarnoff Research Centre and Compression Laboratories; and Zenith with AT\&T.

JAPANESE SETMAKERS SUFFER

The effects of the recession in Japan and elsewhere on the profitability of consumer electronics manufacturers are clear from annual figures recently announced by Matsushita, Sony, JVC and Pioneer. The companies do not expect any significant improvement in the present year.

Matsushita's pre-tax profits fell 54 per cent to Y168.4bn on sales down five per cent at Y7,055.9bn. Net profits decreased 71 per cent. Sony's pre-tax profits declined by 57 per cent to Y92.6bn on sales up 1.6 per cent at Y3,993bn. Net profits fell 70 per cent. Sony has a higher export ratio than Matsushita - 66 per cent of sales and 36 per cent respectively. Both companies report difficult audio and video markets and are engaged in cost cutting exercises. Sony's capital expenditure is to be almost halved while Matsushita is reducing product lines. Matsushita is forecasting flat sales in the present financial year while Sony expects a two per cent drop.

JVC reported a consolidated net loss of Y43.Ibn on sharply reduced sales in all product areas. The dividend is being passed for the first time since JVC became a public company. JVC's exports, almost half of turnover, declined 26 per cent. Sales in the domestic market fell by one per cent. The company has been reducing stocks and aims to reduce staff levels by 3,000 in the present year.

Pioneer reported a 50 per cent fall in pre-tax profits to Y16.5bn on sales down eight per cent. Exports increased 0.4 per cent but domestic sales fell by 17.7 per cent. The company expects a further 60 per cent fall in profits in the present year with sales down 3.9 per cent.

the ieeie surver

According to the latest biennial IEEIE survey, average earnings of members have increased by 9.28 per cent since 1991. This compares with an increase of 7.7 per cent for non-manual workers in industry. The annual salary of the highest earners has increased by $£ 5,000$ to $£ 39,000$. For senior IEEIE membership grades average earnings are now $£ 24,000$ - over 47 per cent of those surveyed earned this amount. The 1993 survey showed that those in electricity generation and distribution, and chemical and allied processing, received the best pay: in 1991 broadcasting, telecommunications and the postal services offered the best
remuneration. Only a small number of members reported that they were unemployed. A copy of the survey is sent to each of the IEEIE's 28.000 members. Others can obtain a copy of the IEEIE 1993 Survey of Members from The Secretary, IEEIE, Savoy Hill House, Savoy Hill, London WC2R OBS for $£ 25$.

SAFETY RECALLS

Sharp has announced that the mains on/off switch used in Model C1407, which was on sale in the UK for three years from October 1983, can become faulty after use over a long period of time. There's a risk of overheating. Users are advised to disconnect the set and call freephone 0800262 958 to arrange for a replacement to be fitted.

Mitsubishi has announced that due to a production fault a small number of its 2 lin . sets were fitted with a plastic back that has an excessive gap between the cover and the set itself. Details of the sets are as follows: Model CT21M2BM, serial numbers from AH00300l to AH007000; Model CT21M2TX, serial numbers from AJ00600l to AJ026000. The sets were on sale from August 1992. It's emphasised that very few sets are involved - only three have been found to date. Call freephone 0800444000 to arrange an inspection and replacement if necessary.

BT BRAND SATELLITE TV

British Telecom is to enter the Astra satellite receiver/dish field with a range that will be on sale at its own 93 outlets and through dealers, probably starting in the pre-Christmas sales period. The company has been in negotiations with two manufacturers to produce the equipment - one is understood to be Cambridge Computers. BT has been seeking new markets: it is banned from offering TV services via its telephone network until 2001, with a possible review in 1998.

BSkyB IN PROFIT

The latest report from News Corporation, covering the nine months to the end of March, shows that BSkyB is now in profit. At the end of the period BSkyB was making a weekly operating profit of $£ 1.7 \mathrm{~m}$ on a weekly income in excess of $£ 7 \mathrm{~m}$. BSkyB now has 1.9 million subscribers to its film channels and 1.6 million subscribers to its sports channel. News Corporation has a 51) per cent interest in BSkyB.

REMOTE-CONTROLIED LEARNING

The Cardonald College, Glasgow, is now using a computeroperated system that enables it to teach students at remote locations - even North Sea oil rigs. The courses include a TV servicing one that has been given HNC status. Initially students use a training PCB connected to a personal computer. This makes it possible to follow trouble-shooting steps detailed in a work book, guiding the student through a series of hands-on exercises. The training PCB has its own on-board computer so that lessons can be programmed in. It also has a modem that links it to the college via a phone line.

The TV servicing course uses a set so modified that a series of faults can be switched in and out. A monitor panel connected to the set shows signal paths through a block diagram. Test points are brought out at the back of the set, giving safe access to the circuitry. This makes it possible to simulate faults and diagnose the causes externally. Thus practical work can be combined with written notes and multi-choice revision tests. The college can monitor progress via the computer: a truly interactive system.

Digital Television Broadcasting

Geoff Lewis

The announcement that a group of European broadcasters and electronics companies has approached the EC for funds to develop digital Terrestrial Television broadcasting (dTTb), together with the limited use of D2 and other MAC systems, suggests that the development of HD-MAC is now virtually at an end. It's hardly realistic to expect a technology dating from the late Seventies to provide a means of introducing new and better services in the next century. In addition, there has over the last decade been a progressive convergence of telecommunications. broadcasting and computer technologies.

Broadcasters and telecommunications providers have recognised the flexibility that comes when computing power is added to a system or application. As a result broadcasters now make extensive use of digital processing in studios and post-production areas. This has been accepted because of the almost complete lack of noise and distortion, a situation that's particularly advantageous for multiple passes through mixers. VTRs and editors. The only spurious effects occur during analogue-to-digital conversion (ADC) and digital-toanalogue conversion (DAC). They can be made negligible by using a high enough sampling rate and a large enough number of bits per sample.

Digital field stores are today available at consumer electronics prices. They can be added to a PAL set to contribute to doubled line and field scanning rates.

Bit Rate, Bandwidth and Power Requirements

Use of a digital sampling rate of 13.5 MHz and eight bits per sample for the luminance (Y) signal plus four bits for the chrominance (U and V) signal means a bit rate of $216 \mathrm{Mbits} / \mathrm{sec}$ with a standard PAL TV system. If you consider instead an HDTV system with 1,250 lines, a 25 Hz field rate, 2:1 interlacing and an aspect ratio of 16:9 the bit rate becomes about $1 \cdot 2 \mathrm{Gbits} / \mathrm{sec}$.

Although analogue signal transmission reduces the channel bandwidth requirement, a change to digital processing confers a number of important advantages.

The luminance, chrominance, sync and audio signals can be included in a common time-division multiplex and modulated on to a single carrier, producing a smoother power distribution throughout the bandwidth with reduced intercarrier beat problems. Many of the channels that are at present left empty to prevent interference between transmissions could become available for use with the adoption of

Fig. 1: Comparison between 8PSK modulation vectors (a) and 160AM vectors (b).
duch digital techniques. Since digital signals are more robust under noisy conditions, transmitter power levels can be reduced, giving the broadcaster a cash benefit. Conventional sync pulses can be replaced with a digital framing word. Once frame or field sync has been obtained, line sync can be achieved simply by counting.

Work carried out by study groups operating under the auspices of the ISO, the CCITT and the CCIR shows the inter-industry co-operation that's already taking place and the extent of the research work being carried out on digital image processing and bit-rate reduction (compression). These study groups operate under various acronyms: JBIG is the Joint Bi-level Image Group (monochrome images); JPEG is the Joint Photographic Expert Group (still colour images); while MPEG is the Motion Picture Expert Group (colour and moving images). Phase II MPEG has been responsible for developing the algorithms for Full Motion Video (FMV). Phase III MPEG has been set up as a theoretical group to investigate future image-compression applications in multimedia systems. From this work the CCITT has produced a standard algorithm, called H261, that's being used in video-telephony and -conferencing applications with the current 525/625-line TV systems.

A compression ratio of about $70: 1$ is required to squeeze an HDTV signal into a standard 8 MHz European TV channel. A further small allowance is required to cater for error correction and system synchronisation. Digital signal processing in several stages can be used to achieve such compression. Let's see how this works out.

Compression

First, redundancy. Because large areas of most of the images transmitted by an analogue broadcast system don't change significantly from frame to frame there's a great deal of redundant, i.e. repetitive, information that doesn't need to be transmitted. By successively storing the digital codes of consecutive frames in two memories and calculating the corresponding pixel difference values, a form of differential pulse code modulation (DPCM) can be used.

Next there's transform coding. The image pixel data can be manipulated using a suitable two-dimensional (2D) matrix transform: by scanning the matrix in a controlled manner, long runs of zero or near-zero values are created, reducing the amount of data that needs to be transmitted.

The 2D array of matrix coefficiants can be quantised to reduce the number of non-zero values that need to be transmitted: this is called adaptive quantisation.

The number of bits in each sample can be reduced by using a coding method such as Huffman (the binary equivalent of the Morse code). Short-code patterns are allocated to frequently occurring symbols. Furthermore a number of efficient run length codes can be used. For example the sequence $4,4,4,4,4$, could be coded 4,5 , i.e. 4 , five times, giving additional saving.

Modulation Systems

There are a number of modulation systems that allow each transmitted 'symbol' to represent more than one binary digit. For example a form of 16QAM (Quadrature Ampli-
tude Modulation) provides two possibilities, see Fig. 1(b). Eight code vectors of the same carrier frequency plus four code vectors amplitude modulated to one of two possible levels give sixteen unique code vectors each of which represents a four-bit binary number. Fig. I shows a.comparison between 8PSK (Phase Shift Keying) and 16QAM. With further development of this technique it's expected that 256QAM will eventually allow each transmitted symbol to represent eight bits.

The JPEG, MPEG and H261 Algorithms

These algorithms all start from the same basis. Red, green and blue coloured space is encoded in YUV (luminance plus two colour-difference signals) form. The image is then processed in 8×8 pixel blocks by a Discrete Cosine Transform (DCT) processor (you'll find the mathematical equations in the second edition of my book Communication Services via Satellite, published by Butterworth-Heinemann). The coefficients obtained for each block represent the amplitudes of the various frequencies present, the top left-hand element in the matrix representing the d.c. level for the whole block. Although the transform equations are formidable even to those who are mathematically aware, dedicated chips can perform forward and reverse transform operations in real time.

The fractal and wavelet transforms that are being developed promise even higher compression levels. But the MPEG algorithm is the only one for which hardware that can process images with motion in real time is currently available. It's effectiveness can be judged by the CD-I system: a five inch CD-I disc can store 74 minutes of FMV whose quality is better than that provided by domestic VCR systems.

H261 Codec and Processing

The H261 CCITT standard is ISDN (Integrated Services Digital Network) compatible. It's used for digital audio and video signals at bit rates between $64 \mathrm{kbits} / \mathrm{sec}$ and $2.048 \mathrm{Mbits} / \mathrm{sec}$. Each codec (transmitter and receiver) carries out pre- and post-processing of the local TV signal. A Common Image Format (CIF) for the transmission channel is formed from either $625 / 25$ or $525 / 30$ TV signals. The CIF is based on 288 non-interlaced lines per picture, i.e. sequential or progressive scanning, and 30 pictures per second. A 625 -line system has 576 active lines per frame, so that 288 lines form one field. So a $625 / 25$ codec has to perform a conversion only to meet the 30 Hz picture rate. A $525 / 30$ codec already operates at the correct frame rate and thus has to convert between 240 and 288 active lines. The advantage of the CIF is that all transmissions are to a

Fig. 2: Basic MPEG processing.
common standard. Thus core codec design is to a world standard, which is not only a significant achievement but is also a considerable aid to interconnectability.

The CIF is formed by sampling the luminance signal at 6.75 MHz and the chrominance signal at 3.375 MHz , producing 3528 -bit samples per line. This is equivalent to an analogue signal bandwidth of about 3.4 MHz , so the processed image is only about 30 per cent below full studio quality.

A lower image resolution is acceptable for applications such as videophones. For this application a second standard is incorporated in H261. It has 176 samples per line and 144 lines per picture. Since this represents half resolution in each dimension, it's known as Quarter Common Image Format (QCIF).

The basic processing system is shown in Fig. 2, which shows how the previously coded image data (4) is subtracted from the current data to produce a difference image (1). The sampled YUV video signal components are processed separately but in the same way. The image is divided into 8×8 pixel blocks which are then DCT processed. The matrix values are next scanned in a zigzag fashion (see Fig. 3) to produce a serial bit stream. At this stage only the d.c. component and a few low spatial frequencies have any significant magnitude. The following quantisation stage sets all the very low values to zero and reduces the others to a set of preferred levels, further reducing the number of values that need to be transmitted.

Motion compensation is used to minimise the frame-toframe differences that have to be transmitted. It operates by taking four blocks (16×16 pixels) from the current image, which has been reconstructed by the inverse DCT processor, and searching over ± 15 pixels vertically and horizontally to find the best match. The variable-length store is then adjusted so that the best-match section of the image is used for subtraction (4). The vertical and horizontal translations derived from this block matching are later included in the transmission multiplex as motion-correction factors.

Since the data bits are generated at a variable rate and must be transmitted as a constant rate, buffer stores are required in both the encoding and decoding stages. Control signals are added to ensure that the receiver's decoder uses the data bits at the correct variable rate.

The decoder in the receiver uses the DCT coefficient values and the motion vectors with a block matching technique to reconstruct the image, the process being similar to that shown in Fig. 2.

Run-length coding (RLC) is used to obtain data compression for transmission. It operates in the following manner. The quantised a.c. coefficients usually contain many runs of consecutive zeroes. These are indicated by two 4 -bit nibbles as follows. The upper four bits indicate the number of

Fig. 3: Zigzag scan of an 8×8 pixel block.
consecutive zeros before the next coefficient while the lower four bits indicate the number of significant bits in the next coefficient. This code symbol is followed by the significant bits of the coefficient, whose length can be determined from the lower four bits of the code symbol.

The inverse RLC decoder in the receiver translates the coded bit stream into an output array of a.c. coefficients by taking the current code and inserting the number of zeros indicated by the RLC. The coefficient entered into the array has the number of bits indicated by the lower four bits of the RLC and a value determined by the number of trailing bits.

With a still picture a further degree of bit reduction can be achieved by using a modified Huffman code. In this case shorter code words are used for frequently occurring symbols and longer codes for the occasional ones. This can be based on a look-up table stored in a ROM, or alternatively operated in an adaptive manner for specific images. The latter involves creating a data table, stored in a RAM, based on the frequency count of each symbol in the image. It's used in a similar way to the ROM look-up table.

Developments in North America

The present intention is to start off by using the simulcast principle for HDTV services in the USA and Canada. A station wishing to start HDTV transmissions will be allocated an additional 6 MHz channel so that its HDTV and NTSC services can be broadcast in parallel. The idea is that as the NTSC system becomes obsolete its frequencies will become available for new applications. The FCC (Federal Communications Committee) has stated that NTSC will cease to be a broadcasting standard after June 29th, 2008.

Of the six original HDTV systems presented for testing at the North American Advanced Television Test Centre (ATTC), four digital systems passed the first hurdle. Two of them employ 1,050 -line interlaced scanning while the other two use 787.5 lines with progressive scanning. The former provide the best pictures but the latter have the most robust transmission capabilities. It thus appears that the debate will revolve around whether to interlace or not. The ATTC delayed making its decision on which system to adopt as the future North American standard until the end of the year. More recently work started on a compromise, composite system which will be put forward for testing.

We'll take a look at the DigiCipher system proposed by a consortium led by the General Instrument Corporation because it represents a good example of the application of the above approach to HDTV.

The DigiCipher System

The system has been designed for transmission within a 6 MHz channel bandwidth and can operate at relatively low power. Error-free reception is claimed even when a small aerial is used and the carrier-to-noise ratio is less than 20 dB . The coding system produces a digital multiplex that includes the vision and sound signals and teletext type data. Thus neither a sound carrier nor a colour subcarrier is required. Use of digital 16QAM, with four carrier phases each of which can be amplitude modulated to four different levels, results in a peak-to-average power variation of only 5 dB . So the system has an even power spectral distribution and as a result there's a very low level of adjacent channel interference.

The RGB video source components are encoded in YUV form, with Y and UV bandwidths of 22 MHz and 5.5 MHz respectively. The image format is based on 1,050 lines at a
field rate of 59.94 Hz , with $2: 1$ interlacing and an aspect ratio of $16: 9$. Samping is at 51.8 MHz , with 8 -bit resolution for both the Y and UV components. The video bit stream is then compressed to $13.83 \mathrm{Mbits} / \mathrm{sec}$.

The 15 kHz baseband audio signal is pre-emphasised, sampled at 44.056 kHz , quantised to ten bits and then instantaneously companded to ten bits. There's provision for four such channels within an audio bit rate of $1.76 \mathrm{Mbits} / \mathrm{sec}$.

These video and audio bit streams are then multiplexed with data and text ($126 \mathrm{kbits} / \mathrm{sec}$) and system control data ($126 \mathrm{kbits} / \mathrm{sec}$ again) to produce a total effective bit rate of $15.84 \mathrm{Mbits} / \mathrm{sec}$. When this is passed through a forward error correction (FEC) circuit using a Reed-Solomon (154, 130) code the final transmission bit rate rises to $19.43 \mathrm{Mbits} / \mathrm{sec}$. By using 16QAM, with its four bits per symbol, the bandwidth of the transmitted signal works out at about 4.86 MHz .

The video signal is processed in the MPEG manner, but the chrominance information is compressed by averaging pixels in groups, four horizontally and two vertically. The Y signal bypasses this operation, being multiplexed with the processed UV components one block (8×8 pixels) at a time. The lot is then passed through the DCT processor.

The information for the next frame is predicted and compared with the current frame data, only the differences being DCT coded. A good predictor is simply the previous frame. The output forms an 8×8 matrix of coefficients, of which the top left-hand element has a value that's twice the average of the 64 elements, representing the d.c. energy in the whole block. As Fig. 3 shows, the horizontal elements represent increasing horizontal frequencies in the original image while the vertical elements represent increasing vertical frequencies. The elements along the diagonals thus represent the energy in the diagonal frequencies. Generally the magnitude of these higher-order elements rapidly tends towards very small or zero values.

The quantisation stage sets all the small values to zero and reduces certain coefficients in an adaptive manner in accordance with a look-up table stored in a ROM. The matrix of coefficients is then scanned in the zigzag manner shown in Fig. 3. This leads to long runs of similar values, enabling amplitude/run-length coding to be used. This takes the form of a modified Huffman code, using a two-dimensional code book. If a block that ends with a long run of zeros is detected, an end-of-block code is added after the last non-zero value, providing further bit-rate compression.

Table I shows how DCT processing of a typical pixel block produces this run of zero or near-zero values. It also shows that the application of inverse transform reproduces pixel values that are very little different from the original ones.

Motion estimation is used to compensate for some of the errors introduced by compression, images being compared on a frame to frame basis to detect areas of movement and predict how they will appear in the next frame. Motion vectors for transmission to the decoder are derived from this data. To reduce the information needed to describe motion, a block matching technique, using a superblock of pixels (32×16), is used for estimation.

This is compatible with four times horizontal and two times vertical subsampling of the chroma signal. Thus a

Fig. 4: DigiCipher system digital multiplex format.

Fig. 5: Arrangement of OFDM carriers (a), OFDM frequency spectrum (b).
single vector can be used to describe the movement of the Y, U and V signal components, reducing the bit rate needed to describe motion.

The variable bit-rate output from the Huffman coder has to be matched to the constant bit rate required for transmission. Buffer memories in the encoder and decoder are used for this purpose. The buffer is able to hold data for one frame \pm one field variation. To avoid underflow and overflow of the memory the level within it is continuously monitored to derive a control for the adaptive quantisation process.

The control, data, audio, video and sync bit streams are multiplexed in the manner shown in Fig. 4. Video lines two through to 1.050 contain four control bits. four data bits, 56 audio bits and 440 video bits. For line one, which is concerned chiefly with system synchronisation, the last 48 bits are allocated to frame sync, system control and Next Macroblock Position (MNP) - a macroblock consists of 256 x 16 pixels. Once the decoder clock has been synchronised, the 24 sync bits in line one provide frame sync. The last 16 bits (NMP) are used to cater for user channel changing and system recovery from error conditions: the data is used to signal the number of bits from the end of the NMP to the beginning of the next macroblock.

The digital multiplex is FEC coded before being applied to the QAM transmission system. This reduces the $19.42 \mathrm{Mbits} / \mathrm{sec}$ rate resulting in a bandwidth of about 4.86 MHz .

European Developments

The pan-European VADIS (Video Audio Digital Interactive System) and NTL's SPECTRE (Special Purpose Extra Channels for Terrestrial Radiocommunications Enhancement) projects have demonstrated that Orthogonal Frequency Division Multiplex (OFDM) shows great promise as a way of conserving spectrum space. It uses a large number of carriers with equal frequency spacing. Each carrier can be modulated with a sub-band of frequencies. the result being that the total spectrum behaves like a parallel transmission bus.

Each modulated carrier is filtered to obtain the response shown in Fig. 5(a). The spectra of the adjacent carriers then overlap in the orthogonal manner shown. When they are combined, the total spectrum becomes virtually flat, as indicated in Fig. 5(b). Thus the channel capacity approaches the Shannon limiting value.

For Digital Audio Broadcasting (DAB) the channel is divided into N carriers with each modulated by one subband of P programmes. Thus there are N/P interleaved programmes in the transmission multiplex.

Table 1: Forward and reverse DCT processing of an 8×8 pixel block.

Original 8×8 block							
139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	160	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	160	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

DCT processed block

315	-0.26	-3.02	-1.30	0.53	-0.42	-0.68	0.33
-5.65	-4.37	-1.56	-0.79	-0.71	-0.02	0.11	-0.30
-2.74	-2.32	-0.39	0.38	0.05	-0.24	-0.14	-0.02
-1.77	-0.48	0.06	0.36	0.22	-0.02	-0.01	0.08
-0.16	-0.21	0.37	0.39	-0.03	-0.17	0.15	0.32
0.44	-0.05	0.41	-0.09	-0.19	0.37	0.26	-0.25
-0.32	-0.09	-0.08	-0.37	-0.12	0.43	0.27	-0.19
-0.65	0.39	-0.94	-0.46	0.47	0.30	-0.14	-0.11

Quantised coefficients

315	0	-3	-1	1	0	-1	0
-6	-4	-2	-1	-1	0	0	0
-3	-2	0	0	0	0	0	0
-2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-1	0	-1	0	0	0	0	0

Reconstructed 8×8 pixel block

139	145	150	154	154	153	154	153
145	150	154	157	157	155	156	156
150	155	158	161	160	157	157	155
159	161	161	163	161	158	159	159
159	160	161	163	161	157	156	155
163	162	160	162	161	157	157	158
162	161	159	162	161	157	157	157
164	162	160	163	162	158	159	160

Courtesy of General Instruments Corp., VideoCipher Division.

For television transmissions the video baseband is filtered to produce sub-bands to modulate each carrier. The BBC and Thomson-CSF Laboratories have demonstrated that this technique makes it possible to squeeze $60 \mathrm{Mbits} / \mathrm{sec}$ of digital signal into an 8 MHz channel. Two $30 \mathrm{Mbits} / \mathrm{sec}$ signals were transmitted, using horizontal and vertical polarisation. The spectrum was divided into 512 close-spaced carriers: to avoid interference with
conventional PAL transmissions 64 of the carriers were not used. To maximise channel capacity, 64QAM was used for each carrier.

HD-DIVINE

A system called HD-DIVINE (High Definition Digital Video Narrow-band Emission) has been demonstrated by a Scandinavian consortium. It uses 1,250 lines, a 50 Hz field rate, 2:1 interlacing and OFDM with 16QAM and 448 carriers. Digital compression is carried out in a hybrid manner to provide a transmission multiplex that includes $24 \mathrm{Mbits} / \mathrm{sec}$ of video, four $128 \mathrm{kbits} / \mathrm{sec}$ audio channels, $64 \mathrm{kbits} / \mathrm{sec}$ of data and $2 \mathrm{Mbits} / \mathrm{sec}$ for error control.

Hierarchical System

The VADIS group has also demonstrated an 'hierarchical' compression technique for digital HDTV signals. This enables a small receiver to extract $6 \mathrm{Mbits} / \mathrm{sec}$ of data to provide a Standard Definition Television (SDTV) display while a larger receiver can process the full $14 \mathrm{Mbits} / \mathrm{sec}$ for HDTV.

Japanese Developments

To give viewers an impression of widescreen TV JVC has demonstrated a 4:3 aspect ratio image that was stretched to $16: 9$ using scan velocity modulation. Beam velocity changes smoothly between the edges and the centre of the
picture, so that the geometry of most of the picture is virtually unchanged. Since viewers pay attention mainly to the centre area of the picture, the technique was found to be acceptable for the purpose.

Displays

Adequate HDTV displays can be achieved only by using a large receiver that cannot be accommodated easily in most homes. Development of a flat display is therefore vital. To date the LCD panel has been limited to a maximum diagonal dimension of about 14 in . Sharp recently demonstrated an LCD projection system however, using a 100 in . diagonal polarised screen and a new metal-halide lamp. If the rest of the hardware can be reduced to a suitable size, this could be an appropriate way of achieving HDTV displays in domestic settings.

Ultra Definitation TV

The Japanese Ministry of Posts and Telecommunications and the National Broadcasting Authority (NHK) are investigating Ultra Definition Television (UDTV) systems with a resolution of more than 2,000 lines. The aim is to produce a system that's compatible, through standards conversion, with 1,125-line MUSE, using either 16:9 or $4: 3$ aspect ratios. A target date has been set for the year 2005. Initial usage would be for film production and printing purposes. This should at any rate ensure that the TV debate will continue well into the next century!

Saving Network 1400 Series Receivers

Denis G. Mott

In the early Eighties Network Industries produced a series of 14in. colour TV sets based on a chassis supplied by GoldStar. Model numbers were NWC1402, NWC1410 and NWC1430, with both remote-control (R suffix) and non remote-control versions. As with most chassis from most manufacturers there's an Achilles' heel. In this case the problem relates to the M193 tuning memory chip IC1601. This SGS device was also used in a Lowe Opta and an Hitachi chassis, and by some other setmakers. It's no longer available from SGS and stocks have dwindled to virtually zero. As a result it's now almost impossible to obtain the device as a service spare.

1 recently had a call from an engi-
neer who had a couple of these sets in, each with a blown M193 chip. It struck me that there were probably many other people in the same predicament, i.e. with one of these sets that was in perfect working order apart from the fact that the M193 chip had failed. Here's a solution to keep the TV set in use, though without the tuning memory facility.

Tuning System

An article of mine in the March 1986 issue of Television described the operation of the tuning system used in these sets. Basically the purpose of the M193 chip IC1601 is to convert an analogue voltage to a digital word that's stored in one of sixteen memory locations. A DAC chip (HICl 601) converts its output word to the appropriate tuning voltage. The memory locations are selected by a four-bit word generated by ICl301. This arrives at ICl601 via HICl 301 and 1C1302. A two-digit LED display, driven by the M192 chip IC1501, shows the selected channel.

Faults and Cures

The usual faults with the M193 chip are either that it gets hot, pulling down the 5 V line, or that it fails to
memorise channels.
Failure to memorise is the easiest fault to deal with. Simply push in the mode button (SW1702) and tune in manually, using the multiturn potentiometer VR1701. Remove diodes D1714 and D1713 to stop sound muting.

The more difficult problem is a hot chip. Remove the M193 i.c. then bin it. Reroute the link from the wiper of the multiturn potentiometer, disconnecting it from pin 3 of IC1701 (LMN324) and taking it directly to pin 5 of the DAC chip HICl 601 instead. If you live in an area where the transmitters operate in the lower part of the band it may be necessary to remove R1703 ($1-2 \mathrm{k} \Omega$) to allow the potentiometer to reach down to chassis potential. The variable voltage obtained from the potentiometer is approximately $0-5.5 \mathrm{~V}$. This is amplified by the HICl601 chip to the $0-32 \mathrm{~V}$ level.

The nice thing is that the a.f.c. is not affected as it's fed to a separate tuner pin. To deactive the a.f.c., push in the mode switch. Then tune in the required station and release the mode switch.

With remote-control TV sets the volume and on/off functions are not affected by this change.

I know that this solution is not perfect, but it's better than having a useless TV set.

Camcorner

Panasonic MS50

If this little treasure is dropped, the pin can jump out of its groove in the loading mechanism's main cam. This immobilises the deck but leaves some telltale play in the loading guide poles.

Panasonic MS50

This machine came in with the audio hi-fi indicator (green LED on the top surface) lit up whenever a battery or external power supply was connected: in this state it drew 45 mA with the power switched off. The culprit was transistor Q4521, an 8.4 V stabiliser on the hi-fi audio PCB - it had developed internal leakage.
E.T.

JVC GR45E

'A colour problem' the job ticket said. That was true, but there were two separate faults in different parts of the circuitry. The first one was a distinct lack of $\mathrm{B}-\mathrm{Y}$, producing a picture with only red and cyan casts. The vectorscope showed this quite clearly. But where to start looking? After much searching I discovered an intermittent dry-joint at pin 24 of IC4 on the Video 1 PCB. With this corrected the camera was put on test only to discover that after a short period the playback colour disappeared. The cause was failure of IC4 on the Y/C PCB when warm. This chip is the THE045A that's used (and fails) in other JVC models. Replacement and setting up completed the repair.
D.C.W.

Sony CCDV8AF

The cause of no viewfinder picture is generally a break in the print on the viewfinder socket PCB. D.C.W.

JVC GRC1E

We've had two of these early machines in recently with a failed lower drum motor. Instead of running the drum twitches. Replacement cures the problem - coincidence, or are these camcorders just getting old?
D.C.W.

Sony CCDV800E

This Hi-8 camcorder had me puzzled for a while. It worked all right in the standard- 8 mode in both record and playback, but when switched to Hi-8 only the record function operated correctly. Playback of one of its own recordings or a known good tape in this mode produced the effect of one head giving little output. The playback equalising circuits were checked but everything here was in order. There was nothing for it but to change the upper drum. This solved the problem.
D.C.W.

Ferguson 3C03

Don't get caught as I have (twice!) when working on the camera section of this model using patch leads. If you leave the audio lead connector between the camera and deck sections unplugged you'll find the camera operation controls acting very strangely: the fader and WB controls are inoperative while the BLC button fades the picture! The

Reports from Eugene Trundle, David C. Woodnott and Simon Bodgett
reason for this is that the controls are earthed via the audio lead's screen connection (CN14 on the main PCB). D.C.W.

Amstrad PSI AC Adaptor

The cause of failure to charge with the power on LED flashing was a defective NE555 timer chip (IC2). Other types of 555 chip may produce different fault symptoms if used as a replacement.
D.C.W.

JVC GR45

There was flickering on the picture, more noticeable during playback of the camcorder's own recordings than in the E-E mode. Two separate faults contributed to the problem. First a d.c.-d.c. converter was not to specification - it produced ripple on the camera signal processing supply, as a result of which the amplitude of the luminance signal fluctuated. Secondly the a.g.c. circuit in the luminance recording chip seemed to over-react to the signal variations. Replacing the d.c.-d.c. converter and the chip cleared the problem. S.B.

Ferguson 3C03

The problem was no auto-focus operation: a new auto-focus sensor assembly plus resetting the focal plane put matters right.
S.B.

Panasonic NVM5B

There was no zoom and no power-up reset on the deck only a sort of soft-shoe shuffle. We found that the zoom controls had been unplugged, which indicated that our local Jessie James had been at it. A new loading motor drive chip restored the deck reset and loading drive but there was no capstan drive. Two further i.c.s (MN6170 and MN3805) cured that problem and I now found that I had playback but no camera pictures. I suspected that this was the original fault. Its cause was quickly traced to a BA6149LS CCD delay line in the camera signal processing circuitry. S.B.

Ferguson FC06

The cassette housing opened when power was first applied but not thereafter, which obviously affected cassette removal after filming. I found that there was some slight corrosion on the main PCB . Cleaning it off with ammonia and relacquering cured the fault.
S.B.

JVC GRAX5

The loading mechanism was inclined to jam when unthreading the tape. More seriously, during threading the top of the entry guide caught on the upper drum. Both loading rings and the entry guide had to be replaced, then aligned. Not a job for the faint-hearted.
S.B.

Panasonic NVM7B

The colours from the camera head were incorrect - very bluey/greeny/yellowy. The cause was a dry-joint on the R Y level control VR316.
S.B.

Letters

TIMER MODE

It's interesting to read about the problems people have in tracing the causes of intermittent faults. This one wasn't a fault as such, but nevertheless caused more than enough trouble. The complaint was that a modern, remotecontrolled TV set would switch itself off once a week, once a month or maybe twice a day, i.e. when it felt like it! Sometimes it would be o.k. for months. The set would always start up again without any trouble.

This went on for about ten months, with me soldering, bashing, fitting mains filters, replacing the remote control system and dreading the telephone when it rang. The set always behaved itself impeccably in my workshop. One day I was at the house on another matter and asked whether the set was giving any trouble. Whilst talking I picked up the remote control unit and pressed a few buttons. The onscreen display appeared and informed me that the set was in the timer mode. A few seconds later it shut down. A massive penny then dropped!

It seems that the youngster of the house was allowed to turn on the TV set with the remote control unit. Being only four, he would press every button until something happened! As is usually the case, the parents hadn't the faintest idea that the set had a timer mode or what it did, and naturally assumed that the set was faulty.
David C.J. Tilley,
Tiverton, Devon.

NICAM FOLLOW-UP

I'd like to make a couple of points to clear up any confusion that may have arisen following Michael Harris's article in the May issue and my original Nicam on a Shoestring article in the February issue.

When I did the original work on the decoder I used the Nicam Mk II kit module, which is for system B/G. The filters and crystal had to be changed as described in my article. Since then a cheaper decoder has become available from Sendz. It doesn't need filter and crystal replacement, being ready for use with the addition of only a $3 \cdot 3 \mathrm{k} \Omega$ bias resistor and an input coupling capacitor. The PCB is the same, but some components are not fitted. The circuit diagram supplied with the cheaper decoder is a photocopy of the diagram for the system B/G decoder.

I've had a decoder fault that may be of interest to other readers. The symptoms were that after forty minutes to an hour short bursts of noise, at about one second intervals, came from both channels. Adjusting the trimmer connected to the $16 \cdot 384 \mathrm{MHz}$ crystal provided a temporary cure, as did cooling the crystal. A new crystal provided a permanent cure.
Keith Werill, B.Sc..
Ratby, Leicester.

MICROWAVE TOUCH PADS

We now take on microwave ovens in addition to our normal run of TV/video/audio work. As I think that most small workshops now take on this kind of work, here's a tip that may well save time and money. We've found that a number of units have failed where the touchpad ribbon plugs into
the front panel PCB. The ribbon is usually bent over quite severely. It literally cracks, though not visibly. Check the first centimeter with the beep range of your ohmmeter. The affected tracks can be repaired using electroconductive paint. It's quick, simple and very effective. A refreshing change!

Now maybe someone can help me. My Ford Orion Encore, limited edition, registration J206 PBA, which has flambean red metallic paint and alloy wheels, was stolen from outside my house one night recently. Should anyone spot it, please let me know.
Steve Leatherbarrow, 71 Fir Lane.
Royton, Oldham, Lancs OL2 6TF.

LATEST FAD

The current economic climate seems to have brought with it an abundance of instant training agencies, many of which seem to have little understanding of the subjects. The latest fad is National Vocation Qualification (NVQ) training. Without such a certificate you may come to be regarded as being incapable of carrying out tasks at even a basic level of understanding. To complicate matters, the Catch 22 situation is that you cannot obtain the qualification unless you are already carrying out the job. Those doing the training/assessing are on to a good thing - especially as the certificate is valid for only three years, after which you have to be assessed again.

Some training companies are trying to get their certification verified by a university - having its name on the certificate is more impressive than $\mathrm{C}+\mathrm{G}$. In this ludicrous situation many managers are trying to be assessed for level 5. Sorry lads, but the best you can hope for is level 3 .

I suggest that like everyone else we start to make up our own rules - before someone does it for us. Here's an idea. Make up a wall chart and divide it into 100 squares. For each item repaired, tick one square. When you have a full chart, post it to yourself along with a competence certificate at level 1. Repeat for every 100 until you attain level 5. Stop at this level until something else is invented. Oh, and start to talk about "cost effectiveness" and "time management", and always carry your tools in a briefcase as a toolbox is unprofessional.
Jim Fenton,
Hull, N. Humberside.

SERVICING MATTERS

I'd like to comment on a couple of matters that came up in the April issue. First the Matsui CTV2055 mentioned by Geoff Fardon in the TV Fault Finding column is actually a Jackson chassis. The circuit diagram bears the number 20R. The set seems to be almost identical to the Tashiko $20 \mathrm{E} 911 / 20 \mathrm{E} 912$, which may also be called a Saikou and is similar to the Harwood 14. I understand that the same chassis can be found in some Triumph models.

Secondly, with reference to Chris Watton's restoration of an old Hitachi VT1IE it's nice to know that others believe in taking the time to do the job properly. Before you withdraw the capstan shaft however it's a good idea to scrub off the accumulated dirt and tape oxide with an ink rubber. This prevents the muck being drawn into the motor bushes. Once these have been cleaned they can be lubricated with further pipe cleaners soaked in oil. I store these in a flat, plastic oilfilled bag that stands in a jam jar.

A selection of old toothbrushes is useful for scrubbing reel turntables, dismantled clutches, etc. Medium bristles seem to be best for reaching into milled plastic surfaces.

Rubber items such as belts and pressure rollers should be cleaned with a mixture of isopropyl alcohol and distilled water - use of an excessively volatile cleaning fluid can cause hairline cracks in the surface. Very fine wet and dry can be used to remove the glaze from the surface of pinch rollers.

You often find that the loading arm slots are bone dry. This must subject the loading motor and belt to unnecessary stress. I always lubricate them, using black Castrol graphited grease for metal arms and slots or white Molykote grease where either or both surfaces are plastic. When the correct types of grease are available it's a good idea to apply some to the loading and master-cam gears, as well as the front loading mechanism. White Molykote is available from Willow Vale Electronics under Philips part no. 4822390 20027. Use it sparingly - it's expensive.

Dave Mackrill.
St. Leonards-on-Sea, East Sussex.

FOR DISPOSAL

I have for disposal a Ferranti TP1026 transportable TV receiver. It's available at no charge but must be collected or carriage arranged.
B. Ross. 85 Cormuallis Rd. Rughy CV 22 7HL.

0203303080 ext. 8138 (day), 0788816326 (evenings).

B \& K TUBE TESTER REPAIR

Our B \& K 467 tube tester developed a fault recently. The problem was that we couldn't set the first anode voltages correctly. When we opened the tester we found a PCB with about five thousand wires that connected it to the operating panel. I didn't fancy taking this off! Anyway a look at the circuit diagram showed that there are three $620 \mathrm{k} \Omega$, IW resistors (R46/7/8) in the first anode circuit. Two had gone high in value while the other one was open-circuit. Replacing them all enabled the first anode voltage to be set up correctly. They can be replaced without removing the PCB: they are in the middle of the panel and can be reached with very thin long-nosed pliers.
Chris Watton.
Boston, Lincs.

HAVE YOU HAD THESE?

We have a Bush Model 2020 with a black line down the left-hand side of the screen, about 1.5 in . in and 0.125 in . wide. Replacing the TDA3562A chip has made no difference. We also have a Sentra STX200 which produces a blank screen with no sound when a strong signal is reached whilst tuning. It will hold a snowy picture. Both chips in the a.g.c. section have been changed. Has anyone else come across these symptoms and managed to find the causes?
G. Nicholl. Home Services.

Lochwimnoch, Renfrew'shire.

FINLUX 3000 CHASSIS

An article in the August 1992 issue mentioned the following fault with the Finlux 3000 chassis: inhibited video but sound and a teletext page number present. The solution with my 3621 F was to replace the SDA3202 chip ICil in the tuner. There was a response to hand control channel changes at the SDA and SCL input pins 4 and 5 of this chip but no voltage alteration was detected at the collector of transistor Ti4 at the output.

Six weeks later a similar fault occurred. This time there
was a response at the collector of Ti4 but a check on the voltages around the TDA 2450 chip ICi2 produced low readings at pins 15 and 16. Some other voltages here were incorrect. A new TDA 2450 put matters right.

Thanks are due to my mate Vic and to Arch Crawford at Finlux Technical Services for help with these faults.
Kevin Parkinson.
Stanley. Wakefield.

GRUNDIG TECHNICAL ADVICE

I’m writing this letter to let all small businesses know about Willow Vale’s technical advice on Grundig products. As we all know. Willow Vale is the main supplier for Grundig, Philips and Sharp spares. It's nice to know that the company offers this service to its account customers.

It's easy to open an account with Willow Vale: just phone and they'll gladly assist you. If only all suppliers offered this type of seryice small businesses would have peace of mind. Thank you Willow Vale, and Alan Dyson. A great combination.
M. Cordner, $M \& M$ Videos.
West Norwood, London SE27.

SATELLITE REPAIR MANUAL

In the May TV Fault Finding column Mark Ward mentioned a fault with an Amstrad SRX200 satellite receiver, adding the comment that "it took a lot of searching". He would have saved himself a lot of time and trouble if he'd consulted our Eurosat Repair Mamual, where the fault is listed on page 1 of the Amstrad section (Models SRX100/200).

The manual includes repair and modification details for various satellite receivers, plus 'secret' factory codes. It's available from satellite installers and shops that deal with a Eurosat trade warehouse.
Martin T. Pickering. B.Eng.. Technical Manager.
Eurosat Distribution (Midlands) Ltd..
Unit 4. Bentley Lane Indostrial Estate.
Walsall. West Midlands WS2 8TL.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, Aprï, May, July, August, September, October, November and December

1993 January, February, March, April, May and June

Copies are available at $£ 2.75$ each including postage. Send orders to:

```
Reed Business Publishing, Television Back Issues,
Room L323,
Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.
```


Make cheques/postal orders payable to Reed Business Publishing Ltd.

Long-distance Television

Roger Bunney

Conditions during April are often thought to be a good pointer to what we can expect during the subsequent Sporadic E season. I sincerely hope that this April's reception is not an indication of what's to come. Conditions were dreadful! Very few long-distance signals were received and there was certainly nothing that could be called an SpE opening. We shall just have to hope that conditions improve. Here`s the bleak log:

5/4/93 Early morning auroral effects in Band I following a larger event the night before.
15/4/93 A small tropospheric lift produced Band III/u.h.f. signals from Scandinavia/Denmark along the E / NE coast.
22/4/93 The Lyrids meteor shower produced Band I signals.
26/4/93 Tropospheric conditions improving.
27/4/93 SpE reception of RA1 (Italy) on chs. IA and IB. Excellent tropospheric activity with Band III/u.h.f.signals from Scandinavia, Denınark. Germany and the Benelux countries.
28/4/93 High-level tropospheric activity as on the 27th.
29/4/93 Tropospheric conditions decline.
My thanks to Simon Hamer, Ian Menzies. Tim Anderson, Peter Schubert and David Glenday for letting me know what sort of month they had!

Miscellany

Todd Emslie (Sydney, Australia) is wondering about a 'sleigh bells' sound that's heard when signals from several Band I TV transmitters are received simultaneously via transequatorial skip (TE) propagation from the north. The effect is usually heard during late night (2100-0200) TE reception. Channels C1/RI/C2 are affected most, chs. E2 and E4 being affected at other times - usually this means Thailand. Todd thinks that the bell noises could be caused by irregularities in the ionosphere, possibly as the F layers break up when the effect of the sun ceases. They are not
heterodyne offset noises, as Todd has heard them with s.s.b., a.m. and both wide- and narrow-band f.m. transmissions. Can anyone throw any light on this mystery?

The FCC has decided to allow the use of line 19 in the NTSC TV signal for ghost cancelling reference data. Ghosting is a considerable problem in many areas of the USA.

An article in the March 1993 issue of Cabling World suggests that the use of screened cables may not be the answer to interference radiation from digital communications equipment. The DTI has recently produced new EMC standards that must be followed in commercial installations. It has established that screened cables may be ineffective in preventing interference radiation. The trend now is to reduce/prevent r.f. radiation by using balanced pairs of cables (twisted) with baluns. Installation engineers are advised to plan cable routeing and lengths carefully and minimise on parallel conductors. Correct matching of cables and equipment terminals is of great importance, with due regard paid to common earthing points. Though coaxial screened cable can reduce radiation, the correct procedure is to ensure that network cabling is correctly routed, earthed where appropriate and matched to the equipment at each end.

Mediarama LK Ltd.. Griffin House, 58-62 Hockliffe Street, Leighton Buzzard, Beds LU7 8HE has introduced a TV tuner panel that enables a personal computer to tune in v.h.f. and u.h.f. TV signals. The PAL signal output provided by the panel can be fed to a TV set or used, via a digital PC/AT video panel, to drive the PC's display. The system operates to CCIR standards, with three Band 1, eight Band III and 49 u.h.f. channels, also 57 CATV channels. Other panels can provide freeze frame, digitising effects, etc. Note that the units are not exactly cheap. Mediarama can be contacted on 0525383222 (fax 0525851563).

The latest version of Andrew Emmerson's Exotic TV Idents tape includes fifteen more unusual test cards and captions - there are nearly 100 items on the tape, which runs for 49 minutes. Two more tapes are now available, Idents Tape l and Idents Tape 2. They contain a historical collection of slides from 1936 through to the latest satellite TV patterns. This massive collection is housed in two full E180 tapes. All tapes cost $£ 9.99$ each. They are available in PAL VHS form only from Andrew at 71 Falcutt Way, Northampton NN2 8PH. Allow fourteen days for delivery.

Another tape, Vintage Test Cards on Video, is available from HS Publications, 7 Epping Close. Mackworth Estate, Derby DE3 4HR (0332 381 699). It contains a fascinating collection of test cards and identification captions used by various TV companies around the world during the Sixties and early Seventies. There are monoscope patterns (no elec-

Left: A mix of satellite news feeds from the Vancouver Superpower summit, seen in band C (NTSC) via the Intelsat craft at $53^{\circ} \mathrm{W}$. Centre: The Asiavision news feed from Malaysia via Eutelsat II F4 at $7^{\circ} \mathrm{E}$ - with sound in syncs. Right: The Iranian test pattern received at $10.99 \mathrm{GHz}, 63^{\circ} \mathrm{E}$ by lan Waller.
tronically generated ones) and slides in both monochrome and colour. This one is available in either VHS or Beta form at $£ 14.95$ plus 85 p UK postage or $£ 1.75$ air mail postage worldwide. Send three first class stamps for a DX-TV catalogue and details of other videos.

Missing Colour

Fred Pilkington, who recently moved to Malaga. Spain, has a problem with his reception of Gibraltar TV. After mounting his ch. E12 Yagi aerial on a new, slightly higher mast he retuned his GaAsfet preamplifier and obtained almost perfect reception from the low-power GBC transmitter some 75 miles away. Next day however there was no colour, and the only way in which any locked colour could be obtained was to reorientate the aerial inland, about 25° off the correct bearing. Further experimentation over two weeks produced no improvement, neither did the use of a different receiver. Excellent results were obtained when the receiver, decoder (for BBC WSTV) and aerial were taken along the coast to a friend's house. After a further three weeks of fluctuating colour he found that neighbours were suffering from the same problem, critical colour lock.

First thoughts were that a local phase-shifted reflection was causing chroma signal cancellation. possibly aided by non-linearity somewhere in the receiving chain. One afternoon however GBC went off-air for a minute, during which a weak Algerian (RTA) signal was seen in the otherwise empty channel. Fred now wonders whether the RTA signal is of sufficient strength to cause colour dropout at times. A larger aerial system is planned, with a narrower forward beam width and reduced sidelobe pickup. If anyone has any ideas on the cause of this interesting problem and how to deal with it, do please write in to us.

Digital Audio Broadcasting

The Crystal Palace DAB transmitter is to come into operation this summer, relaying the network f.m. radio services in the 230 MHz band. At a later stage the tests will be expanded to include two-three further DAB transmitters covering the capital. The BBC is unlikely to start regular DAB transmissions before 1996. The long-term airn is to convert all the Band II f.m. services to DAB, something that may take anything up to 25 years. Other countries are developing DAB: as with TV, several different standards could come into use.

News Items

Moscow: Andrew Emmerson reports that TV-6 is now operating an MMDS (microwave distribution) system in the city. Present power is 100 W but this is to be increased to 1 kW .
Czechoslovakia: A twelve-year licence for a commercial TV channel with national coverage has been awarded to a group called Central European TV for the 21st Century (CET-21). The service will open early next summer. There are also to be two commercial radio services.
Hungary: Government restrictions on TV station ownership are to be relaxed. There are plans for a local commercial TV station run by the Budapest City Council and for other local TV services in the larger towns. A commercial TV channel with national coverage is also on the drawing board.
Austria: The ORF-2 network may be moved to the

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951
commercial sector or alternatively a third network may be launched.
Berlin: A new station Shamoni-TV is to open, offering regional news coverage and local programming.
China: A commercial station, Oriental Television (OTV), is to be launched operating on channel C20. Coverage will include Shanghai, Yangtze and Northern Taiwan.
Ireland: The government has allocated nearly $£ 4 \mathrm{~m}$ to set up a Gaetic TV service.
Fiji: A new TV service is to be introduced: five groups have applied for the operating licence.
The Netherlands: Public-sector services are to start broadcasting from 0700 local time. The authorities are considering a ten-year extension of the licences held by the nine main public-sector broadeasters instead of the current practice of regular reviews.

Satellite TV

Andy James (Harrow Hill, Gloucestershire) reports a mystery reception on April 30th. He logged Ku band NTSC signals at $11 \cdot 135 \mathrm{GHz}$, with vertical polarisation, downlinking Shuttle flight STS55 information. Prior to this a Houston TV test pattern was present, with audio at 6.6 and 8.3 MHz . The signals were received from about $32^{\circ} \mathrm{W}$ - but there's no Ku band transmitter here apart from Marco Polo 1 which uses only the DBS frequencies. On the following day the broadcast was seen as a recorded programme from Kopernikus II at $28.5^{\circ} \mathrm{W}$. As my own satellite system was out of action due to failure of the positioner control box I was unable to check out the signal. Could it be from Hispasat?

Direct TV, the digital-compression satellite broadcaster planning to start a 150-channel (eventually) service in the USA next December, has signed an agreement with Columbia which will offer video release films to the channel on a pay-per-view basis.

Wire TV is downlinking via Intelsat 601 at $27.5^{\circ} \mathrm{W}$: test patterns carry the identification 'The Cable Channel'.

Asianet has launched a u.h.f. satellite TV service across India from the Ekran craft at $99^{\circ} \mathrm{E}$, with reserve craft dotted at $48,64,69,84$ and $95^{\circ} \mathrm{E}$. Although the $48^{\circ} \mathrm{E}$ slot is above the horizon in Europe, hopefully someone may be able to resolve signals.

The 'France-2 16/9' HDTV service via the Telecom 2A satellite is now called 'France Supervision'. It's in D2-MAC stereo with up to three hours of $16: 9$ aspect ratio signals nightly.

Launch of the Astra IC satellite was delayed by up to a month because of damage and a bent aerial system. CLT's RTL-5 is the latest channel to book a transponder on it.

BBC WSTV is to use digital compression to offer a full service to the Americas via CBS facilities. Transmission
will be in C band via Intelsat 513 at $53^{\circ} \mathrm{W}$. CBC will use a single transponder to relay four vision and sixteen audio channels.

An American company, SatelLynx Corp., is planning to use digital compression to offer a service with up to 60 channels across S.E. Asia and Australasia.

Some real satellite DX reception is being reported. At least two enthusiasts in the UK have received signals at 12.08 GHz (vertical) from the North American Hispasat craft. Ian Waller (Lincoln Satellite Ltd.) confirms that with a TAD board the TVE-1 service can be received on a clear night - a large dish must be used. It's an NTSC signal transmitted in real time.

Finally Colin Paton (Greenock) comments on LNB interference. He has noticed that satellite audio is picked up when he tunes his Realistic Pro 2006 base scanner to $34 \cdot 225 \mathrm{MHz}$. The audio content varies daily - Sky Movies, the Movie Channel or MTV for example. I suspect that this is i.f. radiation from a nearby TV receiver rather than LNB radiation. Taking a walk with a small scanner should rapidly locate the source.

What a Life!

Donald Bullock

"We had a story today about Mr. and Mrs. Cobbler" said my daughter Rebecca. "They had so many shoes to mend that they went to bed weary each night. One night, after an awful day, they crawled into bed really worn out. Next morning, to their delight, they woke up to find that all the shoes had been done and their workshop had been thoroughly tidied up and was sunny. This happened every night thereafter, and they lived happily ever more."

I smiled suitably and thought of Weary Willy and his untidy workshop that was full of lots of nasty sets he couldn't mend. There was the Salora J chassis set with the hard to get at power supply that kept blowing up, the old Ferguson hi-fi video with the chain-driven cassette housing that eats fingers and turns them into new faults, and that wicked Sentra VCR that wouldn't spring to life whatever he did.

Willy started to think about switch-mode power supplies and TDA4600 chips. He wondered how big a boat it would need to take them all to the middle of the Atlantic and how much gunpowder would be required to send them to the bottom. Then he crawled off to his workshop, clambered over all the sets he couldn't mend, had a drink of meths and curled up under the bench.

When he awoke there was this fog. As it cleared he looked around his workshop and his eyes opened wide. Could this be the workshop he'd gone to sleep in? Where was the nasty J chassis, the pulled-apart Ferguson and that wicked Sentra video? Willy rubbed his eyes in astonishment. They were nowhere to be seen. In fact all that he could see were the shiny sides of piles and piles of TVs and videos.

Then Greeneyes clopped in. Her upside-down face smiled at his, under the bench. "Come on Weary Willy" she breathed. "You've been asleep for ages. Loads of sets have been brought in. I've put them all on top of the others. And they're all tricky ones that have already been
pulled about by Snoddies and Gumboils."
Weary Willy grabbed for the meths. But Greeneyes was there first. She snatched it and made to depart. "Wake up and get cracking Willy" she said, "they won't mend themselves you know!

A Ferguson TX85

Weary Willy made some room on the bench and pulled up the nearest set. It was a Ferguson 14J9-a 14in, colour set fitted with the TX85 chassis - and was as dead as could be. He decided to check the voltage across the mains bridge rectifier's reservoir capacitor C69, but his fingers slipped. His eyeballs lit up and shot out, telling him that some 340 V was present. Then he caught sight of the TEA2018A chopper control chip IC4 and its start-up resistor network - two series-connected $82 \mathrm{k} \Omega$ resistors, R 89 and R 91 , with a $390 \mathrm{k} \Omega$ resistor (R 60) in parallel with them. He was certain that one or other of them would be the cause of the problem. But they were perfectly all right. A tear slipped down Willy's face.

A voice sounded in Willy's head. "See if the chopper circuit is inhibited" it said. "Disconnect the output from the h.t. rectifier D 12 then connect a 75 W bulb between its cathode and chassis. If it lights up when you switch the set on, the power supply is o.k. and you can start to think nasty things about the line output stage.

Weary Willy did so and the lamp didn't light. So he disconnected the other two rectifier diodes on the secondary side of the circuit, the ones that provide the 13 V and 17 V supplies. The lamp still refused to glow, and another, larger tear slid down Willy's face. He was saddled with yet another nasty switch-mode power supply fault.

The thing to do, he decided, was to check the startup voltage at pin 6 of the TEA2018A chip. He knew that 5.8 V was required here for the set to spring to life. There was no voltage and the hunt was on. Maybe the $330 \mu \mathrm{~F}$ reservoir capacitor C 71 was short-circuit? It wasn't. Willy looked long and hard at his next suspect, the TEA2018A chip itself. He fitted a replacement and switched on. Up came the starting voltage, which immediately rose to 12 V as the chopper circuit broke into self-oscillation. Brightness appeared on the screen, and Willy also felt a bit better.
"Next" he shouted, just as Mr. Thicke picked his way in with a Hitachi TV set in his arms. "It's dead" he said. "Do it if it's cheap, otherwise ring me."

Weary Willy sighed. He really should think of a way of getting paid for his time when the customer decided against going ahead. He put the set on the bench and switched it on. It was a CPT2176 (G6P chassis) and its little beacon was out. There was h.t. across the mains bridge rectifier`s $150 \mu \mathrm{~F}$ reservoir capacitor C 906 but nothing much else. He checked the chopper transistor (Q901) which had MN650 printed on it. He found that it was dead short, then discovered from his little book that it was a BU508A in disguise. Weary Willy sighed and wished that transistors all wore proper numbers. He fitted a BU508A and, whilst at it. decided to check the 2SD1453 line output transistor Q781. This was also dead short. After replacing it he reached for his variac, 'cos he doesn't like repeatedly blowing up transistors in hard to get at places.

The set failed to spring to life and the ammeter on his variac began to creep up as he increased the voltage. He thought he detected a nasty, warm smell and felt the line output transformer. It was hot. So he disconnected all the diodes it supplies and tried the set again. The variac's ammeter began to creep up and the nasty smell returned. So he phoned Mr. Thicke and told him fifty pounds.

Mr. Thicke said he wished he still had his old voltmeter so that he could have mended it himself, and that he too could earn fifty pounds an hour fiddling with wires. And his wife had arthritis, and couldn't Willy do it cheaper because he'd another set that needed repairing?

Willy ordered a new transformer from SEME. It arrived next day in a sturdy yellow box marked HR Components: Willy noticed that it was made in Spain, where he wished he was. The original transformer's first anode voltage output was contained in the screened outer of the focus lead, but the replacement had a separate, green wire for this. He soon fitted the new transformer, and when he switched the set on it came to life with a good picture. This cheered him up. As he stepped back to look at it he tripped over a set on the floor and banged his shin on the edge of another one. At this very moment Mr. Thicke showed up for his Hitachi.
"I'm in agony with my missus. Her says you never shoulda done it" he said.

The Microwave

As Mr. Thicke departed Mr. Roughouse came in, looking as though he'd just sorted Popeye out. He was carrying a Matsui microwave minus its cover. This came behind, carried by his weedy wife Olive.
"He works, but he don't heat up. Where's the valve?" He prodded about in the works with his fingers. Weary Willy gibbered and tugged at his arm.
"Don't touch" he shrieked. "It can floor. even kill you."
Mr. Roughouse repeated his message, stabbing his finger at the capacitor. Willy retreated, still gibbering, but Mr. Roughouse flagged him down.
"He ain"t on" he said, pushing his thumb on to the positive terminal of the capacitor. Willy stepped to one side, closed his eyes and awaited the crash. There wasn't one.
"You chaps gets too excited" Mr. Roughouse said. "Mend 'im if it's up to fifty quid. New 'uns at Crubb's Foodstore are only seventy quid, an' you gets an oven set an ${ }^{\prime}$ a basket o' groceries."

Lots of big tears slid down Weary Willy's face and he wished he was somewhere else.

Next Month in TELEVISION

SERVICEMAN'S GUIDE TO PCs

A computer is rapidly becoming an essential feature in the service department, since it reduces the amount of routine work that has to be done. Service engineers will want to know what they can do with it - and what's inside. David Botto, who built his own PC from spare panels, gives you the low-down.

SIMPLE NICAM VCR UPGRADE

 Ian Martin on adding a Nicam decoder to the Panasonic NV830 stereo VCR. The principles should be applicable to many other machines.
DESOLDERING TOOL TEST REPORT

 Steve Beeching finds that the Dennon Dic SC7000 desoldering tool, which can both suck and blow, is a very useful device for workshop use.SERVICING THE SAMSUNG BT110 This mono TV/radio receiver also appeared as the Goodmans 09001 and the Alba PTV9C. Repair guidance based on extensive faultfinding experience.

THE AMSTRAD MP3 TV ADAPTOR Brian Williams on how this TV receiver facility, which was designed for use with certain computer monitors, can be adapted for various purposes.

THE SHADOWMASK TUBE

The next instalment in Eugene Trundle's series describes the operation of the shadowmask tube and the design refinements that have been introduced in recent years.

PLUS ALL THE REGULAR FEATURES

ORDER FORM

To.
(Name of Newsagent)
Please reserve/deliver the August issue of TELEVISION ($\mathbf{E 2} 20$), on sale July 21 st, and continue every month until further notice.

Name

Address... I

I
I
I

TELEVISION JULY 1993

ITC Report

Eugene Trundle

The Independent Television Commission held an exhibition in May to demonstrate a whole range of new British television technologies - most of them long-term research projects undertaken in conjunction with contractors like National Transcommunications Ltd. (NTL), the private company created from the engineering division of the former IBA.

The highlight was a live demonstration of high-quality digital TV (DTV) from the Crystal Palace transmitter. Other displays and exhibits ranged over a wide field, from aids for viewers with impaired vision to microwave propagation studies.

Spectre

The Spectre project is concerned with digital TV broadcasting, the current state of the art being demonstrated by the live transmission a few miles across London from a specially-installed 50W e.r.p., ch. 28 transmitter at Crystal Palace to the ITC's headquarters in Brompton Road. The signal source was a D1-format VTR, whose $216 \mathrm{Mbits} / \mathrm{sec}$ digital video output was compressed to about $10 \mathrm{Mbits} / \mathrm{sec}$ by a digital compressor designed and built by NTL. An OFDM (Orthogonal Frequency Division Multiplexing) modulator was used. A conventional group A receiving aerial picked up the signal, after which it was demodulated, decompressed and then fed in RGB form, after scan doubling, to a largescreen, 1,250-line, 16:9 aspect ratio Sony monitor.

The results were impressive indeed: in terms of picture detail and texture conventional TV was left far behind. A 625 -line widescreen PAL TV set of the type that can be bought over the counter was fed with a transcoded PAL composite video signal derived from the digital decoder. The pictures it displayed benefited from the low noise and greater aspect ratio but didn't stand up to such close examination as those displayed by the HDTV monitor. This was a plain demonstration that the forthcoming systems offer a trade-off between cost and performance.

This digital TV system uses AD conversion of the camera's analogue signal output, typically to a $216 \mathrm{Mbits} / \mathrm{sec}$ digital data stream, followed by compression in which the redundant parts of the picture (those that can be predicted by the information in previous frames) are discarded, only the difference information being passed on (see page 634 for further information on this technology), and finally OFDM modulation. The latter employs over 400 separate carriers, each handling digital data at a relatively low rate.

Picture Quality

The picture obtained with a transmission bit-rate of $10 \mathrm{Mbits} / \mathrm{sec}$ is, to this reporter anyway, indistinguishable from a high-quality analogue one and is better than anything currently seen on domestic TV screens.

A second demonstration showed, on ordinary TV screens, pictures derived from digital signals transmitted at a $3.5 \mathrm{Mbits} / \mathrm{sec}$ rate - three such signals can be accommodated in the bandwidth currently occupied by a single terrestrial, analogue TV channel. As an example of how this could be used in practice we saw, on adjacent screens, the three sub-regional news programmes provided simultane-
ously by Meridian TV on weekday evenings. The on-screen results were remarkably good, with very little noise and picture instability on only fast zooms and pans and jumpcuts to busy pictures.

Terrestrial DTV

A great deal of research has been done on bit-rate parameters and error-correction techniques since the first Spectre tests were carried out in Devon over a year ago. It's becoming apparent that a terrestrial DTV service could be established using transmitter e.r.p.s a thousand times less than those currently used for the PAL services. This opens the way to using u.h.f. slots that cannot be used for PAL because of interference and multipath reception problems. But satellite DTV, using the same compression and modulation techniques, would be easier and quicker to implement indeed there are plans for DTV broadcasting via Astra within two years.

Whether the signals come from Earth or space, the establishment of a DTV service giving enhanced pictures will depend on the availability, at an acceptable price, of a largescreen HDTV display device: the monitor used in the demonstration cost several thousand pounds.

The Mosaic Project

A characteristic of DTV bit-rate reduction is that the resultant image quality is dependent on picture content and the amount of movement present in the picture. The degree of impairment depends on the data rate assigned to the transmission channel and the algorithm used by the computer-controlled digital compressor. While the characteristics of the human eye and brain are well known, and much research has been carried out on the effects of shortcomings in conventional TV systems, the viewer's response to distortion caused by digital compression and to the effects of signal corruption in a digital system are not yet fully known.

The Mosaic Project has been set up to investigate this. A demonstration involving thousands of scenes from current broadcasts showed that with one system under review 84 per cent were considered to be good, 15 per cent good to fair and one per cent poor. It must be remembered however that the scenes represent very fleeting moments during a programme, and that most viewers are more interested in programme content than the picture's technical quality.

Enhanced PAL

Since the original development of the PAL system in the Sixties there have been many advances: a demonstration of current PAL Plus technology by NTL showed how much progress has been made. The aim is to develop an enhanced PAL system that could be in operation by 1995.

PAL Plus is compatible with current PAL transmissions. It provides a widescreen picture in a 'letterbox’ format. Existing TV sets display the full widescreen image with black bands at the top and bottom of the screen. Because UK viewers seem to dislike the black bands, a compromise solution has been developed - a 14:9 aspect ratio that reduces the depth and noticeability of the bands. The PAL Plus encoder and decoder on display were experimental types. We saw side-by-side displays on conventional $4: 3$ aspect ratio and PAL Plus 16:9 aspect ratio receivers. There was a vast improvement in the picture quality produced by the PAL Plus receiver when the 'helper' signal was switched in: all cross-colour effects disappeared and the
sharpness of details was improved. Receiver manufacturers aim to introduce PAL Plus sets in 1995.

Echo-cancellation

Research is also being carried out on the elimination of ghosting with u.h.f. PAL signals. Since the building of the Canary Wharf tower, ghosting has become a problem in the Lea Valley in north London - an estimated 100,000 viewers are affected to some degree. The ITC. in conjunction with a receiver manufacturer, plans to build and test an echo-cancellation system by the end of the year. It involves the use of a high-energy 'chirp' reference signal that's inserted in the blanking interval and is processed by special circuits within the receiver. If the field tests are satisfactory it's hoped that the EBU will accept the reference signal standard next year.

Audetel and Talking Teletext

Another new project, being developed by a consortium that includes broadcasters, chip manufacturers and the UK electronics companies Speka and Portset, is a picturedescription system to enable those with impaired vision to get more from TV programmes. An extra speech channel, carried as data within the teletext signal, provides a description of what's happening on the screen. This commentary would be slotted into 'quiet' periods between dialogue and over music, describing actions, scenery, facial expressions etc. - rather like a friend whispering in your ear.

Audio description has already been introduced by over fifty public broadcasting stations in the USA. The European Audetel project is supported by EC funding. Several
programmes have been provided with descriptions, and successful on-air tests have been carried out. It's hoped to start a pilot service within the coming year, for which fifty free-standing receivers will be produced and distributed for field trials.

One of the partners in the Audetel project has had a teletext reader on sale for two years: 'talking teletext' decodes the text data and reads it out in a clear, synthesised voice. A talking keyboard can be used to select data and hear the contents a page at a time. An oral facility scans each page line by line, word by word - and even spells out individual words. The basic model costs about $£ 600$: a version that also offers TV sound is available at about $£ 650$. Registered blind people are exempt from VAT on these products and if the unit is used without a TV set there's no need for a TV receiving licence. Further details can be obtained from Portset Systems - phone 0489893919.

In Conclusion

Several other projects were on display. They included studies of microwave propagation at frequencies from 37 GHz to visible light wavelengths, carried out by the Rutherford Appleton Laboratory; TV broadcast spectrum planning and computer-generated coverage maps, especially relevant to the possibility of starting fill-in DTV broadcasts; and Colour Fidelity, a computer-based and quantified study of all the factors relevant to accurate colour rendering by the TV system as a whole, from the studio to the viewer's eye.

All in all the exhibition was an eye-opener in every sense and a fascinating glimpse into the future of TV broadcasting.

TEST CASE 367

As he told her about the problems he was having with his rented JVC VCR, Major-general Anderson's voice boomed so loudly that our receptionist Pam held the handset at arm's length. Was there interference about, he wanted to know? Pam told him that there was, what with high pressure and low pressure and goodness knows what else. The General had had the same trouble with his shower, he said, ringing off satisfied.

It wasn't long however before the retired warrior's voice was again rattling the window pains of the little office. He described strange disembodied voices and picture interference during playback of his own recordings. Could we send someone along to sort it out? We could indeed. Next Monday morning our Allan was at the General's door with his little box of tools.

The interference was clearly spasmodic, because all the recordings made over the weekend were fine and a test recording done there and then played back without problem. Allan asked for a sample tape with a faulty recording so that he could check it and get a clearer idea of the symptom. It then transpired that the General had only the one tape, a three-hour cassette that was as old as the machine itself. He used it to record all the programmes he wanted to time-shift. So Allan had to be satisfied with a verbal description, the gist of which was that the sound from another transmitter was sometimes recorded along with the required picture, which suffered from some form of colour interference. Allan decided that it was best to install a loan machine and take the offending JVC one back to the workshop. There was no doubt that the problem, whatever it was, was confined to
the record mode. But record-only faults are difficult to diagnose, mainly because you cannot see what's happening until the tape is played back. When the fault is an intermittent one and you don't know exactly what you are looking for anyway it's a frustrating business. In a parting shot to Allan the General had suggested that if it wasn't due to high pressure it might be caused by a loose wire, a suggestion that was duly passed on to those in the workshop.

The VCR ran all day on the test bench, alternately recording and playing back three hours' worth of broadcast programmes. Each playback was o.k., with the correct sound track. The only interference on the picture was the usual breakthrough patterning whenever Pam keyed the RT transmitter to talk to the roving Allan or Philbert. On day two Real Technician took the top cover off the machine and, with a screwdriver, beat a tattoo on its PCBs and other delicate bits and pieces. He blasted the tuner and sound receiver with hot air from a hairdryer, then covered selected areas of the PCBs with a layer of ice from an aerosol freezer can. When he played back the five minutes of tape he' d recorded during this ferocious thermo-mechanical assault on the machine he found that, apart from the picture and sound disturbance because of the mechanical vibration and banging, there were no effects on the recording!

By now the General had had his loan VCR for a few days, so Real Technician gave him a ring to see if the replacement machine had given him any trouble. None at all thundered the voice. It was arranged that Allan would call and collect the General's tape, lending him another one. Perhaps some clues would be obtained from it. When this had been done the tape was played back. Towards the end of it a section that showed the fault was found: wrong sound track, with a drifting multi-colour overlay on the picture. The cause was soon found. What was it? For the solution turn to page 663.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

VCR Clinic

Ferguson 3V55

There was an intermittent fault with this VCR: the drum would begin to go too fast, then the machine would shut down. In the fault condition the drum FG signal at TP414 went missing, though it was present at pin 6 of IC404. The supply to this chip was intermittent because R501 was dryjointed.
P.B.

Philips VR322

The problem here was that the remote control system didn't work. Nice squarewaves from the remote control receiver i.c. arrived at pin 41 of the operating panel microcontroller chip, but it ignored them. As the signal conditions at all the other inputs seemed to be o.k. we decided, with crossed fingers, to fit a new TMP47C1670N. This restored the remote control operation.
P.B.

Ferguson 3V36/JVC HRD225

For weak E-E video check whether the $1 \mathrm{k} \Omega$ E-E level control is open-circuit.
P.B.

Panasonic NVJ35

This machine refused to accept tapes, throwing them out immediately. We found that the cassette housing was misaligned with the main deck. Realigning the housing rack gear with the main deck metal drive gear provided only a temporary cure - the machine relapsed into its previous state with a clattering of slipping gears. Inspection of the right-side section of the cassette housing showed that there were two broken plastic retaining lugs. The result was too much play on the rack gears. A new right-side assembly (part no. VXA3153) cured the problem.
B.S.

Panasonic NV200

These VHS-C portable recorders sold well in our area. They are now coming back to us for repair. The most common fault symptom is perfect recording but intermittent playback. Tapping the middle of the top of the recorder, with the top on, normally aggravates the intermittency.

After removing the case, which is no easy task, up-end the unit with the front facing you. You are looking at the print side of PCB 600. Half a dozen components are tacked on to this side of the board. At the rear of the board there's a choke which is connected to two capacitors, the joins also being laid-on connections to the PCB. These two joints become intermittent. If you simply reflow them the unit will be back within six months. To make a reliable repair take an inch of thin, flexible insulated wire, bend it back on itself to make a narrow, half-inch long U , solder one end to the choke/capacitor joints and use the other as a soldered lay-on to the board. The U acts as a shock absorber between the heavy choke/capacitor and the board, preventing them tearing themselves off in the future.
H.A.

Ferguson 3V29/JVC HR7200

This machine had an intermittent drum servo problem. There were no abnormalities in the waveforms on the servo

Reports from Philip Blundell, AMIEIE, Brian Storm, Ronald Aranha, J.C. Priest, Simon Bodgett, Michael Dranfield, Hugh Allison, Geoff Fardon, Nick Williams, Chris Watton, Ronnie Boag and Nick Beer

boards but the tracking control had no effect. Transistor Q9 had 5.5 V at its base, implying that it was in the search mode. This switching transistor is controlled by the voltage at pin 12 of the IR 2403 chip IC4, where the reading was 0 V . Pin 5 is the relevant input, which receives the search command from system control. The reading here was 6 V . When pin 5 was disconnected it was clear that this voltage was coming from within IC4. A replacement chip (M54519P) restored Q9's base voltage to 12.5 V . R10 and R207 were then readjusted as per the instructions in the manual.
R.A.

Ferguson FV31R

The complaint with this machine was that it wouldn't tune to the local channels. On test we found that although all other functions worked correctly there were problems when the machine was put in the channel preset mode. The tuning display counted up through the channels numbers, but the monitor didn't display any sound or vision and the tuner wouldn't lock on to any of the channels as it passed through them.

After removing the case and raising the top PCB we took the screening cans from above and below the tuner/i.f. section and examined the area carefully for print cracks, dry-joints etc., something that's common in this range of machines. Everything seemed to be o.k. this time however. So checks were made at the tuner's base pins where we found that the tuning voltage (pin 11) was missing. We moved back to the tuning control transistor TTI2, whose collector voltage was at 0 V , then to pin 9 of the TD6316AP tuning control chip IT20 where the voltage was 3.2 V . This was turning TT12 fully on, hence the absence of its collector voltage. A new TD6316AP chip restored correct tuning.
J.C.P.

Sanyo VHR135

The complaint with this machine was that it wouldn't do more than two or three timed recordings in sequence. I called at the house and set it up to do five two-minute recordings at two-minute intervals. It went through the sequence without error, so I came to the conclusion that the problem was caused by operator error. I set up a further sequence of half-hour recordings and left to make other calls.
When I returned in the late afternoon the machine should have been half way through its last recording period. Instead it was off and the cassette had been ejected. On questioning the customer I discovered that on occasions when a blank cassette was inserted the machine would go into automatic play as though it was a protected cassette. Light dawned. The record protection switch looked o.k. and produced a good continuity reading when operated, but I fitted a temporary link across it and asked the customer what programs he wanted to record that night. I set up a full six timed recordings and warned the customer that the protection circuit wouldn't operate until I came back.

The following day I found that all six items had been recorded without problem. Obviously dodgy switch contacts persuaded the machine, when it had been in operation for
some time, that a protected cassette was loaded - hence the eject. Removing the link and cleaning the switch contacts restored normal operation, but to be on the safe side a new switch was ordered and fitted.
J.C.P.

JVC HRS5800

The remote control system worked all right but the on-deck controls didn't operate. There was also no change when the audio/mix switch was operated. ICI was at fault - one of its scanning ports was down.
S.B.

JVC HRD4700

This machine produced noisy pictures intermittently. The symptom looked like head clogging, but this wasn't the cause of the fault. I had to replace the lower drum assembly because of a problem with the ribbon cable that carries the signals to and from the heads.
S.B.

Ferguson 3V42/JVC HRD455

"Won't accept a tape" the note said. The cause was failure of one or both of the cassette detect microswitches on the cassette housing. I decided to replace them both.

Sentra VX8400/Alba VCR5000/6000X

For no drum rotation check IC506 (BA6411) by substitution, especially if the print is discoloured and it looks as if the chip has been overheating.
M.Dr.

Sharp VC9300

After fitting a new switch on the cassette housing and servicing the deck we found that the capstan motor would slow down intermittently. The cause was eventually traced to a dry-joint on the f.e.t. Q705.
M.I)r.

Sharp VC9300

When we plugged this machine in the capstan motor ran for a couple of seconds then stopped. In the past we've had problems with the STK 5725 power supply regulator 19002, so this is where we started. Its 13 V and 18 V outputs were o.k., but the 11 V output at pin I was missing although the 12.7 V input was present at pin 2 . We next found that the power control input at pin 3 was permanently high: it should be low for power on. Shorting the base of Q9003 to chassis via R9021 brought some life back to the VCR. The poweron low signal comes from pin 24 of the main microcontroller chip 150002 . Checks here showed that the 5 V supply at pin 64 was missing. This comes from regulator transistor Q5002, whose 13 V collector supply was missing. Yet the 13 V rail was o.k. at the power supply end.

The syscon PCB in this model uses double-sided print. The track to Q5002's collector is on the component side, where the fault lay. Q5002 and the surrounding components were covered in brown glue that holds a passing bunch of wires. When we'd removed the glue we found that the track to Q5002's collector had been eaten away. A fine-wire link restored normal operation.

Now how's this for coincidence? A week later the same dealer brought in another of these machines, this time with a clock fault. The time could be set but the colons didn't flash and the clock didn't count. A check at pins 2-3 of 15002 showed that the 32.768 kHz clock oscillator had stopped. We confidently fitted a new crystal but the clock still didn't
work. Further checks in this area showed that R5047 (56k Ω) was open-circuit. Guess what? It's underneath the same blob of glue around Q5002! When we removed the glue we found that R5047 was without its leadout wires. A replacement put matters right.

It seems that this moisture-absorbing, corrosive glue is like a time bomb ticking away in these old machines. M.Dr.

Hitachi VT11

There was no response from front panel commands, i.e. no play/fast forward/rewind etc., though the machine worked normally when asked to make a timed recording. The remedy was to replace the BA6304 chip that interfaces the front panel to the microcontroller chip.
G.F.

Samsung VI611/Logik VR950

The problem was no play, with no drum or capstan rotation. We found that there was no 12 V supply to the servo panel. Transistor Q2 (2SA634) wasn't switching on because R7 ($1.5 \mathrm{k} \Omega$) in its bias network was open-circuit.
N.W.

Samsung SI1260

Failure to record when warm is becoming a common fault. The first report you may get is of poor recording in the LP mode, progressing to no LP or SP recording. It looks as if no signal is being recorded, just noise - as though the machine is off tune. In fact the cause of the fault is lack of the luminance record signal: a scope check at TR3201 will show that it is almost non-existent. Replace C3203 (68pF) which goes open-circuit.
N.W.

Amstrad VCR4600

There was severe patteming on the TV channels, present only when the VCR was switched off. I suspected the booster module but a replacement made no difference and when the original one was tested out of the machine with a bench supply it proved to be o.k. As the only supply that's present when the machine is switched off is the always 12 V line I checked the source of this. $\mathrm{C} 508(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ on the main panel was low in value.
C.W.

Philips VR6520

The complaint with this machine was no colour. There was also a hum bar in the E-E mode. Replacing Cll03 $(1,000 \mu \mathrm{~F}, 63 \mathrm{~V}$) providet a complete cure. C.W.

Akai VS22

The power supply in these machines can be a little trying to say the least. This one wasn't too bad however. The complaint was that the clock was out of sync: there were also hum bars on the picture in the E-E mode. I would normally expect to find some leaky transistors and over-heated print, but the cause was simply C6 $(220 \mu \mathrm{~F}, 10 \mathrm{~V})$.
C.W.

Matsui VX820/Saisho VR1200HO

When the mains supply was connected to this machine the motors gave a twitch and the operate LED came on for half a second. Checks showed that the 12 V rail was low at only 3 V . It's provided by the series regulator transistor Q02 whose base is biased by $\mathrm{R} 06(1.5 \mathrm{k} \Omega)$ and the 13 V zener diode D07. The zener diode proved to be leaky. C.W.

Grundig VS440

There were no E-E signals, only snow. By using the direct tuning method rather than search tuning the channels could be set in the tuner preset positions but there were still no signals. Checks on the tuner module showed that all voltages were present and correct. The other thing to check here is the I2C data and clock lines. These were at the correct d.c. levels, and pulses were present. Inside the can there's an SDA3202-2 PLL chip. We found that it had no output at pin 18. A replacement restored correct tuning.
C.W.

Hinari VTV100

There was no playback colour. I checked the VCR section with another TV set and everything was fine. I then connected another VCR and found that the fault was present. After a lot of component replacement and adjustment checks I replaced the 4.43 MHz crystal XTL301. This provided a complete cure.
C.W.

ITT VR3918

The tape was thrown out when record was selected. At last a simple one! The erase prevention switch had become dislocated from the frame of the deck and thus failed to open. This told the microcontroller chip that the tab had been removed. I refitted the switch, using a tiny spot of glue so that it wouldn't fall off again.
C.W.

Samsung SI1240

In the play mode the video level was fine. In the E-E mode however the picture was negative. A check at test point TP3202 (video output) produced a reading about twice the correct value (over 5 V) while the top of the waveform was cut off. Adjustment of the E-E level control VR3205 made no difference. This potentiometer sets the d.c. level at pin 19 of the LA7323 video chip IC3201, but the voltage here didn't change when VR3205 was adjusted. The cause of the trouble was R3218 ($2.7 \mathrm{k} \Omega$) which was open-circuit. When a replacement had been fitted and the E-E level had been set to 2 V peak-to-peak at TP3202 we had normal results in both the E-E and the playback modes.
C.W.

Finlux VR3300

The fault was an intermittent video rasp on playback of prerecorded tapes. The r.f. modulator couldn't handle highcontent video.
R.B.

Fisher FVHP5000

There was no playback or E-E picture, the r.f. picture being o.k. We found that there was a dry-joint on D203 which is near the green disc capacitor on the solder side of the bottom PCB.
R.B.

Sanyo VHR4350/7250

A problem you can sometimes get with these machines is wear of the sub-reel brakes. The cure is to replace the old reels with new modified ones - part nos. 6131266148 and 6131266155.
R.B.

Samsung VI710

This unit was dead. A check on the 30 V supply at pin 10 of

CN101 showed that the voltage here was low. The cause was that R109 ($4.7 \mathrm{k} \Omega$) which biases the base of transistor Q102 was open-circuit.
R.B.

Hitachi VT35

There was no clock display because R2711 (22S) on the back-up supply PCB was open-circuit. R.B.

Fisher VHFP5100

If there are no remote-control functions try fitting a threecore mains cable. If this doesn't cure the fault replace lC151.
R.B.

Hitachi VT11

There was no E-E picture - but if playback was pressed the E-E instead of the playback picture came up. Voltage checks showed that the PB 9 V supply was missing. We found that transistor Q905 was short-circuit base-tocollector, a replacement restoring normal operation. R.B.

Sharp VCA105HM

This machine badly damaged tapes because the loading arms/guide poles didn't return to their correct rest position when unlacing was complete - they sat directly below where the tape emerged from the cassette's flap. The timing between them and the sector gear was one tooth out. Retiming provided a cure but the gear had to be replaced as it was damaged. Following advice in a letter in the December issue I also replaced the back-tension post lever and gear - it's concievable that this was the root cause of the problem.
N.B.

Panasonic NVJ30B

This machine, which uses the G mechanism, refused to accept a cassette because the capstan motor didn't move with this deck front loading is performed via a rack that's driven by the capstan motor. Checks around IC2101 showed that the 12 V supply was present but the 5 V Hall bias supply was missing. In fact there was no 5 V supply throughout the system control circuit. It comes from the 2 SDI 330 regulator transistor Q1102 which read perfectly when tested cold but went open-circuit under load.
N.B.

Panasonic NVJ42/7/F55

Failure to transmit is a very common problem with the remote handset/scanner unit. The cause is a very high-resistance IR emitting diode. Another point is that the front flap is weak - it's easy to replace.

An interesting point is that the VideoPlus handset supplied with the brand new NVSD30 will work in the VideoPlus mode with all modern machines that use a scanner handset - while the scanner handsets will work with the NVSD30.
N.B.

Sharp VC651HM

A cassette was jammed inside with the machine fully laced. This was unlike the more usual case where the deck can't shuffle because the reel idler is faulty. The cause of the trouble was a faulty loading belt. This would normally prevent completion of loading rather than prevent unloading.
N.B.

Satellite Notebook

Nick Beer

Here we go again: my apologies to those who have missed the column because of its intermittent appearance in recent months. My workload has been particularly heavy and on top of that I've been moving house.

Astra Channels

The two Spanish Sogecable channels Cinemania and Documania, which are financed by Canal Plus, are now using Nagravision encryption. The sound is also encrypted, which can be irritating when you step through the channels as it produces a high-pitched, high-level squeak. It sounds very much like the system (SAVE) used by BBC World Service and Bravo on Intelsat.

Screensport's merger with Eurosport started off with the combined service using two transponders: subsequently Screensport's transponder on the lA satellite was taken over by the German RTL2 channel. Vox took over Lifestyle's transponder when this channel ended. The predominantly sports channel DSF has taken over TELE5's transponder.

Series 07 Sky Cards

The reason for updating Sky's premium service subscription cards from series 6 to series 7 relates to the future use of a PPV (pay per view) facility. When the new cards are inserted from cold a twin line display of P, T and several 0 s appears, giving a clue to the new facility.

It seems that some later Amstrad IRDs produce this display at regular intervals, apparently because the unit's system control strobes the authorise button.

A number of Sky subscribers have criticised the introduction of these new cards, complaining that little explanation was given as to when they should be used and why. Now I know that they should have seen Sky's numerous announcements on its premium channels, or simply swapped cards on receipt of the new ones, but many didn't. When they got "this channel is blocked" on the screen they simply phoned us! The announcements themselves alarmed some of our customers who thought they'd be cut off if they didn't do something within the next half hour. All in all the change was not well handled.

The Marconi Solo LNB

I've had several faulty Marconi Solo LNBs recently. A typical case was with a relative who had bought a Pace system with Lenson Heath dish and Solo LNB. Could I install it? Of course! All went well until I found that I couldn't set the i.f. offset for noise-free operation with both signal polarities. Horizontally-polarised signals produced terrible results at best. I altered the orientation of the LNB at the end of the arm - it should have been perfectly o.k. where it was. This improved matters, and some further minitweaking brought good results. But it was far too fussy. I warned my relatives and said that I couldn't do more as I
didn't have a spare LNB with me.
Within days I was back out there with the same problem. A new LNB set up with no fuss whatsoever and has been fine for a couple of months.

The other problems have been of a similar nature.

Receiver Faults

We had a problem recently with a Cambridge RD480 receiver. Some months previously I'd replaced the LNB because of its very low output. On another call the saddle clamp that holds the LNB to the arm of the Lenson Heath dish had cracked. We've had this problem on two or three occasions. It meant that the LNB swung freely in the breeze. If left much longer it would have fallen from the clamp and been left suspended from the end of the coaxial cable. This time I called and found that reception was very weak though the incoming signal from the LNB was fine. So the receiver was faulty. We have to return these receivers to the distributor for service, so I can't tell you what was wrong. My guess would be a low-gain tuner.

A Ferguson SRV1 that came in had very much the same problem - extremely low output from the tuner. Nothing new about that, and the capacitor replacement won't cure this one. Unfortunately MCES doesn't rebuild this type of tuner, but a replacement is not prohibitively expensive.

No sound was the fault with a Ferguson SRA1. This mono-only unit doesn't use the U2829B f.m. demodulator chip that gives regular trouble with the SRA1S and SRV1, and checks showed that the sound signal went missing prior to the detector chip. In fact there was no output from the preceding ZTX314 sound i.f. amplifier transistor Q33. Shunting a suitable capacitor across its base and collector connections restored the sound. The cause of the problem was that the chassis end of the transistor's 220Ω emitter resistor R161 wasn't beng earthed because of a break in the print.

This particular receiver hadn't had any of the modifications done to it. I carried out the power supply kit and the IR amplifier screening modifications. Most of the bulbs were open-circuit as well, and every pin of the mains transformer was dry-jointed - bet you wouldn't have guessed that!

Another of these receivers came in with black goo oozing through the vents in the top of the case, just above the mains transformer - much to the owner's horror. But remember that there is no heat problem with this model - Ferguson told us so.

Dealer Support from Pace

Some months ago Bill Fraser told me about a technical newsletter that Pace was preparing for service departments, to be distributed in the first part of 1993. It duly appeared and many of you will probably have seen it. Well worthwhile: the publication is packed with technical hints and fault cures.

We had returned and had replaced a number of newish PRD800/900s because of no on-screen displays. The newsletter confirms that this is a known problem with a cure - fit a different crystal and change the two loading capacitors, or simply replace the original crystal using the same type. Part numbers and explanations are included.

This is just one example of the useful information provided. Unlike so many of its competitors, Pace is clearly not afraid of providing us with information. The newsletter is an invaluable aid for those who service Pace products or their clones (Ferguson, Philips, Nokia, Bush, Alba etc.).

Panasonic's Digital TV Chassis

Ray Meadows

The first two TV models from Panasonic to use digital signal processing are the TX25W3 and the TX28W3. They are fitted with Panasonic's new Euro 1 chassis. The change from analogue to digital signal processing has been adopted because digital technology offers advantages in terms of performance, user features and cost. From the servicing point of view several built-in aids mean that repair of a digital TV set will not be as daunting as might at first be thought.

Resolution

Performance has been a problem with previous digital TV chassis, largely because of insufficient video data signal bit resolution. Seven-bit resolution has generally been employed to date. The Euro 1 chassis uses a new custom chip, called a Digital Features Unit (DFU), which has been developed by Matsushita in conjunction with ITT-Intermetall. It employs eight-bit resolution for both the luminance and chrominance signals, giving a vast improvement in the detail seen on the screen and a similar reduction in "contouring", which has always plagued digital video. Superior picture quality is obtained through the use of advanced digital comb filtering, noise reduction and other techniques. The audio signal is also processed digitally, using fourteen-bit resolution.

Features

The features familiar with the previous Alpha 3 analogue chassis are all available along with some new ones. Features that the customer sees are four AV links, Artificial Intelligence (AI) and on-screen menus.

The AV connectors are as follows:
AV1: Scart socket with full RGB and AV inputs/outputs.
AV2: Scart socket with AV in/out, monitor out and YC in (S-VHS).
AV3: S-VHS input via a Hoseiden connector and audio input via phones. Continental D2-MAC models also have an S-VHS output.
AV4: AV phonos and S-VHS Hoseiden input on the front panel.

AI, or 'scene control' as it is also known, provides active picture contrast adjustment to make full use of the screen's dynamic range. This task is performed within the DFU chip. The circuit continuously monitors the maximum, minimum and average values of the video signal over thousands of picture points. This is relatively easy to do once the signal is in digital form, since every pixel has a numeric value.

The effect of this processing is to maximise the contrast, improving the definition with overly dark or bright scenes. By maintaining the average luminance level while expanding at each side of this within the limits of peak white and the black level, undesirable pumping effects are avoided.

AI can be set to three conditions: normal (on), dynamic and off. The dynamic position is useful mainly for demonstrating the system to customers, as the dynamic to off change is the most readily apparent one. Incidentally AI has no effect with a test pattern where the signal varies from black to peak white.

The on-screen menus allow AV output selection, i.e. TV, AVI, AV3, AV4 or monitor, very useful for video editing.

Picture noise reduction and ambience selection are also available. In addition the picture aspect ratio can be preset to $4: 3$ or $16: 9$ or left in the 'auto' mode, in which the ratio is set by the level of the switching voltage at pin 8 of the scart sockets.

Continental variants of the chassis allow for on-screen language selection while satellite-equipped sets additionally have AVI's output selectable for use with descramblers, and D2-MAC, language and subtitle preference selection.

Internal features include a digital chroma transient improver, a digital luminance transient improver and a digital comb filter. The tube is a black-line super type.

Previous Panasonic models released in the UK have not incorporated colour transient improvement circuits because of the undesirable side effects they can introduce, namely colour-luminance registration errors ($\mathrm{C}-\mathrm{Y}$ delay) and the effect that noise can have on the process. The digital CTI system works very well however, as can be seen by studying a pluge pattern with a 2 T pulse.

The comb filter is also 'intelligently' controlled, so that dot crawl on horizontal transitions between h.f. luminance and chroma information is minimised.

Because of the extensive use of digital circuitry these features can be included with little added physical complexity and at relatively little cost. This means that the new models are no more expensive than their predecessors. They should be easier to manufacture and service. As the component count is reduced, reliability should be improved.

Construction

The chassis construction (see Fig. 1) is much simplified in comparison with the Alpha 3 chassis used in the W2 series models. Basically the Euro 1 chassis consists of a main analogue mother board and a plug-in digital pack. A few smaller boards are used for the front panel controls, sockets and of course the c.r.t. base.

The main board (E-PCB) contains the power supply, the field and line output stages, the audio amplifiers, the tuner and the i.f. module. All processing between the i.f. module and the output stages is carried out in the digital pack, board A-PCB, which is mounted in a metal screening can. It contains the signal switching, Nicam, video and audio processing, sync and timebase generator/driver sections. The AV switches and rear panel sockets are also on this panel. The majority of the chips it uses are from the ITT Digit 2000 series and are surface mounted.

Continental variants of the chassis use basically the same boards but may omit the Nicam chip or add a Secam processor. They may also have a different i.f. module. With satellite and picture-in-picture equipped models an extra panel $\mathrm{B}-\mathrm{PCB}$ is fitted inside the same shield case as panel A-PCB.

The first thing one notices when the back cover is removed is the reduced number of interconnecting cables in comparison with previous Panasonic models. As with its predecessors, the Euro 1 chassis is put in the service position by hooking it on to clips near the back of the left speaker enclosure. This provides easy access to the conventional analogue circuits on panel E-PCB. To work on the digital pack the shielding case has to be removed. The A-PCB can
then be probed from the top side. Extension cables are required to operate the set with improved access to the rear of the A-PCB. They are available as part of a service kit.

Also available is a surface-mount repair kit which contains various cutting and removal tools plus a gas soldering iron with special surface-mount soldering tips. A memory pack which plugs into the AV2 connector and a service remote control unit are also available - more on this in a moment.

Service Modes

As an aid to servicing, the Euro I chassis has several service modes that can be entered only by the service engineer. They are all protected against accidental customer operation because a combination of keys has to be depressed. For example to enter the basic service mode 1 , which is used to adjust the scan sizes, picture geometry, colour reference oscillator, colour temperature etc., you first adjust the audio controls on the set simultaneously for maximum bass and minimum treble then depress the remote control text reset button whilst at the same time depressing the volume down button on the set.

Service mode 1 then appears and each function can be selected by using the remote control unit's red and green flof keys. Updown adjustment of the settings is done by using the yellow and cyan keys. The new setting must then be stored by using the tuning store button ' s ' on the TV set, otherwise moving on to the next item will result in the new value automatically reverting to the old one.

The service manual shows typical normal values, but these will vary slightly from set to set depending on screen size and the tolerances of the analogue components.

The first service mode 1 option enables all the preset program positions to be memorised in an external memory pack or, conversely, to be loaded: the memory pack must be plugged into the AV2 connector before the set is switched on and the service mode is entered. This is useful when a dealer has to tune large numbers of sets to the same channels - one set's presets can be learnt and transferred to all the others. There's a similar function in service mode 2 , enabling a set's adjustment settings to be stored or copied. All the other adjustments in mode 1 can then be stepped through and adjusted if necessary.

Service mode 2 is entered from the last option of service mode 1 by pressing the text hold button. In this mode option bytes that define the set's characteristics appear, hardware permitting. These are best left alone, otherwise the software may be led to believe things that the hardware doesn't!

Leaving the service modes resets the receiver's customer presets to their last stored condition - including the bass and treble settings. Note that the surest way to hard reset the receiver is to turn off at the mains switch.

Other service modes enable basic fault diagnosis to be carried out, even with a dead set, by flashing the standby LED at different speeds. It's thus possible, by using different remote control keys, to find out on which intemal bus a fault is present.

When the remote control unit's off-timer button is pressed at the same time as the set's volume down button, another self-check mode shows numerical values on screen for the main components. They can then be checked against the values specified in the service manual. After leaving this mode the user presets are all reset to the factory positions.

Finally, fixed-mode operation forces the receiver into the PAL, NTSC or modified NTSC mode. This requires the use of the service remote control unit which has one extra button compared to the standard unit.

Apart from these adjustments via the service modes the

Fig. 1: The Panasonic Euro 1 chassis - positions of the main items.
only adjustments available in the set are focus, c.r.t. cut-off and screen (first anode voltage) - the latter two are used in conjunction with service mode 1 .

Repairs

The main E-PCB panel is of conventional construction, using leaded components. Most of the semiconductor devices are fitted to heatsinks with snap-on retaining clips that are easy to remove. Replacement of semiconductor devices should rarely be necessary however as the set is protected by over-voltage and excess-current circuits in the primary side of the power supply and fuses in the secondary side.

Some of the more important supply lines, such as the 5 V supply for the digutal circuitry, have series-regulator circuits that use a field-effect transistor as the series element. The reason for this is the low voltage drop across the device. Thus in the worst possible case, an internal short between the input and output of the series element, the output voltage increase can be only small. This is important if you think of all the digital chips that are powered by the 5 V supply: a voltage rise to 6 V is not as catastrophic as a rise to say 12 V , which could happen if a conventional regulator shorted internally.

The a.c. mains input glass fuse is on panel P-PCB along with the mains switch and the mains filter. The four internal supply line fuses are positioned near the centre of panel EPCB. They are of the black, vertical Siemens type.

The idea of fault-finding on digital panel A-PCB, where the signal processing takes place, may worry some service engineers. By using the service modes described above and referring to the service manual it should however be relatively easy to isolate the bus on which the fault is present and thus the suspect chip. The recommended process is then to cut the chip's legs with a scalpel, remove the body and desolder the pins from the PCB. Most of the passive components on this panel are of the surface-mounted type, as are many of the components in the vision i.f. pack and on the c.r.t. base panel.

In Conclusion

In the past digital TV chassis have been notoriously unreliable, have performed poorly and been difficult to service. Time alone will judge the reliability of this chassis. But if performance and serviceability are anything to go by we should have few problems.

Future articles will look at the circuitry used in the chassis.

DO YOU REPAIR WHITE GOODS?

THEN YOU SHOULD KNOW ABOUT

DATAPART

THEY HAVE THE LARGEST AVAILABLE RANGE OF GENUINE AND PATTERN PARTS FOR MOST BRANDS OF :-

WASHING MACHINES
 KETTLES IRONS TOASTERS MICRO-WAVE OVENS
A 254 PAGE PATTERN PARTS CATALOGUE IS AVAILABLE AT A COST OF £4 TO NON ACCOUNT CUSTOMERS

$-\perp$ DATAPART LTD

SALES DESK $0217665551 \quad 24$ FAX FREE 0800373459 HOURS

PAYS:UTI.V.

SUPPLIERS OF WORKING

 NEW + USED TV'S, VIDEOS, MICROWAVES + FRIDGE FREEZERS.
TVL , NOTTITCHAMO6012SMOD2 LONDON081.5688182

WE DELIVER ALL AREAS!

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP TEL: 081-877 3492/877 3518 FAX: 081-877 3518

BELT KITS
MAINTENANCE KITS
BACK-UP BATTERIES

MANY OTHER VIDEO AND TV SPARES IN STOCK

 GEC. Goldstar, Granada, Grundig, Hinan, Htachi, ups, Salssho, Saloraa,
Mitsubishi, NEC. Orion, Panasonic, Philitps. Sory, Tashiko, Toshiba Saisho. Samsung, sanyo. Schnelder, Shara

LINE OUTPUT TRANSFORMERS
LOPT Hitachi 2174,76,78.
LOPT Hitach CPT1476
LOPT Hitach CPT2276 elc
LOPT Matsul 14
Decca 100
IT CVC25/30/32
ITT Compact 80 Series 1
17 C Comoact 80 Ser
$17 \mathrm{CVC1204}$
CVCB00/1/

Test Report: Maxcom AII-In-One

Eugene Trundle

It's seldom that a new concept in electronic test equipment comes along, especially one that's aimed at our side of the industry. The Maxcom Model MX9000 thus seemed to be well worth investigation. It's billed as an "all-in-one" instrument. Though not quite that it does encompass in one case a triple power supply, a signal generator, an eightdigit frequency counter and a digital multimeter with comprehensive facilities. They are all independent of one another, both in terms of functions and electrical connections.

It thus seems to be able to provide, in conjunction with an oscilloscope, all the test and measuring functions required in the day-to-day servicing of consumer audio, video and TV equipment. I discovered that it's also a very good teaching aid and demonstrator, but more on this later. In addition to spending some time in daily use on the bench it was examined internally and all its functions were given an intensive test. For specifications see Table 1.

I started by reading the user's instruction book. This is well written and easy to understand but does, with a few spelling and syntax errors, betray its Korean origins. Its 33 pages provide full operating and safety instructions but there's nothing on calibration, alignment or applications. The circuit diagram and parts list are in a separate manual see later.

Signal Generator

The signal generator (the manufacturer prefers to use the phrase function generator) is particularly useful for audio work, providing sine, square and triangle waves at frequencies of 0.02 Hz to 2 MHz . Its four-turn rotary vernier control can be precisely set by pressing a button for readout in the frequency counter department. On test it met all its specifications easily and provided a rich variety of waveforms for testing logic circuits, filters of all sorts, servos, audio amplifiers - even loudspeakers. I found that the internal sweep (up to 100:1, lin/log selectable) and the control-by-externalfrequency facilities are excellent for checking many of these.

This section of the instrument is outstanding for teaching and student demonstrations, providing a clear way of showing clearly such diverse things as switch-mode power supply operating principles, frequency modulation, loudspeaker response and resonance, the audible effects of distortion and many others.

An excellent, accurate tool and toy!

Frequency Counter

The frequency counter is in the top centre section of the front panel. It has an eight-digit LED readout, 100 MHz capability and a gating time of up to 10 sec . I found the red LED display easy to read in anything short of direct sunlight and the sensitivity adequate. Its performance in the presence of spurious signals (hum, hash) is comparable with that of the stand-alone Leader counter we use here, and I've always been happy with this item. The hold facility is useful for comparison tests, and there's an auto key that resets the counter to a standard mode of range

100 MHz with a $1 \sec$ gateing time. All very good.
I was however disappointed with the counter's accuracy when I checked it against two references inside a colour TV set tuned and colour-locked to a BBC studio broadcast 8.867238 MHz (twice the colour subcarrier frequency) and $15,625 \mathrm{~Hz}$ (the line frequency). The error averaged 25 p.p.m., way outside the quoted tolerance of $1 \mathrm{~Hz}+1$ digit + TB error (5 p.p.m.). I'm sure that this was purely a matter of factory setting. Indeed I saw, but didn't touch, the crystal trimmer within the unit!

Digital Multimeter

The digital multimeter's specification and performance are adequate rather than spectacular. It's an autoranging type with a $3 \cdot 5$-digit $L C D$ readout and a hold facility for comparison checks.

It met its not very demanding accuracy specifications in all modes and ranges. A higher resistance range than $2 \mathrm{M} \Omega$ would have been welcome: many inexpensive and handheld DMMs reach up to $20 \mathrm{M} \Omega$ - mainly required for TV work. Two features of the resistance test facility are very good: the 'lo- Ω ' mode for checking components that are shunted by a semiconductor device, and the '-MEM' switch for cancelling a standing resistance present such as that of the test leads and prods. These both make life easier! The DMM terminals are isolated from the rest of the instrument, permitting for example current readings in either leg of any of the power supply section's outputs.

The only drawback I found with the DMM is the difficulty in reading the display under most workshop lighting and bench conditions. Unless the display is viewed dead level the unused bits appear as shadows that are strong enough to confuse.

Power Supply Section

The power supply section provides three separate outputs: a fixed $5 \mathrm{~V} / 2 \mathrm{~A}$ output for powering logic/digital circuits, a fixed $15 \mathrm{~V} / 1 \mathrm{~A}$ output for analogue circuits and a variable $0-50 \mathrm{~V} / 500 \mathrm{~mA}$ supply for general use.

I measured the two fixed outputs at 5.01 V and 15.1 V , dropping to 4.98 V and 15.07 V at the full rated loads of 2 A and 1 A respectively, with no more than 1.5 mV of ripple on either of them. So full marks for stability and regulation.

The Maxcom MX9000 All-In-One instrument.

Foldback (constant-current mode) occurred at 3.35 A and 1.99A respectively, well over the full rating but helpful in practice and harmless if not sustained. I would rather have had 12 V than 15 V . but there you are.

I was able to set the $0-50 \mathrm{~V}$ variable supply within 500 mV quite easily with the four-turn potentiometer provided, and the 3.5 digit LCD readout was sufficiently accurate for all my uses, with respect to both voltage and current. This supply had less than 1 mIV of ripple at 100 Hz and was so well regulated that it dropped by only 100 mV between zero and full load. I found it particularly useful for providing a tuning supply for a varicap tuner and 30 V for a fluorescent display and for memory chips, as well as the more usual l.t. feeds. The only drawback was the overcurrent trip system. Whenever it trips out - this one went at 545 mA - the only way to reset it is to turn the whole instrument off and on again. It's also difficult to set the current limit control, which instigates the trip action at any required level up 10.500 mA . I would have preferred a calibrated or meter-presettable limiter and foldback current limiting.

As all three power supply outputs are separate they can be connected in series using patch leads to give for example 20 V at $1 \mathrm{~A}, 20-70 \mathrm{~V}$ at 500 mA or $\pm 5 / 15 \mathrm{~V}$ at 500 mA .

Construction and Accessories

The MX9000, which is finished in light grey, is a beefy instrument that's comparable in size and shape with a bench oscilloscope. It's not intended to be portable. The steel and plastic case is strong, but the front support legs are rather flimsy.

Inside the unit there are separate mains transformers for
internal powering and for the power supply section. The functional parts are spaced well away from the heatproducing power sections. With the exception of the frequency-counter, which is built on a fibreglass panel. SRBP boards are used. The build quality is as good as in any instrument I've come across in the relative price range.

The test leads are of good quality but may need to be supplemented with an oscilloscope-type probe for the frequency counter and some banana-plugged patch leads for the power supply and DMM.

Conclusion

This combination of four test instruments in one package is a good one that offers excellent value for money: separate instruments of similar specification would cost over $£ 400$, so the saving is plain. The unit is very useful in the TV/video/audio workshop, is excellent for colleges and educational purposes, and is a good checker/calibrator for experimental, design and test work with transistor and i.c. circuits and modules.

Although a few critical comments have been made in this review they are not that important when you consider the very reasonable price of this unit in terms of its comprehensive facilities and specification. I would not hesitate in recommending it to all but the most exacting and deeppocketed technicians!

The Maxcom MX9000 is available at $£ 216.61$ plus VAT (one-two off trade price) from CPC, 180-200 North Road, Preston PR1 IYP (teleptone 0772555 034). It has a oneyear guarantee. A service manual/parts list and spares can be ordered from the supplier. My thanks to CPC for the loan of the review instrument.

Table 1: Abridged specification.

SIGNAL GENERATOR

Waveforms: Sine, square, triangle, skewed sine, ramp, pulse and TTL square.
Frequency: $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in seven ranges.
Amplitude: 2-20V peak-to-peak.
Sweep: External/internal, 20msec-2sec,width variable to 100:1, lin/log law.

POWER SUPPLY

Output 1: $0-50 \mathrm{~V}, 0-500 \mathrm{~mA}, 1 \mathrm{mV}$ max. ripple. Current limit trip. Display 3 -5-digit LCD for voltage and current.
Output 2: 5 V fixed, 2 A max., 2 mV max. ripple. Current limiting, 3A foldback. Lamp display.
Output 3: 15 V fixed, 1 A max., 2 mV max. ripple. Current limiting, 2A foldback. Lamp display.

DIGITAL MULTIMETER

Display: 3-5-digit LCD.
Ranging: Auto.
D.C. voltage: Five ranges to 1 kV , accuracy $\pm 0.25 \%+$ 2 digits on the 200 mV range.
A.C. voltage: Four ranges to 750 V , accuracy $\pm 1 \cdot 2 \%$ + 3 digits.
D.C.: Two ranges to 10 A , accuracy $\pm 1 \%+5$ digits.
A.C.: Two ranges to 10 A , accuracy $\pm 1.5 \%+5$ digits.

Resistance: Five ranges to $2 \mathrm{M} \Omega$, average accuracy $1 \%+4$ digits.
Input impedance: $10 \mathrm{M} \Omega$.
Features: Overload protection, hold, high/lo Ω, memory mode.

FREQUENCY COUNTER

Display: 8-digit LED.
Range: $1 \mathrm{~Hz}-100 \mathrm{MHz}$.
Resolution: $0.1-100 \mathrm{~Hz}$.
Sensitivity: $15-30 \mathrm{mV}$ r.m.s.
Gate time: Five steps, $10 \mathrm{msec}-10 \mathrm{sec}$.
Accuracy: $\pm 1 \mathrm{~Hz} \pm 1$ digit \pm TB error.
Timebase: Frequency 10 MHz .
Stability: Initial 5 p.p.m. ± 5 p.p.m./year.
Input impedance: $1 \mathrm{M} \mathcal{\Omega} / 100 \mathrm{pF}$.

GENERAL

Power: $115 / 230 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$, consumption 120VA at full load.
Physical details: Size $375 \times 160 \times 340 \mathrm{~mm}$, weight 11 kg .
Accessories providect Power cord, fuse, instruction book, test lead and coaxial cable.

A Visit to Pace MicroTechnology

Following various comments of mine on the subject of satellite receiver reliability I received an invitation from Bill Marshall, Pace Micro Technology's Service Manager, to visit the company and see it in action - from receiver design to servicing. Bill has since left the company, his replacement being another Bill - Bill Fraser.

It's not often nowadays that you come across a high-technology consumer electronics manufacturer in the UK with virtually all its operations under one roof. Pace subcontracts out only PCB manufacture, though a plant is being built so that much of this can also be done in-house. In addition to IRDs for the UK market, Pace's satellite product range includes non-IRD receivers, D2-MAC receivers employing Eurocrypt, and positioners. It has a considerable share of the Continental market for these products.

Bill Marshall acknowledged that there had been one or two weak points in earlier receivers. Because of time limitations with the introduction of the first receiver, Model SS3000 (Ferguson SRA1), a linear power supply that was more hurriedly designed than the company would have liked had been used. We all know what the outcome of this was: a heavy PCB-mounted transformer that becomes dry-jointed and has been know to melt, regulators riveted to heatsinks that were rather too small, and so on. The encouraging thing is that Pace learnt its lessons. The SS6000 (Ferguson SRAIS) was in a different class regarding reliability.

Pace also has major markets for its computer/telecommunications modems, and a large section of its building is concerned with this. My main interest however was in the satellite side of the business.

Design and Development

During my tour I visited a very large open-plan area in which design and development work is done. This includes work on software. At the time the PRD800 and PRD900 were in the final stages of development. It was interesting to see work on prototype boards, with engineers sorting out quirks and problems.

Something that was new to me was a PRD900 running with an interface and cable to a desktop PC in place of its microcontroller chip. A very clever engineer was using the keyboard to program the operational software for the unit. Fascinating!

Bill Marshall demonstrated the operation and facilities of the receiver which, as you will know, is menu-driven. I was particularly impressed with its ability to move the r.f. output anywhere within the u.h.f. band, swap preset channels which then shuffle down, and dump stored information from one receiver to another via the scart socket. These features prove that a good deal of thought, based on experience, has gone into the design. The r.f. output facility uses a specially developed ASIC (application specific integrated circuit) video control chip.

When the first units were delivered to us by Eurosat I was able to see that the one or two software anomalies I'd been shown had been corrected.

Cabinets and cases are all designed in-house by Pace. In fact even the boxes, packing arrangements and the instruction and service manuals are designed in that large openplan area. On the subject of service manuals, it has to be
said that many manufacturers could learn a thing or two from Pace on how to produce one.

Quality Control

In one area of the building a group of people unbox and thoroughly test piles of finished products from the factory. The idea is to pinpoint any production weaknesses anything from a joint being missed during soldering to a faulty batch of components or the instruction book being left out. This area provided a graphic demonstration of the fact that Pace has become a major force in the satellite field. The boxed receivers bore a wide range of company names Philips, Grundig, Nokia, Alba, Bush and so on. Ferguson was not a Pace customer at the time of my visit, when it was using in-house Thomson made units. Since then however Pace has been supplying the PRD800 as the SRD5 clone.

Back up

There's a workshop where units returned from distributors, dealers and customers are repaired. Several engineers are employed here, but some deal with modems. The layout and appearance of the workshop differ little from a good dealer's workshop. A service network based on the company's distributors is being set up.

Pace provides a telephone technical support service. The engineers that operate it are in a separate office beside the workshop. Their ready access to the workshops, spares stores and designers results in excellent back up for those requiring advice or help.

Spares

The Pace stores department contains just about everything: it supplies the factory as well as dealing with spares orders. No problems then with having to talk to someone in Japan where a unit was designed, or a contact somewhere in Europe where spares are held: instead, there's a direct link between the manufacturer and main dealers. Smaller dealers can order spares through CPC or HRS. Like most manufacturers nowadays, Pace is not able to handle small accounts. Hence the the service provided by CPC and HRS.

In Conclusion

Pace has established a quality, high-technology, goahead image. Its latest receivers, with their high quality, reliability and competitive prices, justify this. My visit showed me the effort that goes into ensuring the continued success of the business.

The company has learnt from its mistakes - those previously mentioned for example, and the connector failure with the first IRDs. The commitment to sort out problems quickly and effectively, ensuring that the next generation of products is not similarly afflicted, is something that's not always the case in this industry today.

My thanks to Bill Marshall, his successor Bill Fraser, and the team at Pace Micro Techology for arranging a fascinating and very informative visit and providing so much insight into how things can be done well.

Cowboys: Summing Up

Steve Beeching

Over the past few months the letters section has presented many arguments about who is and who isn't a cowbov.

Someone who does his best to carry out a repair to a standard that would be approved by the manufacturer of the product is most certainly not a cowboy. It doesn't matter whether the workshop is small with one or two technical staff or stands resplendent in an industrial estate, staffed to the hilt. The availability of appropriate test and soldering/desoldering equipment and the training that has been undertaken obviously has a bearing on ability to complete a repair properly: this is taken into consideration by any manufacturer when a service agent is appointed.

Even those who supplement their wages by doing jobs on he side fall outside the cowboy classification - provided hey complete repairs without bodging, without creating urther faults and without causing unnecessary damage.

So who is this cowboy we all agree exists? It's the person who fails to refit the right screws in the correct places. outting self-tapping screws in threaded holes and vice versa; he person who shorts out circuit protectors and fuses or in any way undermines product safety; and the person who rodges a repair in the misguided belief that he is saving his zustomer some money. In fact it's the person who fails to repair equipment to the standard required by the manufacturer. The manufacturer designed and built the equipment, so it's reasonable for a manufacturer to insist that repairs are in all respects consistent with the original specification.

A cowboy can exist in any organisation - or be a oneman band. The fact that a service department is small and is run cheaply does not automatically make it a cowboy outfit however. Neither on the other hand should smaller organisations be unduly critical of well-equipped, professional service departments that charge more than they do. The cost of running a more sophisticated service department is high: it follows that the charges made must be higher.

There are two more sinister threats to the cottage service industry. The first comes from manufacturers who are trying to reduce their costs. The second relates to advanced technology.

But first a comment on a letter in the May issue on large and small service departments. Large does not mean profitable. The overheads of a Service Centre are much higher than those of a small, dedicated one- or two-man operation. Premises in a high street or industrial estate location command relatively high rent levels: in addition there are business rates, power and communications costs, wages and vehicle costs. The profit element may be very small as a percentage of tumover. If turnover is high, profit can be significant in terms of actual cash received. As a camcorder repair specialist my own costs in terms of test equipment, special jigs and leads are very high, usually $£ 150-£ 200$ per camcorder model. As I operate from a country location however my rates and other overheads are much lower than those applicable to an industrial estate. But however one looks at it a specialist service centre must charge more to cover the extra costs involved.

One correspondent suggested that a self-employed person
may not be able to afford to attend training courses. But this is not true in terms of cost: the time spent is simply another overhead that has to be recouped somehow. Training costs as an overhead are a significant drain on the resources of a competent, qualified manufacturer's service centre, where the need to keep up with ever-accelerating changes in technology and construction techniques is essential to its continued existence.

The Indians

Peter Murchison`s criticism of Sony for failing to give technical advice when he in fact sells the company's products is typical of a growing problem. Manufacturers are trying to cut their costs.

To be fair there's increasing concern amongst some manufacturers about the damage to their products and reputations caused by unskilled attempts at repairs and the customer complaints that follow. Because of this such firms are adopting a policy of limiting the number of companies able to attempt repairs. The first step is to withdraw free advice. If the repairer needs detailed advice it follows that he has not attended relevant training courses. The logical outcome of this policy is that eventually only the manufacturer's own service department or an appointed agent will be able to carry out repairs. Withdrawal of advice can be complemented by limiting access to spares.

One problem is that Japanese consumer electronics manufacturers have never before experienced a recession as deep as the present one. They are not sure how to cope with the situation. Some are taking decisions that fail to take into account the British tradition of after-sales service.

Peter also mentioned difficulties with Grundig. At least Grundig has available its Technicover service account. For a $f^{5} 50$) subscription the small, one-man band can have a spares account and access to technical advice. All right, so the advice isn't free, but you have the choice of subscribing or not. This is another example of an overhead that leads to increased service charges

Some service companies have found that Hitachi has been closing spares accounts where less than $£ 250$ is spent over six months. This is another cost-cuting exercise. As my account was closed 1 now have to obtain Hitachi camcorder spares from a distributor. For economic reasons many distributors don't stock slow-moving lines - which means that camcorder spares are not stocked in any depth. If I repair an Hitachi camcorder I now have to wait seven-ten days for parts instead of two, and have to pay 45 per cent more. So I tell the owner or dealer "yes, I can repair your Hitachi camcorder but it will take two weeks longer than previously and the cost of spares will be at least 30 per cent more". The customer then makes his decision whether to go ahead or not. What Hitachi seems to have overlooked is that owners will be unlikely to buy more branded equipment for which they cannot get immediate local service. Hitachi is not alone in this respect.

If you have been insulted by a manufacturer who won't supply you with spares or information. I suggest you make the situation clear to the owners of equipment requiring repair. This amounts to negative marketing, which can be more effective than the money manufacturers pour into advertising.

The situation is getting worse, and it's likely that many service people will be forced out of the industry because of manufacturers' withdrawal of spares and service facilities. The reason given is that manufacturers cannot afford to maintain hundreds of small accounts. But we all know that the cost to them will lie in loss of future sales.

Servicing Notes on the Bush 2114

Gordon Haigh

I've had several faults with these Turkish-made delights (?). Here are a few hints. There were a couple of other models in the series, the 2020 and 2321. Models with a T suffix incorporate teletext.

No Results

The power supply circuit is of the familiar self-oscillating chopper type, with a TDA4601 control/driver chip. If there's no output from the power supply, check for up to 340 V across the mains bridge rectifier's $120 \mu \mathrm{~F}, 400 \mathrm{~V}$ reservoir capacitor C812 and that this high voltage reaches the collector of the BU508A chopper transistor Q801 via the transformer's primary winding. No output from the bridge rectifier should lead to checks downstream on the $4 \cdot 7 \Omega, 5 \mathrm{~W}$ surge limiter resistor R816 and the 3.15AT mains fuse F851. If either has gone open-circuit, check Q801 by making two legs dry or by removing it for resistance checks. Removal is best in any set because there's a low-value resistor across the base-emitter junction - a base-emitter breakdown only can easily be overlooked. Should Q801 have failed. check R808 $(270 \mathrm{k} \Omega)$ which is connected to pin 4 of the TDA4601 chip (IC801): this resistor tends to go high or open-circuit.

If the bridge rectifier is producing 340 V or so, check thermistor TH801 and resistor R817 ($5.6 \mathrm{kS} \Omega, 0.5 \mathrm{~W}$). These two items provide a start-up supply for pin 9 of the TDA4601 chip - the voltage at this pin is topped up to about 18 V once the power supply comes into operation.

If these items are in order but there's a slight whistle and only meagre secondary d.c. voltages for a few moments are obtained at switch on, check D807 (RGP10J). This diode along with R810 ($180 \Omega, 5 \mathrm{~W}$) and C804 ($2,200 \mathrm{pF}$) form a snubber network across Q801. A BY228 seems to be a suitable replacement for D807.

A capacitor that causes a fair share of trouble is C818 $(1 \mu \mathrm{~F}, 50 \mathrm{~V})$ which dries up. It's the reservoir capacitor for the negative feedback voltage that's fed to pin 3 of the chip via VR801 (set h.t.) and R805. The symptom when it goes open-circuit can be no results with a loud whistling from the chopper transformer. If the transformer seems to be in distress (fizzing etc.) replace C818.

Note the positions of the two separate two-pin connectors before taking off the plastic cage over the power supply. For easy access to the power supply components the metal heatsink frame can be removed by taking out the screw from the TDA4601 chip then slipping Q801 from its clip (take care - Q801 can be at 340 V or so though there's a discharge path via R815). As soon as the power supply has been repaired, switch of and replace the heatsink frame.

Here are approximate working voltages at the pins of the TDA4601 chip, taken with respect to the negative terminal
of C812: pin 14 V ; pin 2 very low d.c.: pin 32.2 V ; pin 4 2.2 V : pin 57.5 V (higher in standby); pin 60 V ; pin 71.8 V ; pin 81.8 V ; pin 918 V . There should be 112 V across the h.t. reservoir capacitor C810 (note that the associated rectifier diode is fed from the chopper transformer via the contacts of relay RL401). Resistance readings across C810 should be $50-60 \mathrm{k} \Omega$ one way, $3.5 \mathrm{k} \Omega$ the other. The reservoir capacitors for the other two secondary supplies obtained from the chopper transformer are C806 and C808. C806 should have $11-12 \mathrm{~V}$ across it and a resistance reading of at least 450Ω both ways should be obtained. C808 should develop $24-25 \mathrm{~V}$, the resistance reading across it being at least $2 \mathrm{k} \Omega$ both ways.

A digital capacitance meter may show that some of the electrolytics are low, but they are usually o.k. Pay particular attention to C 818 though.
Safety resistors in series with rectifier diodes are always worth checking. For example there will be no results should R422 (IS, 1W) go open-circuit. This resistor acts as the surge limiter in the 16 V supply obtained from the line output transformer. After regulation by the LM7812 chip IC701 the resultant 12 V supply is used for various purposes that include powering the TDA2579 timebase generator chip IC401.

Other Fault Conditions

I've encountered a no raster fault at switch on, with the voltages at the collectors of the RGB output transistors Q901/3/5 all reading high. When I come across this situation with any set I usually take a resistor with a value of a few kilohms and connect it momentarily between one of the c.r.t.'s cathodes (or the collector of one of the RGB output transistors) and chassis to see what happens. This sometimes proves that the cause of the fault is field collapse - remember that with many sets the screen is blanked out when there's no field scan. You don't have to turn up the first anode voltage to see this: a disturbed first anode potentiometer has to be reset, and sometimes this cannot be done accurately without a test pattern and a very high-impedance voltmeter. The response with the Bush set was that the picture appeared and stayed there until the set was switched off. It was not present at subsequent switch on. Taking cathode voltage readings on the meter's 300 V range also restored the picture.

The c.r.t. biasing arrangements are very simple. There's a complication however in that auto grey-scale tracking is employed. The RGB outputs are linked to the c.r.t. via emitter-followers, each of which is connected to chassis via diode D901. The voltage developed across D901 is returned via a screened cable to pin 18 of the TDA3562A colour decoder chip, which is mounted on a separate subpanel. A borrowed subpanel proved that the TDA3562A chip had an internal fault which was inhibiting the drive to the RGB output stages. The voltage across D901 was only 0.5 V instead of the usual $0 \cdot 8-0.9 \mathrm{~V}$.
The TDA3562A chip can also be responsible for loss of colour. Note that it's the Telefunken version of the chip (some other types are not compatible without minor modifications - see previous correspondence in Television). Another cause of no colour is R251 ($18 \mathrm{k} \Omega$) going opencircuit - it's connected to pin 5 of the chip and is part of the colour control circuit.

When there's a command problem, with the push-buttons having wrong effects or misbehaving, the SAA 1293 control chip ICI is suspect. But not with a recent set, which would step channels upwards but not downwards and wouldn't sweep tune. The MDA2061 EEPROM chip IC2 was at fault. An MDA2062 was supplied and worked, the supplier
assuring us that it was a substitute. Uncontrollable sound and the display stuck on one channel are typical SAA 1293 faults: the set jumping into and out of standby on channel change is a MDA2061 fault.

Failure of the 12 V reservoir capacitor $\mathrm{C} 806(1,000 \mu \mathrm{~F}$. 16 V) causes bad patterning.

A vertical black line two inches from the right-hand side of the screen was traced to R419 ($470 \mathrm{k} \Omega, 0.5 \mathrm{~W}$) being opencircuit. It's in the pulse feedback feed to the TDA2579 chip.

A couple of interesting faults have been reported in TV Fault Finding recently. Geoff Fardon traced the cause of an intermittent blank screen to a dry-joint on C307 (April). This $0.33 \mu \mathrm{~F}$ capacitor is in the field linearity circuit, so the field scanning was presumably being closed down. Chris Watton (May) reports that no picture or intermittent picture loss can be caused by poor soldering on the teletext module: the through-the-board links should be resoldered and the soldering to the crystal might also need attention.

Help Wanted

Wanted: Module CMR800 (r.f./i.f. unit) for the ITT Model 1600/I. Loan of the manual for the set would also be appreciated. V. Jeremy, 7 Tai Penyard, Penyard, Merthyr Tydfil, Mid-Glamorgan CF47 0LP.

Wanted: RGB input unit, part no. 760776, for a Barco CM51 or CRM2632 monitor. D. Mountford, Shelsley Villa, Haye Lane, Ombersley, Worcs WR9 0EJ. 090522900.

Wanted: Circuit diagram for the Technicolor type 312E video recorder power adaptor. A. Rogers, 21 Pleshey Close, Thorn Church Meadows, Milton Keynes, Bucks MK5 6EP. 0908504657.

Wanted: Service sheet or any other information for the Tech Model T02 scope. It has two valves, a 12BH7A and a 6AV6. Donald Bills, 69 Greenfields Road, Kingswinford DY6 8EG.

Wanted: Panels for a Philips 2020/05 VCR or a complete machine, working or not. B.J. Lawler, 6 Chindit Close, Formby, Lancs L37 2JH. 0704832625.

Wanted: Good used A51-230X 20 in . tube with scan coils (type FHA90-31) and neck components for the ITT Model CS0514/T (80 series 110° chassis). V. Jeremy, 7 Tai Penyard, Penyard, Merthyr Tydfil, Mid-Glamorgan, CF47 0LP.

Wanted: WYC-P WHD panel and lower drum excluding head for the Granada VHS-AH3 or equivalent (Hitachi VT17, VT19). New or secondhand. J.A. Slimmon, 30 Buzzacott Lane, Furzton North, Milton Keynes, Bucks MK4 1JE.

Wanted: Panels/parts for an Autovox TVC1608-2009/GB (chassis 112). The set takes a while to come on. Does anyone know why? Charlie McLeod Hall, 148 St. Andrew's Road South, Lytham St. Annes, Lancs FY8 1 YA.

Wanted: Remote control handset for the Luxor Mk 2 satellite receiver. Peter Clarke, 28 Wentworth Gate, Linton Park, Wetherby, W. Yorkshire LS22 6XD. 0937582828.

Wantec a TIS69 f.e.t. for the Hameg HM307 scope. A. Fisher, Complex TV Services, 133 High Street, Princess End, Tipton DY4 9JE. 0215576636.

We have for repair a Polish manufactured monochrome set whose only identification is the model no. MTV2451. Can anyone supply a line output transformer for it? A. Slark, 61 Chapeltown Road, Bolton BL7 9NB. 020426684.

Wanted: Service manuals for the Philips VCR Models N1500, N1700 and VR2020. All costs will be paid. T. Martini, 6 Levant House, Mile End Road, London E1 4RB. 0717906807 or fax 0717028774.

ANSWER TO TEST CASE 367 - See page 647 -

When they finally got to see it, the 'interference' effect that so troubled General Anderson consisted of big blobs of assorted unlocked colours which floated about on top of the recorded picture and playback sound that had no connection whatever with the picture it accompanied. In fact the sound track was that of the previous recording on the same tape while the colour blobs were remnants of the previous chroma signal not erased during the subsequent recording. Though most of the previous luminance signal on a tape is wiped out by the writing action of the heads when a new
recording is made, lower-frequency components like the chroma and sound cannot be overwritten in this way: if the erase system isn't working they remain on the tape.

This of course was the problem with the General's machine. Intermittently, the full-erase head on the left-hand side of the deck was unenergised. Now it wasn't one of those ancient JVC machnes with a lazy bias/erase oscillator, where fitting a capacitor with a different value restores reliable operation. It does however have a plug/socket connection to the full-erase head. As with so many VCRs. this turned out to be the weak link. Flexing and movement of the joint would produce the symptom - sometimes!

The problem was solved by cutting the flying socket from the wire and soldering the wire ends directly to the head terminations. The General was largely right with his off-the-cuff diagnosis of a loose wire!

[^0]HOW TO MCREASE YOUA PROFITS, TMPAOVE YOUR SERVICE, WITH COSt EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All, with the exception of the HM 1005, incorporate a usetul COMPONENT TESTER. Size - all models. $285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 天 380 mm . Clear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: $110 / 220.240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
All supplied with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY
HM203-7 20MHz STANDARD

* 2 Channels

Bandwidth: DC -20 MHz Sens: Ch.1, Ch.2,1mV/cm Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: $D C-40 \mathrm{MHz}$ Active TV - Sync - Separator Variable hold-off Trigger LED indicator Calibrator: 1 KHz Square wave plus many features

Price $\mathbf{5} 32.00$ + £63.35 V.A.T. FREE Specialist Carrier Delivery
SPECIFICATIONS
HM604 60MHz UNIVERSAL
2 Channels
Bandwidth: DC - 60 MHz
Sens: Ch.1, Ch.2. $1 \mathrm{mV} / \mathrm{cm}$
Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Trigebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Trigering: $\mathrm{DC}-80 \mathrm{MHz}$
Active TV - Sync - Separator
After delay trigger
Sweep delay
Delay line
Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MHz} \mathrm{Sq}$. Wave

Component tester
FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL 3 CHANNELS.UPTO6 TRACES SPECIFICATION
3 Channels
Bandwidth: DC -100 MHz Bandwidth: DC -100 MHz
Sens: Ch.1, Ch.2, Ch.3.1mV/cm Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC -130 MHz After delay trigger - Delay line

Trigger LED indicator Overscan LED indicator Active TV - Sync-Separator
Price $8847.00+E 148.23$ V.A.T. FREE Specialist Carrier Delivery
HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Bandiogue real time (Same as 203-7)
Bandwidth: DC - 20MHz
Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Triggering DC -40 MHz
Active TV - Sync. Sampling
Max sampling rate: $2 \times 20 \mathrm{MHz}$ * Memory: 2

Price $\mathbf{5} 63.00+$ E114.2B V.A.T. FREE Specialist Carrier Delivery
BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Orion is a compact, bench instrument oftering a wide range of patterns and facillties at a truly to
In addition to a switchable sound carrier lacility which allows use with the majority of PAL TV sy More than 50 prottern combinations TGB outpuls, ensuring compatiblity with mosivivideo montiors. ivergence, video amplifier linearity, colour purlity. general colour perlormance, tocus etc. A separale video input to modulate camera signals; fuly variable RF and video outpul levels facilitatsound modulation inpui via DIN conneclor for frequency response testing of TV sound systems. adita lable wide frequency coverage of VHF and UHF TV bands.
Indispensible in the manufacture. test, and servicing of televisions, and computer and vide nonitors.
FEATURES
Colour bars, purity, greyscale crosshatch
dots, focus, etc.
VHF/UHF Channels
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers.
External Video Output.
Trigger Output.
PAL B,D,G,H,I,K.
Separate R, G, B and sync. O/P's
RGB@TTL \& 1V.
Green + 0.3 V Syncs.
Composite Video Output.
Swilchable Video Poltarity.
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
Size: $98 \times 219 \times 240 \mathrm{~mm}$.

Price $£ 229.00$ + £40.08V.A.T. NEW! DEGAUSSING COIL

A very effective degaussing coil, ideal for degaussing TV tubes, computer monitors, oscilloscopes etc. Mains Power: 220/240 50/60Hz. Size: $355 \times 355 \times 24 m m$

Price $£ 46.00+$ £8.05V.A.T.

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

All CRT schecked identically including all in-line and one gun types * Tests all three guns of colour CRT's simultaneously 490) actual operating conditions (model Exclusive multiplex technique current that Measure true dynamic beam aperture to actually passes through G1 and leaks - preserving more CRT's * Tests focus electrodes lead continuity finding faults that other testers miss *Uses most powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years * Obsolescence proof - perpetual set up chart updated and new adaptors developed Tests and rejuvenates VOU and oscilloscope tubes * A range of over 40 CRT base adaptors avallable *In

Prices
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors....... $5559.00+\mathbf{5 9 7 . 8 3 V . A . T}$.
 Without adaptors.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of satellite IV systems and aerial alignment of VHF/UKF television and radio systems. Signal signal conditions lor satisfactory operation. All models have a clear LCD direct Irequency eadout, coupled to a multiturn tuning control enabling preclse channel identification
TC402-D VHF \& UHF
FEATURES
Three bands
Low VHF: $45-170 \mathrm{MHz}$
Righ VHF: $170-450 \mathrm{MHz}$
UHF $: 450-862 \mathrm{MHz}$.
Digital display for direct Irequency readou - Built-in monitor loudspeaker AM/FM. Signai measurement fram $20 \mu \mathrm{~V}$ to 3 V . - Powered by eight 1.5 V AA batteries. Fully portable with sturdy carrying case.

Price $289.00+$ E50.57 V.A.T. TC90 VHF-UHF-SAT.

FEATURES

Five bands: Low VHF High VFF: 110 M00MHz $\begin{array}{ll}\text { Hyper VHF : } & 300-470 \mathrm{MHz} \\ \text { VHF } & : 470-862 \mathrm{MHz}\end{array}$
Satellite $: 950-1750 \mathrm{MHz}$
Digital display for direct Irequency readou Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V Signal measurement sateltite -70 dBm to -1008 m . Audible indication of satellite signal tevel Built-in-monitor toudspeaker AM/FM (not satellite)
Powered by rechargable batfery Fully portable with sturdy carry case

NEW! TC80 SATELLITE

TC-80 IN ITS STUROY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique features: video composite output; audio output oudspeaker; ramp and oudspeake ramp and RF signal outputs which enable an oscilloscope to be used
as a spectrum analyzer.
$\star 4$ digit LCD treq. display Freq. range 950 to 1750 MHz
entirep mode sweeps entire freq. band for rapid salelite location audible tone proportional to signal strength - Measurement from 40 100 dBuV
Audio demodulation wilh internal loudspeake - Rear SCART connecto for A/V conneclion - Oscllloscope/spectrum analyzer output - Sound tuning 5 to 8 M

- LNC PSU 14 V or 18 V LNC PSUR14V or 18 V * Internal rechargeable battery wilh charger

Price $\mathbf{8 4 9 0 . 0 0}$

+ ع85.75V.A.T. Delivery nor

WILTSGROVE LTD

Definition BRAND
PORTABLE 14' REMOTE TV
21 PIN SCART, ON SCREEN DISPLAY, VHF/UHF, 12 MONTHS GUARANTEE etc.

* GUARANTEED LOWEST PRICE *, CALL NOW FOR DETAILS

VAST OUANTITY ()F "B" GRADE W(ORKIN(: MII)I SYSTYEMS from e25 14", 20", 21" TV'S TO BE (LIPARED)

WORKING EX-RENTAL STOCK
PORTABLE TV'S
REMOTE / TELETEXT TV'S
LONG \& SHORT PLAY VCR'S etc.

HUCE RANGE OF SPARES

 VIDEO HEADS, REMOTHE CONTROIS. CASSETTE HOU ISINGS, IC'S. MUSES. AT AN AFPORIABI.E: PRICF。

TEL: 021 772-2733 FAX: 021 766-6100

DIRECT FROM THE MANUFACTURER

RE-BUILT TV TUBES VIDEO-HEADS REMOTE-CONTROLS SUPPLIERS OF TV/VCR SPARES

OUTSTANDING VALUE FROM ONE OF THE UK'S LARGEST BSI APPROVED MANUFACTURERS OF RE-BUILT TUBES

STOCKS AVAILABLE

VISTA ELECTRONICS
Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH el: 0429837100

Fax: 0429837101

The Euras System is the largest repair tips database for CD, TV and video in Europe.

Solutions

at your

 fingertips.The System has over 100,000 repair tips for 10,000 models from 250
manufacturers and is conveniently available as manuals, stand alone PC or videotext.
The System now also boasts technical service data for computers from SAMS Computerfacts, available
as manuals.

Euras International Limited Euras House, 51 Bristsl Rd
Keynsham, Bristol BS 18.2BA
England
Telephone 0272860990
Fax 0272860343

TElevision

Subscribe to the magazine that experienced electronics professionals never miss

Whatever your interest in the world of television electronics, there's a wealth of news, advice and hard information for you in TELEVISION.

TELEVISION offers you a definitive guide to today's TV electronics business, keeping you up-to-date with new developments in TV, video and satellite - whilst furnishing you with 'hands-on' advice and information on the latest equipment.

EVERY MONTH - EVERYTHING YOU NEED TO KNOW

Once you are a subscriber to TELEVISION you'll enjoy a great information advantage. You'll be ahead of all of the latest product developments - you'll receive inside information on important techniques and time-saving work methods - and, importantly, you'll have access to the most comprehensive marketplace for components and services in the UK.

- Servicing solutions
- TV fault finding
- New Products
- VCR clinic
- Satellite TV
- Equipment reviews
- Readers' letters
- CD players casebook
- Components
- News and comment
- And much more!

Quite simply TELEVISION is the 'bible' of the television electronics industry - if you want to keep up with the competition, you can't afford to be without it.

SUBSCRIBING IS SIMPLE
Complete the coupon and return it to us at TELEVISION, Reed Business Publishing, FREEPOST, 9th Floor, Quadrant House, The Quadrant, SUTTON, Surrey CM2 5BR

Please send me
 television

\square One Year at a cost of
\square Two Years at a cost of $£ 49$
\square Three Years at a cost of $\mathbf{£ 7 0}$
SAVE E^{3}
SAVE $£ 8$
Name
Title \qquad
Company
Address \qquad

Postcode

Telephone Number

Rěéd Business Publishing

 Company Registered in England (registered number 151537) VAT no: 2357235654 WAYS TO PAY
\square I enclose a cheque for $£ \quad$ made payäble to Reed Business Publishing Ltd

Please charge my:

\square Access
Visa
\square Diners Club
\square American Express
Expiry Date

Please invoice me/my company Order No.

Or alternatively just ring our credit card hot-line on 0622721666 and quote reference IJI

Are you registered for VAT, Yes \square No \square
If yes, please supply your registration Number

Please send a VAT receipt \square
Signature \qquad Date
Prices apply to UK, Isle of Man, and Channel Islands only.

SONY TUBES fe processed with oricinal sonvguns

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes.

3701822		£25.00	A51-231X	ITT	¢46.00	AS1EBV10×01		$£ 58.00$
3702822		£48.00	A51-570X	Mullard	¢46.00	A51JAROOX		£64.00
370KRB22		£48.00	A51-580x	Mulard	£46.00	A51JK000X	Sony	£74.00
370 L.HB22		£48.00	A51-590X	Mullard	£46.00	A51JUH10X	Sony	£74.00
400EFB22		£64.00	A56-540X	Mulard	£52.00	A53JBW00X	Sony	£64.00
$510 Y$ YB22		£46.00	A56-701X	ITT	£48.00	A59EAK00X	Philips	£64.00
520 SB 22	Sony	£64.00	A66-540X	Mullard	£56.00	A64JKJ10X	Sony	£95.00
560EGB22	Hitachi	£48.00	A67-701X	ITT	£56.00	A66EAF00X		£74.00
560DYB22		£48.00	A34EACOOX		£48.00	A66EAK00X	Phillps	£74.00
570HB22	Sony	£64.00	A34JBU10X	Sony	£64.00	A68JMT10X	Sony	$£ 95.00$
6800822	Sony	£85.00	A44JEX10X	Sony.	£78.00	A68.YK10X	Sony	$£ 95.00$
$680 \mathrm{EB22}$	Sony	£85.00	A44JF210X	Sony	£78.00	AXM37-001	Sor	£48.00
			A49JHTOOX	Sony	164.00	AXT 37.001		£44.00
			A49JLV10X	Sony	\$74.00	AXT51-001		£46.00
			A51EAL00X		£58.00	AXT56-001		£52.00
			A51EBDOOX		£58.00			
For tube types not isted please enquire Ali Tubes Guaranteed 12 Months			All prices quoted are excluding VAT Exchange CRT is required			Callers weicome Please phone first Delvery Avallable		

NEW TUBES IN STOCK - PLEASE PHONE FOR YOUR REQUIREMENTS

Very competitive, nationwide delivery and collection service

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips on your CRT screens All you require is an electric drill Written instructions are provided Guaranteed to work Woridwide Delivery Total Price $\mathbf{\$ 6 3 . 0 0}$ includes P\&P and VAT Avalable from Luton only

	local stockist	
WEST ONE	WELL VIEW	WELL VIEW
Distributors Lto.	144-134 Midland Road,	
	Luton. Beds. U.K. LU20BL Tel. 058240249	Southamplon, Hants.

Design your own satellite system!

Yon can with the he'p of this brilliant new program by DJ Stephenson
SATMASTER Version 4 onty £. 5

운 \square సidudini niwn NNNNNNONNMNH MNNWNWNMNTNM Nixisisigixnisisy 														

TMETNIST

OSCILLOSCOPES -

Hewlett Packard $182 \mathrm{C}, 100 \mathrm{MHz} 4$ charnel $\mathrm{E3O}$ Hewlett fackard $1740 \mathrm{~A}, 100 \mathrm{MHz}$ dual channel.... $£ 350$
Hewlett Packard 1741凡, 100 MHz dual channel with analogue storage....................................... $£ 3$ Hewlet Packard $1744 \AA, 100 \mathrm{MHz}$ dual channel with m50 Tektronix $7403 \mathrm{~N}, 60 \mathrm{MHz} 4$-channel....................... $£ 3300$ Philp, 32115 MHz dual channe. from $£ 150$ Telitronix $7603,100 \mathrm{MHz} 4$-channel............fom $£ 350$ Philips, 322615 MHz dual chanrel.......................fom $£ 150$ Tektronxx $7623,100 \mathrm{MHz} 4$-channel with analogue from
 Philips, 3261120 MHz dual channel. Tektronix $453,100 \mathrm{MHz}$ dual channe Tektronix 515A
\qquad $£ 250$
$£ 150$

Frequency Counters available

Racal Dana $9000,520 \mathrm{MHz}$	Racal Dana 9901, 50 MHz	Racal Dara 9919, 16Hz
Racal Dana $9500,520 \mathrm{MHz}$	Racal Dana 9903, 50MHz	Marconi TF2432. 560MH2
Racal Dana $9520,20 \mathrm{MHz}$	Racal Dana 9905, 200MHz	Marconi TF2435, 2 CHz
Racal Dana $9824,560 \mathrm{MHz}$	Racal Dana 9917, 560MHz	Hewlett Packard 5342A, 18GHz
Digital Multimeters		
Racal Dana 5003	Fluke 8010 A/8050:8600 A	Keithly 191
Advance Alpha II	Fluke 8800A	Solartron A210/LM1420.2
Datron 104 V1051	Gould Alpha III and Alpha IV	Solartron 7045

Many more items available such as power supplies, puise generators, function generators, synthesisers, power meters, spectrum analysers, chart recorders, LCR bridges, oscillators, isolating transformers, variacs, level meters, noise generators, pats testers, AMFM signal generators and modulation meters etc

Special Package for sale as whole (Cable TV equipment)
Wavetek 1855B CATV sweep transmitter x 2 , Wavetek 1865 CATV sweep analyser x 3 , Wavetek MC661E CATV field strength meter $\times 3$, Wavetek CRW-1 CATV card reader x I, Wavetek SAM R CATV 450 MHz signal analyser meter x

ALU PACKAGE FOR SALE AT 22.5 k
All equpment is used, with 30 days grarantee. Please check for availablity before ordering, Carriage and VAT to be added to prices. Send for Price Lasts.

8CAVANS WAY BINLEY INDUSTRIAL ESTATE COVENTRY CV3 2 SF
(Premises situated close to Eastern By Pass in Coveritry with easy access to M1, M6, M40, M69, A45
Telephone: 0203-650702 Fax: 0203-650773

WHAYE Tre wuest choci of ise osquoscopes the couniny

TEKTRONIX TOOO SERIES OSCLLIOSCOPES

 Mode
 H.P. 1740 A Dual Trace IOOMHZ Dalay Swoep,
 TELECUUPMENT D83 Dual Trace 50MHZ Delay Swe
 GOULD OS300 Dual Trace 20MHZ

\qquad
\qquad
Eeviation
 GOULD Bromation K 5000 Logic Analy
FARNELL PSGS20H Smmhessed SG Gen AM/FM 100 KHZ
520 MHZ

HAMEG OSCILLOSCOPE HMICOS Tipte Trace 100 MHz

WHOLESALE CLFA		\square		
		WHOLESALE CLFA FOR A LIMITED PERIOD		
syori icioc - 990.0	EX. MAIL ORDER	TWIN TAPE, TUNE GRAPHICEQ		
14 coloun	TV'S DiRECT hove exclisive ighs	porr		
		Pогхив		
molsize fll5.00		Scommirelur		
		mill		
	TELEPHONE: 041-3531665 ASK FOR STEPHEN TV'S DIRET 14 PAYNE ST, PORT DUNDAS, GLASGOW G4 OLF. ALL PRODUCTS SUBJECT TO AVAILABILI			
$\begin{aligned} & \text { PORTABLE HI-FI, } \\ & \text { TWIN TAPE, TUNER, } \\ & \text { GRAPHIC EQ £ } \quad 1.00 \end{aligned}$				
		TUNER, , GRAPHIC EQ, 5 65.00		
READY FOR SHOWROOM ALL PRICES SUBJEG TO V		sopers ios -ol 01.3531124		

CW сой WHOLESALE TV LTD.
 CREWE

Large selection of working TVs including working F.S.T.s
Videos - working or untested
EXPORT

INVIED \quad| William St., Crewe, Cheshire |
| :---: |
| Tel:0270 582924 |
| Fax:0270 505470 |
| Open Mon-Fri $9.30-5.30$ |

BLACKBURN

Guaranteed untested stock
Plus selection of working TVs

Deliveries every Monday and Thursday
Working and untested Prices lists available

School Lane, Guide, Lancashire Tel/Fax: 0254264489
Open Mon, Tue, Thu, Fri 10.00-4.00 Sat 10.00-1.00

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED ½ Mile of Junction 10 M6. Easy Parking Facilities
UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS2 8TL Tel: 0922 724542. Fax: 0922722208 Mobile: 0860499495 (24 Hours) OPEN: MON-FRI, 9-6pm SAT 9-2pm SUNDAYBY APPOINTMENT DELIVERY SERVICE THROUGOUT THE COUNTRY

SUMMER SPECIALS STAY COOL CRAZY-CRAZY PRICES

$8^{\prime \prime}$ Oscillating Fans only $£ 8.95$
$10^{\prime \prime}$ Oscillating Fans only $£ 10.95$
QUICK TEST £6.95
The ideal-temporary means of mains connection

T- T.V./VIDEO - 20 mm Glass Fuses E —— (Min qty 100 assorted) Only 5p each

Universal Mains Fig 8 Lead Special Price 20p (min. 10)

21 SCART TO SCART LEAD £1.50 Auto Wirestrippers - Only 95p LOOK - Assorted Remote Controls from $£ 2.95$ * Universal Learning Remotes - only f9.95 *

Pre-Programmed Remote Controls - $£ 15.95$ Buy Video Senders - only $£ 5.75$ (NON-CERTIFIED FOR U.K.
"Protect Your Home" BUY NOW! Infrared Motion Sensor Halogen Floodlight - From £13.95 -100 m Roll Satellite Cable $-£ 9.95 \square \square=$ 5 VIDEO HEAD PULLER - Only $£ 3.95$

100's of T.V./VIDEO Components in Stock ALSO - 'B' Grade Stock Arriving Daily - Please Ring

HOCKLEY DISCOUNTTELEVISIONS

140 HOCKLEY HILL, HOCKLEY, BIRMINGHAM B18 5AN TEL: 021-515 2003 - FAX: 021-515 2004

WOODHAMTVLTD

- NOW OPEN -

New wholesalers of Thorn \& Granada ex-rental TVs and Videos

* Working - Non-working
* Many Opening Offers

Open Mon-Sat 9.30-5.30

PHONE NOW

0245-325383
UNIT 8, CUTLERS RD, SOUTH WOODHAM FERRERS, CHELMSFORD, ESSEX

MANCHESTER'S NO 1 WHOLESALER

MANCHESTER | WHERE CAN YOU FIND WORKING STOCK, READY FOR |
| :--- |
| YOUR SHOWROOM? LESS HASSLE MORE PROFIT! |

ADVERTHEERS'TNDEX	
Aerial Techniques 643	Manor Supplies........... 627
Anglian TV Wholesale . 676	Marapet 656
A-Z Electronics 657	UTV 656
BK Electronics 664	Powell, T................. 668
Bull Electrical 620	P.V. Tubes 617
Campion Wholesale TV	Repo TV 673
Ltd.......................... 676	Redbank 672
Central TV Wholesale	nts 683-684,
Ltd......................... 673	IBC, OBC
Coastal Aerial Supplies 676	Silverscreen 674
Crewe Wholesale TV ... 670	Stewart of Reading 668
CTV 674	Swift TV Publications.... 667
Datapart Ltd 656	Telecentre 676
	Teleprice Ltd.............. 671
East London Components	Telnet 668
617	Trac Satellite Systems ... 667
Economic Devices 648-649	TV Direct 676
Electra TV................ 672	TV's Direct 669
Euras International Ltd 665	
	Vista Electronics 665
Grandata 610-616	Well-View 667
	Western Trade Services 674
Hardy, J.W................ 656	West Mids. TV 670
Hockley Discount........ 670	Willowvale Electronics
Hussein Central TV 675	Ltd........................ IFC
	Wiltsgrove 665
ICS Intertext Group 617	Woodham TV Ltd 670
J.J. Components 629	W. Tree Trade

ELECTRA TV LTD

Unit 5, Santa Pod, Nr Poddington Airfield, Hinwick, Wellingborough, Northants NN9 7JQ. Telephone 0234782944

Rediffusion MK4/MK4A

Working TVs
 Basic £30.00
 Teletext £45.00
 Off the pile Basic £20.00 Teletext $£ 30.00$

Price list for spares

Line board 90/110 working £10.00 each Power board 90/110 working $£ 10.00$ Used handsets working £6.00
Brand new handsets $£ 9+90$ p p\&p

Also other spares available.
Export enquiries welcome.
Please note we only deal in Rediffusion MK4/TVs and MK4A

REPO

WE HAVE A NEW SOURCE OF EXCELLENT SETS. WHY NOT CALL IN FOR A CHAT?

We supply good quality working stock from a range of makes and models of both TV and video.

We have been here for many years and generally supply people on a regular basis.
We hold large stocks - but no order is too small.
REPOSSESSED TV CENTRES LTD, DAISY
WORKS 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER M13 OLF.

Easy parking. Almost opposite main police station.

A TOZ ref. DI 61
06127434090612732854 Fax: 0612734486
ACCESS - VISA - CHEQUE - SWITCH - CASH

B-grade Electric Built-in Ovens Free Standing Gas Cookers Also Gas Hobs - Calor Gas Hobs All items almost Brand New

14 portables working 885
All boxed with instructions
R/Clong play videorecorders working 899
All boxed with instructions

DISCOUNT ON QUANTITY

B Grade 20" Normende R/C Multi System T.V.'s
21 "FST, JVC and Hitachi, Multi System
T.V.'s - Water damaged

E40 each
Customer returns in block.
Example. Untested 3×21 FST $3 \times 25^{\prime \prime}$ FST
$6 \times F / L$ Videos $£ 40$ each. Total $£ 480+$ VAT
This price does not include handsets.
Some in need of repair, some working.
Ex-rental TV \& Videos, all untouched.
Basic £15 R/C £20 \& £25 Text £25 \& £30
Videos T/L £20 F/L £25. All untouched.

[^1]

- SUPERB RANGE OF TV'S \& VCR'S - THORN \& GRANADA

O DIRECTLOADS AVALLABLE FROM SOURCE

 EXPORT ENQUIRIES WELCOME
'B' GRADE SWITCH ON TO TOP QUALITY BRANDS

PHONE

TODAY
FOR BEST
RESULTS ALL SZES OF SCREEN TV AVAILABLE BOTH IN FAST TEXT \& DIGITAL NICAN STEREO

VIDEOS: CURRENT MODEL

Single, Twin Speed, Nicam S-VHS

CAMCORDER

C FORMAT, FULL SIZE, 8 mm MICROWAVES PORTABLE HIFI SATELLITE VIDEOCRYPT

PORTABLE £90
FULL REMOTE, BOXED

CTV LONDON
Eley Estate, Nobel Road
Edmonton N 18
TEL: 081-807 4090
FAX: 081-884 1314

CENTRAL TV WHOLESALE DISTRIBUTION LTD
369 Stratford Road, Sparkhill
Birmingham 811
TEL: 021-772 1591
FAX: 021-766 6383

SII VIRSCRMFN VIDEOS CXZRENHAL TV \& VIDXOS THORN \& GBMNADA	
	VIDEOS
Working Top Loaders	Loaders From $£ 35$
Front Loaders	nt Loaders From£45
Non Working	From $£ 25$
Front Loaders	Front Loaders From $£ 35$
	TV's
Basics	From $£ 15$
Teletext	From $£ 40$
FST	From $£ 60$
UK DPMVPRY AVATABLE - cxpont enquiams welcome 24 cold strayt, myerton DEVON Tx16 6PY HIMPHONE 0884256257	

EST 14 Years	
V ESTERN 2ABARTONHILL ROAL	
	ORQuAY
IRADE	DEVON
SERVICES	FAX:326767
DELIVERIES TO DEVON-CORNWALL WEEKIY	
NOW OPEN IN WALES	
WESTERN ${ }_{\text {UNIT } 6}^{\text {ISLWY WORKSHOP }}$	
Trade	PORTYMISTER IND ESTATE RISCA GWENT
Seplices	
SERVICES	TEL: 0633612667 FAX 0633601245
SUPPIIERS OF EX-RENTAL THORN \& NON THORN	
IV \& VIDEO	

BRITAINS LARGEST INDEPENDENT PRESENTS THE LARGEST STOCK OF ‘B’ GRADE

THE TV \& VIDEO WHOLESALERS WITH A FRIENDLY SERVICE

Graded Remote Control TV

'R/C TV £75
cm R/C TV $£ 80$
ırtable R/C TV£75
asic Portable TV£60

Graded Nicam TV
;1cm Nicam TV £165
j9cm Nicam TV£195

Graded Teletext TV
$20^{\prime \prime}$ Teletext TV $£ 90$ 51 cm Fast-text TV $£ 130$ 59 cm Fast-text TV .. £150

Graded VCR's
A multitude of top brands eg
JVC, PANASONIC, SONY, AKAI, FERGUSON, HITACHI, Etc, Etc

TOP QUALITYEX-RENTAL TV'S \& VCR'S

 MASSIVE STOCK OF EX-RENTAL UNITS AVAILABLE AT EXCELLENT PRICES
JONTMSSOUT, PHONENOW!

PRESTON	BIRMINGHAM	LONDON
139 Oakshott Place	208 Bromford Lane	Unit 2
Walton Summit Ind Est	Erdington	The Royal London Est 29/35 North Acton Road
Preston (M6 Junc 29)	Birmingham B24 8DL	London NW10
Tel: 0772312101	Tel: 021-327 3273 Fax: 021-322 2011	Tel:081-9615005

'B' GRADE T.V., VIDEO AUDIO, MCROWAVE NEW MAJOR BRANDS COMPLETE MINT ANDBOXED
BEST POSSIBLEPRICES
EXPORTENOURIES
WELCOME
RNUGFORDETAIS
ANGLIAN TV
WHOLESALE,
NOWAT
UNIT 4, BRECKLANDS
BUSINESS CENTRE
TAVERNLANE,
DEREHAM, NORFOLK
(O362) 691611

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS
FOR DISTRIBUTION SYSTEMS AND DOMESTIC MAST HEAD OR SET BACK. WE HAVE ONE OF THE

LARGEST RANGES, AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE,
LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE
CDASSIIAII
AIEIRIIAIL. SUIDPI IIES
UNIT X2 Rudford Industrial Estate Ford, Arundel

0903723726

NO MINIMMM ORDER VALUE
NEXT DA Y DELVERY ACROSS UK
CARRLAGE REE ON ORDERS f250+
$\frac{10}{\sqrt{3 N}}$ $\frac{\sqrt{2010}}{\sqrt{30}}$

TELECENTRE

NOW OPEN
7 DAYS A WEEK
FOR TOP QUALITY
EX-RENTAL AND 'B' GRADE TV'S AND VIDEOS.
WEEKDAYS OPEN
TILL 9PM. WEEKENDS \& EVENINGS BY APPOINTMENT.
15 MINS FROM JUNCTION 16 M6
79A COLERIDGE WAY, CREWE.
TEL: 0270589392
ACCESS AND
VISA WELCOME

QUALITY USED T.V. \& VIDEO COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE
STOCK ARRIVING DAILY T.V.'s from $£ 3.00$ Videos from $£ 30.00$ Prices Ex-VAT
Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North
For your export requirements contact us.
12008879649 or 870613
$\text { FMM: } 1200827904$

WE DON'T WASTE TIME - THE SETS ARE ALREADY SWITCHED ON FOR YOUR SELECTION.
ONLY 50 WORKING TVs SWITCHED ON, ON DISPLAY BUT LOTS OF WORKING TV
\&
OF THE PILE
F.S.T.

From $£ 60$

BASIC T.V. From $£ 18$

TOP LOADER VIDEO
FRONT LOADER VIDEO FAULTY VIDEO FOR SPARE CAMCORDERS

From $£ 35$
From $£ 50$
From £5
P.O.A.

Phone for detailed Price List - All prices are subject to V.A.T.

LLASSIFIED CLASSIFIED CLASSIFIED CLRSSIFIED CLASSIFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

TRADE ONLY

MICROWAVE OVEN PARTS

MAGNETRONS • DIODES • TRANSFORMERS
LAMPS • FUSES • MICROSWITCHES
PHONE NOW FOR PRICE LIST
A.W.I. MICROWAVE OVEN COMPONENTS

Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Telephone: 0983296121

Fax: 0983296122

TEST EOUIPMENT

At 2, Audi-Multi-Te- ster, 16 test-circuits for loudspeakers, tu- ners, amplifiers, head- phones, tape recor- ders. mikes. boosters, $\begin{aligned} & \therefore\end{aligned}$ $\begin{aligned} & \text { 日 }\end{aligned}$

car radios, CD-players: measurment of millivolt, drift, watt, performance; with generator, radio, signal tracer/injector, 13 volt supply eic.

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up aid, short repair; exhausted CRT's becomes bright and sharp again even il all other machi nes do not succeed.
United Kingdom: P \& E Services, Llandudno, Tel. (0492) 549246, Fax 547880. Ireland: Dönberg Electronics, Ranafast, Co Donegal, Tel./Fax (075) 48275
New Zealand: TDON Ltd., Onehunga, Auck land, Tel. 668-907, Fax 668-499 Germany: Ulrich Müter, Oer-Erkenschwick Fax (02368) 57017.

SOFWARE

RELAY

eman

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?

do you filw it difficult to khow your arrears total at any given time?
If you do then we recommend our computer TV and Video Rental package. This package includes
\star automatic updating of each customer's record

* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately avatlable
* easy to use and operate

NEW HRRE PURCHASE PROGRAMNE NON AVALLABE AS WELI
These programmes operate on all IBM compatbles running under MS-DOS. Free demonstration discs available

76 Church St, Larkhall, Lanarks, ML9 1HE Phone/Fax (0698) 883334 or Phone (0698) 888343

With the ever increasing cost of Service Manuals and sheets, what the everyday electrician/engineer needs is a fast, reliable and ,most of all, a cheap way to get hold of all the information he requires. Now there is!

Borrow any Service Manual for $£ 3.95$ regardless of its size or cost

With a stock of tens-of-thousands of different manuals in stock at all times, we are the largest dedicated Library Service to handle SERVICE MANUALS in the world.

HOW DOES IT WORK?

When you join, you get any Service Manual you wish which is currently available in the UK as well as a FREE copy of the Data Ref' Guide (From T1S, our sister company). This manual is now yours to keep until you wish to exchange it for another one. You can make as many exchanges as you want during the year, at a cost of $£ 3.95$ a time.

Yearly Membership:	E49.00
Exchange Fee:	$\varepsilon 3.95$

[^2]
WAUPITRON TECHNCALPUBLCAIIONS

A selection from our range of Technical Books and Guides for the TV \& Video Trade

TELEVISION EQUIVALENTS. New Book lists Exact Equivalent for Many different Makes. TELEVISION CHASSIS GUIDE. Identify your TV chassis from the model number.

Order MP-150. £5.00 Order MP-18. £5.00

VIDEO RECORDER \& CAMCORDER EQUIVALENTS.
Lists all known models and their Equivalents. New 2 volume Set. VIDEO RECORDER FAULTS Repair Guide for Beginners. Know where to start loaking! Order MP-5. £3.00 VHS VIDEO RECORDER PRINCIPLES Essential Theory on the Principles of operation of VHS Order MP-58. £3.00 CMOS DATABOOK Detailed Specification on the 4000 Series with circuits. TTL DATABOOK. Detailed Specification on the 7400 Series with circuits. TRANSISTOR EQUIVALENTS AND TESTING MANUAL. Inc/udes Testing Procedure. POWER SUPPLIES, STABILISERS a VOLTAGE REGUL_ATORS. Inc/udes Circuits REMOTE CONTROL CIRCUITS - TV. Dozens of Remote Control Circuits for Colour TV's. MANUFACTURERS EQUIVALENTS. Know which Makers Trade Names are the Same. Order MP-10. £5.00 Order MP-34. £5.00 Order MP-24. £3.00 Order MP-9. £3.00 Order MP-167. £10.00 Order MP-220. £3.00 VIDEO HEAD CLEANING KIT. Unique Kit with Comprehensive Instructions on how to do it right. Order VHCK. £4.00 VIDEO TEST JIG. Run the machine and gain access to the mechanics as well. Order VTJ. £15.00 SCART EUROCONNECTOR SYSTEM. Detailed Pinout Specifications of this interface. Order MP-21. £3.00 SWITCH MODE PSU IC TYPE TDA-4600. Comprehensive Details of this popular TV PSUIC. Order MP-37. £6.00 TELETEXT REPAIR MANUAL. Covers the SAA range as used in many Sets. Order MP-38. £6.00 P.C. HARD DISC DRIVE REFERENCE MANUAL. Specifications of Hundreds of Hard Discs. Order MP-84. £5.00 CITIZENS BAND RADIO CIRCUITS MANUAL. Covers Dozens of popular models. RECORD PLAYER SPEED DISC. Lets you accurately align any turntable speed. Order MP-40. £10.00 Order MP-8. $£ 1.00$ CITIZENS BAND RADIO DATA REFERENCE BOOK. Technical Specifications of C.B. N's. Order MP-165. £5.00 TELEPHONE CODE LOCATION GUIDE. Find the Town from the Phone Code. Order MP-19. £5.00 VALVE AMPLIFIERS CONSTRUCTION MANUAL. Full Building Details for Vintage Buffs. Order MP-173. £5.00 VINTAGE WIRELESS SERVICING. 2 Volume set covers Vintage Servicing in detar̂. Order MP-22+35. £6.00 OFFICE EQUIPMENT EQUIVALENTS. Complate Cross Reference for all Photocopier or Fax. Order MP-200. £6.00 REEL TO REEL TAPE RECORDER SERVICING. Details on Reel Servicing for Collectors. Order MP-201. £5.00
SERVICEMANUALS
WE HAVE THE MOST COMPREHENSIVE LIBRARY OF SERVICE MANUALS AVAILABLE ANYWHERE From the Earliest Valve Wireless to the Latest Video Recorder. Originals or Photostats as available.

Colour Televisions, Video Recorders, Test Gear, Audio, Computers, in fact practically anything.
If you need a Service Manual, Give us a call. All order plus Post $\&$
MAURITRON PUBLICATIONS (TV) 8 Cherry Tree Road, Phene pour creat card order Chinnor, Oxfordshire, OX9 4QY Tel:- (0844) 351694 Further Tites detailed in our FREE Catalogue. Send A5 S.A.E. for your cooy TODAVI

Technical Information Services
 76 Church Street, Larkhall, Lanarks, ML9 1HE

Phone (0698) 883334 or (0698) 888343 Mon-Fri 8.30am - 6.00pm, or Fax (0698) 883334 All orders under $£ 20.00$ add $£ 2.00$ p\&p, Under $£ 30.00$ add $£ 2.50$, Over $£ 30.00$ Post Free

> WERVICE MANUAALS SHEETS \& CIRCUITS

Only $£ 5.95$ for Data Ref Guide 4th Edn. (Inc.s CTV, VCR \& Audio Chassis Guides \& Cross-Reference) Send a Large SAE for your FREE Quote or Phone/Fax Us

A Selection Of Titles From Our Stock Of Over 200

(Send a Large SAE for our FREE Catalogue)

Practical TV Repairs 2nd Ed. CTV Servicing by King The PAL System TV \& VCR Technology TV \& Video Engineer's P.B Buy, Sell \& Serving Used TV's Data Communications P.B.
$\begin{array}{ll}\text { £16.95 } & \text { Practical Radio Serv' \& Repair } \\ £ 9.50 & \text { Serv'ing TV \& Video Equipment } \\ \text { £14.95 } & \text { Serving Audio \& Hi-Fl Equip' } \\ \text { £14.95 } & \text { Buy, Sell \& Serv'ing Used VCR's } \\ £ 9.95 & \text { Hi-Fi Servicing } \\ \text { £14.95 World Satellite TV \& Scramb' M'ds }\end{array}$ £14.95 World Satellite TV \& Scramb' M'ds $£ 24.95$ Install Aim \& Repair Satellite TV $£ 12.50$
£9.95 "Euro' Scramb' Systems 3rd Ed." $\mathbf{£ 3 0 . 0 0}$

£POA	Microwave Servicing	$£ 9.95$
$£ 12.95$	Spectrum Repair Guide	$£ 5.00$
$£ 25.00$	BBC Micro A B + \& Peripherals	$£ 25.00$
$£ 25.00$	Buy, Sell \& Serv'lng Used CD's	$£ 9.95$
$£ 9.95$	Elec'ic Power Supply Handbook	$£ 7.95$
$£ 9.95$	"Euro' Scramb' Systems 3rd Ed.*	$£ 30.00$
$£ 24.95$	Install Aim \& Repair Satellite TV	$£ 12.50$

Fast, Frlemelly Sermice with Low Prices, Huge Gholce \& High Quallty

INDEXES! INDEXES!

THOUSANDS SOLD WORLDWIDE
EDITION 10 of the complete indexes now published containing over 8,000 Faults listed in 12 Years of Television Magazine

Indexes are alphabetically listed by Make, Model, Fault, Ref and are now Avallable for just
88.00

For Television \& Satellite Faults

For Video, Camcorder \& CD Faults

Or

\$15.00 For both sets complete
Please add $£ 1.50$ (UK), $£ 3.00$ (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE is ALSO AVAILABLE.
FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to
E.C.S.

31 PRENTON ROAD WEST PRENTON, BIRKENHEAD, MERSEYSIDE L42 9PY All U.K. orders subject to £1 p\&p. No VAT

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG.
Telephone: 0202870656

AMSTRAD, LOGIK,
MATSUI-SAISHO
FAULT FINDING GUIDE
Covers hundreds of faults on a
wide range of television and
video recorders. Professionally
compiled in easy to locate for-
mat. SAVES TIME AND
MONEY by pin pointing faults
in record time.
SEND £9.95 + £1.00 p.p.
TO
R. ROWLAND
438 Poynters Rd, Luton,
Beds. LU4 0TW

AMSTRAD, LOGIK,
MATSUI-SAISHO
FAULT FINDING GUIDE
Covers hundreds of faults on a video recorders. Professionally compiled in easy to locate format. SAVES TIME AND MONEY by pin pointing fauls record time TO
R. ROWLAND Beds. LU4 0TW

THE VINTAGE WIRELESS COMPANY LTD FOR EVERYTHING IN VINTAGE VALVE TECHNOLOGY
Everything for Vintage Radio, Electronics and Audio by Mail Order

Valves, Books, Magazines, Components, Service Sheets, Radios, Amplifiers, Tuners. etc.
Send $£ 3.25$ for Catalogue Pack and Sample Newsheet.

VISA

Vintage Wireless Company Tudor House, 20A Cossham Street, Mangotsfield, Bristol BS 17 3EN.

Retail showroom open every Saturday $10 a \mathrm{~m}$ to lpm .
Tei: 0272565472 (24 hours) Fax: 0272575442 (24 hours).

AMSTRAD HANDSETS

VCR4600, 4600MkII
VCR4700 (Not long play) VCR5200
VCR6100 (Indexer) VCR6100 (Barcode Indexer) VCR9000 (Old type)
TVR 2
TVR 3
SRD500
TS90/99 Tower System
AMSTRAD LOPTS
CTV1000 FB182K
CTV1400 FB165KA CTV1401 3714002 CTV1409 3714002
CTV2000 FB171
CTV2000 FB171K CTV2200 3722002 CTV22103722002
TVR 21810951
TVR 3181297
CTM644 MkII 3714009
PC12-HRCD/D MSH1FCT3 PCW9512,8256,8512
FERGUSON LOPT
MM06 0004242001
AMSTRAD TUNERS
UE33-B01
UE2-B31F
1810829
ENV87358F2
ENV87509F2
UVE33-F01-VHF-UHF
UVE33-F02 VHF-UHF
1813766 VHF-UHF

Harrison

Electronics
CEMTURY WAY, MARCH, CAMBS PE15 8QW
FAX: (0354) 51416. TEL: (0354) 51289

AMSTRAD MODULATORS
 AMSTRAD MOTORS

17518198221
17.63 ENP-E730-2
11.75 VCR4600MkII,4700
25.85 SRD100/200/400
29.38
1.75
13.22 MANUALS
17.63 VCR4600
11.75 VCR4600MkII,4700
11.75 VCR8700

VCR8800
1.75 VCR9000/9004
11.75 AMSTRAD
14.10 OPERATORS MANUAL
9.40 PC1640
9.40 AMSTRAD VCR
.10 MECHANISMS
3.51 4500,9000 (Old model)
13.51 CASSETTE HOUSING ASSY.
$14.104600,4700$, TVR1,2,3
7.05 COMPLETE MECHANISM ASSY
(Excluding Video Heads)
COMPLETE MECHANISM ASSY.
4.70 (Excluding cylinder assy.) MECHANISM DECK
9.40 (Excluding Cass. housing assy.
5.88 \& Cylinder assy.)
7.05 CASSETTE HOUSING ASSY
7.05 CYLINDER ASSY. (incl. Standard
5.88 Video heads)
14.10 CYLINDER ASSY. (excluding
14.10 Video heads)
14.10 CYLINDER LOWER DRUM ASSY (Excluding Motor)
HEAD BASE ASSY. (Audio)

AMSTRAD IF UNITS

TPS7-B0006
TPS7-L0002
1813766
7.05 Loading Motor MCB9B02
5.88 Drum Motor E20EL05
5.88 Capstan Motor LLN4B21
5.88 Tape Loading MCF9B02

AMSTRAD PCB's

(Complete, fully populated)
9.004500 Timer
9.004500 Systems Control
8.004600 Systems Control/Servo,
6.00 Display \& Control PCB's
9.004600 Display

4600 Control
4600 Video \& Audio
4600 Power Supply
11.75 4600MkII Main PCB Assy. $4600 \mathrm{Mk} \mid l$ Timer
4600 MklI Control
4600MkII Head Amp Assy. 4600MkII Power Supply 4700 Main PCB Assy. 4700 Timer 4700 Control 4700 Head Amp Assy.
35.254700 Power Supply 5200 Timer \& Channel Disp. 29.385200 Video

5200 Switch Panel
7000 Switch PCB no:7
18.80 CTV 1400 Switches, Presets \& Tun
15.28 (UE2-B31F
play CTV 1400 Swilches, Presets \& Tuner
25.26 (ENVB7358F2) 8.2
20.56 (ENV87509F2)

CTV2200 PCB no: 3
8.23
3.53
9.99 CTV2200 PCB no:4 $\quad 4.70$
5.88 TVR 1 Control Panel \& Presets TVR 2 Main TV PCB TVR 3 Main TV PCB
7.05
37.6a
$43.4 a$
9.40 TVR 3 TV Power Supply $\quad 15.22$
14.10 TVR 3 Head Amp Assy.
14.10 TVR 3 Video Power Supply
10.58

VMC100 - Various parts available
3.53 please phone for prices.
9.99 MITSUBISHI/SALORA
9.99 Various Videos PCB's and Cassette Housings available - see our full list for parts and prices.

BSR DECK
9.40 SM103/104 Linear tracking Record Deck
17.63
29.3E CARTRIDGE/STYLI 11.75 CZ800-1/ST800-1 2.94
17.63 SANYO VHR1110.
14.63 1150, 1300, 1700, 2300
40.82 FUTEK F501 Replacement Video 10 Heads

AMSTRAD PC12MD
VGA MONO MONITOR
Suitable for use with 2000/3000
series and any other VGA compatible
PC
64.63

AMSTRAD SOFTWARE
17.63 ACCOUNTSMASTER Lan
17.63
14.10 (Full accounts program for running
4.70 small business on any PC)
2.35 INFOMASTER
17.63
(Easy to use Database, runs on PC)
AMSTRAD COMPUTER \& PRINTER
SPARES - Many spares available,
please phone for price.

PRICES INCLUDE VAT.
all items are brand mew ard guaranteed

* * SAME DAY DESPATCH * *

Write or Phone for FULL catalogue.
POST \& PACKING ,

DERKS TRADING
YOLIR PROCIJREMENT
office in
SINGAPORE
TV \& VIDEO SPARES EILECTRONIC COMPONENTS CONSIMMER ELEC'TRONIGS
TV's, VCR's, CAMERAS
35/36 CARPEN'TER ST. \#04-00 '35/36 CARPEN'TER ST. \#04-00
ABS BUIIDING, SINGAPORE: 0105 TEL: 7763585 FAX: 7783363

W ANTED

TDA1470 ANY QUANTTTY TEL;0299 879642. CAMPION WHOLESALE LTD. UNTT 80, BARRACKS ROAD,

SANDYLANEIND ESTATE,STOURPORT- ON SEVEN, W ORCS.DY139QB.

RCS VARARELE VOTMEE D.C. BEICH POWER SUPPYY

 compact
sine
5×5
5×5

 peak Fully varable Twin al 6 amp 10 amps RADIO COMPONENT SPECLALISTS
 List, Large SAE Deliven 7 T days. Calters Welcome Closed Wed

SURPUS REDUNOANT EIECTRONIC

 COMPONETTS WANTEDI/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM Electronic Supplies
Tel. $0827873311 . \quad$ Fax 0827874835

WANTED

URGENT

required for export on regular basis (Shipping arranged). New or B Grade TV's and Video's. Must have combined VHF and UHF tuners or else multi system type. Apply Box Number A2230.
You will be contacted immediately

CRT FOR MONITORS, SCOPES, RADAR ETC (not domestic TV)			
		U6x	
	${ }_{c}$	${ }_{5}^{13300}$	
	poa 013.6 cilicy	${ }_{53300}$	${ }_{\text {L12 }}^{120}$
	${ }_{512}$	${ }_{5}^{53505}$	
	E1a00 014.1730 cm		
	[2900 01417383	533000131.188	
123\%	Seme	Sma0 18.12	
		535000001.1913	
	Pod Di6-100046]	[3300	4.00
${ }_{\text {a }}$			
	${ }_{112000}^{0076}$	S1.00 mo. 120	, 100
	521000067.20	52400 me.	∞
or			
		${ }_{\text {cilem }}$	
	L1:00 F-3002		
 bove We also have in stack carwars thas. image inhanshers, magnatrons, appontinert onty			
BIUMGTOW EXPORT UMIITED, Uniil IE, Gilmans Industial Estate, Bilitingiturst, W Susser RH14 9E2, UK Tet 0403 784961. Fax: 0403783519.			

LLASSIFIED CLASSIFIED CLASSIFIED LLASSIFIED CLR5SIFIED

CAR RADIO CASSETTES

Do you turn away work on car radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the eeprom (memory IC) with that of a known code, or sending the original for re-coding.
All popular makes including Philips, Ford, Pioneer, Clarion, Grundig, Blaupunkt, Fisher, JVC, Alpine, Volvo, etc.
Send now for introductory offer, one of each of most popular eeproms + comprehensive eeprom/radio decoding list. OHer includes Philips X2402P: Ford MNO10: Blaupunkt Boston CC20 9346:
£17.63
Original eeprom re-coding service $\Sigma 10.00$
Radio's sent for decoding from
£20.00 Inc. of VAT and $p \& p$

RADIO DECODING EQUIPMENT

We will beat any genuine written quotation for supplying a computer or software to decode radio cassettes, ring us first.

For technical or general information phone
0543572523 or 0831806574.
C.D.H. ELECTRONICS

3 Common Walk, Huntington Cannock, Staffs WS 12 4NB
C.D.H. ELECTRONICS
momontin
If you require a home study course in the fundamentals of electronics, either to begin a career, pursue a hobby, or refresh your knowledge, a BASIC ELECTRONICS course, from the Direct Persona! Learning scheme, could be just what you're looking for. Contact: K. Sparrow etc. . . 11 Claydon Green Whitchurch BRISTOL Avon BS14 0NG Telephone: (0275) 835669

CWANTED

WANTED
GRUNDIG MODULES FOR GSC 600/900METAL MICKEY SERIES.
TEL: 0229-582557

PLEASE ADDRESS ALL BOX NUMBER ENQUIRIES TO:

```
BOX NO: TELEVISION \(11^{\text {TI }}\) FLOOR
``` QUADRANT HOUSE TEE QUADRANT SUTTON, SURREY SM2 5AD

EAST LONDON TV/VIDEO SUPPLIER
Working Basic From \(£ 25.00\) SPARES FOR GRANADA STOCK Working Text From E 50.00 VHF/UHF CONVERTERS Working VCR From £50.00 ELECTRONIC SIGNBOARDS Non Working VCR From \(£ 25.00\) NEW HI-FI EQUIPMENT Non Working TV From \(£ 15.00\) DOUBLE CASSETTE WITH CD S.E.C.A.M. TRANSCODER

\section*{THE EXPORT SPECIALIST}

JOMILL ENTERPRISES
UNIT A
357 MILE END ROAD LONDON E1 4PA
TEL/FAX: 0819834792 or TEL: 0819830517

\section*{} NBES

\title{
REBUILT CRTS VDU - MONITOR - TV
}

Image Burn-In Removed From Screen Phosphers B.S.I. Certification
N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

\title{
 CANVE COLOUR TVBES
}

Registered Office: 'Fairlands', Beckney Avenue, Hockley, Essex SS5 5NR. Telephone: Southend on Sea (0702) 201108

\section*{C.R.T.'s REPROCESSED TO ORIGINAL MANUFACTURER'S SPECIFICATION.} PHILIPS, SONY, HITACHI, etc. POLISHING SERVICE AVAILABLE
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{ALBA . AMSTRAD . BUSH . DECCA DORIC . BLAUPUNKT FERGUSON. FIDELITY. GEC GRUNDIG GRANADA HITACHI . HINARI INDESIT . ITT . KIMARA . NIKKAI MATSUI . MURPHY OSAKI . NORDMENDE . LOEWE-OPTA. REDIFFUSION PYE . PHILIPS . SANYO . SAISHO . SHARP SONY. SOLOVOX. SUSUMU. TANDBURG . TELEFUNKEN THORN . TRIUMPH . HUANYU. GOLDSTAR . BINATONE}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
with smartcard contact details Eurocryp cardinterlace E12.00. E. M.O., Ramsbottóm Lancs, BLO 9AG. TEL; 0706823036. PRIVATE RETAILER has excellent par exchange colour televisions and videos to clear. Tel 0494814317.
ASSORTED VACUME Pump for sale 4, leybold type, 2 Genevec rotary piston, 1 Speedvac Mercury diffusion complete, 3 oil Diffusion ring 081-800 3226 after 6 pm anytime weekend.
OCHRE MILL Technical Services, Grundig N spares for most models to 1985, fast friendly, helpful, sensible prices. Gt Lype Farm, Charton Nr, Malmesbury, Wilts SN 16 90 Tel; 0666823228.

NEINNES RTVF SERVICING, 25 volumes to 1982 offers? Bearman, 1 Temple Lodge, New Barnet EN5 1DL Tel: 081-446 2534

\section*{LINEAGE}

AVO MUITTMETER Model 8, E45 00 500 volt megers \(£ 30.00\). Prices plus VAT and \(p\) \& \(p\). Send SAE for lists of Surplus Instru ments \& Scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN Tel; 0532 496048.
= RECRUITMENT
BRITISH SERVICE ENGINEER With 15 years experience, city and guilds certificates and good knowledge of modem TV and VCR seeks secure position Abroad or UK. Tel: 056686558

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} & & & \\
\hline \multicolumn{6}{|l|}{} & & \\
\hline \multicolumn{7}{|l|}{} & \\
\hline \multicolumn{3}{|l|}{} & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{DISH AND LNB SUITABLE FOR D2 MAC \\ £15 \\ POST £5 + VAT}

New Eprom for converting
Ferguson BSB Receivers to D2 MAC and PAL - 99 channel is tunable and each one can be put into memory - also has menu. £20

PAL panel (to convert to
PAL) £20
SEND FOR DATA.
```


[^0]:    Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmset ting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE 9 LS 107126150001 . Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television " is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]:    WTREE WAREHOUSE
    UNIT 1, SUNSHINE MILLS, WORTLEY RD, LEEDS 12 TEL: 0532638804/633421 FAX: 0532310275

[^2]:    SERVICE
    INFORMATION
    CIRCUITS \& SERVICE MANUALS CIRM 1940s-1990s: radios amps radiograms, tuners, CD's. TVs, Vidioos, cassette, radios. ICE etct ARGE OUANTITY USED TV PANELS BACK COPIES PW, RADCOM, TV MAG
    Give details of your needs to:
    
    

    ## GERMAN SERVICE SHEET

    SPECIALISTSOtr connethoms ate morld-wide. We furninh ant hand of German. Eurepan and Japance wryei hect or manual Thousisds of different sheeth and manuals in thex For ant enquiries

    ## DÖNBERG ELECTRONICS

    Schoolmasters House Rannalast Co. Donegal, Republic of Ireland Phone: 07548275

    FAST FIX
    FEunlt Mmedex Now in NEW A4 Book Format, containing over 200 pages.

    FAST FIX contains several thousand TV, Video, Camcorder, CD and Satellite fauth symptoms from TV Magazine covering the years 1981. June 1993 inckusive and is arranged alphabatically listing Make, Model, Fault Symptom and Page Reterence.
    Complete FAST FIX index $£ 16.00$ inclusive. Overseas orders please add $£ 3.00$.

    FAST FX IS REGULARLY UPDATEO ANO ALL NEW ORDERS WILL RECEIVE A FREE UPDATE VOUCHER TO COVER THE FIRST UPDATE.
    Send Cheques/Postal Orders, payable to: J. Humphreys

    13 Manstiad Avenue
    St. Johns Park
    Hawarden, Clwyd CH5 3SB N. Wales
    For further details, tel: 0244532961

