SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

The philupe exconerweiter Revrenved

WIE WILOW VALE ELECTRONICS LTD

Vol. 43, No. 7
 Issue 511

On sale April 21st.

COPYRIGHT

(C) Reed Business Publishing Ltd., 1993 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Volumes 38 to 42 are available for $£ 3.50$ each from Video Interface Products Ltd., who can also supply a five year consolidated index on computer disk. For further details see pages 474 and 499.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, £30 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card number 0789200255.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 481.

473 Leader

474 The Television Index and Directory
Peter Marlow
A computerised index covering Volumes 38 to 42 is now available. The disc also includes a spares directory and other information.

476 TV Fault Finding
Reports from Philip BlundelI, A.M.I.E.I.E., John Edwards, Richard Newman,' Mark Ward,' Michael Dranfield, Denis Foley, Chris Waton, Graham Richards, K.E. Fellingham and Nick Beer.

480 Motorising a Fixed Dish
lan Martin
Dish motorisation and setting uf a polar mount.
482 Camcorner
Reports from Ian Bowden, Brian Storm and David C Woodnott.

483 A Video Monitoring Rest Jig
Eugene Trundle
This latest approach to dealing with intermittent
faults uses a video camera/camcorder and VCR to monitor the equipment under test, also test equipment as appropriate, giving an instant playback of any symptoms and test readings.
485 Teletopics
487 Letters

490 It's only the on-off switch
Steve Cannon
Roger Bunney
494 Nicam Decoder Follow-up
Michael A. Harris, B.Sc.
Further guidance on using the Nicam panels available from Sendz.

496 Next Month in Television
493 Test Report: The Philips Scopemeter David Botto
502 Philips' Double-scan Technique
George Wilding
Arrangements used in the Philips FL1.2 chassis to provide 1,250 -line, 100 Hz flicker-free pictures.

504 Modern TV Receiver Techniques, Part $5 \quad$ Eugene Trundle Demodulating and decoding digital sound transmissions (Nicam and MAC).

510 VCR Clinic
Reports from Philip Blundell, A.M.I.E.I.E., John
Edwards, Roger Burchett, Graharn Richards, Chris
Watton, Richard Newman, Mike Leach, Terry
Lamoon, J. LeJeune and Stepher Leatherbarrow.
513 What a Life!
Donald Bullock
514 Test Case 365

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.

JUST ARRIVED

VIDEO HEADS

AKAI
VSF600, VSF650
AMSTRAD
VCR8800, VCR8804, VCR9340
JVC
HRD330, HRD337, HRD440, HRD637, HRD641, HRD660, HRFC 100

MITSUBISHI

HSE 12, HSE22, MX
HS411EZ, HS411GZ
NATIONAL
NV8050, NV8051
N.E.C.

DX2000
DS6000
SAMSUNG
VM1560, VN1561
SANYO
VHR7900
SHARP
VC585, VC685
VC90ET
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509G
V9680
V300G, V301, V305, V309G
V61, V63
V110, V120, V130, V140, V210, V220

TELEVISION ON/OFF
 MAINS SWITCHES

Baur, Normende, Nova, Pioneer, Quelle Saba, Salora, TEC, Thomson \& Vega VIDEO MOTORS
HITACHI
VT11, VT14, VT15, VT16, VT17, VT19, VT35, VT39, VT57, VT88' (capstan motor)
BANG \& OLUFSEN
CASSETTE HOUSING

AKAI

VS35, VS53, VS55, VS66, VS75 FERGUSON
FV31R
JVC \& FERGUSON
HRD515, HRD520, HRD527, HRD540, HRD550, HRD580, HRD600, HRD610, HRD620, HRD660, HRD670, HRD830, HRD840, HRD850, HRD860, HRD4050, HRD6600 \& FV37H

IC TRANSISTORS

M491BB1
SAA5243PE
TIP112H
UPC1488H
STR4090A
REMOTE CONTROLS
AKAI
RC-V10A
V 25 A
BUSH
2020T, 2114T, 2321T, 2514T
2020, 2114, 2321, 2514

DECCA

RC70
FISHER
RC905B
GRANADA/REDIFFUSION
UNIVERSAL, 79500C, 986700
SATELLITE
MK4 TEXT, $70115 \mathrm{G}, 70133 \mathrm{G}, 70357 \mathrm{E}$
MK4A TEXT, 70375C
95288E
94490D

GRUNDIG
TP160E
TP200, TP300
TP400
TP590-600
TP390, TP610
TP621
TP630, TP650
TP660'
TP661
HITACHI
2900 P
CLE800-CLE 830
A617402/655602
A512120/230
A514790
A5088470
3400P
3500P
2200P
3600P
2300P
3900P RG305
2800P $\begin{array}{ll}\text { RG306 } \\ \mathrm{FS} 9 / 9-10 / 1\end{array}$
VS5 RUK
3000P
2350 P
$\begin{array}{ll}2600 \mathrm{P} & 18279,18396,18460,18521 \mathrm{SE} \\ 3700 \mathrm{P} & 40540 \mathrm{VTS}\end{array}$
LOEWE
2900P
2550 P
1700 P
1800P

650P	KT3 TEXT
	RC5352
	RC5375
	RC5 STANDARD
1000 P	RC5901
1000 P	RC5903
1000 P	SABA
	T6772
1000P	TC319-320
1000P	TC356
	TC358
850P	TC360
	TC355
1000P	SALORA
	SERIES L
850P	86173
1000P	SANYO
850P	RC218, RC222, RC228, RC238
850P	JXGE
1000P	JXDE
1000P	VHR2300
	RC628

[^0]1050P
1000P
850 P
1050P
1050 P
1050 P
1050P
1050P
1050P
900P
1000P
1000P
1000P
1000P
1000P
1000P
1000P
1000 P
1000P
1000P
900P
850P
900P
900 P
900P
900P
900P 1000P

1000P
1000 P

1000P
1000P
1000P

SHARP
G0121CESA, 123CESA, 204, 25
900P SIEMENS
FC616 1000
FC631 1000

FC742
RM604, RM605, RM606
32 CHANNEL
RM613
RM632, RM636
TATUNG
FXA
RC70
RC70
FX70 FASTTEXT
TELEFUNKEN
FB632
FB639
THORN/FERGUSON
3V35-42
3V31-32
TX10 TEXT
TX10 STEREO TEXT
TX9-90-100
3V55, FV11
TX 100 STEREO FASTTEXT
PROFESSIONAL
TOSHIBA
CT937
CT9117
201R4B
UNIVERSAL PROGRAMMABLE REMOTE CONTROL
Controls up to 4 different devices which use infra red remote controls including TV, audio, VCR and satellite. (Need original remote control to program) Order code: IR100R
We stock Remote Controls for over 5000 different mod
$081-900-2329$.

LINE OUTPUT TRANSFORMERS

Description	price	Order Code
HITACHI 2433752	1500 P	LOT01
ORION 3714002	1500P	LOT02
FIDELITY ZX300	1500P	LOT03
FE TX100 90 DEG	1500P	LOT04
SABA 490007182	1500P	LOT05
FE TX90 WHITE	1650 P	LOT06
ITT D307/37 EQ	1600 P	LOT07
BLAUPUNKT 210	1600P	LOT08
GRUNDIG 2922010	1600P	LOT09
ITT CVC800/1/3	1500P	LOT10
ITTD218/37 EQ	1600 P	LOT11
NORMENDE 5255	1600P	LOT12
SABA 81000200	1600 P	LOT13
SALORA T236EQ	1650P	LOT14
SABA 811-50-24	1600 P	LOT15
SABA 770223500	1600 P	LOT16
TELEFUNKEN AT1	1450 P	LOT17
TELEFUNKENEQ	1400 P	LOT18
SALORA FM0218B	1600 P	LOT19
NORMENDE 5255	1600 P	LOT20
ITT CVC 1150/1	1500 P	LOT21
ITT COMPACT 80	1500 P	LOT22
FE TX100 GREEN	1450P	LOT23
HINARI CT4/55113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600P	LOT26
17 COMPACT B1	1450P	LOT27
$1 T \mathrm{CT} 3326 \mathrm{MUL}$	1500P	LOT28
ITT D066/37 EQ	1600P	LOT29
ITT 3546 EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100 110 D	1700P	LOT34
HANTAREX 28021	1600P	LOT35
SHARP C3700 EQ	1600 P	LOT36
HITACHI 2432981 CP	1500P	LOT37
We stock line output transformers for over 100 different models. Please ring 081-900 2329 for more information.		
GRANDATALTD		
POP IN COMMERCIAL CENTRE,		
SOUTHWAY, WEMBLEY.		
MDDDLESEX, ENGLAND		
Tel: 081-900 2329 Fax: 081-9036126		

Full range of specialist amplifier VALVES - e.g. EL34 KT88 etc

ONE OF THE LONGEST ESTABLISHED MAIL ORDER SUPPLIERS, WE CONTINUE TO GIVE FAST, FAIR AND EFFICIENT SERVICE.

TRAILING LEADS \& SOCKETS		Mains Plugs	
4 WAY 9 FT EXTENSION LEAD WHITE	£4.65	3 AMP FUSE WHITE	
4 WAY 2 MTR EXTENSION LEAD WHITE	£4.55	13 AMP FUSE WHITE	
2 WAY 2 MTR EXTENSION LEAD WHITE	£4.05		
2 WAY9FT EXTENSIONLEAD WHITE		£35.00 PER 100	
4 WAY 25OC EXTENSIONLEAD WHITE	${ }_{\text {¢ }}^{\text {¢ } 2.75}$		
4 WAY SOCKET WITH NEON FUSED WHITE	£2. 34	MOSS WIRELESS	
1 WAY SOCKET WHITE	£0.95		
2 WAY SOCKET WHITE WITH NEON	£1.35		
LIGHTING		Remote control with cordless detectors	
1 GANG 1 WAY WALL LIGHT SWITCH WHTTE	£1.10		
2 GANG 2 WAY WALL LIGHT SWITCH WHITE	£2.00		
1 GANG 2 WAY WALL LIGHT SWITCH WHITE	£1.20	£170 + VAT	
5 AMP PULL CORDLIGHT SWITCH WHITE	£2.60		
CEILING R OSE WHITE	E1.00		
T1 PENDANT LAMP HOLDER CORD	£0.80		
CEILING PENDANT SEES 6 INCH WHITE	£2.00	PLEASE ADD £2.00	
CEILING PENDANT SETS 9 INCH WHITE	£2.20	P/P TO ORDER TOTAL THEN ADD	
STRIP LIGHT WHITE	£2.40		
NIGHT LIGHT WITH LAMP W	£3.10	17.5\% VAT TO THIS	
BASE PLATE BATTEN WHITE BASE PLATE BATIEN HOLDER WHITE	£0.50 $\mathfrak{E 0 . 9 0}$		
SOCKETS		WE HAVE STOCKS OF	
TWIN GANG 13 AMP SWITCHED WHITE		\star EX-RENTAL TVSNIDEOS - TELEVISION COMPONENTS - VIDEO COMPONENTS * REMOTECONTROLS * CABLES, LEADS, PLUGS etc * AERIALS AND ACCESSGRIES * HOME SECURITY PRODUCTS * DEGAUSSING COILS!!	
TWIN GANG 13 AMP UNSWTTCHED WHITE	£3.00		
SINGLE GANG 13 AMP SWITCHED WHITE	$\underline{2} .10$		
SINGLE GANG 13 AMP UNSWGTCHED WHITE	£1.70		
PATRESS BOXES			
SINGLE			
TWIN GANG 25MM DEEP WHITE	£1.25		
CALLERS WELCOME AT TRADE COUNTER			MON-FRI 9-5pm SAT 9-3.30pm

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career Opportunities

Over the past 100 vears more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU POSt or phone zoday for FREE INFORMATION on the course of your choice. (Tick one box only!)

${ }^{24 \mathrm{~V} .33 \mathrm{v} .68 \mathrm{~V} .120 \mathrm{v}}{ }^{130 \mathrm{~V}} \quad 1.00$ VS1/5

REEL IDLER UNIT
TAKE UP CLUTC
TENSION
DEO HEAD VS $1 / 5$.

VIDEO HEAD VS4.................. 34.50

ALBA VIDEO SPARES	VIDEO HEAD 8.75
VCR4000	3V35/39
BELT KIT 1.95	BELT KIT1.95
CAPACITOR BACK UP...........1.85	CAPSTAN MOTOR 21.50
PINCH ROLLER.................... 3.95	CASSE TTE HOUSING 25.95
REEL IDLER.......................... 3.95	LOADING BELTS (5).............1.95
REEL PULLEY1.95	MAINS TRANSFORMER 23.95
REPAIR KIT........................11.50	PINCH ROLLER3.95
TENSION BAND..................... 2.50	REEL IDLER......................... 2.95
VIDEO HEAD16.95	REPAIR KIT......................... 12.95
VCR5000	TAKE UP IDLER.....................1.95
BELT KIT.............................1.95	TAKE UP CLUTCH.................2.95
PINCH ROLLER3.95	VIDEO HEAD8.75
REEL IDLER.......................... 3.95	3V44/45
REEL PULLEY1.95	BELT KIT1.50
TENSION BAND....................2.50	CASSETTE HOUSING..........25.95
VIDEO HEAD16.95	PINCH ROLLER..................... 3.95
VCR6000	REMOTE CONTROL..............15.95
BELT KIT 1.95	REPAIR KIT........................14.95
CLUTCH ASSEMBLY.............4.50	VIDEO MEAD 19.50
PINCH ROLLER 3.95	3V65/FV11
REEL IDEER.........................4.50	BELT KIT1.75
REPAIR KIT........................ 12.95	CAPSTAN MOTOR 27.50
TENSION BAND.................... 2.50	CASSETTE HOUSING..........29.95
VIDEO HEAD 17.95	PINCH ROLLER..................... 3.95
	REEL IDLER.......................... 2.75
AMSTRAD VIDEO	PAIR KIT.........................-11.95
VCR4500	HEAD 17.95
BELT KIT1.95	
GEAR ASSEMBLY9.95	FISHER VIDEO SPARES
MODIFICATION KIT................6.50	FVH5000
PINCH ROLLER3.50	BELT KIT2.20
VIDEO HEAD14.95	REEL IOLER......................... 5.50
VCR4600BELT KIT1.95	PINCH ROLLER................... $\mathbf{3 . 5 0}$
GEAR ASSEMBLY9.95	TENSION BAND....................2.60
MODIFICATION KIT -...............6.50	VIDEO HEAD24.50
PINCH ROLLER 3.50	FVH615/720
VIDEO HEAD 14.50	BELT KIT1.95
VCR7000	CLUTCH ASSEMBLY.............5.95
BELT KIT1.95	PINCH ROLLER4.50
LAMP.................................... 95	REEL IDLER.-....................... 5.95
PINCH ROLLER.................... 3.95	VIDEO HEAD 15.95
REEL IDLER.........................3.95	FVH905/910
REEL MOTCP14.95	BELT KIT1.95
VIDEO HEAD 15.25	CLUTCH ASSEMBLY...........19.95
VCR6000	REEL IDLEA........................5.95
BELT KIT 1.95	VIDEO HEAD FVH90515.95

FVRUSON VIDEO SPARES
BELT KIT................................. 1.95
CASSETTE LAMP.......................... 32.70
LOADING BELTS (5).......................95
PINCH ROLLER........................95
REPAIR KIT..................................... 12.95
REEL IDLER................................95
TAKE UP CLUTCH
TAKE UP IDLER...........................95
VIDEO HEAD 8.75
2v35/39
CAPSTAN MOTOR .. LOADING BELTS (5)...............1.95

TAKE UP IDLER..
VIDEO HEAD 8.75
BELT KIT..................................50
PINCH ROLLER.........................95

3V65/FV11
CASSETTE TOR 27.50
TENSION BAND..................... 29.95
VIDEO HEAD 15.95
VT63/64E
BELT KIT.
CAPSTAN MOTOR 27
CASSETTE HOUSING.......... 14.70
CLUTCH ASSEMBLY..................95
FF/REW IDLER50
PINCH ROLLER.......................
REMOTE CONTROL................ 13.25
SERVICE MANUAL............ 10.95
TENSION BAND50
VIDEO HEAD VT63/64E 20.30
VT120/130E

CLUTCH ASSEMBLY.................... 7.95
FF/REW IDLER 3.75
PINCH ROLLER3.95 REPAIRKIT
15.95TENSION BAND...........................95 VIDEO HEAD VT120E 21.95
VIDEO HEAD VT 130 E

LINE O/P TRANSFORMERS
FERGUSON TX90 14............... 23.95
FERGUSON TX90 20 .-............17.50
FERGUSON TX99.................. 22.95
FERGUSON TX 10090018.95
FERGUSON TX100 1100...........17.25
FERGUSON TX100 FSI 20.75
FIDELITY $2 \times 2000+$ MOD
FINLUX 1000 SERIES19.95
HINARI CTA/5 .-....*******....18.25
HiTACHI CPT1174............... 18.95
HITACHI CP T 1 446,2028.......... 19.25
ITT СОМРАСТ FST 20.50
ITCVC1100.......
1 IT MONOPRINT A................18.25 1
IT MONOPRINT B.............. . . 23.235
TSUL 1410,20/40
MATSUI C1480A.................. 24.95
PHILPS CP90.
HILPS K40.....
LIPS 24
SAISHO CT141R/RA18.50
C1410
all Lopts are either "Konig"
Rs

GENUINE PANASONIC L.O.P.T'S PANASONIC TC2000 39.50	PLEASE RING FOR PRICES
PANASONIC TC2034 53.50	
PANASONIC TC2033 53.50	SWITCHES
PANASONIC TG205143.50	AMSTRAD CTV2210.................. 3.75
PANASONIC TC2061............... 43.50	FIDELITY CTV1401.50
PANASONC TC2243............... 53.50	FIDELITY CTVI4R.....................3.95
PANASONIC TC2263...............43.50	FIDELITY CTV14S.......................3.95
PANASONIC TX1642............... 53.50	GRUNDIG CUC731.....................3.50
	G11 STANDARD......................1.35
PANASONIC TX2.................... 43.50	G11 REMOTE..........................1.75
PANASONIC TX2034................ 53.50	ITT TX SERIES4.95
PANASONC TX2044.................53.50	
PANASONIC TX2122...............43.50	KT3 REMOTE1.75
PANASONIC TX2162................43.50	KT4/CTX REMOTE.....................1.75
PANASONIC TX2461................ 39.50	SAISHO FST2 130 5.95
PANASONIC TX3....................4330	SOLARA PCB REMOTE.............. 3.95
PANASONIC TX3300.................53.50	SONY KV1612 REMOTE...............3.95
PANASONIC TXC2243.50	SONY KV2022 REMOTE3.95
MITSIBUSHI, SONY \& SHARP LOPTS AVAILABLE PLEASE ASK FOR QUOTE	
	TATUNG 165 REMOTE \qquad 1.75
	THORN UNIVERSAL1.00
	TX9:10 STANDARD1.00
	TX9/10 REMOTE 1.75

PANASONIC VIDEO SPARES

 NV230/430REPAIR KIT GENUINE 12.95
BELT KIT................................ 1.95
MODE SWITCH................................... 35
PINCH ROLLER.............. 35

REEL IDLER GENUINE95
NV $333 / 366$
REPAIR KIT GENUINE 12.95
BELT KIT...................................95
PLAY IOLER GENUINE 4.95
REEL IDLER GENUINE 1.25
VIDEO HEAD NV 3338.95
VIDEO HEAD NY 366
NV370
NV
REPAR KIT GENUINE 12.95
MODE SWITCH......................................95
REEL IDLER GENUINE95
VIDEO HEAD9.95
NV730
REPAIR KIT GENUINE 12.50
B
MODE SWITCH
PINCH ROLLER 3.95
RENSION BAND.......................2.45
VIDEO H
NV777
REPAIR KIT GENUINE11.95
BELT KIT1.95
PINCH ROLLER...................... 3.95
REEL IDLER GENUINE3.95
VIDEO HEAD
NV2000/2010
REPAIR KIT GENUINE $\quad . \quad \mathbf{1 9 . 9 5}$
BELT KIT...................................95
PLAY IDLER GENUUINE
REEL IDLER GENUINE1.25
NV7000/7200
REPAIR KIT GENUINE 16.45

BELT KIT 1.95
PINCH ROLLER..........

PLAY CLUTCH GENUINE4.95
REEL IDLER GENUINE 1.25
NVG7/10/12
REPAIR KIT GENUINE11.45
BELT KIT1.95 MODE SWITCH.
REEL IOLER GENUINE2.95

SERVICE AIDS $\begin{array}{ll}\text { ALLEN KEYS (8 METRIC) } & 4.95 \\ \text { ANTEX } 17 \mathrm{~W} \text { IRON } & 8.50\end{array}$ ANTEX 25W IRON ANTEXIRON CIRCLIP KIT
CLEAR TEST TAPE
COLCLENE WIPES FIBRE CLEANING PEN HEATSINK COMPOUND. ONYX SOLD

ONYX TPS PRMABOND ADHESIVE 39 \begin{tabular}{lr}
PROFFESSIONAL \& 31.95

PORTASOL TIP \&

\hline .95

 SELF AMALGAMATING

TAPE45

SHILCON GREASE

\hline
\end{tabular} OLDA MOP 80 SOLDER 0.5KG 22SWG8.75 SUPER GLUE ITILITY KNIFE

WELLER GUN TIPS (2) WATCHMAKERS X1 PROBE KIT 14.50 x 10 PROBE KIT 14.95

SUNDRIES CTX EHT LEAD GENUINE8.25 TX10 FOCUS UNIT.................. 8.85
 98012 POSITOR.

PANASONIC TNV87510F2 TC208/C225/TC2000/TC2024

 TC2213/TC2284/TC85.........31.95 U321..11.95 U411 (COAX SKT) 18.59VIDEO LEADS CAMCORDER COPYING KIT7.95
SCART LEAD FULLY WIRED4 95 SCART LEAD TO 6 PHONO..4.95 SCART COPYING KIT5.95
SCART TO 2 SCART SKT 5.95 SIT 16.95 VIDEO COPYING KIT9.95 VIDEO REPAIR KIT ALBA 4000 12.50 FERGUSON 3V23................................... FERGUSON 3V29/30........... 12.95 FERGUSON 3V31/32
FERGUSON $3 v 35 / 39$ FERGUSON 3V6465 FISHER FVH6 15/715 12.75 GOLDSTAR GVHI221 $\quad 12.50$ GOODMANS VCR1000 12.95 HITACHI VT9300.. HITACH VT1 1/33E12.14.95 MITSUBISHI HS 306 17.95 PANASONIC G DECK PANASONIC NV230 PANASONIC NV333 PANASONIC NV370 PANASONIC NV73012.50 PANASONIC NV2000 2010 19.95 PANASONIC NV700016.45 PANASONIC NVG10/12 11.45
PHILIPS VR6460.............. 11.75 PHILIPS VR6462 PHILIPS VR6462.................. 12.50 SENTRA 8000 11.50 SOLAVOX 1000 ... SONY C5/7..
SONY C6....

5 SHEET AUTOMATIC DOCUMENT FEEDER

USE
30 METRE PAPER ROLL
MERCURYBUTTON TO TAKE

ON TX10
NON TEXT 12.95
FERGUSON TX10 TEXT17.95
FERGUSON TX 10 STEREO..15.95
FERGUSON TX 100 TEXT11.95
FERGUSON ICC516.95
FERGUSON 3V32/35............11.95
FERGUSON 3V43...............14.50
FERGUSON 3V55................15.30
FERGUSON SRA I15.45
FIDELITY CTV14S12.95
FIDELITY CTV22T14.95
FIDELITY CTV22 10..............12.95
FINLUX 1000 SERIES.......... 22.95
FINLUX RC3001..................19.95
FISHER FTS 5610 TX 22.95
FISHER FTS 6310TX............ 22.95
FISHER FTS 110 TX.............. 22.95
FISHER FVHP 905/910.........22.95
GOLDSTAR OTMF 7110.......17.95
GOLDSTAR 105-520D-....-24.95
GOLDSTAR $105523 C$...........24.95
GOLDSTAR GHV $122121 .95$
GOODMANS TX1100/1200....18.95
GRANADA UNIVERSAL12.95
GRUNDIG TP400 TEXT.........12.90
GRUNDIG TP650 TEXT.........14.25
GRUNDIG TP660 21.95
HINARI CT7........................ 19.95
HINARI CT18.......................23.50
HINARI VXL-7/818.95
HINARI VXL-2019.45
HITACHICLE862F19.95
HITACHI CLE871A................ 17.95
HITACHI CLEB74A............... 17.95
HITACHI CPT1446...............17.50
HITACHI CPT1556................ 17.95
HiTACHI CPT2038...............14.95
HITACHI CPT2174................17.95
HITACHI CPT2188...............15.25
HITACHI CPT2218...............17.50
HITACHI CPT2246................15.25
HITACHI CPT2508................15.95
HITACHI CPT2596................17.95
HITACHI CPT2888................15.25
HITACHI VT8000.................. 17.50
HITACHI VT9300..................17.50
HITACHI VT17......................15.95
HITACHI VT63/64.................. 13.25
HITACHI VTI20E 13.95
ITT FS9/10 DIGIVISION.........13.95
ITT RG305.........................13.95
IT RG306.........................13.95
ITT TX3126......................... 20.95
ITT VS4 13.95
ITT VS5 TEXT15.95
JVC HRD540 GENUINE........ 32.95
JVC HRD750 GENUINE........32.50
JVC HRD 755 GENUINE.........34.50

1440
ATSUI 1465...
NEC N $831 / 33 \mathrm{G}$
NEC RB83EG/EP................ 11
NHKKAI NT14/20/21 23
ORION VH1204.................. .-21
ORION VH3050/60RC......... . 21
ORION VR2949/2957.......... .-21
ORION VSP20................... . 19
ORION VXL20.
PANASONIC EUR51200..... .. 1
PANASONIC EUR51142..... .. 3
PANASONIC EUR64142..... .. 21
PANASONIC C71/C74 21
PANASONIC TNQ1411/2.... .. 14
PANASONIC TNQ1419....... . 13.
PANASONIC TNQ1621 17.
PANASONIC TX2112
GENUINE 34
PANASONIC TX2200............21.9
PANASONIC TX2234............ 21
PANASONIC TX2244..
PANASONIC TX2464
GENUINE.
PANASONIC TX2470/72....-.. 21
PANASONIC TX2482/92....... 21
PANASONIC TX3300
PANASONIC NV230
GENUINE.
PANASONIC NV730 15
PANASONIC NV870
GENUINE.
PANASONIC NVG10
GENUINE
PANASONIC NVG 12
GENUINE.
PANASONIC NVG18
GENUINE...
PANASONIC NVG21
GENUINE
PANASONIC NVG40
GENUINE.
PANASONIC NVG45
GENUINE.
PANASONIC NVL28
GENUINE44.50
PHILIPS G11 IR TEXT13.95
PHILIPS KT3/30 NON TEXT ..12.9
PHILIPS KT3/30 TEXT12.50
PHILIPS RC599\%12.9
PHILIPS RC5903 GENUINE ..12.95
PHILIPS 3A17.50
PHILIPS SIMPLE.................10.9
PHILIPS MINIATURE-.......... 9
PHILIPS VR6362,7................13.25
PHILIPS VR646214.50
PHILIPS VR6467..................13.25
EER 505/525--...17.5
AMMABLE

ALBA 6000 x	
AMSTRAD 460¢¢470014.50	
AMSTRAD 6000	
FERGUSON 3 V Doil	
ERGUSON 3 32	
ERGUSON $3 V 42$	
FERGUSON 3V59/FVi2........ 26.95	
RGUSON	
FERGUSON FV12................ 34.50	
ERGUSON	
FERGUSON FVZ26.	
FERGUSON FV31................ 26	
ERGUSON FV3:R	
FERGUSON FV32................. 27	
ISHER FVH50.00	24
FISHER FVH515/910...........15.95	
FISHER FVH725	
FISHER FVH906,916 24.	
GOLDSTAR V1ミ21 12	.. 15
GRUNDIG VS4100/500...........17.30	
HINARIVTR200	
HINARI VXL2 $420 / 35$............17.95	
HINARI VXL6......................19.50	
HINARIVXL8/9 90................. 17.95	
HITACHI 8000/970015.70	
HITACHI VTI 1/33.................15.70	
HITACHI VT17\% 9................. 24.70	
HITACHI VT63/34................. 20.30	
HITACHI VT65..................... 28.50	
HITACHI VTI20E 21.95	
HITACHI VTI 30E24.95	
HITACHI VT150E33.95	
HITACHI VT22CE 21.95	
JVG HRDI70..-................... 17.95	
JVC HRD250 23.50	
JVC HRD470 27.50	
JVC HRD755 34.50	
LOGIK VR950/S.55................ 22.50	
LOGIK VR960..17.95	
MATSUI V $\times 600$.................... 17.95	
MATSUI V $733017 .50$	
MATSUI V $\times 735417 .50 ~$	
MATSUI V $\times 82 \mathrm{C}$...................15.25	
MITSUBISHI H5301/302....... 22.70	
MITSUBISHI HS306............. 23.95	
NEC 9034/905-..................... 19.95	
ORION VH119.50	
ORION VH3.	
PANASONIC NV23017.50	
PANASONIC NV333 8.95	

 .12 .95
. .14 .95 .11 .95
.1275 . .6 .50
1295 .12 .95
.12 .95 .12 .95
.12 .95 .12 .95 11.45
11.75
1250 8.95

WITH 100 METRE PAPEA ROLL - 6 AUTODIALS FOR EASE OF automatic guillotine - PHOTOCOPY FACILITY
CANONS DE-CURL FEATURE FOR FLAT FAXES
CANON FAX T50.........E469.00 CANON FAX T50.......- $£ 469.0$

- FULLY PORTABLE ELECTRONIC TYPEWRITER
FULL LINE OF CORRECTION

14 CHARACTER PER SECOND DAISYWHEEL PRINTING.
SPELL CHECK FACIIITY

MOTORCILA PANASONIC. NEC. NOK $\#$ A. MITSUBISHI \&
 MOTOROLA PANASONIC NEC.NOKHA. MITSUBISH TECHNOPHONE
 FROM NEW \& USED HAND POFTTABLES TO MCBILES AND TRANSPORTABLES
 NO LONG TERM CONTRACTS \&
 RANGE OF BILLING PLANS TO SUITE EVERYBODY
 PARTEXCHANGE \& RECONNECTIONS ARE此 TEXT MEMORY APER FEED, BOLD PRINT \& - 10. 12. 15, CHARACTER

 CANON ES23 5157.00 10. 12. 15. PS CHARACTER

VERIFIER
LCD DISPLAY SECOND BIDIRECTIER PRINTING
5° MS DOS DISK DRIVE FOR UNLIMITED MEMORY MACHINES ARE COVERED BY 12 MONTHS WARRANTY
THESE ARE A SIMALL RANGE OF OUR BUSINESS MACHINES CALCULATORS SELL INCUTERS FAX MAC-HINES
PHOTOCOPIERS $\&$ WORD
PROCESSORS
PLEASE RING FOR DETAILS
CELLULAR TELEPHONES
*** SPECIAL OFFER ***
NOKIA 101E149.00
WE OFFER A RANGE OF

NOKIA 19029.50
NOKIA $132029 .50 ~$ NOKIA 1320........................ 29.50 PANASONIC E/H SERIES... 32.50 PANASONIC F1 700MAH 26.50 TECHNOPHONE TP2 H D... 45.00 TECHNOPHONE TP305

BATTERY CHARGERS MOTOROLA T-PORT........... 39.50 MOTOROLA MICROTAC...... 45.95 NEC P3957.95 TECHNOPHONE TP2..........59.50
TECHNOPHONE TP305.....59.50 BATTERY ELIMINATORS MOTOROLA 8000/8800X 12.50 NEC P3 12.50 NOKIA ..12.50 PANASONIC F SERIES........ 12.50

P/P CHARGES:
COMPONENTS $£ 100$ PER SERVICE OADER UK CELLULAR TELEPHONES $£ 500$ OFFICE MACHITEM $£ 500$ PER

EXPORT ORDERS P/P
WHEN ORDERING
PLEASE ADD P/P VALUE TO ORDER TOTAL THEN ADD 17.5\% VAT TO THIS TOTAL

DELIVERY BY RETURN ON ALL STOCK ITEMS MINIMUM ORDER VALUE $55.00^{* * *}$

DUE TO UNFORESEEN CHANGES IN MANUFACTURERS COSTS, WE RESERVE THE RIGHT TOINCREASE PRICES WITHOUT PRIOR NOTICE.

MACROWAVE CONTROL PANEL.Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay Ideal for all sonts of precision timer applications etc (Now ontyabe) E .00 ret 4P151. Good expenmenters board
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC Five metre length $£ 700$ ret 7 P29R or $£ 2$ a metre
12 SOLAR CELL. 200 mA output ideal for trickie charging eic. 300 mm squ
15P42R. Gives up to 15v
PASSIVE INFRA-RED MOTION SENSOR. Complete with day light sensor, adustable lights on timer (8 secs - 15 mins), 50 range with a 90 deg wallbracke Manual overide faclity Complete with anteed Now only 19.00 ref 19P29
Pack of two PAR38 bulbs for above unit $£ 12.00$ ref 12P43R VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, video recorder o computer to any
standard TV set within a 100 rangel (tune TV to a soare channel) 12V DC op. $£ 1500$ ref 15P39R Suitable mains adaptor $£ 5.00$ ref 5P191R Turn your camcorder into a cordess camera
FM TRANSMITTERHoused in a standard working 13A adapter (bug is mains dnven). £26 00 ref 26P2R Good range
MINATURE RADHO TRANSCEIVERS A par of wa taikies with a range of up to 2 kilometres Units measure hay hit §30 00 ret 30 P 12 R
FM CORDLESS MICROPHONE. Small hand held uni with a 500^{\prime} range! 2 transmit power levels. Reqs PP3 battery. Tun eable to any FM receiver Our price £15 ref $15 P 42 A R$ 12 BAND COMMUNICATIONS RECEIVER sho battery Complete with shoulder strap and mains lead $\Sigma 19$ ref 19P14R. Ideal for istening all over the world.
CAR STEREO AND FM RADIO. Low cost stereo system giving 5 watts per channel. Signal to noise ratıo better than 45db wow and LOW COST WALIKIE TALKIES P Par of battery units with a range of about 200' Our price $£ 800$ a pair ref 7 CHANNEL GRAPHIC EQUALIZERplus 7 CHANNEL GRAPHIC EQUALIZERplus a 60 watt of 25P14R.
NICAD BATTERIES. Brand now top quality $4 \times A A ' s £ 4.00$ ref 4P44R $2 \times$ C's $£ 4.00$ ref 4 P73R, $4 \times$ D's $£ 900$ ret 9P12R, $1 \times$ PP3 TOWERS INTERNATIONAL TRANSISTOQ
GUIDE TE INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ult mate equivalents book New ed \&20 00 ret 2OP32R GEIGER COUNTER KIT. Complete with tube. PCB and all components to bulld a battery operated geiger counter. $£ 39.00$ ref 39P1R
FM BUG KIT. New design with PCB embedded colt. Transmits to any FM radio. 9 v battery req'd $£ 500$ ref $5 P 158 \mathrm{R} .35 \mathrm{~mm}$ square COMPOSTE VIDEO KITS. These convert composite video into COMPOSITE VIDEO KITS. These convert composite video int
separate H sync V sync and video $12 \mathrm{~V} D \mathrm{C} \quad \mathrm{8} 00$ ret 8 BP 39 R
 SINCLAIR C5 MOTORS 12 v 29 A (full load) 3300
OP shaft Now $£ 20.00$ ref 20P22R Limited stocks
As above but with fitted 4 to 1 inh ne reduction box (800 rpm) and toothed nylon belt drive cog $£ 4000$ ret $40 P 8 R 800 \mathrm{rpm}$
ELECTRONIC SPEED CONTROL KIT
ELECTRONIC SPEED CONTROL KIT for C5 motor PCB and all components to buld a speed controller ($0-95 \%$ of speed) Uses
pulse width modulation $£ 1700$ ref 17 P3R. Potentiometer control SOLAR POWERED NICAD CHARGER.Charges 4 AA
nicads :n 8 hours.
cell model $£ 6.00$
ACORN DATA RECORDER ALF503 Made for BBC
book $£ 15.00$ ref 15 P 43 R
VIDEO TAPES. Three hour super
Heence from the famous JVC company Fack of 10 tapes New low
price 15.00 rel J15P4
PHIUPS LASER. 2MW HELIUM NEON LASER TUBE, BRAND NEW FULL SPEC $E 40.00$ REF 40P10R. MAINS POWER SUPPLY KIT E20.00 REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handie up to about 15 w at 220 v but with a larger transformerit will handle 80 watts . Basic kit £1200 ret 12P17R Larger transformer $£ 1200$ ref 12P41R 25 WATT STEREO AMPLIFIER IC STKO43 With the addition ef 4P69R (Circuit dia included)
BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF £4.00 REF 4P92R, PACK OF 100 [30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm}$ £ 100 ref BD827R 12V 19A TRANSFORMER Ex equipment £20 but OK POWER SUPPUES Made for the Spectrum plus 3 give +5 @ 2A.+12@700mA
UNIVERSAL BATTERY CHARGER.Takes AA's. C's. D's and PP3 nicads. Hoids up to 5 batteries at once New and cased, mair.s N CAR POWER SUPPL
N CAR POWER SUPPLY. Plugs into agar socket and gives $3,4,5,6,7.5,9$ and 12 V outputs
spider plug 5500 ret 5 S167R
spider plug $£ 500$ ret 5P167R
QUICK CUPPA? $12 v i m m e r s i o n ~ h e a t e r ~ w i t h ~ l e a d ~ a n d ~ c i g a r ~ l i g h t e r ~$ QuicK CUPPA? 12vimmersion heater with lea
plug £3.00 ref 3P92R. Ideal for tea on the move!
LED PACK 50 red 50 green. So yellow all 5 mm £ 00 rel 8P52 IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel IBM PRINTER LEAD, (D25 to centronics plug) 2
£5.00 ref 5P186A. 3 metre version $£ 6.00$ ret 6P50 COPPER CLAD STRIP BOARD $17^{\prime \prime} \times 4^{4}$ of 1 " pitch "vero" board E 400 a sheet ref 4P62R or 2 sheets for $£ 7.00$ ref 7P22R
STRIP BOARD CUTTING TOOL $£ 2.00$ ret $2 P 352 R$ WINDUP SOLAR POWERED RADIOI
WINDUP SOLAR POWERED RADIOI FMAM radig takes rechargeable batteries. Complete with hand chen
14P200R Set of 2 AA nicads $£ 2$ ref L 2 P 9 PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v input. $+5 @ 15 A,+12$
@ $5 \mathrm{~L},-12 @ 5 \mathrm{~A}_{-}-5 @ 3 A$ Fully cased with
 PC flyleads $£ 1500$ ref F 15 P 4
TELEPHONE HANDSETS 10 brand new handsets with mic and
TELEPHONE HANDSETS 10 brand

BENCH POWER SUPPLIES Supertly made fully cased (metal) giving 12 vat 2 A plus a 6 V supply Fused and short circult protected
For sale at less than the cost of the casel Our price is $£ 4.00$ ret 4P103R
SPEAKER WIRE Brown twin core 100 tor f2 00 REF 2P79R 720K 3 1/2" DISC DRIVE FOR [9 Brand new units made by JVC complete with tech info wust 890011 they have a metal tab instead of a butron and you may want to fit an led Combin
cable easly moditied to IBM standard ref L9P?
MONO VGA MONITORS $\$ 59$ Standard IBM compatible monitor made by Amstrad Ex display Our price just $£ 59$ Ref 59 P 4 RB CAR BATTERY CHARGER Brand new units complete with pane meter and ieads 6 or $12 v$ outpul $\varepsilon 700$ ref J7P2 Complete but sold as seen so may need attention $£ 25.00$ ref J25p CUSTOMER RETURNED SPECTRUM + 3
Complete but sold as seen so may need attention $£ 2500$ ref J25P2
AMSTRAD $1640 D D$ BASE UNITS
BRAND NEW AND CASED
two built in 5 1/4" DRIVES
MOTHER BOARD WITH 640K MEMORY
KEYBOARD, MOUSE \& MANUAL OUR PRICE JUST

£79!!!!

SCART TO D TYPE LEADS

Standard Scart on one end, Hi density D type (standard VGA connector) on the other Pack
OZONE FRIENDLY LATEX

$250 \mathrm{~m} /$ bottle of hquid rubber sets in 2 hours. Ideal for mounting PCB's

 fixing wires etc. $£ 2.00$ each ref 2P379RVIEWDATA SYSTEMS
Brand new units made by TANDATA complete with $1200 / 75$ built in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatible. Centronics printer port RGB colour and composite output (works with ordinary television) complete with power COMMODORE 64 COMPENDUUM Pack consisting of a Com. modore 64 computer, power supply, data recorder and sotware. All for $£ 69$ ret 069P
PPC MODEM CARDS Made for the Amstrad PPC1640r1512 range these are plug in modules that operate at 2400 baud No data AMSTRAD LQ3500 PRINTER ASSEMBLIES Entire mechan. cal assemblies including print head, platen. cables, stepper morors £ 10 ref Q10P3
AMSTRAD DMP4000 PRINTEA ASSEMBLIES Entire printer assembies including prnt head, platen, cables, stepper motors etc
Everything bar the electronics and case Our price just $£ 20$ re

TOROIDAL TRANSFORMER 146 VA with tappings at 8 v .1 Cv and $32 v$ will give 50 V at 3 A or 32 at 4 A etc Centre tapped pnmary is ref O9P2. Fixing kit is $\sum 2$ ref Q2P1
AERIAL BRACKETS Wall plate 7 . $^{\prime \prime}$ sq complete with rawl bolts $10^{\prime \prime}$ stand off brackets with standard tube clamps Will take up to $2^{\prime \prime}$ TV SOUND RECEIVERS Popular units that with the addition of a speaker act as a tv sound receiver Ideal as a stand aione unt or for 2,000 COMPONENTS FOR $£ 3$ Yes that s right' just send us $£ 3$ and resistors plus 1,000 capacilors 'Our choice value Order ret Q3P1
ETRI FANS Mains 11 watt 80 mm diameter. $£ 6$ Ret Q6P3
LIGHTGUNS Onginally made to the Spectrum +2 but may have other uses (good strioper) £2 Ret Q2P3
GX4000 GAMES CONSOLES Complete with motor racing game psu and joystick £15 ref Q15P3. Extra 4 games $£ 12$ ret O12P2 VCRAABBIT SYSTEM Lets you control your VCR from a second set using the VCR remote control Retall $£ 99$ ours $£ 39^{111}$ CAMERAS Customer returned units 3 for
STEAM ENGINE Standard Mamod 1332 engine comp HANDHELD TONE DIALLERS Small units that are designed to hold over the mouth piece of a lelephone
 rem TMG
Fully programmable talking, lockable price is $£ 79$ ours is just £29! rel J29p
ANSWER PHONES $£ 15$ Customer returned units with 2 fault: one we tell you how to f(x tne othar you do your sell $\kappa .18$ ref $\sqrt{ } 18 \mathrm{P}$ 2 or COMMODORE 64 MICRODRIVE SYSTEM Complete cased brand new drives with cartridge and software 10 times faster than tape rnachines works with any Commodore 64
setup The orginal price for these was $£ 4900$ but we can offer them to you at only $£ 25.001$ Ret 25P1R

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 50 TI TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS $£ 3.00$ POST PLUS VAT. please allow - - 10 days for delivery

90 WATT MAINS MOTORS Ex equipment but ok Good general pupose unit 59.00 ref F9P1
HI FI SPEAKER BARGAIN Originally made for TV sets they
consist of a 4 " 10 watt4R soeaker and a 2 " 140 itweeter If you want wo of each plus 2 crossovers for $£ 500$ ret FSP2
EMERGENCY LIGHTING SYSTEM
Fulty cased complete wht 2 adjustable flood lights. Allyou need is a AMSTRAD 464 COMPUTERSCustomer returned units complete with a monitor for pust £35! These units are faulty non retumable WOLSEY DMAC DECODERS
Made for installation in hotels etc as the main sat recelver no data but tully cased quality unit. £20
REMOTE CONTROLS
Brand new infra red CONTROLS onginally made for controling WOLSEY satellite recelvers. £2 ea ref K2P1 or 20 tor £19 ret K19P1 DOS PACKSComplete set of PC discs with DOS 32, basic, gemdesktop $\&$ gem paint No manuals, 51
CORDLESS TIE CLIP MICROPHONE
ransmits between $88-108 \mathrm{MHZ}$ FM $52 \mathrm{~cm} \times 2 \mathrm{~cm}$, uses LR 44 watch battery Complete wth wire aenal \& batten
CHASSIS MOUNT TRANSFORMERS
240 v primary, 12 v secondary 20 VA E 2 ref K 2 P 2
240 v primary. 16 V secondary 10A (split winding) £ 10 ref L10P1 100 RED LED PACK (5MM) C5 REF K5P2 12 V STEPPER MOTOR Ideal for models etc $3^{3 \prime}$ dia $£ 2$ ref J2P14 CAPACITOR BARGAIN PACK 100 CERAMICS £2 REF J2P2 SPECTRUM JOYSTICKS TWO FOR K5 REF J5P2.
AMSTRAD PC CASE, POWER SUPPLY AND 720k FLOPP
DRIVE ALL THIS FOR £30 REFQ30P15
USEFUL POWER SUPPUES. 18 v 900 mA dc output (regulated) fully cased with mains cable and DC out cable. $£ 6$ ret K6P1
UNCASED PC POWER SUPPUES. Standard PC PSU UNCASED PC POWER SUPPUES. Standard PC psu withou case, fan etc Good for spare or low cost PCI $£ 4$ ref $L 4 P 6$
RADAR DETECTORS. Dotects X and K bands (le speed traps). Not legal in the UK so only avallable lf you intend to export'lt. $£ 59$ ref J59P 1
100 WATT MOSFET PAIR. Same spec as 2 Sk 343 and 2 SJ4 13 $(8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{w}$) i N channet and 1 P channel £3 a pair ref J3P9
LOW COST CAPS. 1,000 capacitors $£ 3$ ($33 \mathrm{uf}, 25 \mathrm{v}$) ref J3P 10 VELCRO 1 metre length 20 mm wide, blue $£ 2$ ref J2P16
JUG KETTLE ELEMENTS. Good general purpose heating element just $£ 3$ ea ref $£ 3 P 8$ or 5 for $£ 10$ ref J10P3
1" keyed shaft. Brand new £95 ref J95P
BIG MOTOR. 220-240v 1425 rpm 2 8A 5/8th" keyed shatt GEC 65° $\times 8$ " complete with mounting plate $£ 38$ ref J 38 P 1
SMALL MOTOR. Electromix 160 watt $3.000 \mathrm{ppm}, 220-240 \mathrm{v} 5 / 8$ EPROMS 27C64 PACK OF 10 £ 7 REF M7P1. 27C256 PK OF 10 C9 REF M9P1. 27C512 PK OF 10 c10 REF M10P1. MODEMS FOR $£ 1.25$? These modems are suitable tor stripping only hence they are only 4 for $£ 5$ ref JSP3.
SOLAR POWERED WOOOEN MODEL
panel motor and full instructions $£ 9$ ref JgP2 3 dit $£ 20$ ret 220 P 3 SOUND OPERATED LIGHT. Clap your hands and light comes on. Turns after preset delay. (4 AA's req'd) £2 ref J2P3 FERGUSON SRB1 REMOTE CONTROLS. Br
$51 / 4^{\prime \prime} 360 \mathrm{~K}$ DISC DRIVE Made for AMSTR

PC CORNER

PC CASES Desktop case tpsu 551.60 ref BPCC 1, Deluxe slimhne case +psu $£ 60.00$ ref BPCC2. Minitower case +
BPCC 3. Deluxe midi case +pSu $£ 90.00$ ref BPCC4
BPCC3. Deluxe midi case +pSU $£ 90.00$ ref BPCC4
MONITORS Mitac 14" SVGA 39DP £174 ref BPCM02, Mitac 14 MONITORS Mrtac 14" SVGA
SVGA 28DP £202 ef BPCM01
MEMORY 256 K Simm 70 ns $£ 840$ ret BPCMI1, 1 MB Simm 70 ns §.26 40 ret BPCAI2, 4 MB Simm 70 ns $£ 96$ ref BPCMI3
MICE 2 bution serial mouse with 35 s'ware 5.840 ref BPCMI6 3button serial mouse with $3.5 "$ s ware $£ 960$ ref BPCM
KEYBOARDS 102 AT UK KEYBOARDS 102 AT UK standard keyboard $£ 1860$ ref BPCMI 4 Deluxe keyboard 102 AT UK £26.40 ref BPCMI 5
SOFTWARE MS DOS VS OEM version $£ 3960$
SOFTWARE MS DOS VS OEM version $£ 3960$ ret BPCMIB, MS WINDOWS V3 i OEM version £ 42 ref BPCM19
MOTHERBOARDS 286-16 Headiand chipset $£ 4680$ rel BPCMB1, 386SX-33 Acer chipset $£ 8280$ ret BPCMB2 $386 S X-40$ UMC with 64 K cache $£ 110$ ref BPCMB3. 486SX-25 UMC with 64 k cache 191 K FLOPPY DRIVES $1.44 \mathrm{mb} 3.5^{\prime \prime}$ dnve $£ 3234$ ref BPCDOOS 1.2 MB FLOPPY DRIVES $1.44 \mathrm{mb} 3.5^{\prime \prime}$ dnve $£ 32.34$ ref BPCD
$5.25^{\prime \prime}$ drive $£ 3840.3 .5^{\prime \prime}$ mounting kit $£ 5$ ref BPCDDO7. $5.25^{\prime \prime}$ drive $£ 3840.5^{\prime \prime}$ mounting kit $£ 5$ ref BPCDOO7.
HARD DRIVES 42 MB IDE $17 \mathrm{~ms} £ 99$ ref BPCDD01, B9MB IDE 16 ms ref BPCDD02, 130 MB IDE $15 \mathrm{~ms} £ 215$ ref BPCDD03, 213 MB IDE 14 ms £298 ref BPCDD04
VIDEO CARDS 256k C\&T 8 bit SVGA card $\varepsilon 19.20$ ret BPCVC01 512 K Trident 900016 bit SVGA card 53120 ref BPCVC02. 1 MB Trident 890016 bt SVGA card £45 ref BPCVC03, 1MB Cirrus AVGA3 16.7 M colours $£ 48$ ref BPCVC04. 1MB Tseng multimedia
£82.80 ref BPCVC05. £82.80 ref BPCVCO5.
ADD ONCARDS Mu
ADD ONCARDS Multi/Ocard 2 serial 1 parralel, 1 game 2 foppy 2 IDE hard dnves $£ 11$ ref BPCAOC01. ADLIB sound card with
speakers $£ 37$ ref BPCAOC02 Orchid sound card with speakers $£ 63$ speakers $£ 37$ ref
ref BPCAOCO3

EXAMPLES OF COMPLETE SYSTEMS

386SX-33 SYSTEM
$386 \mathrm{SX}-33$ board at $£ 82.80$. case $551.60 \quad 2 \mathrm{MB}$ ram $£ 5280.42 \mathrm{MB}$ dnve £99, S12SVGA card £31.20, 35" FDD £32.34, mult 10 cand £11 SVGA colour montor £174. 102 kboard, $£ 25$ build fee if re quired Total 585 DX -33 SYSTEM
$486 \mathrm{DX}-33$ SYSTEM
$4860 x$ - 33 board $£ 378$, case $£ 5160,2 \mathrm{MB}$ ram $£ 5280$, 89ME dive £166. 512 SVGA card $£ 3120.35^{\prime \prime}$ FDD $£ 3234$. muth $1 / 0$ card $£ 11$ Total 9939.84.
YEAR PARTS AND SYSTEMS ARE GUARANTEED FOR 1993 CATALOGUE AVAILABLE WITH ALL ORDERS IF RE QUESTED OTHERWISE A4 SAE FOR FREE COPY
IN SUSSEX? CALL IN AND SEE US!

EDITOR
John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 461 or faxed to 081 6528956.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

FIELD SALES EXECUTIVE
Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES
 0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622721666 and quote reference $[\mathrm{NJ}$.

COVER PHOTO

This month's cover photograph shows Eugene Trundle's video monitoring test jig. See article on pages 483-5.

Electronics UK 1993

The recent history of the UK's electronics industry has been curious to say the least. With the possible exception of GEC there are virtually no indigenous UK electronics companies with international status. You might be forgiven for suspecting that electronics long ago ceased to be a major industrial activity in the UK. Yet the UK has the fourth largest electronics industry in the world, after the USA, Japan and Germany. So where is it and what is it doing? The fact of course is that electronics in the UK has been kept alive through inward investment by overseas companies. This is particularly the case with the TV/video industry, in which all the major Japanese and Korean manufacturers have plants in the UK. As a result the UK's consumer electronics industry, though almost entirely foreign owned, has been quite a success story over the iast decade. The trade deficit in consumer electronics is now only a quarter of the $£ 1 \cdot 1$ bn reached in 1983. On the purely TV front the trade balance has been positive for some time - a quarter of the large-screen TV sets produced in Western Europe are made in the UK. Overall the electronics industry was responsible for about fifteen per cent of the UK's visible exports in 1992. There remained an overall trade deficit of around $£ 1.4$ bn in 1992, but this was half the gap ten years previously. Manufacture of computer equipment in the UK has been another success story, largely through subcontracting.
Two questions present themselves: how is it that foreign firms have succeeded in the UK where our own manufacturers have failed, and does it matter that a successful industry is almost entirely foreign owned? The first question has been addressed on many occasions, not least on this page. It's not easy to pinpoint any particular major failings that provide a sound explanation. The change to foreign ownership and subcontracting has been going on for several decades, under different economic conditions You could put some of the blame on stop/go economic policies and high interest rates due to inflation. Such things certainly haven't helped. But neither has an insular management approach with a lack of commitment to long-term development. In the past the UK has been a world leader in television (both consumer and professional equipment), radar, telecommunications and medical electronics. We have singularly failed to build on any of these.

It seems that the management of large-scale manufacturing is a particular weakness in the UK. But other countries have had their problems in this respect, and it's interesting to note the way in which the approach to manufacturing has had to evolve over the years. With a new market the ability to get product out at a competitive price is all important. This has been called the Fordist approach, after Henry Ford's famous dictum that you can have his cars "in any colour so long as it's black". Once a market becomes saturated the all-important thing becomes product differentiation - persuading customers that a particular brand really is best and worth buying, through reputation and added value. This calls for product quality, variety and short runs. The Japanese have been particularly good at this. But you can go too far: the point arises where consumers become confused about rival claims and go on a buyers' strike. They get annoyed about unnecessarily complex products that are superseded at too rapid a rate. This seems to have been a Japanese failing in recent times. Getting it right is not easy of course - nor is it the complete answer where excess production capacity is a problem, as in recent times.

Whether it matters that most of the UK's electronics industry is foreign owned is also a question that can be debated at length. One suspects that education is a key element here. If we can produce good engineers and technicians in adequate numbers development work as well as manufacturing will thrive in the UK. Otherwise the future is likely to be as an off-shore assembly centre, which is hardly good enough.

The Television Index and Directory

Peter Marlow, B.Sc., C.Eng.

Television now has a computerised index. The Television Index and Directory runs on IBM and compatible personal computers and covers Volumes 38 to 42 (November 1988 to October 1992). It contains some 3,500 references to TV/VCR fault reports, articles, leaders, letters and features. Synopses are provided for articles. The Index also includes an advertisers list, a TV/VCR spares guide and a directory of Trade and Professional Organisations. A reprint service for articles back to 1986 is also offered.

Why put the Television Index on to a PC? A computer is particularly good at searching quickly through large quantities of data. Applied to an index it can save a lot of time that would otherwise be spent looking through issues for articles, fault reports and company details: having information available in this way often saves one having to "re-invent the wheel". PCs are now commonplace in the workplace and at home, so it seems the right time to produce a 'soft' index for Television.

The minimum requirement for the soft index is an IBM or compatible personal computer that runs a version of DOS 3.0 or higher and has 512 K of RAM, a hard disk with 1Mbyte available and a floppy disk drive - either $5 \cdot 25 \mathrm{in}$. $(360 \mathrm{~K})$ or $3 \cdot 5 \mathrm{in}$. (720 K). The program runs under DOS and supports mouse operation. It can also be run in Windows.

Features

The soft index is easy to use, with plenty of on-screen help. Finding information is a two-stage process: first you select a subject from the Table of Contents then you examine the subject index. The subject index is like a card file. An index is displayed on one side of the screen while information relating to a chosen index item appears on the other side.

Many useful features have been built into the software.

They are accessible by using function keys and menus. Rapid searches of the data relating to one or more words are possible. The computer ignores hyphens, making it easy to look up model and chassis numbers. The memo function enables you to add comments to the index data. A blank subject index is provided for your own notes etc. Treat the Television index and directory like a book. A purchased copy should be run on only one machine at any one time. A copy may be taken as a backup.

Now for a look at the main features of the software. Full instructions for use are contained in the manual that comes with the disk.

The Television Index and Directory is supplied on either a 3.5 or $5 \cdot 25 \mathrm{in}$. floppy disc in ‘archived’ form. A simple installation procedure results in the program and data being 'expanded' and copied to the directory TV on drive C. taking up just under 1 Mbyte: other directory names and drives can be used. To run the program, type TV followed by Enter.

Table of Contents

After a short pause the Table of Contents display appears - see Fig. 1. A list of subjects appears on the left-hand side of the screen. Most of the titles will be familiar to you: TV Fault Reports, CD Player Casebook, Teletopics etc. The Information section provides details about the reprints service, magazine subscriptions, licensing details, etc. 'Notes' is, as the name suggests, for your own notes, information, contacts etc.

To gain access to a subject index, the highlight bar is moved to that subject by using the \uparrow or \downarrow key and the page up and down keys. The Enter key is then pressed. A faster way of positioning the highlight bar is to type the first letter of the desired subject. If one is attached, a mouse can be

```
Advertisers Index
```

Advertisers Index
CD Player Casebook
CD Player Casebook
CD Player Servicing
CD Player Servicing
DX-TV
DX-TV
Informa asen
Informa asen
Leaders
Leaders
Letters
Letters
Microcomputers
Microcomputers
Miscellaneous
Miscellaneous
Notes
Notes
Projects
Projects
Reviews
Reviews
Satellite Notebook
Satellite Notebook
Satellite TV
Satellite TV
Service Bureau
Service Bureau
TV/VCR Spares Guide: Distributors
TV/VCR Spares Guide: Distributors
: Manufacturers
: Manufacturers
: Manufacturers
: Manufacturers
TV Fault Reports
TV Fault Reports
TV Servicing

```
TV Servicing
```

 TELEVISION Index and Directory
    ```
Welcome to the first issue of
```

Welcome to the first issue of
the TELEVISION Index and Directory
the TELEVISION Index and Directory
on disk. It spans five years of
on disk. It spans five years of
TELEVISION magazine from volume 38
TELEVISION magazine from volume 38
1988 to volume 42 1992 and contains
1988 to volume 42 1992 and contains
over 3500 entries.
over 3500 entries.
Help can be obtained at any time
Help can be obtained at any time
by pressing the F1 key. Fuller
by pressing the F1 key. Fuller
instructions for use are contained
instructions for use are contained
in the MANUAL file on the disk or
in the MANUAL file on the disk or
in the May }1993\mathrm{ issue of TELEVISION
in the May }1993\mathrm{ issue of TELEVISION
Your attention is drawn to the
Your attention is drawn to the
licence, limited warranty and
licence, limited warranty and
disclaimer in the INFORMATION
disclaimer in the INFORMATION
section.
section.
This is a scratchpad area for your
This is a scratchpad area for your
notes whilst using the index.

```
notes whilst using the index.
```

F1-Help F2-Search F10-Exit \quad t $1 \rightarrow$ 6/28

used to click on a subject to select it.
A 'progress bar' is present on the far left-hand side of the screen. It shows you where you are relative to the rest of the file. The little arrows at the top and bottom of the bar are for scrolling up and down with a mouse, which can be clicked on any part of the bar to go to different parts of the Table of Contents.

The 'help line' at the bottom of the screen shows the various functions available. Pressing the FI key brings up a page of more detailed help information.

The search function is perhaps the most useful feature. Pressing F2 starts a word search of either the individual subject indexes (very fast) or of all the data. Hyphens are ignored, making it easy to look up model or chassis numbers.

A 'welcome message' is present on the right-hand side of the screen. It's in fact a scratchpad area for your notes and can be modified or edited by pressing the \rightarrow key. Text can be typed anywhere in the box. Press Esc to exit.

The current line number and the total number of lines of the Table of Contents are displayed at the bottom right-hand side of the screen.

To exit the program, press F10 or click the mouse on the small square at the top left-hand side of the screen.

Subject Index

The subject index shown in Fig. 2 belongs to the TV Servicing section. The screen display has two halves: an index on the left-hand side and information on the righthand side. Moving the highlight bar to a different index entry automatically brings up the relevant information on the right-hand side. It's just like a card file. A rapid way of positioning the highlight bar is to spell the relevant item on the keyboard. As before, the help line at the bottom of the screen identifies the various functions available. Pressing F1 brings up a page of more detailed help information. Each subject index has an 'information' entry.

F2 is the search function, which is more extensive than in the Table of Contents display. It allows searches with up to five words, either together (AND) or individually (OR). Entries can also be marked with an arrow for quick access
later. Information at the top left-hand side of the screen indicates, in our example, that two items are currently marked: use the + and - keys to switch between the marks.

An R symbol at the top right-hand side of the display shows that the file is 'read only': as the information is fixed, it cannot be edited. By using the Memo function F3 however a note can be added in the bottom line of the data. In the 'Notes' subject index data can be added or altered by using the edit function key F4.

The 'other' function, key F5, gives printing. Individual records can also be stored in an ASCII text file for incorporation into word-processed documents. This is particularly useful for company names and addresses.

The symbol (E) next to the reference date and page number in the example shown in Fig. 2 is the reprint price code. All unmarked references are price code A. The Information section contains a price list.

Press F10 or Esc, or click the mouse on the small square at the top left-hand side, to return to the Table of Contents. The computer remembers where you are for the next time.

Availability

Most readers should find the Television index and Directory very useful. We hope that readers will make suggestions about the content, presentation and software operation. The intention is to publish a new issue of the disk annually.

The Television Index and Directory is available at $£ 30$ from Video Interface Products Limited, I Vineries Close, Cheltenham, Gloucestershire GL53 0NU. Cheques should be made payable to Video Interface Products Limited - not Television or Reed Business Publishing Ltd. - and please state the disk format required (5.25 or 3.5 in .). The price includes VAT and UK postage: add extra postage for overseas orders. Allow up to 28 days for delivery.

An article reprint service is also offered by Video Interface Products, as mentioned above. There's an order form on the disk: further details can be obtained from Video Interface Products.

Each disk is scanned before despatch with the current version of Dr. Solomon's Anti-Virus Toolkit (V6.03)

Reports from Philip Blundell, A.M.I.E.I.E. John Edwards, Richard Newman,
Mark Ward, Michael Dranfield, Graham Richards, Chris Watton, Denis Foley, K.E Fellingham and Nick Beer

Philips CP110 Chassis

This fault applies only to later versions of the chassis that have transistor $\operatorname{Tr} 7672$ in the power supply. The symptoms are as follows. No picture when the set is first switched on but after a few minutes a low-contrast picture begins to appear, gradually improving until, after half an our, the contrast is back to normal. Tr7672 was conducting when the fault was present. It was being turned on because of excessive ripple on the 140 V line. C2670 and C2621 had dried up.
P.B.

Scope checks showed that there was a lot of noise on the microcontroller's data lines. This disappeared when the EEPROM X2402 was removed. Fortunate that - it was the only one of the three chips in the control system I had in stock! Fitting the replacement cured all the problems. These sets require the correct option code to be programmed in 26 for a Nicam set, 18 for a non-Nicam version. When the set had been retuned and the correct option had been programmed in everything was back to normal. R.N.

Philips G90AE

The power supply had shut down but the set would work when the mains input was reduced to about 90 V . This was not due to the protection circuit operating. I found that the supply to the optocoupler rose quite high as the mains input was increased. The only path is via D6653, which is normally reverse biased - it's forward biased in standby. A check showed that it was leaky, a replacement restoring normal operation.
R.N.

Sanyo CBP3011-15

For a dead set check R320 and R321. They are both $120 \mathrm{k} \Omega$ and you will probably find that one or both of them have changed value. But beware: the main smoothing block electrolytic will still be charged - it bites!
M.Dr.

Huanyu 37C-3

This set seems to be a Chinese copy of an Hitachi model with which we are familiar. It suffered from the same stock fault. Someone who claimed to have an electronics background brought it in, saying that he didn't have the time to do the repair. After we'd removed a 2 N 3055 and fitted the correct 2SD898B line output transistor we replaced the 2.7 V zener diode ZD907 in the power supply. All was then well. M.Dr.

Hinari CT5

For intermittent field bounce replace the $2.2 \mu \mathrm{~F}, 35 \mathrm{~V}$ tantalum capacitor C901 in the field feedback circuit. This capacitor can also be the cause of other field faults such as cramping or a ragged picture.
M.Dr.

Dansai CTV1477

The only sign of life with this set was a faint whistling noise that came from the power supply. When we checked around in the power supply we found that there was a pinhole in the small blue disc capacitor C617. A replacement obtained from a scrap chassis cured the fault. Incidentally this set appears to be the same as the Binatone one in which the CF82 line output transformer regularly burns up. M.Dr.

Saisho CM159TX

The chassis in this set seemed to be the same as that in the Bush 2020, and we were in fact able to use the Bush service
sheet to repair it. When we switched it on the power supply screamed very loudly. After cleaning up the PCB around the electrolytics on the secondary side of the power supply the set still continued to scream. Disconnecting the line output transistor's collector restored some life, but we couldn't find anything wrong in the line output stage. A check on the h.t. line then gave us a clue: it was high, at 175 V instead of 125 V , and the voltage couldn't be reduced by adjusting VR801. Checks on the primary side of the circuit brought us to C818 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$) which provides the negative bias for the TDA4600 chopper control chip. It had dried out. Fitting a replacement enabled the h.t. to be set at 125 V , but the set still didn't work.

We found that the supply to the TDA2579 timebase generator chip was low at only 5 V , which brought us to R409. This was very discoloured but was in fact all right. So back to the power supply. The penny then dropped: what we had initially thought to have been a spillage was actually electrolyte leaking from C806 ($1,000 \mu \mathrm{~F}, 16 \mathrm{~V}$). The excessive voltages had caused this capacitor to burst open. C808 $(1,000 \mu \mathrm{~F}, 25 \mathrm{~V})$ was also faulty. Replacing these two capacitors restored normal operation. This situation could of course arise with any set that uses a Siemens TDA4600 type chopper power supply.
M.Dr.

Sharp C1410HW

This set was dead though voltages were present in the area of the chopper transformer. We didn't have the circuit diagram but noted that the circuitry was very similar to that in the Sharp Model C3705 for which we did have a circuit diagram. This enabled us to establish that the h.t. voltage was missing at pin 4 of the line output transformer. When this pin was disconnected the h.t. voltage returned to its normal level. A check on the various items between the chopper and line output transformers showed that they were all o.k. So out came the line output transformer checker which declared that the transformer was faulty. A new one from Willow Vale got the set running again.
J.E.

Solavox 16R19 (ITT Pico S2 Chassis)

This set was dead with no display and no relay click when the on/off switch was pressed. The cause of the fault was that the standby mains transformer's primary winding was open-circuit. A new one restored normal operation.
J.E.

Alba CTV711

You sometimes get one of these sets in dead with the 1.6 A fuse blown, R801 ($2.7 \Omega, 4 \mathrm{~W}$) open-circuit and the BU508A chopper transistor Q800 short-circuit. In this event a check on R 809 ($270 \mathrm{k} \Omega$) will show that it has gone high in value or open-circuit. In addition two of the bridge rectifier diodes may have gone short-circuit. Replacing these parts is usually all that's required to bring the set back into service.

J.E.

Toshiba 140E4B

An arcing noise would come from within this set intermittently, accompanied by a loud buzz from the loudspeaker. At the same time the picture would reduce in height and width, what was left of the display being best described as a combination of line tearing and field foldover. We found that every pin of the line output transformer was dry-jointed and that there were several suspect joints in the power supply circuitry. A blanket resoldering job in these areas put matters right. The
line output transformer pin that had actually caused the symptoms was pin 3: when we desoldered and cleaned it we found that there were signs of burning around the hole in the PCB. We had to scrape this clean prior to resoldering.
J.E.

Fidelity CTV2001

The $220 \mathrm{k} \Omega$ preset field hold control PR9 in this set tends to go open-circuit, the symptoms being continuous field roll with the control having no effect. Another cause of this trouble is R25 $(470 \mathrm{k} \Omega)$ going high in value.
J.E.

Murphy M22S01 (Fidelity ZX4200 Chassis)

Although this set was dead a faint ticking could be heard, indicating that the power supply was tripping. The cause of the fault was that D21 (BY229P) was short-circuit. When this was replaced the set sprang to life and the line output transformer put on a grand firework display for us. Fortunately a new transformer restored normal operation.
J.E.

Finlux 3029V (3000 Chassis)

One of these sets gave me quite a bit of trouble. The complaint was of dark bars across the top of the picture. Now this is not an uncommon fault with the 3000 chassis, so I went straight to $\mathrm{Ck} 8(0 \cdot 1 \mu \mathrm{~F})$ which goes open-circuit. It wasn't this time however and in fact the symptom was rather different: the dark bar was about a quarter of the way down the picture. I decided to check the supply at pin 9 of the TDA3654 field output chip ICk1. It was low at 20 V instead of 26.5 V . This took me to the line output stage which is the source of the supply. The resistors, rectifier diode and reservoir capacitor were all o.k. So why the low voltage? The line output stage also produces a 200 V supply for the RGB output stages. A check on this showed that it was at only 155 V . This was all very strange as the width and brightness were o.k. The power supply was also producing the correct 140 V output.

A check on the h.t. at pin 3 of the line output transformer produced a reading of only 120 V however. Between the power supply and pin 3 of the LOPT there's a filter module, RR300. It was dropping about 20 V instead of 2 V . A scope check at pin 3 of the LOPT showed that instead of d.c. there was a huge waveform present. Replacing Cz14 ($4 \cdot 7 \mu \mathrm{~F}$, 250 V) restored normal operation.

The line output stage hadn't been operating properly because of the squegging h.t. supply. It all goes to prove that whatever appears on the screen the basics - correct voltage conditions - should be checked first. I was really fooled by the correct brightness, focus and width. But one scope check revealed the nature of the fault in seconds.

I subsequently had the same thing on another of these sets, only this time the symptoms were dark bands across the top of the screen plus cramping. Once again the set worked perfectly apart from the slight field fault. C.W.

Loewe MS56C8001

Only the standby light was on. A quick check showed that the power supply was operating normally. After some further checks I found that the line driver transistor T534 had no supply because its $3 \cdot 3 \Omega$ feed resistor R534 was open-circuit. A replacement restored normal operation - but only for a few minutes, after which R534 went open-circuit again. This time I replaced the transistor and C534 ($47 \mu \mathrm{~F}$) as well as the resistor. The set then worked correctly during a soak test.
C.W.

Finlux 2000 Chassis

The teletext section was at fault. At first glance the text screen appeared to be full of characters, but on a closer look they were all either @ or ?. Replacing the SAA5240 chip restored normal teletext.
C.W.

Bush 2321T

No picture or intermittent loss of the picture is becoming quite common with these sets now, due to poor soldering on the teletext module. There are a number of through-theboard links: these need to be resoldered. On a couple of sets however the same symptom has been caused by the crystal being dry-jointed.
C.W.

Pye T183

These monochrome portables are rare visitors to our shop! This one was dead though the 270 V supply was present. Time for some up-to-the-minute fault-finding methods. Checks on the wire-wounds soon showed that R602 ($27 \mathrm{k} \Omega$) was open-circuit.
C.W.

Amstrad SRX200

We had a tricky fault with one of these satellite TV receivers recently. The unswitched 5V A line was oscillating. After a lot of searching the cause was traced to C504 $(220 \mu \mathrm{~F}, 10 \mathrm{~V})$ which was leaky. It's a nasty little fault that now seems so obvious, but when most of the problems with this receiver are things like R532 it's all to easy to be put out by this one.
M.W.

Sony KVM14TU

The symptoms with this set were as follows: the search tuning didn't stop at stations, there was no sound and the picture came only when the 'preset' button was pressed.

The microcontroller chip IC00I needs a 7 V linefrequency pulse at pin 51 , a 6 V sync pulse at pin 36 and an a.f.t. 'dip' at pin 35 . We found that the sync pulses were missing because the sync generator transistor Q071 was short-circuit base-to-collector.

When the set is working correctly the voltage at the a.f.t. pin 35 is about $2-3 \mathrm{~V}$. If you find that it's $0 \mathrm{~V} \mathrm{C} 012(0 \cdot 01 \mu \mathrm{~F})$ is probably short-circuit.
D.F.

Sony KVM14TU

The reds flared, giving the impression that the tube was soft. Checks at the tube base showed that the first anode (G2) voltage was low at only 190 V . D852 was short-circuit and R852 (680Ω) burnt out. Replacing these items restored the first anode voltage to 880 V , producing a normal picture.
D.F.

Salora K Chassis (Granada C59DZ6)

Parts of the picture would blank out suddenly then return. Putting the set in the text mode proved that it was a luminance fault. Checks on the voltages at the pins of the TDA3562A colour decoder chip showed that the voltage at pin 9 was varying between 0.23 V and 1.86 V , triggering the chip's internal text switches randomly. We traced the source of the voltage back to the BC547 text blanking transistor T9. Remembering that I'd had this sort of thing before I confidently fitted a new BC547 - but this made no differ-
ence. Tracing back farther brought me to an SN74LS74AN chip, also on the text PCB. Voltage checks here indicated that it was the culprit. To prove the point an SN74LS74AN was borrowed temporarily from another set. Fitting this cleared the fault.
G.R.

M/A/I Basic Four Computer Monitor

The symptom was no raster. After removing the tube to get at the power supply and line scan sections (!) we found that the 110 V rail was low at 40 V while the 15 V rail read 5.5 V . R502, a $100 \mathrm{k} \Omega$ resistor, was badly discoloured but read o.k. C508 ($0.22 \mu \mathrm{~F}, 100 \mathrm{~V}$) however had apparently suffered from being in a hot spot. Replacing it brought all the supplies back to the correct levels. Just as well in view of the time spent on dismanlting and reassembling the set - and we didn't have a manual.
G.R.

Mitsubishi CT25M1TX

The symptoms were horizontal lines on the picture accompanied by a whistling from the power supply. The cure was to replace C956 ($2,200 \mu \mathrm{~F}, 16 \mathrm{~V}$).
K.E.F.

Samsung Cl5012/5013

The fault with this set was no sound. After much time had been wasted ordering and fitting a replacement chip in the ICl 01 position only to find that the fault was still present we finally discovered that C605 (22 nF), which is connected to pin 13 of IC101, was leaky at around 25Ω ! It's a disc ceramic capacitor.
K.E.F.

Grundig CUC50 Chassis

The customer insisted that the picture expanded at the top and contracted at the bottom when the set was warm, or was it the other way round? Anyway it ran perfectly for days, so I removed the back and got to work with the hairdryer and freezer. When the end of the TDA2655 field output chip was heated expansion and rolling occurred. It could be cleared by cooling the chip. This wasn't how the customer had described the fault! I replaced the chip but when setting up the field output stage I found the real cause of the problem - as soon as the linearity potentiometer R2766 was touched the fault occurred. The potentiometer was noisy.
N.B.

Toshiba 2500TB

This was a nasty one. There was chroma patterning from cold: the deeper the saturation the worse the patterning, which also varied tremendously with the setting of the colour level. It was most prevalent in red and blue, and was present with video as well as r.f. inputs. As the set warmed up the fault cleared. There were black lines in the chroma, and diagonal swathes of white bars ran through it all.

As the set was only a couple of months old I contacted Toshiba to check on whether there were any known problems. Indeed there were - the fault can be caused by pick-up from the teletext oscillator, and there's a modification involving replacement of ICF01 and fitting two diodes on the text PCB. But when I looked this had already been done!

Scope checks showed that there was noise on the d.c. colour control line, i.e. at pin 7 of the do-everything chip IC501. The decoupling capacitor C515 ($22 \mu \mathrm{~F}$) was found to be very low in value when cold, a replacement curing the fault.
N.B.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR IOMMESTIC TV \& VCR.

* Fully interlaced sync pulses with correct picture hankina
* EBU colour bars. BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
* Chequerboard
* Mono outputs with border castellations, cross hatch. grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aernal socket.
* Additional video output for CCTV \& VCR
* Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service.
* Also available with VHF Modulator

Price of Kit
£79.00
Casc ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4 \prime}$) app
Optional Sound Module (6 MHz or 5.5 MHz) Built \& Tested in Case including Sound Module $£ 19.00$ Post/Packing $\mathrm{f}+.50$
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver aterial socket.
* In addition to colour bars R-Y. B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design. only five i.c.s on colour bar P.(..B.
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT £39.00. CASE £5.80. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P £4.50)
VHF Mololit. TOR (CH I Io di For onfrseas eb.xo
EASILY IDAPTED FOR VIDEOOATPIt \& C.C.T.

LINE OUTPUT TRANSFORMER TESTER

\star Saves time and money

* Checks short turns.
* Simple to use
* Reliahle
* Battery operated
* Pocket size

PRICE $£ 24.00$
POST/PACKING £2.50

INFRA RED REMOTE CONTROL TESTER

\star Pocket sizo

* LED + audible indication.
* Simple to use.

PRICE £20.00
POST/PACKING £2.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT completc and tested for video \& audio outputs $£ 28.50$ p.p. $£ 1.80$.
PAI. DECODER KIT (Video to R(iB) for Monitors $£(27.0$ (Ot p.p. £1.80.
PAL ENCODER KIT (RCB to Video) £20.00 p.p. £ 1.80
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 45.00$ p.p. $£ 4.50$).

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement for: Ferguson, Hitachi, Philips, Panasontc
Grundig, ITT, Sory, Saisho, Granada,
Saisho tory many or
PHILIPS SPARES
MANUALS CF1, CTX-E, CTX-S. CP90, CP110, GR1AX, G 90 AE, 2B, 3A, NC3-CR £7.50 p.p. $£ 1.80,2 \mathrm{~A} £ 10.50$ p.p. $£ 1.80$, KT $3 £ 25.00$ p.p. $£ 1.80$
YSSTEM K14, K40 22.00 p.p.
K30, KT4, CTX-EHT Lead 84.90 p.p. $£ 1$ p.p. $91 p$
THORN/FERCUSON SPARES
9000 Series IFiDecoder tested $£ 10.00$ p.p. 22.80
TX10 Focus control $£ 8.50$ p.p. $£ 1.80$
TX9/10 Remote \& tuning 1515N $\mathbf{5 5 . 0 0}$ p.p $\sum_{1.80}$
TX100 Chopper TX £15.80 p.p. $£ 2.50$

| IC SELECTION | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AN5521 | E380 | SAA5243 | 123.50 | TBalions | £1.20 | TDA26 | 55.70 | TDA5510 | 112. |
| AN5900 | 52.20 | SAB3035 | 56.90 | TBA750 | 52.20 | TDA2655B | ¢8.60 | TDA5850 | 12. |
| BA6209 | 53.80 | SAB3037 | 28.80 | tBay | ¢2.80 | TDA2670 | 43.20 | TDA8153 | 57.80 |
| BA6219 | 2380 | SAF1032 | ¢4.50 | TBA95, | £2.20 | TDA2680 | $\underline{23.80}$ | TDA8170 | 2 |
| BA6229 | 53.80 | SAF1039 | 12.20 | TCA27s | £1.80 | TDA2690 | c3. 80 | TDA8180 kt | |
| BA6238A | £2.80 | SLa70/471 | 54.00 | TCA8CD | 56.80 | TDA2780 | 56.80 | TDA8190 | 53.80 |
| BA6239 | 53.80 | SL486 | c3. 20 | TDAl1035 | ¢2.40 | TDA3190 | 44.20 | TDA8305 | 56.80 |
| CNX62 | E4.80 | SLA40 | 23.80 | TDA1037 | £1.90 | IDA3301 | 66.80 | TDA8341 | E4.20 |
| FRGV7 | 57.20 | SL1430 | E1.80 | TDA1044 | ¢2.90 | IDA3303 | c6. 80 | TDA9403 | c3.80 |
| HA11211 | 2280 | SL1432 | ¢1.40 | tDalcou | E3.80 | tDA3330 | ¢6.80 | TDA9503 | 53.80 |
| HA11423 | 1210 | SN76226D | ¢1.50 | TDAlws2 | £4.80 | tida 3500 | ¢6. 80 | IDA9513 | ¢4. |
| HA513385 | 11.80 | SN76705 | 59.50 | TDA1:70S | $\underline{22.20}$ | TDA3505 | 84.50 | TEA1009 | |
| LA4445 | $\underline{53.80}$ | STK5325 | E6. 80 | TDA1180 | ¢2.20 | TDA3510 | 29.80 | TEA1014 | E3. |
| LA7800 | $\underline{1.80}$ | STK5332 | E6.30 | TDA1 ${ }^{\text {a }}$ (0Z | 52.20 | IDA 3540 | £2.50 | TEA 1039 | |
| LA7520 | £2.80 | STK5333 | $\underline{18.40}$ | TDA1 132 P | 55.70 | TDA3541 | 23.50 | TEA2018A | ¢2. 20 |
| LA7801 | $\underline{23.50}$ | STK5338 | E6. ${ }^{\text {P }}$ (0 | tDali24 | £6.80 | TDA3561A | 15.80 | TEA2029 | |
| LA7820 | 83.80 | STK5337 | 27.90 | TDAl970A | c3. 20 | TDA 3502 A | 5.30 | TEA2164 | E3.95 |
| LA7830 | . 80 | STK5339 | [6.30 | TDal ${ }^{\text {d }}$ | £3.80 | TDA3565 | $\underline{53.80}$ | TEA2165A | |
| M293B1 | £ 11.80 | STK 5421 | ¢6. 30 | TDA170 | £3.20 | IDA3566 | c5. 80 | TMSIOUN21 | E. |
| M490BBI | £14.80 | STK5422 | ¢8.50 | TDA1370 | E6.80 | TDA3571 | 12.80 | TMP47C432 | |
| M4918BI | 69.80 | STK5471 | 56. 50 | TDA1872 | ¢9.80 | TDA 3570 | 59.80 | 8188 | 521. |
| M494 | ¢9.80 | STK5481 | E5. 80 | TDA1908 | 52.80 | TDA 3640 | 15.20 | TMP | AP. |
| MC13002 | [5.80 | STK5482 | E5.80 | TDA1940 | E3. 20 | TDA3650 | 59.80 | | $\underline{15}$ |
| MDA2062 | $\underline{33.80}$ | STK5490 | E7.80 | TDA1950 | 53.50 | TDA3651 | 54.20 | TMP | |
| ML237 | c3. 20 | STK $6 \% 62$ | 53.80 | TDAZ204 | 22.80 | TDA3653 | c3.80 | 3555 | $\underline{16}$ |
| ML926 | 24.80 | STK7308 | E6.80 | TDAzp40 | 57.80 | TDA3653B | ${ }^{2} 3.20$ | TMP | |
| MN15425 | ¢15.80 | STK7348 | ¢10.80 | TDAZ2150 | $\underline{23.20}$ | TDA3654 | E3. 20 | 3559 | 15 |
| A 1024 | E5. 80 | STR3125 | 54.80 | TDA2270 | £2.80 | TDA 3810 | [5.50 | TUAZ0 | ¢8.50 |
| SAA 1025 | E3.80 | STR441 | 87.80 | [DA2540 | ¢2.20 | TDA 4120 | 82.20 | U461\% | ¢14.80 |
| A1124 | c3. 50 | STR450 | ¢6.80 | [DAS48 | ¢5.80 | TDA4426 | ${ }^{2} 3.20$ | UC3844N | ¢4.95 |
| SAA 1250 | $\underline{31.80}$ | STR451 | 2780 | TDA 5 S76A | 57.80 | IDA4427 | 53.20 | UPC1363C | ¢5.80 |
| SAA1251 | c8.40 | STR454 | ¢5 50 | TDAST7A | c4. 80 | TDA 4442 | ¢6.80 | UPC13 | |
| SAA1293.02 | 28.80 | STR4211 | 5680 | TDA578 | c3.80 | TDA4443 | 57.80 | UPC1378 | $£ 1.90$ |
| SAA1293.03 | | STR5412 | | TDA 579 | $\underline{53.80}$ | IDAd500 | c5.80 | UPC1394 | |
| | $\underline{16.80}$ | STR400\%0 | E6. 80 | TDA-581 | ¢6.80 | TDA4501 | 17.80 | UPC1420 | 60 |
| SAA5000 | 52.80 | STR50020 | ¢10.80 | TDA-582 | ¢2.80 | TDA4502A | ¢13.50 | UPC1488 | E3.20 |
| A 5010 | c5. 80 | STR50103 | ¢5.80 | TDA-593 | ع1.50 | TDA4503 | ¢5.80 | UPD1397C | |
| SAAS 012 | 15.90 | STRS4041 | 56.80 | TDA-594 | ¢3.80 | TDA4sus | c6. 80 | IC p.p 90p | |
| a 5020 | $\underline{5.50}$ | STRS8041 | E6. 80 | TDA 595 | c4. 80 | TDA4555 | £9.80 | | |
| SAAS030 | ¢6. 80 | STR6020 | 57.80 | TDA.600 | 26.80 | TDA4600 | [3.85 | | |
| SAA 5040 | . 80 | Ta7680ap | E5.80 | TDAsol1a | 11.90 | TDA4601 | ¢2.80 | | |
| SAAS 050 | $\underline{11.80}$ | TA768TP | E5. 80 | TDA 6 did | 53.20 | TDA4610 | 26.80 | | |
| SAA5231 | 80 | TA7698P | E6. 80 | TDAs653A | 20 | 4950 | 11.60 | | |
| LINE OUTPUT TRANSFORMERS p.p. £1.80 | | | | | | | | | |
| AMSTRAD 22010 B\&O LX 2500,2800 A T2077/81 | | | | £21.89 | PHLLP | SCTXES | | | 22.80 |
| | | | | ¢28. | PHILIP | ST4 | | | |
| B\&O LX2500, 2800 A T2077/81 DECCA 100 | | | | £10.80 | PHII.IP | S 2 | | | £25.80 |
| FIDELITY 2×2000 | | | | ¢15.50 | PHILIP | S K40 | | | £27.50 |
| FIDELITY Z $\times 1000$ | | | | 114.50 | PHILIPS | S 3A, 2 B | | | 223.30 |
| | | | | [24.8) | PHILIP | $\mathrm{ClF}^{\text {c }}$ | | | |
| HITACHI CPT1455, 1456, 1476, 1491 | | | | [19.50] | PHILIPS | CP90 | | | 1228.50 |
| | | | | £21.80 | PHILIPS | CP110 | | | |
| HITACHI CPT21747678 | | | | 188.90 | PHILIP | SGR1A | | | E25.90 |
| HITACHI PN2433752. | | | | ¢21.80 | PHILIPS | NC3 | | | £22.50 |
| ITT Compact B 110. | | | | $\varepsilon 19$. | SAISHO | Ma TSU1 371 | 14002 | | |
| ITT Compact su, 110 | | | | £17.80 | Sanyo | CBP2144, 21 | 45, CPT | 144 | £28.80 |
| ITT Compact 30,90. | | | | £22.80 | Sanyo | CTP7132 80 P | P Cha | | |
| ITT Compact 30, 110 FST | | | | 819.80 | SONY K | V 1440142, 146 | 160162 | | $\underline{539.80}$ |
| ITT CVC $20 . . .$. | | | | 99.80 | SONY K | V1882 | | | |
| ITT CVC 25, 0.32 | | | | £10.80 | SONY K | V2056, 2100 | | | $\underline{29.80}$ |
| ITT CVC 45..... | | | | 59.00 | sony | V2092/46 | | | |
| ITT CVC $800801,803$. | | | | ¢24.400 | SONY K | V21XRT4/XR | | | 239.80 |
| ITT CVC1100, 1206, Picos | | | | 118.50 | SONY K | V225256, | | | 29.80 |
| ITT CVC1156, 1175 , | | | | ¢22.100 | SONY K | V270 | | | 260.00 |
| ITT CVC1200, 1201, Mini 2 | | | | ¢18.50 | SONY K | V275250, 27 | 62/66, | | 248.00 |
| | | | | c11. \%0 | THORN | 9000 | | | 59.80 |
| | | | ITT CVC1210/12/15/17 .. | £17.20 | THORN | 9600 | | | 59.80 |
| ITT Digi 3, 110 | | | | E19.00 | THORN | 1 CCS | | | [24.00 |
| ${ }^{\text {ITT }}$ Core 100, 90 | | | | £19.30 | THORN | TX9 | | | $\underline{23.50}$ |
| | | | | $\underline{19.95}$ | THORN | TX10 (Chopp | | | c19.80 |
| ITT TX33267 | | | | £22.80 | THORN | TX85 | | | $\underline{19.80}$ |
| ITT TX3446.. | | | | £22.90 | THORN | TX89 | | | c23.50 |
| ITT Monoprint A JTT Core 11a FST | | | | ¢21.80 | THORN | TX90 14" | | | 519.80 |
| | | | | £19.95 | THORN | TX90 20° | | | $\underline{17.00}$ |
| LOEWE Classic M124, M27 | | | | £33.10 | THORN | TX100, 110 | Gireen Sp | ot | ¢17.00 |
| LOEWE Cortur M27.. | | | | 233.30 | THORN | TX10090 ES | T Yellow | Spor | $\underline{21.80}$ |
| LOEWE Other (Quote model No.) | | | | £21.30 | THORN | TX100 EST I | T6045L | | $\underline{121.80}$ |
| PHILIPS KT3 | | | | £3300 | THORN | TX100 Blue | Spot | | 221.80 |
| | | | | ¢1380 | POST | ACKING LOP | S | | 0 |
| | | | | £22 | | | | | |

TRIPLERS EHT MULTIPLIERS
CONTINENTAL UNIVERSAL TVK \& BG RANGE (Quote exact no.) $£ 13.80$
U.K. UNIVERSAL (best quality) £7.80

GRUNDIG BG 2077-642-1001/1002/1003/1004 £16.80
GRUNDIG BG 2077-642-1001/1002/10
GRUNDIG BG 2087-642-1006: 16.80
GRUNDIG BG 2087
THORN
MAINS TRANSFORMERS: 6.3 Volts ERT boost $£ 6.80$ p.p. $£ 1.80$
Mains Isolating 500VA $£ 51.25$ p.p. $£ 5.5$
MISC: 455 CR YSTALS tor handsets. 4 for $£ 2.00$ p.p. 80 p
DEGAUSSING ROD £33.75 P.p. $£ 3.50$
TRANSPARENT VIDEO SERVICE CASSETTE 66.80 p.p. $£ 1.80$
HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5\% TO THE TOTAL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE

Telephone 071-794 8751/794 7346

Fax 071-431 5778

MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1SD

Motorising a Fixed Dish

Ian Martin

Since making the comparison tests on Astra dishes described last month I've been using an 80 cm dish and have found that it gives a useful degree of signal improvement here in Gwent. This inspired me to greater things, so I decided to install the 98 cm dish I'd also briefly tested and at the same time to motorise it. Fortunately dish manufacturer Lenson Heath makes a polar mount that's designed to fit directly on to the 98 cm dish - it can be used with the 80 cm dish by adding an adaptor plate. The mount comes complete with pole and actuator brackets.

Dry Run

As I'd not previously installed a polar mount I decided to do a 'dry run' at ground level. I already had some TV aerial mast material welded together to make a simple vertical stand, so this was placed on the flattest part of the patio. It was then checked with a spirit level to ensure that it was vertical. I found that it was slightly out of true - but a copy of What Satellite? was just the right thickness to place under one of the legs as a shim. Concrete blocks were used to ensure that the stand didn't move.

At this point I decided to take an unusual course of action - to read the instructions! This was because of my concern about the number of adjustments that might have to be made. Only three are actually required: mount elevation, dish declination angle and dish azimuth. The instructions include tables for all these for latitudes between 28° and $66^{\circ} \mathrm{N}$, also an outline map of Europe showing latitude and local magnetic variation. An exploded view of the assembly is provided so that you can see what the finished unit should look like - see Fig. 1.

As the mount itself is already assembled putting the components together is not difficult. It's probably best to start with the pole bracket. This is of the same type as the one supplied with Lenson Heath's latest fixed dishes and is clamped to the pole in the same way. One point worth noting is that this clamp has sufficiently large jaws to fix on to a 1.25 or a 2 in . mast. The latter is definitely recom-

Fig. 1: Exploded view of the Lenson Heath polar mount assembly. An additional bracket is required with the 80 cm dish.
mended, as the mount and bracket weigh 4.8 kg . excluding the dish. The polar mount can then be offered up to the pole bracket and the two bolted together.

At this stage it should be possible, before tightening the bolts, to set the approximate elevation angle. There's a scale embossed on the bracket. At my location the angle is 38°. but a further 15° must be added to take into account the pole mount. This is described in the assembly instructions. The dish and preassembled backing ring (required with the 98 cm dish) can then be fitted to the front of the mount and the declination angle set, again by using the tables provided. This leaves only the LNB boom and the actuator brackets to be fitted.

The boom simply slides up and into the backing plate. being held in place by two bolts. The actuator mounting brackets can be assembled in either left- or right-hand configuration, to take into account situations where a wall might obstruct the actuator jack in one or the other position. The moving end of the jack is then attached to the dish backing plate.

Actuator

I used a 12 in . Superjack actuator from Supervision. This provides approximately 45° of dish rotation either side of the apex position. As my sample mount has mechanical stops at approximately $\pm 50^{\circ}$ this was considered to be adequate. Slightly wider dish movement would be nicer, but there are few satellites that far out and probably few locations where one could see that amount of sky without obstruction.

In setting up the system on the ground I connected the jack to my positioner, a low-cost, unbranded model from Sendz, using heavy-gauge, two-core wire for the motor and two-core, lower-duty cable for the built-in reed sensor. I then retracked the jack fully and clamped it in position lightly before extending it fully and checking the maximum position. The sliding clamp on the body of the jack was tightened to the mount when its mid-position corresponded to the dish's apex position. Quick checks were made to ensure that nothing that should be loose was too tight and vice versa. The jack's maximum and minimum electrical limits were then stored in the positioner's memory.

Dish Alignment

In order to make the final job up the ladder easier I decided to align the dish as best I could on the ground. Although the elevation and declination had been set in accordance with the data sheet, it seemed prudent to confirm this and also to give myself a chance to play with the set-up. I decided that it would be sufficient to check with three satellites, one to the far east, one nearly overhead and one to the far west. Given the limits imposed by the mount and the LNB and feedhorn available this meant Kopernikus at $23.5^{\circ} \mathrm{E}$, Intelsat VA FI 2 at $1^{\circ} \mathrm{W}$ and Intelsat VI FI at $27.5^{\circ} \mathrm{W}$. I used a Maspro Ku band LNB and a Racal combined feedhorn and polariser.

Fortunately the sun came out just before noon, so it was possible to find true south by centralising the shadow of the LNB on the dish (I still don't have a decent compass). I then drove the dish westwards and quickly found Astra and several Eutelsat craft on my monitoring TV set. By the time that I reached Kopernikus I found that the Arte signal was a little weaker than expected, though it could be improved by increasing the dish elevation very slightly. Similarly the TV Norge signal from Intelsat VA F12 was quite weak until the elevation was increased. This seems to be a reasonable situ-
ation as the elevation graduations on the pole mount are a little coarse.

When I was finally happy with the alignment I tightened up all the bolts and positioned the dish at $1^{\circ} \mathrm{W}$. I then removed the whole assembly from the patio stand by releasing the pole mount clamps. In theory all the adjustments would remain correct: all that I would have to do on the wall mount would be to realign the azimuth. This turned out to be true.

On the Wall

Getting the mount up on the wall is definitely a two-man job, due to the sheer weight of the assembly, dangling wires and Murphy's Law of gravity and spring washers. Removal of the dish and boom from the backing plate made the job easier - this didn't affect the adjustments. The lengthiest part of the job was to fit the wall bracket securely and ensure that it was truly vertical, then to confirm the alignment and peak the signal, using a carrier-to-noise ratio meter. Sealing all the connections and routing the cables down the wall and into the house came a close second.

In Conclusion

Since I first installed the system I've added a Telecom band LNB, using an orthomode transducer to spht the signal. This has proved very successful, as the Telecom signals come in loud and clear albeit in SECAM. Not being able to move the dish by more than $\pm 45^{\circ}$ doesn't seem to be a big disadvantage as it spends most of its time directed at Astra, the nearby Eutelsat craft and Telecom 2B. Anyway Lenson Heath tell me that their latest mounts don't have this limitation and will. with an 18 in. actuator, cover

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August, September, October, November and December

1993 January, February, March and April
Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Fublishing,
Television Back Issues,
Room L32:3,
Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing Ltd.
the whole sky from horizon to horizon.
No doubt professional installers would manage the installation with greater ease. It seems however that with a little planning and a methodical approach the job can be done by anyone in the industry, even if only for their own personal

Reports from Ian Bowden, Brian Storm and David C. Woodnott

Panasonic NVG101

This camcorder was reported to be dead. When it was switched on or eject was pressed nothing happened. The cause of the problem was soon traced to the fact that the reset at pin 20 of the system control chip IC6007 was low at 1.5 V instead of momentarily dropping to zero then rising to 5 V . We suspected the small reset generator chip IC6003 and confirmed that the fault was in this area by removing it from the PCB then, shortly after connecting the battery, connecting pin 20 of IC6007 to the 5 V line via a suitable resistor. The machine then attempted to work, but as the PCBs weren't connected to the mechanism it just flashed the power on LED as a warning signal.

A new reset generator chip was fitted but the fault was still present. A check on the resistance between the reset line and chassis produced a reading of $1.5 \mathrm{k} \Omega$. When pin 20 of IC6007 was disconnected from the PCB the resistance reading remained the same. The only other component connected to this point is the $0 \cdot 1 \mu \mathrm{~F}$ capacitor C6017 which had developed a leak. With this capacitor loading it down the reset chip couldn't pull the line high enough.
I.B.

Sony CCDV8

The fault with this machine was loss of playback ATF servo action: the picture would appear then disappear into noise cyclically. A check at output pin 25 of the ATF servo chip ICl06 showed a movement of only 200 mV from the nominal d.c. level of 2.6 V . When we checked around the input and low-pass filter areas of this chip we found that an h.f. signal was present up to pin 8, which appears to be an input to an amplifier stage. But there was only a very low output at pin 12, which feeds the two bandpass filters. An identical signal to that at pin 8 was present at pin 9 , which is connected to chassis via the $6 \cdot 8 \mu \mathrm{~F}$ surface-mounted tantalum capacitor C200. This capacitor was open-circuit, a replacement restoring normal operation with a 40 mV peak-to-peak input signal at pin 8 of the chip and a 2 V peak-topeak output at pin 12 .
I.B.

Panasonic NVMS4

This was my first glimpse of the new all-singing, alldancing full-size Panasonic Super VHS camcorder, an imposing beast. But it appeared to have dirty heads. In my experience the cause of a fault like this with a new camcorder is always a duff direct-drive motor assembly. Nevertheless I did try to clean the heads, but to no avail. I also tried replacing the heads, then placed on order a VEG0889 DD motor while I played with all the new and exciting buttons on the camera section!
B.S.

JVC GR323E

This camcorder had been dropped and wasn't the better for it. The reported fault was 'no functions with a scraping noise'. The cause of the scraping noise could be seen when the case had been removed: the impedance roller/guide assembly was in contact with the upper drum. Once this had been sorted out all functions seemed to work correctly. After the usual checks we reboxed the camcorder and put it on soak test.

All was fine until stop was selected whilst in the play
mode: the mechanism then decided to shut down. After several attempts to resume operation had failed, the casing was once more removed. Then, at switch on, all functions had been restored! We noticed that there was a slight nick in the ribbon cable that connects the lower drum to the main PCB. Only one connection was damaged - drum motor Hall effect to the motor drive amplifier. If this connection goes open-circuit whilst in the play mode there is no effect, but when stop is then selected it's impossible to return to the play mode because the drum motor won't rotate. The nick in the ribbon cable had been caused by the fact that the impedance roller assembly tension spring had become detached and had punctured it. To avoid the cost of a replacement lower drum and all the extra work involved the cable was repaired.
D.C.W.

Sony CCDV88E

The report with this one said that it played and recorded all right but would go into the caution mode after rewinding a tape to its end. All functions remained available if the tape was only partially rewound. Now the caution mode is effectively a shut-down situation, with the caution LED flashing and no user functions available. To restore the functions to the previous state the camcorder has to be switched off then on.

The cause of the problem was an open-circuit cassette LED, D991, which is normally required only for tape-end detection. The fact that it's open-circuit won't be evident until the missing tape-end signal is detected. This differs from the effect that a similar failure would produce in a mains operated machine.
D.C.W.

Mitsubishi HSC40B

This C format machine has a full-sized drum, with results to match. The fault report was of wow on sound. Sure enough a wow was discernible when we played the relevant JVC test-tape section. A scope check on the audio signal showed that the problem was more of a random change than a regular change of frequency. As a first step we removed and inspected the capstan motor: everything seemed to be in order here - the bearings were o.k. and no sticking or slackness was discernible. After refitting this we cleaned the tape path as a precaution and checked the tape path tensions. It was immediately clear that something was wrong in the back-tension department - in fact there wasn't any back tension at all! The tension adjusting screw had become slack, causing the rather unusual symptom. Resetting it to provide the correct tension completely cleared the trouble. We locked the screw with a suitable sealant. D.C.W.

Sony CCDTR55E

Playback was fine but there were no camera pictures. This was because the iris return spring had become detached and the vanes were stuck in the closed position. Dismantling the lens unit is quite straightforward, and cleaning and refitting the iris parts is not too time consuming. There are only two vanes to refit: this makes it rather easier than with the threevane variety whose washers and retaining plate always seem to move out of place at the slightest touch. D.C.W.

A Video Monitoring Test Jig

Eugene Trundle

The brown goods servicing business is not getting any easier as time goes by! When a fault is permanently present its cause can usually be located quite quickly using conventional diagnostic techniques, difficult though this can be with complex products - especially those with which you are not familiar.

Intermittent Faults

Many faults are intermittent however, making diagnosis more difficult and less certain. Various methods are used in tackling them. These include bashing the PCBs and components with the handle of a screwdriver, heating and cooling suspect parts cruelly, running the gear on test with diagnostic equipment permanently connected, replacing complete modules, assemblies or PCBs, and various 'political solutions in which the repair is not actually carried out! Most intermittent faults are eventually resolved in one way or another, though seldom with much profit for the repairer.

The widespread use of system control and protection circuits in consumer electronics products has made tracing the cause of an intermittent fault that much more difficult: we now have the 'beat you to it' factor. A VCR for example will go into the stop mode within seconds of anything untoward happening on the deck or when a sensor hiccups: a TV set will go into the standby mode at the drop of a hat or the passage of a single spark; the screen or loudspeaker will be muted during mistracking or a momentary corruption of the signal or control information; and so on. The classic situation is where a fault crops up once a day, once a week or once a month, and when it does you've got anything from a few milliseconds to four whole seconds to make a diagnosis, after which the symptom is automatically removed, perhaps not to reappear for another two days when you've got another split-second diagnostic window.

Similar frustrations occur with some other types of fault the TV set whose screen flashes blue for a second at rare intervals, the VCR whose capstan speed throws a wobbly once a day, and the set with a little crackle from the loudspeaker now and again, whose sound has been booming from the set uninterruptedly for a week, shattering the concentration and composure of a whole roomful of technicians.

You can't sit watching or listening to these rogues all day, every day, waiting to pounce with your little meter or beady eye. Experience, guesswork and trial-and-error are the order of the day, except sometimes with those wonderful machines that have built-in, latching self-diagnostic systems to give a readout of whodunnit, or at least who might have dunnit.

Enter the Camera

Over the years we've devised various electronic traps and gizmos to help in tracking down the causes of such faults, with varying degrees of success. Currently we are using a TV camera and VCR that watch the equipment under test, recording for as many hours (or days) as necessary. We can then play back the recorded pictures, and sound where relevant, and obtain an action replay of the transient event.

The camera usually looks at test equipment (a meter, oscilloscope or whatever) as well as the screen of the TV
set, see Fig. 1, or the deck of the catch-you-napping VCR, see Fig. 2. The basic idea is that you record not only the momentary fault symptom but also readings of the circuit conditions, control line state or whatever at the instant of, or just prior to, the occurrence of the fault. In many cases the tests are progressive, narrowing down the field of search with each new recording and test set-up.

Some Case Histories

Here are some recent workshop examples. A VCR came to us after having been to two other repairers. The problem was that the deck would stop running on random occasions: sometimes it would run for weeks without any trouble. The reel motor and a couple of chips had been replaced. We trained the camera on the deck from above and were able to record the fact that the tape. both spools, the drum and the capstan all kept moving right up to the moment when the machine unlaced to stop. An oscilloscope was next connected to the microcomputer control chip's reel sensor and drum flip-flop inputs: this time the camera was used to

Fig. 1: Test set-up for surveillance of intermittent TV faults. With the TV set facing the same way as the camera, test connections are easily made and changed. For best definition of the scope's screen and the meter's scale, zoom in to get the fest gear and part of the mirror image in the frame.

Fig. 2: Camera-eye view of the mechanics of a VCR deck, showing all the rotating items.
monitor the deck and the screen of the oscilloscope. Just before the auto-stop action the reel pulses were seen to jitter, get up and lie down. We d.c.-coupled the scope to monitor the supply to the Hall sensor under the spool. This showed that the supply failed intermittently. The scope's second trace showed that the voltage at the main PCB remained steady. The cause of the problem was then soon traced to a badly crimped wire in a socket. Similar symptoms and start points in other VCRs have led us with certainty to faulty mode switches, motors, chips etc.

A TV set's field scan would occasionally collapse for a second or two: we were unable to instigate the fault by employing the usual means. Two or three progressive tests with the camera and an oscilloscope showed that one of the field output transistors was going open-circuit base-toemitter to cause the fault.

Another TV set went into the standby mode at rare and random intervals, accompanied by a 'snick' noise that could well have been a spark. But where? In the tube itself? On the chassis, the tube base or at the focus potentiometer? The camera was used to take a broad view of the back of the TV set whilst it was working in low ambient light. Three hours later there was a little click and the set shut down. We rewound the tape and played it, with three technicians as observers. Sure enough a spark could be clearly seen in the action replay. It left from the casing of the dioe-split line output transformer to the adjacent metal frame. In went a new transformer, with an assurance to the customer that there would be no further trouble. The observation set-up had notched up another stripe!

A satellite TV receiver had a funny turn now and again, producing heavy sparklies on some channels only then reverting to normal operation almost before you could blink. Assaults with heat and freezer and screwdriver handles didn't have the slightest effect. Ordinarily we might have replaced the very expensive tuner/demodulator module and carried on testing. Camera recordings however showed that the trouble was in the power supply section, where the LNB polarising/d.c. supply voltage would dip monentarily. A regulator chip was the cause of the problem. Fig. 3 shows a typical test set-up for checking an intermittent TV tuner.

There are many other examples I could quote to show how effective the system is: those quoted above indicate its usefulness in several quite different situations.

Fig. 4 shows how voltage and current can be monitored simultaneously. Fig. 5 shows a simple 60 dB attenuator for feeding TV sound into the microphone socket of a camcorder for continuous (and quiet) checks on TV sound systems.

Camcorders sometimes develop intermittent faults in their lens and lens-drive systems. A simple arrangement for continuous testing of camera optical functions is suggested in Fig. 6. W. Heath Robinson would have liked this one!

What You Need

You wouldn't of course want to spend the best part of a thousand pounds on a posh camcorder for this application though it works very well if you do! The types of camera you can press into service for this application are many and various - and necessarily cheap. For example CCTV security/surveillance cameras bought from liquidation sales of bankrupt retail shops etc.; commercial VHS or Video-8 camcorders that have been damaged or written off because of deck faults, upper drum failure or whatever; bad debt and uncollected camcorder repair jobs; cameras/camcorders that have been traded in by customers who are updating their gear; or secondhand video cameras/camcorders bought for

Fig. 3 (left): Test gear arrangement for a TV set whose signals disappear spasmodically. The scope must be d.c.-coupled and the surveillance camera needs a simultaneous view of the TV set's screen.
Fig. 4 (right): By breaking the earth-return circuit and inserting an 0.5 or 1Ω resistor, the current and voltage can be monitored simultaneously using the two traces of a d.c.-coupled scope. This set-up can be used to establish whether the cause of a picture-size fault is in the power supply or the line output stage for example. The load could be a VCR motor and the PSU its drive circuit; or various other arrangements can be used as circumstances demand. The voltage at the scope's Y1 input is proportional to the current in the load: with $R 1$ 0.5Ω the proportion is 500 mV per Amp.

Fig. 5 : An easy to make resistor attenuator to match the loudspeaker feed of a $T V$ set to the external microphone socket of a camcorder or camera. Long, flexible leads with crocodile clips are connected to the set's speaker tags.
the purpose - many are advertised in the classified for sale columns of What Video? magazine each month. Nor does the picture have to be a colour one. For most applications, including all the examples previously described, a black-and-white system is perfectly adequate. Indeed unless you need colour, for instance when checking certain TV picture faults, it's best to turn the colour off so as not to muddy the results. Cheap monochrome TV surveillance systems can thus be used, also outdated tube-type consumer TV cameras that are worn to the point where they produce sickly, useless colour but perfectly acceptable monochrome pictures.

Even when the camera is part of a fully-operational camcorder it's probably best to use a separate home-deck type VCR to record the pictures. Camcorders have limited playing time, with small cassettes, and the mechanics might not be up to recording all day, every day. Other disadvantages can be poor search and replay still-frame images, and often a relatively long rewind time. So keep the camcorder in the E-E mode, even if it means carrying out a modification to defeat the time-out feature on some models.

The VCR used for soak test recordings can be any old sort, from a redundant 3 V 23 to a reliable Beta-format banger (the video heads on the Sanyo 5000 series machines seem to be immune from wear!) or a bad-looking secondhand stock machine with a duff tuner. Use a three-hour tape and, unless you need especially sharp pictures and good sound, consider using the LP mode if the machine has this. Features worth looking for are fast picture search (cue/review), good trick-play operation and a clear freezeframe picture - the latter two usually go hand-in-hand, and many old-time machines are suitable in this respect. Ingenious technicians may find a way of modifying some models to obtain continuous record/playback cycling until the machine is manually interrupted by use of the stop key.

As we've seen. in most cases the camera will monitor test readings as well as the equipment being checked. The meter used doesn't have to be super-accurate or sensitive to register such things as the cessation of motor current or the rise in a supply-line voltage when a picture expands. Similarly you don't need a 50 MHz dual-trace scope to monitor a drum FG signal or a video waveform. That old analogue meter with the cracked glass, the narrowband scope with a low-emission tube and the Avo 7 with which you started your servicing career can all be dusted off and pressed into service. Bear in mind however that the quickest-acting voltmeter is a d.c.-coupled scope. Depending on the application and circumstances, you might find that the digits of a digital meter are still flickering when it's all over - even the pointer of an analogue meter takes a second or so to settle down. That's twenty five or more crucial TV frames if your surveillance recorder has a still-frame advance facility.

Setting Up

Unless you have very little space it's best to leave the camera, recorder and monitor permanently set up on a spare bench or comer ready for whatever VCR or TV set may need the facility. Use of an ordinary floor-standing tripod for the camera virtually guarantees that it will get knocked over sooner or later, so use a clamp or sucker-mount to fix it to a wall or shelf - several types are available from video accessory shops. You need the type that enables the camera to be panned, tilted and clamped in any position.

The surveillance bench needs to be large enough to take big TV sets. When recording off-tape pictures you'll need a small-screen TV set to act as a monitor in addition to the one in the test rig. Once again neither need be new, goodlooking or sophisticated models, nor does it matter if their screens are scratched, their tubes down a bit or the cabinets tatty!

A high lighting level is seldom required, especially when a scope is being used as part of the televised set up. Normal room lighting is usually adequate unless you need a large depth of focus to cover for example a tape deck, a monitor and a couple of pieces of test equipment all at once. Always exhaust all the possibilities of camera position and lens setting before turning the lighting up to a high level. A small fluorescent or tungsten bench lamp in an Anglepoise-type holder or goose-neck stem is normally adequate for this application.

Some of the rotating parts of a VCR are virtually plain discs whose motion can be difficult to discern during play-

Fig. 6: An old phono deck pressed into service to rotate a cigarette packet or whatever (use the slowest possible speed) to activate the auto-focus system of a camcorder continuously while a scope monitors the lens motor drive and sensor output. By using a white card whose rear surface is matt black the same jig can be used to monitor at length the operation of the auto-iris servo loop. It may be necessary to modify the turntable drive system to get a sufficiently slow speed.
back of the camera's pictures. Make it visible by dabbing the disc. flywheel, clutch or whatever with a marker pen or a paper sticker. For easy sighting use a cassette whose reels have 'flags' on them.

Many tests involve monitoring the conditions at an i.c. pin. often one of a microcontroller chip's pins. To make a reliable test point, solder a short stub of thin (22 gauge) solder direct to the i.c.'s pin - beware of static discharge and connect the test probe to this stub.

Now that we've ventured into the realms of microcontrollers, another useful feature of the camera-watching approach can be mentioned. You can use the technique to monitor data, control and remote-control preamplifier output lines continuously - where the causes and effects of noise or momentary errors can turn you grey! For serial control lines like an I2C bus you need only a double-beam scope. For parallel data lines a multi-trace generator such as the one featured on the May 1986 cover of Television must be used.

Interpreting Symptoms

As 1 hope I've by now made clear the system as described is a very powerful tool in dealing with most types of intermittent fault. Even so it doesn't itself provide the diagnosis, any more than a doctor's stethoscope or a test meter does. Basically what it does is to take out the waiting and watching period. presenting the symptoms and readings in a clear, repeatable and unambiguous form. The clever bit is to interpret the results you see and to change the tests or the camera viewpoint progressively to narrow down the field of search and pursue the trail to a cast-iron conclusion. In doing this some simulation tests on the equipment will provide useful clues: noting how many seconds the syscon of a VCR takes to initiate shutdown after a pulse feed vanishes: whether disconnecting one data line or one mode switch wire gives the same effect that you saw in the surveillance replay; and determining which of two nearsimultaneous events is the cause and which the effect for example.

With the symptom, effect and test readings frozen in time on a TV screen you don't get the suck-it-and-see element possible with a permanent live fault, so your interpretation of the results has to be logical. Maybe we shall one day be sending wish-you-were-here video cassettes to those poor souls at setmakers' technical liaison offices, with instructions to hit the pause button at 2 hours, 23 minutes 14 seconds or whatever! I can remember when the majority of intermittent TV faults could be cured by cleaning the tuner contacts or squirting jungle juice into all the valveholder sockets.

Toil and Trouble

At first sight the whole idea might seem rather like overkill, and a few years ago it would have been in terms of its expense and relatively rare application. Now however, with the ready availability of video camera gear and VCRs and the increasing incidence of horrible intermittent faults in all types of electronic equipment, it's my belief that setting up a video monitoring jig is well worthwhile in a busy workshop that has a high throughput and a good name to maintain. It doesn't have to cost a fortune, and there is tremendous satisfaction in being able to diagnose with certainty the causes of faults in equipment that might otherwise take root on soak-test benches, and then have to be returned to the customer with crossed fingers and big question marks over the set, the bill - and your reputation!

Teletopics

BT LAUNCHES VIDEOPHONE

British Telecom launched the UK's first home videophone, the Relate 2000, at the recent Ideal Home Exhibition. The unit works like a normal phone and plugs into a standard telephone socket, the differences being the inclusion of a small video camera and a three-inch colour LCD screen to enable users to see each other. The sound and picture are transmitted simultaneously, calls being charged at the normal rates. GEC Marconi designed and manufacture the units, which use the company's M-VTS technology. This converts the picture to digital form then compresses the digitised video to enable it to be sent via standard analogue telephone circuits. There are two modem rates, $14.4 \mathrm{kbits} / \mathrm{sec}$ giving a frame of ten per second and $9.6 \mathrm{kbits} / \mathrm{sec}$ for displaying a still image. With the low frame rate some blurring is inevitable when movement is present, and the image can lag the speech by up to about a tenth of a second.

A self-view facility enables users to check their appearance, and there's a picture-in-picture facility. The user can switch off the video part of the unit. Although there's at present no international standard for videophones that use analogue networks, BT says that by the end of the year it will be possible to make video calls to the USA, Japan, Hong Kong and Singapore. The Relate 2000 is being sold in BT phone shops and Dixons stores at $£ 399$ a unit or $£ 749$ for a pair.

While GEC Marconi videotelephones are being distributed in the USA there is also a non-compatible system developed by AT\&T in use there.

AMSTRAD'S PEN PAD

Amstrad has launched the world's first Personal Digital Assistant, a held-held electronic organiser that has a pendriven interface. The Pen Pad weighs less than a pound and is to sell for $£ 300$ including VAT. It includes 128 K bytes of memory, which can be expanded to 2 Mbytes by using a standard memory card. A three-chip processing system is used. The Pen Pal was designed by Amstrad and is being manufactured by the company in China. It comes with builtin applications such as a diary, address/telephone book and calculator. Use involves menus and writing on a pressuresensitive pad - the user has to train the Pen Pal to recognise his separately written letters (cursive handwriting is not recognised).

NARM

A number of new DCC products were shown at the National Association of Record Merchandisers (NARM) convention in Orlando, Florida, early March. Philips unveiled its first DCC personal stereo, Model DCCI30. Its features include a twelve-character illuminated LCD screen with scrolling facility, a three-position dynamic bass boost (DBB) system and an optical digital output socket. Power is from the mains or rechargeable Nicad batteries that provide a playing time of up to two hours. Price is $\$ 549$ (about $£ 390$). Panasonic showed its RQDP7 portable DCC player that includes wired remote control, Dolby B for analogue tapes and has the same price tag. Philips also demonstrated its DCC Slide Show system which stores large amounts of information in
the sub-code track. It's designed to present text on a TV screen - up to 250 pages of text (each comprising 21 lines of 40 characters) can be stored. The display looks like teletext and can consist of track and time information, lyrics and details of the artist. For the demonstration Philips fed digital signals from a DCC deck to an external adaptor, but future DCC machines will have a built-in adaptor and a video output socket.

Sony showed its first table-top Mini Disc player/recorder, Model ZSM1, whose features include an a.m./f.m. tuner with 24 presets and remote control. Price, when it goes on sale in the USA this summer, will be around $\$ 900$ ($\mathfrak{f} 640$). Sony has started to sell a five-chip Mini Disc set to enable other manufacturers to produce recorder/players.

Sharp showed two Mini Disc personal stereo players, Models MDD10 and MDS10. Both have a scrolling LCD display and an X-bass booster system. The Nicad battery provides a playback time of about 100 minutes. Prices are $\$ 549$ ($£ 390$) and $\$ 599$ ($£ 430$) respectively - the S 10 has a headphone lead with a remote control unit attached to it.

No UK launch dates have been announced for any of these products.

CD-I UPDATE

According to Philips around 100,000 CD-I players have been sold worldwide to date, 50,000 in the USA, 40,000 in Europe and 10,000 in the rest of the world. The company expects the figure to double this year and treble in 1994, giving a base figure of 600,000 machines. During MayDecember 1992 some $10-12,000$ decks were sold in the UK along with 120,000 discs.

Philips has also announced that full-motion video (FMV) cartridges will be available in September/October. They will incorporate in addition a memory chipset to enhance CD-I player performance. Price is expected to be around $£ 200$. Philips intends to launch five FMV interactive movies this autumn.

SEGA'S CD-ROM

Sega has launched a CD-ROM add-on for its MegaDrive 16-bit games system. Known as Mega CD the add-on unit contains a Motorola 68000 processor that operates at a clock rate of 12.5 MHz . The MegaDrive games console plugs into the CD-ROM unit, playing games and music CDs. Sega says that 36 CD-ROM games will be launched in the UK this year. Mega CD gosts $£ 270$.

SATELLITE TV

Five transponders on the Astra 1C satellite have been leased so far. Services include Discovery Channel Europe, Filmnet and an expanded Children's Channel. RTL 2 is now transmitting a general entertainment service via Eutelsat II FI’s superbeam transponder 21 (11.095 GHz , horizontal): the satellite now has 14 TV and ten radio channels.

Pace Micro Technology, Europe's largest satellite TV manufacturer, is at present producing some 80,000 receivers a month. The company has announced a pre-tax profit of $£ 5.8 \mathrm{~m}$ for the six months to the end of February on turnover of $£ 40 \mathrm{~m}$.

CABLE MUSIC SYSTEM REACHES EUROPE

The American company International Cablecasting Technologies has announced that its Digital Music Express (DMX) music cable service is to be extended to Europe. DMX is a
non-stop, 24-hour service that offers the user thirty channels of CD-quality music. There are no adverts, jingles or announcements. A large remote control handset called a DMX-DJ is used for channel selection: it has an LCD screen that displays the artist's name, the title and record label information. Over 300 cable systems carry DMX in the USA, the system being available in some ten million homes. The channels offer a wide range of music including pop, classical, jazz and country. Cable franchise operator Telewest and BSkyB will be the first British companies to offer DMX. Subscription is expected to cost around $£ 10$ a month.

IN BRIEF

The UK's mains voltage will be reduced to 230 V from 1995 as part of a move to a common supply voltage throughout the European Community.

Antex (Electronics) Ltd., 2 Westbridge Industrial Estate, Tavistock, Devon PL19 8DE (0822 613 565) has introduced a range of three new desoldering pumps. The Conductive is for use where static protection is essential; the Pro, with a large suction volume and a conductive tip, is for standard production rework; the low-cost Mini is intended for low volume or hobbyist use.
Letters

TECHNICAL ADVICE

I have just phoned the Sony Technical Enquiries line for assistance in solving a sticky problem with a Sony colour TV set only to be told that as I'm not a Sony account holder they cannot provide any technical advice of any nature. I find this most unsatisfactory and think that it's a very highhanded attitude.

In the past the servicing trade was always one in which there was a sort of comradeship between fellow service technicians. Those employed by manufacturers were only too glad to discuss any problem, however trivial, encountered with their firms' products. They had a certain pride in being able to pass on any useful tips that might help to get a repair satisfactorily completed. It also helped to uphold brand image if products could be speedily and efficiently repaired by local service shops. Indeed Sony was and remains a brand that's held in high esteem by many of my customers.

Sadly it seems that in this day and age of the multicorporation all this counts for nothing. I was told to take the offending TV set to the nearest Sony agent: it was implied that because I'm not an approved Sony technician I cannot be given information or be qualified to carry out a repair. I find this offensive, having been in the trade all my working life and gained all the relevant servicing qualifications.

So Sony agents and their engineers are something very special. They must be, because the prices our local Sony agent charges are way over the top. That's what the average customer comes to me!

In addition to servicing I run a small retail shop. Ironically, I do sell various Sony products which I buy through a local wholesaler. I am now wondering what I should do if one of these products presents a technical problem in the future. It's going to look very bad if I can't offer my customers an efficient service.

Grundig operate a similar policy of non-cooperation with smaller dealers. Just how many multicorporations are going down this road? Perhaps we small TV shops are a nuisance

HS Publications, 7 Epping Close, Derby DE3 4HR (0332 513 399) has published a new catalogue listing DX-TV equipment and technical publications, including video cassettes on vintage TV subjects. Send three first class stamps or three IRCs for a copy. Also just published is the third edition of This is BBC-TV - The First 30 Years of Television Graphics. Price is $£ 4.95$ plus 85 p post and packing in the UK ($£ 1.20$ world-wide air mail).

Our thanks to advertisers Teleprice and Besco who donated prizes for Red Nose charity draws: Teleprice donated a portable TV set as first prize, Besco a VCR as second prize.

EXHIBITIONS

The 1993 Berlin Radio show will be held on August 27thSeptember 5th: display space has been increased to 100,000 square metres.

The National Vintage Communications Fair 1993 will be held at the National Exhibition Centre (Pavilions Hall), Birmingham on Sunday May 16th. Admission is $£ 3$ and the fair will be open from 10.30 a.m. to 5 p.m. For further details contact Jonathan Hill, 2-4 Brook Street, Bampton, Devon EX 16 9LY (0398 331 532).
to these corporations. After all we frequently repair examples of their products that they would consider long past their 'use by' date, thus reducing the sale of new goods.

Oh for the friendly voice of the man at Thorn who always knew the answer and alwavs said "it was a pleasure to be of assistance". Sadly no more!
Peter Murchison.
Salishury, Wilts.

TRANSFORMER THERMAL FUSES

In view of the extensive coverage of electrical safety in your pages I was concerned to read in VCR Clinic (March, under the heading Ferguson 3V35/JVC HRD120) about how a thermal fuse internal to the transformer structure had been bypassed in order to "save the cost of a new transformer". Mains transformers are normally designated safety components, which means that they should be replaced with only the correct original type, also that they shouldn't be altered or modified in any way.

For a fuse to be reliable with transformer-input equipment, or any similar inductive load, it must be a time-delay type - in order to absorb the in-rush current associated with this kind of load. If a 'straight' fuse is used it will fail before long due to fuse-wire metal fatigue, caused by the bending that occurs at switch on.

In addition to the need to use a T-rated fuse it's important to realise that the long-term rupture current of such a fuse can be typically ten times the rated 'instantaneous' rupture current - which in the case of a time-delay fuse isn't instantaneous anyway. Even with a straight fuse the long-term rupture current is several times the rated value.

This means that in the event of an overload on the secondary side of the transformer, possibly as a result of shorted turns within it, a primary current of potentially some 2.5 A could flow before the 250 mA external fuse fitted would blow. It's in fact more likely that core saturation of the transformer would take over before this, limiting the current to well under what the fuse requires to blow it.

Even assuming that 1 A could flow, this still represents 240 W dissipation in the transformer (not strictly true because of out-of-phase components, but near enough to be alarming). Protection against such an eventuality is the
whole purpose of using a thermal fuse.
I had a real case on the day that I read of the 'fix' - it was this that prompted me to write. In my case there was an external fuse on the secondary side of the transformer. The item concerned was a cordless telephone that was dead because of an open-circuit thermal fuse in series with the mains transformer's primary winding. A new transformer was fitted and the phone was repowered. As life was not restored further investigation was required. In the short time that the equipment had been on - no more than about 45 seconds - the transformer's core had already reached a temperature noticeably higher than normal. A quick current check after the phone had cooled down revealed a secondary current flow in excess of 1.5 A . The secondary fuse, a straight type rated at 1 A , stood up to this quite happily. But of course the thermal fuse in the transformer didn't.

In a case like this if the parts required are either not available or prohibitively expensive the equipment really must be committed to the scrap pile.
Geoff R. Darby, Proprietor. Monitech,
Earls Barton, Northampton.

NIKKAI BABY 10

On page 351 of the March issue Chris Avis suggests the use of an RS device to replace the ' 12 V regulator' IC402 in the Nikkai Baby 10. I too had several of these sets awaiting delivery of the AL2411 regulator. Measurements carried out with a working set showed that the output from this hybrid device is in fact 10.4 V , not 12 V . The suggested modification could result in R127, R207, R208, R362, R411 and the line output stage being overloaded. The genuine part is now available from HRS.
L. Mackenzie, T.Eng.,

Edinhurgh.

BACK INJURY

We now know of more than a dozen engineers who, like us, are suing for compensation for back injuries caused by lifting heavy TV sets. Anyone thinking of doing this can get in touch with us for advice. In doing so please state the company you worked for when the injury was sustained, whether the accident/incident was entered in an accident book, whether the problem was mentioned to management, whether you are a member of the EEPTU and whether there are lifting aids at your place of work. If you want something done, help us to help you.
Harry and Pam Todd.
37 Northdene, Chigwell. Essex /G7 5.JS.
Telephone 0815001433.

AM RADIO RECEIVERS

There were one or two errors in the circuit diagrams that accompanied Part 2 of the article on repairing LED clock radios (April). In Fig. 8 the MW pole of the aerial wavechange switch should be connected to chassis. In Fig. 9 the stator of the oscillator tuning capacitor and the items connected to it shouid be connected to chassis while VRI and VR2 should be VC1 and VC2.

Aerial 'padders' CT1 and CT2 should properly be called trimmers. Padding needed oo enstre that the aerial and oscillator tuned circuits, with their different frequency ranges, track is provided by the 150 pF capacitor.

Standard alignment practice is to set the signal generator to 600 kHz , adjust the oscillator dust core and aerial coil for
maximum output, then reset the signal generator to $1,500 \mathrm{kHz}$ and adjust the MW oscillator and aerial trimmers for maximum output, repeating both operations for optimum results.

No padding adjustment is provided on LW operation. So the signal generator is set to 150 kHz and the aerial coil is adjusted for maximum output. The signal generator is then set to 300 kHz and the LW oscillator and aerial trimmers are peaked. Repeat the process for optimum results. Sets that don't have the luxury of LW trimmers should have the LW aerial coil adjusted at 220 kHz .

I intend to cover radio alignment more extensively in my Browsing with Bruce feature in a future issue of The Radiophile.
Bruce Adams.
Halesow'en, West Midlands.

AMSTRAD SRX2000 MODIFICATION

Other readers may be interested in a cheap modification I recently carried out with my Amstrad SRX200 satellite TV receiver. I am very interested in the radio stations available from Astra, but the SRX200 doesn't cater for those that use the $7.74 / 7.92 \mathrm{MHz}$ subcarriers. The modification gives reception of these stations.

The receiver uses a crystal mixer circuit, with 10.7 and 10.52 MHz ceramic filters to select the stereo subcarrier pair. The crystals are very accessible, on a small subpanel. I removed the top, 18.08 MHz audio- 2 crystal and soldered two thin wires to where it had been fitted. These wires were taken outside the case through the nearest slot. I then had an 18.44 MHz crystal made, and etched a small PCB to take the original and the new crystal plus a small PCB-mounted twopole signal push-switch from Maplin. The crystals were connected to the outer switch contacts, the centre contacts being connected to the original 18.08 MHz crystal position.

This modification gives me perfect stereo reception of RTL, Radio 538, Radio RMF, Radio Eviva etc. The small PCB sits on top of the receiver's case, operation of the switch bringing audio 2 from either $7.38 / 7.56 \mathrm{MHz}$ or $7.74 / 7.92 \mathrm{MHz}$. As I'm interested in only Astra at present, the modification has saved me the cost of upgrading to a new receiver or carrying out the alternative, more complex modifications that are mainly for multi-satellite reception.
J. Outen,

Grays, Essex.

cowBoys

1 would like to add my views to the on-going correspondence about dealers and cowboys.

It is a fact that the chap without formal qualifications can often do the job as well as someone with a gallery of qualifications on the workshop wall. What makes me angry however is when the question of costs is overlooked.

In my experience the 'average cowboy' works from home or low-cost premises and very often supplements his basic day-to-day income by doing repairs 'on the side'. He has a pile of scrap chassis as his spares supply and is able to be choosy about which repairs he undertakes. He is probably not VAT registered and has no employees.

Conversely the high street Repair Centre has a neverending list of costs relating to its trade. Premises, heat and light, wages, vehicles etc. are not cheap, and it's essential that first-class repairs are carried out to maintain the reputation of the firm and the livelihoods of all involved. In striving to give the customer the best service it's not possible to make jobs cheaper by using second-hand spares
etc., while costs mount because of the need to maintain reception areas, invest in test equipment and even in clothing. These are often required to meet the criteria of manufacturers whom the business represents as their agent.

So when L.J. Pitts suggests (April) that dealers should charge an honest rate and clean up their acts, he should consider the fact that the majority of them do charge quite reasonable rates bearing in mind their break-even points.

The cost of running a dedicated Service Centre is becoming higher and higher. Although I recognise that there are many good engineers out there classed as 'cowboys', maybe the smaller operator shouldn't be quite so quick to write off the larger Service Centres as rip-off merchants. I don't wish to belittle the engineer who really does do a good job working from smaller premises etc. All I would ask is that some consideration is given to the larger Service Centres who, in their quest for excellence, naturally incur extra costs.

If the smaller operator believes he's not a cowboy I feel that he's going to have show the world he's a true professional by joining the ranks of respected dealers and help stamp out the real gutter-repairers who are wrecking customers' perception of our trade and treading on the toes of both the 'big boys' and the 'quality cowboys'!
J.G. Jones, TV Masters,

Northampton.

I would like to add my own perspective to the controversy over cowboys.

Not every 'unqualified’ person who repairs electronic equipment is a cowboy and not every 'qualified' person is competent. Take the example of someone who qualified in the Seventies. Colour TV sets still used valves, video and teletext were still in their infancy, and satellite TV belonged to the broadcasters. How does someone who qualified then cope with today's scene? The pace of change is so fast. Will his employers have sent him on update courses? I suspect that they often won't have done so. If self-employed, has he had the time and money to attend courses? This is even less
likely. So is he 'qualified' or a 'cowboy'?
I didn't qualify formally in the late Sixties/early Seventies. I taught myself. With the aid of some prior knowledge, your excellent magazine, various books and a great collection of old 'box' TVs to practise on I eventually reached the point where I could handle a respectably high percentage of repairs and went into business. By the end of the decade other dealers were sending me their repairs.

I subsequently spent fous years working as a technician with a Japanese TV manufacturer in South Wales, being involved in the production of a thousand sets a day.

Family bereavement led to a move to West Wales and the prospect of 'private practice' again. The change in the TV repair scene over those four years (1980-84) was staggering. The plethora of additional audio-visual gear - videos, camcorders, CD players etc. - was mind-boggling. Even to tool up with circuit data, spares and so on would cost a mint. I therefore confine myself to handling those items I feel comfortable with and can service properly. Satellite gear apart, I turn the exotica away.

The essence of the matter lies in personal honesty. Who, these days, with such a wide range of equipment out there can say that he's 'qualified'? The need to specialise is inescapable.

The high street trade is bedevilled with problems. Overheads are colossal while policies are dictated by accountants and implemented by mendacious salesmen. Engineers are hidden away in the back room. Under such a regime charges will inevitably be high. A local dealer here charges $£ 25$ just to come and have a look at your set. He doesn't really want to do repairs, and will readily pronounce a set unserviceable. His salesmen will be delighted to 'assist' you in the choice of a replacement. You still owe the $£ 25$.

In such a situation there's a window of opportunity for repairs to be done to lower-value equipment by those who don't aspire to state-of-the-art qualifications and are honest with their customers as to what they can and cannot handle. Such folk don't merit the title of 'cowboys'.
Philip Lane.
Dyfed, West Wales.
Croft Court, Butts Road, Thornton Cleveleys, Lancashire FY5 4JX. 0253826205.

Can anyone provide assistance with a Mader 4 or 5 in., 12 V colour TV set with radio - there's a picture but no sound. Alternatively does anyone know the set's manufacturer or importer? R. Devito, Ashleigh, Sealolme Road, Mablethorpe, Lincs LN 12 2AP.

Can anyone supply a CV345 valve? John R. Taylor, 14 Lastigar, Westray, Orkney KW17 2DJ. 08577235.

Wanted: circuit diagram (photocopy will do) for the Binatone Royal clock radio Model 016217 H - the one required as an LM5402N chip and three transistors on the panel. H. Wild, 32 Swanage Road. Winton, Nr. Eccles, Manchester M30 8NJ. 0617898320.

Wanted: line output transformer for the Hinari CT15 or VTV200. M. Stevenson, 124 Green Lane, Eastwood, Essex SS9 5QJ. 0702522929.

Wanted: working video head drum assembly for the Philips N 1500 /N 1700 VCRs, also if possible the eddybrake disc and pulley that fits on to the shaft on the underside of the lower drum assembly. R. Lewis, 50 Redstone Avenue, Kilwinning, Ayrshire KA13 7JG. 029452383.

Wanted: a new or good second-hand front panel assembly for the Hitachi VT33E VCR. E. Longton, HTVR, Unit 10,

It's only the on-off switch

Steve Cannon

We've all had it many times. The customer says his set is dead and for some reason thinks that the on-off switch is the only item that could cause the fault. Oh, on second thoughts the tube is also a favourite. Mind you the fault could be anything from no sound to field collapse and the customer will still come out with "I think it's the tube that's gone". I suppose they like to give the impression that they know something about the innards of a TV set.

In the days of those large things with bits of wire in them, valves they were called, everyone and his brother liked to think that they know what was causing the fault. In many cases they were right. "I think it's the valve that's gone" could be heard at every call-out. Even now some customers believe that a valve could be at fault in their six-months old, Nicam, Fastext, 28in. FST state-of-the-art TV set.

You can think yourself lucky if the on-off switch does just happen to be the cause of a dead set with modern TV receivers. Even though the on-off switch is the most often and forcefully used electromechanical part of a TV set, its reliability has definitely improved. With most brands anyway. These days if a set is dead and the mains fuse has blasted it's far more common for your test meter to read a short-circuit across the chopper transistor. But what about the sets that just don't want to be switched on; the ones where you know you might as well get the fuse drawer out and bring it over to the set; the ones where it seems that nothing will ever get the set up and running?

An Hitachi CPT2598

The first set in this series of posers was an Hitachi CPT2598 (G8Q chassis). I had a sneaky feeling that this one was going to be nasty. After removing the back this suspicion was confirmed - the mains fuse was severely blackened. That could mean only one thing: replace most of the silicon in the power supply. Not a job for monday morning, but it had to be done.

This one had really taken a hammering. The top of the chopper control chip IC901 had gone walkabout and most of the power supply semiconductor devices, including the two series-connected chopper transistors Q901 (a f.e.t. device) and Q902, were short-circuit. The usual cause of this mayhem is the small, white posistor TH902. It's in the power supply's start-up circuit, coupling the rectified mains supply to a 27 V zener diode (ZD901) and IC901. The problem is that it can track through. Thus most of the components in the power supply get a whopping 350 V d.c. applied to them. Well something's got to give, ain't it?!

It appeared that TH902 wasn't the cause of the fault this time however. Sure the power supply needed a rebuild, but the posistor was of the improved blue type. This hasn't given us any grief, touch wood. We replaced it however, just in case, along with the other items that usually suffer in this situation: ZD901 (27V zener diode), D902 (BYD33D), C908 (470 $\mathrm{F}, ~ 25 \mathrm{~V}$), D903 (BYD33J), D905 (BYD33D), Q901 (BUZ71A or SGSP222), Q902 (SGSIF344), D907 (BYV10-40), IC901 (UC3844) and finally R910 (0.5 ,

7 W). Oh yes, and the $2 \cdot 5 \mathrm{AT}$ fuse of course. It's not really a job to be done in the field, is it?

In all but a few cases replacing these components restores the set to normal operation. This one had other ideas. All that the power supply would do was to pulse, generating an h.t. supply of about 80 V instead of 155 V . Each of the outputs on the secondary side of the circuit was disconnected in turn, a dummy load being connected across the 155 V line. As the power supply kept on tripping the cause of the fault was on the primary side of the circuit. D906 (1 N 4148) and Q903 (BC558B) were next checked and found to be faulty. We've had them fail before after a meltdown, but this usually results in a completely dead set. Replacing them failed to cure the fault, the set still tripping away merrily. Until, that is, the fuse flashed and the surge limiter resistor R901 smoked

I wiped away a tear from the corner of my eye, prayed for divine intervention and rebuilt the power supply yet again. This time I thought that it would be a good idea to ask Pobs to switch the set on. He seems to like bangs and flashes a lot more than I do. I must admit to being something of a wimp when it comes to switching a set on after I've repaired a power supply fault. It's not that I don't have confidence in the repair: it just seems that when someone else switches the set on it works. Pobs did his bit but the set remained totally lifeless. A check on the h.t. line showed that the set appeared to start and then shut down. Time for a more detailed investigation.

A check at IC901's supply pin 7 showed that the voltage was a little below the chip's under-voltage lockout level of 10 V . As a result the chip had shut down. Most of the components that could cause this had already been replaced, including the 27 V zener diode ZD901 and the l.t. rectifier diode D902. Then I spotted it - zener diode ZD902 (ZTE2S1), the only semiconductor device that hadn't been replaced in the power supply. It's in series with the feed to pin 7 of IC901 and just had to be faulty. The strange thing is that in most of the sets I've worked on a wire link is fitted in this position. In fact the zener diode is present only in 25 in . sets. It was whipped out in a flash, and sure enough a meter reading was obtained both ways round. A new ZTE2S1 (an Hitachi special) was fitted and, when we switched on, what do you know? - sound and a full raster. I can only assume that the diode had been slightly damaged during the first power supply blow up and had been dealt a death blow when the second blow up occurred.

The only problem now seemed to be a corrupted LED channel display. But before I turned to this new area I thought I'd better check the h.t. voltage. It was at 165 V and wouldn't alter when the set-h.t. control VR94I was twiddled. This worried me. Now feedback for regulation is via the optocoupler OC941. Again this item and associated components are incorporated in only some models. The driver and error sensing transistors Q941 and Q942 were checked and found to be o.k. Next came the reference diode ZD941 (BZV10), which was leaky. At first glance you might think that it's a 10 V device, but its rating is actually 5.5 V . It was lucky that I checked on this - I hate to think what might have happened had I fitted a 10 V device. Another order to Hitachi produced the component we required, and when it was fitted the h.t. could be set correctly.

The display fault was fairly straightforward. The LED display is driven by transistors Q1502/3/4/5 which are controlled by the SAA1293H chip. Q1505 was leaky collector-to-emitter, a new BC548 putting matters right.

I would certainly like to know what had caused all this damage to the set. I'm not convinced that the blue posistor
was to blame. Lightning damage crossed my mind as a possibility, but this usually results in the destruction of many more components. An e.h.t. crackover perhaps?

A Panasonic TC1785

Next up was a Panasonic portable, specifically a TC1785 (Z3 chassis). It was another dead set. I took the back off and made some checks before switching it on. The surge limiter R801 ($4 \cdot 7 \Omega$, 5W) was open-circuit, which obviously meant that there was a direct short. It's a shame that these resistors fail instead of the mains fuse. Fuses are always in stock. but high-wattage resistors are quite varied in value and shape and are usually manufacturer specific. Being a safety component a replacement surge limiter resistor has not only to be of the correct type in every respect, it also has to be mounted in the same manner as the original one. What's easier than replacing a fuse? Fortunately we had the correct resistor in stock, but other checks had to be made before it was fitted.

As the bridge rectifier diodes were o.k. it was probable that the STR50103A-M chopper chip IC801 was shortcircuit, and indeed checks produced short-circuit readings at most of the pins. So R801 and IC801 were replaced, but when the set was switched on it remained lifeless. We now had 350 V d.c. at the chopper however. What next? The logical suspect was the 110 V protection diode D816, type SR2KN. This would have gone short-circuit when IC801 did, protecting the rest of the circuitry down the line. That's the theory anyway, but the set still didn't kick up when a replacement had been fitted. Maybe D816 hadn't gone short-circuit quickly enough to provide the required protection.

The h.t. rose slowly to about 25 V however. We next found that the 2SA683 standby switch transistor Q806 was short-circuit collector-to-emitter. When this was replaced we had a full 110 V h.t. supply but no sound or picture. R559 ($10 \Omega, 7 \mathrm{~W}$) in the feed to the line output transformer was open-circuit. Now these resistors don't fail for the sheer hell of it, so presumably the line output transistor was shortcircuit. But my meter failed to detect any shorts in the line output stage. So R559 was replaced and the set was switched on. There was still no picture, but a squealing sound from the power supply indicated that something disagreed with it. I switched off quickly, before the squealing turned into something more melodramatic.

When the 2SD1439 line output transistor Q551 was removed and tested out-of-circuit we found that though it wasn't short-circuit there was a definite leak between its collector and emitter. A new 2SD1439 finally restored normal operation. The set went off to the soak test area where it even withstood the ultimate workshop test, staying on for the whole duration of El Dorado. After that it was definitely ready for return to the customer.

A Philips 2A

The final set to grace my bench in this succession of destructive faults was one fitted with the Philips 2A chassis. Its mains fuse had disintegrated - not a good sign! As usual with this chassis however we soon found that a couple of the bridge rectifier diodes, the chopper transistor and D6664 had gone short-circuit. The culprit in this case is usually C2664, which splits a kipper, taking out the above mentioned components. This set was no different (so far!) and I thought that we had a bread-and-butter fault. But when replacements had been fitted and the set was switched on again it went BANG. The mains fuse had blasted: so much
for a bread-and-butter fault. Checks in the power supply showed that the chopper transistor had also failed.

The rest of the power supply, which is self-oscillating, is d.c. coupled. So it was obvious that something had failed in the chopper driver section. I found that the pnp transistor Tr7686 (BC369) was short-circuit all ways: D6686 (BYD33D) which is connected to the base of the chopper transistor was also short-circuit. A note here about BYD33 diodes - the suffix letter is the voltage rating, as follows: D $=200 \mathrm{~V}, \mathrm{G}=400 \mathrm{~V}, \mathrm{~J}=600 \mathrm{~V}, \mathrm{~K}=800 \mathrm{~V}$ and $\mathrm{M}=1 \mathrm{kV}$. So $\operatorname{Tr} 7686$ and D6686 were replaced, also the 82Ω chassis return resistor R 3690 in the same area - it had visibly suffered and measured $40 \mathrm{k} \Omega$.

Well that was about it I thought. The other semiconductor devices were o.k. when checked. I had a nagging doubt about the optocoupler, which in other Philips chassis is usually the first to suffer when there's a power supply crisis, so a new CNX62A was fitted. This time the set was powered via a variac: up came the h.t., with a full picture and sound. The rear cover was fitted and the set ran on test for the whole of the next day without a murmur. It was declared fit and returned to its owner. Only to come back two days later with 'dead again' stuck to the screen.

For what seemed the umpteenth time I removed the back and was surprised to find that the mains fuse was intact. But the set was completely dead - no thump from the degaussing circuit or anything. No a.c. input to the mains bridge rectifier in fact. The 4.7Ω surge limiter resistor R3654 had failed. I assumed that there was a reason for this, so I once more checked through the rest of the power supply. To my surprise there were no shorts. A new resistor was fitted and the set was switched on. There were no bangs or flashes anywhere and the set ran on test for the rest of the week without any problems. Presumably R3654 had been weakened by the earlier blow-ups, even though it checked all right previously.

At least an on-off switch takes only ten minutes to replace, and you know that it is a definite cure!

ANSWER TO TEST CASE 365 - SEE PAGE 514 -

That Sony KVX2ITU had baffled three men in turn - its owner. Philbert and Sherlock, who in the end had to sort it out. In the type of circuit used in this model the tuning data is stored in digital form in a non-volatile memory. This type of memory doesn't need a back-up supply when the set is without power but does need a relatively high voltage supply when its contents, in this case the tuning data, are to be overwritten. In this design overwriting requires -30 V at pin 2 of the chip. In the absence of this supply the data in the memory can't be changed.

Sadder and wiser since replacement of the memory chip failed to cure the problem, Sherlock discovered this too late! When he did get around to this aspect of the circuit's operation he found that the -30 V supply was missing. It's derived from a winding on the line output transformer, via the rectifier circuit D809/C826. The diode had failed, its replacement restoring full operation of the memory system. This is one that's worth remembering when similar cases of loss of memory occur in the tuning systems of TV sets and VCRs.

Our stores now contain an M58655P, slightly secondhand but guaranteed to be in working order. We'll probably never need it, but if ever we do Sherlock will have made sure that all the supply lines are in order before soldering it in.

Long-distance Television

Roger Bunney

February 1993 was a truly depressing period for DX-TV reception. Only a few signals filtered through via the E layer, though a high-pressure system provided a long spell of tropospheric enhancement over much of the UK - local u.h.f. TV interference was severe in coastal areas.

The tropospheric opening produced Band III and u.h.f. signals from the Benelux countries, France, Germany and Denmark over many days, with sustained reception. The best periods were over the $5-10$ th and the $13-15$ th. On the 5th Tim Anderson logged a new version of the PM5544 pattern, being used by RTL (Luxembourg). The second was the more intense period however, with Danish Band III and u.h.f. TV2 stations being received.

On the 24th Iain Menzies heard a radio amateur comment that the m.u.f. had risen to 46 MHz , but there have been no reports of reception of F2/TE signals from Africa. Here's the $\mathrm{SpE} \log$:

7/2/93 TVE (Spain) chs. E2, 3.
10/2/93 TVE E2: SVT (Sweden) E2.
13/2/93 TVP (Poland) R2; RAI (Italy) IA.
14/2/93 TVE E2, 3.
20/2/93 SVT E2.
21/2/93 TVEE2.
26/2/93 TVE E2; very strong unidentified programme on ch. R1 at 1900.

My thanks to Ian Menzies (Aberdeen), David Glenday (Arbroath), Simon Hamer (Powys), Roger Fussell (Torpoint), Tim Anderson (St. Leonards), and Peter Schuman (Rainham) for sending in reception reports, albeit rather sparce ones.

Matters Arising

David Harding of Deal, Kent has identified the mystery signal received by Ryn Muntjewerff - see photograph in the March column. The letters in the top left-hand corner trans-
late as Dnipro, which refers to the South Ukraine town of Dniepropetrovsk. It seems that the item was a regional studio insert received from the ch. RI TV-2 transmitter (0.1 kW) at Kromatarsk or a main channel relay via the Ostankino Kanal ! network.

Now for a satellite TV identification: ‘CTS-PBD' on the test pattern is 'Centre de Transmission Satellite Pleumeur Beudeu', which is the main satellite uplink station at Betagne, near Lorient, France - the French equivalent of Goonhilly.

A reader who has noticed a planning application for the construction of an 'enormous VOR aircraft beacon' within 250 yards of his house has expressed concern about its effects on his domestic TV reception - can anyone advise on possible problems?

News Items

France: Canal Plus has recently signed an agreement to cooperate with the Swiss Kudelski company in research and development io produce improved encryption techniques they will trade as 'Nagrat'. The aim is to improve the security of the Syster/Nagravision scrambling system for both terrestrial and satellite transmission and continue development for the expanding Pay-TV market in France and Europe generally. The agreement also covers digital compression techniques. It seems that SECAM is not suited to $16: 9$ operation: it cannot handle a.m. stereo sound and there would be increased colour noise.
Sweden: The programme hours of the Kanal 1 and 2 networks have been increased and TV-2 is now providing a breakfast offering.
Germany: New terrestrial and satellite channels include VOX, RTL-2, DSF and n-tv.
Czechoslovakia: The new arrangements following the split into separate countries are as follows: In the Czech region the first network is called Ceska TVI or simply CTV 1: the second, regional service is called Ceska TV 2 or CTV2. The Premiera company has been awarded a licence to transmit a regional/commercial service in Prague on ch. R24. In the Slovakian region there are Slovenska TVI/STV 1 and Slovenska TV 2/STV 2. Check TV will continue to transmit the OK-3 service, with satellite sourced programmes, until the winter of 1995. The equivalent Slovak TA3 service is now off air: it is to be used for commercial TV transmissions at a later date.
50 MHz amateur band: Polish amateurs are now authorised to use the $50-52 \mathrm{MHz}$ band, with a 10 W power limitation and using SSE/CW though with few or no restrictions as to aerials and geographical areas. Swiss amateurs now have

[^1]access to the restricted $50-50 \cdot 2 \mathrm{MHz}$ band with up to 25 W on a secondary basis, i.e. not causing interference to preferred band users.
Ireland: A second RTE-I transmitter is now in operation at Magherea (Gort), using ch. IE (Band III) at 100 kW e.r.p. It runs in parallel with the original ch. IB 100 kW transmitter. This suggests that RTE plans to end Band I transmissions from Gort in the foreseeable future. With the ch. IC RTE-1 relay at Glanmire likely to move to ch. IH, it could well be that Irish transmissions in Band I will eventually come to an end.
Russia: The Russian TV network now has the identification 'Telekanal Rossija'.
Albania: The ch. IC transmitter at Tirana has been deleted from the latest EBU station listing. Presumably coverage is now provided by the ch. E57, 800 kW transmitter.

Band I Preamplifier

Brian Williams has developed another Band I preamplifier, whose main design considerations were complete freedom from 'birdies', from cross-modulation/overloading in the presence of nearby radio/PMR stations, and low noise. Brian suffers from nearby high-level transmissions at his location: he finds that the problem has been eliminated by this latest design, which uses two junction f.e.t.s.

The new design - see Fig. 1 - has a common-drain first stage feeding a common-gate second stage. The f.e.t.s don't damp the input and output tuned circuits and a clean response is obtained. Though the gain is less than that theoretically possible, complete stability and no breakthrough from out-of-band transmissions were the main considerations. Brian used Philips concentric type (beehive) 25 pF trimmers, but subminiature trimmers work equally well. L1 and L3 consist of six turns of 24 s.w.g. enamelled wire wound over the length of a $3 / 8 \mathrm{in}$. iron dust core. The small v.h.f. choke L2 consists of one and a half turns wound on a 2 mm diameter screwdriver blade (same wire). The design as shown has a bandwidth of $4-5 \mathrm{MHz}$ in Band I. MPF 102 transistors can be obtained from Maplin. The 2N3819 is a suitable equivalent (but has different pin connections). Component values are not critical.

Satellite TV

Intelsat 504 has been moved from $41^{\circ} \mathrm{W}$ to $31^{\circ} \mathrm{W}$ to provide an improved Ku band service to Europe and across the Atlantic. The east spot beam of Intelsat 515 at $18^{\circ} \mathrm{E}$ has been realigned to include the nearer ClS-member states. The Intelsat K craft's station keeping at $21.5^{\circ} \mathrm{W}$ will be maintained within 0.05° to enable smaller TVRO dishes to be used.

Eutelsat II F3 at $16^{\circ} \mathrm{E}$ is fast becoming the Arabic hot bird. Radio TV Marocaine (RTM - Morocco) is now on transponder 25 at 10.972 GHz vertical, joining RTT (Tunisia) and the Egyptian Satellite Channel at the same orbital position. There's a new Turkish service, TGRT (Turkiye Gazetesi Radyo Televizyonu), at 11.095 GHz . Another newcomer is Poloniasat, via transponder 32 with the largest on-screen logo ever seen! Several Spanish services - Canal Plus Espana, Tele Cinco and Antena Tres have moved to Hispasat at 12.711 GHz horizontal, 12.631 GHz vertical and 12.671 GHz horizontal respectively.

London-based Middle East Broadcasting is to be supplied with DigiCipher equipment for the encryption of new subscription services via ArabSat and Eutelsat.

Hispasat 1 is now in operation at its new location, $30^{\circ} \mathrm{W}$. Launch of Hispasat 2 has been put back to this autumn at

II Kent Road, Parkstone, Poole, Dorset BHI2 2EB

 Tel: ()2()2 738232 Fax: (0202 71695the earliest because of technical problems.
TeleCommunications Inc. (Denver) is developing a highcapacity compression system that will initially provide a four-to-one compression ratio for its cable network, with an option to go further to ten-to-one. In theory the cable network could then offer up to 500 channels. Plans are already well advanced for the launch in 1994 of 'US Satellite Broadcasting', with a rinimum of 128 channels using a 4:1 compression ratio.

Two Russian satellites have been moved into the Tongan-assigned orbital slots at $130^{\circ} \mathrm{E}$ and $134^{\circ} \mathrm{E}$ for Rimsat Ltd.'s satellite network. CIS has agreed to launch another seven satellites for Rimsat over the next five years.

Mexican media giant Televisa is to invest US $\$ 200 \mathrm{~m}$ to expand the PanAmSat network. PAS-1 is currently in operation at $45^{\circ} \mathrm{W}$. PAS-2 will be launched into a central Pacific slot in April 1994. Two further satellites will be launched in 1995.

Several readers have seen CNNI (D-MAC) and Filmnet

Fig. 1: Brian Williams' highly-stable, single-channel, lownoise Band I preamplifier.
(D2-MAC with Eurocrypt scrambling) via the Thor satellite at $0.8^{\circ} \mathrm{W}$ - this was previously Marco Polo 2 at $31^{\circ} \mathrm{W}$ - the transmissions being at 11.785 and 12.015 GHz respectively, both with right-hand circular polarisation.

Reader Andrew Sykes has partially solved a noise problem with his wall-mounted, motorised satellite TV system. Noise from the support brackets, transmitted through the air and via contact with the wall, upset neighbours to the extent that he could't track the dish at night. Insertion of noise-absorbing material inside the vertical support tube has reduced the noise by thirty per cent. Any suggestions on how the noise can be reduced still further?

DAB and VHF TV

DAB (digital audio broadcasting) is to start in the UK within the next two years, initially in the London area then extending across the country. The BBC will be conducting a series of test transmissions in the London area this year. What is of concern to the DXer is that the proposed DAB frequencies will be in the 220 MHz band and, should additional space be necessary, the 60 MHz band. In addition limited tests may be carried out in the 1.5 GHz band - these
transmissions would be down-converted to $50-250 \mathrm{MHz}$ by DAB receivers.

The EC Eureka project group confirmed the DAB specification last December: it has now been passed to the European Telecommunications Standard Institution for ratification, which is expected by the end of the year.

The $60-250 \mathrm{MHz}$ spectrum is being considered by the UK, Germany and France for DAB transmissions. France has only 3.5 MHz of bandwidth available at around 60 MHz and uses Band III for TV transmissions. Hence a greater interest in exploiting the 1.5 GHz band - test transmissions will start this summer in the Paris region. Germany hopes to start a DAB service in September 1995, using the 220 MHz band.

The originally intended use of DAB was for high-quality satellite transmissions. But with the new data reduction technique 'Musicam' being adopted as a broadcasting standard, reducing the bandwidth required, DAB can be used by terrestrial services. Several radio services can be combined (multiplexed) to form a single DAB block for inexpensive transmission from each station. The reception technology and hardware are still being developed, but TV-DXers in the UK should be prepared to dig out those old Band I notch filters.

My decoders weren't fitted with the second (German system) i.f. chip IS09 and its associated components, neither did they have the 4053 CMOS switching chip IS12. There were two wire links, between pin holes 2 and 15 and 12 and 14, where IS12 would have been. The crystal was correct at $6 \cdot 552 \mathrm{MHz}$ however, and I assumed that ceramic filter LS01 was also correct. A 6 MHz ceramic filter was fitted alongside the mono sound chip.

Initial Steps

Looking at the circuit I realised that I wouldn't need to use either IS04 (TDA8405) or IS05 (TDA8421), so I removed the two 12 V feed resistors (both 27Ω), RS76 and RS96 respectively. For my purposes I wouldn't require remote input selection/volume/tone.

I used two external supplies to power the unit -12 V to pin 15 and 7 V to pin 23 of the edge connector. The two earth pins 13 and 24 were connected together. When I switched on I found that the 7 V supply current consumption was about 75 mA and the 12 V supply consumption about 130 mA . A 68Ω resistor can be used to drop the 12 V supply to approximately 7 V . I soldered one across the edge connector's pins. Use a 1 W component: the dissipation is approximately 0.5 W , and it's best that the resistor doesn't get too hot.

In his article Keith Wevill mentioned using a $3.3 \mathrm{k} \Omega$ resistor between the base of TS01 and the 12 V supply to provide bias at the input. I found that the best place to do this is at the edge connector, between the input supply filter LS01 and pin 16. I later noticed that there are two small lands next to TS01 on the PCB: you could solder a surfacemounted resistor here if you have one.

My Nicam test feed came from an old Ferguson 3V30 VCR that usually lives at the end of the workbench. I used Keith's simple emitter-follower circuit, building it inside the i.f. can. For convenience I took a screened lead to what was the remote control cable socket at the rear of the VCR. Like a lot of other machines this VCR has the sound and vision i.f.s in one chip. The vision i.f. signal comes out via a $33 \cdot 15 \mathrm{MHz}$ adjacent channel carrier filter, goes back in to a sound i.f. detector, comes out again through a 6 MHz ceramic filter then goes back in again to emerge as audio. The Nicam feed was taken from the pin between the sound
i.f. detector and the 6 MHz filter. This seems to work very well. I fed it via another InF capacitor to pin 16 of the edge connector.

When I switched on I was straight away rewarded with Nicam sound from the two previously mentioned wire links across where IS09 would have been. Ordinary mono sound was present at pin 8 of the TDA8405 chip.

Audio Switching

Next came the problem of providing automatic switching between Nicam and mono sound. The voltage at pin 16 (the ' N line') didn't vary at all with or without a Nicam signal, but on further investigation I found that by removing diodes DW75 and DW76 on the small daughter board I got 12 V with Nicam and 0 V without. How can this be used to switch automatically between Nicam and mono?

I realised that I could use a 4053 i.c. for this purpose as it contains three independent single-pole changeover switches. The two wires where IS05 should be were therefore removed and a 4053 chip was soldered in. Most of the wiring required was already there. TS08 and its associated components were not present on my board however - there were just spaces where they should go. So I used a circuit similar to Keith Wevill's.

A BCl 08 transistor was soldered into the socket that should have contained the ' 2 nd peri-TV' connector. Its emitter was connected to the centre pin, which is earth. I soldered in the base and the collector just for anchorage. The base was connected to the N Line (pin 16) via a $10 \mathrm{k} \Omega$ resistor - it may be easier to solder it to the wire jumper J007 close by. The collector was soldered to a LED and to a wire link to pins 9,10 and 11 of the 4053 chip. The three pins are already commoned together. I connected the other end of the LED to the 12 V line via a $1 \mathrm{k} \Omega$ resistor - a convenient point is the wire link J009. As the Nicam signal already went to pins 2 and 12 of the 4053 chip all that remained to be done was to feed the mono sound into the other half of the switch. Two wires were used for this purpose, one from pin 1 and the other from pin 13 of the 4053 to pin 8 of the TDA8405 chip. Result? Automatic switching, and very well it works too. The LED is not essential but serves to indicate the presence of a Nicam signal.

Tidying Up

The next step was a bit of tidying up. As I had no use for the twin output amplifiers and the 5 V regulator was supplying only 75 mA I decided to remove the large heatsink around the board. Even without it the 7805 wasn't warm let alone hot, and it did save some space. IS04, IS05 and the headphone amplifier IS07 were removed. A lot of small components can be removed - all those from the line formed by pins 1-14 of the TDA8405 chip to the edge of the board away from the connector, and on the other side of the daughter board all the components away from the square metal can. This provided me with quite a lot of spare small components - they always come in handy.

The only component value alteration was to change CS56/57 from 680 nF to $47 \mu \mathrm{~F}$, positive side to the collectors of TS05/06, using two of the capacitors removed (CW11, 14,19 or 20): 680 nF seemed to be a bit too low for good base response, especially into an impedance like $100 \mathrm{k} \Omega$.

There are three jumper wires next to each other at rightangles to where the TDA8405 IS04 chip had been, J009 which is used for the 12 V feed to the audio switch, J008 and J031. I removed the latter two to isolate the audio output from anything else. There may be two links, J004 and J003,
close to the 4053 chip (at the pins 1 and 16 end). They were not present in my decoders, but if they are there remove them. Take the audio outputs from the ends of the links nearest to pin 16 of the 4053 chip - L from J004 and R from J003. If necessary the outputs can be reduced by inserting resistors into these holes and others to earth, with the outputs taken from their junctions. I found that the level of the ordinary mono output, which is adjustable by means of a preset control, was very slightly below that of the Nicam signal even at the maximum setting. The difference was not worth worrying about.

Power Supply Arrangements

Consumption depends on the voltage provided of course. As the supply will probably come from a parent device, be it a TV set or a VCR, the voltage available will vary. Anything between 10 V and 14 V works fine. As a guide the decoder takes 165 mA at $10 \mathrm{~V}, 170 \mathrm{~mA}$ at $10.5 \mathrm{~V}, 175 \mathrm{~mA}$ at $11 \mathrm{~V}, 182 \mathrm{~mA}$ at $11.5 \mathrm{~V}, 195 \mathrm{~mA}$ at $12 \mathrm{~V}, 210 \mathrm{~mA}$ at 12.5 V , 220 mA at $13 \mathrm{~V}, 235 \mathrm{~mA}$ at 13.5 V and 245 mA at 14 V .

If the equipment in which you intend to install the Nicam decoder doesn't have sufficient power capability for the extra load a separate mains power supply will have to be built - as per the original article. To prevent it being on all the time a transistor switch could be used in series with the 'always present' supply, switching the decoder on only when the TV set or VCR is also switched on. See Fig. 1.

Adapting the TV Set

My Salora TV set is a bit unusual in having separate sound and vision i.f. chips. The SAWF has two balanced outputs. One feeds the vision i.f. strip, the other (with two peaks) being applied to the sound i.f. strip. The sound i.f. circuitry and audio preamplifier are contained within a TDA1236 chip, but the signal comes out and goes back in via a 6 MHz filter, so access to it is easy.

I removed from the stereo board in the Salora TV set all the components associated with the German stereo system, also the 4053 switching chip. The various feeds to the decoder panel were taken from this board, the 12 V supply being taken from the Salora set's 12.5 V rail via a 1.2Ω safety resistor which was fitted in the RES4 position. I left the original decouplers CES4/5 in place. The outputs from the decoder were soldered to pins $14(\mathrm{R})$ and $15(\mathrm{~L})$ of ICES5. The N line was connected to the 'stereo' connector ES2/3.

There are two user panels in the Salora TV set, one on each side. The one on the left has the treble, bass and balance controls (behind a drop-down flap), two LEDs for stereo and second language and two switches, language $1 / 2$ and normal/wide stereo. I decided to use the language $1 / 2$ switch for switching between Nicam and mono sources - to

Fig. 1 (left): Decoder on/off switching transistor - use any non type (within reason).
Fig. 2 (right): Stereo/mono indicator circuit.

Next Month in TELEVISION

SERVICING THE PHILIPS CP110 CHASSIS

This is the 110° big brother of the CP90 which was dealt with in an earlier article. It differs mainly in the use of a TDA 1039 chip to drive the chopper transistor. Notes on common faults, test procedures and modifications by Richard Newman.

PAL SIGNAL DECODING

The next instalment in Eugene Trundle's Modern TV Receiver Techniques series deals with the basic video signal processing required between the vision demodulator and the tube drive circuits in a colour receiver. In addition to PAL decoding, the luminance channel and automatic grey-scale correction are covered.

DEALING WITH LIQUID SPILLAGE

Users are prone to spilling various liquids into their VCRs and TV sets. This can give rise to many strange symptoms and, if left, cause corrosion of tracks and leadouts. Treatment is possible however, as L. Stellar describes.

TEST REPORT: ITT VX600S S-S METER The VX600S is in fact far more than a signalstrength meter: it's officially described as a 'TV measurement receiver with satellite band and f.m. coverage'. Nick Beer finds that its comprehensive facilities make it the ideal equipment for making all types of installation work easy and for carrying out any fault finding subsequently required.

SERVICING THE TOSHIBA XR9017

John Coombes provides fault finding notes and setting up guidance for this popular CD player.
plus all the regular features

To

(Name of Newsagent)
Please reserve/deliver the June issue of TELEVISION ($£ 2-20$), on sale May 19th, and continue every month until further notice.

Name.
Address. \qquad
\qquad
\qquad
override the automatic switching if required, see Fig. 2. I also swapped over the two LEDs as I prefer a red one for stereo - it matches the channel indicator on the opposite side of the cabinet. As the small PCB for this is on the opposite side of the set to the stereo and Nicam boards, connected via a long ten-way twisted lead that's draped around the bottom edge of the c.r.t., I left the BC 108 with its LED on the ICC5 decoder board and triggered another transistor soldered behind this, with a second transistor lighting the green mono LED when the red stereo one is off. Fig. 2 should make this clear.

The Nicam feed was taken from ESI/14 on the Salora stereo board. This is labelled ' RF in' and is connected to the point where the sound i.f. is taken off, before the 6 MHz filter. I used the emitter-follower buffer circuit suggested in the original article, though I didn't have to.

VCR Mods

The Ferguson 3 V48 has on its front panel a red LED that comes on only when you depress the 'display off' button. Rather silly to put another light on when you want the whole display to be blank, but I suppose it does tell you that the machine is not totally dead. This LED was isolated from its PCB and a pair of wires were run back to the ICC5 board. The Nicam take-off point is similar to that in the 3 V 30 , from pin 20 of the M51316BP chip ICI. The audio feed originally went to the 'FM AUDIO 02 ' board at what the circuit diagram shows as a two-pin plug/socket but is in fact a two-pin socket fitted where a five-pin one could go (this board was presumably used in other models). The left and right audio inputs are connected via a small wire link (B300) which obviously has to be removed.

This socket, labelled CN204, is where the Nicam audio outputs go. The earth for the screened cables is connected to the same socket's chassis pin. As the VCR already has capacitors (C237/8) after this socket the two (CS56/7) on the Nicam panel were replaced with wire links. I subsequently found that the output from the Nicam decoder was too high, so I replaced the links with a pad consisting of two $10 \mathrm{k} \Omega$ between them and the Ferguson ones.

A supply for the Nicam decoder was a little more difficult to find. The switched 12 V supply goes through a 2SB642 transistor that didn't look man enough to cope with an additional 220 mA . I eventually took the supply from across C50, which is fed directly (via L19) from the 2SD1275 switched 12 V regulator transistor Q10 on the power board. It lives elsewhere on the same large PCB (labelled ' $02 \mathrm{~V} / \mathrm{A} / \mathrm{F}$ ').

Unfortunately there's no room inside the VCR to house the Nicam board. As the VCR lives in a separate cabinet however, not under the TV set, I decided that the Nicam board could live on top of the VCR. All the cables (L and R audio, Nicam in, power plus and minus and indicator) were fed to the rear of the VCR. As the VCR's metal top has a lip at its rear edge a small rectangular piece from the machine's plastic rear panel was cut out. The cables were then wrapped in spiral plastic wrap. The Nicam decoder itself was stuck to a piece of Plasticard, using doublesided sticky pads. The other side of the Plasticard was stuck to the top of the VCR. Not at all neat, but it didn't matter.

In Conclusion

These decoders work very well. Although they are not as small and neat as the Maplin ones, at $£ 15$ plus VAT they have to be a bargain.

Test Report: The Philips

David Botto

The new, upgraded Philips Scopemeter combines an all solid-state 50 MHz digital storage oscilloscope with a full 3,000 count, wide-range digital multimeter, the liquidcrystal display being common to both. The expertise of Philips and Fluke has gone into the design and production of this portable instrument that quickly analyses the complex waveforms encountered in modern electronic equipment.

As with all Fluke instruments, the quality of construction is first class. The Scopemeter is housed in a rugged, take-itanywhere, dark grey plastic case that's sealed to industrial standards against water, dust and contaminents. It's also shielded from electrostatic interference. In addition there's a stout yellow holster for extra protection. A multi-position, patented tilt-stand enables the instrument to be hung from hooks and panels and work in virtually any position. There are three versions of the Scopemeter, Models 93, 95 and 97. Top of the range is Model 97. On my scales the Scopemeter, complete with its batteries and holster, weighed 850 g (41b, 2oz). It measures $280 \times 140 \times 63 \mathrm{~mm}$.

The Scopemeter comes with a complete set of test leads including two $10: 1$ close-tolerance scope probes. It's powered by four rechargeable Nicad batteries that give about four hours' operation. The power adaptor/charger that comes with the instrument recharges the batteries and gives direct operation from a 240 V a.c. mains supply. Low battery voltage is indicated by a flashing battery symbol: an adaptor symbol indicates that mains voltage is present. The Scopemeter can also be operated with four standard C-cell dry batteries. An optional adaptor lead (PM9087/001) enables the Scopemeter's batteries to be recharged from a car cigar lighter socket.

Getting Started

It's essential to spend some time studying the operator's manual before you use the instrument. After that operation is simple. A useful Quick Operating Guide is tucked inside the yellow holster to get you started. Pop-up menas in conjunction with clearly-labelled function keys provide easy control over the various ranges.

The Scopemeter contains dedicated computer circuitry and software that's controlled by fixed internal programs. It's rather like operating a computer as the various pop-up menus appear. Two grey up and down buttons give quick selection of the required range and function from the menus.

The super twisted-nematic liquid-crystal screen has a resolution of 240×240 pixels. Dark green traces against a light-green background are clear and easy to see. The electroluminescent, back-lit display that's included in Model 97 provides a bright, crisp display with big, 16 mm digits that can be read several feet away.

DMM Ranges

When the Scopemeter is switched on it emits a friendly cheep. Cheerful clicks from the Scopemeter's interior occur as the ranges autochange. All the functions and ranges are selected by chunky, solid-response buttons - there are no switches to fail. Select 'meter' and both the a.c. and d.c. voltages at a test point are displayed. I found this useful when checking d.c. supplies as any ripple due to faulty
smoothing capacitors or leaky rectifier diodes is at once revealed by the a.c. reading.

Press a grey button to select d.c. or a.c. voltage only. The d.c. or a.c. r.m.s. voltage, waveform and frequency of the signal at the test point is then displayed. Minimum resolution is 0.01 Hz up to 99 Hz .

This facility enabled me to check digital signals at as low a frequency as 1 Hz - the lowest frequency produced by my function generator - and to view them on the graphical display. I found that the Scopemeter is better than a logic probe for digital fault-finding in TV sets, VCR control systems and computers - you can clearly see, store and compare the digital signals. It's the fastest way of checking microcontroller chips in a VCR as you press the buttons.

Both manual and fast autorange models are available. Models 95 and 97 also have a scaling function that shows one voltage as a percentage of another one.

Accuracy on the d.c. ranges is specified as ± 0.5 per cent plus five counts. Tests showed that the Scopemeter's readings are well within these limits. The basic accuracy of the r.m.s. a.c. ranges is ± 1 per cent plus ten counts at 50 Hz . Operation is up to 5 MHz with a frequency count readout.

The precision 10:1 isolating probes do double duty, operating as scope probes and also as a.c./d.c. voltage measurement probes.

Touch Hold Function

Press the hold/run key and the letters HLD appear. Measure the signal and wait until you hear a beep signal. You can now remove the test leads and read off the result. Measure a new signal, wait for the beep and the new value appears. A record-button function shows the present voltage at the test point. The display simultaneously shows the maximum and minimum voltages measured and the average voltage (Models 95 and 97 only).
There's a fast/smooth function. Fast accelerates the refresh rate in the measurement result display while the

Table 1: DMM Ranges.

D.C. voltage: Ranges, channel A input, $300 \mathrm{mV}, 3 \mathrm{~V}$, $30 \mathrm{~V}, 300 \mathrm{~V}$ (600 V with $10: 1$ probe). MV (external trigger input) $300 \mathrm{mV}, 3 \mathrm{~V}$. Minimum resolution 0.1 mV . Specified accuracy $\pm 0.5 \%+5$ counts.
A.C. or A.C. + D.C. true r.m.s. voltage: Ranges $300 \mathrm{mV}, 30 \mathrm{~V}, 250 \mathrm{~V}$ (600 V with 10:1 probe). Specified accuracy $50-60 \mathrm{~Hz} \pm 1 \%+10$ counts; $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \%+$ 15 counts; $5 \mathrm{~Hz}-1 \mathrm{MHz} \pm 3 \%+20$ counts; d.c. $-5 \mathrm{MHz} \pm 10 \%$ +25 counts.

Resistance: Ranges $30 \Omega, 300 \Omega, 3 \mathrm{k} \Omega, 30 \mathrm{k} \Omega, 300 \mathrm{k} \Omega$, $3 \mathrm{M} \Omega, 30 \mathrm{M} \Omega$. Specified accuracy $\pm 0.5 \%+5$ counts. Minimum resolution 0.01Ω.

Frequency measurement: $0.1 \mathrm{~Hz}-5 \mathrm{MHz} \pm 5 \%+2$ counts.

Models 95 and 97: $\mathrm{dBV}, \mathrm{dBm}$ and audio watt ranges. $\mathrm{Min} /$ max record simultaneously.

The Philips Scopemeter Model PM97.
smooth function averages the last six seconds of readings this is helpful when checking noisy or unstable signals.

Resistance and Continuity

In the latest upgraded Scopemeter the resistance ranges cover from 0.01Ω to $30 \mathrm{M} \Omega$. Accuracy is good - Table 2 shows typical readings. The ability to measure resistances as low as 0.01Ω makes it simple to check small coils and r.f. filters and trace elusive shorts in low-resistance circuitry. There's a choice of manual or autorange operation. I found that the test function voltage is just low enough to make most in-circuit tests required. The beeper sounds when the resistance measurement is below 15Ω : this is a valuable trouble-shooting aid when you're looking for nasty intermittent connections and dry-joints. The beeper function can be swicthed off when you don't want it. An effective diode check function is incorporated.

Relative Mode

The relative mode is available in all functions and ranges: it's used to measure the changes between a stored reference signal and any measurement you want to make.

dB Modes

Models 95 and 97 have dB modes which are excellent for checking amplifier gain, filters and attenuating circuits. The readouts are in dBV (decibel volts), dBm (decibel milliwatts) or audio watts. There's a wide choice of reference impedances: 50Ω to $1.2 \mathrm{k} \Omega$ for the dB function and 1Ω to 50Ω for the dBW and audio watts ranges.

The Oscilloscope

Press the button marked scope and you've a dualchannel, 50 MHz digital storage oscilloscope ready for use. Four traces can be viewed simultaneously - signals from channel A and channel B and stored waveforms to compare against each channel. Up to eight waveforms can be stored in the Scopemeter's memory.

The digital storage modes enable you to capture and analyse pre- and post-trigger events and single-shot signals exactly. There are plenty of single-shot oscillators in a typical VCR: they are hard to check with conventional instruments but easy to check with the Scopemeter. You can view spikes on power supply lines (often the cause of intermittent failures), hidden glitches and low-speed signals, all things that cannot be detected with a conventional scope.

A useful button labelled 'autoset' automatically sets the voltage, time, triggering and position on both channels A and B . This proved to be a real time saver. A pop-up menu makes it easy when you make special settings.

The Scopemeter contains a powerful combination of signal-capture, measurement and analysis capabilities. Fluke/Philips rightly claim that there has never been a hand-held digital storage scope with so much power. There's a wide range of triggering functions - all you'll ever need. In the 'roll' mode - the waveform rolls across the screen - the scope can store a single-shot pulse with 40 nsec time resolution using the min-max record function. At the other end of the scale repetitive signals above 50 MHz can be viewed.

To view a particular part of any waveform, centre on it and push the zoom button. The section concerned can then be viewed with magnification as high as $\times 1,000$.

Math Button

Model 97 has a 'math' button. Press it then a blue panel soft key and the mathematical function pop-up menu appears. You can then add, subtract, multiply, filter or integrate the signals. The result is stored in a destination waveform memory and is shown on the screen. Waveform inversion on one or both channels is possible - this makes calculations easier.

A special trigger computer algorithm enables duty-cycle measurements of pulse-width modulated waveforms to be carried out. The 'time stamp' function shows exactly when maximum and minimum signals occurred.

Signal Generator

Press the 'special funct' key (Model 97 only) and yet another pop-up menu appears. You can then select a 976 Hz sinewave output or a squarewave output at $488 \mathrm{~Hz}, 976 \mathrm{~Hz}$ or 1.95 kHz .

Component Tester

Model 97 also incorporates a component tester. This generates a ramp signal and each type of component connected to the test probes produces its own distinctive waveform. In time you get to know the waveform to expect with a given component.

RS232C Interface

An optically-isolated RS232C serial interface is incorporated in Model 97. Remote control of the Scopemeter is possible via a special, optically-isolated coupling lead, type PM9080/001. This lead also enables an output to be taken to a printer for waveform and figure printouts. The Epsom FX, LQ series or Hewlett-Packard ThinkJet compatible printers can be used.

To operate a printer, press the 'special funct' key and then use the 'printer setup' soft key to select a pop-up menu. There's a choice of 9,600 or 1,200 Baud rates. Fixed parameters are: eight data bits, one stop bit, no parity bit, handshake XON/XOFF. Then press the 'start print' soft key. Data and commands can be sent via a telephone line from or to a remote location.

Calibration

A $10: 1$ isolating probe that loses accuracy by even a tiny amount is useless when working on today's hi-tech equip-
ment. There's no problem with the Scope meter however. The operator's manual that comes with the instrument shows you how to carry out straightforward probe calibration checks and adjustments using the Scopemeter's internal generator. It's essential to use only the test leads and scope probes supplied with the instrument. The Scopemeter can be returned to Philips at any time for range-accuracy calibration and for new software upgrades.

An optional service manual (part no. 482287205346) is worth having, but should recalibration be necessary I'd advise returning the instrument to Philips.

Safety and Overload Protection

The Scopemeter's case, rugged input measuring circuits and well-insulated BNC connectors and sockets meet the safety levels specified for power-distribution circuits up to 600 V three-phase. This includes double insulation to UL, CSA and international standards. There's surge protection against 6 kV spikes as specified by ANSI/IEEE C62.41. The Scopemeter has no fuses - overload protection is electronic. Shock and vibration protection meet the requirements of MIL-T-28800D.

These precautions are important. It's all too easy to receive a severe or fatal electronic shock from cheap, poorly-designed test equipment. This is especially the case with field service work where difficult or potentially dangerous conditions may be encountered.

Conclusion

The Scopemeter is the ideal instrument for the engineer who services complex equipment in the field. It's also useful on the test bench when space is limited. Model 93 costs $£ 899$, Model $95 £ 1,099$ and Model $97 £ 1,299$. A hard carry case costs $£ 79$, a soft one $£ 89$. These prices are exclu-

Table 2: Resistance test measurements.

| Precision standard | Scopemeter |
| :--- | :--- |
| 100Ω | |
| 170Ω | 100.2Ω |
| $1.1 \mathrm{k} \Omega$ | 170.1Ω |
| $5 \mathrm{k} \Omega$ | $1.095 \mathrm{k} \Omega$ |
| $100 \mathrm{k} \Omega$ | $5 \mathrm{k} \Omega$ |
| $270 \mathrm{k} \Omega$ | $100 \mathrm{k} \Omega$ |
| $1 \mathrm{M} \Omega$ | $269.9 \mathrm{k} \Omega$ |
| $2.22 \mathrm{M} \Omega$ | $1.008 \mathrm{M} \Omega$ |
| $10 \mathrm{M} \Omega$ | $2.221 \mathrm{M} \Omega$ |
| $24 \mathrm{M} \Omega$ | $10.01 \mathrm{M} \Omega$ |
| | $24 \mathrm{M} \Omega$ |

sive of VAT. If you decide to purchase a Scopemeter I'd recommend Model 97 in order to have available the full range of facilities.

A wide range of optional, safety-designed accessories is available from Philips. These include a.c. and d.c. shunts and clamp-on current probes, a temperature probe and highvoltage probes.

Practical experience with the Scopemeter brings full appreciation of its capabilities. 1 thought it a pity that capacitance ranges are not included however. The built-in component tester can be used for some capacitance tests of course.

The operator's manual is clearly written and easy to understand, though some additional pages, illustrated with component waveforms, to explain in greater detail the operation of the component tester would be welcome.

The Scopemeter is available from Philips Test and Measurement, Colonial Way, Watford WD2 4TT, telephone number 0923240 511. My thanks to Nigel Hedges for arrangement the load of a Scopemeter and to Sue Byford who provided the photograph.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

| 15.85 R | 3.84 | 2 SC 1318 | 0.10 | ${ }^{2 S 0525}$ | 0.71 | BC1098 | 0.15 | 80140 | 0.24 | BF959 | 0.18 | C04001 | 0.14 | M51102t | 1.71 | SKESF310 | 1.68 | TA7214P | 3.74 | TDA1470P | 000 | TK1014 | . 81 |
| :---: |
| 17052 | 3.20 | $25 C 1364$ | 0.29 | 250551 | 5.81 | BCiO9C | 0.00 | BD168 | 0.76 | 8F960 | 0.27 | C04011 | 0.21 | M51231P | 2.03 | SL1430 | 1.41 | TA7217AP | 1.27 | TDA1506 | 4.59 | TEA1039 | 2.15 |
| 17053 | 2.38 | 2SC1384 | 0.50 | 250613 | 0.63 | BC117 | 0.14 | BD175 | 0.29 | BF966 | 0.61 | C04013 | 0.34 | MS1393ap | 4.64 | SL1431 | 1.70 | TA7222 | 1.24 | TDA5150 | 3.23 | TEA2018A | 1.49 |
| 17088 | 2.38 | 25 Cl 398 | 0.80 | 2 20636 | 0.14 | 8 C 119 | 0.00 | 80179 | 0.34 | 8F970 | 030 | C04016 | 0.14 | M51515i | 2.01 | \$11432 | 1.90 | TA7222AP | 1.27 | TDA1512 | 3.17 | TEA2164 | 2.68 |
| 17089 | 3.39 | 2SC1413A | 1.36 | 2 20637 | 0.12 | BC139 | 0.33 | 80189 | 0.41 | 8FR39 | 0.35 | CDO4021 | 0.43 | M515211 | 0.54 | S1471 | 1.70 | TA7227P | 2.02 | TDA1515A | 2.54 | TER2165 | 5.23 |
| 17127 | 1.71 | 2SC1509 | 0.39 | 250667 | 0.26 | BC140 | 0.21 | 80190 | 0.31 | 8FR41 | 0.4 | C04052 | 0.22 | M5218L | 0.2 | SL490 | 2.31 | TA7230P | 1.35 | TDA15160 | 3.33 | TC1060 | 0.55 |
| IN400] | 0.04 | 25C1520 | 0.54 | 250669 | 0.55 | BC14] | 0.34 | 80201 | 0.40 | BFR79 | 0.00 | C04053 | 0.28 | M5231L | 0.55 | SN29764AN | 1.4 | TA7233P | 1.77 | TDA15180 | 3.32 | TC106M | 0.60 |
| $15: 80 \mathrm{H}$ | 3.13 | 2SC1573 | 0.26 | 259669 A | 0.81 | BC147A | 0.06 | 80203 | 0.46 | BFR90 | 0.61 | C04066 | 0.30 | M53216P | 1.48 | SN7474N | 0.38 | TA7240AP | 0.00 | TDA1670A | 2.81 | TCA5 | 0.59 |
| 15/80 H | 3.83 | 2SC15730 | 0.26 | 250716 | 1.11 | BC148 | 0.12 | 80232 | 0.28 | Brisol | 0.71 | C04069 | 0.17 | M54532 | 0.00 | SN76013ND | 1.99 | TA7240P | 2.21 | tDab 01 | 4.36 | Tli 100 | 0.52 |
| 15/85R | 3.4 | 2SC1675 | 0.09 | 250718 | 1.45 | BC148A | 0.06 | 80234 | 0.25 | BFR91 | 0.43 | CO4070 | 0.14 | M545432 | 1.32 | SN76227N | 1.01 | TA7241 | 2.30 | TDAI770 | 0.00 | TP110 | 0.36 |
| 17052 | 3.20 | 2SC1685 | 0.14 | 250734 | 0.24 | BC148B | 0.04 | BD237 | 0.30 | BFR96 | 0.53 | CNX62A | 0.88 | M54544L | 1.87 | SN76666N | 1.26 | TA7243P | 0.00 | TDA1870 | 3.37 | TP 112 | 0.00 |
| 17053 | 2.38 | 2 SC1740 | 0.12 | 250762 | 1.66 | BC149 | 0.04 | 80238 | 0.11 | BFW92A | 0.48 | CR3CM | 2.62 | M54548L | 2.53 | SN76705AN | 1.70 | TA7250 | 4.03 | TDA1904 | 1.21 | $\pi \mathrm{P} 112 \mathrm{H}$ | 0.58 |
| 17088 | 2.38 | $2 \mathrm{SC1741}$ | 0.17 | 250774 | 0.24 | BC149C | 204 | 80239 | 0.29 | Bfx85 | 0.55 | CRD2AM | 2.17 | M54644BL | 3.31 | SR2M | 0.00 | TA7267P | 2.02 | TAA1905 | 0.94 | TP120 | 0.51 |
| 17089 | 3.39 | 2SC1815 | 0.14 | 2507871 | 0.26 | 8C157 | 0.13 | 80241 | 0.41 | BfY50 | 0.34 | CVI2E | 2.70 | M 54648 L | 5.51 | STA3SIM | 2.38 | TA7270 | 1.68 | TDAI908A | 1.14 | TP121 | 0.42 |
| 17127 | 1.77 | 2SC1826 | 0.72 | 250837 | 0.90 | 8 Cl 159 | 0.06 | 80243 | 0.39 | BFY51 | 0.34 | Cx109 | 7.05 | M54898AP | 16.94 | STAAO1 | 2.30 | TA7270P | 1.68 | TDA1940 | 2.71 | TP126 | 0.48 |
| [140001 | 0.04 | 2SC1827 | 0.77 | 250841 | 1.61 | BC160 | 0.00 | 80243A | 0.43 | BR100 | 0.17 | DTA124EF | 0.13 | M58485P | 5.95 | STAM4IC | 2.80 | TA727] ${ }^{\text {P }}$ | 1.90 | TDA1950 | 1.86 | TP132 | 0.46 |
| im4002 | 0.07 | 2SC1845 | 0.20 | 250856 | 0.87 | BC161 | 0.21 | B0243C | 0.55 | BR101 | 0.38 | DTA144EF | 0.17 | M83730 | 2.38 | STK0029 | 5.88 | ta7273 | 3.21 | Taz002 | 0.85 | TP137 | 0.48 |
| 144003 | 0.05 | 2SC1846 | 0.51 | 250869 | 3.28 | BC167 | 0.42 | BD244A | 0.34 | BR103 | 0.39 | ER1400 | 2.15 | M ${ }^{\text {3 }} 3731$ | 2.04 | STK0039 | 1.45 | TA7274P | 2.72 | TDA2003V | 0.00 | T1P2955 | 0.83 |
| IN4004 | 0.07 | 2SC1923 | 0.14 | 250870 | 3.07 | BC.1718 | 0.14 | BD244C | 0.42 | BR303 | 1.22 | HAl1235 | 1.68 | M63732 | 2.41 | STK0040 | 1.40 | TA7280 | 2.11 | toaz004 | 1.21 | T1P29C | 0.30 |
| 1N4005 | 0.06 | $2 \mathrm{SC1942}$ | 3.33 | 250871 | 5.08 | 8C177 | 0.14 | ${ }^{30245 C}$ | 0.72 | BRX44 | 1.02 | HA:1244 | 3.83 | MC13002 | 0.00 | STK0059 | 9.75 | TA7281 | 0.00 | toardo | 1.27 | T19295 | 0.11 |
| 1N4006 | 0.06 | 2SC1959 | 0.11 | 250880 | 0.34 | BC178 | 0.11 | BD246C | 0.71 | BRY56 | 0.43 | HA 1124 A | 1.21 | MC13002P | 5.74 | ST0025 | 9.66 | TA7299 | 2.34 | TA2006 | 1.06 | TP3055 | 0.71 |
| 1N4007 | 0.06 | 25C1969 | 2.15 | 250882 | 0.43 | BC182 | 0.06 | B0278A | 0.56 | BS538 | 0.23 | HA11423 | 2.02 | MC1310P | 0.85 | STK043 | 0.00 | TA7313AP | 0.62 | TAR2009 | 2.29 | TP30C | 0.17 |
| 1N4148 | 0.04 | 2 2C1983 | 0.87 | 2508988 | 2.97 | BC182A | 0.01 | 80317 | 0.87 | BT120 | 1.28 | HA1 1440 | 2.92 | MC1327AP | 1.62 | STK3042 | 5.08 | TA7317P | 0.93 | TDA2020 | 3.72 | T1P31 | 0.00 |
| 1N4448 | 0.06 | 2SC2001 | 0.14 | 250904 | 5.95 | BC182L | 0.06 | 80318 | 1.10 | 87129 | 3.26 | HA1166X | 3.43 | MCI 330alp | 1.26 | STK3062 | 8.88 | TA7325P | 8.45 | toazo30 | 0.00 | TP31A | 0.32 |
| 1N5061 | 0.23 | 2SC2029 | 0.00 | 250973 | 0.38 | BC18218 | 0.06 | 80380 | 0.34 | BT139600 | 0.95 | HA11713 | 1.24 | MC1350P | 1.82 | STkal31 | 1.79 | TA7343AP | 0.72 | TDA2030H | 0.61 | T1P318 | 0.30 |
| 1N5402 | 0.09 | 2SC2073 | 0.51 | 741500 | 0.21 | BC183 | 0.06 | B0433 | 0.21 | BT151/500R | 3.40 | HA11741 | 6.71 | MC1352P | 1.45 | STK4141 | 8.25 | TA7358P | 0.78 | tDA2030y | 0.73 | TP3IC | 0.39 |
| 1 N5404 | 0.13 | 2SC2078 | 0.71 | 7805 | 0.24 | BC184 | 0.09 | B8034 | 0.34 | BT151800 | 1.15 | HA11745 | 5.10 | MC1358P | 1.59 | STMA142 | 8.21 | TA753589 | 0.68 | TDA2040 | 0.00 | TP32A | 0.39 |
| 1N5406 | 0.12 | 2SC2141 | 1.48 | 78057022 | 0.00 | BCI84L | 0.04 | 80a35 | 0.38 | 8U205 | 1.87 | HA1300: | 1.78 | MC14493P | 0.00 | STMA162M | 9.51 | TA7607AP | 2.11 | DA2170 | 2.55 | 7P32C | 0.38 |
| IN5408 | 0.12 | 2SC2156 | 0.96 | 7808 | 0.30 | BCI84LC | 0.10 | B8436 | 0.32 | BU208s | 1.16 | HA13108 | 2.76 | MC145288CP | 1.70 | STM4171 | 10.50 | TA7609P | 1.95 | TDA2270 | 1.68 | TP33 | 0.00 |
| 1 N914 | 0.04 | 2SC2168 | 0.85 | 7812 | 0.30 | BC204 | 0.31 | B6437 | 0.32 | BU2080 | 1.53 | HA13118 | 1.87 | MSA2062 | 2.21 | STKA181] | 12.85 | TA7630 | 0.00 | TDA2525 | 0.00 | T1P33A | 0.92 |
| 151555 | 0.22 | 2SC2236 | 0.25 | 7815 | 0.30 | BC2078 | 0.23 | 80438 | 0.31 | 8133264 | 136 | HA13119 | 2.03 | M 2955 | 0.97 | STKA181A | 12.45 | TA7630p | 1.87 | TDR2530 | 4.76 | ITP33C | 0.98 |
| 152076 | 0.29 | 2SC2271 | 0.22 | 7818 | 0.41 | BC212 | 0.06 | ${ }^{\text {BDO4 }} 1$ | 0.34 | BU406 | 0.79 | HA13403 | 4.66 | M802 | 2.29 | STka332 | 5.54 | TA7640ap | 0.98 | TDA2540 | 0.38 | IP34 | 0.00 |
| 2 N 2219 A | 0.27 | 2SC2274 | 0.22 | 7905 | 0.34 | BC2128 | 0.06 | 80442 | 0.29 | BU4060 | 1.02 | HA1374A | 0.00 | ME13005 | 0.82 | STK4352 | 1.70 | TA7676P | 4.25 | TDA254 | 0.72 | TP34C | 0.89 |
| 2N2222 | 0.17 | 2SC2274K | 0.22 | 7912 | 0.43 | BC2122 | 0.06 | 80510 | 1.34 | BU407 | 0.53 | HA1377 | 1.60 | ME2955 | 0.68 | STK437 | 8.30 | TA7680AP | 4.52 | TDA2560 | 2.55 | TPP4IA | 0.38 |
| 2N2905 | 0.21 | 2SC2314 | 0.33 | 44119 | 0.36 | 8C213 | 0.11 | 80529 | 0.97 | 814070 | 0.97 | HA:388 | 2.63 | MLE3055 | 0.51 | STK4392 | 6.31 | TA7698AP | 5.93 | TDA2576A | 5.95 | 7P418 | 0.31 |
| 2 N 2326 G | 0.37 | 2SC2335 | 1.11 | AA143 | 0.13 | BC214 | 0.00 | 80530 | 1.10 | Blua 6 6a | 0.96 | HA1389 | 2.52 | M LE340 | 0.40 | STK441 | 10.28 | TA7705P | 1.68 | TDA2577 | 0.00 | IP4IC | 0.37 |
| $2 N 3053$ | 0.36 | 2SC2458 | 0.09 | AC127 | 0.11 | BC214L | 0.09 | 80535 | 0.43 | BU426E | 2.13 | HA1392 | 1.61 | M2378 | 0.00 | STK459 | 10.27 | TA7769P | 1.43 | TDR2577A | 4.25 | IP42A | 0.34 |
| 2 23054 | 0.98 | 2SC2482 | 0.34 | AC141K | 0.46 | m? ? ? | 0.05 | 80536 | 0.48 | BU500 | 1.09 | HA1397 | 2.63 | M 1.923 | 10.66 | STK461 | 9.21 | TA8205 | 3.65 | TAR2578 | 2.55 | TP P 2 C | 0.37 |
| 2 N 3055 | 0.77 | 2SC2547E | 0.24 | AC176K | 0.30 | BC237A | 0.08 | B0675 | 0.30 | BU5088 | 0.95 | HA1398 | 233 | MNILOSV) | 11.08 | ST14843 | 11.10 | IA82 10 H | 4.66 | T0A2579 | 0.00 | IP47 | 0.51 |
| 2 23442 | 0.75 | $2 \mathrm{SC2565}$ | 6.40 | AC187 | 0.16 | BC2378 | 0.05 | 80677 | 0.32 | BU508AF | 1.77 | H41452 | 3.36 | MN14351 | 14.35 | ¢TK52:1 | 15.78 | TA8215 | 4.57 | TDR258: | 10.15 | TP1791a | 1.11 |
| 2 23702 | 0.11 | 2SC25704 | 0.29 | AC187K | 0.33 | BC,238 | 0.11 | 80707 | 0.51 | BU5080 | 1.27 | HM6232 | 11.78 | MN14351\%8 | 19.65 | STK5322 | 5.59 | TA8691N | 6.67 | TDR2S810 | 10.15 | TS43 | 0.66 |
| 2N3704 | 0.14 | 2sc2577 | 2.13 | AC188 | 0.30 | BC2388 | 0.05 | 80839 | 0.51 | BU5080F | 1.49 | HME251 | 9.52 | M M 650 | 2.50 | STK5325 | 6.85 | TAA550 | 0.00 | TDR2582 | 1.95 | Tl011CP | 1.36 |
| 2N3773 | 1.02 | 2SC2581. | 2.45 | AC188K | 0.61 | BC239 | 0.04 | 80901 | 0.51 | BU508V | 1.16 | HM7103 | 14.07 | MPSA42 | 0.23 | STK5326 | 5.08 | tag626 | 1.85 | TDA2591 | 1.15 | п071CP | 0.38 |
| 2 N 3819 | 0.34 | 2SC2632 | 0.29 | AD149 | 0.52 | BC2528 | 0.67 | B0902 | 0.51 | BU526 | 1.41 | CH288 | 0.26 | MPSA56 | 0.12 | SIK5331 | 3.02 | TBA120 | 0.53 | T0R2593 | 0.75 | 1494 | 1.57 |
| 2N3904 | 0.11 | 2SC2655 | 025 | A0161 | 1.02 | BC300 | 0.48 | BD911 | 0.65 | BU536 | 1.60 | 142101 | 0.60 | MPSA93 | 0.09 | STK5332 | 2.14 | TBA120AS | 0.90 | TOR2594 | 2.21 | TMP4フCA32AP | |
| 2 N 4444 | 2.68 | 2SC2671 | 0.68 | A0162 | 0.96 | BC301 | 0.24 | 80912 | 0.63 | $8 \mathrm{BU608}$ | 1.4 | KBL08 | 0.47 | MPSU10 | 0.00 | STK5333 | 4.28 | tBal20s | 0.89 | TDR2595 | 2.16 | | 11.24 |
| 2N692 | 0.62 | 2SC2688 | 0.30 | AF124 | 0.71 | BC302 | 0.36 | B0V658 | 1.16 | BU705 | 1.61 | KSR1004 | 0.09 | MR854 | 0.14 | STK5372 | 5.28 | TBA220T | 0.59 | TDA2600 | 3.08 | IMP47CA34N | 3555 |
| 2SA1015 | 0.10 | 2SC2785 | 0.17 | A5127 | 0.59 | BC303 | 0.28 | BDWB4C | 1.28 | BU806 | 0.82 | 1200 CV | 1.13 | MSM5840* | 15.36 | STK5421 | 2.60 | TBAI2ON | 0.39 | TDA2611A | 0.54 | | 16.50 |

\section*{SPECANOEEESESDS 30/05/93 OR WHILE STOCKS LAST
 TDA 2600×2
 BUT 11 AF $\times 5$
 BU 208A x 5
 14BU 508A x 5
 CO AXIAL AERIAL PLUG $\times 25$
 'F' CONNECTOR (SCREW TYPE) $\times 25$

 3.95
 3.25
 3.60
 3.50
 3.75
 3.00
 | TDA 3654×2 |
| :--- |
| TBA 1205×5 |
 TDA 4601×2

TDA 3562 A $\times 2$
 VIDEO FAULT FINDING GUIDE
TV FAULT FINDING GUIDE
 BU 508AF $\times 5$
 TDA $4501 \mathrm{H} \times 2$}

2SA 10101
2SA102
3

2SA109
2SA1102
2SA114
2SA1102
2SA143
2SA1175
2SA11
$2 S A 12$

2SA473
2SA562
2SA634

2546
$25 A 6$

| 2SA68 |
| :--- |
| 2SA |
| 2SA |

2SAB72
2SA940
2SA952

USE YOUR ACCESS OR VISA \% TEL 0902 712083/773122

 (24 HOURS)

Philips' Double-scan Technique

Improvements in picture tube technology have resulted in high brightness and contrast level pictures. The only drawback is that, especially with the larger screen sizes, there's a greater susceptibility to field-frequency flicker. Four factors in particular contribute to this: low field frequency; high brightness levels; large picture areas with high luminance content; and viewing angle. With regard to field frequency, the current 50 Hz represents a good compromise between bandwidth considerations and the need to reproduce fastmoving picture information adequately - it has the added bonus of being the mains frequency. The fourth factor arises because flicker is more apparent when a picture is viewed slightly away from the front or when the screen is looked at closely - periphery of eye vision is more sensitive to flicker than the central area.

Philips, Cineline Tubes

Philips Cineline 16:9 aspect ratio picture tubes achieve high performance as a result of the use of a new, improved black matrix system, the use of Invar shadowmasks that allow the tube to be driven at fifty per cent higher beam power, and the use of DAF (dynamic astigmatism and focusing) guns. The DAF technique provides pin-sharp focusing over the entire picture area. Using higher beam drive enables faceplates with a lower light transmission characteristic to be used, thereby improving the contrast level. Ideally, such improved performance should be matched by complete freedom from flicker

Eliminating Flicker

Research carried out by Philips engineers established that complete freedom from flicker under all practical luminance conditions and viewing angles could be guaranteed by increasing the field frequency to at least 92 Hz . The most convenient way of meeting this requirement is to double the frequency to 100 Hz , with the line frequency similarly doubled. To scan the tube in this way with a standard video source requires the use of a memory chip signal storage/retrieval system. By using a memory read-out rate double the write-in rate, correct modulation for double-scanning is achieved.

Philips has used this approach in the state-of-the-art FL1. 2 chassis, which is designed to drive 16:9 tubes. A four-step signal processing system is employed. First conversion of the luminance (Y) and colour-difference (B Y and $\mathrm{R}-\mathrm{Y}$) signals to digital form. Secondly feeding the digital video signal components into memory chips that are clocked at 13.5 MHz . Thirdly reading the video data out at 27 MHz . And finally conversion back to analogue form followed by matrixing and processing to obtain RGB signals for voltage amplification. Fig. I shows the system in simplified block-diagram form. In the FL1. 2 chassis it's referred to as the 'high-end box'.

An Advanced Video Processing System

It's interesting to see where the high-end box fits into the overall video processing system used in the FLI. 2 chassis. Fig. 2 shows the arrangement in block diagram form. The TEA6414 is a switching chip to select from different video
sources, providing luminance (Y) and chrominance signal outputs. We'll trace through the luminance channel first.

A sharpness circuit follows the TEA6414 chip. It uses three transistors and a handful of passive components, see Fig. 3. There are two inputs, luminance and a crispner switching voltage. The luminance input is fed directly to the output via R3316 and to the base of transistor $\operatorname{Tr} 7312$ via a bandpass filter, tuned to approximately 2 MHz , consisting of C2310 and L5310. When the crispness input rises to 0.7 V all three transistors are brought into operation and the 2 MHz signal is added to the output, producing a sharpened luminance output.

The next stage is a switchable chroma trap - this is used because the set has a multi-standard decoder. The nominal centre frequency is determined by outputs (auto-system select) from the TDA4650 colour decoder chip, which recognises the different transmission standards by the nature of the colour bursts in the case of PAL and NTSC transmissions or the identification signals in the case of SECAM.

The following luminance delay line is incorporated in a TDA4565 chip, which also includes a signal sharpening feature. Fig. 4 shows the relevant circuit. A positive crispeness control input at the base of transistor $\operatorname{Tr} 7326$ reduces the voltage at pin 15 of the chip. This action decreases the degree of signal delay. The processed luminance signal is then fed to the high-end box.

The chrominance output from the TEA6414 chip is fed to the TDA4650 multi-standard decoder chip via a switchable bandpass filter. One of the auto-system select pins of the decoder chip goes high to activate transistor switching within the filter block.

The decoded $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ outputs are fed to baseband delay lines in a TDA4660 chip, where the direct inputs are added to signals delayed by one line, producing corrected output signals. Between these and the high-end box a TDA8663A chip provides matrixing and source-selection.

The High-end Box

We are now back at the high-end box, where the luminance and colour-difference signals are first fed to an analogue-to-digital converter so that they can be stored in the memory chips at the write-in frequency of 13.5 MHz and then clocked out at the doubled rate of 27 MHz .

While the digitised luminance signal is fed to the

Fig. 1: Simplified block diagram showing the main operations carried out in the high-end box in the Philips FL 1.2 chassis, in particular conversion of the signal to $1,250,100 \mathrm{~Hz}$ line/field frequency rates.

Fig. 2: Block diagram of the signal processing arrangements in the Philips FL1.2 chassis
memory directly, the converted colour-difference signals go to the RAM via shift registers. The reason for this is that the converter's bandwidth of 6.75 MHz is not required for the colour-difference signals, 1.5 MHz being more than adequate. So the bandwidth of the colour-difference signal outputs from the converter is reduced by a factor of four. This is done by reading them into the shift registers at a clock frequency of 3.375 MHz , so that for each four bits fed in three are discarded. The bits are read out serially at a clock frequency of 13.5 MHz , the result being that four parallel bits remain of the fourteen original parallel $R-Y$ and B - Y bits. It's these bits that are fed to the RAM.

The RAM consists of three special video memories, each with a capacity of IMbits. They are used in parallel, driven by the same clock signals.

The repetition frequency of the write reset pulses is 50 Hz , that of the read reset pulses 100 Hz . Thus with a write clock frequency of $13.5 \mathrm{MHz}, 18.5 \mathrm{msecs}$ of video information can be stored. As a frame lasts for 20 msecs some information must be discarded. This is taken care of by not writing in the lines that occur during the frame flyback.

The 100 Hz signals are read out at 27 MHz , the four-bit

Fig. 3: Luminance sharpness circuit.

Fig. 4: The luminance delay line chip.
colour-difference signals being converted to seven-bit form. $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ then go to three digital-to-analogue converters. The Y signal is fed out of the high-end box via a low-pass filter, the colour-difference signals going first through a CTI (colour-transient improvement) chip where the steepness of signal flanks is increased. Where there are no signal flanks, i.e. in a relatively large area of unchanging colour, the colour-difference signals pass through unchanged.

RGB Processing

The $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ outputs from the high-end box, with correspondingly fast blanking signals, are passed to a TDA4680 video processing chip that produces RGB outputs and carries out brightness, contrast and saturation control, beam current limiting, peak white limitation and black-level stabilisation. This chip also receives inputs from the teletext decoder and from the PIP (picture-in-picture) module when fitted. Its RGB outputs are fed to three TDA6100 voltage amplifier chips that are mounted on the tube's base panel to minimise capacitive loading.

Scan Velocity Modulation

The Y output from the high-end box is also used to drive the SCAVEM (scan velocity modulation) system. This varies the beam velocity over the large screen area in accordance with the instantaneous picture content. The effect is to balance white-to-black transitions, giving improved overall picture resolution. Because of the tube's input capacitance, white-black transitions take longer than black-white transitions, the problem being more evident with a $16: 9$ aspectratio.

The SCAVEM filter feeds a symmetrical SCAVEM amplifier that drives an additional coil on the neck of the tube to modulate the velocity of the beams.

Synchronisation and Clock Generation

A TDA2579B-N8S 1 chip in the high-end block incorporates the sync separator, providing line and field sync outputs to synchronise the clock generator section and line and field drives at $31,250 \mathrm{~Hz}$ and 100 Hz respectively. The line drive output goes to a conventional driver stage while the field drive output is fed via an emitter-follower to a TDA3654 output chip.

The frame blanking level of the sandcastle output from this chip, at pin 17 , is 2.5 V . If the reference voltage fed back from the frame output stage to pin 2 is greater than 1.9 V or less than 0.5 V the output at pin 17 will be a minimum of 2.5 V , providing tube protection.

Fig. 5: The height control circuit is complicated by the movie mode arrangement for $4: 3$ pictures.

There's a movie mode for displaying $4: 3$ aspect ratio pictures as 16:9 pictures. This calls for vertical expansion. Fig. 5 shows the simple circuitry involved. R3410 is the height control in most circumstances. For $4: 3$ movie expansion transistor Tr7416 is forward biased. Thus R3422 is returned to chassis via D6422 and $\operatorname{Tr} 7419$, taking over height adjustment in this mode.

The clock generation/sync conversion section of the
high-end box receives line and frame sync pulse inputs, generating from them clock pulse signals to control the digital video processing circuitry. It also controls the teletext decoder, which differs from normal ones in that pages are generated with a 100 Hz field frequency.

Scan Coil Heating

Doubling the scanning frequencies naturally results in greater power dissipation/heating in the scan coils, particularly those used for line deflection. To take this into account Philips use special Litz wire: each strand is individually coated with polyurethane, the overall wire being encapsulated in a thermoplastic material.

Since current flow tends to be concentrated increasingly in the surface of a wire as frequency is increased (the 'skin effect'), a multi-strand wire with individually insulated strands provides a much greater conductive path than the equivalent single-strand wire.

Modern TV Receiver Techniques

Part 5

Eugene Trundle

Though the majority of viewers use the analogue sound systems described last month, the trend in broadcasting is towards digital transmission of TV sound. In terrestrial broadcasting this is currently an 'optional extra' in the form of Nicam; with satellite services that use MAC encoding it's an integral part of the signal package. In radio too DAB (digital audio broadcasting) is at present generating much interest. The first large-scale use of digital sound in the TV field was the BBC's sound-in-sync network distribution system which came into use in the early Seventies.

As with all digital technology, the processing circuitry for the new audio systems mainly lies buried in LSI chips, with only a few peripheral components/circuits. In this article we'll examine the operation of typical chips and their interfacing with the rest of the TV set, satellite receiver or VCR.

NICAM

Terrestrial transmitters broadcast Nicam digital sound data in the form of a four-phase modulated, low-level carrier at a frequency (UK system I) 6.552 MHz above the vision carrier. It emerges from the tuner as an i.f. signal whose carrier is at 32.948 MHz . After amplification this beats with the 39.5 MHz vision carrier (either in the video demodulator or, as shown Fig. 1, in a separate dedicated mixer stage), producing a 6.552 MHz carrier which is phase-modulated with the data that conveys the sound signals. A narrow-band filter selects the Nicam carrier from the other mixer beat products, presenting it to the first Nicam chip whose job it is to demodulate the carrier, translating its phase changes back to a data stream.

Carrier Demodulation

Fig. 2 shows the arrangements used in a typical QPSK (quadrature phase-shift keying) demodulator chip. The $6 \cdot 552 \mathrm{MHz}$ Nicam signal is fed to the Nicam board at C55, is amplified by TrI and selected by the ceramic filter BPFI.

It enters the demodulator chip at pin 4, where the first gaincontrolled stage ensures that it's passed on at a constant level. The carrier is next fed to a pair of phase detectors, A and B, each of which consists of a sampling gate. These gates are opened once per carrier cycle, their opening times being 90° apart, that is in quadrature. The carrier samples thus obtained pass via separate low-pass filters between pins $10-20$ and 11-19 of the chip. After re-entering the chip each sample train goes two separate ways. One is to an analogue switch that's part of the phase-locked loop embracing the VCO (voltage-controlled oscillator) carrier regenerator. This loop holds the 6.552 MHz crystal oscillator connected to pins 6 and 8 of the chip at the mean (average) phase of the carrier. The flywheel filtering components are connected to pin 9. As a result the reference carrier feeds to phase detectors A and B are correct and of constant phase.

The next detection process examines each sample in turn to check on whether it's a logic one or zero. Because noise and interference continuously vary the signal level, the slicing point (the level above which the sample is deemed to be a one and below which it comes out as zero) must be

Fig. 1: Obtaining the Nicam carrier. The SAW filter has separate sound and vision outputs. Both sound and vision carrier components are present in the sound feed: they beat together in the sound demodulator to produce f.m. intercarrier and Nicam sound signals. These are selected by separate sharply-tuned filters.

Fig. 2: Nicam sound demodulator circuit used in a Bang and Olufsen TV set.
continuously adjusted to the mean signal level. All this is carried out by the auto-slicer detectors: capacitors C17/18/19/20 store the high and low operating point levels for the detectors. The outputs pass via the wave shaper to the a.p.c. detector and the difference logic.

The Nicam bit rate is 728 kHz . Thus in order to sample the signal we need a synchronised clock that runs at this rate. It's obtained from the $5 \cdot 824 \mathrm{MHz}$ (eight times the bit rate) VCO connected to pins $22-24$. The output from this is divided by eight and compared with the incoming signal by a phase detector whose response time is set by the RC network connected to pin 21. If the PLL comes out of lock the mute detector provides a low output at pin 18 to shut down the Nicam decoder downstream - or switch the set back to the ordinary f.m. sound.

Logic System

With the data-clock PLL locked, the difference logic block samples the signals synchronously, making one or zero decisions on the basis of their amplitude at the moment of gating. This logic detector has parallel outputs (bit pairs) that correspond to the pairing introduced in the modulation system at the transmitter. They are selected alternately by the parallel-to-serial converter, which is driven at bit rate.

Fig. 3: Packet structure of a D-MAC sound/data burst.

Fig. 4: How binary and duobinary coding compare: MAC transmissions use duobinary coding.

We thus end up with the demodulated data stream, which is then buffered and fed out at pin 29 for decoding. For use by the following Nicam decoder chip, system- and bit-rate clock pulse outputs are provided at pins 26 and 27 respectively.

Like the VIP chip in a teletext decoder, this i.c. is a hybrid design. A 10 V supply (pin 1) is required for its analogue sections and a 5 V supply (pin 30) for its digital circuits.

MAC Audio

While the Nicam signal conveys the audio data in the form of continuous phase modulation of a carrier, MAC systems use a line-rate data burst for the sound signal and 'house-keeping' services. The data format is illustrated in Fig. 3, which shows one 'packet' of data consisting of 751 bits. The header section contains a ten-bit address which is used to route the packet to the appropriate part of the receiver, also a two-bit continuity code that's used to link together successive packets of the same service and an eleven-bit suffix that acts as a check word, giving a high degree of protection to the address and index information. The actual data follows. first an eight-bit PT (packet type) word that provides decoding information then 720 bits of sound information.

D- and D2-MAC encode the data in duobinary form (see Fig. 4) to conserve bandwidth. There are three signal levels, the middle one signifying zero and the other two one. How is bandwidth saved? If you take the worst case, 01010101 etc., and imagine the squarewave smoothed to form a sinewave the effective frequency is lower. At the data rate of $20.25 \mathrm{Mbits} / \mathrm{sec}$, the 3 dB bandwidth required is reduced from $10 \cdot 125 \mathrm{MHz}$ to just over 8.4 MHz .

Leaving aside modulation and demodulation, the MAC and Nicam signal formats are similar and, apart from the compression time-scale (and hence memory-writing rate), the Nicam demultiplexing circuit described next is largely applicable to MAC signal processing. In practice Nicam
chipsets are not used in satellite receivers, though the principles they both use are very similar.

Nicam Demultiplexer

Fig. 5 shows in block diagram form the Nicam decoding carried out in a typical chip. This demultiplexer chip takes the demodulated Nicam data stream, descrambles, expands and de-interleaves it then adapts the data for application to a standard digital-to-analogue converter. It also provides information on the type of signal, i.e. stereo, bi-lingual etc., and can be controlled by a serial data bus.

The pulse train enters at pin 23 and passes to the FAW (frame alignment word) manager which recognises and locks on to the data. To avoid interference the data is scrambled prior to transmission. The FAW section initiates the descrambling process, the associated control bit decoder providing outputs at pins $35-39$ for mode control and status indication. The main data path is to the memory manager, which selectively routes it to three 64×11 bit memories. By reading the data out of these in a different sequence from which it was read in, the bit-interleaving introduced at the transmitter as a precaution against data corruption by interference is cancelled. The read-out sequence is held as a 'code book' in the ROM. Each memory holds one frame of audio samples. While one is being read by the de-interleaver, fresh data received is being fed into another one. Thus two memories are in constant use during stereo reception. The third memory is required for use with duallanguage programmes, in which the two monaural sound channels are transmitted in separate frames but may be needed simultaneously.

To conserve bandwidth the audio data is compressed from a word length of 14 bits to ten bits prior to transmission. The accompanying control data governs its expansion back to 14 -bit form in the receiver. This is done in the expand and correct section, where the control data is used for both digital expansion and error correction by means of the commonly-used parity-check system.

The audio data has now been divested of its protective clothing, special packing, address labels and repair kits and is ready for conversion back to analogue form. There are three outputs from the demultiplexer chip: the data, consisting of alternate L and R (or bilingual) 14-bit words, at pin 3; an L / R ident (word select) squarewave at pin 33; and a clock pulse train at pin 4 . These are all used by the DA converter, the next and last chip in the Nicam decoder.

DA Converter

The fourteen bits in each Nicam word can signify 16,384 different sound levels. It's the job of the DA converter to convert each word in turn to the exact voltage level it represents. The most significant bit (MSB) in effect contains fifty per cent of the information in the word. The next bit contains 25 per cent of the information and so on down to the fourteenth, least significant bit (LSB) that contributes less than 0.01 per cent to the signal output voltage.

The operation of a DA converter for applications like this is outlined in Fig. 6. The 14-bit data words are loaded into a pair of 7 -bit registers and held there while two constantcurrent sources, one for each register, are switched on to charge a capacitor. As the charge progresses, the data in each of the registers is steadily decremented (counted down) until it reaches zero. At this point the relevant constantcurrent source is switched off. The generator associated with the high-order (7 MSBs) counter provides 128 times as much current as the constant-current source that works with

Fig. 5: Internal arrangement of a Nicam demultiplexer chip with on-board data memories. This type of chip is designed for use with standard DA converters.

Fig. 6: Basic principle of an integrating type DAC.
the low-order (7 LSBs) counter, thus giving the correct weighting to each half of the word. When you charge a capacitor with a constant current (in this case $I+128 I$) the charge it acquires is proportional to the time during which the current flows. Thus the voltage developed across this integrating capacitor at the end of the charging period is proportional to the number represented by the digital word, with each digit given due weight in accordance with its position and significance. Between samples the capacitor is discharged by an electronic shorting switch.

The voltage across the integrating capacitor is 'true' for only a very brief period in the conversion cycle, that between the end of the charging phase (both current generators having been switched off) and the closing of the discharge switch preparatory to the conversion of the next word. Thus we need to transfer the charge into another, 'hold' capacitor at just the right moment in each conversion cycle so that a series of samples builds up as an analogue voltage. It's at the output of this sample-and-hold circuit that the original audio signal is recreated, as a series of steps whose average value is a facsimile of the studio audio waveform.

In the Nicam system the data alternates between L and R stereo samples: the L / R ident signal from the demultiplexer chip alternately switches the single DA converter between two separate integrating capacitors, one for L and the other for R.

Fig. 7 shows the internal arrangement of a DA converter chip for Nicam or CD-type applications. The outputs from the demultiplexer chip enter at pins 5 (L / R toggle), 6 (clock)

Fig. 7: Internal arrangement of the TD6710AN DAC chip which contains clock, converter and sample-and-hold sections. The ECL interface is fed directly from pins 3, 4 and 33 of the demultiplexer chip shown in Fig. 5.
and 7 (data). The constant-current charging switches that govern the charging periods of the integrating capacitors Cl (L channel) and C2 (R channel) are S1 and S2. S3 and S4 are the discharge switches, while the sample-and-hold system consists of S5/C3 for the L channel and $\mathrm{S} 6 / \mathrm{C} 4$ for the R channel. The analogue-converted outputs appear at pins 1 and 12, after which they are passed through low-pass filters to smooth out the step waveform. Most DA converters use oversampling, being clocked at double or quadruple rate. Doubling or quadrupling the number of steps in the waveform makes each of them smaller and thus easier to smooth out: a gentler filtering action reduces the amount of phase distortion in the output signal.

The L / R audio signals are de-emphasised before being passed to a routing switch (typically under the control of a serial bus) and then to the sorts of amplifiers and speaker systems we looked at last month.

Further Integration

Although Nicam transmissions started only about three years ago we are already on the third generation of decoder systems. The first, which predated the broadcasts, had a demodulator chip, a demultiplexer chip with a separate memory chip for de-interleaving, and an AD converter system borrowed from CD player technology. The second and currently most used arrangement is the one described in this article, with three chips - demodulator, decoder and ADC. The latest approach is represented by the Philips SAA7282 i.c., a 32 -pin C-MOS chip that incorporates the decoder and DAC with four times oversampling. It requires only a demodulator chip like that shown in Fig. 2 to form a complete two-chip, full-feature system with the following specification: selectable digital de-emphasis; one-bit DA conversion; internal/external sound routing; I2C bus control; interfacing for a digital audio output; separate DACs for the L and R channels; availability as a surface-mount package; and low peripheral component count. When used with the

Philips TDA8732 demodulator chip only five filters, two crystals and a handful of passive components are needed.

Next Month

Having completed our survey of TV receiver audio systems, next month we'll turn to post-detector video signal processing - colour signal decoding, picture control and tube drive.

HELP WANTED

Can anyone supply a c.r.t. (type D10 230) for the Advance OS240 scope? David Thornton, la Heyes Mount, Rainhill, Prescot, Merseyside L35 0LU.

Wanted: All copies of Television in Vols. 38-42. Good price plus postage would be paid. Chris Davies, 52 The Close, Johnston, Haverfordwest., Dyfed SA62 3QQ. 0437890561.

Wanted: A LOPT for the Sentra STX200 colour portable. P. Chadwick, 14 Myers Gardens, Sutton, St. Helens, Merseyside WA9 3YY.

Wanted: The following issues of Television. June 1989 to Feb 1991, April 1991 to Oct 1991, Dec 1991, Feb 1992, Oct 1992, Nov 1992. D. Wells, 11A Westbury Road, Nuneaton, Warks CV10 8HG. 0203329901.

Wanted: Complete colour decoder panel or the SL901B chip for the Rank A823 chassis. F.C. Bailey, 2 Elmridge, Leigh, Lancs WN7 1HN. 0942675299.

Wanted: Remote control kit (type 22AV5500/00) for the Philips VR2020 or VR2022. A.W. Hankin, 27 Ingram House, Park Road, Hampton Wick, Kingston-upon-Thames KT1 4BA. 0819774917.

AZ ELECTRICS

WTEGRATED CTRCUTS CiPCUITS AN101 AN214O.

 1

The Pirates' Guide to the Galaxy! 1iन7 Eye Pafchit with every order for
Jomm ncommas EUROPEAN SCRAMBLING SYSTEMS 3

Circuits, Tactics and Techniques
What this remarkable 480 page book can do for you ... Only $\quad £ 32$ (pous pos:)

- Learn how the four VideoCrypt explore video manipulative
hacks work! is it pirate-proof?
systems such as Nagra Kudelski
Discover how a scrambling
-Glean new decoder circuivs. eg Filmnet video, RTLA: V . Discrel:
Jmonet digital audio: AAV pracy and counter-piracy, eg Dragon and Tiger teams,
ystem is constructed froni a fers

Syster. VideoCrypt-S. Cryptovision
and Digicrypt. Also includes B-
mac hacks on video and access
Read about the black arts of
signal security.
wanme

pronbileo oy lam
Swift Television Publications

PAYSSUTV,

SUPPLIERS OF WORKING NEW + USED TV'S, VIDEOS, MICROWAVES + FRIDGE FREEZERS.

avenamem LONDON081.5688182

WE DELIVER ALL AREAS!

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP.

 TEL: 081-877 3492/877 3518 FAX: 081-877 3518

TDA8180 ORIGIN

 t. OfRer pSra Genulne complete ass FERGUSON 3HSSV-2 Heac universal HSSAVB-3V32HR7655 HSS4VC. 3 V4 4 HRD56
$3 V 48,58,59,65$, FV10,
$12,13,14,20,21,26$
And most other Fergusons
ITACH
HSSHA. VT 8000,9000 series.
0082-VT120,220
10081-VT130,135
PANASONIC
HSSSU1N-NV 100.370 .380
Prillps VR6460 3HSSU2N-NV230.470.480.G9, 10
£15.00
$\$ 15.00$
22.00

075
511.00
817.80

VIDEO HEADS Continued

A range of belt kits in stock from 60 p to £2.40. Makes for most models available including: Alba, Akai Amstrad, Ferguson/JVC, Fishe Funal, GEC. Goldstar, Granada Grundig. Hinari, Hitachi, Mitsubishi Saisho, Samsung, Sanyo Schneider, Sharp, Sony, Tensai, etc Please state model and make
CLUTCH BASE $£ 4.50$
LINE OUTPUT TRANSFORMERS LOPT Hitachi CPT1476. OPT Hitachi CPT2276 etc COPT Matsui 1440
IT CVC20
TI CVC25/30/32
TT Compact 80 Senies 110
TTCVC45
ITT CVC1204
TT CVC800/1/3
IT CVC1100 ...
TT 6325
IT 3546.
IT $1200 / 1$

Other ITT transformers avallable

Folity all models up to 20° ZX3000

Fidelity Panel for ZX2000

Fidelity 227 ZX3000
PhilipsKT3.
Thorn TX100 Green Spot 110
Ferguson TX90 LOPT specaty size screen
Ferguson 3V35/36 Mains Transtormer
Forguson 3V44/45 Mains Transtorm
TRIPLERS
Universal Tripler
Universal Tripler with focus unit
Decca 120/130 series tripler
Ferguson 1000 thom TX 10 Focus Unit Kit Trip Grundig CUC2401 etc Mitachl and Matsul LOPTs in stock

VIDEO MOTORS

$£ 6.20$
$\mathbf{E 9 . 5 0}$
$£ 9.50$
$£ 8.50$
$£ 10.00$
$£ 17.00$
.00

A range of Feol Motors made by Ferguson Hiracti, Sanyo. Sharo \& Panasonic are avaiabie

please state model and make
ergusond.J.C. Hirachiand Sham
Aiso available are Ferguson Mode Control
Motos, please slat make, mode
$\varepsilon 12.50$

$$
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~m} \\
& \mathrm{a} \\
& \text { re }
\end{aligned}
$$

Sharp Reol Motor Pulley on'y
Replicement of plastc pulley on a

$$
\begin{aligned}
& \text { Replecement of plastc puliey on a } \\
& \text { number of Sharp Reel Motors with the }
\end{aligned}
$$

above metal pulley gives better
IDLER ASSEMBLIES

| FERGUSON |
| :---: |
| Take up Clutch (Mechanical models |
| 3V2930 Take up idler |
| 3 V 2930 Take up Cluth |
| 3V2930 Reel Idier |
| 3 V 35 feel Idier |
| 3V35,36,38,39 Take up Clutch |
| |

JV5e 59,64,65,FV10, 11, 12,13,14
lder Asm
Cler AJTh ...

$$
54.55
$$

FSHER

$$
\begin{aligned}
& \text { FSHER } \\
& \text { FVH. } \cdot 615,905,910 \text {, Ider Assembry Ongire }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FVHP615 Gear bler Assemery } \\
& \text { FVHP905. } 910 \text { Gear Idier Assembly }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FVHP9o5.910 Gear Idie Assemoly } \\
& \text { FYHP } 520530 \text { Idlef }
\end{aligned}
$$

FVMP520.530 Ider....

HTACH
V111,33 etc. Onignal lder Arm VT11,33 etc. Idier Replacement VT9300,9500 erc. Play ider
VT9300,9500 etc. Idiler
VT8000,8500 etc. F/F Rew kler
VT800,8500 etc. Play Idier Assembly
$\checkmark T 8300,8500$ etc. FF/Rew Pulley
T11,33 et. Clutcn Assemby

VRG460.6920 Idler Arm (Onginal)
DV:64.6462.6463. 650 etc idler Mod

(Ormonal)

VRE542,6843 Reel idler
VRE542 Reel Drive Pulley
PANASONIC (All Original)
$\mathbf{£ 1 7 . 5 0}$ PASASONIC (All Original)
$\mathbf{£ 1 8 . 0 0}$ NV370 kilier Arm Unit VXPO521 Gen
£19.00 NV8600,8610 Play Ideer VXPO243

NV500 688

NV333, 366 Idler Arm 2 Unit VXLD 0997
NV8400,8600,8610 etc VXP0245

Idlee VXP034a

NV: 2000,3000 Play tale VXP003
NVZ000,3000 Ider Uni VXP0329
G Mech. Play Gear VXL 1490 Back Tersion Bands.
Al Panasonic Mantenance Kits
fof Parts not listed

sanyo

(fler VMR1 $100,1300,1500$ Wier VHR2100 2300,2500,2700 Real Dnve Pulley Un
bler Rolier Assemby
VTC5000,5150,6500

S-AAP

Idler VC9300,9500 etc.
lalur VC481.581 etc
Ider (orignal) VC9300,481.581 etc
idir Assembly (original VC780,781,785,787.
£ $£ .50$ 4500.4600 MOD Kit INCLUDES PINC:H

Her Post Assembly
Makes \& Models: Hinari VXLL

Matzul VX730, 735,735A, 755

$760,800 \mathrm{~A}, 810,820,880,990$.
Semisho VR1100, $1200,1200 \mathrm{HO}$,
$1600,2500,3200,3300,3300 \times, 3500$,
3600,3700
IDLERS FOR AKAI, SAMSUNG,
MITSUBISHI, NEC, ETC. IN STOCK
Prices subject to change without notice
Please add $£ 1.00$ per order for p\&p and then add 17.5% VAT.

(0)

 Availabie for Alba, Amstrad, Ferguson, Fisher. Goldstar, Goodmans, Granada, Hinar, Hrachi NVC. Matsui, Mitsubsyhi, Nikkai, Panasonic, Phtips,
Salsho Salora Sotmeder, Sentra, Sham, Sony Salsho, Salora,
Tashiko. Tostiba.

PINCH ROLLERS
A range of Pinch Rollers is in stock, most of them @ £2.00. Makes include Akai, Anstrad, Grundig. Hinari, Hitachi, ITT, JVC, Marantz, Mitsubishi, NED, Nordmende, Orion, Panasanic, Philips, Samsung, Sanyo, Schnew.er. Sharp Sony, Tensai, Thomson Toshiba etc. Please state model and make.

Prilips Pinch Roller for models VR6180. 6185, 6285, 6362, 6367, 6467, 6468, 6470, 6561, 6670, 6760, 6761, $8870 \ldots$

BACK-LP BATTERIES
 Ferguson TX10..................... OTHER SPARES
Universal Viceo Coryng Kit
Universal Copying Kt (Scan) Universal Copying Kt (Sca Video Cassente Lamps from
CRT Ansde Caps
video Tape Splicigikn
From £1.50 Hitachi TV Frame Mbodule HM6251
Htachi TV Frame Moduie HM6232.
Cassette trousing Assem
3V35,3€,38,39,42.43.44

Cassette Lo 3 V 31.3 V 32.

5V Back Up Cap.
Degaussing Positor White.
Cassent Housing Assemby Htachi VT11
End Sensor for Hitachi VT63.64,65 (Pair)
Cassette LED Senser for Panasonic
i.C. Groant Protectors

Clear Starme
Saterite
LNB
Video Idelers Spring Kit
$\varepsilon 1.75$
81.95
8.50

E6. 50
$£ 6.50$

SEND FOR PRICE LIST

Trade Counter mow open Monday-Friday 9.00 30. Saturday 9.00-1.00. Nearest Underground Station - Southfiulds District Line
Closed between $1.30 \mathrm{pm}-3.00 \mathrm{pm}$ Every Friday
wheo Washer \& E Cup Kt
Universal Video heidd Puller.
Akaldering Iron 25 W

MANY OTHER VIDEO AND TV SPARES IN STOCK
 Back Tension Bends in Stock for Aka, Fisher
 Hitachi Ferguson, JVC. Mitsubishi
 Panasonic, Sanyo and Sharp

Philips VR6490

There was intermittent sound on the tape that was brought in with this machine. It came on and went off suddenly, as if the muting circuit was operating. When we tried the customer's tape in another machine there was a different symptom - the sound stayed on but there was a warble. I put the cassette back in the customer's machine and checked the control track pulses. They were weak and varied in amplitude. When the pulses were large the sound remained on: when they were small the sound was muted. All that was wrong was that the control track head was dirty. Cleaning its face and making a test recording proved that the problem had been cured.

P.B.

Grundig VS300

The customer complained of tape damage. He brought two casettes along with the machine, both of which were creased towards the end of the tape. When I tried fast forward then stop, tape spilled out as the brakes didn't come on. The cause of the problem was that the BC876 brake solenoid driver transistor T2141 was short-circuit.
P.B.

Fisher FVHP715

There was a loud, 50 Hz hum in the E-E and playback modes. Slight flexing of the mains transformer's PCB would make the hum come and go. Resoldering the transformer's nine pins and every other soldered joint didn't cure the problem but linking across the three PCB-mounted fuses in turn proved that F904 was responsible. It had gone highresistance.

Hitachi VT120

The mode switch in this VCR has given us trouble in the past. The symptoms are numerous and varied. Should you suspect the mode switch, check the following voltages at pins 47, 48 and 49 of the HD614042SD37 system control chip IC901:

| Mode | 47 | 48 | 49 |
| :--- | :--- | :--- | :--- |
| Rec/play/forward search | 0 | 0 | 0 |
| Fast forward/rewind | 0 | 5 | 0 |
| Stop (carriage up or down) | 5 | 5 | 0 |
| Rewind search | 5 | 0 | 0 |

Triumph VR9500

This machine would switch on and the clock/channel indicators worked normally. But there were no functions when a cassette was inserted. A check in the power supply showed that the 5 V output at pin 5 of the STK5326 regulator chip IC501 was missing. A new regulator got the machine working and we also fitted a new idler in case the machine came back with the same symptoms (what's the point of getting older if you don't get wiser?).

Ferguson 3V45/JVC HRD150

Rewind and fast forward were o.k. but during playback or record the machine would enter the stop mode. It would sometimes play almost to the end of a tape before shutting down: at other times it wouldn't even enter the play mode after lacing up. We noticed that slight pressure anywhere on the main PCB would make the machine shut down. Voltage checks were of no use in this situation, so we used a magnifying glass to carry out a careful scan of the board. This revealed that $\mathrm{R} 501(680 \Omega, 0.5 \mathrm{~W}$) was dry-jointed at one end. IC404 in the servo section receives its 17 V supply from R501. Resoldering provided a complete cure.
J.E.

Hitachi VT33

It's quite common with many Hitachi models to find that the tape threads up then almost immediately unthreads. What happens is that the drum slows down because the servo reference signal is missing. It comes from the 4.43 MHz chroma subcarrier oscillator section of the HT4539B hybrid chip IC203. I changed IC203 on this machine as a matter of course, but this time the fault was still present. Doing what I should have done to start off with, I then checked the voltages around IC 203 . The 9 V supply was missing at pin 9 because choke L216 was open-circuit. The questions now were whether IC203 had been faulty and whether L216 had burnt out? I broke L216 open and found that it wasn't obviously burnt: I guess that one day I'll fit the old HT4539B to another machine to see what happens. It's the unpredictability of it all that keeps me going! R.B.

Hitachi VT120

Very intermittent vision overloading in the E-E and record modes was traced to the HT4757 hybrid chip.
R.B.

Hinari VTV100

During play, record or any other mode this machine would intermittently refuse all commands. Spraying the microcontroller chip with freezer proved that this was the culprit. It's a Sony type CXP5058H-118. Fitting a replacement and cleaning the tape path put the machine back in working order.
G.R.

Ferguson 3V29/JVC HR7200

Sound was o.k. but there was no E-E video. We traced the luminance signal right up to the HA1 1738 chip IC201 on the bottom PCB where the E-E video was present at pin 26 but no output appeared at pin 5 . Voltage checks around this chip showed that there was only 0.4 V at pin 8 instead of 2.9 V . C243 ($220 \mathrm{\mu F}, 6.3 \mathrm{~V}$) which is connected to this pin via R244/5 was leaky.
G.R.

Amstrad D8900 Double Decker

There was no display from the digitron - this includes the clock, timer, counter, channel information etc. - because the -28 V supply. measured at pin 11 of connector CN2,
was missing. Investigation showed that D24 was shortcircuit and the 15Ω safety resistor R29 was open-circuit. Replacing these restored the display. We used a 1 N4005 in position D24.
G.R.

Hitachi VT11/33/64/120/520 etc

The capstan motor slowing down, usually intermittently, is a problem with these machines. In this event replace the VDR in the capstan servo circuit - it's marked CH4R7-20V. In an emergency a 4.7Ω resistor will work. Note that some machines have a second VDR in the drum servo circuit, so make sure that you replace the correct one!
G.R.

Samsung VI710

There was no display. A few checks in the power supply soon revealed that the 6.8 V zener diode ZD102 was faulty, a replacement putting matters right.
C.W.

Amstrad VCR4600

The job card said "crinkled pictures". And crinkled they were - almost like a Thorn 3000 chassis when the $140 \mu \mathrm{~F}$ electrolytic had failed (those were the days!). I first checked the tape path for anything that might make the tape shudder. But everything seemed to be running nicely and evenly and looked clean. The lower drum wasn't damaged and didn't look at all worn. As I had one available however I decided to change it. To my pleasure this cured the fault - except for one thing. The head switching point now appeared at the top of the picture. The lower drum had been taken from a new full deck assembly that we'd recently purchased for about $£ 25$. It must have been for a different model however, as the magnet assembly at the bottom had the pulse magnets in a different position with respect to the drum's position of rotation. Taking off this assembly and fitting the one from the old drum allowed the switching point to be set up perfectly.
C.W.

Matsui VX1000Y

I have had the following problem several times now. The symptoms can appear as poor drum servo lock, a head switching type fault or as if one head has failed - the fault can also be intermittent. To ensure a permanent cure remove the FG pick-up on the drum, clean the two pins and the PCB connections thoroughly, then resolder.

I would add that with a lot of the faults experienced with Matsui/Saisho VCRs it pays to look for bad soldering or poor connections. Doing this will probably cure many of the faults that come your way.
T.L.

Philips VR202

When any key on the control panel was used it would lock up totally and the command that was entered would be totally ignored. On investigation we found that the main data line became continuously busy. After trying the obvious chips we moved to the on-screen display i.c. When this was replaced the machine was back in full working order.
T.L.

Sony SLV625

No output from one head almost caused me to order a new drum - after the normal cleaning and checks had been carried out. But I decided to take off the drum and use a
magnifier to see whether I could find anything amiss. A non-soldered connection was found on the lower drum, and when this had been resoldered the whole machine worked perfectly. This goes to show how important it is always to check around, even when the fault appears to be such an obvious one.
T.L.

Toshiba V83

I've had various intermittent speed faults with this and similar models due to defective mode switches. A complete cure is usually possible by removing and cleaning the switch. Recently however I had a machine that suffered from intermittent capstan rotation. It was no better after replacing the loading belt and cleaning the mode switch. It transpired that the capstan motor had a dead spot, a replacement putting everything right.
R.N.

Matsui VX820/Saisno VR1200HO

This machine was dead when it came in. Voltage checks showed that the STK5332 power supply module was faulty, so a new one was fitted. The machine then powered up, but there was no drum or capstan rotation. Voltage checks around the servo chip IC2001 were inconclusive, but scope checks showed that there was a distinct lack of activity in this area. Replacing this i.c. restored normal operation. Presumably the faulty STK5332 had destroyed the servo chip.

This machine also appears as the Hinari VXL35 and the Orion VHML.
R.N.

Philips VR6920

In the February issue (page 254) I wrote about a problem I'd had with a VR6460. The VR6920 is a Panasonic clone with hi-fi stereo sound, using the same deck. This one came in dead and we soon found that the 0.39Ω safety resistor R1001 was open-circuit. It's a fairly common fault, so we were not surprised. After fitting a new resistor, replacing the loading belt and giving the machine a good clean up it gave excellent results. But as it was getting late I left casing up until the following day.

When the machine was checked from cold next morning it didn't work, or rather it was permanently in the rewind mode, stopping after a few seconds and not accepting a cassette. This straight away rang bells, and a check on the little subpanel at the front of the deck revealed that it was loose. Removing the deck and tightening the screw cured the problem, so it seems that this happens on all these decks. It thus pays to make this a part of the standard service procedure.
R.N.

Amstrad VCR6000

I had two of these machine in recently, both with the same complaint but with different faults. Both machines would switch between the SP and LP modes at random. The cause on the first machine was easy to see: the tape was being pulled down across the audio/sync head because the pinch roller bracket was bent. A new bracket and pinch roller put matters right.

Tracing the cause of the problem with the second machine was more difficult. The tape path was perfect, and the heads were clean. A scope check at test point HPI (TP402) however showed that the sync pulses were of very low and varying amplitude, with a lot of noise present. As checks on components in this area failed to show that
anything was amiss I decided to replace the 14DN363 servo chip IC402. This cured the problem and cleaned up the waveform.
R.N.

Ferguson 3V54

If the capstan motor appears to run through with no control pulses present at the control amplifier, check the condition of C405 on the main PCB. You will probably find that it's either dry-jointed or open-circuit.
M.L.

Sanyo VHR1100E

This machine chewed tapes whenever stop or eject was selected. The tape was not being wound back into the cassette. We replaced the idler and checked the condition of the loading motor, but the VCR came back into the workshop two or three times before we finally traced the cause of the fault. When stop or eject was selected the loading guides would occasionally return from the loaded to the stop position extremely fast. The reel motor then didn't have a chance to load the tape back into the cassette. The cause of the problem was simply dirty mode select switch contacts. We should probably have replaced the mode switch, but the job was an urgent one and a good strip down and clean seemed to work just as well as a new switch would have done.

Panasonic and JVC switches can also be cleaned quite successfully provided care is taken when reassembling the switch.
M.L.

Ferguson 3V57

The cause of no playback colour was traced to IC301 on the main PCB. Part no. is PU22046A. Chroma was present at pin 24 of the chip but there was no output at pin 22. M.L.

Hitachi VTM722

The P50116 microcontroller chip in this model deals with a wide range of functions. It's responsible for deck control, tuning, the timer clock functions etc. Deck control problems can easily lead one astray.

A VTM722 came in recently with what looked like a power supply fault. The machine appeared to be completely dead, with no clock and no loading motor movement. As the power supply checked out all right we came to the conclusion that the microcontroller chip was faulty. It's on the top of the main panel, in close proximity to the front escutcheon. A replacement was therefore fitted, which is not easy as the print is very fine, but the fault remained as before.

I then remembered a conversation with Jim from Hitachi some time ago. He told us that these machines can easily become confused if the deck is out of sync. The microcontroller chip has to deal with so many functions that a wrong signal from the mode control switch can produce total lock up. This is in fact what had happened. With the loading motor and the mode switch removed I was able to re-sync the mechanism and could then reset the mode switch to position one (eject). Up came the clock and all functions worked correctly. The eject mode is quite easy to find when winding the mechanism by hand. After removing the loading block simply turn the main cam until the eject gear beneath the deck - it drives the carriage turns when the capstan motor is rotated. This is the eject mode. Then set the mode control switch to position one and replace the loading assembly. It's important that the cam and the mode switch are correctly aligned. When the
capstan motor rotates the eject gear, as described above, you will usually find that by turning the cam to one end then backing it off until it clicks into its first position it is in the correct eject position. Be sure always to replace the mode switch.
M.L.

Ferguson FV31R

The problem with this machine was very intermittent loss of drum sync, the symptoms being picture disturbance and momentary loss of sound. After an extensive investigation of the motor drive and servo circuits a chance brush against the ribbon cable connector immediately behind the upper drum produced the fault. Remaking the ribbon cable connection to the free socket cured the trouble.
J.LeJ.

Philips VR6463

There was no E-E or playback sound. We eventually discovered that an 11.5 V supply was missing because C2023 $(330 \mu \mathrm{~F}, 16 \mathrm{~V})$ was short-circuit. The 220Ω series resistor was none the worse for its experience.
S.L.

Osaki VCR33/GoldStar GHV1232I

A recent case of channel-dependent cogging and pulling from cold, clearing after an hour or so, was cured by replacing the a.g.c. reservoir capacitor. The offending item is C704 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$).
S.L.

Panasonic NVG21

This nice machine was dead. We quickly found that a 5 V supply was missing. We removed the power supply can and then, with some difficulty, took off its covers. After this it was a simple matter to discover that IC1001 (STK5338) was faulty. Why do manufacturers fit the wire-ended/push-in type connectors when a plug/socket would surely be a more practical solution? We've had many of this type of connector produce intermittent results in various machines.
S.L.

Sharp VC381

This old front-loader would only intermittently allow you to set the clock and timer information. On the odd occasion when this was possible the machine would begin to load under the control of the timer, then unload with the clock resetting to zero. Severe patterning was evident on playback of a tape, to the extent that the picture was almost obliterated. The E-E pictures remained normal.

Scope checks showed that some very bad hash was present on the supply rails. The following capacitors were found to be open-circuit: C12 ($100 \mu \mathrm{~F}, 16 \mathrm{~V}$); C17 $(100 \mu \mathrm{~F}$, 16 V); and C16 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$). As a precaution all other capacitors of this type - there aren't many - were removed and tested.
S.L.

Ferguson FV11

There was very bad hum in both the E-E and the playback modes. A scope check proved that this was being caused by the 5V supply from the STK5481 regulator chip. The input at pin 2 of this regulator is smoothed by C 4 $(2,200 \mu \mathrm{~F})$. A replacement capacitor cured the initial problem but on test $\operatorname{F3}$ (1AT) failed. It took us some time (and some fuses) to establish that the STK5481 chip had an intermittent fault.
S.L.

What a Life!

Donald Bullock

I wish I could grow up. Chaps of my age ought to be dignified and wise, which I'm not. Had I been wise I would have given this trade the elbow long ago and taken up something easy and profitable. But I didn't, and there's no such thing as a dignified television engineer. Sometimes, on holiday, I meet people who don't know what I do for a living. They treat me with respect. If gives me a wonderful lift, but it doesn't last.

Mrs Taffy

Greeneyes thinks I'm undignified because of my silly behaviour. Take the other day for example. Mrs. Taffy, who has the highest and squeakiest voice I've ever heard, brought in her Hitachi VT418 VCR for repair.
"You did it a month ago, before we went abroad, and it's never been right since, isn't it?" she squeaked.

After she'd gone Steven and I began this talking in ridiculously squeaky voices with Welsh accents. We were enjoying ourselves immensely, then Steven had to go to the wholesaler. Twenty minutes later, as Greeneyes brought in my tea, the phone rang. A high-pitched voice with a welsh accent assailed my ear.
"Mr. Bullock?"
I smiled to myself, thinking of Steven, and replied in a similar voice.
"Yeh-es?"
"Mr. Bullock the television man?"
"The very same, and very clever I am, can't they?" I replied.
"Have we got a crossed line Mr. Bullock?" said the voice. I suddenly realised that it was a customer. Getting out of that one was tricky. 1 had to lower my voice and fade out the Welsh business by degrees. Then I had to face up to Greeneyes, who was shaking her head sadly.

I decided that it was time to look at Mrs. Taffy's Hitachi recorder. The playback and E-E pictures were marred by travelling hum bars. Our records showed that last time we had cleaned the heads - and that was five months ago, not one.

The picture was in fact unwatchable. My diagnosis was a.c. ripple on the d.c. supplies and 1 spent a long time looking for a faulty component. But I couldn't find anything amiss in the power supply. Then Mrs Taffy phoned for a progress report and asked whether the mains voltage in Belgium was similar to ours. At that I glanced at the mains voltage selector carousel at the back of the machine. It was set for $200-220 \mathrm{~V}$. Resetting it to 240 V cured the trouble.

Terry's Hinari VXL8

Brother Terry came in next, with his Hinari VXL8 VCR.
"Watch this" he said, slipping our test tape into it and pressing the eject button. The cassette shot out and he caught it. "Yesterday it would't eject at all" he said. "I cured it myself, but now it won't play."
"How did you cure the sticky tape ejection?" I asked.
"Sprayed some WD40 into it's mouth - quite a lot, actually." Then he turned to Steven.
"I reckon you'd better take it to Snoddies, or buy another one from Crubb's Foodstore - they'll be about twenty five
quid there" I said, but he took no notice. It's difficult to get a word in when he gets going.

As Steven sat listening to Terry I quickly slipped the test tape into Mrs. Taffy's machine before declaring it to be fit. The tape squeeled to a halt and I could hear scrunching. When I ejected it I found that it was well tangled up and dripping with WD40.

When Terry left I settled down again to Mrs. Taffy's machine while Steven tackled Terry's. He got it right in the end, but it was hard going. He's gone out to buy a pencil, and if all goes well you'll be able to read about it in a subsequent VCR Clinic.

Ed's Fault Guide

Ed Rowland called in the other day and brought us a copy of his latest Amstrat, Logik, Matsui and Saisho Fault Guide which, he tells us, is selling like hot cakes. I'm not surprised. These makes are a mystery to many, and now that Mastercare no longer runs a technical advice service there's nowhere much to turn.

Whilst Ed was here we had a Matsui 1480A that refused to go into standby. Ed's guide referred us to R126, and fitting a replacement cured the trouble.

Another similar set we had in, this time a Saisho CT149X, suffered from loss of sync. The guide referred us to R507 (1 Ω), which was open-circuit. Again a replacement restored normal operation.

The guide also contams a Matsui/Saisho chassis equivalent table. Nice to see you Ed, and thanks for the Guide. Very useful.

An Osaki Portable

The next set on the bench was an Osaki 14in. colour portable. It looked like a Fidelity set and bore a label marked CTV14 underneath. We looked out a circuit we had obtained from Jackson Products. It was for an unspecified make but matched the set, which had field collapse with full beam current that couldn't be turned down by means of the brightness control. So we reduced the setting of the first anode control on the line output transformer to avoid etching the line into the tube's phosphors, then set about trying to find a voltage supply fault that could be responsible for both symptoms.

We soon found that 25 V supply F, which is derived from the line output transformer via rectifier diode D22 (RGP15J), wasn't reaching pin 9 of the TDA365l field output chip IC2. To get there it has to pass through the fusible 12Ω resistor R50 which was open-circuit. A replacement brought back the field scanning and restored the action of the brightness control. We gave the set a thorough soak test in case there had been some other reason for the failure of R50, but it behaved itself impeccably. So we passed it fit.

Triumph CTV8209

Immediately afteruards we put a Triumph CTV8209 on the bench. It too had field collapse and when we opened it we found an identical chassis to the Osaki set. So we went straight to R50 which was once again open-circuit. A new one put matters right.

Enter Mr Blowfly

Then Mr. Blowfly buzzed in with his Nikkai NVR500RC VCR.
"Dead - ha ha" he announced, "dead as a dodo, ha ha" and off he went.

We opened the machine, which looked like many other badge-engineered ones including the Alba 3000 and 4000 series, the Sentra VX8000, VX820 and VX500, the Solavox NCVR1000 and NCVR5000 and the Daewoo VCR30BDB/50DBD/50DFD/50DFP. They often come in totally dead or with just a few random display segments alight. I referred to them in this column a few months back, mentioning that the service manager of a multiple retailer had told me to add a $4.7 \mathrm{k} \Omega$ resistor from the positive side of C821, the 5.5 V "battery", to the base of Q809 to get the machine working again. Some correspondence followed. One reader insisted that replacing C821 was the answer. Another reported that having replaced C821 it was sometimes necessary to wind the cassette housing down by hand and then operate eject before the microcontroller chip would toe the line and normal operation was resumed. I've since found that sometimes the machine won't come to life even after doing this. But they always respond when the $4.7 \mathrm{k} \Omega$ resistor is added!

We checked the voltage across C821. As it read 5.5 V we wound the cassette housing down and operated eject. It made no difference. So we replaced C821 and went through

TEST CASE 365

The phone in the service department trilled for the first time on this bright morning. Putting on her plum voice our Pam picked it up and greeted Mr. Norris, who told her that he had just moved to the area from somewhere far away. Could we come and tune in his Sony TV set? Certainly.

The job was given to Philbert, who was soon on his way. He found a Sony KVX21TU with nought but snow on its screen. So he popped outside to check whether there was an aerial on the roof. There was. Back indoors then and try to tune the set. The auto-tune system seemed to be working, but at the end of the procedure none of the programmes came up when called. Manual search-tuning was tried next. All the local stations were found, but the set seemed to be unable to memorise them. Philbert checked with the user's handbook but found that he was doing all the right things. After a final try he loaded the set into the big van and, in the fullness of time, it reached the repair bench in the workshop.

Our rapidly improving trainee Sherlock was assigned to this one. Like Philbert and Mr. Norris, he found that the set couldn't memorise the station tuning data though it seemed to work properly in every other respect. Armed with the service manual (Sony AEl chassis), he removed the back cover and stared at the innards. He had an idea that the memory was maybe not being invoked because the store keyswitch wasn't making contact. A check with a continuity meter soon proved otherwise however: all the keys made contact correctly when pressed.

Plainly the set used some form of key-scan system, so Sherlock checked with an oscilloscope. There were plenty
the cassette housing procedure again. Still no good. We finally added the resistor and switched on. Hey presto! - the machine sprang to life with a full display.

Mr. Blowfly later called to collect it. We explained what we'd done. "Good, ha ha!" he said. "Thanking yew, ha ha, Mr. Block."

A Philips CTX-E

The last job of the day kept us working till late. It was a Philips TV set, Model 20CT2226/05T, which is fitted with the CTX-E chassis.

Once tuned in it would drift. We changed the 2.4 V "battery" without much confidence, and weren't too disappointed when this made no difference. A check on the tuning voltage with a digital multimeter showed that it was stable. We nevertheless decided to try a new control chip (IC7800). This made no difference, neither did a new tuner. Finally we checked the stability of the 33 V supply, which is stabilised by the ZTK33 chip D6101, and found that it varied intermittently between 33 V and as low as 29 V . A replacement ZTK33 chip produced a stable 32.8 V supply and solidly-locked tuning. Why hadn't we checked the 33 V supply first?
of pulses about, and when any key was depressed both contacts carried identical pulse trains. Time to look elsewhere. The core of the whole system is the microcontroller chip IC001, which provides the key scan and command decoding operations to control the tuning, and much else besides. There's also a subcontroller, IC002. Blimey! Sherlock wished he could swap over with Real Technician who, in the other corner, had a field-collapse job on his bench. After checking the presence and correctness of the 5 V supply and the clock oscillator output our man went off to concult the expert Television Ted - he was wreathed in cigarette smoke in the far corner as he soldered a line output transformer into a Ferguson TV set.

Ted's advice was to look for a memory chip, perhaps a PCD something or other, and check that. Back in the Sony set Sherlock found such a chip, IC003 - type M58655P, with fourteen pins. He checked that its 5 V supply was present at pin 1 and that there was plenty of pulse activity at its data pins. There was, so he decided to condemn it on the basis of amnesia perhaps it had had a knock on the head in transit! As the workshop didn't boast anything as exotic as an M58655P one was ordered from Sony, not without misgivings.

A couple of days later the replacement chip arrived. It was soldered in carefully, taking the usual precautions against the effect of static electricity. With the power applied and the aerial plugged in, Sherlock went through the tuning and memorisation procedure - only to find that just as before the tuning memory didn't work. What basic feature of this type of non-volatile memory system had been overlooked in investigating the cause of the fault? What else should in fact have been checked before replacing the memory chip? The cause of the problem was not specific to this particular make or model - it could crop up in any system that uses a similar control and memory arrangement. For the solution, turn to page 491 .

[^2]
SONY TUBES Reprocessed withonicinal sowr cuns

| HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes. | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3701822 | \$25.00 | A51-231X | $1 T$ | §46.00 | A51JARDOX | | ¢64.00 |
| 3702822 | \$48.00 | A51-570X | Mullard | \$46.00 | A51JKOOOX | Sony | £74.00 |
| $370 \mathrm{KRB222}$ | £48.00 | A51-580X | Mulard | §46.00 | A51JUH10X | Sony | £74.00 |
| 370LHB22 | ¢48.00 | A51-590X | Mullard | §46.00 | A53JBW00X | Sony | £64,00 |
| 400EFB22 | ¢58.00 | A56-540X | Mullard | §48.00 | A59JMZ40 03 | | £85.00 |
| $510 Y$ UB22 | §52.00 | A56-701X | IT | §48.00 | A59EAK00X | Philips | £64.00 |
| 520SB22 Sony | ¢64.00 | A66-540X | Mulard | §56.00 | A64JKJ10X | Sony | £95.00 |
| 560EGB22 Hitach | §54.00 | A67-701X | IIT | §56.00 | A66EAF00X | | £74.00 |
| $560 \mathrm{DYB22}$ | §54.00 | A34EACOOX | | £48.00 | A66EAK00X | Philios | £74.00 |
| 570HB22 Sony | £64.00 | A34JBU10X | Sony | £64.00 | A68JMT10X | Sony | ¢95.00 |
| 6800DB22 Sony | £85.00 | A44JEx10X | Sony | \$78.00 | A68JYK10X | Sony | $£ 95.00$ |
| 680EB22 Sony | £85.00 | A44JFZ10X | Sony | \$78.00 | AXM37-001 | | §48.00 |
| | | A49, ${ }^{\text {a }}$ TOOX | Sony | £64.00 | AXT37-001 | | £44.00 |
| | | A49,VV10X | Sony | \$74.00 | AXM51-001 | | £46.00 |
| | | A51EALOOX | | £64.00 | AXT56-001 | | £52.00 |
| | | A51EBSO0X | | £58.00 | | | |
| For tube types not :Isted please enquire
 All Tubes Guaranteed 12 Months | | Al prices quoted are excluding VAT Exchange CRT is required | | | Cal ers welcom: Please phone tirst Delvery Avalable | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

NEW TUBES IN STOCK - PLEASE PHONE FOR YOUR REQUIREMENTS

Very competitive, nationwide delivery and collection service

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips on your CRT screens All you require is an electric drill Witten instructions are provided Guaranteed to work Worldwide Delivery Total Price £63.00 includes P\&P and VAT Available from Luton only

WEST ONE
 Distributors Ltd.
 Chesham, Bucks.
 Tel. 0494778197
 Your local stockist are:

REPRINTS

 a ready made sales aidIf you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther

Room 1006
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229
Fax: 081-652 4728

STOCKS AVAILABLE

A WIDE RANGE OF OTHER TYPES AVAILABLE
OUTSTANDING QUALITY FROM ONE OF THE UK'S LARGEST BSI APPROVED MANUFACTURERS OF RE-GUN TUBES

Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
Tel: 0429837100
Fax: 0429837101

REPO

WE HAVE A NEW SCURCE OF EXCELLENT SETS. WHY NOT CALL IN FOR A CHAT?

We supply good quality working stock from a range of makes and models of both TV and video.

We have, been here for many years and generally supply people on a regular basis.

We hold large stocks - but no order is.too small.
REPOSSESSED TV CENTRES LTD, DAISY WORKS 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER M13 OLF.
Easy parking. Almost opposite main police station.

A TO Z ref. DI 61
06127434090612732854 Fax: 0612734486 ACCESS - VISA: CHEQUE - SWITCH - CASH.

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WIH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES

HAMEG are Europe's lop selling DUAL FRACE OSCILLOSCOPES. Select from four superb models. All, with the exception of the HM 1005, incorporate a usetul COMPONENT TESTER. Size - all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} x$ supply 1101220.240 V AC $50 / 60 \mathrm{~B}$
HM203-7 20MHz STANDARD

SPECIFICATION 2 Channels
Band width: DC - 20 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
Triggering: $\mathrm{DC}-40 \mathrm{MHz}$ Triggering: DC-40MHz
Active TV-Sync-Separator Active
Variable hold-of Trigger LED indicator Calibrator: 1 KHz Square wave Component tester
Plus many features
Price $\mathbf{5} \mathbf{3 2} .00+$ c63.35 V.A.T, FREE Specialist Carrier Delivery SPECIFICATIONS HM604 60MHz UNIVERSAL 2 Channels
Bandwidth: DC -60 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC - BOMHz Active TV-Sync-Separator After delay trigger Sweep dela
Delay line
Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \&$
Component tester
Price $\mathbf{5 6 5 3 . 0 0}+\mathbf{£ 1 1 4 . 2 8 \text { V.A.T. FREE Specialist Carrier Delivery }}$
HM1005 100MHz UNIVERSAL 3 CHANNELS. UPTOGTRACES

SPECIFICATION
3 Channels
Bandwidth: $\mathrm{OC}-100 \mathrm{MHz}$ Sens: Ch.1, Ch. 2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: 2.5s-5ns/cm Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering $\mathrm{OC}-130 \mathrm{MHz}$ After delay
Delay line
Trigger LED indicat
Trigger LED indicator
Active TV-Sync-Separator Acrive TV-Sync-Separator
Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MHzSq}$. Wave
Price $\mathrm{C} 847.00+\mathrm{C} 48.23$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Analogue real time (Same as 203-7) Bandwidth: DC -20 MHz
Sens: Ch.1. Ch. $2,1 \mathrm{mV} / \mathrm{cm}$
Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$
Triggering DC -40 MHz
Active TV - Sync - Sampling Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory: $2 \times 2048 \times 8$ Bit Dot joiner
Printer/plotter output
Price $\mathbf{C 6 5 3 . 0 0}+\mathbb{E} 114.28$ V.A.T. FREE Specialist Carrier Delivery

BLACK STAR COLOUR PATTERN GENERATOR

 THE ‘ORION' THREE-IN-ONEPAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Ori
.
ens, the Orion provides highly flexible TGB outputs, ensuring compatibility with most video mit TV sys More than 50 psttern combinations can be selected, including those for testing static and dynamic divergence. video amplifier linearity, colour purity, general colour pertormance, focus etc.
A separate video input to modulate camera signals, fully variable AF and vid A separate video inpul to modulate camera signals; fully variable RF and video outpul levels facilitat
ing AGC lesting; trigger outpul allowing easy triggering of difticull oscilloscope wavetorms
 table wide frequency coverage of VHF and UHF TV bands.
Indispensible in the manulacture. lest, and servicing
Indispensi
monitors.

FEATURES

Colour bars, pu
dots, focus, etc

- VHF/UHF Channels
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers - Internal/External Sound.

External Video Output.

- Trigger Output.
- Separate R, G, B and sync. O/P's. Separate R, G, Ba
RGB@TTL\&TV.
Green - 0.3V Syncs
- Composite Video Output.
- Variable RF/Video Output
- Switchable Video Polarity

Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
Size: $98 \times 219 \times 240 \mathrm{~mm}$.

Price $2229.00+$ £40.08V.A.T. NEW! DEGAUSSING COIL

A very effective degaussing coil, ideal for degaussing TV tubes, computer monitors, oscilloscopes etc. Mains Power: $220 / 24050 / 60 \mathrm{~Hz}$ Size: $355 \times 355 \times 24 \mathrm{~mm}$

Price $£ 46.00$ + £8.05V.A.T. B $\overline{\mathbf{\&}}$ K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

All CRT's checked identically, including all in-line and one gun types. Tests all three guns of colour CRT's simultaneously ${ }_{490}$ under actual operating conditions (model (model 490): Measure true dynamic beam current that actually passes through G1 aperture to screen? Measures all shorts aperture to screen Measures all Shorts tocus electrodes lead continuity finding taults that other testers miss "Uses most powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years Obsolescence proot perpetual sel up chart updated and new adaptors and oscilloscope tubes: A renates 40 CRT base adaptors available * Increase profit * Pays for itself In months.

Prices
 Wilhout adaptors.. Model 480 Single
Without adaptors... c496.00 + £86.80V.A.t. $C 425.00+C 74.38 V . A . T$.
$C 360.00+C 63.00 V$ A.T.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facifitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal levels can be accurately measured on the TC402-D. TC90 AND TC80, allowing the evaluation of readout, coupled to a multiturn tuning control enabling precise channel identification
TC402-D VHF \& UHF

FEATURES
 EATURES

Low VHF: $45-170 \mathrm{MHz}$
$\begin{array}{ll}\text { High VHF: } & 170-450 \mathrm{MHz} \\ \text { UHF } & : 450.862 \mathrm{MHz} .\end{array}$
Digital display for direct frequency readoul
Built-in monitor loudspeaker AM/FM.
Signal measurement from $20 \mu \mathrm{~V}$ to 3 V Powered by eight 1.5 V AA batteries.
Fully portable with sturdy carrying case
Fully portable with sturdy carrying case.
Price £289.00

¢50.57 V.A.T.
TC90 VHF-UHF-SAT.

FEATURES

Low VHF : $45-110 \mathrm{MHz}$
$\begin{array}{l:l}\text { High VHF } & : 110-300 \mathrm{MHz}\end{array}$
$\begin{array}{ll}\text { Hyper VHF: } & 300-470 \mathrm{MHz} \\ \text { VHF } & : 470-862 \mathrm{MHz}\end{array}$
Satellite $: 950-1750 \mathrm{MHz}$.
Digital display for direct trequency readout Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V . Signal measurement satellite -70 dB m to 10 dBm .
Audible indication of satellite signal lev (not satellite).
Powered by rechargable battery (complete with charger $220 / 240 \mathrm{VAC}$).
Fully portable with sturdy carry case.

NEW! TC80 SATELLITE

TC-8O IN ITS STURDY CARRY CASE

TC-80, USING A LCD TV AS A MONITOR

The TC80 incorporates three unique features: video composite output; audio output with built in RF signal ramp and which enable an oscilloscope to be used as a spectrum analyzer.

* 4 digit LCD Ireq. display
* Freq. range 950 to ${ }^{1750 \mathrm{MHz}}$
* Sweep mode sweeps entire freq. band for rapid satellite location * Tone select swith for
audible tone proportional to signal strength * Measurement tr 100dBuV internal loudspeaker * Video demodulation * Rear SCART connector - Oscilloscope/spection * ascilloscopetspe * Sound luning 5 to $8 M$ * LNC PSU 14V or 18 V * LNC current measuremen * Inlernal rechargeable
battery with charger

Price 5490.00 + £85.75V.A.T.

WILTSGROVE LTD

Definition BRAND
PORTABLE 14' REMOTE TV
21 PIN SCART, ON SCREEN DISPLAY, VHF/UHF, 12 MONTHS GUARANTEE etc.

* GUARANTEED LOWEST PRICE *,

CALL NOW FOR DETAILS
VASH OUANTITY OF "B" GRADE WORKINC: MHII SYSTIEMS from $£ 25$ 14". 20", 21" TV'S TO BE CLEARED

WORKING EX-RENTAL STOCK

PORTABLE TV'S
REMOTE / TELETEXT TV'S
LONG \& SHORT PLAY VCR'S etc.

HUCE RANGE OF SPARES

VIDH() IIVAISS, REM(OIE (CONTR(IS,
CASSL:TVI: HOLISINGS, ICS. FUSES,
 AT AN AFFORDABIE PRICLE.

28-29 RIVER STREET, DIGBETH LISA
BIRMINGHAM B5 5SA
TEL: 021 772-2733 FAX: 021 766-6100
ISP(ORT ENOUIRIES WILCOME

television

Subscribe to the magazine that experienced electronics professionals never miss

Whatever your interest in the world of television electronics, there's a wealth of news, advice and hard information for you in TELEVISION.

TELEVISION offers you a definitive guide to today's TV electronics business, keeping you up-to-date with new developments in TV, video and satellite - whilst furnishing you with 'hands-on' advice and information on the latest equipment.

EVERY MONTH - EVERYTHING YOU NEED TO KNOW

Once you are a subscriber to TELEVISION you'll enjoy a great information advantage. You'll be ahead of all of the latest product developments - you'll receive inside information on important techniques and time-saving work methods - and, importantly, you'll have access to the most comprehensive marketplace for components and services in the UK.

Servicing solutions
TV fault finding

- New Products

VCR clinic
Satellite TV
Equipment reviews

- Readers' letters
- CD players casebook
- Components
- News and comment
- And much more!

Quite simply TELEVISION is the 'bible' of the television electronics industry - if you want to keep up with the competition, you can't afford to be without it.

SUBSCRIBING IS SIMPLE
Complete the coupon and return it to us at TELEVISION, Reed Business Publishing, FREEPOST,
9th Floor, Quadrant House, The Quadrant, SUTTON, Surrey CM2 5BR

Please send me TELEUISIDI

\square One Year at a cost of
 £26

Two Years at a cost of $\mathbf{£ 4 9}$ SAVE £3Three Years at a cost of £70 SAVE £8
Name \qquad
Title \qquad
Company
Address \qquad

Postcode
Telephone Number

WAYS TO PAY
I enclose a cheque for $£ \quad$ made payable to Reed Business Publishing Ltd
Please charge my:

| \square Access | \square Visa |
| :--- | :--- |
| \square Diners Club | \square American Express |

Expiry Date \qquad
Please invoice me/my company
Order No.
4 Or alternatively just ring our credit card hot-line on 0622721666 and quote reference $I J 1$

Are you registered for VAT, Yes $\square \quad$ No \square If yes, please supply your registration Number

Please send a VAT receipt \square
Signature \qquad Date
Prices apply to UK, Isle of Man, and Channel Islands only.

BITHL SOUTH WALES GOOD DEALS ONTV \& VIDEOS ALSO USED SPARES INC TUBES
 Unit 11, Taveners Estate, Caerleon, Newport, Gwent.

(3 miles from M4, Junc. 25)

Ring Bob for prices on: 0633430040

The Euras System is the largest repair tips database for CD, TV and video in Europe.

Solutions

at your

 fingertips.The System has over 100,000 repair tips for 10,000 models from 250 manufacturers and is conveniently available as manuals, stand alone PC or videotext. The System now also boasts technical service data for computers from SAMS Computerfacts, available as manuals.

Euras International Limited
Heston House, 7-9 Emery Rd
Brislington, Bristol BS4 5PF
England
Telephone 0272724475
Fax 0272723374

SILVERSCREEN NEW MAJOR SUPPLIER

Of Thorn \& Granada ex-rental TV \& Videos. Deliveries throughout South Wales, Devon \& Cornwall. Call John on 0884256257 or visit us at
24 Gold Street, Tiverton Devon EX16 6PY
Export welcome

WHERE CAN YOU BUY 65,000 DOMESTIC APPLIANCE SPARES?

NEW CATALOGUE OF PATTERN SPARES NOW AVAILABLE

AT A COST OF ONLY £4 TO NON ACCOUNT CUSTOMERS (RE FUNDED ON FIRST £50 ORDER)

WHY NOT GIVE US A TRY WITH YOUR NEXT SPARES QUERY?

DATAPART LTD

ELECTRON HOUSE,
100 GREAT BARR STREET BIRMINGHAM B9 4BB
\square
V/KA

All prices shown now are
RETAIL Including V.A.T.
Pick \& Match - and deduct 10\% Discount
Choose a complete system of
receiver, dish and LNB from the lis below - add together and deduct your 10% discount.
STEREO SATELLITE RECEIVERS

PACE PRS 880
PACE PAS 900
PACE PRS 900.199 chn's. 2 mputs wice band sound inverse vision
PCEE PAS 901199 chis.

Sat compalibe
ECHOSIAR API 1500

LENSON HEATH ALLOY DISHES (OHH set|-
manuiacturers 10 Yoar anti-corrosion warranty
63 cr oval mesh, black, pole/wall fix
80 cm oval mesh, black, wall fix
80 solia black ot tight grey, wal
Pole adaptor for 80 cm dishes
100cm solid light grey $2^{2 "}$ pole mount
the components at the end of this columin
CHANNEL MASTER SMC DISHES (OHsel
90 cm neluding pola mount - requifes 3 " pole
LNBe
CONIN
TRADE STOCK ALWAYS AVAILABLE
Trade Price List available on request to man ${ }^{1 \text { mamer }}$
 EwGhard

1977

XTRA LINK

 STC ASDE LNB 23.40 mm collar
STC WNIN LNB 23.40 mm collar 4. Way Swich Ior Twn or Dual LNB
4. Way Swich (as abovere) wim Terestrial Aerral Input For our $80-100 \mathrm{~cm}$ dish - the H MOH POIIA Mounl and Molor
 PACE MSP 990 - Fully integrates with above TIONERS

NOKIA POSIITONEA | - Fuly inte |
| :--- |
| oporaling |
| ONFP |
| TIONER |
| Tilioneis can |

$E 26.000+\mathrm{po}$
$\varepsilon 56500+\mathrm{PO}$

AGENTS FOR TV ASIA
TV ASIA VIEWING CARDS

| | AGENT FOR
 THE ADULT CHANNEL
 VIEWING CARDS
 AVAILABLE ON REQUEST |
| :---: | :---: |
| DECODERS | |
| THOMPSONS, Secondhand, Videocrypt around $¢ 79.00+\mathrm{pp}$ | |
| PACE VC100 Videocript | crrpt - $\mathrm{l}^{11500+\mathrm{pp}}$ |
| PACE D100, 22 Mac, Eurocry | |
| RAIUNO-DUE. Discreet decoder | reet decoder $-\quad ¢ 12900+\mathrm{pp}$ |
| SECAM.PAL Transcoder | coder … |

| Does not require your old remote | The intelligent range |
| :---: | :---: |
| contrio or cemole | |
| controt commmands | Fox 400E ... £34.95 |
| beccuuse your requirement | Fox 600E £49.9 |
| alteaty stcred in its | Fox 800E |

TRADE STOCK ALWAYS AVAILABLE
021-784 8478
FAX: 021-789 7931

LITTLE EXTRA

Electronic Amstraa LNB Swich outcoor use

JW Hardy
231 Station Road,
Stechford,
Birmingham B33 8BB

U.H.F Antenna

Sat. Antenna

 THE LENSON HEATHEFLEC

9 TM Mast sise enty

CMANNEL MASTER REFLECTORS

 Wall Floor Stand
THE TECHNNAT FLAT PLANE
45 cm Flat plate antenna

Volizrcoxalicabli

TELEPRICE LIMITED

- SUPERB RANGE OF TV'S \& VCR'S - THORN \& GRANADA

O DIRECT LOADS AVAILABLE FROM SOURCE

EXPORT ENQUIRIES WELCOME

'B' CBADE SWITCH ON TO TOP QUALITY BRANDS

PHONE

 TODAYOF
ALL SIZES OF SCREEN TV AVAILABLE BOTH IN FAST TEXT \& DIGITAL NICAM STEREO

VIDEOS: CURRENT MODEL

Single, Twin Speed, Nicam S-VHS

CAMCORDER

C FORMAT, FULL SIZE, 8 mm MICROWAVES PORTABLE HIFI SATELLITE - VIDEOCRYPT

PORTABLE £90

FULL REMOTE, BOXED

| CTV LONDON | CENTRAL TV WHOLESALE |
| :---: | :---: |
| Eley Estate, Nobel Road | DISTRIBUTION LTD |
| Edmonton N18 | 369 Stratiord Road, Sparkhill |
| TEL: 081-8074090 | Birmingham 811 |
| FAX:081-884 1314 | TEL: 021 -772 1591 |
| | FAX:021-766 6383 |

GREWZ

Large selection of working TVs including working F.S.T.s

Videos - working or untested
EXPORT William St., Crewe, Cheshire INVITED Tel: 0270582924 Fax: 0270505470 Open Mon-Frl 9.30-5.30

BLAGKBURN

Guaranteed untested stock Plus selection of working TVs

Deliveries every Monday and Thursday
Working and untested
School Lane, Guide, Lancashire Tel/Fax: 0254264489
Open Mon, Tue, Thu, Fri 10.00-4.00
Prices lists available

THETNET

OSCILLOSCOPES -
Could OS4200 digital storage.
Tektonix $2230,100 \mathrm{MHz}$ dual channel, digital
 Hewlett Packard $1741 \mathrm{~A}, 100 \mathrm{MH}$-z dual channel wth Tektronux $2445,150 \mathrm{MHz}$ dual channel $£ 1250$ anaiogue storage.
 araiogue storage................................... 5350
Tektronix $7403 \mathrm{~N}, 60 \mathrm{MHz} 4$-channel.............. from $£ 330$
Philips, 321115 MHz dual charnel from $£ 150$
Tektronix $7600,100 \mathrm{MHz} 4$-channel............ fom $£ 330$ Philips, 321750 MHz dual channel................trom $£ 250$ Tektronix $7623,100 \mathrm{MHz} 4$ channel with analogue
 Philins 3261 120MH dual $£ 325$ Tremel Tektronix 453. 100 MHz dual chanrelror $£ 235$ Telequipment DU4 dua Channel (bantery mains)

Frequency Counters available

| Racal Dana $9000,520 \mathrm{MHz}$ | Racal Daru 9901, 50 MHz | Racal Dana $9819,1 \mathrm{GHz}$ |
| :---: | :---: | :---: |
| Racal Dana $9500,520 \mathrm{MHz}$ | Racal Dara $9903,50 \mathrm{MHz}$ | Marcon TF3432, 560 MHz |
| Racal Dana $95200,20 \mathrm{MHz}$ | Racal Dana $9905,200 \mathrm{MHz}$ | Marconi TF2435, 2 GHz |
| Racal Dana $9 \times 24,360 \mathrm{MHz}$ | Racal Dara 9917.560 MHz | Hewlett Packard 5342A, 18GH2 |

Mgital Muhtimeter:

Racal Dana 5003
Fluke 8011.AB05018600A
$\begin{array}{lll}\text { Advance Alpha II } & \text { Fluke } 8801 \mathrm{~A} & \text { Kiuly } 191 \\ \text { Solartron A210/LM1420, }\end{array}$
Gould Alpha III and Alpha IV
Keithly 191 Datron 1041/:051
Manch Solartron 7045

Many nare items a vailable such as power supplies, puise generators, function generators, synthesisers, power meters, spectrum analysers, charl recorders, LCR bndges, osccilators, Lsolatng transformers, variacs, level meters, ncise generators, pats testers, AMFM signal generators and noduation neters atc.
Send SAE for price List of equipmert too numerous to list

Special Packcage for sale as whote (Cable TV equipment)
Wavetek $1855 B$ CATV sweep transmitter $\times 2$, Wavetek 1865 CATV sweep analyser $\times 3$, Wavetek MO66IE CATV field strength meter $\mathbf{~} 3$, Wavetek CRW I CATV card reader \mathbf{x} I, Wavetek SAM IR CATV 450 MHz signal analyser meter $\mathbf{\geq} 3$ - ALL PACKAGE FOR SALE AT £2.5k

All equipment is used, with 30 days guarantee. Please check for availability before ordering Camage and VIT to by added to prices. Send for Price Lusts

8 CAVANS WAY
BINLEY INDUSTRIAL ESTATE
COVENTRY CV3 2SF
(Premises situated close to Eastern By Pass in Coventry with easy access to M1, M6, M40, M69, A45)
Telephone: 0203-650702 Fax: 0203-650773

BESCO LTD EX-RENTAL TV's \& VIDEOS

NEW 'B' GRADE MAJOR BRANDS TV - VIDEO - HI-FI

PORTABLES • FST's • NICAM • FASTEXT • SONY • HITACH • PANASONIC • ETC 100's of Ex-Rental \& H.P. Repossesions from $£ 10$ VHS Video from $£ 30$
Huge selections. Complete range - All makes and models available.

^ NEW STOCKS EVERY DAY \star

PICK YOUR OWN VHS VIDEOS - Lots of 10 £20.00 each
Working Ex-Equipment Panels

| | IF | Converger | Decoder | Line Scan | Power |
| :--- | :--- | :--- | :--- | :--- | :--- | Frame

All prices include Postage \& Packing. But + VAT

BRADFORD

16 Bottomley St
Manchester Rd, BD5 7JL
Ring Tony (0274)308186

MANCHESTER
Unit 3, Mersey Rd. North End Est., Failsworth Ring David (061) 6834612
. 8 V 3 Visa/Access Welcome Prices are Plus VAT \& Based on Ouantity OPENG DAYS9-5 FAX 0274722229

NEW BUYS ON B GRADE STOCK ALLOWS US TO OFFER YOU THE FOLLOWING

14" portables working 885
All boxed with instructions
R/Clong play videorecorders working 199

DISCOUNT
ON All boxed with instructions

QUANTITY
21", 25" and 28" Nicams working
All boxed with instructions
TEL FOR PRICE
B grade Audio from £12 many working
Customer returns in block.
Example. Untested $3 \times 21^{\prime \prime}$ FST $3 \times 25^{\circ}$ FST
$\mathbf{6 x F / L}$ Videos $\mathbf{8 4 0}$ each. Total $£ 480+$ VAT This price does not include handsets. Some in need of repair, some working.
Ex-rental TV \& Videos, all untouched.
Basic £15 R/C £20 \& £25 Text £25 \& £30
Videos T/L £20 F/L £25. All untouched.

[^3]
ELECTRA TV LTD

Unit 5, Santa Pod, Nr Poddington Airfield, Hinwick, Wellingborough, Northants NN9 7JQ. Telephone 0234782944

Rediffusion MK4/MK4A

Working TVs

Basic $£ 30.00$
Teletext £45.00

Off the pile

Basic £20.00
Teletext $£ 30.00$

Price list for spares

Line board 90/110 working £10.00 each
Power board 90/110 working £10.00 Used handsets working $£ 6.00$

> Also other spares available.

Export enquiries welcome.

[^4]
BRITAINS LARGEST INDEPENDENT PRESENTS THE LARGEST STOCK OF ‘B’ GRADE

THE TV \& VIDEO WHOLESALERS WITH A FRIENDLY SERVICE

 TV
$20^{\prime \prime}$ R/C TV $£ 75$
51 cm R/C TV $£ 80$
Portable R/C TV $£ 75$
Basic Portable TV £60

Graded Teletext TV 20" Teletext TV $£ 90$ 51 cm Fast-text TV $£ 130$ 59 cm Fast-text TV $£ 150$

Graded VCR's

A multitude of top brands eg JVC, PANASONIC, SONY, AKAI, FERGUSON, HITACHI, Etc, Etc

TOP QUALITY EX-RENTAL TV's \& VCR's MASSIVE STOCK OF EX-RENTAL UNITS AVAILABLE AT EXCELLENT PRICES

DONTMSSOUT, PHONENOW!

(PRICES EXCLUDE VAT)

PRESTON
139 Oakshott Place
Walton Summit Ind Est
Preston (M6 Junc 29)
Tel: 0772312101

BIRMINGHAM
208 Bromford Lane
Erdington
Birmingham B24 8DL
Tel: 021-327 3273 Fax: 021-322 2011

LONDON
Unit 2 The Royal London Est 29/35 North Acton Road London NW10 Tel: 081-961 5005

ADVERTISERS' INDEX

| Aerial Techniques 493
 Anglian TV Wholesale .. 528 | ICS Intertext Group 469 |
| :---: | :---: |
| | |
| A-Z Electronics 508-509 | J.J. Components 481 |
| Besco Ltd 524 | Manor Supplies........... 479 |
| Bi Tel 519 | Marapet 517 |
| BK Electronics 516 | Pays UTV................. 508 |
| Bull Electrical 472 | Powell, T................. 519 |
| Campion Wholesale TV | P.V. Tubes 469 |
| Ltd.......................... 528 | Repo TV 515 |
| Central TV Wholesale | Redbank 527 |
| Ltd......................... 523 | |
| Centrevision 517 | Sendz Components 535, |
| Coastal Aerial Supplies 528 | 536, IBC \& OBC |
| Crewe Wholesale TV 523 | Silverscreen 520 |
| CTV 526 | Stewart of Reading 519 |
| Datapart Ltd . .i.a.i....... 520 | Swift TV Publications.... 508 |
| | Telecentre 528 |
| East London Components | Teleprice Ltd. $\mathbf{5 2 2}$ \& 529 |
| 469 | Telnet 523 |
| Economic Devices 500-501 | |
| Electra TV................. 524 | Vista Electronics 515 |
| Euras International Ltd 520 | Well-View 515 |
| Eye View …............. 517 | Western Trade Services 527 |
| GGL Components 470-471 | Willowvale Electronics |
| Gogglebox................ 526 | Ltd....................... IFC |
| Grandata 462-468 | Wiltsgrove 517 |
| | Woodhams TV Ltd 527 |
| Hardy, J.W................ 521 | W. Tree Trade |
| Hussein TV................ 525 | Warehouse 524 |

| RE STOCKING FOR NEW YEAR?
 B GRADE NOWV IN STOCK
 AII, PACKI:ID IIKE NEW IN BOXRS WITH ORIGINAI. PACKING HANDDET \& INSTR |
| :---: |
| |
| B GRADESTOCK RETURNEDGOODS |
| $14^{\prime \prime}$ Portables from£70 14" Portables from£25
 $20^{\prime \prime}$ Remote CTV from.... $£ 105$ Front load VHS from $£ 50$
 $20^{\prime \prime}$ Fastext from.............. $£ 140$ Midi Hi-Fi's from.............. $£ 20$
 UP VHS from............. $£ 120$ $21^{\prime \prime}$ CTV from $£ 40$
 $10^{\prime \prime}$ Mains/bat from..........£90 Radio Cassettes from£15 |
| COCG EBOX 0532-310359 discount electrical warehouse ASK FOR ROBERT ALL ABOVE PRICES PLUS VAT AT 17.5\% |

| Est 14 Years | WOODMMSM |
| :---: | :---: |
| ESTERN 2A BARTON HILL ROAD | |
| TRADE DEVON | - NOW OPEN - |
| | |
| | New wholesalers of |
| DELIVERIES 10 DEVON-CORNWALL WEEKIY | Thorn \& Granada |
| NOW OPEN IN WALES | ex-rental TVs and Videos |
| | * Working - Non-working |
| UNIT 6
 ISLWYN WORKSHOP | * Many Opening Offers |
| TRADE ${ }_{\text {PORTYMISTER }}$ RISCA GWENT ${ }^{\text {RSTATE }}$ | Open Mon-Sat 9.30-5.30 |
| SERVICES $\begin{aligned} & \text { TEL: } \\ & \text { FAX } 06333612667 \\ & \text { P6 }\end{aligned}$ | PHONE NOW |
| SUPPLIERS OF EX-RENTAL | 124-3255: |
| THORN \& NON THORN TV \& VIDEO | UNIT 8, CUTLERS |
| | CHELMSTORD, ESSEX |

TELECENTRE

NOW OPEN 7 DAYS A WEEK FOR TOP QUALITY EX-RENTAL AND 'B' GRADE TV'S AND VIDEOS.
WEEKDAYS OPEN
TILL 9PM. WEEKENDS \& EVENINGS BY APPOINTMENT.
15 MINS FROM JUNCTION 16 M6 79A COLERIDGE WAY, CREWE.
TEL: 0270589392
ACCESS AND VISA WELCOME

AERIALS

FOR TV \& FM RADIO, PLUS 1000 's OF MASTS,
BRACKETS, LASHING KITS,
CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC. MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES. AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE, LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

To advertise
 in our
 Wholesale Section of Television, please ring
 Pat Bunce
 on
 081-652 8339

TELEOTSTOK

| QUALITY USED T.V. |
| :---: |
| \& VIDEO |
| COMPLETE RANGE OF |
| T.V.'s AND VIDEOS |
| MOST MAKES AND |
| MODELS AVAILABLE |
| STOCK ARRIVING DAILY |
| T.V.'s from £3.00 |
| Videos from £30.00 |
| PricesEx-VAT |

Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9ab Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.

0299-8796420r 879643 FAX:029987984

CAR RADIO DECODING EQUIPMENT

Due to the increasing popularity of our decoding equipment, we are now in a position to actually REDUCE our prices. As well as this, there have been substantial improvements made to the software, ie. case sensitive help screens have now been installed to guide you through the various stages of the program. On screen PCB layouts are now included as standard, as well as many other enhancements making the system even easier to use than before. The range of radios covered has also been expanded.
This latest version of the software is available to any of our existing customers absolutely free!

For further information and prices please contact us at

Electronic Sound Systems

62 High Northgate, Darlington, Co. Durham Tel: 0325484089 or Fax: 0325465921

TUBES

REBUILT CRTs VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphers
B.S.I. Certification
N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

\longrightarrow SERVICE DATA

E.C.S. INDEXES!

THOUSANDS SOLD WORLDWIDE

Edition 9 of the complete indexes now published containing approx 8,000 Faults listed in 12 Years of Television magazine.
Indexes are alphabetically listed by Make, Model, Fault, Ref and are now available for just:
£8.00 For Television \& Satellite Faults £8.00 For Video, Camcorder \& CD Faults
Or $£ 15.00$ for both sets complete with chassis \& similar model guides. Please add $£ 1.50$ (UK), $£ 3.00$ (Overseas) to total order to cover post \& packing.

> A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER.

To secure your copy/s please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

WANTED!

TV, VIDEO, HI-FI, ETC EX-RENTAL OR
RETURNED GOODS
CASH ON COLLECTION TEL:
0553776870

GERMAN SERVICE SHEET
 SPECIALISTS

DÖNBERG ELECTRONICS Schoolmasters House Rannaiast. Co. Donegal. Republic of Ireland.

Phone: 07548275

SERVICE MANUALS

For most U.K. European, Far East \& USA types of TV - VIDEO - CAM - SAT - MMAVE - CD and all at reasonable prices
VCR circuits also available separately for some models Some examples from thousands of video manuals available. These are all complete at $£ 10$ each
PANASONIC NV-FS100, L20, NV-MC10, MC20, VC30, MS50, ORION D500, D1000/1100, D1200, D1500, D2000 FERGUSON FV11R, FV12L, FV13H, FV14T, FV20E; FV30B DAEW00, DVP1171, 1373 DVR4167, 4561, 5*66 For other makes \& models phone for price \& availability All U.K. orders subject to £1 p\&p. No VAT

D-TEC
PO BOX 1171, FERNDOWN, DORSET BH22 9YG. Telephone: 0202870656

CLAS5IFIED CLR5SIFIED CLA5SIFIED CLASSIFIED CLASSIFIED

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE
Tel.(0698) 883334 Mon-Fri 8.30am - 5.00pm or (0698) 888343 Outwith business hours FAX facllity avallable all day on both llines
Write now with an SAE for your FREE QUOTE, FREE CATALOGUE \& FREE NEWSLETTERS
ANY TRADE ADDRESSES GIVEN !FREE! JUST PHONE TO FIND THE NUMBER/ADDRESS YOU NEED All orders under $£ 20.00$ please add $£ 2.00$ p\&p, Under $£ 30.00$ add $£ 2.50 \mathrm{p} \& \mathrm{p}$, Orders over $£ 30.00$ post free.

A few fast selling titles from our stock of over 200

Practical TV Repairs 2nd Ed. $\mathbf{E 1 6 . 9 5}$ CTV Servicing by G.King $\quad \mathrm{I} 16.95$ The PAL System $\quad 8.50$ TV \& Video Technology $£ 14.95$ TV \& Video Engineers P/Book \&14.95 Practical Radio Serv'\& Repair $\mathbf{2 1 2 . 9 5}$

Domestic Equip' Serv' \& Rep' $£ 30.00$

 Servicing Mono TV's £17.95 Buy-Sell-Repair Used TV: $\mathbf{2 9 . 9 5}$ Microwave Servicing $\quad \mathbf{8 9 . 9 5}$ H1-FY Servicing Guide $\quad \mathbf{9 . 9 5}$ Buy-Sell-Repair Used VCR's $\mathbf{£ 9 . 9 5}$| Refrigeration Pocket Book | $£ 1496$ |
| :--- | ---: |
| Spectrum Fepair Guide | $£ 5.00$ |
| BBC Micro A B + \& perlpherals | $£ 2500$ |
| Europ'n Scrambling Sys ${ }^{\circ}$ New Ed* | $£ 3200$ |
| Newnes Dara Com P/B ${ }^{*}$ New* 2nd Ed | $£ 1296$ |
| Newnes Electr Assembly P/B ${ }^{\circ}$ NEW* | $£ 1496$ |

Complete Ilst of all Service Manuals, Service Sheets, Technical Manuals \& Circults In the Data Reference Manual 3ra Ed. £5.95 WE ARE THE SOLE SUPPLIERS OF MOST FAULT-FINDING GUIDES, REPAIR MANUALS \& TECHNICAL MANUALS

INTEGRATED SYSTEMS FROM TIS

WAURIITON IECHNCALPUBLCATIONS

A selection from our range of Technical Books and Guides for the TV \& Video Trade

TELEVISION EQUIVALENTS. New Book lists Exact Equivalent for Many different Makes. Order MP-150. £5.00 TELEVISION CHASSIS GUIDE. Identify your TV chassis from the model number. Order MP-18. £5.00 VIDEO RECORDER \& CAMCORDER EQUIVALENTS. Makes A J. Order MP-217. £5.00

Lists all known models and their Equivalents. New 2 Volume Set. Makes K - Z. Order MP-218. £5.00 VIDEO RECORDER FAULTS Repair Guide for Beginners. Know where to start looking! Order MP-5. £3.00 VHS VIDEO RECORDER PRINCIPLES Essential Theory on the Principles of operation of VHS Order MP-58. £3.00 CMOS DATABOOK Detailed Specification on the 4000 Series with circuits. Order MP-10. $£ 5.00$ TTL DATABOOK. Detailed Specification on the 7400 Series with circuits. Order MP-34. £5.00 TRANSISTOR EQUIVALENTS AND TESTING MANUAL. Inc/udes Testing Procedure. Order MP-24. £3.00 Order MP-9. £3.00 POWER SUPPLIES, STABILISERS \& VOLTAGE REGULATORS. Inc/udes Circuits REMOTE CONTROL CIRCUITS - TV. Dozens of Remote Control Circuits for Colour TV's. MANUFACTURERS EQUIVALENTS. Know which Makers Trade Names are the Same. Order MP-167. £10.00 Order MP-220. £3.00 VIDEO HEAD CLEANING KIT. Unique Kit with Comprehensive Instructions on how to do it right. Order VHCK. £4.00 VIDEO TEST JIG. Run the machine and gain access to the mechanics as well. Order VTJ. £15.00 SCART EUROCONNECTOR SYSTEM. Detailed Pinout Specifications of this interface. Order MP-21. £3.00 SWITCH MODE PSU IC TYPE TDA-4600. Comprehensive Details of this popular TV PSUIC. Order MP-37. £6.00 TELETEXT REPAIR MANUAL. Covers the SAA range as used in many Sets. Order MP-38. £6.00 P.C. HARD DISC DRIVE REFERENCE MANUAL. Specifications of Hundreds of Hard Discs. Order MP-84. £5.00 CITIZENS BAND RADIO CIRCUITS MANUAL. Covers Dozens of popular models. Order MP-40. £10.00 RECORD PLAYER SPEED DISC. Lets you accurately align any turntabie speed. Order MP-8. £1.00 CITIZENS BAND RADIO DATA REFERENCE BOOK. Technical Specifications of C.B. IC's. Order MP-165. £5.00 TELEPHONE CODE LOCATION GUIDE. Find the Town from the Phone Code. Order MP-19. £5.00 VALVE AMPLIFIERS CONSTRUCTION MANUAL. Full Building Detaiis for Vintage Buffs. Order MP-173. £5.00 VINTAGE WIRELESS SERVICING. 2 Volume set covers Vintage Servicing in detail. Order MP-22+35. £6.00 OFFICE EQUIPMENT EQUIVALENTS. Complete Cross Reference for all Photocopier or Fax. Order MP-200. £6.00 REEL TO REEL TAPE RECORDER SERVICING. Details on Reel Servicing for Collectors. Order MP-201. $£ 5.00$
SERVCEMANUALS

WE HAVE THE MOST COMPREHENSIVE LIBRARY OF SERVICE MANUALS AVAILABLE ANYWHERE. From the Earliest Valve Wireless to the Latest Video Recorder. Originals or Photostats as available.

Colour Televisions, Video Recorders, Test Gear, Audio, Computers, in fact practically anything. If you need a Service Manual, Give us a call.

AMSTRAD HANDSETS

 VCR4600, 4600MkII VCR4700 (Not long play) VCR5200VCR6100 (Indexer) VCR6100 (Barcode Indexer) VCR9000 (Old type)
TVR 2
TVR 3
SRD500
TS90/99 Tower System
AMSTRAD LOPTS
CTV1000 FB182K CTV1400 FB165KA CTV1401 3714002 CTV1409 3714002 CTV2000 FB171 CTV2000 FB171K CTV2200 3722002 CTV2210 3722002
TVR 21810951
TVR 3181297
CTM644 Mkll 3714009
PC12-HRCD/D MSH1FCT31 PCW9512,8256,8512
FERGUSON LOPT
MM06 00D4242001
AMSTRAD TUNERS
UE33-B01
UE2-B31F
1810829
ENV87358F2
ENV87509F2
UVE33-F01-VHF-UHF
UVE33-F02 VHF-UHF 1813766 VHF-UHF

Harrison

 ElectronicsCENTURY WAY, MARCH, CAMBS PE 15 BQW. FAX: (0354) 51416. TEL: (0354) 51289

11 17 11

18198221
30-2
11.75 VCR4600Mkll,4700
25.85 SRD $100 / 200 / 400$
29.38 AMSTRAD SERVICE
13.22 MANUALS
17.63 VCR4600
11.75 VCR4600Mkll,4700
11.75 VCR8700

VCR8800
1.75 VCR9000/9004
11.75 AMSTRAD
14.10 OPERATORS MANUAL
9.40 PC1640
9.40 AMSTRAD VCR
14.10 MECHANISMS
$13.514500,9000$ (Old model)
13.51 CASSETTE HOUSING ASSY.
14.10 4600,4700,TVR1,2,3
7.05 COMPLETE MECHANISM ASSY (Excluding Video Heads) COMPLETE MECHANISM ASSY
4.70 (Excluding cylinder assy.) MECHANISM DECK
9.40 (Excluding Cass. housing assy.
5.88 \& Cylinder assy.)
7.05 CASSETTE HOUSING ASSY.
7.05 CYLINDER ASSY. (incl. Standard play
5.88 Video heads)
14.10 CYLINDER ASSY. (excluding
14.10 Video heads)
14.10 CYLINDER LOWER DRUM ASSY
(Excluding Motor)
HEAD BASE ASSY. (Audio)
AMSTRAD IF UNITS
TPS7-B0006
TPS7-L0002
1813766

AMSTRAD MOTORS

7.05 Loading Motor MCB9B02 5.88 Drum Motor E20EL 05
5.88 Capstan Motor LLN4B21
5.88 Tape Loading MCF9B02

AMSTRAD PCB's

(Complete, fully populated) 9.004500 Timer
9.004500 Systems Control
8.004600 Systems Control/Servo,
6.00 Display \& Control PCB's
9.004600 Display

4600 Control
4600 Video \& Audio
4600 Power Supply
11.75 4600Mkll Main PCB Assy. 4600MkII Timer 4600 MkII Control
4600Mkll Head Amp Assy
4600MkII Power Supply
4700 Main PCB Assy.
4700 Timer
4700 Control
4700 Head Amp Assy.
4700 Power Supply 5200 Timer \& Channel Disp. 5200 Video
5200 Switch Panel
7000 Switch PCB no: 7
CTV1400 Switches, Presets \& Tun
(UE2-B31F)
CTV 1400 Switches, Presets \& Tune
(ENV87358F2)
CTV1400 Switches, Presets \& Tune
ENV87509F2)
20.56

CTV2200 PCB
9.99 CTV2200 PCB no:4
5.88 TVR 1 Control Panel \& Presets

TVR 2 Main TV PCB
TVR 3 Main TV PCB
9.40 TVR 3 TV Power Supply
14.10 TVR 3 Head Amp Assy.
14.10 TVR 3 Video Power Supply
10.58
29.38
11.75
5
5.88
3.53
9.99
9.99

Various Video PCB's ana
Houn
Housings available - see our full list for parts and prices.
BSR DECK
9.40 SM103/104 Linear tracking Record

Deck
17.63
17.63 SANYO VHR1110.
14.63 1150, 1300, 1700, 2300
40.82 FUTEK F501 Replacement Video
14.10 Heads
7.05

AMSTRAD PC12MD
VGA MONO MONITOR
40.82 Suitable for use with $2000 / 3000$
14.10 series and any other VGA compatible .88 PC
64.63

AMSTRAD SOFTWARE
.6. ACCOUNTSMASTER Lan 17.63
14.10 (Full accounts program for running
4.7((small business on any PC)
2.35 INFOMASTER
(Easy to use Database, runs on PC)
AMSTRAD COMPUTER \& PRINTEA SPARES - Many spares available, please phone for price.

PRICES INCLUDE VAT.

all items are brand new and guaranteed

* * SAME DAY DESPATCH **

Write or Phone for FULL catalogue.
POST \& PACKING
, mint **EXTRA**

SURPUSS REONDDNT EIECTRNNIC COMPOMETS WANTED
ICS - Tuners - Transistors - Valves Dindes etc. any quantity considered immediate payment.

ADM Electronic Supplies
Tel. $0827873311 . \quad$ Fax 0827874835

SECONDHAND SPARES

WORKING PANELS, MODULES, CHASSIS, TUBES, PHILIPS G $11, K T 3$, GEC, GRANADA FINLANDIA REDIFFUSION Mk3, Mk4. Phone Dennis Francis for prices on $071-6391543$ or 0831541077. 71 Ondine Road, Peckt:am, London SEl's 4 EU. CALLERS BY APPOINTMENI ONLY

Southwest Electronics Tel/Fax 0736755454

 When you are looking for that hard to find component, even for the most obsolete modet We stock eventhing, for all makes, thousands of spares are available, i/ct's, transistors, crt's valves, video heads, switches, leudspeakers etc. If we don't stock it, it does not exist. For quality spares for any appliance at rock bottom prices!CALLSOON!

SOFTWARE

RELAY
OMAGH LTD COMPUTER SOF TWAHE

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?

DO YOU FIMD IT DIFFICLIT TO KNOW YOUR ARPEARS TOTAL AT ANY GIVEN TIME?

If you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately availabie
* easy to use and operate

NEW MRE PURCHASE PROGRAMME NOW AVAHABLE AS WELL.
These programmes operate on all IBM compatibles running under MS-DOS Free demonstration discs available

Telephone Beragh 58214 (0662 7!

MISCELLANEOUS

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!

follow electronic control systems

SWIFTPARK LIMITED

ovan component

TRADE ONLY

MICROWAVE OVEN PARTS

MAGNETRONS • DIODES • TRANSFORMERS LAMPS • FUSES • MICROSWITCHES

PHONE NOW FOR PRICE LIST A.W.I. MICROWAVE OVEN COMPONENTS

Samuel Whites Estate, Medina Road,
Cowes, Isle of Wight PO31 7LP
Telephone: 0983296121
Fax: 0983296122

[LASSIIFIED CLRSSIFIED CLR5SIFIED CLAS5IFIED

GADGET-SAT
Trade \& Retail Mail Order
Unbeatable Bargains

Amstrad 510 Brand New \& Boxed Pace 9200IRD Ex-Demo Phoenix Sakura 16 ch Stereo - New Phoenix/Sakura 16ch Mono - New Other
Little Wizzard Polar Arm - Only N.T.1.2dB LNB Best Price 80 cm Dishes - Mesh or Solid Cplte 60 cm Dishes Mesh or Solid Cplte

Satellite Receivers. (PAL)
$£ 145.00$ Refurbs - Blue Cap LNBs (Marconi) $£ 22.50$ £145.00 Refurbs - Videocrypt Decoders
£45.00 Ex-BSB Equipment/Upgrades
£40.00 Ferguson SRB1 PCB - Limited Stks $£ 14.50$ Ferguson SRB1 Remote Control $£ 2.50$ $\$ 15.00$ Ferguson SRB1 Servic Mana
$\begin{array}{llr}£ 15.00 & \text { Ferguson SRBI Service Manual } & £ 4.75 \\ £ 39.00 & \text { SRB1 Compat. PAL Upgrade Board } & £ 20.00\end{array}$ £45.00 Phillips STU902 Service Manual £30.00 Ferg./Phillips Compat D2MAC U/G£15.00

NO HIDDEN EXTRAS - ALL PRICES INCLUSIVE

GADGET COMPUTER \& SATELLITE SERVICES
Mail Order Division - P.O. Box 4
Tonypandy, Rhondda, Mid-Glamorgan CF40 1YA
Tel: (0582)-868687 - Mail Order Only

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS

PHONE 081-948 3702 FAX: 081-332 0583
AIBA AMSTRAD BUISH DECCA DORIC BI AUPINKI FERGUSON. FIDELITY GEC GRUNIDG GRANADA hitachil hinari inilesit ilt kimara nikial MATSUI MURPHY OSAKI NORIDMIENDI LOLWE OMPI REDIFFUSION PYE PHIIIDS SANYO SAISHO SHARP sony solovox susumu tandburg, TEliblakin THIORN TRIUMIPH HU ANYU GOLDSTAR BINATONI

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS.
 LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMIAN MAIL ORIDER LTD . 236 SANDY(OMBE ROAI)
RICIIMONI) . SI RREY. TW9 2FQ
Mon-Fri 9 am to 12.30 pm \&
Approx. 1 mile from Kew Bridge
$1.30-4.30 \mathrm{pm}$
Sat 10 am 1012 no

TEST EQUIPMENT

AT 2, Audi-Multi-Tester, 16 test-circuits for loudspeakers tuners, amplifiers. head phones, tape recor ders, mikes, boosters.

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up aid short repair; exhausted CRT's becomes bright and sharp again even if all other machines do not succeed
United Kingdom: P \& E Services, Llandudno, Tel. (0492) 549246, Fax 547880 treland: Dönberg Electronics, Ranafast. Co. Donegal. Tel./Fax (075) 48275
New Zealand: TDON Ltd., Onehunga. Auck land, Tel. 668-907, Fax 668-499. Germany: Uirich Müter, Oer-Erkenschwick.

Fax (0 2368) 57017

supply etc.

advertisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing. Television Classified Room 11 th Floor. Quadrant House. The Quadrant. Sutton. Surrey SM2 5AS. The charge is $£ 8.40$ per line plus $171 / 2 \%$ (minimum $£ 33.60+$ VAT)

LEASE FOR SALE. Shop has been used for radio but large enough for TV repair, rentals, etc. rooms above could convert to living accommodation. Tel. Mr Bul 0444881965
OCHRE MILL. Technical Services, Grundig TV spares for most models to 1985 fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, Nr. Malmesbury Wilts SN 16 9DR. Tel: 0666823228 PRIVATE RETAILER. has excellent part exchange colour televisions and videos to clear. Tel. 0494814317
VIDEOCRYPT DECODER. Service sheet with smartcard contact details Eurocrypt card interlace f12. EM.O., Ramsbottom, Lancs. BL0 9AG. Tel. 0706 823036.

DISH AND LNB SUITABLE FOR D2 MAC £15 POST £5 + VAT

New Eprom for converting Ferguson BSB Receivers to D2 MAC and PAL - 99 channel is tunable and each one can be put into memory - also has menu. £20

PAL panel (to convert to PAL) £20
SEND FOR DATA.

CHASSIS SUITABLE FOR CONVERSION TO D2 MAC £10 HANDSET £1.50 POST £4 + VAT

 rearaings
[^0]: SEE PREVIOUS PAGES FOR MORE -GRANDATA BARGAINS

[^1]: Left: The distinctive Polsat test pattern, received via Eutelsat II F3 at $16^{\circ} \mathrm{E}$. Centre: A Norwegian Telecom test transmission from Marco Polo 2 after being relocated at $0.8^{\circ} \mathrm{W}$: though incorrectly displayed, the picture was stabilised by using a sync inserter. Right: Seasonal greetings from the EBU's Rome switching centre via Eutelsat, a sound-in-sync transmission stabilised by using a PDS sync inserter.

[^2]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9LS (071 261 5000). Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television "is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selfing price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^3]: WTREE WAREHOUSE
 UNIT 1, SUNSHINE MILLS, WORTLEY RD, LEEDS 12
 TEL:0532638804/633421 FAX: 0532310275

[^4]: Please note we only deal in Rediffusion MK4/TVs and MK4A

