SERVICING.VIDEO.SATELLITE.DEVELOPMENIS

Inside the Ferguson IKC2 Chassis Dish Performance Tests • DX-TV Audio Systems for TV Receivers Electrolytic capacitor ESR Meter A Day's Problems in the workshop TV Fault Finding - VCR Clinic

WII WILLOWVALE ELECTRONICS LTD

COPYRIGHT

© Reed Business Publishing Ltd., 1993 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vols. 39 and 40 are available at $£ 2.00$ from the Editorial office (address above) Indexes to Vols. 37 and 38 are available at $£ 1.50$ each. Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1.00$ each. Make cheques etc. payable to Reed Business Publishing Ltd.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, $£ 30$ overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card number 0789200255.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 403

Leader

Importance of Dish Size with Astra Reception
lan Martin
Performance tests on different types of dishes to assess the effects on reception.

Letters

Modern TV Receiver Techniques, Part 4
Eugene Trundle
Arrangements used for reception of the various sound transmissions - conventional mono f.m., stereo and satellite - and audio systems includíng spacial effects.

VCR Clinic
Reports from Eugene Trundle, Nick Beer, Chris Avis,
Graham Richards, Brian Storm, Alfred Damp, Chris
Watton, Ed Rowland, J.R. Cutts, Michael Dranfield
and John Edwards.
CD Player Casebook
Reports from Nick Beer, Mike Leach and Savio Da Costa.

Help Wanted

Inside the Ferguson IKC2 Chassis \quad J. LeJeune

An account of some of the interesting circuitry used
in this chassis plus some fault-finding hints.
A Day at the Thick End
Problems at a villiage TV shop some miles from the Chris Watton nearest town.

Long-distance Television
Roger Bunney
DX conditions and reception plus satellite TV and overseas news.

Test Case 364
Repairing LED Clock Radios, Part 2
Ian Rees
This concluding instalment deals with the radio side.

Teletopics

News, comment and developments.
Next Month in Television
Simple ESR Meter for Electrolytics Ray Porter, M.Sc., C.Eng., M.I.E.E. A method of checking the effective series resistance of aluminium electrolytic capacitors.

Camcorner
Reports from Brian Storm and David C. Woodnott.

TV Fault Finding

Reports from Philip Blundell, A.M.I.E.I.E., Richard
Newman, Paul Hardy, Chris Watton, John Edwards,
Michael Dranfield, Brian Storm, Steve Cannon,
Alfred Damp and Geoff Fardon.
The Universal Transistor
Gene Turnbull

Answer to Test Case 364

LINEARICs
－Cont
 JAPANESE
TRANSISTORS

领容荷荅
言高亭 2001
$250 p$
250 250,
5501
100 W．

[^0]

VIDEO SERVICE KITS
AMSTRAD
VCR7000
Contents
BELT SET. PINCH ROLLER REEL IDLER. VIDEO LAMP
Order Code: SK41
£5.50
FERGUSON \& JVC
$3 V 42 / 43$
HR0455

$\begin{array}{lll}\text { Order Code: Sk37 } \quad \text { 17.50 } & \text { Order Conde: Sk38 } \\ \text { 3V58/59/69/65 }\end{array}$
HRO170//180/210/230/300/320/370/400/430/530/700/750
HRS5000
HRS5000
Contents
belt SET. Pinch roller. IOLer abm tension band
Order Code: SK44
3V2993V30
HR720073007350
Contents
BELT SET. PINCH ROLLER TENSION BANO IOLER TYRES $\quad 6.00$
Order Code: SK05
$3 V 35 / 36.38 / 39 / 49$
HRD 1 10/11//120/121/225
Contents
BELT SET. PINCH ROLLER. tension band Ioler tyres
Order Code: SKO4
$3 V 31 / 3 V 42$
HR760076
Conlents
Conlents
BEL SET. T/U REEL TABLE
TYRE PINCH ROLLER. REE
IDLER. TU CLUTCH TU IDLER
TENSION BAND. VIOOELAMP

3V35/36/38/39/49
HRD110/111/120/121:225
Conients
GELT SET. T/U REEL TABLE
TYRE. SUPPLY REEL TABLE
TVRE SUPCLY RELL TABLE
TIRET PINCH ROLEER. TEL
CLUTCH TA DLER. REEL
idler tension band

3V2973v30
HR720073000/7350
Contents

Contents		$E c O$			
T SET, TJU REEL		T SET, TJUR			
SUPPLY REE		RE. SUPPLY			
E. PINCH ROLL		PIN			
		IDLER TY			
Order Code SK31	£11.50	Order Cade Sk32	$£ 5.60$		
3V44/45/48/53/54/55/57 HRP50/HAD140/150/158/160					
D250/257/565/566/55					
tents		Economy Kit Contents BELT SE PINCH ROLLER			
CLUTCH MECHANISM. TENSION					
Order Code SK37	5150	Code Sk40	¢9.50		
FISHER					
FVHP905/906/907/908/910/911/916/918					
Contents		Economy Kit Contents			
IDLER GEAR IDLER UNIT IDLER TYR					
TENSION BANO					
Order Code: Sk57	£13.00	Order Code: Sk58	£5.00		
FVHP615/618/620/622/10/71/715716/720/21/722/725					
teens. PINCH		Economy kit Contents BEL TET PINCH ROL			
IDLER GEAR OLLER UNNIT IDLER TYRE					
Order Code: SK68	£12.50			Order Code: SK69	£3.
HITACHI					
VT11NT33					
Contents					
BELT SET. PInch roller. TEnsion band. IDLER TY					
Order Code: SK08			¢6.00		
VT11/33					
ContentsBELT SET TJP REEL TABLEEconomy Kil ConBELT SE					
TYRE SUPPLY REEL TABLE FFIREWIDLER					
TVRE, PINCH ROLLER, EFFREW TABLE TYRE SUIDLER CLUTCH PLATE.					
TENSIONBANO .					
Order Code: Sk45	£15.00	Order Code: Sk46	¢4.5		

Economy Kil Contents BELT SET T/U REEL TABLE IDLEE TYRE TUI IDLER TYRE
TTUCLUTCH
Order Code: SK34

Economy kil Contents

Economy KiI Contents
BELTSET IUREELTABLE
TYRE SUPPLY REELTABLE CUE PINCH ROLLER. TM CLUTCH T/U IDLER TYRE. REEL

VIDEO SERVICE KITS (Cont.) HITACHI
VT52/61/62/63/64/65/85/86/640 Contents
BELT SET. PINCH ROLIER FFFREW ARM. CLUTCH PLATE.

Economy kil Contents ERLT SET. PINCH ROLLER Order Code: SK49 £14.00 Order Code: SK50 £3. VT400/405/410/13/4/15/18/420/25/26/28/430/31/35/38/450/498 510/520/25/26/530/35/36/540/545/46/48/57075/576/580/85/88 Contents
TIMING BELT PINCH ROLLER. FF/REW ARM. CLUTCH BASE Order Code SK52
VT100/110/111/113/1 $5 / 118 / 120 / 125 / 128 / 130 / 135 / 138 / 45 / 150$
175/220/225/250/255 258/260vTL30
Contents
BELT SET. PINCH ROLLER. FF/REW ARM. CLUTCH PLATE TENS:ON BANO

PANASONIC
NV2000/NV2010
Contents

NV7000/NV7200/NV7800 BELT SET. PINCH ROLLER, COAITETS SET. PINCH ROLLER
 NV300/NV330/Nv333NV340/NV366
Contents

Order Code: SK01

NV2000/NV2010
Contents
BELT SET. PINCH RO LER FF
IDLER PLAYIDIER TENSION BANO VIDEO LAMP Order Code: SK13 $\begin{array}{lll}\text { Order Cose: SK13 } & \text { §9.50 } & \text { Order Code: SK14 }\end{array}$ NV7000/NV7200/NV7800 Contents

Comenis BELTSET PINCH ROLLER IDER UNIT PLAYIDIER DLER UNIT PLAYICLER.

Economy kit Contents BELT SE PINCH ROLLER Order Code: SK11 $\quad \mathbf{1 0 0 . 0 0} \quad$ Order Code: $\mathbf{S K 1 2}$ NV300/NV330/NV333/NV340/NV366
 Order Code: SK15 \quad §8.00 \quad Order Code: SK $16 \quad$ £4.00 NVG7/NVG9/NVG10'NVG11/NVG12/NVG14/NVG15/AVG16 NVG18/NVG30/NVG.120/NVG130/NVG400'NVH65 (PV/AC) Contents LUAOING BELT CAPSTAN EConomy kir contents BELT PINCH ROLL5R, IDLER. BELT. PINCH ROLLER IOLER $\begin{array}{llll}\text { Order Code: SK27 } & \text { £9.50 } & \text { Order Code: Sr } 28 & £ 4.50\end{array}$ NV332
Contents
$\begin{array}{ll}\text { Contents } & \text { Economy Kit Contenis } \\ \text { BELT SET. PINCH ROLLER, } & \text { BELT SET PINCH ROLL }\end{array}$ $\begin{array}{ll}\text { BELT SET. PINCH ROLLER, } & \text { BELT SET. PINCH ROLLER } \\ \text { PLAY IOLER FF'REW IOLER } & \text { PLAY IDLER TYRE FF/REW } \\ \text { TENSION BAND FF/REW TYRE } & \text { IDLER TYRE }\end{array}$ NV230/250/260/280/430/450/460/470/650/810/89C AG1200PK/AG1500PK Contents \qquad DLER TENSION ROLLER Order Code: SK23 £7.00 NV600/Nv688
Contents

Contents	Economy Kit Contents
BELT SET. PINCH ROLLER.	BELT SET. PINCH ROLLER
PLAY $10 L E R$. FF/FEW IOLER.	PLAY IDLER TYRE FF/REW

Order Code: SK25	$£ 13.00$	Order Code: 3 KK26	$£ 6.50$

NV730/NV770
COntents Economy Kit Contents $\begin{array}{ll}\text { Contents } & \text { Economy kit Contents } \\ \text { SLOT IN BELT LDADING BELT. } & \text { SLOT IN BELT. LOADING BELT } \\ \text { PINCH ROLLER. 1OLER UNIT } & \text { PINCH ROLLER IOLER TYRE } \\ \text { TENSION BAND } & \\ \text { Order Code SK19 } & \text { O7.00 } \\ \end{array}$ Order Code: SK19 NV370/3 480/630/780/830/850/AG2 100PK/KAG2200PK BELT SET PINCH ROLLER ECOnOmy \quad BELT SET. FINCH ROLLER
IOLER TENSIOM BAND $\begin{array}{llll}\text { Order Code: SK21 } & £ 7.00 & \text { Order Code: } \text { SK22 } & £ 3.50\end{array}$ NV777/NV788 Contents BELT SET PINCH ROLLER Economy RIt Contents IER BELT SET PINCH ROLLEA Order Code: SK $17 \quad$ §7.50 \quad Order Code: SK18

VIDED SERVICE KITS (Cont.) SHARP

Contents

$\begin{array}{ll}\text { BELT SET. PINCH ROLLER. } & \text { Economy kit Contents } \\ \text { REEL IOLER TENSION BANO PINCH RO }\end{array}$ REEL IOLER. TENSION BAND REEL IOLER TYRE Order Code: SK47 \quad £9.00 Order Code: SK48 VC5COO VC571 NC581 NC582 NC583NC584 NC5F3
COntrats
ECOnomy Kit Contents BELI SET. PINCH ROLLER EELT SET. PINCH ROLL $\begin{array}{lll}\text { REEL HLER. TE NSION BAND } & \text { REEL IDLER } \\ \text { Order Code: SK60 } & \mathbf{9 9 . 5 0} & \text { Order Cade: SK61 }\end{array}$ VC7B 1 NC7810VC782 VC7822NC?
VCA100NCA1 Con ents
BEL I SET. PINCH ROLLER
REEL ORIVE UAIT TENSION REEL
BAMO
Order Code: S:\$64 $\quad \$ 13.50$ Order Code SK65 VCE81NC682 VC684NC685 VC693. VC699 NC6F3NC700 Contents
BELT SET PIMCH ROLLER
REE DRIVF
Economy Kit Contents BAND
Orter Code: SK62 \quad K13.50 Order Code: SK63
$£ 6.25$

THISMONTH SPECIAL OFFERS

STK461	$\boldsymbol{8 6 . 0 0}$	STK7563F	¢8. 20
STK5332	E1.80	STK73410	£4.00
STK53E3	£2.40	TA8205AH	¢3.75
STK5422	£4,20	TA8210AH	\$3.75
STK5476	¢4.00	TA8215H	¢3.75
STK7308	£3.50	TA8216H	¢3.75
STK7348	£3.20	TIPL791A	¢0:80

56.25

VIDEO REEL MOTOR PU51381V $\mathbf{5 1 5 . 0 0}$
3v29. 3v30, 3v31, 3v32, 3v39,
8930 8931, 8941, 8942, HP7200
HR7300, HR7600, HR7610.
HR7650, HR7655
HITACHI VIDEO HEAD
340,503, 640, 5030
MISUBISHI VIDEO HEAD
HS303, 304, 320, 700
HS306, 318, 710

HSE37, 347
£20. 20

PHILIPS

CASSETTE LITT ASSEMBLY 69120366
DV 186 190, 286, 471, 562.761. VR6180, 6182, 6185,
VR6286,6290,629,629, $6561,6670,6760,6751,6870,6970$
P9ES
PRESSURE ROLLER ASSEMBLY
OV 186, DV 1900 DV286 DV486, DV471, DV582, DV571,
DV76 VR180, VR6182 NR6 185 VR6285 VR6290,
5.00 DV76t VR6180, VR6182, NR6 185, VR6285, VR6290,
VR6291, VR6293. VR6362: VR6367, VR6390, VR6391,
VR6393, VREs67, VR6468 VR6470 VR5561 VR5570 VR6393, VRG467, VRG468 VR6470, VR6561, VR6570,
VR658. VR6670, VR667E VR6760, VR6761, VR6762,
VR68 0, VR6970, VR6975, VR86B1, 63SB7, 68SB4. VR68 0, VR6970, VR697
$7158,72 S E 8,92 S B 31$

VIDEO HEAD TESTER

1. Mechanical Position of Pointer
2. Scale Plate
3. Pointer Adjusting Screw
4. Scale Plate
5. Poanter AdJusting Screw
6. Painter

Mersuring Socket
Power ON/OFF End Battery Check Switeh
7. Range Selector Rotary Swltch

Mosasuring Cllp
YF-225 VHS PRICE
§4.00

GRANDATA
 K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE,
 SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND
 Telephone: 081-900 2329 Telex No: 932885 (Sunmit)
 Fax: 081-903 6126

Access \& Visa Card accepted. Open Monday to Saturday.

JUST ARRIVED

VIDEO HEADS
AKAI
VSF600, VSF650

AMSTRAD

VCR8800, VCR8804, VCR9340
JVC
HRD 330 , HRD 337 , HRD 440 , HRD637,
HRD641, HRD660, HRFC100

MITSUBISHI

HSE12, HSE22, MX1
HS411EZ, HS411GZ
NATIONAL
NV8050, NV8051
N.E.C.

DX2000
DS6000
SAMSUNG
VM1560, VN1561
SANYO
VHR7900
SHARP
VC585, VC685
VC90ET
VFH815
SONY
SLV373UB
TOSHIBA
V660
V880MS
V700G
V500G, V509G
V9680
V300G, V301, V305, V309G
V61, V63
V110, V120, V130, V140, V210,
V220

TELEVISION ON/OFF
 MAINS SWITCHES

Baur, Normende, Nova, Pioneer, Quelle, Saba, Salora, TEC, Thomson \& Vega

VIDEO MOTORS

HITACHI
VT11, VT14, VT15, VT16, VT17, VT19, VT35, VT39, VT57, VT88 (capstan motor)
BANG \& OLUFSEN
VHS65, VHS90 (capstan motor)
CASSETTE HOUSING
AKAI
VS35, VS53, VS55, VS66, VS75 FERGUSON
FV31R
JVC \& FERGUSON
HRD515, HRD520, HRD527, HRD540, HRD550, HRD580, HRD600, HRD610 HRD620, HRD660, HRD670, HRD830, HRD840, HRD850, HRD860, HRD4050
HRD6600 \& FV37H
IC TRANSISTORS
M4918B1
SAA5243PE
TIP112H
STR4090A

REMOTE CONTROLS

AKAI

RC-V10A
RCV37B
V25A
BUSH
2020T, 2114T, 2321T, 2514 T
2020, 2114, 2321, 2514
DECCA
RC70
FISHER
GRANADA/REDIFFUSION
UNIVERSAL, $79500 \mathrm{C}, 986700$
SATELLITE
MK4 TEXT, $70115 \mathrm{G}, 70133 \mathrm{G}, 70357 \mathrm{E}$
MK4A TEXT, 70375C
95288 E
94490D

GRUNDIG
TP160E
TP200, TP300
TP400
TP590-600
TP390, TP610
TP621
2200P
2400P
2900P CLE800-CLE830
HITACH
A617402/655602
A512120/230
A514790
A5088612
3500P
SCL002 C2096
2200P
A511940
655602 H
655602 H
3600P
IFB13, 14, 15
2300P FS4
3900 P RG305
2800P RG306
FS9/1-10/1
VS5 RUK
3000P
MULTICONTROL (17C20)
23500 KORTING
3700P 18279, 18396, 18460, 18521 SE
3500P 40540 VTS
2500P LOEWE
550P DC11
1700P MATSUI
010270601
VX770
JAVA COLOR (6890)
COLOR (7156)
JAVA (7180)
375P
939P/03607, 939P/03609
NOKIA
SATELLITE
NORDMENDE
3100P
3100 P

2600P
4300P
CMC1, TC3519
OCEANIC
390C9500
ORION
RC53
PANASONIC
EUR51200
TC2200
VSQ0357/NV730
TNQ1621
CARVEL, CONCORDE, MERCURY TELESTAR TC10
1350P

500P
69117032 TEX
800P 69117194
50P RC5991 UNIV
650P ${ }_{\text {KT3 TEXT }}^{\text {RC3B }}$
RC5352
RC5375
RC5 STANDARD
1000 P
1000 P
1000 P
RC5903
SABA
T6772
1000 P
850P
1000P
850 P
SER1ES
SANYO
1000P SANYO
850P RC218, RC222, RC228, RC238
850P
1000P
1000P

SEEPREVIOUS PAGES FOR MORE -GRANDATA BARGAINS

1050P
1000 P
850 P
1050 P
1050 P
1050 P
1050P
1050P
1000P
1050P
900P
1000P
000P
1000P
1000P
1000 P
1000 P
1000P
1000P
1000P

900P
850P
850 P
900 P
900 P
900 P
900 P
900P
1000P
1000 P
1000P

1000 P
1000P
1000 P
1000P
1000P
1000P
900P

1000P

1050 P
1050P
1000P
1000°
900P
900P
1050P
1000P
1000P

900P

900 P
1050P
850Р
900P
900 p
900 P
900 P
900 P
900 P
900 P
900P
1000 P
1050P
1050P
1050P
1000P

1000P

1000P
900P
1000P
000P
000P
1000P

SHARP
G0121CESA, 123CESA, 204, 251900 P
SIEMENS
$\begin{array}{ll}\text { FC616 } \\ \text { FC631 } & 1000 \mathrm{P}\end{array}$
$\begin{array}{ll}\text { FC631 } \\ \text { FC742 } & 1000 \mathrm{P}\end{array}$
SONY
RM604, RM605, RM606
1000P
900 P
32 CHANNEL
RM632, RM636
TATUNG
FXA
RC70
TELEFUNKEN
FB632
FB639
THORN/FERGUSON
3V35-42
3V31-32
$3 V 57-58$
TX 10 TEXT
TX 10 STEREO TEXT
TX9-90-100
TX955 FV11
TX 100 FASTTEXT
TX100 STEREO FASTTEXT PROFESSIONAL

TOSHIBA

CT937
CT9117
201 R4B
900 P
900 P 900P

1000P
900 P

UNIVERSAL PROGRAMMABLE REMOTE CONTROL
Controls up to 4 different devices which use
infra red remote controls including TV, audio, VCR and satellite. (Need original remote control to program)
Order code: IR100R
Price: 1950P
We stock Remote Controls for over 5000
different models. Ring for further details on 081-900-2329

LINE OUTPUT TRANSFORMERS

Description	Price	Order Code
HITACHI 2433752	1500p	LOT01
ORION 3714002	1500P	LOT02
FIDELITY ZX300	1500P	LOT03
FE TX10090 DEG	1500P	LOT04
SABA 490007182	1500P	LOT05
FE TX90 WHITE	1650P	LOT06
ITT D307/37 EQ	1600P	LOT07
BLAUPUNKT 210	1600P	LOT08
GRUNDIG 2922010	1600P	LOT09
$1 T \mathrm{CVC800} / 1 / 3$	1500P	LOT10
ITTD218/37EQ	1600P	LOT11
NORMENDE 5255	1600P	LOT12
SABA 81000200	1600P	LOT13
SALORA T236EQ	1650P	LOT14
SABA 811-50-24	1600P	LOT15
SABA 770223500	1600P	LOT16
TELEFUNKEN AT1	1450P	LOT17
TELEFUNKEN EQ	1400P	LOT18
SALORA FM0218B	1600P	LOT19
NORMENDE 5255	1600P	LOT20
1 IT CVC 1150/1	1500P	LOT21
$1 T T$ COMPACT 80	1500P	LOT22
FE TX100 GREEN	1450P	LOT23
HINARI CT4/5 5113	1500P	LOT24
SELECO 6320410	1600P	LOT25
BLAUPUNKT 8667	1600P	LOT26
$1 T \mathrm{COMPACT}$ B1	1450P	LOT27
$1 T \mathrm{C}$ CT3 326 MUL	1500P	LOT28
ITT D066/37 EQ	1600P	LOT29
ITT 3546 EQ	1500P	LOT30
LUXOR 5810110	1600P	LOT31
SABA 849380920	1600P	LOT32
HITACHI 2434141 CP	1450P	LOT33
FE TX100 110 D	1700P	LOT34
HANTAREX 28021	1600P	LOT35
SHARP C3700 EQ	1600P	LOT36
HITACHI 2432981 CP	1500P	LOT37
We stock line output transiormers for over 100 different models. Please ring 081-900 2329 for more information.		
CRANDATALTD		
K.P. HOUSE, UNIT 15,		
SOUTHWAY, WEMBLEY,		
MIDDLESEX, ENGLAND		
Tel: 081.9002329 Fax: 081.9036126		

Full range of specialist amplifier
VALVES - e.g.
EL34 KT88 etc
ONE OF THE LONGEST ESTABLISHED MAIL ORDER SUPPLIERS, WE CONTINUE TO GIVE FAST, FAIR AND EFFICIENT SERVICE.

TRAILING LEADS \& SOCKETS		Mains Plugs	
4 WAY 9 FT EXTENSION LEAD WHITE 4 WAY 2 MTR EXTENSIONLEAD WHITE 2 WAY 2 MTR EXTENSIONLEAD WHITE 2 WAY 9 FT EXTENSIONLEAD WHITE 1 WAY 25 FT EXTENSIONLEAD WHITE 4 WAY SOCKET WITH NEON LIGHT UNFUSED 4 WAY SOCKET WITH NEON FUSED WHITE 1 WAY SOCKET WHITE WWAY SOCKET WHTE WITHNEON	£4.65	3 AMP FUSE WHITE 5 AMP FUSE WHITE 13 AMP FUSE WHITE £35.00 PER 100	
	£4.55		
	¢4.05		
	£4.05		
	¢2.7	MOSS WIRELESS SECURITY SYSTEM Remote control with cordless detectors	
	$¢ 2.34$		
	£0.95		
	£1.35		
LIGHTING			
1 GANG 1 WAY WALLLIG	A		
2 2GANG 2 WAY WALL LIGHT SWITCH WH	$\underbrace{}_{£ 1.20}$	£170 + VAT	
5 AMP PULI CORDLIGHT SWTTCH	$\underline{2} .6$		
CEILING ROSE WHITE	£1.00	WHEN ORDERING: PLEASE AND $£ 2.00$	
TI PENDANT LAMP HOLEE CORD GR	£0.80		
CEILING PENDENT SETS 6 INCH	$£ 2.00$		
CEILING PENDENT SETS 9 INCH	¢2.20	P/P TO ORDER	
STRIP LIGHT WHITE	¢2.40	TOTAL THEN ADD 17.5\% VAT TO THIS	
NIGHT LIGHT WITH LAMP WH	£3.10		
BASE PLATE BATTEN WHITE	${ }^{\text {co.50 }}$		
BASE PLATE BATTEN HOLDER W	£0.90		
SOCKETS		WE HAVE STOCKS OF	
TWIN GANG 13 AMP SWITCHED WHITE	£3.90	- EX-RENTAL TVSNIDEOS - TELEVISION COMPONENTS - VIDEO COMPONENTS * REMOTE CONTROLS - CABLES, LEADS, PLUGS etc * AERIALS AND ACCESSORIES * HOME SECURITY PRODUCTS * DEGAUSSING COILS!	
TWIN GANG 13 AMP UNSWTCHED WHITE	${ }^{\text {c3. }}$ (10		
SINGLE GANG 13 AMP SWITCHED WHITE	£2.10		
SINGLE GANG 13 AMP UNSWITCHE	£1.70		
PATRESS BOXES SURFAC			
SIN	$\underline{1} .66$		
SIN	$\underline{0.6}$		
TWIN GANG 25MM DEEP WHITE	£1.25		
CALLERS WELCOME AT TRADE COUNTER			$\begin{aligned} & \text { MON-FRI 9-5pm } \\ & \text { SAT 9-3.30pm } \end{aligned}$

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career Opportunities

Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more monev and have more fun out of life! ICS has over 100 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we under the guidance of expert personal tutors. Find out how we
can help you. Post or phone today for Fre information on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming
GCSE/GCE/SCE over 40 examination subjects to choose from	

Name:

I P. Code
$1 \square 1$
International Correspondence Schools, Dept. EGS43 $312 / 314$ 'High Street, Sutton, Surrey SM1 1PR. ar 041-221 7373 (24 hours).

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US		PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL. TEL: (0228) 39693/20358 Fax: (0228) 515127.			UY WI
CESSORIE				vice manua	
COAX RLUG.	CA izalisour	T			
			N1099- 22.125		
Stirs				Feruson	G OA White
NTM					
Itiof		TD22599...-			Transistors
(en					
				,9,95	
Avo testeas livilis	comm	TOMzessana	Hirachliprer	95	
		TTOA330.	TTT Compactip		
N3V55 - - - 9 95	cuver lCs	Ta 3 Se2			
4			TT wovoraniva		
	$\xrightarrow{\text { HAl303 }}$		Ma		(ers77
Sement ve.			$\xrightarrow{\text { Marsuli }}$ Prisea		
,		Sex		somic rxi.)	(euseen
TORS		${ }_{\text {doanessa }}$	PPhlup ket		
		95	Stid		
		Todisolu		EA	
,			OR GENUINE MANUFACTURERS		
	stik		NEW R	NEC, NIKKAI,SAISHO \&	
				Sarp	2.95
4,		(TEAO20]	Genume pancomm L.o.e.t'T	SE RING FOR	
				PRICE	250
\%				swit	${ }_{\text {ataso }}$
	stirimi -			Austap crvel	
				(tioblictian	
				¢avior cuch3:	
AAl PCB Mumme	${ }^{4} 8$		$\times 20$		
				ITTr \times ERERES.	
D100				ктз ЗеЕМот:	
			Sictiole	Kiticl	
TM407.		ROC			${ }^{\circ}$
			PLEASE ASK FOR OUOTE	1.5	
				TXY/ 0 Remot	
vs $1 / 5$		HITACH VIDEO SPARES			
	KTT.	BELTKIT		295	
Unit	SETTE La	ffrat ioler		SSE	PMCH
		FFREW PULEV	Eswic	REPAIR KIT	REEL MOTO
	Repali kit-u>	IDLER....).		REMOTE CONTROL-..-.29.50	Tensio
	Diler	TABLE	HeaO	$\begin{aligned} & \text { VIDEO } \\ & \text { VR6367 } \end{aligned}$	
	TAKE UPIOL	VIDEOHEAD	REEAIFKIT GENUINE.......1. 1.50		
		BELTKITT	(1NCH HOLIER-		REEL 10LEA
				RE¢PAR KIT.-	TENSION
PMCH RoLler................95	Cassett	FFREW PULL	(REEL	VIDEO HEAD ... ${ }^{\text {a }}$ - ${ }^{\text {a0.70 }}$	
puLb		PINCH Roule	VIDEO HeAD NJU66.......19.95		
REPA	3.95			PINCHROLLER	
TENSIONBAND	REEG DIEER	TENSION BAND. ${ }_{\text {a }}$			PINCHROLLEP...]-
		S		AAD	
BELT KIT.-.	TAKE UP CLITCH?		PMCH RoLe		
迷					INCH HOLER.
L10		${ }_{\text {BLIT KTT }}$		CASSETEM	REELPULEY
		${ }_{\text {cap }}^{\text {cap }}$	REPAIRKIT GENUUE.......10.95	REELIDEEG	VCAA60 MCTI'
	$\xrightarrow{\text { REMOTE CONTROL }}$ REPARKIT		PWCH Hollen		
CHas		ILLER	HoLer		
(1)		${ }_{\text {Rep }}$	TVNSION	Casserit Houling in il.95	VIDEO HEAD 14.75
			REEL LOLE G GENUINE. ${ }^{\text {a }}$. 3.95	CASSETTE HOUSING:_...1795	PNCH Holle
TrAD VIDEO SPARES	VDEOH HAQ		OEA200		EWMO KKT C5
					VIDEO HEAD
㑑		OOLER	PıCCH FOL		VIDEO
${ }_{3}^{3.50}$				REEL MOTOO GENUNE.-7.7.95	
${ }^{\text {P }}$			Vio		Afux
	VBANO - -				MITSUBIISH1H HS306\%
${ }^{3.50}$ 3.50			BEL		
		${ }_{\text {CuAPSTAN MOTOA }}^{\text {Cutur }}$	PNCH Router PLAY Clutch		vx
			REEL DLEEG GENUNE 1.25	TENSIONBAND...]	
	v	REMOTE COOTTROL VTIVEE 19.95	Repatir		
		15.95TENSION BANO. ${ }^{\text {a }}$	Mode Swich		Guson
					CHIVT Y 3 E ENO SNS....1.1.95
(1)	HEAD FVHPO5.....			HEAD .-. \square_{\square}	
					3300. \qquad

\%					
	NON TEXT ${ }^{\text {a }}$		PIONEER 505/525 17.50	VIDEO HIEADS	PANASONIC NV366 9.95
	FERGUSON TX10 TEXT11.95		PYE DV464405......................13.25		
	FERGUSON TX10 Stereo. 15.95	NEC N-831/33G11.50	PYE DV662:05.........- - - - 14.50	ALBA 4400X16.95	PANASONIC NV6B6.............87.70
	FERGUSON TX100 TEXT11.95	NEC RB83EGGEP.....	RANK T26A.....).-	ALBA 6100XX....................17.95	PANASONIC NV73018.95
	FERGUSONICC5.............. 16.95		RANK T524A............-	AMSIRAD 450090000...........14.95	PANASONIC NV77718.95
	FERGUSON 3V32335...........11.95	ORION VH1204................21.95	RANK T528A..................... 19.95	AMSIRAD 460004700...........14.50	
		ORION VH3050/60RC...........21.95	REDIFFUSION MKIV12.95	AMSTFAD 600017.95	PANASONIC NV87037.30
	FERGUSON 3V55................15.30	ORION VR2949/2957......... 21.95	REDIFFUSION MKIVA..--	AMSTFAD 7000...-.............15.25	PANASONIC NV2000:7000 8.95
	FERGUSONSRA1	ORION VSP20...-.	SABA FS60211.95	FERGL'SON 3VOCH39....).	PANASONIC NVG79.........17.30
	FIDELITY CTV14S............12.95	ORION VXL20...-.	SABA FS60314....................11.95	FERGUSON 3V3z................23.50	PANASONIC NVG10:12.....17.30
	FIDELITY CTV22T 14.95	PANASONIC EUR51200........14.95	SAISHO CT142R................14.50	FERGUSON 3V42.55.............17.50	PANASONIC NVG:8.............18.70
	FIDELITY CTVZ210............12.95	PANASONIC EUR51 142....... 36.50	SAISHO CT1497X...........14.95	FERGUSON 3 V59FVIT1..........26.95	PANASONIC NVG2021 $124 .95$
TOP TEL	FINLUX 1000 SERIES...........2.95	PANASONIC EUR64142....21.50	SAISHO VR1000/100...-1. 15.15	FERGUSON 3V65,FV11......17.95	PANASONIC NVG30.40........24.50
eprogramed remote	FINLUX RC3001................19.95	PANASONIC C711C74.-_21.50	SALORA 16110:2015.90		PANASONIC NVG45....-
CONTROLS 5 Individual	FISHERFTS 5610TX..........22.95	PANASONIC TNQ $1411 / 214 .95$	SALORA 20J/20/30/40..........15.90	FERGIJSON FV13.................41.50	
APPLIANCES	FISHERFTS 6310TX22.95	PANASONIC TNQ1419.........13.95		FERGUSON FVZS.................28.50	PHILIPS VR6185.................42.50
SATELLITE ETC. 24.95	FISHER FTS 110 X22.95	PANASONC TNO1621 1.....17.95	SALORA C20XZ1		PHILIPS VR6367................40.70
	FISHER FVHP 9059910........ 21.95	PANASONIC TX2112	SALORA SATELIITE............19.95	FERGJSON FVP?	PHILIPS 6460/6520.......- 9.9 .95
	GOLDSTAR OTMF 7110......17.95	GENUINE................-*...-34.95	SAMSUNG SV716..............15.50	FISHER FVH5000...............24.50	PHILIPS 6462:6560
	GOLDSTAR 105-5200....-..... 24.95	PANASONIC TX2200........... 21.95	SAMSUNG SV717..............15.50	FISHER FVH6159910............15.95	GENUINE 44.95
	GOLDSTAR 105-523C.........24.95	PANASONIC TX2234..........21.95	SAMSUNG VX616617..........15.50	FISHER FVH725................. 34.50	PHILIPS 6467 GENUINE 40.70
	GOLDSTAR GHV 1221......21.95	PANASONLC TX2244---7.0.0.21.95	SAMSUNG VX619/626........15.50	FISHER FVH90E916...........24.50	PHILIPS 6760 GENUINE 41.70
	G000 MANS TX100/1200....18.95	PANASONIC TX2464	SAMSUNG VX627629.........15.50	GOLLSTAA V1721/1290......15.95	PYE DV464-......44.95
	GRANADA UNIVERSAL 12.95	GENUINE...................34	SANYO CPT3144.-............17.95	GRUMDIG VS400)/500..........17.30	
	GRUNDGG TP400 TEXT........12.90	PANASONIC TX2470172......21.50		HINARI VTR200..................17.95	
	GRUNDIG TP650 TEXT........14.25	PANASONIC TX248292.......21.50	SANYO VHR 1100/120015.95	HINARIVXL2/4/0035.....-	SAISHO VR705/805.......-....15.25
	GRUNDIG TP660...-.	PANASONIC XX3300.-.-	SANYO VHR 13002300........15.95	HINARI VXL6.............-	SAISHO VR3200........---...-17.50
ILIPS UNIVERSAL		PANASONIC NV230	SANYO VHR 2700316015.95	HINARI VXL89990...............17.95	SAISHO VR3500...............17.50
REMOTE	HINARICT18	GENUINE....................... 12.5	SENTRA VCR8000\%810017.50	HINARI VXL10/11/19.............17.95	SAISHO VR3600................19.50
	HINARI VXL-78.	PANASONIC NV430		HITAこH1 8000/G700...............15.70	SAMSUNG VI730................23.50
WORKS MOST PHILIPS SETS	HINARI VXL-20.................19.45	GENUINE - .-.	SOLAVOX 16R19................13.95	HITACHI VT11:33............15.70	SAMSUNG Vx5201710........17.50
basic functions	HITACHI CLE862F-*)	PANASONIC NV730-..--	SOLAVOX 20T19.................14.95		SANYO VHR 11001300 -...-18.95
ENGINEERS MUST	HITACHI CLE871A...-	PANASONIC NV870	SOLAVOX 26R09................. 15	HITACHIVT6354...............20.30	SANYO VHR111011200 .-....-21.50
	HITACHI CLE874A...............17.95	GENUINE28.95	SOLAVOX CML14.............15.95	HITACHI VT65......................28.50	SANYO VHR 2300/3200........23.50
	HITACHI CPT1446..............17.50	PANASONIC NVG10	SONY RM604606.............14.95	HITACHIVT120E............... 21.95	SCHNEIDER SVC20...........21.50
	HITACHI CPT1556...............17.95	GENUINE --- ${ }^{\text {a }}$	SONY RM613..................29.50	HITACHIVT13FE -...-	SCHNEIDER SVC246..........21.95
	HITACHI CPT 2038).	PANASONIC NVG12	SONY RM6156.632...............14.50		SENTRA 8000.....- - - - - . 116.95
	HITACHI CPT2174............. 17.95 HITACHICPT2188	GENUINE.....................26.95	SONY RM650/651.652...........17.95		SENTRA 8400......-
	HITACHI CP T2188................ 15.25	PANASONIC NVG18	SONY RM654/657..............17.95	JVC HRD170.....................17.95	SENTRA 8600.................17.95
	HIITACHICPTIT218	GEN	Sony	JVC MRD250..... ${ }_{\text {- }}$	SHARP VC9300/381 481 14.75
	HITACHI CPT 250815.95	GENUINE).	Sony		SHARP VC581/681 .-............14.75
OWER	HTTACHI CPT2596...............17.95	PANASONIC NVG	TASHKO 140962................16.95	JVC HRDS40....-	
WRES. JUST PLUG ${ }^{\text {IN AND }}$		GENUINE ...-. ${ }^{\text {a }}$ -		JVC HRD755......................34. 34	SOLAVOX $1000{ }^{\text {a }}$ -
transmit by your remote	HITACHI VT8000.....)	panasonic nvg45			SONY C5667......................14.95
ONTROL TO ANY ROOM		GENUINE-.-1]	TATUNG RC60...................14.95	LOCIK VR960.....-...-.........17.95	SONY SLC30- - - - - - - .-...21.50
YOUR HOUSE!	HITACHIVT17...................15.95	PANASONIC NVL28	TATUNG RC70.....		SUSUMI XR518.95
	HITACHI VT63/64.................13.25	GENUINE		MATSUI Vx730...-.-.-.........17.50	TASHIKO VVE921/2.............19.95
REMOTE CONTROLS	HITACHIVTI 120 E 13.95	PHILIPS G11 UR TEXT .-......13.95	TELEFUNKEN FB170...........27.50		TASHIKO VVE932............. 18.95
AKAI VS10........................... 15.95	ITT FS9/10 DIGIVISION.......13.95	PHILIPS KT3,30 NON TEXT...12.95 PHILIPS KT3/30 TEXT	TOP TEL.......................24.95	MATSUIVXBEO....).	
FERGUSON T732....................	IT RG306..............................13.95	PHHLIPS SC5991...............12.95	TOSHIBA CT995/6...........16.95		
11.95FERGUSON TT34.........12.50	ITT TX3126......................... 20.95	PHILIPS RC5903 GENUINE. 12.95	toshiba v55-	MITSUBIISHI HS306............23.95	TOSHIBA V938 -....................18.95
FERGUSON T738................11.95		PHILIPS 3A-17.50	TOSHIBA T534AB15.95	MITSUBIISHI HS318 -.............24.50	Toshiba vese...................189
FERGUSON 7742	${ }^{\text {IT }}$ VSS TEXT -...-	PHILIPS SIMPLE..............10.95		NEC 9034905319.95	video heads are of the
FERGUSON T785	JVC HRD540 GENUINE........32.95	PHILIPS MINIATURE............ 9.95	Remo	ORION VH1.....................19.50	St quality and are
FAST TEXT......................13.95	JVC HRD750 GENUINE........32.50	PHILIPS VR63627..............13.25	ETHER "KONIG", "CME" Or	ORION VH3..................19.95	branded or
FERGUSON T789	JVC HRD755 GENUINE.......34.50	PHILIPS VR6462 .-.].-. - .-...14.50	manuFactuaths own	PANASONIC NV230.........17.50	nufacturers, ow
FAST TEXT........................13.95	MASPRO SE-E.90/S............15.95	PHILIPS VR6467...........-....13.25	N	PANASONIC NV3338.95	ufacturersow
- NEW					
CASSETTE HOUSINGS	Rixrusely	- 30 METRE PAPEA ROLL.		WE OfFER A AaNGE of	$\text { NEC P4 800MAH } 49.50$
FERGUSON 3V65/FV11R . 22.50		MERCURY BUTTON TOTAKE		MOELLE PHONES INC	
FERGUSON FV31/fV31R. 36.45		advantage of cheaper		MOTOROLA PANASONIC.	
FERGUSON FV37fVV37H . 17.50		TELEPHONE COSTS		C NTKIA. MITSUBISHI \&	
HITACHI VT11E HITACHI VT64E		- PHOTOCOPY FACLITY		TECHNOPHONE	PANASONII D SEREESE....26.50
$\begin{array}{lll}\text { HITACH VT64E........ } & 18.25 \\ \text { PANASONIC NV33366... } & 18.20\end{array}$		AMSUNG SF1700.....c275.00			PANASONIC EH SERIES ...32.50
		EETAU		ROM NEW 8 USED HAN	PANASONIC Fi 7ocmah.... 26.50
				FOR	TECHNOPHONE TP2 STD. 34.50
SONIC NV73034.50	SCART SWITCHING		-	MOBILES	TECHNOPHONE TF2 HD...45.00
SERVICE AIDS	KIT 16.95		ECK FAC		TECHNOPHONE TF305
ALLEN KEYS (8METRIC) 4.95	SCART LEAD TO 6 PHONO.4.95			NOLONG TERM Contracts \&	
$\begin{array}{ll}\text { ANTEX } 17 W \text { IRON } & . . .\end{array}$	SCART COPYING KIT......... 5.95		ED. BOLD PRINT \&	a Range of billing plans	BATTERY CHARGERS
	SCART TO 2 SCART SKT.5.95		erlife facilit	To:SUITE EVERYBODY	MOTOROLA T FORT........... 39.50
${ }_{\text {a }}$	SCART TO 5 SCART SKT.....6.95	DTOMATIC FAX RECEPTION	10. 12. 15. CHARACTER		MOTOROLA 8000/8800X34.95
CIEAR TEST TAPE - 7.95	VIDEO FLY LEAD75	IImple Control semtings.		ONECTIONS ARE	NEC P3 - - ${ }^{\text {a }}$
COLCLENE WIPES.... . 95		10 AUTODIALS FOP EASE Of	50K MEMORY.	ME	PANASONIC F..............77.95
FIBRE CLEANING PEN 2.95 HEATSINK COMPOUND ...1.55	VIDEO REPAIR KIT				TECHNOPHONE TP2.......... 59.50
	ALBA 400011.50			WE ALSO PURCHASE SECOND HAND EQUIPMENT	
ONYX SOLDER PUMP. 9.95	FERGUSON 3V23............15.95				
ONYX TIPS .-3....... 1.50	FERGUSON 3V29930.........12.95				MOTOROLA $8000.3800 \times . . .12 .50$
PERMABONDADHESIVE 3.95	FERGUSON 3V31/32..........15.95			E:LULAR SPARES	MOTOROLA MICRO TAC... 12.95
PORTASOL STD.. PORTASOL	FERGUSON 3 3V35,39.........12.95	,		ANTENNAE	NEC P3 -...-
PPRTASOL PROFFESSIONAL 31.95	FERGUSON 3V44/45.........14.95				C F4
PORTASOL TIP-.....9.95				308 Passive Repeater.. 24.50	PANASONIC D SERIES12.50
Self amalgamating	FISHER FVH905.....-.			50b Passive Repeater. 28.50	PANASONIC F SERIES.......12.50
TAPE.	GOLDSTAR GVH1221.......12.50			WAVE ONGLASS14.95	
SILICON GREASE...............1.85	GOODMANS VCRI00012.95			1,4 WAVE SHARKS FIN.....15.95	
SOLDA MOP..........-	HITACHIVT800012.95			MAGNETIC MOUNT 3 CB22.50	
SOLDER O.5KG 18SWG...... 8.50	HITACHI VT9300..............12.95			MOTOROLA TPORT19.95	
SOLDER 0.5KG 22 SWG.......8.75	HITACHIVTI1/33E....-...14.95	${ }_{\text {IIC }}$	LCD DISPLAY	MOTOROLA 8500 X	COMPONENTSE 100 PER
	HITACHIVTI20,130E -.......15.95	F	5 characters per	$1 / 4$ WFVE. ${ }^{\text {a }}$ -	ORDEF UK
	MiTSUBISHI HS306...........17.95	HIGH VOLUME RECEPTION	cond bidirectional	motozola b500x	SERVICE MANUALS $£ 125$ EACH
WELLER GUN TIPS (2) -.......1.25	PANASONIC G DECK PANASONIC NV2306.50.50	$\checkmark \cdot 16$ AUTODIALS FOR EASE OF	P:INTING	BUTCANOLA $8800 \times$............19.95	PERTEM
WATCHMAKERS	PANASONIC NV33311.50		UNLIMITED MEMORY	MCTCROLA 9800X19.95	OFFICE MACHINES S5 OO PER
SCREWDRIVERS 2.95	PANASONIC NV370 -........1175	tomaticgulliotine	SHARP PA.W1410E329.00	PANASONC D SERIES24.75	TTEM
X1 PROEE KIT.............. 14.50	PANASONIC NV430...- - - 11.150	hotocopy facility		PANASONIC F1............... 23.95	
X10 PROBE KIT...............14.95		NS DE		PANASONIC H SERIES 24.50	Chargel at cost
SUNDRIES	PANASONIC NV777 ----.....11.95	FOR FLAT FAXES	12 Months warranty	PANASONIC I SERIESe23.50	
CTXEHT LEAD GENUINE8.25	PANASONIC NV2000 18.95				
MATSUU LEVER ASSY .-......1.85	PANASONIC NVG10\%129.95		THESE AFEA SMALL RANGE		
TX1 FOCUS UNIT......-......8.50	PHILIPS VG6460.............11.75			MITSUEISHI MT5.............. 29.50	WHEN ORDERING::
98003 POSITOR1.35	PHILIPS VR6462....- ${ }^{\text {a }}$ - 12.50			TECHNOPHONE TP2 1/4...22.50	PLEASE ADD P/P
98009 POSITOR1.35			faZ MACHINES.	TECH	
$\underline{98012 ~ P O S I T O R ~ .-. . . .-~-~-~-~-~ . ~} 2.95$			HOTOCOPIERS \& WORD	TECHINOPHONE TP305 19.95	TOTAL THEN ADD
TUNERS	SOLAVOX 100011.50		Processors	batteries	
FERGUSON TX901400...... 16.45			PLEASE ZING FOR DETAILS	MITSUBISHI MT3.............. 24.95	17.5\% VAT TO THIS
PANASONIC TNVB7510F2				MITSUBISHI MT5 24.95	
TC208TC225TC2000.TC2024			ecial offer …	MOTPROLA 4500X .-.........45.00	
			. 5149	MOTOROLA 4800X SLIM -...27.50	ELIVERY B
		TRONIC TYPEWRITER		MOTOROLA $8500 \times$.-.-.	
		correction		MOTOROLA 8800 X- ${ }^{\text {a }}$. 27.50	
U411 (PHONO SKT)..........18.50 U411 (COAX SKT)........19.75				MOTOROLA PERSONAL	STOCK ITEMS
U411 (COAX SKT) 19.75		BOLD PRINT		100*MAH 23.50	MINIMUM ORDER
					VALUE ¢5.00 ${ }^{\text {\% }}$
VIDEO LEADS CAMCORDER COPYING KIT 7.95				motorola microtac il	
CAMCORDER COPYING KIT 7.95 SCART LEAD FULLY WIRED4.95	5 SHEET AUTOMATIC DOCUMENT FEEDER				
	- 10 AUTODIALS FOR EASE OF				

TELE SPARES LTD DISTRIBUTORS

250 COLEMAN STREET WHITMORE REANS WOLVERHAMPTON WV6 ORH
TEL： 0902 745581／2 FAX： 0902746833
～M

TV FAULT FINDING BOOK
VCR FAULT FINDING BOOK

落

納敬

4

EDITOR
John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 389 or faxed to 081 6528956.

ADVERTISEMENT MANAGER
Carol Nobbs
0816528327
FIELD SALES EXECUTIVE
Patrick Irwin
0816523732
SALES EXECUTIVE
Pat Bunce
0816528339
Fax 0816528931
ADVERTISING PRODUCTION
Brian Chapman
0816528681
Fax 0816528917

PUBLISHING DIRECTOR
Susan Downey
SUBSCRIPTION ENQUIRIES
0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622721666 and quote reference INJ.

COVER PHOTO

This month's cover photograph shows the Ferguson IKC2 chassis - see article on pages 416-9

Channels Galore

One increasingly wonders why so much political effort was put into keeping aiive the MAC approach to the development of TV transmission when the digital approach was advancing at such a rate. Philips and Thomson, who have a great deal of influence with the European Commission had of course invested heavily in MAC - and saw it as a way of halting the advance of Far Eastern consumer electronics manufacturers in the European market. But they ${ }^{\text {'ve not been idle with }}$ respect to digital TV, which has everything going for it - including the prospect of an internationally accepted standard.
The aspect of digital TV that has been much in the news of late is the prospect of vastly increasing the number of channels in the bandwidth available through the use of signal compression. BBC and BT engineers demonstrated at the recent ISO/MPEG (the Moving Pictures Expert Group of the International Standards Organisation) meeting in London a video coding system that compresses a standard-definition TV signal to a data rate of $6 \mathrm{Mbits} / \mathrm{sec}$ rather than $216 \mathrm{Mbits} / \mathrm{sec}$. Of particular interest technically is the fact that this system has a 'two-layer' capability, providing standard or HDTV pictures in either of two modes, simulcast or compatible. In the former the SDTV and HDTV images are coded independently while in the latter the SDTV signal is used as one prediction option for the HDTV encoder. Digital compression systems reduce the demand on spectrum space by selecting for transmission only the differences between successive fields rather than sending complete fields. The receiver's decoder uses a field store to hold the field, the incoming data being used to update it.

Thus digital signal processing enables us to cram more channels into a given bandwidth and/or provide higher-definition pictures. At the recent Financial Times Cable and Satellite conference Celso Azevedo, technical director of Societe Europeenne des Satellites (SES) which runs the Astra system, announced that by building digital capability into its new satellites the Astra system would be able to provide 180 channels in two years' time. This could be doubled to 360 channels by launching a further satellite. The digital compression system to be used squeezes ten standard channels into the space now occupied by one.
From the broadcasting viewpoint the economics are interesting. A single-channel transponder at present costs $£ 4 \mathrm{~m}$ a year to lease. If it carries ten digitally compressed channels the rent per channel could fall proportionally, introducing all sorts of possibilities. It seems however that the main use envisaged - who could provide 180 channels of separate programming? - is as a means of making feature films available to the viewer at a reasonable cost. Six channels could, it was suggested, be devoted to one film, with staggered start times so that the wait for the start of a particular film would not be more than about twenty minutes.
Digital compression enables the data rate for digital TV signals to be reduced by a factor of about fifty without any noticeable impairment of picture quality. It can be used for satellite, terrestrial or cable TV channels - and other services of course. Added complexity is required in the receiver, but with modern chip technology this shouldn't Iranslate into any dramatic price increase. If we accept SCS's forecasting, and it has proved to be reliable in the past, this massive increase in the number of channels could be available within two-three years.

It is particularly gratifying that the UK continues to play a major role in the development of digital TV. The original impetus for its development came from the need for standards conversion. By early 1973 a field-rate standards converter developed by the IBA was in regular use. DICE (digital intercontinental conversion equipment) as it was known was an outstanding engineering achievement, the fastest computer in the world at the time. By the early Eighties compression techniques that enabled the bandwidth required to be halved had been developed. Along the way came teletext, Nicam and other developments. The UK has all along been in the forefront in digital signal processing.

Importance of Dish Size with Astra Reception

Ian Martin

Some time back in these pages I wrote about the installation of my own Amstrad SRX200 Astra system and, subsequently, my Philips STU902 BSB system. Like many in the industry, I have since then bolted a lot of satellite dishes to a lot of walls and found several factors that commonly affect system performance.

Sparklies

The most common complaint with existing installations is of sparklies. This is usually because the signal's carrier-to-noise (C / N) ratio is too low. In most cases the cure is to realign the dish carefully, using a signal-strength meter, and perhaps add a little mechanical skew to the LNB with the voltage-switched type. Sometimes you find that the gain of an LNB or a receiver is lower on one or more channels than the others. In such cases changing a head-end component or using an LNB with a lower noise figure can give improved results. Whilst changing any head-end component, check for ingress of moisture or spiders. Where the cause of the problem is a mismatch in the cable, shortening or even lengthening it can just occasionally help. Unfortunately it's not easy to check on such deficiencies, let alone remedy them, in the limited time available when attending a simple Astra installation - and the problem always becomes worse as time passes or as soon as the installer goes away!

Even when all the above points have been checked and corrected it's still possible to have signal problems on a few channels.

This is especially so when a 60 cm dish is used in a "fringe" area such as Wales, the South West or anywhere north of the M62. The problem is usually experienced first with some of the vertically polarised German mode 2 channels via Astra 1A - their signal strength becomes weaker as one travels westwards and northwards. It's accentuated when the receiver has a poor threshold and the LNB has a not-so-low noise figure. Wet weather worsens the situation by attenuating the signal from - and sometimes to - the satellite.

Dish Size

One solution, local planning regulations permitting, could be to use a larger dish. Originally SES, which owns Astra, specified the use of a 60 cm dish and an LNB with a noise figure of 1.5 dB in the central European area where the signal strength (e.i.r.p.) is 52 dBW . Use of a 75 cm dish was recommended in the "fringe" areas mentioned above, where the signal strength is 50 dBW . Given these conditions it was predicted that CCIR grade 4 (or better) quality reception would be achieved with a clear sky, while acceptable performance would be obtained under 99.9 per cent of weather conditions. This however was a "link-budget" calculation: practical experience has taught us about the effects of bad weather and poor installation.

I decided to carry out some checks on dish performance by using various sizes with a standard set-up. All other
things being equal, an improvement in delivered signal strength should be obtained as dish diameter is increased. The tests were carried out using an Amstrad SRD400 receiver and three dishes provided by Lenson Heath, each of which was fitted with the same Nothern Telecom LNB/polariser unit. Comparisons were made between 60 cm mesh and 80 cm solid dishes, some additional measurements being made using Lenson's new 98 cm solid dish. Before any practical measurements were carried out, the relative gain of each dish was calculated from its signal-gathering area. This was then compared with the manufacturer's data. Table 1 lists the results of this exercise.

Performance Tests

Measurements were carried out on each of Astra 1A and IB's channels, using the 60 and 80 cm dishes, to establish the effect on the C / N level of using a larger dish. The results are listed in Table 2. The location was in South Wales and the measurements were made under clear sky conditions. Equipment conditions were as follows: LNB noise figure 1.3 dB (quoted), meter receiver threshold 8 dB (quoted).

Each Astra satellite has four transponder groups. Two use vertical and two horizontal polarisation. The four groups are "aimed" at different points in Continental Europe, i.e. they have different footprints/service areas. SES distinguishes the groups by referring to them as mode 1 horizontal, mode 1 vertical, mode 2 horizontal and mode 2 horizontal. Except for the Movie Channel, the Sky services allocated to the UK use mode 1 with vertical polarisation. Mode 1 is aimed to the west to give a footprint centred on Northern France/SE England. Hence the mode 1 signals should be the strongest ones.

Table 2 shows that the Sky channels 4, 8, 12 and 16 produce the highest C / N levels while the German channels $2,6,10$ and 14 produce the lowest levels. This is largely because of the different group footprints. The D2-MAC channels 3,7 and 11 have slightly better C / N ratios than expected, due to the MAC system's resilience to noise degradation. The Astra 1B satellite's transponder groups are not so clearly distinguishable in terms of measured C / N ratios, though again the vertical mode 1 signals are the strongest, particularly Documania via transponder 32. The choice of transponder 23 for UK Gold seems strange, as it produces one of the lowest C / N ratios. Overall these measurements seem typical of systems in this part of the world.

In considering the C / N ratio figures given in Table 2 we

Table 1: Dish size and relative gain.

Dish diameter (cm)	63^{*}	80	98
Relative gain	1	1.61	2.42
Maker's quoted gain (dB)	36	38.5	41

[^1]Table 2: \mathbf{C} / \mathbf{N} level measurements.

Channel/ group

Programme

C / N level (dB)
$60 \mathrm{~cm} \quad 80 \mathrm{~cm}$

Astra 1A

1	1 H	Screensport	13.6	15.8
2	2 V	RTL	13	14.8
3	2 H	TV3	14.5	16.2
4	1 V	Eurosport	15.1	16.9
5	1 H	Lifestyle/JSTV	14	15.8
6	2 V	SAT 1	12.5	14.4
7	2 H	TV1000	14.5	15.9
8	1 V	Sky One	14.9	16
9	1 H	Teleclub	13.7	15.3
10	2 V	3 Sat	12	14.2
11	2 H	Filmnet	13.3	15.1
12	1 V	Sky News	14.3	15.9
13	1 H	RTL V	13.7	15.5
14	2 V	Pro 7	13	14.6
15	2 H	MTV	13.6	15.9
16	1 V	Sky Movies Plus	14.7	16.4

Astra 1B

17	1 H	Premier	13.7	15.4
18	2 V	Movie Channel	14.6	16
19	2 H	ZDF	14.6	15.9
20	1 V	Sky Sport	13.5	15.1
21	1 H	DSF	14.1	15.7
22	2 V	MTV	14.4	16
23	2 H	UK Gold	12.6	13.9
24	1 V	TCC/JSTV	14.1	$15 \cdot 9$
25	1 H	N3	14.2	$15 \cdot 3$
26	2 V	Sky Gold/TV Asia	13.6	15.4
27	2 H	TV3	15.1	16.7
28	1 V	CNN International	14.3	15.6
29	1 H	NTV	13.8	15.4
30	2 V	Cinemania	14.8	16.6
31	2 H	TV3	12.3	14.9
32	1 V	Documania	15	16.7

For measurement conditions see main text.
should perhaps mention that for good quality reception a C / N ratio of about 13 dB is desirable. Less than 13 dB usually means degraded performance in terms of a worse S / N ratio and sparklies. With the equipment used it was not possible to measure accurately below 11 dB .

Similar results were obtained when the Amstrad receiver was used with an older "blue cap" LNB (noise figure 1.8 dB) except that on all channels the measured C / N levels were approximately IdB lower. Received picture quality was acceptable. though it was sometimes impossible to eliminate sparklies completely with the UK Gold and German channels when using a 60 cm dish. Again this is typical of installations in this area.

Better results were obtained when the 98 cm dish was tested. an improvement of 3 dB in the C / N ratio being recorded in comparison with the 60 cm dish. This would provide a good increase in the performance margin under adverse weather conditions. Unfortunately this size of dish is not specified for Astra reception, though it could form the basis of a motorised system. This takes us into the realms of
planning permission of course.
As a separate test. mostly to satisfy my own curiosity, the same checks were made using an older 60 cm solid aluminium dish. No measurable performance differences were noted in comparison with the results obtained using the 60 cm mesh-type dish. Lenson Heath points out that the gain of a mesh dish should be similar to that of a solid one provided the holes are not too large. Of greater importance apparently is the shape of the holes: poorly designed perforations can trap water and snow, attenuating the signal when the weather turns bad. The choice of a solid or mesh dish is largely a cosmetic one.

Conclusions

What conclusions can we draw from these tests? It seems that SES's original calculations for the expected signal strength and dish and receiver characteristics were correct. When one gets close to the boundary of the 52 dBW footprint however signal degradation increases. Although this boundary defines the area in which the use of a 60 cm dish is recommended. better results are obtained using an 80 cm dish. This is definitely the case where the customer wishes to receive German programmes without interference. More important perhaps is the improved margin against interference under bad weather conditions provided by a larger dish.

Another advantage of a larger dish is its reduced beamw!dth. which means that it will be less likely to pick up interference from satellites adjacent to the one with which it is aligned. I have already come across a 60 cm Astra zystem that, because of slightly incorrect azimuth alignmerat, was receiviag signals from the Eutelsat craft at 16° as well. This problem can only worsen with time, as more satellites are placed in orbit and dish allignments move.

Acknowledgement

My thanks to Lenson Heath for the loan of dishes and the provision of technical data. In a later article I'll describe the installation of a polar mount designed for use with their 80 and 98 cm dishes.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, June, July, August, September, October, November, December.

1993 January, February, March.
Copies are available at $£ 2.75$ each including postage. Send orciers to:

```
Reed Business Publishing, Television Back Issues, Room L323,
Quadrant House,
The Quadrant, Sutton, Surrey SM2 5AS.
```

Make cheques/postal orders payable to Reed Business Publishing Ltd.

Letters

CHEAP WASHERS

During the course of my daily round I've noticed an increasing number of self-installed aerial brackets. Although they are fitted well enough the screw holes are too big for most woodscrews and leave little enough landing for Rawlbolts unless a washer is used. The thing that drew my attention was the number of cases where a two-pence piece with a hole drilled through the centre was being used in place of a washer. This intrigued me so much that I asked the price of a two-pence sized washer at my local hardware shop. The answer? Ten pence each!

Now don't get me wrong. I don't think that anyone can expect to buy anything for less than ten pence today, and if you think about it most of our use of the odd penny is because VAT brings the price to $£ \mathrm{XX} .99$ or something similar. But isn't it a sign of the ravages of inflation when five coins of the realm can be used as washers for the price of one of the real thing! I should perhaps add that I think it's against the law to deface British currency. Punishment is probably death by hanging or the rack. I believe it's quite an old law.
John Hopkins, The TV Workshop,
Felixstowe, Suffolk.

BRASS DRIVE BUSH

My thanks to W. Wilcock (February) and S.J. Caine (March) for their comments about the Sharp brass drive bush. If only to ensure that I haven't mislead anyone on the subject of the method of fitting I must comment further. In my original note (December 1992) I said that the brass item should be fitted using a hot soldering iron. Clearly this would be no good with the Sharp part. The one to which I was referring has a tapered fit however and is made to be heated for fitting to the shaft. I hope I didn't give the impression that I was actually soldering the thing on. The taper-fit bush is available from VAS Electronics, Gleneagles Avenue, Leicester (0533 664 850).
Chris Watton,
Boston, Lincs.

NICADS AND CAMCORNERS

I read John Kendall's letter (March) with some sympathy. The problem with the palmcorder is that the layman thinks, when it shuts down, that the 6 V battery has been properly discharged. It hasn't. The memory effect will then affect the charge-discharge cycle and in no time at all the battery has become useless for its purpose. It can recover from this effect, with careful treatment, but the layman will have gone off to buy another battery - at some cost!

A nicad battery delivers only 1.2 V per cell. Thus a battery of five is needed for 6 V . Ideally they should be discharged until each cell reaches 0.9 V , the end-of-charge voltage for a 6 V unit being 4.5 V . This is far below the point at which the camcorder shuts down. Possibly cost and size are the reasons for using a 6 V battery, but if the end result is such an unsatisfactory charge life surely, as Mr. Kendall suggests, a 7.2 V unit with some regulation in the machine would be a better option?

Discharging the battery until it is flat is not a good idea. Some cells may reach 0 V before others. These will then
begin to charge in the reverse direction, which makes life even more difficult. I've made a discharger for my 12 V nicads. It senses when the terminal voltage has fallen to 9 V then shuts off. By doing it this way I've managed to keep in service for over six years the batteries I use. Varta produced a very good guide for nicad users at one time: it might be worth trying to obtain one.

Many people comment about the short life of nicads used in radio receivers and personal stereo equipment. These items were designed to be used with zinc-carbon or alkaline batteries whose cell voltage is 1.5 V . When a nicad battery with only 1.2 V per cell is used the end-point voltage for the load is reached that much sooner!
Graeme M. Young,
Nottingham.

NICAM ON A SHOESTRING

I read with interest Keith Wevill's article in the February issue, having myself built a near identical system about ten months ago using components obtained from the same sources. I bypassed the TDA8421 tone control chip with some regret as it has such obvious potential, but I'd no way of obtaining data on the device or the I2C bus system. My solution was simply to take the audio signals from CS56/7 to $10 \mathrm{k} \Omega \log$. potentiometers and, after removing diodes DS81/2, take the sliders of the potentiometers to RW37/CW28 and RW34/CW25 via $22 \mu \mathrm{~F}$ capacitors.

The video signal required was obtained from the excellent signals panel used in the Philips G11 chassis. Since this requires some 40 V to tune across the bands it fitted well with the 36 V the Nicam panel needs. A further advantage of this signals panel is that it has a stand-alone audio demodulator and output section that also operates at 36 V . This can be used for initial tuning, or as a separate mono output.

I wired up the G11 unit first to ensure that it operated satisfactorily, then carried out modifications to the Nicam panel as described by K. Wevill. The Nicam signal was taken from the video detector to the Nicam panel. In my case a d.c. bias was already present at the panel's video input so no problems were expected and none were found. Since I didn't intend to use the video signal for viewing I deliberately tweaked the vision i.f. to enhance the Nicam signal level.

The sound quality is excellent without any additional tone control and fully justifies reports on the system.

I.C. Rohsler,

Harborne, Birmingham.

COWBOYS SHOOT BACK

I read with particular interest Ed Rowland's article (February) on cowboys since by his definition I would be one of them though I've had twenty five years experience of repairing TVs and VCRs as well as the design and manufacture of various electronic products. But I'm not a member of any guild. I've moved away from full-time repair work now but do undertake the odd job in any spare time I am lucky enough to have.

While the cases mentioned by Ed Rowland are horrific, I can quote quite a number of instances of gross over charging and what amounts almost to fraud by 'respectable' dealers. An acquaintance of mine recently took a six-year old Hitachi VCR to one firm and was told that the trouble was caused by defective heads, which cost $£ 97$ plus fitting, and that the machine was therefore a write off. When my acquaintance asked for it back he was told rather aggressively that there was no point and that it would be disposed
of for him. He rather stupidly agreed to this.
Now you and I know that a set of replacement heads for such a machine can be obtained for between $£ 10$ and $£ 20$. I wouldn't mind betting that the dealer concerned whacked in such a set and either put the machine out on rental or sold it off. Such cases are not rare in this part of the world. I recently fitted a motor supplied by the customer to a record deck. Total time taken was less than five minutes. The quote from another firm was $£ 45$ plus VAT.

I'm sure that most dealers are from time to time guilty of making up losses incurred in sorting out the real pig that we've all had occasionally. My point is that there seems to be an increasing trend for certain dealers to do this all the time. The same trend can be observed with other retail businesses. My wife recently took a ring to a well-known firm of High Street jewellers for a small replacement opal to be fitted. The manager quoted $£ 150$ - we had the job done for $£ 8$ by another more honest but much smaller jeweller.

Maybe if the repair business cleaned up its act and charged an honest rate for each job, based on the amount of time spent doing it, instead of working out the cost on the "how much can I get from this client" basis, the cowboys would be out of business because the public would learn to trust local dealers. I've just had a set in from someone who lives forty miles away: he simply doesn't like being ripped off the minute he walks through the door of a 'respectable' dealer.
L.J. Pitts, B.Sc.(Hons.), FIAP, LRSC,

South Brent, Devon.
I feel that I must take issue over Ed Rowland's Cowboys article (February). It seems to suggest that anyone who offers a repair service without certain paperwork or qualifications is a crook. A comparatively few bad experiences are cited, leaving the reader to infer that this is the inevitable penalty for not paying the full price asked by those who have the paperwork. Qualified people are not immune from dishonest practices however.

Be honest about the fact that many cowboys, almost certainly a majority, are capable of doing just as good a job as those with qualifications. Many of them will honourably admit defeat if they cannot cope.

It's natural for those who have undergone formal training to feel hard done by when they find that others can do a lot of their work as a result of informal learning and self-taught skills. One shouldn't deny the right to those members of the public who want, or can only afford, to take a cheaper and often worthwhile risk in getting their servicing done. I know that there are safety issues here, but Ed Rowland didn't specifically mention these. Clearly any servicing involves risks. Electronic work is not alone in this respect, and there will always be a minority of bad cowboys. But this is what free competition and choice is all about.

And for heaven's sake don't encourage the Eurocrats to get their ham-fisted fingers on any more of our activities. This would only make life more difficult for us all, including those who feel that they are fully qualified.

What's needed is a way of punishing those who behave badly rather than more restrictive practices.
Martin J. Loach,
Abingdon, Oxon.
I'd like to point out that not all cowboys are the small fry, as suggested in Ed Rowland's article (February). About two years ago I was working at a training establishment in Liverpool. Trainees from our and other departments were allowed to bring in TV sets, VCRs etc. to be repaired where
possible. The majority of sets were old ones (Philips G8s etc.), many intended for use with little Johnny's computer games.

One morning however a three year old set made by a large European manufacturer was brought in. Its owner told us that the local approved dealer, who advertised and sold just this one brand and had sold him the set, had said that the tube was duff. A replacement, with fitting etc., would cost around $£ 150$, with a small discount for cash. He could have the latest all singing and dancing model however for a good discount with trade in. There was an argument and the disgruntled set owner withdrew. We were his second opinion.

The type of tube involved is renowned for premature failure. Its display was sad to say the least - very dark and muddy. The red appeared to be missing, but on closer observation seemed to be fading in and out cyclically. A check showed that the tube base voltages were all more or less correct. By now most of you will have guessed that the tube was o.k. Disconnecting the degaussing plug and carrying out a manual degauss restored a perfect picture. The degaussing thermistor was the offending item of course and was replaced. The old one sounded like Mick Jagger's maracas. and showed perfectly for our students what the inside of a cooked thermistor capsule looks like. From set switch on to repair completion took about an hour, including discussion of the fault with the trainees initiating the sequence of steps in the fault-finding process. The happy owner bought everyone a pint.

His annoyance with the dealer was understandable. Further questioning brought out the information that during his visit to the dealer the set was at no time out of his sight (he was actually taken into the workshop) and that the set was never opened, diagnosis being based on off-air signal reception. How many other basic rules were ignored?

How many other people are taken in by these methods? Joe Public expects an accredited dealer to be a little more honest than the Snoddies of this world, but there are nevertheless such obvious rackets.

About a week later the set's owner came back to see us. He'd returned to the shop and confronted the engineer, who had a 'manager' badge on his coat. Once again he was offered a discount to buy a new set. He left after telling the 'manager' that he would never shop there again.
P. Perkins,

Wirral, Merseyside.

FIXING GRUNDIGS

Excellent technical advice on Grundig products cari now be obtained from a very helpful gentleman. Allan Dyson of Tameside Technical Services. He's an ex-Grundig TLO whose advice is available to the trade at a very reasonable charge.

Our own problem started when a service manual for the VS520 VCR couldn't be obtained from Willow Vale, who told us that they had been trying to obtain it from Grundig for months. I had pais my membership to TTS: my phone call to Allan Dyson resulted in a tuner/i.f. fault being traced to component level - with a complimentary servise manual being thrown in!

With Grundig phone lines that are permanently busy, or "we don't give technical advice to non-approved service departments", I can certainly recommend Allan Dyson's service. He can be reached on 0613679400 . This is what technical advice should be like.
Brian Davidson. Davidson Bros..
Greenock, Renfrewshire.

Modern TV Receiver Techniques

Part 4

Eugene Trundle

There was a time when TV receiver audio circuits could be dealt with in a few paragraphs. While this is still true with simple, basic TV sets, there have been tremendous changes in audio systems at both ends of the broadcasting chain over the last few years. We'll start with the simplest arrangement and work up from there.

Mono FM System

The monaural sound signal is transmitted on its own frequency-modulated r.f. carrier, with $\pm 50 \mathrm{kHz}$ maximum deviation, at a level 10 dB below that of the vision carrier. With system I the sound carrier frequency is spaced 6 MHz above the vision carrier: with the European systems B/G the spacing is 5.5 MHz above the vision carrier. As before, we'll stick to system I for our examples.

The sound carrier beats with the local oscillator in the tuner to produce an i.f. output at 33.5 MHz . There are two alternative ways in which this signal can be processed. It can either be filtered out then amplified and demodulated, or passed via the vision i.f. amplifier to the vision demodulator where it will beat with the vision carrier to produce a 6 MHz difference signal, with the f.m. intact, which can then be selected, amplified and demodulated. The latter system, called the intercarrier system, has been in use for many years. It has several advantages: tuning errors and drift have no effect on the carrier frequency, which is governed solely by the very accurately maintained vision-sound spacing at the transmitter; the sound carrier benefits from the gain provided by the vision i.f. amplifier; and the sound circuit is simple.

Typical Circuit

Fig. I shows a typical simple TV sound system of this type. The input from the vision demodulator is first passed through a ceramic filter which is resonant at 6 MHz , its bandwidth being about 200 kHz . This is wide enough to embrace the $\pm 50 \mathrm{kHz}$ f.m. sound deviation while rejecting the luminance and chroma signals. In some receivers two ceramic filters are used, connected in series. The sound carrier enters the chip at pin l, after which it's passed through several stages of amplification with limiting - the limiting clips off any amplitude modulation caused by the vision signal, the a.m. rejection with normal input levels being about 55 dB .

The clipping action produces a squarewave output. As this contains many harmonics of the baseband frequency the signal is next passed through a low-pass filter. This restores the carrier waveshape to something like a sinewave for application to the f.m. demodulator, which is of the quadrature synchronous type. Again, as described last month, the action is based on the sample-and-hold principle. The sampling gate is opened for an instant during each carrier cycle. An unmodulated carrier will be passing through zero when the gate is opened, so there will be no output. As the phase/timing of the signal advances and retreats, the sampling action generates an output that's proportional to the frequency deviation.

A reference carrier is required to produce the gating action. This is generated by the high-Q tuned circuit LI/C5 whose flywheel effect averages the carrier frequency, thus providing a constant-phase reference feed for the demodulator. In current practice a ceramic filter is used for this purpose instead of a discrete LC circuit.

Next comes a voltage-controlled amplifier (VCA) whose gain depends on the resistance between pin 6 of the i.c. and chassis. An alternative way of arranging for this volume control action is to apply a variable d.c. control voltage to pin 6, the volume level then being proportional to the applied voltage. Where control is done by sending serial data along a bus line the chip must incorporate a circuit to decode the data and set the gain of an amplifier stage. Back to the simple circuit shown in Fig. I however.

The Audio Amplifier

The demodulated audio signal has to be de-emphasised. An RC network performs this operation, the capacitor being connected to pin 12 of the chip while the $10 \mathrm{k} \Omega$ resistor is within the chip. The signal is now ready for application to the driver and output stages which in a simple system are generally, as shown here, within the same chip. The output stage usually consists of a push-pull pair of transistors operated under class B conditions, the d.c. mid-point voltage being isolated from the loudspeaker by coupling capacitor C10.

The value of the resistors connected to pin 7 of the chip determine, as part of a negative feedback loop, the a.c. gain of the output stage, the capacitors connected to pin 8 setting the amplifier's upper frequency limit. R5 and C12 form a Boucherot cell which suppresses any tendency for h.f. oscil-

Fig. 1: Typical intercarrier sound/audio amplifier chip arrangement.

MANOR SUPPLIES

MKV PAI. COI.OUR TEST GENERATOR FOR D)OMESIIC TV \& VCR.

* 40 different patterns and variations.
* Fully interlaced sync pulses with correct picture blanking
* EBU colour hars, BBC colour hars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and back
* Chequerboard
* Mono outputs with border castellations, cross hatch, grey scale, verticat lines, horizontal lines and dots. UHF modulator output plags straight into receiver acrial socket.
* Additional video output for CC"TV \& VCR
* Facilities for sound output
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stahilised power supply.
* All kits fully guaranted with back-up service
* Also available with VHF Modulator.

Price of Kit
$£ 79.00$
Case ($100^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4$ ") app $£ 19.00$
Optional Sound Module ($6 \mathrm{MH} / 2$ or 5.5 MHz)
$£ 5.90$ Built \& Tested in Case including Sound Module $\quad \mathbf{1 2 9 . 0 0}$ Post/Packing ± 4.50
Add VAT 17.5% TO ALI. PRICES
PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver acrial socket.
* In addition to colour bars R-Y, B-Y ete.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour har P. C.B.
* Backup service available

PRICE OF MK4 COLOUR BAR GENERATOR KIT
£39.00. CASE $£ 5.80$. BATT HOLDERS $\mathfrak{£} 4.20$ MAINS SUPPLY KIT £5.80 (Combined P\&P£4.50)

LINE OUTPUT TRANSFORMER TESTER

* Saves time and money
* Checks short turns
* Simple to use
* Reliable
* Battery operated.
- Pocker size

PRICE $£ 24.00$
P()ST/PACKING $£ 2.50$
INFRA RED REMOTE CONTROL TESTER

- Pocket size.
- I FD + audible indication.
* Simple to use

PRICE $£ 20.00$
POST/PACKING £2.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& audio outputs £28.50 p.p. £1. f ().
PAL IDECODER KIT (Video to R(GB) for Monitors £27.00 p.p. £1.80.
PAL, ENCODER KIT (RGB to Video) $\mathbf{\$ 2 0 . 0 0}$ p.p. fl. 80 .
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Casc. Panel Meter Indicator - can be adapted for latest CRTs $\mathbf{£ 4 5 . 0 0 p . p . ~ £ 4 . 5 0) . ~}$

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement for: Ferguson. Hitachi, Philips, Panasonic, Grundig, ITT, Sonv, Saisho, Granada, Saisho + many others
Sor mak and moder
PHILIPS SPARES
MANUALS CF1, CTX-E, CTX-S, CP90, CP110, GR1AX, G90AE, 2B, 3A, NC3-CR ¢7.50 p.p. $£ 1.81,2 \mathrm{~A} £ 10.50$ p. p. $£ 1.80, \mathrm{KT} 3 £ 25.00$ p.p. $£ 1.80$ SYSTEM 4 KT4, K4II22.00 p.p. E3.00
BACK UP BATT. 2.4 V £ 3.801 .2 V £2.00 p.p. 90 p
K.30, KT4, CTX-EHT Lead $£ 4.90$ p.p. $£ 1$ (K)

THORN/FERGUSON SPARES

9000 Series IF. Decoder tested $£ 10.00$ p.p. 12.80
TX10 Focus contul 88.50 P.p. $\varepsilon 180$
Tx9/10 Remore \& tuning $1515 \mathrm{~N} £ 5.00$ p.p fI .80
TX10 Sterco Audio Board $£ 3.50 \mathrm{~g} . \mathrm{p} £ 2.5$
TX100 Chopper TX $£ 15.80$ p.p. $£ 2.50$

PHILIFS KT3
PHILIPS K 30
TRIPLERS EHT MULTIPLIERS
CONTINENTAL UNIVERSAL TVK \& BG RANGE (Quote exact no.) $£ 13.80$
U.K. UNIVERSAL (best quality) 87.80

DECCA/TATUNG BG 200/44 TYPE 17.80
GRUNDIG BG 2077-642-1001/1002/1003/1004 £16.80
GRUNDIG BG 2087-642-1006 £16 80
THORN $9000 £ 9.80$
MAINS TRANSFORMERS: 6.3 Volts CRT boost $£ 6.80$ p.p. $£ 1.80$ Mains Isolating 500VA 551.25 p. F. $£ 5.25$
MISC: 455 CRYSTALS for handsets. 4 for $£ 2.00 \mathrm{p} . \mathrm{p} .80 \mathrm{p}$
DEGA
TRANSPARENT VIDEO SERVICE CASSETTE 86.80 p.p. 11.80
HOW TO ORDER: ADH p\&p TO ORDER + VAT 17.5% TO THE TOTAL PRICES ARE SLBJECT TO CHANGE WITHOUT NOTICE

Telephone 071-794 8751/794 7346 Fax 071-431 5778
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1SD
lation, due to the inductive load (the loudspeaker and its wiring), to occur in the output stage - similar arrangements are used in field output stages.

A small chip of the type taken as an example here will provide an audio output power of about 3 W average, depending on the supply voltage and the heatsink arrangement used. This type of i.c., or a small power amplifier chip fed from a separate intercarrier sound amplifier/demodulator i.c., easily caters for the needs of a portable set or an economy large-screen receiver using a single loudspeaker.

Although for purposes of illustration we've shown a dedicated sound channel chip, in modern sets the intercarrier sound and audio preamplifier stages are likely to be incorporated in a more complex chip that performs many other functions.

Stereo Sound

There are several possible sources of stereo sound in a TV receiver: a built-in Nicam decoder; external sound-withpicture sources such as a satellite TV receiver, a hi-fi VCR or a Laserdisc player; and, in some countries, a built-in analogue stereo sound decoder. Incorporating a stereo sound system calls for difficult choices by the setmaker in terms of loudspeaker arrangements and operating power. The power drain introduced by a reasonably high-energy stereo audio system may be at least equal to that of the line output stage. With a class B output stage it fluctuates in sympathy with the sound: if a constant-current system is chosen there's little problem with regulation but a lot of heat has to be dissipated. For outputs up to about $5+5 \mathrm{~W}$ a single dualchannel power output chip is generally used; for higher powers there is usually a separate audio output chip in each channel.

Since low-frequency sounds are not very directional some sets have a single, centrally-mounted woofer that's fed with the L and R signals and a pair of side-mounted boxes that take L and R feeds respectively and produce just the medium- and high-frequency sounds. Fig. 2 shows such an arrangement, devised by Sony. The centrally-mounted 13 cm woofer has separate 7Ω coils for the L and R audio signals, which are fed to them via low-pass LC filters. The sideboxes each contain a $7.5 \times 13 \mathrm{~cm}$ mid-range unit, a 5 cm dome tweeter and a first-order crossover network. In conventional stereo TV sets much ingenuity is used by manufacturers to overcome the acoustic problems associated with small loudspeakers in plastic cabinets. Bang and Olufsen, always aware of sound quality, have in some models used a pair of rear speaker-loading horns inside the TV set's cabinet, sticking up on each side of the c.r.t.

No matter how well a TV set's sound system is designed, there's no doubt that taking separate audio feeds from the set - or VCR - to a hi-fi system with widely-spaced loudspeaker enclosures is better for stereo.

Spacial Effects

Because a stereo receiver has two sound channels with closely-mounted speakers and may well work with a monaural signal for much of the time, several 'ambience' techniques have been devised to enhance the sound. They are also sometimes used in audio equipment.

The first of these is the 'stereo-wide' system, which gives the subjective effect of increased L and R sound separation. It's done electrically, by emphasising the difference between the L and R audio signals. The simplest and most common way of doing this is to inject into each audio channel an anti-phase (polarity-reversed) signal from the

Fig. 2: 3-D loudspeaker system with a common base unit.

Fig. 3: A stereo-wide arrangement.

Fig. 4: Response curves for one form of pseudo-stereo system.

Fig. 5: Way of obtaining the response curves shown in Fig. 4.

Fig. 6: Ferguson's Supersound system, in which the signals in the R channel are subjected to a frequencydependent time delay.
other channel, generally via filters that pass only the midand high-frequency components of the audio signals. Fig. 3 shows the arrangement. Thus the greater the difference between the L and R sounds, the greater the differential emphasis. This arrangement is sometimes called spatial sound - the terms are often used indiscriminately.

With a monaural sound source and a pair of correctlyphased speakers at each side of the set the sound appears to come from a point between them - the picture tube screen. It's possible to process the monaural signal electrically to
produce a pseudo- or artificial-stereo effect. While hardly natural. a subjectively pleasing 'projection into space' effect is obtained. One way of achieving this effect is to feed different frequency bands to the two speakers - see Fig. 4. Here a notch filter is used to reduce the mid-range frequencies in the feed to one speaker (left) while the other speaker (right) is fed with the original monaural signal minus the signal fed to the left speaker. Fig. 5 shows how this is done.

An alternative way of achieving this sort of effect is shown in Fig. 6. The signal in the left channel is left alone while the signal in the right channel is passed through two frequency-dependent delay networks. Their combined effect is to introduce a 180° phase shift at around 1 kHz , increasing to a phase shift of 360° as the frequency rises. This time delay, proportional to frequency, in one channel gives a subjectively 'live' quality to the sound.

Before we leave the sound processing section, a word on the bass, treble and balance controls with which most stereo TV sets are fitted. Tone control is carried out by operational amplifiers with frequency-selective RC networks in their feedback paths. The amplifier`s gain is set by a d.c. level at at an i.c. pin or a control data decoder within the chip. Typical control curves are shown in Fig. 7. Balance is set by differentially adjusting the gain of two VCAs, one in each channel.

Satellite TV Sound

MAC TV transmissions use the Nicam/packet sound system we'll examine next month. With most conventional satellite TV transmissions that use f.m. vision modulation, for example the majority of the Astra channels, there are f.m. carriers for the sound, very similar to those used for

Fig. 7: Typical tone control response curves.
terrestrial monaural TV sound. The main difference is that there are more of them! Fig. 8 shows a typical satellite TV channel spectrum, with five sound carriers sitting at 6.5 , $7.02,7.2,7.38$ and 7.56 MHz on the h.f. side of the baseband video signal. The main carrier, at +6.5 MHz , is used for the monaural sound signal, with a bandwidth of $20 \mathrm{~Hz}-15 \mathrm{kHz}$. Carrier deviation is $\pm 85 \mathrm{kHz}$ and the pre-emphasis timeconstant $50 \mu \mathrm{sec}$.

Thus the f.m. signal processing system is exactly the same as that used for terrestrial TV transmissions, already described, save for the operating frequency - in the example just quoted the filter and demodulator are tuned to 6.5 MHz . The simplest satellite TV receivers demodulate only the main sound carrier, providing a single audio output at a level of about $0 \mathrm{~dB}(0.775 \mathrm{~V}$ r.m.s.) for feeding to a TV receiver or VCR.

Auxiliary Carriers

Rather less deviation ($\pm 50 \mathrm{kHz}$) is used with the ausiliary sound carriers, though the audio bandwidth is the same: thus the modulation index is rather lower. As this would result in

		STK2038	875	STK5392	8.15	STR58041	3.95	TA7322 1.00	TA75902 0.90				
SAA1124	250	STK2125	625	STK5481	... 630	STR5904	5.95	TA7323 0.50	TA7680 -.. 3.99				
SAA1250	300	STK2129	600	STK5451	475	Str30130	3.95	TA7325-... . 0.55	TAB691N. 5.00				
SAA1251	. 4.30	STK2145	900	STK5461 6.95	STR30134	3.00	TA7326 2.10		WITHDU	ON:	$9565+\mathrm{\Sigma} 12(\mathrm{p}$ ¢ p$)+\mathrm{vat}=$	c.98
SAA1293A.	. 485	STK2155	945	STK5467	. 480	STR44115	5.00	TA73276.00	COLTAGEREGU	wit	ON:	$59+£ 12(\mathrm{p} \& \mathrm{p})+\mathrm{vat}=£ 318$	
SAA1293-2	515	STK2230	465	STK5471	- 3.95	STR4211	3.60	TA7328 145	7805. 0.32 7806.	IF PA		REDIT CARDS PLEASE ADO	
SAA1293-3	515	STK2240	815	STK5476	495	STR55041	6.00	TA7331 1.22	$7806 . ~ . . . ~ ~$ 7807 780	If		dol Cand s please ado	
SAA1296	8.00	STK2250	745	STK5476	495	TA4194	575	TA7332 … 072	7807 \cdots 7808 \cdots 0.33			SFOR DELIVERYIFPA	
SAA5000.	230	STK3041	450	STK5481.	4.15	TA706 ${ }^{\text {a }}$. 080	TA7335 …e...... 0.50	${ }_{7809} 7808$....... 0.32		10 D	YS FOR DELIVERY IF PAYIN	
SAA5010	495	STK3042	4.20	STK5482	2.95	TA7063	0.40	TA7336 050	${ }_{7810} 7809$.. 0.30			CHEC	
SAA5012	599	STK3042/2	475	STK5490	495	TA7064	0.60	TA7337 3. 12	$7810 \quad 1 \quad 0.30$				
SAA5020	785	STK 3044	515	STK5730	585	TA7066	1.10	TA7342 0.85	7312. 7315				
SAA5030	785	STK4017	430	STK6325	.. 800	TA7069	.. 180	TA7354 \ldots....... 0.75	7315....0.33				
SAA5243P/E	715	STK4019	580	STK6732	1480	TA7070	-1.15	TA7357 1.35	7818 0330		For	ET. JJ SidLER TYRES	
SAB3035	545	STK4024/2.	950	STK7174	450	TA7074	205	TA7358 0660	${ }_{78820}^{7820}$ - - .i. 0.30	ON	80	PACK, MINIMUM 3 PACKS	
STK011	350	STK4026	580	STK 7216.	495	TA7075	735	TA7359 0.75	7824. $\cdots 035$				
STK015	475	STK 4026/2	475 680	STK7308 STK7309	405 445	TA7092 TA7119	800 110	TA7361 TA7368..... .. 100 TA	7905 .. 0.35 7906			OCK - NEW STOCK	
STK035 STK040	8.75 1700	STK4028/2	680 880	STK7309 STK7348	445 405	TA7119 TA7130	110 070	TA7368 TA7401.	7906 7908 040		/6291	power supply repar kit	9.65
STK050	1900	STK 4060	560	STK7404	400	TA7136	1.10	TA7522 4.00	7909 050	Ferguson F	PPS	reparr kit	9.15
STK056	800	STK4121	595	STK8050	${ }^{8} 62$	TA7137	060	TA7704 1.65	7912 0.40	Phillips chas	A' PS	U repair kit	6.65
STK077	580 600	STK $4121 / 2$	700	STK8250	545	TA7140	$\cdots .0 .85$	TA76091.70	VIDEOSPARES			' PSU reparr ktt	6.95
STK078 STK080	600 5.85	STK4132/2 STK4141/2	730 415	STK6962 STK460	320 715	TA7145 TA7157	4.00 $+\quad .120$	TA7611 $\ldots ~$ TA7612 1.65	ECONOMYKITS	Prilips cha		PSU reparkn	6.93
STK082	565	STK4151/2.	700	STK5322	610	TA7176	110	TA7613 1.45	ONTANS EELTIGT				15
STK084	640	STK4152/2	1000	STK4141/2	500	TA7203	175	TA7614 130	NCHAOLLERS	pring k			
STK086	8.50	STK4161/2	850	STK5342	295	TA7204	. 1.28	TA7616......... ${ }_{1} 30$	\& TYRES	VCR circlip \&	asher		5.15
STK0025	4.00	STK4171/2	910	STK4162/2	810	TA7205	0.75	TA7621 2.15	AKAI	Fibre creaning	encil		2.95
STK0029	355	STK4172/2	800	STK5421	515	TA7207	140	TA7628 1.30	VSU5 . 5.05	Plastic with m	al end	trimming tool (pk of 5)	3.00
STK0035. STK0039.	950 370	STK4181/2 STK4182/2	8.50 800	STK5422.	$\begin{aligned} & 495 \\ & 6.40 \end{aligned}$	TA7208 TA7214	$\begin{array}{r} 135 \\ 2.60 \end{array}$	TA7629 ${ }^{1} 180$ TA7630		Audio vineo	ning	sticks (pk of 5)	1.50
STK0040	500	STK4191/2	1100	STR370	395	TA7222	-. ${ }^{\text {-. }} 1.12$	TA7636 4.00	3V29 510	GEC C 1403	SU	de kit	11.99
STK0049	500	STK4191/5	1850	STR380	395	TA7227	1.75	TA7640 0.90	3V35 5.35				
STK0050/2	440	STK4231/2	985	STR381	445	TA7229	285	TA7641 140	FV10....... 4.50		CIA	OFFERENDS $15 / 4 / 93$	
STK0059	600	STK4311	780	STR440	470	TA7230	1.15	TA7644 5.25					
STK0060	800	STK4332	405	STR441	615	TA7232	.. 1.15	TA76540.98	HED	STR4:1	4.75	12v CW Motor	1.45
STK0080	565	STK4352	620	STR450.	11.25	TA7233	..1.45	TA7658 - 098	7157725.... ... 405	STR50103A	2.65	12v CCW Motor	1.59
STK433	475	STK4362	595	STR451	1125 490	TA7237	. 2.40	TA7660 \ldots.........3.18	$905 / 910$ $520 / 530$ ${ }^{3} 3.90$	STKT348	3.15	TX10 remote	7.49
STK435 STK437	395 490	STK4372 STK4392	565 685	STR455 STR456	490 590	TA7240	195 +155		520/530 410	STK4152/2	7.15	TX10 stereo text remote	7.69
STK439	540	STK4432	880	STR1096	370	TA7245	2.20	TA7673 120	MIIACHI	TDA2600	2.65	Rediffusion Mk4 remote	
STK444.	675	STK4773	880	STR2013	395	TA7248	.. 464	TA7676 250	VT500..... .. 410	TDA4600	1.40	Rediffusion Mk4A remote	
STK457	4.95	STK4803	715	STR3125	570	TA7258	056	TA7681 275	V111 VT8090 .. 415	AN620	2.15	Video fault finding guide	
STK459	535	STK4813	930	STR3215	325	TA7259	145	TA7683 205	VT93900 4.90	AN6387		remote	
STK461 STK463	600 7.50	STK4833 STK4843	805 715	STR5412 STR6020	395 395	TA7267 TA7269	188 .275	TA7685 110 TA7687	VT64 5.65	AN6387			
STK465	715	STK4853	880	STR10006	540	TA7270 135	TA7688 ...		AN7:68	1.80	Television fault finding gu	
STK561	540	STK4873	985	STP11006	545	TA7271	... 170	TA7691 ...	NV300 PANASONIC 4.50	2S0871	2.00	vol 1	
STK563	415	STK4913	1175	STR12006	590	TA7274	. 1.85	TA7725... 125		Please p	for	types not listed. Please	60p
STK583	575	STK5314	545	STR20005	545	TA7280	. 190	TA77571.23	NV7000 4.10	-	g and	hen add 17.5\% VAT to the	
STK772	465	STK5315	595	STR20015.	.. 590	TA7281	-.. 2.05	TA7769 125	$\text { NV610. } 425$				
STK1030	800	STK5324	515	STR30118.	... 6.00	TA7282 1.75	TA8111......... 120	NV370 410				
STK1039	495	STK5325	445	STR30120	500 445	TA7302	-...0.70	TA8205 2.90				13	
STK1045	880	STK5331.	395	STR40090.	-. 445	TA7303	-. 0.85	IA8207 1.65	[MITSUBISAI				
STK1049 STK1050	775 725	STK5332 STK5333	180 240	STR41090 STR50103A	495 325	ta7310	0.70 $\times 0.80$	TAB2 10 TAB200 	HS318 - 4.70		H	HASE, EDGV	
STK1060	740	STK5335	445	STR50113	490	TA7313 0.60	TA8214......... . 3.40	SHAAP			485DN, ENC	
STK1070	920	STK5337	5.95	STR50213	650	TA7314	... 200	TA8215. 3.00	VC481.. 5.15				
STK2025	685	STK5338.	3.45	STR5304	640	TA7315 0.80	TA8221 5.80	VC4300 5.75	Fax:	-952	641 Hotine No:081-381 17	
STK2028 STK2029	540 475	STK5339 STK5361	495 415	STR54041 STR56041	395 700	TA7317 TA7318	.0 .70 .1 .15	TA75339 TA75558 0.745 2.45	VC800 $\quad . \quad 6.65$ VC7300 $\quad . \quad 550$	Callers by appointment only.			

Fig. 8: Baseband Astra channel spectrum. In addition to the primary and four stereo carriers there may be up to eight further carriers, typically used for radio programmes. The spacing of the four stereo carriers is 180 kHz .

Fig. 9: Audio demodulator arrangement used in the Ferguson SRA4 satellite TV receiver. The four channels are identical.
a poorer signal-to-noise ratio a noise-reduction system is used - with Astra transmissions the Wegener Panda 1 type is employed. The term Panda is derived from 'processed narrow-deviation audio'. It's a form of adaptive preemphasis. The dynamic range of the audio signal is compressed before transmission so that, in relative terms, high-level signals are attenuated and low-level ones are boosted, the amount of compression also being frequencydependent. The opposite has to be done to the baseband audio signal in the receiver so that its dynamic range is restored. In the process the noise component is suppressed.

The system has much in common with the companding principle used in hi-fi VCRs and with Dolby noise-reduction techniques. It's implemented by i.c. VCAs whose control voltages are derived from the signal itself via filters. Without noise reduction the signal-to-noise ratio of a narrow-band satellite TV sound channel is about 50 dB : the Wegener Panda 1 system provides an improvement of about 18 dB , increasing the subjective signal-to-noise ratio towards 70 dB , which is very good for an analogue transmission.

Table 1 shows the uses to which the auxiliary sound carriers are put, for stereo and multi-lingual sound, with Astra transmissions. Fig. 9 shows the simple multi-channel sound selection system used in one satellite TV receiver, in which each carrier is selected by an LC tuned circuit and fed to its own f.m. demodulator. The four demodulators work all the time, the switching chips IV07 and IS05 selecting the ones required in accordance with the control signals applied to pins 9,10 and 11.

Sound Carrier Conversion

An alternative to using four parallel sets of filters and demodulators is to employ a superhet system to convert the wanted carriers to fixed frequencies that can be handled by a pair of fixed-tuned filters and demodulators. This technique has the advantage of being versatile: it will work with any pair of carrier frequencies, including the piggy-back radio stations (see Fig. 8) that many transponders carry on carrier frequencies between 7.74 and 9 MHz , while in sophisticated systems the required channel can be user-programmed per transponder and stored in memory.

There are several variations on the sound-superhet technique. A common one is shown in block diagram form in Fig. 10. Two fixed-frequency oscillators run at 17.72 and 18.08 MHz . The output from one or the other is selected and fed to one of the gates of a dual-gate f.e.t. mixer, where it beats with the incoming signal to produce i.f.s at 10.52 MHz (R channel) and 10.7 MHz (L channel). With the output from the 17.72 MHz oscillator in use the R sound comes from the 7.2 MHz carrier ($17.72-7.2=10.52 \mathrm{MHz}$) while the L sound comes from the 7.02 MHz carrier ($17.72-7.02$ $=10.7 \mathrm{MHz}$). When the system control switches over to select the output from the 18.08 MHz oscillator the R and L sound signals come from the 7.56 MHz and 7.38 MHz carriers respectively.

Table 1: Astra sound carrier arrangements.

Mode	7.02 MHz	7.2 MHz	7.38 MHz	7.56 MHz
1		Language 1 L	Language 1R	Language 2 L

Fig 10: Superhet sound carrier selection system. The wanted carriers are shifted to 10.52 and 10.7 MHz . Not all receivers have true Wegener Panda 1 expanders: the system is a licensed one and alternatives, which are known as soundalikes, may be used.

Fig. 11: Frequency-synthesis satellite sound tuning system, with effectively continuous coverage over $5-9 \mathrm{MHz}$. The R and L outputs from IC601 in this Tatung design go to a dual Wegener Panda expander chip.

Instead of having fixed oscillators it's possible to use a variable or programmable oscillator: adjusting its frequency will tune, rather like a radio receiver, through the band of sound carriers associated with each satellite broadcasting channel. Fig. 11 shows one possible circuit. Tr 606 is the local oscillator whose frequency is controlled by IC609 which contains a programmable divider and a 4 MHz reference oscillator. These form a frequency-synthesis tuning system which is controlled by the receiver's microcomputer system control chip. The oscillator's output is fed to gate two of mixer transistor Tr602, whose other gate receives the whole spectrum of sound carriers from bandpass filter FL603 - this has a bandwidth of $5-9 \mathrm{MHz}$.

The mixer's output contains all the sound carriers, converted to difference frequencies in the range $8-13 \mathrm{MHz}$. Those centred on 10.52 and 10.7 MHz are selected by ceramic filters FL60I/4 and FL602/5 respectively and applied to pins 11 and 14 of the dual f.m. demodulator chip IC601. By programming IC601 any pair of sound carriers 180 kHz apart (as in Table 1) can be brought into line with
the filters and demodulators. In this particular design the sound is tunable in 10 kHz steps from 5 MHz to 9 MHz , and any required point can be stored in memory. These tuning/control systems will be described in detail later in this series.

The L and R outputs from pins 4 and 5 of IC601 are passed to de-emphasis circuits that can be switched between simple linear ($50 \mu \mathrm{sec}$) or Wegener-expander operation.

Earlier in this series we looked at the principle of the double-superhet. In the type of satellite receiver we've just considered the sound carriers undergo four frequency changes: in the LNB, at the indoor tuner, at the vision demodulator and at the sound carrier frequency changer.

Next Month

Having covered analogue TV sound systems, in the next instalment we'll examine digital TV sound broadcasting the Nicam and MAC/packet systems now used with many terrestrial and satellite TV transmissions.

Reports from Eugene Trundle, Nick Beer, Chris Avis, Graham Richards, Brian Storm, Alfred Damp. Chris Watton, Ed Rowland, J.R. Cutts, Michael Dranfield and John Edwards

GoldStar GHV1240I

This machine produced an unstable E-E picture, with poor sync, white crushing and bright psychedelic colours. The cause, as is usually the case, was the $1 \mu \mathrm{~F}$ a.g.c. reservoir/decoupling capacitor, in this case C715. It was open-circuit.
E.T.

Akai VS23

This machine has a rather complex power supply, with a mains transformer, chopper circuits and voltage doublers. One of the more obscure faults that arises in this area is partial failure of $\mathrm{C} 6(220 \mu \mathrm{~F}, 10 \mathrm{~V})$. The symptoms are wavy horizontal bars (like r.f. interference) across the picture and on-screen captions and intermittent colour in the E-E and playback modes.

It's worth noting that if the audio/preamplifier PCB behind the drum isn't earthed the syscon shuts the deck down within a few seconds in all modes. Beware of this!E.T.

Tatung TVR6111

We do a lot of Tatung servicing and have on several occasions come across the following fault: the reel drive intermittently fails to engage when fast forward or rewind is selected. If you get this symptom, check that lever trigger 260 is free to slide along brake plate 261 . If it's stiff, the metal stop for the brake plate (formed from the deck plate) needs to be bent very slightly to the right as you view the underside of the deck from the front. The numbers quoted above are taken from the exploded deck diagram in the service manual. This machine also appears under the Amstrad banner.
E.T.

JVC HRD 150/Ferguson 3V45

The play symbol, a dotted triangle, was lit up the whole time the machine was switched on, whether or not the play mode was engaged. It was caused by leakage between pins 4 and 5 of the fluorescent display PCB. Someone must have managed to spill liquid through the cassette loading slot! Thorough scrubbing with surgical spirit removed the conductive deposit in this very high-impedance circuit. E.T.

Sharp VC381

Misalignment is becoming a common problem with older VCRs. Realignment usually provides a lasting cure, making repairs justifiable. This particular example suffered from intermittent playback chroma. When the colour was present there was patterning on it. The cure was to reset the carrier peak adjustment slightly. In the record mode there was no picture because the dark clip was misadjusted.
N.B.
wouldn't play. On test there was no vision in the E-E mode - that's right, there were dry-joints in the i.f. can. It was the first time in years I've had that one. Next the supply guide post was missing, then the loading belt and the spool tyres were duff. After sorting that lot out and setting the machine up I found that it worked very well. An interesting point was that it had a large safety test label on the side from the previous day - presumably all electrical items in the sale had been tested.
N.B.

Mitsubishi HS330

The complaint with this machine was that the sound would vibrate when the machine had warmed up. Having tested the machine for ages and heard no "vibration" I questioned the customer to find out whether she meant wow and flutter, which is not uncommon with this model. Not so. It seemed to be a buzz. So I had a poke around and had success - a buzz appeared on the playback sound. Its cause was traced to a dirty connection between the copper-coloured spring metal that earths the top of the cassette housing and the regulator heatsink. A clean and retension cured the problem.
N.B.

Ferguson 3V54/55/57

Here's a trap for the unwary, like me. The VCR owner's house mains supply earth leakage trip had operated for some reason. When it was reset, the VCR was stuck in the aux mode. Embarrassment prevents a description of our efforts to restore sanity to the confused microcontroller chip and ourselves until a wiser colleague advised us to press the recessed "ch set" button.
C.A.

Hinari VXL5

Two non-working, ex-rental machines we'd purchased had the same fault - when play was selected the tape laced, the drum ran very fast then the tape unlaced. The cause of the trouble was that the 6 V supply to the drum feedback amplifier IC104 was very low as C145 (100uF, 10V) was shortcircuit. We used a replacement rated at 16 V .
C.A.

Ferguson 3V54/55

We purchased a quantity of 3 V 54 non-remote control machines for reconditioning as the preferred 3V55 remote control version wasn't available at the time. It surprised us to find that infra-red receivers were fitted, though the machines would respond only to manual operation. When we traced the signal path from the IR receiver's output we came to a link, which had been cut, next to connector CN402 on the small eject-tracking PCB PC1614/1626. When the broken link is replaced the 3 V 54 becomes a fully remote-controlled 3V55!
C.A.

Hitachi VT64

Playback was all right but when record was selected the drum and capstan failed to rotate though the record indicator

Granada VHSHX3/Hitachi VT8700

This old timer had been bought for $\mathfrak{£ 5 0}$ at a sale. There are still plenty of them about! The customer said that it
lit and the tape laced up briefly before unlacing again. We found that the record/play switching voltage double-diode block D626 was open-circuit on the record side. By coincidence we found a similar faulty device recently in the sound section of an older Hitachi machine. In both cases a couple of good old 1N4148 diodes wired in back-to-back proved to be a suitable replacement.
C.A.

Sentra VX8100HQ/Samsung VI710

For no erase replace transistor Q0501. It's a 2SD261 and no other transistor will work in this position! The cause of its failure is the erase head going open-circuit intermittently because of the plug/socket arrangement. Remove this and solder the lead on directly. How many more types of VCR will need this modification?
G.R.

Hinari VXL8

The problem, because of mains-borne transients, was no EE operation, no channel changing, cannot program etc. with just the letter E in the display. Unsolder the back-up capacitor for thirty seconds then reconnect it. Switch on and the microcontroller chip should recover from its crash. We've had this more than once and the routine has worked each time!
G.R.

GoldStar GHV1248I

The E-E pictures were pulling, with ragged edges, more so on some channels than others. Attenuating the input signal (via the aerial lead) established that it was an i.f./a.g.c. type fault - in fact the symptoms were identical to those you get with some CUC series Grundig TV sets. Replacing C715 $(1 \mu \mathrm{~F}, 63 \mathrm{~V})$ put matters right. We assume that it provides a.g.c. smoothing but as we don't have the manual we can't be sure.
G.R.

Alba VCR6000X/Sentra VX8400

As mentioned by Nick Beer in the January Clinic these machines very often suffer from tuning drift. Decoupling capacitors C133/4/5 for the VT line are prone to being leaky. In addition hardwiring the VT line to cure leakage will indeed provide a cure. But the reason for this tuning drift isn't leakage between the print tracks: it's caused by leakage on the component legs themselves! - around C134. The problem is caused by the quantity of glue that's put around the components in this area of the PCB during manufacture (top upper left-hand side with the board hinged up). I suspect that this glue absorbs moisture and then slowly becomes conductive. Thus rather than hardwiring it's easier and quicker to remove this glue and replace C134 $(0 \cdot 1 \mu \mathrm{~F})$. The $\mu 57433 \mathrm{~V}$ regulator on this board can also be the reason for tuning drift.
G.R.

Panasonic NVJ42

Although this machine would accept a cassette it was difficult to get the cassette back and the mechanism spooled backwards and forwards a great deal, rarely performing any function correctly. Checks soon showed that the solenoid which engages the mechanism was operating erratically. Instead of a satisfyingly solid clunk when the operation buttons were pressed only an anaemic click was heard. The solenoid drive system has two parts, a kick and a hold circuit. D603 in the kick section was open-circuit, a replacement restoring normal operation.
B.S.

Panasonic NVF55

I seem to get more than my fair share of search-tuning faults. This machine would search but wouldn't lock on to stations. Checks on the sync low, a.f.c. defeat and a f.c. feeds showed that there was nothing amiss to and from the demodulator pack, so out came this plug-in pack, revealing a surface-mounted diode (D6701, type MA15IWK) with one end missing. A replacement cured the problem. B.S.

Ferguson FV31R

This machine had a nasty habit of breaking its back-tension arm as the deck mechanics mistimed themselves, no matter how carefully the instructions in the manual were followed. We noticed that when the machine set off in play the drum motor didn't rotate. This turned out to be a vital clue. The drum stood still because the 5 V supply to pin 2 of chip IM02 was missing. From a look at the circuit diagram this appears to be totally unrelated. The PCB layout holds the clue: the link that supplies 5 V to IM02 also supplies the pull-up resistor RT67 in the mode-sensing circuit, the cause of the trouble being a dry-joint on this link. With the dryjoint resoldered and the deck mechanics realigned yet again everything worked correctly. All that was left to do was to fit a new back-tension arm.
A.D.

Ferguson 3V44/JVC HRD140

The drum and the capstan were both running slowly. A check on the servo reference signal, using a frequency counter, showed that it was running at only 2.5 MHz . The cure was to replace the 4.433 MHz crystal in the chroma circuit.
A.D.

Matsui VX3000

The complaint was of loss of tuning overnight. On the bench however no channels could be tuned in. R6045 ($33 \mathrm{k} \Omega$) was open-circuit.
A.D.

Akai VS22

The problem with this machine was a bad hum bar on the EE pictures. We found that $\mathrm{C} 4(47 \mu \mathrm{~F}, 25 \mathrm{~V})$ on the power supply PCB was leaky.
A.D.

Hitachi VTM722

The E-E audio was low and distorted while playback of a prerecorded tape produced only a cyclic chirping sound. We found that the always 9 V supply to IC40I was low at only 4.9 V because zener diode ZD854 on the power board was short-circuit.

Toshiba V83

The capstan motor was clearly running too fast. A check on the drive voltage showed that it was high at about $10-11 \mathrm{~V}$ instead of 6.7 V . Checks around the servo chip IC501 showed that although the voltage at pin 14 (capstan a.p.c.) was correct at 3.3 V the voltage at pin 15 was only 0.9 V instead of 3.3 V . Scope checks at pins 19 and 20 (CTL in and out) showed that the control pulses were of correct amplitude though the frequency was of course high because of the excessive tape speed. The tracking input at pin 28 varied the length of the waveform, so all seemed to be correct here.

The next check was on the FG pulses at TP518. The waveform here had gaps in it and varied a little in amplitude. Unfortunately I ignored this, putting the irregularity down to the motor's increased and wowing speed. Wrong decision! So after replacing IC501 and finding that the fault remained as before I had a closer look at the FG pulses. When I dismantled the capstan assembly I found that the coil which forms the stator of the pulse generator was dryjointed at the point where the enamelled copper wire is connected to the terminal.
C.W.

Amstrad VCR4600

This machine was dead with the 2A fuse F603 open-circuit. I checked the rectifiers in the main power supply and as they all read o.k. a new fuse was fitted. It blew only a few seconds after switching the machine on again. The cause of the fault turned out to be C836 ($3 \cdot 3 \mu \mathrm{~F}, 35 \mathrm{~V}$) which is in one of the voltage regulator circuits on the main servo/system control panel.
C.W.

Logik VR950/Samsung VI611

This machine came to us with the infra-red sensor broken and the loading arms flopping about all over the place. The owner said that she'd tried to remove a jammed cassette and had damaged it in the process. What in fact appeared to have happened was that the nylon gear sector - it's the fanshaped bit on the loading mechanism - had split where the steel pin is located, allowing the pin to slip out. Hence the looseness of the loading arms. A spot of Superglue was all that was required to repair the infra-red assembly. A new gear sector and pin - they are separate items - had to be ordered from Mastercare.

Imagine out surprise when, a few days later, the postman delivered two packages from Mastercare, one a box containing the gear sector, the other a jiffy bag containing the pin! Anyway fitting the parts and removing a thick ring of oxide from the capstan restored normal operation. E.R.

Saisho VR1200HQ/Matsui VX820/Hinari VXL35

Failure of Q02, type 2SD1207, is common with these machines. We find that a TIP41C with a heatsink is a reliable replacement.
J.R.C.

Hitachi VT150

This machine is almost the same as the VT130 but has long play. The problem was a tape stuck inside, no functions and no eject. Whilst checking around we found that the M54649L loading motor and cassette lift motor control chip IC902 was very hot. As both motors ran when powered from a separate d.c. supply we replaced IC902. Unfortunately this made no difference. Voltage checks then showed that the 12 V supply at pin 9 was very low at 0.5 V . It's worth noting that this chip has two 12 V supplies, one at pin 7 for the internal logic and one at pin 9 for the high-current motor drive.
Tracing back from pin 9 brought us to the power supply where IC851 had 18 V at its input but no 12 V output. Although the power supply panel looks the same as that in the VT130 the regulator chip is different - type STK5476. This is a 12 -pin device with only pins $1-10$ used. We didn't have one in stock though we did have the STK5471 as used in the VT130. When we removed the STK5476 we
found that the heatsink was drilled with two sets of holes. The smaller 10-pin STK5471 was quickly fitted to the heatsink, restoring full operation. Could the STK 5476 have been fitted because of a shortage of the other type of regulator?
M.Dr.

Hitachi VT7000

This two-part tuner-timer/VCR came in with the symptoms of a dirty head. Cleaning this appeared to cure the fault but when a recording was made and played back nothing but snow and sound had been recorded. After borrowing a service manual we found that the record 9 V supply at pin 8 of the TA4190 chip IC205 was very low at only IV in the record mode. The source of this supply was traced to a small relay, RL402, on the bottom PCB. There was 9 V at the input to this relay but no output. As we couldn't find a relay with the same pin connections amongst our scrap panels we decided to try cleaning the contacts of the old one. We used an Electrolube contact cleaning strip that's specially made for this type of job. It provided a complete cure and after a long soak test the machine was pronounced fit again.
M.Dr.

Toshiba V71

As a new reel motor failed to restore reel operation we started to make checks in the drive circuit. The conditions at the fast forward and rewind selection pins of the TA7267P motor drive chip IC603 were correct but there was no motor supply at pin 3 . Replacing this i.c. cured the problem.

For reference purposes note that in the rewind mode pin 7 is at 12 V , pin 6 drops from 12 V to 5 V then returns to 12 V . pin 5 changes from zero to 0.7 V , pin 4 is the chassis pin, pin 3 changes from zero to to 5 V for a couple of seconds then rises to 10 V , pin 2 changes from 5 V to zero and pin 1 stays at 5 V . In the fast forward mode the voltages are the same except that pin 2 remains at 5 V and pin 1 changes from 5 V to zero. It's not uncommon for the reel motor or IC603 to fail, so the above readings may be of help in deciding which item to blame if you don't have the manual.
J.E.

Akai VS105

Everything worked correctly except eject, the problem here being that the cassette came out flush with the front panel and couldn't be gripped. All the mechanical functions are set in motion by a motor which drives the main rotary cam beneath the deck via a plastic toothed belt and worm pulley. The carriage up/down lever is driven by a groove in the rotary cam. It was not travelling far enough to push the carriage all the way up, i.e. to eject. When the metal plate that covers the rotary cam was removed we saw that there was a split across half the width of the cam. Replacing the cam and retiming the mechanism cured the problem. Only the eject mode was affected because the other modes used the good portion of the cam.
J.E.

Ferguson 3V44/JVC HRD140

This machine wouldn't accept a cassette. As the power supply circuit protectors were intact we turned our attention to the carriage assembly. The cassette could be loaded manually, after which all functions such as fast forward, rewind and play worked normally and the cassette was ejected correctly. We found that the cause of the problem was the leaf switch at the right-hand side of the carriage assembly. All was well after fitting a replacement. J.E.

CD Player Casebook

Toshiba SL55

In the February casebook I mentioned an SM55 that refused to play some discs because the lens was dirty. It seems to be a problem with these machines - I've had others since. Despite the large metal cover over the mechanism the lens gets badly affected by dirt.
N.B.

JVC XLE300

With consumer electronic equipment becoming ever more complex we all too often overlook the obvious. This was just such a case, and I could have kicked myself for not realising sooner what was happening. The complaint was that the player sometimes wouldn't read a disc, though when it did the results were o.k. On test in the workshop it wouldn't read any discs at all. So we assumed that the laser assembly was faulty and fitted a replacement. As this seemed to cure the problem we set up the machine and left it on a test run. Just for good measure we tried a long-play disc as well. This too was o.k.

When the next disc was tried however the machine took an extremely long time to read the TOC - in fact it made several attempts before it played the disc. After taking out the new laser assembly and again checking the mechanics 1 eventually realised what was going on. When a disc that
lasted say an hour or more had been played the laser unit returned only very slowly to the beginning to read the next disc, which rotated very slowly. This in fact was the key to the problem. Fitting a new sled motor provided a complete cure.
M.L.

Akai ACM370L

With mast discs that were tried in it this midi system wouldn't play the first one or two tracks. The outer tracks played all right. As the machine always read the TOC we decided that the laser unit was o.k. After some soulsearching we resolved the problem: the PLL coil was marginally out of adjustment and wouldn't lock up at the beginning of the disc. Slight adjustment of the coil was all that was necessary.
M.L.

Sharp DX650

This American (110V) machine came on when a new mains transformer from RS Consponents had been fitted to adjust for the different mains supply voltage. But when a disc was inserted CD showed in the display. The sled motor had seized - a drop of oil on the bearings freed it. After that the machine worked well.
S.DaC.

HELP WANTED

Wanted: An e.h.t. transformer for the Tektronix type 545B scope, part no. 120-0308-00. Also an August 1986 copy of Television. W. Larman, Derimar, Horton Road, Stanwell Moor, Middx TW19 6BD.

Can anyone supply the correct circuit for the light gun that's used with the Binatone $01 / 4907$ video game? Roger Burchett, 12 Ormonde Road, Hythe, Kent CT21 6DN. 0303 267969.

Wanted: Circuit diagram or service manual for the LCM Electronics Ltd. telephone answering machine type P148F. F.C. Hughesdon, 19 Lower Road, Higher Denham, Uxbridge, Middx UB9 5EA. 0895833774.

Can anyone supply an AUX-box for the Luxor Model 6615 TV receiver, also a service manual? R. Burgess, 82 Bressey Grove, London E18 2HX. 0819896830.

Can anyone supply details of the modification to convert a Philips BSB receiver, Model STU902, for PAL reception? Peter Clarke, 28 Wentworth Gate, Linton Park, Wetherby, W. Yorks LS22 4XD. 0937582828.

Can anyone supply a battery or batteries for the Sony Model SLFIUB portable VCR - they are 12 V types? R. Buckley, 25 Clarence Place, Morice Town, Plymouth PL2 1SF. 0752560660.

Wanted: Manuals for the following equipment - Sony VO1810 U-Matic VTR; Teac reel-to-reel X1000M; Sharp VC9300H VCR; Sony AV3420CE portable reel-to-reel

VTR. Terry Martini, 6 Levant House, Mile End Road, London EI 4RB. 0717906807.

Wanted: Any Philips LaserVision discs (CLV or CAV) or any CD-Video (single or extended play) discs. B. Willis, 50 Sarum Crescent, Wokingham, Berks RG11 IXF. 0734784 002.

Does anyone have a collection of Television from the first issue (April 1950) to 1977 ? Would be going to a very good home! Also maybe Practical Wireless from the first issue to 1970. Michael Dranfield, Dranfield and Harrop Colour TVVidec, 62 Fairfield Road, Buxton, Derbyshire SK 17 7DW. 029871689 day, 029826094 home.

Wanted: Service information for the Lloyds LVC3000 VCR, made by NEC. S. Burns, 1 Harewood Drive, Ilford, Essex IG5 0PJ. 0815508222.

Wanted: LOPT for the Waltham Model 1401. Also a TDA 1104 , TDA 1106 or MB1 106 i.c. B. Battams, 23 Dudley Drive, South Ruislip, Middx HA4 6QN. 0818455123.

Wanted: Mains transformer for the JVC Model 7170 GB and a LOPT for the Panasonic TC38IGR. I.E. Finch, 6 Avon Court, Avondale Road, Luton LU1 IDT. 0582487533.

Wanted: Circuit diagram for the Bush Arena Model BC6130A (Rank Z718G chassis). Photocopy would do. D. Maciver, 46 Newhaven Main Street, Newhaven, Edinburgh EH6 4TD. 0315511616.

Can anyone supply service and operating manuals for the Houston Instruments EDMP-56E plotter? Stephen Shaw, PO Box 1404, Randfontein 1760 S. Africa.

Inside the Ferguson IKC2 Chassis

J. LeJeune

It's some four years now since Ferguson started to use Thomson-designed TV chassis. We are becoming familiar with a certain family likeness between them, as was the case with the 'old' Ferguson-designed chassis. The IKC2 is obviously a descendant of the ICC5 with which it bears many similarities, including the infamous though quite reliable thyristor field output stage. So what's new?

For one thing there's a totally different discrete-component chopper power supply. This is partly due to the use of a different colour decoder chip, type TA8659CN, which also incorporates the sync circuitry and the field and line timebase generators - you will recall that in the ICC5 a TEA2029C chip produced the line, field and chopper drive waveforms. Other features of the TA8659CN include automatic switching between PAL/SECAM/NTSC operation and a sharpness control circuit. The chassis is used in models with 41 and 51 cm tubes. Unfortunately the audio section is nothing to rave over and has given rise to some customer complaints - in early versions of Model 41P3 the audio is definitely odd!

This article explains the new features incorporated in the IKC2 chassis, notably the power supply, and aims to help with fault finding, covering some common failures and how to deal with complaints about audio performance.

The Power Supply

Fig. 1 shows the power supply circuit used in the IKC2 chassis. It’s a conventional chopper arrangement, but has three modes of operation - start-up, standby and full power. The chopper transformer LP36 provides mains isolation. and feedback from the secondary to the primary side of the circuit is also transformer-coupled (LP42), just as in the ICC5.

At switch-on the power supply operates in its start-up mode. Transistors TP09 and TP12 form a relaxation oscillator that produces a sawtooth waveform at a frequency of approximately 15 kHz . The ramp is generated by CP09 which charges via RP09 and RP03. DP13 clamps the waveform to chassis potential. It's then fed to the base of amplifier transistor TP13. To get the oscillator running, a start-up voltage is provided by half-wave rectification from the mains supply - one side of the bridge rectifier provides the rectification, the feed being via RP36. RP06 provides a feed for the amplifier and driver stages

Once the chopper circuit gets going and the secondary supply voltages are established the start-up oscillator is disabled by the crowbar circuit consisting of TP02/3 and the associated components. It senses the rise in the voltage produced by the rectifier circuit DP30/CP30. When the voltage at the junction of potential divider RP02/7 is sufficient to turn on DP20, the crowbar transistors TP02/3 latch on, removing the supply to the start-up oscillator.

TP02 and TP03 are also used in the standby mode, when they operate in a slightly different manner. Because the line output stage is inoperative in this mode, the drain on the power supply is very light. As there are no line pulses to drive the regulation system, the power supply runs in a kind of self-oscillating condition. What happens is that the startup oscillator delivers 'bursts' of 15 kHz drive. When the voltage developed across CP30 rises sufficiently. TP02/3
shut down the oscillator. The whole power supply then stops and the voltage across CP30 falls. Thus the oscillator can run again. This 'squegging' action provides a rudimentary level of regulation on the primary side of the chopper transformer, maintaining the voltage levels sufficiently for the standby condition.

To switch the set to full power operation a remote control command produces a low output at pin 20 of the microcomputer control chip IR01 (see Fig. 2). TR16 and TR17 then switch on, raising the PO (Power On) line to 15 V . This brings the TA8659CN chip IV01 into operation and the line drive appears. The control action is at pin 40 of IV01 - it rises to 9 V in the on condition. The line output stage now starts to work and pulses from pin 9 of the output transformer are integrated to produce a sawtooth waveform at the base of transistor TP54, which drives TP13 via TP69 and LP42. TP13 receives negative-going pulses that cut it off.

Now for the regulating action in the chopper circuit. Transistor TP53 acts as a comparator. Its emitter is held at a constant 5.6 V by the action of zener diode DP55 and diode DP54 - the combination of a zener diode and a silicon diode provides the correct temperature coefficient. TP53's base senses the h.t. voltage via the potential divider RP5 1/PP52/RP52, PP52 being used to set the h.t. voltage. Thus the voltage at the collector of TP53 and the emitter of TP54 varies as the h.t. voltage varies. This sets the point during the sawtooth waveform at the base of TP54 at which this transistor switches on. TP54 is in fact acting as a pulsewidth modulator. Note that the h.t. is set at different levels for different tubes. In Model 41P3 the h.t. should be 107V; in Model A51F it should be 111 V with an Hitachi tube and 113 V with a Philips/Videocolour tube.

As TP54's on time varies, so the conduction period of the chopper transistor TP29 alters to stabilise the output voltages. The base of transistor TP13 is forward biased via RP13. Negative-going, width-modulated pulses are fed to its base via DP17 and DP16 to switch it off. When TP13 is on, TP16 is off and TP17 is on - these are the chopper driver transistors. When TPI3 is switched off TP16 conducts and TP17 switches off. Current via CP24 then drives the chopper transistor TP29 into conduction. The voltage across CP24 is limited to $2 \cdot 1 \mathrm{~V}$ by the combined junction voltages of the three diodes DP24/26/27. When TP13 switches on again TP17 conducts, discharging CP24 and cutting off TP29.

The longer TP29's period of conduction, the greater the amount of energy stored in the core of the chopper transformer and the higher the voltages developed by the rectifier diodes when TP29 switches off to release this energy.

TP18 and TP19 form an excess-current trip. Excess current is sensed across resistors RP32 and RP34 which are in series with the chopper transistor. When TP18/19 latch on, the drive to TP16/17 is removed. The supply to the startup oscillator is also removed because DP08/9 conduct. There is auto-reset at a rate determined by the time-constant of CP18 and RP26.

The Line Timebase

Apart from the fact that, as in the ICC5 chassis, the output transformer has a load winding for the field output

Fig. 1: The chopper power supply circuit used in the IKC2 chassis.
stage the line timebase is conventional. The line drive waveform is produced by the TA8659CN chip IV01. It emerges at pin 39 and is applied to the base of the S2055AF line output transistor TL19 via a straightforward driver stage whose main components are TL17 (BSR50) and transformer LL19. There's no active raster-correction circuitry and no width control. Coil LL26 provides linearity adjustment.

Safety Circuit

An unusual feature of the timebase section of the chassis is the safety circuit, see Fig. 3, which monitors the field output stage current, the beam-current limiter voltage and the line output stage derived 13V supply. RF24 (see Fig. 4) monitors the current flowing in the field scan coils. An excess will switch on transistor TV12, putting 13 V on the SP (Stop Power) line. Diode DL16 switches on while DL17 is biased off, removing the line drive. Beam current is

Fig. 2: The switch-on control circuit.
sensed via zener diode DV02 and the 13 V supply via zener diode DV08. Excessive beam current (a negative-going voltage at the anode of DV02) switches TV01 on. Excessive voltage on the 13 V line switches TV02 on, in turn switching on TV01. In either event the PO line, at some 15 V , is linked to the SP line which, in addition to forward biasing DL16, acts on the regulator in the chopper circuit via DP5 (see

Fig. 3: The safety circuit. Some sets use a simplified arrangement with just two transistors: TVO1 is then used for field overload prctection and the beam current limiting is omitted (all sets have conventional beam current limiting via the contrast control circuit).

Fig. 1). This removes the line drive to TP54 with the result that the power supply operates in the standby mode. Note that TV02 (type BC548C) is incorrectly shown as a pnp device in the circuit diagrams in the service manuals.

The Field Timebase

The field timebase has unusual features throughout. Fig. 4 shows the circuit. Although the TA8659CN chip IV01 produces a field drive waveform at pin 31 this is used for sync purposes only. The field sawtooth waveform is generated across CF06, which is linked to the 180 V line via the two $1.5 \mathrm{M} \Omega$ resistors $\mathrm{RFO} / 02$. The ramp is negative-going however, CF06 being linearly discharged during the forward scan period via the pnp transistor TF08 which is driven at its base by the feedback capacitor CF02. IV01's field drive output is fed to the base of transistor TF25 which produces negative-going pulses at its collector to synchronise TF08. The negative-going field ramp is fed to the non-inverting input (pin 3) of operational amplifier IF01a. This is half of a TL082 dual junction f.e.t. operational-amplifier chip. The height control PFIl is part of the negative feedback network connected to IF01a's inverting input (pin 2).

The second operational amplifier IFOIb is used as a pulse-width modulator. IF01a produces a negative-going output ramp at pin 1 . This is applied to the non-inverting input of IF01b (pin 5). IF01b's inverting input (pin 6) is fed with a line-frequency sawtooth waveform (produced from integrated line flyback pulses). Pin 7 (output) of IFOIb goes high whenever the voltage at pin 6 exceeds that at pin 5. The result at pin 7 is a series of line-frequency pulses whose width increases as the field ramp progresses - this is illustrated in Fig. 5. During teletext operation an additional 25 Hz signal is applied to pin 6 . This destroys the interlacing to remove vertical jitter.

The width-modulated line-frequency pulses are applied to the gate of the field output thyristor TF16 to switch it on. The field scan coils are connected in series with RF24/20/23, the winding between pins 5 and 6 of the line output transformer, and TF16/DF16 between the 13 V supply and chassis. During the field flyback the thyristor is not triggered and DF16 rectifies the line-frequency pulses picked up by the winding on the transformer, charging CF25 to about 80 V . This produces a voltage difference of about 65 V across the scan coils, sufficient to produce a rapid flyback. When the thyristor is triggered on at the start of the field scan the pulse is of short duration. TF16 switches off when the next line pulse is produced by the transformer. Thus TF16 is on for only a brief period. It's switched on progressively earlier during each line, remaining on for a longer time. As a result the voltage across CF25 is reduced linearly to approximately 3 V at the end of the field scan. This integrating action produces a linear field scan current.

Signal Processing

Colour decoding, sync processing and generation of timebase drive waveforms are carried out by the TA8659CN chip IV01, a Toshiba device with 64 pins. Though designed for multi-standard operation, UK sets are sold as PAL-I only models. Thus many of the pins are not used, being left opencircuit or returned to chassis via resistors. It has two crystal oscillators, one working at 4.43 MHz for the colour decoding and the other at 503 kHz (approximately 32 times line frequency) in the line sync phase-locked loop. Direct rather than count-down sync is used for the field drive in order to cater for non-standard signals.

The RGB output stages, of the class $A B$ type, are on the
c.r.t. base panel which has red and green gain and cut-off controls for grey-scale setting.

Tuner/IF Section

The tuner and the i.f. circuitry are contained within a screened compartment, their separate modules being soldered into the main PCB. The tuner is a Thomson MTP-I-2011, which has a dual-gate MOSFET r.f. amplifier stage with reverse bias a.g.c. It incorporates the PLL tuning control system. An LA7550 chip (IS10) amplifies and demodulates the sound and vision signals. It incorporates a d.c. volume control system. I.F. bandpass filtering is provided by a single-ended input SAWF.

Audio Output

A TDA2030A chip provides the audio output. It's operated with 30 V and -30 V supplies. The circuitry is simple and easily understood, but the peculiar audio quality provided by some Model 41P3 receivers requires a bit of explanation. Early production sets have a 24Ω speaker at the side of the cabinet. There's space for a similar unit at the opposite side, and one of the same type can be installed, wired in parallel with the existing speaker. An immediate improvement in sound quality will be noted. The sound is louder of course. Any worries about the TDA2030A overheating because of the doubled load current appear to be unfounded. Louder sound can also be obtained by reducing the value of RA07 in the feedback circuit from $5.6 \mathrm{k} \Omega$ to $3.9 \mathrm{k} \Omega$, as in Model A51F. This increases the power available to around 5 W .

The plastic moulded cabinets tend to rattle at high volume. Ferguson has available a small kit of damping pads to stop this - it's quite effective. Model A5IF is the main suffered from this malady.

The Microcomputer Control Chip

Control of the receiver's functions is the responsibility of the TMP47C634N FERG 01 microcomputer chip IR01. These include on-screen displays, keyboard scanning and front panel display matrixing, the analogue controls and power on-off. Most of the operations are straightforward but the power control port, pin 20, is a useful one to know. Fig. 2 showed the circuitry and we've already seen that pin 20 goes low for power on, switching TR16 and TR17 on TR16 is another transistor that's shown as a pnp instead of an npn device in the official circuit diagrams. There's a short delay in the application of drive to the line timebase as CV02 in the safety circuit (Fig. 3) has to charge. This prevents any wildly incorrect-frequency drive being applied to the line output stage, with the possibility of damage.

Teletext and Externals

Models 41P3 and A51F are fitted with a scart interface and Fastext PCB. Demodulated video output signals are available at pin 19 of the scart socket while pin 20 accepts an analogue video input. In Model A51F front-panel Cinch connectors are paralleled with the scart socket. RGB input signals can be fed to the scart socket, after which they pass to a CD4066B switching chip that sends either external or teletext RGB signals to the display circuits. The two-chip Fastext decoder is controlled by IR01 via an I2C bus.

The scart/text modules vary between the 41P3 and the A51F, but only in minor details. Both have an on-board 5 V regulator whose input is obtained from the chopper's 7 V

Fig. 4: The field timebase circuit.
output but requires, in addition, the presence of the line output stage derived 13 V supply (V5) to enable it. A switchon delay is included in the regulator circuit to prevent operation during the power-up sequence.

The scart interface handles composite PAL input and output signals, stereo audio input and output signals (there's only a mono output stage however) and RGB inputs. Pin 8 is for AV switching and pin 16 for RGB switching.

Servicing

While the chassis has a good reliability record the fact that it's tightly packed with components can cause difficulty when fault tracing and repairs have to be carried out. The copper side of the PCB is marked with the positions of the major components. This helps with location, but the circuit diagram is confusing in that lines which join don't always have a dot while use in a few places of the Continental habit of lumping wires into a 'loom' has infiltrated into publications that were once famed for their clarity and well thought-out design. Because of its low fault rate the chassis is not a familiar one to most engineers. This has made it, rather unfairly, unpopular.

Since many faults can cause the power supply to shut down it's possible to test the latter on its own in the standby

Fig. 5: Operation of the pulse-width modulator (IF01b).
mode. Running it at full power is not possible because this requires line pulses to drive the regulation system. To test the power supply on its own in the standby mode, disconnect pin 20 of IR01. Note that in the standby mode the voltage outputs obtained from the power supply will be approximately 25 per cent low and not in their correct ratios.

Faults in the 1 KC 2 chassis are generally confined to the line output stage and the power supply, as you'd expect. A common complaint with early production sets was of tripping off at high beam currents. This was remedied by a string of modifications. Whilst these cure the trouble they are not easy to implement in the ordinary dealer's service workshop. For the brave however here are the details:

Change TLI9's heatsink to a new type, part no. 50855846. Connect an 8.2S2, $10 \% 10 \mathrm{~W}$ resistor and a $2,700 \mathrm{pF}, 20 \% 100 \mathrm{~V}$ capacitor in parallel and mount them on the new heatsink using the clip assembly that comes with it. These components replace jumper wire J 138 in the h.t. feed to the line output transformer, so remove the link and connect the RC combination in its place via flying leads. Change RP18 to $1 \mathrm{k} \Omega, 5 \%$; C54 to $220 \mathrm{nF}, 63 \mathrm{~V}$; RP55 to $220 \mathrm{k} \Omega, 5 \% 0.16 \mathrm{~W}$; and RP26 to $3 \cdot 3 \mathrm{k} \Omega, 5 \% 0.25 \mathrm{~W}$. Add a $22 \mathrm{k} \Omega, 5 \% 0.25 \mathrm{~W}$ resistor (RP50) between the base and emitter of TP54. If tripping still occurs, the value of RP26 may be further reduced as follows: to $1.8 \mathrm{k} \Omega$ with 14 in . sets, $1.5 \mathrm{k} \Omega$ with $15-17 \mathrm{in}$. sets or $1.2 \mathrm{k} \Omega$ with 20 in . sets.

DP28 going short-circuit will prevent the power supply working because the chopper driver stage has no supply - a clue is that RP06 will be quite hot. The 180 V rectifier DLI 1 going short-circuit and ies associated resistor RLII opencircuit will affect the pulse feed from the line output transformer to the power supply with the result that the set trips.

Finally, take care when desoldering components in this chassis: good-quality desoldering wick should be used.

A Day at the Thick End

Chris Watton

It was a cold, rainy dismal Monday morning. As I entered the shop at around 9.20 a.m. to start the week with the usual zest and vigour I saw a strange figure, an unshaven man with unruly hair, dirty shoes and a solemn look. It was fearsome at this time of the morning, but as the haze of cigarette smoke cleared and the view through my bloodshot eyes came into focus I realised that some oaf had left a mirror facing the shop door when we closed on Saturday.

Turmoil

The day was uneventful until 9.35 . Then all hell broke loose and the phone, which I'm sure is connected to the shop's door bell since one doesn't go without the other, didn't stop until lunchtime. We're the only TV shop in a village about ten miles from the nearest town and I'm sure all our customers think that if it's got a plug, a length of wire or some batteries we must be able to repair it or, worse, tell them how to use it. The recent bout of electric fence generators proves the point. Must be the time for the sheep to eat all the bits that we don't when the cabbage harvest is over.

Every Monday starts the same way for us. First we sort out the jobs we forgot to do on Saturday, then we start on the repairs where loan sets have been put out.

Some Easy Ones

The first of these was simple, a 22 in . manual control Philips K30 that was tripping. It still tripped after the tripler had been unhooked. Oh no, please don't be difficult this early in the morning. After a quick check on the line output transistor I started to smile again - it read about $2 \mathrm{k} \Omega$ between its emitter and collector. A new BU208 and a quick look for reasons why the old one should have failed soon revealed some dry-joints in this area, one on the flyback tuning capacitor. I'm sure that this was the cause of the transistor failure. Anyway the set was now working and displaying a good picture. So we put it on the soak test rack and lifted the next one on to the bench.

This was a Samsung Cll541ZG with a line across the screen. The field output stage in this chassis receives its supply from the line output stage. But not on this occasion as the 1.5Ω safety feed resistor R412 had failed. Replacement cured the fault and the set was left to run for the rest of the day to prove that no other fault had caused R412's death.

The Leslie Speaker System

After the first cup of tea and with two easy jobs under my belt I was ready for anything. I let myself in for a real treat, a Leslie speaker system. Now for those of you who haven't had the pleasure of acquaintance with this magnificent job here is what it is. An immense cabinet made from one-inch thick veneered plywood, measuring some 4 ft 6 in . by 3 ft by 2 ft and weighing about as much as a Philips G6 (remember those?), houses a 15 in . woofer, two mid-range speakers and a tweeter, not forgetting the US-made solid-state amplifier in the bottom. There are also two motors that drive a rotating baffle for the woofer, and a pair of horns into which
the tweeter is directed. In principle these rotating devices make the sound come and go. Questionable I think, but the owner assures me that this is what makes an organ sound like an organ. The problem was that the mains fuse kept blowing. Its cause was in the power supply where four huge diodes form a bridge rectifier for the amplifier. Two of them were short-circuit.

A Satellite TV Job

Now for a very important job. The boss had been complaining about the spotty picture his satellite TV system produced. My recent visit proved that the dish alignment was o.k., so the LNB was condemned. Right again. Four jobs in a row. This can't last! The new LNB was fitted in record time and a check on all channels produced perfect results. Incidentally although the satellite TV system is an Amstrad SRX200 the LNB I fitted was a new type called Continental. It's a smaller unit and has screws rather than rivets to hold it together. The F connection is at the bottom instead of the face side. It produced much better quality than the standard unit, with much less background noise - and is about ten quid cheaper.

A Tripping Sony TV

The last job before lunch was an 18in. Sony set that tripped. I don't know much about these sets but some basic fault-finding procedures soon put me on the right road. As with all sets that are tripping we first have to find out whether the fault is in the power supply or elsewhere. The way I do this with most sets is to identify the output from the power supply to the line output stage, disconnect this and use a 60 W bulb to replace the load. If the tripping stops, the h.t. voltage can be checked. If this is correct the cause of the fault is likely to be somewhere in the line output stage.

Back to the Sony set. I followed my own advice and the tripping stopped. As the h.t. was about right at 118 V I assumed that the power supply was o.k. So I removed the bulb and for some reason the idea that there must be a short-circuit in the line output stage was in my head. After much checking of diodes and capacitors it occurred to me that the line output stage was perhaps open-circuit rather than short-circuit. To test this theory I again disconnected the power supply and ran it with a lamp as the load. It worked. Then I disconnected the lamp and the power supply started to trip. I reconnected the power supply and put my lamp on the case connection of the line output device, a gate-controlled switch (GCS). The power supply now worked. This seemed to make fault finding much easier. I came to the conclusion that there was no line drive. As the bench was a bit piled up and the scope wasn't to hand I had another brainwave. If I put the meter on to its frequency counter range and checked for line drive I should get a reading of around 15 kHz . So I checked at the gate of the GCS and found that there was a 15 kHz signal here. It was time to check the GCS, which was open-circuit. Well, all this had led me somewhat astray but maybe next time I'll remember that the power
supply won't run with an open-circuit load. And once again praise to the man who invented light bulbs.

After Lunch

Back from a healthy lunch - two cream buns, a bag of chips and a tin of pop followed by a very dry cigar - l now felt awful. But the first job that faced me was a set with which I'm more familiar than the one that preceded the refuelling session. It was a Finlux 9510 that was dead. My attention was drawn to the blackened d.c. fuse, so I checked the chopper transistor which was short-circuit. Experience has shown that when this device has failed the $270 \mathrm{k} \Omega$ resistor Ru17 will be open-circuit. Replacing these two items brought the set back to life but there was no sync. Transistor Tbl on the video output panel is the video inverter for the sync feed. It was open-circuit. Incidentally if you've not come across these sets before don't try to open the tuning flap - there isn't one. Many of these sets are marked around the on/off switch where people have tried to open the trim to adjust the set. It's all done via the remote control unit.

Things were really going well. I always start to worry when it's like this, knowing that some pitfall awaits. Would it be the Toshiba 140R4B that was next in line? It ran all right for long enough to make a cuppa and talk to colleagues about the state of the world. We soon put all the major unrest and catastrophes to rights. Then the Toshiba began to burp, producing a display that looked like a wineglass "Time for the pitfall I bet. When I removed the back the set ran for half a minute, burped a bit then ran again. Strange, I thought. Maybe a power supply fault of some sort. Time for some tapping on the panel. This made the funny noise come and go. There was a dry-joint on the line output transformer. This just shows that when you think it's going to be difficult it's easy, but when you think it's easy stop thinking.

VCRs

With about two hours to go to tea time I really had to set about some of the VCRs that were piling up. I mused over the job cards and picked an old favourite, an Hitachi VTIlE. The job card said "won't rewind, chews tapes and stops whilst playing". Great! I popped in a dummy cassette and set it going. Sure enough the reel torque was poor, and the loading belts squealed as the arms reached the end of their travel. So I removed the case and opened the bottom panel, then connected the machine to a monitor and checked the recording and playback to make sure that the heads were o.k. They were, so the strip-down started.

I do this in two halves with these machines, as with most others. First the top: the head drum discharge brush, the pinch roller, the back-tension band, the reel idler and both reel discs, not forgetting where the height shims and washers etc. come from. I also remove the capstan oil seal at this time. With all these bits laid out, cleaning can commence. The reel shafts and the slant poles, tape guides and lower cylinder are all cleaned with alcohol. The reel discs are cleaned with methylated spirit, both inside the spindle holes and on the drive surfaces.

Part two is to tip the machine upside down then remove the capstan securing plate (two screws), take off the belts then remove the capstan - that's why I took off the oil seal before. Almost certainly the capstan shaft will be all brown and sticky. Finally the clutch/drive unit is removed (again two screws). Now there are bits everywhere.

My next step is to clean out the capstan bushes. Two pipe cleaners twisted together fit nicely. Soak them in meths and pull them through a few times. This removes all sorts of
muck. When the bushes are clean I insert a cotton bud, with only one end on it, from the tape side of the deck which is now nearest the bench. Push it in just far enough so that it won't fall out then run some oil into the bushes from the open end (God this is confusing!). It will have time to work its way into the bushes while other work is being carried out. I feel that it's essential to service the capstan shaft in this way as I'm sure that heavy running greatly contributes to capstan motor failure. At about $£ 45$ trade these items should be looked after. I also put a drop of oil on the bearing at the other end of the capstan motor itself, using a thin blade to get it under the drive pulley. Make sure that any surplus is removed before reassembly. At this point the drive pulley must be cleaned. The old belt gunge that sticks like glue can be taken off using an ink rubber or a fibre pencil.

Finally the clutch unit can be completely stripped, taking care to note the positions of all the securing split washers and which way round the various wheels should be. Clean all the surfaces with meths - not the felt in the clutch of course - then very lightly oil the three spindles. When the clutch unit is reassembled with a replacement belt it should run like new. The grooves in the drive end of the clutch can be cleaned easily when out of the unit, but don't be tempted to roughen the surface in an effort to improve the traction to the idler - it won't work. A toothbrush and meths or a fibre pencil are excellent for this purpose.

Reassembly should be easy - remember to wipe away any oil that may get on to the belts or reel drive components. Remove the cotton bud from the capstan bearing and start to put it all back together. First the clutch, then the capstan which is now very shiny, watching out for the drop of oil that will come from the bushes when the capstan is pushed home. Then fit the two new belts and the capstan securing plate. The last part to sort out here is the loading motor drive belts. One screw and take off one belt. Unplug the connector and the motor is out. Check whether the bearing of the intermediate drive pulley is dry, also the motor bearing - lubrication may be needed. Replace both belts, then refit the motor and connector. All is now finished at this end and the unit can now be turned the right way up.

Put the reel discs back on, with a tiny spot of oil on the spindles. Fit a new belt between the take-up disc and the dummy counter pulley. Replace the back-tension band and fit a new pinch roller. Clean the static discharge brush and refit it. Lastly, wipe the capstan shaft and replace the oil seal. With no more bits left on the bench and all the moving parts and the tape guides, heads and lower cylinder gleaming like new pins it's time to try the machine. The result? Perfection, as always. Well sometimes.

Final Chores

So much for all the good times I've had today. Now to start ringing customers with estimates and ordering spares. Colleagues have put job cards into my tray, requesting spares and asking me to ring Mr. and Mrs. So-and-so to tell them that their TV set is really too old to mend. As you know, not all of them take this too well. Some think that you're a robber while others think that a relative has just passed away. But on with the chores that only the dog's body gets left with.

Well, the customers have all been contacted, now for some fun. The recently purchased viewdata terminal awaits. Part numbers found, autodial on and away we go. Why does my terminal always say "?" - because the last time I used COPS I didn't press \mathbb{Q} to leave the system, that's why. Sorry Willow Vale. Other orders are faxed. Now we eagerly await the parts. . .

Long-distance Television

Roger Bunney

January was one of the quietest months ever for DX-TV reception. At the present stage of the solar cycle F2 layer propagation is virtually non-existent. What little SpE reception was noted is recorded below. Very early in January and again early in February there was an improvement in tropospheric conditions, with associated high pressure and fog. Even meteor scatter propagation has been very poor. So to the brief $\mathrm{SpE} \log$:

$5 / 1 / 93$	DR (Denmark) ch. E2: +PTT (Switzerland)
	E2.
$8 / 1 / 93$	NRK (Norway) E3: TVE (Spain) E2.
$16 / 1 / 93$	SVT (Sweden) E2. 3: CIS (Russia) R1: TVE
	E3.
$17 / 1 / 93$	TVE E2. 3.
$23 / 1 / 93$	DR E3; NRK E2.
$24 / 1 / 93$	TVE E2.
$30 / 1 / 93$	+PTT E2: TVE E2.
$31 / 1 / 93$	TVE E2.

Lain Menzies (Aberdeen) reports two auroral events, a small one on the 5th and a more sustained evening one on the 25th. My thanks to lain, Simon Hamer (Powys), David Oliver (Birmingham), David Glenday (Arbroath), Tim Anderson (St Leonards), Roger Fussell (Torpoint) and Peter Schubert (Rainham) for sending in reception reports.

50MHz Experiment

An interesting experiment in the 50 MHz band is being carried out by two Californian amateurs. In the early hours of February 6-7th the moon was centred between Western Europe and the US West Coast, presenting an ideally placed reflector for aerials at the two locations. Signals were transmitted for two hours each day, on even minutes, the aim being to reflect signals from the States to Europe via the moon. Amateur station W6JKV fed 1.5 kW to a 16 x 6 element aerial stack (20.5 dBd gain) at $50 \cdot 03 \mathrm{MHz}$. Station

K6QXY fed similar power to a 4×11 element aerial (18.5 dBd gain) at 50.007 MHz . With the aerials aimed at the horizon an additional $3-6 \mathrm{~dB}$ of ground gain was obtained. I hope to be able to report on the results in due course.

News Items

UK: Following the failure of the country-wide Channel 5 franchise allocation the ITC is considering a more localised system based on larger towns and cities. A consultative paper will be published in the summer. ITV network programming could be distributed in digital form from 1994 onwards, with NTL operating the service.

In its January 1993 bulletin the UK Six Metre Group summarises the current situation with 50 MHz amateur operators throughout Europe. With the possible exception of Portugal (no information available) there are now operators in all European countries. Output powers range from 3 W up to 500 W (Denmark): restrictions vary from country to country depending on other Band I services, in particular TV transmitters.

CIS: The Lithuanian OK1 relay over the LTV2 network has ended - a full-time LTV2 service is planned. It seems that the Swedish Kinnevik broadcaster (TV2/TV1000) may use the LTV2 system for a commercial service. A new OK1 transmitter is in operation at Kaliningrad, on ch. R4 with 5 kW .

Belgium: Canal Plus is now being transmitted from Leglise on chs. E11 and E63. It's a 24 -hour service.

Finland: The MTV service has now moved to the third network and hopes to achieve country-wide coverage within months. An interesting English-language f.m./TV/satellite bulletin called FM-TV Busybody, aimed at DXers throughout Europe, is being published by FMBB, Box 7 , SF-05901, Hyvinkaa, Finland, from whom sample copies can be obtained. The 1993 subscription rate, for nine issues, is 110 FIM.

Turkey: Up to ten commercial TV stations are now transmitting, either on test or with programmes. The latest programme provider is Flash TV.

Greece: The authorities are about to award commercial broadcasting licences. There have been almost ninety applicants, some of which are already transmitting! Hellas 62, Sky TV. Channel Seven X, Kanali 29, Nea Teleorasis,

Left: A convenient station identification, the Duna TV field blanking pulse insert, received via Eutelsat II F3 at $16^{\circ} \mathrm{E}$. Centre: SpE reception of RTT (Tunisia) ch. E4 at St. Leonards, East Sussex by Tim Anderson. Right: Multipath ch. E2 reception of a Koran reading from IRIB (Iran) in early 1992 by Ryn Muntjewerff in The Netherlands - classic F2 reception.

Antenna TV and Mega Channel are all in operation and hope for national network status. State broadcaster ERT is maintaining its three services.

India: The Metro Channel has been given permission to operate, initially in the four main population areas (Madras, Delhi, Bombay and Calcutta).

Satellite TV

Good news for sat-zappers: the EBU programme exchange network has moved from the vintage Eutelsat I F5 at $21.5^{\circ} \mathrm{E}$ to the modern Eutelsat II F4 at $7^{\circ} \mathrm{E}$, with four transponders in use daily at much higher powers than previously. You will notice that the pictures, because of the use of sound-in-syncs, are unsteady. One method of picture stabilisation is to strip off the incoming sync pulses and insert locally-generated ones phased with the picture to obtain correct lock. At present sync inserter units do not appear to be available commercially, though PDS offered a video sync processor that did just this in the early days of satellite TV. If anyone has one of the latter units lying about unused, please let me know! Eutelsat I F2 at $3^{\circ} \mathrm{E}$ was fired up in late January with an uplink from an Austrian station: signals were seen for three days then ceased.

The EBU's French-based (Lyon) Euronews service started on January 1st, providing up to twenty hours of news material daily with sound subcarriers for various languages. Check at 11.575 GHz (vertical) from Eutelsat II Fl ($13^{\circ} \mathrm{E}$). An Italian news service called Elefante TV is due to start at any time.

Staring this spring Marco Polo 2 , now at $0.8^{\circ} \mathrm{W}$ and renamed Thor after being sold to Norwegian Telecom, will start carrying CNNI and Filmnet programming. Children's and sports channels will be added later in the year. Both CNNI and Filmnet will us Eurocrypt S, CNNI with D-MAC and Filmnet with D2-MAC. Keep a lookout at 11.785, $11.861,11.938$ and 12.015 GHz .

Screensport has now been combined with Eurosport and may adopt scrambling. A French-language version, TV Sport, is to be transmitted via the Telecom 2 satellite. Red Hot Dutch, the scrambled hard porn channel that's been in the news recently, may adopt an addressable rotating line encryption standard instead of the present inverted video plus 100 kHz sinewave. A further two German-based hard porn channels are promised by early summer. A UK version of the American Nickelodeon children's channel is due to be started by BSkyB this autumn via Astra 1C.

A new identification to watch out for is VTM - Vlaamse Televisie Maatschappij NV. This is a Belgian satellite news gathering operator that uses analogue or digitally compressed video plus voice, data or fax transmissions.

Hispasat, the Iberian satellite at 30 or $31^{\circ} \mathrm{W}$ (depending on which publication you read), is now in operation with various encrypted services at high levels plus the German Tele 5 channel dubbed into Spanish.

Glum faces in Australia over the loss of the Optus B2 satellite due to a launch malfunction. A replacement won't be ready until mid-1994. Optus B1 is now carrying some of the services previously carried by the elderly Aussat A2 satellite, with Aussat A3 taking over the others. The Thaicom 1 satellite, due for launch in November, will go into orbit at $101^{\circ} \mathrm{E}$, carrying twelve C band transponders. It will provide a rival service to Star TV via AsiaSat 1. The Hindi-language ZEE TV service via AsiaSat 1 intends to start 24 -hour operation by mid-summer and hopes to be able

II Kent Road, Parkstone, Pooke, Dorset BHI2 2FB TM: (02()2 7.8232 Fan: (0202 716951

to use AsiaSat's northern beam to give coverage over the whole of Asia and the Middle East.

BBC World Service TV is now being transmitted terrestrially by the South African M Net service, which uses scrambling. Apparently it's possible to view BBC WSTV for free by subtle manipulation of the M Net decoder - one newspaper published details of the knob programming required.

According to Pat Hawker, writing in the February issue of Radio Communication. LNBs have been producing interference in the h.f. bards. The source of the interference was tracked down by an amateur using an OptoElectronics 2300 spectrum analyser. It seems that the problem is being caused by high-level operation of the local oscillator in many Ku band LNBs, which are not covered by EMC guidelines. It's possible that interference of this type could occur in Band 1.

Market Place

The third edition of European Scrambling Systems Circuits, Tactics and Techniques by John McCormac has just been published. Also known as the "black book", it's a goldmine of information on the principles and practice of encryption. including how the various systems were defeated and how you can do this yourself! There are full details of each encryption standard, including Videocrypt. As the book is aimed at European readers in general Filmnet, RTL-4, Canal Plus-RAI and so on are all covered in detail. I found the "dirty tricks" section particularly interesting. A concluding section mentions that the Eurocrypt smart card "is based on the Bull CP8 masked programmed

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

SPECIAL OFFERS - ENDS 3004043 OR WHLLE STOCKS LAST

F	$\begin{aligned} & 208 \\ & 508 \\ & \mathrm{AX} \\ & \mathrm{CON} \end{aligned}$		TOF			T 25	\times			$\begin{aligned} & 3.95 \\ & 2.95 \\ & 3.25 \\ & 3.60 \\ & 3.50 \\ & 3.75 \\ & 3.00 \end{aligned}$		TDA TBA STK TDA VIDE TV F KBLO	$\begin{aligned} & 654 \\ & 205 \\ & 60 \\ & 481 \\ & 562 \\ & 56 \\ & \text { UL } \\ & 380 \end{aligned}$	$\begin{aligned} & \times 2 \\ & \times 5 \\ & \times 2 \\ & \times 2 \\ & \text { A } \times 2 \\ & \text { AUT } \\ & \text { IN } \end{aligned}$ $0 \vee 2 A$	IND	ING. GUII DGE	GUID					$\begin{aligned} & 2.20 \\ & 1.55 \\ & 2.50 \\ & 9.00 \\ & 3.99 \\ & 9.99 \\ & 9.26 \\ & 1.00 \end{aligned}$	
${ }^{2} 812128$	${ }^{926}$	${ }^{2} 538384$		N45512						80122		14192		Np106	11.85	${ }_{\text {chasic2 }}$		[BASOA	1.71	DRX319P			
	1.95 0.34		${ }_{0}^{0.009}$	Was515	1213	${ }_{\text {cex }}^{8 \text { c33 }}$	0.00	${ }_{\text {Brab }}^{\text {8196 }}$		${ }^{\text {che }}$	${ }^{251}$	(1az20	1178	047	${ }^{225}$	Sikest	${ }_{2}^{265}$	${ }^{\text {Brab5 }}$	1.10	${ }^{\text {Tha } 233038}$			
${ }^{24} 2413$	$0: 11$	2525710		Assid	2.97	${ }_{\text {Ec338 }}$	0.06	${ }_{81} 1988$	0.17	bimlia	0.80	14272	2.11	asal	Q15	572026	0.11			Di354]		lect 123	
	0.11	${ }^{2328867} 1$	523	Ms	127	eca38		8199	a,m	BLM118		14222	6.55	R2540	271	stra38	4.49		${ }_{6}$		3.65		2.8
	Q. 0.4		${ }_{0}$	Masio	4.59	${ }_{\text {BC3 } 39}$	${ }_{417}$	${ }^{818200}$		Smast	2 A	M 442	!		192	Sta 348	${ }^{4} 51$		105				115
S2ab	0.4	208		M651	${ }_{229}$	${ }_{8 \text { BC546 }}$	0.00	\%ris	0.38	${ }_{\text {Blx }} \times 4$	03		18	R3397	0.00	cis			is5	${ }_{\text {dious }}$	23		
${ }^{2 \times 126} 5$	0.21	${ }^{201123}$	0.12	A 6610	203	bçaba	0.06	88254	0.19	Baxas		4460	1.3	R4050	23	ST17198	1.67	TR8209	03	TK.		URC)	
${ }^{254373}$	0.17	${ }^{201207}$	$0 \times$	Absblk			0.11	Bresb	0.41	$80 / 2$		4461	1.29	Rasi		stram	8.83	18920	0.51	TR23718	. 108	lual 3	
	1.102	${ }^{2012255}$	\%	AN158	23,		,	${ }^{\text {rims }}$	0	8122	His	4475	210	${ }^{\text {R8156 }}$	180	900	${ }^{1688}$		1.68			yeli363	1.00
	014			Mililil	39		0				05								\%		6.15	uplizzear	13
${ }_{2538822}$	0.20	2201276	0.15	$81 / 14$	0.11	${ }_{8 C 548}^{85}$	0.00	${ }_{81257}$	0.3	88179	10	Masos	1.19	${ }_{\text {RGPI }}$		STR441	5.55	Tca	1.95	T036551/	0.00	1 lc [1378	in
	0.50	21299		bals	a.k		08	${ }_{8}^{82585}$	204		${ }^{23}$	14507	$0 \times$	${ }_{\text {Ressom }}$	0.30	STTR451		tab	143	DN06330	. 22	IPC1391H	52
[2se3	0.4	${ }^{20012038}$		80158	0.07	${ }_{\text {ccask }}$	0.12	${ }_{8324}$			0.13	4530	1.11	${ }_{\text {chen }}$	1.19	STM50103	${ }^{89}$	${ }^{\text {rasasio }}$	${ }_{121}^{1.65}$	Ta363538	1.85	14.1384	
${ }_{281} 20$	0.29	${ }^{2513939}$		81599	139	${ }_{\text {bech9 }}$	2060	${ }^{83} 37$	${ }^{213}$	$8 \mathrm{rr20}$	2.11	¢4700	352	S2055	1.18	STR4411	615	tcaso	3.40	Dis3810	2.55	Upl 4288 b	\%
${ }^{234979}$	0.11	${ }^{201398}$		80317	$\stackrel{0}{0}$		$0 \times$		140	${ }^{8} 212$	1.19	${ }_{5} 512$	5.95	S25304	1.8		5	Disfent	6.57	T04420	127	UP2002	200
				${ }_{\text {chila }}$	12		${ }_{8}$	${ }^{83} 35$	${ }_{0} 115$		${ }^{13}$		4	smos	,								
${ }_{28536} 6$	0.53	2501432	1.88	B4536	1.14	${ }^{\text {c5 5 } 578}$	$0 \times$	${ }_{883} 3$	111	Br27	L.14	41550	2.75	SM1]	5.10	SIR6020NT	5.5	Tilioil	1.17	${ }_{\text {Tima }}$	3.9	4	1.0
	8.9	${ }^{139}$			1.1		0		0.05	${ }^{\text {Br228 }}$	2038	$10 / 8{ }^{1 / 2}$	127	suliz	2.29	Ibibay		mal					5
2886635	$0 \times$	${ }_{250}^{25149}$	7205	209	131	${ }_{\text {BC5s }}$		18484	iid	${ }_{8 r 22900}$			1.57		0.0	${ }^{\text {mol }}$	¢n	Toal 3 a	1.15	tims303	3,	Ppolis3c	
${ }_{2 S 664}$	0.3	2851997	7.06	846219	1.15	${ }_{\text {BC5s8 }}$	80	88435	24	arr2380	121	47880		SM1351	823	19034	1.15	T00102	1.27	TMA500	1.70	K2402	
${ }^{2386}$	128	${ }^{201}$			1.19		0		0.19	${ }_{\text {crese }}$	L		0.4		637	198335.	1.50	Tala3s8	4.15	Tambarr	2.14		110.6
	${ }_{0.13}$	${ }_{250157}^{2015}$	3.35	8a>7	$8{ }^{17}$	${ }_{8 \times 6}$	123	88459	\%	8rys	${ }^{15}$	(13)	2,		33	Tars	\%		50,		,		
2887	0.31	2801	1.00	3sSII	832		0.15	8F569	0.34	8r299	412	41324	022	S45330	6.12	Totas	0×8	DA104	1.13	DM	156		
22883	0.48		2.4		0.07		0.13	14470	029	Ex/16	O.ss	14338	0.15		4.4	T006	. 0		1.17		2.42		
2s88	0.9		4	sarzo	0.20		${ }^{0.5}$		0,	810	831	M1358	023	480013	${ }_{5}^{54}$	9065s	4.66	Ttal182	125		${ }^{18}$		
${ }_{285}^{2888}$	0.17	${ }_{250}^{20}$	${ }_{4}^{214}$	8,	0.09		${ }_{0}^{0.39}$	${ }^{149993}$	0.16	ciol	${ }^{0.57}$	M383	082		6.15 6.35		(1.14	TiA103	${ }_{0}^{11.51}$	diapso	${ }_{1}^{1.07}$		
${ }_{2 \mathrm{Cl} 10}$	0.59	28023	0.9	8x14	023	Bcroo	0.91	87757	0.43	8M10-40	1.19	M386	$0 \times$	S4FIT33P	5.17	[71746P	5.86	tali	0.99	DAP	32		
2SCl	0.50		Q, 4	881058	024	80031	2x	7758	032		20	M3933	027		238		${ }^{30}$	tailiom	123		23		
									22		17	mar	.	Sund		1	6	Tohnos			5.10		
${ }^{3} \mathrm{Cl} 12$	0.14	250438	0.3	${ }^{\text {c }} 108$	015	${ }_{80136}$	0.20	${ }^{1762}$	829	8×555000	03	k933	14.43	5661	10.79	(1/2	3.00	T011902	4.08	T048180	${ }_{5}$		
${ }^{25 \mathrm{Cl} 1}$	0.4		000	${ }^{\text {clics }}$	a, 12	8037	0.5	H869	0	Calile	an	mso	1537			1720	1.31		8.91		3.57		
${ }_{\text {che }}$	1.16	${ }^{2}$	19	Sasa	0.12	80139	0	\%ras	${ }^{23}$	cavs	3	mal	1.9	cer	0.00	1720	00	01/1270	1.9		13		
${ }_{\text {SClilic }}$	028	${ }_{\text {2005s }}$	${ }_{5.91}$	${ }_{\text {¢ }}$	${ }_{0}$	${ }_{80168} 8014$			${ }_{0}^{107}$	canol	821	MSSOLSN0	250	Skefric	${ }^{\text {a, }} 9$		1.50	$\mathrm{m}_{\text {Til }}$	S00	${ }^{102}$	198		
${ }^{231} 1384$	0.50	250613	0.63	${ }^{\text {BCCII }}$		${ }_{80175}$			0.51	ca0013	2.4	Nstio	1.17	x<esflo	1.68	Tar214P	3.4		0.00		1.97		
${ }^{25 C 1398}$				в	0.38	8017			0.30		a 14		2.55		41		${ }^{21}$		4.59		. 2.2		
2	${ }^{1.36}$						241		035	(04022	10	${ }_{5} 513$	4.4	s14331	178		124		${ }^{323}$		1.33		
${ }_{25}$		${ }_{250669}^{2067}$		\%		buso		${ }_{8}^{88 R 4}$			${ }^{12}$			Sli42	${ }_{1}^{1,17}$	${ }^{142229}$					2.4		
28153	026	280689		${ }_{861471}$		8023		6ramo		4066	0.38	H6218	0.42	\$4480		Intz3P	${ }_{1.35}$	Datisice			${ }_{0} .55$		

USE YOUR ACCESS OR VISA
 万TEL 0902 712083/773122

(24 HOURS)

card. It appears that this card has now been pumped or stripped. Card Tricks of Switzerland will market alternative microcontroller cards from January. The conflict has moved into a new phase". This comprehensive book sells at $£ 32$ plus $£ 2.50$ UK postage.

The 1993/94 World Satellite Almanac by Mark Long is available at $£ 69$ plus $£ 2.50$ UK postage. It's the reference work for all that's happening in the satellite world, but of course things keep changing. So Mark Long's The 19931994 World Satellite Annual has been published as an official supplement at $£ 41$ plus $£ 2 \cdot 50$ UK postage.

Truly excellent as these books are, the cost is perhaps rather high for those not professionally engaged in satellite telecommunications. Frank Baylin has broken through the price barrier with the 1993 World Satellite Yearly. It provides a comprehensive reference work at a much lower cost, including data on all satellites at present in orbit or soon to arrive there, with detailed coverage of transmission techniques, encryption, digital compression/HDTV, satellite installation/reception problems and calculations, footprints etc. The book has 440 A4 format pages and is available at $£ 38$ plus $£ 2.50$ UK postage.

Retail orders for the above books should be sent to Swift Television Publications, 17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN - telephone number 0793750 620. J. Vincent Technical Books, 24 River Gardens, Purley, Reading RG8 8BX (0734 414468) is the official wholesale distributor in the UK.

Tim Anderson is marketing two computer discs in either Amiga or IBM PC compatible 3.5 in . form. The first, called

DXWATCH, contains two programs, DXWATCH and IDWATCH. DXWATCH itself is a database of worldwide Band I TV offsets plus small files with Band III and u.h.f. offsets. The program allows you to create your own files so that you could, for example, create files for each channel, each continent or whatever you like. IDWATCH is intended to help with picture source identification by referring to key words. As we all know test patterns are rare nowadays, so that signal identification is an increasing problem. This program contains station identifications and words that often occur on pictures, such as news and weather - the entries for The Netherlands for example include PTT NED, NOS, NOZEMA, Nieuws, Pauze etc. Users can add to these entries, building up a comprehensive database. This disc costs $£ 8$ including UK postage.

The second disc, AMISCAN Version $2 \cdot 0$, is a database for anyone interested in frequencies above 25 MHz - scanner users for example. There are well over a thousand entries that can be searched, sorted, listed, edited and printed. Each entry contains frequency, channel number, mode, service, location, comments etc. Entries can be added or expanded for updating. Information on the disc includes worldwide 10 m f.m. repeaters, many of the low v.h.f. signals heard during F2 and SpE openings, amateur radio beacons, European air-band frequencies, many TV offsets and much more. Cost is $£ 7.50$ including UK postage.

These discs can be ordered from Tim Anderson at 2 Burry Road, St. Leonards-on-Sea, East Sussex TN37 6QX. I found them easy to use and if I can cope anyone should be able to!

The workshop never seems to run at full bore in late winter. Thus anyone who brings in a repair at this time of the year is likely to get very quick service from our team of highlytrained technical sleuths. On this bright and chilly morning they were engaged on such mundane tasks as filing service manuals and carrying out repairs to stock machines. Service Manager was casting a jaundiced eye over last month's accounts - gloomy reading indeed.

A car drew up in the yard. Its driver picked up a VCR from the passenger's seat and brought it into reception. As soon as it was booked in we had it hooked up on the bench and running. But not running very fast: the cassette loading operation was painfully slow, the cassette just about making it into the machine and down on to the spool turntables. Time to get the service manual out. The machine was an Hitachi VT430.

In this deck the front-loading operation is powered by the capstan motor which drives it, along with the tape reels, via a belt and a conglomeration of plastic cogs and pinions. So the first step was to replace the belt. This didn't have the slightest effect on the cassette loading and unloading operations, which where still performed very slowly. Real Technician, who had won the fight for the machine when it came it, decided to see how the capstan motor coped with its other tasks. Before doing so he discovered that tape lacing took place at normal speed - it's done by the loading motor, quite separately from the capstan department while the drum quickly ran up to 1,500 r.p.m. So none of
the other motors on the deck were afflicted. Back to the capstan.

In the play modes the tape ran very slowly and at an uneven speed. As a result the reproduced sound was slurred and had a heavy wow. In the search modes the tape moved hardly any faster than the normal play speed. Sometimes, when cue or review was selected, it would come to a complete standstill and the deck would then shut down. Similarly if pause was selected during play or record and then released the capstan would often fail to restart, the result again being deck shutdown. Fast forward and rewind were sluggish, with every sign that a three-hour cassette would take ten to fifteen minutes to transfer all the tape from one spool to the other.

Well, that seemed to be enough evidence, the finger of suspicion pointing at the capstan drive system. Real Technician again removed the reel-drive belt, then checked for any tightness in the reel-drive department, here called the clutch base assembly. Everything ran freely, and the reel brakes were seen to be coming off all right. What a pity that, with the belt still off, another similar test wasn't carried out! With the drive belt back in place the machine was once more set to play while further tests were made.

RT first had a look at the capstan motor's supply voltage. The A16V line was at almost 19 V , but a look at the circuit diagram showed that it comes from an unstabilised 18 V supply, so that was o.k. The 5 V line was correct. The drive circuitry could have been in trouble but RT next found, the machine having run for fifteen minutes or so now, that the capstan motor's rotor and the on-board drive chip ICl601 were running quite hot. This was the clincher. He decided to replace the motor assembly. Was this a wise move, and would it have cured the trouble? Give some thought to this before turning to page 442 to discover the answers!

Repairing LED Clock Radios

Part 2

Ian Rees

In Part 1 last month we dealt with the clock and display sections. For space reasons Table 1 was held over and is included this. time. It shows the control and supply pin connections for common clock chips. Now to the radio side of things.

Quick identification of the stages of an unfamiliar radio can be difficult. There's a colour code for the small coils used in radios of Far Eastern origin however and this can be a helpful guide to circuit layout. Details are as follows:

Circuit	A.M.	V.H.F.
Oscillator		
First i.f.	Red	-
Second/third i.f.	White	Orange
Fourth i.f.	-	Green
Detector	Black	Pink
		Blue

The tuned section of an m.w./l.w. ferrite rod aerial is colour coded plain/blue or black, the coupling coil green/red.

VHF Radios

As you would expect these days, single-chip radios are the norm. The only exception is the v.h.f. front end, which is basically the same as that used in other transistor designs. The chips are standard types, but the pin connections vary from one chip to another. Sometimes a separate audio chip is used.

Fig. 7 shows a typical v.h.f. radio section up to the audio output point. Q1 is an earthed-base r.f. amplifier which is followed by a self-oscillating mixer stage, Q2, which is again used in the earthed-base mode. The voltages shown are typical.

Weak reception is most likely to be caused by transistor Q1 being dead or dying. A quick test is to touch Q2's emitter lead with the end of a short length of wire used as an aerial. If this results in a louder signal than when Q1's
emitter is similarly touched, replace Q1. Short-wave reception but no v.h.f. signals when the same wire is touched on Q2's collector lead suggests that this transistor may be faulty. Dry-joints on L2, L3 and L4 are common because they are pulled about at the factory when being set. The enamelled wire adds to the difficulty of soldering the leads, which are easily broken loose by movement. Note the wax mess in this area, used to dampen microphony and hold components in place. Small movement of components in the oscillator circuit will result in a large amount of detuning and should thus be avoicied.

As elsewhere the ceramic capacitors used to decouple various points are never above suspicion. Loss of any supply should lead to checks on the relevant ones. Next in line are the relevant electrolytics. The LM1868 chip in the circuit shown receives its supply at pin 19. A decoupled 4 V output is provided at pin 16 - this is an unusual arrangement that's difficult to spot without a circuit diagram. The demodulated audio output appears at pin 17.

AM Section

Fig. 8 shows the first couple of stages of a typical a.m. radio section. Once again a completely dead front end can be caused by failure of Q1, but remember that leakage in the 20 nF base coupling capacitor will upset the biasing. Opencircuit coupling windings will be the result if the rod aerial is able to move. Litz wire becomes very brittle when solder is allowed to run up from its joints. If a winding is opencircuit, check farther back towards the coil: it's often possible to use a short fly-lead to remake the connection.

The value of the $5,000 \mathrm{pF}$ feedback capacitor in the emitter circuit sometimes has to be increased to 10 nF or more to maintain oscillation in the l.w. band. This component can also cause low sensitivity - another cause of this is disconnection of the unmarked lead from the aerial rod's tuned winding to the gang.

The practice of decoupling to the positive side of the supply instead of to chassis can mislead if not expected. If

Fig. 7: Typical v.h.f. radio receiver circuitry.

Table 1: Pin connections for common clock chips.

IC	Hours Set	Mins Set	Alarm Set1	Alarm Set 2	Snooze Out	Snooze Set	Alarm Off	Alarm Out	$\begin{aligned} & 50 \mathrm{~Hz} \\ & \mathrm{ln} \end{aligned}$	Vss	Vdd
TMS1941	34	33	31	-	25	24	26	27	36	28	29
TMS1944	34	33	31	-	25	24	26	27	36	28	29
TMS1951	34	33	31	-	25	24	26	27	36	28	29
TMS 1952	34	33	31	-	25	24	26	27	36	28	29
TMS3450	22	21	19	-	17	24	23	17	25	26	20
LM8361	36	33	31	-	27	26	32	27	35	28	29
LM8363	35	34	32	38	-	25	,	26	36	24	30
LM8560	22	21	-	-	17	24	23	17	25	26	20
MM5387	34	33	31	-	27	24	30	27	35	37	29
MM5402	34	33	31	-	27	24	30	27	35	23	28

*With the LM8363 pin 27 is alarm 1 off, pin 29 alarm 2 off.
TMS 1941/1944/1951/1952 common collector; TMS3450/LM8560 duplex type.
LM8361/MM5387/MM5402 require separate oscillator.
LM8363 X2 alarm.
the 20 nF capacitor that decoples the emitter of Q2 is leaky the supply will be connected across the 330Ω emitter resistor, giving the impression that Q2 is short-circuit. There will be no output from this stage if the transistor's base bias decoupling capacitors are faulty - the 20 nF ceramic connected to the positive rail and the $10 \mu \mathrm{~F}$ electrolytic connected to chassis. The unmarked capacitor that tunes the i.f. transformer's primary winding is within the screening can. Check this at the transformer's pins before removing the can. The very act of removing the can may clear the fault if there are dry-jointed connections here. Instability is once again usually caused by a faulty ceramic decoupling capacitor.

Failure of individual i.f. transistors is not uncommon. Check the operating conditions after replacement.

Fig. 9 brings us up-to-date with an a.m. circuit in i.c. form. The LM1868 is typical of a host of other chips that provide both a.m. and f.m. reception. As with the clock chip, it gives very little trouble. Don't consider replacing it until all other possibilities have been exhausted.

If there's no a.m. reception connect a scope to pin 8 to check whether the local oscillator is running. Turning the gang will confirm that tuning is taking place. A sinewave at around 70 mV peak-to-peak should be expected here.

No l.w. or m.w. oscillation is often due to a faulty oscillator coil. Loss of l.w. only is most likely to be caused by a short in trimmer CT4 or the 120 pF capacitor in parallel with it.

If the oscillator is o.k. try touching pin 7. This should produce a lot of noise but probably no stations. Leakage in the 20 nF capacitor that couples the input to this pin will stop reception.

The wavechange switches are often not very good and may bridge internally as the contacts wipe backwards and forwards. Repair is possible if they are opened carefully but replacement is better. Note that the switch bodies may be used as links for the PCB print. If they are loose, whole sections of circuit can be affected. I add wire links to avoid this type of problem.

Tuning

If you do a lot of radio work you'll probably have made yourself a wand to check the ferrite rod's coil setting. It consists of a piece of ferrite rod an inch or so long with a length of wire soldered into a loop of about one inch diam-
eter at one end. For convenience, tape this loop to the rod. In use, the non-loop end of the rod is brought up to the end of the set's aerial assembly. As it approaches, any improvement in a.m. reception would indicate that the aerial coil needs to be moved farther towards the centre of the rod aerial. By bringing the shorted loop around, any reception increase shows that the coil needs to be moved towards the end of the rod. Do this with the l.w. and m.w. coils separately. When no further improvement is possible, lock the coils with wax. This adjustment is done in conjunction with the aerial padders CT1 and CT2.

Before moving a wax-locked coil it's best to soften the wax with a soldering iron or hairdryer.

If the tuning gang operates intermittently when turned or is very noisy, tighten the four small nuts that hold it together - one at each comer. To gain access you might have to crack open the gang's casing. Aerosol switch cleaner can be sprayed into a noisy gang to clean the rotor's contacts. Don't use anything that might dissolve the insulation, and leave to evaporate. Check the v.h.f. and a.m. padder alignment after the repair.

Alignment is best carried out with a suitable a.m./f.m. generator and an output meter connected across the loudspeaker. Manufacturers use a wobbulator to align the f.m. circuits, but good results can be obtained using conventional peaking. If an f.m. generator is not available the discriminator or quadrature coils can be set up using an a.m. signal, tuning for a null.

Breakthrough between m.w. and l.w. experienced in some parts of the country can sometimes be reduced by reversing the connections to one of the aerial coils on the ferrite rod.

Muting

The circuit shown in Fig. 9 incorporates an audio muting arrangement. Muting is done by feeding a d.c. signal from the clock's alarm output to the base of transistor Q1. The alarm tone is fed in at a point after the slider of the volume control so that the control doesn't affect the alarm. No audio output can be caused by Q1 being defective. Anything that results in Q1 being off when the alarm tone is present will mean that an audio output is also heard. In other circuits muting is done by feeding a voltage to the i.c. Faults in this circuit can cause clock ticking - a symptom similar to that described when we dealt with the power supply. With

Fig. 8: Circuitry used in the first couple of stages of a typical a.m. radio receiver.

Fig. 9: A.M. receiver circuitry in chip form.
cheaper models the audio and tone occur together, the user being expected to turn the volume to minimum to kill the audio output. A variation on this is to use a switch on the volume control to turn the audio off and on.

Audio Problems

Where the audio signal enters the chip from the volume control but little or nothing is heard check the electrolytic capacitor connected to pin 2 (Fig. 9). With any i.c. that's used in the audio department the associated electrolytic capacitors can be bridged or better replaced during fault tracing. No or uncontrollable volume occurs when the tags of the volume control break loose from the print or their own rivets. Loss of the volume control's chassis connection will result in some chips muting themselves even when the wet finger test is applied directly at the audio input. Spray may cure a noisy volume control. With edge-type controls I prefer to retension the wiper as well.

The small loudspeakers used are prone to failure. The magnet becomes unstuck or goes off centre, the speech coil leads fracture or the coil goes open-circuit. Speaker replacement is the only cure. Rattle is sometimes caused by case resonance, a loose item on the cone or the speaker being
incorrectly fixed. A speech coil that scrapes against the polepieces produces a static-type interference on loud sounds.

What sounds like speaker distortion is often caused by r.f. oscillation in the audio section. Try connecting an $0.1 \mu \mathrm{~F}$ capacitor across the loudspeaker to see whether this provides a cure. With some sets this symptom arises only after the warm-up period. Scoping the output to the speaker will show that an r.f. envelope is present. The problem seems to arise quite often when a TBA820 chip is replaced with its KA equivalent.

Problems can arise when a PCB is mounted closely behind a speaker and the manufacturer has fitted a piece of insulation to the back of the speaker. Another problem is that solder spikes can short to the speaker tags or case when the set is reassembled.

Pointer Drives

Finally a few words on station pointer drives - dealing with these has as long as I can remember been one of the most hated jobs in radio servicing. These marvels of string have given many an engineer a hard time. I still have nightmares about a Rigonda valve radiogram drive system that
became unstrung when my then young son spun the dial when the gang was disconnected. Steel cords took hours to work out and refit.

Fortunately the systems used with clock radios are usually simpler. Many have a push-pull arrangement with flexible plastic rods, or a simple direct drive with a calibrated knob.

The old problems remain where the drive-cord method is used. The worst fault is likely to be when a pulley snaps off its fixing. A new shaft can be made by drilling and replacement, with a suitable bolt melted in.

If a cord diagram is not available and complete restringing is required I prefer to have the gang either open or closed. Starting with the spring under tension (assuming that it's on the drum) I head off around the pulleys, bearing in mind the direction in which the cord has to move in relation to the pointer. About three turns around the drive shaft is enough - take care that adjacent turns don't overlap each
other when the shaft is turned in the reverse direction, with the characteristic ping and shudder of pointer. Note also that the direction of the turns should coincide with the pointer movement. End up finally back at the drum. Leave pointer fitting to the last - this will enable the last bit of slack to be taken up. Put a spot of glue or varnish on the pointer and all knots to lock them in place. Nylon drive cord in all sizes can be obtained from a boat chandler - it's sold for sail repair.

An easy way to raise the tuning drive drum without unstringing the cord is to release its centre screw. Gently swing the drum upwards, giving it a couple of twists against the lay of the cord. It can then be taped to the PCB, out of the way. Provided you've not moved the gang or the drum it can be refitted in the reverse order.

Some radios have an arrangement with which the drum can be disengaged from the drive. This makes life simpler, provided that care is taken about their relative positions during reassembly.

Teletopics

NIMBUS DEVELOPS LONG-PLAY CD

Nimbus Technology and Engineering of Monmouth has developed a double-density CD with twice the playing time of a conventional disc. The system, known as CD2X, is based on the use of a special mastering lathe developed by Nimbus and Dr. Jonathan Halliday. Its longer playing time has been made possible by reducing the pit size, track pitch (from 1.6 microns to 1.2 microns) and reading speed (by a factor of 1.4). Despite these changes the new discs can be read by a conventional red laser. Nimbus says that CD2X discs can be played by some of today's CD decks, though with some of the newer ones the optical system will need to be tweaked to focus on the smaller pits.

CD2X is seen primarily as a replacement for VHS and the LaserDisc. Nimbus has developed a small video adaptor box that plugs into a CD player's digital output socket. It contains a video expansion chip, type CL450, developed by C-Cube Microsystems. This is used to decode the MPEGcompressed video signal from the disc. Nimbus says that some players may have the chip built into them.

The new discs will play around two and a quarter hours' of video with f.m. quality sound. Picture quality is claimed to be better than that of VHS. The playing time can be reduced to 75 minutes, offering wide-screen, broadcastquality pictures. An additional bit will have to be added to the sub-code to tell the player that the disc is an LP one (today's machines recognise playing times only up to 99 minutes, 59 seconds).

Nimbus is confident that CD2X will be accepted by video companies but doesn't expect music companies to market LP audio discs. CD2X could also be used to store more Photo CD pictures, and can be used as a CD-ROM to store up to $1 \cdot 2$ Gbytes of data. The new system doesn't provide interactive operation and is therefore not seen as a rival to CD-l. CD2X discs could be on sale within a year. Nimbus has also developed quadruple-density discs, known as CD4X, but these require the use of a blue laser and are more expensive to produce.

HDTV

The MAC system as a way of achieving the goal of HDTV in Europe has to all intents and purposes been aban-
doned, though a formal decision to drop MAC cannot be taken until the next meeting of EC telecoms ministers in May. The new EC industry commissioner Martin Bangemann has said that Europe will have to follow the US lead when it decides on a digital HDTV standard later this year. Mr. Bangemann sees no point in starting a further global TV standards battle. There has been a further delay in the USA however, where a decision has been postponed for five months or so while the FCC carries out a further series of tests on the four remaining contenders for selection as the HDTV standard.

Meanwhile the partners in VADIS (Video-Audio Digital Interface System), a pan-European digital TV project, have agreed to expand its aims to include digital HDTV. The VADIS project has developed compression systems that reduce the data rate for a standard digital picture source from $216 \mathrm{Mbits} / \mathrm{sec}$ to around $4-8 \mathrm{Mbits} / \mathrm{sec}$ with little reduction in quality. The compression system will make it possible to offer digital audio-visual services from a variety of sources, including telecommunications networks and satellite, terrestrial and cable TV channels. The work is being co-ordinated with the second phase of the international coding standards being developed by the ISO/IEC, known as MPEG. When applied to HDTV pictures the compression techniques will reduce the data rate from $1,152 \mathrm{Mbits} / \mathrm{sec}$ to around $12-25 \mathrm{Mbits} / \mathrm{sec}$. The new work involves the development of a multi-layer picture compression scheme that's matched to European requirements. VADIS members include the BBC, BT, National Transcommunications (NTL), Philips and Thomson.

SATELLITE TV

SES, which operates the Astra satellite system, has decided that its fourth and fifth satellites, due to be launched in 1994 and 1995 respectively, will incorporate digital TV capacity. This will enable Astra to offer a 180 TV channel system from 1995. SES believes that the arrival of digital TV is much nearer than some suppose. It considers that the next two years will be the testing time, and that digital TV decoders could be made available as early as next year.

The latest Financial Times Satellite Monitor, conducted by Continental Research, estimates that some 65,000 satellite TV systems were installed in the UK in January. This compares with 70,000 in January 1992. Continental Research estimates that 17,000 were upgrades, replacements or renewals after a break in subscription. It forecasts that by 2000 some 9.5 million homes in the UK will be equipped
for satellite TV reception.
A new range of multi-function integrated receiverdecoders designed and developed by the Pace Micro Technology research and development team is being launched at Cable and Satellite '93. They include the DMAC/D2MAC/PAL MRD950 with integrated Eurocrypt M and S decoding facilities, 120 -programme capacity, concise on-screen multi-language graphics, dual LNB inputs, a comprehensive parental lock facility and automatic 16:9 widescreen format selection. The top-of-the-range MRD960 has the added convenience of a dual card reader for increased ease of use

NEXT GENERATION VCRs

Japanese consumer electronics companies led by Matsushita and Sony are holding talks with the aim of reaching agreement on a new standard for the next generation of VCRs, which will use digital techniques for video storage. The use of digital techniques offers the prospect of virtually perfect pictures no matter how many copies are made. It's hoped that foreign manufacturers will support the standard, facilitating the introduction of digital video technology in the consumer market.

SUCCESSOR TO FM

The trade and industry secretary Michael Heseltine has launched a 'national forum' to promote digital audio broadcasting (DAB). The forum will involve broadcasters, equipment manufacturers, retailers and the providers of services. $D A B$ is expected to replace f.m. broadcasting over a $15-25$ year period starting with the first commercial DAB services in 1995. A preliminary technical specification, developed under the European collaborative research programme Eureka, has been submitted to the European Telecommunications Standards Institute. Those participating in the project include the BBC, Philips and Thomson.

DOLBY NEWS

According to Dolby its SR.D six-channel digital stereo sound system is now on fifteen major titles, including Malcolm X, The Bodyguard and Dracula. The new system is compatible with equipment that uses Dolby's older stereo, four-channel and mono sound systems. Yorkshire TV's programme Bad Influence, broadcast on January 28th, was this company's first production to use Dolby Surround sound. Dolby Laboratories has moved to Wootton Bassett. Wiltshire SN4 8QJ (0793 842 100).

BUSINESS NEWS

JVC is to close one of its German manufacturing plants in order to reduce mounting losses. In announcing a 27 per cent pre-tax profits fall in the quarter to the end of December, after discounting the effect of an extraordinary gain in 1991 (otherwise the profits fall amounts to 62 per cent), Sony says that VCRs and camcorders suffered the largest fall in sales. of nearly twelve per cent. Audio sales fell by six per cent while TV sales rose by ten per cent on the strength of worldwide demand for computer displays. The surprise announcement by Matsushita that its president Akio Tanii has resigned has shocked the Japanese business community.

Philips is to increase co-operation with Grundig, its 31.6 per cent owned, loss-making affiliate, in an effort to boost both companies' consumer electronics activities. According to Philips "drastic cost reductions can be achieved only if

NEXT MONTH IN TELEVISION

CAMERA FAULT RECORDER

The causes of intermittent faults are particularly difficult to find, especially when the TV set goes to standby or the VCR to the stop mode almost immediately, removing the fault condition. One approach is to use a camera and VCP to record the operation of the faulty equipment, enabling you to get an action replay of the transient fault event. Eugene Trundle explains the technique, describes the system he uses and provides some case histories. Test equipment can be included in the recordiñgs to provide clues.

PHILIPS' DOUBLE-SCAN TECHNIQUE

 Flicker has always been a problem with a 50 Hz field rate. Doubling the rate to 100 Hz eliminates it. George Wilding describes the-techniques used in the Philips FL1.2 chassis to provide 100 Hz scanning.
"IT'S ONLY THE ON/OFF SWITCH"

Steve Cannon on some recent 'power supply faults.

NICAM AND MAC AUDIO

The next instalment in our Modern TV Receiver Techniques series outlines the operation of the digital sound transmission systems now in use and describes the way in which the signals are demodulated and decoded to recover the original analogue sound.

MOTORISING A FIXED DISH

* 縖 lan Martin on installing a polar mount for reception across the satellite arc.

PLUS ALL THE REGULAR FEATURES

To

(Name of Newsagent)
Please reserve/deliver the May issue of TELEVISION (£2-20), on sale April 21st, and continue every month until further notice.
\qquad
\qquad
\qquad
I
both companies avoid duplication of efforts, especially in development and manufacturing". Philips has an agreement, dating from 1984, to finance Grundig's losses.

VIDEO NEWS

JVC has launched a budget camcorder, Model GRM3, at £599: features include a $\times 8$ zoom lens, video light and wired remote control. Nokia has just released three new VCRs: two of them have a built-in VideoPlus timer system. The Grundig GV201 at $£ 360$ includes text programming with

Startext and an automatic cassette identification and play time indication system (ATTS).

Sharp has launched an LCD projection TV system, Model XV710P, at $£ 1,800$. It can handle PAL, SECAM and NTSC signals and can project an image with a diagonal size up to 100 in . Sockets are provided for S video, composite video etc. It uses a newly-developed metal-halide lamp which costs about $£ 180$ and has a maximum useful life of around 4,000 hours. For the brightest and clearest picture a 60 in . polarising screen (Model XUPP60S) is available at about $£ 1,290$.

Simple ESR Meter for Electrolytics

Ray Porter, M.Sc., C.Eng., M.I.E.E.

In an article in the January issue I described the way in which the effective series resistance (ESR) of an aluminium electrolytic capacitor can increase so that it no longer acts as a low-impedance component. This explains why a fault is often cleared by replacing an electrolytic capacitor even though its value, when checked with a capacitance meter, is close to that marked on it. In view of this I decided to design a simple meter to measure the ESR of electrolytic capacitors. Its range suits the ESR values of PCB-mounted electrolytics. By checking against standard values (see Fig. 3) you can reject lossy capacitors.

The tester makes use of an operational amplifier as a negative-resistance oscillator. Since the operation of nega-tive-resistance operational-amplifier circuits doesn't seem to be well known a short explanation of the relevant theory is provided later.

Circuit Description

The circuit produces a negative resistance to cancel the ESR of the capacitor being tested so that there is continuous series resonance with a fixed inductor. Fig. I shows the circuit diagram of the meter. The negative resistance is produced by IClb : Cx is the capacitor under test and Ll the fixed inductor. VRI enables the negative resistance to be adjusted. Rotate it until oscillation stops: the ESR value can then be read from a scale fixed to VRI.

When there is no negative resistance present LI and Cx
form a series resonant circuit that's damped by L 1 's resistance and Cx's ESR. This circuit will ring when energised by an impulse. ICla is used as an oscillator to produce a squarewave output at a frequency of a few Hz . This output is differentiated to produce the spikes (impulses) that energise the resonant circuit. When the capacitor's ESR and the resistance of R1 are cancelled by the negative resistance the ringing becomes a continuous oscillation. LED D1 is then on. When the oscillation is stopped by reducing the value of the negative resistance the LED goes off.

If a short-circuit capacitor is connected to the tester the LED comes on with full brightness. When the resonant circuit is oscillating the LED is illuminated on only the posi-tive-going half cycles: it therefore glows at half brightness.

ICld provides a half-supply voltage reference for IClb. Sl varies IClb's gain, changing the negative resistance to provide $0-1,0-10$ and $0-100 \Omega$ ESR ranges.

Construction

The circuit was built on a piece of stripboard which, with a PP3 battery, fits easily into an ABS box. L1 was wound around the four pillars on the inside of the box's lid - see Fig. 2. It consists of 42 turns of 30 s.w.g. enamelled copper wire. This results in a coil with a resistance of $3 \cdot 2 \Omega$ and an inductance of $90 \mu \mathrm{H}$. A different wire gauge could be used, but its resistance plus that of RI must equal 10Ω.

With the coil as specified above a $1,000 \mu \mathrm{~F}$ capacitor in

Fig. 1: Circuit diagram of the ESR meter.
position Cx produces oscillations at 70 Hz . A $1 \mu \mathrm{~F}$ capacitor increases the frequency to 10 kHz . When testing the circuit I connected a crystal earpiece via a 100 nF capacitor to R 19 to check for oscillation. The clicks of a square wave can be heard when VR1 is set far away from the position that stops oscillation. As the critical setting of VR1 is approached the pure sound of a low-amplitude sinewave is audible.

Calibration

Start by using a known good $1,000 \mu \mathrm{~F}$ capacitor with a voltage rating of at least 25 V in position Cx. Adjust VR1 until the LED goes off. Mark the scale $0 \cdot 1 \Omega$. Now add known-value resistors in series with Cx and adjust VR1 until the LED just goes off. Mark the scale with the new total resistance value. You may find it convenient to use increments of $0 \cdot 1 \Omega$ on the 1Ω range and suitably larger increments on the other two ranges.

Interpreting the Results

Fig. 3 shows typical ESR values, based on manufacturers' data and allowing for the fact that ESR measured at 10 kHz is usually one third of that measured at 1 kHz . The ESR values with 10 V normal grade capacitors can be seen to be four times those with low-ESR 63 V types. Thus when a low-ESR type has deteriorated to the point where its ESR is the same as that of a normal electrolytic its internal heating will have quadrupled!

If you find that the measured ESR value is more than twice that shown in Fig. 3 the capacitor is past its best. ESR values for capacitors with voltage ratings other than those specified in Fig. 3 will be between the relevant lines on the graph.

Negative Resistance with an Op Amp

When a voltage increase is applied to a negative resistance there's a current decrease, i.e. $I=-V / R$.

Two operational-amplifier configurations exhibit negative input resistance. They are shown in Figs. 4 and 5. The one to use depends on the source resistance of the circuit to which it's connected. This is because the circuits use negative and positive feedback simultaneously, the source being part of the feedback potential dividers. If the proportion of

Components list						
R1	6.8Ω	R8		47k	R15	150k
R2	1 k	R9		560Ω	R16	1.1k
R3	1M	R10		120k	R17	2k
R4	100k	R11		120k	R18	11k
R5	10k	R12		33k	R19	10k
R6	270k	R13		2.2M	R20	10k
R7	470k	R14		150k	All 0.	W 5\%
VR1	100k					
C1	2.2nF	C2	22	$0 \mu \mathrm{~F}, 15 \mathrm{~V}$	C3	0.14 F
C4	10 nF					
IC1		N				BC557
Tr3	BC547			Red LED		
L1	14 m of 30 g enamelled wire - see text 3 -pole 4-way switch					
S1						
ABS box, stripboard						

Fig. 2: Front panel layout.

Fig. 3: Typical ESR values, A 10 V normal grade, B 25 V normal or 10 V low-ESR grade, C 100 V normal or 25 V low-ESR grade, D 63V low-ESR grade.

Fig. 4 (left): Negative-resistance op-amp circuit when the source resistance is less than R.
Fig. 5 (right): Negative-resistance op-amp circuit when the source resistance is greater than R.
the output fed back to the non-inverting (+) input in Fig. 4 is too large or the stage gain in Fig. 5 is too great unwanted oscillation will occur and the circuit won't function as a negative resistance.

Conventional current notation is used in the following explanation. In Fig. 4 the values of R2 and R3 are equal. Thus when $+V$ is applied to the input the output rises to +2 V . The voltage across R is then V and its direction is such that I must flow out of the input. So the circuit's input resistance is $V /-I=-R$, which means that the input resistance is of magnitude equal to R but negative in value.

The same analysis can be applied to the circuit shown in Fig. 5. Remember that these circuits will be stable only when the source resistance is as shown, and that operation as described is possible only when the operational amplifier's normal voltage and current ratings are not exceeded.

Panasonic NVMS2B

This camcorder would play back a tape quite normally if the record tab was removed but a virgin tape would be greeted with high-pitched whistling that drowned out the sound track. In these machines the tab switch enables Q6003, which then feeds 9 V to various places including the 2SB1219 transistor Q4005 that produces the delayed 9 V record voltage. The problem was that Q 4005 was passing about 2.5 V to the record circuits even when no switching voltage was applied to it. A replacement cured the fault it's a surface-mounted device.
B.S.

Panasonic NVMC5

This rather elderly camcorder came in with a request for an estimate for head replacement and a service. Despite the machine's apparent age the mechanism was clean and sparkling, with no signs of wear and tear. When our test ' C ' cassette was played back however we found that the output from one head was missing. As I suspected, replacement heads produced no improvement. So attention was turned to the head amplifier pack and the flexible connector from the drum to the pack. Removing and resoldering the connecting pins cured the fault completely.
B.S.

Panasonic NVMC20

This camcorder was accused of bloody-mindedness: it would sometimes refuse a tape, just ejecting it then leaving the cassette door open! It performed beautifully on test of course, showing no inclination at all to misbehave. After a call to Panasonic a nice man called Phil assured me that a replacement mode switch would cure the problem. It's part no. VES0416 and did the trick.
B.S.

Sony CCDF340E

The symptoms were no sound and intermittent VTR functions. Neither fault was difficult to cure. The no sound fault was cured by replacing the microphone preamplifier chip IC585. A damaged flexi board was the cause of the intermittent VTR functions (how do they get damaged?). D.C.W.

Ferguson FC28

The fault report said "won't always switch on and, when working, won't always switch off'. I thought that this was probably a mechacon reset problem but inspection revealed nothing more than a faulty power switch (SW617). Note that with these machines the response to a selected mode, e.g. power on/off, play etc. is not always instant - a sort of "soft" response to commands is often evident (or is it me?).
D.C.W.

JVC GR65E

No autofocus was the problem with this one. The motor assembly proved to be at fault, with a jammed gearbox. The initial drive from the motor is via a belt that's connected to a reduction gear (a sealed unit). It was this item that had failed, possibly because the slipping clutch assembly, which
is the final part of the autofocus drive to the lens assembly, was locked tight and was unable to slip when required. Manual focus adjustment probably caused the gearbox failure.
D.C.W.

Sony CCDF450E

I suppose we all get caught out sometimes by diving in too deeply. The symptom with this machine was intermittent playback functions, including fast-forward/rewind search. Recording was o.k. After some abortive in-depth investigations I discovered that the power switch (camera/player) made intermittently poor contact in the play mode. A replacement put matters right.
D.C.W.

Panasonic NVMS 1

Sound recording via the microphone was o.k. when listened to using the headphones but there was no output from the A/V out connector (the picture was o.k.). Playback sound was also available only via the headphone socket. The cause of the trouble was that the 2SD1328 audio mute transistor Q4013 was short-circuit emitter-to-base. Note that it's mounted at the opposite end of the main PCB to most of the audio circuitry.
D.C.W.

JVC GRA30E

Two of these came in at the same time from the same source with the same fault - no functions, with the emergency mode indication E01 in the viewfinder. This means that the 8 V supply is missing. Amongst other uses it appears as the r.f. unit supply at the AV output socket. The cause of the trouble was a faulty AV lead, which had been tried with both cameras. Unfortunately there's no fuse in this line to protect the main d.c.-d.c. converter. So two converters had to be replaced, which was a costly exercise. In view of the fact that it's an easily produced fault it is surprising that better protection wasn't incorporated.
D.C.W.

Sony CCDV88E

This machine would shut down intermittently in the play mode and just sit there looking at you. Careful inspection at the instant of failure revealed that just before the shut down occurred the capstan motor's speed rapidly increased. We decided to investigate the capstan FG circuit and found a dry-joint at pin 16 of IC503, the capstan FG waveform shaper.
D.C.W.

Fugix M890

This machine is a clone of the Sony CCDTR75E. The problem was an intermittent trigger button - the subtrigger button worked all right. Unfortunately the trigger button switch is available only as part of the complete control assembly, which includes wide/telephoto toggle, play, record, pause etc. and all the operation keys. A replacement is costly, especially when only one key function has failed.
D.C.W.

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Richard Newman, Paul Hardy, Chris Watton, John Edwards, Michael Dranfield, Brian Storm, Steve Cannon, Alfred Damp, and Geoff Fardon

Philips K40 Chassis

This set had no sound or vision - there was just a blank raster. Tracing back through the signal path with a signal generator I obtained activity when injecting a signal at the output of the TDA254I i.f. chip but none when applying the signal to its inputs. The voltages at the input pins were different: they should both be at 5.2 V but pin 16 was low, with a $1.5 \mathrm{k} \Omega$ leak to chassis. The other input (pin 1) didn't have this leak. Disconnecting pin 16 proved that there was internal leakage via the chip so a replacement was fitted - to no effect! What else that could cause a low resistance from pin 16 to chassis was connected to the chip? Nothing seemed to be likely until 1 looked in the SGS data book and found that pins 2 and 15 have decoupling capacitors connected to them. The one connected to pin 15, C2115 $(22 \mathrm{nF})$, was leaky.
P.B.

Philips CP90 Chassis

When checking this chassis for dry-joints one place where you might not think to look is in the i.f./sync can. Dryjoints can occur in this can, especially around the TDA 2579 chip.
P.B.

Philips NC3 Chassis

There was a blank raster though sound was present and the on-screen display worked. A check on the waveforms around the TDA 3565 colour decoder chip showed that the sandcastle pulses were present and a video signal went in, but nothing came out. Voltage checks then showed that the brightness control pin was high -2.5 V instead of 0.6 V at the maximum brightness setting. A new TDA 3565 was required.
P.B.

Philips 2A Chassis

The power supply was dead. Checks showed that there was 0.6 V at the base of the BUT11AF chopper transistor and over 300 V at its collector, but the circuit wouldn't oscillate. As there were no shorts across the secondary windings of the chopper transformer attention was turned to the snubber network connected to the primary winding. D6663 (1N5062) was found to be leaky - 150Ω both ways.
P.B.

Philips G110 Chassis

When the power supply in this chassis breaks down Philips supplies a complete repair kit. You must replace all the parts supplied. I recently had one of these sets come in from another dealer who said that although he'd fitted the power supply kit the set would shut down after an hour or so, just as though it had been switched off. Sure enough the set did exactly as he said. When I checked the 140 V supply 1 found that there was virtually no voltage here while the supply from the mains bridge rectifier was down to about 20 V (instead of 280 V). Two of the bridge rectifier diodes were going open-circuit when warm. I replaced all four and had no further problems after that. When I spoke to the dealer he
said that he hadn't bothered to change the diodes, although they are part of the kit, because they had measured all right. A lot of frustration could have been avoided if he had heeded the manufacturer's instruction to change all the parts in the kit.
R.N.

Questar CTR14

This set was dead. I'd seen it about a year before for a similar fault and had had to replace R652 ($390 \mathrm{k} \Omega$) which had been open-circuit. It again had to be replaced, but this time the STK 7348 went short-circuit at switch on, taking with it R651 (27 $2,2 \mathrm{~W}$), R653 (1-5 2 , 2W) and C655. Everything was fine when these items had been replaced. P.H.

Contec KT8135

There was no luminance. The cause was a poor plug and socket connection for the luminance drive on the c.r.t. base panel.
P.H.

Hitachi C14P218 (G7P Mk 2 Chassis)

This 14 in. portable was stuck in standby. A check at the collector of the BUT11AF chopper transistor Q903 produced a reading of some 300 V , so obviously the mains bridge rectifier diodes etc. were o.k. Two series-connected $82 \mathrm{k} \Omega$ resistors, R 902 and R 903 , provide a start-up bias for Q903. They are at the front, right-hand corner of the chassis and were both open-circuit.

Another fault you get with these sets is that the screen goes very bright then the set trips. The cause is that a capacitor near the line output transformer becomes dry-jointed because a part of the cabinet back pushes against it, eventually forcing it from the panel. The capacitor concerned is C711 ($47 \mu \mathrm{~F}$), which is the reservoir capacitor for the h.t. supply to the RGB cutput transistors. I cut the offending portion off the inside of the cabinet back - it doesn't seem to have any purpose.
C.W.

Matsui MB10

"Dead on mains" the report said and a quick check with the bench 12 V power supply proved that the set was otherwise o.k. So off with the back and into the chopper power supply on the left-hand side. The primary supply was present but there was no oscillation. I noticed a capacitor on the print side of the panel: it was not shown in the circuit diagram and was connected between the h.t. line and the collector of the chopper transistor. A check showed that it was shortcircuit, thus preventing any current flowing in the chopper transformer's primary winding. A replacement restored mains operation - it's a $4,700 \mathrm{pF}$ capacitor with a voltage rating of 2 kV .
C.W.

Toshiba T211T4BA

When I switched this set on it seemed to work all right but as soon as I changed channel it began to search tune down-

Design your own satellite system!

You can will the belp of this brilliant new program by DJ Stephenson

阿 W믿ㅌㄴㄴ SMATV
\Rightarrow DIAMOND AERIALS UHF/FM
ClOBAI FIRST IF, SMATV
E.WHALIRDI

Labgear Cablevision smatv LH LENSON HEATH SATELLITE
PACE
SATELLITE
RECEIVFRS
[100M
SATELLITE
RECEIVERS

A PROMAX TEST EQUIPMENT V/llfrimus ${ }^{\text {BOLTS }}$
 BOLTS PLUGS
Telergie SMATV
TRIAX U.K. UHERNHF TOWER cLIPS UNIDFIX CLIPS VOLEX COAXCABLES

- WE PROVIDE FULL TECHNICAL ASSISTANCE ANO SERVICE BACK UP
- ON ALL OUR PPFODUCTS

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP. TEL: 081-877 3492/877 3518 FAX: 081-877 3518

wards. If the down button at the front of the set was pressed the search would stop for a short time then start again. A new 47C232AN4984 tuning chip (ICAII) cured the trouble.
C.W.

Finlux 3029 (3000 Chassis)

This monster set suffered from what could be described as "line spacing": the top quarter of the picture was o.k., but towards the bottom of the screen every other line appeared to be blanked out. A fault in the field output stage seemed likely so several components in this area, including the field output chip, were replaced. All to no avail until we came to CK8 ($0 \cdot 1 \mu \mathrm{~F}, 63 \mathrm{~V}$). Replacing this cured the problem. It's a small, white square-shaped capacitor positioned beneath the field output chip's heatsink.
J.E.

Hitachi CPT2188 (Salora K Chassis)

This set was dead. There was a distorted waveform at the base of the line output transistor and an almost identical waveform at its collector - a check showed that its basecollector resistance was only 85Ω. We didn't have the original type (2 SD1577) in stock so we decided to try a BU508A instead. The 2SD1577 has an insulated body, so its heatsink is soldered to chassis. The BU508A was therefore mounted on the heatsink using a conventional mica insulator, spacer and bolt system. A long test run showed that the transistor ran cool.
J.E.

Tashiko 20F862

When this set was switched on the standby indicator flickered briefly but the set otherwise remained dead. The cause of the fault turned out to be C701 ($47 \mu \mathrm{~F}, 450 \mathrm{~V}$). For good measure we replaced $\mathrm{C} 506(47 \mu \mathrm{~F}, 450 \mathrm{~V})$ as well.
J.E.

Salora K Chassis

For tripping out when changing channel, also the field output chip IC501 having a very short life, check choke L601 in the line output stage. In the set we had in L601 looked as if it had got very hot and clearly had shorted turns.
M.Dr

Hitachi CPT2656

This set wore a Finlandia badge but we were able to match it up with one of our Hitachi service manuals. Over a period of eight months it has been back to the workshop on several occasions, but each time it failed to display any fault during a soak test. The customer's complaint was that the bottom part of the picture was missing. Despite replacing many components in the field output stage the set kept on coming back. It was difficult to know what to do as we'd not seen the fault. On its latest visit however the fault put in an appearance: after about an hour the bottom of the picture began to cramp up while the top widened out. By feeding a crosshatch pattern signal to the set we could see that the actual symptom was change in linearity. A slight touch on preset RTB573 (470) cured the fault. So a replacement linearity potentiometer was fitted and the set was handed back to the customer with confidence.
M.Dr.

Panasonic TX21T1 (Alpha 2 Chassis)

The complaint was about an intermittent whistling noise when the set was first switched on. Sure enough a high-
pitched whistle came from the set when I switched it on, stopping as soon as I touched it and then not to return until next day. In fact any attempt to touch the set cured the fault until next day. Many days later the cause of the fault was traced to a dry-joint on the line output transformer's overwinding - the point that provides sync between the line output stage and the chopper power supply.
B.S.

Ferguson TX10 Chassis

We don't get many TXIOs in these days. This one gave us some real grief however. It had been in for almost a fortnight, running on soak test, and the fault complained about was just beginning to put in an appearance. At switch on first thing in the morning there was field bounce. For only five minutes mind, then it would work perfectly for the rest of the day. Even switching it off and leaving it for a good few hours didn't seem to make any difference: the set would fault only between 9 and 9.15 a.m. We'd tried freezer of course, but this didn't give us any definite clues. Then one morning the fault showed up for a lot longer than usual and also developed further: there was intermittent field rolling and the line sync jittered. Well it was now or never, so on to the bench it came.

We replaced the TDA2578A timebase generator chip IC742 as this was the obvious thing to do. It didn`t help, but at least the fault was still present. As both the line and field sync were affected I suspected that the cause of the fault was around the input to the sync separator. A scope check was made on the video waveform at pin 5 of the TDA2578A chip and at first glance it looked fine. This point is biased by R759 and R753, which are close-tolerance components and have given us trouble before. But replacements made no difference. Upon closer examination of the video waveform the line sync pulses did seem to be rather thin, if you know what I mean, so maybe there was a fault earlier in the video processing. This seemed a bit of a long shot. I couldn't compare waveforms, and the one we had wasn't far removed from the oscillogram shown in the manual. But to prove a point I found a signals panel and transplanted it into the set. Sync lock was now perfect and, looking at the scope, the pulses had certainly put on weight. The original panel was refitted and scope checks showed that the video waveform was faulty right back to the i.f. panel. When this was swapped over the fault had cleared. Now the set was on rental, so I contemplated leaving it with the good panel installed. But as there was only half an hour till lunch time I thought that I might as well continue. I'd been at it all morning, and might as well get some satisfaction by tracing the cause of the problem to component level - and anyway I wasn't going to cheat!

I thought it was only going to be the i.f. chip. How wrong can you be? Replacing it made no difference, but use of freezer and the heat gun now made the fault come and go. Its cause was finally traced to the electrolytic capacitor C35 ($1 \mu \mathrm{~F}$) in the a.g.c. feed to the SL1432 i.f. preamplifier chip. A replacement sent me off to lunch with a beaming smile.
S.C.

Panasonic TC21R1 (Alpha 2 Chassis)

The reported fault was no picture. E.H.T. was present but there was no raster. When the first anode voltage was increased I saw that the cause of the symptoms was field collapse. A new field output chip made no difference and its supply was intact. Now the first thing to suspect with a faulty Panasonic set, once the obvious items have been ruled

SONY TUBES ne frocessedwirtonocona lsowccuns

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes.							
3701822	\$25.00	A51-231X	ITT	£46.00	A51JAR00X		¢64.00
$3702 \mathrm{B22}$	148.00	A51-570X	Mulard	£46.00	A51JKC00X	Sory	\$74.00
$370 \mathrm{KRB22}$	¢48.00	A51-580X	Mullard	\$46.00	A51JUH10X	Sony	¢74.00
370 LHB22	£48.00	A51-590X	Mullard	\$46.00	A53JBWOOX	Sony	£64.00
400 EFB 22	\$58.00	A56-540X	Mullard	\$48.00	A59JMZ40 03		¢85.00
$510 \mathrm{YUB22}$	$£ 52.00$	A56-701X	ITT	\$48.00	AS9EAK00\%	Phalips	£64.00
5205822 Sony	£64.00	A66-540X	Mullard	\$56.00	A64JKJ10x	Sony	595.00
560EGB22 Hitachi	\$54.00	A67-701X	IIT	£56.00	A66EAF00X	Sony	\$74.00
$560 \mathrm{DYB22}$	£54.00	A34EACOOX		\$48.00	A66EAK00x	Philips	\$74.00
570HB22 Sony	¢ 64.00	A34JBU10X	Sony	\$64.00		Sony	$\underline{595.00}$
6800822 Sony	¢85.00	A44JEX10X	Sony	$\underline{878.00}$	A68JYK10X	Sony	$\underline{95.00}$
680EB22 Sony	\$85.00	A44JFZ10X	Sony	\$78.00	AXM37-001		\$48.00
		A49JHT00X	Sony	£64.00	AXT37-00\%		\$44.00
		A49JLV10x	Sony	574.00	AXM51-001		\$46.00
		A51EALOOX		£64.00	AXT56-001		¢52.00
		A51EBS00X		£58.00			
For tube types not isted please enqure All Tubes Guaranteed 12 Months		All prices quoted are excluding VAT Exchange CRT is requred			Caflers welcome Please phone first Delivery Avalable		

NEW TUBES IN STOCK - PLEASE PHONE FOR YOUR REQUIREMENTS

Very competitive, nationwide delivery and collection service

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips or. your CRT screens All you require is an electric drill Written instructions are provided Guaranteed to work. Woridwide Delivery Total Price $£ 63.00$ includes P $\& P$ and VAT Avalable trom Luton only

TV TUBES SPECIAL OFFER RE-GUN FST SICM

A5I-EAL, ASI-JAR, ASI-EAM ETC. £57.00

+ CARR/VAT. LIMITED PERIOD ONLY STOCKS AVAILABLE

A WIDE RANGE OF OTHER TYPES AVAILABLE
OUTSTANDING QUALITY FROM ONE OF THE UK'S LARGEST BSI APPROVED
MANUFACTURERS OF RE-GUN TUBES

Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
Tel: 0429837100
Fax: 0429837101

The most popular range of workshop and field service CRT restorers now available in England. Designed for the measurement, anelysis and regeneration of all commercial monochrome and colour picture tubes. Nineteen sockets and referrence list available.

For TV service specialists

> ALMAN DGDCMPONICS LIMIMND
> 4U St Aibans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts, AL3 6EN Tel: 0727832266 - Fax 0727810546
out, is a defective 10 nF ceramic capacitor. I looked at the circuit diagram and the first one I came across was C403, which is connected to pin 2 of the TDA2579 timebase generator chip. A check showed that it read just over 100Ω in circuit. When a new one had been fitted we had full field scanning. If I had a pound for every 10 nF ceramic capacitor l've replaced I'b be laughing.
S.C.

Philips 2A Chassis

This set ticked quite noticeably in standby. Everything else was perfect, but the ticking wouldn't go. I was convinced that the cause of the trouble was in the power supply, and after a long and finally rewarding search the culprit turned out to be C 2690 . It's a $1 \mu \mathrm{~F}, 100 \mathrm{~V}$ non-polarised capacitor that's connected between the earthy side of the chopper driver transistors and the non-isolated chassis.
S.C.

Mitsubishi CT21M1BM

The red LED was illuminated but apart from that the set wouldn't come on at all. I removed the back with some trepidation, being rather a novice when it comes to Mitsubishi sets. Fortunately the power supply looked to be reasonable and conventional. After checking the output voltages it seemed that the cause of the problem was absence of the 12 V supply. This comes from a 12 V regulator, and I soon found that there was an input to this device but no output. The standby control line acts on this regulator, and I thought I'd try my luck here.

This line leaves the power supply and goes directly to the POW pin of the microcontroller chip IC701. After probing around in this area with the meter I found that the set would kick up. Dry-joint time, it seemed. The legs of crystals are usually a favourite, whether it be a remote control unit, a Nicam panel or a microcontroller chip. Sure enough both legs of the 4 MHz crystal CF701, which is connected to pins 28 and 29 of IC701, were dry-jointed. Resoldering them provided a speedy cure, thankfully.
S.C.

Toshiba 2512DBT

The reported fault was of whistling Nicam reception. In fact Nicam reception was pretty dire, with crackling and popping in addition to a permanent high-pitched whistle. As expected, the f.m. sound was perfect. By chance I noticed that moving the scan coil flylead or the Nicam signal leads aggravated or alleviated the problem. It transpired that the line scan current was interfering with the digital data signal going to the Nicam panel. Redressing both sets of leads completely solved the problem.
S.C.

Grundig CUC2410 Chassis

This set was dead: the power supply would try to start, but with little success. After a cold check on all relevant resistors and fitting a new TDA4600 chopper control chip we eventually traced the cause of the fault to $\mathrm{C} 633(100 \mu \mathrm{~F}$, 25 V) which was open-circuit.
A.D.

Matsui 2890/Saisho CM2880TX

There was field collapse, the white line being very bright indeed. Had this additional factor registered with us time wouldn't have been wasted looking for a fault in the field output stage. The cause of the fault was in the video output supply, where D406 was short-circuit and the series safety resistor R440 was open-circuit.
A.D.

Hitachi G8Q Chassis

There was an intermittent start-up fault with this set. When cold it would sometimes come on only in standby. But if the mains switch was held the set would eventually come on correctly. The cause of the fault was traced to the start-up thermistor TH902.
A.D.

Amstrad TVR2

Several of these sets have come in either dead or intermittently dead. In just about every case the cause has been that $\mathrm{C} 1507(1 \mu \mathrm{~F}, 50 \mathrm{~V})$ was either leaky or open-circuit.

An exception came in the other day. Although the job ticket said that the set was dead it wasn't the $1 \mu \mathrm{~F}$ capacitor. The cause of the problem was that the mains relay wasn't being energised because there was no 5 V output from the power supply. In fact the fault had nothing to do with the TV side of the combination: a fuse in the VCR section had blown.
A.D.

Supra STV1401R

This colour portable was dead. There was 350 V at the input to the STR 5412 regulator chip IC 104 but no output at pins 2 and 4. Replacing this item restored normal operation. G.F.

Saisho CT142RX

There was an intermittent fault with this set. The picture would go very dark, with very prominent colour. It was as though the luminance delay line was open-circuit. Additional symptoms were a three-inch vertical band, predominantly red, and faint flyback lines.

We found that the tube base panel was very sensitive to being touched. The cause of the trouble was poor joints on three of the pins of the ribbon cable that goes to connector plug/socket CD803.
G.F.

Hinari TVA1

After the initial start-up this set was very intermittent/temperamental about coming out of standby. Just about everything in the power supply seemed to be sensitive to heating/freezing, including the relay. The fault cleared when a new STR 5412 chip was fitted.
G.F.

Matsui CTV2055

There was an over-bright picture with flyback lines. When the first anode and brightness settings were reduced there was shading from the left-hand side of the screen. We found that the h.t. supply to the RGB output stages was low at only 113 V instead of 190 V . The reservoir capacitor $\mathrm{C} 120(4 \cdot 7 \mu \mathrm{~F}$, 350 V) was open-circuit. Incidentally this set is a Fidelity clone.
G.F.

Bush 2020

This set suffered from an intermittent fault. There would sometimes be a blank screen, but on occasions this would have a thin red line across it, as if there was field collapse. The fault was so intermittent that it could take anything from minutes to weeks for it to recur. We found that touching the board almost anywhere when the set was warm would produce the fault, which was thus very difficult to localise. Eventually we found a bad joint on C307, which is partially hidden by a plastic support strut.
G.F.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AN3215k \& \& AN7163 \& 92.95 \& LA3210 \& 50.95 \& M 83730 \& \& \& \& \& c250 \& \& \& \& \&

\hline AN3310K \& \ldots \& AN7166 \& \& L43370 \& \& MB3 \& $$
\begin{aligned}
& \text { K2. } 75 \\
& \underline{2} .75
\end{aligned}
$$ \& STK5338 \& $$
84.50
$$ \& TA7280P \& ¢2.95 \& TEA1039 \& $$
\mathrm{E}_{2} .20
$$ \& 2N3773 \& $$
\begin{aligned}
& 20.50 \\
& \hline 10.50
\end{aligned}
$$ \&

\hline 3312 \& 9.95 \& AN7168 \& $\underline{92.75}$ \& A3375 \& 92.50 \& MB884 1 \& ¢5.75 \& STK5421 \& 58.50 \& ta7281p \& [2.75 \& TEA1042 \& 93.75 \& 2N3819 \& 50.30 \&

\hline 3320K \& 84.95 \& AN7169 \& 82.95 \& LA3376 \& 92.20 \& \& \& STK5422 \& ¢6.50 \& ta7299P \& $\underline{62} 95$ \& TEA1060 \& 520 \& \& \&

\hline 3331K \& ¢5.75 \& AN7171K \& 84.75 \& La4108 \& 92.20 \& \& \& STK5451 \& 55.30 \& ta ${ }^{\text {a }}$ 317P \& 91.50 \& TEA1061 \& \$2.20 \& \& \& PADUINGION GRE

\hline AN3792 \& ${ }_{6}^{9} .95$ \& AN7172K \& ${ }^{97.95}$ \& LA4137 \& ${ }^{81.95}$ \& \& $\underline{2} .50$ \& STK54 \& 55.50 \& ta77607ap \& 12.20 \& TEA1080P \& 52.50 \& \& ${ }_{50}^{50.95}$ \& PADOHAGION GRE

\hline AN3822K \& ${ }_{\text {¢6. }}{ }^{5} .95$ \& AN7178 \& ${ }_{\text {c. }}^{5} 50$ \& LA4145 \& ${ }^{91.70}$ \& \& \& SIK 5481 \& 5 \& TA7609P \& c2. 70 \& TEA2018. \& ¢1.\% \& 2SA1111 \& m. 85 \& W21L6

\hline 䢒 \& ${ }_{60.50}$ \& AN73 \& 51.20 \& LA4162 \& ${ }_{5} \mathrm{E} .50$ \& SAA5042 \& ${ }_{515}^{28.00}$ \& $$
\begin{aligned}
& \text { STK5482 } \\
& \text { STK5730 }
\end{aligned}
$$ \& ${ }_{\text {c5 }}^{51.95}$ \& TA761 \& ${ }_{\text {c\% }}$ \& UPC575 \& \$1.00 \& 2 2SA1186 \& 93.95 \&

\hline 5010 \& $¢_{65.95}$ \& AN7420 \& 81.95 \& La4170 \& 81.75 \& \& ${ }_{81.50}$ \& STK6732 \& 911.75 \& TA7640AP \& ${ }^{51} 1.30$ \& UPC1025 \& ${ }_{5}{ }^{2} .30$ \& 2 SA12 \& 92.80 \&

\hline 5011 \& E3.95 \& BA5408 \& ¢2.20 \& La4t82 \& f1.95 \& STA441C \& ${ }_{6} 8.5$ \& SITK7308 \& 55.50 \& \& \& UPC1188 \& ${ }_{89}^{2.75}$ \& 2541265

2SA1294 \& ${ }_{5}^{53.40}$ \& ax: 071-262

\hline AN5030 \& ${ }^{12.50}$ \& BA5 \& $\underline{2} .95$ \& 444183 \& ${ }_{5}^{51.20}$ \& STK0029 \& ¢4.75 \& STK7309 \& ع8. 30 \& TC9906BP \& 55.50 \& UPC 119% \& ${ }^{11.80}$ \& ${ }^{2 S A 1294}$ \& ${ }_{53.25}$ \& Fax.011-202

\hline ans \& ¢. \& 846208 \& ${ }^{\text {c1. }}$. 95 \& La41 \& ${ }^{1} 1.75$ \& STK0039 \& \& \& ${ }_{68} 95$ \& \& \& UPC1230H \& $\underline{\$ 2.50}$ \& 2 SA 13 \& E3.80 \&

\hline AN5150 \& 55.50 \& BA622 \& ¢2.20 \& LA42 \& $\ldots 2.30$ \& \& \& STK \& ${ }_{20.50}$ \& tDA1010A \& ${ }^{1} .40$ \& UPC123.'H \& ¢1. 20 \& 2SA1306 \& 50.95 \&

\hline An \& ¢6. \& BA6239A \& E. 20 \& L44261 \& $\underline{02.30}$ \& STK433 \& ${ }_{5}^{6} .25$ \& STK8250 \& 58.95 \& TDA101 \& ¢1.50 \& UPC1241H \& ¢1.95 \& ${ }_{2} 2541307$ \& £1.10 \& AMSTRAD 4500/5200/9000...... \&18.00

\hline AN5256 \& $\underline{5} 20$ \& B46302A \& ¢1.80 \& LA42 \& ¢2.30 \& STK435 \& 55.50 \& STK8260 \& E12.50 \& tDalilion \& ¢1. 50 \& UPC1277 \& $\square_{50} 5$ \& 2SA1516 \& $\underline{2} .50$ \& AMSTRAD VCR 7000 $£ 21.00$

\hline \& \& BA7004 \& 92.00 \& LA \& 0.75 \& STK437 \& \%7.50 \& ST \& ${ }^{58.95}$ \& TDA1170 \& E1.50 \& UPC12794 \& ${ }_{5}{ }^{2} .50$ \& \& \& 俗

\hline \& \& BA7005 \& ¢2. 20 \& La4280 \& ¢2.95 \& STK443 \& 68.95 \& \& ${ }^{2} 8.75$ \& TDA1510 \& ${ }^{93} .60$ \& UPC1313AU \& \& 2 S \& 50.50 \& HITACHI VT8000/9000 $£ 16.00$

\hline \& \& BA7751AL \& £1.95 \& \& \%2.50 \& STK457 \& 97.50 \& STR \& ${ }^{26.75}$ \& TDA1510 \& ¢3.95 \& UPC1337 \& $\underline{5.75}$ \& \& 50.60 \& HITACHIVT7/17/19 $£ 32.00$

\hline \& 52.20 \& Hal33 \& \ldots \& \& \& STK459 \& $¢ 7.75$ \& \& ${ }^{26} 75$ \& TOA1515 \& $\mathfrak{T} .50$ \& UPC13E \& $\underline{52.75}$ \& 2 2663 \& 20.60 \& HIV V135/39 £34.00

\hline AN5521 \& $\underline{2} 20$ \& HA1 \& 9.95 \& La4 \& $\ldots 2.20$ \& \& \& \& 5570 \& \& ${ }_{\text {ch3 }}$ \& UPC13 \& 54.20 \& 258 \& \& JVCIFERGUSONPV 31332G 5.50

\hline AN5560 \& 92.95 \& HA1377 \& $\underline{5.20}$ \& LA \& ¢1. 80 \& \& \& ST \& c8. 20 \& TDA1522 \& ${ }^{\text {c. }} 1.95$ \& UPC 136 \& \& 2S86689 \& 20. 65 \& JVC/FERGUSON PV 31332L. 99.50

\hline \& \& Ha1388 \& \underline{M} \& \& \& STK106 \& ${ }^{7} .95$ \& \& c6. 20 \& TDA1770A \& ${ }_{¢} .95$ \& UPC134 \& ${ }_{9} 9.20$ \& 2S8775 \& \%1.80 \& JVC/FERGUSON HRD 180/23013V59 $£ 33.00$

\hline AN561 \& \ldots \& \& ${ }^{2}$ \& \& 92. 30 \& STK10 \& \& STR2005 \& $\ldots 5.85$ \& \& \& \& 1 \& 8817 \& . 50 \& 0

\hline \& \& \& \& \& \& ST \& 57.50 \& \& ¢ \& TD \& 50.8 \& \& 88.75 \& 2 SB 8 \& 52.9 \& JJC/FERGUSONH

\hline AN56 \& ${ }^{3} .20$ \& HA1397 \& ${ }^{2} .50$ \& La4475 \& 50 \& \& \& \& E6. 20 \& \& \& UPC14:0CA \& \& \& \& JVC/FERGUSON HRD 7655/3V328942............ $£ 27.00$

\hline \& \& HA \& \& \& 2.50 \& STK2038i \& 5.50 \& ST \& ca. 75 \& TDA2005 \& ¢1.95 \& \& \& $2 \mathrm{SE10}$ \& [1.00 \& MITSUBISHI HS 303/304/310/320/700 288.00

\hline \& ${ }_{4}$ \& HA112 \& ${ }_{5}$ \& La4495 \& \% \& STK2 \& 29.75 \& \& 5.55 \& TDA2005 \& 52.50 \& 80131 \& ${ }^{20.35}$ \& 2SB11 \& \$1.20 \& PANASONIC VEH O121...................... 89.50

\hline \& \& HA11219 \& \& \& \& STK2 \& 75 \& \& ¢ \& TDA2005S \& ¢2. 50 \& \& \& \& \& PANASONIC VEH 0218........ 144.00

\hline \& ${ }^{21.20}$ \& HA11223 \& 2.50 \& La4500 \& 2.50 \& \& \& \& L \& \& 11.50 \& 35 \& \& \& \& PANASONIC VEH 0287 $£ 21.00$

\hline \& ต. \& HA11226 \& 94.50 \& \& ${ }_{52}$ \& \& \& \& ${ }_{58}$ \& T0A20 \& Σ \& \& 50.25 \& \& ¢9.60 \& SONIC VEH 0286 - 21.75

\hline \& $\underline{2} .20$ \& \& ¢1.95 \& LA \& \%3. 50 \& STK22 \& 56.50 \& ST \& E3.20 \& TDA \& c1. 50 \& B0138 \& 0.25 \& $2 \mathrm{SC1573}$ \& 50.50 \& PANASONNC VEH 0177.

\hline \& \& \& \& \& \& STK \& . 50 \& \& E5. 20 \& TDA \& ¢1.70 \& 30139 \& 50.25 \& $2 \mathrm{SC18}$ \& 50.80 \& . 00

\hline \& $\underline{1}$ \& \& \& LA \& 12.60 \& \& \& ST \& 5. 20 \& \& \& B0140 \& 0.25 \& SC19 \& E10.50 \& 00

\hline \& \& HA1 \& ${ }^{\text {c }}$ \& \& \& ST \& ¢6.50 \& \& \& TD \& $\underline{\square}$ \& \& 20. 5 \& \& \& PANASONIC VEH 0267 (original

\hline \& \& \& \& \& $\underline{2}$ \& \& \& STR11000 \& 6. 20 \& \& \& 8044 \& $\underline{0} .50$ \& Sc1 \& 20.95 \& PANASONC

\hline \& 9.9 \& HA11745 \& \bigcirc \& \& \& (1)30 \& 5.75 \& \& \& \& 50 \& \& 50.9 \& \& ${ }^{1} .20$ \& PANASONIC VEH 0210.................... $£ 35.00$

\hline \& \& HA11747A \& (7. \& \& ${ }^{12} 8.8$ \& ST \& 88.75 \& S \& rs. \& TDA2600 \& ¢5.00 \& B800 \& c0. 55 \& 2Sc \& 1.00 \& PANASONIC VEH 0252...... ¢29.50

\hline \& \& HA11747ANT \& \%.50 \& \& $\underline{5}$ \& STK3082 \& 86.95 \& \& E4. \& \& 91.30 \& 8071 \& ${ }^{20.65}$ \& \& 9 \& PANSONIC VEH 0252 (original) $£ 35.00$

\hline \& m_{0} \& Hal7781 \& E.95 \& \& \%3. 25 \& \& \& STR \& ${ }_{85} 5.75$ \& \& \& 80911 \& 50.95 \& 2 SC \& 0.50 \& SAMSUNG Most Models 19.50

\hline \& £3.75 \& \& \& \& $\ldots 3.20$ \& \& ${ }_{5}$ \& STR4109 \& ${ }_{26} 8.20$ \& tDA35 \& E4.20 \& B0912 \& 0.95 \& $2 \mathrm{SC2}$ \& [2.80 \& 22.00

\hline \& \& \& \& \& $\varepsilon 1.50$ \& STK402 \& E6.50 \& STR \& 88.20 \& ida3s \& E4.50 \& 80939 \& $\underline{20.50}$ \& \& ¢4.96 \& SHARP VC 6300/7300 original (BRASS) . .i. $£ 32.00$

\hline \& ¢4.75 \& \& ต. \& \& ¢1.50 \& STK4121ij \& ¢8.95 \& \& ${ }^{\text {E6. }}$ 20 \& TDA3560 \& 23.90 \& 80940 \& 50.50 \& \& 82. \& SONY DSR 35. $£ 17.50$

\hline \& ${ }_{67.50}$ \& \& E. \& \& ${ }_{2} \mathbf{2} .75$ \& STK4122II \& ${ }^{5} 5.95$ \& STR50103 \& ${ }^{\text {E4. }} 70$ \& TDA3561A \& \& \& \& \& 9.31 \& SONY DSR 36 §17.50

\hline \& £. 85 \& \& ¢1.90 \& LA \& 91.75 \& \& ${ }^{68.75}$ \& 5015A \& ¢5.70 \& TDA3654 \& ${ }_{\text {¢2 }}$. 95 \& \& \& 2SC4236 \& E5.54 \& TOSHIBA V31/33/9600 £18.00

\hline \& ¢ 4 \& \& \& \& \& STK414 \& G7.50 \& STR50213 \& 86. 20 \& T0A3730 \& $¢ 4.75$ \& BT152-60 \& \& \& \& TOSHIBA V71/87 £18.50

\hline \& \& \& ${ }_{52}$ \& \& 91.50 \& STK4141V \& 17.95 \& \& ${ }^{55} 20$ \& TDA3771 \& 84.75 \& \& \& \& \& EEC CUSTOMERS

\hline \& \& HA13 \& $\underline{52.75}$ \& \& ¢1.50 \& STK4142II \& ¢7.30 \& STR59041 \& ${ }_{66.20}$ \& TDA4427 \& 52 \& BTVET-100R \& $$
{ }_{£ 1.75}
$$ \& \& E1.21 \&

\hline \& E8.50 \& \& 97.50 \& \& c. 20 \& STK415 \& ${ }_{57.85}$ \& ¢ \& \& \& ${ }_{¢ 2} 2.75$ \& buzzoa \& $\ldots 1.00$ \& \& 20.80 \& suply is payabe on iotal order

\hline \& E5.50 \& \& ${ }_{5}$ \& \& 50 \& STK4 \& $\underline{7.95}$ \& \& \& \& E3.95 \& \& £1.30 \& 2 S \& ¢1. 21 \&

\hline \& \& \& \& \& [2.95 \& Sti \& ¢7.95 \& \& \& \& 24. 5 \& - \& ¢1.20 \& 2SO \& 22.95 \& RS

\hline \& \& \& \& , \& $\ldots .50$ \& STK417 \& ¢8.95 \& \& \& \& ¢3.95 \& ${ }^{\text {Bl4 }}$ \& £0. 80 \& 2S0870 \& ¢4.00 \& 6-9-12-C.W£2.95

\hline \& 25.50 \& K ${ }^{\text {a } 2213}$ \& \$1. 30 \& LC7137 \& ¢4.50 \& ST \& E8.95 \& TA7193P \& ${ }^{84.00}$ \& 10 \& 52.75 \& ${ }_{8} 84098$ \& 50.70 \& 25087^{1} \& ${ }^{\text {¢ } 4.50}$ \& 12-C.C.W... .n 2.95

\hline ANG \& ¢4.95 \& KA2214 \& ¢1. 50 \& LC7815 \& E2.95 \& \& \& $$
7
$$ \& ${ }^{1}$ \& \& E2 \& BULT26A \& ${ }_{\text {cis }}$ \& ${ }_{2}$ SDO830 \& cc. 60 \& CASSETTE HEADS

\hline \& \& Lal \& ¢2.50 \& \& E2.95 \& \& £4.50 \& ta7222AP \& \$1. 30 \& TDA4600-3 \& $\underline{5.95}$ \& BuF26. \& £0.70 \& \& 91.40 \& Mono 11.20

\hline \& \& \& ¢2. 50 \& \& 11.95 \& \& ¢5.90 \& TA7229P \& ¢3. 25 \& tDa4929 \& £3. 50 \& Busco \& ¢1.50 \& 2 SO 1 \& ¢1. 40 \& Stereo............... £1.80

\hline \& \& LA \& ¢1.75 \& M5218P \& 50.95 \& S \& 59.50 \& ta7230P \& 91.50 \& TDA493 \& E. \& BU508A \& £1.00 \& 250120 \& 50.50 \& O Rev £2.75

\hline \& \& \& \ldots \& M5 \& $\underline{92} 5$ \& \& 28.50 \& TA7232P \& ¢1. 95 \& \& $\underbrace{3}$ \& 8U5080 \& ${ }^{\text {c1.00 }}$ \& 2 SO 1 \& ¢1. 20 \& ITEMS DISPATCHED WITHIN 48 HOURS

\hline AN7147 \& ${ }_{52}$ \& LA \& ¢1 \& M \& $\ldots .20$ \& ST \& ${ }^{\text {¢ }}$ \& 33 P \& 9.5 \& TDA7000 \& f2. 95 \& 8utiosv \& E1.20 \& 25 \& 9.60 \& add 800 post and packing and ther add 171/2\%

\hline AN7148 \& \& \& ${ }_{5}$ \& M51393AP \& ${ }^{81.50}$ \& STK4853 \& ${ }_{\text {E9, }}$ \& TA7241AP \& [2. \& TDA7255 \& ¢4.95 \& BUT \& ¢1.20 \& 2 \& ${ }_{\text {E1 }}$ \&

\hline \& \& La \& ¢1. 5 \& M 5 \& ¢. 50 \& STK53 \& £6.75 \& TA7243P \& ¢2.95 \& \& \& \& ¢. \& $$
\begin{aligned}
& 250426 \\
& 2 S O+427
\end{aligned}
$$ \& \%3.30 \& appontment

\hline AN7161N \& ${ }^{23.95}$ \& \& £1.5 \& \& ¢1.75 \& STK53 \& 25.75 \& 2508 P \& ¢2.95 \& TE \& $\underline{92} 95$ \& \& 50.35 \& $2 \mathrm{SO}^{4} 439$ \& 9.20 \& (hmes raam-50m Mon-Fr) 9.i2 Sats.

\hline \& \& L \& ¢ \& M 54544 L \& $\underline{52.75}$ \& STK K325 \& ¢6. 75 \& TA72518P \& ${ }^{£ 2.95}$ \& TEA1009 \& 17.80 \& \& \& 2S0\%457 \& E195 \& VISA/ACCESS ACCEPTED MIN. - TELEPHONE ORDERS ¢5.00

\hline \& \& Lawlor \& 20.95 \& M83712 \& £1.50 \& STK5332 \& $\ldots .50$ \& TA7270P \& £2.50 \& TEA1014 \& ¢2. 20 \& 2Tx650 \& 20.30 \& 2501887 \& ¢3.75 \&

\hline
\end{tabular}

WE HAVETHE WIDES CHOICE OFUSED OSGILOSCOPES INITE COUNIIY	DATRON 1061A - $6^{1} 2$ Gigt Autok al Murfmeter with Irve RMS ACCMuren:
TKTRONIX 7000 Sernes oscluloscones	DA. RON 1065 - $51 / 2$ digt Autced Mutumeter, ACOC
Oual Trace Plug in with 18 Irome Cl 200 Many Plup in options	
	OMm5
${ }_{\text {rised }}$	
P4llups 3070 Drai Trace 100 MHL Delay 5 wreep 1 rrg Vew	
Clever Cursors inuud Crysta display,	
HITACOI VOSOF Dual Trace 100 MHZ Dual IB weth 4 Channet MFode	
SCHLUMBERGIR 5218 Dua 1 race 200 MaZZ Delay 5 wee	
Trig view 0375	MULTIME TER Handhedd M235s 32 ranges ACOC
TEKTRON:X 46SB Uuad Tace loaM	Dudelf ransitor Teste' Freq Counter 63.50
	TARNELL Electrona
TEkIRONX 2223 Cual lrace 30 -	TANA RF Povar Meter 9104 ata
	A 9341 Dastabri
TELLOURMENT D83 Dual race SoMHZ Delay Smeep	
GOLLD	caxage \& lonation
	AVO VALML Charater stic Meter VCM167 TELEQUIPMENT CT7I Curre Tracer MARCONI IF 7700 Unverss LCR Bridge Eattery from FARNLLL PSU GOV 2SA Melerec Iype H60325 HA RNELL PSU 30 Sa Metered Ifpe L30t
GOULD 03508 Duad Irace 15MHz.	
515	
PrilliPS PM5193 Progiammable Synthes selitundion Gener	
ator LEE 4880 IMHZ S SOMHZ	
N1	
	FARNELL SSG S20 Syntreessed 5ig Gee la-520MHL \ll400
Marcont 2018 Symhesized AMMFM Sig Gen 80KH2	FAPNELL 115520 Transminter Tes: Set conssting of F/AF Counter RF Mod Meter Mf Power Meiur Af Vormeter Af
MARCONI 2107 Stabte Low nose AMMM SIg len 10KHZ	
1024 MHZ C Plis	
18 GHC	NEW EOUTPMENT
RACALDANA 1991) Nanose	escitoscont hmious inpie irace
	Lelay IImebase HAMEG OSC LL LOSCOPI. HMGOT Dud Irace 60 MHz Delay
RACAL 9009 Automatc Mod Meter IOMHL ISCHZ Wide	Sweep HAMEG OSCILOSCOPE HM2O3 • Duad Trace 20 MHzz
	Comporent Tester
MARCON 12610 True RMS Vottmeter	Siorage
SPECTRUM ANALYSERS	black STAR EOUIPMENT (P\&P al unts fS) APOLIO $10-103 \mathrm{MHz}$ Counter Tmer RasolfenodTime
	METLOR 100 FRLCUENCY COUNTER 100M Maz 6109
HP 1401 weh $8554 \mathrm{~L} 8.8552 \mathrm{~A} 500 \mathrm{KHZ} 1250 \mathrm{MHZ} \quad ~ ¢ 1000 ~$	METEOR 600 HRL OUENC C COUNTER 600MMz CI3S
	OR
${ }^{\text {HP }} 1401$ w	10
N	UR BAR GE MERAIOR Paht Mideo .. C229
N	
DATRON $1071-7 / 2 d g \mathrm{~g}$ Autocal DC Mult meter with True	OSCILLOSCOPE PROBES Switrable $\times 1 \times 10$ (PRPP C3)
Used kowiment - Guaranteed Manuats suppled if possble This IS A VLRY SMALL SAMPLL OF STOCK SAL or Teiephone for mi Please check avalabdity wefore ordenng CARRIAGL allun E i 16 VAT to be added to Toul of Goods and Carrigere	
SEEMART 110 WYKEHAM ROAD. RE Telephone. 07342680 Callers Welcome 9am-5 30p	of READING EADING, BERKS RG6 I PL 41 Fax: (0734) 351696 m Mon-Fri (until 8pm Thurs)

The Universal Transistor

Gene Turnbull

Even though conventional transistors have largely been ousted by integrated circuits there are more types - though fewer of each - in use than ever before. To reduce stockholdings, by both manufacturers and the service industry, research is being carried out by a Korean company, Taegu Semiconductor Inc., on a single device to replace all those in current use.

The most promising prototype has been given the development number UR1, and the aim is that it should be a workable substitute for both npn and pnp transistors in applications ranging from switch-mode power supplies to s.h.f. front-ends, taking in timebase, audio and logic switching roles. The device currently being tested has two bases, one for pnp configuration and the second for npn operation. The unused base is connected to the collector for an hFE (gain) of 40 and to the emitter for an hFE of 200, thus covering the tolerance spread of most transistors. Other characteristics of the device are Vcbo $1,400 \mathrm{~V}$, Ic 5 A and fr (typical) 14 GHz .

Production transistors will be supplied with optional mounting kits, one of which adapts the device for surface mounting where this is required. Another one consists of a TO3 bracket, for use in place of BU208 and similar power transistors. A heatsink is required for high-power applications like these, but not for use in place of devices such as $\mathrm{BC171s}$ or BFQ33s. It has been calculated that high-power applications will account for less than half of the universal transistors used so, like the mounting kit, the heatsink will be marketed as an optional extra.

Price is of paramount importance with this type of product. If world sales reach the expected level, it's hoped that a trade price of $£ 1.49$ (UK equivalent) can be achieved. At this level Taegu Semiconductor expects to attract orders from all the major setmakers as well as service and repair shops in Europe, the Far East and America. A spokesman for the company claimed that the saving in stockholding, data books and equivalents lists would run to millions of dollars annually in the USA alone.

Taegu has several similar projects on hand in its research laboratories. One is a range of semiconductor-based replacement modules for thermionic valves, using high-voltage power f.e.t. technology. Each package will be similar in shape and size to the valve it replaces, with identical plug-in base connections. KT66 and 6V6G types are expected to find a large market amongst valve amplifier enthusiasts, who will be able to get the "valve-sound" characteristic they like without the risk of breakage or the need to pay for cathode heating power in an increasingly energy-conscious world. Other advantages of solid-valve technology are greater reliability, lower price and ready availability from Korea. Many conventional valve types are scarce and diffi-
cult to obtain now. The EF86, a low-noise audio preamplifier, is a typical example. Its solid-state equivalent, the SEF86, will use spin-off technology from the UR 1 universal replacement transistor described above.

Also under development, but not yet available even in prototype form, is a universal integrated circuit. For economic and logistic reasons, it's unlikely that this will be designed as a replacement for all i.c.s - it's too difficult to price a chip that can act as either a simple quad-inverter or a VCR system-control microcomputer. If and when the device becomes available, it's most likely to be in the form of a 4 bit programmable microcontroller with a minimum of 100 pins. Not all applications will require use of all these pins, nor all four bits, especially as the CPUs used in domestic electronic gear generally work with serial control bus lines like the I2C. Here the spare pins are used to configure the i.c. as required, for control of a washing machine, a VHS VCR, an edit controller or a remote control gun for example. One of the most difficult aspects of the design of an i.c. like this is the arrangement of the lead-out pins and assigning it a type number.

Apart from the i.c. device, for which no production date has been quoted, the products are expected to come on stream at the beginning of the second quarter of next year. Distribution in the UK and Europe is likely to be in the hands of a Scandinavian company, Luflirpa, that will set up a network of agents and wholesalers.

Two questions were posed at the end of this month's puzzle. Their answers are no, it wouldn't have been a wise move to replace the troublesome Hitachi VT430 VCR's capstan motor, and yes a replacement motor would have cured the problem!

How can we reconcile these two answers? Well, no sooner had Real Technician got the capstan motor out of the machine and gone to the component storage racks to look for a replacement than coffee break time came around and Television Ted, who also knows a thing or three about video machines, joined RT for a breather. On hearing about the faulty motor Ted asked to see the body before it was committed to the dustbin. When he turned the rotor he found that it was as stiff as a rusty winch!

When the motor's rotor and stator were separated the upper bearing surfaces were found to be covered with a dry, black substance that looked like hardened grease. A fibre pencil and a rag soaked in solvent were used to remove it from the shaft, while a solvent-saturated cotton bud on a stick was used to clean it off the sleeve. The bottom bearing seemed to be unaffected but was similarly cleaned. Both bearings were given a tiny dose of lubricant.

When the serviced motor was refitted the machine's performance was transformed. All functions worked properly and the motor ran cool.

Why is it that some VCR makes and models suffer from this problem while others are completely free of it, though all of them have a barrier ring just above the upper bearing to prevent the ingress of dirt?

[^2]

REPO TV

FOR YOUR
GRANADA
TV \& VIDEO REQUUIREMENTS NEW STOCK WEEKLY FROM OUR NEW DEPOT UNTESTED - AS THEY ARRIVE OR TESTED \& WORKING

ALSO STILL SUPPLYING THE BEST SERVICED M.D. SOURCED STOCK

REPOSSESSED TV CENTRES LTD DAISY WORKS - 345 STOCKPORT ROAD LONGSIGHT - MANCHESTER M13 OLF
ALMOST OPPOSITE MAIN POLICE STATION A TO Z (MANCHESTER) D1/61 061-274 3409/FAX 061-273 4486

ACCESS - VISA - CHEQUE - SWITCH - CASH

NEW SUPPLY NEW SUPPLY NEW SUPPLY

CALVARY ENGINEERING

Ex-Rental TV \& Video

A) OFF THE PILE: Direct from rental - guaranteed completely unengineered *
B) WORKING: Soak-tested

(A)	(B)
Basic non Thorn TVs from......................£12	£25
Ferguson Basics fromi£30	£35
Ferguson R/C from£33	£42
Ferguson TxT from£45	£55
Ferguson Stereo Tex: from£50	£60
FST TVs from.. 570	£80
Top loading VCRs from $£ 45$	$£ 50$
Front loading VCR's from...................... 550	£55
All prices plus VAT Delivery Arranged	

* only the coin meters have been removed

PHONE DAVE ON
 BANBURY (0295) 265757 FOR ALL DETAILS

ELECTRONIC TEST EQUIPMENT

TV PATTERN GENERATORS GV-310 / GV-498

* Up to 32 selectable patterns
- Video and RF output. Tunable from 37 to 860 MHz
- $31 / 2$ digits frequency counter
*Text and logotypes (only GV-498)
- SCART connector

For television signal engineers
ALBAN DLECTRONICS LIMITIED
4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN

Tel: 0727832266 - Fax 0727810546

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG are Europe 5 top seling DUAL THCE OScilloscopes. Seiect rom lour supert moders All, with the aception of the HM 1005. incorporate a usetul COMPONENT TESTER Size all modeis - $205 \mathrm{~mm} \times 145 \mathrm{~mm}$ ar display den $x 10 \mathrm{~cm}$. Mains supply
HM203-7 20MHz STANDARD

SPECIFICATION
Bandwidth: DC - 20MHz Sens: Ch $1 . \mathrm{Ch} .2 .1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC-40MHz
Active TV-Sync-Separator Variable hold-oH Trigaer LED Indicat Calibrator: 1 KHz Square wave Component tester Plus many features
Price $£ 338.00+£ 59.15$ V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS

HM604 60MHz UNIVERSAL

2 Channels
Bandwidth: DC -60 MHz Sens: Ch. 1, Ch. 2, $1 \mathrm{mV} / \mathrm{cm}$ Triggering: DC - 80 MHz Active TV Sync - Separato Ather delay trigger
Sweep delay
Delay line
Trigger LED indicato
Calibrator: $1 \mathrm{KHz} \&$ Component tester
Price E610.00 + £106.75 V.A.T. FREE Specialist Carrier Delivery
MM1005 100 MHz UNIVERSAL 3 ChAMMELS - UPTO 6 TRACES SPECIFICATION 3 Channels
Bandwidth: DC - 100 MHz Sens: Ch.1, Ch.2.Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC - 130 MHz After delay trigger Delay line Trigger LED indicator Overscan LED indicator Active TV - Sync-Separator Price 5792.00 £138.60V.A.T. FREE Specialist Carrier Doliv. Wave HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage Analogue real time (Sa
Bandwidth: DC-20MHz Sens: Ch.1.Ch.2. $1 \mathrm{mV} / \mathrm{cm}$ Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$ Triggering DC - 40 MHz Active TV-Sync - Sampling Max sampling rate: 2×20 Memory: 2
Dot joiner
Printerfolotrer outpu
Price $\mathbf{£ 6 1 0 . 0 0}+\mathbf{E 1 0 6 . 7 5}$ V.A.T. FREE Specialist Carrier Delivery
 B.K.'s CRT TESTER DIGITAL CAPACITANCE REJUVENATOR
Tests and rejuvenates blue. green and red guns separately. Fitted with delta size $120 \times 65 \times 60 \mathrm{~mm}$ Compact Supply 240 V AC Price 534.00 Price £34.00 £5.95 V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES
Carrier irequency $100 \cdots /-1 \mathrm{MHz}$ (adjustable)
Output level $0.1 \mathrm{mV} \cdot 10 \mathrm{mV}$.
L \& R separation over 50 dB
External Modulation $50 \mathrm{~Hz}=15 \mathrm{KHz}$
Pre-emphasis $50 \mu \mathrm{~s}$. $75 \mu \mathrm{~s}$ s oft.
Comprehensive test lead set included
Mains powered.
Price $£ 299.00+\boldsymbol{5} 2.33$ V.A.T.

LEADER HIGH VOLTAGE

 METERED EHT PROBELight weight. easy-to-grip high-impact plastic handle wilh arc-over protection and ro need of extra equipment. An indispersitle item in your TV service kit. Measures uG to 4OkV OC with satety and the grealest of ease. Enlirely sellprobe tip to the check point, read the meter for voltage.
A must for the Health and Satety at Work Acts.
Price $£ 66.00+$ £11.55 V.A.T.

解 all in-line and one gun types. Tests all threeguns of colour CAT s simultaneousiy under actual operating conditions (model 490) Exclusive multiplex technique current that actually passes through G1 aperture to screen. Measures all shorts and leaks - preserving more CRT's. Tests focus eiectrodes lead continuity inding faults that other testers miss: Uses most powerful restoration method known with minimum danger to CRT. Rejuvenated CRT's guaranteed as new for two years Obsolescence proof - perpetual sel up chart updated and new adaptors developed " Tests and rejuvenates VOU's 40 CRT base adaptors available. 'Increase profit "Pays tor itself in moniths.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of satellite TV systems and aerial alignment of VMF/UMF television and radio systems. Signal levels can be accurately measured on the IC402-C and the TCYO, allowing the evaluation of
signal conditions lor satistactory operation. Both models have a clear LCO direct trequency signal condhions Ior satisfactory operation. Both models have a clear LCO direct
readout, coupled to a multiturn tuning control enabling precise channel identification.
TC402-C VHF \& UHF
FEATURES

Three bands

Low VHF: $\mathbf{4 5 - 1 1 0 \mathrm { MHZ }}$ $\begin{array}{ll}\text { UHF VHF: } & 110.300 \mathrm{MHz} \\ & 470-862 \mathrm{MHz}\end{array}$
Digital display for direct frequency readou
Built-in monitor loudspeaker AM/FM Signal measurement from $20 \mu \mathrm{~V}$ to 100 mV Powered by eight 1.5 AA batteries. Fully portable with sturdy carrying case.

Price $259.00+$ £45.33 V.A.T. TC90 VHF-UHF-SAT.

FEATURES
Five bands:
Low VHF $: 45-110 \mathrm{MHz}$
$\begin{array}{l:l}\text { High VHF } & 110-300 \mathrm{MHz} \\ \text { Hyper VHF } & 300-470 \mathrm{MHz}\end{array}$ $\begin{array}{l:l}\text { Hyper VHF: } \\ \text { VHF }: & 300-470 \mathrm{MHz} \\ \text {-862 MHz }\end{array}$ Satellite $\quad 950.1750 \mathrm{MHz}$ Digital display for direct frequency readou Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ Io 3 V Signai measurement satellite -70 dBm to 10 dBm .
Audible indication of satellite signal level Built-in-monitor loudspeaker AM/FM Powered by
Price £ $499.80+$ £87.47 V.A.T (complete with charger $220 / 240 \mathrm{~V} \mathrm{AC}$)

BLACK STAR COLOUR PATTERN GENERATOR

 THE 'ORION' THREE-IN-ONEPAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Orion is a compact. bench instrument offering a wide range ol patterns and facilities at a truly low cost.

In addition to a switchable sound carrier faclity which allows use with the majority of PAL TV systems, the
videomonitors

More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier line arity, colour purity, general colour perlormance. locus

A separate video input lo modulate camera signals: fully variable RF and video output ievels facilitating AGC testing: trigger output aliowing easy triggering of difticult oscilloscope waveforms; external sound modulation input via DiN connector for frequency response festing of TV sound systems; adjustable wide irequency coverage of VHF and UMF TV bands.
Just some of the features making the Orion Pattern Generator an indispensible tool in the manufacture, test. and servicing of televisions, and computer and video monitors.

FEATURES
Colour bars, purity
dots, tocus, etc
Vots, tocus, etc.
$5.5 \mathrm{MHz} .6 .0 \mathrm{MHz}, 65 \mathrm{MHz}$. Internal/External Sound
Trigger Output
Trigger Output
Separate R, G, B and sync. O/P's
RGB a TTL \& IV.
Green + 0.3V Syncs.
Composite Video Output
Variable RF/Video Outpu
Swithable Video Polarily
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Price $\mathbf{£ 2 2 9 . 0 0}+\mathbf{£ 4 0 . 0 8}$ V.A.T.

ChKIAKCLiD U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with VISA
 range. Credit card orders are accepted by 'phone, fax or post. Delivery normally within seven days.

The Euras System

is the largest
repair tips database
for CD, TV and video in Europe.

Solutions at your fingertips.

The System

has over 100,000 repair tips for 10,000 models from 250 manufacturers and is conveniently available as manuals, stand alone PC or videotext. The System now also boasts technical service data for computers from SAMS Computerfacts, available as manuals.

Euras International Limited

Heston House, 7.9 Emery Rd
Brislington, Brisrol BS4 5PF
England
Telephone 0272724475
Fax 0272723374

TV/FM LEVEL METER MC-477D

- Frequency range: $47-860 \mathrm{MHz}$
- Functions: TV, spectrum, analysis, synchronism
- Simultaneous display of picture and measured level
- 39 memory channels, set by user
- Autocorrected meter reading for higher accuracy

For TV/FM, SAT TV, SMATV and Cable TV installers

ALBAN MLECTRONICS LIMITED

4 U St Abans Enteprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax: 0727810546
\square
PROMAX

ELECTRONIC
TEST EQUIPMENT
FM \& TV FIELD STRENGTH METER MC-160B

- Measurement accuracy $\pm 2.7 \mathrm{~dB}$
- Superb sensitivity for FM and TV
- Easy to buy, easy to carry

For FM/TV, MATV, CCTV and Cable TV installers

ALBAN ELECTRONICS LIMITED

4U St Abans Enterprise Centre, Long Spring Poriers Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax: 0727.810546

$14^{\prime \prime}$ and $16^{\prime \prime}$ tubes from ONLY £19

SPECIAL OFFER - 21" FST

 51EAL...Save £15...only £54
21" FST, narrow-neck only £69

GOOD OLD TUBES (not physically broken or faulty shadow mask) ALWAYS WANTED

Comprehensive range of new and rebuilt tubes always available

> Ring IRENE or JANE for friendly, helpful advice.

Carriage and VAT extra The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 0889-577600 Fax: 0889-575600

SILVERSCREEN

NEW MAJOR SUPPLIER
Of Thorn \& Granada ex-rental TV \& Videos.
Deliveries throughout South Wales, Devon \& Cornwall.
Call John on
0884256257 or visit us at
24 Gold Street, Tiverton Devon EX16 6PY Export welcome

FERGUSON CHASSIS
 - New and Complete -

TX10
TX86
TX90
TX90

Remote and 8 Button 14" 8 Push Button

20" White Spot
£14
£14
£14
£20

BLACK MESH DISH 60cm f25

INFRA RED DETECTOR SIZE $5^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$
WIDE ANGLE IN CASE FOR BURGLAR ALARM USE PRICE $£ 8$

TEXT KIT FOR ITT SETS E7

Post $£ 5$ on all items

SENDZ COMPONENTS TO ORDER SEE DETAILS ON BACK COVER

ANGLIANTV
 TELECENTRE

 WHOLESALE EX.FENTALTVs\&VCRs
'B' GRADE T.V., IVDEO AUDIO, MICROWAVE NEW MAJOR BRANDS COMPLETE MINT AND BOXED
BESTPOSSIELEPRICES EXPORTENCU|RES

WELCOME RINGFORDETALLS ANGLIAN TV WHOLESALE, NOW AT UNIT 4, BRECKLANDS BUSINESS CENTRE TAVERN LANE, DEREHAM, NORFOLK (0362) 691611

NOW OPEN
7 DAYS A WEEK FOR TOP QUALITY
EX-RENTAL AND 'B' GRADE TV'S AND VIDEOS.
WEEKDAYS OPEN
TILL 9PM. WEEKENDS \& EVENINGS BY APPOINTMENT. 15 MINS FROM JUNCTION 16 M6
79A COLERIDGE WAY, CREWE.
TEL: 0270589392
ACCESS AND
VISA WELCOME

AERIALS

FOR TV \& FM RADIO, PLUS 100O's OF MASTS.
BRACKETS, LASHING KITS.
CLAMPS, PLUGS, CABLES
OUTLETS, DIPLEXERS ETC

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK WE HAVE ONE OF THE LARGEST RANGES. AVAILABLE FROM STOCK

MAIN DISTRIBUTORS

FOR ANTIFERENCE,
LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

CREWE WHOLESALE TV LTD.

WE HAVE SLASHED OUR PRICES. WORKING TV'S FROM £15.00. WORKING TEXT TV'S FROM E45.00 TAKE $5 £ 45.00$ - TEXT ONLY £200.00.
LARGE SELECTION OF WORKING AND UNTESTED STOCK.
WORKING TOP LOADING VIDEOS FROM £40.00.
WORKING FRONT LOADING VIDEOS FROM £50.00
WORKING LONG PLAYING STEREO VIDEOS ONLY £70.00
AT LEAST 1 DELIVERY, TO EACH UNIT, PER WEEK.
CALL NOW FOR NEW PRICE LIST.
CREWE - OPEN 9.30 TO 5.30 MONDAY-FRIDAY
TEL: 0270582924.

* UNTESTED STOCK ONLY *

BLACKBURN - OPEN 10.00 TO 4.00 WEDNESDAY-FRIDAY
TEL: 0254264489

QUALITY USED T.V.
\& VIDEO
COMPLETE RANGE OF
T.V.'S AND VIDEOS
MOST MAKES AND
MODELS AVAILABLE
STOCK ARRIVING DAILY
T.V.'s from £3.00
Videos from £30.00
PricesEx-VAT

Free Delivery Service to most areas of the U.K.

UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North

For your export

requirements contact us.

> 0299-8796420 or 899643 FAX:029982984

BESCO LTD
 EX-RENTAL TV's \& VIDEOS

NEW 'B' GRADE MAJOR BRANDS TV - VIDEO - HI-FI

PORTABLES • FST's • NICAM • FASTEXT • SONY • HITACH • PANASONIC • ETC 100's of Ex-Rental \& H.P. Repossesions from $£ 10$

VHS Video from $£ 30$
Huge selections. Complete range - All makes and models available.
\star NEW STOCKS EVERY DAY \star
PICK YOUR OWN VHS VIDEOS - Lots of $10 £ 20.00$ each 100's Px Upright Vacs now available

Working Ex-Equipment Panels
IF Converger Decoder Line Scan Power Frame
T20/22X
T26 X
Philips G11 1450
5
5
5

14
16
12

18	17
20	17

x
11.50

All prices include Postage \& Packing. But + VAT

BRADFORD

16 Bottomley St
Manchester Rd, BD5 7JL Ring Tony (0274)308186

MANCHESTER

Unit 3, Mersey Rd. North End Est., Failsworth Ring David (061) 6834612
Visa/Access Welcome
Prices are Plus VAT \& Based on Quantity
OPEN 6 DAYS $9-5$
FAX 0274722229

EST 14 YEARS
Westiern 2abatton hill road torguay DEVON TEL: 0803312222 FAX:326767

DELIVERIES TO DEVON-CORNWALL WEEKIY

NOW OPEN IN WALES

 WesternUNIT 6
ISLWYN WORKSHOP
Trade
Services PORTYMISTER IND ESTATE RISCA GWENT MPI 6NP
TEL: 0633612667
FAX 0633601245

> SUPPLERS OF EX-RENTAL THORN \& NON THORN TV \& VIDEO

WALKMAN LTD

- NOW OPEN -

New wholesalers of Thorn \& Granada ex-rental TVs and Videos

* Working - Non-working * Many Opening Offers

Open Mon-Sat 9.30-5.30

PHONE NOW

0245-325383
UNIT 8, CUTLERS RD,
SOUTH WOODHAM FERRERS, CHELMSFORD, ESSEX

CENTRAL N•
 EX-RENTAL
 SUPERB RANGE OF TV'S \& VCR'S - THORN \& GRANADA
 DIRECT LOADS AVAILABLE FROM SOURCE

EXPORT ENQUIRIES WELCOME

ELECTRA TV LTD

Unit 5, Santa Pod, Nr Poddington Airfield, Hinwick, Wellingborough, Northants NN9 7JQ.

Telephone 0234782944

Rediffusion MK4/MK4A

Working TVs

Basic £30.00
Teletext £45.00
Off the pile
Basic £20.00
Teletext $£ 30.00$

Price list for spares

Line board 90/110 working $£ 10.00$ each Power board 90/110 working $£ 10.00$ Used handsets working $£ 6.00$

Also other spares available.

Export enquiries welcome.
Please note we only deal in Rediffusion MK4/TVs and MK4A

SWITCH ON! TO QUALITY EX-RENTAL TV \& VCR. PLEASE RING FOR DETAILS

AVONMOUTH

5 PORTVIEW ROAD AVONMOUTH, BRISTOL BS117LQ. TEL:
022235093 KARLA REALE

NOTTINGHAM

UNT 8, ASCOT PARK INCUSTRIAL ESTATE
SANDIACRE, NOTTINGHAM. TEL 0602491385 JOHN JEYS

SOUTH LONDON

22 FRANTHORNE WAY
OFF RANDLESDOWN ROAD, BELLINGHAM, LONDON SE6 3BS. TEL 081-69j 0877 JAMES MAYE

MANCHESTER'S NEWEST WHOLESALER

REDBANK

ADVERTISERS' INDEX

Aerial Techniques 409	J.J. Components 423
Alban Electronics Ltd .. 439-	
445	Manor Supplies.......... 407
Anglian TV Wholesale . 448	
A-Z Electronics 436-437	Powell, T................. 441
Besco Ltd 449	Promax Instruments 439-
BK Electronics 444	445
Campion Wholesale TV	P.V. Tubes 397
Ltd......................... 448	Repo TV 443
Central TV Wholesale	Sendz Components 447,
Ltd 450	459-OBC
Centrevision 443	Shudehill 452
Coastal Aerial Supplies 448	Silverscreen 446
Crewe Wholesale TV 448	Stewart of Reading 441
CTV........................ 447	Swift TV Publications.... 436
Datapart Ltd 446	Telecentre
East London Components	Teleprice Ltd............. 451
397	Telespares Ltd 400
Economic Devices 424-425	Telnet 450
Electra TV................ 450	
Euras International Ltd 445	Vista Electronics 439
Express TV Supplies 446	Walkman 449
Eye View 443	Well-View 439
GGL Components 398-399	Western Trade Services 449
Grandata............. 390-396	
Hardy, J.W............... 436	W. Tree Trade
ICS Intertext Group 397	Wharehouse 452

NEW BUYS ON B GRADE STOCKALLOWS US TO OFFER YOU THEFOLLOWING
14 porrables working 889 All boxed with instructions
R/C long play videorecorders working 899
DISCOUNTONAll boxed with instructions
QUANTITY
21", 25" and 28" Nicams working All boxed with instructions TEL FOR PRICEB grade Audio from $\mathbf{\varepsilon} 12$ many working
Customer returns in block.
Example. Untested 3×21 FST $3 \times 25^{\circ}$ FST
$6 \times F / L$ Videos $£ 40$ each. Total $£ 480+$ VAT
This price does not include handsets.
Some in need of repair, some working.
Ex-rental TVs, all untouched.
Basic £15 R/C £20 \& £25 Text £25 \& £30
Videos T/L £22 F/L £40. All untouched.
W TREE WAREHOUSE
UNIT 1, SUNSHINE MILLS, WORTLEY RD, LEEDS 12
TEL: 0532 638804/633421 FAX: 0532310275

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cml . Classified advertisements $£ 8.40$ pet line, box number $£ 22.00$ extra. All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Su:ton, Surrey SM2 5AS.

SPARES \& COMPONENTS

AMSTRAD HANDSETS	
VCR4600,4600MkII	11.75
VCR4700 (Not long play)	17.63
VCR5200	11.75
VCA6100 (Indexer)	25.85
VCR6100 (Barcode Indexer)	29.38
VCR9000 (Old type)	11.75
TVR 2	13.22
TVR 3	17.63
SRD500	11.75
TS90/99 Tower System	11.75
AMSTRAD LOPTS	
CTV1000 FB182K	11.75
CTV1400 FB165kA	11.75
CTV1401 3714002	14.10
CTV1409 3714002	14.10
crv2000 FB171	9.40
CTV2000 FB171K	9.40
CTV2200 3722002	14.10
CTV2210 3722002	14.10
TVR2 1810951	13.51
TVR 3181297	13.51
CTM644 Mkll 3714009	14.10
PC12-HACD/D MSH1FCT31	14.10
PCW9512,8256,8512	7.05
FERGUSON LOPT	
Mm060004242001	4.70
AMSTRAD TUNE	
UE33-B01	9.40
UE2-831F	5.88
1810829	7.05
ENV87358F2	7.05
ENV87509F2	5.88
UVE33-F01 VHF-UHF	14.10
UVE33-F02 VHF-UHF	14.10
1813766 VHF-UHF	14.10

Harrison Electronics

CENTURY WAY, MARCH, CAMBS PE15 BQW, FAX: (0354) 51416. TEL: $(0354) 51289$

SURPLUS REDUHDANT EIECTRONIC

 COMPOMENTS WANTEDI/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM Electronic Supplies Tel. 0827873311 . Fax 0827874835

TRAINING

If you require a home study course in the fundamentalo ot electronics. either to begen a carecr. pursuc a hobby. or refresh your knowledge.
BASIC ELECTRONICS
courne. from the Direct Personal learnne scheme. could be just what you re looking for. Contact. K. Sparrou etc. . II Claydon Gireen Whitchurch BRISTOL A von BSI4 ONG Telephone: (0275) 835669

 tor instann vollage and casireni teading voveriodd portection tully variable oper
trom 240 AC Conmactpan.
sire
5 £45 wian
 RADIO COMPONENT SPECIALISTS
 List. Large Sase Detivery 7 dups Callers Weloome Closed Wed

ADVERTISERS PLEASE NOTE
FOR ALL YOUR FUTURE ENQUIRIES ON
ADVERTISING RATES, PLEASE CONTACT PAT BUNCE ON; TEL 081652 8339; FAX 0816528931.

AMSTRAD MOTORS

Loading Molor MCB9B02 3.53
Drum Motor EZOEL05 10.58
$\begin{array}{lr}\text { Capstan Motoi LLN4B21 } & 9.98\end{array}$
Tape Loading MCF9B02 9.99
AMSTRAD PCB's
(Complete, fully populated)

4500 Timer

4500 Syster
4600 Systems Control 9.40
Dispons Control/Serve
4600 Display $\quad 29.38$
4600 Display $\quad 11.75$
4600 Control Audlo 4.88
4600 Video \& Audlo $\quad 17.63$
4600 Power Supply $\quad 14.63$
4800 Mkll Main PCB Assy. $\quad 40.82$
4600Mk!l Timer
$4600 \mathrm{Mk} \mid \mathrm{I}$ Control
4600 Mkl Head Amp Assy. 5.88
$\begin{array}{lr}\text { 4600Mkli Power Supply } & 4.70 \\ 4700 \text { Main PCB Assy. } & 40.82\end{array}$
4700 Timer
4700 Control
4700 Head Amp Assy $\quad 5.88$
4700 Power Supply
4700 Power Supply
5200 Timer \& Channel Dlsp 17.69 5200 Video
5200 Switch Panel
7000 Switch PCB no:7
17.63
14.10
2.35

Switches, Presets \& Tuner
(UE2-831F) 8.23
(ENVB735852)
(ENV87358-2) 8.25
(ENV87509F2)
8.25
$\begin{array}{ll}\text { CTV2200 PCB no: } 3 & 3.53\end{array}$
CTV2200 PCB no: $4 \quad 4.79$
TVA 1 Control Panel \& Presets 7.05
TVA 2 Main TV PCB 37.60
TVR 3 Main TV PCB $\quad 43.48$
TVR 3 TV Power Supply $\quad 15.22$
$\begin{array}{lr}\text { TVA } 3 \text { Head Amp Assy } & 5.818\end{array}$
$\begin{array}{ll}\text { TVR } 3 \text { Head Amp Assy } & 5.81 \\ \text { TVR } 3 \text { Video Power Supply } & 4.70\end{array}$

VMC100 - Various parts available please phone for prices.

MITSUBISHI/SALORA
Various Video PCB's and Cassette Housings available - see our full list for parts and prices.

BSR DECK

SM103/104 Linear tracking Record Deck 17.53 CARTRIDGE/STYLI
\qquad SANYO VHR1110, 1150,1300,1700,230C FUTEK F501 Replacement Video Heads 7.0
CAMERA/CAMCOR-
DER BATTERIES
FERGUSON Videostar VA214 1175 HITACHI VM-63A, VM-5200A VGMC-08
AMSTRAD SOFTWARE
ACCOUNTSMASTER Lan 17.63 Full accounts program for running small business on any PC) INFOMASTER
17.63
(Easy to use Database, runs on PC) AMSTRAD COMPUTER \& PRINTER SPARES - Many spares available, please phone for price.

PRICES INCLUDE VAT
all times ane araxo new nuo gurantie

* * SMME dar despatch **

Write or Phone for FULL cataloguve.
POST \& PACKING

manemmunim
 SERVICE DATA

TELEVISION ENGINEERS

Radio Shop's NEW TV fault finding guide. Over 500 faults - many previously unlisted covers most makes - over 200 chassis.

> Will pay for ctself! £11.95 (inc p \& p) RADIOSHOP 38 FAIRFIELD ROAD BUDE EX23 3DJ
> (0288) 352243

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE
Tel.(0698) 883334 Mon-Fri 8.30am - 5.00pm or (0698) 888343 Outwith business hours FAX facillty avallable all day on both lines
Write now with an SAE for your FREE QUOTE, FREE CATALOGUE \& FREE NEWSLETTERS
ANY TRADE ADDRESSES GIVEN !FREE! JUST PHONE TO FIND THE NUMBER/ADDRESS YOU NEED All orders under $£ 20.00$ please add $£ 2.00$ p\&p, Under $£ 30.00$ add $£ 2.50 \mathrm{p} \&$ p, Orders over $£ 30.00$ post free.

A few fast selling titles from our stock of over 200

Practical TV Repairs 2nd Ed.	216.95	Domestic Equip' Serv'奴 Re	830.00	Refrigeration Pocket Book	81485
CTV Servicing by G.King	216.95	Servicing Mono TV's	817.95	Spectrum Repair Guide	8500
The PAL System	88.50	Buy-Sell-Repair Used TV's	89.95	BBC Micro A B + \& peripherals	92500
TV \& Video Technology	214.95	Microwave Servicing	29.95	Europ'n Scrambling Sys *New Ed*	88200
TV \& Video Engineers P/Book	214.95	Hi-FI Servicing Guide	29.95	Newnes Data Com P/B *New 2nd Ed	41295
Practical Radio Serv'\& Repair	812.95	Buy-Sell-Repair Used VCR's	89.95	Newnes Electr Assembly P/B *NEW*	81495

Complete llst of all Service Manuals, Service Sheets, Technical Manuais \& Circuits In the Data Reference Manual 3rd Ed. £5.95 WE ARE THE SOLE SUPPLIERS OF MOST FAULT-FINDING GUIDES, REPAIR MANUALS \& TECHNICAL MANUALS

INTEGRATED SYSTEMS FROM TIS

7 LARGE BINDERS OF VCR CIRC'S \& MATCHING FAULT-FINDING GUIDES (upto 1989)
$£ 275.00$
10 LARGE BINDERS OF CTV CIRC'S \& MATCHING REPAIR DATA (upto 1989) $£ 399.00$
BOTH OF THE ABOVE PLUS OVER $£ 200.00$ OF ADDITIONAL MATERIAL inc. TVAR $1 \& 2$ $£ 849.00$

SERVICE MANUALS

For most U.K. European, Far East \& USA types of TV - VIDEO-CAM - SAT - M WAVE - CD and all at reasonable prices.
VCR circuits also available separately for some models Some examples from thousands of video manuals available. These are all complete at $£ 10$ each
PANASONIC NV-FS100, L20, NV-MC10, MC20, MC30, MS50, ORION D500, D1000/1 100, D1200, D1500, D2000, FERGUSON FV11R, FV12L, FV13H, FV14T, FV20B, FV30B.

DAEW00, DVP1171, 1373 DVR4167, 4561, 5166
For other makes \& models phone for price \& availability. All U.K. orders subject to $£ 1 \mathrm{p} \& \mathrm{p}$. No VAT

D-TEC
PO BOX 1171, FERNDOWN, DORSET BH22 9YG. Telephone: 0202870656

AMSTRAD, LOGIK, MATSUI-SAISHO

 FAULT FINDING GUIDECovers hundreds of faults on a wide range of television and video recorders. Professionally compiled in easy to locate format. SAVES TIME AND MONEY by pin pointing faults in record time.

SEND $£ 9.95+£ 1.00$ p.p. TO
R. ROWLAND

438 Poynters Rd, Luton, Beds. LU4 0TW

E.C.S. INDEXES!

THOUSANDS SOLD WORLDWIDE

Edition 9 of the complete indexes now published containing approx 8,000 Faults listed in 12 Years of Television magazine.
Indexes are alphabetically listed by Make, Model, Fault, Ref and are now available for just:

£8.00 For Television \& Satellite Faults £8.00 For Video, Camcorder \& CD Faults

Or $£ 15.00$ for both sets complete with chassis \& similar model guides. Please add $£ 1.50$ (UK), $£ 3.00$ (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER.

To secure your copy/s please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

TELEVISION SERVICING
 1991-92
 3.5 Kg Book ISEN 0951389777 185.00

\author{

Akai
 | Akai | Bush | Goodmane | ITT/Nokis | NEI | Philips | Samsung |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CT 2569 | 2820 T | 145 TT | 26 | 21317 X | 1021 | CT 146TX |
| CT 2579N | 2821T | 2032 | 29 | Nikkai | 1220 | CT 149TXA |
| CT 2869 | 2914 | CTV 2R | 2560 | NT 14 | 2331 | TXAFST |
| CT 2870 N | 2921 | Granada | 2860 | NT 20 | 2349 | 212 TA |
| CT 2879N | 2921T | C 51GV2/4 | 3570 | TLG 200 | 2554 | C 1210R |
| CT 2158 | 3014 | Grundig | 5551 | TLG 601 | 2752 | C 1212R |
| CT 2160 | 3114 | CUC 3840 | 5581 | TLG 2121 | 5560 | C 133122 |
| Alba | 3114 T | CUC 4400 | 5581 UK | TLG 2122 | 5664 | C 150122 |
| CTV 52 | 32145 | CUC 4401 | 6351 | TLG 2800 | 5668 | C 15013 T |
| CTV 56 | 4414 | CUC 4410 | 6361 | 2155 | 5762 | C 15332 T |
| CTV 57 | CTV 100 | CUC 4500 | 6387 | 2156 T | 5764 | C 153222 |
| CTV 703 | De Graal | CUC 4511 | 6856 | Orion | 5772 | Salora |
| CTV 704T | C36JS2 | Grundig | 6887 | 14ARX | 8840 | 21 D 61 |
| CTV 711 | C51HS4 | CUC 5300 | 7161 | 14ARXS | 8841 | 21081 |
| CTV 712 | C14HSB | CUC 5820 | JVC | 14ARXG | 9666 | 25 D 61 |
| CTV 713 | C59JZ5 | CUC 5835 | AV 21F1EK | 14AT | 9762 | 26 A 42 |
| CTV 741 | D41HS4 | CUC 5836 | AV 25FFEK | 14VR | 9763 | 28 D 81 |
| CTV 743 | D51HS4 | CUC 5860 | AV N280EKT | Osaki | 9765 | Sanyo |
| CTV 744 | D51HZ5 | CUC 5880 | Logic | 32145 | 9768 | CBP 2572 |
| CTV 746 | D59HS4 | CUC 5891 | 4698 | Osume | 9637 | CBP 2573 |
| CTV 747 | Ferguson | Marwood | Luxor | CTV 1474R | 9763 | CBP 2872 |
| CTV 748 | 41 P3 | 9014A | 6392 | Panssonic | 9765 | CBP 2873 |
| CTV 752 | A 51F | Hinari | Matsui | TC 21R1 | 9768 | CBP 2558 |
| Baird | 66 M3 | HIT 10R | 2198 | TX 21T1 | 9772 | CBP 2559 |
| RA6890N | 78 MS | HIT 14 | 219 T | TX 21 V 1 | Pioneer | CBP 2162 |
| Boots | $J 59$ P8A | HIT 14 S | 1420 | TX 25w2 | SD 214 V | Sharp |
| CTV 1414 | Repar | HIT 14T | 1420 B | TX 28A1 | SD | C 1430 H |
| 1414R | Hints | HIT 14RS | 1435 | TX 28W2 | 21AVISD | C 1431 H |
| 1010 | Fidelity | HIT 14R | 1435 B | TX 24A1 | 25AVI | C 3720 |
| Beon | CTV 920 | HIT 20R | 1435C | TX 33A1G | SD 28AVI | DV 51083H |
| 1412 | Finlandia | HIT 51T | 1440 | TX 1100 G | Pye | OV 59083H |
| Bush | C51HZE | Mitachi | 1440B | TX 1485 | 1240 | DV 68083H |
| 2214 | D59HZ5 | C14 P216 | 1445 | TX 1785 | 1242 | SV 2588H |
| 2514 | D66HZ5 | C 14 P218 | 1455 | TX 1786 | 1528 | Sony |
| 2514 T | Finlux | C 1709 | 14808 | Perdio | 2425 | KV D3412U |
| 2515 | 3815 | C 2118 R | 1481 | P1408 | 2525 | Ssang Yong |
| 2515 T | 3821 | C 2118 T | 14818 | P2004 | 2529 | 0014 |
| 2520 | Goldstar | C 2519 TG | 2180 | P2005 | Saisho | Tatung |
| 2520T | CIT 2168 | Hitachi | 2180 TTA | P2101 | CM 215TS | A Series |
| 2512 | CIT 2168 F | CPT 2196 | 2185 | P2102 | CM 2080T | Toshiba |
| 25217 | CIT 2191 F | CPT 2198 | 2899 N | STX 400 | CT 141 | 216 A9B |
| 2620 | CIT 2190 F | CPT 2578 | NEI | Philips | CT 141B | 216 A9B2 |
| 2714 | CIT 4902 | CPT 2596 | 1451R | 2070 | CT 143 | 216 T9B |
| 2720 | CIT 9902 F | CPT 2598A | 1451TX | 2080 | CT 144B | 216 T982 |
| 2721 | | Indianna | 15517X | | CT 144A | 217 D9B |
| 2814 T | | $100 \mathrm{Mki} \& \mathrm{M}$ | 2131A | | | 217 D9B2 |

TELEVISION SERVICING 1989-90 covisis x Pumbes 565.00

VIDEO SERVICING 1989-90

Alwa	Goldstar	Hitachi	Matsul	Orion	Salsho	Sentre
HVG-55	GHV 12901	$V T-522 E$	VX 770	VCR-LADST2	VXL 12	VX 8500LP
Akal	GHV 12961	VT-530E	V×850	VR-LDST2	VXL 12x	VX 8600LP
VS-422	GHSE 1296i	VT-580	V $\times 868$	VR-LD2	VP 3000	Sharp
VS-425	VCP 43000	VT-M622	VX 877	VR-LD3	VRS 3200	VC-A 100
VS-427	Goodmans	VT. M630	$\checkmark \times 888$	VCR-M3	VR 3300X	VC-A 105
VS-467	VTV 300	VT-M640E	Vx 3000	VCR-LD3	VR 3400	VC-A111
VS-485	VCP 500	Ingersol	VX 6000	VCR-MD3	VR 3500	Sharp
VS-765	VCP 550	VRrest	Vx8000A	VXL 12	VR 3650	VC-A131
VS-767	TX 1101	VR8995	VX6600	VTV 300	VR 3700	VC-A140
Alba	PX 1101	ITT	Mitsubishl	D 1200	VR 3800	VC-A170
VCR-4000 $\times 7$	PX 2200	Vf-3619	HS-811	Osakd	VRS 4000	VC-T310
VCR-7000	PX 2201	VF-3719	HS-B21	VCR-34H	VRS 4200	VC-A510
VCR-8000	VCR 2500	VFF-3749	Murphy	Panasonic	VRS 4400	VC-A501
Amstrad	OX 3300	VF-3769	VCR-710:	NV-L20	VRS 5000	VC-A502
VCR 8600	Granada	VF-3908	NEC	NV-L28	VRS 5000X	VC-T510
VCR 8700	VHS-FY1	VF-3929	PX-1200K	NV-J30	VRS 5500	VC-793
Baird	VHS-GY2	VR-5720	DX-1800K	NV-J34	Salora	VC-D801
VC141L	VHS-GY4	VR-5730	Nikkai	Philipe	SV-6800	VG-A5011
Bush	VHS-FS4	VR-5740	J_{1}	VR-6180	SV-6900	D 805
VCR 3401	Grundig	VR-5760	Nord-	VR-6182	SV-6910	Sony
VCR 3451	VS-500	JVC	mende	VR-6185	SV-9900	SLV 201
De Graaf	VS-520	HR-D320	V1005M	VR-6285	Samsung	SLV 301
WHS-FS 4	VS-540	HR-D700EK	VR-6182	VR-6470	VII-710	SLV 401
Ferguson	VS-550	HR-D750	V1005 ${ }^{\text {M }}$	VR-6490	VI-711	Tatung
FV 208	TVR-4500	HR-D830	V1405U	VR-6548	VI-730	TVP1311
FV 21R	TVR-4510	Logik	V1805K	VR-6648	V1.750	Telefunken
FV 22L	TVR-5510	VR945	V1805U	VR-6670	V1-770	VR-4935
FV 260	Hinari	VR950	V1905K	VR-6870	V1-790	VR-4945
FV 30R	VXL-8,9,11,18	VR955	V4000	Pioncer	VI-970	Thompeon
FV31R	VXL-10	VR960	UNIC	VR-525	Sanyo	V-610
FV 32L	VXL-12	Mr960A	Orion	VR-727	VHR-4150	V-630
FV 33H	VCR- 34 H	Matsui	VCR-LAI	Pye	VHR-4350	Toshibe
FV 37H	VTV-34H	VCP 100	VCA-LI	DV186	VHR-D4410	V-109B
VC 141L	VTV-200	VK 730 $\times \times 735$	VR-MDTT1	DV190	VHR-D4610	V-2098
Fidelity	VTV-300	V×735	VCR-X1	DV 286	VHR-5200	$V-3008$
VR900	Hitachi	V× $\times 735 \mathrm{~A}$	VCR-M2	DC 571	VHR-5240	V-3098
Finlux VR 3300	F70	$V \times 750$ $\times \times 755$	VCR-L2	Saba		$V-5008$
VR 3300	VT-SBOE	V $\times 755$ $V \times 765$	VR-	VR-6420	VHR-05450	$V-5098$
VR 3400	V1.S80E	V 765	MDTTST2	VR-6640		$\begin{aligned} & \mathrm{V}-700 \mathrm{~B} \\ & \mathrm{~V}-700 \mathrm{H} \end{aligned}$

SATELITTE SERVICING 1987.90 conter $£ 55.00$

Alba	Decca	Ferguson	गT सokTio	Panatonic	Schweiger
SAT 200	TRX 1851	SAP 2	5100	TU-S100	SS 9000
SAT 300	Discus	SAP 2 S	Luxor	Phillps	Sentra
SAT 400	ELIPSE	SAP 4 S	0051	STU 801	SX 1000
SAT 450	Drake	SAP 5 S	5100	STU 901	Sony
SAT 500	ESR 100	SAPES	5902 MK1	STU 902	SAT 503
SAT 4500	ESA 150	SAP 'S	5902 MK2	Phoenix	Tatung
SAT 8011	ESR 200	SRA1	8100	PH 5500	TRX 1801
Amstrad	ESR 250	SRA1-S	8900	PH 8800	Technisat
Fidelity	ESR 1240E	SRB1	8901	Saba	ST 4000 S
SRX 100	ESR 4240E	SRV1	9570	SSR 850	ST 4000 S NEW
SRX 200	ESR 4240 S	SRD2	9574	Sthura	ST 4000 S MAC
SRD 400	VM - 400	SRD4	XLE	SR 800 ER	ST 6000 S
Bush	ECE SABA	Fintur	NEC	SR 800 RS	Telecele
SAT 500/2	SS 2TC	SA 3000	3022	SR 865 ER	STU 800
SM 1000	ECE Telefunken	Fubal	3025	SR 868	STU 800/19R
SR 2000	SR 3100	5100	Nordmende	SA 870 S	Telefunken
SR 2500	ECE Thompron	Grundig	SS 2100	Salora	SR 1002
SR 2500 E	SRS - 3	STR 20 A	Oceanic	1160	Toshibe
SR 3000	Echostar	STR 20 B	5100	5100	BTR 5
SR 3200	SR 500	STR 22 A	OEM	5902 MK1	Triax
SR 3500	SR 1500	STR 22 B	5100	5902 MK2	TRIASAT 2000
SR 5000	SR 4500	500	Pace	8100	TRIASAT 2000S
SR 6000	SR 5500	GR IRD 2000	SS 3000	8900	Tristar
Channel	Eurosat	ITT Nokia	SS 6000	8901	SR 2500
Master	SAT 50	SAT 1000	SS 6060	SRV 11	Vortec
6010	Ferguson	SAT 1200	SS 9000	XLE	JUPITER
6011	SAP 1	SAT 1200A	SS 9200	Sanyo	JUPITER II
Connextions	SAP IS		SS 9200 IRD	BSC 1000	STAR

VIDEO SERVICING 1987-88 NO LONGER AVAILABLE

All Books Contain:
CIFCUIT DIAGRAMS. SCOPE READINGS. VOLTAGE TABLES. ESSENTLAL PART NUMBERS. ALIGNMENTS \& ADJUSTMENTS TROUBLE SHOOTING GUIDES If ordering several books please
ring for credit deteils

POST, PACKING \& INSURANCE
1 Book $£ 4.00$ 2 or more Books $£ 7.00$ Note: Video Servicing 1989-90 is a TWO volume set and is therefore £7.00 delivery.

Professionally Produced with the Manufacturers Full Co-operation

WAURIIIRON TECHNCAL PUBLLCAIIONS

A selection from our range of Technical Books and Guides for the TV \& Video Trade

TELEVISION EQUIVALENTS. New Book lists Exact Equivalent for Many different Makes. Order MP-150. £5.00 TELEVISION CHASSIS GUIDE. Identify your TV chassis from the model number. VIDEO RECORDER \& CAMCORDER EQUIVALENTS.

Lists all known models and their Equivalents. New 2 Volume Set.
VIDEO RECORDER FAULTS Repair Guide for Beginners. Know where to start looking! Makes A - J. Order MP-217. £5.00 Makes K - Z. Order MP-218. $£ 5.00$ Order MP-5. £3.00 VHS VIDEO RECORDER PRINCIPLES Essential Theory on the Principles of operation of VHS Order MP-58. £3.00 CMOS DATABOOK Detailed Specification on the 4000 Series with circuits. Order MP-10. £5.00 TTL DATABOOK. Detailed Specification on the 7400 Series with circuits. Order MP-34. £5.00 TRANSISTOR EQUIVALENTS AND TESTING MANUAL. Includes Testing Procedure. POWER SUPPLIES, STABILISERS \& VOLTAGE REGULATORS. Includes Circuits REMOTE CONTROL CIRCUITS - TV. Dozens of Remote Control Circuits for Colour TV's. MANUFACTURERS EQUIVALENTS. Know which Makers Trade Names are the Same. Order MP-24. £3.00 Order MP-9. £3.00 Order MP-167. £10.00 Order MP-220. £3.00 VIDEO HEAD CLEANING KIT. Unique Kit with Comprehensive Instructions on how to do it right. Order VHCK. £4.00 VIDEO TEST JIG. Run the machine and gain access to the mechanics as well. SCART EUROCONNECTOR SYSTEM. Detailed Pinout Specifications of this interface. Order MP-21. £3.00 SWITCH MODE PSU IC TYPE TDA-4600. Comprehensive Details of this popular TV PSUIC. Order MP-37. £6.00 TELETEXT REPAIR MANUAL. Covers the SAA range as used in many Sets. Order MP-38. £6.00 P.C. HARD DISC DRIVE REFERENCE MANUAL. Specifications of Hundreds of Hard Discs. Order MP-84. £5.00 CITIZENS BAND RADIO CIRCUITS MANUAL. Covers Dozens of popular models. RECORD PLAYER SPEED DISC. Lets you accurately align any turntable speed. Order MP-40. £10.00 Order MP-8. £1.00 CITIZENS BAND RADIO DATA REFERENCE BOOK. Technical Specifications of C.B. IC's. Order MP-165. £5.00 TELEPHONE CODE LOCATION GUIDE. Find the Town from the Phone Code. Order MP-19. £5.00 VALVE AMPLIFIERS CONSTRUCTION MANUAL. Full Building Details for Vintage Buffs. Order MP-173. £5.00 VINTAGE WIRELESS SERVICING. 2 Volume set covers Vintage Servicing in detail. Order MP-22+35. £6.00 OFFICE EQUIPMENT EQUIVALENTS. Complete Cross Reference for all Photocopier or Fax. Order MP-200. £6.00 REEL TO REEL TAPE RECORDER SERVICING. Details on Reel Servicing for Collectors. Order MP-201. £5.00

SERIVICEMANUALS

WE HAVE THE MOST COMPREHENSIVE LIBRARY OF SERVICE MANUALS AVAILABLE ANYWHERE From the Earliest Valve Wireless to the Latest Video Recorder. Originals or Photostats as available.

Colour Televisions, Video Recorders, Test Gear, Audio, Computers, in fact practically anything. If you need a Service Manual, Give us a call.
 8 Cherry Tree Road, Phene pour Credit Card order Chinnor, Oxfordshire,
 for Immediate Despatch OX9 4QY Tel:- (0844) 351694

Many new Titles coming soon - Write or Phone for your FREE catalogue.

SOFTWARE

RELAY
OMAGH LTD COMPUTER SOFTWARE
DO YOU RENT TELEVISIONS?
DO YOU STILL USE A CARD SYSTEM?
DO YOU FIWD IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our computer TV and Video Rental package This package includes

* automatic updating of each customer's record
\star alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
and operate
NEW HIRE PURCHASE PROARAMME NOW AVALLABE AS WELL.
These programmes operate on all IBM compatibles running under MS-00S Free demonstration
CONTACT
WILLIAM J THOMPSON
Donaghanie Post Office
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

UBES

REBUILT CRTS VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphers

B.S.I. Certification

N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

		1			
CRT FOR MONITORS, SCOPES, RADAR ETC (not domestic IV)					
	${ }_{51200}$	Cu3946	${ }_{51200}^{12000}$	31120	
3 P	12200	$010-210 \mathrm{CH}$			
3 3P1	E1200	D13.611 CH	${ }_{5} 5309$	${ }^{\text {M7 }} \mathrm{L} 2 \mathrm{OW}$	¢1050
		D136119\%		M, 4 - 1300 H	
${ }_{\text {ata }}$		013		MidimaC	
${ }^{89}$		0.14 .736	${ }_{c} 300$	mor	
190888	[2900	D14.1736R	55300	M31 182\%	0
10774	5290	014.18109	15300	M31 184%	
${ }^{13398}$		014.20001		M31-5906R	[100
142451		914.2700450	55350	м3]-915\%	
9547		Dif-100CH67	L5300	M31 2 2t	
Cun 103]		O15-1000497	[51) 0	M31-3354	${ }^{2} 9900$
cmiliz3	c1800	1067.	[3300	M $36-41 W^{1}$	
		0676	[4]00	M0-120	
Catiliza		077.32		m4.12aC	24:00
	$\underline{12800}$	D67.36	${ }_{\square}^{212000}$	No.5	00
${ }^{\text {cvi }}$	${ }_{\text {20, }}^{2900}$		${ }_{[129000}$	St32931	
cr2302	525300	F16-10.691	$[1.100$	StP31	
Cr2472	5100	[2]-30CR			
Pease add CIPRP n ilk and 175\% UAT for overseas Plap phease enqume 10,000 preas in stock 400 ippes Please enquire tor any thee nd listeri above Whe aso have in sticik camen tubes. mage ntensthers, magnatorns appoik mert ont 					

WANTED

WANTED

Large or small. Regular supplies of Ex-Rental T/V \& VCR's. All UK covered, distance no object Cash on collection, fast efficient service. TEL: 0527853305

TV/VCR REPAIR BUSINESS + HOME
In sunny W. Australia £65,000. o. . o. plenty of work \& scope. 3 bed detached home, separate games room with full size snooker table, brick barbecue A great outdoor life 20 miles from Perth write to: Don McLeod, 16 Bradbury Road, Armadale, W.A 6112, or phone: 09-3992696 (AUST) or 0923-679592 (UK)

TWO SHOPS ESTABLISHED 30 YEARS
TV \& Elect, Sales \& Repairs Market Towns, Stafis and Derby. Will separate. Retirement sale. Premises lease or freehold S.A.V.

Tel: 033542497 (Evenings)
or 0283820654

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS

PHONE 081-948 3702 FAX: 081-332 0583
AIBA. MMSTRAI) BUISH. VEC(A. DORIC BLALIPLINKI FIRGUSON FIDFIITY. (if(C. (iRUNIDIG, (iRANADA HITACHI HINARI INIDISII ITT. KIMARA NIKKAI MATSU MLIRPII OSAKI NORIDMENDE IOEWE-OPIA REDIFFUSIONPYE PHILIPS SANYO SAISHO . SHARP sony soloovox susumt tandburg. TLlefonkran THORN IRIGMPH. HIUANYU (GOLIDSTAR BINATONI

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS.
 LARGE RANGE OF REMOTE CONTROLS IN STOCK

DMAN MAII, ORIERITI 236	3F. R()A1).
RIC HMIONI). SIRREY. TWY 2 EQ . Apprax 1 mile from Kew bridge	Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am 1012 noon

MISCELLANEOUS

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!

Designed specifically for Domestic Appliance Enginers who want to enter the fast growin 3 microwave Industry	Iliminneve OVEN SERVICING	
informaton, presentedina		
information, presented in asimple yet informative style		
with comprehensive diagrarns		
and illustrations.		
Fault finding procedures are included at the end YOURCOPY		
of each section		
The bock contains easy to		
follow electronic control systems	We also supply microwav	
F1	mpo	

113 LONDON ROAD. HORNDEAN, WATERLOOVILLE. HANTS. PO8 0BJ

TRADE ONLY

MICROWAVE OVEN PARTS

MAGNETRONS • CIODES • TRANSFORMERS LAMPS • FUSES • MICROSWITCHES

PHONE NCW FOR PRICE LIST
A.W.I. MICROWAVE OVEN COMPONENTS

Samuel Whites Estate, Medina Road,
Cowes, Isle of Wight PO31 7LP Telephone: 0983296121

Fax: 0983296122

CAR RADIO DECODING EQUIPMENT

Due to the increasing popularity of our decoding equipment, we are now in a position to actually REDUCE our prices. As well as this, there have been substantial improvements made to the software, ie case sensitive help screens have now been installed to guide you through the various stages of the program. On screen PCB layouts are now included as standard, as well as many other enhancements making the system even easier to use than before. The range of radios covered has also been expanded.
This latest version of the software is available to any of our existing customers absolutely free

For further information and prices please contact us at:
Electronic Sound Systems
62 High Northgate, Darlington, Co. Durham Tel: 0325484089 or Fax: 0325465921

Service Executive

When it comes to the design, development and manufacture of consumer electronic products, Sony is in a class of its own. But our customers expect more than excellent products: they demand - and receive - the highest standards of service from our Dealerships across the country.

As Service Executive, you will visit independent dealerships in London and the South East to ensure that Sony's service standards objectives are being met - using your initiative to identify training needs, monitor performance and resolve significant customer complaints. You will also give dealers indirect technical support and familiarise them with all new products.

This is a multi-faceted role You'll be a consultant, an admini-
Londonand strator, a problem-solver and a the South East good company ambassador. c. $£ \mathbf{1 8 , 5 0 0}$ Your performance, moreover,
+Car will directly influence our

success in an increasingly discerning and quality-conscious marketplace.

Ideally with 5-10 years in the brown goods industry, you will need a final City \& Guilds or equivalent qualification - for example, C\&G 222/224 with relevant part 3 subjects. You will also need excellent communication skills, good organisational ability, and the willingness to spend up to four days a week out and about.

> In return, you can expect a competitive salary with fully expensed company car and benefits including Sony Healthcare insurance, 25 days' holiday, lunch allowance and discounts on Sony products.

Do you have the skills and qualities we need? Then discover mare about this challenging role by writing with your CV to Maggie Swann at Sony (U.K.) Limited, Sony House, South Street,
Staines, Middlesex TW18 4PF.
Please quote Ref. 230.

SONY

CAR RADIO

 CASSETTESDo you turn away work on car radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the eeprom (memory IC) with that of a known code, or sending the original for re-coding.
All popular makes including Philips, Ford, Pioneer, Clarion, Grundig, Blaupunkt, Fisher, JVC, Alpine, Volvo, etc.
Send now for introductory offer, one of each of most popular eeproms + comprehensive eeprom/radio decoding list. Otter includes Philips X2402P: Ford MN010: Blaupunkt Boston CC20 9346: \quad E17.63
Original eeprom re-coding service
$\Sigma 10.00$
Radio's sent for decoding from
£20.00

RADIO DECODING EQUIPMENT

We will beat any genuine written quotation for supplying a computer or software to decode radio cassettes, ring us first.
For technical or general
information phone
0543572523 or 0831806574.

C.D.H. ELECTRONICS
 3 Common Walk, Huntington Cannock, Staffs WS12 4NB
 C.D.H. ELECTRONICS

AT 2, Audi-Multi-Tester, 16 test-circuits for loudspeakers, tuners, amplifiers, headphones, tape recorders, mikes, boosters.

BMR

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up ald, short repair: exhausted CRT's becomes bright and sharp again even if all other machines do not succeed
United Kingdom: P \& E Services, Llandudno, Tel. (0492) 549246, Fax 547880 Ireland: Dönberg Electronics, Ranatast, Co Donegal, Tel./Fax (075) 48275
New Zealand: TDON Ltd., Onehunga, Auckland, Tel. 668-9 07. Fax 668-499 Germany: Ulrich Müter, Oer-Erkenschwick, Fax (02368) 57017

LINAGE

METERS. Reconditioned. £1.00 slot meters for TV rental $£ 4.95$. 50 p slot f2.95. Audiotech. Tel. 07903245. VIDEOCRYPT DECODER. Service sheet with smartcard contact, details Eurocrypt card Interlace, £12.00. E.M.O., Ramsbottom, Lancs BLO 9AG. Tel. 0706 823036
PRIVATE RETAILER. has excellent part exchange colour televisions and videos to clear. Tel. 0494814317.
OCHRE MILL. Technical Services, Grundig TV spares for most models to 1985, fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton Nr, Malmes bury, Wilts SN 16 9DR Tel 0666823228. NON WORKING. Ex-Rental \& trade in TV's \& video's for sale, from $£ 5.00$. Telecentre, 164 Mill Road, Cambridge 0223240944.

VINTAGE 405 TV ENTHUSIAST. New digital $625 / 405$ standards converters digital $625 / 405$ standards converters,
video \& RF outputs. $£ 139+$ P\&P. Call video \& RF outputs. $£ 139+$ P\&P. Call 0602335514 evenings.
WANTED. Colour tv's \& videos, new B grade ex-rental non workers, etc. Regu lar business cash waiting. Tel. 0933 681908.

DISH AND LNB SUITABLE FOR D2 MAC £15 POST £5 + VAT

New Eprom for converting
Ferguson BSB Receivers to D2 MAC and PAL - 99
channel is tunable and each one can be put into memory - also has menu. £20

PAL panel (to convert to
PAL) £20
SEND FOR DATA.

CHASSIS SUITABLE FOR CONVERSION TO D2 MAC $£ 10$ HANDSET $£ 1.50$ POST £4 + VAT

[^0]:

[^1]: *Lenson Heath's 60 cm nominal diameter dish has an actual mean diameter of 63 cm .

[^2]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9LS (071 2615000). Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television "is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

