SERVICING•VIDEO•SATELLITE•DEVELOPMENTS

TWO FREE CATALOGUES

Satellite TV Installation Guide VHS Deck Alignment ${ }^{\text {Camcorner }}$ DX-TV •Service Briefs - Philips Ceramic Resonators ${ }^{-D C C}$ Audio VCR Clinic •TV Fault Finding

- LNB's O CABLES AND CONNECTORS - SCART LEADS O RF AND AUDIO LEADS - PROGRAMMABLE REMOTE CONTROL ELECTRICAL ACCESSORIES

November
 1992

COPYRIGHT

© Reed Business Publishing Ltd., 1992. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vols. 39 and 40 are available at £2.00 from the Editorial office (address above). Indexes to Vols. 37 and 38 are available at $£ 1.50$ each. Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1.00$ each. Make cheques etc. payable to Reed Business Publishing Ltd.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 24$ in the UK, £28 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card number 0789200255.

BACK NUMBERS

Some copies of issues published in the last twelve months are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 31.

Leader

Service Briefs - Philips
Notes on modifications and servicing guidance for Philips colour receivers.

Next Month in Television

Camcorner

Camcorder fault reports from Steve Beeching, T.Eng., Nick Beer and David C. Woodnott.

Teletopics

Help Wanted

Letters

Photostat Service
Satellite TV Installation Guide Derek J. Stephenson, B.A., I.Eng.
A complete guide to the installation of fixed and polar-mount satellite TV systems with look angles for the popular Ku band satellites at over fifty locations in the UK.

CD Player Casebook
Reports from Mike Leach, P.J. Roberts and Chris Hawkins.

TV Fault Finding
Reports from Philip Blundell, AMIEIE, Brian Storm,
Michael Dranfield, J. Olijnyk, K.E. Fellingham and Stephen Leatherbarrow.

The DCC Audio Format
George Cole
Technical details of the newly launched digital compact cassette system.

Long-distance Television
Roger Bunney
DX conditions and reception and news from abroad.
VHS Tape Path Alignment
Joe Cieszynski
The correct way of ensuring correct tracking
Satellite Notebook
Nick Beer
All About Ceramic Resonators
Ray Porter, M.Sc., C.Eng.
The operation and use of ceramic resonators in
oscillator circuits.
VCR Clinic
Reports from Philip Blundell, AMIEIE, Brian Storm, Michael Dranfield, Chris Watton, Eugene Trundle, Ed Rowland and Alan Smith.

What a Life!
Donald Bullock
Test Case 359

OUR NEXT ISSUE DATED DECEMBER WILL BE PUBLISHED ON NOVEMBER 18th

	--r-	-					 㟶 ᄂつ 	

\qquad

TELEVISION NOVEMBER 1992

M M M M M M								
		-						

Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.

VCR7000
Contents
ContenIs
BELT SET. PINCH ROLLER. REEL IDLER. VIDEO LAMP
Order Code: SK41
FERGUSON \& JVC
HRO455/HRD725
Contents
Economy Kil Contents BELLSET, PINCH ROLLER
CLICH MECHANISM, TENSION SINCH ROLLER
SUPLY CLUTCH, TAKE UP Order Code: SK37 £ \quad 17.50 \quad Order Code: SK3B $£ 9.50$
$3 V 58 / 59 / 64 / 65$
HRD 170//80/210/230/300/320/370/400/430/530/700/750 HRD $170 / 180$
HRS5000
Contents
BELT SET, PINCH ROLLER, IDLER ARM TENSION BANO
Order Code: SK44
$3229 / 3 V 30$
HR72007300/7350
Contents
BELT SET. PINCH ROLLER. TENSION BAND, IDLER TYRES
Order Code: SK05
3V35/36.38/39/49
HR0110/111/120/121/225
Contents
BELT SET. Pinch roller. TENsion band. IDLER TYRES
Order Code: SK04
$3 V 31 / 3 V 42$
HR76002
HR7600/7
Contents

TENSION BANO. VIDOE LAMP
Order Code: SK33 £ 12.00 Order Code: SK34 £5.50
3v35/36/38/39/49
HRDO110/111/120/121/225
Contents
BELTST, T/U REEL TABLE
TVRE, SUPPLY REL TABLE
TRE. PINCH ROLLER T/U
CLUTH. TU IDLER. REEL
Order Code: SK35 $£ 10.50$ Order Code: SK36 $£ 6.50$
3V29.3v30
HR7200/7300/7350
Contents
BELT SET. TN REELTABLE
TYRE. SUPPLY REEL TABLE
IDLER T/U CLUTCH. TJIIDLER.
TENSON BAND VIDEO LAMP

3v44/45/48/53/54/55/57
HRP50/HR0140/150/158/160
HRD250/257565/566/755
Contents
CLUTCH MECHANISM TENSI
Order Code: SK39 £15.00 Order Code: SK40 £9.50
FISHER
POHP905
Contents
Economy Kil Conlents
SELT SET. PINCH ROLLER.
BLELTSET. GEARIDLER UNIT.
$\begin{array}{llll}\text { TENS:ON BAND } \\ \text { Order Code: SK57 } & £ 13.00 & \text { Order Code: SK58 } & £ 5.00\end{array}$
FVHP615/618/620/622/70/711/715/16/720/721/722/725/
Contents
Economy Kii Contents
BELT SET. PINCH ROLLER.
belt set. PInch roller
TENSION BAND
£12.50 Order Code: Sk69
£3.60
HITACHI
Contents
belt Set pinch roller. Tension bano. idler tyres
Order Code: SKOB
Contents
Contents Economy Kit Contents
 TYRE, PINCH ROLLER, FF/REW TABLE TYRE, SUPPLY REEL
IDLER. CLUTCH PLATE $\begin{array}{llll}\text { TENSION BAND } \\ \text { Order COte: SK45 } & £ 15.00 & \text { Order Code: } \text { SK46 } & £ 4.50\end{array}$

VT52/61/62/63/64/65/85/86/640
Contents
BELT SET. PINCH ROLLER
FF/REW ARM CLUTCH PLATE
$\begin{array}{lll}\text { TENSION BAND } \\ \text { Order Code: SK49 } \\ \text { ¹4.00 } & \text { Order Code: } \text { SK50 } \quad £ 3.25\end{array}$ VT400/405/410/13/4/45/18/420/25/26/28/430/31/35/38/450/498/
Contents
TIMING BELT. PINCH ROLLER, FF/REW ARM. CLUTCH BASE Order Code: SK52
VT100/110/111/113/115/118/120/125//28//30/135//38/145/150/ 175/220/225/250/255/258/260NTL30
Contents
BEIT SET
BELT SET. PINCH ROLLER. FF/REW ARM. CLUTCH PLATE
Order Code: SK51

PANASONIC

NV2000/s
EELT SET. PINCH POULIER BELS IDLERTYRES TENSION BAND IDLER TYRES Order Code: SK03 \quad ¢6.25 \quad Order Code: SK02
NV300NV330/NV333/NV340/NV366

Contents
BELT SET, PINCH ROLLER. TENSION BAND I IDLER TYRE Order Code: SKO1

NV2000/NV2010

COntents BELT SET, PINCH ROLLER. FF IDLER. PLAY IDLER. TENSION IDLER TVRE, PULLEY TYRE
Order Code: SK13 £9.50 Order Code: SK14

NV7000// Contents

Contents
ELT SET PINCH ROLIER
OLER UNIT. PLAY IDLER
Order Code: SK11 $\quad \$ 10.00 \quad$ Order Code: SK12

NV300/Nv330/NV333iNV340/NV366

Contents
 BELT TET PINCH ROLLER. DER UNT PLAY IDIER

 BELT SET. PINCH ROLLERIDLER TYRE. PLAY IDLER Order Code: SK15 $\quad £ 8.00 \quad$ Order Code: SK16 $\quad £ 4.00$
NVG7/NVG9/NVG10/NVG11/NVG12/NVG14/NVG15/NVG16/ NVG18/NVG30/NVG120NVG130/NVG400/NVH65 (PX/AC)
AG1810 (P/K)

N 332
Contents PINCH ROLLER PLAYIDLER FFFREW RELER
TNSON BAN FF/REN TYRE EENSION BAND. FF/REW TYRE PLAYIDLER TYRE, FF/REW $\begin{array}{lllll}\text { Order Code: Sk29 } & £ 13.00 & \text { Order Code: SK30 } & £ 5.10 & 1\end{array}$ NV230/250/260/280/430/450/460/470/650/810/890/ AG1200PK
Contents

BELT SET. PINCH ROLLER. BELTSET. PINCH ROLLER.
 Order Code: SK23 £7.00 Order Code: SK24 $£ 3.50$

NVG00/NV688 Economy Kit Contents

 E13. no Order Code: SK26wV730/Nv770

Contents

PINCH ROLLER. IDLER UNIT. PINCH ROLLER, IDLER TYRE
Order Code: SK19 £7.00 Order Code: SK20 $£ 4.30$
NV370/380/480/630/780/830/850/AG2100PKJAG2200PK $\begin{array}{ll}\text { Contents } & \text { Economy Kit Contents } \\ \text { BELT SET, PINCH ROLLER } & \text { BELT SET, PNCH ROLLER } \\ \text { IDLER TENSION BAND } & \text { 1DLER TYRE }\end{array}$ $\begin{array}{lll}\text { iDLER. TENSION BAND } & & \text { IDLER TYRE } \\ \text { Order Code: SK21 } & £ 7.00 & \text { Order Code: SK22 }\end{array}$

Nv777Nv788
Contents Economy Kir Contents

BELT SET PINCH ROLLER BELT SET. PINCH ROLLER

$\begin{array}{llll}\text { Order Code: SK17 } & \text { E7.50 } & \text { Order Code: SK18 } & \text { IDLERTMR }\end{array}$

VIDEO SERVICE KITS (Cont.)

SHARP

Conients
Contents
BELT SET, PINCH ROLLER.
REELIDLER
Economy Kir Contents
REEL IDLER. TENSION BANO. VIDEO LAMP
Order Code: SK47 $\quad 9.00 \quad$ Order Code: SK48

VC500NC5
Contents ELT SET. PINCH ROLIER Economy Kil Contents REELIOLER TENSION BAND REELIDLER Order Code: $\$ 660 \quad[9.50 \quad$ Order Code: SK61 VC781NC7810NC782NC7822 NC785NC786NC793NC800 VCA100NCA102NCA104NCA202

Contents

REEL DRIVE UNIT TENSION
Economy
BELT SET. PINCH ROLLER
REEL DRIVE UNIT TYRE $\begin{array}{lll}\text { Order Code: SK64 } & £ 13.50 \quad \text { Order Code: SK65 }\end{array}$ VC681NC682NC684NC685 NC693NC699NC6F3NC700
Contents
Economy Kil Contents $\begin{array}{ll}\text { Contents } \\ \text { BELT SET. PINCH ROLLER } & \text { Economy Kit Contents } \\ \text { BET PINCH ROLLER }\end{array}$ REEL DRIVE UNIT, TENSION REEL DRIVE UNIT TYRE
BAND
Order Code: SK62 $£ 13.50 \quad$ Order Code: SK63
$\star \star$ JUST ARRIVED $\star \star$
omeme

* \star ALSO \star औ

TV REMOTE CONTROLS FOR 200 DIFFERENT MODELS

ALL AT KNOCKDOWN PRICES

 PLEASE RING FOR DETAILS
VIDEO HEAD TESTER

1. Mechanical Position of Pointer
2. Scale Plate
3. Pointer Adjusting Screw
4. Pointer
5. Measuring Socket
6. Power ON OFF and Battery Check Switch
7. Range Selector Rotary Switch
8. CAL. ADJ (calibration volume)
9. Measuring Clip

PRICE
YF-225 VHS $\quad £ 30.00$ + VAT
YF-225B BETAMAX

GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE,
SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND Telephone: 081-900 2329 Telex No: 932885 (Sunmit)

Fax: 081-903 6126
Access \& Visa Card accepted. Open Monday to Saturday.

DRAUGHT COPS

 Always on Eis Tap

See the light

 even in the dark
24 hours a day, 7 days a week

DATATEXT 90 VIEWDATA TERMINALS

Willow Vale has once again managed to oblain a quantily of this popular unit. These are ex-contract units, fully tested and offered with a 90 day guarantee. In addition to its use as a viewdata terminal, the unit can be used as a Teletext receiver [picture disabled] and as a point of sale display.

- Five Number Auto Dial Memory Five telephone numbers can be stored in the units memory and recalle Manual keyboard dial option Standard viewdata 120075 baud modem buill in Pulse dial.

TeletexiTV Receiver
The unit incorporates a teletext lacilly, pages may be selected and saved dlsplayed on screen. Timed page gather lacility

- Page Designer

Viewdata type pages may be made up using the local edit tacility and saved 10 tape, or displayed using the Catousel function

- Carousel Function

Allows previously designed stored pages to be dlsplayed from the page memory built into the unit. The pages may be dlsplayed in ord or a period of 15 seconds 10 over 2 minutes. Ideal for polni ol sale displays. etc.

Page Store
There are 10 page stores available in the units memory, the se may be used to store viewdata pages of self destgned pages

Standard Features
14" Colour Monitor with full size keyboard. printer socket, tape sockel and RS232 socket. Socket tor TV aerial and floppy disc. Keyswitch for power on off.
ore code
99090X
£125.00
plus VA.T

Manchester: 061-682-1415 W illow Vale Ele ctrontingham:0002-870789

HOW TO INGREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from lour superb models. All, with the exception ol the HM 1005 , incorporate a useful COMPONENT TESTER. Size - all modets $\cdot 285 \mathrm{~mm} \times 145 \mathrm{~mm} \times$ 380 mm . Clear din PAOPES COMPAEMENSIVE MANUAL
HM203-7 20MHz STANDARD

SPECIFICATION 2 Channels
Bandwidth: DC - 20 MHz Sens: Ch!, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Active TV - Sync-Separator Variable hold-off

- Trigger LED indicator

Calibrator: 1 KHz Square wave Component tester
Plus many teatures
Price E338.00 + E59.15 V.A.T. FREE Specialist Carrier Delivery
SPECIFICATIONS

* 2 Channels

Bandwidth: DC -60 MHz
Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: $D C-80 \mathrm{MHz}$
Active TV - Sync-Separator
Atter delay trigger
Sweep delay
Delay line
Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \&$
Hz Sq. Wave
Price £610.00 + £106.75 V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHZ UNIVERSAL 3 CHANNELS-UPTD 6 TRACES

SPECIFICATION
Bandwidth: DC - $\mathbf{1 0 0 M} \mathbf{M z}$
Sens: Ch.1, Ch.2, Ch.3.1mV/cm
Timebase A: 2.5s-5ns/cm
Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC -130 MHz After delay trigger Delay line
Trigger LED indicator Active TV.Sync-Separa Active TV. Sync - Separator
Calibrator: 1 KHz \& 1 MHz Sq . Wave
Price $\mathbf{E} 792.00+£ 138.60$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Same as 203-7) Bandwidth: DC - 20 MHz
Sens: Ch. 1, Ch. 2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$ Triggering DC - 40 Sampling Active TV-Sync - Sampling Memory: $2 \times 2048 \times 8$ Bit Dot joiner
Printer/plotter output

Price E610.00 + E106.75 V.A.T B.K.'s CRT TESTER|DIGITAL CAPACITANCE REJUVENATOR Tests and rejuvenates blu green and red guns separately. Fitted with delta size $120 \times 65 \times 60 \mathrm{~mm}$. Supply 240 V AC Price E34.00 £5.95 V.A.T.
 METER - High accurac - High accuracy

- 0.1 pt- $2,000 \mu 1$
- LCD display
-- 8 ranges
- 8 ranges
- Accuracy
Full scale - Full scale $+I-1$ digit Price £39.99 + £6.99 V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES

Carrier trequency $100+1.1$
Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$.
Pilot signal $19 \mathrm{KHz}-/-2 \mathrm{~Hz}$
L \& separation over 50 dB
External Modulation $50 \mathrm{~Hz}-15 \mathrm{KHz}$
Pre-emphasis $50 \mu \mathrm{~s}$, $75 \mu \mathrm{~s}$ \& of.
Comprehensive test lead set tncluded.
Comprehensive
Size: $80 \times 200 \times 250 \mathrm{~mm}$.
Price £299.00 + £52.33 V.A.T.
LEADER HIGH VOLTAGE METERED EHT PROBE

Light weight, easy to-grip high-impact plastic handle with arc-over protection and no need of IV service kit. Measures urs to 40 kV DC with satety and the greatest of ease. Entirely selfcontained. Connect the lead clip to chassis and probe tip to the check point, read the meter for voltage.
A must for the Health and Safety at Work Acts.
Price £66.00 + £11.55 V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

* All CRT's checked Identically, inciuding all in-line and one gun types. Tests all under actual operating conditions (model 490) * Exclusive multipiex technique (model 490) * Measure true dynamic beam current that actually passes through G1 aperture to screen Measures all shorts and leaks - preserving more CRT's. Tests focus electrodes lead continuity finding faults that other testersmiss *Uses most poweriul restoration CRT. Reluvenated CRT's guaranteed as new for two years - Obsolescence proof - perpetual set up chart updated and new adaptors developed * Tests and rejuvenates VDU's and oscilloscope tubes * A range of over 40 CRT base adaptors available "Increase prolit * Pays for itself in months

```
Prices
```



```
Without adaptors
446.00+ [78.05 V AT
Model 480 Single
\$375.00* ¢62.63 V . .T.T.
```


SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to lacilitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radlo systems. Signal
levels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of signal conditions for satisfactory operation. Both models have a clear LCD direct frequency readout. coupled to a multiturn tuning control enabling precise channel identification
TC402-C VHF \& UHF

FEATURES

Three bands
Low VHF: $45-110 \mathrm{MHz}$
High VHF: $110-300 \mathrm{MHz}$
UHF $: 470-862 \mathrm{MHz}$

- Digital display for direct frequency readou Built-in monitor loudspeaker AM/FM. Signal measurement from $20 / \mathrm{V}$ to
Powered by eight 1.5 AA batteries Powered by eighith sturdy carrying case
Fully portable with

TC90 VHF-UHF-SAT.

FEATURES
Five bands:
Low VHF $: 45-110 \mathrm{MHz}$
High VHF $: 110-300 \mathrm{MHz}$

Hyper VHF: $: ~$
VHF
$400-470 \mathrm{MHz}$

$\begin{array}{ll}\text { VHF } & : 470-862 \mathrm{MHz} \\ \text { Satellite } & 950.1750 \mathrm{MHz}\end{array}$
Satellite $: 950-1750 \mathrm{MHz}$.
Digital display for direct frequency readout.
Signal measurement satellite $\cdot 70 \mathrm{dBm}$ to
Signal me
-10 dBm .
Audible indication of satellite signal leve Built-in-monitor loudspeaker AM/FM (not satellite).
Powered by rechargable battery
Price £ $499.80+$ £87.47 V.A.T.
(complete with charger $220 / 240 \mathrm{~V} \mathrm{AC}$).

BLACK STAR COLOUR PATTERN GENERATOR

 THE 'ORION' THREE-IN-ONEPAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
, Orion is bench instrument oftering a wide range of patterns and facilities at a truly low cost
In addition to a switchable sound carier facility which allows use with the majority of PAL TV systems, the O
videomonitors

More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence. video amplifier line arity, colour purity. general colour pertormance, focus etc.
A separate video input to modulate camera signals: fully variable RF and video output evels facilitating AGC testing; trigger output allowing easy triggering of difticult oscilloscope of TV sound systems; adjustable wide Irequency coverage of VHF and UHF TV bands.

Just some of the features making the Orion Pattern Generator an indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.

FEATURES

- Colour bars, purity, greyscale, crooshatch.
dots. focus, etc.
VHF/UHF Channels
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5$
InternalfExternal Sound
External Video Output.
Trigger Output.
PAL B.D,G,H.I.K
Separate R, G, B and sync. O/P's.
RGB a TIL
Green
O.3V Syncs.
Composite Video Output
- Variable RF/Video Output

Switchable Video Polarity.
Malins powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Price $£ 229.00+£ 40.08$ V.A.T.

Bremetritoncs
Tel: $0702-5$ E157e Fax. $0702-420243$
U.K. POST PAID, export enauires welcome. Visa/Access or cheque w. order, payable B. K. Electronics. Ohicial Orders welcome from Govt. Depts., range. Credit card orders are accepted by 'phone, fax or post. range. Credit card ordersare accept
Delivery normally within seven days.

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Winford
Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 1 or faxed to 081 6528956.

ADVERTISEMENT MANAGER
Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHER

Robert Marcus
0816523930

READER HELPLINE

For help if you have difficulty obtaining Television phone 0816528620
SUBSCRIPTION ENQUIRIES
0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0789200255

COVER PHOTO

This month's cover photograph shows a prime focus dish with polar mount being installed - see article on pages 24-32.

Technological Leads

There was much talk earlier this year of an exiting new type of consumer electronics product, the computer-based multimedia device. The idea is to combine computer and communications or other relevant technology to produce innovative new offerings. Apple was at the time taking a leading role. It announced forthcoming digital consumer products at last January's Las Vagas Consumer Electronics Show. This was followed by a prototype, the Apple Newton, described as a "digital personal assistant", at May's Chicago Consumer Electronics Show. It was said that Newton would have communications capability though its exact specification was left rather vague
More recently an international consortium that includes the US telecommunications company AT\&T and Matsushita has announced the development of the "personal communicator", a combined pocket telephone and personal computer. It is to be the first of a family of portable communicators - AT\&T has shown mock-ups of the NotePhone and FlipPhone - that combine voice telephony, electronic mail, fax and wordprocessing with the ability to accept handwritten input. The consortium claims that development work is complete and hints that marketing plans for the first devices will be announced in the near future. It's suggested that the devices will retail at around $£ 600$, though a sharp fall is expected when large-scale production commences. According to Alain Rossman, chief executive of the Californian computer design company EO, a member of the consortium, "personal communicators integrate telephony, messaging and computing to create a compelling new device that will have as much impact on person-to-person communications as the telephone did in the early 1900s". The consortium is seeking a European partner to assist with marketing.
It all sounds very intriguing. But one wonders exactly how such devices would be integrated with people's everyday lives, despite being described as consumer products. Clearly they don't have entertainment value unless possibly as games machines. Is there scope for a vast increase in person-to-person communications, and is it logical to combine this with computing ability? Maybe, but more likely as a business tool.

In fact it seems that Apple, which made the initial running, is now having second thoughts. Apple's chairman and chief executive John Sculley is reported to have told a recent industry conference in California that his company is "less and less convinced that there is a market for these things in the near term in the consumer field". He is now stressing the business applications of Newton - as a handheld electronic notepad. Despite early suggestions that Newton might sell as a consumer product at around $£ 300$ or so, it now seems that Newton will have to be priced at a level well above that acceptable as a mass-market product, certainly to start with. But conflicting comments are coming from Apple. According to Ken Wert, the Apple PIE division's marketing manager, "our perception of the market has not changed".
Well, we shall have to see. But it does seem doubtful whether some of these technology combinations would result in really useful, practical consumer products. Meanwhile at a more down-to-earth level Amstrad has postponed plans to launch its low-cost videophone. The company is trying to get production costs down. But BT intends to go ahead in the near future and hopes to be able to sell GEC-Marconi produced videophones at under $£ 400$. The phone will have a 4 in . screen and transmit the video signal at a data rate of $9 \mathrm{kbits} / \mathrm{sec}$. GEC-Marconi has also received an order for its videophones from a US telephone operator, MCI Communications. It will be interesting to see how consumers respond to the prospect of these small, low-definition pictures
Should the anticipated increase in person-to-person communications occur, will it be via cable rather than radiotelephony? At the British Association meeting in August a panel of specialists in opto-electronics reported on significant developments in their field. The data capacity of fibre-optic cabling seems to be almost infinite. A great advance came with the erbium-doped fibre amplifier, which enables light signals to be amplified automatically without conversion to electronic form and back again. According to Professor David Payne of Southampton University the bulk of international telecommunications traffic will shift from satellites to undersea fibre routes. Videocommunications will be much cheaper and more realistic than with today's videoconferencing systems. Professor Peter Cochrane of BT Laboratories, Martlesham predicted that early next century optical-fibre networks will extend to every home and business in the UK, and that radio and microwave systems will be reserved for mobile communications. Where will all this leave us? Linked to the cable but with receivers of some sort that will presumably still go wrong from time to time!

Service Briefs - Philips

The following notes on TV fault-finding and modifications are based on items included in the Philips publication Service Link. Further notes relating to satellite TV receivers, video equipment and $C D$ players will appear in a later issue.

2A chassis: Failure of the TDA3653AQ/TDA3654Q ($90^{\circ} / 110^{\circ}$ models respectively) field output chip IC7570 is often caused by C2571 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$) going low in value. The $390 \mathrm{pF}, 100 \mathrm{~V}$ ceramic plate capacitor C2565 on the print side of the panel can also be responsible for failure of IC7570. If this i.c. has to be replaced these two capacitors should also be renewed.

2B chassis: The following modification can be carried out where playback of copy-protected VHS tapes is affected by the anti-copy signals present during the sync period: change C2544 from 47 nF to 22 nF ; add a $3 \cdot 3 \mu \mathrm{~F}$ capacitor in paralle] with C2545 on the print side of the panel; change R3544 from $1.8 \mathrm{k} \Omega$ to $3.6 \mathrm{k} \Omega$. For optimum results the value of C 2544 may have to be slightly less or higher than 22 nF .

Radiation from Nicam decoder panel 1110 can cause interference to Band II f.m. radio reception in areas where reception conditions are poor. Where this problem is experienced the following modification should be carried out: (1) Cut the print between pin 40 of IC7450 and coil L9494. (2) Disconnect and discard the tubular 47 pF capacitor from the print side of the panel. (3) Reconnect the $10 \mu \mathrm{H}$ coil L9494 between pin 40 of IC7450 and its original position, i.e. across the print cut, ensuring that the lead between the coil and the i.c. is as short as practicable. (4) Solder a link wire in position 9454. (5) Solder a 47 pF chip capacitor (code no. 482212231772) between pins 2 and 3 of edge connector S10 - don't use the discarded tubular capacitor as small physical size is essential here.

2B, CP90, CP110, G90 and G110 chassis: The teletext microcomputer chip was changed to type MAB8461P/W 196 (code no. 482220962479) to prevent continuous page header display under certain conditions in the subtitle mode.

3A chassis: To avoid spurious fuse blowing in sets with Nicam and PIP the rating of fuse F1642 in the 7V supply was increased from 800 mAT to 1.25 AT .

CP110 chassis: In later production the colour decoder chip IC7260 was changed from type TDA3562/N5 to type TDA3566/N5. At the same time R3292, R3293 and Tr7267 were deleted (these components are not shown in any of the circuits we have - editor). If the PAL phase coil L5270 can't be set up for optimum results when this change is carried out as a service replacement change L5271 to $15 \mu \mathrm{H}$ (code no. 482215752842).

To give improved protection to the BUTI1AF chopper transistor $\operatorname{Tr} 7665$ a 39Ω resistor (code no. 4822050 23909) was added in parallel with coil L5656 in its base drive circuit.

An overmains circuit was added in later production to reduce the possibility of mains-borne spikes causing failure
of the TEA1039 chopper control chip IC7669. It's linked to IC7669's supply pin (pin 9).

D16-III chassis: Slight patterning (several straight or random wavy vertical lines) may be noticed when a video signal is fed in via the external 2 scart socket. The following modification will provide an improvement: (1) Remove link wire 9297 and chip link 4219 to isolate a section of printed track. (2) Connect the inner conductor of a suitable length of coaxial cable between the print from pin 20 of PL06 (external 2 scart socket) and pin 5 of IC 7265 (S-VHS switch chip). Connect the braid between pin 21 of PL06 and pin 6 of IC7265. The coaxial cable link must be positioned along the rear edge of the panel on the print side.

FL1•0 and FL1•1 chassis: Slight interference from the I2C bus may be audible from the left-hand speaker under very quiet conditions when the treble control is at or near its minimum or maximum setting. The effect is not present with the treble control at mid-position. It can be minimised by carrying out the following modification: (1) Cut the print track to pin 14 of the TDA8425 audio processing chip IC7680. (2) Solder a wire-ended $4.7 \mathrm{nF}, 63 \mathrm{~V}$ ceramic plate capacitor (code no. 482212231125) between pin 14 of IC7680 and the earthy end of C2694. Keep the extra capacitor's leads as short as possible.

G90 chassis: When there has been a power supply fault it's advisable to check visually that the chip diodes are all adequately soldered at both ends.

G90 and G110 chassis: When the chopper transistor has failed the CNX83A feedback optocoupler (code no. 4822 13082034) should also be replaced.

G90, G110 and GR1-AX chassis: Later production sets have an ST24C02CP instead of an X2402 EEPROM chip. In most sets no other changes are required when fitting an ST24C02CP. Where a PCD8582P EEPROM was used in the G90B/G110 chassis however a chip jumper (code no. 4822051 10008) must replace C2724 and R3729 must be deleted. With the GRI-AX chassis the ST24C02CP chip comes with a metal shield (under code no. 482231031886) which must be placed over the EEPROM and soldered in place of jumper link 9020: also the 5 V supply must be modified as described in the GR1-AX chassis section later. Note that when a new EEPROM is fitted there will be no tuned programmes and the customer control settings will all be at minimum. This may give the impression that a fault is present. Complete reprogramming is required when a new EEPROM is fitted.

G90AE chassis: To reduce vertical striations at the lefthand side of the screen a choke with a series-connected RC network in parallel were added in series with the 95 V feed to the line output transformer (pin 5). The $82 \mu \mathrm{H}$ choke is code no. 482215810563 , the 33Ω resistor (on the input side) code no. 482211652094 and the 10 nF capacitor code no. 482212231414 . To add these components in earlier sets proceed as follows: (1) Fit the choke in pace of link 9547. (2) Connect the resistor and capacitor in series then fit the network in place of link 9548, with the capacitor to pin 5 of the transformer. (3) Connect a wire link between the positive terminal of C2631 ($47 \mu \mathrm{~F}$) and link 9609.

In later production sets a 400 mAT fuse (F1670) was added between the anode of standby thyristor Ty6670 and pin 15 of the chopper transformer T5625. It's mounted on a small PCB together with Ty6670.

EUROPESNO SATELLITE

 ASTL DISTRIBUTORS PRO-COMM CIIIZEN NEC ECHOSTAR ORAKE Marconi CIOBAL comeram uniden MIMTEC
QTATUNG
SUPERACK

D.L.S. PACE PHILIPS SHARP

 LENSON met miconiegronics.| LEICESTEA |
| :--- |
| SHAMNGHAM |
| WARANGTON |
| GLASCOW |
| NORTH EAST |
| LONDON NTH. |
| LONDON STH. |

HEAD OFFICE AND EXPORTS

Tower Works, Globe Road, Holbeck, Leeds LS11 5QG
Telephone (44) 0532444195 Fax (44) 0532425777

B Le日, Circie, LE1 JRE 0533626468 Fax 0533539840
 2 Park St, Aston, 865 5H = 0213276669 Fax 0213273985

33 Craven Court, Winwick Quay, WA2 BQU $=0925445588$ Fax 0925445599
Unit 8, Sandilands St., Annick Ind. Est., G32 QHT $=0417781114$ Fax 0417785424
Thirsk, North Yorks. Mobile 0831252859 Fax 0485597247
Haringey Technopark, Ashley Road, London N17 9LN 20818804000 Fax 0818804001
© 0816770183 Fax 0816770295

G90AE-Sat chassis (Pye Model 52KV2529): A buzz on sound may be heard on some satellite channel recordings made via phono sockets BU8/9. This effect can be cured by adding a $1,000 \mu \mathrm{~F}$ electrolytic capacitor (code no. 4822124 20786) across the 13 V supply on the satellite sound module. Fit the capacitor on the component side of the panel between link 9112 (positive terminal) and the coil end of link 9113 (negative terminal). Where link 9113 is not fitted use the hole in the PCB near coil L5212 for the negative terminal connection.

G90B chassis: This chassis uses a TDA8153 RGB output chip (IC7380) which is mounted on the tube base panel. If a replacement has to be fitted additional flashover protection is recommended. Add a $4.7 \mu \mathrm{~F}, 250 \mathrm{~V}$ electrolytic capacitor (code no. 482212421157) between pins 4 and 8 of the chip, negative terminal to pin 8 .

G90B and G110 chassis: Later production sets are fitted with a colour decoder chip type TDA8390/N4 instead of type TDA8390/N3. These i.c.s are not interchangeable. The following changes must be made when fitting the N4 version: G90B chassis delete R3313, R3340, R3341 and D6336; change C2352 to 15 pF (4822 12232504), R3336 to $3.9 \mathrm{k} \Omega$ (482211190571) and R3338 to $6.8 \mathrm{k} \Omega$ (4822111 90544). G110 chassis delete R3340, R3341 and D6336; change R3371 to $1-2 \mathrm{M} \Omega$ (482211190409) and R3372 to $680 \mathrm{k} \Omega$ (4822 11190368).

Also in later production the timebase generator chip was changed from type TDA 2579 version N6 or N7 to type TDA2579A/N8. Although minor component value changes were made none are necessary when fitting the later type as a replacement. The change was made to eliminate jitter at the start of the field scan.

With some Nicam sets a ticking noise may be heard in the background when in the external AV mode. The effect can be reduced by carrying out the following modification to the Nicam panel: (1) Remove chip resistors R3044/5 then cut the print between pins 14 and 15 of IC7040. (2) Use 100 mm lengths of screened cable to connect pin 12 of IC7150 to pin 14 of IC7040 and pin 11 of IC7150 to pin 15 of IC7040. Earth the cable screening at pins $1 / 2 / 3$ of IC7040. (3) Connect a $4 \cdot 7 \mathrm{nF}$ capacitor between pins 5 and 18 of IC7150 and another $4 \cdot 7 \mathrm{nF}$ capacitor between pins 5 and 20, keeping the leads as short as possible (capacitor code no. 482212230128).

G110 chassis: Extra protection for the BUT18AF chopper transistor $\operatorname{Tr} 7625$ was incorporated in later production sets by adding two series-connected BYD73B diodes (code no. 482213060778) between its base and emitter (chassis), with the anodes to the base side. Make sure that the optocoupler driver transistor Tr7654 is type BC817, not type BC847.

On some sets, mostly those fitted with the .4 version of the tube base panel, vertical striations on the left-hand side of the screen may be noticed under certain picture conditions. Removing wire link 9302, which is adjacent to connection 19G on the tube base panel, will cure or greatly alleviate the symptom. The $\cdot 4$ version of the panel can be identified by the figure 4 that follows the code no. 3113253 3072 on the component side. With Nicam sets, soldering links 9011 and 9126 to the chassis print on the component side of the main PCB will provide a further slight improvement.

In the event of a complaint about low teletext contrast, D6813 on the print side of the teletext panel can be deleted. This increases the contrast range in the teletext mode.

If a red flash is seen when changing channels, with VCR playback in the still or search modes or at edit points in own recordings, reduce the value of chip capacitors C2434/5 from $0 \cdot 1 \mu \mathrm{~F}$ to $2 \cdot 2 \mathrm{nF}$ (code no. 4822122 32999). These capacitors are on the main PCB adjacent to IC7425.

GR1-AX chassis: In the event of failure of R3616, R3680 (both 1Ω), D6610 (BZY79C10) or the MOSFET chopper transistor $\operatorname{Tr} 7610$ all four items should be replaced. The two resistors are in series with $\operatorname{Tr} 7610$. When fault finding don't apply a probe to $\operatorname{Tr} 7610$'s gate to check voltages or waveforms - this will damage or destroy it.

Note that the series chopper circuit provides a 95 V h.t. output at 33 W . Thus a $60 \mathrm{~W}, 240 \mathrm{~V}$ bulb can't be used as a load when fault finding. If a bulb rated at more than 15 W is used as a load the power supply, because of the bulb's low resistance when cold, won't start up. A working power supply will operate without a load however (lift coil L5660) - the h.t. will be approximately 97 V under these conditions.

Note that there's an error in the circuit and the main PCB layout diagram in the service manual. The 160 V rectifier circuit should be shown connected between pins 1 and 6 of the line output transformer, not pins 1 and 5 -pin 6 is the 95 V h.t. feed to the transformer's primary windings.

Transistor Tr7705 (type PH2369, code no. 4822130 41594) can be responsible for tuning problems (stations appearing to the right of the normal position, higher channels not available).

For added safety in the event of a short across the 9 V line the value of R3100 was increased to 1.5Ω (code no. 4822 11680691), an $0.47 \mu \mathrm{~F}$ capacitor (code no. 4822121 51252) was added in parallel with it and transistor $\operatorname{Tr} 7100$ (BC558, code no. 482213040941) and resistor R3646 (150 S, code no. 4822116 52211) were added (see Fig. 1). Tr7100 senses the voltage across R3100, firing the over-voltage protection thyristor Ty6641 to remove the 95 V h.t. supply in the event

Fig. 1: Modification for added protection in the 9 V supply, GR1-AX chassis.

Fig. 2: Line drive circuit modification, GR1-AX chassis.
of a short.
Several changes were made to improve the operation of the unusual line drive circuit. The modified circuit is shown in Fig. 2.

A modification was introduced to prevent sets coming on from standby in the hotel/store lock mode, when stored control/programme settings can't be altered. The memory chip IC7785 was changed to type ST24C02CP (code no. 4822209 62098). Its 5V supply is taken from R3797 instead of the junction of R3770/R3767, via L5786 which is connected to a different pad.

When colour dropout is experienced with poor quality prerecorded video tapes an improvement can be obtained by increasing the value of C 2322 from $0.22 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ (code no. 482212440242).

The anti-copy signal recorded during the sync period can affect the playback of copy-protected tapes. The following modifications provide a significant improvement. Change C2050 to 47nF (code no. 482212142491), C2322 to $1 \mu \mathrm{~F}$ (4822 12440242), R3050 to $75 \mathrm{k} \Omega$ (482211652301) and R3051 to $1.5 \mathrm{k} \Omega$ (4822 11652243).

GR2.1 chassis: If with Nicam versions of this chassis the sound and vision mute for a few seconds maybe several times whilst viewing, remove C2721. The serial number of receivers affected is preceded by QG06: the sets are fitted with a memory protection panel in place of R3771.

To eliminate possible hum in the standby mode R3673 was changed to $4.64 \mathrm{k} \Omega$ (code no. 482205154642) and R3674 to $1.05 \mathrm{k} \Omega$ (482205151052).

The following modifications were introduced to avoid failure of the power supply to start up from standby: R3663 was changed to $5.6 \mathrm{k} \Omega$ (code no. 4822051 10562), R3674 to $1 \mathrm{k} \Omega$ (4822 050 11002), D6670 to type TAGE0102AA (4822 130 20272) and IC7624 to a selected version of the CNR50 (4822 209 30992).

KT4 and K40 chassis: Failure of the TDA3650 field timebase chip IC7110 is often due to C2107 ($100 \mu \mathrm{~F}, 50 \mathrm{~V}$) going low in value. Intermittent field collapse, sometimes with field cramping at the top of the screen, can be caused by D6107 (BAX18). If it's necessary to replace IC7110, C2107 and D6107 should also be renewed. Use type BYD33D (code no. 482213042488) in the D6107 position. C2107 is code no. 4822124 40712. At the same time the line output transformer's pins should all be resoldered - dry-joints can cause intermittent field faults.

Tuners: Later CP90, CP110, G90AE, GR1-AX and Anubis A sets are fitted with tuner type U943 in place of the earlier U743. In some chassis components have to be added if the earlier type of tuner is used as a replacement. GR90AE add C2006, R3006 (chip type) and link 9701; GR1-AX add C2004, link 9087 and link or coil 9510/L5000; Anubis A add R3003 and R3004 (chip resistors).

The U341 tuner used in the K30 and K35 chassis is no longer available from Philips who supply the U342LO tuner as a replacement. When fitting this the aerial input connection has to be modified as follows: (1) Remove the side covers from the U341 tuner then desolder the aerial connection tag from the PCB. (2) Remove the side covers from the new tuner and desolder pin 1 (aerial input). (3) Solder the aerial input tag from the U341 tuner in the same position in the U342LO tuner, then fit the replacement unit in the receiver. When working on the tuner don't disturb any of the coils or Lecher lines. Confine soldering to the immediate area of the aerial input connection and ensure that the covers are refitted in the correct position.

Next month in

Television

-SERVICING THE PHILIPS 2A CHASSIS
Sets fitted with this chassis were produced in large quantities, starting in 1985. The chassis has proved to be reliable, but with time it has been possible to build up a fault history. Richard Newman provides guidance on fault diagnosis, in particular with the self-oscillating chopper power supply (SOPS).

25 YEARS OF COLOUR

Europe's first full, regular colour service began twenty five years ago, via BBC-2 on December 2nd 1967. To commemorate the occasion Keith Hamer and Garry Smith report on the colour TV development work carried out in the UK prior to the event.

-IMPROVED VCR PERFORMANCE

Much work has gone into improving VHS picture quality. Techniques now in use include the Akai IHO and Nokia ASO systems. Steve Beeching outlines the basic limitations of VCR recording and explains how these and other techniques can enhance the play back pictures.
-SATELLITE RECEIVER TEST REPORT
Pace's latest satellite TV receivers, Models PRD800 and PRD900, offer many features and excellent performance. Eugene Trundle reports on the PRD800 he's had for test.
-TEXET FAULT NOTES
Andy Gallacher reports on fault experiences with the Texet Models TX1434 and TX2034.

PLUS ALL THE REGULAR FEATURES

Camcorner

Panasonic NVMC5

This little machine has a JVC style mechanism. It came in with a no playback fault. Recording was o.k., with fine results from playback via another machine. This eliminated the heads and most of the head switching circuitry. The culprit turned out to be an open-circuit coil in the head amplifier circuit - the coil that feeds the PB 5V supply to the M51459FP head amplifier chip. As usual with faults in this area, diagnosis was easier than gaining access to the PCB, mounted as it is within its own screening can. D.C.W.

Panasonic NVMS2

The problem here was intermittent closure of the iris. As the symptom could sometimes be brought on by tapping the case a dry-joint was suspected. When the case was removed and the fault area was located we found not one faulty joint but many: connector P001 on the camera operation PCB had never been soldered in! D.C.W.

JVC GRC2

There were no functions apart from fast forward/rewind at about half the normal speed. No E-E pictures or any other results were obtained, except that the emergency mode was entered within a few seconds of pressing the fast forward or rewind button. CP3 was replaced, as suggested by the emer-gency-mode display. This restored all the deck functions, but there was still no camera picture though YC signals from the YC separator could be recorded. Playback was o.k.

The supplies to the camera head were correct but there wasn't a glimmer of an output. At this point fate gave a helping hand. When the camera head was removed from the case a large screw dropped out - it was one of the deck securing screws. To cut the story short, the offending screw had caused extensive damage to the SSG circuitry. The SSG chip IC3, the blanking chip IC4 and the regulator and switching chip ICl all had to be replaced, also Q6 (in the 5 V supply of IC3) which was open-circuit. One screw did all this - and an estimate had been requested. Estimating can be a nightmare with camcorders!
D.C.W.

Sony CCD330

This one had been "looked at" by a large service centre that had charged for a no-fault found repair! According to the customer the problem was occasional tape crinkling. Apparently the camera would sometimes behave itself while on other occasions it would chew the tape immediately, causing the mechanism to jam with the inevitable eventual shutdown. The customer was then left to retrieve what was left of his tape as best he could.

On removing the case and watching the tape load and run it was obvious that all was not well with the tape transport system. The tape was being dragged up the pinch roller and, if left, would eventually jam against the guide. We also noticed that the travel of the tape tension arm was being restricted - in fact it was jamming against guide two (TG2) on the tape supply side of the mechanism. All this was caused by nothing more than misadjustment downwards of TG2. How it had come to be so far away from its correct
position, and why this wasn't spotted by the previous repairer, will never be known!
D.C.W.

JVC GFS1000

The symptom was intermittent spots that covered the whole screen in playback. They could have been caused by a capstan servo fault but were actually too random and instantaneous for this diagnosis to apply. In fact the cause was that one of the heads wasn't being switched on. The fault persisted, though with less regularity, after replacing the TA8609P playback f.m. processing and head switching chip IC701. Closer inspection of the r.f. switching signal then showed that it skipped a beat every so often, staying high instead of going low. This signal is derived from the drum PG pulses by the servo chips IC401 and IC403, so checks were carried out in this area. The r.f. switching output at pin 16 of the main servo chip IC401 was first compared with the preamplifier's f.m. output, using the scope's two beams. Nothing conclusive resulted from this and other checks and the problem was getting more difficult as the fault was now more intermittent. Replacing IC401 made no difference so I moved on to the next chip down the line, the drum PG pulse amplifier IC403. This turned out to be the cause of the fault.
S.B.

Sanyo VMD3P

A cassette was jammed in this camcorder. Checks showed that there was no loading or capstan motor drive as F4O()] (type ICP-F10) on PCB SV1 had blown. This fuse feeds the 2 SB1205 5V regulator transistor Q4006. There were no readable shorts but over lA was being drawn through F4001 which is a 400 mA device. Disconnecting the loading and capstan circuits in turn suggested that the fault was in the former, but we couldn't find anything amiss here. When an external 5 V supply was used instead of the regulator circuit the peak current demand was 150 mA . Q4006 was faulty.N.B.

Panasonic NVM10

This machine, which belonged to a local school, had been dropped. The smashed case was easily replaced, as was the buckled cassette carriage. We then found that there was no play or record as the drum had seized. This is not uncommon when one of these machines has been dropped the hifi stator jams the drum either because the stator centralising has been knocked off or the supporting bracket has been bent. The latter was the case this time. Next the machine wouldn't record as the record prevent switch was broken. When this had been attended to we put the machine on soak test where it ran well for some days. It then wouldn't switch on.

After checking the power supply I established that the fault was in the power switching logic rather than the supply itself. There was pull-up on the switch line and the switch operated correctly, taking the line low. This takes the common cathode connection of two diodes low. Conditions were correct here. However the common anode connection of the following pair of diodes remained high. Yes, would you believe it, a break in the print?!

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

TEST
OEMONSTRATIONS
AT 172 WEST END LANE

$\star 40$ different patterns and variations
＊Fully interlaced sync pulses with conrect picture blanking
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow， cyan，green，magenta，red，blue and black
＊Chequerboard
＊Mono outputs with border castellations．cross hatch，grey scale，vertical lines，horizontal lines and dots．UHF modulator output plugs straight into receiver acrial sochet．
\star Additional video output for CCTV \＆VCR．
＊Facilities for sound output
＊Easy to build kit，standard parts．Only 2 adjustments．No special test cquipment required．
＊Mains operated with stabilised power supply
＊All kits fully guaranteed with back－up service
\star Also available with VHF Modulator．
Price of Kit
Case $\left.(11)^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}\right)$ app
Optional Sound Module（ 6 MH zor 5.5 MHz ）
£75．00 £15．00 Built \＆Tested in Case including Sound Module £122．00 Post／Packing 54.50
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR（Mk4）
＊Output at UHF，applied to receiver aerial socket．
＊In addition to colour bars R－Y．B－Y etc．
＊Cross－hatch，grey scale，peak white and hack level．
＊Push button controls，hattery or mains operated．
＊Simple design，only live i．c．s on colour har P．C．B
＊Backup service available
PRICE OF MK4 COLOUR BAK GENERATOR KII
£35．00．CASE $£ 5.80$ ．BATT HOLIDERS $£ 4.20$
MAINS SUPPLY KIT £5．80
（Combined P\＆P $£ 4.50$ ）
 EASIIY ADAPGEDFOR VIDEOOCTPIT \＆C．C．I．V．

LINE OUTPUT TRANSFORMER TESTER

＊Saves time and money
\star Chechs shont turns．
＊Simple to use
\star Reliable．
＊Battery operated
\star Pocket sizu．
PRICE £20．00
POST／PACKING $£ 2.50$

INFRA RED REMOTE CONTROL TESTER

－Pocket size
＊LED＋audible indication．
＊Simple to use．
PRICE £20．00
POST／PACKING 22.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and lested for video \＆audio outputs $£ 28.50$ p．p．£1． 80.
PAL DECODER KII（Video to RGB）for Monitors $\mathfrak{f} 27.00 \mathrm{p} \cdot \mathrm{p}$ f1．80
PAL ENCODER KIT（RGB to Video）£18．50 p．p．ti． 80
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case．Pancl Meler Indicator－can be adapted for latest CRTs $\mathbf{£ 4 0 . 0 0}$ P．p．$£ 4.50$ ．

TV \＆VIDEO SPARES

REMOTE CONTROLS

 （irunde．If Smes．Santm．Ciramat Phone for mathe and moolet no．
PHILIPS SPARES

＇THORN／FERCIUSON SPARES

TXIM）（＂lx

VARICAP TLNERS

LINE OUTPUT TRANSFORMERS

Anstrad	221．xi	PIHIIS（\％）	（x，m）
11611（4）	\＆11．$\times 1$		c13．51
	（15：0		［4，\times
	（14）		¢17．911
	セ24		［1．d1
	tex．s．1）	－11010	C． xil
	t21 $\times 1$		227．31
	Exat		E． 21
	［21．xil	Pullisme	6asm
Ftr（	（19，xil	PIIIIIIS（10）	¢18．
TT（ cmpret sh． 116	Et7 610	Pitions	22＋ 25
	セ2］．xı	Phatims（ik $A>$	ใ－5
	E14．	PIIIMSN	¢2，M
	（4，m）		¢21． sin_{1}
	［111．$\times 1]$		（29，$\times 1$
	（1）． 81	solkl｜x	2．15， 1 mm
	［2d（14）		4 4 ． 11
	（19．51）	мいいい1704	（tit），（1）
TTC以1151175	¢22．$\times 11$	м小いん1275	（1x．IM
	（15．50		t 4.8×1
174034	¢11－$\%$		［9．xil
	（17． 4	TIO\％	（\％．811
lit Dig a I If	［19．811		t9．sil
	［19．80	1760）	［2． 10
FTTCimallols	เ119\％	TIIN心馬	221．51
$17 T$ 13267	¢22		ど9（11
171934	［ 2 2xa	1160	19
177 stomeprua	221．80		t19 $\times 1$
lit come ！In 180	¢ 10.0		（21，mi
B．OEME（lance M12＋\＄127	43， 3 ，		（14．811
1．0HME Cumbil	4．3．6．6）		121．${ }^{\text {a }}$
	セ2．s		¢5\％
Plillis 3	E．xı	moirunkidarts．	［1．80
 TIKR MDISTR WVFORNIRKS： DEGALSSING：RODEM．75pp © M1 			
HOW TOORDER：ADO pNp TOORDER＋VTI 17.5% TOTIIETOTAI 			
Telephune $071.794 \times 751.7947 .46$Fan $1971-4.31577 \times$			

viewfinder, a digital image stabiliser, a $\times 36$ digital zoom, LP and hi-fi stereo sound. The suggested retail price is $£ 1,000$. The NVMS4B at $£ 1,400$ is a full-sized S-VHS model with a stereo zoom microphone, x12 zoom, VITC generator and digital picture effects. Model NVS6 is a replacement for the NVS5.

Sanyo has launched two VCRs which feature a Video Plus timer and ASO (active sideband optimum) picture enhancement. The VHR251E has a suggested retail price of $£ 330$ while the VHR291E, at $£ 400$, also has a Nicam decoder.

Sony's CCD-TR805 camcorder at $£ 1,099$ features the SteadyShot anti-shake system described by Steve Beeching last month. There are also two new Sony VHS VCRs featuring the dual-mode shuttle system which has the main controls on a rotary dial. The SLV225 at $£ 300$ has NTSC
playback, LCD programmable remote control and index search. The SLV425 at $£ 380$ adds trick-play features, long play and an on-screen menu system. Sony's CCD-FX500 camcorder at $£ 800$ weighs only 850 g : its features include a digital superimposition and fader facility, a choice of aperture or shutter priority for creative effects, Sony's quick inner focus system and an innovative one-touch connection system to provide easy playback of recordings with just one lead connected to the camcorder.

Sharp has introduced the VLM4H 8 mm palmcorder at only $£ 600$ despite a long list of features.

Fuji has introduced two 8 mm camcorders with a compact x 12 optical zoom lens system that has a wide-angle setting of 4.5 mm . The FF120SW has a suggested price of $£ 700$ while the FG122SW, which includes a colour viewfinder, is priced at $£ 850$.

Letters

INSURANCE WORK

We try to be fair to our customers and the insurers when it comes to claims and estimates for repair, but I can find no rules for such things as damaged print on a power supply panel. Are we allowed to repair the panel with tinned copper wire or must it be replaced? It seems rather an extreme course to change a panel costing say $£ 80$ for the sake of a few inches of wire. In the case of an Amstrad VCR that came in recently the print was stripped from the panel around the mains fuse. Something had been spilt into the machine and the board was scorched. As the damage was in the mains area I decided to replace the panel. But it isn't available as a spare part. so the machine had to be written off.

We had a severe bout of storms not long since, with a lot of electrical damage to TV sets, VCRs, stereo systems, microwave ovens and cordless phones. Print loss and blown semiconductor devices were common and we had to issue a large number of estimates. I hope we were fair to all concerned and kept within the law. But what happens if we say, in good faith, that a panel needs to be replaced and the machine is then considered to be a write-off because the panel isn't available, then the insurer has the machine checked by another dealer who considers it to be o.k. for repair by over-wiring and cutting out the scorched parts? The insurer could accuse the owner of making a fraudulent claim. abetted by ourselves. Can anyone clarify the position? I've asked many people in the trade, but no one seems to be sure.

It would be very unfair if a small firm were to be prosecuted for something for which they've not even bsen paid. Chris Watton,
Boston, Lincs.

CHANNEL 5

My thanks to Keith Cummins for expanding on my piece about Channel 5 reception. He's not the only one to have been shaken by the details I provided - a local broadcaster has expressed similar apprehension.

Certainly the retuners will earn their $£ 1.50$ a visit in this area. Our channels for the present services are $55,59,62$ and 65 . To find out what would be involved 1 added a second VCR to my home outfit. After two hours spent fiddling about I still couldn't find for the two VCRs a
combination of tuning points that, taken together, rid me of patterns on the two lower channels 55 and 59. So "ten minutes a visit" is a little optimistic.
Harold Peters,
Lowestoft, Suffolk.
In previous letters (January and May) I outlined some of the problems that I feared would accompany the introduction of Channel 5. Harold Peters' well researched and highly informative article (July) made me aware of further difficulties.

The "city TV" idea as proposed simply won't work in South Yorkshire. It has long been a source of irritation in this area that our main city, Sheffield, is not a centre for regional TV. BBC and ITV regional services come from Leeds, a city that's remote both culturally and geographically. Sheffield, Rotherham, Doncaster and the surrounding small towns form a densely populated area with a distinct regional identity. So on the face of it the proposal to make Sheffield a regional centre for Channel 5 is very welcome. Unfortunately the technical problems will defeat the intention.

Harold Peters tells us that the Sheffield service is to be transmitted from Crosspool on channel 67 with an e.r.p. of 2.5 kW . The existing co-sited transmitters use group A channels, have an e.r.p. of 5 kW and serve only a small part of South Yorkshire - mainly Sheffield city centre and some outlying districts. Most viewers in South Yorkshire receive their signals from Emley Moor, not Crosspool. Transmissions on channel 67 will be inherently more susceptible to screening effects than the current group A ones from Crosspool. This fact together with the lower e.r.p. will reduce the Sheffield Channel 5 coverage still further. Very many people in the city and the vast majority of those in South Yorkshire as a whole won't be able to receive the correct, local version of Channel 5. Instead they will have to receive the Leeds version, transmitted from Emley Moor at 870 kW e.r.p. Under these circumstances I can't see anyone running the Sheffield City TV franchise successfully.

Harold Peters tells us that the Sutton Coldfield Channel 5 transmissions will be on channel 37 and that this is a "typical $n+9$ interference problem because BBC-1 is on channel 46". The ITC's answer to this is in part to transmit Channel 5 with the opposite polarisation. But this won't help at all, because at virtually every receiving site the Channel 5 aerial's output will be combined with the existing services - once the signals are on the same cable the polarisation of the signal is of course irrelevant. I'm astonished that the ITC is seriously proposing to transmit a signal spaced nine channels away from an existing service at the same site, completely disregarding one of the fundamental rules of TV broadcast planning. Does it think that people are
going to stand up, walk across the room and change from one aerial to another every time they zap through the channels? Does it suppose that we are going to duplicate every existing communal system, with termination at an aerial switch in every household?

When the Channel 5 transmissions start they will of course interfere with any VCR or satellite TV receiver whose output is on the same or an adjacent channel. Most customers will regard this as being a fault in their equipment and will expect a free service call, even when the equipment is out of guarantee. Because of this a little defensive forward planning is required. When I install a satellite TV receiver I make sure that its output is well away from the channel $35-38$ region. In our area this usually means channel 30 , the only vacant group A channel. $\mathrm{N}+5$ and $\mathrm{n}+$ 9 then preclude the use of channels 35 and 39 for the VCR. Due to local transmissions channels 34 and below and 40 and above are often not usable. So the VCR's output usually ends up on channels 36,37 or 38 . What happens to the VCR picture when Channel 5 comes into operation? That's not my problem!
Bill Wright, Wright's Aerials,
Rotherham, South Yorkshire.

FAIR CHARGES

In your September issue John Edwards raised the question of fair charges. There are two basic problems. First, too many engineers chasing too few jobs. Thus the temptation is always present to try to attract extra business in one way or another. Secondly, because of the complexity of modern TV sets the true repair cost is often out of all proportion to the value of the set. Gone are the days when you could charge what a job was worth: it's now more a question of what the customer is prepared to pay.

As far as estimates are concerned, I find that the best course is to glean as much information as possible over the phone and give a rough verbal estimate. This at least gives you some idea of how much the customer is prepared to spend. If the set is brought in I'll have a quick look and do the same.

There must be far more self-employed and unemployed TV engineers in the Bromley area, where John Edwards lives and where I once lived, than here in rural Dorset. But the problems are the same, with the additional one of the high mileage that has to be covered to take in a large enough area to make a living. In the twenty two years that I've been here several other TV businesses have started up and failed. We are only just surviving, mainly I think because of the length of time we've been here and the fact that I try to give good service.

I was speaking recently, via ham radio, to an ex-TV engineer in the States. He was in his thirties and was retraining for a job in industry because, as he said, "when you can buy a new TV set for less than $\$ 200$ people don't want them repaired". That cheered me up no end!
Peter Nutkins, GOHET,
Charmouth, Dorset.
With regard to fair charges, the crux of the matter seems to be how to charge for estimates etc. when your colleagues/competitors don't do so. The following situation is common enough. You're trying to do a fair estimate in someone's home, say for a stereo with umpteen screws etc. to remove before you get inside. The customer is reclining nearby with his second can of lager, watching TV. He knows that you know you're probably the fifth or sixth engineer to have taken the thing apart. As soon as the cover is
off he asks "how much? - and just show me exactly what the fault is".

I've had to adopt the 'no-speak, ignorant' approach: I inspect the equipment and talk about anything but the job. As I put it back together, or reach a suitable point, I just say "the price will be $£ 42$ (or whatever) and I'll need to take it to the workshop for a day or so". The customer then usually says "well what exactly is wrong with it?" I give him a vague reply, such as "the amplifier's faulty", and add "if you need a report I charge $£ 15$ which is deductible from the bill". This doesn't overcome the problem, but it does educate the customer into realising that not everything is free, especially technical advice so that he can get his mates to fix the gear for him.
Mark Thomason,
Manchester.

| Newer readers may have missed important servicing | Ifeatures that have appeared in Television over the past I Ifew years. We have therefore in operation a photostat service to make this information readily available. I [Photostats of the following servicing features, listed in I [alphabetical order, can be supplied at the prices shown. I Please send requests to: Television Editorial Department, Room L323, Quadrant House, The Quadrant, I | Sutton, Surrey SM2 5AS. Cheques/POs should be made I | payable to Reed Business Publishing Lid. There are two I standard prices, see below.

Feature	Price
B and O L/LX2500/2800 chassis	A
Decca $80 / 100$ chassis	A
Decca $120 / 130$ chassis	A
Ferguson FV31R VCR	A
Ferguson TX10 chassis	A
Ferguson TX100 chassis	A
Finlux 1000 series chassis	A
Fisher FVH-P520 VCR	A
Mitsubishi CT2227	A
Mitsubishi Euro-4 chassis	A
Mitsubishi HS304 VCR	A
Panasonic D1 VCR deck	A
Panasonic G VCR deck	A
Panasonic NV333/366 VCRs	A
Panasonic NV370/830/850 VCRs	A
Panasonic NV730 VCR	A
Panasonic NV777/780 VCRs	A
Panasonic NV2000/2010/3000 VCRs	A
Panasonic U3 chassis	A
Panasonic U4 chassis	A
Panasonic U5 chassis	B
Salora F chassis	A
Salora G and H chassis	B
Salora J chassis	Salora K and L chassis
Sanyo CTP7130/1/2	B
Sony KV2252/2256/2752/2762	

Prices, $\mathrm{A}=\mathbf{£ 2 . 5 0 , B = £ 3 . 5 0}$
Please allow 28 days for delivery.

Satellite TV Installation Guide

Derek J. Stephenson, B.A., I.Eng., FIEIE

This article is intended as a basic, non-mathematical installation guide for those new to the subject. Although most of the work done in the UK consists of installing Astra dishes there's growing interest in the offerings provided by other satellites, particularly the new Eutelsat II and Intelsat VI series craft. For reception from such satellites a small, motorised polar-mount dish is required. To free the reader from tedious mathematical calculations this article provides tables that give the look angles for seventeen satellites of interest at over fifty locations in the UK. We'll start with a brief summary of the basics.

Satellite Reception Basics

TV satellites offering a 24 -hour service are in orbit above the equator at $35,786 \mathrm{~km}(22,225$ miles $)$ above mean sea level - see Fig. 1. At this altitude the orbital speed of the satellites and the Earth's rotation are such that the satellites appear to an Earth-based observer to be stationary. The spacecraft are said to be in geosynchronous orbit. They are positioned at intervals around the equator in locations known as orbital slots. Each slot is specified by the longitude of the equatorial point directly beneath it. This is called the sub-satellite point. If a satellite is quoted as being at $16^{\circ} \mathrm{E}$, this is the sub-satellite point longitude. Occasionally all orbital slots are quoted as degrees east, for example $347^{\circ} \mathrm{E}$ instead of $13^{\circ} \mathrm{W}$.

Any point on the Earth's surface can be specified by a pair of latitude and longitude co-ordinates. Latitude 0° is at the equator, steadily rising to a maximum of 90° at each pole. Northern hemisphere latitudes are said to be north and southern hemisphere latitudes south. All latitudes are parallel to the equator. Longitudes are convenient lines drawn between the north and south poles, crossing the equator at right angles. The Greenwich meridian. passing through Greenwich, England, is taken as longitude 0° Longitudes extend from 0° to 180° east and west of this meridian.

Satellite Look Angles

At any point on the Earth's surface only a limited number of the geosynchronous satellites are visible, see Fig. 2. They are located in a geo-arc whose apex is due south and is lower in the sky the farther north your location. In the southern hemisphere the geo-arc apex is due north.

You can aim at any satellite in the geo-arc by setting your aerial at specific elevation and azimuth angles that are collectively known as "look angles". Elevation angles can range from 0° to 90°, but reception from a satellite whose elevation is lower than about 10° is usually poor because ground noise enters the dish as a result of diffraction at the rim. Azimuth angles are measured from 0° to 360° (both being due north), and for the northern hemisphere can lie only between 90° and 270°, the range becoming progressively narrower as the latitude of the receiving site increases. Due south is 180° azimuth, but some installers prefer to quote azimuth as either east of south or west of south (as in Fig. 2). This calls for mental arithmetic, and can lead to mistakes when using a sighting compass (dial graduated from 0° to 360°).

The look angles depend on your latitude and the longitude difference between the receiving site and the satellite. Actual calculations involve the use of trigonometry, but there's no need for this here as Table 1 gives the look angles for most Ku band satellites at a variety of towns and cities around the UK.

There are many ways of establishing the azimuth setting, ranging from placing a stick in the ground and noting the shadow direction at certain times of the day to using a compass. The former approach is not quite as ridiculous as it might seem to be: in fact it's one of the most accurate methods, but is worthwhile only when installing a very large polar mount structure that takes several days to erect.

Magnetic Variation

Depending on geographical location a compass's north indication can vary considerably from true north. This effect is known as magnetic variation and is said to be east if the direction of magnetic variation lies to the east of true north and west if it lies to the west. Points of equal variation are jointed by contours known as isogonal lines (see Fig. 3). Where the true and magnetic norths are identical the contour is called the agonic line.

Where the magnetic variation is to the west of true north it's said to be negative: so the compensation to be applied to the compass reading is positive, i.e. the correction has to be added to the azimuth value to obtain the correct bearing. Conversely where the magnetic variation is to the east of true north it's positive and has to be subtracted. Fig. 3 shows the magnetic variation values for Europe. In the UK the correction has to be added to the true azimuth to obtain the correct compass bearing, for example add 5° in the London area.

Prime and Offset Focus Aerials

Several aerial arrangements can be used. The most common however are the simple prime focus and offset focus parabolic dish configurations, see Fig. 4. Prime focus types are set up for the satellite's elevation angle: with an offset focus type a correction angle, usually in the region of

Fig. 1: Satellite orbital slots.

Fig. 2: The geosynchronous satellite arc seen from two different latitudes - Jersey and Aberdeen.

Fig. 3: Magnetic variation for Europe, 1992 estimation.

Fig. 4: The two basic parabolic dish arrangements, (a) prime focus, (b) offset focus.
19° to 24° depending on design factors, has to be subtracted from the "true" elevation angle to obtain the correct rim or boom elevation. This correction value is normally provided in the manufacturer's literature, and may be similar to that shown in Fig. 5.

The Head End

The head-end assembly that's mounted at the focus of a parabolic dish normally consists of a feedhorn and short length of waveguide, a polariser and a low-noise block (LNB). These items come preassembled or with assembly instructions so we won't go into this here. Polarisers were treated in detail in the September issue (pages 794-7).

In Europe, Ku band broadcasts are in the frequency range $11.7-12.5 \mathrm{GHz}$. The main function of the LNB is to downconvert (frequency change) this received block of frequencies to what is known as the first i.f. (intermediate

Fig. 5: A correction angle supplied by the manufacturer is required to set the elevation of an offset focus dish. The correct elevation setting is the elevation angle minus the correction angle. Note that the boom setting may have a different correction angle to the dish.
frequency) band. This is $950-1,750 \mathrm{MHz}$. Signals at this lower frequency suffer far less attenuation when fed via a coaxial cable to the main satellite receiver.

Basically then at the head end the dish concentrates the incoming microwave signals from the satellite, bringing them to a focal point at the feedhorn. After polarisation selection the signals are passed via a section of waveguide to the LNB, where they are converted to a form suitable for the conventional channel selection (tuning) techniques used in the satellite TV receiver. Conversion from microwave radiation to a small electrical signal is done by a probe that's precisely positioned in the throat of the LNB. The overall gain provided by the LNB is in the order of 50 60 dB , after which the law of diminishing returns applies.

Prime focus dishes are usually equipped with a scalar feedhorn, which often has adjustable rings, while offset focus dishes usually have a fluted circular feedhorn. More efficient dielectric lens feeds, the Marconi polyrod for example, have been developed in more recent times and matched to each type of dish.

Dish Mounts

There are three basic types of satellite dish mounts, the simple fixed az/el mount, the polar mount which includes the so-called horizon-to-horizon variants, and finally mounts with dual motor control of both azimuth and elevation. We'll not deal with this last type since they are both rare and expensive.

The first type, which includes the common Astra variety, can receive signals from only a single satellite or a cluster of satellites that occupy a single orbital slot. A number of gagets that claim to give reception from two separately located but closely spaced satellites via the same dish have recently appeared on the market. They use a pair of accurately positioned head units mounted on a common boom. Although this approach is o.k. for retrofit use, it's not worthwhile with a new installation since polar mount equipment can be obtained at a similar cost.

With a polar mount the polar axis angle is set to the latitude of the receiving site and a "declination offset angle" is then introduced to lower the aerial on to the geosynchronous satellite arc (see Fig. 6). Thus when the dish is rotated around its polar axis any position in the visible geosynchronous satellite arc can be accurately selected. A low-cost linear actuator arm or jack whose movement corresponds to about 50° east or west of south is normally used to provide dish rotation. The horizon-to-horizon types employ a single geared motor to obtain a greater range of dish movement. With both arrangements control is effected by a positioner that acts on position information supplied by a transducer

PAS-1
$45^{\circ} \mathrm{W}$

Marcopolo, Intelsat Hispasat
$31^{\circ} \mathrm{W}$

Intelsat
VIF7
$27.5^{\circ} \mathrm{W}$

TV-SAT 2
$19.2^{\circ} \mathrm{W}$

TDF $1 / 2$
$19^{\circ} \mathrm{W}$

	EI	Az	EI	Az	EI	Az	El	$A z$	El	Az
Aberdeen	14.99	227.91	20.16	213.34	21.21	209.51	23.22	200.15	23.25	199.92
Aberystwyth	19.23	227.56	25.07	212.65	26.23	208.66	28.43	198.82	28.47	198.58
Bath	19.11	229.68	25.36	214.94	26.63	210.98	29.08	201.17	29.13	200.92
Belfast	18.48	224.90	23.70	209.87	24.71	205.89	26.56	196.16	26.59	195.92
Birmingham	18.16	229.71	24.24	215.05	25.48	211.12	27.89	201.42	27.93	201.18
Blackpool	17.75	228.07	23.44	213.31	24.59	209.39	26.77	199.73	26.81	199.49
Bournemouth	19.33	230.40	25.76	215.72	27.08	211.76	29.64	201.92	29.69	201.68
Brighton	18.20	232.34	24.83	217.92	26.22	214.03	28.98	204.35	29.03	204.11
Bristol	19.18	229.44	25.38	214.68	26.64	210.71	29.07	200.89	29.12	200.64
Cambridge	17.30	231.81	23.67	217.39	24.99	213.52	27.62	203.94	27.67	203.70
Cardiff	19.47	228.79	25.59	213.96	26.83	209.97	29.18	200.11	29.23	199.86
Chester	18.12	228.45	23.95	213.70	25.13	209.76	27.38	200.06	27.42	199.82
Derby	17.64	229.96	23.69	215.36	24.93	211.46	27.33	201.82	27.38	201.59
Douglas	18.17	226.53	23.63	211.63	24.71	207.68	26.74	197.97	26.77	197.74
Dover	17.38	233.36	24.09	219.09	25.51	215.24	28.34	205.67	28.40	205.43
Dundee	15.86	227.24	21.07	212.57	22.11	208.70	24.09	199.25	24.13	199.02
Edinburgh	16.33	227.16	21.61	212.45	22.66	208.57	24.66	199.07	24.70	198.84
Exeter	20.15	228.80	26.38	213.90	27.64	209.89	30.03	199.94	30.08	199.69
Fort William	16.49	224.96	21.40	210.10	22.36	206.20	24.13	196.69	24.16	196.45
Glasgow	16.82	226.14	21.99	211.33	23.02	207.43	24.93	197.88	24.96	197.64
Gloucester	18.71	229.62	24.87	214.91	26.13	210.96	28.55	201.20	28.60	200.95
Grimsby	16.52	231.09	22.59	216.66	23.85	212.81	26.33	203. 30	26.38	203.07
Harwich	16.89	233.02	23.42	218.74	24.80	214.90	27.56	205.38	27.62	205.14
Holyhead	18.84	226.67	24.44	211.72	25.55	207.74	27.62	197.95	27.66	197.71
Inverness	15.68	225.63	20.57	210.88	21.54	207.01	23.34	197.58	23.37	197.35
Jersey	20.45	230.75	27.14	216.01	28.52	212.00	31.18	202.02	31.23	201.77
Kirkwall	14.06	226.45	18.82	211.85	19.77	208.04	21.56	198.76	21.60	198.54
Lands End	21.73	226.84	27.81	211.62	29.00	207.51	31.21	197.35	31.25	197.10
Leicester	17.64	230.46	23.78	215.90	25.05	212.01	27.52	202.37	27.57	202.14
Lerwick	12.54	227.92	17.27	213.49	18.23	209.73	20.08	200.59	20.11	200.37
Liverpool	17.98	228.36	23.76	213.60	24.93	209.67	27.16	199.99	27.20	199.75
London	17.92	231.79	24.39	217.33	25.74	213.44	28.40	203.79	28.46	203.55
Londonderry	18.78	223.31	23.75	208.15	24.69	204.15	26.37	194.39	26.40	194.15
Manchester	17.63	229.00	23.48	214.32	24.67	210.41	26.96	200.77	27.01	200.53
Middlesborough	16.40	229.61	22.15	215.06	23.33	211.20	25.61	201.70	25.66	201.46
Newcastle	18.75	228.54	24.70	213.74	25.91	209.78	28.20	200.01	28.24	199.77
Northampton	17.81	230.79	24.06	216.25	25.35	212.35	27.87	202.70	27.92	202.46
Norwich	16.45	232.78	22.85	218.50	24.20	214.67	26.89	205.19	26.95	204.96
Nottingham	17.45	230.26	23.52	215.69	24.77	211.80	27.21	202.19	27.25	201.95
Oban	16.94	224.71	21.88	209.81	22.84	205.89	24.60	196.33	24.63	196.10
Oxford	18.30	230.63	24.59	216.04	25.89	212.12	28.42	202.41	28.47	202.17
Plymouth	20.71	228.29	26.93	213.29	28.17	209.25	30.52	199.22	30.57	198.97
Portsmouth	18.85	231.17	25.36	216.59	26.71	212.66	29.34	202.89	29.39	202.65
Reading	18.36	231.01	24.75	216.45	26.07	212.53	28.65	202.82	28.70	202.58
Southampt on	18.95	230.80	25.39	216.18	26.72	212.24	29.31	202.45	29.36	202.21
Stoke on Trent	17.91	229.26	23.86	214.58	25.08	210.66	27.41	200.99	27.46	200.75
Stornaway	15.95	223.22	20.48	208.33	21.34	204.44	22.91	194.99	22.94	194.75
Sunderland	16.24	229.34	21.91	214.79	23.07	210.93	25.31	201.44	25.36	201.21
Swansea	19.72	228.00	25.73	213.07	26.93	209.07	29.20	199.17	29.24	198.93
Swindon	18.71	230.19	24.99	215.53	26.28	211.59	28.77	201.83	28.82	201.59
Telford	18.29	229.08	24.27	214.36	25.48	210.43	27.82	200.71	27.86	200.47
Wick	14.51	226.48	19.35	211.86	20.32	208.03	22.14	198.71	22.18	198.49
York	16.74	229.97	22.63	215.43	23.84	211.56	26.19	202.03	26.24	201.79

Add correction for local magnetic variation to azimuth values.
attached to the drive mechanism. The transducer may consist of a Hall-effect element, a reed relay or an optical counter. Safeguards are built in to prevent the dish being driven beyond preset limits.

Anyone dealing with polar mounts needs to know the associated jargon. Four angles are of relevance, as follows. The polar axis angle is the latitude of the receiving site. The polar elevation angle is 90° minus the polar axis angle. The Apex declination angle is the polar axis angle plus the declination offset angle. The apex elevation angle is 90° minus
the apex declination angle. These angles are illustrated in Fig. 6.

Refinements have been adopted to improve the arc tracking accuracy with Ku band satellites that operate in the $11 / 12 \mathrm{GHz}$ bands. The result is the "modified polar mount", which differs slightly from the basic arrangement descibed above in that the polar axis is tilted forwards very slightly, i.e. the polar axis angle is increased, and a corresponding reduction is made to the declination offset angle. As a result the apex declination remains the same when the dish is in
for Ku band satellites.

Olympus	Telecom
	2 A
$18.8^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{W}$

Telecom
$2 B$
$5^{\circ} \mathrm{W}$

Intelsat VA F12
$1{ }^{\circ} \mathrm{W}$
Tele-X
$5^{\circ} E$
Eutelsat
IIF4
$7^{\circ} E$

El	Az	El	Az	El	Az	El	Az	EI	Az	El	Az
23.29	199.69	24.74	187.05	24.90	183.49	24.94	178.73	24.65	171.61	24.46	169.25
28.51	198.34	29.95	184.94	30.05	181.16	29.99	176.11	29.46	168.59	29.17	166.12
29.18	200.68	30.94	187.20	31.13	183.37	31.17	178.25	30.77	170.60	30.52	168.08
26.62	195.68	27.69	182.56	27.71	178.88	27.56	173.97	26.93	166.69	26.62	164.28
27.98	200.94	29.74	187.65	29.94	183.89	30.00	178.84	29.66	171.30	29.43	168.81
26.85	199.28	28.36	186.12	28.50	182.41	28.50	177.46	28.08	170.06	27.84	167.62
29.74	201.43	31.62	187.86	31.83	184.00	31.90	178.84	31.54	171.11	31.29	168.56
29.09	203.87	31.27	190.44	31.57	186.61	31.77	181.46	31.59	173.73	31.41	171.17
29.16 27.72	200.40 203.46	30.89 29.79	186.91 190.25	31.06 30.08	183.09 186.48	31.09 30.27	177.98 181.43	30.68	170.34	30.42	167.82
27.72 29.28	203.46 199.62	29.79 30.90	190.25 186.10	30.08 31.05	186.48 182.28	30.27 31.03	181.43 177.17	30.10 30.57	173.85 169.54	29.93 30.29	171.34 167.03
27.46	199.58	29.03	186.36	29.18	182.62	29.19	177.63	28.77	170.17	28.53	167.70
27.43	201.35	29.22	188.15	29.43	184.41	29.52	179.39	29.22	171.89	29.01	169.41
26.81	197.50	28.10	184.36	28.19	180.66	28.11	175.73	27.58	168.38	27.30	165.95
28.46	205.19	30.79	191.90	31.15	188.09	31.41	182.97	31.35	175.27	31.21	172.72
24.17	198.79	25.54	186.03	25.67	182.44	25.67	177.64	25.31	170.47	25.09	168.10
24.74	198.60	26.11	185.77	26.23	182.15	26.22	177.33	25.83	170.11	25.60	167.73
30.13	199.44	31.75	185.78	31.89	181.92	31.86	176.75	31.34	169.05	31.05	166.51
24.19	196.22	25.27	183.44	25.32	179.86	25.22	175.08	24.70	167.97	24.44	165.61
25.00	197.41	26.23	184.53	26.32	180.91	26.26	176.08	25.78	168.87	25.53	166.49
28.64	200.71	30.39	187.31	30.58	183.51	30.63	178.43	30.25	170.84	30.01	168.33
26.43	202.83	28.36	189.80	28.63	186.10	28.79	181.14	28.62	173.69	28.45	171.22
27.67	204.91	29.93	191.73	30.27	187.96	30.53	182.90	30.46	175.28	30.32	172.76
27.70	197.47	29.01	184.20	29.09	180.46	28.99	175.47	28.44	168.05	28.15	165.60
23.40	197.11	24.56	184.45	24.64	180.89	24.58	176.15	24.14	169.06	23.90	166.72
31.29	201.52	33.22	187.68	33.44	183.74	33.49	178.46	33.08	170.58	32.82	167.98
21.63	198.31	22.87	185.87	22.99	182.37	22.99	177.71	22.66	170.73	22.46	168.41
31.29	196.84	32.59	182.96	32.63	179.04	32.45	173.84	31.72	166.11	31.36	163.58
27.62	201.90	29.48	188.68	29.71	184.92	29.82	179.90	29.56	172.36	29.36	169.87
20.15	200.15	21.53	187.89	21.70	184.44	21.77	179.83	21.57	172.92	21.42	170.62
27.25	199.51	28.80	186.32	28.95	182.59	28.95	177.61	28.54	170.18	28.30	167.72
28.51	203.31	30.59	189.97	30.88	186.17	31.05	181.06	30.85	173.41	30.67	170.87
26.43	193.91	27.29	180.81	27.25	177.15	27.03	172.28	26.30	165.05	25.96	162.67
27.05	200.30	28.69	187.14	28.87	183.42	28.91	178.44	28.56	171.00	28.33	168.54
25.70	201.23	27.42	188.28	27.63	184.62	27.72	179.71	27.46	172.37	27.27	169.93
28.28	199.53	29.87	186.17	30.02	182.40	30.01	177.35	29.57	169.82	29.31	167.33
27.97	202.22	29.89	188.95	30.14	185.18	30.26	180.13	30.00	172.55	29.80	170.04
27.00	204.72	29.21	191.64	29.54	187.91	29.79	182.89	29.73	175.35	29.59	172.84
27.30	201.71	29.13	188.54	29.36	184.80	29.46	179.79	29.19	172.29	28.99	169.81
24.66	195.86	25.71	183.02	25.75	179.42	25.63	174.62	25.07	167.48	24.79	165.12
28.52	201.93	30.43	188.57	30.66	184.77	30.76	179.68	30.47	172.06	30.26	169.54
30.61	198.72	32.15	184.97	32.26	181.08	32.19	175.89	31.61	168.17	31.30	165.63
29.45	202.40	31.44	188.90	31.70	185.05	31.81	179.89	31.53	172.17	31.31	169.61
28.76	202.34	30.72	188.94	30.97	185.13	31.09	180.02	30.82	172.37	30.61	169.84
29.42	201.96	31.35	188.46	31.59	184.61	31.69	179.46	31.37	171.76	31.14	169.21
27.50	200.51	29.19	187.29	29.37	183.55	29.42	178.54	29.06	171.05	28.83	168.58
22.97	194.52	23.83	181.90	23.84	178.37	23.68	173.67	23.11	166.67	22.82	164.36
25.40	200.97	27.07	188.07	27.28	184.42	27.36	179.53	27.09	172.22	26.90	169.79
29.28	198.68	30.79	185.16	30.90	181.34	30.84	176.24	30.31	168.64	30.02	166.14
28.87	201.35	30.71	187.92	30.92	184.10	30.99	179.00	30.65	171.36	30.42	168.84
27.91	200.23	29.57	186.95	29.74	183.18	29.77	178.16	29.39	170.64	29.15	168.16
22.21	198.26	23.46	185.75	23.58	182.23	23.57	177.54	23.22	170.52	23.02	168.19
26.28	201.56	28.06	188.53	28.28	184.84	28.38	179.90	28.13	172.49	27	170.04

Continued on page 29.

the "apex position", i.e. pointing due south. Table 2 lists these modified angles for major UK towns and cities.

Site Surveying

The purpose of a site survey is to establish the best position for the dish. Installation of a fixed, single satellite system is similar to that of a standard terrestrial TV aerial. Thus the survey and installation are carried out at the same time. As there's a little more money in the job when a polar
mount is being installed a more detailed survey may be undertaken. This involves line-of-sight checks with a number of satellites. You may find that trees or other obstructions or buildings restrict the number of satellites that can be received.

To carry out a full site survey you need a list of the look angles for all the required satellites, see Table 1. Use a compass to check azimuth angles and a sighting bar, e.g. a large spirit level, in conjunction with an inclinometer (an angle measuring device) to check the elevation angles. Mark

Table 2: UK polar mount angles.

Town/city	Polar Elevation	Apex Elevation
Aberdeen	32.23	24.95
Aberystwyth	36.95	30.06
Bath	37.97	31.18
Belfast	34.79	27.72
Birmingham	36.90	30.01
Blackpool	35.54	28.53
Bournemouth	38.64	31.90
Brighton	38.52	31.78
Bristol	37.91	31.11
Cambridge	37.14	30.28
Cardiff	37.87	31.07
Chester	36.17	29.21
Derby	36.45	29.52
Douglas	35.22	28.19
Dover	38.22	31.45
Dundee	32.93	25.70
Edinburgh	33.44	26.25
Exeter	38.64	31.90
Fort William	32.58	25.32
Glasgow	33.50	26.32
Gloucester	37.48	30.64
Grimsby	35.79	28.80
Harwich	37.41	30.57
Holyhead	36.05	29.09
Inverness	31.95	24.65
Jersey	40.10	33.50
Kirkwall	30.43	23.01
Lands End	39.30	32.63
Leicester	36.73	29.83
Lerwick	29.28	21.77
Liverpool	35.95	28.98
London	37.86	31.05
Londonderry	34.40	27.29
Manchester	35.90	28.92
Middlesborough	34.79	27.72
Newcastle	36.93	30.04
Northampton	37.13	30.26
Norwich	36.73	29.83
Nottingham	36.40	29.46
Oban	32.98	25.75
Oxford	37.59	30.76
Plymouth	38.97	32.27
Portsmouth	38.55	31.81
Reading	37.89	31.09
Southampton	38.44	31.69
Stoke on Trent	36.37	29.43
Stornaway	31.21	23.85
Sunder 1 and	34.46	27.36
Swansea	37.72	30.91
Swindon	37.81	31.00
Telford	36.70	29.79
Wick	30.98	23.60
York	35.41	28.39

the chosen site with chalk or a stick. Then make a list of the tools and equipment that will be needed.

Points to Watch

Trees, hills, buildings and overhanging eaves attenuate microwave signals. So check that the dish won't be shadowed by any of these and, before carrying out the installation, tell the customer about any satellites from which reception may be blocked. Unless this is unavoidable for technical reasons, choose a position where the dish will be unobtrusive. Avoid positions where the dish will be seen against the sky.

To overcome line-of-sight obstruction by overhanging

Fig. 6: Polar mount settings.
eaves specify a T and K bracket and pole, or an equivalent arrangement, to lift the dish out and above the eaves. Remember that some dishes can't be pole-mounted without modification.

If the siting is particularly critical a compass may not be sufficiently accurate. So carry out a live test by connecting a battery-powered signal-strength meter to the hand-held outdoor assembly to check the signal amplitude.

If the dish is to be installed close to licenced premises mount it at least two drunks high to reduce the risk of vandalism. This should suffice unless a delinquent circus troup passes by.

Customers occasionally ask about distribution amplifiers, remote control extenders, etc. Don't underestimate the time that it will take to set this lot up. It can take literally hours to get a whole system working without intermodulation patterning. Make sure that your quote is high enough for the job!

Dish Alignment Equipment

Although it's possible to align a fixed, single-satellite dish by trial and error, adding a sighting compass, an inclinometer, a long spirit level and a signal-strength meter to the toolbox will save much time and energy.

Ideally the compass should have a mirror, sighting lines and 360° bearing graduations. Inclinometers vary from a rotating dial to sophisticated moire-pattern types with vernier scales. A spirit level of sufficient length to exceed the diameter of most popular sized dishes is ideal. It can also be used for setting mounting poles vertically, marking out drill holes and as a sighting bar in survey work.

Signal-strength Meters

The signal-strength meter is used to monitor the LNB's output. This can usually be done without connecting the polariser.

The cheapest signal-strength meters are the simple wide-

Table 3: Volex Radex cables.

Type	Polariser wires	Attenuation $(\mathrm{dB}) /$ 100 m at $1,750 \mathrm{MHz}$
CT100	0	28.3
CT125	0	23.6
SAT100	0	28.6
SAT1001	1	28.3
SAT1002	2	28.3
SAT1003	3	28.3
Impedance of all types is 75Ω		

Table 1 - continued.

Eutelsat II F2		Eutelsat /I F1		Eutelsat I/ F3		Astra$1 A-D$		DFS-1		Intelsat VIF4	
$10^{\circ} \mathrm{E}$		$13^{\circ} \mathrm{E}$		$16^{\circ} \mathrm{E}$		$19.2^{\circ} \mathrm{E}$		$23.5{ }^{\circ} \mathrm{E}$		$60^{\circ} \mathrm{E}$	
EI	Az	El	Az								
24.08	165.73	23.60	162.24	23.03	158.78	22.30	155.15	21.17	150.34	6.06	114.01
28.64	162.43	27.98	158.80	27.22	155.23	26.28	151.50	24.83	146.61	6.82	111.06
30.04	164.33	29.43	160.62	28.70	156.98	27.79	153.17	26.38	148.18	8.21	112.25
26.06	160.71	25.39	157.19	24.62	153.73	23.69	150.09	22.27	145.32	5.01	110.01
28.99	165.10	28.42	161.43	27.73	157.82	26.88	154.03	25.54	149.07	8.05	112.93
27.37	163.98	26.79	160.39	26.10	156.84	25.24	153.13	23.91	148.25	6.87	112.32
30.82	164.77	30.21	161.03	29.48	157.35	28.57	153.50	27.15	148.47	8.75	112.45
31.03	167.36	30.52	163.58	29.87	159.87	29.05	155.97	27.74	150.87	9.91	114.23
29.93	164.07	29.31	160.37	28.57	156.74	27.66	152.93	26.24	147.96	8.06	112.08
29.57	167.59	29.08	163.88	28.47	160.22	27.69	156.38	26.44	151.34	9.33	114.64
29.77	163.29	29.13	159.61	28.37	155.99	27.43	152.20	25.98	147.25	7.67	111.55
28.05	164.04	27.46	160.42	26.76	156.85	25.89	153.11	24.54	148.20	7.20	112.28
28.59	165.71	28.05	162.06	27.39	158.45	26.56	154.67	25.27	149.71	8.12	113.43
26.79	162.34	26.16	158.78	25.42	155.28	24.53	151.60	23.15	146.77	5.97	111.17
30.88	168.90	30.42	165.13	29.83	161.40	29.07	157.49	27.84	152.36	10.48	115.35
24.67	164.56	24.15	161.06	23.52	157.59	22.75	153.95	21.55	149.15	5.89	113.04
25.16	164.17	24.62	160.66	23.97	157.18	23.18	153.53	21.94	148.72	5.96	112.70
30.51	162.75	29.83	159.04	29.04	155.40	28.06	151.59	26.56	146.62	7.78	111.09
23.95	162.11	23.36	158.65	22.68	155.23	21.85	151.63	20.57	146.90	4.64	111.22
25.05	162.95	24.47	159.44	23.79	155.98	22.96	152.35	21.68	147.56	5.44	111.77
29.54	164.59	28.95	160.91	28.23	157.28	27.35	153.48	25.97	148.51	8.10	112.50
28.10	167.54	27.62	163.89	27.03	160.29	26.28	156.50	25.09	151.52	8.62	114.85
30.01	168.98	29.56	165.25	28.99	161.55	28.25	157.68	27.05	152.59	10.10	115.57
27.61	161.97	26.95	158.38	26.19	154.85	25.26	151.15	23.84	146.31	6.18	110.82
23.45	163.23	22.91	159.78	22.27	156.36	21.48	152.77	20.28	148.03	4.85	112.13
32.30	164.11	31.65	160.31	30.87	156.58	29.90	152.69	28.39	147.61	9.15	111.80
22.08	164.96	21.61	161.54	21.05	158.15	20.35	154.57	19.26	149.85	4.87	113.62
30.70	159.82	29.92	156.14	29.02	152.53	27.93	148.77	26.28	143.87	6.66	109.07
28.95	166.15	28.42	162.48	27.77	158.86	26.95	155.06	25.66	150.07	8.46	113.70
21.12	167.20	20.72	163.79	20.24	160.41	19.63	156.85	18.66	152.12	5.23	115.54
27.83	164.06	27.24	160.45	26.54	156.89	25.68	153.16	24.34	148.26	7.11	112.32
30.28	167.09	29.77	163.36	29.13	159.67	28.31	155.81	27.02	150.75	9.46	114.17
25.36	159.14	24.65	155.65	23.84	152.22	22.88	148.63	21.42	143.91	4.10	108.88
27.89	164.88	27.33	161.26	26.66	157.69	25.82	153.94	24.51	149.02	7.46	112.92
26.89	166.30	26.39	162.71	25.78	159.16	25.01	155.43	23.80	150.52	7.57	114.10
28.81	163.64	28.20	159.99	27.46	156.40	26.56	152.64	25.16	147.72	7.38	111.91
29.40	166.31	28.86	162.62	28.21	158.98	27.39	155.16	26.09	150.15	8.73	113.75
29.28	169.10	28.85	165.40	28.29	161.73	27.57	157.88	26.40	152.82	9.81	115.79
28.59	166.11	28.06	162.45	27.41	158.84	26.60	155.06	25.32	150.09	8.28	113.72
24.29	161.61	23.68	158.14	22.97	154.71	22.12	151.12	20.81	146.38	4.60	110.80
29.83	165.79	29.27	162.08	28.60	158.43	27.75	154.61	26.41	149.59	8.72	113.31
30.72	161.86	30.01	158.15	29.18	154.51	28.16	150.71	26.61	145.76	7.51	110.45
30.87	165.81	30.30	162.06	29.61	158.37	28.74	154.50	27.36	149.44	9.21	113.18
30.19	166.07	29.64	162.34	28.96	158.67	28.11	154.83	26.78	149.79	8.99	113.46
30.69	165.42	30.11	161.68	29.41	157.99	28.52	154.14	27.14	149.10	8.96	112.92
28.39	164.89	27.82	161.25	27.14	157.66	26.29	153.90	24.97	148.96	7.70	112.86
22.32	160.92	21.73	157.51	21.04	154.15	20.22	150.61	18.96	145.94	3.50	110.39
26.52	166.18	26.02	162.60	25.41	159.06	24.65	155.35	23.45	150.45	7.35	114.06
29.47	162.42	28.80	158.76	28.02	155.16	27.06	151.40	25.58	146.47	7.19	110.97
29.97	165.08	29.38	161.38	28.68	157.73	27.80	153.91	26.43	148.90	8.49	112.79
28.68	164.46	28.10	160.81	27.40	157.22	26.53	153.45	25.17	148.51	7.66	112.51
22.63	164.72	22.14	161.29	21.56	157.88	20.84	154.30	19.72	149.56	5.03	113.38
27.55	166.38	27.05	162.76	26.43	159.19	25.65	155.44	24.42	150.50	7.91	114.07

Add correction for local magnetic variation to azimuth values.
band peaking types that monitor signal activity across the entire LNB output band. This type of meter is connected in series with the LNB and the receiver, deriving its power from the LNB feed. Meters of this type are cheap, rugged and reliable, but need continual resetting as full-scale deflection is reached. There are other shortcomings. Such meters don't give a comparative reading of signal strength, and the display may vary rather erratically with signal content. Alignment cannot start until the equipment has been installed, and there's a risk of receiver damage by
shorting the inner and outer coaxial cable conductors. Unless you are within sight of a TV set these meters are the cheapest solution for one-off DIY use.

Battery-powered meters are a considerable improvement. The batteries power the LNB, eliminating the risk of receiver damage. Switched attenuators are included to set the sensitivity, and the display is much smoother. The final attenuator position and the meter reading together give a comparative indication of received signal strength. Automatic shutdown of the battery supply in the event of a short-
circuit is usual. This type of meter is ideal for aligning polar mount aerials since there's no need to alter the tuning for different satellites. The disadvantage is that the batteries may go flat on the job!

Tuned signal-strength meters tune to each downconverted channel individually, giving an accurate signalstrength reading. In addition some models include C / N ratio measurement for each channel, direct channel or frequency selection input, composite video output, an audio output via a built-in speaker and microcomputer control. But watch out for models that, designed for the US market, have an h.f. range extending to only 1.45 GHz instead of 1.75 GHz .

Aligning a Fixed Az/El Dish

Alignment of a fixed az/el mount using a batterypowered signal-strength meter is a trivial task that takes only a few minutes. The procedure is as follows.
(1) Obtain the azimuth and elevation angles for the required satellite at the receiving site from Table 1 .
(2) Tighten the adjuster bolts to take up slack but not so tightly that the dish can't be moved with moderate effort.
(3) Connect a short length of coaxial cable between the LNB and the meter.
(4) Set the LNB power switch to on
(5) Set the attenuator switch to a low value until signals are detected.
(6) Set the elevation angle, using an inclinometer or the stamped graduations provided on some mounting brackets. With an offset focus dish there's usually a special measuring point for elevation setting. This is normally on the boom or the rim of the dish. In such cases a fixed correction angle supplied by the manufacturer is subtracted from the true elevation angle.
(7) Swing the dish to the relevant azimuth compass bearing, corrected for magnetic variation.
(8) Carry out fine setting of the azimuth and elevation adjusters while viewing the signal-strength reading. Increase the attenuator setting as appropriate until a maximum signal reading is obtained.
(9) Set the polarisation offset by twisting the LNB in its holder. Watch for a null in the received signal strength, then rotate through 90°.
(10) Apply grease to all adjuster bolts to reduce corrosion.
(11) Check reception and waterproof all outside connections.

Aligning a Polar Mount

Polar mounts are a little more tricky and are set up in the apex position to start with, i.e. the highest point of the visible satellite arc. In the northern hemisphere this is due south. When in this position the dish can be driven by equal amounts to the east and west. Successful alignment depends on the following two points: (1) adjust the polar elevation angle for peak signal strength from satellites at or near the
apex of the satellite arc; (2) rotate the whole mount assembly around its mast or pillar when peaking signals from satellites far from the apex of the arc, i.e. when trimming the north/south orientation to the apex of the arc.

The basic steps in a well-established procedure that takes fifteen minutes or so to perform are as follows:
(1) Look up the modified polar mount angles for the receiving site - see Table 2.
(2) Find, from Table 1 or by calculation, the elevation angle of a convenient satellite that corresponds to an azimuth 30° or so from due south. Call this SAT 1 .
(3) Ensure that the mounting pole is vertical then set the dish to its apex position, facing as near due south as possible.
(4) Set the polar elevation or polar axis angle, whichever is the easiest to measure.
(5) Set the apex elevation or apex declination angle. The declination offset angle is set automatically. With an offset focus dish the manufacturer usually specifies a measurement point and elevation correction angle for the particular model.
(6) Connect a wideband signal-strength meter to the LNB.
(7) While monitoring the resultant elevation (actual elevation) of the dish, rotate it around the polar axis until the measured elevation matches the elevation of SAT 1. Hold this position by any means at your disposal. Then slowly rotate the whole assembly around the mast until maximum signal strength is obtained from SAT 1. Temporarily tighten the adjuster bolts. This in effect trims the aerial's north/south orientation by making use of the station-keeping accuracy of SAT 1. It may at this stage be convenient to optimise the focal length setting of the feedhorn.
(8) Move the dish back around the polar axis until signals from a satellite close to the apex of the satellite arc are detected. Call this SAT 2. Fine trim the polar elevation or polar axis for maximum signal strength from SAT 2.
(9) Drive the dish back to SAT 1 and trim further for maximum signal strength by slightly rotating the whole assembly around the mast.
(10) Repeat steps (7) to (9) as often as you need to do to obtain consistently peaked signals from both satellites. It may be necessary at each stage to tighten the adjuster bolts temporarily. If difficulty is experienced, start again.
(11) Check the picture quality and tracking with several satellites. When satisfied, fully tighten and grease the adjuster bolts. Recheck the picture/sound quality in case final tightening has put the alignment out slightly. If so repeat steps (7) to (9).

Cables

The first i.f. band $(950-1,750 \mathrm{MHz})$ is rather higher than that used for terrestrial TV transmissions so, except for very short runs, a fatter, double-screened cable is required. The important parameter is the attenuation figure in dB per 100 m at the frequencies used. Cables with low attenuation
per 100 m tend to be of large diameter and can thus be expensive. Clearly a compromise between acceptable diameter cable and reasonable cost is needed for the domestic market.

If there's often a grainy picture with cable runs of greater than 30 m the use of a line amplifier should provide an improvement. Line amplifiers are powered by the LNB supply that's fed along the coaxial cable. Note that it would be pointless to fit one where sparklies are experienced since no improvement in the carrier-to-noise ratio would be obtained. The only cure for this problem is to use a larger dish or perhaps a lower-noise LNB.

Table 3 gives details of a range of cables manufactured by Volex Radex. Where incorporated the polariser conductors are bonded to the coaxial cable in a separately insulated outer sheath.

Double-screened coaxial cable is used with the V/H switch type of polariser, where control of the polariser is by switching the LNB supply between 13 V and 17 V . Combination cable, with an extra polariser conductor, is used with 0 and 80 mA electromagnetic polarisers - the outer coaxial braid is used for the return current. Combination cable with two polariser conductors is used with +40 mA and -40 mA electromagnetic polarisers. Cable with three polariser conductors is used with mechanical polarisers, the connections being +5 V , earth and pulse for motor control. Cable connections at the receiver end are usually marked. When carrying out any sort of cabling it's vital that the equipment is switched off: check for shorts between the connections before switching on.

The cabling requirements with polar mount installations are a little more complex, but special all-in-one ribbon cables are available for the purpose. They consist of the following: (1) Double-screened coaxial cable for feeding the down-converted signals to the receiver. The $15-24 \mathrm{~V}$ LNB supply is fed via this cable. (2) Three polariser conductors as detailed above. Any unused conductors can be snipped off. (3) An actuator cable for the dish drive. This consists of two larger-diameter conductors for the actuator motor supply and three smaller-diameter cables for the position sensor (5 V , position sensor pulses and earth). It's important to wire these three connections correctly: mistakes are costly!

Most manufacturers produce cables with a choice of PVC or PE (polyethylene) sheathing. PE cables can be buried directly but it's not advisable to use PVC for underground cables in any situation. Volex Radex has a special cable sheath called RBS (Raydex Bonded Shield) for use in underground ducting: it has a waterproof, bonded outer jacket that's both impact and abrasion resistant and also has good slip characteristics.

Installing Cables

Agree with the customer the the shortest cable route that's consistent with aesthetic considerations. Try to make it as unobtrusive as possible by following the natural lines of a building, e.g. eaves, window frames and brick courses. Avoid tacking cables close to building entrances as children may tug at them. Dogs are a problem with low tacked cables, particularly where the cable enters the building - add a few extra cable clips.

As a general rule don't bend a coaxial cable less than ten times its diameter, otherwise attenuation may be introduced, and don't allow the cable to scuff against sharp edges. The clips used shouldn't deform the cable in any way. Avoid perfectly regular tacking distances. The recommended distances are less than 750 mm for vertical runs and less than

BACK COPIES

We have available a limited stock of the following back issues of Television:

1991 November.
1992 January, February, April, May, June, July August, September and October.

Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Publishing,
Television Back Issues,
Room L323,
Quadrant House,
The Quadrant, Sutton,
Surrey SM2 5AS.
Make cheques/postal orders payable to Reed Business Publishing Ltd.

230 mm for horizontal runs. For cable extensions use appropriate impedance line connectors overwrapped with selfamalgamating tape. Leave a sufficient length of cable to form a drip loop at the head end, so that water is forced to drain away from connections.

An overhead cable span may be used to bridge a walkway or concreted area. Support the cable with a galvanised, stranded steel wire attached to rigid eyelet wall fixings: use plastic cable ties to link the support wire and the cable. The overall sag at the centre should be between 1.5 and 2.5 per cent of the span length.

Cable entry holes should be a millimetre or two larger than the cable diameter to prevent cable scuffing and distortion. Drill the hole from the inside out, with a downward tilt to prevent rainwater entering from outside. Large multisheath ribbon cables for polar mounts can be rolled up to feed through the appropriate hole. Form a drip loop and seal the hole on the outside with a waterproof sealer. It's best to feed a multisheath cable through the wall. Single coaxial cables can be fed through a window frame where this is convenient and the frame is made of wood.

Connectors

Most LNB outputs are of the F connector type but receivers may have either an F or a Belling and Lee type socket depending on make and model. F connectors can be either crimped with a special tool or simply twisted on to a pre-stripped cable. The twist-on type is more versatile. Connections to mechanical and electromagnetic polarisers are best made with grease-filled scotch-locks: each unstripped polariser exit lead is pushed into a connector along with its feed wire and crimped with a pair of pliers. Receivers usually have screw terminals for the polariser connections but some have plugs and sockets.

Weatherproofing

There are three ways of weatherproofing outdoor connections. The first is to use a weatherproof rubber boot, the second to use a sealing compound and the third to overwrap with self-amalgamating tape. Long-term trials have shown that self-amalgamating tape - the easily moulded variety -
works best. Rubber boots tend to crack and perish in a relatively short time. Bath sealing compounds that contain acetic acid can cause corrosion and failure of the LNB. New compounds have recently been developed specifically for the purpose and should be o.k.

Most service calls to satellite equipment because of complaints about sparklies occur when rainwater has got between the LNB/polariser/feedhorn flanges or through the periphery of a feedhorn cap. This can be prevented by overwrapping with self-amalgamating tape.

Preset Controls and Tuning

Tuning problems associated with the satellite receiver, the TV set and the VCR comprise the most time-consuming part of an installation. In view of the profusion of tuning arrangements in use this is no trivial task. The basic method however is as follows:
(1) Tune a spare TV set and VCR channel to the satellite receiver's r.f. output.
(2) Tune in the satellite receiver - most now come pretuned.
(3) Optimise the polarisation. With models that use a magnetic or mechanical polariser check that each channel is set for optimum polarisation at the receiving site. Again this is normally preset to a certain extent. If poor pictures are obtained with an electromagnetic polariser try switching the control leads over. With a V/H switched type of polariser check that the correct polarisation sense is programmed for each channel.

Trouble-shooting

It's surprising how often Murphy's Law comes into operation when carrying out an installation, so here's a simple fault guide to the problems likely to be encountered. Generally a multimeter with an audible continuity test and a signal-strength meter will suffice. An oscilloscope may also be useful for monitoring position count pulses from a polar mount actuator or the pulse drive to a mechanical polariser.

The first step is to isolate the unit that's causing the trouble.

Start by using the signal-strength meter to check the LNB's output. If a good reading is obtained the LNB is probably o.k. If in doubt about the gain or noise level fit a replacement. Next check that the LNB's supply voltage, which is typically in the range $15-24 \mathrm{~V}$, is present at the receiver's LNB input socket. It's possible when installing equipment to short a coaxial cable's inner conductor to its outer braiding accidentally, sometimes blowing a fuse or safety resistor in the receiver.

Check the polariser circuit. If signals are missing or weak or only one polarisation sense can be resolved a fault in the polarisation section is likely. With V/H switched polarisers check that the LNB supply's voltage level shift alternates between 13 V and 17 V with the V and H polarised channels respectively. If these voltages are present but channels of only one polarisation sense can be received suspect the LNB. Electromagnetic polariser currents can be checked by connecting a multimeter switched to its 100 mA range in series with one of the polariser feeds. The currents should be +40 mA and -40 mA depending on the polarisation of the received signal or, with some designs, 0 and 80 mA . If no current reading is obtained check the d.c. resistance of the polariser windings. The resistance should be about 70Ω. If
this is o.k., suspect the control circuit. If a high resistance reading is obtained check the outdoor connections. With a mechanical polariser check the 5 V supply and that motor drive pulses are present when the skew control is operated.

If a dish with a polar mount fails to move check that the motor supply (36 V) is present when the dish should be being driven. Check that the position sensor is correctly wired both at the indoor unit and at the actuator jack. Incorrect wiring can damage the position sensor.

Use the multimeter to check for cable breaks. This can be done by using another length of cable. To check that a length of coaxial cable is sound, use a jumper lead to short the inner conductor to the outer braid at one end, then check for zero resistance across both conductors at the other end. High-resistance readings indicate that the cable is broken at some point along its length - the break is usually within a few centimetres of a connection.

RF Patterning

A separate satellite receiver, VCR and TV set are often interconnected at r.f. Patterning, often intermittent, can be a problem in some areas. In fact it may be impossible to set the r.f. modulators in the VCR and satellite receiver so that interference is not present at some point. The patterning may be noticed on a normal TV channel far removed from the narrow tuning band of the r.f. modulators, and may be particularly bad in areas where many terrestrial stations can be received in the same band. Experience shows that most of the trouble is caused by radiation from interconnected r.f. cables. The solution is to use double-screened cables throughout rather than the "bits of string" supplied by VCR and satellite receiver manufacturers. If Channel 5 ever does start up this problem will clearly become a nightmare!

AFC Offset Adjustment

The down-converted first i.f. band can vary slightly from one LNB to another. Normally this doesn't cause too much trouble, but sparklies may appear because of slight frequency mismatching between the LNB's output and the receiver. This may be noticed with certain weaker transponders or after replacing a faulty LNB.

The adjustment to correct this is called a.f.c. offset. It can be set either from the remote control unit or by means of an internal preset in the receiver. If a preset resistor is used, the adjustment must be carried out very slowly in discrete steps, as there's a small time delay before the a.f.c. locks on each time. Low cost V/H switched head ends are particularly prone to this effect.

Basic Equations

The basic equations for elevation and azimuth are as follows:

$$
E 1^{\circ}=\arctan \{[6.61 \times \cos A \times \cos B-1] /[6.61 \sqrt{ }(1-
$$ $\left.\left.\left.\cos ^{2} \mathrm{~A} \times \cos ^{2} \mathrm{~B}\right)\right]\right\}$.

$$
\mathrm{Az}^{\circ}=180+\arctan (\tan \mathrm{B} / \tan \mathrm{A}) .
$$

where A is the receiving site latitude (+ in the northern hemisphere, - in the southern hemisphere) and B is the receiving site longitude minus the satellite longitude (expressed in degrees E). The term 180 in the azimuth equation is dropped in the southern hemisphere. The term 6.61 is the ratio of the radius of the geosynchronous orbit to the Earth's equatorial radius.

CD Player Notebook

Reports from Mike Leach, P.J. Roberts and Chris Hawkins.

NordMende CP3500

This machine wouldn't work at all after a new laser had been fitted. There was no TOC reading and although the turntable rotated it didn't do so at the correct speed. Going through the setting up procedure made no difference, and all the supplies were o.k. A check on the r.f. eye pattern showed that it was very poor and distorted and lasted for only a few seconds before the machine shut down in the stop mode. The cause of the trouble was dry-joints on the main panel - lots of them! I could see that most of the transistors required attention, and after a good solder up I was able to set up the machine. All was then o.k. One to watch out for.
M.L.

Akai ACM370L

This was a bit of a silly one really, but it caused some difficulties before we got to the bottom of the problem. A new laser had been fitted to this midi system, which was working all right. After using it for about a week however the customer brought it back with the complaint that "the tray was sticking and there was a crunching noise". When we ran it in the workshop it performed perfectly and quietly. Now as with all CD midi systems this machine is not easy to strip down. But we did so in order to check whether there was anything amiss in the tray mechanism. There wasn't.

The customer insisted that the tray would stick and sent us some discs to prove the point. This they did: the tray
stuck because the hole in one of the discs was too small. When the open/close button was pressed to eject the offending disc the clamp stuck, making the crunching sound complained about. I felt like charging him a second time for all the hassle he'd caused but I'm too nice for that. I just smiled politely and sent him on his way.
M.L.

Test Disc

In previous CD player fault notes I've mentioned a test disc. Readers may be interested in details of this helpful item. The one I use is manufactured by Panasonic, the part number being SZZP1054C. Tracks 1, 2, 16 and 17 are for reference purposes and don't have any defects. Tracks 3-8 have an information layer break that increases in width from 0.4 mm (track 3) to 0.9 mm (track 8). On the readout side of tracks $9-15$ there's a black dot whose size increases from 0.3 mm to 0.9 mm . Tracks 1 and 2 have a 1 kHz sinewave (L +R) at 0 dB while tracks $3-17$ have a 400 Hz sinewave at -10 dB .
P.J.R.

Saba DAD9772TM/Telefunken CD300

A problem we've had is that the disc eject system fails to lift and eject the disc after playing two or three discs. Before you examine the mechanism check for dry-joints around the two voltage regulators IP05 (7805) and IP10 (LM317). They are mounted close to the mains transformer. C.H.

Philips G90 Chassis

The complaint was of a "frilly picture". When I tried the set I found that the picture was too large and had corrugated verticals. So I switched off quickly. On inspecting the main panel I saw that resistor R3668 and transistor Tr7652 in the chopper feedback circuit had burnt up. Replacing these items and fitting a new CNX83 optocoupler returned the 95 V h.t. supply to normal, but the corrugated verticals were still present. Replacing the $47 \mu \mathrm{~F}$ h.t. reservoir capacitor C2630 cured that.
P.B.

Ferguson TX100 Chassis

For intermittent low contrast check whether the tube's heaters are going out. The solid-cored wires can break where they go into the plug connector by the line output transformer.
P.B.

Philips K40 Chassis

This set had very weak sound. The signal was present at the output of the i.f. strip and then passed through all the switching chips but went missing at the audio output module. A new TDA1524 tone-volume control chip was required.
P.B.

Sharp C1421

The fault note said "stuck in standby". When I switched the set on the e.h.t. rustled up for a second then the set went into the standby mode. As the e.h.t. rustle seemed to be rather violent I tried the set with a 110 V mains supply. It then came on, but if the mains supply was raised the 115 V supply to the line output stage rose as well. The STR40090 chip was faulty.
P.B.

Philips GR1-AX Chassis

This set had an odd fault: the volume control couldn't be turned down with the remote control unit and no stations could be tuned in. As with most modern sets these functions are carried out by a microcontroller chip, but experience has taught us that failure of the associated RAM chip is much more common. So we replaced the ST24C02CP chip IC7785, which is also the cheaper of the two devices. This time we were wrong however. The microcontroller chip 1C7700 was the cause of the trouble. The original one was type TMP47C $434 \mathrm{~N}-3559$ but the replacement supplied by Willow Vale was type TMP47C434N-3537, i.e. it had a different mask. In addition it came with a small tin shield. It's presumably a new, improved type.
M.Dr.

Triumph TC1670/Hitachi NP8CQ Chassis

We didn't realise that this Triumph badged set was fitted with an Hitachi chassis until we removed the back. The complaint was of a very dark picture, and a check on the first anode voltage showed that it was very low at around 200 V . Further investigation revealed that the first anode supply's $0.068 \mu \mathrm{~F}, 1 \mathrm{kV}$ reservoir capacitor C 714 was open-
circuit. It's the very large capacitor mounted on the small vertical subpanel behind the line output transistor's heatsink.
M.Dr.

Matsui 1455

The complaint with this 14 in . portable was that the sound and vision would sometimes disappear, leaving a blank white screen. A check showed that when this happened it had gone into the AV mode. But when the on-screen display was called up the channel number appeared. A check on the voltage at pin 6 of the microcontroller chip IC401 showed that this was correct, i.e. low for TV and high for AV. Our next checks were on the AV panel at the rear of the set where we found that the AV switching transistor Q1103 was without its 12 V collector supply. On tracing the source of this supply we came to R121 which had voltage at both sides. The only thing between R121 and Q1103 was the print, which turned out to have a hairline crack. M.Dr.

Amstrad CTV2000

This set came in because of field collapse, but on further investigation we found that there was no sound and the channel LEDS didn't light up. A start was made at the TDA3652 field output chip IC801. Pin 9 had the correct 28 V but there was no field drive at pins 1 and 3 . This took us back to the LA7800 timebase generator chip which has two supplies, one at pin 15 for the line generator and one at pin 12 for the field generator. There was no voltage at pin 12 because R840 ($10 \Omega, 2 \mathrm{~W}$) was open-circuit.

Replacing this resistor restored the set to life. While it was on soak test next day however R840 again failed. This time a short-circuit could be measured to chassis. Several electrolytics were checked to no avail, then the short disappeared. Until next day that is, when R840 once again went open-circuit. This time the cause of the mystery short was found amongst the spaghetti of wires that make this set so difficult to work on. A $2 \mathrm{~A}, 20 \mathrm{~mm}$ fuse was found wedged between some components in the corner of the chassis. I can only assume that a previous repairer had dropped it and been unable to find it. The fault showed up after the set had been disturbed whilst moving house.
M.Dr.

Sony BE1 Chassis

This set came in with the complaint that the height was excessive. We noticed that it began to fluctuate as the set warmed up. After ruling out the possibility of a noisy height control we turned attention to the JC501Q transistor (Q501) that's connected across it. This transistor is used to provide height compensation with beam current changes, receiving an input from pin 7 of the line output transformer. Although it tested o.k. a replacement cured the fault. A 2 SC 1815 worked fine - we didn't have this oddly numbered transistor in stock.
M.Dr.

Finlux 51590

Both fuses in the power supply had blown, the BU208 chopper transistor was short-circuit and the $270 \mathrm{k} \Omega$ resistor
connected to pin 4 of the TDA4600 chopper control chip was open-circuit. It's worth emphasising that whenever you find the chopper transistor in a power supply of this type short-circuit the value of the resistor(s) connected to pin 4 of the chip should be checked. Yes, I know that this point has been made before, but people still get caught out!
J.O.

Panasonic TX21M1T (Z4 Chassis)

No sound and only half a picture was the complaint. Sure enough the line scanning was locked but the start was shifted about half way across the screen. Checks around IC601, where the video and line outputs are obtained, failed to reveal anything amiss. Eventually the culprit turned out to be the $0.01 \mu \mathrm{~F}$ capacitor C503 across the line shift control it was leaky. Replacement restored the sound and the complete picture.
B.S.

Panasonic TX21T1 (Alpha 2 Chassis)

This set operated perfectly for an hour or so. Then the sound would mute and no controls would work. There didn't seem to be any problems around the main microcomputer chip IC1203 and the DAC chip IC171. The data and clock signals fluctuated normally - usually the data freezes if one of these chips is faulty. Eventually, after much hair tearing, it transpired that the PCD8582P memory chip IC1202 was faulty.
B.S.

Panasonic TX15M1T9 (Z4 Chassis)

This set permanently displayed a letter C towards the left, centre of the screen. In these sets the on-screen graphics are generated by the main microcomputer chip IC1213. A similar system is used in the Alpha 3 chassis. Here, if anything strange happens you can reset the microcomputer chip by entering a test mode. This is initiated by set's volume down button while depressing the timer button on the remote control unit. The set then displays a column of o.k.s and resets to normal operation. Fortunately this also applies with the Z 4 chassis, though there's nothing to say so in the manual.
B.S.

Osaki 142

This set tripped at switch on. Heating the TA7869 chip, which contains the line and field generator and the luminance and chroma processing circuits, stopped the tripping and the set then worked all right. But this wasn't the cause of the fault: the actual cause turned out to be the STR50103 power supply chip.
K.E.F.

Sharp C1431H

The power supply was working, with the h.t. correct at 115 V , but there was no drive to the line output stage. We had to check back to IC801, which contains the timebase generators. It has two supplies, one to get things going at start up. This comes via D619 and Q610, which is turned on by R679 ($100 \mathrm{k} \Omega$). A check showed that this resistor, which is connected to the 115 V supply, was open-circuit. K.E.F.

Ferguson TX10 Chassis

This oldie had a fault I'd not seen before. There was a halfinch wide black line across the picture, with field instability. The picture was of the correct size and was locked in the
right place. A replacement TDA2576A timebase generator chip cleared the fault.
K.E.F.

Philips CP110 Mk II Chassis

Later sets in this series have an additional overvoltage trip on a subpanel. When it works the 1.6A Wickman fuse Fl 653 goes open-circuit, the result being a dead set. This always seems to happen after an hour or three. I've found that replacing the CNX62 optocoupler provides a cure. K.E.F.

Amstrad SRD400 Satellite TV Receiver

This seems to be a very reliable receiver. One problem we've had concerns the child-lock function - customers seems to forget their numbers. Unfortunately of late we've had a few sets that can't be cleared using the reset method with a $1 \mathrm{k} \Omega$ resistor: we've had to replace the SDA2516 chip.
K.E.F.

Nikkai TLG99/Solavox 141

These sets always seem to come in dead. Here are various faults we've had. R109 ($180 \Omega, 0.5 \mathrm{~W}$) goes open-circuit. This resistor's body colouring makes it look as though the value is $1.8 \mathrm{k} \Omega$ - I've even had a faulty one measure $1.8 \mathrm{k} \Omega$! Q117 (2SC1573A) often goes open-circuit. It's an npn transistor rated like a video output device. Another regular failure is the remote standby transformer whose primary winding goes open-circuit. The 12 V supply filter resistor R104 ($5 \Omega, 1 \mathrm{~W}$) can and does go high in value. This usually results in a dead set though in one case the symptom was persistent field collapse because the low 12 V supply upset the TDA4503 chip, removing the field drive.
S.L.

ITT CVC1200 Series Chassis

I've never been completely at home with discrete component chopper power supply circuits. In my experience they either work normally or self-destruct. This case fell into the latter category. At switch on the BU508A chopper transistor would go short-circuit, blowing fuse Si651 (FlA). By using a variac I was able to prove that the filter capacitor C701 $(4.7 \mu \mathrm{~F}, 350 \mathrm{~V})$ was faulty. Nothing unusual about that, I hear you say. But it took rather longer that it should have done because a replacement had only recently been fitted.

The set worked when C701 and the chopper transistor had been replaced but the output voltages were low. We cured this by replacing the various small electrolytics and the ZPD8. 2 zener diode D721 in the control section on the isolated side of the circuit. After setting up the 117 V rail we were rewarded with normal pictures and sound. This lasted for only half an hour, after which T712 (BC328) in the chopper driver stage went short-circuit. It had presumably been weakened by the earlier problems with the BU508A chopper transistor.

Philips 2A Chassis

If you come across one of these sets with the 2AT mains fuse 1651 blown don't immediately go for the chopper transistor. It's quite common to find that the chopper transformer's tuning capacitor C2664 ($1.5 \mathrm{nF}, 1 \mathrm{kV}$) has gone short-circuit.

A totally blank raster with no sound but with the e.h.t., focus, first anode and l.t. supplies present may have you fooled, but not for long. Replace the back-up battery, reset the analogue controls and the panic will be over. S.L.

The DCC Audio Format

George Cole

Philips and Matsushita have now launched in the UK their Digital Compact Cassette (DCC) format, which is a digital version of the conventional audio cassette. The companies hope that it will become a new home audio recording standard.

Background

Philips introduced the analogue compact cassette (ACC) in 1963. It was originally intended as a low-fi system for dictation, with a tape speed of $4.75 \mathrm{~cm} / \mathrm{sec}$ and a tape width of 3.8 mm . There were no restrictions on tape type or grade. Sound quality was vastly improved with the development of new types of tape, e.g. metal, new head technology and Dolby noise reduction systems. As a result, ACC became the world's largest selling audio format. In 1990 ACC sales included $1,600 \mathrm{~m}$ blank tapes and one billion prerecorded cassettes. In comparison, CD and vinyl LP record sales during the same period were 780 m and 260 m respectively. Around 180 m recorders are sold each year. But cassette sales are declining, and the consumer electronics and musical industries believe that consumers are becoming tired of the ACC and that increasing sales of CDs have resulted in a demand for a digital tape system.

Analogue recording systems can produce high-quality sound. But the recording process has to be carefully controlled. An h.f. bias signal is required to improve the recording characteristic, bias and equalisation have to be matched to tape type, the recording level has to be set correctly to avoid distortion and a stable tape transport system is required to avoid wow and flutter. A digital system records the sound in digital form: there's no need to worry about bias, equalisation or recording levels.

When the CD was launched in 1982 it was inevitable that a home digital tape system would be developed. JVC came up with a system that recorded the sound as pulse code modulation (PCM) on a conventional cassette. It used metal tape that ran at 1.5 times the normal speed, with a fixed multi-track head that recorded eight tracks along the tape linearly. But the shorter playing time, limited frequency response (to 15 kHz) and problems with producing the thinfilm heads led to it being abandoned.

A number of companies joined forces to develop a new tape system known as DAT - Digital Audio Tape. Full details were given in the February 1991 issue of Television. The version that was eventually adopted used helical scan-

Fig. 1: DCC record and playback processing.
ning of the tape. The 30 mm drum had two heads spaced 180° apart. It rotated at 2,000 r.p.m., giving a tape writing speed of $3.13 \mathrm{~m} / \mathrm{sec}$ - the linear tape speed was $8.15 \mathrm{~mm} / \mathrm{sec}$. High-density, high-coercivity metal-powder tape was used, enabling a tiny DAT cassette to store up to two hours of sound (or four hours with half-speed recording). A sub-code system provided a number of features such as search and track programming.

DAT was an elegant technical solution, but was not a success commercially. There were several reasons for this: the tape and the players were expensive; the launch was delayed because of music industry lobbying; there was a shortage of software; the cassettes were small and fiddly; and the system was incompatible with all other audio systems.

Enter the DCC

The solution was the digital compact cassette, which was announced by Philips in 1991. Matsushita was officially credited as having been the co-developer the following summer. Like DAT, the DCC format stores CD-quality sound on a cassette. But the DCC uses conventional audio cassette technology. Thus the decks are cheaper and easier to produce, while tapes can be duplicated at 64 times normal speed - with the DAT system tapes have to be copied in real time. But the system's developers claim that its winning feature is its backwards compatibility with existing ACCs DCC machines can play both digital and analogue cassettes. DCC decks cannot make analogue recordings however, nor can ACC machines use DCC tapes.

DCC Basics

DCC uses a stationary multi-track head to record and play back sixteen parallel audio tracks along the tape. It's a two-channel stereo system with a frequency range of 5$22,000 \mathrm{~Hz}$ and a dynamic range of over 105 dB . The format was made possible by a new coding system that has a data rate of just $384 \mathrm{kbits} / \mathrm{sec}$ (this compares with the $1.54 \mathrm{Mbits} / \mathrm{sec}$ for DAT). The track width is $185 \mu \mathrm{~m}$ and the maximum recording time two hours.

The coding system is known as Precision Adaptive Sub-

Fig. 2: DCC track layout.
band Coding (PASC), which is four times more efficient than the PCM coding used by the CD and DAT. It makes use of two characteristics of human hearing, the threshold of hearing and signal masking. Sounds that are below the threshold of hearing are ignored. Masking occurs when a weaker sound is pushed below the threshold of hearing by a stronger one at a similar frequency. PASC also ignores these masked signals. As a result, PASC needs to code only 25 per cent of the available audio data.

PASC also uses an adaptive bit allocation system to make more efficient use of the bits available. Basically, more bits are allocated to stronger signals than weaker ones - the range of bits that can be allocated in this way varies from 2 with a weak sound to 15 , this allocation being in addition to a basic allocation of 6 bits. This is referred to as the scale factor: the bits cover a range of -118 dB to +6 dB in 2 dB steps. The scale factor indicates the signal's scale within the dynamic range. As a result PASC provides a dynamic range that's equal to 19 -bit coding.

Player Block Diagram

Fig. 1 shows in simplified block diagram form the DCC recording and playback processes. The player will accept either an analogue or digital sound input. Analogue signals first undergo AD conversion. The signal is then filtered into 32 sub-bands: the PASC system uses real-time processing to calculate each sub-band's threshold level and the number of bits to be allocated to it. The sub-bands are next multiplexed for recording on eight parallel tracks, and error-correction bits are added. Reed-Solomon error correction is used to reduce the effects of random and burst errors: dropouts of up to 1.45 mm diameter and damage extending to one and a half tracks can be corrected. After eight-to-ten modulation the signal is ready for recording on the tape.

A ninth, auxiliary track on the tape is used for sub-code and control bits. This track has a data rate of $12 \mathrm{kbits} / \mathrm{sec}$.

Head and Track Layout

Fig. 2 shows the track layout. The tape is divided into upper and lower sectors that correspond with the two "sides" of an ACC tape. The head reads all nine tracks eight audio and the auxiliary track - in one sector simultaneously. At the end of the tape an auto-reverse system rotates the head so that it reads the other sector. Track width is $185 \mu \mathrm{~m}$ and there's a $10 \mu \mathrm{~m}$ gap between tracks. The playback head reads a track width of only $70 \mu \mathrm{~m}$ however. This makes DCC tolerant of mistracking and azimuth errors.

The thin-film head is made using a similar method to the lithographic process employed in LSI chip manufacturing. There's no erase head as data is overwritten. The head provides for digital recording, digital playback and analogue playback. At present there's no provision for analogue recording as this would complicate head construction and require additional circuitry, an erase head etc., but Philips says that DCC/ACC double decks are a possibility. The DCC head has nine integrated elements for digital recording, nine magneto-resistive elements for digital playback and two magneto-resistive elements for analogue playback. With the magneto-resistive system the varying magnetic field from the tape alters the element's resistance.

Tape and Cassettes

As the shortest recorded wavelength is $0.99 \mu \mathrm{~m}$ the DCC system can use low-coercivity tape. Chrome- or cobaltdoped ferric oxide tape with a coercivity of 700 Oersteds is
used. The magnetic layer is $3-4 \mu \mathrm{~m}$ thick, the total tape thickness being $12 \mu \mathrm{~m}$. Tape width is the same as with an ACC.

The DC cassette is basically the same size as the ACC but is styled differently and has a uniform thickness of 9.6 mm . Its top looks like a CD case and has the artist's name and a photograph. The tape is protected by a metal slider, a system borrowed from computer floppy discs. To reduce the risk of tangling or jamming, the tape reels are locked until the cassette is played. Blank DCC tapes have a slider that can be used to prevent accidental over-recording. A series of ID holes tell the machine the total tape playing time: this information is used to calculate and display the remaining tape recording time.

A couple of features improve the tape tracking. Two azimuth locking pins (ALPs) increase the wrap-round angle of the tape against the head while a fixed azimuth tape guide (FATG) system consisting of slots at the top and bottom of the head assembly improves the tape alignment. This system is not only effective, it's also cheaper and easier to produce than the pilot-tone tracking system used with DAT.

DCC playing times vary from 45 to 120 minutes (types D45, D90 etc.), though there's provision for longer-playing tapes. Tape speed is the same as with the ACC, i.e. $4.75 \mathrm{~cm} / \mathrm{sec}$. There's no half-speed system because Philips wants any DCC tape to play on any DCC machine: the company doesn't however rule out the possibility of the standard being extended to include LP recording at a later date.

DCC Coding

The data is arranged as a series of frames. Each consists of 12,288 bytes of information, excluding sync data. There are 8,192 bytes of PASC data, 3,968 bytes are used for error detection and correction and there are 128 bytes for system information - this includes text mode data and other information such as copyright details.

The text mode display system enables a DCC deck to show various types of information, such as artist details, lyrics, song titles etc. Up to 255 different items can be included on a tape and, with an eye to international markets, the text can be encoded in up to seven different languages. Around 400 characters per second of text data can be stored and displayed. There are several types of text display as follows: one line of 12 characters, for example the artist's name; two lines of forty characters, for song titles and other information; 21 lines of 40 characters, for biographical information, lyrics etc. The text mode is optional, and the coding system used is such that text data cannot be transferred when a tape is copied. Philips hopes that this will deter people from copying prerecorded tapes.

DCC Recorders

All DCC recorders will be able to handle three digital sampling rates, 32 kHz for digital broadcasts, $44 \cdot 1 \mathrm{kHz}$ for CD signals and 48 kHz for DAT. The latter two rates provide CD-quality sound. A sampling rate of $44 \cdot 1 \mathrm{kHz}$ is used when recording analogue signals, e.g. from LP records.

Inaudible ID markers buried in the auxiliary track enable the machines to offer features such as direct track access, fast search, track programming etc. The DCC format's autoreverse system makes track search faster than with an ordinary tape deck, but it will still be much slower than with CDs and DAT.

A serial copy management system prevents the user from making multiple recordings from a digital copy.

Long-distance Television

Roger Bunney

August was a relatively poor month for Sporadic E reception. Although there were several days when activity was high, most days were indifferent. Conditions did improve somewhat towards the end of the month however. The Perseids meteor shower didn't produce much either, and the only slight tropospheric lifts were on the 12th, 15 th and 21 st. The following $\mathrm{SpE} \log$ shows that there were four good openings, on the 10th, 11 th, 28th and 30th.:

5/8/92 RAI (Italy) ch. IA; TVA (Italy).Ch. IA; HTV/JRT(Yugoslavia) ch. E3.
6/8/92 TVE (Spain) chs. E2, 3.
9/8/92 SVT (Sweden) E3; NRK (Norway) E2; TVE E2.
10/8/92 TVE E2, 4; RAI IA, B; C+ (France) L2, 3; ARD (Germany) E2; CST (Czechoslovakia) R1, 2; TVR (Romania) R1;HTV E3; +PTT (Switzerland) E4; TVP (Poland) R1; ORF(Austria) E2a, 4; SVT E3; NRK E2, 3; CSI (Russia) R1-4; DR (Denmark) E3; RUV (Iceland) E3, 4.
11/8/92 TVE E2-4; TVE-2 E2; RTP (Portugal) E3; RAI IA, B; +PTT E2, 3; TVR R2; MTV (Hungary) R1; RSTH (Albania) IC.
12/8/92 TVE E3; DR E3; YLE (Finland) E4.
13/8/92 RTT (Tunisia) E4 (received by Tim Anderson).
15/8/92 DRE3.
16/8/92 TVE E2; SVT E2.
18/8/92 TVE E2; RAIIA; DR E3.
19/8/92 TVE E2; DR E3.
22/8/92 +PTT E2; ARD E3; DR E3.
23/8/92 TVE E2-4.
25/8/92 CST R1; TVE E2. Reports indicate that there was a good SpE opening this day.
28/8/92 RAI IA, B; TVE E2; +PTT E2; DR E3; NRK E2; ARD E2; HTV E3; C+L2, 3.
29/8/92 TVE E2, 3; +PTT E2; DR E3.
30/8/92 NRK E2-4; SVT E2-4; YLE E4; CSI/OKI R1, 2.
My thanks to Roger Fussell (Torpoint), Iain Menzies (Aberdeen), Tim Anderson (St. Leonards), Peter Schubert (Rainham), Brian Williams (Penarth) and Simon Hamer (Powys) for sending in reception reports.

Some years ago Ian Beckett designed a wideband Band I array consisting of a reflector and a three-element dipole assembly. It was featured in this column at the time and is shown in the TV-DXer's Handbook. Brian Williams has been experimenting with this system recently and suggests that improved results are obtained by connecting the feeder to the longest of the elements in the dipole cluster, i.e. the one nearest the reflector, also that gamma matching enhances the performance. More details next month.

Tim Anderson and Dave Shirley have just completed programming two computer discs on DXing. One, for Band I TV-DXers, provides worldwide channel allocations and transmitter lists. The other, entitled "Amiscan", is described as a confidential scanner frequency list with a difference! They are available on 3.5 in . discs for Amiga/IBM PCs 5.5 in . to order. The TV-DX disc costs $£ 8$ and the Amiscan $£ 7.50$, both including post and packing. For further details
write to Tim/Dave at 2 Burry Road, St. Leonards, E. Sussex TN37 6QX including an s.a.e. Again I hope to be able to provide further details next month.

News Items

France: Jean Louis Dubler tells us that several privately owned u.h.f. transmitters which were previously used for the La Cinq network are now relaying the Canal J and Canal Jimmy satellite linked programmes. These are being picked up and carried on at least twenty two Swiss cable networks. Canal Plus is not amused and may soon scramble the satellite feeds, probably with Nagravision coding.
CIS: The BDXC has sent us a list of current u.h.f. stations in the western part of the CIS. The high-powered transmitters are listed below, with e.r.p. where known. LTU = Lithuania; LVA = Latvia; BYL = Byelorussia; RUS = Western Russia:

R21
R22
R23
R27
R28

```
Juragiai 800kW LTU; Vyborg RUS; Dededovici RUS.
Bubiai 500kW LTU.
Kirisi RUS.
Koeru EST; Taurage 600kW LTU.
Tallinn 600kW EST; Juragiai 800kW LTU; Luga RUS.
Kohtla-Nome EST; Klaipeda 700kW LTU; Heraneny
BYL.
Vavgjarve 400kW EST; Visaginas 50kW LTU; Brest
BYL.
Vilnius 800kW LTU; Kingisepp RUS
Viesintos 700kW LTU.
Visaginas 125kW LTU.
Bubiai 500kW LTU.
Visaginas 125kW LTU.
Kingisepp RUS.
Vilnius 700kW LTU: Volchov RUS.
Koeru EST; Taurage LTU.
```

Germany: Tele 5 will become a sports programme called Deutches Sports Fernsehen from January 1st. The Hoebeck transmitter now carries ORB-3 on ch. E5I at 100 kW e.r.p.
Thailand: The government has given permission for five new privately-owned TV networks to be established.
Vanuatu: This island group in the south west Pacific (formerly the New Hebrides) now has a TV service. The first transmitter is at Port Vila, Efate.
Kuwait: A cable network is being set up in Kuwait City. Programmes will be censored and it's thought that satellite TV dishes could be banned. Some 400 independent TV stations have been refused licences though 150 have refused to close down.
50 MHz Amateur Band: Eighty Spanish amateurs are to be allowed to use the 50 MHz band on an experimental basis for a year, operating at up to 30 W e.r.p. with SSB and CW.

Satellite TV

Steve Birkill was the first to monitor the Russian ZSSRD-2 satellite at $16^{\circ} \mathrm{W}$ carrying downlink data from the MIRS space station at 11.375 GHz (RHCP) and TV pictures in clear SECAM from the same source at $10.835 \mathrm{GHz}-$ unfortunately this is outside the coverage of most tuners, which cut off at 10.9 GHz or so. For several months I'd noticed "flashing" effects at about $16^{\circ} \mathrm{W}$. Quite coincidentally I've recently been involved in some modifications to the Echosphere SR50 manual receiver, including a change that allows the tuning head to cover well below the usual 10.95 GHz limit. During the late evening of August 21 st I first found the data downlink then, tuning l.f., weak pictures
appeared. Adjustment of the i.f. bandwidth control lifted the signal above the noise to reveal three spacemen sat together! The locked off camera shot showed only these men moving and talking within their living quarters. I found the signals at 2300: the carrier ceased abruptly at 2307 BST. Despite careful monitoring for several days afterwards no further pictures were seen, though the data feed is operational for much of the time. It seems that the TV transmissions are random: Steve reports that when he last received them they lasted for 30-45 minutes. My reception was with a 1.5 m dish. Obviously a much larger dish is required for satisfactory reception. With my system there's a 3dB loss through using linear instead of RHCP.

I noticed a gradual fall off in signal quality here over several weeks. The cause was eventually traced to a build up of water behind the feed tube cap on the prime-focus head due to condensation. I'd orignally fitted the polythene cap to prevent spiders etc. getting in, a previous cause of signal fall off. Seems you can't win!

The Australian Optus Bl satellite has been successfully launched. It will replace an earlier AUSSAT craft when operational next year.

Ian Waller (Lincoln Satellite) reports that ARABSAT 1B has drifted east because of fuel shortage but has been halted at $33^{\circ} \mathrm{E}$. Earlier this year the ARABSAT 1 A craft drifted to $31^{\circ} \mathrm{E}$. The Dubai downlink is now at 3.96 GHz (LHCP). According to Cairo Radio the Egyptian Space Channel that's downlinked from ARABSAT will in the near future use Intelsat and Eutelsat transponders as well.

The equipment that will be required for the DirectTV 150-channel DBS service in the USA starting in 1994 will comprise a receiver-decoder and a 46 cm dish, costing around $\$ 700$. Two Hughes HS601 satellites will be used for the service. First launch is due in December 1993.

The BBC World TV service is to be relayed to Africa via the Intelsat 601 craft at $27 \cdot 5^{\circ} \mathrm{W}$. There will be nine hours of programmes daily.

Intelsat K at $21.5^{\circ} \mathrm{W}$ is now up and running. At the time of writing this two Starbird transponders are relaying the US Open tennis championships to Europe, one in 625-line PAL and the other in 525 -line NTSC. Interesting to listen to the audio subcarriers with the NTSC signal - from time to time one features a Boston radio station's output! The satellite has sixteen 54 MHz bandwidth transponders, giving a capacity of 32 channels in the half-transponder mode, all in the Ku band.

WTN has bought British Aerospace"s 50 per cent stake in Starbird. SISLink is to provide SNG facilities for five regional ITV companies starting next January. From early autumn the Continental TV transmissions are to move to transponder 20 on Eutelsat II F1 at $13^{\circ} \mathrm{E}$. The SAVE encryption is to change to smart-card driven Cryptovision next spring.

Anti Ghost Techniques

Japan inaugurated an ED-TV (extended definition TV) programme in 1989. Effort has gone into better camera resolution, digital signal processing and an overall improvement of the NTSC system. The research programme also included ways of reducing the damage caused by ghost signals signal reflection from high buildings causes severe ghosting in some urban areas in Japan.

The research has shown that ghost delays of up to $42.5 \mu \mathrm{sec}$ are not uncommon. Measurements in Tokyo and Osaka recorded delays of up to $26 \mu \mathrm{sec}$ in 92 per cent of cases checked.

Some years ago NHK marketed a system that reduced the

> THE SATELITTE ENTHUSIASTS AND DXERS RECEIVER, the ECHOSPHERE SR-50

This is what the TVDX/Satellite enthusiast has been waiting for, a fully manually controlled receiver with communications facilities! I.F looping; tully variable I.F. control ($12 \mathrm{MHz}-26 \mathrm{MHz}$) plus a secondary audio I.F. bandwidth control - these really dig that signal out of the noise! No less than 8 front panel user controls and a signal level meter! Video and audio output options; 14/18volt LNB options; C/Ku switching! Two standard $5.5 / 6 \mathrm{MHz}$ System B/G/I modulator. Two individual audio subcarrier tuning outputs for stereo or dual mono/ bilingual signals! Plus of course the usual satellite receiver facilities AERIAL TECHNIQUES have enhanced the performance of this briliiant receiver for weak signal working and increased non AFC tuning bandwidth. The customised SR-50 is available in this version only rom AERIAL TECHNIQUES
Write in with SAE for a leaflet that shows how a totally manually controlled receiver that YOU control will help you with weak signa reception
The basic Echosphere SR-50 (unmodified)
As above + non AFC tuning + wider I.F. bandwidth
$840-1880 \mathrm{MHz}$) etc

11 Kent Road, Parkstone, Poole, Dorset BHI2 2EH Tel: 02102 738232 Fax: 0202716951

effects of ghosting electronically, though technical details were never released. The process was thought to involve phase shifting/cancellation, being external to the receiver.

More recently the Shibasoku Company, a firm involved in the design and manufacture of professional test equipment, video monitors etc., has introduced a ghost cancellation system that, though intended for laboratory work, could well have implications for domestic TV. The system works by integrating direct and reflected signals to produce a cancellation signal that leaves the original signal free from interference.

To achieve this result Shibasoku inserts a GCR (ghost cancellation reference) signal on lines 18 and 281 of the odd/even fields in the field blanking period, just after the vertical interval test signal. A repeating eight-field sequence is used to capture ghosts with a long time delay - in practice a 30 dB reduction in ghost impairment can be achieved within five seconds of a ghost first being detected. These figures have been confirmed during field tests in Tokyo and Osaka. The GCR signals are now being included in broadcast transmissions throughout Japan, on a full 24 -hour basis.

Shibasoku manufactures the full system - the GCR signal insert generator, ghost simulation equipment and ghost detecting/rejection equipment. When a ghost-degraded signal is detected phase-shift circuitry is switched into operation: shifts from $0-360^{\circ}$ can be achieved with delay times of not more than a single line. Under laboratory conditions up to ten ghosts can be attenuated by 55 dB .

NHK has carried out research into what is perhaps a more fundamental approach to the problem of ghosts - to clad offending buildings with a ferromagnetic material that absorbs instead of reflecting v.h.f. signals. Already three major Tokyo buildings have been built with the material used in tile form as vertically mounted strips.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

15/80H	3.63	2 2C15730	0.25	$2 S 0669$	0.53	BC141	0.24	8 D 201	0.38	BFR79	0.37		19	M5	4.50	SG613		TA7063P	10	83	1.15	TDA4605	2.92
15/85R	3.72	2SC1675	008	2506694	0.52	8C147A	0.05	B0203	0.45	Brh	0.59	CD40	0.29	M5151	1.95		18.24	TA71228P	0.61	TDA1151	0.49	TDA4S	17
17052	3.10	$25 C 1685$	0.13	250716	1.39	BC148	0.11	8 D 232	0.27	BFRgOA	0.59	CD4069	0.17	M51521L	0.54	SGSIF344	5.04	TA7146P	5.44	TDA1170	0.96	TDA72	1.48
17053	2.31	2 2S1740	0.11	2SD718	1.14	BC148A	0.05	BD234	0.24	BFR91	0.46	CD4070	0.13	M5218L	0.36	SKE2G202	0.63	TA7176P	1.25	TDA1170N	1.19	TDA7270S	7.96
17088	2.31	2SC1741	0.16	$2 S 0734$	0.23	BC1488	0.03	BD237	0.29	BFP96	0.51	CNX62A	0.69	M5231L	0.53	SKE4F104	0.94	TA7193AP	3.26	TDA1 $170 S$	0.87	TDA8140	2.31
17089	3.28	$2 \mathrm{SC1815}$	0.13	250762	1.23	BC149	0.03	BD238	0.10	8FW92A	0.84	CR3CM	2.54	M53216P	1.43	SKE4F210	0.84	TA7193P	3.97	TDA1:80	1.24	TDA8153	4.95
17127	1.71	2SC1826	0.69	$2 S 0774$	0.23	BC149C	0.03	BD239	0.28	8FX85	0.32	CRO2AM	1.69	M54532	1.24	SKE5F310	1.63	TA7205	0.00	TDA1902	3.96	DA8170	2.55
1 14001	0.03	2 SC 1827	0.74	$2 \mathrm{SD787E}$	0.25	BC157	0.12	8 D 241	0.39	8FY50	0.31	CV12E	2.44	M54543L	1.28	SL1430	1.36	TA7205AP	0.91	TDA1200	0.88	TDAB180	5.19
1N4002	0.06	2 SC1845	0.19	250837	0.90	BC159	0.05	BD243	0.37	8FY51	0.33	Cx109	6.84	M54544L	1.46	SL1431	1.65	TA7205P	0.00	TDA1270	1.73	TDA8190	2.78
1 14003	0.04	2SC1846	0.28	250841	1.24	BC160	0.40	80243A	0.41	8R100	0.13	DTA12	0.12	M54548L	2.45	SLi432	1.75	TAI207	1.63	TDA141?	0.74	TDA9503	1.56
1 104004	0.06	2 SC1923	0.13	250856	0.64	BC16	0.26	80243C	0.31	BR10	0.95	DTA14	0.16	M546448L	1.56	SL471	1.65	TA7210P	1.45	TDA1470	0.00	TEA1002	5.14
1N4005	0.05	2SC1942	2.49	250869	2.47	8 C 167	0.40	80244A	0.33	8R10	0.37	ER1400	2.08	M54648L	5.04	SL490	2.31	TA7214P	3.63	TDA1470P	0.00	TEA1009	1.20
1N4006	0.05	2SC1959	0.10	250870	2.45	BC1718	0.13	8D244C	0.20	88303	1.07	HA11235	1.73	M54898AP		SN29764AN	1.77	TA7217AP	1.40	TDA1506	4.45	TEA1014	1.81
1 N4007	0.05	2SC1969	179	2SD	4.95	8 C	0.13	8D245C	0.69	BRX44	0.99	HA11244	3.71		15.58	SN7474N	0.36	TA7222	1.24	TDA15	1.42	TEA1039	1.73
1 N4148	0.03	2SC1983	0.84	2 SOB	0.33	8C178	0.10	8D246C	0.69	BRY56	0.41	HA1124A	0.70	M58485P	5.77	SN76013ND	7.75	TA7222AP	1.23	TDA151	2.29	TEA201	1.15
1 14448	0.05	2SC2001	0.13	250882	0.29	8 C 182	0.05	BD278A	0.54	BSS38	0.69	HA11423	1.96	MB3730	2.31	SN76227N	1.03	TA7227P	1.47	TDA1515A	2.47	TEA2164	2.40
1 N5061	0.22	2SC2029	0.33	2SD898B	2.39	8C182A	0.12	BD317	1.40	BT120	1.24	HA11440	2.83	MB3731	1.98	SN76666N	1.22	TA7230	1.30	TDA15160	3.23	TEA2165	4.95
1 N5402	0.05	$2 \mathrm{SC2073}$	0.49	$2 S 0904$	4.55	8C1822	0.05	B0318	1.12	BT129	3.16	HA1166X	3.28	M83732	2.22	SN76705AN	1.65	TA7233P	1.72	TDA15180	3.05	TIC106	0.53
1 N5404	0.11	2 SC2078	0.57	250973	0.36	BC182L8	0.05	BD380	0.33	BT139600	0.92	HA11713	1.20	MC13002	4.65	SR2M	0.66	tA7240A	0.00	TDA1670A	2.72	TIC10	0.58
1 N5406	0.11	2SC214	1.43	741500	0.20	BC183	0.05	BD433	0.26	BT151/500R	0.78	HA1	6.60	1 C 13002 P	4.65	STA34	2.31	TA7240	2.15	TDA1701	4.71	TiC45	0.57
1 N5408	0.11	2SC2166	092	7805	0.23	BC	0.08	BD	0.28	8T151800	1.11	HA1174	5.25	MC1310P	0.82	STA401	2.23	TAT2	2.23	TDA	2.49	100	0.50
1 N914	0.03	2SC2168	087	780570	0.00	8C184L	0.03	BD	0.36	81	1.03	HA 130	1.30	MC1327AP	1.57	STA441C	2.39	TA7243P	0.00	TDA1870	0.00	T\|P110	0.33
151555	0.21	$2 S C 2236$	0.24	7808	0.24	184LC	0.09	8 C 436	0.31	J208A	1.12	HA 13108	2.67	MC1330AIP	1.22	STK0029	5.70	TA7250	3.28	TDA1904	1.17	TIP12	0.00
152076	0.28		0.21	7812	0.35	BC204	0.35	BD437	0.31	BU2080	0.82	HA131	1.43	MC1350P	1.76	STK0039	5.52	TA7267P	1.96	TDA1905	0.90	T\|P112	0.56
2N2219A	0.26		0.21	7815	0.29	BC2076	0.22	BD438	0.16	BU326A	0.85	HA13119	1.63	MC1352P	1.40	STK0040	7.18	ta7270	1.50	TDA1908	1.10	TIP120	0.55
2 N	0.16	25C2274K	0.21	7818	0.39	BC212	0.04	BO441	0.69	8U406	0.63	H 113403	3.96	MC1358P	1.23	STK0059	9.46	TA7270P	1.50	TDA1940	3.89	TIP121	0.40
2N2905	0.20	2 SC2314	0.28	7905	8.33	BC212B	0.05	80442	0.40	BU406D	0.99	HA1374	4.95	MC1443P	3.79	STK025	9.37	TA7271P	1.89	TDA195	1.80	F\|P126	0.51
2N2926G	0.35	2 SC	1.07	7912	0.41	BC	0.05	805	1.30	BU	0.51	HA	1.36	MC145288CP		ST	0.00	1A7273	3.43	TDA200	0.82	F\|P13	0.44
2N3053	0.34	2SC2458	0.08	AA 19	0.34		0.10	805	0.93	BU	0.94	HA	2.22		2.15	STK304	4.82	TA7274P	2.15	00	0.63	IIP137	0.46
2N3054	0.95	$2 S C 2482$	0.24	AA143	0.12	BC214	0.05	B05	1.01	BUA	0.87	HA	2.44	MD	2.14	STK3062	8.62	TA	2.11	TDA2004	1.23	F\|P2955	0.79
2N3055	0.42	2SC2547E	0.23	AC127	0.10	BC214L	0.08	8 D535	0.41	BU426E	2.06	HA1	1.56	M 3	0.94	ST	7.56	TA7281	0.00		23		0.29
2N3442	0.85		3.67	AC141K	0.44	$8 \subset 237$	0.04	BD536	0.46	BU5	1.03	HA1397	2.55	M 180	1.65	STK4141	8.00	11739	1.93		1.2		0.52
2N3702	0.10		0.28	AC976K	0.29	237	0.07	BD675	0.29	BU508A	0.92	HA 1398	2.26	MJE 13005	0.79	STK4142	7.97	tA7313AP	0.60	TDA2009	2.22	T1P305	0.69
2N3704	0.13		1.50	AC18]	0.15	BC2378	0.04	80677	0.31	BU508AF	1.20	HA1452	00	MJE2955	0.66	STK4162M	9.22	TA7317P	0.77	TDA2020	2.29	IP30C	0.16
2N3773	0.99	2SC2581	2.38	AC187k	0.31	8C238	0.90	BD707	0.49	BU	1.23	HM6232		JE3055	0.49	STK4171		TA7325P	1.63	TDA2030	0.00	IIP31	0.00
2N3819	0.33	C2632	0.28	AC188	0.29		0.05	BD	0.49		0.92		10.09	MJ	0.38		10.50	343	0.69	TDA2030	0.59	\|P3	0.31
2N3904	0.10	2 SC2655	0.24	88K	0.65		0.03		0.45		1.13		9.24	ML2378	1.23	4181 11		TA7358	0.75	TDA2030V	0.70	TIP318	0.29
2 N 4	2.50	2 SO	0.49	AD\49	0.50		0.06	BD902	0.49		1.36	7103		ML923	3.82		12.47	TA7535	0.66		63		0.28
2 N 62	0.60	250	0.29	ADi61	0.99		0.38	BD911	0.63	BU536	1.59		13.66	MN1405VKF		STK4181A		P	1.89	,	2.47	TIP3	0.35
15	0.09		0.16	A0102	0.92		0.23	BD912	0.67	BU608	1.54		1.20		10.75		12.09	609P	1.90	TOA2270	1.71	TIP32C	0.36
寿	0.17		5.28	AF124	0.74	BC302	0.35	BDV65	1.12	Bu705	1.56	KA2101	0.58	MN1435VX			5.37	TA	0.00	TOA2525	0.00	TIP33	0.82
2	0.30		1.05	AF927	0.58	BC303	0.26	BDW84C	0.94	BUB06	0.79	KBL08	0.45		13.20	退332	165		1.81		4.62	P33A	0.89
2SA1020Y	0.29	$25 C 3153$	2.21	AF139	0.28	BC307	0.05	8DW93C	1.06	BU806	0.78	KSR1004	0.08	MN1435VXB		STK437	7.01	TA7640A	0.95	TDA2540	0.36	TIP33C	0.95
2 SA1095	1.22	$2 S C 3156$	5.82	AF239	0.41	BC307A	0.05	B0W94C	0.45		0.49	L200CV	1.09		9.98	STK4392	6.12	TA7676	4.13	TDA2541	0.69	P34	1.15
2SA1102	1.73	$25 C 3182$	3.76	AF279	0.33	BC	0.05		1.65	BU826A	1.53	LA1201	0.54	MN650	2.27	STK44	9.98	800	3.97	TDA256	2.47	T1P340	0.86
	0.17	2 SC	0.36	102	2.48		0.05		2.06		0.97	LA1230	1.86	MPSA42	0.22	STK459	7.73	TA7698A	5.59	TDA2576	6.51	TIP41A	0.29
2SA1175	0.49	2SC3	1.27	AN245	8.23	BC308	0.08	Bf15	0.39	BUK444	2.04	LA1385	1.40	MPSA56	0.11	STK461	8.99	TA7705P	3.86	TDA257]	4.71	TP418	0.30
2SA1186	3.42	$25 C 380$	0.12	AN3824K	7.01	BC308C	0.05	BF179	0.30	BUT11	0.66	LA3161	0.37	MPSA93	0.08	STK4843		TA7769P	. 26	TA257	3.38	TIP41C	35

SPECIAL OFFERS - ENDS 3011192 ORWHLLE STOCKS LAST

BU508A $\times 5$
BU208A 55
BU208A $\times 5$
$B U 426 A \times 5$
BY127×25
CO AXIAL AERIAL PLUG $\times 25$
CO AXIAL AERIAL PLUG $\times 25$
'F' CONNECTOR (SCREW TYPE) $\times 25$
3.60
3.50
3.50
1.00
0.40
3.75
3.00
TDA 2594
TDA 3654
TBA 1205
TDA 4601
STK 5481
TV FAULT FINDING GUIDE
SEMICONDUCTOR DATA BOOK
1.80 1.10
0.31 0.31
1.25 4.50
8.99 8.50

USE YOUR ACCESS OR VISA T TEL 0902 712083/773122 (24 HOURS)

VHS Tape Path Alignment

Tracking correction by moving the V blocks with which the guide rollers engage seems to be a common practice nowadays, though totally wrong. I've recently come across a number of engineers who did it as a matter of course without realising the damage they were inflicting on the machines. In some cases they were acting on the instructions of others who told them that it was an accepted cure for tracking problems. It isn't. In fact the practice can be more destructive to a machine than pouring the mains supply down low-voltage lines: at least you can repair all the damage done by the mains.

Back to Basics

I'm concerned mainly with full-size M-wrap decks - see Fig. 1 - though the theory applies to other formats as well. To start off we should examine why it's imperative for the V blocks to be left in their factory preset positions. To do this we must look at the way in which the helical tracks are laid down on the tape and how this is done.

Fig. 2 shows the standard VHS track layout. The critical factor that governs tape tracking is angle a, which for VHS is 5.963°. If, because of mechanical misalignment, the video heads scan the tape at a slightly different angle the machine will replay its own recordings correctly but tracking problems will be evident with prerecorded tapes. There will also be poor tracking or complete mistracking when the machine's tapes are played via another machine.

Tolerances

This precise angle of 5.963° is well enough known, but how often do we recall the strict tolerances to which the threading mechanism is manufactured? The tape is wrapped around the drum by something in the order of $185-188^{\circ}$ (more on this in a minute); the drum diameter is precisely 62 mm , so that when it rotates at 1,500 r.p.m. the head velocity is $4.87 \mathrm{~m} / \mathrm{sec}$; the drum is tilted at a precise angle with respect to the tape path; tape speed is a constant $23.39 \mathrm{~mm} / \mathrm{sec}$; and finally the tape height is set at the entry and exit points, then tilted by the slant poles, so that the tape contacts the drum surface correctly. All these factors ensure that the two $49 \mu \mathrm{~m}$ thick heads travel across the tape at the correct angle so that the $0.3 \mu \mathrm{~m}$ head gaps, set at a 12° offset angle with respect to each other, retrieve the recorded information. If any one of these parameters is changed by even the smallest amount you no longer have the exact VHS format. It's for this reason that the V block settings are so critical: if either block is misaligned, the wrap angle changes and so does the tracking angle.

At deck assembly plants, where the original alignment is carried out, manufacturers work to tolerances of the order of $1 \mu \mathrm{~m}$. The plants are built on firm rock foundations to reduce the effects of vibration produced by traffic, aircraft etc. The Thomson VCR factory at Yishun, Singapore provides an interesting illustration of the lengths to which manufacturers go to ensure precision production: the head drum facility has a suspended floor to prevent any vibrations that would otherwise upset the production tolerances. If the manufacturers find it necessary to go to such lengths to ensure correct alignment, how can anyone hope to do as
well with a Phillips screwdriver, a pair of pliers and the machine on a wooden bench?

Mechanical Reference

The two V blocks form a reference for the alignment of the rest of the deck. Moving the blocks may appear to fix a machine that's mistracking, but in fact what's being done is to introduce an error to compensate for the original fault.

Some might argue that since the drum wrap can be anything between 185° and 188° moving the blocks is in order. This is not so. The wrap has to be in excess of 180° to accommodate the playback head switching, the most popular wrap being 186°. But it's the manufacturer who decides on the wrap. He then sets the angle of the slant poles to suit. So the argument for leaving the V blocks alone stands.

The blocks are generally firmly secured to the chassis or subchassis by means of screws that are often fixed with locking compound. It follows that if the tracking is poor the cause of this must lie elsewhere.

When I made further enquiries about the effectiveness of the practice of moving the V blocks amongst those who do this some admitted to a comeback rate in excess of thirty per cent. They couldn't understand why, as the machines appeared to be fine when they left the workshop. Clearly in some cases the original fault may have altered slightly. In

Fig. 1: Basic VHS deck layout with M-format tape wrap, indicating the positions of the main mechanical items. In practice some variations occur: one or both of the impedance rollers, which are included to prevent tape flutter at the entry and exit points, may be omitted; the entry guide pole may simply be a pin; an audio erase head is generally included only with models that have editing facilities.

Fig. 2: Way in which the signals are laid down on the tape (standard VHS format).

Fig. 3 (left): A concave pinch roller can cause creasing at the top or bottom edge of the tape. A hardened pinch roller can have the same effect.

Fig. 4 (right): Check for correct vertical alignment if the pinch roller is mounted on a soft metal bracket. A distorted bracket can cause tape edge creasing. Check for both zenith and azimuth distortion.

Fig. 5: Typical arrangement of the height, azimuth and zenith adjustment screws for an audio/control head assembly. Adjust screws A, B and C for the correct height, screws A and C for the correct azimuth setting and screw B for the correct zenith setting.

Fig. 6: Correct height conditions for the audio/control head.
others the machine may be able to cope with good quality tapes but will struggle to track correctly with tapes that are a little worn but still within specification, e.g. some hired tapes or old recordings.

How to Deal with Mistracking

Having made the point that you don't move the V blocks to correct tape path problems we'll next consider how mistracking should be tackled. There are several approaches to VHS deck servicing: each engineer adopts his/her own method. The procedure I'm about to describe is presented for the benefit of those still gaining experience. It's not the only way to go about it, but it is a logical approach that will in most cases get you to the root of the trouble.

After carrying out a quick visual check to see whether there are any obvious faults such as foreign bodies, pieces of the mechanism broken off etc., the first thing to do is to inspect the pinch roller.

Defective Pinch Roller

When the roller is worn the tape will ride up or down the capstan because of the uneven pressure (see Fig. 3). This in turn causes tape curling at the exit guide. One or more of the following symptoms will be present: (1) tape edge creasing, with permanent damage; (2) loss of the CTL pulses, the result being intermittent noise bars; (3) poor h.f. audio response because of poor head/tape contact.

The tape curl shown in Fig. 3 is best observed by looking
at the tape from directly above: if there's no curl the tape should be almost invisible as you are viewing it edge on. Even the slightest curl should be evident when the tape is viewed in this way, but you must carry out the check under good light conditions. I should perhaps point out that when training engineers in this skill I've found that some are unable to see very slight curls that have been introduced artificially though others have no difficulty at all. The danger is that if you don't notice what's happening you'll start to look for the cause of the trouble elsewhere. This check must be carried out carefully.

The way in which the roller deteriorates depends on the composition of the rubber. This varies with different manufacturers. The wear illustrated in Fig. 3 is easy to detect by checking the pinch roller against a straight edge. Roller replacement is not a major job. Alternatively the rubber may become hard - often shiny - the result being poor tape transport. You can get the same symptoms as with a concave roller.

The roller is sometimes mounted on a soft metal bracket which may have bent, see Fig. 4. This usually happens when someone has applied excessive pressure while replacing the roller. As shown in Fig. 4, the capstan provides a convenient line against which to site the roller.

Back Tension

Back tension is the next thing to check. Incorrect back tension can cause misalignment anywhere along the tape path. The only correct method of checking the back tension is to use an appropriate gauge - a back-tension cassette, tentelometer or spring gauge. Too many service engineers are under the impression that back tension can be set without the use of a gauge. This is not the case. All video workshops should not only have a gauge, they should use it. Nick Beer's articles in the August 1988 and January 1990 issues of Television provide further information on backtension problems.

The Audio/control Head

Having checked the pinch roller and back tension you know with certainty that the conditions are correct at the tape entry and exit points. In most cases the tracking will now be correct. If it isn't, proceed as follows.

Check the alignment of the audio/control head. Incorrect alignment can produce the same symptoms as a defective pinch roller. In addition the tape may be displaced at the exit guide roller, giving the impression that this roller is misaligned. It's in such circumstances that a VCR deck can end up in a state of complete misalignment.

If the screws that secure the audio/control head are still locked with the manufacturer's locking compound you can be fairly certain that the head alignment is correct. If the compound is broken the alignment must be checked.

In their manuals manufacturers usually tell you what to look for when carrying out head alignment, but they seldom tell you how to do it. The following procedure generally works well. The best alignment order is: height, zenith and finally azimuth.

First set the head so that it's roughly perpendicular, using all the setting screws - see Fig. 5. This gives you a good starting point. Now set the height. This can be done with a jig, but most manufacturers recommend that the height is set up while playing a tape, looking for the conditions shown in Fig. 6: the top of the audio head core is just covered and a fraction of the control head core shows beneath the tape. When adjusting the height rotate each screw in turn by the

Fig. 7: Zenith adjustment using a vertical jig. I use the reel disc height jig from the old Ferguson 3V00 VCR service kit but any suitable straight edge will generally do.
same amount, e.g. by 90° increments, so that the head remains vertical with respect to chassis.

Once the height has been set correctly, carry out the zenith adjustment. Check this by placing a vertical edge - a piece of stiff card will do if nọthing else is available - about 1 mm from the front face of the head and looking at the gap, see Fig. 7. Any tilt in the zenith plane will be clearly visible. When tilt is evident it's not always easy to know which adjustment screw (where there are two screws), front or rear, should be adjusted. To avoid putting the height adjustment too far out I suggest that each screw is adjusted equally to correct the zenith error.

The correct azimuth alignment method requires the use of an alignment tape. This is not an essential item of test equipment for domestic machines however: tolerances are generally such that a known good test recording can be used. It's not sufficient to set the azimuth for optimum h.f. audio response: scope the control track output as well. It's possible to have good audio with very attenuated control pulses.

To ensure correct adjustment, check the height, zenith and azimuth settings once more.

The lateral (lip sync) adjustment is necessary only when it has been misadjusted by someone else or a new audio/control head has been fitted.

The Guide Rollers

If there are signs that the guide rollers have been adjusted previously, i.e. they are chewed up, full alignment with a scope is recommended. As a general rule I always replace chewed guide rollers because there's no way of telling whether they have become fractionally distorted - even fractional distortion will affect the machine's tracking ability. Guide rollers get chewed because people don't slacken off the locking screws before attempting adjustment.

Other Possibilities

There are many occasions when the symptoms displayed on the screen suggest that a guide roller is misaligned but there's no evidence that the machine has received previous attention. Why might the guide(s) have gone out of alignment when they are still locked tight? In all probability the guides are not the cause of the problem: several other things can give the impression that a guide roller is misaligned.

The head drum may have been replaced at an earlier stage in the machine's life. In theory the guide rollers should be reset when a new drum is fitted, but in practice this is rarely done. In most cases this doesn't matter. Sometimes however the f.m. output is compromised slightly when a new head is fitted and, as the drum wears, the entry/exit angles shift farther, resulting in a noticeable loss of f.m. output.

Another possibility is a worn slant pole. The wear may be
almost invisible yet a check on the f.m. output shows serious entry/exit misalignment. Replacement of the offending slant pole is often the only way of confirming this.

A worn lower drum can give the same symptoms.
Adjustment of the guide rollers will sometimes compensate for any of these possibilities. If it proves difficult to adjust a guide roller however the worn item must be replaced - you will otherwise waste many long hours trying, without success, to get the machine to perform correctly. I cannot stress sufficiently the fine tolerances to which we have to work. Too often engineers who happily replace electronic components are reluctant to replace slant poles, guide rollers, the lower drum etc. Admittedly some of these items can be expensive, but the sort of wear we are considering only occurs with older machines for which spares from scrap machines are usually readily available.

Back to the V Blocks

This brings us back to the subject of the V blocks. A machine with a poor f.m. output at the entry or exit point may be in this condition because someone has moved the blocks. It's easy to see how this arises. The machine has say a worn slant pole but the engineer fails to diagnose this. Having heard that V block adjustment is an accepted cure he goes ahead and adjusts them.

The question that now arises is what can you do about the problem? A precise alignment jig would have been used to set the blocks at the factory, but such jigs are simply not available to the service engineer. Even if they were they would be very expensive. One thing is for sure: unless the blocks are reset full interchangeability performance will never be attained.

You must first confirm that the blocks have been moved. This is usually simple - the screwheads will show signs of wear. They are sometimes secured with locking compound and this seal will have been broken. If the blocks have been moved, you must accept that precise alignment will be impossible without a jig. The tolerances are just too fine. The best that you can hope for is to get them close enough to the correct positions to be able to set the guide rollers for an acceptable though not perfect f.m. output.

If there are marks in the surrounding dust to give an indication of the original settings, use these as a guide. Then set the guide rollers. After doing this the entry point, which is the most critical factor, can be tweaked using the headswitching procedure.

Check first that the head switching controls haven't been got at, i.e. that they are set at approximately their mid positions. Insert the tape that you use for head switching adjustment (this should be an alignment tape) and set up your scope. With the VHS system head switching should occur 6.5 lines before the field sync. This will be the case if the entry V block is set correctly. If the block is offset slightly the tape wrap will result in noise during the field blanking period. Move the block fractionally to reduce this noise, resetting the guide roller as you do so. You can eventually reach a point where slight movement of the block appears to shift the head switching point - in fact you are moving the tape in relation to the head switching time. Adjust the block so that head switching occurs exactly 6.5 lines before the field sync.

The results with machines that I've dealt with in this way have been varied. Some appear to have been restored to correct operation. Others display a slight amount of interlace flicker. This is why at the outset I commented than moving the V blocks can be more destructive than mains
down the supply rail. At least in the latter case the equipment and spares are available to carry out a proper repair.

In Conclusion

Repairing video mechanisms has never been more difficult. Multi-function motors that drive complex gear trains, mode switches that tie the deck to an even greater extent to the microcontroller chip, and layered deck construction all contribute to the problems encountered by the service engineer.

Then there are the tiny mechanisms used in VHS-C and 8 mm format camcorders.

The video deck is a piece of precision engineering that must be treated with respect. Mistakes will be made and accidents do happen during servicing. But I personally was disappointed to find that fundamental errors which were being made fifteen years ago are still common today, even in some of the larger workshops. This bodge does nothing for the service industry in terms of customer relations and makes things much more difficult for those who try to do the job properly.

Satellite Notebook

Nick Beer

Back in August I mentioned the duplication of MTV via Astra 1B and put forward a suggestion for this. That was before official information was released. My guesswork was wrong: the reason for the duplication is to give greater coverage over the Iberian peninsula. My thanks to those who contacted me when they heard the official news.

While on the subject of matters previously raised, there's now an official line from Ferguson on the modified VideoCrypt decoder connector (see letter from Bernie Hinton last month). The modified connector is now supplied when the original part number is ordered. I still feel that Ferguson took an unduly long time to deal with the matter satisfactorily and fell down in their dealings with the service trade.

Problems with a Connexions Receiver

I had to deal with a dead Connexions CX8520R receiver recently. It's not a model or a manufacturer we've dealt with before, but I've seen a fair number of these receivers in customers' homes - a local aerial rigger sold quite a lot of them as part of a motorised system. He had one himself and frequently extolled its virtues.

An unfortunate accident had occurred with this particular receiver: the 18 V supply to the LNB had been shorted out because the F connectors at the receiver and LNB hadn't been crimped. The crimp rings were missing and the plugs had simply been pushed on to the coaxial cable. . . It wasn't one of the aforementioned rigger's installations, a local "repair centre" having been responsible. I've had to sort out their attempted repairs more than a few times before.

Anyway the customer reported that smoke had come from the unit. This was a bad sign and in fact you could still smell the smoke inside the receiver. As I'd no circuit diagram I had to feel my way cautiously. The 781818 V regulator was a molten mass though its number could still be discerned. I replaced it along with the two 1 N 4007 rectifiers that preceded it (they were simply four legs sticking out of the PCB! - I assumed that they were of the same type as in the 5 V and 12 V rectifier circuits), also for good measure the $2,200 \mu \mathrm{~F}$ reservoir capacitor. When I switched the receiver on I was rewarded with a dead unit that after ten or so seconds would have served admirably as a single-plate hob. The mains transformer, a massive affair that's bolted to the case, was getting very hot.

Disconnecting the secondary plug proved that the load wasn't the cause of the transformer's distress. Cold checks then showed that the 18 V supply secondary winding was short-circuit. So a new transformer was required, and I was
left wondering where the protection was? There were no obvious fuses or other protective devices in the 18 V supply and the transformer didn't seem to have a thermal fuse. So the mayhem experienced was bound to happen in the event of a short across the supply to the LNB, something quite likely to occur. I may have missed something but I didn't and still don't have a circuit diagram. Why? Read on.

Spares

Our storeman phoned Connexions for a transformer and a service manual. He was told that he could order a manual on a pro-forma basis but would have to obtain spares from another source. So he forwarded an order and cheque to Connexions then contacted the spares agent. On asking the price of the transformer he was told "about thirty quid". "Does that include VAT, post and packing etc.?" "Spose so"!

A cheque for about thirty quid was sent off and ten days later a transformer arrived. The manual didn't but the transformer was fitted in the hope that this would be the end of the story. It was an easy job - the secondary windings are connected to a non-reversible six-pin plug. When I powered the receiver I was greeted by a clicking from various relays and a standby dot in the larger-than-life display across the front. Then at switch-on "ASTRA. . . ." appeared across the display and the picture and sound came up. The picture was marred by 100 Hz hum bars however, then after about two minutes the receiver went to standby and almost immediately came back on. It continued to do this, which was worrying after the previous burn up. What damage could have been done to the microcontroller circuitry etc.?

Being an optimist and concluding that the faults were connected I decided to tackle the hum first. It was on the 12 V supply, which was low at 8 V . Why? Because the input was only 10 V . The rectifiers read o.k., as did the reservoir capacitor, but I replaced them as they were in very close proximity to the previous damage. A check on the 12 V regulator showed that there was a very slight leak from its output to chassis, so a new 7812 was also fitted. But the symptoms remained as before.

For want of something better to do I decided to check the d.c. conditions around the 5 V regulator, which is at the other end of the heatsink. There was a nice 5 V output but what was this? - the input was 27.5 V ! The penny then dropped: the secondaries were wired back-to-front in comparison with the original transformer. A.C. checks confirmed this. Rewiring the plug (non-reversible, so it wasn't me fitting it back-to-front!) finally cured everything.

Polarisers and the Luxor 9570

Recent letters from K.D. Bunting and Philip Lane (August and September) have commented on interfacing the Luxor 9570 receiver with a polariser purchased from Sendz and a Connexions polariser respectively. I'm a little suspi-
cious about this. Philip Lane is clearly talking about driving a servo-motor polariser, which is what the 9570 is designed to do, but feels that the 5 V supply provides insufficient current for the purpose. He may well be right, but a tight motor or one with shorted turns could be responsible for the problem.

In this set-up there are three connections to the polariser, which is simply a motor that turns the waveguide/probe through 90° to select the polarisation required. It's a system that's become largely obsolete due to its unreliability, energy consumption and greater signal loss than an electronic/electromagnetic type. The motor has 5 V and chassis connections, the third connection being a squarewave drive that switches the 5 V through the motor to chassis: the idea is to obtain an accurate 90° shift by varying the width of the squarewave drive. There are two potentiometers, which are accessible through holes in the bottom of the case, to set the pulse width limits.
K.D. Bunting appears to be talking about the use of an electromagnetic polariser which he says requires 5 V at 80 mA for switching to receive the horizontal channels. If this assumption is correct, the situation is not quite so simple. The fact that the vertical channels were obtained with no supply to the polariser could be pure chance, i.e. the polariser/LNB is aligned for this. Such a polariser requires a variable current at 5 V , not a switching voltage. The easiest way in which to achieve this with the 9570 is to fit a servo
motor to electromagnetic polariser interface - such items are available at modest cost, certainly cheaper than it would cost to build one! It enables the current through the polariser coil to be controlled by the width of the polariser drive pulses.

With certain receivers, for example the B and O Beosat RX which was also designed to drive a servo-motor polariser, the 5 V supply is switched off when the required polarisation has been obtained. This switch-off would have to be overridden when an interface is present, otherwise the polariser would revert to its null state after a few seconds.

Mr. Bunting's idea works for him because his LNB is set for one polarisation with no current flowing through the polariser: with full polariser current flowing, by simply switching a 5 V supply, the other polarisation is obtained. This could cause problems since it would not work with different polariser/LNB orientation or a polariser with a different drive coil impedance. It's for this reason that we need to be able to adjust the current flowing through the polariser: with an interface fitted, you can still use the previously mentioned potentiometers (PA03 and PA04) for this purpose.

Like everything else, if it works to your satisfaction then fine. Provided it's safe don't worry. I mention these points in case other readers experience problems when trying to do the same sort of thing.

All about Ceramic Resonators

Ray Porter, M.Sc., C. Eng. MIEE

System clock oscillators are now commonplace in TV, video and telecoms equipment because of the use of digital, in particular microcomputer-based, control and processing systems. Simple oscillators to provide a system clock can be made using an RC network, but when good stability, accuracy and freedom from the need for production-line settingup are required a piezoelectric (PZT) element is generally used in the oscillator circuit. The traditional PZT material is crystalline quartz, but ceramic elements can exhibit similar properties and are smaller, cheaper and sufficiently stable for many oscillator applications, perhaps the best known being their use in TV/video remote control handsets.

Oscillator Characteristics

Basically an oscillator consists of an amplifier with positive feedback to sustain oscillation. Its frequency is set by the filter (LC, RC, quartz crystal or ceramic resonator) used in the feedback circuit. The basic characteristics of the various types of filters are as follows:

LC: Initial frequency tolerance $\pm 2 \%$; long-term stability fair; inexpensive; large size; set-up adjustment required.

RC: Initial frequency tolerance $\pm 2 \%$; long-term stability fair; inexpensive; small size; set-up adjustment required.

Quartz crystal: Initial frequency tolerance $\pm 0.001 \%$; longterm stability excellent; expensive; large size; no adjustment required.

Ceramic resonator: Initial frequency tolerance $\pm 0.5 \%$;
long-term stability excellent; inexpensive; small size; no adjustment required.

Piezoelectric Effect

Although the voltage generated by the piezoelectric effect is well known to practising engineers, the important factor with a ceramic resonator (or a quartz crystal) is how the PZT effect influences circuit impedance. This is often less well known.

The application of a voltage across a piece of PZT material alters its dimensions. Conversely compressing or expanding a piece of PZT material generates a voltage across its faces. Thus a sinusoidally varying voltage results in a sinusoidally varying dimensional change. This generates its own e.m.f. which opposes the applied voltage, creating an impedance to current flow through the PZT material. The opposite of what we require, you might think. At some applied voltage frequencies however the dimen-

Fig. 1: Typical ceramic resonator characteristics, (a) impedance, (b) resonance.
sional changes are sympathetic with modes of mechanical resonance in the material. The resonance amplitude is large at one particular frequency, the other resonances being less significant. When mechanical resonance occurs, the amplitude and phase of the internal e.m.f. also change. As a result the electrical impedance alters, in the same way that an LC circuit's impedance changes at resonance. Fig. 1 shows measurements of the impedance of a typical ceramic resonator.

Equivalent Circuit

Fig. 2 shows the equivalent circuit that produces the same impedance/frequency characteristics as those shown in Fig. 1. R1 represents the energy loss in the ceramic structure; Cl and Ll are the delay and energy storage elements within the PZT material; Co represents the physical capacitance of the terminations and leadout wires (parallel stray capacitance).

As Fig. 1 shows, there are two frequencies of resonance Fr and Fa . Fr is the series resonant frequency of L 1 and Cl . Fa is called the anti-resonant frequency: it occurs when the series combination of Cl and Co resonates with LI. The significant differences in the electrical characteristics of a 4 MHz ceramic resonator and quartz crystal are as follows:

Ceramic resonator: L1 $385 \mu \mathrm{H}, \mathrm{Cl} 4.4 \mathrm{pF}, \mathrm{Co} 36 \cdot 3 \mathrm{pF}, \mathrm{R} 1$ 8.7Ω. The Q is 1,134 while the frequency difference between Fr and Fa is 228 kHz .

Quartz crystal: L1 $210 \mathrm{mH}, \mathrm{C} 10 \cdot 007 \mathrm{pF}$, Co $2 \cdot 39 \mathrm{pF}$, R1 $22 \cdot 1 \Omega$. The Q is 240,986 and the $\mathrm{Fr}-\mathrm{Fa}$ frequency difference 6 kHz .

It follows that a quartz crystal will provide an oscillato with better accuracy and stability. But, when using CMOS gates, an oscillator with a ceramic resonator starts up in $100 \mu \mathrm{sec}$ compared to 10 msec for a quartz crystal.

Oscillator Fundamentals

As we've stated an oscillator is basically a positive feedback amplifier. The most common use for ceramic

Fig. 2 (left): Ceramic resonator equivalent circuit.
Fig. 3 (right): Basic series resonant oscillator circuit using i.c. inverters.

Fig. 4 (left): Basic parallel resonant oscillator circuit.
Fig. 5 (right): Single transistor equivalent of the circuit shown in Fig. 4.
resonators is is the feedback path of such amplifiers, the amplification being required to make up the energy lost during each cycle of PZT oscillation. Such a stage oscillates only when the gain from the input through to the output and back through the feedback network is at least 0 dB and the phase change is either 0° or 360°. To ensure that oscillation occurs at only one frequency the feedback is frequency selective, with gain and phase characteristics that, when added to the amplifier's gain and phase characteristics, give the required conditions. A ceramic resonator provides the frequency-selective gain and phase characteristics in the feedback loops of the circuits described below.

Fig. 3 shows a series resonant oscillator: the ceramic resonator contributes a 0° phase shift in the feedback path because each inverter stage contributes a 180° phase shift, giving 360° overall. This condition occurs at Fr , when the PZT element is series resonant. This type of oscillator tends to start more slowly and consume more current than the alternative parallel type.

Parallel resonant oscillators (see Fig. 4) use one inverter to contribute a 180° phase shift. The PZT device is used at a frequency at which it has an inductive impedance that, together with additional capacitors (C 1 and C 2), contributes a further 180° phase shift. Sometimes the additional capacitors are incorporated within the resonator package. In the circuit shown in Fig. 4 Rf has a value of typically several $\mathrm{M} \Omega$: it biases the CMOS inverter to a point where the gain is sufficient for the oscillator to start up readily. Rd limits the drive to the resonator and suppresses operation at the spurious higher-frequency modes (see Fig. 1). The one-transistor equivalent circuit is shown in Fig. 5.

The parallel resonant circuit is basically a Colpitts type oscillator in which the resonator behaves as the inductor, oscillating at a frequency between Fr and Fa in conjunction with Cl and C 2 . These capacitors and the resonator form a pi filter: when the series combination of C 1 and C 2 resonates with the inductive reactance of the ceramic resonator the phase shift is 180° and the attenuation is low. The actual frequency of oscillation is sometimes adjustable by means of a trimmer connected in parallel with the resonator.

Ceramic resonators for parallel oscillator circuits are manufactured to suit a specified value of $\mathrm{C} 1 / 2$: this should be borne in mind when a replacement is fitted. A ceramic resonator intended for use in a series oscillator can be used in a parallel circuit by adding a trimmer in series with it.

Fault Finding

Since the number of components used in these circuits is small, fault finding by substitution of the passive components is straightforward.

You may want to check whether a surface-mounted LSI chip using such a circuit is really faulty before changing it. This can be done by connecting a $100 \mathrm{k} \Omega$ resistor to one side of the resonator and, while measuring the d.c. voltage at the other side of the resonator, alternately applying 0 V and the supply line voltage to this resistor. If no voltage swing is detected, move the resistor to the other side of the resonator - you may have been attempting to drive the inverter's output. If there's still no voltage change there may be a PCB track failure or the chip may indeed be faulty. Move the resistor right to the chip and repeat the test to be sure.

Acknowledgement

My thanks to Murata and Fuji for providing details of their ceramic resonator products.

VCR Clinic

Philips DMP Series Decks

A lift guide repair kit for the Charlie range of decks is now available from Konig, the part number being VID1534. Damage to the lift guides previously meant either a replacement chassis or a bodge with Araldite, but this kit enables a satisfactory and neat repair to be carried out in only a few minutes.
P.B.

Philips VR6185

With this one the keyboard and the syscon didn't talk to one another! The machine would take in a cassette and would change channel in the E-E mode, but there was no sound. When a deck function was tried the display showed that the command had been received but nothing happened. If the operation board was pressed in the right place the fault cleared. On inspecting the print we noticed that there was a crack by the side of the infra-red receiver can.
P.B.

Mitsubishi HS347

The customer complained that rewind was poor and that the machine didn't always carry out a timer recording. At first I couldn't see a connection, but the faults did have a common cause. The reel idler was so worn that it could hardly wind forward either. Thus if a tape was inserted with the start leader showing the idler tried to move it along but couldn't. When play or a timer recording was then tried it wasn't carried out. A new gum idler unit was required.
P.B.

Philips VR502

In the event of intermittent remote control operation check for dry-joints on the infra-red receiver chip IC121. P.B.

Grundig VS520

For no teletext check the voltage at pin 12 of the SAA5231 chip. If it's between 10-11V you'll probably find that R574 (10Ω safety type) is open-circuit.
P.B.

Mitsubishi HSB32

This machine played all right but there was no forward wind or rewind as the brakes stayed on. They should be held off by an electromagnetically-controlled plastic lever. The magnet was energised but the lever didn't latch on the brake cam correctly. As the lever is plastic and the brake cam metal it seemed reasonable to assume that the plastic item would wear first, so it was replaced. This made no difference. A replacement brake cam put things right. It's called brake cam C, part no. 591b554010.
P.B.

Akai VS25

This machine came from another dealer with a ticket that simply said "won't play". When we tested it there wasn't a no play fault initially but we did notice a slight drum servo twitch. The cause of this couldn't be pinned down as the symptom quickly disappeared. Later, on soak test, the machine intermittently switched to standby, leaving the tape

Reports from Philip Blundell AMIEIE, Michael Dranfield, Brian Storm, Ed. Rowland, Alan Smith, Eugene Trundle and Chris Watton.

threaded up. Extensive power supply checks failed to reveal anything amiss here, so we left a meter connected to pin 61 (function off) of the main microcontroller chip IC506. This proved that the chip was intermittently issuing the off command. On test next day another symptom appeared: the head switching point wandered up and down the picture.

This was the last straw, so we referred the problem to Akai Technical. A very nice man suggested that as the machine went into standby only when the tape was playing it would be a good idea to check the continuity of the drum PG pulse feed - the machine will go to standby if these pulses are missing. A scope left connected to pin 7 of the BU2735AS digital servo chip IC503 showed that the drum PG pulses were o.k. here, but the story was very different when the scope was connected to pin 9 . The mark-space ratio of the 25 Hz head switching squarewave varied intermittently then, a bit later, the waveform started to disappear completely from time to time, the result being that the machine switched to standby. A new BU2735AS chip cured all the faults. Phew!
M.Dr.

Logik VR960

The complaint was of buzzing on sound due to a faulty aerial socket. Strange, I thought, but on test this proved to be the case. When the aerial input socket on the modulator was pulled down the E-E sound disappeared, leaving a loud buzzing noise. A scope check on the audio input to the modulator showed that the signal was still present when the fault occurred. No dry-joints could be seen when the modulator was removed but after going over all the connections with a fine-tipped iron the fault had cleared. M.Dr.

Sony SLC9

The fault with this machine was no clock display due to a faulty d.c.-d.c. converter on the rear-mounted power supply PCB. Unfortunately the cost of a replacement unit is over $£ 20$ trade. By the time that labour had been added the charge would have been outside the customer's budget. So we decided to open up the old unit to see if it could be repaired. The only difficult job was unsoldering the tin can that surrounds the PCB inside. We did this by applying heat from a miniature blow-torch powered by lighter fuel. Once we'd got inside we found that a 2SD789 transistor had an open-circuit emitter terminal. A 2SD774 made an excellent substitute as we didn't have a 2SD789 in stock. For good measure we replaced the four electrolytics $(10 \mu \mathrm{~F}, 16 \mathrm{~V}$; $10 \mu \mathrm{~F}, 50 \mathrm{~V} ; 10 \mu \mathrm{~F}, 50 \mathrm{~V} ; 330 \mu \mathrm{~F}, 16 \mathrm{~V}$) as tests showed that they were well down and possibly the cause of the transistor failure. After reassembling the case we refitted the converter and gave the VCR a two-day soak test. The results were excellent and our charge was within the customer’s $£ 50$ limit.
M.Dr.

Samsung SI1240

In the April issue E.T. mentioned the problem of failure of the KA8301 loading motor drive chip. The latest Samsung technical information book (vol. 3) contains details of a modification to overcome this.

Panasonic NVF75

This all-singing and dancing machine worked perfectly unless you took notice of the function display - the usual display was pause, with no counter display in any mode. Our first checks were on the serial data and clock lines between the syscon chip IC6001 and the timer and display chip IC7501. As data signals go, they appeared to be all right. To eliminate the front panel timer and display circuits the front panel PCB from a nearby NVF70 was borrowed. This showed the same errors, so back to the syscon circuitry.

Comparative checks with the NVF70 showed that identical data left the syscon chip. Only an inverter circuit centred on transistor QR6017 was left to check. It was working as well as I could tell but the culprit turned out to be C6011 at the base of QR6017. It's a tiny surfacemounted type capacitor and was open-circuit, thus apparently corrupting the data signals to IC7501.
B.S.

Saisho VR1200

This machine would accept a cassette but no functions, including eject, worked. When the bottom cover was removed we found that the main drive belt was broken. A replacement restored normal operation.
E.R.

Panasonic NVG40

This machine made a real mess of tapes by damaging their bottom edge. The cause of the problem was a faulty pinch roller. It was quite an expensive repair as the pinch roller can't be detached from its drive assembly - the whole thing has to be purchased as a unit.
E.R.

Saisho VR3600X

This machine blew the 1.6AT fuse F502 at switch on. Fortunately the first component we checked, D504, was found to be short-circuit. A replacement cured the fault.
E.R.

Samsung Sl1260

This machine recorded the sound but not the video - there was just snow. Playback of prerecorded tapes was correct. Scope checks showed that there was low record f.m. in the vicinity of C3203, which when checked read 68Ω. Strangely, its value is 68 pF . We subsequently had the same fault on two other machines.
A.S.

Hitachi VTF770

When power on was pressed the machine powered down almost immediately. Checks showed that the 18 V supply was missing. The cause was a crack around one of the mains transformer's pins. Some fresh solder restored normal operation.

> A.S.

Philips DMP Series Decks

We've had two cases where the cassette would be ejected whatever deck function was requested. In both machines the capstan motor had seized due to a build-up of sticky gunge on the capstan shaft in the upper bearing. Dismantling and cleaning provides a cure.

Some older DMP/IDM series decks are developing cracks in the top rails of the plastic racks that guide the cassette lift on its way in and out of the machine. If they
actually break you have to fit a very expensive half-chassis subassembly (but see note elsewhere on the Konig repair kit - Ed.). To guard against having to do this we run a layer of hot-melt glue along the top surface of any cracked racks we find, forcing it tight into the angle between the rack moulding and the metal wall to which it's fixed. E.T.

Tatung TVR6151

The problem was a buzz on the hi-fi sound, present only when the machine had warmed up. A tiny gap could be seen in the f.m. sound playback envelope waveform at the start of the helical scan, the cause being misadjustment of the head switching-point preset VR2 on the top rear PCB. Adjust for zero envelope gap at TP4501, with the scope triggered by the flip-flop waveform at TP2. It seems that this is a batch problem - two machines with similar serial numbers came in with the same symptom, cause and cure.
E.T.

Akai VSF200

If one of these machines comes in with the no-go symptom you may well find that fusible resistor FR1 is open-circuit. If so, check zener diodes D13 and D16 in the motor supply stabiliser circuit for leakage or being short-circuit. D13 is a 16 V type and D16 a 10 V device.
E.T.

JVC HRD700

This machine suffered from a rare intermittent fault: about once a week the spool motor would fail to rewind the tape into the cassette when entering the stop mode. The result was tape looping and crushing. A replacement mode switch solved the problem - the original one seemed to be putting hash and noise into the microcomputer control chip whenever the loading motor was on the move.
E.T.

Mitsubishi HS318/Luxor 9253-97

After about half an hour in the play mode the speed of the capstan motor would fluctuate wildly, sometimes coming to a complete stop so that the machine entered the stop mode. Whenever this happened however the capstan motor would never fail to perk up and run backwards to drive the take-up spool! The cause of the fault was traced to a hairline crack in the top PCB, between the capstan motor driver chip IC5A2 and the pull-up resistor R5C6.
E.T.

JVC HRD530

On rare occasions this machine would stop in the middle of play or record. Luckily we were watching the deck when it had a spasm and saw that the take-up reel stopped. We subsequently found that when the fault occurred the voltage applied to the reel motor dropped but the current through it increased. In fact the motor was going short-circuit intermittently and had to be replaced. To be on the safe side we also replaced the drive chip in case it had been damaged by the increased current flows - more than an amp.
E.T.

ITT VR3918

The cassette would be ejected when this machine was set to record. At last a simple one! The erase prevention switch had become disconnected from the frame of the deck. As it didn't open, it didn't tell the control chip that the tab had been removed. I refitted the switch with a tiny spot of glue so that it couldn't fall off again.
C.W.

What a Life!

Donald Bullock

Les Piercy dropped in the other day. I wonder how many of you remember him? After being in the radio and TV business in the London area he was, when I first came to know him, a Radiospares rep. He later went into partnership with Harry Reddin, running their own spares business RSP Supplies. Though he retired several years ago he retains a considerable knowledge of our trade. We spent a pleasant hour recalling the early days.

Some Memories

We agreed that though there was never much money in the servicing trade there was, at one time, some status. People, especially country folk, would often be waiting on their doorsteps for our call and we often came away with gifts of produce from their gardens and perhaps a few eggs. Les recalled the time when, on an outside service visit in Sussex, he was given a bottle of home-made wine. He stowed it away carefully behind his seat and went on his way, first to Horsham and then towards Surrey. It was there, in a leafy glade, that the wine exploded, covering himself and his vanful of sets with the sticky wine. "I though my end had come" he added.

A frequent job in those days was to remove the implosion screen and clean it and the tube's face. They used to attract a film of greasy dust that fogged the picture. "It wasn't at all unusual," Les commented, "for the customer to complain that his picture had become liney after we'd carried out a cleaning job."

Les recalled a small boy who arrived at the shop daily for a 1A fuse. Hearing that the set was a Pye VT4 he suggested that the PZ30 h.t. rectifier probably had an intermittent heater-cathode short and offered to change it. But the visits continued, until one Saturday when the Cup Final was imminent. Les was asked to call round and change the valve, which he did along with the fuse. Whilst at it he cleaned the screen and tube face. Then he accepted a cup of tea and left.

The bills he sent were ignored until, when finally pressed, the customer paid for the valve and fuse but not the call. "We don't pay people to sit in our home and drink tea" he was told.

One day Les was called to service a vacuum cleaner that wasn't sucking the dust up efficiently. He asked the owner when she last emptied the dust bag. "What dust bag?" she replied, "surely all the dust goes into the mains?" Another lady said her Electrolux had failed after being cleaned. "How did you do it?" Les asked. "By sucking soapy water through it of course" was the reply.

In those days most of the sets were of the t.r.f. type and we were plagued by faulty crimson EF50s. Rotary tuners later came on the scene. Some had a full complement of coils but others were fitted with only those required in the locality. Les was asked to change a set of coils in a huge Ferguson console set with castellated knobs. He had difficulty getting them off to release the chassis and get at the tuner. The tuner knob was eventually freed but to remove the volume control knob he had to use a piece of rope and tug at it with his knee against the set. It came away suddenly of course, along with the volume control shaft, propelling Les backwards. The result was a considerable shambles and Les then found that he'd got the wrong coils. The
customer was not amused.
Les then recalled the time when one of those screen magnifiers, which were full of paraffin oil, fell into the fire. "Boy did they have a cheering fire for a while!" He also recalled the "magic screens" that were advertised in the papers and claimed to be able to convert a monochrome set into a colour one. Those who sent off for one received a screen-sized sheet of plastic that was tinted blue at the top, pink in the centre and green at the bottom. "Not bad with a country scene" said Les, "but a full-face close-up produced a bizarre effect.

It seemed that there was never a dull moment in those days.

A Ferguson 3V36

As Les left, Mr. Moggie came in with a Ferguson 3V36 VCR. "He's dead and flashing, but you can see only bits of the clock. It blew a fuse a fortnight ago. Was all right with a new fuse then it went like this."

I removed the cover and looked at the power panel carefully. Pin 1 of socket CN4 was sitting in a little circle of ash. It had clearly been a dry-joint that had carbonised. I cleaned and resoldered it then tried out the machine, which now worked well. What a relief!

Mr. Ng's TX100

My next customer was Mr. Ng, who had with him a Ferguson Model 20A1 - a 20in. set fitted with the TX100 chassis. He laughed as he announced that it was "completely dead", then hurriedly departed. On investigation I found that two of the mains bridge rectifier diodes, D6 and D8, were short-circuit while the mains fuse and the surge limiter resistor R106 were open-circuit. After replacing these items the set was still dead. So I disconnected the 119 V and 20 V outputs from the chopper circuit and connected a 60 W bulb across the 119 V supply's smoothing capacitor C129. It didn't light up. This meant that the cause of the trouble was in the chopper circuit.

I soon found that the TICP106D thyristor SCR1 in the start-up supply for the TDA4600-2 chopper control chip IC7 was open-circuit. But fitting a replacement made no difference. Nor did a new TDA4600-2 chip. Although the $330 \mathrm{k} \Omega$ resistor RII5 connected to pin 4 of the chip seemed to be o.k. I decided to replace it, also the 0.39Ω resistor R114 connected to pin 7, but the set still failed to come to life. I eventually found that C115 (8.2nF) was short-circuit, removing the feedback to the chip. A replacement restored the e.h.t.

When Mr. Ng came back he was still laughing happily. He stopped laughing when I told him that the charge would be nearly $£ 40$.

As he left the phone rang.

A Question

"D’you handle backs?"
"Beg your pardon?" I said.
"D'you sell backs?"
"Backs of what?"
"Tellies."
"No sir."

A Philips KT4 Set

I continued with my work. The next set was an old-timer, a Philips 20CT4626/05T (these Philips numbers!). It was
cracking and banging. I opened it up and found that there was a dry-joint on one of the line output transformer's pins. Resoldering it cured the cracking, but there were no programmes. When I tuned them all in the picture had a green cast. So I set up the grey scale. This produced excellent results.

An Amstrad TVR2

Mrs. Scratcher then bowled in with her Amstrad TVR2. "It ain't much Mr. Butcher" she said, "it works a treat until you press the record button, then it ejects the cassette."

I took the machine apart, which is quite a feat in itself, and studied the deck. It worked all right in the play mode. When the record button was pressed however the pinch wheel shuddered but didn't move towards the capstan, the drum didn't rotate then the cassette was ejected. I replaced IC400 (14DN244C) on the deck panel, then IC200 (BA7751ALS), but this made no difference. I then noticed that the four-pin plug that mates with the socket on the lefthand side of the cassette carriage wasn't properly seated. A casting pimple made it sit askew. I filed this off and tried again. All was now well, but the fault occurred again when the set had been put back together.

I took it all apart once more and looked again at the plug and socket. The socket pin nearest to where the pimple had been was lower than the others. I pulled it up with a pair of sharp-nosed pliers, reassembled the machine and tried again. It finally worked as it should have done.

Test Case 359

The chilly winds of autumn are blowing around the Test Case workshop. Holidays are all over, there's no sign of an up-turn in trading conditions and morale is low. Television Ted's got the grots, Sage dreams of being miles away, Service Manager is miles away and Dylan's got a Sanyo VHR3300 VCR that's troubling him.

The Sanyo VCR's fault seemed to be straightforward enough - no play. No record either in fact. In both modes the tape would lace up, run for a second or so then unlace as the machine went into the stop mode. Fast forward and rewind worked all right, as did the cassette front-loading system. This sort of thing is common enough with domestic VHS machines and usually means that the system control microcomputer chip is not satisfied that tape loading has been completed.

Dylan fitted a new loading belt, but this did no good at all. He found that the supply to the loading motor was cut off on completion of loading, which indicated that the mode switch was correctly phased from the mechanical point of view and being driven to the correct point. Or was it? Well, there was a bagful of mode switches in the stores, and they wouldn't be there if they didn't give trouble, would they? So a new mode switch was fitted and, you guessed it, the symptom remained exactly as before. Maybe the cause of the fault was outside the tape-loading loop?

The control system will put the machine in the stop mode if it thinks that the take-up reel has stopped. Rotation is monitored by the reel sensor, which must supply a constant pulse train to keep the control system happy. But not in the pause mode! Dylan let the machine lace up and, a split second after completion, he hit the pause key. The machine unlaced as before, so reel-sensor problems were discounted.

Another essential feedback signal is the PG pulse train, which provides the control system with evidence that the head drum is rotating. Dylan finally got to work with his oscilloscope and checked out the PG pulse feed from the drum motor to pin 15 of amplifier chip IC4002. The pulses were present and there was a nice 25 Hz squarewave output at pin 14. This was in turn reaching the servo chip IC4001. Maybe the FG section was in trouble? In the few moments available during each play cycle Dylan established that the FG signal also reached the servo chip. Further evidence that everything was o.k. in this area was provided by the fact that the drum rotated at what seemed to be the correct speed, not fast, during its brief periods of operation. Anyway, the syscon didn't require drum FG feedback in this machine.

Recalling a memorable tussle with a Philips VCR that didn't want to play, Dylan next checked out the capstan FG. Feedback was present and correct at the servo chip and the capstan started up each time play was selected. Dylan finally began to suspect the syscon microcomputer chip.

There wasn't an HD404418SM01 in the stores. Another Sanyo VCR was discovered on the scrap pile, but it had an entirely different control chip. Maybe it was as well that there wasn't a spare chip of the correct type to hand, because fitting it would have been a waste of time: the cause of the trouble lay elsewhere. A scope probe applied to just the right point would have quickly revealed the true cause. Which of Dylan's many lines of investigation should have been pursued farther? For the answer and another item in the test case series, see next month's issue.

ANSWER TO TEST CASE 358 - page 891 last month -

Who hasn't been confronted by a situation like that described last month - a horrible case of intermittent mains fuse blowing that continued despite three separate attempts at repair? The set concerned was an Hitachi CPT1456. You have to wait several days for this type of fault to put in an appearance, and when it does there are just a few milliseconds during which a diagnosis can be made!

Sage's 'trap' idea worked very well, providing the solution to this particular conundrum. When the failure occurred, the up-rated $3 \cdot 15 \mathrm{~A}$ mains fuse blew while the temporarily wired-in lower-rated fuses in the d.c. feeds held. This proved that the fault current didn't flow via the chopper chip IC901, still less the rest of the set. In fact it was caused by a faulty posistor (TH901) in the degaussing circuit.

When the posistor was cracked open its element was seen to be blackened and spark damaged. It had plainly been flashing over intermittently, generally at switch on, connecting the full mains supply to the degaussing coils. Fortunately this treatment hadn't damaged the coils themselves and a new posistor provided a permanent cure. You get the same trouble sometimes with Tatung and other TV sets.

[^0]
AZ HLECTRICS

INTEGRATED
CIRCUITS INTEGRAT
CIRCUITS CIRCUIT
AN103.
AN2140 AN103
AN2140
AN240P
AN253P

 \qquad

\section*{| 10 | TDA 501 A |
| :--- | :--- |}

$\underset{\substack{5 \\ 5.20 \\ 50}}{ }$

ONE OF THE LONGEST ESTABLISHED MAIL ORDER SUPPLIERS, WE CONTINUE TO GIVE FAST, FAIR AND EFFICIENT SERVICE. WE HAVE STOCKS OF
\star TELEVISION COMPONENTS

* VIDEO COMPONENTS
* REMOTE CONTROLS
* CABLES, LEADS, PLUGS etc
\star AERIALS AND ACCESSORIES
* HOME SECURITY PRODUCTS

BRAND NEW TV'S + VIDEOS

21" FST MULTISYSTEM TV - FOR USE
OVERSEAS (not SECAM L) ॥SYSTEMS
£222 + VAT

EX-RENTAL VIDEOS GRADE A

TOP LOADER WITH WIRED R/C
$£ 55+$ VAT
FRONT LOADER WITH R/C £69 + VAT

AND NOW SATELLITE SYSTEMS

WE HAVE A FULL RANGE OF FIXED AND MOTORISED SYSTEMS. ASK FOR FULL LIST AT TRADE PRICES INCLUDES LNB'S, DISHES, MOUNTS, RECEIVERS, ACTUATORS, POLORISERS etc.

RING FOR DETAILS ON 'RED HOT' DUTCH DECODERS. 10 BAND WORLD RADIO £16.95 plus VAT

RTL 4 DECODER - QUALITY PICTURE
$\mathbf{\Sigma} 65+$ VAT
CALLERS WELCOME AT TRADE COUNTER

18 BROOKWOOD ROAD，SOUTHFIELDS，LONDON SW18 5BP． TEL：081－877 3492／877 3518 FAX：081－877 3518
 TRAB1800RI BFA2

VIDEO HEADS Continued

SANYO
 SHARP

3HSSU3N－NV430．460
3HSS4NB－NV730
NVG30．33．40．45．46 130．\＆most other Panasanics
SANYO
3HSSSY－VHR1 100．1110．1300． 3HSS3SY－VHR1500

3HSSSP－VC9300 95009700381.481 482．483．486 etc，
3HSSSPB－VC581 583.651 .670 e VC7000．8000 series（Brass）
OTHER MAKES
Alba 4000．Goldstar 8000 ．Sentra 8000 Solavox 1000
Fisher FVHP5
Fisher FVHP510．520．530．6＋5．710 etc
Hinari VXL2 $4.3,20.25$
Hinari VXL5．6．20H
Mitsubishi HS306．710
Orion VC150，180．VH1，2，3 etc
Saisho VR100．605，705，805．905
Samsung Universal 2 Head
Tosh ib a
v71．73，74， $75,81,82,83,84,85.87$
Toshibavg3．
ASK FOR VIDEO HEADS NOT LISTED
The above heads are new
BELT KITS
A range of belt kits in stock from 60p to £2．40．Makes for most models available including：Alba，Akai， Amstrad，Ferguson／JVC，Fisher， Funai，GEC，Goldstar，Granada Grundig，Hinari，Hitachi，Mitsubishi， NEC．Orion，Panasonic，Philips． Saisho，Samsung，Sanyo， Schneider，Sharp，Sony，Tensai，etc －Please state model and make

CLUTCH BASE

Hitachi 520 at £4．50
LINE OUTPUT TRANSFORMERS
LOPT Hitachi 2174，76，78 LOPT Hitachi CPT1476 LOPT Matsui 1440 LOPT Matsui 1440 Decca 100
IT CVC20 ITT CVC253032 ITT Compact 80 Series 110 ITT Compact 80 Series 90 $1 T \mathrm{CVC45}$
IT CVC1204
ITT CVC80013 IT CVC1100 IT 6325
IT 3546 ITT 3546
ITT 12001

Other ITT transformers available Fistelity all models up to 20＂ 2×3000 Fidelity Panel for 2×2000 Fidelity 22＂ZX3000 Hinarı CT45 \＆TVA Philips KT3 Thorn TX100 Green Spot 110 Ferguson TX90 LOPT specify sizescreen Ferguson 3V3536 Mans Transformer Ferguson 3V4444：5 Mains Transformer
Sony－Please state model for price TRIPLERS
Universal Irpler
Universal Iripler with focus unit
Decca 120130 series tripler
Ferguson 9000 tripiers
Thorn TX10 Focus Unit Kit
Trip Grundia CuC 2401 etc
OTHER GRUNDIG TRIPLERS IN STOCK
Hilachi and Matsui LOPTs in stock
VIDEO MOTORS
£15．00
15.00
$\S 2.00$

$\$ 25.00$
$€ 7.50$
£9．00
$£ 17.80$
14.70
$〔 18.50$

$\$ 19.00$

$£ 18.00$
$\$ 15.50$
$£ 14.50$
$\$ 42.00$
$\$ 42.00$
$\$ 16.50$
$\$ 18.50$
$\$ 16.50$
$\$ 18.00$
$\$ 25.00$
825.00
$\$ 16.00$
$\$ 16.00$
$\$ 15.00$
$\$ 23.90$
$\$ 16.00$
$\mathbf{E} 6.00$
$\mathbf{~} 16.00$
£18．50
$〔 20.00$
$\$ 19.00$
00

$\$ 17.50$
$\$ 18.00$
$\$ 19.00$
$\$ 18.00$
9.50
12.50
9.50
16.75
19.75
18.00
14.00
11.50
21.50
16.50
20.00
18.50
18.50
20.00 15.50
1.00
17.75
23.00
8.85
4.75
9.50
8.50
at $\begin{array}{r} \\ 54.50 \\ 10.00\end{array}$
$\$ 17.00$

A range of Reel Motors made by Ferguson． Hitachi．Sanyo，Sharp \＆Panasonic are available．please state model and make
We stock capston motors makes include Ferguson／JVC．Hitachi and Sharp．
Also available are Ferguson Mode Control Motors，please state make．model
Mode Motor Assembly 3V35－49
arp Reel Motor Pulley only Replacement of plastic pulley on a number of Sharp Reel Motors with the above metal pulley gives better wind／FF performance．

IDLER ASSEMBLIES

£32．00 Take up Ciutch（Mechanical models）$\quad £ 5.00$ 3V29；30 Take up Ider VHP905．910 Gear Idler Asseinbly FVHP520．530 idler
FVHP520．530 Pulley
HITACHI
VT 11.33 etc．Original Ider Arm
VT11．33 etc．Ider Replacement
VT9300． 9500 etc．Play Idier
VI 9300.9500 etc．F／F Idler
VT9300，9500 etc Idler
VT8000． 8500 etc．F／F Rew Idler
VT800．8500 etc Play Idler Assembly V 8000.8500 etc．FF／Rew Pulley VT11．33 etc．Clutch Assembly VT400．500．series clutch／base complete $£ 3$ PHILIPS
VR6460．6920 Idler Arm（Original） DV464．6462，6．163．650 etc．Idler Mod （Original）
R6542．6843 Reel Idler
VR6542 Reel Drive Pulley
VR6843 Reel Drive Pulley
PANASONIC（All Original）
NV370 Ideer Arm Unit VXP0521 Gen NV8600．8610 Play Ider VXP0243
NV332．777．788 Idier Unii VXP0463
NV600．688 Idler VXP0515
NV 333.366 Idler Arm 2 Unit VXL0997 NV8400．8600．8610 etc．VXP0245 E0．95
NV333． 366 etc．Idler VXP040 1 －NV700． 72 7800 Ider VXP0344
NV2000．3000 Play Id ler VXP0331
NV2000．3000 Idler Unit VXP0329
G Mech．Play Gear VXL1490 Back Tension Bands

QUOTE PANASONIC PART NO 1.00 SANY
18.50 Id ler VHR1100． 1300.1500
17.50 Idter VHR2 $100,2300.2500 .2700$
12.95 Reel Drive Pulley Unit
14.50 VTC5000．5150．6500

Idier Roller Assembly

4500．4600 MOD KIT INCL UDES PINCH
ROLLER AND IDLER CLUTCH
Limiter Post Assembly
Makes \＆Models：Hinari VXL4 Matsui VX730，735，735A， 755 770，800A，810，820，880，990． Saisho VR1100，1200，1200H0 $1600,2500,3200,3300,3300 \times, 3500$ 3600,3700

IDLERS FOR AKAI，SAMSUNG，
£12．50 MITSUBISHI，NEC，ÉTC．IN STOCK
£12．50 MITSUBISHI，NEC
$£ 5.50$
$£ 5.50$

Ider VC9300． 9500 etc
Idier VC481． 581 etc．
Idler（original）VC9300．481 581 etc
$£ 1.75$
$£ 1.95$
$£ 1.95$
$£ 3.50$
c6 50
5．787．
£6．50
$£ 5.00$
$\$ 1.75$

REMOTE CONTROLS

Bush．Ferguson．Grundig．IT，Philips．Pye．Sony Hitachi．Matsui，Logik．Panasonic，Saisho，Salora Samsung．Tashiko．Tatung．Toshiba．Various models TV \＆Vide0 ．．．．．．．．．．．．．．．．$£ 10.00$ MANY HITACHI TV REMOTE CONTROLS NOW IN STOCK
SONY REMOTE CONTROL RUBBER PADS
STATE MODEL FOR PRICE
Universal Remote Control
TV ON／OFF SWITCHES 1．Phitips．Decca Thorn．Fidelity．Grundig Sony and Hitachi．State model for price．

SONY PUSH SWITCH
70p

MAINTENANCE KITS

Available for Alba，Amstrad，Ferguson，Fisher

 Goldstar Goodmans，Granada Hinari．Hitachi JVC．Matsui．Mitsubıshi．Nikkai Panasonic Philips．Saisho．Salora．Schneider Sentra． Sharp．Sony．Tashiko．ToshibaPINCH ROLLERS
A range of Pinch Rollers is in stock most of them（it £2．80．Makes include Akai．Amstrad Ferguson Fisher Funai．GEC Gotdstar Grundig．Hinari．Hitachi．ITT．JVC．Marantz Panasonic，Philips Samsung Sanyo chneider．Shatp．Sony．Tensai．Thomson Toshiba etc．Please state model and make

To Philips Pinch Rotier for models VR6780． 6185 6285，6362，6367，6467，6468，6470，6561． 6670，6760，6761， 6870

BACK－UP BATTERIES
 Fhilips 2．4V Back up Battery
Ferguson TX10

Wider Range Available
OTHER SPARES
Universal Video Copying Kit．
Universal Copying Kit（Scart） Universal Camcorder Kit Video Cassette Lamps from CRT Anode Caps
Video Tape Splicing Kit
Hitachi TV Frame Module HM6251
Hitachi TV Frame Module HM6232
Cassette Housing Assembly Ferguson 3V $35.36 .38 .39,42.43 .44$
Cassette Loading Roller Assembly 3 V23 3 V 31.3 V 32
5.5 V Back Up Cap

N PROMAX
 ELECTRONIC TEST EQUIPMENT

AUDIO ANALYSER AA-930

Six measuring instruments in one, to assist in the repair of audio equipment. Contains a LF generator, stereo AC millivoltmeter, stereo wattmeter, azimuth adjustment, distortion meter and wow and flutter meter.

Designed to check such audio items as CD players, cassette recorders, headphones, microphones, loudspeakers and amplifiers. Testing made easier by front panel plug and socket layout.

For Audio service engineers

ALBAN ELECTRONICS LIMITED
4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL 3 6EN Tel: 0727832266 - Fax: 0727810546

BROUGHFAME LTD How to expand your TV Rental business with no capital outlay (AND STILL KEEP THE PROFIT) HOW CAN I FIND OUT MORE?

Just ring or write to Henry Jones at the address below. He will be delighted to answer your queries and give you full details of the Rental Finance Plan.

39 SOUTH STREET TARRING WORTHING • WEST SUSSEX • BN14 7LG TEL: WORTHING (0903) 821020 FAX: WORTHING (0903) 821194

SLOPER ROAD • LECKWITH • CARDIFF EX33 M4

WHERE QUALITY COUNTS

GOOD DEALS FOR ALL YOUR XMAS STOCK FRESH STOCK ARRIVING DAILY

PHONE
0222344754
FAX 0222344218

MAKE YOUR INTERESTS PAY!
Train at home for one of these career Opportunities
Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for FREE INFORMATION on the course of your choice. (Tick one box only!)

| Name:
| Address
P. Code

International Correspondence Schools, Dept. EGSB2 $312 / 314$ High Street, Sutton, Surrey SM1 1PR. or 041-221 7373 (24 hours)

The Euras System is the largest repair tips database for CD, TV and video in Europe.

Solutions

at your

 fingertips.
The System

has over 100,000
repair tips for
10,000 models
from 250
manufacturers
and is conveniently
available as manuals, stand alone PC or videotext.
The System now also boasts technical service data for computers from SAMS Computerfacts, available as manuals.

Euras International Limited Heston House, 7-9 Emery Rd Brislington, Bristol BS4 5PF England
Telephone 0272724475
Fax 0272723374

REMOTE CONTROLS

Ferguson Types

TV - 738, 739, 740 etc

TV/VCR - 734, 742, 748 etc
VCR - For 3V35 etc

MANY OTHER TYPES AVAILABLE

NEW AND REGUN TUBES VIDEO HEADS - ALL MAKES

TV AND VCR SPARES

carriage and vat notincluded

VISTA ELECTRONICS

Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
Tel: 0429837100
Fax: 0429837101

ELECTRONIC TEST EQUIPMENT

TV \& SATELLITE LEVEL METER MC-260

* FM radio, TV and satellite all in one instrument
* Frequency counter for setting satellite channel
* Autocorrected level reading across all bands
* High accuracy without the use of correction charts
- Stable 12,15 \& 18 volt LNB supply
- Many system fault finding functions

For TV/FM, SAT TV, SMATV and Cable TV installers

ALBAN ELDCCTRONICS LIMITED

4U St Albans Enterprise Centre, Long Spring
Porters Wood, St Albans, Herts, Al3 6EN Tel: 0727832266 - Fax: 0727810546

NEW SUPPLY NEW SUPPLY NEW SUPPLY LINCOLN HOUSE TRADING COMPANY EX-RENTAL TV \& VIDEO

OFF THE PILE Direct from rental - guaranteed completely un-engineered)* WORKING/SERVICED (Non soak tested) REFURBISHED (Working/ soak tested/cosmetics/handsets/VCR books)

BASIC NON THORN TVs FROM.

.£10.00

FERGUSON BASIC TVs FROM......... $£ 20.00$
FERGUSON TX TEXT FROM.............. $£ 35.00$
FERGUSON STEREO TEXT FROM... $£ 40.00$
FST TVs FROM..................................... $£ 65.00$
TOP LOADER VIDEOS FROM............ $£ 35.00$
FRONT LOADER VIDEOS FROM....... $£ 45.00$
ALL PRICES PLUS VAT.
DELIVERY ARRANGED AT NORMAL CHARGE

* OnLy the coin meters have been removed

PHONE BOB ON COVENTRY (O203) 470807
FOR ALL DETALS.

SONY TUBES me faocessed with onicmal sony cuns

Very Iow Delivery Charge for Deliveries within M25 Area
YOUR UNWANTED, BRAND NEW OR OLD FST TUBES WANTED FOR CASH. PLEASE PHONE WITH DETAILS OF QUANTITY \& TYPES.

D.I.Y. Television Tube Polishing Kit

Contains everything you need to Polish scratches and small chips on your CRT screens All you require is an electric drill. Written instructioins are provided. Guaranteed to work Worldwide Delivery Total Price $\mathbf{£ 6 3 . 0 0}$ includes P\&P and VAT Available from Luton only

ELECTRONIC TEST EQUIPMENT

CRT RESTORERS

RT-501B / TA-903

The most popular range of workshop and field service CRT restorers now available in England. Designed for the measurement, analysis and regeneration of all commercial monochrome and colour picture tubes. Nineteen sockets and referrence list available.

For TV service specialists

ALBAN ELECTRONICS LIMITIED

4U St Albans Enterprise Centre, Long Spring
Porters Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax: 0727810546

Design your own satellite system!

You can with the help of this brilliant new program by DJ Stephenson
pertorimance hefore vort instatl it! and aper elevation for motorised yystems. from any lacation in the World for any
geo-satellite - now and in the future'
Incluters manetic map and fooprims for atl popuitr satellites acress Europe Easy-tu-use pop-up menu interface slabe
fedious lashe wimple for eservone! Complete will Use lnatruction Manual Contaiss 20 .(nk) word on-screen techusical context-sensutive helphne: with tault-
tindine. cable spece atrd site survey guid Cilculates full lizk hudget including disk size uplimisation to embare the bers yuality pimisture

Awoid guessuork ... order STMMASTER V+ or SATMASTER PR(today! Swift Television Publications
17 Pittsfield, Cricklade, Swindon SN6 GAN Tel or Fax 0793750620

WEHAVETHE WDEST CHOCE OFUSED

c	
${ }^{3}$	1250

 HAND. HELD MULTIMETERS-3.5. digii DM IOS- 14.4

 RACALDANA
RACALDANA

	1750
TEKTRO VIX $2+45$ A fors Chamel 150 MHz	
Delay Sweep with Cursorn	
IW ATSU 555711 four Chame foom l [Delar Swrep	1700
TRO CS2100 Four Channel \|OOMHZ Delay Sn	45

 Dolyy Swsep wen Trig Dew Trace 200 MHZ

 MANESMAN TALU Y PMY $3 \times Y$ Ploter RS232

 APOLI
Antrratele 100 MHz 100 MHz ((As above with more functions)
APOLO
METEOR 100 FREQUUENCY COUNTER 100 MHz

METEOR 100 FREQUENCY COUNTER 1000 Hz
METEOR 60 FREUENGY COUNTR 600 MHz
METEOR 1000 FREQUENCY METEOR 1000 FREQUENCY COUNTER GHZ
JUPITOR 500 FUNCTION GEN O Mz 500 kHz Sine/Sq
TI
 STEWART of READING

CONVERT YOUR FEREUSON BSB RECEIVER 10 PAL \& D2MAC

FEATURES

- 60 Fully programmable channels with Remote Control - On Screen Grophics with Live Programme Information Pre-set for most popular PAL. D2MAC and D2MAC
- Superb digital quality sound - Prefetred Language facility - Covers all D2 and DMAC Audio chonneis Background/Foreground sound mix facility PAL
- Fully Tunable Audio per channel - Videocrypt (Sky) decader interface - $14 / 18$ Volt LNB switching ■ Outputs in Video. Audio and UHF ON SCREEN MENUS
A total of 15 different on screen menus make programming exceptionally

INTEGRATING WITH OTHER EQUIPMENT
The modified receiver can be fed from an existing Astra system / antenna by utilising on I.F splitte
It is also possible to connect both Astra and DBS antennas with an electronic A/B switch. The receivers external switch feature will allow automatic selection of either antenna on ony of its 60 channels.
PRICES
CONVERSION KII...Comprises a fully assembled and fested
PALMAC sub assembly PCB, plug in sotwwore uparade,
ossembley instrucions and new user manual.
EXCHANGE CIRCUIT BOARD ...Ferguson SRB1 circuit boor
complete wiin Pal, damac and dunc modues fited:
COMPLETE RECEIVER WITH DBS ANTENNA.. Fully
$\begin{aligned} & \text { modified, srand Now Ferguson SRB1 Receiver with } \\ & \text { chore of now squarial or Marconi compact anten }\end{aligned}$
choice of new squarial or Marconi compact antenna. 8149.00
D2MAC REPLACEMENT CHIP... Simple plug in chip to conver
Ferguson BSB Receiver to single channel but thil tuneable

STOP PRESS...If you have a DECCA or TATUNG BSB receiver, we can now convert it to D2MAC. Cost is $£ 59.00$ and the receiver must be returned to TRAC

TV/FM LEVEL METER MC-477D

*Frequency range: $47-860 \mathrm{MHz}$
Functions: TV, spectrum, analysis, synchronism

* Simultaneous display of picture and measured level
* 39 memory channels, set by user
* Autocorrected meter reading for higher accuracy

For TV/FM, SAT TV, SMATV and Cable TV installers
ALBAN ELECTRONICS LIMITED
4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts, AL3 GEN Tel: 0727832266 - Fax: 0727810546

ELECTRONIC
TEST EQUIPMENT
FM \& TV FIELD STRENGTH METER MC-160B

* Excellent for aerial installation
* Frequency coverage 48 to 856 MH
* Accurate digital frequency display
* Measurement accuracy $\pm 2.7 \mathrm{~dB}$
* Superb sensitivity for FM and TV
* Easy to buy, casy to carry

For FM/TV, MATV, CCTV and Cable TV installers

ALBAN ELDCTRONICS LTMITED
4U St Albans Enterprise Centre, Long Spring
Porters Wood, St Albans, Herts., AL3 GEN Tel: 0727832266 - Fax: 0727810546

AMSTRAD PORTABLE PC＇S FROM 5149 （PPC 15125 D ）． C179（PPC1512DD） $\mathbf{~ C 1 7 9 ~ (P P C 1 6 4 0 S D) . ~} 5209$ （PPC 1640DD）．MODEMS 530 EXTRA．NO MANUALS OR PSU．

HIGH POWER CAR SPEAKERS．Stereo parr outpul 100 w each 40 hm impedance and consisting of $61 / 2^{\prime \prime}$ wooter $2^{\prime \prime}$ mid lange and 1 tweeter Ideal to work with the amplifier desin pairs 30 on Order ret 30P7R
MICROWAVE CONTROL PANEL．Manns operated，with touch switches Compliete with 4 digtt display，digital clock and 2 relay outtouts one for power and one for pulsad power（programmabie） Ideal 4 P151．
rens FI日RE
FIERE OP TIC CABLE．Stranded optical fibres sheathed in black PVC Five metre length 57.00 ref 7P29R
charging etc 300 mm square Out incel for trickle ${ }^{\text {charging }}$
PASSIVE INFRA－RED MOTION SENSOR．
Complate with daylight sensor adiustable lights on timer（ 8 secs－ 15 mins）， 50^{\prime} range with a 90 deg coverage Manual overide taclity Com－
plete with wall brackets buitb hoiders etc Brand plete with wall brackets，bub hodersetc Brand
new and guarantegd Now only $£ 19.00$ ret new
$19 P 29$
Pack of two PAR 38 bulbs for above unit 51200 ret 12P43R VIDEO SENDER UNIT Transmis both audio and video signais from ether a video camera，videc recorder or computer to any
standard $T V$ set within a 100 ranget（tune $T V$ to a spare channell）
 ${ }^{5 P} 191 \mathrm{R}$
FM TRANSMITTER housed in a standard working $13 A$ adaple MINATURE RAD 2600 ret 26 P 2 Z
MINATURE RADIO TRANSCEIVERS A pair of walke takues whth a range of up 102 kilometres Units
measure $22 \times 52 \times 155 \mathrm{~mm}$ ．Complete with cases $£ 30.00$ ref 30P 12 R
FM CORDLESS MICROPHONE．Small thand held unit
with a 500 rangel 2 ransmit power levels reas pP3 batter．Tun eable to any FM recelver Our poce S． 15 ref 15P42AR
12 BAND COMMUNICATIONS RECEIVER． 9 short
 or batery Complete with shoulder Strap
NOW ONLY $519.00!1$ REF 19P14R．
CAR STEREO AND FM RADIOL．ow cost stereo system giving 5 watis per channel Signal to noise ratio better than 45 db ．wow and flutier less than 35\％Neg eant $£ 19.00$
ref 19P30

ref 19 P 30

LOW COST WALIKIE TALKIES．Par of battery onen｜ ated units whth a range of about 200° Our price $£ 800$ a pair ref BP 50 A
7 CHANNEL GRAPHIC EQUALIZER
power amp！
ref $25 P 14 R$ ．
NICAD BATTEPIES
 ¢6．00 ref 6 FP 35 F
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE．The ulimate equivalents book．Latest edition $\varsigma 2000$ ret 20P32R
CABLE TIES． $142 \mathrm{~mm} \times 32 \mathrm{nmm}$ whe nylon pack of 100 f 300 ret 3P104R．Bumper pack of 1.000 tes F 1400 rel 14 P 6 R
GOT A CARAVAN OR BOAT？
NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE 2，500 NEW LINES FREE WITH ORDER ON REQUEST

OR SEND $£ 1.00$

GEIGER COUNTER KIT．CCOMplete with tube DCB and all compo． nents to build a battery cperatad geiger counter $£ 3900$ ref 39P 1 R FM BUG KIT．Now design witn PCB embeddgd coil Tran smits to FM BUG KIT．Now design win PCB embeddyd co
any FM radio 9v battey reqid 5500 ref SP158R
 COMPOSITE VIDEO KITS．These convert composite videe into COMPOST TE VIDEO KITS．These convert composite video into
separate H sync V sync and video $12 \vee D C ~$
8800 ret $8 P 39 R$ Separate H sync V sync and video $12 \mathrm{VDC} £ 8.00 \mathrm{ret} 8 \mathrm{P} 39 \mathrm{R}$
SINCLAR C5 MOTORS 12 V 29 A （tull load） 3300 pir $6^{\prime \prime} \times 4^{\prime \prime} 1 / 4$
 OP shat New $£ 20.00$ ret 20 P 22 R
As above but with fitted 4101 inine
 toothed nyion beit drive cong $\{4000$ rel 40 P8
ELECTRONIC SPEED CONTROL KITRor CS
ELECTRONIC SPEED CONTROL KITMor c5 motor PCB and all components to buld a speed controller $(0.95 \%$ of speed）Uses
pulse width modulation 51700 rat $17 P 38$ SOLAR POWERED NICAD CHARGER．Charges 4

6P3R

AA nicads in 8 hours Brand new and cased $C 600$
ACORN DAIA RECORDER ALF503 Made for BBC computer but sultabie tor others includes mains adapter，leads and book
VIDEO TAPES．Threo hour superior quality tapes made under licence from the famous JVC company．Pack of 5 tapes New low
price $£ 8.00$ ref $6 P 161$ Price Eb
PHILIPS LASER．2MW HELIUM NEON LASER TUBE． BRAND NEW FULL SPEC 540.00 REF 40P10R．MAINS POWER SUPPLY KIT $\mathbb{5} 20.00$ REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE 575.00 REF 75 P4R． 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 wat 220 vout with a largertranstormert will handee 80 watts Basic kit 51200 ret $12 P 17 R$ Larger transtormer $\varepsilon 1200$ ref $12 P_{4} / \mathrm{R}$ VERO EASI WIRE PROTOTYPING SYSTEM ideal for design－ ing projects on etc Complete with tools，wire
Now low bargain price only $£ 2.00$ ret $82 \mathbf{P}_{1}$
HIGH RESOLUTION $12^{\prime \prime}$ AMBER MONITORI2V 1.5 A Hercu les compatibie（TTL input）new and cased $£ 22.00$ tel 22 P 2 F VGA PAPER WHITE MONO monitors new and cased 240 v AC． 559.00 ref 59P4R
25 WATT STEREO AMPLIFIERc STKOA3 $w_{\text {ith }}$ the addtion of a handul ol components youe
4P69R（Curcuit dia inchded）
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF โ4．00 REF 4P92R，PACK OF 100 £30．00 REF 30P 16 R

FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ret BD827R 12 V 19A TRANSFORMER．Ex equipment but otherwise ok Our price 〔20 00
ULTRASONIC ALARM SYSTEM．Once agan in stock these Units consist of a detector that plugs into a 13 A socket in the area to protect．The receiver plugs into a 13 A socket anywhere else on the same suoply Ideal tor protecting garages，sheds etc Complete system $\S .25 .00$ ref B 25 P 1 addtitional detectors $£ 1100$ ret B11P1 IBM AT KEYBOARDSBrand new 86 key keyboards 51500 ret

SP612

AMSTRAD MP3

UHF VHF TV RECEIVER／CONVERTER CONVERTS COLOUR MONITOR INTO A TV！ £9．00

286 MOTHER BOARDS．Biand new and tested complete with technical manual． 149.00 ref A49P 1
UNIVERSAL BATTERY CHARGER．Takes AA＇s．C＇s D＇s and
PP3 nicads Holds up to 5 batteries at once New and cased mans operated 5.600 ret 6P36R
iN CAR POWER SUPPLY．Plugs into cigar socket and gives 3，4，5，6，75，9，and $12 v$ outputs at 800 mA Complete with universal sp der plug f．500 ref 5P167R
RESISTOR PACK． $10 \times 50 \mathrm{~V}$
metal film S500 ref 5P170R
CAPACITOR PACK 1.100 assorted non electrolytic capacitors
£2．00 ref 2P286R
CAPACITOR PACK 2． 40 assorted electrolytic capacitors $£ 2.00$ CAP 2 AC287R
QUICK CUPPA？ 12
LED PACK 50 ring
LED PACK ． 50 redigds， 50 green teds and 50 yellow leds all 5 mm
800 ref $8 P 52 \mathrm{~m}$

AMSIRAD 1640DD BASE UNITS BRAND NEW AND CASED TWO BUILT IN 5 1／4＂DRIVES MOTHER BOARD WITH 640K MEMORY KEYBOARD AND MOUSE manual
OUR PRICE JUST
£79！！！！

18M PRINIER f5．00 ret 5P186R

COPPER CLAD STRIP BOARD 17 ＂$\times 4$＂of 1 ＂pich＂vero＂board £400 a sheet ref 4P62R or 2 shegts for $£ 700$ tef 7P22R STRIP BOARD CUTING 2 2 $352 R$ 50 METRES OF MAINS CABLE C 3.00 ？core black precut in convenient 2 mlengths ideal for repars and projects ret 3 PGiR
4 CORE SCREENED AUDIO CABLE 24 METRES 22.00 Precut into convenient 12 m lengths Ref 2P365R
$61 / 2^{\prime 2} 20$ WATt SPEAKER Buit in fweeter 4 ohm 5500 ret 5P205R
WINDUP SOLAR POWERED RADIO！FM＇AM radio takes re chargtab
14 P 200 R

PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v input＋5＠15A＋12＠5A．12＠5A－5＠3A Fully cased with fan，
on／ott switch IEC inlet and standard PC flyleads $£ 1500$ ref $F 15 P_{4}$ ALARM PIR SENSORS Standard 12 v alarm type sensor wi internace to most atarmp pangls 51600 re！ 16 P 200 MODEMS FOR THREE POUNDSI！
Fully cased UK inodems destgned for dial up sy stem（PSTN）no data or into but only $\varsigma 300$ ref 3P445R
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsels with mic ann speaker ont 5300 ref 3P146R
DATA RECORDERS
or general purpose audio use Pnce is $\varsigma 400$ ref 4 P 100 R SPECTRUM JOYSTICK INTERFACE
plugs into 48 K Spectruin to provide a standard Atari type joystick port Our price S 400 ref 4 P101R
ATARI JOYSTICKS
Ok for use with the above interface，our prict 5400 rsf 4 P102R BENCH POWER SUPPLIES
Superbly made fully cased（metal）giving $12 v$ at $2 A$ pius a 5 V supply case ${ }^{1}$ Our price is 5.400 ref 4PYO3R

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX

 BN3 5OT TELEPHONE 0273203500 MAIL ORDER TERMS：CASH PO OR CHEQUE WITHORDER PLUS E3．00 POST PLUS VAT． please allow 4－70 days for deliveryFAX 027323077

SPEAKER WIRE
Brown twin core insuited cable 100 feet for $\S 200$ REF 2P79R DISC DRIVES
Customer returned units mixed capacties（up to 44 M ）We have not sorted these so you pust get the next one on the shell Price is only MICROSCOPE $1200 \times$ MAGNIFICATION
Brand new complete with shnmp hatchery．shrimps，preparef slides light eic 52000 rel J29P4

LIGHT ALARM SYSTEM

Small cased alarms that monitor a narrow beam area for sudden changes in light level Complete with siren that sounds for a preset changes in light level complete with sicen

JOYBALLS

Back in slock popular
foystick）S．
720 K 3 Y I＇2＇DISC DRIV
Brand now units made by JVC complete with tech into just f． 190011 ref J19P2
CAR BATTERY CHARGER
Brand new unts comp
output $\lceil 700$ ref $J 7 P$ ？
CUSTOMER RETURNED SPECTRUM +2
Complete but sold as seen so may need attention $£ 2500$ ref J25P1 or 2 for 54000 ret J40P4
CUSTOMER RETURNED SPECTRUM +3
Complete but sold as seen so may need attention $£ 2500$ ref J 25 P 2 or 2 for S 4000 raf J40P5
HEX KEYBOARDS
Brand new units
PROJECT BOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1$＂black ABS with screw on lid $\Omega 100$ 时 CD43R
SCART TO SCART LEADS
Bargain pnce leads at 2 tor $£ 300$ ref 3P147R
SCART TO D TYPE LEADS
Standard Scart on one and Hidensity D pype on the other Pack of
OZONE FRIENDLY LATEX
OZONE FRIENDLY LATEX
$250 \mathrm{~m} /$ botle of liquid nubber sels in 2 hours idealior mounting PCB＇s
tixing wires etc $\varsigma 200$ each ref 2P379R
hixing wires etc $\AA 2$
OUICK SHOTS
Standard Atarl compatible hand controller（same as joysticks）our price is 2 for 5.200 ref 2P380R
VIEWDATA SVSTEMS
Brand new units made by TANDATA complete vith 1200.75 buit in
Brand new units made by TANDATA complete vith
modem infra led remote controlled qwety keyboard $2 T$ apporoved modem infra red remote controlled qwerty keyboard et apporoved Prestet compatible．Centronics printar port RGB colour and compos－
te output（works with ordinary television）compete with power ite output（works with ordinary television）comp ete with
supply and fully cased Our pnre is only $£ 2000$ ret 20PiR
supply and fully cased Our prie is o
AC STEPDOWN CONVERTOR
AC STEPDOWN CONVERTOR
Cased units that convent 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with marns input lgad
Cased units that conven $240 v$ to 11003×2 with mams input lgad
and 2 on American outout socket（suitable for tesistive loads only） and 2 on American outiout
our price $\bumpeq 200$ ret $2 P 381 R$
CURLY CABLE
Exiends from 8＂to 6 teat 10 connector on one end．spade conneciors
Exiends from $8 "$ to 6 tert D connector on one end．spade conneciors
on the other ideal for joysticks etc（ 6 core）$£ 100$ each tel CD44R
COMPUTER JOYSTICK BARGAIN
Pack of 2 loysticks ony
BUGGING TAPE RECORDER
BUGGING TAPE RECORDER
Small hand heid cassette recorders that only operate when there is
Small hand heid cassette recorders that only operate when there is
sound then turn off 6 seconds after so you could deave it in a rooni all sound then turn off 6 sec onds ather so you couldeave it in a rooni and
day and fust record any thing that was sadd Pnce is 2000 ret 20 P 3 R NEW SOLAR ENERGY KIT
NEW SOLAR ENERGY KIT
Contans 8 solar cells，motor toois fan etc pus iducational bookiet
Ideal for the budding enthustast। Pnce is $£ 1200$ ref 12 P2R
286 AT PC
286 MOTHER BOARD WITH GAOK RAM FULL SIZE METAL CASE，TECHNICAL MANUAL，KEYBOARD AND POWER SUP PLY \＆139 REF 139P1（no＇o cards o
metal work req＇d phone for details

35MM CAMERAS Customer retu
28 mm fens 2 for $£ 8.00$ ref 8 P 200
28 mm §ens 2 for $£ 8.00$ ref $8 \rho 200$
STEAM ENGINE S：Andard Mamo
STEAM ENGINE Siandard Mamod 13
engine complete with boler piston stc $\varepsilon 30$ engine comp
ref 30 P 200
TALKING CLOCK
LCD display，alarm battery operatart Clock will announce the time at
push of a bution and when the
push of a bution and when the

alarm is due The alarm is swichable
from voice to a cock crowingis 1400 ret 14 P200．R
HANDHELD TONE DIALLERS
Small units that are designed to hold over the mouth plece of a telephone to send MF dialling tones ideal for the remote control of telephone to send MF dalling tones
answer machines 5500 ref $5 P 209 R$
answer machines 550 ref
Fully programmable laiking lockable
ANSW INER PHONES $\$ 15$
ANSWER PHONES C 15
Customer returned units with 2 faults one we tell you how to f ix the other you do your sellf 518 ref J18P2 of 4 for 160 ref J60P3 BT
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with carridge and sotivare 10 times laster than tape machines works with any Commodore 64 setup the orginal price for thest w
to you at onty $£ 2500$ Ret 25 P！R
90 WATT MAINS MOTORS
pupose unit $}$
Ht FI SPEAKER BARGAIN Orginally made for TV sets they consist of a 4＂ 10 watt 4 R speaker and a 2＂ 140 Rtweeter lf you want two of each
VIDEO TAPES E 180 FIFTY TAPES FOR $£ 70.00$ REF F70P 1
VIDEO TAPES E 180 FIF TY TAPES FOR $£ 70.00$ REF F70P
$360 \mathrm{~K} 51 / 4$＂Brand new drives white front 82000 Ret F20P 1 360K $51 / 4$ Brand new dives white
EMERGENCY LIGHTING SYSTEM
EMERG ENCY LIGHTING SYSTEM
Fully casad complete with 2 adjustabie flood lights Allyou nead is a Fully casad complete with 2 adjustabie tlood lights Allyou nead is
standard 6 v lead acid battery Our price is just fio ref $J 10 \mathrm{P} 29$ AMSTRAD 464 COMPUTERS
AMSTRAD $\mathbf{4 6 4}$ COMPUTEMer returned units complete with a monitor for just $£ 35$ ！The units are sold as faulty and are not returnable

IN SUSSEX？CALL \mathbb{N} AND SEE US！

Good Selection of Makes
Tom Poole or Brian Ricketts 061-273 2854/274 3409 Fax: 061-273 4486

DAISY WORKS, 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER
(A6 Between Stockport \& Manchester almost opposite police headquarters $3 / 4$ mile from Apollo Theatre)

Magic Mirror Mas
 - INFRA-RED DETECTOR
 $2=$

 [ecs

IR 1 STANDARD SIZE MIRROR

IR 2 SPATULA MIRROR

IR 6 KEY FOB

IR 5 CREDIT CARD SIZE
ALL ONE PRICE $£ 9.00$ inclusive of VAT FREE POST \& PACKING

OR ANY TWO for £16
including VAT
OR ANY THREE
FOR £20 including VAT

DISCOUNTS CONSIDERED ON OTHER QUANTITIES. RING FOR DETAILS

Electronic Consultant Services

6 NETHERSOLE STREET, POLESWORTH, TAMWORTH. B78 1EE Phone: (0827) 330392; Fax: (0827) 331041
EXPORT ENQUIRIES INVITED

THIS MONTH ONLY

$14^{\prime \prime}$ and $16^{\prime \prime}$ tubes at silly prices Tubes to replace all the following:

	£		£		£
37-554	19	370EFB	19	38JDB	29
37-550	19	370EGB	19	38JRD	. 29
37-573	19	370GUB	29	42AGA	29
37-590	29	370GYB	29	420CSB	29
37-592	29	370HFB	29	$420 C Z B$	29
42-556	29	370 HUB	29	420 DVB	29
42-570	29	37JGA	29	420DYB	29
42-590	29	37SX101Y	19	420EDB	29
42-592.	29	38EAC	29	420EFB	29
AXT37-001	29	38EAE	29	420EGB	29
AXM42-001	29	38EAD	29	420ERB	29
AXT42-001	29	38EAP	29	420GAB	29
				420GUB	29
				420GYB	29

Thorn 9.6K Tube 56-610 ONLY £5

Comprehensive range of new and rebuilt tubes always available

Ring IRENE or JANE for prices

Callers Welcome

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS -
TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED
$1 / 2$ Mile of Junction 10 M6. Easy Parking Facilities UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS2 8TL Tel: 0922 724542. Fax: 0922722208 Mobile: 0860499495 (24 Hours) OPEN: MON-FRI, 9-6pm SAT 9-2pm SUNDAYBY APPOINTMENT DELIVERY SERVICE THROUGOUT THE COUNTRY

PRESTON
439 OAKSHOTT PLACE,
WALTON SUMMIT
IND. ESTATE
PRESTON (M6 Junc. 29)
Tel: O772-312101

LONDON
AL LONDON ESTATE, UNTT 2
29-35 NORTH ACTON ROAD, LONDON NWIO
Tel: 081-961 5005

TV \& VIDEO WHOLESALERS

BIRMINGHAM
208 BROMFORD LANE, ERDINGTON,
BIRMINGHAM B24 8DL
Tel: 021-3273273 Fax: 021-3222011

JUST FOR NOVEMBER

$\star \star \star \star \star \star \star \star$
BULK PURCHASE ONLYSPECIAL WAREHOUSE CLEARANCE Teletext Sets \qquad from $£ 15$
Remote Sets.......................from $£ 9$
Basic Setsfrom $£ 5$ RING OUR BIRMINGHAM OFFICE ON 021-327 3273 for details

CALL IN AT YOUR LOCAL BRANCH TODAY AND SEE OUR RANGE OF EX-RENTAL AND B GRADE STOCK

TELEPRICE

LIMITED

DO
 YOU
 KNOW

A COMPANY WHO CAN REPAIR/REALIGN ANY UHF TUNER.
A COMPANY WHO CAN REPAIR ALMOST ANY BOOSTER/MODULATOR BE IT VIDEO OR SATELLITE.
A COMPANY WHO CAN REMANUFACTURE ALMOST ANY VHS VIDEO HEAD. A COMPANY WHO CAN REMANUFACTURE ALMOST ALL POPULAR LNB'S ON THE MARKET.
A COMPANY WHO CAN REPAIR AND TURN ROUND 90\% OF GOODS RECEIVED THE SAME DAY BY 1ST POST.
A COMPANY THAT CAN CONSISTENTLY CUT YOUR SERVICING COSTS
PHONE OR FAX THE NUMBERS BELOW
FOR YOUR FREE WALL CHARTS/PRICE LIST.

LaNCASHIRE TRADE DISTRIBUTORS

43-45 FORTON AVE, BOLTON, LANCASHIRE, BL2 $6 J E$ CONTACT STEVE WINDSOR OR DON WRIGHT 0204373217 Open Mon-Fri 9am-5.30pm. Sat 9am-1 pm.

AUTUMN SPECIALS

Working Teletext from £30 +VAT Front loading VCRs from £35 + VAT

Weekly deliveries of quality ex rental TV and video PANASONIC THORN GRUNDIG

BESCO LTD EX-RENTALTV's \& VIDEOS

NEW 'B' GRADE MAJOR BRANDS TV - VIDEO - HI-FI

PORTABLES FST's NICAM FASTEXT SONY HITACHI PANASONIC ETC

Huge selections. Complete range.
All makes and models available.
\star New Stocks Every Day \star
VHS Video from £30
Television from £3
PICK YOUR OWN VHS VIDEOS Lots of 10 £20.00 each

Working Ex-Equipment Panels

IF	Converger	Decoder	Line Scan	Power	Frame
T20122X	5	14	18	17	14
T26 X	5	16	20	17	X
Philips G11 14.50	5	12	20	20	11.50

All prices include Postage \& Packing. But + VAT

* IF THE PANEL YOU REQUIREIS NOT LISTED PLEASE ASK *
BRADEDBD
Springmill St
Manchester Rd, BD5 7RL
Ring Tony (0274) 308186

MANCHESTER

Unit 3, Mersey Rd. North Ind Est., Failsworth Ring David (061) 6834612

SUPPLIERS OF EX-RENTALTV \& VIDEO'S THORN \& NON THORN
REMOTE TEXT \& VIDEO HAND UNITS SUPPLIED WHERE NECESSARY ALL PRICES SUBJECT TO VAT

DELIVERIES THROUGHOUT DEVON CORNWALL TWICE WEEKLY

GIVE US A RING OR CALL IN

2A BARTON HILL ROAD, TORQUAY, DEVON

TEL: 0803312222 FAX: 326767

100 14" Portables Just Arrived
Returned TV \& Video Packages
$12 \times$ Amstrad TVR1 + 2 Televideos......£425
$9 \times$ Amstrad TVR3 Televideos £850
$10 \times$ ITT 25-28" FST $£ 595$
$6 \times$ ITT $21^{\prime \prime}$ FST £305
$30 \times$ Toshiba 21-28" FST £1275
$10 \times$ Hinari Televideos £680
$27 \times$ Mitsubishi $21-28^{\prime \prime}$ FST £1150
$10 \times$ Spectrum $+2+3$ Computers £300
$11 \times$ Mitsubishi VHS Videos $£ 625$
$18 \times$ Hitachi VHS Videos. £1000
$20 \times$ Akai VHS Videos £1190
PLUS MANY MORE BARGAINSTOO MANY TO MENTION
B GRADESTOCK RETURNED GOODS

| 14" Portables from $£ 70$ | 14" Portables from $£ 25$ |
| :--- | :--- | :--- |
| $20^{\prime \prime}$ Remote CTV from ... $£ 105$ | Front load VHS from $£ 50$ |
| $20^{\prime \prime}$ Fastext from $£ 140$ | Midi Hi-Fi's from $£ 20$ |
| L/P VHS from $£ 120$ | $21^{\prime \prime}$ CTV from $£ 40$ |
| $10^{\prime \prime}$ Mains/bat from £90 | Radio Cassettes from.... $£ 15$ |

GOGGLEBOX DISGOUNT ELEGTRICAL WAREMOUSETEL: LEEDS0532-310359ASK FOR ROBERTALL ABOVE PRICES PLUS VAT AT 17.5\%

D.S.D. DISTRIBUTION

Wholesale in T. V., Video, Audio, Hi Fi, Calculators, Watches, Key Boards, Microwaves, Crockery, Telephones, Vacuum Cleaners, and other Domestic Appliances Etc . . .
ASK FOR JOB LOTS

GRAND T.V. + VIDEO SALE ANY MIXED VIDEO'S IN 10s ONLY £580 + VAT
VIDEO'S IN STOCK INCLUDE 3V35/6, 3V43, 3V45, 3V53, FV31/2
PLUS MANY OTHER MODELS.
LARGER + SMALLER QUANTITIES ALSO AVAILABLE. SPEAK TO DAVE!

SERVICE MANUALS ALSO FOR SALE 3V35, 3V31/2, 3V43, 3V53

ONLY £5 EACH
UNIT 1, EAGLE WORKS, SPRINGCROFT ROAD, HALL GREEN, BIRMINGHAM, 11

TEL 021-778 5825
MOBILE 0860-642972

NOW OPEN FOR YOUR CONVENIENCE SHERGIIL TVVIDEO WHOLESALE

We have a wide range of TVs/Videos to choose from

WORKING COLOUR TVs \qquad From $£ 15.00$

WORKING FRONT LOADER VIDEOS From $£ 50.00$
WORKING TELETEXT TVs. \qquad From $£ 45.00$ UN-TESTED TVs. From $£ 5.00$

WORKING PORTABLE TVs \qquad From $£ 45.00$ UN-TESTED VIDEOS From £20.00
WORKING TOP LOADER VIDEOS From $£ 35.00$

ALL PRICES + VAT

HUGE DISCOUNT FOR BULK ORDER. ALL ABOVE SUBJECT TO AVAILABILITY CAN DELIVER BIG/SMALL ORDER THROUGHOUT UK

Tel: 0922 37220. Fax: 0922645333 Mobile: 0831406041

120-122 MILTON STREET, PALFREY, WALSALL WEST MIDLANDS (Off Broadway West)

\leftarrow TO LONDON

TV WHOLESALE

TELECENTRE

Distributor of ' B ' grade TVs \& Videos also has for disposal, quantity of ex-rental TVs and Videos.

Ring before travelling for availability and prices

0270589392

79A Coleridge Way, Crewe.

10 mins from Junction 16 - M6

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY T.V.'s from £3.00 Videos from £30.00 Prices Ex-VAT
Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9aB Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.

0299-8796420 8899643 FAX:0299829884

CREWE WHOLESALE TV LTD.

WE HAVE SLASHED OUR PRICES. WORKING TV'S FROM £15.00.
WORKING TEXT TV'S FROM £45.00 TAKE 5 £45.00 - TEXT ONLY £200.00.
LARGE SELECTION OF WORKING AND UNTESTED STOCK.
WORKING TOP LOADING VIDEOS FROM £40.00.
WORKING FRONT LOADING VIDEOS FROM £50.00
WORKING LONG PLAYING STEREO VIDEOS ONLY £70.00
AT LEAST 1 DELIVERY, TO EACH UNIT, PER WEEK.
CALL NOW FOR NEW PRICE LIST.
CREWE-OPEN 9.30 TO 5.30 MONDAY-FRIDAY
TEL: 0270582924.

* UNTESTED STOCK ONLY *

BLACKBURN - OPEN 10.00 TO 4.00 WEDNESDAY-FRIDAY TEL: 0254264489

Mाlentiv. matisil:

AUDIO, MICROWAVE
NEW MAJOR BRANDS COMPLETE MINT AND BOXED

EPDiTEINUPIIS W:OWNE RIMFFOROZAIIS

20 BASH'S GBEEN IND ESTATE DEREHAM, NORFOLK

TELEPHONE (0362) 691611

- COMPLETE BOXED - WITH STAND

TEL: 0703777254
FAX: 0703788723 14 PARK ST, SHIRLEY
SOUTHAMPTON s01 3NR

HOCKLEYDISCOUNT TELEVISIONS ...ams SUPPLIERS OF TELEVISIONS. VIDEOS \& ELECTRONIC ACCESSORIES
Look . . . Grand Announcement "BRAND NEM STOCK" STAR \rightarrow PERSONALC.D. PLAYER

BUY \rightarrow from $£ 55.00$ with carrying case, headphones and AC mains adaptor

14" COLOUR TV WITH REMOTE E108

EXTRA BASS Twin Deck Stereo Radio Cassette Recorder and Compact Disc Player only $\mathbf{£ 8 5 . 0 0}$ SPECIAL OFFERS: VHS Video Tapes from 95p tRy US - YOU'LL LIKE US
THIS MONTH'S SPECIALS= SCART TO SCART LEAD \longrightarrow only $£ 1.50$ (all pins wireo)
R.F. LEADS \longrightarrow only 28p

Y-SPLITTERS \longrightarrow only 45p
13A PLUGS \longrightarrow only 28p
UNIVERSAL LSARNIVG REMOTE only $\mathbf{2 1 2 . 9 5}$
LARGE SELECTION OF 'B' GRADE STOCK

1. TELEPHONE ANSWERING MACHINES
2. WALKMANS MIDI SYSTEMS
3. JUGS AUTO KETTLES
4. VIDEO'S AND TV'S

* PLUS MANY MORE!! *

Please Ring 021-515-2003
140 HOCKLEY HILL, HOCKLEY, BIRMINGHAM B18 5AN
Tel: 021-515 2003 Fax: 021-515 2004

UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, NEAR KIDDERMINSTER
TELEPHONE: 0299-251522 0836-585829/0860-809673 (24 HR)

SUPPLIERS OF HIGH QUALITY EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE ALL AT COMPETITIVE PRICES

Also available: ' B ' Grade Products, Audio, Microwaves and Complete Range of Televisions and Videos OPEN: MON-FRI -9.30-5.30

ESTABLISHED 1973 - WHOLESALE ONLY

Phone 021-359 7020 221-222 BRIDGE ST WEST HOCKLEY, BIRMINGHAM B19 2 HU

WILTSGROVE LTD

NOW IN STOCK BRAND NEW PORTABLECTV'S 12 MONTHS GUARANTEE EX-RENTAL PORTABLES \quad from $£ 39.00$
REMOTECTVS
TELETEXT TV'S
VIDEO RECORDERS from $£ 35$. ()
TWIN SPEED VCR \quad from $£ 65.50$
VIDEO TAPESE-180 from $£(0.85$
ALL STOCK TESTED \& WORKING NEW STOCK ARRIVING DAILY EX-RENTAL. FST'S. 'B' GRADE ctc EXPORT ENQUIRIES WELCOME HUGE RANGE OF TV \& VIDEO SPARES
A ALSO IN STOCK
28-29 RIVER STREET, DIGBETH BIRMINGHAM B5 5SA

TEL: 021 772-2733 FAX: 021 766-6100

 No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

PHONE 081-652 8339 FAX 081-652 8931 等

SPARES \& COMPONENTS

MITSUBISHI/SAL ORALUXOR VIDEO PCB's

 92881607022408665901
925817002240868201 925817002240868201
9281501240865601 928815801240889001
99681770124070701
92880590324084801 928805903240848801
928808505240694201 $928810102240 C 84301$
928805805
240848101 928005805240848101
9288081022405301
9288086022405510101
 92880770281240848801 928811302240856701
928818901240669101 928821002240882501
928819801240875501
92881550124088501
928806202240850801
928806601240848301
928808803240848501
$92881+1005240 \mathrm{C} 98101$

hanosets

CR4700
CR5200
VCR6100 Barcode
TS90/99 Tower Systerm VCR9000 (Old Type) Handset L.O.P.T. CTV1000 FB182K CTV1401/9 3714002 CTV2000 FB171/FB171K CTV2200 3722002 TVR2 1810951
TVR3 181297 PC12-HRCD/D MSH1FCT3 CONVERTERS 4700 RF CONVERTER 5200 RF CONVERTER

DISHES, FEEOS, LNB'S ETC AVAILABLE. PHONE FOR LIST.

Harrison

 Electronics $£ 29.38$ heads)£14 10 MOTORS
£13.51 TUNERS

AMSTRAD
PRICES INCLUDE VAT, POST AND PACKING EXTRA P.C.B's

4600 video and Audio PCB
$£ 17.63$
4600 Systems Control/Servo PCB Display and Control PCBs 4600 MkII Video and Audio/Timer/Control PCB Assy 4700 Video and Audio/
Timer/Controt PCB Assy VCR100 Video and Audio/Timer/ Control PCB Assy. Timer and Channel Display PCB Assy.
5200 Audio Tuner PCB 5200 Video PCB
8900 Display PCB
4600 Mk II/4700 Power Supply 4600 Mk II/4700 Power Supply
CTV2200 PCB No: 3 (Part 270087 CTV2200 PCB No: 3 (Part 270087) CTV2200 PCB No: 4 (Part 270088) TVR1 Control Panel//Preset PCB TVR2 Main TV PCB TVR3 Main TV PCB

MECHANISMS

11.75
$\boxed{17.63}$ $\mathbf{4 6 0 0}$ Video Cassette complete
$£ 17.63$ mechanism (no drum or video
\{11.75 mechanism (no drum or video $£ 11.75$ 4600 Video Cassette complete mechanism (with drum no video heads)
9000 Cassette Housing Assy
£35. 25
£9 40 4600/4700 Capstan Motor
§14.10 7000 Loading Motor MCB2B01
£13.51 9000 Loading Motor MCB9B02
$\begin{array}{ll}\$ 14.10 & \text { TUNERS } \\ 5200 \text { Varicap Tuner Type } 1810829\end{array}$
$£ 7.05$
7000 Tuner ENV87358C2
$£ 7.05$
$£ 7.05$
£5.88 CTV1400 Tuner ENV87509F2 £5.88 £7.05 CTV2200 Tuner UE2-B31F £5.88

PARTS OFF PCB's ANO MECHANISM PHONE FOR PRICING
all items are brand new and guaranteed

* * SAME DAY DESPATCH * *

Write or Phone for FULL catalogue.

ROS VARAABLE VOLTAGE D.C. BENCH POWER SUPPLY

 Fully varable Operales
trom 240 A A C
$\mathbf{2 4 5}$ VAT
 Wew mookl. Up to 38 volts DC at 6 amp io amps
peak. Fuly variable. Twno panel meters. Size RADIO COMPONENT SPECIALSTS 337 WHT TELORSE ROAD. CROYDO
SUPGEY U.K. Tel: 0816841665 Lind Large SaE. Delvery 7 days. Callers Welcome Closed Wed.

SURPLUS REDUNDANT EIECTRONIC

 COMPONENTS WANTEDI/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment. ADM Electronic Supplies Tel. 0827873311. Fax 0827874835

SERVICE DATA

SERVICE MANUALS

FOR MOST U.K., EUROPEAN, FAR-EAST \& USA TYPES OF CTV MTV - VCR - CAM - SAT - MWAVE - AUDIO INCLUDING

UUNUSUALS" - AND ALL AT REASONABLE PRICES
VCR CIRCUITS ALSO AVAILABLE SEPARATELY FOR MOST MODELS.
PANASONIC NV-FS100, L20, NV-MC10, MC20, MC30 £10.00 each. ORION - any VCR or VCP after 1985 - $\mathbf{£ 1 0 . 0 0}$ each. NEC PX1200k $£ 12 / 50$, any other U.K NEC VCR - $£ 15.00$.
Other brands available include - Daewoo, Funai, Hinari, Kisho, Loewe, Memorex, RCA, Silver, Toshiba, etc. . WRITE OR TELEPHONE WITH YOUR REQUIREMENTS. ALL U.K. ORDERS SUBJECT TO £1.00 P\&P, NO VAT.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG
Tel: 0202870656

E.C.S. INDEXES!

THOUSANDS SOLD WORLDWIDE

Edition 8 of the complete indexes now published containing approx 7,500 Faults listed in 12 Years of Television magazine.

Indexes are alphabetically listed by Make, Model, Fault Ref and are now available for just:

£8.00 For Television \& Satellite Faults

 28.00 For Video, Camcorder \& CD FaultsOr $£ 15.00$ for both sets complete with chassis \& similar model guides. Please add $£ 1.50$ (UK), E3.00 (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER.

To secure your copy/s please make Cheques/Postal Orders payable to:

E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

Technical Information Services

76 Church St, Larkhall, Lanarkshire, ML9 1HE

 Phone/Fax (0698) 884585; Between 12 noon \& 1pm or After 5pm (0698) 883334 Send a large SAE for your FREE QUOTE \& CATALOGUE $\mathfrak{£ 2 . 0 0}$ P\&P on orders below $£ \mathbf{2 0 . 0 0}, \mathfrak{£ 2 . 5 0}$ from $£ 20.00$ to $\mathfrak{£ 3 0 . 0 0}$, Post free over $\mathfrak{£ 3 0 . 0 0}$We have "THE WORLDS LARGEST COLLECTION" OF

Covering: CTV, VCR, COMPUTERS, RADIO, HI-FI, TEST/DOMESTIC EQUIPMENT, SATELLITE, CD's, ETC... Now selling circuits for any VCR we have at $£ 8.95$ inc. p\&p Not to mention that We are the Sole Suppliers of Various Fault Finding, Repair \& Technical Guides

A few selected titles

Practical TV Repairs 2nd Ed.	£16.95
Refrigeration Pocket Book	$£ 14.95$
Servicing Mono TV's	£17.95
The PAL System	£9.50
BBC Micro A B + \& peripherals	£25.00
TV \& Video Technology	£14.95
Europ'n Scrambling Sys *New Ed*	£29.00
Hi-Fi Servicing Guide	$£ 9.95$
Practical Radio Serv'\& Repair	£12.95
Data Ref Guide 3rd Ed	£5.95
Electronic Test Equip' H'book	88.95
Serv'ing Personal Comp's *New Ed*	$£ 25.00$

Video Techniques *New Ed*	$£ 16.95$
CTV Servicing by G.King	$£ 16.95$
Spectrum Repair Guide	$\mathbf{8 5 . 0 0}$
Buy-Sell-Repair Used TV's	$£ 9.95$
Buy-Sell-Repair Used VCR's	$£ 9.95$
Microwave Servicing	$\mathbf{£ 9 . 9 5}$
TV \& Video Engineers P/Book	$£ 14.95$
Newnes Data Com P/B 2nd Ed	$£ 12.95$
Newnes Electr Assembly P/B	$£ 14.95$
VHS Common Faults	$£ .95$
Practical Digital Elec's H'book	$\mathbf{£ 6 . 9 5}$
Oscilloscopes How to Use/Work	$\mathbf{\$ 1 4 . 9 5}$

INTEGRATED SYSTEMS from TIS

10 Giant binders of all main CTV Circuits, PCB's \& Waveforms to end 1989
£275.00
12 CTV Repair Manuals covering stock \& standard faults to end 1989 , worth $£ 144.40$ £119.00
All CTV binders \& Repair Guides, PLUS over $£ 100.00$ of additional data $£ 425.00$
7 Giant binders of most VCR Circuits, PCB's \& Waveforms to 1991 (Vot. Lateen) $\mathbb{E 2 1 9 . 0 0}$
35 Fault-Finding Guides covering all models in the 7 giant binders $£ 79.95$
All the CTV binders \& Repair Guides PLUS VCR binders PLUS fault finding, etc. $£ 599.00$
TVAR complete, $1990 \& 1991$ editions covering CTV's, VCR's, CD's, Satellite, etc. $£ 89.45$
Data Reference Manual (models, makes \& chassis identified) FREE with any above system

No catches! Order as you need them (no time limit), or as one lot of all those expensive manuals you couldn't previously afford. No hidden expenses like post \& packing (that's included in the price). Note: The $£ 150$ is payable in one sum, not per manual.

SERVICE MANUALS

5

Available for most equipment, TV, Video, Audio,
Test, Amateur Radio, Kitchen, Computers etc etc We have probably the largest range of Service information available anywhere. If you need a manual give us a call.

VISA

MAURITRON SERVICES (TV)

8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel:- (0844) 351694. Fax:- (0844) 352554.

TV \& VIDEO TRADE REFERENCE MANUALS

VIDEO RECORDER EQUIVALENTS.

Lists all known models \& their alternatives.
Fully Cross referenced for fast and easy use. Order MP143.

TELEVISION CHASSIS GUIDE

Listing thousands of Models (Colour \& Mono) \& their Chassis Designations
Enables you to identify any chassis for any TV from the model number. Order MP18.

The above 2 books contain the most COMPREHENSIVE REFERENCE DATA available anywhere for the TV \& Video Trade. Order yours today.
Hundreds of other Technical and Repair books available. Send A5 size SAE for your FREE catalogue today All orders please add $£ 2.35$ post \& packing.

GERMAN SERVICE SHEET SPECIALISTS

Our connections are worldwide We furnish any

 kind of German. Lurspean and lapthese serve manuals in stock. Fer any enyuit iosDÖNBERG ELECTRONICS
Schoolmasters House, Rannaiast, Co. Donegal, Republic of Ireland. Phone: 07548275

> FAULT FINDING GUIDE.
> Covers Amstrad, Login, Matsui, \& Saisho TVs and VCR $89.95+P \& P$ E. ROWLAND. 438 POVNTERS ROAD, LUTON. BEDS, LUG OIL.

FOR SALE

IV's FROM E15.00 WORKING

VCR's non working £20. TVs/Videos working stock Hitachi Panasonic, Sanyo, Sharp, Toshiba. New 20" VHF/UHF multisystems TV's £175. VHS/UHF Converters £9.99 Min 25.

SECAM TRANSCODER

4 wire connection suitable for any UK TV P.O.A. Wanted regular supply of TVs and Videos

173 Dalston Lane, Hackney, London E8 1LA
TEL/FAX 081-533 2229/081-986 4710

TELEVISION TUBE RE-GUNNING PLANT FOR SALE
Equipment is used and excessive to our Requirement. Training will be variable if required. For further details please write to:

WELL-VIEW
114134 Midland Road, Luton, Beds, LU2 OBL Telephone 0582-42499

WANTED

> WANTED
> Regular Supply of Ex-Rental Colour TVs and Videos Cash on Collection Quick Service
> Tel. 0742312832

SOFTWARE

RELAY
 Omen to Computer software

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?
DO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME? if you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical printout of each customer's arrears and payments missed
* total arrears immediately available
\star easy to use and operate.
NEW HIRE PURCHASE PROGRAMME NOW AVAILABLE AS WELL
These programmes operate on all IBM compatibles running under MS-DOS Free demonstration

WILLIAM J THOMPSON Donaghanie Post Office
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)
BUSINESS FOR SALE

BUSINESS FOR SAL F.

Established. Profitable, TV,
Video and Audio Sales and Service busines in beautiful Harrogate, North Yorkshire. In busy area. Immaculate shop with excellent modern workshop facilities. Three year renewable lease, Very low rent. Reduced to $£ 17,500$. plus S.A.V.

Telephone 0423521689

MISCELLANEOUS

WHY BUY
 SECONDHAND GOODS

Double your profits with brand new goods.
Please state your requirements. Bulk buyer only Write to
M.E., PO Box 2739 West Bromwich, West Midlands B70 6EU

CAR RADIO CASSETTES

Do you turn away work on car radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the eeprom (memory IC) with that of a known code, or sending the original for re-coding
All popular makes including Philips, Ford, Pioneer, Clarion Grundig, Blaupunkt, Fisher, JVC Alpine, Volvo, etc.
Send now for introductory offer one of each of most popular eeproms + comprehensive eeprom/radio decoding list. Offer includes Philips X2402P: Ford MNO10: Blaupunkt Boston CC20 9346: £17.63
Original eeprom re-coding service $£ 10.00$
Radio's sent for decoding from $£ 20.00$
Inc. of VAT and $p \& p$ 25% Discount to all account holders (conditionai)

RADIO DECODING EQUIPMENT

We will beat any genuine written quotation for supplying a computer or software to decode radio cassettes, ring us first.

For technical or general information phone 0543572523 or 0831806574 C.D.H. ELECTRONICS 3 Common Walk, Huntington Cannock, Staffs WS12 4NB
C.D.H. ELECTRONICS

RECRUITMENT

TV \& VIDEO

 ENGINEER.with Audio experience Panasonic \& Sony trained mainly bench - occasional field work. Excellent salary conditions \& prospects CV\& letter in own handwriting To;

Mike Molyneux,
173 Old Chester Road, Bebington, Wirral,
Merseyside 163 8NE
IEL: 0516447654.

WANTED
Experienced TV/Video Engineer to work full time on all makes. Excellent salary References must be supplied. Apply to
Mr. D. Day, M.T. SERVICES,
Cutmaple Trading Estate,
Sible Headingham, Halstead.
Essex C08 10 P .

TRAINING

Lowking for a home study corarse, in

 the fundamentals of electionice? Whether you are a begimer. or an old hand requiring a refrester the DIRECT PERSONAL
LEARNING

 course. could meright for your. Contac: K. Sparrow etc... $1 /$ Claydon Green Whitchurch BRIS (Oi Avon BSIA)NO Telephone: (0275) 835669
TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS

PHONE 081-948 3702 FAX: 081-332 0583
ALBA. AMSTRAD BUSH. DECCA DORIC BL AUPUNKI FERGUSON FIDEIITY. GEC GRUNDIG GRANADA HITACHI HINARI . INDESIT . ITI . KIMARA NIKKAI MATSUI MURPHY. OSAKI NORIDMENDE . LOEWE-OPTA REDIFFUSION PYE. PHILIPS SANYO. SAISHO SHARP SONY SOLOVOX SUSUMU TANDBURG TEIEFUNKEN THORN. TRIUMPH. HUANYU.GOLDSTAR. BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS IDLERS, PINCH ROLLERS, TENSION BANDS.
 LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER I'TI) . 236 SAND YCOMBE R(OAD
RICHMOND . SURREY. TW9 2EQ. Mon-Frigam to 12.30 pm \&

Approx. 1 mile from Kew Bridge.
Sat 10 am to 12 mo

TUBES

REBUILT CRTS VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphers

B.S.I. Certification

N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL

PHONE: 081-771 3535

Britain's Oldest Established Tube Rebuilder

TV TUBE REBUILDER

What ever make or type. Give us a call. Polish Service available. Discoumt offered on quantities \& Regular orders. Also new tubes in stock at special low prices. Typical Types A5/JIAR A5/EAL, A59JMZ. A59EAK equivalent.

M.B. ELECTRONICS

 Unit 6, Guild Hall Ind Estate, Kirksandell Ind Estate, Doncaster DN3 1QR.Tel: 0302-891208

FOR SALE

D.S.D.DISTRIBUTION

SERVICE MANUALS FOR SALE - £5 EACH 3V35, 3V31/2, 3V43, 3V53
UNIT 1, EAGLE WORKS, SPRINGCROFT ROAD, hall green, BIRMINGHAM, 11 TEL $021-7785825$ MOBILE 0860-642972

HIGH GAIN TV AEAIALS

 Superb 10 element ' X antenna. Very rugged construction, 16dB gain. 6 bar reflector. PCB connector \& heavy duty clamp $£ 37.95$ incl. postage.Send for spec sheet to

TVM, 52 St Andrews Street Northampton NN1 2HY Tel: (0604) 37769 ACCESS VISA WELCOME

RED HOT DUTCH

Build your own Decoder using our easy to build kit, includes quality PCB, chip sets \& instructions S.A.E for full details WSTV. P.OBox 52

Evesham. WR11 5B
Trade Enq Fax 0386-833003

PARDON ME

Did you know you don't have to buy junk at top prices?

UNIVERSAL TRADE SURPLUS (UNITRADE)

Offer as owners and sole UK distributor for Amstrad/Fidelity non computer reworked returns and dormant stock.
All reworked, repacked to ' A ' stock status. WE DO NOT SELL JUNK! AMSTRAD VCR9000 Twin speed LCD remote ..15 BUSH 3114 14" remote CTV, non text $£ 95$ CTV with text $£ 115$
FIDELITY STV20 $20^{\prime \prime}$ CTV with 100 channel satellite system built in. NEW £185
FIDELITY DD8900 double decker video. £190

AMSTRAD 9340 Nicam VCR centre deck £160
AMSTRAD 91404 head VCR LCD \&135
AMSTRAD 3000 latest 2 speed LCD ع117

BUSH MS765 midi CD system. NEW £95
CROWN CD2005 remote CD midi. NEW $\varepsilon 95$
CROWN MCK40 midi remote, full size ع95

CROWN MCK10 midi. NEW..
BUSH MC800 ghetto blaster with surround sound speakers. NEW
£30.50 . 39
AMSTRAD/FIDELITY MICRO 1000 micro CD/music system remote control . 190 FIDELITY mini 2000 stack CD system

PLUS MUCH MUCH MORE!! PHONE FOR LATEST STOCK LIST
Remember, we give better than good service. Sorry no credit, cash on delivery or cash and carry. PLEASE NOTE: WE DO NOT SELL UNWORKED PRODUCTS. ALL OUR PRODUCTS ARE WORKED, TESTED REBOXED AND GUARANTEED TO 'A' STOCK STATUS

Open: Monday - Friday 8.00am-6.00pm Saturday $\quad 8.00 \mathrm{am}-1.00 \mathrm{pm}$ Regular deliveries nationwide, or small shipments sent by courier

LINEAGE

AVO MULTIMETER Model 8. 2.5.(0). 50\% voll megers E^{2} (0)(0). Prices plus VAT and p\&ep send SAE for lists of Surplus Instruments \& Scopes etc. A.C. Flectronics. 17 Apleton Grove, Leeds LSY YEN. Iel

C.R.T. REGUNNING PLAN T. Complete regunning plant (elec) with 5 wens di :ll regunting plant (elec) with somens os ath ano. Tul Duhtion $2064+91$
COSTA DEL SOL. Established satellite business for vale. fantastic protential opening for I VIIDEO REPAIRS, also 3 bedramed villa $\mathfrak{f} 1$? (0, (M) M) ano. Phone/fax for information 041034528.37 ,45 HITACHI MLLTISYTOM (CM'T 2(M91) aml Japanese basic Televisions watnted working or "complete lage or small quatntates. Tepphone Smon (M222) 694759 (evenings)
 METERS RECONDITIONED. EL.00 so Audiotech. Tel. $074032+5$
MICROWAVE OVENS. Mambacturers retums workine umested and sater grates From tis (M) $12277+1081$
COMPLETE VIDEO IECK assmblie's. is
 SH Elearomios $=\$$ Jowis purh SH . Electroncs.
Batlyoruttle. Downatrech BTZ30 7 EN OCHRE MILL Technical Services, Grundg TV waites for whed and riens he most moxets to hers Fat Firm. Charlon, sensthle prices. Gt Lyp FNiathatiol, Nr. Malmesbury. Wili SNIGYDR. Tel (K6t6 $82322 \times$

PRIVATE RETALIER has excellent farm exchange colour televisions and videos to clear Tel (1494814317
S \& C TRADING. Matsui. Saisho TV/VCR
 f1.(N). I//I2 Marine Parade, Brighton ISN2 TLL Tel 1273675754

STUDV ELECTRONICS on the BBC Micro An intelactive approach to learning. Four program titles available 'Introduction to Electoonice principles' Electronics Mathe Electonics principles. Electromics Mathe Propramming for Electronici Program Prugramming anclade theory, cramples, self lest question. formmite. chants and chrcuif diagrams. 5 er and calculated outputs. ± 2945 cach +2 ?. 10 p. Rp. Cheque or postill to E.P.T. Education at Soltware, Pump flouse, Loch ram Lane Witham, Escer CM 2 ? $B J$ Please statc BBC - 3^{\prime} or Master series and dise size

VIDEORRYPT DECODER service sheet with smartcard contint Details Eurorypt Cand Interlace E12.00. EM.O Ramsottom. Lano beil 9AG. Tel 17706 223136
WANTEI). KT(n, KTX8, PX+ I'X2S, transisfors etc. If pussible send at aritten list Phompt reply and payment. Billingoon Ex mont, Unit F2, Oakendene Industrial Extinc Neal Horsham. West Sussex RIII3 dAZ. Callers sirictly by appointment only. Tol
 IRAG

ADVERTISERS PLEASE NOTE:

FOR ALL YOUR FUTURE ENQUIRIES ON ADVERTISING RATES,
PLEASE CONTACT PAT BUNCE ON
TEL 0816528339
FAX 081-652 8931

DISH AND LMB SUITABLE FOR 2 DMAC $£ 15$
 POST £5 + VAT

CHASSIS SUITABLE
 FOR CONVERSION TO 2 DMAC £10 HANDSET £1.50 POST £4 + VAT

SENDZ COMPONENTS
63 BISHOPSTEIGNTON
SHOEBURYNESS, ESSEX SS3 8AF.

 - Coms 					
ロッ 					

[^0]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9 LS (071 2615000 . Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television "is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

