SERVICING•VIDEO-SATELLITE•DEVELOPMENTS

FREE 32-PAGE CATALOGUE

Inside the Ferguson TX80 Chassis All About Solders and Fluxes Fault Notes on HRD110/3V38 VCRs Build this Simple ACIDC HV Tester Satellite TV Notebook•DX-TV VCR Clinic•TV Fault Finding

UNAOHM REACHES 2000... MHz THRESHOLD!

UNAOHM has a long tradition as a leading manufacturer of instrumentation developed to solve all the problems related to the reception of television signals - terrestrial and satellite, analog (PAL, SECAM, etc.) and digital (Teletext, Pay TV, MAC, etc.).
The field strength meter, in particular, has become indispensable for the proper installation of a TV distribution system. The recent technological developments in TV reception make continuously increasing use of frequencies up to 2 GHz . As a result, technicians and installers must consider these developments when designing and carrying out new installations and, therefore, procure the necessary instrumentation to meet the latest requirements and those of the near future.
UNAOHM is proud to present a new line of 2 GHz instruments including sweep generators/markers/noise generators/attenuators and related accessories, all of which have been recently developed to meet the standards of the latest and most advanced technological requirements.
Our engineering team is at the complete disposal of our professional clientele to study the possibility of modifying our standard models to meet their specific needs.

SWEEP MARKER EP 688

- Frequency Range: $10 \mathrm{MHz}-2 \mathrm{GHz}$ in two bands.
- Output Level: $+6 \mathrm{dBm}--80 \mathrm{dBm}$.
- Calibrated Attenuator: 0-86 dB, in 1 dB steps.
- Impedance: 50 !
- Synthesized Marker: from 10 MHz up to 2 GHz .
- Band Marker: ± 2 to $\pm 14 \mathrm{MHz}$ in 0.5 MHz steps.
- C.R.T. display of all programmed functions.

TV SWEEP MARKER EP 657

- Frequency Range: $4-1800 \mathrm{MHz}$ in nine bands.
- Output Level: $+6 \mathrm{dBm}--69 \mathrm{dBm}$.
- RF Attenuator: 1 dB step calibrated up to a total of 75 dB .
- Impedance: 50 』.
- Markers: comb, fixed band and variable (in the same ranges as the sweep).
- Digital Frequency Meter.

RF ATTENUATORS AT 71/50-AT 71/75

- Attenuation: 0-127 dB, programmable with variable steps from 1 to 10.
- Impedance: 50Ω (for AT $71 / 50$) and 75Ω (for AT 71/75).
- Frequency: $0-2 \mathrm{GHz}$ (AT 71/50) and $0-1,8 \mathrm{GHz}$ (AT 71/75).
- Connector: N (AT 71/50) and BNC (AT 71/75).
- Reading: displayed on a backlit LCD.

为

COPYRIGHT

(C) Reed Business Publishing Ltd., 1992. Copyright in all drawings, photographs and articles published in Television is fully protected and reproducution or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Dept., Reed Business Publishing Group, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vols. 37 and 38 are available at $£ 1$ each from the Editorial office (address above). Photostats of the indexes to Vols. 3136 can be supplied at $£ 1$ each. Make cheques etc. payable to Reed Business Publishing Ltd.
Binders that hold twelve issues of Television are available for $£ 5$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 23$ in the UK, f28 overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

Subscription hotline for 24 -hour ordering with Credit Card number 0789200255.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 2.50$ each from Television Back Issues, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to published designs nor comment on alternative ways of using them.

this month

401 Leader

402 The Images of the Future Conference George Cole
A look at the next generation of consumer electronics products.

404 AC/DC High-voltage Tester
Ian Rees
An easy to make and use design primarily intended for checking the h.v. section of microwave ovens.

406 Inside the Ferguson TX80 Chassis J. LeJeune
A detailed account of the circuitry used in this innovative colour portable, in particular the combined chopper/line output stage which is reminiscent of Thorn's 9000 series sets.
412 Teletopics
News, comment and developments.
414 VCR Clinic
Reports from Philip BlundelI, AMIEIE, Eugene Trundle, lan Bowden, John Edwards and R.J. Avis, AMIEIE.

416 Obituary: Shizuo Takano, Father of VHS
George Cole
Shizuo Takano played a leading role in the development of consumer video.

417 Letters

418 Photostat Service
419 Microcomputer Notes Hints on rectifying fault conditions.
420 TV Fault Finding
Reports from Steve Cannon, L.V. Cooper, Graham Rees, Liz Hopkins, John Edwards, Ed Rowland, Mick Dutton, Eugene Trundle, Michael Dranfield and Denis Foley.
423 Long-distance Television
DX conditions and reception and news from abroad.
425 Satellite Notebook
Installation problems and faults in satellite TV equipment.
428 What a Life!
Donald Bullock
TV sets, VCRs and the people that bring them along.
429 Next Month in Television
430 Solders, Fluxes and Soldering Creams Eugene Trundle Different materials and PCB assembly techniques call for various different soldering methods. An account of the types of solder and fluxes available and their uses.

435 Fault Notes on the JVC HRD110/Ferguson 3V38 John Coombes A summary of common fault conditions with these popular machines.

436 CD Player Casebook Reports from Mike Leach and P.J. Roberts, G1VUV.
437 Test Case 352

OUR NEXT ISSUE DATED MAY WILL BE PUBLISHED ON APRIL 15

-

 | | |
| :--- | :--- | :--- |

IDLERS \& PULLEYS REPLACEMENTS				IDLERS \& PULIEYS REPLACEMENTS - Cont.			£3.00	VIDEO MOTORS						
amstran		Reference		matrowal				amstrad						
VCR7000		150280	£1.50	Nv777, N788 Nv333	IDLER UNIT	VXP0463			REEL MOTOR	£17.00				
AKA						VXL0997	£3.60	FEREUSOW \& JVC						
VS1-2, VS4-5, VS15	FF-REW ILLER	M1327773	£4.50	NV333, NV366	IDLER UNIT	VXP9401	¢0.75	PU 45979, 3V16. 3V22. HR3300, HR3660	capstan motor	¢21.00				
VS1-2, VS4-5, VS15	T-UP IDLER	8V327815	¢6.00	Nv333, NV366	PLAY IDEER	VXP0433	玉. 00	PU $55371 \mathrm{~V}, 3 \times 35,3 \times 36,3 \times 38$, VV39.	CAPSTAN MOTOR	¢19.50				
V9700	IDLER	8V321979	¢6.00	NV333, NY3000	action gear	vogeoth	¢0.60	8943, 8944, HRD1 10, HRD 200 HRD121.						
VS125, 126, 155,	IDLER ASSY	M236696012	¢11.00	NV333, Nv2000, nv3000	ldading gear	vxP0325	£2.00	HRO225						
VS165, 240, 244,				NV7800				PU 46414, 88904, 8922, HR3300, HR33320.	DRUM MOTOR	519.50				
VS245, 247, 248,				NV333, NV2000, NV3000, N 1333 NV366	INTERMEDIATE GEAR	vXG0017	¢0.65	HR3330, hR3360, HR3300, HR3660						
VS250, 512, 515, 516					camgear	vXG0158	81.00	PU 51381V. 3V39, 3V30, 8930, HR7200.	reel motor	${ }_{526.5}$				
FERGUSOW					IDLER ARM	VXLO997	${ }^{\text {E }}$.60			2900				
				NV370, NV430, NV730, NV830, NV850, NV870,	IDLER ARM	VXP0521	£1.70	PU 58635V, 3V58, 3V59, 3V64, 3V65, 8950, 8951, FV10B, FV11A, FU12L FV13H. FV20B, FV21R. FV22L, HRD170.	capstanmotor	[29.000				
$3 \times 16-22$	T-UP IDLER	PU47752	£4.50				NVG7, NVG10, NVG12,							
3V16-22	T-UP IDEE	PU49280	£6.30									FV13H. FV20B, FV21R. FV22L, HRD170. HRD180. HRD230, HRO370. HRD430		
3v23,3v29.30,	ReEL IDLER	PU48967	£.00	NVG18	CAM GEAR	VOGO200	£1.20		REEL MOTOR	£18.00				
3v31-32,3V35				NV370, NV430, Nv870,					8950, 8951. FV10B, FV11R, FV12L.					
3 V 23	ROLLER ASSY	PU49042A	£4.00	NV30	IDLER UNIT	VXP0581	52.50	FV13H, FV14T, RV20B, FV21A, FV22L. HRD170, HRD180, HRD230, HRD370,						
$3 v 29 .-30,3 v 31-32$,$3 \vee 35-36.3 v 38-39,3449$	T-UP PILER	51402	¢1.45	NV2000, nv3000	IDLER UNIT	VXP0331	91.20	HRD170, HRD180, HRO230, HRO3TO,						
				N W2000, NW3000	IDLER UNIT	VXP0329	$\underline{1.20}$	3V43. 3v44, 3V45, 3v48, 3V53. 3V54, 3V55, 3V56. 3V57, 8945, 8947	LDADING MOTOR	${ }^{\text {¢8.00 }}$				
3V29-30,3V31-32 3V35-36, 3V38-39, 3449	T-UP CLUTCH	PU51380	${ }_{52.65}$	NV2000, NV3000NV200, NV3000	CAM GEAR	Vogoch	51.00		3V54, 3V55, 3V56. 3v57. 8945, 8997					
	REELIDLER	PU55373	¢2.85		action gear	VDG0076	£0.60							
3V58-59, 3V64.65, IDLER ARM		PU58645	¢2.50	NV7000, 7200, 7800 NV7000, 7200, 7800	IDLER UNIT	VXP0344	$\underline{1.00}$	8948, HRO140, HRO150, HRD455. HRO565. HRD725, HRD755, HRP50, R73AF						
FV10-11, Fv12-13, F114					CLIJTCH	VXP0343	¢5.50	witsuesm						
3 V 42	CLUTCH ASSY	PU55822	¢13.50	NV8400, Nv8600,	IDLER UNIT	XXPO245	£1.20	288P02801, HS300, 301, 302, 310	mOTOR REEL SP0OLING	¢33.50				
3V44	CLUTCH ASSY	Pu57658	£11.50	NV8610, NV8620				288P02806, H HS303, 304, 320, 330, 700	MOTOR REEL SPOOLING	50				
3V42, 43, 48, 53, 56	I-UP CLUTCH	PU56043-14	92.80	NV8600, NV86610, Nv6620	Playidier	XXPO243	$\underline{1.20}$	288PD3401, HS303,700	MOTOR REEL TAKEUP GEN	§21.00				
3V42, 43, 48, 53, 56	SUPPORT CLITCH	PU56044-1-5	£2.80	NV8620 NV600 NVG21-25, NVG40-45	CluTCH iDLER PULLEY UNIT	VXPO 343 VXPO488	$\begin{aligned} & 55.50 \\ & 53.50 \end{aligned}$	manowal						
							£5.80	MYN 135V5L, NV332, NV333, NV340,						
FIMHER				ORION		850A200004		VEMO212, NV730, ${ }^{\text {a }}$ 770						
FVHP520, FVHP530 PNHP615 FVHP6 15 FVHP840 FVHP905, 906, 908, FHPPS10, 916 FVHP975, 990, 999 FVHP5000, 5100	FF-REW PULLEY COMP. IDLERASSY GEAR IDLER ASSY REEL T-UP ASSY GEAR IDLER ASSY	$\begin{aligned} & H 1638531 \\ & \text { F14430420400300 } \end{aligned}$	${ }^{61.00}$	W+200-201	IDLER									
			¢3.30	WH555-700, VH844-900,			53.50							
		Fl1430490400900 F1430410400900 F14 430490402400	65.50	VH555-700, VH8 $44-900$, VH1000-1500, VH 1800 .				4.529V-10800 (RM11), VTC5000, VTC5150	REEL MOTOR	¢6. 30				
			¢6.50	vp200 VH530	IDEER	855A200005	¢6.50	STMAP						
			¢6. 20	VH535-630. VH635-640,					REEL MOTOR	£13.50				
	${ }_{\text {ILLER }}$	F11430420400700	$¢ 5.20$	VH893-1440, VH2500-										
				2500, VH2700-4010.				VC9100, VC9300, VC9500. Vc9700						
				VH5010				RMOTV 1007GEZZ. VC387, VC483, VC486,	REEL MOTOR	916				
GOLDSTAR				PYILPS				RMOTV 1010GEZZ. VC300, VC402, VCa71,	reel motior	816.00				
	IDLER	435038A	¢2.50	DV464, VR6462. VR6463, IDLER VR6660, VR6860 VR6460, VR6520, 6920 IDLER ARM		52220334	£2.50	VC477, VC481, VC482, VC488, VC496, VC500, VC571. VC581, VC582. VC583, VC584, VC5F3, VC8481, VC8581						
						40340162	51.70							
HTACH							97.50	Sowr						
	FF-REWIDLER PIAY IDLER	$\begin{aligned} & 688971 \\ & \text { V- } 6861482 \end{aligned}$		sanro		1430662114730	¢5.00	BHF 11000, SLC7	capstan motor	¢25.				
			$\begin{gathered} \mathfrak{y . 2 0} 50 \\ \hline 1.50 \end{gathered}$	VHR110, VHR1300, IDLER				CASSETTE HOUSING						
V $111-33, \mathrm{~V} 63-64, \mathrm{~V} 14$,	ClUTCH ASSY	6879515		VHR1500										
$17,19,38,57, V T 86,88$Vit20-220	CLUTCHASSY		57.50	VTC5000, VTC5150 VTC9100, VTC9300	FF-REWIDLER IDLER									
		6888824				1430741T20001 $1430551 T 01400$	${ }_{\text {E3 }}^{51.00}$	ЗV38, $3 V 39,8943,8944,8951,3 V 35,3 V 36$, HRD110, HRD120, HRO121 HRO225		524.00				
VT8000-8300,VT8500-8700				VTC9300 VTCM10-20	FF ROLLER ASSY REEL DRIVE PULLEY	143054700200 1430662 T 10350	${ }_{\text {E. }}^{51.20}$	HRD121, HRO225						
				3V42, 3V43, 3V44, 3V45, 8945, 8947, HRD140. HRO141, HR HRO455, HRO725				524.00						
vT8000-8300,	Play idier	6414221	£3.60		VTCM10-20 VHR2100, VHR2300 VTC5000, VTC5150	IDLERPULLEY	1430662T10350 6130374899 143-0-662T-01201	$\begin{aligned} & \mathfrak{5} .00 \\ & \mathfrak{k 5 . 0 0} \end{aligned}$			$\begin{aligned} & 524.00 \\ & 524.00 \end{aligned}$			
v $185500-8700$v 80008300				${ }^{\text {E5. } 20}$										
	FF-REW PULLEY	6388531	¢0.80	VTC5000, VCC5150 VTCM10			¢5.50	3V56, 3V59, 3V64, 3V65, FV11R, HRD170, HRD180, HRD370						
$\begin{array}{llll}\text { VT } 9300-9500 & \text { FF-REWIDLER } & 8881471 & £ 3.30\end{array}$				SHARP										
						VC651, VC681, VC685	IDLERASSY	NPLYV01076EZ	£6.15	VIDEO L	LMPS			
V $19300-9500$	PLAY IDLER	${ }_{68661482}$	${ }_{53} 9.20$	VC7300, VC7700	PLAY IDIER KIT	NPLYVO41+		UNIVESSAL VIDEO LAMPS 12VG0mA (300m	M WIRES)	£0.30				
vT930-9500	IDLER	681505	${ }_{53.00}$	-		NDA1v1007	¢5.00	PANASONIC VIDEO LAMPS		¢0.50				
VT11-33, V663-64	FF-REW IDLER	${ }_{6}^{6886971}$	${ }_{81.50}$	VC331, VC383, VC386, VC8381, VC9100	IDLER	NDLOOOSGEZ		SONY FLYBACK TR	RANSFORMERS					
								Mod						
HMAR				VC9700					215, 1820, 2010SE. Me, 2010 ME ,					
vxL3, vx<20	REEL IDLER	40000009	\$1.50	VC300, VC387, VC481,	IDLER	NDLOOOGGEZ	\$1.50	1.439-256-11 KV-2704EC, 2704U8, 27044	T. 2704E(A), 2704E	E40.00				
				VC482, VC483, VC496.				1-439-286-21 NV-2215UB, 2217UB, 2215	E1, 2215FE, 2212EX, 2215ET	${ }^{530.50}$				
				VC571, VC585				1-439-289-21 NV-2705F, 2705FE, 270541	2705E, $270608,27206 \mathrm{C}$	00.00				
				VC780-781, VC785-787,	REEL IDEER	NPLTV0111GEZI	17.00	1-439-303-00 $\begin{gathered}\text { N-2064EC, 20PS1, } \\ \text { N-2062(ESP) }\end{gathered}$	E7, 2056EC, 2060SA,	c².75				
VR3905, VR3906	T.UPIDLER	PU51402	${ }^{1.45}$	VC793.vCT72				1-439.311-00 N-1440AEC, 1440AS MK2	CPS-14C03. CPV -14C02.					
VR3913, VA3943	REEL DLER	PU48967		Sussio				1.439.332-21 KTX-1350NF. KTX -1430UB	2764EC:2752UB 27528	${ }_{592000}^{59.00}$				
				VR1 100, VR1200,	CLUTCH	850A20000	$£^{56.50}$. $1882 \mathrm{CH}, 1882 \mathrm{AEB}, 1882 \mathrm{MM}$.					
JVC				VR2500, VR3300,										
HR330, 3660, 4100	T-UP IDEERSML	PU49280	96.00	VR3500, VR3600				NV-2092UB, 2096UB		£22.00				
HRT200, HR7600.	T-UP CLUTCH	PU53462A	\$3.00	Samsuma				NATIONAL LIME OUTP	UT TRANSFORMER					
HR7650, HR7655				V510-511, V520-610,	IDLER WHEEL	65224704220	$\underline{51.50}$							
HR7200, HR7600	REEL LDLER	PU48967	¢3.00	V7611-616, V620-621.				${ }_{\text {TLF }}$ T46-118		${ }^{\text {E25 }}$				
HR7650, HR7655,								TLF 14568F		Ez6.00				
HR7700	ROLLER ASSY	PY49092A	¢4.00	V7510-511, V520-610.	IDLER COMPETE	69000250330	$¢_{4.50}$	TLF 14567F		$\underline{96.00}$				
HR3300, 3660, 4100	T-UP IDLEALRG	PU47752	${ }^{\text {¢ } 4.50}$	V611-616, V6620.621,				TLF 14715 F		£27.00				
HR7200, 7600, 7650	T-UP IDLEA	PU51402A	51.45	626				TLF 147498		£20.00				
HR7655, HRD110.				Sowr										
HRD120-121, HRD225				06	IDLEAKItassy	A6706391	${ }^{53.50}$	NATIONAL TRA	WSFORMERS					
HRD110, HRO 120-121,	T.UPCLutch	P055373	$\underline{2} .25$	C7	IDLER ASSY	$\times 36533100$	83.80	TLF 66098		E23.00				
HRD110, HRD120-121,	IDLER ARM	PU55374-3-8	¢2.85	$\begin{aligned} & \text { SL-C5, SL-C7 } \\ & \text { SL-C6 } \end{aligned}$	REW PULLEY REWPULLEY	A-6706-348-B A-6706-391-A-B	$$	HITACHI TRAN	SFORMERS					
					CASSETTE DC MO	TORS		2434274		¢20.00				
				GV MOOOR			12.00	-	4A 5-					
W7730,735,750,755		850A00005	86.50	12 CWWMOTOR			$\underline{4} .00$	CRAND	1A					
VX810, 820, 880, 990				12 VCCW MOTOR 13.2 VCN MOTOR			${ }^{28.200}$	K.P. HOUS	E, UNIT 15,					
				13.2 VCCW MOTOR			\$2.90	POP IN COMME	RCIAL CENTR					
					CASSETIE TAPE H	EADS		SOUTHWAY	, WEMBLEY,					
HS306, 307, 318, 319,	GEAR ASSY	522P00201	$¢ 6.25$	MONO HEAO			${ }^{80.90}$	MIDDLESE	, ENCLAND					
${ }_{\text {HS4 }}$	gearass			STEREO HEAD			${ }^{51.50}$	Tel: 081-900 2329	Fax: 081-903 61					
HS4, 170				MINIHEAD AUTO REVERSE HEAO			\% 2.3 .60							

VIDEO HEAD TESTER

1. Mechanical Position of Pointer
2. Scale Plate
3. Pointer Adjusting Screw
4. Pointer
5. Measuring Socket
6. Power ONOFF and Battery Check Switch
7. Range Selector Rotary Switch
8. CAL. ADJ (calibration volume)
9. Measuring Clip

*****STOP PRESS *****

PHILIPS PRESSURE ROLLER ASSEMBLY
for the following models:
DV186, 190, 286, 562, 761, VR6180, VR6185, VR6285, VR6382, VR6367, VR6467, VR6468, VR6870, VR6182. 6290, 6291, 6293, VR6393, VR6468, VR6670, 6760, 6761, VR6970
Part Number: PS 403-40205 Price ...625p

SOLDERING IRONS

Wooden Handle
30 Watt 220/100 Volts Soldering Iron...... 3.50
40 Watt 220/100 Volts Soldering Iron...... 3.50
60 Watt 220/100 Volts Soldering Iron...... 3.50

PRICE

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND
Telephone: 081-900 2329 Telex No: 932885 (Sunmit) Fax: 081-903 6126
Access \& Visa Card accepted. Open Monday to Saturday.

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES.
Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.

WE WILL ONLY SUPPLY TOP OUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US
G.G.L.COMPONENTS

PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL PHONE (0228) 39693/20358 FAX (0228) 515127

ALBA VIDEO SPARES Belt Kit

Belt Kit	1.95
Capacitor Back-up	2.50
Pinch Roller.	3.95
Reel Idler.	3.95
Reel Pulley	1.95
Video Head	21.50
VCR5000	
Belt Kit.	1.95
Pinch Roller	3.95
Reet Idter.	3.95
Reel Pulley	1.95
Video Head	21.50
AMSTRAD VIDEO SPARES	
VCR4500/4500	
Belt Kit VCR4500	1.95
Belt Kit VCR 4600	1.95
Moditication Kit	6.95
Video Head VCR4500	. 18.75
Video Head VCR460	18.

TYPE

REMOTE CONTROLS
 TYPE TRANSISTORS TYPE
BC307 Ferguson 7734 Ferguson 1734
Ferguson 7742 Ferguson 1742.
Ferguson 1785
Ferguson T 789 Ferguson TX10 Non T
Ferguson TX10 rext Ferguson IX10 Stereo Ferguson 3V32. Ferguson 3V35.... Ferguson 3V43
Ferguson 3V55 Fidelity CTV14S
Fidelity CTV22T Grundig TP400 Text Grundig TP650 Mitachi CPT2246...
Hitachi CPT2508..
Hitachi CPT2888 Hitachi CPT2888
Hitachi V63;64
Hitachi VT120E IT FS9/10 Digivision TR RG306..
1Π VS4
Panasonic EUR51200..
Panasonic TNQ1411/2
Panasonic TNO1419 Panasonic TNO1419
Panasonic TNO1621 Panasonic NV730........
Phlips G11 $1 / R \mathrm{~N} / \mathrm{T}_{\text {ext }}$ Philips G 11 I/R Text.... Philips KI $3 / 30$ N/Text Philips KT4/CTX Text
Philips RC5991 Philips VR63627 Dne For All MKII...... Rediffusion MKIVA Sony RM615/632 Tatung RC31.... Tatung RC40/45
Tatung RC42 atung RC60

12.95	TYPE PRICE
14.95	BC307........................... 10
14.95	BC327 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
12.50	BC337 10
12.50	BC547/8 $\quad 10$
ext 12.95	BC557/8 $\quad . \quad 10$
1295	BC639......................... 20
12.95	BC640 20
14.95	B0238 $\quad 40$
14.50	B0677 $\quad 65$
14.50	
14.95	BF337 $\ldots \ldots$ BF422
14.95	
15.75	BF423......................... 35
	BF458.... ${ }^{\text {a }}$ - 35
13.95	BF450 ${ }^{\text {a }}$.................. 95
14.95	BF757............................. 70
12.95	BF871............................. 95
13.95	BR103 - 75
14.95	BT151800...................... 1.35
15.95	BU126....- $\quad 1.95$
15.95	BU208A … $\quad 1.45$
15.95	BU208D1.95
15.95	BU326A1.95
15.95	BU426A....................... 1.45
14.95	BU500
14.95	BU568A . $\quad 1.50$
14.95	BU508AF...................... 1.95
12.95	BU508D...................... 1.95
1295	BU5080F .
14.95	BU508V $\quad 2$.
. 95	BU705 $\quad 2.95$
	BU8071.75
14.95	BU826A 2.95
1495	BU907 ………… $\quad 2.95$
16.95	BU908 $\quad 2.95$
14.95	BUTIIAF 2.75
15.75	BUT12A .
12.95	BUT56A.................. 2.75
12.95	BUX84
1295 1295	R4050 2.95
12.95	$T 9053 \mathrm{~V}$...
12.95	T9054V-
15.95	T9064V
33.75	TIP29E (TO168V)
	TIP41C.................- ${ }^{\text {a }}$
13,95	
14.95	TIP112H (TO167V) $\quad 75$
. 14.95	TIPL791A 1.95
14.95	2SC1942....................... 2.95
15.95	2SC3156 2.95
22.95	2SD725- $\quad . \quad 4.95$
15.95	$2 \mathrm{SD1398} \quad 2$.
14.95	2SD1453 $\quad 295$
14.95	$7805 \times \ldots$
1795	$7812 \ldots \ldots \ldots \ldots \ldots$

RICE	Alba 4000X
10	Alba 5000 X - $\quad 21.50$
10	Amstrad 4500/9000
10	Amstrad 4600/4700 18.75
10	Amstrad $6000 \quad 19.95$
10	Amstrad 7000
20	Ferguson 3V00/39.
	Ferguson 3V32 $\quad 24.95$
65	Ferguson 3V42/55...... 19.50
65	Ferguson 3V43 32.50
30	Fergusan 3V65/FV11 23.50
35	Fisher 615/910
35	Hitachi 8000:9700
95	Hitachi VT11/33 17.50
70	Hitachi VT17/19
95	Hitachi VT63/64............ 22.50
75	HitachivT65 34
	Hitachi VT120E
	Hitachi VT130E.
1.95	JVC HRD250
1.95	Matsui VX73022.95
1.95	Matsui VX735A22.95
1.45	Mitsubishi HS301/302 ...24.95
200	Mitsubishi HS303/30524.9
1.50	NEC 9034/9053 $\quad 22.50$
1.9	Panasonic NV230 22.50
2.50	Panasonic NV333
2.75	Panasonic NV366 24.95
2.95	Panasonic NV370 12.50
1.75	Panasonic NV430 19.9
2.95	Panasonic NV688 33.50
2.95	Panasonic NV730 23.
2.95	Panasonic NV777
2.75	Panasonic NV788
2.95	Panasonic NV2000 70009.50
	Panasonic NVG7/9........19.50
2.75	Panasonic NVG10/12.... 19.95
80	Panasonic NVG18...... 29.95
2.95	Panasonic NVG20/21 29.95
50	Panasonic NVG30/40....24.50
3.50	Philips 64606520
1.95	Philips 6462/6560
75	Genuine … $\quad 42.95$
50	Philips 646737.95
50	Philips 6760 Genuine..... 39.95
75	Samsung VX520710.....19.95
1.95	Sanyo VHRJ $100 / 130019 .50$
2.95	Sanyo VHR2300/3200 19.95
2.95	Sharp VC9300/381/481 $\quad 17.50$
4.95 2.50	Sharp VC581/68117.50
295	Sony C5/6/ $\quad 14.95$
50	Toshiba V73/83B 21
50	Toshiba V93B $\quad 23.9$

E.E.C. SATELLITE SERVICES

"THE MAC SPECIALISTS" ARE PROUD TO PRESENT!!

SENSIBLE SYSTEMS FOR SENSIBLE PEOPLE AT SENSIBLE PRICES

Including

+ Pace 9200 + Cambridge 480 + Extra + Philips $801+$
+ Johansson 5000s + Chaperell Monteray 20 \& 40 + ITT Nokia SAT2200 + Philips 901 +Amstrad 600

NEW:
The amazing Nokia sat 200 built in D2MAC decoder with built in EUROCRYPT decoder + SVHS output and much more
Please phone for specifications

STAND ALONE MAC DECODERS

THE NEW AMSTRAD 600 D2MAC SYSTEM

PHILIPS STU901 MAC SYSTEM

MAIL-ORDER SPECIALISTS
WITH FULL BACK UP SERVICE
in STOCK
CALL THE EXPERTS NOW CALL
E.E.C. SATELLITE SERVICES

1426 LONDON Rd, LEIGH-ON-SEA, ESSEX SS9 2UL TELE: 0702480169 TELE: 0702471321 "ALL YOU NEED TO KNOW IS US"

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select trom four supert models. All, with the erception of the HM 1005, incorporate a usetul COMPONENT TESTER. Size - all models- $285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 380 mm . Clear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: $110 / 220.240 \mathrm{~V}$ AC 50.60 Hz
All supplied with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY
HM203-7 20MHz STANDARD

SPECIFICATION 2 Channels Bandwidth: DC - 20MHz Sens: Ch.!, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
Triggering: $\mathrm{DC}-40 \mathrm{MHz}$ Active TV-Sync-Separator Variable hold-off Trigger LED indicator Calibrator: 1 KHz Square wave Component tester
Price $£ 338.00+$ £59.15 V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS

HM604 60MHz UNIVERSAL
2 Channels
Bandwidth: DC - 60 MHz Sens:Ch.1, Ch. 2, $1 \mathrm{mv} / \mathrm{cm}$ Thmebase: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: $\mathrm{DC}-80 \mathrm{MHz}$ Active TV-Sync-Separ Active TV-Sync-Separator After delay trigger Delay line
Trigger LED indicator Callbrator: 1 KHz 8

Price E610.00 + £106.75 V.A.T. FREE Specialist Carrier Deliver
HM1005 100 MHz UNIVERSAL з 1 channels. up to taAces
 SPECIFICATION * Channels

Bandwidth: DC -100 MHz Sens: Ch.1, Ch.2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Tirrebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC - 130 MHz After delay
Delay line Trlayer
Trigger LED indicator
Overscan LED indicator
Active TV - Sync-Separator
Price $£ 792.00+£ 138.60$ V.A.T. FREE Specialist Carrier Deliv. Wave
HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Analogue real time (Same as 203-7) Bandwidth: DC - 20MHz
Sens: Ch.1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Triggering DC -40 MHz
Active TV. Sync-Sampling Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory: $2 \times 2048 \times 8$ Bit Dot joiner
Printer/plotter output

Price E610.00 + £106.75 V.A.T. FREE Specialist Carrier Detivery B.K.'s CRT TESTER DIGITAL CAPACITANCE REJUVENATOR Tests and rejuvenates blue, separately Fitted with delta and PIL sockets Compat size $120 \times 65 \times 60 \mathrm{~mm}$. Supply 240 V AC Price 134.00 + E5.95 V.A.T.

METER

- Migh accuracy $0.1 \mathrm{pf}-2,000 \mu \mathrm{f}$. LCD display. 8 ranges. Accuracy $+1.0 .5 \%$. Full scale +1.1 digit.
inc. protective case. Price £39.99 + £6.99 V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FW stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES

Carrier Irequency $100+1-1 \mathrm{MHz}$ (adjustable).
Oitot signal $19 \mathrm{KHz}+1-2 \mathrm{Mz}$.
Pitol signal $19 \mathrm{KHz}+/-2 \mathrm{~Hz}$.
External Modulation $50 \mathrm{~Hz}-15 \mathrm{KMz}$
Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ \& of
Comprehensive test lead set included
Mains powered.
Price £299.00 + £52. 33 V.A.T.

LEADER HIGH VOLTAGE

 METERED EHT PROBELight weight, easy-to-grip high-impact plastic handie with arc-over protection and no need of extra equipment. An indispensitie item in your
TV service kit. Measures uo to 40 kV DC with TV service kit. Measures up to 40 kV DC with safoly and the greatest of ease. Entirely sellcontained. Connect the lead clip to chassis and probe tip to the check point, read the meter for voltage.
Price 56.00 and Salety at Work Acts.
Price $£ 66.00+£ 11.55$ V.A.T.

The number one CRT Test Instrument. Over 5000 U.X. Television engineers wouldn't be without it

All CRT's checked identically, including all in-ilne and one gun types. Tests all hree guns of colour CRT's simultaneously 490) Exclusive multiplex (model 490) * Measure true dynamic beam current that aclually passes through G1 aperture to screen * Measures all shorts and leaks - preserving more CRT's *Tests focus electrodes lead continuity finding faults that other testers miss "Uses mos powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranieed as new for two years up Obsolescence proof - perpetual se up chart updated and new adaptors and oscilloscope and rejuvenates Vou's 40 CRT base adaptors ayailable * Increase proft * Pays for itself in months

Prices
$5509.00+$ £89.08 V.A.T
Model 490 Tri-dyn
Without adaptors.
Model 480 Singte
$\$ 446.00+$ £ 78.05 V. A.T
2446.00 + E78.05 V.A.T.

Without adaptors.
c3.00

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to faclitate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal levels can be accuralely measured on the TC402-C and the TC90, allowing the evaluation of eadout, coupled to a multturn tuning control enabling precise a

TC402-C VHF \& UHF

FEATURES

Three bands: High VHF: $10-300 \mathrm{MHz}$
UHF $: 470-862 \mathrm{MHz}$

$$
\mathrm{JHF} \quad: 470-862 \mathrm{MHz}
$$

Digital display for direct frequency readou

- Built-in monitor loudspeaker AM FM.
* Signal measurement from $20 \mu \vee$ to 100 mV . * Powered by eight 1.5 AA batteries.
- Fully portable with sturdy carrying
* Fully portable with sturdy carrying case

$\ldots \quad$ _ Price $259.00+£ 45.33$ V.A.t.
TC90 VHF-UHF- SAT.

FEATURES

- Five bands:
$\begin{array}{ll}\text { Low VHF } & : 45-110 \mathrm{MHz} \\ \text { High VMF } & 110.300 \mathrm{MHz}\end{array}$
$\begin{array}{l:l}\text { High VMF }: & 110.300 \mathrm{MHz} \\ \text { Hyper VHF } & 300-470 \mathrm{MHz}\end{array}$
Hyper VHF:
VHF
$: 300-470 \mathrm{MHz}$
\mathbf{V}
$\mathbf{4 7 0 - 8 6 2 M H z}$
Satellite $\begin{aligned} & : 970-862 \mathrm{MHz} \\ & : 950-1750 \mathrm{MHz}\end{aligned}$
- Digital display for direct Irequency readout - Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V . Signal measurement satellite -70 dBm to Signal mo
Audible indication of satellite signal level. Built-in-monitor loudspeaker AM/FM (not satellite).
Price £ 499.80 + £87.47 V.A.T. complete with chargable battery ully portable with sturdy carry AC)

BLACK STAR COLOUR PATTERN GENERATOR THE ‘ORION' THREE-IN-ONE PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

The Orion is a compact, bench instrument offering a wide range of patterns and facillites at a ruly low cost.
ystama carrier lacility which allows use with the majority of PAL TV ystems, the O
ideo monitors.
ore than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifler linearity, colour purity, general colour performance, focus
etc.

A separate video Input to modulate camera signats; fully variable RF and video output levels lacilitating AGC testing; trigger output allowing easy triggering of difticull oscilloscope waveforms; external sound modulation input via DIN connector for trequency response testing of TV sound systems; adjustable wide frequency coverage of VHF and UHF TV bands.

Just some of the reatures making the Orion Patiern Generator an indispensible tool in the manufacture, lest, and servicing of televisions, and computer and video monitors.
features
Colour bars, pu
VHFIUHF Channels.
. $\mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers. Internal/External Sound.
External Video Output.
Trigger Output.
PAL B,D,G, M,I,K
Separate R, G, B and sync. O/P's
Green + 0.3V Syncs.
Composite Video Outpul
Variable RF/Video Outpu
Switchable Video Polarity
Malns powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{Mz}$. Price E229.00 + £40.08V.A.T.

U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with order, payable B. K. Electronics. Othicial Orders welcome from Govt. Depts. range. Credit card orders are accepted by 'phone, fax or post. Delivery normally within seven days.

	$\begin{aligned} & \text { ANC } \\ & 3261 \\ & 1 \\ & \text { Ser } \end{aligned}$	NEW PRODUCT EXCITING NEW SATELLITE ACCESSORIES OUAL OUTPUT LNB ANO MLLTISWITCH AVALLABLE YOU CAN NOW WATCH CEIVERS ALL OVER THE HOUSE, EACH RECEIVER WILL THINK THAT IT HAS ITS $\begin{array}{lr}\text { OUAL OUTPUT L NG } & £ 87.00 \\ \text { FOUR WAYMULTISWICH } & £ 77.00\end{array}$ HAS \qquad	BRAND NEM		M $E O$	
			WARRANTY - FUL			
We have a complete range of securty products and sel fems individually or can tallor make a package to your own requirements. E.G. Ihis pack						
to your own requirements. E.G. This pack and low cost and would fit a 3 bed. house COST £125.00 PACK INCLUDES						
* Two zone keywticted						
bell boxback plate/sticker * Batter//tamper switch * External sounder * Two passive infra red detectors \star Five pars window/door contacts						
	TR					
detectors \quad Five pairs window/door contacts $\star+100 \mathrm{~m} 4$ core cable and clips \star internal sounder TELL US YOUR NEEDS - - WE DELIVER FAST						
NEW VIDEO PLUS +		$\begin{aligned} & \text { METER } \\ & \text { AMPL SET TOP } \end{aligned}$				
FOR RECORDING YOUR FAVOURITE PROGRAMMES - LOOKS LIKE A REMOTE CONTROL.						
Contis	switchino and maintans recording vivewing playback option		Will work on eleven different overseas systems. PAL/SECAM/NTSC etc. Has atudio and video in \& out			
SO SIMPLE EVENA GROWN UPCARM 6 DEC,T'S SO EASY TO USE - FROM NATIONAL WEEKLY AND DALIY PAPERS INC. TV TIMES WILL PUBUSH VIDEO PLUS CODE						
		CAPSTAN MOT	VIDEOCRYPT DECODERB GRADE......... £65.00	WSFOMEPS		
NUMBERS NEXT TO THE PROGRAMME LISTINGS FOR TV AND SATELLITE. JUST TAP		LOPT 1410/1420 £17.85 ULTIMATE SCART		IRANSFORMERS		
DONE! VIEO plus wil record pro-				tuners SERVICE MANUALS etc		
GRAMMES FROM ANY TV OR SATELLITE CHANNEL ON NEARLY ALL INFRA-RED CONTROLLED VIDEOS.$£ 45.00+\text { VAT }$	PLEASE AING FRR AVALABBLITM htuv is a general entebtainment channel (with SOUNO) MA MLY ENGLISH WIH DUTCH SUB-ITLLES.				$\begin{gathered} \text { NEW } \\ \text { TDK } 8 \mathrm{~mm} \text { Video } \\ \text { tape } 60 \mathrm{~min} £ 4.20 \\ \hline \end{gathered}$	
		SUPER BUY4M M/M Fly Leads 10 FOR £7.00				
					TVNideo Stand for Nikkai stereo Nicam £19.00	
		There is vat ow $\mathbf{P}+\mathbf{P}$. BOOKS \& MANUALS ARE ZERO V 				

MARCO TRADING

INCORPORATING EAST CORNWALL COMPONENT ELECTRONIC COMPONENTS

VISA

 \& EQUIPMENTMAIL ORDER - WHOLESALE

RETAIL TV
SEND ORDERS TO - DEPT TV4 MARCO TRADING the maltings, high street, wem SHROPSHIRE SY4 5EN
Tel: (0939) 232763 Telex: 35565 Fax: (0939) 233800 (0939) 232689 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS
24HR ANSAPHONE

LATEST 1992

 CATALOGUE- Velleman Kit Catalogue * Many new lines
* Pages of special offers Free gifts
$\star \begin{gathered}18 \mathrm{swq} \\ \text { 25wg }\end{gathered}$

Over dimens
ORDED
Pho

RESISTOR KITS - each value individually packed


```
12W pacc 10 0ach value E12-2R2 10 2M2 I30
```

12W pacc 10 0ach value E12-2R2 10 2M2 I30
1/WW pack feach vave E12-2R2 to 2M2 65 pleces.

```
1/WW pack feach vave E12-2R2 to 2M2 65 pleces.
```


Renember Our prices INCLUDE vat!

8WAY SPLITTER

B way spititer anvifiter to supoply 8 Tvs trom one antenca, Whit
Eand wioth
Gampelance
in
$\gamma_{i}^{\text {Max }}$ Norse
lsolation
Power.
Dims

 $171 / 2 \%$ VAT

APRIL SPECIAL OFFER 3-WAY SCART VIDEO CONTROL

- Connects up to: deo Recorders (VCR's) Comelite + 2 VCR's
- Push-button switches to select viewing
* Record from Satellite or another VCR whilst watching TV
- Phono output sockets for TV sound through your Hi-Fi System

FUll Range of video REPAIR KITS				VALVES	
REMOTE CONTROLS			O.A.		1.20 1.00 1.00
VIDEO HEADS $a(N)$				Orys	${ }_{1}^{1.30}$
					${ }_{2}^{7.305}$
vs7/930095509970098800 V10/2511 15.85				Gatal	1.85
frrgison				EsCA	${ }_{3,85}^{0.75}$
 3V163V2253923				Eb831	1, 120
					0.900
					11.20
					$\underset{3.15}{16.25}$
				${ }_{\text {ECOP82 }}$	
90000330095500970099800 H00.2509 28.20					3. 75
					1.85
				ECCib9	${ }_{3.60}$
				${ }_{\text {Efor }}$	${ }_{1}^{1} 155$
				${ }_{\text {crase }}$	2.10
				ECMk	1.70
					1.30 8.00 100
				(cC38	1.35
				${ }_{\text {ccisa }}^{\text {cisis }}$	1.30 130
VET30				${ }_{\text {ccasb }}$	${ }_{3.10}^{10}$
				${ }^{\text {fr37A }}$	${ }^{4.50}$
				${ }_{\text {cter }}$	${ }_{0}^{0.600}$
SHARP				H88	2.50
VC203 ${ }^{\text {a }}$		V10,2536		${ }_{\text {¢fas }}$	0.720
				${ }^{\text {ctis }}$	0.75
				Eteo	2.00
				${ }_{\text {E } 236}$	1.60
					${ }^{8} 8.55$
					${ }^{2} .155$
				EL59	9.50
				${ }^{\text {em84 }}$	${ }^{1.35}$
				${ }_{\text {EMPs }}^{\text {che }}$	\% 35
Mrjuchriollens					
				${ }_{\text {cke }}^{6 \times 509}$	${ }^{1.80}$
				${ }_{\text {kTre }}$	4.48
				K1788	17.35
				${ }_{\text {P1788 }}$	-61.60
Sowle N 1001					${ }_{0}^{0.605}$
(enter					1.15
	20455700			${ }_{\text {PCCLIE9 }}$	${ }^{0} 1.1085$
				${ }^{\text {PCFFPO }}$	1.40
				${ }^{\text {PCHFers }}$	2.80
				${ }_{\text {PCCFP20 }}$	1.50 3.10
					3.18
					${ }^{50}$
				${ }_{\text {CCCra }}$	${ }_{15}$
Sthap 2003323830335					80
-					${ }^{5}$
					40
toshera vs					50
					90
					2.100
(tater					1.30
				${ }^{9} 505$	2.20
				${ }_{\text {PRLSIS }}$	145
SANTO				${ }^{\text {Prama }}$	10.58
SHRPP	51501433.6667 .01201				
	Nil 0000		${ }_{2.06}^{2.05}$		

TELEOISTOR

Japanese Gloom

The Japanese consumer electronics industry is going through a difficult period. Sony is currently losing something like $£ 1 \mathrm{~m}$ a day and has announced that it expects to make its first full-year operating loss, of some $¥ 20$ bn (about $£ 9(\mathrm{~m}$), since being listed on the Tokyo stock exchange in 1958. It has just announced a 36 per cent decline in profits for the third quarter of its financial year. Sony's position is not helped by having to service the considerable debt it took on when it purchased CBS records and Columbia Pictures. One result of this move however is that Sony's operating profits from its entertainment businesses are at present only 30 per cent less than what it makes on its electronic hardware. Despite the poor returns, Sony is increasing its output of consumer electronics products and is forecasting increased sales for the year, in the case of 8 mm camcorders up from 3.8 to 4.1 m units, an increase from 9.5 to 13 m CD players, TV sets up from 6.1 to 7 m and VCRs up from 3 to 3.5 m . Its factories are still humming, but the prices it's having to sell at aren't converting into profits.
For nearly all Japanese electronics companies the financial year end is in March, so announcements and projections are at the moment (early March) coming in thick and fast. It seems that a sharp decline in profitability has occurred since the autumn. Only last October JVC was forecasting a reasonable profit for the year, but poor sales since then have now led to forecast losses for the year. Matsushita is still operating profitably, but at a much reduced level. A fall of 43 per cent in pre-tax profits is forecast for the year, which is 26.6 per cent lower than a forecast made just three months previously. Other major Japanese electronics manufacturers have issued reduced profits forecasts, down by 37 per cent in the case of Hitachi and 58 per cent in the case of Toshiba, though it's not possible to assess the percentage relating to brown (black?) goods in these forecasts. Falling semiconductor prices, in particular for the latest generation of memory devices, are significant here while Toshiba has been having a difficult time with its portable computers. Many Japanese companies are considering reduced capital expenditure, though R and D budgets are likely to be left alone

It's not that Japanese consumers have stopped buying. What seems to be happening is that demand for the current range of products has peaked and the traditional impetus provided by new products is for the present lacking. The result is fierce price competition to move current production and falling profitability. Export markets are flat
One technique that has been a feature of the Japanese market is frequent model changes to stimulate sales. But, just when you might expect ever more frenzied activity in this respect, the powerful Ministry of International Trade and Industry (MITI) has called for fewer changes. Manufacturers of VCRs and air conditioners have been used to making model changes every six months. With cordless telephones and word processors face-lifts have been even more frequent. MITI has come down heavily against this, claiming that frequent model changes do not benefit the consumer, use up natural resources and lengthen working hours unnecessarily. There is also the problem that spares become difficult to obtain since it's obviously uneconomic to hold stocks of everything for such vast ranges of models. Mind you, things can be even worse in other Japanese markets. Back in 1981, during a battle between Honda and Yamaha over market share, Honda released 113 new models over an eighteen-month period and changed its entire range twice. If that sort of thing is going on throughout Japanese industry, it puts their R and D spending in something of a new light, with a decided question mark as to whether it's all worthwhile. Consumer electronics industry leaders seem to be in agreement with MITI's recommendations however, which include insistence that a new model remains unaltered for at least a year after its launch Matsushita's vice president Tsuzo Murasa has pointed out that effort should go into added value rather than frequent model changes.

The reduced profitability has come quite quickly and could be a phase that will soon pass. It seems however that Japanese manufacturers are not too hopeful of this in the absence of truly new offerings. We have reported on several initiatives, in the form of multimedia products, in these pages recently. Accouncements continue. Matsushita has been holding talks with American Telephone and Telegraph with a view to setting up a joint venture to develop "pen-based portable computer systems", while Sharp has asked Intel to develop flash memory devices that could be used instead of magnetic storage in consumer and computer products. But such initiatives won't bear fruit overnight Meanwhile the industry is stuck with difficult markets and declining profits.

COMPETITION

The winners of the two preset tuned f.m./m.w./l.w. radios in last month's competition were Alan Holden of Winford, Cheshire and C.H. Miller of Newport, Gwent. Our congratulations to them. For those interested in the questions that were asked, fifth harmonic tuning flattens the top of the line flyback pulse and thus improves the e.h.t regulation; the chroma delay that has to be compensated for in the luminance channel is caused by the narrow chroma channel bandwidth - it's a basic factor in electronics that signals pass more quickly through wideband circuits; finally a short line sync timeconstant is required with off-tape signals to cater for short-term jitter.

The Images of the Future Conference

George Cole

On February 4th the trade journal Electrical and Radio Trading and the Television and Radio Industries Club cohosted the Images of the Future Conference. This year the conference was awash with new audio and video formats. Previous articles in this magazine have outlined the basic features of these new systems, many of which will be in the shops by the end of the year. A notable absence was the Sony Mini Disc format, a record/playback system that uses miniature compact discs.

Commodore had its CDTV system on show. It's a multimedia format that stores sound, pictures and text on a compact dise. The format was launched in the spring of 1991, but sales in the consumer market have been disappointing to date. Commodore has decided to rename the system Amiga CDTV and plans to launch, at around $\mathfrak{£} \%$, a CD-ROM drive that can be connected to the company's best-selling Amiga 500 computer. There are some half a million Amiga 500s in the UK, and Commodore thinks that better progress will be made by concentrating on the computer market. The CD-ROM drive is expected to encourage software companies to develop dises for Amiga CDTV

Gaston Bastiaens talked about the rival Philips CD-I (compact disc interactive) format, which was launched in the USA last autumn with machines selling for around £450. The system's Japanese launch will be this spring, with the European launch in the summer. Mr. Bastiaens reveated that Philips plans to launch a portable CD-I player later this year but couldn't confirm that the first CDI players to be sold in Europe will have full-motion video capability. CD-I was undoubtedty one of the stars of the show: dealers who saw and used the system were very enthusiastic about it. They also seemed to like the KodakPhilips Photo CD system, which allows the user to store up to a hundred photographs on a compact dise and display them on a TV set's screen. Photo CD will also offer sound, text and recording capability. Priced at around $£ 400$, the first Photo CD players should be available this summer. Photo CD discs can also be played on a CD-I deck.
Canon was demonstrating its ION still video camera. Still video has not been a success in the consumer market, so Canon is aiming to appeal to professional users and the educational market. Image data bases and desk-top publishing are two intended applications.

Philips' senior product manager Gerry Wirtz talked about the company's digital compact cassette (DCC) format, a high-quality digital audio tape system. DCC has the bonus of being backwards compatible with existing analogue compact cassettes. Mr. Wirtz produced some interesting statistics about the compact cassette. Around 2.5 billion cassettes and 180 million players are sold each year, excluding China, Eastern Europe and the Third World. About a billion cassette players are in use around the world, with each household owning an average of three cassettes. This puts the audio compact cassette in the same popularity league as the light bulb! But sales are declining, which is why Philips thinks that the time is right to introduce the new tape format. DCC will be launched in September, the first deck, provisionally catled Model DCC 900 , costing around $£ 350-400$. The deck is smart, with a centre loading drawer and a display panel that gives you the name and number of the track.

The afternoon session was devoted to TV developments. It began with a talk by Jean Majo Cruzate, a special adviser to the EC commission, who admitted that the original 1986 EC directive on MAC and satellite broadcasting was flawed. The directive related only to high-powered DBS satellites, not medium-powered satellites like Astra. As a result, most Astra channels use PAL. As Mr. Cruzate explained, when the directive was drawn up no one expected medium-powered satellites to be used for direct-to-home transmissions.

The new directive was agreed by the twelve Council of Ministers in December 1991 and has a second reading in March. It states that any new service starting from 1995 must use D2-MAC, though dual PAL/MAC transmissions are permitted. The directive also leaves the door open for digital TV systems. Linked to the directive there's a memorandum of understanding which is designed to help launch a 16:9 D2-MAC service. Several hundred million ECUs will be made available to broadeasters, programme makers, hardware companies and other interested parties. The idea of this is to break the no hardware/no software block. Mr. Cruzate added that around twenty hours of HD-MAC broadcasts were made during the Albertville Olympics for showing at fifty reception sites around Europe. This is expected to rise to 1,000 sites during the Barcelona Olympics.

BSkyB's public affairs director Roy Gallagher drew attention to the fact that thirteen per cent of the UK's population now receives BSkyB and that there are over a million subscribers to the film channels. He predicted that around $40-50$ per cent of UK households will have a satellite TV dish or be connected to a cable system by the year 2000. He added that BSkyB sees D2-MAC as a possible system for widescreen TV. Earlier Astra's marketing managing director Jonathan Hart had dealt with possible interference problems between Astra 1B and Eutelsat II F3: he stated that those with properly installed 60 cm or larger dishes shouldn't experience interference.

Widescreen TV

Nokia's marketing and sales vice president Michael Schmohl started on a controversial note by showing slides of press cuttings that described the EC's policies on MAC as a shambles. He suggested that companies should forget about D2-MAC and jump in now with 16:9 PAL sets as Nokia has done. He also claimed that 1,250 -line doublescan pictures, as used by the Thomson widescreen set, actually lowered the picture resolution. Not surprisingly, this was denied by Ferguson and the next speaker, the BBC's assistant to the director of engineering Charles Sandbank, pointed out that the use of digital signal processing, i.e. interpolation, would improve the quality of double-scan pictures.

Mr. Sandbank talked about the PAL Plus project, which is part of the EC's Eureka programme whose members include broadcasting organisations such as ZDF, ORF and the BBC, and hardware companies like Nokia, Philips and Grundig. He began by stressing that PAL Plus is not a device to sabotage MAC. It's designed to improve the picture quality with terrestrial transmissions by offering widescreen pictures, reducing cross-colour and cross-

The largest Database of CD, TV and Video Repair Tips information in Europe Available On-Line or in Books and now...

NEW STAND-A PC VERSION
Purchase the whole system or just one manufacturer
\square I's fast and easy to use
There are no hidden costs
Updates avaiable
Suitabe for any IBM
You can even enter all your
"No move litis offaper"

STILL

AVAILABLE:
The Books
or
The On-Line System

ALONE

AIWA

 ALBA AMSTRAD ARISTON ARISTONA B\&O BAUER BOSCH BRANDT BLAUPUNKT BUSH CANON CHINON DECCA DUAL FERGUSON FIDELITY FISHER FUNAI GEC GRAFIZ GRUNDIG HANSEATIC HITACHI INTERFUNK ITT JVC KENDO KENWOOD LOEWE MARANTZ MATSUI METZ MITSUBISHI NEC ORIONPANASONIC PHILIPS PIONEER PYE QUELLA QUELLE SABA SAMSUNG SANYO SCHNEIDER SHARP SIEMENS SONY TATUNG TELEFUNKEN THOMSON THORN TENSAI TOSHIBA - TELERENT UHER UNIVERSUM

GENUINE

SPARES

FULL RANGE AVAILABLE

from

Phone now to open a Trade Account and receive your free copy of the most comprehensive spares catalogue in the industry. Over 1,100 pages packed with top quality spares at competitive prices.

180-200 North Road Preston, PR1 1YP. TEL: 0772555034 FAX: 0772201905

luminance, increasing the luminance bandwidth and adding digital audio sound (though the UK already uses Nicam).

Mr. Sandbank explained that a $16: 9$ format reduces the picture content with a $4: 3$ set by 25 per cent as black bands occupy the top and bottom of the screen. A system called pan and scan can be used: this scans the central part of the picture, but Mr. Sandbank pointed out that this "shoot and protect" method puts all the action in the middle of the picture and wastes the potential of the $16: 9$ format. In the letterbox format a $4: 3$ receiver displays 432 visible lines while a $16: 9$ set detects a coded signal and expands the picture to 575 active lines. Mr. Sandbank said that any widescreen system would be only partly compatible with existing sets, in just the same way that the PAL system is with monochrome sets. He demonstrated widescreen pictures on a Nokia TV set and said that the $16: 9$ perspective is more like the way in which we view things in real life. Mr. Sandbank finished by saying that concern about the effects of $16: 9$ pictures on standard sets had
forced the group to consider a half-way house with a $14: 9$ aspect ratio and 504 active lines. This would introduce the public to widescreen TV gently. He predicted that PAL Plus and HD-MAC broadcasting would start in 1995 and that digital TV systems wouldn't appear before the year 2000.

During the question and answer session someone asked if dealers and the public would get confused by all the different approaches to widescreen TV. To recap, these are (1) Nokia's PAL $625-\mathrm{line} / 50 \mathrm{~Hz} 16: 9$ sets, (2) the Thomson/Ferguson 1,250-line/50Hz PAL 16:9 sets, (3) the Philips 625 -line/ 100 Hz PAL $16: 9$ sets, (4) the prospect of D2-MAC 16:9 broadcasts, (5) the prospect of $16: 9$ or $14: 9$ PAL Plus broadcasts and (6) the prospect of HD-MAC 16:9 broadcasts. Not surprisingly no one seemed to be too sure about this, though it seems that dealers and TV service engineers can forget about HDTV in this century.

Finally my thanks to Bob Crabtree, Electrical and Radio Trading's product editor, for his help in the preparation of this article

AC/DC High-voltage Tester

As their popularity rises and many get older, microwave ovens appear for repair in ever increasing numbers. Faced with an oven whose light is on and the fan is working but nothing is heating, it would be nice to be able to check the 2 kV a.c. and 4 kV d.c. pulse voltages. I'm not very happy however about connecting any CMOS test equipment to circuits where more than 1 kV is present, especially when it's in pulse or a.c. form. Using an old analogue $20 \mathrm{k} \Omega / \mathrm{V}$ meter, I made a high-voltage probe to get some indication of voltage. Unfortunately ohms are a bit lawless under these circumstances, so the best I had was an indication of high voltage: the values obtained were meaningless, especially with pulsed d.c. Was there an alternative solution to the problem?

When I was still a student I recall reading about the early method of measuring the electrostatic charge stored in a bank of Leyden jars. Apparently monks would form a circle and hold hands. The end two would touch the jar's terminals and the resulting shock would make them jump. The height of the jump was used as a measure of the

Fig. 1: Circuit of the high-voltage tester.

Fig. 2: Construction of the meter. To avoid arcing, it's best to connect the meter before switcing the oven on:

Ian Rees

charge. I can vouch for the effectiveness of this method after my multimeter's earth lead became detached without my noticing it while I was probing the 4 kV pulse. I can assure you that the jump was considerable, but the involuntary jerk of my arms sent the multimeter, which was still connected to the probe, crashing from the bench to the floor. My dignity and poise in tatters, I decided that there had to be a better way.

I like the idea of having an instrument in the form of the e.h.t. testers used with TV sets, where everything is in the handle so that you can pay attention to exactly where the probe tip is and read the scale easily without diverting your eyes. The instrument described in this article was built in this form and indicates a.c. or d.c. without the need to select ranges. A small bonus, though this is not needed with microwave ovens, is its ability to indicate whether there's a positive or negative potential at the tip.

Circuit Operation

Fig. 1 shows the simple circuit that evolved after much experimentation. R1-4 are the probe resistors, which are contained in the plastic body of a pen attached to a small box. RV1 is a $100 \mathrm{k} \Omega$ linear slide potentiometer that's calibrated in $k V$. R5 ensures that the required readings fall at about the centre of RV1's slider movement.

The voltage tapped from the slider is applied to the preset potentiometer RV2 which is used to balance the striking voltages of the two neons N 1 and N 2 . The small wire-ended neons used light at around 65 V . When they just strike their light output is very low, so they are not ideal as indicators. By adding capacitors C 1 and C 2 across them however the circuit becomes a relaxation oscillator. As the neons approach their striking voltage, the capacitors have been charging. At the moment of strike, the capacitor is discharged by the neon. This produces a bright flash that subsides until the capacitors are recharged via the series resistors R6 and R7 and the legs of RV2. A very accurate transition can be achieved, giving a very useful, unambiguous voltage indication.

D1 and D2 rectify the a.c. and make the neons flash
alternately. When a positive d.c. voltage is present at the probe tip only NI will flash. In a microwave oven the voltage at the magnetron's cathode is negative, thus only N 2 flashes.

The tester can be used in the same manner as a logic probe with digital circuits, but the slider is calibrated in kV . It draws around 1 mA from the circuit being tested. Thus the probe resistors need to be rated at IW. I have tried 0.25 W resistors which seem to be o.k. if the test is brief, which it usually is.

Setting Up

The flash rate of the neons can be balanced by connecting 250 V a.c. via a $47 \mathrm{k} \Omega$ resistor to the junction of R4 and RV1. With the slider of RV2 at its centre setting, adjust RV1 until one of the neons flashes. Then adjust RV2 for an equal flash rate from both neons. Repeat the procedure a few times until you are sure that the two neons are giving an indication at the same point.

Calibration is a problem if, like me, you don't have access to an accurate high-voltage meter. ['ve found however that when connected to a good oven's $2 k V$ a.c. output the tester will indicate with both neons just flashing at a rate of about one second when RV1 is at its midsetting. Similarly N2 only will flash, indicating a -4 kV pulsed d.c. voltage, at a few millimetres to one side of the same setting. Any deviation from these conditions suggests that a fautt is present.

Construction and Use

Provided care is taken over the construction and use of
this tester there's no reason for you to end up monk testing your microwave ovens. As Fig. 2 shows, the tester can be used single-handedly with the stider operated by your thumb.

An MPS (Maplin) "narrow box", part number FT31J, is used for the main case. Its dimensions are 124×29 $\times 29 \mathrm{~mm}$. To keep my fingers away from any hot parts I would have liked the slider potentiometer RV1 to have been an all-plastic affair. The one used, also bought from MPS, has a plastic shaft but a metal body. It's a dual potentiometer, but only one side is used. As a precaution I connected its metal body to the earthy crocodile clip end.

A piece of matrix board was cut and attached to the slide potentiometer. Apart from the probe resistors R1-4 all the components are mounted on this board. The probe resistors are strung up the body of the tube. This allows you to be at a respectable distance from the test point. A flying lead terminated with a strong crocodile clip completes the assembly.

As in aside, it's always worth checking the integrity of the connections to the crococile clip lead before any tests are attempted in case a fracture may have occurred, particularly at the clip end.

Finally, remember that one hand in your pocket won't work with a microwave oven because the high voltage is earthed. Take care!

Component details

R1	$470 \mathrm{k} \Omega, 1 \mathrm{~W}$	RV2	$250 \mathrm{k} \Omega$ preset
R2-4	$820 \mathrm{k} \Omega, 1 \mathrm{~W}$	$\mathrm{C} 1,2$	$0.047 \mu \mathrm{~F}, 400 \mathrm{~V}$
R5	$47 \mathrm{k} \Omega, 0.25 \mathrm{~W}$	$\mathrm{D} 1,2$	BY 127
R6,7	$100 \mathrm{k} \Omega, 0 \cdot 25 \mathrm{~W}$	$\mathrm{~N} 1,2$	Wire-ended neons
RV1	$100 \mathrm{k} \Omega$ lin. slider		

The T2000 Digital Thermometer Incorporating

- $0.1^{\circ} / 1.0^{\circ}$ resolution
- Complete with battery and stylish case
- Competitively priced
- Lightweight and easy to use
- Room temperature compensated
- Available from $£ 65.00$ ex. VAT
- Wide range of probes available

The Microwave Leakage Detector Designed for field engineers with strength and accuracy in mind.

- Single range $10 \mathrm{~mW} / \mathrm{cm}^{2}$
- Instrument failure indicator
- Complete with vinyl pouch or hard case kit
- Available from $£ 121.00$ ex VAT
- Approved by leading microwave oven manufacturers
- Life time guarantee *

Unit A39, Red Scar Industrial Estate, Longridge Road,
Preston,
Lancs PR2 5NB
ELECTRONICS LTD
Tel \& Fax: (0772) 700853 for further information
Celtek Electronics are suppliers and repairers of environmental test equipment and also offer a comprehensive accurate calibration service

We are also distributors of all Robin professional test equipment

* Initial guarantee given for one year and is extended after each annual calibration by Celtek for only $£ 25.50$ inc. VAT, $p+p$ and insurance.

Inside the Ferguson TX80 Chassis

J. LeJeune

Innovative and yet somehow familiar in its concept, the TX80 is the last of the old Ferguson designs to reach the market. The chassis shows some Thomson influence, but its Enfield origins are stamped plainly all over it. This is nowhere more so than in the power supply and line output section, which nostalgically recalls the Thorn 9000 series chassis with its Syclops circuit. The key element here is the use of a single transistor as both the chopper and the line output switching device.

Basically the TX80 is just another small-screen TV receiver for 90° c.r.t.s with screen sizes from ten to fifteen inches. It's no basic receiver however. Features incorporated as standard include microcomputer-based remote control, on-screen graphics with a simple menu system to make adjustment of the operating controls easy, a sleep timer and a child lock facility. There's considerable integration in the low-level stages, where a single LSI chip incorporates the vision and sound i.f. strips, the luminance and chrominance signal processing stages, sync separation and the timebase generator circuits. The designers didn't go i.c.-crazy however: where a single transistor is all that's necessary, that's what is used. Since the receiver has a live chassis there's no scart socket. In any case while the tube is
adequate for TV purposes its resolution is not sufficient for use as an 80 -column computer monitor.

Picture quality is nevertheless excellent. The Samsung c.r.t.s give a bright picture with ample purity reserve. Audio on the other hand comes from a very small loudspeaker and leaves a little to be desired. Even so it's distortion free and the cabinet doesn't vibrate at high volume levels. The cabinet design is attractive, especially the 10 in . model, and blends in with most domestic schemes.

Fig. 1 shows in simplified block diagram form the main sections of the chassis.

The heart of the set is of course the combined chopper and line output stage - it's known as a Wessel circuit. Fig. 2 shows the arrangement in block diagram form. Things start with the oscillator, which produces a line-frequency sawtooth output whose amplitude is determined by the comparator transistor TP(03. The comparator senses the h.t. voltage produced by the chopper, and sets the supply to the oscillator. As this supply increases or decreases, so the amplitude of the sawtooth output is varied - see Fig. 3. The pulse-width modulator transistor TP05 converts the sawtooth waveform into a variable mark-space ratio

Fig. 1: The main sections of the Ferguson TX80 chassis, shown in block diagram form.

Fig. 2: Block diagram of the combined chopper power supply and line timebase arrangement.
squarewave which passes via the driver stage to the base of the switching transistor TP10. This drives two transformers, the chopper transformer LP03 (Wessel transformer) and the line output transformer LP(04. In case anyone is puzzled by the idea of using a variable mark-space ratio waveform to drive the line output stage, the point to remember is that the switch-off time, which initiates the flyback, remains constant. It's the switch-on time during the forward scan that varies to take into account loading and mains input voltage variations. The initial part of the forward scan is controlled by the efficiency diode in the normal way. Comprehensive protection arrangements are built into the circuit.

We'll now take a closer look at the circuit action. Fig. 4 shows the complete circuit of the power supply/line output section of the receiver. Note that the receiver chassis is

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 4()$ different patterns and variations
\star Fully interlaced sync pulses with correct picture blanking
\star EBU colour bars．BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow， cyan，green，magenta，red，blue and black
\star Chequerboard
\star Mono outputs with border castellations，cross hatch，grey scale，vertical lines，horizontal lines and dots．UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR
\star Facilities for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments．No special test equipment required
\star Mains operated with stabilised power supply．
\star All kits fully guaranteed with back－up service．
\star Also available with VHF Modulator．

Price of Kit £75．00
Case（ $10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$ ）app £15．00
Optional Sound Module（ 6 MHz or 5.5 MHz ） $£ 3.90$
Built \＆Tested in Case including Sound Module
± 122.00

Post／Packing £4．50
Add VAT 17.5% TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver aerial socket．
\star In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc．
\star Cross－hatch，grey scale，peak white and black level．
\star Push button controls，battery or mains operated．
＊Simple design，only five i．c．s on colour bar P．C．B．
＊Backup service available
PRICE OF MK4 COLOUR BAR GENERATOR KIT $\mathfrak{£ 3 5 . 0 0}$ ．CASE $£ 5.80$ ．BATT HOLDERS $£ 4.20$ MAINS SUPPLY KIT $£ 5.80$

（Combined P\＆P £4．50）

VHF MODLLATOR（CH ito t）FOR overseas e6．8n．
EASILY ADAPTED FOR VIIDEO OUTPUT \＆C．C．T．V．

LINE OUTPUT TRANSFORMER TESTER

\star Saves time and money
\star Checks short turns
\star Simple to use
\star Reliable．
\star Battery operated
\star Pocket size．
PRICE $£ 20.00$
POST／PACKING $£ 2.50$

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \＆audio outputs $£ 28.50$ p．p．$£ 1.80$ ．

PAL DECODER KIT（Video to RGB）for Monitors £27．00 p．p． £1．80．

PAL ENCODER KIT（RGB to Video）$£ 18.50$ p．p．$£ 1.80$
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $£ 40.00$ p．p．$£ 4.50$ ．

TV \＆VIDEO SPARES

INFRARED WIRELESS REMOTE CONTROL EXTENDER
Use your evisting remote controls to control your TV．VCR，SAT ete from anywhere in your home PRICE $£ 59.55$ P．P．$£ 4.50$

PHILIPS SPARES
GII 6 POS touch tune channel setector（replaces old type）$£ 14.00$ p．p． 11.80 MANUALS 2B．CP＊O ©3．50．CTX－E．（TX－S．CFl £2．50．KT4 K40．3A \＆ 4 50 2A $£ 10.50$ ．KT3 $£ 12.00$ PR．MANUALS $£ 1.80$ BACK UP BATT． 2.4 V £3．80， 1.2 V £2．60 户口 Mp ．
K30，KT4，CTX－EHT Lead $£ 4.90$ p．p．$£ 1 .(\mathrm{K})$ ．

THORN／FERGUSON SPARES

900 Series $1 F /$ Decoder tested $£ 10.00$ p．p． 12.80
TX10 Focus control $\mathbf{t x} .50$ p．p．$£ 1.80$
TX9／10 Remote \＆tuning $1515 \mathrm{~N} \mathbf{£ 5 . 0 0} \mathrm{p} \mathrm{p}$ fl 80

T89／10 Remote \＆tuning 1536 （incl．SAASill2．SLA71） 83.50 p．p．fl 80
TX10 Stereo Audio Board $\mathbf{2 3 . 5 0}$ p．p．E2．50）．
TXM9 Matns TX $£ 23.00$ P．p．$£ 2.80$
TX100 Chopper TX $£ 22.80$ p．p f 2.50
TX90 14＂Chassis Untested complete $£ 20.00$ p．p． t 4.50.

C SELECTION									
ANS521	53.81	SAAS331	¢5．80	tbalzı	£1． 20	TDA2594	E3．80	TDA 4503	45.80
ANS $5 \mathrm{~m} \times$（	52.20	SAB 113 S	¢6．80	TBA7511	£2．20	TDA－595	¢4．80	TDA4515	86.80
BAg 38 A	［2．34	SAB：1137	f15．m4		£2． Mal_{1}	TD 2 2ta）	${ }^{\text {c／} 6.80}$	TD4555	（9．80）
CN $\times 62$	E4． 80	SAF－1032	¢4．50	TBAMSa	$\underline{52} 20$	TDA의A	1．90	TDAd（0）	［3．85
FRGitf	57.20	SAFH139	¢2．20	TCAㄱㅡㅔ	$\underline{1.80}$	TDA2641	£3．20	TDA $4(x):$	［2． 20
｜1Al｜211	$\underline{52.80}$	SL－4714771	E4．00	тCAwns	E6． kl_{1}	TDA3653	¢3．20	TDAtoid	c6．88
HAllid 3	E2． 11	SLit\％	¢3． 20	TDAllist	62.411	1DA2054	$\underline{5.70}$	TDA551\％	¢5．80
HA513785	£11．80	S1 $1+1 \times$	E3．904	7DA1637	£1．90	TD－265：B	Ex．60）	TDA5ski	［2．80
LA＋445	${ }^{2} 3.80$	SL $1+30$	¢1．80	TDAlli4	\＄2．90	IDA2074	c3．20	TDAstis	¢7．80
－ 1 7x（m）	61.80	SL 1432	（1．4）	TDAliko	£3．80	TDA26（0）	43．811	Tmasimi	c6． m_{1}
LA753：	［2．80	SN7622nDN	ti．so	TDA！ 1×2	\＆ 4.80	TDAz（0）0	c．3．81	Traximy	23．80
LA7x ${ }^{\text {a }}$	21.50	SN76715	¢9．N0	Tida！17］	$\underline{52.20}$	TDA278）		TDA¢413	c3．810
LA7839	$\underline{22.80}$	STk 5325	£6． 80	TDA 11 sin	12．20	TDA3191	c4．20	TDA45in	${ }^{4} 3.80$
M2 ${ }^{4} 3 \mathrm{~B}$ i	［7．84）	STK 5332	¢6．80	TDABMMz	$\underline{22.20}$	TDabims	E6．811	TDALs 13	¢4．8n
M440BB1	£14．\％0	STK5333	（18．4）	TD 1432 P	25．70	TDA33，	¢7．51）	If Atmen	¢2． 20
M49［BB！	¢9．80	STK 5338	E6． 80	IDAl470	22.80	TDAз3	86．80）	TEALIM 4	\＄3．50
M ${ }^{1 / 4} 4$	¢9．80	StK5339	£6．80	TDA1524	£6．80）	TDA3501	$8_{6.819}$	TEA1039	$\underline{1.80}$
MClamep	［5．84）	STK5421	x6．80	TDA16719A	$\underline{3} .20$	Tbastis	4.450	TEArmisa	22．20
MDA 2661	［7．80）	STK 5422	E8． 50	TDA1701	$\ldots 3.80$	TDA3511	¢9．80	TEA2105A	66．80
MDA 2062 ？	［3．80	STK5471	E6． 50	TDA1770	¢ 120	TDA3sin	¢2．5］	TMSIMXON21	
M1．237	¢3．80	STK 5 dil	£5．901	TDA187\％	th． 80	11） 1234	c．3．50		${ }^{[13}$
M1 92 h	E4．80	STk 54×2	c5． MO	TDAM以	［2．801	TD－3561A	c．5．x0	TMP47	
MN15425	£15．\％${ }^{\text {\％}}$	S 5×730	¢6． 80	TD 1 （\％）	［3．21）	1Dabiol	¢5．80		13．50
SAA1024	65．40	STK7348	¢ 10.80	TDA以近	£3．50	Tbaishs	${ }^{53.80}$	TMP	－3595
SAAI625	¢5．80	STR ${ }^{\text {S }}$	¢7．80	TDaz（4）	47．8．41）	TDA ${ }^{5}\left(x^{\prime}\right.$	15.80		£16．80
SAA1124	［．3．51	STR＋50	c6． 80	TD 2 2151	${ }_{6} 3.20$	TDA3571	\｛2．811	7 MP $47 \mathrm{C}+3.4$	N 3559
SAA1250	53.80	STR＋51	¢7．80	Tinày	22．80	IDA37\％	¢13．50		£15．80
SAAI251	88.41	STR 454	¢5． Mk	TDA＞gif	E6． $\mathrm{kl\mid}$	TDA3641	65．20	TUA2（ma）	t＊． 50
SAAL29\％	£13．20	S7R42II	¢6．80	TD－254	£5．80	TDAkntil	¢9．80	LCishin	c4．95
SAA1243 02		STR5412	¢f． 80	TDA2976A	53.89	TD入3tsi	c4．21］	LPCP137	［1．90
SAAStMo	$\underline{62.80}$	StR50｜103	55.80	TDA2577	\＆4．80	TD 4 zes3A	c3． 80	UTC1．34	［23．80
SAAS014	（5．90）	Strinlul	¢ 10.80	Tidaz577A	E4．811	TDA3n5313	¢3． 20	UPC1420	cx． 69
SAASOI？	¢ 5.80	STR 5×141	¢6． 80	1DA 2578	23.80	TDA ${ }^{\text {ans }} 4$	¢3． 20	UPC148＊	20
SaAsiza	¢5． Ka	Stratizo	¢5．80	TDA2594	Ex．Kı	TDA＋42	th． 80		
SAAstur	¢6． 80	TATm＊IAP	25．80	TDA25 ${ }^{1}$	22．211	TDAs5（x）	15.810	IC p．p．\％pp	
SAASILII	f6．80	TA7631P	£5．я4）	TDA2583	［2．8．4）	TDA4511	¢7．80		
SAA 6150	£ 16.80	TA76y81	\＄6．80）	TDA2593	f1．51	TD $4+512 \mathrm{~L}$	¢13．		

VARICAP TUNERS：Grundig $x 630$ series 55.50 p．p． 1.00 U321． U322／ 1341 N．ELC104？（equiv）SC4．VHF NSF213 $£ 7.80$ p．p．$£ 1.81$ ．UHF／VHF UV4 41 £10．80．U． 43 \＆10．81 p．p．fl． 10

LINE OUTPUT TRANSFORMERS

Fig. 3: Illustrating the action of the comparator, oscillator and pulse-wide modulator stages in providing a variable mark-space ratio drive waveform.
always live with respect to ground. It uses a bridge rectifier (DP26-29) to deliver three supplies, one full-wave rectified and the other two half-wave rectified. In this respect it could be said that the bridge is fully utilised. The full-wave output is smoothed by the reservoir capacitor CP31 and fed to the chopper transformer LP()3 at approximately 360 V d.c. One half-wave rectified supply is fed to the switch transistor TPll whose collector feeds the comparator, oscillator, pulse-width modulator and driver stages. The other half-wave rectified supply is smoothed by RP39/CP41 and fed to a 5 V regulator which in turn provides the supply to the microcomputer control chip IR01. The latter produces the on or standby command at pin 20. This is fed to TP12 which in turn controls TP11: in the standby condition TPl1 is off and there is thus no supply to the oscillator etc., shutting down the Wessel system.

The main switching transistor TP10 is driven by a bootstrapped low-voltage driver stage (TP $06 / 9$) which is d.c. coupled to the pulse-width modulator transistor TP05. The input to TP05 is a variable-amplitude sawtooth which is produced by a relaxation oscillator whose timing components are RP12 and CP03. The two transistors in this circuit, TP01/2, act in a thyristor-like manner, switching off when there's insufficient current to maintain them in saturation. CP03 charges via RP12 from the voltage at the collector of the comparator transistor TP03. As CP03 charges, the emitter voltage of the pnp transistor TP02 will increase until the point is reached where it's 0.7 V above the fixed base voltage set by RP26/RP05. At this point TP(02 switches on and passes current to the base of TP01 which thus also switches on. The two transistors saturate heavily, rapidly discharging CP03 via RP65. Once CP 03 has been discharged, TP(02 and TP01 switch off and CP 013 begins to charge again. The sawtooth waveform produced in this way is fed via the emitter-follower buffer transistor TP04 to the base of the pulse-width modulator transistor TP05. CP48 blocks the d.c. voltage at TP04's emitter and DP37 acts as a d.c. restorer, clamping the negative-going peak of the sawtooth waveform to chassis. TP05 conducts when the slope of the sawtooth waveform exceeds $0 \cdot 7 \mathrm{~V}$.

The comparator transistor TP 03 receives its collector supply from TP11, via RP01, RP(02 and its load resistor RP(03. CP(01 smooths the supply and DP(02 stabilises it at 18 V . TP(0)'s base voltage is obtained from the potential divider network RP08, RP61, PP01, RP07 which is connected across the 104 V h.t. line: this is the main supply produced by the line output transformer, thus the conditions in the line output stage are sensed. TP03's
emitter is held at 5.4 V by DP46 and DP(06. This combination of a zener diode and an ordinary signal diode gives a near-zero temperature coefficient.

Variations in the 104 V h.t. supply are thus sensed by TP 03 and inverted. A rise in the h.t. voltage will result in a fall in TP03's collector voltage and a corresponding fall in the amplitude of the sawtooth waveform fed to TP()5. The action is illustrated in Fig. 3. When the h.t. voltage rises, the width of the drive pulses used to switch the chopper transistor TP10 on and off decreases. Thus TP10 remains on for a shorter period of time and the h.t. voltage is reduced to the correct figure. The action works in reverse should the h.t. voltage fall.

TPll is used for standby switching. It has half-wave rectified mains voltage at its emitter at all times. Transistor TP12 inverts the control signal from the microcomputer chip, its base voltage going high to turn on the supplies and bring the set out of standby. When TP11 is switched on CP 01 and CP13 charge via RP(0) and RP17 respectively. TP03's collector and emitter voltages rise gently, so that the chopper comes to life gradually rather an abruptly. Once the chopper is running DP12 adds to the charge held by CP15. The feed to TP03's emitter circuit via RP27 provides a stable zener current to improve the regulation.

The driver stage is interesting as it employs a bootstrap circuit to ensure that the level of drive generated is adequate. The first transistor TP06 is an inverting amplifier: when it's on, the following transistor TP 09 is off. In this condition DP 08 's cathode is at virtually chassis potential and the bootstrap capacitor $\mathrm{CP}(07$ will charge via DP36 from the 8.6 V rail. During this time the switching transistor TP10 is also off. When the squarewave drive turns TP06 off, TP09's base voltage rises and it switches on. The negative side of CP 07 is now connected to the 8.6 V line via RP23 and TP09. Since CP(07 is already charged to about 7 V , its positive side is now at about 15 V with respect to chassis. DP36 is thus cut off and the 15 V appears at TP09's base via RP29. This ensures that TP09 is saturated throughout the time that TP10 is required to be conductive. When TP09's emitter voltage rises, CP(08 charges via TP10's base, switching TP10 on. Diodes DP30, DP15 and DP16 conduct and limit the charge across CP08 to $2 \cdot 1 \mathrm{~V}$. RP21 and LP02 in parallel provide some base drive current waveform shaping. When TP06 is switched on again to initiate the flyback, CP08's positive side is connected to chassis via DP()8 and TP()6 and TP 10 's base is driven negative.

The receiver's principal supply rail, from which the line output stage is operated, is the 104 V h.t. line. When TP10 is switched off, the line output transformer is tuned by CP18 to produce the flyback. At the end of the flyback the efficiency diode DP13 begins to conduct and the first half (approximately) of the forward line scan is produced. TP 10 can be turned on during this period, but it will have no effect on the line scan because of the isolating action of diodes DP10 and DP48. Thus TP 10 doesn't drive the line output side of the circuit until DP13 stops conducting. At this point TPl0 must be conducting in order to take over the supply of current to the line scan coils. The isolating action of DP10/48 enables TP10 to drive the chopper transformer before it also starts to drive the line output transformer. When DP13 switches off, the voltage at pin 2 of LP() 4 rises and DP10/48 switch on.

LP03 generates two secondary voltages during the flyback period. DP21 produces 22 V across CP24 for the audio output chip while DP11 rectifies the output at pin 1 . The cunning part of this circuit is that DP11 also serves as a boost diode, feeding pin 6 on the line output transformer

Fig. 4: Complete circuit of the power supply and line timebase sections of the chassis.

LP(). Autotransformer action between pins 6 and 5 of LP04 produces the 104 V supply across CP17. No rectification is required at pin 5 as CP17 is the boost reservoir capacitor.

LP(04 also produces various other supplies - the tube's heater supply, its e.h.t., focus and first anode supplies, 13 V and 8.6 V supplies, 22 V for the field output stage and, from another overwinding on the primary, 150 V for the RGB output transistors.

There are four protection systems in this circuitry. One guards against excessive voltages, which could cause the c.r.t. to produce X-rays; another guards against excessive current in TP10; a third (the energy limiter) prevents excessive current in the line output stage; the fourth protects the field scan coils in the event of the field scan coupling capacitor going short-circuit.

The shut-down circuit uses transistors TP08 and TP07 in a latching circuit that's identical in configuration to the oscillator $\mathrm{TP}(0) / 2$. Three inputs at the base of TP08 can trip the power supply. The first is via RP41 from the emitter of

TP10. If TP10 passes excessive current, the voltage developed across RP30/31 will be sufficient to produce the trip action. A second input comes from the field scan current circuit. If the field scan coupling capacitor goes short-circuit excessive power will be dissipated in the scan coils. The trip action prevents damage here. The third input comes via DX01, DX02 etc., the source being the heater winding on the line output transformer. This circuit looks for excessive voltage conditions in the transformer. DX03 rectifies the heater supply and if the voltage developed across CX02 rises sufficiently zener diode DX0 2 switches on to initiate the trip action.

If TP(08's base voltage rises because of an increase in any of these inputs, TP08 and TP 07 will switch on and latch up. This action discharges CP 01 via DP(01. Thus the oscillator is stopped and the drive to TP10 ceases. When CP01 has been discharged, TP(08 and TP07 will switch off. CP01 can then charge again, giving a soft-start action. If the problem was a transient one and has cleared, the reciever will resume normal operation. If the fault is a permanent one

Fig. 5: Block diagram showing the operation of the sharpness control circuit.
however the power supply will trip continuously.
The fourth protection system, the energy limiter, monitors the voltage across RP50, which is connected between the earthy end of the winding on LP03 that supplies the line output stage and chassis. A rise in the current flowing in this winding, due to high current demand in the line output stage, will produce an increasingly negative voltage at pin 6. This negative bias is fed to the base of the pulse-width modulator transistor TP05, increasing its switch-on threshold. As a result it produces shorter drive pulses, reducing the power output.

Chopper power supplies operate by storing energy in the transformer as flux, releasing it during the off period of the switching device. It follows that the transformer's power output depends on the energy fed into it on the primary side. The input voltage is set by the peak value of the mains supply. The current that flows depends on the switching device's on time and the effect of back-e.m.f. in the transformer. Close regulation is achieved by adjusting the switching device's on period. The regulation loop in the TX80) starts with the 104 V developed across CP17 and takes in the comparator, oscillator, pulse-width modulator, driver and output switching (TP10) stages.

Signal C̣ircuits

We'll next take a brief look at the signal stages, most of which are incorporated in the M52038SP 52-pin processing chip IL01. This chip also incorporates the sync circuitry and produces field and line drive outputs. The latter is used to synchronise the oscillator in the power supply.

A Thomson tuner, type MTP-I-2(2) for the u.h.f. bands only, is used. It features a dual-gate MOSFET r.f. amplifier stage and has excellent noise and gain figures. Tuning is effected by an integral phase-locked loop which is controlled by data and clock inputs from the microcomputer chip IR01 (42 pins this time).

Volume, brightness, contrast, colour and sharpness control are all carried out within IL(0). An interesting item in this section of the receiver is VVOl which is in the circuit between the demodulated video output from ILOI and its luminance and chroma inputs. VV01 incorprates luminance and chroma separation filters, a chroma carrier trap and the luminance delay line.
see Fig. 5. Full bandwidth video (luminance) is fed in at pin 41 of IL01 while differentiated video (video with a high degree of overshoot) is fed in at pin 40, which also receives the sharpness control voltage. The full bandwidth luminance signal passes via amplifier 1 to the blending circuit. An h.f. reduced signal is fed to amplifier 2 while the h.f.-emphasised (differentiated) signal is fed to amplifier 3. The control voltage acts on the blending circuit which combines the outputs from the three amplifiers in various proportions, from insufficient to excessive h.f. content at the extremities of the range with a flat response at somewhere about the centre of the range. The control works very well and can be used to good effect when playing video recordings or with satellite TV transmissions that are not all they might be. The sharpness adjusted signal then passes to the contrast control part of the chip.

Colour Decoding

The luminance output from IL01 is passed via a buffer transistor to the the c.r.t. base panel which contains the RGB matrixing and output circuits. Chroma signal decoding is carried out in the conventional way within ILOI which provides $\mathrm{B}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ outputs.

Sync System

ILOI has a separate video input pin for the sync separator section. There's an external field sync pulse integrating network. The line sync pulses are fed internally to a phase-locked loop that controls a 500 kHz master crystal oscillator. A five-stage binary divider (divide by 32) gives 15.625 kHz . This divided down output is fed to the phase detector whose other input consists of line flyback pulses which are obtained from the line output transformer's heater winding (the pulses from this source are also used for several other purposes in the receiver).

The Field Timebase

The integrated field sync pulses are fed back into IL01 at pin 45 . They are then shaped to produce trigger pulses that are used to reset the vertical counter circuit. This divides down the line frequency pulses to 50 Hz . Each trigger pulse resets the counter and at the same time resets the field ramp waveform to zero. This ramp voltage is produced across an external capacitor by a constant-current source within IL01. The charging rate is modified by feedback from the LA7830 field output chip IF01 to provide fixed linearity correction. There's also a.c. feedback to provide height control and d.c. feedback to stabilise the d.c.centre point of the output from IFOI.

The field output chip is operated in the conventional manner, with bootstrapping to obtain a peak-to-peak output of nearly twice the supply voltage. This ensures a rapid flyback during the field blanking period.

Audio Output Stage

The TDA $\overline{2} 006$ audio output chip provides surprisingly good results via the small, forward-facing $16 \Omega 2 \mathrm{~W}$ elliptical speaker. A diode in the d.c. feedback circuit prevents excessive distortion on large output voltage excursions.

Microcomputer Control

In common with many other advanced small-screen receivers the TX80 uses a microcomputer chip, $\operatorname{IR} 01$, to

JJ COMPONENTS NEW RANGE

NVG11/12/120/130/14/16/18/30/400/7/9 £8.40 PHILIPS
VR6132/6137/6180/6182/6467/6489/ VR6561/6670/6761/6870.

Contains Belt-set, Pinch Roller, Tension Band and Tyres
PANASONIC

SERVICE KIT: Contains Belt Kit Idlers, Tension Band, Pinch Roller, Cassette Lamp, E-Ring, Clutch and Spool, Tyres etc. 3V00-3V16, HR3300-HR3660 3V29-3V30, HR7200-HR7300. 3V31-3V32, HR7600-HR7650 £22.45 3V35-3V36, HRD110-HRD121 £20.15 3V42-3V43, HRD725-HRD455 £24.99 3V44-3V55, HRD140-755 £21.00 3V58-3V64, HRD170-530-750 £17.00 HITACHI
V11/17/33
$£ 18.45$

oversee the set's operation and provide a menu-driven remote control system that's easy to follow. The operations performed by this chip can be classed in four groups as follows: (1) it provides pulse-width modulated user control outputs that are integrated by external $R C$ filters to produce d.c. voltages for the signal processing chip ILO1; (2) it carries out the usual key scanning to detect front panel input commands; (3) it accepts the IR remote control input, provides an I2C bus that's used principally to control the tuner, and carries out sync kill, mute, hold and reset functions; (4) it contains the system and charactergenerator clocks and provides graphics sync and RGB outputs.

Some Pin Functions

As previously mentioned, pin 20 provides the standby signal to toggle the power supply on and off. As there's no front panel mains switch in the initial models, this is the principal method of switching the receiver on and off. 3 V at $\operatorname{pin} 20=$ on, $0 \mathrm{~V}=$ standby.

Pin 37 provides the sync killer output. This is used to defeat the sync separator circuit in IL01 during tuning operations and at switch on, to prevent spurious signals from triggering the timebases incorrectly and causing possible damage.

The mute circuit input at pin 36 is used during sweep or search tuning to tell IR01 when a valid video signal has been received. Sweep tuning is halted when this occurs.

The hold pin 34 is held high momentarily at switch off to preserve the analogue control settings in memory. This ensures that the receiver powers up next time with the previously-used settings. The reset pin 33 is held low for a
short period at receiver power up to ensure that no spurious signals generated by the rising currents and voltages in the set are taken as valid commands by IR01.

The components connected to pins 28 and 29 tune the on-screen graphics read-out oscillator (pixel generator). Pin 27 takes in field sync for graphics while line sync is fed in at pin 26 (again from the heater circuit). The graphics outputs appear at pins 22-25, the latter being the blanking output that creates the black-box area in which the symbols or characters are displayed. The graphics blanking is mixed with line blanking from the heater supply then amplified, sharpened, clipped and sent to pin 22 of ILO1.

Battery Converter

The 10in. model is ideal in size and performance for those on the move in caravans, coaches and lorries. It therefore has an integral battery converter to enable the receiver to be used away from mains supplies. The converter is set to operate with a 12 V d.c. input and cannot be altered to work with any other voltage. The input can vary over the range 11.8 to 14.8 V . It's a fairly basic d.c.-tod.c. circuit, self-oscillating and running at about 17 kHz .

In Conclusion

Although the TX80 is an intricate little receiver, packed with features, it has proved to be extremely reliable in service, not one being seen in the workshop since it started to be sold. It has but one minus point so far as the public is concerned, the rear-mounted mains switch on Models A10R and A14R. On the latest model to use the chassis, the A36R, the on-off switch is once again at the front.

Teletopics

EURO VIDEOPHONE STANDARD?

GEC Marconi plans, by licensing its low-cost videotelephone technology to a number of international companies, including BT and Deutsche Bundespost Telekom, to establish a European standard for domestic videophones that work with existing telephone networks. Amstrad, which already has a licence, has previously announced that it will be launching a videophone that's expected to sell for under $£ 500$ later this year. Marconi has been collaborating with BT, which achieved a world lead in video compression technology during the Eighties. If the standard is accepted it will be the first international one for analogue system videophones, along the lines of the H261 standard for digital telephone systems. Both the video and the audio signals are compressed, the video to a $14.4 \mathrm{Kbit} / \mathrm{sec}$ data stream and the speech to a $5 \cdot 6 \mathrm{Kbit} / \mathrm{sec}$ stream. The voice compression system was originally developed for military radio use. The camera section uses a Marconi CCD array that was originally developed for night sights. Seiko Epson is supplying the 4in. liquid-crystal display.

NOKIA BUYS FINLUX

Nokia, whose TV brands include ITT, Salora, Luxor, Schaub Lorenz and Oceanic, has bought fellow Finnish TV manufacturer Finlux from its parent company Metra for approximately $£ 26 \mathrm{~m}$. Completion date for the takeover was March 15th. Nokia Consumer Electronics traded at a loss in 1991 and was only slightly profitable in 1990 while for the past three years Finlux has been making only marginal profits. The combined company will have a strong position in the Scandinavian and German markets in particular. There's to be some reorganisation, with main TV manufacture concentrated at Finlux's Turku plant and Nokia's German plant at Bochum, monitor manufacture at Salo, small-screen TV receiver production at the company's Portuguese plant while the main production centre for satellite TV equipment will be at Motala in Sweden. The company's French TV manufacturing plant is to be closed down.

RUMBELOWS TO GO RENTAL

As mentioned briefly on our leader page last month Thorn EMI has decided to switch its loss-making retail chain Rumbelows to a largely rental operation. It will continue to trade as Rumbelows, offering customers a choice of outright payment, rental or various arrangements in between, but will be run in harness with the company's rental chains. This is expected to produce considerable savings on the servicing, distribution and purchasing sides. Job losses of around 800 out of a total of 4,000 are likely. Rumbelows 450 high-street outlets and 41 out-of-town stores have about six per cent of the electrical retail market. The number of high-street shops is expected to be reduced to between 250 and 400 over the next two years.

SATELLITE TV

According to the Financial Times satellite TV monitor the number of dish installations in January declined substan-
tially, to some 70,000 . December had been a particularly good month however. This could set BSkyB back a bit - it was expected that the venture would break even at the operational level (before interest charges) this month. News Corporation, which owns 50 per cent of BSkyB, hopes that it will show a profit by the end of the year.

BSkyB has issued a warning about buying the old BSB receiving systems and Squarials. It seems that Sky is determined to shut down the Marco Polo transmissions at the end of the year. While some retailers are clearing stocks of BSB equipment for as little as $£ 12$ others are thought to be charging unsuspecting customers anything up to $£ 150$.

Swift Television Publications (17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN - telephone/fax 0793750 620) has introduced the Satmaster computer program, by D.J. Stephenson, as an aid for satellite TV installations. It's claimed to be suitable for both professionals and enthusiasts and requires the use of an IBM PC compatible with MS DOS $3 \cdot 0$ or higher. The program caters for just about every need from the installation of motorised systems to a printout of a full link-budget analysis for any satellite at any location anywhere in the world.

SERVICING "LEAD BODY"

A "lead body" for the domestic appliance and consumer electronics servicing industries has been set up to establish competence standards that will form the basis of National Vocational Qualifications (NVQs). The membership of the Electrical and Electronics Servicing Lead Body represents a wide cross-section of the servicing industry ranging from multinational manufacturers to small independent retailers/service agents. It includes all the major trade associations together with the relevant trade union. The main work of the body, writing the standards and producing the NVQs, is well under way. This will be followed by in-depth consultation with the industry as a whole. An ambitious target has been set - to have the first NVQs approved and ready for submission to the National Council for Vocational Qualifications for accreditation this autumn. Administration is being undertaken by the Electronics Examination Board, which has been involved with competence testing for the industry for over fifty years. Further details can be obtained from the EEB at Savoy Hill House, Savoy Hill, London WC2R 0BS (071 836 3357).

DEVELOPMENTS AT SHARP

Sharp and Apple Computer have been discussing a technology exchange that would enable Sharp to manufacture for the consumer electronics market multimedia products using Apple's computer technology such as Quicktime and its Macintosh user interface. As mentioned in the leader last month, Sharp has launched in Japan an HDTV receiver with a retail price of approximately $£ 4,475$, about a quarter of that of previous Japanese HDTV models. A survey carried out by Sharp indicates that up to sixteen per cent of Japanese households might be prepared to buy an HDTV receiver at this price.

VIDEO NEWS

Ferguson has announced four VCRs with built-in Video Plus programming systems. Model FV61LV is a budget machine at around $£ 330$); Model FV62LV at $£ 360$ is a fourhead version; Model FV67HV at $£ 430$) includes a Nicam
decoder and hi-fi stereo sound; while top of the range Model FV68TX at $£ 500$ also has Startext and jog/shuttle dial.

Akai has announced that the Video Plus system is compatible with its current range of VCRs but not with those which are at least four generations old. Amongst the new products that Grundig will be launching at this year's Brown Goods Shows is a top of the range VCR, Model GV280, that incorporates a timebase corrector.

Philips has established a CD-I label with the US company Fathom Pictures for the issue of CD-I and Photo CD software. Leisure, sport and interactive entertainment titles will be included. The third international Multimedia and Conference on CD-I will be held in London on April 28-29th.

Commodore claims that the introduction of an Amiga CD-ROM drive will create a user base of 100,000 for its CDTV system, now named Amiga CDTV, in a short period of time. It has also announced that major software houses are backing the system with dual-format releases for the Amiga computer and CDTV systems.

PHOTO CD NEWS

Agfa-Gevaert is to license Photo CD technology from Kodak. It will use Photo CD as an additional source input for its Digital Print System, which enables photofinishers to produce prints from slides on regular colour negative paper. These prints are known as DigiPrints because the quality is improved by digital image enhancement systems. The system will make it easier to produce high-quality hard copy prints of Photo CD images.

Kodak demonstrated Photo CD imaging workstations at the Photo Marketing Association trade show in Las Vegas last February. The workstations will enable photofinishers to transfer 35 mm film images on to compact discs. Kodak also demonstrated two Photo CD players. Model PCD870 will include a favourite picture selection system, a two times tele facility and panning effects. The PCD270 is a more basic version. The company also plans to launch a Photo CD jukebox that will store thousands of images. This will be aimed at professional users such as medical and photographic libraries.

DOLBY SURROUND SOUND AVAILABILITY

Toshiba point out that for the first time in the UK every film appearing in the annual top fifty video rental chart featured the enhanced sound performance provided by a Dolby Surround sound track. The company expects the demand for equipment featuring Dolby Surround sound to increase significantly since almost 4,000 films will have it by the end of 1992 and nearly every video software company in the UK will be branding its video sleeves with the Dolby Surround logo. The Toshiba CTV range currently includes three models with Nicam digital stereo and Dolby Surround sound. A hi-fi stereo VCR is required to obtain Dolby Surround sound when playing prerecorded cassettes.

NEW PHILIPS TV CHIPS

Details of several interesting new TV chips have been released by Philips Semiconductors. There are three teletext decoder chips that combine the video processing and the teletext decoding functions. The SAA5244P/A has an on-chip page memory, making it a genuine single-chip teletext decoder. The SAA5246P/E is for use with an
external SRAM to provide a four- or cight-page memory. The SAA5247P/B has an on-chip memory that stores a single page, extension arrangements for Fastext and in addition a background memory controller for four external DRAMs that can be rapidly scanned on each page request, giving near-instantaneous (200 mS maximum) access to up to 512 pages. A new Nicam decoder chip, type SAA7282, replaces several chips in previous Philips designs, providing a two-chip decoder in conjunction with the established TDA8732 DQPSK demodulator chip.

UPCONVERTER

TW Electronics, Kennet Building, Woolton Hill, Newbury, Berks RG15 9UJ (0635 253 706, fax 0635254038) has introduced at only $£ 15$ a v.h.f./u.h.f. upconverter that enables a standard u.h.f. UK TV set to tune across the v.K.f. bands. Useful for DXing and for travellers to Continental Europe and Ireland. Installation is simple and the unit can be used with potentiometer or sweep-tuned TV sets.

LATEST PUBLICATIONS

Mauritron Technical Services, 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY (084451 694, fax 084452 554) has published a revised and updated edition of its Video Recorder and Camcorder Equivalents listing. Price is $£ 5$, order code MTP143. It's a very helpful item to have. Mauritron has a great deal more on offer: a catalogue is available under order code NC7.

ElectroValue's 1992 catalogue is now available from the company at 28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 0HB (0784 433 603, fax (0784 435 216). It lists a wide range of components, accessories, test equipment etc.

Two new British Standards have been published. BS7429:1991 at $£ 38$ is a specification for television receivers and monitors for use in education and training. BS7536:1991 at $£ 59$ is a specification for the domestic digital bus (D2B) system. Prices are considerably less for members of the BSI. Copies can be obtained from BSI Sales, Linford Wood, Milton Keynes MK14 6LE (10908220 022, fax 0908320856).

Butterworth-Heinemann Ltd., Linacre House, Jordan Hill, Oxford OX2 8DP has published at $£ 10.95$ a second edition of Newnes Audio and Hi-Fi Engineer's Pocket Book by Vivian Capel. It contains a great deal of reference data and general technical information on audio technology

NOW AVAILABLE

Cirkit now stock the recently introduced Toko prewound balun transformers. There are three basic configurations, double balanced mixer, distributor and directional coupler, all wound with bifilar wire. The core material is chosen for wideband applications, typically $6-600 \mathrm{MHz}$, with individual examples up to 1.3 GHz . Each type is available in a range of turns ratios. For details apply to Cirkit Distribution Ltd., Park Lane, Broxbourne, Herts EN10 7NQ (0992 444111 for sales, 0992441306 for enquiries, fax 0992464457).

The Unaohm EP737 panoramic field strength meter, covering the v.h.f./u.h.f., satellite and cable TV bands plus f.m. radio, is available from Satellite Solutions, Unit 35, Quarry Park Close, Moulton Park, Northampton NN3 1QB (0604670900).

VCR Clinic

Philips VR6462

There were E-E signals but when play or the test pattern was selected there was no output from the modulator. The +12 b supply was disappearing - check it at R3160. By disconnecting PCBs I was able to establish that the fault was on the P302 signals panel where C2329 ($220 \mu \mathrm{~F}, 16 \mathrm{~V}$) was short-circuit. P.B.

Philips VR6180

This machine had a deck problem: when a cassette was inserted the deck couldn't find the stop position. The cassette would go in, the deck would start to lace up, then it would eject the cassette and switch off. Inspection showed that the cassette-down switch COD3 was working correctly. Deck state is also sensed by switch COD2 however - the one at the back by the threading motor. This one was sticking in the closed position. So it was just a question of fitting a new micro switch.
P.B.

Philips VR6468

There was a buzzing noise on the sound while a hot smell came from the inside. The hot smell was coming from Tr 7108 , which is one of the drum motor drive transistors. A check on this transistor's drive waveform (HMC2) showed that there was an oscillation on it. Replacing Tr 7108 and its driver transistor $\operatorname{Tr} 7107$ made no difference, in fact the oscillation appeared to be coming from the P8051-C21D4 chip. A replacement cured the problem.

$$
\text { P. } \mathbb{B} .
$$

Grundig VS510

There was no teletext - when this mode was selected the page number appeared but there was no clock while the no teletext active message was present at the bottom of the screen. Tests around the SAA5231 chip on the DOS/TEXT board showed that there was no video input at pin 27. The BC848 transistor CT1655 was open-circuit.

> P.B.

Philips VR6490

This machine kept stopping in play. The reel rotation signal was intermittent, though the reel was turning all right. On investigation we found that the ribbon cable to deck plug P1504 wasn't clamped into the connector. A press.on the locking bar was all that was required. P.B.

Philips VR6460

This machine was dead - no clock, no deck activity, nothing. The AT supplies were present but there was no activity on the I2C bus data line. It was shorted to chassis (478), but the short cleared when the keyboard was unplugged. A new TMS3763ANL28 chip was required.
P.B.

Philips VR6462

The ticket said that the complaint was no sound - also that the machine had been to another repairer. Playback sound

Reports from Philip Blundell, AMIEIE, Eugene Trundle, lan Bowden, John Edwards and R.J. Avis, AMIEIE

was o.k. but the E-to-E sound was weak with buzzing. A look at the sound subpanel showed that there had been a lot of soldering activity - also a new 5.5 MHz sound filter had been fitted! Fitting the correct 6 MHz type cut down the buzz while a tweak on coil S5 brought back the sound. Someone hadn't read the small print on the diagram 6 MHz for $/ 05$, i.e. for 6 MHz UK use.
P.B.

JVC HRD520

The half-loading mechanism in this machine enables the counter and index functions to work in the fast-forward and rewind modes when the tape isn't wrapped around the drum. This machine's owner insisted that it sometimes failed to count in the fast tape transport modes. We found that the counting worked perfectly if fast forward or rewind was entered from stop after play, but if fast forward or rewind was selected immediately after tape insertion the guide pole failed to pull out a tape loop and there was no count. The mode switch was responsible. Since we had none in stock we dismantled and cleaned the original one, which had tiny black spots on its stator contact bars.
E.T.

JVC HRD580

This machine's recordings were marred by horizontal black flashes across the screen - the sort of interference you get from a latchety aerial plug or an intermittent tuner. The effect could be seen on the E-to-E pictures. Some heating and freezing on i.f. panel 07 revealed that one end of R38, the demodulated video feed, was dry-jointed.
$\mathbb{E} . \mathbb{T}$.

Sanyo VTC5150

This old Betamax machine led me a dance. Whichever mode was selected it would stop after a few moments. Since the machine would sit there happily in the pause mode the reel sensor system was clearly implicated. There were pulses from the reel sensor optocoupler in the other modes. These pulses were being amplified sufficiently by Q3012 to keep the tape counter working but not sufficiently for the microcontroller chip IC3001. The optocoupler's output pulses were of low amplitude because the LED and photodiode beneath the take-up reel were thick with dust. A good blow-through cured the problem. Shades of Test Case 335!
E.T.

Sanyo VHR4350

If eject is sometimes accompanied by tape looping, with consequent tape damage, remove the bottom cover and take a look at the reel drive system. There's a "switched clutch" that slides up and down the gear shaft between the spools. On several occasions we've found the clutch to be tight on the shaft.
E.T.

Sharp VC383

This machine wouldn't record in colour. Presented with a tape recorded elsewhere it would play this back with perfectly acceptable colour, which seemed to eliminate all the colour circuitry that's common to record and playback.

One of the exonerated components was the 5.06 MHz chroma filter FL503 between the sub- and main colour signal converters though it had, maybe because of an internal open-circuit, become very lossy. The manual provides few clues to the colour-under subcarrier signal levels. The main one is the chroma record current which was found to be about 6 dB down. The cause of the trouble was the HAll78NT chip. E.T.

Samsung Sl1240

We've had the same fault with two brand new SII241s. The symptom is that the machine performs no functions and switches off after a few seconds, perhaps with the cassettein symbol showing even when the FL cradle is empty. The cause of the trouble is failure of the KA8301 loading-motor drive chip. An equivalent is the more common BA6209.

Sony SLV474

This machine has digital video circuitry to produce picture-in-picture displays and a useful edit monitor screen that shows as small inset pictures the incoming video signal and the last off-tape image when going from play pause to record pause. The user employs this latter facility when copying from a camcorder, and the fault on this machine was particularly important to him. The fault symptom was as follows. In the edit monitor or picture-in-picture mode the inset display would be very dark at first. It would then lighten slowly until it was almost whited out.

Before being fed to pins 8,7 and 6 respectively of the AD converter chip ICl 108 the video signal is split into its Y , $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ components. The chip also has a blacklevel clamp that operates prior to AD conversion, the clamp pulses being fed in at pin 15 . The video signals, in component form, are fed into the chip via $1 \mu \mathrm{~F}$ capacitors so the d.c. voltages at the input pins must come from within the chip. The voltages at the two colour-difference signal input pins were correct at $3 \cdot 4 \mathrm{~V}$. At the Y input pin 8 however the d.c. voltage fell dramatically when the highimpedance voltmeter was connected. As a result the digitised picture became very dark. Because of a fault within the chip the black level at this input wasn't being clamped.
I.B.

Ferguson FV41

After playing back for a couple of hours a chroma fault would appear. The symptoms were as follows: on the lefthand side of the screen the colour remained correct but farther across to the right its phase changed, e.g. blue changed to orange. The fault would clear if the tape was stopped and then re-started or the cue and review functions were used. As the conditions around the chroma signal processing chip IC08 were correct we decided to swap it with one in another machine. The fault moved with the chip, proving that the latter was defective.
I. \mathbb{R}.

Panasonic NV-MS90

The reported fault was of a dark or no picture from the camera section of this camcorder. What was happening was that the luminance disappeared after a few minutes' use. When we dismantled the machine we found that the slightest pressure applied to the process PCB made the fault come and go. Checks showed that the luminance signal was always present at pin 7 of IC306, which is an
output to switching and one-line delay circuitry: when the fault was present the signal at pin 24 , where it should return after the switching and delay operations, was missing. The cause of the problem was within the subpanel delay chip IC302 - the input at pin 11 was always present but the output at pin 22 disappeared in the fault condition.
I.B.

Mitsubishi HS306

If the machine stops intermittently during play or record check IC5A4 - it's mounted on the metal bracket along the front.
R.J.A.

Hitachi VTM622

This fairly new machine had no servo pulses on record only, being o.k. with prerecorded tapes. The cure was simply to clean the audio/control head. I wonder if this is going to become a problem, as with the VT410 series?
R.J.A.

Hitachi VT120

When a tape was inserted this machine would sometimes load it very slowly half way then just sit there and switch off, leaving the tape half laced. On one occasion the machine accepted the tape normally then switched off, again without ejecting the cassette. Suspecting a faulty loading motor, we applied an external 9 V supply to its terminals. The carriage operated normally. As the M54649L carriage motor/loading chip IC902 has given trouble in the past we checked the voltages here while trying to load a tape. There was only $2-3 \mathrm{~V}$ across the motor, measured at pin 10 , so we checked the 12 V supply at pin 9 . This dropped to 2 V when the chip was asked to drive the motor. As replacing the chip made no difference attention was turned to the source of the 12 V supply, at pin 7 of the STK5471 regulator chip. A new chip restored normal operation.
J.E.

Amstrad VCR4700

After about an hour in either the play or record mode this machine would give a quiet "squeak" then unlace and switch off. Using a dummy cassette we saw that the takeup spool carrier faltered and stopped: the capstan, belt and clutch drive wheel rotated normally until the system control went into the stop mode due to absence of the reel pulses. Fitting the clutch modification kit provided the cure. It's common for the clutch unit to be responsible for tape creasing: I'd not seen one seize before.
J.E.

Saisho VR705

The deck functions operated normally but there was no EE or tape playback signal. The switched 9 V supply was missing. It's produced by Q507 (2SD1266) which had 20 V at its collector. Fitting a new transistor cured the problem.
J.E.

Matsui VX755A/Saisho VR3600

This machine wouldn't accept a tape. The standby indicator was on and the clock display was normal. When an attempt was made to insert a tape the standby indicator went off and the machine shut down. The cause of the fault was traced to the supply end sensor on the carriage. J.E.

Obituary: Shizuo Takano, father of VHS

Shizuo Takano, known in the video industry as the father of VHS, died on Sunday January 19th. He was the man who sold JVC's VHS format to the world: legend has it that Takano toured the globe with a trunk full of VHS equipment, stopping at major electronics companies in an effort to gain support. The strategy worked, and VHS has long been the de facto world standard home video system.

Shizuo Takano was born in the Aichi Prefecture in 1923. He graduated from Hamamatsu Technical College in 1943, specialising in precision equipment. After a two-year spell in the navy he joined JVC in 1946, where he stayed for over 36 years. In 1955 he was a member of JVC's Video Development Team, which was headed by Kenjiro Takayanagi who was one of the founding fathers of television. The team's aim was to develop a VTR for the professional and broadcasting markets, but they were beaten by the Ampex Quadruplex system which was launched in 1956.
The JVC team subsequently developed, in 1959, the KV1. It was the world's first two-head, helical-scan VTR. They tried selling it to broadcasters, but by then the quadruplex recorder had become well established. During the Sixties video companies around the world began work on three-quarter inch video formats for the broadcast, industrial and educational markets. In 1969 Sony, JVC and Matsushita (parent company of JVC, Panasonic and Technics) joined forces to establish the U-Matic format, which was launched in 1971 and soon became the broadcasting standard.
The companies then turned their sights towards the nascent home video market. Sony began working on its Betamax system, Matsushita on a format known as VX and JVC on VHS. Takano became chief of JVC's Video

Shizuo Takano

Product Division in 1970, while the company's home video development team was headed by Yuma Shiraishi. It's hard to believe this now, but VHS was almost killed off before the first prototype VCR was even developed. JVC executives decided that home video wasn't going to be a big market after all. They reduced Shiraishi's team from ninety to ten and scrapped the budget. But thanks to the belief and support of Takayanagi and Takano, the home video team was able to work on in secret.

Konosuke Matsushita, then Matsushita's chairman, was shown the first VHS prototype and liked it so much that he decided to back VHS in preference to his own company's VX system. In 1974 Takano and JVC's home video team were invited to view Sony's prototype Betamax VCR and were asked to support the format. JVC declined and the video format war began. Sony gained the support of Sanyo and Toshiba, but JVC received backing from Matsushita, Hitachi, Sharp and Mitsubishi. Even so in the middle of 1976 the Japanese Ministry of Trade and Industry tried to persuade JVC to drop VHS and support Betamax. Once more the invitation was declined.

The first VHS VCR was launched on September 9th, 1976 at the Okura Hotel in Tokyo. Sales began well, but dropped sharply in 1977. A panicky sales team begged Takano to cut the prices. Furious at this suggestion, Takano threatened to add features and up the price instead. He then set out on his world sales tour. What won over the companies he visited was Takano's willingness to show VHS prototypes, discuss future VHS developments and offer to grant VHS licences to companies that wanted to make their own VCRs. He also offered badge engineered VCRs to companies that didn't wish to invest in the production technology. Takano's marketing strategy was superb - his methods are today studied in business school classes around the world.

In 1974 Takano became general manager of JVC's Video Products Division. He was appointed Director in 1976 and became Managing Director in 1980, while remaining general manager of the Video Products Division. He was appointed Senior Managing Director in 1983. Vice President in 1986 and Auditor in 1990.

I met Takano on my first ever visit to Japan, in 1988. I hadn't been in journalism long and was somewhat apprehensive. Takano's official JVC photograph had led me to expect a somewhat stern and reserved man, but I couldn't have been more wrong. What I found was an extremely open and warm person, with a great sense of humour. Takano made me feel very welcome. After a busy day of briefings and factory tours the press group joined Takano at a restaurant where there was much drinking and joking.

Takano died of a respiratory ailment at $2.43 \mathrm{a} . \mathrm{m}$. The wake was held on the following day, January 20th, the funeral service being held on the 21st. Over two thousand people paid their respects. Takano is survived by a wife and two children. His legacy will live on through the hundreds of millions of VHS recorders in homes across the world.

In closing I'd like to thank Shuji Kurita, Deputy General Manager of JVC's Japan Public Relations Department, for providing me with many biographical details.

G. Cole

Letters

HD AND WIDESCREEN TV

In the January leader article you suggest that to drop MAC and go for a digital alternative, the next generation, would be to put HDTV in Europe back several years. I don't think that this is really the point. The factors that are holding up the introduction of broadcast HDTV services have much less to do with wrangling over transmission standards than with the state of the art in display devices. As the chairman of Sony Broadcast said recently, HDTV "is not about the number of lines or the aspect ratio but is all about sitting close to large screens". HDTV pictures that are displayed on screens similar in size to those now used for 625 -line pictures don't look sufficiently different from present day TV pictures to justify a very significantly higher price tag.

At the moment, large screens mean big, expensive c.r.t.s that are no basis for a mass market product. If ordinary members of the viewing public can't afford sets fitted with these bulky and expensive devices, or don't want to accommodate them in their homes, then HDTV is a dead duck regardless of how little bandwidth the signals can be squeezed into.

By the time that we get large, flat "hang-on-the-wall" screens of performance adequate for HDTV and at an affordable price, which means at least another ten years, HD-MAC will look as antiquated technologically as PAL does now. I believe that we should leave the choice of an HDTV transmission standard open until advances in display technology make domestic HDTV receivers viable and only then select the best transmission format from those available at the time, which will almost certainly mean a digital system.

In the same issue John Dagg argues that the aspect ratio for HDTV should be wider than 16:9. I feel that this is a related issue. Very wide (greater than $2: 1$) pictures look wonderful on really big screens but look just silly on a small screen. Hence the dislike for the "letterbox" format for showing Cinemascope films on TV. Perhaps we should leave the choice of aspect ratio open as well.

Incidentally, Mr. Dagg is incorrect in saying that "almost every film made since 1952 has been made in Cinemascope/Panavision format. In fact only about twenty per cent of cinema features made in this period have used this format. The majority are shot "unsqueezed" with an aspect ratio of between $4: 3$ and $5: 3$. When they are shown in the cinema the top and bottom are cropped to provide a picture of between $1 \cdot 66: 1$ (5:3) and $1 \cdot 85: 1$ (5.55:3) aspect ratio. When shown on TV or transferred to video cassettes additional picture information above and below that shown in the cinema can often be seen. This sometimes results in microphone booms, lighting cables etc. making an unscheduled appearance!
David Looser,
Ipswich.

WHAT A LIFE!

After reading Donald Bullock's reports over the last few months I can't see how he makes a reasonable living at the rates he charges. An example of this is the dead Fidelity CTV140 mentioned in the February issue. A realistic charge for this would have been something like $£ 20-£ 30$ labour plus $£ 10$ parts plus VAT. If Donald made his
customers wait several days for the repair they would be more likely to pay a sensible figure.

Let's have some examples on this page of what other dealers think the minimum charges should be, e.g. VCR minimum $£ 20-£ 30$, TV minimum $£ 20-£ 25$, Camcorder minimum $£ 35$.
John Read,
Watford, Herts.
Perhaps like myself Donald Bullock bought several hundred BY127s from a well-known Midlands supplier a while ago when they were on special offer. But position D508 in the Matsui 1440A is not the place to dispose of them. The diode used here is of the zener type, its purpose being to conduct in the event of the h.t. voltage rising to an excessive figure due to a fault condition, thus protecting the line output stage and the remainder of the receiver. Some models from ITT and other manufacturers use a similar arrangement. Incidentally I don't know why they bother to put a fuse in the Matsui sets: R501 does the job admirably and F501 rarely blows! But keep the good work up Donald, I really look forward to your column.
Derek Farler,
Keynsham, Bristol.

A WARNING

Part of my business is the sale of good and reliable colour sets with a guarantee. I've found the best sets to be the ITT ones fitted with the German made Pico chassis. But one drawback is the line output transformer, which develops a fault that the super chopper power supply circuit is able to handle without blowing up.

Recently another well known wholesaler has started to supply the line output transformer at a much cheaper price than the manufacturer. So I bought a couple. One was needed urgently for an under-guarantee breakdown. I fitted the transformer, which dropped into place correctly, then switched the set on. The tube's heaters were brighter than a 100 W bulb. Then, though I switched off immediately, a puff of smoke came from the c.r.t.'s base panel. On investigation I found that the c.r.t. had gone short-circuit between its first anode, cathode and focus electrodes. I'd the wrong LOPT of course, but was assured that I had the correct one. A few words with the supplier produced a return authorisation, but they've credited me with just the transformer. So I've lost the cost of the set and a replacement c.r.t.
Hugh MacMullen,
Newquay, Cornwall.

MARCO POLO RECEPTION

Since BSkyB has undertaken to continue its Marco Polo transmissions until at least the end of 1992, there has been renewed interest in BSB receivers of late. BSB receivers and dishes are available from surplus dealers at very reasonable prices, and will provide Sky One, Sky News and Sky Sports all free of charge. In addition two film channels are available on subscription. Many people may feel that it would be worth buying a system for use this year. In fact the increasing number of Marco Polo installations could perhaps induce BSkyB to continue, and perhaps one day to expand, its services from this satellite. We can but hope, especially as the future of HDTV in Europe is linked to the success of D-MAC.

I picked up a Philips STU902 receiver and a Marconi Squarial for just $£ 50$. Installation was a simple matter of
setting up the declination, using the supplied template, mounting the bracket on a suitable wall (tricky in my case as there is no clear view of the Southern sky anywhere, so I fitted it as best I could to a garden wall) and then pointing the boom to the compass direction given in the instructions. As my compass took objection to being close to the LNB that I'd already assembled, I put a plumb line on each end of the boom and used these for alignment with the compass some inches below the dish. Cable and F connectors were easily obtained locally and, when fitted, the signal strength was found to be maximum first time. In fact I found that the dish is remarkably tolerant of direction error and obstructions.

A call to BSkyB immediately had the system authorised, the whole job taking less than two hours. Not only have I obtained some extra channels to watch (perhaps not exactly the best programming though) but in addition I've learnt something about satellite TV reception. Perhaps the experience alone makes it all worthwhile, and even if the service does come to an end in December the equipment will have a certain scrap value. If

PHOTOSTATS SERVICE

Newer readers may have missed important servicing features published in Television over the past few years. We have therefore started a photostat service to make this information readily available. Photostats of the following servicing features, listed in alphabetical order, can be supplied at the prices shown. Please send requests to: Television Editorial Department, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Cheques/POs should be made payable to Reed Business Publishing Ltd. There are two standard prices, see below.
Feature
B and O L/LK2500/2800 chassis
Decca 80/100 chassis
Decca 120/130 chassis
Ferguson FV31R VCR
Ferguson TX10 chassis
Ferguson TX100 chassis
Finlux 1000 series chassis
Fisher FVH-P520 VCR
Mitsubishi CT2227
Mitsubishi Euro-4 chassis
Mitsubishi HS304 VCR
Panasonic D1 VCR deck
Panasonic G VCR deck
Panasonic NV333/366 VCRs
Panasonic NV370/830/850 VCRs
Panasonic NV730 VCR
Panasonic NV777/788 VCRs
Panasenic NV2000/2010/3000 VCRs
Panasonic U3 chassis
Panasonic U4 chassis
Panasonic U5 chassis
Salora F chassis
Salora G and H chassis
Salora J chassis
Salora K and L chassis
Price
Sanyo CTP7130/1/2
Sony KV2252/2256/2752/2762
you want to play with satellite TV cheaply, this is the way to do it.
Colin McCormick,
Plymouth, Devon.

HELP WANTED

Can anyone supply any of the following: a tuning/timer preset door (front right) for the Saisho VR805 VCR; (2) a circuit diagram for the Pye T175 monochrome portable; (3) a circuit diagram for the Decca/Korting 82514 pattern generator? N. Brown, 27 Devonshire Park, Bideford, N. Devon EX39 5HZ (0237479732, evenings).
Can anyone supply h.t. transformers for a Philips T190 12in. monochrome portable and a Network NW1202 12 in . monochrome portable? Michael J. Ladd, Ty'r Gwynt, Mountain Road, Pembrey, Dyfed SA16 0BX (055 464 418).

Could anyone supply me with some octal valve screening cans and nats if possible, also $6 \mathrm{~K} 8,6 \mathrm{Q} 7$ and 6 K 7 valves? These are required for restoration work. Ken Jones, G3PS2, 24 Station Road, Okehampton, Devon EX20 IEA (083 753 021).

Can anyone sell me a Fisher FVH-P722 VCR for use for spares? B.D. Whellams, 17 Highbury Terrace, Halstead, Essex CO9 2EB (0787477 368).

Can anyone supply a Sanyo luminance delay line, type L7127, as used in the TJ series chassis (Models CTP5101 etc.)? Roger Burchett, 12 Ormonde Road. Hythe, Kent CT21 6DN (0303 267969).

Can anyone supply surplus, secondhand, complete or in part remote control adaptor kits for the Philips Model VR2020/22 VCR (V2000 format)? David Avery, 28 Gwydr Crescent, Uplands, Swansea (0792 475904).

Can anyone supply an X and Y timebase for the Philips 7122-701-61012, EBMHIGRGT oscilloscope, or a 25 -pin modem to plug in? I have the X and Y amplifiers. S . Orbell. 39 St. Andrews Road, Gorleston, Gt. Yarmouth NR31 6LT.

Can anyone supply details of the manufacturer and model number of the radiocassette marketed by Dixons as their Prinzsound CTA650? I cannot obtain a service sheet without this information. E.G. Kempshall, 109 Portland Road, Hove, East Sussex BN3 5DP.

I feel that I must write to acknowledge the kind and overwhelming response I received to my plea for help in the February issue. It's nice to know that in these difficult times such a large number of people in the trade are prepared to spend money and time for no reward to help others. It has certainly revived my faith in the trade.
Philip Pick, Sight and Sound,
Caythorpe, Lincs.

VCR PATTERN PARTS

There's been debate in these pages in the past over the pros and cons of mechanical pattern parts for VCRs. I prefer to fit genuine originals but on occasions when parts are obsolete, out of stock or there's a large price differential I offer the customer the choice. It's my policy never to fit pattern parts without the customer being aware of the situation. Some pattern parts can be a bonus to the
user - MCES video heads for example provide quality equal to the originals, longevity of life that's often better and a twelve-month guarantee. But other pattern heads are not so good. We had a Panasonic NV333 in recently whose heads had been replaced by that famous dealer A.N. Other with a pattern version. Its owner complained that the quality had never been up to much but that now, some five months later, the picture was unbearable. It was, too: there was severe picture pulling, over-saturated chroma and peak white overshoot. It took me a little while to discover that the new heads were the cause because the symptoms were not consistent with normal head failure, and after all they had been fitted only recently. The owner was a little upset and scrapped the machine.

One practice that annoys me is when spares wholesalers supply pattern parts which are not listed as such in their catalogues. This is particularly annoying when the supplier in question is an "authorised distributor" and the order codes are for the genuine part. Here are two recent examples.

The first concerned a Mitsubishi HS307 that needed a new pinch roller. We ordered the part from a supplier that had previously sent us genuine Mitsubishi parts without any problems, using the same order code group as before, but an anonymous one arrived in a bag. Its centre bearing was made extensively of plastic instead of the original bronze. When the pinch roller was placed on the shaft it spun for approximately one turn then stopped, whereas the original type would carry on spinning for countless times. I fitted it, along with a new audio-control head, and aligned the unit. On making a test recording I found that the sound level varied. The alignment was checked and found to be
o.k. Refitting the original roller cured the problem, but not before much head-scratching. An original type was then obtained from Mitsubishi. The second case was an Alba machine that suffered from severe tape riding, with consequent edge damage, after fitting a new pinch roller. This roller was again not of the same type as the original, and furthermore had another manufacturer's name on the bag.

I could go on giving such examples. How many readers suffered a couple of years ago with those pattern 3 V 35 idlers that were too small? Wholesalers should take greater care over what they supply, and should be accountable for the losses that occur when headaches such as these arise. I feel that the problem doesn't show up as much as it should because many engineers are not too fussy when working on VCR mechanics - torques aren't checked, lubrication isn't carried out, nor is tape path alignment when new heads are fitted. If the sound level varies slightly following a repair they don't worry. I've seen completed repairs where new heads have been fitted in high specification machines that previously gave perfect still pictures and noiseless slowmotion, but because alignment has not been carried out they no longer do despite the new heads! Also machines where no servo alignment has been carried out following drum replacement, with the result that the switching point obscures the bottom inch of the picture. For some inexplicable reason if the cowboys muck up a repair the owner will come to me to sort it out and will pay, but if the machine goes dead six months after I've cleaned the heads the owner comes back to me demanding a free repair!
Nick Beer,
Bideford, N. Devon.

Microcomputer Notes

Commodore C64

After reading about Mr. Matthews' problems with one of these microcomputers (February issue, page 257) I thought that some comments on my own experiences with them might be of help. To recap, the problem reported by Mr. Matthews was a blank screen but no other results, the cause being failure of one of the regulators in the potted power supply.
In one case I cut down the potting on the transformer as far as possible in order to expose the lead-out wires for the mains input and the 9 V secondary. I ignored the 5 V secondary as I don't trust the regulator used here. Instead, a good-quality switch-mode power supply was used to provide the 5 V output. The unit to hand happened to be a 180W Gould unit. Obviously this power isn't required but, being an efficient power supply, the unit draws only sufficient current from the mains supply to provide $5 \cdot 2 \mathrm{~V}$ across its output terminals, and maintains this output with impressive accuracy over a load current range of zero to more than 30 A .
The second repair along these lines was for a friend who wanted the system up and running to keep his children out of mischief. As a 9 V transformer was on this occasion ready to hand no attempt was made to hack the old power supply apart, though the original power lead came in handy. The switch-mode power supply I used this time came from the monitor unit of a professional system that had been scrapped. The option now exists to provide -5 V , -12 V and +12 V rails as well as the standard +5 V and 9 V a.c. supplies should these be required by another unit.

The biggest advantage of computer type switch-mode power supplies is that when they fail, which appears to be rare in comparison with three-terminal linear regulators, they usually cease to function and cut off the outputs. This is much preferable to a series element going short-circuit and dumping the unregulated secondary voltage on to the 5 V output.
If a linear regulator is retained, a precaution I consider to be well worthwhile is to add a crowbar thyristor. Simply connect the thyristor between the 5 V rail and chassis. Use a low-value resistor and capacitor from the gate to chassis. A simple transistor and potentiometer as a "variable zener" connected from the 5 V line to the thyristor's gate allows precise setting of the trip voltage. This arrangement saves a fortune in expensive house-coded LSI chips.
I. Field

Amstrad PCW9512 Printer

This printer produced consistently faint printing and was much quieter than usual. A telephone enquiry to Amstrad produced the answer "replace the hammer armature". This is plastic with a ferrous insert, and can develop cracks. Like Donald Bullock, when I did this the result was that the printer ceased to produce any impression at all.

According to the gentleman on the phone, there should be a 2.4 V pulse at the hammer current test connector. As this was the case I concluded that the fault was a mechanical one. I'd been warned that the position setting of the hammer electromagnet is very critical. The fixing screws were very hard to undo. Once they were loose the magnet could be repositioned and resecured, using Loctite on all the screws. Doing this provided a complete cure.
P.S. Wallis, G3YJI

TV Fault Finding

Reports from Steve Cannon, L.V. Cooper, Graham Rees, Liz Hopkins, John Edwards, Ed Rowland, Mick Dutton, Eugene Trundle, Michael Dranfield and Denis Foley

Panasonic TC1785

This set came in dead and quick checks showed that no voltages were being generated by the power supply. In the circumstances it's a good idea with these sets to remove Q806, the standby switch transistor, then wind the set up via the variac. This time the set started up, with all the voltages correct. Q806 was then checked and found to be open-circuit. A new 2SA683 transistor put matters right.
S.C.

Hitachi CPT2658/Salora LChassis

The symptoms were severe herringbone patterning, both with off-air and scart input signals, striations down the side of the picture and both the line phase and frequency were wrong. In cases like this it's usually a good idea to tie the faults down to one part of the chassis. But it was a bit difficult here because separate faults seemed to be present in the i.f./video, line oscillator and line output departments. The only thing in common of course is the 12 V supply. A check was made for ripple but none could be detected. We decided to replace CB616, the $1,000 \mu \mathrm{~F}$ reservoir capacitor for the 17 V supply that feeds the 12 V regulator, and as if by magic all the symptoms cleared. S.C.

Hitachi G8Q Chassis

This set was dead - no surprise here. Praying that the mains fuse hadn't been blasted, we removed the back. Thankfully the fuse was o.k., so a full power supply rebuild wouldn't be necessary. As the h.t. was present and correct we checked the supply to the timebase generator chip IC701. The 12 V supply was present but line drive wasn't being generated. A check was then made on the standby line from the microcomputer panel. The voltage here is normally between $8-12 \mathrm{~V}$ when the set is running, 0 V in standby. It was found to be 3.5 V . This led us to suspect a fault on the microcomputer panel, and sure enough when the standby line was disconnected the set started up. Before condemning the microcomputer chip we decided to check a few other components. This proved to be a fruitful approach as the 1 N4148 diode D1504 in the standby circuit was faulty.
S.C.

Philips 2A Chassis

The h.t. and e.h.t. came up for an instant at switch on, then the main h.t. decayed to a steady 30 V with the other secondary power supply voltages low. It seemed certain that the cause of the trouble was in the line output stage because disconnecting the feed to the line output transformer brought all the supply lines back up. Checks showed that the output transistor, the EW modulator diodes, the secondary rectifiers fed from the transformer and the tuning capacitors were all o.k. The only thing left was the transformer. A new one restored normal operation.
S.C.

Panasonic TX25W2 (Alpha 3 Chassis)

In our experience this very new chassis is not one of Panasonic's better ideas - the failure rate has been far too
high. The first fault with this particular set was that R555, the fusible safety resistor in the h.t. feed to the line output stage, was open-circuit. When it was replaced, the set was in a shut-down condition. A check showed that the line output transistor was o.k., but it seemed clear that something was wrong in the line output stage. We checked the EW modulator diodes as these can cause the same symptoms. Not this time however. So we began to suspect the line output transformer, a common cause of failure with modern sets. But this set had just been unboxed. It couldn't be faulty, could it? It was though.
S.C.

Grundig CUC2400 Chassis

This set wouldn't come out of standby when the mains on/off switch was used. The circuit indicated that the power supply earth was not isolated from the main chassis earth. This was not true of the set we had. I eventually found the usual network that connects the two earth rails, i.e. the $4 \cdot 7 \mathrm{M} \Omega$ resistor and its associated parallel capacitor. A check on the resistor showed that it was opencircuit, a replacement restoring normal operation of the on/off switch. The offending resistor is located near the front of the panel, on the right-hand side very close to the right-hand chassis rail. I forgot to make a note of its circuit reference number, but as it's not shown in the circuit diagram we used it probably wouldn't be much help anyway.
L.V.C.

Samsung Cl3312Z

The complaint was of lack of height. The obvious thing to do was to check the d.c. voltages around the field output chip, IC901. These were all o.k., but a new chip was tried in case. This made no difference so I moved back to the TDA8305 chip IC101. The d.c. voltage at the ramp generator pin 2 was found to be low. Replacing R302 cured the problem. It had risen in value from $470 \mathrm{k} \Omega$ to about $1.5 \mathrm{M} \Omega$.
G.R.

Rediffusion Mk 4 Chassis

This set was dead with the start-up resistor 4R2 getting very hot. A check on the start supply showed that it was correct at 14.5 V , and no shorts could be found on the secondary side of the chopper transformer. A scope check at pin 15 of the TDA 1060 chopper control chip showed that the drive output was at only about $0 \cdot 1 \mathrm{~V}$ peak-to-peak - the manual gives the correct amplitude as being 0.4 V peak-to-peak. So we checked the supply voltage again: the reading was still 14.5 V . When the supply was scoped however we found that a 60 V peak-to-peak ripple was present on it. A check on $4 \mathrm{C} 6(1,000 \mu \mathrm{~F})$ showed that it had dried up, a replacement restoring the set to life. M.Dr.

Hitachi CPT1646R

The report with this set said that it was dead. When we switched it on the e.h.t. rustled up then very quickly died away. An LM317T three-terminal adjustable regulator is used in this chassis, with a large bypass resistor. A check
on the LM317T showed that all pins were at about 150 V . We tried powering the set via a variac and found that at about 70 per cent of the full mains input everything worked all right. So no other damage had been done. A new LM317T was tried, on the assumption that the original one was short-circuit, but the fault condition remained the same. As the voltage at the adjustment pin couldn't be reduced using the set-h.t. control, the cause of the fault was likely to be in this area. Tracing back from the adjustment pin brought us to two resistors, R907 ($56 \mathrm{k} \Omega$) and R908 ($22 \mathrm{k} \Omega$). R908 turned out to be open-circuit.
M.Dr.

Philips 2A Chassis

This set was dead with a very black mains fuse. The obvious things to check were the chopper transistor and the mains bridge rectifier diodes. They were all o.k. In a situation like this, where no obvious short can be found, I usually remove the degaussing thermistor and try again this device can be responsible for violent fuse blowing. With the thermistor out the set remained dead, but this time the mains fuse remained intact. I then spotted a small blue capacitor, C2664 ($1 \cdot 5 \mathrm{nF}$), with a split down the side. It turned out to be open-circuit. So did the associated BYD33J diode D6664. With replacements fitted the set remained dead. Checks showed that there was no output from the mains bridge rectifier - and no a.c. input either! Study of the circuit diagram soon showed what had happened - Philips dealers will be aware of this. I'd left the degaussing thermistor out, intending to replace it after finding the cause of the fault. In this chassis the thermistor is in series with the incoming mains feed to the bridge rectifier, acting as a surge limiter as well. Replacing this item restored the set to full working order.
M.Dr.

Fidelity ZX3000 Chassis

There was a green cast on the picture, as if the tube had a slight heater-cathode leak. A check on the tube showed that it was o.k., so attention was turned to the RGB output stages on the c.r.t. base panel. Comparison voltage checks in the green and red stages brought us to TR10's base bias resistor R214 which had risen in value from $100 \mathrm{k} \Omega$ to $150 \mathrm{k} \Omega$. A replacement restored correct colour. M.Dr.

Amstrad CTV2000

This set had top field foldover. I'd had this fault before, so I went straight for $\mathrm{C} 720(4 \cdot 7 \mu \mathrm{~F}, 160 \mathrm{~V})$ which decouples Q702's collector. As the set is now about nine years old we replaced C 718 and C 739 as well for good measure. M.Dr.

Hinari CT4

This set was dead and on inspection we found that a small hole had been burnt in the PCB around one leg of L406. Further investigation brought us to R406 (680)) which was open-circuit. A replacement restored normal operation.
L.H.

Triumph CTV8000

We get quite a few of these Currys own brand sets in. Just when we think we`ve got it all sussed out along comes one like this. It was dead and on opening it up we found that there was a hairline crack on the bottom panel. Bridging it brought back a lot of voltages but nothing else. After
disconnecting the final anode cap and finding only a weak spark we looked more closely at the tube base. A do-ityourselfer had had a go and had put the tube base back upside down!
L.H.

Huanyu 37C-2

The problem with this set was line collapse. It was caused by dry-joints on transformer T782 in the scan circuit. L.H.

Matsui 2160/Saisho FST210R

There was a small, pulsating picture, the sound varied up and down and the brightness was low. We get quite a few of these sets so we went straight to the line output transformer-derived 180 V rail where the reading was low at only 73 V . Fitting a new STR58041 chopper chip (IC501) restored normal operation.
L.H.

Ferguson TX100 Chassis

If the standby light works but the set goes dead when a channel is selected and all the lights go out, check for a 12 V drop across RL1. If this is absent replace TR9 (BC107).
L.H.

Saisho CT147R

A common cause of the dead set symptom, though with 229 V at the collector of Q604, is $\mathrm{R} 662(180 \mathrm{k} \Omega$) being open-circuit. A replacement is normally all that's required to restore the set to life.
J.E.

Ferguson TX99 Chassis

When this set was switched on the e.h.t. came up but there was no picture, just the occasional flicker of flyback lines. There was no sound and it was impossible to change from channel one. R239 (100Ω) was open-circuit due to an internal short in the M494B1 tuning/standby chip IC241.
J.E.

Philips G11 Chassis

Dead except for a hum was the report with this set. When we switched on we found that the tube's heaters glowed and the e.h.t. rustled up, so the power supply and the line timebase were obviously o.k. A check on the 17 V feed to the audio and i.f. panel showed that this voltage was missing. The 1 A fuse was intact and the BY210-800 rectifier diode seemed to be o.k. when checked with an ohmmeter and the scope component tester. After a lot of other checks got us nowhere we decided to fit a new diode. Everything then burst into life. It all goes to show that there's still no trustworthy general-purpose component tester, the best advice being "if in doubt, whip it out". J.E.

Sony KV2062

This set was dead with a blown 3•15A mains fuse. A check on the bridge rectifier showed that D609 was short-circuit. Fitting a replacement and giving the set a long soak test proved that all was now well.
J.E.

Philips CTX-E Chassis

This set would sometimes fail to come on. We also noticed that the stations were not being memorised. As a result we
replaced the back-up battery. There was no further trouble after we'd done that.
E.R.

Ferguson TX90 Chassis

We've had two of these sets in recently. The problem with the first one was no colour. D103 (BAV20), which is in series with the sandcastle pulse feed to the colour decoder chip, was open-circuit. The second set wouldn't store channels. IC902 (M293B1) had failed.
E.R.

Some Quickies

Here are some quickies we've had recently:
Mitsubishi CT2027BM: Intermittently dead was the problem with this set. The cause was dry-joints on transformer T571.
Philips 14 CF1014 (CF1 chassis): This set was dead with its line output transistor $\operatorname{Tr} 7560$ short-circuit. Dry-joints on the chopper transistor $\operatorname{Tr} 7317$ were the cause.

ITT CT3306 (Monoprint A Chassis)

The problem was no line sync. This set uses a TDA2579 sync/timebase generator chip. Our first suspicion was of missing line feedback pulses, especially when we found that they come via a high-value ($680 \mathrm{k} \Omega$) resistor. A scope check showed that everything was in order here, also that the video input was correct at pin 5 . Field lock was solid, and a new TDA 2579 made no difference. The frequency could be set to drift through at the centre of the hold control's setting with the video input shorted, so we came to the conclusion that the cause of the problem must be one of the peripheral components associated with the line phase discriminator circuits. This brought us to pins 6,7 and 8 . After checking the three electrolytics we noticed the small disc ceramic capacitor ($\mathrm{C} 609,100 \mathrm{pF}$) which is connected to pin 7. Perfect lock was obtained after replacing it. On test the capacitor was found to have slight leakage.
M.D.

ITT CVC1215 Chassis

This set wore a Solavox badge - Model 22R09. The fault was distortion across the centre of the picture when the set had warmed up. Any disturbance to the chassis would clear the problem. We eventually found that the cause of the trouble was the line output transistor's heatsink. It completes the earth path from several print areas. Resoldering these cured the fault.
M.D.

Sharp C1421

This set was dead with the standby relay not energised. Linking across the relay produced a snowy raster with no tuning control. Checks around the microcomputer chip IC1002 showed that there was no voltage at the reset pin 11. This was due to operation of the overload protection transistor Q604. By isolating the various protected circuits we found that the basic cause of the trouble was zener diode D607, which was short-circuit.
M.D.

Harwood TS2604P

I'd never seen one of these sets before. It had been bought at a discount store and had gone wrong just out of guarantee. The shop had told the customer that it would be cheaper to buy a new set. When I switched the set on the
mains input was present and there was 350 V across the chopper transistor, as I found out all too soon (there's no discharge resistor across the reservoir capacitor!). The power supply is on a separate panel. When this was removed I found that R3 had sprung open. Resoldering it didn't get the set to run, and further investigation showed that the 400 mA fuse B3 had blown. After fitting a replacement the set started up and a picture appeared. It was very defocused and dim however. I left the set on soak test for a while and noticed that the brightness level altered as it warmed up. Suddely the screen went to peak white, with flyback lines. I found that there was no supply to the RGB output transistors as the coil (L4) that's in series with the feed had gone open-circuit. Removing it and resoldering the coil ends to the pins cured the problem.
M.D.

Tatung 160 Chassis

The set of which this chassis formed a part had been well and truly blown up! The BU508 line output transistor and TDA3651 field output chip had both died and R411 was burnt. Using a mains light bulb as a dummy load we found that the power supply was churning out 285 V instead of the correct 117 V . The culprit was D808 in the set-h.t. sampling circuit: it read 380Ω both ways.
E.T.

ITT CVC1203 Chassis

The power supply in this CT2612 receiver, which uses the CMP1204 power module, had gone into the superboost mode. The voltage on the h.t. line was over 200 V . C733 $(10 \mu \mathrm{~F})$, the h.t. reservoir capacitor, had been blown apart, scattering its wet, woolly and metallic entrails over much of the set's inside. The h.t. comparator stage functioned all right, or at least was trying to, but the 13 V reservoir capacitor $\mathrm{C} 703(10 \mu \mathrm{~F})$ in the primary side of the chopper circuit was faulty in some way - its replacement restored normal operation.
E.T.

Panasonic U3W Chassis

A few days after I'd replaced faulty field output transistors (Q402/3) this set came back with the complaint of no sound or vision: it was in permanent standby. Checks showed that the voltage at pin 5 of the AN5435 timebase generator chip IC501 was high, thus switching off the line drive. The h.t. was normal, and the set came to life when the service switch was on. This led to the discovery that Q403's emitter current was high. A fresh pair of field output transistors, plus a new AN5435 i.c., did no good at all. A phone call to Panasonic provided the necessary help. When the field output transistors are replaced, the associated bias diodes D406/7 should also be replaced.
D.F.

Hitachi G80 Chassis

We were unable to tune in any stations, obtaining only a blank raster with most programme numbers while the buttons at the front of the set operated incorrect functions. Replacing the tuner unit and the microcomputer chip got us nowhere. A call to Hitachi produced the advice that the memory chip IC502 should be reprogrammed. This is an involved process and the instructions that have to be followed are not listed in the manual. Details for some models were included in the August 1991 issue of Television, on page 732. This procedure does get one out of the trouble.
D.F.

Long-distance Television

Roger Bunney
Virtually static high-pressure systems over the UK during much of January resulted in extensive tropospheric reception, also serious fog. Three periods produced excellent tropospheric propagation - during the 11-16th, the $20-22 \mathrm{nd}$ and, the most intense period, the 27-31st. Together with a little Sporadic E and F2 layer reception this made January an unusually active month.
Tropospheric propagation over the 11-16th produced generally strong signals from France, Germany, Denmark and the Benelux countries in Band 3 and at u.h.f. Highlights were Poland ch. R36 on the 11th, Czechoslovakia ch. R10 on the 13th and Austria chs. E6 and 8, Czechoslovakia ch. R10 and various Swiss Band 3/u.h.f. stations on the $15 / 16$ th. Many DXers logged the new German network logos, e.g. "MDR 1 Programm", for the first time. The Luxembourg chs. E7/24/36 were also seen on several days. January 20-22nd produced a less active spell, with reception mainly from the east/north east - most signals came from Norway, Sweden, Germany and the Danish first and second networks.
The major event from the 27th onwards saw the month out. It was again accompanied by thick fog. Very strong German signals were seen on all days through to the 31st. The emphasis early in the period was towards reception from Scandinavia. On later days it tended to veer to the east/south east. Austria ch. E8 was seen on the 28th, along with the usual signals including RTE (Ireland). An unusual sighting on the 30th was Canal Plus on chs. E39 and 50 with PAL encoding. The peak day for reception was the 30th. Here at Romsey Band 3 was completely jammed with signals and the u.h.f. bands were in chaos. DXers logged signals from France, Germany, Switzerland, Denmark, Norway, Czechoslovakia and the Benelux countries in all bands. As a bonus there were several 435 MHz amateur TV callsigns and even the American Forces' ch. E70 (A80) transmitter was logged at good strength.

SpE had its moments, in particular with a very intense opening on the 4th. The log is as follows:

4/1/92 RAI (Italy) ch. IA; + PTT (Switzerland) E2, 3; MTV (Hungary) R1, 2; CST (Czechoslovakia) R1, 2, 3; TVR (Romania) R2; TSS (Russia) R1, 3; ORF (Austria) E2a, 3, 4; ARD (Germany) E2, 3, 4; Canal Plus L3.
5/1/92 TVE (Spain) E3; RUV (Iceland) E4.
8/1/92 TSS R1.
11/1/92 TVE E2, 3, 4; + PTT E2, 3.
12/1/92 TVE E2, 3; + PTT E2.
19/1/92 DR (Denmark) E3; RAI IB.
21/1/92 RAI IB.
26/1/92 RTE (Ireland) ch. B.
There were several good days for F2-layer reception, with strong signals from the Middle East. Odd to report that on the 31 st/Feb. 1st a very large sunspot group was visible in the centre of the Sun. This could be seen through the fog - with the naked eye, a very unusual event. But despite careful tuning on the following evening no auroral activity was noted. (Never observe the Sun directly under normal conditions.) The F2 log is as follows:

9/1/92 Irib (Iran) E2; Dubai E2.
14/1/92 Irib E2; TSS R1.
17/1/92 Very weak unidentified signals on chs. E2/R1.
27/1/92 Irib E2.
28/1/92 TSS R1; evidence of Australia ch. A0; unidentified signals on chs. E2/R1/E3.
29/1/92 Irib E2; Dubai E2; TSS R1.
30/1/92 Dubai E2; TSS R1.
31/1/92 Irib E2; Dubai E2; Chinese caption writing seen on ch. C1/R1.

Our thanks to Roger Fussell (Torpoint), Peter Schubert (Rainham), Simon Hamer (Powys), Cyril Willis (King's Lynn), David Glenday (Arbroath), Tim Anderson (St. Leonards), Brian Renforth (Newcastle) and Ryn Muntjewerff (Holland) for sending in reception reports.

It's interesting that low-power signals can be received via SpE reflection amongst much higher power co-channel signals. The Australian bulletin Yagi reports that on December 31st one of its members received, with a scanner, New Zealand ch. $1(45 \cdot 28 \mathrm{MHz}$ vision carrier) from TV2 Wingagui: the unusual point is that the transmitter's output power is 1W!

George Gaskin reports from Gibraltar that RTM (Morocco) has changed its first network station identification logo to a conventional five-pointed star with the figure one in the centre.

News Items

Czechoslovakia: Andrew Emmerson reports that the Czech network has started on a programme to convert from SECAM to PAL colour. A Bratislava transmitter under construction will operate with PAL only. The phased changeover is expected to take ten years. Though modern Czech receivers can operate on the SECAM D and PAL B/G standards, there are still many traditional Russian-made single-standard SECAM D sets in use. These will have to be replaced over the next few years.
Poland: Permits are being issued for new f.m. transmitters operating in the $88-108 \mathrm{MHz}$ band, with services due to start next winter.
Ireland: The Irish government has promised to launch a predominantly Gaelic-language channel by next December. RTE Gaelic programmes will be supplemented by locally-produced material. The Broadcasting Bill is to be amended to provide RTE with more commercial air time to help fund the production of Gaelic-language programmes.
Holland: TROS plans to adopt cable-only distribution cable now reaches almost 90 per cent of Dutch households.
Germany: There have been fundamental changes in the broadcasting arrangements in the eastern part of the country with the establishment of the MDR (Mitteldeutcher Rundfunk) and ODR (Ostdeutcher Rundfunk) and the demise of the DFF. MDR and ODR took over from the DFF on January 1st. The MDR headquarters is at Leipzig while ODR is located at Babelsberg near Berlin.
$\mathbf{5 0 M H z}$ Amateur band: The Polish authorities are to allow radio amateurs to use the 50 MHz band in certain areas not served by Band 1 TV transmitters. Estonian authorities have given the $80-80 \cdot 5 \mathrm{MHz}$ allocation to radio amateurs, with e.r.p.s limited to 50 W in the Tallin region and 200 W elsewhere. Other Russian republics are expected to follow suit. Maximum power for use by Swedish amateurs in the band has been increased to 200 W , though with restrictions depending on the proximity and power of the nearest Band 1 TV transmitter. Our thanks to Six News for this information.

AERIAL TECHNIQUES

Satellite TV

Up to nine high-power transponders have been carrying Winter Olympics material via the French Telecom 2A satellite, which will be at $3^{\circ} \mathrm{E}$ for the duration of the Olympics.

Filmnet is reported to be phasing out PAL and is expected to go D2-MAC completely by the end of March, probably with Eurocrypt scrambling.

Eutelsat II F3 at $16^{\circ} \mathrm{E}$ has been carrying out tests by relaying much of Eutelsat I F4's cable TV output. So far there have been no reports of interference to Astra signals.

There seem to be quite a lot of new satellite TV channets. The Adult Channel is now carried on Astra while Free Choice TV is being promoted via the Dutch PTT leased $11 \cdot 150 \mathrm{GHz}$ transponder on Eutelsat II F1 at $13^{\circ} \mathrm{E}$, with a Dutch postbox address. Eutelsat II F2 at $10^{\circ} \mathrm{E}$ is carrying two new services on a test basis, Show TV with MTV relays and an inlaid test caption and an as yet unidentified service for cable distribution. Indian- and Chinese-language services are expected shortly via Astra, on a shared transponder time basis.

MAXSAT continues despite problems elsewhere in the Maxwell Communication Group. A recent contract for this satellite linking company involves Westminster news circuit uplinks from the ITN studio via three Eutelsat transponders for ITV regional use.

Scientific Atlanta is to up-grade a number of European Earth stations in a move towards digital transmission via the new Eutelsat II satellites. Countries involved include the UK, Ireland, Italy, Greece, Cyprus and Tunisia.

The new Intelsat VII and VIIA series of satellites will be launched from 1993 onwards for service in the C and Ku bands and SNG operations. Five craft have been ordered
so far, with options on a further two. Each satellite will have three independently steerable Ku band spot beams and six steerable C band spot beams. Facilities to accept Ku band uplinks and translate them to C band (4 GHz) downlinks will be included, basically for lower-powered SNG use. The Ku band downlink e.i.r.p. will be 47 dBW , appropriately more with the C band links.

We have received a correction from the Bophuthstswana Broadcasting Corporation. Bop-TV is scrambled, using Videocrypt, and is uplinked from Bophuthatswana, not Botswana. Bop-TV and Mmabatho TV are both downlinked from Intelsat VI F4 at $27.5^{\circ} \mathrm{E}$, the frequencies used being 3.884 and 3.926 GHz respectively, with lefthand polarisation.

Equipment for TV-DXing

At this time of the year thoughts are turning to the forthcoming SpE season. In the 405 -line era enthusiasts had to modify receivers to work with the Continental standards. The problem was eased with the start of 625 -line transmissions in the UK, but the difficulty then arose that many receivers weren't equipped with a v.h.f. tuner. One approach to this problem is to use an upconverter to translate the v.h.f. TV bands to a section of the u.h.f. spectrum so that a u.h.f. tuner can be used to, in effect, give v.h.f. coverage. The alternative approach is to use a surplus v.h.f. tuner, building it into a suitable package with its i.f. output being fed to a convenient point in the main receiver.

The latter approach, using an outboard tuner, makes it possible to incorporate filtering to decrease the i.f. bandwidth and thus improve the noise performance. Several articles on this subject appeared in Television in the early Eighties. Fortunately the varicap tuner became commonplace, and in due course the improved MOSFET types gave greatly enhanced performance - low noise, freedom from overloading and, with some, quite incredible bandwidth coverage.

The HS Publications (Derby) D100 DX-TV converter combines these approaches, with a tuner and i.f. processing followed by upconversion to a single u.h.f. channel, all bandwidth filtering being carried out in the outboard tuner package.

Today, with the mass of imported TV equipment available from the Orient, many receivers come complete with a multiband tuner. Such receivers may therefore have a group of memory channels that can be used for the Band 1 DX favourites such as E2, R1 etc. With remote control, channel hopping is simplicity itself. Monochrome and colour sets are both available with a multiband tuner. I recently saw an advertisement for a Nikkai $14 i n$. monochrome receiver with full v.h.f./u.h.f. tuning via separate knobs at just over $£ 50$. The Nikkai and other imported TV sets have full i.f. bandwidth operation of course, but it's possible to add simple filtering at the tuner's i.f. output. If this is done the sound signal will deteriorate or just not be heard of course.

A great many receivers that are suitable for DXing are available in both the retail and wholesale markets. Multistandard models are available in the Nikkai and Yoko ranges for example. Alternatively single-standard models with v.h.f./u.h.f. coverage can be used. Multistandard sets are likely to be able to handle system B/G/I/L transmissions with PAL/SECAM colour. The upconverter approach is still a useful way of obtaining inexpensive coverage of the v.h.f. bands, but for ease of tuning a fully variable u.h.f. knob is best, i.e. forget pushbutton tuning.

Band 1 coverage should include chs. E2/3/4, chs. IA/B (system B), chs. R1/2 (system D), ch. IB (system I, Ireland) and chs. L2/3/4 (system L, France). Very occasionally ch. A2/3/4 signals (system M) are received from North America. These channels all lie within the 45 70 MHz Band 1 spectrum.

Satellite Notebook

Nick Beer

Here are some more of our experiences with satellite TV receiving equipment.

Mains Problems

We get a lot of calls from owners of various types of IRDs complaining that the decoder doesn't function, the clear channels being fine. This is generally found to be the case. All that's required to cure the problem is a hard reset, i.e. switch off at the mains, wait a couple of minutes then switch back on cleanly. The fault is characterised by the fact that there are no on-screen graphics, "please insert card" for example. It's as if a decoder wasn't there.

These calls come from areas where mains supply problems at irregular intervals are commonplace, or from anywhere after bad weather. We've not had this problem with the Ferguson SVAl stand-alone decoder we supply. These lock-up problems are not restricted to satellite TV equipment of course, and seem to occur with some brands more than others. In our experience Ferguson seems to be particularly unlucky in this respect. The 3V55/57 VCRs were a major problem. So was the Pace manufactured SRA1S satellite TV receiver. The latter would go into the VCR lock mode in standby, necessitating a hard reset followed by SETUP 987 from the remote control handset. Initially, these problems produce a large number of service calls. Subsequently customers manage to carry out the "repair" themselves. It can do manufacturers' reputations no good. Contemporary Salora/Luxor receivers and Panasonic VCRs didn't suffer from the problem.

Outdoor Weaknesses

I'm sure that many readers will have come across the popular Maspro 65 cm dish kits used by the Nokia group. The set-up is quite neat and the head-end small. I first encountered it when Salora dropped the use of the Fuba 55 cm fibreglass dish a few years ago in the system with the 5902 receiver and started to supply the Maspro metal kit instead. Assembly was a bit more involved, but instead of a three-part head-end we now had a combined feedhorn and polariser with a very small LNB. Reception is very good: the 55 cm dish had been rather on the borderline in parts of our area (N . Devon), the newer kit being more comfortable.

It was not long however before I began to find that the reliability is not so hot. At the time we'd commissioned Startrak to install much of our equipment, and their workmanship was less than ideal with the examples of this kit they installed. The polariser connections consist of a pair of tags with push-on spades. These in turn have plastic sleeves which are pushed over them. The design is poor, with little thought to longevity. Startrak gave no more thought to them and didn't waterproof the connections in any other way. Consequently we had a fair number of failures caused by the tags simply rusting away. The user
would complain of intermittent loss of half the channels followed by their permanent loss. Sometimes the user would complain that only one channel, say Screensport, had disappeared, but in fact they were watching only this horizontally polarised channel and hadn't noticed that MTV, Lifestyle etc. weren't there either!

With this fault the likelihood is that water will have permeated the cable, which will often have to be replaced as well. My predecessor in satellite TV maintenance used to solder the leads on to the tags, seal them in silicone rubber (the RS type, not bath sealer etc.) then wrap the entire neck of the polariser with self-amalgamating tape. I never had one re-offend after that treatment - they daren't!

A further problem associated with this fault is that if the equipment has been installed for any length of time it can be almost impossible to separate the LNB and the polariser. The screws corrode into place, and even after removing them parting the two units can be fun bimetallic reaction?

At one stage we had some complaints about variable reception: the signals would rise and fall in windy weather. On checking the installations concerned we found that the wall brackets were extremely flexible, to the extent that with only minimal force the whole assembly would move some way in the azimuth sense. A comparison between the brackets and earlier ones showed that the gauge of the steel legs was about half that previously used. When they were contacted, Salora/Luxor said that they knew all about the problem - they hadn't told anyone however! Apparently the brackets had been locally sourced and the wrong gauge of steel had been used for one batch.

Another weakness that is now showing up with these kits relates to the dish itself - it rusts badly. This usually starts around the edge, where the rust starts to blister the layers of steel apart. I've seen some really bad examples. Where this has happened Nokia has supplied a free replacement and paid the market rate for installing it. I suspect that this could be costing them a lot of money. The ironical thing is that the replacements supplied are of the same type - they come complete with polariser but not the LNB. One of our replacements is rusting again already - the customer complained within two weeks!

Receiver Problems

Compared with many designs the power supplies in the Pace-made Ferguson SRAI and SRAIS receivers are a weak point. They are exceptionally hot in operation, which means that there's inherent unreliability. The later S version was improved in this respect, but both units suffer from similar problems. In carly versions the heat soon discoloured the PCB: now the print itself in some receivers is disintegrating.
One problem that's becoming common is power supply hum, which causes bars on the vision. Bridge rectifier, reservoir capacitor and regulator failures are commonplace, also dry-joints and broken print. A good idea as to which component in which supply is in trouble can be gained from the symptoms - is the fault limited to one polarity and if so which one, how many bars are there, etc.?

More recent Pace-made units have been built to a better standard however: we still get complaints from new owners that they run hot, but the reliability seems to be much better. Early unreliability was due to poor design. The company seems to have learnt from its mistakes, though that connector for the Videocrypt PCB in the SS $9000 /$ SRAI shows a lack of experience.

BU508AF BUT11AF TDA2579 TDA3562A	SPECIAL OFFERS BLE UNTIL 30－4－92 OR WHILE STOCKS LAST				
	TDA4505E	TDA2600		1038 （3V32 Take Up Ider）	£1．08
	TDA4601	BU508A		VCR Fault Finding Guide	£6．99
	TDA3561A	BU326A		1620－IC Protector Kit	£14．95
	STK5481	1036 （3V29 Reel Idler）	£2．04	LT1215－IT LOP Transfo （Pt．No．4515－03－25）	£15.75

90H	3.72	2567870A	0.28	ANS435	1.24	${ }^{\text {BC3 }} 307$	0.05	воуго	2.06	butsba	0.87	La4182	0.75	mpsuto	2.54	STK4392	5.78	TA7676P	4.13	TDP2005	1.24	teazolsa	1.46
15852	3.72	$25 C 2632$	0.28	AN5512	1.82	8C307A	0.05	8F115	0.39	buwila	0.84	LA4192	1.10	mpSugo	2.21	STK 441	9.73	tat680AP	4.39	toaza06	1.02	TEA2164	3.67
17099	3.28	$25 C 2655$	0.29	AN5521	1.60	$8 C 3084$	0.11	8F123	0.17	BUW41B	0.61	144220	1.25	MP818	6.33	STK459	7.73	ta7681AP	8.09	TDaz209	2.23	TEA2165	3.69
17127	1.88	2562671	0.65	AN5612	2.26	8С338C	0.05	BF127	0.13	BLW84	0.58	144261	1.60	MR854	0.13	STK461	8.99	tap698ap	5.61	toazzo	2.29	Tic1060	0.54
114002	0.06	2562888	0.29	AN5900	1.23	8С337	0.05	8F179	0.30	Bux84	0.33	la4270	2.04	Mpesf	0.14	STK5211	12.63	ta7705p	1.38	toh2161	2.88	тictocm	0.67
1 N 4004	0.06	2SC2785	0.16	AN6310	4.55	8С3278	0.17	BF184	0.40	Bux95	0.74	LA4282	2.06	NE5458	3.10	STK5315	6.30	TA769P	139	toas170	1.51	ticas	0.55
INA005	0.05	$2 \mathrm{SC2791}$	4.25	AN6326	3.50	BC328	0.06	BF135	0.39	3Uz71	0.50	La4400	295	Ne555	0.21	STK5322	6.58	TA8210H	4.93	тDazz\％	1.98	TLLT00	0.50
1N4006	0.05	$25 C 3153$	2.21	Ang341	2.23	BC3371	0.21	BF994	0.14	6Y127	0.05	la4a2z	1.07	Ne555N	0.23	STK5325	4.85	TAB215	3.99	TDA2522	14.78	TiP10	0.28
1 N 4007	0.05	2SC356	3.81	AM6552	0.61	BC338	0.05	8F935	0.07	日Y133	0.06	LA4440	1.52	Ne556	0.41	STK5326	10.31	TA8691N	5.74	TDA2524	0.41	TP112	0.33
1 N 4488	0.05	2SC3182	1.73	AN6610	0.74	BC368	0.08	BF196	0.14	BY164	0.49	La4445	0.94	Ne646N	1.68	STK5331	3.51	tans50	0.30	T0A2525	3.54	กค120	8
1154402	0.05	2 Sc 3225	0.33	ANT110	0.99	Bсаб9	0.21	${ }_{\text {BF } 197}$	0.24	BY176	0.93	La4460	1.30	0447	0.24	STK5332	2.38	taatoo	2.37	TOA2530	0.4	TP121	0.40
1 N 5404	0.07	$25 C 3715$	3.79	AN7156	2.45	BC372	0.43	8F198	0.08	Br179	0.77	La4461	1.25	DA90	0.09	stk5333	2.88	TAG626	1.34	TOA2532	0.41	7p＋26	0.51
1 15408	0.10	2SC388A	0.66	AN7161	2.48	8C546A	0.05	8 F 199	0.03	BY184	0.29	LA4500	1.63	DA91	0.14	STK5372	3.71	TBA120	0.51	TDA2540	0.36	TP132	0.41
1 N 914	0.03	2SC458	0.08	ANT171K	3.74	8C5468	0.05	9F200	0.37	BY199	0.18	LA4505	1.73	PH425	0.66	STK5421	2.52	TBAIzOAS	0.85	ToR2541	1.46	TP137	0.96
1 S1555	0.21	2scs36	0.05	AU107	1.72	BC547	0.10	${ }_{8 F 245}$	0.50	BY206	0.12	Las508	2.05	PT8504	5.65	STK5422	5.28	TBAIzOSB	0.26	T0A2560	2.47	71829	0.40
152076	0.28	2Sc867A	5.52	Aul13	12.99	BC5478	0.10	8F245A	0.18	8Y207	0.17	La4520	1.04	R2540	1.00	STK5466	5.38	teaizot	0.57	toazsiza	5.77	7P2955	0.79
2N219A	0.26	2 C C945	0.08	BA145	0.10	${ }^{\text {BC549 }}$	0.05	BF2458	0.37	BY210－400	0.18	La4700	3.42	R2540x	1.86	STK5471	4.64	tbalzou	0.46	T0A2577	2.68	T1P290	0.29
2N2722	0.18	250105	0.46	Ba157	0.10	BC556	0.05	${ }^{8 F 255}$	0.10	日Y224－600	4.95	Last12	3.30	R2M	0.66	STK5476	4.85	tBA1440	1.47	TOA257A	2.76	T1P290	0.75
2N2905	0.20	2501138	0.71	BA158	0.07	BC566B	0.05	BF256	0.23	BY226	0.15	1A5512	0.46	R4058	1.85	STK5481	4.37	tBaz800	0.66	T0A2578A	2.95	TPP29	0.39
2 N 3054	0.85	2501207	0.21	BA159	0.07	BC557	0.05	BF257	0.34	BY227	0.12	La7042	2.48	A4051	2.22	STK5482	4.08	tra395	0.66	T0A2579	2.73	T1P3055	0.69
2 N 3055	0.57	2SD1265	0.7	84317	0.05	BC5578	0.05	${ }^{\text {Bf258 }}$	0． 02	BY228	0.36	La7223	2.46	R8156	1.55	STK6962	2.22	T14396	0.41	ToA256T	2.14	TIPSOA	0.24
2N3442	1.12	2501273	0.79	Bastoza	1.23	BC558	0.05	Bf259	0.30	BY229	1.64	La7520	2.08	RGP10	0.27	STK7216	5.20	tbas20	1.20	T0A25810	t． 65	T1P3S	0.16
2×3773	1.03	2501275	0.66	BA536	1.52	BC558A	0.05	BF324	0.10	8Y229－600	1.18	La7800	1.24	RGP15	0.41	sTk7226	7.94	tras30	2.45	taazs82	2.60	T1P31	0.25
2 33819	0.41	2501308	0.69	846109	1.38	BC558A	0.05	BF337	0．36	8Y229－800	0.88	LA7801	1.24	RGP3ON	0.29	STK7308	4.70	TBA540	1.72	T0a2590	2.50	TIP31A	0.31
2n3504	0.10	2S01397	1.4	846209	1.27	BC550C	0.26	8F338	0． 38	8×255	0.12	La7820	1.52	RM11C	0.29	STk7348	4.49	tBa5400	1.15	T0A2591	1.15	T1P31C	0.28
2 N 4444	2.50	2SD1398	1.83	BA6210	1.48	B6637	0.14	${ }^{\text {8f335 }}$	0.46	8Y298	0.12	L78830	0.98	sza00af	1.16	STk7356	5.42	tBas60C	0.66	tDa2593	0.75	T1P324	0.35
2SA1015	0.08	2SD1427	2.51	846222	1.16	BC639	0.17	BF362	0.99	BY2e9	0.12	เC7120	2.12	S2055AF	2.14	STK7358	5.30	TBA65	0.98	TDA2594	2.14	пP3z	0.36
2saliozor	0.30	2501432	4.74	84656N	0.81	BC640	0.05	BF392	0.15	8Y4764	0.86	LM1303N	0.85	S2530A	2.20	STR1096	3.94	tBA7500	4.95	T0A2595	2.06	T1P33	0.63
2541095	5.71	2501453	1.49	Bas11	0.28	BC879	0.37	BF422	0.13	8Y713	0.74	Lmı87	1.40	saatoos	1.10	STR40090	6.63	тва800	0.49	tDaz600	3.05	пр334	0.69
2 Sa 1102	1.73	2S01497－02	6.85	bavts	0.07	BC880	0.36	${ }^{\text {BF423 }}$	0.09	BYD33G	0.34	LM4881N	6.80	SAA1174	3.95	5TR4090	0.00	tBasiop	1.61	toaz611A	0.50	пррзз	0.95
$2 S A 1773$	0.49	2S01497－96	6.85	Bav21	0.11	B0131	0.26	${ }^{\text {BF450 }}$	0.18	BWOSC	1.13	LM31TT	0.46	Sa41250	1.45	STRA2：1	4.20	TB4810S	0.41	TDA2611ac	1.30	TIP34	1.15
$2 \mathrm{SAH176}$	3.42	2S01547	3.30	BAW62	0.03	80132	0.20	${ }^{87458}$	0.30	Br960	0.05	LM324N	0.29	SAAT251	3.20	STR440	6.19	TBAB10SH	1.60	tDaz640	3.7	TPF3AC	0.86
254208	0.25	2S0157	3.25	Bax14	0.27	80135	0.21	${ }^{85459}$	0.28	BW19	0.67	LM339N	0.14	SAA1293	8.59	STR441	5.77	TBazzo	0.53	tDaz652	9.53	TIP41A	0.29
2SA473	0.49	2501876	4.47	8810sb	0.16	80136	0.19	87469	0.33	BWW6	0.36	LM358	0.21	SAA1351	7.99	STRA51	5.78	tea820M	0.41	T0A2653	0.00	7P418	0.30
2 24562	0.18	2 SO 1877	1.90	BC107	0.13	80137	0.43	8 8472	0.21	81855－600	0.20	LM359N	0.21	SAM3027P	8.19	STR50020	7.58	tвagı	1.12	tDaz653a	2.54	HPaic	0.28
2SA634	0.52	250234	0.94	${ }^{\text {8C1078 }}$	0.19	80139	0.28	8F479	0.63	82vasc68	0.41	LM380N	0.76	SAA5000A	2.48	STR50103	5.7	tBa920	0.49	TDA2655b	4.25	T1P42A	0.29
2S4673	0.08	$2 S 0313$	0.41	${ }_{\text {BC106 }}$	0.14	80140	0.23	8F480	0.62	cal310e	0.75	LM386	0.45	SAAS010	3.02	STR5412	5.78	tbaso	1.63	TOA2680	4.95	T1P42C	0.35
${ }^{254684}$	0.33	2503250	0.50	${ }^{8 C 108 B}$	0.37	80150	1.10	8f597	0.15	CA3094	2.97	CM85608	3.50	SAA5012	3.21	STR58043	5.78	ibag70	400	tDaz841	2.97	T1P47	0.49
254733	1.36	2SO350A	3.71	BC108C	0.13	80189	0.39	87758	0.31	CO4001	0.13	M104	6.07	SAASO50	4.54	STR6020	5.77	TCA270s	1.00	roastoo	2.58	TPLP91A	1.14
2SA769	1.97	250401	0.94	8C109	0.11	80190	0.29	Br759	0.30	C04016	0.13	м19281	2.47	SAB3013	2.67	STR6020 Ki	5.77	тca4a	1.99	TDA3190	0.82	ms43	1.02
259940	0.76	280468 C	0.41	BC117	0.13	80201	0.38	B7762	0.33	C04017	0.18	M21C	1.20	SAB3021	10.19	T6041V	0.92	tcasom	1.60	toaligop	1.07	IIS91	1.20
${ }^{2 S A 953}$	0.13	250476	0.94	BC139	0.31	80225	0.48	38869	0.24	C0402t	0.41	M293	14.63	SAB3035	6.16	T6064V	2.55	TCA8000	1.60	tDa33008	5.96	TIS43	0.64
$2 \mathrm{Sasc664}$	0.28	250613	0.61	BC140	0.20	80232	0.39	bfaro	0.30	C04052	0.21	M490	4.92	SAFT032P	4.27	T6076V	2.77	rcasio	1.17	roa3330	4.47	T．O11cp	1.32
2SA970	0.13	250621	5.37	BC141	0.25	80233	0.26	89950	0.26	C04053	0.19	M493	7.70	Saflos9	2.29	T9013V	4.87	tcaga	3.30	tDa3505	3.04	R．071CP	0.36
2SA984	0.20	250636	0.13	BC142	0.26	60234	0.43	${ }^{89566}$	0.56	CD4069	0.17	M 494	8.57	SOA2 112	12.96	T9034V	1.40	TO3FPCOR	4.12	TDA3541	0.92	Th494	8.12
2581010	0.33	280637	0.12	BC147	0.04	80237	0.29	89970	0.68	c04670	0.13	M50115AP	2.43	SG264A	9.37	T9035V	1.38	тозF9004	6.37	toa3560	5.83	TMP47Ca3zap	
SB546	0.51	250667	0.25	BC147A	0.05	${ }^{80238}$	0.10	BfP91	0.58	C04528	0.37	M51ter	1.72	SG613	13.50	r9038V	5.91	toalocza	1.34	TDA3561	5.75		17.50
258616	3.00	250716	1.07	BC148	0.05	80239	0.28	BFW92A	0.04	CNX62A	0．84	M51231P	1.40	S66533	18.46	T0053V	1.15	TDA1004A	3.30	TDA3561A	4.83	тмP47Ca3an－	N－3555
2886435	0.20	250718	1.14	BC148A	0.05	B0241	0.39	Bfx $\times 9$	0.33	CR3CM	2.40	M51393AP	4.50	S6S1F534	5.04	T9064	0.02	toaloga	7.00	TDA3562A	2.31		11.74
2S8688	1.24	250725	3.34	BC1488	0.03	BD243	0.42	Bfx85	0.31	crozam	1．78	M51521L	0.54	SKEZG202	0.63	T906sV	3.88	tDa 1010	1.04	tDa3565	0.66	บс384a	4.62
2S8770	0.41	250734	0.23	BC149	0.03	BD243A	0.41	Bfy50	0.30	CVI2E	2.44	M5218L	0.36	SKE2G204	7.27	TA71228P	0.61	toA 1011	0．96	TDA3566	3.75	upabic	0.69
$2 \mathrm{CB774}$	0.44	$2 \mathrm{SO762}$	0.62	BC14SC	0.03	80233 C	0.36	BfY41	0.33	Cx109	6.84	M5231L	0.53	SKE4F106	0.30	ta7137p	1.10	TPA1011A	1.28	TDA35718	2.99	UPC11814	0.95
$2 \mathrm{SBB19}$	0.45	250774	0.23	${ }^{\text {BC154 }}$	0.14	BD244A	0.33	BR100	0.23	Otaictef	0.12	M53216P	1.28	SKE4F210	0.89	TA7146P	5.87	toatoria	1.51	тDa3576	11.55	UPC1182H	2.19
258861	0.79	25076TE	0.25	${ }^{\text {BC157 }}$	0.12	80244C	0.41	BR103	1.03	OTA144EF	0.41	M54532	1.24	SKE46104	0.51	TA7152P	3.48	TDA1015	0.96	TDA3590	1.67	UPC1185H	4.13
${ }^{25 C 1067}$	0.36	250837	9．80	BC159	0.05	80245C	0.68	8R303	1.20	ER1400	2.08	M54543L	1.21	SKE5F3 30	1.63	TA7176P	1.73	TDA1020	1.50	TDa3640	5.77	UPC1188	2.08
2SC1096	0.48	250841	1.24	BC160	0.40	${ }_{80246 C}$	0.69	Brxa4	0.99	hal1235	1.73	M54544	3.40	SL1930	1.36	ta＞ç3ap	3.20	ToA1035	2.19	toa3650	8.64	UPC 1225 H	2.47
$2 \mathrm{SC1114}$	1.12	250856	0.47	BC161	0.26	BD278A	0.70	BRY56	0.41	HA11244	3.71	M545481	2.45	SL1431	1.65	TA7193P	5.05	TDA1037	2.69	toazs51a	1.81	UPC1228HA	0.54
2 SC 1116	3.02	251869	2.48	BC167	0.40	B0317	1.40	BSS38	0.17	hal124a	0.70	MS4648L	5.04	SL1432	0.63	TA7205	1.06	TDA1044	1.51	tDa3651a	1.98	UPC1230	2.14
$2 \mathrm{SC1162}$	0.30	250870	2.45	BC171	0.07	B0318	1.12	BSK20	1.12	HA11423	3.87	MS4888AP	14.69	S4471	1.65	taprosp	1.00	toalos9	0.4	TDA3652	0.00	UPC 1230 H	2.15
$25 C 1213$	0.13	250880	0.33	BC171日	0.13	80379	0.54	BT106	1.16	HA11440	2.55	M58485P	5.78	SL490	1.16	taprozp	1.63	toaloso	2.39	TDA3653	0.00	UPC1238	1.39
$25 C 124$	0.42	250882	0.29	BC172	0.05	${ }^{80410}$	0.33	BT139600	1.10	Hat166x	6.73	M83712	0.99	SN29764AN	1.77	tap210p	1.45	TDAT082	2.47	tDa3653a	2.14	UPC1278H	2.06
${ }^{25 C 1318}$	0.08	2508988	2.39	861726	0.09	BD433	0.26	BT151800	1.11	han 1703	3.37	M 33730	1.77	SN29770BN	8.50	tar217ap	1.40	toatobs	1.15	TDA36538	1.10	UPC13＋8	2.48
2SC1364	0.28	250973	0.36	${ }^{8 C 17}$	0.13	BDa34	0.28	Buzos	1.03	HA17713	1.31	м83731	1.98	SN7414iN	0.17	TA7222	1.24	TDA1151	0.49	TDA3654	1.48	UPC1335V	2.72
2SC1384	0.84	74.500	0.20	BC178	0.10	${ }^{80436}$	0.31	Bu298	1.14	Hatilis	6．86	M93732	2.18	SN744N	0.44	TA722as	1.23	toat 170	0.96	toasato	2.47	UPC1351C	1.65
2SC1398	0.41	7806－T022	0.23	BC182	0.05	B0437	0.30	buzora	0.90	hal3001	1.30	MC13002	3.71	SN76013ND	7.75	TATz27P	1.90	toalitos	0.85	TDa4120	1.23	UPC1353	1.30
2 2C14434	1.96	7308	0.29	BC182A	0.12	B0439	0.16	BU2080	1.39	hat3108	2.67	NC13002P	3.53	SN76227N	1.03	tatzzop	1.30	TDA1 180	1.24	TDA4427	2.65	UPC1362C	2.34
2SC1509	${ }^{1} .37$	7812－T022	0.26	BC 182t	0.05	B844	0.69	8U326a	0.87	H H 13118	2.06	MC1310P	0.82	SN76666N	1.20	tarz33P	1.72	ToA1270	1.50	TDA4442	3.19	UPC1363	1.02
$2 \mathrm{SC15730}$	0.25	7815	0.24	BC182LB	0.05	B0442	0.40	Bua06	0.43	hal3403	3.9	MC1327P	0.41	SN76705AN	2.97	tap240AP	2.15	TDA1412	0.74	Toa4500	2.97	UPC1365C	1.65
2SC1740	0.11	7818	0.39	BC183	0.05	80510	1.30	BU4060	1.24	HA1374A	2.89	MC1330AIP	1.22	SR2M	0.66	ta7240P	2.15	toatazo	1.52	tDa4501	8.21	UPC1366	1.49
2SC1741	0.16	7912	0.33	BCT83L	0.08	B0519	0.78	Bia07	0.51	наı3＇	151	MC1350p	1.76	STA401	2.23	ta724	2.23	TOA1470	3.41	tDa4503	2.39	UPC 1378 H	1.07
2SC1875	0.13	Af19	0.34	BC184	0.04	80529	0.93	buaza	0.60	н－1398	1.87	MC1358P	1.23	Sta441C	2.39	tar243P	2.71	toailigap	0.00	TDa4505E	4.04	UPC 1391 H	0.50
2SC1828	0.69	AC176K	0.29	BC184．	0.63	${ }^{80530}$	1.01	8U426E	2.06	ha1389	2.44	MC1377P	4.08	STA471C	2.23	ta7250	3.28	TDA1506	4.45	tDas600	1.43	UPC1394	1.23
${ }^{25 C 1827}$	0.74	${ }^{\text {AC187 }}$	0.15	8 Cl 184 C	0.09	B0535	0.38	Bu500	1.08	Hat392	1.84	MC14493P	3.64	stk0029	5.71	tapersp	1.96	tDa1510	2.06	TDA46002	1.92	UPC1420CA	5.13
2SC1923	0.13	AC187\％	0.31	BC204	0.35	BD536	0.46	Bu508A	0.75	HA1397	2.56	MCR1065	1.56	stk0099	5.21	ta7270	1.50	toA1512	2.48	tDA460020	2.88	UPC1458C	0.66
2SC1942	1.98	${ }^{\text {AC188 }}$	0.29	8С2078	0.22	B0537	0.40	BU508AF	1.06	HA1398	2.56	M0A2062	2.14	STK0040	7.18	ta7271P	1.90	TDA1515A	1.93	toatbiof	1.65	UPC1488H	0.99
2SC1959	0.11	AC188k	0.65	ВС2128	0.05	B0538	0.37	bu5080	1.24	H1452	0.85	Mu2955	0.94	stkooss	9.46	tap73	3.22	TDA15180	3.05	TDA4601	1.65	UPC2002	1.09
2SC1969	1.80	AD149	0.50	BC212．	0.05	B067	0.29	Bu508V	1.65	HM6231	12.30	me962	3.06	STK025	9.37	ta7274p	2.15	tDA1522	1.24	T0．46010	2.34	UPC324C	0.37
2screou	0.13	AD161	0.98	${ }^{\text {a }}$ C214	0.05	80679	0.43	Bu526	1.36	HM6232	5.77	MJE13005	0.79	STK043	10.72	tA7280	2.11	tali670a	2.02	toa4610	4.95	UPCA558C	0.41
2SC2073	0.49	AD162	0.92	BC214L	0.08	80707	0.49	Bus36	1.53	нм6251	5.69	M．EE2955	0.56	STK2129	9.82	TA7281	2.29	toal701	4.71	toas950	1.57	UPC574	0.99
2 SC 2078	0.58	AF124	0.74	BC237	0.05	807t0	0.80	BU608	1.54	hM7103	2.97	MEE3055	0.49	STK3042	4.82	ta7299	2.34	toalto	2.49	toa7240	2.29	UPC580C	2.47
2SC2141	1.23	AF127	0.56	вC237A	0.07	80899	0.52	BuTos	1.56	Ka2101	0.58	MJE340	0.36	STK4131	7.56	ta7313ap	0.50	toal870	2.45	toazzos	0.00	UPD1937C	2.81
2SC2166	0.92	AF139	0.28	вС2778	0.04	80810	0.45	BL806	0.79	квLO8	0.45	ML2378	1.105	STK4：41	8.90	ta7325P	1.83	TDA1904	1.17	toas 140	2.34	X0035TA	7.27
2SC2168	0.87	AF279	0.33	BC2388	0.05	80839	0.49	Bu806a	0.78	1200 CV	1.35	ML923	4.95	STK4142	7.97	ta73a3ap	9.69	tDat90s	8.97	toabibo	5.19	x0065CE	6.35
2SC2271	0.21	${ }^{\text {Al } 102}$	2.48	BC239	0.03	80901	0.45	8ubot	0.48	La1201	0.54	MN1405VKF	11.41	STK4162M	9.22	TA7361P	2.11	TDA1908	4.63	TUA8190	2.78	X0109CE 1	13.61
2SCz314	0.45	AN245	5.78	BC251	0.3	B0902	0.58	вu826a	2.31	Lal230	1.28	mn1435VX	12.75	STK417\％	10.56	TA75358P	0.86	tDA1908A	0.99	tDagros	1.50	X2402	4.93
2SC2320	0.18	AN318	7.42	BC252	0.69	80v65	4.12	8u908	1.13	41357 N	2.77	MN1435VXB	9.98	STK4181：I	12.47	ta7607AP	1.89	TDA1940	3.89	tuasoz	1.36		
2SC2335	0.49	AN3821K	12.70	BC2529	0.16	BDW83	1.15	BUT11	0.71	La 1385	1.40	MN6668	4.13	STK433	6.19	TA7609	1.90	TDA1950	2.34	teal 002	5.14		
2SC2482	0.25	AN3991K	3.26	BC300	0.38	BOW84C	0.94	butria	1.07	LA361	0.37	mness	2.27	Sтк4332	5.38	TA7628P	1.45	toazoor	0.82	tealoog	1.48		
2SC2565	3.87	ANSITI	3.56	BC301	0.23	воws3c	1.06	butilaf	0.75	LAA112	0.94	MPSA42	0.22	STka352	1.65	ta7630	0.95	toazozv	0.63	tEA1014	1.49		
2SC2570	0.46	An5265	1.30	bc303	0.26	B0×32	1.65	Buti2a	1.07	latia	0.35	MPSA56	0.11	STK437	7.96	ta7640AP	1.04	toazeo	1.24	tealo39	1.60		

USE YOUR ACCESS OR VISA

DECLARATION OF QUALITY

AS DISTRIBUTORS OF QUALITY VIDEO SPARES FOR THE LAST TEN YEARS, WE FULLY UNDERSTAND THE REQUIREMENTS OF THE REPAIR TRADE. THERE IS A CERTAIN QUALITY WHICH MUST BE MAINTAINED IN ORDER TO EXECUTE HONEST, RELIABLE REPAIRS. THEREFORE, WE GUARANTEE THAT ALL VIDEO SPARES SUPPLIED BY US ARE OF THE FINEST QUALITY AND WE CAN ASSURE YOU THAT ALL STOCKED ITEMS WILL BE DISPATCHED THE SAME DAY.

AIWA	Part No .	Price	3.	Par	Price	FVH-P722725		Tic	VT-16S	Par	4,		Pat No .	Price	NV-300333		${ }_{\text {Price }}$
Av-s6	WID	516.95	Wiowo He	VD 26	${ }^{\text {¢9. }}$.	\checkmark Video Hea	VID 2501	${ }_{3}^{19}$	Video	$\checkmark 10$	${ }^{3} 9.87$		V1	¢9. 81	\checkmark Viseo Hear	V40 21720	${ }_{58.65}^{59.95}$
	$\checkmark 175$	E3.87	3 OH Kit	V10 7543	¢0.99	Bet Kit	V10 7813	¢. 05	Bet Kt	V107538	${ }^{[1.23}$			¢. 05	Bell	1107521	
	V10 7519	${ }_{4} 1.32$	Fake Up Clurch	VD 1031	\%. 21	Grear Ifler	V10 1013	¢4.95	FFREW Idier Amm	Vo 1020	E1.73	Beth Kit	ViD 7543	¢9.99	Play Idile:	V0 1048	c7. 58
Idiler Replacement Set	VI 1001	£4.04	Take Up itler	VD 1038	¢. 56	\|oller	vio 1014	¢2.80	Cutarch Plats	VO 1211	¢9. 21	Take UD Clutch	V0 1031	9. 21		Vid 1057	c0.94
Idier	VID 1005	${ }^{51.81}$	Reel idies	vio 1039	£. 30	Loading Gear Set	VID 1230	c1. 65	Capstan Motor	VID 2147	E18.02	Take up idier	V0 1038	${ }^{51.56}$	Ifler Amm	V0 1220	${ }^{4.20}$
Capstan Motor	VID 2160	E24.27	Brake Pad	Vio 1361	c0.36	Casserte LED	VID 1981	${ }^{5} .48$	Cassette LEO	V10 1981	f1. 48	Reol liler	no 1039	¢. 30	Cam Gear	V0 1215	${ }^{51.08}$
	V10 1423	E3.54	Capstan Motor	vo 2165	¢2. 87	Tension Band	VIO 1376	9.10	Tension Band	VIO 1379	¢. 31	Brake Pac	VO 1361	m0. 36	Intermediate Gear	VID 1216	${ }^{1123}$
Rubbe		50.90	Loasing Motor	VID 2168	£9.30	Take UD Reel Table	V10 1295	\%7.83	Repait Kit	vol 7922	£16.50	Capstan Motor	V10 2165	E2. 87	Orinng Giear	VID 1217	£0.99
	V10 2637	£59.75	Fromt Loading Motor	V02168	¢9.30	Supily Reel Table	Vo 1294	¢5.77				Loasing Mo	VO 2168	${ }^{99} 30$	Reel Motor	ท12 2158	F18.95
			Cassere LED	V1 1981	¢1.48	FVH-P980KKY						Front Loading MC	V10	${ }^{89.30}$	Capstan	V0	39.43
Av. 7			Tension Band	Vi0 1389	¢1.73	Video harad	VII 2501	[24.43	VT-3330 Vheor Head	V10 2504	E19.94	Cassentil LED	V0 1981		Cassatt LEE	VID 1982 Vio 1399	${ }_{c}^{51.62}$
Video the	vo 2546	F16.95	Remote Control Repait Ki	1R9100 W07918	${ }_{\text {c71. }}^{\text {c18 }}$ (198	Pinch Foiler	V19 1818	${ }^{\text {F7. }}$. 510	Prich Rotiter	$V 101788$	¢.05	Repair kit	$\checkmark 107918$	fis. 09	Repair Kir	no 7903	\$10.42
Pinch Poiler	V10 1755		Mains Transtormer	vo 2223	£21.69	$\xrightarrow{\text { Betf } \mathrm{KH}}$ Idier	vo 1093	${ }_{51.20}$	${ }^{\text {Belf } \mathrm{Xt}}$	Vn 7538	${ }_{6}^{19.23}$	Mains Transtormer	V10 2223	[21.61	Take Up Reen Table	V10 1312	¢10.12
Ifher Replacement Ser	V10 1000	${ }_{\text {ç }}^{51.65}$	Take Up Reel Table			Cluth	VID 1094	E13.52	Cluach Plate		${ }_{\text {¢ }} .81$	Take Up Reeel Table					
FWO Limiter	VID 1002	${ }_{50.37}$	Ruboer Tyre	no 1080	¢0.66	Cassetta LED	V10 1981	\%1.48	Capstan Motor	VO2148	E18.02	Supobtree Ree	V1 1080	w. 86	Videot Head	V0 2526	£10.87
Idiet	V10 1004	E1.40	hubbe Tyre	V10 1080	m. 66	Tension Band	VIO 1377	${ }_{6} 810.97$	Cassete LED	Vo 1981	${ }^{51.48}$	Supuber Tyre	V10 1080	E0. 66	Prich Roller	V1 1757	$\underline{5} .21$
	V10 1005	f1.81	Cassefte Housing	vo 1099	¢20.61	Supot Real labe			Tenspon Band	V10 1379	$\underline{51.31}$	Cassette Housing	VD 1099	20.61	Beh Kit	1707530	${ }^{71.32}$
Capstan Motor	VO2118	${ }_{\text {¢78. }}^{\text {c. }} 5$	$3-v-57$			PUNA			Repair Kit	vio 7922	F18.50					V10 1052	${ }_{5}^{7} .98$
Tension Band	VIT 1423	946.43				VCR-4600	ทo 2676					matsut			Loading Gear	N01 1222	${ }^{\text {¢ }}$. 28
ctiont	Vu2so	\$46.43	Pirech Rol	VID 189	E3. 05	Pinch Roller	V10 175	${ }^{10} 9.05$	VT-61626364			$\mathrm{V} \times-850$			1 loleor	V10 vi371	E.9.94
			Sen Kh	vi 7540	50.66	Bet Kit	VID 7593	E1.73	Videc Haad	VID 2628	53.23	Phach Roller	VD 1815	25.19	Lumiter Roller	no 1440	${ }_{651.32}^{25}$
VSS9800			Cuich Mectrantsm	V0 1083	F14.56	Clutch	VID 1226	${ }^{\text {c4.32 }}$		Vio 1818	${ }_{\text {m. }}$	${ }_{\text {che }}^{\text {getikr }}$	VD 1316	\% \%. 47	Casseme EED	VD 1981	51. 48
Vieo Head	V102511	9.95	Capstan Motor	VID 2188	${ }_{\text {¢ }}$ ¢4. 62.6	Gear Holder	Mo no 1237	${ }_{\text {¢ }}^{511.70}$	FFTgew Idier ATm	VID 1020	E1.73	Idter	V10 1317	¢3.54	Tension B	$V 101400$	$\underline{3} .55$
Phich Roller	VD1756	$\underline{8} .95$	Front Loading	V10 2168	${ }^{\text {¢.3 }} 3$	Cassette LED	V10 1981	${ }_{51.48}$	Cutht Plate	VID 1211	¢9.81	Cassere LED	V10 1981	${ }^{51.48}$	Repartir		¢8. 92
	V07506	${ }^{971.56}$	Cassette LED	VID 1981	${ }^{\text {c1. }} 48$	VCR-5843			Capstan Motor	V102154	${ }^{516.08}$				VR-6540		
Teme	VID 1025		Tenslon Band	VID 1388	E7.06	Video hard	V02708	E24.31	Teassente tand	V10 1379	${ }_{\text {m }}$	MITSUBISHi			Video head	V0 2353	519.61
Unloading licier	V1 1027	59.30	Cassente Housing	V1 1315	${ }_{\text {2 }}^{12.61}$	Plinct Roller	V10 1758	${ }^{(1.05}$	Repal Kit	vo 7924	\$16.55	Vricoc head	VD 2606	71.56	Bedt Kt	107547	${ }^{5.19}$
FF Rubber Tyre	MD 1029	50.78				\|raler	V10 1364					Pinch Roller	V1D 1808	¢3.05		V0 1050	51.99
FF Rubber Tyre	VID 1030	£0.82	VVideo Head	ท10 2580	¢25.68	Cassette LED	ท0 9981	51.48	vt-80008500			Ben Kt	V10 7542	${ }^{15} .58$	Master Cam	NO 1265	${ }_{\text {che }}^{5} 5$
ubber Tyre	VIO 1207	50.90	Pinch Roller		f11.25	G			Video H	V10 2509	75.96		V10 1040	¢0.74	${ }^{\text {Red }}$ Leadmator Motor	V10 2142	${ }_{\text {¢14, }}$
Capstan Motor	V10 2119	${ }_{542} 8.31$	Befll KH	Mop 764	$\mathrm{E}_{5} \mathrm{~F} .72$	V.4004			Prnch Rolt	vir 7803	${ }_{0}^{0.99}$	Capstan Rubber tyre	VD 1264	51.32	Cassette LED	VID 1981	${ }^{\text {cx. }} 48$
Cassette Lamp	VI 1943	${ }^{\text {co }}$ ¢ 35	Ioter Amm	V02193	£15.04	Pinch Ropler	V1D 1788	${ }^{\text {8 }}$	Take Up Ider	V10 1015	${ }^{23} 36$	Cam Gear A	V11274	51.20	Tension Band	VID 1420	¢5.10
Tension Baand	VD 1391	¢. 54	Capstan Moror	VID 2190	¢25.53	Bet Kit	VID 7538	E1.23	Whad Roter	Vo 1016	${ }^{\text {cx. }}$ (85	Cam Gara	VD 1276	\%1.27			
	VID 7911	E15.45	Loading Motor	Wo 2942	¢6. 18	FEFREW Arm	VID 1020	${ }^{\text {¢1.73 }}$	HFAmstan Motor	$\checkmark 10215$	¢50. 50	Gear 1	v0 127	¢1.27	DV-761		
Take Up Rutboes Tyre	V01028	t0. 0	Front Loading	VIO 2412	${ }^{\text {c8. } 18}$	Cluturn Prate	No 1211	${ }^{59.81}$	Tension Band	V10 1381	${ }_{\text {ci } 1.98}$	Cassette LEO	VID 1981	${ }^{\text {f1. } 46}$	Vheo Head	V10 2621	2. 18
			Cassetra -ED	VID 1388	${ }_{\text {¢1. }}^{1.45}$	Castan Moto	V10 1981	${ }^{518.48}$	Remote Control	IR 9097	\$12.63	Tension B	ทo 1393	${ }^{[155}$	Prach Rofier	M10 7888	${ }_{8}^{77.00}$
Alba			Repair KTt	V10 7921	£14.16	Tension Bard	ViO 1379	\% 31	Repair Kit	V10 928	¢15.49	Take Up Reel Table	VID 1299	${ }_{\square}^{8.92}$		V0 1252	${ }_{¢}^{15.59}$
$\mathrm{VCR}-40$			Rop	,		Reoair Kit	v07922	\$16.50	Taka up Reel Table	VO 1302	1.47	Supply Peol Tab			Loading Gear	401253	${ }_{\text {cx. }}$
Pinch Roller	V01787	E. 63	FV-12L	V0 2581	¢7.81	goldstah			Suppy Reeita	viO 1300	50.74				Modification S	No 1254	10.35
Bot Kit	V10 7596	${ }^{\text {m }}$. 83	Primet Roller	ท10 1817	£11.25	GHV-800002	08215					Video Head	vo 2607	42	Tension fand	NO 1431	£4.27
	V10 1049	${ }_{\text {c }}$	Bett Kt	VID 7564	8. 72	Preat Roitiel	V107585	¢7. 32				Pinch Roller	Vio 1808	3.			
Cassone LED	no 1981	¢1. 48	lotare Aim	VID 1091	${ }^{525}$	befler	V10 1052	\% 9.98	VT.9300950099700	V10 2509	15.96	Belt Kit	vo 7559	5.85	VR-20003800		
Tension Band	V11399	. 6	Reel Motor	V10 2193 VID 2190	${ }_{\text {Ef5 }}^{515.53}$	Bracket Centre	VO 1223	$\underline{25.81}$	Pnich Roller	V10 1788	23. 05		V10 1080	cm.	aller	V10 1815	28.19
			Lasding Motor	V1D 2412	¢6. 18	Cluth Gear	V0 1228	¢ 2.22	Beit Kit	V0 7802	c. 90	Capstan Rubber fyte	vo 1264	¢1.32	Beet Kt	V10 7565	${ }^{\text {¢ }}$ ¢ 1.07
${ }^{\text {amstrad }}$			Fremt Loading Motor	Vio 2412	E8.18	Uminer Rother	ViO 1440	ci.32	FFREW Idier Aft	V0 1019	8.88	Cam Grar A	V10 1274	51.20	Real	$\checkmark 1021$	E14.24
Vioce Heal	no	¢20.94	Casserte LEO	VD 1981 VID 1386	${ }^{\text {c1. }}$ C185	Cassention land	vo 1399	${ }_{6}^{1.48}$	${ }^{\text {Papay }}$ Idilea	V10 1272	${ }_{\text {¢1. }}^{1.7}$	Gear 2	V10 1275	${ }^{1.20}$	Cassette LED	V10 1981	E1.48
Phen Ront			Tenston Band		\$14.16	VCP. 41004130			Capstan Moto	vo 2156	¢57.81	mgea	V0 1278	${ }^{9} .27$			
Beth Kit	N0 7593	${ }^{\text {c1.73 }}$	Repair kr	,	玉14.10				Cassente Lan	V10 1951	¢0.90	Gear	W0 1981	${ }^{5} .48$	SALORA		
	no 1226	${ }_{5}^{54.32}$	PIDELTTY			Prach Rotiter	V0 1815	¢5. 19	Tension Band	VIO 1382	¢1.80	Tension Ba	V10 1393	c. 35	SVinct		
	VIO 1231	${ }_{\text {E6. }}$ ¢2	VCA-100 Vheo Head			Bath Kh	N07585	¢1.32	Remote Cont Pepait Ki	$1 R 9096$ n 07927	${ }_{\text {¢14 }} 14.92$	Taxe Up Reed Table	VID 1307	$\underline{9} .92$	Beft Kit	V10 7600	¢. 13
Cassete LED	VID $198:$	¢1.48	Pnch Roller	101758	E. 05		VDO 1223		Take Up Reet Table	V10 1303	¢8.32	Supoty Reel Tabte	V10 1299	$\underline{2} .70$	FEREW Idler Arm	VIO 1233	98.97
			Bet Kn	V10 7593	[1.73	${ }^{\text {Eracxet Cemin }}$	V01228	2.22							Etarew idier A	N0 1234	9.95
VCR-9000			Chitan	V10 1226	${ }_{51}^{51.32}$	Uliner Roller	v10 1440	51.32	ITT			$\underset{\sim}{\text { NEPC }}$			FFPREW Iditer	VO 1235	¢1.12
video Head	Yo 2502	515.45	Gear Hochar	vio 1227	${ }_{\text {¢ }}^{\text {E1. } 51.70}$	Cassetite LEO	NO 1981	${ }_{5}^{51.48}$	VF-3913			Video Head	VID 2647	c9. 81	Tension land	V10 1394	9.92
Pinct Ratler	V10 17598	¢7.15	Cassette Leo	vio 9981	51.48	Tension Banc	v10 399	9. 64	V Viseo Head	V10 2511	${ }^{59.95}$	Phich Ro	Viticis	${ }^{30.06}$	Taxe Uo Heel Trable	NO 1308	${ }^{\text {ci }}$
8 F Clutch	not 1225	¢3. 82	finlux			Vbeo Hoa	VD	¢63.81	Pelt Kt	V10 7812	${ }_{\text {¢ }}$		VIO VIO 1033	${ }_{50.21}^{50.99}$	Supphy Reel Ta	N0 1305	
	V10 1225	54.32	VA-1030			Pinch Rolier	VID 1815	¢5. 19	Reeel diller	MD 1036	92. 80	Take Ui ifilier	V10 1038	¢1.56	SAMSUNG		
Garar Hodeer	V01227	f1. 70	Viseo Head	H0 2558	£42.99	Rew Bert	no 7234	¢0. 37	Take Up Clutch	V10 1037	£1.05	Freol itier	V10 1039	¢3.30	V15105208118166		
Cassomit Leo	vid 1381	¢1.48	Pinch Roller	H0 1803	c4.12	Casseme LED	VO 1981	51.48	Take Up Ifler	V10 1038	E1.56	Brake Pad	V10 1361	¢0.36	Vioeo Haad	V0 2648	823.80
				V10 1006	${ }_{\text {c. }}^{5180}$	granada			Brake Pad	V1 1361	£0.36	Capstan Moter	v10 2165	${ }^{22} 87$	Pinch Roller	V 11818	¢5. 19
bang a olufsen			Tension Band	VID 1432	${ }_{\text {c5 }}^{\text {c. }} 178$	VHS-EYTEY			Reel Motor	YO 2169	${ }^{578} 12$	Loading Motor	VID 2168	${ }^{\text {c93 }} 30$	Betr	V07598	¢71.73
VHS-65			Remote Control	189034 VII 7930	${ }_{\text {¢13 }}$	\checkmark Vimoc Head	V12539	516.35	Capstan Motor	V10 2164	${ }^{\text {E7 }}$.18	Front Loading Motor	V 21268	${ }^{\text {c. }}$ 90 30	idier	V10 1232	${ }_{981.48}^{51.48}$
vioe thead	V10 2506	518.08	Repat kt		.76	Pinch Roder	YO 1822	9.21	Loading Motor	V10 2168 Vo 1947	¢0. ${ }^{\text {c. }} 3$	Casserte LED	VID 1981 VID 1399	${ }_{c}^{\text {c. } 1.78}$	${ }_{\text {cheel }}$	- V V12467	E15.40
Pnct Rotler	V0 4788	${ }^{53.05}$	-2010			Belt Kit	V10 1255		Tension Eand	V10 1389	${ }_{\text {c1. }}^{173}$		V107918	¢18.09	Capstan Motor	V10 2409	${ }_{53} 5.00$
Fmewl Idied Amm	Y0 0220	${ }_{\text {¢ }}^{\text {¢ }}$. 73	Voro Hear Pinct Roiler	V1D 1827	${ }^{58.00}$	Loading Gear A	VID 1268	\% 712	Repair KH	V107913	518.95	Mains Transtormer	N0 2223	E21.61	Loading Motor	ND 2142	E14.35
Clutch Plast	WD 1211	¢9.81	Beet KHt	417538	¢1.5	Loading Gear B	VID 1271	[1.20	Taxa Up Reel Table			Take Up Reel Table			Cassente Leo	vo 1981	1.48
Capstan Motor	Vo 2147	£12.02	1 loter	W10 1252	E.97	Capstan Moior	V10 2404	${ }^{59} 9.37$	Rubber Tyre	10 1080	20.86	Rubber Tyre	V10 1080	f0.66	vx-710720730		
Casserte LeO	no 1981	5.48	Loading Geas	V10 1253	98.37	Cension zand	VO 1414	\%	hubber Tyre	V10 1080	20.66	Rubber			deen tha	V02648	${ }^{23} 80$
			Modificarlion S	VD 1254	${ }_{\text {E }}^{\text {E } 0.35}$	Grundig						Cassette Housing	N0 1099	220.61	Pinch Fol	VID 1759	${ }_{8.12}^{8.05}$
VECCA			Remore Contro	! 19034	513.46	MVS 400			VR-3993						Cassefte LED	vo 1981	¢1.48
Video Head	no 2511	${ }^{59.95}$	FISHEA			Video Hear	V10 2596	${ }^{116.62}$	Vibech had	VIL 2647	${ }^{58.015}$	N-895					
Pimat P	V10 181818	${ }_{6}^{63.05}$	FVHPS520			Bet kt	v0 7567	${ }_{\text {cki }}^{61.87}$	Phench Ro	no 7523	${ }_{5}^{13.3}$	Vhaoch heas	${ }^{1} 101813$	${ }_{53}{ }^{4.05}$	SANYO VHR-1100 EXEEG		
Reel lider	V10 1036	12.80	\checkmark Viteo hrad	V10 1788	${ }_{¢ 81.95}^{121.05}$		V0 1052	f1.98	Reeil idier	V10 1036	52.80	Beth Kit	V107540	m0.66	Vireo Haad	V10 2583	525.66
Tale Up Cututh	no 1037	${ }^{\text {c3. }} \mathbf{5}$	Beth Kit	$\checkmark 107532$	\%1.89	Loading Gear	V10 1228	${ }_{272}$	Take Us Clutch	V10 1037	c. ${ }^{\text {ci. }} 5$	Cuisth Mecthanis Capstan Motor	VID 1082	${ }_{5}^{515.37}$	Primh Roller	VD 1787	\% 5.63
Take ${ }^{\text {crake p pod }}$	V10 13038	${ }_{50.36}$	Takk Up idiler	VIO 1015	${ }_{\text {c/ }}^{5 \times 36}$	Limiter Rotler	V0 1440	\%1.32	Roller Bar	V10 1363	${ }^{51.86}$	Loading Motor	V10 2167	E13.69	Reel Oivive Roller	V10 1076	E6. 27
Reot Motor	V12169	[28.12		vo 1023	${ }_{5}^{50.85}$	Cassetie Leo	VV 1981	ㄷ.148	Brake Pad	VID 1361	$\mathrm{cc}^{\text {c }}$. 36	Front Laading Motor	Vio 2158	c9.38	Reet Moto	VD 2198	E13.04
Capstan Motor	V10 2164	E37.18	Tersisen Band	H0 1378	5.31	Renstere Controt	${ }_{\text {IR } 54005}$	¢20.56	Reel Metor	V02 2159 no 2167		Cassetta LEO	$\begin{array}{r}101981 \\ \hline 10137\end{array}$	${ }_{51.25}$	Teassetio Leo	V0 1981	¢1.48
Loading Motor	VD 2168	${ }_{\text {c. }}^{59.3}$	Takn Up Real Tab			vS-520 GB			Loadina Moter	VID 2168	¢9.30	Remote Comtrol	1R8947	[22.37	Tension band		
Tension Band	YD 1389	¢1.73	Ruober lyre	vo 1293	E0.66	Viteo Hoad	VD 2595		Front Loading Motor	V10 2168	¢9.30	Repair Kit	VID 7919	E22.18	VHP-1500 EX		
Repair Kit	V1D 7913	¢18.95	Supoly Reer 7 ald	V10 1293	50.66	Pmot Roller	V0 1821	¢12.12	Cassetie Lamp	V10 91946	${ }^{\text {¢0. }}$ ¢ 9	Casserte Housing	VIO 1315	E20. 61	V Vise hirad	V0 2585	${ }^{466.97}$
Taxe Up Reel Tzble						Inming Beft	VD 1482	¢7.20	Tension Band	VID 1389	${ }_{20} 9.34$				Prnct Roll	$\checkmark 107558$	${ }_{\text {E. }}^{6} \times 19$
Rubbose Tree	VID 1080	66	FV\%-P530	VD2500	521.95	Centre Pulley	V10 1482 VO 1981	¢7.20		V0 7914		${ }^{\mathrm{N}} \mathrm{P} 90139014903390$	34		Betheitivive Rolter	V10 1076	${ }^{26} 9.27$
Rubber Tyre	V10 1080	¢0.66	Pinch Roiler	VID 1783	${ }^{93} .05$	Tension Eand	vo 1401	${ }_{53} 37$	Rubber Tyre	V10 1080	¢0.66	Video Heax	V10 2695	E21.	Reel Motor	VO 2198	E13.04
			berk	V107532	¢1. 89	himafi			pody Reel Tah			Phach Rotler	V0 1828	¢8.00	Cassefte LLo	V10 1981	${ }^{51.48}$
ferguson			Take Up ldier	VID 1015	¢0. ${ }_{\text {¢ }}$	VLL-30354			Aubber Tyre	vio 1080	¢0.66	${ }^{\text {Brank Kin }}$	VO 7601	${ }_{\text {cex }}$ ¢3.13	rension Band	vio 1911	8.40
3-v-30			ldies	no 1023	${ }_{5}$	Vidso head	V0 2519						VII 1989	${ }_{\text {¢1. }}^{68}$	VTC-M10112021		
Vithoo Head	Y0 2647	${ }_{6.05}^{89.61}$	Tension Band	V10 1378	¢2.31		vio 7566	${ }^{21} 31$	${ }_{\text {NR - }}^{\text {N300 }}$						video Head Pinch Roiller	V12 2530 V17 1788	${ }_{53.05}^{53.75}$
Bath Kh	vio 7812	${ }_{81.07}$	Taka Up Ret Tabe	VID 1293	50.66			${ }_{\text {c. }}^{\text {c. }}$. 57	$V \mathrm{~V}$ deo heas	V10 2511	${ }^{\text {c9.95 }}$	PANASONIC			Seft kh	V107809	20.45
Reet Idler	VD 1036	¢2.80					vil 2167	${ }_{\text {¢31.69 }}^{\text {E. }}$	Pinch Rother	V10 1756	9.95	NV. 20002010			hael Orive Puillay	V1 1079	¢5.94
Take Up Clutch	V10 1037 vo 1038	${ }_{\text {c }}^{83.05}$	Rubber Tyre	V10 1293	50.66	Coasing motor	V10 1981	${ }_{\text {¢1.48 }}$		VID 7506 V10 1025	${ }_{c}^{\text {c1. }} 1.65$	Viveo Haad Pinch Roller	V10 2520	${ }_{50.21}{ }^{9.81}$		V11219 V02179	¢77.39
Take up lider	Vio 13361	${ }_{\text {¢1. }}$	FVH-P720720K721			HITACHI			REW idilet	VID 1025	${ }_{4} 4.65$		V107800	E1.73		V02179	${ }_{\text {¢17 }}^{\text {57 }}$
Reel Motor	V10 2169	[188.12	Иoeo Meas	VID 2500	c21.95	VT-11			Undoacing ditier	V10 102	${ }^{\text {c9. }} 30$	faler	VID 1054		Supply Real Tatue	Vo 1319	¢8. 62
Capstan Motor	VD 2164	¢77. 10	Pinch Rother	VID 1810	${ }^{13.63}$	Vibeo Head	ทD 2504	519.94	FF Rubber Tyre	V10 1029	m0.78	ldior	VID 1055	${ }^{60.85}$			
Loading Mot	vio 2168	${ }^{59} .30$	Bet Kh	VID 7532	¢5. 89	Pinch Rother	V10 1788	${ }^{53.05}$	Uniloating			Camge	VD 1221	¢7.12	SENTRA		
cassette Lame	VID 1947	c0.42	Gear ther	Vo 1013	8.95	Benk Kit	VD 7538	${ }^{\text {c1.23 }}$	Rubber Tyre	N0 1207	w0.90	Intermediale Gea	V10 1216	${ }^{\text {¢1.23 }}$	X-500080		
Tonsion Band	V10 1389	E1.73	lider	Vo 1014	${ }^{72.80}$	Hfrew Iller Amm	no 1020	${ }^{81.73}$	Capstan Mot	V10 2119	${ }^{442.31}$	Orunip Ge	Vid 1217	c0.99	video Head	V0 2713	${ }^{73} 78$
Repair Kit	VIO 7913	E18.95	Laading Gaar Set	VIO 1230	C1.65	Clusch Plate	V0 1211	${ }_{\text {cis }}$	Crum motor	V10 1294	${ }_{\text {cticle }}$	Cossetie Lamp	V11939	${ }_{90.38}$	Pingt Roller	V10 7596	${ }_{6.153}$
Tame Up Reel Ta	VID 1030	51.66	Tension Eand	VID 1376	${ }_{\text {c. }}^{10}$	${ }_{\text {Cassente LeO }}$	VD 1981	¢1.48	Tension fland	V10 1391	¢9.5	Repair Kıt	VID 7901	119,35	Idaler	V0 1049	84.05
Supbly Reer Tratab			Take Up Reel Table	VD 1295	¢7.83	Tension Eand	Vi0 1379	¢2.31	Aepair Kit	V107911	f15.45	Take Up Reen Table	VD 1312	\$10. 12	Cassent LEO	V0 1981	7. 4.4
Rubbee Tyre	VID 1090	50.68	Supply Ree Tate	V10 1294	£. 7	Repair Kit	vio 7922	f16.50	Take Up Rubber Tyre	V10 1028	50.75	Supoly Reel Table	vio 1310	89.62	Tension Band	V10 1399	¢2. 64

[^0]
TRADE ONLY
MAGNETRONS • DIODES • TRANSFORMERS
LAMPS • FUSES • MICROSWITCHES
PHONE NOW FOR PRICE LIST
A.W.I. MICROWAVE OVEN COMPONENTS
Samuel Whites Estate, Medina Road,
Cowes, Isle of Wight PO31 7LP
Telephone: 0983 296121
Fax: 0983 296122

BRITAMYSLAREEST NDOEPENOENT

PRESTON
439 Oakshott Place, Walton Summit Ind. Estate

Preston (M6 Junc. 29)
Tel: 0772-312101

CARDIFF
Unit J7,
Colchester Trading Estate Colchester Avenue Cardiff CF3 7AP
Tel: 0222-471485

TV \& VIDEO WHOLESALERS

LONDON
The Royal London Estate, Unit 2, 29-35 North Acton Rd London NW10
Tel: 081-961 5005
(ALL PRICES SUBJECT TO VAT)

> WE ARE OPENING A NEW WAREHOUSE IN SOUTHAMPTON, SO WATCH THIS SPACE FOR MORE DETAILS, TOGETHER WITH SPECIAL OPENING OFFERS

CALL IN AT YOUR LOCAL BRANCH TODAY AND SEE OUR RANGE OF EX-RENTAL AND B GRADE STOCK

WILTSGROVE LTD.

 THE ENGINEER'S CHOICETECHNICAL SALES PEOPLE \square
FAST DELIVERY SERVICE \square
VIDEO HEADS ${ }^{\square}$
BELT KITS \downarrow
IDLERS
CLUTCHES \checkmark
PINCH ROLLERS ${ }^{\square}$
CASSETTE HOUSINGS \square
MAINTENANCE KITS \square
VIDEO MOTORS \square

MIXER BOOSTERS \square
COSMETIC TRIMS \square
REMOTE CONTROLS \square
SERVICE MANUALS \checkmark
LINE OUTPUT TRANSFORMERS \square

TRIPLERS \square
MAINS SWITCHES \square
SERVICE AIDS ${ }^{\square}$
SOLDERING EQUIPMENT \checkmark
OPEN 6 DAYS A WEEK \downarrow
EX-RENTAL ‘B’ GRADE AND NEW TV'S AND VIDEOS ALWAYS IN STOCK ${ }^{\square}$

PHONE NOW FOR FREE COLOUR VIDEO HEAD BROCHURE AND PRICE LIST

NOW IN STOCK BRAND NEW 14" R/C TV ON-SCREEN DISPLAY
1,30, 60, 90 MINUTE OFF-TIMER VHF/UHF
30 CHANNEL SYNTHESISED TUNING
PHONE NOW FOR DETAILS

> STOCK SUBJECT TO AVAILABILITY. ALL PRICES SUBJECT TO VAT PLUS CARRIAGE

GIVE US A RING OR CALL IN 2A BARTON HILL ROAD, TORQUAY, DEVON
TEL: 0803312222 FAX: 326767

West Midlands T.V. \& Video Wholesale

Have now moved to their new warehouse SPECIAL OPENING OFFERS NOW on full range of ex-rental TVs and Videos, working and un-tested
JUST ARRIVED NEW B-GRADE SAMSUNG
LONG PLAY VIDEOS ONLY £129
20" TELETEXT TVs $139 \quad 14^{\prime \prime}$ RC PORTABLES £95
MICROWA VE OVENS FROM £55
AND FULL RANGE OF MIIDI HI-FI RADIO CASSETTE CDS IN STOCK
ALL TESTED AND BOXED
GOOD AS NEW WITH INSTRUCTION BOOKS

1/2 mile of Junction 10 M 6 .
Easy Parking facilities.
UNIT 3, BENTLEY LANE INDUSTRIAL PARK BENTLEY LANE
WALSALL WS2 8TL
Tel: 0922724542
Fax: 0922722208
OPEN: Monday to Friday, 9-6pm

Saturday, $9-2 \mathrm{pm}$. Sunday by appointment

TV WHOLESALE

NEW FOR EAST ANGLIA

Save time and travelling costs

EX RENTAL TV'S \& VCRS

Most makes available
Best possible prices

ANGLIAN T.V. WHOLESALE

Rashes Green Industrial Estate
Dereham, Norfolk.
Telephone: (0362) 691611
PLEASE NOTE: ADVERT APPEARING INFEBRUARY ISSUE OF TELEVISION SHOWED INCORRECT TELEPHONE NUMBER: OUR CORRECT NUMBER IS SHOWN ABOVE.

Devon Tv $\&$ Video

UNIT 7, ANCHOR BUILDING, BATTLE ROAD, HEATHFIELD IND. EST., NEWTON ABBOT PHONE 0626835900

REGULAR QUANTITY OF FST WORKING STOCK, TOSHIBA, SANYO, GRUNDIG, JVC, PHILIPS ETC. FROM £75, ALL CLEAN, TIDY STOCK.

A TRADE WAREHOUSE WITH CLEAN STOCK, SENSIBLE PRICES, FRIENDLY, HELPFUL SERVICE ANDIT'S RIGHT NEXT TO THE MAIN A38 AT HEATHFIELD INDUSTRIAL ESTATE.

LESS TRAVELLING TIME MEANS MORE SELLING TIME FOR YOU! POP IN AND SEE US - YOU WON'TBE DISAPPOINTED!

ELECTRONICS WORLD

+ WIRELESS WORLD

SIX PAGES OF ELECTRONIC CIRCUIT DESIGN EVERY MONTH

Subscribe today and save $£ 10$

Simply phone our credit card hotline on 0789200255 for a special subscription price of £20 for 12 issues*.

$<_{1} i^{2}{ }^{2}$
 BESCOLTD EX-RENTAL TV's \& VIDEOS

Huge selections. Complete range. All makes and models available. \star New Stocks Every Day \star VHS Video from £30 Television from £3
PICK YOUR OWN VHS VIDEOS Lots of $10 £ 20.00$ each (mostly complete) Working Ex-Equipment Panels

IF	Converger	Decoder	Line Scan	Power	Frame
T20//22X	5	14	18	17	14
T26 X	5	16	20	17	X
Philips G11 14.505	12	20	20	11.50	

All prices include F ostage \& Packing. But + VAT \star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK \star

BRADFORD

Springmill St
Manchester Rd, BD5 7RL
Ring Tony (0274) 308186

MANCHESTER

Unit 3, Mersey Rd. North Ind Est., Failsworth
Ring David (061) 6834612

Prices are Plus VAT \& Based on Quanlity
OPEN 6 DAYS 9:5

Humen

LIMITED

BRANDN:WNHKAASTOCK in stock now

VCR SPMP From $£ 165.00$
25", 28" FST Nicam Fast Text POA
14" Portable, Remote POA
$10^{\prime \prime}$ Colour Main/Battery, Remote POA
NIKKAI MULTISYSTEM TV IN STOCK$14^{\prime \prime}, 20^{\prime \prime}, 21^{\prime \prime}$ FST (VHF/UHF) PAL, Secam, NTSC
AMSTRAD DD8900 Double Deck $\Sigma 279.00$
AMSTRAD STV20 CTV with Stereo Satellite Receiver and Decoder $\varepsilon 279.00$
NEW (B) GRADED FERGISONSTOAK
NEW 59P7 FAST TEXTPOA
POA
41P3 FAST TEXT
POA
POA
68K4BQ FAST TEXT WITH NICAM
68K4BQ FAST TEXT WITH NICAM POA
59L5Q Nicam Fast Tex
59L5Q Nicam Fast Tex
EXCELLENT RANGE OF EX-RENTAL
TVs \& VCRs THORN

THORN TX9 Basic THORN TX9 R/C. THORN TX9 Text THORN TX10-Basic THORN TX10 R/C THORN TX10 Text THORN TX10 Stereo/Text THORN FST Basic. THORN FST Basic R/C THORN FST Text

.POA THORN 8940 (3V9) (Stere0) ..POA

.POA THORN 8944 (3V35) .. POA
POA THORN 8945 ...
POA THORN 8947 .. POA
.POA

NON-THORN VCRs FROM £35.00
FRESH STOGK ARRIVING DALLY - RING FOR UPDATE ON STOGK

PORTABLES $*$ LATE FST IN STOCK $*$ TOO MANY TO LST

LARCE STOGKS ALWAYS AVAILABLE

Brand New Handsets for TVs \& Videos from only $\mathbf{8 7 . 5 0}$
\star ALL PRICES ARE SUBJECT TO VAT * (OFFERS APPLY WHILE STOCKS LAST) *
OPEN MON.-FRI. 9 a.m. -5.30 p.m. SAT. 9 a.m. -1.00 p.m.
WHY TRAVEL THE WHOLE COUNTRY? RING AFF OR AMIW NOW ON DIRECT LWE TO TV WAREHOUSE LEEDS (O532) 444200 FAX: (O532) 425777 MOBILE PHONE - 0850326866 - 24HRS

EXPORT ENQUIRIES WELCOME sup룰15101

TV WHOLESALE

CAR RADIO CASSETTES

Do you turn away work on car radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the Eeprom (Memory IC) with that of a known code, or sending the original for re-coding.
All popular makes including Philips, Ford, Pioneer, Clarion, Grundig, Blaupunkt, Fisher, JVC, Alpine, Volvo, etc.
Send now for introductory offer, one of each of most popular Eeproms + comprehensive
Eeprom/radio decoding list.
Eeprom Re-Coding Service £10.00 inc of VAT and p\&p Radio's Sent for Decoding £20.00 inc of VAT and p\&p
For Technical or General Information phone 0543572523 or 0831806574. Ask for Colin Humphries
C.D.H. Electronics, 3 Common Walk, Huntington,
Cannock, Staffs WS12 4NB
C.D.H. ELECTRONICS

CREWE

WHOLESALE TV LTD.

UNIT 1
OUR SPECIALITY IS SUPPLYING TRADE CUSTOMERS WITH TOP NAME WORKING TV'S AND VIDEOS. OUR LARGE SELECTION OF EXRENTAL TV'S \& VIDEOS ARE OF EXCELLENT QUALITY. WITH DISCOUNT FOR QUANTITY, YOU WILL FIND OUR KEEN PRICES HARD TO BEAT WE HAVE NEW STOCK ARRIVING EVERY WEEK RING NOW FOR A PRICE LIST. WITH OUR FRIENDLY STAFF AND PERSONAL SERVICE, YOU CAN'T MISS THE CHANCE TO COME AND SEE FOR YOURSELVES.
TEL: 0270582924
WILLIAM STREET CREWE, CHESHIRE
UNIT 2
WHY NOT COME AND SEE OUR EXCELLENT SELECTION OF UNTESTED TOP NAME, TV'S AND VIDEOS. NEW STOCK ARRIVING EVERY WEEK. COMPETITIVE PRICES AND DISCOUNT FOR QUANTITY. PHONE NOW FOR CURRENT STOCK LIST, AND PRICES.
TEL: 025464489
SCHOOL LANE GUIDE, BLACKBURN
DELIVERIES CAN BE ARRANGED

AERIALS
FOR TV \& FM RADIO, PLUS 1000's OF MASTS,
BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK

WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK

MAIN DISTRIBUTORS

FOR ANTIFERENCE,
LABGEAR, WOLSEY
FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE
CDASTIALL AIEIRIIAL SUIDIDIUIIES
UNIT X2 Rudford Industrial Estate Ford, Arundel

no minimum order value
NEXT DAY DELIVERY ACROSS UK HHawch
CARRIAGE FREE ON ORDERS $5100+$

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY T.V.'s from £3.00

Videos from £30.00
Prices Ex-VAT
Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9aB Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.

> 02993-796420r 79643 FAX: 0299827984

INTEGRAL CIRCUITS

For

- Simple installation-fully assembled and pre-aligned circuits
- Personality modules for individual TV sets, when required.
- Full fitting instructions-plus technical support, if needed.
- Twelve months warranty for components.
- Can be fitted to many VCRs.
- Suitable for Scandinavian PAL B.
- Immediate despatch from stock.
- Trade Prices: 1 off £78.00, 5 off £68.00, 10 off £65.00, plus VAT.

UNIT 2,
TONBRIDGE WORKS TONBRIDGE ROAD, HAROLD HILL, ROMFORD, ESSEX RM3 8XJ Telephone: 0402381863 Fax: 0402381243

C. T. V.
 UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829/0860-809673 (24 HR)

SUPPLIERS OF HIGH QUALITY EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE ALL AT COMPETITIVE PRICES
Also available: ‘B’ Grade Products, Audio, Microwaves and Complete Range of Televisions and Videos OPEN: MON-FRI - 9.30-5.30

$$
\begin{aligned}
& \text { \% = 0299-251522 } \\
& \text { 0836-585829/0860-809673 (24 ні) } \\
& \text { Fax: 0299-251543 } \\
& \text { EXPORT ENQURIES WELCOME }
\end{aligned}
$$

	SEMPLE SERVICE 15 REGAL ROAD WEASENHAM LANE PE3O 2RQ	

VISIONS • LONDON

Suppliers of THORN ex-rental TVs and Videos Working or Off-the-pile Unit 4, Rainstar Ind. Estate, Eley Estate, Nobel Rd, Edmonton N18 0AA (just off the A406)

Phone Now!! 081-807 7476/7579

9-5.30 MON to FRI - $9-1$ SATURDAY

ENQUIRIES: Fax 081-345 6597

Tw
ELectaonice ELECTRONIC
Main Distributor in London open sundars by appointment only

APPROVED THORN TELEPRIGE DISTRHBUTOR

STCLEMENTS
 TV Wholesale

Most makes ex rental T.V.s and videos

BEST POSSIBLE PRICES

New stock arriving weekly.
30 Minutes from
Peterborough, Cambridge and Bedford.

RING
 048052539

 142 HIGH ST, HUNTINGDON, CAMBS.TOP CLASS PANASONIC WORKING TV \& VIDEO
$+$ GOOD CHEAP STOCK
"OFF THE VAN"
Good Selection of Makes
Tom Poole or Brian Ricketts
061-273 2854/274 3409
REPO DAISY WORKS, 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER

[LASSIFIED CLASSIFIED CLASSIFIED CLASSIFIEDCLRSSIFIED

TELEUTEIOCLIA5SIFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cm). Classified advertisements 70 p per word (minimum £12), box number $£ 4.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing Group. Advertisements, together with remittance, should be sent to the Television Classified Room L327, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

LINEAGE

AVO MULTIMETER MODEL 8, £45.00. 500 volt megers $£ 30.00$. Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments \& Scopes etc. A.C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 0532496148.
C.R.T. for oscilloscopes, monitors etc. Regret no domestic TV types. Possilly biggest stock of scope type in England! Big stocks of DG7-5/6/32. M31-184W. Billington Export. Unit F2 Oakendene Industrial Estate. Near Horsham, West Sussex RH13 8AZ. Callers strictly by appointment only. Phone 04013 865105, Fax 0403856106 . Telex 92,3492 TRA G
WANTED: KT66, KT88, PX4, PX25 transistors etc. If possibie send a written list. Prompt reply and payment. Billington Export. Unit F2 Oakendene Ind Est, Near Horsham, West Sussex RH1.3 8AZ. Callers strictly by appointment only. Phone 14403 865105. Fax 14413 856106. Telex 923492 TRA G

OCHRE MILL TECHNICAL SERVICES, Grundig TV spares for most models to 1985 , fast, friendly, helpful, sensible prices. Gr Lype Farm, Charlton, Nr. Malmesbury, Wilts SN16 9DR. Tel. 0666823228.

VALVES, HL GE STOCKS, eredit cards accepted. Ful 45 page salve catalogue now ivailiable $£ 2.00$ post paid VNC. 20 a Cossham Strect. Mangotsfield, Bristol BSI7 3EN. Tefephone: 1272565472 (24 hours). Fax: 0272 575442 (24 hours)
TELEVISION MAGAZINES for sale. All copies from 1981 to 1991 present except some pre 1985 copies missing. $£ 120+$ postage. Tel. (0924) 4611888.
FOR SALE: Television Video Repair Business. Established five years. Large customer base. Edinburgh area. Huge collection service manuals, equipment 0131-331-2253

WORKSHOP CLEARANCE includes TV's, test geat spares, many manuals and data books. $£ 1.200$ o.n.o. 0777871121

LEADER PROGRAMMABLE OSCILLOSCOPE LB05810A Dual Trace etc with renote control, few years old, worth $£ 2,()(0)+$ VAT, must sell. $£ 5(0)$ o.n.o. 071-474.5378.

PRIVATE RETALLER hás excellent part exchange colour televisions and videos to clear. Tel: 0494814317

VIDEO TECHNICIAN WANTED. Good pay rates 12K. Apply Jomill Enterprises. 173 Dalston Lane, E8. Tel: 081-5332229.

TV ENGINEER WANTED for irregular part-time work. Uxbridge area. Must have own transport and equipment. Tel. Jeremy on (8895251612 2.
SERVICE MANUALS approx 1.400 audio etc B\&O Hitachi, Aiwa, Fisher, Sony etc (75-86) $£ 120$ the lot Gravesend $32266(0)$

MAINS ISOLATING TRANSFORMERS, 1250 VA 240 volt (Goodyear) in metal enclosures. Offers. Tel 0733 266666 or 0580) 7 (9) 313
WANTED REGULAR SUPPLIES of large \& small quantities television \& VHS videos, best prices paid. Tel. (0993.4) 641742 (daytime). 516483 (cvening)
METERS reconditioned. $£ 1 .(0)$ slot meters for TV rental $£ 4.95$. 50 p slot $£ 2.95$. AUDIOTECH Tel: 07903 245.

SPARES \& COMPONENTS

LOW COST REPLACEMENT L.O.P.T. for Fidelity 3000 chassis

 £8.50 each + £1 P\&P + VAT A.G.S. ELECTRONICSUnit 2, Haxter Close, Belliver Ind Est,
Plymouth, PL6 7DD. Tel: 0752767738

ALLPARTS DISTRIBUTORS

SATELLITE SPARES
TV \& VIDEO SPARES FOR THE TRADE AND PUBLIC BELT KITS, TRANSISTORS, ICS, REMOTES, FERGUSON, PANASONIC, SHARP, GRUNDIG, SONY,

KONIG, PHILEX, AMSTRAD
ALLPARTS DISTRIBUTORS
101 ROCKY LANE, TUEBROOK, LINERPOOL 6 4BB
051-260 4825

TELEOTSNOTILITSSIFIED LINERTE

advertisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing Group. Television Classified Room L327, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The charge per word is 70p plus $171 / 2 \%$ (minimum £12.00 + VAT.)

INTEGRATED CIRCUITS				AMSTRAD	
PRICES INCLUDE VAT, Add E1 18 POSTAGE				PRICES INCLUDE VAT, POST AND PACKING EXTRA. P.C.B's	
TV \& VIDEO I.C.s		LA7033	3.29		
		LA7210	1.47	4600 Video and Audio PCB	£17.63
AN304	2.96	LA7505	2.06	4600 Systems Control/Servo PCB,	
AN5015K	2.94	LA7910	1.23	Display and Control PCBs	£29.38
AN5612	1.81	LU11417A	4.23	4600 Mkl Video and	
AN5620X	3.11	LU52511A	4.23	Audio/Timer/Control PCB Assy.	$£ 40.82$
${ }_{\text {A }}$ AN6306	6.46	lVA508	1.65	4700 Video and Audiol	
AN63326N		LM1889N	3.29	Timer/Control PCB Assy.	$£ 40.82$
AN6328	2.88	M51393AP	2.94	VCR100 Video and Audio/Timer/	
AN6346N		MC1408P8	1.18	Control PCB Assy	£40.82
AN6347	2.47	MN15823FVG	12.69	5200 Timer and Channel Display	
AN6350		OEC0001B	5.23	PCB Assy.	£17.63
AN6360	2.14 3.47	OECOOO5	5.23 3.35	5200 Audio Tuner PCB	£15.28
AN6362		SONYCX134A	+ 4.99	5200 video PCB	£14.10
BA618	1.35	TD62105P	1.18	5200 Syscon. Servo Power PCB	£23.50
BA6301		ULA1H035E2	1.82	$4600 \mathrm{Mk} \mathrm{1/4700} \mathrm{Power} \mathrm{Supply}$	£4.70
BA7001	1.23	UPA53C	4.05	CTV1400 Main PCB	£29.38
BA7004	1.65	UPC1382C	90	CTV2200 PCB No:3 (Part 270087)	£3.53
BA8500	11.69	UPC1397C	3.70	CTV2200 PCB No:4 (Part 270088)	$£ 4.70$
HA17458PS		$14 \mathrm{DN156}$	5.29	TVR1 Control Pane//Preset PCB	¢7.05
LA7031		14DN157	5.29	TVR2 Main TV PCB	£37.60
LA7032	2.42	14DN244C	5.70	TVR3 Main TV PCB	£43.48
HANDSETS				MECHANISMS	
VCR4600/4600 Mkil			£11.75	4600 Video Cassette complete	
VCR4700			${ }^{1} 17.63$	mechanism (no drum or video	
VCR5200			£11.75	heads)	£29.38
VCR66100 BarcodeTS90/99 Tower System			¢ $£ 1175$	4600 Video Cassette complete	
TS90/99 Tower System			${ }_{£} 111.75$	mechanism (with drum no video	
VCR9000 (Old Type) Handset				heads)	£35.25
CTV1000 FB182K			$\$ 11.75$	9000 Cassette Housing Assy.	£15.28
CTV1400 FB165KA			£11.75	MOTORS	
$\begin{array}{ll}\text { CTV2000 } & \text { FB171 } \\ \text { CTV2000 } & \text { FB171K }\end{array}$			$£ 9.40$	4600/4700 Capstan Motor	£11.75
			¢9.40	7000 Loading Motor MCB2B01	£3.53
			£ 13.51	9000 Loading Motor MCB9B02	£3.53
TVR3 181297			£13.51	TUNERS	
PCt2-HRCD ${ }^{\text {P }}$ / MSH1FCT31			£14.10	5200 Varicap Tuner Type 1810829	¢7.05
				7000 Tuner ENV87358C2	£7.05
4700 RF CONVERTER			${ }_{¢ 5} 5.88$	CTV1400 Tuner ENV87509F2	$£ 5.88$
5200 RF CONVERTER				CTV2200 Tuner UE2-B31F	£5.88
DISHES, FEEDS, LNB's ETC. AVAILABLE. PHONE FOR LIST.				PARTS OFF PCB's AND MECHANISM. PHONE FOR PRICING	
				all Items are brand new a * * SAME DAY DESPA	aranteed
				Write or Phone for FUL	ogue.
CENTURY FAX: (0354)	$\mid A Y, M A$ $51416 .$	CH, CAMBS P TEL: (0354) 512	$\begin{aligned} & \text { ? E15 } \\ & 289 \\ & \hline \end{aligned}$		

THRIFTY SPARES (WALES) Centrevision House, Sloper Road, Leckwith, Cardiff CF1 8AB INCREASE YOUR PROFITS WITH USED SPARES			
MANY MAKES OF USED VIDEO AND TV PANELS GUARANTEED WORKING HUNDREDS NOT LISTED GONE OURHOTLINE 0222344218			
O THOAN, HITACH, TOSHIBA, ITT, SHARP, AMSTRAD, PANASONICETC.			
USED WORKING VIDEO SPARES	From	WORKING DORIC MK3, MK4, MK4	
	¢12.8	N/	
A		MK3A IF	
		MK4 POWER PANEL 90 OR 110	E15.50
MECH	E15	MK4IFPAN	
	11280	MK4 VIDEO	
STANMOTO	E15.50	MK4 MANUAL TUNER HEAD A	
tuning boaro			
IR100 PRO		MK4 FRONT ASSEMBLY	
AC5301		ERS	
	\%1050	CAllers	${ }^{\text {f23.00 }}$
OPENING HOURS 9am-1pm-2pm-5.30pm			
T DELAY PHONE 0222344218 TODAY 24 HOUR ANSWER			

RECENT
READER
RESEARCH
indicates that
91% of readers
responded to
advertisements
in Television
last year.

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED
 I/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment
 > ADM Electronic Supplies

 ADM Electronic Supplies

 ADM Electronic Supplies
 Tel. 0827873311.
 Fax 0827874835

> VIDEO RECORDERS LOWEST PRICES EVER Phone for Details Bill Eades 081-543-5437

WIZARD DISTRIBUTORS

 MANCHESTER TV VIDEO \& SATELLITE SPARES LOEWE, SCHNEIDER, FERGUSON, HITACHI and many other always in stock -Video Heads for over 500 models Service Manuals for over 200 models Handsets for over 200 models Spares for over 20 manufacturers

```
Plus huge range of \(I C\) 's, Semiconductors and
``` Service Aids, etc. etc.
WIZARD OFFER A GREAT DEAL
Counter open Monday-Friday Sam-4.45pm
mall Order -AccessVisa TRADE ONLY
EMPRESSSTREETWORKS EMPRESS STREET. MANCHESTER M16 9EN.
Tel: 061-872 5438:061-848:0060.
TUBES
NEW CENTURY ELECTRONICS LTD.
UNIT 3, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX UB8 2RA.

MANUFACTURERS OF HIGH PRECISION, HIGH RESOLUTION PHOTOQUALITY CATHODE RAY TUBES Applications:-
- Scanning Electron Microscopes
- Medical lmaging
- Telecine
- Camera Viewfinders etc

Remanufacture Service also available
Why not telephone us on
(0895) 255800 to discuss your requirements? Fax No.: 0895255619

\section*{FOR SALE}

\section*{MICRO - LAB} Save TIME and MONEY by speeding up fault diagnosis. Our MICRO-LAB instruments will help you find faults faster. The improvements can be dramatic. We know! We use them!
Write or phone for a free brochure.
COLEBOURN ELECTRONICS
Dept TV, 20 Folly Lane, Telephone
St Albans, AL3 5JT 072744785

\section*{SERVICE DATA}

\section*{GERMAN SERVICE SHEET SPECIALISTS}

Our connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries:

> DÖNBERG ELECTRONICS
> Schoolmasters House, Rannafast,
> Co. Donegal, Repubbic of reland. Phone: 07548275

WANIED
WANTED
Regular Supply of Ex-Rental Colour TVs and Videos.
Cash on Collection - Quick Service

\section*{Tel. 0742312832}

SUPPLIERS OF ALL MUTER REPAIR AND TEST EQUIPMENT.
BMr 95 tube regenerator
BMR 700 TUBE REGENERATOR
CBE DEGAUSSER
RTI 2 VARIABLE ISOLATING TRANSFORMER
CSG 4 PATIERN GENERATOR
AT 2 AUDIO SERVICING UNIT ION2 IONISER

ASK FOR FREE BROCHURE
34 GLAN-Y-MOR ROAD, PENRHYN BAY, LLANDUDNO, GWYNEDD LL30 3PF.
TEL: 0492549246 FAX: 0492547880
\begin{tabular}{|c|}
\hline FOR FURTHER \\
DETAILS ON \\
CLASSIFIED \\
PLEASE \\
CONTACT \\
PAT BUNCE \\
ON \\
O81-652 8339 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \[
\Gamma_{A T}
\] & \\
\hline & \\
\hline & Uniteo Kingoom \(P\) \& E Sevicices, Llanduno. \\
\hline & \\
\hline & el 668 -907 Fax 668 -4 \\
\hline & \multirow[t]{2}{*}{Germany Ulrich Müter, Oer-Erkenschwick} \\
\hline & \\
\hline
\end{tabular}

\section*{SATELLITE BOOKS \\ WORLD SATELLITE TV \& SCRAMBLING \\ METHODS - NEW 2nd EDITION}

F Baylin, R Maddox and J McCormac. Large format
340 pages providing in-depth study of many scrambling methods.
EUROPEAN SCRAMBLING SYSTEMS 2 New!
\(J\) McCormac. Circuits, Tactics and Techniques. How are smartcards hacked? How secure is VideoCrypt? Decoder circuits for Filmnet, RTL 4V and SAVE. Includes video manipulative systems.
KU-BAND SATELLITE TV — NEW 4th EDITION £23

F Baylin \& B Gale. Comprehensive introduction to satellite TV. Includes many footprints, dish theory. Completely revised edition.
SATELLITE TELEVISION INSTALLATION GUIDE - NEW 3rd EDITION \(£ 12\) \(J\) Breeds. Europe's most popular satellite book. Includes all practical aspects of dish installation. Used in City \& Guilds satellite courses.
VIDEO SCRAMBLING \& DESCRAMBLING
R Graf \& W Sheets. Advanced theory. How to build encoders/decoders. Contains details of many cyphering patents and circuits.
SATELLITE, OFF-AIR \& SMATV
F Baylin, S Berkoff \& T Meints. Aspects of private cable and multi-unit dwellings. SMATV systems in hotels, condominiums, apartments etc.
1991 WORLD SATELLITE ANNUAL
M Long. More than 600 pages. Includes over 100 footprints and other satellite details. Colour coded sections.
1992 WORLD SATELLITE ALMANAC New 3rd Edition
M Long. Hefty 1120 page reference to worldwide satellites, footprints charts etc.
THE SATELLITE BOOK - A Complete Guide to Satellite TV Theory \& Practice
£28
\(J\) Breeds. The definitive guide! Covers every possible technical and practical related subject. Invaluable tips and tricks of the trade. Well illustrated throughout. Easily the best value satellite book today!
SERVICING ELECTRONIC SYSTEMS VOL 1 \& VOL 2 Pt 1
I Sinclair, G Lewis. Massive 590 pages. All aspects of electronic systems. Designed for City \& Guilds/BTEC courses. Excellent value. Count as one book for postage.
ORDERING. Postage per book: Add \(£ 2.50\) in UK. Add \(£ 5\) for Europe. Add \(£ 15\) for Rest of World.
Please send me the book(s) as indicated. I enclose cheque/PO for \(£\) made payable to Swift Television Publications, or please debit my Access/Nisa card; Number

Expiry
Name
Signature
Address
Postcode

\section*{Swift Television Publications}

17 Pittsfield, Cricklade, Wilts, SN6 6AN Tel or Fax 0793750620

\section*{CLA5SIFIEDCLLS55IFED CLLA55IFIED CLA55IFIED CLD5SIFIED}

\title{
Commercial \& Trade Technical suppliers for over 20 years Technical Information Services
}

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE
Tel.(0698) 884585 Mon-Fri 8.30am - 5.00pm or (0698) 883334 Outwith business hours FAX facility available all day on both lines

VISA
Write now with an SAE for your FREE QUOTE, FREE CATALOGUE \& FREE NEWSLETTERS
ALL TRADE ADDRESSES GIVEN !FREE! JUST PHONE TO FIND THE NUMBER/ADDRESS YOU NEED

\section*{Some Selected titles (Taken from over 150)}

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Remember, not only do we have EVERY service sheet ever produced, but we also have THE WORLDS LARGEST COLLECTION OF \\
We are sole suppliers of various fault-finding guides, repair manuals \& technical manuals
\end{tabular} & \\
\hline \multicolumn{2}{|l|}{INTEGRATED SYSTEMS from TIS} \\
\hline 10 Giant binders of CTV Circuits, Schematics, PCB's, Waveforms, etc. & £265.00 \\
\hline 6 Giant binders of VCR Circuits, Schematics, PCB's, Waveforms, etc. & £190.00 \\
\hline All 6 VCR binders PLUS 30 Fault-Finding Guides for ALL models covered & £230.00 \\
\hline The 10 CTV Binders PLUS over 20 CTV Repair Guides \& lots, lots more & £399.00 \\
\hline All the CTV \& Repair Guides PLUS VCR binders PLUS fault finding, etc. & \(£ 599.00\) \\
\hline TVAR complete, Two books \& two binders of Giant diagrams (upto A2) & £89.45 \\
\hline
\end{tabular}

\section*{NEW PRODUCT!!}

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

\section*{£7.50 for Television Faults \(£ 7.50\) for Video Faults}
or \(£ 15.00\) for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY.
Please add £1.50 per order for P\&P

\section*{SERVICE MANUALS}

Available for most equipment. TV. Video, Audio, Test, Amateur Radio, Military Surplus, Kitchen, Vintage Valve, Computers etc.
Over 100,000 manuals available for equipment from 1920's to the present.
Originals or photostats supplied as available.
FREE Repair and Data Guide Catalogue with all orders or send SAE for your copy today.

8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel: (0844) 51694 Fax: (0844) 52554

\section*{}

\section*{TEXSCAN CATV DECODER}

Tuner FX range \(54 \mathrm{MHz}-450 \mathrm{MHz}\). Features: full 60 channel capability. High performance. 611 MHz IF. Built-in prescalar. Uses advanced ECL. Integrated circuits and dual gate MOSFETS. Output on channel 48 ,UHF-PAL synthesiser controlled. Brand new. boxed, with circuits and information. Not tested.

TELFORD ELECTRONICS
Tel: 0952605451 . Fax: 0952677978

\section*{STANDARDS CONVERSION \\ AMERIC AN CANADIAN/C ARIB/(NTSC) VIDEO}

Tapes converted to UK standard (PAL) at reasonable rates. Secam conversions and tape copying also avallable. We now also convert Sony 8 rnm from NTSC to PAL or visa versa Private and company work welcomed.

Send material with requirements or phone/Fax 0444400 091, 9am-9pm AVIATION VIDEO (Gatwick), Alexanders, High Street, Handcross, W. Sussex RH17 6BS.

\section*{SERVICE MANUALS}

THOUSANDS OF DIFFERENT MODELS IN STOCK CTV - MTV - MONITOR - VCR MICROWAVE - SATELLITE WRITE OR PHONE FOR QUOTE.
D-TEC, PO BOX 1171, FERNDOWN, DORSET, BH22 9YG.
'phone 0202870656.

\section*{SATELLITE TV RECEPTION}

DRAKE Receiver/Positioners from £299 Wideband Magnetic Polarisers from £29 60 cm to 3 m Antennas, polar mounts 11/1214Ghz LNBS - feeds, accessories SAE for Leatiets
KESH ELECTRICS LTD
Main Street, Kesh, Co Fermanagh BT93 1TF Tel. 0365631449 Fax. 39250 Tlx 747412

\section*{TRAINING}

\section*{BASIC ELECTRONICS TUITION}

Do you have an interest in electronics, either as a future career or to pursue as a leisure activity? Do you have trouble locating faults in equipment, or safely adapting circuits to meet your specific needs? If so, and want to do something about it, send for details of the:-
Direct Personal Learning course K. Sparrow etc . .. 11 Claydon Green Whitchurch BRISTOL Avon BSI4 0NG Telephone: (1275) 835669

\section*{COURSES}

\section*{NICAM DIGITAL STEREO March 20th fee \(£ 50.00\) COMPUTER CONTROLLED TELEVISION}

\section*{April 6th \\ fee \(£ 65.00\)}

> One day courses available at

The College of North West London for details contact: Sharron Watkins 081-459 2726

\section*{REPAIRS}

LOEWE OPTA TV REPAIRS FAST EFFICIENT SERVICE

Factory Trained Engineers Competitive Rates MARWETECH, Unit A7B, Aladdin Workspace, 426 Longdrive, Greenford, Middlesex UB6 8UH. Tel: 081-575 0434 Fax: 081-575 0468

\section*{}

\section*{VIDEO RECORDERS Save a fortune buying data}

\section*{CIRCUIT COLLECTIONS \\ \(£ 219\)}

All JVC/Ferguson/Baird as 3V00-3V01-3V16-3V22-3V23\(3 \mathrm{~V} 29-3 \vee 30-3 \vee 31-3 \vee 35-3 \vee 36-3 \vee 38-3 \vee 39-3 \vee 43-3 \vee 44-3 \vee 45-\) \(3 V 48-3 V 53-3 V 58-3 V 59-3 V 64-3 V 65-F V 11-F V 12\) plus all the main models from AMSTRAD FIDELITY GRUNDIG HINARI HITACHI PANASONIC PHILIPS PYE SANYO SHARP SONY TOSHIBA plus all clones, modifications and other brands in 7 huge binders.

\section*{FAULT GUIDES}
\(£ 79.95\)
35 guides covering the stock and standard faults for every model included in the above collection.

\section*{COMPLETE SYSTEM}
\(£ 399\)
Enough data to set anyone up in the business of servicing and repairing VCRs. Includes all the above circuits, layouts and repair guides plus over \(£ 350\) worth of Service Manuals plus many other VCR publications.

\section*{VIDEO CASSETTE RECORDERS A SERVICING GUIDE}

3rd Ed. by S. Beeching
Price £30.00 FREE WITH CIRCUITS COLLECTION

\section*{SONY TUBES REPROGESSED WITH ORIGINAL SONY GUNS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5mm) Neck and FST Tubes.} \\
\hline \(370 \mathrm{KRB22}\)........... £48.00 & A51-231X & ¢46.00 & A51EAL00X & £58.00 \\
\hline 370 LHB22 £48.00 & A51-570X & £46.00 & A51EBS00X & £58.00 \\
\hline 400EFB22 £58.00 & A51-580X & £46.00 & A51JAR00X & £64.00 \\
\hline 510 YXB22 558.00 & A51-590X & \(£ 46.00\) & A53JBW00X & £64.00 \\
\hline 520SB22 £64.00 & A56-540X & £48.00 & A59EAK00X & ¢64.00 \\
\hline 560EGB22 £54.00 & A56-701X & \(£ 48.00\) & AXM37-001 & £48.00 \\
\hline \(560 \mathrm{DYB22}\)... £54.00 & A66-540X & \(£ 56.00\) & AXT37-001 & £44.00 \\
\hline \(570 \mathrm{HB22}\)............ \(£ 64.00\) & A67-701X & £56.00 & AXM51-001 & £46.00 \\
\hline \(680 \mathrm{DB22}\) - £85.00 & A34JBU10X & £74.00 & AXT56-001 & £52,00 \\
\hline 680EB22 £85.00 & A49.JHTOOX & £64.00 & & \\
\hline For tube types not listed please enquire. & \multicolumn{2}{|l|}{All prices quoted are excluding VAT. Exchange CRT is required.} & \multicolumn{2}{|l|}{Callers welcome. Please phone first. Nationwide Delvery Avalable} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{lc}
MSS ONE & Your local stockists are: \\
Oistributors Ltd. & 114134 Midand Road, \\
Chesham, Bucks. & Lufon, Betls, LU2 081 \\
Tel. 0484778197 & Tel. \(0582 \cdot 402498\)
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{TV TUBE REBUILDER}

What ever make or type. Give us a call. Polish service available.
M. B. ELECTRONICS Unit 6, Guild Hall Ind. Estate, Kirksandall Ind. Estate, Doncaster DN3 10 R . Tel. 0302891208

\section*{MAURITRON TECHNICAL PUBLICATIONS}

The following is a selection from our vast range of Technical Manuals for the TV and Video Servicing Trade. Order some today.
Order Code Title Price MTP-5 Video Recorder Faults - Repair Guide \(£ 1.95\) MTP-58 VHS Video Recorder Principles £1.95 MTP-7 Transistor Radio Repair Guide \(£ 1.00\)
MTP-34 TTL Integrated Circuits Databook £4.95 MTP-10 CMOS Integrated Circuits Databook £4.50 VHCK Video Head Cleaning Kit MTP-9 Power Supplies \& Voltage Regulators £2.95 MTP-24 Transistor Equivalents and Testing Manual \(£ 4.50\) MTP-8 Record Player Speed Disc £0.95 MTP-19 Telephone STD Code Location Guide £3.95 SPECIAL OFFER: Order the full set of the above for only \(£ 25.00\), a saving of \(£ 5.20\) over the individual price of \(£ 30.20\). Use Order code MTP-189.
Phone your order today using Access or Visa for immediate despatch. All orders plus \(£ 2.35\) post and packing.
Hundreds of other Repair and Data Guides available from our Catalogue available FREE upon receipt of a stamped envelope and sent with all orders.
MAURITRON PUBLICATIONS (TV3)
8 Cherry Tree Road, Chinnor, Oxiordshire 0X9 4QY
Tel: (0844) 51694 Fax: (0844) 52554
Serice Manuals available: See our other advert for details


```


[^0]:    NEW IN STOCK, A LARGE RANGE OF SLIMLINE REMOTES. JUST SUPPLY MAKE,

    MODEL \& PART No. FOR AN IMMEDIATE QUOTE.

    | 10,000 Line Catalogue available with order, or by request. SAE please ( $9^{\prime \prime} \times 4^{n}$ ). ( 24 hr . answering machines |  |
    | :---: | :---: |
    |  |  |
    |  |  |

    ## What a Life!

    ## Donald Bullock

    Steve Beeching and his charming wife popped in the other day. They came in a station wagon that made our Ford look a bit utility. "Some car!" I said. "It's the wife's" Steve replied. Seeing that Greeneyes was paying careful attention I changed the subject.

    We had a pleasant hour's chat in the bar, much of it spent in mutual sympathy over the lives we lead. Then Steve told us about the items of electronic wizardry that he and his son service as a matter of course. Things that I've heard about though scarcely seen, let alone tackled. Steve has a decided advantage over lesser mortals like me - an extremely fine brain. He also has an enthusiasm that's good to see, dedication to his work and a fine sense of humour. He needs all these in dealing with things like camcorders. I'm reasonably certain that I never want to have to open one of them up!

    Thanks for calling in, Steve. We had a good hour or two. Call again sometime - 1 forgot to tell you how big I am on G11s!

    ## Mrs Whelp's Panasonic NV370

    During Steve's visit Mrs. Whelp called with a Panasonic NV370. Next day I put it on the bench. When I switched on there was no channel number display and no LED was alight but the clock flashed merrily and the idler quivered a bit before losing interest. I decided to take a look at the power supply and soon found an open-circuit fusible resistor - R1101. Not a bad start I thought: maybe I'm about to get a run of easy little moneyspinners.

    ## Saisho CT142RX

    The next job was a Saisho CT142RX colour portable. I seem to get a lot of Saisho/Matsui sets. This one was dead though the channel 1 LED was alight. The mains fuse F501 ( $2 \cdot 5 \mathrm{AT}$ ) and the $5 \cdot 6 \Omega, 5 \mathrm{~W}$ surge limiter resistor R501 were both open-circuit while the STR50103 chopper chip IC501 had expired. I replaced these three items then checked the line output transistor, which was o.k. So I switched on. No difference!

    There was plenty of h.t. at the mains bridge rectifier's output, but no 103 V output from the chopper chip. A further check showed that there was no start-up voltage at pin 2. A check on the two feed resistors R502/3 indicated that they were o.k., but how did I. know whether they were up to passing current? I've been had before with that one. So I fitted replacements. Still no start-up voltage. My carlier hopes about a run of moneyspinners were fast evaporating. Could the two transistors Q107/8 in the power switching circuit be faulty? In went two new ones, again to no effect. Perhaps the line output transformer, which is also linked to this point, was damping things? The connection is made via the RH1 diode D508 which turned out to be dead short. Why hadn't I tried that first?

    ## A Luxor SX9

    The next patient was a 26 in . Luxor set, Model 18067349 (SX9 chassis) which was also dead. It's not a set I know, and I didn't have a circuit diagram. There was h.t. about,
    and the two BU208A transistors in the line output stage and the power supply were all right. Bearing in mind the last set, I decided to go round the diodes with a component tester. No luck this time however. Then, while examining the print side of the board, I saw that some of the joints looked less than healthy. So I went round those on the line linearity coil and the line driver transformer. This brought results, though of an intermittent nature. I then found that the two large copper heatsinks that bridge parts of the copper print were dry-jointed. Resoldering these cured the trouble.

    ## Philips CTX-E Chassis

    As I was refitting the back a bearded fellow pulled into the drive. There was a Philips 20CT2026/05 colour set (CTX-E chassis) on the back seat of his car.
    "I've brought this set all the way from Lancashire" he said. "Well over a hundred miles. It belongs to my mother who's down here on a visit. Thought I'd bring it along as well as it's intermittent and you did my own set recently."

    I plugged it in, took the back off and gazed at the print under the line output transformer. What I expected to see was there - dry-joints. Attention to these and, a few minutes later, all was well.
    "Marvellous" he said, "too good to be true!"
    "S'nothing" I said, blowing on my nails.

    ## Egbert's Alba VCR6000X

    Just then Egbert Crust bowled into the drive, as though he was pedalling an invisible bicycle up a steep hill against a headwind. He was carrying an Alba VCR6000X video recorder.
    "Don, for heaven's sake fix this recorder by tonight" he gasped, "otherwise Marina will pack me in."

    After he'd bolted I plugged his machine in. It was haywire, like Egbert. On opening it up I found that the loading belt was badly distended. While fitting a new one I saw why. The mechanism had jammed and the belt was fighting it. I removed all the belts and judiciously applied some WD40 to the mechanism. Then I cleaned the pulleys carefully and refitted the belts. This restored perfect operation.

    ## Decca 140 Series Chassis

    My next caller brought in a 16in. Decca set, Model DP1473 ( 140 series chassis). "The picture's unstable and goes off after a minute" she said. I removed the back and switched the set on. Up came an unstable picture with clattering sound, and after a minute the set went dead. As I turned it on to its side it came on again, and I found that I could make the fault come and go by tapping the chassis. So I switched off and busied myself resoldering some drylooking joints in the power supply. Suddenly something dropped out and rolled on to the floor. It was a large, heavy ferrite bead. I then found a small loop of wire that had obviously been threaded through it and soldered to the chassis. After putting this right (the circuit designation was L803) I tried the set again.

    This time there was no picture and sound disturbance at all, but the set went off after a minute as before. Tapping around plug and socket MC01 brought the set to life briefly, but resoldering it didn't help. I then found that flexing the centre front of the panel controlled the fault. Out came the magnifier and I saw that one of the pins of the TDA4600-2 chopper control chip had never been
    soldered. Attending to this provided a complete cure.

    ## Mrs Rabble's Toshiba VCR

    Then Mrs. Rabble brought a Toshiba V309 video recorder along in a pushchair. With her was her precocious little daughter, who immediately went around the room twiddling the controls of every set she saw.
    "Do you think you could, er, ask the little girl to stand by the door with you" I asked. "She might get hurt, and we wouldn't want that would we?"
    "Oh don't worry about that" snorted Mrs. Rabble. "The point is that you mended this video for us a few months ago and it's never been right since. We haven't had time to bring it back before. My husband says you didn't do it properly. His workmate said you don't know anything about videos. Said we should have took it to Snoddies."
    I looked at her and her protege and nodded sympathetically. "They do seem to have all the answers" I replied."
    "I'll wait while you do it" she said, adjusting her stance to permanent stay.

    I opened the machine and looked inside. A powder compact and a partly nibbled Mars bar were caught up in the mechanism. I took them out and handed the bar to the child and the compact to Mrs. Rabble. "One each" I said. Then I tried the machine, replaced its cover and handed it back. "I haven't the time to do you a bill now" I said, scribbling a few details on my pad. "It'll be only nominal, fifteen pounds or so. I'll drop it in the post to you."

    Mrs. Rabble breathed in sharply, smiled weakly and stalked out.

    ## The HRD230 and the Curate's GEC TV

    Just as I pulled a JVC HRD230 VCR on to the bench the door opened and the Reverend Goode beamed in. "I know you don't do house calls" he said, "but if you find yourself in my parish sometime do pop in and look at the curate's massive TV set. The tuning buttons don't work."

    Off he went and I concentrated on the JVC video. It was all right in the fast forward and rewind modes, but play was fickle. I turned it upside down, removed the base then took out, cleaned and retightened the screw that earths the mechanism control board print. This didn't help. I noticed an evil-looking STK5481 power supply chip and changed it at once, but again there was no difference. So I fitted an idler. Play seemed to be better, but the take-up spool faltered now and again. Then I saw that the tape was also faltering at the pinch wheel. Cleaning it made no difference, and I noticed that the capstan was stopping. So I took out the motor and treated it with WD40. The machine worked well for over an hour on soak test and I was about to pronounce it fit when it stopped again. There was nothing for it but fit a new motor, and they're not cheap. The replacement restored the machine to normal operation.

    A couple of hours later I had to take Greeneyes into town. I decided to drop in on the curate on the way back. The set was a huge GEC model. I switched it on and, as its lazy tube warmed up, I instinctively took out my handkerchief and gave the buttons a brisk rub. By then the picture had come up and the tuning was perfect.
    "Oh" said the curate, "your very presence has made it work. How clever! Thank you, thank you." He opened the door and I walked out. "God be with you" he cooed.

    As I walked back to the car I thought there really must be a better way.

    ## next month in

    

    - SERVICING THE PHILIPS CD104 CD PLAYER

    This popular model has been around in various guises since the mid-Eighties. Amstrad for example used the basic machine in some midi systems while Mission put it in a smarter looking box. In addition to machines that come into the workshop with specific faults, some come - in because they have been part-exchanged for a more recent model and require certain checks and adjustments to ensure reliable operation before being resold. Mike Leach provides guidance on all aspects of servicing.

    - MASTER-SLAVE SWITCH-MODE POWER SUPPLIES A number of TV chassis use a switch-mode power supply arrangement that's known as the master-slave system because the line oscillator chip, which contains the pulse-width modulator, is the master and is mains isolated from the power supply control/driver chip which operates as its slave. Ray Porter describes the circuit operation and fault-finding procedures.
    - TELEPHONE TEST SET

    To make ends meet lan Rees is willing to tackle in his workshop almost anything that runs on electricity. Nowadays cordless telephones, ordinary phones and answerphones arrive in a steady trickle, also the occasional modem and fax machine. They don't present any great difficulties but it helps to have a source of signal apart from the BT line for both monitoring and calling. Hence the test set described next month.

    - REBUILDING THE 1590's POWER SUPPLY

    The Thorn 1590 and 1591 series chassis were the basis of a very popular range of monochrome portables. Power supply failure is a recurrent problem and unfortunately the series regulator transistors used are now hard to obtain. So J. LeJeune set about designing an updated version of the power supply. It works well and doesn't get too hot.

    - TEST REPORT: TANDY 22-167 DMM

    Tandy's new 22-167 Micronta autoranging digital multimeter is a high-speed sampling bar-graph instrument that has the look of a meter you'd expect to cost far more. David Botto gave it a thorough test and found it good value for money.

    PLUS ALL THE REGULAR FEATURES

    ## ORDER YOUR COPY ON THE FORM BELOW

    Please reserve/deliver the May issue of TELEVISION (£1.95), on sale April 15th, and continue every month until further notice.

    ```
 NAME ... |
    ```

    ADDRESS ......................................................................... I
    
    

    # Solders, Fluxes and Solder Creams 

    Soldering is such an everyday job that we give it little thought. All you need is a reel of flux-cored solder, a hot clean iron and the sense to apply them to the joint simultaneously. This is only a very small aspect of the subject however. When we have to deal with metals other than copper; when, as in certain Sony TV sets, hot-running resistors have to be replaced; when we want to plumb our own satellite waveguide splitters; when we're confronted with surface-mounted assemblies; in these and many other circumstances there's much else we should know about solder, fluxes and their forms, applications and properties. Time to take a closer look then!

    ## Types of Solder

    All solders contain tin, an expensive silvery-white metallic element that melts at $232^{\circ} \mathrm{C}$. Pure tin can be used as a solder, but it's costly and relatively weak. For use in virtually all applications it's mixed with one or more other metals to form an alloy. Every characteristic of a solder depends on the composition of the alloy. Many different basic metals are alloyed with tin to make the various types of solder available. In order of importance, they are lead, silver, copper, cadmium, antimony, bismuth and indium.

    The most common combination is tin with lead, in the proportions $60 / 40$. This alloy has a melting point of $183^{\circ} \mathrm{C}$ and good "wetting" quality, which means that it runs readily and coats the surface of the work. With each combination of metals used to make solder there's a certain percentage ratio that gives the lowest melting point. It's known as the eutectic alloy, and gives the quickest transition between the solid and liquid states as the melting point is passed in either direction. Fig. 1 shows this graphically for tin-lead alloys, whose eutectic combination is $63 / 37$. An instant change from the liquid to the solid state is undesirable in many applications, because the slightest movement or vibration at the transition point can cause joint fissures that can lead to trouble later. 60/40 solder has a plastic range of $5^{\circ} \mathrm{C}$ : the higher the proportion of lead used, the greater the plastic range but the lesser the wetting ability - and the cheaper the solder.

    A common additive in solder is copper, typically as a 1.5 per cent proportion of the alloy, an amount calculated precisely to prevent any copper absorption from the soldering iron bit during the soldering operation. It also prevents erosion of PCB print and fine copper wires by absorption into the solder.

    The next main group of solder alloys are the HMP (highmelting point) types which have a typical transition temperature of $3000^{\circ} \mathrm{C}$ due to their very high lead content of over 90 per cent. Silver, at about 1.5 per cent, is normally added to the HMP alloy to improve its strength and wetting power. In addition to being used to make joints that are expected to get hot in use, this type of solder has excellent low-temperature characteristics in service. Solder that contains silver also has the important property of preventing leaching, i.e. absorption of the silver content of the workpiece, which is important in some applications.
    The main applications for low-melting point solders are in work with gold and silver, heat-sensitive devices and flexible printed circuits. The lowest melting point alloy that can be drawn into conventional wire is made of a $50 / 32 / 18$
    tin-lead-cadmium alloy. It liquifies at $145^{\circ} \mathrm{C}$. A $15 / 33 / 52$ tin-lead-bismuth alloy with a melting point as low as $96^{\circ} \mathrm{C}$ is available in paste form. A 43/57 alloy of tin and bismuth turns liquid at $139^{\circ} \mathrm{C}$.

    Lead-free solders are sometimes required - lead is a very toxic material. They are expensive, containing over 95 per cent tin with the balance made up of antimony (highmelting point alloy) or copper. There's also a $96 / 4$ tin-silver alloy, a bright, strong solder for use with stainless steel.
    A special alloy is required to solder aluminium, which is not the metal most amenable to this operation. It consists of a tin-lead-cadmium alloy in the proportions $18 / 80 / 2$. The other main requirement when soldering aluminium is a very strong and active flux. We'll come to fluxes and their characteristics later.
    Apart from this and the other special cases mentioned above, in general virtually any solder alloy will work with any metal that's solderable - which is most of them! Nonsolderable metals are chromium, pure beryllium, magnesium and titanium, which are not the ones you bump into every day. Apart from aluminium, which has already been mentioned, the more difficult metals to solder are steel, nichrome and cast iron (the latter must be machined before attempting to solder it), all of which require the use of very strong fluxes. The most readily solderable metals are copper, silver, tin and lead.

    Thus the large number of solder alloys available - see Table 1 - is accounted for not only because of the variety of metals that may have to be bonded but also because of the vast range of soldering methods in use and the subsequent conditions of service. Factors like physical strength, toxicity, operating temperature, corrosion resistance and, much more rarely, electrical or thermal conductivity have to be taken into account. Cost is a large factor of course: the more tin and exotic metals in the mix, the more expensive the solder.

    In general, it's necessary to raise any solder about $60^{\circ} \mathrm{C}$ above its melting point the ensure a good, strong joint.
    

    Fig. 1: Characteristics of tin/lead solder alloys. Most alloys have a plastic range which increases as the eutectic combination is departed from. Alloys of other metals have similar characteristics.

    Table 1: The Multicore range of tin/lead alloy soldiers.

    | Alloy Tin/Lead | Multicore Colour Code (Reel and Case Labels) | Meiting Temperature |  | Recommended <br> Minimum <br> Bit <br> Temperature* <br> ${ }^{\circ} \mathrm{C}$ | Uses |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Solidus <br> ${ }^{\circ} \mathrm{C}$ | Liquidus <br> ${ }^{\circ} \mathrm{C}$ |  |  |
    | $\begin{aligned} & \text { Sn63 } \\ & 60 / 40, \text { Sn60 } \end{aligned}$ | Blue Red | $\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$ | $\begin{aligned} & 183 \\ & 188 \end{aligned}$ | $\begin{aligned} & 243 \\ & 248 \end{aligned}$ | High quality work requiring low melting point alloy |
    | $\begin{aligned} & \text { Savbit } 1 \\ & 50 / 50 \\ & 45 / 55 \\ & 40 / 60 \\ & \hline \end{aligned}$ | Green/Red Yellow Crimson/Buff Green | $\begin{aligned} & 183 \\ & 183 \\ & 183 \\ & 183 \end{aligned}$ | $\begin{aligned} & 215 \\ & 212 \\ & 224 \\ & 234 \end{aligned}$ | $\begin{aligned} & 275 \\ & 272 \\ & 284 \\ & 294 \end{aligned}$ | Hand soldering radio, telephone and electrical equipment; batteries |
    | 30/70 | White | 183 | 255 | 315 | Fuses, motors. radiators. lamps |
    | 20/80 | Purple | 183 | 275 | 335 | Lamps |
    | 15/85 | Orange | 227 | 288 | 348 | Lamps |
    | T.L.C. (Tin/Lead/Cadmium) | Pink | 145 | 145 | 205 | Specially low melting point solder. <br> Soldening on Gold |
    | L.M.P. with $2 \%$ silver content (and Sn62 alloy) | Red/Blue | 179 | 179 | 239 | Particularly useful when soldering ceramics or other silver-coated surfaces |
    | P.T. Pure Tin | Light Blue | 232 | 232 | 292 | Used when a lead-free solder is required |
    | High Melting Point (H.M.P.) | Dark Blue | 296 | 301 | 361 | Special high melting point solder to B.S. 219 Grade 5S |
    | 95A | - | 236 | 243 | 303 | High meiting lead -free alloy |
    | 96S (Sn96) | - | 221 | 221 | 281 | Bright strong non-toxic solder. |

    *Soldering iron bit (tip). Solder baths can operate $10^{\circ} \mathrm{C}$ lower.

    Thus the recommended bit temperature for the most common type of solder ( $60 / 40$ tin-lead) is about $250^{\circ} \mathrm{C}$. For HMP solder it's about $360^{\circ} \mathrm{C}$. In service it's necessary to ensure that the soldered joint always remains at least $40^{\circ} \mathrm{C}$ below its solidus temperature, i.e. the point of transition from the liquid or plastic to the solid state. This safety margin is particularly important when the joint is subject to any physical stress or vibration.

    Since all solders are conductive there's no need for the two metals to be joined together to be in contact: indeed the best physical joint strength is achieved when the two surfaces to be joined are about 0.1 mm apart. All types of solder have good capillary properties and will flow into gaps and crevices spontaneously to seal and bond them so long as there's an exit at the end or side to release air and flux.

    ## Physical Forms

    Solder is manufactured in many physical forms. Tra-pezium-shaped bars are available for use in equipment manufacturers' solder baths. Other bulk forms are oval and round sticks, solid wire and pellets. To avoid the contamination and oxidation inherent in casting ingots of solder, the better manufacturers use an extrusion process to produce bulk forms of solder. Mainly outside the consumer electronics industry preforms are used, in the form of rings, gaskets or any other shape of flat insert, for use between two surfaces which are subsequently bulk heated. They can even be made with flux inserts, but are now being superseded by solder pastes and creams, which can be painted on as a "liquid preform". Solder cream is an increasingly important product to which we'll return later.
    The most familiar form of solder to those of us at the bench is of course flux-cored wire. It's available in about twenty different alloys, for different purposes: the ones we use are the general-purpose $60 / 40$ or $63 / 37$ tin-lead alloys,
    ideally with some copper content, and the HMP type. Solder wire comes in 10-24 SWG, of which the most useful for general purpose and conventional PCB work is 18 SWG and for surface-mount and similar fine work is 22 SWG.

    Flux is a vital agent in any soldering operation. Its incorporation in solder wire is the key to easy, reliable jointing. Continuity of the flux is important: if it's missing, joints made with the "bare" solder will not flow and run properly and won't bond as they should. Maybe this is not such a problem if you can see what's happening while you are soldering: but it can happen that a flux-starved joint looks acceptable and has electrical continuity but, remaining dry inside, it's likely to lead to trouble later.
    Especially in natural rosin form (see later) flux is a crystalline and physically rather unpredictable substance in that it's difficult to ensure consistency and continuity in a core. Like seaside rock, solder starts in a very 'fat' form and is progressively reduced in diameter, not by rolling as with candy at Brighton but by being drawn through progressively smaller dies. It's easy to appreciate that a very small void in the flux at the extrusion stage will result in a very long discontinuity in the drawn-down wire.

    Hence the need for several cores of flux in the wire. Provided that each core is extruded from a separate nozzle, the chances of a complete loss of flux at any point are very small. As far as I know, the only manufacturer who makes solder wire with truly separate flux cores is Multicore Solders Ltd. The Ersin type is the best known of these. Other manufacturers' products have a single thread of flux or a pseudo-multicore structure in which the flux cores (which sometimes collapse together at the centre, see Fig. 2) are injected through a single nozzle with five holes in it. From the reliability point of view this process is little different from single-core injection. The other advantage of multicored solder wire is that there's only a thin wall to melt before flux is struck and released, enhancing heat
    
    (a)
    
    (b)
    
    (c) 0811

    Fig. 2: Cored solder: (a) shows the genuine five-core type with completely separate flux channels, (b) shows a single flux core while (c) shows an imitation multi-cored solder in which the flux cores are not truly separate.
    

    Fig. 3: Judging the goodness of a solder joint. If the solder 'blobs up' around the joint it's likely to be dry - good joints have a lean profile.
    transfer and the melting of more solder. This speeds up the hand soldering process.

    When using flux-cored solder wire it's essential that the solder is applied directly to the joint, so that the flux isn't burnt and de-activated before it can act. Ideally the joint should be above the solder's melting point before the solder is applied. This is easy with a blow-torch on a copper pipe, rather more difficult with a soldering iron and an electrical joint. Hold the solder wire on the joint, then apply the iron to both. If more solder is needed, feed it in between the iron and the workpiece. Most defective joints are caused by: dirt/oxides on the workpiece, allied to which is the use of an insufficiently active flux; the flux burning out before it contacts the joint; an insufficient heat supply, for example when the heat is sapped by thermal conduction of the workpiece; and inadequate temperature.

    Whatever the heating method used the quality of a soldered joint can be judged by the angle between the surfaces of the workpiece and the solder. A good joint has a contact angle of $45^{\circ}$ or less, while poor wetting is betrayed by an angle of $90^{\circ}$ or more, see Fig. 3. This applies to all types of joints, whether you're plumbing in a sink or an aerial socket, soldering a mains transformer to a PCB or dealing with a pinhead-sized surface-mounted device. We don't propose to go into the techniques used when soldering SM assemblies here, since they were covered in pages 482-3 of the May 1987 issue and 202-5 of the January 1991 issue.

    ## Fluxes

    The subject of flux has been touched on several times already. When it's in the form of a core in solder wire we don't have to think much about it. If however we have to solder a dirty or difficult metal, rework SM assemblies or cobble up a waveguide or a car radiator, a knowledge of fluxes and their properties is useful.

    Soldering is possible only when the surfaces to be joined are clean and free of oxides. The surfaces of all metals oxidise quickly - almost instantaneously when hot. The job done by the flux is to remove the oxides and other
    contaminants chemically at the instant of soldering, thus facilitating the intermetallic bond between the solder and the workpiece. Flux is also a conductor of heat and a wetting agent - to prove the point, try making a joint with pure solder and a bare iron!

    The most common flux base material is rosin, the gummy or crystalline yellow secretion of pine trees. When molten, pure rosin has the ability to wet both metals and metal oxides, but it's not sufficiently acid to dissolve oxides. Thus it's a very mild flux, suitable only for use when soldering clean copper, silver or tin. It leaves a hard, protective non-corrosive residue on the joint.

    For a more effective fluxing action activators are added to the rosin. They have a corrosive action only at high temperatures. During the soldering operation the reagent is destroyed by combination with the oxide or driven off by the heat. Any that remains recombines with the flux on cooling, leaving a non-corrosive residuc. Activators are often made of halides - compounds of bromine, chlorine, iodine and ammonia. Other activators are zinc and ammonium chloride, ammonium hydroxide and various organic and inorganic acids. It's important to use the mildest flux that can do the job reliably. There are many grades of flux: R, non-activated; RMA, mildly activated; RA, fully activated - up to very corrosive acid and special types whose residues must be cleaned from the work afterwards and which are not suitable for electrical or electronic applications.

    Natural rosin is not a very stable material. Synthetic substitutes, based mainly on benzine-type compounds, are available. This synthetic resin has better stability during reflow and leaves a paler and very inert residue that in most cases doesn't have to be removed from the work. Like rosin flux, the synthetic type is available in several levels of activation. Water-washable fluxes have been developed to avoid the need for CFC solvents where residues must be removed.

    The flux is already present in the solder wires and creams we use, but a pot of general-purpose flux paste is useful to have available for such jobs as soldering aerial sockets to tuners and VCR modulators/boosters etc. A useful liquid flux for use with SM boards is type MB(045 from OK Industries (0703 619841 ). It's specially designed for SM rework purposes, both component removal and replacement, helping to inhibit and remove oxide growth, facilitating heat transfer to the joint and preventing the solder from "stringing" when a component is removed from the board. Another application of liquid or paste flux in repair work is the realignment of skewed SM components. All the joints are generously anointed with flux and the component is heated to the reflow temperature: it will tend to realign itself with the PCB lands due to surface tension in the molten solder.

    ## Solder Cream

    Solder cream is a coarse grey paste (see Fig. 4) which consists of three ingredients: atomised solder particles, a liquid flux and a vehicle in the form of a waxy, oily or jellylike compound. It's been around since the early Seventies and is now a highly-developed product. Virtually all the alloys previously discussed are available in paste or cream form. In fact the permutations of solder-particle size, flux type and vehicle characteristics in production runs to scores. For SM assembly use the most popular alloy is again $60 / 40$ or $63 / 37$ tin-lead, with a liquidus point of around $187^{\circ} \mathrm{C}$. The mix very often contains very small amounts of silver (two per cent) and perhaps antimony ( 0.3
    

    Fig. 4: Solder paste in place: the photograph clearly shows its grainy texture.

    ## per cent).

    The grains of flux powder in solder paste are usually spherical, with diameters ranging from 25 to 100 microns. The finer grains are used with fine-pitch PCBs that have component leg spacing as close as $0.015 \mathrm{in} . /(0.4 \mathrm{~mm}$ - as with the small l00-leg packages now in use. The particle diameter in a typical general-purpose solder paste is screened to $45-75$ micron size. In the manufacture and storage of solder cream it's important that the solder powder acquires as little oxide content as possible, so that the flux action can be concentrated on the work rather than the solder itself. An oxide content of 0.5 per cent is acceptable: 2 per cent is bad.

    The flux used in a solder cream can be of any of the types described so far. For SM use it's generally a rosinbased RMA type or a mildly-activated synthetic substitute that may be water soluble.
    The vehicle, in which the solder powder and flux are suspended, largely determines the physical properties of the cream - viscosity, tackiness and slump. Solder creams have a metal content of between 75 and 90 per cent, the rest consisting of flux and vehicle, both of which are driven out of the joint during the soldering (reflow) process. For dispensing from a syringe, an 85 per cent metal content cream with a more runny consistency (lower viscosity) than that used in manufacturing is generally specified.

    During factory production of SM boards the solder cream is placed on the panel precisely, using a stencil or a screen-printing technique, see Fig. 5. A flexible squeegee is passed over the surface, pushing the solder cream into
    

    Fig. 5: A brass stencil for the precision application of solder cream during SM assembly manufacture. The cream, at the top, is ready to be wiped across the stencil, which is precision aligned with the PCB beneath it.
    the holes: cream used with stencils has to have a higher viscosity and metal content. The SM board is then heated by one of several methods to reflow the solder and connect and fix the components.

    There are several thermal phases in the reflow process, see Fig. 6. The assembly is first brought up from room temperature smoothly to drive off moisture and solvents and prevent thermal shock. Next the temperature is taken above the solder liquidus for about thirty seconds to ensure full and even reflow. The assembly is then allowed to cool fairly rapidly, assisted by fans. The whole process takes about six minutes in an infra-red furnace, which is the most common arrangement. Other methods are vapour phase reflow, in which the SM assembly passes through the hot vapours above a vat of boiling fluorinated hydrocarbon, using the latent heat of condensation to reflow the solder; and finally hot bar and laser heating, with each component dealt with separately.

    One disadvantage of solder cream is its tendency to deteriorate with time, especially at high temperatures. Always keep the container sealed to prevent evaporation: storage should be in a refrigerator, at $5-10^{\circ} \mathrm{C}$. Kept in this way the shelf life of a large pack is about twelve months while that of a small pack, e.g. a 25 g syringe, is around six months. The problem is that after being removed from the fridge the cream needs about 24 hours to acclimatise to room temperature, which is hardly convenient for the sort
    

    Fig. 6: Infra-red reflow furnace operation. The time scale is shown at the top and a graph of the temperature (called the thermal profile) is drawn across the centre.
    

    Fig. 7: Dispensing solder cream from a syringe during an SM rework operation. There are several types of syringe dispenser, operated by muscle power as here, from air pressure or on a 'popgun' principle. To provide a smooth flow some needles and flow tips are Teflon lined.
    of use it gets in a repair workshop!
    Shelf life and storage temperature requirements depend very much on the vehicle/binder used. That adopted by ESP (0234 211582 ) permits storage at room temperature for a shelf life of one year. So this is the most practical type for service departments and rework stations. It comes in 35 and 70 g syringes, which are ideal for hand dispensing. ESP
    also markets dot-maker dispensers and complete rework/repair kits. Another company that markets dispensers, syringes, barrels and needle-tips for use with solder cream is EFD (0582 29 444).

    Correct dispensing of cream on to a PCB requires practice and the right needle diameter. For fine work the narrower the needle the better, but the internal diameter must be at least three times the particle diameter, i.e. no smaller than 0.016 in . For best control the dispenser should be held at an angle of about $45^{\circ}$, see Fig. 7.

    ## Jargon

    Many terms that may be new to the service technician are encountered in the realm of soldering. To help with this a glossary of terms, listing those most applicable to our field of operations, accompanies this article.

    ## Acknowledgements

    My sincere thanks are due to ESP, Multicore Solders Ltd., OK Industries, RS Components and the Technical Support department of Sanyo UK Sales Ltd. for help in the preparation of this article.

    ## Glossary of terms.

    Alloy: A combination of two or more metals to obtain specific properties.

    Creep: Deformation of a solder joint, especially under mechanical load.
    Curing: Preheating of solder cream to drive off evaporants.
    Dispensing: Deposition of solder cream in lines or dots, using a syringe.
    Eutectic: The proportion of the metals in an alloy that produces the lowest melting point of which the combination is capable.

    Fine line cream: Small-particle (less than 75 microns) solder paste for fine-pitch applications.

    Flux: Material used to dissolve surface oxides, improving the flow and wetting of solder.
    Flux residues: Material left on and around soldered joints after the reflow.

    Leaching: Absorption by solder of metal, e.g. copper or silver, from the joint material, workpiece or soldering iron.
    Liquidus: Temperature at which an alloy becomes wholly liquid.
    Low residue: Term applied to fluxes that leave little or no deposit after the soldering or reflow operation.
    Medium: The non-metallic content of a solder cream, including flux, solvent and a vehicle.

    Metal content: Quantity of alloy in a solder cream, expressed as a percentage of weight.

    Preforms: Flat shapes cut from solder tape to fit specific locations.

    R: A pure rosin flux.
    RA: A rosin flux containing activators for use on difficult, dirty or oxidised metals.
    RMA: Mildly activated rosin flux.

    Reflow: The process of melting solder creams or preforms.
    Resin: Flux based on synthetic compounds rather than natural rosin.

    Rheology: The physical/flow properties of a solder cream.
    Rosin: A secretion of pine trees.
    Sequential soldering: The use of solders with different melting points and progressively cooler soldering/reflow temperatures.

    Slump: Tendency of a solder cream to spread from the shape and position in which it was dispensed or printed.
    Solder balls: Discrete balls of solder that separate from the main mass during reflow.

    Solidus: Temperature at which an alloy becomes wholly solid.

    Tackiness: Adhesive property of a solder cream or flux: useful for holding components in position before reflow.
    Temperature gradient: The rate of change of temperature across a surface or in time.
    Thermal shock: Effect on components and joints of rapid heating or cooling. Thermal gradients of more than $2^{\circ} \mathrm{C} / \mathrm{sec}$ can be harmful, especially to multilayer ceramic structures.

    Tombstoning: Graphic description of the way in which small SM components, e.g. resistors and capacitors, jump up when one end reaches the reflow temperature before the other one does during soldering.

    Thixotropic: A solder cream whose viscosity changes according to the rate at which it is disturbed.

    Viscosity: A measure of the resistance of a cream to shear or flow, i.e. stiffness or runnyness.
    Wetting: The spreading ability of molten solder over a joint or workpiece.

    Wicking: Flow of solder away from a joint up a lead or leg, usually due to a temperature differential.

    ## Fault Notes on the JVC HRD110/Ferguson 3V38

    The JVC HRD110 was on sale during the period 1984-5. It appeared in various guises including the Ferguson 3V38/39/49, the ITT VR3605 and the Toshiba V55. The following fault notes summarise our experiences of these machines.

    No results: First check the 500 mA fuse F1 which may simply have gone open-circuit. If a replacement blows check for shorted turns in the mains transformer. The next item to check is the $2 \cdot 5 \mathrm{~A}$ fuse F2 which again may simply be open-circuit. If this fuse has blown check for shorts in the $0 \cdot 01 \mu \mathrm{~F}$ filter capacitors $\mathrm{Cl}-5$ and the bridge rectifier diodes D3-6 (two type 30D2, two type 10E2). Next ensure that relay RY1 is operating and is not open-circuit. Q2 (2SD637) and/or Q3 (2SD880) could be short-circuit. If the power regulator appears to be working correctly check whether CP2 on the servo/logic/audio panel is opencircuit.

    No clock display: Check the 315 mA fuse F3. If a replacement blows check for shorts in D11 (1IE2), Q8 (2SA1020), C20 ( $33 \mu \mathrm{~F}$ ) and/or D12 (HZ30-2L). Alternatively $\mathrm{C} 18(100 \mu \mathrm{~F})$ could be leaky.

    If the l.t. supply to the clock display is present the display itself (FDP) could be faulty. Check the voltages around the UPD7538C chip IC1 very carefully: if necessary check the chip by replacement. Other possibilities here are absence of the reset pulse at pin 1 or the voltage at pin 41. If the latter is missing, suspect IC2 (TL077P) and/or Q1 (DTC114). Check these items by replacement. As Q1 is a digital transistor the resistance readings you obtain will not be what you might expect.

    Will not take tape into the cassette housing: Ensure that the l.t. supply is present at pins $1 / 2$ and $8 / 9$ of the M54544L chip IC204. If not, check whether circuit protector CP1 is open-circuit then if necessary check IC204 by replacement. Alternatively the up/down detector switch could be faulty.

    Cassette housing moves in and out: First check the voltage at pin 39 of the M50740-602SP chip IC201. If this is unstable the resistive network RA204 could be faulty or dry-jointed. Don't confuse this fault with intermittent loading of the tape into the cassette housing due to a faulty front loading motor or broken or damaged cogs on the cassette housing unit.

    Tape loads but no capstan rotation: Check the loading belt which may be stretched and/or the loading switches which may be faulty.

    Intermittent stopping in play/record: This is usually due to a faulty take-up reel sensor or coupler. Check by replacement.

    No fast forward/rewind: The usual cause is a worn reel idler. Alternatively the reel belt may be stretched or cracked and thus slipping.
    No play/intermittent play: The usual cause is a worn rubber drive wheel on the idler arm, the result being no tape take up. If necessary check the take-up spool and the capstan belt which may be stretched or cracked, causing slipping
    and tape looping around the capstan flywheel spindle. If the tape is creased in pleats and looping, check the pinch roller by replacement.

    ## Sound Faults

    Intermittent sound on record: If you get this fault accompanied by coloured patterns on the picture ensure that C 27 has been increased in value from $0.0015 \mu \mathrm{~F}$ to $0 \cdot 0082 \mu \mathrm{~F}$ - this value can vary with model. Alternatively the cause of the fault could be broken leads at the full erase head.

    Intermittent record sound: If this fault occurs along with no picture, check the plugs and sockets associated with the audio/control head. Things to look for here are poor connections, dry-joints or even high-resistance connections. Alternatively the cause of the intermittent sound could be a worn audio head.

    Recorded sound at low level, possibly with excessive treble: Check the audio record signal at pin I of connector CNI. If incorrect, L4 could be open-circuit or there could be dryjoints or cracks on the PCB.

    ## Electronic Faults

    Bent verticals/poor sync with E-E signals: Check the a.g.c. voltage at pin 3 of the M51316P chip ICI very carefully. If it's incorrect $\mathrm{C} 7(0 \cdot 047 \mu \mathrm{~F})$ is probably faulty. Alternatively you may have to check IC1 by replacement.

    Noise bars on playback: The capstan servo is unlocked. Check for a trapezoidal waveform at TP403. If this is missing, check crystal X401 by replacement. Otherwise replace IC403 (HA11751NT).

    Playback o.k. but no fast forward or reverse search capstan drive: You may have to trace through the whole of the capstan servo drive circuit to find an open-circuit component. R $605(10) \mathrm{k} \Omega)$ is a possibility.

    Capstan motor stops intermittently in reverse search: Check the voltages around IC206 (M54544L) very carefully, especially at pin 6 which should go to zero in the reverse search mode. If this voltage doesn't fall to zero, check Q218 (DTA144F) and/or D229 (ISS133), by replacement if necessary.

    No playback luminance: Check the voltages around IC 101 (M51454L) and/or IC102 (HA11738). If an incorrect voltage is found, check the chip by replacement. Alternatively you may find that R111 ( $22 \mathrm{k} \Omega$ ) is opencircuit. In this event there may be no luminance with chroma flashing.

    No record luminance: Check the voltages around $\mathrm{IC102}$ (HA11738) and/or IC103 (HA11724). If an incorrect voltage is present check the chip by replacement. An alternative is leakage in D104 (MA27). You may have to check this on the high ohms range.

    ## Rotel RCD865

    This player uses the later type of Philips laser assembly, similar to that employed in the Philips CD371. The reported fault was very poor sound from cold and very bad background crackling. We found that the sound returned to normal, with no crackling, when the machine had been on for approximately five minutes. Once the sound had returned, no amount of provocation would make it go away again. So fault finding was limited to only a few minutes at a time. As this few minutes wasn't long enough I gave in and spoke to Rotel about the matter. An extremely helpful chap advised me to check the state of the printed circuit under the PDM board, where the connections from the main board are soldered on to the PDM board. I was surprised to find several pieces of very fine print all cracked around the plug connections, as described on the phone. After carefully repairing all the print and resoldering the PDM board back into place we soak tested the machine for several days. All was well. Thank you Rotel, you saved us a great deal of time. M.L.

    ## Sharp DX450EM

    The complaint with this machine was no results. One of the power supply fuses, F202 ( 500 mAT ), had blown. When I replaced it and switched on the machine read the TOC all right but when play was pressed nothing happened. This was due to the fact that the sled motor had jammed, so the laser wasn't able to move towards track one. I gave the top bearing a very small drop of thin oil. This released the bearings and the laser was now able to move across the disc. Track one played o.k., but when I selected say track five or six the sled started to move and the fuse blew again. The motor had to be replaced. When I'd done this the machine still blew the fuse when the sled started to move, but this time it was because I'd used a 400 mA instead of a 500 mA fuse. The new motor and a correctly rated fuse cured the problem and the machine once again produced good results.
    M.L.

    ## Philips CD104

    No sound was the problem with this machine. It read the TOC all right and would go into the play mode, but there was no output. Checks showed that the supply lines were all o.k., and the earth feed-through connections had all been resoldered on a previous occasion. When I applied a small amount of freezer to the SAA7000 interpolator chip IC6514 normal sound was restored. A new chip put matters right.
    M.L.

    ## Sony CDP-M35

    This machine came in with the two circuit protectors PS901 and PS902 open-circuit. After replacing them and switching on they again blew. A look at the circuit diagram showed that these protectors are in the +12 and -13 supplies to the various motor drive circuits. Cold checks then showed that there was a short-circuit in the sled motor drive circuit. I removed the two transistors, Q 605 (2SC3666) and Q606 (2SA1426), then replaced the circuit protectors (type N15) and switched on. As expected the machine powered up and read the TOC. Obviously it wouldn't play because there was no sled drive, but I'd proved the point. Fitting new transistors restored normal operation. After completing the electrical repair I checked the mechanics thoroughly in case an obstruction in the sled
    mechanism could have caused the motor to stall, damaging the transistors. As all was well here and the motor itself appeared to be o.k. the machine was returned to the customer.
    M.L.

    ## Pioneer XRP500

    The ticket attached to this midi system said "no CD". It didn't read the TOC with any disc. In fact it was obvious when listening to the machine that the turntable motor was struggling to achieve the correct speed. I was surprised by this as it's a much later model than the Pioneer range that's now giving turntable motor problems, but after stripping the CD mechanism down I saw that the motor is of a similar type to that used in earlier machines. Fitting a new motor, part number PYY1109, once again produced good results.
    M.L.

    ## Rotel RCD865

    Intermittent output from the left-hand channel was the complaint with this machine. It had apparently given trouble for some time. When the fault was present there was no sound whatsoever from the left-hand channel. The cause of the problem turned out to be poor connections to the audio leads on the right-hand side of the PDM board. The cure is to remove the audio plug from the board and hard wire it. I understand that this is becoming a common fault with these machines.
    M.L.

    ## Pioneer PD5010

    This player would sometimes fail to read the TOC: when it finally did and started to play it would skip. As you will probably know by now, there's at present a high failure rate with spindle motors (PYY1109) in Pioneer players. This player uses a different type however and I didn't suspect it. What I did suspect at this stage was the little brown plastic bearing on the clamper holder (receptacle). On inspecting this I found that a large pit had worn away at the centre, applying friction to the disc clamper and thus preventing smooth rotation of the disc. With a new receptacle (part number VNL268), lubricated and fitted in the clamper holder, normal operation was restored - the machine played the test disc with no difficulty.
    P.J.R.

    ## Philips CD150

    This player was included as part of a midi system (FCD565/35). The symptom was no sound from the lefthand channel. Scope checks showed that the signals in both channels were present at the output from the DACs, also at pin 2 of the LM833N chips 6308 and 6309 . But there was no output at pins 1 and 7 of IC6308. I then noticed that R3362 (100 ) had burnt up and, with the power off, a cold check showed that there was a short-circuit at pin 4 of IC6308. Another cold check was made after removing the chip. As the short-circuit was still present the chip was cleared of suspicion. On tracing back we found that C2382 $(47 \mu \mathrm{~F})$ was short-circuit.
    P.J.R.

    ## Pioneer PDM700

    The original fault symptoms - failure to read discs, not even the TOC, with the disc not reaching full speed (approximately 500 r.p.m.) - were indicative of a faulty spindle motor. But the customer had taken the top off to
    see if he could fix the unit himself and in doing so had created another fault - a very dim display. A few quick checks around the display showed that there was no -26 V supply at pin 57 of the display driver chip IC201. This supply was traced back to Q18 (2SA933S) which had -32 V at its collector, -26 V at its base and +3 V at its emitter. When Q18 was removed it was found to be opencircuit between its emitter and base. I used a BC640 as a replacement. With this fitted and a new PYY1109 spindle motor installed the display lit and the unit played discs without difficulty.
    P.J.R.
    

    352
    Each month we provide an interesting case of $T \mathrm{~V}$ video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

    Late winter is traditionally a quiet time, in the Test Case workshop anyway. So on this Saturday various workshop worthies had taken the day off. Sage was in Wales, getting to grips with the technology of his beloved steam railways; Television Ted was decorating his living room; while Service Manager - well, no one seems to know where he gets to most of the time... Thus it was that Dylan found himself in sole charge of the service department, a situation that can lead to much material for this column! Cherrypicking at the items on the repairs-inwards shelf, he settled for a middle-aged, VHS top-loader VCR whose job card accused it of poor sound. Probably wants its head cleaning thought Dylan. Stuffing himself with bacon-flavoured crisps, Dylan hooked it up and removed the top cover.

    He fed in a prerecorded tape, The Search for Spock, and found that the voices of Captain Kirk, Scottie and the others fluctuated somewhat in volume. There was also a hiss that was not all due to the motion of Starship Enterprise. Going boldly where many men had gone before, Dylan cleaned the audio head with surgical spirit. This did little for the audio reproduction from the tape, which Dylan knew had a good sound track. Looking for further clues, he recorded the workshop test card and test tone while finishing his crisps. Playback of the newlyrecorded sound was even worse than that from the Star Trek tape: the volume level fluctuated between low and almost absent. To get a normal sound level, he had to advance the setting of the monitor TV set's volume control quite a lot. This led to the intrusion of hiss and buzz, especially when the off-tape sound waned. Dylan turned the TV set's volume down, switched the VCR off and went to look for a service manual.

    Following the instructions it gave, Dylan carefully set up the audio record signal and bias levels, using an oscilloscope. The same scope, hooked to the VCR's audio
    output socket, showed that doing this had little effect on the sound output with the machine's own recordings and absolutely none with tapes recorded in other ways. Think again, boyo, Sage's voice seemed to echo from the far land of Gwynedd.

    Dylan thought again, got out his dental mirror and studied the path of the tape past the audio head stack. He saw that while the tape started off in perfect alignment with the audio and control track heads within a few seconds it moved down a fraction of a millimetre. The pinch roller was very shiny and quite worn. So he replaced it with a new one. The tape no longer moved downwards during its passage past the head stack, but with both library and selfrecorded tapes the results were still far from being right.

    The sound waxed and waned over a period of one or two seconds. Because of this, Dylan was reluctant to suspect the electronic circuitry which, so far as he could make out, differed in the record and playback modes. What mechanical problem, he wondered, could cause this fault? Dylan wished he'd picked up the next VCR on the shelf - it had ruined a Keep Fit with Jane Fonda tape. Instead, he picked up the phone and called Ray Ripoff, a rather shady ex-workshop staff member who now runs his own servicing outfit next to the Tandoori Takeaway in King's Road.
    Ray had problems of his own - a bounced bodge job had been occupying him all morning. He advised Dylan to wind the grubscrew at the back of the audio/control head so that the head tilted outwards slightly "to get a good grip on the sound". Dylan did this - to the point where servo lock was lost as there was no control head contact with the tape - but still failed to get adequate sound. What was the real cause of the problem? Was it mechanical or electronic? For the answer and a further item in the Test Case series, see next month's issue.

    ## ANSWER TO TEST CASE 351 - page 363 last month -

    Brightness faults are usually easy to deal with. Last month however Sherlock was having difficulty with a TV set fitted with the Ferguson TX99 chassis (20in. version). There seemed to be no logical cause for its excessively bright picture: the tube's first anode voltage was correct, and the brightness control voltage applied to the colour decoder chip was also correct. The symptoms didn't change when a new decoder chip was fitted, and instead of being high the d.c. levels at the bases of the RGB output transistors were low. It was this latter anomaly that provided the clue to the cause of the fault.
    The RGB output transistors were clearly passing excessive current. If the base voltages were low, something was amiss in the emitter circuits. The emitters of the three RGB output transistors are connected together and taken to chassis via the pnp transistor TR20, which normally provides a stable bias. It had become leaky between its emitter and collector, a replacement providing a complete cure. Sherlock's mistake was to overlook the biasing of the RGB output stages and rush straight back to the colour decoder chip when he discovered that the voltages at the picture tube's cathodes were all low.


    
    

    ## User Friendly SOFTWARE

    FOR IBM COMPATIBLE PC'S RUNNING ON MSDOS FOR THE BUSY TV/VCR SHOP/SERVICE DEPT
    RECEIPTINVOICE PROGRAM $£ 89$ + VAT + P\&P
    OUR TV/VCR RENTAL PROGRAMME IS NOW AVAILABLE

    Phone or write for details
    369 Chepstow Road Newport, Gwent. NP9 8HJ Tel. 0633282556

    # REBUILT COLOUR TUBES 

    First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST
    N.G.T. ELECTRONICS LTD.

    120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535
    Britain's Oldest Established TV Tube Rebuilder
    

    ## CONVERT YOUR STANDARD UK TV's

     TO
    

    ## INCREASE YOUR EXPORT POTENTIAL USING

    The Latest Technology VHF To UHF Upconverter Enables Standard

    ## UHF Set to Recelve VHF/UHF SIgnals

    No Internal Adjustments Required to TV
    No External Power Supply Requlred (Uses TV Set)
    SImple and easy to Install
    Sultable for Potentlometer and Electronlc Sweep Tuner TVs
    

    MINIMUM ORDER QUANTITY 10 PIECES Discount for Bulk Quantitios on Request
    T.W. ELECTRONICS, KENNET BUILDING, WOOLTON HILL NEWBURY, BERKSHIRE. RG15 9UJ. TELEPHONE (0635) 253706 FAX (0635) 254038
    

    ## RELAY

    ## OMAGH LTD COMPUTER SUFTWARE

    ## DO YOU RENT TELEVISIONS?

    ## DO YOU STILL USE A CARD SYSTEM?

    DO YOU FIND IT DIFFICURT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
    If you do then we recommend our computer TV and Video Rental package. This package includes
    t automatic updating of each customer's record

    * alphabetical print-out of each customer's arrears and payments missed
    * total arrears immediately available
    * easy to use and operate.

    NEW HIRE PURCHASE PROGRAMNE NOW AVALABAE AS WEL
    These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration discs available.
    

    WILLIAM J THOMPSON
    Donaghanie Post Office
    Beragh Co. Tyrone
    Telephone Beragh 58214 (0662 7)
    

    AMSTRAD PORTABLE PC'S FROM $£ 149$ (PPC1512SD). £179 (PPC1512DD). £179 (PPC1540SD). £209 (PPC1540DD). MODEMS E30 EXTRA.NO MANUALS OR PSU.
    HIGH POWER CAR SPEAKERS. Sterso pair output 100 w each.
     pair $£ 30.00$ Order ref 30P7R.
    pis 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spane for a microwave oven etc. 250V AC input. expenments or as a spare
    Now only EA.00 iet 4P 157
    MICROWAVE CONTROL PANEL Mains operated, with touch switches. Complete meth 4 digit display, digital clock, and 2 relay ouputs one for power and one for pulsed power (programmable). Ideal ior alil sorts of precision timer applications etc. Now only $£ 4.00$
    ref 4 P151.
    FBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre lengín 57.00 ret 7 P29r
    12V SOLAR CELL. 200 mA output ideal for trickle
    charging
    15P42R
    PASSIVE INFRA-RED MOTION SENSOR. on timer (8 secs -15 mins), 50 ' range with a 90 on timer (8 secs -15 mins), 50 ' range with a 90
    deg coverage Manual overide tacility. Com. deg coverage Manual ovende facility. Comr
    plete with wall brackets, bulb holders etc. Brand new and guaranteed. Now only $£ 19.00$ ret ${ }^{19 P 29}$
    Pack of two PAR3s bulbs for above unit $£ 12.00$ ref 12 P43R
    VIDEO SENDER UNTT Transmit both audio and video signats from either a video carnera, video recorder of computer to any standard TV set within a 100 rangel (fune TV to a spare channel).
    12v DC op. $£ 15.00$ ref 15P39R Suitable mains adaptor $£ 5.00$ ref 12V DC op. E15.00 ref 15P39R Suitable mains adaplor Es.00
    SP191R
    FM TRANSMATTER FM TRANSMMTTER housed in a standard wo
    adapter (bug is mains driven). $£ 26.00$ ret 26 P 2 R adaper (bug is mains driven). £26.00 ret 26P2R
    MiNATURE RADIO TRANSCEIVERS A walkie takies with a range of up to 2 kilometres. Unite measure $22 \times 52 \times 155 \mathrm{~mm}$ Complete mith cases. $£ 30.00$ in ref 30P12R
    FM CORDLESS MICROPHONE.Small hand held unit with a $500^{\circ}$ rangel 2 transmit powerlevels reqs PP3 battery. Tuneableto any FM recoiver. Our price $£ 15$ ref 15P42AR
     bands, FM, AM and LW DXllocal switch, tuning 'eye' mains
    or battery. Complete with shoulder strap and mains lead NOW ONLY £19.0011 REF 19P14R.
    CAR STEREO AND FM RADIOLow cost stereo system giving
    5 watts per channel. Signal to noise ratio better than wow and futter less than . $35 \%$. Neg earth. $£ 25.00$ ref
    25P21R Low co erated units with a range of about 200: Our price $£ 8.00$, a pair ref 8P50R
    7 CHANNEL GRAPHIC EQUALZERplus a 60 watt power amp! $20-21 \mathrm{KHZ} 4-8 \mathrm{R} 12$-14VDC negaive earth. Cased. £25 ref 25P14R. NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ref 4 P44R $2 \times$ C's $£ 4.00$ rof 4 P73R, $4 \times$ D's $£ 9.00$ ref $9 P 12 R$, $1 \times$ PP3 E6.00 ref 6 P 35 SR
    TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition $£ 20.00$ ref 20P32R.
    CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyion pack of $100 £ 3.00$ ref
    3P104R Bumper pack of 1,000 ties $£ 14.00$ ref 14P6R

    ## 1982 CATALOGUE AVAILABLE NOW

    IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} \times 9^{\prime \prime}$ SAE FOR A FREE COPY.

    GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. £39.00 ref 39P1R FM BUG KIT. New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ rel SP158R
    FM MUG Buitt and tested suparior $9 v$ operation $£ 14.00$ ref 14P3R COMPOSITE VIDEO KITS. These convert composite video into separate $H$ sync, $V$ sync and video $12 \mathrm{~V} D \mathrm{C}$. £8.00 ref 8 P 39 R SINCLAIR C5 MOTORS $12 v 29 A$ (thll ioad) $3300 \mathrm{rpm} 6^{n \times} \times 4^{-1} 14^{\prime \prime}$ O/P shaft. New. $£ 20.00$ ret 20P $22 R$.
    As above but with fitted 4 to 1 infine reduction box ( 800 rpm ) and SINCLAIR C5 WHEEIS $13^{\prime \prime}$ oo ref 40P8R
    or $16^{\text {dia }}$ dincluding treaded tyre and wheel $£ 6.00$ ref 6 P20R $16^{n}$ wheel $£ 6.00$ piece poly carbonate. $13^{\text {n }}$ Wheel 86.00 ref 6P20R, $16^{4}$ wheel 86.00 ref 6 P21R.
    ELECTRONIC SPEED CONTROL KIThor c5 motor. PCB and all components to build a speed controiler ( $0-95 \%$ of speed). Uses pulse width modulation. £17.00 ref 17P3R.
    SOLAR POWERED NICAD CHARGER.Charges 4
    AA nicads in 8 hours. Brand new and cased $£ 6.00$ ref
    6 P3
    12 VO
    boat, car, caravan etc. E5.00 ref SP206. but suitable for others. Includes mains adapter leads and book £15.00 ref $15 P 43 R$
    VIDEO TAPES. Three hour superior quality tapes made under licence from the famous JVC company. Pack of 5 tapes New low PHILPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC £ 40.00 REF 4OP10R. MAINS POWER SUPPLY KIT E20.00 REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE E75.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied in will hand 10 up to soout
    15 w at 220 v but with a larger transtormerit will handle 80 watts. Basic 15 wat 220 v but with a larger transtormerit wil hande 80 watts. Bas
    kit $\Sigma 12.00$ ref 12P17R. Larger transformer $£ 12.00$ ref 12P41R. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing proiects on elc. Complete with hools, wire
    New low bargain price only $E 2.00$ rei B2P1 HHGH RESOLUTION 12"' AMBER MONITORI $2 v 1.5$ A Hercules compatible (TTL input) new and cased E22.00 ref 22P2月

    VGA PAPER WHITE MONO monitors new and cased 240 V AC. $£ 59.00$ ref 59P4R
    25 WATT STEREO AMPLIFIERc. STK043. With the addition of a handful of components you can build a 25 watt amplifier. $£ 4.00$ ref 4P69R (Cirauit dia included).
    BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYNG LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827R ALARM TRANSMITTERS. No data avaliable but nicely made complex radio transmitters 9v operation, £4.00 each ret 4P81R. price £20.00
    Pnce $\mathcal{E 2 0 . 0 0}$
    GX4000 COMPUTERS. Customer returned games machines GX4000 COMPUTERS. Customer returned games machines
    complete with plug in game, joysticks and power supply. Retail price is almost $£ 100$. Ours is $£ 12.00$ ref B12P1
    ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a $13 A$ socket in the area to protect. The receiver plugs into a 13A socket anywhere else on the protect. The recever plugs idel for protecting garages, sheds etc. Complete
    same supply. Ideal same supply. Ieal for protecting garages, sheds etc. Complet
    systern $£ 25.00$ ref B25P1 additional detectors $£ 11.00$ ref B11P1 IBM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ ref 5P612
    IBM AT KEYBOARDSBrand new 86 key keyboards $£ 15.00$ ref 15 P 612
    386 MOTHER BOARDS. Customer returned units without a cpu fitted. £22.00 ref A22P1
    COLOUR MONTORS
    AMSTRAD CTM644
    RGB INPUT
    C75.00 REF A75P1

    286 MOTHER BOARDS. Brand new but customer returns so may need attention. Complete with technical manual $£ 20.00$ ref A20P2
    286 MOTHER BOARDS. Brand new and sested complete with technical manual. £49.00 ref A49P 1
    UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. Now and cased, mains Operated. $\mathbf{\Sigma 6 . 0 0}$ ref 6P36R.
    IN CAR POWER SUPPLY. Phugs into cigar socket and gives $3,4,5,6,7,5,9$, and 12 v outputs at 800 mA . Complete with universal 3,4, $, 6,7,5$, and
    spider plug. $£ 5.00$ ret 5PP167R.
    spider plug. 25.00 ret 5P167R.
    RESISTOR PACK. $10 \times 50$ values ( 500 resistors) all $1 / 4$ wall $2 \%$
    ReStal film $£ 5.00$ ref 5P170R.
    MIRACOM WS 4000 MODEMS
    V21/23

    ## AT COMANDSET

    AUTODIAL/AUTOANSWER
    FULL SOFTWARE CONTROL
    TONE AND PULSE DIALLING

    ## £29

    WASHING MACHINE PUMP.Mains operated new pump. Not sell priming $\mathbf{E 5} 00$ ret SP18R
    IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallet. E5.00 ref 5P186R.
    COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board £4.00 a sheet ref 4P62R or 2 sheets for $£ 7.00$ ref $7 P 22 R$.
    STRIP BOARD CUTTING TOOL
    STRIP BOARD CUTTING TOOL.E2.00 ref 2P352R.
    50 METRES OF MAINS CABLE $£ 3.002$ cone black preart in
    convenient 2 m lengths. Ideal for repairs and projects. ref 3 P91R 4 CORE SCREENED AUDIO CABLE 24 METRES E200 Precut into convenient 1.2 m lengths. Ref 2P365म
    TWEETERS 2 $1 / 4^{\prime \prime}$ DIA 8 ohm mounted on a smat
    TWEETERS $21 / 4^{4 "}$ DIA 8 ohm moumed on a smart metal plate for easy fixing $£ 200$ rol $2 P 366 R$
    COMPUTER MICE Onginally made for Future PC's but can be adapted for other machines Swiss made 88.00 rel 8P57R. Atari ST conversion kit £2.00 rel 2P362R
    $61 / 2^{\prime \prime} 20$ WATT SPEAKER Buit in twoeter 4 ohm $£ 5.00$ ref 5P205R
    ADJUSTABLE SPEAKER BRACKETS Ideal for mounting speakers on internal or extemal comers, uneven surfaces evc. 2 for
    $\$ 5.00$ ref $5 P 207 \mathrm{R}$ £5.00 ref 5P207R
    WINDUP SOLAR POWERED RADIOI FM/AM radio takes re chargeable batteries complete with hand charger and solar panel 14 P200R
    240 WATT RIMS AMP KIT Stereo $30-0$ - 30 psu required $£ 40.00$ ref 40 P 200 R
    300 WAT
    300 WATT RMS MONO AMP KIT E55.00 $\mathrm{p}_{\text {su }}$ required ref 55P200

    ## BULL ELECTRICAL 250 PORTY AND ROAD HOVE SUSSEX

    BN3 5OT TELEPHONE 0273203500 MAIL ORDER TERMS, CASH PO OR CHEOUE WITH ORDER PLUSE3 00 POST PLUS VAT.PLEASE ALLOW $\%$ : ID DAYS FOR DELIVEAY
    
    FAX 02732 23077

    ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels. $\$ 16.00$ ref 16P200 ALARM PANELS 2 zone cased keypad entry, entry exit time delay etc. $£ 18.00$ ref 18P200
    MODEMS FOR THREE POUNDSH!
    Fully cased UK modems designed for dialup system (PSTN) no data or info but onty $E 3.00$ rel 3P145
    TELEPHONE HANDSETS
    Bargain pack of 10 brand new handsets with mic and speaker only £3.00 ref 3P146R
    BARGAIN STRIPPERS
    Computer keyboards Loads of switches and components excellent value at $£ 1.00$ ret CD40
    DATA RECORDERS
    DATA RECORDERS
    Customer returned mains battery units built in mic ideal for Computer or general purpose audio use. Price is $£ 4.00$ ref $4 P 100 \mathrm{R}$
    SPECTRUM JOYSTICK INTERFACE
    Plugs into 48 K Spectrum to provide a standard Atari type joystick port. Our price $£ 4.00$ ref 4P101R
    ATARI JOYSTICKS
    Ok for use with the above interface, our price $£ 4.00$ ref 4 P102R BENCH POWER SUPPUES
    Supertly made fully cased (meta) giving 12v at 2 A plus a 6 V supply. Fused and short circuit protected. For sale at less than the cost of the case! Our price is $£ 4.00$ rel $4 \mathrm{P103R}$
    SPEAKER WIRE
    Brown twin cone insulated cable 100 feet for £2.00 REF 2P79R MAINS FANS
    Brand new $5^{n} \times 3^{n}$ complate with mounting plate quite powertull and quite. Our price $£ 1.00$ ret CD41R DISC DRIVES
    Customer retumed units mixed capacities (up 101.41 M ) We have not sorted these so you just get the next one on the shell. Price is only £7.00 ref 7P1R (worth it even as a stippen) HEX KEYBOARDS
    Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ onty $£ 1.00$ each ref CD42R
    PROIECT BOX PROJECT BOX
    S1/2" $\times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ black ABS with screw on lid. $£ 1.00$ rel CD $43 R$
    SCART TO SCART EADS SCART TO SCART LEADS
    Bargain price leads at 2 for $£ 3.00$ ref $3 P 147 \mathrm{R}$
    SCART TO D TYPE LEADS
    Standard Scart on one end. Hi density D type on the other. Pack of ten leads only $£ 7.00$ ref 7P2R
    OZONE FRIENDLY LATEX
    250 ml bottio of liquid nubber sets in 2 hours. Ideal for mounting PCE' fixing wires etc. £2.00 each rel 2P379R
    OUICK SHOTS
    Standard Atari compatible hand controller (same as joysticks) our price is 2 for $£ 2.00$ ref 2 P380R
    VIEWDATA SYSTEMS
    Brand new units made by TANDATA complete with $1200 / 75$ builk in modem infra red remote controlied qwerty keyboard BT appproved Prestel compatible, Centronies printer port RGB colour a ad compos ite output (works with ordinary television) complete with power supply and fully cased. Our prica is only $£ 20.00$ rod 20P1R AC STEPDOWN CONVERTOR
    Cased units that conver 240 v to $110 \mathrm{~V} 3^{\prime \prime} \times 2^{-2}$ with mains input lead
    and 2 pin American output socket (sutabie for resistive loade only) and 2 pin American oupput socket (suttabie for resistive loade only) our pnce £2.00 rel 2P381R SPECTRUM + 3 LGHT GUN PACK

    ## complete with software and instructions C8.00 ret BP5日R

    CURLY CABLE
    Extends from 8 " to 6 feat! D connector on one end, spade connectors on the other ideal for joysticks etc ( 6 core) E 1.00 each ref CD44R COMPUTER JOYSTICK BARGAIN
    Pack of 2 joysticks onty $£ 200$ ret 2P382R BUGGING TAPE RECORDER
    Small hand held cassette necorders that onty operate when there is sound then tum off 6 seconds atter so you could leave it in a room all day and just record any thing that was said. Price is $£ 20.00$ ref 20P3R IEC MAINS LEADS
    Complefe with 13A plug our price is only $£ 3.00$ for TWOI rel 3P148R COMPUTER SOFTWARE BARGAIN
    10 cassettes with games for commodore 64, Spectrum etc. Our bargain price one pound! ref CD44R
    NEW SOLAR ENERGY KIT
    Contains 8 solar cells, motor, toots, fan etc phus educational booklet. Ideal for the budding enthu siast! Price is $£ 12.00$ ref 12P2R
    POTENTIOMETER PACK NO 1
    30 pots for $£ 3.00$ ! ideal for projects otc. Ret CD45A
    286 AT PC
    286 MOTHER BOARD WITH 640K RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KE YBOARD AND POWER SUPPLY £139 REF $139 \rho_{1}$ (no ifo cards or drives included) Some

    35MM CAMERAS Customer returned units with buith in flash and 28 min lens 2 for $£ 8.00$ ref 8P200
    STEAM ENGINE Standard Mamod 1332 eng ine comp
    ret 30 P 200
    TALKING CLOCK
    LCD display, alarm, battery operated
    LCD display, alarm, battery operated
    Clock will announce the time at the Clock will announce the time at
    push of a button and when the
    alarm is due. The alarm is switchab
    trom voco to a cock croming! 14.
    HANDHELD TONE DIALLERS
    Small units that are designed to hold over the mouth piece of a Small units that are designed to hold over the mouth piece of a
    telephone to send MF dialling tones. Ideal for the remote control of telephone to send MF dialing rones. answer machines. 65 MICRODRIVE SYSTEM
    Complete cased brand new drives with cartinge and sotiware 10 times faster than tape machines works with any Commodore 64 setup. The orginal price for thes was $£ 49.00$ but we can offer them

    ## to you at only E25.00! Ret 25P1R <br> USED SCART PLUGS

    Packof 10 plugs suitabie for making up leade onty $\mathbf{~} 5.00$ ref 5P209R C CELL SOLAR CHARGER
    Same style as our $4 \times A A$ charger but holds $2 C$ colls. Fully cased with flip top lid. Our price E6.00 Ret 6P79R

    ## INCREASE YOUR INCOME

    Join the thousands of companies who have increased their profits by adding the credibility of the Guild of Master Craftsmen to their sales message; and reduced their costs by taking part in the Guild's many money-saving schemes. For full information:

    CALL (24 hours a day) FREEPHONE 0800525285

    ## Or send for details to

    The Secretary, The Guild of Master Craftsmen, 166 High Street, Lewes, East Sussex BN7 1XU

    Company Name
    Address

    Postcode $\qquad$ Tel. No.

    Craft/Trade
    Number of Employees
    
    

    Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
    Tel: 0429837100
    Fax: 0429837101
    

    WE SERVICE, SUPPLY, UPGRADE AND INSTALL ANY MAKE OF SATELLITE TV EQUIPMENT
    

    THE ULTIMATE IN MOTORISED SATELLITE RECEIVERS
    

    | Receivers | Decoders | Splitters | Aerials |
    | :--- | :--- | :--- | :--- |
    | Dishes | Leads | Plugs | Masts |
    | Actuators | Connectors | Amplifiers | Cable |
    | LNBs | Wall Mount | Clips | Brackets |
    | Polarators | Stands | Fittings | Lashings |

    

    COMMERGIAL INSTALLATIONSMMUITT-USER SYSTEMS, DOMESTIC IWSTALLATIONS HOTELS, FLATS, PUBS \& RESIDENTLAL HOMES ETC ETC

    ## PACE 9200 IRD 85CM Motorised System £575 installed

    | FIXED SYSTEMS |  | MOTORISED SYSTEMS |  | ASTRA SYSTEMS |
    | :--- | :--- | :--- | :--- | :--- |
    | TURKISH | YUGOSLAVIAN |  |  | MONTEREY 40 |
    | ITALIAN | EGYPTIAN | DRAKE ESR 250E |  | NEC 4012 IRD |
    | FRENCH | RUSSIAN | MASPRO SRE100/SAC90 |  | AMSE 9200 IRD |
    |  |  |  | AMSTRAD 400 IRD |  |

    SIGN UP FOR IMMEDIATE ACCESS TO SKY MOVIES WITH US

    ## RETAIL \& TRADE MAIL ORDER <br> FAX: 0818044609

    

    SHOWROOM 543 HERTFORD RD, ENFIELD EN3 5UQ

    ## TUBES

    ## 1000's of C.R.T's

    in stock

    ## WHILE STOCKS LAST

    ## about tubes.

    Add carriage and VAT to all prices
    

    EXPRESS TV
    The Mill, Mill Lane, RUGELEY, Stafís WS15 2JW
    Tel: 0889-577600
    Fax: 0889-575600
    from £29

    SKIPPERS LANE, MIDDLESBROUGH CLEVELAND TSSSUR
    Wh kis. UNB Type

    Ior TDF1, RUSAT OIYMPUS and allear D2mac tonsisula
    20 pre-set Channels
    I Fuly Tunable Channe
    A) Audio Channels Accessable

    SYSTEM 2
    As sysieml bur wim
    the three TV3's on ASTR
    NRK DMAC Built in for Tele $x$ DMAC

    ## MOTORISED ANTENNA KITS

    ki comprises. Antemin on Dolar hecd, win wall or patio mount superiock actuator (H-H on 80 cm ). polarisor, LNe. Compretiensive selting up instructions, and mrint out of atl satelite azimuth and elevation datio Antenna Diameter

    |  | 80 cm | $90+$ | 1.25 | 1.50 | 1.75 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Single band 1.00b Max. | \$199.00 | 5339.00 | \$379.00 | \$499.00 | 5559.00 |
    | Dual band 1.1dt Max. | \$269.00 | \$425.00 | \$479.00 | \$555.00 | \$615.00 |
    | Triple band 1.2 ab Max. | \$329.00 | S499.00 | 5535.00 | \$059.00 | \$720.00 |
    |  |  |  |  |  |  |
    | SATELLITE SYSTEMS |  |  |  |  |  |
    | SKIPPERS LANE, MIDDLES CLEVELAND TSSS | UGH | FAX: 0642-440927 |  |  |  |

    maces include vat pap extra
    
    

    Suppliers of Surplus TVs \& Videos to the Trade CENTREVISION HOUSE SLOPER ROAD LECKWITH• CAZDIFF.CF1 8AB

    ## ALL SIZES, ALL MAKES TELETEXT INCLUDED NON FST $£ 38$

    # Phone: 0222344754 

    ## WE WON'T BE BEATEN ON TV AND VIDEO ...

    CALL IN PERSON FOR THE BEST DEAL AROUND.
    

    EXPORT ENQUIRIES WELCOME - ALL PRICES + VAT

    ## W. TREE TRADE TVs

    It's just like the old days again. Lots to choose from. Ex rental TVs.

    ## Many makes available.

    ## VERY LARGE SELECTION OF FST AVAILABLE Come \& Look Around

    ## Ex Hotel Portable TX9

    ## E45 WORKING

    Ex Catalogue Stocks available: Midi Systems, CDs, TV, Video, Portables, Walkmans etc.

    ## Telephone for details

    ## SATELLITE SYSTEMS WITHOUT L\&B £45. WE CAN QUOTE FOR OTHER COMPLETE SYSTEMS

    ## NEW \& B GRADE STOCK

    Major Brands Available

    BRAND NEW BOXED

    21" FST R/C Multisystem. A great set for the Irish. £135

    NICAM VIDEOS FASTEXTTVs, ETC

    UNIT ONE, SUNSHINE MILLS, WORTLEY ROAD, LEEDS 12.
    Telephone: 0532638804 Fax: 0532310275
    
    

    NOW IN STOCK 14" REMOTE PORTABLES £100 INC VAT (BOXED) $10^{\prime \prime}$ MAINS/BATT PORTABLES $£ 100$ + VAT (BOXED)
    

    HOCKLEY DISCOUNT TELEVISIONS
    V.H.S. VIDEO HEADS

    FROM £6.25 $\rightarrow$ AND LOTS

    Unversall Remoricolital MeNOREXA ${ }^{\prime}$
    Pre-Programmed only $£ 15.95$

    ## TWIN-SPEE ' B ' GRADE

    VIDEO'S AT LOW, LOW PRICES $\star$ PLUS MANY MORE: OFFERSVIDEO SENDERS Only $£ 4.75$ (NON-CERTFIED FOR U.K.) P.I.R. FLOODLIGHT E18.50 SatELIITE DISH INSTALLATION KIT $E 5.95$

    ALSO $\rightarrow$ ARRIVING DALIY - FLASH 'B' GRADE
    TELEVISIONS VIDEOS, WALKMANS
    TELEPHONES, ANSWERING MACHINES, MIDI-SYSTEMS, CAR RADIO'S, ETC

    ## GIVE JAZZ A BUZZ

    140 Hockley Hill, Hockley, Birmingham B185AN
    Tel: 021-515 2003
    Fax: 021.515 2004

    ## TV LINE OUTPUT TRANSFORMERS <br> PHONE 081-948 3702 FAX: 081-332 0583 <br> <br> ALBA AMSTRAD . BUSH . DECCA DORIC . BLAUPUNKT <br> <br> ALBA AMSTRAD . BUSH . DECCA DORIC . BLAUPUNKT FERGUSON FIDELITY GEC GRUNDIG GRANADA FERGUSON FIDELITY GEC GRUNDIG GRANADA HITACHI HINARI INDESIT . ITT . KIMARA NIKKAI HITACHI HINARI INDESIT . ITT . KIMARA NIKKAI MATSUI MURPHY OSAKI NORDMENDE LOEWE-OPTA MATSUI MURPHY OSAKI NORDMENDE LOEWE-OPTA REDIFFUSION PYE PHILIPS . SANYO . SAISHO . SHARP REDIFFUSION PYE PHILIPS . SANYO . SAISHO . SHARP SONY. SOLOVOX SUSUMU TANDBURG . TELEFUNKEN SONY. SOLOVOX SUSUMU TANDBURG . TELEFUNKEN THORN TRIUMPH HUANYU GOLDSTAR BINATONE

    THORN TRIUMPH HUANYU GOLDSTAR BINATONE