

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

The B and 0 39XX Series Chassis Satellite Dish Alignment Meter Electronic Stethoscope Testing Sony's Mini Audio Disc System Periswitch Test ReportoDX-TV VCR Clinic•TV Fault Finding

On sale August 21st

COPYRIGHT

(C) Reed Business Publishing Ltd., 1991 Copyright in all drawings, photographs and articles published in Television is fully protected and reproducution or imitation in whole or in part is expressly forbidden. Al reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those curent as we go to press.

CORRESPONDENCE

All correspondence regarding advertise ments should be addressed to the Advertisement Manager, 'Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Dept., Reed Business Publishing Group, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vols. 37 and 38 are available at $£ 1$ each from the Editorial office (address above). Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1$ each.
Binders that hold twelve issues of Television are available for $£ 4.50$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 21.60$ in the UK, £25.50 overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to Reed Business Publishing Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them.

this month

785 Leader
786 Letters
790 Long-distance Television
DX conditions and reception and news from abroad. Maxview distribution amplifiers reviewed.
793 Meter Precautions
Meter readings can be misleading, depending on the
circuitry being checked. Some points to watch out for.
794 Satellite Dish Alignment Meter
with a commercial model. It's battery powered and
demodulates the sound signal to give certain satellite identification.
795 Next Month in Television
796 CD Player Casebook
Reports from Mike Leach, V.W. Cox and Ronald Aranha.
798 Teletopics
News, comment and developments.
800 VCR Clinic
Reports from Philip BlundelI, AMIE|E, Ian Bowden, Chris Avis, Ed Rowland, Eugene Trundle, J. Edwards, Nick Beer and John C. Priest.

Roger Bunney

George Wilding

802 The New BBC Identification Symbols
Keith Hamer and Garry Smith
The inside story of how the BBC's identification symbols came to be changed earlier this year.
804 The B and O 39XX Series Chassis
Nick Beer
As usual with a new chassis from B and O, there are
many interesting innovations. An account of set operation,
the power supply and powerfail system, the timebase
generator section, the use of menus and other features.
808 Fifty Years in Radio and TV, Part $9 \quad$ Harold Peters
Retirement proved to be less of a problem than expected.
Before and after the great day.
809 Electronic Stethoscope Testing
P.J. Ratcliffe

Dealing with intermittent faults is always a problem. P.J.
Ratcliffe found that checking for noise is a great help.
hence the electronic stethoscope.
810 What a Life!
More strange customers and helpful tips.
814 TV Fault Finding
Reports from Philip Blundell, AMIEIE, Ed Rowland,
Richard Flowerday, John C. Priest, Stephen Leatherbarrow,
Michael Dranfield, Steve Cannon, Roger Burchett and J.K. Carter.
816 Sony's Mini Disc Format
George Cole
Technical details of the latest audio format. The discs can be erased and re-recorded.
818 Test Report: The Periswitch Link Unit
Eugene Trundle
This useful item has been designed to simplify video equipment interconnection, providing automatic switching between sources.
820 Service Briefs
Official guidance on Samsung VCRs.
822 Test Case 345

IDLERS \＆PULLEYS REPLACEMENTS				IDLERS \＆PULIEYS REPLACEMENTS－Cont．				VIDED MOTDRS				
AMSTRAD VCR7000	Reference			mational								
		150280	£1．50	Nv322．NV600．Nv688．	IDLER UNIT	VXPP463	¢3．00	amstrad	REEL MOTOR	£17．00		
axal				NV777，NV788 ${ }_{\text {N／333 }}$				VCR 7000				
VS1－2．VS4－S．VS15 VS1－2，VSA－5，VS15 v9700 VS $125,126,155$, VS165，240，244， VS245，247，248， VS250，512，515， 516	$\begin{aligned} & \text { FF-REW IDLER } \\ & \text { T-UP IDLER } \\ & \text { IDLER } \\ & \text { ILLER ASSY } \end{aligned}$	M132773	¢4．50		IDLER ARM	VXL0997	23.60	FERGUSON \＆JVC				
		BV327815	¢6，00	NY333，N3666	IDLER UNT	XXP040	¢0．75	PU 45979，3V16．3V22．HR23300．HR3660 PU 55371 V, 3V35．3v36．3V38．зV39 8943，8941．HRD1 10，HRD120．HRD121． HRO225 PU $46414,8904,8922$ ．HR3300．HR3320．	capstanmdtor CAPSTAN MOTOR	¢21．00		
		BV321979	${ }^{26.00}$	NV333，NV366	PLAY IDLER	VXPCO433	${ }_{5} 3^{3} .00$			¢19．50		
		M 2366960 N 2	£11．00	NV333，NV3000 NV333，NV2000，NV3000	ACTION GEAR LOAOING GEAR	VXP0325	$¢_{60,60}$					
					LOAOING GEAR		£2．00		DRUM MOTOR	$¢ 19.50$		
				NV1800 N333，Nv2000 Nv3000，INTERMEDIATE GEAR		VXG0017	£0．65	Pl 46414.8904 .8922 HR 33300 HR3320． HR3330，HR3360．HR3600．HR3660				
				NV333	CAM GEAR	WXC0 58	$\underline{1.00}$	PU $51381 \mathrm{~V}, 3 \mathrm{VV99}, 3 \mathrm{~V} 30,8930$ ，HR7200． HR7300	REEL MOTOR	$¢ 26.50$		
				NV366	IDLER ARM	VXL0997	${ }_{53.60}$					
FERCUSOM				Nv370，nv430，nv730，	IDLER ARM	VXP052	\＄1．70		Capstan motor	£29．00		
$3 \vee 16-22$	T－up iderer	PU47752	¢4．50	NVG7．NvG10．NvG12．					8950．8951，FV10B，FV1 1R，FV12L FV13H，FV208，FV21R，FV22 HRD170			
3V16－22	T．UPIDEER	PU49280	¢6．30							HRD 180，HRD230，HRD370，HRD430		
	REEL IDLER	PU48967	$¢ 3.00$	NvG18Nv370Nv730，Nv830，nver	CAM GEAR	VGGO200	11．20	PU 58636W，3V58，3V59，3V64．3V65 8950，8951．FV10B．FV11R，FV12L， FV13H，FV14I，FV20B，fV21R．Fv22	ree．motor	¢18．00		
3Ү31－32，3ン35												
3 V 23	ROLLER ASSY T－UP IDLER	Pu49042A51402	$£ 4.00$$£ 1.45$									
3V22－30，3v31－32，				NV730，Nv830，Nv850 NVI30	IDLER UNIT	WPP5581	¢2．50	FV13H，IV14I，FV20B，FV21R．FV22L． HRD170．HRD180．HRD230．HRD370				
3v35－36，3V38－39，3v49	，	Pu151380		Nv2000，Nv3000 NY2000	IDLER UNNTIDLR UNIT	VXPP0331VXP0329	$〔 1.20$ 11.20 1	HR0430，HRO530		¢8． 00		
3V29－30，3v31－32	T－UP CLUTCH		¢2．60	NV2000．Nv3000				3V43． 3 V44．3V45．3V48，3v53，				
3V35－36，3V38－39， $3 \vee 49$ 3V35－36，3V38－39， $3 V 49$	ReEl ider	Pu55374	£2．85	NV2000．N33000	CAM GEAR	VDGOO69	£1．00 ¢0．60		loading motor			
	T－UPCLUTEH IDLER ARM	PU55373 PU58645	£2．25	Nv2000，Nv3000 NV7000，7200，7800	ACTION GEAR IDLER UNIT	$\begin{aligned} & \text { VDG0016 } \\ & \text { vXP0344: } \end{aligned}$		8948．HRO140，HRO150，HRD455．HRD565 HRD725．HRD755，HRP50，R73AF				
3V58－59，3V64－65， FV10－11．FV12－13，FV14			£2．50				$£ 0.60$					
				NV7000，7200， 7800	CLUTCH IDLER UNIT	W4P0343	¢5．50	mITSUBISHI				
3 V 42	Clutchassy	PU55822	£13．50	N88400，Nv8600．		VXP0245	E1．20	288P02801，HS300，301，302，310	motor reel spooling	533.50		
$3 V 44$$3 \times 42,43,48,53,56$	CLUTCH ASSY	Pu57658	£11．50	Nv8610，Nv8620				288P02806，HS303，304，320，330， 700 288P03401，HS303， 700	MOTOR REEL TAKE－UP GEN	831.50E21．00		
	T－UPCLUTCH SUPPORT CLUTCH	PU56043－1－4 PU56044－t－5	$\begin{aligned} & £ 2.80 \\ & £ 2.80 \end{aligned}$	NV8600，NV8610，NV8620PLAY IDLER		VXP0243 VXP0343 VXP0488 VXP076	$\begin{aligned} & £ 1.20 \\ & £ 5.50 \\ & £ 3.50 \\ & £ 30 \end{aligned}$					
3V42，43，48，53， 56				NV8620 NV600	CLUTCH			mational				
				NVG21－25，NVG40－45	Pulleyunit			MYN 135V5L，NV332，NV333，NV340，				
FISHER				ORIONVH200－201			£3．50	VEM0212．NV73ONV770	REEL MOTOR MOTOR REEL GEN	$\underset{\substack{£ 13.50 \\ c 30}}{ }$		
FHHP520，FVHP530FHPP615	fr－REW PULLEY COMP IDLER ASSY GEAR IDLER ASSY REELT－UPASSY GEAR IDLER ASSY	H1638531 F1430420400300 F11430490400900 F11430410400900 F1430490402400	$\begin{gathered} \varepsilon 1.00 \\ £ 3.30 \end{gathered}$									
				VH555－700 VH844－900	DLER		53.50					
FVHP840 FVHP905，906， 908 ．			¢5．5086.50	VH1000－1500，VH1800．		850A200004	£6．50	4－529V－10800（RM1T），VTC5000，VTC5150	reelmotor	¢6．30		
				VH535－630 VH635－640	10 LER	850A200005		SHAPP				
FVHP910． 916			£5．20					RMOTV 1008GEZZ，VC200．VC381，VC334，	REEL MOTOR	¢13．50		
FVHP975，990，999，	IDLER	F11430420400700		2h893－1440，Vh2500－								
FVHP5000， 5100				VH5010				RMOTV 1007GEZ7．VC387．VCA83，VC48	REEL Motor	¢16．50		
GOLLSTAAR	IDLER	435038 A	¢2．50	PHILIPS		$\begin{aligned} & 52220334 \\ & 40340162 \end{aligned}$	¢2．50					
				DV464，VR6462，VR6463．				VC477，VC481，VC482，VC488，VC496．				
				VR6660，VR6860				VC500．VC571．VC581，VC582，vC583，				
				VR66460．VR6520， 6920	IDLER ARM		£1，70	VC584．VC5F3，VC8481．VC8581				
нIITACH				D8532，VR6542，VR6843	REEL IDEER		¢7．50	Sowr				
	FF－REW DLER	688697	81.50	SakYo				SHF 11000 SLC7	CAPStan motor	925.00		
	PLAYIDIER	V－6861482	93.20	VHR110，VHR1300，	IDEER	1430662747730	\｛5．00					
V11－33，V163．64，VT14，	CLUTCH ASSY	6879515	¢7．50	VHR1500				CASSETTE HO	OUSING			
17，19，38，57，VT86， 88				VIC5000．VTC5150	FF－REWIDLER	$1430741 T 20001$	¢3．00	FERGUSOW \＆JVC				
V $1120-220$	CLUTCH ASSY	6886824	97.50	VIC9100，VITC330	DLER	1430551701400	$\{1.20$	3V38，3V39，8943，8944，8951，3V35，3V36，	HRO110，HRDi20，			
v18000－8300，	FF－REW IDLER	6413663	¢2．80	VTC9300	fF Roller assy	1430547700200	£2．20	HRD 1211. HRD225		98.00		
V18500－8700				VICM10－20	REEL DRIVE Pulley	$1430662 T 10350$	¢5．00	3V42，3V43，3V44，3V45，8945，8947，HR014	（40．HRD141，HRD 50,			
V18000－8300，	PLAY IDLEER	6414221	¢3．60	VHR2100，VHR2300	IDLER	6130374899	£5，00	HRDC055，RRD725		E4．00		
V18500－8700				VTC5000，VTC5150	PULLEY	143－0－662T－01201	¢5．20	8948，8950，FV10B，FV12L，FV13H，FV14T，F	2208，FV21R．FV22L．			
V18000－8300	fF－REW PULLEY	6383531	c0． 80	VICM10	Pulliey	143－0．662T－10350	¢5．50	HRD230 HRDO 30 HRO530 3V58，3V59，3V64，3V65 FV11R．HRD170．H		$\begin{aligned} & 54.00 \\ & \boxed{54.00} \end{aligned}$		
V $8500-8700$ V $9300-9500$	FF－REW IDLER	8681471		SHARP								
V79300－9500	PLAY IDLER	6861482	$\underline{53} 20$	VC651，VC681，VC685	IDLER ASSY	NPLVV01076EZ2	โ6，15	VIDEO LA	MPS			
VT9300－9500	IDLER	681505	$\underline{530}$	vC7300．VC7700	PLAY YOLER KIT	NPLYV0041＋		UNIVERSAL VIDEO LAMPS 12 VV 60 mA （ 330 mm	WIRES）	${ }^{50.30}$		
－	IDLER	687043	$¢_{¢ 3.80}$			NDAV1007	£5．00	PANASONIC VIOEO LAMPS		¢0．50		
VT11－33，V163－64	FF－REW IDLER	6886971	${ }^{1} 1.50$	VC387，VC383．VC386	ERR	NDLCOO56EEZ	1．50	SONY FLYBACK TR	ANSFORMERS			
HINARI				VC9300，Vc9500 VC9700				$\begin{array}{ll} \text { Part No. } & \text { Models } \\ 1-439-216-00 & \text { KV-2002E, 2010E, 2200E, } 20 \end{array}$	15．1820E．2010SE	Price		
WXL3，VXL20	REEL IDLER	40000009	£1．50	VC300．VC387，VC481，	IDLER	NIDL0066E23	$¢ 1.50$	W56．11 W．2012ME．2016ME． 2015 IS	ME，2010ME	£14．00		
				VC482．VC483，VC496，				${ }_{1}^{14392886-21} \mathrm{KV}$－2215UB，2277uB， 2215 E	，2215FE，2212EX，2215ET	E30．50		
1 T				VC51，VC585 78	PFEIDER				2705E．2796U日．2720EC	£40．00		
VR3905，VR3906	T．UPIDLER	PU51402	£1．45	VC793 VCT72	REEL ILER	NPTVOTiuez	27.00	K－2062E（ESP）		$\underline{52.75}$		
VR3906 ${ }_{\text {VR3913 VR3943 }}$	REEL IDLER REE IDIER	PU55374	${ }_{5}^{52} 8.85$	SAISHO					CPS－14CD3，CPV－14CD2	£22．00		
				VR1100．VR1200，	Clutch	850a20000	¢6．50	1－439－332－21 W－2756，2730EC，2730FE， 2	764EC，2752UB，2752F	${ }^{53} .00$		
JVC				VR2500．VR3300．				KV－1882ME3，1882HK，1882，	S，16TR1，882ECPS ，， 1770 R	921.50		
HR330，3660， 4100	T－UP IDLER SML	PU49280	¢6．00	VR3500，VR3600				1．439－363－21 $\begin{aligned} & \mathrm{KV}-19 \mathrm{HT1A} \text { ，19FK1MT，18G2 } \\ & \mathrm{KV} \text {－2092UB，20964B }\end{aligned}$	，1602M7，1602GE，ADM－16B	E22．00		
HR7200，HR7600，	T．UP CLUTCH	Pu53662 ${ }^{\text {a }}$	¢3．00	SAMSUMG								
HR7650，HR7655				V7510－511．VT520－610，	IDLER WHFEL	65224704220	${ }^{1} .50$	NATIONAL LINE OUTPU	T TRANSFORMER			
HR7200，HR7600	REEL IDLER	PU48967	¢3．00	VT611－616．V662－621．				TLF 146－118		ع19．00		
HR7650，HR7655，								TLF 15542F		¢25．00		
HR7700	ROLLER ASSY	Pu99042A	£4．00		IdLer complete	69000250330	£4．50	TLF 14568F		${ }^{226.00}$		
HR3300，3600， 4100	T．UPIDLER LRG	PU47752	£4．50	VT611－616，V6 620.621	－	69002030	24.50	TLF ${ }^{\text {4 }}$ 4667F		${ }^{226.00}$		
HR7200， 7600,7650	T－UP IDLER	PU51402A	81.45					TLLF 14715 F		577.00 520.00		
HRD 120－121，HRD225				SOMY								
HRD110，HRD $120-121$ ，	T－UP CLUTCH	Pu5573	£2．25	${ }_{6} 6$	IDEER KIT ASSY	A 6706391	${ }^{\text {¢ }}$ 3 50	NATIONAL TRAN	SFORMERS			
HRD225	ras				IDLER ASSY	$\times 36533100$	${ }^{13} 80$	TLF 66098		923.00		
HRD 110 ， HRD 120 － 121 ， HRD225	IDLER ARM	PU55374－3－8	$¢ 2.85$	$\begin{aligned} & \text { SL-C5.SL-C7 } \\ & \text { SLL-C6 } \end{aligned}$	REW PULLLEY REW PuLLEY	A－6706－348－B A－6706－391－A－B	$\begin{gathered} \varepsilon_{4} 3.00 \end{gathered}$	HITACHI TRANS	FORMERS			
					ASSETTE DC MOT	ORS		2334274		£20．00		
MAISUI				9V MOTOR 12VCW MDTOR				CEANDA	A 5			
W×730，735，750，755，	CLUTCH	850a00005	¢6．50	12VCWMDTOR								
VX810，820，880，990				13.2 V CW MOTOR			$\sum_{\varepsilon 2.90}$	R ADDRES	\therefore PH0			
				13.2 V CCW MOTOR			¢2．90	ABER	\bullet			
					ASSETTE TAPE HE	ADS						
HS306，307，318，319，	gear assy	522 P 0201	¢6．25	mONOHEAD			¢0．90	ASE				
HS410， 710				STIEREO HEAD			¢1．5					
				auto reverse head			${ }_{5}^{\underline{E} 2.30}$		A			

VIDEO HEAD TESTER

1. Mechanical Position of Pointer
2. Scale Plate
3. Pointer Adjusting Screw
4. Pointer
5. Measuring Socket
6. Power ONOFF and Battery Check Switch
7. Range Selector Rotary Switch
8. CAL. ADJ (calibration volume)
9. Measuring Clip

*****STOP PRESS*****

PHILIPS PRESSURE ROLLER ASSEMBLY

for the following models: DV186, 190, 286, 562, 761, VR6180, VR6185, VR6285, VR6382, VR6367, VR6467, VR6468, VR6870, VR6182. 6290, 6291, 6293, VR6393, VR6468, VR6670, 6760, 6761, VR6970
Part Number: PS 403-40205 Price ...625p

SOLDERING IRONS

Wooden Handle
30 Watt 220/100 Volts Soldering Iron...... 3.50
40 Watt 220/100 Volts Soldering Iron...... 3.50
60 Watt 220/100 Volts Soldering Iron...... 3.50

PRICE

YF-225 VHS
YF-225B BETAMAX
$£ 30.00$ + VAT $£ 29.00$ + VAT

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND Telephone: 081-900 2329 Telex No: 932885 (Sunmit) Fax: 081-903 6126
Access \& Visa Card accepted. Open Monday to Saturday

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 5000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send $£ 1$ P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed. Prices quoted are subject to stock availability and may be changed without notice.
 The Largest Database of CD, TV and Video Repair Tips Information In Europe Available On-Line or in Books and NOW.....

NEW Stand Alone PC Version

Purchase the Whole System or just one Manufacturer
It's Fast and Easy to use
There are no Hidden Costs

Updates available

Suitable for any IBM compatible PC
You can even enter all your own Repair tips
"No more Bits of paper"
STILL AVAILABLE:
13 Major manufacturers

The Books
Or the On-Line System
70,000 Repair Tips
3,000 Models
180 Brands
Tel: 0272-724475
Euras International Limited Heston House 79 Emery Road
Brislington
Bristol BS4 5PF England

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All, with the exception of the HM 1005 , incorporate a uselul COMPON ENT TESTER. Size - all models $3885 \mathrm{~mm} \times 145 \mathrm{~mm} \times$ All supplied with 2 PROBES, a COMPPEHEMSIVE MANUAL and a YEAB
HM2O3-7 20MHz STANDARD

SPECIFICATION

2 Channels
Bandwidth: DC - 20MHz Sens: Ch!, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC -40 MHz Active TV-Sync- Separ Active TV-Sync
Variable hold-off Trigger LED indicator Calibrator: 1 KHz Square wave Component tester
Plus many features
Price £338.00 + £59.15 V.A.T. FREE Specialist Carrier Delivery
Specifications
HM604 60MHz UNIVERSAL
SPECIFICA

Bandwidth: DC - 60 MHz
Simebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Tims.
*Triggering: DC -80 MHz
Active TV-Sync-Separator

- After delay trigger

Sweep delay
Trigger LED indicato

- Trigger LeD indicato

Component tester
Price $£ 610.00+£ 106.75$ V.A.T. FREE Specialist Carrier Delivery
HM1005 100MHz UNIVERSAL 3 CHANNELS-UPTO 6 TRACES SPECIFICATION 3 Channels
Bandwidth: DC. 100 MHz Sens: Ch.1. Ch.2, Ch.3. $1 \mathrm{mV} / \mathrm{cm}$
Timebase $A: 2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Timebase $B: 0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering DC-130MHz Atter delay trigge Delay line
Trigger LED indicator Overscan LED indicator Active TV - Sync-Separato
Price $£ 792.00+\mathbf{E 1 3 8 . 6 0}$ V.A.T. FREESpecialist Carrier De Sq. Wave HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Bandwidth: DC. 20MHz
Sens: Ch. 1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$

- Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$ - Triggering DC - 40MHz
- Max sampling rate: Sampling - Memory: 2 x 2048×8 Bit - Memory:
- Printer/plotter outpul

Price £610.00 + £106.75 V.A.T. FREE Specialist Carrier Delivery

B.K.'s CRT TESTER DIGITAL CAPACITANCE REJUVENATOR Tests and rejuvenates blue,
green and red guns green and red guns
separately. Fitted with delta separately. Fitted with delta and PIIL. Sockets. Compa
size $120 \times 65 \times 60 \mathrm{~mm}$. size $120 \times 65 \times 60 \mathrm{~mm}$
Supply 240 V AC
Price £32.00
£5.60 V.A.T.
 METER
High accuracy.
$0.1 \mathrm{p}-2000$ ut. LCD display. - 8 ranges.

Accuracy $+1-0.5 \%$,
Full scale +1.1 dige Full scale +1.1 digit Price £ $38.00+£ 6.65$ V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES

Carrier frequency $100+1-1 \mathrm{MHz}$ (adiustable)
Pilot signal $19 \mathrm{KHz}+l-2 \mathrm{~Hz}$.
$L \& R$ separation over 50 dB .
Exiernal Modulation $50 \mathrm{~Hz} \cdot 15 \mathrm{KHz}$

- Pre-emphasis $50 \mu \mathrm{~s}$ s $75 \mu \mathrm{~s}$ a orf.

Comprehensive test lead set included.
Mains powered
Price £299.00 + £52.33 V.A.T.

LEADER HIGH VOLTAGE METERED EHT PROBE

Light weight, easy, to-grip high-impact plastic, exira equipment. An indispensible item in your TV service kit. Measures up to 40 kV DC with satety and the greatest of ease. Entirely seltcontained. Connect the lead clip to cliassis and probe tip to the check point, read the meter to voltage.
Price £66.00 + £11.55 V.A.T.

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it
 all in-line and one gun types. Tests all under actual operating simpitions (mode 490) Exclusive multiplex technique (model 490) : Measure true dynamic beam current that actually passes through G1 aperture to screen " Measures all shorts and leaks - preserving more CRT's faults that other testers miss "Uses most powerful restoration method known with minimum danger to CRT * Rejuvenated CRT's guaranteed as new for two years Obsolescence proof - perpetual sel up chart updated and new adaptors developed *Tests and rejuvenates VDU's and oscilloscope tubes* A range of over profit * Pays for itself in months.

Prices
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors........ $£ 446.00+£ 78.05$ V.A.T.
Without adaptors.
Without adaptors. £393.00 $£ 334.00+$ E 58.45 V.A.T $£ 281.00$
E $£ 49.18$ V.A.T.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to lacilitate the dish alignment o satellite TV systems and aerial alignment of VHF/UHF television and radio systems. Signal ievels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of
signal conditions for satisfactory operation. Both models have a clear LCD direct frequency signal conditions for salislactory operation. Both models have a clear LCD direct frequenc

TC402-C VHF \& UHF

FEATURES

- Three bands

Low VHF: $45-110 \mathrm{MHz}$
Migh VHF: $110-300 \mathrm{MHz}$
Digital display for direct frequency readou
Built-in monitor loudspeaker AM FM Signal measurement from $20, \mathrm{~V}$ to 100 mV Powered by eight 1.5 AA batteries
Fully portable with sturdy carrying case

Price $259.00+$ E45.33 V.A.T. TC90 VHF-UHF-SAT.

FEATURES
Low VHF : $\mathbf{4 5}-110 \mathrm{MHz}$
High VHF $: 110-300 \mathrm{MHz}$
Hyper VHF $: 300-470 \mathrm{MHz}$
$\begin{array}{l:l}\text { Hyper VHF: } & 300-470 \mathrm{MHz} \\ \text { VHF } & 470-862 \mathrm{MHz}\end{array}$
Satellite : $950-1750 \mathrm{MHz}$
Satellite : $950-1750 \mathrm{MHz}$.
Digital display for direct frequency readout Sigital display for direct frequency readou Signal measurement satellite -70dBm to -10 dBm .
Audible indication of satellite signal level. Built-in-monitor loudspeaker AM/FM (not satellite).
Powered by rechargable battery
(complete with charger $220 / 240 \mathrm{VAC}$
Fully portable with sturdy carry case
Price £ $470.00+\mathbf{£ 8 2 . 2 5}$ V.A.T.

BLACK STAR COLOUR PATTERN GENERATOR

 THE 'ORION' THREE-IN-ONEPAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B. The Orion is a

In addition to a switchable sound carrier facility which allows use with the majority of PAL TV systems, the Orion provides highly flexible RGB outputs, ensuring compatibility with most video monitors.
More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier linearity, colour purity, general colour performance, focus etc.
A separate video input to modulate camera signals; fully variable RF and video output levels facilitating AGC testing; trigger output allowing easy triggering of difficult oscilloscope waveforms; external sound modulation input via DIN connector for frequency response testing of TV sound systems; adjustable wide frequency coverage of VHF and UHF TV bands.
Just some of the leatures making the Orion Pattern Generator an indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.

FEATURES
Colour bars, purity, greyscale, crooshatch.
dots, focus, etc.
VMF/UMF Channe

- $5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers. Internal/External Sound.
External Video Output.
Trigger Output.
Separate R, G, B and sync. O/P's.
RGB@TTL \& IV.
Green + 0.3V Syncs
Composite Video Output.
Variable RFIVideo Output.
- Switchable Video Polarity
- Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{H}$

SUPERVISION

EUROPE'S LEAD ING IMPORTER \&

 EXPORTERS TEL: O925 ACCESSORIES
aSA
LITE PACE 9000 IRD with MESM dish $£ 199.00$ and compact LNB with $50 L 10$ dish ع 178.00 MIM E mpact LNB...... with Solid dish DISKEXPRESS 5000 with O_.... $£ 149.00$ and compact LNB w solid dish MASPRO $90 S$ with Solid dish e149.95 Ferrite polariser/LNB $\ldots \ldots \ldots \ldots \ldots$ NFC 4012 IRD Solid MESM dish $£ 299.95$ TATUNG compact LNB.

SUPERVISION GROUP UNIT 16 , TOWER WORKS, 2 GLOBE ROAD, HOLBECK, LEEDS WEST YORKS. LS 11 5QG

$$
\begin{aligned}
& \text { ECHO STAR 18" Actuator } \\
& \text { ECHOS } \\
& \text { ECHOSTAR 24" Actuator }
\end{aligned}
$$ head office

$$
\begin{aligned}
& \text { ECHOSTART decoder365.00 } \\
& \text { CANAL PLUS Meter Promax }
\end{aligned}
$$

COMING
SOON
SUPERVISION
SCOTLAND

LEE CIRCLE,

 LEICESTER LE 3RE
SUPERVISION WARRINGTON 32 CRAVEN COURT WINWICK QUAY, WARRINGTON WAL QU, ENGLAND

NEG
HORSED
AUTHORISED
DISTRIBUTOR

MOTORISED SYSTEMS

ECHOSTAR SR 5500 90 cm dish ECHOSTAR SR 5500 90 cm dish
ECHOSTAR SR 55001.2 m dish MONTERAY 90 cm dish $£ 969.0$ MONTEREY 1.2 m dish ….............9558.00 MASPRO 6.5 Cm dish 1 dish MASPRO 100 R 60 cm dish ... MASPRO $100 R 90 \mathrm{~cm}$ dish MANOR 500090 cm dish . NEE 502280 cm dish NEE NS 700060 cm dish vil video NE C NS 7000 80 cm dish videO DRAKE ESR 250E 90 cm dish
DRAKE SR 250E 1.2 m dish

For

 HUGE RANGE OF ACCESSNOW AVAILABLE

LEES: 0532444195

FAX. TATUNG, NEG, SKY DIVISION
 EXPORT ${ }_{44}{ }^{3} 32444195$

ELC EAST LONDON AUDIO TELEVIS COMPONENTS AT VER TEL: 081-472 4871 FA	COMP ION VI RY KE	NENTS EO N PRICE -50359	
REMOTE CONTROLS FROM f12 99			
VIDEO HEADS		VIDEO BELI	
JVC FERGUSON 3HSSV			
JNC FERGUSON 3HSSVA	${ }_{\text {¢19,999 }}$	T 8000	
PAMASONIC HHS			
panasonic n 3	¢12.99p	v v-5263365	50
ONC N			
ACHIVIB000 9	¢15.9		
CHIV11			
		VC-651800	
	${ }_{\text {E15.99p }}$	vC9300	
Sen	¢20.99	fERC	
SAMSU			
VIDEO IDLERS		344243	
ake	${ }^{\text {c1. } 459}$	PANASONI	
PLA			
VC 00056E7Z	¢1. 95		
VC 00066EZZ	¢1.9		
	${ }^{56} 9$		
FISHHER 6151562	${ }_{\text {c3 }}$	NV.G10	
AKAIVSS105250	E11.99p	FSHER	
FISHER GEA	¢5.0up		
SHARP REE	£14.99p		
PINCH ROLLERS FOR MOST MODELS	¢2.95p		
AMSTRAD MOD KIT			
SHAPP CASSETE LA	${ }_{3}^{30 \mathrm{p}}$	1x9	
P			90
HITITCH M M	55.00p	CPT 1474	
3 Cl 29 ENSION BAND			
CIRCUIT PROIECTORS		PHLIPS KT	
TX 10 FOCUS UNIT			
alba baten ifis m			
63 PLASHET GROVE, EAST HAM, LONDON E6 1AD. TEL: 081-472 4871			
X: 081-503 5926 OPEN 9AM TO 7PM			
two minutes walk from Upton Park Tube Station			
PLEASE PHONE US IF WHAT YOU NEED IS NOT LISTED AS WE HOLD THOUSANDS OF ITEMS IN STOCK			
all goods despatched same day			
PRICE SUBJECT TO CHANGE WITHOUT NOTICE			

Thumbs Up or Down?

An interesting controversy over TV broadaisting prospects in the UK has been going on in the pages of The Independem recently. It was started by Steven Barnett of the Henley Centre who put forward the view that "the muti-channel TV revolution is a myth", hyped up in order to get lenders 10 invest in the new services. He supported his contention that the hasic Four-channel system has survived intaet and will continue to account for the major share of the public's viewing for the foresceable future by pointing to the failure of cable TV to persuade households to subseribe in any appreciahle numbers and satellite TV's limited success to date, with BskyB still running up considerable losses. According to Mr. Barnett, Ilenley Centre research suggests that thirty per cent of the population would watch less television if they had more money. Watching television is, apparently, something that we do largely when we've nothing better to do. It this is indeed the case, the idea of adding more and more channels is simply going to result in bigger and bigger losses

More optimistic views were put forward by John Clemens, chairman of Continental Research. which carries out the satellite TV monitoring for the Financial Times. and Peter Bowman, director of Carat Research. Mr. Clemens pointed to the accuracy of his organisation"s forecasts to date and went on to say that its present Ionger-term forccast is that by 1997 over nine million homes in the UK, some forty per cent of all households. will be able to ohtain multi-channel TV via either cable or dish, with a slower increase therealter. He suggests that there will he adequate funds to support around fifteen chamels by the year 2 (k) Mr. Bowman drew attention to the tact that the new channels are focused on sizeable subgroups, for example sports. music or tilm devotees. and to not sech to attract the highest possible atodences.

This more sanguine approach sounds reasonable, but there are nevertheless other factors that give rise to some concern. For example TVS has just reveated that its bid to retain its S.E. England franchise was just over $£ 45 \mathrm{~m}$ a vear. That's a substantial sum by any reckoning, and prompts the question whother TVS, assuming that it succeeds with its bid, will be viable. Its profit projections are based on further cost cutting and an assumption that advertising will grow substantially - by 11.7 per cent between now and the end of 1493 , and at a compound annual rate of 5.7 per cent between. 1993 and 1497 On this basis it predicts a profit of $£ 1 \cdot 1 \mathrm{~m}$ in 1993 , a pretty miserable return even if all ooes well. An amalyst suggests that a loss of $£ 20 \mathrm{~m}$ in 1993 is more likely. Considering that TVS is in a loss situation to start with, the outlook doesn't seem to be particularly promising and mompus the question of what the I'TC would do if a contrater went bust?

The anouncement that W.H. Smith is to withdraw from TV, selling its interests for ftiom to a consortium that consists of Canal Plus. ESPN and Giénérale dolmages. adds further substance to the view that TV is going to be a tricky business in the Nincties. W.H. Smith's EtSm represents an apreciable loss on an investment estimated to have heen as high as $£ 80 \mathrm{~m}$. It's notevorthy that the consortiun consists of French and US companies. Similarty most of the money going into cable TV is coning from abroad. Do foreigners know something that we don "t about the future of TV in the UK"? Or could they be trying to apply 10 the UK policies based on their own domestic markets, policies that might turn out to be inappropriate? They might leel that at hothom it's possible to run channels cheiply by churning out pap. Who d watch it? Well il the worst came to the worst there perthaps wouldnt be much choice, just pap, pap and more pap. The situation is not unk nown elsewhere

But it's possible to overdo the pessimism. A well-run broadeaster offering a quality service should have no gred difticulty in making a success of its business. The Nineties are clearly going to be a more difficult time for everyone than the previous decade however, and the recent changes in the way in which TV broadaasting is run are not going to make them any casier

Jasmine Bligh

The death of Jasmine Bligh on July 21st severed a link with the earliest days of 9 V broadeasting in the UK - she was the BBC": liast female announcer when regulan transmissions from Alexandra Palace started on Nowember 2nd. 1936. She started a stage catreer at the age of seventeen and subsequently replied to a BBC advertisement for femak television "hostess-announcers". The BBC received 1.122 applications. out ol whom Jasmine Bligh and Elizabeth Cowell were selected. There were no autocues of prompts back in 1936: Jasmine had to learn 400 words a day to sav direetly to the camera l'ay wan $\mathrm{f} 35(\mathrm{O}$ a year. plus a dress allowance that included two evening dresses which had to be worn after 6 p.m.! Jasmine entered fully into the pionering spirit of early CV taking a great interest in outside broadcasts. She is remembered in particular for her comment "hello, remember me?" when she was the tirst to appear on the sereen at the restart of TV broadcasting in $19+6$.

Publishing Changes

Some important changes to Telewison's publishing arrangements have come into effect this month. They atfect in particular the advertising side. We have been moved from II'C Magazines Lid. to Reed Business Publishing Lid. in Sutton. Surtey - both firms are subsidiaries of Reed lnternational, so there has been no change in the magazines ownership. The main reason for the change is to consoldate the firm's pullishing activities in the electronies liek - we hase joined a group that publishes such well-known titles as Electrical and Radio Truder. Electronios Weckly and Electronics Wortd + Wireless Wortd.

Letters

GRANADA/GEC EQUIVALENTS

There were inaccuracies in the list of Granada TV receiver equivalents (July) regarding GEC produced models. First, the reference to the GEC 2295 is incorrect: the GEC C 2295 H was based on the Tatung $160 / 161$ series chassis. Secondly we are not aware of any Granada variants of our Models $\mathrm{C} 1657 \mathrm{H} / \mathrm{Cl} 658 \mathrm{H}$ which were manufactured in 1984/5. Thirdly our records show (up to 1985) the following information regarding Gramada sets and the nearest GEC models and Hitachi chassis from which they were derived:

Gramada	GEC	Chassis
C14BA1	C1405H	Hitachi NP84 Mk 1
C20VA1	C2026H	GEC PIL chassis
C22VA1	C2236H	GEC 20AX chassis
P22VA3	C2260H	GEC 20AX chassis
C20XA1	C2067H	Hitachi NP81CQ
C22XA1	C2267H	Hitachi NP8ICQ
C20XA5	C2069H	Hitachi NP81CQ text
C22XA5	C2269H	Hitachi NP81CQ text
C20AA4	C2087H	Hitachi NP83CQ text
C22AA4	C2287H	Hitachi NP83CQ text

The above list covers only the models that are most likely to be encountered. It is important that those in the trade are aware of the following points:
(1) Although a Granada model may be based upon a particular GEC or Hitachi chassis this doesn't imply that the service information for these chassis will cover all the circuitry in the Granada variants. This is because Granada often required additional features, and changes to or replacements of complete areas would be made during production. For example the C14BAl has RGB inputs, a feature not included with the GEC Cl 405 H on which it was based. Granada models were very rarely just "badge variants".
(2) When receivers were supplied to Granada the appropriate service information was also supplied. This information was and still is the property/Copyright of Granada Ltd. For this reason we at GEC/Hotpoint do not have any facilities to supply service information or technical assistance on Granada models. All copies of Granada service data carry a note stating that the information is the company's property.
(3) The best advice we can offer is to obtain a copy of the manual for the nearest equivalent model - via component suppliers, please! - and study the set carefully before repair.

As a rule the above models are relatively trouble free and easy to repair if the correct approach is adopted. In general, unless you happen to be really lucky any attempt to repair an unfamiliar piece of equipment without the relevant service information will result only in frustration and failure.
S. McManus, Technical Dept. (GEC Radio \& TV),

Hotpoint Ltd., Celta Road,
Peterborough PE2 9JB.

FINLUX 1000 CHASSIS

Finlux UK recently issued a modification for the 1000 series chassis. The recommendation was to modify the scan
coil plug by soldering two rivets to the pins, thus strengthening the joints which in a few sets had caused concern by becoming dry-jointed and thus overheating. I wonder whether this suggestion has actually cured the problem however. On two occasions I've subsequently had to replace the plug/socket because of arcing inside. I rather suspect that this was the cause of the problem in the first place: when the pins get hot as a result of arcing the soldered joints will deteriorate, as happens with so many other sets.

Several different faults can occur when this plug is faulty, i.e. intermittent very high e.h.t., flashovers that blow the line output transistor, and intermittent line tearing.
Domanic Watton,
Wrangle, Boston, Lincs.

VIEWDATA TECHNOLOGY

In connection with Roy Baines' article (June) on viewdata terminals and systems I'd like to add some information on the public switched telephone network (PSTN). In the carly days of communications CCITT conducted subjective tests with telephone circuits, using people of different nationalities. It was found that the minimum telephone channel bandwidth required for someone to be able to identify someone else's voice is 4 kHz . It was also found that the human ear is most sensitive at $800 \mathrm{~Hz}-\mathrm{IkHz}$ if you happen to be American. I note that the latter has been adopted.

The reason for using modulation, FSK in this case, is the same as with any transmission system - to get information (the modulating frequency) from A to B on a carrier wave (the carrier frequency). With viewdata the modulating frequency is ten bits on the data input line and the carrier frequencies are $1,300 \mathrm{~Hz}, 2,100 \mathrm{~Hz}, 450 \mathrm{~Hz}$ and 390 Hz , all audible as they have to be within the PSTN bandwidth.

The two main forms of distortion from which the signals suffer are attenuation and group delay effects. Equalisers are used with higher bit rates. They are usually incorporated within the modem. So far, $9 \cdot 6 \mathrm{kbit} /$ see is being used.

Dialling can be LD (loop disconnect) or DTMF (dual tones, multiple frequency). The former is ten impulses per second while the latter is as fast as one can press individual digits. The choice of LD or DTFM depends on the type of exchange to which one is connected.
J. Tharance,

Bicester, Oxon.

SATELLITE RECEPTION PROBLEMS

With reference to R.N. Baker's problem with his Amstrad satellite TV receiver I believe, like S.K. Guy, that the problem is caused by a mismatch at the receiver end of the cable. The fact that the problem doesn't arise with Ferguson and Sakura receivers seems to be conclusive proof.
J.A. Glenton's original letter, concerning the testing of coaxial cables, seems to indicate that some mismatching could still be involved. Certainly standing waves seem to be in evidence. One difficulty in designing terminations at the frequencies concerned is in maintaining a purely resistive impedance across the band: if the impedance has a reactive component, this will result in a frequencydependent mismatch. A perfect cable, perfectly terminated, is not frequency conscious for any parameter other than transmission loss, which increases with frequency. We don't however live in a perfect world!

름름름를름 COMMODORE SPARES CLEARANCE SALE

EVERYTHING MUST GO - LOWEST PRICES AROUND

TELEPHONE OR FREE FAX ALL YOUR COMMODORE REQUIREMENTS TO HRS FIRST, AND SAVE POUNDS

ALL PRICES + VAT

description
R.S. Porter points out that there can be re-reflection towards the load if the source impedance is wrong. Perhaps this, along with individuat cable characteristics, accounts for some of the variations shown in Mr. Glenton's table of results. I also agree with Mr. Porter's point that connecting two cables in series does not change the impedance but increases the overall loss.

Mr. Glenton's second letter, with its comments on losses associated with poor satellite TV installations, makes interesting reading. I'm sure that many installers have no idea that such subtleties are involved. But hasn't this always been the case? I recall an aerial installer whose main tools consisted of a beaten-up pair of sidecutters and a small screwdriver. He cut lashing cables and tightened nuts with the sidecutters and stripped coaxial cable with his teeth
Returning to Mr. Porter's letter, I'm sure that he's hit the nail on the head in pointing out that multiple reflected signals suffer greater cable attenuation than the original direct signal. The longer the cable run, the greater the attenuation of the reflections so that the effects of a mismatch become less significant. I suspect that this effect is non-linear. Since f.m. is used for satellite TV transmissions, capture effect may also be involved, such that when the reflected signal falls to 12 dB or more below the direct signal its effect will be insignificant. This could account for the "magic" extra twenty feet of cable that appears to cure (or should I say mask?) the Amstrad problem consistently.

In another letter Mr. Gadsby mentions loop systems for the hard of hearing. When I worked in the trade twenty years ago a kit (I forget who made it) was available. It consisted of a matching/isolating transformer, a wirewound potentiometer and fixings. Drive to the transformer was taken from the TV set's loudspeaker connections. The potentiometer was set so that a single loop around the room provided sufficient volume fron a hearing aid when the speaker volume was right for those with normal hearing. As Geoff Darby points out in his letter, safety was an important consideration: while the kit instructions didn't suggest it I nevertheless rewired the TV set in use with a three-core mains cable and connected the earth lead to the transformer's secondary winding that fed the external loop. I felt that this "belt and braces" approach minimised the risks involved. Most of the loops I installed were fed from Dynatron TV sets: older readers will recall that these had splendid veneered cabinets of the kind you just can’t buy nowadays - except as a separate item of furniture to house your TV set and VCR. Consequently I was always anxious when drilling into the inside of the cabinet to mount the loop transformer - it wasn't a good moment for the family dog to come and investigate!
Keith Cummins,
Holbury, Hants.

HITACHI NP84 Mk 2 CHASSIS

Stephen Leatherbarrow mentions a couple of problems with the GEC Models C1407/8 (Hitachi NP84 Mk 2 chassis) in the July TV Fault Finding section. They call for some clarification. The sound "gurgling" problem normally occurs only with copy-protected tapes, where the additional sync pulses on the tape cause the TDA 4503 chip to unmute. Usually a slight increase in value of the resistor mentioned (R702), to say $82 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$, should help, though the problem is not considered to be a common one with this chassis. We don't recommend fitting a potentiometer as difficulty with mounting and unreliability with age could cause further problems for the
unwary in the future. The original design should also be adhered to for safety reasons.

Steve didn't mention the symptom when the sandcastle pulses in these sets are lost or distorted. Not loss of colour, as some might expect, but partial or complete picture blanking.
S. McManus, Technical Dept. (GEC Radio \& TV), Hotpoint Ltd., Celta Road, Peterborough PE29JB.

MORE ON IR TESTING

Since camcorders can see infra-red radiation, a camcorder can be used to provide a quick test for infra-red emission from a remote control handset. But imagine the boss's reaction should you requisition one as test gear! A phototransistor connected to a meter switched to the ohms $\times 10$ range is cheaper, but not so much fun. Alternatively a solar cell with a meter switched to the $50 / \mu \mathrm{A}$ range works well: an IR emitter a centimetre from the detector is much "brighter" than room lighting, and the low-frequency output pulses are clearly seen
John Jolley,
Prescot, Merseyside.

REVIEW MODE TAPE TANGLING

Test Case 342 (June/July) about a tape tangling problem with a Panasonic NV370 VCR reminded me of a similar problem we had with an NV333 that worked normally in all modes except reverse search. In this mode the tape tended to lift from the drum near the exit pole, and occasionally produced a tape wrecking loop.

Various things were tried, including thoroughly cleaning then polishing the drum assembly with metal polish. This improved things a little, but reverse search was still not up to standard and, as the age of the machine precluded drum assembly replacement, a different solution was sought.

It was noted from the circuit diagram that IC6006 controls the supply to the reel motor, providing around 6 V in review and 13 V in rewind. So what was required was a higher control voltage at pin 3 during reverse search. A suitable source voltage can be obtained from relay RY1 which is used to reverse the direction of the capstan motor. In reverse search one of the normally-open contacts is switched to 14 V . We connected this point to chassis via a $10 \mathrm{k} \Omega$ potentiometer and connected the slider via a diode and a $1 k \Omega$ resistor to pin 3 of IC6006. This enabled the torque applied to the take-up spool to be adjusted, while viewing in the review mode, until full drum contact was achieved. All danger of loops being formed is also removed. In our particular example we found that increasing the voltage across the reel motor to 9 V provided enough torque to cure the problem.

While this is perhaps not an ideal solution to the problem it has nevertheless given us some satisfaction in getting a bit more service out of an otherwise good machine without having to disable the reverse search function.
Alan Oxton,
Frodsham, Cheshire.

ANOTHER SATELLITE TV PROBLEM

Can anyone suggest a solution to a problem that occurs with two types of satellite TV receivers we know of, the Maspro SRE90 and Uniden 8008, used with a Sky decoder? Even when all other channels are perfect,
including the weaker German ones on both satellites, sparklies persist on the Movie Channel and Sky Sports. Even with readings of $80 \mathrm{~dB} \mu \mathrm{~V}$ plus on the Maspro signalstrength meter ($75 \mathrm{~dB} \mu \mathrm{~V}$ is adequate with other receivers) no amount of skew etc. can remove them. Is it possible that these receivers have a compatibility problem with the Sky decoder? If so, how come that the Sky Movies Plus channel is perfect? Any advice would be greatly appreciated.
Larry Smith, Fitsat,
Rhyl, Clwyd.

THE DOWNMARKET END

One of the older Nikkai models came in a little while back with the complaint that the picture and sound would disappear after some time. Simple enough I thought, just tuning drift.

When I exposed the PCB my eyes were immediately drawn to a large power diode beautifully soldered on the print side of the board. Sheer curiosity led me to refer to the circuit diagram to see what it did. But it wasn't there! Further investigation revealed the reason for this. It was bridging two points, firmly connected by print, at earth potential. Now I wonder who did that?

I then went on to the main business and changed the 33 V zener diode. This naturally made no difference at all to the fault. So I wondered about the a.f.c. and checked the voltages around the TA7680AP chip. All seemed to be well here. The a.f.c. worked beautifully, but was unfortunately not able to cope with the drift. I next checked the tuning supply from the line output stage. It was as steady as a rock.

I then went to where I should have gone in the first place and monitored the tuning voltage at the tuner. It varied alarmingly. Having run out of ideas I squirted some frećzer on the zener diode, which turned out to be heat sensitive. When a ZTK33B was fitted normal operation was restored. I still think about that one. My data didn't suggest that there was anything special about the original zener diode.

For me at any rate it will probably have to remain one of life's little mysteries. Some time ago I concluded that I was seriously in need of a refresher course, but I've left it a little late. My wife and I are desperately trying to retire. Known affectionately as "Aggie", my wife has for many years been fighting a long list of ailments. But I fear that not everyone will want a crumbling Victorian pile, situated in a road known locally as "Bankruptcy Alley". To be fair the shop has been good to us during our stay, so perhaps there is hope.
E. G. Kempshall, I 109 Portland Road, Hove, East Sussex BN3 5DP.

VINTAGE OB

I well remember the vintage OB mentioned by Roger Bunney in his August issue column, also a later hook-up on January 6th 1954. Using a modified R1132 receiver I was able to pick up the v.h.f. intercom from Warren Street water tower, Lenham, Senate House London and of course Wrotham. Communication with Wrotham was lost two minutes before the programme was due on air, then Johnie came on all out of breath - the circuit breaker in the main building had tripped! The relay equipment was housed in a small building close to the base of the v.h.f. aerial mast.

My first sound reçeiver was the Wireless World adaptor.

I used it to pick up the reopening of the TV service on June 7th 1946. For vision a Responsor unit with rebuilt front end from W.T. Cocking's book and a 6 in. green tube produced the first viewable pictures on July 12th 1947. It had a total of 26 valves. The Alexandra Palace signal was pretty weak here hree hundred feet below the North Downs.
Clement E. East,
Wrotham, Kent.

HELP WANTED

Can anyone suggest how to remove teletext lines with a B and O 323X TV set? They spoil an otherwise excellent picture.
Paul G. Glazebrook, 26 Beech Road,
Rushmere, Ipswich IP5 7AN.
0473624517.

Can ányone supply a service manual and front fascia panel (not cracked!) including buttons for the Ferguson 3V29, also any dead or dying Ferguson/JVC VCRs from the 3V29 onwards?
Dave L. Hills, 86 Netherhampton Road,
Salishury, Wilts.
Can anyone supply an SPl cartridge for the Bang and Olufsen record deck used in the Beogram $9(1)$? The part is no longer available from B and O .
P. Cracknell, 22 Hungate,

Beccles, Suffolk NR34 $97 T$.
0502712428.

I have a mono Displat unit which runs o.k. on 12 V d.c. What must I do to use it as a monitor with the composite video from my computer?
Alan Brown, 14 Ashby Drive,
Rushden, Northants NNIO 9HJ.
0933312358.

Can anyone supply a service manual or circuit diagram for an Escort EDM1111A digital multimeter?
John A. Hanley, 306 Thornaby Road,
Thornaby-on-Tees, Cleveland TSI78PJ.
Can anyone supply any servicing information for the Wallis 30 kV power supply used with the LKB Tachophor 2127 system?
Greg Strange, I. Eng., G8IWJ, 12 Bronington Avenue,
Bromborough, Wirral, Merseyside L62 6DT.
As a collector I'd be interested in purchasing any of the following: (1) Early colour TV sets, especially prototypes, dual-standard models or other unusual types. (2) V2000 format VCRs, especially second generation models, portables and Bang and Olufson models. (3) Any reel-toreel video equipment or tapes, especially Akai $1 / 4$ or $1 / 2 \mathrm{in}$. machines with colour.
M.J. King, Crowfield Cottage, Stone Street,

Crowfield, Ipswich, Suffolk IP6 9TA.
044979366.

Does anone have any interface information for the Grundig"VIF-E1 remote control unit used with the 2×4 Super VCR? Any information on the chip (type C $0 \mathrm{P} 42(0 \mathrm{HPX} / \mathrm{N}$) would also be of help. Intended use is with a 3 V 30 VCR .
A.M. Elford, 62 Goodlands Vale, Hedge End, Southampton.

Long-distance Television

Roger Bunney

There were several good Sporadic E openings during June. A number of signals from Arabic Band I transmitters were received in the UK during the period and on the 15th the m.u.f. reached Band III. I still feel that there is less SpE reception during periods of high solar activity, but this is merely my personal view based on experience of 28 SpE seasons. Would anyone care to comment on this?

Apart from a slight lift on the 5 th, tropospheric reception has been virtually non-existent. Auroral activity was noted on this same day, with Band I and III signals (mostly unidentified) received during the evening phase. There have been no reports of unusual reception following the large solar flares on June 5 th.

The general SpE log looks impressive, but many openings were neither intense nor long lasting:

5/6/91 RAI (Italy) ch. IA; NRK (Norway) E2.
 6/6/91 TVE (Spain) E2, 3, 4; TVE-2 E2; RAI IA; + PTT (Switzerland) E2, '3; RTP (Portugal) E2, 3; TSS (USSR) R1.
 7/6/91 TVE E2, 3, 4; RAI IA.
 8/6/91 TVE E3; RAIIA.
 9/6/91 NRK E2; TVE E2, 3, 4; RAI IA; JRT/HTV (Yugoslavia) E3.
 10/6/91 TVE E2.
 11/6/91 TVE E2, 3, 4; RTP E3; +PTT E2.
 12/6/91 TVE E2, 3, 4; TVE-2 E2; RAI IA; ARD (Germany) E2.
 13/6/91 ERT (Greece) E3; HTV E3; TVA (Italy) IA; C+ (France) L2, 3.

15/6/91 TVE E2, 3, 4; TVE-2 E2; RTP E3; RAI IA, B; TVA IA; C + L2, 3, 4; + PTT E2, 3; HTV E3, 4; RTM (Morocco) E4; TVP (Poland) R1, 2; DR (Denmark) E3, 4; CST (Czechoslovakia) R1, 2; MTV (Hungary) R1, 2; TSS R1-7 inclusive; SVT (Sweden) E2; NRK E2; RTSH (Albania) IC; JTV (Jordan) E3; RUV (Iceland) E2, 3, 4, 5, 6, 7; also unidentified N . American signals on chs. A2, 3 at 1730 BST.
16/6/91 ARD E2, 3; HTV E3, 4; RAI IA, B; TVE E2, 3, 4; TVE-2 E2; C+ L2, 3, 4; ORF (Austria) E2a; +PTT E2; ERT E3 ; CST R1, 2; TSS R1, 2, 3; YLE (Finland) E3, 4; NRK E2, 3, 4; SVT E2, 3, 4; RUV E4; TVR (Rumania) R1; MTV R1; Dubai E2; JTV (Jordan) E3.
17/6/91 TVE E2, 3, 4; RTP E3; C+ L3; ARD E2; RAI IA; + PTT E2; TSS R1, 2; TVR R2; TVR-2 R2.
18/6/91 CST R1; TSS R2; + PTT E2, 3; TVE E2, 3, 4; HTV E3; ERT E3; RAI IA; TVA IA; NRK E2, 3, 4; SVT E2; TSS R1, 2, 3; RUV E4.
19/6/91 TVE E2, 3, 4; RTP E2,3; TSS R1. 2.
20/6/91 TVE E2, 3; + PTT E3; C+ L2; RAI IA, B; HTV E3, 4; ERT E3; JTV E3; CST R1, 2; SVT E2, 3, 4; TVP R2; TSS R1, 2, 3; YLE E4; TVA IA; PTB (Italy) E3
21/6/91 TVE E2, 3, 4; RAI IA, B; TVA IA; HTV E3; ARD E2; ERT E3; TVR R2; NRK E2, 3, 4; SVT E2, 3, 4; CC (Italy) E2.

22/6/91 TVE E2, 3, 4; TVE-2 E2; RTP E3; RAI IA, B; TVA IA; SVT E2, 3; NRK E2, 3, 4.
23/6/91 TVE E2, 3, 4; RAI IA, B; TVA IA; ORF E2a, 4; HTV E4; + PTT E4; ERT E3.
24/6/91 TVE E2, 3.
25/6/91 TVE E3, 4; RAIIA, B; TVAIA; C+L2.
26/6/91 TVE E2, 3, 4; HTV E3.
27/6/91 TVE E2, 3, 4; + PTT E2; RAI IA; TSS R1, 2.
28/6/91 TVE E2, 3, 4; TVE-2 E2, RTP E2; C+ L3; ARD E2; + PTT E2; RAI IA, B; TVA IA; YLE E3; TSS R1, 2; NRK E2, 3, 4; SVTE2, 3, 4.
29/6/91 RAI IA, B; TVE E2, 3; C+ L2; ERT E3; HTV E3.
30/6/91 RAI IA, B; TVE E2, 3, 4; C + L2; HTV E3, 4; MTV R1, 2; ARD E2; TVR R2; RTSH IC; TSS R1-5 inc.; Italian station with "RC" logo at lower right-hand side E2.

My thanks to David Glenday (Arbroath), Garry Smith (Derby), Roger Fussell (Torpoint), Tim Anderson (St. Leonards), Simon Hamer (Powys), Cyril Willis (King's Lynn), Peter Schubert (Rainham) and George Gaskin (Gibraltar) for sending in reception reports.

Tim Anderson's reception of Dubai ch. E2 at 0835-0910 on the l6th was quite remarkable, with the signal reaching P3 quality and teletext pages being shown - one of the UAE tlag and another showing the outline of the UAE. Tim comments that in view of the frequency of its reception TVA (Tele Valle Aostatia, Italy) must be using increased power.

Simon Hamer's reception of RUV on the 15 th included a ch. E2 relay station and the Band III chs. E6 and 7 with the Black Adder programme, subtitled. At 1730 on the same day Simon received unidentified signals on chs. A2 and 3 .

Several unidentified Italian Band I private stations were seen during the month, with logos like "CC", "2" and "Antenna" in the lower right-hand corner, all on ch. E2.

News Items

Poland: By May nearly four hundred applications had been received from those wishing to set up independent broadcasting stations. It's likely that West European style band allocations will be adopted.
Czechoslovakia: Several aspiring broadcasters have applied for TV licences. It's likely that u.h.f. channels used for relaying Soviet TV to Russian army units will be used. Several v.h.f. radio services have been approved and should be in operation by Christmas.
Baltic countries: Latvia, Lithuania and Estonia are seeking broadcasting independence.
OIRT: A decision to dissolve the East European broadcasting organisation OIRT was taken at its 25th Assembly in Budapest earlier this year. By January 1st, 1994 the Prague-based OIRT is expected to have merged completely with the EBU.
Gibraltar: Decisions have been taken to revamp GBC. Local news and features produced during weekdays only will be slotted into the BBC's TV World Service, which will come via a satellite feed and then be encrypted. Thus viewers will in future require a decoder and have to pay a subscription.
Yugoslavia: OTV Zagreb now has its own teletext service. The FUBK test pattern used carries the identification "OTV OTV 1 ".
Israel: A terrestrial PAY-TV service called TELEPUI is

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

＊ 40 different patterns and variations
\star Fully interlaced sync pulses with correct picture blanking
＊EBU colour bars．BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow， cyan，green．magenta，red，bluc and black
\star Chequerboard
＊Mono outputs with border castellations，cross hatch，grey scale，vertical lines，horizontal lines and dots．UHF modulator output plugs straight into receiver aerial socket
＊Additional video output for CCTV \＆VCR．
\star Facilities for sound output
＊Easy to build kit，standard parts．Only 2 adjustments．No special test equipment required
\star Mains operated with stabilised power supply．
＊All kits fully guaranteed with back－up service
\star Also available with VHF Modulator．
Price of Kit $£ 75.00$
Case（ $\left.10^{10} \times 6^{\prime \prime} \times 2^{1 / 44^{\prime \prime}}\right)$ app
£15．00
Optional Sound Module（ 6 MHz or 5.5 MHz ）
$£ 3.90$
Built \＆Tested in Case including Sound Module $£ 122.00$ Post／Packing $£ 3.50$
Add VAT 17.5% TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

＊Output at UHF，applied to receiver aerial socket
＊In addition to colour bars R－Y，B－Y etc．
\star Cross－hatch，grey scale，peak white and black level
\star Push button controls，battery or mains operated．
＊Simple design，only five i．c．s on colour bar P．C．B．
＊Backup service available．
PRICE OF MK4 COLOUR BAR GENERATOR KIT
£35．00．CASE £5．80．BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$ （Combined P\＆P £3．50）
VIF MODULATOK（CH I to＋）FOR OVERSE AS \＆6．80
EASILY ADAPTEDFOR VHEOOUTPUT \＆C．C．T．V．

LINE OUTPUT TRANSFORMER TESTER

\star Saves time and money
\star Checks short turns．
Simple to use
Reliable．
\star Battery operated
Pocket size．
PRICE £20．00
POST／PACKING £2．50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \＆audio outputs $£ 28.50$ p．p．$£ 1.80$ ．
PAL DECODER KIT（Video to RGB）for Monitors £27．00 p．p £1．80．
PAL ENCODER KIT（RGB to Video）$£ 18.50$ p．p． $\mathfrak{f l} .80$
CROSS HATCH UNIT KIT，Aerial Input type，incl．T．V．sync．and UHF Modulator，Battery Operated，also gives Peat White \＆Black Levels，can be used for any set． $\mathbf{£ 1 5 . 0 0}$ p p．81p．（Alum．Case $\mathfrak{£ 6 . 0 n)}$ p．p．$£ 1.40$ ．）ADDITIONAL GREY SCALE Kit $£ 3.50$ p．p．$£ 1.80$ ．
UHF SIGNAL STRENGTH METER KIT £30．00 Alum．Case £6．00 De Luxe Case £12．00（Built \＆Tested $\mathbf{£ 5 8 . 0 0}$ ）p．p．£3．50．
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Pancl Meter Indicator－can be adapted for latest CRTs $£ 40.00$ p．p．$£ 3.10$ ．

TV \＆VIDEO SPARES

TELETEXT PANELS

GEC／HITACH－PC174A－ 4 £10．00
GEC－C22N5．C2287．Text Conversion Kit $£ 15.00$
ITT－Compact B．D \＆Mono Primt 13．14＂－26 Text Conversion Kit $\mathbf{f} 5.00$
MULIARI VMGIO3 flo． 60
POST PACKING FOR ABOVE E2．SI
PHILIPS SPARES

MANUAIS 2B．CPM）£3．50．CTX－E．CIXS．CF। $\mathbf{2 2} .50$ ．KT4
K．H）． $3 \mathrm{~A} \pm 4.50$ 2A $£ 10.50$ ．P．P．MANUASS $£ 1.80$
BACK UP BATT．2．4V £3．80，1．2V £2．60 p P． 80
K．3．KT4，CTX－EHT Lead £3．20 p．p．E1．（0）．

THORN／FERGUSON SPARES

9000 Scries IF／Decucker tested $\mathbf{£ 1 0 . 0 0}$ p．p．$£^{2} 80$.
TX10 Focus control 88.50 p．p ti．（x）
TX9／TX10 Saw filter IF pancl 25.00 p．p．Kip
TX9／10 Remote \＆luning L5L5N $\mathbf{5 5 . 0 0}$ p．p．£ $1 . x$
TX9／10 Remole \＆tuning 151 sA （incl SAA5112）£2．50 p．p．t1 sil
TX9／10 Remole \＆tuning 1536 （incl SAA5tl2．SL47I）©3．51 pp．El．Sil
TXIO Stereo Audio Board £3．50 p．p．fl ko
TX90 Mains IX $\mathbf{\$ 2 3 . 0 0} \mathrm{p.p}$ ．$£ 2 . \mathrm{N})$ ．

IC SELECTION									
AN．531	4	Sabinial	c6． 80		¢5．80	TİAㄹ	（2． 81	7DA	
ANSMK1	12.20	sa asthit	${ }_{6} 6.80$	Ta76xa	E5．80	T1）へこ5	22．20	T1）A＋42	c6．
BARE3AA	84．881	SAABISO	E11． 80	T A76N1P	5．k0	TilALS	［2．811	119入t5in	${ }_{5}^{5.5}$
CNXH2	44.80	sacizz！	55.80	7a7bysp	th，	T1DAご	1．50	11） 4 till	67．
！1，｜！2］	12.80	¢AB3135	¢0． 81	TRAD	£1． 20		E380		E13，
$1 \mathrm{Al\mid l2} 23$	$\underline{2.10}$	SAB3．1137	¢15．811	tBa7sil	$\underline{52.20}$		（4， 81	（1） dith3 $^{\text {a }}$	c5． 8
11 人）130．5	¢11．80	saf laiz	E4． 50	tbayzo	± 2.20	TIDA 2 （n）	${ }^{\text {c．}}$ ． 80	1DA－56	th．
L． $14+45$	43.001	SAFIESa	£2． 20	TBAvin	¢2．29	TIJAこnliA	\＄1．90		（1）
Latick	\＄1．80	\＄1． 47614.47	54.00	TCA274	E1． 80	TDM $2(\mathrm{r}+1$	［3．211	TDAd（x）	$\underline{2}$,
L．A7530	E7．211	\＄1．4＊	13． 20	tcanto	t6． 80		13.20	TD－46119	\％ 8
1 ，7xill	6． 1.50	S （1）${ }^{\text {（\％）}}$	［1．80	TDAllis	£2．41	T13＾2n5t	¢5．70	1DA 511	E．\times
L¢78301	¢2．811	SLIAEN	t1． 80	TidA1037	\＄1．90	T12A 050	48．60	TDASES5	¢2．
M 293 Bl	¢7．811	SLIt，2	［1．4）	T1） 1104	12．90	TDNこん70	［3．211	10881593	77
M4＊13131	¢14．80	SN76226DN	¢1． 80	11） H ／18	t 4.80	TDAごが1）	C3．81）	TDASIS	
M 4913131	¢9．80	SN767\％	f9．x｜	（1） 117%	［2．20		13.80	TDAXI ${ }^{\text {ch }}$	4.8
M ${ }^{+4}$	59.80	STK．5325	（6．64）	（1）${ }^{\text {（1）}}$	$\underline{2} .20$	TIDA27\％	t6．80	TDA4til	1.8
	（5．80）	sth．33：	［1． 88	tosimat	＋2． 20	TIDA！${ }^{\text {（1）}}$	44.20	1Dav＊il	3，
M1） $\mathrm{S}_{\text {2 }}^{\text {（k）}}$	4．411	stk．53ix		T1）A1432P	¢5．70	TIPABMM	86． 811	7DAvS13	1.
AIDADOE，	［380）	STR．533	¢6． m	1DA1479	£2．80	［D＾331］	\＄7．51	＇TEAIME）	2．2
M1 237	6.80	STK $5+2$ ！	（6． x 0	T19 11070	E． 20	TIDA33：4	43.50	［EA1014	S
A11 3 3	6． 80	STh 4 ？ 2	EN． 51		£3．80	［DA35（x）	t6．81	＇IEA！0］	
M1以边	f．4．80	57k 5771	66.50	T1） 11770	¢3． 20	TDA．560	［9．811	11 Abois	
MN15425	（11．51）	STK．54t	57.80	TDA1×74	t6． 810	Tiis 5541	t2．50	Ttazios	
SAAIMS +	${ }^{56.80}$	STK．542	£6．80	T1DA以界	¢2．80	T1）A354	13.51	TMSHMN	
SAA1425	45.80	STh 7300	（t， 80	TDA｜MII	¢ 3.20		t5．40）		
SAA12＋	51.50	sTh 3.4 K	£10．80	TDAluan	63.50		25．80	TMPd	析
SAAIIS	43x	STRH1	¢7．81	71） 1）$^{\text {a }}$	27．80	Ti2＾3505	43.80	K184	¢13．5．
SAMis ${ }^{\text {a }}$	EX． 41	STR 510	th． 80	11）	＋3．211	Tilajsion	E5．814	TMP	N－355
SAAI292	113．20	STREs	c5．81	（1）	t2．${ }^{(1)}$	T：A 3571	（4， 817		Elf．x
SAM1293，${ }^{\text {a }}$	Ex．80	STR4．5	¢5． 81	T1） 25511	C6． 80	TidA 35%	\＄13．511		N－355
	¢5．80	STRIPII	ct． $\mathbf{x O}^{0}$	11）ごら4	Es．80	Tidasma	t4．20		15
SMAsmot	22．80	StRTI？	¢5．80）	T1）N2576A	53.81		［x．31）	Tliazum	Ex， 5
SAA50，	45.80	STREOIM	4．51）	1＇DNこ577	t． $4 . \times 1$	TD 3 36，	t4．211	ucishtion	81．4
SAMStl？	［5．80）	Stratin	£10．80		4． 4.80	19八453	［3．81	UPC1378	f
SAAstro	c5．84	STRSm：	［x．s．	Ti）A 257 K	t3． 0_{0}	Гi）＾．653	£3．20	UPC1394	

IC promp
 U．322／U341／N EI Cl14．3（equiv）．SCt．VHF NSF203 $£ 7.80$ p．p $£ 1.81$ ．UHF／VHF UV4 10．80，U 4.3 £ $10 . \times 1$ ค．p． 11.10
LINE OUTPUT TRANSFORMERS

HINARI（CT，CTS
HITACHI（P11455，1456，1476，1491

ITT Compaci B 1 10． ITT Compact Nil 1111 TIT Compaces su．Mr

ITTCVC25 3032
ITVIC

ITT Digi 3． 114 ．
Tr core llipes
ITT TX332n7
ITT T $\times 346$.
LOPTSPpptisi

¢4．x0	I．OEWE：－Camk M12－M27
ex．xo	LOFWE－Comur M2？
115．50	LOEWE－Other（Ounte madel Mo．）
［14．5］	Pllamm
24.80	PIIIIPs（is
ex．x0	PHILILS ${ }^{\text {a }}$
E2x．80	
＊	PHILIPS（TX－FS
¢19．81）	
\＆17．80	PHILIPS \geq A
（20．8\％	PHIIIISS 3A ב 3
\＆ 19.80	1\％HIISM（F）
£9．80	PYE 731.741
¢ 10.8 （ $)^{\prime}$	SALSHOMATSUU 37／LCH）
（9．8）	
（22．0107	sowhims？
tix．5］	
［22．84	sony K $\times 27 / 4$
［18．5i｜	
${ }^{111.51}$	
\｛17．80	THORN 37×7（NORDMENIDE
¢19．80	
¢14．80	THORN Thlu（thopmer）
［19．95	
122.80	
［22．80	THORN \} \ ChIIY
221．80	
	Thorn T：IHMAP

TRIPLERS：THORN 9000 £9．R0 PF．$£ 1.50$
CONTINENTAL TVK \＆BG RANGE（quole exat no．）replatements £13．80 DECCATATLNG， 7.80 p．p．$\ddagger 1.5 \%$ ．
$3.3 V$ CRT Beast Transformers for Cobour \＆Mona $\mathbf{2 6 . 8 0} \mathrm{p}$ p．Et 41 55 CRYSTALS fon Remote Control Handsets．f for $\ddagger 1.10$ P．P． 5 P UERIAL DISTRIBUTION AMP．G WIV $835.00 \mathrm{p} . \mathrm{p} .9 . \mathrm{K}$
VHF to UHF Converters $£ 35 .(6)$ PR © 2 ． 50
TRANSPARENT SERVICE CASSETTE $\mathbf{f 6 . 8 0}$ p．p．£ 8
HOW TO ORDER：ADD p\＆p TO ORISER＋VAT 17．5\％TO THE TOTAI PRICES ARE SUbIECT TO CHANGE WITHOUT NOTICE
Telephone 171.7448751 .7947346
Fax 071－431 5778
MANOR SUPPLIES 72 WEST END LANE，LONDON NW6 1SD

11,KENT ROAD, PARKSTONE, POOLE, DORSET EH12 2EH Tel:0202 738232 Fax: 0202716951
being introduced. When fully operational it will consist of three channels: Tele +1 with movies and entertainment, Tele +2 with sports and Tele +3 with documentaries and cultural programmes. Encryption is to start next summer.
Spain: As an amendment to a previous publication the Benclux DX Club reports that the powers of several transmitters have been altered as follows: Alicante (Aitana) TVE-1 ch. E3 60 kW ; Coruna (Santiago) TVE-2 ch. E2 50 kW ; Vizcaya (Sollube) TVE-1 ch. E4 71 kW ; Zaragoza (La Muela) TVE-I ch. E3 50 kW ; Madrid (Navacerrada) TVE-1 ch. E2 500 kW . These are all e.r.p.s.

Satellite TV

In the early hours of May 29th the Olympus satellite at $19^{\circ} \mathrm{W}$ wobbled and attitude control was lost. As the satellite swung away from Earth its battery charging power was reduced - a solar panel had already been lost in January. The satellite then started to drift at about 5° a day, out of control and rotating once every 90 seconds. At the time of writing this the satellite has passed over the eastern horizon. An attempt will be made by the highpowered NASA Madrid ground station to regain control when the satellite reappears in the west. Services carried include RAISAT and BBC TV.

Apparently the Astra 1 B satellite at $19^{\circ} \mathrm{E}$ went into a spin at 1056-1231 GMT on June 4th, cycling over a three minute period. There are rumours that 1 B has a solar array fault which has resulted in a loss of nearly a quarter of its power. A loss of power also seems to have occurred during the period 1658-1805 GMT on May 23rd with Astra 1A'a transponder 7 . Solar cell problems have also been reported with the Japanese BS3a satellite, resulting in a 25 per cent
loss of power. As a result NHK and JSB are sharing one transponder instead of three.

The USSR is to launch a major satellite telecommunications system called "Energy" in the autumn of 1992. It will include facilities for five TV channels. TV capacity will be increased to over thirty channels when the system is expanded in 1997.

The Middle East Broadcasting logo is currently being radiated at 11.554 GHz , with horizontal polarisation, from Eutelsat II F1 at $13^{\circ} \mathrm{E}$. Its service is due to start in late summer.

The new high-powered Intelsat K craft will have sixteen 54 MHz bandwidth transponders, giving it 32 TV channel capacity. Due to come into operation in early 1992, its coverge will extend from central Europe to the US midwest, touching South America. Orbital position will be $21.5^{\circ} \mathrm{W}$ and the power will allow dish sizes down to 1.8 m to be used.

Turner International is looking into the possibility of taking over the Super Channel operation. CNN is to set up more offices in Africa.

Protel Satellite Systems Ltd., 295-297 Ballards Lane, North Finchley, London NI2 8NP (telephone 081445 4441) has introduced at $£ 42.95$ plus VAT a new lowernoise (1.2 dB) LNB which is a direct replacement for the Marconi Blue Cap LNB used with the Amstrad satellite TV system. This should overcome problems with sparklies and improve picture quality.

For Disposal

Geoff Chadwich of Wirral, Cheshire has for disposal free to a good home an Australian 13-channel turret-tuned TV set manufactured by Philips. He can be contacted on 051644 (0815. Collect or pay for carriage and packing. Gcoff is on the lookout for reasonably priced radar equipment. dead or alive.

Maxview Signal Boosters

The Maxview range of aerial equipment was expanded earlier this year. It now includes an attractive range of omni-directional active aerials for indoor or outside installation. Though intended for u.h.f. use, an additional add-on rod extention gives operation at v.h.f.

Perhaps of greater interest to readers is a range of indoor distribution amplifiers with a single wideband input and either one, two, three or four amplified outputs, the bandwidth being $40-860 \mathrm{MHz}$. The units are for $220 / 240 \mathrm{~V}$ a.c. mains operation, unswitched. An unusual feature is an integral gain control (six turn carbon track) with a range of typically 20 dB . Overall gain depends on the number of outputs $-22 \mathrm{~dB}, 10 \mathrm{~dB}, 8 \mathrm{~dB}$ and 6 dB respectively for the one, two three, and four output versions. Thus the adjustable gain for the four-output amplifier is -14 dB to 6 dB for all outputs.

Measurements carried out on a sample three-output amplifier confirmed the information in the specification. Noise is quoted as typically 3 dB . Inputs and outputs are conventional 75Ω unbalanced of course. When I dismantled the unit I found that there's a cool running mains transformer: the power supply is connected to the main amplifier strip by twin wires. As the amplifier is a completely screened and soldered up module it was not possible to examine its internal construction. It appears to be of the usual hybrid transistor type with resistive splitting for the outputs. The unit is housed in a brilliant white highimpact resistant case measuring $5.75 \times 3 \times 2.5 \mathrm{in}$. It comes
with screws for wall mounting
Clear connection instructions are provided, but problems could arise. The illustrations show a standard u.h.f. aerial and an omni-directional f.m. aerial joined together via a small Y-shaped combiner. Maxview can provide a suitable v.h.f./u.h.f. diplexing filter but purchasers may be tempted to use an inexpensive oriental wideband combiner. This would create difficulties because the u.h.f. signals would be picked up on both aerials and would be mixed in the wideband combiner, causing distortion - ghosting, signal loss, teletext errors etc. -
because of the lack of filtering at the inputs. It's less likely that $\mathrm{v} . \mathrm{h} . f$. radio reception would suffer from such effects.

The amplifiers are sold in clear blister packs and come complete with a coaxial connecting lead and coaxial plugs as appropriate to the version, e.g. the three-output version has four plugs. The units do not provide a supply for a mast-head amplifier

I was impressed with the sample unit which worked well and was stable across the whole v.h.f./u.h.f. bandwidth. For further details contact Maxview Aerials Ltd., Setchey, King's Lynn, Norfolk (telephone 0553810376).

Meter Precautions

George Wilding

Connecting the negative lead of a test meter to chassis using a crocodile clip is handy when making voltage checks. With most analogue meters however - this doesn't seem to apply with digital meters - the red lead is the negative one on the resistance ranges. As a result, if you clip the black (positive) lead to chassis when making resistance checks in situ the results will often be much less accurate than they need be and will suggest that leaks are present where in fact there isn't any leakage.

The reason for this is that when a point fed from a positive supply line via a low-value resistor is checked the meter's negative output will forward bias the supply rectifier and thus place the low source impedance of the power supply - say the secondary winding of a chopper, mains or line output transformer - across the circuit being checked. Then again, applying the meter's negative output to the collector of an npn transistor can result in the basecollector junction being forward biased, the reading then being affected by the transistor's low-impedance base circuit. In either case the degree of error will of course depend on the total resistive path and the meter's current output.

Thus for accurate in situ resistance checks when using an analogue meter with circuitry having positive supply lines the meter leads must be reversed with respect to their connections when making voltage checks. Since fault diagnosis often calls for a mixture of voltage and resistance checks, and testing across non-earthed components virtually necessitates the use of prod terminations to both leads, there is a very strong case for using prod terminations at all times.

Another problem arises when checking for an opencircuit bridge rectifier diode. Unless the diodes can be isolated from the supply transformers' winding, by disconnecting a plug or lifting a fuse (see Fig. 1), checking across any diode results in the meter also being applied across another one. Thus if the meter is connected across diode A it will also be connected via the very low resistance of the winding across diode B, and vice versa. Individual tests across A and B would therefore suggest that both are in order through one could be open-circuit. Similarly,

when checking the resistance of one of the two diodes in a full-wave mains rectifier circuit with an earthed centre tap in the transformer's secondary winding, one diode must be isolated from the other.

When testing resistors for value change or capacitors for leakage the prods must be applied in both directions so that any d.c. linked pn junction is reversed biased one way round.

When carrying out voltage checks around transistors, readings that are close to those given on the circuit diagram generally mean that the transistor is operating correctly, that the associated resistor valucs are within tolerance and that there is no leakage in associated capacitors. There are occasions however when a fault condition exists though the voltages remain within tolerance.

Notable examples are with transistors used as emitterfollowers or as i.f. amplifiers, since in both cases the collector feed will be via a very low-value resistor - in fact there is generally no decoupling resistor at all with an emitter-follower.

In i.f. circuits decoupling resistors with values as low as 10Ω can be found. Thus the total resistance in the collector circuit, i.e. the coil/transformer winding resistance plus that of the resistor. may be negligible. As a result, a big change in collector current will produce only a very small change in collector voltage, which is always at or marginally below the supply rail voltage. The base voltage is generally provided by a potential divider network or, in the case of an emitter-follower, a d.c. feed from the preceding stage. With both arrangements there's a high degree of base voltage stability. Say that after some years' use the low-wattage, low-value emitter resistor falls in value. The emitter voltage will be slightly reduced, increasing the net forward base-entitter bias voltage and thus the emitter current. Voltage checks will indicate that the collector voltage is at or marginally below the rail voltage, the base voltage is correct while the emitter voltage is only slightly below the correct figure, i.e. all three voltages are about right. Nevertheless the forward bias is greater than it should be and the transistor is not working at its normal d.c. operating point.

An increase in the value of the emitter resistor will reduce the forward bias applied to the transistor, but once again the voltage readings my suggest that everything is working normally.

In both cases, depending on the degree of the shift from the correct operating point, the gain with small-amplitude inputs could be reduced while the peak of the positive- or negative-going excursions of high-amplitude inputs could drive the transistor towards the non-linear extremities of its transfer characteristic, thus introducing signal cramping and distortion. The sorts of things that you can get as a result are sync pulse crushing and/or a non-linear grey scale.

A correct understanding of meter readings is essential for successful fault finding.

Satellite Dish Alignment Meter

Mark Stevenson

Early in 1989, prior to the launch of the Astra 1A satellite, my boss and I attended a seminar on how to sell and install satellite TV dishes. We concluded that whilst the installation principles were similar to those that apply with u.h.f. aerials there would be problems with dish alignment. An accuracy of $\pm 0.5^{\circ}$ was quoted - and any chance of being able to see the transmitter mast was definitely out! To be able to set the dish correctly we decided that an inclinometer and a signal-strength meter would be required, the former to set the elevation and the latter to set the azimuth and peak both settings. An order was subsequently sent off, and both items arrived about two months before we had any receiving equipment to sell or install.

Two Years On

Two years or so later the inclinometer lies unused beneath the van seat: the dishes we install come with an elevation scale stamped on them and this is good enough for rough vertical alignment. The meter on the other hand has proved to be invaluable in saving both time and our sanity. How some so-called "engineers" manage to fit dishes by having one person watch the TV set and shout to the other one up a ladder I do not know and never will. Despite its usefulness however the meter has certain shortcomings. As it's powered from the receiver, the dish, cable and receiver have to be installed before any alignment can be done, wasting time. It's fiddly to use,
requiring constant adjustment to the gain and reset controls. But its main problem is that it cannot tell one satellite from another, or even satellites from sunrays. On one memorable occasion we had to wait for an hour while the sun moved far enough from Astra for the meter to be able to tell one from the other.

Advantages of the New Design

The meter described in this article was designed and built to overcome these problems. Since it's powered by its own batteries it doesn't require the complete cable run to be installed before the dish can be aligned. Once the initial setting up has been done all you need to do with the meter is to switch in a preset for the satellite in question. Its main advantage however is that it demodulates the 6.5 MHz sound channel, so that the satellite can be identified from the sound heard.

Circuitry

Since the circuit is straightforward we won't give a full description of its operation. The tuner/demodulator module was taken from an old Alba receiver. A tuner/demodulator from another source could be used, the only limitations being that it should be a positive a.g.c. type that will work with a 10 V supply.
A 10 V regulator is incorporated because otherwise a fall in the battery voltage has quite a dramatic effect on the

Fig. 1: Circuit diagram of the dish alignment meter. The electrolytics are all 16 V unless otherwise indicated.
a.g.c. voltage, turning the whole thing into an expensive battery meter. Operation at 10 V gives a reasonable battery life without affecting the tuner unduly. The d.c.-d.c. converter used is an RS type, stock code 592-515. It's designed to step up the voltage from 12 V to 15 V , but in this application it's used to provide a stabilised 20 V supply for the tuning presets. This is quite enough to be able to tune to the top Astra 1 B channels.

The 6.5 MHz ceramic filter (NEC part no. 61105031) used at the input to the TBAI20S audio demodulator chip was obtained from SEME, who tell me that they have it in stock. The demodulator coil L1 is not critical. I found that any appropriate coil would give some audio output but the type specified gives the best output. It consists of fifteen turns ($\pm \mathrm{I}$ turn) 0.5 mm apart wound on a 3 mm former with a ferrite core. The demodulator's input is taken from the tuner's baseband output. This arrangement works well enough and no additional filtering or amplification is required, keeping things simple. The audio output from the demodulator chip is coupled by a $1 \mu \mathrm{~F}$ capacitor to the LM380 chip. I used this simply because I had one in stock: any similar type can be used, with the speaker chosen to suit. You could fit a headphone socket to prevent traffic noise masking the sound from the internal speaker. An LM358 chip is used as the a.g.c. amplifier. It was taken from the same Alba receiver that provided the tuner/demodulator module. This type should be used as it will run from a single 5 V supply rail - other operational amplifiers may not.

The 12 V battery is a Dryfit sealed lead-acid type rated at 1 Ah . As the meter and LNB have a consumption of about 500 mA it will give two hours' continuous use. A second 6 V battery could be connected in series with the supply to the LNB via a switch to enable the polarity switching with Marconi type LNBs to be checked, but this is an expensive option.

VRI in series with the tuning presets acts as a fine tuning control to compensate for variations with different LNBs. It's rarely needed. The number of presets could be more or less as required.

The meter is not critical. Any 50 or $100 \mu \mathrm{~A}$ moving-coil type could be used to suit the case adopted. I used a case from Maplin. It's very reasonably priced and has a matching shoulder strap. Order numbers are YU98G and JR03H.

Alignment

The only real alignment required is to set the gain and remove the a.g.c. offset. Connect the meter to a dish that is already set up for Astra. Switch on and tune one of the presets to Sky News. If the sound is faint and cannot be improved by adjusting L1, try adding or subtracting one turn until good sound is obtained. Set VR3 to the quarter travel point, i.c. about $450 \mathrm{k} \Omega$. Then adjust VR2 until the meter reads about seven eighths of f.s.d. Turn the dish away from Astra then adjust VR2 until the meter reading falls almost, but not quite, to zero. Turn the dish back to Astra and use VR3 to return the meter reading to seven eighths of f.s.d. You may have to go through this procedure two or three times as the presets interact. Once set up however there's no need for further adjustment. You could then replace VR2 and VR3 with fixed-value resistors.

It's recommended that audio tuning is done with Astra. Some sound will be heard with other satellites but it won't be very clear because of the different carrier frequencies used. It should be good enough to be able to identify the

next month in

TELEOTSUON

FREE NEXT MONTH!

Next month's issue comes with a free covermounted magnifying lens. Just the thing for checking printed tracks and solder joints and reading cricuit diagrams with small print. Also included with the issue is the latest East Cornwall Components catalogue.

- WHICH DIGITAL MULTIMETER?

There's a vast range of digital multimeters on the market today, from sources all over the world. How do you choose one of these essential servicing tools? In a two-part article starting next month David Botto surveys the field, describes meter operation and features and discusses meter selection to suit particular needs.

- ADDING A SCART CONNECTOR

K. Weevil describes an interfacing circuit which enables a Scart socket to be added to many older sets that don't have video/audio input/output facilities. Providing an RGB link gives much improved results compared to a u.h.f. modulation/demodulation process.

- SERVICING THE SAISHO VR1200

This popular VCR is also included in the Matsui range, as Model V820. Ed Rowland provides a servicing guide.

- THE PHOTO CD FORMAT

The Photo CD format has been developed by Philips and Kodak as a means of storing photographs on disc and viewing them using a TV set as a monitor. It uses a mix of film, video, $C D$ and computer technologies. George Cole describes the system, which is due to come to the market in the latter half of 1992.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO
(Name of Newsagent)
Please reserveddeliver the October issue of TELEVISION ($£ 1.80$), on sale September 18th, and continue every month until further notice.
NAME ...
| ADDRESS ...
I \square
station however - except with the Marco Polo satellite which will provide no sound because of the MAC encoding.

In Conclusion

Assuming that a tuner/demodulator module is available the cost of the meter, including the case and battery, should not exceed $£ 50$. Most of the parts are standard,
inexpensive items that are readily available.
This may not be a state-of-the-art design but it's easy to use, works well and is even sensitive enough to show the loss along a long run of cable. Try it with just a 1 m fly lead as used when tuning in the dish, then at the end of a 20 m cable run. Even with RG6 cable the signal indication on the meter almost disappears. The design is simple and can easily be built on Veroboard. The principle I follow when building such items is KISS - Keep it Simple Stevenson!

CD Player Casebook

Reports from Mike Leach, V.W. Cox and Ronald Aranha

Pioneer PDX540

This player read the discs all right but wouldn't play. When I selected one of the disc's outer tracks the laser/sled assembly wouldn't move. All that it did was to chirp and whistle at me. Similar faults have been described in these pages before. Often the cause is a worn or faulty sled motor. In this case however the cause was a faulty TA 7256 tracking drive chip (IC17)
M.L.

Aiwa DX700

This player is part of a midi system. The reported fault was failure to play. As the laser wouldn't focus on the disc properly there was no TOC reading. Also the turntable motor wouldn't rotate. I've had dry-joint problems with similar machines on previous occasions so I adopted a highly technical approach: I had a good prod around with Big Bertha, my large, insulated fault-finding screwdriver. Suddenly the machine sprang to life. It wasn't just a case of dry-joints however, it was rather more serious. On looking at the board carefully I noticed that there was cracked print around the various test points. It seemed that the holes drilled in the board to accommodate the test points had been slightly too small. Thus when the test points had been inserted automatically they had cracked the print. The piece of print that appeared to be causing my problems was around test point 10 . Linking the print around this test point cured the problem, after which the player worked extremely well.
M.L.

Denon DCD300/600

Skipping and jumping is a problem we've had on several occasions recently with these machines. In each case slippage of the sled belt has been the cause, producing erratic movement of the sled assembly. We find that the belt becomes severely stretched. Now every one of these machines that comes in for repair gets a new sled belt irrespective of the reported fault. The sled belt is part no. 4230044023 , the loading belt part no. 4230044001 . M.L.

Yamaha CDX810

This attractive up-market machine suffered from various faults. It read discs intermittently, wouldn't search properly, would occasionally skip and jump, and would drop out of play into the stop mode. On one of the rare occasions that it did play I was able to check the r.f. eye pattern which was very poor. Each of the diamond shapes in the waveform was indistinguishable from the next one. It jumped and stopped, and I was beginning to suspect the laser unit. I pressed play again and the waveform was this time perfectly o.k., the dise playing correctly. When an outer track was selected however the waveform once more
deteriorated. The cause of the problem was not the laser but the crimped connections on the laser plug, at the PCB end. They were in very poor condition. The faults cleared when I hardwired these connections to the plug. I found that the r.f. waveform was now clear but the laser power had been set way over the top. When it was reset and a new turntable motor had been fitted the machine once again performed as well as it looked.
M.L.

Hinari DK200

The customer said he heard a clunk after which the player had stopped. We saw that the arm was being driven over completely to its stop. Examination showed that R212 in the 12 V feed was open-circuit while IC103 (L272) was in a very miserable state. Replacement of both items restored normal operation.
V.W.C.

Sony CDP-H300

This player came in as part of Sony's portable music system type FH-E626. When we loaded test dise YEDS18 and selected play we heard lovely sound from the speakers. After some time however there was only distorted sound from both channels. Application of freezer to the TDA1543A DA converter chip IC222 restored normal sound. A replacement cured the problem.
R.A.

Sony FH-B7CD

This new music system has an edit facility that enables you to dub into a tape without loosing the tracks at the end of the tape. When a disc was inserted into the CD player section there was no sound from the speakers except for an occasional "khur khur" noise. The digital signal processor/CLV servo chip is IC202, type CXD 25000 Q . We connected the scope to its data port and noticed that the signal waveshape changed from time to time. A few bursts of freezer on IC 202 restored correct sound. Fitting a replacement had to be done with great care as it's an 80 pin SMD chip. This restored normal operation.
R.A.

Sony D55T

This is a Discman with an a.m./f.m. tuner built in. The card said "no results". We connected a 9 V supply, loaded a disc and pressed play. There was no response and we noticed that the LC display was blank. The 5 V supply reached the CXP5024H-003Q system control chip IC801 but there were no auxiliary supplies from the d.c.-d.c. converter. Now pin 30 of IC801 is the power controller port and there was no change here. Replacing IC801 restored normal operation.
R.A.

The Black Book is back

How and why scrambling systems are hacked. How are Smartcards hacked?
How secure is VideoCrypt?
What is the future for hackers?

...with the answers!

The original European Scrambling Systems quickly became the industry handbook on the black arts of signal security. Now in European Scrambling Systems 2, John McCormac analyses all aspects of scrambling systems from the very basic facilities to the crypto-systems.

Considered by many to be one of the leading European authorities on scrambling and piracy, John McCormac reveals the secrets of hacking supposedly 'secure' systems, again written with his characteristic cynical and humorous slant.

Insìde European Scrambling Systems 2:

WARNING
The Information contained in this book is for educational use only. Swift Televislon Publications, the publishers and the author do not assume any liablity for the use or misuse of the information provided. Insome countries, the unauthorised use of certain clrcuits and techniques may be prohibited by law.

- Introduction to Scrambling covering the basics of sctambling systems
- Principles of Security
including a database of most European
scrambling systems in use
- Descrambler Building Blocks
with hacker decoder circuits for various systems, including Filmnet, RTL 4 V and SAVE
- Analogue \& Digital Audio Scrambling covering FM'd, spectrum inversion, NICAM, Delta, and duobinary encoding
- Dirty Tricks used in piracy, counter-piracy and reverseengineering
- Basic Cryptology covering the DES and RSA systems
- Video Manipulative Systems including VideoCrypt, MAC and EuroCypher
- Cable and Microwave Distribution
- Descrambler Hookups
for common systems

European Scrambling Systems 2 is available now from Swift Television
Publications for only £29 (P\&P FREE in UK). Complete the order form below or telephone us today and find out just how quick our service is.

Swift Television Publications
17 Pittsfield, Cricklade, Swindon SN6 6AN Tel or Fax 0793750620
Please send me \qquad copies of European Scrambling Systems 2 at $£ 29$ each.
Post and packing is FREE (within UK). Europe add $£ 4$.
I enclose cheque/PO for $£$ \qquad made payable to Switt Television Publications or please debit my Access/Visa card:

Number: Exp: \qquad
Name:
Signature:
Address:

Postcode:

Teletopics

BROADCASTING NEWS

The BBC formally starts broadcasting with Nicam stereo sound on BBC-1 and BBC-2 from the end of August - the first programme will be from the Royal Festival Hall on August 31st, on BBC-2. Seventy three per cent of the British population will be able to receive the Nicam stereo TV sound from ten main BBC transmitters and their 402 relays. BBC Television is committed to extending the service throughout the country, and over the next four years four further main transmitters are to be modernised. increasing the stereo sound coverage to eighty four per cent of the population. These transmitters are Divis (1992), Rowridge (1993), Tacolneston (1994) and Bilsdale (1995). On the programme side it's the BBC's intention to broadcast as much material as possible with Nicam sound.

The European Commission's recently published draft directive on satellite TV broadcasting seeks to commit broadcasters and the European consumer electronics industry to common objectives, in particular the adoption of the D2-MAC system for all future satellite TV stations, leading to HD-MAC at a later date. The directive would require approval by the governments concerned and the Commission hopes that it will come into effect early next year. The broadcasters and industry have been arguing about the terms of the directive for over six months however, while the UK government has already attacked the proposals. Sticking points include whether to make D2MAC mandatory, the position of the current PAL satellite transmissions, and the receiver features that would become obligatory - whether all sets would have to incorporate a D2-MAC decoder or whether a baseband socket would be sufficient, making sets "D2-MAC ready". The saga of the directive seems set to run for some while yet.
Channel 4 will introduce PDC (programme delivery control) this autumn. The system uses codes in the teletext signal to enable a VCR to identify the start and end of a programme the user wishes to record. This makes timer setting much simpler and means that the VCR will make the recording correctly even when the programme time has been altered. The VCR has to include PDC circuitry of course - several models were announced at the spring shows. Programme schedules broadcast in advance as teletext pages will incorporate programme identification codes that the user can select and store using a remote control handset and an on-screen cursor.
A similar system called VPS (video programming system, see Television May 1986, page 450) has been in use in Germany, Austria and Switzerland for about six years. It was rejected in the UK since the programme code occupies a complete teletext line, which was considered to be wasteful, and prior to a recent change in the law programme recording was strictly speaking illegal. The similar TP (text programming) system first introduced by Grundig provides user programme selection for recording but doesn't overcome the problem of transmission time changes. PDC, which is an EBU standard, is a more efficient method of including the programme codes within the teletext lines. It was adopted by Channel 4 with the approval of BREMA. Channel 4 has been able to introduce this system first because it uses a computerised programme schedule system to control the transmission of commercials throughout the network.

According to the Financial Times satellite monitor, a
further 64,(0) satellite TV installations were carried out in June, doubling the number over the twelve-month period. The figure for July was 55,000 - some 1.7 m households now have access to satellite TV.

VIDEO HD-TV STANDARD

Hitachi, Matsushita and Sony have agreed on an HD-TV standard for VCR use. It's been developed for use with the Japanese MUSE HD-TV system but could be adapted for use with other standards. Signal compression has been rejected as a means of reducing the bandwidth required. Instead, two other techniques are employed. First the drum speed is doubled to 3,600 r.p.m. Secondly the video signal is divided into two components and recorded by two heads simultaneously as a luminance/chrominance timedivision multiplex. Sixteen-bit PCM is used for the two- or four-channel digital audio signal. The cassette, which uses half-inch metal-particle tape, has a playing time of three hours. The three firms are to propose to the IEC (International Electrochemical Commission) that the system be adopted as a world standard. A ten-chip set will be developed for use in the VCRs, which it is hoped will be on sale within two years. The Japanese state broadcasting system NHK is at present broadcasting an hour of HD-TV daily. This is to be increased to eight hours later in the year.

AUDIO NEWS

An agreement has been reached between US recording companies and consumer electronics firms over digital audio tape systems. Under its terms a royalty payment on all equipment, tape and dise sales would be made to a government administered fund. The necessary legislation would have to be passed for the agreement to come into effect. A similar arrangement may be proposed in Europe.

Philips has announced that Matsushita (Panasonic) is a co-licensor of the DCC (digital compact cassette) system, which is to be introduced next year.

CHIPPERY

Sanyo Electric and US semiconductor manufacturer LSI Logic have agreed to undertake joint development of a sophisticated chip set to handle Japanese MUSE HD-TV signals. The aim is to reduce from forty to between six and ten the number of chips required for signal processing, cutting the decoder PCB size by three-quarters and halving its cost. The MUSE decoder is expected to be in production in the latter half of 1992.

NEC has developed a video compression system for videoconferencing use. It consists of three chips capable of compressing a $90 \mathrm{Mbit} / \mathrm{sec}$ data stream to $64 \mathrm{kbit} / \mathrm{sec}$ and meets the ISO H 261 specification. The CPU chip incorporates 1.13 million transistors on a $13 \times 15.5 \mathrm{~mm}$ die. To achieve the necessary operating speed static instead of dynamic RAMs are used with the processor.

ITT Semiconductors has developed a chip for decoding captions for the hard of hearing. The CCD3000 is capable of handling all TV display functions, works with NTSC, PAL or SECAM transmissions and is compatible with ITT's Digi 2000 system.

TRADE NEWS

Nokia Consumer Electronics has established an in-house service department at its Swindon headquarters (Bridgemead Close, Westmead, Swindon SN5 7YG) to handle repairs and spares for ITT Nokia, Salora and Luxor
products. Service back-up had previously been provided by a subcontractor, Hoopwell Ltd. The move follows the creation of a centralised service and spares operation at Bochum, Germany, ensuring fast delivery of spares to Nokia companies throughout Europe. The Nokia service department telephone numbers are 0793511636 for spares, 0793512856 for service and technical ($2-5$ p.m.) .

A correction is required to our note last month about Sentra Electronics Ltd. It's the spares and service division of Sentra that's now trading as ASJ Electrotechnik, to whom orders and cheques etc. should be made out. Address and telephone number as last month.

Modification details are available from ASJ Electrotechnik for reception difficulties with the Sentra SX10(0) and Channel Master 6010 satellite receivers when used with the Astra IB satellite

Still no news of a UK spares supplier for Loewe Opta products. Those who need to contact Loewe Opta GmbH should write to the firm at Industristrabe 11, Postfach 220, D-8640 Kronach, Germany. The spares telephone no. is $010499261997(k)$ - but there are no English speakers available.

TAPE FORMAT TRANSFER

Flintdown Channel Five Television Ltd., 339 Clifton Drive South, Lytham St. Annes, Lancashire FY8 1LP (telephone 0253725499 or 712 (011, fax 0253713 094) offers a tape transfer service for those who have video material stored on obsolete tape formats, transferring the material to modern video tape and cassettes such as VHS, S-VHS and lin. Betacam SP. The company maintains a range of videotape recorders that were long ago discontinued, including Philips N1500 and N1700 machines, Hitachi halfinch reel-to-reel, IVC lin. and quad 2 in . models

SERVICE ENGINEER SHORTAGE?

Roger Warren, senior lecturer at the Hastings College of Arts and Technology, has warned that a serious shortage of service engineers in the consumer electronics field is in prospect. Over the past three years there has been a fiftysixty per cent drop in the number of students in his area taking the City and Guilds 224 courses. He has even had to cancel a satellite TV servicing course. Bad conditions and poor pay are suggested as reasons for the continuing decline in the number of people employed in the servicing industry. The increased reliability of consumer electronics products is another factor of course.

VIDEOPHONE SYSTEM

GPT has announced that it will launch a videophone in time for the start of the proposed pan-European videophone service in 1993. The price is expected to be between $\mathfrak{£ 1 , (0) 0}$ and $\mathfrak{£ 2 , 0 0 0 \text { . It will be based on the }}$ company's videoconferencing system, which is to the ISO H 261 specification, and will use the two $64 \mathrm{kbit} / \mathrm{sec}$ digital lines provided by BT"s ISDN-2 service.

AERIAL NEWS

A new omnidirectional indoor aerial from Maxview, the Omnivision, provides coverage of the u.h.f. bands plus v.h.f. radio. It comes with a separate amplifier that provides a variable gain of up to 26 dB . Suggested retail price for the combination is $£ 45$, which includes various accessories. For further details apply to Maxview Aerials Ltd., Common Lane, Setchey, King's Lynn, Norfolk PE33 OAT (telephone 0553810 376).

Manufacturing arrangements for the Astra version of the

User Friendly SOFTWARE

> FOR IBM COMPATIBLE PC'S RUNNING ON MSDOS FOR THE BUSY TV/VCR SHOP/SERVICE DEPT RECEIPTINVOICE PROGRAM $£ 89+$ VAT + P\&P

OUR TV/VCR RENTAL PROGRAMME IS NOW AVAILABLE
Phone or write for details:
181 Oftwen@ $\begin{aligned} & 369 \text { Chepstow Road } \\ & \text { Newport, Gwent. NP } \\ & \text { Tel. } 0633 \text { 282556 }\end{aligned}$

Squarial, which uses phased-array technology, are close to being agreed. It will be 45 cm square, 45 mm deep and have an efficiently of 72 per cent, about ten per cent higher than an equivalent dish. One of the problems with the Squarial has been the manufacturing tolerances, which with some dimensions have to be of the order of a thousandth of an inch.

New rules on satellite dishes came into effect on July 31 st, subject to local conservation area etc. restrictions. The plan for two dishes per home without planning permission, proposed when Sky Television and BSB were separate, has been withdrawn. The latest regulations allow one dish of diameter up to 70 cm provided it doesn't project above the highest part of the roof. To meet reception needs in some areas a 90 cm dish is permissible. A 45 cm dish can be chimney mounted provided it doesn't project above the top.

UNIVERSAL HANDSET

Cullam Ltd., Technology House, Stanton Harcourt Road, Eynsham, Oxford OX8 1TH (telephone 0865882 100), fax 0865882 110) has introduced a multi-purpose remote control handset that can be simply programmed to operate almost any IR controlled equipment. Known as the Scholar, the unit has a suggested retail price of $£ 39.95$ including VAT. It's programmed direct from existing handsets, retains its memory while the batteries are changed and offers up to 192 commands. Cullam is shortly to introduce a Nicam unit, the Interpreter, that upgrades existing TV sets and VCRs for Nicam stereo via a hi-fi system.

CASSETTE VCR SERVICING COURSE

Microforge Ltd., 339 Clifton Drive South, St. Annes-onSea, Lancashire FY8 1LP (telephone 0253725499 , fax 0253713094) has produced a domestic VCR servicing course on seven separate cassettes. The programme is detailed and uses animated diagrams, graphics, spectrum analysis and oscillograms etc. to illustrate VCR operation. Each cassette is accompanied by additional printed notes with many diagrams and pictures. The seven cassettes cover VCR systems overview, servo systems, colour record systems, frequency modulation, VHS/S-VHS/Video- 8 , component video and VCR faults respectively.

The series has been made in conjunction with the Department of Trade and Industry and Aston University. Each cassette with its printed notes sells for $£ 39$: a discount is available if more than one part of the programme is ordered at the same time.

VCR Clinic

Philips VR6362

The cassette would eject when play was selected. A check on the error memory showed that the capstan tacho signal was missing, though the capstan was seen to turn a few times when the cassette went in. The cause of the trouble was no supply to the tacho amplifier as C2206 on board P607 was short-circuit.
P. \mathbb{B}.

Grundig VS540

This machine came in with a cassette, which hadn't been inserted correctly, jammed inside. Now normally the machine would attempt to load the cassette for a few seconds then go to eject, but this didn't happen. Instead the machine kept trying to take in the cassette. After extracting the cassette I found that everything was fine if the cassette was inserted correctly, the problem occurring only when it was inserted incorrectly. After a break I noticed that the time was wrong. This was reset but a few minutes later I saw that the clock had stopped. It was then a simple matter to check the clock chip and find that it wasn't oscillating. A new PCF8583 was required. This cured both problems. The system controller uses the clock chip as a time reference: as the clock wasn't running, it wasn't timing the tray operation and sensing the jammed cassette lift.
P. \mathbb{B}.

Fujitsu General VGX625B/Panasonic D deck

"Speckly picture" was the fault noted on the card. I'd never seen a VCR like this one before, but when the top had been removed I recognised the Panasonic D deck. Things were all right once the heads had been cleaned, but why had this been necessary? A check on the back tension revealed that it was too high at 60 g . The cause of the trouble was revealed when I inserted my Scotch E240 tape and tried forward and reverse search. There was too much friction between the lower drum and the tape, so the tape was buckling at the rotating guides.

Due to the cost of a new lower drum the machine will probably be written off. But we have a lot of machines that use the Panasonic D deck out on rental and have been changing rather a large number of lower drums. So we've been checking the back tension on all our machines. The normal playback tension should be around 40 g when checked with a Konig tension cassette. With a large proportion of the machines the back tension has been 60 g or more. Hopefully we will have reduced our need for lower drums by resetting the tension before the wear has become excessive.
P.B.

Ferguson FV41

If pause or a search mode was selected when the machine had been rumning for a few hours the picture would roll. A check on the video signal showed the reason for this: in these modes there was a field sync pulse only on alternate fields. The pseudo-V sync pulse that's used in these trick modes is generated by the servo microcomputer chip and is fed to pin 28 of the luminance processing chip IC26. Even when the fault was present the 50 Hz pseudo -V signal was correct. Checks around IC26 showed that the supply voltage was high at 6.4 V instead of 5 V . A small regulator

Reports from Philip Blundell, AMIEIE, lan Bowden, Chris Avis, Ed Rowland, Eugene Trundle, J. Edwards, Nick Beer and John C. Priest

circuit in the servo area of the main PCB produces this 5 V supply from the U7 8V line. The regulator circuit isn't the same as that shown in the provisional circuit diagram. We found that the faulty component was the 2.7 V zener diode DT53 which had nearly $4 V$ across it.
I. \mathbb{B}.

Hitachi VT17

The operate button LED said that the machine was on but there were no functions and no clock display. The NiCad backup battery should read $2 \cdot 5 \mathrm{~V}$: this one read $2 \cdot 5 \Omega$! It had also killed the 10 V regulator transistor Q1795. A new NiCad battery and 2SC2030 transistor restored normal operation.
C.A.

Ferguson 3V53/JVC HR-D755

The owner complained about "fine net curtains" across the playback picture after ten minutes or so. He was right. Scope checks narrowed the source of the noise to the MSM6989RS delay chip IC2, which obligingly cleared the fault when it was frozen. We had some difficulty obtaining a replacement. Eventually we found that Thorn EMI Home Electronics had it in stock.
C.A.

Sharp VC831H

The playback sound from prerecorded tapes was very low and muffled. The machine wouldn't record any sound at all, though the crase was o.k. As head cleaning produced no improvement a replacement was fitted. This cleared up the trouble completely.
$\mathbb{E} . \mathbb{R}$.

Sharp VC582

When the cue (forward search) mode was selected the tape would stop moving, the deck reverting to the stop mode. The same shutdown sequence would occur during playback when a blank section of tape was encountered the machine is designed to "search past" these, triggered by cessation of the off-tape control track pulses. The cue command came from pin 29 of the control microcomputer chip correctly. Further checks showed that C753 ($1010 \mu \mathrm{~F}$, 16 V) in the reel motor drive circuit was short-circuit. E.T.

JVC HR-D110/Ferguson 3V38

This machine had a fault that was unusual to say the least: playback was o.k. but the machine's own recordings played back with erratic servo lock. If the machine was stood on end it made good recordings! There are two capstan FGs in this design, one in the motor and one on the belt-driven flywheel. The bracket that supports the bottom of the flywheel shaft had become somewhat bent. As a result the FG printed coil had moved away from the capstan, reducing the FG output at TP402 to $(0 \cdot 2-1 \cdot 1 \mathrm{~V}$. E.T.

Tatung VRH8350

This particular Tatung machine is made by Akai. It would intermittently shut down to stop during play or record -
except when it was being watched in the workshop! An old scope was finally left hooked to two key points. Just before the machine went to stop we saw that the reel sensor pulses faded away slowly to zero. Changing the reel-sensor optocoupler and the cassette LED, which is in series with the coupler's sender diode, seems to have cured the problem as we've heard no more.
E.T.

JVC HR-D750

The complaint was of diagonal blue lines on red backgrounds in the picture: it was received with some scepticism in the workshop. Sure enough, on test the reproduction of reds was flawless, even with the Madonna tape that accompanied the machine for the purpose of demonstration. We had to get the TV set, a JVC one at that, before we could sort this one out. The cause of the trouble was interaction between the TV set and the VCR, and was cured by physically separating them by a foot or two. The effects produced by this sort of radiation interference can vary tremendously with different combinations of VCR and TV receiver.
E.T.

No Record with Camcorders

One of our customers made himself an elaborate and excellent battery belt for his camcorder. Its only problem was that the machine cut out each time he went to record! All the other functions worked however. You get the same sort of thing with worn-out batteries and with inadequate bench PSUs used to test camcorders. The reason for this is that the machine's current consumption is at maximum just after the record button is pressed: the camera section is then powered, the loading and head motors are running and sometimes the auto-focus motor is also operative. Current consumption can exceed an amp, much more than in the other modes, and the power source must be able to supply this with little drop in voltage.

The total resistance introduced by our friend's battery belt, contributed by several feet of thin wire, the connections, plugs and sockets, probably added up to an ohm or so, enough to lose a volt or more when entering the record mode. We found that the voltage at the camcorder dipped below the auto-cut circuit's threshold point, whereupon the machine promptly shut down again. E.T.

Sanyo VEMS1P Camcorder

The dew indication was almost always present in the viewfinder. As a result, all functions except eject were inhibited. Perhaps surprisingly, dew sensors go highresistance when moist: the problem here was simply a dryjoint at one of the sensor's terminations.
E.T.

Hitachi VT130/150

This machine accepted a tape all right and fast forward/rewind worked. When play was selected however the drum rotated and the machine laced up but there was no capstan rotation. So stop was initiated and the machine unlaced. Slight flexing of the servo panel would enable the machine to enter the play mode but after the slightest movement it would shut down. Much time was spent checking the voltages around the servo chip (IC601) whilst trying to flex the panel in an effort to note any changes in the readings in the go/no go states. This didn't work so I decided to let the machine shut itself off then carry out checks, hoping that it was still in the fault condition. There
should be a $4 \cdot 43 \mathrm{MHz}$ signal at pin 32 of IC601. This was missing. I traced it back to pin 27 of IC301 on the luminance panel, where it was also missing. Slight movement of IC301 made it come and go. Resoldering IC301 provided a complete cure.
J.E.

Panasonic NV-G40

The playback picture was clean and noise free but without colour. A recording played back on another machine proved that the fault was present in the playback mode only. The playback r.f. chroma is applied to the YC panel at pin 32. It was present here, though indistinct and of low amplitude. More alarmingly it sat on a d.c. potential of $3 \cdot 32 \mathrm{~V}$. If the feed from the head amplifier was disconnected the d.c. potential disappeared. We found that it was present at pin 13 of the chroma hybrid chip IC801 (part no. VEFH04A). The same potential was present at pin 11 of the i.c. on the hybrid module, these two points being coupled by a capacitor which was apparently short-circuit. A new hybrid chip restored the playback colour.
N. \mathbb{B}.

Panasonic NV-MS50

This camcorder wouldn't play or record. The customer mentioned that he'd scraped it against a wall and wanted the marked case parts replaced. The symptoms were identical to those with an exhausted battery except that the viewfinder didn't show the appropriate indication. i.e. the unit would lace but then immediately unlace. With the covers off the reason for this was soon obvious - the drum didn't spin. This was in turn caused by the fact that the hi-fi audio rotary transformer's stator, which in these small units is mounted above the drum, fouled the latter because its bracket was bent. Further investigation showed that the tripod mounting bush was cracked in half. More than just a scrape I fear!
N.B.

NEC N9077

This machine was brought into the workshop with the complaint "can't tune out radar interference". Radar at Squires Gate is a major problem in this area, making chs. 35/36 almost unusable in some parts of the Fylde. In this case however radar was not the cause of the problem. The white dashes across the screen were longer than the familiar radar blips and didn't have the characteristic repetition frequency. In fact the problem was caused by tape drop out as the drop-out compensation circuit wasn't doing its job.

A look at the circuit suggested that VR204 controlled this function, but a couple of experimental tweaks had no noticeable effect on the fault. There's no circuit description in the manual, and the function of IC1202, which precedes VR204, is not shown on the circuit diagram. It's identified in the parts list as a "PAL IH CCD", i.e. a one-line delay CCD chip. Pin 12 of the LA7323 luminance processor chip IC1201 feeds pin 6 of IC1202. IC1202's output, at pin 4, goes to VR204 via an emitter-follower (Q209) and a filter (FL202), VR204 feeds back to pin 10 of the LA7323 chip via another emitter-follower (Q208) and a coupling capacitor (C208). The waveform at TP207/8 didn't look much like that shown in the manual and didn't vary when VR204 was adjusted. As Q208/9 and C208 checked o.k. I decided to order and fit a replacement line-delay chip. This was a mistake - it was the LA 7323 chip that was the cause of the problem.
J.C.P.

The New BBC Identification Symbols

Keith Hamer and Garry Smith

Followers of our articles will know that from time to time we delve into the archives to present various BBC test cards, identification symbols and clock captions used in days gone by. Our first article on the subject appeared in the May 1978 issue of Television, when we reviewed unusual BBC globe symbols and test cards. This time we're going about things the opposite way in featuring some of the very latest on-screen identification graphics.

Previous Changes

Major changes to BBC on-screen graphics were introduced on February 16th, 1991. Previously the last overhaul of the BBC-1 identification had been on February 18th, 1985 when the mechanical globe symbol, which had been used in various forms since 1963 , was changed to a fully digital display. BBC-2 changes were introduced in March 1986, when the traditional "2" was changed to a written "TWO" symbol. The identification captions for both networks had remained largely unchanged since then.

Call for Something New

In 1988 BBC-2 controller Alan Yentob made it clear to BBC Presentation that he didn't like the red, green and blue TWO identification. In fact he hated it! So plans were started to alter the BBC-2 image. Meanwhile the world of BBC- 1 seemed set to continue rotating for some time to come.

By the late Eightics ideas about "market forces", "reorganisation", "rationalisation" and, worse still, "competitive tendering" were becoming current at the BBC Television Centre. While the BBC's Graphic Design department had traditionally been responsible for designing and producing the various identification symbols, it now faced competition from outside design agencies.

Planning the Changes

In June 1988 Pam Masters left Channel 4 and became head of Presentation at the BBC. She had started her career there, moving to Channel 4 in 1981 to become head of Presentation with responsibility for its on-screen appearance and identification. The design consultancy Robinson Lambie-Nairn devised Channel t's logo, and it was perhaps not surprising that the same company was commissioned by the BBC to update its TV identifications, no doubt much to the disappointment of the BBC staff who had devised all previous BBC identifications with great success and a high degree of professionalism. What could we expect from Lambie-Nairn?

In recent years the company has designed the logos used by Channel 4, Scottish Television, Anglia Television and the French TF1 network. Remarkably similar identification symbols have been devised - they either look like bits of plastic that hurtle around the sereen, or they seem to be made of shiny stainless steel. Such patterns are fine for some organisations, but surely not for the BBC. Throughout the world various graphic designers have chosen to use this style for television logos, as a result of which there's a great deal of similarity.

In 1988 we discussed over lunch with Pam Masters and

Graphic Design Manager John Aston at the Television Centre the fine tradition of the various BBC identification symbols. We mentioned to our hosts that the BBC had used a globe of some description since the Thirties, and suggested that it would be a terrible break with this tradition to discontinue the $\mathrm{BBC}-1$ globe symbol. To support our view we produced photographs and videos from our extensive archives. As events unfolded last February, we needn't have worried too much about this. The first hint that we received about changes to the BBC-1 globe came in December 1990. A tip-off from Television Centre advised us that the new symbol was being viewed for the first time, behind locked doors and under strict security. The new BBC-1 symbol was indeed to feature a globe - but only just! For the first time ever the symbol was not going to include any sort of "BBC" identification: it would simply feature a large figure " 1 " in the centre of a swirling expanse of sea and land. Oh dear! That didn't sound too encouraging, but at least there was going to be a globe.

The Changeover

The final transmission of the BBC-1 digital globe symbol and the familiar clock caption occurred at closedown on February 16 th, at around 0145 . There was a brief mention from the continuity announcer that a new identification symbol would appear at the start of programmes later that day. We were given a hint as to what the new " 1 " would look like when Test Card F appeared for about ten seconds after closedown. On the extreme left (see the accompanying photograph) there was the new BBC identification, in sloping boxes with short white lines below. To the far right there was the new-style " 1 ". Several people at the Television Centre were, with ourselves, left wondering why there was such a large space in the identification. Perhaps someone at the BBC knows the reason for this unusual gap: at the time of writing this we are still in the dark!
Test Card F was again transmitted, at some length, prior to the start of the Open University programmes at 0640 on BBC-1 and 0650 on BBC-2. The OU programmes started on time and we were to discover that the work of the graphic designers had even extended to this area which, it seemed, hadn't changed much for centuries! But there was still no sign of the new BBC clocks and symbols. We had to wait until (0)0) for the new BBC-1 clock to appear, prior to a Gulf News report. It was shown for only a few seconds but was clearly a pleasing design that was certainly different from any other clock caption. There was just one nagging doubt. What would the BBC show during a national emergency or ahead of some really awful news story? The clock seems too colourful for use on such sombre occasions.

The New BBC-1 Globe

The official unveiling of the new $\mathrm{BBC}-1$ globe symbol was due to be carried out by Philip Schofield and Sarah Greene at 0905 , during the children's programme Going Live! It appeared for a few seconds just prior to the start of this programme however. And what a colourful symbol it

Photo 1: The BBC-1 globe. Australia appears twice but where are Europe and Africa?

Photo 4: Part of the animated Open University sequence on BBC-1.

Photo 7: The 2 identification here takes on a stainless-steel appearance.

Photo 10: The 2 here seems to have a 3D effect.

Photo 2: The BBC-1 clock caption is superimposed on a strange psychedelic map.

Photo 5: The OU identification caption as radiated on $B B C-2$.

Photo 8: This 2 has a small river or satin rip across it.

Photo 11: A 2 that's illuminated by neon lights.

Photo 3: Test Card F with the new BBC identification and a strange space between it and the 1 or 2 .

Photo 6: BBC-2 identification with the 2 covered with blowing satin.

Photo 9: Here we have a rotating and silhouerted 2.

Photo 12: The new and extremely elusive BBC-2 clock.
turned out to be! Perhaps, as with the clock, a little too colourful for use during national emergencies. Incidentally the overall colour scheme is officially known as "BBC-1 Indigo".
Two traditions are embodied in this new symbol: the globe idea and the BBC corporate logo (the latter had been absent when executives first viewed the caption last December). But where on earth (quite literally) are the
continents of Europe and Africa? For some odd reason Australia appears twice in some instances. The Americas are also there, but apart from a vague outline there's very little sign of Europe and Africa. Just when these large landmasses should appear they seem to be swallowed up in a mysterious black hole. It has been suggested, perhaps rather unkindly, that Australia is featured twice in readiness for the BBC to be snapped up by some TV-
hungry Aussie entrepreneur when the Royal Charter expires in 1996.

BBC-2's New Look

BBC-2's new look was due at 1445, following the close of the OU programmes. Would the symbol consist of cheap and cheerful children's plastic playing bricks shooting across the screen? Fortunately it didn't. Instead, the bold figure 2 appeared in the place of the familiar TWO symbol. Then, without any warning, a jet of blue paint hurtled towards the 2 , splattering it completely. For paint connoisseurs, the colour is actually "BBC-2 Viridian" rather than blue! Certainly the new symbol differs from any of its predecessors. This wasn't all however: there isn't just one BBC-2 symbol but a whole selection of them, some of which are shotive in the accompanying photographs. They are generated from two laserdiscs which can produce no fewer than forty identification symbols, one of which includes part of Test Card F. Each BBC-2 symbol is accompanied by some rather unusual but soothing radiophonic-style music. The
new BBC-2 clock caption first appeared during the closedown sequence.

Regions and the Graphics Review

The BBC Regions haven't been overlooked in this updating process. BBC Scotland, Wales and Northern Ireland each have a vague outline map of their particular area on all programme menus and trails.

The authors now publish a quarterly, 20-page publication entitled TV Graphics Review for those interested in test cards and logo designs. It includes photographs and articles on test cards, the accompanying music, identification symbols and general TV graphics used throughout the world over the past seven decades. It's available at an annual subscription of $£ 7$ from HS Publications, 7 Epping Close, Derby DE3 4HR (telephone 0332513 399). If anyone has available photographs or videos of early identification symbols and test cards we'd like to hear from them. We would also be pleased to hear from anyone with recordings of BBC test card music from the Fifties and early Sixties.

The B and O 39XX Series Chassis

For convenience we are referring to the group sets described in this article as the 39XX series. To date there have been four models as follows: L4500, L5500, LX4500, LX5500, MX3500 and MX5500. An M in the model number indicates monitor styling. L only models are basic sets. Bang and Olufsen's set identification system has never been very clear, what with model and type numbers but no chassis numbers. Model L4500 is listed as type 393X, Model L5500 as type 391X, Model LX4500 as type 392X, Model LX5500 as type 390X, Model MX3500 as type 316X and Model MX5500 as type 326X. Having got that out of the way we'd like to say that the basic chassis used is an extremely interesting one.

The 25 and 28 in . LX sets are, as with previous models having the same prefixes, traditional looking sets with speakers at each side of the glass-plate covered c.r.t." The speaker frets and glass plate fit flush to the top of the set however rather than to an escutcheon as in previous models. This means that the standby indication has had to be moved. It's now a bi-coloured LED in the right-hand top corner above the c.r.t. The same LED is red for standby and green when the set is on. A power indicator is required because the chassis has no on/off switch, also because the picture as well as the sound can be muted via the handset and the sets can run in an audio-only mode. In previous sets that had an audio-only mode (for hi-fi playback) there was a LED indicator showing two arrowheads.

Apparently some viewers have found the closeness of the standby/on LED to the tube distracting. The indicator musn't be blocked or covered as this contravenes safety approval requirements. A series resistor can be adtléd to limit the brightness. I must say that we've never found this to be a problem with our customers.

Operation of the Set

The only controls on the set are a channel step forward button and a reset button. These are beneath the tube, to the right. There's an array of sockets at the rear - two scart

Nick Beer
sockets, an S socket for S-VHS VCR use (Y and C inputs), two power link sockets (see later), a motorised stand socket and audio auxiliary/link sockets.

The sets come with the now standard Beolink 10000 handset, which is more than just a remote control unit. Within the set there's a transceiver rather than a remote control receiver. This enables it to work with the Beolink 5000 and 7000 handsets. Remote transception is not new with B and O gear: hi-fi systems have been able to communicate with master control panels for some years, but this is the first TV chassis to have this feature. It will not work with the MCP5500/6500 master control panels however.
One thing to remember is that these sets will come on only with the TV command, unlike carlier sets that used the Beolink 1000 handset and would respond to the channel number buttons. A couple of useful additions to the features available via the handset are separate sound and vision mutes and resets. Picture mute is useful when calling up an on-screen menu. To select the individual functions, prefix the command with "sound" or "picture" as appropriate.

As with earlier sets frequency rather than channel tuning is used. The conversion table was included with my previous article (April 1989) on the 37/38XX LXOO/(02 series. This mode is selected by pressing the "goto" key, typing in the figure then pressing "store" twice. Search tuning is by pressing either channel step key in place of the digits. Each channel location can be given an identification header by pressing "goto" six times then using the step and fast forward/rewind keys to select and move along the characters. There's no need to code a location specifically for VCR r.f. use - any location can be used.

Although the sets have fifty locations only the first 45 can be used as the final five are reserved for future and/or link use. This is more than sufficient of course.

When the set is connected to a Beosystem 6500) hi-fi installation, VX450) or VX50(0) VCR the tuning (VCR only) and clock data are dumped, obviating the need for separate setting of the other units. There are one or two

Fig. 1: Circuit diagram of the chopper power supply.
anomalies however. VX50\%)s with 1.5 software will not dump, and Master 6500) need software 1.4 to prevent the clock resetting to Monday at each dump.

Power Supply Circuit

It's essential to understand the operation of the power supply when any work is done on these sets. The circuit is shown in Fig. 1.

A start-up supply is fed to the oscillator and driver stages via R 93 . The oscillator, which runs at about 32 kHz , i.e. approximately twice the line speed, is formed by TR27 and TR22 with C2 1 as the timing capacitor. The voltage at the base of TR27 is fixed by the potential divider R60/R52. When the voltage across C21, which charges via R61 ete., is higher than the voltage at its base TR27 will switch on, in turn switching on TR22. C21 is then discharged via TR27/R62/TR22, and when the voltage across it has fallen sufficiently the two transistors switch off. The oscillator's pulse output, developed across R59, drives the ramp generator circuit. This consists of the switching transistor TR23 and C22 which charges from the 300 V supply via R45. The ramp forms one input to the pulse-width modulator stage consisting of TR28 and TR24. TR25 acts as a buffer through which the pulse-width modulated drive signal is fed to the push-pull driver stage that consists of TR29, TR33, TR19 and TR20. Note that the driver stage is operated from +5 V and -5 V lines.

The p.w.m. drive is applied to the base of the BUT12 chopper transistor TR1 via L4. When this transistor conducts, current flows via the primary winding of the chopper transformer T 1 to the reservoir capacitor C 6 . When the drive waveform cuts TR1 off, the field established in the transformer collapses and current flows in the secondary windings. Rectifiers D18/19/20/28/29/32
provide various supplies. The width of the chopper drive pulse is determined by feedback from the error detector/amplifier circuit TR5/6 via isolating optocoupler IC2 and TR26 which sets the bias at the base of TR28.

TR28 thus receives a ramp waveform at its emitter and a feedback bias at its base. It conducts when the voltage at its emitter exceeds that at its base. TR24 is then switehed on. When TR23 discharges C22, TR28 and TR24 switch off.

Excessive loading is detected by R4/L2 which are connected in series with the negative side of the mains bridge rectifier's reservoir capacitor C6. TR21 switches on when there's excessive voltage across R4/L2, in turn reducing the bias at the base of TR28. This reduces the chopper drive. The circuit also provides protection during the start-up procedure, before the power supply's output voltages stabilise and the feedback circuit takes over.

In the standby mode the field-effect transistor IC5 switches on. As a result, the h.t. voltage falls to 8 V : all other outputs from the power supply are reduced to a fifteenth of their normal running value. IC5 is controlled by TR35 and TR8, which are off in standby. The powerfail signal, which is not present in the standby mode, is used to switch TR35 and TR8 on. We'll return to the powerfail action in a minute. Because of the large back-e.m.f. that's created by this dumping action, an usually complex snubber network is required. It consists of D7/D44/D45 and the associated components. TR37 switches off in standby, removing the supply to the tuner.

In the TV mode the error detector transistor TR5 samples the 148 V line via R30. The supply for TR $5 / 6$ is obtained from a rectifier connected to a winding on the line output transformer, the feed being via R 105 and D50. This arrangement provides anti-breathing compensation. In the standby mode the feedback is via D24 and D25 from the 8 V line - the voltage at the anode of D24 is 1.6 V .

In the audio only mode the h.t. line is unloaded and rises to about 175 V . There is no supply via R105 and D50 to TR5/6 which are instead fed from the 15 V line via R24. In this condition the 15 V supply determines the feedback.

Line flyback pulses are coupled to the power supply oscillator via optocoupler IC3 to provide synchronisation. This is done to avoid picture disturbance

The other optocoupler in the power supply. IC4, is used to synchronise the built in clock with the mains frequency. The teletext clock is not used in these sets to provide the "time" feature. To synchronise the two clocks, select "time, text, store, store" with the 1000 handset. When the set is connected to other B and O audio or video equipment with suitable software the clock is, like the tuning, dumped and synchronised between units.

Powerfail System

The powerfail circuit detects excess loading on the various supplies and operates in a ring manner. Fig. 2 shows the arrangement of the powerfail loop. A 4.4 V peak-to-peak 50 Hz squarewave output from pin 10 of the master microcomputer chip ICI3 should return to pin 13 of this chip. If it's missing or badly distorted the set won't start and a powerfail message will appear. The set won't start because, as we have seen, the powerfail signal is used to switch on TR35 in the power supply.
In the event of a powerfail fault, make load checks on the various supply lines. The reset button on the front of the set must be pressed after each failed start-up when there's a powerfail fault. This resets the microcomputer chip. If you don't do this you may continue to look for a fault long after it has been put right

Timebase Generator Section

The timebase generator arrangements are interesting. Fig. 3 shows a block diagram. The line oscillator is in IC2 while the field oscillator is in the TDA8432 deflection processor chip IC5. This chip contains an I2C bus interface and DAC to decode line frequency, line phase, field geometry and interlace/non-interlace commands.
Composite video to provide sync pulses passes to IC2 via the still-display module. This is used to ensure that stable menus are displayed on the screen whether the deflection is synchronised or not. Without this module no-signal noise would disturb the line oscillator, the result being unstable/tilted menus. The circuitry on the module scans to check for noise in the sync part of the composite video signal. Strong noise brings a transistor switch into operation to short the module's output to chassis. As a result the line oscillator runs freely but stably

The set is designed to operate with either interlaced or non-interlaced field deflection. In the non-interlaced mode, lines from odd and even fields are superimposed. This mode is used for static displays such as teletext. A 4013 D-type bistable chip is used to adjust the field syne for the two modes. Switching between them is automatic but can also be manually controlled via the 1000 handset by using "shift, 7". This could be convenient when, for example, using the set as a computer monitor.

On-screen Menus

On-screen displays are used in both the viewing and service modes. We can't deal with viewer operation of the set in any depth here - that would call for an article three times the length of this one! In addition to on-screen

Fig. 2: The Powerfail loop.
indicators for all level settings, both audio and video, the "shift, text" command brings up a system map which, in block diagram form, illustrates the TV set and the units connected to its various sockets. This sereen also allows the set to be switched to respond to timer commands from the auxiliary socket, thus obviating the need for a "link" transceiver in the TV room in a link system. The set can produce this display from data fed via pin 8 of the scart interconnecting leads.

The exact shift-text command depends on the mode in which the receiver is working - "TV, shift, text" in the TV mode, "text, shift, text" in the teletext mode and "Vtape. shift, text" in the video mode. The set knows when a VXtype VCR is connected to the auxiliary two seart socket: it displays "VTAPE1 on AUX2". As it also knows that it has a scart input and that a decoder could therefore be connected the display adds $a+$ symbol to illustrate this possibility.
"Shift, text" from the teletext mode allows teletext programming of a VX5000 VCR if one is connected.

Fig. 3: Block diagram of the timebase generator section.
"Shift, text" in the video mode brings up the main video menu when a VX5000) is connected. Don't confuse the uses of "shift, text" between modes.

Service Mode

To enter the service mode, bring the set on from standby with the service link shorted out. Open the link when the set comes on. The link consists of a two-pin plug whose pins can be squeezed together easily with the fingers: it's plug P48 on the AV socket module. The first menu that appears in the service mode is "type serial no.", i.e. the set's type and serial number. This information is obtained from the system control memory. As a result, if a memory chip is faulty the panel has to be returned to B and O in order to maintain the electronic tagging.

The next two menus, "picture set-up" and "geometry", will probably be the most frequently used ones. The procedure is as with all B and O menus. Use "FFW" and "REW" to select the option, which will turn red to highlight the cursor position, then press "play". With the alignment menus, when an adjustment is selected from the list the menu, except for the adjustment and its value, disappears from the screen.

The "TV variant" menu tells you the set's standard/system. You can alter the display but not the set's capabilities.

The next menu is "error message". This indicates the reason for failure, e.g. powerfail or an I2C bus device failure. In this latter case there are error codes as follows:
$02=$ production computer
$22=$ text generator (6IC8) fault
$40=$ nicam port expander (8IC3) fault
$42=$ picture DAC (2IC5) fault
$80=$ audio control (5IC1) fault
$84=\mathrm{A} 2$ stereo decoder (IIC7) fault
$8 \mathrm{C}=$ deflection processor (10IC5) fault
$\mathrm{C} 0=$ citac chip (IIC4) fault
$44=$ PIP input selector 12IC10 fault
$2 \mathrm{E}=$ PIP output control chip 12 IC 9 fault.
When the fault has been dealt with the error display must be cleared. Otherwise if a new fault occurs it won't be registered. "Error clear" is an option on this menu.

A final menu, obtained by selecting "TV, shift, text, 0, 0 , play", provides mainly production data. There is one useful piece of information here however, the EPROM software version.

Features and Options

The text decoder is a FLOF type employing three i.c.s. It has three modes of operation. Pressing "text" gives access to four stored pages, MEM1-4, which are selected with the step keys. Pressing "text" a second time selects fastext, keys 1-4 acting for the four colours. From text, selecting "goto" gives traditional text operation by page number. There's an option to record text with vision, for example when subtitles are used.

An integral satellite TV receiver, the LM SAT, can be fitted inside the cabinet. It's an incredibly small module that fits at the bottom, to the right of the main chassis. The Beolink 1000 handset will control it without modification, as it does the LX and RX satellite TV receiver units.
A nicam decoder can be fitted. The same circuit is used as in the VX5000 VCR and the 77 XX series chassis. It can be demuted by putting a high on pin 20 of 8 IC 2 . The circuit
mutes when one in a hundred parity bits is missing. It will demute only when fewer than one in four hundred parity bits is missing.

Power Link Sockets

A couple of 8-pin DIN sockets, Power Link 1 and Power Link 2, enable the set to be connected to B and O's active speakers with displays.

Stands and Brackets

There's a comprehensive range of stands and brackets. It includes motorised swivel stands and bases, the latter for shelf mounting. You turn the set by selecting "picture" then using the left and right "step" keys as required. Switching to standby returns the stand to the centre parallel position. When the set is switched on from standby the stand automatically moves to a preset viewing position. This preset position is stored by moving the stand to the required position then selecting "picture, store, store". Ensure that all picture parameters have been preset to the required levels first.

Miscellaneous Points

Finally, some miscellaneous points. The line shift control is a three-position switch on the c.r.t. base panel. UK sets have the A2 stereo decoder. If a software upgrade is required, GIC5 will have to be replaced. The S-VHS socket is selected by "shift, 9 " on the system map menu. Picture-in-picture is an option. Note that several electrolytic capacitors are drawn the wrong way round in the circuit diagram - they're connected to negative supply lines.

Servicing Notes

Failure of the chopper transistor TR1 (see Fig. 1) has been a problem with a few sets. Fit only a replacement obtained from B and O, with a dab of white paint on it. When TRI fails the mains fuse blows. The cause can be the transistor itself or incorrect triggering due to transients on the mains supply. If you are unfortunate you may find that the fault has resulted in destruction of the print between the chopper and the pre/driver transistors and damage to these transistors. A modification has been introduced in the control circuit, as follows: remove R63; disconnect the track to the base of TR23 as close as possible to the transistor; fit R63 (18kS part no. 5011344) on the copper side of the panel, from the base of TR23 to the side of R47 that faces link J35. This modification is incorporated in all sets that have serial numbers above 08676072 .
Intermittent sound muting when the picture is at predominantly black level can occur with carly software. Upgrade to 2.1 software, part no. 8341713. This fault seems to have occurred in particular with sets that incorporate a satellite TV tuner.
On the satellite TV side there's an option to fit a "positioner" to drive a motorised dish. Apparently there have been problems with certain positioner motors in cold weather, when the current has been too high. There is now a modified "piggyback" transformer for the module.

Acknowledgement

My thanks to B and O's Hans Rackman who has been running some excellent courses on this chassis at Gloucester.

Fifty Years in Radio and TV

Television receiver manufacture, retailing and servicing have, over the last half century, fully stretched just about everyone who got involved. I was no exception. So I was worried by the prospect of suddenly stopping at retirement. Too many of my colleagucs had failed to survive the transition. Fortunately I was allowed to do so gradually, with first a four-day week then just three. This helped a lot. Nevertheless all sorts of thoughts pass through your mind during the final year, mainly because at last you have time to reflect. You appreciate how the character of the business has changed over the years, and how the complexity and greater reliability of modern equipment have turned servicing into work for specialists. Broadcasting has ceased to be run by a band of dedicated enthusiasts, becoming managed and cost-cffective. TV itself has come to be taken for granted. There are not many left in the trade who can recall when there was no TV at all.

I began to feel that there was not a lot left to write about. It seemed that the days when you could knock up a little service aid, write it up for the magazine and have it avidly accepted had gone. But had they? The last twelve months of active service turned up some surprises. In fact the year was to prove as eventful as the previous fifty. It got off to a shaky start for me. I must have tried to pack the work of five into my three working days: but the thyroid couldn't take it and I had a job to hold a serewdriver still. Just as I was beginning to feel sorry for myself I read one of Les's columns and discovered that Tiny Tim was suffering too. At least my problem was as easily controlled as with a.g.c., by adjusting my pituitary "feedback circuit". I bought an electric screwdriver to help until my hand steadied down, and carried on.

One night, on the way home, I installed a package deal consisting of a VCR and a teletext TV set. The daughter of the house let me in, and when I'd completed the installation I showed her in detail how the combination worked. Then her parents turned up and explained that she was totally deaf, though by lip reading she'd understood everything I'd said. The VCR was to be used to record her favourite programmes for weekend viewing when she got back from residential school. "Pity the subtitles don't come out on the tape" they said. This bothered me and I spent some time on the problem, the outcome being a small one-transistor mixer panel to add behind the TV set's scart output and an article on Recording Teletext Subtitles that you may have read.

Satellite TV

Then there was the Wembley Satellite Exhibition. 1988 saw the emergence of pro-Astra and pro-BSB groups, the latter further dividing into the D-MAC and D2-MAC camps. It needed two articles to straighten that out, one to recap on the mess that space TV had got itself into and the' other to try to explain in a simple manner the "conditional access" aspect of MAC broadcasting. Writing this latter article decidedly worried me. I couldn't see any of our customers putting up with the rigmarole of conditional access. Then Rupert Murdoch dropped his bombshell by announcing that his four Astra channels would be clear, mostly free and all in PAL.

At the time I felt that the Murdoch approach was the right one, since viewers have always been reluctant to pay any more for TV than the original asking price for the set. It's strange that since the late Forties the price of a monochrome set has remained at around $£ 70$, and that the price of a basic, medium-sized colour set has remained at around $£ 300$ for the last twenty-one years. I can think of no other item that's defied inflation in this way. People just don't want to pay more. As if to strengthen this belicf of mine, the original Norwich cable system pulled the plug at about the same time "on cconomic grounds". Satellite TV could not be ignored however, and we maintained a team to cope with the existing and hoped-for future demand.

Changes

By now VCRs had reached the stage where a basic model preselected four programmes, had remote control and one-touch recording. Because no two were alike, and many of the instruction manuals arrived from the Far East via Scandinavia, suffering from double translations, we had to produce our own abridged instructions. TV sets were, to a lesser extent, also becoming harder to tune in, different models using different digital arrangements, and to make matters worse they tended to have black buttons on a black surround beneath the screen. To use them you had to get so close to the c.r.t. that the picture dazzled you and you pressed the wrong ones. There were two big clangers: Computer Controlled Teletext, which was neither wanted nor understood, and the Flat Square Tube, which only Sony had really mastered and had to be run at reduced drive to prevent high beam currents damaging the shadowmask. Tubeless TV sets with liquid-crystal displays came along, in small screen sizes, and performed with varying degrees of indifference. The last valve in the set, the c.r.t., was going to take some shifting despite the fact that CCD sensors had taken over from tubes in camcorders.
Viewing habits were changing. The soap operas that used to fill the gaps ${ }^{\text {b between prime-time programmes }}$ started to lead the ratings. Subsequently Crossroads was killed off, and ITV started to stay on all night. Repeats were the order of the day, with oldies like Steptoe and Faulty Towers still head and shoulders above 1988's output. Even the 405 -line Face to Face and Hancock recordings held up well against the latest offerings.

Retirement

My reflections were making me feel sorry for the gang I was about to leave. I was dreading the arrival of my last day at work. Traditionally it has been an excuse to have a do, but in my case a guardian angel did its stuff. Our senior lady clerk, one of the longest serving members, was to retire a few weeks before me, so Roy gave us a combined "night to remember" while I still had seven weeks to go. This cushioned the impact that the last day can have on someone who has enjoyed his work. But when the last day comes you still have to clear your bench and do the rounds, shaking hands. Again the guardian angel took a hand: there was an almighty thunderstorm that flooded our four phone lines with service calls. It happened to be finals at

Wimbledon. I was in the way and cadged a lift home in one of our service cars that was going to a call out.

They say that you feel dreadfully aimless and depressed on the first Monday of your retirement, but it didn't happen that way. There was plenty to do around the house, and I had this to write. Then I drew my pension and for the first time in fifty years the contribution flowed in the reverse direction! It was high summer, and the dog needed a walk.

It was not until several months later that I felt the door had finally clang shut behind me. I had gone back to the "old firm" and saw a different world. The lads were struggling with surface-mounted components, Astra was up and running and, in the magazine, Les was reporting difficulty in finding a buyer for his business. Pye colleagues who had gone to Croydon found themselves faced with a second factory closure.

Then down came the Berlin Wall and the Germans dropped MAC like a hot brick, spreading PAL into eastern Europe instead. Not the best time to launch BSB, but they went ahead. During the BSB trial period Granada wired up the Lancashire village of Waddington for multichannel TV. The conclusions drawn from this six-week experiment were that although the technology was
wonderful it was the entertainment that counted most. It was ever thus: colour took off only when duplication gave us Coronation Street etc. in colour, and it was entertainment software that floated VHS to the top.

It's now 1991 and history is being made faster than the pen can write. The Broadcasting Act, more inept even than Pilkington, disbanded the IBA and paved the way for sponsorship and takeovers. Deregulation goes ahead despite it being the cause of the collapse of decent TV in Australia and New Zealand. You would think that manufacturers, bitten by the BSB affair, would think twice about putting dubious innovations into production, yet five contenders offer different ways of doing home digital recording. As Ruskin said, "change is certain, progress is not".

It's not all gloom however. The old firm still needs as many engineers, though they tend to specialise, and youngsters still come into the business. How on earth do they begin, when there is so much more to learn? When I started in the Thirties you had to master only three golden rules to be set for life: $I=E / R$ nine times out of ten; no man can solder without flux; and what goes up must come down. Come to think of it, in the shed in the garden they still apply to this very day.

Electronic Stethoscope Testing

P.J. Ratcliffe

Diagnosing the cause of intermittent faults can be a very time-consuming process. The empirical trial and error method of resoldering dry-joints and testing connectors depends on a certain degree of luck. Often it's successful. Those of us who firmly believe in there being a specific physical cause for all faults should however be able to arrive at a definite diagnosis, i.e. track down the cause to a particular item by testing. Doing this can involve the use of a mixture of tests and equipment. Jobs differ considerably: to illustrate the technique described here we'll take a particular example.

A 16in. Grundig Super Color Model 1510GB came in with a line timebase fault. After the smoking rectifier had been replaced we ran the set for two hours, during which it worked perfectly. On switching on from cold the next day however the line sync and colour had gone, producing a scrambled, jittery picture. Opening the set and adjusting the line hold control restored correct operation and the set was then given a further twelve-hour test run. The following day the same problems reappeared. We opened up again and flexed the line oscillator module, which is mounted on an edge connector. Picture lock was restored when this module was wiggled.

A check was then made on the voltages at the connector pins. We found that the voltage at pin 13 differed with the two conditions. It was $1 \cdot 1 \mathrm{~V}$ when operation was correct and zero when the fault was present. To start with we suspected the physical condition of the connector, so this was cleaned and tightened. Unfortunately the fault was still present.

We removed the module and traced the connections across the board, looking for obvious dry-joints and checking the values of resistors as we proceeded. When the module was replaced the fault was still there.

Our next suspicion was that a component was noisy. Our difficulties related to the intermittent nature of the fault and the fact that the digital multimeter didn't respond fast enough when we clipped the leads to a component then
flexed it slightly. Overcoming this problem called for ingenuity, so out of sheer determination to find the exact cause of the fault I used an audio amplifier and headphones, with a d.c. bias at the input (a $1 \mathrm{k} \Omega$ resistor as used with electret microphones), clipping test leads to the components in the paths where the fault lay.
One component, R408 (3.3MS), was found to be very noisy when the board was flexed. When it was unsoldered and tested the noise was much less. We fitted a replacement however and tried again. The fault persisted. The only other thing left was the associated printed track. When the board was flexed towards the copper clad side the fault disappeared. If the penny had dropped I'd have realised at the start that the copper track was suspect.

Close inspection didn't reveal the slightest break. When the noise amplifier was connected to two points on the copper track associated with R408 and the output node however the noise crackle as the board was flexed was obvious. The input voltage rose from 0 V to 2.5 V .

The conclusion we reached was that a hairline fracture was present in the printed circuit track routed near a rectangular hole in the board, where the vertical plastic retaining clip passes through. Having located the cause of the fault by using this "electronic stethoscope" technique we were able to use the digital meter to measure the fault precisely. The resistance varied from 0.3Ω to 10$)(\Omega$ when cold, changing to a complete open-circuit as the board was flexed. A piece of wire soldered in parallel across the length of the faulty track cured the problem.

When using this technique for fault finding with microprocessor circuitry I use a low-voltage amplifier, with a low sensor current, to avoid possible damage to CMOS devices. With an intermittent fault the machine code generally crashes. Since the electronic stethoscope is so useful, the next problem is to include the amplifier facility within the digital multimeter (or vice versa) and fit a headphone socket, thus minimising the number of items of test equipment required.

What a Life!

Donald Bullock

I got up bright and breezy the other day, ready for all the work likely to come my way. "First of all" I said to Greeneyes "I'm nipping down to my chalet to type a letter, then I'm going into the workshop. Tread warily if you're in that direction. The sets will be flying out so fast you could be in danger."

I typed the letter on my Amstrad PCW9526, but when I tried to print it the cog and belt arrangement that moves the head across the page faltered and shuddered loudly as the printer initiated. This went on for twenty seconds or so then the printer appeared to work normally, except that the paper remained blank. The striker thing that clouts the letters didn't seem to be coming to them far enough. Faint printing became visible as the letter progressed, but it was garbled. By the end of the letter the printing was better and made sense. I tried printing it again immediately. This time it was better but still not right. It took four attempts before the result was satisfactory.

One of my customers nearby has an identical machine. So to prove that the fault was in the printer I tried with his. It was.

I returned in time for the arrival of Quiet Norman Glutton. He was carrying an Hinari CT16 colour portable. Now Norman's a short squat man with a passion for eating. When I'd taken the Hinari from him he pulled out a large pork pie and a penknife and set about it. By the time he'd finished it I was into his set and he quietly departed.

The set had a raster but wouldn't tune, neither did the volume control work. I looked at the manufacturer's circuit diagram, which is nicely laid out, and saw that the control arrangements are centred around the M50433B501 S microcomputer chip IC101 and the associated M58658P EAROM chip IC102. A small MN1280M5 chip IC103 appears to provide a reset action for IC101. A quick check on IC103 revealed that it was short-circuit. So was D110 at its input. Before replacing these items I checked the 2 SC 18155 V regulator transistor Q656. Just as well, for it too had expired. When I'd replaced these items I connected a meter to ICl03's output pin and switched on. The voltage was only 2.3 V instead of 5 V . This pin is connected to pin 11 of IC101 via a filter circuit. As the filter components were o.k., IC101 was indicted. A new one restored the set's tuning ability but its memory, like mine, was impaired. This directed me to the memory chip IC102. As there's no voltage table for this one the only thing I could do was to fit a replacement. This cured the memory problem and the set produced an excellent, crisp picture.

In spite of their cheap price and their initial strangeness, to me anyway, I've come to like these little 10 in . sets and have managed to repair all the ones that have come my way - which is quite a lot. The picture quality is impressive.

In the fulliness of time Quiet Norman returned to collect his set.
"Hi, Norman. How are you?" I greeted him.
"Hungry Don" he replied, and out came his knife and a steak and kidney pie.

An Unknown Grundig

The next job in the workshop was a Grundig v.h.f./u.h.f. monochrome portable. It was dead, except that the tube's
heater was alight. I'd never seen one of these sets before and didn't have a circuit diagram. The obvious thing to do was to check the h.t. voltage. As this seemed to be healthy I moved on to the line output stage. The line output transistor was o.k. so I got my Hameg HM203-6 scope with component tester, a handy device once you get used to the shapes it conjures up, and checked the diodes in the line output stage. It soon sniffed out a short-circuit diode (D384). After fitting a replacement I switched on and waited expectantly for a raster to appear. But it didn't.

I was in danger of running out of steam now, and peered around the panel searching for ideas. Standing erect in the centre of the panel there was what looked like a coiled spring wearing a ferrite bead collar. I wondered what it was doing. There was a trace of solder at its top and, looking more closely, I saw that there was a pitted blob of solder on top of the nearby transistor TR382. This transistor looked like a BD238, with a metal back that projected above it. The pitted blob matched the solder on the spring, so I reunited the two. The set sprang to life and behaved itself on soak test. Another success.

The Amstrad Printer

I decided to have a go at my PCW9512 word processor printer, and assembled it all together on the bench. After setting it printing I watched it drub and falter away for twenty seconds before it started to print, apparently normally, though nothing appeared on the paper. When I directed hot air from a hairdryer on to the printing head mechanism it started, within half a minute, to print properly. I turned off the heat and the printing grew fainter. After a few lines it disappeared.

I thought that perhaps a mechanical coupling had loosened, or the mechanism was dry and stiff. So I carefully opened it up, examined it for anything obvious and gave the mechanism a good squirt with Servisol switch cleaner. Then I reassembled it and tried again. It was no better, and when I tried it again later I found that it would no longer accept a sheet of paper. When I used the keyboard to ask it to print, a message on the screen declared that the printer was active - a severe overstatement! Willow Vale tell me that Amstrad no longer offers any service backup on these machines. So it looks as if I'm stumped. Any ideas anyone?

Mrs Squirter's Toshiba

Then Mrs Squinter called with another portable, this time a 14in. Toshiba 145R7B.
"Hello Mr. Butcher" she cried, giving me a wink. "I wish you hadn't gone to Spain the other week. We upset some water into this set whilst you were there and took it to Snoddies. They fitted a new tube base panel or something. It works, but it's nothing like as good as it was. We've taken it back twice, but they say it's all right."

The picture wasn't very special. Rather as though the tube was a bit low - on the dull and bleary side. I took the back off and sure enough the tube's base panel had been replaced. I made for the first anode supply potentiometer on the line output transformer and saw that it had been adjusted. I turned it up even higher to increase the brightness, and since the picture lacked bite I adjusted the focus control too. To my surprise it changed the brightness rather than the focusing, so I turned the set off and felt the line output transformer to see if it had a temperature. It hadn't.

As I'd varied the focus control setting I decided to check
the focus voltage and was astonished to find that there wasn't any at any setting of the control. I then studied the tube base panel and noticed that its earth print was connected to chassis via a colourful thick green wire. Further investigation showed that the black focus wire from the line output transformer had been soldered to the earth print on the tube base and that the focus electrode wasn't connected to anything. When the focus lead had been connected to the focus electrode the picture was transformed into a good one. Setting up the first anode and focus voltages correctly made it exceptionally good.

Thinking about it afterwards I was surprised that the set had tolerated the fault so well. The line output transformer and the focus circuit had been loaded down but the focus, while not excelient, was nothing like as bad as I would have expected. Mrs Squinter was delighted

A Ferguson TX10

So delighted that she recommended me to her neighbour, who called in later with a 26 in . Baird "StercoText" set. I couldn't see a model number but the chassis was obviously the Ferguson TX10. The problem was that the set would come on, shut down several times then refuse to work for ten minutes, after which the performance would be repeated
l've had two or three of these sets in with such symptoms and have in each case found that the 12 V regulator chip IC621 at the top right edge of the rear fold-down signals panel was visibly footloose. So I headed straight for it. But a rigorous inspection with my giant magnifying glass convinced me that the joints were perfectly sound

Still driven by suspicion and prejudice I next pulled out the main chassis and studied the joints around the line
output transformer. As they too were good I headed for the power supply circuit on the other side. A very careful examination failed to reveal anything amiss, so I resorted to conventional fault tracing, something I should always but seldom do. There it is: a confession!

It was a slow job, with the set coming on and going off at the rate it did, but my tests gradually took me back to IC621 on the signals panel. Here my meter told me in no uncertain manner that I'd reached the faulty stage. After remaking the joints the trouble had been cured. I'd spent well over an hour to wind up where I'd started.

Later TX9 Chassis

The l6in. portable that was next in line was fitted with the Ferguson TX9 chassis. But it was one that was new to me, the version with the chopper power supply ($\mathrm{PC} 1(044$ main panel). It was dead, giving merely a brief chirp at switch-on. Having checked the mains input I decided to check for 335 V across the bridge rectifier's reservoir capacitor C140. This was present and correct, as was the start-up supply at pin 9 of the TDA4600) chopper control chip IC57. I next checked the power supply's outputs at PL17. The 115 V h.t. was present at pin 2, but the 18 V supply at pin 4 was down to just 1.5 V .

The 18 V rectifier circuit is simple, consisting of a rectifier diode, a reservoir capacitor and an anti-radiation choke, L103. It was the tiny choke that proved to be the stumbling block. I removed it carefully, cleaned and retinned it, then refitted it. This provided a complete cure. Why was the set dead? Well the 12 V supply for the timebase generator chip and other parts of the circuitry is obtained from a regulator that takes its feed from the 18 V line.

1580	3.72	$25 C 1583$	0.34	AN2 40	2.40	BC207	0.19	80×548		BU126		HA1196	7.4	MC1330	1.98	SAS5607	5.42	1096	4.78	：Ba970			
1595 R	3.72	$2 \mathrm{SC1617}$	3.69	AN235	4.65	BC2128	0.26	B0x63A			1.58	HA13001	1.63	Mc1350P	1.56	SAS570T	5.42	Strame	12.65	твA990	1.98	T0A4442	5.14
	4.50	${ }^{25 C 1678}$	1.98	AN336	3.33	${ }^{\text {BCC273 }}$	0.10	B0X63A		Bu205	1.15	Ha13	2.26	MC1351P	1.25	SAS570S	1.95	STR440	6.18	TCAz70S	3.47		4.75
17053	5.61	$2 \mathrm{SC1741}$	0.21	AN240P	0.99	${ }^{\text {BCO}}$	0.10	B0Y20	1.98	BU206	1.27	HA13402	706	MC1352P	1.40	SA5580	2.85	str451	5.77	tcaz7osa	1.05	T09460－2	1.92
17074	9.30	${ }^{25 C 1810}$	1.75	AN241	1.71	${ }_{\text {BCC237 }}$	－ 0.40	B0Y89	1.18	81207	1.65	halisu3	${ }^{11.86}$	MC1357P	2.15	SAS66500	1.33	STR	4.96	tcaza	2.39	ToA6610	5．99
170	3.45	${ }^{2 S C 1815}$	0.20	AN245	5.48	${ }_{\text {BCL23 }}^{1823}$	0.10	${ }_{\text {BF } 115}$		8u208	1．12	HA1342	6.08	MC135	1.48	sase	2.97	STR50103A	3.56	TCA420A	2.16	T094	1.75
171	2.50	${ }^{25 C 1826}$	0.69	AN253	1.80	${ }_{\text {BC2388 }}$	0.08	Bf117		Bu20］	2.35	HA1368	${ }^{12} 2.25$	MC14493	3.99	SAS6700	1.33		6.16		1.89		4.20
173	1.58	${ }^{25 C 11829}$	${ }^{3} 3.35$	AN260	3.85	BC2398	0.25	BF118		Buzasa	1.12		2.75	MC144	7.10		3.96	T60	1.09	${ }^{\text {TCAG }}$	2.25		2.75
1 1N4	0.04	${ }^{25 C 1875}$	${ }_{4}^{450}$	${ }^{\text {ANM72 }}$	7.92	${ }_{8}^{8 C}$	0.31	${ }^{\text {BFI21 }}$		8u209	2．06		2.45		5	SASA			0.5	${ }^{\text {t／ag }}$	250		co．6.35 3.34
1 N	0.06	2SCL1993 2Sclat	${ }_{1}^{3.85} 1$	${ }_{\text {AN }}^{\text {A } 251}$	${ }_{2}^{7} 175$	BCZ	${ }_{0}^{0.50}$	$\underbrace{812}_{\text {BFF127 }}$	${ }_{0}^{0.13}$	${ }_{\text {BuI23 }}$	li．75	${ }_{\text {Hal }}$	1.95 288 1		${ }_{2}^{5.18}$		$\begin{array}{r}1.61 \\ 1935 \\ \hline 1\end{array}$	${ }_{T}^{\text {TS03 }}$	${ }_{211}^{0.67}$	TCA	2.50 6.50		－ 3.25
$1 \mathrm{1N}$	0.06	2SCC1923	1.37 0.30	$\underset{\substack{\text { AN301 } \\ \text { AN302 }}}{ }$	${ }_{3.99}^{2.45}$		${ }_{0}^{0.38}$			${ }_{\substack{\text { BuI26 } \\ \text { Bu3 }}}$		HA1377	${ }_{1.59}^{2.88}$		${ }_{3.88}^{2.15}$	${ }_{\text {S }}^{51842}$	19.35 17.10	${ }_{T 60}^{160}$	2.97 0.97	TCA		TOAS	1.51 1.56
$1{ }^{1} 40$	0.05	1929	${ }_{2} .35$	AN305	${ }_{8.88}$		0.53	${ }_{815153}$	0.58	BU4066	1.24	HA1388	1.87	мсЗ34	1.40		20.5	tsad	1.20	tтав	1.6		${ }^{3.15}$
1 Na	0.08	${ }^{25 C 1942}$	2.17	AN315	2.46		${ }^{0.489}$	8 P 154	0.26	вu4060	1.24	HA13889	2.05	MC519	19.50	Sonz	11.77	T60	1.45	CAB	2.38		1.22
1 N 40	0.06	${ }^{2 \mathrm{SCC}}$	0.20	AN316	4.95	${ }_{\text {BC3 } 388}$	0.11	${ }_{89}^{8157}$		Bu407		HA1	2.69				9.25		0.87	${ }^{\text {ta }}$	5.4	TEE1	7.24
1 Na	0.03	${ }^{\text {2SC1957 }}$	0.95	AN318	7.16	${ }_{8 C 339}$	0.17	${ }^{\text {BFFP158 }}$	0.18	Bu412	${ }^{5.29}$	HA1392	${ }_{2}^{2.22}$	MCR106－56	1.56	${ }_{5}^{5661}$	${ }^{2.37}$	TG0	4.95	TCAB	${ }^{2} .24$		$\stackrel{4.93}{4.95}$
${ }^{1 / 4} 4$	0.05	2SC1993	${ }_{193}^{1.93}$	AN320	5.4		0.13	${ }_{8 \times 150}$		Bu450		Hal3	${ }^{3} 2.75$	ME04	${ }^{1.75}$	${ }_{5665}^{5662}$	8． 9.00 8.	${ }_{T}^{1609}$	${ }_{1.25}$	TCAS	1．85	TEA0109	（1．65
IN5	0.13	25 C	1.79	AN322	7.62	${ }_{\text {BC328 }}$	0.11	${ }_{8167} 81$	${ }_{0.38}$	BU5508	1.50	H41398	2.55	Me600	0.26	S1163	27.87	T90	4.95	tTAS	2.93		${ }_{4} 93$
	0.18	2SC1983	1.32	An3	5.37	${ }^{8 C 337}$	0.09	173	0.34	8u536	1.53		2.07	ME102	0.28		1.25		2.42	CaA	3.95		16
$1{ }^{1} 5$	0.10	2 LC	${ }^{0.631}$	AN3600	1.53		．17	8 F 177		Bu60	1.54		0.85	Mesear	0.45		0.73						67
	0.16	${ }_{\text {2SC2029 }}$	115		1.50	${ }^{390}$	0．69	${ }_{\text {BFF79 }}^{\text {BF78 }}$		Suros	2.67	${ }_{\text {HR1 }}$	${ }_{2}^{2.29}$	MEE2393	${ }_{2}^{2.06}$	SKE4F	0.30	T901N	1.25	To3F	6．37	44	${ }_{0}^{0.75}$
	0.18	${ }^{25 C 2028}$	2.11	AN370	${ }_{3} .95$	${ }^{\text {BC44 }}$	0.39	${ }_{8 F 198}$	0.36	${ }^{\text {Buso }}$	${ }_{0} .55$	H03875	5.77	W225	${ }_{3.30}$	SKEF	0.85	T90	1.34	TTA1001B	2.31	${ }^{17647}$	${ }^{0.77}$
1544	0.10		0.99		3.43	${ }_{\text {BCabe }}^{\text {BCas }}$	0.	${ }_{8 F 181}$	0.32	B48364	1.95		8.53		2.37	SkEA	0.99	T90	1.49	TTA 1033 A	1.47		0.55
	0.16		1.10		4.50	BC461	0.47	2182			${ }^{0.68}$	н13880	14.12	E2293	0.84		1.36	190	8.07	TDA 1005 A	2.02		0.34
${ }_{2} 2 \times 2219$ A	0.29	${ }_{2}^{25 C}$	${ }^{2.735}$	AN5132	5.08	${ }^{\text {BCCAE }}$	0.51	${ }_{\text {QFF }}^{\text {di } 183}$	0.39	$\times 3$	0.59				1.15		${ }^{0.54}$	${ }^{190}$	99		7.00		${ }^{0.49}$
$\stackrel{2}{2} \times 3$	－1．359	${ }_{2 S C}^{2 S}$	${ }_{1}^{1.305}$	AN552	${ }_{4}^{5.40}$	${ }_{8 C 678}^{8043}$	${ }_{0}^{0.32}$	1185		${ }_{\text {BYX } 126}$	${ }_{0.13}^{0.69}$	HISH1002	${ }_{9}^{14.50}$	Mue	${ }_{0}^{0.49}$	SLL	${ }_{3.14}$	T9064	${ }^{3} .404$	Toaiol	1.14	T1P121	${ }_{0.40}$
	0.75	2 SC 2	${ }^{1.36}$	AN5	2.28	8．479	0.41	${ }_{85194}$		127	0.09	HM62：1	14.55	ML231	0.99	SLI 143	2.31	T903	3.58	toat	1.10	T1P126	0.38
	1.16	${ }^{25 C 2126}$	8． 87		4.20	${ }^{\text {Brc5a6 }}$	0.28	8F995		133	0.15		${ }^{12.30}$		． 01		3.69		4.80	toal	． 36		75
2N3，	${ }^{0.70}$	${ }_{\text {2Scraz3 }}$	1.126	${ }_{\text {a }}^{\text {AnS530 }}$ AS501N	${ }_{1}^{3.95}$	BC547	0.10			${ }_{\text {BYY }}^{\text {BY1 } 164}$	${ }_{0}^{0.64}$	${ }_{\text {HM6232 }}^{\text {HM }}$		${ }_{\text {ML238 }}$	${ }_{5.65}^{1.95}$	${ }_{\text {SLL }}^{\text {SL432 }}$	3.44	${ }_{\text {Ta7 }}^{\text {TA7 }}$	1.74 1.74	${ }_{\text {TOAIOSOAB }}^{\text {tioz }}$	2.45 2.42	T1P137	${ }_{0}^{0.964}$
2 N 3	0.15	${ }_{2} 25$ c2236	1.69	AN6250	1.75		0．10	8F998	0.17	ByY 79	0.85	H477：33	2.97	M1．293	3.30	SL471	4.45	ta70	2.55	TOA10335	1.70	T1P2955	0.94
2 N	0.14	${ }^{25 C 2278}$	1.14	An6300	4.40	${ }_{\text {BC550 }}$	0.19	8F199		8Y182	1.05	H99032	4.00		3.45	SL480	7.24	TAP	0.71	TOA	2.64		0.46
${ }^{2}$	0.16	${ }^{25 C 23} 314$	0.87	16310	4.54	${ }^{\text {BCS56 }}$	0.13	200	${ }^{0.37}$	Y187	0.79		3.22	MM53	8.98		${ }_{3}^{2.37}$		1.27	TTCA	2．68		0.63
${ }_{2}^{2 N 3}$	＋1．15	${ }_{\text {2SC2551 }}$	${ }_{0} .29$	Ancseat	5.62	${ }_{\text {BC558 }}$	0.10	${ }_{\text {BF224 }}^{8,218}$		${ }_{\text {BY198 }}^{88199}$	${ }_{1}^{1.762}$	${ }_{\substack{\text { H／4 } \\ \text { HT420 } \\ \text { H20 }}}$	＋1．99	MM533it	${ }_{3.11}^{3.50}$	${ }_{\text {SLLOP }}$	${ }_{9}^{8.32}$	tavo	${ }_{1} 1.13$	TOAIOA	2.05 2.19	${ }_{\text {TPR290 }}$	${ }_{0.75}^{0.35}$
2 N 37	1.55	${ }^{25 C 25555}$	4.65	An6363	16.00	${ }_{\text {BC5 }}$	0	${ }_{\text {Br237 }}$	0.65	Erzer	0.17	${ }^{1142881}$	1.20	M15359N	2.01	SN16861AN	0.82	TAFTOTP	2.57	TOA1047	3.25	T1P3055	0.64
$2{ }^{2} 37$	1.61	${ }^{25 C 2557}$	0.46	${ }^{5331}$	1.95	Bcs	0．22	240			1.86	ka2， 101	1.00	MMI3877AAN	1.20	SN16966N	10.25	TAF7079	${ }_{1}^{1.98}$	${ }^{\text {TTA } 105989}$	0.80	T1P304	0.41
${ }_{\text {2N3 }}^{2}$	0.17	${ }^{25 C 2557}$	1.34 6.75	${ }_{\text {A AV555 }}$	${ }_{0}^{0.69}$		0.24	${ }_{\text {日Fe24 }}^{\text {日r24 }}$	${ }_{0}^{0.50}$	${ }_{\text {Br }}^{\text {Br210－4000 }}$	${ }_{0}^{0.35}$	${ }_{\text {Kc5s }}$	${ }_{4} 7.95$	MM5840	${ }^{6.933}$		${ }_{7}^{6.19}$		${ }_{3}^{7.50}$	${ }_{\text {TTOAI }}$	2.60 4.51	${ }_{\text {T1P3 }}$	${ }_{0}^{0.45}$
${ }_{2} 2 \times 3$	0.50	2 2SCz671	0.91	${ }_{\text {An666 }}$	${ }_{1.18}^{0.180}$	${ }_{\text {BC6339 }}^{\text {BC6 }}$	－ 0.20	Bг245		BY210	0.19	OOCV	1.27	mN	13.20		3.66		9.94	toA 1	0.95	T； 7318	0.38
$2 \mathrm{N4}$	${ }^{1} .33$		1.95	AN7111	1.14	${ }_{\text {B6 }}$	0.24	${ }^{\text {BF2 } 2464}$	2.67		1.58	La1201	0.75	MN1	14.04	SN	6.04	ta709	3.99	toA1		T1P3	0.39
${ }^{2} \mathrm{Na}$	2.68	${ }^{25 C 3} 3753$	3.20	2115	2.52		0.55	Bre25		8r24		Latirio	1.56	MP1192	5.07	SN2972	11.195	TA71098	1.61	ToA11902	${ }^{2.48}$	T1P	0.36
$2 \mathrm{CN4}$	${ }^{1}$		116	AN7146	2.1		－ 0.70	257		${ }_{\text {9r227 }}^{8826}$	020	L1231	3.104	PC． 1345	1.98	47649 N	240	Tat	0.64	toaiz	${ }_{3} .88$	T1P3	${ }_{0}^{0.60}$
	0.50		1.33	AN71 11	2.37		．	BF258	0.33	日rı28	0.60	La1357	3.06	MPF25	0.60		4.55	TA71220	0.87	TOA1236		P33	63
${ }^{2} \mathbf{2} 51254$	0.50	${ }^{25 C 3888}$	0.45	AN7156	2.70		－0．42	${ }^{\text {Br2592 }}$	${ }^{0.30}$	8y229	1.28	${ }^{2} 11363$	1.05	MPS6570	0.48	SN297708N	4．17	Taril	${ }^{2} .24$	TTA1270	3.74	${ }^{1712338}$	0.89
		${ }_{2 S 54036}^{25394}$		ANT158	${ }^{2} .80$	80133	0.53	262		${ }^{87229}$				MPS								${ }_{11} 18$	${ }^{0.95}$
2 N 5	0.61	2 Sc 4	0.19	ANT223	4.99		0．36	${ }^{271}$	0.34	8×295	1.23	La1385	1.53	MPSAS	0.11	SN2973	2.58	T777136	1.89	TTA	1.52	T1P4	${ }_{0} .29$
	，		0.92	Autiot	T2	137		${ }_{85273}$		AY298	0.20	LA1388	3.18	MPSAS	0.15		1.67	TA7737	1.21	TDA1	2.90	Tip	． 31
${ }_{2 \times 6}^{2 N 6}$	${ }^{0.85}$	${ }_{\text {2SC535 }}$	0.1	${ }_{\text {AUl }}$	${ }_{10}^{5.69}$	${ }_{80139}^{80138}$	－0．28	${ }_{\text {BFF24 }}^{\text {BF274 }}$	${ }_{0}^{0.34}$	${ }_{\text {AY4 }}^{\text {872 }}$	${ }_{0}^{0.20}$		1．93	${ }_{\text {MpSuOS }}$	${ }_{2}^{0.86}$		${ }_{0}^{5.56}$	TA7144	5.18 3.26	${ }_{\text {ToA150 }}$	4．25 3.05	${ }_{\text {T1P42A }}$	－0．39
2 N 6	0.60	256537	0.54			80140	0.35	${ }_{8 \times 336}$		84499	1.49	La3390	5.52	MpSU56	1.25	SN740	0.36	TA715	3.16	toa	4.60	TPR	0.79
2542328	0.65	605	16		8.94	${ }^{80144}$	1.45	${ }_{\text {Br3 }}$		BY448	1.40	la4032	2.35	MPSU60		SN7402	0.65	TA776	15.54	TOA1	2.55	TP	0.55
SARA	${ }^{0.26}$	${ }_{\text {2SCL6433 }}$	－1．46	8 8A	0．14	${ }_{80157}$	0.67		${ }_{0}^{0.34}$	${ }_{\text {Brw }}^{\text {日r7 }}$	1.12	Latioo	${ }_{1}^{1.25}$	MR6188	0.36	SNT402	${ }_{0}^{0.52}$	TAP76	${ }_{7}^{3.61}$		2．15	${ }_{\text {Tres }}$	${ }^{0.654}$
${ }_{2 S}{ }^{\text {S }}$	0.75	${ }_{256868}$	0.67	${ }_{8 A 1320}$	1.30	${ }_{80163}^{80160}$	${ }^{1.760}$	${ }_{\text {BFF362 }}$	0.99	日rx55－60	0.19	La4102	0.75	MR914	0.80	SN7412	1.60	TA7172P	1.41	T0A1559	3.15	Tis9	0.21
	2.44	881	4.40	${ }^{84} 1322$	3.95	${ }_{80166} 016$	0.69	BF363		Bx＞71	0.85	La4112	1.35	MPF477	24.77	SN7414	2.65	Ta7776	1.75	TDA1670			1.65
${ }_{2 S}^{2 S A}$	1.50	S82	－1．88		${ }_{2}^{2.75}$	80175	0.23	$8{ }^{8 \cdot 371}$		arxa	0.88	${ }^{1 / 44125}$	${ }_{3}^{2.25}$	MSM5880	2，09	SN741514N	1．951	Tartasp	4.88	TDAAT7	2．888	－497	T7
${ }_{2 S 4} 28015$	0.0	${ }_{256893}$	${ }_{0.63}$	${ }_{\text {BA }}^{\text {BA14 }}$	0.11	${ }^{80181}$	0.99	${ }_{85419}$		${ }_{8729}$	1.65	${ }_{L}$	0.70	NE542	${ }_{2}^{2.75}$	SN74175	1.52	tarzasp	1.00	TLA 1908	1.55	TMP	${ }^{9.50}$
254102	0.36	$25 C 710$	1.15	BA154	0.40	80182	0.99	B4422		C20	1.95	La4192	1.23	Ne555	0.35	SN74190	1.35	Taz207P	1.68	TPA1940	3.89	TMS1024NLL	6.50
${ }^{25410278}$	0.39	${ }^{25 C 7714}$	0.25	8A155	0.12	${ }^{80183}$	0．219	423		${ }^{\text {C10 }} 1000 \mathrm{~N}$	0.76	La4220	1.72	Ne556	${ }^{0.65}$	${ }_{\text {SNTV202 }}$	${ }_{0}^{0.34}$	TA7209P	2.15	TPA1950	2.50	IMST023N	3．61
${ }_{\text {2SAF／36 }}$	0.54 4.95	${ }_{22 \mathrm{C}}^{2}$	${ }_{0}^{1.28}$		0.05	${ }_{80187}$	8．80	${ }_{\text {Brasid }}^{\text {Bra }}$		${ }_{\text {chand }}^{\text {caspab }}$	1．55		${ }_{1}^{1.28}$	${ }^{\text {Nefebs }}$	${ }_{0}^{1.118}$	SN74	0.27	TA721	${ }_{3}^{1.45}$	Toazoci	1.05		4．995
2561			${ }^{3} .98$	BA182				${ }_{\text {BFF } 51}$		Ca3090	3.25	L4430	1.47	044	0.16	SN7	0.74	Ta7219	2.58	tida	1.37		${ }_{9.66}$
${ }_{2}^{25 C}$	1.25	${ }^{2 \text { 2SCH}}$	${ }^{3} .65$	84222	1.15	80221	0.41	${ }^{\text {Bra437 }}$		Ca339	1.72	${ }^{1244450}$	1.99	OAST	0.14	SV7472	1.54	TA72178	1.45	TTA2	0.90	TMS4034	1.00
	$\stackrel{1.35}{1.35}$		${ }^{0} .288$				0.56	${ }_{\text {Brase }}^{\text {Bras }}$		Cas3131		Lat44s		0xas	－0．16					toazen			${ }^{98}$
${ }_{2}{ }^{2} \mathrm{~A}$	5.14		0.96	${ }_{8 A}$	1.45	${ }_{80204}^{8024}$	0.45	BFG60	${ }_{1.24}$	COASOO	0.27	La4661	${ }_{1.37}^{1.96}$	${ }_{0} 0235$	1.06	SNTILSSSN	1.45		4.48	ToA	${ }_{5}^{1.15}$	TV60108	${ }_{2}^{1.97}$
	0.40	330	0.54	¢a313	0.76	80207	1.73	${ }_{\text {BFF69 }}$	0.33	（0400	1.35	Las1121	1.18	$0 \subset 36$	7.53	500	1.65	tazz30	1.35	TOA2	4.48	ULN2204	8.50
${ }_{2 S}^{2 S}$	1.17		1.15		0.0		0.52	470		4011	${ }^{0.20}$	La7022	${ }^{13.858}$	0 0．44	1.95	SN76013N0	7.45	Ta723	1.98	TOA2151	4.18	1360 C	30
254	${ }_{2}^{1.32}$	${ }_{2}^{2502999}$	${ }_{9}^{4.67}$	${ }_{\substack{\text { ba } \\ \text { Ba328 }}}^{\text {a }}$	${ }_{2}^{0.29}$	${ }_{80288}^{80225}$	－0．46	${ }_{\text {BFar2 }}$		${ }^{\text {couti2 }}$	${ }_{0}^{0.33}$		${ }^{11.997}$	${ }^{0} 045$	0.4	${ }_{\text {SN7 }}^{\text {SN60323N0 }}$	${ }^{2.91}$		2．20	Tome	4.818	UPA	${ }^{1.63}$
位	0.57	${ }^{250355}$	0.64	89333	1.37	80229	8.80	B8479	0.61	C04016	0.25	L47040	9.20	0775	0.44	SN76033N	2.68	TA731	2.15	T022170	3.21	UPC1003	5.95
${ }_{\text {2 }}^{254564}$	0.97	${ }_{20}^{250467}$	${ }^{0.555}$	${ }^{\text {82335 }}$	6.27	${ }^{80231}$	${ }^{0.56}$	${ }^{858880}$		4001	0.30	L77042	4.05	${ }^{\text {ONO }} \mathrm{O}$	． 65	SN761100	${ }^{0.95}$	TTAF3，3AP	${ }^{0} .60$	T0A2270	2.57	UPC 10095	． 32
${ }_{2}^{2 S A 6}$	4.88 0.37	${ }^{22501298}$	${ }_{0} 0.94$	${ }_{\text {Basil }}^{8 \times 102}$	${ }_{1}^{1.95}$	${ }_{8}^{802323}$		${ }_{\text {Breab }}$				La7801	${ }_{3.21}$		4.45		1.71	TATz33P	${ }_{3.15}$	TOA2			2.00
546395	0.76	${ }^{2501138}$	0.95	88514	1.00	${ }^{80237}$	0.36	Be532		CO4023	0.28	147320	2.95	${ }_{\text {PTraside }}$			2.45	${ }^{\text {TP73735 }}$	1.65	TOAR524	4.50		0.82
258659	0.49	${ }^{25012273}$	1.48	8 8527	1.20	${ }^{80238}$		${ }_{\text {8F596 }}$		C04022	0.64	181274	1.98	R1038	${ }_{2.19}$	SN7162300N	2.17	${ }^{\text {Tar3339 }}$	${ }_{2}^{2.50}$	TOR2525	${ }^{5.58}$	UPCCIOA3C	${ }^{4.29}$
${ }_{2} 24$	${ }^{0.288}$		1.50	${ }^{84524}$	8.94	${ }^{80239}$	0.45	Bf597		O40228	0． 14	L238120	9.20	R10	2.19	SN762	3，23	Tars	1.95	TiA2533	2．70	UPCCII6TC	3．948
${ }_{2 S} 254$	0.80	${ }_{20198}$	${ }_{3.87}^{2.89}$	${ }_{8,527}^{8 A 527}$	2.98	${ }_{80241}^{8029}$				${ }^{\text {C044a47 }}$	${ }_{1}$	${ }^{103150}$	${ }_{2} .75$	${ }_{\text {R200 }}^{\text {R20 }}$	1.1 .98 1 1	${ }_{\text {SNTF } 2243}$	${ }_{5}^{5.23}$	Tatis	2.35	to ${ }^{\text {daz }}$	${ }_{1.63}$		${ }_{2.19}$
	${ }^{1.25}$	${ }_{2}^{250234}$	0.47	${ }^{\text {Paf323 }}$	1.20	${ }^{80222}$	${ }^{0.37}$	${ }_{\text {87F61 }}^{\text {8759 }}$		COPa49		${ }^{\text {Lima3 }}$	1．10．	${ }_{\text {R20108 }}$	2．98	SNT7396	${ }_{2}^{2.90}$	Ta7611AP	2.32 5	TOAR 5	0.99	UPCC196H	1.05
${ }_{2}^{2 S 437285}$	1．95	${ }_{25}$	2.29	${ }_{8}^{\text {Bab }}$	${ }_{1}^{1.26}$	${ }_{\text {B02230 }}^{8023}$		${ }^{87762}$	0.34	${ }^{\text {co4006 }}$		LM1877	${ }_{1}^{1.88}$	${ }_{\text {R2030 }}^{200}$	1.33	SN65	3.03	Ta7\％	${ }_{9}^{5.94}$	TOA256	${ }_{2}^{2.50}$	UPC1	${ }^{1.95}$
${ }_{2}^{2} 54$	0.49	${ }^{2512537}$	．	${ }_{8} 8665$	1.51	${ }_{80244}$	0.42	${ }^{\text {BrFbeg }}$		c040699		Lma88	5.34	${ }_{\text {R2257 }} 8$	${ }_{1}^{2.38}$	SN765	4.87	T7762	1.73	T0A2579	0.50		2．99
	0.65 0.99	${ }_{2}^{25033235}$	2． 2.55	$\underbrace{\text { B74 }}_{8884}$	11．35	${ }_{802}^{802}$	li．38	${ }^{\text {Brase }}$		${ }_{\text {cosene }}^{\text {Co408 }}$		${ }_{\text {LM3282 }}$	7．4．36	R2306	1.36	${ }_{\text {SN }}$	3.08	${ }_{\text {Ta }}^{\text {Ta763 }}$	${ }^{2.95}$	${ }_{\text {TOAR2576A }}$			${ }_{\text {2，}}^{2}$
	2.15	${ }^{250}$	2.35	98843	3.96	${ }^{802266}$	0.95			CO44933	0.40	LM339N	0.43	${ }_{\text {R2322 }}$	0.76	${ }_{\text {SNT6611 }}$	$\underset{\substack{2.59 \\ 2.59}}{ }$	TAPG400	1.95		． 35	UPCt	${ }^{1.88}$
	${ }_{2.23}^{0.97}$	230	＋1．98	${ }_{\text {BAFII }}{ }^{\text {日abs }}$	${ }_{0}^{5.766}$	${ }_{\text {B0278a }}^{8025}$		${ }_{\text {BRRG }}$		${ }^{\text {coath1 }}$	${ }_{0}^{0.54}$	${ }_{\text {LM3348N }}$		${ }_{\text {R2334 }}^{\text {R234 }}$		SN76630	2.55	${ }_{\text {TAF676P }}^{\text {TAT6 }}$	${ }_{4}^{2.38}$	ToR2582	1.98	UPC12	${ }_{181}^{2.15}$
2 SA	0.50	250	${ }_{2}^{213}$	晈19	0.24	80317				C0455	1.47	1 M 36 Na	1.55	$\mathrm{R}^{\text {R2S }}$	${ }_{1}^{1.36}$	SN766660	2．20	TA772	${ }^{10.25}$	TOA2599	2.15	UPCC．1350C	．38
	${ }_{0}^{1.75}$	${ }_{250600}$	${ }_{2}^{1.98}$	${ }_{\text {Bav20 }}^{\text {Bav2 }}$	0． 10	${ }_{\text {B0375 }}$	${ }_{0}^{2.42}$	${ }^{\text {¢ ¢ ¢ }}$ 8 8		${ }_{\text {ckize }}$		IMS416	11.08	${ }_{\text {R254 }}$	${ }_{1} .65$	${ }_{\text {SNT }}^{\text {SN7 }}$	${ }_{9}^{4.85}$	tabasiad	${ }_{6} 6.59$	TOR2593	1.99		${ }^{1.20}$
	0.75	${ }^{25050011}$	0.65	BAWE2	0.11	в0380	0.39	ERras		Cx0950	3.14	LM748	1.82	${ }_{\text {R2540）}}^{\text {R2645 }}$	${ }^{3.30}$	SN76707N	1.23	taas	0.39	TDA2595	2.57		＋1．80
	20．40	${ }_{2}^{2 S 50613}$	0.74	${ }^{\text {8ax } 12}$	0.49	${ }^{80410}$	${ }^{0.33}$	Braza	0.34	${ }_{\text {cx } \times 108}$		LM8360	${ }_{2}^{3.87}$	${ }_{\text {RCA }}$	2.00	SN767	${ }_{5}^{2.95}$	TAA570	1.85	TAAS600	7.00	1 PC	${ }^{1.30}$
	0.44	${ }_{250639}$	0.34	${ }_{\text {Bax }}{ }^{\text {bax }}$	0.94	${ }_{\text {Bra }}^{\text {B4 }}$	${ }_{0}^{0} .37$		${ }_{0}^{0.37}$	Cx109	7.20	LR3419	${ }_{9.37}^{2.95}$	RG	0.70	SNT6	${ }_{0} 0.60$	TAC99	${ }^{8.58}$		6．58		75
	${ }_{0}^{1.13}$	${ }^{250655}$	0.98	вC1078	0.19	80335	0.49	BEx $\times 6$	0.35	${ }_{\text {cx }}$	${ }_{7} 8.50$	LR3711	9.37		0.29	${ }_{\text {SNTOA }}^{\text {SNO }}$	1.35 1.35	tapzoo	2.37	ToA261	1.25	UPCC 1458	1.895
${ }_{28}{ }^{\text {S }}$	1.03	${ }_{2506}$	2．800		${ }_{0}^{0.15}$	${ }_{\text {coab }}^{\text {B0a36 }}$	1.14 0.29	${ }^{\times 88}$	${ }_{0}^{0.34}$	${ }_{\text {cx }} \times 136$	11.99	Lu141	${ }_{20.62}^{7.27}$	RM	0.85	SP5	1.83	TAAB	－	${ }_{\text {TOAR }}^{\text {TTA } 220}$	\％${ }^{6.58}$	10	2.95
	0.99	250731	1.95	${ }_{\text {BC113 }}$	0.14	${ }_{80438}$	0.52	${ }_{\text {BrF } 50}$	0.30	（157	${ }_{5.52}$	Lus2011	14.95	${ }_{\text {S1299 }}$	5.34		${ }_{3,13}^{2.75}$	tag626－600	1.32	TOA2230	2.50		5t
${ }_{2} 28$	${ }^{0} .74$	${ }^{250773}$	0.60	BC119	0.36	80441	0.59	${ }_{\text {Brryo }}$	${ }_{\text {I }}^{1.15}$	${ }_{\text {Cx15 }}{ }^{\text {c }}$	10.45	Lu0312	12.37	${ }^{\text {S2assaf }}$	3．75	Staric	8.70	tratzoas	1.45	tipaz631	2.73	UPCP324	4.70
	${ }_{5.82}^{2,80}$	${ }^{250837}$	${ }_{0}^{6.80}$	${ }_{\text {BC1 }}^{\text {82 }}$	0.14	${ }_{\text {b }}^{\text {B0509 }}$	${ }_{1}^{1.54}$	$\underbrace{\text { Bry }}_{\text {BR＋190 }}$	${ }_{0}^{2.20}$	Cx187	${ }_{5} .26$	${ }_{\text {M23C }}$	1．32	58892	2.90		${ }_{5.25}^{5.70}$	${ }_{\text {TEALIzO}}$	0.57	toA	${ }_{9} 9.53$	UPG	95
	200	${ }^{250847}$	1.37	${ }_{\text {BCI } 135}$	0.14	8.5510	1.98	${ }_{\text {BRPO1 }}^{\text {BR100 }}$	${ }_{0} 0.78$	Cx755	－${ }_{\text {12，}}^{12.95}$	N1928	2.37	${ }_{\text {S3720 }}^{5238}$	¢ ${ }_{5}^{4.05}$	O040	7．17	TaA12OU	2.50		${ }_{5}^{5.16}$		519
	${ }_{3.96}$	${ }_{2}^{2 S 80} 5$	0.69	${ }^{\text {BC137 }}$	0.78	${ }^{805519}$	0.78	${ }^{\text {8R103 }}$	0.79	${ }^{\text {ckira }}$	${ }_{0}^{6.40}$	${ }^{293}$	7.09	${ }_{\text {S5008 }}$	${ }_{9} 9.98$	STK0050	${ }^{11.96}$	${ }^{\text {TBA120A }}$	1.05	TOAR	${ }_{2.48}^{4.4}$	UPCAT4 4	${ }_{5}{ }^{1.511}$
	${ }_{0}^{3} 3$	220	${ }_{0}^{1.355}$	${ }_{\text {BC139 }}$	${ }_{0}^{0.33}$	${ }^{80559}$	${ }_{0}^{0.94}$		${ }_{2} 1.208$	${ }_{\text {E }}$ E5294	0.28	W5115P	${ }_{5} .24$	${ }_{\text {S }}^{\text {Safab }}$	${ }_{\text {che }}^{15.55}$	STK0， 4	12.25	tBA144	1.95	T0A2880	${ }^{3.20}$		1．85
	1.05	58994	1.75	140	0.30	${ }^{80533}$	0.67	${ }^{888 \times 45}$	0.60	${ }_{60243}$	${ }_{5}$	M51203	3.15	SAA1020	5.7		${ }_{1}^{12.34}$	твa395	0．66		1.97		${ }_{2}$
${ }_{\substack{\text { 2SCiP89 } \\ \text { 2SCH101 }}}$	1		${ }_{2}^{2.888}$	${ }_{8}^{8 C 1414}$	${ }_{0}^{0.35}$	${ }_{80535}^{80534}$	${ }_{0}^{0.582}$				1.07	${ }_{\text {M51312 }}^{\text {MS }}$	${ }_{4}^{1.68}$	${ }_{\text {SAAIO25 }}^{\text {SAL }}$	2．40	STK654	${ }_{9} 9.35$		＋1．20	T0A2795	${ }_{181}^{2.78}$	UPC587C22	${ }_{1}^{1.34} \mathbf{2 . 1 5}$
${ }_{2} \mathbf{2 C C 1 1 2 8}$	0.66	${ }^{788505022}$	${ }_{0}^{0} 0.65$	${ }_{8 C}^{8 C 143}$	0.34	${ }_{80536}$	0.50		［0．85	${ }^{46121211}$	2.53	M51353P	6.93	SAA1075	4.25	STK65\％	${ }_{9}^{27.28}$	tsa4ac	2.34	toaz	${ }^{13} 25$	UPCP555	2．95
	（5．060	${ }^{7812}$	${ }^{0.45}$	${ }_{\text {BC1488 }}$	0.13	${ }_{\text {80538 }}^{8057}$	${ }_{0}^{0.50}$	${ }_{\text {Bry }}$	0.34	${ }_{\text {HA1 }}$	${ }_{2.15}^{4.29}$		5．988	${ }_{\text {SAAM } 12121}$	${ }_{2} 1.60$	SkT1039	5．57		1.30 2.50	${ }_{\text {To }}^{\text {TOA33308 }}$	${ }_{3.45}^{6.55}$	${ }^{\text {UPCP596156 }}$	${ }^{4.768}$
Sces	0.56	${ }_{7}^{7815}$	${ }^{0} 0.64$	${ }^{\text {PCCI48 }}$	0．11	${ }^{8055488}$	${ }_{8.75}^{0.67}$	${ }_{\text {BST }}^{\text {BSota0g }}$		HA11235	3.14	M51334P	14.50	${ }_{\text {Sasal }}$	${ }^{6} .69$	\＄k？	13.7	TBA520	1.20	toas506	4.40		4.98
2SC5	［3．47	A0140	1.06	${ }_{\text {BC6 }}$	0.14	82677	0.40	BSTTO246	6.99	${ }_{\text {HAR }}$	${ }_{4}^{2.29}$	${ }_{\text {M }}^{\text {M }}$	${ }_{8}^{6.85}$	5 SMA1230	3.95	STR224	${ }_{10}^{10.95}$	teas30	1.30	Tisasol	${ }_{7}^{5.50}$	UPO	1．50
	3.25	${ }^{\text {AOL } 143}$	－1．93	${ }_{\text {ect }}^{\text {ectich }}$	${ }_{0}^{0.14}$	${ }^{80669}$	－ 0.49		${ }_{4}^{6.154}$		－ 1.38	M551585L	2.75	${ }_{\text {SaA }}^{\text {Satiz51 }}$	3.30	STK304	6.08	TBAS400	1.40		5．91		
	1.65	${ }^{\text {A00 } 61}$		60	0.40	80681	0.45		$\substack{2.85 \\ 3}_{\substack{\text { 2，}}}$	¢ 4611414	2.25	Msis2l	1.50	Stabioz	2.71	${ }_{\substack{\text { STK5044 } \\ \text { STK001 }}}$		TBAST00	1.60	TDA3549	3.62	X0031CE	
	${ }_{3}^{0.72}$	${ }_{\text {AF14 }}^{\text {R0162 }}$	0.84 2.47	${ }^{61}$	${ }_{0}^{0.36}$		2.47	${ }_{\text {BSWG }}$	${ }_{0}^{0.690}$	HAA156	${ }_{5}^{1.17}$	M51922	3．13	SAASOOO	${ }_{3}^{3.25}$		${ }_{6}^{6.13}$		${ }_{2}^{1.71}$	Tida341	${ }_{5.83}^{2.22}$		
	－0．55	${ }_{\text {AFP1 }}^{\text {AF }}$	${ }_{1} 9.90$	（1709	0．16	80700	3.70	${ }_{\text {B5X19 }}$	0	${ }_{\text {Hatalich }}$	¢，${ }_{\substack{\text { c．73 } \\ 6.60}}$		1． 1.05	SA45012	${ }_{5}^{5.50}$		3.95	tabaiol	1.85	TTPA5310	${ }_{9}^{9.055}$		－ 3.198
${ }_{\text {2SCl }}$	2.22 6.09	㖪	0.57		0.167	${ }_{\substack{807707}}^{80709}$	${ }_{0}^{0.60}$		0.518	${ }_{\text {HARII } 7176}$	${ }_{3}^{6.60}$	${ }_{\text {MS4 }}$	1.45	SAALO30	${ }_{6}^{6.33}$	STKK4352	${ }_{1}^{1.95}$	${ }_{\text {TBAF }}^{\text {TBA } 30}$	${ }_{3.55}^{4.32}$	TTA	${ }_{6} 6.79$		5．02
${ }_{\text {2SCli226 }}$	－${ }^{0.30}$	${ }_{\text {AFF }}^{\text {Af } 139}$	${ }^{0} 0.45$	${ }_{\substack{\text { BCCI728 } \\ \text { B67 }}}$	¢． 0.17	${ }_{80710}$	0．80	${ }^{\text {B1／} 1108}$	1.45	H017\％05	${ }_{3.45}^{\text {a．00 }}$		${ }_{6}^{1.71}$	${ }_{\text {SAASOS }}$	${ }_{5} 5.98$	STK43	9.50	TBA5500		TTAB599	${ }_{8}^{6.459}$	xoos	${ }_{\text {c }}^{6.350} 6$
	\％1．98	${ }_{\text {AFFrib }}^{\text {Af }}$	${ }_{0}^{0.55}$		0．27	${ }_{80810}^{8089}$	0.45	${ }_{81129}^{81120}$	${ }_{2}^{1.76}$		c． $\substack{3.37 \\ 3.45}$	${ }^{\text {M }}$ S 54	${ }_{14}^{14.43}$	Sab3011	${ }_{7}^{7.34}$	$\substack{\text { STK4372 } \\ \text { STK60 }}^{\text {che }}$	${ }_{9.95}^{5.99}$	${ }_{\text {TPAABO }}$	1.08 0.98		－ $\begin{aligned} & 3.01 \\ & 2.17\end{aligned}$	X00	
${ }_{251} 51364$	0.49		${ }_{0}^{0.53}$	17	0.26	${ }_{8079}$	0.74	${ }_{\text {Br }}^{\text {Br }}$	（2．48	${ }_{\text {Hatil7 }}$	2．90	Mabal	${ }^{11.868}$	${ }_{\text {S }}$ SAB330213	5.70		${ }^{10.10}$	${ }_{\text {TRAAB }}$	${ }_{1}^{1.175}$	${ }_{\text {Tosen }}$	－		＋1．95
	2.120		0.53		0.17	${ }_{\text {B0990 }}^{\text {B095 }}$	2.18 0.55		1．07	${ }_{\text {HA11711 }}^{\text {Hali }}$	－9．50	M833	1.85	${ }_{\text {SABB3294 }}^{\text {SAB3 }}$	${ }_{5.82}^{6.38}$	STf501	${ }_{7}^{6.32}$	T9asil	${ }_{0}^{1.75}$	${ }_{\text {Tomas }}$	${ }^{2.50}$	X00936E	
${ }_{2}^{2 S C 1398}$	${ }_{0}^{0.41}$	${ }_{\text {ANF }}^{\text {AFP9 }}$	3.98	${ }_{\text {BCC }}^{\text {BCI } 182218}$	${ }_{0.14}^{0.14}$	80902	0.58		2．48	HAA1744	${ }_{6}^{1776}$	${ }_{\text {Nab7i3 }}$	${ }_{1}^{1.69}$	${ }_{\text {SAB3210 }}$	${ }_{321}^{5.21}$	stiks	9.48	tiazzon	0．882		${ }_{7.20}^{3.95}$		${ }_{\text {c }}^{13.61}$
	2．07	${ }_{\text {AN }}^{\text {AN } 155}$	${ }_{\text {1．}}^{1.89}$		0.09	${ }_{\text {chen }}^{\text {B }}$	${ }_{1}^{1.34}$	${ }_{\text {Butio }}^{\text {Butiv }}$	2.57 4.16	HAA172	${ }_{18}^{16.26}$		2．48	safios	${ }_{4}^{4.27}$	STKK	${ }_{\substack{1.33 \\ 3.67}}^{1.35}$	${ }_{\text {tiba }}^{\text {Tra }}$	${ }_{\text {l }}$3.65 1.65	T0442909	2.95		${ }^{9.650}$
75	${ }^{0.000}$	${ }_{\text {a }}{ }_{\text {ANV206 }}$	${ }_{3.55}^{2.58}$	¢CCibe	${ }_{0}^{0.13}$	${ }_{\text {B0X32 }}$	1.65	${ }^{\text {BUI } 24}$	1.48		${ }_{\text {c }}^{16.50}$	${ }_{\text {MC13002 }}$	${ }_{1}^{2.95}$	Stasforio	${ }_{8} .39$	${ }_{\text {STKR216 }}$	${ }_{9}^{9.45}$	T8A940	1.87	TDAA4600	${ }_{2}^{2.27}$	xO20acE XO261CE	
cosicli	1.76	A2N210	${ }^{1.56}$	BC187	0.28	800x33	${ }^{0.45}$	Bul2		H411788	$\underset{\substack{21.15}}{2}$	MC1327p	1.33	SAS560S	1.97	stK7\％	3.71	trasc	1.55	T0	${ }^{8.32}$	2PYY 20	4.77
25615730							3.35														${ }_{2.27}^{2.65}$		

DECLARATION OF QUALITY

AS DISTRIBUTORS OF QUALITY VIDEO SPARES FOR THE LAST TEN YEARS, WE FULLY UNDERSTAND THE REQUIREMENTS OF THE REPAIR TRADE. THERE IS A CERTAIN QUALITY WHICH MUST BE MAINTAINED IN ORDER TO EXECUTE HONEST, RELIABLE REPAIRS. THEREFORE, WE GUARANTEE THAT ALL VIDEO SPARES SUPPLIED BY US ARE OF THE FINEST QUALITY AND WE CAN ASSURE YOU THAT ALL STOCKED ITEMS WILL BE DISPATCHED THE SAME DAY.

REGISTERED OFFICE THE COACH HOUSE MUXTON LANE TELFORD T MAIL ORDER - CALLEASSTRICTLYEY APPOINTMENT

TV Fault Finding

Philips K40 Chassis

When this set was switched on from cold there would sometimes be no picture or sound while the power supply would emit a squeating noise because the over-voltage crowbar was operating. If the line output stage was disconnected and a dummy load was substituted the voltages would be normal and the crowbar wouldn't operate. A weak arcing noise from the line output transformer could be heard when the fault occurred, and for a short time before the crowbar operated there would be interference to neighbouring TV sets. We suspected a flyback tuning fault, so the tuning capacitors were checked using a bridge. C2163 (9. $1 \mathrm{nF}, 2 \mathrm{kV}$) was found to be opencircuit.

If you have a similar problem with a 3 A chassis set suspect the same cause. In this case however the relevant capacitor has a value of $8 \cdot 2 \mathrm{nF}$ and a different circuit reference number.
P. \mathbb{B}.

Grundig CUC52 Chassis

This set was dead because the power supply relay didn't *pull in, but instead of the usual standby display there was gibberish. The 29504-0) $03-42$ tuning module is used in this particular set, and the SC84203 was permanently in reset. C2358 ($0 \cdot 1 \mu \mathrm{~F}$) was leaky.
P.B.

Ferguson TX99 Chassis

The customer complained that the picture usually disappeared shortly after switch-on, though the set would sometimes run all evening without trouble. We put the set on soak test but it ran all day without the fault showing up. Next day we switched on and within minutes the picture had disappeared, the sound continuing. Removal of the back cover while the fault was present showed that the c.r.t.'s heaters were out. This was due to dry-joints on the line output transformer: resoldering restored normal operation.
E.R.
found to be in need of attention. When we were satisfied that all was well in this area we fitted a new transistor and fuse and switched on once more. A bright flash from FS702 heralded the demise of the chopper transistor and despair began to set in.
There was only one thing to do, ring our old friend Jack who lives in Manchester. He spent quite a few years with the Thorn group and there's not a lot he doesn't know about Ferguson sets. When I told him of my problem he said "yes, you'll probably find that R724 has gone opencircuit - if so it's a pint you owe me". He was right. R724 was open-circuit and a replacement cured the fault. It's a $1.2 \mathrm{k} \Omega$ resistor that provides a load at the drive output from the TDA2582 chopper control chip IC801.
E.R.

ITT Digi-3 110 Chassis

The customer's complaint was that this set 'kept going off, now dead". The line output transformer, a common problem with this and other ITT chassis, had been replaced by a field technician a month or so previously. When the set came into the workshop we found that the chopper transistor was short-circuit. This was replaced and the set was put on soak test. After a while the picture and sound disappeared and a loud humming noise came from the set. The new chopper transistor had failed. We eventually found that the culprit was C714, which decouples the start/run l.t. supply to the non-isolated section of the power supply. It was going open-circuit intermittently.
R.F.

Ferguson ICC5 Chassis

This set would trip three items then shut down completely, as it's supposed to do under overload conditions. We disconnected the various supplies obtained from the line output transformer in an attempt to isolate the cause of the overload but had no luck. Replacing the transformer itself cured the fault.
R.F.

TDA4600/4601 Power Supplies

If a chopper transistor in a set that uses a TDA4600 or TDA4601 chopper control chip has gone short-circuit always check the high-value resistor(s) connected to pin 4 of the chip. If this has gone high in value or open-circuit a replacement transistor will bite the dust immediately at switch on. Check the rectifier diodes and surge limiting resistors as well. They may have been damaged by the transistor.
R.F.

Saisho CT206

If the set is dead with no channel LEDs lit and the fuses are o.k., check the 5V supply. The small transformer bolted to the side of the chassis has an internal thermal cutout which cannot be reset. The transformer's a.c. output feeds rectifier D170 (DSF10B) and regulator IC105 (L78M05) via circuit protector ICP101 (N5). Although the rectifier and regulator have given trouble the more usual cause of lack of the 5 V supply is a duff circuit protector.

If the set is dead and the LEDs are lit, check the ceramic $5 \cdot 6 \Omega, 5 \mathrm{~W}$ surge limiter resistor R501. It will go open-circuit
if any of the bridge rectifier diodes D501-4 are faulty but the more usual cause is failure of the STK50103 chopper chip IC501. When this item has to be replaced the R2M diode D508 should be changed at the same time. Under order code MASTR50103AKIT CPC supply a kit that consists of the chip, the resistor and an SR2M diode.

> J.C.P.

Hitachi NP81CQ Chassis

A case of intermittent loss of colour, with the action of the colour control being very coarse, was caused by failure of C718. This $2,200 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic is the reservoir capacitor for the 12 V supply derived from the line output transformer.
S.L.

Amstrad CTV2000

This set suffered from reduced height with a degree of foldover. The field output stage is conventional, using a pair of transistors that are fed from a high-voltage supply. The supply decoupler C720 $(4 \cdot 7 \mu \mathrm{~F}, 160 \mathrm{~V})$ was opencircuit.
S.L.

Sony KV27RXTU

This set led us a merry dance, the fault symptom being a snowy picture. The obvious items were checked or replaced, including the tuner, but the fault persisted. We then disconnected the a.g.c. feed to the tuner and instead fed a variable voltage to the a.g.c. pin. The idea was to prove whether the fault was in the a.g.c. circuit. As the picture continued to be snowy at any voltage setting the a.g.c. circuit was eliminated. The cause turned out to be the SWAF, SWF 101. When we replaced this we obtained a nice, clean picture.
S.C.

Sharp DV1600

For a dead set with the standby light only on, check the $10 \mu \mathrm{~F}, 100 \mathrm{~V}$ capacitor C715 in the power supply - you'll find that it has dried up. As space is very limited it's best to get the correct replacement from Willow Vale.

For intermittent tripping into standby, check for a dryjoint at the collector of the 2SD869 line output transistor. M.Dr.

Samsung Cl3312Z

The fault with this 14 in . portable was intermittent loss of colour on changing channel. It was cured by replacing the $8 \cdot 8 \mathrm{MHz}$ reference oscillator crystal X 501 . Unfortunately the manual gives no information on how to set up this circuit. The correct procedure is as follows. Short together pins 1 and 6 and pins 21 and 22 of IC501, then set CV01 for floating, locked colour. Finally remove the shorts. M.Dr.
set, so no board adjustments are possible. To enter the service mode you hold down the service switch inside the set and press the channel button on the remote control unit. Press the full button to select from the on-screen menu the adjustment required. For height, press the volume up/down button. To store, press normal then standby.
M.Dr.

Sony KV2217UB (YE2 Chassis)

If you are faced with intermittent colour or poor ident after replacing the line output transformer in one of these sets, increase the value of the 220 pF capacitor C 390 on board A. 470 pF usually works but you may have to use up to 680 pF for correct working under very cold starting conditions.
M.Dr.

Hitachi NP6C Chassis

Over the years we've had many of these sets in for repair, especially the portables. The usual fault is intermittently going dead or failure to start from cold. To cure the latter, change C914, C916 and C919 to $4 \cdot 7 \mu \mathrm{~F}, 63 \mathrm{~V}$. For intermittently going dead when switched on fit a 2 SCl 815 transistor in position TR908 and a 2SA562 transistor in position TR909.
Next comes the bit that will give these sets another ten years of trouble-free life and is possibly the biggest cause of intermittent faults. You'll find oxidised print under the solder of the high-wattage resistors in the power supply R908, R909, R918, R924 and R935. Use a solder sucker to remove the solder from the legs. This will reveal a black patch to which you can't resolder. Some emery cloth should be used to rub the print, restoring it to nice shiny copper, then resolder the resistors back in circuit. Don't even think of just heating up the old joint and applying more solder: it won't work.
After replacing transistors TR908/9, which form an electronic trip, check the trip operation by shorting together pins 2 and 4 of CP 902 with the set switched on. It should go dead. Switch off, wait thirty seconds or discharge C932, then switch back on. Everything should work again.
M.Dr.

Vega 342

Field collapse with this Russian made portable is usually caused by failure of the $4,000 \mu \mathrm{~F}$ scan coupling capacitor C11A. It's a tag-ended radial electrolytic that's held to the chassis by a clip - a white wire from the scan coils goes to it. On the circuit diagram the lead from connection 16 on the timebase board Y 2 is shown as going to " R 52 volume control". This is actually the connection to the scan coils and then to chassis via C11A. All very confusing at a first glance. Full marks to Kevin at Technical and Optical Equipment (London) Ltd. for sorting me out on this one.
R.B.

Sony KV6000

My Sony KV6000BE developed loss of colour - it could be restored briefly by rapid rotation of the colour control. I hoped that the cause would simply be a defective potentiometer but it wasn't of course. A non-too-hopeful inspection then revealed that the capacitor soldered across the print side of the adjacent board, looking like an afterthought, was dry-jointed. I'm not in the trade and

Matsui 2580

This set was tripping out. It needed a new BU508A line output transistor as the old one had never been fastened on to its heatsink. At switch on the picture appeared without EW correction: the EW loading coil L901 then melted. The cause of this was a dry-joint on one of the EW modulator diodes. A replacement coil was obtained from Mastercare and fitted. The EW correction was now right but the picture needed a slight adjustment to its height. Now this chassis is a digital one that uses the ITT Digi chip
would like to claim this one for the dabblers!
J.K.C.

Sony's Mini Disc Format

George Cole

Next year will be an interesting one in the consumer electronics market since four new formats are due to appear in high street stores, CD-Interactive, Photo CD, the digital compact cassette and, the latest to be announced, Sony's Mini Disc. Sony first released details of the Mini Disc (MD) at the end of May. It's a system that stores up to 74 minutes of digital sound on a 2.5 in . magneto-optical (MO) disc. The discs are crasable and can thus be used like audio tape, i.e. they can record, playback, erase and re-record sound. Many newspaper reports have portrayed the MD as a threat to the compact disc. It's basically designed for the portable audio market however, and in this context is more a challenger to audiotape formats. MD could nevertheless in the long term turn out to be a rival to the compact dise.

Basic Specification

The MD is stored in a caddy that measures $72 \times 68 \times$ 5 mm . This provides protection against dust and damage. Sony says market research has shown that users prefer to carry small discs around in a caddy. Disc and caddy are half the weight of an analogue audio cassette.
The MD stores two-channel digital stereo sound which has been compressed by a factor of five. Frequency response is $5-20,000 \mathrm{~Hz}$ and the dynamic range 105 dB . The audio signal conforms to the CD standard, i.e. 16 -bit linear with a sampling frequency of $44 \cdot 1 \mathrm{kHz}$. Also like CD, the MD format uses eight-to-fourteen modulation (EFM) and cross-interleaved Reed-Solomon error correction (CIRC). The intention is to incorporate the Serial Copy Management System (SCMS), an anti-copy arrangement, as with the DAT format. Sound quality is described as "near CD quality". The dise speed is $1 \cdot 2-1.4 \mathrm{~m} / \mathrm{sec}$ and, like all CDs , the disc rotates at a constant linear velocity.
Four new technologics are used in the MD system: an ATRAC audio compression system; an MO overwrite system; a dual-function type of laser; and a shock-proof system based on the use of i.c. memory. We'll look at each of these in turn.

The ATRAC System

ATRAC stands for Adaptive Transform Acoustic Coding. It's five times more efficient than the coding system used by the CD and DAT formats. A real-time digital recording system such as the one used by the CD format is wasteful because data is used even when there's no signal present. With the CD format sixteen bits of data are used every 0.02 msec regardless of whether or not there's anything to record.

The ATRAC encoder on the other hand takes a snapshot of the audio every 20 msec (see Fig. 1), each snapshot consisting of approximately 1,000 samples. These undergo a complex mathematical process known as Fourier Transform (FT) analysis, enabling non-sinusoidal waveforms (like digital pulses) to be broken down into signal components that vary in frequency, amplitude and phase. The various signals are analysed, and only those that are above a level specified by the FT algorithms are encoded.

These algorithms are based on psychoacoustic research
into human hearing, and rely on two effects, the threshold of hearing and masking. Fig. 2 shows the threshold of human hearing. As you can see, the ear is most sensitive at frequencies around 3 kHz . Since signals below this threshold can't be heard they are not encoded. The effect of masking is shown if Figs. 3 and 4. The soft sound A in Fig. 3 is audible. But if soft sound A is mixed with a louder sound B of similar frequency it will be pushed below the hearing threshold and thus docsn't need to be encoded sce Fig. 4.

Fig. 5 illustrates the ATRAC encoding/decoding process. Incidentally the digital compact cassette (DCC) system, which puts digital audio on to normal-sized cassettes, also uses these effects. With DCC however the sound spectrum is divided into 32 sub-bands which are analysed in real time.

Recording and Playback

MO discs have been used mainly in the computer industry, for storing data: their erasability means that data can be changed and updated. Large amounts of data can be stored in such discs. It's held in the form of magnetic flux reversals in the magnetic recording layer. The

Fig. 1: ATRAC waveform sampling.

Fig. 2: The threshold of hearing. Only sounds that are above the threshold can be heard.

Fig. 3 (left): Soft sound A is audible.
Fig. 4 (right): The masking effect. Loud sound B at a close frequency to soft sound A distorts the threshold of hearing, so that the soft sound is no longer audible and is in consequence not recorded.

Fig. 5: The ATRAC encoding and decoding processes. The graphs show the filtering effect.
orientation of the flux's north pole, i.e. whether it points upwards or downwards in the recording layer, is used to represent a binary one or zero.

With a conventional MO system the disc sits above a drive magnet which bathes it in a constant magnetic ficld. Heat from a high-power laser is used to raise the temperature above the magnetic layer's Curic point, i.e. the point at which coercivity is lost. By using the digital signal to modulate the laser beam, i.e. switch it on or off, the magnetic field can be used to change the polarity of the recorded bits.

MO systems use the Kerr effect for playback: it twists the reflected beam from a polarised light source, i.e. the laser, either clockwise or anticlockwise depending on the bit's polarity.

Some conventional MO recording systems use a lowpower laser for playback and a high-power one for recording. Others use a two-step system in which the dise is rotated in a powerful magnetic field while being heated by a high-power laser: recording takes place during a second rotation. Both methods use a lot of power and the dise tends to get rather warm.

The Mini Disc's magnetic layer consists of a terbium/ferrite/cobalt mixture however. Its polarity changes when a coercive force of just 80 oersteds is applied, around a third of the force required with a conventional MO dise. Thus less lower is required and over-heating is avoided. The MD's overwrite system carries out erasure and recording during a single rotation of the disc: the laser power is held constant while the digital signal modulates the magnetic field (see Fig. 6).

The laser used with the MD system can read both conventional compact discs and Mini Discs. This means that software producers can use existing CD production plants to make MD titles. An 0.5 mW laser is used to read

A prototype Mini Disc player and a prerecorded disc.

Fig. 6: The over-writing record process.

Fig. 7: Use of i.c. memory to provide shock-proofing.
both types of disc, with a beam splitter to direct the reflected light on to two photodiodes.

With an MD one photodiode will receive more light than the other depending on the direction of polarisation. The two electrical signals produced by the photodiodes are subtracted, a positive or negative result representing a zero or one reading.

Compact discs are also read by varying the amount of light received by the two photodiodes. In this case when the laser light falls on a smooth part of the dise most of it is reflected back, less light being reflected when the beam strikes a pit. The signals are summed, the difference representing the binary number.

Shock-proof System

Contrary to popular belief, conventional portable CD players are not designed for use when jogging. With nearly all of them, skipping and muting occurs under these conditions as the laser mistracks.

The MD format uses a "shock-proof" system to overcome this deficiency. Fig. 7 shows how it works. Although the off-disc data transfer rate is $1.4 \mathrm{Mbit} / \mathrm{s}$, for playback the ATRAC decoder needs a data rate of only ().3Mbit/s. Thus the data can be stored before it reaches the decoder. A 1 Mbyte RAM that stores three seconds of music is used for this purpose. The RAM acts as a buffer or "dam". Thus provided the laser's mistracking lasts for less than three seconds there's time to relocate the lost position before the listener notices anything. This is possible because address information is assigned every 13 ms , the
system using this information to find the correct position.
The shock-proof system certainly works. In one demonstration the player was dropped on to a clothcovered table from a height of eighteen inches without interruption to the playback sound. In theory a dise could be removed from the player and, provided it was replaced within three seconds, the sound would continue normally. It's likely that the system will be improved even further as the cost of RAM chips falls.

Prospects

The MD will face stiff competition from analogue and digital compact cassettes. You can buy a quality personal stereo system for less than $£ 20$ today. MD players will initially cost around $£ 3(0)$, while the price of the dises has yet to be announced. Prices will fall however, and the MD
offers several advantages compared with tape systems. In the longer term better compression techniques could result in improved sound quality with the Mini Disc, which could even store text, graphics and pictures. The MD could even begin to challenge the conventional compact disc. Some suggest that the CD is here to stay, and that magnetooptical dise systems will never become competitive with tape from the price point of view. But then some people predicted that the Walkman tape player would be a commercial flop. Sony nevertheless went on to sell over sixty million Walkman units and revolutionise the way some people listen to their musie!

Acknowledgement

Thanks are due to Eric Kingdon of Sony UK for his assistance in the preparation of this article.

Test Report: The Periswitch Link Unit

Eugene Trundle

The Scart, Peritelevision or Euroconnector system has been with us for over eight years now. Though it doesn't provide many of the features it should have done it's nevertheless a useful means of interconnecting TV, video and satellite TV equipment. To realise its full potential a hi-hi stereo VCR must be connected via AV links, while all the advantages of MAC TV are thrown away unless the satellite TV receiver's outputs are fed to the main TV set in RGB form and the high-quality audio is passed to good amplifiers and loudspeakers.
Even with ordinary VCRs and satellite TV tuners connection via the Scart system has many advantages. It avoids patterning due to "carrier clash" around channel 36 , gives better sound and vision quality, avoids the need for tuning and the errors and quality loss associated with this, and forestalls the risk of interference from the proposed

Fig. 1: Simplified block diagram of the Periswitch.

Channel 5 terrestrial TV transmitters. The Scart system also has the advantage that it carries control and switching commands for automatic selection of the $A V$ or $R G B$ mode in the TV set.

There are two reasons why the Scart link is not used to its full potential in many homes. One is that dealers and manufacturers have not promoted it very well - even MAC receivers were supplied without Scart connecting leads. The other is that as the number of Scart-equipped black boxes in use has increased it has become more difficult to interconnect them whilst maintaining all record/playback/viewing/listening options. Many switch boxes and splitters have been marketed to assist with such problems.

Principle of the Periswitch

Using a "truth table" based on likely viewer behaviour, it's possible to design an automatic switch box that's driven purely by the presence or absence of status voltages and video signals in the Scart system. It can be devised to route video and sound signals and to switch the TV set between its internal tuner, AV and RGB sources. This is what the Periswitch does. The basic concept is that if you key play on the VCR you want to watch and hear a videotape playback, that if you switch on a satellite TV receiver you do so to see a programme, and that if the VCR and satellite TV box are in stop/standby and the TV set is on you're watching a terrestrial TV programme. Thus the Periswitch needs no remote control or front-panel keys and switches: it works unobtrusively and can be hidden away.

Use Possibilities

While maintaining this principle, the switch-box design takes into account the following possibilities: that you might want to watch terrestrial TV while recording a satellite TV programme or vice versa; that you might want to see two pictures at once with a picture-in-picture receiver; that there are radio programmes on satellite carriers; and so on.

The Periswitch caters for the following options:
(1) Watching video playback only.
(2) Watching a terrestrial TV broadcast while recording a terrestrial broadcast.
(3) Watching a satellite TV transmission
(4) Watching a satellite TV transmission while recording it.
(5) Watching a satellite TV transmission while recording a terrestrial TV broadcast.
(6) Watching a terrestrial TV broadcast.
(7) Listening to a satellite radio programme and, if wished, recording it.
(8) Recording a satellite transmission without monitoring it.
(9) Using a PIP VCR in the record or monitor modes.
(10) Watching video playback with a satellite receiver or computer left on.

Full wideband stereo capability is maintained in all directions with the sound paths, and the satellite input port accepts both composite video and RGB feeds which are passed to the TV set intact - RGB is not relevant with VCRs of course. Optionally available adaptors enable a camcorder or computer to be used as a signal source instead of a satellite receiver. Even VCRs without Scart connectors - most of them will be over six years old now can be used with AV adaptors, but for full versatility it's necessary to find a status indicator such as a PLAY 12 V line.

Physical Features

The Periswitch was not designed to be visible: it's generally hidden behind the VCR or TV set. The presentation is plain black, the box being $260 \times 120 \times$ 40 mm with three 21 -pin sockets on its rear face. There's a fair-sized fibreglass PCB inside, with three 16 -pin i.c.s and about 150 discrete components on it. The mains power unit is a separate block with a moulded on threc-pin plug. Electronically the box consists of a series of logic switches, signal amplifiers and buffers. Fig. I shows the arrangement in block diagram form and Fig. 2 shows hook-ups.

The package comes with three Seart connector leads, a comprehensive instruction book and a one-year guarantee. The latter is extendable to five years for a fee of $£ 20$ plus VAT. Six types of optional lead adaptors are available for camcorders and VCRs without Scart ports.

Practical Test

In use in my living room I found that the Periswitch did all that was clamed for it, with automatic switching between satellite, VCR and terrestrial TV, steered entirely by the existing remote control handsets. It's very

Fig. 2: Possible Periswitch hook-ups.
convenient to be able to get the programme you want at the touch of a single remote control key. As far as I could tell, the switching is transparent so far as the signals that pass through are concerned, whether they are L/R audio, composite video or, most important, RGB from MAC TV. I tried all the viewing/recording/routing options described above and found that they all worked as specified.

On then to the workshop and stock room, where there's a wide variety of TV sets, VCRs and satellite tuners, to check the Periswitch's compatibility. I found that in general the Periswitch worked with all Scart-equipped gear, with just a few exceptions as follows.

Some of the first TV sets to be equipped with Scart sockets had to be manually switched to AUX operation. Some later and current sets won't relinguish the AV mode manually once forced into it by the Scart status symbol, e.g. when recording satellite TV and attempting to watch BBC/ITV. This can be cured by snipping pin 8 in the TV set's Scart connector, but the TV set will then have to be switched into and out of the AV mode using the remote control handset, as with some of the early Scart-equipped sets. Note that snipping the lead to pin 8 doesn't affect the Periswitch's automatic signal switching.

Early Astra satellite receivers without a standby switch were intended to be left switched on and tuned in permanently. Thus they keep the Periswitch in the satellite mode - the status here is controlled not by a "flag" but by the presence or absence of a video signal. Selecting an empty s.h.f. channel in most cases (but not quite all!) flips the system back to terrestrial TV reception.

All the Scart-equipped VCRs I tried worked happily with the Periswitch, as did the four types of Marco Polo satellite TV tuner. I hooked a Nicam VCR to a stereo (non-Nicam) TV set via the Periswitch and obtained both broadcast and playback stereo. An additional output port for audio hook-ups, ideally in two phono form, would have been useful.

As a final test I fed test patterns and audio tones through the Periswitch. No loss of quality or frequency response up to 4.5 MHz for video and 20 kHz for audio - could be detected.

The Periswitch is not designed for use with the Y/C video connection system used by S-VHS VCRs, even where the signals pass through Scart pins as some manufacturers arrange. Though the Periswitch is unable to keep luminance and chrominance signals separate it does not impair the bandwidth when used with high-band recording systems, thus retaining many of the benefits of SVHS and Hi-8 video.

Conclusion

In conclusion, the Periswitch design is clever. It has many advantages in convenience of use and the maintenance of picture and sound quality. Many users will feel that it's worth the $£ 99.95$ (including VAT) price tag, which typically represents cight per cent or less of the cost of the TV/video equipment used with it. The odd operational snags I encountered with old and non-standard equipment were generally easy to overcome, and the manufacturer has an advisory service that can be called upon. Substantial discounts from the retail price are of course available to bona fide dealers and spares account holders. Overseas readers should note that the Periswitch can be used with signals of any TV standard.

The Periswitch is available from Hoopwell Ltd., Unit B9, Larkfield Trading Estate, Larkfield, Maidstone, Kent ME20 6SW. Telephone 0622882 285, fax 0622882287.

Service Briefs - Samsung VCRs

The following information on Samsung VCRs has been compiled from recent Samsung Service communications. Notes on CD players, microwave ovens and TV receivers were included in our August issue, see pages 730-1.

Models VI510 and VI520

If the unit returns to stop after a few seconds' use, check for the presence of reel pulses at connection 132 in the syscon section. Suspect a faulty reel sensor, DN6838.

If the machine laces but the drum and capstan don't rotate then the emergency mode is entered, suspect switch B in the cassette housing. It's the switch in the centre, part no. 63569700330 .
If the clock/counter runs backwards, check the voltage at pin 40 of the uPD7538 chip on the timer PCB. If the voltage is high, replace the chip; if it's low, suspect Q3.

If the drum runs too fast, check the FG pulses at C28 in the servo section. If the pulses are missing suspect the drum motor; if they are present suspect IC2.
Suspect Q2 in the timer circuit if the clock runs fast when the machine is in operation but is all right in standby.

If the machine laces immediately after a tape is inserted then enters the emergency mode the alignment of the front loading motor is incorrect.

For no colour or capstan lock, check whether the 50 Hz signal is present at pin 5 of IC4. If incorrect replace the AN 6342 chip in the YC circuit.

No E-E 12 V in stop but present in record, D3 in the syscon section is faulty.

If the machine won't switch on or off, check the power switching signal at connection 43 - should be high for on, low for off. If this is o.k., suspect the MP9432 chip in the syscon section.

Failure of Q5 will remove the $5 \mathrm{~V},-24 \mathrm{~V}$ and 50 V supplies. The usuat cause of its failure is leakage in C7, C12. C13 or C14.

For poor reset/erratic functions/unstable drum servo change the value of C 3 in the regulator circuit to $2,000 \mu \mathrm{~F}$. 16 V .
Only genuine Samsung idlers should be used in these machines, otherwise jamming in one position will occur because of incorrect arm moulding. The motor pulley and the drive surfaces of the supply and take-up spools should be thoroughly cleaned when the idler is replaced.

The original reel motor is no longer available. A new deck plate must be used with the replacement type supplied in order to provide mounting holes for the motor. Part nos. are: motor $64769(052081$; idler spring 66674601 830; two screws 67004100810 ; deck plate 66120100610 . An M4 nut and M3 $\times 8$ bolt are also required, otherwise the post to attach the capstan bracket to the new deck plate will be too short: use the nut to space the post and the bolt to fix it.

Models VI611, VI616, VI621 and VI626

Note that not all the following items relate to every model.

For patterning on E-E signals and therefore recordings when the signal strength is low, check for ripple on the 12 V supply to the tuner (pin BU). If ripple is present, add a $470 \mu \mathrm{~F}$ capacitor from pin BU to chassis. Otherwise, the
machine uses syscon panel 3005 0)04023B with single-sided print. Proceed as follows. Cut the earth return as shown in Fig. 1, taking care not to cut the earth connection to pin 12 of plug CNG . Re-route the lead to $\mathrm{CN}-\mathrm{K} 04$ (tuning voltage and supplies) in front of the loading chips down the righthand side of the machine. Realign vision i.f. transformer T101 and the a.f.c. transformer T102. Finally, if titted remove the earth lead from the print side of the syscon PCB to the mechanism.

For poor picture search, first clean the pinch roller thoroughly. If still poor after this check with a scope at pin 10 or 11 of the BA6303 chip IC0211 in the servo section during search. The 75 Hz squarewave should be sitting on a d.c. voltage of $(0 \cdot 1-() \cdot 2 \mathrm{~V}$ and be of $3 \cdot 3-3 \cdot 5 \mathrm{~V}$ amplitude. If the d.c. voltage is too high but corrects itself after $10-15$ minutes or when the chip is heated, try the following modification before replacing the chip: add a $47 \mathrm{k} \Omega$ resistor between pin 7 of IC021I and the 5 V rail; change CO231 to $0.01 \mu \mathrm{~F}$ ceramic and C 0232 to $0.47 \mu \mathrm{~F}$ polyester.

For poor audio/sound-on-vision/high-pitched buzz for ten minutes after switch-on, only when the a.f.c. is switched on, add a $3 \cdot 3 \mu \mathrm{~F}$ or $4 \cdot 7 \mu \mathrm{~F}$ capacitor ($16-50 \mathrm{~V}$) between the junction of C0402 and $\mathrm{R}(4) 4$ and chassis (negative lead to chassis).

The reset circuit was modified during production, see Fig. 2. Q614, C615 and D614 were added on a sub-panel, C608 was changed to $\operatorname{lnF} 50 \mathrm{~V}$ and a $47 \mathrm{k} \Omega$ resistor replaced D605. Pin I on the sub-panel goes to pin 32 of ICOG(12, pin 2 to pin 49 and $\operatorname{pin} 3$ to pin 52 .

If the machine works all right but when switched off the power and channel LEDs stay on, the KSA634H transistor Q2 in the regulator circuit is short-circuit. Part no. 62149 101 150 .

To improve the quality of recordings, remove C0308 and change the value of C0364 from 220 pF to 150 pF .

If there's no record colour but playback is o.k., check at pin 6 of IC03(1). The d.c. voltage should be -()$\cdot 2 \mathrm{~V}$ and the waveform must have a peak-to-peak amplitude of 8 V . If the conditions are incorrect, replace C0347 (56 pF).

Replace the audio/control head (part no. $640795013(152$) if playback is o.k. but the machine won't record the CTL track.

For intermittent colour with a timer recording, replace VR0313 (20k Ω, part no. 61243110014) and set up the chroma circuit.

Two different reel motors have been used, with different

Fig. 1: Syscon panel $3005004023 B$ (V1611 series models) modification for E-E/record patterning.

idler springs. The Sankyo JPA1B05 motor is part no. 64769 052080 with spring 66674601820 ; Sankyo motor JME1B91 is part no. 64769052081 with spring 66674601830 .

Models VI710, VI711 and VI730

Note that not all the following points apply to every model.

If the 50 Hz signal at pin 10 of the main microcomputer chip IC801 is poor replace wire link W 605 with a $100 \mathrm{k} \Omega$, $1 / 8 \mathrm{~W}$ resistor and add a 10 nF capacitor from pin 10 to chassis.
Failure of the remote control handset to transmit can be due to a high-resistance or open-circuit IR diode. Part no. 62309112030 .

In the event of intermittent tuning for ten seconds after power-on and no signals displayed on a TV monitor for two minutes, the channel indicator being o.k., add a 220 nF capacitor between the tuner's BU and VT pins and a lnF capacitor between the tuncr's clock line and chassis. Applies with tuner ECU5883PLC.

Tuner ECU5883PLE can be responsible for inability to tune or excessive patterning on channel $40,43,46$ or 50 .

For failure to crase due to the bias oscillator not starting, solder the leads directly to the erase head, i.e. remove the plug and socket. Also change Q0501 to type KSD1008Y, part no. 62149310431.

Chroma patterning occurs when the oscillator block L0504 fails. A short in L0504 results in a burn-up. Peaking coil L0503 then develops shorted turns, the result being ripple on the REC 9 V supply. Both items should be replaced therefore. Oscillator blocks supplied by Samsung have a $12 \mathrm{k} \Omega$ resistor between pins 4 and 8 instead of $6.8 \mathrm{k} \Omega$. To improve reliability, solder the leads directly to the erase head. Some VI730 machines were modified in production, with the $12 \mathrm{k} \Omega$ resistor fitted across the print: this resistor should be removed if a block of the modified type is fitted. If Q0501 has failed, always solder the leads from the block to the erase head directly to prevent a recurrence.

For no tuning, replace link $W 627$ with a $1 k \Omega$ resistor.
Two different types of TV/Aux switch have been fitted. The type with six evenly-spaced pins is part no. 63510102 72; the type with eight pins, six bunched, is part no. 63519 102071.

With older boards replacement of IC201 (SD3624A) results in LP operation only. To cure, link pins 26 and 27 with solder.

The a.g.c. voltage requirement varies with different tuners. With the SEM type ECC2885PLE the range should be $4 \cdot 7 \mathrm{~V} \pm 0 \cdot 1 \mathrm{~V}$; with the Sharp VTSA-1SZ3PL the range should be $5 \cdot 3 \mathrm{~V} \pm 0.1 \mathrm{~V}$.

Ensure that the correct type of capstan motor is ordered when a replacement is required - the pulley sizes differ. Type VCM4730AL is part no. 64769052025 ; types VCM4730BL and R4322-74382A are part no. 64769052 015 .

The mains transformer part nos. differ. With the VI710 and VI711 the part no. is 63379600070 ; with the VI730 the part no. is 62869190203.

To cure a popping noise during load/unload, remove C119 from the Main A PCB - it's in the collector circuit of Q109.

The part no. for the mode switch on its own is 63599016 057.

If the bottom edge of the tape gets creased at the supply impedance roller, remove the washer at the bottom of the assembly, beneath the spring.

For no E-E sound change R130/1 from 10Ω to $3.3 \mathrm{k} \Omega$: these resistors are in the PB 5 V switching circuit.
For intermittent tape ejection when play is selected, change the value of R 611 from $330 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.

Background whistle on sound with recordings can be cured by adding a wire link from pin 4 of CN 401 to the tuner earth lug land on the Main A PCB.

Buzz on sound can be removed by redressing the lead from CN703 to CN602 (clock PCB to syscon PCB).

Whistle on sound can be removed by redressing the lead from CN402 to CN701 (clock PCB to Main A PCB) away from the upper Main B PCB.

For whistle on LP record or playback sound cut the wire link between pin 24 of IC0501 on the Main B PCB and the print near VR3303. If this link is not fitted, check for and remove the earth wire between the mechanism and the point on the Main B PCB where the insulation sheet is fixed.
Switching between the SP and LP modes can be caused by low amplitude CTL pulses: at pin 7 of IC203 the pulses should be 0.96 V peak-to-peak in the SP mode and 0.8 V peak-to-peak in the LP mode. If the pulses are incorrect, suspect a misaligned (zenith and height) or worn CTL head.
Failure to switch on or eject occurs when the case of $\mathrm{C} 702(22 \mu \mathrm{~F})$ shorts pin 3 of IC701 to chassis. C702 is on the print side of the function timer PCB.

Models VI750 and VI770

For inability to search tune with location one (jumps to location two) press the store button then search on channel one.
The wow performance can be improved by carrying out the following modifications: change R246 to $220 \mathrm{k} \Omega$, R247 to $8.2 \mathrm{k} \Omega, \mathrm{R} 248$ to $150 \mathrm{k} \Omega, \mathrm{C} 239$ to 100 nF and C 240 to $2 \cdot 2 \mathrm{nF}$. Finally, add a $47 \mathrm{k} \Omega$ resistor between the base and emitter of Q217 in the servo section.

Models VI770 and VI790

If no or only some functions are working, the 30 V supply is low or missing. Replace Q903 (part no. 62149301751) and ZD901 (part no. $62129502(0) 2$).

An incorrect combination of microcomputer, clock and memory chips IC501, ICl02 and IC103 can result in no communication between them and a number of symptoms. The types were changed during production, the change involving other circuit modifications. If the clock and memory chips are not correct, stations will not be stored.

Model VI910

If a machine with syscon PCB SVS866 cuts out while playing, check the PG pulses at pin 32 of the servo chip. The correct amplitude is 800 mV peak-to-peak. If you find that the amplitude is excessive at 2 V peak-to-peak check R35 on the syscon PCB - it should be $22 \mathrm{k} \Omega$ but might be $56 \mathrm{k} \Omega$.

There are some incorrect part nos. in the service manual. Correct ones are as follows: d.c. socket $633341(1) 4$ (021; mains transformer $6337960(0)(46$; D1, type $2 \mathrm{KBP}(02$, 62169901080.

Models VI8220/1

Shutting down during playback can be caused by ripple at the servo chip IC201's FG input. Add C234 (22nF) between the junction of C226 and R234 off pin 56 of IC201 to chassis.

Models VI8220/5

For black spots on the edge of the playback picture carry out the following modification: change R 0368 to 220Ω, R0340 to $330 \Omega, \mathrm{C} 0334$ to 27 pF and L 0306 to $27 \mu \mathrm{H}$. These components are all on the Main B PCB.

Model SX7230

To improve the preset tracking change the value of C202 on the servo PCB to 82 nF (part no. 61507121581).

General information

Some useful semiconductor device equivalents are as follows:

$$
\begin{array}{ll}
\text { uPC1524 }=\text { HA11745 } & \text { A } 143=\text { KSR2001 } \\
\text { uPC1534 }=\text { HA11744 } & \text { A144 }=\text { KSR2004 } \\
\text { uPC1536 }=\text { HA11741 } & \text { C143 }=\text { KSR1001 } \\
& \text { C144 }=\text { KSR1004 }
\end{array}
$$

345 Each month we provide an interesting case of
 These are not trick questions but are based on actual practical faults.

It's easy to become nonchalant about TV and video servicing. This is especially so when you find yourself faced with a symptom you've seen, or think you've seen, scores of times. When the usual treatment fails to cure the trouble the result can be a fit of frustration and pique. So it was with a JVC HRD140 VCR that appeared on the Test Case workbench. Its trouble, as described by the owner, was that when asked to play it would click and whirr and, after five seconds, shut down. Now this is a very common symptom with the HRD140 and associated models. It's usually because a slipping loading belt prevents completion of the loading cycle. So we changed the loading belt and cleaned and lubricated the shafts of the underdeck loading pinions before we even switched on.

At switch on loading took place in the usual way and the loading motor stopped when it was complete. There was no movement of either the capstan or the tape reels however: the tape was then smartly retracted into the cassette and the syscon went into the alarm mode. The engineer went into the alarm mode too. From the moment he'd pressed the play key the drum motor's speed had risen steadily to a high-pitched whine, which only now started to die away.
There are four little circuit protectors in the power supply in this machine. When one of them goes opencircuit all sorts of odd symptoms can occur. On this
occasion however all four were intact, so an experiment was tried. Since the drum had started to run out of control during the lace-up, it was restrained with a finger. This produced a wobbly semblance of a picture on the monitor before the machine once more shut down. Thus it seemed that the primary cause of the trouble was excessive drum speed. Attention was therefore turned to the drum servo and drive circuits.
The early form of digital drum servo used in this machine is generally reliable and trouble-free. So the first check that was made was on the supply to the drum motor -12 V at pin 3 of CN 2 . It was correct. The servo error voltage is generated in IC402 on the servo board and is then amplified in IC404. Voltage checks in this area were made difficult by the fact that the machine shut down within a few seconds of starting to play, but we easily established that the supplies to the two chips were correct. As this is a digital servo, a clock pulse drive is required. It's derived from the 4.43 MHz crystal in the chroma section of the machine. This waveform enters IC402 at pin 9: a scope check here showed that it was present and correct.

What next? In some circuits it's difficult to know which way the error voltage should move to drive the motor faster, so a check on this was not conclusive, especially as the automatic shut-down barely gave the meter time to settle before it was all over. There is one point however that should have been checked at the outset, long before wandering into the servo section. Had this been done the cause of the fault would have been diagnosed quickly and easily. What was it? Where should the scope probe have been parked? Answer next month.

ANSWER TO TEST CASE 344 - page 746 last month -

The Sony KV2204 that was the subject of last month's test case now stands resplendent in the window of Tower Road Television, with a three-month guarantee and a price tag so outrageous for such an old set that we cannot mention it here! You will recall that it had been fitted with a replacement Trinitron tube in the workshop, after which it showed nothing but a green raster despite the fact that its three guns were correctly biased and fed with R, G and B video drive signals.

All Trinitron tubes have convergence electrodes at the top end of the gun assembly. They are used to deflect the outer (red and blue) beams, and carry a potential similar to that at the first anode. The few hundred volts difference is set for correct convergence of the beams by the H-STAT control in the HV block. In this vintage of the Trinitron tube, the e.h.t. connector is a "double" type with the convergence voltage conveyed by the inner conductor and the e.h.t. by the outer one. These separate voltages are coupled to a special coaxial-cavity socket in the tube's bowl.

Unless the rubber-capped connector is applied to the tube carefully all the beams land on the green phosphor stripes. This is what had happened, the cause of the trouble simply being misapplication of the connector. When Service Manager replaced the cap he got it on correctly!

[^0]
The most important addition you will make to your TOOLK
 If electronics is your hobby or your livelihood there's no doubt about it. As New Computer Express said: "The Electronics Repair Manual is a complete reference in itself. On its own it would be worth the $£ 44.95$ asking price. The supplements that are already available and those planned make it an absolute necessity."

 We couldn't have put it better ourselves.The Manual contains over 800 pages packed with valuable information on the ins and outs of repairing and maintaining everything from your TV, Hi-Fi Amplifier, Radio and Video, right through to your Personal Computer. Information that's easy-tofollow, as each topic is lavishly illustrated and layed out with simple step-by-step instructions,

Continual updating means you're never outpaced by technology. Every two or three months you'll receive supplements for your manual, guaranteeing that the Electronics Repair Manual remains the most comprehensive reference source available.

If you're involved in electronics, how can you be without? To receive your copy on 10 days Free backed up by a clear and Approval, just complete the coupon below or ring FREEPHONE.

ORDER FORM - SEND NO MONEY

To: WEKA Publishing Limited FREEPOST
The Forum 74-80 Camden Street London NW1 1YW Tel: 071-388 8400
FREEPHONE 24hr Order Hotline. Use your credit card on 0800289762
YES please send me immediately on 10 days free approval THE ELECTRONICS REPAIR MANUAL
(Order No $\mathbf{1 2 8 0 0}$). If I decide to keep the manual, I shall then pay only $\mathbf{£ 4 4 . 9 5}$ plus $£ 5.50$ postage and packing at the end of the 10 day approval period. I shall also receive the appropriate Updating Supplements throughout the year, priced at $£ 22.00$ plus $£ 2.50$ p\&p. These are billed separately and can be discontinued at any time
(CAPitals please)
NAME \qquad

ADDRESS
POSTCODE \qquad
OVERSEAS ORDERS
All overseas orders have to be prepaid but will be supplied under a Money-Back Guarantee of Satisfaction. If you are an overseas customer send no money at this stage but return the complete order form. Upon receipt of this we will issue a pro-forma invoice for you to pay against. Payment must be made in sterling.
ereserve the right to alter the price and page extent of future supplements You will be informed as and when any such decisions are made which we feel you might be interested in
Please tick here if you would prefer not to take part in this opportunity

WEKA GUARANTEE

You risk nothing by ordering today - as this title is covered by WEKA Publishing's Guarantee of Satisfaction. If for any reason it fails to match your expectations simply return it in perfect condition and you will owe us nothing.
\qquad

Eliparetl Enans
germany austria france italy usa netherlanos switzerland uniteo kingoom
\qquad

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS

 ELECTRONIC COMP. DISTRIBUTORS (Imp. Exp.; EX-STOCK DELIVERY 6,000 DIFFERENT PARTS| TRANSISTORS | | | INTEGRATED CIRCUITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 S A$ | BD | BUY | AN | LM | SAB | TC |
| $2 S B$ | BDW | DTA | BA | M | SI | TCA |
| $2 S C$ | BDX | DTC | CX | MB | SLA | TD |
| $2 S D ~$ | BF | MJ | HA | MC | STA | TDA |
| $2 S J$ | BT | MJE | KA | MDA | STK | TEA |
| $2 S K ~$ | BU | $1 N$ | KIA | MEA | STR | TTL |
| $3 S K ~$ | BUT | $2 N$ | LA | MN | STRD | UPC |
| AD | BUW | $1 S$ | LB | NE | TA | UPD |
| BC | BUX | TIP | LC | SAA | TBA | CMOS |

STOCKISTS OF IC'S \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)

[^1]

AKE YOUR INTERESTS PAY!
 fain at nome for one of these Career Opportunities

r the past 100 vears more than 9 million students throughout world have found it worth their while! An ICS home-study rse can help you get a better job make more money and have e fun out of life! ICS has over 90 years experience in home ty courses and is the largest correspondence school in the ld. you learn at your own pace, when and where you want er the guidance of expert 'personal' tutors. Find out how we help you. post or phone today for your free information K on the course of your choice. (Tick one box only!)

lectronics \square	TV, Video \& Hi-Fi Servicing
asic Electronic ngineering sity \& Guilds)	Refrigeration \& Air Conditioning
ectrical ngineering	Car Mechanics
lec. Contracting/ istallation \square	Computer Programming
CSE/GCE/SCE over 40 examination abjects to choose from	

ne:
dress:
P. Code

Complete your tools with Antex Soldering Irons and Stations

The art of accurate soldering is to maintain the bit temperature at the optimum level

Antex fixed setting, thermally balanced, high efficiency irons maintain constant tip temperature and offer a wide range of soldering bits to suit your particular application

For the more sophisticated applications, control at lower temperatures is essential. In these cases an adjustable temperature soldering iron is required. Also available are soldering stations with the option of digital temperature read out Antex products are designed for precision soldering to meet the demands of precision electronics

[HROmaval

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR

 		OOOR

INTEGR			52	$17808 \quad$ c0.80		M		18.00	TAF	2.50	TDA1022P	54.50	TDA2593 - $\quad \mathrm{Cl} 1.50$	U4108	$\underline{11.60}$	31. \quad co. 30
CIRCUITS		8 A4210	12.50	L7812 51.00	8 PIN	MM55108 $¢ 2.65$	STK4352	15.80	TA7241AP	$\underline{5} .00$	WA1035	18.90	TDA2594 . . . 53.00	U4168	1.60	$25 \mathrm{C} 2632 \quad 50.30$
AN103	[1.60	BA4220	2.00	17815 - \quad E0.80	$\underline{51.25}$	MM7317 \quad £3.75	STK437	510.00	ta7243.	[3.30	TDA1035T	¢1.90	TDA2600	UA767PC	E1.20	$2 \mathrm{SC2655} \quad$ ¢0.60
AN2 140	12.50	BA4236	$\underline{9} .75$	17818 …e. 50.80	LM748N $\quad \sum 2.00$	MM74C901 ¢1.10	STK4392	127.00	TA7245	[4.50	IDA1037	$\underline{2} .90$	TDA2611A 51.00	Ua78 10	\%.010	$25 C 2958 . \quad 52.50$
AN240P	. 21.30	BA4402	£1.90	L7824 50.95	M104 $\quad 1 . \quad 87.00$	MPD4011C . \quad E. 00	STK441	$\underline{10.50}$	TA7267P	\%2.80	TDA1044	$\underline{2} 50$	TDA26400 - 33.50	UA78M15	$\underline{5200}$	${ }^{2 S C 2979} \quad 53.00$
AN253P	[1.80	BA4403	9.75	L7905 - E0.80	M29381 [11.00	MPD4069C [E1.10	STK459	$\underline{11.00}$	TA7270P	. 22.50	TDATO44U	¢1.50	TDA2653Ac2.75	UAA1008DP	$\underline{52.00}$	$2 \mathrm{CC3153} \quad 53.40$
AN3821K	86.75	BA5102	¢2.45	L7912 50.80	M490bB1 $\ldots . .512 .50$	MPD4681 $£ 1.10$	STK461	$\underline{1} 10.50$	TA7271P.	1.25	IDA1057	$\underline{1200}$	TDA2822 $\quad \begin{aligned} & \text { \%200 }\end{aligned}$	UC38445	¢5.00	2 2C3402 $\quad 80.40$
AN3822	17.50	BA5204	9.75	17915 - . E0.80	M4911/881. $\$ 11.50$	MPD45148C ¢5.00	STK463	$\underline{14.50}$	TA7274	22.60	IDA1082	ต. 50	TDA3190 . $\quad 50.95$	UPC 1185 H 2	¢2.50	${ }^{25 C 3519} \quad \mathbf{8 4} 60$
AN5015	. 23.30	BA524	23.00	L7918 ….... £0.80	M50127AP $\quad 56.00$	MPD5521066 111.00	STK465	$\Sigma 12.00$	TA7280	9.00	IDAT083	$¢ 1.70$	TDA3303 [15.00	UPC $1225{ }^{\text {H }}$. 2.75	2SC3678 $\quad \$ 1.25$
AN5033	¢5.00	BA5402	$\underline{7} .40$	17924 … 50.80	M50431-101SP	MSL9378RS ...£.50	STK5315	¢6.50	TA7280P	15.00	TOA1151	¢1.50	TDA3330 $\quad 55.50$	UPC! 230	[23.00	2SC3715 ... 84.80
AN5132	ce. 95	BA5406	2.50	LA1180 - ¢ ¢ \mathbf{L}^{60}	${ }^{26.50}$	MSM5840H-84RS	STK5322	26.50	TA7281	$\underline{2} 75$	TDA1154	92.70	TDA354054.00	UPC+238V	¢2.10	$25 C 458 \quad 80.20$
AN5265	[1.35	Ba6104	9250	LA1185 E2.60	M50453-012P £6.20	$¢ 14.50$	STK5325	55.50	TA7281P	$\underline{.2} 75$	TDA1170S	£1.20	TDA3541 $\quad 12.25$	UPC 1263	E2.20	$25 C 789 \quad 3.50$
AN5510	[54.50	BA6109	¢1.80	LA1201 ….. E0.95	M50560-04P .	SAA1006 ... 22.50	STK5331	26.00	TA7299P	$\underline{53} .00$	TDA1180	51.80	TDA3560 $\quad .3 .40$	UPC1288V	$\underline{22.95}$	$2501047 \quad 3275$
AN5512	[1.95	BA6124	52.75	LA1235 $\quad \mathbb{2} \mathbf{7} 5$	M51014L \quad [1.95	SAA1025 - $\quad 55.80$	STK5332	53.50	TA7302	$\underline{1} .30$	TDA1180P	£3.00	TOA3561 $\quad 22.50$	UPC 1361 C	¢3.90	${ }^{2501051} \quad \mathbf{C 0 . 8 5}$
AN5521	¢5.50	BA6154	$\underline{2} .50$	LA1260 - E1.75	M51164 $\quad \$ 1.40$	SAA1124 ...E3.95	STK5333	£12.00	TA7303	$\underline{12.10}$	TDA1190	£1.90	TDA3562A \quad...55.00	UPC:362C	¢4.50	2 2S01128 $\quad 11.50$
AN5730	23.20	846208	92.75	LA1403 - E3.75	M51356P \quad E5.00	SAA1174 E6.50	STK5338	56.00	TA7310	51.75	TJA1270M	£4.10	TDA356553,00	UPC 1363	E1.90	${ }^{2501138} \quad \mathbf{5 0 . 8 5}$
AN5750	. 2.50	BA6209	53.20	LA3160 ….... §1.90	M51381P \ldots. \quad ¢1.50	SAA1250 - .ay.60	STK5361	¢6.25	TA7312	51.75	TDA 1365	¢4.90	TDA357180 $\quad 55.50$	UPCI365	[13.50	2501159 ¢0.75
AN5760	\% 0.0	EA6219	¢1.95	LA3210 \quad1.90	M51393 - \quad [4.25	SAA1251 ... 88.50	STK5421	¢6.50	TA7313	20.90	TDA1412	¢1.00	TDA3590 \quad - 3.00	UPC1377C	E2.20	$2501207 \quad 50.75$
AN5900	c1.50	BA6222	53.10	LA3220 . . . 51.00	M51513 ..- \quad ¢10.00	SAA1276 … $£ 4.50$	STK5422	¢5.00	IA7313AP	51.40	TDA1470	¢5.00	TOA3651 E3 E3.00	UPC1378	12.00	$2501273 \quad \$ 1.00$
AN5326	\$4.00	BA6229	¢1. 85	LA3350 $\quad 1.50$	M51515L \quad Y.10	SAA1290-02 $\quad 10.70$	STK5434	¢6.50	TA7314	12.00	T0A1501A	${ }^{23} 20$	TDA3651AO $\quad 56.50$	UPC1379	E2. 20	2501275 . $\quad 1.31 .30$
AN6332	. 84.40	BA6238A	£1.95	LA3361 _ ¢1.50	M51516 54.00	SAA1293 _- E7.00	STK5451	¢5.30	TA7323	$\underline{53.25}$	TDA1506	${ }^{88} 50$	T0A3652 $\quad 57.50$	UPC1382	¢1.50	$2 \mathrm{SD1288} \quad \mathrm{\$ 1} 170$
AN6341	5.75	BA6239	13.75	LA3600 $\quad \begin{aligned} & \text { E3.50 }\end{aligned}$	M51903L $\quad 33.50$	SAA1293-02 ¢9.75	STK5471	55.25	TA7325	12.00	iDA1510	£3.20	TDA3653 - $\quad 17.50$	UPC1394	81.70	$250138 . \quad 10.85$
AN6344	. 86.50	BA6259	\%3.00	LA3700 - 2.50	M5213L 53.10	SAA3027 26.00	STK5476	56.00	TA7325P	. 1.50	TOA1510A	¢3.20	TDA3654 $\quad 1280$	UPC1420A	. 27.00	$2501391 \quad$ ¢4.20
AN6346	54.50	ВА6301	$\underline{720}$	LA4100 - 51.90	M52184 $\quad 11.00$	SAA5000 [¢3.00	STK5481	¢5.00	TA7328	12.00	TOA1512	¢1.00	TOA3810 \quad - 22.90	UPC1458	81.95	SOC1397 \quad ¢3.75
AN6346	. 54.50	BA6302A	E1.80	LA4102 - ¢ E1.20	M52314 ….. 11.10	SAA5010c5. 80	STK5482.	55.20	ta7335	¢1.50	TDA1515A	$\underline{2} .50$	TDA3950 \% \%3.00	UPCC1513HA	£2.00	2 2501398 $\quad \mathbf{2} 2.25$
AN6359	. 5.50	BA6304	51.70	LA4125 [-. E. 00	M54519P $\quad .81 .00$	SAA5012 - 56.60	STK5720	c7.00	TA7335P	. 4.20	TOA1520	E3.95,	TDA440 ... $\quad 2.00$	UPC1520CA	$\underline{2} 2.48$	$2501426 \quad$ E4.50
AN6360.	. 23.75	BA6305	£1.75	LA4140 20.70	M54543 $\quad 1 . \quad 11.75$	SAA5020 - [5. 80	STK5730.	${ }_{5} 5.25$	TA7342	$\underline{210}$	TOA1670A	92.60	TDA4420 - $\quad \mathrm{M} .45$	UPC339С	$\underline{50.70}$	2 2SD1453 $\quad 11.60$
AN6362	. 24.25	B4681	50.90	LA4160 - ¢1.25	M54544L $\quad 11.85$	SAA5030 ¢9.00	STK696?	£3.20	TA7343	$\underline{11.75}$	roalior	${ }^{23.00}$	TDA4422 - ¢3.95	UP04011	[1.75	2S01455/2S01730
AN6387	. 25.50	BA7001	¢1.90	LA4182 ¢2.10	M54548L $£ 4.50$	SAA5040A $\quad 55.00$	STK6972	56.00	TA7350	2.10	TDA1770A	£3.00	TOA4500 $\quad 83.80$	UPD4066	¢1.95	¢3. 10
AN6612	12.20	BA718	¢1.80	LA4183 \quad … $£ 2.75$	M58478P \quad E4.75	SAA5040B \quad c9.90	STK7216	${ }_{6} 6.10$	TA7358	15.50	TOA18704	12.60	TDA4501 \quad - 54.00	TRANSIS		$2501496 \quad 54.00$
AN6651	¢0. 60	BA728	\$1.10	LA4192 $£ 1.70$	M58655P56.50	SAA5041 - ¢9.50	STK7308	[5.75	TA7607	153.50	TDA1905	£1.40	TOA4503 [- 54.50	2N3773	¢1.90	$2 S 01497$... 2.60
AN6671K	55.50	BA7767S	โ5.00	LA4422 . $£ 1.30$	M58839 $\quad 188$	SAA5050 514.00	STK7309	57.00	TA7607AP	$\underline{2} .40$	IDA1908A	¢1.75	TOA4505 ¢3.95	2SA1095	$E 5.50$	2S01497-02
AN6677	. 55.25	В 176018	¢3.50	LA4440 . . . $¢ 2.70$	M708 $\quad 55.50$	SAA5231 [9.00	STK7348	¢5.00	TA7609P	12.70	TDA 9940	${ }^{1} 1.80$	TDA4510 E4.40	2SA1102	$\underline{51.90}$	$2501497.06 \quad$. 5.95
AN6884	12.75	HA11215A	¢350	LA4445 . . $\quad 2.50$	M709 84.75	SAB3013 ... 54.50	STK7356	26.50	TA7614	22.50	TDA1950	92.50	TDA4600 $\quad .22 .60$	2 SA1112	c0. 95	$2501650 \quad \begin{aligned} & \text { ¢3.50 }\end{aligned}$
AN6912.	. 2.00	HA11223	$\mathfrak{5 3} .75$	LA4460 - . ¢1.70	MA150-E .-.E. 20	SAB3037 ... $\quad 11.00$	STK7358	¢6.50	TA7628P	$\underline{2.40}$	TDA2002	E1.40	TDA4600-2 M2.60	2 SA1124	¢0.35	$2501877 \quad 93.30$
AN7111.	c1.50	HA11225	$\underline{2} .16$	LA4461........ $£ 1.80$	MB3106 81.00	SAF1032P . . .66.00	STK7728	[4.75	TA7629	54.00	TDA2003	${ }_{51} 130$	TDA4604 \quad2 10	2SA1220	$[1.10$	${ }^{250639} \quad £ 0.35$
AN7112.	. 23.00	H811226	53.75	LA4500 …... 27.70	MB3730 $\mathbb{Z} .75$	SAFt039P \quad E2.00	STR1096	$\underline{53.60}$	TA7629P	$\underline{.2 .75}$	IDA2004	£1.70	TOA4610 [4.50	2 SA1386	¢4.70	250667 . 11.00
AN7116	¢1.20	HA11235	93.10	LA4507 - ¢ $\quad .70$	MB3731 \quad 3. 25	SAS560 3.50	STR3125	c5. 50	TA7630P	$\underline{22.00}$	IDAzo05	$¢_{1.70}$	TDA5101 $\quad 2.00$	2SA564	50.40	$250725 \quad 53.70$
AN7143.	c1.65	HA1124A	¢1.75	LA4570 $\mathrm{E}^{2} .20$	MC13002P $\quad 55.00$	SAS570 £3.00	STR40090	58.00	TA7640	$\underline{2} .00$	TOA2005S	$\underline{2} .95$	T0A7250 [-55.50	254673	$\underline{50.20}$	2SD787E £0.30
AN7148	. 11.70	HA11414	12.50	LA5522 $\mathrm{E}^{2} .20$	MC1310 $\quad \begin{gathered}\text { ¢1. } \\ \text { 1 }\end{gathered}$	SAS580 $\mathrm{E}^{\text {. } 50}$	STR4211	${ }_{5} 5.95$	TA7658	92.00	TDA2006\%	${ }^{1} 1.95$	TDA7270 \quad [6.00	2SA942	c0.35	$250817 \quad$ ¢2.95
AN7158.	[24.00	HAT1701	¢3.10	LA5527 …-... £1.95	MC1330Р \quad ¢ 2.95	SAS590 _ . . . 50	STR440	55.00	TA7668	$\underline{2} .00$	YDA2020	§3.50	TDA7607AP \#8.40	2 2S985	£0.95	$250836 \quad$ …110
AN7160	£6.00	HA17713	¢8.90	LA6358 - $\quad 55.00$	MC140018CP 11.10	SL1430 \ldots.... $\mathbb{Z} .80$	STR441	¢5.00	TA7680	¢4.80	TDA2030	${ }^{1} 10$	TDA8180 E6.00	2581016	£1.50	$250837 \quad \begin{gathered}\text { c0.80 }\end{gathered}$
AN7169	. 23.50	HA11714	53.50	LA7016 .-..... 22.50	MC14093B	SL1431c2.80	STR451	E4.95	TA7681AP	$\underline{5} .75$	TDA2030H	¢2.00	TDAB190 [3.80	$2 S 8772$	10.40	$2 S 0885$ M.70
AN7171K	¢8.00	HA11715	$\underline{3} 20$	LA7096 - ¢ ¢ \quad. 00	MC14426P ... © 20	SL1432 - \quad ¢1.10	STR454	£4.85	TA7687	2.00	tDazo30V	¢1.75	TDA8341 \quad E3.00	258775	51.60	${ }^{250868} \quad 53.50$
AN7205	[1.95	HA11747A	$\{12.75$		MC14429P ${ }^{\text {c }}$ E2. 20	SL4710P 22.20	STR50020	¢7.90	TA7698A	. 56.85	IDA2040	$\underline{2} .00$	TOA9503 - $\quad 2.5$	258819	$¢_{1} .55$	${ }^{2 S D 869} \quad$ ¢3.00
AN7213	151.10	HA11749	27.00	LA7305 - ¢6.90	MC14497P $\quad 55.50$	SL480 $\quad E 3.30$	STR50103A	¢5.50	TA7698AP	¢7.50	TDA215	${ }^{2} 3.00$	TDA9513 $\quad 52.95$	$2 \mathrm{SB965}$	¢2.30	$250870 \quad 53.50$
AN7218.	¢1.20	HA11750	¢5. 10	LA7309 £3.75	MC145118CP E\%.00	SL490 $\quad . \quad 33.00$	STR5412	¢5.95	TA7705P	. 11.50	TDA2161	¢1.75	TEA1009 \quad c2.00	2SC1413A	. 2.50	2 20871 \quad ¢4.50
AN7220	51.60	HA12005	93.80	LA7507 - ¢4.00	MC145168CP 22.00	SL9018 \quad - 53.00	STR58041	¢6.75	TA7709	12.50	JDA2170	c3.00	TEA1044 . \quad E2.00	2SC1826	11.80	2SD895 . $\quad 12.00$
AN7222	$\underline{2} .10$	HA12017	$\underline{200}$	LA7520 \quad ¢3.25	MC1458 UPC1458	SL9178 . . . 22.50	STR6020	54.90	TA7738	2.50	TDA2190	510.00	TEA1039c2. 200	$2 \mathrm{SC1942}$	£2.10	2S0898, \quad E2.75
AN7223	87.60	HA12026	$\underline{2} .00$	LA7800 $\quad 51.50$	${ }_{51} 1.95$	SN76670N $\quad 1.25$	STR8050	[14.15	TA78L010P	51.75	tDA2270	$\underline{5} 20$	TEA2018 \quad E2.10	2SC1983	E1.30	2SD898B .-. 22.75
AN7224	\$1.40	HA2413	¢1.20	LA7801 E1.25	MC3359 - ¢1.10	SSA1075 [1.90	SVM993C	$¢ 2.00$	TA8101N	[4.25	TDA2320	c0.90	TEAZ018A [8.10	$2 \mathrm{SC2003}$. 20.25	2SD900] §4.00
AN7225	¢1.90	HA13001	51.80	LA7820 $\quad 51.90$	MCU2632 $\quad 11.90$	SSA1250 - 33.50	TA4 180	¢3.00	TA8102P	[4.25	IDA2510	£4.30	TEA5101 - ¢6.00	2SC2027	¢4.50	$8 C 307 \mathrm{~B} \quad 80.10$
AN7273	$\underline{12.00}$	HA13402	${ }_{88} 80$	LA7830 92.50	MDA2061 $\quad 17.00$	ST082 12.00	TA4193	¢5.00	TA8644	¢5.50	TDA2521/3	59.75	TLO11CP $\quad 22.00$	2SC2230	£0.50	BC 108 $\quad 50.10$
AN7310	c1. 10	HA13403	¢4.00	LA7913 \quad E7. 30	MDA2062 \quad [3.50	ST1195 $\quad 55.50$	TA4194	¢5.50	taA310A	$\underline{.2500}$	TDA25220..	510.75	Tt072CP \quad E. 2.00	2SC2238	¢0.75	BC1088 $\quad \begin{aligned} & \text { ¢0.10 }\end{aligned}$
AN7311	¢1.75	HA1350	99.00	LM1011N -E3.00	MEA2O50 \quad E4.60	STA 401 A ….. 53.75	TA4301	E4.50	TAA550	2.10	TOA2530	£4.75	TMM 2114 AP 55.75	2SC2331	¢1.00	BC115 $\quad 10.16$
AN7315	1.75	HA1363R	2.55	L.M1017 M19281	MEA2901 ¢3.00	STA441C \quad [3.00	tA4345	โ3.40	TBA120S	c0.50	IDA25300	[4.25	TMS1944AN2L	2SC2335	¢1.50	
AN7324	. 84.50	HA1374	55.00	¢2.30	MH27316 ¢3.00	STK0029 . \quad...54.30	TA4350	¢6.00	TBA530	51.00	TOA2532	E. 00	TMS1952E.50	2SC2531	${ }^{2} 0.26$	BC147A $\quad 90.07$
AN7410	$\underline{\square} 10$	HA1377	$\underline{200}$	1 M1035 - 55.75	ML2328 $\quad 84.50$	STK043 $\quad 10.00$	TA7120	¢1.25	TBA560	51.00	TDA25320	¢3.00	TMS1956 \quad E30	2SC2564	\$3.04	BC159 [00.09
AN7415	. 11.40	HA1388	54.00	LM1036N . $\quad .3 .70$	(B76018)	STK082 . \quad ¢12.00	IA7137	[1.25	T8A7500	¢4.20	TDA2540	9.75	TMS1965NL . \quad P2.00	25 C 2570	¢0.55	BC171 $\quad 80.09$
AN7420	E. 20	HA1392	33.00	LM1112CN - $\quad 3.30$	53.50	STK2029 - 18.50	TA7176	$\underline{\square} .50$	TBAB00	¢0.85	IDA2541	2.00	TMS3450 [2.10	2SC2577	$¢ 1.50$	8C172 [\quad [0.09
AN7818F	11.60	HA1394	¢4.00	LM13600 \quad. 55.00	ML2388 $\quad \begin{gathered}\text { ¢ }\end{gathered}$	STK2125 512.00	ta7176AP	¢2.40	tвa820.	20.45	TDA2543	$\underline{55.25}$	TMS3615 _ ¢1.75	2 SC2592	¢0.95	$8 \mathrm{BCT72C} \quad 50.07$
B1403	51.00	HA1397	¢5.40	LM1868N $\quad 51.50$	M293 . . . 4.00	STK2250 $\quad 59.20$	TA7193AP	£4.00	TBA920S	51.00	IDA2560	¢3.75	U4108 $\quad 160$	$25 C 2621$	¢1.25	$\begin{aligned} \text { BCi82L } & 50.09\end{aligned}$
BA1320	E1.50	HAT398	53.50	LM1894N …c5.75	ML923 \quad ¢4.50	STK3041 . . 55.70	IA7193P	£6.00	TCA640	${ }_{5}^{23} 75$	TDA25600	¢1.10				BC183
BA1332	11.00	HA 1406	M 00	LM317T - ¢1.00	ML.9230P $\mathrm{EA}^{4.50}$	STK40090 \quad [8.00	TA7205	¢1.75	TCA650.	53.95	IDA2576A	¢2.90				
BA3018	c1. 50	HAl457	$\underline{22} 10$	LM324 co. M	ML926 54.20 MM314APL 81.75	STK412111	tap7205AP	$\underline{1.25}$	TCAG608 TDA1005	$\mathbf{E}_{2}^{2} 50$	$\begin{aligned} & \text { TDA25711 } \\ & \text { TOA2578 } \end{aligned}$					
$\begin{aligned} & \text { BA318 } \\ & \text { BA328 } \end{aligned}$	${ }_{¢ 1.10}$	HA4219 H014081	+52.70		MM $314 A P L$ MM53108N $1 . .151 .25$ 1		TA7222 TA7223	${ }_{\text {¢2 }} 12.50$	YOA1005	$\underline{C 110}$	IDA2578					
BA3308.	$\underline{2} .10$	HD4539	50.70	LM384 … -...81.20	MM5387 - ¢2.90	STK4151 \quad [11.50	ta7227p	2.30	TDAP011	11.20	TDA2579	๕. 50				
BA333	51.40	KA2210	22.30	LM386N $\quad 50.80$	MM5402 $\quad \$ 1.50$	STK417111 \quad ¢9.00	tA7230P	51.65	TDA1013	12.75	tDAz	¢2.50				TALSS
BA3416L	. 2.75	17805	¢0.80	LM556CN8.... 22.50	MM5405N \quad [3. 50	STK430E6.c0	TA7232P	$¢ 1.50$	IDA1013A	$¢ 1.90$	TDA2582	$\underline{2} .55$				
6A343 8A3505F	$\begin{aligned} & 〔 1.20 \\ & \boxed{2} .75 \end{aligned}$	L7806	50.80	LM6402G-2003 ع10.00	$$		$\begin{aligned} & \text { TA } 1233 \mathrm{P} \\ & \text { IA } A 240 \end{aligned}$	$\begin{aligned} & £ 2.10 \\ & \sum 2.50 \end{aligned}$	$\begin{aligned} & \text { TDA1015 } \\ & \text { TDA1020 } \end{aligned}$	$\begin{array}{r} 51.20 \\ 5.50 \end{array}$	$\begin{aligned} & \text { TDA2590 } \\ & \text { TDA2591 } \end{aligned}$	$\frac{12.00}{12.70}$		NEXT		GE

SEPTEMBER SAVERS TUBES

* $14^{\prime \prime}$ and $16^{\prime \prime}$ portable tubes
from £39
* $20^{\prime \prime}$ high focus (51-590)
$\star 20^{\prime \prime}$ low focus (51-570)
* $20^{\prime \prime}$ Thorn TX9 (51-580)
* 'B' grade FST's

E
All prices + VAT and Carriage
£39
P.O.A.

EXPRESS T.V. SUPPLIES
THEMLLL MLL LANE, RUGELEY, STAFFS WS15 2.JW
TEL: 0889-577600
FAX: 0889-575600

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!

Designed specifically for Domestic Appliance Engineers who want to enter the fast growing microwave Industry. Packed full of useful information, presented in a simple yet informative style with comprehensive diagrams and illustrations. Fault finding procedures are included at the end of each section.	lliminmave OVEN SERVICING
The book contains easy to follow electronic control systems. SWIFTPARK LIMITED	ORDER YOUR COPY TODAY!

113 LONDON ROAD, HORNDEAN, WATERLOOVILLE, HANTS. POB OBJ

A.Z. ELECTRICS

Please add $£ 1.00$ per order for p\&p and then add 17.5% VAT.
18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP. TEL: 081-877 3492/877 3518 FAX: 081-877 3518

ALBA ABUSH

FOR MODELS:

HINARI CT18/TVA1
BUSH 2020/2020T/2114/2114T/2321/2321T
SALVAGED - TESTED AND WORKING PCBS - CABINETS, BACK COVERS, PCB AND CABINET FITTINGS, TRANSFORMERS, CRTS, REMOTES, STANDS ETC.
VARIOUS DAMAGED PCBS FOR SPARES/STRIPPING

FOR MODELS:

ALBA SAT 200/300
SALVAGED CHASSIS FOR SPARES/STRIPPING, TRANSFORMERS, MODULATORS, CABINET FITTINGS PLUS TVNIDEO/MIDI STANDS, HEADPHONES, MICROPHONES, STYLII, CARTRIDGES, VARIOUS SIZE GLASS AND PERSPEX DOORS AND LIDS

D) roadstar SEnTRA

EXCLUSIVE SERVICE \& SPARES

Bradford, West Yorkshire BD6 3DQ Telephone: 0274606859 Spares \& Service Dept: 0274690241 Telex: 557660 Fax: 0274602701

PROBE AND POCKET MULTIMETERS

Fully autoranging $3^{1 / 2}$ digit multimeters, the tiny probe-type DM71 and the calculator-size DM78 offer excep-
 tional performance at moderate prices. Both offer DC and AC voltage, resistance, diode and continuity test functions, the DM71 also incorporating a data hold feature. And both are covered by a one-year warranty.

Beckman Industrial Ltd. Astec Building, High Street, Wollaston, Stourbridge, W. Midlands DY8 4PG Tel: 0384-442394 Telex: 337482 Fax : 0384-440252

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA. AMSTRAD . BUSH . DECCA . DORIC . ETRON FERGUSON FIDELITY GEC. GRUNDIG GRANADA HITACHI . HINARI . INDESIT . ITT KIMARA. NIKKAI. MATSUI . MURPHY . OSAKI . NORDMENDE . LOEWE-OPTA. REDIFFUSION PYE . PHILIPS . SANYO . SAISHO . SHARP SONY. SOLOVOX SUSUMU . TANDBURG . TEIEFUNKEN THORN . TRIUMPH . HUANYU GOLDSTAR

LARGE SELECTION: OF VIDEO PARTS REMOTE CONTROLS: ICs TRANSISTORS CALLERS WELCOME AT SHOP

TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD . RICHMOND. SURREY. TW9 2EQ. Mon-Fri 9 am to 12.30 pm Approx. 1 mile trom Kew Bridge. Sat 10 am to 12 noon

TRADE ONLY

MICROWAVE OVEN PARTS

MAGNETRONS DIODES • TRANSFORMERS LAMPS • FUSES • MICROSWITCHES PHONE NOW FOR PRICE LIST A.W.I. MICROWAVE OVEN COMPONENTS Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Telephone: 0983296121 Fax: 0983296122

HOCKLEY DISCOUNT TELEVISIONS ${ }_{\text {(West Midlandss }}$ * HAVE MOVED TO NEW ADDRESS *

 140 HOCKLEY HILL HOCKLEY BIRMINGHAM B18 5AN

ONLY 500 YARDS FROM OLD BUILDING

TEL: 021-515 2003 FAX: 021-515 2004 CAR PARKING ON SITE SUPPLIERS OF TV's/VIDEO's AND ELECTRONIC ACCESSORIES AMAZING OPENING OFFERS $\approx \approx \approx \approx \approx \approx \approx \approx \approx \approx \approx$

We offer you top quality, for fabulous buys at H.D.T. Ring 021-515 2003 FOA FRIEHDLY SERVICE - TRY US - VOU'LL LIKE US "ASK FOR JAZZ"
(offers apply while stocks last) All prices are subject to VAT

Huge selections. Complete range. All makes and models available.
\star New Stocks Every Day \star VHS Video from £30 Television from $£ 3$
Washers, Fridges, Vax, Microwaves Now Available
Working Ex-Equipment Panels

IF	Converger	Decoder	Line Scan	Power	Frame
T20//22X	5	14	18	17	
T26 X	5	16	20	17	X
Philips G11 14.505	5	12	20	20	11.50

BRADFORD	MANCHESTER
Springmill St	Unit 3
Manchester Rd, BD5 7RL	North Ind Est., Fails
Ring Tony (0274) 308186	Ring David (061) 6834612

Unit 3, Mersey Rd. Ring David (061) 6834612

[^2]
VISIONS • LONDON

Suppliers of THORN ex-rental TVs and Videos Working or Off-the-pile

ELectranice ELECTADNIC
Main Distributor in London

APPROVED THORN TELEPRIGE DISTRIBUTOR
$9-5.30$ MON to FRI

- -1 SATURDAY

Phone now!! 081-807 7476/7579 EXPORT ENQUIRIES: Fax 081-345 6597

UNBEATABLE PRICE OFFERS ON VIDEO \& TV SPARES

REMOTE CONTROLS • TRANSFORMERS • YIDEO HEADS SERVICE KITS • SERVICE AIDS • REFURB MATERIALS

THE NATION＇S BIGEEST SUPPLIER OF THE BEST EX－RENTAL T．V．＇S \＆ VIDEO RECORDERS

LIMITED

FARNBOROUCH WAREHOUSE

COLIN GORDON 0252540814
7／8 KINGSGROVE INDUSTRIAL EST． INVINCIBLE ROAD FARNBOROUGH HANTS．GU14 7QS

SUNDERLAND

 WAREHOUSE
最

BRIAN CADE
0915235554

9A／B

94 CARRMERE ROAD LEECHMERE INDUSTRIAL EST． SUNDERLAND SR2 9TE

AINTREE WAREHOUSE

曷
 IAN McCLELLAND 0515301285

UNIT 2，RACECOURSE IND．EST． ORMSKIRK ROAD
AINTREE
LIVERPOOL L9 5AL

LEEDS
 WAREHOUSE

颢
 LES CORKE
 0532422774

UNIT 2，COPLEY HILL
TRADING ESTATE WHITEHALL ROAD
LEEDS LS12 1HS

AVONMOUTH WAREHOUSE
最 KARLA REALE

5 PORTVIEW ROAD AVONMOUTH
BRISTOL BS11 7LQ

GLASGOW

 WAREHOUSE
Gre IAN DORAN

0418832610

9，COLQUHOUN

HILLINGTON INDUSTRIAL EST． GLASGOW G52

NOTTINGHAM WAREHOUSE
E¢ JOHN JEYS
（3） 0602491385
REAR ENTRANCE，UNIT 7 ORCHARD BUSINESS PARK SANDIACRE
UNIT 10，PARKWOOD IND．EST．
HERONDEN ROAD
MAIDSTONE
KENT ME1 5YR

FIVE BRANCHES NATIONWIDE

GRADE
BTOCK
STO

BIRMINGHAM (Head Office) 208 BROMFORD LANE BIRMINGHAM
TEL: 021-327 3273
FAX: 021-322 2011

EXPORT ENQUIRIES WELCOME

CARDIFF
Unit J7 Colchester Ind Est
Colchester Avenue Cardiff CF3
Tel: 0222471485

THE VERY BEST IN EX-RENTAL TV'S AND VIDEO'S

APPROVED BY TELEPRICE AND CLYDESDALE

DON'T DELAY - CALL YOUR LOCAL BRANCH TODAY OR RING JOHN HENDERSON - 021-327 3273

REPO
 TV AND VIDEO TRADE SUPPLIES

DAISY WORKS, 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER MI3 OLF

> GOOD CHEAP STOCK - OFF THE VAN IF THE ABOVE INTERESTS YOU PLEASE MAKE CONTACT - WE have a new contract and require to establish TRADING RELATIONS WITH A FEW REGULAR DEALERS BEFORE THE WINTER TRADING SEASON.

PANASONIC Etc TV E VIDEO
 WE CONTINUE TO SUPPLY OUR HIGH QULALITY WORKING STOCK SUITABLE FOR SALE OR RENTAL - GOOD PROFIT, LESS HEADACHES.

SPEAK TO TOM POOLE OR BRIAN RICKETTS 061-274 3409/061-273 2854 Fax: 061-273 4486

W. TREE $\begin{gathered}\star \text { TRADE } \star \\ \text { wAREHOUSE }\end{gathered}$		REGUNNED TUBES WITH 2 YEAR WARRANTY INDIVIDUALLY PROCESSED
THIS MONTH'S SPECIAL OFFERS VIDEO'S NEW B' GRADE Twin Speed with Remote £155 + VAT Working and Boxed MICROWAVE OVENS New, Working and Boxed from $£ 55+$ VAT	AUDIO STACK SYSTEMS AMSTRAD, HITACHI, SONY, PIONEER, ETC. from $£ 20$	BUY, BUY, BUY MAKE EEES
	The following stock is all boxed and ' B ' Gra FSTs \& VIDEOS (Some Nicam) (makes Include Samsung \& Ferguson) Example: New Video Player $£ 100+$ VAT	22" National Panasonic Remote Control Colour TVs $£ 55$ + VAT (including Remote) Some PORTABLE TX9s
	NIT ONE, SUNSHINEMILLS, ORTLEY ROAD, LEEDS 12. Telephone: 0532638804 Fax: 0532310275	$\begin{aligned} & \begin{array}{l} \text { still availabie } \\ \text { mint Tubes } \\ \text { only } £ 55+\text { VAT } \end{array} \end{aligned}$
NEW STOCK ALWAYS ARRIVING - TELEPHONE FOR DETALLS		

NEW (B) GRADED FERHISON STOOK USTARRNED
i.e. 51 cm FAST TEXT WITH NICAM BOX FROM £240.00
FERGUSON VIDEOS BOXED, i.e. FV30B FROM E150.00
(Too many to list)

+ BRAND NEW 21 F.S.T TVs BOXED FROM $\Sigma 155.00$ CROWN 14"PORTABLES
BRAND NEW
Q Full remote control Q Digital Display on Screen Q UHFNHF Tuner - 32 Function Remote -
only 8115.00 SAMSUNG 14" PORTABLES
Full remote control Digital Display on Screen from : 130
EX-RENTAL TVS

9.0	$\underline{12}$	WORKING STOCK
9.6	¢16	
TX26"Full Remote	885	Brand New Handsets for
TX9 Text 20",	${ }^{2} 50$	TVs \& Videos
TX10 Text 22"	${ }_{6} 85$	
TX10 Text $26{ }^{\circ}$	850	from only $£ 7.50$

NON-THORN TVS (OFF PILE) FROM $\$ 3.00$

3V29, 3V30...£55 QUANTITY...E50 8941 Remote... 8758942 Remote L.P.... $£ 85$ NON-THORN VCRs FROM $£ 35.00$
 FRESH STOCK ARRIUNGG DALIY - RING FOR UPDATE ON STOCK
 * SPECIAL OFFER
 STEREO TEXT...ع55.00
 TX91X10 BASICS...From $£ 25.00$
 NEW PHILEX UNIVERSAL REMOTE CONTROL In quantities of $10 £ 19.95$
 Now you can use just ONE remote for all your Infra-Red Equipment.
 * ALL PRICES ARE SUBJECT TO VAT * (OFFERS APPLY WHILE STOCKS LAST) * OPEN MON.FRI. 9 a.m. -5.30 p.m. SAT. 9 a.m. -1.00 p.m.
 WHY TRAVEL THE WHOLE COUNTRY?
 AHG SID NOW ON DIRECT LIWE TO TV WAREHOUSE
 LEEDS (0532) 444200 FAX:(0532) 425777
 EXPORT ENQUIRIES WELCOME
 SUPERUSIOB

UNIT 16, TOWER WORKS, 2 GLOBE ROAD, LEEDS LS11 5QG OfF Water lane, Near hilton hotel. Easy acesss from m a mbe (2 Mins)

OPEN NOW	NEW CONCEPT	AMAZING OPENING OFFERS		OPENNOW
TX 9-10			MK III \quad E12	
			MKIV E^{220}	ORTABLE
£18	£45	$£ 55$	GII \quad E15	$\Sigma 40$
WORKING	WORKING	WORKING	Starline £18	WORKING

TEL: 021-505 2619
NATIONAL TV DISTRIBUTORS
NEW WHOLESALERS OPEN NOW IN WEST MIDLANDS

19 LOWER HIGH STREET, WEDNESBURY WS10 7JX

DON'T MISS OUR OPENING OFFERS - WE CAN EASILY BE FOUND

	$\begin{aligned} & \text { 3V35 } \\ & \text { £65 } \end{aligned}$ WORKING	ANY TOP LOADERS $£ 45$ WORKING WORKING	ANY FRONT LOADERS £65 WORKING	$\begin{aligned} & \text { MIDI SYSTEM } \\ & \text { R/O £40 } \\ & \text { Basic £30 } \end{aligned}$

ALL PRICES ARE SUBJECT TO 17½\% V.A.T. AND AVAILABILITY OF STOCK

现 C

2 Holyoake Street, Wellington, Somerset
Tel: 0823667525 Fax: 0823660277 MICROWAVE OVEN COMPONENTS Microwave Spares Distributors (Magnetrons) (Transformers) (Capacitors) Distributors for Bussman-Cooper Electronic Fuses and the
ECL FUSE SELECTION BOX
Ask for our Catalogue NOW!
 IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING LUKE ON
Tel: 0945476319
FOR YOUR BEST DEAL YET!

SEMPLE SERVICE

QUALITY

TV WHOLESALER'S

5

 Suppliers of Surplus TVs to the Trade
 CENTREVISION HOUSE SLOPER ROAD LECKWITH CARDIFF CF1 8AB

 Telephone 0222344754
SUMMER BARGAINS

FST SETS IN STOCK FROM $£ 60.00$ VIDEO LESS THAN 3 YEARS OLD FROM $£ 85.00$

ALL THE BEST TVs AND VIDEOS ARE GOING THERE - WHY DON'T YOU?

WORKING TELEVISION	
TX9-10 Basic.	7.00
TX9-10 RC.	230.00
T10 10 Text	£48.00
KT3/30 Text.	£45.00
Philips G11 Text.	£35.00
Philips G11 Basic	£18.00
GEC Starine	¢25.00
Hitachi Text Doric MK4 Text	£57.00 £49.00
	£30.00
Doric MK3 22".	£17.00
iT Text	£48.00
iT Basic	£26.00
ITT P/C	£33.00

WORKING VIDEO

Hitachi 9000	£48.00
Hitachi 8000	£48.00
Panasonic NV333	£48.00
Panasonic NV7200	£48.00
Panasonic NV2000	£45.00
Thorn 3V29	£50.00
Thorn 3V30	$£ 56.00$
Thorn 3V31	£65.00
Thorn 3V32 LP/SP	£65.00
Thorn 3V35	$\underline{875.00}$
Thorn 3V40.	$\Sigma 56.00$
Rediffusion 9300	$£ 60.00$
Sharp 8300	£45.00
Sharp 9300	$£ 65.00$

10\% OFF 10 TV's
15\% OFF 50 TV's OR MORE ON SELECTED LINES

EXPORT ENQUIRIES WELCOME - ALL PRICES + VAT

TV WHOLESALER'S

OVER 900 VIDEOSTOCLEAR HITACHI VT8000 and VT8500's
 Top Loaders VHS Models MANY REMOTE MODELS
 Complete Untested £20 + VAT Working Units £40 + VAT BENTRONICS LTD.
 500 Thornton Road, Thornton, Bradford, West Yorks.
 Tel: 0274832195
 Fax: 0274830339
 Callers by appointment only

CREWE

WHOLESALE TV LTD.
OFFER OF TWO OPTIONS OPTION 1
A GOOD RANGE OF MIXED TVS AND VIDEOS UNTESTED BY OURSELVES
TELEPHONE FOR DELIVERY DAYS AND BUY STRAGGHT OFF THE WAGON

TEL: 025464489
SCHOOL LANE GUIDE, LANCS

OPTION 2

A GOOd RANGE OF GENuINE MIXED WORKING TVS AND VIDEOS AT COMPETATIVE PRICES ALSO A RANGE OF TESTED NON WORKING TVS AND VIDEOS
PLUS A GOOD SELECTION OF untested TVs \& VIDEOS RING FOR CuRRENT STOCK \& PRICES TEL: 0270582924 WILLIAM STREET CREWE, CHESHIRE

INDEX TO ADVERTISERS

ADM Elec Supplies 843	
Aerial Techniques	79
Allparts	
A.M. Components	
Antex Electronics	
ASJ Electrotechnik	
A.W.I. Microwave Oven Components	
A-Z Electrics	8

Barwick R.E. .. 842-846
Beckman Industrial .. 830
Bentronics Ltd...
Besco
Billington....
Campion Wholesale Ltd.
Central TV ...
Chaltec..
Chromavac Ltd.
Chromavision.
Colebourne Electronics
Crewe Wholesale TV Ltd..

Dalbani (UK) Ltd
Donberg Electronics
Downlink Satellite.
East Cornwall Components.
East London Components...
Economic Devices
E.C.S.

Euras International Ltd.
Euro-Sat
Express Components Ltd
Express TV Supplies.
G.G.L. Components..

Gogglebox ... 880
Grandata Ltd..774-778
J.W. Hardy ... 844

Henry s Audio Electronics 825
Hoopwell Ltd. ... 824
HRS ... 887
A.G. Humphreys

Hussain Central TV.
ICS
845
825
J.J. Components ... 811

Kesh Electric Ltd... 844
Manor Supplies
Marwetech.
Mauritron Tech inal................................... 844
Mauritron Technical Seivices ...
Muter.........
National TV Distributors 839
New Century Electronics Ltd.............................. 843
N.G.T. Electronics Ltd ... 839
P.C. TV Services

Powell T...
P.V. Tubes
Radio Compon
Renvue CRTonents.. 847
Repo
Semple Service
839
Soniz Components848, Cover III, Cover IV
Sonic TV Distributors
Stewart of Reading
Supervision
Swiftpark Components \quad..... 781,838
Swift Television Publications797,846
TBR Software
Technical Information Services 845
Teleprice Ltd.. 833
Tetris Video Transcriptions 845
Thrifty Spares (Wales)...................................... 843
Tidman Mail Order Ltd..................................... 830
Tree, W., Trade TV .. 836
Vision Land
Vista Electronics.
Vis
Weka
West Midlands TV \& Video 842
Willow Vale Electronics Ltd
Wizard Distributors
Cover II
843

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is f 10.35 per single column centimetre (minimum 3 cm). Classified advertisements 70 p per word (minimum f12), box number $£ 4.00$ extra. All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing Group. Advertisements, together with remittance, should be sent to the Television Classified Room L332, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

LINEAGE

TIIE VINTAGE WIRELESS AND TV BOOK LIST ING. Published regularly, containing hundreds of out of print old and collectathe wireless and TV books. magacinesete. Send + first class stamps for list or $[25$ for nat four lists. WANTED pre 1475 wireless or TV books. magazincs or any related material. Dept T. Chevel Borks. 157 Dickson Rovid. Blachpooi. FYI 2EU. Tel 7518.5

METERS RECONDITIONLD. IUp/5tp available fiom stork. Contact The Meter Co. (Porole) Lid. Tel. 1 (20 6i.349:

ARCADE MINI VIDEO (iAME, owied by engineer good namey earner. 4225 Spares. game hoards for sale from ENO D. Nixen. 55 Britratic St. Gitenoch PAlo SNR. Tel. (1475) $275+1$
RETAILER TRADF-INS. 30 Colour TVS. some Telctext Most worhing but inced lubes. E200. 15 VCR's. most Betamax. $£ 100$. BK 470 fauls. 2210 Plome: 024 in 7 ins

METERS RECONDITIONED. \& slot meters fior TV tuntal 55.95 .50 p stot $£ 2.95$. Till. Audiotech 177003 -245.

Avo multimeter Model is $£+0$, sth woll Megers £30. Prices phis VAT. Send S A.E. tor lists of surplus insifuments \& scopes etc. A. C. Electronics. 17 Apleton Grove. Leede LS 9 リEN Tel. 6532 49(0)48.

HEWLETT-PACKARI) MODEL 1222A 15 MI Iz dual channel uscillescope. As new condition includes from wor, prohes a manual fizo ono. Phone: 07.24 891252.
broadcasi receiver equipmitit, vectiscope Wave from monitor. TBC's min price f20, max tivo Sold as seen. Tel. (W23-896293.

STANDARIDS CONVERSIONS, VIIS, NISC SECAM - TAR N and M. 2 VHS. PAL 1 , Umatic LB NTSC - PAL to VHS PAL I. $£ 18.50$ PH inc. Tel (N23$8 \% 293$.

WANTED EX RENTAL Colour T.V.s. cash on collection , quick service $17+2-312 \times 32$.

AMSTRAD SATELIITE OWNERS. Convert to tuneable atudio, more stations, frice leaflets. E.M.O. Ramshottom. Lancishire BLO9AG. Tel. (1706-823036.
OCIIRE: MILI TECHNICAL SERVICES. Grundig TV spates for most models to 1985 . Fist. friendly. helpful, sensible prices. Gt. Lype Farm, Charlion. Nr Marlincshury. Wills. SNIG 9DR TCl. 1660×2328.
service manual.s. approx I.(Mn) CTV VCR Camera CD. most leading brands. 2250 the low Tel (0) $1-575(4,34$.

WANTEI) REGULAR supplics of large \& small quanlitics celcvisions \& VHS videos. Best prices paid. Tel. (0934) (hi742 (day time). $516+8, i$ (evening).
busines for saif. elst devon. TV video
 owver emigrating El6. $8(4)$ wiwo Tel $14(4 \times 15265$ anytime

REPAIRS

SPARES \& COMPONENTS

LOEWE OPTA TV REPAIRS

FAST EFFICIENT SERVICE
Factory Trained Engineers Competitive Rates MARWETECH, Unit A7B, Aladdin Workspace, 426 Longdrive, Greenford, Middlesex UB6 8UH. Tel: 081-575 0434 Fax: 081-575 0468

SPARES

A massive purchase of spares (ex Seniscope) enables us to offer very competitive prices on all T.V.. Video, C.D. and Audio Spares.
All the common transistors and I.C.s available ex stock We also have remotes, heads, test equipment etc TRY US FOR THAT ELUSIVE PART
STOCKS AND SPARES
Electronic Component Distributors, Unit 2,
Victoria Mill Estate, Manchester Road, Droylsden, Manchester M35 6EQ TEL: 061-370 7959 FAX: 061-371 8398
ACCESS MAIL ORDER
VISA P.S. HAVE YOU JOINED "THE LIBRARY" YET - SEE OUR OTHER AD!

> West Wales Wholesale IV

> Working TVs from $£ 18$. Videos from $£ 60$. Discount for quantity.
> 8 CILLEFWRIND. EST. JOHNSTOWN CARMARTHEN (0267) 222047

TiELEUTSION LLASSIFIED LINERTE advertisements can be submitted on this coupon with

 a cheque made payable to Reed Business Publishing Group. Television Classified Room L332, Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS. The charge per word is 70 p plus 171/2\% (minimum £12.00 + VAT.)

[LAS5IFIEDCLAS5IFIED CLA55IFIED CLASSIFIED CLR5SIFIED

SPARES \& COMPONENTS

THRIFTY SPARES (WALES) C/O CENTREVISION, SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB	ARE YOU PAYING TOO MUCH FOR YOUR ACCESSORIES? TRY OUR PRICES:- SCART/SCART (audio video wired\}
INCREASE YOUR PROFITS WITH USED SPARES	SCARTISCART (lul wred).
MANY MAKES OF USED VIDEO AND TV PANELS- GUARANTEED WOAKING HUNDREDS NOT LISTED-	
PHONE OUR HOTUNE 02203410	SCARTIGP PNDN
VIDEOTHORN, HITACH, TOSHIBA, ITT, SHARP, AMSTRAD, PANASONIC ETC.	
USED WORKING VIDEO SPARES From WORking doric mk3, mk4. Mk4a bOards	SCARI $28 N \mathrm{C}+5 \mathrm{PINDIN}$
MIXED BOOSTER $\quad \mathbf{f 1 2 . 8 0}$ MK3A LINE SCAN ISTATE TUBE) -	
	STEREO 3 35mm Jack plug to $2 \sim 6.35 \mathrm{~mm}$ Sockel $\quad 12 \mathrm{~mm}$
MK4 POWER PANEL 90 OR 110 - 115.50	
BOTTOM BOARD	(erser
MECHCOM15.50 MK4 REMOTEBOARD	AIL ABOVE ARE BAGGED CAAOED FOR DISPLAY RACK ${ }^{\text {5m }}$
DRUM ASS12.80 MK4 TEXT BOARDS.	PHONO:PHONO adaplor 50.386
	$\xrightarrow{\text { BNC PHONO adatior }}$
POWER PANEL15.50 MK4CRT TUBECALLERS ONLY .	
TUNING BOARD.................... $\mathbf{1 8 . 0 0}$ MK4A TEXTHANDSET	
All Above prices vat inc. many makes of tV used - Spares also in Stock	prresex V.AT F For full is sendidarge s.a e
OPENING HOURS 9am-1pm-2pm-5pm	LEAD PLUS
POSTAGE \& PACKING E2.50. ORDERS OVER f 50 P\&P FREE	9 FISHPOND LANE, HOLBEACH, LINCS. (0406 25225)
DON'T DELAY PHONE 0222344218 TODAY 24 HOUR ANSWER PHONE	9FSHPONOLANE, HOLBEACH,LNCS.(04062522)

ALLPARTS DISTRIBUTORS

SATELLITE SPARES

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuncrs - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 1827873311.
Fax 0827874835

ARE YOU PAYIMG TOO MUCH FOR YOUR ACCESSORIES? try our Prices:-
SCART/SCART (audiondeo wred)
SCARTISCART (lull wred).
SCART/GPINDIN
SCART/GPIN DIN
SCART/ 6 PHONO (video int in reverse swith
SCART 2 BNC +5 PINDIN

STEREO 635 mm Jack plug to $2 \times 6.35 \mathrm{~mm}$ socke
STEREO 635 mm Headohone exten lead
all
PHONO PHONO adaptor
BNC PHONO adaptor
BACK 10 BACK coax coupler
SCART PLUG (fitled solder terminals)

LEAD PLUS
FISHPOND LANE, HOLBEACH, LINCS. (0406 25225)

LOST COST REPLACEMENT L.O.P.T. for Fidelity 3000 chassis $\mathbf{\Sigma 8 . 5 0}$ each + £1 P\&P + VAT A.G.S. ELECTRONICS Unit 2, Haxter Close, Belliver Ind Est, Plymouth, PL6 7DD. Tel: 0752767738

RENVUE CRT LTD.

All Types of Tubes, including Sony, Monitors, V.D.U., Polishing, FST
A48EAC..................55 + VAT
A. 51 EAL 55 + VAT

A66 EAK ……......... 55 + VAT 27" SONY …............ $\mathfrak{f 6} 5$ + VAT

25a MONTROSE AVENUE HILLINGTON GLASGOW. G52 4LA 041-883/8272
for scopes. radar, protessiona - regret no domestic television types.
E29.50 D13.611GH \quad E59.00 F16 101GM \quad £75.00 M31 18200
1074 .
30780
8931 (W.H)
CME 822 W
CMM 822 W
CME 1523 W
CRE 1400
C9. 110 GH
D10.220GH
D10 230GH

TUBES

CATMHODE RAY TUBES							
For scopes. radar, protessional - regret no domestic television types.							
ICP1	E29.50	D13.611GH	¢5900	F16 101GM	¢75 00	M31 182GV	¢45.00
$12 \mathrm{CP4}$	¢35.00	D13 603G H	¢39.00	21 130GR	¢75.00	M31 184W	¢55.00
1074H	£45.00	014200 GH	¢75.00	F31 12LD	¢75 00	M31 190GR	£45.00
30780	[95.00	D16 1006 197	£65.00	LF708	¢75.00	M31.191W	¢58.00
8931 (W.H)	P0A	DG7-5	£45.00	H7 120W	£19.50	M31 325GH	£35.00
CME 822W	¢7.00	DG7-6	¢45.00	H14 100GH	£35.00	M38. 100 W	¢59.00
CME 1523W	$\underline{59.50}$	DG7-32	¢55.00	M17 151GVR	£175.00	M40 120W	¢59.00
CRE 1400	$\{29.50$	DG7-36	¢555.00	M21 11W	. 555.00	MV6-5 (MM1)	¢.30.00
D9. 110 GH	¢45.00	DH3-91	. 55000	M23.112GV	[45.00	S65FP31	¢45.00
D10.220GH	¢45.00	£723 (EEV)	POA	M24.121GH	¢55.00	T9750	¢75.00
D10 230GH	¢45.00	ECR3-5	£39.50	M24.122WA	¢55.00	VL342945	POA
Phone or fax for any type not listed - 5000 types in stock.							
IMPORT/EXPORT/AGENCIES, VALVE/CRT DEALERS ETC. PLEASE FAX FOR COPY OF WHOLESALE CATALOGUE.							
Also 1.000 .000 valves in stack for television. audio etc. Minimum order $£ 50.00$ + VAT. PLEASE FAX FOR QUOTES.							
BLLLTNGTONEXPORT							
F2 Oakendene Industrial Estate, Near Horsham, West Sussex RU13 8AZ							
UK callers by appointment onty. 9am to 5pm. Monday to Friday							
TELEPHONE: 0403865105					FAX: 0403865106		

D.I.Y. SCRATCH REMOVAL + TUBE POLISHING KIT	
Hirst class resulis can be oblated every time	
and good but scratched tubes which may be	
PC TV SERVICES	
ORCHARD CLOSE Tel. 0920871474	
Slanstead Abbotis, Heris S612 8	

[LRS5|FIED CLR5SIFIED CLAS5IFIED CLRSSIFIED CLAS5IFIED

NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:
£7.50 for Television Faults $£ 7.50$ for Video Faults or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY.

Please add £1.50 per order for P\&P

SERVICE MANUALS

THOUSANDS OF DIFFERENT MODEIS HELD INSTOCK PRICES. VCR from 10.000 , CTV from 5.50. MTV from 3.50 AUDIO, SATELLITE. MICROWAVE ALSO AVAILABLE WRITE FOR EXACT QUOTE TO
D-TEC, PO BOX 1171, FERNDOWN, DORSET, BH22 9YG. 'phone 0202870656.

SATELLITE TV RECEPTION
DRAKE Receiver/Positioners from £299 RACAL Magnetic Polarisers from $£ 29$ 60 cm to 3 m Antennas, polar mounts 60 cm to 3 m Antennas, polar mounts
$11 / 124 \mathrm{Ghz}$ LNBS - teeds, accessories SAE for Leaflets
KESH ELECTRICS LTD
Main Street, Kesh, Co Fermanagh BT93 1TF Tel. 0365631449 Fax. 39250 Tlx 747412

FOR SALE

MICRO-LAB

Save TIME and MONEY by speeding up fault diagnosis.
Our MICRO-LAB instruments will help you find faults faster.
The improvements can be dramatic. We know! We use them!
Write or phone for a free brochure. COLEBOURN ELECTRONICS Dept TV, 20 Folly Lane, Telephone St Albans, AL3 5JT 072744785 MISC

VIDEO TRANSCRIPTION AND STANDARDS CONVERSION SERVICE
TO OR FROM VHS, BETA, U-MATIC, ETC Tetris offers highly competitive terms for copying any video format - VHS, Beta - or any other type - converting to or from UK Continental, Middle East, Far East, American or any other standards. ALL STANDARDS AND TAPE TYPES COPIED We offer a rapid turn-round service. TETRIS VIDED TRANSCRIPTIONS 23 Fairmile, Hentey-on-Thames, Oxon RG9 2 Tel. 0491-574548

Fax. 0491.576270

OSERVICE MANUALS 푸

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, VIDEO \& CD FAULT SYMPTOMS AS PUBLISHED IN TELEVISION FROM 1981-1990 INCLUSIVE FAST FIX TV E20.00. FAST FIX VIDEO $£ 20.00$

Equipment from the 1930's to the present and beyond Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders.

MAURITRON TECHNICAL SERVICES (TV), 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY. Tel: (0844) 51694. Fax: (0844) 52554

GERMAN SERVICE SHEET SPECIALISTS

Our conncetions are world-wide. We furmish any kind of German. European and Japanese servici sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast
Co. Donegal, Republic of Ireland.
Phone: 07548275

Ever wondered wha happened to Mclomatds TV \& Radio Yearbook?
Now' a superior yearbook is avalable! MORE DITA, MORE PAGIES LARGER CIRCUITS (12) \& NEW MODELS

TV-AUDIO-RADIO Complete Service \& Repair Data Volume 2

CTV
Our CTV section features the complete FERGUSON range TX-85/86/89/9098/99/100 with EVERY modification \& amendment known, PLUS all versions of the ICC5 chassis used in FERGUSON, NORDMENDE \& TELEFUNKEN. PLUS PHILIPS 2A \& 3 A and SHARP chassis.

SATELLITE

We have pages of general data as well as full coverage of the AMSTRAD/FIDELITY SRX $100 / 200$. SRD-400 and the FERGUSON SRX-1/1S, SRE-1. SRD-2. SRV- 1 and ALL OF PACE

ICK

For the first time anywhere we have compiled general repar/servicing data for VHS camera recorders and VHS-C camcorders, featuring full data for the PHILIPS VKR-6800. AMSTRAD VMC-100 and FERGUSON FC-06.

PLUS - Special feature on the Alari ST-520/1040 all versions
Vol.2a- This book is packed with almost 150 large pages giving all required data plus circuit and operational descriptons together with full FAULT-FINDING DATA including all the known STOCK FAULTS as well as the standard and possible faults with their cures.
Vol. 2 h - This is a HUGE binder packed with every CIRCUIT, LAY-OUT \& WAVEFORM for every modification ever published. All pages are A2 or A3 in size! Diagrams can be up to 24 $\times 16.5$ in size, which is the largest diagrams ever produced as standard in ANY yearbook VOLLME 24 on its own is $£ 16.95 \mathrm{VOHLWE} 2 B$ on its own is $\mathbf{t} 36.95$ VOLUML 2 (COMILI:TE) is only 849.95
VOIUME I is only $£ 39.50$ when vou buy VOUUME 2

Trancid

VISA

INFOTECH

76 CHLTRCII STRELET, I ARKHAIL, I ANARKSHIRI. MIX IIIE Tel. (069 O) 884585 Mon-Fri 8.30 am - 5.01 pm Tel. (0698) 883.3.4 Outwith business hours

Send a targe SAE: for vour FREE curalogue of our other publications

TV \& VIDEO

TRADE REFERENCE MANUALS

UNIQUE REFERENCE DATA FOR THE TV AND VIDEO SERVICING TRADE

- TELEVISION CHASSIS GUIDE

Listing thousands of Models (Colour \& Mono) and their Chassis Designations. Enables you to identify any chassis for any TV from the model number.

- VIDEO RECORDER EQUIVALENTS

Lists all known models and their alternatives. Fully cross referenced for fast and easy use.

- TRADE ADDRESSES

Hundreds listed including TV, Video, Test and Computers. Includes all the obscure and hard to find suppliers of the unusual brand names.
These 3 books contain the most comprehensive reference data available anywhere for the TV and Video Trade.

ONL. Y £5 EACH PLUS £2 POST/PACKING PER ORDER Phone your order with Access or Visa for immediate dispatch.

Hundreds of other Repair and Data Guides available from our Catalogue available FREE upon receipt of a stamped envelope

MAURITRON TECHNICAL SERVICES

8 CHERRY TREE ROAD CHINNOR, OXFORDSHIRE OX9 4QY

Service mailuals avaluthle - See our other ndver elvewhere in the muguzine.

TRAINING

BASIC ELECTRONICS TRAINING

Are you an employer seeking to provide your newest staff member(s) with a firs class professionally structured and administered distance learning package, to the standards of the City and Guilds of London Institute 224 Electronics Servicing Course? Yes! Then write or 'phone now:
K. Sparrow etc... 11 Claydon Green Whitchurch BRISTOL BS14 ONG Telephone: Bristol (0272) 835669 for a PART-PACK brochure.

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML 9 IHE
Tel. (0698) 884585 Mon-Fri 8.30am-5.00pm or (0698) 883334 Outwith business hours
FAX facility available all day on both lines
Write now with an SAE for your FREE QUOTE FREE VOUCHERS \& FREE CATALOGUE
OVER 200 fitles available, from CTV's to Satellites

CTV \& VIIEO
PRACTICAL TV REPAIRS 2nd Ed by TUNBRIDGE COLOUR TV SERVICING by G. KING TV \& VIDEO ENGINEERS POCKET BOOK NEWNES GUIDE TO TV \& VIDEO TECHNOLOGY VCR SERVICING 3rd ed by BEECHING

DOMESTIC, SATELLITE, COMPUTER \& TEST EQUIPMENT

MICROWAVE SERVICING by COOMBES REFRIGERATION POCKET BOOK SERVICING PERSONAL COMPUTERS by TOOLEY £9.95 SECURITY SYS' \& INTRUDER ALARMS £14.95 EUROPEAN SCRAMBLING SYSTEMS $£ 25.00$ OSCILLOSCOPES HOW TO USE WORK
$£ 5.00$ SPECTRUM REPAIR GUIDE by TUNBRIDGE

AUDIO

£16.95 PRACTICAL RADIO by TUNBRIDGE
£16.95 SERVICING AUDIO \& HI-FI EQUIP' by N. BEER
£12.95 HI-FI SERVICING by COOMBES

£12.95

$£ 12.95$ $£ 25.00$ $£ 9.95$

Remember, not only do we have EVERY service sheet ever produced, but we also have THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS
\& WE ARE SOLE SUPPLIERS OF VARIOUS FAULT-FINDING GUIDES, REPAIR MANUALS \& TECHNICAL MANUALS
DATA REFERENCE MANUAL "...essential for the serious electrician" FREE updating and a 10% discount voucher only £5.95. Incorporates Unique Model Identification and Chassis Data

INTEGRATED SYSTEMS FROM TIS
Enough to start ap your own business \& can save cxisting businesses $£ 1000$'s on circuits \& manuals ALI II CTV BINDERS of CIRCUITS phas OVER 2" CTV BOOKS \& THOR VS PAL SYSTEM plus MUCH MORE ALL 6 VCR BINDERS OF CIRCUITS plus 30 matching FAULT-FINDING GUIDES \& MANY OTHER GOODS

SATELLITE BOOKS

WORLD SATELLITE TV \& SCRAMBLING
METHODS - NEW 2nd EDITION
F Baylin, R Maddox and J McCormac. Large format 340 pages providing in-depth study of many scrambling methods.
EUROPEAN SCRAMBLING SYSTEMS 2 New! £29
J McCormac. Circuits, Tactics and Techniques. How are smartcards hacked? How secure is VideoCrypt? Decoder circuits for Filmnet, RTL 4 V and SAVE. Includes video manipulative systems.
KU-BAND SATELLITE TV — NEW 4th EDITION £23
F Baylin \& B Gale. Comprehensive introduction to satellite TV. Includes many footprints, dish theory. Completely revised edition.
SATELLITE TELEVISION INSTALLATION GUIDE - 2nd EDITION £12
J Breeds. Europe's most popular satellite book. Includes all practical aspects of dish installation. Used in City \& Guilds satellite courses.
VIDEO SCRAMBLING \& DESCRAMBLING
£25
R Graf \& W Sheets. Advanced theory. How to build encoders/decoders. Contains details of many cyphering patents and circuits.
SATELLITE, OFF-AIR \& SMATV
F Baylin, S Berkoff \& T Meints. Aspects of private cable and multi-unit dwellings. SMATV systems in hotels, condominiums, apartments etc.

1991 WORLD SATELLITE ANNUAL

M Long. More than 600 pages. Includes over 100 footprints and other satellite details. Colour coded sections.
THE SATELLITE BOOK - A Complete Guide to Satellite IV Theory \& Practice £28
J Breeds. The definitive guide! Covers every possible technical and practical related subject. Invaluable tips and tricks of the trade. Well illustrated throughout. Easily the best value satellite book today!

NAUGHTY WINDOW STICKERS!

Good quality - poor taste! Fun PVC window stickers. 'Satellite Installers Do It with their Parabolics!' Produced in two colours against a white background. Very popular with satellite traders.
ORDERING Postage FREE (within UK). Europe add £5 (£15 ROW)
Please send me the book(S) as indicated. I enclose cheque/PO for $£$
made payable
to Swift Television Publications, or please debit my Access/Visa card;
Number
Name
Expiry
Address
Signature
Postcode

A GUIDE TO SERVICING DOMESTIC VIDEO CASSETTE RECORDERS
 A fully comprehensive series consisting of 7 separate videos, with additional illustrated teaching booklets.
 This set of teaching programmes is a must to anyone concerned with the understanding and repair of video cassette machines.
 > Programmes also available separately.

 Programmes also available

 Programmes also available separately. separately.
 Microforge Limited, 339 Clifton Drive South St. Annes, Lancashire FY8 1LP
 Tel: 0253725499
 Please send me further information on 'SERVICING DOMESTIC VIDEO CASSETTE RECORDERS' Name.
 Address
 Post Code

MANUALS 1. WHY TURN WORK AWAY BECAUSE YOU HAVENT GOT THE 2. WHY BUY A MANUAL YOU MAY NEVER USE AGAIN? JOIN "THE LIBRARY!" \qquad Have as many as you like during the year!! The best idea to hit the servicing Dor t be the one that turns work away - be the one thal counts the LDTS OF SPARES AVAILABLE - SEE OUR OTHER AD! STOCKS AND SPARES Electronic Component Distributors. Unit 2, Victoria Mill Estate, Manchester Road. Droylsden, Manchester M35 6EO $\begin{array}{lll}\text { TEL: } 061-3707959 & \text { FAX: } 061-3718398 \\ \text { ACCESS } & \text { MAL } & \text { ORDER }\end{array}$ ACCESS MALLORDER VISA

[LAS5IFIEDCLR5SIFIED CLAS5IFIED CLASSIFIED CLR55IFIED

The 1st Edition became a trade standard for general fault-finding in all types of TV, and is used by 1,000 's of independent firms, engineers, universities, colleges, etc. The 2nd Edition updates \& improves the information covered in the first edition, PLUS, new fault causes and cures tables. Now includes modern digital chassis, NICAM sound and control systems.
All repair data in this publication is complete with all known possible standard faults. Not just the few random, useless tips as found in any other 'competitors' manuals. What are people saying about it?
". . Mr. Tunbridge is a Genius . . ." J. McDonagh F.S.T.R.E.E.
BUY NOW, AND YOU TOO WILL DISCOVER WHY.
We think it is the most comprehensive and easily understood book of its kind
For a limited time only price held at

TEST EQUIPMENT

Subscribe to TELEVISION and receive 3 extra issues FREE!

TEIEUISIOC

15 ISSUES FOR THE PRICE OF 12
If you want to keep up-to-date with all the latest advances in technology, then take out a subscription to Television Or give a gift subscription to a friend or relative.

Annual subscription rate: UK - £21.60; Overseas - $£ 25.50$ Simply complete the order form below and post to: Television, Freepost 1061, Haywards Heath, RH16 3ZA (No stamp required)

$$
\text { Yes I would like to take out an annual subscription to Television and receive } 15 \text { issues for the price of } 12 .
$$

Tick here if you would like to subscribe yourself Your Name
Address

Post code
Tick here if you like to send a gift subscription Name of Recipient
Address

Method of Payment (tick your choice)
\square My cheque/postal order* for $£$
is enclosed. payable to
IPC Magazines Ltd.
\square Invoice me later for $£$
\square Charge my Access/American Express/Visa/Diners Club Card*
No.

Expiry date

* Delete as appropriate

Alternatively you can order by TELEPHONE. Place your subscription by calling (0444) 441212 between 9 am and 5 pm (Mon - Fri) giving your credit card details. TVg

PAL SECAM DECODER E12.50. ITT TYPE WITH DATA. LNB's WITH FEED HORN AND POLARIZER 10GHz TO 12.75 GHz 1.5 dh s.n. £35. SEND FOR DATA.

JUST SPRAY AND IT IS CLEAN. PHILIPS' NEW VIDEO HEAD SPRAY CLEANER: £2.10 OR 10 FOR $£ 1.50$ EACH	60cm SATELLITE DISH £35	Philips Yideo KT/V Ilandset WEstal with LCD AV5659 display
VhFMies minituer -		
Yibeotend mop Trustur		
PuIMe Years hilal		
UITRASOVICTR VSDLCHR IN LINE I2-35 VOIT SLIPRESSOR 4 AHAL MKD		

	$75 p$ enet
	t6.06
(illli.opts	23.
	67.01
Kill Fer is Pmo	${ }^{\text {c. }}$ (1) ${ }^{\text {a }}$
	infore ti.ant
	2.1.16
	\%100
hrownin swith emme	Tis
h35 mis sextect mud pu	${ }_{\text {cose }}$

L.C.DIDSPIAY' LANUGU\G1

TR UNSLATOR - FNGLISH, FRIVCAS HUTSCHI. FADAVOI. ITMIANO - $£ 15$

PHILIPS NEW TYPE U/V HAND SET E10

Philips Stereo Headphones	
Stereolleadphenes	
crist 27.50	£1.00
Directional Condeniset	
Microphene	£. (M)
Microphone Philip	
Dynamic	Ef. (M)
Kabo With marphont	2.0
TXO-TXIM FRONT PANEL E5	
WITH REMOTE E10	
NON REMOTE	
8 push bullon fio	

PIIILIM I Och (alculitur	(7.00)	SIEREOIIEADPHONES £1.(M)	
Phil imb liniversal battery tester mbe mog	(5.M)	$\begin{aligned} & \text { TIORNRFCEIVER } \\ & \text { PINEIT T IMM) } \end{aligned}$	£6.09)
	Elline	STERIOKみI SOUNDO.1' I'ANEIS	± 2.50
ONE. IC. 335 Deconder	¢10.0.0)	NEW	
	[5.10)	PIILIPS DUAL TRACE	\&165
	t20.00	$\text { G11 } 470 \mathrm{MFD} \geq 5 \mathrm{Iv}$	
KT3-k 311 If	45.141	CAR ADAIMOR	
PHMETER with puatco	55	funed 3Amp Long Ixad with plug	
WIREPIPIE Stud dilection	to.00	$\mathbf{2 5 p} \quad 500 \text { uft. } 15 \text { p Fich }$	
Microwaveluah detectur	t5.141	TELEPIONE LEMDS With Plus. + Wires of Wie	C 15p
WIRE \& PIPE detectur	± 6.00	Plug and Soxcher	$2(1)$

C-CAM INCODER
PHILIP MADE for K+U CHASSIS
IC No. TDA 3540
EI2.00
FIDELITY NON TEXT HAND SET
for $30(0)$ chassis, 8 button
f5.00 32 C.H. £50

TD. 3.654 E 2 NN

		$\frac{\frac{z}{z}}{z}$							

[^0]: Published on the third Wednesday of each month by Reed Business Publishing Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9LS (071 261 5000). Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd; South Africa - Central News Agency Ltd. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: DALEANI (UK) LTD
 587 A KINGSTON ROAD, RAYNES PARK, LONDON SW20 8SA, ENGLAND Tel: 081-543 1971 O Fax: 08154220820 TIX 914040

[^2]: - 7 Whis Visa/Access welcome

 Prices are Plus VAT \& Based on Quantity OPEN 6 DAYS 9-5

