SERVICING-PROJECTS-VIDEO-DEVELOPMENIS

Fault Notes on Toshiba VHS VCRs The DAT Format Specification Test Report: Tandy's Talking DMM Hitachi G80 Chassis Service Notes CD Software Problems•DX-TV VCR Clinic•TV Fault Finding

FLபKE

NICAM testing?

Get the multistandard solution!

Colour TV pattern generators that give you both NICAM and analog sound channels.

If you need NICAM testing facilities in a single, versatile instrument, Philips has a cost-effective solution. Three multistandard generators, PM 5515 TN, PM 5518 TN and PM 5518 TNI, that give you every video and audio test signal you need - including both NICAM and analog sound channels. The PM 5518 TNI is remote controllable via IEEE interface. On-board audio test functions include mono, stereo and dual signals for digital
and analog sound, with over 55 selectable digital test signals, plus highstability (2 p.p.m.) subcarrier and sound carrier signals.
You also get versatile video test functions - like full RF coverage with synthesized frequency control, over 70 instantly selectable test patterns and combinations, Teletext, storage for up to 10 multi-program test sequences and external video modulation facilities.

So for NICAM testing, choose the generators that give you a one-stop test solution.

Philips Test \& Measurement

Colonial Way, Watford W02 4TT
Tel: 0923240511 Telex: 934583 PHITMD G Fax: 0923225067
A division of Philips Scientific
Available for hire from
ZVOLIVINGSTON HIRE Call 0800886000

COPYRIGHT

(C) IPC Magazines Limited, 1991. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 36, 37 and 38 are available at $£ 1$ each from the Editorial Office (address above).

Binders that hold twelve issues of Television are available for $£ 4.50$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 21.60$ in the UK, $£ 25 \cdot 50$ overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1-80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them

this month

253 Leader
254 Fifty Years in Radio and TV, Part 2
Harold Peters
Wartime experiences then the immediate post-war years, when TV spread to the Midlands and North and receiving equipment and broadcasting techniques came of age
258 Test Report: Tandy's Talking DMM
David Botto
Adding a voice feature to give an audible read-out is not a gimmick but in many circumstances a very helpful facility. The ranges are good and there's a $3^{2 / 3}$ digit liquid-crystal display.
260 Fault Notes on Toshiba's VHS VCRs John Coombes
A summary of faults experienced with models from the V55B to the V83B.
261 Next Month in Television
262 Teletopics
News, comment and developments.
264 TV Fault Finding
Reports from Philip Blundell, AMIEIE, Ed Rowland, J.R.
Trimmer, Nick Beer, Stephen Leatherbarrow and Hugh MacMullen.

266 DAT System Technical Details

George Cole
Digital analogue tape recorders, offering CD quality audio
on tape, came on to the market in the UK late last year.
This new system is a combination of signal encoding along CD lines and helical-scan VCR technology. It could become a major consumer electronics product. Technical specifications and a look at the technology used in the hardware.
274 Servicing Notes on the Hitachi G80 Chassis
John Coombes
This chassis uses a novel chopper arrangement with two series-connected power transistors, one a MOSFET. A look at the operation of the power supply and notes on fault finding.
275 Test Case 338
276 Problems with Compact Discs
Nick Beer
Is it the player or is it the disc? How do you tell whether a disc is faulty and is there anything you can do about it?

280 VCR Clinic

Reports from Eugene Trundle, Steve Cannon, Nick Beer, Hafidh Mahmood, Andy Worrall, Ray Crockit and Mick Dutton.
282 Long-distance Television
Roger Bunney
DX conditions and reception and news from abroad. The
NordMende Galaxy 25 multistandard receiver reviewed.
284 CD Player Casebook
Reports from Philip BlundelI, AMIEIE, Mike Leach and Joe
Cieszynski.
285 Letters
287 Remote Control Handset Checker
Colin Birch
This simple device for telling whether an RC handset is transmitting was made from a handful of odd spare components.
288 What a Life Donald Bullock
Problems with sets and the people who want them repaired
OUR NEXT ISSUE DATED MARCH WILL
BE PUBLISHED ON FEBRUARY 20

VIDEO HEADS - Cont.

MITSUBISHI

HS304/HS320/H3700
$\underset{\substack{\text { HS3 } \\ H S 363 \\ H}}{ }$

NATIONAL PANASONIC
4HSS-3HSSN
NV3000 NV300 NV7200 NV333NV75001NV7800
NV7850 Av322ANV332NV340NV390NV2000
NV2010 NV7000 Nv8170
national
NV777/NV330
NV430 NV460
NV430/NV460
NV730/NV770
NV366
NV180
NV370NV380
NV370NV
NV78
Nv810
NVV50
NV870
NVG15
NvG30
NVG33NVG45ANVG46
NVG40,NVG 130
NVG400
NVG10/NVG1 1 NNG12NVG14
NVG16id
NVG18
NVG20NVG21/NGG22NVG25/NVG28
NVG50
NVG730B
NVH70
NVH65/NVD80
NVG7NVG9
CAM CORDERVEH 0366

N.E.C

v9016 N901A

ORION

VH3VH55SVHGCONH7OONHE44 VH900NH 1000

PHILIPS

VR6460VR6520/JR692064VVR60 VA67114 HEAD
SAISHO
va100 VR605VETO5NR
R1000NR1200//A51600
VR3300XVR 360 C XVR3650VR3800
vi3200
RR3300NFR3600
SVX301NB900NB910NVTS10NT320NT5600 $\times \times 510 \mathrm{~N} \times 511 \mathrm{NX520} \times 6616 \mathrm{~V} \times 626$ VK627NX717
6900/370097

SANYO

VTC5000 NTC5400NTC600 NTC6550 VTCM 10 VTCM1 NTCMZCNTCM21NT
VTC5100NTC515OVTC5300 TCN $\times 30 \mathrm{NT}$ TC5500 VTC9100NTC9300NTC9455NTC9500 VTC9350NTC93臭
VTC5500
VHR1110VHR1150VHR 1300
VHR1700 VHR2300
VHR3200:VHR32:ONHR3100/NHR3150/ VHR3400 (F
VHR1200
VHR1500.
SHARP
VC300/VC381NC 383/VC386NC387NC388,VC482 VC483VC486VC 3300 NC 8381 VC9 $100 \mathrm{VC9300}$ VC9500NC9700
VC582vC583ivG551 NC682/VC750.
VC780, vC781
VC600/ $\mathrm{VC6330} \mathrm{VC7300} \mathrm{NC} 7700$.
VC7750/VCB300
SONY
DSR-35R (FOR C20/C30/C40/SLF LUBiSLF1E)
DSR-43R IFOR SLCTRANGESL5000 SL5100 15.00
SL3000) 1 PIN $\$ 13.00$ toshiba
V21N31N33V50//51N53.v9600
V55N57
ViN73V74iv75/ 181 IN82N83N84
V85N86V87
V93 ${ }^{\text {V570v5480 }}$
TRIUMPH
VR9501NR9511~R9592
$\begin{array}{r}\text { E81.50 } \\ \\ \hline 41.00\end{array}$
600
$£ 19.00$
527.00
27.00

0 18.50
18.50 $\mathrm{CNX20}$
$\mathbf{5} 18.50$ $\mathbf{£} 18.50$
$\mathbf{~} 19.00$ $£ 19.00$
$£ 28.80$ $\mathbf{1 2 8 . 8 0}$
$\$ 19.00$ £16.00 $\$ 18.00$ $\$ 18.00$
$\$ 18.00$ 18.00
$\$ 13.00$

VCR

 PINCHROLLERSAKAI
VS9300, VS9500, VS9700, VS9800
VS1, VS2, VS3, VS4, VS5, VS6, VS9, VS 10 250p VS245, VS247, VS248, VS515, VS516 250 , VS201, VS301, VS303, VS304, VS603, VS606,
VS607, VP58-P82 VS607, VP58-P82
S125, VS155, VS165, VS220, VS240, VS250,
AMSTRAD
VCR4500, VCR4600, VCR4600 MKH, VCR4700250p
VCR5200
VCR5200
VCR7000
FERGUSON
3V00, 3V16, 3V22, 3V23
$3 \mathrm{~V} 29,3 \mathrm{~V} 30,3 \mathrm{~V} 31,3 \mathrm{~V} 32$

$3 V 35,3 \vee 36,3 \vee 38,3 V 39$,
$3 V 42,3 \vee 43,3 V 44$,
$25 \vee 45$,

$3 \vee 48,3 \vee 53,3 \vee 54,3 \vee 55,3 V 56,3 \vee 57,3 V 58,3 \vee 59$
$3 \vee 64,3 V 65, ~ F V 10, ~ F V 11, ~ F V 12, ~ F V 14$

FISHER

FVHP420, FVHP520, FVHP530

FVHP725, FVHP830

P530 5, FVHP716, F 320p FVHP905, FVHP970, FVHP980, FVHP990 320p HITACHI
VT11, VT33
VT61,VT62. VT63, VT64, VT65, VT86, VT88, VT110, 250 VT122, VT120, VT128, VT130, VT135, VT138, $\begin{array}{|ll|}\text { VT150, VT 168, VT220 } & \text { 250p } \\ \text { VT500, VT8000, VT9300, VT9500 } & \text { 250p }\end{array}$

ITT

VR3605, VR3905, VR3935, VR3985, VR3986, VR3913, VR3914, VR3943, VR3954, VR3963, VR39

HR300, HR3330, HR3360, HR3660, HR4100, HR7700
HR7200, HR7300, HR7600, HR7610, HR7650, HR7200, HR7300, HR7600, HR7610, HR7650,
HR7655 HRD110, HRD111, HRD120, HRD121, HRD140, HRD150, HRD160, HRD225, HRD455, HRD565
$\mathbf{2 5 0}$,

MITSUBISHI

 SONY
SLC5, SLC6, SLC

SLC9, SLC20, SLC24, SLC30, SLC33, SLC44, SLHF 100 , SLF1, SLF11, SLF25, SLF30, SLF60,
SLF100 SLF 100

VCR BELT KITS

AKAI

VP- 100

VS-2EG
VS. 4
VS-5EG
VS-9300
VS. 9500
VS. 9500
VS. 9700
VS. 9700
AMSTRAD
TVR-1-2-3
VCR-4600 \& MK2
VCR-4700

1

FERGUSON

3222 3 V 2 3 V 3 3 3 3 3 3 3 3 3
 3 V 23
 $3 \mathrm{~V} 29 / 30$ $3 \mathrm{~V} 31 / 32$
 $3 V 31 / 32$ $3 V 35 / 36$ $3 V 38-39$
 $3 V 38-39$ $3 V 42 / 43$
 $3 V 42 / 43$ $3 \mathrm{~V} 44 / 45$ $3 \mathrm{~V} 34 / 54$
 $3 V 34 / 54$ $3 V 55$

VBS-9000
FVHP520, FVHP530
FVHP710, FVHP16, 722

FVHP905, $\mathrm{FVHP906}$,	
FVHP615, 907,	120
	120p
130p	

GEC	120p
4005	$150 p$

H VT VT

VT-11, VT-33
VT. 5000
VT. 5500
VT. 8000
VT. 8500
VT. 8500
VT. 9300
VT. 9300
VT. 9700
VT.14-17-19-VT35, $38-88$
VT52-62

VR3605, 3905, 3935, 3985	$\mathbf{1 0 0 p}$
VR3913, $V R 3914$	$\mathbf{1 0 0 p}$
1VC	

HR-3300, HR-3330, HR-3360, HR-3660 150p

HR-3300, HR-3330, HR-3360, HR-3660	150p	PL
HR-4100	180p	V-
HR-7200	70p	JV

HR
HR-7610
HR-7650
HR-7655
HR- 7700
HRD
HR

HRD 755
HRD-170, HRD 180, HRD -230, HRD-370, HRD 100 p

HS-200	200p
NATIONAL	
NV. 300	160p
NV-333	$135 p$
NV. 737	100p
NV-2000	150p
NV-3000	180p
NV-7000	95p
NV-7200	90p
NV-8600	160p
NV-7500, NV.7800	110p
NV.340, NV-366	140p
NV-600, NV-788	120p
NV-230, 250, 280, 370, 380, 430, 450, 460, 465, 600, $630,730,810,830,850,870,890 \quad 135 p$	

VR 6460	170p
SANYO	
VTC-5000	75p
VTC-5300	100p
VTC-5500	95p
VTC-9300	220p
VHR-1100, 1300, 1500	100p
SHARP	
VC-381/383/386	125p
VC-6300	150p
VC-730007700/500	150p
VC-8300	150p
VC-8381, VC-9100	125p
VC-9300. VC- 9500	135p
SONY	
SL-C5, SL-C6	140p
SC-C7	140p
SC-C9	165p
SL-8000, SL-8080	200p
TOSHIBA	
V-55/57	85p
V.5250/5280	230p
V-5480	210p
$\checkmark \cdot 5475$	160p
V-7540	160p
V-8600	150p
V.9600	85p
* *****	* *
MOD KIT TAPE CREASINGAMSTRAD\star VCR450, 4600,4700	
CASSETTE HOUSING FERGUSON	

FERGUSON

$3 V 38-39$
$3 V 4243$
3V42-43, 3V44-45
JVC
HRD 110, HRD 120-121, HRD 225
HRD 140.141, HRD 455-725
E24.00p
f24.00p
E24.00p GBANDATA BARGANS

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four supert models. All, with the
 ll
HM203-7 20MHz STANDARD

SPECIFICATION 2 Channels Bandwidth: DC -20 MHz Sens: Ch.l, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ Triggering: DC - 40MHz Active TV - Sync - Separator
Variable hold-oft Variable hold-oh Trigger LED indicator Calibrator: 1 KHz Square wave Pius many features
Price $5338.00+550.70$ V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS

HM604 60MHz UNIVERSAL
2 Channels
Bandwidth: DC -60 MHz Sens: Ch.1, Ch.2,1mV/cm Timebase : $2.5 \mathrm{~s}-\mathrm{Sns} / \mathrm{cm}$
Triggering: $\mathrm{DC}-\mathrm{BOMHz}$ Active TV-Sync. Separator Aher delay trlgger
Sweep delay
Delay line
Trigger LED indicator
Callbrator: 1 KHz \& 1 MHzSq . Wave
Component tester
Price E610.00 + E91.50 V.A.T. FREE Specialist Carrier Delivery
HM1005 100MHz UNIVERSAL 3 CHANNELS.UP TO 1 TRACES

> SPECIFICATION
*Bandwidth: DC - 100 MHz
Send: Ch.1, Ch.2, Ch.3,1mV/cm
Sens: Ch.1, Ch. 2, Ch.3, 1 m
Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase A: $2.5 s-5 n s / \mathrm{cm}$
Timebase $\mathrm{B}: 0.2 \mathrm{~s}-5 \mathrm{sns} / \mathrm{cm}$ Triggering DC -130 MHz After delay trigger
Delay line
Trigger LED indicator Overscan LED indicalo Active TV - Sync. Separator
Price $5792.00+E 118.50$ V.A.T. FREE Specialist Carrier Delinery HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Analogue real time (Same as 203-7) Bandwldih: DC - 20 MHz
Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$
Triggering DC - 40 MHz
Actlve TV - Sync - Sampilng
Memory: $2 \times 2048 \times 8$ Bit
Dot joiner
Printer/plotter output

Price $5610.00+591.50$ V.A.T. REJUVENATOR
Tests and rejuvenates blue, green and red guns separately. Fitted with delta size $120 \times 65 \times 60 \mathrm{~mm}$. size $120 \times 65 \times 60 \mathrm{~m}$
Supply 240 V AC
Price 832.00 \&4.80 V.A.T.

DIGITA
High accuracy
$0.1 \mathrm{pt}-2,000$ pt.
LCD display
8 ranges.

| Accuracy $+1-0.5 \%$ |
| :--- | :--- | :--- |
| Full scale $+1-1$ digit. |, Price $\$ 38.00+27.50 V_{. A . T}$.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES

Carrier irequency $100+1-1 \mathrm{MHz}$ (adju stable).
Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$.
Plol signal $19 \mathrm{KHz}+1-2 \mathrm{~Hz}$.
\& R separation over 50 dB
External Modulation $50 \mathrm{~Hz}-15 \mathrm{KHz}$ Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ \& oH. Comprehensive test lead set included
Mains powered.
Size: $80 \times 200 \times 250 \mathrm{~mm}$.

Price $£ 299.00+$ E48.85V.A.T

LEADER HIGH VOLTAGE METERED EHT PROBE

Light weight, easy-to-grip high-impact plastic handle with arc-over protection and no need of extra equipment. An indispensible item in your TV service kit. Measures up to 40 kV DC with safely and the greatest of ease. Entirely sellcontained. Connect the lead clip to chassis and probe tip to the check point, read the meter for oltage.
Price $966.00+50$.

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Tetevision engineers wouldn't be without it

* All CRT's checked identically, including all in-line and one gun types. Tests all under actual operating conditions (model 490) Exclusive multiplex technique (model 490) * Measure true dynamlc beam current that actually passes through Gi aperture to screen 'Measures all shorts and leaks - preserving more CRT's * Tests focus electrodes lead continuity finding powerfui restoration method known with minimum danger to CRT. Reluvenated CRT's guaranteed as new for fwo years - Obsolescence proof - perpelual set up chart updated and new adaptors developed *Tests and reluvenates VDU's and oscilloscope lubes * A range of over 40 CRT base adaptors available * Increase prolit * Pays for itself in months.

Prices
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors Without adaplors
widel 480 Single meter instrument inc. 6 common adaptors.

SADELTA SIGNAL STRENGTH METERS

The Sadelte Fietd Strength Meters have been designed to facililate the dish alignment of satellite TV systems and aerial alignment of VHF/UHF televiston and radio systems. Signal levels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of signal conditions for satisfactory operation. Both models have a clear LCD direct frequency readout, coupled to a multiturn tuning control enabling precise channel identification.
TC402-C VHF \& UHF
FEATURES
Three bands
Low VHF: $45-110 \mathrm{MHz}$
High VHF: $110-300 \mathrm{MHz}$
Digital display for dir
Digital display for direct trequency readout Signal measurement from $2 G \mathcal{V} / F M$. Powered by eight 1.5 V AA batteries.
 Fully portable with slurdy carrying case.
Price £259.00 + £38.85 V.A.T.
TC90 VMF-UMF

FEATURES

- Five bands

High VHF : $45-110 \mathrm{MHz}$
$\begin{array}{l:l}\text { Hyper VHF : } & 110-300 \mathrm{MHz} \\ \text { H00-470M }\end{array}$
$\mathrm{VHF}: 370-870 \mathrm{MHz}$
Satellite : $950-87750 \mathrm{MHz}$

- Digital display for direct trequency readout. - Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V -10 dBm .
Audible indication of satelifte signal leve. Built-in-monitor loudspeaker AM/FM (not satellite).
- Powered by rechargable battery (complete with charger $220 / 240 \mathrm{~V}$ AC).

BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
 PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

The Orion is a compact, bench instrument oftering a wide range of patterns and facilities at a truly tow cost
n addition to a switchable sound carrier facillity which allows use with the majority of PAL TV systems, the Orion provides highly fiexlble RGB outputs, ensuring compatibility with mos ideo monitors.
More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier line arify, colour purity, general colour pertormance, focus etc.

A separate video input to modulate camera signals; fully varlable RF and video output levels lacilitating AGC testing; trigger output allowing easy triggering of difticult oscilloscope wavelorms; external sound modulation input via DIN connector for frequency response testing of TV sound systems; adjustable wide frequency coverage of VHF and UHF TV bands.

Just some of the leatures making the Orion Pattern Generator an indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.

FEATURES

Colour bars, p
dots, focus,
VHFJUHF Channels
5.5 MHz, 6.0MHz, 6.5MHz Sound Carriers Internal/External Sound.
External Video Output.
Trigger Output.
Separate R, G, B and sync. O/P's.
RGB@TTL \&iv.
Green + 0.3V Syncs.
Composite Video Output.
Variable RF/Video Outpu
Swlichable Video Polarity.
Swlichable Video Polarity.
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
Size:

REMOTE CONTROLS FROM E12.99								
,ititawis								
ASHET GROVE, EASTEPEN ADAM TEL O8P1-7.OPM.								

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 241 .

ADVERTISEMENT MANAGER

Kevin Attridge
071-2616671
(7)1-261 5546-fax

SECRETARY

Janet Reeve
071-261 6671
CLASSIFIED
ADVERTISEMENTS
Pat Bunce
(171-2615942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
071-2616035

SUBSCRIPTION ENQUIRIES

0444440421

PUBLISHER

Philippa Gardner
071-2616408

HELD OVER

Our February issue is produced under the difficult conditions of the Christmas/New Year holidays. Due to time constraints one or two items that we had planned to include have had to be held over.

COVER PHOTO

This month's cover photograph shows an interior view of the Toshiba V71B VHS VCR. See article on pages 260-1.

Lean Production

It has long been the conventional view in the West that marketing is as important as production, maybe more so. After all, if you can't sell what's produced there's no point in making it. One odd feature of the trade imbalance between the West and Japan in consumer goods is that while Western countries are rather good at marketing this doesn't seem to be a strong point with the Japanese. In effect, Western salesmanship is being put at the service of Japanese manufacturers. What the Japanese are good at, as we all know by now, is production. The workfloor, as we have been told again and again by Japanese manufacturers - remember all those banners exhorting higher production and efficiency is where wealth is created
Why Japanese marketing should be relatively indifferent is an interesting question. It probably has much to do with the cultural factors. The language and general approach to communication don't lend themselves to hype. And Japanese society remains highly male dominant. It would seem that a society where men and women have considerable social and preferably economic equality as well provides optimum marketing opportunities. Oh. and maybe when the kids get an appreciable say too-advertisers call it pestering power! Not only is Japanese marketing indifferent, but the distribution system is notoriously inefficient. All this doesn't imply that the Japanese domestic market is in any way less than competitively healthy. It seems that the Japanese need no great encouragement to go out and buy consumer electronic goods despite a far greater tendency than in Englishspeaking countries to save (another helpful feature of the Japanese economic equation). It's a strange fact too that the Japanese don't go in for test marketing and that sort of thing. Products of all sorts are simply put on the market to see whether or not they sell. It seems that a large number don't - like maybe that tape rewinder in the shape of an automobile whose headlights come on when the rewind is complete! This apparently chaotic approach to product innovation goes hand-in-hand with a lot of research into the house of the future and so on to try to identify products that will contribute to an evolving pattern of living. Just another of those strange contrasts that make Japan watching such an intriguing business.
If the Japanese are somewhat wanting in marketing expertise, that cannot be said of their production know-how. But we've long lived in the age of mass-produced goods. You might reasonably suppose that assembly lines tend to be much of a muchness wherever they arc. Just what's so different about Japanese production methods? Extra efficiency with innovative technology appears to be a large part of the answer. In particular something that's come to be known as "lean production". which seems to have developed first in the Japanese automobile industry. If you want to look into it a recently published book, The Machine that Changed the World, by James P. Womack. Daniel T. Jones and Daniel Roos (Maxwell Macmillan, $£ 19.95$) tells the story. Why "lean"? Because "it uses less of everything compared to conventional mass production - half the human effort in the factory, half the manufacturing space, half the investment in tools and half the engineering hours to develop a new product in half the time". How did it all start? It seems that during the Forties Taiichi Ohno. Toyota's production chief (though there couldn't have been much production at that time) visited and studied American plants and methods closely. He came to the conclusion that there was enormous waste of effort, material and time. In particular he felt that the traditional division between the assembly line workers and the specialists who designed the products and decided how they were to be produced meant that neither were able to maximise their contribution to the quality of the product coming out of the plant. This brings us to the famous quality control circles and what they are really all about. Taiichi Ohno decided that it would be better to group the production line workers in teams each with a team leader and give them responsibility for deciding on the best way of organising the various sections of the assembly process. their responsibilities to include quality control of the product and minor equipment maintenance.

A good and possibly obvious idea. To gauge its significance however one has to appreciate how bad mass production can be. Whole plants can come to a halt because of a minor fault or the delivery of out-of-tolerance components. A badly organised line with indifferent control can lead to the need for a massive amount of expensive reworking those PCBs with odd items added on the print side. Plants can fill up with TV sets or automobiles awaiting remedial attention (too much manufacturing space, as Mr. Taiichi observed).

As important as organising the work to get maximum use of the available human resources is the use of more flexible manufacturing equipment. With traditional mass production, machines are designed to undertake large quantity production of specific items. This is not much good when you want to make subtle product changes. It's certainly no help when a plant is producing for many export markets with different requirements - say manufacturing a TV chassis that can be easily adapted for NTSC or PAL colour or for 110 V or 240 V mains operation. Lean production basically involves getting everyone very much involved in the production process and ensuring that it's adaptable. This aids model changes and the quick introduction of new technology. Often wondered how the Japanese can introduce three generations of VCRs in a year? Now we know some of the answers.

The authors of The Machine that Changed the World point out that there is nothing specifically Japanese about the concept of lean production. Anyone could do it given the necessary resources. A trained workforce is a major factor here. If the UK fails to follow this path, lack of skilled people and poor technical education will be a major reason.

Fifty Years in Radio and TV

Part 2: The War Years and After

Harold Peters

My opening piece last month brought us to the start of the 1939-45 war. The next logical time segment is the war years themselves. Younger readers might be forgiven for wondering what they had to do with television, since everyone knows that the BBC's service stopped abruptly at ten past twelve on the day before the war started and that transmissions didn't recommence until well after the end of hostilities. Several things relevant to television happened during this interim period however, some good and some not so good. There was radar for example, which provided the commanding advantage that you could spot enemy planes before they spotted you. Production of radar equipment as required was possible because the TV production lines could be swung over to radar at the drop of a hat. There are indeed some who maintain that pre-war television was simply an offshoot of radar and was encouraged as a smokescreen to conceal what was really going on.

The EMI Team

Certainly Isaac Shoenberg's brilliant team at EMI, who gave us the 405 -line system, were involved with radar. It's interesting that members of the team are reputed to have worked out the parameters of the interlaced-field system of scanning, which all present TV systems continue to use, over a weekend. One member of the team in particular comes to mind, Alan Blumlein. Well before the war he'd brought out patents for such things as tuned line output transformers, and I cherish a photocopy of Patent number 394,325 in which he described methods of broadcasting and recording stereophonic sound, just like we have today. This patent was applied for on December 15th, 1931!

During the war Blumlein was concerned with the development of a type of airborne radar that's in common use today - it displays a plan of the ground below on a c.r.t. screen. They called it H2S because "them upstairs", when presented with the idea, said "it stinks". If you don't get the connection, ask a chemist. Blumlein set out from Orford Ness to test the prototype over enemy territory. His aircraft never returned. We shall never know how different television might have been today had he survived. In the event the USA, which entered the war rather later, robbed us of our lead in TV engineering - the 525-line system featured negative-going vision modulation and f.m. sound.

War-time Experiences

The war gave lots of us the chance to add professionalism to our technical skill and enthusiasm. They didn't let you touch service equipment without the appropriate training. At call-up we were broken into service life by a rigorous six-week period of primary training. It was mostly drill, weapons handling and sheer physical endurance. One day, direct from a morning spent shooting the topsails of passing Thames barges at the Purfleet rifle range, we were given an aptitude test. This began with a written paper consisting of puzzles etc. and culminated with the reassembly of a bayonet lampholder that had been stripped right down to the springs. This was
a piece of cake for a "Saturday boy". Well within the allocated time I'd done mine and those of both my mates. But someone must have been watching. While I was posted to REME (the Royal Electrical and Mechanical Engineers) my mates weren't.
The army training was so thorough that the theoretical knowledge I acquired lasted me right up to the microprocessor era, when we began to forget about coils, capacitors and resistors etc. and concentrated on little black lozenges instead. There was plenty of opportunity to continue my interest in entertainment equipment. Anyone who could operate a cine projector or set up a public address system that didn't howl had no difficulty in filling his spare time. Production of civilian radio sets had ceased - it wasn't until later that the famous "wartime utility receiver" came along. This meant that if you could get hold of electrolytic capacitors and could wield a soldering iron (a big lump of copper on a stick, heated over the gas) your pocket money was assured. For those of you who don't remember valves, they got really hot and so did the chassis. The electrolyte used in smoothing capacitors was a borax paste that dried out with time and use. So constant replacement was necessary. When you did so hum, low gain and instability disappeared at a stroke, the improvement being so spectacular that your charge was paid without a murmur.

Developments

Wartime necessity was the mother of invention. Mullard produced the famous EF50 valve, a pinchless r.f. pentode with nine pins that came straight out of the glass. Meanwhile the Americans came up with a range of miniature, all-glass battery valves and with them the wellknown, hand-held "Walkie Talkie" transceivers. Equipment portability changed the role of the infantryman, but not many wireless sets survived their accompanying paratroopers when dropped. Maybe this was due to the technique of throwing the equipment out first on a long cord then jumping after it. The idea of this was to speed the descent time till the gear touched down, giving the jumper a gentler landing.

The Polish group of one airborne division tried desperately to reduce the failure rate. I became involved in this by having to test and fix the equipment after each test drop. Thankfully the drops were carried out by a tireless Polish corporal who would take the refurbished item up in a Lysander, throw it out on its umbilical then follow it down. On landing he would try to set the equipment up then cheerfully bring it back saying "no blooming transmit" or whatever. In the end judicious packaging fixed the problem.

The Ten Set

As D day approached, radar technology was applied to army use in the shape of the Ten Set, which was the father of all modern pulse technology. The magnetron used in radar transmitters had expanded the usable spectrum into the u.h.f. bands and beyond. But a magnetron is either on or off, so it can't be amplitude or frequency modulated. Thus the Ten Set transmitted a train of squarewaves, one

COMPLETE SECURITY

FULL RANGE OF SECURITY
YOUR OWN REQUREMENTS.
PACKAGE A E105.00

* Two zone keyswitched panet Logic
* Polyprop. bell boxtack plate/sticker
* Batterytamper switch
* Extemal sounder
* Two passive infra red detectors
* Five pairs window/door contacts
* 100m 4 core cable and cips
* Interial sounder

Buzer for editentry timer

- Panic button

IDLERS/TAKE UP CLUTCH ASSY.
Our stock of idiers is exiensive. We are adding new types all
me time. Send us your old one if you are not sure. Weil

malch il ui
 vXPO243 E.g. NATIONAL PANASONIC

 Vxpo344 Vxposin vxpos21 vxp

 VXPOOS43 VXPO581 VXP

HITACHI, FIOELITY. FERGUSON. ETC.

FILMNET DECODERS

ALFASAT I TRADE PRICE $£ 80.00$ fully upgradable
State which recelver you have to match the leads Came out TOPS in WHAT SATELLITE. Hury they're going like hot cakes!

SATELLITE SYSTEMS

 in STOCK NOW (Includes dish, receiver, LNB) SAKURA MONO SR865...............SAKURA STEREO SR878S 70 Channel SAKURA STEREO SR8788 70 Channel £229.00 Also Avaiable REPLACEMENT REMOTE CONTROLS lor the Mono System

GENUINE SPECIFIC PARTS NOW IN STOCK - PHILIPS GENUINE SPARES NOW IN STOCK - PHILIPS GENUINE SPARES
E. . C90 LOPT 4822.140 .10306 E.g. C90 LOPT 4822.140. 10306
SOPS 146 50217 MAINS SWITCH 277.1097 C118 LOPT 140.10325 LOPT 150.50073 SOPS 148.60165.
MAINS SWWTCH 276.12056 G90 LOPT 5545. 140.10306 MAINS SWITCH 276.12445 K35 SOUND PANEL
KUNER DRAWER 41024 Also full Manye pat new stocs and transisisors.

CAMCORDER BATTERIES E.g. JVC, Prililips, Panasonic, Sony. Ferguson.

ELECTRONIC KITS

ROBOT VOICE
TEST OSCILLATOR
IC RADIO
ELECLIIFYING APPARATUS
PARABOLIC MICCOPHONE
METAL DETECTOR
USTROBOSCOPE.
ALIEENAA AMP...
and many more

ALARM SYSTEMS

WE LIST TWO COMPLETE PACKAGES from our extensive range. We wil ADVISE YOU

PACKAGE B 16165.00
 (Large house or shop)

* Commander 5 Zone digital panel with built in internal

Sounder

- Ligh and sound unit-Sounder in toam resistani, alic
coated box, with back and front tamper switch and
srobe sirobe
- Battery
* Five pars doornwindow contacts
* Three passive intra red detectors
* 100 m 6 core cabie and clips

REPLACEMENT VIDEO HEADS

We ar
prices

FERGUSON/JVC 3HSSS NATIONAL PANASONIC

And who else would whend t................ $\mathbb{1 0 . 5 0}$
those of you who wan to cross retererice VIDEO

NEW VALVES

Over 2000 types avalable and now an
of specialist
HI-FI, PRE-AMP, and POWER VALVES
GOLO DRAGON 12AT7AEB1CC.
12AU7AE82CC
12AX7AEA3CC
60.JB/EB8CC
SHUGUANG price per malched pal

680556/EL84
6CA7EL34
6CAT/EL3
6L6GC
6L6GC
6550 A.
$\mathrm{KK66}$
KK88
243
\square $\begin{array}{ll}. E 32.00 & \text { 6B4G } \\ . £ 20.00 & 211 N T 4 C \\ . £ 39.50 & 811 A \\ E 25.00 & 845\end{array}$

VIDEO RABBIT

SEND VIDEOAUDIO SIGMAL FROM YOUR VIOE TO ANY in EVERY ROOM
TRANSMITTER/RECEIVER AND WIRE SO THIN IT CAN
SET TOP/PORTABLE AERIALS
aNTIFERENCE RANGE OF AERIALS ARE SUPER
SENSITIVE.
SIL VER SENSOR HI TECH
POWER SENSOR with built in amp.
TRAVELLER ideal for boats/caravans.
PARAMOUNT OUTDOOR inc fixings
PARAMOUNT OUTDOOR inc fixings
ideal lor Ilatstemporary accommodation

COMPUTER SPARES

We have a full range of both mechanical and electronic
spares for Anclar Spectrimm Spectrum Plus.
MEMBRANE ABK SPECTRUM
MEMBRANE SPECTRUM PLUS
MEMBRAME SPECTRUM PIM
ULA SPECTRUMPLUS.

RON SPECTRUM

EXTENSIVE RANGE OF CMOS 74LS RAMS etc.
906114 ..

6581 650. 901227

PDWER SUPPIY UNIT
PLEASE ASK. WE WILL TRY!
TELEVISIONS AND VIDEOS BRAND NEW TVS AND VIDEOS

TRADE SALES ONLY

VHS VIDEO RECORDER
TWIN SPEEDREMOTE CONTROL6 EVENT/4 DAY TIMER UPTO8 HOURS
PLAY ONLY MAINS BATEERY
LITLE TWISTER TV WALL BRACKET
AVAILABLE IN BLACK AND WHITE
AVALLABLE IN BLACK AND WHITE
TIFTWIST WAL BRACKET UD 20°

EXTERNAL LIGHTS/ DETECTORS

We have a iuli range of unts. Selt-contaned courtesy ights, tluorescent lights inc
infra-red detectors.

OUTDOOR LIGHT CONTROL MOTION SENSOR
With twin Halogen
$\varepsilon 32.50$ incl. bullbs.
WATCH ALL SENSOR
Battery operated SENSOR SDUNDER. Many uses e.g CHILD
ALERT when tiny hands approach cupboards they shouldn ALIERT when tury hands approach cupboarts they shouldn

- medicine stores etc.

BELT KITS

We have many genuine individuat nelts ior Ferguson, Solyy Witachi eicc as well
repiacement belt kits
HIMARI, AMSTRAO PPHILPS, TOSHIBA, goldstar ahe - NE JUST RDDED

COMPLETE VIDEO REPAIR KITS
Contain a rotal package to repair videos. Contain Idlers.
Beets. Fension Bands etc e.g. hitachivT11E......... 817.22
transparent test cassette
TO DIAGNOSE FAULTS IN ACTION

REMOTE CONTROLS

100s OF HAND SETS IN STOCK. SPECIAL TYPES TO ORDER. ASK!!

NEW TYPES NOW IN

PHILIPS RC5 EASY CONTROL $\mathbf{£ 1 2 . 0}$
For all Philips TVS from 1987 (except 3D) For all Philips TVs from 1987 (except 3D)
TOSHIBA CT9176
TOSHIBA CT9481
TOSHIBA CT9384
TOSHIBA CT9387
TOSHIBA CT9383

IV AND FM AERIALS

READY FOR FITIING
COMPLETE KITEAD FOR LOFT OR GUTTER FIXING 10ELE WIDEBAND AERIAL
3 H CRANKED MAST
MOT
LOFT/GUTER BRACKET PLUG
15 m COAX ANO COAX PLU
CABLE CLIPS
FULL RANGE OF AERIALS, MASTS, BRACKETS
etc. ANTIFERENCE XG10 HIGH GAIN UHF 21.00
5 ELE MUSHKILLERS ANTIFERENCE
7 ELE MUSHKLLLERS ANTIFERENCE ALL ROUNDER OMNI DIRECTIONAL

WORKSHOP MUSTS

SOLDER 18SHG G500G
SODER 22SHG 5006
LOFO HEAD CCEAEA (SEe SDecial Oflers)
SERVISOA FOM CIENSER

TEST METEAS HTOO BENCH
DIGTAL BENCH
DIGTAL BENCH
DIGTAL POCKET

SIDECUTERS MICRO CUUTERS HEAV OUTY SNIPS

heavy duty cutiess.
Wiph Sthip

PHILIPS SCREWORIVEA-UAGE
NEON SCREWDRIVER URGE
LLECTRICCCNS SCREWDRIVER K
SOLDER GUN InC. accessviin
SLLDER GUN IIC. accessanies.
PLKUU INPECTON MIRROR
GLLE GUM
30 PiEGE Bir ORGANiSER use with mult-iipDed
screworvers and power drill drive
TRM TOOLS METAU EHED
SWITCHABLE PRO日ES...
SERYMG

DEGAUSSING COILS
EXTERNAL STICK TYPE DEGAUSSING COIL FOR DEMAGNETISING

LOADFAST LADDERLOCK PREVENTS LADDERS SLIPPING OFF ROOF RACK RACK STOPS THEFT

£15.99 Per Pair

available also: ramge of fixing straps MADE TO ANY REOUREMENTS IM AND 2 M IN STOCK.
we have the parts others cant reach.
PINCH ROLLERS
eEplacement tipes for most makes of VIDEO7.

VIDEO TAPE
SKC E1802. 25 EACH PACK OF 10 ²0.01
SKC E240
BY POPULAR REQUEST WE ARE ABLE TO SUPPLY VIDEO TAPE FOR BETA ANO PHILIPS 2000 VIDEOS

L750 "(Beta)
VCC240 53.35
$\$ 4.00$
58.75

TRIPLERS

LOPTX
full range of it lopty now avallable to oroer as well as dlo timers like decca 2230 oh pye 725 We have
SHARP C1410/11C3207
PHILLPS (Gen) C90 4822.148 .10386
FOFLLITY $14^{\prime \prime} 28^{\prime \prime}$ with Mod Kit.
HINARICT4/5...
HINARICT67.
HINARI SCAN CORR COILS CT4/567
ERGGUSON TX100 004 . 247.001 whit
${ }_{8603.893 .001 .}$
HORNTHOMPSON ICCS
WANT TO RUN A FEW TELLYSNIOEDS YOU NEED a
ISTABUTION AMP FROM OUR RANGE OF

LABGEAR

CM7298 WIOE BAND-OME UHF AND ONE FILTERED FM BE SPLIT TO SERVE DTHER OUTLETS. MAINS OPERATED
$£ 51.27$
CM7294 4 WAY DISTRIBUTION AMP. ULTRA WIOEBAN
OOSTRIBUTE $\mathrm{FV} / \mathrm{FM}$ SIGMALS TO FOUR OUTLETS.
$£ 28.77$

CMT293 MAIMS BEHINO SET AMP
$£ 19.48$

trade catalogue

WE have BATERIES

batteries	cable
CONHECTOAS	CMOS
capacitors	compuier acces
DISKS	Diodes
electrical accs	FUSES
iniegrated circ	LOPTX
Push buton units	PHONES
PHONE ACCESSORIES	POTENTIOMETERS
RELAYS	SEMICONDUCTDRS
SIAIPBOARO	
Smoke detectors	SWITCHES
TUNERS	TV batter
W Wall brackets	TESTS
TUBES	test eguipment

We are dn lime via movies computer system to obtain quickly gemuine philips part for hi-fi RING US!! OR CALL AT OUR TRAD COUNTER OPEN 6 DAYS A WEEK.
STOP PRESS NEW PRODUCT VHS-C MOTORISED CASSETE ADAPTOR -............. 519.95
COnvens VHS-C size tape to standard VHS format and allows Convers VHS-C size tase to standard VHS format and allows
tape to be played in VHS recorders/players.
CAMCORDER DUBBIMG KITS (11 Pieces) OOWER AND CIRCUIT TIS (I Pieces).
FUSE AND BULB TESTER ...
ELECTRICAL MASTER SET INCI.........
SCREWORIVERWIRE STRIPPE/OUTER WIAE
of which was a sync pulse while the others were individually modulated in width, providing up to eight separate voice communication channels.

Home Front

At home the BBC kept up morale with lively shows like Stand Easy and Much Binding in the Marsh. These were a far cry from the straight Reithian variety entertainment of the pre-war era. Incidentally Reith left the BBC just before the war to manage Imperial Airways, a bad move as far as he was concerned. Recordings and repeats became the rule out of necessity. The material had to be censored, studios got bombed, and if so much as five seconds of unmodulated carrier was left between programmes Lord HawHaw would be in there with some German propaganda.

The recordings were mainly made on Marconi Stille magnetic recorders - this was a development of the Blattnerphone, which recorded on steel band at three feet per second. Thus half an hour's programme was stored on a two-mile long razor blade coiled into a lethal spring. This gear couldn't be taken into the field, so action reporters used modified wax dise equipment that managed to get nine minutes of sound on to a twelve inch dise. It wasn't until the war ended and the lads brought back captured German Magnetophone gear that magnetic recording as we know it today began.

Early Post-war Years

When the European war ended the celebrations were spectacular. London went mad; street lighting, church bells and road signposts were soon restored; and the radio resumed weather forecasting and mention of place names. We were demobilised into civvy street a few at a time. Even so there were more of us looking for radio repair work than there were sets to mend. So for a little while I became a telephone engineer. Not my cherished ambition, but it was great to sleep in a real bed and to get meat and sweet dishes on separate plates.

When BBC TV resumed in 1946, in time to televise the Victory Parade, Leslic Mitchell began his opening introduction with the words "As I was saying when I was interrupted..." Jasmine Bligh said "Remember me?" but my pre-war pin-up Elizabeth Cowell was missing. Sylvia Peters (no relation) had taken her place.

Rightly or wrongly, the decision was taken to keep faith with the few thousand pre-war set owners and resume with the same 405 -line system as before. One advantage was that the old Ally Pally gear, which was still intact, could be refurbished to provide the fastest way of getting back on air. But not for long. A fuel crisis in carly 1947 closed the service down for another month.

Despite all the wartime advances TV, resuming where it had left off, stayed very much the same for the next three years or so. The only way to describe it is "intimate", with small screens and the old Emitron cameras that required a gentle ten-second crossfade to mix from one to the other, giving the "rack operators" time to adjust the tilt and bend. Despite getting back into its stride TV was still the poor relation of radio - the war years had put into radio production a slickness that took some beating. This slickness was necessary to prevent the enemy jamming quiet passages with propaganda. On top of this programmes like ITMA and The Goons relied on listeners' imagination and wouldn't translate to TV.

Alexandra Palace was on its own and started to produce
its own favourites and stars. Terry-Thomas had his How do you view variety series, Norman Wisdom became a favourite and announcer MacDonald Hobley presented a magazine programme Kaleidoscope that was based on radio's Monday Night at Eight.

Led by the Pye B16T, post-war TV sets began to appear. The B16T was a 9in. table model full of bright red EF50s. It was a t.r.f. (tuned radio frequency) design, which means that the input signal was simply amplified and then detected. With such an arrangement there's a limit to the gain that can be achieved before instability occurs. This wasn't the BI6T's main problem however. It had a bank of preset sliders in a panel below the speaker: they were all wirewound, frequently chafed and thus became opencircuit.

All this was out of reach to me in my new home in Yorkshire. It was not until just before Christmas 1949 that the coaxial link between London and Birmingham brought pictures to the Midlands via Sutton Coldfield. We were still well outside the theoretical range of TV reception, but with huge masts and mammoth three-element Yagis we had a go - and succeeded. Our workshop premises were a few doors away from the celebrated Harry Ramsden fish-and-chip restaurant, and our first customer was old Harry himself.

Post-war Sets

By the time that TV came to the Midlands receiver production, with two years' of London experience, was well under way. Mains transformers had given way to the transformerless set, capable of a.c./d.c. mains operation. Instead of wasting the line flyback energy in a huge wirewound line linearity control the energy was used to derive the e.h.t. instead, using the technique proposed by Alan Blumlein in the early thirties. Fig. 1 compares early and later line output stage arrangements. Many models continued to use t.r.f. front-ends, where we painstakingly removed turns from the coils to tune from London Ch. 1 to Birmingham Ch .4 . With the change to superhet designs most r.f. sections could be tuned right through Band I using their four iron-dust cores.

Radio manufacturers who wanted to keep abreast of developments without committing themselves to TV set production used a chassis designed and manufactured by Plessey. This was something of a relief to us: its generalpurpose nature made servicing easier. With the exception of Murphy, who kept up the tradition rather longer than the rest, the days of the truly quirky, almost hand-crafted early designs were fast giving way to more straightforward arrangements, increasingly using valves specifically designed for various TV applications.

Of all the post-war innovations, the transformerless TV set was the hardest to get used to. Up till then all chassis had been at earth potential, the h.t. was around 350 V and, even though it was only $5-12 \mathrm{kV}$, the mains-derived e.h.t. was lethal. The transformerless TV set brought with it the live chassis and the neon testing screwdriver, to be part of every serviceman's dress for decades to come. Thirteen amp fused plugs had yet to be invented, so most power sockets were of a simple reversible two-pin type. To add to our discomfort plenty of areas still had 200 V d.c. mains supplies. These were polarised in order to keep the size of the supply conductor down. Half the street was 200 V positive to earth while the other half was 200 V negative to earth. This was the half we dreaded. Getting a shock from an a.c. mains supply usually throws you off the equipment. D.C. tends to make you hold on, until somebody pulls you

Fig. 1: Contrasts in line output stage design. (a) Early design by EMI, using a KT63 as a linear sawtooth amplifier transformer-coupled to the scan coils. The flyback energy was dissipated in the linearity control (VR9) network. (b) Classic early fifties design using a PL81 as a switch that produces a linear sawtooth scan current through the line output transformer's primary winding when it's switched on half-way through the scan (spot deflection from the centre to the right-hand side of the screen). An overwinding on the transformer feeds flyback pulses to the e.h.t. rectifier. After the flyback the PY81 efficiency diode switches on to damp the circuit, its conduction producing the first half of the forward scan (left-hand side of screen to centre) as the energy stored in the transformer decays. During this time the boost capacitor C1 is charged to produce a voltage of 1 kV or so for the c.r.t.'s first anode. The transformer is tuned by its self-capacitance to produce a precisely controlled flyback pulse. The basic idea was proposed by A.D. Blumlein in the early thirties. In practice third harmonic tuning was added to optimise efficiency and reduce ringing, and linearity and width coils were generally connected in series with the scan coils.
off by the coat-tails. Some apprentices were teased that if you dismantled a test screwdriver and turned the neon round it would light up on a dead chassis instead of a live one . .

Fortunately line-flyback derived e.h.t. was not lethal like the old mains derived type. This led to a simple, portable e.h.t. tester known as the Kilovolter. It was a simple probe with two polished metal balls inside, the earthed one being on a calibrated thread. By cranking up the thread until a spark jumped between the two balls you could read off the e.h.t. voltage on a scale.

Test Transmissions

Test transmissions from the new Sutton Coldfield station consisted of a black cross on a white background (the "Art Bars") with a 400 Hz tone. We did get the odd demonstration film down the link when it wasn't being used for rehearsals. Opening ceremonies have a habit of coming unstuck. The Director General "dried" when the service opened in London. Sutton Coldfield kept up the tradition when an output stage blew during the opening ceremony. The staff blamed it on the long hours of test transmissions to help the trade prepare. Two years later, when Charles Buckle was given charge of Holm Moss, he wisely tested on reduced power right up to opening night. On the opening night he let the station rip with full power. This ruined the evening for most viewers since, without a.g.c., we'd turned up the sensitivity controls to suit the low-power transmissions. Full power produced pictures that were uncontrollably negative on most of our sets!

The DIY Era

As TV spread across the country a receiver shortage
arose and magazines were crammed with advertisements offering old radar gear suitable for conversion to TV use. Most of these radar units contained a 5 in . green-screen, electrostatically-scanned c.r.t., the VCR 97 . I bought mine for thirty shillings ($£ 1.50$) and got it going just in time to see the Boat Race in which Oxford sank. The handRoneoed instructions included with the gear made getting the picture easy enough, but the accompanying sound was something else. Until I got organised with a second unit we could follow only programmes that were carried on sound radio as well.

Those of you who recall the 405 -line system know that amplitude modulation was used for both the vision and sound signals, making intercarrier sound i.f. strips out of the question. A constant bugbear was sound-on-vision bars across the picture in unison with the sound. It's something that's almost unheard of today. Everything used valves - there were no transistors - in both transmitters and receivers. Valves have wire grids that can vibrate, so sound-on-vision could as equally well be produced by someone singing close to the camera as by banging on the TV set. It added up to a special "house point" if your i.f. strip was free from sound-on-vision.

With the spread of TV and the growing surplus market Practical Wireless began to bulge at the seams. So in 1950 Practical Television (this magazine's original title) was reintroduced - it had had a brief fifteen-month spell of life back in 1934-5. The 1950 version had a two-colour cover, was printed on what looked like newsprint, and cost around $5 p$.

Tube Troubles

Those VCR97s kept on going, which is more than could be said for the proper TV tubes of the period. They soon developed a reputation for short life, and as they were guaranteed for only six months we had to be very quick to spot the first signs of failure. There were two main types of fault: low emission, which produced the familiar dim picture with glistening foreheads, and ion burn, which showed up as a dark patch about the size of an orange in the centre of the sereen. It was caused by impurities left within the tube. Ion burn was eventually cured by using an ion-trap magnet. This small magnet, clamped around the tube's neek, was generally used in conjunction with an offset gun. It deflected the offset electron beam back towards the screen while the heavier ions continued straight on, hitting the tube's neck. The ion trap quickly gave rise to a major stock fault. Use of the set created heat which loosened the magnet: as it swung from its preset position it produced exactly the same effect as a dud tube i.e. much panic coupled with bad public relations.

Broadcasting Progress

Progress was being made on the broadcasting side in the early fifties with improved cameras. The Super Emitron had replaced the basic Emitron and was in turn replaced by the image orthicon. The improved tubes had better sensitivity. Studio lighting levels could thus be reduced, and it was now possible to cut directly from one camera to another. This gave rise to complaints that producers were indulging in "restless editing". The image orthicon was initially used for outside broadcasts: it was so sensitive that it became possible for reporters to continue even in foggy conditions. By now TV had built up a set of favourites: What's my Line? with Gilbert Harding in particular and spine-chilling serials like the Quatermass Experiment.

Scotland and Wales by now had their own high-power stations, the opening of the latter marred by the torrential rain that washed away the Devon villages of Lynton and Lynmouth on the other side of the Bristol Channel. As a
country we'd lost a King and gained a Queen. To quote Wallace Greenslade, the long-suffering Goon Show announcer, "This, dear listeners, is where our story really begins"

Test Report: Tandy's Talking DMM

David Botto

"A talking multimeter could be made in much the same way as a standard digital meter but with the signals that activate the display applied, via an interfacing i.c. to produce the required binary signals, to a speech synthesiser chip with a suitable set of speech ROMs." That comment was made in my article on electronic speech for TVs and VCRs in the March 1985 issue of Television. Now it's one thing to theorise about how a talking multimeter might be built, a different matter entirely to actually produce a working model for sale commercially at a reasonable price. But this is what Tandy has just done with the Model 22-164 Micronta Voice Meter digital multimeter.

Description

The Voice Meter DMM is a hand-held, autoranging instrument with a 3,000 count ($32 / 3$) LCD readout. If you normally use a DMM with a $31 / 2$ digit readout $(1,999$ counts) you'll find the 3,000 count readout a big help, particularly when low voltages must be accurately measured. The meter is housed in a grey plastic case measuring approximately $7 \times 3 \times 15 / \mathrm{kin}$., and is powered by four AA type 1.5 V batteries. A six-position rotary switch selects the various functions, which include a diode check. The three-position power switch has on/off and continuity test positions.

At first sight the Voice Meter appears to be an ordinary hand-held DMM. The measured values are displayed on an easy-to-read, high-contrast 10 mm LC display. The difference is that at the touch of a button that's built into the meter's positive test probe the meter speaks both the measured reading and the parameter. For example, when a $15 \Omega, 5$ per cent tolerance resistor was measured the voice said "fifteen point one three ohms". A d.c. voltage measurement produced the spoken message "two point six seven three volts d.c." The voice is clear with good volume. A message on the LC display alerts the user when the batteries are low. If you then try to use the voice function you are told "replace batteries".

The Voice Feature

The voice feature is not a gimmick. It's an extremely useful thing to have in many circumstances. For example when you've a TV set, VCR or camera to repair on the bench it's often difficult to keep the test probes in firm contact with test points that are hard to get at while at the same time looking at the meter's readout. This is where the Voice Meter scores: there's no need to look at the readout since the electronic voice tells you the measured value in clear, authoritative tones. The same thing applies whenever you need to make measurements amongst the hard to approach places that seem to be more and more common in modern pieces of electronic equipment. In such cases you'll find that the Voice Meter enables you to make several measurements easily in the time that it would normally take you to make just one. A DMM with a
display freeze will of course hold measured values, but you still have to keep turning your head to see the readings. This means extra effort plus neck and shoulder strain that you can well do without.

The Micronta Voice Meter DMM is ideal for the field TV/Video engineer. When crawling around on the floor, as you all too often have to, it's not too easy to see a DMM readout. Here the voice is a real boon.

What happens if three of four TV/Video engineers in the same workshop all use a Voice Meter DMM? Could this cause confusion as to which DMM is speaking? Probably not because the meter can be used as an ordinary one without the speech facility. Should the voice be needed you simply push the probe button in the positive test lead.

Ranges

The meter's voltage measurement coverage is excellent up to 3 kV a.c. or d.c. rather than the usual 1 kV . For d.c. voltage measurement there are five fast auto-selected ranges: $300 \mathrm{mV}, 3 \mathrm{~V}, 30 \mathrm{~V}, 300 \mathrm{~V}$ and 3 kV . The lowest d.c. resolution is 0.1 mV , with a d.c. accuracy of 0.8 per cent. The a.c. voltage ranges are $3 \mathrm{~V}, 30 \mathrm{~V}, 300 \mathrm{~V}$ and 3 kV . Lowest a.c. resolution is 0.001 V
Six resistance ranges cover measurements from 300Ω to $30 \mathrm{M} \Omega$. Lowest resolution is $0 \cdot 1 \Omega$. For current measurement there's a 300 mA range for a.c. and d.c. Lowest current resolution is 0.1 mA .

Summary

Personally I would have preferred to have had the voice on/off switch on the meter's body rather than within the positive test prod. Having it within the probe means that if this is damaged or an internal break occurs you would have to obtain an exact replacement from Tandy. But the probe switch does make for easier voice on/off switching.

I'm enthusiastic about the Micronta Voice Meter DMM and believe that it's a big step forward in multimeter development. There will no doubt be some initial resistance to the idea of a talking multimeter. By and large it seems that TV/Video engineers prefer the familiar to the new - some still refuse to part with their faithful old analogue multimeters. But the time may soon come when a voice function is a standard feature of DMMs.

The Micronta Voice Meter DMM is due for release early this year. The intended price of $£ 79.95$ including VAT will make it excellent value for money. It's a piece of technology that only few years ago would have cost thousands of pounds to produce and would probably have been housed in a large box on wheels! The Voice Meter is going to make life easier for the long-suffering TV/Video engineer. And should you find yourself talking back to it you'll know that it's definitely time to take that holiday you keep promising yourself!

My thanks to Ahmed Patel of InterTan UK LTD. for supplying a prototype to try out

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterns and variations．
\star Fully interlaced sync pulses with correct picture blanking．
\star EBU colour bars， BBC colour bars．whole rasters \＆split bars（specially useful for VCR service），white，yellow， cyan，green，magenta，red，blue and black
－Chequerboard．
\star Mono outputs with border castellations，cross hatch， grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR
＊Facilities for sound output．
＊Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required．
\star Mains operated with stabilised power supply．
All kits tully guaranteed with back－up service Also available with VHF Modulator
Price of Kit
Case（ $10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{1 / 4}$ ）app
£75．0）
Optional Sound Module（ 6 MHz or 5.5 MHz ）
£12．0）
Built \＆Tested in Case including Sound Modu

Post／Packing $£ 3.00$
 Add VAT 15\％TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver aerial socket
In addition to colour bars R－Y，B－Y etc．
Cross－hatch，grey scale，peak white and black level．
Push button controls，battery or mains operated．
Simple design，only tive i．c．s on colour bar P．C．B
\star Backup service available
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£35．00．CASE $£ 5.80$ ．BATT HOLDERS $£ 4.20$ ．

MAINS SUPPLY KIT $£ 5.80$

（Combined P\＆P £3．00）．
VHF MODULATOR（CH 1 to 4）FOR OVERSEAS \＆6．80）
EASILY ADAPTED FOR VIDEO OUTPUT $\mathcal{\&}$ C．C．T．Y．

LINE OUTPUT TRANSFORMER TESTER

＊Saves time and money．
Checks short turns．
Simple to use
Reliable．
Battery operated
Pocket size
PRICE £20．00
POST／PACKING £2．50

KITS \＆PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \＆audio outputs $£ 28.50$ p．p．$£ 1.80$ ．
PAL DECODER KIT（Video to RGB）for Monitors $£ 27.00$ p．p． fl．（）
PAL ENCODER KIT（RGB to Vidco）$£ 18.50$ p．p．$£ 1.30$
CROSS HATCH UNIT KIT，Aerial Input type，incl．T．V．sync and UHF Modulator，Battery Operated，also gives Peak White \＆ Black Levels，can be used for any set．$£ 13.50$ p．p． 80 p ．（Alum． Case $£ \mathbf{3} .20$ p．p．£1．40．）ADDITIONAL GREY SCALE Kit $£ 2.90$ p．p． 45 p．
 £3．20．De Luxe Case £12．00（Built \＆Tested £58．（00）p．p．£2．50． CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $£ 40.06$ p．p．$£ 3$（ m ）

TV \＆VIDEO SPARES

VIDEO SERVICE／REPAIR KITS

Including Betts，Idlers，Pinch Reflers，Brake Bands etc．） PANASONIC NV2．31，250，370，430，450，460，730，770， $777,78 \mathrm{~K}$ （811），870，XM）$£ 10.81$
S10， 870,890 £ 10.80
PAVASONIC NV
ANA，N
PIIL．IPS VR6362，6367，6467． $6468,6470,6561,6670,6760)$
TRANSPARENT SERVICE CASSETTE to．$^{8} 11$
PONT PACKING FOR ABOYF fI 8 MANY OTHER VIDEO SPARFS IN STOCK

PHILIPS SPARES

G8 CHANNEI SELECTOR £2．50 PR 5150
 Gill PANELS（tested）．frame．IF decorter $£ 12.50$ each P．P．$£ 2.10$ ）．Scan $\mathbb{1} 15.1 \mathrm{M})$ p．p． 20.0 Power lested exchange $£ 18.00$ p．p．+2.81
MANUALS 2A，2B．CPM）£3．51）．CTX－E（TX－S，CFl \＆1．50．KH
（H1，3A £4．51 p．p．£2．54
BACK UP BATT． 2.4 V £6．10）， 1.2 V £3．20 p．p． 8 p ．
犬．4），KT4．CTX－E．HT I．ead E． 20 p．p．£4．（x）．

THORN／FERGUSON SPARES

M（M）Series IF／Decoder tested \＆10．00 p．p．© 2.80

TX10 8 waty channel selector $£ 18$ ．（10）Γ
TXO／TXIO Saw filte：IF pancl E5．00 p．p．80p
（ X9／10 Remote \＆tuning 1515N £5．M1p．p．£1．80
TX9／10 Remote \＆funing 150 xA （ind SAA5012）£2．50 p．p £ 1.80
TX9／10 Remote \＆luning 1536 （ind SAA5012．SL－471） $\mathbf{2 3 . 5 0}$ p．p．\＆1．81
TXIO Slered Audio Board \＆ 3.50 p．p．\＆ 1 ． 8 I
TXM）Mains TX $£ 23 .(\mathrm{M})$ p p． $\mathrm{t} 2 . \mathrm{X})$
TXM1 14° Chassis complete \＆boxed（untested）£20．10 p．p． 2.80
TXIGN Choper TX 414.81 p．p．E． 50

1 C SELECTION									
AN552］	［3．84）	SAAM4，	E6．891	1 A7mande	¢5．80	ro＾25xi	22．211	TIDAH20	
ANSMM	12.20	SAM51511	t6． 81	1A76sil	ES．kit	TDaz5 ${ }^{2}$	［2．811	TDAL＋2	S 21
13A1238A	（4．4）	SAA5323）	（56．M9）	TA7（0）${ }^{\text {a }}$		TDAZsy	£1．511	TIDA ${ }^{\text {d }}$ 2	
CNat2	E4．80	SAB3135	66．811	trasil	£1．20	［1］Aこ544	［ 3.819	TIDA－5in）	
HAl｜2］	［2．．81）	SAB 3137	（15．8．1）	1BA750	\＆2．21）	T1）A251	¢ 4.8 （x）	TI）A45111	
11A11423	12．11	SAF14132	E． 5.50	1baym	¢2． 20	TDA2501	¢6．\times \％${ }^{\text {a }}$	TDA＋512A	
［1A51．3．3\％4P	£11．80	SAFIII3	t2．20	TBA ${ }^{\text {a }}$	22．20	TIDA2hila	（ 1.40	T1）A＋513	S
L．Aths	（ $3.1(1)$	SI ． $771 / 471$	（ta，（1）	TCA270		TIDAzhto	£7．211	TIDA4515	
1．atex）	\＆1．801	S1 4 S6	［1．20	（＇As）	¢0． 80	TDA2653	23．20	TDAtam	
Lats20	£7．20	SL 4 （41	t2．801	TDAlams	22．4）	TDAzsa	65.711	TDAter	
Lヘ7＊	£3．50	S1． 1.410	\＆1．801	TDA1137	£1．（\％）	Tidazos5b	（x．00）	Tidateso	
LA7\％${ }^{\text {a }}$	¢2．801	SLI 432	（1．4）	TDAMH	£2．4）	TDAこh70	［3．201	TDA5s：11	
M293？${ }^{\text {a }}$	87．k0	SN762260N	\＆1．kn	1＇1） $\mathrm{Al\|l\|c} 2$	£3．40		2．3．m1	1DAs550	
M14＊3131	¢ $14 . \mathrm{KNO}$	SN76705	¢9．801	TDAl｜7\％	¢2．21）	TDAz6\％	£3．41	TIDAsi53	
M19（13131	¢9．80	Stk5325	E6．80）	TDAIt＊	£2．211	T［DA27＊）	¢6．40）		
M494	¢9．80）	S1K5832	¢6． 81	1DAILCOZ	£2．21	TDA3！	4． 210	［DAXIM	
MCI．34201P	E5．kI	ST＇K 5421	£5．80）	TDAL4321	¢6．74	TDA34m	E6， K_{6}	TDA9413	
MIJAzint	E．3．m0	SThim？	¢7．54）	TDA $147 / 1$	£2． ¢ $^{\text {¢ }}$	TDA3m11	ta． MaO_{1}	Toaysis	
M1）A2（k）2	¢3．80	siki471	E6．50）	TDAj¢7ıA	c3．20	TIDA33：	23，50	TDAusiz	
M1 237	¢3，80	S1人「4x｜	¢7． mal	TJA1701	£3．40	TDA．5501		TEA MKM	
M1．238	E6． $\mathrm{m}^{(1)}$	sik 5482	E6．841	TIDA1770	¢1．20	TDA3510	¢ 4.80	TEAL014	
M1．926	（4．40）	S1k73．${ }_{\text {c }}$	E10．ma	TDA1474	¢6． \mathbf{x}_{6}	TDA354	22．51	TEA1034	
SAA1024	E5， 40	\＄7 k7．3．4	\＄10．80）	TDAI\％K	¢2．me	T1）${ }^{\text {P4 }} 1$	23，50	1EAmmas	
SAA 102.5	¢5．mp	STR＋1	47．811	11 DA14\％	53.21	TDA3561A	Es．mı	TMSICMM	
SAAIL24	（6．50）	STR450）	66．40）	1DA｜usa	4． 3.54	IDA．3562A	［5．m		
SAAL2SI	［ 3.8 .80	STk＋51	E5．80	［DA2｜4	£7．84	TDA 3545	［1．801	TM134C	
SAAI2SI	Ef．kn	STR454	55.80	TDA2150	${ }^{3} .20$	1DA3560	65．80		
SAA1392	c8． xa		Ex．M0	T1） 22270	£2．811	TDA3571	［4．88）	UC384N	
SAAI．293．12	E6． Na	STR $4 \times \times 1 \mathrm{~S}$	（10．50）	T1DA2510	［6． \mathbf{k}^{6}	TDA3576	［4．80	UPC1．378	
SAAM27	E5．80	STR＋21］	E6． 810	TDA 548	25．81	TDA 3 int	［4．20）	UPC（1344	
SAASMMEI	£2．80	STR54：2	¢5．91）	10A2576A	¢1．80	TDA． $\mathbf{H} 51$	Ex．30	UPCTAMEA	
SAAsisto	E5．811	STR 511113	54．59	1DA257	4． 80	TDA3\％	［4．21）		
SAASOI2	E5．（4）	SIRS．414	¢10．\％${ }^{\text {a }}$	TDA2s57a	［4．64	TDA 3 ［3A	［2，M1		
SAASI2I	E5．80	STRSmin）	Ex． 50	TDA2576	2． 2.80	T1） 3 3653 ${ }^{\text {B }}$	£3．20		
SAA．9030	¢6． 80	STR（x）211	cs．${ }^{\text {do }}$	TD	［1．$\times 10$	TIDA3654	E3．21		

 4． 4.81 ，U $343 £ 10.80$ P．P．£1．（M）
LINE OUTPUT TRANSFORMERS

UNIDERSAL（hesl quality）$£ 7.80$ P．p． 31.50.
CONTINENIAL TVK \＆BG RINGE（quole exact no．）replacements \＆13．80） DECCATATUNG；\＆7．81 P．P．£1．56．
$3.3 V$ CRT Bonst Transtormers for Colour \＆Mono £5．W1 p．p．£1 41
55 CRYSTALS tor Remote Conirol liandsels + for $\$ 1.101$ P．P． 50 p ．
DEGAUSSING；ROD $£ 33.75$ p
HOW TO ORDER：ADD p\＆p TO ORDER＋VAT 15% TO THE TOTAI． PRICES ARE SUBJECT TO CHANCE WITHOUT NOTICE

Tekphone $1771.7448751,7447.46$
D－MANOR SUPPLIES
172 WEST END LANE，LONDON NW6 1SD

Fault Notes on Toshiba's VHS VCRs

The following notes summarise our experience with the V55B/V57B, the V65B/V66B and the V7IB/V73B/V81B/ V83B series.

MODELS V55B/V57B

We'll start with common faults experienced with the V55B/V57B.

No play/record: The most likely culprit is the loading belt. The loading motor is another possibility.

No rewind/fast forward: Check the reel idler assembly by replacement.

Snowy vision with own recordings: Suspect a faulty video head. Check by replacing the drum.

Original sound left on tape: Probably due to a faulty plug/socket on the full erase head. For a complete cure remove the plug/socket and make soldered connections directly to the head.

Ejects tape: Probably a cassette housing fault. Check the switches for incorrect operation and if necessary check for broken cogs. The cassette loading motor could be defective.

Miscellaneous Faults

The following notes detail less common faults.
Unit inoperative/no clock or function lights: Check that the 9 V supply from the regulator panel is present. If missing at pin 2 of plug/socket CN2 check transistors Q5 (2SD1128) and Q6 (2SD637). If the 9 9 V supply is present at pin 2 of CN2 check whether protector CP2 or coil L201 is opencircuit.

Intermittent loss of sound with own recordings: There are three likely causes of this fault. The first is faulty connections to the audio/control head. It's best to remove the plug and socket and make soldered connections to the head and PCB directly. The second possibility is failure of the oscillator to start. If this is the case and you get colour patterns on the screen increase the value of C27 to $0 \cdot(0) 82 \mu \mathrm{~F}$. The third thing to check is for an open-circuit in the leads to the full erase head.

Snowy playback: The obvious possibility is faulty heads. It the heads are o.k., ensure that the head amplifier chip is receiving about 2.5 V on playback. For incorrect voltage here check Q504 (2SB641S) which can become leaky.

Intermittent stopping in the record and/or playback modes: Check the take-up reel sensor optocoupler by replacement.

Intermittent stopping and going into the rewind mode: The first suspect is the M50790SA expander chip IC202. Check it by replacement or check the d.c. conditions at its pins.

The other strong possibility is that $\mathrm{C} 1(0) \cdot(0) \mid \mu \mathrm{F})$ across the end sensor is short-circuit.

Intermittent stopping in the review mode: The main possibilities are again IC202 and C1, see previous fault.

Distorted verticals: This symptom is often associated with poor picture sync, the symptoms varying with picture content. Suspect that C7(0.0. $47 \mu \mathrm{~F}$) in the i.f. a.g.c. circuit is open-circuit.

Playback speed slow: Check the voltage at pin 6 of the BA6302A chip IC401. If the voltage is low D206 (ISSI33) could well be leaky.

MODELS V65B/V66B

The following notes apply to the V65B/V66B .
No results, channels lit: There are two things to check for this one. First check for 5 V at pin 6 of plug/socket CN3. Its absence will probably mean that CP4 (ICP-N10) is opencircuit. The other likelihood is that the 5 V and 12 V outputs from the power supply are low because zener diode D3 (RD3.9EB) is faulty. Check it by replacement. If the diode is simply leaky the VCR will work but the counter will continue to be operational in the stop mode.

No clock display: Check whether the -30 V supply is present at pin 3 of plug/socket CN2. If this voltage is absent fusible resistor R2 (560,) could be open-circuit or regulator transistor Q1 (2SB644) faulty. The cause could be in the timer section however. In this case check the clock display FDP (PU57345-2), IC301 (MN1250BJA) and IC401 (HD614042SB27) as necessary.

No video/luminance: Check whether the switched 5 V supply is present at pin 1 of CN3. If not CP2 (ICP-F10) is probably open-circuit.

Machine plays for a short time then goes to stop: If the counter doesn't work, suspect a faulty take-up reel sensor.

No manual record, o.k. with timed recordings and remote control: Check the d.c. conditions around IClOI (HA11839NT) on the main PCB. If you find incorrect voltages check IC 101 by replacement.

Ejects tape and shuts down: A faulty loading mode sensor is the usual cause of this.

Machine half loads then unloads: Watch the drum. If it runs backwards, or simply moves back and forwards slightly, zener diode D408 (RD5•1) is probably leaky. Check it by replacement.

Intermittent drum rotation: Dry-joints on Q1 (2SB1052) are the usual cause. Resoldering will usually put matters right. If the transistor's leads are discoloured however it's best to fit a replacement to prevent further trouble.

Incorrect loading/no play: The first thing to check is the loading belt, which may be badly stretched. Check by comparison with a new one or by replacement. If the loading belt is o.k. it may be necessary to check the loading gear and cam gear assembly. Dismantle the assembly then clean off the old grease, which causes friction when it becomes hard. When reassembled the assembly must be in the correct position as indicated in the service manual.

Previous sound recording left on tape: As with the V55B/V57B the usual cause is the plug/socket connections to the crase head. Solder the leads to the head directly. Be sure not to apply excessive heat to the head, i.e. don't apply the iron for too long.

V71B/V73B/V81B/V83B SERIES

There are some common fault patterns with the V 71 B / V73B/V81B/V83B. You very often get intermittent faults like going into the search mode with fast sound, or stops in pause when review is pressed in the play mode, or stops loading when only half loaded. These problems can all be caused by a faulty cam switch. When this is replaced it's important to ensure that there's an earthing screw to the reel motor bracket. This screw also prevents static discharge from the reel assembly. Such discharges can ruin the servo/logic chips.

Faulty Chips

If the TD 6360 N servo chip IC501 has been damaged by static discharge you may find that the problem in the record mode is no servo lock. The unlocked head switching produces picture disturbance, jitter or roll. On playback the problem is usually loss of servo control, i.e. varying speed and poor tracking.

If the static has ruined the TMP4746N5759 logic chip IC60I the usual problem is no reel rotation due to wrong voltage levels at pins 19 and 20. If there's no motor drive, or the power disappears after ten seconds due to the TA7288P chip IC6012 drawing excessive current, this i.c. will have to be replaced.

If there's no reel rotation in any mode, suspect the TA6267P chip IC603. It may have been getting hot because the 2 SB 101 SY drive transistor Q625 is defective. If necessary check it by replacement.

If the tape counter is inoperative and the machine goes into the stop mode when play is selected, replace the TA75393P reel sensor chip IC604.

Incorrect Speed

A faulty cam switch often results in the machine running fast in the play mode, with fast sound, the pinch roller not being engaged. If the machine is used to record with this fault it may run fast, giving slow replay.

Blown Fuse

Fuse F803 (1.25AT) will blow if there's a short of course, but you may find that D801/3 are open-circuit or that there's a dry-joint at the connection of D801/2.

MODEL V93B

A problem we've had on several occasions with the V93B is no clock display due to circuit protector 2L62 (ICP-N10) on the Timer-2 board being open-circuit.

next month in

TELEOU500

SERVICING THE PANASONIC U5 CHASSIS
Our series of articles on Panasonic chassis brings us to the U5 which was used in models such as the TX5500, TX2450, TC2641, TC2110, TX2112, TC2253, TX-C22, TC2051, TC2061, TC1651 and TX2656. Its main features will be described with notes on general servicing and a list of faults experienced.

- HALL-EFFECT MOTORS

Brushless d.c. motors using the Hall-effect principle are used in many different types of electronic equipment, in particular the domestic VCR where their first application was as a direct-drive head drum motor. As VCR production increased in the early Eighties the cost of these motors fell and they began to be used for capstan drive as well. Subsequent uses include audio cassette machines, CD players and computer disc drives. While Halleffect motors are reliable, like anything else they or their control circuitry can fail. Joe Cieszynski explains the theory and the ways in which the Hall effect has been applied, and provides practical fault-finding guidance.

- MICROWAVE OVEN TECHNOLOGY

The latest microwave ovens incorporate various innovations aimed at making them more adaptable. It's worth keeping abreast of the changing technology used. John Coombes takes a look at the electronic weight and humidity sensing used in recent Panasonic models and provides information on checks and fault finding.

- FIFTY YEARS IN RADIO/TV

Harold Peters comes to what could be called the classic period, when TV coverage spread to all parts of the country, followed by the setting up of the ITV network, and the television set became an accepted feature in nearly every home. Many modern ideas such as flywheel sync were first tried out in this era. It was a busy time for radio/TV engineers and there's much to recall.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO.
(Name of Newsagent)
Please reserve/deliver the March issue of TELEVISION ($£ 1.80$), on sale February 20th, and continue every month until further notice.

NAME ..
ADDRESS ...
\square

Teletopics

SATELLITE TV

The IBA/ITC has decided on the terms under which BSkyB will be allowed to continue to use the UK DBS frequencies. The BSB programme contract with the IBA will be terminated on December 30th 1992, with the proviso that the ITC as successor to the IBA may, with three months' notice, withdraw all or any or part of any of the five DBS channels at any time after June 30th 1991 in favour of any licencee appointed by the ITC under the terms of the Broadcasting Act 1990. The aim of the IBA/ITC decision is to ensure that viewers with BSB receiving equipment will continue to have five channels of programme service available for at least the next two years.

To ensure that BSkyB honours its obligations during the remainder of its programme contract it has been agreed that two independent directors, both subject to ITC approval, will be appointed to the BSkyB board not later than March 31st 1991. These directors will form a majority of a special Compliance Committee of the board, each having the right to veto actions that would involve a major breach of the programme contract or any non-domestic satellite licence or other ITC licence requirements.

In seeking other uses for the DBS frequencies, the ITC will invite expressions of interest from those who might wish to apply for licences, which the ITC intends to advertise in 1991. Some suggestions have already been received. BSkyB, which owns the Marco Polo satellites, has agreed to make satellite capacity available to new licencees. BSkyB has also given an undertaking to support research and development of the D-MAC technology through a contract with NTL.

To meet the needs of present BSB viewers, BSkyB has offered all those with BSB installations at December 20th 1990 free Astra reception equipment plus free installation at or before the time when broadcasting of the BSkyB services from the Marco Polo satellite ceases. According to BSkyB those with BSB equipment will be able to retain or return it as they wish.

In the light of this agreement having been reached the ITC has granted a non-domestic satellite licence to Sky, a subsidiary of BSkyB, legalising its Astra services under the terms of the Broadcasting Act 1990).

It's understood that the number of satellite TV receiving dishes that have been installed in the UK reached some 1.2 m by the end of November. Over the year the number of installations had trebled. Now that the satellite TV situation has been simplified with the BSB/Sky merger it's expected that there will be a surge of satellite TV business.

Eutelsat has been given the go-ahead to proceed with the next stage of Europsat, the European DBS system, following the signing of a memorandum of understanding by nine countries (Austria, France, Germany, Italy, Holland, Portugal, Sweden, Switzerland and Yugoslavia). Between them the nine countries have requested a minimum of 39 transponders. The DBS services will be provided by three satellites plus one in-orbit spare colocated at $19^{\circ} \mathrm{W}$. The satellites will have TWT amplifiers with an output power of 125 W and will be equipped with aerials providing a number of steerable circular and elliptical spot beams. Launch of the first satellite is
expected in 1996, though the possibility of launching a preliminary DBS satellite with the same specification in the second half of 1993 is being considered. Eutelsat II F2, the second in the series of medium-power Eutelsat craft, is due for launch via an Ariane-4 rocket this January into orbit at $10^{\circ} \mathrm{E}$.

TRANSMISSION NEWS

Concomitantly with the replacement of the IBA with the ITC on January Ist, IBA Engineering's responsibilities have been taken over by National Transcommunications Ltd. (NTL) which is to be privatised during 1991. NTL intends to maintain the high engineering standards set by the IBA and will also be building up new business in other areas of broadcasting and telecommunications, e.g. services to telecoms operators, satellite engineering, network linking, maintenance, consultancy and R and D work.

Nicam services have now started from the NTL Bilsdale transmitter and its dependent relay stations, completing the first phase of the ITV Nicam programme. The second phase will increase Nicam services via NTL transmitters from 79 per cent to 90 per cent of the population. The programme for the main transmitters is as follows: 1991 Hannington and Oxford; 1992 Waltham, Stockland Hill, Tacolneston, Craigkelly, Heathfield and Sudbury; 1993 Redruth and Selkirk.

A change in Japanese radio law has made broadcast fax transmission legal, enabling printed matter to be made available instantly to the public. Prototype equipment for a pay fax broadcast service has been developed, including receivers by Matsushita, NEC. Sanyo and Sharp. The intention is to incorporate a fax signal on a TV channel subcarrier at a frequency just above that of the sound signal. The signal would be scrambled and would use 4DPSK modulation. Display could be via a conventional fax printer, using an adaptor, or on-screen.

In our October 1990 issue Geoff Lewis reported on the US HD-TV scene. Since then American Telephone and Telegraph and Zenith Electronics have announced a new all-digital system that as a result of a series of technological breakthroughs enables it to provide significantly better performance than their carlier partially digital system. The new system eliminates transmission noise, making it possible to broadcast signals as clear as those available from cable, satellite or fibre-optic sources.

LATEST BREMA FIGURES

The latest BREMA figures relate to the third quarter of 1990. Overall TV deliveries to the trade declined by 71,000 to 820,000 compared with the equivalent quarter in 1989. Deliveries of large-screen sets declined by seven per cent while deliveries of small-screen sets declined by nine per cent (consumer sales were down twelve per cent). VCR deliveries were down just one per cent at 575,000 . Cancorder deliveries increased very slightly to 89,000 . Of all TV sets delivered, 22 per cent incorporated Nicam sound decoders: with VCRs the figure was twelve per cent. CD player product deliveries increased by 15 per cent to 481.(0)0 while deliveries of music centres fell by 35 per cent to 303,000 . The previous quarter had seen better increases in camcorder and CD product deliveries.

MAGNETISER/DEMAGNETISER

Here's a helpful device if ever there was one. A magnetised screwdriver can be a boon or a menace. The Magic Square from Wera Tools (UK) Ltd., Bar Lane

Industrial Park, Bar Lane, Basford, Notts NG6 0JA (0602 790090) is a palm-sized device that's claimed to be able to magnetise or demagnetise a screwdriver instantly when the blade is pushed in and out of the appropriate hole. Its oneoff trade price is $£ 7.50$ plus VAT. No batteries are required.

LOEWE OPTA

Due it seems to increased demand in the eastern part of Germany and the weak UK market Loewe Opta has decided to withdraw for the present from UK distribution of its products. Supply of spares and service back-up has been taken over by Colin Andrew Ltd. from addresses in London and Manchester. The London address is 358 Uxbridge Road, Southall, Middx UB8 3EJ (081 843 $0010 / 0019$), the Manchester address being Units 2 and 10 , Piccadilly Trading Estate, Great Ancoats Street, Manchester M12 XNP (1661 2743460 or 061273 8017).

AKAI'S HQ ENHANCEMENTS

Akai's recently introduced VS865 VCR at $£ 450$ features "Super Digital HQ". The system is designed to reduce picture noise caused by poor broadcast reception or poor quality video tapes. Several processes are used to improve picture quality. One uses digital noise reduction with field instead of line correlation. Field correlation works by adding successive fields to boost the video signal above the noise level. A split-screen display enables the user to compare the picture with and without this noise reduction, which is also claimed to offer minimal loss of vertical resolution.

The Akai VSA650 at $£ 600$ features "Intelligent HQ". This optimises the recording circuitry for the type of tape.

Akai says that when standard VHS decks leave the factory they are designed to give optimum results with standardgrade tape. You thus get a poorer picture when using a high-grade tape. Intelligent HQ decks analyse the tape and then optimise the recording current and noise-cancelling circuitry to match the grade. A subsequent article will provide more details of these systems.

SHOWS

The Video Show 1991 is to be held at the Business Design Centre, Upper Street, Islington, London N1 on February 28th to March 3rd - the first day is reserved for trade/press visitors. This home video exhibition is hosted by What Video, What Satellite and Camcorder User magazines.

The CD-ROM Europe 91 Exhibition and Conference is being held at the Novotel, Hammersmith, London W6 on May 21-23rd. For further information phone 073360535.

The next Cable and Satellite Exhibition is to be held at Olympia, London on April 8-10th. This is a trade only event. For further information phone 0819489831.

GUARANTEE UNDERWRITING

The rates paid by manufacturers for in-guarantee repairs have always been a sore point in the trade. With a view to overcoming this problem Domestic and General, the UK's leading provider of breakdown insurance for domestic appliances, has announced an agreement with Pioneer. Inwarranty breakdown of Pioneer's CTV, VCR and laserdisc products is being underwritten by Domestic and General: dealers participating in the scheme will receive a full commercial rate for both labour and parts when carrying out in-warranty repairs (two years for TV sets and one year for VCRs and laserdisc players).

EURAS-SySTEM

INTERNATIONAL

the EURAS SYSTEM PROVIDES INFORMATION TO HELP YOU SOLVE PROBLEMS

- QUICKLY

The heart of the EURAS SYSTEM contains Video, CD, TV and Hi-Fi repair tips, faults, remedies and information from manufacturers and thousands of repair technicians.

* MORE THAN 50,000 FAULTS \& REMEDIES
* FOR 150 MANUFACTURERS \& BRANDS
* COVERING 3,000 MODEL TYPES

Available On-Line for only £8 per month (plus VAT)

CALL 0272-724475

Information for some manufacturers also available in book form.

EURAS International Limited, Heston house, 7-9 Emery Road, Brislington, Bristol BS4 5PF Fax: 0272723374

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Ed Rowland, J.R. Trimmer, Nick Beer, Stephen Leatherbarrow and Hugh MacMullen

Philips NC3 Chassis

If the chopper transistor Q401 fails, check for dry-joints at the connections to the chopper transformer T402 before fitting another BUT11AF.

You often find that the rotary channel switch gets dirty. If you are careful it can be dismantled for cleaning. P.B.

Philips 22CS5240 (K40 Chassis)

This set was dead. There was no line drive as R3192 was open-circuit. A picture was obtained when this had been replaced but there were striations on the left-hand side. These disappeared when the scope was connected to the collector of transistor 7190. R3191 was open-circuit. P.B.

Philips 14CN2201 (NC3-CR Chassis)

Here's a trap for the unwary! Late production versions of the remote control NC3-CR chassis use a Preh on/off switch that looks similar to ones used in other makes (the bracket is different, but the old one can be re-used). Check the low-voltage contacts however! Most switches have a momentary contact that makes only when the button is pressed right in and breaks when you release your finger. This is not the case with this switch. The NC3-CR type switch's low-voltage contacts remain connected as long as the mains contacts do. If you fit the wrong type of switch the power supply will not come out of standby - even though the standby LED is off.

Philips G90 Chassis

The problem with this set was no blue. Our first step was to check the voltages around the blue output transistor. As expected the collector voltage was high, but I was surprised to find that the emitter voltage was higher than the base voltage. Diode D6416 (BAS32) was leaky.
P.B.

Philips K30 Chassis

If you find that there's a black band at the bottom of the picture, check for ripple on the 32 V LT2 supply. You'll probably find that $\mathrm{C} 1588(680 \mu \mathrm{~F})$ is open-circuit.
P.B.

ITT CT2612/2

This set suffered from intermittent loss of signals when it was first switched on. After about ten minutes it would settle down and be fine for the rest of the evening. The obvious suspect was the combined tuner/i.f. module. We unplugged it from the mother board and as no obvious dryjoints could be seen gave it a "blanket solder" job. There was no further trouble after we'd done this.
E.R.

Amstrad TVR2

The customer complained that it took up to an hour from switch on before sound and vision appeared. We didn't bother to check this but went straight for $\mathrm{C} 1507(0 \cdot 47 \mu \mathrm{~F})$. After fitting a $1 \mu \mathrm{~F}$ capacitor in this position the equipment fired up straight away.

Removing the TV chassis is fairly easy provided you first remove the VCR unit in order to gain access to the small screw located beneath the front of the main PCB. Before returning one of these sets to the customer a point worth
checking is that the 'repeat' switch at the rear of the receiver is in the 'off' position. Otherwise a call-back is a certainty - with the switch in the 'on' position the machine will carry out only the play function. Another thing to catch out the unwary is the separate mains on/off switch at the back.
E.R.

Sony KV2705

This set had an uncontrollably bright raster with flyback lines. The problem was caused by $\mathrm{R} 718(330 \mathrm{k} \Omega)$ which had increased in value to over $2 \mathrm{M} \Omega$.
E.R.

Philips 21GR2752/RC5903 etc

A common problem I've had with this and similar models is failure of the remote control handset due to dry-joints on the infra-red diode. It's simply a matter of resoldering the diode - until you try to open the handset! In their wisdom Philips glued the two halves together. Any attempt to part them will mark the case. Here's a solution to the problem, with no visible damage.

With your thumb nail only, peel back one corner of the name-plate strip. Then, with a flat blade, peel it back just past the second row of buttons. Care is required: don't bend the strip back too far or you'll crease it. Now to the clever bit. Drill a 6 mm hole in the centre of the handset, 1 cm in from the top edge of the recess for the strip. The LED can now be resoldered through the hole, and the strip will restick to form an invisible repair.
J.R.T.

Nikkai Baby 10/Samsung Cl210R

These little sets have sold well. The main problem we've had with them has been failure of the potted regulator. This particular one was a bit different however. Our field engineer found that the 5A h.t. fuse was open-circuit. As he couldn't measure any shorts and the fuse had simply died (not blown) he replaced it and switched on. At this a piece of print from the bridge rectifier to the h.t. line burnt up pretty spectacularly. So the set was brought into the workshop. We found that there was a short-circuit across the h.t. line. The reverse polarity protection diode was hot favourite but blameless, as was the main reservoir capacitor. The cause of the problem was a short-circuit in the d.c. jack, which had melted. Spares for these sets are available from Willow Vale.
N.B.

Salora J Chassis

Repeated blowing of the chopper transistors is becoming a problem with these sets. A number of things help to prevent this. First, ensure that good-quality replacements of the correct type (BUW41B) are used. Next ensure that heatsink compound is used on both. Replace the $4 \cdot 7 \mu \mathrm{~F}$ drive coupling capacitors CB712/726. I've had those of a certain manufacture go short-circuit when used as replacements: the most reliable ones seem to be the purple type from RS Components. Replace the $3 \cdot 3 \Omega$ series resistors in each transistor's base circuit (RB703/705) RB705 in particular tends to go high in value. If DB712 (1N4148) goes short-circuit, as it can, this resistor will go open-circuit. It's wise to check the print and soldering
around the bottom of the chassis in the vicinity of the chopper transistors, particularly at the start and snubber resistors (RB715 and RB706 respectively). Check for print cracks on the heatsink connections. As with any power transistors, check the drive waveforms before completing the repair and investigate any irregularities.

We sometimes find that the Ipsalo transformer MB500 has a short-circuit or low-impedance primary winding. Physical checks here may show signs of burning or corrosion. The d.c. resistance should be about $2 \cdot 8-5 \Omega$ depending on the transformer - the two most likely to fail are the FM0500 (diode split) and FM0245.
The LFO041 Ipsalo control chip can also cause this problem. All you can do in this case by way of fault finding is to eliminate other possibilities. The chip seldom fails however.
N.B.

Amstrad CTV1400

The line sync would disappear during a channel change. After an unsuccessful prod around with blunt instruments (freezer and hairdryer) we checked with the circuit diagram and noted a couple of likely culprits, the two zener diodes D715 and D704. Replacing them cured the fault.

Intermittent lowering of the sound level and/or buzzing is caused by the adjustable capacitor on the sound i.f. subpanel.
S.L.

Triumph CTV8211

The customer's description of the problem with this set was very dark, poor pictures. On checking we found that the c.r.t.'s first anode supply was absent. The voltage is obtained in the usual manner for a set of this age - by diode rectification of a pulse voltage. Serics resistor R937 $(3 \cdot 3 \mathrm{k} \Omega, 1 \mathrm{~W})$ was open-circuit. This was in turn due to print breakdown where the cathode of the rectifier (D914) passes close - too close in my opinion - to some carthed print. Careful scraping to improve the clearance cured the problem.
S.L.

Philips K40 Chassis

After fitting a new focus unit to this set, something that's often necessary, we found that there were EW problems. R 3177 was open-circuit. The manual gives the value as 4.7Ω but a 12Ω resistor was fitted.
S.L.

Hitachi CPT1476R

The problem with this set was field roll when warm. The hold control circuit is very simple, consisting of three components connected to pin 1 of the TDA4503 chip IC201. A puff of freezer on each in turn proved that C609 $(0.22 \mu \mathrm{~F})$ was responsible.

Fidelity CTV14R (ZX2000 Chassis)

This set had an intermittent fault - loss of signals and randomly unhappy about Ch. 3 selection. The ML923 tuning chip was faulty. After replacing it however the signals would still sometimes fail to appear, though Ch .3 selection was o.k. As the supplies were correct a new tuner unit was fitted. This finally put matters right.
S.L.

Ferguson TX100 ($\mathbf{1 1 0} 0^{\circ}$) Chassis

This 110° set suffered from insufficient width. We found that certain components which should have been deleted,
being intended for the 90° version, were in fact fitted width coil L19, line linearity coil L18 and parallel damping resistor R136. Our problems were over when the circuit had been put right. While the "fault" was present all the controls worked normally but the width/EW correction circuit was unable to cope with the magnitude of the error. The h.t. was correct at 119 V throughout.
S.L.

Alba CTV12

No sound or picture with normal h.t. was the fault here. 'We found that the 12 V regulator transistor Q208 was open-circuit base-to-emitter. A TIP41 proved to be a suitable equivalent. These sets are the same as the Lloytron portables.
S.LL.

ITT Pico S Chassis

This set was dead. A relay switches the mains supply but there were no l.t. voltages on the remote-control board as the l.t. transformer was open-circuit. Its failure is quite common.
S.L.

Hitachi NP83CQ Mk 2 Chassis

The sound was o.k. but there was no raster. We found that there was no luminance output from the colour decoder chip IC501 which appeared to be switched off. Its pin voltages were correct but the sandeastle pulse waveform at pin 8 was of rather low amplitude - insufficient to get lC501 working properly. I decided to increase the tube's first anode voltage in order to see something on the screen - a TV set with a display will talk to you! I then shorted out R558 ($2 \cdot 2 \mathrm{k} \Omega$) to increase the amplitude of the line section of the sandeastle pulse and was pleasantly surprised to see a colour picture with little or no line sync and incorrect colour over half the screen. Feedback pulses from the line output transformer are fed back to the line generator circuit in IC701 via two $3.9 \mathrm{k} \Omega$ resistors, R720 and R721. One of them had risen in value to over $1 \mathrm{M} \Omega$, though it was perfect in appearance. Replacing it put everything right.
H. MacM.

Bush 2321T

The problem with this set was no colour. After much soul searching the cause turned out to be an open-circuit connection at plug 10. Just to annoy me the sound became uncontrollable when I'd put the first fault right. The culprit this time was the SAA1293 chip.
H. MacM.

National Panasonic TC361

This set would start to trip a few times a week, but only when cold. It worked all right when we got it on the bench but at last gave up the ghost. These sets use a thyristor line output stage and one of the diodes, D552, was found to be open-circuit. It's in parallel with the scan thyristor.
H.MacM.

Philips K30 Chassis Edition II

After five hours with the back on the colour would go. Take the back off and the colour returned. It took me a considerable time to realise that the fault had nothing to do with temperature. When the colour was absent there was no pulse input at pin 8 of the TDA3560 colour decoder chip. The reason for this was a bad connection at tag 4 of the sync module.
H.MacM.

DAT System Technical Details

George Cole

Digital audio systems are playing an increasing role in consumer electronics. The Video-8, Hi-8 and Laserdisc (formerly CDV - compact disc video) systems have pulsecode modulated (PCM) digital sound, while earlier last year JVC announced a digital audio specification for the Super-VHS format. Nicam sound is now available in most ITV regions and will be broadcast from most BBC transmitters by the end of the year.

The digital audio tape (DAT) system is based on the rotary-head technology developed for VCRs. Although it's primarily an audio format it does have video applications. Here are some examples: DAT has been designed to store high-quality still-video images with sound; Fuji and Toshiba have developed a digital still-video format that uses DAT tape to store over 1,000 images; Aiwa plans to market an analogue-to-digital converter to enable its HDS1 DAT recorder to store still images from VCRs, cancorders, still-video cameras and TV broadcasts. Samsung developed a DAT video system that recorded around eighty minutes of moving analogue video on DAT tape, though the system was never launched commercially. Future DAT systems may be able to store digitallycompressed moving video material.

Recording Principles

The principles of analogue audio recording are straightforward and well known. Sound waves consist of air pressure variations. These are converted into an analogue electrical signal by a microphone. The electrical signal's amplitude in volts represents the sound wave's amplitude while the frequency of the electrical and sound signals remains the same. When recorded on tape the signal's amplitude is represented by the number of lines of magnetic flux while its frequency is related to the wavelength of the recorded signal.

With digital recording the analogue signal has to be sampled then converted to digital form before application to the recording circuit - see Fig. 1. The principle of sampling is illustrated in Fig. 2. It's simply a matter of checking the signal's amplitude at regular intervals. These samples are then converted to binary form. The accuracy of this system depends on the sampling frequency and the number of levels used (quantisation) to measure the signal samples. In our simple example three-bit quantisation ($000-111$) has been used, giving eight possible signal levels. This would be totally inadequate of course. The DAT system uses a sampling frequency of 48 kHz with 16 -bit quantisation. This means that the amplitude of the analogue signal is measured 48,000 times a second using a measuring scale that has 65,536 levels. The samples are encoded as a stream of ones and zeros. During playback this process is reversed.

Advantages of Digital Recording

Digital recording seems to be a roundabout way of going about it. Why not stick to the simpler analogue method? In practice analogue recording is a rather more complex business than it might at first seem to be if acceptable results are to be obtained. The first problem is that using an analogue signal to alter the tape's magnetic
characteristics is an inherently non-linear process. This affects the frequency response. To improve the linearity a high-frequency (around 90 kHz) bias signal is added to the audio signal during the record process. The snag with this is that h.f. sound signals can produce their own bias, which distorts the sound. For this reason some cassette recorders use circuitry that varies the amount of bias applied during the record process.

Another problem is noise, which shows up mainly as hiss. Most analogue tape recorders incorporate a noisereduction system that gives a signal-to-noise ratio of around 68 dB .

With analogue recording it's also important to set the correct recording level for the type of tape. Otherwise the tape may saturate, producing distortion.

If you add to all this the need to keep the deck well maintained with clean heads, to have correct bias and equalisation settings for the type of tape used and a stable transport system to minimise tape speed fluctuations that cause wow and flutter, you begin to see the problems of analogue recording. What's more, these problems are made worse whenever an analogue recording is copied.

Digital recording involves storing numbers. There's no need to worry about bias, tape hiss or wow and flutter. And there's no loss of quality when a digital tape is copied - this is why some people call digital copying "cloning". There are problems with digital recording, for example the huge amount of data that has to be processed each second and the need for powerful error correction systems. But as we shall see they have been overcome with the DAT system.

Background

Professional audio studios have for some time used digital PCM sound processors connected to domestic VCRs. DAT is in effect a fusion of the two technologies. It

Fig. 1: Block diagram showing the basic processes involved in (a) digital audio recording and (b) playback.

Fig. 2: Simple example of sampling and quantisation (with eight levels) of an analogue signal.
was regarded as a logical development from the compact disc (which was originally called the digital audio disc), and a number of companies produced prototype domestic digital audio tape systems. JVC for example tried recording digital sound on a conventional audio cassette. Eventually the consumer electronics companies decided to develop a standard format, and in June 1983 an inaugurat meeting was held, attended by 54 companies. During the following four years the group grew to 87 and over 800 meetings were held.

The initial conference decided that the new tape system should offer a number of advantages over the standard compact cassette. These included (1) high-quality digital sound; (2) a longer record/playback time; (3) new or improved convenience features such as faster search systems, track programming, etc; and (4) the ability to be used for other purposes such as video and data storage. The DAT committee formed two working groups to consider two possible DAT formats, S-DAT (with a stationary head) and R-DAT (with rotating heads).

As its name suggests in the S-DAT system the tape ran past a static recording head. The data rate was increased by recording 22 parallel tracks across the tape. These consisted of 20 data plus subcode tracks and two auxiliary tracks. The transfer rate was $2 \cdot 4 \mathrm{Mbits} / \mathrm{sec}$. An S-DAT cassette measured $86 \times 53.5 \times 9.5 \mathrm{~mm}$. Tape speed was $4.75 \mathrm{~cm} / \mathrm{sec}$, the same as with a compact cassette, giving a recording time of 90 minutes. There was also an optional half-speed mode.

Unfortunately the production of S-DAT recorders proved to be too complex, involving the use of thin-film technology for the multi-track heads. S-DAT was abandoned in favour of R-DAT, the technology used by all DAT machines.

R-DAT

R-DAT is firmly based on VCR technology and it's interesting that at one stage the DAT committee considered making it compatible with the Video-8 format. The rotary-head system was chosen because it used well-
established technology and was suitable for recording large amounts of data in a limited tape area. The combination of a fast writing speed and a slow linear tape speed made it possible to achieve a long recording time with a small cassette.

The data rate is equal to the sampling frequency multiplied by the quantisation number multiplied by the number of channels. With the DAT system this works out at $48,000 \times 16 \times 2=1.536 \mathrm{Mbits} / \mathrm{sec}$. When subcode and error correction bits are added this rises to $2.77 \mathrm{Mbits} / \mathrm{sec}$. In practice the processing speed during record and playback is around $7.5 \mathrm{Mbits} / \mathrm{sec}$, because the data is timecompressed. DAT's recording density is around 114 Mbits per square inch, which means that a two-hour tape can store 1.3Gbytes of data - equivatent to over 1,000) floppy discs. Table 1 compares the DAT, Video- 8 , compact cassette and CD systems.

The DAT Format

The standard DAT drum has a diameter of 30 mm . Its two heads are 180° apart, the heads having azimuth angles of $+20^{\circ}$ and -20°. The tape wrap is 90°. There are no fixed heads, the data being overwritten by the rotary heads. A series of pilot tones recorded on the tracks is used by the tracking system.

The drum is inclined at an angle of $6{ }^{\circ} 22^{\prime} 59.5^{\prime \prime}$. It spins at $2,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$., giving a writing speed of $3 \cdot 13 \mathrm{~m} / \mathrm{sec}$. This is around 66 times faster than the compact cassette - a $\mathrm{C} 9($ tape running at this speed would give just 43 seconds' recording time. DAT's linear tape speed is $8.15 \mathrm{~mm} / \mathrm{sec}$. Several companies have developed miniature DAT tape mechanisms that have a 15 mm drum and a 180° wrap to record tracks that are compatible with standard DAT mechanisms.

Tracks

Fig. 3 shows the DAT track format in simplified form. The helical tracks are 23.501 mm long and $13.59 \mu \mathrm{~m}$ wide, each pair being called a frame. There are also wo 0.5 mm

Table 1: Comparison of DAT, Video-8, Compact Cassette and CD systems.

Item	DAT (Standard mode)	Video-8 (PCM mode)	Compact cassette	$C D$
Sampling	48 kHz	31.25 kHz	Not used	44.1 kHz
Maximum audio frequency	22 kHz	15 kHz	18 kHz (with metal tape)	20 kHz
Quantisation	16-bit	8-bit	Not used	16-bit
	linear	non-linear		linear
Dynamic range	96 dB	88 dB	50-60dB	96 dB
Transmission speed	$2.46 \mathrm{Mbits} / \mathrm{sec}$	Approx. $5.79 \mathrm{Mbits} / \mathrm{sec}$	-	2.03Mbits/sec
Subcode capacity	273.1 kbits/sec	Not used	Not used	$58.8 \mathrm{kbits} / \mathrm{sec}$
Modulation	8-10	Bi-phase	Not used	EFM
Error correction	Dual ReedSolomon	CRCC	Not used	CIRC
Cassette/ disc	$\begin{gathered} 73 \times 54 \times \\ 10.5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 95 \times 62.5 \times \\ 15 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 102 \times 64 \times \\ 12 \mathrm{~mm} \end{gathered}$	120 mm diameter x 1.2 mm thick
Recording time	120 min	90 min (normal)	120 min (max.)	74 min 42 sec
Tape width	3.81 mm	8 mm	3.81 mm	_
Tape speed	$0.815 \mathrm{~cm} / \mathrm{sec}$	$2.01 \mathrm{~cm} / \mathrm{sec}$	$4.75 \mathrm{~cm} / \mathrm{sec}$	-
Relative speed	$3.133 \mathrm{~m} / \mathrm{sec}$	$3.12 \mathrm{~m} / \mathrm{sec}$	$0.0476 \mathrm{~m} / \mathrm{sec}$	-
Track width	$13.591 \mu \mathrm{~m}$	$34.4 \mu \mathrm{~m}$	-	$0.5 \mu \mathrm{~m}$
Track pitch	$13.591 \mu \mathrm{~m}$	$34.4 \mu \mathrm{~m}$	-	$1.6 \mu \mathrm{~m}$
Frequency response	$4 \mathrm{~Hz}-22 \mathrm{kHz}$	$20 \mathrm{~Hz}-15 \mathrm{kHz}$	$40 \mathrm{~Hz}-18 \mathrm{kHz}$ (metal tape)	$4 \mathrm{~Hz}-20 \mathrm{kHz}$
Distortion	0.0016\%	0.5\%	0.3\% at -20dB	0.0016\%
Search time per 3 min. track	0.9 sec	6 sec	9 sec	$\begin{aligned} & \text { Less than } \\ & 0.9 \mathrm{sec} \end{aligned}$

Fig. 3: Basic layout of the helical DAT track.

Fig. 4: Sections of the helical track - see Table 2.

| Sync | 10 code
 8 bits | Block
 address
 8 | Data with parity bits
 866 bits |
| :---: | :---: | :---: | :---: | 0590

Fig. 5: Details of a PCM block. There are 128 of these blocks in the PCM area of the helical track.
wide analogue tracks at the top and bottom of the tape these have been designated optional. DAT's slow linear tape speed would limit their use and the main reason for having them appears to be to provide protection against tape damage.

Table 2 gives a breakdown of a DAT track recorded with a 30 mm drum, 90° wrap and a drum speed of 2,000 r.p.m. Each track consists of 196 "blocks", with each block containing 288 bits. The channel frequency is 9.408 MHz . Fig. 4 shows the track sections. We'll take each in turn.
(1) The margin blocks (11) contain no data. They act as a spacer between the digital track and the optional analogue track.
(2) The PLL/sub blocks provide a phase lock for the subcode section.
(3) Subcode-1 is the first subcode section.
(4) The post-amble blocks contain synchronising information.
(5) The IBG (inter-block gap) acts as a spacer between the various data areas - there are four altogether. They make it possible to rerecord sections of track independently.
(6) The ATF (automatic track following) blocks contain the pilot tones for the tracking system.
(7) Another IBG, as (5).
(8) PLL/PCM, the phase lock section for the PCM area.
(9) The PCM area, consisting of 128 blocks. The

Table 2: DAT track composition.

Section		Angle	Blocks
1	Margin	5.051°	11
2	PLL/sub	0.918°	2
3	SUB-1	3.673°	8
4	Post-amble	0.459°	1
5	IBG	1.378°	3
6	ATF	2.296°	5
7	IBG	1.378°	3
8	PLL/PCM	0.918°	2
9	PCM	58.776°	128
10	IBG	1.378°	3
11	ATF	2.296°	5
12	IBG	1.378°	3
13	PLLsub	0.918°	2
14	SUB-2	3.673°	8
15	Post-amble	0.459°	1
16	Margin	5.051°	11
	Total	90°	196

Time $420.9 \mu \mathrm{sec}$ $76.5 \mu \mathrm{sec}$ $306 \cdot 1 \mu \mathrm{sec}$ $38.3 \mu \mathrm{sec}$ $114.8 \mu \mathrm{sec}$ $191 \cdot 3 \mu \mathrm{sec}$ $114.8 \mu \mathrm{sec}$ $76.5 \mu \mathrm{sec}$ $4,898 \mu \mathrm{sec}$ $114.8 \mu \mathrm{sec}$ $191 \cdot 3 \mu \mathrm{sec}$ $114.8 \mu \mathrm{sec}$ $76.5 \mu \mathrm{sec}$ $306 \cdot 1 \mu \mathrm{sec}$ $38.3 \mu \mathrm{sec}$ $420.9 \mu \mathrm{sec}$ $7,500 \mu \mathrm{sec}$
composition of each of these blocks is shown in Fig. 5.
(10-16) These sections comprise a second ATF part, more subcode blocks, IBGs, post-amble etc.

Subcodes

The DAT subcode system is more claborate than that used with compact discs. It can store the subcodes used for the CD-Graphics format, which puts still graphics on an audio CD (see Television April 1990, pages 450-5). Future applications include using DAT as a storage medium for high-resolution graphics. Each track has two subcode areas.

There are two types of DAT subcodes. First those used to provide recording information, such as the sampling rate, quantisation number, etc. Secondly those used to provide user information or playback functions such as time elapsed, track number, track search, etc. The first type, called PCM-ID, is recorded in the PCM area. The second type, subcode ID, is recorded in the subcode areas. Fig. 6 provides a breakdown of the two subcode groups.

Each PCM-ID code has two bits. ID-1 is the format classification, which defines the function of the DAT recorder. For audio recording the code is (x) - it changes if the recorder is used for other purposes, e.g. data storage. ID-2 tells the recorder whether pre-emphasis has been applied to the signal: $00=$ no pre-emphasis; $01=$ pre-emphasis- 1 applied. ID- 3 provides information on the sampling frequency (as we'll see later, the DAT format offers a number of different modes with different sampling frequencies). $00=48 \mathrm{kHz} ; 01=44 \cdot 1 \mathrm{kHz} ; 10=32 \mathrm{kHz}$. ID4 tells the machine whether the recording has two or four channels: $00=1$ wo; $01=$ four. ID- 5 gives the quantisation number: $00=16$ bits linear; $01=12$ bits non-linear. ID-6 indicates the track pitch - some prerecorded tapes have wide tracks. $(0)=13 \cdot 6 \mu \mathrm{~m} ; 01=20 \cdot 4 \mu \mathrm{~m}$. ID-7 is a copy prohibit code, which tells the machine whether it's permissible to make a digital copy of the input signal. $00=$ digital copy permitted; $01=$ digital copy inhibition. This forms the basis of the serial copy management system (SCMS) that stops users making multi-generation digital recordings - we'll return to this later. ID-8 is an extended section that's referred to as a "pack". It consists of 32 twobit codes. The pack is at present unused, being reserved for future applications. You'll notice that quite a number of the PCM-ID two-bit code possibilities are at present unused.

There are two optional PCM-ID codes, SC (search code) and AC (auxillary code). SC contains the track selection number and time (in hours, minutes and seconds) from the start of the tape. It can also be used to find the start and end of the tape. The AC code is used primarily for prerecorded tapes. It provides a variety of information such as time from start of the tape, programme time, programme/index number, date recorded, programme table of contents, cassette catalogue number, etc. Most of the AC data, such as time from start of tape, programme and index number, can also be held in the subcode-ID area. It may seem wasteful to have two areas devoted to storing the same information. The reason for doing so is that FEM-ID codes cannot be rerecorded without also erasing the PCM signal while the subcode-IDs can be rewritten independently.

As we have seen each PCM area consists of 128 blocks and each block contains eight PCM-ID bits. There are thus 1.024 PCM-ID bits per track. ID-1-8 at two bits cach take 16 bits. SCl-4 and ACl-4 consist of four bits cach, i.e. 32 in all. There are in addition 16 frame address bits. This gives

PCM area subcodes	
$10-1$	Format type
ID-2	Emphasis
$10-3$	Sampling frequency
$10-4$	Number of channels
$10-5$	Quantisation
$10-6$	Track width
$10-7$	Copy prohibit
$10-8$	Pack
SC	Optional
AC	Optional

Subcode area information
Subcode 10
Subcode ID
Control ID
Control
Data 1 D
Data ID
Pack ID
Pack id
PNO iD
PNO
plus
Subcode data
Optional
Fig. 6: Subcode groups.

Sync 8 bits	Subcode 10 12 bits		Parity 8 bits	Subcode data with parity bits 256 bits
Block address, 4 bits				

Fig. 7: Details of a subcode area block.

Sync	Control ID	Data 1D	Format ID	Block address	
Sync	PNO-ID2	PNO-ID3	PNO-ID1	Block address	[0593

Fig. 8: Arrangement of the subcode ID sections of two adjacent subcode area blocks.
a total of 64 PCM-ID bits. Thus each bit is recorded on the track 16 times $(1,024-64=16)$.

We'll deal next with the two separate subcode sections of the track. The DAT subcode signal capacity is $273 \mathrm{kbits} / \mathrm{sec}$, which is approximately $4 \cdot 6$ times greater than with the CD format. Most of the subcodes can be recorded automatically or manually or added to existing tape selections.

Fig. 7 shows the general composition of a subcode block, which is similar to a PCM block. The subcode ID section (12 bits) stores control-ID, data-ID etc. information as shown in Fig. 8. Control-ID consists of four bits which provide four items of information: TOC-ID indicates whether or not a TOC is recorded (only prerecorded tapes have TOCs); a Start-ID marks the beginning of a recorded section; a Shortening-ID (sometimes called Skip-ID) can be used for fast forward to the next Start-ID; and a Priority-ID which indicates whether the programme is rerecorded or not. The PNO-ID codes are used to mark programme numbers and are useful for tape editing or renumbering tape selections since they take priority over the PNO codes recorded elsewhere, for example the PCMID auxillary code.

The Start-ID code is an important part of the DAT fastsearch system. With compact cassette recorders the fastforward and rewind speeds are twenty-thirty times faster than the normal playing speed. DAT's high-speed search system is two hundred times faster than the normal speed however. Thus while it takes a conventional cassette recorder around four and a half minutes to run through an entire C90 tape a DAT recorder takes just forty seconds to search through a two-hour tape. Put another way, during fast search a DAT recorder takes one second to go through a three-minute recording.

To carry out a fast-search operation a DAT recorder requires the programme number, time and Start-ID code. The Start-ID code is recorded during the first nine seconds of a recording to help the recorders locate it when at full speed. One problem with the fast-search mode is that the relative head-to-tape speed is altered, giving rise to tracking errors. These would make it difficult if not impossible to read the ID codes. This difficulty is overcome by speeding up or slowing down the head drum in the search mode. In addition, the data is read only periodically.

If the Format-ID code is set to a value other than 00 (audio record) the subcode areas can be used to store 64 bit data packs for time from start, running time, programme time etc. as well as graphics and text.

DAT Modes

There are six DAT modes. Mode I is the standard DAT recording and playback mode, with 48 kHz sampling and 16 -bit linear quantisation. This mode is mandatory for all DAT machines.

Mode II, which is optional, is designed to be compatible with satellite digital stereo broadcasting. It has a 32 kHz sampling frequency. Other details are the same as Mode I.

Mode III is an optional half-speed mode which doubles the recording and playback times. The tape speed is $4.075 \mathrm{~mm} / \mathrm{sec}$ and the transmission speed $1.23 \mathrm{Mbits} / \mathrm{sec}$ (subcode capacity $136 \cdot 5 \mathrm{kbits} / \mathrm{sec}$). Sampling is at 32 kHz , with 12 -bit non-linear quantisation. As with LP VCRs the user selects the recording tape speed and the machine automatically selects the correct playback speed. With metal particle tape the playing time is four hours: when thinner, metal evaporated DAT tape becomes available the time will be increased by about thirty per cent. JVC has developed a version called "double scanning" in which the tape speed remains the same but the drum speed is reduced to $1,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. when recording: for playback the drum speed is normal but the tape runs at half speed.

Mode IV gives four-channel recording. Quantisation and sampling frequency are as in Mode III.

Mode V is used for playing prerecorded tapes. The sampling frequency of 44.1 kHz , with quantisation as in Modes I and II, is the same as with the CD format. This makes it easier for music companies to transfer CD master tapes to DAT. Normal-track prerecorded DAT tapes are made in the same way as prerecorded video tapes, i.e. a master recorder is connected to a series of slave recorders. This mode is mandatory. In the original DAT specification the $44 \cdot 1 \mathrm{kHz}$ sampling rate could be used only for playback, so that DAT recorders couldn't be used to make digital copies of compact discs. However an agreement between the hardware and music companies has resulted in an extension of the DAT format to include a $44 \cdot 1 \mathrm{kHz}$ sampling rate in the record mode. We'll return to this later.
Mode VI is an alternative prerecorded tape format which uses a wide track ($20.41 \mu \mathrm{~m}$) to give improved sound quality. The tape speed is increased to $12.25 \mathrm{~mm} / \mathrm{sec}$, resulting in a maximum playback time of eighty minutes. Barium ferrite instead of metal tape is used. At 700 Oersteds the coercivity of BaFe tape is lower than that of metal tape (1,500 Oersteds). For wide-track duplication a contact process is used: a master metal tape which contains a mirror-image of the signal is brought into close contact with the BaFe slave tape. Heat from a laser reduces the coercivity of the BaFe tape to below the Currie point so that the master tape's signal is transferred to the slave tape. To restore its coercivity the slave tape is then wrapped around a drum that contains a coolant. This mode is also mandatory.

Tape

The shortest recordable wavelength with the DAT system is about $0.67 \mu \mathrm{~m}$. This calls for the use of highdensity, high-coercivity tape. Standard DAT tape is made from metal powder, is 3.81 mm wide (the same as compact cassette tape) and $13 \mu \mathrm{~m}$ thick. It's more or less the same as Video- 8 tape and it wouldn't be surprising if some tape

Fig. 9: Appearance of the DAT cassette.

Fig. 10: Structure of a DAT cassette.

Fig. 11: The DAT tape path.
companies made their DAT tape simply by cutting 8 mm tape down to size. The magnetic layer is $3 \mu \mathrm{~m}$ thick, the base film is $9.5 \mu \mathrm{~m}$ thick and there's an $0.5 \mu \mathrm{~m}$ thick back coat. As previously mentioned, the coercivity is 1,500 Oersteds - for comparison, the cocrcivity of VHS tape is around 700 Oersteds. The DAT tape remanence is 2,500 Gauss. Future plans include the use of metal evaporated (ME) tape some $10 \cdot 8 \mu$ m thick.

The Cassette

The design of the $73 \times 54 \times 10 \cdot 5 \mathrm{~mm}$ DAT cassette is based on that of the video cassette. A two-hour cassette holds 60 metres of tape. As with video tape, only one side
is used for recording. Fig. 9 shows the exterior appearance of the cassette. Again as with a video cassette there's a protective lid to prevent dust, dirt and fingerprints contaminating the tape. There's also a slider which covers the tape hub holes. The hubs are flangeless and are fitted with brakes. There are no guides or rollers within the cassette. When a cassette is inserted into a DAT recorder the lid opens and the slider moves back to expose the hub holes into which mechanical reel shafts go.

Fig. 10 shows an exploded view of the cassette. The format uses an optical end-of-tape sensor. Light from two LEDs shines on to prisms at each end of the cassette. These prisms reflect the light on to the tape, which is opaque apart from the leaders. Thus at the beginning and end the light shines on to a phototransistor which activates the brake. Because of the high search system speed the leaders are approximately 60 mm long. This provides a wide enough braking margin.

The cassette has five identification holes. The first three are used to identify the type of tape. If one is taken as open and zero as closed, the code is $(O) O=$ metal tape or equivalent $13 \mu \mathrm{~m}$ thick, $010=$ thin metal or equivalent tape, $(0) 1=13 \mu \mathrm{~m}$ wide-track (BaFe) tape, $011=$ thin BaFe tape. For hole four $1=$ prerecorded music tape, $0=$ regular tape for recording. For hole five $1=$ recording not possible, $0=$ recording possible. There's also an erasure prevention slider similar to that on Video-8 cassettes - the difference is that with a DAT cassette an open hole (slider pushed back) prohibits recording while a closed hole permits it.

Hardware

The DAT tape path is shown in Fig. 11. The important point is the 90° tape wrap, which reduces head and tape wear. As the heads are not in contact with the tape for fifty per cent of the time the DAT system has to use time compression for the signal during recording and playback.

Fig. 12 shows in simplified block diagram form the arrangements used in a DAT recorder while Fig. 13 shows in a little more detail the recording system. The record channels start with pre-emphasis of the analogue left and right audio signals which are then passed through low-pass filters to remove frequencies that are higher than half the sampling frequency. This is done to prevent aliasing during the sampling process. Sample-and-hold circuits do the sampling, after which an analogue switch selects left and right samples alternately. These are then converted to digital form, and error correction bits are added. Signal interleaving is then carried out in conjunction with a 128 Kbit RAM.

Cross-interleaving is the next process, to give added error protection. The block is labelled CIRC, which stands for cross-interleaved Reed-Solomon code - much the same techniques are used in the CD system, and were outlined in the August 1989 issue of Television, pages 756-9.

The signal then undergoes 8 -10 modulation to prevent long strings of zeros or ones which would give rise to d.c. components. The 8 -10 modulation system works by splitting the 16 -bit words into two 8 -bit words then converting each to ten bits. The data is now ready for storing on tape. DAT recorders don't use erase heads, overwriting previous data instead. The problem with this system is that when a short wavelength signal overwrites a long wavelength signal the unerased portion produces noise. For this reason the ratio between the shortest and the longest wavelength must be no greater than 1:4. Interblock gaps (IBGs) are added between the various

Fig. 12: Simplified block diagram showing the arrangements used in a DAT recorder.

Fig. 13: Block diagram of the DAT recording system.
track blocks. These have 1.568 MHz erase signals, allowing separate parts of the track to be erased and also preventing adjacent blocks from being overwritten.

Encoding

We'll now take a closer look at the DAT error correction system, which as previously mentioned has features in common with those used in the CD system, described in the August 1989 issue.

There are basically two types of errors, random and burst ones. The former involve small amounts of data while the latter can result in relatively large amounts of data becoming damaged or corrupted. Causes of burst errors include tape dropouts, incorrect tracking and fingerprints or dirt on the tape.

The DAT system uses a powerful double-encoded crossinterleaved Reed-Solomon error correction code. The error correction codes are designated Cl and C 2 . The Cl code can detect and correct random errors up to two symbols (one symbol $=8$ bits) long or burst errors up to four symbols (32 bits) long. The C 2 code can correct random errors up to three symbols (24 bits) long, six symbols (48 bits) of erasure error (where data is inadvertently overwritten) or 792 symbols of burst error.

Fig. 14 shows the interleaving principle - in practice the DAT system interleaving is far more complex than this. The data is read into a memory in sequence then read out in a different sequence. After this the data passes to the CIRC encoder. If a burst error occurs, the missing data may be corrected or filled in by interpolation. The DAT error correction system can correct linear track damage up to 2.64 mm in length - equivalent to 6,336 bits - or 0.3 mm wide. Larger damage requires interpolation.

Interleaving is also done across two tracks. One track contains the odd samples from the left channel and the
even samples from the right channel, while the second track has the even left samples and the odd right samples (sce Fig. 15). This enables the machine to carry out interpolation should one head become clogged. An engineer told me the DAT error correction system is so powerful that a recorder continued to work normally after he'd removed one of its heads!

Time Compression

Because the heads are in contact with the tape for only one half of the drum's period of rotation time compression is used. It's carried out by reading the data out of the

Fig. 14: Principle of interleaving by writing into/reading from a memory in different sequences.

Fig. 15: Interleaving between adjacent tracks.
memory at a faster rate than it was written in. The read-out rate depends on the sampling frequency. Because interleaving is carried out over two tracks (one frame) the RAM used must be able to store a complete frame. A DAT frame contains 64 K bits, but two 64 K bit memories are required because one frame is being sent to the recording heads while the next frame is being written into the RAM for interleaving. During playback, as one frame is being sent to the DA converter the next frame is being written into the second RAM for de-interleaving.

The ATF System

The DAT system's automatic track following (ATF) arrangement follows the principles used in the Video-8 system. In a DAT recorder however the recording head is 1.5 times wider than the track pitch, so that it straddles three tracks (see Fig. 16). Fig. 17 shows the ATF track pattern in more detail. Frequency fl is a 130.67 kHz pilot tone, f 2 is a 522.67 kHz sync signal, f 3 is a 784 kHz sync signal and $f 4$ is a 1.568 MHz erase signal.

Consider a head following the track identified as Aeven frame address (second from left at the bottom). The head's path is from bottom right to top left. As it travels along the track it encounters an fl pilot tone, which is the track reference tone. Next it meets an f 4 signal which it ignores. It next encounters an f 2 sync signal which tells the machine to start sampling cross-talk information. As a result it reads the fl tones in the two adjacent tracks. The amplitude of the two samples is compared, any difference indicating that a tracking error is present. The electronics then send a signal to the capstan servo to alter the tape speed.

LSI Chips

It's fair to say that without modern LSI chip technology the CD and DAT systems would not have been a practical proposition. Fig. 18 shows a block diagram of the Sony DTC-1000ES professional DAT recorder, identifying the various LSI chips used. The CXA1045Q is a 48 -pin bipolar chip that's responsible for recording/playback amplification and equalisation. The CXA1046M is a 28 -pin bipolar chip that carries out ATF processing. The CXD1009Q is an 80pin CMOS device whose functions include 8-10 modulation/demodulation, subcode processing, RAM control, the system clock and the servo reference. The CXD1(0)8Q is a 64 -pin CMOS chip that's responsible for error correction and interfacing with the AD and DA converters. It has a multiple clock for the three DAT sampling frequencies. The CXD 1052 Q is a 48 -pin CMOS device that carries out the drum servo action. This chip set has been developed specifically for DAT use. There are additional LSI chips, e.g. the $\mathrm{AD} / \mathrm{DA}$ converters and the microcomputer chip.

The DSS Format

The computer company Hewlett-Packard and Sony have developed the Digital Data Storage (DDS) system which stores 1.3 Gbytes of computer data on a two-hour DAT cassette. The data is arranged in groups of 22 frames (around 128 Kbytes). While the DAT error correction system, which enables large burst errors to be concealed by applying interpolation, is suitable for audio use it's not acceptable for computer data.

During the system's development Hewlett-Packard carried out research into the factors that can cause errors in the DAT system. There are five categories. (1) Inherent

Fig. 16: A DAT head straddles three adjacent tracks.

Fig. 17: Positions of the ATF signals on adjacent tracks.
media defects, including tape dropouts, particles and scratches on the tape and tape width fluctuations. (2) Tape damage after the data is written. Helical damage can be caused by debris on the tape guides; transverse damage can be caused by tape surface irregularities or faulty tape operation. Since damaged tape tends to flake off and contaminate the heads and tape guides even more errors can be introduced. (3) Head clogging, which results in misreading or non-reading of the data. (4) Head/tape design and production errors, which can cause tracking errors, r.f. level fluctuations, noise and jitter. Another factor, called inter-symbol interference, is caused by distortion between the read and write signals, resulting in misread data. (5) Tape degeneration. At present there's no official DAT tape durability figure. Hewlett-Packard, Sony and other companies are currently carrying out research

The DAT cassette. Note the slider cover over the hub holes. When the cassette is inserted in the machine the lid opens and the slider moves back to expose the hub holes.

Fig. 18: Block diagram showing the DAT-specific chip set used in the Sony DTC-1000ES professional recorder.
into this. The companies believe that the archival life of DAT tape is equal or greater than that of tape used in other media.

For improved reliability the DDS format uses a fourhead drum with two read and two write heads. These provide a "read-after-write" operation in which the written data is immediately read and checked for errors. If errors are found the relevant frame is rewritten. DDS also has an additional C3 error correction code that can correct errors within any two tracks within a group. The DDS error rate is 1 in 10^{15}, or one incorrect bit for every $1,000,000,000,000,000$ bits read.

Professional DAT

DAT has been used in broadcasting and music studios for several years as a music source and as a low-cost digital tape mastering system. In 1989 however the German Institut fur Rundfunktechnik (IRT) research laboratory conducted a series of tests which suggested that DAT was unsuitable as a digital tape mastering medium. Amongst the claims made were that DAT recordings deteriorate before ten generations and that there are compatibility problems between tapes recorded by different machines. Further research is being carried out: meanwhile many studios continue to use DAT.

Copy Control

The Aiwa HD-S1 DAT recorder, the first consumer DAT machine to go on sale in the UK, became available last October. The first DAT machines to go on sale in Japan were launched in March 1987. DAT's late arrival in Europe and the USA was due to music companies' objections that DAT would be used to make digital copies of compact discs. Even though the first DAT recorders were unable to copy CDs digitally because they didn't have the ability to sample at $44 \cdot 1 \mathrm{kHz}$ the music industry continued to oppose DAT.

CBS records proposed an anti-copy system called Copycode. This doctored a CD sound signal with a series of notches. If the user tried to copy the CD's signal on to a DAT machine the recorder would detect the notches and refuse to record. But Copycode was found to be unworkable

For over three years the music industry and the electronics hardware companies attempted to resolve the
problem. Agreement was eventually reached at a meeting in Athens in June 1989. The agreement states that a DAT recorder can incorporate $44 \cdot 1 \mathrm{kHz}$ sampling when making recordings provided it incorporates Serial Copy Management System (SCMS) circuitry. SCMS was developed from a Philips system called Solocopy. The SCM system allows a single digital copy to be made on tape. When this is done an 01 digital copy inhibition subcode is laid down in the ID7 PCM subcode area of the tape. As a result, if the user tries to make a second-generation digital copy the machine reads the code and refuses to record. It's possible to make multiple analogue copies however. Although the sound quality with analogue copies is acceptable to most people the process results in loss of the subcodes. Thus fast search etc. cannot be used. If the user makes a digital copy of the analogue recording this carries a 10 copy prohibit code, which means that only one digital copy can be made from an analogue recording.

The SCM system has enabled consumer DAT machines to be marketed in the West, though there are signs that the music industry is still not entirely happy with the system.

The Future

It's ironical that just as DAT has appeared in Europe several new developments have put a question mark over its future as a consumer system. The first is the development by Philips of its DCC (digital compact cassette) system. Brief details of this system were given in Teletopics, December (page 106). Secondly, Dolby Labs have developed Dolby S, a noise-reduction system that's claimed to dramatically improve the sound quality with analogue recordings. In addition several companies are developing recordable compact discs, while Sony has developed a digital memo recorder that records two hours of sound on a cassette measuring just $30 \times 21.5 \times 5 \mathrm{~mm}$.
At present most of these technologies require further development work or are too expensive for the domestic market. But it all points to an interesting period ahead.

Acknowledgement

I would like to thank the following for their help in the preparation of this article: David Bush, Senior Product Engineer at Sony Broadcast; Peter Wall of Peter Wall ElectroAcoustics; Celia Watts of Hewlett-Packard; and Martyn Williams, Technical Manager of TDK (UK).

Servicing Notes on the Hitachi G8Q Chassis

The Hitachi G8Q chassis is used in a series of models that include the СРТ2196, СРТ2198, СРТ2578, СРТ2578X, CPT2596, CPT2598, C14 P216, C21 P226, C21 P228, C21 P818, C25 P226, C25 P228, C25 P236, C28 P226 and C28 P 228 . Our main experience has been with the СРТ2196.

Power Supply Circuit

A feature of these sets in the somewhat unusual power supply in which there are two chopper transistors, a bipolar and a MOSFET type, connected in series, see Fig. 1. Q902 is the bipolar transistor, which receives a fixed base bias. The on/off drive waveform is applied to the gate of the MOSFET device Q^{901} which drives the emitter of Q902. It's worth including a few notes on the operation of this power supply arrangement.

At switch on the positive temperature-coefficient thermistor TH902 has a low resistance. Thus C908 charges rapidly, the voltage developed across it being limited to 27 V by zener diode ZD901. This enables the control chip ICYO1 to start up. When the circuit gets going the chip's supply is provided by rectifier diode D902, which maintains the charge across C908.

When Q901 and Q9(12 switch on, current flows via R910 and the primary winding of the chopper transformer T901. R907/VR901/R914 produce a voltage that's proportional to
this current. Should the chopper current be excessive, the voltage at pin 3 of IC901 will exceed the voltage supplied to the other input of comparator-2 and the circuit will shut down.

Q942 senses the h.t. voltage, driving Q941 which in turn drives the LED in the optocoupler OC941. If the h.t. voltage rises above the level set by VR941 the voltage at pin 5 of the optocoupler will fall, reducing the voltage at pin 1 of the chip. The action of comparator- 2 will then switch Q901 off at an earlier point in its operating cycle.

Excessive h.t., due for example to failure of the regulator circuit just described, will result in $\mathrm{D}_{9} 08$ developing a higher than normal voltage across C917. This voltage is applied to pin 2 of IC901 via R917. It's compared to an internal 2.5 V reference voltage by comparator- 1 . When the voltage at pin 2 rises above 2.5 V the output from comparator- 1 falls and the chip's output will shut down.

A short-circuit across one of the outputs obtained from T901 will result in the voltage at pin 7 of the chip falling below the under-voltage reference level. The i.c. will then cease to operate. C908 will recharge and the power supply will try to start up. This action will continue until the shortcircuit is cleared.

The voltage across C908 could be insufficient for Q902 to be driven to saturation. Protection against this is provided by Q903 and its associated components. Q903

Fig. 1: Circuit diagram of the chopper power supply used in the Hitachi G8Q chassis. This is an isolated power supply with S901, T901, OC941, C941 and R945 forming the mains barrier. These components must be replaced with the correct types.
provides a voltage that's proportional to Q902's base current. This voltage is applied to pin 1 of IC 901 , reducing the level so that Q902's collector current cannot exceed the available base current.

Note that the mains switch $\mathrm{S} 9(01$ has a third, momentarymake contact. When it makes at switch on C1500 is charged from the 5 V supply, switching Q1507 on. The low voltage applied to pin 5 of the SAA 1293 H control chip IC1501 brings it out of the standby state and resets the nominal control values.

Fault Finding

If the complaint is no results check fuse FS901 which
may be o.k. or open-circuit. Check for broken print at pins 3 and 9 of T901. If necessary check $\mathrm{Q} 902, \mathrm{ZD} 901, \mathrm{OC} 941$, ZD941, Q941/2, ZD902 and D905.

Slow starting can be a tricky fault as the set starts before one has time to make a diagnosis. The usual cause of the trouble is TH9O2. It should normally read $4 \mathrm{k} \Omega$ when cold. If unsure, check by replacement.

The power supply shutting down has on several occasions been traced to Q941 being at fault.

No results or intermittent no results has been traced to dry-joints on the chopper transformer T901, rectifier D933 or line output transformer T702

We've had several cases of tuning drift. The usual cause is IC1503 (ZTK33B).

338 Each month we provide an interesting case of $T V / v i d e o$ servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

We find that shop staff are getting more and more sloppy when writing out service job cards. This one just said "whirrs". We drew our service manager's attention to it. "I'll have a word with them" he said, "the situation is getting whirrs and whirrs . . " So much for serious and responsible management.

The whirring device was in fact a JVC VCR, Model HRD170, which went to Real Technician's bench for repair. It whirred at switch on. Removal of the top cover showed that the noise came from the reel-drive mechanism, which turned the take-up spool smartly clockwise even without a cassette. RT whipped off the bottom cover and tightened the earthing screws on the under deek PCBs, then confirmed that their printed lands were earthed. They probably were to start with, because the take-up reel still whirred at switch on.

The machine was switched off and a cassette was inserted. At switch on the cassette loaded without any problems, and from that point on all the functions RT tried worked perfectly - play, record, pause, fast forward and rewind. At the end of the rewind the machine stopped as it should and waited for further instructions, which it then carried out correctly. Only when eject was tried did a problem show up. The cassette motor continued to run when the cassette had been ejected, slipping its belt for several seconds before the machine switched to standby, extinguishing the red "on" LED at the operate button.

What was RT to make of all this? He decided to concentrate on the most obvious defect, the cassette motor's overrun at eject. In place of the usual eject detection limit switch this machine uses an optocoupler which looks through a slot in the cogwheel that drives the cassette cradle. The photosensor's output is applied to pin 37 of the syscon microcomputer chip IC601, so this point was monitored. When the cassette was fully ejected, and indeed when it was fully loaded into the deck, the voltage at this point dropped to virtually zero. As this was the correct condition RT condemned the expensive M50731610 SP microcomputer chip. He reasoned that since it was
getting the cassette-out message but failed to turn off the front-load drive motor it had to be responsible. No doubt when it was replaced the whirring business would also be cured. A telephone call to JVC got the wonder chip on its way, and our man turned his attention to a Sharp machine with a reel-idler problem.

When the new microcomputer chip arrived RT fitted it carefully, taking the correct precautions against static damage. At switch on the machine whirred. RT felt that his diagnostic powers were getting whirrs and whirrs as he put the maligned chip into the stores with a little label on it saying "believed o.k. - RT". Replacement of the syscon microcomputer chip had left the fault pattern exactly as before.

RT studied the circuit diagram, which showed that the cassette motor is driven by a TA8400P switching chip. This chip also drives the mode motor. Instructions for both come via a three-wire bus from pins 57/8/9 of the microcomputer chip. Could this motor-control chip be responsible for the problem? RT decided that it could, so he ordered one and turned to an ITT TV set with field collapse.

When the postman brought a little parcel with the new TA840)P chip RT fitted it and switched on. There was again no change in the symptoms. RT put the machine to one side while he attended to more pressing problems. Later that day he put the whirring JVC VCR back on his bench. After spending some time on it he arrived at a correct diagnosis and cure. What had he overlooked during his initial hasty investigations? Should he have taken greater notice of the original "whirring" complaint? See next month for the answer.

ANSWER TO TEST CASE 337 — page 191 last month -

Poor TechnoCrat! Shivering and grumbling, he had done all the right things in his attempts at diagnosing the cause of the trouble with the old Decca TV set with which he was doing battle. The problem was heavy overloading in the line output stage, and he'd found two very good reasons for this - a leaky line output transistor and a very sick line output transformer with short-circuited turns. Did the set want three diagnoses and three repairs for heaven's sake? It did. The third diagnosis was carried out by once again removing the tripler's input pulse feed from the transformer, whereupon the line output stage at last came to life. A new tripler was required to complete the repair, restoring pictures to the (slightly tired, as it turned out!) picture tube.

It was now fairly obvious what had happened. The syndrome is one that the old ITT CVC20 chassis commonly produced from its repertoire of tricks. Initially
the tripler had failed. This had lead to overheating in and damage to the line output transformer. While the user had stared at the blank screen the BU500 line output transistor had succumbed. Only then had the fusible resistor R430 sprung into action to cut off the power. All four items had
to be replaced to get things going again.
Poor TechnoCrat. When he'd fitted the new tripler, dressed all the wires, set up the receiver and boosted its tube he heard that ace salesman Alec had rented the customer a nice new Tatung . . .

Problems with Compact Discs

With video and audio systems one has to consider software as well as hardware faults. For example video tapes can shed oxide, cassette tapes can become tight, and records can have badly pressed lead-out areas. The compact disc system has its own selection of potential software problems. It's easy to overlook them or accuse the player of being the cause of difficulties. You can also get into disputes with customers who think that a player which is under guarantee is responsible when the problem is clearly caused by a disc. The aim of this article is to serve as an introduction to dise defect troubles.

Symptoms

The symptom most often caused by a faulty disc is the symptom that occupies most of a CD engineer's time anyway - poor playability, i.e. skipping, sticking and jumping. This presents a problem: the poor playability could well be, and in fact is more likely to be, caused by a machine fault

Procedure

The classic case is when a machine is brought in with the complaint of skipping and suchlike but performs faultlessly on test. The engineer will follow the advice given by Joe Cieszynski in his series of articles in this magazine and use an error disc to assess the machine's performance when confronted with such problems as loss of data/data interruptions, fingerprints, and dirt on the surface of a disc. Before carrying out any adjustments/cleaning it's important to check the player's performance when first received so that any improvements following service work can be noted. One or two possibilities should be borne in mind once you've confirmed that the machine plays a good disc and assessed its ability to handle disc errors.

If a player's performance is to specification or better when playing an error dise there could be an intermittent fault. Try giving the player a prolonged test. The other possibility is that very poor quality discs are being used. If the player's performance with an error disc is slightly below par but good discs are played well repair/alignment will be needed but discs that are in poor condition could still be contributing to the user's problems. If a player fails the error-disc tests it will obviously require attention. Nevertheless bear in mind the possibility that poor discs are being used, especially when the symptoms seem to be less severe than those reported by the customer.

Experience

As with so many problems of this type there's no substitute for experience. It's as important as technical ability in deciding what's the cause of the difficulties. There can for example be a great disparity in the performance of the different models in a manufacturer's range, and also of
course across the complete market. Apparently identical machines can perform differently. A classic problem is where two friends or neighbours have the same model. One may buy a poor quality disc or scratch a disc and find that while it doesn't play satisfactorily in his own machine "it's perfect in my mate's".

It's important to know the capabilities of each model. This knowledge can be obtained only through experience, but this experience will be hard to gain if you handle very few of a particular model.

Most workshops are equipped with error discs. Ideally these should be professionally made and to the appropriate manufacturer's specification. Technics for example has produced dises that simulate data interruption, with variable diameter black dots, variable width wedges and simulated fingerprints on the surface, "wobbly discs" that represent a warped disc, and so on. Acceptable limits are laid down for the performance of the various players when playing these dises. Most players do better when working well, as you would expect with a quality product.

Failing this you can use a damaged disc - say one that's fallen foul of a faulty mechanism. Testing the disc, checking where the errors are by using the player's timecount, then establishing how each model reacts to the errors when working to specification is a good way of gaining experience. It's surprising how quickly you can gain experience in this way. Professional error discs do provide a better guide however.

Disc Defects

The most common dise problem, giving rise to the symptoms mentioned above, is dirt or scratches. Misuse is the cause - leaving the discs out of their cases, using them as coffee cup coasters, etc. Many customers have been misled by the massive publicity when the CD system was launched claiming that the discs are virtually indestructible. The manufacturers knew at the time that this wan't true. We certainly know now that it isn't the case. So why were there all those demonstrations with jam being spread over the discs, discs being trampled into the ground, etc? It's a similar problem to the impression given by some tape manufacturers that their cassettes last for ever.

Another problem, one that's often overlooked, is damage to the label side of the disc. This can result in transparent holes. If these are large enough they'll cause all sorts of symptoms, depending on the player concerned. For example loss of focus can result in the disc being ejected!

Customer education is the key. A little note attached to each repaired machine helps. With problem owners you may have to discuss the situation in detail and provide a demonstration with a good disc.

There are some discs on the market with a very long playing time. Some older players find it difficult to play these to the end or at all if unable to read the TOC. Many
players take a surprisingly long time to read discs with a large number of tracks.

Failure to focus, especially intermittently, is a less common dise problem. If there's no obvious damage it can be caused by a faulty or poor-quality pressing or decay of the aluminium layer. The latter can be seen as a watermark type discoloration when the dise is viewed with a suitable amount of light. It tends to occur around the centre.

Discs sometimes get stuck in players because of a rough or too small centre hole as a result of which the disc sticks to the clamper/turntable. This defect can also result in a dise being damaged as it's loaded, especially in cartridge multiplayers.
When the centre hole becomes enlarged the dise will run eccentrically. This can cause playability problems. Visual inspection is the way to tell.

Clues

It's best to get the customer to include with the machine a dise that shows the symptoms complained about when played. This applies whenever dise problems could be the cause. It should speed up diagnosis and give you an idea of how well the discs are looked after. Another guide is the condition of the machine, both inside and out. Dirt in and around the dise tray is a bad sign. A dirty lens - dust or nicotine - would suggest that the average disc is in a similar condition.

Disc Repairs

It's often possible to remove small marks etc. on a disc by using a cloth and an abrasive liquid such as Brasso. This
should be attempted only where there's nothing to lose, as it's a bit hit and miss. Discs should normally be cleaned in the recommended way, using a soft, dry cloth in linear motions from the centre of the disc outwards in one direction only. Disc care kits are available from accessory suppliers. Care instructions are usually printed on dise inlay sheets.

In Conclusion

That discs can cause problems should be obvious. But, as with video tapes, there seem to be many people who don't recognise this. When playability problems are experienced, particuarly with a machine that's still under guarantee, there's a tendency to replace the optical unit as a first step. This is done whether the playability problem is checked or not. It's often a waste of time and money, and can lead to a dissatisfied customer. It upsets the manufacturers too, many of whom have told me that considerable numbers of the optical units returned under guarantee are perfectly all right. It's always worth asking the customer whether the symptom occurs with all, some or just one disc.

Further Information

Philips test discs, type numbers SBC42I and SBC426, are available from HRS Electronics (trade only). The SBC426 is a two-dise set that includes simulated defects. Further information on CD ete. servicing will be found in my book Servicing Audio and HiFi Equipment, which is due to be published by Heinemann Professional Publishing later this year

AN236	52.30	\$1k2025	${ }^{7} 7.06$	STR2013	84.60	70a3351		BU4	${ }^{70} 5$		Tin 35	BET KITS		SL8000 8080		LOEW	0 C 410.460	$\$ 20.40$	ELEC	TIC
ANS010	$\underline{52.95}$	STK2028	50	STR 3125	¢5,80	TDA3651A	$\frac{9.40}{82.95}$	${ }^{\text {BU4 }} 8070{ }^{\text {B }}$		${ }_{2 S C 683}^{25 C 681}$	${ }_{67.15}{ }^{31.20}$	Vsiv	${ }_{¢ 1.45}$		50.30	L0GIK	OC5060 65	c 12.50 $\mathbf{\$ 1 4 . 5 0}$	CAPACIT	
		STK2029	${ }^{5} 90$	STR4090	¢5 8.80	TDA ${ }^{\text {S }} 54$	$\underline{12.95}$	${ }^{\text {B1/40 }} 4080$	c0. 88	2SC74	${ }_{53} 1.00$	VCR4600	$\underline{2} .00$		£. 35		5			
	${ }_{52}$	Sike	${ }_{\text {cki }}$	${ }_{\text {S }}$ S 76020	${ }_{44} 50$	TDA3653	[1.50	B1426	50.70	${ }^{2 S C 783}$	51.00	VCR7000	ह1.45	Hitachivtil	¢0.30	MAISU	1×765.850	516.50	22uF\%	12
AN6135	$\varepsilon 1.40$	SIK2	¢9.00	STR11006	E6.00	toastiol	53.95	BU500	¢. 05	$2 \mathrm{Ccse8}$	¢0.20	3V223v:00	51.40		00 ¢0.38	NEC 90	1 1902A	¢20.25	2200156	20. 24
AN6248	$\underline{\square} .00$	STK2155	$\underline{10000}$	R40090	65	tDa4503		BU508A		256840	5.15		¢0.60	PHCCH HOULERS					201uf	${ }^{20} 54$
AN7120	51.25	STk2z30	84.90	STR50103A	3.25	tDa4505	$\underline{53.00}$	$8{ }^{5} 5080$	60.85	2Sc901A	53.50	3 V 293 3 30	${ }^{\text {c }}$ 9.80	vS9300,9800	c2. 50	PAvAS		51.40	7 7 UF 250 V	${ }^{2} 0.40$
		Stk2240	${ }^{5}$	STR50113	$\underline{4.89}$	TDA 4510	13.10	®U526	$\underline{60.78}$	2 Sc 998	${ }^{1} 3.15$	$3 \sqrt{3243}$	¢0.60	vS1/23 510	¢2.50	NV180			1uFi63V	${ }^{0} 09$
		STK2250		STR 50213	c6.50	TOA4600	51.90	8u536	81.05	2 SCH 10	c1. 80	3Fsary 1014	¢1.35	VS 105:244.516	$6^{〔 2.50}$	Nv370		${ }^{18} 80$	10117250 V	¢0. 34
BA308	f1.30	STK3041	84.71	STR54041	${ }_{5} 5.00$	TDA4600.2	$\underline{1}$	BU50	8.25	2Sc1106	1.75	HNAR1 UXL89		VS125/240 512	${ }^{\text {c }}$				47UF250V	
${ }^{\text {Ba3506 }}$		STK3042	ct. 90	STR588041	¢4. 80		$\underline{51.75}$	BUSO8AF	${ }^{1} 1.10$	${ }^{2 S C 1170}$	8.8 .45	${ }^{\text {vis } 500}$	${ }_{¢ 1}^{1} 10$	VCRASCOT/4600	[22.50	Nv668		${ }_{5}^{2} 78.5$	100uF	${ }^{51} 28$
		STK3044,	¢5950	${ }_{\text {TA7 }} 130$	¢0. 70	T0as630	53.25	BUT12	${ }^{\text {ci. }} 85$	2SC1185	93.00	V18000	50.50	30003 V 2	${ }_{12}^{2} .50$	NV730		C19 0	ulfor	5070
	$\underline{4}$	STK40242	${ }_{66} 9.50$		${ }_{\text {E0. } 89}$	IDA5650	¢4. 10	T1P30	£0.25	${ }^{25 C 1342}$	c1.08	V19300	¢0.45					¢ 19.00	1 FF 400 V	
BA610	$\underline{51.75}$	STK4026	E6.00	TA7282	c2. 48			TIP31		$2 \mathrm{SC14}$		VI64 65/86	${ }_{51} 5$	${ }^{3} 29 \mathrm{~F}$	2. 25	NV450	NVGTOL2	¢17.00	22 UF 400 V	50.24
HA1124	¢1.45	SIK4926?	c7. 10		${ }_{52}$	Toasab	${ }^{2}$	${ }_{\text {T1P3 }} 14$	${ }_{50}$		${ }^{1}$	HR33000t 3	41.40	3v88 Friofl	14	NV366		$¢ 18.75$	4 7UF/400V	50.30
HA1137	c1.	SIK4028	${ }^{\text {c6 }}$. 80	ta7604	¢2.35	TiPa 231	${ }^{\text {c }}$ ¢ 2.95			${ }^{2}$	${ }_{5}$	迷	¢1.40	¢\НP615:	${ }^{1}$	NV788		[43.00	10UF/400V	70
HA1377	E1.80	STK4060	55	ibaizas	${ }^{2}$	T0A240	05	T1p33	20.50		${ }^{17} 3$	HR		vili3	¢2.50	NVG50		¢25.00	22UFF400V	${ }^{50.69}$
112		SIK412	¢6.50	TBA 120 P	20.40		${ }_{53} 1.15$	${ }_{\text {\% }}$	¢0.23	${ }_{2 S 1577}$	${ }_{\text {c6. }}^{180}$	HRO111/225	\&1.00	V161/2200000	${ }_{5}^{2} 50$	SAISHO	VH1600	¢11.50	47UFF 700 V	51.39
HA1 1423	¢2.00	STK4121/2	¢7.00	Ibatzou	5.48	T0AB833	${ }_{\text {c }}$	IIP4i		2SC1678	$\underline{51.12}$	N ${ }^{\text {a } 33}$	${ }_{5120}$	V18000.9000	${ }_{2}^{2} 50$	SA	VR3200/3500			
Hal1714		SIK414/2	[4	${ }^{\text {teasion }}$	\$0.45	T0A8185	${ }_{¢ 4.80}$	tiptia	${ }^{10.20}$	${ }_{2 S C 16 B 2}$	51.45	NV370	91.45	${ }_{\text {HR27200 }}$	${ }_{5}$	SAMSU	NG Mosi Models	$\underline{17.50}$	470UFSOV	50.40
RALIT15 HAR2017	${ }^{\text {c2 }}$	STK41572	โ17.00	${ }_{\text {TBA540 }}$	¢0.85	tDa8 190	c2. 80	tipaic	¢0. 22		51.90		51.45	HRD150725	${ }_{52} 5.50$	SANYO	VHR3100/3500	$\underline{18.00}$	1000UFi63V ZENER DIOOE	50.90
HA13001	1	STK4161/2	E8.50	tca650	$\underline{5} .85$	TOA8196	51.50	TiP42	E0. 20	2SC1875	${ }^{2} 2.50$	NV2000	£1.40	H\$200 304700	0 [2.50	SANYO	VTC9300.9500	¢18.95	2 V 7.68 V 400 MW	50.05
HA		STK4171	[9.	TCa830	c0.70	TDA9045	¢3.10	गP42C	60.23	2SC18	${ }^{2} 2.00$	NV3000	¢1.50	HS306.4007	[2.	Sharp	VC381/9300	[13.00	2V7.68V-1.3W	
LA1460	¢2	Sff	${ }^{111}$	tcas00	81.00	TJA9503	$\underline{2} 2.21$	IP110	E0.45	2SC1913	$\underline{81.85}$	NV7000	20.90	Nv100340788	$\underline{2}$	SHARP	VC581/652	¢13.00	DIODES	
L.a4102	12.12	SIK4181/2	E8.50	tida40	51.85	UPC554	${ }^{21.50}$	T1P120	¢0. 42	2SC1970	${ }^{1} 1.90$	nvg7/10		NV2000 7000	[2.50	SONYS	C5/76	[11.85	IN4001	9
La4445	$\underline{5}$	STK4182'2	${ }^{\text {E10.00 }}$	idati002	${ }^{\text {c1. }}$. ${ }^{5}$	UPC 1023	$\underline{20.50}$	M M_{51234}	${ }^{10.25}$	${ }^{25 C 2023}$	${ }^{51.60}$	VIC5000	${ }^{\text {c }} 0.70$	Nvg7/1218		SONY	C20 Sl3000	£11.85	IN4002 040	
	£1.65	STK4191/2	¢11.00	T0A1019	${ }^{1} 1.00$	UPCT1032	${ }^{20.58}$	Mue37	$\underline{0} 0.55$			Vic9300	$\underline{1.95}$	VR2020 6224	${ }^{13}$	TOSH	A Most Models	F14.75	IN40	P
	22.5	SkK419	128.50	IDA 1012	cras	UPC:377	${ }^{11} 6$	MJE52	10. 30	250298	5	VC381386	51.15	Vhr100,2300	${ }^{93.00}$	WE	Mest Mo			08p
LA4510	c1.58	SIK423	¢16.00	toalotioa	${ }^{21} 100$	UPCC 3 382	${ }^{10} 1.80$	${ }_{\text {2N3053 }}$	${ }_{60}$	${ }^{\text {2SC2591}}$	51.30	000,6300	¢	VC38183300	${ }_{\text {ck }}$		VOL Jage reg		IN4006 04 LP IN5406	
Latssin	5.	STK4311	c8.00			UPC 1188	$\underline{0} .45$	2 N 3055	${ }_{80} 80$	2SC2681	c2. 60	000 7500	5.40				,		IN4007 05p in 4008	
(1)		STK332	\%	Tpaioza	52.40	UPC10	c1. 05	2N3773	E1. 00	2SC2751	53.80	YC93009500	ع1.20	VC65 1793	53.00	7805	${ }_{\text {c0. }}$	${ }_{50} 3$	iN4148 04p Byiz	10p
LM318	${ }_{51} 1.15$	STK4372	${ }_{\text {cie }}$	TDatiosst	$\mathrm{F}_{1} 120$	UPC45	$\underline{0} .50$	242	¢0. 33		¢4.10	Scç 61	¢1.30	SLC566i7	¢3.00	7815	¢0. 33	¢0.35	BY133 09p bY299	
LB1405	¢2.20	STK4392	57.20	tda 1037	E1.80	AC141	¢0.35	2SA490	${ }^{2} 0.58$	$2 \mathrm{Sc3091}$	${ }^{53.25}$					7818	¢0.30		18p RGP30	${ }^{0}$
MS106P		SIK4432	59.00	tbaicia	Q20	AC12	${ }_{50}$	2SA679	${ }^{6} 1.95$	${ }_{25 \mathrm{Cl} 178}^{2}$	${ }_{5}$				¢6	${ }^{8} \mathrm{PiN}$	¢0.05	jckets	Cera	
MS152L	c1. 51 150	STK4773 STK4803	$\stackrel{59}{59} 90$	tiday toat dosa	${ }_{\text {¢ }} 18.80$	${ }_{\text {Ald }}$	${ }_{¢ 20.05}$	2SA726	80.75 80	${ }^{2 S 53883}$	$\stackrel{23.60}{\square 18}$				£6.40	${ }_{14}{ }^{18} \mathrm{P}$ N N	${ }^{50.05}$	E0.14		c0. 45
M50115	$\underline{9} .50$	STKK833	58.50	toatos9	20.80	HC741	¢0.30	2SA532	E\% 51	250128	$\underline{2} 20$	FERG HRD	702	FVIO	E27 15	${ }_{16} \mathrm{PIN}$	co.			
M54543!	52	STK4843	67.50	TOA1060	${ }^{1} 1.75$		${ }_{c 0}^{50.07}$	${ }^{2 S A 639}$	${ }_{60}^{50.80}$	${ }_{2515019}$	${ }_{c}^{2} 27.70$	ERG	7655/3		¢17.32	${ }_{20} \mathrm{PiN}^{18 \mathrm{~N}}$			SmmR. G. Y	. 09
	5	STK4853 STK	${ }^{59.00}$	TOA 1072 TDA 5085 a	${ }_{5}^{21} 10$	${ }_{\text {BCPO8 }}^{\text {BC17 }}$	${ }^{\text {¢0. }} \mathbf{1}$	2SA394	${ }_{\text {E }} \mathrm{E} .25$	${ }^{2512099}$	${ }_{52}^{28.10}$	G	655/3		${ }_{\text {c23 }}$		${ }^{2} 12$ TV AN	- ${ }^{\text {Vin }}$	EOSPARES	
1011	${ }_{8}^{2}$	STK9913	512.20	TOA1170	c0. 89	${ }_{\text {BC }}$ ¢ 78	¢0. 12	2SA661	¢0.70	250330	f1.00	VC FERG HR	0140:1	0/150	$\underline{117.49}$	3 z 2	AKE UP IOLER	51.07	NV370 VXP0521 IDLER	
15	E.a	STK5314		[Dal190		BC183	[0.07	2SAB8	¢0.75	2 SO 40	¢0.45	FERG HF	0725/7	55/3V43	¢36.0	3 V 29	Take UP CXUTCH	[2.05	NV730 VXP0488	2. 4
STK035	[8.75	STk5315	¢6. 50	toal270	$\underline{1.85}$	BC184	E0.07	2 SA393	E0. 50	${ }^{2 S D 523}$	9.40	VC HRO455	,	-	¢23.13	3 V 29	Pet loler	[1.99	SONY C5/7 REWk	${ }_{53} 95$
${ }^{4}$	c9.00	STK5324	55.50	toal410	92.00	${ }^{\text {BCC2 }} 13$	${ }^{20} 0.06$	2SAB99	${ }^{60} 60$	${ }^{250560}$	c1.45	VC FERG HR	3	V59		$3 \vee 35$	KE UP IOLER	. 07	SONY SLC6 REW KIT	c2.85
STK035	58.20	KK5325	${ }^{5}$.	TDA1515A	${ }^{\text {E2 }}$ 2 35	EC478	$\underline{10.17}$	2SA937	${ }^{2}$	2S06212	50,	AI VS2 23	330		515.0	3×35	ake mp ciutic	${ }^{1} 165$	3v35 Cass-mousin	E19.50
STK050	${ }_{\text {cig }}$	SIKK331	\%500	\%0al412	10.90	${ }^{80} 8131$	${ }_{50}$	2SA1076	$\underline{2.55}$	${ }_{2 S D 856}$	¢0.68	Kai VS105/1	$25 / 220$	304	[16.93	AMSI	RAO MOD KIt	${ }_{54} 8.40$	3V48 CASS-HOUSING	¢ 20.50
STK078	¢6. 20	STK5333	97.50	Toazoe2	20.75	40139	50.25	2SA141	E1. 60	2508	0.58	AMSIRAD VC	10		${ }^{\text {c12 }} 12.00$	FMHP	15 GEAR	¢4.55	HITACHIPRAME-MODUL	E5. 25
88	5_{50}	STK5338	$¢_{55} 00$	ToASOOA	${ }^{50.90}$	${ }^{80140}$	${ }_{50}$	2SA1	8.10	${ }_{7250836}^{251820}$	${ }_{\text {c1. }}$	AD 3 A	SSR V		${ }^{1}$	$\mathrm{FH}^{\text {W/ }}$	1310 LPR ASS	515	VT63.64 END.SENSORS	35
STK082	${ }_{\text {Ef }}^{5}$	STK.339		${ }_{\text {TDA } 2006}$	$\underline{50.70}$	${ }^{80} 8234$	${ }_{20} 0.30$	2SA1250	${ }_{53} 98$	${ }_{2 S 0838}$	${ }^{5} 3.85$	FISHER PVH	10615		¢1	VI11	S3CLUTCH ASS	${ }_{\text {c6, }}$	NV7000 2 K MODSWICH	${ }_{99}$
	c8.7	STKK392	${ }^{5} 8$	т022009	$\underline{11.85}$	H0241	${ }^{20} .38$	2541283	51.00	250850	\$2. 50	HTACHI VT1?	1/18/19		£29.50	V120	CLUTCH ASS	¢6. 25	UNIV-TRIPLERS	84.50
STK0029	c3. 80	SIK5451	E5. 00	toazozo	$\underline{50.85}$	${ }^{80243}$	${ }^{\text {c0. }}$ ¢ 48	${ }_{2} \mathbf{2 S 4 1 3 0 6}$	c0. 80	25915	81.10	TACH VIS	500930		¢15.65	AKAI	f, REWIOLEP	${ }^{4} 4.25$	UNIV. TRIP \uparrow FOCUS POT	¢7.85
033	¢9.50	STK5461	${ }^{58} 50$	Tidalibl	¢5.00	80246	${ }^{10.50}$	${ }_{2 S 8337}^{28176}$	${ }^{20.69}$	${ }^{251273}$	20.40	ACHI VT1				AkA	AKEUPIOLER	${ }^{\text {c. } 25}$	(x100 LOPT (Green	[177.08
STR0039	E4.10	STK5471	${ }^{\text {c }}$	tazrio	c0 70	${ }^{80} 1041$	${ }_{50}$	${ }^{2}$ Seant	51.45	25012	51.50	TACHI VI50	500 400		¢17.36	MiT	S33/4121012R	$\mathrm{ES}_{5} 20$	Sonr on off Swith	70
STK0040	${ }_{5}^{55.20}$	SIK5481	84.50	TDA2540	${ }_{51} 1.00$	${ }^{850442}$	${ }_{\text {c0. }}$	${ }_{\text {2S8435 }}^{\text {23 }}$	${ }_{51} 1.98$	2501397	[20 40	tachivtid	22		720.40	SHAR	VC481 IOLER	${ }_{53} 515$	UNIV SCART KIT	c4.62
STK0050:?	[4.40	STK5730	c6.00	TDA2577	\$1.75	BD683	${ }^{20} .48$	2SE524	20.65	2501398	$¢ 1.40$	- hitachivib	64		$\underline{Z 1.90}$	SHAL	VC381 10 LER	C3. 10	IC CCT PROTECTORS	$\underline{50.47}$
STK0059	¢6. 20	STK6325A	${ }^{88} 00$	TDA2581	¢1.30	${ }^{80136}$	${ }^{\text {c0. }} 20$	2 285599	${ }^{50.60}$	${ }^{2501439}$	${ }^{52} 1.00$	HIACHIVI80	009900		[12.					
0060	${ }^{58} 20$	STK7216	${ }^{2} 5.28$	TDA2582	¢1.50	8078	${ }^{20} 5$	${ }^{\text {SSB62 }}$	${ }^{20} 50$	2S01554	${ }_{\text {c1 }}^{54.40}$	MiTSUBISHI	S3300	301302	98.97		us lor her		po rHe toral	and
0080	15.80	STK7217	¢5. 80	T0A2590	¢1.85	${ }_{\text {Bra }}$	${ }_{\text {c0, }}$	${ }_{\text {2Sb681 }}$	E4.00	2501492	${ }_{63}$	$S_{\text {MTS }}$ MISISHIL	S5306		822.60		subiect to av		prices can ch	
STK437		STK7309	${ }_{\text {ctic }}$	${ }_{\text {TOR22600 }}$	${ }_{¢ 4}{ }^{1} .65$	${ }_{8 F 4}$	${ }_{\text {co }}$	258688	E1. 15	2501441	84.25	PANASONIC	NV370		$\underline{58.00}$		Colleges. Sc		ders accepted. All	nents
STK439	${ }^{\text {E5 }}$. 80	STK7348	E4.50	toaz700	22.85	${ }^{\text {BF9966 }}$	50.38	${ }^{258701}$	51.22	2501427	${ }^{1} .65$	anasonic	N6888		$\underline{28.50}$		are orand		ven in large quantities	
	$\bigcirc{ }^{\circ} \mathrm{OO}$	STK7404	¢4.	TOA28222	50.70	${ }^{\text {BUIVA }}$	${ }^{20} 80$	${ }^{25877}$	ع1. 80			PANASONIC	V600		27.83	ExPOR	I-MNL ORDER E	IRIES 4	COME. ACCESS AND VISA	EPTED
	¢5. 20	STK8050	${ }^{28} 80$	10,	23.45	${ }^{81}$	${ }_{50} 68$	2 SB775	E1. 50	triacs		anasonic	NV730							
STK661	$\underset{\text { ¢5. } 20}{\text { ci }}$	STRO1816	¢10.80	toa3310	E1. 10	BU180	E1.80	$2 \mathrm{SB829}$	52.95	T1C2250	50.65	panasonic	AG6100		${ }^{[3.00}$					
5 ST4655	9	StR376		TOA3310	5	${ }^{\text {BU205 }}$	${ }_{50} 568$	${ }^{2 S 8861}$	${ }^{11.00}$	1418060	${ }_{50}^{50.68}$	panasonic	+ 456	VG10-12						
SIK7728	${ }_{\text {E4, }}^{60}$		${ }_{\text {E4 }}$	TOA3506	${ }_{8} 3.00$	BU208	${ }_{50} 70$	2SC281	${ }_{60} 50$	1162260	[0. 65	PANASONIC	V366	ORIG)	536.72					
STK1036	¢8.00	STR44	E4.40	T0a354]	${ }_{52}$	Buzoraf(AP)	$\underline{60.90}$	2 Sc 35	E0.90	ІІс2839	$\underline{2} 2.15$	PANASONiC	HSSN		${ }_{\text {c6. }}$ (0)					
STK1039	${ }^{55} 50$	STR450A	E6. 10	Toa3541	${ }^{\text {c1. }} 80$	8U2080	${ }^{50} 70$	${ }^{2 \mathrm{SC} 382}$	${ }_{51000}$	${ }^{158888}$	${ }_{82} 2.25$	Panasonic	N7000	20007200	¢8.00		D®		N, ENGLA	
STK1045 STK1049	c88.00 88	STR451	${ }_{\text {E5, }}^{230}$	${ }_{\text {TOA }}{ }_{\text {TOA }}$. 15	${ }_{8}^{\text {®U3326 }}$	${ }_{60} 1.75$	2SC454	¢0. 10		$\underline{52} 26$	PANASONIC	VV330/7		¢19.50		: 081-952	4641	Fax: 081-952 46	
(STK1050	97.50	STRAS5A	${ }_{6}^{65} 80$	ToA 3561 T0a3590	${ }_{\text {c }}$	814266 844060	¢0.78	-	${ }_{5}^{52.98}$	- $\begin{aligned} & \text { B1+20 } \\ & 800 \mathrm{H}\end{aligned}$		PANASONIC	VG30		$\underline{12}$					
K1070	c9.40	TR1096	¢3. 80	10a3590	¢3.00.	804060	c0. 90					,	,	-						

ECONOMIC DEVICES PO BOX 15，WOLVERHAMPTON，WV2 4AZ

${ }^{0,19120} 8$

路

 53 HA1 3001 | HA 13001 | 1 |
| :--- | :--- |
| HA 1306 | 2 |
| HA 30402 | 7 |
| HA 1332 | 2 |
| HA 13365 | 4 |
| HA 1366 WB | | 주조조돌 IBA970

TB9990
TCA270S
TCC2070SO
TCA290A
TCA420A 3.60
1.98
2.15
1.05
2.39

\qquad

888
800

象

 Nㅜ영

N～シ
 MS3748NS
MS3755
MS3 2994 NL

\qquad
\qquad

VCR Clinic

Reports from Eugene Trundle, Steve Cannon, Ed Rowland, Hafidh Mahmood, Andy Worrall, Ray Crockit, Nick Beer and Mick Dutton

Mitsubishi HS400

The job card said "keeps pausing". Sure enough a soak test showed that the tape stopped moving for a second or so at rare intervals. It would sometimes stop long enough for the system control to shut down the deck. With the top cover of the capstan motor removed it took us some time to establish that the motor itself stopped when the fault occurred. The culprit was the STK 6962 motor drive chip IC5A4. It's similar in shape and size to the motor-drive chips that gave a lot of trouble in earlier models.
$\mathbb{E} . \mathbb{T}$.

Hitachi VT9500

This is a veteran machine. The unusual symptom was complete failure - no clock display, no indication lights and no functions. Mains current was flowing into it however, and the several rectifiers were doing their stuff. The system control/regulator panel along the back of the machine is no fun to deal with physically. We found that the trouble was due to one of the 10 V dropper diodes here - D904 was open-circuit.
E.T.

Toshiba V93

This machine's owner, or rather her two small children of two and four, were very upset. It had chewed a couple of their tapes. The reason for this was obvious when the fault developed: the take-up reel stopped but the capstan continued to run, thus making a right mess of Noddy and Big Ears. As we've had problems with it on earlier models suspicion fell on the reel motor. Sure enough if it was given a sharp knock with the handle of a screwdriver it stopped. A replacement put matters right, but unfortunately Rod, Jane and Freddie were no more.
S.C.

Hitachi VT35

No clock display with the machine otherwise working correctly is a fault we've had on a number of occasions with this model. The cause is a defective d.c.-to-d.c. converter chip, IC711, which burns out L701. Hitachi supply a new d.c.-to-d.c. converter and a modification kit that includes L701. Its part number is 7026181.
S.C.

Hitachi VT130

The problem with this machine was no tape transport. Suspicion fell on the A5V supply to the syscon section of the circuitry. Sure enough it was missing. We traced the circuit back to the 9 V circuit protector which was opencircuit. Before fitting a new one a resistance check was made between the 9 V line and the deck. The reading was only a few ohms. Further checks showed that there was a short-circuit inside the A5V regulator IC802 on the VST board. Replacing this restored normal operation. S.C.

Hitachi VT520

This quite new machine had an unusual fault: the playback picture was very poor and was rolling while the sound was low and very muffed. With a fault like this the audio/control head is the first thing that springs to mind, but in fact the symptoms were caused by insufficient back tension. A check on the back-tension post showed that it
was about half an inch away from the tape. The reason for this was not at all obvious. Nothing was jamming it. The mechanism that controls the arm looked o.k., but it didn't move the arm far enough. Curiously, if the loading motor was given a few more turns the mechanism and backtension post moved to their correct positions and normal operation was obtained. Of course when the machine was stopped and play was again selected the fault was back.

We made a note of the number at which the arrow on the mode switch pointed. In play or record it should normally be 6 , but the arrow pointed to 5 . This is the position for reverse play, in which no back tension is needed. A new mode switch from Hitachi, part no. 5610702 , cured the problem.
S.C.

Ferguson FV30

This machine went into the stop mode after a few seconds of play, record, rewind, etc. The fault was very nearly the same as the one with the GoldStar machine featured in Test Case 335. We followed the same test procedure, but rather than gunged up reflectors the fault in this machine was caused by the supply spool optosensor.
S.C.

Hinari VXL6

There was no drum rotation though all the other functions were in order. Voltage checks in the power supply disclosed that the P -on 5 V rail was low at 2.8 V . The culprit turned out to be Q504, though the device read o.k. when checked on a transistor tester. As we didn't have a direct replacement we fitted a TIP 42 C . This restored normal operation.
E.R.

Panasonic NV2000

This repair served as a reminder of the usefulness of the servicing articles in this magazine. The symptoms were no E-E signals with the channel LEDs out. As we hadn't had this problem before we referred to Nick Beer's article on the machine in the January 1990 issue. This enabled us to go straight to QloOg which was open-circuit base-toemitter. Thanks Nick.
E.R.

Panasonic G Series

Intermittently going to stop during play and sometimes not winding the tape back into the cassette is due to dry-joints on the AN3821K DD capstan drive chip. Make a point of resoldering this i.c. whenever any VCR that uses it comes in for repair. It will save you a call-back.
H.M.

Panasonic NV7000

The picture was intermittently smeary - as if it was out of focus. Flexing or patting the bottom PCB, one half of which carries the chrominance and luminance circuitry, would instigate the fault. Sometimes the machine would behave itself for a day or two, then we were back to square one. The problem was that there was no time to scope any signals when the fault appeared. So I went on tapping the board until I came to the luminance playback level preset which seemed to be the cause of the fault. After changing it

I gave the machine a soak test then returned it to its owner. Five days later it was back with the same fault. To cut a long story short I eventually found that filter FL 3002 had a dry-joint at one end.
H.M.

Panasonic NV7000

Sound was o.k. but there was no picture. In fact there was a blank white raster on playback. As the E-E picture and sound were o.k. we suspected either a blanking or recording fault. It turned out that the record-on switch transistor Q3013 was short-circuit, a replacement restoring the picture.
H.М.

Panasonic NV340

Apart from the clock display nothing worked. The power supply rails were all as specified however. When the machine was plugged in the capstan motor rotated slowly and wouldn't stop until the machine was disconnected. Now when VTR is pressed pin 8 of the MN1405VKF syscon chip should go low. It didn't change state. Replacing this chip restored all functions.
H.M.

Panasonic NV8600

Playback produced a blank white raster with normal sound. There was no E-E picture and we couldn't get the test signal. I suspected the r.f. converter but as we didn't have one to hand I decided to start fault finding. The first step was to check the supply to the r.f. converter. It was correct at 9 V . Next the converter's video input was checked. The manual says there should be a IV p-p signal here but there was a 10 V d.c. reading. This 10 V was traced to the buffer transistor Q313 which was short-circuit all ways. A replacement put matters right.
H.M.

Panasonic NV7000

For snowy playback pictures, as if the heads are worn out, check the continuity of the rotary transformer's windings before changing the drum. I've had three machines with this fault and in each case one winding was found to be open-circuit.
H.M.

Panasonic NV-G12/G21 Series

We've had several cases of a broken safety tab switch with these machines. The symptom is that the cassette is ejected when record is selected.
H.M.

Panasonic NV250/NV450

In cases of intermittently going to stop during playback then rewinding, in fact with all sorts of confusing conditions, check for a leaky supply phototransistor. There should be $3 \cdot 2 \mathrm{~V}$ at pins 20 and 21 of the syscon chip IC 6001 . If not change both sensors.
H.M.
very dry grease was replaced with some nice new Moritone and we then powered the unit (still disassembled). There were no deck functions. I've had this before but it took me a few minutes to remember the cause. If the earthing lead from the top bolt hole of the battery compartment is undone you won't get anything. This lead carths the main PCB to the deck. Another reminder to stick above the bench!
N.B.

Toshiba V55

E-E operation was o.k. but this machine wouldn't load a cassette. My first check was on the power supply outputs, which were all o.k. A scope check was then made on the inputs to the microcomputer chip. It was receiving instructions but was it carrying them out? I scoped the outputs but these didn't make much sense. Try a different approach: maybe no power is going to the motors? Three changeover switch chips feed 13 V to the motors. Check and find that there's nothing at IC204/5 because circuit protector CP1 is open-circuit. As there were no shorts I replaced CP 1 . At switch on 13 V appeared at the switches.

A cassette could now be inserted and the drum and capstan motors rotated, but there was no lace up. Feel each switch chip and find that one is too hot. Is it faulty? Switch off and remove the chip to cheek it. Checks not conclusive. Decide to try feeding each switch output with 10 V from an external power supply - with the VCR switched off of course. Find that all the motors except the mode one run. Remove leads from mode motor and connect to power supply. Motor still doesn't run even with the drive belt removed. Replace motor and i.c. switches and find that all is now well.
R.C.

Hitachi VT33

The complaint was that tapes remained looped in the machine on eject. Whilst removing the covers 1 noticed a label on the base plate saying that another company had repaired the machine some months earlier. Considering this fact I was amazed at the amount of dust inside it. On running the machine with an old "test" tape I found that there was no fast forward or rewind action because the rubber drive wheels and the cluteh assembly had all been coated with a layer of oil, which appeared to be due to over-generous application to bearings during the previous service. This meant a complete mechanical strip down, clean and rebuild, somethng that could have been avoided if the previous "service engineer" had been more careful in cleaning the machine properly and had not been so generous with the oil.
A.W.

Sony SLC6

This machine suffered from lack of capstan servo lock, the problem being worse in play than record. The cause was $\mathrm{C} 7(0.22 \mu \mathrm{~F})$. Sony say that this is a common problem and in addition recommend changing C 8 which is also $0.22 \mu \mathrm{~F}$.
M.D.

Panasonic NV-M7

The complaint with this camcorder was that it wouldn't eject. It came from a teaching hospital and we were asked to carry out a "general service". So we replaced worn belts, the pinch roller and idler, and the main loading pulley. The latter had caused a lot of knocking while the threading operation was being carried out - like what you get with the NV730. But we never saw the eject fault! The

Sharp VC7300

The playback picture showed increasing interference as the machine warmed up - the effect was similar to that produced by an arcing tripler in a colour TV set. The E-E picture was normal and the sound was not affected. We found that the problem was caused by the HA 11703 chip 1403 in which the playback f.m. signal is detected. M.D.

Long-distance Television

Roger Bunney

Reception during November was very varied. Perhaps the only thing we missed was a good Leonids meteor shower. Band I was fairly active, with both F2 and Sporadic E reception. There was a sprinkling of tropospheric signals, with a dramatic day on the 8th.

Tropospheric reception started to improve early in the month, the $6-7$ th providing West German, Benelux and French signals over much of the UK. The 8th was something quite different however. Really intense signals were seen on this day and, to a lesser extent, on the 9th. It looks as though records have been broken. A list of the countries received tells all: Sweden Band III/u.h.f.; Norway Band III/u.h.f.; Finland chs. E7 and 9 (Turku YLE-2); USSR chs. R7, 12, 29; Poland chs. R8, 35; Czechoslovakia chs. R10, 24, 36; countless French and Benelux stations; Denmark; and German broadcasters ARD/ZDF, RBI, NDR, HR, West 3, SFB, SWF, SAT 1, SSVC and DFF1/2. Our congratulations in particular to Simon Hamer on his Russian Band III/u.h.f. and Finnish Band III reception - Russian Band III/u.h.f. stations had previously been seen in Norfolk but not as far west as North Wales. On the 9th reception widened to include Austria - both ORF outlets, chs. E8 and E34, were seen plus Switzerland chs. E6, 7, 12, 31 and 34. The next tropospheric opening occurred on the 14th, when Roger Fussell in Cornwall received the following Spanish channels: E2, 3, 5, 7, 8, 31, 34, 35, 37, 39, 42, 45 and 49!

The general SpE log was as follows:

```
5/11/90 RAI (Italy)ch. IA; TVE (Spain) chs. E2,3.
6/11/90TVE E2.
7/11/90 TVE E3.
9/11/90 + PTT (Switzerland) E2.
11/11/90 RAI IA; TVE E2, 3; MTV (Hungary) R1.
12/11/90 TSS (USSR) R1; CST (Czechoslovakia) R1; RAI IA, B;
    RUV (Iceland) E4.
16/11/90 TVE E2, 3, 4; + PTT E2; DR (Denmark) E3.
18/11/90 TVE E2,3; DR E3.
19/11/90 TVE E2, 3.4.
20/11/90 + PTT E2.
23/11/90 CST R1;TVEE3.
24/11/90 + PTT E2.
27/11/90 TVE E2.3; +PTT E3.
```

With the high sunspot activity F2 signals were also present at times:

4/11/90 Weak R1/E2 vision reccived.

5/11/90 USSR R1; unidentified E2 signal.
$9 / 11 / 90$ Chinese programming on $\mathrm{ch} . \mathrm{C}$; unidentified E 2 programming at 0800 .
11/11/90 Unidentified E2 colour bars at (0750; Arabic E2 programming; USSR/China ch. R1/Cl; Australia ch. 0 . very strong but with severe fading, at 09.30; unidentified A2 transmission (525 lines) at 1400 . The m.u.f. reached 55 MHz , with a weak ch. E3 signal being seen by Roger Fussell.
13-15th Unidentified signals received on chs. E2/R1/Cl during the morning. ZTV (Zimbabwe) ch. E2 seen at 1200 on the 14 th.
19/11/90 Ch. E2/R1/C1 signals plus ZTV E2 at 1230 GMT

Bill Cotterill (Tipton) tells us that he's built a specialised TV-DX receiver based on a Rediffusion translator. It has switched selectivity modules with different i.f. bandwidths, enabling very weak signals to be resolved. We hope that Bill will provide an article on this receiver, which cost little to build and has far better performance than the average DX-TV installation.
My thanks to the following for sending in reception reports: Peter Schubert (Rainham), Simon Hamer (Powys), David Glenday (Arbroath), David Oliver (Birmingham), Tim Anderson (St. Leonards) and Roger Fussell (Torpoint).

News Items

Germany: Unification is bringing with it many changes in the broadcasting field. The DFF-1/2 networks are being merged into a single service called OST 3 , carried on all former DFF-2 transmitters. This will operate until the end of 1991 then cease. All transmitters that formerly carried DFF-1 now carry ARD programming with regional optouts. ZDF is expanding eastwards with new transmitters Lobau E56, Cottbus E57 and Dresden E59 are already in operation, with PAL colour. Five regional centres for the ARD service are being established at Rostock, Berlin, Dresden, Halle and Gera. In the west ARD/ZDF now start on weekdays at 0600 local time with a programme made by RIAS-TV, Berlin - the RIAS logo is often seen during the early mornings with its network offerings. Incidentally the postal prefixes have changed - W instead of D in the west with O replacing DDR in the east. The SAT 1 group has moved to a new broadcasting centre at Mainz and now uses a FUBK pattern with identification SAT 1 MAINZ.
Yugoslavia: The Zagreb station OTV now broadcasts on chs. E31 (West Zagreb/central Slovenia) and E45 (East Zagreb/Sisak/central Croatia). Programme hours are 17000100 daily. The transmitter network is to be expanded to cover the rest of Croatia.
France: Now that pirate Discret-II decoders are commonly available Canal Plus has deciced to change to the new Syster scrambling system from Eurodec. There have been delays with Operation Chadec (decoder change) due to manufacturing problems - a shortage of ITT chips. The new scrambling system was originally to have been introduced this January. It will apply initially to terrestrial transmissions.
Rumania: The new independent AI-TV station in Bucharest is now testing on a 24 -hour basis.
Spain: George Gaskin (Gibraltar) reports that most large Spanish towns now have a local, independent TV service. He's noted a new transmitter at Malaga and from his home can receive Spanish Canal Plus on ch. E39. Tele-5 on ch. E42 and Ant-3 on ch. E45 from the Mijas region.
Monte Carlo: TMC, which is now forty per cent owned by the Italian chemical/agricultural firm Ferruzi, is to expand to provide three services aimed at Italy and other nearby countries.
Greece: The situation is becoming like that in Italy, with some towns having up to ten terrestrial and eight satellite TV channels available. The government has yet to decide who shold be given official licences.
USSR: Several independent stations are now in operation. Locations include Vladivostok and Chita. The Union of Organisations of Cable and on-air TV of the USSR has been set up with the aim of increasing local independent broadcasting.
Thailand: A teletext service called Armtext has been
introduced in the Bangkok region. It's based on an Australian system.
Australia: Robert Copeman reports that a second estate agent in Melbourne is now using "talking house" transmissions (see page 196 last month), this time at 100 MHz . It's likely that the system will spread to other cities. Incidentally the McDonalds drive-in at Burwood, Victoria transmits food orders at 35.02 MHz . Now if conditions get that good

Meteor Showers 1991

The main 1991 meteor shower dates are listed below. Our thanks to George Spalding, Meteor Section, the British Astronomical Association, for once again providing the details.
Lyrids April 19-25th peaking on the 22 nd at 140) .
May Aquarids May 1-10th peaking on the 5th.
Delta Aquarids July 15th-August 20th peaking on July 19th.
Perseids July 15th-August 20th peaking on August 13th at 0400 .
Orionids October 16-27th peaking on the 22nd.
Taurids October 20th-November 30th peaking on November 4th.
Leonids November 15-20th peaking on the 17th.
Geminids December 7-16th peaking on the 14th at 0900 .
Ursids December 17-25th peaking on the 23 rd.

Satellite TV News

The Japanese BS-3A DBS satellite is now fully operational, allowing three channels (two NHK plus a commercial one operated by Japan Satellite Broadcasting) to be received using 45 cm dishes. A backup satellite is due to be launched later this year. There have been rumours of Japanese interest in the Marco Polo satellites.

Middle East Broadcasting is due to start programme transmissions in February via Eutelsat II FI at $13^{\circ} \mathrm{E}$, at 11.55 GHz .

Israel intends to launch its Amos satellite, for TV and communications use, late next year. The satellite system has been developed by the Israelis. Launch will be via an Arianspace vehicle. If the satellite is successful it will be marketed internationally.

Germany is refusing to promote D2-MAC from TV-Sat 2 at $19^{\circ} \mathrm{W}$. With this and the problem of the ailing TDF craft (faulty TWT amplifiers and no backups) it seems that D2-MAC will be hard pushed to survive. Most German services are moving to the Astra slot at $19^{\circ} \mathrm{E}$, since this provides cheap and easy coverage of the area, and are opting for straight PAL.

BBC-TV Europe is to be relaunched in September with a new scrambling system, Eurocrypt D2-MAC, instead of the easy to pirate SAVE system at present used. The Bravo Channel via Intelsat $27.5^{\circ} \mathrm{W}$ has been carrying out SAVE tests, so maybe the system will survive.

Book Review

Bernard Babani has published a new book on amateur radio satellite reception. It covers the basic theory of satellites and orbiting, amateur radio activity in the satellite field such as the UOSAT series, plus weather satellite reception and how the domestic operator can construct and assemble an efficient receiving system, doing all this in a straightforward way with the absolute minimum of mathematics. In the case of the NOAA and METEOSAT weather craft it describes the display of received images of the Earth's surface on a domestic TV set using easily obtainable units and either a frame store or a home

AERIAL TECHNIQUES

computer such as the BBC one. This very readable book costs just $£ 3.95$ and is thoroughly recommended. Most of the satellites covered in the book are in inclined rather than synchronous orbit, which requires different aerial arrangments. The 100 -page book can be obtained from bookshops, Maplins or direct from Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF - add 40p to cover postage. Its full title is An Introduction to Amateur Communications Satellites by A. Pickard, Babani catalogue number BP 290 .

The Galaxy 25 Colour Receiver

Aerial Techniques is at present marketing the NordMende Galaxy 25, a 10 in . multistandard set with full v.h.f./u.h.f. coverage. Features include full-function remote control and 39 programme storage tuning. It can be operated from a $220-230 \mathrm{~V}$ a.c. or $10-30 \mathrm{~V}$ d.c. supply. There are headphone and external loudspeaker sockets while baseband audio/video in/out facilities are provided by a scart connector.

I've had one of these sets on test recently and found that the picture and sound are excellent, with truly impressive weak signal performance. The tuner covers Band I then upwards to 300 MHz without a break and after that the u.h.f. bands. Thus coverage includes the OIRT and Italian Band II channels and all the cable channels. PAL or SECAM can be selected by push-button, with sound at $5 \cdot 5,6$ or $6 \cdot 5 \mathrm{MHz}$, i.e. systems B/G/I/L. Though the OIRT R channels can be received the $6 \cdot 5 \mathrm{MHz}$ facility is for French a.m. sound only, so with these channels you get the picture but no sound. The North American system (525 lines NTSC) is not catered for. All of Western Europe, most of the Middle East, Australasia and many parts of

Africa are included in the coverage. Two large LED digit displays tell the user what's happening while tuning, setting up or viewing.

There are two aerials, an integral seven-section whip that extends from $61 / 2 \mathrm{in}$. when closed to 33 in ., and a bowtie u.h.f. aerial with a short connecting feeder to clip to the telescopic whip etc. There's a Belling-Lee type socket for other TV aerials.

I found that the remote control and tuning were very difficult to operate at first. You need a careful read through the instructions, then perhaps a second and third read. By then the basics of setting up the beast should become apparent. Once the setting up and memorising functions have been mastered the set is relatively easy to operate. You can set up the receiver for all the Band I/II SpE channels and simply skip along them during an opening. This direct channel access is a real boon.

In conclusion it's a well-built, quality receiver that covers most of the transmission standards you are likely to need in Western Europe, the Middle East, etc. It's attractive to look at but at over 20 lb would be difficult to carry over
long distances. A leaflet on the set can be obtained from Aerial Techniques - for address see nearby advertisement.

Test Card Videos

Andrew Emmerson (71 Falcutt Way, Northampton NN2 8 PH) is able to supply two VHS video tapes that cover various aspects of test cards/patterns. Highly recommended for those interested in the early days of 405 lines to the present day is The Development of the TV Test Card in which George Hersee discusses the evolution of test cards from the Alexandra Palace days to Test Card F. Lots of cards are shown. This E180 costs $\mathfrak{f 5}$ in the UK

TV Test Cards of Eastern Europe is a remarkable offering which will be compulsive viewing for all TVDXers and satellite TV enthusiasts. In addition to Eastern European cards there are items from Mongolia, Libya etc. The tape runs for nearly fifty minutes and was recorded in an Eastern European TV studio using professional broadasting equipment. At $£ 10(\mathrm{UK})$ this is a bargain.

These tapes can be ordered from Andrew Emmerson at the address above - no callers please.

CD Player Casebook

Reports from Mike Leach, Philip Blundell, AMIEIE and Joe Cieszynski

NordMende CP3000

This player wouldn't read the TOC - our customer complained that it made a strange noise. On removing the top cover we saw that the disc didn't spin. Basically, as the tray didn't load fully the microcomputer chip wouldn't tell the player to go.

With a fault like this the usual procedure is to replace the loading belt and clean the tray loaded/unloaded switch you usually find it on the mechanism somewhere under the tray. Not on this one however. In fact there's no switch. The microcomputer chip simply relies on the loading motor coming to a stop when the tray is fully loaded. It then tells the laser to come on and the disc motor to spin. It's possible to initiate this procedure by hand. When we did this we found that due to a faulty loading belt the loading motor continued to spin with the tray in. When the motor was stopped with a finger the machine switched the laser on and read and TOC. After replacing the loading belt and the motor I got the necessary jolt as the tray fully loaded. The machine then worked perfectly.
M.L.

Philips CD373

The headphone output was o.k. but when the output was fed into an audio amplifier there was distorted sound. This was due to a burn up on the audio board. The culprits were R3126 (33ת) and its associated smoothing capacitor C2106 ($100 \mu \mathrm{~F}$).
M.L.

Pioneer PDM500

This multi-play machine suffered from the now all too common Pioneer problems. First, it wouldn't read the TOC because of a faulty turntable motor. When this item had been replaced and the machine had been reassembled I found that it was very slow at finding tracks. It would also occasionally jump across large sections of the disc.

I put the machine in the test mode to start going through the setting-up procedure. When these machines are in the test mode it's possible to move the laser assembly across the disc quickly by pressing the manual search forward and reverse buttons. The action was very slow with this
machine however. This was because I hadn't cleaned and lubricated the worm gear when I'd fitted the new turntable motor. The problem has been mentioned before in these pages - Nick Beer wrote about difficulty with dirty worm gears in Technics machines. Always clean them: it could save you the price of a laser.
M.L.

Mission PCM4000

The problem with this machine was crossover distortion in the right-hand channel sound. The output from the DAC is too small to see easily with a scope but as the manufacturer has brought the DAC outputs out to links it's a simple matter to swap them over in order to check whether the analogue section is o.k. It was. A new TDA 1541 DAC chip put matters right.
P.B.

Sanyo CP08

The complaint was of intermittent cutting out whilst playing. When I tried the player it seemed to be very sensitive to the slightest disturbance. Tapping the player would result in the servos going out of lock and the CPU would then initiate the stop mode. It seemed likely that there was a dry-joint somewhere. So I removed the main panel, using jump leads to maintain the earthing. The player now behaved impeccably. Suspecting that I'd disturbed something I resoldered any joint that looked dry.

After extensive board tapping and flexing I reassembled the player only to find that the fault was back again. This routine continued for some time until, by sheer good fortune, a jump lead fell off while I was tlexing the board. The fault then showed up instantly. How could I have missed it? The main panel has a number of earth connections, one of which is made via the fixing screw at the rear, right-hand comer. Contact is made via a pad of solder which in this case had become tarnished. I should have been warned - I'd had a very similar tussle with a Toshiba colour TV set a few years ago. After remaking the solder pad I fitted a grip washer between the pad and the chassis to make sure that the fault didn't recur. J.C.

Letters

COST OF SPARES

The practice of badge engineering is widespread in our industry, especially with higher-technology video products. But I was surprised to find that a new range of Sony VHS VCRs uses the Panasonic G mechanism. Not only this, but the mechanism is obviously purchased from Grundig who also use it. I discovered this when a new SLV270, the basic machine, came back with the complaint of excessive noise. I tried it and thought to myself that if it was a G mechanism the noise level would be normal. On removing the lid I was somewhat taken aback to discover that it was a G mechanism!

The problem was the centre pulley unit of course. But as the machine was under guarantee we had to purchase the part from Sony in order to be able to claim its cost. This was unfortunate as we keep several Panasonic pulleys in stock. We ordered the part (G98726503) from Sony. It came a few days later packed in a Grundig "Genuine Spares" box. On undoing this we found the pulley and belt in a Panasonic box and bag complete with the Panasonic part numbers. The Grundig part no. 75987-265.03 and the Sony number have common elements as you can see. The same cannot be said of the prices. As Panaservice dealers we get preferential spares prices, say $£ 5$ in this case. Willow Vale will supply the Grundig part for $£ 6$. You will therefore appreciate our amazement at the price Sony charged us as one of their dealers - $£ 18.03$. We obtained the part from Sony only for guarantee reasons, and we shall be reimbursed, but this does highlight one or two worrying points. First, is Sony being charged ridiculous amounts by its suppliers? Secondly, dealers unaware of this situation could be ordering spares from Sony and in some cases doubling the cost of a repair.
Sony is not the only manufacturer cursed with high spares costs for badge engineered products. Another good example is NCS (Salora/Luxor). A capstan motor for a badge engineered Sanyo machine costs $£ 70$ to a Salora dealer. From Charles Hyde the same motor can be obtained for $£ 38$ under the Sanyo part number. NCS's explanation is that its UK arm cannot source spares from anywhere except its parent company in Finland. The Finnish company obtains the spares from Sanyo in Japan. It can be seen therefore that the massive transportation costs and successive handling mark-ups result in a very high price. The answer would appear to be to allow common sense to prevail and let UK spares departments obtain parts from UK sources.

There are ways of overcoming this problem. Bang and Olufsen, who use Philips and Hitachi products, had a number of astounding price differences. Their service manager Bob Clementson adopted a positive approach to dealers' complaints and findings. As a result of a combined effort, with dealers compiling information and B and O following it up, the anomalies no longer exist. In fact certain Philips VCR parts that previously cost almost twice the price of those supplied by Willow Vale are now marginally cheaper!

One problem is that when as a dealer you approach a manufacturer about this sort of problem you rarely get an admission that the products are badge engineered however obvious it is.

It would be interesting to know whether all Sony's Panasonic mechanism parts are as expensive, also whether
the situation is not as simple as I make it out to be. I must make it clear that I'm not singling out Sony, but the example quoted above does at best seem ridiculous.
Nick Beer,
Bideford, Devon.

FUSEHOLDER FAULTS

On a number of occasions over the past few years I've found that many of the infuriating intermittent faults now so common are caused by one simple item - the set's mains fuseholder. I was prompted to write about this by a friend's sorry experience with a Philips G11 chassis. The set concerned had a history of short-circuit BU208A line output transistors. My friend had attended to the usual causes - the reservoir capacitor in the power supply, the line output transformer, dry-joints, etc. In desperation he finally brought the set to me. On inspection I found that the left-hand mains fuseholder was very loose and charred - this should have been noticed during the many mains fuse replacements. After replacing the fuseholder and fitting another B208A the set has worked happily for over a year.

I've had the same problem with the GEC C2110 series, the Decca 80 and 100 chassis and the Ferguson TX9, TX10, 9000 and 9600 chassis. Often the only fault you get is soft blowing of the fuse. Incidentally, in sets with two mains fuses it's usually the one in the neutral line that blows. Remember the great plugtop debate? Perhaps other engineers would care to comment on this.
K.W. Saxon,

St. Helens, Merseyside.

LNB FREQUENCY RESPONSE

In his article on our LNB repair service last month Steve Beeching asked whether an LNB with a 5 dB dip in its frequency response would be regarded as faulty. The answer is yes, it would.
J.A. Glenton, Director,

MCES, Manchester.

OH DEAR

As an avid Television reader I usually start by reading all the words, then the spaces between the words and then do it all over again to see if I've missed anything. After all it comes out only once a month.

So it was with some surprise that I read the item in Teletopics under the heading "Video News", or it should have been "The Blind Leading the Blind"? Have Akai really designed a VCR with help form the Royal Institute for the Blind? And is there any truth in the rumour that they are considering designing a Nicam adaptor for it with help from the RNID?

Sorry about that. But in these hard times it helps to have a sense of humour.
John Hopkins, The TV Workshop,
Felixstow, Suffolk.
Editorial note: Our apologies to all for this mistake.

MICROWAVE OVEN SERVICING

We would like to endorse the comments made by Brian Francis in his letter (January). It's vitally important that any engineer taking on microwave oven servicing and repair is adequately trained.

The lack of money that's been put into training in the UK over the past twenty or so years is one of the main reasons for the acute shortage of competent technical people. According to the latest figures available, only 25 per cent of young people in the UK enter further or higher education. This compares with about 75 per cent in Germany (the bit previously known as West Germany) while Korea is aiming for 85 per cent by the year 2000 . Lack of trained staff contributes to factory closures and the consequent high level of unemployment.
Many employers maintain that if they spend money on training, their staff leave for better paid jobs as soon as they are trained. This raised two questions. First, are wage levels too low? Secondly, if everyone received training there would be people who could be taken on to replace those leaving for higher pay.

Microwave oven servicing and repair involve health and safety, so it's vital that correct training is provided. This should not however be a problem that deters TV engineers from entering this field. We know of an excellent series of training courses that are both inexpensive and effective. If any reader thinking of taking on microwave servicing likes to contact us we would be pleased to pass on details. It's a fact that more and more TV engineers are taking on microwave ovens. They have a head start because of their experience of electronics, and will find the information in the courses easy to assimilate. In addition our Technical Department is able to offer help and information for new entrants. In these difficult times many of us will have to diversify to survive. So think positively TV engineers: you can do it!
Peter Vile, AMITD, Sales Manager,
Express Components Lid., 2 Holyoake Street.
Wellington, Somerset.
Telephone 0823607525.

EXPLANATION WANTED

To return briefly to the subject of static shocks from TV sets, a really nasty shock can occur when a set has been switched off (perhaps at a wall socket) while the handler's chest (not necessarily maked!) is held against the c.r.t. glass. The discharge that will occur if a supply pin on the mains plug is then touched could certainly result in the set being dropped. Could someone explain the theory?
Sandy Hewat,
Troom, Ayrshire

VIDEO AMPLIFIERS

I would like to make a few comments in connection with C.W. Murray's satellite TV video amplifier/filter article last month. First, it's perfectly true that video amplifiers can be difficult to lay out, and that an integrated approach is attractive. But the NE592 circuit suggested requires amendment. The NE592's input pins are 2 and 14 and both must be biased positively with respect to the substrate (pin 5). This can be achieved by using a bias network between ground and the positive supply, but since the total resistance to ground in the suggested circuit is only a few hundred ohms this would call for a similar value resistor to the supply. As a result, appreciable current would flow. An alternative approach is to use split supplies - in fact the manufacturer of the device recommends this. $\mathrm{A} \pm 6 \mathrm{~V}$ supply is suggested as the maximum rating is $\pm 8 \mathrm{~V}$.

Although the NE592 or the similar $\mu \mathrm{A} 733$ is a convenient chip it has its own share of stability problems and good decoupling is essential. Since TV signals are
broadband the decoupling should be suitable for low and high frequencies. In this respect tantalum electrolytics are probably the best choice. The NE592 also suffers from the problem of limited output current capability, and it cannot drive 75Ω loads. If the latter is required, an output buffer stage will be necessary. Another problem is severe distortion at high signal levels. Some time ago I attempted to use the device as a video amplifier in a broadband modem I was designing, but I had to reject it because of poor transient response at high signal levels. This shows up in line-time non-linearity testing, and also as poor differential gain with high signal levels. For these reasons most high-quality commercial equipment still uses discrete component circuitry.

For anyone interested in experimenting with new devices the products of the American company Maxim are well worth investigating. There are video switches and multiplexers which can make excellent video distribution units, also a useful range of high-signal video amplifiers. For example the MAX 450 can deliver at least 2 V p-p into 75Ω with a useful gain up to 10 MHz .
M. Priestley,

Tranent, East Lothian.

HELP WANTED

Could anyone provide or suggest a source for a service manual or circuit diagram for the Telequipment D43 oscilloscope? As this model was discontinued over twenty years ago Tektronix cannot help.
P. Cogan, Leacht Cross,

Carrigaline, Co. Cork, Eire.
Can anyone supply alignment details for a National NVS120A cartridge recorder and help with cartridges for it? All expenses would be met.
Vincent O'Loan, 3-3, 158 Allison Street,
Glasgow Gt2 $8 R$ P.
Telephone 0414233896.
Can anyone supply or tell me where I can obtain a highvoltage transformer for a Tektronix 453 oscilloscope?
J.D. Electrical, 23 Elmdale Road,

Earl Shilton, Leicester.
Telephone 0455 845186.
Can anyone supply a circuit diagram and/or operating handbook for an AVE Pro convar slide dissolve unit used with slide projectors for audio-visual presentations? Mk 5 unit if possible, but any information welcome. All costs paid and information returned after photocopying Ed Dinning, 55 Bryans Leap, Burnopficld,
Newcastle-upon-Tyne NEI6 6BP.
Telephone (0207 70122.

JOBS AND EXPERIENCE

With reference to Paul Byrne's letter (December), I fully agree with everything he says. Being 45 myself l've now reached the stage where I give up when I see an application form that asks one's age on the first page. You know you have no chance.

I was made redundant last August after spending 17 years teaching radio/TV servicing. All this publicity about training and what is being done about the unemployed puzzles me. I was a trainer and I'm on the dole. Most of this so-called training is so diluted that it's of no significant
use to anyone - except for the spivs and fast-buck people who are now on the training bandwagon.
Jim Littler, 363 Atherton Road,
Hindley Green, Wigan, Lancs WN2 3XD.
I've had similar experiences to Paul Byrne (letters, December) at the hands of prospective employers. For some five years I was self-employed, and as far as employers are concerned I might as well have been in jail during this period. It's definitely something they don't seem to like. On application forms I can echo Paul's comments. Often, after sending a detailed, carefully compiled c.v. and covering letter in response to an advertisement, back comes a two-page application form which inevitably, after name, address, qualifications and employment history sections, has a two-line deep space headed "any other attributes which you feel may make you especially suitable for this vacancy".

Interviews can also be an eye-opener. I once attended an interview for a job with a major oil company. The interview was scheduled for $9 \mathrm{a} . \mathrm{m}$. at a five-star hotel not far from the company's H.Q. Imagine my surprise when, expecting to be shown into a suite with perhaps three interviewers present, I was ushered into a large function suite where, along with about a hundred others, I had to sit and do "Psychometric Tests" for three hours. The value of such tests is a controversial subject that's been widely debated elsewhere, but to anyone who has completed an approved course of training and studied long and hard to get a better qualification or grade they are a real slap in the face.

Details of qualifications and grades obtained are very seldom asked for at an interview, and although you may establish a good rapport with any engineering or technical staff who are present you can bet your bottom dollar that the decision on who to appoint will rest solely in the hands of the personnel department whose representative at the interview will, in my experience, be a 22 year old bimbo who wouldn't know a good engincer from a bottle of

Perrier water. As long as the personnel department is happy you'll get the job. It worries me. I bet they choose some real duffers. Perhaps Paul's letter should have been headed "too good at 38 ".
Alastair J. Downes, 36 Danderhall Crescent,
Dalkeith, Lothian EH22 ILZ.

FOR DISPOSAL

I have for disposal to anyone willing to collect the following VCRs: Philips 1500 with suspect head; Philips 1502; and two Philips 170)s. Also about thirty assorted tapes for these machines. Please contact me on 049433558 after 6.30 p.m. during the week, $11.00 \mathrm{a} . \mathrm{m}$. at weekends.
C. Carter, 4 Bushey Close.

High Wycombe, Bucks HP12 3HL.

TUNING TROUBLE

Remember the good old days when dealing with a TV tuning fault consisted of soldering the tuning bar back on? A bit of solder to do the job could always be found. But you try to get a MAB8441PT(048 microcontroller chip for a Sanyo TV set! Sanyo say they have it in stock, but nonaccount holders have to get it from Charles Hyde who say they are waiting for Sanyo and can't give a delivery date. Philips say they can't supply direct as the ROM program is owned by Sanyo. So we have an otherwise perfect threeyear old set that's useless!

I notice from letters that there's a lot of interest in the Bush DAC90A. I have one that's free to a good home. It's not working so will require some restoration. I also have free to someone interested in restoring it a small TV set dating from about 1950. Now for my request: does anyone have a circuit diagram for the Amerex ACD 800 stereo cassette deck? Please phone 0642 581570 evenings, 0325 332805 daytime.
W.G. Hall, 67 Selwyn Drive, Bishopsgarth,

Stockton, Cleveland TS19 8XF.

Remote Control Handset Checker

Colin Birch

A complaint that's common enough with TV sets and VCRs is "works o.k. with its own controls but no remote control operation". The problem is to know whether the set or the remote control unit is at fault. If you don't have a compatible unit you can waste time stripping down the customer's handset only to find that it's perfectly all right. Annoying, isn't it? I've had this happen to me on any number of occasions. So I decided that what was required was something cheap and simple to check whether a handset was producing an output. Into the odd bits box I delved, the outcome being the circuit shown in Fig. 1.

The infra-red sensor I used was a spare end-of-tape one

Fig. 1: Circuit diagram of the remote control handset checker. Infra-red sensor Tr1 drives emitter-follower Tr2 which in turn drives the LED indicator D1.

from an Hitachi VT65E, though more or less any sensor could be used. The components were assembled on a piece of Veroboard. When soldering has been completed, check for any solder bridges across the tracks then connect the battery. To set up the circuit, switch the unit on and adjust VRI until the LED goes out. Check the unit's action by aiming a good handset at it then pressing a key. The LED should light. If it doesn ${ }^{\prime}$ t, adjust VRI slightly.

Although simple the unit has already saved me much valuable time. I only wish I'd built it years ago.

Component details

Tr1	Infra-red sensor
Tr2	BC108
VR1	$250 \mathrm{k} \Omega$ preset
R1	$1 \mathrm{k} \Omega, 1 / 4 W$
D1	Red LED
SW1	Single-pole, single-throw switch
Veroboard -7 holes $\times 9$ strips	
PP3 battery and clip	
Small plastic box	

What a Life

Donald Bullock

One of the good things about our old house is that it's roomy enough to have a bar. And a friendly place it becomes as the evening wears on. The other night I was getting comfortable when the phone trilled. Out rang the crisp, authoritative tones of one of my retired military customers. It was unmistakably Major Hagger.
"Hello Donald, old boy. Moving house don'tcha know. To one of those retirement homes where they wetnurse a chap whilst fleecing him! Wife's idea but there you are. Got a pair of youngsters moving in here. Teachers. Think they're intellectual and want the aerials taken down. Frightened of lightning or the programmes? Anyway, see to it will you?"

At that there was a click. So next morning I asked Mario the contractor to attend to the aerial job. He doesn't speak much English, nor does his brother. But they're as nimble as cats and make do with a minimum of ladders. Then I put the first set on the bench.

The Waltham TV600

It was a Waltham TV600 colour portable. The sound was o.k. and there was a rustle of e.h.t., but no raster. I seemed to recollect having had this problem before with a Waltham. So I flicked through my card index, where I keep a record of any noteworthy faults, and pulled out one labelled Waltham TV600. "No brightness, sound o.k." it said. Wow! With quickening pulse I read on. "Turn up A1 voltage (lower line output transformer potentiometer) to reveal field collapse." I did and it did. "Check R122, 3•3 2 , white ceramic case" it continued, "at back left near line output transformer for being open-circuit." Again spot on. In no time the set was off the bench.

An Akai VS240

The next job was an Akai VS240 VCR with remote control. Its symptoms were no results with a display that showed only the letter L. I took the covers off and checked for obvious things but got nowhere. An hour spent carrying out checks in the power supply produced no further progress. I didn't have the manual and was toying with the idea of sending off for one when Ernie called in. He's chief cook and bottle-washer at a nearby guest-house and drops in when he has a bit of spare time. Always takes an interest in what's going on.

He took a look and commented "same as ours. See you've 'locked him up'. We do that. Stops people using it without our say-so."
"I haven't locked it up" I said. "It's faulty and I have to fix it. Only I don't know how."
"Pick up that remote control" said Ernie. "Point it at the recorder and press it six or eight times."

1 did as I was told and the L disappeared in favour of
other cyphers. I put in a tape and the machine worked beautifully. This did wonders for Ernie's ego but little for mine. But Ernie's wife knows where to find him. The phone rang and after a brief exchange he scuttled off.

Solavox NVCR5000

The next job had me flummoxed again. It was a Solavox NCVR5000 VCR that was devoid of life apart from a few bits of incomplete gibberish in the display area. Working on the basis that I had a brain while the recorder only thought it had one I settled down to crack the fault. A long time was spent, then I retired to the house worn out and defeated.

Greeneyes was having a fair old time playing one of her Spanish language cassettes on my audio system. Wearing some strange gear too. Just then the phone rang. It was my Solavox customer wondering how I was getting on with his video.
"I'm not" I said. "We've taken an acute dislike to each other. Where did you buy it?"
"Comet" he replied.
"I'll see if they can help" I said.
So I phoned the Bristol branch and was put through to their helpful technician Peter Ambrose. He was not only familiar with the fault but came up with the solution. "Add a $4.7 \mathrm{k} \Omega$ resistor between the positive of the 5.5 V back-up 'battery' C821 and the base of transistor Q809 next to it" he said. "It'll never come back with that fault. It's a Nikkai chassis. There's an Alba model that uses it, and a Questor one as well I think."

I did the modification and sure enough the machine burst into life. Curiously, the next job on the bench turned out to be the Alba version. It was as dead as could be - not even a segment of display. But the same modification fixed it.

Those Military Men

That evening I was safely settled in the bar when the phone rang. It was Major Hagger. Hopping mad too.
"What do you mean by having my practically new aerials hacked down by some foreigners? When I asked they said you'd sent them. You'll answer for this. If you know what's best you'll get my aerials replaced forthwith - then send me an apology."

Greeneyes had heard every word and wanted to know what was going on. "Probably asked me to do it without referring to his wife" I said. "You know how it is. Then wants to pass on the blame."
"Do you really think so?" she said.
"Of course I do. It's obvious. He'll probably call to apologise in due course."

The phone went again. Greeneyes took the call - it was Captain Hodder. When she'd put the receiver down she called over "wants to know what happened to the aerial riggers. Said he called you the other night and he's still waiting. He's off to the old folks home in the morning. Why can't you take proper notes when you get these calls? Especially when you've been in this bar for a while."

[^0]

Where can you buy:-

Intruder alarm panels Keypads
Bells \& bell modules Key switches Magnetic contacts Buzzers \& sirens Security \& Floodlights

Fire control panels
Loop alarms
Bell boxes Pressure mats Window foil Door loops Passive infra red detectors

VHF/UHF CTV's
from £30
VHF/UHF F/L Videos from £150

Fresh Stock Daily

T.V. TRADE SALES

E.D.I. House, Kylemore Park West DUBLIN 10 Telephone: 01 6264139/6263517

Also at: Unit 11, Galvone Enterprise Centre, Roxboro, Limerick. Telephone: 06147577

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career Opportunities

Over the past 100 years more than 9 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help you. Post or phone today for your free information PACK on the course of your choice. (Tick one box only!)

\section*{Q
 Where can you buy all these service aids from?
 | AMBERSIL | COLCLENE |
| :--- | :--- |
| DUCKHAMS OIL | ELECTROLUBE |
| EVO STIK | FRYS SOLDER |
| PERMABOND | SERVISOL |
 }

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702

ALBA AMSTRAD BUSH DECCA DORIC ETRON FERGUSON FIDELITY GEC GRUNDIG. GRANADA HITACHI HINARI INDESIT ITT KIMARA NIKKAI MATSUI MURPHY OSAKI NORDMENDE REIDIFHUSION PYE, PHIIIPS SANYO. SAISHO SHARP SONY SOLOVOX SUSUMU TANDBURG TEIEFUNKEN THORN . TRIUMPH

COMPUTER MONITOR TRANSFORMERS STOCKED

TIDMAN MAII, ORDER LTID . 236 SANDYCOMBE ROAD RICHMOND. SURREY. TWY 2EQ. Mon-Fri 9 am to 12.30 pm Approx. 1 mile from Kew Bridge

Sat 10 am lo 12 noon

This is a VERY SMALL SAMPLE OF STOCK SAE or Telephone for lists. Please check avalability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage

STEWART of READING

 Telephone (0734) 68041 Fax $(0734) 351696$ Caliers Welcome 9am-5.30pm Mon-Fri (until 8 pm Thurs)
\qquad

REBUILT COLOUR TUBES

First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535
Britain's Oldest Established TV Tube Rebuilder

Q
 CROTECH MEGGER sadelta THURLBY

Who stocks all these famous names of test equipment?
B\&K beckman LEADER ORION thandar

Q
Who stocks all these types of semiconductors?

45	BRIDGE RECTIFIERS	440	DIDDES
2370	INTEGRATED CIRCUITS	34	LEDS
92	THYRISTORS	2183	TRANSISTORS
3	TRIACS	38	VOLTAGE REGULATORS
247	ZENER DIODES		

A
0008 68L LZO:XE」 GLSL 68L LZO: :101

담TNa

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS ELECTRONIC COMP. DISTRIBUTORS (Imp. Exp.; EX-STOCK DELIVERY 6,000 DIFFERENT PARTS

TRANSISTORS			INTEGRATED CIRCUITS			
$2 S A$	BD	BUY	AN	LM	SAB	TC
$2 S B$	BDW	DTA	BA	M	SI	TCA
$2 S C$	BDX	DTC	CX	MB	SLA	TD
$2 S D$	BF	MJ	HA	MC	STA	TDA
$2 S J$	BT	MJE	KA	MDA	STK	TEA
$2 S K ~$	BU	$1 N$	KIA	MEA	STR	TTL
$3 S K ~$	BUT	$2 N$	LA	MN	STRD	UPC
AD	BUW	$1 S$	LB	NE	TA	UPD
BC	BUX	TIP	LC	SAA	TBA	CMOS

STOCKISTS OF IC's \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND
TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)

[^1]
man . . . They NEVER FORGET

066465392

Panasonic NIKKAI NEC FIDELITY SEC PHILIPS THORN and many others m.

EURAS Information System The most comprehensive Video, $\mathrm{CD} \& \mathrm{TV}$ repair tips database in Europe, now available in					
OOKS					
EURAS Information System Fault Guide Books are now available for the following manufacturers:					
	1,640	f14.9			
Grundig	2,520	¢19,	Hitac	1,080	
Mitsubishi	2,360	¢9,	JvC	2,990	
	2,200	± 19.95	Phili	3,070 Tip	
Sharp	860 Tips,	${ }_{612.95}$	Sony	920 Tips,	${ }_{812.95}$

For further information call: 0272-724475 or fax: 0272-723374

EURAS International Limited
Heston House
7/9 Emery Road
Brislington
Bristol BS4 5PF
Prices exclude P\&P.

The number of tips for each manufacturer does not, in any way, reflect the reliability of that manufacturer's equipment. The available amount of information for each manufacturer reflects their product mix and the level of cooperation received from that manufacturer across Europe.

Where can you buy:-

Complete CCTV systems
Monitors
Video switches
Camera selectors
Video door entry systems Phone intercom systems

CCD observation cameras Dummy cameras Vidicon cameras Camera power supplies Loudspeaker intercom systems

2 Holyoake Street, Wellington, Somerset Tel: 0823667525 Fax: 0823660277 MICROWAVE OVEN COMPONENTS

Microwave Spares Distributors (Magnetrons) (Transformers) (Capacitors)
Distributors for Bussman-Cooper Electronic Fuses and the ECL FUSE SELECTION BOX Ask for our Catalogue NOW!

INDEX TO ADVERTISERS

Aerial Techniques Amprnace Lto Besco
Bi-Tel
B.K. Electronics.
Business Credit

Campion Whotesale Ltd.
Central TV.
Chromavac Ltd
Chromavision...
Crewe Wholesale TV
CRT Services
Dalbani (UK) Ltd
East Cornwall Components
East London Components.
Econornic Device
Euras International Lid
Express Components Lt
Express TV
G.G.L. Components

Gogglebox
Grandata Lid
Henry's Audio Electronics
Highsurge.
HRS
Hussain Central TV
ICS
J.J. Components.

LRC Spares.
Manor Supplies
N.G.T. Electronics Ltd

Omega Electronics
Philips.
P. \vee Tubes

Rakvision...
Relay Omagh Lid
Seme Lid.
Semple Service
Sendz Components
Sonic TV Distributors
Stewart of Reading
TBR Software.
Technical Information Service
Televideo Serv
T.E.S.D. Ltd.

Tidman Mail Order Ltd.
Tree, W., Trade TV
Visions London
Vista Electronic
West Midlands TV \& Video
Willow Vale.

VISTA

REPROCESSED CATHODE RAY TUBES

An extensive range direct from the manufacturer.
 STOCK ITEMS DESPATCHED WITHIN 48 HOURS

VISTA ELECTRONICS, UNIT 1B, WINGATE GRANGE INDUSTRIAL ESTATE, COUNTY DURHAM TS28
Tel: 0429837100
Fax: 0429837101

The International Pratical WOOD WORKING Exhibition

AND CRAFT FAIE

WEMBLEY EXHIBITION HALL - FEBRUARY 21-24 1991
OPEN DAILY FROM 10 am TO 6 pm (5pm ON SUNDAY)

See the exquisite entries to all our competitions. Enter the world of woodturning, woodcarving, cabinetmaking and marquetry. Talk to our experts from around the world who will be demonstrating their skills in the beauty of working with wood. Take in a lecture. Visit our exclusive Craft Fair.
A great family day out for all at Europe's largest woodworking exhibition.

For further information Telephone 081-773 3751 Sovereign Exhibition Management Guide Dogs and wheelchairs are welcome but we regret that pushehairs and dogs are not permitted in the exhibition hall.

ADMISSION: (AT THE DOOR) ADULTS $\$ 5.00$
SENIOR CITIZENS $£ 3.50$ CHILDREN $\mathbf{£ 3 . 0 0}$ (5 -16 INCL).

BRITAIN'S MOST POPULAR WOODWORKING MAGAZINE

为 க் 	

EXPAND YOUR TV RENTAL BUSINESS

with
LEASING: We will buy the sets (new or reconditioned) of your choice and lease them to you to put out on rent. or
BLOCK
DISCOUNTING: We will buy your current rental agreements. You collect direct from your customers and repay us over 24 months.
For details and quotations please contact:

RELAY
 DO YOU RENT TELEVISIONS?
 DO YOU STILL USE A CARD SYSTEM?
 DO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME? If you do then we recommend our computer TV and Video Rental package. This package includes
 * alphabetical print-out of each customer's arrears and payments missed * lotal arrears immediately availabie
 NEW HIRE PURCHASE PROGRAMME NOW AVAILABLE AS WELL.
 These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration
 CONTACT
 WILLIAM J THOMPSON
 Donaghanie Post Office
 Beragh Co. Tyrone
 Telephone Beragh 58214 (0662 7)

A.Z. ELECTRICS

Stock items despatched by return

VIDEO HEADS
AMSTRAD
3HSSR-VCR7000 (Saisho/Orion)
PSF 1 -VCR4500, 5200,9000
PSF2-VCR4600,470
FERGUSON
3HSSV-2 Head universal
3HSSAVB-3V32. HR 7655
3HSS4VC-3V48 HRD565
3V48,58,59,65, FV10. 1
12,13,14,20,21,26
And most other Fergusons
HITACHI
3HSSHA-VT8000,9000 series
HSSHB-VT 11.33 etc
10082 -VT 120,220
$10081-$ VT 130,135
PANASONIC
3HSSUIN-NV $000,370,380$ /Philips VR6460 3HSSU2N-NV230.470,480,G9, 10.
$11,15 \mathrm{PX}$
HSSU3N-NV430, 460
3HSS 3N-NV777,330
3HSSANB-NV730
3HSSANA-NV 366
NVG30. $33,40,45,46,130$, \& mos other Panasonics
SANYO
HSSSY-VHR1100,1110,1300
HSS3SY-VHR1500
SHARP
HS SSP-VC9300, 9500,9700,381,481
82,483,486 etc HSSSPB-VC5 $81,583,651,670$ etc C7000,8000 series (Brass) OTHER MAKES
toa 4000, Goldstar 8000, Sentra 8000 .

Fisher FVHP510,520,530,615,710 etc
ISher VBS7000,9000 el
Hinari VXL5 6.20 H
Mitsubishi HS306. 710
Orion VC150, 180, VH1, 2,3 etc
Saisho VR100, 605,705,805,905
Samsung Universal 2 Head
Toshiba
V71.73, 74,75
Toshiba V93
ASK FOR VIDEO HEADS NOT LISTED
The above heads are new and replacements.
$\{15.00$
$\{15.00$ $\begin{array}{r}121.50 \\ \hline\end{array}$

59.95 520.00

$\$ 17.00$
$\$ 17.00$
$\$ 29.00$
£34.00
$\{17.00$
$\begin{array}{r}\text { \&17. } \\ \$ 200 \\ \hline\end{array}$

BELT KITS
AKAI
VS1,2,5
VS4,6,9,15
VS9300,9500,9800
AMSTRAD
7000
VCR4600 5200
VCR4500,9000
FERGUSON/JVC
3V00/16/22 Mechanica
Models
3V23
3V29/30
$3 \mathrm{~V} 29 / 30$ Loading Belt 3V31/32
$3 V 35 / 36 / 38 / 39$
3V42/43/44/45/48/54/55
3V58/59/64/65/8950/51/FV10
11/12/13/14

FISHER

FVHP520/530
FVHP615/710/715/716/722/725
830
911/915/916
HITACHI
VT11/14/17/19/33/34/35/38/39/ 88
VT52/61/62/63/64/65/85/86 _ $\quad 2.10$
VT100/110/111/113/115/118/120
125/130/135/145/150/175
VT8000/8500
VT9300/9500/9700

NV230/250/280/370/380/430/450/ 460/465/485/630/810/830/850/870/
890
NV300/333/340/366
NV600/777/788
NV2000/3000
NV7000/7200/7500/7800
NV730
PHILIPS
VR63676467/6561/6751/6760
68SB4
VR6460/6920/6520
VR6580/6581
VR6362/6367/6470/6467
VR6542/6843.
SANYO

$\begin{aligned} & \text { Solavox } \\ & \sum 2.50 \end{aligned}$
¢18.00
95.00
¢18.00
£15.00
¢18.00
$£ 20.00$

TOSHIBA
V8600/8700/9600
1.20
1.10
1.60
1.00
1.90
2.00

60

1.00

1.20

Decca 100
IT
IVcro
IT CVC20
IT CVC25/3032
IП CVC253032
1Π Compact 80 Series 110
Π Compact 80 Series 90
$17 \mathrm{CVC45}$
T1 1109 F
IT CVC1204.
$1{ }^{1} \mathrm{CVCBOO} / 1 / 3$
ITCVC1100
IT CVC1 150/1175
176325
$i \pi 3546$
Other ITT transtormers available
Fidelity all models up $1020^{\prime \prime} 2 \times 3000$.
Fidelity Panel for ZX2000
Fidelity $22^{\prime \prime}$ ZX3000
Hinari CT4/5 \& TVAT
Philips KT3
Rank Bush T20A
Thorn TX100 Green Spot 110
Thorn TX90 Mains Trans
Ferguson TX90 LOPT
Ferguson 3V35,36 Mans Transtormer
Ferguson 3V44/44,45 Manns Tianstormer
Sony - Please state modet for price
Universal Tripier
Universai Tripler with tocus unit
Decca $120 / 130$ series tripler
VIDEO MOTORS
REEL MOTORS
Ferguson 3V29930
Ferguson 3V58.59.65,
FV0.11.12 13.1420 .2122
FergusontV260 14,20, 21.22
Sanyo VTC5000, $5150,5400,5300,6500$
Sharp VC9300,9500 etc. Original
Panasonic NV333,366 Onginal.
ORUM MOTORS
ferguson IVC(Mechantical models)
Sharp 7000 series Original.
All Panasonic Original
CAPSTAN MOTORS
Ferguson $3 v 35.36$ Original
Ferguson/AVC (Vechanical models)
Hitach $V 110$ Oiginal

Hitach VT33 Original
Hitach VT64

Hitach V64 Oitignal
Hitachi VTB000 seres Original
Hitiach Vigoove series Original SharpvC 7000 serres Original
Ferguson 3v42,43,44, 45,48.49,52,53

IDLER ASSEMBLIES

FERGUSON
$3 \vee 29,30$ Take up Idlea
3V29,30 Take up Clutch
3V2930 Reel llole
3V55. $36,38.39$ Take up Clutch
55.00
520
520

3V58.59,64,65.FV10.11,12,13,14 idier Arn $\begin{array}{r}52.85 \\ \Sigma 1.80 \\ \hline\end{array}$
Ciuch Assembly
$3 V 44,45,48,49,52,53,54,55$
Ciutch Assembly 3 V42 43
FISHER
FVHP615,905,910, Ider Assembly Originai
FVHP615 Gear Iderer Assembly.
FVHP905, 910 Gear Ider Assembly
PVHP520.530 Idier
FVHP520.
HITACHI
VT11, 33 etc. Original ider Arm
VT 11,33 etc Original ider Arm,
V 11133 etc.
Idler Arm Replacemen
V11. 33 etc. Ider Arm Replac.
TT9000. 9500 etc. Play 1 dier.
1.05
1.10
2.80
2.30
2.30

Access \& Visa Accepted
vi9300,9500 etc. FAF Idler

330 Idier Arm Unit Vx \times PO521 Gen NV8600, 8610 Play Id Ier VXP0243
NV600, 688 Idiler VXPO515 NV8400. 8600,8610 etc. VXP0245
NV 333.366 etc. Idler VXP0401-NV700,7200, $\quad 7800$ Idler VXP0344
NV2000,3000 Play Idier VXP033!-NV2000. 30 Back Tension Bands
All Panasonic Maintenance kits \quad From 1.50
QUOTE PANASONIC PART NO
FOR PARTS NOT ISTED
SANYO
IIfer VAR1 100, 1300, 1500
Ider VHR2 $100,2300,2500,2700$

Reei Drive Pulley Unit VTC5000.5150,6500 \quad| E5 |
| :--- |
| 50 |
| 500 |

Idfer Roller Assembly VTC5000.5150.6500	\ldots
SHARP	
2.25	

SHARP
Idler VC9300, 9500 ete
Idler (original) VC9300 481581 etc
Ider Assembly (original) VC651.681 68

AMSTRAD

$4500,4600 \mathrm{MOD}$ KIT INCLUDES PINCH ROLLER
AND IDLER CLUTCH
REMOTE CONTROLS
Ferguson, Grundig. ITT Philips. Pye Sony. Hitachi,
Malsui. Logik. Panasonic Salsho Salora. Sansung. Tashiko. Tatung. Tostiba Various models TV \& Video $\$ 14.50$
Many Hitachi TV remote controls now in Stock.
SONY REMOTE CONTROL RUBBER PADS.
STATE MODEL FOR PRICE.
TV ON/OFF SWITCHES
IT. Philips, Decca. Thorn, Fidelity, Grundig, Sony and Hitachi. State model for price.

PINCH ROLLERS

Pinch Rollers for Akai, Arnstrad, Ferguson, Fisher Furai, Goldstar, Grundig, Hinari, Hitachi, JVC. Mit-
subishi, Orion, Panasonic, Prillips, Samsung, Sanyo.
Sharp. Sony. Toshiba available. Prices start from £2.80.

OTHER SPARES

Video Cassette Lamp Ferguson with/without
plug
Video Cassette Lamp Sharp. Panasonic, Amstrad
(0.50
moulding.
Universal Cassette Lamps 40 mA 60 mA
CRT Anode Caps
Video Tape Splicing Kit
Hitachi TV Frame Module HM6251
Cassette Housing Assembly Ferguson 3V35 $\quad \$ 5.50$
39, 42, 43,44 $\quad £ 25.25$
Cassette Loading Roller Assembly $3 \mathrm{~V} 23,3 \vee 31$,
$3 V 32$
Philips 1.2V Back up Battery
Phitips 2.4V Back up Battery
5.5 V Back Up Cap

Degaussing Positor Blue
Degaussing Positor White
Cassette Housing Assembly HitachivT 1 ?
End Sensor for Hitachi VT63,64, 65 (Pair)
Cassette LED Sensor for Panasonic etc
I.C. Circuit Protectors

Clear Service Cassette
Push Button Unit Thorn TX90
Cassette Housing assemblies for P
$\rightarrow A$
RESISTORS, ELECTROL YTIC
CAPACITORS, FUSES ETC.
NOW IN STOCK
SEND FOR PRICE LIST.
MAIL ORDER ONLY

West MitdlandsT.V. \& Video Wholesale 2 mins from Juction $9-$ M6. Warchouse in Passage off, Little London, Caldmore, Walsall. Tel: 0922-724542/722208.

\star BUY DIRECT FROM SOURCE \star THORN EX RENTAL TV \& VIDEO

From the co-ordinator of the ONLY independent buying group approved by \star TDLEPRICE \star
Why buy second source junk in 1991 NO shortages NO silly prices at:$\sum_{0} \mathrm{~N}_{0} \mathrm{D}_{0}$ TID.
UNIT 6, 68 BAYTON ROAD, EXHALL, COVENTRY CV7 - Trade Only -

When you take out an introductory subscription to TELEUISIOI
Please enter my subscription to Television and send me 12 monthly issues for just $£ 17.28$ a saving of $£ 4.32(20 \%)$ off the normal price.
Overseas Rate $£ 20.40$

Name
Address

Postcode
Please complete the reverse side.
xी 3HINI
QヨISOd II
QヨyInO
dWVIS
ON

FREEPOST 1061 HAYWARDS HEATH RH 16 3ZA

\square Charge my Access／Visa＊
－Delete as appropriate．

Name and address of cardholder（if different from reverse）： Name
Address

[^2]

\section*{W. TREE | thanget |
| :---: |
| TARHOUSE |}

JANUARY SALE NON-WORKING VIDEOS - ALL COMPLETE - FROM £25!!

THIS MONTH'S SPECIAL OFFER
Ex display as new. 51 cm Panasonic FSTs with stand and remote only $£ 145$ each

EX-DISPLAY CAMCORDERS SONY, JVC, PANASONIC, MINOLTA
'B' GRADE FERGUSON FSTs (some with Nicam)
PLUS 'B' GRADE FERG. VCRs PHONE FOR BEST PRICE

UNTT ONE, SUNSHINE MILLS, WORTLEY ROAD, LEEDS 12. Telephone: 0532638804

TOP QUALITY
HI-FI ALSO IN STOCK PIONEER • JVC • SONY

LARGE QUANTITY

 OF EX-RENTALCTVs
AT
LOW LOW PRICES

Mixed loads of TVs and VCRs by the container. Telephone NOW for details

C. T. V.

2 NORTON ROAD, STOURBRIDGE, WEST MIDLANDS TELEPHONE: 0384-390706 / 0836-585829 (24 HR)

LARGE SELECTION THORN TV + VIDEOS QUANTITY OF NON THORN TV + VIDEOS QUANTITY OF PORTABLES AVAILABLE ALL AT COMPETITIVE PRICES OPEN: MON-FRI - 9.30-5.30

TEL:
 0384-390706
 0836-585829 (24HF)
 Fax: 0384-441360

SEMPLE SERVICE

THE ONLY APPROVED THORN TELEPRICE DISTRIBUTOR FOR E. ENGLAND

> SIMPLY

THE BEST

BEST PRICES

BEST QUALITY

IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING TONY ON
0553766766 FOR YOUR BEST DEAL YET!

SEMPLE SERVICE 59 HALL RD CLENCHWARTON KINGS LYNN NORFOLK

HRAMYMDMA

RS

TVs WORKING

8800	12.00
TX9 BASIC	£30.00
TX10 TXT	£55.00
N/THORN BASIC	¢18.00
N/THORN TXT	£40.00

VIDEOS WORKING
3V29/30 …........... 865.00
3V23 …................. $\mathbf{E 7 0 . 0 0}$
3V31885.00
NTHORN $£ 60.00$
ORTABLES ONLY £55.00
WE STOCK 'A’ + 'B' GRADES OF:WALKMANS STEAMIRONS VACUUM CLEANERS CALCULATORS RADIO/CASS POWERMASTERS CDPLAYERS MIDIS MICROWAVES AUDIONIDEO CASSETTES.

YOU'VE TRIED THE REST NOW TRY THE BEST胃AKIVTHON

 HUMBERSTONE ROAD CORNER OF WIMBLEDON STREETLEICESTER (0533) 518138

CENTRAL TV

LONDON - BIRMINGHAM - BOLTON

Also stocks of Handsets, Video Heads, Aerials, Set-tops, Selfix-R.F. Leads, A.C. Leads

STOCK CLEARANCE SALE 2000 SETS MUST SELL

REDIFFUSION MK IV BASIC £10 TEXT £20 Complete But Faulty

TELEVISIONS	
Panasonic Basi	£10
Panasonic Tx	£20
Toshiba	£10
Toshiba Tx	£15
Hitachi	£10
GEC Starline	£5
Fin Deta	£2
Fin Inline	£5
G11 Basic	£5
T20	£5
G11 Text	£10
9K96	£5
Trimline	£5
Trimline Text	£15
ALL THE SETS ARE COMPLETE	
MINIMUM QUANTITY	
5 UNITS	

LOTS OF WORKING SETS AT UNBEATABLE PRICES

VIDEOS FOR SPARES

BIRMINGHAM

UNIT 4A
ABBERLEY STREET SMETHWICK BIRMINGHAM B66 2QU TEL: 0215651727 FAX: 0215555367
TELEX NO. 0902333199

PRESTON

UNIT 34 ROMAN WAY LONG RIDE ROAD PRESTON
PR2 5BB
TEL: 0772655011

PANASONIC

JVC

EX-GRANADA

BESCO LIMITED T/A

NORTH WEST ELECTRONICS

 ENTIRE RANGE OF EX-RENTAL TVS \& VIDEOSNEW STOCKS EVERY DAY, WORKING OR OFF THE PILE makes include:- Sharp, Hitachi, Ferguson, Pye, NAT PAN, ITT etc. Working VHS video from £35.00. Late models always available.

KNOCKOUT PRICES ON COLOUR TVs FERGUSON, PYE, HITACHI, PHILIPS, BUSH, ITT, etc.
TELETEXT BARGAINS FROM £30.00 (WORKING). FERGUSON TX TELETEXT ONLY £55.00. PHILIPS/PYE TEXT ALWAYS AVAILABLE OVER 1000 COLOUR TV AND VIDEOS AVAILABLE.
RING OUR HOTLINE NOW FOR PRICES OR CALL IN YOU WILL BE DELIGHTED.

Working Ex-Equipment Panels

IF
T20//22X
T26 X
Philips G11 14.50

Converger Decoder Line scan

5	14	18
5	16	20

12

Power
17
17
20

Frame
14
X
11.50

All prices include Postage \& Packing. But + VAT

* IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *

EEN BRADFORD

SPRINGMILL STREET
MANCHESTER ROAD, BD5 7RL.
RING: TONY (0274) 308186
OPEN 6 DAYS 9am-5pm.

Prices are plus VAT \& based on quantity

■ E MANCHIESTER UNIT 3, MERSEY RD. NORTH IND EST., FAILSWORTH RING: DAVID (061) 6834612 OPEN 6 DAYS 9am-5pm.
UNIT 4, RAINSTAR IND. ESTATE ELEY ESTATE
NOBEL ROAD EDMONTON N 18 OAA

Contact: NEIL 081-8077476/7579

SUPPLIERS OF HIGH QUALITY THORN/GRANADA EX RENTAL STOCK

[^3]

NOW OPEN

BRADFORD'S PREMIER STOCKIST OF TOP QUALITY TELEVISIONS AND VIDEOS

TV'S Thorn TX9, TX10 Text, Stereo Teletext, Pye, Philips, Hitachi etc. VIDEOS A complete range of VCR's working or non-working. E.g. 3V29, 3V30, 3V35, VT11E plus many other makes on request.

VACUUM CLEANER Hoover Junior Vacuum Cleaners fully reconditioned ready for retail. Large quantities always available.

TELEVISION TUBES Now taking orders for 1991. Top quality rebuilt tubes. Example: A56 708X, A56 540X, AXT 5I, $001 £ 35.00$

TELEPHONE BRADFORD 0274304082 For Further Details. Open Mon-Sat $9-5.30$. Sun by appointment.

Sovereign Electrical Enterprises Ltd.

 1, 3 \& 5 Downham Street, Leeds Road, Bradford, W. Yorkshire BD3 9QY

QUALITY USED T.V. \& VIDEO

COMPLETE RANGE OF T.V's AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY T.V's from $£ 3.00$ Videos from $£ 30.00$

Free Delivery Service to most areas of the U.K.

UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 90B

Just 10 Mins from
M5 Junct. 6 Worc's North

$$
\begin{aligned}
& \text { 02993.79642 or } \\
& 79643
\end{aligned}
$$

CREWE WHOLESALE TVLTD.
 WILLIAM STREET, CREWE
 Cheshire's
 Largest Wholesalers

Specialists in working TVs \& Videos
TVs and Videos working, nonworking and off the pile
TV \& Video Stands, Shelving, Shop Fittings
Thousands of Ex-Demo VHS Tapes
Hand Units - Heads - Slotmeters
Pattern Generators/Scopes/ Translaters
ALMOST EVERYTHING FOR THE TV \& VIDEO RETAILER
Tel. 0270582924
Fax. 0270505470

[LASSIFIED CLDSSIFIED CLASSIFIED CLASSIFIED CLASSIFIED

TELEUTSIOACLAS5IFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cms). Classified advertisements 70p per word (minimum £12), box number $£ 4.00$ extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Adventisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.

PHONE 071-261 5942 FAX 071-261 5546
 $\frac{\text { anctichid }}{\text { VISA }}$

LINEAGE

VALVE WHOLESAIE AND EXPORT. Audio Industrial. Receiving, television, transmitting, one million valves in stock. Billington Valves, Oakdene Industrial Estate. Cowfold, Near Horsham, Sussex RHII3 8AZ. UK Phone (2403 865105, Fax 141388651 KK . Telex 87271. Special retail offer PL519 £4. $95+$ VAT post paid. NB. our minimum order is always $£ 20+$ VAT.

EXPERIENCED TV VIDEO BENCH EN(GINEER required to work on most makes, full or part-time also. suitable retired personnel. Excellent pay, London East area. Tel Acrvision. 0s1-5395513.

EXPERIENCED TV VIDEO ENGINEER. Required full time, to work on most makes, excellent pay. Contact Hants TV. Basingstoke. 125622226.

METERS RECONDITIONED, I I p/5(p) available from stock. Contact The Meter Co (POOLE) Litl. Tel (103122) 683.348.
WANTED SONY VTX-100 UB and TXT-100B from a Sony profeel system. Call Chris on 0954211337 afier 8pm.

METERS RECONDITIONED $£ 1 / 50$). Meters from 55.95 + VAT. Audiotech (079103) 245.

WANTED: VALVES, EL37, KT66, KT77, KT88, PX4. PX25. Complete collections. Shop clearance considered. Also transistors and I.C. 's. Send written list. We reply within 24 hours. Billington Valves. Oakdene Industrial Estate, Bolney Road, Cowfold, Near Horsham, Sussex RH13 8AZ. Phone 0403865105 . Fax (041)3865106. Telex 87271.

VINTAGE TELEVISION, radio and audio enthusiasts. Contact us for components. valves, vintage CRT's service sheets, ratioss and amplifiers. Mail Order to anywhere - over the counter retail Saturday only. Send thep stamp tor free catalogues \& newsheet. The Vintage Wireless Company. Tudor Ilousc. Consham Street. Mangotsfiect. Bristol BS17 3EN Tel 1272 $565+72$ or Fix $1272 \quad 575+42$. (All major credit cards ascepted by letter, phone or fax.)
OCHRE MILL TECHNICAL SERVICES. Are now on' (kxot (Marlmeshury) \$2322s. Grundig TV spares, all models to 1983. Fist, friendly, helpful. sensible prices. Gt Lype Farm, Charlton. Nr Marlmeshury, Wilts SN 16 9IDR
TEKTRONIX 453 OSCILLOSCOPE, $£ 220$ ONO Marconi TF2200)A Oscilloscope offers, many vintage Radio/TV valves offers. 1629738372

SPARES \& COMPONENTS

LTE OUTPUT TRAMSFORMERS		TRAPLERS Continued	
	from 8.39	Nordmende	from 5.25 to 8.3
Autovox	from 9.45	Philips	trom 5.25
	from 8.39 to 9.45		from 5.25 to 8.39
Blapu	from 10.49 to 18.90	Siemens	trom 5.25108 .39
Decca	from 8.39 to 13.65	Telefunken	from 5.25 to 8.39
Grundig	from 6.30 to 12.60	TRAPLERS	Grundig Chassis
	from 8.3 .391013 .65	CUC 2201	each 9.
Kortin	from 7.355 to 9.45	cuc	each 9
Loewe 0	from 9.455 to 13.65	CUC 3410	each 9.95
	from 9.45	CuC 2660	each 9.95
Nordm	from 8.39518 .80	CUC 2800	
Prilip	trom 6.30 to 16.80	CUC 2400	each 9.95
Saba	from 10.491014 .69	CuC 2410	${ }_{\text {each }} 9.95$
	from 8.39	CUC 2200	each 9.95
Siemens	from 9.45 to 18.90	CuC 3300	${ }_{\text {each }}^{\text {eadi }}$.95
	trom 9.45 to 11.55	CUC 2210	
Traplers		SWITCH MOL	DoE TRANSFORM
ASA	from 7.35	Cr	Chassis
Autovor	from 5.25	CuC 95	each 7.95
Decca	trom 5.25105 .3	CUC 120	
Grun	from 5.25109 .95	CUC 220	each 7.95
	from 5.25 to 8.39	no Accou	SNO CREDI CARDS
	from 5.25 to 8.39	postal	DERCHEDUE WITH
Loewe Opta	trom 5.25 to 9.49	ORDER/	LDD 2.5
LOPTX for Siemens FF 3057 Colour TV, Sriginal Part No. 52-46300 3009, 24.95			
PLEASE ASX FOR OUR TRADE Catalogue			
DÖNBERG ELECTRONICS LTD SCHOOLMASTERS HOUSE, RANAFAST, CO. DONEGAL, EIRE TEL: 075/48275 FAX: 075/48275 EIRE			

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

LARGE SELECTION OF INTERESTING SPARES

at very competitive prices. Large S.A.E. for lists to: A.G.S. ELECTRONICS Unit 2, Haxter Close,
Belliver Industrial Estate, Roborough, Plymouth, Devon PL6 7DD.

WIZARD DISTRIBUTORS

 MANCHESTER TV \& VIDEO SPARESWe stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, HINARI \&'DECCA'
And also THORN \& ITT
FIDELITY SPARES MAIN DISTRIBUTOR.
Main Distributor for Schneider non account customers

Always in stock-

Vrdeo Heads for over 500 models
Service Manuals for over 200 models Handsets for over 200 models Spares for over 20 manufacturers
Plus huge range of IC's. Semiconductors and Service Aids. etc, elc Technical Assistance and Friendly Service always available
WIZARD OFFER A GREAT DEAL
Counter open Monday-Frapay sam-4.45pm
Mail Order-Access visa
TRADE ONLY
EMPRESS STREET WORKS
EMPRESS STREET
MANCHESTER M16 9EN.
 a cheque made payable to Television "crossed "Lloyds Bank". Television Classified Room 2331, Kings Reach Tower, Stamford Street, London SE1 9LS. The charge per word is 70p plus 15% (minimum $£ 12.00+$ VAT.)

\qquad ...or next available. Total insertions.
Total of Cheque $£$.
..........Address...
...............................

Tel Num.
Signature

Visa Card (delete) \qquad | | |
| :--- | :--- |
| Expiry Date. | |

....VATReg. No. 238893710

LASERS

Laser Diodes, Driver I.C.'s, Driver Modules, Power Supplies, Optics, Optocouplers, Lasers for Light Shows \& Discos. Send S.A.E. (A4):

ACCESS PACIFIC LTD

Kymbrook School House,
Kimbolton Road, Keysoe, Bedford MK44 2HH
Tel: 023062695 . Fax: 023062795

ADVERTISERS ANNOUNCEMENT BEAT THAT DEADLINE

Advertisers have until 15/3/91 to reserve space in the March 1991 issue using our CREDIT CARD FACILITY

$\underset{\sim}{5}$ Tel. 071-261 5942

JAMES WOOTTON

ELECTRONIC WHOLESALE SUPPLIES video and t.v. SPares for most makes BELTS + IDLERS + VIDEO HEADS + TRANSISTORS + I.CS + REMOTE CONTROLS + SERVICE AIDS +

VIDEO/AUDIOI TAPES + etc + etc Distributors for:
ELFTONE/OMEGA, Headphones/Radios/Cassettes/Midi Systems etc. LWIA, Electrical and Cables. Fuill range of Inside/Outside Aerials + Masts + Ampaitiers Satilite

The Complete TRADE ONLY Wholesaler
Counter open Mon/Fri 9-5. Sat 9-11
Stuart House, Arnold St., Nantwich, Cheshire, CW5 50B
0270628096

TEST ECUIPMENT

NEW TEST GEAR

Need a handy instrument for checking or testing audio Need a handy instrument for checking or
circuits in video's. TVs \& sound equipment? Circuits in video S, as \& sound equipment? VALUE! P37 SIGNAL TRACER inc probes; Finds Faulls Fast! P38 OSCILLATOR 5 Hz -20 $\mathrm{kHz} \mathrm{Hz}-2 \mathrm{~V} .50 \mathrm{ohm} .4$ wavetorms P4O DISTORTION ANALYSER for P41. 6 frequencies. P41 MILLIVOLTMETER 10 Hz -2MHz. 1 mV - 100 V . 6 ranges Prices: P37: $£ 44.50+£ 3$ p\&p + VAT $=£ 54.62$ P38, 40, 41: $£ 64.95+£ 3 p \& p+$ VAT $=£ 78.14$ each Accessories: PP9 Batteries: $£ 2.90$ inc p\&p + VAT Accessones.-clip cable: $£ 3.50$ inc $p \& p+$ VAT

COLEBOURN ELECTRONICS

Oept TV, 20 Folly Lane, St Albans, Herts. AL3 5 J
9×4 SAE or Tel. 072744785 for more details

SATELLITE

Next available issue of
Television magazine is
Television magazine is March issue,
published February 20
Ring Pat now on 071-261 5942 for further details.

VIDEO AND HANDBOOK SATELLITE TELEVISION

its reery rempgod!

A 55 minute video with a lavishly illustrated supporting 46 page A4 handbook aimed at the practical sales person and installer. All you need to know to become conversant with the subject. A brand new course written and produced by experts in the industry. Send for full details.
Microforge Ltd., 339 Clifton Drive South, St. Annes, Lancashire FY8 1 LP .
Tel:0253 725499
Please send me further information on SATELLITE TELEVISION SERVICING

Name
Address.

Post Code

CLDSSIFIED CLASSIFIED CLRSSIFIED CLASSIFIED CLRSSIFIED

SATELLITE

THE SATELLITE BOOK

THE DEFINITIVE GUIDE!

Following the phenomenal success of the Satellite TV Installation Guide, Europe's best and most authoritative author for the satellite industry has put together the most comprehensive and informative book ever published on satellite television.

John Breeds

300 A 4 pages packed with essential information for all satellite TV installers, technicians, engineers, enthusiasts and industry newcomers. All in the familiar easy to-read style of John Breeds' books, and including over 300 illustrations.

Easily the best value satellite book today! (Total satisfaction or your money back!)

Swift Television Publications
17 Pittsfield, Cricklade, Swindon, SN6 6AN.
Tel or FAX 0793750620

Only £27.95 (Postage FREE UK)

ORDER FORM

\square The Satellite Book World Satellite TV £27.95 \square Satellite Booklist \quad EREE Europe add $£ 5 /$ book ROW add £15/book

World Satelitieviv \& SCRAMBLING METHODS
F Baylin, R Maddox and J McCormac
BUILD YOUR OWN FILMNET DECODER!
Thls thorough text is a must-buy for technicians, satellite professionais and curious do-ityourselfers. The 340 page book provides an in-depth study of

World Satellite TV Scrambling Methods In reaconkimm ramane
 scrambling methods and
broadcast formats, including Filmnet, D2-MAC. Teleclub. Videocypher II, Oak Orion, Sky Movies, BSB and Eurocypher Circuit and block diagrams of all components are presented and clearly explained throughout the handbook. Only 828.95

SERVICE DATA

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries:

DONBERG ELECTRONICS

Co. Donegal, Republic of Ireland. Phone: 07548275

TV \& VIDEO INDEX SYSTEM
 FREE 1990 CD CASEBOOK INDEX WITH EVERY ORDER

If you keep back issues of Television the Fast Fix fault card index system will provide you with a speedy means of locating TV, video/camcorder or $C D$ faults published in the magazine. Individual cards, arranged alphabetically, list model/chassis and fault sympton together with the specific servicing articles. Thousands of faults are listed covering the years 1981-1990 inclusive. Ready boxed, quick to use and easily updatable, Fast Fix could pay for itself with just one successful repair. Money back guarantee if not completely satisfied.
FAST FIX TELEVISION
FAST FIX VIDEO,
£30 mausve
Send Cheque/Postal Order payable to:
A.G. HUMPHREYS

13 MANSFIELD AVENUE, ST JOHNS PARK
HAWARDEN, CLWYO CH5 3SB
FOR FURTHER DETAII'S TELEPHONE 0244532961

SERVICE MANUALS

VCR - CTV - MTV - SATALLITE
Most makes and models - UK, Japanese, Korean, German, USA etc. types available. DATA-GO 112 AMEYSFORD RD., FERNDOWN, DORSET BH22 9QE. Tel: 0202894207

TECHNICAL INFORMATION SERVICES (T)

76 CHURCH STREET, LARKHALL, LANARKSHIRE ML9 IHE Phone: (0698) 884585, Mon-Fri, 9am-5pm. OR. Phone: (0698) 883334 any other time.

IMMEDIATE dispatch on all ACCESS \& VISA orders
PHONE OR WRITE NOW FOR FREE QUOTE \& FREE CATALOGUE with every S.A.E.
Over 200 separate Titles of Technical books are always in stock, over $1 / 2$ are exclusive to TIS. SOME SELECTED TITLES

BARGAIN OFFERS
25 Fautt Finding Guides, Covering most Videos from 1979 to Date. Match Circuits below
5 Giant Binders containing Circuits \& Layouts for most Videos from 1979
10 Giant Binders containing most Circuits \& Layouts for most CTV's from 1979
§59.00
ع139.00
10 Giant Binders containing most Circuins LV-A-R. These 2 books cover dozens of CD's, TV's \& Audio. Part A covers service data - 16.95
Part B covers circuit dlagrams (on massive A2 sheets) - $£ 29.50$ Or both for only
ع265.00 §45.00

SERVICE MANUALS \& SERVICE SHEETS
Remember, not only do we have EVERY Service Sheet ever made, but we also have THE WORLD'S LARGEST SELECTION OF

SERVICE MANUALS

covering: monoctolour iv, videas. cids. radio. computhrs, sterlos. iuners. etc
PIIONE OR WRITE NOW FOR FREE QUOTE
OR
SEND IARGE SAE FOR FREE CATAIOGUE, STRIEE REVTEW, IETC

ESERVICE MANUALS ※

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances etc.
Equipment from the 1930's to the present and beyond. Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders. MAURITRON TECHNICAL SERVICES (TV),
8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel:- (0844) 51694. Fax:- (0844) 52554

SERVICE DATA

TUBE SERVICES

NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

£7.50 for Television Faults $£ 7.50$ for Video Faults

or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY. Please add $£ 1.50$ per order for $\mathbf{P \& P}$

TELEVISION MAGAZIME

ADVERTISER'S ANNOUNCEMENT Advertisement copy for the March and Aprit issues should reach this office by -
15/3/91 - March 19/4/91 - April For further details telephone

SONY TUBES REPROCESSED WITH ORIGINAL SONY GUNS
HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini $(22.5 \mathrm{~mm})$ Neck and FST Tubes.

370KRB22 .	A51-231X	
370LHB22.................. $\mathbf{E 4 8 . 0 0}$	A51-570X $\quad \mathbf{4 6 6 . 0 0}$	A99.JHITOOX \quad E6400
400EFB22 $\mathbf{E 5 8 . 0 0}$		A5IEALOOX \quad ¢58.00
$510 \mathrm{Y} \times 222 \ldots \ldots \ldots588 .00 ~$		ASIEBSOOX \quad - 558.00
520 SB22 $\mathbf{E 6 4 . 0 0}$	A51-590X $\quad \mathbf{4 6 . 0 0}$	A5IJAROOX \quad ¢64.00
560 EGB22 $\ldots \ldots \quad \mathbf{E 5 4 . 0 0}$	A56-540X $\quad \mathbf{E 4 8 . 0 0}$	A53JBW00X - \quad ¢64.00
	A56-701X	AXM37-001 $\quad \mathbf{4 4 8 . 0 0}$
$570 \mathrm{HB22}$.		AXT37.001 \quad ¢44.00
$6800 \mathrm{B22}$.	A66-540X	AXT51 001 \quad ¢46.00
680EB22 $\mathbf{f 8 5 . 0 0}$	A67-701X	$\begin{array}{ll}\text { AXTS6-001 } & \text { ¢52.00 }\end{array}$
For tube types not listed please enquire.	All prices quoted are excluding VAT. Exchange CRT is required	Callers welcome. Please phone first.
Your local stockists are:		
VELL VIEN,	WELL VIEM	WEST DNE
114/134 Midland Road,		Distributors Lid.
Luton, Beds. LU2 OBL	Southampton, Hants.	Chesham, Bucks.
Tel. 0582-402499.	Tel. 0703-449783.	Tel. 0494-778197.

RENVUE CRT LTD.

All Types of Tubes, including Sony, Monitors, V.D.U., Polishing

A51-570×	$\mathfrak{£} 40+$ VAT
A56-540×	$\mathfrak{£ 4 5}+\mathrm{VAT}$
A66-540 \times	$£ 50+$ VAT
22"SONY	$\mathrm{5} 55+\mathrm{VA}$

25a MONTROSE AVENUE HILLINGTON GLASGOW. G52 4LA 041-883/8272
071-261 5942

Registered Office: 'Fairlands', Beckney Avenue, Hockley, Essex SS5 5NR Telephone: Southend on Sea (0702) 201108
ESTABLISHED 10 YEARS
C.R.T.'s REPROCESSED TO ORIGINAL MANUFACTURER'S SPECIFICATION. PHILIPS, SONY, HITACHI, etc. POLISHING SERVICE AVAILABLE

STANDARDS CONVERSION

AMERICAN/CANADIAN/CARIB (NTSC) VIDEO
Tapes converted to UK Standard (PAL) at reasonable rates.
Secam conversions and tape copying also available Private and company work welcomed.
Send material with requirements or Phone/Fax 0444 4000919 a.m. 9 p.m
AVIATION VIDEO (GATWICK) ALEXANDERS
High Street, Handcross, W. Sussex RH17 6BS VAC ... £18.25
PROGRAMMABLE REMOTES
All Domestic Equipment.................. 25 each Quantities ..B.A REFURBISHED STOCK
Export TV's...
From 159
From E 79
CERAMIC FILTERS/SECAM DECODERS Prices exclude VAT Trade Prices only

JOMILL ENTERPRISES
173 Dalston Lane, Hackney E8 TEL/FAX 081-533 2229

[^0]: Published on the third Wednesday of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, $220-228$ Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Distributed by IPC Marketforce, King's Reach Tower, Stamford Street, London SE1 9LS (071 261 5000). Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd; South Africa - Central News Agency Lid. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: DALBANI (UK) LTD
 587 A KINGSTON ROAD, RAYNES PARK, LONDON SW20 8SA, ENGLAND Tels 081-543 1971 G Fax: 08154220820 TIX 914040

[^2]: Postcode
 NOTE：You may pay in sterling or local currency of the present rate of exchange． If mailed from abrood，post this card to Television Subscription，Oakfield House， Perrymount Road，Haywords Heath，West Sussex RH16 3DH，England．＂

[^3]: APPROVED THORN DISTRIBUTOR VISIONS BRING YOU A BETTER VIEW

