JUNE 1989

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

FREE Resistor Paok

Servicing the Panasonic NV370 Practical Astra Installations The Philips CP90/CP110 Chassis Still Video • TV Fault Finding The CD Player's RF Section Long-distance TV • VCR Clinic

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterns and variations．
＊Fully interlaced sync pulses with correct picture blanking．
＊EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan．green．magenta．red．blue and black．
\star Chequerboard．
\star Mono outputs with border castellations．cross hatch． grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver acrial socket．
＊Additional video output for CCTV \＆VCR．
\star Facilities for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required．
\star Mains operated with stabilised power supply．
\star All kits fully guaranteed with back－up service．
\star Also available with VHF Modulator．
Price of Kit
Case（ $10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4 ")}$ app．
Optional Sound Module（ 6 MHz or 5.5 MHz ）
Built \＆Tested in Case including Sound Module
£108．00

vish
 Post／Packing $\mathrm{f3} .010$
 Add VAT 15% TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

Output at UHF．applied to receiver acrial socket． In addition to colour bars R－Y．B－Y cte．
Cross－hatch，grey scale，peak white and black level．
Push button controls．battery or mains operated．
\star Simple design．only five i．c．s on colour bar P．C．B －Backup service available．
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $\mathfrak{£} 30.00$ ．CASE $\mathfrak{£}^{8.60}$ ．BATT HOLDERS $\mathfrak{£} 4.20$ ．MAINS SUPPLY KIT £4．20（Combined P\＆P £3．00）．
MK 4 （BATTERY）BLHL \＆TESTED $£ 58.00+£ 3.00$ P \＆P ． MK 4 （MAINS）BUHIT \＆TESTEI）$£ 68.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ． VHF MODUIATOR（CH I to 4）FOR OVERSEAS E5．75． FASII．Y ADAPTEI）FOR VIDEO（OUTPU＇I \＆C．C．T．V．

ADI
VIT
15%

KITS \＆PROJECTS

SAW IF ANI）TUNER UNIT Complete and tested for video de audio outputs £28．50 p．p．£1．80．
PAL DECODER KIT（Video to R（iB）for Monitors $£ 27.00$ p．p．$£ 1 .(\mathrm{x})$ PAL ENCODER KIT（RGB to Video）£18．50 p．p．£1．30）．
CROSS HATCH UNIT KIT，Acrial lnput type，incl．T．V．sync．and UHF Modulator．Battery Operated，atso gives Peak White \＆Black Ievels，can be
 ADIOITIONAL GREY SCALE Kit $\mathbf{£ 2} .90 \mathrm{p}$ p． 45 p ．
UHF SIGNAL STRENGTH METER KIT £25．00 Alum．Casc £3．20．De

CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $£ 29.50$ p．p． £3．00．

SATELLITE T．V．
 ON DEMONSTRATION AT 172 WEST END LANE NOW！－ENQUIRIES WELCOME

PHILIPS SPARES

（AX PANEIS（Tested）Power £12．50，Scan $£ 15.00$ ，Signals $£ 15.00$ p．p．E2．50． K「3，K30 PANELS，tested，exchange，somed，power，bridge rect，trame，RGB £7．50 each．Decoder（Non－text）£10．（0）p．p．£1．50）．
 P．P．£．80．Power tested exchange £18．00 P．P．£2．80．
GII PANEILS EX－RENTAL（untested）Scan，Frame，Iecoder $\mathbf{£ 2 . 5 0}$ p．p．£2．（m）．
GII IF PANEL，（ncw）less Tuner $£ 2.50$ p．p．£1．30．
G11 obloS Touch Tune Channel Selector（replaces old type）incl instructions ± 20.00 p．p． 11.81
G9 POWER SUPPIY UNIT 15.00 p．p．£． 30.
HANDSETS EX－RENTAL．TEXT UNTESTED．KT，TEXT／VIDEO TYPE E3．50 P．p．£l． 00 ．

THORN／FERGUSON SPARES

$80100,8500,88100.9800$ PANELS tested，exchange．Power \＆8．80，Frame， Decoder £10．（K）p．p．E2．30）．

TX9 Pancls complete \＆tested $£ 28.00$ exchange（atop only）
TX9 Panels ex－fictory for smatl spares includes $1 C$＇s \＆semiconductors，elc． $\mathbf{\& 3 . 0 0}$ p．p．Ez．（x）．
TX9 panels salvaged ex－lactory for spares mel．electronic \＆mains transtomer． 48．50 p．p．£3．00．
TX9／TX10 Facia，control panel incl．intra－red receiver 88.50 p．p．£2．（6）
TX10 Focus control £s． 50 p．p．EI．（0）．
TX9／TX10 Saw filter II panel £5．（0）ppp．Kip，
TX9／TX10 Remote \＆tuning control pamel 1515 （incl．SAA5012）£7．50 p．p．f1．80． TX10／TX90／TX100 Chassis complete \＆boxed（untested） $\mathbf{£ 2 0 . 0 0}$ P．p．£2．80．
ITT SPARES：CVC30 series convergence \＆purity pancls $£ 2.50$ p．p．$£ 1.50$ ． CVC30 series patnek surplus（untested）$£ 2.50$ each，CN1P31，（MF31，（MAM0，

BUSH SPARES：T20／T22 panels．lested．exchange，power scan drive ei8．00． Scan $£ 25.00$ p．p．E2．50．
 tested exchange £18．（O）P．p．£2．（O）．
SONY SPARES：ON／OFF SWITCII 21 mm or 26 mm ，spaced holes，universal Sony on／oft 44.20 each p．p．8ip．
HANDSETS（New Replacement）RM－6は4，6人）．613．615，6．30，6．32， 0.35 e19．50 p．p．

TELETEXT IDECODER PANELS（tested）－Mullard VM610t 「ype £25．00，
Philips KT3．K 311 £20．00 p．p．£2． 30 ．
MULLARI）VM6230 teletext decoder（similar to VM6／（ol）plus additional Prestel unit，VM63．30\＆Line Coupler $£ 20.00$ p．p．£． 3 ．（6）．

 UOPTS Num p．p．E．．．
LOPTS New and guar．P／P £1．50，Bobbins \＄0p．

FERG．，HMN，MARCONI，ITLTRA

FERGLSON 3787 （Vormende）．．．．．．．．©9．80

THORN 3OMOBEOSCAN．EHTY ．
THORN SOM
TIORN（M）
－
$£ 12.80$
$£ 12.80$
THORNTXIO

> K.B.M. Inil T2 Bobbm

DECCA I（ ${ }^{\text {D }}$

45．61
（8． 80
10

（EEC2IIO erice ．．．．．．．．．．．．．．．．．．\＆10．60
rrarsos．

iTTCVEAS

PHILIILSGS．
PHILIPS（4）
PHILIPS KI
PhILIPskT；
PHILIPSK30．K．
PHILIPSCTX－E
P111IIISK14／K40．
PHILIPS2A．
PHILIPSCF
£9．80 PH11IIPSC1
OTHERS AVAILABIE，PRICES ON REQUEST．
TRIPLERS：THORN MOOO $£ 8.80$.
UNIVERSAL（best quality）$\ddagger 7.80$ ．
CONTINENTAI TVK \＆BG RANCE（quote exat no．）replatements £13．80 DECCA／TATUNG；$\ddagger 7.80$ р．P．$£ 1.50$ ．
THORN 150030 K 5 stick $1.50 \mathrm{p} . \mathrm{p}$ ． 8 op．Others available
6．3V CRT Boost Transformers for Colour \＆Mono £5．90 p．p．£1＋1）． 455 CRYSTALS for Remote Control Handsets．+ for fl .00 p p．p． 50 p.
VHF to LHF Converters $£ 26.50$ p．p．$£ 2.50$ ．
CALLERS WELCOME AT SHOI PREMISES
TIOUSANDS OF ADIHTIONAL ITEMS．ENQUIRIES INVITED IARGE SEIECTION TESTED COLOUR PANEIS POPULAR MODELS

Goords available if in soch immediately over therp counter（Mail order between 3 dave and I week Irom receip：of order）．ADI）VAT 15%

MANOR SUPPLIES

172 WEST END LANE，LONDON，NW6 1SD
PLEANE ADI VAT 15% TO AII．PRICES INCL．P＋P

TELEOR5NOR

June 1989

Vol. 39, No. 8
 Issue 464

On sale May 17th

COPYRIGHT

(C) IPC Magazines Limited, 1989. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES

Indexes to Vols. 36 and 37 are available at 80p each from the Editorial Office (address above).

SUBSCRIPTIONS

An annual subscription costs $£ 20$ in the UK, E24 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, Vouchcheck Services, Unit A6, Poplar Business Park, Prestons Road, London E14 9LR. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

573 Leader
574 Still Video Systems
George Cole
Details of video systems put forward as an alternative to conventional photography. A world standard has been agreed using a floppy disc. There is also a digital system using a RAM store.

579 Long-distance Television
Roger Bunney
Reports on DX conditions and reception. There was a spectacular aurora and considerable F2 reception during March. Also a DIY approach to satellite TV.

582 TV Fault Finding

Reports from Philip Blundell, Eng. Tech., Paul Hardy,
Hugh MacMullen, Ian Bowden, Nick Beer and J.R.
Armagh.

584 Teletopics

News, comment and developments.
585 Here We Are Again!
Les Lawry-Johns
Still in business though activity is not what it has been in the past.
586 Practical Astra Installations D. J. Stephenson, B.A., I.Eng. A comprehensive, practical guide to the installation of Astra receiving equipment. It should encourage TV engineers to make the most of the new opportunities.
590 The Panasonic NV370/830/850
Nick Beer
Servicing notes on the mechanical and electronic
sections of these popular VCRs, with an extensive faults list.

594 Letters

596 Hum Problems
George Wilding
The causes of hum problems with various types of power supply. Also sound buzz problems.
598 Camcorder Servicing, Part 5
Steve Beeching, T.Eng. More on colour signal processing with solid-state image sensors.
599 Next Month in Television
600 The Philips CP90/CP110 Chassis Harold Peters
An introduction to these chassis and some of the faults you may experience with them
603 Product Review: Satellite TV Filter
Roger Bunney
An assessment of the Phantom IFP70 i.f. filter which
can be used to obtain considerably improved satellite TV reception, particularly with weak signals.
606 VCR Clinic
Reports from Eugene Trundle, Alfred Damp, Ian Bowden, E.M. Beddow, Nick Beer, V.W. Cox and John C Priest.
608 Vintage Scene: The Telectroscope
Chas E. Miller
While Baird was still an eight year old schoolboy Jan
Szczepanik was developing TV systems using Nipkow
discs and vibrating mirrors, with ingenious light modulators
610 Servicing Compact Disc Players, Part 4 Joe Cieszynski
The player's r.f. section, how to scope the r.f. waveform and what it will tell you.
613 Service Bureau
614 Test Case 318
OUR NEXT ISSUE DATED JULY WILL BE PUBLISHED ON JUNE 21

104 ABBEY STREET，ACCRINGTON，LANCS MON－SAT Tel： 0254 36521／32611／390936 Telex： 635562 Griffin G（For P．V．） Partners S．\＆B．Cucknell 24 hr ．answering service

New Fax No．
0254395361

SPECIAL PRICES ON 5＋MIX VIDEO HEADS REPLACEMENT VIDEO HEADS

AMSTRAD	
	4500／5200／9000
	PSF1（VIP1000）
	4600 PSF2
	7000 SHSSR
AKAI	
VS1	3HSSA
VS2	3HSSA
VS3	3HSSA．
VS5	3HSSA．
VS10	3HSSA．
VS77	3HSSA．
VS88	3HSSA
VS7100	3HSSA
VS7200	3HSSA
V 59300	3HSSA
VS9500	3HSSA
VS9700	3HSSA
VS9800	3HSSA
FERGUSON	
3V00	3HSSV
3 V 01	3HSSV
3 V 06	3 HSSV
$3 \vee 16$	3 HSSV ．
3 V 22	3 HSSV ．
3 V 23	3HSSV．
3V24	3 HSSV
3 V 29	3HSSV
3 V 30	3HSSV
3 3 1	3HSSV
$3 \vee 35$	3HSSV
$3 \vee 36$	3 HSSV ．
3 V 42	3HSSVA
$3 \vee 43$	3HSS4VO
3V45／6	3HSSVA
$3 \vee 47$	3HSSVA
3 V 48	3HSS4VC
3 V 2	3HSSVA
8903	3 HSSV
HITACH：	
\checkmark T6500	3HSSHA
$V 7000$	3HSSHA
VT8000	3HSSHA
$V 18040$	3HSSHA
VT8100	3HSSHA
VT8500	3HSSHA
VT8700	3HSSHA
\checkmark VT9000E	3HSSHA
$\checkmark T 9300$	3HSSHA
$V T 95005$	3HSSHA
VT9700	3HSSHA
VT9900	3HSSSA
VT4000	3HSSH
VT4200	3HSSH
VT5000	3HSSH
VT5500	3HSSH
VT11E	3HSSHB
ORION	
VH1	3HSSN
VH2	3HSSN
TOSHIBA	
V31	PS3BT
V33	PS3BT
V55	3HSSV
V57	3 HSSV ．
V5470	PS38S2
V9600	PS3BT

 		 	 			 	$\begin{aligned} & \text { MN } \\ & 08 \\ & 88 \end{aligned}$
			品芯芯			 	bod

PLEASE ASK！

NATIONAL PANASONIC

N 200 3HSU1N

	SHARP		
29.95	381	${ }^{3} \mathrm{HHSSSP}$	26.95
00	${ }_{384}^{383}$	${ }_{3 H S S S 5 P}$	${ }_{26.95}^{26.95}$
${ }_{19}^{19.00}$	385	3 HSSSP	26.95
${ }^{39.95}$	${ }^{386}$	${ }^{\text {3HSSSSP }}$	${ }^{26.95}$
${ }^{39.95}$	${ }_{388}^{388}$	${ }^{\text {3Hssssp }}$	． 95
2095	881	3HSSS	
29.95	482	3HSSSP	． 95
29.95	2000	3HSSSP	． 95
29.95		3HSSSP	．95
39.95	9100	3h⿰	25
${ }^{39.95}$	${ }_{9}^{9300}$	${ }_{3}^{\text {3HSSSSP }}$	．95
${ }^{39.95}$	9500	${ }_{3} \mathrm{HSSS}$ SP	26.95
${ }^{25.00}$	95000	${ }_{\substack{\text { 3HSSSP }}}^{\text {3HSSP }}$	． 95
25．00			

WE ARE SOMETIMES ABLE TO SUPPLY TO TRADE ONLYEX RENTAL．WORKING VIDEO RECORDEAS． PLEASE RING FOR PRICE AND AVALABILITY AMO GUAAANTIED

```
GENUINE HEADS
Sony 8900UB
Sony SLC9,
        Tospba9600(upper assy)
        MitachivT336G\mp@code{GEC 4044}
    25.99 Sanyo 9300/9435/9500
```

 \(\begin{array}{ll}25.99 & \text { Sanyo } 9300 / 94 \\ 25.99 & \text { Phllps V2000 } \\ \text { 25.99 } & \text { Phillps } 1700\end{array}\)
 25.99
25.99
45.00

V V99300．9500，9800 JNC HR3300／3320 3330／3360 TCE 69899 SVOOSVV 616 SV22 Nat．Pan．NV70008／7200B Sony SL8000／ Sony SL3000UB Nat．Pan．NV3000B Sanyo 9300P Nat Pan NV8600B／8610N01
Toshiba V8600
Sanyo VIC5000
JVC HR7650／3V3
Hitach 5000
Sharp 9300
Hitach VT8000／8300／8500
Hitachi 9500
Sony SLC6
Nat Pan．NV300NV333
Toshiba V7540．
JVC／HR 7700／3V23
Thorn 3V29．
Amstrad 4500／9000
Amstrad 4600／5200
Nat Pan．
Sanyo $1100-\mathrm{t} 300-1500$ Ferguson 3v35－36 Ferguson 3V42－3－4－5－8
Fisher FVHP710 Fisher FVHP710－716－72 Htachi 9300
no．of belts
2.40

TOW TO ORDER Up to $1 K$ AOO 87p per order $P+P$
（U K．）Heavier parcels e．g．cable， service aids．degausing colls please allow £3．25 P＋P（U K）． First Class Mall is used whenever possible Add 15% VAT to total except where it states zero rate Butkier ithms will be sent by carrier
$\mathrm{C7} 50$＋VAT tubes）．
tubes）
We do

ThERE IS VAT OM $P+P$ ．
BOOKS AND MANUALS ARE ZERO V．A．T Goods are despatched on the day we receive your order．If as quickly as possible．We try our best to give a speedy fair and efficient service．V．A．T．invoice on request．Give us a ring－we＇ll give you service．Please ask it what you need is not tisted－we will try to help．Prices are subject to change without notice．In some cases we may have to we need exuivalen．
We need expry dates for credit card orders．

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All, with the exception of the HM 1005, incorporates a uselul COMPONENT TESTER. Size -all m
$145 \mathrm{~mm} \times 380 \mathrm{~mm}$ Cliear display $8 \times 10 \mathrm{~cm}$. Mains supply: $110125220,240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$. All supplied with 2 PROBES. a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY. HM203-6 20MHz STANDARD

SPECIFICATION

* 2 Channels
- Sens:Ch1. Chz. $2 \mathrm{mv} / \mathrm{cm}$
- Timebase 0.2s-20ns/cm
- Triggering: OC-40MHz
- Variabie foldo-olt
- Trigger LED indicator
* Cahbrator 1 KHz Square wave
- Component tester

FREE Securicor Delivery HM604 60MHz UNIVERSAL
SPECIFICATION

* 2 Channels

Sens: 0 Th: $D C-60 \mathrm{MHz}$

* Time Case 2.5 s -5nsicm
* Triggering: DC-8OMHz
* Ativer delay trigger
- Arter delay trigge
- Trigger LED molay *elay lene
- Callirator 1 KHz \& 1 MHz Sq Wave
- Component tester \qquad
Price $£ 575.00+£ 86.25$ V.A.T

FREE Securicor Delivery
HM1005 100MHz UNIVERSAL
 3 ChanNeLs-UP TO 6 traces specification * Bandwidth * Bendwidith DC-100MHz - Tirnebase A. $2.55 .5 \mathrm{~ns} / \mathrm{cm}$ - Timebase B. 0.2s-5ns/cm * Triggenng DC-130MHz * Atter delay trigger *

* Trigger LED Indicator * Trigger LED Indicator - Active TV-Sync-Separator * Acive V-Sync-Separakor
* Calibrator $1 \mathrm{KHz} 8 \$ 1 \mathrm{MHz}$ Sq wave
* Plus many more excelient teatures Price $£ 726.00+£ 108.90$ V.A.T. \quad FRELus many more excelient leature specification

HM205-2 20MHz DIGITAL STORAGE

* Diglal Storage eat time iS
* Bandwidh DC-20MHz
* Sens. Ch1. Ch2., $2 \mathrm{mV} / \mathrm{cm}$
*Timebase Analogue $0.2 \mathrm{~s}-20$
* Timebase Analogue $0.2 \mathrm{~s}-20 \mathrm{n}$
* Triggering $\mathrm{DC}-40 \mathrm{Mrz}$
* Active TV-Sync-Separator
*Memary $2 \times 1024 \times 8$ Bit
- Dot joiner
* Printer plotter outpul
* Component tester

Price $£ 527.00+£ 79.05$ V.A.

B.K.'s CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, groen \& red guns separately. Fifted with delta and P.I.L. sockets. Compact size $120 \times 65 \times 60$ mm . Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test instrument. Over 5000 U.K. Television engineers wouldn't be without it.

* All CRT's checked identically including all in-line and one gun types * Tests all three guns of colour CRT's simultaneously under actual operating conditions (model 467) *Exclusive multipiex technique (model 467) * Measures true dynamic beam current that actually passes through G1 aperture to screen *Measures al shorts and leaks - preserv ng more CRT's " Tests focus electrodes lead continuity finding faults that other Testers miss * Uses most powerful restoration method known with minimum danger to CRT Rejuvenated CRT s guaranteed as new for two years "Obsolescence proof Perpetual set up chart up-dated
and new adaptors development " Tests and rejuvenates VDU's and Oscilloscope tubes " A fange of over 40 CRT base adaptors available * Increases profit * Pays for itself in months
PRICES
Model 467 Tri-dynamic thrae meter instrument Inc. 6 common adaptors
Without adaptors
Model 470 Single meter instrument Inc. 6 common adaptors
Without adaptors
$£ 395.00+$ โ59. 25 V.A.T $£ 344.00+£ 51.60$ V.A.T $\varsigma 294.00+£ 44.10$ V.A.T

SADELTA FIELD STRENGTH METER TC-402
THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered Dy the antenna to a TV or FM receiver, in order to test the performance of the antenna and evaluate the best conditions during instalation etc. To tacilitate FEATURES

* Covering FM and ail TV bands (UHFNHF) including CATV frea
* Digital tuning display (3 digits) for direct frequency readout.
* Accurate 10 turn tuning potentiometer
* Built-in loudspeaker enables monitoring of sound in AM/FM
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester 0-500 ohms.
* Fully portable (battery).
* Sturdy carry case

Price $£ 249.00+£ 37.35$ V.A.T
SADELTACOLOUR PATTERN GENERATORS
THE SADELTA RANGE OF HAND HELD COLOUR PATTERN GENERATORS is internded
tor use in producticn. instalation and sevice of both colour and monochrome TV sets. video patterns are provided. The technician has reacy access to Laboratory, workshopand lield use as the Generator has been desioned using the latest micro-technoogy to achieve truly poc
size instruments internal re chargeable N - Cd's. Supplec with 9 power supply charger T.V. PATTERN GENERATOR PAL MC11B UK
 * Band IV (21-34) : O/Put 10 mV into 75 ohms * Band III (5-12) *Sound output PAL VIDEO COMPOSITE GENERATOR
 Price $£ 124.95+£ 18.74$ V.A.T SECAM VIDEO COMPOSITE GENERATOR - SECAMB.G.D.K.

Audio O/Put 10 mV

- SECAMB.G.D.K.L
* Switching 12 V (17 4 K 7 ohms Price $£ 124.95+$ £ 18.74 V.A.T
R.G.B. PATTERN GENERATOR
$\begin{array}{ll}\text { - O/Put sigs. Pos.RG8 } & \text { * O/Put TTL SVP.P } \\ \text { Neg Composite } & \text { *Blank Pulse eto }\end{array}$
Price £111.95 + £16.79VA.T

DIGITAL THERMOMETER	200 MHz DIG. FREQ. METER
$\cdots \cdots$ Pocker Size	* Pocket Size
	Dispiay
* $0.5^{\prime \prime}$ LCD * Supplied with thermocouple	* Freq Range 20 Hz to 200 MHz * Resolution 0.1 Hz
Price $559.50+\mathbf{\Sigma 8 . 9 2 V . A . T . ~}$	$\begin{aligned} & \text { * Sensitivity } 10 \mathrm{mV} \\ & \text { Price } \mathbf{8 7 5 . 5 0 + £ 1 1 . 3 2 \text { V.A.T. }} \end{aligned}$

DIGITAL CAPACITANCE METER
E \quad Accuracy 8 Ranges 00
\star LCD $-2,000 \mu \mathrm{f} \quad \star$ Accuracy $\pm 0.5 \% \quad+£ 5.70$ VAT
Case Included

DIGITAL LCR METER

* LCD Display

- 18 Ranges - Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$ - Rapaciance 1pf-200 1 f - Resistance 1 ohm-20Mohm
* High acuracy

Price $\mathbf{5 9 5 . 0 0}+$ E14.25 V.A.T.

Price $\mathbf{£} 65.00+£ 9.75$ V.A.T.

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC PULSER are effective and economical tools for checking both TTL and CMOS circuits. TP1 can show 14 different circuit conditions and can detect pulses down to typically Price $£ 23.00$ damaging sensitive components. Together they can £3.45 V.A.T. stimulate and monitor responses of components in each
U.K. POST PAID, export enquires welcome Visa/Access or cheque with order payable B. K. Electronics Offic al Orders welcome from Govt. Depts Colleges. P.L.C.'s etc. Large S.A E. for technical leatlets of complete range Delvery normally within seven days
B. K. ELEGTRONIGS DEPT. T

UNIT 5, COMET, WAY, SOUTHEND-ON-SEA,
ESSEX. SS2 6TR TEL: 0702-527572

BOLTON COMMUNICATIONS PROJECT SATELLITE TELEVISION COURSES

TO BE HELD AT BOLTON METROPOLITAN COLLEGE.

One Day

Four Day

One Day

Three Day

CITY AND GUILDS COURSE ON FIXED DISH SATELLITE INSTALLATION (offered on behalf of the Confederation of Aerial Industries). Course dates: 5th June and 3rd July, 1989. day a week for 4 weeks. Start dates: 1st June. Cost $£ 150$.
INTRODUCTION TO SATELLITE TELEVISION 1st June. Cost £45.

SATELLITE RECEIVER SERVICING COURSE One day a week for 3 weeks. Start date: 12th June. Cost £110.

For further information please contact:
Terry Tudor (Project Manager), Bolton Metropolitan College, Manchester Road, Bolton BL2 1ER. Tel: (0204) 31411 Ext. 3371/3395

WE WILL ONLY SUPPLY TOR QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US
G.G.L.COMPONENTS

PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL PHONE (0228) 39693/20358 FAX (0228) 515127

CAPACITORS 1UF at 250 V .		$\begin{aligned} & \text { TYPE } \\ & \text { STK5421 } \\ & \text { ST.......................... } \end{aligned}$	$\begin{array}{ll} \text { TYPE } \\ \text { TOAS50 } \end{array}$	LECCA O/ O/P TRANS	TPPE ${ }_{\text {TRANSISTORS }}^{\text {PRICE }}$	TYPE PRICE (f) BUB807. \ldots
4.7UF at 250 V 25		STK54818.95				BU826A ……………..... 225
10UF at 250V 35	TYPE PRICE (1)	(17308,	TDA25401.70	FERGUSON 1690/1.........9.95		${ }^{\text {BU990] ... }}$ -
22 UF at 250 V	AN303... 375	STR4090 - --................ 8.95		FERGUSON 1790/1.......... 7.95		
33 FF at 250 V 55	AN3O5.......................... 3.50		TDA25576A	FERGUSON TX9......... 23.50		
47UF at 250V		STR50103A.................6.50		FERGUSON TX90 (14")		
100UF at 250V............. 125	20.....................4.95	2113.95	TDA2578A .-...).-	FERGUSON TX90 (20") 19.75	${ }_{8 \mathrm{C} 328}$	R2540...
(All Single Ended PCB Type)	AN7145M 295	STR441 . .-.	TDA2579.......................3.75	FERGUSON TX10090...20.95		R4050...........................1.38
	HA1339A	STR451 5.35		ERGuson TXIOO 110	BC338............................... 12	
DIODES				FIDELITY 2×2000 14"120	BC360.	
	WR................. 1.85	STR54126.95			${ }^{\text {BC545 }}$ -	T6071VIKIT)...................5.75
	HA1374 2.45	STR58041.................... 1.95		(lnc. Mod.)................ 1250	${ }^{\text {BC540 }}$......................... 10	T9953V …… $\cdot \cdots \cdots \cdots \cdots \cdots \cdots 3.30$
		201KIT) 5.75	2995.... $\quad . \quad 1.55$	FIDELITY $\mathrm{ZX3000} 14^{\prime \prime}$		
	295	TA71939 4.50	TDAZ600...............35			T9064V
79	HA1397).-.	TA7205AP..................1.40	TDAZ611A.................. 1.50	FIDELITY $2 \times 22^{\prime} / 2$		
BY223125	A13001...................... 4.50	TA7222P.....................1.85	T0A2633A 3.505		${ }_{\text {BC669 }}$	${ }_{\text {IPP32C }}$
	HA13008 12.95	TA7227......................... 2.95				TIP41C...........45 45
${ }_{\text {BY299 }}$ BY290...................... ${ }_{25}$				$1 \mathrm{TTCVC25330.32...........8.50}$		
BYX55,600 $\ldots \ldots$.	LA1230 29.15	TA7609.....	TDA3540................... 2.95		B0132.......................... 50	TIP112
1N4007 \ldots........................ 07				PHILIPS G8	BD222	
20	L44445....................... 245	TBA800P 85	TDA3561A4.95	PHILIPS G11.18.95		2SC867A. 320
E5F3/10 1.50	LA4460......................... 245	TBAB10S 125				
zener diodes		TBA820 1.50		PHILPSK13..............1299		C1114
BZX61C (1.3 Watt) 3V3, 4V7.	LA7800 1.95	TBAB20M ……............125	3571 B/0............ 3.95			${ }^{2 S C 1413 A}$
$5 \mathrm{~V} 1,5 \mathrm{V6} 6 \mathrm{6} 2,,6 \mathrm{VVB}, 7 \mathrm{~V} 5,8 \mathrm{~V}$,		1.95	IDA3650 … \cdots.-	PHILIPS CTX 14*/16".....17.95		
$9 \mathrm{VI}, 10 \mathrm{~V}, 1 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 15 \mathrm{~V}$,	MC13002 3.95	TBA950/2X 225	${ }_{\text {TDA3651AO }}$	PHILIPS CTX 20' 17.95		${ }_{\text {2SLC725 }}$...........
$18 \mathrm{~V}, 20 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$.	MC14497P 4.50	TBAI440G 2.2 .95		$20 / 224 . \cdots \cdots \cdots \cdots \cdots \cdots$		2S8870650
$36 \mathrm{~V}, 4 \mathrm{~V}, 56 \mathrm{~V}, 62 \mathrm{~V}, 75 \mathrm{~V}$.			TDA3653AD................ 4.95	SHARP C141C......... 23.95	B0707 95	
100V, 110V, 120V, 130V. Pkis		TDA1020	4.75			
of 5 per valu			50	ONOFF SWITCHES	${ }_{B F 337}$	
				Decca 80'100 100	BF338 …	
	SAA5010........4.95	TDA1044 2.95				7815
E.H.	SAA5012 4.95	TDA1151 125	TDA4600/203.30	Ferguson $\times \mathrm{X} 910(\mathrm{Rem})$. 1.75		
Continental 2cax Focus 8.95	5030 5.95	TDA1170S.................. 1.80		Ferguson TXS0 (Rem)1.75	B423 3	
	SAA50506.95	TDA1180P 2.65	TDA8180 \qquad 6.95	Fidelity AVS Series1.50	BF-458 ${ }^{35}$	
CCA 80 -	SAF1039P 275	TDA11902.................... 2.85	TDA8190		BF46095	TUNERS
DECCA 100.................. 735	7010. ${ }^{\text {................... } 295}$	TDA1470.................... . 325	1DASLO3-	Fidelity CTV14		ELC 104305 \qquad
Cca 1201130.	SL480 285	TDA1506 435		Fidelity CTVI4R 295		ELC 104306... .-.
ITT CVC20025300326.95	SL490 290	TDA1510 3.80	UPCC1 182 H	Fidelity CTVIAS 295	BF87180	E1548..........................1420
ITICVC45.	SL1430 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots1 .95 ~$	TDA1512 . . $\ldots \ldots \ldots \ldots \ldots \ldots3 .50$		Grundig Cuc731.......... 3.50	75	. 5
HILPS G8550	SL14311.95	TDA1515.....................4.50	UPCi230H …-	HitachiCPT2650.............1.95		
PHILIPS KT3	SL14321.75	TDA1670A420	UPC1365C.	Philips G8 135	BT15188001.15	
20122A.		TDA1770A 3.70	UPC1378H................... 3.70	Philips G11 - 135	BU126.........................1.50	U343 (iphona).
HRAN 9000 8.00						
RSAL ..-............... 5.70	STK0776.95	TDA1908A 1.95		Philips Gfl (fem)...........1.15	BU203A 1.45	
		TDA1950A 3.95		1ps KT3.................... 1.50	BU2080.......................1.95	UE5-B31F..... - -
USES		TDA2002....-*)		Philips KT/CTX (Rem)......1.15		
m A'S: \Pkts of	STK4332 5.95	TDA2003.................1.55		Pye 111 (Rer).............1.75	BU407....................1.155	
$250 \mathrm{MA}, 315 \mathrm{MA}, 400 \mathrm{MA}$,	STK435 5.95	TDA2004.....	OCKETS	RBM T20/22A 3K3 Vol.... 2.45		TV ELECTROLYTICS
50MA, 630MA, 800 MA ,	STK4376.95	TOAZOO5...................... 2.55		Sony KV1612 (Rem)........ 3.95	BU5001.95	(ecca
1.25A, 1.6A $, 2 \mathrm{~A}, 2.5 \mathrm{~A}$,		TDA2020.................... 320	16 Pin Dil-Quil	Sony KV2022 (Rem)......... 3.95	BU5084 …1.75	3.95
5A, 6.3A,8AA... 1.20	STK459 . .-................. 8.55	TDA2030 1.80	18 Pin Dil-Dil	Tatung 160/1611.15		PHILIPS G114702250)220
A/B: (Pkts of 10)			${ }^{24}$ Pin Dill-Dil ${ }^{\text {a }}$	Tatung 165....................1.15		RBM T20A1220400)
24, 2.5A, 3.15A $\ldots \ldots \ldots \ldots \ldots \ldots$			40 Pin Dil-Dil.................... 40	Universal		THORN 1690 IHORN $90004700 / 250$

Focus Unit TX10. ine 0/P Trans TX9. ine 0/P Trans TX10 On/Off Switch (Remo Push Button TX9. Push Button TX10 RFI Choke TX9 Tuner TX90/100 Line 0/P Trans TX90 ine 0/P Trans TX90 Line O/P Trans TX100 une 0/P Trans TX100 Mains Trans. (TX90) On/Off Switch (Remo

FERGUSON
VIDEO SPARES

GEC/HITACHI SPARES
HM3232 - ${ }^{-}$
HM9032
VIDEO SPARES
V4000NT8000
Capstan Motor 31
FF/Rew Pulley85
Pinch Roller3.95
Play Idler............................. 4.50
Video Head 22.95
V4001~T9300/S500
FF/Rew Ider..........................1.95
FFRew Pulley
Pinch Roller3.95
Play lder
Video Head........................ 295
V4100NT11ENT3
Capstan Motor (VI11E).........23.95Capsan Motor (VT33E)......29.95
FFFRew idler (Genuine) 2.50
Pinch Roller3.95
Video Head-..................2.95
V4005VI63E
End Sensors (Pair)... 1.95
Pinch Roiler
Video Head49.95
PANASONIC VIDEO SPARES
N N 333366
Complete Maintenance
Kit (Genume) 13.75
Cassette LED 1.95
Pinch Roller3.95
Play Idler (Genuine).................4.95
Reel Idier (Genuine) 125
Reel Motor (Genuine)... 14.95
Video HeadNV370380
Kit (Genuine) 12.95
Pinch Roller3.95
Reel Idler (Genuine) 295
Video Head 21.95
Kit (Genune).

SANY VIDEO	SHARP VIDEO SPARES	VIDEO PILOT LAMPS Ferguson 3V23(Plug) \qquad
VTc5000/5300	vCBa	Ferguson 3V23(Plug) 80
Loading Roller................... 125		Panasonic NV2000/200 70
	ChannelBank.........................95	Sharp VC8330
Reel lder (Genuine) -................7.70	Pinch Roller3.95	Sharp VC9300 $\ldots . .$.
Reel Motor (Genume) -............. 7.95		Universal....).
Video Head	vc9s00381	
HP615.		VIDEO HEADS
Gear Ideler Assembly................ 5.95	Cassente Lamp..................... 1.35	400024.95
Pinch Roller-*)	Pinch Roller 3.95	Amstrad VCR4500 22.95
	Reel Idler (Genuine)3.35	Amstrad VCR4600............... 23.50
	Reel Motor (Genuine)............ 17.50	
	Unlock Assembly $\quad 35$	Amstrad VCR9900.............. 24.95
SERVICE MANUALS		$\begin{aligned} & \text { Ferguson } 3 v 00 / 2229 / 3917 .55 \\ & \text { Ferguson } 3 \vee 32 \ldots470 ~ \end{aligned}$
uine)		Ferguson 3V42141/45/5526.95
Ferguson TX9 Complete....... 27.95	Capstan Motor	Fisher FNH520/615/20 24.95
Ferguson T110 Complete....... 38.95	Pinch Roller 3.35	Hinari VxL2/4,
Ferguson XX85..................9.95	Reell dier (Genuine) 3.35	Hitachi $8000 / 1330095000$....... 2.2 .95
Ferguson TX90.	Reel Motor (Genuine)............. $18.50{ }^{\text {a }}$	
Ferguson TX100 18.95		
Ferguson 179011................. 1.95		Panasonic NV333
Fidelity AVS1600-....... 5.95	SONY SPARES	Panasonic NV366
Fidelity AVS2000..................5.95		Panasonic NV370,380- 21.9
	Capstan Motor C7 27.95	Panasonic NV430................ 24.95
Fide itiy CTv20R...5.95	Pinch Roller C5/67359	Panasonic NV730.................39.95
Fideliy CTV20T 5.95	Pinch Roller C9....................5.95	Panasonic NV77
Phihps CF1........................6.95		Panasonic NV20007000 17.95
Philips CTX-E....)	Rewind Kitc6.....................3.45	asonic NVG79,
Philips CTX-S 2.50	Video Head Ci	Panasonic NVG10/11/15 29.95
Philips G11 4.50		
Philips KT3....................... ... 4.50	VIDEO BE	
	AkaivS $1 / 23 / 5$....................1.95	Sanyo VHR1100/130
Philips KT4/40 5.95	Amstrad VCR4500...............1.95	Sanyo VHR1500.
Philips 2A6.95	Amstrad VCR7000 $\quad 1 . \quad 1.50$	
VIdeo recorders	Ferguson 3V00/16/22 250	Sentra 8
Ferguson 3 V35/36............. 28.95		P
Ferguson 3V44/45............... 11.95	Ferguson 3V3539.................. 1.95	arp C581/
Ferguson 3V46/47/52........... 11.95	Ferguson 3V44/45...................1.95	
Ferguson 3V54/55................ 11.95	Fisher FVH520.615............... 1.95	ny 20.330
Ferguson 3V59................... 11.95	Panasonic NV333.................1.95	
Ferguson 3V65............ 11.95	Panasonic NV3770.................195	硣
Ferguson FV11 9.95		
Ferguson FV129.95	Panasonic N/7..............1.95	
PhilipsVR6460 - .-...............6.50	Panasonic NV2000/2010.........1.195	RD
Philips VR64626.50	Sanyo VCC5000...................1.00	ase add 75 p for p / p
hilips VR6467	Sanyo VTC53001.95	d 15\%
Philips VR6520 6.50	Sharp VC7300 2.50	vice Manuals $£ 1.00 \mathrm{p} / \mathrm{p}$
	Sharp VC8300).	
lips VR65606.50	Sharp VC9300 245	charged at cost
lips VR6660 6.50	Sony C57250	Delivery by return stock items.

URGENT ANNOUNGEMENT!

"New Company" NOW trading

 in Chepstow, South Wales
ERATIME то

Unit 4, Bulwark Industrial Estate,
Chepstow, Gwent
Telephone: (0291) 271000

is fresh on the scene with unbeatable introductory offers:

3V29/30 - from £57
text - from £35
stereotext - from £65
($\mathrm{H} /$ sets optional)

Full working CTVs from ONLY £6 -
Plus hundreds of other BARGAINS in stock NOW!!
HURRY!! this offer is for ONE MONTH ONLY
Complete Range of Working and off the pile CTVs and VCRs NOW AVAILABLE FROM MANY SOURCES

ALL PRICES SUBJECT TO VAT

NEWSFLASH

STPEivision

IS PLEASED TO ANNOUNCE ITS APPOINTMENT AS A DISTRIBUTOR FOR HUANYU (U.K.) LTD. WE NOW STOCK HUANYU'S COMPREHENSIVE RANGE OF HOME ENTERTAINMENT/LEISURE PRODUCTS INCLUDING COLOUR TELEVISIONS, V.H.S. VIDEOS, AUDIO UNITS, MICROWAVE OVENS, GENUINE LEATHER/HIDE BRIEF CASES AND ACCESSORIES

WE ALSO HAVE EX-RENTAL TV'S \& VIDEOS ALL TOP MAKES IN STOCK

TV’s FROM £5.00 (OFF THE PILE) - WORKING VHS VIDEOS FROM £45 WORKING PORTABLE TV's FROM £45

ALL PRICES ARE SUBJECT TO VAT

GOOD NEWS FOR OUR MIDLANDS CUSTOMERS!
 ALL GOODS ARE NOW AVAILABLE IN THE LEICESTER AREA

LONDOMS NEW EX-RENTAL WAREHOUSE RELABLE WHOLESALE TV

SALE TIME!

TV's from $£ 3$ vIDEOS from $£ 30$ WE STOCK THE LOT - 10p WILL SAVE E£s TO NAME A FEW

TV's

PHILIPS G8 - G11 - KT3 - KT30 - KT35 CTX
DORIC MK2 - MK3 - MK4 - MK5
FERGUSON TX9 - TX10-9600-8800
Plus Pye, Sony, Finlandia, GEC, Hitachi, National Panasonic
Mitsubishi, Toshiba, Grundig, ITT \& MORE, MORE, MORE

VIDEOS

3V22-5000-8000-3V29/35/36/37/38/39/45 SHARP 9500 - $9600-9700$ + MORE, MORE, MORE PANASONIC NV333/366/370/2000/7200/3000

VAT Prices exclude VAT
HANDSETS - Handsets are included with working sets but are
charged extra in 'off the pile' sales.
WE ARE JUST OFF A406 (BARIKING)
2 ROADS AWAY FROM EAST HAM TUBE
RELIABLE WHOLESALE TV $01-4719622$

UNIT 2

2A LATHOM ROAD
$01-5902715$
EAST HAM, LONDON E6
TV \& yideo panels SUPFIED

FRIST IN TUBE RE:UIDIWG TEGHOOLOGY 30AX, 540 SERIIES REDUGED SERVICNG GOST, FIT A DIEEGT REPLAGEMEII AVALLABLE OMLT FROM GHBOMAVAG. PRE COWVEREED AS ORIGINAL. EXTERHAL MULTIPOLE UNIT NOT REQUIRED.

Delta Rebuilds

Up to 19"
£28
Up to 22"
f30
Up to $26^{\prime \prime}$
110° up to $22^{\prime \prime}$
110° up to $26^{\prime \prime}$
Low focus
£34

A47 342 New
£34

17FHP New $+£ ?$ 70EHBN £28
470EHB New $\quad \mathbf{f 3 0}$
Delta only. Less 5\% 5+

Inline Rebuilds
Up to $22^{\prime \prime}$.. From $\mathbf{£ 4 0}$ Up to $26^{\prime \prime}$.. From $\mathbf{£ 4 5}$ A56-540x ……....... £56 A66-540x …........ $£ 8$ Bonded Coil + £5

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES

WIN LINE TYPES (not maulos) PHONE RIS STOCK POS.
Please enquire types not listed

370 HFB-A37-590	¢50	AXT 56-001	£67
370 HUB	f50	670 CZB	£80
AXT 37.001	£50	A66-540	£125
420 CSB	f50	420 FSB	£60
420EDB-A42-590	f5)	14" (A34); 16" (A38); 21 (A51); FST now available at special low prices	
420 EZB	f50		
420 ERB	£50		
470 KUB	f50		
510 UFB	£67	MIN. CARRIAGE $£ 5$ £10 if glass collected. TERMS Cash with order ALL PRICES EXCLUSIVE OF VAT	
510 VSB	f67		
AXT51-001	£67		
560 DYB-560 DTB	£67		
560 EGB	£67 $\mathbf{6} 67$		
560 DMB	£67		

[^0]- WE PURCHASE SURPLUS STOCKS OF INLINE TUBES: ALSO A56 66-510/540 ETC OLD GLASS DELIVERY: By return on all stock items

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET HOLLINWOOD, OLDHAM OL9 7LR Ask for Mr Butterworth ON: 061-681 2959

No. 2 LIST BAKERS DOZEN PACKS
All packs are f 1 each, it you order 12 then you are entitled to another free. Please state which one you want. Note the figure on the extrme left if the pack ref number and the next figures is the quantity of items in the pack, finally a short description

BD4 5 Surface mounting 5 amp switches. Intended fo mains but equally suitable for battery circuits
3 white flush switches. Will replace any standard size switch
230 volt 80 watt brass cased elements. Ideal for frost protection, pet warmers

4 photo transistor Mull;ard reterence OCP70
4 reel to reel tape heads. 2 record, 2 erase
ultrasonic transducers. 1 to transmit the other to receive
4 different mains micro switches, each average 1,000,000 operations
BD23 1set loud speaker cross-overs up to 40 watt for wooter, mid-range and tweeter
BD26 2 counters, belt driven as in tape decks
BD36 $\quad 2$ air spaced tuning condensers. 1/4in spindle with trimmers

2 ditto, but solid di-electric
6 standard size rocker switches. 13 amp at 230 volts ime-on switch. Stays on up to 6 hours, depending on control setting
BD48 2 reed relays. 4-8 volt coil operated
BD51 112 volt relay. Miniature enclosed with 2 change over contacts. 700 ohm coil
BD57 5 miniature switches for battery circuits, dolls houses, etc.
4 territe rods. 4in long, 1/4in diameter. Suitable for aerials, inverter transformers, etc

0 assorted control knobs, 1/4in spindles, push-on and grub screw type
4 different thermostatic switches. Control mains or battery devices

B069 $\quad 2 \quad 25$ watt 8 ohm variable resistors (pots)
BD71 4 wire wound pots with built-in knob. One each 18 ohm. 35 ohm .50 ohm and 100 ohm
BD78 $\quad 5 \quad 5 \mathrm{amp}$ rectifiers, 50 volt
BD82 4prs porcelain fuse carriers and fuse holders (make your own fuse board)
BD84 10 . 1 mft 250 volt mains supressor condenser (cut out the clicks)

1 mains shaded-pole motor with $1 / 4$ in shaft
4 Sin aluminium fan blades. Will fit $1 / 4 i n$ shatt
4 t1pnt bases for relays, etc
5 B7G valve bases
4 B9A valve base with metal skirt motor driven stud switch Ex-fruit machines Delayed-on switch. Can be set at any time up to 2 hours. 115 voh so supplied with dropper cased mains unit. 4.5 volt regulated out-put 12 voit alarms. Round, approximately 2in diame ter. Sounds like a car hom
B0109 10 assorted $1 / 4 i n$ spindle volume controls
BD110 10 slider type volume controls
BD114 $\quad 12$ watt amplifier made by Mullard, their reference 1172
BD115 1 wall mounting thermostat, 24 volt
BD126 4 batten holders, MES, will take torch butbs, etc
Most other packs still available and you can choose any as your free

VERY POWERFUL 12 VOLT MOTORS - 1/3rd HORSEPOWER Made to drive the Sinclair C5 electric car but adaplable to power a go-kart, a nower. a ral car, mos
rel $15 P 8$

WHITE CELLMG SWITCH 15 amp 2 way surface mounting with cord and lassle. Made by the tarmous Crabtree Company. Pnce $£ 1$ each. Our re BD528.
$13 A$ SWITCH SOCKETS Top quality made by Crabtree, fitted in metal box with outputs so ideal for garage, workshop, celler, etc. Price $£ 2$ each O ref 2 P37

MANSS TRANSFORMER Upright mounting normal manns input, gives 28 v at 3.5 A so should be ideal for big amplifier. etc. Price only $£ 4$. Our ret 4 P24, please add $£ 1$ postage

POWERFUL IONISER

Generates approx. 10 times more IONS than the ETI and similar circuits. Will refresh your home, office. shop workroom etc. Makes you feel better and work harder - a compete mans

ORGAN MASTER. Is a three octave musical keyboand It is beautifulty made, has full size (piano size) keys, has gotd plated contacts and is
compiete with ribbon cable and edge connector. Can be used wilh many computers. We can supply information sheet. Brand new, only $£ 15$ plus $£ 3$ comouters. We can suppl

ULTRA SONIC NTRUDER ALARM. Small, ncely cased. wil detect movement in a room up to $10 \mathrm{~m} \times 10 \mathrm{~m}$. Ingenbus constuction makeff switch, until you of the mants, cannol be switched of, even with its switch it on and leave the room; it has an inbult prezo sounder which is very penetrating and high pitched and would frghten away most intruders.
Has internal swiching and could be coupled to an outdoor alarm if tequired.
required. basis of a very efficient burglar alarm, or has other uses. For instance. you couid disconnect the intemal sounder and using the internal
switches you would krow when somebody arrives without that person swiches you would krow when someboly arrives without that person other equipment ultra-sonically. It is brand new, guaranteed OK. complete bul less batiery (PP3 alkaline type). Phe is $£ 20$ plus $£ 3$ insured delvery.

110 DECIBEL HORN. For use with the ultra sonic intruder detector. deal tor extemal positoning to attract the attention of nizghioours shouk you have an introduder. This unt has its own mounting bracket and comes could also be used as a loud speaker.

31/2in FLOPPY DISC DRIVE - DOUBLE SIDED, DOUBLE DENSTTY, 80 TRACK. Shugan compatible, has 34 way IDC connector and will interlace with almost any computer. Made by the
lamous Japanese NEC Company. Price $£ 59.50$ plus $£ 3$ insured post.

65XE COMPENDUM. Containts: $65 \times$ E Computer its data recorder
TME AND TEMPERATURE LCD MODULE This is a 12 nou clock, a Celcius thermometer. a Fahrenhein thermometer. a too hot alarm and finalty a too codd alam. Nice size, approx $50 \mathrm{~mm} \times 20 \mathrm{~mm}$. with 12.7 mm digits which dearly display the time or temperature. Requires only
a 15 v battery and a lew switches. Comes complete with crcult diagram a 15 v batiery and a lew switches. Comes
and explanation. Price $\mathrm{E6}$. Our rel 6 P 12 .

CAMERAS. Three cameras, all by famous makers, Kadak, etc. One disc one 35mm and one instamatic. All in first class conditition, believed to be in pertict working order r but sold as untestid. You can have the three
for $£ 10$ including VAI, which must be a bargain - if onty tor the lenses. for E10 including VAI, which
flash gear, etc. Our nel 10 P 58

1/8th HORSEPOWER 12 VOLT MOTOR. Mace by Smiths, the oody length of this is approximately 3in, the diameter 3 in and the spindle 5 16 th of an inch oiameter. it has a centre flange for fixing or can be fixed from the end by means of 2 nuts. A very poweruil itite motor which yevs al
3.000 rpm We have a large quantity of them so if you have any propects in 3.00 mpm We have a large quantity of them so if you have any projects in
mind tien you coud rely on supplies ion at least two years. Price E6. Our mind then you coud rery on suppies ior at ieas.
ref 6 . discount for quantities of 10 or more.

PHILUPS LASER This is helium-neon and has a power rating of 1.6 mW This is helium-neon and has a power rating of 1.6 mW . Comptetely safe so tong as you do not look directiy into the beam when eye damage could result. Brand new, full spec., $\Sigma 30$ plus $£ 3$ insured delivery. Mains operated power supply beam when eye damage could. Mains operated power supply £30 plus $\mathbf{E 3}$ insured defivery Mains for this tube gives 8 kv striking and 1.25 kv at 5 mA runing. Complete ktt avallable an $£ 15$

HAND-HELD VIDEO LAMP. Mains operated and will enable you to take professional standard videos. Made by line fammous Ferguson Company, this uses a 1000 halogen lamp in a ian cooted, hand-hetd and assembly and camera bar. Obviousty intended to relail at over $\mathrm{£60}$. we us Ea insured dellivery. HiGH RESOL MOWW. Made MONTOR. In black and white. uses Philips ube M24/306W. Made up in a lacquered frame and has epen skdes. Made
or use with OPD computer but suitable for most others Brand new. $£ 16$
plus 55 post. Our reference 16 P 1 .

12 VOLT BRUSHLESS FAN. Japanese made The popular square shape ($41 /$ 2in $\times 41 / 2 \mathrm{in} \times 1^{3 / 4 i n) . ~ T h e ~ e l e c t r o n i c a l l y ~ r u n ~ t a n s ~ n o t ~ o n l y ~}$ brush type motors do. Ideal for cooling computers, etc., or for a caravan.

ACORN COMPUTER DATA RECORDER. (Ret ALFO3) this is a Acom Electron or BBC compulers bul also functions with almosi any other computer and can be used for normal record and play back of music and speech. Can be battery operated but is supplied with a mairs adaptor.
Brand new in manulacurer's wrapping. Pnce $£$ to. Our rel 10 P 44 .

MUSIC FROM YOUR SPECTRUM 128. We offer the Organ Master three oclave keyboard, comptete with leads and the interface which plugs into your 128 . You can then compose, play, record. store, etc.,
your own music. Price $\Sigma 19$ plus $\Sigma 3$ special packing and postage. Order

FDD BARGAIN

 $51 / 4$ in dives. Comptelety cased with computer lead. $\mathbf{I} 40$. Our ret 40 P 1 .

OUR ALADDIN'S CAVE. You may be a new reader and not know that we have a shop at t2 Boundary Road, Hove, where you can go and
have a browse around at our assonment of goodies' Unfortunately. because of staff shortages, we cannot be open on Saturdays yet so the
 cailers al 250 but tequest th

Generous discounts for quantities

J \& N BULL ELECTRICAL
Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 50T

Some of the many hems describes inar ITEM

Eht transformer. 4ky 2mA Ex-unused equipment. 〔5. Our ref 5Pt39 FOIL CAPACTTORS. Axial ended. $33 u \mathrm{ul} \mathrm{m1}, 000 \mathrm{v} 4$ for Cl . Our ref BD672 4 CORE TINSEL COPPER LEAD
Dlug 2 for 51 . Our ref BD639.
EHT TRANSFORMER. 8ky 3 mA £10. Our ret 10P5 oduble micriodrives. We are pleased to advise you that the Double Mierodrves which we were offienng at about this time last year as being suitable for the 'al namely $\mathfrak{\text { Ex }}$. İver ref 5 P113.
NOISE FHIERS - MAINS IMPUT PLUG TYPE. Japanese made. this is a chassis mounting block with a built in noise lither to cut out surges and voltage peaks whic could intertere with and possibly even damage your equipment. These are easy to mount and rave a nange with wo foxng hotes they lake the standard 3 hiat p plug. 2amp model. Price $£ 3$ each Our ref 3 PS
LEAD LAMP. Motorisis' Special Normal hand-grip lype hoider. with glass cover to protect the lamp and further prolection in the lorm or a wire guard with a hook for nanging Ideal as loft light or
Hex Price $£ 4$ Our reft 4P3
PHOME LEANS. 3 metres long, correctiy colour coded. one end has flat plug which 2 for f 1 Our ré 80639 UB-MIN TCGGLE SWITCH. Body sIze $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrom dollyy fixing auts 4 for $£ 1.00$ Order ref BD649
EERY POWERFUL maGNETS. Although onty less than 1 in long and rot much thicker than a pencu these are very dinikcit to puil apart Coudd be used to operate
embedded reed switches, elc. Price 50 p each. 2 or $£ 100$ Our ret Bubd2.
LEAR LACHUER. Ouick drying tor the protection ot translers, markings, maps, etc. Also pr
PAPST AXIML FAN. MANUFACTURERS REF NO TYP458ON. This is mans perated 15 watt rating and in a metal frame with metal blades so of in high olus $£ 100$ postage. Our re 6 P6
SOFTWARE FOR REmaKING. Just arrived. Large quantity of maily games. All are no nomal twee spool in cassette holders and should be suitabie for wiong out and re-makng into games or programmes of your own design We offer 5 different for 2 or 100 asworted for $£ 20$. Important note: We cannot say which it
 you can take them as they come. Order ret 5 for \mathfrak{Z} is 2P224. 100 assorted is

ERY USEFFL MAGNETS. Flat, about 1 in iong. $1 / 2$ in wide and $1 / 41 \mathrm{ith}$ ick These plarised on their faces which makes them ideal to operate reed switches in doors cupboard dcors firmly closed. Very powertui) 6 for $₹ 1$ Our ref BD274(a). CORE FEE BADGAN MO. 1 - Core sive 5 mm so deal tor long er Carrying up to 5 amps or shorl teads up to 10 amps. 15 mm for \mathfrak{E}. Order Re 2 P189
CORE FLEX BARGAN Mo. 2 - Core size 1.25 mm so sutable for long extension leads
$2 P 190$
IPHA-NUWEEIIC KEYRDARO - MIS keyooard has 73 keys min cantactess apacitance switches givng long trouble free life and no contact bounce. The keys 15 gen int grups. he man area ledis a MLA Has and or the righ only a fraction of ts cost namely 53 . plus $£ 1$ post. Ref $3 P 27$
UIRE BARGAM - 500 metres 0.7 mm solid copper tinned and p.v.c. covered. Only $3+£ 1$ post. Ret. 3 P31 - that's well under 10 per mette, and this wre is ideal to push on connections
CAPACITOR BARGAN - axal ended - 4700ut ar 25 v Jap made Normally 50 p each. but you will get 4 for $\mathbf{E 1}$. Ret. 613.
PRIMG LONDED TEST PRODS - heavy duly, made by the famous Butgin company very good qually Price four for El Ref 80597
SOLAR POVEREO NI-CAO CHARGER 4 NI-CAO battenes AA (HP7) charged in ght hours or two only 4 hours it is complete, Doxed ready to use unit Price

FEE POWER! Can be yours if you use our solar cells - sturdily made mocules with ew system bubble magnitiers to concenitrate the light and so eirmmate the need for in in series to get desired voltage - and in parallet tor more amps modure A give OOmA Prike E 1 Our Ref BD631 module C gives 400 mA Price $£ 2$ Our rel 193. moaure 0 gives thoma Pice io. Ool het. GP3

METAL PACIECT BOX. Ideal size tor battory charger. power supply etcic sprayed nd undriles Order Ret 2P191. Puce and undriles. Order Ret. 2P191. Price \geqq
-CORE FLIX CABLE. Cores separately insuiated and grey PVC coveres overall each copper core sized 70.2 mm . Ideal tor long telephone runs or simila coll 88 . Orter Ret. 8P19.
$13 \mathrm{P} P 1$
2 P 186
13A ADAPTERS - Takes $213 A$ plugs. packet of 3 tor $£ 2$. Order Ret $2 P 187$

- 0 - Mains transtomers $1 / 2 \mathrm{mp}$ (10) watr) - 245 upight mountings F 4 . Order Ref 4 P24

E-Chafgeable micaos ' 0 ' SIze these are tagged for easy fornng together bu P141. 6 fcr $£ 10$. Ref $10 \rho 47$.

Tir reterence with curly iead terminating at BT plug Colour cream. Prias $£ 5.00$. ur reterence 5P123.
SNGLE SCREENED FLEX 702 copper conductors, pVC insulated then with copper
 ref BD668.
WHITE CELUNG SWITCH 5 amp 2 way surtace mounting with cord and tasste.
Made by the tamous Crabtree Company. Price $£ 1$ each Our ref BOS28. vOLT MOYOR Very low current so should be very sutable for working with solar
cells. £1 each. Ouf ref BD681 cells. £1 each. Out ref BD68
MINI SPEAERS to use instead of headphones with your personal steree - sumply EEALEO LENO ACID BATTERIES. Japanese made re-chargeable and maintenance-
 Ah. 55 each Our rel 5P135
WRER EAR STEREO HEADPHONES. Idea; tor lady listeners as they will not mess TEREO HERDPHOUE AMPLFER Very Sencitue A magnetic cartride or tape ead will driee it. Has volume control and socket for stereo theadphones. $3 v$ batter perated. El each. Our rel BD680
tT CAPACITOR MICROPHONE EAGLE C1.200. Output equivalent to a high class Aynamic miraophone while retaining the characteristics of a capacitor microphone

SUB-MMM PISH SWITCH OPOT. Single hole fixing by hexagonal nut 3 for ft Our ref 80650
ISPLAY 16 CHARACTER 2 UNE. AS used in telephone answenng and simula

nachines. screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm} \times 9.3 \mathrm{~mm}$. Alpha-numenc. dot mal | company, referenice 16027AR. Price £10 Our fef 10P50 |
| :--- |
| Come by tre EPSO |

\#\# EAST CORNWALL COMPONENTS E

1989 CATALOGUE, NEW, LARGER, MORE VARIED, NOW READY (includes Credit Tickets (3), Special Offer sheets, Order Form \& Pre-Paid envelope) only $£ 1.00$ or free on application with any order over £15. Prices in new catalogue and advertisement may vary as material for advertisement is prepared $6 / 8$ weeks before issue of Television.
PLEASE NOTE - ALL PRICES NOW INCLUDE 15\% VAT

EAST CORNWALL COMPONENTS 119 HIGH STREET WEM
SHROPSHIRE SY4 5TT TEL: 093932689 TELEX: 35565 FAX: 093933800
add $£ 1.00$ postage/packing (unless otherwise specified) to all orders Minimum order £5.00. Either send cheque/cash/postal order or send/ telephone your Access or Visa number. Official orders from schools, universities, colleges etc most welcome. (Do not forget to send for our catalogue - only $£ 1.00$ per copy). Delivery by return on ex-stock items. All prices subject to change without notice. RETAIL shop open Mon-Sat $9.00-5.00$. Sat $9-12.00$. REMEMBER ALL PRICES NOW INCLUDE VAT

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement depart ments only. Fditorial enquiries should be sent to the editor at the address given on page 561 .

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

SUBSCRIPTION ENQUIRIES
 0444440421

CORRECTIONS

In Nick Beer's article on pages 512-3 last month the Panasonic NV-G21's "capstan motor" (VXP0777) should have read "capstan rotor". Salora Model 24K67 should have read 24L67.

COVER PHOTO

This month's cover photograph shows the Panasonic NV370 with the top and front covers removed to show the mechanism/internal layout. See article on pages 590-3.

Business Slows

Here we are at the beginning of the age of satellite TV broadcasting in the UK. Business should be booming, but isn't. Which is not to say that the TV trade didn't do well last year. In fact sales of colour sets rose to yet another record in 1988, up nine per cent at 4.4 million. But, as so often, there wasn't a lot of profit in it. For the first time, sales of small-screen sets overtook those of large-screen models, suggesting that the market is now primarily one for additional sets. And we all know the silly prices that are being asked for many of these small sets, with 14 in . CTVs having been on offer for as little as $£(0$. The chancellor’s attempts to dampen demand through high interest rates have depressed sales this year. The silly prices seem to reflect an attempt to maintain turnover at the expense of profit margins. Perhaps this is inewitable when the large chain stores operate by placing massive orders with manufacturers. The stuff has to be kept moving somehow

The public, having sated itself on CTVs and VCRs (2.3 m in 1988, with market penetration now at 64 per cent of households), is not at present in the mood to invest in satellite TV equipment. Consumer research carried out by Ferguson has shown that only one per cent of those interviewed intended to buy a satellite TV receiver this year. Two per cent said they would probably buy, four per cent said they "might or might not" while a massive 85 per cent said they definitely wouldn't. Hardly a vote of confidence in the present offerings. In fact of course this reflects the present uncertain situation, with Sky seeking to establish itself on a shoestring and the advent of the BSB services in the autumn awaited. Sky gambled on getting in first. It must be getting worried as the summer slips by with so little consumer interest being apparent. All the signs are that a sizeable market won't develop until the two sets of services are in operation.

In the past Ferguson's market forecasting has been remarkably accurate. Its recent report on the consumer electronics market in the UK - from which the above figures have been taken - suggests that satellite TV will begin to take off in 1990 and 1991, when sales of $1 \cdot 2 \mathrm{~m}$ and 2 m installations respectively are predicted. On the Sky/BSB battle, the report comments that "the system that wins the long-term battle will be the one that provides the best quality popular programming, and is sure to have little to do with technological advantages, manufacturers or retailers"

It's deeply unfortunate that satellite TV should have to be seen as yet another systems battle. But the two services require different technology, and although compatible units are possible and will doubtless come on offer they will tend to be expensive, calling for a steerable dish and wideband LNB plus duplicated decoding and descrambling circuitry. Possibly both systems will attract enough viewers to survive. But the problem is that satellite TV is basically an extra alternative to the already established and popular terrestrial services. Technically, Sky has proved to be a great success. BSB with its stronger signals should be equally easy to receive. It will, to say the least, be interesting to see how things develop.

Konosuke Matsushita

Konosuke Matsushita, founder of the world's lazgest manufacturer of consumer electrical/electronic products, known for its Panasonic, National and Technics brands, died in Osaka on April 27th, aged 94. Matsushita's father had lost heavily through speculating on rice futures and as a result Konosuke was forced to seek work at the age of nine. He started as an apprentice at a charcoal seller, then took a job in a bicycle shop. In 1910 he took up employment at the Osaka electrical utility. When, in 1918, his superiors showed no interest in his ideas for improving electrical sockets he left to start his own firm. That was the beginning of Matsushita Electric, as an electric light bulb manufacturer in a two-room apartment. Between the wars Matsushita became a pioneer in the mass production of consumer electrical products. The post-war story will be familar to readers, as National and Panasonic became internationally known brands. Konosuke retired in 1973.

It goes without saying that to have built up such an enterprise Konosuke must have been a remarkable man. Many facts and stories about him confirm this. Apparently during the great depression, when the government decreed belt-tightening and many manufacturers laid off staff, Matsushita put his staff on half-day working at full pay and urged his employees to sell the backlog of stock. Within three months the stock had been cleared and Matsushita had worked itself back to profitability. He was known for his writings, as an authority on management techniques, and also for his educational and cultural activities. He wrote that "the ultimate aim of production is to wipe out poverty and create prosperity . . to make all products as inexhaustible and as cheap as tap water". In the post-war period he established first the PHP (Peace and Happiness through Prosperity) Institute and then, in 1983, the Science and Technology Foundation of Japan, to promote scientific research and development. He expected dedication and hard work, and was perhaps rather excessively nationalistic in regarding the 21st century as the time when the world would consist of a Japanese hegemony - the century of Japanese man. Be that as it may, the company he started with 200 yen had sales of 5.45 trillion yen in 1988 and employed some 180,(0) 0 people in approaching forty countries.

Still Video Systems

George Cole

Although the video camcorder has largely replaced the cine camera for home movie making, film is still used for conventional photography. A still video camera offers a number of useful features such as instant picture display via a TV set, a recording medium that's reusable and the possibility of picture transmission down a telephone line. Still video has yet to match the quality and price of film however. The gap between film and video is nevertheless narrowing, and at last year's Photokina exhibition a number of manufacturers demonstrated still video systems. Marketing of still video cameras (SVCs) in Europe may start this year.

The first electronic still-image video camera, called MAVICA (MAgnetic VIdeo CAmera), was unveiled by Sony in August 1981. The camera closely resembled a 35 mm SLR camera in appearance, but a magnetic floppy disc rather than conventional chemical film was used to store the picture information.

The initial MAVICA system was a prototype which Sony used as a means of persuading other companies to join in, agree upon and develop a common still video recording system - it seems that someone had learnt something from the VHS/Beta video format war! In February 1983 twenty electronic, photographic and film companies formed the Electronic Still-Image Video Camera Committee and started work on establishing a world standard system. By May 1984 the committee had grown to 32 companies and agreement had been reached on a standard Video Floppy System (VFS). During the same year Sony's still video camera was demonstrated at the Los Angeles Olympics. A number of companies had in addition started to develop professional still video cameras

Fig. 1: Appearance of the disc jacket.

Fig. 2: The disc track arrangement
which were used and assessed by newspaper photographers.

Fuji introduced the Fujix TV-Photo system in April 1985. In use the photographer shoots pictures on conventional film which is processed in the normal way. The images can then be transferred to a disc, inserted into a player and viewed on a TV screen. After viewing, the photographer can order the best shots for development on normal film.

In April 1986 the Electronic Still-Image Video Camera Committee, which by now had members from 42 companies, agreed to an optional method for recording sound with pictures. Then in July 1988 the committee agreed to a "hi-band" format for improved VFS picture quality.

The first domestic SVCs were unveiled at last year's Photokina and the first models went on sale in Japan late last year.

The Storage Disc

The committee decided to adopt a 47 mm (two inch) single-sided floppy disc which looks like a miniature version of the standard 3.5 in . computer floppy disc. The 47 mm size allows up to 50 shots to be stored using a light, compact still video camera. The disc sits inside a hard plastic protective jacket whose dimensions are $60 \times 54 \times$ 3.6 mm (see Fig. 1). Its weight is 8.7 g .

Conventional computer floppy discs have a magnetic layer that's composed of ferric oxide. Instead, the video floppy disc has a coating of metal powder. This increases the coercivity and also gives a very high information packing density. The video floppy disc has a recording capacity of 1.5 Megabytes unformatted, 0.8 Mbytes formatted. Its recording density of 64 KBPI (kilobits per inch) is way ahead of standard 3.5 and $5 \cdot 25$ inch computer discs, whose recording densities are around 9KBPI and 6 KBPI respectively. The magnetic layer is four microns thick (the total disc thickness is 40 microns) with a coercivity of 1,250 Oersteds and remanence of 1,800 Gauss.

The disc can store a mix of audio, video and computer data as a series of concentric tracks (see Fig. 2). Each track is 60 microns wide, the track pitch being 100 microns. The disc holds a total of 52 tracks, but track 51 is not used. Fifty tracks store video images, audio signals and data while the 51st track (actually at track position 52), called the cue track, stores digital data. Each track has a 16 K byte capacity. The recording radii of the main tracks are $15 \cdot 1-20 \mathrm{~mm}$, the cue track radius being $14 \cdot 9 \mathrm{~mm}$.

A fixed head that tracks across the disc's surface reads and writes the tracks. The head has two gaps, spaced 100 microns apart, to allow fast reading and writing of two tracks - the purpose of this arrangement will become apparent later.

Several features are incorporated in the dise and the drive unit to ensure that the head reads the correct track at the right point. First the disc hub contains a spring that holds the disc firmly to the drive spindle to prevent slippage. Stability is also ensured by incorporating a magnetic plate into the hub - it comes into contact with a magnet in the spindle. For accurate start positions when
reading or writing the hub contains a pulse generator (PG) yoke and the drive a PG coil (see Fig. 3).

Recording

All SVCs use a solid-state CCD image sensor. This has an array of photodiodes that correspond to the image pixels (picture elements). Exposure to light charges the photodiodes. Horizontal and vertical CCD shift registers are used to scan the array, producing a sequential output signal. For more on solid-state image sensors see Steve Beeching's article last month. The image sensors used in most SVCs have some 400,000 pixels.

For PAL and SECAM systems the disc rotates at 3,000 r.p.m. while for NTSC the rotational speed is 3,600 r.p.m. These speeds correspond to one field period of the respective TV systems.
The video signal, see Fig. 4, consists of luminance and colour-difference ($\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$) information. These three signals are frequency modulated and then multiplexed on to a single track. The deviation of the luminance carrier is $6-7.5 \mathrm{MHz}$ while the two chrominance signals have carriers with centre frequencies of $1 \cdot 2 \mathrm{MHz}$ $(\mathrm{R}-\mathrm{Y})$ and $1.3 \mathrm{MHz}(\mathrm{B}-\mathrm{Y})$. An alternate line chrominance recording system is used with the VFS format, i.e. the two chrominance signats are recorded on alternate lines. This method is similar to the SECAM TV system and helps to maintain picture quality during demodulation.

With the standard VFS format the horizontal resolution is around 360 lines, though with some cameras it may be possible to dispense with the chrominance carriers and extend the lower luminance sideband, producing monochrome images with slightly improved resolution.

SVC users can choose between two recording modes. In the field mode a single track is used to record the image, allowing up to fifty images to be stored on the disc. The penalty is a loss of vertical resolution. In the frame mode two tracks are used to record each picture. This halves the number of pictures recorded to twenty five. The two fields are recorded sequentially by the twin-gap head.

The VFS system has been designed to be very versatile.

Fig. 3: The disc hub and drive spindle.

Fig. 4: Frequency spectrum of the recorded signals.

The Fujix ES-20 still video camera.

It's possible to record, erase and reuse specific tracks. Field and frame recordings can be mixed on the same disc.

Hi-band Format

The hi-band VFS system was developed to improve the picture quality and make the idea of still video more appealing to the discerning photographer. The frequency of the luminance carrier is increased and the deviation widened to $7 \cdot 7-9.7 \mathrm{MHz}$, increasing the horizontal resolution to 50) lines. As with the S-VHS system, hi-band cameras have dual-system capability, i.e. they will also store and reproduce pictures in the standard VFS format.

Several companies have produced hi-band still cameras using high-resolution image sensors with around a million pixels. Kodak recently announced the development of a four million pixel image sensor.

Unfortunately there's no agreed standard for making direct picture quality comparisons between still video and film. Electronic companies estimate that a colour 35 mm photograph has a resolution equivalent to three million pixels while film companies put the figure at nearer twenty million pixels!

Multiplexed Data

It's possible to multiplex digital data on to the video track in addition to the composite video signal. As a result text or numerical information can be added to the video image. The data is recorded at the same time as the video signal.
Four groups of data can be added: (1) the track number; (2) the date of recording in year, month and day;

The Fujix DS-1P digital SVC, with storage card.
(3) field/frame identification; (4) user's specification. This latter information is at the discretion of the manufacturer and can include such things as the exposure value, shutter speed and whether the recording is standard or hi-band. Because this user data is not standardised a disc recorded by one maker's camera may not display some or all of the user information when reproduced via another maker's equipment.

The data stream modulates a 200 kHz carrier (see Fig. 4). A form of differential phase shift keying (DPSK) is used. With this system each phase change represents a binary digit (bit) - the Nicam stereo sound system uses a variant of DPSK in which each phase change represents two bits.

Audio Recording

There's provision within the VFS system for short audio recordings, though not all SVCs will offer this facility. It enables users to accompany the video images with narration, music or sound effects. Since the video tracks are already hard pushed to accommodate the luminance and chrominance signals, and because of the possibility of interference, the audio signal is recorded on a separate track. This means that only up to twelve frame or twenty five field images can have sound accompaniment.

To make an audio recording in the time equivalent of one disc rotation, i.e. one fiftieth of a second with the PAL system, time compression has to be used. The recording process is shown in block diagram form in Fig. 5. The analogue audio signal is filtered and then passed through a $2: 1$ companding noise-reduction system. Time compression is then applied. The system works as follows. After analogue-to-digital conversion the signal is stored briefly in a random access memory, being read out at a faster rate. The difference between the read-in and readout rates determines the compression ratio. A flag control code is added as a marker for the compression ratio. After digital-to-analogue conversion, pre-emphasis is applied and the signal is then fed to an f.m. modulator, the centre frequency being 6 MHz . The output goes to the record amplifier and is then recorded on the disc. Quite a lot of technology here! The playback process is the reverse of course.

There are three specified compression ratios, though most SVCs that incorporate audio recording will offer only one. For the PAL system the agreed ratios are 1:272, $1: 544$ and $1: 1,088$. These give around five seconds of 10 kHz sound, ten seconds of 5 kHz sound and twenty seconds of $2 \cdot 5 \mathrm{kHz}$ sound respectively. The NTSC ratios are $1: 320,1: 640$ and $1: 1,280$. Sony has a professional NTSC model that can replace the video tracks with 480 seconds of 5 kHz sound.

Data Tracks

Storage of tracks of digital data is also written into the VFS specification. At present the only data-only track is the cue or data control track which is used to control the playback order, text or number superimposition, audio

Fig. 5: Block diagram of the audio recording system.
recording etc. Future models however may allow for a mixture of computer programs, video, text and sound on a VFS disc.

Hardware

The features and specification offered by a particular SVC are, not surprisingly, determined by its price. Basic models have a fixed focus lens, auto white balance, auto exposure, auto flash and even field only recording. Playback is via a still video player or adaptor. Upmarket models may offer field/frame recording, a zoom lens (typically $\times 3$), an auto timer, fast shutter and high-speed shooting operating at some 3-10 frames per second. Other possible features include sound and data recording and integrated modulators to allow instant playback via a TV set.

Most recorders and players will be equipped with a variety of sockets to allow interfacing with a number of items including a camera, TV/monitor, computer, printer, modem and VCR. TV/monitor socketry is likely to include provision for r.f., composite video, RGB and Sterminal.

Playback can vary from simple display to audio dubbing and digital effects such as multiple image display.

High-quality video printers are very expensive, the prices running into thousands of pounds. Thus SVC users are likely to take their discs to local dealers if they require hard copy print-outs.

There are several ways of printing video images. The sublimate dye thermal transfer line printing system brings ink paper and cartridge paper into contact with each other. Heat is then used to transfer the dye to the plain paper. The contact exposure system shines light from a fibre-optic tube on to photosensitive material to produce the image. Konica estimates that a single hard copy print should cost around Y100 (50p).

Digital System

At last year's Photokina Fuji produced a surprise in announcing a prototype SVC that didn't conform to the standard VFS format. The Fujix DS-IP is an all-electronic camera that uses a 16 Mbit RAM card instead of a floppy disc. Thus the image is stored in digital rather than analogue form. The card can store ten field or five frame images, although Fuji says that compression techniques could increase this to forty frame images. More recently Fuji has announced a cartridge system that holds five RAM cards, giving 25 frame recordings or 50 recordings in the field mode.

The advantages of digital storage are many: no moving parts to wear out, no image deterioration during copying, and easy interfacing with personal computers and other electronic equipment. The snag is that the compression techniques required are expensive. Thus it may be years before consumer digital SVCs become viable. By that time the analogue SVC will probably be firmly established in the market. As the VHS/Beta/V2000 format battle clearly illustrated, it isn't always the most advanced technology that wins in the end.

Acknowledgements

My thanks are due to Mike Maclachlan, Technical Support Manager, and Gary Godfrey, Senior Product Engineer, of Sony UK for their assistance in the preparation of this article.

EX-RENTAL VIDEO \& TV WHOLESALERS

VISIONS
 LONDON

- More Thorn and non-Thorn stock than ever before in London
- VCRs, 3V23-3V48 \& various late Thorn All working stock professionally serviced.

TEL: 01-556 4199

BI-TECH

SCOTLAND'S LARGEST WHOLESALERS

* A good range of text working and off the pile including Decca 80's and 100's, Doric 3's, 3A's and 4's, Finlandia, GEC, K30, KT3, G11's, Grundig, Hitachi, ITT, JVC, Panasonic, Philips KT30-3-45 stand and text.
\star Various makes of video always in stock
* Warking TVs from £20

TEL: 041-883 2610 UNIVERSAL VIDEO HEADS ONLY £15 PLUS VAT

Long-distance Television

Roger Bunney

With the intense solar activity, one of the biggest auroras for many years was seen in March. There has naturally been good F2 reception, with a sprinkling of Sporadic E signals and a touch of tropospheric activity. Certainly a lively and interesting month. The winter/spring of 1989 has produced for us an active spell during a period that's normally quiet if not worse. The sunspot maximum for the present cycle is expected to be this December, with a smoothed estimated count of 190 . So to the general \log for the period.

5/3/89
F2 layer reception from Iran ch. E2, Malaysia. ZTV (Zimbabwe) ch. E2, GBC (Ghana) ch. E2, TSS (USSR) ch. R1 plus unidentified ch. E2 signals. Tropospheric reception produced signals from ORF (Austria) chs. E5 and E24. Switzerland chs. E6, 7 and 34 plus TDF (France), RTL+ (Luxembourg), Belgium and Holland in Band III and at u.h.f.
6/3/89 F2 reception from VOK (Kenya) ch. E2, Dubai E2, ZTV E2. SpE signals from YLE (Finland) in chs. E3 and 4.
7/3/89 F2 reception of TSS ch. R1 plus unidentified ch. E2 signals.
8/3/89 Unidentified F2 signals from the east in the early morning and the south at midday in ch. E2, plus TSS R1.
10/3/89 F2 reception from Dubai E2, VOK E2 and ZTV E2. SpE reception from TVE (Spain) chs. E2, 3 and 4. Improved tropospheric conditions with Band III and u.h.f. signals from TDF plus suspected Basque TV on ch. E35.
11/3/89 Tropospheric reception as on the loth.
12/3/89 Unidentified F2 signal from the south cast, ch. E2.
13/3/89 F2 reception from TSS R1 and VOK E2. Also major auroral event, see later.
14/3/89 Auroral event continues.
16/3/89 F2 reception from ZTV ch. E2.
17/3/89 Minor aurora with unidentified ch. E2/R1/E3 signals.
19/3/89 F2 reception from Iran ch. E2 midday.
20/3/89 F2 reception from Iran (IRIB) ch. E2 and Dubai ch. E2. Unidentified SpE signal in ch. E2.
22/3/89 F2 reception of PM5544/5534 test patterns floating/ fighting, thought likely to be ZTV/VOK.
23/3/89 SpE reception from TVE E3 and RAI (Italy) ch. IA.
24/3/89 Unidentified ch. E2 and TSS RI signals via F2 at (0700 GMT.

25/3/89 F2 reception from Dubai ch. E2.
30/3/89 Major tropospheric opening with signals from West and East Germany, TDF and the Benelux countries in Band III and at u.h.f. The new RTL+ ch. E36 outlet was well received in the south east.
Tropospheric reception as on the 30th.
There was daytime F2 reception throughout the month starting from around $0 \mathbb{O} 0$ GMT, with typically signals from the farther areas of Russia, then from Malaysia and Iran (often noted with the FUBK test pattern), Dubai with teletext pages, VOK with the PM5544 pattern and ZTV with the PM5534 pattern. It appears that a ch. E2 third network transmitter is in operation in Malaysia Garry Smith noted a suspected caption on March 5th. Ghana ch. E2 was seen on the 4th with a "darkish" variation of the FUBK pattern, very distinctive.

The auroral event on the 13/14th was spectacular both visually and in terms of v.h.f. reception. One could see it with the naked eye even in the south. Simon Hamer (Powys) described it as a hillside fire in the sky. The v.h.f. results were extraordinary. For many enthusiasts simply aiming an aerial towards the north produced incredible levels of interference in Bands I and III, so much so that signals were often impossible to resolve. Radio effects extended throughout Band III and Ryn Muntjewerff (Holland) noted evidence of low-level signals at the lower Band IV frequencies. For the persistent, signals could be resolved. Simon Hamer identified TSS chs. R1, 4 and 7, RUV (lceland) ch. E3, SVT-1 (Sweden) chs. E2, 3, 4 and 8, NRK (Norway) chs. E4 and 5, DR (Denmark) ch. E7, ARD (W. Germany) chs. E9 and 10, DDR (E. Germany) ch. E12, TVP (Poland) chs. R2 and 3, RTE (Ireland) chs. B, D, F, G, H, I and J. Many other signals were unidentified, including a 525 -line one on ch. A2 (North American). The TV signals were fair/poor with much distortion and hum. Optimum reception was with the aerials pointing to the north east.

In Australia Anthony Mann (Perth) experienced the southern version of the aurora, which he describes as "spectacular" with the visual effects reaching to an elevation of $50-600^{\circ}$ and to $\left.\pm 51\right)^{\circ}$ of due south. The event lasted from 1130-2130 GMT with a three-hour gap between the two phases (1300-1600). It was seen throughout New Zealand and as far north as Queensland, with many white vertical streamers. Garbled interference was noted in ch. R1 but there were otherwise no signals.

Cyril Willis (King's Lynn) comments that March was "the best I can remember", with F2 signals on most days. His most dramatic reception was a definite sighting of China chs. R1/C1 on the 5 th at 0957 GMT, with athletics. He noted Malaysia ch. E2 and many other unidentified signals at this frequency - four separate E2 carriers were

Left: Test pattern used by a Dutch pirate TV station, on ch. E2. Centre: Dortmund ch. E48 "Local TV" caption. Both photos courtesy Ryn Muntjewerff. Right: The Japanese NHK test card, courtesy Fred Robins, Stubbington, Hants.

Left: Vintage TV-Test Card A, the BBC's first one. Centre: Test Card C, used by the BBC from 1948-1964. Can anyone fill the gap by providing any information on Test Card B? Photos provided by HS Publications. Right: The Canal Sur TV test pattern seen in Gibraltar on ch. E65 originates from Mijas. Photo courtesy George Gaskin.
noted at one particular time. Robert Copeman in Australia (Victoria) also noted good F2 reception, with RTM (Malaysia) ch. E2 on the 18th. Nearby, Todd Emslic logged F2 reception on several days, with China chs. C 1 and R1 (several transmitters) on the 15th and RTM/China on the $17 / 18$ th.

Mike Foubister (ZL.3TIC) in New Zealand uses an upmarket receiving system consisting of a 22 -element logperiodic aerial with integral GaAs f.e.t. tuned preamplifier covering $40-110 \mathrm{MHz}$. He noted considerable Pacific/North American traffic in the low v.h.f. band. Of some importance to us is his list of the following transmitter offsets - essential for positive identification. Timaru TV2 (South Island) $45 \cdot 24 \mathrm{MHz}$ vision, $50 \cdot 74 \mathrm{MHz}$ sound. Wellington TV1 45.25 MHz vision, 50.75 MHz sound. TV2 Far North $45 \cdot 26 \mathrm{MHz}$ vision, $50 \cdot 76 \mathrm{MHz}$ sound. In addition ABC-TV Wagga Wagga (Australia) has $46 \cdot 24 \mathrm{MHz}$ vision, 51.74 MHz sound while TVQ0 (Brisbane) has 46.17 MHz vision, $51 \cdot 67 \mathrm{MHz}$ sound. Incidentally we've just heard that DD(0) ch. 0) Queensland now has stereo sound on $51 \cdot 91$ and 51.67 MHz - this corrects the details given in the April column.

All in all then an excellent month. The sunspot count was over 200 on the 20th, and despite the severe magnetic storms on the 13/14th F2 remained active. It all looks good for autumn F2!

It seems that Belgium may be testing for a new service, possibly Belgian Canal Plus - Anderlues has been seen testing with an identified ch. E58 test card on a 24 -hour basis.

My thanks to the following for sending in reception reports: David Oliver (Birmingham), Peter Schubert (Rainham). Simon Hamer (Powys), Mark Baldwin (Rugby), Garry Smith (Derby), Tim Anderson (St. Leorards), Cyril Willis (King's Lynn). Roger Fussel (Torpoint) and Ryn Muntjewerff (Holland).

News Items

USA: A committee of ch. A2 broadcasters is being established. This particular channel suffers badly from SpE interference and the use by viewers of poor aerials. One proposed move is to tilt the transmitted beams below the horizon to reduce skywave radiation, and to seek FCC approval to lift transmitter powers by $3-4 \mathrm{~dB}$ to compensate for the loss of signal quality in fringe areas. Discussions are also to be held with manufacturers of domestic acrials with a view to improving low-band performance.

The CIA sponsored Radio Marti service is intended for Cuba, operating in the medium-wave band. Thought is now being given to the start of a TV Marti service
operating in ch. A7. The transmitter would be atop a captive balloon at 10,0 O)ft, sited in the extreme south of Florida. US broadcasters are not too happy about the prospects of co-channel interference and have objected to the FCC.
West Germany: The BDXC reports that new transmitters are planned as follows: NDR-1 Hamburg ch. E26, 20kW e.r.p.; Niebull ch. E29, 100 kW e.r.p. Both will carry the regional programme from Kiel.

The satellite SAT-1 service is transmitted from Aachen on ch. E27 at $0-1 \mathrm{~kW}$. This station also transmits RTL + on the adjacent ch. E26, at the same power.
Ireland: New information sheets are available free of charge from RTE, Reception Investigation, Donnybrook, Dublin 4. One sheet covers the RTE radio network transmitters while the other covers the community-owned TV schemes in operation at January lst.

DIY Satellite TV

From time to time we receive letters describing quite remarkable reception obtained using novel equipment techniques. Recently we received a long letter from Paul Matthews in Surrey describing, amongst other things, his 11 GHz satellite TV reception using a 31 cm Chinese wok lid and a system that includes water pipe, kitchen foil and plasticine. This has given him Astra signals and TDF-1 at $19^{\circ} \mathrm{W}$. It's evident that we have a genius amonst us! Paul has been invited to contribute articles describing his equipment and we look forward to reading about it.

The Chinese wok lid, with wooden knob, was pur-

Paul Matthews' wok dish system brings in signals from Astra and TDF-1, the latter completely noise free.
chased for $£ 2$ in 1987 from Lee Fook Domestic Electrical Supplies, 25 Wardour Street, London W1. It has a diameter of 31 cm , a focal point of 72 mm , and was adapted for Cassegrain feed by means of a 22 mm length of copper water pipe with a 40 mm diameter dise suspended at one end using 16 g copper wire. Plasticine was added to the dise. covered with aluminium foil, to form the reflector. Focus is adjusted by means of a 22 mm water pipe coupler plus flange screwed to the back of the dish. A transition flange is made from a flattened coupler to provide a link to the LNB.

With a $1 \cdot 6 \mathrm{~dB}$ noise LNB and a home-constructed receiver with 18 MHz i.f. bandwidth just sparklic-free signals are obtained from Astra, though saturated colours tend to be noisy. The 62 dBW TDF- 1 signals give completely noise-free reception, stable picture display with the MAC coding being obtained by means of a home built sync inserter. This is based on an SAA5020 sync divider and a 6 MHz crystal, with varicap diode control.

Paul has seven dishes at his satellite receiving station. In addition to the wok there are ex-Jumbo Jet 75 cm radar dishes, a home-made 5 ft petal dish for Gorizont at 4 GHz and others covering various bands.

One project we hope to feature uses a cheap u.h.f. TV tuner to downconvert Astra signals to $6(\mathrm{~K})-8(0) \mathrm{MHz}$ for distribution to up to six receivers, using cheap coaxial cable and simple i.c. technology. Briefly, the output from a $2 \cdot 2 \mathrm{~dB}$ noise LNB is downconverted using a BFY90 multivibrator and HP28(0) Schottky diode. At the receiver a standard tuner (c.g. ELCl(043) provides an output at 70 MHz which, via a 22 MHz bandpass filter, is fed to an MC10116 limiter/amplifier, MC1496 demodulator, 72733 video amplifier. NE564 clamp and then a PLL, sound demodulator etc. We look forward to hearing more about this.

EBU Transmitter Listings

France: Carcassonne TDF-6 (M6) ch. E43, 300kW; Auxerre TDF-6 (M6) ch. E49, 100kW; Sens TDF-3 (FR3) ch. E50, 20kW; Toulon TDF-5 (La 5) ch. E57 and TDF-6 (M6) ch. E60), both 50 kW . Polarisation is horizontal in all cases.
Syria: Haddar (Ortas-1) ch. Ef, ().2kW horizontal - one for the optimists!

We understand that the Siedlce TVP-1 (Poland) service has been transferred from ch. R1 to ch. R52.

Satellite News

Things move quickly in the world of satellite TV. This unfortunately means that items we publish may be history by the time they are read. There are rumours that a new Intelsat craft is to be launched soon at $30^{\circ} \mathrm{E}$. carrying several 11 GHz downlinks. At $16^{\circ} \mathrm{E}$ ECS-F1 has been carrying ITC Stockholm tests at 11.47 GHz horizontal, with programming from time to time. Italian outside broadcast links have been seen via ECS-F5 at $10^{\circ} \mathrm{E}$ and about 11 GHz horizontal. The Intelsat craft at $27.5^{\circ} \mathrm{W}$ is at present transmitting a high-level blank carrier. This was formerly used by MTV and is shortly to be used for the new scrambled BBC European all-day service which you too can view at $£ 270$ for the first two years, including a new decoder. It seems that this service will not use the Sat-Save scrambling system.

PanAmSat at $45^{\circ} \mathrm{W}$ was seen carrying the 259 th Mormon Conference from Salt Lake City live on April 1st. with 625 -line PAL on the second of its three Ku band transponders. This transponder has previously had occa-

AERIAL TECHNIQUES
MULTI-SYSTEM TV

AM/FM RADIO DIGITAL CLOCKALARM $£ 99.00$

Featured above is the very latest blick \& white mult-system small screen television combination from YOKO intematorial Model TVC-8M is a must for every senous TV-[xing enthusiast and it's also ideal for Continental travel and home use The YOKC. Euro TV' 'eatures, full VHF JHF TV coverage and incorporates SYSTEM I (6 MHz sound for UK/EireiSouth Africa). SYSTEM B/G 15.5 MHz sound for Europe Middle East, Australasia and other parts) AND SYSTEM L FRENCH standard (6.5 MHz sound). The 5.566 MHz sound switching is automatic, the switching for French standard is situated on the back of the TV. This versatile model also has a high quality AM/FM radio section and a digital clock/alarm on the front panel The alarm can be selected to switch the televiston or radio on or oft at any given time; the clock is equipped with a 24 hour memory alarm, which can be reset instantly to sound at the exact time the followirg day

This fabulous little TV has a sturdy black case, seven section telescopic whip antenna, 75 ohm coaxial aerial infut socket and will operate from AC mains or a 12v DC supply. Completely compatible for use in the UK and throughout Europe (including FRANCE)

With the 1989 Sporadic-E season soon upon us, don't delay, order today, the YOKO TVC-8M $45^{\prime \prime}$ ' screen multi-system TV combination costs just £99.00 inclus.ve of VAT. Camage \& insurance to any UK destination is $£ 550$

Our full range of aerials, amplitiers, aenal rotators, filters, multi-standard televisions and all aenal tectinotogy is fully detalled in our comprehensive 22 page illustrated Catahogue at 75p, send for your copy today. A customer advisory service is also available. please telephone or write (include SAE)

All pnces inclusive of VAT Delivery normally $7-10$ days ACCESS \& VISA Mall and elephone orders welcome

11, KENT ROAD, PARKSTONE, POOLE, DORSET BH12 2EH Tel: 0202738232
sional use, e.g. for the US elections, generally with System M video. The Mormon Conference was broadeast with English sound on a 6.6 MHz subcarricr and German sound on a $5 \cdot 8 \mathrm{MHz}$ subararier.

Hugh Cocks reports from Portugal that the vertically polarised Astra transmissions are well received there using 1.5 m dishes. The horizontally polarised transmissions are some 10 dB down however. calling for a dish of 3 m or more te provide adequate quality reception.

The Russian Ekran (window) satellite series is now providing two services. The original 714 MHz (ch. 51) service is captioned "Orbita III" and provides time-shifted Moscow TV transmissions. It's intended for Siberia and the far north but can be received at good strength across most of India using appropriate Yagi aerials. In India, programme times are approximately $0500-1100$ and 140 k$)$ 2300. A new service at 754 MHz (ch. 56) provides a further time shift to $(230-1)(1)$ and $1130-210)$ Indian time. It's captioned "Orbita II" and carries the same programming, apparently intended for the extreme north east of the USSR. As a result signal levels in India are somewhat lower. Test transmissions lasted for a month until the service started at the end of February. Nanda Kumar (Madras) has seen reference to a "Global Antenna" that would bring Russian TV services to the farthest corners of the world. This was in a locally circulating Russian magazine. Science and Techmology (February 1989 issue). The standard would be SECAM with a 6.5 MHz sound subcarrier. Does anyone have further information on this proposed service? It seerns that the Gorizont series will be carrying 11 GHz Russian TV services to the USSR and Easterr Europe in due course: could this perhaps be the service referred to?

TV Fault Finding

Reports from Philip Blundell, Eng. Tech., Paul Hardy, Hugh MacMullen, Ian Bowden, Nick Beer and J.R. Armagh

ITT CVC1200 Series Chassis

For low h.t. at 90 V instead of 145 V check whether the pulse feedback transformer Tr 712 in the switch-mode power supply is open-circuit. You get the same effect when the line output stage isn't working, for example if the line driver stage is inoperative because the h.t. feed resistor R744 is open-circuit.
P.B.

Philips K35 Chassis

This set was dead with no 140 V h.t. supply. The 12 V feed to the power supply was low and was being dragged down by the wire connected to pin 3 of plug M2. This led us to the TRD4 panel where plugs V25 and V23 had accidentally been swapped over. . . Be careful to mark the plugs as you disconnect them - there are six white two-pin plugs that go to this module and it's easy to get them mixed up.
P.B.

Philips 2A Chassis

This set was dead. On investigation we found that the protection thyristor 6727 had fired because the voltage at L560) in the EW modulator circuit was too high. We noticed that C2608 ($4 \cdot 7 \mu \mathrm{~F}$) was missing, but a check on a few stock sets showed that this is not fitted in models that have 45AX tubes. All the flyback tuning components and supplies were o.k. Attention was then turned to the EW modulator, where the driver transistor $\operatorname{Tr} 7599$ (BD234) was found to be non-conductive. D.C. checks revealed that R3598 hadn't been pushed through the print at the factory.
P.B.

Philips CTX-E Chassis

This chassis normally uses a TDA2577 as the sync/field generator chip. Don't try a TDA2577A in this position you'll end up with excessive height.
P.B.

Philips CP90 Chassis

For field collapse check whether R3623 ($8 \cdot 2 \Omega$) is opencircuit. This removes the 163 V supply to the base circuit of $\operatorname{Tr} 7571$ in the field output stage. R3623 is by the line output transformer.
P.B.

Philips CTX-E Chassis

There was no picture - just a blank raster when the brightness control was turned up. The voltage at the TDA3560) colour decoder chip's contrast control pin 7 was low at IV because C2565 (39nF) in the beam limiter circuit was open-circuit.
P.B.

Grundig GSC100 Chassis

This set had horrible field linearity problems. A check revealed that the supply to the field timebase panel was low at about 11 V , but changing the TDA1170 chip made no difference. Voltage checks in the line output stage showed that several of the supplies were a bit low, though not significantly. When the field module was powered by
a separate 18 V supply the scanning was correct, so the problem was a supply one. It eventually transpired that fuse Si 627 had gone high-resistance, though not high enough to show on my initial meter check. This fuse is between rectifier diode Di627 and its reservoir capacitor C628 and was thus limiting the peak current into C628.
P.H.

Toshiba C2085, C2090/Rank T24 Chassis

This set was actually a Toshiba C2090. The fault was intermittent colour. Changing the colour decoder chip IC501 made no difference and meter checks were inconclusive, so the scope was brought into action. This revealed that the line pulses at pin 4 of IC501 didn't look too healthy, though the manual doesn't show the waveform. On checking back to the source of the pulses I found that R229 ($3 \cdot 6 \mathrm{k} \Omega$) on the main panel was virtually open-circuit. For those of you who may be interested, the waveform would appear to be about 1.5 V peak-to-peak with nice straight sides and tops!
P.H.

Philips K40 Chassis

This set had field linearity problems at the top of the picture, with teletext lines visible. While investigating the cause of the trouble the TDA3650 field timebase chip blew up. After replacing it along with the safety resistor R3186 I powered up the set, having made a few more checks and sensing victory. You've guessed of course, the TDA3560 and R3186 both failed. After extensive checks in the field output section of the circuit I eventually found that $\mathrm{C} 2107(101 \mu \mathrm{~F}, 63 \mathrm{~V})$ had gone low in value. Replacing this provided a complete cure.
P.H

Philips 2A Chassis

This set would switch off after exactly twenty minutes and no amount of tapping would bring it back to life. When the fault was present there appeared to be a short between pin 17 of the line output transformer and chassis. A freezer test eventually showed that C2609 (9. 1 nF) was short-circuit when warm. Normally this capacitor cracks and goes black, giving a visible clue .
H.MacM.

Panasonic TC261G

The problem with this set was very low h.t. We found that D812 (SV03) in the self-oscillating switch-mode power supply had gone very high-resistance while the d.c. amplifier transistor TR802 (2SA636) was shortcircuit.
H.MacM.

ITT CVC1210 Chassis

This set came in with very intermittent sound and vision. After a few minutes the fault disappeared and no amount of tapping woukd bring it back. The cause was eventually traced to glue on pin 32 of the tuner/i.f. module (CMR80(0/3). This glue is used in some quantity to secure

C1075 $(2,200 \mu \mathrm{~F})$ in position and had spilt on to the contacts.
H. МacM.

Salora M Series

This set was completely dead, with the 2 AT mains fuse and the $2 \cdot 2 \Omega, 5 \mathrm{~W}$ surge limiter resistor RB701 both opencircuit. I spotted the cause of the breakdown as soon as the back cover was removed - CB705 (680pF) hadn't been fitted correctly during manufacture. Only one end was soldered through the board, the other end resting on the surface of the PCB. As this capacitor is part of the snubber network across the primary winding of the combitransformer it wasn't surprising to find that the chopper transistor TB701 (BU603) was short-circuit, hence the blown fuse and surge limiter. Zener diode DB709 (12V) in TB701's base circuit had also failed. TB701 was in fact shorted between all its connections. When these various items had been replaced, with the capacitor fitted correctly, the set was restored to correct working order. I.B.

Panasonic TC2205 (U2 Chassis)

After several hours' use a dark area would appear across the bottom of the screen. The size of this area increased with time, moving upwards to obliterate more of the picture. If the contrast control was set to maximum the darkness would retreat back to the bottom again. Use of a hairdryer and freezer enabled us to prove that the field output chip IC401 (TDAll(04SP) was the cause of the problem.
I.B.

Salora J20 Series

At switch on this set would start up on channel one as normal. It couldn't be shifted by using either the remote control unit or the on-board buttons however. We found that if the standby button on the remote control unit was held down the channels could be changed normally. When this button was released the set stuck on the selected channel. The remote control decoder/set keypad encoder chip ICC9 (SAA1251) was suspected and when it was replaced the fault had cleared.
I.B.

Tatung MQ7703

The problem with this monochrome portable was no results and a quick check on the 12 V rail showed that the voltage was less than 5 V . Checking the regulation and removing the loads proved fruitless. I eventually found that the line output transformer had a short-circuit winding.
N.B.

B and O MX2000

A colleague was dealing with this set, the initial problem being severely reduced height. The cause was soon traced to IG01 (TDA4950) which was short-circuit internally and RL28 (1.5Ω) which had gone high in value. This situation is not unknown. Destruction of these devices is nearly always caused by dry-joints on the EW modulator diodes DG05/6. He attended to this and was rather distressed to switch on and find that there were severe EW distortion problems - the picture was bowed in significantly at either side and the correction controls had no effect. He rechecked the diodes and their joints, changed a resistor that had gone slightly high in value, then checked other
likely items. Getting even more upset and being already harassed by a number of Pioneer compact disc players that wouldn't set up very well he asked me to take a look.

Bearing in mind my colleague's thorough and logical checks I took the view that the fault was probably due to something unusual. A scope check on the three relevant waveforms showed that they were all of excessive amplitude. So it seemed to me that the series coil LG02 had to be short-circuit or low-resistance, which proved to be the case.
N.B.

Hitachi CPT1646 (NP84CQ Chassis)

This was a new set. When we tried to tune in the stations the raster would suddenly flash white and the video vanish as the correct tuning point was approached. The field blanking period would then roll down the screen and a moment later a normal picture would return. This effect pulsed on and off about once a second. Reducing the brightness and contrast control settings was not very helpful and it was impossible to store any station in order to make a detailed study of the a.g.c., a.f.c. ctc. While attempting these latter two checks we got hum bars with wavy verticals and weak contrast between the bars. This effect disappeared as quickly as it came and didn't return.

Lengthy checks were made on the decoupling and we discovered that reducing the first anode voltage from 470 V to 440 V markedly improved matters, though the picture was then too dark. Flicking the contrast suddenly to fully up seemed to provoke the fault, while on low contrast scenes reducing the contrast and brightness way down cleared it. These things suggested a fault in the beam limiter circuit. Replacing D702 and D703 improved matters noticeably but didn't provide a complete cure. $C 718(10 \mu \mathrm{~F}, 50 \mathrm{~V})$ measured o.k. on the Avo but fitting a replacement finally cured the bother.
J.R.A.

Philips KT3 Chassis

Odd symptoms with this set: when switched on from cold there was intermittent line failure, the "squegging" wriggle flashing down the middle, and tripping occurred. Everything was o.k. once the set had been persuaded to warm up. Not dampness nor corona. In fact two dry-joints on the degaussing posistor. When cold the posistor conducts hard, the pulsing load doing the rest
J.R.A.

Hitachi CPT2250/Salora J40 Series

This set's front controls worked all right but there was no remote control of the brightness. Also there was a marked irregular variation in the black level of not only the brightness (luminance) but also the red.

We took these two faults one at a time despite the temptation to assume that there was a single cause. Pin 11 of the video chip ICB200 showed no d.c. variation when the remote control was operated, nor did pin 2 of ICB 9 on the control panel. Replacing ICB9 cured this fault.

The second fault was eventually found to be caused by dry-joints on the attachment legs of the metal screen in the video section, above the c.r.t. neck on the main chassis. This screen is in fact part of the link between the red black-level potentiometer and the other video resistors to chassis. Adding flux and solder cleared this one up. The arrangement in the Salora J40 is not quite the same but would be worth checking in the event of this type of trouble.
J.R.A.

Teletopics

SATELLITE TV PROSPECTS

The findings on consumer interest in satellite TV contained in Ferguson's second annual report on the UK consumer electronics market created quite a stir in the industry. The report focused on satellite TV as the next major marketing opportunity. It found that 14 per cent of those interviewed were interested in receiving the new satellite TV channels (4 per cent very interested, 10 per cent fairly interested while 58 per cent were not at all interested). However only one per cent stated that they would buy a TVRO installation this year while two per cent said they would probably buy one. Forty four per cent of those with an Astra installation were likely to buy a VideoCrypt decoder for the Sky Movie channel.

The Ferguson research found that because of the two competing and incompatible systems most of those interviewed indicated that they intended to wait to see how the services developed. Ferguson concludes that the satellite TV market is unlikely to be as large this year as the broadcasters had predicted. A more optimistic view is held of the future: Ferguson points out that the prices of satellite TV equipment are comparatively low and suggests that the market should grow faster than video in its carly days. Ferguson's satellite TV consumer offtake forecasts are 400,0000 installations this year, $1 \cdot 2 \mathrm{~m}$ in 1990 and 2 m in 1991.

Sky's own research shows that over 60,000 households are now receiving the Astra transmissions direct. The company has investigated the supply of dishes/receivers and believes that some $200,0(0)$ should be available by late May. As a result a national advertising campaign has been launched. On the advertising side the company has made almost half its sales staff redundant.

BSB intends to make available receiver kits for DIY installation. The kits will include a receiver, a Squarial and some aids for DIY installation. It's understood that the Squarial is somewhat less sensitive to alignment inaccuracies than an equivalent dish. People don't seem to be having all that much difficulty with dishes come to that and there's a report that Stan Bacon, who runs a TV shop in Andover, Hants, has done what we all joked about, received Sky TV using a steel bin lid. For some information on the use of a wok, see Roger Bunney's longdistance TV column.

VIDEO NEWS

A CCD colour video camera module has been announced by Philips Components. It has an image sensor with $450,000)$ pixels and can operate satisfactorily at light levels down to 0.45 lux. Simply adding a lens, chassis and case should enable manufacturers to produce cameras to sell at around $£ 40(0)$. The module weighs 150 g and measures 195 $\times 42 \times 48 \mathrm{~mm}$.

A new addition to the Philips range of VCRs, Model VR6182, is of interest in incorporating teletext and the ability to record subtitles. The suggested retail price is around $£ 380$.

Panasonic has released a Super VHS-C camcorder equipped with hi-fi sound. Model NV-MS50B has a suggested price of $£ 1,4(0)$. Its other features include a $1 / 2 \mathrm{in}$. 420,000 pixel image sensor, a piezo auto focus system with
three-zone select, three-speed fast shutter operation, audio dubbing, insert edit, VISS marking, a self-timer and interval record.

Sanyo is to launch a Hi-band Video 8 camcorder this November. Model VMH100P has a claimed horizontal resolution of over 400 lines, which compares with 270 lines for standard Video 8 equipment. Other features will include stereo f.m. sound, a $1 / 2 \mathrm{in}$. 390,000 pixel CCD image sensor, three-speed fast shutter operation and a stereo microphone. The price is expected to be around £1,300.

Mitsubishi is to invest $£ 7.5 \mathrm{~m}$ on increasing the output capacity at its VCR plant in Livingston, Scotland. About 200 jobs will be created. The aim is to increase the output capacity to 500.000 machines a year by 1992.

40 YEARS OF THE BATC

This year is the fortieth anniversary of the British Amateur Television Club. It's publication $C Q-T V$ first appeared in October 1949, when the circulation was 25 copies. The club now has several thousand members and is very active. Membership is only $£ 6$ a year and includes the excellent CQ-TV magazine. Anyone interested can obtain details from Dave Lawton, G0ANO. "Greenhurst", Pinewood Road, High Wycombe, Bucks HPI2 4DD. Our best wishes to the club for its next forty years!

LATEST TV SETS

Models using the new G90 chassis have been announced by Philips and Pye. This chassis is being produced initially in Italy and is of particular interest in making extensive use of surface-mounted components. The first models have 19 and 21 in . tubes, on-screen display functions and a sleep timer facility which enables the viewer to programme the set to switch itself off within a ninety minute time block, in fifteen minute segments. There are text and non-text versions. Sets with 15 and 17 in . tubes are to follow and in the autumn sets fitted with the 110° version of the chassis (the G110) will be introduced.
Sanyo has released advanced details of its 32in. Model CBP3272. Features will include a Dolby Pro-logic decoder for surround sound effects, a Nicam decoder, five speakers, a flicker-free picture, fastext, multistandard (PAL SECAM/NTSC) operation, twin scart sockets, an S terminal and an auto switch-off timer. The launch date is January 1990 and the provisional price is $£ 2,300$.

THIRD IRISH TV SERVICE

The go-ahead for a third TV network, TV3, has been given by the Irish Independent Radio and Television Commission. The service will be based mainly on cable networks and local microwave transmissions and will be operated by the Windmill Hill consortium. TVS Entertainment and Ulster Television are involved in the project. The service is expected to start next spring and will be financed by advertising.

The Irish government is shortly expected to announce the first microwave TV service, broadcasting eleven channels to an area with a radius of thirty miles.

NEW PRODUCTS

P.D. Systems International Ltd., Estate House, Pool Close, West Molesey, Surrey KT8 ORN has introduced the LineLok, which enables individual TV lines to be
reliably displayed on an oscilloscope. By means of thumbwheel switches one of up to 1,250 possible lines in the display (interlaced or non-interlaced) can be selected. The unit works by providing a pulse for the scope's external trigger input. The unit is battery powered for portability and uses PLL circuitry to eliminate jitter. Price is $£ 340$ plus VAT.
Rendar Ltd., Durban Road, South Bersted, Bognor Regis. West Sussex PO22 9RL has introduced a comprehensive range of quality $\mathrm{BNC}, \mathrm{TNC}, \mathrm{F}$ and MILspecification N connectors manufactured in Japan by Marushin. The firm also has a large selection of adaptors to make cross-connection between different types of connector easy.

Litesold has introduced the Project ETC-5 range of soldering stations with electronic temperature control. There are three models, Viper (20W), Cobra (50W) and

Mamba (80). Each has its own dedicated soldering iron with the 5 -pin DIN plugs differently wired to prevent damage from wrong insertion. All control units are housed in similar enamelled steel cases that provide full screening and carthing. For further details apply to Light Soldering Developments Ltd., Spencer Place, 97/99 Gloucester Road, Croydon CR0 2DN.

Schlumberger has introduced a new signal generator for testing D-MAC and D2-MAC packet transmission paths and reception equipment. The SI7765 provides comprehensive test patterns and signals to EBU specifications to simplify installation and maintenance of DBS equipment. The price is $£ 4,3(0)-£ 5,950$ depending on the facilitics incorporated. A colour brochure is available. For further details apply to Schlumberger Technologies, Instruments Division, Victoria Road, Farnborough, Hants GU14 7PW.

Here We Are Again!

Les Lawry-Johns

Yes, we're still here, but I wonder for how long?
It's thirty five years since I wrote my first article for Practical Television, as this magazine was then called. It was the first one in the "Servicing TV Receivers" series. Seems only yesterday, honest. Many of my articles over the years have appeared under pen-names, such as S. Simon. Did you get the joke I wonder? Simple Simon you see! When I read some of those articles now I'm quite surprised. Did I really know all that? There was also Peter Gaymead Frazer and, going back to earlier days, N. Mead. So I must have been a clever fellow, though I didn't realise it.

There must be many of you who can write a lot better than I can and haven't yet reached the winding down stage. You will though. It seems that in my case I've done so much earlier than most people do. I find myself doing daft things but there have been no complaints so far except from that lady who is going to suc me for chucking out her set after she told me she didn't want it done as it was going to cost thirty quid to replace the tripler etc. and then left it for some time in the shop. She still hasn't returned the set I gave her in exchange and I do wish her solicitor would stop writing to me. I've told him I'm trying to get a white portable. Thorn 9900 chassis, with remote control sticking out the front, but they seem to be a bit thin on the ground. Frankly I'd thought it was the $9(0) 0$ chassis, but Keith and Alex put me right about that - they popped up from Portsmouth the other day. I've not been right for a long time, which is perhaps why I've not yet sold this shop though I've bought a bungalow and am now in debt to the bank because of a bridging loan. Not for long, I hope.

Sets still come in, though there are very few of them. I never got around to taking in videos for repair. The family's videos, including our own, are taken to Geoff's at Moon Lane for repair. Gcoff isn't upset by this as he too is short of TV repairs. I suspect that there are a lot of you in this situation, what with all these imported sets being sold with guarantees that last for years. They'll start to give trouble eventually, but will it be worth repairing them when spares and data are expensive and difficult to obtain?

Be that as it may, perhaps I can briefly return to those early days thirty five years ago. The editor then wasn't our

John. It was F.J. Camm, the magazine's founder, who had his name up front. F.J.'s brother was Sir Sidney Camm of Hawker aircraft fame - he designed the Hurricane, the Fury and all the other famous Hawker aircraft made hefore and during the second World War. I could give you a long list as aircraft were my all consuming hobby at that time - I can remember giving lectures on aircraft recognition when I was in the Fleet Air Arm - but this interest began to wane as I worked on the aircraft in this country, Gibraltar and Alexandria (just past the stinking tannery). I still have photographs taken at the time and the memories keep flooding back, more so than of what happened yesterday but I dare say there are lots of you like that.

The Fidelity CTV14R

We had another Fidelity CTV14R (ZX20)0 chassis) in the other day. I expected to have to fit a new line output transformer but this wasn't necessary. The complaint was that the picture kept rolling and going off. After a while I discovered that the focus control was damaged. This was no problem .since we keep having to remove the focus control in these sets, together with the first anode control, when fitting the ZX30)(1) series line output transformer. A new focus control was fitted in no time and the picture no longer rolled and hopped on and off. I then noticed the matchstick in the on/off switch. When this was pulled out the switch no longer worked. So in went another, complete with the remote contacts.

I phoned the owner and she agreed to pay what I asked (none of your business:). Anyway she came in later and handed me a twenty pound note and I handed her a fiver.

Colour Changeover

I'm sorry about the set that changed its colours. Should have realised it was the degaussing unit. But honestly the changeover was so complete I didn't think it could be that. The set lives over the road so I'll hear about it if it mucks about again, and so will you.

That's all for now. Anyone want to buy a famed store in a prestige position? Mr. Fayed from Alexandria perhaps'?

Practical Astra Installations

D.J. Stephenson, B.A., I.Eng.

There have been widespread rumours and horrendous tales about the alleged difficulties of setting up dishes for reception from the Astra satellite. I suspect that many of these stories are intended to scare off competition from TV technicians intruding into the domain of the aerial rigger. In reality the job is simplicity itself, provided the right equipment is to hand. The purpose of this article is to pass on practical experience gained by carrying out many such installations, for the benefit of those who are contemplating whether or not to enter this potentially lucrative business. We won't delve into the theory of satellite TV reception: many books and articles have been published on this subject.

It's unlikely that the general public will have much success with DIY satellite dish installation simply because of the alignment accuracy required. To try to find the satellite by trial and error or by following the manufacturer's instructions is likely to lead to many hours of frustration followed by a call to a TV technician/acrial rigger for help. The DIY enthusiast also has to contend with the fact that the flat pack systems obtained from major retail outlets come without cable, F connectors and mounting hardware such as wall plugs, screws etc. Fig. 1 shows an Astra receiving system in simplified block diagram form.

Ladders

If you are going to go into this business, perhaps the most important things you will require are a roof rack and a set of ladders. A good ladder size is 28 ft double, which extends a few feet above the gutter height of the average semi-detached house. Since you will not be carrying heavy loads up it a class 3 domestic ladder is quite adequate and is considerably cheaper than say the type of ladder used by builders. A 15 ft roof ladder may be an advantage for poie mounting where a suitable wall is not available. In my experience however this has not been necessary. Many modern houses have a flat garage roof adjoining a southfacing wall. This calls for an additional single ladder or a step ladder. In such cases I've found that a two-way single/ step ladder is the most versatile type.

Planning Permission

At the time of writing planning permission has to be obtained when a dish is mounted above roof height. Permission may also be required under other circumstances, e.g. a conservation area. Check with the local council planning department.

Tools and Fixings

You will need to keep a selection of fixings in the van. Experience shows that $2 \cdot 5 \mathrm{in}$. No. 12 galvanised or blacked screws and 8 and 10 mm Rawbolts are the most commonly specified fixings. The appropriate plastic wall plugs and masonry drills will also be needed. Fixing should be into bricks, not the mortar course, so it's vital that a powerful professional hammer-drill with a half-inch chuck is purchased. The small domestic type will soon burn out with punishing work such as this. A 40 m extension lead drum is
recommended, terminated with a residual carth circuitbreaker plug.

Other more mundane tools required are a large screwdriver, claw hammer, spirit level, set of metric ring or combination spanners and a pair of mole grips. A metric socket set is also an asset. A tool belt saves a lot of footwork when working up ladders.

For drilling the coaxial cable entry holes into wooden window frames a five sixteenth inch auger bit and handbrace does the neatest job. Where plastic double glazing is encountered it's better to drill the wall at the corner of the window frame, using a long 8 mm masonry bit. This long bit is also needed in a small number of cases to drill dividing walls.

Something that's often omitted from the tool-box on the first job is 7 mm round section cable clips - or 10 mm if extra polariser leads are involved (see later). An adequate supply of F connectors and coaxial plugs should also be carried. Finally, silicone rubber compound is needed to encapsulate the connection to the LNB (low-noise block) to ensure that it's waterproof.

Instrumentation

Perhaps the most important single instrument required is a compass. The cheap Christmas cracker variety is definitely out. A good sighting compass can be purchased for about $£ 27$. The Silva ranger type 15 T is a particularly useful one. It includes a mirror, sighting lines and 3600° bearing graduations and can be purchased from camping/ sports shops. An inclinometer is useful for elevation measurement, but most manufacturers stamp elevation scales on the mounting brackets. Unless the wall to which the dish is to be mounted is truly vertical however these are not too accurate. Care is required in using an inclinometer with an offset focus dish as the offset angle has to be taken into account.

A satellite signal strength meter is a boon for optimising picture quality. The small Connexions satellite signal strength meter can be obtained from HRS Electronics plc (11 Garretts Green Lane, Garretts Green, Birmingham B33 0UE) for just $£ 45$ plus VAT (trade only). This wideband unit is simply connected in series with the LNBreceiver coaxial cable, using F connectors, and is thus powered by the LNB voltage feed. It enables the f.m. first i.f. output from the LNB, at approximately 950$1,75(0 \mathrm{MHz}$, to be monitored.

Site Survey

The purpose of the rather pretentiously named "site survey" is to check the lie of the land and offer the customer the maximum amount of choice as to dish location. Some customers like the dish to be unobtrusive while others like to advertise the fact that they have one.

It's important to ensure that no tall buildings or trees are in the direct line of site. If this situation cannot be avoided the customer should be told that reception will be either degraded or impossible. A site survey may involve running up and down ladders at various locations on a south- or cast-facing wall, checking the line of sight. Since
dishes can be rotated through 90° an east-facing wall can be used for Astra as a last resort.

Four items of information are relevant to the choice of site. They are best calculated before you arrive at the customer's address. A programmable scientific calculator with continuous memory or a computer will help here.
(1) The satellite's geostationary position. For Astra this is above the equator over Zaire, at $19 \cdot 2^{\circ}$ east of south of the Greenwich meridian.
(2) Elevation. This is the angle of inclination from the horizontal to the satellite's line of sight. It's given by:

```
Elevation = Arc tan [(cos C - (0.151269)/sin C]
where C = Are cos [cos (Ls - Lr) }\times\operatorname{cos}\textrm{B}
Ls = longtitude of satellite
Lr = longitude of receiving site
B}=\mathrm{ latitude of receiving site.
```

For example Astra from the Wirral peninsular, Merseyside, longitude $3^{\circ} \mathrm{W}$, latitude $53 \cdot 33^{\circ} \mathrm{N}$. gives the elevation as $25 \cdot 74^{\circ}$.
(3) Azimuth. This is the bearing of the satellite depending on the location of the receiving site and is given by:

Azimuth $=$ Arc tan $[\tan (\mathrm{Ls}-\mathrm{Lr}) / \sin \mathrm{B}]$.
For the Wirral, Merseyside the true azimuth is $153 \cdot\left(03^{\circ}\right.$. (4) The local magnetic variation. True south can be $3-7^{\circ}$ to the right of magnetic south depending on the location of the receiving site and varies by nine minutes or so a year. Current information can be obtained from the latest edition of the Ordnance Survey Landranger series of maps for your area.

As an example the magnetic variation for the Wirral, Merseyside is 5.5°, therefore the corrected azimuth or compass reading is 158.53° or 21.47° cast of south.

Fig. 1: Simplified block diagram of a receiver system for Astra transmissions.

These calculations may seem a bit tedious to perform for each installation, but in the long run they do save time. If, as is often the case, work is confined to a small geographical area the figures obtained will not vary significantly.

Computer Program

The calculations for any geographical location and any satellite can be performed in a fraction of a second by computer. An Acorn Electron or BBC B computer system can now be bought very cheaply second-hand and is ideal for calculations such as these. A suitable program that will perform all the necessary calculations is listed in Table 1.

When using this program it's important to remember that longitudes west of Greenwich $\left(0^{\circ}\right)$ are entered as negative valucs. For example the Wirral, Merseyside is 3°

west and is thus entered as -3 . Grossly ridiculous inputs will not be accepted.

When the program is run the first prompt asks for the longitude of the satellite. Astra is $19 \cdot 2^{\circ}$ cast of south and is therefore a positive value. Enter 19.2.

The second prompt asks for the longitude of the site. For the Wirral, Merseyside this is $3^{\circ} \mathrm{W}$ and is thus entered as -3 .

The third prompt is for the latitude of the site. For the Wirral this is $53.33^{\circ} \mathrm{N}$, so enter 53.33 .

The prompt for local magnetic variation is finally displayed. From Ordnance Survey maps this is 5.5° for the Wirral, so enter $5 \cdot 5$.

The program will calculate the elevation, true azimuth, compass bearing and path distance. With the data fed in we get $25.74^{\circ}, 153.03^{\circ}, 158.53^{\circ}$ and $39,001 \cdot 1 \mathrm{~km}$ respectively. Simply type RUN to repeat the program. A printout can be obtained by pressing the CTRL and B keys simultaneously prior to typing RUN CTRL C disables the printer again. Anyone with a working knowledge of the BASIC computer language should find it easy to transpose the program for use with other machines.

Cables

There appears to be no standardisation with regard to the cable requirements for various manufacturers' dishes. Amstrad/Fidelity use single coaxial cable. The i.f. signal from the LNB is fed down the cable and a d.c. voltage from the receiver is fed up it to power the LNB. This d.c. voltage can be threshold varied to switch the solid-state polariser. Grundig use coaxial cable with an additional polariser lead to switch the polariser's polarity. The 15 V supply for the LNB is fed up the coaxial cable and a further 12 V supply lead is used to switch the polariser 0 V for vertical polarisation, 12 V for horizontal polarisation. The earth return is via the coaxial braid. Tatung use coaxial cable with two separate polariser leads.

The special coaxial cable with one or two additional polariser leads is very costly at the time of writing - about $£ 125$ for a 250 m drum. An alternative solution is to run up a separate cheap cable for the polariser requirements and use cheaper coaxial cable.

There are many grades of 75Ω low-loss cable. With short runs, say less than ten metres, ordinary u.h.f. lowloss coaxial cable can at a pinch be used with no appreciable picture quality degradation. Better quality cable such as RG59, at about $£ 69$ for a 250 m drum, should be used for longer runs. This cable has a loss figure of 27 dB per 100 m . For a really professional job you can, provided the customer is willing to pay the extra at about 75 p per metre, use Pope H100 cable. This is available from HRS and has a loss figure of 13 dB per 100 m . In practice however RG59 is an adequate, inexpensive general-purpose cable. With really long cable runs line amplifiers need to be inserted at every $20-30 \mathrm{~m}$ or so.

The Installation

An installation team should consist of a technician and someone skilled in ladder agility. Public liability insurance cover should be taken out along with employee liability. This costs about $£ 250$ for a turnover of less than $£ 45,(00)$ a year. Further insurance against personal injury is advisable due to the potentially dangerous nature of the work.

Once all the groundwork has been completed the easy part is erecting the wall-mounted dish. For drilling the
dish mounting holes some manufacturers supply a template on the back of the flatpack. A slight breeze up a ladder with a large flapping piece of cardboard in one hand and a hammer-drill in the other has to be seen to be believed! Throw it away. Drill and temporarily fix one point first, put a spirit level on it, then mark out the other holes.
The light-weight dish and LNB are best assembled at ground level and taken up the ladder in one piece for offering up to the mounting bracket. Be careful not to knock the feedhorn/LNB assembly - this is a precision unit manufactured to the highest standards and any dent could make the whole assembly useless.

Fit the F connector to the LNB temporarily, fit polariser leads as necessary, and tack up the cable(s) to the receiver. Never bend the coaxial cable at a sharper angle than about ten times its diameter otherwise significant signal attenuation will occur.

Table 1: BBC computer program for satellite dish alignment.

$$
>
$$

$$
>\text { LIST }
$$

$$
\text { 80MODE } 7
$$

90PROCline:PRINT"EUROPEAN SATELLITE
FINDER":PRINT TAB(20)"DJ Stephenson
1989":PROCline
100PRINT"Enter Longitude of Satellites/Sites WEST of Greenwich as NEGATIVE Values"
110PRINT:PRINT"Enter Longitude of Satellite
(deg)":LS=FNip($-90,90$)
120PRINT"Enter Longitude of Site
(deg)":LR=FNip($-90,90$)
130PRINT"Enter Latitude of Site (deg)": $\mathrm{SL}=\mathrm{FNip}(30,80)$
140PRINT"Enter Local Magnetic Variation
(deg)": $\mathrm{var}=\mathrm{FNip}(2,8$)
150A $=$ LS-LR:sign $=$ SGN(A) $: A=A B S(A)$
$160 A=\operatorname{RAD}(A): B=R A D(S L)$
$170 \mathrm{C}=\mathrm{ACS}(\operatorname{COS}(\mathrm{A}) * \operatorname{COS}(\mathrm{~B}))$
$180 \mathrm{Elev}=\mathrm{ATN}((\mathrm{COS}(\mathrm{C})-0.151269) / \mathrm{SIN}(\mathrm{C}))$
1901F Elev<0 THEN PRINT"Satellite over horizon":GOTO 290
200Azimuth $=$ ATN(TAN(A)/SIN(B))
210Azimuth $=180-$ sign*FNround(DEG(Azimuth))
220Pathdist=(42164*SIN(C))/COS(Elev)
230PROCline
240PRINT"Elevation $=$ ";FNround(DEG(Elev))" degrees"
250PRINT‘True Azimuth $=$ ";Azimuth" degrees"
260PRINT"Compass bearing = ";Azimuth + var" degrees"
270PRINT"Path Distance = "; FNround(Pathdist)" Km"
280PRINT:PFINT‘‘ype 'RUN' to repeat program ";
290END
300
310DEFPROCline
320PRINT STRING\$(39," "):ENDPROC
330
340DEF FNip(min, max)
350REPEAT
3601NPUT A\$:A=VAL(A\$)
370IF $A=0$ AND A\$> " 0 " THEN A $\$=$ """
380 UNTIL $A>=\min$ AND $A<=\max$ AND A $\$<>^{\prime \prime \prime \prime}$
$390=A$
400
410DEF FNround $(\mathrm{N}): \mathrm{N}=\mathrm{INT}\left(\mathrm{N}^{*} 10^{\wedge} 2+0.5\right) / 10^{\wedge} 2:=\mathrm{N}$

Next tune in the TV set or VCR to the satellite receiver's output. Most receivers provide a test pattern tuned to channel 38 - this may need to be retuned if there is interference from local terrestrial transmissions. With receivers that don't provided a test signal, f.m. noise as opposed to a.m. noise should be detectable from the LNB when the tuning is correct.

The BSI and the CAI strongly advise that the dish assembly metalwork is earthed via an approved clamp to an earthing point or buried rod. The minimum earthing wire thickness is specified as 1.5 mm . This also applies to aerials for the reception of terrestrial transmissions, but I must admit that I've never seen it done in practice. -Although at present not a legal requirement, the reason for doing it is to discharge to earth static build-ups to prevent damage to tuners and the possibility of a customer receiving a static shock. The high failure rate of r.f. amplifier transistors in video r.f. splitters and TV tuners is blamed on omission of this safety precaution.

Adjustments

We come now to the dish adjustments. Proceed as follows.
(1) Tighten all elevation and azimuth adjusters. Take up any slack but do not tighten so much that the dish cannot 'be moved with moderate effort.
(2) Stand directly below the dish with a sighting compass and note some landmark, such as a roof apex, at the calculated magnetic bearing.
(3) Climb up the ladder and sight the boom to the chosen landmark.
(4) Set the elevation adjuster, using either the manufacturer's stamped graduations or an inclinometer. With Grundig dishes a ruler will be needed to set this.
(5) Since satellite TV receivers are pretuned at the factory, Astra reception should now be possible. If your calculations are correct you will get reasonable picture quality immediately without need to use a signal strength meter.
(6) Switch off the receiver to disable the 15V LNB supply. Note that any temporary shorts in the cable connections can blow fuses in the receiver! - a multimeter check for shorts is a good idea before switching on. Connect the signal strength meter in series with the coaxial cable to the LNB, with a short stub. Switch on the receiver and trim the elevation and azimuth adjustments for maximum signal strength.

Some dishes, such as the Grundig ones, have a skew adjustment which also needs to be optimised. Skew is the rotary adjustment of the feedhorn/LNB assembly.

Finally, tighten the adjusters fully, thread the coaxial cable through the boom, and refit the F connector. Ensure that there are no sharp kinks in the cable.
(7) Check the received picture quality. If o.k., encase the whole LNB F connector with weatherproof silicone rubber compound.
(8) Mark or scratch lines on the adjusters so that dish realignment is easy if, at a later date, wind moves the dish.

(9) Seal the coaxial cable entry hole in the wall or window frame with putty or silicone rubber compound.

Guarantees

It's customary to guarantee your work for a period of at least a year against wind altering the dish alignment or water penetrating the coaxial cable etc. Point out to the customer that this doesn't cover vandalism or freak weather conditions such as the Force 10 hurricanes experienced in late 1987. It's the customer's responsibility to insure against such risks.

Repairs

It's normally not advisable to attempt to repair the LNB assembly or the tuner unit in the receiver. These items employ a lot of surface-mounted technology and, at the frequencies involved, component layout is critical. The units are best replaced if necessary, and it's hoped that manufacturers will introduce an exchange service for them.

Repair of the other sections of the receiver should be a comparatively easy task for a TV or video technician. There's a complication however. Since the various manufacturers use so many different standards and polarising arrangements servicing can be difficult unless you have available the relevant dish. The idea of having ten or so dishes on the workshop wall seems ludicrous. Fortunately the problem can be overcome by building a separate unit to supply the various voltage feeds required by the chosen workshop dish installation. The first i.f., which appears to be standard, can then be fed into any make of receiver via isolation capacitors to block any d.c. sent up the cable from the receiver being repaired. I hope to provide details of such a unit shortly.

In Conclusion

It's hoped that this article will persuade many TV technicians to enter this new field, which is expected to be an expanding one until at least 1996 when it's estimated that twenty million receivers for the Astra transmissions will have been installed in the UK. There should be sufficient work for large numbers of installation crews to make a good living, provided the trade sticks to a reasonable installation charge and doesn't advertise "free installation" in order to shift over-ordered stock. The larger retail outlets are the most likely to offend in this respect.

The Panasonic NV370/830/850

Nick Beer

The Panasonic NV370 is a "basic" model that was introduced as a replacement for the NV333. It incorporated several firsts including front loading, standby OTR (onetouch timer record operation), a picture sharpness control and a large multi-function fluorescent display. It has cordlinked remote control, a one event/14 day timer and a two-head drum (VEH(218). The NV830) came later and is basically a hi-fi sound version, its drum (VEH(266) incorporating two audio heads. Further features were added with the NV850, in particular an eight event/ 14 day timer and a third video head in the drum (VEH()231) for perfect stills and general improvement in the trick modes. In addition to the two drum-mounted audio heads the two hi-fi machines have a single mono linear audio head. The absence of a stereo linear sound track facility gave rise to a certain amount of criticism, due to the number of stereo (not hi-fi) library tapes available. The hi-fi machines both have a comprehensive infra-red remote control system, though you can't use it to set the timer. These two machines have black cases whereas the NV37() is in silver. From the servicing point of view the differences between these machines are minimal. We'll mention them as they arise.

The function display is separate from the clock/channel display, being mounted above the deck function selectors. The electronic counter is a four-digit type with electronic memory. Dew warning is given by the counter display's far right-hand digit changing to "d", something that might not be immediately obvious. Addition of standby to the OTR function already seen on some previous models allows the OTR start to be delayed by up to two hours in thirty minute steps. The NV850 has memory back-up when the mains supply is interrupted - this feature is not present on the two cheaper machines.

The mechanism is very quiet in operation - welcome after the NV720) series! One point about its operation that I personally find annoying is that it returns to the stop position during mode selection. For example if you make a test recording then push stop and immediately after select play it won't, as with the NV720)s, go straight into play. It will unlace and relace.

Dismantling

To remove the top cover, undo the four silver screws at the sides of the unit and pull the top upwards, gradually pulling the front edge away. The bottom cover is held by nine brass-coloured screws. It covers the entire bottom area of the machine. Later decks have just a plate over the mechanism.

The bottom, main PCB covers part of the mechanism and for a lot of work has to be unhinged. To do this you have to remove the front, operation PCB which is hinged on it. This is a similar idea to the NV333/NV366 series, but only the small operation PCB is attached, not the timer/presetter as well, previously a single unit. First remove the cabinet front by undoing the three red screws, one at each clip across the top of the front, then undoing each of these clips and the three across the bottom. After removing the two red screws in the top two corners the operation PCB can be hinged out. The main PCB can be
released by undoing the eight red screws and two clips which, with the machine stood on its back, are one third and two thirds of the way down on the right-hand side. The whole assembly can be hinged towards the back of the machine, but you will need to unsolder the earth wire to the front left-hand side of the mechanism.
The screening can over the head drum is removed by loosening the five red securing screws and then moving the can across and up to allow the screw heads to pass through the larger holes in the plate.

The capstan brake is countersprung and is mounted on the capstan flywheel support bracket.

The Mechanism

The mechanism in all three machines is similar to the DI type, with only minor modifications. The drum is a typical Panasonic direct-drive unit, of slightly more compact design to those previously used. There's a directdrive capstan which also provides the kick idler drive, via the capstan belt (VDV0149). A separate motor is used for tape loading, via a loading belt (VDV0148). This is significantly smaller than the two-belt system used in the NV7(O)() and NV333 series machines. Front loading is performed by a carriage-mounted motor and belt (VDV(0)74). Mechanism state detection for the syscon is carried out by a linear mode switch (VES0246 for Models NV370/NV850, VSSO0191 Model NV830) which is somewhat different in appearance from those previously used. It has a skeleton-style look, the leads being soldered directly to the contacts rather than to a PCB.

Whereas in previous models the drum static discharge angle was fitted at the top of the drum, this time it's fitted to the bottom - part no. VXSO059. Since the bracket construction is different the earlier type cannot be used. The new type rarely fails however.

Moving back up to the top of the mechanism we come to the thing that most people will probably associate with this deck for ever more, the reel idler (VXP(0521). There can't be many people who didn't have to change one during the first twelve months because of tape chewing. The answer is to fit the modified type, which is far more reliable and has the length of life you'd expect. The old type is plain white while the modified type is black and white. A machine came in quite recently with the old type still fitted. It was working all right but we nevertheless changed it, as you always should - don't tempt fate!

Mechanical Service

The majority of the jobs on the top of the deck, for example reel idler or brake band replacement, require removal of the cassette carriage. The reel idler can be replaced without doing this, but is then a more difficult operation. To remove the carriage, undo the four red bolts at each corner of the top plate, remove the multi-pin plug (P1507) on the small PCB at the rear right-hand side, then lift the carriage out. This assumes that you've already removed the screening can from the head drum, as it mounts over the front lip of the carriage.

Idler replacement is straightforward. Unhook the spring
that runs over its back edge then remove the slit washer from the shaft to allow the idler to slip up over the pivot. When fitting the replacement ensure that it is completely bedded down and mating with its drive surface. To do this, push the idler wheel towards the back of the machine against its spring while pushing it home, then fit the slit washer again. You don't get a replacement washer now with each new idler, though one comes with the maintenance kit for this series (kit part no. VUD4092, see lan Bowden's article in the October 1988 issue of Television). Refit the spring and check the review torque (see later).

The brake bands are beginning to suffer from the usual Panasonic ailment: the glue on the pad dries out and the pad drops off. The result of course is virtually no back tension, the symptom looking as though one video head has failed. Replacement is marginally easier than with other Panasonic decks as the band is fixed to the backtension lever by means of a moulded plastic spring clip instead of a second circlip. The lever will usually have to be removed to undo the old unit, but sometimes it can be pulled out from above. To fit the replacement, simply push it through the hole. Set up the back tension afterwards (see later).

Head Drum Replacement

This was the first series of Panasonic decks to have the pin-connection style head drum instead of the flexible leads previously used. It saves a lot of time, fiddling about, and burnt fingers. The two things to watch are first that all the arrowed connections on the PCB are free after unsoldering - otherwise you'll end up with broken connections to the rotary transformer and will then need a new DD unit. Don't unsolder any connections other than those arrowed: unsolder all those arrowed even if there appear to be too many. The head section is held to the DD unit by the usual two screws. To prevent any nasty experiences, always remove them as the last job before the head and refit them first after replacement, before resoldering the pins. This is to ensure that the upper and lower drum sections are fully mated - if you solder then tighten the bolts and the head drum moves you'll crack the head PCB or damage the DD unit. The other point to note is that since there's no lead colour coding the head can be fitted the wrong way round. To prevent this, half the PCB in the drum is coloured white and there's a white mark on the DD unit: these should, not surprisingly, be matched up.

With the NV850 the DD unit is covered by the stator not present on the other two models. This has to be removed to enable the head drum to be replaced. The stator angle is held on by two bolts, one in each rear corner. There's also a multi-pin connector (P4501) which has to be removed. Underneath there's the rotor base, again held by two bolts. With this removed you'll find that the head drum (VEH0231) is secured by the usual two screws. To reinstall the stator assembly after replacing the drum calls for the stator angle adjustment jig (part no. VFK0268) to ensure correct positioning.

Pinch and Impedance Rollers

Pinch roller replacement is straightforward. Remove the bolt that holds the dew sensor bracket, then the single circlip that holds the pinch-roller arm. Pull it off, at the same time releasing the counterspring.

One final point about the top of the deck. With the hi-fi
models when you replace the impedance roller (VDP(O)O8) on the left-hand side, beside the crase head. or carry out any tape path adjustment, ensure very careful alignment while looking at the audio f.m. envelope. A very slight discrepancy that might not affect the picture adversely can have a dramatic effect on the audio f.m. envelope. This roller is part of the maintenance kit and should be changed at the appropriate time - no skimping!

The Belts

The mechanism has three belts. The loading belt (VDV0148) simply slips over its two pulleys. The capstan belt (VDV0149) does the same but the support bracket over the bottom of the capstan motor has to be moved out of the way. It's not necessary to undo all three bolts: remove the two at the rearmost end and loosen the other one to enable the belt to be manoeuvred over it. The third belt is on the carriage and can be slipped off both its pulleys in alternate directions. Thus there's no need to remove any motors or brackets. The belts rarely fail but they do get to be tired looking and, being part of the $1,0(1)$ hour kit, should be changed.

Mode Switches

The mode switches are less reliable than those on the earlier machines and are in turn more reliable than the very similar looking ones on the later NV230/NV430 series machines. Faults range from no drum rotation to being stuck in the laced-up state - in general, any weird mechanical happenings (see also the fault list). Always disconnect the deck from the mains supply before working on the mode switch, otherwise you'll end up with a retiming job. A single bolt holds the switch and should be changed along with the switch. The old switch gives you a useful guide to the positioning of the new one. You'll see a clean area around the slot, inset in the blackened. corroded area. This is where the old bolt head was located. Fit the new switch in the same way, ensuring that the white peg is correctly located on the main lever, and you won't go far wrong. Remember to write down the wiring connections to the switch. A note in the manual is worthwhile, but I've seen more than one set of wire colours.

Take-up Torque

The take-up torque should be within the following limits for each mode. Ptay $105-145 \mathrm{~g} / \mathrm{cm}$, fast forward and rewind over $400 \mathrm{~g} / \mathrm{cm}$, review $200 \mathrm{~g} / \mathrm{cm} \pm 10$ per cent. If there's a large discrepancy the drive systems should be investigated (look for worn idlers etc.). Adjustment is by altering the notch to which the left-hand side of the spring is attached. This is the spring across the rear half of the reel idler.

Back Tension

The back tension should be between $25-30 \mathrm{~g}$. You will very often find that the best performance, especially for searches, is with the back tension set at 30 g . This figure should not be exceeded. Adjustment is by altering the position of the back-tension spring mounting bracket. This assumes that youve not changed the brake band and upset the level. If so, the back tension should be aligned with the brake band set as shown in Fig. 1.

Fig. 1: The back-tension arrangement
The position of the brake band, and thus the falling range of the back-tension lever, should be set using the adjustment plate (part no. VFK0187). A few machines will not warrant this, so the diagram can be used as a guide.

Electronic Features

In this section well briefly consider the circuits that are likely to require attention.

The syseon is designed around a microcomputer chip, circuit reference IC6o(0) as always. All three machines use the same device (MN15342VGC-3). An optosensor under the take-up reel provides detection of rotation and pulses for the electronic counter. The troublesome cassette up and down switches are mounted on the right-hand side of the carriage - see fault list. There is also an insert switch (VSMO)47) in the middle of the top of the carriage.

A larger number of chips are used in the servos than in

Fig. 2: The mains transformer/rectifier PCB circuit, Model NV370.
the previous models and a manual will usually be required for any in-depth fault finding.

The power supply is simple. Fig. 2 shows the mains transformer/rectifier board circuit which should help if you don't have the manual - there's a tendency with these machines for the fusible resistors to go open-circuit randomly.

There are obviously various differences in the timer/ presetter arrangements used in the different models. The basic NV370 has a step up/down selection system with presets for its 16 channels, a single M54836AP chip (IC7503) being used for control. The NV850 on the other hand uses the single thumbwheel and store system that was to become familiar on later machines. It also has a back-up system for memory when there's no mains input. This takes the form of three $3 \cdot 3 \mathrm{~F}, 2 \cdot 3 \mathrm{~V}$ gold capacitors, as in the NV366. They suffer the same fate!

The hi-fi circuits are on two boards situated around and over the presetter PCB.

Remote Control

The NV370's cord-linked remote control unit, part no. VSQ0330, gives control over only the basic functions play, rewind, fast forward, record and search. It works on the same switched resistance principle as the system used with the NV333/NV366. The single-screened lead is terminated with a 2.5 mm two-pole plug.

The IR unit used with the hi-fi models, part no. VSQ0338, gives control over virtually everything apart from the timer and hi-fi selection functions. There are no real stock faults. Spillage is the most common cause of trouble - it can corrode the contacts of the rubber mat. The buttons tend to wear so we replace them when a machine is in for service to keep up the appearance of the unit.

Fault List

Here's a list of some of the more common faults we've experienced with these machines.
(1) No or slow rewind/fast forward and/or chewing tapes. Usually caused by a worn reel idler, especially if the plain white type is still fitted (see carlier remarks).
(2) Cassette will not stay in. Cassette up/down switches on carriage faulty. See earlier comments.
(3) No results. 5 V rail missing as D1002 (3.9V zener diode) short-circuit and R1001 (0.39) open-circuit.
(4) Hum on sound and vision. C1IO2 $(2,200 \mu \mathrm{~F})$ leaky or open-circuit. This is the reservoir capacitor for the unregulated 18 V supply.
(5) Incorrect function selection - fast forward instead of play and rewind instead of record. C601I $(0 \cdot 18 \mu \mathrm{~F})$ in key scan two line faulty.
(6) Capstan speed incorrect and will not set correctly. Can be caused by IC2001 (AN6359N) or IC2002 (MN6168VIF) - sometimes both fail together.
(7) Drum motor does not rotate. If the outputs at pins 1,2 and 23 of IC2005 (AN6387) are absent or "pulsing" suspect this i.c.
(8) Function display not working. Check D6504 (RD75EB) and IC6501 (MN1450BUF2). The display (VSL0030) might have an open-circuit heater.
(9) No or incorrect colour in record and playback. IC8001 (VEFC007) faulty. It's on the folded FPC.
(10) No 5 V supply to capstan servo, causing shunting fore and back. Q1104 (2SD1275) in the power supply faulty.
(11) Capstan and kick idler shunting. R1101 in power supply open-circuit, usually for no apparent reason though Q1101 (2SD1275) and D1105 (10E1) may be short-circuit.
(12) Machine goes off after about three seconds. Note if when switched on the characteristic loading "shuffle" occurs. If not check the loading motor drive chip IC6003 (BA6209) as it will probably have an internal short.
(13) Horizontal picture twitch. Impedance roller (VDP0908) sticky. Replace along with its insert (VMX0541). Note previous remarks about precise adjustment with hi-fi machines.
(14) Dew indicator stays on. Try resetting the microcomputer chip IC6001 (MN15342VGC-3) by disconnecting the mains supply for a minute or so then switching back on. If this fails to cure the problem and the machine is not damp IC60) 1 is suspect.
(15) Capstan does not rotate. Assuming that all the supplies are present, as opposed to being excessively loaded, suspect IC2004 (AN3821K) and check the continuity of the capstan stator (VEK2038).
(16) When play is selected the machine laces but the drum doesn't rotate, the machine won't unlace then switches itself off. Suspect dirty contacts on the mode switch.
(17) Machine switches off as soon as review is selected. Mode switch faulty.
(18) Machine cuts out after a few seconds in review and the left-hand reel is slow to turn or doesn't turn at all. Replace worn reel idler.
(19) Machine cuts out after a few seconds in play, a slightly shorter time in rewind or fast forward. Check whether the electronic counter works before the machine cuts out. If not, check for reel pulses at pin 19 of IC6001. If these are not present and the supply to the optosensor (type ON2160) is present, suspect a faulty sensor. Otherwise suspect IC6001. Both items have been known to cause this fault.
(20) Grainy, black and white playback picture. Video heads worn or drum fitted wrong way round (see earlier remarks).
(21) Knocking noise, particularly noticeable in play. Check for dents in idler wheel VXP0521 and its clutch gear VDG(0147 - shadow of BSR turntables! In nine cases out of ten however clutch VXP(0523, under the clutch gear, is responsible. This fault will very often not be reported but will nevertheless be very evident.

$$
1: 450 \text { IE3 }
$$

N.W. LONDONY LARGEST VIDEO HEAD STOCKISTS

(22) Mis-operation of the hi-fi channel indicator LEDs, not corresponding with switch selected. In order of probability, check QR4306 (DTC124A), QR4304 (DTC144A) and QR43(1) (DTA114A).
(23) No front panel selection of play etc. possible with Model NV37(). Check that the remote control unit is not plugged in, then suspect that the remote control socket is faulty.
(24) No remote control operation, front panel controls o.k., Model NV370. Suspect that the remote control unit's lead is open-circuit, particularly the screen connection. It can be replaced with normal single-screened lead if you remember to save the cable gland/strain from the old lead.

In Conclusion

In this article we've taken a basic look at the mechanical set up and operation of these machines, the electrical make-up of the circuits that tend to give trouble and listed the more common faults. These VCRs are not old - the majority just require a mechanical overhaul and a few are now being swapped over on rental. They can be rerented or sold for a very respectable price, and after a service can be expected to work well for the foreseeable future. Head wear is particularly good, but only when the back tension is set correctly. If you don't have a Panasonic account you'll find that spares ate available from many advertisers in Television. Should replacement heads be necessary I particularly recommend those available from MCES.
$\operatorname{Pun} 3-p u 1$
$+2.2 n-$

$$
\begin{aligned}
& \text { Pin } 7 \\
& + \text { or Cep }
\end{aligned}
$$

Letters

THE SPARES BUSINESS

We would like to comment on some of the points raised in your leader in the April issue. As specialist spares distributors we've been "knocking on the doors" of various setmakers for some time to be allowed to stock and sell their components. Some doors have been opened but others remain firmly closed. How long will it take for some manufacturers to realise that many customers do not want to or are unable to take their equipment back to the dealer from whom they bought it and therefore want a repair to be done by someone else? If the second dealer doesn't have an account with the manufacturer and spares are not available through distributors it can take weeks to get the part required. This delay reflects badly on the service department and also on the brand name. What will the customer think next time he makes a purchase? It would be so much better if all parts were available through distributors, thereby ensuring engineer and customer satisfaction.

Your point about smaller customers who require individual parts is one we understand all too well. As a result we have always supplied trade customers with whatever quantity they want, no matter how small the order. In the belief that offering a good service means just that, we have no minimum order level and no small order handling charges other than postage. This, along with the fact that we have a department that specialises in obtaining out of the ordinary components, means that we are doing our part in filling the gaps left by others.

Our job here at Wizard Distribution is to supply spares to the trade. Some manufacturers have other, understandable priorities. Why not let us all do what we do best, thus ensuring all-round customer satisfaction?
R.T. Blyth, Managing Director, Wizard Distributors,

Empress Street, Manchester M16 9EN.

NICAM TRANSMISSIONS

Andrew Sykes' letter (May) suggests that the Nicam decoder chips being used in current TV sets and VCRs may not be able to handle future ITV and Channel 4 Nicam broadcasts satisfactorily. From our experience gained since starting Nicam test transmissions from the Crystal Palace and Emley Moor transmitters in February we do not believe this to be the case. It's important to realise that the broadcasts currently taking place are test transmissions which are intended to allow dealers and the public to hear demonstrations of the capabilities of the new service, also to enable us to gain practical experience and sort out any teething troubles with the equipment we are using before the start of scheduled programmes in September.

In the very early days of our tests we did discover incompatibility between one receiver chip and our transmissions. This gave rise to distortion on low-level sound. Although our transmissions complied with the published Nicam specification it was fortunately possible to solve this problem by making a minor change to the transmitted data within the specification.

We have also found that manufacturers have applied different logic to the interpretation of the use of the C 4 control bit. C 4 set to zero indicates that the Nicam signal
and the conventional f.m. sound have different audio content. In this mode some Nicam receivers can reproduce only the f.m. audio. Conversely with C4 set to one some sets can receive only the digital sound. We are therefore carrying out test transmissions with C 4 set to zero. C4 will be set to one when the scheduled service starts. Other sets allow the user to make the selection whatever the setting of C 4 , as do VCRs. We consider this to be the best arrangement.

When the full service starts the digital sound will of course be the preferred option where available. There have also been some Nicam VCR users who have apparently not realised that while the Nicam trade tests have been recorded on hi-fi sound tracks the f.m. programme sound has also been recorded on the conventional linear sound track. They can be selected by means of a switch.

The clicks Andrew Sykes mentioned are one of the teething troubles we have encountered since starting the test transmissions. We have chosen to encode the sound signals in the Nicam format in the studios, carrying them over the links to the transmitter in this form to modulate the new Nicarn sound carrier. In this way the audio remains in the same digital form all the way from the studio to the viewer's receiver. The clicks have been caused by data errors occurring between the studio and the transmitter. These errors should not occur. We have investigated the problem and intend to make some changes to the equipment shortly to eliminate them.

We remain confident that once the system is fully operational Nicam digital stereo will provide very high quality sound from all existing and future Nicam receivers. Paul Gardiner, Principal Engineering Information Officer, Independent Broadcasting Authority, Winchester.

CURING FIELD JUDDER

I was interested in John de Rivaz's suggestion for curing field judder (April) and would like to point out that a simpler way of implementing this good idea is to use an exclusive-or gate as shown in Fig. 1. The time-constant of the resistor and capacitor is the same as with John's circuit, but because a 4030 's input impedance is so high we can use a higher resistance value and a lower capacitance valuc. Incidentally, if you want to invert the output another section of the 4030 can be used - an exclusive-or gate can invert the output or not by being wired as shown in Fig. 2.
Keith Cummins,
Holbury, Hants.

NOISY NV333 BEARINGS

In the November 1988 issue of Television Nick Beer, writing about the Panasonic NV333/NV366 VCRs, mentioned the problem of noisy bearings in the lower drum assembly. In view of the prohibitive cost of replacing the entire drum assembly I decided to examine the possibility of replacing the bearings, and have done this successfully on eight of these machines since August 1988.

It's necessary to remove the complete drum assembly from the VCR, then to dismantle it in the following sequence: remove the drum flywheel, stator assembly, mica washer, brass collar, spring washer and brass washer, then separate the upper and lower drum assembly by pulling them apart, thus exposing the bearings. See Fig. 3.

It's very important to make a reference mark on each of the following components as the unit is being broken down: (1) the end of the main shaft where it projects
below the drum flywheel; (2) the drum flywheel; (3) the stator assembly; (4) the brass collar. Each mark must bear a direct relation to the next one. If this is not done carefully it won't be possible to get the head switching point aligned correctly. When reassembling the unit pay special attention to the correct sequence of replacing the brass washer and spring washer. The two screws that secure the flywheel should be tightened with a torque screwdriver - a little more than hand tight pressure will suffice.

The bearings cost $£$ IR 5 each here and are available from my local bearings distributor, the identification number on them being SSR-1560)ZZ. The complete job takes one hour.
Pearce Heffernan, Madden TV,
Cork, Ireland.

CHEQUE CARD WARNING

The following experience with bank cheque guarantee cards might serve as a warning to others. I recently sold a second-hand TV set for $£ 85$, taking two cheques for it, one for $£ 35$ and one for $£ 50$. These were dated April 1st and 2 nd respectively. I realise that the banks restrict the use of these cards to one cheque per purchase per day. But as everyone knows, $£ 50$ is not nowadays a realistic amount and rather than lose sales one is forced to break the rules.

On this occasion things went wrong. A "customer" rang us up on Tuesday to enquire about our opening times, asking "are you open at the weekends?". I replied that we are open on Saturday but not Sunday and the caller rang off. On the Friday the $£ 50$ cheque was returned, stating "not drawn in accordance with cheque card criteria". I phoned the bank - Nat-West at St Budeaux, Plymouth -

Fig. 1: Use of an exclusive-or gate to obtain substitute field sync pulses from the head switching waveform in a VCR.

Fig. 2: An exclusive-or gate can be used as a non-inverting buffer (a) or an inverting buffer (b) depending on the way in which it is wired.

Fig. 3: The various items that comprise the drum assembly in the Panasonic NV333 VCR.

to ask about this and was told that as April 2nd was a Sunday they wouldn't honour the cheque. When I asked what this had to do with it I was told "you close on Sunday, we rang to find out". I was flabbergasted in discovering that a bank would phone anonymously to check on opening times and use this as a reason for not clearing a check, and have lost the money. The moral is obviously not to use Sunday's date on cheques.
S. Woodbridge-Smith, Proprietor Argyle TV \& Video, Peverell, Plymouth.

HELP WANTED

Can anyone supply a line output transformer and/or a service manual for an Elizabethan T12 monochrome portable? It uses a Toshiba chassis and components (not to be confused with the Indesit model with the same number!).
Phil Nichols, 19 Kendal Avenue, Copnor, Portsmouth PQ3 5AX.

SOUND FROM NTSC TAPES

Being unterested in life extension and cryonic suspension I have obtained from various American societies NTSC cassettes on their activities. The problem is that conversion costs are way beyond economic good sense. Much if not all the information that may be required is however usually available on the sound track.

If you play an NTSC cassette on a PAL VCR the sound runs slow because the machine tries to lock the 60 Hz fields as though they were at 50 Hz . If you use the doublespeed feature the sound is too fast. I got round the problem by modifying an old audio cassette recorder to
run at variable speed. This was done by fitting a front panel control in place of the speed control preset. The VCR was then run in the fast mode while the audio cassette recorder was used to record the sound, running faster than its usual speed. It was then used for playback with the speed adjusted so that the speech sounded normal.

I would advise turning the video monitor or TV set off rather than applying out-of-lock 525 -line signals for any length of time. A computer monitor with the timebases adjusted for 525 lines shows part of the picture, but the VCR's head circuits have the wrong timing to display it all. Any information on how to get a PAL VCR to produce a locked 525 -line picture in monochrome would be appreciated, also which old models would be easiest to convert.
John de Rivaz, B.Sc. (Eng.), A.M.I.E.E.,
Truro, Cornwall.

PHILIPS V2000 VCRs

B. Ross's article on the Philips VR2021 (February) mentioned the use of components from scrap machines.

With VR2020s, to overcome failure of the capstan pressure roller to engage correctly as a result of stretching/ wear of the threading cord and pulleys, the easiest "fix" is to replace the small pulley at the left front with a medium size pulley. The pulleys are simply cased off and pushed home. Although there's a tensioning arm this has a
limited range of adjustment. I suspect that larger adjustments can be made by separating the left rear pulley assembly and then refitting with the location peg in a different hole, but I've not tried this.

One cause of no deck functions is failure (short-circuit) of a cell in the ni-cad battery. This is likely to become increasingly prevalent.
J.C. Sparks,

Maghull, Merseyside.

VCR TIP

It may be useful to other readers to known that the idler in the Granada VHSCCI is almost exactly the same as that in the Orion VHL3. After removing the cassette carriage to change the idler you have to press eject before refitting the carriage. Otherwise when the cassette is loaded the loading arms move into the play position and the power light flashes in the fault mode. I found this out when working on one of those machines without the help of a manual, not knowing whose design the machine is based on. After successfully placing the carriage back in I found that there's a mode switch on the carriage.
I'm looking for a power-luminance-chrominance PCB for a Panasonic NV333 to replace one damaged by water. If anyone has a working board at a reasonable price please write to the address below.
C. Taylor, 8 Echo Barn Hill,

Kendal, Cumbria LA9 5NA.

Hum Problems

George Wilding

Particularly with older TV sets, where a hum bar's severity has gradually increased over a period of time, with possibly some slight reduction in picture size, the most common cause is partial drying up of an h.t. reservoir electrolytic capacitor, since the capacitor has to be able to take sufficient charge during rectifier conduction to maintain the sets's full current demand. Where there's no significant reduction in picture size or in the h.t. voltage, but usually with field timebase tripping, a smoothing electrolytic is generally at fault. The simplest and surest way to check on these possibilities is to shunt a known good electrolytic across the suspects - the value of the test capacitor need be only a fraction of that of the suspect. The test capacitor should be temporarily soldered in circuit, not held across the suspect: this will avoid damaging surges and sparking.

Particularly when the electrolytic concerned is a multiple type, check the soldering at the earth connection. Where a series resistor has been replaced, check that its value is not less than that of the original.

Where the h.t. or l.t. supply is derived from a bridge rectifier and the hum bar has developed suddenly the usual cause is an open-circuit rectifier diode. When checking remember that unless the transformer's secondary winding can be isolated from the rectifier diodes by plug removal or disconnection the pairs of diodes will, from the d.c. point of view, be in parallel. Thus - see Fig. 1 - when testing D1 the ohmmeter is also across D2. When the diodes aren't isolated from the transformer's secondary
winding the only evidence of an open-circuit diode will consist of an increased forward resistance compared to that of the other pair in the bridge.
Similar conditions apply where a conventional twodiode full-wave rectifier circuit is used, as in many portables (see Fig. 2). Unless the transformer's secondary winding is isolated, if one diode goes open-circuit this will be masked by the other one, ohmmeter application to them in situ seeming to indicate that they are both o.k.

Then in some models two series-connected transformer windings are used instead of a single centre-tapped winding, to simplify manufacture. It's not unknown for one of these windings in a replacement transformer to be connected in the wrong phase, so that only half-wave rectification is provided. This can be a misleading cause of hum and hum bars.

Where a series regulator transistor or i.c. is used and the severity of the hum bar tends to increase as the working temperature rises, leakage within the transistor or chip is very likely.

Some sets use an active ripple filter. The basic circuit is shown in Fig. 3. The great advantage of this arrangement is that the small base current required by the transistor can be provided ripple-free from a relatively large-value resistor in series with a small electrolytic capacitor. The output at the transistor's emitter should thus be ripple free (the value of the electrolytic capacitor in the transistor's base circuit is in effect multiplied by the transistor's d.c. gain). If collector-base leakage develops however the ripple present at the transistor's collector will be partially impressed on the base, producing ripple at the emitter output by normal transistor amplifying action.

The regulator transistor in a series regulator circuit (see Fig. 4) may be driven by one or two low-power types. One of these senses the output, the idea being to maintain the output voltage at a preset figure and in addition
provide active filtering. A collector-emitter short-circuit in the power transistor will thus produce an over-size, hummodulated picture.

Shading and Brightness Modulation

The occasionally encountered shading or brightness variation across the screen is akin to a hum bar except that the unwanted raster modulation occurs at line frequency instead of at 50 Hz or 100 Hz . A common cause of this trouble is serious value loss and/or leakage in a capacitor providing the supply for the tube's first anode(s). Similar trouble can occur in brightness control circuits.

Hum on Sound

There are basically four causes of hum on sound: (1) as with hum bars, inadequate smoothing of a mains-derived supply; (2) pick-up of a mains or field frequency waveform, especially from the magnetic fields around a transformer, due to badly earthed a.f. screened leads, an unearthed volume control casing or misplaced wiring; (3) a "floating" high-impedance a.f. input circuit; (4) modulation of the sound signal by the vision signal (not strictly speaking hum).

The "buzzy" nature of this latter type of interference arises from three factors, (1) the large low-frequency luminance content of the vision signal, (2) the 50 Hz repetition rate of information and (3) the high-amplitude, relatively long-duration field sync pulse trains.

Vision buzz generally arises in the i.f. circuitry or in the tuner. There are several possible causes. In some cases it

Fig. 1: Basic bridge rectifier circuit with RC filter.

Fig. 2: Basic two-diode full-wave rectifier circuit with RC filter.

Fig. 3 (left): Basic active filter circuit.
Fig. 4 (right): Typical series regulator configuration. R1 provides a start-up supply and shares the dissipation with the power transistor Tr1. The error voltage is developed across R2, driving the emitter of Tr2. R3 sets the ouptut.

TV LINE OUTPUT TRANSFORMERS
PRICES INCLJDE VAT \& CARRIAGE

VIDEO HEADS, TRANSISTPRS, IC's, ALSO STOCKED.				
BAIRD: 8290, 8752, 8773, 8180	12.00	ITT: VC200 to VC402 CVC1, CVC2 (FORGESTONE) CVC5, CVC7, CVC8, CVC9, CVC20 CVC25, CVC30, CVC32, CVC45 CVC800, 1100, 1150, CVC40 CVC1200, 1204, 1210, 1215, 2600	$\begin{array}{r} 9.20 \\ 11.50 \\ 10.35 \\ 9.20 \\ \text { P.0. } \\ \text { P.0.A. } \end{array}$	
RANK BUSH MURPHY A774 with stick rectifier A816, T16, T18, 2712, 2715 T20, T22, T26, Z179, A823	$\begin{array}{r} 9.78 \\ 10.35 \\ 11.50 \end{array}$			
		PYE: 169, 173, 569, 368 CT200, CT 20011, CT213 725-731, 735, 737, 741	$\begin{array}{r} 9.20 \\ 10.35 \\ 9.78 \end{array}$	
DECCA: 1210, 1211, 1511 1700, 2001, 2020, 2401, 2404 CS1730, 1733, 1830, 1835 $30,70,80,90,100$ $120,130,140,160$	14.50			
	920	PHILPS: 170, 210, 300 320 series TX, T8, TX2, TX3 mono G8 and 69 Series KT2. KT3. series CTX G11. K30. K4. K40. split diade K12, CF1, 2A, 2B, 3A, NC3	9.209.78P.0.9.209.20	
	9.20			
	9.20			
	P.OA.			
FERGUSDN, THORN: 1590, 15919.20			P.0.A.	
1690, 1691. built in rect.	$\begin{aligned} & 9.78 \\ & \text { P.OA. } \end{aligned}$			
1600, 1615, 1700, 1790				
3000, 3500, 8000, 8500, 8800	P.O.A.	REDIFUSION Mk1 to $5 \quad$ P.O.A.DORIC Mk3 Mk1		
9000, 9200, 9300 series	12.00			
9500, 9600, 9650 series	12.00	SONY KV 1400, 1612, 2000 GRUNDIG, G.E.C.		
TX9, TX10, TX90, TX100, TXP5	P.O.A.	SANYO: 5101, 5103, 7118,7130		
MOVIESTAR 3781, 3787, 8180	12.00	SHARP: C1851H, C2051H, 1405		
TX10 focus unit 10.87		hinari: CT4, CT5		
RDELTTY: FTV12 mono ZX2000 ZX3000 14", $166^{\prime \prime}, 20^{\prime \prime}$ ZX3000 22'	$\begin{aligned} & 10.35 \\ & 16.43 \\ & 27.28 \end{aligned}$	TELEFUNKEN: most models in stock HITACHI: 1471, CPB260, 2501 P.O.A. SAISHO MATSUI SENTRA P.OA.		
		Delivery by return of pos		
CASED AUTO TRANSFORMERS 240V to 115 V USA 2 PIN SOCKET		Tidman Mail Order Ltd.,		
		236 Sandycombe Road, Richmond, Surrey TW9 2EO.		
Size	48.30			
1000 watt 500 watt		Richmond, Surrey TW9 2EQ.		
300 watt	25.30	Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.		
TOROIDAL TRANSFORMERS WOUND				

may simply be due to an over-advanced sensitivity or r.f. gain control. Other common causes are: a.g.c. failure or reduction below the working level appropriate to the signal strength; impaired decoupling of an a.g.c. rail; a 33.5 MHz sound attenuator circuit failing to provide the correct level of attenuation; alignment drift preventing the f.m. sound signal from being correctly positioned on the overall i.f. response curve; and, in particular, misaligned 6 MHz intercarrier sound tuned circuits. Where a ratio detector circuit is used to demodulate the f.m. sound the problem can be caused by a misaligned transformer, an open-circuit detector diode, a badly matched pair of diodes or loss of capacitance in the detector circuit's reservoir capacitor.

Inadequate a.g.c. action will generally also result in a noticeably over-contrasted picture, possibly with a tendency to sound-on-vision (cross-modulation). For confirmation of an a.g.c. fault, feed the aerial via a plug-in attenuator so that negligible a.g.c. action occurs. Then, if tuning for optimum picture resolution coincides with maximum, buzz-free sound, the overall alignment can be regarded as satisfactory with failure of the a.g.c. circuit to develop an adequate control voltage as the likely cause of the trouble.

Where vision buzz is not accompanied by increased contrast and tuning for optimum h.f. definition peaks with maximum volume, check that the fixed trimmer in the 33.5 MHz attenuator trap is not dry-jointed and that the trap is still correctly tuned to $33 \cdot 5 \mathrm{MHz}$.

When vision buzz develops only after a period of use, thus suggesting that a sound i.f./demodulator chip is being adversely affected by rise of temperature, a faulty electrolytic in this area is a strong possibility.

Camcorder Servicing

Part 5

Steve Beeching, T.Eng.

Before considering fault symptoms with solid-state image sensor camcorders, which we'll be doing next month, more ought perhaps to be said about the basic colour processing principles. Its important to understand these if such camcorders are to be handled successfully.

Colour Filter

The colour filter used with solid-state image sensors has magenta (M), green (G), cyan (C) and yellow (Y) sections. As we saw last month, $\mathrm{M}=\mathrm{R}+\mathrm{B}, \mathrm{G}=\mathrm{G}, \mathrm{C}=\mathrm{B}$ $+G$ and $Y=R+G$. We also saw that successive lines are added within the sensor, so that the output from the horizontal shift register is $\mathrm{G}+\mathrm{C}, \mathrm{M}+\mathrm{Y}, \mathrm{M}+\mathrm{C}$ or $\mathrm{G}+$ Y. These represent $G+(B+G),(R+B)+(R+G)$, $(R+B)+(B+G)$ and $G+(R+G)$. The output obtained from the sample-and-hold circuit consists of a luminance component plus an h.f. carrier that's modulated by the colour information.

The simplest way to show what happens is to use

$F=$

Fig. 1: The way in which the signal samples (pixels) are processed to produce separate luminance and $2 R-G / 2 B$ G colour signals on alternate lines with the earlier system that uses filtering and matrixing.
blocks, as before - see Fig. 1. A and B show a section of one line n in $G+C, M+Y$ etc. and $G+(G+B),(R+$ $B)+(R+G)$ form respectively. As shown at C and D, the bandpass and low-pass filters produce an h.f. colour component and a lower frequency luminance component which combines the elements from successive samples (pixels).

Luminance Output

Taking the section shown under the sinewave in A we have

$$
\begin{aligned}
& (M+Y)+(G+C) \\
= & (R+B+R+G)+(G+G+B) \\
= & 2 R+3 G+2 B .
\end{aligned}
$$

This is the luminance component on line n.
On line $n+1$ the sinewave is phase shifted by 180° and the luminance signal this time - see E and F - is

$$
\begin{aligned}
& (M+C)+(G+Y) \\
= & (R+B+G+B)+(G+R+G) \\
= & 2 R+3 G+2 B
\end{aligned}
$$

the same as in line n .

Colour Component

Now since each pair of blocks is, from the colour point of view, the equivalent of the positive and negative excursions of a 4 MHz sinewave, the colour component obtained on line n is

$$
\begin{aligned}
& (M+Y)-(G+C) \\
= & (R+B+R+G)-(G+G+B) \\
= & (2 R-G)
\end{aligned}
$$

while on line $n+I$ we get

$$
\begin{aligned}
& (M+C)-(G+Y) \\
= & (R+B+G+B)-(G+R+G) \\
= & (2 B-G) .
\end{aligned}
$$

Matrixing Outputs

The matrixing system thus yields a wideband luminance signal on each line while $2 R-G$ and $2 B-G$ are produced in alternate lines. We saw last month how simultaneous R - Y and $\mathrm{B}-\mathrm{Y}$ signals are subsequently obtained for PAL encoding.

High-resolution System

With the later high-resolution system that employs sampling and filtering to separate the luminance and h.f. colour signals (see Fig. 8 last month) the equivalent conditions are shown in Fig. 2.

Sample-and-hold circuit SH1, fed with sample pulse 2, samples the $\mathrm{M}+\mathrm{Y}$ signal in line n and holds it over the next $G+C$ component. Sample-and-hold circuit 2 , fed

Fig. 2: Equivalent conditions with the later high-resalution system that uses sampling instead of simple filtering to separate the h.f. components of the output from the image sensor. (a) Line n; (b) Line $n+1$.
with sample pulse 3, on the other hand samples the $\mathrm{G}+\mathrm{C}$ signal. On line $n+1$ SH1 samples $M+C$ and SH 2 samples $G+Y$.

This gives rise to the following outputs. On line n the l.f. luminance (YL) is $2 \mathrm{R}+\mathrm{G}+\mathrm{B}$ and the colour component $2 \mathrm{G}+\mathrm{B}$, while on line $\mathrm{n}+1 \mathrm{YL}$ is $2 \mathrm{~B}+\mathrm{G}+$ R with $2 \mathrm{G}+\mathrm{R}$ colour. As shown in Fig. 8 last month these signals are fed to add and subtract networks. The result of this in line n is

$$
\begin{aligned}
\mathrm{YL} & =(2 R+G+B)+(2 G+B) \\
& =2 R+3 G+2 B \\
\text { colour } & =(2 R+G+B)-(2 G+B) \\
& =2 R-G
\end{aligned}
$$

while on line $n+1$

$$
\begin{aligned}
\mathrm{YL} & =(2 \mathrm{~B}+\mathrm{G}+\mathrm{R})+(2 \mathrm{G}+\mathrm{R}) \\
& =2 \mathrm{~B}+3 \mathrm{G}+2 \mathrm{R} \\
\text { colour } & =(2 \mathrm{~B}+\mathrm{G}+\mathrm{R})-(2 \mathrm{G}+\mathrm{R}) \\
& =2 \mathrm{~B}-\mathrm{G}
\end{aligned}
$$

Now for something a bit more complex. As green is more or less equivalent to $Y L$ the expression $G=K$. YL holds, where K is a constant. So within the adder and subtractor a constant $K . Y L$ is added to the $2 R-G$ and $2 B-G$ signals, giving $2 R-G+K . Y L=2 R$ and $2 B-$ $\mathrm{G}+\mathrm{K} \cdot \mathrm{YL}=2 \mathrm{~B}$, i.e. we end up with 2 R and 2 B on alternate lines in both the systems shown in Figs. 7 and 8 last month.

Correction - Saticon System

On the subject of colour processing there remains a correction to be made to paragraph three of Part 3 (page 470 in the April issue). With the Saticon tube the cyan diagonals, sloping from left to right, give cyan, green, cyan, green etc. (not cyan, gap etc.). The yellow stripes sloping from right to left give yellow, green, yellow green etc. The scanning is horizontal of course, not diagonal, giving in Fig. 2 gap (white), green, gap, green etc. on line n and yellow, cyan, yellow, cyan etc. on line $n+1$. The error was introduced during the editing of the article: J.A.R. has been suitably chastised for trying to oversimplify everything!

next month in

- THE FERGUSON ICC5 CHASSIS

The ICC5 represents a considerable departure from previous Ferguson practice. It's derived from the current Thomson chessis and is being used in fullfeature top-of-the-range models. The new approaches relate to both the mechanical and the electronic aspects of the design. Mechanically the chassis is compact, using plug-in modules to give a degree of flexibility. Considerable use is made of surface-mounted components and the new tuner lies flat on the chassis. Electronically there's microcomputer cont-ol via four bus rails, some new chrominance-luminance processing arrangements and a thyristor field output stage with a common line/field output transformer. In all there's a lot to get to know. J. LeJeune takes you inside the ICC5.

- SATELLITE TV RECEIVERS

Following Steve Beeching's recent review of the Grundig satellite TV receiving system, lan Martin describes his experience with the Amstrad SRX200 system. The only slight problem was cured by carrying out a preset adjustment suggested by Amstrad's technical department.
Nick Beer reports on a couple of faults and some modifications to the Luxor Mk II satellite TV tuner.

- BETTER FIELD SERVICING

Malcolm Burrell describes various ways in which field servicing can be made more effective, with hints on some common troubles and advice on dealing with customer complaints. A few extra tools can make a lot of difference.

- CD PLAYERS - DIGITAL AUDIO

Next month's compact disc player servicing article will concentrate on the audio data recorded on the disc. In order to deal with many aspects of the player it's necessary to understand the make-up and content of the data stream that comes off the disc. The whole subject will be dealt with, including digitising and corling the audio signal.

ORDER YOUR COPY ON THE FORM BELOW:

TO

(Name of Newsagent)
Please reserve/deliver the July issue of TELEVISION ($\mathbf{E 1} 1.50$), on sale June 21st, and continue every month until further notice.

NAME
ADDRESS
\qquad

The Philips CP90/CP110 Chassis

Harold Peters

When I last wrote on the evolution of Philips CTV sets (June 1987) it seemed that the 2 A chassis with its single panel construction would for some time be the main general-purpose chassis. This was not to be. As we went to press the CP90 and CP110 were announced as replacements, a pattern that is about to be repeated.

Many of you, being quite happy with the 2A, must have wondered "why change?" Now that responsibility for the design of Philips TV sets has been moved to the other side of the language barrier perhaps we shall never really know. I suspect that market forces dictated the move, for no sooner had the 2 A become established than flatter, squarer tubes were with us - and with them the "square look" that made it convenient to stick the customer controls on the main chassis itself.

Much of the circuitry in the CP 90 and CP110 is inherited from the 2 A chassis. We will concentrate on the differences therefore. While on the subject of differences, the main changes to be found in the CP110 as opposed to the $\mathrm{CP9}$) are in the line timebase (designed for 110° tubes) and in the chopper power supply, where a TEA1039 control chip is used instead of the CP90's discrete component circuitry. There is also a different colour decoder chip and the circuitry used in the RGB output stages differs. Our comparison will for the most part be between the CP90 and the 2 A .

Mechanical Features

While the overall layout of the CP90/CP110 make them look like a 2 A with user controls added, individual component layout is vastly different between all three chassis.

The control panel area follows the trend of the portables by including the on-off switch on the PCB, but without the attendant hazard of the incoming lead being anchored to tags at the back of the board. With these sets the mains supply arrives at the board via a connector which is close to the switch. At the other end of the front of the board there's a phone jack with a loudspeaker muting switch. Next to it (CP90) chassis only) there are input jacks for baseband video and audio signals. These jacks are connected in parallel with the complementary scart connector pins. In their place in the CP110 there's a contrast control - the only knob on the set. Everything else is done by pressing buttons. And therein lies a snag.

The pushbuttons are black on a dark background and are mounted beneath the tube in such a way that when you use them your eyes will be on a level with and very close to the brightly lit tube face. You just can't see what you're pressing - or anything else for that matter for about five minutes afterwards. This wouldn't matter too much were it not for the fact that the open-memory button is next to the channel-up button, with the result that many a user accidentally starts the tuning-up procedure (or more likely the detuning procedure) when all he wanted to do was to go from ITV to Channel 4. The writer's colleagues all fit a small plastic sleeve over the open-memory button to serve as a kind of braille warning. The CP90/CP110 were designed with remote control operation in mind of course, but there are occasions when
you need to use the front control panel.
The previously mentioned scart socket at the rear of the chassis is a full scart connector with provision for RGB inputs and the control line at pin 8. A button on the remote control handset switches from off-air to baseband signals.

A number of different types of c.r.t.s are used in these sets, including some with grey glass faceplates. This means that minor changes in the timebase and video circuits are required to obtain the correct drive conditions. The things to check when doing a tube swap are the c.r.t. mounting bolts and the degaussing coil fixings, which vary from set to set.

Serviceability on the bench is good, but the design limits serviceability in the field - you are left balancing the chassis on one knee while taking voltage readings . . .

Circuit Features

The tuner, i.f. strip, colour decoder and sync circuits are in the mair. all handed down from the K40/2A series chassis. In the field output stage there's a cascaded pair of transistors in place of the chips previously used. Connectors are fitted so that a teletext decoder and SECAM transcoder can be added - the latter is a board that identifies a SECAM transmission and turns it into "quasiPAL" for processing on the main board.

The chopper and line output stages are conventional. A BUT1IAF is used as the line output transistor (BU508A in the CP110). By having two separate chassis for 90° and 110° tubes the massive 16 -way permutation of components and links found in the 2 A chassis is avoided. The set itself looks no tidier but the circuit is much easier to follow.

The chopper circuit used in the CP90 chassis is much like that in the 2 A , but in the CP110 a TEA1039 chip replaces the discrete control circuitry. With both circuits the chopper goes into a "tickover" state when the set is in the standby mode, to provide sufficient current to keep the remote control receiver going.

The intercarrier sound, switching and audio circuitry are all contained within a TDA8190 chip. A welcome feature here is the inclusion of a tunable sound detector coil in place of a fixed ceramic filter. This enables you to maked sure that sibilance doesn't occur.

Remote Control and Tuning

Both chassis have a remote control system with VST (voltage synthesised tuning). It's a new system, VST2, that retains some of the features of the version used in the CTX chassis, such as the RC5 handset code and the need for a ni-cad back-up battery, but is this time integral with the main board.

The 2A chassis used FST (frequency synthesised tuning), in which a crystal generated frequency is compared to the tuner's local oscillator frequency and a.f.c. is applied to synchronise the two. It was a user-friendly system that permitted station selection by channel numbers, but was rather heavy on components.

VST is more economical with parts and you would think that the ability to turn up the correct varicap tuning

Fig. 1: Basic layout of the Philips CP90 chassis, showing the main components.

Fig. 2: Basic layout of the Philips CP110 chassis, showing the mair components.
voltage on demand would be just as effective as with FST. For the most part it is. There are two shortcomings however. First, the elements inside the tuner settle down physically from new, needing a slightly different voltage to select the required channel than that first set. This is readily overcome by reprogramming the tuning after a few days' use or even after a pre-delivery soak test. The other shortcoming is not so easily fixed but was eventually acknowledged as being a problem. It's the fact that a 1 V change in the varicap tuning voltage at the lower end of Band IV can shift the tuning by up to three channels while the same voltage change at the upper end of Band V hardly moves the local oscillator off vision carrier, due to the exponential voltage/capacitance characteristic of the varicap diodes. Normally at the top end the a.f.c. hardly has any effect at all. It can be increased of course - there are volts to spare with all a.f.c. systems - but then when the user tries to tune in to his VCR down at ch. 33 the set "locks up" or jumps channels due to the excess voltage. This occurred at first with the $\mathrm{CP} 90 / \mathrm{CP1} 10$ chassis, but later models have been extensively modified to improve the a.f.c. action at the top end of the band. The changes are spread all over the chassis, so it's not possible to provide a simple diagram. The gist of what happens is that varicap voltages above 12 V get extra a.f.c. while those below don't. Engineers wanting to know more should ask Philips for Service Tip 92A.

Non-remote Version

When the CP90/CP110 series were being designed it was assumed that remote control would be fitted on all sets. This overlooked the needs of vast numbers of rental customers with basic sets, wanting to renew without going up a step in charges. For this and other reasons a couple of non-remote control versions of the $\mathrm{CP9}$ () chassis were introduced, one with a scart connector and one without. In these sets the front control pushbutton assembly is in part replaced by rotary controls while the VST system is replaced by a TUON (tuning only) unit similar to that fitted in non-remote 2 A sets. Both have the discrete component chopper circuit, both can have the SECAM transcoder added, but neither will accept a teletext board.

Hints and Tips

To work on the CP110 you should have the CP90 data as well. The order codes for the servicing information are as follows:

Item	CP90	CP110
Service manual	72715737	72715947
Circuit description	72515748	72715889
Teletext decoder supplement	72716185	72716185

As with all contemporary designs the $\mathrm{CP} 90 / \mathrm{CP} 110$ has a reliability record that makes it difficult to list "stock faults". In fact most of the service tips that have come from Philips Service relate to the wide variety of different c.r.t.s you may encounter. This is mainly because after production commenced the style was changed with the adoption of a range of tubes with grey-tinted faceplates. This involved changes to the brightness and beam limiting circuits. Another change was to a fastext decoder which Philips perversely call FLOF (full level-one features). If it were not for the Philips Service Link and John Spilsted's carefully maintained fault \log we would not be able to provide the following service notes.

First the chopper power supply, which is best serviced using a variac and with a 60 W bulb as a dummy load in place of the receiver circuitry.

The BUT11AF chopper transistor in the CP110 chassis fails from time to time, usually with high mains voltages. Before replacing it check that C 2661 has been changed from $1,5000 \mu \mathrm{~F}$ to $2,200 \mu \mathrm{~F}$, that $\mathrm{R} 3658 / 9$ have not changed value and that $\mathrm{C} 2657(2 \cdot 7 \mathrm{nF})$ has been removed. Then replace the TEA 1039 chip and bridge rectifier diodes D6657-D6660) as well as the BUT11AF.

When the BUTIIAF chopper transistor fails in the CP90 chassis D 6674 should be changed from type BAX14 to type BYD33J. It's good preventive practice to make this change whenever one of these sets comes in for service.

No sound and vision with the set stuck in the standby mode occurs when D6670 (1N4148) in the CP90) chassis goes open-circuit.

For poor width/e.h.t. regulation, flutter at the edges, with the CP110 chassis check 77671 (BC328) and the chopper transformer. The chopper transformer in the CP110 chassis can be responsible for odd faults such as flicker, jumping, supply collapse etc. because of loose wound foil not connecting with the leadouts. Check the transformer by pressing it. This doesn't happen with the CP 90 chassis which uses a conventional wire-wound chopper transformer.

No results with the $\mathrm{CP9}$, the h.t. being low at 50 V , can be caused by two items in the line output stage, the transformer and D6610.

A shorted line output transformer in the CP110 chassis produces the following symptoms: no results with a loud tripping noise. For striations on the left with this chassis check whether D6630 is open-circuit. If you have intermittent failure to start up with the CP110 chassis check for a dry-joint on the line driver transformer. Unfortunately access to this component is poor.

Two things have been found to cause low width with the $\mathrm{CP} 9(0$ chassis, a dry-joint on D 6609 in the diode modulator circuit and R3600 (8.2 2) going open-circuit. Low width with the CP110 chassis occurs when C2620 $(22 \mathrm{nF})$ goes open-circuit, taking with it R3599 (47 2), R3629 (1M Ω) and R3630 ($47 \mathrm{k} \Omega$).

For lack of height with the CP90 chassis check R3582 $(3 \cdot 3 \Omega)$ which can go high in value.

Field foldover with the CP1 10 chassis should lead to a check on C2574 ($680 \mu \mathrm{~F}$).

For intermittent picture fade with the CP110 chassis, check for a dry-jointed link wire at R3438 on the c.r.t. base panel.

If there's low video from pin 19 of the scart connector with the CP90 chassis, reduce the value of R3517 from $6 \cdot 2 \mathrm{k} \Omega$ to $1 \mathrm{k} \Omega$.

Buzz on quiet sound passages with the $\mathrm{CP90}$ chassis can be cured by replacing the ceramic filter 1103 with the fourlegged type 31027563.

For no sound or vision with a snowy raster present on the CP110 chassis check for a dry-joint on the 10Ω safety resistor R 9051 . This is in the 12 V supply to the tuner and is not shown on the circuit - it's used in place of link 9051.

No sound with the CP 90 chassis has been traced to C2046 being leaky, upsetting the video recognition input to the sound chip. It's not shown on the circuit diagram, being inside the sync module - not an obvious one!

For tuning drift on high channels, see the previous remarks on the VST a.f.c. modifications.

A faulty SAA.5243 chip on the teletext panel can cause
the following symptoms: memory changes pages without being asked; characters are displayed double, e.g. PP11220); the fastext buttons have no effect.

The G90 and G110

After a successful couple of years the CP 90 is already going out of production, the new G90 chassis gradually taking its place. Suffixed/A for mono, /B for stereo and/ E for European, the layout of this chassis is basically the same as the CP90 but as you look in the back you see few conventional discrete components. This is because wide use is made of surface-mounted components which are on
the copper side of the board.
The G90 takes several features from the 3A chassis the multistandard colour decoder chip set, the colour transient improvement (improved!) and the on-screen channel display. This latter feature will also show up to eight fault conditions, F()-F7. If there's no raster you can still find what code is jeing produced by using an oscilloscope to measure the off time of the flashing LED just below the c.r.t.

Another feature is the "sleep" facility. You can program the set, in increments of fifteen minutes up to a maximum of ninety minutes, to turn off to standby. The Gllo version is due this autumn.

Product Review: Satellite TV Filter

In the August 1988 issue I described a simple i.f. bandwidth filter unit for use with weak satellite TV signals. It can lift an otherwise unusable signal to something approaching watchable quality. Using new components from Maplin, it costs only around $£ 3$ to build.

Recently I noticed that Micro-X (telephone no. 01-459 $12000)$ has introduced a variable bandpass filter, the Phantom IFP70, for use with 70 MHz i.f. receivers and obtained one for evaluation. It's housed in an attractive black aluminium case with contrasting brushed aluminium front panel and measures approximately $6 \times 13 / 4 \times 4 \mathrm{in}$. excluding the two front knobs that add a further half inch depth and the rear sockets. The front panel controls are for power on/off, gain and bandwidth. Even when the unit is not being used as a filter a 12 V input is required to maintain signal continuity via the switching diodes. The unit incorporates a stabiliser and will work with a supply of $9-15 \mathrm{~V}$, via a standard low-voltage tubular 2.5 mm plug. Input/output at 70 MHz is via American F sockets. Though F plugs are simple they are difficult to wire unless a crimping tool is available. With the larger Radio Shack F plug however you can solder the coaxial screen to the plug body on its crimping ring, two layers of heatshrink providing adequate mechanical strength. Maplin can supply inexpensive F plugs.

The filter is connected into circuit via the i.f. loop facility at the rear of the receiver - you will find that this is present on most receivers, intended for making a connection at 70 MHz to an unscrambler. It also gives you access to the i.f. strip to enable filtering to be introduced connect the receiver's output to the filter's input and the filter's output back to the receiver's input. Most receivers also have F connectors, so it may help to obtain from a dealer two F-plugged leads, say about two feet long, to make interconnection simple.
Imported manual receivers like mine tend to have minimal facilities. They offer maximum "hands-on" operation however. It's unusual to find dual bandwidth video switching, the i.f. bandwidth generally being fixed at around $30-32 \mathrm{MHz}$. Because of this you will tend to get sparklies with a weak signal - also when a half transponder signal is displayed via a full bandwidth receiver. For improved results with weak or half transponder signals you need to optimise the i.f. bandwidth. The aim is to improve the signal-to-noise ratio.

Operation of the Phantom IFP70 unit is extremely simple and the results can be dramatic. Connect the filter to the i.f. loop and apply 12 V . Set the gain control to mid-

Roger Bunney

travel and the bandwidth control fully anticlockwise (wideband position). Select a weak satellite TV downlink signal, push the power button to the on position and rotate the bandwidth control slowly clockwise. You will see the picture change. Many receivers don't have a readily accessible a.f.c. on/off switch, and as the bandwidth is reduced you may get slight detuning. Correct for this with slight adjustment of the main tuning knob. If the a.f.c. can be disabled easily do this to avoid the need for retuning. Reducing the bandwidth gives a dramatic reduction in the residual noise (sparklies) on the screen they may even disappear, leaving you with a very good picture.

Bandwidth limiting is a very effective means of noise reduction. Half transponder signals from Intelsat craft can be lifted out of the noise since you are tailoring the i.f. passband to the bandwidth of the incoming signal. With weak full transponder signals, gradual bandwidth reduction provides a considerable improvement, though there's a critical point where highly saturated colours such as red or blue go into heavy noise. Slightly backing off the bandwidth control will give you an acceptable compromise.

With the gain control at minimum (fully anticlockwise) the unit introduces about 10 dB of attenuation. At normal mid-setting the gain is around 14 dB .

The filter has a maximum bandwidth of $32 \mathrm{MHz}(-6 \mathrm{~dB}$ points) and gives continuous reduction to 12 MHz . The input/output impedance is 75Ω.
Inside the unit there's an extremely neat and well designed board. The single sided A4 instruction sheet describes it as a "dual varactor tuned notch with threepole fixed 70 MHz bandpass filter".
I found that all noise could be removed from Astra signals - reception of these at my location is through trees and is thus normally noisy. With a 1.5 m prime-focus dish directed at $18.5^{\circ} \mathrm{W}$ I found that almost sparklie-free reception of the Italian downlinks was possible. This was also the case with Scandinavian signals from $1^{\circ} \mathrm{W}$. The EBU news feed from $27^{\circ} \mathrm{W}$ was similarly noise-free apart from the reds. I don't have access to measuring equipment, but a comparison of the results obtained with photographic signal/noise charts displaying noisy offscreen images shows that the unit can provide a very worthwhile $10-12 \mathrm{~dB}$ improvement in the signal-to-noise ratio.

The unit is perhaps expensive at around $£ 100$ plus VAT but I was so impressed with the sample that I purchased it.

AKAI

Machine Nos.: VP77 VP88 VP7100 VP7200 VS1 VS2 VS3 VS5

AMSTRAD

Machine Nos.: VCR4500 VCR5200
Machine Nos.: VCR7000
FERGUSON/JVC
Machine Nos.: 32928903 3V00 3V01 3V06 3V16 3V22 3V23 3V24

FISHER

Machine Nos.: FVH - D520 D530 D620 D720 P420 P510 P520 P530 P615 P620 P622 P710 P720 P721 P722

GEC
Head Part Nos: : 54581615458165
Machine Nos.: $4000 \mathrm{H} 4001 \mathrm{H} \Delta 002 \mathrm{H}$
Head Part Nos.: 5458282545841354584155458992
Machine Nos.: 4001 H 4004H

HITACHI

Machine Nos.: VT 3000
Head Part Nos.: 5458104
Machine Nos.: VT4000 VT4200 VT5000 VT5500
Head Part Nos.: 54581615458165
Machine Nos.: VT6500 VT7000 VT8000 VT8040 VT8100 VT8500 VT8700 VT9000 VT9300 VT9500 VT9700 VT9900
Head Part Nos.: 5458282545841354584155458992
Machine Nos.: VT11 V14 VT33 VT34 VT330 VT340 VT5030 VTP10 VTP30 VHS ITT
Machine Nos.: VR3605 VR3033 VR3905 VR3913 VR3914 VR3935 VR3943 VR3963 VR3993 VR3975 VR3985 VR3986 VR3833

JVC (see also Ferguson)
Machine Nos.: HP 4000 HR2200 HR3300 HR3320 HR3330 HR3350 $\begin{array}{llllllllllll}\text { HR3360 } & \text { HR3660 } & \text { HR3750 } & \text { HR3860 } & \text { HR4100 } & \text { HR7200 } & \text { HR7600 } \\ \text { HR7610 } & \text { HRD110 } & \text { HRD111 } & \text { HRD120 } & \text { HRD121 } & \text { HRD140 } & \text { HRD150 }\end{array}$ HRD220 HRD225

MITSUBISHI

Machine No.: HS200
Machine
HS7008

national panasonic

Head Part Nos.: DDRMU 0002 HE17/21/27
Machine No.: VC581/2/3 651 681/2 3/5 659699 Head Part Nos.: DDRMU 0001 HEOO 0002 HE02 040506 Mashine No.: $2 C 9$ VC110 VC200 VC220 VC300 VC381 VC384 HS I C386 VCB C9100 VC9300 VC9400 VC9500 V 9600 VC9700 VHS K Head Part Nos.: DDRMU 0001 HE 09

Machine No.: VC7300 VC7700 VC7750
Head Part Nos.: DDRM
Machine No.: VC6300
Machine No.: VC6300
Head Part Nos.: DDRMU 0001 HE12
WS H Mead Part Nos.: VC8300
Head Part NoS: DDRMU 0001 HE14
SANYO
Head Part Nos.: 1430242 T01700 1430242 T22300
Machine No.: VTC5000 VTC5150 VTC5300 VTC5400
Head Part Nos.: 1430242 T02200
Machine No.: VTC5350 VTC5500
Head Part Nos.: 1430762102000
Machine No.: VTC9300 VTC9455 VTC9500
Head Part Nos.: 143072 T02100
Machine No.: VTC9300PS VTC9350

SONY

Head Part Nos.: A6762 044A, 044E, 054A, 147A Marhine No.: SL3000, 8000, 8080, SLT 6MM, 7, 7E, 7ME Head Part Nos.: A6762 012A, 038f, 055A, 129A
Machine No.: SL5W 50005100 SLC5, C6, Head Part Nos.: A6762 072A, 122A, 136A, 139A, 213 A vHS A Machine No.: SLC20. C30, C33, C40, C44 VH700 SLF1, F30, HF72, T20, T30

Head Part Nos.: VEH0099 0103011501210131 Machine Nos.: NV300 NV322 NV332 NV333 NV340 NV399 NV2000 NV8200 NV8400 NV8600 NV8610 NV8620
ead Part Nos.: VEHO171 VEH0218
Machine No.: NV370 NV370
Machine No.: NV 330 NV777
Machine No.. N. V30 NVI
Machine No.: NV430
achine No.. NV43
ead Part Nos.: VEH0174
Machine No.: NV366
SHARP

IF1, F30. HF72 I20, T30

HEADS

VHS B

VHS M
BETA w

VHS X

VHS S

VHS C
VHS D
VHS E
VHS L
VHS F

BETA D
BETA D
BETA X
BETA X

BETA A
beta b
Beta w

FERGUSON/JVC

	$01 \times 0-003-381$
VID1	$01 \times 0-018-024$
VID2	$01 \times 0-018-025$
VID3	$01 \times 0-018-729$
VID4	$01 \times 0-040-006$
VID5	$01 \times 0-033-454$
VID6	$01 \times 0-040-007$
VID7	$01 \times 0-040-017$
VID8	$01 \times 0-065-009$
VID9	$01 \times 0-065-016$

GEC/HITACHI

VID11	V5577355
VID12	V6413663
VID13	V6861471
VID14	V6861482
VID15	V6886971
VID16	V2423461

NATIONAL PANASONIC

VID17	VXP0329
VID18	VXP0344
VID18	VXZ0078
VID19	VID20
VXP0521	
VID21	VXP0463
VID22	VXP0432
VID23	VXP0401
SANYO/FISHER	
VID24	4529V10800
VID25	$1430662 T 01201$
VID26	PR2758
VID27	1430490400900
VID28	1430420400300

SHARP

$\begin{array}{ll}\text { VID29 } & \text { RMOTP1029 } \\ \text { VID30 } & \text { RMOTV1008 }\end{array}$
VID30 RMOTV1008
VID31 NIDL0006
$\begin{array}{ll}\text { NID31 } & \text { NIDLO006 } \\ \text { VID32 } & \text { NIDL0005 }\end{array}$
VIDEO LAMPS/BULBS
VID34 LA9295
$\begin{array}{lll}\text { VID34 } & \text { LA9295 } & \text { Universal lamp without socket } 290 \mathrm{~mm} \\ \text { VID35 } & \text { LA9210S } & \text { Universal lamp with socket } 310 \mathrm{~mm} \\ \text { VID36 } & \text { NAT/PAN } & \text { P.C. MTG. leadiess lamp }\end{array}$
VID37 SHARP $9300 \quad$ Eic. lamp plus plastic shroud

Tension band T3292/PU545904A
Tension band T3292/PU545904
Take up idier T3292/PU47752
Rewind ider assembly T3V16/PU49282
Take up idier T3V00/PU49280
Loading bell T3V29/30/PU48941-2
Take up idler $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 48967 \mathrm{~B}$
Take up iler $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 48967 \mathrm{~B}$
Reel motor assembly $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 1381 \mathrm{~V}$
Reel motor assembly $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 1381 \mathrm{~V}$
Cass. housing Assy. $3 \mathrm{~V} 35 / 36 / 38 / 39 /$ PU29825

GEC 4100 /Hitachi VT 11 E capston motor
GEC 4000 /Hitachi VT33 f// rewind arm
GEC 4001/2/Hitachi 93/9500 $1 /$ rewind arm
GEC $4001 / 2$ Mitachi $93 / 9500$ play ider assy
GT541 Tuner Unit

Reel motor VTC5000/5150
Reel drive pulley
Pinch roller VTC5000/5150
Gear idler Fisher FVH P615 Gear idler Fisher FVH-P615

Capston motor 73/9300
Reel motor VC9700
Idler VC387H etc
Reel idler VC9300 etc
Idler wheel VC2300

NEW IN STOCK, A LARGE RANGE OF SLIMLINE REMOTES.
JUST SUPPLY MAKE, MODEL \& PART No. IF POSSIBLE
FOR AN IMMEDIATE QUOTE. AVERAGE PRICE £18.00

NEW FAX NUMBER 0902-29052
2.55
5.00 5.00
6.20 6.20
6.95
0.26 6.95
0.26
4.50 0.26
4.50
2.90 2.90
2.95

	AKAI AkA			JVC137		
$\mathrm{VP}_{\mathrm{VP}} 78$	DBK135 DBK 135	${ }_{¢ 0.86}^{80.86}$	HR 2200 $H R 3300$	DBK137	${ }_{7}^{71.65}$	
VP 7100	086103	${ }_{81} 1.65$	HR 3330 $H R 3360$	O8k 126	${ }_{51.76}$	
VS !	08K134	${ }_{81} 1.76$	HR 3360	${ }^{08 k} 103$	9.66	
VS 2 EG		${ }_{61.08} 76$	HR 36560	OBK103	E1.65	
VS 5 EG	DEK10\%	${ }_{50} 96$	HR 4100	OBK127	52.25	
VS 10	DEK136	$\$ 1.65$	HR 7200	OBK139	c0. 86	
VS 9300	OBK103	$\ldots 1.65$	HR 7600	D8K138	50.86	
VS 9500	DBK103	¢1.68	HR 7650	OBK132	${ }^{50.86}$	
VS 9700	D8K102	81.96	HR 700	D8K108	19.76	
VS 9800	DBK103	§1.65				
FERGUSON			NATIONAL PANASONIC			
3292		${ }^{21} 165$	NV 300		${ }_{9} 9.76$	
$3 \vee 01 / 16$	DEK103	${ }_{81} 1.65$	NV 330	D8k 110	¢1. 76 8.75	
$3 \vee 22$ $3 \vee 23$	D8k 08 K (083	${ }_{50.83}$	NV 336	v107521	81.52	
$3 \vee 24$	DSK 37	20.68	NV 450	овк133	${ }_{51} 130$	
$3 \vee 31 / 32$	V107806	50.94	NV 777	DBk 131	¢1. 08	
$3 \vee 35 / 36$	OBK150	${ }^{50.38}$	NV 2000	OBk 109	¢1. 76	
$3 \vee 38 / 39$	DBK 150	${ }^{50} 88$	NV 3000	DBK113	¢1.76	
$3 \vee 4243 / 44$	ViD7540	50.70	NV 7000	OBK111	c1.08	
3 3	VID7540 V107540	${ }_{50}{ }^{50} 70$	NV 72000	D8K130	£1.76	
	FISHER			SHARP		
VES 7000		${ }_{\sim}^{512} 5$				
VES 76000	D8k 005	${ }_{\text {E. }}^{5}$. 34	VC $381 / 3838$	D8K116	${ }_{8}^{1} 1.52$	
VBS 9000	OBK10	91.76	VC 600066300	V107545		
FVHP 420	V:D7532	18.62		OBK117	£1.76	
	GEC		VC 6500ve 7300		¢1.76	
				DEK118	${ }^{1} .76$	
$\checkmark 4000 \mathrm{H}$	- ${ }^{\text {DSKK129 }}$	${ }_{50.68}$	VC 93009500VC 9700	(eak	$\stackrel{1}{9} .58$	
\bigcirc		${ }_{\text {cke }}$				
$\checkmark 4100 \mathrm{H}$	овк128	E1. 24				
	HITACHI		St 8000	SONY		
V1 11-V188			$\underline{20.66}$			
Vt 3000	OBK 103	${ }^{81} 1.65$		SL 80800	DBK115	§2. 66
VT 5000	OBK 125	${ }_{\text {c1 }}^{51} 4$	SL 85000	DBK15	${ }_{52} 5.66$	
V1 65000	OBK 142	${ }_{50} 50.78$			${ }_{51} 55$	
VI 8000	OBK129	¢0.68	SLC 5	- ${ }^{\text {ORK100 }}$	${ }^{4} .36$	
VT 8500	DEK144	¢0.68	SLC 7	D8k100	¢1.55	
VT 9300	OBK129	¢0. 50	SLC 9	OBK100	81.76	
VT 9500	OBK129	¢0.50			51.55	
	SANYO		SLT 7 MESLT 7 MER	$\begin{aligned} & \text { D8K } 100 \\ & 08 k 100 \end{aligned}$	${ }^{81.55}$	
VTC 5000.5150	Virsi	£1. 19				
VTC 6000	V107807	¢1. 19		TOSHIBA		
VIC 5300	dekio	¢0.70				
VIC 5400	O8K10 D8K106	${ }_{\text {¢ }} \mathrm{E} .780$	${ }^{-} 66.67$	$\checkmark 107540$	¢0.91	
VTC 6500	vib7533	E0. 78	$\vee 7540$$\checkmark 8600$	D8k 123$08 \mathrm{~K} \times 124$	${ }_{81} 8.76$	
VTC 9300	OBK104	${ }^{2} .66$			\%1.76	
VIC 9350	DEK145 VID7809	${ }_{50} 8.61$	$\begin{array}{r} \\ \times \\ \times 5600 \\ \\ \hline 5250\end{array}$	Y 107810 DSk 148	${ }_{7}^{20.96}$	
VTC M21/30.33	V1D7809	${ }^{2} 0.61$	$\begin{array}{r} \vee 5280 \\ \vee 5280 \\ \vee 545 \end{array}$		52.66	
VTC M50	V1D7809	¢0.61			81.76	

Full list available with order or SAE please $G^{\prime \prime} \times 4^{\prime \prime}$ Telephone 0902-712083 (24hr. answering machine for Access \& Barclaycard users)

Prices subject to alteration without notice Stack queries by poss only For quantities ol $100+$ per line - Please
Orters Iram Gowt lissitutions, schools.
Nationals etc., accepted with otrical order
All goods should be delvered

VCR Clinic

Panasonic NV7200

During the space of a week we've had two of these machines with the same fault. The symptom is that at the beginning or end of a cue or review session the machine appears to enter the still-frame mode for a few seconds then reverts to stop. The mode switch can sometimes be responsible for this. In both of these machines however the cure lay in replacing both loading belts. Slippage of these belts is more often accociated with failure to complete tape loading.
E.T.

Panasonic NV-G25

The complaint with this machine concerned LP recording: there was a poor picture, poor sound and the speed varied. We found that the results in the SP mode were not very different and that the tape was riding high past the audio/control head stack then wrinkling between the capstan and the pinch roller. The problem was caused by a faulty pinch roller - the one that lowers itelf into position. A new one and a clean up restored good results in both the LP and the SP modes.
E.T.

JVC HRD400

If you come across a case - possibly intermittent - of no E-E sound and no recorded sound check for a hairline crack in the print at the rear of the main PCB (03) adjacent to the left-hand unsoldered lug of the r.f. modulator can. It seems that the modulator "rocks" when the aerial plugs are inserted or withdrawn, stressing the PCB.
E.T.

Panasonic NV2000

This machine had a mixed bag of symptoms: no clock display, the tuner not working, the capstan running slow and erratically and hum bars on the monitor screen. All were cleared at one stroke when $\mathrm{C} 1009(1,000 \mu \mathrm{~F}, 35 \mathrm{~V})$ in the power supply section was replaced.
E.T.

Hitachi VT120

The customer's report was that the picture was intermittent. On test the machine displayed a noise bar that rolled through the picture, as though there were no control pulses. Both own recordings and prerecorded tapes were affected. We found that the control pulse input to the servo i.c. was present and correct, but a check on the other waveforms around IC 601 revealed that the capstan phase control pulse at pin 11 was missing. As all the inputs were correct the chip was replaced, clearing the fault.
A.D.

Ferguson FV22L

A modification kit for this machine has been produced to deal with intermittent faults in the timer mode. The faults that occur are that the machine will switch out of a timed recording or will not stop at the selected time, the recording continuing until the end of the tape when the cassette is ejected.

Reports from Eugene Trundle, Alfred Damp, lan Bowden, E.M. Beddow, Nick Beer, V.W. Cox and John C. Priest

This modification also cured an intermittent fault in the "instant record" mode. What would happen was that if the machine was set to record in this mode for over an hour it would turn itself off approximately one hour before the selected time.
A.D.

Philips VR6362

This machine would switch on and off but wouldn't accept a cassette. When a 9 V battery was connected across the loading motor the mechanics would thread in and out correctly, thus exonerating the eject rack and differential gear assembly. The fault was being caused by the load motor driver chip which had a short-circuit output pinthe pin that drives the load motor in the threading in direction.
A.D.

Mitsubishi HSB30

There was no playback picture with this machine. We traced the playback f.m. into and out of IC2A1 and then to transistor Q2B2 where it disappeared. Replacing Q2B2 cleared the fault - it was open-circuit.
A.D.

Panasonic NV-F70

This machine was completely dead. The mains fuse was intact so the fault was in the switch-mode power supply, where the primary side wasn't starting up. C1109 (1 $\mu \mathrm{F}$, 400 V) should provide a pulse to the chopper transistor within IC1101 (STRD6008X) to get things going but there was no pulse at pin 2. The i.c. was found to have an internal short-circuit between pin 2 and pin 4 (ground), a replacement restoring normal operation. Note that there's an error on the circuit diagram, where the base and emitter of the chopper transistor are shown shorted together.
I.B.

Panasonic NV-G12

When play was selected the drum motor didn't move so the machine cut out. This was quickly traced to an opencircuit fusible resistor, $\mathrm{R} 2012(6.8 \Omega, 0.5 \mathrm{~W})$, which is connected from the unregulated 14 V supply to the common connection of the three-phase DD drum motor. The resistance to chassis on the motor side was only $7 \cdot 5 \Omega$ this turned out to be the resistance of one phase of the motor.

A check at connection P201 revealed where the short was - on the winding connected to pin 1. When the head amplifier was removed to check the leads the reason for this was found. One of the ten leads was trapped between the right-hand head amplifier support bracket and the main chassis. It must have been like this since the machine was made some eighteen months ago.
I.B.

Ferguson FV10

The reported fault was that this machine wouldn't accept a tape. This was so - if a tape was manually inserted the fast forward and rewind modes would operate but play
wouldn't, as there was no drum rotation. The tape could also be ejected, but there was no carriage-stop detection and the front loading motor would keep going for a few seconds until the machine switched itself off.

The cause of these problems was loss of the switched +12 V and +5 V supplies due to a faulty multiregulator chip, IC801 (STK5481). It's mounted on the right-hand side of the main PCB.
I.B.

Philips VR6460

This machine nearly drove us round the bend. The customer's complaint was that it played back its own recordings quite well but with films from the hire shop there were wow on sound and noise bars on the picture. Our field engineer gave the machine a thorough clean up, paying particular attention to the tape path and the control head, though the machine worked perfectly while he was there.

A week or so later the inevitable repeat call came and the machine was brought back to the workshop, together with a film. Once it was opened up on the bench our first step was to try an MH2 test tape and see whether it would play this back correctly. It did. Several other tapes were tried and seemed to be o.k., but the machine flatly refused to play the film supplied. The capstan servo seemed to lose lock, as if the control pulses were missing. As the tape was suspect it was tried on another machine, which played it back normally. So now we were thoroughly confused!

After a lot of time was wasted scoping the control pulse outputs etc. and setting up the lateral position of the control head as per the manual we discovered that if the back tension was reduced by resting a finger against the tension arm the fault almost cleared. A similar effect could be obtained by increasing the pinch roller pressure. The pinch roller and back-tension band were replaced and, you've guessed it, the fault was still present!

We decided that the back tension was excessive. This was backed by our observation that the tape seemed to be very tight between the exit guide and the pinch roller. At this point the penny dropped. Could the lower drum be too shiny so that the tape was sticking to it? Changing the lower drum completely cleared the fault. The price of this unit was $£ 220$ from Philips, $£ 150$ from Panasonic. Fortunately the machine was insured!
E.M.B.

Ferguson FV11

The temporary field engineer accused the tuner of being the cause of no signals. He ought to have known better! There was no tuning voltage - the regulated 30 V supply was being lost across R53 as there was a short from the tuner's BT pin to chassis. We found that the pin hadn't been trimmed and was shorting to the bottom cover. When this was corrected the machine still didn't tune as there was now no load on the BT rail. The control transistor had no drive from the frequency-synthesiser tuning chip IC3 as there was no 5 V supply. A break was discovered in the print between IC3 and the 5 V regulator IC1.
N.B.

Sanyo VHR1300/Salora SV6600

The customer had complained about poor pictures and the heads were badly worn. When these were replaced things looked fine. While the machine continued to play
the test tape I relocated the PCB that hinges over the mechanism: the drum and capstan servos then began to vary widely. By flexing the board both motors would stop and the machine would unlace. The fault could be provoked by prodding or poking in the servo area of the board to any degree. As the fault was so general I checked the servo d.c. supplies and found that the always 5 V and 15 V voltages disappeared between CN1003 and CN 1004 . The tracks that link these two connectors run right at the back of the panel, over the r.f. connection sockets, and were all broken in two places each. A point to note if you have a heavy-handed customer.
N.B.

Philips VR6462/Pye DV464

For failure to eject fully, failure to rewind a tape fully into the cassette before eject, and sometimes swallowing a cassette when attempting to extract a partially ejected cassette procced as follows.

Check the alignment of the guide reference holes D and E on the control disc or cam gear (item 247, part no. 4822 466 21014) below the chassis. Operate the mechanism two or three times then recheck the alignment. If it has shifted, examine the V-shaped lever (item 242, part no. 482240352252) and the glide block or cam follower (item 238 , part no. 4822466813650) which is pivoted on the end of the shorter arm of item 242 and rides in the spiral groove of item 247. Sometimes the pin set into the end of the lever arm on which the guide block pivots becomes loose in its setting, allowing the guide block to float loose and the linkages to go out of sync.

If this is the case item 242 can be replaced. It can also be repaired as follows. Remove lever 242, taking care not to lose the pin if loose. Remove the pin and put it safely to one side. Also remove and take care not to lose the fine spring that surrounds the pin and locates in a small hole in the arm. This spring is not shown in the relevant diagram and doesn't have a part number - if you lose it you will have to order the lever complete.

Take the lever minus spring and pin and lay the end flat on a firm surface, vice jaws or a steel block. Give the pinhole area of the lever two or three light taps on the top and bottom with a small hammer. In this way the hole will be shrunk sufficiently to allow the pin to be pressed firmly and securely back into place. This must be done carefully, for example by lightly gripping the lever and pin between vice jaws, holding the pin in exact register and perpendicular to the surface of the lever with fine-nosed pliers or tweezers, and pressing firmly home by applying pressure from the vice. Warning: before you apply pressure make sure that the pin is on the correct face of the lever - it's possible to insert it from the other side. When the pin and lever have been correctly fitted reassemble the lever, glide block and control disc as described in the manual, paragraph 2.1.19. Finally, after checking the alignment of reference tholes D and E as above test the load and eject action a few times and recheck D and E again.
J.C.P.

Sanyo VTC5000, VTC5150 etc

For no colour in the record mode but playback of previous recordings being o.k., check whether diode D1008 is open-circuit. When it goes open-circuit the $5 \cdot 12 \mathrm{MHz}$ signal doesn't reach the colour down-converter. Intermittent colour recording and return to the E-E mode is caused by dirty contacts on the record/playback relay RY1001.
V.W.C.

Vintage Scene: The Telectroscope

Chas E. Miller

On an autumn day in 1896 the crowds going about their business in Vienna's Karlsplatz were faintly puzzled to see men placing a mysterious black box on the sidewalk, facing the Karl's Church. After making some adjustments to the siting of the box and to its unrevealed contents the men jumped into a carriage and were driven off at a gallop. Little did the passers-by realise that they were witnessing the setting up of an early demonstration of cable television.

Jan Szczepanik

The inventor whose brainchild was about to be shown to a select gathering was a 24 year old Polish emigrant called Jan Szczepanik (pronounced Shtaypanic). Born in the little Galician village of Krosno on July 12th 1872, Szczepanik had been orphaned at an early age and raised by an aunt. He was trained as a schoolteacher and received his diploma in 1892. His first teaching job was at the village school in Korzyna, where he was apparently popular with the pupils but not his employers, who found at he was devoting a great deal of his time to optical and electrical experiments. These were directed partly towards inventing a weaving machine that would take the timeconsuming drudgery out of the manufacture of large tapestries, and partly towards producing a device that would enable him to see at a distance, i.e. television. The factors behind these twin passions related to his boyhood in Krosno, where he saw men and women working long, ill-paid hours at hand-looms, and to a promise he'd made to a young lady that he would someday construct a machine that would enable him to see her no matter how far away she might be. That's the story, anyway.

By late 1894 Szczepanik believed that he was on the verge of success with what he then called his "distance seer", on paper at least. But he was urgently in need of funds to produce a working model. He wrote to the Austrian Minister of War to the effect that he had an invention of great military importance and that it would be presented to him in return for money with which to develop it. Why Szczepanik chose Austria in preference to his native country is not related by history: maybe it was a second choice after being turned down by Warsaw. Be that as it may, after being invited to bring his drawings to Vienna Szczepanik failed to convince the Austrian authorities that his invention had any future and was soon reduced to hawking it around the capital in an attempt to find a backer. After two months of this he gave up and went back to his teaching job in Poland.

Unknown to Szczepanik at the time however the news of his work had not after all gone unnoticed. A Viennese businessman by the name of Ludwig Kleinberg decided that there might just be something in it, and wrote to Szczepanik inviting him back to Austria. When he returned Kleinberg set him up with a small factory, workmen, materials and capital, and gave him a brief to produce a working example of his revolutionary weaving machine. Kleinberg may well have come to regret his actions, for during the following months he was brought close to bankruptcy by the escalating cost of Szczepanik's experiments. The eventual urgent need to raise additional
capital was met by Kleinberg taking a wealthy German architect called Franz Hagen into partnership with him. From this point on matters seem to have improved rapidly. Patents were soon taken out, and these realised some $£ 1(0),(0) 0$ - a vast sum in those days - from licencees in Germany and England. Although an account of how the weaving machine worked may not appear at first sight to have much to do with television, I must ask you to bear with me - it will reveal a surprise.

The Weaving Machine

The basic principle employed was to photograph any desired design using a special giant-sized camera, at that time the largest in the world. A contemporary photograph showing Szczepanik standing alongside this camera suggests that if he was of average height it must have stood over six feet high. When the bellows were at full stretch it was some twenty feet long. It weighed over two tons, and had to be supported by a small railway track. The lens was five inches in diameter. If my rusty knowledge of photography serves me correctly this indicates a maximum aperture of f 48 , so lengthy exposures must have been needed with the glass plates used. These were correspondingly massive, being four feet square and weighing in at 651 b . Each plate was ruled into over 800,000 tiny rectangles to produce - and this is the word that leaps from the 90 year old description - a raster.

So here, in the unlikely context of a tapestry factory, we find the first reference to a word known to all of us but whose origin I've never found to be explained in any of the technical books I've read. When the photograph of the desired design was printed on paper the rectangles forming the raster corresponded to the different threads, bindings and so on of the tapestry to be made. It was claimed that this method made it possible to produce in less than an hour a pattern that would previously have taken six to eight months to prepare by hand. This sounds comparable to the kind of time savings made possible in certain jobs nowadays by the use of a computer. With the huge potential savings in costs for textile firms thus made possible, it was a forgone conclusion that the idea would pay off. Soon money was flowing into Szczepanik's hands, enabling him to restart his television experiments.

Television Experiments

Reading the account of Szczepanik's experiment in the Karlsplatz in 1896 one is immediately struck by the preamble. It dealt with the persistence of vision and the need to break pictures up into a large number of elements in terms little different from those to be found in modern textbooks.

The transmitter employed a scanning disc perforated with upwards of 40,000 holes, revolving between a lens and a circular selenium cell. As the scanning disc rotated, successive picture elements reached the selenium cell whose resistance varied in step. Yes it does sound like a description of Baird's apparatus, but at this time Baird was an eight year old schoolboy. Furthermore Szczepanik considered the scanning disc to be a crude way of going
about it and within a short time had abandoned the disc in favour of something better. It did serve however to convince his business partners that his telectroscope was a practical proposition.

The transmitter Szczepanik had set up in the Karlsplatz was connected via the Viennese public telephone network to a receiver in Herr Kleinberg's house, where the selenium cell's output was received as a constantly varying a.f. This was applied to a receiver which had a lightmodulating device consisting of two thin metal plates whose close proximity enabled them to be vibrated electromagnetically by the incoming a.f. As they did so the gap between them varied, and by placing the device in front of a light source - an electric lamp - it acted as a light modulator, in step with the transmitter's output. We don't know the frequency range of the Viennese telephone system at the time, but it seems doubtful whether the modulating frequencies received could have exceeded a few thousand Hz . Another scanning disc that revolved, hopefully at least, at the same speed as the one in the transmitter was placed next to the light modulator. In this particular experiment there was no attempt to view the picture produced directly. Instead it was focused on to a photographic plate. When this was developed it showed a poor but unmistakable image of Karl's Church. It was sufficiently convincing for Szczepanik to be given adequate financial means to embark on improvements.

Improvements

The first of these was the replacement of the clumsy scanning discs with an ingenious system of vibrating mirrors. Each was made of highly polished metal some two inches long by quarter of an inch wide, with most of the reflective surface blacked out to give just a knife-edge strip along its length. Two were employed, arranged at right angles to each other. They were mounted on "sounding boxes" - a type of diaphragm - designed to respond to sounds of around 4 kHz produced by an electric bell. The sounding boxes were provided with tuning arrangements to ensure that both responded accurately to the bell and vibrated in perfect unison. When they were vibrating the effect so far as the human eye was concerned was not of knife edges but of a small rectangular mirror.

The image from the lens was focused on the first, horizontal mirror which, as it vibrated, had the effect of scanning the image vertically. Light from this image was focused on to the second mirror which, being vertically mounted, scanned the image horizontally. The overall effect was to reduce the image first to a line and then to a single point which was in turn focused on to the selenium cell. To the eye it would seem that a full picture was being projected on to the cell, but in fact the cell received a rapidly moving modulated light spot. It does sound familiar, doesn't it? But this is not the complete story. A prism

Fig. 1: Basic principle of the telectroscope.
was interposed between the lens and the first mirror to split the incoming light into its component colours. According to the wavelength of each colour, its exit angle from the prism varied very slightly but significantly from that of the other colours. When the final image was focused on the selenium cell the output from this was thus dependent both on the colour and the intensity of each picture element. As before, the signals were carried to the receiver(s) by cable.

The receiver employed a pair of vibrating mirrors arranged in the same way as in the transmitter. Synchronism of movement was achieved by having the sound boxes and actuating bell tuned to the same note as that used at the transmitter. The mirrors reflected light from an electric lamp via an improved modulating device. This had thin metal "lips" which passed a changing band of light as thin as a hair. After deflection by the mirrors the light, now consisting of a series of points, passed through a prism to reverse the colour-splitting process. In this way an image in full natural colour was apparently built up on a ground-glass screen.

Paris Grand Exhibition 1900

According to the writer who provided an account of the telectroscope in 1899 "the ground-glass plate . . . receives (pictures) in their original colours in a perfect vision which moves and changes as the objects or figures at the transmitter move and change". But whether this description was inspired by a practical demonstration or Szczepanik's own explanation is unclear. What may be significant here is that when asked when the telectroscope would be seen in public Szczepanik replied that this would not be until the coming Paris Grand Exhibition in 1900. A French syndicate had deposited to a third party a bond of two million francs for the rights to demonstrate the telectroscope in a special building which would hold between eight and ten thousand people. The syndicate was to take 40 per cent of the profits, Szczepanik and his associates 60 per cent. On the basis of several demonstrations a day over six months, with an admission charge of three francs per head, Szczepanik estimated that the profits would comfortably exceed six million francs. Under the terms of the agreement Szczepanik was forbidden to exhibit the telectroscope prior to the Paris event, on pain of forfeiting his own bond of one million francs.

The reporter next asked whether pictures could be thrown on to a screen for large-scale viewing, to which Szczepanik replied that there would be no difficulty - it would be as simple as operating a magic lantern. As for the distances over which pictures might be transmitted, in theory there was no limit but in practice the cost of the cable would be a determining factor. Up to that date the longest distance that had been achieved was just under forty miles.

Well, those were the somewhat grandiose predictions for Victorian-age cable TV. The reality was probably somewhat less impressive. In one of his books F.J. Camm dismissed Szczepanik's equipment as "little more than a shadowgraph". Its name, and perhaps its principles, were borrowed from an earlier invention by a M. Senlecq of Ardres, France, dating from 1879. Yet there remains that interesting use of the word "raster" and of vibrating mirrors, which have had a recent revival in modern infrared analytical machines. Interestingly enough these also employ a mathematical formula devised by a nineteenth century scientist, Fourier. There's not much new under the sun. . .

Servicing Compact Disc Players

Part 4

OVER the past three months we've been laying down the foundations on which a sound knowledge of the compact disc system can be based. We have tried to adopt a practical approach, and last month talked about some initial checks and the basic start-up procedure followed by most CD players, i.e. focus search, disc run-up/tracking search and reading the table of contents (TOC). This month we will conclude our "foundations course", after which we'll be able to move on to more involved theory and advanced fault location routines.

The RF Waveform

One thing we mentioned last month was ways of observing the off-disc r.f. waveform to ascertain the performance of the laser. Examination of this waveform can tell you far more than whether or not the laser is working as it should do: I prefer to liken it to the off-tape f.m. waveform in a VCR. Just as you can ascertain the condition of the heads, tape path, servo adjustment and tape from the f.m. envelope in a VCR, examination of a CD player's r.f. waveform will tell you about the condition of the servos, preamplifiers and disc in addition to the state of the laser. First then what exactly is the r.f. waveform?

As we have seen the data is stored on the disc in the form of a series of pits which, for the reasons discussed in Part 1, are proud of the surrounding land area. As the laser's beam approaches a pit the amount of reflected light is progressively reduced. Hence the current in the pick-up detectors falls. This condition is shown at A in Fig. 1. When the beam is over the pit the current remains at a low level, as shown at B. As the beam moves off the pit the current once more rises to a maximum value, see C and D.

The laser beam crosses pits at a rate of millions per second as the disc rotates. Hence the waveform shown in Fig. 1 represents only a very small sample of the actual output signal. In practice when you scope the output you find that the rising and falling pit transitions take on a sinusoidal appearance. Furthermore as the pit rate is not constant the scope will show a number of streams of data, i.e. a multiple number of sinewaves. This is known as the r.f. waveform. Depending on the speed at which you set the scope's timebase you will see one of the waveforms shown in Fig. 2.

RF Signal Processing

Fig. 3 shows in block diagram form the r.f. amplifier section of a typical CD player. This diagram is based on the Sony CX20109 chip, which also contains the focus and tracking signal amplifiers plus other relevant circuitry. We'll come to these later. You'll find this i.c. in many players other than those of Sony manufacture.

The four main pickup detectors are connected in two parallel pairs. The current that flows through these is proportional to the reflected light and is fed to separate operational amplifiers. These are used as current-tovoltage converters. The outputs from these two amplifiers are known as the $\mathrm{A}+\mathrm{C}$ and $\mathrm{B}+\mathrm{D}$ signals. They are fed
to the focus error amplifiers and are also added together at the junction of R1 and R2. The test point at the summing amplifier's output is the point that gives you access to the r.f. waveforms shown in Fig. 2. Due to their small amplitude it's not possible to observe the signals at the photodetectors.

Now that the signal is large enough it can be squared in order to reconstitute the original binary data. This is done in the auto asymmetry control section. Here amplifier 1 acts as a slicing amplifier whose slicing level is set by amplifier 2. The combined operation of these two amplifiers in conjunction with the phase locked loop oscillator is complex, but we ${ }^{7 l}$ keep to a simple approach.

The oscillator is free-running and generates a constant squarewave at the bit rate of $4 \cdot 3218 \mathrm{MHz}$. When the squared data from amplifier 1 is applied to the PLL the oscillator swings in sympathy with the data and becomes locked to it. If you refer back to Fig. 8 in Part 1 you will see that the point at which the r.f. signal (C) is squared is at the centre of the sloping edges (D). But an examination of Fig. 2(a) shows that not all the sinewaves in the r.f. waveform are of the same amplitude. Thus a fixed slice level is no good. Amplifier 1's slicing level has to be variable so that the centre of each sinusoidal excursion can be noted and the correct squarewave extracted. This is

Fig. 1: Laser bearn traversing a pit, showing the effect of the pit on the output current waveform.

Fig. 2: Off-disc r.f. waveforms. (a) Observed during a passage of music. The d.c. level and peak voltage may differ from model to model. (b) Observed while reading the table of contents or between tracks. (c) Observed during a passage of music, but this time at a slower timebase speed. Instead of seeing the individual increase/decrease of the reflected beam intensity you can see a much larger sample of data.

Fig. 3: Block diagram of a typical r.f. processing circuit, based on the Sony CX20109 chip.
illustrated in Fig. 4, which shows the resultant of the multiple sinewaves as a solid line and the variable slice level as a broken line. At the centre of each transition the output from amplifier 1 toggles and a squarewave relating to the pit information is thus produced. The way in which this is actually done is quite involved, but basically it relies on the comparison of the output signal from amplifier 1 , via the PLL oscillator, with a d.c. reference.

The squarewave extracted from this circuit is fed to the main decoder where, after much processing, binary data containing left/right audio information is recovered.

The signal obtained at amplifier 1 is referred to as the EFM (eight to fourteen modulated) signal, which is the name given to the data stream on the disc. This waveform is of limited use for servicing. Note that it is present even when the disc has stopped, because the PLL oscillator should always be running. If you have a player with the disc running correctly but no audio output and you wish to confirm that the data is getting as far as the EFM output the best approach is first to scope the EFM signal with the player in the stop mode, noting the waveform, then to put the player into the play mode. You should then see the EFM jitter rapidly as the PLL becomes locked to the incoming signal. It is most unlikely however that you will come across a player where the disc speed is correct but the EFM signal is not present. This is because the disc servo relies on the EFM data as a reference: when this is missing the servo will generally run the disc up to full speed, which is well above the normal $200-500$ r.p.m.

Scoping the RF

When using an oscilloscope for servicing, no matter what the equipment is, it's important that the scope is correctly triggered and that the waveform is stable. Many hours can be saved by ensuring that the timebase speed bears a relation to the waveform being checked and that

Fig. 4: The waveform squaring process carried out by the auto asymmetry control section of the circuit.
the triggering is adjusted to give a stable trace. Consider the f.m. signal in a VCR: when adjusting the guide rollers you want the timebase to be set so that you can see the outputs from both heads. Use of the drum flip-flop for triggering is ideal to keep the trace stable. When observing a CD player's r.f. waveform it's particularly important that the trace remains stable and that the timebase is set so that you can observe the portion of r.f. you need to, see. We'll describe a means of doing this, but before we do so a word about oscilloscopes in general would be appropriate.

When VCRs started to sell in large numbers in the late Seventies service personnel were told that unless they had a scope with a bandwidth of at least 20 MHz many of the waveforms they would need to see would be inaccessible and adjustments would be difficult. The service department where I worked boasted a 10 MHz antique, and I was soon made well aware of what this meant when I attempted to set the capstan discriminator of a Ferguson 3 V 00 with the trace racing across the screen! Thankfully a 30 MHz scope was purchased soon afterwards.

The situation with CD players is similar. Only 20 MHz won't do! If you look at the adjustment procedures given in most manuals you will find that they often read something like "using your 100 MHz storage scope . . ." Well, I know what you're thinking, but let me try to ease the pain. Although you may have difficulty in obtaining a stable trace with a 20 MHz scope you don't have to go to the other extreme before you attempt to repair CD players. I've worked on CD players using a variety of oscilloscopes and must confess that some of the tests I'm about to outline are not always possible unless the scope has a bandwidth of at least 30 MHz . But it also depends on the manufacture and condition of the scope. The one I normally use is a 35 MHz Cossor D61. Although ex-RAF it produces nearly all the results I require. Clearly however the wider the bandwidth the better. Bear this in mind if you attempt the techniques I'm about to outline.

Triggering

The trick in obtaining a stable display is to get the scope to trigger on a set point in the r.f. waveform. The problem of course is that there isn't one! So you have to put one there. If you are the proud owner of a test disc all you need do is to play the passage with a simulated scratch (dropout): the scope can be triggered by this. The cost of test discs makes them something of a rarity however, so
let me suggest a different approach which I learnt during a training course run by Hitachi.

Take a good disc with a playing time of one hour minimum. The one hour playing time is necessary because discs with shorter recordings may not have data stamped all the way to the outer edge. Thus you wouldn't be able to check a player's performance with the laser at this point, where disc eccentricity and wobble are at their greatest. Place on the disc a simulated scratch of 0.6 mm width. This is easily done using 0.6 mm PCB artwork tape which is available from a number of suppliers - I obtained mine from RS Components, and at $£ 1 \cdot 20$ for a 20 m roll it worked out far cheaper than a test disc set, not that it entirely replaces one. The only precaution you must take is to ensure that the tape runs across the disc diametrically, as shown in Fig. 5.

The principle involved is very simple. When the disc is played there will be a regular dropout between 200 500 Hz . A good scope can be triggered by this, not the 1.5 MHz r.f. signal. Once this has been done you can adjust the timebase speed so that the portion of r.f. waveform you want to see can be observed. Let's look at some examples.

Waveforms Obtained

Fig. 6(a) shows the display whilst playing the centre portion of the track of the dropout disc. The disc speed will be around 400 r.p.m. Adjust the timebase speed to $200 \mu \mathrm{sec} / \mathrm{cm}$ and set the triggering to the negative-going slopes. What you see therefore is the tail end of the r.f. before the laser scans the tape, the 0.6 mm dropout period, then the return of r.f. as the laser comes off the tape. A good machine should be able to play this without any audible disturbance. The waveform shown in Fig. 6(a) is what you will see when the laser is o.k. and the focus and tracking servos are properly adjusted and working correctly.

The conditions illustrated in Figs. 6(b-d) indicate that there is a fault or misadjustment in the focus and/or tracking servos. You can now see why I liken the CD player's r.f. waveform to a VCR's f.m. waveform, because you can instantly see whether there seems to be a problem in the servo sections of the player. The portion of the waveform we're interested in is the area immediately after the dropout. I've called this the servo recovery period. When the laser is scanning the tape on the disc the servos lose their references. They will react in an attempt to find their references once more. In the meantime the servo loop will be open. As soon as data begins to come through again the loops will be closed and the servos will settle down. This should happen very rapidly, as shown in Fig. $6(a)$. In the case of a fault or misadjustment the time taken to lock up will be longer, producing the effects shown in Figs. 6(b-d).
You will now be hoping that I'm going to describe a way of deciding which servo is defective by looking at the shape of the recovery period. Unfortunately I must disappoint you. I've spent a lot of time experimenting with this, but until now even players of the same type have

Fig. 5: A simple test disc can be made from a one-hour commercial recording and PCB artwork tape (RS Components order code 555 370 for example).

Fig. 6: R.F. waveforms obtained when playing the dropout disc. (a) With a correctly adjusted player. A is the end of r.f. before the dropout, B the dropout period and C the restored r.f. (b) The recovery period shown here is slow. This effect is commonly seen with players where the complaint is of very intermittent problems. (c) A more serious effect. Could be due to multiple misadjustments in both the focus and the tracking servos, though this would not necessarily be the case. (d) A serious error. The fault is more likely to be in the tracking rather than the focus servo. (e) Overall view of the r.f. waveform. A similar effect appears when playing a disc with multiple scratches - they show up as random dropouts in the waveform.
given different effects when a particular adjustment has been offset. In the captions to the waveforms I've given some ideas, based on my experience, to serve as a guide, but these must not be taken too literally. If it's any consolation to you, it was a disappointment to me as well when I found that I couldn't tie down a particular waveform to a specific fault. Nevertheless this test is very useful when trying to establish the whereabouts of those niggling intermittent faults like "it won't play some discs" or "it jumps a few tracks every few hours".
Fig. 6(e) shows the waveform obtained when the dropout disc is played with the scope's timebase set to $10 \mathrm{msec} / \mathrm{cm}$. This gives you an overall view of the r.f. waveform and is useful when carrying out some adjustments. It's also useful when checking those awkward discs that customers say will not play with their own machine but work with their friends' players. If there are any blemishes on or in the disc they will show up just as the black tape does. It's then for you to decide whether the player requires attention or whether the disc's blemishes are just on the limits of tolerance. It may be interesting to compare the servo recovery time when playing the complained about disc with that when playing your dropout disc. If the servo recovers quickly on your good disc it's likely that the complained about disc is too badly damaged to be played without problems.

When we come to discuss the servos in a CD player we'll be referring back to the waveform shown in Fig. 6. It will then become clearer why they take the form they do when a dropout occurs. Before we can do this however we must take a closer look at the data streams on the disc, i.e. CD encoding, which is what we'll start to do next month.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 2$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT CVC1204 CHASSIS

A few seconds or minutes after switching on the picture and sound go, leaving a blank screen with either a snow effect or lines of snow moving up and down. This condition lasts from around five minutes to up to twenty minutes, then the picture suddenly returns and the set works normally until switch off.

This problem is often caused by dry-joints in the r.f./i.f. module CMR80(0)/1. Unplug and carefully dismantle it, checking for bad joints and connections at the tuner end. Make sure that the correct tuning voltage enters the module at pin T27.

SANYO VTC5300

On three occasions the cassette has locked down but not loaded, the function keys having no effect. Normal functions can be restored by easing the lock lever (item 31) forward. The machine usually works satisfactorily, the fault occurring at irregular intervals.

Pin 16 of the syscon chip Q3003 (LC7800) should go low when the cassette cradle is lowered. If it doesn't, check the cassette switch and its connections. If necessary also check the eject switch - at pin 2 of S3006.

HITACHI CBP260

This set tends to get stuck in the standby mode. Usually changing C909, C915, C916 or C919, or all of these capacitors, provides a cure but the fault will return at a later date. The standby mode is rarely used and could be made inoperative by removing the components associated with Q902.

An official modification for this problem is to change C919 to $220 \mu \mathrm{~F}$. Also if necessary replace C906 and C918, and check the joints on CP901, TY01 and T703.

FERGUSON 3V22

The tape remains stationary in all modes. If the play button is held down - the mechanism will not latch - a chattering noise is heard, like a solenoid not holding in. The play/record buttons will latch when the timer is used, but return to the off position when the timer switches on.

This is a very common problem and is almost always due to failure of the cassette lamp, which is mounted in a black holder just in front of the reel idler assembly.

PHILIPS K30 CHASSIS

There seems to be a purity problem with this set. The picture has a blue haze about three inches wide on each
side. There's dark blue towards the edge of the picture and a reddish colour in the centre.

The double posistor R6292 is often responsible for this. A good check is to run the set for about half an hour then feel this component. It should be quite warm. If not replace it. If it is warm, degauss the tube screen manually. If the effect is still present after this the tube itself is suspect.

SHARP VC581

The head switching phase is incorrect in the record mode. Both channels can be adjusted correctly in playback but in record (no adjustment available) the switching point locks in about twenty lines early. The phase becomes correct when pause is entered, but on returning to record the fault reappears. IC704 has been replaced and the voltages around this chip seem to be normal.

We suggest that you first check C731 and R753 which are associated with pin 25 of IC704, and also check with a scope that the V-sync signal from the Y/C board is good. If these points are in order it's possible that the positioning of the Hall element or magnet (PG parts) is incorrect.

ITT CVC20/2 CHASSIS

There's a ticking noise when this set is switched on. The power LED stays on but the other LED goes on and off with the ticks. A new line output transformer has been fitted and the transistor checks o.k. Diodes D23 and D24 on the power supply sub-panel have been replaced.

The ticking effect indicates that the set is tripping. Since you get no bursts of sound or picture on each trip cycle the problem is probably due to (1) an incorrectly set current trip potentiometer (R810) or (2) an overload that causes the current trip in IC801 to operate. In the latter case try disconnecting the tripler then check D18. T14. D21 and D22 - it might be worth rechecking D23 and D24. The power supply section can be checked and set up independently of the line timebase by disconnecting L14 and wiring a 240 V .60 W bulb across C50.

FERGUSON 3V23

We've had the same intermittent fault on several of these machines but because of its infrequent nature - it might not occur for hours or even days during a soak test - we've been unable to deall with it. Occasionally in the play mode the machine will switch off and eject the tape. The cassette can be reinserted immeciately and the machine will then play normally.

We suggest that you try disconnecting the input from the IR remote control receiver. If the problem no longer occurs ut's likely that the f.e.t. (X1, type 2 SK 105 H) in the IR preamplifier can is ncisy.

HITACHI NP8C CHASSIS

When the channel is changed the colour disappears, leaving a monochrome picture. Colour can be restored by retuning. A high-gain, 21-element aerial is in use and the picture gain is o.k. most of the time here at Clackmannan, but the picture goes to monochrome when the gain is low this occurs when low rain clouds come over.

First ensure that the aerial connections within and outside the set are good, with no looseness, corrosion or dry-joints. Check also that the a.g.c. control R203 is set to the full gain position. If these things are in order it's likely that the colour decoder subcarrier oscillator has drifted and needs resetting. You could go through the setting-up procedure in the manual but you will probably find that careful adjustment of R 515 with the fault present will restore colour permanently.

318 Each month we provide an interesting case of $T V / v i d e o ~ s e r v i c i n g ~ t o ~ e x e r c i s e ~ y o u r ~ i n g e n u i t y . ~$ These are not trick questions but are based on actual practical faults.
Spring had sprung and, as is usually the case at this time of the year, many members of our workshop staff were away for one reason or another: manufacturers' service courses, days off in lieu (of what?), nasty coughs and so on. The upshot was that the service manager didn't want too many sets brought in for repair. So each job card issued to the field engineers came with a nutshell diagnosis - and a hint of nemesis if the set was uplifted.

With this threat hanging over him Philbert found himself in front of a customer's Sanyo TV set. Model CPB2146, chassis type E2. With teletext, picture-in-picture and all the bells and whistles! Fortunately the service manager had armed him with a service manual.

Green faces the customer had said. On inspection he found that the faces and all other picture content that should contain an element of red or pink was a ghastly, sickly (but not bright) green. The same applied to the little PIP picture when this was called up, and to the teletext display. Not a chroma decoder fault then thought Philbert as he removed the back of the set.

His first action was to turn down the colour and check the grey-scale. The monochrome picture didn't look too bad - a bit on the "cold" side maybe. Next the colour setting was restored to normal and the output from a colour-bar generator was fed in. Yuk! The red bar was missing, the yellow bar was green, the magenta bar blue. The green, blue and white bars were o.k., but again the latter had a cold look about it. Servicing beginners stop here: what does this display tell you about the fault?

Philbert realised that the picture tube's red gun was not
contributing much. A look at the circuit diagram showed him that the three RGB output transistors are combined into a "module" ($\mathrm{A}(\mathrm{O}(2)$ on the c.r.t.'s base panel. All nine leadouts are available separately however, so Philbert started by comparing the collector voltages in the simple class A RGB output stages. There was no disparity between that of the red output transistor and the other two. Similarly the base and emitter voltages of the three transistors were virtually identical.

Philbert came to the conclusion that since the standing voltages at the collectors of the three RGB output transistors were the same the likelihood was that the red output transistor wasn't getting any signal drive. To check this he interchanged the red and blue drive input leads to terminals 4 and 5 on the tube's base pancl. This altered the screen positions of the colour bars, putting a blue bar in the position normally occupied by the red one. The drive circuitry was thus eliminated from the search and attention was turned to the red output stage.

Having restored the correct connections, Philbert brought in his oscilloscope and confirmed that the R and B signals were indeed reaching the bases of the respective output transistors. Maybe the preset potentiometers in the red output stage were faulty? Twiddling VR612 (red bias) and VR611 (red drive) had no effect on the picture, though the red output transistor's emitter voltage changed as VR612 was adjusted. The potentiometers themselves and the associated fixed resistors were all checked with an ohmmeter and found to be o.k.

Where was the cause of the trouble? Not far away! For the answer see next month's issue.

ANSWER TO TEST CASE 317 - page 525 last month -

Our elderly Bang and Olufsen 20AX chassis receiver last month had a fault that used to be very familiar to TV engineers - a travelling hum bar at mains rate traversed the screen. It was plain that mains-rate ripple had invaded the internal supply lines and was modulating the scan and the signal waveforms, but how was it getting in? Finding the solution would have been made very much easier had the technican studied the symptom (and the circuit) more closely!

A single hum bar indicates a disturbance at a 50 Hz rate, i.e. once per TV field. This chassis uses a full-wave rectifier/regulator circuit, so any fault downstream of the two thyristors would have produced a 100 Hz ripple with two hum bars on the screen. Clearly one of the thyristors wasn't working, though both had been changed and both were being driven at their gates. When the scope was hooked to the anodes of the two thyristors in turn all became plain. The mains feed to one of them was missing because one section of choke 5 Ll (a device we long ago christened Beobuzz . . .) had gone open-circuit. The other section of the choke was, naturally, very hot and bothered.
This once again illustrates the need to analyse the symptoms carefully, whether the circuit involved consists of a microprocessor or a throbbing thyristor!

[^1]

£1 BARGAIN PACKS - BUY 10 GET 1 FREE

Please state pack(s) required. No. = Order No. Oty = Quantity per pack

No	ary	
BP010	2	$6^{1} / h^{\prime \prime}$ Speaker 8810 watt
BP012	2	$61 / 2 /$ Speaker $4 \Omega 10$ wath
BP013	3	$8^{\prime \prime} \times 5^{\prime \prime}$ Speaker $4 \Omega 6$ watt made by E.M.
BP014A	4	$5^{\prime *} \times 3^{\prime} 2$ watt 4Ω Speaker
BP015	2	$31 / h^{\prime \prime}$ Tweeters $8 \Omega 5$ watl before crossover (30 watts after crossover)
BP016	6	$2200, \mathrm{Hi}$ can type Electrolytic 25 V d.c computer grade made in UK by PHILIPS
BP017	3	33000 uf 16 V d.c. electrolytic high quality computer grade UK made
BP018	3	2000 uf 50 V d.c. electrolytic high qualty computer grade made in USA
BP019	20	20 ceramic trimers
BPCLO		Tuning capacitors, 2 gang dielectric a.m. type
BP021	10	3 position, 8 tag slide switch 3 amp rated 125 V a c. made in USA
BPGC2	5	Push-button switches, push on push oft, 2 pole change over. PC mount JAPAN made
BPCOz	6	2 pole 2 way rotary swich
BPP24	2	Right angle, PCB mounting rotary switch, 4 pole. 3 way rotary switch UK made by LORLIN
BP60s	4	3 pole, 3 way miniature rotary switch with one extra position off (open frame YAXIEY type)
BPT26	4	4 pole, 2 way rolary swich UK made by LORLIN
BP907	30	Mixed control knobs
BP628	10	Slide potentiomelers \{popular values)
BP0as	6	Stereo rotary potentiometers
BP630	2	100k wire wound double precision potentiometers UK made
BP031	6	Single 100 k muthiune pots, ideal for vancap tuners UK made by PHILIPS
BP032	4	UHF varicap tuner heads, unboxed and untested UK made by PHILIPS
BP023	2	FM stereo decoder modules with diagram UK made by PHILIPS
BP934	3	AM IF modules with diagram UK made by PMILIPS
BP935	6	All metal co-axial aerial plugs
BP036	6	Fuse holders, panel mounting 20 mm type JAPAN made
BP037	6	In line fuse holders 20 mm type UK made by BULGIN
BP038	20	5 pin din. 180 chassis socket
BP039	6	Double phono sockets, paxolin mounted
BPO40	6	Single phono to phono screen leads 1.2 m long JAPAN made
${ }^{\text {Pro4 }}$	3	2.8 m lengtis of 3 core 5 amp mains cable
BP042	2	Large VU meters JAPAN made

BPO4	30	4 V miniature bulbs, wire ended, new untested
8P044	2	Sonotone stereo crystal cartridge with 78 and IP stylii JAPAN made
8P045	2	Stereo cassette record and play heeds
BP046	4	
		UK made
BP047	1	24V 750 mA mains power supply, Brand ne
BP048	1	Car rear window heater demister. Seif adhesive panel, size $24^{\prime \prime} \times 9^{\prime \prime}$, complete with switch and cable UK made
BPO99	10	(ldeal for Your old "Moggy 1000" etc) OC4A rransistors. Remove paint from top and it beccmes a photo-electric cell UK made by MULLARD
BP050	30	Low signal transistors n p n. p.n.
8P051	6	14 watt output transistors. 3 complimentary pairs in TObe case [Idea! replacement for $A 0761$ abd 1675 s]
BPOL2	8	3 watt audio output ics No TA 72057
BP		JAPAN made by 5 watt audio ICs.
BP054	10	Motor speed control lics, as used with
		and record player motors
BPOSS		Digital DVM meter I.C mad
	4	7 as usement 3 LED
	8	Brdge fectiters, 1 amp, 24
BPC5B	80	Asscrred carbon resistors
Hi-Fi stereo cassette deck transport mechanism, complete with 3 digit rev counter and tape heads. 12 V d.c. operation. Unused manufaciurers surplus JAPAN made		
Garrard stereo record player deck, manual auto operation, 3 speed (78, 45, 33/33), 240V operation. Unused but store soiled. $\mathbf{£ 6 . 5 0}+\mathbf{£ 1 . 5 0} \mathbf{P \& P} \mathbf{2}$ for $\mathbf{£ 1 0 . 0 0}+\mathbf{£ 3 . 7 5} \mathbf{P \& P}$		
RADIO and TV COMPONENTS ACTON LTD 21 HIGH STREET, ACTON, LONDON W36 gNG MAIL ORDER TERMS. POSTAL ORDEAS and or CHEQUES with orders. Orders under $£ 20$ add $£ 3.00$ service charge. Net monthly accounts to Schools, Colleges and P.LC. only. ACCESS + VISA Phone orders beween 9.30 \& 12pm please		
Phone: 01-723 8432 or 01-992 8430		
Callers: 323 Edgware Road, London W2		

HI-FI STEREO INTEGRATED AMPLIFIER KIT

- 30W $\times 2$ (Din 4 ohms) CO/AUX input

Separate Bass and Treble LED power indicator Headphone jack. Size HWD, $75 \times 400 \times 195$
PROJECT INC. Pre-drilled case, back printed P.C.B. with All components.
ALL YOE NEED IS solder, wire and $\mathbf{£} 36.80$ plus $£ 3.50$ for postage

> (full instructions in EYERYOAY ELECTRONICS APRIL 1999 issue) (Re-print free with kit)

100 WATT SPEAKER KIT $£ 60+$ © 3.50 P\&P

	RTC MONITOR II	
	RESPONSE bass, polymer coned DOME TWEETE OVERALI SIZE IHWD RECOMMENOED	
	AMP POWEA	10.100 w

The performance standard achieved in this compact design is distinctively superior to anything else available at the price. The drive integratec with sophisticated design and have been careutly exceptoratly good with a well focused sound stage and sharp resolution of detail. Distortion throughout the frequency range is low even at quite high power input and this gives a great sense of dynamic range and openness especially when used in bi-wired mode. Supplied witts 2 Ready Cut Baffles, All Crossover Components, 2 Bass
Midrange, 2 Dome Tweeters, Hook Up Wire Goll Cloth Screw Murange, 2 Dome $\begin{gathered}\text { Weeters, Hook Up Wire, Gnl Cloth. Screw } \\ \text { Terminals }+ \text { Screws }\end{gathered}$
(Featured project in EVERYDAY ELECTRONICS MAY 1989 issue) (Re-print free with kit)

Velleman kits in stock. Send for Catalogue.
Repair your own $\begin{gathered}\text { Hi-f. Speakers, send stamped addressed } \\ \text { envelope for Catalogue. }\end{gathered}$

ANNOUNCING the SALE to BEAT ALL SALES

 BIGGEST \& BEST SELECTION OF THORN \& EX-GRANADA STOCK IN THE WHOLE OF YORKSHIRE

WORKING VCR
Hitachi/Nat-Pan
Infra-Red VCR
Many more varieties of V.C.R.'s in stock to choose from
Non-working VCR
£15.00

CTV
Basic (Various)
From
Remote
Text
STEREO SUPERSOUND (working, excellent condition) - from £75.00 (Note: VAT \& H/sets extra)

PLUS MANY, MANY MORE BARGAINS IN STOCK NOW!
ANY QUANTITY, LARGE OR SMALL

VASCORT LTD., UNIT 2,

 COPLEY HILL TRADING ESTATE, WHITEHALL RD., LEEDS. TEL: 0532422774
West Miallands ح.V. \& Video Wholesale

OVER 3000 TV's \& VIDEO's IN STOCK AT UNBEATABLE PRICES - HURRY NOW. HUCE STOCKS WORWNG \& GENOUTE UNTIESTED TV' \& VIDED'S LOTS OF SPECIAL OFFERS WHILST STOCKS LAST

IES MOU	
NEW INFRA RED HAND SETS FROM E10	
VHS VIDED HEADS FROM E15	
BLOCKS OF 10 SETS FROM £40	
DELIVERY CAN BE ARRANGED	

2 MINUTES FROM JUNGT. 9-ME WAREHOUSE IN PASSAGE OFF LITTLE LONDON CALDMORE, WALSAL TEL. 0322 724542/722208

ZN-448510
ZN-459190
ZN. 103470
$Z N-1040640$

J. -122580
Sk. 15530
K. 1945
K-15350
SK 49950
K. 55100 SK-55100
SKK 68100
SK 133180
SK- 1334115 SK- 134815
SK- 135415
KK 147160

MNN

${ }^{A^{2}} v_{S}$
 IHE A.V.S. GROUP AUDIO VISUAL SERVICES

s THE BOSS HAS HAD A FIT OF MIDSUMMER MADNESS - OVER 4000 PIECES OF NEW \& EX-RENTAL STOCK MUST BE CLEARED!

YOU NAME YOUR REQUIREMENTS AND WE PROBABLY HAVE IT, AND WE WILL TRY TO MATCH ANY DEAL YOU ARE GETTING ELSEWHERE!

EX-RENTAL TV's, EX-RENTAL VCR's, NEW VCR's, MIDI SYSTEMS, MICROWAVE OVENS - WE DO THE LOT.

SO TRY US - WE'RE NOT AFRADD OF DOING A DEAL

 HEAD OFFICE 茴 084443226084442995 36 WYCOMBE ROAD, PRINCES RISBOROUGH, BUCKS.
HUMBERSIDE OFFICE 箩 06526602420652660243

 UNIT 8, ST. MARY'S WORKS, MARSH LANE, BARTON-ON-HUMBER, SOUTH HUMBERSIDE AVS SUMMER SALE - AVS SUMMER SALE - AVS SUMMER SALE

ATTENTION ATTENTION JOHN CARTER ELECTRICAL LTD ANNOUNCES A
 MASSIVE CLEARANCE SALE

TVs FROM £5 ONLY OVER 2,000 SETS MUST GO
TO MAKE WAY FOR OTHER STOCK HUGE RANGE OF VIDEOS AT
RIDICULOUSLY LOW PRICES
ENQUIRIES CONCERNING B GRADE STOCK WELCOME DIRECT LOADS DELIVERED FROM SOURCE ALL SETS UNTESTED JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

TELEVISIONS-VIDEOS -TELEVISIONS
 A NEW NAME IN

TRADE SURPLUS TVs

Large selection mainly
THORN - GRANADA STOCK

Discount ten or over

ALL SIZES AVAILABLE
Thousands in stock. Good quality. Fresh stock every week.
Portables, Teletext, VHS Videos, STD $20^{\prime \prime}, 22^{\prime \prime}, 26^{\prime \prime}$

Complete loads at discount prices

All stock collected from source by our transport and handled with care.

[^2]

RING OUR LOCAL MANAGER FOR DETAILS

FARNBOROUGH WAREHOUSE
 CLIFF PARSONS 0252540814

7/8 KINGSGROVE INDUSTRIAL EST. INVINCIBLE ROAD
FARNBOROUGH
HANTS. GU14 7QS

AINTREE WAREHOUSE

EB․ IAN McCLELLAND 0515301285

UNIT 2, RACECOURSE IND. EST. ORMSKIRK ROAD
AINTREE
LIVERPOOL L9 5AL

LINWOOD WAREHOUSE

GEB IAN DORAN 050529284

1a LYON ROAD
LINWOOD INDUSTRIAL ESTATE LINWOOD
RENFREWSHIRE PA3 3BQ

AVONMOUTH WAREHOUSE

KARLA HEATH
0272235093
5 PORTVIEW ROAD
AVONMOUTH
BRISTJL BS11 7LQ

SUNDERLAND WAREHOUSE

BRIAN CADE 0915235554
\section*{9A/B}
94 CARRMERE ROAD
LEECHMERE INDUSTRIAL EST.
SUNDERLAND SR2 9TE

[^3]
$\star \star \star \star \star \star \star \star \star \star$

		From
KT3	-	$£ 20$
K30	-	$£ 25$
ITT (trimline)	-	$£ 25$
Full text	-	$£ 35$
		From
HIT 8000/8300/9300	-	$£ 49$
NAT PAN 333/366	-	$£ 55$
HIT I/R rem	-	$£ 65$
3V43/3V47/3V48/3V53/3V59 AVAILABLE		
FANTAST/C		CHO/CE:

FERGUSON - PHILIPS - PYE - HITACHI - NAT PAN - SHARP - GRUNDIG JVC - ITT - GEC - REDIFFUSION - BUSH - DECCA - FINLANDIA FIDELITY - SONY - TOSHIBA $\star \star$ LORRY LOADS OF NON-THORN STOCK AT REASONABLE RATES $\star \star$ Head Office:
48-52 Pershore St, Birmingham B5 4RR. Tel: (021) 622-1023/1517 London:
Unit 2, The Royal London Estate, 29/35 North Acton Road, London NW10. Tel: 01-961 5005/3962

Preston:

Unit 439, Oakshott Place, Walton Summit Industrial Estate, Preston (M6, Junction 29). Tel: (0772) 312101 Note: Above prices subject to VAT and quantity. Handsets extra.

W. TREE TRADE T.V. UNTT 1 SUNSHINE MILLS WORTLEY ROAD LEEDS 12 TEL: 0532638804
SHOWROOM CONDITION COLEVBESHED COLOR TVS - VIDEOS FERGUSON ' B ' GRADE STEREO - TEXT DESIGNER - TEXT IN STOCK NOW
GOOD STOCK OF AUDIO HI FI SEPARATES
maniss - PLUS - Bareanis
TEL: 0532638804

TV RENTAL FINANCE

for the independent dealer
on new or reconditioned TV Receivers, Video Cassette Recorders and Satellite Reception Equipment.

For details and quotations contact

\% i B
BROUCHFAMELTD
Colonnade Rouse, Hish Street,
Worthing, Sussex, Binl wiz
Tel. (0903) 820968

THIS IS JUST A SMALL SELECTION OF OUR STOCK ITEMS all the above prices are subject to vat \& carriage

Crofton Creates errific $V_{\text {alue }}$

ORDER YOUR REQUIREMENTS TODAY BY PHONING 05448557 NOW - WE ACCEPT ALL MAJOR CREDIT CARDS CROFTON ELECTRONICS, KINGSHILL HOUSE, LYONSHALL, HEREFORDSHIRE HR5 3HZ FAX: 05448558

WE ARE NOW STOCKING PHILIPS OBSERVATION KITS. - PLEASE RING FOR DETAILS

SOUTHSDETV

UNIT 8, APPLE IND. EST., WHITTLE AVE., SEGENSWORTH WEST, FAREHAM off गNcction 9 , M27 HANTS. TEL. (0489) 577251

* TOP QUALITY ex-rental TV's \& Videos
* Fresh stock deliveries EVERY week
\star All items complete with original handsets
* Working stock always available in quantity
* 24 hr ansaphone service

Opening times: Mon-Fri 10am-5.30pm.
Sat Mornings 10am-1pm.

VIDEO

		Working	Non-working
Electronic	From	$£ 75$	$£ 40$
LP Electronic	From	$£ 95$	$£ 45$
Beta		$£ 20$ as they come	
Philips		$£ 8$ as they come	

COLOUR TV
Working Non-working

Pil
R/C
Text
Colour Portable
FST when available

	Working	Non-working
From	$£ 20$	$£ 10$
From	$£ 35$	$£ 18$
From	$£ 65$	$£ 40$
From	$£ 65$	$£ 35$
From	£115	$£ 75$

1 AMFICK VISIONS				
THE WORKING SET WHHOLESALER YOU CAN RELY ON				
TV's \& VIDE's. WE OFFER G000 PRODCCT, FRIINDILISESENVICE \& KEEN PRICES				
Psilt	$\substack { \text { cis } \\ \begin{subarray}{c}{\text { cis } \\ \text { cis }{ \text { cis } \\ \begin{subarray} { c } { \text { cis } \\ \text { cis } } } \end{subarray}$	$\xrightarrow{\text { HaNOSESS }}$		
			(micheches	
NT9910		VIDEO	HTITCCHIVI	
		from 815	${ }_{\text {Stas }}^{\text {SHAS }}$	
SPECIAL DISCOUNTS \& DELVERY ON LARGE QUANTITIES 				
AMAICK VISIONS WHOLESALE 113 NARBOBOUGH ROAD, LEGESTER				

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WHY NOT TELEPHONE UXBRIDGE (0895) 55800 TO DISCUSS YOUR REQUIREMENTS. DAVE DYSON WILL HELP YOU WITH DOMESTIC TV TUBES. TERRY SMITH DEALS WITH COMMERCIAL/PROFESSIONAL TYPES.

SPECIAL OFFER

56540 s £42
20" \& 22" SONY $£ 58$
27" SONYS £65

We are currently redeveloping our factory and have temporarily transferred production facilities to a factory unit in nearby Iver (Bucks). We have made arrangements for the Uxbridge 55800 telephone to be rerouted to the lver factory at the exchange, but if you should wish to dial directly, the Iver number is (0753) 630137. During the temporary period of relocation we shall maintain goods handling facilities at Uxbridge. It would be appreciated if intending visitors telephone us first to be sure that technical staff are available at Uxbridge if required. We greatly appreciate the confidence placed in us by our customers which has enabled our business to grow and look forward to being of continued service in the future.

> DISPLAY ELECTRONICS LTD. SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

 SADELTA COLOUR BAR GENERATOR PAL MCIO1 8 Patierns
Pocket SIze Retiaragable E-ateries Compiete with Batrey
C75 Charger Adaplor Unused (PBF E4)

 HAMEG MODULAR SYSTEM 240Vin-24 200VA
$240 \mathrm{Vin}-24 \mathrm{~V}$ Out 100VA

This Is a VERY SMAU - WITH 30 DAYS GUARANTEE. MANUALS SUPPLIED IF POSSIBLE before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods \& Camage STEWART OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
 Callers welcome 9 am-5.30 pm Mon.-Fri. (until 8 pm Thurs.)

RELAY
 OMAGH LTD COMPUTER SOFTWARE
 DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM? dO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our new computer TV and Video Rental package. This package includes
\star automatic updating of each customer's record

- alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
* easy to use and operate

Operates on all IBM compatibles running under MS-DOS Free demonstration disc avaiable

Telephone Beragh 214 (0662 72)

CentreVision

SLOPER ROAD, LECKWITH, CARDIFF. Exit 33 off M4

SOUTH WALES' LARGEST AND best wholesaler with 20 YEARS' EXPERIENCE

INCREASE YOUR PROFITS! PHONE: 0222344754

EX-RENTAL TV's \& VIDEOS

REBUILT COLOUR TUBES
 Delta - 20AX - 30AX - In Line N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 01-771 3535
 First Independent Rebuilder with B.S.I. Certification

MARSTALL LTD

TV \& VIDEO WHOLESALERS

FOR A LARGE SELECTION OF RECONDITIONED EX-RENTAL THORN TVS + VIDEOS PLUS MAHY OTHER MAKES at MOST COMPEETITVE PRICES

COME AND PAY US A VISIT AT OUR NEW LARGER PREMISES
 SHITACH \sum (JUST OFF M25 JUNCTION 29)

Don't Delay Phone TODAY!
0268-412711

NEW \& SECOND HAND SPARES ALSO AVAILABLE
QUANTITY
DISCOUNTS DPEN 9 a.m. - 6 p.m. MONDAY - SATURDAY DELIVERY SERVICE THROUGHOUT UK
法

SETS \& COMPONENTS

OCHRE MILL TECHNICAL SERVICES. Are now on ()6est (Malmeshury) 823228. Grundig TV spares all models to 1983. Fast friendly, helpful service, sensible prices. Gt. Lype Farm, Charlton, Nr Malmeshury, Wilts SN16 9DR
FREE BAGFULI COMPONENTS with 26 page Components Catalogue. Including valves (rare \& mod(rn). SAE: KENZEN (TV). Unit 9, 16i20 George Street, Birmingham BL2 9RG

ONE OF EACH WORKING, GEC 2110 Remote Philips G1I, Hitachi. plus modern hoards hoxed. Four B/W portables, $351(1)$ and GEC 2110 charsis $£ 150$. (h) ONO the lot. Phone 07343412299 .

SUFFOLK TV \& VIDEOS

Large stocks always available GEC, Fineline KT3, KT30, Hitachi, Nat Pan, working stocks in our showroom from £20.00.
Text $£ 85.00$ with handset.
0394670115
Bridge Road, Felixstowe, Suffolk 1P11 7FL

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 8.50$ per single column centimetre (minimum 2.5 cms). Classified advertisements 55 p per word (minimum £10),
 had at very much reduced but scratched tubes which may be with your first job
$E 36.00+£ 2.50 \mathrm{po}$

PC TV SERVICES
 ES

8 TRCHARN CLOSE BE ©O2U
Stanstead Abbotts, Herts SG12 8AH

JOMILE ENTERPRISES

Exporters TV's VCR VHF requirements, look no further trade televertas actual size $1^{\prime \prime} \times 2.5^{\prime \prime} \times 3^{\prime \prime}$. 12 volt dc from £9.75.

Mains connected televertas £14.50 each.

Filters for export full conversion compliment NTSC 7.18 MHz crystal. We are the expert specialist.

173 Dalstan Lane, Hackney, London E8
Tel: 01-533 2229

NOTICE T0 READERS

Whilst prices of goods shown in classified advertisements are correct at time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.
 BUDGET TELEVIDEO HERNE BAY (0227) 740240
Thorn 300/350
Thorn yon
UNIVERSAL
1 year guarimtee
The UNIVERSAL TRIPLER can be used in most
G.E.C.,I.T.T..Pye, Rank, Decca \& Continental sets.
WING ELECTRONICS
15 Waylands, off Tudor Rd., Hayes E.nd, Middlesex

ANY SPARE SENT ANYWHERE

Whether you're professional or dabbler, your mail order answer for that hard to get component AGS THE small order specialist
(0752) 224369.

AGS Electronics, 49 Farringdon Road, Plymouth PL4 gER

NORTL-EAST TELEVISION CENTRE

Large selection of Rather special colour TV's \& Video's. All at competitive prices. Off the pile or refurbished by own qualified engineers.

Phone:

Tyneside 091-4551302 or call at:
68 MORTIMER ROAD, SOUTH SHIELDS,
TYNE \& WEAR NE33 4QU.
(Only 2 miles from the Tyne Tunnel)
YOU WON'T REGRET IT!
TRADE ONLY

EERUICE PQGES

box number $£ 1.00$ exira. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazine Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942)

PANASONIC

TV's + VIDEO's
Good range of late models - well worth a visit
Superb and working
Many other models/makes
More profit, less headaches Regular supply - Quantity Discount Repro TV Daisy Works
345 Stockport Road,
Longsight, Manchester. (A6 between M/c and Stockport)

Mr Foole or Mr Ricketts
Tel. 051-273-2854/274-3409
T.V. SPARES, PANELS PHILIPS

TELEVIEW 01-994 5537 194, Acton Lane, London W.4.
A DIMIN
accoccciccuccoccocicidx

PANEL REPAIR SERVICE

TV - Jideo and all electronic repairs new and secondhand. TV - Video spares, also panels; Video heads $£ 15$ each.

Ring Southport (0704) 76828 (Anytime 24hrs, 7 days)

SPARKWORLD LTD THE SOUTH WEST'S No. 1

 IN EX RENTAL TV's VIDEO's AND GRADED WHITE GOODSA large and varied selection to choose from with new stock arriving regularly. Many late model TV's and Video's in stock.

FOR THE BEST PRICES AND THE BEST SERVICE DON'T DELAY CALL US NOW

ON

0626834666

Delivery and Discount on Quantity

Unit 1 \& 2, Anchor Buildings, Battle Road, Heathfield Industrial Estate, Newton Abbot, Devon.

Fax No. 0626833110

NORIH WEST BLECHRONICS STOCK CLEARANCE
 YOU WONT BETHER OUR PRICES OR QUAHHY

WORKING STOCK
 ALL THOROUGHLY CHECKED BY OUR OWN ENGINEERS

TV'S

Bush T20/22,T24/6 £20
Pye G11 £20
Pye KT3 £30
Pye K30 £30
Ferguson TX …............ £30
Hitachi........................ £20
Hitachi 226 upwards from £35
VIDEO's
Sharp Electronic 7300 ... £55
Ferguson 3V29 £70
Sharp 8300 £70
National Panasonic £70
Ferguson3V30 £85
Sharp 9300.................. £85
Hitachi VT11 £75
BRADFDRD
SPRING MILL STREET, MANCHESTER ROAD, BRADFORD 5
5 MINS FROM MOTORWAY

PX MICROWAVES

 £15IV STOCK NOW
TELETEXT BARGALNS from
$\$ 35.00$
G11, K30/K35 Text 9.6 TX 9/10 Text and Hitachi Text

UNTESTED STOCK

TV'S

Bush T20/22/24/6 £15
Pye G11 £15
KT3 £20
K30 £20
Ferguson TX9/10 £15
Hitachi £10
Hitachi 226 upwards from £25
MANY MORE GEC, ITT, THORN etc. from £5
VIDEO's
Sharp Electronic 7300 £35
TRADE SHOWROOMLARGE QUANTITYOF READY TO SELLTV's \& VIDEO's

Also BRAND NEW!! TOWER SYSTEMS, MIDI SYSTEMS, PERSONAL STEREO'S ETC. CALL IN
YOU WILL BE DELIGHTED!
WORKING EX-EQUIPMENT FANELS

100's PX

HOOVER JUNIOR VACS
ALH MODELS
AND OTHEF MAKES IN STOCK

WE ALSO STOCK LATE MODEL VIDEOS

3V $5 / 44 / 55 / 65$ Hitachi VT33 etc. Philips 6660/64/UR60 AND MANY MORE

$$
\begin{aligned}
& \text { RING OUR HOTLINES } \\
& \text { NOW FOR PRICES }
\end{aligned}
$$

Sharp 8300 £50
National Panasonic £45
Ferguson 3V30 £55
Sharp 9300 £55
Betamax all makes £10
MANGHESTER
UNIT 3,MERSEY ROAD NORTHINDUSTRIAL ESTATE,FAILSWORTH

Somic \mathbb{T} B Inistributars

Unit 4a, Abberley St., Smethwick Birminghams B66 2QU Te: 021-565-1727 Fax: 021-555-5367

G.E.C. Solid State 2110 £10 I.T.T.
CVC30 etc from $£ 12$G.E.C. Starline£15 I.T.T.
Trimline Basic £15DECCA 80 or 100 Seri£12 I.T.T.
£40FINLANDIA Basic£12
FINLANDIA Remote Full Function £15REDIFUSIONMk III£12 FINLANDIA Text£18ALL WORKING STOCKPRICES ABOVE ARE ONLY IN TEN OR MORE QTY.
PANASONIC - HITACHI - TOSHIBA from £20
\star
WORKING VIDEOS
PANASONIC NV 333 or 366 £60 FISHER Top Loader £60 *
FERGUSON 3V29/30. £70 J.V.C.
3V29 Equivalent £60 *
THE ABOVE PRICES ARE IN FIVE OR MORE QTY.
ALL OTHER MAKES ARE IN STOCK PHONE FOR DETAILS.AUDIO - MIDI SYSTEM - TWINDECK STEREO - MONO RADIO CASSETTECLOCK RADIO - CAR STEREO - CAR ALARM - MANY OTHER ITEMS IN STOCK
5" COLOUR PORTABLE AD/DC AND DRY CELL $£ 95$ 14"COLOUR PORTABLE R/C (MURPHY) £110

C. T. V.

2 NORTON ROAD, STOURBRIDGE, WEST MIDLANDS TELEPHONE: 0384-390706 / 0836-585829 (24 HR)

$$
\begin{aligned}
& \text { LARGE SELECTION THORN TV + VIDEOS } \\
& \text { QUANTITY OF NON THORN TV + VIDEOS } \\
& \text { QUANTITY OF PORTABLES AVAILABLE } \\
& \text { ALL AT COMPETITIVE PRICES } \\
& \text { OPEN: MON-FRI }-9.30-5.30 \\
& \text { SAT }-9.30-3.00
\end{aligned}
$$

TEL: 0384-390706 0836-585829 (244F)

HEADING
ADDRESS
\qquad

SIGNATURE
PLEASE DEBIT MY ACCESS/BARCLAYCARD NO.

\mathcal{E}
FOR.
INSERTIONS
SEND TO:
CLASSIFIED ADVERTISEMENT, TELEVISION ROOM 2331
IPC MAGAZINES LTD., KING'S REACH TOWER, STAMFORD STREET, LONDON SE1 9LS.

AUDIO TELEVISION VIDEO COMPONENTS AT VERY KEEN PRICES TEL: 01-472 4871															
ESE PRICES		${ }_{\text {and }}^{\text {and }}$	$\underset{\substack{255 \\ 275}}{\text { 250 }}$		$\xrightarrow[\substack{230 \\ 2300}]{\substack{30}}$				${ }_{\substack{\text { 500p } \\ 4000}}$	${ }^{288}$	${ }_{8}^{85 p}$		$\underset{\substack{259 \\ 259}}{ }$		${ }_{\substack{\text { a }}}^{\text {1250 }}$
ds yiof belt kits						StM393	${ }_{\text {cking }}$		4	${ }_{28}^{258}$	${ }_{6}^{659}$		$\substack{300 \\ \text { anp }}$		cos
		ANS60	$\underset{ }{1250}$		${ }^{3955}$			Toass			${ }_{\text {ckip }}^{\text {650p }}$		${ }^{400}$	${ }_{25 \mathrm{c} \text {-2944 }}$	${ }_{150 p}^{2800}$
(1)	${ }_{9012265}^{90125}$	ANG612	${ }_{7}^{71705}$				${ }^{6600}$	TDA365	${ }_{\text {cki }}^{\text {625 }}$				${ }^{400}$		${ }_{\substack{450 \\ 250}}^{\text {20, }}$
	${ }_{2032}^{90127}{ }^{2732}$	ANS	${ }_{\substack{3005 \\ 235}}$	Lataz	${ }_{2000}^{1500}$		${ }_{8}^{8255}$		${ }^{\text {400, }}$		40		(100p		${ }_{1509}$
5n ubspou	${ }_{\substack{2764 \\ 27128}}^{\substack{355 \\ 3500}}$	${ }_{\text {Ans }}$	$\underset{\substack{280 \\ 4500}}{200}$		$\underset{\substack{1000 \\ 1000}}{\substack{\text { and }}}$				${ }_{\text {cosp }}^{\substack{309 \\ \hline 29}}$		800				${ }_{\text {coin }}^{\substack{\text { 150p } \\ \text { 230p }}}$
	${ }^{272565}$	ANS ${ }^{\text {AN5 }}$	$\underset{\substack{3759 \\ 150}}{\substack{31}}$		${ }_{\substack{1500}}^{1500}$			TRANS		28	${ }^{1300}$		3500		${ }^{5090}$
		${ }_{\text {AN5] }}$	${ }^{1500}$	${ }^{\text {Lfa4 }}$	cois		$\underset{\substack { 180 \\ \begin{subarray}{c}{\text { sp }{ 1 8 0 \\ \begin{subarray} { c } { \text { sp } } }\end{subarray}}{ }$				500		${ }_{\substack{450 \\ 600}}$		${ }_{2009}^{250}$
			${ }^{1759}$		(180		comp		$\begin{gathered} 550 \\ 5050 \\ 5050 \end{gathered}$		cop		770		3100
(1)	74ls Senlies		$\xrightarrow{1250}$		${ }_{\substack{250 \\ 2000}}^{200}$		$\begin{aligned} & 65050 \\ & \hline 5050 \end{aligned}$		${ }^{550}$		${ }_{150}^{150}$		㖪	250-288	${ }_{\text {cop }}^{10 p}$
NT. Limps	SERIIES		${ }_{\text {l }}^{1250}$		${ }_{280}^{2000}$						200		550		500
	O SERIES		${ }_{3}^{2400}$		${ }_{\substack{\text { 230] } \\ \text { isp }}}^{\text {a }}$		6sp				${ }_{65}^{100}$		S0p		
CHES			${ }^{\text {bincon }}$		18008		sop				1500				5
	cs		${ }^{25050}$		${ }^{280}$		${ }_{6590}^{6509}$								
ON Off SWICH WTH REMOIE [2.00p			${ }^{2000}$		${ }_{\substack{2500 \\ 1600}}^{\substack{\text { a }}}$						${ }_{105}$				
ETTE MOTORS	LOW PRoFLLE		$\substack { \text { 2000 } \\ \begin{subarray}{c}{2600{ \text { 2000 } \\ \begin{subarray} { c } { 2 6 0 0 } } \\{1250} \end{subarray}$												(1800
	${ }_{\text {80, }}^{80}$														1000
									On		300				${ }_{500}$
	${ }_{\text {cosen }}$		1000				${ }^{5350}$				100		400	${ }^{2550.426}$	$\underset{\substack{150 \\ 150 \\ 150}}{ }$
DRIVE ELTS For		ANI	-		29		2500		$\begin{gathered} 190 \\ \text { and } \\ \text { kn } \end{gathered}$						(isp
	40pin														$\substack{300 \\ 600}$
SOUARE	${ }_{\substack{\text { BCCOO }}}^{\text {BCOO }}$		${ }_{2750}^{230}$		27	UPC11584	cop		$\begin{aligned} & 100 \\ & \substack{100\\ } \end{aligned}$	${ }_{\text {2SC- } 2 \text { 299 }}^{\text {2S }}$			${ }^{2550}$		
$189 \times 05 \times 580 \mathrm{E}$ (N.2000	${ }_{\text {BC222] }}$		$\begin{gathered} 32595 \\ 2595 \end{gathered}$		${ }_{3200}^{3300}$	${ }_{\text {lipCr }}^{10}$	\%		$\begin{gathered} 50 \\ \hline \end{gathered} 50$		20p				$\underset{\substack{750 \\ 900}}{ }$
2200	${ }_{80139}^{80139}$	AN2									0				${ }^{100_{0}}$
ELC EAST LONDON COMPONENTS															${ }_{4}^{459}$
									Of		On				¢
,	${ }^{815550}$,				200		${ }^{308}$		(300
wo minutes walk from Uplon Park Tube Slation	${ }_{\text {ITP }}$	ANT	${ }^{12000}$				10		5		90p				S00
EASE PHONE US IF WHAT YOU NEED	$2{ }^{23055}$	${ }_{\text {Anf }}$	${ }^{175}$				\%		Sp		\%		600		500
T LISTED AS WE HOLD THOUSAND			${ }^{1750}$				\%				(100		25p		¢
	\%		${ }_{180}^{2780}$												(750
LL GOODS DESPATCHED SAME DAY			${ }^{1809}$	Stick			500				50p				200
VISA		Hal3		(k620	${ }_{750}$	R2006	${ }_{\text {chisp }}$	258-55	150	$255 \cdot 1195$	${ }_{2509}$	256-250	909	250-880	509

BULK BUYERS 2 YEAR GUARANTEE, 4 YEAR OPTIONAL ALL MAKES INC. SONY NATIONWIDE DELIVERY PHONE NOW FOR FREE LISTS SHERWOOD TUBES LTD 60A PEVERIL STREET, NOTTINGHAM NG7 4AH. Tel. 0602786896	

NEWCASTLE UPON TYNE

COLOUR TELEVISIONS
THORN-8.800
9,000
9,600
TX9-TX10
DORIC-MK1, MK111, M4
PHILIPS-G11, KT3, KT30.
ITT-Various Models.
GEC-Various Models.

TRADE WORKERS ALWAYS AVAILABLE

35, Nunsmoor Road, Fenham, Newcastle-Upon-Tyne. Phone: (091) 2722303

SALE SALE SALE	SALE	SALE	SALE	SALE
INDEPENDENT TELEVISION $\%$				
VIDEO COMPANY				
MID SUMMER SALE - MID SUMMER SARE				
WE HAVE A LARGE SELECTION OF EX-RENTAL TELEVISION \& VHS VIDEO RECORDERS. TESTED TO A VERY HIGH STANDARD AT THE LOWEST PRICES POSSIBLE				
WE'VE CHECKED THE REST NOW VISIT THE BEST				
BRAND NEW 48cm CTV £110.00 (Video Stand Incl.)	BRAND NEW 51cm FST TELETEXT CTV $£ 200.00$(Video Stand Incl.)			
$\begin{aligned} & \text { FERG TX TESTED } \\ & \mathbf{2 3 5} \end{aligned}$	$\begin{gathered} \text { VHS } \\ \text { VIDEO } \end{gathered}$ TESTED	TOSHIBA TESTED		
$\begin{aligned} & \hline \text { IN-LINE TESTED CTVs } \\ & \text { ET8 } \end{aligned}$		CTVS FROM		
$\begin{aligned} & \text { KT3 TESTED } \\ & \mathbf{E} 35 \end{aligned}$		LARGE SELECTION OF teletext t.V.'s AVAILABLE		

MANY MORE LATE TVS TO CHOOSE FROM
WE ARE EXPERIENCED AND CURRENTLY EXPORTING REFURBISHED TELEVISIONS \& VIDEOS ENQUIRES WELCOME C.I.F. \& F.O.B. PRICES TELEX 378414 BLBIRDG - FAX 0602861027 NO ONE's OR TWO's - BULK PRICES ALL PRICES ARE SUBJECT TO 15% V.A.T.

NOTTINGHAM
(10,000 SQ. FEET WAREHOUSE)
UNIT 3-3A MEADOW TRADING EST MEADOW LANE
NEAR NOTTS. COUNTY FOOTBALL GROUND IN NATIONAL TYRE YARD, NOTTINGHAM NG2 3WQ TELEPHONE: (0602) 864627

SHEFFIELD

(6,000 SQ. FEET WAREHOUSE
2 MIN FROM JUNG. 34 OF THE M1 UNIT 17, MEADOWHALL TRADING EST

27 AMOS ROAD, SHEFFIELD 9

5
 MIDLAND television

BAECLAYCABD VISA

QUALITY SETS SINGLES OR QUANTITY SUPPLIED AT THE BEST PRICES

C.TV.

Phillips	Non Working	Working
KT3 Basic	£15.00	£25.00
K30 Basic	$£ 20.00$	£30.00
KT3 Text	$£ 50.00$	£68.00
KT30 Text	$£ 55.00$	£75.00
BUSH		
$\begin{aligned} & \mathrm{T} 20 \\ & \mathrm{~T} 22 \end{aligned}$		
	$£ 10.00$	$£ 20.00$
T26		
THORN		
8800	£5.00	$£ 9.00$
9000 R/C	£12.00	£18.00
9600 R/C	$£ 14.00$	$£ 20.00$
TX9-TX10 Basic	$£ 25.00$	£35.00
TX9-TX10 Text	$£ 55.00$	£70.00
TX9-TX10 R/C	$£ 30.00$	£40.00

VHS

Ferguson	Non Working	Working
3V23	$£ 55.00$	$£ 80.00$
3V30	$£ 55.00$	$£ 80.00$
RC 3V31	$£ 60.00$	$£ 85.00$
RC 3V35	$£ 65.00$	$£ 90.00$

SHARP, HITACHI, ETC FROM:
Non Working £55.00, Working $£ 80.00$
Buy 15 or more of any item and receive 10\% reduction
i.e. $15 \times 3 \mathrm{~V} 30$ in full working order $£ 72.00$ each + VAT

TRADE REPAIR SERVICE
CTV \& VHS Securicor collection \& delivery available. Also panel exchange service ring for details.

15 MIN M1 JUNC. 22

ALL REMOTE \&
IEXT SETS
SUPPLIED WITH HANDSETS

Nationwide Delivery Service Available UNIT 11, MARKET STREET, COALVILLE, LEICESTERSHIRE TEL: 0530-810836/7

ALL PRICES

 SUBJECT TO VAT AT 15\%FOR SALE

For All
 SHARP GRUNDIG PHIILIPS Fidelity and Thorn Genuine replacement spare parts you need only one phone call on 0734-876444
 or
 061-682-1415
 Same day despatch before 2.30 pm .
 Over 55,000 parts in stock

WHilow Vale Electronics Ltd

Sole UK Parts distributor for Grundig and Sharp. Main Philips UK Distributor
television tube redgunning plant. ReGuns Sony Trinitron. $45 \mathrm{AX}, \mathrm{Pil}$. In line. and thin $(22.5 \mathrm{~mm})$ neck tuhes etc etc. Training provided. For details write to R.A. MORGAN, 32 Nightingale Road, Hitchin, Heris
C.R.T. Restorer/Analyzer Dynascan BK467 with adaptors, new $\mathfrak{£}^{3}(10)$) $024549(0) 42$

THE NEW 80 CENTIMETERS OFF SET DISH FROM EURO SAT

Designed and developed in the UK Astra. BSB, DCF 2 and telecom. Dish antenna from 80 cm to 3 meters

Phone or write for details:
SAE: Euro Sat, 107 Cross St.,
Sale, Cheshire M33 1JN, England. Tel: 061437 2631/061 8814249.

TEST CARD GENERATOR £15 !?
Yes that's all it costs for our unique TEST CARD TAPE'
Also: REFERENCE COLOUR BARS $£ 15.00$
Audia Azimuth adjustment tape $£ 5.00$
Comprehensive trade address reference sheets $\mathfrak{£ 3 . 0 0}$ Send now to.
INCA ELECTRONICS,
33 Pleasann Street
Morriston, Swansea SA6 6HH
TELETEXT TVs Sales private shop offer 50 to tow sets every month TX10 I. T.T.. Grundig. Philips. Pyc. Replies to Box No. 252.
ORIGINAL HEAD Panasonic 3IISStNA $\mathbf{\$ 3 5} 50$. New line output transformer t6.00). Decca Bradtord $\mathrm{P}+\mathrm{I}$ fi.00. TV Centre. (7766 4059$)$

Japanese T.V.'s Mitsubishi. Panasonic. Sony J.V.C. Toshiba, Hitachi. Full refurbished showroom condition. Jeff Ella, Television. 0924 25944

```
MISCELLANEOUS
```


vac ace de-soldering unt Powertul suction. Bull--In vacuum pump jives 600 om Ho suction? No clogging Solder remains molten untii reaching fitter
Functional gun-type Construction Trigger-switch controls pump. Easy clean and filter replacement Ceramic heating element Temperature variable $300-400^{\circ} \mathrm{C}$ Sate with LSI and MOS devices.
Eas ly Interch angeable Long-|life Easily Interchang

Light Soldering Developments Lto $97 / 99$ Gioucester foad | Croydon CRO 20N $01-6890574$ |
| :--- |

	RING
NEN	FOR
BMR-90-Hi-Ec	FURTHER INFORMATION
Europe's most frequently bought	ON
pays itself within 4 weeks;	
regenerates picture tubes even better; removes shorts filament-	DISCOUNTS
cathode, cathode-grid 1, grid 1 - grid 2; carries gas to getter; 131 adaptors available; has 11 heating-voltages; new adaptor-list with more than 8000 tubes-types; also available: BMR 107 Regenerating-Computer and BMR 44 Regenerating-Automatic-Machine. Please, ask for catalogue.	AND CURRENT
BLENDOWN LIMITED, Bank House, 17 Rhos Road, Rhos on Sea, Clywd, Wales Fax No (0492 47880) Phone 0492-49246	RATES

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes Part 1. The Colour Signal Part 2.
 The Receiver Decoder Part 3. Receiver Installation
 VHS * * $*$ V2000 * \star * BETAMAX $\star \star \star$ UMATIC

SITS VACANT

SKILLED TECHNICIAN WANTED. Good pay rates apply. Jomill Enterprises, 173 Dalston Lane, E8. Tel $01-5332229$

FIELD SERVICE ENGINEERS Move into the world of microcomputers Excellent salary + car

If you are to make more of your electronic engineering skills you need to move into a more prestigious environment, where you will work with technology that matches your ability.

MBS Engineering services can offer you that very challenge, with major Services Centres in Battersea, Ascot and Stockport, and other offices throughout the U.K.

We are part of MBS plc, a leading supplier of business computers. Our job is to provide a complete maintenance solution to computer users throughout the UK.

As a Field Engineer, you'll be responsible for repair of micro-based computers and associated equipment.

Apart from good qualifications such as City and Guilds or TEC Electronics, you'll have sound experience in fault finding, diagnosis and repair of electronic equipment.

We cffer an attractive salary in line with your age and experience as well as a company car and other generous benefits such as noncontributory pension scheme, free life assurance, BUPA and 23 days holiday.

If you are ready to progress your career call Rob Musson, or Janet Chipperfield for an application form, on 099023423 , or write to him with full details at MBS Engineering Services, Unit 5, Kings Ride Park, Ascot, Berks SL5 8BP.

ACCESS

TECHNICAL INFO SERVICES (T)

mastercard EUROCARD

76 Church St., Larkhall, Lanarkshire ML9 1HE

Phone 0698884585 Mon-Fri 9-5, 0698883334 any other time FOR FAST QUOTES

IMMEDIATE DESPATCH of all Phone Orders by ACCESS, etc. or to Listed Customers
WORLD'S LARGEST COLLECTION OF SERVICE MANUALS . . . from $£ 3.50$ to $£ 50$. . . Most unobtainable eisewhere
Every issued FULL SIZE SERVICE SHEET in stock; CTV's or Combinations $£ 3.50 /$ Singles $£ 2.50$; Plus LSAE
LSAE for any quotation, plus FREE large Catalogue, STREE Review, Pricelists, etc.

Almost any original Video Service Manual from J.V.C. or Siemens at $£ 15$ each

WORKSHOP SERVICE MANUALS
 Video Recorders - £12.50

Most other equipment, Colour Television, Mono, Audio,
Music Systems, Test Gear, Vintage Valve, Military surplus etc. etc. £6.00.
Please state Make/Model/Type with order.
Most available from stock or obtainable to order.
FREE Catalogue Unique Repair and Data Guides with all orders or LSAE for your copy.

MAURITRON ELECTRONICS (TV)
8 Cherry Tree Road, Chinnor, Oxon. OX9 4QY. Telephone: (0844) 51694

BOOKS \& PUBLICATIONS

Ku BAND SATELLITE TV THEORY, INSTALLATION AND REPAIR

This 383 page manual by Baylin \& Gale of USA covers dish theory, uplinks. footprints, site survey, installation and adjustment, descrambling, cable TV descrambling,
even includes a computer program for finding your satelite. Second Edition $£ 23$.

SATELITE AND CABLE SCRAMBLING AND DESCRAMBLING. Basic theory. 2nd Ed. 280p MDEO SCRAMBUNG \& DESCRAMBUING. Advanced thery and circuits 246 pages by Graf \& Sheets $£ 21$ EUROPEAN SCRAMBLING SYSTEMS. Circuits, Tactics 8 Techniques, by J. McCormac, fascinating information for
the service engineer. HOME SATELLITE TV INSTALLATION VIDEOTAPE, HOME SATELLITE
minutes. VHS PAL
HIDDEN SIGNALS ON … HIDDEN SIGNALS ON SATELLITE TV. Teletext, telephone channels, teletype

- $\mathbf{£ 2 5}$

SATELLTE, OFF-AIR\& SMATV. By F. Baylin. E25
WORLD SATELITE ALMANAC. All footprints, 650 pages, second edition by M. Long
COMMUNICATKON SERVICES VIA SATELLTE. By G. Lewis. Microwave, TVRO, Encryption ${ }^{\circ}$ E45 SATELLITE TV INSTALLA INON GUIDE. 2nd edition by John Breeds
Price includes P\&P UK. Airmail Europe £2. Outside Europe £6.00 extra per item 24 RIVER GARDENS, PURLEY, READING RG8 8BX. TEL: 0734414468 (Answerphone)

VCR - CTV - MTV - AUDIO - MICROWAVE
Exampies - VCR
VSP10X = Saisho VR1200HQ/Matsui VX820 $£ 11.75$
Memorex VR1200/Casio VCR6500 $\mathbf{1 1 4 . 7 5}$
Casio V×4000Funai VCR5400
Casio VX6000/Funai VX10
$\begin{array}{r}\$ 14.75 \\ \\ \\ \hline 15.50\end{array}$
$\mathbf{1 1 6 . 5 0}$
CTV manuals for
NEC/Loewe/Mez/Seismo/Casio/Funai
OrionOtake/Admira/Kasuga etc.
from $£ 4.50$
Manuals for many other makes and models. For full list now including audio and money-saving vouchers Send $£ 2.50$ no SAE reqd.

Prices are all inclusive. No VAT or P/P
DATA-GO 112 AMEYSFORD RD., FERNDOWN, DORSET BH22 9QE. Tel: 0202894207

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries.

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast,
Co. Donegal, Republic of Ireland.
Phone: 07548275

BOOKS AND PUBLICATIONS

SatelliteTV Installers
 Well produced and extensively

 illustrated ... a thorough, practical guide ..." TELEVISION Sohm Breeds an invaluable guide ... takes the reader methodically through how systems work and are installed .. in our opinion, this is a most valuable reterence book ... We highly recommend it INDEPENDENT ELECTRICAL RETAILERpresented in an approachable and understandable way ... plenty of easy to follow illustrations ... adopted by the Confederation of Aeria Industries as the study manual for approved City \& Guilds courses \qquad WHICH SATELLITE
Covers all practical aspects of getting direct-iohome satellite pictures ... written specifically for European installers ... includes angle settings covering the whole of Europe

'Satellite TelevisionInstallation Guide'

by John Breeds. Price $£ 11.95$ p\&p paid UK (Europe $+£ 1.00$) Swift Tefevision Publications, 17 Pittsfield Cricklade, Swindon, Wits. SNG GAN.

CALLING ALL TECHNICAL AUTHORS

We are preparing a series of major publications which will cover all areas of satellite television. Do you have any related knowledge or skills? Have you ever thought any related knowledge or skils? Have yourolibuting to or even writing a whole book?

Perhaps you have but maybe you were put off by doubts about your own writing ability or even how to finance it. Let us take care of those aspects for you
Just drop us a line enclosing a stamped addressed envelope and we will send you full details on how we can make you famous!

SWIFT TELEVISION PUBLICATIONS
17 Pittsfield, Cricłdade, Swindon, Wilts. SN6 6AN.

FOR VALES, SERVICE DATA, Amplifiers and Radios. Try the Vintage Wireless Co. First send for free information package. 1989 Catalogue available April $£ 4 .($) $)$. Cossham Street. Mangotsfield. Bristol BSI7 3EN. Tel. 0272565472.

AERIALS

SATELLITE TV RECEPTION EQUIPMENT

LNE's. Recemers, Dishes, polar mounts and accessories 90 cm dish, mount and feed assy with
adaptor tor marcon adaptor for Marcon LNB
C and Ku band LNB trom C and KU band LNBS from
F connectors - 10 for N/F and FN adaptors
200 B hine amps 2008 bine amps Main St., Kesh, Co. Fermanagh, N.I. Tel: 0365631449 Tlx: 747412

COURSES
 SATELLITE TV INSTALLATION COURSE
 Thinking of expanding into Satellite TV? Find out about it first Fully comprehensive installation and marketing courses. Taught by experienced protessionals. Practically based course includ ing the opportunity to install a system yourself
 Certificate on completion
 Courses held every weekend in London and Manchester
 COST £195.00
 Few places left for May
 For more information call:-
 01-361 8134
 SATELLITE TV INSTALLATION COURSE BUSINESS FOR SALE

VIDEO \& TV RENTAL \& REPAIR Business for sale. Good profits. Ill health forces sale. Tel. Bridgend ik656 61513 for details. Est Business 1952

> FOR FURTHER DETAILS CONTACT CLASSIFIED ON 01-261 5942

INCREASE YOUR PROFITS

by saving hours \& hours POSSIBLY DAYS OF FRUSTRATION locating faults on VHS VIDEO RECORDERS.
WE OFFER YOU THE HELP YOU NEED with HUNDREDS \& HUNDREDS of 'STOCK' and the 'HARDER' faults along with their SYMPTOMS. All experienced and collated from MANUFACTURERS/ SERVICE DEPTS/WORKSHOPS/CONSULTANTS and TECHNICIANS. Covering
ALL POPULAR MAKES \& MODELS including:-
FERGUSON/PHILIPS/JVC/PYE/PANASONIC/ hitachl/aKAI/MITSUBISH/SHARP/SANYO/ FIDELITY etc etc etc.
SYMPTOMS/DIAGNOSTICS/FAULTS/ PROCEDURES/MODIFICATIONS
All well tried \& PROVEN as a great TIME SAVER \& ESSENTIAL for ALL service departments \& personnel. Collated \& indexed in UP-DATING binders for QUICK \& EASY reference.
Will immediately recover the outlay costs. ATTRACTIVE up-10-date BINDERS covering MANY HUNDREDS of FAULTS \& their SYMPTOMS.
YOU WILL WONDER HOW YOU MANAGED WITHOUT THIS ONLY £73.00 (inclusive)
Regular monthly updates just $£ 30$ per year Also available on COMPUTER DATA-EASE Payment with order to:-
TECHNICAL ADVISORY SYSTEMS 33 FOXCOTE, ASTLEY VILLAGE, CHORLEY, LANCASHIRE PR7 1XE.

Telephone: (02572) 75667

©Wirn
 QUALITY USED T.V. \& VIDEO

PHILIPS/PYE G11, KT3/30. LARGE QUANTITIES OF STD., REMOTE AND TEXT CTVs ARRIVING DAILY.

Free Delivery Service to Most Areas of the U.K.

C)wow
 Whontesane vio

UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9OB

Just 10 Mins from
M5 Junct. 6 Worc's North
$02993-79642$
79643

VIDEO MACHINE REPLACEMENTS

We Specialize in all types at

UNBEATABLE PRICES!!!

VIDEO HEADS

AND MANY MORE. . . PLEASE ENQUIRE. . . DISCOUNTS FOR TRADE ACCOUNTS
BELT KITS

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are retumed undamaged within seven days. the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme
If you order goods as a private individual from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become bankrupt or go into liquidation provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earier than 28 days from the official on sale date of the publication and not later than three months from that date. (Please retain proof of payment).
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has become subject to bankruptcy proceedings or gone into liquidation up to a limit of $£ 4,050$ per annum for any one Advertiser so affected and up to $£ 12,150$ per annum in respect of all advertisers.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. All display advertisements are covered but only boxed trader classified advertisements are included. Advertisements as loose inserts are not covered.

ADM Electronic Supplies 642	General Factors. 640	Radio Components Specialist 634
Admin Televisions 635	G.G.L. Components 566	Reiay 0magh Ltd. 630
Aerial Techniques 581	Grandata Ltd. 618, 619	Reliable Whotesale TV 569
AGS Electronics 634	Griftronic Emission Ltd. 646	Repossessed TV Centres 635
Amrick Visions Wholesale 629	Henniker, Brian 643	Riscomp Ltd. 6.595
Apoll0.. 589	Humphrey, A.G. 645	Satellite Telev'sions 645
Audio Visual Services 620	Hussain Central TV 625	Sendz Components 578, 648, Cover III, Cover IV
A-Z Electrics 633	ICS .. 565	Sherwood Tubes Ltd . 641
Bi-Tel ... 628	Inca Electronics \qquad 642	Sonic TV Distributors 638
B.K. Electronics . 564	IrwinElectronics 621	Sparkworld ... $6 . . .635$
Blendown Ltd. 643	.T.V.C....................................... 641	Stewart of Reading 630
Bolton Metropolitan College 565	Jenhut Ltd. 632	Suftolk TV \& Video 634
Broughfame Ltd. 627	Jomill Enterprises . 634	Supertronics 624
Budget TV 634, 635	Kesh Electrics 645	Supervision.. 6.158
Bull, J \& N Electrical . 571	Light Soldering Developments Ltd. 565, 642, 643	Swift Television 644
Campion Wholesale Ltd.......................... 645	LWL Wholesale 617	Taylor Bros (Cldham) Ltd. 587
Carter, John (Electrical) Lid. 622		Technical Advisory Systems...................... 645
Central TV \& Video Wholesalers Ltd 647	Manor Supplies Cover II	Technical Information Services.................. 644
Centrevision.................................... 633	Mauritron Electronics 633	Teleprice Ltd. 623
Chromavac Ltd. 5699 Clearvision	MBS Group PLC 643	Teletraders 631
Clearvision..................................... 617	Midland TV's 642	Televideo Services 570
Crofton Electronics 628	NGK... . . 631	Teleview 635
C.T.V 639	N.G.T. Electronics Ltd. 633	T.E.S.D.Ltd. 577
Data-Go.. 644	North East . 639	Tidman Mail Crder Ltd. 597
Dhouper Vision 637	North West Electronics 636	Tree, W. Tracie TV.............................. 626
Display Electronics Ltd. 630	Omega Electronics 593	TV \& Video... 634
Donberg Electronics 644	Papworth, E. 631	Vascort Ltd. 616
East Cornwall Components 572	PCTV Services 634	View-Tel 622
East London Components 640	Phoenix TV Wholesale 622	Vincent, J. Technical Books 644
Economic Devices 604, 605	Post a Part Electronics 630	Visions G.B. Ltd. 577
Electrosmart..................................... 645	Powell, T........... 629	West Midland TV \& Video 617
Eratime Ltd. 567	Promerc Marketing 635	Willow Vale Electronics 642
Euro-Sat .. 642	Pro-Vision . 615	Wiltsgrove Ltc. 6.646
Express TV Supplies 631	P.V.S. 641	Wing Electronics 634
Flintdown Channel 5 643	P.V. Tubes 562, 563	Wizard Distributors 642
Ford, Frank 626	Radio and TV Compenents Acton Ltd. 615	Zoneport..... 627

戸が 							
気 							

[^0]: NOTE
 Surcharge without
 exch. glass.

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £18, overseas (surface mail) £21 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

[^2]: 面 VIEW-TEL TELEVISIONS
 (0388)

 SWAN STREET, EVENWOOD, 832832 Nr. BISHOP AUCKLAND, CO. DURHAM.

[^3]: GREWE WHOLESALE TELEVISION CHESHIRE'S LARGEST WHOLESALERS - OVER 18,000 SQ. FT. 15 MINUTES FROM JUNCTION 17, M6
 (Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

 ## LORRY LOADS DIRECT FROM SOURCE

 ## VIDEOS

 VHS - Mechanical Hitachi
 Electronic Nat/pan, Hitachi Sharp and Thorn
 50 Mixed of your ITT30/32 choice

 Decca 80's and 100's Doric series 3 GEC 2110/2111

 BETAMAX - Sony, Sanyo, Toshiba, etc. (Working or untouched)

 AT £250.00 + VAT GUARANTEED UNTOUCHED

 RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS

 ## CREWE WHOLESALE TELEVISION

