TE

 U5 01

Build this Signal Tracer

Also: Solid-state Image Sensors Laser Power Meter Test Report DX-TV • Grundig's Satellite TV Rx VCR Clinic•TV Fault Finding

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations.
\star Fully interlaced sync pulses with correct picture blanking.

* EBU colour bars. BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch. grey seale, vertical lines, horizontal lines and dots UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 44^{\prime \prime}}$) app.
$£ 8.60$
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module

Post/Packing $£ 3.00$ Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

Output at UHF, applied to receiver aerial socket. - In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level. \star Push button controls, battery or mains operated. \star Simple design, only five i.c.s on colour bar P.C.B. \star Backup service available.

PRICE OF MK 4 COLOUR BAR GENERATOR KIT

 £30.00. CASE £8.60. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT £4.20 (Combined P\&P £3.00). MK 4 (MAINS) B(HIT \& TESTED £68.00 $+£ \mathbf{£} .00$ P \& P. VHF MODUIIATOR (CII I to 4) FOR OVERSEAS \&5.75. EASII.Y ADAPIEI) FOR VIDEO OUTPUT \& C.C.T.V.

KITS \& PROJECTS

SAW IF ANI) TUNER [INI'T' complete and tested for video \& audio outputs £28.50 p.p. fl. 80).
PAL DECODER KIT (Video to R(i3) for Monitors £27.(N) p.p. £I.(o). PAI, ENCOIDER KI'T (RGB to Video) $£ 18.50$ p.p. $\mathfrak{E l} .3(0)$.
CROSS HATCH UNIT KIT, Aerial lnput type ind T.V. sync. and LIfF Modulator, Battery Operated, also gives Peak White \& Blach Ievels, can be used for any set. £13.50 p.p. KNp. (Alum. (ase £3.20 p.p. f1.40).) ADINTIONAL GREY SCALE Kit 22.90 p.p. $4.5 p$.
UHF SIGNAL S'TRENGTH METER KII' $£ 22.00$ Alum. Case e3.20. De I.uxe (ase $\mathbf{\& 8 . 6 0}$ (Built \& Tested $£ 48.00$) p.p. $£ 2.50$.

CRT TESTER \& REACTIVATOR KIT FOr Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest (RTs $£ 29.50$ p.p. £3.00.

TV SERVICE SPARES

SATELLITE T.V.
 ON DEMONSTRATION AT 172 WEST END LANE NOW! - ENQUIRIES WELCOME

PHILIPS SPARES

(:8 PANEIA (Tested) Power $£ 12.50$, Scan $£ 15.90$, Signals $£ 15.00$ p.f. $£ 2.5(1$
KT3, K.30 PANELS, twated, exchange. sound. power. bridge rect, Irame. R(iB KT3, K.30 PANELS, tented. exchange. sound. pung
£7.50 cach. Decorder (Non-text) f10.M p.p. ह1. 50).
 P.p. £2.xo. Power tested exchange £18.00 p.p. $\mathfrak{E}^{2} .80$

G11 iF PANEL, (new) less Tuner $£ 2.50$ p.p. t 1.30 .
Gil 6POS Touch Tune (latmel Selector (replaces old type) mell instructions. £20.00 p.p. £1.81
G9 POWER SIPPLY IVITT $55.00 \mathrm{p} . \mathrm{p}$. £2. 31
G8 h Position (hamnel Selector (aloping bullons) $\mathbf{x} 2.50$ p.p. $£ 1.0$).
HANDSETS EX-RENTAL, TEXT INTESTED. KT, TEXTVIDEO TYPE E3.50 p.p. $£ 1 .(0)$.
 KT4/K40 SYSTEM 4 E3.50

THORN/FERGUSON SPARES

$\mathbf{8 0 0 0}, \mathbf{8 5 0 0}, 88100.980$ PANELS tested. exchange. Power $\mathbf{8 8} 8 \mathbf{8 0}$. Frame.
Decoder £10.00 p.p. £2.30
9000 Series [F/Decoder tested £10.00, Line/Power $£ 20.00$, Frame $£ 18.00$ p.p. $£ 2.80$. 9500) 600 Line Scan $£ 25.00$, Pouer $£ 20.00$ p.p. $£ 2$. Ki.

TX9 Panels complete \& tested $£ 28.00$ exchange (shop only)
TX9 Pancls ex-factory for small spares includes [C"s \& semiconductors, etc. $\mathbf{f 3 . 0 0}$ p.p. $£ 2$ (N).

TX9 panels salvaged ex-lactory for spares incl. clectronic \& mains transformer. \&8.50 p.p. £3.00.
TX9/TX10 Facia. control panel incl. infra-red recever $\$ 8.50$ p.p. $£ 2$. 5)
TX10 Focus control 88.50 P.p. £1.(W).
TX9TX10 Saw filter IF panel 25.00 p.p. $81 p$.
TX9/TX10 Remote \& tuning control pancl 1515 (incl. SAAS(12) $£ 7.50$ P.P. £1. \mathbf{x}. TX10/TX90/TX100 Chassis complete \& boxed (untested) £20.00 p.p. £2.80.
ITT SPARES: CV(3) wrie convergence \& purity panels £2.50 p.p. £1.50. (VC3) series pancls surplus (untested) $£ 2.30$ each, (MP31, (MF31, (MA30,

(V20/30 serres chassis for small pares (shop only) $\mathfrak{e} 2.50$.
BUSH SPARES: T20/T22 panels, tested, exchange, power wan drive £ $\mathbf{8} 8.00$. Scan £25.00 p.p. £2.50. T20/T22 touch tune panels + controls $£ 3.50$ p.p. £ 1.50 . (GEC SPARES: 20AX MKII line time base $\mathbf{1 8} \mathbf{8 . 0 0}$ p.p. 22.(x). Pitwer (PC778) tested exchange $£ 18.00$ p.p. $£ 2(0)$.
SONY SPARES: ON/OFF SWITCII 21 mm or 26mm. spaced holes. universal Sony onfoff ± 4.20 each p.p. 8 op.
HANDSETS (New Replacement) RM-664, 6(K).613.615, 630.632. 635 £19.50 p.p. fl (0).
TELETEXT DFCOIDER PANEIS (tested) - Mullard VM6101 Type £25.00, Philips KT?, K $30 £ \pm 20.00$ p.p. £2. 31$\}$.
M(ILIARI) VM6230 teletext decoder (similar to VM6101) plus additional Prestel unit. VM6 330 \& Line Coupler $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 3 .(0)$.
VARICAP TUNERS: (irundig 86,30 series 55.00 p.p. fl. (K) U321, U322/

FERG., IIMV, MARCONI, UITRA
$1590,1591,1612.16,13,1712$.
FERGULSON 37 K7 (Normencle 64.80
 CAN. FIIT

HORN

THORN TXY
THORN IXIO
SPECLAL OFFEK
OECCA 70. 81

PHILIPS 320
PHELIPS(ill …..
PYE $691-7$ Chasvinge

f9.80) PHIIIPS:A
OTHERS AVAIIABIE, PRICESS ON REQUESTI

TRIPLERS: THORN MMM © 8.80

UNIVERSAI, (best yuality) $£ 7,80$.
CONTINENTAD, TVK \& BG; RAN(;E (quote exact no.) replacements £13.80 IJECCA/TATLING; £7.80 p.p. £1. 50 .
TIIORN 150030 R 5 stick $£ 1.50 \mathrm{p}$ p. 8 (h). Others available
$6.3 V$ (CRT Boost T ranstomers tor Colour \& Mono 55.91 p.p. $£ 1.40$. 455 CRYSIALS for Remote Control Ifandsets, 4 for £1.00 p.p. 50 p. VIIF to UHF Canverters $£ 26.50$ p.p. £2.50.

CAII.ERS WELCOME AT SHOP PREMISES
TIIOUSANDS OF ADIDITIONAI, ITEMS, ENOUIRIFS INVITEI) IAR(;E SEIEETION TESTEI) (OLOUR PANELS POPLLAR MOIDEIS

Goxkds aralable if in stexk mmednately ower hop counter (Manl order between 3 davs and week liom recem on order) ADD VAT 15\%

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6 1SD

On sale April 19th

COPYRIGHT

(C) IPC Magazines Limited, 1989. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES

Indexes to Vols. 36 and 37 are available at 80p each from the Editorial Office (address above).

SUBSCRIPTIONS

An annual subscription costs $£ 18$ in the UK, £21 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, Vouchcheck Services, Unit A6, Poplar Business Park, Prestons Road, London E14 9LR. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

485 Leader
486 Long-distance TelevisionRoger BunneyReports on DX conditions and reception and news fromabroad. Increasing sunspot activity has produced somestartling F2 reception.
488 Test Report: Leader Laser Power Meter Nick BeerUse of a power meter is the simplest way to check thecondition of a CD or LaserVision player's laser. The LeaderLPM8000 is the most widely available unit.
491 LettersIncluding details of a simple satellite TV dish alignment toolfor elevation adjustment.
494 TeletopicsNews, comment and developments.
498 Camcorder Servicing Part 3, Solid-state Image Sensors
Steve Beeching, T. Eng.
Such is the rate of progress that there have already been several types of sold-state image sensor How they work, including the colour system, and basic signal processing.
501. The Party's Over - Well Almost Les Lawry-Johns Les prepares to shut down and move to a bungalow not far away.
502 Grundig's Satellite TV System
Steve Beeching, T. Eng.
Steve has fun trying out Grundig's 62 cm offset dish and STR20 tuner unit. They worked very well - except when the chicken got in the way.
503 Next Month in Television
504 TV Fault Finding
Reports from Philip Blundell, Eng. Tech., Nick Beer, Eugene Trundle, Roger Burchett, Ian Bowden, Paul Hardy, Brian Renforth and George Lithgow.
506 Op Amp Signal Tracer Unit David Botto An old idea brought up to date. You'll find this tracer useful for more than just audio circuits. With guidance on circuit checking.
510 LocoScript 2 Update
Vivian Capel
The latest versions and notes on upgrading the Amstrad PCW8256.
511 CD and Videotext Developments Peter Marlow, B.Sc. (Hons.),
C. Eng.
The CD-ROM, interactive TV and proposals for videotext services.
512 A Day in the Life of ...
Nick Beer
The daily round at Nick Beer's North Devon establishment.
514 A Look at Operational Amplifiers, Part 2
Keith Cummins
Some ways of using op amps and a design exercise - a microphone interface circuit.
518 VCR Clinic
Reports from Philip Blundell, Eng. Tech., Alan Shaw,
Eugene Trundle, David Botto, Alfred Damp, lan Bowden and E.M. Beddow.
520 Servicing Compact Disc Players, Part 3
Joe Cieszynski Ways of testing laser units, fault symptoms, precautions and adjustments.
523 Cable and Satellite '89
Hiarold Peters and Alan Sidall
The satellite scene in early 1989.
524 Service Bureau
525 Test Case 317
OUR NEXT ISSUE DATED JUNE WILL BE PUBLISHED ON MAY 17
P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS MON-SAT Tel: 0254 36521/32611/390936
Telex: 635562 Griffin G (For P.V.) Partners S. \& B. Cucknell
24 hr . answering service

BB5 1EE. Gam-5pm
New Fax No.
0254395361

SPECIAL PRICES ON 5+ MIX VIDEO HEADS REPLA

EO HEADS

WE ARE SOMETIMES ABLE TO SUPPLY TO TRADE
ONLY EX. RENTAL, WORKING VIDEO RECORDERS. PLEASE RING FOR PRICE AND AVAILABILITY

PLEASE ASK!

AMSTRAD	
	4500/5200/9000
	PSF1 (VIP1000)
"	4600 PSF2
"	7000 SHSSR
AKAI	
VS1	3HSSA
VS2	3HSSA
VS3	3HSSA
vS5	3HSSA.
VS10	3HSSA.
VS77	3HSSA
VS88	3HSSA.
VS7100	3HSSA
VS7200	3HSSA
VS9300	3HSSA
VS9500	3HSSA
VS9700	3HSSA
V 59800	3HSSA
FERGUSON	
3 V 00	3HSSV
3V01	3HSSV
3 V 06	3HSSV
3 V 16	3HSSV
3 V 22	3 HSSV
3 V 23	3HSSV
3 V 24	3HSSV
3 V 29	3HSSV
3 V 30	3HSSV
3 V 31	3HSSV
$3 \vee 35$	3HSSV.
3 V 36	3HSSV.
3 V 42	3HSSVA.
$3 \vee 43$	3HSS4VD
3V45/6	3HSSVA
3 V 47	3HSSVA
3 V 48	3HSS4VC
$3 \vee 52$	3HSSVA
8903	3HSSV
HITACHI	
VT6500	3HSSHA
VT7000	3HSSHA
$V 78000$	3HSSHA
VT8040	3HSSHA
VT8100	3HSSHA
$V 18500$	3HSSHA
VT8700	3HSSHA
\checkmark V9000E	3HSSHA
VT9300	3HSSHA
VT9500S	3HSSHA
VT9700	3HSSHA
VT9900	3HSSHA
$V T 4000$	3HSSH
$V T 4200$	3HSSH
VT5000	3HSSH
VT5500	3HSSH
VT11E	3HSSHB
ORION	
VH1	3HSSN
VH2	3HSSN
TOSHIBA	
V31	PS3BT
V33	PS3BT
V55	3HSSV
V57	3HSSV.
V5470	PS3BS2
V9600	PS3BT

Delts	TAKE UP IOLER ASSY/CLUTCH ASSY	
	VHS (general purpose) Thom, ${ }^{\text {dVC }}$ etc	4.95
	Sharp 381/383/386/9100/930095000005/GEZZ	2.20
2.40	Sharp 0006/GET7 VC300/387/481/2/3	
1.45	6, 6/996/581,5/8581	2.20
2.25	Sanyo Reel Orve Pulley 143-0-662 T0202 701282	${ }_{2}^{5.10}$
3.60	Hitach FFF Fider 6886971 (UTT11EUT33E) 81888	2.90 3
2.10		3.95
1.99	Fisher'Siemens 143-0-420400300/400	4.50
2.75	Sanyo 5000 RLL . ASS 1430741T 20001	1.85
1.73	1 l (er (Alba 4000 Sentra GX8000)	3.20
1.50	Idier Samsung VI511. 520.610 .611 .620	1.75
1.45		
1.50 PINCH ROLLERS		
1.85	Amstrad 4500/4600/5200/9000	3.75
2.00	Amstrad 7000	3.75
1.90	Nat Pan. NV7000	3.75
1.76	Sanyo Vic9300NBS7000	3.75
1.47	Sony C7/J7 ${ }^{\text {SLI } 7}$	3.75
1.05	JVC TCE3V0001/06/16	3.75
1.50	JVC HR2200:3320/3330/3V22	3.75
1.12	JVC 3660:1100:7700	3.75
1.90	Akal VS9700	3.75
1.05	Hitachivi5000	3.75
1.55	Sharp VC6300/6500	3.75
1.90 Sony T C. General 3.75		
0.96		
1.75	MOTORS	
3.25	VHS Drum Motor	25.50
5.19	vHS Capstan Motor	25.50
1.00	Sanyo 5000 Reel Molor	12.95
	Sharp Reel Motor	19.50
1.20		
0.75 YIOED CARE		
0.69	Video Cleaning Tape VHS	8.23
0.90	Universal Copying Kit	7.50
1.20	Head Cleaner	0.96
1.20	Beta Eccentrciry Gauge	57.92
0.85	Chamors Cleanng Sticks	0.25

HOW TO CRDER
 (U.K) Heavier parcels e.g. cable, service adds, degausing coils
please allow $\{3.25 \mathrm{P}+\mathrm{P}$ (U.K). Export orders charged at cost. First Class Mail is used whenever
possible. Add 15% VAT to total possible. Mdd 15% VAT to total
except where it states zero rate. Bulkier items will be sent by carrier tubes)
tubes)
We do n

VXP0344 Iderer Unit
NV7000/72007800
$\begin{array}{ll}\text { VXP0331 } & \text { Idler Unit NV30 } \\ \text { VDG0141 } & \text { Cam Gear }\end{array}$ NV370/430/730/830/850 NP0521 IIler Arm U
N $370 / 430 / 830 / 850$. VPP 325 Loading Gear
NY $33320000 / 3000 / 7800$. VDG0016 Action Gear VDGG0017 Interim Gea
NV333/2000/3000 Direct Rep Video Bulb
VPP0433
Play Ider Unit $\operatorname{Ni} 333 / 336$

UTACHITESCSPARE

 VCR GEC 4000H/HITACHBelt Counter (122) V6354241
Belt Loading 6354921
Bet Ider FF/RTVO V6413663 Lamp Tape Sensor V57622
Play Ider Assy V6414221 Play Idier Assy V641 14221
Pressure Pinch Rolle V6383762 Pulley FFRFD V6383531

VCR GEC V4100/HITACHI VT11E Belt 312 V 2355601
Bett 313 V 5355991
Belt 317 V 5357531
Belt 318 V5355581
Capstan Motor V5577355/6
SERVICE MANUALS
GEC-V4064 Hitachi-VT33E.
GEC-V4005H Hitachi-VT63
VCR GEC $4001 \mathrm{H} / \mathrm{N} 4002 \mathrm{H}$
HITACHI $9300 / 9500 \mathrm{E}$
Belt (259) V63555991
Belt (289) V6355282
Belt Take-up (213) V6354231
Capstan Motor V5577324
Capstan Motor V5577324
idler FF/Rewind V 6861471
Lamp Tape Sensor V5767131
Play Idler Assy V6861482
Pulley FF/Rewind V634517
Pulley FF Renewind V63455173
Remote Control Handset V70847
VCR GEC V4004/HITACHI VT33E
Belt (302) V6355561
FF/Rewind Arm V6886971
(Gen Hutachi ldler)
SUNDRIES
Vertical Output Module
GEC-C2266 Hitach-CPT2226
GEC-2069 Y2370551
VIDEO AMPS
Nat. Pan. VHS Bulb (also Sharp)
General Purpose VHS Builh
3V23 wit Plug
3V29 with Plug
3V29 witn Plug
Amstrad 7000
Amstrad 4500/4600/5200/9000
Hitachi $9300 / 9500$
IDLER TYR
Sony
Sony
Hitachi
Nat Pan
Nat Pan.

There is vat om $\mathbf{P + P}$
B00KS AND MANUALS ARE ZERO V A.T
Goods are despatched on the day we recive your order. II as quickly as possible. We try our best to oive a speedy farr and efficient service. V.A. T. Invoice on request. Give us a ring - we ill give you service. Please ask if what you need is not listed - we will try to help. Prices are subject to change without notice in some cases we may have to We need expiry dates for credit card orders
H
3.75(
Please send large SAE (30p stamp) for our complete catalogue ORDERS WELCOME FROM SCHOOLS COLLEGE OVERNMENT ESTABL
SATELITE TV
ARE YOU READY?
Please ring for prices on Sakura Remote Controlled Satellite Dish £215

We also have
Signal Strength Meter $£ 45$
Compass $£ 6$
RG59BU Cable (for short to medium runs 100 metres) £19.95 TR100 Cable 100 metres (for longer runs) $£ 29.95$ Screw on F connectors 35p (suitable for both types of cable)
F connectors crimp on (RG59) 24p

F connectors crimp on (TR100) 18p Crimping tools £19.95

Top grade crimping tools $£ 29.95$
See 'Aerial Equipment' for Wall Brackets Masts, etc.

NEW PRODUCTS		
Nat. Pan. Service Manuals		
TC261G.............£3.50		
TC262GA,		
TC361G,		
TC8626 £3.50		
New Ferguson Service Manuals		
3V35....................£29		
3V38 Supp£1.50		
3V39 Supp.£1.50		
3V48..................£9.95		
3V53..................E9.95		
3V54/5... £10.20		
3V58................£10.95		
3V59................ £13.50		
3V64/5.............. $£ 13.00$		
FV10D £7.95		
FV11R............... £3.95		
VIOEO TAPES		
SKC	E120 (VHS)	2.30
	E180 (VHS)	. 2.45
	E240 (VHS)	3.45
Scotch	E60 (VHS)	3.05
	E120 (VHS)	2.89
	E180 (VHS)	3.50
	1750 (BETA)	3.6

TVNIdeo-TVR-1-MD151 1910
CTV 1409-MD1409221
VCR 5200-MD151175
VCR 7000-MD150583
VCR 9000 - MD150878
DECCA
80/100 Non-Txt US8511
101 Series Non-Txt US 8513
Tatung 145/150
FDELITY
4 Button IR8876
IS 50012 Button FDO9820
F14R 12 Button FD09156
AVS 14 Button FD091t1
Txt 32 Button IR8983
G.E.C.

4001/Hitachi 9300
GC56520831/C1404H-C1658H-IR8314
GCA 512230/C2086H-C2087H
GCA $514620 / \mathrm{C} 2089 \mathrm{H}-\mathrm{C} 2090 \mathrm{H}$ IR8823
C2290H. C2889
GCA 510710 /C2067H-IR8456
GCA510870/C2069-C2269H-IR8877
RTPO5 NRCIR138- TP8-120-120E TTP06/IR107N-TP160-160E
RTP $07 /$ IR 380 N - TP $200-300-390$ RTP20NRC112-TP16-21-21VHR RTP400/401 IR 401 - TP 400 VT - 500 VT VRC 204U.S. -TP12
IR 8613TXT - TP4001T

GRANADA

Universal IR8450
I.T.T.

CVC 32-RG15-US8573
CVC 45-RG5-US8262
RG 306 - With Fine Tune IR8650
J.V.C.

TP $843 / \mathrm{Tx}$ IR170

PHILIPS

G11 Txt IR8435/R170/843
G11 TXt US 31 Button 611 Non Txt US 8263 G112 Function US 8518
KT3/K30 Non Tx IR 8331 KT3/K30 TXt| 18420 KT3/K30/K35/K40 Txt/Non Txt (Replaces AC5 Senes)
SONY
SLC5-RM 75T
SLC6-RM 72
SLC7-RMT 200

SLC9-RMT 213

THORNFERGUSON TV REMOTES
The following IV remotes are exact replacements for Thom sets
and cover a wide range of chassis inc TX9/1090/100 Please state
model number of set or original hand set number

Type	Order Type		
T651	M739	All One	
T652	M738	Price	SAME DAY DESPATCH
T653	M737		FAST - FAIR - EFFICIEMT
7716	M 737	1300	SERVICE
7717	M737		
7718 7719	US8517		JAST ASW!!
7720	M739		We cannot atvertise our
7721	M737		complete range of products
7723	M737		Please ask if you require
7724	M739		something which is not listed,
7725	M750		Ie Stationery, Styl, Axial
7731	M738		Radial Electrodytics. Mixed
7732	M739		Dialectnc Caps, Polyester
7733	M738		Caps. Carben Resistors,
T734	M734		Wirewound Resistors,
T736	M739		Filament Lamps. Thermistors,
T737	M737		LEDs, IC Sockets. Floppy
7738	M738		Discs, Computer Cassettes,
7739	M739		Thom New Lite Tubes
7740	M740		(collection only). New Mono
7742	M742		Tubes. Crystals Cables (post
7748	M748		charces extra), Aerial
7750	M750		Equpment. Electical Plugs/
7769	M739		Sockets, Components tor
7770	M739		Sinclair, Amstrad Security
7772	M742		Producls. Satellite Dishes and
T773	M740		Accessones
7775	M739		
7778	M738		

THORN VIOEO REMOTES	
3V23I.R. 8817	
3V311R 8945	14.95

3V31I.R. 8945
14.95
14.95

3V35IIR 8946
3 V4II.R. 8947
P.R.C. 6000

Programmable remote control unit will operate most infra-red
equipment.
REMOTE REPAIR KITS
Includes Foll/Buttons/Inst.
$\mathrm{KT} 3 / \mathrm{K} 30$ Without Txt
KT3/K30 With Txt
RC 5352 Range
REMOTE CONTROL TESTER
magic mirrors
a new device which tests intra red equipment
. 00

EXPORT ORIDERS WELCOME
$66^{\prime \prime}$ Pressed Bracket
$6^{\prime \prime}$ Bracket with Kit (lashing kit)
9^{9} Welded Bracket Chimney
CM7261 P.U.

.

Double Brackets with Kit
13, 5" Cradle Bracket .
13, 5" Cradle Bracket with Kit
Double Repair Pack (2)
Lashing Wire
Lead Wall Nalls (100)
Cable Clips (P
Coax Plugs
Coax Plug Femal
Line Connectors
Tape Sm0. 32 Lg
Wood Screws
WALL BRACKETS
$6^{\prime \prime}$ Welded
9^{4} Welded
$18^{\prime \prime}$ I 8 K
$24^{\prime \prime} \mathrm{F} R \mathrm{~K}$
CLAMPS
$1 " \times 1 "$
$2^{\prime \prime} \times 2$
$1^{\prime \prime}$ B Bolts
JBolts
2゙U Bolts
UHF TV AERIALS
10 Element State Group A, B, CD, WE 18 Eiement 10Ele, 3tt Mast, Coax Filtings
VHF/FM AERIALS
3Element
3Element
4 Element MASTS
3 HCrank Lor S Shape

16 ft 2"
BACK 80XES
Plastic Double
Metal Single
Metal Double
OUTLET 80XES
Surface Single
Surface Twin
Y Splitter
Flush Twin

2M Fy M/M See Special Otters
2M Fy MiF See Special Ofters 4MFly M/M See Special Otters
10 M Fly
FIG 8 Mains Leads
Computer to TV
${ }^{5}$ Pindinto 5 Pin Din
TA81 Car Battery Thom 1691
TA51 Car Battery Thom 1615
Car Battery Phulips
Scart Leads 2 M (OD
Scart Plugs
Scart Sockets
Scart to Scart Le

HAMEG OSCILLOSCOPES

HM604 60 MHz UNIVERSAL
SPECIFICATION
2 Channels

- Bandwidth DC-60MHz
* Timebase 255.5 ns $\mathrm{cm} / \mathrm{cm}$
* Aclive TV.Sync-Separator
* Ater delay trigger
- Sweep delay * Delay ine
* Trigger LED incicator
- Calltratior ${ }^{1 \mathrm{KHz}} 8 \mathrm{MHzSq}$. Wave

Component lester
Price $£ 575.00+£ 86.25$ V.A.T

FREE Securicor Delivery
HM1005 100MHz UNIVERSAL 3 CHANNELS-UP TO 6 TRACES SPECIFICATION

- 3 Channels
 -Timebase A 255 s.5ns cm *Trimebase B.0.2s.5ns cm * Ater deliay trgger * * Tígeer LED indicator * Overescan LED indicator * Active TV-Sync-Separator FREE Securicor Delivery

HM205-2 20MHz DIGITAL STORAGE

- as 203-6)

Sens Ch1 Ch2 2 mv cm

- Timebase Analogue 0.2s 20 sms
- Tingebaring Digtal. EC - 4 MHz
* Aclive TV-Sync-Separator
* Max sampling : ate
$2 \times 5 \mathrm{MHz}$
* Mermory $2 \times 1024 \times 8$ Bit
* Component tester
ore usefui features
B.K.'s CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guns separately. Fitted with delte and P.IL. sockets. Compact size $120 \times 65 \times 60$ mm . Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.
B.K.'S REVOLUTIONARY DYNAMIC 'LOPT' TESTER

Revolutionary L.O.P.T. tester. Operates indyamic mode which actually tests the without de soldering or removal. Size $75 \times 100 \times 40 \mathrm{~mm}$ Supply 240 V AC

Price $£ 25.99+£ 3.90$ V.A.T

THANDAR SC110A PORTABLE OSCILLOSCOPE

Only $2^{1 / 4 " ~ t h i c k ~}$
Sin abref case: Batterv or manns adaptor

- Bandwdith 10 MHz ACCESSORIES

Price $£ 195.00+£ 29.25$ V.A.T.
DIGITALLCR METER

* LCD Display

18 Ranges Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$ * Capacitance 1pf - 200μ f * Resistance 1 ohm-20Mohm High acuracy
Price $£ 95.00+£ 14.25$ V.A.T.
Prob
Ma

B \& K PRECIIION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it.

- All CRT's checked identically including all in-ine and one gun types * Tests all three guns of colour CRT's simuitaneously under actual apeerating conditions (model 467) "Exclusive multiplex technique (model 467 shorts and leaks - preserving more CRT's " Tests focus electrodes lead continuity finding fautts that other Testers miss Uses most powerful restoration method known with minimum danger to CRT Reivvenated CRT's guaranteed as new for two years * Obsolescence prooft Perpetual set up chart up-dated and new adaptors development "Tests and rejuvenates vDU's and Oscilloscope tubes "A range of over 40 CRT base adaplors available • Increases profit * Pays for itself in months. PRICES
Model 467 Tri-dynamic three meter instrument inc. 6 common adaptors $\ldots \quad$. $3395.00+$ E59. 25 V.A.T Without adaptors
${ }^{5344} .00+โ 51.60$ V.A.
Model 470 Single meter instrument inc. 6 common adaptors.
Without adaptors

Tectnical leaflets available. GET INTO PROFIT NOW:

SADELTA FIELD STRENGTH METER TC-402

THE SADELTA FIELD STRENGTH METERTC-402 has been designed to measure the signal evels del vered by the antenna toa TV or Fireceiver in ordento est the lipe

FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV freq * Digital tuning display (3 digits) for direct frequency readout. * Accurate 10 turn tuning potentiometer
* Built-in loudspeaker enables monitoring of sound in AM/FM * Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \vee)$.
* Continuity tester 0-500 ohms.
* Fully portable (battery)
* Sturdy carry case

Price $£ 249.00+£ 37.35$ V.A.T.
SADELTA COLOUR PATTERN GENERATORS
THE SADELTARANGEOFHAND HELDCOLOUR PATTERNGENERATORSS I MIENCed

R.G.B. PATTERN GENERATOR

- O/Put sigs Pos RGB

O/Pu1 TTL 5V P-P
Price $£ 111.95+£ 16.79$ V.A.T.

DIGITAL THERMOMETER

* Pocket Size
* $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$
* ${ }^{1} \mathrm{C}$ Resolution
* $0.5^{\prime \prime}$ LCD
* Supplied with
thermocouple

Price $559.50+£ 8.92$ V.A.T

200MHz DIG. FREQ. METER

* Pocket Size
* 8 Dig. LED

Display

* Frea. Range

20 Hz to 200 MHz * Resolutiono 7 Hz Price $£ 75.50+£ 11.32$ V.A.T.

DIGITAL CAPACITANCE METER * High Accuracy $\star 8$ Ranges

PRICE
£38.00 $\star 0.1 \mathrm{pf}-2,000 \mu \mathrm{f}+$ Accuracy $\pm 0.5 \% \quad+\mathrm{E} 5.70$ VAT \star LCD display \quad Full scale ± 1 digit Case Included

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC PULSER are effective and economical tools for checking both TL and CMOS circuits. TP1 can show 14 different circuit conditions and can detect pulses down to typicall damaging sensitive components. Together they can f3.45V A.T. stimulate and monitor responses of components'in ex3.45V
each

EX-RENTAL VIDEO \& TV WHOLESALERS

VISIONS

LONDON

- More Thorn and non-Thorn stock than ever before in London
- VCRs, 3V23-3V48 \& various late Thorn

All working stock professionally serviced.

Contact:
Neil Patel
Visions GB Ltd
Unit 3, Leyton
Business Centre
Etloe Rd
Off Church Rd
Leyton E10 7BT

TEL: 01-556 4199

BI-TECH

SCOTLAND'S LARGEST WHOLESALERS

\star A good range of text working and off the pile including Decca 80's and 100's, Doric 3's, 3A's and 4's, Finlandia, GEC, K30, KT3, G11's, Grundig, Hitachi, ITT, JVC, Panasonic, Philips KT30-3-45 stand and text.
\star Various makes of video always in stock

* Working TVs from E^{20}

	Contact: Jack Swan BI-Tech (Scotland) Ltd Unit 9 Colquhoun Ave Hillington Industrial Estate Glasgow GS2 4BN

TEL: 041-883 2610

SPECIAL OFFER THIS MONTH

CVC + 40 (abnets

- TTT BOXFS \quad Powi 515.00

 TIDEO HEAll 3ISS made in l/k JVC

scientific calduliator sbcitia Phlyp in cax	${ }^{1} 7.00$

ung and
2.00
NEW (GEC $21101 .()^{\circ} \mathrm{F} \quad$ £2.00)
DX.TUNER VHI-LHF SENI FOR DATA

TIIORN SMOM 4.7 m HNG HOp(9) TLNEP vicar Pal

SPEAKER
9,000 SPEAKER

- 75p

K. 41 If/K 35 IF	¢2. 10

4.00
TX4 THORN Funcr Pancl with ICS Pons \& mans Irams. E.3.00

THORN CHASSIS Itol)-17(m) Semes Muno $£ 10.00$	

130
2-

Hil Achi \& GEC 2lik Poots and lowk and 69K Philips)

look Por \& IUK vicap Ivpe: with hand suitch KI3 K. 4 Spesther

$$
\text { h. } 40 \text { Push Butcon Switch of Wus }
$$

K.35 12 way Push Bution Unit
k 35 L. O.P.T.T. Split Dixide
Rank t20 Front Panel

nir and KT3 yrund op	£3.00
dat	£1.50
	¢6.00
	E6.00

か.

解 6 Buthon Unt. New Type 6 of IED DISPlays, Mixid
HAND SEI TESTER, InIT. Red HAND SEI TESTER, Infra Red uini directional Dyiamic Mictophene 20 TIIRN POTS with Band Sulich

20 TIIRN POTS wih Band Sulth	10 p
PUSH BUTTON Matin Swith with Screw Holes Fixing	

Pyit. 7.31 New Power Supply

W00. DIOPHES at 3 amp, Cilam Beads	fip rach, 20 for £1.00

$$
9000 \text { THORN Front Panel with POIs \& Push Ruttoms }
$$

THORN 8500 Tinle Bulse	3.00
7 SEC; DISPI.AYS + Bank Dieplay Z -60.42'I	25 p

SPLIT DIOIE FBSI245AK ES.M0
.0V PHIF.IPS K [3 4R7 W W Rctistor

Decaa liml lapt Panel PIN DATA
 I.C. Holders
 411
42
28
21
16
24
14
18
18 K' itapied for vitan TTT PANE.

CMR 800) Pouer Supply Suith Made

SEL ITTI
SEL. ITT Mestize Front Panc
f 15.00

DECCA-GEC-I'TI
(an) BC- B1 Transmer $£ 1.00$

FOR LIST OF \IDFO) SPARES				E13 60 Eth HEADS
TRAMSFORMER		- Fenisfut	AT21765 5	SHARP
		${ }_{\text {A Pramen }}$	$\mathrm{AF}^{2 / 2176} 717$	MSIIIEC
		AT20176, 35	RCOSl Cluas	
315	${ }_{\text {¢ }} 1.000$	A P2076, 3 s	$0[2141$	
3112.336-31623 ${ }^{3}$	\&1.00	A 12076/51	13165k Ofum	
$3111.2(x-3141511$	${ }^{\text {¢ } 1.00)}$	CVC 8	$3(176.51$	
	\&1.00)	(V) xan)	$\underline{-4302010}$	
3112-3.38-3440.34	¢2.(N)			

SENDZ components 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 BAF. SAME DAY SERVICE

All items subject to availability. No Accounts: No Credit Cards. Postal Order/Cheque with order.
Add 15\% VAT, then E1 Postage. Add Postage for Overseas.

Callers: To shop at

212 LONDON ROAD, SOUTHEND. TeI. 0702-332992. Fax. 0702338805
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10\% handling charge.

LOWDOIS NEW EX-RENTAL WAREHOUSE BELABLE WHOLESALE TV

SALE TIME!

TV's from $£ 3$ vIDEOS from $£ 30$ WE STOCK THE LOT - 10p WILL SAVE Efs

TO NAME A FEW

TV's

PHILIPS G8 - G11 - KT3 - KT30 - KT35 CTX
DORIC MK2 - MK3 - MK4 - MK5
FERGUSON TX9 - TX10 - 9600-8800
Plus Pye, Sony, Finlandia GEC, Hitachi, National Panasonic,
Mitsubishi, Toshiba, Grundig. ITT \& MORE, MORE, MORE

VIDEOS

$3 V 22-5000-8000-3 V 29 / 35 / 36 / 37 / 38 / 39 / 45$
SHARP $9500-9600-9700$ + MORE, MORE, MORE
PANASONIC NV333/366/370/2000/7200/3000
VAT Prices exclude VAT.
HANDSETS - Handsets are included with working sets but are
charged extra in 'off the pile' sales.
WE ARE JUST OFF A406 (BARKING)
2 ROADS AWAY FROM EAST HAM TUBE
RELABLE WHOLESALE TV
UNIT 2
2A LATHOM ROAD
$14-4710622$
$11-4912715$
EAST HAM, LONDON E6 IV 8 video panels

FIST IT TUBE REBULDING TEGUNOLOGY

Get on the hot-line today!

SAVE EEES
KEEP THAT OLDER SET PURCHASE A NEW 56-410 OR 47-342/3 TUBE FOR ONLY $E 5+$ CAPRIAGE Also NEW 560 AKB22 £35 NEW 670 XB22 137.50

Delta Rebulds

Up to ${ }^{7} 9^{\prime}$
Up to 22"
Up to $26^{\prime \prime}$
110° up to 22^{\prime}
110° up to $26^{\prime \prime}$
Low focus
A47 342 New
£28
$f(30$
$£ 34$
$£ 34$
$£ 34$
$£ 34$
$£ 38$
+£2
$+£ 2$
+28
17FHP New £30
470EHB New

Inline Rebuilds

Up to $22^{\prime \prime}$	From $\mathbf{£ 4 0}$
Up to $26^{\prime \prime}$.. From $\mathbf{£ 4 5}$
A56-540x	$\mathbf{£ 5 6}$
A66-540x	$\mathbf{£ 5 8}$

$+£ 5$

Delta only. Less
ALL SIZES OF NEW AND REBUILT MONO TUBES

TH LILE TYPES (WOT REBULDS) PHONE RE STOCK POS.

Please enquire types not listed

370 HFB-A37-590	£50	AXT 56-001	£67
370 HUB	¢50	670 CZB	£80
AXT 37-001	£50	A66-540	£125
420 CSB	¢50	420 FSB	£60
420 EDB-A42-590	¢50	14" (A34); 16" (A38); 21 (A51); FST now available at special low prices	
420 EZE	£50		
420 ERE	£50		
470 KUB	f50		
510 UFB.	. $£ 67$	MIN. CARRIAGE £5 £10 if glass collected. TERMS Cash with order ALL PRICES EXCLUSIVE OF VAT	
510 VSE	£67		
AXT51-001	£67		
560 DYE-560 DTB	£67		
560 EGE	£67		
560 CGB	f667		

NOTE
Surcharge
without
exch. glass.

* WE PURCHASE SURPLUS STOCKS OF INLINE TUBES: ALSO A56/ DELIVERY: By return on all stock items.

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR Ask: for Mr Butterworth ON: 061-681 2959

URGENT ANNOUNGEMENT!

"New Company" NOW trading in Chepstow, South Wales

ERATIME то

Unit 4, Bulwark Industrial Estate, Chepstow, Gwent
Telephone: (0291) 271000

is fresh on the scene with unbeatable introductory offers:

3V29/30 - from £57 text - from £35 stereotext - from £65 (H/sets optional)

Full working CTVs from ONLY £6 -
Plus hundreds of other BARGAINS in stock NOW!! HURRY!! this offer is for ONE MONTH ONLY

Complete Range of Working and off the pile CTVs and VCRs NOW AVAILABLE FROM MANY SOURCES ALL PRICES SUBJECT TO VAT

POPULAR BAKERS DOZEN PACKS

 (Still available)All packs are $£ 1$ each, if you order 12 then you are entitled to another free. Please state which one you want. Note the figure on the extrme left it the pack ref number and the next figures is the qua
items in the pack, finally a shor description.

13A spurs provide a fused outtet to a ring main where device such as a clock must not be switched off In flex switches with neen on/off lights. saves leaving things switched on
6 l .1 A mains transtormers
fv. 1 Á mains transformers upnght mounting with
ixing clamps ixing clamps
$61 / 2^{\prime \prime}$ speaker
2 speaker catinet ideal for extensions, takes
our speaker. Ret BD137
make with these - burglar alarms, what you can ches, relay etc. etc
25 watt loud speaker two unit cross-overs icad constant altent chargers adapt to charge most any nicad batter
humidity switches, as the ar becomes damper the membrane stretches and oeprates a microswitch 2 meter length ot connecting wire all colour coded
13 A rocker switch three tag so on/ofi. or change over with centre off aver with centre off
anctiy Board, automaticaly ajiust for lengthening and shortening day.
neon valves. with series resistors, these make good night lights
ans unsen is for an electic iigsaw puzze, we give crecuit diagram for this. One pulse into motor moves switch through one pole flat solenoids - you could make your multi-tester read AC amps with this
be operated by any low pressure wich, or it can oe operated by any low pressure varations such mins operated motors with
gearbox Final speed 6750 MA power supply. nicely cased with input and output leads
stripper boards each contans a 400 V 2 A brioge rectitier and 14 other diodes and rectriers as well as dozens of condensers etc
BD122 10 m twin screened flex with white puc cove
BD128 10 very fine drills for p.c.b. boards etc Normal cost about $80 p$ each
plastic boxes approx. $3^{\prime \prime}$ cube with square hole motors for model zeroplanes, spin to swart so needs no switch
microphone inserts - magnetic 490 ohm also act as speakers
eet lay kits you get 16 reed switches and 4 coil sets with notes on making coo relays and other gadgets
saltely cover tor $13 A$ msockets - prevent those
inquisitive litte fingers inquisitive litile fingers geting nasty shocks neon indicators in panel mounting hoiders with
5 amp 3 pin flusti mounting sockets makes a low cost disco panel - need cable clips
in flex simmerstal - keeps your soldering iron etc always at the ready
mains solenoid very poweftul has $1^{\prime \prime}$ pull or could push it modified
keyboard switches - made for computers but have many other applications
transistors type 2 N 3055 probably the most usefu power transistor
elewric clock mans operated put this in a box and you need never be late
12 v alarms make a no
horn. Slightly solld but OK
$6^{\prime \prime} \times 4^{\prime \prime}$ speakers 4 ohm made from Radiomobile
so very good quality
panastat. controis output of boiling ring from
simmer
50 Sleads with push on $1 / 4^{\prime \prime}$ tags - a must for hook ups - mains connections elc mains up to 5 amps so could be toot swith if fitted mans up to 5 amps mo patiress speed of record lar record player. Will a so change
BD283 $\quad 3 \begin{gathered}\text { midd steel boxes approximately } 3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime} \text { deep } \\ \text { - standard electrical }\end{gathered}$ - standard electrical

BD293 50 mixed sillcon diodes
$\begin{array}{lll}\text { BD305 } & 1 & \text { tubular dynamic mic with optional table rest }\end{array}$ 4.7 uf , non-polarised block capacitors, pcb

BD400 $\quad 4$ mounting Useful for beginners Describes amplitiers. test equipment and kit sets
Mininature dnver transtormers. Ref LT44. 20k to 1 k . centre tapped 3.5 volt toperated relays, each with two pairs CO
contacts contacts
Most other packs still avalable and vou can choose any as your free
one.
MAINS TRANSFORMER Upright mounting normal mans input, gives 28 v at 3.5 A so shouid be ideal for big amplifier. etc Price onty $£ 4$ Out re P24. please add $£ 1$ postage

VERY POWERFUL 12 VOLT MOTORS - T/rad HORSEPOWER Made to drve the Sinclar C5 electric car but adaplable to power a 90 -kar a mower, a rall car. model rallway, etc Brand new Price $£ 1500$ plus $£ 200$ postage $0 u$
ref 15 PB

POWERFUL IONISER

Generates approx 10 tumes more IONS than the ETI and sumilar circuits. Will refresh your home, otice, shop workroom etc. Makes you feel better and work harder - a complete manns
operated kit. case ncluved $\mathbf{E 1 2 . 5 0}+\boldsymbol{\$}$ P\&P Our ref $12 P 5 / 1$

POTENTIAL PROFIT MAKERS. We can ofler shop repects and customer retums covering a range of clock radios. cassetie radios.
cassette players, mincar cassetteradios. etc, all of which shoutd be reparable II you buy lour ol a type we will give you orne extrat free of
Charge. All are by Far East makers, sold under the trade names of Sony charge All rere by Far East makers. sord under the trade names of Sony,
Matsul. Panasonic. etc You will buy so cheapy that even it you are Matsul. Panasonc. etc You will buy so cheaphy that even it you are
uniluchy and cannoit roair them you will be buying sparese at a very low brightesss controller , 2band igat clook display with snocze, alarm am

 AMFM stereo duilit-1 speaker and light weight headphones Pnce 54 fach Dur rer 4ps3
ECHO BOX. Intended to make dolls and robols talk. These units record speech and other sounds then play back the sounds a lew seconds atte neanng inasically the unit consists of a FET microphone, a micro speaker. All put together in a case size approx $4^{1 / 2 i n} \times 2^{3 / 412 \times 13 / 4 \text { a deep }}$ In addition to talking back undoubtedly these models could. with a lew
atterations, be made to periom functions in response to sound fre atheratons, be made to pertorm functio
quences Price $£ 5$ each. Our ref 5 P 130 .

ATARI 65XE COMPUTER

DATA RECORDERS. ACORN for Acom Elecron. etc., reterence
 ATARI I C12 tor all ther home computers. With leads
Brand new Proe $£ 15$ plus $£ 2$ post. Order ret 15Pzo

JOYSTICK FOR ATARI OR COMMODORE Ier all Atan and
EXTRA SPECIAL OFFER. The ATARI Compendum contains computer $65 \times \mathrm{XE}$, data recor
plus EA Insured deivery.

TIME AND TEMPERATURE LCD MODULE. This is a 12 hour cock a colcius themmometer, a Fahrenneet thermomelar, a a 100 thot alam

40 WATT THREE-NAY CAR SPEAKER SYSTEMS. Wooter.

SIIITMW: 1 B
 ORGAN MASTER is a three octave postage. Order ret 15P15

MUSIC FROM YOUR SPECTRUM 128. We oher me Organ Masier your own musc Price $£ 19$ plus E 3 special packing and postage. Order
ref 19 P 1 .

CAMERAS. Three carreras, all by famous makers, Kodak, etc One disc and two different instant cameras. All in ifst class condalition. beleved or

HAND-HELD VIDEO LAMP. Mans operated and wil enable you to take protessional stancard vidoos Mants Doeraled and will enable you to

 1/8th HORSEPOWER 12 VOLT MOTOR. Made by Smiths, the

 PHILIPS LASER

This is hellum-neon and has a power rating of 1.6 mw
Completely sate so bong as you do not look ilrociy into the
beam when beam when eye camage could resuth Brand new, fuil spec
 Comptete kit wis
availuble al E 15.

HIGH RESOLUTICN MONITOR. Gin black and whre. uses Philps

12 VOLT BRUSHLESS FAN. Japanese made The popular square
 c8 each. Our ref eper.

FDD BARGAIN $3^{112 n}$ made by Chnon of Japan. Single stred. 80 lrack. Shugan compatible interface, interchangeabie with most other $3^{1 / 2 / 2 n}$ and

OUR ALADDIN'S CAVE. You may be a new reader and not now that we have a shop at 12 Boundary Road. Hove. wherre you.

 onng a completed order form as 250 is really the mail order depol.

Generous discounts for quantities

J \& N BULL ELECTRICAL

Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT.
MAIL OROEE TERMS: Casht P.O. or cheque with order. Orders under 220 add

BARGAINS STILL AVAILABLE DOUBLE MICRODRIVES.

duise you tha the Doubte Microdirves which we were ottering al about his time

 last year as bung sutabie for the ' $O L$ L', $O P O^{\prime}$ ' and severail onter computers are agan avaluable, same price as betore namely Ej . Our ref SP113MOISE FILTEAS - MAIMS IMPUT PLUG TYPE. Japanese made, this is a chassis
mounting bloct with a bult in noise fiter to cut out surges and voltage peaks which mounting bloct: with a bult in noise fiter to cut out surges and voltage peaks which nount and have a flange with two fixing hotes. They take the standard 3 flat pin plug. Zamp model Price $£ 3$ each Our ref $3 P 50$
EAD LAMP. Altotonsts Special Normal hand-grip type holder, with glass cover to notect the larmp and furher protection in the form of a wre guard with a hook for hanging ldeal as loft loght or for car reparss. etc Takes 60w lamp. Has good length

HONE LEADS. 3 metres Iong. correctly collour coded, one end has flat plug which
its standard Gi socket, other end has tag connectors 2 for §1 Our ref BD639. SUB.MIN TOGGLE SWITCH. Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrome dolly fixing nurs. 4 for $£ 100$ Order ret B0649
VERY POWEEFUL Magmets. Athough only less than lin long and not much thicker than a pencil these are very difticult to pull apan. Could be used to operate mbedded reed Swiches. etc Pree 50p each. 2 or 1100 Our ref B0642
CLEAR LACOLER. Quick dryng for the protection of transters, markings. maps. ef Also protects wood and metal Exceptionally clear Large can for $£ 100$ Order

PAPST AXIAL FAN, MAMUFACTURERS REF NO TYP458ON. This is mains operated 15 watt rating and in a metal frame with metai blades so 0 K in high mperatures 30 dy size approximately $43 / 4 \mathrm{~min}$ square $\times 15 / 8$ in thick $£ 600$ each. plus 1 00 posiage our re 6 fo
OfTWARE FPR REMAKIMG. Just arrved Large quantity of maily games All are on normal tape spool in cassette holders and should be suitabte for wning out and
re-making into games or programmes of your own design. We offer 5 different for E-2 O: 100 asserned for $£ 20$. Important note We cannot say which titles you will get nor accept ord:rs tor specified titles or 'so many. all dititerentr. etc. so only order if you can take them as they come. Order rei 5 for $\Upsilon 2$ is 2 P224. 100 assonted is

VERY USEFUL MAGMETS, Flat, about 1 in iong, $1 / 21$ n wide and $1 / 41$ in thick These are polarised on trear taces which makes them ideal to operate reed switches in doors uphoard doons firmly closed Very poweriul 6 lor 51 Our ref $B D 274$ (a) CORE flex bargain mo. 1 - Core size 5 mm so ideal for long extension leads carrying
$2 P 189$
CORE FLEX BARGAN Mo. 2 - Core size 125 mm so sutabie for long extension eads carying up 1013 amps - or shor leads up to 25A. 10m for 2 O 0 rten 2 P1s
LIPHA-NUMEAIC KEYBOARO - this keyboard has 73 keys with contactless capactiance switches giving tong trouble free life and no conlact bounce The keys arranged ir two groups, the main area lied is a W. Lh and new but otfered is a
only a fractuon of its cost namety $£ 3$. plus $£ 1$ post Reff. $3 P 27$
WIRE BARGAIM- 500 metres 07 mm solid copper unned and ρ v.c covered Only
$£ 3+£ 1$ post. Ref. 3 P31 - that's well under $1 p$ per metre, and this wire is idead for ush on connuctions
capacitor bargaik - axial ended - 4700ut (in 25v Jap made Normally 50 p ach, but you will get 4 for $£ 1$ Ref 613
SPRING LOANED TEST PRODS - heavy duty, made by the lamous Bulghn
company Ver: good quality Price four for $£ 1$ Ret $B D 597$.
OLAR POWEEED NH-CAD CHARGER 4 Ni-CAD batenes AA (HP7) charged in 6 Our Ret sp3 £6 Our Ref. 6P3
FREE POWERI Can be yours if you use our solar cells - sturdily made modules with new system bubble magnifiers to concentrate the light and so elimmate the need tor atual sunshnes - they work just as well in bright light Voltage input is 45 - you
 2P199 Module D gives 700mA. Price 66 Our Ret. 6P3
WITCH AC LHADS WITH YOUR COMPUTER. This Is easy and relable if you uSe cur solid state relay This has no moving parts. has high input resistance and acts as a noise barner and provides 4 kW isolatoon between logic terminals The lurn-on voltage is not ertical. anything between 3 and $30 V$. Internal resistance is abcut
metal Project box. Ideal size for battery charger. power supply etc, sprayed rey, size $8 \times 4 / 4 \times 4$ high, ends are louvered ior venbation ane sides are lim and undnlied Order Ret $2 P 191$ Price $£$
-CORE FLEX CABLE. Cores separatety insulated and grey PVC covered overall. Each copper core sized $7 / 02 \mathrm{~mm}$ Ideal for long telephone funs or smmar coll EB . Order Ret 8 P18
3A PLUGS. Good Bntish make complete with fuse. parcel of 5 for \mathbb{Q} Order Ret
13A ADAPTE P - Takes 2 13A plugs. packet of 3 for $£ 2$ Order Ret. $2 P 187$ 20v-0-20v - Mains transformers $2^{1} / 2$ amp (100 watt) loading, lapped pnmany $200-245$ uprignt mountings $\varepsilon 4$ Order Ret 4 P24
RE-CHARGEAELE MICADS 'D' SIZE these are tagged for easy foring together buit tags can eastyy be removed, virually unused, tested and gntd $£ 200$ each Ref
2 P141, 6 for $\$ 10$ Ret 10 P47
ST HANDSET with curty lead terminating at BT plug Colour cream Price $£ 5.00$. Our reterence 5P123
IMGLE SCREF MED FLEX 702 copper conductors. pvc insulated then with copper etreen, tinaly duter insulation In fact quite normal screened tlex 10 m for q°. Our
WHITE CELLING SWITCH 5 amp 2 way surface mounting with cord and lasse.

- VOLT MOTOA Very low curfent so should be very sutable for working with solar cells C1 each Our ref 806

MIIWI SPEAKERS to use nstead of headphones with your personal stereo - simply ALED IEADACID BATTERIES, JIA er leak-preot construction, so could made re-chargeable and manterance
 1Ah, $£ 5$ each. Our ref SP135
IMNER EAR SEREO HEADPHOMES. Ideal for lady isteners as they wili not mess up your haur de' Come complete in a neat carrying case Pnce $£ 3$ Our ret $3 P 56$ STERED MEAOPHOME AMPLIFIER. Very sensitive A magnetic carridge or lape head wilid drive I Has volume control and socket tor stereo neadphones $3 v$ battery operated $£ 1$ each Our ref BD6B0
FET CAPACITOR MICROPHONE EAGLE CI.200. Output equivaient to a high class mice 11 Our Be 46 UB-MIM PUS
et 8.0650
dISPLAY 16 CHARACTER 2 LIM achnes Screen size $85 \mathrm{~mm} \times 36 \mathrm{~mm} \times 93 \mathrm{~mm}$ Alcha-numenc dot mintir號 Company, reterence 16027AR. Price $£ 10$ Our ref 10P50
\# EAST CORNWALL COMPONENTS E-
1989 CATALOGUE, NEW, LARGER, MORE VARIED, NOW READY (includes Credit Tickets (3), Special Offer sheets, Order Form \& Pre-Paid envelope) only $£ 1.00$ or free on application with any order over $£ 15$. Prices in new catalogue and advertisement may vary as material for advertisement is prepared $6 / 8$ weeks before issue of Television

PLEASE NOTE - ALL PRICES NOW INCLUDE 15\% VAT

I enclose $£ 1.00$ cheque/P.O/cash for catalogue

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 473.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

SUBSCRIPTION ENQUIRIES

(444 440)421

COVER PHOTO

This month's cover photograph shows David Botto's operational amplifier based signal tracer on the bench. See article on page 506-9.

TELEORSLOK

The Broadcasting Debate Continues

When the government published its white paper on the future of broadcasting last November it invited comments on the proposals and options outlined in the paper. The deadline was early March, and by that time some 2,500 responses had been received. Those that attracted most attention in the press were the submissions made by the ITV Association and the IBA. They would be the ones to have most to say, since the white paper's proposals relate mainly to changes in the ITV sector.

Also naturally enough the main question that exercised the minds of those who prepared these responses was the method of awarding franchises for ITV or, as we must learn to call it, Channel 3. A great deal of ingenuity has gone into working out ways of assessing franchise applications. Let's hope that some good comes of this, though the fact will remain that no system can satisfy everyone. The IBA has itself been highly critical in the past of the burden placed upon it each time the franchises have come up for renewal, and of the difficultes involved in making a rational choice. The tendency has been to renew existing franchises - few holders have ever had their licences taken away. There is logic in this: after all, at least there sa track record on which to base a decision. It has nevertheless always involved an element of guesswork and chance. This is inevitable however: one could never be sure that group A will make a better job than group B of providing a complex service over a number of years. It's a matter of compromise and will remain so whatever is done.

The government's original view seems to have been that to shift the criteria for assessment of the worthiness to fulfill the responsibilities of holding an ITV franchise to primarily financial ones - who's prepared to pay the most for the right to broadcast would at least have the merit of being simple, understandable and unambiguous. But there is more to broadcasting than having a deep pocket, so the white paper provided for an initial assessment of suitability to run a service. The argument now is mainly about how all this should be done, with some very sophisticated schemes being put forward. George Russell, the IBA's chairman who was appointed to supervise the transition from the ITA to the new Independent Television Commission, has made a considerable impact on the debate by threatening to resign if the awarding of ITV franchises is made too much of an auction.
Instead, the IBA has suggested an alternative that involves setting, with the help of City advice, a minimum lease proce for each licence. to be paid in annual instalments. In addition the applicant would bid by offering to pay a specific percentage of its net advertising revenue. The aims tere seem to be (a) to establish an applicant's financial standing and (b) to satisfy the government's wish to see an element of bidding for franchises introduced. Applicants would be required to submit their plans in two main ways. An open dossier to be made public would contain details of the company's structure and programme plans. A sealed bid would include a confidential business plan. In addition the applicant would be required to post a bond for a substantial amount as an indication of serious commitment to pay the minimum lease price.

All very clever. The IBA says: "We consider that the applicant with the soundest business plan by these criteria would yield the highest value to the Independent Television Commission/Exchequer in terms of the tender and corporation taxation over time and also have the necessary staying power to provide a programme service of the requisite quality serving viewer's interests." Well yes, one hopes that the scheme would do so. But is this elaborate procedure really likely to be any better than the present system? It meets the governmert's wish to make programme contractors pay more for the priviledge of running a broadcasting service, but whether the public will be any better served is another matter.

The government's initial reaction has been to welcome these ideas. One can't help feeling that the government originally simply concluded that change was essential but then, despite setting up the Peacock Committee to report on the possibilities, failed to think the preblem through and in its white paper produced a rather feeble alternative. So it could well be that the IBA will, in one last dying flourish, get its way in laying down how its successor is to go about the job. One hopes that it will get its way in other respects. What the IBA's regulation of commercial broadcasting has been all about has been the quality of broadcasting and the diversity of programmes offered to the public, in particular an insistence on public service obligations. The government seems to have thought that this approach was unduly patronising, and that simply by deregulation and extra comperition the public will be given the service it really wants. Perhaps, but it doesn't necessarily follow. There will always be the temptation to fill the airways with the sort of trivial video wallpaper that is acceptable to the undemanding. Without some sort of schedule supervision it's hard to see that standards will be maintained and money spent of programme making, whether for general or specialist audiences, when cheap imports can be used to fill the hours.

One has an uneasy feeling that at the end of the day an awful lot of people will have wasted an awful lot of time on this exercise to please the government, and that things will end up much as they are at present only marginally worse.

Meanwhile the government's plan to increase its ncome from the ITV companies by moving the levy from profits to advertising revenue could again be to the detriment of standards. Put simply, less revenue means less to spend on making programmes. An understanding of the delicate balance that uncerlies successful broadcasting is something this government lacks.

Long-distance Television

Roger Bunney

The excellent tropospheric conditions of January continued into early February, but the main factor this month has been the increased sunspot activity. It made February 1989 an exciting month for really long-distance TV reception. Fortunately many of these long-distance signals have been identifiable. They show that with appropriate conditions really long-distance reception can be achieved using relatively simple equipment. Band I signals from distant parts of the USSR (at plus 8 hours GMT), from Malaysia, Iran and Dubai were seen in the UK during the month.

A slight tropospheric lift on the 6/7th produced reception of West German and Benelux signals and on the 19th RTE (Eire) stations were received. Auroral reception was noted in Scotland on the 13th and 17th and there was a certain amount of SpE reception during the month, the SpE log being as follows:

```
5/2/89 TVE (Spain) chs. E2, 3.
8/2/89 TVE E2, 3.
13/2/89 TVE E2.
14/2/89 RTP (Portugal) E3; TVE E4.
15/2/89 TVE E2, 3.
16/2/89 TVE E2; TSS (USSR) R1 (during an F2 period, but definitely \(S_{p E}\) ).
19/2/89 RUV (Iceland) E3, 4.
26/2/89 TSS RI.
27/2/89 RAI (Italy) IA.
```

There was improved F2 reception on many days during February, the signals sometimes being exceedingly strong. The most dramatic day was the 26 th, which was fortunately a Sunday, enabling many enthusiasts to participate. The first signs of F2 improvement occurred on the 10th, when unidentified ch. E2 signals were present after 0900 . Things then developed, as follows:

_ 12/2/89 RTM (Malaysia) ch. E2 received in Sussex at 1030-

 1040 GMT.13/2/89 Iran ch. E2 received in Derby, using the FUBK test pattern. Arabic mobile radio noted at above 48 MHz .
14/2/89 Iran ch. E2 FUBK pattern received again.
15/2/89 TSS (USSR) R1 plus fioater signals, very strong; variation to TSS programme material or maybe TSS-2
or China; Dubai E2 with EBU bar pattern; Iran E2 with FUBK pattern again; unidentified African ch. E2 signal received from due south at 1220 .
16/2/89 Unidentified E2 signal plus TSS R1 from the east at 0900.

17/2/89 Similar to the 16th.
18/2/89 TSS R1; Iran E2; Dubai E2; unidentified colour bars seen on ch. E2 at 0940.
19/2/89 Iran ch. E2; unidentified ch. E2 signals.
20/2/89 Unidentified teletext pages going on to the PM5544/34 test pattern, (9920-0940 - thought to be Dubai.
21/2/89 TSS R1; unidentified E2 signal at 0815.
22/2/89 TSS RI.
25/2/89 TSS R1 - very strong; unidentified E2 signal at 0900 .
26/2/89 The peak day for F2 reception during the period. Details as follows:

0830-0930 Iran E2 with later an unidentified female oriental presenter, the latter co-channel with Dubai teletext pages then Dubai going on to programme at 1200 (local time). Additional Arabic programme at 0930-0950. Arabic signals present this day until approximately 1400 GMT. Keith Hamer reports an E2 end of programme at 1145, not Arabic but with the announcer bowing (in sitting position), the following male announcer also bowing to the camera. Could this be RTM (Malaysia)? Information from overseas readers please to confirm one way or the other. Thoughts are that this could be RTM with a possible third network transmitter on ch. E2. Simon Hamer's log at midday notes several programmes including Dubai on teletext, a panel game with white contestants, Arabic news, advertisements and at 1220 a logo with an eagle/bird on top! At 1500 GMT Simon logged weak ch. A2 525-line signals from the west, probably Canada. Typically, yours truly was away working in London over this period.

F2 conditions have fallen off somewhat since the 26th, and although the m.u.f. has approached 48 MHz no video has been seen since then (at the time of writing, March 3 rd).

Ryn Muntjewerff writes to tell us of his tropospheric reception on the 2nd with TVP-1 (Poland) chs. R8, 9, 10, 12, TVP-2 R29 and TSS (USSR) R8, 9, 10, the former two being from Latvia and the latter the old 0249 monoscope pattern but the origin unknown. Ryn noted good F2 reception on the 15 th, with TSS R1 and Dubai E2.

A letter just to hand from Anthony Mann (Perth, Australia) reports reception of Norway and Sweden ch. E2 on a scanner, between 0715-0930 GMT on the 25th. From 0805-0819 Sweden was received on a TV receiver with the PM5534 test pattern followed by programme material. More details next month.

Left: The new Czechoslovakian test pattern, with CST-1 identification. Photograph courtesy Karel Honzik. Centre: F2 reception on January 15th at 0840 GMT. A ch. E2 signal possibly from Malaysia. Photograph courtesy Garry Smith, Derby. Right: Denmark TV-2 Hedensted ch. E27, received by Tim Anderson (St. Leonards) during the January tropospheric opening.

My thanks to the following for sending in reception reports: Peter Schubert (Rainham), Tim Anderson (St. Leonards). Garry Smith and Keith Hamer (Derby), Roger Fussell (Torpoint), Simon Hamer (Powys), Iain Menzies (Aberdeen), Ryn Muntjewerff (Holland) and Anthony Mann (Perth, W. Australia).

Paul Barton (Harrogate) writes that he has been experimenting with a couple of Datong AD370 active aerials in shortened form spaced four feet apart, giving a forward pickup lobe and two rear lobes, the latter being perhaps 3 dB down. The gain is higher than a dipole. The system is mounted in the loft and is aligned towards the south east, giving coverage from east to south with the main lobe and one lobe directed towards N . America. In conjunction with an outside discone aerial this system provided excellent F2 reception on the $25 / 26$ th. We would be interested in hearing from anyone who is using any form of active aerial.

Dalibor Frkovic (Sisak, Croatia, Yugoslavia) writes to tell us about the new Czechoslovakian test pattern (see accompanying photograph) which carries the identification 1SR-P for the first programme or 2SR-P for the second. It replaces the familiar EZO test pattern. CST Bratislava still uses the PM5544. The FUBK pattern is also still in use, with identification DDK 3 for the first network and DDK 1 for the second. Dalibor often receives Band III/u.h.f. signals from CST, also TVP and Bulgaria BT-1 ch. R30 and BT-2 chs. R36, 46. He mentions that TV Zagreb and TV Beograd (the latter chs. E12, 30) have for over a year been transmitting a third programme experimentally at low power. Contents have included a film festival and various downlinked satellite TV programmes including at different times Super Channel, Sky, RAI-1, 3-SAT and even TSS-1 and CNN.

David Martin of Aerial Techniques tells us that his company can now supply what he describes as the ultimate VHS multi-standard VCR, the National Model NVG500EM. It has a multi-band tuner and can process PAL B/G/I, SECAM B/G/D/L and NTSC M signals with colour coverage of PAL, SECAM, MESCAM, and NTSC at 3.56 and 4.43 MHz . The sorts of features you would expect in an upmarket machine, such as variable speed (up to eight hours playing time) and bar code scanning, are included. Cost of the machine is $£ 685$ inclusive of VAT. For the address see the accompanying advertisement.

News Items

France: Local TV channels have been set up in Toulouse, Lyons and the Mont Blanc area. The contracts provided by the National Committee for Communications are for eight year periods. The TFl and La 5 networks have been fined substantial amounts for failure to observe French regulations on the length of advertising and the European content of programmes.
Spain: Further local commercial TV operations are to be

AERIAL TECHNIQUES

MULTI-SYSTEM TV
 AM/FM RADID DIGITAL CLOCK/ALARM $£ 99.00$

Featured above is the very latest black \& white multi-system small screen television combination from YOKO Intemational. Model TVC-8M is a must for every senous TV-DXing enthusiast and it's alsci ideal for Continental travel and home use. The YOKO 'Euro TV' features full VHF/UHF TV coverage and incorporates SYSTEM I $(6 \mathrm{MHz}$ sound for UK/Eire/South Africa), SYSTEM B/G $(5.5 \mathrm{MHz}$ sound for Europe, Middle East, Australasia and other parts) AND SYSTEM L FRENCH standard (65 MHz sound). The $5.5 / 6 \mathrm{MHz}$ sound switching is automatic, the switching for French standard is situated on the back of the TV. This versatile model also has a high quality AMFM radio section and a digital clock/alarm on the front panel. The alarm can be selected to switch the television or radio on or off at any given time, the clock is equipped with a 24 haur memory alarm, which can be reset instantly to sound at the exact time the following day

This fabulous little TV has a sturdy black case, seven section telescopic whip antenna, 75 ohm coaxial aerial input socket and will operate from AC mains or a 12v DC supply. Completely compatible for use in the UK and throughout Europe (including FRANCE)

With the 1989 Sporadic-E season soon upon us, don't delay, order today, the YOKO TVC-8M 4.5"' screen multi-system TV combination costs just $£ 99.00$ inclusive of VAT. Carriage \& insurance to any UK destinaton is $£ 5.50$

Our full range of aerials. amplifiers, aerial rotators, filters, multi-standard televisions and all aenal technology is fully detailed in our comprehensive 22 page illustrated Catalogue at 75 p, send for your copy today. A customer advisory service is also available, please telephone or wite (include SAE)

All prices inclusive of VAT Delvery normally 7-10 days
ACCESS \& VISA Mail and
Telephone orders wetcome

11. KENT ROAD. PARKSTONE. POOLE. DORSET BH12 2EH Tel; 0202738232
started in San Roque, Algeciras and Los Barrios.
Denmark: Hadsten ch. E26 at 600 kW e.r.p. is amongst the increasing number of TV-2 transmitters now in operation. Further planned openings for this year are listed in Table 1.
Belgium: Canal Plus Belgium, a cable operation, is to start in late September with coverage restricted to French speaking areas. A commercial cable operation Vlaamse Televisie Maatshappij provides a service in Flemish speaking areas. During non-programme hours Telebruxelles transmits colour bars with its own name as an inlay identification. RTBF has stopped using the Antiope teletext system: there's a suggestion that the UK teletext system may be adopted.
Ireland: Further ATV licences in the $434-440 \mathrm{MHz}$ band are to be issued. By the end of 1988 six operators had been licensed.

Satellite TV

The Japanese Yuri 2B DBS craft may end its transmissions earlier than expected as a result of a telemetry

Table 1: Planned Danish 1989 TV-2 Openings

Transmitter	DR-TV	TV-2	E.R.P.	Date	Area
Nibe	E29	E35	600 kW	1 April	Nordjylland
Tolne	E57	E37	22 kW	1 April	Nordjylland
Varde	E53	E33	500 kW	15 May	Ribe
Jyderup	E51	E48	600 kW	1 July	Vestjylland
Vordingborg	E42	E58	600 kW	15 August	Storstrom
Nakskov	E34	E52	100 kW	15 August	Storstrom
Ro	E59	E56	800 kW	1 October	Bornholm

encoder fault. The same fate took Yuri 2A out of operation.

A new satellite radio distribution system known as Radikal-3V is to be brought into operation in the USSR this year, with downlinking in the 11 GHz band. It will provide for up to twenty radio programmes.
Thirteen new domestic satellites have been authorised in the USA, bringing the number to 42 . NBC is now scrambling its C band (4 GHz) network feeds though its 11 GHz feeds remain clear. A satellite dealer in Cartersville, Georgia has been fined $\$ 3,000$ with a suspended jail sentence and forfeiture of equipment for selling illegal satellite TV decoders.

Galavision is now well established, providing a Mexican originated service targeted mainly at Spain via the Atlantic beam of the ECS satellite at $13^{\circ} \mathrm{E}$. Uplinking is via Miami and transponder 19 on PanAmSat 1 at $45^{\circ} \mathrm{W}$ to the London teleport.

Ian Waller reports that the new Moroccan TV service "2M International" is now on test via the Intelsat craft at
$53^{\circ} \mathrm{W}$ in band C, using Canal Plus type scrambling. The signal is very strong and the programme content appears to be compiled from RTM (Morocco), TF1 and Videotron (Canada).

The 405-line Society

Andrew Emmerson (71 Falcutt Way, Northampton NN2 8 PH) has started a club for those interested in 405-line TV equipment, programmes, etc. The first newsletter will be available as a free sample (send a large stamped s.a.e.) and membership is expected to be about $£ 5$ a year. The club is to operate on informal lines, the policy being to discuss, inform and propagate news on 405 -line TV. It's worthy of support.

Finally if anyone has any 405-line equipment for disposal please write in - good homes can be found. In addition to TV sets test equipment, telerecordirgs, films, magazines, servicing data and anything else relating to the early days of UK TV is required.

Test Report: Leader Laser Power Meter

Nick Beer

Several new items of test equipment have appeared on the market over the last few years to facilitate servicing the ever increasing range of brown goods available. Over the next few months I will be discussing some of these units and reviewing selected examples. The first to come under the spotlight is the laser power meter. Its applications are obvious enough - there aren't many manufacturers of consumer electronics products who don't now market compact dise players, and the market is a steadily growing one.

The meter chosen for review is the Leader LPM8000, simply because it appears to be the most widely available one from the usual electronics parts/test gear suppliers.

The LPM 8000) is able to measure the output from gallium arsenide or helium neon lasers, being calibrated for both with selection by means of a switch. There are three ranges, $0.3 \mathrm{~mW}, 1 \mathrm{~mW}$ and 3 mW . The sensor probe is separate from the meter itself, connection being via a lead with a fairly sturdy plug of d.c. connection type at one end. No battery is required to power the meter: as soon as the protective cover is removed from the sensor you can see the needle move - provided one of the two lower ranges is selected - as the sensor picks up various ambient light frequencies. The sensor should never be pointed at direct light sources other than laser radiation of the type the meter is intended to measure. This means sunlight and artificial indoor lighting. So the protective cover should always be put back on the sensor when it's not in use.

The whole assembly fits into a case that appears to be too big. It's certainly flimsy, and as a result the securing popper is virtually impossible to do up. This may well improve as the case becomes more supple. The overall impression is that a fortune hasn't been spent on the cosmetic features of the meter: in addition to the poor case the meter's cabinet appears to have been designed for something else - there's a battery cover that isn't used, being just glued shut. Being a typical engineer I tried to open this without first reading the instruction book. It was while subsequently looking through the book that I
realised the cover shouldn't open!
The meter performs the tasks required of it very well, though the durability of the case under typical workshop conditions is suspect. Some manufacturers now insist that a workshop has a laser power meter before they will appoint a CD player dealership, but unless you handle a massive number of players I don't personally see the need for one. An experienced engineer can evaluate the optical pickup unit by looking at the r.f. waveform - anyone other than an experienced engineer shouldn't be working on these players. If the r.f. waveform is of low amplitude the optical unit nceds replacement - turning up the output to provide compensation staves off replacement for only a very short time. Buying a laser power meter will however undoubtedly speed up CD player fault finding. You always have at the back of your mind the possibility that the laser's output could be low, and a laser power meter will provide quick confirmation one way or the other.

I suspect that many smaller service departments will be able to list more urgent calls upon an investment of some $£ 200$. But if you do handle CD players in any numbers a meter will save time by quickly condemning the laser unit or confirming its innocence. It's a fact that a surprising proportion of disc playability faults, particularly where the optical unit seems to drift off alignment, are due to faulty lasers. This sort of thing can cost you precious time and money as you try setting up the servos for skipping, slow access times, etc., and can sometimes result in a callback only a couple of weeks later for the same trouble. A check with the meter will establish the root cause of the problem first time.

Availability

The test meter was kindly supplied by Willow Vale Electronics Ltd. of 11 Arkwright Road, Reading, Berks RG2 ()LU. It's available from them under order code 12800 at a trade price of $£ 174$ plus VAT.

For further information on laser unit servicing, see Joe Cieszynski's article on page 520 .

VIDEO HEADS AT UNBEATABLE PRICES
 AMSTRAD VCR4500: 4600/5200/9000
 AMSTRAD VCATOOO
 FERGUSON $3 V 32 J V C$ HR7655 FERGUSON $3 V 42 / 44 / 45 / 46 / 4750$
 FISHER UNIVERSAL FVHDTZ0/520/530 ETC
 HITACHI VT 4000/5000 HITACHI VT65007000/8000/8500/870C/9000 ETC
 PANASORIC NV333/2000/7000 8600 UNIVERSAL 3HSSN
 PANASONIC NV777/NV330 3 HEAD
 PANASORNC NV230NV250/NV260 NV27ONVG-9/10/11 PANASONIC NV43/NV460
 PANASORIC NV430NV46O PANASONIC NV 3664 HEADS
 PANASONIC NV7 304 HEADS
 PANASONII NV 1804 HEADS
 SAISHO VR605/705/805/905
 SHARP VC300/38 1/382/9300/9500/9600/9700/9800 ETC
 SONY UNIVERSAI 1 PIN C5/GZ AND 2PINETO
 SONY UNIVERSAL 1 PIN CS/6/ AND 2 PINETC SONY SLF- 1 C20/30/40 F40/SLT20MEE-30ME SONY SLC $8 / 9 / 60 / 80 /$ SLF $60 / \mathrm{SL}$ T50/SLFGO/SI 200
 TOSHIBA V9600
 VIDEO MOTORS
 DRUM MCTOR JVC/3V22 PU 46414 P - 1 REEL MOTOR SHARPRMOTV-1008-G $Z Z$ ORIGINA
 REEL MOTOR SANYO VTC5C00 4-529\%-10800 ORIGINAL FEEL MOTOF PANASONIC NV333-36E MYN13V5I ORIGIN 225.00 $\mathbf{2} 21.00$ $\mathbf{2 2} .00$

SAVE US!

WE ARE SINKING IN A WAVE OF BARGAINS

GARY WINTERTON OFFERS A
FULL RANGE OF EX-RENTAL
TV \& VIDEOS
NO ORDER TOO LARGE OR TOO SMALL
T.E.S.D. LTD. UNIT 6, 68 BAYTON ROAD EXHALL, COVENTRY CV7 YOU COLLECT OR WE WILL DELIVER

Letters

THE TECHNOLOGY JUNGLE

Anyone who has worked in a high-tech company will be familiar with the salesmen who knock on the door almost daily, an IBM under one arm and a "new" software package under the other. The basic reason for this seems to be the endless output from those little geniuses who grew up on keyboards whilst playing Space Invaders. The belief is around that what we need is ever more graphics, CAD, word-processing and accounting packages. Engineers, scientists and managers alike are being baffled by the daily inception of new acronyms.

There's nothing new about this. In the TV world copywriters thirty of forty years ago were quoting features like APC in sales literature in the hope of impressing prospective purchasers. Unfortunately today the punter expects to be impressed. We need improved technology, but we also need it to be described in a language understood by all. That way the danger of purchasing incompatible equipment might be avoided. To give one example. Three years ago we bought a very good CAD package. The following year evaluation of a desk-top publishing (DTP) package was entrusted to the same employee who, in retrospect, was obviously inexperienced and reluctant to admit being blinded by science. The result was that we purchased the DTP system and then experienced considerable problems with transferring graphics from the original CAD system - complex drawings were often lost, wouldn't convert or lost the text originally placed upon them. Here was a fine example of a software expert without experience of the real world creating a finished product that caused problems. Both systems were extremely good in their own way, but the incompatibility factor ended up by providing ammunition for management politics with the result that the whole system was shelved.

Returning to TV, we had perhaps the best system in the world with 405 lines. If it had been given f.m. sound it would today have been the system to which the world converted. Why? Because it was economical of bandwidth. But, I hear you say, the definition was inferior. The horizontal definition was in fact very good, comparable (with a good set) to modern 625 -line receivers. One way of making the coarse line structure less visible was to use spot wobble. Some Ekco models featured this, but viewers, who had no idea what the toggle switch was for, invariably switched it off permanently. Besides, the average viewer was happy with his 17 in . box until somebody told him he was missing something.

Pictures can now be digitally reprocessed within the receiver. Yet we are still threatened with a multiplicity of systems. The Japanese HDTV system offers over 1,100 lines and 60 fields per second, which overcomes interlace flicker, but it's incompatible with existing systems. MAC offers compatibility (via a converter) but retains the interlace flicker. Meanwhile we are getting PAL signals from Astra, again via a converter. Soon we'll need another converter for BSB. When you sit back with a sigh of relief after getting that lot someone will be telling you that you are missing something because the new widescreen TV sets are in the shops.
There are several lessons to be learned. In particular
that customers don't want to be baffled by science - they just want to watch Coronation Street. Here's an example. I was called to a set one day to correct a no-picture fault, then readjusted it and left. Next day I was called back for slight hiss on sound. It was almost imperceptible and was resolved by slightly reducing the setting of the treble control which I'd inadvertently left at maximum. The user had no idea what the control was for! Here'a another example. The purchaser of an expensive (for its day) VCR, the Ferguson 3V23, was asked why he’d paid $£ 750$ when he used it only to watch videos from the local video shop and to make the occasional off-air recording. He replied that he'd come into some money and wanted the "latest thing". Totally confused by the search tuning and remote control handset, he'd no intention of using the assemble edit, freeze frame, variable slow motion or even the Dolby noise reduction. He just wanted a video!

There's a great danger in technology for the sake of it. Will the ultimate user want or understand it? If current predictions are fulfilled and our children inherit our property and blow the proceeds on new gadgets, perhaps they'll have the time to gen up. But will the service engineers of the day?
Malcolm Burrell,
Romford, Essex.

ELECTRON COMPUTER PROGRAM

Owners of Acorn Electron computers will probably wish to try out J.T. Beaumont's program for satellite dish alignment (March issue). Although written for BBC B series computers which use the same BASIC language as the Electron, because of certain electronic differences between the two machines the part of the program that relates to drawing an ellipse won't work. The following modifications and additions to this excellent program will enable Electron users to get going.

1200 GCOL 1,3
1210 PROCellipse
1220
1230
1240
1870
1890 DEFPROCellipse
$1900 x=620: y=800: x r a d=400: y r a d=150$
1910 FOR $\mathrm{n}=0$ TO 360 STEP 10
$1920 \mathrm{a}=\mathrm{RAD}(\mathrm{n})$
$1930 X=\operatorname{SiN}(a) * x r a d+x: Y=\operatorname{COS}(a) * y r a d+y$
1940 IF $\mathrm{n}=0$ MOVE X, Y ELSE DRAW X,Y
1950 NEXT
1960 ENDPROC
D.R. Isham,
Buckingham, Bucks.

TROUBLES WITH NICAM?

ITV and Channel 4 have been broadcasting NICAM stereo test transmissions from Crystal Palace since the beginning of March. During the morning of March 4th I noticed that the music seemed to be interspersed with occasional random loud clicks (decoder switching?). This has continued since the start of the tests but doesn't seem to occur with the BBC's NICAM transmissions.
A call to IBA Engineering at Winchester on March 13th confirmed that I was not the only one to hear this noise, and that the phenomenon had been reported by viewers with JVC, Sony, Panasonic and Ferguson equip-
ment. I was told that the IBA engineers were scratching their heads! These might be teething troubles and I don't want to be alarmist, but it was inferred that the trouble could be caused by the decoder chip in current use.

There must be quite a lot of homes now with expensive VCRs and TV sets fitted with NICAM decoders. The thought of them all requiring modification or new chips is cause for concern. Can anyone shed more light on this matter?
Andrew H. Sykes,
Sutton, Surrey.

REMOVING HARDENED PVC

The PVC sheath covering wires with single or multistrand cores will harden when subjected to heat over a period of time. If you have to strip such wire, try the following method. Place the wire to be stripped against a hard surface - see Fig. 1 - then press the body of the bit of your soldering iron on top of the PVC sheath, at a suitable distance from the end to be stripped. Leave for a couple of seconds then, while applying pressure with the iron, pull the wire from the other end so that it passes under the bit. This will remove part if not all of the PVC sheath without damaging the core.
M.K. Hayter,

Moseley, Birmingham.

USEFUL TIPS

Here are some tips which I have used myself. I hope the ideas will prove of use to other readers.
(1) A degaussing coil would probably cost you $£ 20$ or more, yet many engineers carry one with them without realising it. I refer to the "instant heat gun" many of us carry in our kits. It does a first rate job and can be even better than a degaussing coil in stubborn cases. Always check the degaussing posistor and the continuity of the circuit of course.
(2) Rather than carry a large bottle of isopropyl or whatever you use for cleaning upper drum assemblies try this tip. Cut half a dozen kitchen towels into quarters (24 pieces) and completely soak them in the cleaning fluid, then put them in a plastic bag to prevent evaporation. It can save a lot of room in the rool case.
(3) If you want a cheap 30 V supply for fault finding (tuners etc.) and you have a scrap Rediffusion Mark 3 chassis, the little PCB mounted mains transformer 6T1 (Hinchley type 21861) on the power supply panel is ideal. Fig. 2 shows a suitable circuit.
(4) A budget variable stabilised power supply giving 1-2A at $5-15 \mathrm{~V}$ can be built easily using a 7805 regulator secured to a good-sized heatsink and a mains transformer obtained from a scrap monochrome portable. Fig. 3 shows a basic circuit - the $10 \mathrm{k} \Omega$ potentiometer sets the output. For a higher output voltage use a 7812 regulator with a highervoltage transformer.
(5) There have been some excellent articles in the magazine on converting Sony sets from GCS to transistor operation in the chopper and/or line output stage. I recently carried out such a conversion with a 20 in . set and noticed that the output transistor was getting excessively hot. After trial and error the perfect device was found. Instead of a BU208A, use an R2540 (the Syclops transis-

Fig. 1: Method of stripping hardened PVC wire covering.

Fig. 2: Simple stabilised 30V supply circuit.

Fig. 3: Simple 5-15V regulated power supply circuit.

Fig. 4: Simple satellite dish alignment tool.
tor in the Thorn 9000 chassis). It runs as cool as a cucumber! This transistor is also an excellent replacement for the rather expensive 2 SC 1942 regulator used in the Sony KV1612UB colour portable.
Graham Richards,
Rochdale, Lancs.

SATELLITE TV ALIGNMENT TOOL

The "poor-man's" satellite TV alignment tool shown in Fig. 4 can be made at very little cost. It consists of a straightedge A which can be of any material with a good edge (look around you local DIY store); a protractor B which can be obtained from W.H. Smith for about 45p; a wooden base spirit level C or a suitable piece of machine-
planed wood with a bubble D attached (from DIY stores or Maplin order no YP56L, $£ 2 \cdot 80$ plus 50 p post and packing on orders below £5); a friction washer E-rubber etc.); a washer F suitable for glueing to material A (steel etc.); and three woodscrews.

To use for elevation alignment, move the straightedge to the degree reading required, placed the straightedge on the face of the dish and adjust the dish until the spirit level is centred. The straightedge should be of suitable length for the job.

J. Johnson,

Gloucs.
Editorial note: Would Mr. Johnson please send us his full address so that payment can be made for this contribution?

HELP WANTED

I'm seeking a replacement mains transformer for an Elizabethan LZ32 open-reel audio tape recorder. As far as I'm aware the secondary windings are 6.3 V to supply the heaters and 240 V isolated to feed a bridge rectifier. The one fitted is a Grundig Netztrafto 9078-003 - unfortunately the primary winding is open-circuit. Any help in obtaining a new or ex-scrap machine transformer would be appreciated.
Brian Renforth, 174 Helmsley Road,
Sandyford, Newcastle-upon-Tyne,
Tyne and Wear NE2 1RD.
Can anyone supply a circuit diagram for the Thandar (formerly Sinclair) DM450 multimeter?
G. O'Brien, 105 Roxborough Road,

Harrow HAI INT.
Can anyone supply a line output transformer for an Orion Plustron Model CTV55?
R. F. Maynard, 7 Phillips Avenue,

Exmouth, Devon EX8 3HY.
Small portables seem to be ever more popular yet their owners often make very little use of them. I have two in for repair. Both have seen little use and their cabinets are perfect, yet I have to tell customers that such sets are scrap as the parts are no longer available. As a last ditch, can anyone help with the following? First an AN239Q chip for a Panasonic model. Secondly a line output transformer for a Contec Model KT8135.
Richard Hammon, 17 Knightcote Drive,
Leamington Spa EV32 5FA.
Telephone 0926428534.

WIDE-RANGE CAPACITANCE BRIDGE

Several readers have written to me about the wide-range capacitance bridge (March 1988). The following notes cover the various points raised.

Ranges D and E will not operate correctly unless the power factor control VR4 is of the type that shorts out completely to zero ohms. Use a 100Ω control of the type that has a positive shorting out position. A suitable control can be obtained from Forester's National Radio Supplies, 36 Ashley Road, Boscombe, Bournemouth, Dorset BH1 4LR (telephone 0202302 204). Order as an "open wirewound panel mounting pot meter 100Ω of type that shorts out completely at the end positions". The price is $£ 1.95$ cash with order (includes post, packing and

Fig. 5: Use of the correct tvpe of power factor control in the wide-range capacitance bridge is important.

VAT). The lower value than originally specified ($1 \mathrm{k} \Omega$) gives a better power factor balance with large-value capacitors. In normal use, i.e. when measuring capacitance values, VR4 is turned fully anti-clockwise so that it is completely shorted out (see Fig. 5). C9 and C10 should be ordinary small electrolytics as originally specified, connected with the polarity shown in Fig. 5.

As stated in the article, it's important to ensure that the leads from the secondary winding of transformer T1 to VR1 are twisted together (like twisted flex) and that there is no unwanted coupling between the connecting leads.

Set the gain control VR3 as low as possible. You don't need a lot of sound, just a clear, sharp balance.

Range A (C6, $100 \mathrm{pF} 1 \%$ standard) should give a clear, sharp balance with capacitors down to a few pF in value. Don't change the specification for C6 (RS silver mica type 124-780). The range switch SW3 should be a good quality type, e.g. the RS Components type specified.

Make sure that there is no direct coupling between the squarewave oscillator circuitry and the audio amplifier section. All leads should of course be as short as possible.

If these simple points are observed you should get many years of useful service from your wide-range capacitance bridge.
David Botto.
Poole, Dorset.

INCORRECT COLOURS

So Les has also been caught out by a Ferguson TX9 (April issue) - I refer to the set that needed the RGB leads to be swapped around. Next time the set comes in and you've put all the leads back in their original positions, check the thermistor in the degaussing circuit and all the connections here! I had the same thing happen some months ago, during the snooker finals. It made the programme more interesting though - they were getting breaks of 500 or more!

On the cost of spares etc., I've just received from Philips a small sponge-nubber cap to go over a camcorder microphone, priced at $£ 18.69$. Is this a record or can anyone beat it? Go on, surprise me!

Chris Plaice,

Swansea, Glam.
Some years ago I had two or three cases of the type described by Les in the April issue - sets with interchanged colours. They were all Grundig models. When the first set came in a check with colour bars suggested that swapping the leads around would cure the fault. This turned out to be so and I assumed that the set had been incorrectly assembled. It came back a few days later however, again with the colours interchanged. Restoring the leads to their original positions put matters
right. It then began to dawn on me: I switched the colourbar generator to give a red raster and found that there were impurity patches. The dual-posistor in the degaussing circuit was charred, with its guts loose.

For years l've identified with Les - even in the cases of seductive ladies, two in pyjamas, one after insisting on a 9
a.m. call by the senior engineer. . . Also over 60 now, I too suffer from loss of memory and concentration and often add to my difficulties by carefully arriving at wrong conclusions.
J.R. Armagh,

Craigavon, Co. Armagh.

Teletopics

SONY LAUNCHES VIDEO WALKMAN IN UK

The Sony Video Walkman Model GV-8E is now available in the UK at a suggested price of around $£ 800$. It's a remarkable piece of equipment, incorporating a fullfeature VCR, an LCD colour TV display and a tuner/ timer in a package measuring approximately 5 in . in width, $23 / 4 \mathrm{in}$. in height and $83 / 8 \mathrm{in}$. in depth, the weight being 1.5 kg . There's a comprehensive range of input/output sockets - for video in and out, audio in and out, camera and external speaker. Playing time is 90 minutes in the SP mode and a maximum of three hours in the LP mode. The TV screen has a diagonal measurement of 3 in . and has 92,160 pixels, driven by a thin-film transistor active matrix. Consumption is $7 \cdot 1 \mathrm{~W}$ at 6 V and the Walkman comes with a battery pack, an a.c. power adaptor and a lithium battery. There's a built-in telescopic aerial and the timer setting is for une event/24 hours. The aim is to give the user a TV/VCR facility no matter where he is. For full video capability there's a partnering camera, Model GV8 E , that weighs just 455 g with optical viewfinder and 400 g without. It has a three-position focus lens and microphone. No price for this item has been announced.

To coincide with the UK launch of the Video Walkman Sony has released a new package of prerecorded software - over thirty movies ranging from recent feature films to special items for children and music lovers. Some titles are for rental only but most are available for purchase.

There are also two new camcorders, Models CCD-V88 and CCD-F335. The CCD-V88 is claimed to be the world's smallest and lightest full-feature camcorder, measuring approximately $12 \times 4^{1 / 4} \times 4^{1 / 2 \mathrm{in}}$. and weighing 0.9 kg . The CCD-F335 is a replacement for the CCDF330. It incorporates a number of extra features including a high-speed shutter (up to $1 / 4,000$ sec.). The suggested price is around $£ 800$.

bBC STEREO TV SOUND SERVICE

Regular BBC-1 and BBC-2 stereo TV sound transmissions are to start in the autumn of 1991, using the BBCdeveloped Nicam 728 digital stereo system. Test transmissions from Crystal Palace started on July 18th 1986 and will continue, with programme sound originated in mono or stereo on the digital sound channel. The following main stations and many of their dependent relays, covering $60-70$ per cent of the population, will carry stereo sound at the start of the service: Black Hill, Crystal Palace, Emley Moor, Pontop Pike, Sutton Coldfield, Wenvoe and Winter Hill.

SATELLITE TV AERIALS

Sir Clive Sinclair's company Cambridge Computer Ltd. showed the smallest aerial yet designed for reception from
the Astra satellite at the recent Cable and Satellite Exhibition. The new aerial is a 45 cm square (approximately 17 in .) device with a depth of 12.75 cm . Deliveries are expected to start in the autumn.

The new aerial was being shown alongside Cambridge Computer's previously announced 60 cm square aerial. Sir Clive commented that "the original 60 cm aerial/receiver design has performed significantly better than expected, and for this reason the technology has been adapted to produce a still smaller and shallower design. It's known to work in the Midlands and the South, but until further tests have been carried out people to the north of this region are advised to use the 60 cm aerial."

There's been a certain amount of speculation in the press as to whether BSB's Squarial will be available in time for the launch of the service this autumn. What is not in doubt is that the development programme is behind schedule. It shouldn't matter unduly since a conventional dish can as well be used, but BSB has made an advertising/promotional feature out of the Squarial and there is also the fact that planning regulations allow only one dish of under 90 cm to be installed within sight of neighbours. That dish could be for Astra! With this in mind BSB has been seeking a ruling from the Department of the Environment that the Squarial is not a dish.

The Squarial was devised by John Collins who set up a small company called Fortel to develop it. The slory goes that John Collins had seen a similar type of aerial in military use - on fighter aircraft - and decided to adapt the principle for domestic satellite TV reception. If, as we suspect, the technology uses phased arrays of elements in PCB form, it's not one that is easy to apply to mass production. BSB has now bought out the rights to the

The Sony Video Walkman Model GV-8E combines a fullfeature 8 mm VCR, a colour LC display, a v.h.f./u.h.f. tuner and a timer for one programme in a 24 -hour period.

Squarial patents, for which Fortel had applied, and has also acquired the marketing rights to the aerial in the EBU region, Australia and New Zealand. It's understood that Marconi Defence Systems and Dow Chemicals will be producing aerials for BSB - Marconi's will probably be of the conventional dish variety.

Some concern has been expressed about the safety of wall-mounted satellite TV dishes. The problem lies not so much with the method of securing the dish but with the strength of the material, e.g. masonry or brickwork, into which wall plugs are inserted. To overcome this problem Hydrajaws Ltd. (Unit 3, Tile Cross Trading Estate, Birmingham B33 0NW) has introduced a fixings tester. The self-contained tester consists of a hand-wheel tensioner which transmits applied loadings through a hydraulic cylinder that incorporates a maximum load indication pointer for visual monitoring. A selection of attachments enables a variety of fixing ends to be accommodated, including fired masonry nails. In operation the tester can be used either to provide assurance that the estimated loadings imposed by the dish and supporting metalwork are within the strength provided by the fixings and wall or alternatively a full pull-out test can be imposed using a sample area of wall.

Advanced Satellite Installations Ltd. (137 Beehive Lane, Ilford, Essex - 01550 2256) is running regular dish installation courses at Hornchurch, Essex. The company has plans to start courses at other centres.

FERGUSON SERVICE DEPARTMENT MOVES

Ferguson's Service department has moved to new pur-pose-built premises at Enfield, completing a $£ 2 \mathrm{~m}$ project. The new address is: Ferguson Limited, Service Division, PO Box 1594, Crown Road, Enfield, Middlesex EN1 1DY. Telephone number is 01-804 7979, fax number 014431899 and telex number 264905.

SATELLITE TV SCRAMBLING

Sky Television and The Disney Company have announced that the design of the VideoCrypt (previously referred to as Palcrypt) system to be used for their pay-TV services has been completed and that tests via the Astra satellite have been carried out successfully. As mentioned last month a smart card system will be used to give subscribers access to scrambled programmes. The smart cards will initially be produced in France by Gemplus Card International S.A., but a joint venture between Gemplus and the News Group is being set up to produce the cards, at a rate of over a million a month, at Livingston, Scotland. Production will start during the first quarter of 1990 and the facility will create over 100 jobs. Sky Television also hopes to establish its subscriber management centre at Livingston, creating a further 250 or more jobs. The centre would contain the computer database of subscribers and smart card preparation facilities. An electronic link between Livingston and Sky's studios at Isleworth, West London would enable control of subscribers' smart cards to be exercised via the Astra satellite.

VideoCrypt decoders are already being produced by Ferguson and Philips and it's expected that further manufacturers will be licenced this summer to produce decoders and/or integrated receiver-decoders. The Ferguson decoder was on display at the recent London trade shows. In appearance it's similar to a satellite tuner unit, with a slot at one end to take the smart card. It's expected to cost around $£ 80$.

Card payment will probably be based on two principles: for a three-month period and/or for a number of "viewing units". Since the viewing units may not be used up at the end of a three-month period they will be transferable to the next card.
British Telecom's cable and satellite TV division BT Vision has completed successful trials of a MAC encryption system. The system was developed in BT's research laboratories for pay-TV use.

TUNER DEVELOPMENTS

Philips Components has announced the availability of a divide-by-two prescaler chip, type SAB8726, for use in satellite TV tuners. The chip has a frequency range of 1 $2 \cdot 6 \mathrm{GHz}$ and contains an amplifier, a divide-by-two section and an output stage. It accepts a sinusoidal input from the local oscillator and provides an output that drives a frequency synthesis loop. The package is an 8 -pin plastic DIL (SOT97) and the power requirement is typically 35 mA at 5 V .

Hitachi has introduced a gallium arsenide MESFET chip, type HA21001MS, for TV/VCR tuner use. It contains two local oscillators, a mixer and an i.f. amplifier. Frequency coverage is $50-470 \mathrm{MHz}$ and $470-900 \mathrm{MHz}$, with separate oscillators and output pins for the v.h.f. and u.h.f. bands. A logic-control input determines which input signal is routed to the mixer section, which employs a double balanced circuit.

ASTRA-2

Astra's owner SES has agreed to buy a second satellite which will be placed in the same orbital position as the first one some time next year, doubling the number of Astra channels to 32. The General Electric Astro type satellite was originally built as a joint venture by GE and Time, which owns the US Home Box Office pay-TV channel.

HINARI'S UK CTV PRODUCTION

Hinari is setting up two production lines at the company's Cumbernauld plant near Glasgow to produce 14in. colour TV sets, the aim being to make it less dependent on imports. Initially most components will be imported and the production capacity will be 120,000 sets a year. Efforts will be made to obtain components from local sources. Hinari claims to have 10 per cent of the 14 in . CTV market in the UK at present. The Cumbernauld plant was originally intended for VCR production. This plan was abandoned when it was discovered that the company's VCR imports would not be subject to anti-dumping duties.

ONE-FOR-ALL RC UNIT

More TV remote control handsets are lost or damaged through the antics of household pets or toddlers than for any other reason. Replacement units can be difficult to obtain and expensive. As few retailers hold stocks they have to be ordered, which results in delays. Celtel's One-for-All unit provides the solution. It's capable of controlling virtually every wireless remote control product - cable and off-air TV sets, CD players and a pair of VCRs - and is easily programmed to perform entire sequences of functions. There's a facility for upgrading to control future products and the unit can be used with such infra-red
activated items as driveway gates, garage doors, security systems, curtains, hi-fi equipment and so on. It comes with an easy to use instruction book, a practical users' guide, a function code appendix and a directory of manufacturers' blink codes, ensuring universal brand applicability. The retail price is $£ 79.95$. A review of this interesting device will appear in a future issue. It's available from Celtel at 18 Central Trading Estate, Staines, Middlesex TW18 4XE.

VIDEO SCENE

The European Commission has accepted price undertakings from four Far Eastern VCR manufacturers charged with dumping and has imposed duties on a fifth. Samsung, GoldStar, Daewood and Funai have agreed to raise their EC prices while Orion has elected to pay a 13 per cent duty instead. Either way EC consumers will be faced with higher VCR prices. Last September the Commission set provisional levies on the companies of between 11.5-29-2 per cent.

The British Videogram Association expects the UK video business to be worth over $£ 1 \cdot 3 \mathrm{bn}$ this year. Prerecorded tape rentals are expected to generate income of $£ 540 \mathrm{~m}$, sales of prerecorded tapes should exceed $£ 200 \mathrm{~m}$ while sales of 45 m blank cassettes should produce $£ 135 \mathrm{~m}$. The VCR market is put at $£ 240 \mathrm{~m}-800,000$ machines at an average price of $£ 300$ each. The Association expects camcorder sales to increase to over 200,000 .

A couple of interesting items of hardware have been released recently. Panasonic's Model NV-L28 VCR is unusual in having the capability to play back NTSC VHS tapes via a PAL TV receiver with perfect colour and, in most cases, correct height. The suggested price of the machine, which incorporates digital features such as pic-ture-in-picture, is $£ 450$. Philips has announced the first CD/CD-V player, Model CDV185, designed to play the CD-V "clip" discs. The machine handles 3in. and 5 in. discs but not the larger 8in. and 12in. discs. The suggested price is around $£ 350$.

TDK has released what is claimed to be the first national study of the blank audio and video tape market in the UK. We'll summarise briefly the video aspects. In 1987 over 88 per cent of households possessed a colour TV set while 52 per cent of homes had a VCR. This suggests that there is still considerable potential for growth - VCR ownership is expected to rise to around 57 per cent of households in 1990. In 1984 VHS had 73 per cent of the market, Betamax 25 per cent and the V2000) systern 2 per cent. The figures for 1987 were 91 per cent for VHS, 7 per cent for Betamax and one per cent each for 8 mm and VHS-C. Some $52 \cdot 4 \mathrm{~m}$ blank video cassettes were sold in 1987, with a value of $£ 223 \mathrm{~m}$. This compares with $£ 206 \mathrm{~m}$ spent on photographic film. Estimated blank cassette sales in 1988 were put at 55 m , with stiff competition reducing the value to $£ 194 \mathrm{~m}$. This makes an interesting comparison with the BVA forecast for 1989 given above.

According to TDK's consumer profile the market is biased towards males in the 25-54 age group. Overall this group owned 61 per cent of VCRs and bought 64 per cent of blank tapes. The average household apparently owns around 14 video tapes, spends about $3 \cdot 5$ hours per week making recordings and about 4 hours a week watching them.

There appears to be a move towards the use of highergrade tape and four hour (E240) cassettes. Three and four hour tapes accounted for 73 per cent and 6 per cent of the market respectively in 1984, rising to 80 per cent and 16
per cent in 1987. High-grade tapes account for 5 per cent of the market at present. A breakdown of brand shares shows that four brands account for 43 per cent of the market and 46 per cent of market value. The "big four", with volume and value figures given in brackets, are Scotch ($18 / 19$ per cent), Sony ($9 / 10$ per cent), BASF ($9 / 9$ per cent) and TDK ($7 / 8$ per cent).

HD-TV

American Telephone and Telegraph and Zenith Electronics have announced plans to develop a compatible highdefinition TV system for use in NTSC countries. The companies are to spend some $\$ 24 \mathrm{~m}$ on the project, one aim being to re-establish the US TV industry - Zenith is the last US owned TV receiver manufacturer.

The start of regular experimental HD-TV transmissions in Japan has been delayed by a couple of months due, according to NHK, to a shortage of programme material. Regular Hi -vision transmissions via satellite are due to start next month to around eighty public sites. The full service is expected to come into operation some time next year. NHK proposes to add approximately $£ 4$ a month to the TV licence fee to cover the cost of the service.

a welcome spares service

In last month's leader we commented on the difficulty individuals face in obtaining TV/VCR spares. We have since heard from AGS Electronics of 49 Farringdon Road, Plymouth, Devon PL4 9ER (0752 225 946) whose aim is to provide a personal service for individual customers whether in the trade or not. The company was started fifteen years ago and is staffed by technically minded engineers who are willing to offer advice and spares for anything connected with audio/video equipment. The firm also has a trade repair service. Components can usually be supplied within 24 hours.

PAL ENCODERS FOR COMPUTER USE

Interactive Media Resources (8 North Street, Wolverhampton, West Midlands WV1 IRD - 090225 444) has introduced a range of PAL encoders for use with various popular computers. The Datavid series accepts an RGB input (TTL level or linear depending on the computer) and gives a near broadcast quality PAL composite video output suitable for recording purposes or for feeding into video mixers or monitors. The encoders incorporate their own power supply and the recommended price is £ 179.99 including VAT. There are models for use with Atari ST, Commodore Amiga, Acorn Master and Archimedes computers.

IN BRIEF

Dates for the 1990 brown goods trade shows at London hotels are April 22-25th . . The Newport Amateur Radio Society will be holding its second "grand surplus equipment and junk sale" at Brynglas House, Newport on Sunday July 2 nd , from 11 a.m. to 4 p.m. . . Maplin Electronics (PO Box 3, Rayleigh, Essex SS6 8LR - 0702 554 161) has introduced two crimping tools, one for coaxial cables and the other for heavy duty work, at $£ 24.95$ each including VAT. Dies for RG58 and RG59 cables are provided with the coaxial tool. You simply place the connector to be crimped in the appropriate die in the jaws and squeeze the handles together until the tool reopens. A ratchet with override latch prevents the tool opening until the crimp is complete.

Camcorder Servicing

Part 4: Solid-state Image Sensors

Last month we described the techniques used to produce a composite colour signal in a camera employing a single tube of the Saticon type. Most video cameras and camcorders use solid-state image sensing instead. The rate of progress is such that there have already been various types of solid-state image sensor. Most of them use CCD (charge-coupled device) technology. The basis of all solidstate image sensors however is an array of photosensors each of which generates, during the 50 Hz field period, a charge proportional to the light that falls on it. The advantages of the solid-state image sensor are compactness, low power consumption, resistance to burn-in effects, and long life without ageing. There is no heater element of course, and no adjustments are required for installation, temperature variation, ageing or use.

CCD Image Sensors

Solid-state image sensors vary in the way in which the charges built up during each field are read out of the device as a sequential video signal. With CCD technology, CCD shift registers are used to extract the signal. The idea is depicted in Fig. 1. During the field flyback period the charges built up on the photosensitive section of the device - the array of photosensors - are rapidly transferred to the CCD shift-register section. This consists of a series of vertical shift registers that feed a horizontal shift register, shown at the bottom. Clock pulses applied to the vertical shift register elements move the charges down into the horizontal shift register, which is clocked at a faster rate to provide the sequential output consisting of the charge packets originally generated by the photosensitive elements. Clocking consists of applying higher voltage pulses to adjacent elements to move the charges along the shift register. Once per video line the horizontal shift register receives a fresh set of charges which are then clocked out to provide the next line of the picture. The vertical shift registers are clocked at line rate so that the charges move down line by line. Thus at the end of the field the vertical shift registers are empty, ready to receive the next set of charges from the photosensors.

There are two main types of CCD solid-state image sensor, referred to as the frame- and line-transfer types. With the frame-transfer type the vertical CCD shift registers are situated beneath the photosensors. In the line-transfer type the shift registers are arranged alongside the photosensors. Although frame transfer is fine for monochrome displays it is not suitable for colour. The advantage of the line-transfer arrangement lies in the more efficient charge transfer from the photosensors to the shift registers. The method of clocking out the signal is the same for both types of CCD image sensor.

The line-transfer CCD image sensor is the type generally used for colour portable cameras and camcorders and has itself undergone considerable development during its comparatively short production life. One of the first image sensors of this type consisted of a large-scale integrated circuit with over 250,000 picture elements (pixels), more than 450 shift registers and the pulse control circuitry required all on a 7 mm square substrate.

Basic details are shown in Fig. 2. The photocell array has 454 horizontal by 582 vertical elements, that is 582 rows which form the TV lines and 454 pixels per line. Only part of the array is used, consisting of 575 lines by 418 pixels. The part not used is held at lack level for clamping purposes. A later version offers higher definition with 725 pixels per line, 668 of which are active, giving a total active array of 384,100 pixels. It also has an extra memory section at the bottom for high-speed shutter use.

The scene being recorded is inverted by the camera's lens. Thus when it reaches the surface of the CCD it's a

Fig. 1: Principle of the CCD solid-state image sensor.

Fig. 2: Basic details of an early type of line-transfer CCD image sensor. The active imaging section, with 418 columns and 575 rows (lines), has a diagonal dimension of half an inch.

Fig. 3: The lens produces an upside-down mirror image at the surface of the image sensor. As the image sensor reads the information from the bottom right to the top left it provides correction for the effect of the lens.

Fig. 4: Principle of the MOS type image sensor, which uses a switching matrix to produce the sequential signal.
mirror image which is upside down - see Fig. 3. It's necessary to bear this in mind in order to understand how the imager reads out the signal.
With a TV screen the scanning of the raster starts at the top left-hand corner and ends at the bottom right hand corner, the beam scanning from left to right. With a CCD image sensor the start of the picture is at the lower right hand corner, finishing at the top left-hand corner (the last pixel to be read out). This is because the horizontal shift register is at the bottom, beneath the vertical shift registers, so that the first pixel to be read out is the one at the bottom right-hand corner.

As shown in Fig. 2 the photosensitive elements (photodiodes) are mounted in columns adjacent to the vertical shift registers. Transfer of the charges from the photodiodes to the vertical shift registers is via MOS
transistors. There's a MOS switching transistor for each photodiode, transfer gatung (TG) pulses being used to switch the MOS transistors on briefly during the field flyback period. Driving alternate MOS transistors in each column with a different TG pulse in each field enables the control programme to aliocate alternate rows to odd and even fields and to determine the colour signals for matrixing.
With the high-definition image sensor mentioned some 668 charges are read out per line. As the active line period is 52μ sec the stepping frequency is around 13 MHz . The charges read out of the horizontal shift register are converted to an analogue video signal voltage by means of a sample-and-hold circuit.

MOS Image Sensors

In the alternative MOS type of image sensor shift registers are not used. Instead each pixel is individually addressed once per field by using a matrix switching system. Fig. 4 shows the basic idea. The vertical read-out pulse generator selects lines sequentially, the horizontal read-out pulse generator then connecting each pixel in turn to the common output line. The advantage of individual pixel access will become obvious when we consider colour and also high-speed shutter use.

Colour System

A complex colour system is used with solid-state image sensors. The colour filter associated with the photodiode array has magenta, cyan, green and yellow sections as shown in Fig. 5. Note the way in which the pattern occurs on successive rows - from the top M, G M, G etc.

followed by C, Y, C, Y etc. then G, M, G, M etc. and next back to C, Y, C, Y etc. The first part of the signal processing takes place within the image sensor. Each row of pixels is used twice, once in each field, as shown at the bottom of Fig. 5. Successive rows are added within the sensor. Thus in field 1 rows A and B are added to give line In and rows C and D are added to give line $\mathrm{In}+1$. In field 2 rows B and C are added to give line $2 n$ and so on. This is done by using the alternate row TG pulse switching previously mentioned. Say that transfer pulse TG1 has moved row B into the vertical shift registers (also row D etc.). The next vertical shift register clock pulse moves row B down the registers so that it is adjacent to the row A photodiodes. Transfer pulse TG2 then transfers row A into the registers so that rows A and B are superimposed. The output on line 1 n will thus be
$G+C, M+Y, G+C, M+Y$ etc.
The following line $1 \mathrm{n}+1$ will consist of

$$
M+C, G+Y, M+C, G+Y \text { etc. }
$$

Note that the M and G pixel sequence differs in rows A and C. Thus the pattern shown in Fig. 6 is set up.

In another type of image sensor a slightly different technique is used. Say row A has just been transferred to the vertical shift registers (also row C etc.). The shift register is then "backspaced" so that row A is alongside row B. The second transfer pulse then moves row B into the shift registers to provide the addition. The net effect is exactly the same as before.

With the MOS image sensor where the pixels can be addressed individually or together it's simple enough to program the vertical read-out pulse generator to address pairs of rows to get the same effect.

What we have said so far overlooks the fact that the filters act by blocking light, i.e. the magenta filter section blocks green light, allowing red and blue to pass, cyan blocks red allowing blue and green to pass, yellow blocks blue allowing red and green to pass while green blocks red and blue allowing just green to pass. Thus $\mathrm{M}=\mathrm{R}+\mathrm{B}, \mathrm{C}$ $=B+G, Y=R+G$ and $G=G$. In consequence our lines \ln and $\mathrm{In}+I$ give
$G+(B+G),(R+B)+(R+G) e t c$.
and $(R+B)+(B+G), G+(R+G)$ etc. respectively. Simplifying, in line ln we have
$2 G+B, 2 R+B+G$ etc.
while in line $\ln +1$ we have
$2 \mathrm{~B}+\mathrm{G}+\mathrm{R}, 2 \mathrm{G}+\mathrm{R}$ etc.
There is no need to spell out in fine detail the rest of the process, which is carried out in the camera's signal processing department. The principle is similar to that outlined for the Saticon tube camera last month. Use of filtering, addition networks and a one-line delay line sorts out the signals to produce the components of a conventional composite colour signal, i.e. full-bandwidth luminance ($\mathrm{Y}=\mathrm{G}+\mathrm{B}+\mathrm{R}$) plus the narrow-bandwidth R - Y and B - Y colour-difference signals. The processes are shown in block diagram form in Figs. 7-9.

Circuit Arrangements

As with the Saticon tube, the output obtained from the image sensor consists of a luminance signal plus a highfrequency carrier containing the chroma information. The filtering shown in Fig. 7 provides separate full-bandwidth luminance (YH), narrow-bandwidth luminance (YL) and, from the bandpass filter, the chroma carrier. In the chroma signal path detection is followed by a low-pass filter whose output consists of $2 \mathrm{R}-\mathrm{G}$ and $2 \mathrm{~B}-\mathrm{G}$. By

Fig. 5: Arrangement of the colour filter.

Fig. 7: Filtering system used to separate the luminance and colour components of the complex output signal produced by the image sensor.

Fig. 8: Sampling system used instead of simple filters in the later high-resolution system.
adding $\mathrm{YL}(\Omega \mathrm{G})$ we get $2 \mathrm{R} / 2 \mathrm{~B}$ outputs, i.e. 2 R on one line and 2 B on the next.

Instead of the low-pass and bandwidth filters the later high-resolution system employs sampling to separate the low-frequency luminance and the chroma signals - see Fig. 8. The sampling frequency is around 16 MHz . In a given line n sample-and-hold circuit SH1 will sample only the $\mathrm{M}+\mathrm{Y}$ pixel output while sample-and-hold circuit SH2 samples only $G+C$. This gives rise to the following outputs: $2 R+G+B$ and $2 G+B$. On the following line we get $2 B+G+R$ and $2 G+R$. These outputs are

Fig. 9: Block diagram of the circuitry used to produce Y plus simultaneous colour-difference signals.
applied to add and subtract circuits which produce YL and, on alternate lines, $2 \mathrm{R} / 2 \mathrm{~B}$ as in the previous example.

The line-sequential R and B signals must next be converted to simultaneous $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ colourdifference signals. This is where the one-line delay line comes in. Fig. 9 shows the arrangement used. The two luminance signals are passed through individual gamma correctors to ensure linear light input/output voltage characteristics. Horizontal and vertical edge correction is then applied to the full-bandwidth luminance signal to crispen the picture. The $2 \mathrm{R} / 2 \mathrm{~B}$ information is fed to two separate paths each incorporating gain-controlled amplifiers for white balance and gamma correction. Subtract circuits then introduce the low-frequency Y signal, resulting in line-sequential colour-difference outputs $(\mathrm{R}-\mathrm{Y} / \mathrm{B}-\mathrm{Y})$. Use of a delay line and half line-frequency switches SW1
and SW2 finally provides simultaneous $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ inputs for the colour encoder. A point to note when servicing is that the two $2 \mathrm{R} / 2 \mathrm{~B}$ channels are designated the red and blue channels respectively, which could be confusing.

Our account of the colour signal processing in this article has been somewhat simplified to make it more readily understandable on first acquaintance. Those who would like to follow through a more detailed account may refer to pages I78-183 of the present (third) edition of my book "Videocassette Recorders - a servicing guide", published by Heinemann Professional Publishing at $£ 20$. Another point to note is that a four-phase clock pulse drive system is used for the vertical shift registers in CCDtype solid-state image sensors. Again you will find more on this in the book.

The Party's Over - Well Almost

Les Lawry-Johns

It's time to call it a day. Not only the song goes like that. We don't get any younger and the health problems are very persistent. As far as the business is concerned the party is over and we have to pick up the pieces and pay our debts, if we can. Us careful ones haven't got much to worry about but I know that there are a lot who have. Some years back I wrote about my Grandad. He was the skipper of a ferry boat and it was only when he bumped into Tilbury landing stage that it came out he couldn't see. After that my mum had to go across the road to get his pint of beer. The last act was on for him then, and it seems like only yesterday. Some sixty years ago I think. If anyone wants to look up the issue where I wrote up the story it was in October 1979. Yes the party is finally over as far as this shop is concerned. We're moving out soon, into a small bungalow not too far away. So we'll get a bit of a rest, but I'll still do my bit of writing to keep in touch with you.

More Sets

In the meantime the sets keep coming in.
Take the Philips CTX-E for example. The note said "no go". So I immediately dived for the switch-mode
power supply. The BUX84 chopper transistor was opencircuit. I replaced it and plugged the set into the mains again, having left it switched on. Nothing happened. I checked around the BUK84 and found that it wasn't being driven. So I checked through the circuit but couldn't find anything wrong. When the owner came for it I had to tell her that I hadn't been able to find the fault. She left with the set and it was only later that I realized it had been a remote control model without the remote control unit. I hadn't done anything other than plug it into the mains. What kind of fool am I"

To show you what kind of fool, I've been looking through past issues of the magazine to try to refresh my failing memory. What about this? In the March 1982 issue I was rabbiting on about the weather and mentioned about my friend Ridley coming in. "If we keep burning fossil fuels at this rate Leslie, the greenhouse effect will become so serious we'll all be dying of heat."

Ridley was a solicitor, and that was back in 1982. How did he know then?

Well, that's all I can think of at the moment. People keep calling in to look around the shop and the accommodation upstairs. If we didn't own the joint the party would probably have been over some time back.

Grundig's Satellite TV System

Steve Beeching, T.Eng.

When I unpacked it my first impression of the Grundig STR20 satellite TV receiver was of its smallness and neatness. It's of midi system size, being 320 mm wide and 70 mm high on its little feet. The depth is about 290 mm including the connectors that stick out.

On the front panel there are channel change up and down pushbuttons, an on/off switch, the channel display and remote control receiver. The tuning and setting controls are behind a panel that's almost hidden. Within this panel there are the usual Grundig P and C type buttons. P is for programme: there are 49 of these buttons, each one of which can be programmed for the appropriate channel parameters. C is the channel number, from $00(954 \mathrm{MHz})$ to $99(1,746 \mathrm{MHz})$. This means that with a 10 GHz LNB the satellite frequency coverage is $10.954-11.746 \mathrm{GHz}$, which is adequate for Astra's intention to provide up to 48 channels in the future.

The channel parameters just mentioned are f.m. deviation, i.f. bandwidth, fine tuning, audio carrier frequency and de-emphasis. Deviation can be set for 25 MHz or 16 MHz - for Astra it's 25 MHz . I.F. bandwidth is specified as wide (24 MHz) or narrow (16 MHz): if the signal is good you use the wide bandwidth; if the signal is not so good and spots are evident narrowing the bandwidth can sometimes reduce the sparklies. Audio detection is by means of a phase-locked loop, the coverage being $6 \cdot 5-6 \cdot 65 \mathrm{MHz}$ with $62 \mu \mathrm{sec}$ de-emphasis, $6 \cdot 5-$ 6.65 MHz with the J17 de-emphasis characteristic or 5.8 MHz with J 17 de-emphasis. Although the de-emphasis with Astra is $50 \mu \sec$ the sound is quite acceptable with $62 \mu \mathrm{sec}$ de-emphasis. All the above characteristics, including polarisation, can be stored in the non-volatile memory. Full remote control is available for channel selection, and there's a special AV selector switch.

There are two inputs at the rear to provide for twin-dish working without the need for motorised dish drive. A

Grundig's distinctive offset dish. With an offset dish the feedhorn has a flare instead of scalar rings at the input.
four-way logic system enables the input from either LNB to be selected. with horizontal or vertical polarisation in each case.

Outputs

U.H.F. and baseband outputs are provided. The output from the r.f. modulator can be tuned over the range of channels 24-40. This gives a wide scope for avoidance of any patterning that could arise due to beats with the r.f. modulator in an adjacent VCR. Video plus an audio output that can be preset are available from either a scart connector or a 6 -pin DIN socket. Both carry an AV switching voltage, the scart connector at pin 8 and the DIN socket at pin 1. If the TV set has provision for these inputs, AV switching occurs when the satellite receiver is powered. With some sets the presence of the switching voltage will enforce the AV mode. The situation could thus occur that the satellite TV programme is being taped and the set won't switch to u.h.f. reception. To avoid this a button on the remote control handset can be used to inhibit the AV switching voltage. A baseband output is also provided for connection to a de-scrambler or MAC decoder.

Installation

DIY installation is not advisable as it must be done to the manufacturer's specifications regarding accuracy and safety along with lightning or electrostatic protection.

The dish arrives as a flat pack and can be assembled on site. It's very light, consisting of a metal screen sandwiched between PVC to give a corrosion free life. Once assembled correctly the elevation is preset then apart from azimuth adjustment and setting it close to a wall very little fine adjustment remains to be done. This fine adjustment is made easy by using the polariser rotator feed wire to send an a.g.c. output up to the dish. A cheap meter with a 2 V range to cover the a.g.c. voltage is all that's required for final alignment - no expensive test gear is called for.

The receiver comes pretuned to six satellite channels. These settings can be over-written at a later date. Programme number one is set to Astra Vertical (Sky Channel), which means that you just switch on and line up. Once the dish is aligned in the vertical plane the polariser rotator wire can be reconnected to the $0 / 12 \mathrm{~V}$ output at the receiver and the rotator input at the dish. In practice you might find it easier to use a separate cheap twin cable to the test meter, as the rotator input connector and r.f. cable are internal to the LNB support for weather protection.

The Head End

The LNB is a high-specification type with a magnetic polariser that doesn't introduce any significant attenuation. The high signal-to-noise ratio gives a high rain margin for clear pictures in the grotty English weather. The polarotor and feed horn are a single assembly which is secured to the LNB by means of four screws and an O

The Grundig STR20 satellite TV tuner unit.
ring. The whole assembly is secured to the support strut by means of a plastic clamp and earthing strip. Sensitivity is aided by the 0.62 m offset dish with its 3° capture range this is the equivalent of an 0.75 m round dish with primefocus LNB. Use of an offset dish has other advantages: the snow slides off it more easily and it can have a flat profile when wall mounted.

On Test

Before the start of the Astra transmissions I had a certain amount of fun receiving the transmissions from other satellites such as ECS1-F4. Although there was some noise the programmes were watchable, which is quite a feat with such a small dish. When Astra kicked off I compared the results with those obtained from three other receivers - one the earlier Grundig STR200 - and a much larger dish. Comparison between the small offset dish with about 10 m of cable and a large 1.5 m dish with 30 m of cable showed that there was no degradation with any of the receivers. The small Grundig offset dish performed a treat despite being lashed to a wooden bench and subjected to very high winds, also chickens through which satellite signals do not pass when they are roosting on the LNB support

The only criticism I have relates to the video outputs. I would have preferred the scart and 6 -pin DIN sockets to have had separate drives instead of being just coupled together. This would have allowed for direct connection to the VCR and TV set together, but it doesn't prohibit other combinations and the cost would have been greater. Well, you can't have everything.

A receiver with an in-built stereo decoder, Model STR22, is to be introduced shortly.

The family has been very happy with the results obtained - BBC and ITV never got a look in. Even on our Cinema 9050 with 45 in . screen visitors all remarked on the super picture quality with live transmissions. This was so even in foul weather conditions - and boy did we get some, high winds and heavy rainfall. Such conditions degraded reception only slightly, with the odd few sparklies and crackles during the worst periods of rain. Maybe Mr. Sugar was right when he said who needs MAC? I don't, and when scrambling starts in the autumn we'll see how secure it is or whether "digital video equalisers" start to appear in Exchange and Mart

The Public

I'm not convinced however that the great British public will be prepared to pay $£ 12$ a month - that's $£ 144$ a year for the two scrambled Sky channels, then perhaps more for other scrambled services. Also once a household has one type of descrambler there will probably be reluctance to get a second one, with the result that each subsequent broadcaster using scrambling will have successfully fewer viewers. We shall have to see.

next month in

FREE NEXT MONTH!

Tre June issue of Television comes with another cover-mounted gift, this time an assorted resistor pack.

- SERVICING THE PANASONIC NV370, NV830 AND NV850
Trese popular VCR; were Panasonic's first frontloaders. They are not old and the majority can be expected to g ve excellent results for the foreseeatle future after a mechanical service. Head wear is particularly good with these machines. Nick Beer ccevers the mechan cal set-up and operation, the circuits that tend t.) give trouble and the more ccmmon faults.
- PRACTICAL GUIDE TO ASTRA INSTALLATIONS

There are already many stories about botched dish installations for the Astra satellite, although the job is simplicity itself - provided the right equipment is to hand. D.J. Stephenson's practical guide is based on experience gained from carrying out many installations. If you'e considering whether to add sctellite TV to your activities, read on! Equipment required, site surveys, cables and practical installation work are all co'sered.

- STILL VIDEO

Back in August 1981 Sony unveiled a prototype of its first electronic stil-image video camera, the MAVICA. There's been much progress since then, and still video coulc be on the brink of mounting a major challenge to the world of conventional photography. George Cole reviews developments and the present sta:e of the art.

- CD PLAYER SER'/ICING

Now for the signal that comes off the disc! With tre emphasis once more on the practical aspects, Joe Cieszynski explains how to set up a monitoring scope and wr at to expect to see, then takes a lcook at early signal processing.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TV Fault Finding

Philips CP110 Chassis

This set was dead apart from the fact that the fuse hadn't blown and there was 300 V at the collector of the BUT11 chopper transistor. A scope check at the base of this transistor showed that the control chip was providing drive for a split second, but of too large amplitude. The BUT11 was found to be open-circuit base to emitter.

[^0]
Sony KV2062/2066

High-value resistors have always been a problem in TV sets, especially after several years' service. For no power, failure to come out of standby or intermittent operation of the on-off switch in sets using the XE-3 chassis check R632 ($2 \cdot 2 \mathrm{M} \Omega$) in the power supply section of panel A.
E.T.

Rediffusion 365138 (SP2 Chassis)

No colour with "twitchy" line lock over the top quarter of the raster is caused by a high-resistance connection at pin 3 of the line output transformer.
R.B.

Rediffusion Mk 1 Chassis

Many of these excellent sets are still in use. Unfortunately the thermal trips fitted are becoming very "touchy", tripping off at the slightest hint of trouble. Some have simply given up. Linking out the trip is all very well but can have unfortunate consequences - molten plastic from the tripler dropping on to the carpet. The correct course of action - the modification used by Rediffusion - is to link out the trip and insert a fusible 18Ω resistor in the h.t. line. Details are shown in Fig. 1. Mount the fusible resistor on a tagstrip bolted to the screw that holds the strap for the l.t. smoothing capacitors. In this position it can be easily seen and resoldered and is away from combustible material. Note that with the rare 20 in . version of the chassis, which is physically quite different though electrically identical in most respects, block electrolytic C603/4/5 is mounted on the main frame. In these sets the fusible resistor should be mounted on choke

Fig. 1: The original thermal trip arrangement used in the Rediffusion Mk. 1 chassis is shown at (a). Modifications to make it unnecessary are shown at (b) and (c). The 20 in. model is somewhat different - see (d) for modifications.

Reports from Philip Blundell, Eng. Tech., Eugene Trundle, lan Bowden, Roger Burchett, Nick Beer, George Lithgow, Paul Hardy and Brian Renforth

L601, the red/grey lead being moved to the other end of the fusible resistor. Drill a hole in the plastic mounting for the choke's end tags and bolt on an extra tag for the new connections. The circuit is then as shown in Fig. 1(d). R.B.

Decca 80 Series Chassis

A small-screen set fitted with this excellent chassis came in recently with the fault loss of line sync. The obvious thing to do was to change the TDA920 sync/line generator chip but this didn't improve matters. After much checking on the timebase panel we eventually moved to the i.f. panel and replaced the TCA270 demodulator chip. This gave us a steady picture - the faulty chip had produced a messed up video signal and passed this on to the TBA920. The picture was spoilt by flyback lines however. There appeared to be text information on the top six of these lines. They were eventually cleared by replacing C333 ($1 \mu \mathrm{~F}$, 63 V) on the timebase panel. This capacitor couples the field blanking pulses to the decoder.
G.L.

Ferguson TX9 Chassis (1044 Series)

This set would lose the sound and raster very intermittently, due to loss of the 18 V and 12 V supplies. Another engineer had replaced the sound and 12 V regulator chips and put the set on soak test, but after several days the fault returned, this time permanently. Checks in the power supply circuitry led us to a dry-joint/poor connection at one end of L103 which is in the feed to the 18 V supply rectifier D70. The joint didn't look dry, but there was no continuity between the winding on the chopper transformer and the rectifier. We removed the coil, cleaned off both connections and refitted it.
I.B.

Ferguson TX9 Chassis (1040 Series)

There were two problems with this set. First at switch on there was a burst of sound then the 1.6 AT mains fuse blew. This was due to the "efficiency diode" D77 (1 N 4007) in the power supply being short-circuit. When this had been replaced we found the second fault, lack of contrast. The contrast control had an effect over only the first eighth of its movement from minimum, any higher setting making no difference. This suggested a fault in the beam limiter circuit, which operates via the contrast and brightness controls. When we checked the beam sensing network we discovered that $R 262$ ($18 \mathrm{k} \Omega$) was opencircuit.
I.B.

Sony KV27XRTU

This six-month old set didn't look very well. The tale started when a field engineer called with a job card that read "excessive red". He had been confident of being able to cure that, but when he examined the set there were in fact severe convergence errors. He adjusted the HSTAT control to improve the convergence in the central area of the screen and then found that the dynamic convergence controls had little or no effect. So the set came back to the workshop.

With the set on the bench I found that the errors were
equal at either side of the screen and that perfect convergence could be obtained at the centre using the HSAT control. A scope check then showed that the drive to the dynamic convergence coils was severely distorted, with tremendous harmonics (see Fig. 2). The collector voltage of the HAMP driver transistor Q1504 was finally found to be high at 32.7 V as it had a 13.5Ω leak from base to emitter. Faults in the convergence section of these Sony sets are rare, so this was an interesting one of us. N.B.

Sanyo CTP5103

The fault with this set was EW bowing out. In these sets the fault is usually caused by C451 ($330 \mu \mathrm{~F}$) but another engineer had already tried replacing this and most of the obvious things. After a lot of checking I found that C455 (330nF) and C456 (180 nF) were open-circuit.
N.B.

Grundig 6415

Intermittent loss of sync was traced to the TMS3755 chip in the "abstimm baustein" control module.
N.B.

Sony KV2090/2092/2096

A weakness with these sets seems to be dry-joints on the high-wattage resistors on stand-off pillars. Sony recommend resoldering with RS high-melt solder and checking for this whenever you see one of these sets.
N.B.

Panasonic TC800G

There was no field scan and during a check around I noticed that the centre of the field hold control was missing. As it was accessible through the cabinet I assumed that someone had used too large a screwdriver to adjust it. A replacement made no difference however. I eventually found that $\mathrm{C} 407(3 \cdot 3 \mu \mathrm{~F}, 16 \mathrm{~V}$ tantalum) read 82Ω. Replacing this restored the field scan. On examination the capacitor was seen to have a pinprick black burn mark on its top.
N.B.

Hitachi CPT1474

There was very, very intermittent loss of sound, the fault being sensitive to movement of the board around the audio output area. Everything here was soldered but this was no good. Use of a scope then showed loss of signal from the output transformer, the input being o.k. The problem wasn't dry-joints on the leadout wires but an open-circuit secondary winding inside the housing. A new transformer puts an end to the trouble.
J.R.A.

Thorn 1400 Chassis

The modifications to alleviate vision buzz with these sets are well known. They don't always rectify the problem however. What next? Simply adjust the i.f. output coil in the u.h.f. tuner with a buzzy signal (pages from Ceefax

Fig. 2: Faulty (a) and correct (b) convergence coil drive waveforms, Sony Model KV27XRTU.
are ideal!). One or two turns will remove the buzz without affecting the picture quality. Doing this with an unmodified set completely cleared the trouble.
B.R.

Sony KV1810 (Mk I and II)

A fault that's becoming quite common in these elderly sets is failure of $\mathrm{C} 520(10 \mu \mathrm{~F}, 16 \mathrm{~V}$ reversible electrolytic) in the field output stage. The symptoms are slight field non-linearity which can be corrected by means of the linearity control. The give-away is that with the vertical bias control set correctly there's only about $0 \cdot 1 \mathrm{~V}$ across the base and emitter of Q504 and slight crossover distortion which is not noticeable without a signal. Two $22 \mu \mathrm{~F}$ capacitors connected back-to-back will provide a cure.
P.H.

Fidelity ZX3000 Chassis

The line output transformer in one of these sets was arcing from rear the e.h.t. outlet to the adjacent support bracket. Judicious use of silicone rubber sealant put an end to the arcing.
P.H.

Sony KV1820 and KV2000

Intermittent failure of the line output GCS in these sets can be caused by the diode in this device's gate circuit. This diode is either D805 or D808 depending on chassis and goes open-circuit when hot. Sometimes the power supply will protect the GCS but more often than not the GCS fails.

When working on these sets it's worth referring to David Botto's excellent articles in the August and September 1984 issues. Note also that three different chassis (SCC-99A-A, SCC-132A-A and SCC-132A-B) were used in Model KV200) and two different chassis (SCC-115A-A and SCC-132B-B) in Model KV1820). P.H.

Fidelity F14 (ZX4000 Chassis)

If it's not possible to store channels or there's a problem with the tuning, check the following: R514 should be $2.7 \mathrm{k} \Omega$ (old value $1.8 \mathrm{k} \Omega$); R315-9 inclusive should all be $1.8 \mathrm{k} \Omega$ (R319 was $1.5 \mathrm{k} \Omega$); ZD1 (TAA550) may be faulty; an $0 \cdot 1 \mu \mathrm{~F}$ capacitor (C303 in later versions) should be connected in parallel with ZD1 on the print side of the panel; finally add a 100Ω resistor and a $10 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic in parallel with ZD1 (negative terminal of the electrolytic to chassis). Check for a 25 V squarewave at pin 2 of IC201; if this is absent IC201, TR304 or TR305 could be faulty.
P.H.

Panasonic TC2203 (U1 Chassis)

The problem with this set was intermittent colour. Much time was wasted on the decoder before we finally proved that the customer cokour control was intermittent internally. Now the rub! Panasonic no longer supply this part. Eventually a Ferguson slider was pressed into service after slight modification.

I find that this problem of parts is getting worse and worse. Sets are becoming more reliable but at the same time the provision of spares is in some cases getting more difficult. Unfortunately it's not the manufacturers but us in the servicing profession who have to tell Joe Public that spares for their 8-9 year old tellys (younger in some cases) are no longer available. What do other readers think? P.H.

Op Amp Signal Tracer Unit

The sound sections of TV sets and VCRs can present some awkward problems, especially when the fault is intermittent. You suspect various components and replace them only to find that the fault persists. The best solution is to use a signal tracer to check through the circuitry involved. It's an invaluable aid in speeding up the faultfinding process. As a result your profits will be boosted and you'll be saved from a great deal of tension and frustration.

The signal tracer described in this article has been designed for fast fault location in the sound sections of modern solid-state TV sets and VCRs. It's also handy for making quick checks in other sections of the circuitry. There are two test probes, one for r.f. and the other for a.f. signals. They are used to follow the signal path through the circuitry stage by stage, starting if necessary at the tuner. Provided the signal path has not been interrupted the signal will be heard at each successive test point. This signal tracing procedure gives you the feeling of being able to "ride around the circuitry", enabling you to establish quickly the exact point where the sound ceases or becomes distorted.

Design Evolution

Fig. 1 shows a typical valve signal tracer of the type that was extensively used in the fifties and sixties for servicing radio receivers and 405 -line TV sets. Some of these tracers are still to be found in workshops - they can be readily used for trouble-shooting in transistor radios and audio amplifiers. The circuit is basically a high-gain, two-stage audio amplifier. For audio signal tracing a screened lead with a probe and earth clip plugged into the a.f. input jack. For signal tracing in the r.f. and i.f. stages an r.f. probe with a flexible screened connecting lead plugged into a four-pin socket on the tracer's front panel. This was a fairly hefty probe containing a triode valve - typically a 6 C 5 - which operated as a leaky-grid detector. The complete instrument occupied considerable bench space and, with its mains transformer, was fairly heavy. Modern solid-state equipment calls for an improved design.

Since bench space is generally limited the tracer featured in this article has been designed for compactness. It measures only $7.54 \times 2.9 \times 6.89 \mathrm{in}$. Being battery operated it can be carried around easily for field servicing or moved around the workshop. Mains operation would

Fig. 1: Typical valve type signal tracer circuit - mains power supply omitted.
increase the size, weight and cost considerably. It would also cause problems when testing certain types of circuitry. Front panel LEDs have been included to give an indication so that the tracer will not be left switched on when not in use.

The new tracer is far more sensitive than the old valve type was. It has also been designed so that the probes cause the minimum circuit disturbance.

Circuit Description

Fig. 2 shows the new signal tracer circuit - the circuit of the r.f. probe is shown separately. Because of their high gain and excellent linearity, operational amplifiers are used for the two amplifying stages IC1 and IC2. The use of two operational amplifiers provides very high gain, enabling the tracer to respond to extremely low-level signals.

The LM386 operational amplifier IC2 functions as a high-gain audio amplifier with an output of almost $0 \cdot 4 \mathrm{~W}$. Its output, at pin 5, drives the speaker via C6 and the switched contacts of jack socket J3. An external speaker, oscilloscope or meter can be plugged into J3, switching off the tracer's internal speaker. The jack plug of the audio signal tracer probe is connected to J 2 which feeds the signal via C4 and gain control VC2 to the non-inverting input of IC2. Being intended for audio amplifier use, the LM386 has d.c. feedback within the chip; external feedback can be applied via pins 1 and 8 .

The LM386 provides high sensitivity on its own. With very low signal voltages however the 741 operational amplifier ICI can be used to provide additional gain. The

Components list			
IC1	741	VCl	$100 \mathrm{k} \Omega \mathrm{lin}$.
IC2	LM386	VC2	$10 \mathrm{k} \Omega \mathrm{log}$.
D1, 2	OA90	VR1, 2	$10 \mathrm{k} \Omega$ flat-mounting presets
R1	$1 \mathrm{k} \Omega$	Cl	$3 \cdot 3 \mu \mathrm{~F} 250 \mathrm{~V}$ electrolytic
R2	$4.7 \mathrm{k} \Omega$	C2	100 pF mica
R3	$1 \mathrm{k} \Omega$	C3	$10 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic
R4	$1 \mathrm{k} \Omega$	C4	$10 \mu \mathrm{~F} 63 \mathrm{~V}$ electrolytic
R5	$100 \mathrm{k} \Omega$	C5	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
R6	$1 \mathrm{M} \Omega$	C6	$100 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic
R7	$47 \mathrm{k} \Omega$	C7	$22 \mu \mathrm{~F} 50 \mathrm{~V}$ electrolytic
All $1 / 4 \mathrm{~W}$		C8, 9	220 pF ceramic tubular
JI Stereo jack socket, 3.5 mm open-circuit type, e.g. Tandy 274-249A J2, 3 Miniature closed-circuit phone jacks, e.g. Tandy 274296			
Plastic case for tracer, Tandy 270-9503 or similar			
Two subminiature d.p.d.t. toggle switches, e.g. Tandy 275614			
Experimenters' i.c. PERF board, Tandy 276-162			
Two subminiature red LEDs, e.g. Tandy 276-068			
Two moulded knobs, e.g. Tandy 274-416			
8Ω loudspeaker, $21 / 4-2^{1 / 2 i n}$. diameter			
PP9 and PP3S batteries plus snap-on connectors			
Two pen cases for probes (see text)			
Two lengths (about 1.3 m) twin screened audio cable			
Two 3.5 mm stereo jack plugs			
Veroboard/PCB for r.f. probe			

Fig. 2: Circuit of the operational amplifier signal tracer.
audio signal tracer probe is this time inserted in jack socket Jl , the signal passing via Cl , the preset gain control VR1 and resistors R1/2 to the inverting input of IC1. The output from this chip is fed to IC2 via the contacts of J 2 and VC 2 . VC1 acts as a gain control for IC 1 , varying the amount of d.c. feedback between pins 6 and 2. The network R5/VR2 provides bias for the r.f. probe - we'll come to this shortly.

Two batteries are used, a PP9 (9V) to power the LM386 and provide the positive supply for the 741 and a PP3S (9V) Extra-Life battery to provide the negative supply required by the 741 . To ensure long battery life two on/off switches are provided along with two frontpanel LED indicators. When SW1 is closed power is supplied to the LM386 and LED2 lights. If SW1 is then closed the 741 is also powered and LED1 lights. With SW1 in the off position there is no power to the two chips.

The RF Probe

To obtain the maximum output from the r.f. probe a voltage-doubling detector circuit is used. How this works is illustrated in Fig. 3. Half the circuit is shown at (a). The input is applied between points X and E , charging C8 during the positive-going signal excursions. On negativegoing signal excursions D2 conducts. Thus only the posi-tive-going part of the input signal appears across the load resistor R6. The values of C 8 and R6 are such that the signal across D2 is directly related to the strength of the input signal. In the section of the circuit shown at (b), D1 conducts during the positive-going input signal excursions, charging C9. Once again the positive-going parts of the input appear across the load resistor R6. By combining

Fig. 3: The r.f. probe's detector circuit. See text.

Fig. 4: R.F. probe - practical circuit.
these two circuits to give the arrangement shown at (c) twice the audio output is obtained across R6.

Because of the junction barrier voltage of a semiconductor diode - about 0.7 V with a silicon device and some 0.3 V with a germanium type - the input signal must reach a minimum level before the diodes will conduct. To compensate for this, bias from R5/VR2 is fed to the anode of D2. VR2 is adjusted so that D1 and D2 are biased at just below their junction barrier voltages. As a result the incoming r.f. signal "floats" on top of this fixed bias voltage. The idea dates back to the days of the crystal set! Fig. 4 shows the complete r.f. probe circuit.

Construction

There's nothing critical or difficult about the construction of the tracer and its probes and the parts required are all readily available. The accompanying photograph shows the internal layout of the finished unit. A Tandy electronic instrument box (catalogue no. 270-9503) was used for the prototype. Any similar case will do - but use a plastic one. It's advisable to fit four small self-sticking cushion feet to the bottom of the case (the Tandy case comes complete with these). The cushion teet grip the bench and thus stop the unit sliding around.

Fig. 5 shows the recommended front panel layout. Hole sizes depend on the components used. The 8Ω loudspeaker, of $21 / 4$ or $21 / 2 \mathrm{in}$. diameter, is mounted on the front panel. You may find that with the Tandy case you need to file away a section of the ribs on the top and bottom plastic covers to accommodate the speaker.

Use of a Tandy 276-162 predrilled board makes it unnecessary to make a PCB. One end of this board fits into slots at the side of the case. The other end is secured to the bottom of the case by means of double-sided sticky pads. Don't fit these pads until you've tested the in-

Fig. 5: Suggested front panel drilling details, sizes in mm. Loudspeaker hole size depends on type of speaker used.

Internal layout of the signal tracer.
strument. I mounted the PP3S battery on the board using a little Blu-Tack: the PP9 battery can be fixed to the bottom of the case by means of heavy-duty, double-sided sticky pads - or you could fit a battery holder clip.

Mount the two on/off switches on the front panel so that they are switched off in the upwards position. There's no need for on and off labels as the two LEDs give indication of the on positions. When you solder the two leads to the linear gain control VCl remember that maximum gain is obtained from ICl when the control is set to its high-resistance position.

The cases of two Berol roller pens were used for the test probes - they make neat, professional-looking probes. Small sections of suitable insulated plastic tubing could however be used. Fig. 6 shows the construction of the audio probe. Use good-quality flexible screened audio leads for both probes - a handy length is about $1 \cdot 1 \mathrm{~m}$ (about three foot six inches). The tips were taken from old test probes and fit well into the ends of the pens. Stereo jack plugs are used for both probes. The components inside the r.f. probe are mounted on a thin strip of Veroboard or PCB - see Fig. 7. It's useful to fit test prods to the flexible "ground" leads: push-on miniature alligator clips can be slipped over the tips when you want to connect the ground leads to a chassis point.

Setting Up

It's worth making a careful check after all the wiring and soldering of the probes and tracer have been completed to make sure that no mistakes have been made. Setting up, which is quite straightforward, can then be carried out. Start by turning both front panel gain controls to their minimum positions and VR1 almost fully clockwise. Plug the audio test lead into jack J2. Fit the batteries and switch SW1 on. LED2 should light. Turn up VC2 and touch your finger to the end of the probe. If all is well you'll hear a buzz.

Turn VC2 to its mid-position, transfer the audio test probe to socket J1 and switch SW2 on. Both LEDs should now be alight. Turn up VC1 and touch your finger to the probe tip. A buzz should again be heard. When SWI is switched off both LEDs should go out.

Remove both test probes, connect a digital voltmeter

Fig. 6: Constructional details of the audio probe.

Fig. 7: Layout of components on Veroboard inside the r.f. probe. Internal cable wire A connects to the jack tip, wire B connects to the centre section and the screen E connects to the section that goes to "ground".

Fig. 8: Tuner and i.f. preamplifier circuit used in the Sony Model KV1810UB, showing test points.

Fig. 9: Audio circuit used in the Sony Model KV1600, showing test points.
across C 2 and adjust VR2 for a reading of 0.5 V . Any final adjustment of VR2 that may be needed must be carried out while monitoring a very weak modulated r.f. signal. Preset VR1 will not normally require any further adjustment.

Plug the r.f. probe into socket J1. To check that it's working, touch the probe tip to the inner conductor of the coaxial cable from a TV aerial (the aerial must not be connected to a TV set or VCR). You should hear signals the tracer is operating as an untuned radio receiver.

Before finally assembling the signal tracer give the underside of the panel and the panel connections a coat of

Fig. 10: Simplified circuit of the audio section of the Panasonic Model NV333 VCR, in the playback mode.
circuit varnish - use a very small brush. This will help to ensure trouble-free use.

Test Procedures

The instrument is extremely versatile and can be used to trace signals through quite a variety of different types of circuits. We'll consider just a few examples.

Fig. 8 shows the tuner panel circuit in the Sony KV1810UB Mark II colour receiver. The tracer can be used to provide a handy check on the tuner. An oscilloscope could be used for this test but it would need to have a Y response of at least 35 MHz - and you might be in a customer's house without a scope at all. First check that the tuner is receiving the correct voltages, then connect the r.f. probe to the i.f. output connection - point A - with the earthing prod to chassis. The composite TV signal that should be present at the tuner's i.f. output pin should give an audible indication that changes as different channels are selected. Set the tuner slightly off station and you'll hear the programme sound.

This test can be made on any TV or VCR tuner. You'll soon get to know what signals to expect from a good tuner and a defective one. In the absence of a scope the tracer can be used to make quick checks at points B and C. It's best to use a scope and colour-bar generator to trace the composite signal through the i.f. stages but if these items aren't to hand the tracer will provide a handy means of following the signal through the circuitry, using the TV signal itself.

Fig. 9 shows the audio circuit used in the Sony Model KV1600. If the sound is absent or distorted, apply the audio probe tip - plugged into jack socket J 1 or J 2 - to point 1 , i.e. output pin 5 of the CX 095 C intercarrier sound chip. Connect the earthing prod to chassis. If all is in order music or speech will be heard through the tracer's loudspeaker. Next check at the base of driver transistor Q207. If the electrolytic coupling capacitor C247 ($0 \cdot 47 \mu \mathrm{~F})$ has dried out you might hear only a very weak signal or even no signal at all at this point. A check at the emitter of Q207 - point 3 - should produce some sound: if the volume is loud, suspect that the decoupling capacitor $\mathrm{C} 251(2 \cdot 2 \mu \mathrm{~F})$ has gone open-circuit. Good sound should be heard at the collector of Q207 and the base of Q209.

Turn down the gain control(s) and check at the junction of R251/2 where a strong signal should be heard. Connect the two test probes to each side of the audio output transformer's secondary winding - points $6 / 7$ - to ensure that the signal is present here. Finally connect the probes across the loudspeaker's speech coil. If no sound is heard here, suspect jack A. If sound signals are present at the speech coil connections but not from the set's loudspeaker
the latter is obviously faulty.
In the event of distorted sound these tests tell you at which point in the circuit the distortion appears.

The signal tracer really proves its worth when checking the audio circuitry in VCRs. Fig. 10 shows a simplified circuit of the audio section of the Panasonic NV333 VCR, in the playback mode. For tests here the audio probe must be connected to jack socket J1, with both switches closed. Switch the VCR to playback and connect the test probes across the audio head - points Q and P . With the cassette tape running you should hear the recorded sound track. Transfer the earthing test probe to chassis, leaving the signal probe at point P. If point Q is being earthed by Q4001/2 you should still hear the sound. Transfer the signal probe's tip to test point TP4003 and then to pin 1 of IC4001. The signal should be louder at pin 3 of IC4001 and can then be traced through C4006 etc. to pin 8 of IC4001. It should emerge from pin 6 and be present at TP4001. As you trace through the circuitry the volume should, after each stage of amplification, become progressively louder.

In the record mode the signal being applied to the tape's audio track should be heard with the probes connected to points Q and P. The control pulses being played back or recorded should be heard when the probes are connected across the control head winding.

Intermittent sound faults are simpler to locate using the signal tracer either with an off-air input signal, a steady signal from an audio generator or a VCR test tape signal. A multimeter set to a suitable a.c. range can be connected to jack socket J3 when a steady signal is used: with the test probe connected to specific points in the circuit the meter will indicate variations in signal strength. A scope can also be connected to J3.

Decoupling electrolytics are easy to check for the opencircuit condition. An electrolytic of $25 \mu \mathrm{~F}$ or more with one side connected to chassis should not have any appreciable audio signal across it. If it does, the electrolytic is faulty. Defective coupling capacitors will stop or attenuate the signal.

The signal tracer is also handy when working on the audio sections of TV cameras/camcorders. It can save you quite a lot of component unsoldering when tracing a fault.

Quick checks across smoothing capacitors for hum can be made when a scope is not to hand. If the d.c. voltage present exceeds 250 V , connect an extra capacitor of suitable working voltage in series with the audio test probe.
Breaks in signal carrying printed circuit tracks can be speedily located using the tracer and its probes. If you also carry out repairs to audio and hi-fi equipment you'll find the tracer invaluable.

LocoScript 2 Update

Vivian Capel

The version of LocoScript I used as a basis for my article in the March issue was an early one which, as I said, I wanted to try out thoroughly before preparing a review. Since then a large number of new versions have been released, reaching $2: 12$, i.e. the twelfth version of LocoScript 2, by September 1987. While the intervening versions incorporated various minor changes this one was a milestone in that several of the built-in features of LocoScript, such as the keyboard layout, were made user changeable by adding files from separately available discs. Thus the keyboard can now be redefined to the French AZERTY or a number of other layouts, in addition to individual keys being redefinable.

After LocoScript 2:12 the pace slowed down, but another ten months saw a further four versions and LocoScript 2:16 was reached in July 1988. Not all these versions were successful. A few contained bugs which meant that the new version was one step forward and several backwards. These were mercifully not released.

Things have pressed on since then and, in particular, support has been built in for the ever increasing number of different printers that have flooded the market. LocoScript 2 now has support for some 250 different printers. These are not entirely problem-free however, as will be seen from an account of my attempts to upgrade, to be described in a later article.
The versions have continued until reaching 2:22 at the time this article was written. This version includes a choice of two type styles which can be selected by a menu during document set up. There is also a facility for designing one's own characters.

Compatibility and Updating

There are two ways of looking at this veritable avalanche of versions. The owner of an early version might consider that it has become obsolete after too short a time and feel somewhat disgruntled about this. He might think that if he updates the new version will soon suffer the same fate. The other view is that unlike many producers the LocoScript team is not resting on its laurels and is working continually to make the system even better. Apparently most of the improvements come as a result of users' reported problems or suggestions. One can hardly grumble at that - would that certain other manufacturers did the same!

In fact there's no question of an earlier version becoming obsolete: all LocoScript 2 versions are compatible and documents originated with one can be edited or printed using another, provided the supplied printer is used. The only incompatibility is beween LocoScript 1 and 2, as described in the previous article. Anyone wishing to update to the latest version can return his disc and have it. updated for a handling charge of $£ 5$, so an occasional return can keep one up-to-date with the latest improvements at no great cost.

Support Discs

In addition to the extra facilities contained in the latest versions there are now a number of support discs that
considerably enlarge the scope of LocoScript 2. There is LocoMail, which permits names and addresses from a list to be automatically inserted into standard letters and can discriminate between various entries if this is required. It will also process invoices and perform basic arithmetic, cross reference entries and maintain records.

The LocoSpell disc offers a spelling check similar to those provided by other word-processing programs. It contains three dictionaries. The main 77,000 word dictionary needs a PCW8512 or an upgraded PCW8256. The smallest $17,(00)$ word dictionary can be accommodated in the smaller PCW8256 memory. There's a facility for adding words, such as technical terms. It also incorporates a word count, but as I suggested in the previous article this should be included in the word-processor program and not be classed as an extra. This is the one glaring omission that has yet to be corrected in the LocoScript 2 series.

LocoFont is an interesting pair of discs. The first has ten different fonts that can be used to print any document on the built-in printer. The fonts are standard, roman, script, copper plate, definite, sans serif, capitals, deco, finesse and modern. Considering the $£ 19.95$ cost of the disc this is very good value. The second dise, which costs $£ 14 \cdot 95$, has four fonts - penman, mini $15 / 17$, mini PS and old English. The sans serif style which eliminates the serifs (the small horizontal projections from letters) is claimed to have the same character widths as the standard font so that document layout is the same for both. This is not actually so: many of the sans serif letters are narrower, so the words occupy less space and the line layout is different. Fonts cannot be mixed in the same document, but the same document can be printed in a different font at different times.

The latest disc is LocoFile, which is a datebase. Entries can be transferred to and from LocoScript 2 documents and the system can be indexed in eight different ways at the same time. It will also work with LocoMail.

Upgrading the PCW8256

For some time kits have been available for upgrading the PCW8256 to the PCW8512 specification, and the prices have fallen considerably. There are two stages that can be carried out. The first is to increase the internal M drive memory from 256 to 512 kbytes. All that's necessary is to plug in eight additional memory chips into the empty sockets on the main processing board and either reverse two internal switches or, in earlier models, resolder a wire link from one point to another. This conversion is well worthwhile as it permits very large documents to be handled in the M drive without danger of it becoming full. Also the large LocoSpell dictionary can be loaded. The only effect on the screen is the listing of the larger memory capacity, the indicated length of all M drive documents being rounded up to the nearest $2 k$ instead of 1 k . When these are copied to the A drive their length is given to the nearest 1 k as before.

Second Disc Drive

The other stage of conversion is to fit a second, B disc
drive. This too is a simple job, necessitating removal of the metal nameplate below the first disc drive and connection of leads already wired inside the PCW8256 to the points indicated in the instruction leaflet on the drive unit. B drive discs can be formatted to give a total of 720 k (1Mbyte unformatted) compared with the 180 k A drive. The B drive is double sided, so you do not need to remove the disc and turn it over to use both sides as you do with drive A. This means however that the rated 720 k is what you get on both sides, whereas the A drive's 180 k is available on both sides. B drive discs thus store twice not four times the amount of A drive.

A B drive written disc cannot be read in A drive and vice versa, although access to each is readily available when loaded in the correct drive. When considered solely for economy, the B drive is of questionable value, especially when the comparative costs are considered. Conversion to M drive costs around $£ 20$, but the extra disc drive costs around $£ 135$. With discs now costing about $£ 2$ you could buy 60 or more for the cost of the extra drive. The advantage comes when running large programs or using a number of lengthy support files such as LocoSpell and several fonts. These may not all fit on to a single-sided A drive start-up side. In this case they can be put on a Bdrive disc thus making good use of its double capacity. Even this is not absolutely necessary now as the latest LocoScript 2:22 version allows more than one start-up disc to be used consecutively in drive A . This is done by creating an empty file named ET.AL and putting it on the first start-up disc. The computer is then instructed to wait for a second disc before finishing the loading operation.

Alternative B Drive

There's an alternative to fitting an internal, second B drive. At one time it was hoped that the 3in. Amstrad discs would become a recognised standard, taking over from the rather clumsy $51 / 4 i n$. ones. This didn't happen, and instead the $31 / 2 \mathrm{in}$. format seems to be taking the place of the $51 / 4 \mathrm{in}$. discs. As a result few programs outside the LocoScript series are distributed on 3in. discs. So there
are a large number of useful and interesing programs, such as desk-top publishing and many others, that cannot be run on the PCW8256 because they are available only on $31 / 2$ or $51 / 4 \mathrm{in}$. discs.

This suggests a practical alternative to fitting an internal 3in. B drive - fitting an external $31 / 2$ in. drive. One of these can be connected to the PCW8256 using the same wiring and will behave in the same way except that it will give a choice of 3 or $31 / 2 \mathrm{in}$. operation. Several makers supply such units. Most are housed in neat horizontal cases that can be used as a base for the PCW8256 and thus take up no more desk room.

Hard Discs

Another possible upgrade is the hard disc which provides prodigious amounts of memory - from 10-60Mbytes. There are two forms. One is called hard card. It contains a $31 / 2 \mathrm{in}$. Winchester hard disc, drive and the control electronics, all in a slim assembly that slots into an expansion port at the back of the PCW8256. It's a permanent fixture, and when fitted is recognised by the machine as drive C. So it's in addition to rather than in place of drive B. The other is described as "hard disk". It's really another disc drive that must be wired in and used in place of drive B.

The hard card usually goes up to 32Mbytes while hard discs go higher. The hard card has more than enough capacity for most users however. It can conveniently store all operating and start-up software, files, addresses, references and much more, all available at switch on without having to search through a pile of floppy discs to find the one you want. It's really like a massive internal memory that doesn't disappear when you switch off. With such attractive features there's bound to be a catch - the price. The cheapest hard cards are around $£ 200$ and they go up to $£ 500$. For the professional user with large start-up files and masses of information required to be instantly available a hard card or disc will no doubt prove to be a boon. At these prices however the rest of us will have to make do with what we have.

Disc and Videotext Developments

Peter Marlow, B.Sc. (Hons.), C.Eng.

Some interesting issues relevant to the future of domestic television were raised at two recent events at the Institution of Electrical Egineers. The first was a colloquium on CD-ROM while the second dealt with the future of videotext.

Videotext

The future of videotext in the UK should be considered in the light of French experience. In 1984 the French Telephone Company gave away four million Minitel terminals to save the cost of printing telephone directories. By 1990 the number of terminals should reach eight million. The availability of these domestic terminals has brought about an explosion in videotext services, mainly games orientated and dominated by large groups. There are at present some 2,200 service providers, offering over 7,000 services. During last September a total of 5.6 million hours of connection time was recorded. Sixty per cent of this time was accounted for by only twelve per
cent of terminal owners however.
In comparison Prestel, launched in 1979 as a residential service designed to make fuller use of the telephone network in the evenings and at weekends, never took off. By 1983 there were only 30,000 subscribers, 87 per cent of which were business users. After a rethink several professional services were launched, covering subjects such as travel, insurance, finance etc. Micronet, providing electronic mail, did attract some 20,000 domestic users. But the scale of the business has not inspired manufacturers to make low-cost equipment for home use. British Telecom is not even able to give away terminals because of provision 18 of its charter - it would be unfair to competitors.

One proposal that has been put forward is a plan to start a home shopping service called Keyline, with a hoped for quarter of a million terminals installed in homes by the end of next year. The service would be free apart from a small registration fee. Unlike the Minitel ones, the terminals would be intelligent, battery operated, would
use a 4×40 character LCD, and would be of rugged A4 size construction with a built-in 1,200 baud modem. Encrypted data would be used so that credit card information could be transmitted. Users could enter information without having to connect up: when ready the terminal could be plugged into the phone socket, calling shops automatically to place orders. The cost of the service would be covered by making a small charge on each transaction. One wonders how far this proposal will get.

The CD-ROM

A CD-ROM is an audio compact disc used for storing computer data. 550 Mbytes can be put on one disc, equivalent to 200,000 full A4 pages. The technology can also be used to store picture, graphical and audio information in digital form with the computer data. For moving pictures however the LaserVision analogue coding technique is used to get a reasonable running time. As previously reported here Philips has launched CD-V discs that give five minutes of moving pictures and twenty minutes of CD quality audio. The audio can be played
back through a conventional CD player but a special unit is required to handle the video sequences. There's pressure to produce CDs with much longer playing times. This could lead to a considerable increase in the amount of recorded video available. For example the BBC has plans to publish documentaries in disc form including unused material.

Interactive TV

Also previously mentioned (March) is interactive TV using CD-I discs. Playing equipment will once more have to be upgraded for CD-I use. Forms of interactive television are in experimental use in America. In Canada for example a company called ACT is sending four cable feeds to its subscribers, giving the customer four choices during programmes. This is particularly useful during sports events where the viewer can choose different camera angles. People in New York can program their personal computers with a "user profile": TV programmes supplied to their homes via cable are then automatically selected according to the profile.

A Day in the Life of . . .

Nick Beer

Following Mick Dutton's very entertaining article in the December issue I thought I'd write a similar piece, but from a slightly different perspective. The difference is that I'm a purely workshop based engineer whereas Mick and I suspect many of you do a mixture of field and workshop servicing. It's my opinion that if at all practical it is far more successful and efficient to have engineers allocated to particular types of work. This is the system we employ and I'd better start by describing our organisation. We have three workshop based engineers, three field engineers and a number of field engineers/installers. One of these installers is workshop based, the others doubling as salesmen.

Installation and field service work obviously overlap, for example where an engineer is heading towards Exmoor and a VCR has to be delivered in that area. It also works the other way round, when a repair falls amongst a number of demonstrations.

Workshop paperwork, bills, spares ordering, labour claims and spares supervision are handled by a two-man workshop administration team. This arrangement allows us workshop engineers to get on with the job we want to do - repairs. Having a clearly established staffing arrangement of this type would obviously be of little point if we didn't also have well thought out workshop conditions.

The day's work starts at 9 a.m. Well, around then anyway. The nine mile journey to work can take me up to three quarters of an hour - we have severe traffic problems even here in north Devon, but they should improve when a new bypass is opened.

Visit to the Bill

On this particular morning I'd left late to call in at the police station. They'd found a Salora SV6600 VCR that had been stolen from one of our rental customers twelve months earlier. They wanted me to identify it and didn't think it funny when I commented that I knew it didn't
have a beard ... The desk sergeant took me to a ramshackle old building at the side of the station, inserted a security pass into a slot at the door and then used two keys to let us in. By the look of the door it would have fallen open had there been a gust of wind. Once the identification was over and statements were signed he asked me about hi-fi and was B and O worth the extra money. I explained the differences but this only raised further questions which seemed to be rephrased versions of the ones he'd just asked. In short he kept me talking for ages.

On arrival at the workshop I was greeted by the customary "good evening", suggesting that I was maybe a minute or two late, and a field engineer wondering whether his vehicle would ever turn up.

A Morning of Video

First job of the day was to reassemble a Sony CCDV200 pro camcorder that had been on soak test following head replacement. This completed it was dumped on the next salesman to enter the workshop so that he could put it back on display. A Panasonic NV-G21 was the next job on the clip, a rental machine brought in by a field engineer as the video heads were faulty. But there were a number of other faults. This is common with earlier versions of these machines that have been out for a while. The video heads were soon replaced (VEH0343) along with the barrelled pinch roller (old brass type VXL1743) and the capstan motor (VXP0777) which was causing a loud knocking noise while lacing. The machine was tested, the new heads were set up and the sound level was then found to be low and varying. Another stock fault. The VBR0116 head was replaced with a VBR0125, then the capstan brake. whose pad had virtually disintegrated and was causing as cyclic scraping sound, was renewed. With the new head aligned and the new improved parts fitted I didn't expect to see the machine for a long time. These
machines are very reliable electrically: it's only the weak design of the early mechanical parts that lets them down. The old parts were taken to the appropriate box in the storeman's office to be sent back if required.

The next job was one I'd been putting off for a while, a Sony CCD-F330 camcorder. I'd found the cause of no auto focus to be a break in the FPC from the auto focus sensor below the lens to the AF32 auto focus processing PCB. After confirmation with Sony I obtained a lens from the stores as the only way of replacing the offending item. Now those of you who know Sony camera head design will sympathise with the job of lens replacement. Suffice to say that it took until lunch time to reassemble the camcorder to a state in which it could be soak tested. The alignment was checked in the camera workshop and the camcorder was left soak testing until I felt like putting the case back on! By now it was lunch time and we adjourned to the tranquility of the audio room for some nourishment and to watch the news and Neighbours .
One of the field engineer/installers had been asked to call in on a B and O VHS82.2 VCR that wouldn't accept a cassette. He'd been advised to "collect and loan" but, being an intrepid soul, he came in to ask about the viability of trying anything while at the house. Now this machine has the plastic Philips mechanism, so I didn't want it brought in. I got a cassette carrier from the stores, showed him how to do the job (wiggling the insert switch etc.), handed him a manual in case he got stuck and opened the door for him as he and the other field engincers left to make their afternoon calls.

Afternoon's Mixed Bag

Television servicing in the workshop is limited to over the counter jobs and the real nasties, most of it being done in the field. This makes for more interesting work for us. My colleague Ian Bowden and I share the TV sets and we're lucky in that we prefer dealing with different types of fault. I'm more than happy with a dead Sony or B and O, something that many people would run a mile to avoid, while he prefers signal faults - decoders etc., the nastier the better. Salora Ipsalo faults are another of his favourites. He's also got more patience than the rest of us. He'll stick at an intermittent fault forever whereas we tend to put such problems aside a few times. Our third workshop engineer tends to stay in his audio room most of the time, away from the TVs, listening to his weird music.

Anyway I next turned attention to a brand new Salora 24 K 67 , the last one in stock and booked to go out next day. It had multiple purity errors, discovered by one of our administrators while he was fitting teletext. He'd degaussed the c.r.t. but on switching off and on again the crrors returned. I checked the degaussing circuit, found that it was working and after much deliberation accused the tube. The salesman involved was summoned and told the good news. He suggested sending the identical Luxor model of which we apparently had plenty in stock. But it has a wood coloured cabinet and the customer particularly wanted the grey Salora colour. It was then suggested that we take a tube from a new Luxor set and fit it in the Salora one. My next few words don't bear repeating. but 'twas duly done and the set worked fine. The Luxor set was put in the parts on order area.

A colleague asked for my advice on a dead Sony KV1400 and was given some. Next came a Panasonic NV333 whose card said it was repaired a month ago for the same fault. I checked the old card and found that it
had been repaired just over three months ago. The work done had been to clean clogged heads and replace the belts and idlers etc. following the customer's acceptance of our two estimates (one for head cleaning and one for attending to the very worn belts etc.). Another note had been made on the card that a lot of oxide seemed to have been shed into the mechanism, and administration had advised the customer about the use of poor quality tapes. The heads were again clogged. They were cleaned, then the machine was soak tested for a few days after which the customer was phoned and asked to collect it.

A few days later (I must follow this one through!) the machine appeared again, along with four of the owner's tapes as instructed by administration after he'd rung to say "it's gone again". Indeed the heads were clogged and cleaning restored normal operation. A look at the tapes revealed the source of the problem. They were four-hour Scotch tapes with which we've had more than a little trouble, usually resulting in this type of fault though sometimes the cassettes themselves have broken. In one I remember the front flap had snapped off in a brand new rental Panasonic NV-G40, ruining both heads. Customers buy them because of the life guarantee. A phone call to the customer finally sorted the job out. If Scotch are reading this, it happens on all makes of machine we sell and not only with your tapes. This particular machine was one of three that came in with identical troubles during the week. What we do is to advise customers of the problem and give them a Panasonic tape to use exclusively for a trial period. When this proves to be trouble free they promise to do as they are told and not buy on price.

The field engineer/installer returned with the cassette carrier still wrapped up. He said the machine was outside and seemed to have a nasty fault. When I asked about this he laughed and admitted he'd done the job and had carefully rewrapped the carrier. As if I haven't enough troubles.

The Last Job

The next job turned out to be the last of the day, another Sony CCD-V20). It appeared to have intermittently clogged heads, but this wasn't so. When it was in the fault condition the drum phasing appeared to be incorrect. This was confirmed by lightly touching the drum with a finger then releasing it - a momentarily perfect picture was then seen. The speed was correct and a check on the circuit revealed that the ATF LOCK wasn't operating. So the signal was traced from the preamplifier. After a lot of checking through all the various paths and Ian having a nose around - it being a nasty - we jointly resigned ourselves to the fact that we would have to get to a certain test point on a small PCB in the middle of the PCB sandwich across the bottom of the mechanism.

So I gently removed the right-hand side case and while gradually lifting everything out I found the cause of the trouble - the earthing strap to the case of the narration microphone was not connected, instead being lodged across the print side of the connector, to the head amplifier area. After putting this to rights the machine performed flawlessly - we've had a number of faults that could be classed as production errors on stock Sony camcorders. I have to confess that this job was not completed until the following morning. Six p.m. came just before confirmation of the fault, and I decided to leave the excitement for another day!

A Look at Operational Amplifiers

Part 2

Keith Cummins

In Part 1 last month we dealt with the basic inverting, summing and non-inverting operational amplifier circuits. There are several other ways in which the operational amplifier can be put to use and we'll now take a look at these.

Circuit Applications

Fig. 1 shows the linear integrator circuit which enables a virtually perfect triangular waveform to be produced. The junction of R and C is the amplifier's virtual earth point. Application of a fixed voltage produces a constant current flow through R and also charges C. Integration fails when the input is held at a positive or negative potential for too long - the output from the operational amplifier then "hits the rail" and no further linear charging of C is possible. A sawtooth instead of a triangular waveform can be produced by placing a diode across R and applying drive from a low-impedance source.

Fig. 2 shows the linear voltage-to-current converter. A meter connected in series with the transistor's collector will give a current reading directly proportional to the input voltage. Since the operational amplifier has a highimpedance input, we have here the bare bones of an electronic voltmeter. The value of resistor R determines the voltage-to-current transfer ratio: a $1 \mathrm{k} \Omega$ resistor in this position will give rise to a constant 1 mA for a 1 V input.

Use a Darlington transistor with an output transformer connected to its collector, bias the d.c. input level for an appropriate standing current and what have you got? A class A audio power amplifier!

Fig. 3 shows a simple field output stage using a power operational amplifier such as the TDA2030. We need a linear voltage-to-current conversion and the easy way to achieve this is to connect a "tail" resistor in series with the field scan coils and feed the voltage developed across this resistor back to the operational amplifier's inverting input. The operational amplifier then takes the necessary action to drive a linear current through the tail resistor and, of course, the scan coils. The linearity is as good as the driving sawtooth. I've used this idea successfully to drive small monochrome picture tubes without the need for a linearity control.

The Schmitt trigger circuit shown in Fig. 4 looks like an inverting amplifier, but the inverting and non-inverting inputs have been transposed. Thus the feedback is positive, giving the circuit two thresholds that depend on whether the output is high or low. The difference between these thresholds is known as the hysteresis, and is a function of R1 and R2. If you want to design this sort of electronic toggle the sums are once again easy. It's a very useful circuit for light/dark daylight sensing to control lights etc. The ratio of R 2 to R 1 is generally not less than 10:1.

Fig. 5 shows a balanced input amplifier. This circuit arrangement, where R1a $=$ R1b and R2a $=$ R2b, employs the operational amplifier's common-mode rejection characteristic - the amplifier ignores common-mode noise or hum on the input lines while responding to a differential input. The circuit is particularly useful where microphones, sensors etc. have to be connected via long input
leads, and can often allow the use of unscreened leads.
The gain obtained by applying the input to terminal A is $-\mathrm{R} 2 / \mathrm{R} 1$. Via terminal B we first have an attenuation of $R 2 /(R 1+R 2)$ followed by a gain of $(R 1+R 2) / R 1$. The actual gain obtained by applying an input to terminal B is thus $[R 2 /(R 1+R 2)] \times[(R 1+R 2) / R 1]$, i.e. $R 2 / R 1$, the same as with input A but non-inverted. The total gain achieved by using both inputs is thus $-2 R 2 / R 1$, assuming that input A is going positive and B negative from a lowimpedance balanced source.
There's a snag however. The input impedances don't match, which is why a low-impedance source is specified. Seen from input A the impedance is $R 1$, while input B sees an impedance of R1 + R2. This can be bad news. An easy solution is to use two separate inverting-input amplifiers for inputs A and B (the input impedance is then R1 in both cases) and to follow these by the commonmode rejection stage. The gain required can be distributed between the three operational amplifiers. Since up to four operational amplifiers can be obtained in a single i.c. package it's easy to organise an arrangement of this type. Alternatively, the two input stages can be noninverting, enabling a high input impedance to be achieved. With some elaboration this sort of arrangement is the basis of medical equipment such as the electrocardiograph, where common-mode rejection of hum and noise is important to enable the differential heartbeat signal to be recovered and amplified.

What about the use of operational amplifiers at video frequencies? The first point to note here is that the gainbandwidth product and the slew rate must be very high if signals of any appreciable amplitude at up to 5 MHz are to be handled. There are operational amplifiers with spectacular characteristics of this type, but their prices also tend to be spectacular! Very often a traditional transistor amplifier circuit will work well for video applications and be much more economical.

Like most manufacturers of anything, the makers of consumer electronics products are expert at selecting "horses for courses". This is why you tend to find operational amplifiers in the servo, power and audio circuits rather than in video drive circuits. If you look hard enough you'll find some operational amplifiers in video

Fig. 1: The linear integrator circuit.

Fig. 2 (left): The linear voltage-to-current converter.
Fig. 3 (right): Operational amplifier field output stage.

Fig. 4 (left): Operational amplifier Schmitt trigger.
Fig. 5 (right): Balanced input amplifier circuit.

Fig. 6: Design exercise - microphone interface circuit.

Fig. 7: Practical circuit with half-rail biasing - network R3/ R4/C3 sets the output at half the rail voltage when a single supply is used.
circuitry, but they tend to be hidden away in chips designed for decoding etc.

Summing Up

Operational amplifiers are today widely used in active filters, instrumentation and medical electronics and digi-tal-to-analogue converters, to mention just a few applications. The aim of these two articles has been to present the basics of operational amplifier use without submerging readers under a heap of information some of which would be of specialist interest only to those involved in the design side of the business. We've tried to present the operational amplifier as a functional device, so that if you come across one in a circuit you'll know what to expect of it.

If you clip your scope probe on to a virtual earth point you won't see much signal! I've often wondered how many innocent operational amplifier chips have been replaced by people who have not appreciated the subtlety of the virtual earth ("the signal's o.k. at the input resistor, but when it gets to the chip it has all gone!").

Also, if an operational amplifier overloads and its output hits the rails there'll be no feedback once the signal has squared off. Under these conditions a signal will appear at the virtual earth point, which has become "unstuck". This is another pitfall for the unwary, who might think the presence of this signal indicates that all is o.k. at the input to the chip.

To finish off we'll go through a little design exercise, just to prove how easy it is to use an operational
amplifier. In the case in question the use of transistors would be a lot more difficult. The problem could well arise where microphones are used in connection with video recording and/or public address systems.

Here's the problem then. We have a 600Ω dynamic microphone which produces a peak-to-peak output of about 2 mV , measured unloaded across the input terminals of a scope, when used for normal speech at a distance of some 1 ft . Speech reproduction only is required, so the bandwidth can be 100 Hz to 5 kHz , giving good speech reproduction without "opening the window" wide enough to allow out-of-band sounds to receive unwanted amplification. The equipment to be used with the microphone requires an input of 100 mV r.m.s. Design an amplifier to provide an interface between the microphone and the 100 mV input.

Fig. 6 shows the basic circuit. To match the microphone R1, which is connected to the virtual earth point, has to be of the same value as the microphone, i.e. $600 \Omega-560 \Omega$ will do! Since the microphone has a source impedance of 600Ω, its output when loaded will be 1 mV peak-to-peak instead of the 2 mV peak-to-peak measured on the scope. To obtain an output of 100 mV r.m.s. we must calculate the value of R 2 after converting the 100 mV r.m.s. to peak-to-peak (same as the input), i.e. $2 \sqrt{ } 2 \times 100 \mathrm{mV}=$ 280 mV . From this we can say that $\mathrm{R} 2=560 \times 280 \mathrm{mV} /$ $1 \mathrm{mV}=156.8 \mathrm{k} \Omega$ to give us the required gain of 280 . So we could use $100 \mathrm{k} \Omega$ plus $56 \mathrm{k} \Omega$ in series or go for $180 \mathrm{k} \Omega$ and get a bit more gain.

What chip are we goung to use? We know what the gain-bandwidth product in this particular example is - the gain is 280 and the bandwidth 5 kHz , so the gainbandwidth product is 1.4 MHz . The TL071, a reasonably low-noise, general-purpose BIFET input device, has a gain-bandwidth product of 3 MHz and will thus do fine in this application (note that it would be of marginal use if the upper frequency limit was 10 kHz).

All we need to do now is to set the -3 dB points. Cl sets the lower 100 Hz point when its reactance 100 Hz is equal to the total input impedance, i.e. the source plus termination. This is $1,200 \Omega$, or should we be strict and say $1,160 \Omega-$ no, $1,200 \Omega$ is fine! So $1,200=10^{6} / 2 \pi \times 100 \mathrm{C}$ where C is in microfarads, i.e. $C=10^{6} / 2 \pi \times 100 \times 1,200$ $=10^{6} / 24 \pi=1 \cdot 32 \mu \mathrm{~F}$. What a rotten value! We have three choices, use $1 \mu \mathrm{~F}, 1.5 \mu \mathrm{~F}$ or make the value up from capacitors connected in parallel. I'd use $1.5 \mu \mathrm{~F}$ - after all $1.5 \mu \mathrm{~F}$ minus 10 per cent is $1.35 \mu \mathrm{~F}$, which is not far adrift. You can use a tantalum capacitor: the fact that it won't be polarised doesn't matter.

C 2 sets the upper, $5 \mathrm{kHz}-3 \mathrm{~dB}$ point when its reactance is equal to $156 \mathrm{k} \Omega$. That is, $\mathrm{C}=10^{6} / 2 \pi \times 5,000 \times 156,000$ $=1 / 1,560 \pi \mu \mathrm{~F}=204 \mathrm{pF}$. 220 pF is o.k. If $180 \mathrm{k} \Omega$ had been used for R2, 180 pF would be a better value.
So there we have our little amplifier. It can be supplied with say + and -5 V , or if you prefer the circuit can be biased for single-rail working as shown in Fig. 7. This calls for four more components, as shown.
Finally, I hope you've found this discourse on operational amplifiers useful. It has at least scratched the surface. For anyone who wants to look at the subject (or electronic circuits in general) in greater depth I would recommend "The Art of Electronics" by Horowitz and Hill, published by the Cambridge University Press. It's a bit pricy, even in the soft-back edition, so get someone to give it to you for your birthday! Several books on the specific subject of operational amplifiers are listed in the Technical Library section of the RS catalogue.

VCR Clinic

Philips VR6561

This machine wouldn't play as the head didn't rotate. It would begin to turn but couldn't manage a full rotation. This pointed to one of the motor's coils not being driven. D.C. checks in the drive circuit revealed that transistor T7113 (BD135) was open-circuit.

Another of these machines had the same fault but in this case it was intermittent. There was a broken wire in the loom from the PCB to the drum motor.
P.B.

Grundig VS200

Tape path problems, such as the sound going off after a few seconds, are often caused by a faulty pinch roller.

No sound or no control track recording/playback can be caused by an open-circuit head winding.

Intermittent failure to initialise, especially from cold, is often caused by poor connections on the ribbon edge connectors to the sequence control module.
P.B.

Philips VR6362

The symptom with this machine looked like faulty video heads - until I tried the tape in another machine and found that it had been erased! The $+11 \cdot 8 \mathrm{~d}$ record supply was present all the time as transistor T 7701 (BC328) was short-circuit.
P.B.

Philips VR6561

If the idler wheel doesn't flip across to contact the reel discs, check that the block (item 257482246681643 that fits under the top plate) hasn't fallen off.
P.B.

Sharp VC7300

An increasingly common problem with these machines is tape slack at the end of a rewind. The loop of tape then gets crunched by the cassette flap when the tape is cjected. Much time can be spent on the reel brakes if you don't realise that the cause of the trouble lies elsewhere. At eject the loading motor, under the deck, kicks to take up the slack, via a belt coupling to the spool turntable. If the latter doesn't move, check the loading (short) belt for slippage and the clutch on the loading block assembly for excessive friction.
E.T.

Hitachi VT220

This machine uses a multi-legged slab type chip (STK5471) to produce the regulated power supplies. We've had several of these fail, giving the following symptoms: operate light comes on, no deck functions and a noisy "r.f.-through" picture to the TV set, this picture disappearing altogether when the VCR is switched on. It's the 12 V line that fails. Use plenty of heatsink compound when replacing this device.
E.T.

Panasonic NV333

This fault gave us a few headaches. The machine, an older version, had no clock display. Probably IC7501 on the front panel we thought. However as soon as we removed

Reports from Philip Blundell, Eng. Tech., Eugene Trundle, David Botto, Alfred Damp, lan Bowden, E.M. Beddow and Alan Shaw

the screws that hold the front and main PCBs and swung these out the clock display lit up, went out, lit up and went out again. A dry-joint we concluded, wrongly. We finally got to work with our trusty component tester and found that diode D1015 (MA165), marked D15 on the print, was leaky though not short-circuit. This diode is connected to the emitter of transistor Q1002 in the power supply section, feeding a regulated 17 V supply to the clock PCB. A 1 N 4148 is a suitable replacement. D.B.

Hitachi VT130

The problem with this machine was very bad audio flutter. When an alignment tape was played a scope hooked to the audio output socket produced a display with marked wobble at the right-hand side. We found that the capstan motor drew about 140 mA off load and that the waveform generated across its input connections was rough. A new motor drew 85 mA and produced a much smoother waveform. When it was fitted in the machine the sound returned to normal.
E.T.

JVC GR-C1

The reported symptom with this early camcorder was no sound. In fact the playback audio was fine but during record no sound reached the tape and there was no output via the E-E monitor channel. We found that the audio EE mute line was in operation. For the machine to be brought out of mute the line needs to drop below 1V. In this case it fell to only 2.3 V . The cause of the problem was on the mechacon board: the cure was to remove a big blob of yellow glue in the area of Q30.
E.T.

Sanyo VHR3300

We've had a couple of these machines that intermittently failed to come out of standby: the clocks worked fine but there was sometimes no response from the on button. If you get this problem check the fitting of the front PCB and the clearance between it and the plastic front cover. If one of the control switches is held in the others don't work.
E.T.

Hitachi VT11

The fault with this machine looked very like dirty video heads but after several attempts at cleaning them it was obvious that we had to look elsewhere for the answer. A check at the playback f.m. test point produced the waveform shown in Fig. 1(a). Assuming that the heads were o.k., we decided to check the drum flip-flop waveform which was as shown in Fig. 1(b). This signal is produced by the drum pick-up pulses which were then found to have the correct mark-space ratio. So the servo chip which contains the multivibrators that generate the drum flip-flop signal was accused of being faulty. Unfortunately replacing it made no difference. Time to look closer at the drum pick-up pulses. The waveform was as shown in Fig. 1(c) - Fig. 1(d) shows the correct waveform. The small positive-going overshoot pulse circled in Fig. 1(c) was of sufficient amplitude to make the positive
monostable trigger, thus creating the incorrect drum FF signal. Replacing the Hall i.c. on the drum motor cured the fault.
A.D.

Hitachi VT64

The drum motor had stopped and voltage checks around the drive chip IC601 revealed that the supply voltage at pin 10 was low. This i.c. is supplied via D642 and a cold check suggested that the diode was o.k. Replacing it restored drum motor operation however.
A.D.

Hitachi VT17

The drum ran at full speed because there was no FG signal at the servo board. We found that there were dryjoints on the FG board within the drum motor.

Panasonic NV-G21

The customer's complaint was that the cassette wouldn't eject. In fact the machine was very sluggish in lacing the tape. If the capstan motor was given a helping hand everything worked. A new capstan motor put matters right.

Panasonic NV430

We at first thought that this machine had dirty video heads, but cleaning made no improvement. When the scope was connected to the head preamplifier module to check for head wear the fault cleared itself. A check on the inside of the module revealed dry-jointed connectors and earthing connections. Resoldering the faulty joints cured the fault. It's worth checking that the module fixing screws are tight and thus providing good earthing. A.D.

Panasonic NV788

The fault reported by the customer was a poor picture which was worse in pause and slow motion. A field engineer had visited the house and cleaned the heads. This had improved the playback picture but didn't help very much in the still/slow-motion modes, so the machine was brought into the workshop for further investigation.

We found that the top third of the picture was noisy in the still mode, the rest of the picture looking all right. The back tension was checked and adjusted without producing any improvement and new heads made no difference. A slight improvement was obtained by adjusting the inlet

Fig. 1 (left): Waveforms associated with the Hitachi VT11 fault described above.

Fig. 2 (right): F.M. output waveforms and head switching relay, see the Panasonic NV788 fault.
guide. We then looked at the f.m. output waveform at TP3512 - see Fig. 2. In the playback mode the normal L and R heads are used and the output was correct. In the still/slow modes however a fifth head L^{\prime} is switched into circuit, replacing head R. As shown in Fig. 2 it was the output from this head that was causing the problem. Since heads R and L ' share the same playback amplifier the only cause of the difference could be in the switching, which is done by relay RY3501. We didn't have a replacement in stock so the relay was removed, its cover was opened and the contacts were squirted. When the relay was refitted the fault had gone and the machine gave perfect stills and noise-free slow motion - despite the fact that the heads were the original ones.
I.B.

Salora SV8300/Mitsubishi HS304

This machine would ignore any tape operation function after a couple of hours' use, e.g. if the machine was in the playback mode you couldn't stop a tape without switching the machine off. If rewind was selected and the tape was allowed to rewind fully you would then find that the machine wouldn't eject. The cause of the problem was a poor leaf switch contact, FL-SW-2, which is the inner of the two leaf switches on the right-hand side of the cassette loading housing. It's the one that makes when a cassette is pushed in and is held closed by the loading cam, going open again only when the tape is fully ejected. I.B.

Grundig VS200

We see a lot of these machines. They seem to be very reliable electronically tut the mechanics are not so hot. Failure to initialise is often due to a faulty brake switch which is located between the reel motors. If it has a plastic cover this must be discarded and the switch changed, not just cleaned.

The reel motors are suspect if the machine chews tapes or shuts off. A light tap on the top of the reels will sometimes free a tight motor. The feed motor causes the worst problems - when it becomes tight it will jam the mechanics. Changing the motors over will often cure the problem.

We've also had a few sound heads go open-circuit recently. You need to take note of the pink slip that comes with the new head as the wiring is different. If you get this wrong you'll still have no sound.
E.M.B.

Grundig VS310

Faulty or worn heads can be responsible for poor reverse search. For sound wow check whether the capstan belt has split. To get to this you have to hinge out the electronics chassis - don't remove the deck or you'll never dress the wires in the right place again. If you have a different fault when it's back together check all the plugs - they are of very poor quality.
E.M.B.

Amstrad VCR6000/VCR6100

This fault has fooled several of our field technicians: the remote control handset can be programmed on its liquid crystal display but the VCR won't accept its commands.

When the first machine with this complaint was brought into the workshop our trusty remote control handset checker proved that the unit was transmitting something. A further check revealed that the batteries produced only 5.6 V . New 6 V batteries cured the problem.
A.S.

Servicing Compact Disc Players

Part 3

Last month we considered in some depth the various different types of laser assembly used in domestic CD players. Having done so we can deal with the servicing aspects. The laser optical unit is a throw-away item, so the only thing you can do is to replace it. Since the trade price of such units is in the region of $£ 35-£ 120$ however it's essential that your diagnosis of a faulty laser unit is correct! Training officers I've spoken to tell me that a sizeable proportion of the units returned under guarantee prove to be in working order when tested. There are probably several reasons for this. Some units may have been replaced simply to rule out the laser as the cause of player failure; in other cases a quick diagnosis under pressure of work may have led to the unit being returned. As more players come out of the guarantee period however it's going to be essential that such mistakes are avoided.

There's another problem that could arise in practice. With older players the cost of a replacement laser unit is generally at the higher end of the range. The customer might well decide that he doesn't want to pay out such a large sum of money to have his player repaired. If you have spent several hours before finally deciding that the laser unit is defective you could well find yourself out of pocket. This is not a new problem with domestic equipment servicing of course, but it's one that must be avoided wherever possible. So this month we'll look at methods of checking the laser in a $C D$ player.

Safety

The safety aspects must first be made clear. All service manuals contain a warning about damage to the retina of the eye if the laser is looked at directly. There's a temptation to do this when attempting to establish whether the laser is lit - although the output is infra red, some visible light in the red spectrum can be seen in the lens. We must be adamant however that the warnings are taken seriously. Thus another method must be found to ascertain whether the laser is lit.

Many players contain safety switches that allow the laser to light only when a disc has been inserted. It's usually necessary to override such switches while carrying out service checks. When you have done so, take great care not to look at the laser accidentally or allow the beam to touch your skin. Warning labels should be present on

Fig. 1: (a) Never look at the laser beam directly. To do so will damage the eye. (b) It's permissible to view the beam at an angle of at least 45° and a distance of at least twelve inches.
all CD decks, but it's possible that with time some of them will go missing.

There is also the possibility of damage to the laser, which is prone to damage by static charges. Although the problem is not as great as with unprotected CMOS devices, certain precautions should be taken when replacing a laser unit. These are as follows:
(1) The new laser unit will come packed in an anti-static bag. Don't remove it until necessary.
(2) Ensure that the laser unit, yourself and the deck are at the same static potential by touching the deck whilst handling the laser unit (the use of earthed bracelets and the like is not necessary).
(3) Put the suspect laser unit in the bag as soon as possible - after all it may not be faulty.
(4) Don't touch the laser unit lens as this would not only put grease on the surface but could damage the rubber suspension of the two-axis mounting.
(5) Don't place the laser unit close to large magnets that could affect the strength of the permanent magnets in the two-axis mounting.
(6) The new unit may have a shorting link or clip across the terminals to keep the laser's anode and cathode shorted during transit. Make sure that you remove this. It's not always obvious unless you take the trouble to read the fitting instructions enclosed with the new unit, something engineers don't always do . .

Laser Checks

One of the first things you must do when servicing a CD player is to establish whether the laser is lit. A quick way of doing this it to see if the front display shows the usual information, such as the number of tracks, playing time etc., once a disc has been inserted. If this data is picked up the laser must be emitting light. This doesn't however mean that its output is high enough to ensure correct reproduction from all discs, and you may have to check this. If the player doesn't show even the front display data there are several possible causes, only one of which is the laser unit. So how can you check whether the laser is lit and that its output power is correct?

By far the simplest method is to use a laser power meter. This will tell you not only whether the laser is emitting light but also whether the output is within specification - around $300 \mu \mathrm{~W}$. There's one drawback: the cheapest meter l've come across costs over $£ 200$). If your workshop is a large one that services numerous CD players the purchase of a meter may well be a worthwhile investment. If the number of players that come in is small however you will probably be reluctant to buy a meter. The good news is that there are other simple ways of determining whether the laser is emitting light. Unfortunately it's not so easy to determine whether the output is adequate.

A simple method that some engineers have adopted is
to view the laser at an angle of about 45° and a minimum distance of twelve inches (see Fig. 1). You can usually see the red glow in the lens from this angle. This technique is suggested in some service manuals, the theory being that the laser light is dangerous only when viewed directly from above: when viewed from the side you are seeing diffused light at a low power level. Although I've used this technique, with no adverse affects, I personally favour the use of an infra-red detector circuit instead. Fig. 2 shows a circuit suggested by Hitachi. It can be assembled easily and is also useful for checking the output from infra-red remote control handsets and the stop sensors in VCRs. If you already possess one of the IR remote control unit testers available from various trade suppliers it would be worth trying it, but remember that the laser unit's output is far more intense, so don't hold the tester too close. With a 9V PP3 battery the circuit shown in Fig. 2 should sense the beam when held at a distance of about twelve inches. I use the RS Components IR sensor in my own unit but there's no reason why you shouldn't try an IR end sensor from a scrap VCR.
Another alternative is to use the technique suggested by Jim Littler on page 420 of the letters section in the April 1988 issue of Television. He connects a phototransistor across an ohmmeter and measures the resistance. A word of warning however. He uses this method to test IR remote control handsets: when used with a CD laser unit you may encounter some difficulty in locating the $1.7 \mu \mathrm{~m}$ beam.

Fault Finding

As mentioned earlier, with many players the laser is enabled only when a disc has been inserted. Don't be caught out by thinking that the laser is dead when in fact it has not been turned on by the control microcomputer chip. With many of the more expensive players this chip has a service or test mode which, when selected, will permit the laser to light. If the player doesn't have this facility you will have to locate the disc-inserted sensor and fool the microcomputer into thinking that a disc has been inserted.

Some players keep the laser lit permanently, using the disc clamp arm as protection against accidental eye damage. Obviously this arm will have to be removed before carrying out the tests suggested. Having done so, be careful that you don't view the laser accidentally.

A laser that gives no output at all is perhaps one of the simplest faults to diagnose in a CD player. On insertion of a disc the first thing a player does is to perform the focus search routine: the object lens is pulled fully backwards and is then moved progressively forwards until correct focus is achieved. When this has been done the control microcomputer proceeds with the tracking search and disc rotation run-up routines. Clearly if the laser is not lit the focus search will be unsuccessful. Thus the disc will not even start to rotate and the front display will show some form of error message. A number of other faults could also produce these symptoms, but as a first step when you

Fig. 2: Simple laser radiation sensor circuit suggested by Hitachi. The circuit can also be used to check IR sources. D1 is an RS Components IR sensor, order no. 306-083. D2 is a standard 0.2in. LED, e.g. RS 586-475..
encounter them a check on whether the laser is lit is a logical starting point.

Low Output

The more difficult problems arise when the laser's output is low and you don't have a power meter with which to check it. In this case it's a good idea simply to clean the lens - in most cases this will cure the problem. When the laser points upwards dust tends to settle on the lens, causing diffusion of the light. The problem is particularly likely to occur when the user smokes.

Cleaning the lens is a simple task but you must observe similar precautions to those followed when cleaning video heads. The best method is to wipe the lens gently with a cotton swab damped in isopropyl alcohol: don't press too hard or you may damage the two-axis mounting device. Other types of cleaning fluid are not recommended as the lens is coated with a plastic-based material that could dissolve during the cleaning process, leaving the lens with a "foggy" surface.

If the problem is simply dust the lens can be cleaned with an air brush.

Various symptoms will be encountered when the light output is low, either because the lens is dirty or because the laser diode is failing. In most cases the player will fail to achieve initial focus and will thus not operate. There are occasions however when the complaint is of intermittent operation, or that the player will play only certain discs. In these cases lens cleaning is the first step to take. If this fails to cure the problem it's really necessary to check that the laser's output power is correct.
The procedure given in the service manual for setting the laser's output power usually involves the use of a power meter. It's unwise to attempt adjustment without a meter, bearing in mind the point made last month about laser damage due to excessive current. There are those who may be particularly familiar with a certain model and know of a safe though unofficial way of carrying out this adjustment without damaging the laser, but such techniques can be learnt only through experience. What else can be done?

In many players the r.f. waveform (the name given to the modulated off-dise signal after amplification) will be of reduced amplitude when the laser's output is low. This can be used as an indication of the laser's output power. In fact one of the unofficial techniques I've used for setting the output power is to adjust it until the amplitude of the r.f. waveform is correct. But beware - I've noticed that once the correct amplitude has been reached you can turn up the output power still further without the r.f. amplitude being increased. This is possibly due to some form of a.g.c. in the r.f. amplifier i.c., but the action of the a.g.c. in adjusting the signal amplitude doesn't alter the fact that the laser is operating at an excessive power level.

When the laser's output power is low the player will in many cases manage to achieve correct focus and will proceed with the dise run-up and tracking search routines. The player will then attempt to read the table of contents at the start of the disc. If successful, it will indicate the number of tracks, the playing times, etc. For the disc to attain its correct speed however the servo must receive data from the disc. If for any reason whatsoever it doesn't the dise will usually take off at high speed before the control microcomputer finally steps in and initiates the stop mode. During this brief period it's possible to scope
the r.f. waveform as a check on whether the laser's output power is adequate - but you have to be quick, and I mean quick!

More Symptoms

Another fault symptom is when the player gets as far as reading the table of contents, the disc doesn't take off, but the player fails to read the table and stops after about ten seconds. This is very rarely caused by a low output laser, but again you can use this ten second period of rotation to scope the r.f. and ascertain the laser's output.

Other difficulties arise when the player refuses to play at all and you are thus unable to obtain an r.f. waveform display. In this case the best approach to adopt is to establish first that the laser is at least lit, then check that the focus o.k. (FOK) logic level changes during the focus search routine. The FOK logic will be discussed in more detail when we look at the focus servo. Suffice it to say here that if the FOK logic is correct the player must have attained correct focus and the reason for failure of the disc to rotate must lie elsewhere.

Service Mode

The above suggestions for briefly scoping the r.f. output apply to players that don't have a service mode facility. One of the reasons for including a service mode is to enable the control microcomputer to operate the machine under fault conditions, thus giving access to many of the waveforms including the r.f. You generally require the service manual to discover how to enter the service mode. Some of you may wonder why all players don't include this facility. The answer is simple. Because this is an aid to the serviceman and not the customer it doesn't help to sell players. There is also the need for extra programming in the microcomputer's ROM. Thus the makers of some cheaper players don't bother with it.

Laser Adjustments

No adjustments after replacement are required with most of the latest laser units. This is not the case with many earlier players, where adjustments are required before an r.f. output can be obtained. The adjustments most commonly found are the laser position switch, the grating adjustment and the tangential screw. The latest production technology seems to have made them largely unnecessary.

The laser position switch is a deck adjustment that sets the point at which a leaf switch or microswitch closes when the laser carriage returns to the disc centre. If misadjusted the player will not be able to find the table of contents when a disc has been inserted. We'll look at this in more detail when we cover player mechanisms.

The grating adjustment rotates the diffraction grating in the laser assembly. Last month we explained that this grating splits the beam into three, the two side beams being used to produce a signal for the tracking servo. The object of this adjustment is to rotate the position of the side beams so that they fall evenly on either side of the data track - see Fig. 3.

If this adjustment is not set correctly the signal sent to the tracking servo will move the laser forwards or backwards at quite a high speed. Until this adjustment has been carried out correctly the player will not be able to perform any functions and attempts to carry out other

Fig. 3: The principle of diffraction grating adjustment. The side spots should be equidistant from the data track.

(a)

Fig. 4: Diffraction grating adjustment. (a) TE signal at null, (b) TE signal at peak.

Fig. 5: Tangential adjustment. (a) A good waveform with minimal jitter. (b) An r.f. waveform with jitter. (c) An r.f. waveform without jitter.
adjustments will result in all sorts of problems. The only correct way of carrying out this adjustment is to do it by the book, but even so you may encounter difficulties at first.

One manufacturer who still incorporates this adjustment is Pioneer. Anyone who has dealt with these machines will know that grating adjustment is one thing you shy away from where possible. For the benefit of those who work on these players however I can offer some useful advice.

The method of grating adjustment laid out in the manual is to scope the tracking error (TE) signal and turn the screw (a special eccentric screwdriver is required) that rotates the grating until the signal reaches a peak - see Fig. 4. The problem arises when you've managed this quite successfully but the player still doesn't operate. Quite naturally you go on to attempt other adjustments to clear the fault. What the manual doesn't tell you is that there is more than one peak - in fact there are on average ten peaks, and only one of them is the correct one! The key to success is to turn the grating screw to one extreme and then rotate it slowly to the other extreme, counting the peaks as you go. The correct peak is the centre one. So if for example you count eleven peaks, turn the grating screw back until you are at the sixth peak. In the case of ten peaks being counted take a guess at five or six - it will be one of the two. Credit for this time-saving method must go to Ken Clements, Pioneer UK's technical training officer, who spent some time working on the problem before he came up with this simple solution. I've not had the opportunity to see if it will work with other makes of player, but I would certainly attempt it if I found myself in difficulties with the grating adjustment.

When is it necessary to carry out grating adjustment? There are basically three occasions when the adjustment may be required: when fitting a new laser unit, when the
unit has been subjected to a severe shock - or when someone has decided to have a go.

The tangential adjustment sets the optical assembly so that the beam is at right angles to the disc. If this adjustment is not correct the beam will be eccentric instead of circular at the disc's reflective surface, causing problems in both the focus and the tracking servos. In most players this adjustment is done by scoping the r.f. signal and setting the screw so that the signal has minimum jitter - see Fig. 5. Next month we will be looking at the r.f. signal in detail. It will then be clearer just what you have to look for.

In Conclusion

In this instalment we've concentrated on ways of estab-
lishing that the laser's output power is correct, with or without the use of a power meter. It's far simpler with a meter. but cost and circumstances have to be taken into account. The other methods of checking a laser really amount to dodges that can be adopted in the absence of a meter. Suppose you've tried these dodges and still find yourself chasing your tail? The cause of the problem could of course lie elsewhere, and we'll be looking at other possibilities in later parts of the series. This month we've outlined the CD player's initial start-up routines and emphasised the importance of establishing that the laser is lit, that its output is adequate and that any mechanical adjustments have been made correctly.

One final point. If the laser isn't lit, don't assume that the cause has to be the laser itself. In all probability the fault will lie in the power supply to the laser assembly.

Cable and Satellite 89

Harold Peters and Alan Sidall

This year's Cable and Satellite event was held at Olympia on March 16-19th. Last year, reporting from the event at its Wembley venue, the conflict between the various impending satellite TV systems was so obvious that we expanded the article to give readers an update on the situation. A year later TV from space has indeed got itself into a mess, as predicted, but not quite in the way the writer expected. The "Murdoch factor" had not then entered the equation, but now that it has it was bound to dominate the show.

From an engineer's point of view there was little to be gained from looking at the set-up converters for Sky as most are on allocation. The dishes and their substitutes were interesting however. The ones for Astra, with an average 55 cm diameter and mostly with offset LNBs, were of note particularly for the flimsiness of their fixing bracketry. We who live near the coast and have experience of dishes of over 1.5 m diameter drew in our breath sharply at the prospect of them being able to stand up to equinoctal gales.

The Squarial for BSB was in evidence, the mock-ups being mostly under 12 in . square. Now that BSB's power could be divided between five transponders instead of three as initially planned, surely something bigger than a foot square will be needed? Nobody was prepared to say.

Sir Clive Sinclair with the Cambridge 45 cm square satellite TV aerial announced at the Cable and Satellite Exhibition.

A further type of aerial was introduced by Sir Clive Sinclair's Cambridge Computers, for reception of the Astra transmissions in the Midlands and the South. It's a 17 in . $(45 \mathrm{~cm})$ square device which is only five inches deep and thas a circular concave section in the centre. Deliveries are expected to start in the autumn and the price should match the Amstrad offerings.

BSB used MAC transmissions from the French TDF-1 satellite to demonstrate the quality of MAC pictures. Pity they had to use D2-MAC. A pity too that Aerospatiale is having to advertise the satellite in the trade magazines in an effort to find users for the three vacant transponders. Overheard conversation leads us to believe that TDF-1's signals are so strong that an LNB pointed at $19^{\circ} \mathrm{W}$ will produce a picture without a dish.

The signals from Astra are quite powerful too. On the Alston Barry stand an 0.9 m dish locked an Astra picture direct, despite the screening provided by all the steel that supports Olympia's roof. The last time the writer spotted anyone breaking through the Olympia screening was in 1939, when Radiolympia was struggling against the approach of World War Two and we were all listening to the news from outside on battery portables, so as to find out where our families had been evacuated. But back to this year.
"Bird finders" were to be seen in profusion, mostly based on the humble compass. A device from the USA used three spirit levels to set the elevation, azimuth and declination of polar mounts without having to refer initially to true south.

Most of the big boys amongst the TV receiver manufacturers were conspicious by their absence. Perhaps they are waiting until they can offer the user a TV set that will receive everything without the need for black boxes on top. Philips was there however, mostly because of the SMATV activities of its associated Portseigne company and the fibre-optic cabling of the Pope wire and cable subsidiary. I often wonder what the outcome would have been if earlier this century Mr. Pope, who supplied Mr. Philips with the wire for his lamps, had won the takeover battle instead. I wonder too what this show will be like in a few years' time, when there will be two Astras, two BSB satellites, two TDF satellites, some high-power Eutelsat 2 birds and lots more. Could we end up with more broadcasters than viewers?

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 2$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

BACK TENSION

Is it possible to convert the tentelometer back-tension figures specified in certain service manuals to the figures of a back-tension cassette gauge, e.g. the JVC PUJ48076-2?

Yes. The cassette gauge is calibrated in gm whereas the tentelometer readings are "tension units". Torque is tension times the radius of the reel pack. Thus 40 g is equivalent to 120 grams-force per cm in a 3 cm radius reel $-120=40 \times 3$.

TATUNG 160 SERIES CHASSIS

There seems to be a compatibility problem between this set and a Panasonic NV7200 VCR. Are there any modifications that can be tried?

Tatung suggest the following modifications for improved operation of 160 series chassis sets with VCRs: increase the value of C 004 to $22 \mu \mathrm{~F}$, change R 114 to $2.7 \mathrm{k} \Omega$, R106 to $150 \mathrm{k} \Omega$ or $180 \mathrm{k} \Omega$, R117 to $1 \cdot 2 \mathrm{k} \Omega$, R116 to $1.2 \mathrm{k} \Omega$ and C 111 to $0.2 \mu \mathrm{~F}$.

PANASONIC NV7200

This machine won't operate though the voltages from the power supply panel are o.k. and the front panel indicators light.
In our experience the most common cause of this problem is failure of the cassette-down microswitch. With the cassette down there should be 12 V at connector D6010. If this voltage is present, suspect an open-circuit tape sensor LED.

VIDEO LINK

We have a Hitachi Model CPT2188 with a 6-pin DIN input/output socket, the connections being as follows: 1 VTR switch; 2 video input/output 1V/75 ; 3 ground; 4 audio input/output L $0.7 \mathrm{~V} / 10 \mathrm{k} \Omega ; 512 \mathrm{~V} ; 6$ audio input/ output $\mathrm{R} 0.7 \mathrm{~V} / 10 \mathrm{k} \Omega$. This is to be used with a Sanyo VHRD500E VCR that has a scart input/output socket. How does one go about this?

Link pins 1 and 5 of a 6 -pin DIN plug. Connect the other pins as follows: 2 to pin 19 of the scart connector; 3 to pins 17 and 4 of the scart connector; 4 to pin 3 of the scart connector; 6 to pin 1 of the scart connector. The link-lead will need to contain three screened cores.

FERGUSON TX90 CHASSIS

A very faint patch has developed on the left-hand side of the screen, about half way down. On a blue raster this shows up as a slightly darker shade of blue. Vertical lines on the left-hand side bend around this patch and veer
towards the bottom left-hand corner of the screen. A slow ripple effect runs up the lines adjacent to the patch. Vertical lines on the right-hand side of the screen remain straight and steady.

We have known this effect to be caused by an overstrong magnetic field around the mains transformer as a result of half-wave operation. Check diodes D120 and D123 and their connections to the transformer. Then if necessary check the dual-posistor Z102, C183 and the setting of the set-h.t. potentiometer RV224.

HITACHI VT33

There is no playback though fast forward and rewind are all right. On completion of loading the machine stops within a few seconds then the tape is returned to the cassette.

Check whether the head drum and take-up reel are rotating at loading completion in play. If they are the reel sensor is suspect - check whether the pulses from this are present at pin 50 of IC901. If necessary check for flip-flop pulses at pin 49. If the take-up reel is not rotating the fault could be due to the idler slipping or the reel motor.

FIDELITY F14 (ZX4000 CHASSIS)

The problem with this set is no line sync. The TDA4503 signals/timebase generator chip has been replaced and the voltages around it seem to be about right. During service work the BU508D line output transistor went short-circuit. This has been replaced but there is still no line sync - also no sound.

With this set the sound is muted until the picture is correctly synchronised. Feedback from the line output stage for sync purposes is via R109 (ten separate $5 \cdot 6 \mathrm{k} \Omega$ resistors) and $\mathrm{C} 25(0 \cdot 1 \mu \mathrm{~F})$. These items should be checked, also if necessary R30 ($5 \cdot 6 \mathrm{k} \Omega)$, C24 $(22 \mathrm{nF})$ and the horizontal shift control PR18 (100Ω).

HITACHI VT9500

When returning to play after reverse picture search the capstan continues to run in the reverse direction before gradually slowing down and resuming the correct direction and speed. This has the effect that tape is spewed out of the cassette for three-four seconds before it's eventually reeled back on to the take-up spool. The problem is also present with forward search, but is not so noticeable. The picture quality is very good.

To prevent this effect the microcomputer chip IC905 was changed from type HD38800A50 to type HD38800A74. At the same time R955 was changed to $27 \mathrm{k} \Omega, \mathrm{R} 420$ to $5.6 \mathrm{k} \Omega$ and a $47 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor (C461) was added from pin 11 of IC402 to chassis. If the tape is not actually being damaged you might decide that the trouble and expense of carrying out this modification are not worthwhile.

SONY KV2706

This five year old set shows horizontal flyback lines on the picture. Any ideas on clearing the fault?

First check the level of the 12 V line at the emitter of Q291. If it's wrong check D291, Q291 and C855. If the level is correct check the setting of the screen control on the c.r.t. base panel. Sometimes the fixed resistors associated with this control can drift in value, altering the screen (A1) voltage.

317
Each month we provide an interesting case of $T V / v i d e o$ servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

It's some years since TV chassis with thyristor regulated power supplies were last designed but many sets of this type continue to come into the workshop. Amongst the last thyristor-based power supply systems were those used in early versions of the Ferguson TX9 chassis and in the Philips G11 and Bang and Olufsen 20AX chassis. It's the latter chassis that concerns us here. Models using this chasis include the $3502,3602,3702,3802,4002,4402$ and 6002 . The basic elements of the circuit are shown in Fig. 1. It has the virtue of drawing current on both halves of the mains supply cycle since the two thyristors 5 SCR $1 / 2$ are used in a full-wave bridge configuration (with 5D3/4).

Certainly the fault symptom suggested that the power supply section of the set was faulty: a hum-bar effect travelled slowly up or down the screen, affecting both the signal and the deflection. Sometimes the whole picture would flutter in size, as though the power supply was unstable. On the assumption that excessive mains-rate ripple was present on the main h.t. rail, two items came under suspicion: the large reservoir capacitor 5C3 and the active filter circuit consisting of transistor 0TR1 and the associated components. 5C3 and 0TR1 were both checked by substitution, but this produced very little change in the on-screen symptom. So - should this perhaps have been done before? - an oscilloscope was brought into action to check the level of ripple on the h.t.line.

The manual indicates that the mains-rate ripple at the emitter of 0TRI should be around 30 mV peak-to-peak, riding on about 300 mV of line-rate hash. In this set the amplitude of the 50 Hz ripple could be measured in volts. Further attention was therefore paid to the active filter

Fig. 1: Basic elements of the full-wave thyristor regulated power supply used in the B and O 20AX chassis.
circuit - to the two transistors 5RT1 and 5TR2, capacitors 5C4 and 5C5, and the associated resistors. No faults could be found in this area, but a further scope check showed that a huge 30 V sawtooth waveform was present at the common cathode connection of the two thyristors. The reservoir capacitor had already been checked, and the scope showed that drive pulses were present at the gates of the two thyristors. We next fitted a new pair of thyristors, which didn't alter the situation one bit. That something was wrong in this area seemed certain. What it could be was less clear.

What had been overlooked - in both the fault symptom and the oscilloscope's display? Which component had failed? Answer next month.

ANSWER TO TEST CASE 316 - page 441 last month -

John's efforts with the Ferguson TX9 chassis last month provided him with an instructive insight into TV faultfinding techniques. The set concerned wouldn't start up, though the power supply was working and h.t. was present in the line driver and output stages. It didn't take him long to find that there was no line drive and that the sync/line oscillator chip was inactive as its 12 V supply was absent. He came unstuck however in trying to establish the cause of its absence.

The supply for the line oscillator is derived from the line output transformer, so at switch-on something has to be done to kick-start the line timebase. Once it comes into operation pulses from the line output transformer are rectified and fed to the 12 V regulator which provides the supply for the low-voltage sections of the set, including the TDA9503 sync/line oscillator chip. For start-up purposes the line driver transistor VT67 is biased on and the voltage at its emitter is used to power the TDA9503. Once the latter gets going it produces a squarewave output to switch VT67 off and on. The forward bias for VT67 is obtained from the h.t. line, two zener diodes and a resistor being used for the purpose.

In this case the 68 V zener diode W86 had gone opencircuit, leaving VT67 without base bias. Failure of VT67 or the resistor involved (R222) due to an open-circuit, or a short-circuit in the other zener diode W87 (15V) or C176 $(100 \mu \mathrm{~F})$, could as easily have caused the problem. The key te diagnosis however is knowledge of how the circuit is supposed to work rather than the availability of claborate test equipment or a degree in electronics!

[^1]
IhE A.V.S. GROUP
 AUDIO VISUAL SERVIGES

THE BOSS HAS HAD A FIT OF MIDSUMMER MADNESS - OVER 4000 PIECES OF NEW \& EX-RENTAL STOCK MUST BE CLEARED!

YOU NAME YOUR REQUIREMENTS AND WE PROBABLY HAVE IT, AND WE WILL TRY TO MATCH ANY DEAL YOU ARE GETTING ELSEWHERE! EX-RENTAL TV's, EX-RENTAL VCR's, NEW VCR's, MIDI SYSTEMS, MICROWAVE OVENS - WE DO THE LOT.

SO TRY US - WE'RE NOT AFRAID OF DOING A DEAL HEAD OFFICE 茄 084443226084442995 36 WYCOMBE ROAD, PRINCES RISBOROUGH, BUCKS.

HUMBERSIDE OFFICE 家 06526602420652660243

 UNIT 8, ST. MARY'S WORKS, MARSH LANE, BARTON-ON-HUMBER, SOUTH HUMBERSIDEN.B. SWINDON CUSTOMERS PLEASE CONTACT \rightarrow AVS SUMMER SALE - AVS SUMMER SALE • AVS SUMMER SALE

W. TREE TRADE T.V. UNIT 1 SUNSHINE MILLS WORTLEY ROAD LEEDS 12 TEL: 0532638804

SAVE - SAVE - SAVE PhILIPS K3O - PYE K30
6 BASIC 1 REMOTE
TYE LOT ONY \&95

PHILIPS G11 TEXT - PYE G11 TEXT
OFF THE PILE - MIXED LOT
150819

ALL PRICES PLUS VAT

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE

VIDEO HEADS, TRANSISTORS, IC'S, ALSO STOCKED.

BAIRD: $8290,8752,8773,8180$	12.00	ITT: VC200 to VC402
RANK BUSH MURPHY		C1, CVC2 (FORGESTONE) 11.50
A774 with stick rectifi	9.78	CVC30, CVC32 CVI 15
A816, T16, T18, Z712, 7715	10.35	CVC30, CVC32, CVC45 9.20
T20, T22, T26, Z179, A823	11.50	Prea
2718 Basic unit	13.50	
DECCA: 1210, 1211, 1		PYE: 169, 173, 569, 368 CT200, CT200/1, CT213
	11.50	
1700, 2001, 2020, 2401, 2404	920	725-731, 735, 737, 741
CS1730, 1733, 1830, 1835 30, 70, 80, 90, 100	920	PHILIPS: 170, 210, 300 320 series
	9.20	
	P.0.A.	TX, T8, TX2, TX3 mono P.O.A
FERGUSON, THO	9.20	G8 and G9 Series 920
1690, 1691. built in rect	9.78	KT2. KT3 series 9.20
$\begin{aligned} & 1600,1615,1700,1790 \\ & 3000,3500,8800,8500,8800 \end{aligned}$	P.O.A	CTX G11. K30. K4. K40. split diode P.O.A.
	P.O.A.	A.
9000, 9200, 9300 series	12.00	REDIFUSION Mk1 to 5 P.O.A.
9500, 9600, 9650 seres	12.00	DORIC Mk3, Mk1 11.50
TX9, TX10,TX90, TX100, TXP5 MOVIESTAR 3781, 3787, 8180	P.O.A.	SONY KV 1400, 1612, 2000 P.0.A.
	12.00	GRUNDIG: most models in stock
MOVIESTAR 3781, 3787, 8180 TX10 focus unit	10.87	NORDMENDE: 8290, Z206, Z306 SANYO: 5101, 5103, 7118, 7130 SHARP: C1851H, C2051H, 1405
FDELITY: FTV12 mono ZX2000 ZX3000 14", 16", $20^{\prime \prime}$ ZX3000 22'	10.35	
	16.43	SHARP: C1851H, C2051H, 1405 HINARI: CT4, CT5
	2728	TANDBURG: 190, CTV2, CTV3 P.0.A.
G.E.C. 2047 to 3135 mono 1201H, 1501H, 2114, 3133, 3135 DUAL \& SINGLE hybrid col. SINGLE STD solid state SINGLE STD split diade	9.20	TELEFUNKEN: most models in stock
	9.20	SAISHO MATSUI SENTRA P.O.A
	10.00	
	12.00	elivery by return of post.
	P.0.A.	Tidman Mail Order
INDESTT: 24EGB, 12LGB, 12SGB	10.35	236 Sandycombe Ro
WINDINGS		chmond, Surrey TW9 2E0.
TYNE: main winding	6.80	Approx. 1 mile from Kew Bridge.
RBM: T20, T22, T26, 2179	6.33	Phone: 01-948 3702
WALTHAM: W125 eht winding	2.37	
KORTING: hybrid winding	6.90	$1.30-4.30 \mathrm{pm}$
THORN: 8000, 8500, 8800 eht	6.70	Sat 10 am to 12 noon.

SOUIHSIDETV

UNIT 8, APPLE IND. EST., WHITTLE AVE., SEGENSWORTH WEST, FAREHAM огf गnction 9, , 27 HANTS HANTS. TEL. (04895) 77251
\star TOP QUALITY ex-rental TV's \& Videos

* Fresh stock deliveries EVERY week
\star All items complete with original handsets
\star Working stock always available in quantity
* 24 hr ansaphone service

Opening times: Mon-Fri 10am-5.30pm Sat Mornings 10am-1pm.

West Midlands Z.V. \& Video Wholesale						
NOW OPEN IN WALSALL						
CTV's			VIDEO's			
HILIPS G11	Working £18	Non-Workin	FERGUSON 3V29/3V30		${ }_{\text {Working }}$	Non-Wo
Kт3/K30	£30	£20			¢75	¢66
BUSH T20	£18	£10	JVC 7200		£75	£60
TX9	£35	£25	SHARP		£80	£65
G11 TEXT	£50	£30	MECHANICAL		$£ 45$	£35
TX TEXT	£60	£45	3V31/3V35HITACHI VT11		$£ 90$	
STEREO TEXT	£90	£75			£80	£65
TEST YOUR OWN SETS			TRADE SHOWROOM LARGE QUANTITY OF READY VIDEO's \& TV's	2 MINUTES FROM JUNGT. 9-M6		
NEW INFRA	HAND SETS	R0M £10		WAREHOUSE IN PASSACE		
VHIS VIDEO HEADS FROM £15				OFF LITTLE LONDON		
BLOCKS OF 10 SETS FROM £40				CALDMORE, WALSALL		
\star DELIVERY CAN BE ARRANGED \star au prices subiect to v.a.t. and quantity			Call in- you will be deiphted	TEL. 0922724542		

TELEVISIONS-VIDEOS-TELEVISIONS
VIEW-TEE
A NEW NAME IN

TRADE SURPLUS TVs

Large selection mainly
THORN - GRANADA STOCK
Discount ten or over
ALL SIZES AVAILABLE
Thousands in stock. Good quality Fresh stock every week.
Portables, Teletext, VHS Videos, STD $20^{\prime \prime}, 22^{\prime \prime}, 26^{\prime \prime}$
Complete loads at discount prices
All stock collected from source by our transport and handled with care

[^2]
BOLTON COMMUNICATIONS PROJECT

SATELLITE TELEVISION COURSES

TO BE HELD AT BOLTON METROPOLITAN COLLEGE.

One Day

Four Day

One Day
Three Day

CITY AND GUILDS COURSE ON FIXED DISH SATELLITE INSTALLATION (offered on behalf of the Confederation of Aerial Industries). Course dates: 8th May, 5th June and 3rd July, 1989.
SATELLITE TELEVISION INSTALLATION COURSE One day a week for 4 weeks. Start dates: 4th May \& 1st June. Cost £150.
INTRODUCTION TO SATELLITE TELEVISION 4th May \& 1st June. Cost $£ 45$.
SATELLITE RECEIVER SERVICING COURSE One day a week for 3 weeks. Start date: 12th June. Cost £110.

For further information please contact:
Terry Tudor (Project Manager), Bolton Metropolitan College, Manchester Road, Bolton BL2 1ER.

Tel: (0204) 31411 Ext. 3371/3395

CREWE WHOLESALE TELEVISION CHESHIRE'S LARGEST WHOLESALERS - OVER 18,000 SQ. FT.

 15 MINUTES FROM JUNCTION 17, M6

 15 MINUTES FROM JUNCTION 17, M6}
(Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

LORRY LOADS DIRECT FROM SOURCE

VIDEOS

VHS -	Mechanical Hitachi
Electronic Nat/pan, Hitachi	
Sharp and Thorn	

50 Mixed of your ITT30/32 choice

Decca 80's and 100's Doric series 3 GEC 2110/2111

BETAMAX - Sony, Sanyo, Toshiba, etc.
(Working or untouched)

AT $£ 250.00$ + VAT

GUARANTEED UNTOUCHED

RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS CREWE WHOLESALE TELEVISION

SUMMER SALE NOW ON at hussain central tv

Exclusive to Birmingham Warehouse MASSIVE SAVINGS ON THORN/GRANADA STOCKS

FANTASTIC CHOICE:

FERGUSON - PHILIPS - PYE - HITACHI - NAT PAN - SHARP - GRUNDIG JVC - ITT - GEC - REDIFFUSION - BUSH - DECCA - FINLANDIA FIDELITY - SONY - TOSHIBA
« \star LORRY LOADS OF NON-THORN STOCK AT REASOHABLE RATES * \star
Head Office:
48-52 Pershore St, Birmingham B5 4RR. Tel: (021) 622-1023/1517

Preston:

Unit 439, Oakshott Place, Walton Summit Industrial Estate, Preston (M6, Junction 29). Tel: (0772) 312101

Note: Above prices subject to VAT and quantity. Handsets extra.

> — EXPORT ENQUIRIES WELCOME —

CCTV CAMERAS		SEQUENTIAL VIDEO SWITCHERS		CAMERA 'C' MOUNT LENSES	
10 Lux CCD 180 Line	$£ 225.00$	2 Camera Auto Switcher	£52.50	$1 / 2^{\prime \prime} 12 \mathrm{~mm} \mathrm{F1} .4$ No lis	£21.49
CCD2 Camera 0.3 Lux	£356.25	4 Camera Auto Switcher	£72.50	$1 / 2^{\prime \prime} 12 \mathrm{~mm} \mathrm{F1}, 4$ Focus \& Ins	$\uparrow 52.97$
CCD Camera Auto Iris Adaptor	£17.50	6 Camera Auto Switcher	£81.25	$1 / 2{ }^{\prime \prime} 6 \mathrm{~mm} \mathrm{F1.4} \mathrm{Focus} \mathrm{\&} \mathrm{Iris}$	¢60.78
CCD Camera Power Supply	£25.66	8 Camera Auto Swither	£85.00	$1 / 2 \mathrm{~mm}$ F1.4 Focus \& Iris	260.78
2 Lux 240V AC Vidicon Camera	£119.44	12 Camera Auto Switcher	£115.00		
Dummy Camera	£31.25	4 Camera Auto/SW. Looping/Bridging	193.75 $£ 131.25$	2/3" LENSES 12.5-100mm F2 8:1 Manual Zoom	$¢ 259.89$
CAMERA HOUSINGS		4 Camera Auto/SW. Digtal/Bndging	£150.00	12.5-75mm F1.66:1 Manual Zoom	£153.94
Outdoor Housings 240V AC	£115.00	8 Camera Auto/SW. Digita/Bridging	£156.25	18-108mm F2.5 6:1 Manual Zoom	£309.87
Outdoor Housings 24V AC	£133.31			11-110mm F1. 8 10:1 Manual Zoom	¢534.78
340 mm Indoor Painted Housing	§35.00	ALARMED AND SPECIALS		4.0 mm F1.4 Focus \& Iris	£126.25
340 mm Indoor Stainless Housing	£48.75	Alarmed 8 Way 8 Zone	£437.50	$4.8 \mathrm{~mm} \mathrm{F1.8} \mathrm{Focus} \mathrm{\&} \mathrm{Ins}$	¢91.25
370 mm Indoor Painted Housing 370 mm Indoor Stainless Housing	£31.25	Quad 4 Way Compressor Alarmed	£500.00	$6.0 \mathrm{~mm} \mathrm{F1} 8$ Focus \& In's	£90.00
		VIDEO TIME AND DATE GENERATOR		$8.0 \mathrm{~mm} \mathrm{F1.4} \mathrm{No} \mathrm{lis}$	¢37.49
9" BlackWhite Monitor	£87.49	Time and Date Generator	£146.25	$8.0 \mathrm{~mm} \mathrm{Ft.3} \mathrm{Focus} \mathrm{\&} \mathrm{Irs}$	£53.12
$12^{\prime \prime}$ BlackWhite Monitor	$£ 99.99$	Time/Date/Message/Stop Watch	£120.50	16.0 mm No lris 16.0 mm F1.6 Focus \& Iris	$\begin{aligned} & £ 19.45 \\ & £ 41.25 \end{aligned}$
PAN \& TILTS		BRACKETS			
240 V Outdoor Unit with Conv/8ox	£406.25	Short Camera Bracket	ES. 12	AUTO IRIS \& PINHOLE LENSES	
As above but 24 V AC	£437.50	Long Camera Bracket	£1c. 62	$8.5 \mathrm{~mm} \mathrm{F1.3} \mathrm{Auto} \mathrm{lris}$	£137.50
24 V Indoor Unit with ConvBox	£218.75	90 Degree Camera Bracket	£10.62 £10.62	16.0 mm Auto Iris	£136.25
As above but 24 V AC	$£ 218.75$	Camera Scanner Mount Camera Scanner U-Hinge Mount	$\begin{aligned} & £ 10.62 \\ & \\ & \hline \end{aligned} 14.75$	$9.0 \mathrm{~mm} \mathrm{F3.5} \mathrm{Pinhole} \mathrm{with} \mathrm{Iris}$	£207.50
INDOOR PANNING UNITS		Pan \& Tilt Comer Bracket	£56.25	As above but Right Angle 9.0 mm F3.5 Auto Iris Pinhole	$E 267.50$
Fixed Sweep Scanner 240 V Indoor Panning Unit	¢24.07	Pan \& Titt Flat Comer Adaptor	£56.25	9.0 mm F3.5 Auto Iris Pinhole As above but Right Angle	$\begin{aligned} & £ 374.99 \\ & \{443.75 \end{aligned}$
240 V Indoor Panning Unit As above but 24 V AC	£66.87	VIDEO AMPLIFIERS		As above but Right Angle	£413.75
1 Camera 240 V Panning Cont/Box	£36.25	240 V Camera Amplifier	£39.37	W/A Auto Inis Aftachment	£65.00
As above but 24 V AC	§36.25	240 V Camera Distribution Amplifier	£57.81	Special $2 \times$ Range Extender	£50.00
5 Camera 240 V Panning Cont/Box	£90.00	24 V Camera Amplifier	$¢ 39.37$	Special Extension Tube Kit	$£ 27.50$
As above but 24 V AC	¢90.00	24 V Camera Amplifier PCB	¢26 50	Camera Lens Sizing Viewer	£131.25

THIS IS JUST A SMALL SELECTION OF OUR STOCK ITEMS all the above prices are subject to vat \& carriage

Crofton $C_{\text {reates }} T_{\text {erific }} V_{\text {alue }}$

ORDER YOUR REQUIREMENTS TODAY BY PHONING 05448557 NOW - WE ACCEPT ALL MAJOR CREDIT CARDS CROFTON ELECTRONICS, KINGSHILL HOUSE, LYONSHALL, HEREFORDSHIRE HR5 3HZ FAX: 05448558

WE ARE NOW STOCKING PHILIPS OBSERVATION KITS. - PLEASE RING FOR DETAILS

Zene Pext TV \& VIDE WAREHOLSE ONE OF SOUTHERN ENGLAND'S FOREMOST TRADE SUPPLIERS

We are one of the South's leading Trade suppliers of top quality ex-rental TV and Videos. A good range held in Philips, JVC, Sony, Toshiba, Hitachi and National Panasonic colour TVs including portables, teletext and remote control models. Now In Stock: Ex-Granada Models, Finlandia/Rediffusion Mk 3, 4 \& 4A. Basic, remote \& teletext versions

NEW B GRADE
 CUSTOMER READY STOCK

ASSORTED STOCK FST TEXT MODELS, MID SYSTEMS, VGR'S (Single \& tural speeit) PHONE WHIL STOCKS LAST

We specialise in supplying working stock that has been professionally refurbished to a high standard. Our engineers pay special attention to the cosmetics as well as the electronics, so come to us for competitively priced stock that is genuinely ready for your showroom and your customers.

RING OUR HOT LINES NOW!

SPECIAL OFFER

EAST GRINSTEAD CUSTOMERS
CONTACT DAVID FARR

1 AMPICK VISIONS

THE WORKING SET WHOLESALER YOU CAN RELY ON

WE SPECIALISE IN SUPPLYING TRADE CUSTOMERS WITH TOP QUALITY WORKING EX-RENTAL
TV's \& VIDEO's. WE OFFER GOOD PRODUCT, FRIENDLY SERVICE \& KEEN PRICES

TV'S

VIDEOS

THORN 3V29/30 .. £70
THORN 3V31... £90
JVC 7200/7300 ... £70
HITACHI 8500/9300 .. £70
HITACHIVT11 ... £80
HITACHIVT33 .. $£ 100$
SHARP 9300/381 .. £90
AMSTRAD 7000 ... $£ 70$

We also stock Hitachi, Sony, Panasonic, Sanyo, Toshiba, etc.
PRICES All prices subject to VAT. Most sets given with brand new handsets SPECIAL DISCOUNTS \& DELIVERY ON LARGE QUANTITIES AMRICK VISIOUS WHOLESALE 113 MARBOROUCH ROAD, LECESTER

APPROX 5 MINS FROM JUNC 21 M. 1.

IMPORT OPPORTUNITY

German manufacturer of Specialist TV Repair Equipment seeks Distributor in UK. A keen approach to Marketing the product is sought together with In House Technical Capabilities.
INTERESTED?
Write with details to the:
MACARTHUR BENUSSI PARTNERSHIP
61 YORK ROAD, ERDINGTON, WEST MIDLANDS B23 6TG
Tel: $0213777440 \quad$ Fax 0213777451

ELECTRONICS SERVICES
UNIT 18
TILE CROSS TRADING ESTATE
TILE CROSS ROAD
MARSTON GREEN
BIRMINGHAM B33 ONW
Telephone: 0217795734

ORDERS BEFORE 4.00 P.M. - SAME DAY DESPATCH! LIST PRICES EXCLUSIVE OF VAT ORDERS UNDER £50 ADD £1.00 P\&P VIDEO SPARES FAST ex-stock! 01-3881714 ロ (1)

SONY ORIGINAL HEADS

 $\stackrel{5}{5 L-c 9}$

ORIGINAL SONY VIDEO SPARE

 IEASION BANO ASSY SL

PL.EASE ASK FOR ANY PaRTS NOT LISTEO
OTHER MANUFACTURER'S ORIGINAL PARTS SAAY REEL MOTOR VCS500
SANYO RELE ORUV PUUEY NC5000

90B CLEVELAND STREET, LONDON W1P 5DR

TV RENTAL FINANCE

for the independent dealer

on new or reconditioned TV Receivers, Video Cassette Recorders and Satellite Reception Equipment.

For details and quotations contact

COLOUR TV

	COLOUR TV		
	Working		
Non-working			
Pil	From	$£ 20$	$£ 10$
R/C	From	$£ 35$	$£ 18$
Text	From	$£ 65$	$£ 40$
Colour Portable	From	$£ 65$	$£ 35$
FST when available	From	$£ 115$	$£ 75$

RANGE OF NEW REDIFFUSION TRANSLATORS HANDSETS IN STOCK £ each inc VAT. Carriage extra
BTI $=$ UNIT 11, TAVERNER TRADING EST. CAERIEONK, MEWPORT, GWENT Leave M4 Junct 25, B4236 to Caerleon. 3 miles from M4.
RING BOB ON 0633430040 FOR QUANTITY DISCOUNTS

Prices inclusive of VAT

> Do you use cathode ray tubes?
> \star Can't find a replacement or shocked by the cost?
> \star It may well be that a rebuilt tube will solve your problem.

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

> WHY NOT TELEPHONE UXBRIDGE (0895) 55800 TO DISCUSS YOUR REQUIREMENTS. DAVE DYSON WILL HELP YOU WITH DOMESTIC TV TUBES. TERRY SMITH DEALS WITH COMMERCIAL/PROFESSIONAL TYPES.

SPECIAL OFFER

56540s $£ 42$
20" \& 22" SONY £58
27" SONYS £65

We are currently redeveloping our factory and have temporarily transferred production facilities to a factory unit in nearby Iver (Bucks). We have made arrangements for the Uxbridge 55800 telephone to be rerouted to the Iver factory at the exchange, but if you should wish to dial directly, the Iver number is (0753) 630137. During the temporary period of relocation we shall maintain goods handling facilities at Uxbridge. It would be appreciated if intending visitors telephone us first to be sure that technical staff are available at Uxbridge if required. We greatly appreciate the confidence placed in us by our customers which has enabled our business to grow and look forward to being of continued service in the future.

DISPLAY ELECTRONICS LTD.
SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.
A BREATH OF FRESH AIR FROM PHOENIX

AMPLE ${ }_{4}$,
TESTING
FACIITIES
L_{3}
OF DONCASTER
Probably the finest selection of TV-Video in the North - All Working \& Tested Stock \star

G11's	£12	V HS
KT3's	£20	V \dagger
Pil Starlines/GEC	£15	IN STOCK
K30	£25	3V29/30 Hitachi VT11E ETC
TX9/10	. $£ 25$	869
Bush T24/26	£18	

K30 Text.. 59
Hitachi Text....................................... $\mathbf{E 6 9}$
ITT Text
£69
Toshiba Text $£ 69$
Hitachi Twin Speakers£45
TT Trimline£35
ALL PRICES SUBJECT TO VAT
Prices include handsets where appropriate
PHOENIX TV WHOLESALE
SANDALL LANE
KIRK SANDALL
DONCASTER

TEL.
 0302890117

TODD TRADING

NEW WAREHOUSE OPEN! HIGH QUALITY TELEVISIONS \& VCR's

Specialists in 'ready to retail' televisions and VCRs (packed with handbook and patch lead). Mostly

Ferguson but all models stocked.
NEW 'B' GRADED EQUIPMENT AVAILABLE.

ITEMS USUALLY IN STOCK

Ferguson Non Text, Text and Stereo Text \& New F.S.T. B Grade Ferguson, JVC, Sharp, Hitachi, Sony, etc., etc. V.C.R.s working: Ferguson 3V29/30 V.C.R.s ready for retail in fives $£ 75+$ VAT Ferguson Compact Disc Units, A Grade and B Grade, from £40 VAT. Sony C9 Beta in top condition, back to spec, plenty in stock. Ferguson V.C.R.s for spares: 3V16/3V22/3V23/3V24/EV29/3V31/ $3 \mathrm{~V} 35 / 3 \mathrm{~V} 43 / 3 \mathrm{~V} 45 / 3 \mathrm{~V} 55$

NATIONWIDE DELIVERY

EVEN ON SMALL ITEMS - MIN OF 5 UNTTS PHONE FOR DETAILS

CentreVision

SLOPER ROAD, LECKWITH, CARDIFF. Exit 33 of M4

SOUTH WALES' LARGEST AND BEST WHOLESALER WITH 20 YEARS' EXPERIENCE

INCREASE YOUR PROFITS! PHONE: 0222344754

EX-RENTAL TV's \& VIDEOS

New and rebuilt for most makes of T.V.
including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX etc. Thorn New Life now in stock
Two year guarantee with a four year option.
Cash or credit allowed for certain types of In-line glass.
Price list available on request

[^3]
VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

HITACHI 5003, 8000

NATIONAL PANASONIC

NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS SANYO VTC 9300, 5300

SONY C5, C6, C7
Untested from £25
HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5 VHS/Beta tapes used from 40p each
Sorry must collect as we do not send through the post.

PLUS

17" $18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from $£ 8$. Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT

Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

BRITAIN'S LARGEST SUPPLIERS OF EX-RENTAL TV SPRING
 CTVs FROM £3

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. MANY TELETEXT
CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE, GUIDE, BLACKBURN, LANCS.
TEL: 025464489

OSCILLOSCOPES	SPECIAL OFFER
TEKTRONIX 2215 Dual Trace 6uMHz Delay Sweep Dual TB ca75 TEKTRONIX 465 Dual Trace 10 CMH M Delay Sweep E500	HAMEG MODULAR SYSTE
TRONIX 454 Dual Trace 150 MHz Delay Sweep E_{400}	
	MM8001 Mann Frame with HM8032 Sine Wave Gernerator 20 Hz -
ANOAR TO315 Dua Trace 19MHz Man5: Batery Unusedcion	Irangle and HM8011 2 Dig.tal Mutitueter $41 / 2$ digt:
	ONLY ¢400
GOULDAADVANCE OS 1100 Dual Trace 30MHz	
	FARNELL SWITCHED MODE PSU SV 40A \& * - 12C 5A E30 aa. (P\&PE E4)
(erseme	
	Some Keyboards avalubie Please enquire
	MULTIMETERS
TELEQUPMMENT O6T Dial Trace 10 MHz Solir Siale	ala avo
PHILIPS PM3206 Dual Irace 15 HHz	AVO 8 Complete with Battenes $\&$ LeadsAVO 8 Mkv Complete with Batenesleads
PHILIPS PM 3233 Oual frase 104Hz	
MARCONI	
	Clips 8 2 Prods
MARCON TF2016 AMFM 10MHz-12OMHZ witt Synchronses	
	[160 Sutcase stye 22 Bases \&P\&P
	plete with batteres and operatiry instructions OWLY E25 EACH
HP S94 SWEET OSCLLATORT-12 4 GHz	MARCONI AF POWER TF833A $20 \mathrm{~Hz}-35 \mathrm{KHz} 20 \mathrm{MW}-10 \mathrm{~W}$ w wh
	manual 0 OnLYE35(P8P ¢7)
FERROGRAPH RTS2 Recorder TEI Set	MARCON
LEADER LMV186A Two channill Mallwollmeter 5 Hz - $500 \mathrm{~K} F \mathrm{tz}$. 100UV-300V	W EQUIP
LEVELS TG2000 M 1Hz - 1MHz Sme Square $£ 125$	hameg osclil ioscope gra Dual Trace gom tz Deiay 5
	Componemt Tester + two probes
Measures down to 0 01\% MARCONI TF2700 UNIVERSAL LCR Bndge Battery Operated-	HAMEG OSCILLOSCOPE 2035 Oual Trace 2OMHz Component
	Tester with two probes All Other Models Avalabie
PHILIPS PM6456 FM Stereo Generator	
Over 20 Tesi Patherms	E2290
SADELTA MC 321 COLOUR gar SENEPATOR RF Bands 13.4 \& Video 8 Functions Sound Camem Unused (PSPE7) $\quad 125$	BLACK STAR FREQUENCY COUNTERS (P8P ¢ 4) Meleon $100-$
	100 MHz
SADELIA COLOUR BAR GENEFAIOR PAL MC101 8 Patteris	Mereor $600-600 \mathrm{MHz}$ E129
Pocket Suz Rechargeable Bateres Complete with BateryC75	
	glack siar jupitor soo function generator sme
OECCAKORTING COWOU Bar Genemator rype 82514 E125 Labgear Cobur Bar Generatur KGI B Test Patterns (PaP	
	ORION COLDUR BAR GENERATOR Pal IV Video Ezog
LABGEAR CROSSHATCH GENERATOR TyDE CMEO38-OB CIOSS. hatch/Grey ScaleBlank Raster Manns or BATTERY Unused \{18	
	(PSPE4) 539.50
	As above DMm 6010025% E33.50
	(1)
USED EQUIPMENT - WITH 30 DAYS GUARANTEE. MANUALS SUPPLIED IF POSSIBLE. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availabulity before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods \& Carriage.	
STEWART OF READING	
110 WYKEHAM ROAD, READING, BERKS RG6 1PL	
(1) Callers welcome 9 am- 5.30 pm Mon.-Fri. (until 8 pm Thurs.)	

APOLLO LANCASHIRE

NATIONWIDE MAIL ORDER
LOCAL DELIVERY - 2 YR GUARANTEE A47 342/343X-470 BCB22/CTB22/BGB22I 470-ESB22/EFB22/ERB22/FIB22 A51-220X/192x.
510-IKB22/JEB23/JDR22 JJGB2/ALB2/G1B2? 510-VLB22/DTB22/001/RB22/RCB22/SFB22 A51-590.
A51570X/580/001/210/241
A56-120X/123/140/410
$560-\mathrm{D} / 822 \mathrm{HB} 22 /$ AKB22 $\mathrm{B} 22 /$ AWB22
560-ETB22/DTB22/CSB22:DMB22/DNB22
AE6-120X/A67-120X/140/750/200/410
$20 \mathrm{AX}-\mathrm{A} 56-500 \mathrm{X} / 510 \mathrm{X}$ - $\mathrm{A} 66-500 \mathrm{X} / 510 \mathrm{X}$
30 AX - A56-540X - A66-549X

PHONE FOR QUOTE SONY TYPES £69 KLB-520SB22/NB/RB/XB A49JHT00X-570DB2/EB/HB GB/JB-A53JBW01X/JCG00X JB00X-680CB22/DB/EB (E79)

14" PORTABLES E59 3708UB-AXT3001. 37-550/2/3/4-A37-570/580/590 CASH PAID FOR AL SIZES SONY GLASS + 66-510/540 560 DZB PIL TYPES

LOCAL DELIVERY FROM ACCRINGTON, LANCS.
Phone enquiries and letters to: Apollo, The Potters Wheel
팾ㅈㅔㅔ Mullion Cove, Mullion, Nr. Helston, TR12 7ET. 0326240781

[^4]WE ARE:

JENHUT

SOUTHAMPTON'S TOP QUALITY

EX-RENTAL TV \& VIDEO WHOLESALER

WORKING CTV's
from only £6 EACH pLUS VAT

 ${ }_{\star}^{\star}$ TOSHIBA - PHILIPS - PYE ${ }_{\star}^{\star}$

 SAY NO MORE!! COME DOWN AND SEE FOR YOURSELF!! WORKING OR OFF PILE
EXCELLENT CHOICE \& QUALITY
At: UNIT 1
500 MILLBROOK ROAD,
MILLBROOK,
SOUTHAMPTON.
Telephone: 0703777254

	VIDEO TRIMS－TV TRIMS－REMOTE TRIMS VIDEO HEADS－REMOTES－IDLERS BELT KITS LOPTS－FOCUS UNITS LEADS－PINCH ROLLERS $\star \star \star \star \star \star$ SCRAP BOARDS AVAILABLE $\star \star \star \star \star \star$ SPECIAL OFFER FERGUSON $22^{\prime \prime} 9600$ TUBES（a56 610）$£ 15$＋VAT
	EX RENTALN．E．C．${ }^{\text {E／}}$ Complete Satelite Systems 1．8M DISH
が＊＊PRICES＊＊＊ PORTABLE CTV UHF－VHF £90＋VAT PORTABLE FERGUSON 3C01 CAMCORDERS \square TELEVISIONS＊\star＊ $\text { VIDEOS } \star \star \star \quad \text { Р口A }$ AUDIO EQUIPMENT＊＊＊	
A FAX：	

VIDEO MACHINE REPLACEMENTS

We Specialize in all types at

UNBEATABLE PRICES！！！

VIDEO HEADS

BELT KITS

SONY C6	0.96	SHARP 7300	1.50	SANYO 5000	0.37
SONY C7	1.43	SHARP 8300	1.50	SANYO 5300	0.78
SONY C9	1.38	SHARP 9300	1.38	SANYO 5500	1.04
SONY SL	1.87	TOSH． 7540	1.08	SANYO 9300	1.63
FERG．3V22	1.46	TOSH． 9600	0.66	N PAN 300	1.25
FERG．3V23	0.56	HIT．VT11	0.83	N．PAN 777	1.16
FERG．3V29	0.88	HIT． 5000	1.50	N．PAN 7000	1.28
FERG．3V31	0.75	AMST． 7000	0.60	N．PAN 8600	1.28

AND MANY MORE．．．SINGLE BELTS．．．CAPSTAN BELTS．．．DRUM BELTS．．．ETC．．
PINCH ROLERS IDLERS MOTORS All MAKES

All OUR COMPONENTS ARE NEW AND GUARAKTEED

VIDEO DISPLAY CORPORATION
Griftronic Emission Limited
Unit 2，Avenue Farm Ind．Est
Stratford－upon－Avon
Warks．CV37 OHU．

Minimum Order $£ 5.00$
Phone（0789） 295883
Telex
Fax（0789） 415243
please add 75 p per order for Postage Charges plus VAT

IICREASE YOUR PROFITS
by saving hours \＆hours POSSIBLY DAYS OF FRUSTRATION locating faults on VHS VIDEO RECORDERS．
WE OFFER YOU THE HELP YOU NEED with HUNDREDS \＆HUNDREDS of＇STOCK＇and the ＇HARDER＇faults along with their SYMPTOMS．All experienced and collated from MANUFACTURERS／ SERVICE DEPTS／WORKSHOPS／CONSULTANTS and TECHNICIANS． Covering
ALL POPULAR MAKES \＆MODELS including：－ FERGUSON／PHILIPS／JVC／PYE／PANASONIC／ HITACHI／AKAI／MITSUBISHI／SHARP／SANYO／ FIDELITY etc etc etc．
SYMPTOMS／DIAGNOSTICS／FAULTS／ PROCEDURES／MODIFICATIONS

All well tried \＆PROVEN as a great TIME SAVER \＆ ESSENTIAL for ALL service departments \＆person－ nel．Collated \＆indexed in UP－DATING binders for QUICK \＆EASY reference．
Will immediately recover the outlay costs． ATTRACTIVE up－to－date BINDERS covering MANY HUNDREDS of FAULTS \＆their SYMPTOMS．
YOU WILL WONDER HOW YOU MANAGED WITHOUT THIS ONLY £73．00（inclusive）
Regular monthly updates just $£ 30$ per year Also available on COMPUTER DATA－BASE Payment with order to：－
TECHNICAL ADVISORY SYSTEMS 33 FOXCOTE，ASTLEY VILLAGE， CHORLEY，LANCASHIRE PR7 1XE． Telephone：（02572） 75667

REBUILT COLOUR TUBES

Delta - 20AX - 30AX - In Line N.G.T. ELECTRONICS LTD.

120, Selhurst Road, London SE25 6LL
PHONE: 01-771 3535
First Independent Rebuilder with B.S.I. Certification

| TV LINE | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| PRICES INCLUDE CARRIAGE. VAT NOT APPLICABLE. | | | | |

SETS \& COMPONENTS

OCHRE MILL TECHNICAI SERVICES. Are now on (1)6(4) (Malmeshury) 823228. Grundig TV spares ail models to 19:3. Fast friendly, helpful service, sensible prices. Gt. Lype Farm. Charlton, Ni Malmeshury, Wilts SN16 9DR

LINCOLNSHIRE AREA
 FED UP WITH
 TRAVELLING FAR AND WIDE FOR YOUR EX-RENTAL TV AND
 VIDEO'S?
 THEN WHY NOT TRY US FIRST? BUDGET

 TV
 Unit 4,
 Exchange Road Lincoln LN6 3JZ Tel.
 Lincoln 500413

JOMILL ENTERPRISES

173 Dalston Lane, Hackney, London E8 Tel: 01-533 2229
VHF/UHF TELEVERTAS £14.50 TRADE ONLY. Quantities P.O.A. ceramic filters for UK and export conversion NTSC decoder for replacement of chip TDA3560/1 £47.50 add cost of posting and packing. All prices plus VAT.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 8.50$ per single column centimetre (minimum 2.5 cms). Classified advertisements 55 p per word (minimum $£ 10$)

WIZARD DISTRIBUTORS MANCHESTER

 TV \& VIDEO SPARESWe stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, SC'HNEIDER, HINARI \& DECCA And also THORN \& ITT FIDELITY SPARES MAIN DISTRIBUTOR Did you know we also stock FUSES
TUBES AERIALS AEROSOLS RESISTORS
CAPACIORS CAPACITORS HANDSETS VIDEO HEADS TVMIDEO TROLLEYS
Counter open Mond ild open Monday--riday
Mai Order-Access/Visa TRADE ONLY EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN Tel: 061-872 5438; 061-848 0060.

PANASONIC'S ETC.

 EXAMPLES
TC2205 remote
 TX220022 inch text
 NV 333 elect Video

£50
Slim front loaders
Superb and working Many other models/makes More profit, less headaches
Reguiar supply - Qually Discount Repossessed TV Centres Ltd Daisy Works
345 Stockport Road, Longsight, Manchester
(A6 between M/c and Stockport)
Mr Poole or Mr Ricketts
Tel. 061-273-2854/274-3409

S.	SPARES, PANELS AND MANUALS PHILIPS
TELEVIEW	$01-9945537$
194, Acton Lane, London W.4.	

Colour TVs from Clean and tidy

85 each

0115 ${ }^{202 \pi}$ FROM

FROM

Philips and Pye types

Teletext

FROM

825

VHS Video

Spares machine electronic

Electronic VHS
 FROM
 Various makes - changing daily

Video 2000 system from £15

 Phone for availabilityVideo Beta

FROM

GENERAL FAGTORS

UNION STREET, DONCASTER, SOUTH YORKS Excellent motorway access from M1, M18, A1M
(24 hour Ansaphone Service)

Gash sales only

Prices based on quantity plus VAT

Always around $200+$ fully working colour TVs and Videos available. All in clean condition and ready for immediate sale or rent.

Phone us for models available today.

SERUICE PAEES

box number $£ 1.00$ extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC" Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazine Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

SUFFOLK TV \& VIDEOS

Large stocks always available GEC, Fineline KT3, KT30, Hitachi, Nat Pan, working stocks in our showroom from £20.00.
Text $£ 85.00$ with handset.

0394670115

Bridge Road, Felixstowe, Suffolk 1P11 7FL

NEW FERGUSON SPARES, original Ferguson heads $£ 10.50,3 \mathrm{~V} 23$ original handsets $\mathrm{f} 16 .(\mathrm{m})$ plus many other items e.g idlers etc. Ring for details $0532+4195$ prices exclude VAT

> MERSEYSIDE \& NORTH WEST DEALERS TRADE WORKING PRICE LIST

STAHDARD

DECCA $80 \cdot 100 \cdot \mathrm{Mk}$ III

ITT 32 . 45
G11 PHILIPS
G11 PYE + GEC PIL $£ 18.00$
K 30
PAN 2205 ITT TRIMLINES

```
E10.00
```

REMOTES
G11 .. $£ 25.00$
ITT TFIMLINES $£ 35$
K30.
TEXT
PAN2285 .. 880.00
G11 IFi.. $£ 80.00$
ITT TFiMMLINES
MkIII.
$£ 80.00$
MkIV …..00
DISCOUNT TV SERVICES
29 CHURCH ST., RUNCORN
Tel: (0928) 577203

Thom 3(10) 3.3 (x)
Thorn 9(0)
U'horn 90(0)
UNIVERSAL
I year guarantec
I year guarantec

ens

The UNIV G.E.C.I.T.T. Pye. Rank. Deccad Continentat sets. WING ELECTRONICS
15 Waylands. off Tudor Rd.. Hayes Find, Middeseser

NORHP WEST EMECHRONICS SHOCK CIEARANCE
 YOU WONT BEHTER OUR PRICES OR QUAHHY

WORKING STOCK
 ALL THOROUGHLY CHECKED BY OUR OWN ENGINEERS

TV'S

Bush T20/22,T24/6 £20
Pye G11
£20
PyeKT3 £30
PyeK30 £30
Ferguson TX
£30
Hitachi........................ £20
Hitachi 226 upwards from $£ 35$

VIDEO's

Sharp Electronic 7300 ... £55
Ferguson 3V29 £75
Sharp 8300 $£ 80$
National Panasonic £70
Ferguson 3V30 £85
Sharp 9300................... £85
Hitachi VT11 £75
BRADFDD
SPRING MILL STREET, MANCHESTER ROAD, BRADFORD 5
5 MINS FROM MOTORWAY

PX MICROWAVES £15

TRADE SHOWROOM

LARGE QUANTITY

 OF READY TO SELL TV's \& VIDEO'sAlso BRAND NEW!! TOWER SYSTEMS, MIDI SYSTEMS, PERSONAL STEREO'S ETC.

CALL IN
YOU WILL BE DELIGHTED!
WORKING EX-EQUIPMENT PANELS
100's PX
HOOVER JUNOR VACS
ALL MODELS
AND OTHER MAKES IN STOCK

WE ALSO STOCK LATE MODEL VIDEOS

3V35/44/55/65 Hitachi VT33 etc. Philips 6660/64/UR60 and many more
RING OUR HOTLINES NOW FOR PRICES

TV'S

Bush T20/22/24/6 £15
Pye G11 £15
KT3 £20
K30 £20
Ferguson TX9/10 £15
Hitachi........................ £10
Hitachi 226 upwards from £25
MANY MORE GEC, ITT,
THORN etc. from $£ 5$
VIDEO's
Sharp Electronic 7300 ... £35
Ferguson 3V29 £50
Sharp 8300 £50
National Panasonic £45
Ferguson 3V30 £55
Sharp 9300 £55
Betamax all makes......... £10

WANGHISTTER

UNIT 3,
MERSEY ROAD NORTH INDUSTRIAL ESTATE, FAILSWORTH

Sanic \mathbb{T} Zistributors

Unit 4a, Abberley St., Smethwick Birmingham B66 2QU
Tel: 021-565 1727 Fax: 021-555 5367

WORKING SETS FROM £8

FULL R-C FROM £15

TOSHIBA - HITACHI - PANASONIC - J.Y.C. SONY - ALL OTHER JAP ARE IN STOCK NOW

FROM £40
STEREO TEXT
P.O.A.

COLOUR PORTABLE P.O.A.
$\star \star \star$ DIRECT LOADS AVAILABLE $\star \star \star$

PLEASE PHONE FOR PRICE LIST

WORKING VIDEOS FROM £40

VIDEOS FOR SPARES

FROM £10

AUDIO

MIDI SYSTEM - MUSIC CENTER - TWIN DECK STEREO - STEREO RADIO CASSETTE - MONO RADIO/C - CLOCK RADIO - CAR STEREO - CAR ALARM - AND MANY OTHER AUDIO ITEMS ARE IN STOCK NOW. PHONE FOR PRICE LIST

EXPORT ENQUIRIES WELCOME

All prices are subject of 15\% VAT and based on quantity

ANY SPARE SENT ANYWHERE

Whethen you're protessional or doubler, your mail order answer 'or that hard to get component AG'S THE small order specialist
(0752) 224369.

AGS, 49 Farringdon Road, Plymouth PL4 9ER

WHIlow Vale Electronics Ltd

Sole UK Parts distributor for Grundig and Sharp. Main Philips UK Distributor

FREE BAGFLLI. COMPONENTS with 26 page Components Catalogue. Inclucing valves (rare \& mex(ern). SAE: KENZEN (TV), Unit 9. 16/20 (Eeorge Strect. Birmingharm BL2 9RG.

[^5]THE INEW 80 CENTIMETERS OFF SET DISH FROM EURO SAT
Designed and developed in the UK Astra, BSB, DCF 2 and telecom. Dish antenna from 80 cm to 3 meters. Phone or write for details:
SAE: Euro Sat, 107 Cross St.
Sale, Cheshire M33 1JN, England. Tel: 061437 2631/061 8814249.

EX GRINDIG POWER SUPPLIES ($1-15$ volt 1.5 amp . Cased with meter/overload protection $£ 14.95$ inc $\mathrm{p} \& \mathrm{p}$. ISOLATION TRANSF()RMERS 240 volt $3(0)$ watt t6. 45 ince p\&p. SAE for lists. S. H. ELECTRONICS, 5 St Josephs Park. Ballycrutte. Downpatrick BT30) 7 EN .

REPAIR SERVICE

AYO'S OSCILloscopes \& TEST EQUIPMENT Repaired Manuals available. J.R. COAD ELECTRONIC SERVICES Phonc (11-340) (230).

METERS

METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD (0202) 68.3498.

> TO FILL THIS SPACE RING US NOW ON 01-261 5942

ACCESS
 TECHNICAL INFO SERVICES (T) 76 Church St., Larkhall, Lanarkshire ML9 1HE
 MASTERCARD EUROCARD

 Phone 0698884585 Mon-Fri 9-5, 0698883334 any other time FOR FAST QUOTES IMMEDIATE DESPATCH of all Phone Orders by ACCESS, etc. or to Listed CustomersWORLD'S LARGEST COLLECTION OF SERVICE MANUALS
from $£ 3.50$ to $£ 50$. . . Most unobtainable etsewhere Every issued FULL SIZE SERVICE SHEET in stock; CTV's or Combinations $£ 3.50$ /Singles $£ 2.50$; Plus LSAE LSAE for any Quotation, plus FREE large Catalogue, STREE Review, Pricelists, etc.

Almost any original Video Sevvice Manual from J.V.C. or Siemens at $£ 15$ each

A small selection from titles in stock Practical TV Repairs by Tunbridge Mobile Radio Servicing Handbook Practical Radio, Repair \& Service Course Video Recorders, Sevicing by Beeching Oscilloscopes, How to Use/How they Work Servicing Mono Portable TV by Wilding Computer Engineers Pocketbook 1987 Brit CTV Repair Manual by Tunbridge Principles of Compact Disc The PAL System from Thorn Research Audio \& Hifi Engineers Pocketbook Questions \& Answers on Radio Repair Video Senvice Manuals each $£ 15.00$ Colour TV Service Manuals12 Bin Colour TV Repair Manuals covering the British \& many Foreinn from 1970 to 1988 20 Fault Finding Booklets covering most Videos from 1979 to 1986 to match circs below The Set of Thorn's own 10 Video Circuit Description Manuals from 3V00 to 3 V 43 10 Giant Binders containing Circuits \& Layouts for Brit \& Foreign CTV from 1974-1989 4 Giant Binders containing Circuits \& Layouts for most Videos from 1979 to 1986

Send now for

Full details of our Famous Complete Integrated Repair Systems for TVs, Videos \& Domestic Equipment These systems contain all the circuits \& data needed to cover repairs and servicing for anyone in business or wishing to start up their own business. All the Diagrams, Repair, Service \& Technical Data needed. At a fraction of the normal cost of buying such data.

The CircuitLayout Set for almost any Video . . . £7 each, CTVs . . . £4 each
For $£ 3$. . . Comprehensive Service Manuals \& Sheets Catalogues PLUS 1988 Chassis Guide \& £4 Vouchers

BUSINESS FOR SALE

TV/VIDEO/AuDIO Retail and Repair Business, West Yorks area. Ill health forces sale. Offers. Telephone 1924363143.

TEILEVISION REPAIR SHOP/FLAT for sale. East Birminghanı, including stock, carpets. $£ 48 \mathrm{k}$. Tel. 121 7861969 evenings.

TV/VIDEO/AUDIO BUSINESS in Thornton Heath. Surrey. Large shop/workshop on main road. Location needs vigorous management to increase turnover. No dehts. Rent $£ 7,150$ p.a. 7 years lease $£ 35,(100)$ secures all. Tel: 01-644 7313.

Ku BAND SATELLITE TV THEORY, INSTALLATION

 AND REPAIRThis 383 page manual by Baylin \& Gale of USA covers dish theory, uplinks, footprints, site survey, installation and adjustment, descrambling, cable TV even includes a computer program for finding your satelite. Second Edition f23.

SATELLJTE AND CABLE SCRAMBLING AND DESCRAMBLING. Basic theory. 2ndEd. 280pinutes. VHS PAL40
627
HIDDEN SIGNALS ON SATELUTE N . Teletext, telephonehannels, teletype£20
SATELLITE, OFF.AIR \& SMATV. BY F. Baylin $£ 25$
WORLD SATELLITE ALMANAC. All footprints, 650 pages,second edition by M. Long$\ddagger 32$
Lewis. Microwave, TVRO Encryptionf 45
SATELLITE TV INSTALLATION GUIDE. 2nd edition by JohBATELLTE TV INSTALLATION GUIDE. 2nd edition by John

Price inctudes P\&P UK. Airmail Europe $£ 2$. Outside Europe $£ 6.00$ extra per item
24 RIVER GARDENS, PURLEY, READING RG8 8BX. TEL: 0734414468 (Answerphone

FOR VAlFs, SERVICE DATA, Amplifiers and Radios. Try the Vintage Wireless Co. First send for free information packige. 1989 Catalogue available April £4.00. Cossham Street. Mangotstield, Bristol BSI7 3EN. Tel. 1272 565472.

> THE DOMESTIC VIDEO RECORDER SERVICING BOOK 3rd EDITION IN HARDBACK - THE ENGINEERS BIBLE -

With chapters on Hi-Fi, Digital Servos, Fieldstores, Luminance \& Chrominance Signal Circuits, CCD's Camcorders, 8 mm , S-VHS \& VHS 'C' Formats, Auto Focus Systems, Camera Signal Processing A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS THE COMPLETE REFERENCE TO VIDEO CIRCUITS. ORDER YOUR COPY NOW (while stocks last)
E21.00 inc. P\&P (UK + N.i. only) From: NEWARK VIDEO SERVICES GROVE FARM ESTATE, LONG LANE BARNBY-IN-THE-WILLOWS, NEWARK NOTTS. NG24 2SG Access \& Visa Tel. 063684327.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes Part 1.
 The Colour Signal Part 2.
 The Receiver Decoder Part 3

Receiver Installation

VHS * * *V2000 * * *

 BETAMAX $\star \star \star$ UMATIC For full details telephone 0253725499 (Day) 0253712769 (Night) Or send for precise details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (encloding this advert)NAME ADDRESS

In-House Engineering Excellence

Bring your Bench Engineering skills to a more progressive technical environment

- Comprehensive delivary, installation and repair service to a number of leading electrical retail clients including Rumbelows.
- Young progressive ard fast-growing company
- A team of 400 skilled engineers
- Nationwide network of senvice centres
- Advariced workshop and banch facilities
- Variadand stimulating work on the widest range of products
- Sophisticated inhouse computer support systems
- Integrat part of the Thorn EMI Group.

Based at the Oxford Centre, you will use the very latest engineering technology in carrying out the more complex service and repair jobs on the variety of electrical goods returned to the centre. Industrious, reliable and thorough, you will be able to manage your time well and work confidently on your own initiative A C\&G in Electronic Servicing or the equivalent is a pre-requisite together with substantial experience in either colour T.V. and video, or audio. A clean drivirg licence would also be advantageous.
With Solutions you can look forward to an attractive salary and a generous set of benefits which includes staff discount, 4 weeks' holiday and a contributory pension scheme. Plus, of course, the outstanding opportunities you will enjoy at a company with our outlook and stature, an important part of the internationally renowned Thorn EMI Group.

ELECTRONIC SERVICES

We have the answer

Bring your skills to where they'll work hardest for you by calling Colin Smith on 0865 340995, Oxford Service Centre Tower Road, Berinsfield, Oxford OX9 80F.

TV SERVICE ENGINEERS

Due to our involvement in satellite TV, we urgently require experienced bench and field TV engineers. Bench engineers will work in fully equipped workshops in Mitcham and field engineers service areas in Greater London and home counties. Top salaries are offered and a 'better-than-average' estate car provided for field engineers. Existing holiday arrangements will be honoured.

Write or telephone:
Dennis Fairweather
Triadcolour TV Service Limited,
189/191 London Road,
189/191 London Road,
Mitcham, Surrey CR4 2JB
Mitcham, Surrey CR4 2JB
Telephone: $01-6405521 / 2$
Triadcolour

RING
NOW
FOR
FURTHER
INFORMATION
ON
SERIES
DISCOUNTS
AND
CURRENT
RATES

TV \& VIDEO ENGINEER

Required by a small independent business situated in a small rural town in

$$
\begin{aligned}
& \text { ALBERTA, } \\
& \text { CANADA }
\end{aligned}
$$

The applicant must be flexible, have City \& Guilds qualifications or the relevant experience. A work permit is available.
For further details concerning job description, the attractive salary etc please apply to:
WANWRIGHT TV \& VIDEO SERVICES
F.A.O. MR. M. JORDAN,

BOX 1574, WAINWRIGHT
ALBERTA, CANADA TOB 4PO

SKILLED TECINICIAN WANTED. Gool pay rates apply. JOMILL ENTERPRISES, 173 Dalston Lane EX. Tel. $11-533229$.

FOR FURTHER DETAILS CONTACT CLASSIFIED ON 01-261 5942

WANTED

> SURPLUS/REDUNDANT ELECTROMIC COMPONENTS WANTED
> I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

> ADM Electronic Supplies
> Tel. $0827873311 . \quad$ Fax 0827874835

STOCKS ARE GETTING LOW ORDER NOW 1987-88	1987-88 $\begin{gathered}\text { VIDEO } \\ \text { SERVICING }\end{gathered}$ OUT THIS SUMMER
Sele	NEW - REGUNS - USED
cien	S.T.s PORTABLE $14{ }^{\prime \prime}$ \& 16"
	ALL OTHER SIZES
	N T
NAL STANDARD BOOK No. IS: ISBN 0951	WE CAN HELP

INCLUDES POST \& PACKING

INDEX TO ADVERTISERS

ADM Electronic Supplies
 Admin Televisions Aerial Techniques

AGSElectronics
Amnck Visions Wholesale
Apollo
ASI Training
Audio Electronic
Audio Visual Services
BI-Tel
B. K. Electronics

Bolton Metropolitan Colleo
Broughtame to
Budget TV
Bull, J \& N Electrical
Campion Wholesale Ltd.
Central TV \& Video Wholesalers Lio
Centrevision.
Chromavac LIt
Clearvision
Clearvision
Crewe Whotesale
Crofton Electronics
C.T.V.

Data-Go
Discount TV Service
Donberg Electronics
East Cornwall Components
East London Components
Electron TV \& Audio
Electrosmart
Eratime LTd
Express TV Supplies
Flintdown Channe: 5
Ford. Frank
General Factors
Grandata Lod
Griftronic Emission Lid.
Hussain Central TV Ltd
ICS
Irwin
Irwin Electronics
Jenhut Ltd
Jomill Enterprises
KeshEiectronics
LRC (Spares)
Macarthur Benussi Partnership. The
Marstall Litd.
Mauritron Electronics
Midand TV's.
Newa
N.G T Electronics 1

North West Electronics
Omega Electronics
Papworth \mathbf{E}
PC TV Services
PC TV Services,
Phoenix TV Whole
Post a Part Electronics
ost a Part Etectronic
Pro-Vision
P.V. Tubes

Radio and TV Components Acton Lto
Radio Components Specialist
Relay Omagh Ltd.
Repossessed IV Centres
Riscomp Ltd
atellite Televisions
Sendz Components
Sherwood fubes Lid
Solutions.
Sonic TVDis
Sol
Southside VIV.
Stewart of Reading
Suttolk TV \& Video
Supentronics
Supervision
Taylor Bros (Oldnam) Lid.
echnical Advisory Systems
echnical Information Services
eleprice Lto
eletraders
Televideo Services
Teteview
Iettech
Idman Mail Order Lto
Todd Trading.....
Tree, W. Trade
Triad Colour
Vascont Ltd
view-lel.
visions G. B. Ltd
Wainwright TV \& Video
West Micland TV \& Videe
Wiliow Vale Electronics
Wing grove Lid
Wizard Distributors
Zoneport

NEW PRDDUCT ANNOUNCEMENT introducing the UNIVERSAL

A great time saving device for the bench or field service engineer for hands free video inspection or repairs. Simply insert the cassette and experience its many
advantages to aid fault diagnosis
No need to remove the tape carriage for routine servicing
No more taping of sensors and transmitters during servicing No need for manual operation system switches etc during servicing or repair

PRICE: £9.99

Supplied with cleaning buds and fluid
To obtain your cassette please send cheque or p.o. to.

ELECTRON T.V. \& AUDIO 36 Gifford Road, Stratone Village, Swindon, Wilts.
Tel. 0793-39363

QUALITY USED T.V. \& VIDEO

PHILIPS/PYE G11, KT3/30. LARGE QUANTITIES OF STD., REMOTE AND TEXT CTVs ARRIVING DAILY.

Free Delivery Service to Most Areas of the U.K.

UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN,
WORCESTERSHIRE DY13 90B

[^0]: P.B.

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 18$, overseas (surface mail) £21 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: 面 View-tel televisions (0388)

 SWAN STREET, EVENWOOD,
 832832 Nr. BISHOP AUCKLAND, CO. DURHAM.

[^3]: EXPRESS T.V. SUPPLIES The Mill, Mill Lane,

 | Rugeley, Staffs. | Bristol |
 | :--- | :--- |
 | 0889-577600 | 0454-316285 |
 | (9.00-6.00 Mon-Sat) | (After 4pm) |

[^4]: RELAY
 OMAGH LTD COMPUTER SOFTWARE
 DO YOU RENT TELEVISIONS?
 DO YOU STILL USE A CARD SYSTEM?
 DO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
 If you do then we recommend our new computer TV and Video Rental package This package includes

 * automatic updating of each customer's record
 * alphabetical print-out of each customer's arrears and payments missed
 * total arrears immedietely available
 \star easy to use and operate
 Operates on all IBM comaatibles running under MS-DOS Free demonstration disc available
 WILLIAM J THOMPSON
 Donaghanie Post Office
 Beragh Co. Tyrone
 Telephone Beragh 214 (0662 72)

[^5]: TWO DC-15MHz OSCILLOSCOPES. Solatron CDIH(x) and Telequipment D 43 . Both with service data and working to specification. £75 cach. Farnham (12522) 7111661.
 TEXTRONIX OSCHLIOSCOPE 465/B. 475 dead? free quotatuon. Same bought for cash. Phone 1793 52×38.3

