SERVICING-PROJECTSVIDEO-DEVELOPMENTS

The B\&O LLX2500/2800 Chassis CD Laser Assemblies • DX-TV Test Report • The Trinitron Tube TV Fault Finding • VCR Clinic Characteristics of Op Amps

For the Best Deal

in Spares....

Good people to deal with!

ELECTRONIC
 COMPONENTS AUTUMN '88

Open an Account NOW. See Coupon Opposite ...

COPYRIGHT

(C) IPC Magazines Limited, 1989. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES

Indexes to Vols. 36 and 37 are available at 80p each from the Editorial Office (address above).

SUBSCRIPTIONS

An annual subscription costs $£ 18$ in the UK, £21 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, Vouchcheck Services, Unit A6, Poplar Business Park, Prestons Road, London E14 9LR. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

405 Leader
406 The Sony Trinitron Tube
Nick Beer
How the unique Sony Trinitron tube works, with an account of some of the improvements that have been introduced in recent years and detailed guidance on setting up.
408 Servicing Compact Disc Players, Part 2
Joe Cieszynski
This time a look at the various types of laser optical units in use, with an account of what the various items in each assembly do.
413 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. Some excellent tropospheric openings provided a fine start to the year.
414 Next Month in Television
416 TV Fault Finding
Reports from Roger Burchett, Alfred Damp, Bob McClenning, lan Bowden, Nick Beer, J. Olijnyk and John L. Howard.

418 Teletopics News, comment and developments.
420 Camcorder Servicing, Part 3 Steve Beeching, T. Eng.
How a colour camera tube provides a composite luminance plus R/B carrier output and the way in which these signals are processed. Particular attention is paid to the various controls found in a colour tube camera and the effects they have on the display.
424 The B and O L/LX2500/2800 Chassis
Nick Beer These sophisticated sets employ microcomputer control via three bus lines and have an unusual chopper power supply circuit. Once these features of the receiver are understood fault finding should not present many problems. How to tackle a set stuck in standby and a summary of faults found to date.

428 Letters

430 Strange Things
Les Lawry-Johns Some unusual faults have cropped up recently.
431 The Philips VR6470 and Related Models
Barry Loughran A guide to the usual fault conditions found in these popular VCRs.
434 Test Report: The Crotech 3133 Scope
Eugene Trundle
A thorough bench test of this 25 MHz dual-trace oscilloscope shows that it's well suited to TVNCR servicing
VCR Clinic
Fault reports from Philip Blundell, Eng. Tech., Alan Shaw, Paul Hardy, Eugene Trundle, Nick Beer, Ian Bowden and B. Ross.
A Look at Operational Amplifiers, Part 1
Keith Cummins
How these versatile devices work and the characteristics that determine circuit design.

440 Service Bureau

441 Test Case 316
OUR NEXT ISSUE DATED MAY WILL BE PUBLISHED ON APRIL 19

					TWTEERATEDCIRCUI
REMOTE HAND SETS				$5{ }^{5}$	coill
			(eomberacele		
				ander ind	cosme
101 Series Non-Txt US 8513 Tatung 145/150					
			Lead will Rails (100)	\% 23	
			ciabe		
			cean		
			$\xrightarrow{1 \times 2}$		
				Uniol	
					2020
RTP07/AR380N - TP200-300-390 RTP20NRC112-TP16-21-21VH			${ }_{\text {a }}^{1 \times 1}$		
			UHF		
${ }_{\text {a }}^{\text {a }}$					
				Italscol	
				Ienat	
			mack		Soman
				Legrialeal	
			nsters		
				(e)	
T17		Richer			
$\begin{gathered} \overline{71} \\ \frac{71}{717} \\ \hline 18 \end{gathered}$					
	Usimi	UST ASK!!			
$\stackrel{{ }_{72}}{\square}$	$\begin{gathered} 43737 \\ \substack{43737} \end{gathered}$			Way Mains Adaptor.......... 3 Amp Screwless Plug Tops	
${ }_{7}^{724}$	M 350	mink		Codmputeragezssoi	
	-			disk	
	cisi	Cass. Canom	(eamile (abe (iom)		
${ }_{7}^{736}$					${ }_{\text {a }}$
				1.700	
	$\xrightarrow[y]{\substack{239}}$		(incole	siome	
	¢		(in	dot	
	Wr				
		in, Anstrad Secarity and, Satelitite Dishes and and			
	REN				
				Cassin	
			62are Gerey fing Man 2.5		
	epran				3652124 h
			IV WAIL ERACKIS		32611 answe
				${ }^{\text {M0655 }}$	399936 phone
			${ }^{\text {Prasem }}$	12517	: 635562
				ORoEsS WELCO	GRIFFING (for P.V.) FAX No. 0254395361

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations.

* Fully interlaced sync pulses with correct picture blanking.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
£70.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module

Post/Packing $\mathfrak{£ 3 . 0 0}$

VAn
Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
t Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
\star Backup service available.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $£ 8.60$. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT $\mathbf{£ 4 . 2 0}$ (Combined P\&P $£ 3.00$).
MK 4 (BATTERY) BUILT \& TESTED $558.00+£ 3.00 \mathrm{P} \& \mathrm{P}$. MK 4 (MAINS) BUILT \& TESTED 868.00 + $\mathbf{1} 3.00$ P \& P. ADD VHF MODULATOR (CH 1 to 4) FOR OVERSEAS 55.75. VAT 15\%
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

KITS \& PROJECTS

PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p. $£ 1.00$. PAL ENCODER KIT (RGB to Video) £18.50 p.p. £I. 30.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 13.50$ p.p. 80 p. (Alum. Case $£ 3.20$ p.p. £1.40.) ADDITIONAL GREY SCALE Kit $\mathbf{\Sigma 2 . 9 0}$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT £22.00 Alum. Case £3.20. De Luxe Case $£ 8.60$ (Built \& Tested $£ 48.00$) p.p. $£ 2.50$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 29.50$ p.p. £3.00.

TV SERVICE SPARES

SATELLITE T.V.
 ON DEMONSTRATION AT 172 WEST END LANE NOW! - ENOUIRIES WELCOME

PHILIPS SPARES

G8 PANELS (Tested) Power $£ 12.50$, Scan $£ 15.00$, Signals $£ 15.00$ p.p. $£ 2.50$ KT3, K30 PANELS, tested, exchange," sound, power, bridge rect, frame, RGB $£ 7.50$ each. Decoder (Non-rext) $£ 10.00$ p.p. $£ 1.50$. G11 PANELS (tested), 'frame, IF, decoder $£ 12.50$ each. p.p. $£ 2.00$. Scan-6+5. $£ 0$ p.p. $£ 280$-Power tested exchange $£ 18.00$ p.p. $£ 2.80$.

Gi1 PANELS EX-RENTAL (untested) Scan, Frame, Decod - 22.50 p.p. $£ 2.00$.
G11 If PANEt-(new) less Tuner $\$ 2$. 50 p.p.p. $R 1.30$. ${ }^{\text {G }} 20.00$ p.p. $£ 1.80$
G9 POWER SUPPLY UNTT $\mathbf{5 5 . 0 0}$ p.p. $\mathbf{£ 2 . 3 0 .}$
G8 6 Position Channel Selector (sloping buttons) $\mathbf{5 2 . 5 0}$ p.p. f 1.00
GANDSETS (new replacements) p.p. £1.50.
G11 ULTRASONIC non-text $£ 19.50$, infra-red text $£ 19.50$. Others available. KT3 пonntext (RC4001), KI3, K30 Text $£ 19.50$.
KT3 nontert (RG400), KT3, K30 Text £19.50. KT, TEXT/VIDEO TYPE £3.50 p p. $£ 1.00$.
PP. £1.00. KNUK40 SYSTEM 4 £.3.50

THORN/FERGUSON SPARES

$8000,8500,8800,9800$ PANELS tested, exchange. Power 88.80 , Frame.
Decoder $£ 10.00$ p.p. $£ 2.30$.
9000 Series IFDecoder tested $£ 10.00$ p.p. $£ 2.30$.
TX9 Panels complete \& tested $£ 28.00$ exchange (shop only)
TX9 Panels ex-factory for small spares includes IC's \& semiconductors, etc. $\mathbf{£ 3 . 0 0}$ P.P. $£ 2.00$.

TX9. panels salvaged ex-factory for spares incl. electronic \& mains transformer §8.50 p.p. $£ 3.00$.
TX9/TX10 Facia, control panel incl. infra-red receiver $\mathbf{5 8 . 5 0}$ p.p. $£ 2.00$ TX10 Focus control $£ 8.50$ p.p. $£ 1.00$.
TX9/TX10 Saw filter IF panel $\mathbf{E 5 . 0 0}$ p.p. 80 p.
TX9/TX10 Remote \& tuning control panel 1515 (incl. SAAS012) $£ 7.50$ p.p. $£ 1.80$ REMOTE CONTROL HANDSETS - TX9, TX10 inred-red text $£ 19.50$ p.p. $£ 1.20$. ITT SPARES: CVC30 series convergence \& purity panels $£ 2.50$ p.p. $£ 1.50$. CVC30 series panels surplus (untested) $£ 2.50$ each, CMP31, CMF31, CMA30, CM532 p.p. 80p, CMD33 p.p. $£ 1.80$.
CVC20030 series chassis for small spares (shop only) $\mathbf{2 2 . 5 0}$.
BUSH SPARES: T20T22 panels, tested, exchange, power scan drive $£ 18.00$. Scan $£ 25.00$ p.p. $£ 2.50$. T200T22 touch tune panels + controls $£ 3.50$ p.p. $£ 1.50$.
GEC SPARES: 20AX MKII line time base $\mathbf{£ 1 8 . 0 0}$ p.p. $£ 2.00$. Power (PCT78) tested exchange £18.00 p.p. $£ 2.00$.
SONY SPARES: ON/OFF SWITCH 21 mm or 26 mm , spaced holes, universal
Sony on/off $£ 4.20$ each p.p. $80 p$.
HANDSETS (New Replacemepi) RM- $604 ; 606,6$ h3. $615,630,632,635 £ 19.50$ p.p.
f1.00. Philips KT3, K30 $£ 20.00$ p.p. ${ }^{(2230}$.
 unit, VM6330 \& Line Coupler $£ 20.00-p . p-50$.
VARICAP TUNERS: Grundig 8630 series 55.00 p.p. $£ 1.00$. U321, U322 NSF204, ELC1043 (equiv), SC4, VHF NSF203 $£ 7.80$ p.p. $£ 1.80$. UHF/VHF UV411 $£ 10.80$ p.p. $£ 1.00$.
LOPTS New and guar. P/P $£ 1.50$, Bobbins 80 p.

FERG. HMV, MARCONI, ULTRA	R.B.M. T20, T22 $\mathbf{5 9 . 8 0}$
1590, 1591, 1612, 1613, 1712 54.80	R.B.M. T20, 22 Bobbin55.60
FERGUSON 3787 (Normende) 59.80	DECCA Bradford (state Mod No) 68.80
THORN 1600, 1615, 1690, 1691, $1790 £ 9.00$	DECCA 100 58.80
THORN 3000/3500 SCAN, EHT 86.90	FIDELITY ZX2000. $3000\left(\operatorname{Not} 22^{\prime \prime}\right)$ ¢15.50
THORN 8000 $\mathbf{\Sigma 1 2 . 8 0}$	GEC 2110 series $\mathbf{£ 1 0 . 6 0}$
THORN 9000 to 9600 89.80	ITTCVC 5 to 9, CVC20............... 59.80
THORN TX9 $£ 12.50$	ITT CVC25, CVC30 series 58.80
THORN TX10 $£ 16.50$	ITT CVC45 59.80
SPECIAL OFFER	PYE 725 ($90{ }^{\circ}$) 731 to 741 59.20
DECCA 70,80 53.50	PHIIIPSG8 58.80
ITT VC300 $\mathbf{8 4 . 8 0}$	PHIIIIPS G957.80
GEC $2114 \mathrm{~J} / \mathrm{J}$ unior Fineline 81.00	PHILIPS KT3.......................... $\mathbf{5 9 . 8 0}$
PHILIPS 320 $\mathbf{\Sigma 2 . 8 0}$	PHILIPS K30, K35................... £27.00
PHILIPS G11 $\mathbf{8 5 . 0 0}$	PHILIPSCTX-E.................... $¢ 22.50$
GEC 2028, 2040, 2100 11.00	PHILIPSCTX-S $£ 22.50$
PYE 691.7 chassis type only $£ 5.00$	

OTHERS AVAILABLE, PRICES ON REQUEST.
TRIPLERS: THORN 9000 £8.80.
UNIVERSAL (best quality) $£ 7.80$.
CONTINENTAL TVK \& BG RANGE (quote exact no.) replacements $£ 13.80$ DECCATATUNG $£ 7.80$ p.p. $£ 1.50$.
THORN 1500 30R5 stick $£ 1.50$ p.p. 80 p. Others available
6.3V CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. $£ 1.40$

455 CRYSTALS for Remote Control Handsets. 4 for $£ 1.00$ p.p. 50 p
VHF to UHF Converters $\mathbf{£ 2 6 . 5 0} \mathbf{p}$.p. $\mathbf{£ 2 . 5 0}$.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENOUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT I5\%

Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HM604 60MHz UNIVERSAL
${ }^{*} 2$ Channels

- Bandwidh : OC-60MHz

* Timebase $\begin{aligned} & 2.55-5 n s \mathrm{~cm} \\ & \text { - Tngerng: } \mathrm{DC}-80 \mathrm{MHZ}\end{aligned}$
- Active TV.Sync-Separata
* Altier delay trigger
* Sweep delay * Delay line
*Triger LED indicalor
- Trigger LED indicaior
* Caliorator: $1 \mathrm{HHz} \& 1 \mathrm{MHz}$ Sa. Wave
* Component tester

Price $£ 575.00+£ 86.25$ V.A.T.
FREE Securicor Delivery

HM1005 100MHz UNIVERSAL
3 CHANNELS-UP TO 6 TRACES SPECIFICATIO

* Bandwidth: DC. 100 MHz
* Sens: Ch1. Cn2. Ch3.,
 - Timebase 8: $0.2 \mathrm{~s}-5 \mathrm{5ns} \mathrm{~cm}$ * Atter delay trigger * Delay line * Tinger LED indicator
* Overescan LED indicator
* ACtive TV.Sync-Separator

$\frac{\text { Price £726.00 + £108.90 V.A.T. FREE Securicor Delivery }}{\text { SPECIFICATION } \quad \text { HM205-2 20MHz DIGITAL STORAGE }}$
- SPECIFICATION

HM205-2 20MHz DIGITAL STORAGE

* Analogue real time (San
* Bandwidrin DC.20MHz
- Sens: Chy, Ch2.. $2 \mathrm{mV} / \mathrm{cm}$

Timebasase Anaiogue: $0.2 \mathrm{~s}-20$ nes
-Tnggenng $\mathrm{DC}-40 \mathrm{MHz}$

* Aclive TV. Sync-Separator
- Max sampling yate: $2 \times 5 \mathrm{MHz}$
*Memory: $2 \times 1024 \times 8 \mathrm{Bi}$
* Dot joiner
- Component fester

Pius many more usetul fealures
Price $£ 527.00+£ 79.05$ V.A.T

FREE Securicor Delivery
B.K.'s CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guns separately. Fitted with delte and P.I.L. sockets. Compact size $120 \times 65 \times 60$
mm . Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.

A_{V} TiUE A.V.S. GROUP AUDIO VISUAL SERVIGES

LOOK NO FURTHER FOR HIGH

 QUALITY EX-RENTAL STOCK! OVER 3000 TV's AND VIDEOS AVALLABLE from 3 CONVENIENT LOCATIONS ATEENTONWhether you want one or a hundred pieces of equipment, Whether you want working in showroom condition, or off the pile, We will be pleased to supply. We are never afraid of negotiating a deal and are pleased to deliver anywhere.
All our equipment is DIRECT FROM SOURCE not through third parties - COWBOY'S PLEASE APPLY ELSEWHERE!

EXPORTERS!
FULL CONVERSION KITS FOR ALL THORN TV'S PLUS 8930 \& 3V23 VIDEOS NO SWITCHES FULLY AUTO MATIC PAL BG UHF NHF PHONE RISBOROUGH FOR

WORKING
TV'S
FROM $£ 15$
VIDEOS
FROM £50

UNTESTED
TV'S
FROM $£ 10$
VIDEOS
FROM £30

NEW

GRADE B's AT VERY COMPETITIVE PRICES - RING RISBOROUGH FOR DETAILS

NEW I.R. HANDSETS UNBEATABLE FROM $£ 10.00$

SPECIALIST EXPORT DEPT AT RISBOROUGH

SWINDON
LAURIE PHILLIPS

0793513484
0793513369
AVS SWINDON
UNIT 62 BSS HOUSE, CHENEY MANOR INDUSTRIAL ESTATE, SWINDON, WILTS.

ALL PRICES SUBJECT TO V.A.T.
HEAD OFFICE PRINCES RISBOROUGH

| $8 \cdot$ |
| :--- | :--- | | IAN NICOLL |
| :--- |
| 084443226 |
| 08444 |

AUDIO VISUAL SERVICES
36 WYCOMBE ROAD PRINCES RISBOROUGH BUCKS.

BULK BUYERS WELCOME CONTACT DAVE HOLMES AT RISBOROUGH

HUMBERSIDE

© KEN How
0652660242
0652660243
AVS HUMBERSIDE
UNIT 8 ST. MARY'S WORKS MARSH LANE, BARTON-ON-HUMBER SOUTH HUMBERSIDE.

LONDOWS NEW EX-RENTAL WAREHOUSE RELABLE WHOLESALE TV

SALE TIME!

TV's from £3 vIDEOS from £30 WE STOCK THE LOT - 10p WILL SAVE E£s TO NAME A FEW

TV's

PHILIPS G8 - G11 - KT3 - KT30 - KT35 CTX
DORIC MK2 - MK3 - MK4 - MK5
FERGUSON TX9 - TX10 - 9600 - 8800
Plus Pye, Sony, Finlandia, GEC, Hitachi, National Panasonic, Mitsubishi, Toshiba, Grundig, ITT \& MORE, MORE, MORE

VIDEOS

3V22 - 5000 - 8000 - 3V29/35/36/37/38/39/45
SHARP $9500-9600-9700+$ MORE, MORE, MORE
PANASONIC NV333/366/370/2000/7200/3000
VAT Prices exclude VAT.
HANDSETS - Handsets are included with working sets but are charged extra in 'off the pile' sales.
WE ARE JUST OFF A406 (BARKING) 2 ROADS AWAY FROM EAST HAM TUBE RELIABLE WHOLESALE TV UNIT 2
2A LATHOM ROAD
$01-4719622$
01.5912715 EAST HAM, LONDON E6

IV \& VIDED PANELS SUPPLIEO

CAKE YOUR

INTHRESTS PAY\&

Train at home for one of these Gareer Opportunities
More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice

FIRST H TUBE REBUILDING TEGHNOLOGY

SAVE EEES

KEEP THAT OLDER SET PURCHASE A NEW 56-410 OR 47-342/3 TUBE FOR ONLY $£ 5$ + CARRIAGE Also NEW 560 AKB22 $£ 35$ NEW 670 XB22 £37.50

Delta Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+f2
A47342 New	£28
17FHP New	£30
470EHB New	£30

Inline Rebuilds

Up to $22^{\prime \prime}$.. From $£ 40$ Up to $26^{\prime \prime}$.. From $£ 45$ A56-540x …........ $£ 56$ A66-540x …............ $£ 58$ Bonded Coil $\mathbf{+} 5$

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES
Delta only. Less 5\% 5+

6812959 most types of Inline Re-builds or new ex-stock RICES SUBJECT T GIASS EXCHANG

IN LINE TYPES (Not ReBulos) PHONE RE STOCK POS.
Please enquire types not listed

370 HFB-A37-590	f50	AXT 56-001	£67
370 HUB	.f50	670 CZB	£80
AXT 37-001	£50	A66-540	£125
420 CSB	.f50	420 FSB	£60
420 EDB-A42-590.	.f50	14" (A34); 16" (A38); 21 (A51); FST now available at special low prices	
420 EZB	.f50		
420 ERB	£50		
470 KUB	. 550		
510 UFB	£67	MIN. CARRIAGE £5 f10 if glass collected. TERMS Cash with order ALL PRICES EXCLUSIVE OF VAT	
510 VSB	.f67		
AXT51-001	£67		
560 DYB-560 DTB	£67		
560 EGB	£67		
560 CGB	¢67 $\mathbf{6 6 7}$		

[^0]* WE PURCHASE SURPLUS STOCKS OF INLINE TUBES: ALSO A56 $66-510 / 540$ ETC. OLD GLASS DELIVERY: By return on all stock items

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET,
HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

	\star Do you use cathode ray tubes?
	\star Can't find a replacement or shocked by the cost? \star It may well be that a rebuilt tube will solve your problem.
Come to one of the most exp the business. We have cathode ray tubes for indu authorities, major airlines sities, and, of course, the since the '60'	perienced firms in been rebuilding stry, broadcasting M.O.D. univerV trade in genera 's.
WHY NOT TELEPHONE 55800 TO DISCU REQUIREMENTS. DAV HELP YOU WITH DOME TERRY SMITH DE COMMERCIAL/PROFES	UXBRIDGE (0895) SS YOUR DYSON WILL SIIC TV TUBES. ALS WITH SIONAL TYPES.
SPECIAL	FER
$56540 s$	£42
20" \& 22" SONY	£58
27" SONYS	£65

We are currently redeveloping our factory and have temporarily transferred production facilities to a factory unit in nearby Iver (Bucks). We have made arrangements for the Uxbridge 55800 telephone to be rerouted to the Iver factory at the exchange, but if you should wish to dial directly, the Iver number is (0753) 630137. During the temporary period of relocation we shall maintain goods handling facilities at Uxbridge. It would be appreciated if intending visitors telephone us first to be sure that technical staff are available at Uxbridge if required. We greatly appreciate the confidence placed in us by our customers which has enabled our business to grow and look forward to being of continued service in the future.

DISPLAY ELECTRONICS LTD.

SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

$31 / 2$ and $41 / 212 \mathrm{~mm}$ LCD Digital multimeters: 5 ranges AC and DC volts: 6 Resistance Ranges to 20 M ohm: $\mathrm{AC} /-$ DC to 20 Amps: Hfe Transistor test: Diode Test: Continuity: Auto polarity and zero: Plus extra features as below. Size $176 \times 90 \times 36$)
mm ($3800172 \times 88 \times 36$) All with Test Leads: REDUCTE Fused: Hard carry case PIMTIED and instructions case PERTOD onty

M3650

MODEL	DIGITS	RANGES	EXTRA FEATURES	BASIC	PRICE
3800	$31 / 2$	32	Low AC/DC 0/20 micro amp ranges	0.5%	$£ 31.50$
3610	$31 / 2$	30	LED continuity indicator	0.3%	$£ 35.18$
3630	$31 / 2$	30	5-Range Capacitance Test	0.3%	$£ 40.65$
3650	$31 / 2$	30	2-Range frequency counter 5-Capacitance	0.3%	$£ 46.92$
4630	$41 / 2$	30	Data Hold 5-Range Capacitance	0.05%	$\mathbf{£ 5 4 . 7 5}$
4650	$41 / 2$	30	Data Hold, 2-Range Freq. 5-Capacitance	0.05%	$\mathbf{£ 6 2 . 5 7}$

Add 15\% VAT UK only - UK POST/INS etc. FREE [EXPORT EXTRA]
OPEN 6 DAYS A WEEK - CALLERS WELCOME
AUDIO ELECTRONICS - TELEPHONE 01 124 3564

301 EDGWARE ROAD, LONDON W2 1BN ORDER BY POST OR TELEPHONE

INSTRUMENT
CATALOGUE Ref TG UK Send SAEA4 E1.00

TV LINE OUTPUT TRANSFORMERS
 PRICES INCLUDE VAT \& CARRIAGE

VIDEO HEADS, TRANSISTORS, IC's, ALSO STOCKED.

BAIRD: 8290, 8752, 8773, 8180	12.00	IT: VC200 to VC402 CVCI, CVC2 (FORGESTONE)	$\begin{gathered} 9.20 \\ 11.50 \end{gathered}$		
RANK BUSH MURPHY		CVC5, CVC7, CVC8, CVC9, CVCzo	10.35		
A774 with stick rectifier	9.78	CVC25, CVC30, CVC32, CVCA5 CVC850, 1100, 1150, CVC40 CVC1200, 1204, 1210, 1215, 2600			
A816, T16, T18, Z712, 771	10.35		$\begin{aligned} & \text { P. } 9.20 \\ & \text { P.OA. } \end{aligned}$		
120, T22, T26, 2179, A823 11.50 2718 Basic unit 13.50					
		PVE: 169, 173, 569, 368 CT200, СT200/1, CT213	9.2010.35		
DECCA: 1210, 1211, 1511 11,50					
1701, 2001, 2020, 2401, 240	9.20	725-731, 735, 737, 741	9.78		
CS1730, 1733, 1830, 1835	9.20	PHILIPS: 170, 210, 300 320 series	9.209.78		
30, 70, 80, 90, 100	9.20				
120, 130, 140, 160	P.0.A.		$\begin{array}{r}\text { P.0.A } \\ \hline 9.20\end{array}$		
FERGUSON, THORN: 1590		TX, TB, TX2, TX3 mono G8 and G9 Series			
1690, 1691. built in rect.	9.78	KT2. KT3. series CTX G11. K30. K4. K40. split diode	20		
1600, 1615, 1700, 1790	P.OA.		$\begin{aligned} & \text { P.OA } \\ & \text { P.OA. } \end{aligned}$		
3000, 3500, 8000, 8500, 8800	P.OA.				
9000, 9200, 9300 series	12.00	$\begin{array}{ll}\text { REDIPUSION Mk1 to } 5 & \text { P.OA. } \\ \text { DORIC Mk3, Mk1 } \\ \text { SONY KV 1400, 1612, 2000 } & \text { P.0A }\end{array}$			
9500, 9600, 9650 series	12.00				
TX9, TX10, TX90, TX100, TXP5	P.OA.				
MOVIESTAR 3781, 3787, 8180	12.00	GRUNDIG: most models in stock			
TX10 focus	10.8	NORDMENDE: 8290, Z206, 2306 P.OA.SANYO: $5101,5103,7118,7130$ P.OA.			
RDELTY: FTV12 mono ZX2000 ZX3000 14", 16", $20^{\prime \prime}$ ZX3000 $22^{\prime \prime}$	10.3	SHARP: C1851H, C2051H, 1405 HINARI: CT4, CT5	P.OA.		
	16.43		TANDBURG: 190, CTV2, CTV3 P.OA.		
	27.2				
G.E.C. 2047 to 3135 mono 1201H, 1501H, 2114, 3133, 3135 DUAL \& SINGLE hybrid col. SINGLE STD solid state SINGLE STD split diode	9.20	TELEFUNKEN: most models in stock HITACHI: 1471, CPB260, 2501 P.OA. SAISHO MATSUI SENTRA P.OA.			
	9.20				
	10.00	Delivery by return of post. Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey TW9 2EO. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.			
	12.00				
	P.0A.				
INDESTI: 24EGB, 12LGB, 12SGB 10.35					
WINDINGS					
TYNE: main winding	6.80				
RBM: T20, T22, T26, 2179	6.33				
WALTHAM: W125 eht windin	237				
KORTING: hytrid winding	6.90				
THORN: 8000, 8500, 8800 eht	6.70				

POPULAR BAKERS DOZEN PACKS (Still available)
All packs are $£ 1$ each, if you order 12 then you are entitted to another free. Please state which one you want. Noter he fure on the exme the pack ref number and the next figures is the quantity of items in the pack, finally a shor description.

13A spurs provide a fused outlet to a ring main
where device such as a clock must not be switched where device such as a clock must not be switched off flex switches with neon onvoft lights, saves leaving things switched on 6v. 1 A mains transformers upnght mounting with
fixed clamps fixed clamps $61 / 2$ speaker cabinet ideal for extensions, takes your speaker. Rel 80137
make with these - burglar alarms, secret switches, relay etc. etc.
$7 \quad 225$ watt loud speaker two unit cross-overs B.O.A.C. stereo unit is wonderful value nicad constant current chargers adapt to charge aimost any nicad battery humidrty switches, as the air becomes damper the membrane stretches and oeprates a microswitch 2 meter length of connecting wire all colour coded
13 a rocker switch three tag so on/oft, or change over with centre off
24 hr time switch, ex-Electricity Board, automatically adjust for tengthening and shortening day Onginal cost $£ 40$ each.
neon valves, with senes resistors, these make good night lights
pumel we cur. one use is for an electric jigsaw puzzel, we give circuit diagram for this. One pulse Into motor, moves switch through one pole
flat sorenoids - you could make your multi-lester read AC amps with this
be operated by any low pressure variations such as operated by level in water lanks pressure variations such as water lever in water lanks 16 rpm .2 watt rated 6750 Ma power supply, nicely cased with input and output leads
stripper boards each contains a 400 v 2A bridge rectifier and 14 other diodes andrectifiers as well as dozens of condensers etc

D180 $\quad \begin{aligned} & \text { sately cover for 13A msockets - prevent those } \\ & \text { inquisitive little fingers getting nasty shocks }\end{aligned}$ inquisitive little fingers getting nasty shocks
neon Indicators in panel mounting holders lens cost disco panel - need cable clips in flex simmerstat - keeps your soldering iron etc always at the ready
mains solenoid very poweriul has $1^{\prime \prime}$ puil or could push if modified
keyboard switches - made for computers but have mary other applications
transistors type 2 N 3055 probably the most usefut power transistor
power transistor
electric clock mains operated put this in a box and you need never be late 12 v alarms make a noise . Siightly soild but OK $6^{\prime \prime} \times 4^{\prime \prime}$ speakers 4 ohm made from Radiomobile so very good quality
panostat, controls output of boiling ring from simmer to boil
leads with push on $1 / 4^{\prime \prime}$ tags - a must for hook ups - mains connections etc oblong push swithes for bell or chimes, these can mains up to 5 amps so could be foot s witch if fitted $80268 \quad 1$ into pattress mini 1 watt amp for record player. Will also change speed of record player motor
BD283 3 mild steel boxes approximately $3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ deep - standard electrical
$80293 \quad 50$ mixed silicon diodes tubular dynamic mic with optional table rest 4.7uf, non-polarised block capacitors, pcb mounting
800ks. Useful for beginners. Describes amplifiers, Miniature driver transformers. Ref LT44. 20k to 1 k . centre tapped
BD400 BD653 2 Miniature driver transformers. Ref LT44. 20k to BD553a $2 \begin{aligned} & 3.5 \text { volt operated relays, each with two pairs } \mathrm{CO} \\ & \text { contacts }\end{aligned}$ Most other packs still available and you can choose any as your free one.

> POWERFUL IONISER Generates approx. 10 times more IONS than the ETI and similar circuits. Will retresh your home, office, shop workroom etc. Makes you teel better and work harder - a complete mains Operated kit, case included $£ 12.50+\S 2$ P\&P. Our ret 12 P5 $/ 1$.
$25 A$ ELECTRICAL PROGRAMMER
Leam in your sleep. Have radio payying and ketle boiing as you wake - swich on lights to ward oft intuders - have a warm house
to come home to. You can do all lhese and to corne home to. You can do all hese and
more. By a tamous maker with 25 amp orv more. By a lamous maker with 25 a.
of 5 sitch. A Deautitul unit al $£ 2.50$.

ULTRA SONIC INTRUDER ALARM. Small, nicely cased, will delect movement in a room up to $10 \mathrm{~m} \times 10 \mathrm{~m}$. Ingenious construction
makes in independent of the mains; cannot be switched oft, even with its makes in independent of the thains; canno be switched off, even winh is
orvoft swith, until you know the secret; has delayed action enabling you to switch it on and leave the room; it has an inbuilt peezo sounder which Is very penetrating and high pitched and would trighten away most
intuders Has intemal switching and could be coupted to an outdoor intuders. Has intemal switching and could be coupled to an outdoor
alarm if requrred. It is the basis of a very efficient burglar aiarm, or has alarm if required. It is the basis of a very efficient burglar alarm, or has
other uses. For instance: you could disconnect the intemal sounder and using the internal swiches you would know when somebody arrives without that person being aware tha! you know. Similarly, the unit could be used to operate other equipment ultra-sonically. It is brand new, g_{20} plus $£ 3$ insured detivery. Our tef 20P11 aikaline type). Pnce
170 DECIBEL HORN.
N. For use with the ultra sonic intruder detector lical for exiernal positioning to attract the attention of neighbours should
you have an intruder This unit has its own mounting bracket and comes complete with good iength of lead. Price ε E
this could also be used as a loud speaker

ATARI 65XE COMPUTER
At 64K this is most powertul and
suitable for home and business. Bran
new, complete with PSU, TV lead, sulab, eomplete with PSU, TV lead,
new,
owner's manual and ssx games. Can
be yours for only $£ 45$ plus $£ 3$ Insured be yours for only $\mathbf{\Sigma 4 5}$ plus $£ 3$ Insured
delfivery.
DATA RECORDERS. ACORN for Acorn Electron, etc., reterence plus $\varepsilon 1.50$ post. Widiner real iopat.

 EXTRM SPECIAL OFFER.

Walxman type personal stereo cassette PLAYERS. These are not seccon-hand but are slighty yeject and

SPECIAL OFFER is ten of the
PANEL METERS. Beautifuly made moving coil instruments in heavy duty casings, much supenor to thnse coming from the Far East.
Meter tace size is $72 \mathrm{~mm} \times 86 \mathrm{~mm}$, fixing hole size is 70 mmm . Price is $£ 5$

ORGAN MASTER is a three beaultully made, has gold plated contacts and is compete with nbbon
cabie and edge connector. Band new,
only $£ 12$ plus $£ 3$ postage. Order rel

MUSIC FROM YOUR SPECTRUM 128. We ofter the Organ which plugs intlove keytoard, complete with leads and record tore which pugs nio your 128. You can then compose, play, record. slore,
elto your own muste Price $£ 19$ plus $£ 3$ speclat packing and postage.
Order ref 19P?
CAMERAS. Three cameras, all by famous makers, Kodak, etc. One Cisc and two different instant, cameras. All in first class candition,
believed to be in perfoct working order but sold as untiested. You can
bet believed to be in perfiect working order but sold
heye the three for F 10 including VAT, which mus
tor the lanses, pash gear, elc. Our ref 10P58.
HAND-HELD VIDEO LANP - Mains operated and will enable you to take professional standard videos. Made by the famous Ferguson
Company, this uses a 1000 , halogen lamp in a fan colled, hand-held and hand, switched metal hwusing Comes complete with optional bam. door assembly and camera bar Oioviously intended to retail at over $£ 60$ 1/8th HORSEPOWER 12 VOLT MOTOR
body length of this is approximatety 3 in, the diameler 3in by Smiths, the
 you have any provects in mind then you could rety on supplies for at least

PHILIPS LASER

Completeyy safe so long as you do not look directly Completely sate so long as you do not 100 k directly into
the beam when eye damage could result. Brand new, full uhe beam when eye damage could result. Brand new, full
spec, $£ 30$ plus $\varepsilon 3$ Insured delivary. Mains operated power
supply for this tube qives 8 kv striking and 1.25 kV at 5 mA running. Complete kit with case c15. No extra for post
ordered with tube. Battery PSU also avallabie £15.

HIGH RESOLUTION MONITOR. 9in black and white, Uses Philips tube M24/306W Made up in a lacquersd frame and has open
sides. Made tor use with OPD computer but suitatie tor most others
Brand new, $£ 16$ plus $£ 5$ post. Our reference 16P1.
12 VOLT BRUSHLESS FAN. Japanese made The poputar square shape ($41 / 2 \mathrm{in} \times 4^{1 / 2 \mathrm{in}} \times 13 \mathrm{l}$ /in). The electronkally run fans not
only consume very littie current but also they do not cause interterence only consume very lititie current but also they do noi cause interterence
as the brust type motors do. deal for cooing computers, eic., or for a

FDD BARGAIN

31/2in made by Chinon of Japan. Single sided, 80 track, Shugan $5^{1 / 4 i n}$ dnves. Completely cased with 4 pin power lead and 34 pin computer lead. £40. Our ref 40P

OUR ALADDIN'S CAVE. You may be a new reader and not know that we have a shop at 12 Boundary Road, Hove,
where you can go and tave a browse around a our assonment where you can go and have a browse around at our assontment
of 'goodies . Unionunatery, because of staft shortages, we

5.00 pm . Monday to Fnday. We of course still serve callers at
250

Generous discounts for quantities
J \& N BULL ELECTRICAL
dept - T.v., 250 portland hoad, hove, baighton, SUSSEX bN3 5at.

BARGAINS STILL AVAILABLE DOUBLE MICRODRIVES
 (1) We are preased to

 last vear as being suitatie tor the 'OC. 'DPD' and Surral other computers areNOISE FILTERS - MAINS INPUT PLUG TIPE. Japanese made, this is a chassis mounting block with a built in noise filter to cut out surges and voilage peaks which coutd Interfere with and possibly even damage your equipment These are easy to plug, zamp model. Price. \&3 each. Our ref 3P50.
LEAD LAMP - MotonsIs' Specia!. Normal hand-grip type hoider, with glass cover to protect the lamp and further protection in the form of a wire guard with a hook tor hanging. fogaj as lott light or lor car repairs, etc. Takes 60 w lamp. Has good length
flex. Price $£ 4$ Ove sel 4 P 31 .

PHOME LEADS. 3 metres long. correctiy colour coded, one end has flat plug which fits standard BT socket, other end has tag connectors. 2 for £1. Our ret B0639. SUB-MIN TOGGLE SWITCH. Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrome dolly fixing nuts 4 for $\$ 100$. Order ree BD649
very powerful magnets. Although only less than lin long and not much thicker than a pencil these are very dificult to pull apart. Coud be used to operate
embedded reed switches, ett. Price 50 p each, 2 for $£ 1.00$. Our ret B0642 CLEAR LACOUER Ouck aring tor me proction at meters mares ett. Also protects wood and melal. Exceptionaly clear, Large can for $£ 100$. Order ret 80660 .
papst axial fan. manufacturers ref no trpasbon. This is mains operated 15 watt ratimg and in a metal frame with metat blades so 0 K in high
temperatures. Body size approximately $4^{3} / 41 \mathrm{in}$ Square $\times 15$. 1 thick $£ 600$ each plus $£ 1.00$ postage. Our re 6 P6

SOFTWARE FOR REmaking. Just artived. Large quantity of maily games. All are on normal tape spool in cassette holders and should be suitabie for wiping out and | re-making into games of programmes of your own design. We offer 5 different for |
| :--- |
| $\Sigma 2$ or 100 assorted tor $£ 20$ important note: We cannot say which titles you will get | nor accept orders tor specitiec tries or 'so many, all ditterent', etc., so only order it you can take them as they come. Order ret 5 for $£ 5$ is 2 P224, 100 assonted is

ZOP10.

VERY USEFUL MAGNETS. Flat, about 1 in long, $1 / 2$ in wide and $1 / 4 / 41$ thick, These are poiarised on their faces which makes them ideal to operate reed switches in doors
and windows or to hoid papers or labets, etc. 10 metal cabinets, or even to keep anpord doors firmly closed. Very powertul. 6 for $£ 1$. Dur ref B0274(a).
3 CORE FLEX bahgain No. 1 - Core size 5 mm so ideat for long extension leads carrying up to 5 amps or short leads up to 10 amps. 15 mm for $£ 2$. Order Ret

3 CORE FLEX BARGANM No. 2 - Core size 1.25 mm so suitable for long extension leads carrying up to 13 amps - or shoot leads up to 25A, 10m for $£ 2$. Order Reft
$2 P 190$.

ALPHA-NUMERIC KEYBOARO - this keyboard has 73 keys with contaciless capacitance switches givng long trouble free lite and no contact bounce The keys
are arranged in tvo groups, the main area fietd is a QWERTY array and on the right are arranged in two groups, the main area fietd is a QWERTY array and on the right
is a 15 key number pad, board size is approx. $13^{\prime \prime} \times 4^{4}-$ brand new but offered at is a 15 key number pad, board size is approx $13^{\prime \prime} \times 4^{4}-$ brand ne
only a fraction of tis cost namely $£ 3$. plus $£ 1$ post. Ret. $3 P 27$.

EELEPHONES - We have just received a consignment of desk telephones rotary dial lype, in good workng order and in a new condition. We ofter these at 55 each plus $£ 2$ special packing and postage. This model would have the connecting lead with four tags tor going into the old type function box. Dur ret 5 P134. Or for E 6 you
can have the same tetientone but with the new flat BT tyoe plug fitted. Out ret 6 P10

WIRE BARGAN - 500 metres 0.7 mm sold copper tinner and 04 C covered Onty $3+$ §1 post. Ret 3 P3 3 - that's well under 1p per metre, and this wre is ideal for push on connections
CAPACITOR BARGAIN - axial ended - 4700ut @ 25 v Jap made. Normally 50 p 613.

SPRING LDADEO TEST PROOS - heavy dutx, made by the famous Bulgin
company. Very good quality. Price formol til Ret. BDs?
SOLAR POWERED NI-CAD CHARGER 4 NI-CAD batteries AA (HP7) charged in eight hours or two in only 4 hours. It is complete, boxed ready to use unit. Price
f6. Our Ret $6 P 3$.

FREE POWERI Can be yours if you use our soliar cells - sturdity made modules with new system oubble magntiers to concentrate the light and so elminate the need tor
actual sunstine - they work just as well in bright fight. Voltage input is 45 - you

 2P199. Module 0 gives 780mA. Price ETO. Our Ret $3 P 42$
SWITCH AC LDADS WTH YOUR COMPUTER. This is easy and relable if you Use our solud state relay. Thit has no moving parts, has high input resistance and acts as a noise barrier and provides 4 kW isolation between logic terminals. The turn-on

METAL PROJECT BOX. Ides size for battery charger, power supply etc sprayed gray, size $8^{\prime \prime} \times 4^{1 / 4} \times 4^{*}$ " high, sads are lowvered for ventilation other sides are flat
and undilled. Order Ret. 2 P 191 . Price big smodthing capacitor. Spraque powertytic $39,000 \mathrm{u}$ at 50 V £3. Our Ret 3 P41.
-CDRE FLEX CABLE. Cores separately insulated and grey PVC covered overall. Each copper core sized 702 mm . Ideal for long telephone runs of sirnilar
applications even at mains voltage. 20 metres $£ 2$. Our Ret $2 P 196$ or 100 metres applications even at manns.
13A PLuGS. Good Brish make complete with fuse, parcel of 5 for $£ 2$. Order Ref 13A ADAPTERS - Takes 2 13A plugs. packet of 3 tor ES Order Ret. $2 P 187$ $20 \mathrm{v}-0-20 \mathrm{~V}$ - Mains transturners $21 / 2$ amp (100 watt) loading terpped pnmary $200-245$ upright mountings 24 . Orver ne HP. Price $£ 15$ pius \sum post.
RE-CharGeable nicado ' O ' Size thespare tagged tor easy joinng together but lags can easily be removed, viritually ulused, tested and gntd $£ 2.00$ each. Ref
2 P 141 . 6 tor $£ 10$. Ref 10 P 47 .

8T HANDSET with curfy lead terminating at BT plug. Colour cream. Price $£ 5.00$.
SINGLE SCREENED FLEX 7.02 copper conductors, pvc insulated then with copper screen, finaly outer insulation. In tact quite normal screened flex. 10 m tor I 1 . Our ref B0668 Ditto, but solid conductor. 10m tor $£ 1$. Our ret B0668A
WHITE CELIING SWITCH 5 amp 2 way surlace mounting with cord and tassle

 EAST CORNWALL COMPONENTS

NEW, LARGER, MORE VARIED CATALOGUE NOW READY (includes Credit Tickets (3), Special Offer sheets, Order Form \& Pre-Paid envelope) only $£ 1.00$ or free on application with any order over $£ 15$.
Prices in new catalogue and advertisement may vary as material for advertisement is prepared $6 / 8$ weeks before issue of Television.

PRIORITY CATALOGUE ORDER Name..
Address

I enclose $£ 1.00$ cheque/P.O/cash for catalogue

SPECIAL OFFER APRIL			
TV ANTENNA AMPLIFIER			
100 1-WAY KU700			
1 in 1 out antenna amplifier for colour and 			
on-off switch, LED indicator and 1 m lead.Band width $300 \mathrm{MHz}-890 \mathrm{MHz}$Gain			
ICE:			

"CLOSED-CIRCUIT" TELEVISION SYSTEM PPICE $£ 150.00$
OROCRİing: $1 \times$ CAMERA $1 \times$ MONTOR $1 \times$ CAMERA BRACKE

LOGIC PROBE

 T.V. AERIAL ACCESSORIES

Manimer Splimera

Co.Al Leads -2 merrese - Plyp
TVN ideac Compurter Comemer
Simporves simparition n sets 50

Separatas UHF TV signalis trom FM ratio signals TVFM Diphowee 5

CS I 8 W , as above 10.50 SDere nozles tor Soldersucker
ORYX PORT ASOL GAS SOLOERING IRON
PRICE E16.00
PRICE 116.00 mech SPARE TIPS - 1

号

Lamp
Attractive white fitting, ribbed perspex diffuser. Onjoff switch.
34 cable Transistorised circuitry. Keyhole fixing. $2 V$ DC $8 W$ Tubes. Dimensions: $368 \times 67 \times 43 \mathrm{~mm}$.
ideal for Caravins, Bomts

127OLT RECHARGEABABE ENNIT

CHARGING UNFF COR THE ABOVE TZV UNIT

SIGNAL GENERATORS,
$\begin{array}{llll}\text { Marconi TF2002AS } & 72 \mathrm{MHz}, ~ A . M . ~ \& ~ F . M . ~ & \mathbf{£ 1 2 0 . 0 0} \\ \text { Marconi TF2002B } & 88 \mathrm{MHz}, \text { A.M. \& F.M. } & \mathbf{£ 1 2 0 . 0 0}\end{array}$

HisSISTOR KITS - eachtralue indivituraly packed

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 393.

ADVERTISEMENT MANAGER
David W.B. Tilleard
01-261 6671

SECRETARY
Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT
 COPY AND MAKE-UP

Ron Scorey
01-261 6035

SUBSCRIPTION
ENQUIRIES
0444440421

CORRECTIONS
See note on page 419.

COVER PHOTO

This month's cover photograph shows the panel layout in the B and O L/LX2500/2800 chassis. See article on page 424.

TELEOTSUOR

The Spares Business

The TV/VCR Spares Guide that comes with this issue is the fourth we've produced. When we compiled the first one in 1986 we thought that most of the spadework had been done. Just a matter, we felt, of a bit of checking and a few revisions next time. How wrong we were! We continue to be surprised at the extent of the changes in this section of the industry year by year. Each year we have had to reset the Guide completely - there just hasn't been enough of the old one left unaltered to make it worthwhile to preserve anything. It makes us wonder for how long the Guide continues to be useful once published? Maybe we should update it at six monthly intervals? Many of the important changes are included in the Teletopics column as they occur of course, and provided a listing of this sort doesn't get too out of date - yearly publication ensures that - it at any rate serves as a starting point: directory enquiries or someone at the other end will tell you about any changes that have taken place, though it's all very time consuming.

There have been deeper influences at work behind the mere changes of address, telephone number and franchises. For a start the role of the specialist component distributor has increased considerably in recent years. As far as manufacturers are concerned, spares have become an increasing headache. For a forward looking management concerned with the chassis after next and the way in which the market is evolving, the idea of having to devote time to the problems of yesterday's sets, many ten or twenty years old, is not looked upon favourably. Of far greater concern than management time however is the money locked up in stocks, the cost of storage and the expense of handling orders for lots of small items and lots of small (relatively) payments. Simpler by far to sell TVs and videos by the lorryload. There is too the hassle factor. Why isn't this item available and so on? Really the supply of spares is probably not logically a part of running a modern mass production operation - which is not to say that many firms don't continue to make a very good job of it.
The pressure on costs and profits in a highly competitive industry is probably the main factor that has led to so many major manufacturers deciding to contract out their spares operations. In-guarantee commitments to appointed dealers have to be serviced of course - and those dealers get a better service when the manufacturer isn't struggling under a mountain of orders for bits and pieces for items of every sort produced over an ever extending time span. For many, perhaps most, in the servicing industry today the first call for spares will be to a distributor rather than to a manufacturer's service department. It helps in many ways. Orders for a wide variety of items for different brands can be obtained from a single source, and the distributor knows perfectly well which bits are common to a number of manufacturers' models and can stock, supply and advise accordingly. Such firms are well placed to judge the needs of the servicing industry and to cater for a wide range of different equipment.

So CHG, CPC, HRS, SEME, Willow Vale and one or two others are playing an increasing role in the spares supply industry - and in the supply of accessories, service equipment and other items. It's a logical development, since separating the provision of spares from the manufacture and marketing of products for the mass consumer electronics market is a natural step. We have long wondered why a similar split hasn't occurred at the retail end, with the public buying from one type of outlet and getting its repairs done at another. This was common in the States at one time, though we don't know the exact position today. The disadvantage is that the service shop can miss out on a potential sale when an item obviously at the end of its life is brought in. But a nice little line in reconditioned sets can take care of that.

When the specialist distributors first started to take a larger share of the spares trade we wondered how they could make a go of something the manufacturers found so unprofitable? There seem to be several answers to this. First by buying in quantity at good prices, secondly in making use of modern order handling techniques, i.e. computerisation, and thirdly in aiming to provide a first rate, same day service to a large number of known customers with accounts.
All this leaves the dabbler and the individual customer increasingly out in the cold. Most distributors will not accept individual orders and few manufacturers will supply anything other than say a few cosmetic items to keep individual customers happy. You won't find that many shops are willing to go to the trouble of obtaining the odd spare part, especially for a make or item that's the least bit obscure. Maybe there's an opening for a small orders service of some sort?
A further major factor that has led to many manufacturers reducing their after sales service to the public is consumer legislation and the threat of litigation. Modern consumer electronics products are inherently safe, especially if manufactured to BEAB approved standards. This safety can however easily be nullified by the inexperienced operator. What then if an accident occurs? Could a manufacturer who has supplied parts in good faith be held partly responsible when a bodged repair results in an accident? This possibility has concentrated the minds of more than a few manufacturers and has led to a clamp down on the supply of parts by many of them, though it must be said that many others continue to take a very relaxed attitude - if you know exactly what you want and its part number and supply payment with order you will get your spare part. It's difficult to decide on the balance of public benefit in this respect.

The spares industry is a complex one that has been changing rapidly in recent times. Bona fide repairers have benefitted from this, but there are still possibly some unsatisfied areas of demand.

The Sony Trinitron Tube

Nick Beer

The Trinitron colour tube, designed by and used exclusively by Sony in all its colour receivers, was the first to have an in-line gun arrangement. It has a single gun assembly with three cathodes mounted in line horizontally, a striped-phosphor screen, an aperture grill with vertical slots instead of the traditional type of shadowmask, and a faceplate with cylindrical rather than parabolic curvature. The Trinitron tube produces a very good display - some people, including the author, would say the best. There are sound technical reasons for making this claim, for example the design of the large electron lens which provides excellent resolution. An advantage of the cylindrical in comparison with the traditional parabolic faceplate is the fact that most of the external light that falls on it is reflected away from instead of towards the viewer, thus improving the contrast and reducing eye strain. The Black Trinitron introduced a couple of years ago gives a further improvement in this respect (the faceplate has been darkened to a black colour).
Since the first Trinitron tubes appeared in the UK in the late sixties there has not been a great deal of change in the design, though a number of improvements have been introduced. More recently we have had the Black Trinitron mentioned above and the Pan-focus gun which gives uniform focusing over the entire screen area, eliminating any need for dynamic focusing.

The Trinitron Gun

Fig. 1 shows the basic Trinitron gun arrangement. Note that the beams cross over during their passage through the electron lens system. We have used the traditional UK A1, 2, 3 etc. system of electrode identification though Sony prefers G1, G2 (A1) etc. which is really more logical. Conventional tubes generally employ what is

Fig. 1: The Trinitron's internal arrangements.

Fig. 2: Inputs to the various electrodes.
referred to as bipotential focusing, i.e. the first anode (A1, G2) is at about 800 V while the focus electrode is at around 20 per cent of the final anode voltage (e.h.t.). With the Trinitron the A1 (G2) voltage is about 200 800 V , the focus electrode (A3, G4) is at around $350-800 \mathrm{~V}$ while A2 and A4 are internally connected to the e.h.t. voltage. The convergence electrodes act as an electron prism, deflecting the beams after their cross-over in the electron lens to ensure convergence at the aperture grill. This is where the horizontal static convergence voltage is applied. Most of you will have seen the large H stat controls in Sony TV sets. By adjusting this control well away from its correct setting you can see the effects of incorrect RGB beam convergence.

In the earliest Trinitron tubes the convergence voltage was applied via a connection on the tube's neck - you may recall the rubber boots on the neck of the tube in the KV1300! Subsequently connection was made by means of a two connection e.h.t. cap. In the latest tubes an external connection is not required at this end. Instead the arrangement is as follows. A high resistance (IBR) is incorporated in the neck of the tube, between the final anode and the convergence electrode. The potentiometer to control the horizontal static convergence voltage is connected to the earthy end of the IBR, enabling the connection to be made through a pin at the tube's base.

To improve corner focusing a "double astigmatic" lens is now used. What this means is that the holes in the G1 plate, which provides prefocusing, are now oval instead of circular. To improve the focus from the centre to the edge with large-screen tubes the Pan-focus system has been introduced. This involves a change in the position and angles of the cathodes and makes it unnecessary to apply a parabolic dynamic focus waveform to the focus electrode.
Tube flashovers can destroy costly devices in the associated circuitry, though they don't usually damage the tube itself. They tend to occur during only the first 100 hours or so of tube use. A flashover consists of a discharge from one of the high-voltage electrodes to one at a lower potential. To protect the external circuits the latest tubes employ Peak Current Elements (PCEs), which are basically high-impedance resistors, within the tube. There are two of these, one from A4 to A 2 and the other in series with A3. In the event of a flashover a very high voltage will be developed across these PCEs, as a result of which the charge cannot reach the c.r.t. connections and external circuitry.

As with other types of tube the degaussing shield is now incorporated within the tube. It's made of low-carbon steel which has low permeability and a thickness of only 0.15 mm . This reduces the size and weight of the receiver and also greatly simplifies tube replacement.

Setting up a Trinitron

Many readers will probably be more interested in the alignment of Trinitron tubes. In common with the conventional shadowmask tube in its modern form, i.e. with FS screen etc., the corner convergence and focusing are not

Fig. 3 (left): Display produced with the yoke pushed forward for purity adjustment. Complementary colours will be present between the primary colour areas. Adjust the purity rings to centralise the red area.
Fig. 4 (right): Areas affected by the methods of adjusting the purity. (1) Affected by the rings, (2) affected by yoke positioning, (3) corrected by using disc magnets.
perfect. This is probably a side effect of the struggle to produce lower cost receivers, with more extras piled in for the same price. With the Trinitron tube however quite a lot of twiddling is possible to try to make the picture as good as possible. We've had our fair share of faulty (usually not worn out) Trinitron tubes in recent months. Reliability doesn't seem to be as good as with earlier versions. Some seem to set up quickly and accurately while others can take hours to get right. The following notes are based on Sony's recommendations plus our practical experience.

The usual reason for alignment is tube replacement. The deflection yoke will have been removed from the old glass, as will the three rubber bungs that stabilize the yoke.

While you are about this it's a good idea to dust out and clean the cabinet after removing the old glass. The chassis should also be cleaned - this is much easier when it's out of the set. Also clean the e.h.t. cap and lead thoroughly. Standard precautions when handling c.r.t.s should be observed: wear goggles at all times; discharge the tube before removal; do not lift the tube by the neck etc.

Transfer the degaussing coils, Aquadag braid etc. to the new tube, ensuring correct routing and securing of these items. Then fit the yoke, after first ensuring that the strip of adhesive fabric under the yoke's securing clamp has been fitted to the new tube - the new c.r.t. usually comes without this.

Once the receiver has been restored to operation, display a red raster from a pattern generator and degauss the tube. To be sure about this you may prefer to place the receiver looking west so that there is minimal interference from the Earth's magnetic field. Another point worth making here for the uninitiated is to make sure that no extraneous sources of magnetism are present near the set. Sources can include a loudspeaker, a screwdriver or an isolation transformer under the bench. Another factor that can cause problems is a metal-framed bench that has become magnetised - this is quite often the case. The effect produced by these sources of magnetism is a purity error that cannot be shifted.

Purity Adjustment

The next factor to deal with is beam landing. With the red raster still displayed, square up the display as far as you can then push the yoke as far forward as possible to produce the display shown in Fig. 3 - red in the middle with green and blue on either side. This effect is present because the deflection angle is incorrect. The red section of the display should be at the centre of the screen. If it isn't, use the purity magnets to move it to the correct position. Move the two purity rings together in a scissor

Fig. 5: Waveforms present at the dynamic convergence coils, (a) for vertical axis correction (field rate parabola), (b) for horizontal axis correction (line rate sinewave).
action. Once the red area has been centred, move the yoke backwards until a full red raster is obtained. In practice small purity errors will still be present. Position the yoke for optimum purity then correct these small purity errors by using disc magnets that stick on the back of the c.r.t. - these magnets are available from Sony under part number 1-452-032-00. They are self-adhesive. Also available are disc magnets that can be rotated with a screwdriver to give fine adjustment - part number 1-452-$094-00$. Fig. 4 shows the effects produced by these three methods of purity correction. Secure the yoke in position with the three rubber wedges.

Convergence Adjustment

Finally we come to convergence. Display a crosshatch pattern from a pattern generator to show the convergence errors present. The aim of convergence is to superimpose the red, green and blue rasters correctly. Thus errors show up as red, blue and green edges to the crosshatch pattern. As with purity adjustment there are three stages.

First comes static convergence. Horizontal static convergence is carried out by adjusting the voltage applied to the convergence electrodes in the c.r.t. This affects the outer blue and red beams, not the centre green beam. Adjust the H stat control so that the vertical crosshatch lines are correctly converged at the centre of the screen red and blue on green to give white lines with no colour separation. Two ring magnets are provided on the tube neck for vertical static convergence. Adjust the rings simultaneously for optimum convergence of the horizontal crosshatch lines at the centre of the raster.

You may find that in addition to the ring magnets there is an extra magnet, or maybe two extra magnets, at the base end of the neck. These are known as BMC magnets. The usual one is mounted horizontally to give a wider range of H stat adjustment. Move it in or out. In older sets a second BMC magnet may be mounted vertically to assist with V stat adjustment. You may find it necessary to add a BMC magnet when a new c.r.t. has been fitted. If you do, recheck the purity as a BMC magnet can have quite an effect on this. Part numbers for BMC magnets are quoted in the Sony service manuals.

Dynamic convergence corrects errors at the edges of the screen. With modern flat, square screens comer convergence is particularly difficult. Dynamic convergence correction coils are mounted on the yoke, behind the deflection coils. By altering the amplitude and phase of the waveforms fed to these coils (see Fig. 5) the beam deflection angles in these difficult areas can be altered. Vertical and horizontal correction waveforms are fed to the coils.

For vertical correction at the top and bottom of the screen an inverse parabola is used. Its amplitude is
adjusted by means of the Y bow control. When this control is incorrectly set there will be separation of the red and blue horizontal lines to one side at the top and bottom of the screen.
Horizontal axis correction affects the vertical lines at the left and right of the screen. The drive waveform is this time sinusoidal, produced by an $L C$ circuit from a line frequency pulse. The H tilt control balances the effect of the correction between the right- and left-hand sides of the screen by phase shifting the sinewave. The H amp control adjusts the amount of correction at both sides by altering the amplitude of the sinewave. The effects are fairly obvious. Misadjustment of the Hamp control shows
up as separation of the RGB lines vertically, at each side. If the effect is different at each side of the screen the H tilt control is incorrectly adjusted.
Corner errors, which can be stubborn and particularly annoying with teletext, can be corrected to some degree by using Permalloy stick-on magnets (part number X-4308-815-0). These are self-adhesive magnets on long strips of plastic. They are slid under the scan coils and stuck to the back of the tube. If after fine movement of these magnets you still have minute errors you will have to resign yourself to the fact that that's it. Don't waste hours trying with no evident improvement. Some tubes give perfect results, others don't - that's modern tubes.

Servicing Compact Disc Players

Part 2: Laser Assemblies

The optical assembly in a CD player incorporates a gallium arsenide laser diode, a laser power control circuit, a complex lens assembly and the photodetectors that provide output voltages corresponding to the recorded digital information and any focus and tracking errors. From the servicing point of view it's probably only necessary to be aware of the safety precautions required when handling the laser, to know how to set the laser power (this is not adjustable in later machines) and to know how to diagnose a faulty laser. A more thorough understanding of the optical assembly does however help you to understand the functions of the focus and tracking servos, helps you to interpret the waveforms in these servos and to decide where the fault lies when these waveforms are incorrect.

As CD players have evolved, several types of laser assembly have been developed and come into use. They can be divided into two basic categories however: threebeam and single-beam arrangements. There is not a lot of difference between them, but the single-beam type uses a unique method of obtaining a tracking error signal.

Three-beam Optical Units

Fig. 1 shows the basic elements contained in a threebeam optical unit. The various components are as follows.

The laser diode can be considered as a LED that operates in the infra-red region, at a wavelength of around 790 nm . Unlike a LED however a laser diode is very sensitive to temperature and current changes. If the current increases fractionally as a result of a change of temperature the light output will rise very sharply. Because of the laser action this increased light output will produce a further current increase leading to additional light output and so on. The cycle of events can be likened to thermal runaway in a transistor. Because of this the laser's light output must be carefully controlled. An automatic photo output control (APC) circuit is used for this purpose. An example is shown in Fig. 2. Its operation is as follows.

The light output is monitored by a photosensitive device mounted next to the laser diode. This device's output voltage is then used to control a simple current regulator. In the Mitsubishi circuit shown VR991 sets the laser's power output at approximately $400 \mu \mathrm{~W}$, measured using a laser power meter. The output depends on the manufac-
turer and varies over a range of $250-400 \mu \mathrm{~W}$. Regulation is carried out by Q993 which is in series with the laser. The feedback from the monitoring device is applied to the base of Q991 which, via Q992, controls the current flowing through Q993. Once set the circuit will continuously correct variations caused by temperature changes and, in the long term, will compensate for the reduced output as the laser diode ages.

Intermittent jumping, failure to play certain discs or failure to play any disc can be caused by the laser's output having fallen to such an extent that the APC circuit can no longer provide compensation. Readjustment of the laser's output is sometimes all that's required, but with a well used machine it's unlikely that this cure will be long lived. A word of warning here. When resetting the power output take care to ensure that it's not turned up too high - this would greatly reduce the laser's life (rather like operating a colour tube for a long period of time with the first anode voltages set too high - the tube ages more rapidly). In fact in some machines it's possible to blow the laser instantly if the control is turned too far. We'll discuss the various ways of carrying out this adjustment later on.

In all later machines the APC circuit is capable of compensating for diode ageing right up to the point where the diode has virtually failed. This does away with the need for power output adjustment.

The next item is the diffraction grating. This consists of a plate with a number of slits. As the single beam from the diode passes through these slits it's split (by diffraction) into three, the power in each side beam being about 25 per cent of that in the main beam.

The polarising prism is used to separate the emitted and reflected beams. As shown in Fig. 1, the polarising plate allows the emitted beam to pass straight through the prism. By the time the beam has travelled through the prism and the quarter-wave plate, been reflected off the disc and then travelled back through the quarter-wave plate it will have been subjected to a 90° phase shift. When it reaches the polarising plate once more it will be reflected (bent) towards the pickup detectors.

By the time the laser's beam reaches the collimator lens it's elliptical in shape and is diverging. The collimator lens is used to correct the divergence, adjust the beam diameter and shape it into a circle. The principle of the collimator lens is shown in Fig. 3.

The quarter-wave plate is a crystal which has been cut

Fig. 1: Arrangement of the various items that comprise the T-type three-beam laser optical unit.

Fig. 2: Laser current stabilising circuit used in an early Mitsubishi CD player.

Fig. 3: Principle of the collimator lens.

Fig. 4: Arrangement of the flat optical pickup (FOP).
so that light passing through it will be subjected to a 45° phase shift. Because the reflected beam in a CD player laser assembly passes through the quarter-wave plate twice it's subjected to a total phase shift of 90°.

The objective lens focuses the beam so that the spot diameter at the disc's reflective surface (not the outer surface of the disc) is $1.7 \mu \mathrm{~m}$. The diameter is set by
moving the lens towards the disc until the pickup detectors give a reading corresponding to a $1.7 \mu \mathrm{~m}$ circle. This lens is also used to focus the reflected beam.

Like the objective lens the cylindrical lens is an ordinary ground lens. It's used to focus the reflected beam on to the pickup detector diodes.

The T-type laser optical assembly shown in Fig. 1 was the first type to be used. With this type the laser beam is split into three, a main beam which is picked up by the four main photodetectors to give data and focus error outputs and two side beams which fall on two further photodetectors at either side to produce the tracking error signal.

The main problem with the T-type assembly is its comparatively large size. To reduce the deck size, and make possible the introduction of personal CD systems, a smaller laser assembly was required. For this reason Sony developed the single-beam assembly. It still left player manufacturers with some design problems which we'll go into later. A better solution was found in what is called the flat optical pickup (FOP). This is illustrated in Fig. 4: you will see that the polarising prism and quarterwavelength plate have been replaced by a half mirror prism.

When light meets a half mirror prism fifty per cent of it passes straight through and the other fifty per cent is reflected. In the arrangement shown in Fig. 4 fifty per cent of the light emitted by the laser is reflected back and lost, the other fifty per cent passing through to the disc. Although the light reaching the photodetectors is only 25 per cent of the original beam it's still sufficient for accurate detection.
The advantage of this assembly lies not only in its small size. In the event of a disc having a minute mirror impurity the phase of the reflected light may alter slightly. With the T-type assembly this means that the phase of the light in the return beam is not at 90° to that of the emitted beam, resulting in incorrect reflection at the polarising prism and thus a dropout. With the FOP assembly the phase of the light is irrelevant. This type of assembly is thus not affected by such mirror impurities.

Single-beam Optical Units

We'll now take a more detailed look at the single-beam assembly, which was introduced a few years ago by Sony and Philips in an attempt to reduce the size of CD players. We've seen that the two additional beams in a three-beam assembly are used to produce a tracking error signal. The single-beam assembly has only four photodetectors which have to produce the data signal, the focus error signal and the tracking error signal. Although the Philips and Sony assemblies differ in the way in which they achieve this multiple use of a single reflected beam, in both cases the three signals must be separated from each other and this

Fig. 5: Arrangement of the single-beam laser assembly used in some Sony CD players.

Fig. 6: Use of a critical-angle prism to obtain a focus error signal with a single-beam assembly.

Fig. 7 (left): The Philips sin-gle-beam assembly uses a prism with a V cut at one side instead of a critical-angle prism.

Fig. 8: Basic arrangement of the two-axis mounting for the objective lens, giving focus and fine tracking adjustment.
requires more complex circuitry in the laser preamplifier. This, coupled with the fact that the single-beam assembly still uses a polarising prism and is thus susceptible to mirror impurity effects, caused other manufacturers to opt instead for the three-beam FOP assembly. This trend has continued ever since. Whether or not an improved singlebeam device will come to replace three-beam arrangements remains to be seen.

Fig. 5 shows the arrangement of the Sony single-beam assembly. If you compare this with the arrangement shown in Fig. 1 you will see that they are in many respects the same. The main differences consist of the omission of the diffraction grating, the changed position of the collimator lens and the inclusion of the critical angle prism.

The critical angle prism does far more than bend the
beam through 90° and focus it on to the photodetectors. A brief description of its effect is called for. The prism is cut at a critical angle, 42°. Only when light enters at this angle will maximum output be obtained at the other end. Light entering at any angle other than 42° will not achieve a 90° turn, so the output will be reduced. In the Sony assembly - see Fig. 6 - the refiected beam strikes the prism at the critical angle only when it's a parallel beam, and this occurs only when the disc focus is correct. When the objective lens is too close to or too far from the disc the return beam will be either convergent or divergent. In either case part of the beam will be lost at the prism so that the light falling on two of the four pickup photodetectors will be reduced. From this the focus servo can determine the position of the object lens with respect to the disc. Fig. 6 illustrates the principle.
The Philips single-beam assembly differs from the Sony version in not using a critical-angle prism. Instead the prism is cut to a V shape at the side where the light emerges - see Fig. 7. As a result the beam is split in two. The four photodetectors are mounted in two pairs and are arranged so that the three signals (data, focus error and tracking error) can be separated. We will discuss this in greater detail when we come to servo systems.

The Two-axis Lens Mounting

To achieve correct focusing and tracking the objective lens is mounted on a two-axis arrangement with rubber supports, as a result of which it's free to move both vertically (for focusing) and radially (for tracking). Two sets of coils are wound on a former at the centre of which the lens is mounted. There are four permanent magnets in close proximity to these coils. The coil/lens assembly is suspended between the magnets, on rubber suspension mounts. See Fig. 8.

When a focus error is detected the servo alters the current in the focus drive coils, moving the lens towards or away from the disc until correct focus has been reestablished. When the machine is in the stop mode, i.e. there's no current in the coils, the lens will be centrally positioned. When a disc is inserted the focus servo initially pulls the lens fully inwards (away from the disc) then moves the lens progressively outwards until correct focus is achieved.

The tracking servo keeps the beam on the correct track section - as shown in Fig. 3 last month, the track pitch is only $1.6 \mu \mathrm{~m}$. Those familiar with CD players will be aware that in most cases the laser assembly is carried across the disc on a motor-driven sled. This arrangement is sufficient for coarse tracking, but the motor and gear assembly cannot possibly work to a precision of $1 \cdot 6 \mu \mathrm{~m}$. In addition the disc may be slightly eccentric on its axis, making the track "wobble" as the disc rotates. The tracking servo therefore controls not only the sled motor but also the current in the tracking coils. The current flowing in these coils produces radial movement of the lens assembly. Radial lens movement of typically $\pm 70 \mu \mathrm{~m}$ is achieved by the coils: once this movement is at its extreme the sled motor operates briefly, restoring the lens to its central position. This joint action of the sled motor and the radial drive can be likened to the operation of a linear tracking tone arm on a conventional audio disc player.

Having taken a detailed look at the different types of laser assemblies in use, next month we'll deal with more practical matters - laser handling, adjustment and fault diagnosis.

EX-RENTAL VIDEO \& TV WHOLESALERS VISIONS LONDON
 - More Thorn and non-Thorn stock than BI-TECH SCOTLAND'S LARGEST WHOLESALERS

ever before in London

- VCRs, 3V23-3V48 \& various late Thorn All working stock professionally serviced.
\star A good range of text working and off the pile including Decca 80's and 100's, Doric 3's, 3A's and 4's, Finlandia, GEC, K30, KT3, G11's, Grundig, Hitachi, ITT, JVC, Panasonic, Philips KT30-3-45 stand and text.
* Various makes of video always in stock
* Working TVs from £20

Contact: Jack Swan Bl-Tech (Scotland) Ltd Unit 9 Colquhoun Ave Hillington Industrial Estate
Glasgow GS2 4BN

TEL: 041-883 2610

UNIVERSAL VIDEO HEADS ONLY £15 PLUS VAT

SPECIAL OFFER THIS MONTH

EW IN－THT BONES

NE TRANsformer Philips TX $12^{\prime \prime}$ and 14° Portabic
ANIDER PHONFS Key Pad and lland Set．No Case．
AERIAL AMPS I way $£ 9 ; 2$ way $£ 11 ; 3$ way $£ 15 ; 4$ way $\mathbf{4} 40 ; 6$ way $£ 50 ; 4$ way bdB eachLo ILIC 3 ISS made in UK

CIIENTLIC CALCULATOR SBC1704 Philijg．In case	¢7．00
HORN 8500 LOPT	22．00
NEW GEC 2110 LOPT	12．00
DX．TUNER VHF－UHF SEND FOR DATA TUNER	${ }_{\text {siop }} 7$

OX．TUNER VHF－UHF SEND FOR DATA
UNER
GEC 20AX POWER SUPPI．Y MATK 2
2 VOLT T BATERY PACK Nicad A．A． 55.00 .800
11.00

12.51 .26 .00 | .510 |
| :--- |
| 8.00 |

		SPLIT－DIODE £6 EACH		L．O．P．T． SPLIT DIODE PHILIPS £5 EACH

L．O．P．T． I．C．Holders $\stackrel{\mathrm{DLL}}{\mathrm{DLL}}$子男がすさ IL $\begin{array}{r}\text { \＆1．00 } \\ \text { E1．00 } \\ \\ \hline\end{array}$ $\operatorname{lin} \times 5$
$\operatorname{Pin} \times 10$
$\operatorname{Pin} \times 5$ Pin $\times 5$
Pin $\times 10$ 81.00
$£ 1.00$
$86 p$
$70 p$
$75 p$
$70 p$ SEND FOR LIST BRITISH MADE VHS VIOEO HEADS 515 to £20．SEND FOR LST OF VIOEO SPARES，VIDEO LEAD AND BELTS SENO FOR DATA 20 AMP COST OVER £400． 30 VOLT TO 15 VOLTS FARNELL POWER SUPPLY 19^{\prime} RACK MOUNT POST C8，IN CASE EZO

SENDZ components

63 BISHOPSTEIGNTON，SHOEBURYNESS，ESSEX SS3 8AF． SAME DAY SERVICE
All iterns subject to availability．No Accounts：No Credit Cards．Postal Order／Cheque with order． Add $\mathbf{1 5 \%}$ VAT，then $\mathbf{\Sigma 1}$ Postage．Add Postage for Overseas．

Callers：To shop at 212 LONDON ROAD，SOUTHEND．Tel．0702－332992．Fax． 0702338805
Philips Electrodynamic

Long-distance Television

Roger Bunney

1989 certainly got off to an encouraging start, with January providing four weeks of good reception conditions. Tropospheric propagation was present almost throughout the period, thanks to a stationary high-pressure system that loitered over Western Europe. The frequent tropospheric openings provided excellent signals, ducting, reception of numerous u.h.f. Danish TV2 transmitters, even Austrian Band III/u.h.f. signals in the Midlands. There were also F 2 and SpE signals - a fine start to the year.

The first F2 reception was on the 5th, when a distant Russian ch. R1 signal was present at around 0830 for an hour. The 13th produced Arabic text and programming on ch. E2, at 0805-0903. The 15th was perhaps the most interesting day for F 2 reception however: a ch. E2 signal that almost certainly came from Malaysia was received by both Tim Anderson (St. Leonards) and Garry Smith (Derby) between 0850-0920. Tim thinks it was a programme about knitting, with a multiburst test pattern as a floater. Garry logged Arabic captions and a programme about aircraft. He noted a clock at 1715 , which strongly suggests Malaysia since this country is at +8 hours with respect to GMT. On the same afternoon Chris Howells (Lichfield) noted weak ch. A2 (525-line) signals for about two hours. At 0830 a Russian ch. R1 signal was seen. A further Russian signal was received at 1230 , which is unusual since this is rather late - it's likely to have been a minimum hop distance signal, possibly from the Moscow region. The maximum sunspot count (273) occurred on the 13th.

With such a high level of sunspot activity it was not unexpected that auroral openings occurred. The dates here were the 11th, 13th, 15th, 16th and 17th, with a major event on the 20th and 22 nd and the promise of a repeat performance on the 27th day of the solar cycle, during February.
SpE produced several minor openings and reception of isolated signals from time to time. The log is as follows.
$\begin{array}{ll}\text { 5/1/89 } & \text { YLE (Finland) ch. E3; NRK (Norway) ch. E2. } \\ \text { 7/1/89 } & \text { TVE (Spain) E2. }\end{array}$

8/1/89 TVE E2, 3.
9/1/89 SVT (Sweden) E2; NRK E2; DR (Denmark) E3; RUV (Iceland) E4.
10/1/89 TVE E2, 3; ORF (Austria) E2a; ARD (W. Germany) E2; TSS (USSR) R1.
11/1/89 RAI (Italy) IA.
13/1/89 TVE E2.
14/1/89 TVE E2.
20/1/89 TVE E3.
21/1/89 YLE E3, 4; TVE E2, 3; TSS R1.
22/1/89 NRK E3.
27/1/89 TVE E2, 3.
29/1/89 TVE E2; SVT-1 E2 via auroral reflection.
The spectacular tropospheric conditions are still present as I write this at the beginning of February. Here in my valley location at Romsey, Hants RTL (Luxembourg) ch. E7 has been a fairly strong signal for much of the month. Following excellent signals during the first week the first major spell of activity was between the 15th-25th. Propagation was both conventional and via ducting. Highlights were ORF chs. E7, 8 and 24 (under Sandy Heath!), numerous W/E German signals, Denmark including the new TV2 stations, plus NRK and SVT in Band III and at u.h.f. There was classic ducting on the evening of the 18th with very strong W. German Band III signals here at Romsey along with signals from nearer co-channel transmitters. On the 20th Cyril Willis received TVP (Poland) chs. R7 and 8.
The excellent conditions continued up to the 25 th. The mass of logs received detailing reception at particular locations make it very difficult to give an overall picture. Sufficient to say that on the 24th Simon Hamer in North Wales received Luxembourg ch. E7, Belgium chs. E3, 8, $10,11,28,43,44,46,49,55,62$ and 63 , Holland chs. E4, $5,6,7,27,29,30,31,32,34,35,39,42,45,47,50,53$ and 54, all the French Band III channels plus L22, 25, 28, 34, $35,37,40,48,52,56$ and 63 , East Germany ch. E12, AFN (Holland) ch. A80, all the W. German Band III channels plus chs. $\mathrm{E} 21,27,30,34,35,37,40,48,53$ and 57 , Denmark chs. E5, 8, 10 and 30, and NRK ch. E5. Tim Anderson's log at St. Leonards on the south coast tells much the same story but with more W. German signals (most channels in fact), more Danish signals plus Swiss Band III/u.h.f. signals and Austria ch. E8. On the 25th Mark Baldwin logged NRK Gausta ch. E8 at 3 kW !

Reception opened up again on the 30/31st and on into February, with much the same story. Several DXers have reported reception of the Luxembourg ch. E36 transmitter. This is the Dusseldorf/ Burscheid outlet at only 20 kW . It has been causing problems for VCR owners in that

Reception of a Saudi Arabian identification card by lan Waller in Lincoln, via the 4 GHz Arabsat satellite at $26^{\circ} \mathrm{E}$.

IRISH T.V. DEALERS

VIDEOS UHF-VHF Ferguson, Sharp, ITT, Panasonic, Nord, etc fully serviced. Top Loaders, from $£ 150$ each. Front Loaders from $£ 175$ each.
TV's UHF-VHF Most makes in stock 8,16, and multi Channel remotes. Fully serviced from $£ 75$ each, untested off the pile £30 each.
EXPORT SPECIALISTS
"Sets modified for African transmission"
T.V. TRADE SALES
E.D.I. HOUSE, KYLEMORE PARK WEST,
DUBLIN 10. TEL. 0001264139 or 263517

next month in

- BUILD THIS SIGNAL TRACER

Although designed - by David Botto - primarily for fault location in the audio sections of TV sets and VCRs this signal tracer can also be used in other parts of the circuit. It's simple, using a couple of operational amplifier chips (one 741 plus one LM386) and a handful of external components, and can be easily built up on matrix board. The tracer speeds fault diagnosis by enabling you to move through the circuit quickly to see where the signal gets lost or becomes distorted - you can literally ride round the circuit! There's a built-in speaker for signal indication or an external speaker or oscilloscope can be connected. Two signal probes provide for r.f. or a.f. signals.

- GRUNDIG'S SATELLITE TV RECEIVER

For the coming of Astra Steve Beeching obtained a Grundig offset dish and STR20 tuner, one of the most widely available TVRO combinations, to see how they performed. He compared them with an earlier tuner and some larger dishes and found that they gave just as good results - except when the chicken got in the way..

- OPERATIONAL AMPLIFIERS

In Part 2 of his article on the subject Keith Cummins describes the basic practical uses for operational amplifiers, goes through a typical circuit design problem and also mentions some faultfinding pitfalls.

- SOLID-STATE IMAGE SENSORS

The next item to be covered in Camcorder Servicing is the solid-state CCD image sensor used in the latest generation of cameras and camcorders. How it works and the symptoms that arise under fault conditions.

- TEST REPORT: LASER POWER METER

Now that CD players regularly appear in the workshop a means of measuring the output from laser optical units is required. Nick Beer reports on the Leader LPM8000.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Please reserve/deliver the May issue of TELEVISION ($\mathbf{£ 1 . 5 0) \text { , on sale April }}$ 19th, and continue every month until further notice.
\qquad
ADDRESS \qquad
\qquad
area. We also have a report of the new NDR "Nordtext" being seen.
A letter from Ryn Muntjewerff reports similar reception conditions in Holland, but with signals from transmitters farther to the east - Czechoslovakia, Austria, Poland, "many" E. German stations, a Russian ch. R45 relay and signals from Grunten in the deep south of Germany on chs. $43 / 46$. Ryn also reports seeing a new Czechoslovakian test pattern based on the PM5544 but with the identification "1 SR-P". On the 3rd Dutch DXers received Satander, Spain, chs. 40 and 56 , a very good catch. On that day Tim Anderson logged the Basque ETB-1 ch. 35 and ETB-2 ch. 38 outlets.
Anthony Mann (Perth, Western Australia) comments on the excellent F2 conditions in his part of the world during late December. On the 23rd the Australian amateur VK3OT had two-way contact at 50 MHz with OH2BA in Finland. On the same day Anthony received various ch. E2/R1/C1 Malaysian and Chinese stations via $\mathrm{SpE} / \mathrm{F} 2$. On the previous day he received 50 MHz amateur signals via double-hop SpE from New Caledonia, a distance of over 3,000 miles. Incidentally the Australian ch. 0 TV transmitter DDQ-0 now has a negative 80 kHz offset, vision being $46 \cdot 172 \mathrm{MHz}$ and sound 51.67 MHz - ABMN- 0 remains at $46 \cdot 24 / 51 \cdot 74 \mathrm{MHz}$. Useful should you hear them on a scanner if F2 is that good!
R. Bengal in Bangalore, India, reports that he's been receiving many $\mathrm{F} 2 / \mathrm{TE}$ and SpE signals, particularly from the Gulf area, using a 13 -element ch. E5 aerial. We've suggested a wideband Band I aerial to improve his reception.
My thanks to the following for sending in comments and reception reports: Tim Anderson (St. Leonards), Garry Smith (Derby), Peter Schubert (Rainham), Cyril Willis (King's Lynn), Roger Fussell (Torpoint), Iain Menzies (Aberdeen), Simon Hamer (Powys), David Oliver (Birmingham), Mark Baldwin (Northants) and Ryn Muntjewerff (Holland).

Perhaps the main event of the period was the coming on air of Astra at $19 \cdot 2^{\circ} \mathrm{E}$. Over the space of a few days an increasing number of channels became available, doubling the choice of signals for suitably equipped viewers. Interesting that from the start of TV transmissions after the end of World War Two it took over thirty years for four channels to become available in most parts of the UK. Within perhaps two years from planning to transmissions via the Astra satellite we now have over eight channels and by the year's end there should be nearly twelve. I recall the lines "never mind the quality, look at the width"

News Items

Finland: Relays transmitting the Swedish SVT-1 service are now operational in Helsinki. Further relays covering the greater part of the south/south west of the country will be opened during the next two years.
Spain: Regional broadcaster RTV Madrid is due to start test transmissions in April, with programmes from May 2 nd . Another regional broadcaster due to come on air is Canal Sur, in Andalusia, based in Seville.
Italy: The mystery ch. E2 transmissions of the US originated CNN have been identified as coming from Telemarket. The UK Super Channel was also transmitted at times. These two offerings were transmitted during periods when Telemarket was not producing its own material.
Uganda: TV coverage is to be extended to nearly seventy
per cent of the country via transmitters that are being commissioned by NEC at Lira, Mbarara, Masaka and Mbale. The equipment had been delivered some years previously but due to the turbulent political situation had never been brought into operation.
Nigeria: The broadcasting authority NTA has requested funds to update its radio/TV broadcasting equipment, much of which is now over twenty years old.
Poland: The Italian RAI-1 service is now being transmitted from Krakow on ch. R50, covering a radius of 70 km . Norway: NRK Rogaland (Stavanger) regional broadcasts are now being transmitted by Bjerkreim on ch. E6 and Bokn on ch. E8.
Shetlands: It's rumoured that the Shetlands Islands Broadcasting Company is transmitting Sky Television. Reception is apparently from a dish atop the studio building at Lerwick. Can anyone confirm this and provide further details?

Satellite TV Book

A second edition has been published of John Breeds' "Satellite Television - Installation Guide". I'd thoroughly recommend it for engineers, aerial installers and satellite enthusiasts. It's well produced with high-quality paper and clear text and layout and covers the essentials of signal propagation, satellite position (elevation/azimuth) with maps for various craft, dishes, mounts, electronic equipment, how to erect and align aerials, how to fit LNBs/ polarotors, cabling, footprints, plugs - even how to calculate wall bolts/plugs for a mounting bracket. It clears up many of the questions a newcomer always asks. I wish the book had been available when I started with my first 90 cm patio mount - even this humble system is dealt with. If you're in the trade or, like me, a satellite receiving enthusiast, this is the book you need! It's available at $£ 11.95$, including post and packing, from Swift Television Publications, 17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN.

Test Card Video

If you're into test cards, the new British Amateur Telvision Club video "The Development of the TV Test Card" will be essential viewing. In this one-hour video George Hersee, designer of BBC test cards, talks on the development of and different types of test cards that have been used, going back as far as Test Card A. He's interviewed by Andy Emmerson. The video is recorded on a three-hour VHS tape and costs $£ 5$ from Andy at 71 Falcutt Way, Northampton NN2 8PH - postage paid in the UK, add accordingly for overseas despatch. I've viewed the tape and can recommend it as being extremely interesting. Incidentally does anyone have a photograph or illustration of the old BBC Test Card B?

Amateur TV Activities - 1989 Contests

The British Amateur Television Club has supplied the following list of contest periods for 1989. These are periods when ATV operation will be very active, giving the TV-DXer the opportunity to receive signals with greater predictability than the usual random occurrences. If possible, listen to the ATV calling frequency 144.75 MHz .

The Spring Vision contest was from March 11th at 1800 GMT to March 12th at 1200 . Sorry we didn't get that in before.

AERIAL TECHNIQUES

The Summer Fun contest is from June 10th at 1800 GMT to June 11th at 1200 .
The IARU (international) ATV contest is from September 9th at 1800 GMT to September 10th at 1200.
The Autumn Vision contest is on November 12th from 0001 to 2359 GMT.
The Winter ATV contest (joint European) is from December 9 th at 1800 GMT to December 10th at 1200.

Soviet TV

Bernd Trutenau of the Benelux DX Club has supplied details of the Estonian TV network and the channel allocations. The following list includes only those transmitters likely to be seen in the UK via SpE.

Region	Channel	Region	Channel
Tallinn	R2 E, R3 L	Voru	R3 E
Tartu	R4 K1	Polva	R5 K1
Kohtla-Jarve	R1 K2, R5 L Ruhnu	R5 E	
Parnu	R4 E	Kallaste	R3 E
Haapsalu	R3 K1	Narva	R4 K1, R2 L
Rakvere	R3 E	Poltsamaa	R1 K1
Kunda	R1 K1	Sillamae	R3 K1
Jogeva	R5 K1		

$\mathrm{E}=$ Eesti TV, L $=$ Leningrad TV, $\mathrm{K} 1=\mathrm{CT}-1$ (Russian first programme), K2 = CT-2 (Russian second programme, networked).

Test transmissions using the UK teletext standard are at present being carried by Eesti TV on weekdays from 1450-1500.

TV Fault Finding

Reports from Roger Burchett, Alfred Damp, Bob McClenning, lan Bowden, Nick Beer, J. Olijnyk and John L. Howard

Rediffusion Mk 3 Chassis

The very large number of these sets in my area are beginning to suffer from tuning problems. This particularly affects the six-button Rodé-Stucky selector unit. It can be stripped and cleaned, clearing the problem, provided care is taken.
To remove the unit from the set take out two selftapping screws in the front panel. Next remove the buttons by inserting a small screwdriver in the holes on the underside of the surrounding moulding and prising them off. The cover over the switches and lamp is removed by prising off with a screwdriver in the four slots. You will find that the circuit board is attached to the plastic carriage by four screws, two of which are not immediately obvious as they are covered by plastic plugs. Remove these and the board is free. The selector unit can be unsoldered after which the tracks, on a subpanel riveted at one end of the main panel, are exposed. Cleaning is then a simple job, with no fear of damaging the plastic. Reassembly is also simple.
R.B.

Jackson Mk 2 Chassis

The models I've seen fitted with this chassis have come in the guise of the Triumph 8209. The soldering is not of the best and it pays to resolder the heavy wound components (chopper and line output transformers) and to check carefully with an eyeglass for dry-joints. The main one to date has been on $\mathrm{R} 29(27 \mathrm{k} \Omega)$ which is mounted under the board. It tends to be held to the print at one end, with a "blob" of solder at the other end. Depending on how well this "blob" makes contact with the print the fault shows up as a curious slowness for the line to lock, intermittent line slip with colour drop out, or unlocked lines if you so much as breathe on the set. If the set is left too long like this the BU508D line output transistor TR15 will go shortcircuit and soon after R125 (4.7 2 , 2W safety resistor) will go open-circuit. So if you come across a case of a dead BU508D in one of these sets, soak test it very carefully after checking the above points.

Intermittent colour on its own is generally due to a dryjoint on one leg of the crystal.

Spares for these sets are available (trade only) from Jackson Products Ltd. For the address and telephone number see under Harwood in the TV/VCR Spares Guide.
R.B.

Thorn 9600 Chassis

After a very few occurrences of "flickering" - presumably due to h.t. variations, seeing what happened next - the mains fuse F1 blew violently. W533 was found to be shortcircuit. This device is a BY299-1000 which is no longer available. The MR818 is a suitable replacement. Safety resistor R518 (1Ω) also went open-circuit.
R.B.

Rank T22 Chassis

This one had received amateur attention and was nonoperative. Once the 200 V supply had been restored a check was made on 4 R 16 (910Ω) in the 12 V regulator circuit. It was found to be still within tolerance, but 4D5 (BZY88C5V6), 4D6 (BZY88C6V2) and 4D7 (1N4148)
were short-circuit, with scorch marks on the panel, and 4R58 (56Ω, safety) was open-circuit. When these were replaced the set started up but there was no raster. The TDA2532 RGB matrixing chip IC6 on the signals panel proved to be faulty.
R.B.

GEC C2110 Series

For intermittent no colour, sometimes coming and going if you tap the board, clean the pins of the TBA560 chroma/ luminance processing chip and its holder. A clue is that the luminance varies as well.
R.B.

Philips CTX-S Chassis

In recent months we've had a number of these sets in with faulty chroma delay lines (type DL701). Symptoms range from intermittent loss of colour to permanent no colour or alternatively severe Hanover blinds. The latter fault can be tracked down to the delay line by tapping its case.
As in the later KT3 chassis it pays to clean the pins of the chrominance chip. These can also be responsible for the no colour symptom when dirty.
R.B.

Philips 2A Chassis

This is becoming a stock fault with these sets. The reported fault is a dead set and you will normally find that the BU508 line output transistor is short-circuit. If so examine C2609 carefully for bulges and arcing around its legs - this will destroy the BU508. At the same time check whether R3601 ($5 \cdot 6 \Omega$ safety resistor) is open-circuit. It supplies the EW modulator. If it is you will usually find that C2616 has gone open-circuit.
A.D.

Salora 16.J20

The problem with this set was no picture, sound o.k. An article on the TDA3562 colour decoder chip, in the October 1987 issue, was the key to discovering the cause of the fault. A scope check on the sandcastle pulse input at pin 7 of this chip showed that the field component of the pulse was incorrect. Moving back through the circuit brought us to transistor TB400 (BC237B) which proved to be defective. Replacing this brought everything back perfectly. When scoping the field component of the sandcastle pulse it helps to remove the other components by isolating pin 7 of the TDA2594 chip - clearing the decks so to speak.
B. McC.

Ferguson TX85 Chassis

This set was dead. The mains input fuse had blown, the TIPL791A chopper transistor had gone short-circuit collector to emitter and the TEA2018A chopper control/ driver chip had an internal short from its 11 V supply input (pin 6) to its non-isolated chassis connection (pin 2). The fuse, transistor and chip were replaced and the set was switched on. It appeared to be working normally, apart from a scream from the power supply. So the set was quickly switched off.

A meter was connected to the h.t. output (97.5 V) from the chopper power supply to check that the regulation was
correct and the set was switched on. The h.t. was correct, but after about fifteen seconds the fuse blew. We found that the transistor and the chip had once more failed. A thorough check was then made on the components in the power supply. This revealed that $\mathrm{R} 101(1 \cdot 2 \mathrm{k} \Omega, 5 \mathrm{~W})$ in the snubber network across the chopper transistor had gone open-circuit. When all these items had been replaced the set was o.k.

Ferguson TX90 Chassis

The customer had complained of intermittent lack of height which was of course due to dry-joints on the field output transistors, but when setting up the contrast etc. I noticed that there was a dark band down the left-hand side of the picture and severe ringing on low-contrast scenes. I decided to bridge the electrolytics in the video circuits and while looking for C132 saw a capacitor with electrolyte leaking from its top - $\mathrm{C} 132(10 \mu \mathrm{~F}, 50 \mathrm{~V})$ in fact. It had a small hole in the underside, visible only after it was lifted upright. C132 decouples pin 4 (brightness control) of the μ PC1365C colour decoder chip IC103. N.B.

Decca/Tatung 130 Chassis

This set had been in several times for intermittently going into the standby mode. Several things had been tried - the tripler, the BU426A chopper transistor, the TDA4600 chopper control chip, etc. As the fault was of such an intermittent nature I decided to change the line output transformer, suspecting an internal arc. This put matters right.
N.B.

Decca 80 Chassis

We've had a spate of these recently with no sound and field collapse due to the relevant supply being absent. Rectifier diode D400 on the line output panel tends to go short-circuit.
N.B.

Panasonic TX-C21 (U4 Chassis)

The customer complained that when he turned the sound up the picture went green! Now these sets have a fair audio output, but somehow this seemed unlikely. I was able to instigate the fault however by tapping around particularly on the text panel. There were several suspect joints in the RGB interface section but the actual cause of the trouble was a peach of a joint at one end of jumper lead JF which connects pin 23 of the TROM chip IC5013 to R5063, running from top to bottom of the panel. N.B.

Salora 1G5

No picture with the c.r.t.'s cathode voltages high and the e.h.t. low was traced to a faulty IPSALO transformer (FM214). It had not broken down in the usual way, i.e. wires broken away from the transformer's pins, so a replacement was required.
N.B.

Salora 24L67

The complaint with this set was of intermittent picture disturbance. A field engineer didn't see the fault and couldn't provoke it, so thinking that the aerial could be at fault he left the customer with a set-top aerial as a check. The next day another field engineer discovered that the fault was very sensitive to tapping in the middle of the single-board chassis. On the bench this proved to be so
but no dry-joints or breaks could be found. Very precise tapping narrowed the source of the fault to the area left of the tuner, where even slight application of heat and freezer would instigate it. After a lot more prodding the cause of the trouble was found to be a break within R179 $(100 \mathrm{k} \Omega)$. No visible damage could be seen - maybe a poor connection to one end cap?
N.B.

Tatung 130 Chassis with System 30 RC

This set was stuck on standby. Overriding the momentarymake contact on the mains switch produced the expected screaming from the line output stage, so the tripler's input lead was disconnected. When switched on again the set remained in standby but overriding the momentary-make contact this time got the set going, without a raster of course. After fitting a new tripler the set worked but only with the momentary-make contact overriden. So attention was turned to the microcomputer control system, which had probably been dealt a deathly blow by the offending tripler. Latch-on of the MAB8021 chip didn't operate but a new MAB8021 didn't improve matters. Replacing the 74LS293N flip-flop chip IR08 did however restore normal operation. The other clue was that the channel LEDs were corrupt.
N.B.

Triumph CTV8210

This colour portable suffered from field collapse and the customer said he'd seen smoke coming from it. Both R930 (100Ω) and $\mathrm{L} 905(4.7 \mathrm{mH})$ were open-circuit. The cause of the burn up was not far away. C914 ($100 \mu \mathrm{~F}$) had a leak that measured about $2 \mathrm{k} \Omega$.
J.O.

Philips KT3 Chassis

Not a fault but a point to bear in mind if a twiddler has been at work. With this chassis you get a white line that looks like field collapse if the height control has been turned right down.
J.O.

Rediffusion 365138 (Mk 5 Chassis)

This colour portable was dead. As I'd no manual and didn't recognise the chassis I was on the point of giving up before I started. I noticed some high-value resistors in the power supply however, so I thought. I'd check them. Bingo! R718 ($120 \mathrm{k} \Omega$) was open-circuit. But this was not the end of the story. I switched on and the set was still dead. Cries of "oh dear!" - well I think that's what I said . . . Further investigation led me to R628 ($1 \mathrm{k} \Omega$) which was open-circuit and the 2SD868 line output transistor which was short-circuit. Don't ask me what blew first. J.O.

Salora 22J21

There was no raster though the sound was o.k. A check at the c.r.t. base showed that there was no first anode (G2) voltage. The $2 \cdot 2 \mathrm{k} \Omega$ feed resistor had burnt out. As cold checks didn't show any leakage I examined the base panel and found evidence of tracking between the 1 kV input and the BCL connection - surprisingly this lead didn't connect to any component on the c.r.t. base panel. After replacing the $2.2 \mathrm{k} \Omega$ resistor and disconnecting the BCL lead the first anode voltage and hence the brightness were restored. Rather than risk a future call-back the damaged c.r.t. base panel was replaced.
J.L.H.

Teletopics

SATELLITE TV

BSB's intention to apply for the franchise for the two other official UK satellite TV channels in the 12 GHz band could result in some technical changes. There is a trade off between the number of channels and the output power. BSB's first satellite has five transponders but two were intended to act as a back-up: using all five would mean reduced signal strength, at any rate until BSB's second satellite is put into orbit in mid-1990. Reduced transmission power would affect the design of BSB's "squarial", which might have to be larger -30 cm instead of 25 cm and of wider bandwidth. BSB proposes to use adaptive pre-emphasis to improve the signal-to-noise ratio.
Sky Television's descrambler is to be activated by a smart card. A new card with a modified chip will probably be sent to subscribers every three months, when a change is made to the encryption control coding. In this way lapsed subscribers can be cut off. The cards are to be manufactured in the UK by a joint venture being set up by Sky's parent company News International. Production is to start in the autumn and the aim is to manufacture two million cards during the first year. The operation will employ around 400 people.
The separate $£ 10$ licence to operate a satellite TVRO installation has been abolished. Some 7,000 licences were issued, the cost barely covering the paper work involved. Abolishing the satellite TV licence does not affect the legal requirement to have a normal TV receiving licence.

The "to be announced" channel in our Astra list on page 357 last month is being used by MTV, the pop music channel.

Philips has joined the group of companies under contract to produce set-top units for the BSB services. The other companies under contract are Ferguson, Nokia and Tatung - BSB has said it will appoint up to five manufacturers who will have access to BSB's encryption/access control technology. Philips intends to establish production capacity to turn out 50,000 units a month and is strongly backing the use of MAC for satellite TV transmissions.
Ferguson has announced a range of equipment for reception of the Astra and BSB transmissions. Model SAP1 at $£ 300$ is for Astra, with a 32 -channel tuner and 60 cm dish. Model SAP2 at $£ 330$ has the same electronics with an 80 cm dish. These models can be upgraded to provide unscrambling. Due in September is the SBP1 for BSB, with a 10 -channel tuner, Eurocypher decoding and a Squarial. Two further models, the SAP3 (60 cm dish) at $£ 400$ and the SAP4 (80 cm dish) at $£ 430$, are due in December. These are for Astra reception and will incorporate Palcrypt decoding. So completely separate systems will be required for Astra and BSB.

SATELLITE TV INSTALLATION KIT

Connexions (UK) plc, Unit 3, South Mimms Distribution Centre, Huggins Lane, Welham Green, Herts AL9 7LE (0707272091) has introduced a professional satellite TV installation kit. It comes in a durable polypropylene case at an inclusive trade price of $£ 129.95$ plus VAT. The kit comprises a CX9102F aerial setting meter, CX9201 inclinometer, CX9202 compass, CX9200 crimp tool,

CX9057 multimeter, CX9018 in-line amplifier, CX9056 insertion tool, CX9002 two-way splitter, CX9053 F-type coupler, CX9054 F-to-N adaptor, CX9055 N-to-F adaptor, 100 CX9051 F-type connectors and ten CX9052 protective weather "boots". The CX9056 insertion tool provides quick and easy application of F-type connectors to RG6 coaxial cable and is exclusive to Connexions. All items are available separately and can be obtained from Connexions distributors.

SUPER VIDEO

Sony has released details of the first equipment to use the Hi-Band Video 8 system. Basic details of this system, which brings Video 8 picture quality to a par with S-VHS, were given in the May 1988 Teletopics column. There are two models, the CCD-V900 camcorder at the equivalent of about $£ 1,070$ and the EVS-900 VCR at some $£ 1,090$. These are being released in Japan this April and no European launch dates have so far been announced. Sony is also releasing the first metal evaporated tape cassettes. There are three, the 60 -minute version costing $£ 9$. Also being launched are five high-grade MP tapes, with the 60 minute version priced at $£ 6$. These new tapes can also be used with standard Video 8 equipment.

Meanwhile two more S-VHS camcorders have been announced in the UK. The JVC GR-S77E is a compact S-VHS-C model with 420,000 pixel CCD image sensor, $10-$ lux sensitivity, an eight-head system for SP/LP, two-speed $\times 8$ zoom, a variable speed ($1 / 50$ th, $1 / 250$ th, $1 / 500$ th and $1 /$ 1,000 th sec) fast shutter, three-page digital superimpose and date/time recorder. The weight is 1.2 kg and the suggested price $£ 1,300$. The full-sized Hitachi S-VHS camcorder Model VM-S7200 is being released in May. Features include $\times 8$ zoom, four-speed fast shutter, VISS index system, self timer and edit search. The weight is 2.7 kg and the suggested price $£ 1,500$.

BATC RALLY/CONVENTION

This year's British Amateur Television Club convention/ rally is being held on April 30th at a new location, the Founder's Suite at the Coventry Crest Hotel. This is conveniently located on the A46, 500 yards south of junction two on the M6. There will be demonstrations covering all aspects of amateur and satellite TV equipment and a wide range of trading stalls. The hotel's training centre will be used in the afternoon for technical lectures. There is ample parking and the rally opens at 10 a.m. Admission is free to BATC members on production of a ticket from $C Q-T V, 50 \mathrm{p}$ to non-members. Trade enquiries to G8CJS or G8OZP who are QTHR.

BROADCASTING NEWS

The Home Office has appointed the accountancy/ consultancy group Price Waterhouse to study ways of privatising the BBC and IBA radio and television transmitter network. Price Waterhouse has been given just ten weeks to prepare a report. Privatisation of the transmission system was suggested in the recent government white paper on the future of radio and TV broadcasting in the UK.

In Japan NHK has now started daily trial HD-TV transmissions - a full service is to begin next year when two new satellites have been launched. The first transmissions were made during the Seoul Olympics, when NHK installed over two hundred HD-TV sets in public locations. These sets were hand built by several manufacturers
and are reputed to have cost around $£ 42,000$ each. Sets on sale will not come cheap, in particular due to the large amount of digital storage required. The MUSE technique, which is used to provide bandwidth compression with NHK's HD-TV system, requires field stores and interpolation for motion detection correction.

The BBC has been taking out patents on an improved version of PAL. The idea is to monitor reception at the transmitter, assess impairments and produce a digitally coded correction signal which is transmitted in teletext form. Sets able to take advantage of the system would include circuitry to decode the error signal and provide correction. Other sets would simply ignore the extra signal.

PUBLICATIONS

The 1989 RETRA Year Book and Directory has now been published. Copies can be obtained from the Association's headquarters at $£ 20$ each - for the address see "RETRA on the move" elsewhere on this page. Contents of this impressive 256 -page book include a points-toremember section on useful legal and business information, a glossary of satellite TV terms, a section listing brand names and their manufacturers, an international TV systems/mains voltages list and addresses of leading manufacturers.

A new expanded and revised second edition of John Breeds' book "Satellite Television Installation Guide" has now been published. It's available at $£ 11.95$ inclusive of post (in the UK) and packing from Swift Television Publications, 17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN. It's certainly a very useful and practical work.

WILLOW VALE'S COPS

Willow Vale has introduced a computer ordering parts system (COPS) for the radio and television servicing trade. Dealers holding an account with Willow Vale can obtain a password which will give them on-line access via a PC with telephone modem to Willow Vale's mainframe computer for information on availability, prices, etc. for over 50,000 stock items. Advantages include access and ordering without manufacturers' part numbers, access and ordering with part numbers, actual on-line stock availability, part number information, prices and discounts, technical pages and hints, back order display/amendment/ deletion, etc. COPS differs from other Viewdata type systems in being user-friendly and not requiring mandatory use of part numbers - all you need is the model number for which a list of parts is displayed in alphabetical order. Dealers not already so equipped can obtain from Willow Vale a terminal complete with modem for $£ 350$ plus VAT.

EXPANSION AT SONY BRIDGEND

Sony is to invest $£ 36$ million to increase production of colour TV receivers and Trinitron colour tubes at its Bridgend plant in South Wales. Bridgend is Sony's main European centre for colour TV receiver and tube production. Tubes and components made there are also used at plants in West Germany and Spain. It's anticipated that the expansion will create three hundred new jobs, many for people highly qualified in state-of-the-art automated manufacturing and surface coating technology. The initial announcement of Sony's intentions was made last Autumn and the new extension is due to be completed in

May 1990. Sony already employs a workforce of 1,500 at Bridgend.

Matsushita (Panasonic) has announced that it itends to increase production in Europe over the next three years. It's likely that new manufacturing facilities will be located in South Wales where the company already has a major plant.

retra on the move

After ten years at its Newington Causeway headquarters RETRA has moved to Bedford. The purpose of the move is to reduce overheads and improve the services offered to RETRA's 1,500 members. Council meetings will continue to be held in London. The new address is RETRA House, St. John's Terrace, 1 Ampthill Street, Bedford MK42 9EY, telephone number 0234269 110. RETRA's new headquarters is a $3,000 \mathrm{sq}$. ft building near the town centre, close to the A1 and M1.

CORRECTIONS

Several errors in recent issues have come to our attention. First the computer program for satellite dish alignment, see page 354 last month. The colons in line 90 should have been the string escape character - this is available below and to the right of the break key. The program will not run properly with colons in line 90 . There are also a few spacing errors which affect the displays obtained.

On page 351 last month (VCR Clinic) Panasonic NV-100/NV-10B should have been NV100/NV-V10B. Under the Ferguson FV11 on the same page the symptom intermittent failure to eject should have read tapes ejected when inserted. Nick Beer comments that dry-joints have started to appear on the take-up photosensor with this machine, making it go to stop. There was also an error in the article on S-VHS, page 334. VHS recordings can be made on S-VHS tape but not the other way round. When a non-S-VHS cassette is inserted the machine goes into the VHS mode irrespective of the selection made by the user.

In a letter on page 750 of the August 1988 issue the part number of the flywheel holder used in the GEC V4004/ Hitachi VT33 was given incorrectly. The GEC part number is V7376323. The recommendation is to use this in the later GEC V4005/Hitachi VT63/64 to cure noisy operation.

A note on errors in the article on j notation (February 1989) is being prepared.

Camcorder Servicing

Part 3
Steve Beeching, T.Eng.

So that it can display a full range of colours the screen of a colour TV tube is backed by phosphor stripes in the primary colours red, green and blue. In a similar though different way the faceplate of a colour camera tube is covered with colour stripes so that it can distinguish between colours. Although the tube's target covers most of the faceplate the area actually used consists of a $7.2 \times$ 5.6 mm rectangle - see Fig. 1. Within this area the purity of the target material and its sensitivity are kept within fine limits. The image from the lens is focused on this rectangle and to suppress signals outside this area the rest of the faceplate is covered with a black mask. The backfocus adjustment ensures that the distance between the lens and the tube's faceplate is correct. It's done with the lens set at infinity and the iris fully open.

The Colour Stripe Filter

For colour recognition the image area is covered with a precise fine-stripe filter. The main output from the tube consists of a wideband luminance signal (Y), or rather green. Stripes are used to obtain a red and blue carrier signal. By adding red, green and blue you get white. As the light transmission of red and blue filters is fairly low the filter instead uses the complementary colours yellow and cyan, thus obtaining improved low-light sensitivity. Cyan is -R and yellow -B of course. Feed the signals through inverting amplifiers and you get red and blue. It really is that simple!
The stripes are laid down diagonally as shown in Fig. 2, at an angle of $25^{\circ} 40^{\prime}$ to the vertical plane. Their width is $13.95 \mu \mathrm{~m}$, there's a gap of $13.95 \mu \mathrm{~m}$ between the stripes and the pitch is $30.89 \mu \mathrm{~m}$. The cyan stripes slope from left to right, giving a scanning sequence cyan, gap, cyan, gap etc. The yellow stripes slope from right to left, giving yellow, gap, yellow, gap etc. The colour pixels are the diamond crossovers, identified in Fig. 2 as lines $n-1, n$, $\mathrm{n}+1, \mathrm{n}+2$ etc.
The filter stripes act not only as a colour filter. Their physical dimensions and spacing are arranged so that a signal with specific parameters is generated. As the electron beam scans the area behind the stripes it generates a complex signal determined by the stripe structure. Since the number of stripes along each line is fixed, a carrier signal is generated - think of a child running along some railings with a stick, generating a tone. With the VHS-C system the carrier generated in this way is 4.3 MHz . Note that this is not the 4.43 MHz PAL subcarrier: it's the camera's R / B carrier signal. Note also that the scanning width is critical: if you alter the tube's scanning width the carrier frequency will alter.

Fig. 1 (left): The camera tube faceplate.

Green is present over the whole filter area since white is $R+B+G$, cyan is $B+G$ and yellow is $R+G$. The output from a Saticon tube thus consists of two superimposed signals, wideband luminance which you can call green if you prefer and a $4 \cdot 3 \mathrm{MHz}$ carrier which contains the red and blue colour information. The carrier is amplitude modulated by the red and blue signal components which have a phase difference of 180°.

A little thought given to Fig. 2 will show how this phase difference occurs. Assuming that the line scan is from left to right, progressing down the target in the sequence $n-$

Fig. 2: The colour stripe filter arrangement.
(a) Line n

(b) Line $n-1$

	R	B	R	B	R	B
	G	G	G	G	G	G

(c) Line n delayed by 90°

(d) Line n delayed by 270° (014)

Fig. 3: Separating the R and B components of the R / B carrier signal obtained from the tube.

Fig. 4: Block diagram of the R/B signal separation system.

Fig. 5: Block diagram of a typical colour video camera using a pick-up tube.
$1, \mathrm{n}, \mathrm{n}+1$, you can see that with the cyan stripes from left to right the cyan signal gets later and later on successive line scans. With the yellow stripes from right to left however the yellow signal occurs earlier and earlier on successive line scans. Now for the clever bit. The accurate $30.89 \mu \mathrm{~m}$ stripe pitch means that the cyan signal is retarded by 90° per line while the yellow signal advances by 90° per line. A 180° phase difference is thus maintained between the two components of the colour signal on a line by line basis, enabling them to be separated in a similar manner to what happens in the decoder of a colour TV receiver.

Separating the R and B Signals

The outputs obtained from the arrangement shown in Fig. 2 are illustrated in Fig. 3. Use of a one-line delay line enables us to mix the signal from line n with that from line $n-1$. Line n consists of white, green, white etc. As white is equivalent to $R+B+G$ this is $R G B, G, R G B, G$ etc. as shown in Fig. 3(a). The previous line $n-1$ consists of yellow, cyan, yellow, cyan, which is $R+G, B+G, R+$ $\mathrm{G}, \mathrm{B}+\mathrm{G}$ etc. as shown in Fig. 3(b). Note the 90° phase shift between lines n and $n-1$.

The way in which the red and blue components of the signal are separated is shown in Fig. 4. The tube's output is fed through a low-pass filter to separate the luminance component and a 4.3 MHz bandpass filter to separate the colour carrier. Line n's signal passes through a 90° phase shift network to compensate for the phase shift between lines, then to subtractor A and via a further 180° phase shift network to subtractor B. The signal from line $n-1$ is present at the output from the 1 H (one line) delay line and is fed to both subtractors. Thus n's signal has been delayed by 90° at subtractor A and 270° at subtractor B. These conditions are shown at (c) and (d) in Fig. 3. Subtracting $n-1$, i.e. (b) in Fig. 3, from (c) and (d) gives

Fig. 6: Frequency spectrum of the tube's output.
$\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B}$ and $\mathrm{R}, \mathrm{R}, \mathrm{R}, \mathrm{R}$ respectively. After detection we get baseband R and B signals which, when added to Y , provide the conventional $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ colourdifference signals. These are added to Y to give a standard composite luminance-chrominance signal. In practice things are a bit more complicated. The colour signal is clamped, tidied up and vertical edge correction is added.

Camera Block Diagram

Before looking at the rest of the processing we'll consider the overall camera arrangements. Fig. 5 shows a block diagram. The tube's output is first amplified by a high-gain, high-impedance preamplifier whose output is shown in Fig. 6. A.G.C. and black-level clamping are then applied after which the signal paths split, the full bandwidth luminance signal passing to the gamma correction circuit while a bandpass filter separates the R/B carrier and another low-pass filter (cut off above 1 MHz) separates a Y signal component that's used to produce the colour-difference signals. The R/B signal is subject to the processing described above, a variable resistor (R / B separation gain) and capacitor (R / B separation phase) being used to ensure accurate separation of the R and B signals. Vertical edge correction is applied at this point to remove any discolouration in black and white horizontal edges in the vertical scan. After separation the R and B signals pass along parallel paths via voltage-controlled amplifiers, where correction waveforms are added for grey-scale tracking and colour shading. Two amplifiers are driven by the white balance circuits. These can give fixed white balance, set white balance or auto white balance. After clamping and filtering -Y is added. The following sections provide PAL encoding and addition of the burst signal.

Gamma Correction

As the tube's output is not a linear voltage change for a linear light input change compensation is required. This is called gamma correction. The problem is made more complicated by the fact that the levels of Y signal and R / B carrier obtained from the tube do not remain constant with respect to each other throughout the range of input light. At low light levels the R/B carrier amplitude is lower in proportion to the Y signal level. This cannot be allowed in a high-sensitivity colour camera as there would

Fig. 7 (left): Camera tube light input/output voltage characteristic.

Fig. 8 (right): Triple-level tracking correction.

Fig. 9: Basic triple-level tracking circuit.

Fig. 10: Vertical edge correction adjustment.
be a tendency towards dark green pictures at low light levels when the R/B output falls off. It can be seen from Fig. 7 that the tube's sensitivity to blue is lowest, the red sensitivity falling between this and the higher Y sensitivity.

At mid-range light levels the sensitivity differences remain constant and can be equalised by gain adjustment so that the signals track together. At the extremes of low and high light however the red and blue signal levels fall off first. To prevent different tints at different light levels a triple-level tracking correction system is used. Fig. 8 shows the effect of this. Tracking (1) works at output levels up to 40 per cent, tacking (2) at between 40 and 80 per cent and tracking (3) at above 80 per cent. Tracking is

Fig. 11: Block diagram of the edge compensation system.
corrected by adjusting the gains of the red and blue control amplifiers against a Y reference signal.

A similar system is used in most camcorders, based on two chips - see Fig. 9. IC1 is referred to as the gamma tracking generator. It provides three outputs which are derived from the luminance input.

The output at pin 16 is clipped at 40 per cent. Thus luminance signals up to 40 per cent are supplied to tracking controls R66 and R76 to provide white balancing up to this level.

Pin 17 produces an output when the luminance level is between 40 and 80 per cent, white balancing then being via R61 and R75.

Pin 15 produces an output at high light levels, to R59 and R77.

It's not easy to adjust these controls without the correct lighting $\left(3,200^{\circ} \mathrm{K}\right)$ and a grey-scale chart. The controls are interactive at the crossover levels of 40 and 80 per cent, and considerable interadjustment is required to get the whole grey-scale tracking correct. Usually a compromise is found. Peak white levels can be adjusted only if control over the automatic iris is possible or a small white area within a black background is illuminated to fool the iris control and open up the iris to provide peak white conditions.

Edge Correction

Better quality broadcast cameras have an aperture correction circuit to crispen the pictures by correcting transition edges in both the horizontal and vertical directions. VHS camcorders have a vertical edge enhancement circuit which works by mixing signals from direct and delayed TV lines - it's often referred to as contour

Fig. 12: The white balance system.
correction. This is tied up with the vertical edge correction previously mentioned in the colour separation circuit. If a picture has a dark grey area at the top of the screen and a white area below it the first white horizontal line would, without correction, be discoloured. This is because of the fact that the R/B separator circuit operates over two lines of signal, and since the line above is dark no previous colour exists!
Fig. 10 shows vertical edge correction adjustment. A grey-scale is used. When titled at an angle of about 20° any edge colouration can be seen and removed or minimised.
The edge compensation system is shown in Fig. 11 - its output is used for vertical edge enhancement and is also used for discolouration correction at horizontal edges. A Y edge input signal enters IC5 at pin 4. After clamping, the signal is amplitude modulated, using the colour subcarrier. The reason for modulation is to get the signal through the one-line delay line, after which it's detected (demodulated). A subtraction process occurs in the detector circuit as a result of which the output at pin 1 consists of only signals that occur on one line and not the next, i.e. a difference component. If the two lines concerned are as previously described, i.e. a change from dark to white, a single line output will be produced. This has to be seen at field rate and shows up as a single spike pulse. The output goes to the colour suppressor to kill colouration of very dark or black areas following a transition from white to black during the field scan. It also goes via a low-pass filter to a second detector in IC3 where low-level spikes and noise are removed leaving only clean, healthy spikes. These are added to the luminance signal to beef up the vertical resolution and are also applied to the vertical edge correction system in the R/B channels.

White Balance

The purpose of the white balance circuit is to reduce the colour-difference signals to zero when the camera is pointed at a white surface - despite the colouring effect of the lighting. Once this is achieved, in theory all other colours will be correct.
While the circuit may look complicated - see Fig. 12 the operation is fairly simple. It's based on the two six-bit binary counters whose outputs are DA converted to obtain variable d.c. levels which are used to adjust the gain in the red and blue channels. The $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ inuts are clamped and gated and fed to two operational amplifiers whose other input is a reference level - you can think of this as a fixed green reference level. The circuit relates the red and blue signal levels to green so that $\mathrm{R}=$ $\mathrm{B}=\mathrm{G}$, which is white. When the auto white balance switch is closed the counters are enabled. Count up or down is determined by either a high or low output from the comparator amplifier in each channel, the latter output in turn being dependent on the difference signal being lower or higher than the reference level. As six-bit counters are used a total count of 64 is available. At power-on reset the count is 32 , giving equal possibilities up or down. Counting is controlled by the VD pulses which occur once per field. When a balance is obtained, by a change of state at either comparator, each counter stops and produces the appropriate d.c. output. C35 can hold the count during power off for a few hours. If the counters reach either 111111 or 000000 without any change a warning is produced - the indicator gives a flashing signal: it produces a permanent signal to indicate

Fig. 13: Method of producing the dynamic focusing and the shading correction waveforms.
the balanced condition.
If the white balance is in the fixed condition the d.c. levels are set to a 1.8 V reference. Camera adjustments are made in this condition.

Setting up and Fault Symptoms

So much then for an overall view of the camera section as used in JVC and Ferguson camcorders - Panasonic ones are similar. Adjustments should not be attempted without at least a good oscilloscope, e.g. one of the Grundig ones previously reviewed, and preferably a vectorscope. What about fault symptoms and areas to look at?

Any problem that reduces or eliminates the R / B carrier will turn the picture green - not necessarily all over. The scanning linearity over the target area must be uniform: any defocusing or nonlinearity will turn the picture green, i.e. areas of the picture will shift towards green.

Green in the corners or any part of the perimeter of the picture will be due to incorrect dynamic focus correction and/or poor focusing as the tube ages.

Red or blue shading can be corrected by means of the static shading (four) and red/blue dynamic shading (four each) controls.
The dynamic shading controls are set using a white card with an oscilloscope connected to the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ test points. Adjust for flat lines at line and field rate.

The same test points can be used for horizontal linearity and dynamic focusing (four controls) adjustment but an R/B carrier test point (after the bandpass filter) is much better. This will give you a typical carrier waveform with a ghostline across the centre. Use a white card. Scanning and dynamic focus adjustments should aim for a flattopped symmetrical rectangle, nice and straight with no falling off at the start and end and with the ghostline in the middle. This takes practice. The first time anyone sets up a camera it can take days rather than hours - with the option of cocking it up completely and sending the camera along to me with a blank cheque!

Parabolic and sawtooth waveforms at line and field rate are used for dynamic focusing, for R/B dynamic shading correction and for static shading. Fig. 13 shows the basic circuit arrangement.
Static shading adjustment is carried out with the lens cap on, monitoring the YH (full bandwidth luminance) signal, to get flat lines at line and field rate.
Static focus is adjusted on a white card while monitoring the R/B carrier.

When carrying out dynamic focus adjustment be careful that the correct setting isn't masked by incorrect shading adjustment.

The control arrangements differ somewhat with dif-
ferent cameras/camcorders. For precise setting up instructions for a particular model refer to the relevant manual.

Before making any of these adjustments the correction waveforms must be reduced to zero (flat) irrespective of the picture. It all takes a long time to do and may not produce better results if the tube's emission is low. Beware - an aged tube will have inconsistent sensitivity over the target area, producing shading and a poor grey scale. You cannot get rid of this by using the adjustments, particularly if the tube has a poor lag characteristic or a tendency to green at low light levels.

Failure of the $\mathrm{R}-\mathrm{Y}$ signal will produce a picture that's mostly green and yellow, with no reds at all. Failure of the $\mathrm{B}-\mathrm{Y}$ signal will product a picture that's all reds and
purples with no green. It's also possible to get just chroma, i.e. a dark picture with only red and blue highlights. This indicates a failure in the luminance signal (YH) path.

If the vertical scanning is incorrect the Y signal circuits can clamp on video, reducing the Y signal and turning the picture magenta. This can often be verified by aiming the camera below a window or other bright light source and then tilting it upwards. If the picture turns magenta when the bright light hits the top of the picture, adjust the vertical centring and/or height until the picture is linear without the effect being present.

In the next part we'll deal with the CCD (solid-state) image sensor.

The $B \& O L / L X 2500 / 2800$ Chassis

The Beovision L2500, L2800, LX2500 and LX2800 chassis are used in models with type numbers in a series 37XX, e.g. $3701,3702,3712,3720,3741,3752,3760$ and many others. As the chassis numbers suggest, there are 25 and 28in. models. LX sets come complete with teletext while the L sets can have a teletext panel fitted if required. The cabinets are teak, rosewood or "White Line". Fig. 1 shows the panel layout.

The sets are typically B and O , with high-quality finish, an excellent picture and superb sound, also flexibility of use/presentation. For example, a set can be used as the central item in the B and O Link System, in which compatible hi-fi, TV or video equipment can be controlled and operated via a remote control unit and a Beolink terminal or Master Control Panel. So you could say watch TV or video then select a track on your compact disc player and listen to its output via the stereo speakers of an LX type set. There's an LX-sat satellite TV decoder which, installed in the main receiver, can provide the display on a remote set in another room while the main set continues to provide terrestrial TV reception or VCR playback. We shall have more to say about the Link System in a later article.

As you might expect, with provision for so many features and B and O's reputation for fitting twenty per cent more components than are basically necessary, the circuit is rather daunting. Once you understand the workings of the set however you should have little difficulty in

Fig. 1: LLX2500/2800 chassis panel layout.
tackling faults. The few troubles we've experienced to date have been fairly simple ones.

The most common fault so far has been failure of the mains switch. It's one of only two controls on the set, the other being a channel-step button. The mains switch brings the set into operation in the standby mode. Full operation is obtained when channel selection (or step) is used. What often happens is that the mains switch fails to latch. Fitting a replacement can be tricky. In view of this when we instal a set we usually advise against frequent use of the mains switch, suggesting instead operation via the remote control unit.

The Microcomputer Control System

To understand these sets it's important to know a bit about the microcomputer control and data bus system, which is outlined in Fig. 2. Operation of the set is controlled by three microcomputer chips which act via three bus lines. These buses are of the I2C type, i.e. each has two lines, one for serial data and the other for the clock signal. Arbitration is used to sequence/organise communication between the various devices in the control circuitry, to ensure that the correct overriding etc. takes place.

Two of the microcomputer control chips, 1IC6 (type MAB8461) and 1IC5 (MAB8441), are on panel 1 along with the tuner and i.f. circuitry. The set's main control line is Bus 1 which is controlled by 1IC6. Its serial data output is at pin 2 and its clock output at pin 3. This bus provides the control link to the tuning interface and memory, to 1IC5 which controls Bus 2 and to $24 \mathrm{IC10}$ (on panel 24) which controls Bus 3. Bus 1 also controls the brightness, contrast and colour, via the SAB3037 DA converter/ decoder chip 21IC3 on panel 21. 1IC6 receives data from the remote control receiver at pin 12, which also receives Link System information from the Aux 1 socket. Remote control information from the VCR is fed into and out of the set via pin 8 of the scart socket, entering 1IC6 at pin 27. The AV remote control information from the Aux 3 socket enters at pin 26.

Power failure detection is also carried out by 1IC6, sensing being at pin 1 . Fig. 3 shows the arrangement. The two transistors 1TR22 and 1TR15 provide a high input at pin 1 in the event of a fault being sensed on one of the lines they monitor. 1TR15 senses a number of supplies in

Fig. 2: Outline of the microcomputer control system.
the set, also the beam current, via a diode gate arrangement. 1TR22 monitors the supplies derived'from the 17 V line. When pin 1 of 1IC6 goes high the set goes into the standby mode.

The slave microcomputer 1IC5 controls the display panel (11) in L models and the teletext panel (10) in LX models, via Bus 2. Its serial data and clock pins for this bus are 4 and 5 respectively.

The third microcomputer chip 24IC10 (MAB8410) on panel 24 controls the SAB3037 chip 24IC11 via Bus 3. 24 IC 10 receives Bus 1 information on pins 2 (data) and 3 (clock), its outputs to Bus 3 being at pins 6 and 7. The SAB3037 acts in the same way as 21IC3 but this time provides d.c. outputs to control the volume, bass, treble and stereo balance.

For the serial data and clock signals to be transmitted along the relevant lines a d.c. level is required. The Bus 1 lines are pulled up to the 5 V standby potential via 1 R 82 (data) and 1R81 (clock). In addition the data line is protected by the 5.6 V zener diode 1D32. These items are suspect if there's no pull-up voltage and thus no data transmission along Bus 1. 1IC5's Bus 2 lines are pulled up to the 5 V on rail as this chip does not need to be active in the standby mode. The Bus 3 lines are likewise pulled up to 5 V on.

Circuit Features

We will now take a brief look at some of the main circuitry used in these sets, starting with the chopper power supply - see Fig. 4.

When going from standby to on the voltage at pin 22 of 1IC6 (see Fig. 2) goes low. Thus transistor 1TR25 switches off and pin 3 of the operational amplifier chip 4 ICl (Fig. 4) is positively biased from the 5V standby supply. The other input, pin 2 , of this section of 4 ICl is held at 2.5 V by a zener diode stabilised feed. The output voltage at pin 1 of this chip therefore rises to 15 V . As a result. 4C23 charges via 4D26 and 4R32, producing a positivegoing ramp which is fed via 4 R31 to the emitter of 4 TR4. This transistor with 4TR5 form a regenerative switch. When 4TR4's emitter becomes positive with respect to its base it switches on, in turn switching 4TR5 on. 4C23 is then discharged via 4R34 and 4D23. The low voltage at the collector of 4TR5 when it switches on is fed back to
the base of 4TR4 via 4C21 and 4R23. Thus 4TR4/5 are held on. As 4C21 discharges via 4R30 4TR4/5 unlatch. The sawtooth voltage thus developed drives 4TR6, the chopper driver transistor, which in turn drives the BU508 chopper transistor 4TR1 via 4T3. Note that $4 \mathrm{~T} 1 / 2 / 3$ provide mains isolation. For timing and regulation, a negative-going pulse derived from winding 17-18 of the chopper transformer 4T1 is fed to the base of 4TR5 to control its switch-off time. The pulse obtained from 4T1 is an exact replica of 4TR1's collector waveform. It's clipped by 4R36, 4D28 and 4TR16 to produce a squarewave which is then differentiated by 4 C 22 and 4 R 27 to obtain the negative-going pulse that switches 4TR5 off. With 4 TR4/5 off, 4C23 can once more begin to charge. The circuit is thus self-oscillating.

In the TV mode, regulation is based on monitoring the 150 V h.t. supply produced by $4 \mathrm{D} 6 / 4 \mathrm{C} 10$. A tap on the potential divider $4 \mathrm{R} 8 / 37 / 90 / 38$ feeds pin 6 of 4 ICl . The other input pin of this section of 4 ICl is held at $5 \cdot 1 \mathrm{~V}$ by the action of zener diode 4D24. The error output at pin 7 of 4 ICl sets the bias at the base of 4 TR 4 and in consequence the point at which this transistor switches on. This regulation loop is kept stable by the action of 4C19 and 4R28.

In the audio only mode the 150 V rail is not loaded and cannot be used as the basis for regulation. In this mode the 17 V supply is used as the basis for regulation, via 4D47 and 4D48.

Fig. 3: The power failure detection circuit.

During start-up 4C23 charges via 4D26 from the 17 V standby supply. When running 4C23 charges via 4D25 from winding 17-18 of 4T1. Since the voltage here depends on the mains input, the charging of 4C23 will vary as the mains supply varies, thus providing stabilisation against changes in the mains input.

The regulation provided by this circuit is certainly impressive. The set will run on 60 V (and that's with a 28 in. c.r.t.!) and will start up with a 150 V input.

The line output stage is conventional, using a BU508 (4TR11) line output transistor, a diode-split line output transformer, and a diode modulator for EW correction. The line output transformer provides the e.h.t., first anode, focus and c.r.t. heater voltages and also the +12 V and -12 V supplies used by the TDA2170 field output chip. The line drive signal is generated by a TDA 1940 chip on panel $26 / 27$ and is fed via 26/27TR3 to panel 4 where four transistors (4 TR8/9/10/15) are used in the driver stage (no driver transformer). The purpose of $26 /$ $27 T R 3$ is to act as a switch to remove the line drive in the audio only mode - this prevents e.h.t. generation.

The field sync pulse output from the TDA 1940 chip on panel $26 / 27$ is passed to the colour decoder panel 21 and then back to $26 / 27 \mathrm{TR} 21$. This transistor's output is used to control the field oscillator, which consists of an LF353 dual operational amplifier chip (26/27IC6). Half of another dual operational amplifier chip, 26/27IC7 (LF358), acts as the field preamplifier which drives the TDA2170 on panel 4. The other half of $26 / 27 \mathrm{IC} 7$ provides EW drive. The TDA2170 drives the field scan coils directly - this is made possible by the energy efficient c.r.t. deflection system.

The field oscillator runs at 47 Hz to allow for graphics injection (e.g. tuning information) with no signal and thus no sync. The sync provides the extra three for 50 Hz .

Two TDA2040 chips on panel $26 / 27$ provide 15 W of audio output per channel at 8Ω. Each channel has a 4in. woofer and 2 in . tweeter, with external speaker options.

Table 1: Tuning Display Frequencies

Channel	On-screen display- $\mathbf{M H z}$	Channel	On-screen display- MHz
21	471	46	671
22	479	47	679
23	487	48	687
24	495	49	695
25	503	50	703
26	511	51	711
27	519	52	719
28	527	53	727
29	535	54	735
30	543	55	743
31	551	56	751
32	559	57	759
33	567	58	767
34	575	59	775
35	583	60	783
36	591	61	791
37	599	62	799
38	607	63	807
39	615	64	815
40	623	65	823
41	631	66	831
42	639	67	839
43	647	68	847
44	655	69	855
45	663		

The output from the audio detector is mono of course. It's split and fed via switching i.c.s $28 \mathrm{ICl} / 2$ then through $281 C 7$ to the dual volume/tone control circuits in 28IC8.

Teletext subtitles can be recorded on these sets and also printed by a suitable printer (LX versions of course). As mentioned earlier, the L models are teletext adaptable. This calls for removal of the display board - but hang on to this for diagnosis (it can prove a Bus 2 fault or teletext decoder fault). Note also that because of the power fail circuit these sets will not operate unless one or other of these boards is fitted. The on-screen display with text sets is provided by the text panel.

Tuning is not by the well-known channel numbers (2168) but by frequency. Table 1 shows the equivalents.

Despite the fact that the retail price of the LX2800 was over $£ 1,000$ these sets sold well in our area. They have since been replaced by the LX2502/2802 series (38 XX type numbers) which have only two buses and built-in Link processing.

Stuck in Standby

Our experience has been that faults are usually supply related or in the Bus 1 system. In either case the set will go into standby, as previously described. If you have a set that's stuck in standby and you don't know where to start, proceed as follows.
(1) Try to start the set in the audio only mode. If the set comes on you can rule out faults in the secondary supplies as these will all be up and running. It's likely that there's a Bus 1 fault. The best policy is to switch off, short out the test link connected to pin 11 of 1IC6 and try the set in the TV mode again. This overrides bus error detection. The set will now more than likely start. If so check for data and clock signals on the appropriate lines. If absent check for d.c. pull-up. As previously mentioned absence of pullup can be caused by open-circuit pull-up resistors or the protection zener diode being short-circuit. Another possibility is excessive loading due to a faulty i.c. The bus lines should give a resistance reading to chassis of $3 \cdot 5 \mathrm{k} \Omega$. A quick check is to remove the 330Ω series resistors (see Fig. 2) to see if this resistance returns. Also look for tuning. If there's none, suspect a fult in the tuning interface or memory.
(2) If the set won't start in the audio only mode look for loading on the power supply, i.e. 4T1's secondaries, for example a short-circuit line output transistor. Such secondary loading is indicated by a noise in the chopper transformer. If there's no noise, suspect a mains input or control circuit fault. 4R3 could be open-circuit or 4TR1 may have failed. For repeated failure of 4TR1 check whether $4 \mathrm{C} 15(1 \mu \mathrm{~F})$ is open-circuit.
(3) Check for power failure detection at pin 1 of 1IC6. A high here indicates an overload on one of the l.t. supplies.

Once you've understood the basic operation of the chopper power supply and the bus control arrangements you should have no difficulty in repairing faults in these sets. Develop the correct technique for these areas and the rest is much the same as with anyone else's sets!

Fault Report

Here's a list of some of the faults we've had.
(1) A completely dead set (no standby light) is usually due to a burnt up mains switch. If the subpanel is damaged, as it usually is, the complete assembly (part number 8003605) should be replaced - this is done through the

Fig. 4: The chopper power supply circuit. In earlier versions $4 R 32$ was $3.9 \mathrm{k} \Omega$ with $4 R 99$ and $4 R 100$ omitted. There have been other minor modifications to the circuit.
flap in the bottom of the cabinet.
(2) The most common cause of a set being stuck in standby, again usually preceded by smoke, is an opencircuit surge limiter resistor (4R3, $3 \cdot 3 \Omega$). A type with improved construction is now supplied.
(3) Reduced width and height has on a number of occasions been traced to the line flyback tuning capacitor $4 \mathrm{C} 32(1.5 \mathrm{nF})$ being open-circuit.
(4) Stuck on standby, not a Bus 1 fault. The line output transistor 4TR11 short-circuit.
(5) A few lines of field foldover on the picture. Check the $0 \cdot 1 \Omega$ resistors $4 R 74$ and $4 R 75$ in series with the supplies to the TDA2170 field output chip.
(6) No control of a VCR via the Aux 2 socket when used
in conjunction with a Beomaster 5500 and Master Control Panel 5500. Data reaching 1IC6 (MAB8461) but no output to the scart socket. Programming of options (datalink) correct but 1IC6 faulty.
(7) No picture when brought on from standby via the MCP 5500 with the above system. 21IC3 (SAB3037) faulty.
(8) No line or field sync after a few seconds. IC5 (TDA1940) on panel $26 / 27$ faulty.
(9) Teletext not running, top line only displayed. Horizontal phase control $26 / 27$ R 65 slightly off.
As a final note, when removing the back cover it's not necessary to remove the screws completely - this saves losing them.

Letters

REBUILT 30AX TUBES

Having read the article on servicing the Ferguson TX10 chassis (January) I feel I must comment on the final section under the heading "the tube". The author says that retubing a TX10 is a good proposition but goes on to say that sadly very few rebuilt tubes perform to the original standard. I've been in charge of our small rebuilding business for thirty years and can assure you that our 30AX tubes perform to the original standards - many of our customers tell us this. We are an associate of CHS Ltd., Barmby Road, Pocklington, Yorkshire ('phone 0759 303068) who distribute our tubes to the servicing trade. J.R. Leigh, Retube Ltd.,

North Somercotes, Louth, Lincs.

EHT ARCING

In reply to G.R. Darby, my article on e.h.t. arcing (January) was written in "strong terms" following a spate of faults that came into our workshop following misguided attempts to deal with problem. A large Japanese manufacturer does indeed smear silicone grease under the anode cap - but the points here for those who pour it over a dirty cap are smear and under. To keep matters brief I didn't originally mention the problems caused by gas heaters. The point to note is that the whole treatment hinges on the area being thoroughly cleaned.
Nick Beer,
Bideford, Devon.
I feel I really must comment on Les Lawry-Johns' article in the February issue. There have been many letters in the magazine over the past few months on the subject of cowboys and amateurs attacking equipment and getting the trade a bad name. An article on servicing to BEAB standards appeared recently and in the January issue there was an article on dealing with e.h.t. arcing. In view of all this how can someone of Les's standing report fixing two e.h.t. discharge problems by bodging with tape? I'm pleased that the customers were happy when they left the shop. Perhaps they won't be when their sets burst into flames as a result of smouldering PVC tape. We should all be working to stamp out such bad practices.
G.R. Darby, Proprietor Monitech, Earls Barton, Northampton.

I'd like to support the views expressed by G.R. Darby (Letters, March) on the subject of e.h.t arcing. So much in servicing is a matter of common sense. Manufacturers and service organisations alike, no matter what their size, are aware that the products they handle go into people's homes. Thus safety is the first consideration and price, though important, is secondary.

As Mr. Darby says, e.h.t. arcing is common with TV sets installed in homes where the occupants smoke heavily, run a bottled-gas heater, dry cloths in front of the fire and so on. No service engineer in his right mind would patch up a final anode connector which has failed under these conditions, but when a new cap has been installed it would be sensible to add some sealant to attempt to delay the date of the next replacement. Not good for business may be, but life's a gamble anyway! Many workshops
salvage undamaged e.h.t. caps from defective triplers and diode-split line output transformers, saving expensive repairs whilst keeping the job wholesome. Common sense and good judgement are again necessary here.

TV manufacturers generally don't seal final anode connectors because it involves additional expense and another operation on the production line, for something that's of benefit to only a small minority of the end users.

All of us in this industry have a duty towards the general public in making sure that the repaired equipment we return to their homes is as safe as it was when new, if not safer.
K. Rutherford, Nottingham.

AMSTRAD AND RANK PARTS

Since I last wrote (Letters March) I've been told by CPC that they can now order R814 (27 $2,20 \mathrm{~W})$ for the Amstrad CTV2200/2210 under the revised part number 1422031.

With reference to D.R. Isham's interesting letter, if any reader would rather buy the selector cams/nuts for the four-button mechanical tuner used in many Rank sets I have a stock and can supply 16 for an s.a.e. plus $£ 1$ (coin or P.O.).
Dave Mackrill, 32 Southwater Road,
St. Leonards-on-Sea, East Sussex TN37 6JS.

ORACLE PUZZLE SOLVED

In reply to C. Russell's letter (February), the information on the Oracle lines mentioned is ITV's own data broadcast system used by a chain of chemist shops, the city, betting shops, some libraries, etc., etc. To receive the pages you require a special decoder and to be enabled by ITV - unless enabled for a fee the decoder will not reveal any more than a standard TV set with teletext does. But you would be amazed by what can be done with a second-hand computer, a few chips and a few hundred hours.

A.J. Goloshof,

Tewkesbury, Glos.
In reply to C. Russell, I managed to get this on page 799 (ITV):

Although I've tried page 700 nothing happens, but if you turn to page 188 more details are available. I suspect that pages 701-3, 713-5 and 719 are part of this system for which a decoder would be required. Incidentally "P799" is very difficult to stop because it scrolls down the screen in a fraction of a second every sixty seconds.

D.R. Hindley,

Bradford, West Yorkshire.
I think I can shed some light on the latest Oracle puzzle (letters, February). With the aid of the wildcard facility on the time-page entry to my computer's teletext card I was soon able to determine that the time code to hold page 799 is 1312. Despite the reveal button exposing more information, the key words on this page are "air call teletext". This name is mentioned (as Televox is) on page

270, regional advertising. I was then led to page 188 and from there to the telephone. In reply to my call I was told that the company is providing an ASCII data transmission service that can be an economical alternative to a modem link.

The data is encrypted and appears as garbage on pages 715 etc. on the TV screen. For subscribers with a blackbox adaptor however the data can be decoded and fed to an RS232 port. Companies that use this service include High Street stores, travel agents, etc. The information on page 799 is for the benefit of the providers of the system, some of the details of which may I suspect have changed slightly since the page was composed. I could find no sign of activity on page 700.
Tim Bolt.
Cambridge.

CURE FOR FIELD JUDDER

I was recently given an old Betamax machine that was otherwise going to the tip - I wanted it in order to see a Donohue tape on cryonic suspension recorded by a friend who has a Betamax VCR. In view of the resale value of working Betamax machines professional repair is no longer economic. So it was not unreasonable to try something unconventional.

Unfortunately the machine, a Toshiba V5470B, suffered from drum wear and tape alignment problems. This meant that although a picture could be obtained it was not up to the usual standard. Although the dots and lines on the screen could be cleared the f.m. envelope was still poor, causing an infuriating field judder.
Despite not having a service manual I was able to find the playback video level control and a test point where the head switching squarewave was present. Examination of the video at this control showed that the sync pulses are positive going. I therefore made up a circuit (Fig. 1) that provides a pulse slightly in advance of each field sync pulse. The positive edge of the head switching squarewave is inverted by Tr 1 and then passed through a differentiator to Tr 2 . A second differentiator feeds the input to Tr 3 . An output pulse is thus obtained from both edges of the squarewave. If the manual had been available a better take-off point from an electrical point of view could probably have been found, but the test point is in a very convenient position. The output, a series of narrow pulses at field frequency, is fed via a $1 \mathrm{k} \Omega$ resistor to the video level control where it's mixed in with the video signal. As the pulses are derived from the head rotation servo they are effectively a "flywheel field sync" and are therefore immune to all but the most serious interference. Since they come slightly in advance of the real neld sync pulses it doesn't matter what mess interferes with these.

Fig. 1: Pulse generator circuit to cure field judder.

The circuit was built on a small piece of tagstrip and held in place by stiff wires to TP10, which is at the top side of the machine on the panel next to the top left-hand corner of the tuner setting panel. The earth connection was taken to a chassis point near this while the 12 V supply required was taken via a wire connected to the large electrolytic at the top right-hand corner of the mechanical section. The machine was then turned over to make the connection to the playback level control. With the machine upside down and the bottom cover removed this control is at the bottom left-hand corner of the big panel. The $1 \mathrm{k} \Omega$ resistor was soldered to the wiper of this control, the connecting lead being taken through the machine back to the new circuit.

It would seem to me that this is a good way of generating the field sync signal in all VCRs. It will improve reliability and the playback of poor tapes. The cost of the circuitry at the manufacturing stage would be negligible.
John de Rivaz, B.Sc. (Eng.),
Porthtowan, Cornwall.

HELP WANTED

Can anyone supply a service manual/circuit diagram for the Sona 12in. monochrome portable Model S1286? The set was made in Rumania and distributed by Reay Electrical Distributors Ltd. who are unable to help.
K. Pocock, 500 Ripponden Road,

Oldham, Lancs OL4 2LL.
Does anyone know of a source of the CA3023 i.c.? It's a 16 MHz wideband amplifier. Grandata had listed it but no longer has stock. Another problem is the scarcity of 8501 chips for Commodore 16s and Plus 4s. A container load from the States wouldn't dent the requirement for these i.c.s!
A. Gall, 2 Commerce Street,

Arbroath, Angus DDII INB.
Can anyone suggest a source of the TBA641A12 i.c. which no longer seems to be in stock anywhere?
F. Dawson, 32 Perry Street,

Darwen, Lancs BB3 3DG.
Is there an ex-Rediffusion engineer or anyone out there who can help me make an old lady happy? The problem is teletext interference with a Mk. 13A monochrome receiver. I've tried several things but can't get rid of the lines. I'll gladly accept a reverse charge call on 0773810 522 (daytime) or 0602384176 (evenings).
C. Newman, 58 Portland Road, Selston, Notts.
Can anyone supply a line output transformer for the Plustron Model CTV14? Several firms have been tried without success.
Len Sutton, Kildare Bungalow, Baghill Lane,
Pontefract, West Yorkshire WF8 2HE.
Telephone 0977797063.

TDA1004A AVAILABLE

Your correspondents who asked about the TDA1004A i.c. (February) might like to know that it's available from Greenweld Electronics Ltd., 443 Millbrook Road, Southampton SO1 0HX ('phone 0703772501).
David Hills,
Newport, Gwent.

Strange Things

Les Lawry-Johns

Some odd things have been happening to sets around here. Take the two Ferguson TX9s that came in recently.

A Couple of TX9s

The first was brought in by a chap from just over the road. He said the colours were wrong - blue faces etc. I told him to call back later and started on it. The faces were certainly blue, as was the colour of the snooker table. I checked everything thoroughly, first the resistors etc. on the tube base panel then back to the output transistors on the main panel. There was nothing amiss so, feeling a bit of a fool, I removed the RGB drive leads from the tube's base panel. Red at the bottom, blue in the middle and green at the top. I put the red lead at the top and the green one at the bottom. The faces then looked all right but the fields were blue. So I changed over the green and blue leads, which produced green fields and a green snooker table. We now had the blue lead at the bottom, the green lead in the middle and the red one at the top. I didn't like doing this and it worried me. The set was left working all day and when the chap came back I told him what I'd done. He looked at the picture and said it was perfect. I asked him whether anyone had worked on the set and he said no.
So what had gone wrong to make it necessary to swap over the drive leads? The manual says that the green lead should be at the bottom, the red one in the middle and the blue one at the top. Surely the cathodes can't change their colours in this way? The leads looked to be undisturbed, correctly wrapped round - now they are soldered on. The set continues to work well. Strange.

The second TX9 came in with intermittent field collapse. I fitted a new TDA1170S field timebase chip and the set worked for several hours. Then suddenly the field collapsed again and when I pulled the chassis out the field scan was restored. I tapped around and it collapsed again. Next I found that there was no voltage at D94, the rectifier that provides the 24 V supply for the field timebase. After a lot of mucking about I discovered that the field collapse came and went when pin 12 of the line output transformer was tapped - it connects the earthy side of the winding that feeds D94 to chassis. I cursed myself for not thinking of this earlier and remade the joint. No amount of tapping had any effect after that. Another easy job made difficult by my bungling.

Fidelity Problems

Fidelity CTV14Rs (ZX2000 chassis) never used to give me any trouble. One came in the other week and seemed to work fine after I'd fitted a new line output transformer. Shortly afterwards it came back. This time I found that the BU208 line output transistor was shorting intermittently. On the last time it had done so it had blown the BUW84 chopper transistor. So I replaced both transistors and the set worked fine. Until next morning, that is. When I switched it on there was a loud bang. This time the BUW84 had shorted, blowing the mains fuse. I checked everything and fitted a new line output trans-
former, a new BU208 (just in case), two new bridge rectifier diodes, another BUW84 and a mains fuse. The set then worked normally but next morning there was another loud bang at switch on and I was back at square one. Why should a set that works perfectly when repaired go bang next morning? To cut a long story short, apart from two line output transformers, three BU208s, several BUW84s and of course fuses I must have fitted at least a dozen mains rectifier diodes before the set would work reliably.
When the owner came back I told him what had been happening to the set, and to me. He took it away and gave me back an aerial amplifier he'd purchased a week before, refusing to take any money for it. There are some nice people about - I'd begun to think that they were getting to be a bit thin on the ground.

Incidentally I'd like to thank those nice TV boys in Plymouth who repaired my daughter's Fidelity set - the one l'd given her some time ago. I hope it didn't give them as much trouble as the set just mentioned. I also wish they'd come and fix this CTV14 (ZX3000 chassis) that came in with a blank white screen. The lady who brought it in said there wasn't much wrong with it and I'd be able to do it in no time.

I thanked her and started on it. The screen was bright with white lines across it. So I turned down the first anode knob on the line output transformer and changed the TDA3562A colour decoder chip. With the new chip installed a picture appeared. I'd turned the brightness down, and when the controls were readjusted there was a good monochrome picture. But when the colour control was turned up the picture remained in black and white. She said the set required only minor treatment so I gave it up and returned it. I feel ashamed of myself, but there it is - I'm getting old and don't want to do things for nothing.

The Pye G11

A Pye G11 came in recently with no sound or vision. I did my usual checks before switching on - the mains and h.t. fuses all seemed to be intact. So I switched on and heard the e.h.t. rustle up. But there was no l.t. supply at the lower left side i.f. panel. When the line output panel was swung out I found that the lower, 1A l.t. fuse was open-circuit. After switching off I checked from the fuseholder to chassis. There was a dead short which disappeared when the long socket was unplugged. So I turned my attention to the lower left side i.f./tuner panel, having refitted the socket on the line output panel.

As the short was still present I suspected the 12 V regulator. When I removed the power input socket however the short disappeared. I started to frown at this and went back to the line output panel. Removing the socket here once more cleared the short. So what was I up against? A short in the wiring? I checked for this but there were no shorts.

It appeared that the short was present only when the socket was connected. I then did what I should have done in the first place. I again removed the socket, then checked from the fuseholder to the panel's true earth (not the frame). This time the short showed. A look at the circuit suggested that the LT1 supply's reservoir capacitor C1350 was the culprit, and when this was removed all was well. A new $150 \mu \mathrm{~V}, 50 \mathrm{~V}$ electrolytic restored the sound and vision and after a final check it was time to write out the bill. Another example of making life difficult for myself

Philips VR6470 and Related Models

Barry Loughran

The machines covered by these notes include the Tatung VRH8495TK, the Philips VR6470 and VR6670 and the Pye DV468, DV562 and DV761. They all use Philips mechanisms and electronics and there are probably other clones. We've serviced a hundred or so of them, and as a result have been able to note a few common faults. These are listed below.

13V line missing: Replace transistor 7001 (BD436) and IC7051 (LM393). Always replace them both before switching on.

Loud crackling noise while loading: This is usually caused by a broken tooth on the rack slider. Replacement is the only cure.

Noisy playback, rewind, fast forward or no rewind or fast forward picture search: This has always been found to be due to coupling 214. Repairing this will restore normal operation.

Tape jams in deck: Can be tape stop broken in cassette deck, spring 215 bent or cam 217, 206 broken.

Poor Picture: Usually caused by poor video heads. The type of head used often seems to last for only about one
year. On a few occasions the cause of the trouble has been the spring coming off back-tension lever 204.

Switches off when fully loaded: Check whether the capstan motor is trying to go in reverse. If so replace IC7251 (L293B).

Tape loads then unloads: If this is not caused by a badly positioned cassette deck try replacing the tape-end sensors.

Tape loads only half way when play is pressed: The threading motor can have a tight spot.

This has covered most of the main problems we've had with these machines. On one or two occasions however we've had a very weird problem. The complaint has been that at times the machine won't accept a tape. On each occasion when the machine has been put on the bench the fault has been present and no initial measures would cure it. The tape was then loaded half way using a battery connected to the threading motor. After connecting the mains the machine unloaded and after this the machine accepted a tape on all occasions. We could instigate the fault only by unloading the tape, switching off at the mains then reconnecting the machine. The cause of the problem was eventually traced to the fact that when IC7551 was being reset it held the threading motor on for six seconds longer than it should have done. Replacing IC7551 puts matters right.
As a final point, when replacing the top plate make sure that the pressure roller assembly is located properly. Otherwise the teeth on the rack slider can be broken at the first attempt to load a tape.

	9し¢－lして！d \downarrow ¢	G8t0z－LてE पd	ع＜lvy ${ }^{\text {ed }}$	NIG－8 NIO－9 $18 \forall O S$				N
＋ 0ε	909－Lして！d \＆	＊006－しLて！d 91	GLG－LLC！d 6	0ε	62	$8 Z$	\rangle	
＊006－l LZ ！d 6Z	＋006－LLZ ！${ }^{\text {d }}$ Z	0＜LVy＾${ }_{\text {d }}$	E8LVyへ ${ }^{\text {d }}$	$\angle 乙$	92	92	r	YO＾
（wと）	LLLVBへ ${ }^{\text {d }}$ d	LLG－LLて！dGl	G0G－Lして！d 8	カて	$\varepsilon 乙$	てZ	H	
L8t0て－LてE 4d	てLG－lして！dして	08LVyへ ¢	ャ8t0て－L2E 4d	して	02	61	5	
（wg．l）		L0G－LLZ！dかし	＊006－LLて！d L	81	L1	91	\pm	
98t0て－してE 4d	ZOG－LIZ！d 0Z	＊006－اして！d $ع$ L	LIG－Lして！d 9	Gl	$\square 1$	$\varepsilon 1$	\exists	
＊006－Lして！d8て	＋006－1して61	zLlVy＾ed	LOG－LlZ！d G	てし	LL	OL	\square	
GlG－lして！d LZ		とlG－lして！dてし	＊006－lして！dt	6	8	L	3	
ع8Lもyヘed	8LG－Lして！d81	Z8レロyヘed	カレ－lして！dを	9	G	t	9	
G0¢－Lして！d 9Z	ャ8اヲy ${ }^{\text {ed }}$	E0G－Lして！dしい	ャ0¢－LLて！dて	ε	2	1	\forall	
＊006－Lして！d GZ	80G－lして！d Ll	＊006－LLて！d OL	＊006－lして！d		！eu	wos		

SYNIT $\sim 1-4 J \wedge$

G89－LIZ！d 09
＊006－しして！d 6t 9عاも४へ ${ }^{\text {d }}$
899－しして！d8 8
699－しLて！dく七\＆Lもソへ ${ }^{\text {d }}$
990－しレて！d9か
8ャ0て－LZE 4d
＊006－l LZ！d Gb LSLVyへ ${ }^{\text {d }}$ E69－しして！d 功 ャ69－レして！d \＆ 8かしもyへ ed 069－しして！dても 9bしもyへed 889－しして！dしか 006－llて！d 0D てとしもyへed
 เモレもソへ ed 199－しして！d LE Lヵレもyへ ed 689－しして！d9を $0 \varepsilon เ \forall y \wedge{ }^{\mathrm{d}}$ 099－Lして！d 9ε ＊006－レして！d $\downarrow \varepsilon$

 ャ89－しして！d8L 989－しLて！d LL LELVy＾ed 0く9－しして！d91 $6 ヵ レ \forall y \wedge e^{2}$ し69－しして！d Gl عとしもyへ ed G99－lして！dかし てカレロソヘ ${ }^{\text {d }}$ LL9－lしZ！d EL カーローソへ ed キ89－lして！d Zし GカレVYへ Ed L89－lして！dll 006－LLZ！d 0L 6L9－Lして！d 6 89－LLZ！d8 عاもपへ ed ！ d て69－1て！ Z99－Lして！d 9 ャL9－Lして！d \downarrow 6L9－LLZ！d L89－LLZ！dて 8L9－LLZ！d

550
 JVC NW 7BA. $01-450$ 3282. Trade only.

Chas Hyde \& Son Ltd., Prospect House, Barmby Road, Pocklington, York YO4 2DP. 0759303
068. Official spares distributors for Ferguson, Philios, Pye and Sharp. Spares stocked for
Huanyu. Spares available from Audio Visual Technical Support Ltd., 67 A Shelson Avenue,
Feltham, Middx TW13 40S. 01-890 3004 or 3010 .
HRS Electronics plc., 11 Garretts Green Lane, Garretts Green, Birmingham B33 OUE. 021789
7575. Wide range of spares including Ferruson, Philips, Rank etc. Trade only.
(tachi Sales (UK) Ltd., Hitachi House, Station Road, Hayes, Middx UB3
Accunt holders can use $0=569$ 1843 (known part no.) or $01-5691975$ (part no. not
known). See also Chas Hyde, McLelland, Wizard.
Hitachi Sales (UK) Ltd., Hitachi House, Station Road, Hayes, Middx UB3 4DR. 01-848 8787 $\exists \mathrm{W} \exists \mathrm{S}$ 'əp/H
890 mo6selo

Harwood. Spares available (trade only) from Jackson Products Ltd., 18 th Floor, Station ranges available only from Willow Vale.
HMV. Sets use Ferguson or Fidelity chassis.
Andig International Ltd., Mill Road, Rugby, Warwickssire CV21 1PR. 0788565128.
Account holders only supplied. See also Willow Vale. Spares for VCR4000 and SVR4004
ranges available only from Willow Vale
Goodmans Loudspeakers, Tees Building, Unit 2-3, Mitchel Way, Portsmouth PO3 5PR. 0705
673
734
eneral. See Teleton Electro
olddtar UK Sales Ltd., Goldstar House, 264 Bath Road, Slough SL1 4DT. 0753691888.
Spares for Model GHV12321 available from Cathay Electronics. General. See Teleton Electro (UK) Co. Ltd Fujitsu General. See Teleton Electro (UK) Co. Lt
Galaxy monochrome portables. See Iskra Ltd.
GEC. Spares available from Hotpoint Ltd., Celta
See also CPC, Chas Hyde, MoLeiland,' SEME, Fisher Sales (UK) Ltt., PO Box 294, Wattord, Herts WD2 8JF. 0923222244.
Fujitsu General. See Teieton Electro (UK) Co. Ltd.
 Middx EN1 1DY. $01-8047979$. Trade only. See also CPC, HRS, Chas Hyde, Wizard.
Fidelity. Spares available from SEME, CPC, McLelland, Wizard and Willow Vale. IN \times xplin
'uotuoup
ph 7 uosn
Expert. Spares from Tatung, GEC or Luxor depending on chassis.
Ferguson Ltd., Service Division, PO Box 121 , Lea Valley Trading Estate, Angel Road

Schneider (UK) Ltd., Schneider House, 5 Harrowden Road, Brackmills, Northampton NN4 OBE. 0604769255. Seleco (UK) Ltd., Orchard House, Amersham Road, Chesham, Bucks HP5 1NE. 0494774366. SEME Ltd., Units 2E and 2F, Saxby Road Industrial Estate, Melton Mowbray, Leics LE13 1BS. 066465 392. Wide range of spares including Ferguson, GEC, Hinari, Philips, Pye, Sharp. Full range stocked for Fidelity and NEC. Trade only except for Fidelity and NEC cabinet parts.	TV/VCR SPARES GUIDE 1989
Sentra Consumer Products, Locksley Road, Brighouse, W. Yorks HD6 1QF. 0484714355.	
Sharp. Spares available from Willow Vale Electronics Ltd., 11 Arkwright Road, Reading, Berks. 0734876 444. See also Chas Hyde, McLelland, SEME.	The following list gives spares department addresses and telephone numbers or, where these are the same, service department or head office addresses and telephone numbers.
Siemens. Spares for Model numbers beginning FF available from Mastercare Components (see above). Spares for Model numbers beginning FC available from John Langman Ltd., 5 Bryants Close, Frenchay, Bristol BS16 1PA - 0272567 184. Spares available in the Republic of Ireland from Siemens Ltd., Domestic Appliances Division, Dublin Industrial Estate, Finglas, Dublin 11 - telephone no. 302855.	Also included are details of major spares distributors. Aiwa UK Ltd., Unit 5, Heathrow Summit Centre, Skyport.Drive, West Drayton, Middx UB7 OLY. 01-897 7000.
Sinclair. Spares available from CPC Ltd. Skantic. See Salora.	Akai (UK) Ltd., Haslemere Heathrow Estate, 12 Silver Jubilee Way, Parkway, Hounslow, Middx TW4 6NF. 01-897 6388.
Solavox. Brand name used by Comet Radiovision Services Ltd. Sonatel. Brand name used by Morphy Richards Consumer Electronics Ltd.	Alba Radio Ltd., Unit 1A, Rippleside Commercial Estate, Ripple Road, Barking, Essex. 01-594 5533. Early large-screen CTVs use Philips or Thorn Chassis. Trade only.
Sony (UK) Ltd., Spares Division, PO Box 58, Newbury, Berks RG13 4LX. 0635 60000. Account holders only supplied. Spares obtainable from SES at Oldbury 021544 8818, Dulwich 01693 9622, Glasgow 041554 2751, Leeds 0532527 387, Staines 078466 111. See also CPC,	Ambassador. Brand name used by Sentra Consumer Products. Amstrad. Spares available from CPC Ltd. and Chas Hyde \& Son Ltd. Reynolds Electronics Ltd. handle computers in Ireland.
Chas Hyde, McLelland. Steepletone Products Ltd., Park End Works, Croughton, Nr. Brackley, Northants NN13 5RD. 0869810081.	Aro. Spares available from HRS Electronics plc. ASA. Spares can be ordered from Finlux. Agents in Ireland: Bagenalstown TV Centre, Market Square, Bagenalstown, Co. Carlow. 01-503 21581. Trade only.
Sunkyong Europe Ltd., Sunkyong House, Springfield Road, Hayes, Middx UB4 0TY. 01-561 1200. Trade only.	Autovox. See Comet Radiovision Services Ltd.
Tandberg. R.D.E. Tandberg, Holly Tree House, The Green, Full Sutton, York YO4 1HW. 075 972795.	Benkson. B. Benkert Ltd., Benkson House, 26 Thames Road, Barking, Essex IG1.1 0JA. 01-594 7532. Trade only.
Tashiko. Brand name used by Granada. Spares available from UK Rental \& Retail Ltd., Unit 37, Roman Way Industrial Estate, Preston, Lancs PR2 5BD. 0772651 551. Trade only.	Beovision/Beocord. Bang and Olufsen UK Ltd., Eastbrook Road, Gloucester GL4 7DE. 0452 307 377. Trade only.
Tatung (UK) Ltd., Service Division, Stafford Park 10, Telford, Shropshire TF3 3AB. 0952613 111. Trade only.	Binatone International Ltd., Binatone House, 1 Beresford Avenue, Wembley, Middx HA0 1YX. 01-903 5211. Trade only.
Telefunken. Paul Spring Electronics, 6 Oasthouse Way, St. Mary Cray, Orpington, Kent BR5 3PT. 068931 341. Trade only. Spares for 712/712A and earlier chassis no longer available.	Blaupunkt. Robert Bosch Ltd., PO Box 98, Broadwater Park, North Orbital Road, Denham, Uxbridge, Middx UB9 5HJ. 0895838 383. Trade only.
Teleton Electro (UK) Co. Ltd., 154 Great North Road, Birchwood Industrial Estate, Hatfield, Herts AL9 5JN. 0707272841.	Bush Radio plc., Wharf Road, Enfield, Middx EN3 4TE. 01-805 2065. Trade only. Spares for Rank produced CTVs (up to T24/T26 chassis) available from HRS Electronics plc.
Tensai. UK agents John Walker Ltd., 55 North Street, Thame, Oxfordshire OX9 3BN. 0844 213277.	Canon (UK) Ltd., Unit 4, Brent Trading Centre, North Circular Road, London NW10. 01-459 1266.
Texet. The Hiro Co., Ltd., Elizabeth House, Elizabeth Street, Manchester M8 8JJ. 0618347 432.	Cathay Electronics, 7 Blacklands Way, Abingdon Business Park, Abingdon, Oxfordshire OX14 1SU. 0235325555.
Thomson. TV and VCR spares available from K.M. Services Ltd., 19 Market Place, Brackley, Northants NN13 5AB. 0280701650 . Trade only. For camera and microwave spares see Plusmaster (Electronics) Ltd	Cihan. Spares available from HRS Electronics plc. Classic monochrome portables. See Iskra Ltd.
Toshiba Technical Centre, Units 6/7, Admiralty Way, Southern Trading Centre, Camberley, Blackwater, Surrey GU15 3DT. 0276694000 . Trade only. See also Chas Hyde.	Commodore. Spares for Commodore computers available from HRS Electronics plc. Comet Radiovision Services Ltd., Service Dept., Marshgate Industrial Estate, Marshgate, Doncaster DN5 8AF. 0302340486.
Trical. Brand name used by Hinari Consumer Products Ltd.	Contec. CTVs sold by Dixons. Spares available from Mastercare Components.
Triumph. Brand name used by Currys. See Mastercare Components, CPC. Ultra See Ferguson Itd	CPC Ltd., 186-200 North Road, Preston, Lancs PR1 1YP. 0772555034. Official spares
Vega. Technical and Optical Equipment (London) Ltd., Zenith House, 69 Lawrence Road, Tottenham, London N15 4TG. 01-800 8088.	stockists for Amstrad, Ferguson, Fidelity, GEC, Hinari, Logik, Matsui, Philips, Pye, Saisho, Sinclair, Sony and Triumph.
Willow Vale Electronics Ltd., 11 Arkwright Road, Reading, Berks RG2 OLU. 0734876444. Official spares stockists for Ferguson, Fidelity, GEC, Grundig, Philips, Pye, Sharp. Other spares available.	Decca. See Tatung (UK) Ltd. and Wizard Distributors. Spares for chassis up to and including the $110 / 115$ series available from D \& S Electonic Services, Building 15, Unit 4, Stanmore
Winthronics. Spares available from Lloytron Electronics Lt	Industrial Estate, Bridgnorth, Salop WV15 5HR. 0746766641. Doric. Rediffusion brand name. See Rediffusion Business Electronics L
Wizard Distributors, Empress Street Works, Empress Street, Manchester M16 9EN. 0618725 438 or 0618480 060. Spares stocked include Decca, Ferguson, Fidelity, GEC, Hinari, Hitachi, ITT, Philips, Pye, Rank, Sharp, Sony. Trade only.	Dwektron colour sets. See Iskra Ltd. Dynatron. Pre-1981 sets see Philips Service. Post-1981 sets see Roberts Radio Ltd.
York. Spares available from Plusmaster (Electronics) Ltd.	Ekco. See Philips Service. Elftone Electronics Ltd., 4 Beresford Avenue, Wembley, Middx HA0 1YZ. 01-902 6222.

USE YOUR ACCESS OR BARCLAYCARD 家TEL 0902712083 NEW LOWEST PRICES

AKAI

Machine Nos.: VP77 VP88 VP7100 VP7200 VSI VS2 VS3 VS5

AMSTRAD

Machine Nos.: VCR4500 VCR5200
Machine Nos.: VCR700
FERGUSON/JVC
Machine Nos.: 329289033 V00 3 V 013 V 063 V 163 V 223 V 233 V 24 $3 \vee 293 \vee 303 \vee 313 \vee 353 \vee 363 \vee 383 \vee 393 \vee 49$

FISHER

Machine Nos.: FVH - D520 D530 D620 D720 P420 P510 P520 P530 P615 P620 P622 P710 P720 P721 P722

GEC

Head Part Nos.: 54581615458165
Machine Nos.: 4000 H 4001 H 4002 H
Head Part Nos.: 5458282545841354584155458992
Machine Nos.: 4001 H 4004 H

HITACH!

Machine Nos.: VT3000
Head Part Nos.: 5458104
Machine Nos.: VT4000 VT4200 VT5000 VT5500
Head Part Nos.: 54581615458165
Machine Nos.: VT6500 VT7000 VT8000 VT8040 VT8100 VT8500 VT8700 VT9000 VT9300 VT9500 VT9700 VT9900
Head Part Nos.: 545828254584135458415545899 Machine Nos.: VT11 V14 VT 33 VT34 VT 330 VT 340 VT5030 VTP 10 VTP 30 VHS K

ITT

Machine Nos.: VR3605 VR3033 VR3905 VR3913 VR3914 VR3935 VR3943 VR3963 VR3993 VR3975 VR3985 VR3986 VR3833

JVC (see also Ferguson)
Machine Nos.: HP4000 HR2200 HR3300 HR3320 HR3330 HR3350
 HRD220 HRD225

MITSUBISHI

Machine No: HS200

FERGUSON/JVC

FERGUSON/JVC	
VID1	$01 \times 0-003-381$
VID2	$01 \times 0-018-024$
VID3	$01 \times 0-018-025$
VID4	$01 \times 0-018-729$
VID5	$01 \times 0-040-006$
VID6	$01 \times 0-033-454$
VID7	$01 \times 0-040-007$
VID8	$01 \times 0-040-017$
VID9	$01 \times 0-065-009$
VID10	$01 \times 0-065-016$

GEC/HITACH

VID11	V5577355
VID12	V6413663
VID13	V6861471
VID14	V6861482
VID15	V6888971
VID16	V2423461

NATIONAL PANASONIC

VID17	VXP0329
VID18	VXP0344
VID19	VXZ0078
VID20	VXP0521
VID21	VXP0463
VID22	VXP0432
VID23	VXP0401
SANYO/FISHER	
VID24	4529V10800
VID25	1430662 T 01201
VID26	PR2758
VID27	1430490400900
VID28	1430420400300

SHARP

$\begin{array}{ll}\text { VID29 } & \text { RMOTP1029 } \\ \text { VID30 } & \text { RMOTV1008 }\end{array}$
$\begin{array}{ll}\text { VID30 } & \text { RMOLO1008 } \\ \text { VID31 } & \text { NIDLOO06 } \\ \text { VID32 } & \text { NIDLOO05 }\end{array}$
VID33 NIDL0004
VIDEO LAMPS/BULBS

VID34	LA9295
VID35	LA9210S
VID36	NAT/PAN

$\begin{array}{ll}\text { VID36 } & \text { NAT/PAN } \\ \text { VID37 } & \text { SHARP } 9300\end{array}$

Tension band T3292/PU545904A
Tension band T3292/PU54590
Rewind idler assembly T3V16/PU49282 Take up ider T3V00/PU49280 oading belf T3V29/30/PU48941-2 Roller Assy. (cass. Housing) T3V23/PU49042 Take up idler $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 48967 \mathrm{~B}$
Reel motor assembly $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 51381 \mathrm{~V}$ Capston motor $3 \mathrm{~V} 35 / 36 / 38 / 39 / \mathrm{PU} 55371 \mathrm{~V}$ Cass. housing Assy. 3V35/36/38/39/PU29825

GEC $4100 /$ Hitachi VT11E capston motor
GEC 4000 /Hitachi VT33 ift rewind arm
GEC 4001 /hitach $93 / 9500$ I/f rewind arm
GEC $4001 / 2$ Hitachi $93 / 9500$ play idler assy
ET541 Tuner Unit

Fast forward ider NV2000 Idler NV7000/7200
Tension Band NV7000 Tension Band
Idler NV370
Reel Idler NV777
Pinch Roller NV333
Ider wheel NV333

Reel motor VTC5000/5150 Reel drive puliey
Pinch roller VTC5000/5150
Heart idler Fisher FVH-P615

Capston motor 73/9300
Reel motor VC9700
Idler VC387H
Reel idler VC9300 etc
Ider wheel VC2300

Universal lamp without socket 290 mm
Universal lamp with socket 310 mm
P.C. MTG. leadless lamp
Etc. lamp plus plastic shroud.
VHS A

Head Part Nos: 0 RMU 0002 HE1 2127
Machine No.: VC581/2/3 $651681 / 2 / 3 / 5659699$
Head Part Nos.: DDRMU 0001 HE00 0002 HE02 040506
Machine No.: $2 C 9$ VC110 VC200 VC220 VC300 VC381 VC384 VC386 VC387 VC388 VC477 VC481 VC482 VC930 VC970 VC3300 VC9100 VC9300 VC9400 VC9500 VC9600 VC9700 Head Part Nos.: DDRMU 0001 HE09
Machine No.: VC7300 VC7700 VC7750 Head Part Nos.: DDRMU 0001 HE10 Machine No.: VC6300
Head Part Nos.: DDRMU 0001 HE12
Machine No.: VC8300
Head Pan Nos.: DDRMU 0001 HE14
Machine No.: VC2300
SANYO
Head Part Nos.: 1430242 T01700 1430242 T22300
Machine No.: VIC5000 VTC5150 VTC5300 VTC5400
Head Part Nos.: 1430242 T02200
Head Part Nos.: 1430762 T02000
Machine No.: VIC9300 VTC9455 VTC9500
Head Pan Nos.: 143072 T02100
Machine No.: VTC9300PS VTC9350
SONY
Head Pant Nos.: A6762 044A, $0448,054 \mathrm{~A}, 147 \mathrm{~A}$
Machine No.: SL3000, 8000,8080 , SLT 6 Me , 7
Head Par Nos. A6762 012A 0384 055A 129, 7 Head Part Nos.: A6762 012A, 038A, 055A, 129A
Machine No.: SL5W, 50005100 SLC5, C6, C7 Head Part Nos.: A6762 072A, 122A, 136A, 139A, 213A
Machine No.: SLC20, C30, C33, C40, C44
NATIONAL PANASONIC
Head Part Nos.: VEH0099 0103011501210131
NV3000 NV7000 NV7200 NV750 NV33 NV 340 NV390 NV2000 NV8200 NV8400 NV8600 NV8610 NV8620 Head Part Nos.: VEHO171 VEH0218
Machine No.: NV370 NV3708
Head Part Nos.: VEH0171
Machine No.: NV330 NV777
Head Part Nos.: VEH028
Machine No.: NV430
Head Part Nos.: VEH0174
Machine No.: NV366
SHARP

Machine No.: SLC20, C30, C33, C40, C44

VHS B
VHS M
VHS N
VHS W
VHS X

VHS S

VHS C
VHS D
VHS E
VHS L
VHS F

BETA D
BETA D
BETA X
BETA X

BETA A
BETA B

BETA W

HEADS	
Head	Price
Part No.	$1+$
BETA A	¢16.95
BETA B	$¢ 16.95$
BETA D	529.26
BETA E	\$34.49
BETA	¢21.00
BETA W	¢19.95
BETA X	£31.92
VHS VIDEO	
VHS A	¢14.95
VHS B	¢14.95
VHS C	¢19.95
VHS D	¢81.76
VHS E	¢74.15
VHS F	¢81.69
VHS H	£21.25
VHS I	¢21.25
VHS K	¢21.25
VHS L	$\{31.37$
VHS M	¢16.95
VHS N	¢26.95
VHS P	¢14.95
VHS R	¢21.00
VHS S	¢19.50
VHS T	¢19.95
VHS U	¢21.95
VHS V	¢29.00
VHS W	§21.95
VHS X	£33.59
VHS 2	¢16.50
ORIGINAL FEREUSOW	
01×0003222	£31.35
01×0027085	£46.02
01×0033825	£47.05
01×0040002	£48.32
01×0056013	£61.55
01×0057002	£31.36
01×0082001	£46.02
01×0083063	£66.03
PHILIPS	
31027444	POA
69120054	£49.68
69120098	£62.02
69120112	£61. 66
69120166	$£ 61.93$
69120178	£49.96
69120287	£55.37

NEW IN STOCK, A LARGE RANGE OF SLIMLINE REMOTES. JUST SUPPLY MAKE, MODEL \& PART No. IF POSSIBLE FOR AN IMMEDIATE QUOTE. AVERAGE PRICE £18.00

DRIVE BELTS
2.55
5.00 6.20

TELEX 338490 Stock queries by post only
for quantities of $100+$ per hine - Please ask for special quole.
Onders lrom Govt. Institutions, Sthools.
Nationals elc., accepted with official order
All goods shourd be defvered

Test Report: The Crotech 3133 Scope

Eugene Trundle

An oscilloscope is an essential tool for servicing TV, video and similar consumer electronic equipment. Modern gen-eral-purpose scopes offer many advantages over the vintage types still in use in many workshops - higher sensitivity, greater bandwidth, improved triggering facilities and better display tubes, all at very reasonable prices. The Crotech model reviewed here is representative of modern design.

Basic Features

Crotech has a range of oscilloscopes. I picked the 3133 as being best suited, in terms of price and specification, for use by the "brown goods GP" on the bench and in the field. It's manufactured in India and is a dual trace type with a bandwidth of 25 MHz and a maximum sensitivity of $2 \mathrm{mV} /$ division. It offers Y add, invert and subtract modes as well as X - Y operation and a facility for Z (brightness) modulation.

The rectangular display tube runs at 2 kV and has $8 \times$ 10 screen divisions of 1 cm . The timebase range is from $200 \mathrm{msec} / \mathrm{div}$ to $500 \mathrm{nsec} / \mathrm{div}$, extendable with $\times 5$ expansion and vernier control to about 40nsec/div. Comprehensive triggering facilities are provided, including a TV sync separator, a low-pass filter and hold-off control.

Extra features include a dual component tester and auxiliary d.c. outputs of 5 V at 1 A and $\pm 12 \mathrm{~V}$ at 200 mA . These can be used to power the equipment under test or other bench test equipment such as a DMM or a function or signal generator,

Further details are given in the accompanying specification - see Table 1.

On Test

The scope was put to work on the bench and used for fault diagnosis, testing and setting up TV sets, VCRs and audio equipment over a long period. It proved to be easy to drive and is straightforward in operation. The control panel layout is logical, with all the controls for each section grouped together. The only slight disadvantage is the positioning of the Y1 input socket half way up the lefthand side of the fascia where its plug and lead tend to obscure the controls - I'd rather have had it at the bottom of the control panel or even on the side of the instrument. All the controls have a positive and solid feel.

Starting with the Y amplifiers, I found that these were free of drift and that the bandwidth was in excess of the specification. The lowest gain setting offers $10 \mathrm{~V} /$ div, so that a maximum 800 V peak-to-peak signal can be displayed via a $10: 1$ probe. This is not enough to be able to examine the waveform at the collector of a line output transistor, but then most 10:1 probes are rated at only 600 V or 800 V peak input anyway.

My first action was to set up the probes using the convenient front panel calibrated output. I found that no single probe-trimmer setting would give "square corners" at all settings of the Y1 gain switch. Slight variations in the factory setting of the attenuator trimmers probably accounts for this - the Y2 channel was much better in this respect. The absence of a vernier gain control is no real
disadvantage with a 1-2-5 switch sequence, and certainly avoids mistakes due to misadjustment.

The Y invert and add facilities permit rejection of common-mode signals in the Y1 and Y2 channels or, if required, a full-bandwidth "piggy-back" display at $1 \mathrm{mV} /$ div sensitivity by connecting both probes to the test point and adding the waveforms. A more serious use for the Yadd mode is when investigating glitches and gate operation in logic circuits.

The range of timebase sweep speeds is well matched to the instrument's Y amplifier and display sections. A continuously variable control bridges the eighteen preset steps and a $\times 5$ horizontal magnification switch is provided. Where the required "segment" display can be achieved by careful triggering this is preferable to horizontal expansion since it involves no brightness penalty.

The triggering facilities are comprehensive: inputs from the mains, Y1 or Y2 channels or a BNC socket on the front panel can be used, with a.c. or d.c. coupling, processing via a low-pass filter or a TV sync separator from which either the field or line rate can be selected, a negative or positive flank at variable level can be used, and there's an auto-trigger facility which ensures that you don't lose the trace with no signal input. These arrangements work well provided you take the trouble to study the instruction manual and get to know just what you are doing with the trigger controls - so many operators poke and twiddle at random until some sort of jittery stationary display comes up on the screen! Personally I prefer external triggering. It's easily done with this scope via a third probe or clip-lead connected to the BNC front-panel mounted external trigger socket - for most TV work merely hanging the probe near the line output transformer suffices.

The X-Y facility has a 1 MHz horizontal amplifier bandwidth with access via the Y2 channel. It would be useful for servicing CD players, though the opportunity to try this out didn't arise during our test period. A form of X - Y display is used in the component tester feature.

The component tester works at 50 Hz , applying a voltage of 8.6 V r.m.s. to the device being tested and measuring the resulting current (maximum 28 mA). Voltage is indicated on the screen as horizontal deflection and current as vertical deflection, so that each type of component gives a unique signature - diagonals for resistors, circles and ellipses for capacitors, knees and crank-handles for semiconductor devices and so on. Fine for quick checks, but its usefulness depends on the operator getting into the habit.

An incentive to use this mode of testing is the provision of two identical component testers, one for each trace. This permits comparison - overlay if required - of the characteristics of two devices for test, selection or matching purposes. Using this feature in two identical items of equipment or channels could provide a quick and easy way of tracking down faults, perhaps in situations where inductors are involved or where applying the operating power leads to damage. . .

The heart of an oscilloscope is its c.r.t., which virtually dictates the design of all the other sections and also determines the price and usefulness of the instrument. In

Table 1: Abridged specification.

Operating modes: Channel 1; dual trace alternate or chopped (at 100 kHz); Ch. 1 + Ch. 2; Ch. 1 - Ch. 2; X-Y operation.
Y amplifiers: A.C. or d.c. coupled. Bandwidth d.c. to 25 MHz (-3 dB point). 2 mV to $10 \mathrm{mV} / \mathrm{division}$ in 12 steps, $1-2-5$ sequence. Rise time $<14 \mathrm{nsec}$. Accuracy $\pm 3 \%$. Input impedance $1 \mathrm{M} \Omega / 25 \mathrm{pF}$.
Timebase: $0.5 \mu \mathrm{sec} / \mathrm{division}$ to $0.2 \mathrm{sec} / \mathrm{division}$ in 18 steps. Vernier control and $\times 5$ magnifier. Accuracy $\pm 5 \%$.
Trigger: Auto/normal; internal/mains/external; TV line or field; a.c./d.c./low-pass filter; positive- or negative-going slope; $5: 1$ hold-off. Sensitivity 1 div in most modes.
X amplifier:Input via Y 2 ; bandwidth d.c. to $1 \mathrm{MHz}(-3 \mathrm{~dB}$ point); other details as for Y amplifier (see above).
Probe test: 200 mV peak-peak squarewave at 1 kHz .
Auxiliary outputs: +5 V (negative ground) at 1 A maximum; $12-0-12 \mathrm{~V}$ (floating) at 200 mA .
Component tester: Dual capability. $50 \mathrm{~Hz}, 8.6 \mathrm{~V}$ r.m.s. maximum. Maximum current 28 mA .
Display: 130 mm flat-face mono-accelerator c.r.t., 2 kV e.h.t., P31 phosphor, ruled $8 \times 10 \mathrm{~cm}$ divisions.
Power: $115 / 220 / 230 / 240 \mathrm{~V}$ a.c. at $48-62 \mathrm{~Hz}$. Consumption 40VA without auxiliary outputs loaded.

General: Weight $8 \cdot 5 \mathrm{~kg}$, size 165 high $\times 330$ wide $\times 395$ deep mm . Instruction manual, component tester/power supply leads and two input leads with BNC plugs supplied with scope. Optional extras: switched probes $\times 1 / \times 10$; light hood; front panel transit cover with probe pouch; top cover, probe pocket.
this price range you get a mono-accelerator tube working at 2 kV e.h.t. Its display is adequate for most TV, audio and VCR work, but the limited brightness available can make it difficult to see short duty-cycle events like a magnified portion of a video head sweep, a field sync pulse train or a horizontal segment of a picture such as the multiburst or colour-bar features of a test pattern. Loss of brightness in these and similar situations can be minimised by (a) using a light hood, (b) operating in the single-beam mode, and (c) avoiding X-expansion by careful use of the trigger and hold-off controls. For better performance in this respect you have to buy a more expensive scope with a higher e.h.t.
The tube fitted in the review model didn't defocus at any setting of the brightness control, which is a better

The Crotech 313325 MHz dual-trace oscilloscope.
performance than with many scopes we've tried out. The brightness reserve is not very high though, and I found that the brightness control was fully advanced throughout my tests of the instrument.

The graticule is not integral with the tube's faceplate. You thus get a degree of parallax error when taking readings. Maintaining a large waveform display keeps this to a minimum. The $0 / 10 / 90 / 100$ per cent markers on the graticule are useful in experimental, testing and design work for measuring time-constants and rise times.

The $5 \mathrm{~V} / 1 \mathrm{~A}$ and $12-0-12 \mathrm{~V} / 200 \mathrm{~mA}$ supplies are available at miniature sockets at the bottom of the front panel. Handy connecting leads, terminated with colour-coded mini-croc-clips, are supplied. I found that both voltage sources were accurate and well stabilised, and capable of withstanding a sustained dead short cruelly put on to test the machine's defences. These auxiliary supplies are a useful and convenient source of power. Well worth having.

The 3133 is a big oscilloscope, well made and attractive in appearance. There's very little plastic in its construction, which is unusual these days. Inside the aluminium case I found the circuit beautifully laid out on four main glassfibre PCBs, with two smaller sub-boards. The e.h.t. generator sector is in a separate screened compartment. The switches and potentiometers appear to be sturdy and of good quality - this fact along with the beefy, coolrunning mains transformer and the generally sturdy construction of the instrument suggest that if bought now it will carry on well into the twenty first century. The component reference numbers (and in some cases the values) are clearly marked on the PCBs - more than can be said for many TV sets and audio equipment.

User's Manual

The user's manual provides full circuit diagrams and descriptions, board layouts, parts lists and alignment instructions. Most of the parts used are readily available so that service and repair, should it ever be required, should present little difficulty. Also supplied with the instrument is a little book entitled "Getting the best from your scope". This supplements the operating instructions in the user's manual. Very good.

Conclusion

In conclusion this is a good oscilloscope, well made and with a performance which I would describe as being competitive rather than spectacular. It's main competition comes from the almost identically priced Hameg HM2036. Buying the Crotech model gives you an extra 5 MHz of bandwidth in each channel, the dual component test facility and the auxiliary d.c. outputs. You lose the vernier Y controls and the internal c.r.t. graticule. Certainly I feel that the Crotech 3133 is good value for money, and I would confidently recommend it to anyone looking for a good general-purpose oscilloscope. For use in the field I feel that the front panel transit cover (an optional accessory) is essential to protect the knobs and tube bezel. For viewing short duty-cycle traces the light hood, also an optional accessory, is really a necessity.

Availability and Price

The scope is available from Crotech Instruments Ltd., 2 Stephenson Road, St. Ives, Huntingdon, Cambs PE17 4WJ (0480 301818) at $£ 319$ plus VAT.

VCR Clinic
Reports from Philip Blundell, Eng. Tech., Alan Shaw, Paul Hardy, Eugene Trundle, Ian Bowden, Nick Beer and B. Ross

Philips VR6468

At switch on the cassette carriage moved in and out as usual but the clock display was out and none of the keyboard controls worked. The +13a supply was missing at the keyboard panel as R3509 (15ת) on panel P607 was open-circuit.
P.B.

Grundig VS400

The customer complained that when a cassette was ejected a loop of tape was sometimes left hanging out of it. The only way in which I could make the fault occur was to press stop with the machine in rewind search. The tape then wasn't drawn back into the cassette. Slight readjustment of the mecha state switch was required. P.B.

Ferguson 3V31

The trouble with this machine was field bounce in the still frame mode, the vertical pulse control on the front panel having no effect. A dry-joint was eventually found at C75 on the servo board.
P.B.

Philips VR6462

If play is selected without a cassette inserted these machines usually provide the test pattern. This one produced the test pattern even with a cassette in! The test signal is enabled by the TPI signal on Bus C: it was high all the time because transistor 7508 was open-circuit.
P.B.

Grundig VS220

For intermittent faults such as the display goes haywire or the mechanism does odd things check the ripple on the +12 Vd supply. If it's excessive either C437 or C436 has probably dried up.

Ferguson 3V65

Playback of a test tape was good but there was a smeary E-E picture. Replacing the luminance module IC101 put this right.
A.S.

Orion VHL3

There was no sound muting in the search mode. The DTC124F digital transistor Q1025 was faulty.

Hinari VXL5

This machine would operate for about twenty seconds in play or record then shut down. The take-up reel sensor was faulty. Here's a tip: switch to counter, press play and observe the erratic and irregular number changes. A.S.

Amstrad TVR3

Here's an interesting one we've had with several of these new combi-units (TV plus VCR). The remote control handset operates the VCR functions but not the TV ones. The fault lies within the VCR section, associated with the remote control receiver. Ribbon cable CL8 to the front of the tuned circuit can should have six leads but a five-wire
cable is fitted, leaving a vacant hole at either end of the ribbon. Fitting a short length of wire cures the problem. So much for quality control . .
A.S.

Hitachi VT17

The heads had worn out and were replaced. After doing this I was left with a problem: the top half of the picture was fine but the lower half was noisy and there was a definite division between the two. The cause of the fault was traced to the relay on the video drum PCB. It shorts out the trick mode heads during normal playback but was not doing its job properly. A replacement provided an effective cure.
P.H.

Philips VR6542

The problem with this machine was that recordings had intermittent colour. It was to some extent signal-dependent - a weaker signal was more prone to cause the symptom. Changing IC501 on the Y/C panel made no difference and we eventually found that the 627 kHz signal was off frequency by about 70 kHz . Resetting this produced reliable operation.

We've had several of these machines that don't seem to like E240 cassettes - the tape commits suicide on the mechanism though there doesn't seem to be any mechanical fault. Does anyone have any ideas about this? P.H.

JVC HRD320

The problem with this brand new machine, straight out of the box, was that three of its buttons were inoperative -set-, set+ and Ch. set. On investigation we found that D11 on the timer/display board had been fitted back-tofront. It's part of the key-scan matrix. The diode was undamaged and fitting it the correct way round restored normal operation of all the buttons. The same symptoms would arise with other makes and models fitted with this type of timer/display board.
E.T.

Sony CCD-V30

The viewfinder tube in this camcorder displayed a picture locked to a multiple of the line rate. This occurred with both camera and playback pictures. Operation through a TV set via the r.f. modulator showed that all was well within the basic camcorder circuitry, so we concentrated on the electronic viewfinder. The line hold control RV952 was responsible for the problem, due to poor contact at the riveted end of its carbon track - flexing and twisting this little preset could restore a normal picture display. It's strange to recall that the symptom and the root cause of the fault were common with the TV sets of the sixties!
E.T.

JVC HRD110/120/Ferguson 3V35 etc

A common problem with this range of machines is that the retaining studs on cam gear 1 (PQ30028) of the cassette loading mechanism break. This allows the associated slide gears to escape, producing symptoms such as no front loading, no eject, loading system jammed etc.

The only long-term cure is to replace gear 1 , but a temporary cure (while awaiting spares?) can be achieved by refitting the stud using a small self-tapping screw through the back of gear 1 . The sort that RS Components used to call an "8BA binder" will work. This assumes of course that you can find the broken stump of the plastic stud!
E.T.

Panasonic NV370

The user's description of the fault with this machine was "no functions". At switch-on an eerie "heartbeat" noise came from within and continued until the machine switched itself off a few moments later: it was caused by the capstan motor shunting back and forth. Meanwhile eject wouldn't work.

This effect is usually due to a missing 5 V rail, Q501 on the head drum assembly being open-circuit. The 5 V line was intact this time, but the 12 V line was missing. We quickly traced the cause of this to an open-circuit safety resistor (R1101) in the unregulated 12 V supply. It appeared to have failed for its own internal reasons. E.T.

Panasonic NV-G45

This machine was faulty when taken from the box. The playback picture would come and go, due to drum speed variations that could also be heard. When we turned the machine on its side to remove the bottom cover the fault cleared. While looking for a loose plug/socket connection we removed the drum cylinder and found a crack almost half way across the double-sided stator panel, between the socket and where the panel enters the drum unit. I.B.

Panasonic NV-M5

This camcorder was stuck in the camera mode. Normally when the clear cover over the VTR controls is slid up to uncover them a small microswitch (SW6313) operates. It closes for camera, opens for the VTR mode, but something was wrong with the switching. When closed (camera mode) SW6313 connects the base of QR6009, a UN2113 pnp transistor with internal bias resistors, to chassis. As a result positive key-scan pulses pass to the control chip IC6001. SW6313 should be open and QR6009 off in the VTR mode. Even with QR6009's base disconnected however the pulses were getting through as the transistor had an emitter-to-collector leak.
I.B.

Panasonic NV788

The complaint was of a poor picture. On test however the picture was all right except in the still mode, when almost half the picture was lost in noise. Having seen this problem with other machines I checked the playback tension, suspecting that this was low $(10 \mathrm{~g}-\mathrm{cm}$ instead of $30 \mathrm{~g}-\mathrm{cm}$). The cassette carriage assembly was removed, a cassette was put in it and another one was held in the machine. A check on the back tension then proved that it was correct. I tried again with the cassette carriage refitted and spotted the cause of the problem - the back-tension post arm, which runs against the tape, moved too far to the left and rested against part of the carriage assembly. With the assembly removed the arm moved far enough to give the correct tension. The cure was to move the fixed end of the brake band to pull the arm further to the right when running then adjust the tension spring for correct back tension. This problem could very easily arise if the
brake band is replaced and the position of the back tension arm, when playing a tape, isn't checked before refitting the carriage.
I.B.

Panasonic NV-G40

We've had several of these machines with faulty video heads when new, but the complaint with this one was very grainy r.f. loop-through. A check on the unswitched 12 V supply to the r.f. amplifier showed that this was low at about $5 \cdot 2 \mathrm{~V}$. Further checks indicated that the rail was not being loaded excessively so attention was directed to the power supply, which is usually very reliable. Regulator transistor Q1004 (2SD1330) was soon found to be opencircuit.
N.B.

Sony SL-F1

The complaint with this portable machine was that it wouldn't play. We found that the pinch press lever had become disengaged from the pinch solenoid lever. When a new press lever had been fitted - the original one had a worn plastic arm - the machine played for about twothree seconds then cut out. We then found that the takeup torque was low. Since fast forward operation was perfect it seemed that the cause of the fault was servo rather than motor trouble. While checking the waveforms in the reel servo I found the rather unlikely cause of the fault - a speck of solder was bridging two contacts on adjacent print lands. At first sight it looked like a single length of track, but the short effectively joined pin 1 of IC201 (supply FG) to pin 29 of IC601 (syscon-2). Fortunately no lasting damage had been done. The short must have been present from new and it's remarkable that it had only now showed up. Our customer accepted the estimate but refused a second one for the drum surfaces causing the usual rewind trouble - apparently he rewinds his tapes in another machine!
N.B.

Grundig 2×4 Super

The customer brought this machine along in a great hurry as he wanted to record a programme. He said it wouldn't load a cassette. The cause was quickly found - the cassette-in switch CL wasn't making. As a temporary measure to enable the customer to make his recording we shorted the switch out by linking pins L1-6 and 7 on the switch board. This restored normal operations including unloading. To load it was necessary to insert a cassette then press "tape", after which the machine would load. Note that if the CL-closed signal is not present no functions are available (play, wind, etc.) even with a loaded tape.
B.R.

Philips VR2021

This machine would thread up and then unthread about two seconds later. The head and reels turned during this period, as they should, but the head speed was slow. A check on the voltages around the servo and motor drive amplifier circuits showed that they were incorrect, the cause being lack of signals from the head pulse optocoupler circuit on board P61. This was in turn due to the LED on the winding spool optocoupler unit P60 being open-circuit. The LEDs for P64 (tape tension optocoupler), P60 and P61 are connected in series via a limiting resistor from the 12 V line. So there were no pulses to the head servo circuit.
B.R.

A Look at Operational Amplifiers

Part 1

Keith Cummins

The operational amplifier has been with us for many years but until recently had generally not figured significantly in the TV/video field. The audio and servo sections of VCRs and CD players lend themselves to the use of operational amplifiers however so perhaps it's time we gave them a closer look.

The first use of operational amplifiers was in analogue computers - a long time ago! They were used to perform arithmetical operations, for example the addition and subtraction of voltages representing numerical values. While this original need for the operational amplifier has largely disappeared, the basic concept nevertheless provides an extremely useful building block for circuit design in a multitude of applications.

Basic Op Amp Features

Fig. 1 shows the circuit symbol for an operational amplifier. In its simplest form it consists of an amplifier with two inputs and one output. The inputs are referred to as inverting and non-inverting: the inverting one is identified by the minus symbol and the non-inverting one by the plus symbol - these are not power supply connections! A positive voltage applied to the non-inverting input causes the output to move positively while a positive voltage applied to the inverting input moves the output in the negative-going direction. In addition to its inputs and outputs the operational amplifier needs a power supply. Very often this consists of both positive and negative voltages, balanced about earth (0 V).

The d.c. gain of a typical operational amplifier chip is generally enormous. A voltage gain of half a million is common today, and it's this fact that enables us to use the amplifier to carry out neat and clever functions, with just a few peripheral components. Because the gain is so large it's generally expressed in dBs. This is known as the "open-loop gain". Normally the loop is closed, using passive components, and we shall soon see that the performance of such a circuit is defined almost entirely by the passive components. Consequently the design can be made totally predictable and repeatable. Ideal, for example, for use in mass-produced servo systems.

Let's get down to business then and take a further look at the operational amplifier shown in Fig. 1. Say it's openloop gain is 500,000 , i.e. 114 dB . Thus a change of $+2 \mu \mathrm{~V}$ at the non-inverting input, relative to the inverting input, will produce a +1 V change at the output. Conversely a change of $+2 \mu \mathrm{~V}$ at the inverting input, relative to the non-inverting input, will produce a -1 V change at the output. Having made this basic point, we must consider two further points.

First, if both inputs move by the same amount in the same direction the changes subtract from one another. Thus the output doesn't change. Putting this another way we can state that the output changes only when there's a difference change between the two input voltages. This ability of the operational amplifier to ignore changes in the same direction is called common-mode rejection. It's important and we'll return to it later.
Secondly if the inputs move in opposite directions the output moves by an amount that's proportional to the sum
of the changes of the input voltages, i.e. the total potential difference between the two input terminals. We'll elaborate on this later.

Basic Circuits

We'll next consider some basic operational amplifier uses.

The inverting amplifier is shown in Fig. 2. In addition to the operational amplifier there are two resistors, R1 and R2. Remember that the typical operational amplifier requires a difference of only $2 \mu \mathrm{~V}$ between the two inputs to produce a 1 V change at the output. This is the key to what happens. Let's take a simple, practical example. Say R 1 is $1 \mathrm{k} \Omega$ and R 2 is $5 \mathrm{k} \Omega$. Positive and negative 10 V supplies are connected to the chip.

Say we connect +1 V to the input. The immediate effect of this is that the inverting input tries to move away from 0 V (the non-inverting input) via the potential divider R1R2. The output moves negatively, applying sufficient negative-going voltage to R 2 to move the inverting input back towards 0 V (within a few microvolts!).

The situation is thus as follows. The inverting and noninverting inputs are very close together in terms of voltage, so close in fact that since the non-inverting input is at 0 V the inverting input is at virtually 0 V - we call it a virtual earth. This means that R1 has 1 V at one end and 0 V at the other. As its value is $1 \mathrm{k} \Omega$, the current flowing through it is 1 mA . No current is flowing into the operational amplifier's inverting input, so the current flowing through R1 also flows through R2. Since R2 is $5 k \Omega$, with 1 mA flowing through it the voltage developed across R 2 is 5 V . The sense of current flow means that the operational amplifier's output stands at -5 V . It can't do anything else!

What do we know from this? Simply that the gain of the circuit with the closed-loop feedback as specified is $-\mathrm{R} 2 /$ R1. We put +1 V in and -5 V comes out. The gain is -5 $(-5,000 / 1,000=-5)$. This gain is defined entirely by the values of R1 and R2: the more precise their values, the more precisely the gain of the circuit is defined.

Since the input resistor R1 "sees" a virtual earth, the circuit's input impedance is simply R1. The output imped-

0130

Fig. 1 (left): The operational amplifier circuit symbol.
Fig. 2 (right): The basic inverting amplifier circuit.

Fig. 3 (left): The summing and inverting amplifier. Fig. 4 (right): The non-inverting amplifier circuit.
ance is low: a few ohms is typical, but the amplifier won't have the capability of high-current drive (more on this later).

The second circuit, Fig. 3, is a summing and inverting amplifier. There are two input resistors R1 and R2 and this time the feedback resistor is R3. The junction of the three resistors is the virtual earth point, and the arithmetical sum of the currents here is zero. Seen from input one the gain is $-\mathrm{R} 3 / \mathrm{R} 1$ while from input two it's - R3/R2. Note that since each input resistor is connected to virtual earth, the input resistors are "unaware" of each other and there's no cross-coupling between the inputs.

If we call the current through R1 I1, that through R2 I2 and that through R3 I3, then $\mathrm{I} 1+\mathrm{I} 2=\mathrm{I} 3$. That is,

$$
(\text { Vlin/R1 })+(\text { V2in/R2 })=(- \text { Vout/R3 })
$$

If we make $\mathrm{R} 1, \mathrm{R} 2$ and R 3 equal, then V lin $+\mathrm{V} 2 \mathrm{in}=$ - Vout, i.e. the output is the sum of the input voltages with the sign reversed.

By manipulating the values of the resistors we get different input to gain ratios and overall amplification as required. Use of a ladder of input resistors provides the basis of a digital-to-analogue converter.

Having dealt with the basic inverting operational amplifier configuration I hope you'll feel more at home with the principles involved. We can summarise the action of a feedback-controlled operational amplifier by stating two important rules:
Rule 1: The output of a feedback-controlled operational amplifier always moves to try to reduce the voltage between its two inputs to zero.

Rule 2: For most practical purposes we can say that the inputs draw no current.
Fig. 4 shows the basic non-inverting operational amplifier circuit. The input is applied to the non-inverting input, which has a high impedance - determined by the value of R1. The gain is determined by the amount of feedback, and is inversely proportional to the feedback attenuator network R3, R2. The amount of potting down is $R 2 /(R 2+R 3)$. Thus the gain is $(R 2+R 3) / R 2$.
In the special case where R3 is zero and R2 is not fitted we have a voltage-follower with a gain of one. It's like an up-market emitter-follower: it can drive well in both directions and has no offset of 0.6 V between the input and output - a very useful configuration which we'll come across again later.

Quoted Characteristics

From what we've said so far you'll see that the basic design of operational-amplifier circuits can be carried out by means of very simple calculations. There are pitfalls to watch out for however. Having covered the fundamentals we can move on to consider the operational-amplifier characteristics that have to be taken into account when the device is used in more demanding applications. We shall also see why, although operational amplifiers are great for use in servo, audio and power supply applications, you won't find them used much in video circuits. We must next define some of the basic characteristics.
(1) Open-loop gain. This has already been mentioned: it's the d.c. gain with no feedback applied.
(2) Input offset voltage. However hard the manufacturer pursues this ideal, the input circuits within an operationalamplifier chip are never identical. The input offset voltage
is the difference in input voltages (at the inverting and non-inverting inputs) required to bring the output to zero. Some operational amplifiers have the facility to trim the input offset voltage to zero externally, using a potentiometer connected to pins set aside for this purpose. With a good operational amplifier the input offset voltage can be of the order of microvolts: for the old 741 type it can be up to 6 mV .
(3) Gain-bandwidth product. Operational amplifier data sheets quote a gain-bandwidth product figure. Up to now I've quoted the open-loop d.c. gain. The gain falls as the frequency rises however. The gain-bandwidth product refers to the closed- as well as the open-loop gain. In other words it applies whatever gain we intend. It works like this. If we use an operational amplifier whose gainbandwidth product is 1 MHz and design the circuit for a gain of 100 , the gain will fall off significantly as the frequency approaches 10 kHz . That is, gain (100) \times bandwidth $(10 \mathrm{kHz})=$ the gain-bandwidth product $(100 \times$ $10,000=1 \mathrm{MHz}$).

If you are restricted to the use of this particular operational amplifier with its 1 MHz gain-bandwidth product and need to maintain the gain right up to 10 kHz you can use two amplifiers in cascade, each providing a gain of ten. This will give you a useful bandwidth up to 100 kHz while still maintaining the overall gain of 100 .
(4) Slew rate. This is the rate at which an operational amplifier's output can change. It's usually quoted in volts/ microsecond. What it means is that as the frequency rises so the maximum attainable peak-to-peak output voltage drops off. From the point where the slew rate limiting starts to "bite", the maximum amplitude falls as the reciprocal of frequency.
(5) Phase margin. This is a more difficult characteristic, but it's as well to be aware of it. A typical operational amplifier circuit's open-loop gain rolls off in the same manner as the response provided by a simple $R C$ filter, i.e. it follows a $6 \mathrm{~dB} / \mathrm{octave}$ curve. This means that every time the frequency is doubled the gain is halved. It results in a 90° lagging phase shift to begin with, increasing up to 160° as the frequency approaches the gain-bandwidth figure (that is, the gain is approaching one). The phase margin is the difference between this phase shift and 180°, where the feedback becomes positive. Generally speaking this does not cause problems at low frequencies, but it can be a real pain at higher (e.g. video) frequencies, when the operational amplifier can "hoot", i.e. produce parasitic oscillations.
I recall designing a 2 MHz active low-pass filter using operational amplifiers. It produced the desired $18 \mathrm{~dB} /$ octave roll-off, but also produced a low-amplitude hoot at 20 MHz . All attempts to manipulate the operational amplifier circuit to get rid of the hoot mucked up the frequency response. In desparation I finally used a pisection passive filter to give an 18 dB /octave roll-off above 5 MHz . This wiped out the hoot as far as the outside world was concerned, but of course I knew what was still going on inside the unit! Not one of my proudest moments - I don't talk about it much any more, despite the fact that the unit has continued to provide sterling service for many years.

So much then for the basic characteristics of operational amplifiers. Next month we'll look at some more classic operational-amplifier circuits.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 2$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

SHARP C2002

This set is reluctant to start up from standby. It's more willing to start in the evening when the room temperature is higher. Once running the set will continue to operate unless switched off by remote control then on again.

We suggest you check the following components for being high-resistance or open-circuit and replace as necessary: R616 1.5M $\Omega, \mathrm{R} 717390 \mathrm{k} \Omega, \mathrm{R} 709$ and R710 both $68 \mathrm{k} \Omega$ and $\mathrm{C} 71510 \mu \mathrm{~F}, 100 \mathrm{~V}$. Before you do this check thoroughly for dry-joints around IC701, T701 and T602.

FIDELITY CTV1404R

There are two problems with this set. First, when one channel has been tuned to a particular station all the other channels are tuned to the same station, and the channel isn't stored. The M491B and TDA4500 chips have been replaced but the fault remains. When the channel is changed via the handset the same picture is displayed though the channel indicator will run through numbers 18. Secondly there's cramping at the bottom of the picture. All capacitors in the vicinity of the TDA3651 field output chip have been replaced.

For the first problem we suggest that you check, preferably by substitution, the 500 kHz resonator connected to pins 7 and 8 of the control chip IC201. Also make sure that the 5 V supply (pin 9) is present, correct and free from ripple and hash. The TDA3651 chip could well be responsible for the second problem, but before condemning it check the 25 V supply at pin 9 . It's important that this line is well decoupled.

HITACHI CPT2228

The remote control system suffers from reduced range and intermittent reception. A check with another receiver has proved that the handset is in order and the $\mu \mathrm{PC} 1373 \mathrm{H}$ IR preamplifier chip has been changed.

First check that the infra-red receiving window/filter is clean and hasn't become obscured with age - try operation "naked" to prove this. If necessary check C1802 and C1804, then the SFH 205 photodiode - the latter by substitution. If the remote-control a.g.c. is operating correctly there should be little change in the pulse amplitude at SC1803 with the handset at a distance of up to 15 feet or so.

PANASONIC NV2000

Forward and reverse rewind are all right but when the play switch is pressed the cassette begins to load then after a few seconds the machine stops loading. The belts have been changed but the problem persists.

It's almost certain that the mechacon section is not receiving an afterload signal from the deck. This may be because loading is not being completed for some mechanical reason (though the belts you have changed are the most common cause of this) or because the mode selector switch S6551 is faulty or incorrectly positioned. Close examination should reveal which of these is causing the trouble. Instructions for mode selector switch adjustment are given in the full manual.

FERGUSON TX10 CHASSIS

There's a very faint vertical white line with a kink in the lower half - the kink tends to move up and down - seven inches from the left-hand side of the screen. It can hardly be seen except on darker scenes, but annoys the customer. I've tried moving the cables etc.

Ensure that the triple RGB lead to the c.r.t. base panel is correctly folded and dressed and not dangling near the timebase or chopper sections. If this is o.k., suspect that one of the semiconductor devices, a diode or transistor, in the chopper circuit is faulty and radiating. Check this by substitution, starting with the chopper transistor TR701 then D703.

SHARP VC378

Failure of the Digitron display led us to check the power supply which appears to be in order apart from the fact that the a.c. output, which is specified as 7.5 V , reads only 2.2 V when measured with an Avo meter. A scope check shows a good trace with about $6 \cdot 2 \mathrm{~V}$ p-p at a frequency of around 200 kHz . Are these readings normal and how would 7.5 V a.c. have been measured? The negative component fed to the Digitron circuit is 16.5 V d.c., which appears to be about right with the main negative line at 22 V .

The 7.5 V figure is probably the r.m.s. a.c. voltage across terminals ER9 and ER10: it feeds the display tube's heater. Since the $-22 V$ supply is about correct, the oscillator is clearly running all right. Check that the display segments are being pulsed by the display driver chip. If so the fluorescent panel itself is suspect - it may have lost its vacuum.

SONY KV2022UB

This set is working well apart from the fact that there are four teletext lines across the top of the screen and also four faint white lines across the centre of the screen. None of these lines are present at switch on. They appear after about five minutes then remain.

The problem is probably due to ageing electrolytic capacitors. Check, preferably by substitution, those associated with the field output stage - C563, C566, C587 etc. Also if necessary check D575.

SANYO VTC9300

This machine will not run. When switched on, only the eject and stop switch levers will go the full length of travel. When moved to the right with a small screwdriver the bar inside the machine to the front of the video heads will allow the rewind, fast forward and play buttons to be depressed to maximum. The electronics appear to be in order.

First ensure that the stabilised 12 V line is exactly correct. If not, replace the regulator transistor Q702 with a TIP41 type and adjust VR701 for 12 V at C709. If the machine appears to work normally when the latching bar is overridden it's likely that the afterload switch (the large microswitch on the upper deck surface) has failed or that the end-sensor oscillator has stopped - check with a scope,
then for power to the CX141 chip on the syscon panel. A further possibility is that the machine thinks it has dew (low at collector of Q807). Check if necessary that the solenoid switching transistors Q801/2 are not leaky.

316
Each month we provide an interesting case of TVVideo servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

TV and video servicing can be a complex business these days. Various levels of skill and expertise are required, depending on the nature of the fault and the age and design of the equipment. At busy times - which is most of the time recently! - the simpler jobs are passed on to those who are less experienced and whose normal job is not full-time bench servicing, but who can achieve much under the guidance of a senior engineer.

An early Ferguson TX9 colour receiver (PC1001 main panel) looked a likely candidate for this treatment. The fault was described as "set dead", and we assumed that the internal mains fuse had blown. So John took off the back cover and checked FS1. It was intact, and so was the fuse in the mains plug. The set was next plugged into a safety-isolated socket and switched on. There was a slight buzz from the degaussing system followed by silence and no picture. John settled down with his meter and the set's circuit diagram.

He found that the output from the mains bridge rectifier W62-W65 measured above 200 V - there's no reservoir capacitor here as the bridge supplies a regulating thyristor. This voltage was also present at the thyristor's anode. Switching to the meter's d.c. range John found, rather to his surprise, that some 130 V was present at the cathode of the thyristor and that over 120 V was present at R197, on the other side of the reservoir inductor. In short, the power supply was working correctly.

Further meter checks quickly established that the 115 V h.t. potential was present at the collectors of the line driver transistor VT67 and the line output transistor VT68. There was no voltage at their bases however, so John concluded that the basic problem was lack of line drive. Sure enough a borrowed oscilloscope showed a complete absence of line drive pulses at the base of VT68, at the line driver transformer T2 and at the base of VT67. This led him back through the coupling capacitor C173 to pin 3 of the TDA9503 sync/line generator chip IC54. He found zero voltage at this pin and very soon found that there was a total absence of voltage at all the other pins as well.
The circuit diagram for the PC1001 version of the TX9 chassis is very helpful in using brightly coloured lines and symbols to indicate the source and routing of the various
supply lines. From this John saw that the operating power for the TDA 9503 chip is provided by the 12 V regulator IC56. This receives an input of 15 V from rectifier diode W95, which is fed from a winding on the line output transformer. Of the various possibilities here, W95 and IC56 were picked out for the initial checks. An ohmmeter test proved that the diode was in order and the regulator was checked by substituting a known good one from the stores.

A commendable effort, but fruitless since the set still didn't work. The h.t. was present, but there were no 15 V and 12 V supplies. As a further step John checked the continuity of the winding that feeds W95, and also checked its reservoir capacitor C 193 . He then consulted the others in the workshop. Having poured out his troubles, explaining matters with the aid of the circuit diagram, he was given a short description of the operation of the circuit in the line timebase area. As a result he soon found the cause of the trouble. What had he overlooked? See next month for the solution.

ANSWER TO TEST CASE 315 - page 360 last month -

Before the problem was finally solved, three engineers had given their attention to the faulty Toshiba V66 VCR described last month! The sort of picture jitter it produced is symptomatic of very short-term changes in the head scanning velocity, but the fact that it was more severe towards the bottom of picture suggested that the tape's movement became progressively rougher towards the exit side of the drum at the right.

This was the clue that led Sage to examine the exit guide. It consists of a nylon sleeve which spins freely on a highly machined shaft. When Sage went in with his little screwdriver he "stuck" this rotating sleeve, completely altering the jitter effect on the picture. When he removed the guide he found that the nylon sleeve didn't run smoothly on its shaft. As an experiment, one tiny drop of oil was introduced into the guide. After cleaning the outer surface of the sleeve the guide was then replaced in the machine. When a scrap tape was run the picture was seen to have rigid, straight verticals.

While this proved the point, there was the possibility of tape polution if the treated guide was left in the machine. A new guide assembly was ordered and fitted before the machine went home to Crowfield.

QUERY COUPON

Available until 19th April 1989. One coupon, plus a $£ 2$ (inc. VAT) cheque or postal order, must accompany EACH PROBLEM sent in accordance with the notice on page 440. TELEVISION APRIL 1989

[^1]
FARNBOROUGH

 WAREHOUSE

CLIFF PARSONS 0252540814
7/8 KINGSGROVE INDUSTRIAL EST. INVINCIBLE ROAD FARNBOROUGH HANTS. GU14 7QS

AINTREE
 WAREHOUSE

उ安 IAN McCLELLAND 0515301285
UNIT 2, RACECOURSE INJ. EST. ORMSKIRK ROAD AINTREE
LIVERPOOL L9 5AL

LINWOOD WAREHOUSE
 雷 IAN DORAN

1a LYON ROAD
LINWOOD INDUSTRIAL ESTATE LINWOOD
RENFREWSHIRE PA3 3BO

AVONMOUTH WAREHOUSE	
ब	KARLA HEATH 0272235093
5 PORT BRISTOL	$\begin{aligned} & \text { IEW ROAD } \\ & \text { BST11 TLO } \end{aligned}$

SUNDERLAND
WAREHOUSE
BRIAN CADE
OG $\quad 0915235554$
9AB
94 CARRMERE ROAD
LEECHMERE INDUSTRIAL EST.
SUNDERLAND SR2 9TE

VIDEO HEADS AT UNBEATABLE PRICES

FERGUSON/JVC/AKAI UNIVERSAL 3HSSV £16.00

FERGUSON 3V32JVCHA7655.

FERGUSON $3 V 48$ JVC HRD565
SONY REPLACEMENT HEADS
SONY UNIVERSAL 1 PINC5/CG/C7 AND 2 PIN SLBO80 ETC
SONY SLF-1/C20/C30/F30/C40/SLT20ME SLT30ME
PANASONIC UNIVERSAL 3HSSN £16.00
PANASONIC NV370 NV 380 /NV100-PHILIPS VR6460
PANASONIC NV777/NV3303HEAD
PANASONIC NV230NV250/NV260NV270NV-G9/10/11
PANASONICNV430NV460.
PANASONICNV366 4HEAD
PANASONICNV730 4HEAD
PANASONIC NV180 POATABLE 4 HEAD
HITACHIVT6500, VT7000, VT8000, VT8500, VT8700
HITACHVT 11. VT 14, VT33, VT34, VT330, VT 340 ...
TOSHIBAVOO, Voo
TOSHIBAV9600
SHARP VC9300, VC9500, VC9600, VC9700, VC9800 ETC AMSTRAD VCR $4500,4600,5200,9000$.
AMSTRAD VCR7000
SAISHO VR605, 705, 805,905, 100
FISHER UNIVERSAL FVHD720, 520, 530ETC
VIDEO MOTORS
CAPSTANMOTOR JVC/FERG
CAPSTANMOTORJVC/FERG 3V22 PU4597
DRUM MOTOR JVC/FERG PU46414P
REEL MOTOR JVCIFERG $3 V 29 / 30$ PUS 1381 V
REEL MOTOR SHARP RMOTV-1008-GE
ALL ABOVE HEAOS ARE BRAND NEW AND OF JAPANESE ORIGIN
WE ALSO STOCK BELT KITS, PWHEELS, MOTORS, IDLERS, PULLEYS, LAMPS, ETC RING NOW FOR OUR STOCX LIST. FO.
ALL EX-STOCK ITEMS DESPATCHED SAME DAY. NO MINIMUM ORDER VALUE. adD $£ 1.00$ P\&P Plus V.A.t. TO ALL PRICES ORDERS BY ACCESS AND VISA ACCEPTED.
ASK FOR OUR SPECIAL пиатет
Q QTY VIDEO HEADS PRICE-LIST EXPORT \& OVERSEAS ENQUIRIES WELCOME.
Omega Electronics 252A HIGH STREET
HARLESDEN, LONDON NW10 4TD
Tel: 01-965 5748

ODEGA
0 DE

BHECTRONICS

CREWE WHOLESALE TELEVIITION CHESHIIFE' LARGEST WHOLESALERS - OVER 18,000 SQ. FT.

15 MINUTES FROM JUNCTION 17, M6

(Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

LORRY LOADS DIRECT FROM SOURCE

VIDEOS

VHS - Mechanical Hitachi Electronic Nat/pan, Hitachi Sharp and Thorn

50 Mixed of your choice	ITT30/32 Decca 80's and 100's Doric series 3
	GEC 2110/2111

RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS

CREWE WHOLESALE TELEVISION

 Williams Street Warchouse, Crewe, Cheshire. 하 0270582924

WE SPECIALISE IN SUPPLYING TRADE CUSTOMERS WITH TOP QUALITY WORKING EX-RENTAL TV's \& VIDEO's. WE OFFER GOOD PRODUCT, FRIENDLY SERVICE \& KEEN PRICES

TV'S

PHILIPS G11... $£ 20$
PHILIPS G11 TEXT ... 50
PHILIPS KT3/30 ... $£ 35$
PHILIPS KT3/30 TEXT $£ 70$
THORN TX9/10 .. £35
THORN TX9/10 TEXT £70
THORN STEREO TEXT $£ 9$
BUSH T20/22/26

VIDEOS

THORN 3V29/30	£70
HITACHI 8500/9300.	£70
HITACHIVT11	£80
HITACHI VT33	£100
SHARP 9300/381	£90
AMSTRAD 7000	. $£ 70$

PRICES All prices subject to VAT but INCLUDE HANDSETS where appropriate SPECIAL DISCOUNTS \& DELIVERY ON LARGE QUANTITIES AMRICK VISIONS WHOLESALE
113 NARBOROUGH ROAD, LEICESTER
APPROX 5 MINS
FROM JUNC 21 M. 1.

W. TREE TRADE TVS

UNIT 1, SUNSHINE MILLS WORTLEY ROAD, LEEDS 12. TEL: 0532 - 638804

VIDEOS FRESH IN DIRECT FROM SOURCE. VANLOADS TO CHOOSE FROM

MECHANICALS VHS £25 TOP LOADING AND FRONT LOADING.

ELECTRONIC VHS FROM £49
ELECTRONIC VHS WORKING FROM £60
BETAMAX MECHANICALS £5
ELECTRONIC FROM £10
THESE PRICES ARE ON QUANTITY

N.B. ALL CLEAN, COMPLETE AND REPAIRABLE

N.B. THESE VIDEOS ARE NOT GRANADA STOCK

Off the pile Working

G11 C.T.V.	$\mathbf{£ 1 0 . 0 0}$	$\mathbf{£ 1 8 . 0 0}$
G11 TEXT	$£ 20.00$	$\mathbf{£ 5 0 . 0 0}$
KT3 C.T.V.	$£ 15.00$	$\mathbf{£ 3 0 . 0 0}$
K30 C.T.V.	$£ 15.00$	$£ 40.00$
TX9 C.T.V.	$£ 15.00$	$£ 35.00$
TX10 C.T.V.	$£ 20.00$	$\mathbf{£ 4 0 . 0 0}$
TX TEXT	$£ 35.00$	$\mathbf{£ 6 5 . 0 0}$

EASTER SURPRISE RING IMMEDIATELY

SOUTHSIDETV

UNIT 8, APPLE IND. EST., WHITTLE AVE.,
SEGENSWORTH WEST, FAREHAM orf गNection 9 , M27 HANTS. TEL. (008895) 77251

* TOP QUALITY ex-rental TV's \& Videos
\star Fresh stock deliveries EVERY week
\star All items complete with original handsets
\star Working stock always available in quantity
$\star 24 \mathrm{hr}$ ansaphone service Opening times: Mon-Fri 10am-5.30pm. Sat Mornings 10am-1pm.

TOSHIBA PHILIPS

Contact:

ALF PERROW 618 GREAT HORTON RD BRADFORD BD7 3ER Tel: 0274502881

GEORGE PERRY 478/486 OLD KENT RD
LONDON SE1 5AG
Tel: 01-232 0547

ZAne Pryrt TV \& VIDEO WAREHOUSE ONE OF SOUTHERN ENGLAND'S FOREMOST TRADE SUPPLIERS

We are one of the South's leading Trade suppliers of top quality ex-rental TV and Videos. A good range held in Philips, JVC, Sony, Toshiba, Hitachi and National Panasonic colour TVs including portables, teletext and remote control models

CUSTOMER READY STOCK

We specialise in supplying working stock that has been professionally refurbished to a high standard. Our engineers pay special attention to the cosmetics as well as the electronics, so come to us for competitively priced stock that is genuinely ready for your showroom and your customers.

RING OUR HOT LINES NOW!

ZONEPORT

UNIT N2, LONDON ROAD TRADING ESTATE, SITTINGBOURNE, KENT CONTACT BRIAN MOLLETT
8(0795) 28166
รา (0403) 732966

VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

HITACHI 5000, 8000
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$
BETAMAX VIDEOS
SANYO VTC 9300, 5300 SONY C5, C6, C7 Untested from £25
HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS $£ 5$

VHS/Beta tapes used from 40p each
Sorry must collect as we do not send through the post.

PLUS

17" $18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from £8. Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT Discount for Quantities Complete loads delivered from pick up point

> JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

TELEVIIIONS-VIDEOS-TELEVIIIONS
VIEW-TEEL
A NEW NAME IN

TRADE SURPLUS TVs

Large selection mainly
THORN - GRANADA STOCK
Discount ten or over
ALL SIZES AVAILABLE
Thousands in stock. Good quality. Fresh stock every week.
Portables, Teletext, VHS Videos, STD $20^{\prime \prime}, 22^{\prime \prime}, 26^{\prime \prime}$
Complete loads at discount prices
All stock collected from source by our transport and handled with care.

TV RENTAL FINANCE

for the independent dealer
on new or reconditioned TV Receivers,
Video Cassette Recorders and Satellite
Reception Equipment.
For details and quotations contact

BROUCHFAME LTD Colonnade House, High Street, Worthing, Sussex, BHII IWZ Tel.(0903) 820968

 Wholesale					
NOW OPEN IN WALSALL OVER 3000 TV's \& VIDEO's IN STOCK AT UNBEATABLE PRICES - HURRY NOW.					
CTV's		Non-Wor	VIDEO's		
PHILIPS G11	£18	£10	FERGUSON 3V29/3V30 £65		£50
KT3/K30	£30	£20	$\begin{array}{ll}\text { JVC } 7200 \\ \text { PANASONIC } & \text { ¢75 } \\ \text { ¢75 }\end{array}$		£60
BUSH T20	£18	£10			£60
TX9	£35	£25	SHARP ${ }^{\text {P80 }}$		£65
G11 TEXT	£50	£30	MECHANICAL £45		£35
TX TEXT	£60	£45	3V31/3V35HITACHIVT11		¢70
STEREO TEXT	£90	£75			£65
TEST YOUR OWN SETS aw infra red hand sets from 10 VHS VIDED HEADS FROM £15 BLOCKS OF 10 SETS FROM E40			$\begin{gathered} \text { TRADE } \\ \text { SHOWROOM } \\ \text { LARGE QUANTITY } \\ \text { OF READY } \\ \text { ro SELI } \\ \text { VIDEO's \& TV's } \end{gathered}$	2 MINUTES FROM JUNGTION 9-M6	
			WAREHOUSE IN PASSAGE		
			CAIDMORE WAISAII		
\star DELIVERY CAN BE ARRANGED \star All PRICES SUBJECT TO V.A.T. AND QUANTITY			TEL. 0922724542		
				Open Monday.Saturay Sam - 7pm Sunday 10am - 2 pm	

TODD TRADING

NEW WAREHOUSE OPEN! HIGH QUALITY TELEVISIONS \& VCR's

Specialists in 'ready to retail' televisions and VCRs (packed with handbook and patch lead).
Mostly Ferguson but all models stocked.
NEW ‘B’ GRADED EQUIPMENT AVAILABLE.

ITEMS USUALLY IN STOCK

Ferguson Non Text, Text and Stereo, Text \& New F.S.T. B Grade. Ferguson, JVC, Sharp, Hitachi, Sony, etc., etc. V.C.R.s working: Ferguson 3 V29/30 V.C.R.s ready for retail in fives $£ 75+$ VAT. Ferguson Compact Disc Units, A Grade and B Grade, from $£ 40$ + VAT. Sony C9 Beta in top condition, back to spec, plenty in stock. Ferguson V.C.R.s for spares: 3V16/3V22/3V23/3V24/3V29/3V31/3V35/3V43/3V45/3V55.
MATIONWIDE DELIVERY
EVEN ON SMALL ITEMS - MIN OF 5 UNITS
PHONE FOR DETAILS

I®@			
DEO			
		Working	Non-working
LP Elect	From	£95	£45
Beta			as they come
Philips			as they come
COLOUR TV			
Working Non-work			
Pil	From	£20	£10
R	From	£35	£18
Text	From	£65	£40
Colour Portable	From	£65	£35
FST when available	From	£115	£75
RANGE OF NEW HANDSETS IN STOCK		REDIFFUSION TRANSLATORS E3 each inc VAT. Carriage extra	

RING BOB ON 0633430040 FOR QUANTITY DISCOUNTS

Prices inclusive of VAT
 TELEPHONE ORDERS, MAIL ORDER, OR CALL AT SHOP 126 HIGH STREET, CANVEY ISLAND, ESSEX. SS8 7SH

0268690868

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE CARRIAGE. VAT NOT APPLICABLE.		
DECCA	PHILIPS	WINDINGS RANK BUSH MURPHY
CS1730 1733 colour $\quad 10.00$	G8 \& G9 series colour $\quad 8.50$	
CS1830 1835 colour $\quad 10.00$		
'30' series Bradtord colour 10.00	PYE 725-741 CT $200 \mathrm{KT2} 8.50$	$\begin{array}{ll}2718 \mathrm{EHT} \text { overwind } & 8.00\end{array}$
80 series colour 8.50	REDFFusiow Doic Mk. 3 9.00	
100 series colour $\quad 8.50$	tandeberg	ERELEM FARA E15.00
KB - ITT	CVV 2-4-126 $\quad 15.00$	$14^{\prime \prime}$ colour overwind
CVC5 CVC7 CVC8 CVC9 col 10.00	CTV 3-1-156 3-3-164 15.00	Rectifier
CVC20 series colour $\quad 9.00$		overwind 7.00
CVC30 CVC32 series colour 8.50		
CVC45 $\quad 8.50$	120 Risegate Road,	VISUAL DISPLAY UNITS
Fr100 FT110 state p/no. $\quad 10.00$	Gosberton, Risegate,	We can Rewind the L.O.P.T.s
All lopts and windings are new	Nr. Spalding, Lincs PE11 4EY	for the I.B.M.LCE FB1 and the Digital VT100 £20.00 old unit Required.
	0775840778	

BOLTON COMMUNICATIONS PROJECT SATELLITE TELEVISION COURSES

To be held at
Four Day
One Day
Three Day

THE LAST DROP HOTEL, BOLTON.
SATELLITE TELEVISION INSTALLATION COURSE 20th, 21st, 22nd \& 23rd March, 1989 - £300.
INTRODUCTION TO SATELLITE TELEVISION 20th March, 1989 - £90.

23rd March, 1989 - £280.
Accommodation available at $£ 65$ per night.
TO BE HELD AT BOLTON METROPOLITAN COLLEGE.
One Day
CITY AND GUILDS COURSE ON FIXED DISH SATELLITE INSTALLATION (offered on behalf of the Confederation of Aerial Industries). Course dates: 10th April, 8th May, 5th June and 3rd July, 1989.
For further information please contact:
Terry Tudor (Project Manager),
Bolton Metropolitan College, Manchester Road, Bolton BL2 1ER.
Tel: (0204) 31411 Ext. 3371/3395

CCTV CAMERAS		SEQUENTIAL VIDEO SWITCHERS		CAMERA 'C' MOUNT LENSES	
10 Lux CCD 180 Line	£230.00	2 Camera Auto Switcher	£55.33	$1 / 2^{\prime \prime} 12 \mathrm{~mm} \mathrm{F1.4} \mathrm{No} \mathrm{lris}$	£21.49
CCD2 Camera 0.3 Lux	£356.25	4 Camera Auto Switcher	¢72.50	$1 / 2^{\prime \prime} 12 \mathrm{~mm} \mathrm{F1.4} \mathrm{Focus} \mathrm{\&} \mathrm{Ins}$	£52.97
CCD Camera Auto Ins Adaptor	£20.53	6 Camera Auto Switcher	£81.25	$1 / 2^{\prime \prime} 6 \mathrm{~mm} \mathrm{F1.4} \mathrm{Focus} 8$ Iris	£60.78
CCD Camera Power Supply	£25.66	8 Camera Auto Switcher	£89.00		
2 Lux 240V AC Vidicon Camera	£119.44	12 Camera Auto Switcher	¢115.00	2/3" LENSES	
Dummy Camera	£25.66	4 Camera Auto/SW. Looping/Bridging 8 Camera Auto/SW. Looping/Bridging	$\begin{array}{r} £ 93.75 \\ \mathbf{E 1 3 1 . 2 5} \end{array}$	12.5-100mm F2 8:1 Manual Zoom	£259.89
CAMERA HOUSINGS		4 Camera Auto/SW. Digital/Bridging	ع150.00	12.5-75mm F1.6 6:1 Manual Zoom	£153.94
Outdoor Housings 240 V AC	¢115.99	8 Camera Auto/SW. Digita//Bridging	£156.25	18-108mm F2.5 6:1 Manual Zoom	¢309.87
Outdoor Housings 24V AC	£133.31			11-110mm F1.8 10:7 Manual Zoom	£534.78
340 mm Indoor Painted Housing	${ }^{532.50}$	ALARMED AND SPECIALS		$4.0 \mathrm{~mm} \mathrm{F1.4} \mathrm{Focus} \mathrm{\&} \mathrm{Iris}$	£126.25
340 mmm Indoor Stainless Housing	£48.75	Alarmed 8 Way 8 Zone	£437.50	4.8 mm F1.8 Focus \& Iris	$\underline{9} 91.25$
370 mm Indoor Painted Housing	${ }_{¢}^{528.75}$	Quad 4 Way Compressor Alarmed	£698.75	$6.0 \mathrm{~mm} \mathrm{F1.8} \mathrm{Focus} \mathrm{\&} \mathrm{Iris}$	¢90.00
370 mm Indoor Stainless Housing	£49.37			6.5 mm F1.4 Fixed Prism	£149.94
1000 LINE METAL CASED MONTORS		VIDEO TME AND DATE GENERATOR		$8.0 \mathrm{~mm} \mathrm{F1.4} \mathrm{No} \mathrm{lris}$	£37.49
9' BlackWhite Monitor	¢87.49	Time and Date Generator ${ }_{\text {Time/Date/Message/Stop Watch }}$	${ }_{\text {¢ }} \mathbf{£ 1 4 6 . 2 5}$	$8.0 \mathrm{~mm} \mathrm{F1.3} \mathrm{Focus} \mathrm{\&} \mathrm{Iris}$	£49.47
12"Black White Monitor	¢99.99	Time/Date/Message/Stop Watch	¢134.25	16.0 mm No lris 16.0 mm F1.6 Focus \& Iris	$\begin{aligned} & £ 19.19 \\ & \text { £41.49 } \end{aligned}$
PAN \& TILTS		BRACKETS			
240 V Outdoor Unit with Cont/Box	¢406. 25	Short Camera Bracket	£8.61	AUTO IRIS \& PINHOLE LENSES	
As above but 24 V AC	¢437.50	Long Camera Bracket	£8.61	$8.5 \mathrm{~mm} \mathrm{F1.3}$ Auto Iris	£137.50
24 V Indoor Unit with ContBox	${ }_{¢ 218.75}$	90 Degree Camera Bracket	${ }_{\text {c8. }}^{\text {¢ } 81}$	16.0 mm Auto Iris	£136.25
As above but 24 V AC	$\underline{218.75}$	Camera Scanner Mrunt	£15.33	9.0 mm F3.5 Pirhole with Iris	$\underline{207.50}$
INDOOR PANNING UNTTS		Pan \& Tith Comer Bracket	£56.25	As above but Right Angle	$\underline{267.50}$
Fixed Sweep Scanner	¢24.07	Pan \& Tith Flat Corner Adaptor	£10.00	9.0 mm F3.5 Auto Iris Pinhole	£374.99
240 V Indoor Panning Unit	\$66.87			As above but Right Angle	¢449.99
As above but 24 V AC	£66.87	VIDEO AMPLIFIERS		11.0 mm Short Pinhole with Iris	£132.50
1 Camera 240 V Panning Cont/Box	£36.25	240 V Camera Amplifier	£36.12	W/A Auto Iris Attachment	E65.00
As above but 24 V AC	£36.25	240V Camera Distribution Amplifier	¢57.81		$\begin{array}{r} \text { £50.00 } \\ 507.50 \end{array}$
5 Camera 240 V Panning ContBox As above but 24 V AC	$£ 90.00$ $£ 90.00$	24V Camera Amplifier 24 V Camera Amplifier PCB	${ }_{\text {¢ } 23.62}$	Special Extension Tube Kit Camera Lens Sizing Viewer	$£ 27.50$ $£ 131.25$

IF IT'S CCTV - WE CAN SUPPLY IT

$\mathbf{C r o t o n} \mathbf{C r a t e s} \mathrm{T}_{\text {arinic }} \mathrm{V}_{\text {alue }}$

ORDER YOUR REQUIREMENTS TODAY BY PHONING 05448557 NOW - WE ACCEPT ALL MAJOR CREDIT CARDS
CROFTON ELECTRONICS, KINGSHILL HOUSE, LYONSHALL, HEREFORDSHIRE HR5 3HZ FAX: 05448558 ON SPECIAL OFFER - HIGH RESOLUTION COLOUR MONITOR (0.31) FOR MOST MICROS - INCLUDING ATARI AND AMIGA - RING FOR DETAILS REFURBISHED EQUIPMENT OFTEN AVAILABLE. ALL THE ABOVE PRICES ARE SUBJECT TO VAT \& CARRIAGE

BRITAIN'S
 LARGEST SUPPLIERS OF EX-RENTAL TV SPRING
 CTVs FROM £3

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc.
MANY TELETEXT
CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE, GUIDE, BLACKBURN, LANCS.
TEL: 025464489

ATTENTION

All dealers in the south west

Do you want good clean stock at the right prices?

Non-working tv’s................................... From £5
Working tv's From £20
Working text From £75
Working eiectronic VHS From $£ 75$

Guarantee's available on all Working stock

TELETRADERS
 Brunel Industrial Estate
 Newton Abbot, Devon 062660154

EASTER

SPECIAL CLEARANCE TELEVISIONS
PHILIPS K30-KT3 G11 TELETEXT
\star NEWS \star \star FLASH \star

8.800 R/C	$3 V 22$
$9000 \mathrm{R} / \mathrm{C}$	3 V 23
$9600 \mathrm{R} / \mathrm{C}$	3 V 29
$9900 \mathrm{R} / \mathrm{C}$	3 V 35
TX9/X10 R/C	$3 \mathrm{~V} 43 / 45$
STEREO TEXT	3V47
THESE ARE QUANTITY PRICES	

HUGE STOCKS OF: BUSH T22/24, DECCA 80/100 $\star —$ LOOK — \star GRUNDIGS, G.E.C. STARLINE, BRAND NEW T.V \& VIDEO HITACHI, I.T.T. TRIMLINES \& \star STANDS \mathbb{N} STOCK \star OTHERS

For friendly service try us, you'll like us ALL PRICES SUBJECT TO 15% VAT \& AVAILABILITY

MIDLAND BRANCH:

94 SOHO HILL, HOCKLEY, BIRMINGHAM, B19 1AE WEST MIDLANDS Tel: 021-551 2233. Ask for Jazz

CentreVision

 SLOPER ROAD, LECKWITH, CARDIFF. Exit 33 off M4SOUTH WALES' LARGEST AND BEST WHOLESALER WITH 20 YEARS' EXPERIENCE INCREASE YOUR PROFITS! PHONE: 0222344754

EX-RENTAL TV's \& VIDEOS

New and rebuilt for most makes of T.V. including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX etc. Thorn New Life now in stock
Two year guarantee with a four year option. Cash or credit allowed for certain types of \ln-line glass. Price list available on request.
ExPRESS T.V. SUPPLIES The Mill, Mill Lane,

Rugeley, Stafis.
0889-577600
(9.00-6.00 Mon-Sat)
Bristol
0454-316285
(After 4 pm)

$\sqrt{\bar{\vdots}}$
 STAY INTUNE
 TOlilsgrove Brd digital tumer
 TV and Video Trade Centre

x Ex-ṅial a vibeo x	SPARES
	VIDEO TRIMS - TV TRIMS - REMOTE TRIMS VIDEO HEADS - REMOTES - IDLERS BELT KITS LOPTS - FOCUS UNITS LEADS - PINCH ROLLERS $\star \star \star \star \star \star$ SCRAP BOARDS AVAILABLE $\star \star \star \star \star \star$ SPECIAL OFFER FERGUSON $22^{\prime \prime} 9600$ TUBES (a56 610) £15 + VAT
* CRADE 'B' STOCKH!	EX RENTAL N.E.C. ${ }^{\text {Complete Satelite Systems 1.8M DISH }}$
ALL AT VERY COMPETITIVE * * * PRICES * * * PORTABLE CTV UHF-VHF $£ 90$ + VAT PORTABLE FERGUSON 3C01 CAMCORDERS \square TELEVISIONS * * * VIDEOS $\star \star \star$ Р口A AUDIO EQUIPMENT * * *	
2e/Pe RIVER STREET	ES 5SA FAX: OE1.7EG 610

REBUILT
 COLOUR TUBES

Delta - 20AX - 30AX - In Line N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 01-771 3535
First Independent Rebuilder with B.S.I. Certification

RELAY

OMAGH LTO COMPUTER SOFTWARE

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?
do you find it difficult to know your arrears total at any GIVEN TIME?
If you do then we recommend our new computer TV and Video Rental package. This
t automatic updating of each customer's record

- alphabetical print-out of each customer's arrears and payments missed * total arrears immediately available
- easy to use and operate.
Operates on all IBM compatibles running under MS-DOS. Free demonstration disc available

0 (1) | WILLIAM J THOMPSON |
| :--- |
| Donaghanie Post Office |
| Beragh Co. Tyrone |
| Telephone Beragh 214 (0662 72) |

WORKING TVs	WORKING VHS VIDEO	NEW AND 'B' LINES NOW IN STOCK	
Basic Thorn/Granada From: FERG, GEC, ITT, DECCA, PHILIPS, DORIC, FINLANDIA etc. Thorn 9.6 k	Basic Electronic Thorn/Japs $£ 65$ Mechanical $£ 50$ Beta $£ 25$ IN STOCK 3V23/29/30/40/31/32/35/38 3V43 - STEREO - HiFi - 2 SPEED Sharps 7.3/8.3/9.3 Hitachi VTH/8.3/9.3 Panasonic 333/336/7.2/777 Akai VSI/VS2NS4 and many more	Slim F/L Basic/Remote $£ 120$ $14^{\prime \prime}$ Colour Portable $£ 95$ $20^{\prime \prime}$ ITT Remote P.O.A. $20^{\prime \prime}$ Remote/Monitor Style P..A. BW Portable $£ 26$ Microwave Ovens from $£ 45$ Ferguson 22B5 Professional Series P.O.A. Ferguson 59B7 F.S.T. P.O.A. Finlux 28" F.S.T. P.O.A. Luxor F.S.T./Solara P.O.A.	
Prices based on availability - quantity + 15\% VAT.	Telecraft Set Top Ariels \& Audio Video Accessories	Luxor F.S.T./Solara NEW THORN HEADS NEW HANDSETS	
FOR SINGLE OR BULK PURCHASES - CALL US NOW LOCAL AND DISTANT DELIVERY SERVICE AVAILABLE FOR THE UK AND FOR EXPORT			

NEW PRODUCT ANNOUNCEMENT introducing the UNIVERSAL

ELECTRON VIDEO REPAIR CASSETTE

A great time saving device for the bench or field service engineer for hands free video inspection or repairs. Simply insert the cassette and experience its many advantages to aid fault diagnosis.

Ho need to remove the tape carriage for routine servicing
No more taping of sensors and transmitters during servicing No need for manual operation system switches etc. during servicing or repair

PRICE: £9.99

Supplied with cleaning buds and fluid
To obtain your cassette please send cheque or p.o. to.

> ELECTRON T.V. \& AUDIO 36 Gifford Road, Stratone Village, Swindon, Wilts. Tel. 0793-39363

INCREASE YOUR PROFITS

by saving hours \& hours POSSIBLY DAYS OF FRUSTRATION locating faults on VHS VIDEO RECORDERS
WE OFFER YOU THE HELP YOU NEED with HUNDREDS \& HUNDREDS of 'STOCK' and the 'HARDER' faults along with their SYMPTOMS. All experienced and collated from MANUFACTURERS SERVICE DEPTS/WORKSHOPS/CONSULTANTS and TECHNICIANS Covering
ALL POPULAR MAKES \& MODELS including:-
FERGUSON/PHILIPS/JVC/PYE/PANASONIC/ HITACHI/AKAI/MITSUBISHI/SHARP/SANYO/ FIDELITY etc etc etc.
SYMPTOMS/DIAGNOSTICS/FAULTS/ PROCEDURES/MODIFICATIONS

All well tried \& PROVEN as a great TIME SAVER \& ESSENTIAL for ALL service departments \& personnel. Collated \& indexed in UP-DATING binders for QUICK \& EASY reference.
Will immediately recover the outlay costs.
ATTRACTIVE up-to-date BINDERS covering MANY HUNDREDS of FAULTS \& their SYMPTOMS.
YOU WILL WONDER HOW YOU MANAGED WITHOUT THIS ONLY £73.00 (inclusive)
Regular monthly updates just $£ 30$ per year Also available on COMPUTER DATA-BASE Payment with order to:-
TECHNICAL ADVISORY SYSTEMS 33 FOXCOTE, ASTLEY VILLAGE, CHORLEY, LANCASHIRE PR7 1XE.

Telephone: (02572) 75667

QUALITY USED T.V. \& VIDEO

PHILIPS/PYE G11, KT3, KT30. LARGE QUANTITIES OF STD., REMOTE AND TEXT CTVs ARRIVING DAILY.

Free Delivery Service to Most Areas of the U.K.

CNon

nov Sess $\sqrt{5}$ [5]D
UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB

Just 10 Mins from
M5 Junct. 6 Worc's North

SETS \& COMPONENTS
OCHRE MILL TECHNICAL SERVICES. Are now on (6666 (Marlmsbury) 823228 Grundig TV spares all models to 1983. Fast friendly, helpful service sensible prices.

SUFFOLK TV \& VIDEOS

Large stocks always available GEC, Fineline KT3, KT30, Hitachi, Nat Pan, working stocks in our showroom from £20.00.
Text $£ 85.00$ with handset.

0394670115

Bridge Road, Felixstowe, Suffolk 1P11 7FL

NEW VIDEO HEADS

Lowest possible price, Ferguson/JVC etc. 3HSS (V) £19.00 includes VAT \& P\&P, nothing more to pay. Latest top quality Brand New Japanese head Cheque/PO to:
H.T.V. Ltd., 16 Station Road, Ossett, W. Yorks WF5 8AD.
Bulk discounts available, also most other types heads/video spares.
Phone for quote 0924280364

TELEEUISIOM

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 8.50$ per single column centimetre (minimum 2.5 cms). Classified advertisements 55p per word (minimum £10),

PANASONIC'S ETC.

 EXAMPLES
NEW AND SECONDHAND
 TV - VIDEO - RADIO SPARES, PANELS AND COMPONENTS, NEW RECORD DECKS, TRANSCRIPTION AND AUTOCHANGE £10 EACH. VA 214 NICAD BATTERIES 12 VOLT £16 EACH. VIDEO HEADS $£ 15$ EACH.
 Ring Southport (0704) 76828 (ANYTIME 24 HRS 7 DAYS)
 SPARES, PANELS AND MANUALS PHILIPS

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.
D.I.Y. SCRATCH REMOVAL + TUBE POLISHING KIT First class results can be obtained every time with this kit. The kit, which comes with full instructions is especially useful on ex-rental work for those sets with excellent cabinets and good but scratched tubes which may be had at very much reduced prices. The kit could pay for itse with your first iob!
Introductory price $£ 35$ inclusive Electric drill required PCTV SERVICES

Superb and working Many other models/makes More profit, less headaches
Regular supply - Quality Discount Repossessed TV Centres Ltd Daisy Works
345 Stockport Road, Longsight, Manchester.
(A6 between M/c and Stockport) Mr Poole or Mr Ricketts Tel. 061-273-2854/274-3409

Colour TVs from Clean and tidy

Video Beta

VHS Video
Spares machine electronic
Philips and Pye types

Always around $200+$ fully working colour TVs
Videos available. All in clean condition and ready
Phone us for models available today.
FROM
Prices based on quantity plus VAT

Electronic VUS from $£ 50$ Various makes - changing dally
 GENERAL FAGTORS

UNION STREET, DONCASTER, SOUTH YORKS Excellent motorway access from M1, M18, A1M
(24 hour Ansaphone Service)

SERUICE PQCES

20x number £1.00 extra. All prices plus 15\% VAT. All cheques, postal orders潢., to be made payable to Television, and crossed "Lloyds Bank PLC". Freasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Foom 2331, IPC Magazine Limited, Kings Reach Tower, Stamford Street, _ondon SE1 9LS. (Telephone 01-261 5942).

F.T. SERVICES

QUALITY WORKING TV's AND VIDEOS TO INCLUDE

9600's £20
TX9's, TX10Basic £30
TXTeletext From £60
TX Stereo Text £90
VIDEO'S 3V29/30 £70
3V23/8940
£70
NEW H/UNITS, eg. Tx Text £12
NEW HEAD, eg. JVC J/L ... £14.50
VIDEO STAND From £5
Also Sony, Pan, Philips, Pye, Hit etc. available

ALL PRICES PLUS VAT
779 STOCKPORT ROAD, LEVENSHULME, MANCHESTER
Telephone: 061-224 7279
0612246521
Open
Mon./Fri. 10-8
Sat.
0-6 VISA

Sanic \mathbb{T} 丑 酔istributors

WORKING SETS FROM £8

FULL R-C
FROM £25

TOSHIBA - HITACHI - PANASONIC - J.V.C. SONY - ALL OTHER JAP ARE IN STOCK NOW

FROM £45
STEREO TEXTP.O.A. COLOUR PORTABLE P.O.A.
$\star \star $\star \quad \star$ ${ }_{x}^{\star}$ DIRECT LOADS AVAILABLE **************************************

WORKING VIDEOS FROM £40

VIDEOS FOR SPARES FROM £10

AUDIO

MIDI SYSTEM - MUSIC CENTER - TWIN DECK STEREO - STEREO RADIO CASSETTE - MONO RADIO/C - CLOCK RADIO - CAR STEREO - CAR ALARM - AND MANY OTHER AUDIO ITEMS ARE IN STOCK NOW. PHONE FOR PRICE LIST

EXPORT ENQUIRIES WELCOME

All prices are subject of 15\% VAT and based on quantity

NORTH WEST ELECTRONICS HUGE STOCKS NOW IN FOR '89

GOOD SELECTION OF THORN TV'S \& VIDEOS FROM STANDARD TO STEREO TEXT AT KEEN PRICES!

WORKING TV's

Bush T20/22, T24/6 £25
Pye G11 £25
PyeKT3 £35
Pye K30 £40
Ferguson TX 9/10 £40
Grundig £20
Hitachi 226 etc. $£ 55$
WORKING VIDEO's
TRY BEFORE YOU BUY!
Sharp Electronic 7300 ... £65
Ferguson 3V29 £75
Sharps 8300 £75
National Panasonic £75
Ferguson 3V30 £80
Sharp 9300 $£ 85$
BRADFORD
SPRING MILL STREET, MANCHESTER ROAD,
BRADFORD 5
5 INS FROM MOTORWAY

IN STOCK NOW K35/K30 TEXT TX10 \& HITACHI TEXT

TELETEXT BARGAINS FROM £35 (G11)

WORKING EX-EQUIPMENT PANELS IF Con- De- Line Power Frame verger coder scan
$\left.\begin{array}{llllll} & & \\ \text { T20/22X } & 5 & 14 & 18 & 17 & 14 \\ \text { T26 } & \text { x } & 5 & 16 & 20 & 17 \\ 718 & 7.50 & 5 & 14 & 20 & 3\end{array}\right) 14.00$ But + VAT

TRADE SHOWROOM

LARGE QUANTITY OF READY TO SELL VIDEO's \& TV's
CALL IN, YOU WILL BE DELIGHTED!

LATER VIDEO's NOW IN STOCK

3V35/44/65, Hitachi VT33 Philips 6660/64, UR 60, AND MANY MORE

100's PX HOOVER JUNIOR VACS All models in stock

UNTESTED TV's

Bush T20/22 £10
Pye G11 £15
PyeKT3 £25
PyeK30 £25
Ferguson TX9/10 $£ 30$
Grundig £10
Hitachi 226 etc. £35
Thorn 9000 £10
Plus many more; GEC, ITT, etc from $£ 5$
UNTESTED VIDEO's
Sharp 7300 £35
Ferguson 3V29 £50
Sharp 8300 £50
National Panasonic £45
Ferguson 3V30 £55
Sharp 9300 £55
Betamax all makes from £10

UNIT 3,
MERSEY ROAD NORTH INDUSTRIAL ESTATE, FAILSWORTH

[^2]| SALE | | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
Independent Television \& Video Company						
SUPER SPRING SALE SUPER SPRING SALE						
WE HAVE A LARGE SELECTION OF EX-RENTAL TELEVISION \& VHS VIDEO RECORDERS. TESTED TO A VERY HIGH STANDARD AT THE LOWEST PRICES POSSIBLE						
GET INTO SPRING 89 WITH EXCELLENT STOCK						
WE'VE CHECKED THE REST NOW VISIT THE BEST						
	$\begin{aligned} & \text { ERG TX TES } \\ & \hline \mathbf{E S 5} \end{aligned}$		VHS VIDEO TESTED	TOSHIBA TESTED		
	$\begin{aligned} & \text { LINE TESTED } \\ & \text { ETB } \end{aligned}$			$\mathrm{ETV}_{5}^{\text {CTVOM }}$		
	$\begin{aligned} & \text { KT3 TESTE } \\ & E 35 \\ & \hline \end{aligned}$			LARGE SELECTION OFTELETEXT T.V.'s AVAILABLE		
MANY MORE LATE TVS TO CHOOSE FROM						
WE ARE EXPERIENCED AND CURRENTLY EXPORTING REFURBISHED TELEVISIONS \& VIDEOS ENQUIRES WELCOME C.I.I. \& F.O.B. PRICES TELEX 378414 BLBIRDG - FAX 0602861027 NO ONE's OR TWO's - BULK PRICES ALL PRICES ARE SUBJECT TO 15% V.A.T.						
NOTTINGHAM (10,000 SQ. FEET WAREHOUSE) UNIT 3-3A MEADOW TRADING EST, MEADOW LANE NEAR NOTTS COUNTY FOOTBALL GROUND In NATIONAL TYRE YARD, NOTTINGHAM NG2 3 WQ. teLEPHONE: (0602) 864627				SHEFFIELD 6,000 SQ. FEET WAREHOUSE) 2 MIN FROM JUNC. 34 OF THE M1 UNIT 17, MEADO WHALL TRADING EST 27 AMOS ROAD, SHEFFIELD 4 telephone: (0742) 422633		

TRADE WORKERS ALWAYS AVAILABLE

35, Nunsmoor Road, Fenham, Newcastle-Upon-Tyne.
Phone: (091) 2722303

DIRECT FROM THE FACTORY WHERE THE BEST COSTS LESS FINEST QUALITY LOWEST PRICES SPECIAL DISCOUNTS FOR BULK BUYERS
2 YEAR GUARANTEE. 4 YEAR OPTIONAL ALL MAKES INC. SONY NATIONWIDE DELIVERY
PHONE NOW FOR FREE LISTS SHERWOOD TUBES LTD 60A PEVERIL STREET, NOTTINGHAM NG7 4AH. Tel. 0602786896

2 NORTON ROAD, STOURBRIDGE, WEST MIDLANDS TELEPHONE: 0384-390706 / 0836-585829 (24 HR)

```
LARGE SELECTION THORN TV + VIDEOS
QUANTITY OF NON THORN TV + VIDEOS
    QUANTITY OF PORTABLES AVAILABLE
    ALL AT COMPETITIVE PRICES
        OPEN: MON-FRI - 9.30-5.30
        SAT - 9.30-3.00
```

TEL:
0384-390706
0836-585829 (244F)

NOW OPEN IN CORNWALL

DECENT, CLEAN WORKING \& NON WORKING THORN TV's \& VCR's AT COMPETITIVE TRADE PRICES
 LARGE WAREHOUSE PREMISES
 COWELL TV \& VIDEO WHOLESALE MEVAGISSEY

For All
 SHARP GRUNDIG PHILIPS Fidelity and Thorn
 Genuine replacement spare parts you need only one phone call on
 0734-876444
 Or 061-682-1415
 Same day despatch before 2.30 pm . Over 55,000 parts in stock

WHilow Vale Electronics Ltd

Sole UK Parts distributor for Grundig and Sharp. Main Philips UK Distributor

THE NEW 80 CENTIMETERS OFF SET DISH FROM EURO SAT

Designed and developed in the UK Astra, BSB, DCF 2 and telecom. Dish antenna from 80 cm to 3 meters.

Phone or write for details:
SAE: Euro Sat, 107 Cross St.,
Sale, Cheshire M33 1JN, England
Tel: 061437 2631/061 8814249.

SPECIAL OFFER
 TV Panels for Bush 823, Thorn 3500, Decca 30, GEC C2110, Philips G8. As seen mostly complete. Sorry no G8 line. £5 ea inc $p \& p, 5$ for $£ 20,40$ for $£ 110$.
 DAVE WILLIAMS, 23 Florence Ave.,
 Balby, Doncaster, S. Yorks DN4 0QB. Tel: 0302857526.

SONY C5, C6, C7 workshop clearance of quality, tested video panels e.g. YC6, AS3, power supplies etc. Any panel $£ 13.80$ all inclusive or SAE for current listing to Design Electronics, 5 Briar Close. Heckmondwike, WF16 9JH.

REPAIR SERVICE

AVO'S OSCILLOSCOPES \& TEST EQUIPMENT Repaired. Manuals available. J.R. COAD ELECTRONIC SERVICES Phone 01-34) (1230)

BUSINESS FOR SALE

AUDIO VIDEO REPAIR BUSINESS RETAIL. Small goods, towns only, one shop office. Workshop, storage room upstairs. Combining rent \& rates $£ 970$ per year. North East Scotland Office. Box No. 251.

TELEVISION REPAIR SHOP/FLAT for sale. East Birmingham, including stock, carpets. $£ 48 \mathrm{k}$. Tel. 021 7861969 evenings.

AERIALS

SATELLITE TV

 RECEPTION EQUIPMENT LNE's. Recevers, Dishes, polar mounts andzcecessories. Japanesese LNBS from

 N F FAaptors only 10tb line ampls only
prices excl. VAT. SAE tor leateits

KESH ELECTRICS LTD.
Main St., Kesh, Co. Fermanagh, N.l. Tel: 0365631449 Tlx: 747412

WIZARD DISTRIBUTORS

 MANCHESTERTV \& VIDEO SPARES
We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, SCHNEIDER, HINARI \& DECCA And also THORN \& ITT
FIDELITY SPARES MAIN DISTRIBUTOR. Did you know we also stock FUSES TUBES AERIALS RESISTORS CAPACITORS VALVES HANDSETS
VIDEO HEADS TVNIDEO TROLLEYS Counter open Monday-friday 9 am-4.45pm

TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

METERS

AVON METERS

50p or £1 TV meters
from E5.95 each plus V.A.T. (Discount for Quantity)
We also repair and buy unwanted meters 1 Year Guarantee - Phone now:

28 Station Road,
Yate, Bristol BS17 5HW
Tel. 0454321953
METERS. Reconditioned $10 \mathrm{p} / 5(\mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498

WANTED

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment. ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

SERVICE SHEETS

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries.

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast,
Co. Donegal, Republic of Ireland.
fone: 07548275

SERVICE MANUALS

VCR - CTV - MTV - AUDIO etc.
Examples - VCR
VSP10X = Saisho VR1200HQMatsui VX820 $\$ 12.75$ Memorex VR1200/Casio VCR6500 - Daewoo VCR30/50 - Funai VCR4000 $£ 14.75$ Sharp VC581-582-583-585 - VC.5F3 $£ 10.50$
CTV manuals tor
NECLLoeweMetz/Seisho/Casio
Onor/Otake/Admiral etc.
from $£ 4.50$
Manuals for many other makes and models woll known or obscure - some unobtainable elsewhere. Prices are all inclusive. No VAT or P/P
For list send $£ 1.00$. No SAE required.
DATA-GD 112 AMEYSFDRD RO., FERNDDWN,
DDRSET BH22 90E. Tel: 0202894207

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.
The Colour Signal Part 2.

The Receiver Decoder Part 3.

Receiver Installation
VHS $\star \star \star$ V2000 $\star \star \star$
BETAMAX $\star \star \star$ UMATIC
For full details telephone
0253725499 (Day) 0253712769 (Night)
Or send for precise details FLINTDOWN CHANNEL 5 339 CLFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1 LP (encloding this advert)
NAME. ADDRESS. \qquad

ONE DAY INTENSIVE TRAINING COURSES ON

TV - SERVICING - VIDEO

ABSOLUTE MUST FOR ALL COLLEGE STUDENTS, APPRENTICES AND AMATEURS.
MODERN FAULT FINDING METHODS TO SERVICE TV's THE QUICK AND EFFICIENT WAY. CERTIFICATE GIVEN UPON COMPLEIION OF COURSE. RING NOW FOR PLACES ON

0525851385

BOOKS \& PUB's

Ku BAND SATELLITE TV THEORY, INSTALLATION

 AND REPAIRThis 383 page
manual by Baylin \&
Gale of USA covers
dish theory, uplinks,
footprints, site
survey, installation and adjustment,
descrambling, cable TV, even includes a computer program for finding your satelite
Second Edition £23.

Price includes P\&P UK Airmail Europ Breeds.
Par ACCESS MASTERCARO, or COD J. VNCENT TECHNICAL BOOKS.
24 RIVER GARDENS, PURLEY, READING RG8 88X. TEL: 0734414468 (Answerphone)

SITUATIONS VACANT

Field Service Engineers Come And Join In Our Success

Part of a highly successful and fast growing organisation, Granada Group plc, we at Granada Microcare install and service an extensive range of micro-computer based office and commercial equipment. mainly in the business market. Due to our expansion, we are now looking for talented Field Service Engineers to come and share in our success.
Based at our site in North West London, but also working from home whenever this is practical, you will be responsible for the repair of a variety of micro-based products in the computer and telecommunications fields.
With a $\mathrm{B} /$ Tech National Centificate or an equivalent qualification, you should be able to demonstrate a sound overall knowledge of digital electronics. Additionally, you will need some field experience on related products, coupled with good interpersonal skills.
In return for your abilities, we can offer you a highly competitive salary of C 12,000 depending on your experience, full training is provided together with an attractive selection of large company benefits including a car, staff discounts, pension scheme and free life assurance. What's more, our impressive development means your future career prospects could be outstanding.
To apply, please send a full CV to: Vic Eltringham, Personnel Controller Commercial Operations, UK Rental \& Retail Ltd. PO Box 31, Ampthill Road, Bedford MK429Q日. Or telephone for an application form on (0234) 226624 (24 hour answerphone), quoting reference number VSE7.

TV SERVICE ENGINEERS

Due to our involvement in satellite TV, we urgently require experienced bench and field TV engineers Bench engineers will work in fully equipped workshops in Mitcharn and field engineers service areas in Greater London and home counties. Top salaries are offered and a 'better-than-average' estate car provided for field engineers. Existing holiday arrangements will be honoured.

Write or telephone:
Dennis Fairweather,
Triadcolour TV Service Limited,
189/191 London Road,
Mitcham, Surrey CR4 2JB
Telephone: 01-640 5521/2
Triadcolour
iv Service lio

SKILLED TECHNICIAN WANTED. Good pay rates apply. JOMILL ENTERPRISES. 173 Dalston Lane, E8. Tel. 01-533 2229.

> FOR FURTHER DETALLS CONTACT CLASSIFIED ON 01-261 5942

INDEX TO ADVERTISERS

VIDEO MACHINE REPLACEMENTS
We Specialize in all types at

UNBEATABLE PRICES!!!

VIDEO HEADS

3HSS-V	16.00
3HSS-N	16.00
3HSS-A	21.00
3HSS-B	20.00
3HSS-H	20.00
3HSS-(A)	20.00
3HSS(SP)B	25.50
3HSS-PB	20.00
3HSS4-NA	40.00
3HSS4N-C.	44.00
$3 H S S 4 V-C$.	44.00

WE SUPPLY WORLDWIDE. . . FAST!!

AND MANY MORE. . . PLEASE ENQUIRE. . . DISCOUNTS FOR TRADE ACCOUNTS

BELT KITS

SONY C6	0.82	SHARP 7300	1.38	SANYO 5000	0.50
SONY C7	1.33	SHARP 8300	1.38	SANYO 5300	0.80
SONY C9	1.38	SHARP 9300	1.38	SANYO 5500	1.00
SONY SL	1.50	TOSH. 7540	1.08	SANYO 9300	1.50
FERG.3V22	1.30	TOSH. 9600	0.66	N.PAN 300	1.25
FERG.3V23	0.37	HIT. VT+1	0.83	N.PAN 777	1.16
FERG.3V29	0.90	HIT. 5000	1.50	N.PAN 7000	0.85
FERG.3V31	0.71	AMST. 7000	0.60	N.PAN 8600	1.28

AND MANY MORE. . . SINGLE BELTS. . . CAPSTAN BELTS. . . DRUM BELTS. . . ETC. PINCH ROLIERS

IDLERS
ALL OUR COMPONENTS ARE NEW AND GUARANTEED

VIDEO DISPLAY CORPORATION
Griftronic Emission Limited
Unit 2, Avenue Farm Ind. Est.
Stratford-upon-Avon
Warks. CV37 OHU.

Minimum Order $£ 5.00$
Phone (0789) 295883
298510
31470
Fax (0789) 415243
please add 75 p per order for Postage Charges plus VAT

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are retumed undamaged within seven days, the purchaser's money must be retunded. Please retain proot of postage/despatch as this may be needed.
Mail Order Protection Scheme
If you order goods as a private individual from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation it the Advertiser should become bankrupt or go into liquidation provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the official on sale date of the publication and not later than three months from that date. (Please retain proof of payment).
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has become subject to bankruptcy proceedings or gone into liquidation up to a limit of $£ 4,050$ per annum for any one Advertiser so affected and up to $£ 12,150$ per annum in respect of all advertisers."

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. All display advertisements are covered but only boxed trader classified advertisements are included. Advertisements as loose inserts are not covered.

[^0]: Surcharge
 Surcharge
 exch. glass.

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Lid.; South Africa - Central News Agency Ltd. Subscriptions: Inland f18, overseas (surface mail) $£ 21$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: JOMILL ENTERPRISES?
 173 Dalston Lane, Hackney, London E8 Tel: 01-533 2229
 VHF/UHF TELEVERTAS £ 12.50 TRADE ONLY Quantities P.O.A. cerarnic filters for UK and export conversion NTSC decoder for replacement of chip TDA3560/1 £47.50 add cost of posting and packing. All prices plus VAT.

