SERVICING•PROJECTSVIDEO-DEVELOPMENTS

Fidelity's Digital TV Chassis VHS Fast-search Systems Helical Aerials for Band 1
 The Philips 3A Chassis TV Fault Finding • DX-TV VCR Clinic• Vintage TV

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars. BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver acrial socket.
\star Additional video output for CCTV \& VCR
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module £108.00

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £ $\mathbf{3 0} 0.00$. CASE $£ 8.60$. BATT HOLDERS $\mathbf{£ 4 . 2 0}$. MAINS SUPPLY KIT £4.20 (Combined P\&P £2.80).

MK 4 (BATTERY) BUILT \& TESTED) £58. 00 + £2.80 P \& P. MK 4 (MAINS) BLLLT \& TESTED $£ 68 .(0)+£ 2.80$ P \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS £5.75.
EASILY ADAPIED FOR VIIEEO OUTPUT \& C C'T V.

TELETEXT DECODER PANELS (TESTED)

Mullard VM6101 £30.00, Philips KT3, K30 £30.00, Texas XMII (TIFAX) £28.00 p.p. £1.80

THORN TX9 MK2/3, TX10, teletext

Mullard Decorder panel + Interface $£ 35.00$ p.p. $£ 1.80$
THORN TX 10, PHILIPS G11 PRESTEL, TELETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{£ 3 8 . 0 0}$ p.p. £2.50

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS. TUNERS, SELECTORS ETC.
SPECIAL OFFER Front End Unit incl. Tuner, Saw IF and Channel Selector £20.00 p.p. $£ 2.00$
PHILIPS GII PANELS (tested)
Frame, IF, decrder $£ 12.50$ cach p.p. $£ 2 .(0)$. Scan $£ 20.00$ p.p. $£ 2.80$
PHILIPS G1I PANELS ex rental (untested).
Scan $£ 10.00$, Frame, Decoder $£ 5.00$ p.p. $£ 2.00$.
PHILIPS GII IF PANEL (New) Less Tuncr $£ 2.50 \mathrm{p}$.
p. $£ 1.30$

PHILIIPS HANIDSETS (New Replacements) p.p. £1.59
G11 Ultrasonic Nontext $£ 22.50$, Infra red Text $£ 22.50$. Others available
KT3 Non text (RC4(K)1) £2I.50, KT3, K30 etc. Text £25.(M1)
PHILIPS HANDSETS Ex rental, text. Untested. KT Text/Video Type. e3.50 p.p. £1.00.

COLOUR MANLiALS PD 50 p
PHILIPS G11 £3.50, KTS £3.50, (CTX-E £1.50, CTX-S £1.50.
THORN REMOTE CONTROL HANDSETS
TX9 ULTRASONIC (3-button) $£ 15.00$; TX9, TX10 Infra red (Non-Text)
£18.00; TX9, TX 10 Infra red Teletext $\mathbf{2 1} .50$, p.p. £1.20. Others available.
TX9 Ultrasonic remote handse transducer $£ 2.00$, switches 3 for $£ 1.50$ p.p. 51% p.

TX Remote panel 1509 G (incl. SAA5012) $55.00 \mathrm{p} . \mathrm{p}$. f . 80 .
TX Remote panel 1564 (incl. UAA 10018 A \& Batery) 55.00 p.p. fl. 80 .
THORN TX9, TX 10 Saw Filter IF Panel. $\mathbf{5 5 . 0 0}$ p.p. 80p.
TX9, TX10 Remote \& tuning control panel (1515) £10.50 p.p. $£ 1.80$ SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$.
PAL, DECODER KIT (Video to RGB) for Monitors £27.00 p.p. £1.(0).
PAL ENCODER KIT (RGB to Video) £18.50 p.p. £1. 30 .
CROSS HATCH UNIT KIT, Aerial lnput type, incl. T.V. sync. and UHF Modulator. Batte y Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 12.00$ p.p. 80 p. (Alum. (ase $£ 2.90$ p.p. $£ 1.40$.) ADDITIONAL GREY SCALE Kit £2.90 p.p. 45 p .
UHF SIGNAL STRENGTH METER Kif $£ 22.00$ Alum. Case $£ 2.90$. De Luxe Case 88.60 'Built \& Tested £48.00) p.p. $£ 2.30$.
CRT TESTER \& REACTIVATOR KITT For Colour \& Mono complete with
Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 29.50 \mathrm{p} . \mathrm{P}$. $\mathcal{E} 2.80$.
BUSH A823 Conwergence, Time Base Panels $\mathbf{5 5 . 0 0}$ each p.p. $£ 1.80$.
GEC 20AX Line Time Base $£ 18.00$ p.p. 12.00 .
ITT CVC30 SERIES. Convergence \& Purity Control Panels. $\mathbf{2 2 . 5 0}$ p.p. ${ }^{\text {f1. }} 50$

TT CVC30 SEIGES PANELS SURPLUS (untested) $£ 2.50$ each. (MP31. CMF31, CMA30, CM532, p.p. 80p; CMD33, p.p. £1.80.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \&
Semiconductors cec. $£ 3.00$ p.p. $£ 1.80$
THORN TX9 Panels salvaged ex factory for spares incl. Electrolytic \& Mains
Transformers. £X. 50 p.p. $£ 3.10$
THORN 8000850 5 IFiDecoder Panels salvaged $\mathbf{5 3 . 2 0}$ p.p. £1.80).
THORN 9000 SFRIES IF/Decoder $£ 10.00$ p.p. $£ 2.30$. Line T.B., Power Panels $£ 12.50$ p.p. £. $3 .(\mathrm{O})$.
THORN 9000 IF/Decoder Panels Salvaged. For spares $£ 2.50$ p.p. $£ 1.80$.
PHILIPS G8/G9 1F/Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $11 .(6)$.
PIILLIPS (88 Lire Driver Panel incl. Equalizing Coil. \&1.00 p.p. 601p.
PYE 725 Front Control Pancls $£ 3.50$ p.p. $£ 1.20$.
GRUNDIG 8630 Series Varicap Tuners $55.00 \mathrm{p} . \mathrm{p}$ f1.00.
VARICAP TUNERS U321, U322/204, ELC $1043 / 155$ £7.80 p.p. \mathfrak{f} I. (0).
VHF Plilips, NSF £6.80 p.p. $\ddagger 1$ (1)
VARICAP UHF. VHF ELC 2 OXXS 9.80 p.p. E1. (\%)
UHF/625 TUNERS, many different typers in stock. DECCA Bradford 5
prsition, MULLARD 4 position $£ 2.50$, JAP Rotary $\mathbf{f 4 . 8 0} \mathrm{p} . \mathrm{p}$. f 1.80 .
TV SOUND IF Panels 86.80 p. D . \ddagger IM,
LOPTS New and guar. P/P E1.50, Bobbins 80p.
FERG., HMV, MARCONI, ULTRA
1591), $1541.1612 \times 1613.1712$.

FERGUSON 3787 (Normende)E9.80 DECCA Bradterd (state Mox No)
THONN 16(0), 1615, 1690, 1691. 1790 E9.00
THORN WOXV $35(0)$ SCAN. ELII

THORN'TXY...
FIDELITY ZX2000. 3000

THORNTXIO
. 9.80 ITTCVC5109. CVC20.

SPECIAL OFFER
[TT V $3(x)$)
(JEC 21 14J/Junior Fireline
PIILIPS 320.
RBM A823.
GEC 2028, 2040, 21(4)
PYE 691.7 chassis type only
PYE 713715 (Chelseat)
TTTCVC25, CVC30series
ITT CVC45
YE 725 (400 O 731 to 741
£3.50 PHILIPSG8.
\&4.80 PHILIPS (9)

TRIPLERS Full range available. Mono \& Colour.
SPECIAL OFFER TRIPLERS
PHIIIPS G8 (Short Focus lead) £2.50 p.p. £1.30
THORN 30(0)/35(x) £2.50, PYE 725/731 (4 lead) £1.50 p.p. £1.20.
TIIORN 15005 Stick $£ 1.50,15003$ Stick £1.50 p.p. 80 p.
6.3V CRT Boost Transformers for Colour \& Mono $\mathbf{£ 5 . 9 0}$ p.p. f1.41.

THORN TX10 focus control $\mathbf{£ 1 0 . 0 0}$ P.p. £1.00).
PYE 713, 731 IF Module $\mathbf{~} \mathbf{3} .50$ p.p. 80p.
455 CRYSTALS for Remote Control Handsets \& Receivers. 4 for $£ 1.00$ p.p. 50 p .

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL, ITEMS, ENOUIRIFS INVITED LARGE SELECTION TESTED COLOUR PANEIS POPULAR MODELS
Goocls a available if in stock immediately over shop counter (Mail order between 3 days and
week from recept of order). ADI VAT 15%
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford) Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD VAT 15\% TO AIL PKICES INCL. P+P
£22.50
$£$
PHILIPSGII.
PHILIPSKT3.
PHIILIPS K $30, \mathrm{~K} 35$
HIILIPSCTX-E
PHILIPS (TX-S

-x lrom recept of

Telephone 01.794 8751, 7947346

COPYRIGHT

(C) IPC Magazines Limited, 1988. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 16$ in the UK, £19 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Some copies of issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address requests to Television, Editorial Office, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London, SE1 9LS.

INDEXES

Indexes to Vols. 35 and 36 are available at 80p each from the Editorial Office (address above).

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

253 Leader
254 Long-distance Television Roger BunneyReports on DX conditions and reception and news fromabroad.
259 Vintage Scene: the Kinemacolor System Chas E. MillerThe problems with this pioneer colour film systemwere similar to those that affect colour TV displays.
260 Letters
261 Next Month in Television
264 TV Fault FindingReports from Eugene Trundle, Nick Beer, RogerBurchett, Philip Blundell, Eng. Tech., Christopher Hollandand Alfred Damp.
266 Teletopics
News, comment and developments.
268 Dual-Channel TV Sound Systems, Part 2 Geoff Lewis, B.A., M.Sc.An account of some basic digital techniques used inprocessing modern stereo sound signals, includingsampling and quantization, signal codes, errorcorrection techniques and encryption systems.
273 The Fidelity ZX5000 Chassis J. LeJeune
A look at the techniques used in this recent chassiswhich employs extensive digital signal processing.
278 VCR ClinicReports from Christopher Holland, Alfred Damp, PhilipBlundell, Eng. Tech., Roger Burchett, Steve Beeching,T.Eng. and Eugene Trundle.
282 Helical Aerials for Band I Roger Bunney
The Les Wallen type helical aerial has proved to be asuccessful means of obtaining DX-TV reception in Band I.Extensive tests were carried out during last year's SpEseason.
283 The Philips 3A ChassisHarold PetersThe current top-of-the-range Philips CTV chassisincorporates many interesting features such as multi-standard decoding, colour transient improvement andcircuit control by means of microcomputer chips and an$1^{2} \mathrm{C}$ bus.
Back in the GrooveLes Lawry-Johns
Les reports on some troublesome sets following hisrecent circulation problem.
287 VHS Fast-search Systems George ColeSpecifications for two recently introduced fast-searchsystems that employ control track coding.
288 HDTV '87 Geoff Lewis, B.A., M.Sc. A report on the high-definition TV conference held inOttawa late last year.
289 Correction
Unfortunately the last half of the phased arraycomputer program was omitted last month.
290 Service Bureau291 Test Case 302

P. V. TUBES
 104 ABBEY STREET, ACCRINGTON, LANCS TRADE COUNTER OPEN Tel: 0254 36521/32611/390936 BB5 1EE. Telex: 635562 Griffin G (For P.V.)

1
A

SPECTRUM PLUS SPARES

灾 (0254) 36521
32611
390936

SPECTRUM 48K SPARES	
ULABC001 ... 7.80	
128K ROM	6.20
RAM 4116-2 (150n)	0
CPUZ80	1.70
LM1889	2.00
T14532 use 4164/4564	1.60
OK13732 while stocks last	
ZTX213	17
2TX313	27
2TX650/1	0.35
Xtal 4.4336 19MHz	
Xtal 14 MHz	0.80
7805 Voltage Regulator .. 0.78	
74LS00	0.58
74LS32 ... 0.90	
74LS157	
Modulator (UM1233)	2.20
Heatsink Iss. 1 \& 2 0.45	
Heatsink Iss. 3	0.45
Loudspeaker... 0.90	
Reset Pot 2.2k	
Trimmer 50pf Max. 0.32	
Keyboard Membrane	2.25
Keytoard Template1.50	
Keyboard Conn. 5 Way 0.17	
Double Sided Tape 40 cm .. 0.35	
Double Sided Tape Roll................................ 5.75	
PSU 1400... 0.85	
Power Socket	32
Power Plug	
Jack Sock. (EarMic)0.15	
Upper Case	2.00
Lower Case .. 2.00	
Feet Each .. 0.06	
Power Supply Lead	
Screw 9.5 mm (Cty 4)	
Spectrum Upgrade Kit 23.65	
	22.9

$74 \mathrm{LSOO4}$. 7X8401 = PCF 1306 Upper Case

Clamp Short Resel Switch Leg (Each)....

HOW 10 OPDER Up to 1 KADD 87p per order $P+P$ service aids, degausing coils please allow $22.50 \mathrm{P}+\mathrm{P}$ (U.K.). Export orders charged at cost.
First Class Mail is used whenever First Class Mail is used whenever
possible. Add 15% VAT to total except where it states zero rate. Bulkier items will be sent by carti-
er $£ 7.50$ + VAT up to 25 K (exceot er 87.50

THERE IS VAT OM P+P.
BOOKS AND MANUALS ARE ZERO V.A.T Goods are despatched on the day we receive your order. you any reason we are out of stock we will try to inform ypeedy, fair and efficient service. VAT best to give a request. Give us a ring - we'll give you service. Please ask it what you need is not listed - we will try to helo Prices are subject to change without notice. In some cases we may have to supply an equivatent.
export orders welcome REMOTE HAND SETS

AMSTRAD		
1422292	CTV2210	15.00
1422187	CTV2200	15.00
151910	TVNIDEO	15.00
1409221	CTV1409	15.00
151175	VCR5200	17.00
150583	VCR7000	10.00
150878	VCR9900	10.00

DECCA

$80 / 100$	NON TXT	US	16.50
$80 / 10$	NON TKT	US8511	19.50
101	NON TKT	US8513	23.50
SONY			
C5	RH75T		29.04
C6	RH72		22.62
C7	RHT200		45.00
C9	RHT213		45.00
ITT			
305	IR8649		22.95
306	IR8650		22.95
CVC45 RG5	VS8262		25.00
CVC32 RG15VS8573		25.00	

PLEASE NOTE THAT SOME HANDSETS ARE MANUFACTURERS ORIGINALS BUT SOME MAY BE AN ALTERNATIVE TYPE.

FIDELITY			
FD09193	Txt.	32 butt.	15.90
FD09820	IS500	12 butt	13.81
FD09156	F14R	12 butt	13.81
FD09111	AVS	14 butt	13.75
FD09141	CTV14S	4 butt.	13.5
	20R/22R/140R		

THORN/FERGUSON						
T723	TX9/10		NON TXT IR	16.50		
T725	TX9		NON TXT IR	16.50		
7731	TX9/101	0/100	TXT/STEREO IR	16.50		
T732	TX10		TXT IR	16.50		
7736	TX9/1010	0/100	TXT IR	16.50		
7739	TX10			16.50		
JVC						
TP843	TXT	IR		13.50		
GEC						
GECAHTACHI		9300 N4001		9.93		
GC56520831		C1404H-C1656H		30.00		
GCA512220		C1653		22.00		
GCA512230		C2086H, C2087H		28.50		
GCA510710		C2067H		28.50		
GCA514620		C2089H, C2090H		21.00		
GCA510870				C2069, C2269H		27.50

SAME DAY DESPATCH FAST - FAIR - EFFICIEIT SERYICE

GRUNDIG

RTP06/R107N
RTP07/R3BON
RTP400/R401
VRC204
TP160-160E
TP200-300-390 TP40
TP12
P.V.rues

TEL: 0254

36521	RING
32611	FOR

390936
SERVICE
TELEX: 635562
GRIFFIN G
FOR P.V.
CALLERS ALWAYS WELCOME
ACCESS - VISA

EXPORT ENQUIRIES

 WELCOME
we have a larger ramge usted UMDER SPECLIFIC MLMUFACTURERS II
CATALOGUE FOA THOPM, SOWY, CATALOGUE FOA THORA, SOMY, pauasonic, phalips.

REFURBISHED HEADS (Exchange) Equivalents Chart in Catalogue

THORN NEW LIFE (Most VHS types)

£55.00

E60	2.00
E120	2.30
\rightarrow E180	$2.45 \leqslant$
E240	3.45
$\rightarrow \mathrm{L750}$	2.70 ¢

REPLACEMENT VIDEO HEADS

教$\longrightarrow-$
-

Ombga Electronics

252A HIGH STREET, HARLESDEN, LONDON NW10 4 TD TEL: 01-965 5748 TELEX 265871 MONREF G. (BEF: MAG 31197
NEW NAME IN ELECTRONIC COMPONENT DISTRIBUTION WE CAN SOURCE ALMOST ANY ELECTRONIC COMPONENT - IF IT EXISTS WE WILL TRY AND FIND IT. IF WE DON'T STOCK WHAT YOU NEED WE WILL GET IT FOR YOU FROM OUR FACILITIES IN JAPAN \& SINGAPORE ON VERY SHORT LEAD TIMES
WE SPECIALISE IN THE DISTRIBUTION OF THE FOLLOWING RANGE OF PRODUCTS

JAPANESE COMPONENTS: TRANSTSTOAS, IC's (any Type number) REPLACEMENT VIDEO HEADS \& BEIT KITS FOR AIL POPII AR BRANO

 REPLACEMENT PHONOGRAPHIC CARTRIOGES \& NEEDLES ELECTRONIC TUBES: R.F. TUBES AND TV \& RAOIO TYPESDISCRETE DEVICES
TRANSISTORS (complete range) DIODES (complete range) FETS
POWER MOSFETS
OPTO-ELECTRONICS
LED'S ALL SHAPES AND SIZES
THYRISTORS, TRIACS
VOLTAGE REGULATORS

LOGIC DEVICES

(Very Competitive Pricing) 4000 Series CMOS
74LS TTL
745 TL
74HC/74HCT High Speed Cmos COMPLETE RANGE

COMPUTER IC's

CPU \& SUPPORT DEVICES Comprehensive range INTERFACE DEVICES
EPROM's
PROM's
MEMORY DEVICES
ASK FOR OUR
FREE PRICE LIST
OFFICIAL AMSTRAD
COMPUTER STOCKISTS
EXPORT ENQUIRIES
OFFICIAL AMSTRAD
WELCOME
SOFTWARE \& HARDWARE

WE SPECIALISE IN OISTRIBUTION OF PASSIVE LOGIC \& LINEAR SURFACE MOUNT

PASSIVE COMPONENTS

RESISTORS
POTENTIOMETERS
CAPACITORS all types
ic SOCKETS

LINEAR DEVICES

We can source atmost any Linear Device
CONSUMER
DIGITAL/ANALOGUE CONVERTERS

GOVERNMENT DEPTS., DISTRIBUTORS, OEM'S ETC. WELCOME
PLEASE PHONE OR WRITE WE WILL REPLY BY RETURN PLEASE PHONE OR WRITE WE WILL REPLY BY RETURN
EXPORT ENGUIRIES WELCOME FROM ANY PART OF THE GLOBE ON ANY ELECTRONIC RELATED PRODUCTS: VISA \& ACCESS ACCEPTED

MAKE YOUR INTERESTS PAY\&

Train at home for one of these Career Opportunities
More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
GCE over 40 '0' \& 'A' level subjects		\square

Name
Address
P. Code

International Correspondence Schools, Dept. EGS28, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

WE WIL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS.
REPUTATION COUNTS WITH US G.G.L.COMPONENTS
P.O. BOX 72, UNIT 7, SOUTH JOHN STREET, CARLLSLE, CUMBRIA CA2 5AL PHONE (0228) 39693/20358
rpi

NAT. PAN. VIDEO SPARES
NV3331dler 0.50
NV2000 \|der 0.90
NV3000 lder 0.58
NV7009 Idler 0.50
NV333 Play Idler 295
NV370 Play Idter275
NV333Load Gear.................. 250
NV2000 Load. Gear..................1.10
NV7000 Load. Gear1.50
NV333Pinch Roller.................4.25
NV2000 Pinch Roller.................3.85
NV7000 Pinch Roller................ 3.95

REMOTE CONTROLS
PHILIPS KT3/30
Repair Kits
Buttons \& Foils
Text or Non Te

PHILIPS RCS HANDSET
Suitable for:
KT3/K \& $2 / K 35 / K T 40$
Text \& Non Text

PRICE (1)
COMPUTER SPARES

3220

E.H.T. TRAYS

DECCA $80 .720 ~ O N O F F ~ S W T T C H E S ~$
1TT CVC20.30.
PHILIPS
RBM T20/22A.....
THORN 850018\$00
THORN 9000 ...
UNIVERSAL

FIDEUTTY LINE O

 TRANSAII MODELS
INC. MOD. KIT

LNE OP TR.
REMOTE CONTROLS AMSIRAD CIV2200......
FERGUSON TX9/10 Text...............
fERGUSON Text.......................... FERGUSON 3VZ3 Video 15.56 GRUNDIG TP150 Video 15.5. GRUNDIG TP200............. GRUNDIG TP400....
PHILIPS G11 I/R PHILIPS G11 //R 14.85
PHILIPS G11 I/R Text.... 14.70 PHILIPS KT3/30 N/Text. 14.70 PHILIPSKT3/30 Text...... 14.70

TV ELECTROLYTICS DECCA $80(4008000$......... 4.50 FIDELITY ZX $(220 / 385) \ldots295$

PHILIPS G8 $(6007300) \ldots . . .295$ PHILIPS G11 1470/250)220 THORN 1690/1 (4700/25) 1.35 | PC |
| :--- |
| PC |
| PL |
| PL |
| PL |
| PY |
| |
| |
| 78 |
| 78 |
| 78 |

VIDEO BELT KITS AKAI 930009700. Amstrad 7000
Ferguson $3 \mathrm{VOO} / 16 / 2$ ferguson $3 \mathrm{~V} 00 / 16 / 2$
Ferguson $3 \mathrm{~V} 29 / 30 .$. Hitachi 8000
Hitachi $9300 / 9500$ Hitachi 9300
Hitachi VIIIE JVC HR7200...... Nat. Pan. NV333.
Nat. Pan. $2000 . .$. Nat. Pan. NV3000

 Sanyo VTC5000
Sanyo VTC530
Sanyo VTC5300.
Sanyo VTC5500. Sharp 8900. Sharp 9300...
Sony C5/C7.. Sony C6....
V.C.R. PILOT BULBS Arnstrad 7000 . Hitachi 8000
Hitachi $9300 . .$. Sharp 8300 .. Thom (Plugged) Universal.....

Valves 1.00
.1 .05
.105
.1 .00
.3 .00
.5 .95
.22

.60 .- .00 75

NEW VIDEO HEADS			VIDEO MOTORS	
JVC 3 HSS		527.00		
national		$\underline{57.00}$	REEL MOTOR (RM11) PN 4-529V-10800 ¢8.00	
SONY		¢28.00	CAPSTAN MOTOR 4-527V-51000	¢24.00
VIDEO BELTS KITS			CAPSTAN MOTOR BHF-1100D $\quad \mathbf{2} 3.00$	
VS.2EG/5EG				
		$¢ 1.80$	REEL MOTOR RMOTV 1007 GEZZ	£17.50
vS-9700EG	(6)	$\underline{9.00}$	REEL MOTOR RMOTV 1008 GEZ7	ع17.50
JVC			LOADING MOTOR RMOTM 1017	¢10.00
HR-3300/3600 (9)		92.20	JVC	
HR-3330$H R-3360 / 3660$		E2. 20	CAPSTAN MOTOR PU-55371V	¢22.00
		¢1.90	CAPSTAN MOTOR PU-45979..	522.50
HR-7200		¢1.40	DRUM MOTOR PU-46414	¢22.50
HR-7700 (3)		¢1.40	TOSHIBA	
national			CAPSTAN MOTOR 70125101	528.00
NV-333 (5)		${ }_{\text {¢1. }} \times 1.50$	IILLERS \& PUUEYS REPLACEMEWTS	
NV.3000 (6)		ع1.80	SANYO RELPULLEY 143-0-662T-01201 ¢5.20	
		ع1.50		
		92.00	sonr	
Sony			REW. PULLEY A-6706-348-B REW PULLEY A-6706-391-AB	${ }^{1} 4.00$
SL-C7/SL-JL	(6)	¢1.95		
SANYO			IDLER SHARP NIDL0005 GEZ	52.25
VTC-5300	(5)	£1.90	HITACHI	
VTC.5500	(3)	¢1.10	IDLER ASSEMBLY 6886971	13.00
VTC-9300	(4)	2.40	DLLERASSEMBLY V-6861482	E. 85
HITACH			JVC	
VT-5000	(7)	¢1.95		
VT-800	(3)	${ }_{¢ 1}$	VIDEO PINCH ROLLERS	
TOSHIBA			NATIONALNV-300	
V-5475	(6)	$\varepsilon 1.90$		$¢ 4.75$
V.7540	(5)	£1.90	NV-7000	14.75
$\mathrm{V}-8600$	(6)	£1.50	SANYO	
SHARP			VTC-5500	84.75
VC-7300	(5)	£1.60	SONY	
				§4.75
CASSETIE MOTOR6VgVCW		c2. 90	SL-C7 $\quad{ }_{\text {¢ }}$	
		$\underline{29} 9$	He 3300	
9VCW12 VCCW		52.90	HR-3330	${ }_{\text {E5 }} 500$
12 VCW		$\underline{29.90}$	HR-336013660	${ }_{55} 00$
$\begin{aligned} & 13.2 \mathrm{VCW} \\ & 13.2 \mathrm{VCWW} \end{aligned}$		${ }^{23.90}$	HR-7200	${ }_{55.00}$
		$\underline{2.90}$	AKA!	
CASSETTE TAPE HEADS			VS-9700EG	¢3.60
MONOHEASTEREOLEAD		£1.30	HITACHI	
		$\underline{.120}$	VT-5000	E4.75
MONOMIN HEAD		¢2.50	SHARP	
AUTO REVERSE HEAD		E2.60	VC-6300/6500	$¢ 5.00$

FIRST IU TUBE REBUILDING TEGHNOLOGY 30AX: 540 SERIISS REDUGED SERMICING COST, FIT A DREGT REPLGGEMETT avallable oviy from chromavac. PRE CONVEBED AS ORICINAL. EXIERNAL MULTIPOLE UNIT NOT REQUIRED.


```
LOOK! AT NO EXTRA COST
30AX PRE CONVERGED
6812959
```

most types of Inline Re-builds or
new ex-stock PRICES SUBJECT TO
Delta Rebuilds Inline Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	$\underline{+}$
A47 342 New	£28
17FHP New	£30
470EHB New	£30

Up to $22^{\prime \prime}$.. From $£ 40$ Up to $26^{\prime \prime}$.. From $£ 45$ A56-540x …....... £56 A66-540x….........£58 Bonded Coil $+\boldsymbol{+} 5$

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES
IN LINE TYPES (not rebuldos) PHONE RE STOCK POS.

THE COMPANY WHO PUT HIGH STANDARDS FIRST 댐TTNac

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. Al incorporate a useful COMPONENT TESTER. Size- all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear disciav $8 \times 10 \mathrm{cms}$. Mains suoply $110 / 125 / 220 / 240 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. 2 YEAR WARRANTY HM203-6 20MHz Standard FREE Securicor Delivery
 SPECIFICATION
Bandwidth DC. 20 MHz

- Sens.Ch1,Ch $2.2 \mathrm{mV} / \mathrm{cm}$ *Trigger DC-4OMHZAC. DC. MF. LF. (TV Frame) - Active TV Sinc Sep. - Vanable told off 10 - Calibrator

Price £314.00 + £47.10V.A.T. Including two probes
FREE Securicor Delivery
HM204-2 20MHz Multi-function SPECIFICATION * Bandwidth DC. 20 MHzz

* Sens. Ch1, Ch $2.1 \mathrm{mV} / \mathrm{cm}$ - Sens. Ch1,
- Time Base $1.25 \mathrm{~s} / \mathrm{cm}-10 \mathrm{~ns} / \mathrm{cm}$ *Delayed Sweep $100 \mathrm{~ns}-0.1 \mathrm{~s}$ - Trigger DC-50MHz AC, DC, HF, LF, (TV Framel - Overscan LED indicators Calibrator \qquad

Price £ 418.00 + £62.70V.A.T.
HM205 20MHz Digital Storage FREE Securicor Delivery Specification

- Analogue Real Time (Same as 203.6)
* Bandwath DC-20MHZ
- Sens. Ch1. Cn2. $2 \mathrm{mV} / \mathrm{cm}$. Active TV Sinc. Sep.
100 kHZ Sample Rate - $2 \times 1 \mathrm{~K}$ Storage
- Storage Range.
variable hold-oft
Calibrator
ims-5s/c
e $£ 498.00+£ 74.70$ V.A.T. Including two probes

B.K.'S CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guns separately. Fitted with delta and P.IL. sockets. Compact size $120 \times 65 \times 60$
mm . Suppiy 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.

B \& K PRECIIION CRT ANALYSER-RESTORER

The number one CRT Test instrument. Over 5000 U.K. Television engineers wouldn't be without it.
*All CRT's checked identically including all in-line and one gun types * Tests all three guns of colour CRT's simultaneously inder actual operating conditions (model 467) * Exclusive multiplex technique (model 467 *Measures true dynamic beam current that actually passes through $\mathrm{G1}$ aperture to screen * Measures all shors and leaks - preserving more CRT's " Tests focus electrodes lead continuity finding faults that other Testers miss Uses most powerful restoration method known win minimum danger to cRT
 and base adaptors available * Increases profit * Pays tor itsell in months.
PRICES
Model 467 Tri-dynamic three meter instument Inc. 6 common adaptors
Without adaptors
£399.00 + £59. 85 V.A.T
Model 470 Singie
Without adaptors
Technical leaflets available. GET iNTO PROFIT NOW!

SADELTA FIELD STRENGTH METER TC-402

THE SADELTA FIELO STRENGTH METER TC-402 has been designed to measure the
signal levels delivered by the antenna toa TV or FM receiver, in order to test the performance of the antenna and evaluate the best conditions during installation etc. To facilitate measurements, the tuning frequency readout is shown on a digital display.

FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV freq
* Digital tuning display (3 digits) for direct frequency readout.
* Accurate 10 turn tuning potentiometer.
* Built-in loudspeaker enables monitoring of sound in AM/FM
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester O-500 ohms.
* Fully portable (battery).
* Sturdy carry case.

Price £249.00 + £37.35 V.A.T.

SADELTA COLOUR PATTERN GENERATORS

THE SADELTA RANGE OF HAND HELD COLOUR PATTERN GENERATORS Is intended and computer montors. In order to control and adjust the various parameters eight switchable patterns areprovided. The technician has ready access to Laboratory, workshop and field use as the Generator has been designed using the latest micro-tectnology to acheve truly por
size instruments, internal re-chargeable Ni. Cd's. Suppled with
vV power supply charger. size instruments, internal re-chargeable

PAL VIDEO COMPOSITE GENERATOR

- PALB.G.l.
- Audio O/Put 10 mV Price£124.95 + £18.74V.A.T SECAM VIDEO COMPOSITE GENERATOR - SECAM B.G.O.K. * Audio O/Put 10 mV
* Switching 12 V (a 4 K 7 ohms Price $£ 124.95+£ 18.74$ V.A.T
R.G.B. PATTERN GENERATOR

O/Putsigs. Pos.RGB * O/PutTTL5VP-P Neg. Composite *Blank Pulse etc. CCIR Price £111.95 + £16.79 V.A.T.

DIGITAL THERMOMETER

\cdots	* Pocket Size
C124	- $1^{\circ} \mathrm{C}$ Resclution
\cdots	* 0.5"LCD
-	* Supplied with thermocouple

Price $£ 59.50+£ 8.92$ V.A.T.

PPutTIL 5VP-p

Pocket Size

- 8 Dig. LED

Display

- Freq. Range

20 Hz to 200 MHz

- Resolution 0.1 Hz * Sensitivity 10 mV

Price $875.50+$ E11.32V.A.T.

£1 BAKERS DOZEN PACKS

Price per pack is $£ 1.00$. $^{\circ}$ Order 12 you
(sh) are not new but guaranteed of

- 513 amp ring main junction boxes
- 513 amp ring main spur boxes

4in flex line switches with

- 280 watt brass cased elements

9-2 mains transformers with 6V 1A secondaries
$10-2$ mains transiormers with $12 \mathrm{~V} 1 / 2 \mathrm{~A}$ secondarie
11 - 1 extension speaker cabinet for $61 / 2^{\prime \prime}$ speaker
12-5 octal bases for relays or valves
13-12 glass reed switches
14-4 OCP 70 photo transistors
16-4 tape heads, 2 record, 2 erase
$17-1$ ultrasonic transmitter and 1 ditto receive
$18-215000$ mid comper prade electertics

- 215000 mid computer grade electrolytics
- 5 diffiterent micro switches
- 2 mains interterence suppresso
- 225 watt crossover units 2 way

16 digit counter manns voltage

- 2 Nicad battery chargers
-1 key switch with key
-2 humidity switches
-96×1 metre lengths colour-coded connecting wires
2 air spaced 2 gang tuning condensors
2 solrd diaelectric 2 gang funing condensor
10 compression trimmers
6 rocker swich
44 - 4 Rocker Switches 10 amp DPDT Centre Of
45-1 24 hour time switch mains oper
46-16 hour clock timeswitch
$48-26 \mathrm{~V}$ operated reed switch relays
49 - 10 neon valves - make good night lights
$50-2 \times 12 \mathrm{VDC}$ or $24 \mathrm{VAC}, 4 \mathrm{CO}$ relays
$51-1 \times 12 \mathrm{~V} 2$ CO very sensitive retay
$51-1 \times 12 V 4 C$ relay
$52-112 \mathrm{l}$
$55-1$ locking mechanism with 2 keys
- 1 locking mechanism with 2 keys

5 Dolls House switches
5 lefrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerials
4 territe slab aerials with L\&M wave coil
200 ohm earpieces
1 Mulard Thyristor trigger module
-5 different thermostats, mainly bi-metad
Magnetic brake - stops rotation instantly
10w pressure 3 level switch
225 watt pots 8 ohm
-225 watt pots 1000 ohm

- 4 wire wound pots - 18.33,50 and 100 ohm
-43 watt wire wound pots 50 ohm
-1 time reminder adjustable $1-60$ mins
-1 time reminder adjustable 1 -
-5.5 amp stud rectifers 400 v
-1 mains shaded pole motor $3 / 4^{\prime \prime}$ stack - $1 / 4^{\prime \prime}$ shatt
$25^{\prime \prime}$ ali fan blades fit $1 / 4^{\prime \prime}$ shatt
$23^{\prime \prime}$ plastic fan blades in $1 / 4^{\prime \prime}$ shaft
mains motor suitable for above blades
1 mains motor with gear box 1 rev per 24 hours
2 mains motors with gear box 16 rpm
411 pin moulded bases tor relays
5 B7G valve bases
4 skirted B9A valve bases
1 thermostat for fridge
1 motorised stud switch (s.h.)
$121 / 2$ hours delay switch
16 V mains power supply unit
14 kV mains power supply unit
15 pin fiex plug and panel sockel
15° speaker size radio cabinet with handle
$101 / 4^{\prime \prime}$ spindle type volume controls
10 shder type volume controls
1 heating pad 200 watts mains
11 W amplifier Mullard 1172
1 teak effect extension $5^{\prime \prime}$ speaxer cabinet
2 p.c.b. with 2 amp tull wave and 17 other recs
2 plastic boxes with windows, ideal for interrupted beam swith etc
-3 varicap push button tuners with knobs
-1 plastic box sloping metal front, $16 \times 95 \mathrm{~mm}$, average depth 45 mm
- 1 car door speaker (very flat) $61 / z^{\prime \prime} 15 \mathrm{ohm}$ made for Radiomobile
-2 speakers $6^{\prime \prime} \times 4^{4 \prime} 15$ obm 5 watt made for Radiomobile
- 2 mains transformers 9V /\&A secondary split primary so ak also for 115 V
- 1 mains transtormer 15V 1A secondary p.c.b. mounting
-26 V 0.6 V mains transformer. 3A D.C.D. mounting
-40 double pole leal switches
$221 / 4 \mathrm{in}$. 600 hm loudspeakers
$22^{1 / 4 i n}$. 80 hm loudspeakers
1 mains operated relay with 2 sets c/o contacts
2 packets resin filler/sealer with cures
$35 A$ round 3 pin plugs win
4 pc boards for stripping, lots of valuable parts
13 A double pole magnetic trip, saves reparing fuses 41000 u 25 V axial electrolytic capactors
1 Audax PM 8" speaker 15 ohm 5 watt rating 100 48A 1 $1 / 2^{\prime \prime \prime}$ cheesehead plated screws and 100 4BA nuts - 1 pair stereo tape head as in cassette recorderppiayers
-2 battery operated relays (3-6V) each with 5A clo contacts 2
pairs
2 lithium 3 V batteries (everlasting shelf file)
OVER 400 GIFTS
you can choose from
There is a total of over 400 packs in our Baker dozen range and you beco
gitt with each dozen packs
gitt with each dozen packs.
A classified list of these packs and our latest you will automatically receive our next news letter

THIS MONTH'S SNIP

$3^{1 / 2}$ Iloppy Disk Drive, made by the Chinon Company of device of its kind as it weighs only 600 g and measures on 104 mm wide. 1 ti 2 mm deep and has a height of only 32 mm ther fealures are high precision head positioning - single push loading and eject - direct drive brushtess motor - 500 K per disc - Shugart compatible interface - standard connections - interchangeabie with most other $31 / 2$ and $51 / 4$ drives. Brand new with copy of makers manual. Offered thls month at 28.59 post and VAT included.

CASE - adaptable for $3^{\prime \prime}$ or $31 / 2^{\prime \prime}$ FDD, has room for power supphy
POWER SUPPLY FOR FDD - 5 V and 12 V voltage egulated outputs, complete klt ol parts will fit into case 4P8 pice £8 or with case $\mathbf{\Sigma 1 1}$.

MULLARD UN|LEX AMPLIFIERS

We are probably the gnly firm in the country with these now in stock Although only four walts per channel, these give supert repreduction. We now offer the 4 Muliard moduies - i.e. Malns power unit (EP9002) โ6. 00 plus $\Sigma 2$ postage. For prices of modules bought separately see E6.00 plus E2 po
TWO POUNDERS

CAR STARTER/CHARGER KIT

his unit - 250 watt transformer 20 amp rectifiers, case and all parts with data case $£ 17.50$ post $£ 2$

MINI MONO AMP on p.c.b. size $4^{\text {m }} \times 2^{\prime \prime}$ (app Fitted volume control and a hole for a tone shouid you require it. The ampiffer has shree transistors and we estimate the output to be 3 W irms. More technical data will be included with the amp. Brand new, perfect condition. Ottered at the very iow price of $£ 1.15$ esch or $£ 13$ lor 12

LIGHT BOX

This when completed measures approximately $15^{\prime \prime} \times 14^{\prime \prime}$. The light source is the Philips fluorescent "W" lube. Above the light a sheet of
fibreglass and through this should be sufficient light to enable you to fibreglass and through this should be sufficient light to enable you to the box, choke, starter, lube and switch and fibreglass is $£ 5$ plus $£ 2$ post. order ref 5P69

TANGENTIAL HEATERS

ee again have very good stocks of these quiet running instant heat units. They require onty a simple case, or could easily be fitted into the bottom of a kitchen unit or book case etc. At present we have stocks of c6.95 for the 3 k Acd post 5150 per heater if not collecting CONTROL SWITCH enabting full heat hall heat or cold blow with connection diagram, 50 p for 2 kw . 75 p for 3 kw

FANS \& BLOWERS

$5^{\prime \prime} £ 5+£ 1.25$ post $6^{\prime \prime} £ 6+£ 1.50$ post.
$4^{-1} \times 4^{*}$ Muftin equipment cooling tan 115 V £2.00
$4^{4} \times 4^{\prime \prime}$ Muffin equipment cooling tan 230/240V 55.00
" Extractor or blowes 115 V supplied with 230 to 115 V adaptor $\mathrm{E9.50}+$ 2.00 post

All above are ex computers but guaranteed 12 months. 115 V adaptor on use two in series to give long blow $\mathbf{\Sigma 2 . 0 0}+\mathbf{1 1} 50$ post or $£ 4.00+\Sigma 2.00$ post for two.

$\boldsymbol{9}^{\prime}$ MONITOR

deal to work with computer or video camera uses Phulips lack and white tube ret M24/306W. Which tube is implosio and X-Ray radation protected. VDU is brand new and has a ume base and ERT circuitry. Requires only a 10% dc supply 10 set it going. It's made up in a lacquered metal tramework complete with circuit diagram and has been line fested and has our six months guarantee. Oftered at a lot less than some firms are asking for the tube alone, only $£ 16$ plus $£ 5$ some
post.
LOW COST OSCILLOSCOPE - kit to convert our 9^{-} monitor into an osclloscope with switched time bases to allow very high
and very low frequency waveforms to be observed and measured Signat and very low frequency waveforms to be observed and measured. Signa mplitudes from as low as 10 mV and as high as 1 kV can easily be radio and audio circuits.
Kit contains all the parts for the conversion and the power supply to operate from mains $\mathbf{Y 2 5}$ our ref 25 P 3 .

TELEPHONE LEAD

mirs long terminating one end with new BT, flat plug and the othe Repaces Replaces the lead om oid phone making it suitable for new BT socket

COMPACI FLOPPY DISC DRIVE EME-101

The EME-101 drives a $3^{\prime \prime}$ disc of the new standard which despite its small size provides a capacity of 500k per disc which is equivalent to the $3^{1 / 22^{\prime \prime}}$ and $51 / 4^{4}$ discs. We supply the Operators Manual and other information showing how to use this with popular computers: BBC, Spectrum, Amstrad etc. ar a special snip price or 7.50 includ g post and ata avalable separately $\boldsymbol{\Sigma}$, refundable you purchase the

POWERFUL IONISER
Generates approx. 10 times more IONS than the ETI and similar circuits. Will refresh your home, office, shop, workroom etc. Makes you feel better and work harder -
complete mañs operated kit, case included $£ 11.50+£ 3$ P\&P.

J \& N BULL ELECTRICAL Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5aT

 20 add 1 rins. Cash, P.O. or cheque win ord. Drders under

 20 add 1 rins. Cash, P.O. or cheque win ord. Drders under} 20 add $£ 1$ service: charge. Monthly account orders uccepted from schools and public companies. AcceBrighton (0273) 734648 or 203500 .

Some of the many described in our current list which you will receive with your parcel.

SUPER WATER PUMP - Approx $1 / 3 h p$ mains operated originally intended to operate a 3300 shower unit at a contronled pressure - but of caurse Suitable for many other water or liquid moving operations - where a
good flow at a constant pressure is requiked - Price E25 each V. and Post Paid. Dur Ret. 25P2.
VEAY USEFUL MULTITESTERS - These have all usual ranges AC \& DC volts - OC, MA and OHMS etc but an unusual and very usetul teature is
a "low OHMS" range. Very useful for checking dry joints etc. They are "low OHMS" range. Very useful for checking dry joints etc. They are ex G.P. . and may have laults but we lest and garanlee
movement to be $0 . K$. Price £3 each. Ref. 3 P30.
EO314.
FOWER PACK OR AMPLIFIER CASE - Size approx $10^{\prime \prime} \times 81 / 4^{\prime \prime} \times 1^{3} / 4^{\prime \prime}$ plated steel - with ample periforations to cooling. Front panel has on/of seitch and E.E.C. mains inlet plug with built in RF tilter - undoubtedy a ery fine case which would cost at least $£ 50$ trom reguiar sources, our INIATURE BCD THUMB WHEEL SWITC
ngraved write on black - gold plated make before break contacts size approx. 25 mm high 8 mm wide 20 mm deep - made by the tamous Cherry Company and designed for easy stacking - Price $£ 1$ each. Ref. EDGE METEM -
EDGE METEM - miniature, whote size approx. $37 \mathrm{~mm} \times 13 \mathrm{~mm}$ yodua tsd
centre zerm scaled 0 to -10 and 0 to +10 . Price 51 each Reff
LBG02. 2 SPEED MOTOR - 1 ho at 2500 rom and $1 / 4 \mathrm{hp}$ at 200 rom
continental rake, intended originaly to power an industrial machine RUBular price over UBBER FEET - Stick on - ideal for small instruments and cabinets fack of 56 br E1. Ref. BD603. heads - regular price $£ 1.50$ per spray can - our Price - 2 cans for $£ 1$ or RON'T FREIZE UPI - We have had the strongest winds for over 200 years and who knows may be in for coldest winter, so if you have not already protected your water pipes you should do so now - our heating
wire wound around the pipes will do this and will cost only about 500 wire woun thin 15 metres (minimum length to connect to $220 / 240 \mathrm{~V}$ mans). Price £5. Our Ret. 5P109.
PIEZO ELECTRIC FAN an unusual fan, more like the one used by Madame Buttertly, than the conventional type, it does not rotate. The air novements is caused by two vibrating arms. It is American made. deal for computer and instrument cooling. Price is only $£ 1$ eact. Ref.
BD605. uigin company. Very good quality. Price four for 51 Ret B0599 CURLY LEAD - lour core, standard replacement for telephone handset, xtends to nearly two metres. Price $£ 1$ each. Ref. 80599
ELEPHONI BELLS - these will work off our standard mains through a fed with 25 inz 50 V . So with these bells we give a circuit for a suitable power suprdy Price 2 bells for f1. Ret. BD600.
ULTRA SEWSTIVE POCKET MULTIMETER - 4 k ohms per voli - 11 ranges - carry one of these and so be always ready to test ac/dc volts to
1000 , DC miligrams and have an ohms range for circuif testing - will eam its cost in no time. Price only $£ 7$. Ref 7P2.
BLOW YOUR ROOF OFF 140 watt speaker systems - new type you must not hide! They have golden cones and goiden surrounds and look
really "Bootiful" 12 " Wooter, Midrange and Tweeter and comes with a frossover a a special introductory price of £49. carriage paid. Two sets or $£ 95$ carriage paid. $140 w$ Wooter oniy $£ 35$ carriage paid.
/2 $51 / 4$ FLOPPY OISC DRIVES now in slock all are new and made by mous epson company. All are double siad connections and ase compatible with conventional systems. Both are small size and kight weight. Price - ether model is $£ 57.50$ plus $£ 3$ post. Price incluces copy APPLIANCE THERMOSTATS -
heaters or similar. Price 2 for $\mathfrak{\text { I }}$. Ret. BD582 type suitable for convector

COMPUTERS

Big consignment of computers expected in mid Jan, various makes and numbers, wite or phone for detalls.

NOVEL NIGHT LIGET - plugs into a 13A socket. Gives out a surprising amount of light, cerrainly enough to navigate along passages at night or o keep a nervous child happy Very low consumption, probably not WITH 13A PRONGS
uitable for plenty of projects such as car battery trickle charger, sate controller, time switch, night light, noise suppressor, dimmers etc. Price 2 for 1 R Ret. BD565.
SPEAKER EXTENSION CABLE - twin 0.7 mm conductors so you can burglar alarms, bells, intercoms, etc. 250 m coil only $£ 3$ plus $£ 1$ post
Ret. 3 P28
ALPHA-NUMERIC KEYBOARO - this keyboard has 73 keys with
contactless capacitance switches giving long trouble Iree life and no contact bounce. The keys are arranged in wo groups, the man area size is approx $13^{\prime \prime} \times 4^{\prime \prime}$-brand new but oftered at only a fraction of its Cost namely $£ 3$, plus $£ 1$ post. Ret. 3 P27. wiring of telephone extensions. For this we can supply 4 core telephone cable, 100 m coll $£ 8.50$. Extension BT sockets $£ 2.95$. Packet of 500 plastic headed staples $£ 2$. Dual adaptor for taking two appliances from
one socket $£ 3.95$. Leads with BT plug for changing old phones 3 for $£ 2$. MOOULAF SWITCH - Panel mounting highest quality and ideal where extra specal tront panel appearances is required, can be lllummated if equired d.p d.t. and latching. Price - 2 or $£ 1$. Ref 80607. WIRE BARGAIN - 500 metres 0.7 mm solid copper tinned and p.v.c. netre. anit this wre is ideal for push on connections.
INTERRUPTED BEAM KIT - this kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main components - relay photo transistor, resistors and caps etc.
-30V VARLABLE VOLTAGE POWER SUPPLY UNIT - with 1 amo DC aiput intended for use on the bench ior experimenters students, oventors, service engineers etc. This is probably the most important piece of equipment you can own. (After a multi range test meser). It jives a veriable output from $3-30$ volts and has an automatic short ircuit anc overload protection, which operates at 1.1 amp approximately. Other 1eatures are very low ripple output, a typical ripple has a voltmetes on the front panel in addition to the output control knoo and the output terminals. Price for complete kit with full instructions is
TRANSMITER SURVELLLANCE (BUG) - tiny, easily hidden, but which will enable conversation to be picked up with FM radio. Can ba housed

1987 CATALOGUE available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders over f15). Credit Tickets (3), Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now.

EAST CORNWALL COMPONENTS
 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689 TELEX: 35565

add 85 p postage/packing (unless otherwise specified) to all orders and then add 15% VAT to the total. Minimum order £5.00. Either send cheque/cash/postal order or send/telephone your Access or Visa number. Official orders from schools, universities, colleges etc most welcome. (Do not forget to send for our 1987 catalogue - only $\mathbf{£ 1 . 0 0}$ per copy). Delivery by return on ex-stock items. All prices subject to change without notice. FETAIL shop open Mon-Fri 9.00-5.00. Sat 9-12.00.

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 241.

ADVERTISEMENT MANAGER
David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671
CLASSIFIED
ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

SUBSCRIPTION ENQUIRIES

0444440421

COVER PHOTO

This month's cover photograph shows Fidelity's new ZX5000 chassis which employs extensive digital signal processing circuitry. See article on page 273.

SKY CHANNEL

The accumulated deficit of Sky Channel's operating company Satellite TV Plc from 1981 to end June 1987 was $£ 29.7 \mathrm{~m}$, not $£ 44 \mathrm{~m}$ as suggested in Teletopics, November 1987.

Sky's advertising income is rising with the growth of the cable and satellite industry in Europe and the company is confident of future profitability.

TE

Goodbye '87

As I write this we are just into the new year. A suitable time to consider the state of the UK's TV industry and its prospects. But wait a minute: what industry? For 1987 was the year when the UK's last indigenously owned large-scale TV manufacturer, Ferguson, was sold to foreign ownership. It also seems to have been roughly the time when work on TV projects in the UK by Philips finally came to an end. This is not to say that TV receiver production in the UK has declined, quite the reverse in fact. With the announcement that JVC is to start production in Scotland, nearly every major Japanese setmaker now has a UK assembly plant, and substantial increases in the capacity of some of these plants were brought into production during the year. It's not only Japanese firms that have found the UK to be a favourable manufacturing base, as the example of Tatung shows. Now Goldstar, one of the two mammoth Korean producers, is set to join in. Though more TV sets and VCRs are imported into the UK than are exported, the percentage of imported sets has been declining in recent years. TV production in the UK has been on a rising trend, and from this point of view we could call it a successful industry. So successful that Japanese component manufacturers are starting up here as well.

This manufacturing activity is certainly helpful to the UK, creating employment and wealth. The Japanese are not doing it for fun of course. One of their aims is to ensure a manufacturing presence within the EC as a long-term insurance policy, and as far as TV setmaking is concerned the UK, with its history of TV manufacturing and large domestic market, seems to be seen as a suitable base. It could well be said that though the Japanese are obviously committed to UK TV production they don't make a lot out of it. Profitability has not been particularly good, which is why so many UK firms have pulled out of the industry over the years. But while profitability is regarded as the prime aim of UK owned firms the Japanese don't seem to consider it to be so all-important. They have the benefit of low-cost investment funds and are prepared to create plants and then go after market share. Turnover would appear to be the main consideration - though obviously not at an actual loss.
The high value of the yen has been one reason for the move by Japanese industry to off-shore bases. It's interesting that while the profitability of Japanese consumer electronics manufacturers was quite seriously hit by the initial yen appreciation in late 1985 and early 1986, it has subsequently been rebuilt. A rather different tale from what occurred in the UK when the pound rose to an unrealistically high value in the early eighties. Much of UK industry then simply capitulated, though the high cost of money must have made it difficult to do much else.
The Japanese manufacturer in the UK has the advantages of using low-cost funds (Japanese interest rates are amongst the lowest in the world) in a low-cost economy. The latter point is highlighted by the fact, brought out in a recent study on comparative international purchasing power, that while it takes the average UK employee 69 hours' work to buy a colour TV set it takes his Japanese counterpart 98 hours to do so. Does this mean that we are highly paid? Not so: in fact average earnings are markedly less. The important point is comparative price levels, and in this respect the UK economy is highly successful.

Does it matter too much that while the UK has a healthy TV manufacturing industry it's not domestically owned? After all, we benefit from the economic activity generated. It's worrying however that so little development work is now done in the UK, especially when you think of the past triumphs, from the 405 -line system to teletext and MAC. But if indigenous UK firms won't carry out research and back it with production engineering capability leading to production programmes there's not a lot that can be done. As a nation we just don't seem to be orientated towards mass production technology. Maybe our education system has something to do with this.

As a sideline to the main argument, it's interesting to note that some of the ways in which Japanese firms go about market development seem decidedly odd in comparisonwith the established UK way of doing things. It's reported that Sony considers itself to be doing well if one in ten new products is a success. The Japanese appear to be prepared to make and market new products to see whether they find public acceptance rather than carrying out extensive market research, though they do carry out long-term planning on products likely to produce large markets. This approach would probably be seen by the average UK manager/director as wanting in terms of cost consciousness, but at the end of the day what it boils down to is that the Japanese have production knowhow and entrepreneurial flair in the manufacturing field while the UK doesn't.
So 1988 sees a thriving TV industry in the UK, but an impoverished technical backup. A pity, but until engineering skills are accorded a higher place in our priorities we shall just have to live with it.

INDEXES

We apologise for the delay in making available the indexes to Volumes 36 (1985-6) and 37 (1986-7). The index to Volume 36 has now been printed and copies are available from the Editorial Office (for the address see page 241) for 80 p each inclusive of postage. In addition the index to Volume 35 (1984-5) has been reprinted. Indexes to earlier Volumes are no longer available. The index to Volume 37 has been compiled and will be printed shortly. An announcement will be made when copies are available.

Long-distance Television

Roger Bunney

I continue to receive reports on the excellent tropospheric opening that occurred at the beginning of November, when last month's column was being written. Unfortunately November was an otherwise relatively bleak month for DX-TV reception. Even the mid-month Leonids meteor shower did little to boost one's morale - there was just a slight improvement from the norm in the diurnal rate.

The previously mentioned tropospheric opening lasted from November 3rd through to the 8th, when it fizzled out. What was significant during the event was the Band III ducting, which produced signals from East Europe. Quite simple aerial installations enabled signals from CST (Czechoslovakia) to be received in Band III and at u.h.f., confirming once again that under the right conditions an efficient aerial installation will produce DX reception and by efficient we don't mean a vast, dominating aerial system!

The best reception seems to have been during the 6th/ 7th, when central European signals reached Wales and the northern UK. Signals from transmitters in West and East Germany, France, Holland, Belgium, Luxembourg, Denmark and Czechoslovakia were received at good strength. Several enthusiasts report reception of TVP (Poland). Cyril Willis (Norfolk) for example picked up TVP chs. R36 and R36 at mid-day on the 5th. In Rugby Nick Brown received CST ch. R38 and Mark Baldwin CST Plezen ch. R10. Earlier Mark, using an indoor installation consisting of a Colour King u.h.f. aerial and a set-back preamplifier at Rushden, Northants, found that the u.h.f. bands were "full of FUBK test patterns from Germany". Reception of DFF (East Germany) chs. E5, 6, 12, 31, 33 and 34 was reported by Mark back in Rugby on the 6th. Further to the west, in North Wales, Simon Hamer (Powys) received French stations on all the Band III and 27 u.h.f. channels, 31 W. German stations (networks HR, NDR, BR, WDR and ZDF) in Band III and at u.h.f., and DR (Denmark) ch. E10. Both the AFN and the BFBS were heard in the f.m. band. In Birmingham David Oliver logged many of the above stations plus several French TV5/M6 transmissions. Ryn Muntjewerff reports good reception in Holland, though his letter covers only
up to the 4th, with Grunten ch. E46 in the far south of Germany and CST/DFF stations in Band III and at u.h.f.

Gosta van der Linden logged the sound and vision signals from many CST transmitters on his Grundig receiver in Rotterdam, Holland. He supplied the following list which may be helpful for identification purposes:
ch. R22
ch. R23
ch. R24
ch. R31
ch. R33
ch. R35
ch. R36
ch. R37
ch. R38
Klatovy-Barak
Trutnov-Cerna Hora
Praha Mesto-Petrin
Liberec-Jested
Usti nad Labem
Susice-Svatobor
Cheb-Zelena Hora
Frydek-Mistek
Jackymov-Klinovec

100 kW
$1,000 \mathrm{~kW}$
100 kW
100 kW
600 kW
100 kW
100 kW
300 kW
300 kW

- powers e.r.p., polarisation horizontal in all cases. Gosta mentions that if you are lucky you might receive from West Germany the "Senderdia", a locally generated (i.e. at the transmitter site) test pattern. This is transmitted when the network link fails or is interrupted, when teletext also ceases. These identifications are rare but do occur from time to time over the ZDF and ARD-3 networks.

Although this tropospheric opening was the main event of the month, overshadowing other reception, there was still some Sporadic E propagation. Here's the collated SpE log:

4/11/87 TSS (USSR) chs. R1, 2, 3 (Leningrad identified on chs. R1 and 3).
8/11/87 TSS R1.
10/11/87 TVE (Spain) E3.
15/11/87 TVE E2, 3; RAI (Italy) IA; CST R1; TVP R1. 18/11/87 CST R1; TVP R1.
19/11/87 TSS R1; TVE E3; RAI IA; RTE (Eire) ch. B. 20/11/87 TVE E2, 3; RAI IA.
22/11/87 RAI IA;TVE E2; unidentified late-night programmes on chs. R1 and 2.
26/11/87 TSS R1; SR (Sweden) E2, 3, 4.
Note that RAI is now known as RAI-UNO.
My thanks to David Oliver (Birmingham), Cyril Willis (Norfolk), Simon Hamer (Powys), Iain Menzies (Aberdeen), Ryn Muntjewerff (Holland), Gosta van der Linden (Holland), Roger Fussell (Torpoint), Mark Baldwin (Rugby) and Nick Brown (Rugby) for sending in reception reports.
The RSGB's VHF/UHF Newsletter for December 1987 contains an excellent article by Ken Osborne entitled "Auroral Propagation", giving a detailed account of

Left: FR3 (French) test pattern received by James Burton-Stewart. Centre: Telecam downlink test transmission, also courtesy James Burton-Stewart. Right: TVE (Spain) test pattern received by Hugh Cocks in Portugal, on ch. 45 at a distance of approximately fifty miles.
auroral propagation with specific reference to how this phenomenon affects the UK.

A DXer recently noticed leakage from the cable TV system at Stevenage. In some areas it was possible to resolve clear pictures using a hand-held portable in the street. Distribution around the town is at 48.5 MHz Anglia, $61 \cdot 74 \mathrm{MHz}$ BBC-2, 174 MHz Sky Channel, $183 \cdot 1 \mathrm{MHz}$ BBC-1, 193 MHz Super Channel, $206 \cdot 75 \mathrm{MHz}$ ITV London, $216 \cdot 13 \mathrm{MHz}$ Channel 4 - the vision carrier frequency in each case.

News Items

Hungary: The government has announced an "open skies" policy regarding DBS reception. The local PTT will handle all licensing and reception of satellite cable system downlinks will be discouraged.
New Zealand: The first private New Zealand TV network is to be known as TV-3. The franchise being offered will cover all four regions plus a fifth overall franchise to provide the programme service. Since most of the v.h.f. channels available are already in use it's possible that u.h.f. will for the first time be used for TV in New Zealand. One problem is that until recently receivers sold in NZ have not been fitted with u.h.f. tuners. Difficulties are expected to arise with the BCNZ over the use of common microwave links for network operations.
Norway: Trondheim now has BBC reception via satellite and cable distribution for some eight hours daily (1600 2400) - further hours are promised. Other towns are to follow suit. It seems that BBC programming is very popular in the Nordic region.
Japan: With the BS-2B satellite now in operation and NHK providing a 24 -hour TV service there's a boom in the sale of TVRO equipment. The BSI-TV service carries extensive news information gathered from NHK, ABC and CNN for some eleven hours daily, followed by films and sport later in the day. The sound system is bilingual (Japanese/English). The BS2-TV service transmits for eighteen hours daily, with repeats from the terrestrial NHK transmissions: separate programming for BS2-TV is to follow later. All the well-known electronics manufacturers are selling DBS equipment, which is available at prices down to the $\$ 400$ (US) level.
Australia: The government is to auction new commercial radio licences and to charge a.m. stations converting to the popular new f.m. band a large fee.

From our Correspondents . . .

Frank Lumen, now living in Denver, Colorado, flew back to Gatwick on October 27th. During the flight, while at $50^{\circ} \mathrm{N}$ just south of Greenland, he saw the Northern Lights (an aurora) for the first time. He writes that "it appeared as a white glow extending from the horizon to 10° elevations off the horizon and almost 180° from west to east". The plane was flying at $37,000 \mathrm{ft}$ a.s.l.

Welsh enthusiast Stuart Jones has been experimenting with satellite TV receiving equipment. He writes that locking a local sync processor to the incoming weak video signal gives a greatly improved video display: with the processor in circuit RTL Luxembourg, which is a very weak downlink signal, improves to clear caption readability. The same technique used with scrambled signals such as Filmnet and Sky enables a stable image to be displayed: the local master oscillator is phase locked to the scrambled key pulses $(2.5 \mathrm{MHz}$ line sync on Sky's f.m. subcarrier, 6.5 MHz with Filmnet). A MAC coded signal (the Norwegian C-MAC downlink) can be similarly

FERNSEH-ANTENNA
automatic High Gain Wrideband ANTENMA ROTATCR VHF Band 3 Aerial for TV OXing
Special Seasonal Offer - We have recently advertised the above two items separately at special prices. This month we are again breaking our own price barrier - the automatic the two items are purchased together, the total price is only $\mathbf{f} 64$ an even further saving
The rotator is ideal for DXing. Amateur and domestic use to turn your aerial for reception of alternative ITV regions. The system comprises of two major components, the automatic control consol and the rotator head unit. The additional support bearing shown, may be fitted if larger multiple aerials are to be fitted. The attractively siyled position 31 all times. The rotator support mast can be up to $2^{\prime \prime}$ in diameter stub/rotation mast is up to $11 / 2^{n}$ in diameter. mast is up to $1 / 2$ in diameter.
The Fernseh Antenna pictured is a 14 element high gain 111.5 dB) wideband array covering all VHF channels in Band $3(175-230 \mathrm{MHz})$. The aerial is gold lacquered for complete protection from corrosion, has a folded dipole for peak efficiency and comes
complete with plated mast clamp, which has a $2^{\prime \prime}$ grasp capability. complete with plated mast clamp, which has a $2^{\prime \prime}$ grasp capability.
COLOROTOR Automatic Antenna Rotator and Control Consol (uses 3 core control cable).
SUPPORT BEARING for heaver
£ 38.00 SUPPORT BEARING for heavier load applications.
f 17.00
FERNSEH-ANTENNA S 1814 High Gann 14 element Wideband 3 Aerial.
(Carriage \& insurance on aerial £4.95)
If Rotator and Antenna are purchased together, total price is $£ 64.00+$ Carriage.
Aerial techniques is the company that knows the TV-OXing hobby. We carry a large and comprehensive range of aerial equipment for every type of installation, together with a vast range of filters. amplifiers, cables, rotators, masts and supporting hard ware. Send today for a copy of our glossy covered illustrated Catalogue at 75p. in the unlikely even that is doesn t list what you want, we can obtain it quickly.
STOP PRESS - We can supply the new 55MHz Les Walten Band I aerial at £22.50 inclusive (see review elsewhere in this column).
All prices inclusive of VAT \& Carriage.
ACCESS \& MSA Maill and Telephone Orders welcome

AERIAL TECHNIOUES (T)
11. Kent Road, Parkstone,

Poole, Dorset, BH12 2EH. Tel: 0202 738232.

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE

TRANSISTORS, IC's, ALSO STOCKED.

BAIRD: 8290, 8752, 8773, 8	1200	IT: VC200 to VC402
RANK BUSH MURPHY		C5, CVC7, CVC8, CVC9, CVC20
A774 with stick rectifier 9.78		CVC25, CVC30, CVC32, CVC45
	10.3	CVC800, 1100, 1150, CVC40
	11.50	CVC1200, 1204, 1210, 1215, 2600 P. $0 . A$
T20, T22, T26, Z179, A823 2718 Basic unit	1250	CT200, СТ200/1, CT213
DECCA: 1210,	11.50	
1700, 2001, 2020, 2401, 2	9.20	725-731, 735, 737, 741
CS1730, 1733, 1830, 1835 30, 70, 80, 90, 100 120, 130, 140, 160	$\begin{array}{r} \mathbf{9 . 2 0} \\ \mathbf{9 . 2 0} \\ \text { P.O.A. } \end{array}$	PHIUPS: 170, 210, 3009.20
		TX, T8, TX2, TX3 mono G8 and G9 Series
FERGUSON, THORN: 1590, 1591	9.20	KT2. KT3. series CTX G11. K30. K4. K40. split diode
1690, 1691. built in rect.	9.78	
1600, 1615, 1700, 1790		
3000, 350], 8000, 8500, 88	P.OA	BINATONE: 9909, 9860, 9488 P.0A.
9000, 9200, 9300 series	12.00	BINATCNE: 9909, 9860,9488 P.0A DORIC Mk3, Mkl 11.50
9500, 9600, 9650 series	10.99	SONY KV 1400, 1612, 2000 P. 0
9800, TX9, TX10,1×90, TX		GRUNDIG: most models in stock
MOVIESTAR 3781, 3787, 81	$\begin{aligned} & \text { P.0.A. } \\ & \text { 12.00 } \end{aligned}$	NORDMENDE: 8290, Z206, Z306 P.OA.
TX10 fo	10.87	SANYO: 5101, 5103, 7118, 7130 P. 0
FIDELTY: FTV12 mono ZX2000 ZX3000	$\begin{aligned} & 10.35 \\ & 16.43 \end{aligned}$	TOSHIBA: C800, C800B P.0
		TANDBURG: 190, CTV2, CTV3 P.OA
G.E.C. 2047 to 3135 mono 1201H, 1501H, 2114, 3133, 3135 DUAL \& SINGLE hybrid col SINGLE STD solid state SINGLE STD split diode	$\begin{array}{r} 9.20 \\ 9.20 \\ 10.00 \\ 12.00 \end{array}$	TELEFUNKEN: most models in stack HTTACH: 1471, CPB260, 2501 P.OA AMSTRAD: CTV2200, CTV2210 P.O.A.
		Shop calers welcome
INDESTT: 24EGB, 12LGB, 12SGB	11.35	Tidman Mail Order Ltd., 236 Sandycombe Road
WINDINGS		
TVNE: main windi	5.80	Richmond, Surrey TW9 2 EQ.
R8M: T20, T22, T26, 2179		Richmond, Surrey IW9 2Ea. Approx. 1 mile from Kew Bridge.
WALTHAM: W125 eht winding	$\begin{aligned} & 6.33 \\ & 2.37 \end{aligned}$	Phone: 01-948 3702
WALTHAM: W190, Wi91 eht coil	6.00	Mon-Fri 9 am to $12.30 \mathrm{pm} \&$
KORTING: hybrid winding	6.90	
THORN: 8000, 8500, 8800 eht		$1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.

The CLP5130-2 wideband log-periodic aerial available from Waters and Stanton, covering $105-1,300 \mathrm{MHz}$.
locked, though only in monochrome and with an elongated picture.

The $\mathbf{5 0 M H z}$ Amateur Band

We understand that from April 1988 Dutch amateurs will be able to use the $50-50 \cdot 45 \mathrm{MHz}$ band, running c.w. (morse) at up to 30 W output. The Ascension Island has also been given this allocation, with powers up to 50 W .

Scrambling

The BBC has completed tests for the proposed nighttime subscription TV service. Many queries were received concerning the scrambled picture and the BBC eventually added a caption over the scrambled video display to indicate that a test transmission was taking place.

The UK TVRO fraternity has been showing much interest in the scrambled offerings of the Dutch Filmnet service. Decoders appear to be available in the UK and have been advertised. It seems however that use of such decoders could give rise to problems apart from that of legality. The Matsushita scrambling system has a 32 -mode operating code. It's intended to operate for a period in one mode then change to another and so on. This is to frustrate the decoder user and manufacturer who, faced with these changing modes, is expected to give up! Once the 32 modes have been used to the full the idea would be to introduce random variations within the modes.

There's much interest in Canal Plus scrambling amongst enthusiasts along the south coast - we've received a number of requests for information on sources of suitable decoders. Since Canal Plus does not allow UK viewers to

Mark Baldwin's aerials at Rugby. On the chimney, wideband arrays for Bands I/III and u.h.f. In the foreground, the classic Band I omnidirectional X array.
subscribe to the service decoders are not available officially. We understand however that decoders can be obtained, at a cost of around $£ 300$, for feeding into the scart socket of a suitable System L receiver. If anyone is seriously interested, write in with a s.a.e.: requests will be referred to source. It's assumed that suitable arrangements would be made with Canal Plus (78 Rue Olivier de Serres, 75015 Paris, France).

New Products

The well-known amateur and general radio dealers Waters and Stanton (18-20 Main Road, Hockley, Essex SS5 4QS - 0702206 835) have introduced an impressive looking log-periodic aerial, Model CLP5130-2, that covers the spectrum $105-1,300 \mathrm{MHz}$. The twenty-element design has a forward gain of $11-13 \mathrm{dBi}$ (that's dB gain isotropic, i.e. a gain of about $8 \cdot 5-10 \cdot 5 \mathrm{~dB}$ with reference to a halfwave dipole) and a front/back ratio of typically 15 dB . The aerial is shown in the accompanying photograph and weighs 3 kg . It can be clamped either vertically or horizontally to a 2 in . o.d. mast. Both the boom and the longest element are only 1.4 m long and the output impedance is 50Ω via an N socket.

The aerial has a flattish gain over the designed-for bandwidth and the characteristics generally remain constant within this bandwidth. The support boom operates as a balanced feeder with successive dipole elements fed in antiphase in the usual log-periodic manner. It's generally accepted that if a metal support mast protrudes through a log-periodic array there's a gain loss over the bandwidth handled by the section behind the mast - the mast causes an imbalance within the balanced feed system. The use of a non-metallic support mast, e.g. fibreglass, is thus recommended. I'd like to hear from anyone with experience of log-periodic aerials with a view to obtaining information on problems, results, etc. The CLP5130-2 costs $£ 82 \cdot 50$ inclusive of VAT. We understand that the manufacturers also have available a model covering down to 50 MHz . This might be of greater interest to TV-DXers but is not at present being imported. If enough interest is expressed however Waters and Stanton have agreed to consider importing this model - the price would inevitably be higher than that of the $105-1,300 \mathrm{MHz}$ version. Please include an s.a.e. with any enquiries.

Some years ago South West Aerials, now Aerial Techniques, sold a number of Redson multi-standard colour receivers. When stocks were exhausted these became much sought after and are now rare birds indeed. Fret no more! Aerial Techniques tell us that they can now supply a 14in. PAL/Secam colour receiver with full System B/G/l/ L (French) capability covering Bands I/II/III and u.h.f. including the "in between" S channels. The low v.h.f. band covers $48-113 \mathrm{MHz}$ and the high v.h.f. band $119-$ 294 MHz . The u.h.f coverage is $470-861 \mathrm{MHz}$. Tuning across the v.h.f. bands is continuous. Quite a remarkable v.h.f. coverage!

For the record low v.h.f. includes cable channels SS1, SS2, SS3, S1 and S2: high v.h.f. continues from S3 to S10 then E5 through to E12 followed by S11 up to S20.

The receiver has infra-red remote control, a scart socket for baseband vision and sound, 16-memory tuning plus up/ down search control and switchable a.f.c. It's seemingly the all singing, all dancing receiver for colour TV-DXing and costs less than $£ 300$. I've not yet seen one myself but understand that the gain is hot. Enquiries with s.a.e. should be sent to Aerial Techniques whose advertisement accompanies this article.

Vintage Scene: The Kinemacolor Film System

Chas E. Miller

"Blue-violet, green and red are the known primary colours of the spectrum, because with them one can produce any of the other colours, white as well. If these three primary colours are on the same part of the same screen we see a disc of white. Cut off the blue-violet and we get yellow-orange. Cut off the red and we see blue-green."

These words might well have come from a quite recent book on colour television but were in fact written well over seventy years ago as the preamble to a description of how moving pictures in colour were made at the close of the Edwardian era. It might seem curious that even less than twenty years ago some films were still being made in black-and-white, as is evident from their appearance on TV nowadays, despite colour stock long being available in various forms, but cost had something to do with it and of course monochrome actually aids rather than detracts from the impact of certain types of film. No doubt the early colour pioneers expected their systems to oust the black-and-white movies in rather less time than the half century it actually took!

Rather surprisingly, the Kinemacolor process used monochrome film stock to provide a fair representation of natural colour. At the time most films and plates were of the orthochromatic type, which was insensitive to red and orange light. Panchromatic stock, which overcame this deficiency, had just appeared and it was this that made colour simulation possible. The normal silent film speed was sixteen frames per second, but the Kinemacolor camera ran at twice that speed, with a colour filter disc revolving in front of the lens at half shutter speed. One half of the filter carried a red glass disc, the other half green. Thus each scene was captured by two separate frames of the film, one taken via each of the two filters.

To give a simple example, suppose the camera was filming a young lady in a red coat, carrying a yellow bag and standing on a well-maintained lawn. With the red filter in front of the lens light reflected from the red coat would pass through to the lens without serious interruption but most of the green from the lawn would be blocked. The reverse happened with the green filter in front of the lens: the red was attenuated but the green was freely admitted. In both cases the yellow from the bag would not have been affected seriously.

When the film was developed each pair of frames provided negatives with opposite characteristics. Those coming via the red filter showed the coat as black and the grass as white, while via the green filter the coat was white and the grass black. In each case the bag was grey. A positive printed from these negatives once again reversed the tones, so that in the film made ready for projection the first frame showed a transparent coat and an opaque lawn, the second an opaque coat and a transparent lawn. The bag was half-transparent in both frames.

Projection

During projection another filter rotated in front of the lens to "decode" the twin positives. This second filter had red and green segments plus two others of somewhat smaller size and of transparent glass to help achieve a better colour balance. When the red positive was projected the screen received flashes of red light for the
coat, virtually no light for the lawn and a low-intensity light for the bag. The green positive gave bright green flashes for the lawn, little light for the coat and halfintensity for the bag. Due to that well-known phenomenon the persistence of vision, viewers saw an impression of the original coat and lawn colours, plus the bag made up from additions of red and green light. This is clearly a very crude example: in an actual film each pair of frames contained a tremendous amount of oppositecolour detail.

It will be apparent that projection of the finished film on to the screen presented the same problems of synchronisation, colour registration and purity that apply with colour television. The first two were tackled primarily by the film cameraman and processor, the third by the projectionist.

Registration and Synchronisation

Ensuring that each pair of frames had exactly the same picture content was a matter of having a rock-steady camera mounting so that there wasn't the slightest danger of vibration etc. to produce tiny differences in the field of view as the film passed behind the lens. With the huge magnification of the final images on the cinema screen any inaccuracies would show up just as misconvergence does on a colour c.r.t. Even more serious would be errors in the timing of the projector's filter disc. For the colours to be reproduced convincingly it was essential for the filter disc to run exactly in step with the film.

Mechanical synchronisation was provided by having the original negative stock marked in a special way for the camerman, then duplicating the marking on to the positive for projection. At the start of a reel seven small holes were punched in the film, followed by a larger hole of D section. The cameraman had to arrange the film so that the D hole corresponded with the red filter being in front of the lens. The same procedure was used at the projector, so that the rest of the film then went through the gate in step with the filter - all operations were performed by gears with constant speeds in relation to each other (if the film should happen to break it would be a different story!).

Purity Correction

Colour purity was corrected by the projectionist before each performance. You might by now be wondering how white was produced using only red and green primaries. In fact however the green filter was bluey-green and the light source itself (a carbon-arc lamp) contained much blue. Thus the alternate red and blue-green lights from the projector did approximate to white on the screen when the machine was running with no film passing through the gate. Final balancing was done by varying the density of the green filter. This entailed fixing extra glasses over the permanently fitted one until the best white was obtained

Outcome

Kinemacolor was not the runaway success that was
hoped for, probably because of the expense (twice as much film stock was required per subject than with monochrome) and the headaches that must have been caused in exposing, processing and then projecting the film in exact synchronism in the face of the inevitable breaks that occur from time to time. Anyone who has worked a projector knows that the older the print the more "jump-cuts" there are likely to be. If these were accompanied by sudden colour reversals the effect must have been quite striking!

The eventual development of the Technicolor process
sealed the doom of Kinemacolor, but its principles were resurrected for use in the CBS colour TV system of the late forties (filters running at high speed in front of the set - very dodgy!) and in some colour TV equipment used in early space flights. Dr. Edwin Land demonstrated how the same system works equally well with a still camera, and anyone can conduct some fascinating experiments with an ordinary camera and a couple of filters, using monochrome reversal film. In the usual order of things, the system is probably due to be "rediscovered" any day now and hailed as a major breakthrough!

Letters

COST OF IN-GUARANTEE REPAIRS

What do large manufacturers really offer the small shop when their products fail after being sold to the public under guarantee? Some manufacturers pay a set fee for each item repaired, provided they are supplied with the serial/product code and you send them the faulty component. Not all manufacturers will do this: most will repair a faulty product if it's sent back to their service centre while others will send out their own service engineers to repair the product in situ.

What does a faulty set cost the small retailer? To start with his time is taken up in dealing with the complaint and filling out a job sheet. Next an engineer has to be assigned to go to the customer's house and either repair the set or return it to the workshop for repair, in either case a time consuming and expensive liability. If bench work is required an engineer's time has again to be allocated, then the set has to be returned to the customer's house. In the meantime it will have been necessary to provide the customer with a loan set installed free of charge, i.e. tune it in, explain how it works, make excuses for the faulty set and so on. Eventually the repaired set has to be reinstalled. If the set has an intermittent or difficult fault it will probably have been returned to the supplier for repair. In this case someone has to parcel up the set, write out a fault report and packaging note, then telephone the suppliers to arrange for a pick-up. Anything up to a month or more will then elapse before you see the set again, hopefully fully repaired although this is not always the case. This is all very expensive and time consuming and is hardly recompensed by the small fixed payment that some larger manufacturers make to the retailer.

In addition to this the retailer has to pay for any telephone calls to the manufacturer's technical department. The chances of actually getting through are becoming more and more rare. You usally end up dialling the switchboard and being told to hold the line while other calls are being dealt with. Note that as soon as the telephone is picked up at the other end you have to start paying for the call, which can soon prove to be very expensive. With some firms you can be dialling all afternoon before you get a reply.

If you don't have an account with the manufacturer you often have to pay for any service manuals required. This has become a boom industry: some manufacturers charge anything up to $£ 40$ for a complete manual.

These points all come into the equation when the final profitability is worked out. The retailer is in many cases unwittingly deceived by what at first glance looks like a
simple product sold $=$ profit made equation. In addition, provided huge numbers are not involved, the manufacturer gets very little come-back when a product fails. The retailer however has to bear the cost of call-outs, telephone bills, packaging, loan stock overheads, petrol, his service department - and any loss of good will.
In view of all this retailers should be wary to avoid being hoodwinked by manufacturers into bearing the time/expense bill for handling their defective products.
Peter Ellis,
Prince TV Services, Wem, Shropshire.

VCR SERVICING CHARGES

Having serviced nothing but VCRs for five years before leaving the industry a year ago I'd like to suggest that the difficulties of servicing standard VCRs are becoming a bit exaggerated. Steve Beeching's letter on specialist items such as camcorders and video cameras is quite correct l've never repaired or wanted to repair such equipment. There's a possibility however that the cost of specialised equipment could be passed on to those simply wanting a standard VCR to be serviced. To suggest that $£ 50-£(6)$ is the minimum viable cost of carrying out a repair unless the fault is a common one could give the impression that most faults should cost this much, which is just not true.

I had to repair six-eight machines a day - twelve at busy times. This involved carrying out the repair in the customer's home where possible, otherwise doing the repair in the workshop first thing in the morning before leaving to do the calls. It became clear that if a repair was going to take more than thirty-forty minutes or so, or required the use of a meter or oscilloscope, the job was best done in the workshop. Despite this over half the calls could be dealt with in the field. Such faults consisted of things like head cleaning, fuse and belt replacement, tuning, jammed tapes and known stock faults. Machines brought into the workshop didn't necessarily have difficult faults: often it was simply the case that the spares required, e.g. heads, aerial sockets and boosters, were not carried in the van. Heads were occasionally changed in the field if I knew in advance that this was the cause of the fault.

The remaining machines, perhaps ten per cent of the total, were the difficult ones that had either intermittent faults or colour/servo problems requiring the use of an oscilloscope or frequency counter.

This brings me to the subject of test equipment. During my five years servicing VCRs I never needed much more than an Avo 8, an oscilloscope and a frequency counter the latter was used almost exclusively for setting up the oscillators in Mitsubishi machines. In the early days an alignment tape and jig were also required, particularly for Ferguson 3V22s, but in the last couple of years, as the alignment of new machines improved, a known good colour tape recorded on one of these machines sufficed.

Betamax head replacement was an exception, requiring the use of an eccentricity gauge. The scope was a dualbeam one, but the only times when both beams were used was for speeding up the diagnosis of intermittent faults by monitoring two points at once.
Most of the machines were under guarantee or on rental. Treating them all as chargeable would however suggest the following costs: in $50-60$ per cent of cases $£ 20$ plus parts plus VAT (parts usually. less than $£ 10$); in $30-40$ per cent of cases $£ 25-£ 30$ plus parts plus VAT (parts less than $£ 20$ except for heads and motors); in less than 10 per cent of cases more than $£ 30$ plus parts plus VAT.
Derek Snelling,
Brownhills, Staffs.

TV SERVICE CHARGES

In reply to L. Goodwin's letter in the December issue, when a G11 comes into my workshop for replacement of the parts specified my action would be as follows: replace the TDA 2600 chip and its holder, the two $1.5 \mathrm{k} \Omega$ resistors and the $470 \mu \mathrm{~F}$ electrolytic; solder all the known dry-joints and check for others; clean the tuner contacts, and finally polish the cabinet and the tube face. For this I charge $£ 40$ which includes parts, labour and VAT, also if local collection and delivery. I give a twelve months' written guarantec.
As far as second-hand sales are concerned, at the time of writing we sell fully reconditioned G11s at $£ 75$ for Philips models and $£ 95$ for Pye models (electronic tuner buttons and square cabinet). All with twelve months' written guarantee. VCRs are sold on the same basis. Eric Edwards,
Barry, South Glamorgan.

VIABILITY OF SERVICING

As a TV engineer who left the trade in 1981 I was interested in the recent letters on the viability of TV servicing, particularly those from Steve Beeching and L. Goodwin.

Steve Beeching really put his finger on the problem in commenting on the availability to the public (and we are all part of this group) of cheap high-technology goods and the high cost of servicing them. As far as repair charges are concerned it's all relative. We all know the famous phrase "there can't be much wrong with it, probably just a wire off", implying at the start that the bill is not expected to be too high. But even when the fault is found and rectified a certain amount of time has to be spent on setting up and soak testing. An average time of three hours per set at only $£ 10$ an hour, plus materials, will often result in a $£ 40$ bill. How would L. Goodwin explain this to the customer who bought the set for $£ 50$ only seven months ago?
Let's assume that L. Goodwin got a set from the depot for say $£ 30$). Transport costs and time to collect have to be taken into account, then time is required to go through the set for stock faults, preventive servicing and setting up. Assuming a nil material cost, an average time of an hour spent on the set is not unrealistic. At our suggested hourly rate this brings the unit cost to $£ 4()$ which, plus VAT, amounts to a total of $£ 46$. Difficult to see where L. Goodwin gets his $£ 25-£ 30$ profit from. And don’t forget that warranty cover is unknown at this stage. I don't think that even $£ 90$) is unreasonable for a good quality G11 or similar set.

On the subject of free estimates, my own experience

next month in

FREE GIFT NEXT MC'NTH!

Watch out for next month's issue with its covermounted gift, an insrument screwdriver to ass st with precision 'Nork.

- WIDE-RANGE CAFACITANCE BRIDGE

With an eye to workshop requirements David Botto has designed this compact capacitance checker which has five ranges covering from 5pF to $2,000 \mu \mathrm{~F}$ plus a sixth range for matching resistors, capacitors and other components accurately. The tester uses eas, to obtain components and can be made cheaply. A built-in loudspeaker provides an audible indication or a scope can je connected. Resistance ranges can be added and two squarewave test signal outputs are provided.

- FAST-SHUTTER VDEO CAMERAS

Viceo cameras and camcorders fitted with shutters have become availaole in recent times. This has been made possible by the use of solid-state image sensors and cives improved definition w th fast-moving subjects.
Eugene Trundle describes the operation of CCD image sensors and the fast-shutter mode of operation.

- DIGITAL STEREO SOUND SYSTEMS

In the concluding instalment of his series on dualchannel sound systems Geoff Lewis describes the various systems proposed or specifically developed for TV use, including Dolby ADM, MAC Paiket sound channels and the NICAM 728 system which will be used for terrestrial broadcasting in the UK.

- the art of fault finding

A sound technical knowledge doesn't necessarily guarantee success when it comes to efficient fault diagnosis. In fact the man with plenty of theory can get too interested in circuit detail. Much can - and should - be done jefore any test equipment is brought into use. This is where the art lies, as B. A. Berry explains.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:

suggests that this is by far the best way of operating. I found that is was very rare for a customer to turn down an estimate. One has the psychological advantage of being in the house with all the bits and pieces required, but the customer is always free to refuse the estimate and try elsewhere.

It's interesting to see this hoary old chestnut make its appearance again. I'm always reminded of the relative costs of the colour TV set and the van it's delivered in. Compare the prices in 1968 and today: the TV set has come down in price while the van costs four times as much.

Why did I leave the trade? Because of this sad situation. With the cost of setting up in business, particularly in the affluent south, the proposition is no longer attractive, especially if you have expansion in mind.

Incidentally the Gll with field collapse would cost about $£ 20$ without a call out, $£ 35$ with (this assumes no general setting up or preventive servicing of course). I believe that the subject goes deeper than this however: it involves good customer relations and building up a good, solid reputation, even if this means doing the occasional free call when there should have been an extra bill.

Finally, it's unwise to generalise about "get rich quick" cowboys. My own experience suggests that they are in the minority. Most of the engineers I've met have been straightforward, honest people, interested in the problems rather than the cheque at the end of it all.

George Bloomer,

ACES, Southampton, Hants.

PHILIPS VR6462 MODIFICATION

Tape looping in forward search is a problem we've had with several Philips VR6462 VCRs. I've devised the following modification to cure the trouble. If looping persists after replacing the reel idler wheel and cleaning the associated drive surfaces add a 10Ω resistor across R3101 and R3103. These two resistors are both 10Ω and are connected in parallel between the wind motor and pin 3 of IC7101-2A. They sit at the top of the rear panel, P6013, which doesn't even have to be removed. I've carried out this modification in several of these machines and have found that it completely clears the problem.
David Hall,
Aberdeen.

SPECIALISATION IN THE SERVICING TRADE

When we take a service van into one of the larger garages today we often find that it goes to specially equipped bays for servicing specific subsystems such as the engine, suspension, steering etc. This arrangement has its origins in North America - in the UK we are still a few years behind in this respect. When our Canadian cousins need to have their van serviced this often means a visit to several specialised units, perhaps even in different streets. If the gear box is faulty you go to the Transmission Shop, while a blown silencer involves a visit to the Muffler Shop. If servicing in the UK TV trade reached this state we might just find that the customers' bills are somewhat higher!

Larger rental companies already split their service departments into TV, video and audio sections. This has a certain logic about it, but when it comes to the provision of expensive and specialist test gear you can find that some items have to be either duplicated, which is costly, or made available to the various sections simultaneously.

The latter approach also presents problems since no one seems to be responsible for particular items and they are never where they should be when needed.

Steve Beeching's approach of concentrating on video work and not getting involved with TV repairs could lead to the situation where a customer takes his VCR to Steve, his TV set somewhere else, and is told that both are in good working order. I have a feeling that there are too many strange interface problems today, even with items of domestic equipment, for it to be possible to take such an isolated view of servicing. In this connection a vectorscope may be essential for work on video cameras, and can also be useful in the VCR bay, but is it fully employed? It might have even greater value if TV was part of the stock in trade.
Geoff Lewis,
Canterbury, Kent.

A DETERRENT TO THEFT

In the March 1987 issue Roger Bunney asked for ideas on preventing or deterring the theft of equipment. I suggest that manufacturers should consider wider use of the system used with some car radios. If one of these is disconnected from the battery, i.e. power source, a code number has to be entered before the radio will function again. Failure to enter the correct code, similar to that used with "hole in the wall" money machines, results in the radio locking up for a considerable period of time which cannot be shortened by outside interference in an attempt to have another go at entering a number.

For indoor equipment a code number, either factory programmed or programmed by the user, could be entered on resumption of power. Failure to enter the correct number would result in the unit having to be returned to the manufacturer for attention. Anyone who has a unit stolen would be able to alert the manufacturer, giving the equipment's serial number.

Whilst this wouldn't prevent theft or result in equipment being returned to its owners I feel that the system would have a strong deterrent effect since, in effect, the equipment would be useless to anyone except the authorised user.

I understand that thefts of car radios fitted to certain cars - no names! - have dropped considerably since these coded radios were fitted. I have myself legitimately fallen foul of the coding system, and can assure you that waiting for a unit to "time out" is both very boring and a deterrent to any attempts by trial and error techniques to find a partly forgotten, let alone unknown, code number.

Most domestic electronic equipment these days seems to have a digital system somewhere within it, so it shouldn't be too difficult to add such a code or similar system.
R.P. Harris, Shrewton, Salisbury.

VIDEO MATTERS

In connection with my reference to Panasonic $3 \cdot 3 \mathrm{~F}, 2 \cdot 2 \mathrm{~V}$ memory back-up capacitors in the December VCR Clinic I'd like to make a small correction which I'm sure everyone realised - NV333 onwards should have read NV366 onwards as the NV333 doesn't have memory capacitors.

Eugene Trundle mentions the Panasonic VW-AMC5E/ B power supply/charger. I think several engineers will have had my experience of similar troubles with earlier
units of the same type, i.e. randomly failing thermal fuses. Units made during the first few months of a production run seem to suffer from this problem, the later ones generally being o.k. - this seems to have been the pattern since the VW-A18 for the NVI80B.

Finally, my wholehearted agreement with Steve Beeching's comments on servicing policy. I envisage that dealers will increasingly subcontract their servicing to specialist organisations that have the necessary equipment available. I would hope that these organisations will take the form of local area companies supported by the various manufacturers.
Nick Beer,
Bideford, Devon.

SPARES FROM MASTERCARE

Nick Beer mentions (letters, December) that spares for Saisho, Triumph and other Currys/Dixons brands are available from Mastercare. The trouble is that Mastercare do not supply goods at trade prices, only retail. So be warned. Here are some recent examples: LOPT for a Siemens colour TV set sold by Dixons with spares available only from Mastercare, $£ 59.82$ inc.; front cassette housing flap $£ 5.70$ inc., same from Panasonic $£ 1.39$ inc.; reel motor for a Triumph VCR (same as Amstrad) $£ 31 \cdot 63$ inc., order Amstrad part from PV Tubes $£ 15.35$ inc.

Anyone who had an account with Mastercare will remember that about two years ago the accounts were transferred to HRS Ltd., who are fine but don't supply Saisho or Triumph parts. So before we all crib about other engineers, let's look at manufacturers and suppliers.

Lastly, on contacting ITT's technical department, which used to be very good, we were told that they cannot help unless we have an account. But you try and get one.

On the plus side, congratulations to Sanyo/Fisher's spares and technical department for good prices and service.
R. Lewis, Proprietor, Technical Services, Aylesbury, Bucks.

EXPENSIVE SCAN COILS

I'd like to comment on the cost of spares from Mastercare Components - spares for Dixons and Currys own labelled goods, e.g. Saisho, Matsui, Triumph etc., appear to be available only from this source. We recently had a dead 14-month old Matsui 14 in . CTV in for repair. After replacing the STR451, zener diode etc. we found that the scan coils were faulty, so a quote was requested from Mastercare. It arrived some weeks later: $£ 10$ for a circuit photocopy and, wait for it, $£ 90 \cdot 64$ for the scan coils! How are we to carry out a viable repair on this quite new $£ 150$ TV set?

I suggest that all independent servicing personnel should draw public attention to what an out-of-guarantee breakdown of a Currys or Dixons set is likely to mean.
S. O'Haglan, City Television Services,

Plymouth, Devon.

CONSUMER ELECTRONICS: WHAT NEXT?

The fall in the price of new VCRs over the past couple of years is a clear indication that market saturation is approaching. DAT (digital audio tape) was seen as a way of maintaining the growth impetus of the consumer electronics industry but has been priced above what the public, even in Japan, is prepared to pay. So what, in the
short term, could the industry produce that will sell in millions to domestic consumers?

One possibility has been opened out by the liberalisation of the public telephone services around the world. The telephone itself has many disadvantages. Apart from the expense, you often receive calls when you don't want them, and when you try to make a call the person you want is all too often not available. In addition, what is said is easily disputed or simply forgotten. Letters on the other hand take too long. If a transaction requires a lot of questions and answers a telephone call is theoretically cheaper and quicker - provided both parties are concise, available at the same instant, and have to hand any information that may be required. In practice this is seldom the case.

A system exists that combines the advantages of the telephone and letter. It's quite widely used by businesses and is called fax. A single A4 sheet can be sent for the price of a $5 p$ call in half a minute or so, making it far cheaper than a letter. It doesn't require the use of a keyboard, which might put many people off. Messages can be written on ordinary paper and fed into the machine. An urgent reply can be received a short while later - without the intrusion of a ringing telephone bell.

At the present time telephone/fax installations cost around $£ 1,500$. If the industry could apply production engineering technology to cut the cost to around $£ 5(0)$ fax could become a consumer item. As the price fell from the present $£ 1,500$, smaller and smaller businesses would buy them. Eventually private individuals would use them to contact businesses and then each other.

The interesting point is that the basis of a photocopier, laser printer and fax machine is very similar. A laser printer can be used to produce bit image graphics from video sources, i.e. large plain paper photographs from video cameras. Thus mass production of this printing mechanism could be applied to all these products. Though originally a business machine, photocopiers have been sold to individuals for some time, and it won't be long before laser printers are sold to home computer users.

A cheap, combined fax/telephone seems to be a useful and worthwhile product to offer the public and would require no new technological breakthrough. In comparison, the extremely expensive small improvement in sound quality offered by DAT looks doomed to failure, like eight-track cartridges.
John de Rivaz, B.Sc. (Eng.),
Truro, Cornwall.

TEST CARDS AND CAPTIONS

I'm currently researching for Television an article on the subject of BBC test cards and captions - as a follow up to articles that appeared in the May 1978 and January 1984 issues - and would be very pleased to hear from anyone with reasonably good photographs of BBC test cards and clock captions/symbols, particularly unusual ones such as those occasionally transmitted at Christmas. Perhaps some readers might have old discarded reel-to-reel video recordings that could be transferred to VHS or Beta?

I would also be extremely interested to hear from anyone who might have recordings of the BBC Test Card C music from the late fifties and early sixties. Any information regarding early BBC trade test transmissions would be very much appreciated.
Keith Hamer, 7 Epping Close,
Derby DE3 4HR. Telephone 0332513399.

TV Fault Finding

Reports from Eugene Trundle, Nick Beer, Roger Burchett, Philip Blundell, Eng. Tech., Christopher Holland and Alfred Damp

Sony KV2022

From time to time while being soak tested a "twizzling" sound came from within this set, accompanied by slight line tearing - the verticals in the picture became jagged and ill-defined. We had no doubt that this was due to failure of either C609 or C621 in the power supply since we've had trouble with these capacitors on previous occasions, but replacing them had no effect on the admittedly very intermittent symptom. It took us some time to trace the fault to the low-value sampling resistor R637. It was making mischief on the h.t. rail directly, not via the ECL (excess current limiting) circuit of which it forms a part.
E.T.

Sanyo 83P-D20 Chassis

This chassis is used in several Sanyo sets, including Models CTP6133 and CTP6135. The complaint with one set that came in for service was that the colour varied. The effect was very subtle, with slight saturation changes being visible on the colour-bar pattern. Small amplitude variations could be discerned at the colour-difference outputs from the $\mu \mathrm{PC} 1403 \mathrm{~A}$ colour decoder chip - at pins 11,12 and 13. There's a phase (tint) adjustment input at pin 19 of this chip, and with close scrutiny of the screen of a scope connected to this point we could see that some noise was present. The trouble was due to a "grumbling" decoupler, C283, whose leakage current varied constantly when checked out-of-circuit with an ohmmeter.
E.T.

Salora J Chassis

The complaint was that the set would go to standby as soon as the picture appeared. A field engineer had tried disconnecting the tripler and the IR receiver module in case the latter had become noisy, sending random standby, channel change etc. signals to the remote control section. He'd also tried unplugging the teletext panel to eliminate that - it's quite a common cause of trouble. I found that by pushing the on/off switch right in (overriding the momentary contact) the set would run merrily, but you couldn't change channels either via the remote or the on-board controls. A handy feature of these sets is the switch at the back above the aerial socket. If you turn this the standby mode is overridden. By doing this I could check voltages and soon found that the SAA1251 chip (ICC9) was faulty.

Any height and/or width twitching with these sets can usually be cured by replacing the LFO041 Ipsalo circuit control chip - it's a hybrid i.c., circuit reference HB1.

It looked as if the static convergence was out on one of these sets - the reds were miles out, and of course there are no adjustments. So the only answer was a new c.r.t. plus yoke. Surprisingly the emission was good - these tubes (A51-590X) tend to go down prematurely. N.B.

Sanyo CTP5103

There was a nasty looking fault on this ageing set. On very high contrast scenes the picture would intermittently roll uncontrollably. I was not in a very good mood for thinking about this but set about checking the a.g.c. and video circuits, then turned to the sync circuitry. This is
quite complex: there's a sync amplifier and driver stage in addition to the sync separator. D201 in the sync driver stage caught my eye as a likely suspect and turned out to be very leaky. Replacement provided a cure, though a long soak test was required to be sure.

Thorn 1615 Chassis

The line frequency was miles off. It could be adjusted by altering the setting of the line oscillator coil but the picture wouldn't lock. The cause of the trouble was the 1S44 flywheel line sync discriminator diodes: W25 had a 400Ω leak each way and W26 was open-circuit.
N.B.

Sony KV21XRTU

A number of these sets seem to have the same fault when unboxed - a rope pattern about $1 / 8 i n$. wide one third of the way across the screen from the left-hand side. In each case the pattern has been more noticeable on BBC-1 (ch. 55). Having had similar troubles with earlier Sony sets I check that all leads are dressed correctly and for dry-joints on heavy legged components in the line timebase and power supply areas. In most cases the suspect joints have been around C715 and the scan coil connection plug. N.B.

Thorn 1615 Chassis

"Picture up from the bottom and down from the top" was the fault description with this set. It was true, but was due to the fact that there was excessive width - it would have filled two 24in. tubes! After first diving for the line output transformer harmonic tuning capacitors, which have given similar symptoms in the past, the cause of the trouble was found to be the scan-correction capacitor $\mathrm{C} 136(0 \cdot 15 \mu \mathrm{~F}$, 250 V). A bulge could be felt in its side.
N.B.

Sony KV1412

This set simply wouldn't start. Having had a similar occurrence previously I condemned IC601 ($\mu \mathrm{PC} 1394 \mathrm{C}$), but a replacement made no difference. Being a B.F. I hadn't checked the start-up supply resistor R602 ($2 \cdot 2 \mathrm{M} \Omega$) which was open-circuit.
N.B.

Thorn 1615 Chassis

The line linearity coil in this chassis is prone to dry-joints, no doubt due to the fact that it's mounted on a vertical panel with no support other than its lead-out pins. A call to attend to a "vertical white line" is thus common. Fortunately the damage to the panel is usually only slight.
R.B.

Rank T20 Series Chassis

I was recently called to a T22 whose tripler had melted very badly. Luckily the owner had been alerted to the trouble and had switched off. But why hadn't the set tripped? Because the tripler was a "universal" replacement type and whoever had fitted it hadn't checked the associated 330Ω resistor 5 R13 which was open-circuit.

This is the current-sensing resistor, so the trip wasn't operational. The moral is simple: check 5 R 13 after replacing the tripler or dealing with any fault that has resulted in heavy overloading in the line output stage.
R.B.

Fidelity ZX3000 Chassis

The problem was sound distortion after the set had been on for a few minutes. The speaker was very poor - it had a "soggy" cone with a rip in it - but the TDA8190 sound output chip was the real culprit.
R.B.

Abstract

Alba CTV10 This Hong Kong made colour portable wouldn't start up. Apparently it had been repaired recently by an engineer who had moved on. There are two start-up resistors in parallel, R301 and R302, both $330 \mathrm{k} \Omega, 0.5 \mathrm{~W}$. These had been replaced with a single 0.5 W resistor mounted very casually on the print side of the board - no sleeving on leads almost bridging tracks. Replacing R301/2 with resistors having the correct values and wattage ratings restored the set to health. R.B.

Ferguson TX9 Chassis

The cause of an overbright raster was found to be the fact that R235 ($1 \mathrm{M} \Omega$) was virtually open-circuit. It links the earthy side of the tube's first anode supply potentiometer to chassis. Some sort of spillage seemed to have been responsible for the trouble.
R.B.

Philips KT3 Chassis

Why are faults on friends' TV sets always awkward? The cause of anyone else's dead KT3 would have been a dud $4 \cdot 7 \Omega$ surge limiter resistor or tripler, but oh no!, not this time. The power supply was providing no h.t. output though there was 12 V at the chopper control chip and 300 V or so at the chopper transistor. There was no overload information at the chip, so a replacement was fitted. The power supply then started, but constantly tripped - due to the tripler. Had it arced over as it died? We will never know.
P.B.

Sanyo CTP6143/4

Here's a tip from the latest issue of Sanyo's Technical Bulletin. In the event of thin horizontal bars on channels above 41 on Models CTP6143/4, add an $0.47 \mu \mathrm{~F}, 50 \mathrm{~V}$ Mylar capacitor across C123. the latest issue of the Bulletin makes very interesting reading: there are circuit descriptions of the picture-in-picture facility and digital servos, and a list of some useful common faults. P.B.

Rank T24 Chassis

No colour with these sets is often due to failure of R229 $(3.6 \mathrm{k} \Omega)$ on the main panel. It's a pulse feed resistor and tends to go open-circuit.
P.B.

ITT 80-110 ${ }^{\circ}$ Chassis - Panel CVC825

There was intermittent loss of the raster, with line collapse as it went off. The power supply was shutting down, removing the line drive (which comes from the chopper transformer in this chassis). The fault usually occurred about ten minutes after switching on: the set would then
start again and run for hours without further trouble. Past culprits (D611, R628, R632 and R643) were checked by substitution but were blameless. Then one day the set stayed off for longer than usual, enabling the culprit to be found. The BC546A chopper drive transistor T615 was breaking down.
P.B.

ITT CVC801 Chassis

For intermittent failure of the power supply to start (early models only) remove R774 ($100 \mathrm{k} \Omega$). For no or low 110 V line check the capacitance of C757 ($10 \mu \mathrm{~F}$). For no e.h.t. with the 110 V and 20 V lines present check for dry-joints at R700 and L700.
P.B.

Contec KT8135 and KT5145

For a dead KT8135 with all the fuses intact check whether R501 or R502 (both $330 \mathrm{k} \Omega$) is open-circuit. With the KT5145 the resistor to check is R504 (again 330k Ω). P.B.

Hitachi NP81 Chassis

This set, passed on to me by another dealer, had the classic symptoms of lack of line and field sync pulses. My colleague had spent some time on the set and, in his usual thorough fashion, had started by replacing the relevant chip - IC701, type LA7801 - which incorporates both timebase generators as well as the sync separator circuit. He'd then replaced every capacitor within a three inch radius of the chip before deciding to call it a day. This groundwork made it easy for me. If it wasn't the chip and it wasn't the capacitors, it had to be a resistor. Sure enough R723 ($22 \mathrm{k} \Omega$) was open-circuit.
C.H.

ITT TX2612 (CVC1215 Chassis)

This teletext set illustrated how easy it is to jump to premature conclusions. Fuse Fu651 was open-circuit and a quick in-circuit check showed that the BU508A chopper transistor appeared to be short-circuit collector to emitter. After replacing the transistor and fuse and switching on we were blinded by a flash as the fuse again failed. We removed the replacement chopper transistor and checked it out of circuit. It read perfectly. When we'd found the original transistor at the bottom of the rubbish bin and checked it we discovered that it too was perfect. The culprit turned out to be C $701(10 \mu \mathrm{~F}, 350 \mathrm{~V})$.
C.H.

Philips K40 Chassis

There were no results, the channel indicators permanently displaying 88 while a lot of hissing came from the e.h.t. cap. The first thing to do was to clean the final anode connection and replace the cap to prevent further damage to the set. Checks were then carried out around the μ CMSM8050 microcomputer chip IC7101. After replacing this the set worked - apart from no sound due to a high at pin 13 of the TBA120. This fault was traced to an internal fault in the HEF4052 chip IC7202 on the power/ scart board. If the customer had had the e.h.t. cap cleaned when it first started arcing it would have saved a considerable repair bill.

We subsequently had to return to the set for "no results". The customer said "it's been hissing for a couple of days but we thought it would get better, then there was a big flash and the set went dead". Here we go again . . .
A.D.

Teletopics

SATELLITE TV LATEST

The West German DB satellite TV-Sat 1 has been abandoned following the failure of the main receiving aerial to unfold. This problem was in addition to the one mentioned last month - failure of one of the solar panels to open out. While there was telemetry contact with the satellite, without the main receiving aerial there was no broadcasting uplink and thus no possibility of a broadcasting downlink. It appears that the French TDF-1 satellite, which is of the same type, manufactured by the Eurosatellite consortium, will not be put into orbit - at least until the cause of the problem has been resolved. A sad end to Europe's first attempt at DBS.
Meanwhile production of the two BSB (British Satellite Broadcasting) satellites for the UK DBS service is said to be ahead of schedule. The satellites are being produced by Hughes Aircraft in the USA, and a launch date for the first one has been booked for August 15th 1989 aboard a McDonnell Douglas rocket.
BSB has set up an international "competition" to find three approved suppliers of receivers for the UK DBS service - about fifty setmakers have been approached. This rather unusual arrangement is possible because BSB is to use a code to ensure that only receivers produced by approved suppliers will be able to decode the signals - in addition a pay-TV coding system is to be built in from the start, so that certain programmes will be viewable only after making an additional payment. After the first couple of years the system will be deregulated so that all receiver manufacturers can produce and supply sets. As BSB's managing director Graham Grist put it "then we'll let it rip". The aim of the initial restriction is to ensure that receivers for the service are made available in reasonable quantities at affordable prices. Each of the selected companies will be expected to produce around 100,000 receivers during the first year, at a price to viewers of about $£ 200$.

The BSB transmissions will be to the D-MAC standard. It seems that the medium-power Astra satellite, due up this autumn, will use the D2-MAC standard, as was to have been used by TV-Sat 1 and TDF-1.

The government is to contribute $£ 2.5 \mathrm{~m}$ towards a demonstration by the BBC and the IBA of the widescreen, high-definition version of MAC (HD-MAC) at the International Broadcasting Convention in Brighton this September. The importance of this demonstration lies in the fact that a specially convened meeting of the CCIR (International Radio Consultative Committee) in Brussels next spring will be reviewing the question of international HDTV standards, prior to the next plenary session of the CCIR due in 1990.

The IBA has awarded the contract for D-MAC coding equipment for use with the BSB service to EB Telecom AS of Norway. The equipment will form part of the satellite up-link ground station for the service. To assist the receiver manufacturing industry there will be terrestrial test transmissions of the D-MAC signal from July, with possibly satellite test transmissions soon afterwards. Delivery of the main equipment for the up-link ground station is targetted for the spring of 1989.
NEC has introduced a new, improved range of TVRO equipment for use with the currently operating TV sat-
ellites. In addition, trade prices have been reduced. The new feed systems used with the dishes, which are available in 1.5 m and 1.8 m sizes, have increased the gain (by 0.7 dB with the 1.8 m dish) and reduced the noise temperature by an equivalent to 0.5 dB in the LNB. The LNB itself, which uses a custom made thin-film circuit, has an improved noise figure of 1.7 dB average and 1.9 dB typical maximum.

BROADCASTING NEWS

A technical committee set up by the Department of Trade and Industry has concluded that a fifth terrestrial u.h.f. TV network serving $60-70$ per cent of the UK's population is feasible - in fact a sixth network serving 50 per cent of the population could also be introduced. The fifth channel network would mainly use two u.h.f. channels not at present allocated to TV, chs. 35 and 37: about 20 per cent of the population could be served simply by using spare capacity in the present 44 channels. About fifty new transmitters would be required. The problem of receiver local oscillator interference - the present blocks of channels are arranged to minimise this - could be overcome by the use of frequency offsets and reliance on the much improved selectivity of modern TV receivers. Many VCR owners would probably have to retune the output from their machines however, and an extra receiving aerial would generally be required. Provision of a fifth channel could be included in one of the two broadcasting bills the government intends to introduce in 1988/9. Such a network would be unlikely to come into operation before 1991/2.
The Rank Organisation has approached the government for permission to operate a pay-TV service along the lines of the French Canal Plus. Rank's transmitter network would use either the fifth or sixth channel networks mentioned above or unallocated capacity in the v.h.f. spectrum. The latter could provide a service for over 70 per cent of the population. The company has been having talks with the DTI technical committee on extra channels and would be prepared to invest $£ 50-£ 100 \mathrm{~m}$ in such a project. Programming would centre on new films, drama and sports and the company maintains that it could start a service in 1990. If it was provided at v.h.f. an upconverter/ decoder costing "less than $£ 100$ " would be required. Subscribers would pay $£ 8$ - $£ 12$ a month and receive up to 60 films monthly. The company estimates the potential demand at up to three million subscribers.

On December 9th the IBA completed its $£ 50 \mathrm{~m}$ project to provide Channel 4/S4C coverage from its 867 transmitting sites. The final station to be equipped, Gunnislake in Cornwall, was brought into full operation on December 18th.

While the BBC maintains that there will be no terrestrial stereo TV sound service from its transmitters until 1991 at least, such a service could well be provided by the IBA in London from next year, then spreading to the rest of the country.

THE VHS SQ SYSTEM

Preliminary details of its proposed VHS SQ (Super Quality) system have been released by the French firm Thomson. The system has been designed to exploit the improved performance of Super VHS (S-VHS) tape, which is not yet available in PAL markets, while maintaining compatibility with the basic VHS system. The advantages of S-VHS over conventional VHS tape include greater h.f. output, a higher signal-to-noise ratio and a
superior dynamic range. The VHS SQ system takes advantage of this by means of modifications to the record amplifiers. To eliminate cross-colour effects the machines will provide separate luminance and chroma feeds to the receiver. The standard $3 \cdot 8-4 \cdot 8 \mathrm{MHz}$ f.m. carrier deviation is preserved to maintain compatibility. Whether VHS SQ will be accepted as a variant within the VHS family of specifications remains to be seen. No launch dates for VHS SQ machines have been announced.

NOKIA'S TV INTERESTS GROW

The trend for European TV set manufacturing interests to be merged into ever larger groups has taken another significant step forward with Nokia of Finland's agreement to buy Standard Electrik Lorenz (SEL) from CGEAlcatel of France. Nokia owns Salora and Luxor (both bought in 1983) and only recently acquired the French TV setmaker Oceanic. Both Oceanic and SEL of West Germany were previously ITT subsidiaries. SEL came to CGE-Alcatel when the CGE and European ITT telecommunications interests were merged earlier last year. SEL at present produces around 1.2 million TV sets, 1.7 m colour tubes and 350,000 VCRs a year. The acquisition will boost Nokia's TV setmaking capacity to well over two million sets annually and give it a 14 per cent share of the west European market. Explaining the move, SEL's chairman Helmut Lohr commented that the division was too big to be a specialist producer and too small to be able to survive in the face of increased international competition. Without the merger SEL would have had to incur heavy redundancies - SEL has 5,600 employees. Following the take-over, consumer electronics goods will account for about 60 per cent of Nokia's annual sales.

MORE TV PLANTS IN UK

JVC is setting up a $£ 27 \mathrm{~m}$ plant to produce colour TV receivers at East Kilbride near Glasgow. The plant is expected to be in production by the middle of the year and will create 200 jobs initially. If successful, production of $C D$ players and computer display monitors will be added.

South Korean consumer electronics manufacturer Goldstar, which recently opened its first European plant at Worms, near Frankfurt, plans to build a factory in the UK. South Wales or the North East have been suggested as likely sites for the plant, which will initially produce microwave ovens, with VCRs and small-screen CTV receivers added later. The factory might be operated as a joint venture - Goldstar has held talks with Fidelity. The Worms plant has a production capacity of 300,000 largescreen CTV receivers and 400,000 VCRs a year. Goldstar began selling in the UK under its own name last September: sales of its goods under other brand names have been running at around $£ 36$ m a year.

Mitsumi Electric will shortly open an electronics components factory in South Tyneside, Tyne and Wear. Output will include modulators and tuners for VCRs and CTV receivers, and coils, transformers and power supplies for consumer electronics equipment generally.

DOMESTIC TV SECURITY SYSTEMS

Home security is a growing business - in the last six years consumer spending on security is estimated to have risen from $£ 84 \mathrm{~m}$ to $£ 175 \mathrm{~m}$ annually. Ferguson and Sony have both recently announced surveillance systems that enable the householder to see who is calling at the front door.

Ferguson calls its systems Homescan while Sony's system is called WatchCam.

There are two Ferguson Homescan "access control" systems, both of which can be easily installed by a competent DIY person in a couple of hours. The cameras used in both systems have CCD image sensors and incorporate infra-red LEDs which illuminate the subject under view even in total darkness. Vertical resolution is 400 lines, assuring picture clarity, and the camera's field of view covers an area of about one metre width at a distance of only one metre. The Homescan FHSI consists of a video camera, mounting plate, camera control unit and r.f. lead and has a suggested price of around $£ 499$ The camera's output, on a preset channel, is fed to a domestic TV set, giving one-way audio and visual communication. By wiring the FHSI system through the doorbell circuit an audible alarm will interrupt the TV program being watched, so that the viewer can switch to the appropriate channel to observe and hear the caller. The FSH1 can also be used as an indoor baby minding etc. system. The FSH2 system, with a suggested price of $£ 749$, consists of a video camera mounted in a unit that includes a bell push, microphone and speaker, and a separate video monitor/control unit. Both items come with wallmounting brackets. When the visitor has been identified an electric door lock can be released by pressing a button on the control unit: a LED indicator shows when the door is open or unlocked. Two cameras can be linked to the monitor/control unit, giving surveillance indoors and/or outside.
Sony's WatchCam system, with a suggested price of about $£ 580$, consists of a very compact camera ($52 \times 32 \times$ 100 mm) and an easily positioned monitor about the size of a cordless telephone. It can be used indoors or outdoors to check activity around the home. Optional accessories enable the camera to be connected to a VCR, giving surveillance while the occupier is out. The system comes with everything required for DIY installation. A microphone and loudspeaker are included to give audible surveillance.

PAL/SECAM TRANSCODING

We have been asked to point out that Universal Electronics of Paris, mentioned in the article on TV and VCR conversions last month. will not deal with the public direct. Their UK agents are North East Satellite Systems of Cropton, Pickering, North Yorkshire YO10 8HL (telephone 07515 598). North East Satellite Systems can supply PAL/Secam and Secam/PAL transcoders and satellite equipment for the $2.5 \mathrm{GHz}, 4 \mathrm{GHz}, 11 \mathrm{GHz}$ and 12 GHz bands. They have recently been appointed distributors for ADM dishes ranging from 16-32ft and for AVCOM (Virginia, USA) TVRO equipment including test gear and professional receivers.

IN BRIEF

Granada's bid for Electronic Rentals (Visionhire) is to go ahead following 85 per cent acceptance of the offer: there is to be no Monopolies Commission enquiry . . . Grundig has appointed companies to run four regional service centres - Craigavon TV Services in Northern Ireland, MP Electronic Services in Rugby, Clifton TV and Audio Services in Bristol and the Glasgow Service Centre. The aim is to have fifteen Grundig Service Centres by the end of 1988 . . The Home Entertainment Dealer Show HEDS ' 88 will be held at the Birmingham National Exhibition Centre from May 8-10th.

Dual-channel TV Sound Systems

Part 2: Basic Digital Techniques

Geoff Lewis, B.A., M.Sc.

Modern hi-fi stereo sound systems use extensive digital signal processing. This month we'll look at some of the basic techniques involved, as an introduction to next month's concluding instalment which will describe systems either in use or to be brought into use shortly.

Advantages of Digital Processing

Analogue TV signal processing has remained dominant because of the need to conserve space in the frequency spectrum available. However there are now some very convincing reasons for making a change.Today's digital i.c.s are capable of operating at high speeds and are available at prices that make them more cost effective than their analogue equivalents. Digital processing is compatible with the digital switching techniques used for signal distribution both in studios and, increasingly, in receivers. Encryption/decryption i.c.s are now readily available to provide security of transmission if required. Improved transmission quality, even in noisy environments, is possible using digital signal regeneration and error detection/correction techniques. Digital control of a TV receiver enables it to become an integrated centre of a home information service. Clever bit rate reduction techniques are now available to provide significant bandwidth compression. All these advantages are to be had by using modern digital signal processing chips.

Sampling and Quantization

The sound signal picked up by the microphone is in analogue form of course. So before any digital processing can be undertaken the signal has to be converted to digital form. This is usually done by using a sampling process. Fig. 1 illustrates the idea. The amplitude of the analogue signal is measured (sampled) at very precise intervals of time. Only the integer (whole figure) value of the measured level is retained. These measured values are then converted into binary form, which makes them suitable for digital processing. After processing they can be converted back to analogue form to drive a loudspeaker or whatever.

In the example shown in Fig: 1 there are eight discrete integer values, 0 to 7 . These can be represented by three binary digits $\left(8=2^{3}\right)$. Nyquist's theory of sampling shows that, provided a complex analogue signal waveform is sampled at a rate that's at least twice that of the highest frequency component of that waveform, the original signal can be reconstituted from these samples without distortion. In the example shown in Fig. 1 it will be seen that any signal reconstructed from the values obtained by the sampling will be only an approximation of the original: the error is called quantization noise. It will be obvious from this example that this noise component can be reduced to a lower level simply by increasing the sampling rate and/or the number of levels used. The penalty for doing this is an increase in the bandwidth required.

The bandwidth of a digital signal of this type can be calculated from the formula $2 \times \mathrm{fs} \times \mathrm{n}$, where fs is the sampling frequency and n is the number of bits per sample.

This sampling process produces a frequency spectrum rather like that of amplitude modulation, except that the range of sidebands extends towards infinity in the manner shown in Fig. 2(a). The demodulator circuit used contains a low-pass filter with a cut-off frequency below fs to remove the harmonic components and leave only the original baseband.
If the sampling frequency is not high enough, or the filter's cut-off is not sufficiently sharp, the result will be interference from the first lower sideband. This effect is known as aliasing and is shown in Fig. 2(b).

Quantization noise is proportionately more significant at small signal amplitudes; in addition, large signals can swamp or mask the noise effects. This imbalance can be remedied by using non-linear quantization - Fig. 3 shows a non-linear quantization characteristic. The near-linear region has the effect of increasing the number of levels used to represent small signal amplitudes.

Quantizing AC Signals

The analogue-to-digital conversion method just described works well for signals, such as video ones, that have a large d.c. component. For audio signals, which have positive- and negative-going excursions, an alternative approach is needed. One possible method is the "offset binary" technique, which involves adding a constant value to all the sampled levels. This can produce problems however, particularly with audio mixers used to add signals from different sources - the sum can overflow or exceed the allowable peak value.

The most commonly adopted solution is to use the twos complement method of representing binary numbers. This works as follows. By convention a leading 0 indicates a positive number while a 1 indicates a negative value. The twos complement of a binary number is simply obtained by inverting each bit of the number then adding 1 to the result. The twos complement of 01010101 is thus 10101010 $+1=10101011$. When an analogue signal is reconstituted from a twos complement number the excess 1 should be removed before inversion. In practice however failure to do this results in such a small error that the step is often left out.

Bit Error Rate

The analogue of signal-to-noise ratio in the digital field is the bit error rate (BER). This is the number of bits received in error over a noisy channel. There are two basic ways in which a digital signal can become degraded: first where there are noise spikes of amplitude greater than the pulse amplitude, and secondly when there are timing errors in the receiver's resampling clock rate. It's common for the receiver's clock to be synchronised in some way from the data stream. Clock synchronisation timing jitter and/or phase distortion of the pulse waveform add further to the BER.

With a digital signal signal-to-noise ratio can be considered in terms of energy/bit per watt of noise power. Energy per bit can be maximised by increasing either the

Fig. 1: Sampling and quantization.

Fig. 2: Frequency spectrum for Nyquist sampling (a); introduction of aliasing (b).

Fig. 3: Non-linear quantization characteristic.
pulse width or the pulse amplitude, the pulse width \times amplitude product being a measure of the energy contained in a pulse. Obviously increasing the pulse width has the effect of reducing the signalling rate. Shannon's Law for the channel capacity required to transmit data shows that system bandwidth can be traded for signal-tonoise ratio to obtain a BER that's acceptable for the service concerned.

Baseband Codes

Binary code formats are designed to insert extra bits into the data stream in a predefined way. A few of the many ways of going about this are shown in Fig. 4. The aim is to minimise the number of consecutive similar bits in the data stream. The receiver clock can then be synchronised to a greater number of signal transitions,

Fig. 4: Some binary code formats.
thus improving its timing. The fact that some of these formats have no d.c. component provides an extra advantage: the receiver's l.f. response requirement is reduced, allowing the use of a.c. coupled circuits.

The commonly used codes can all be generated and decoded using appropriate i.c.s. They are generally based on the non-return to zero (NRZ) format - the return to zero (RTZ) format is little used because its half-width pulses represent an energy/bit penalty.

The basic Manchester code shown in Fig. 4 is one of the bi-phase series of formats which have the following features. A signal transition occurs at each bit cell centre, so that a zero is represented by 01 and a one by 10 . This ensures that there are never more than two identical bits in succession. Another variant is the code mark inversion (CMI) format, where $0=01$ and $1=00$ or 11 alternately. Although there are 50 per cent redundant bits in bi-phase codes, and the transmission bandwidth required is doubled, there's no d.c. component in the power spectrum.

The Miller format is shown for comparison. It's favoured for use with magnetic storage systems. A one is represented by a transition at mid symbol and a zero by no transition - except when two consecutive zeros occur. In the latter case an extra transition is introduced at the end of the first zero.

The duo-binary code is a bi-polar, full pulse width code - one version is shown in Fig. 4. In general zero is represented by zero volts and one by $+V$ and $-V$ alternately, except when a succession of similar bits occurs. Code violations are then introduced in a controlled manner. In the example shown the NRZ code is first precoded as follows: a zero is represented by a transition at bit cell centre and a one by no transition. The precoded signal is then passed through a low-pass filter with a cut-off at the half-Nyquist frequency. Alternate transitions tend to average out to zero volts while a series of ones or zeros produces positive and negative peaks respectively. The major advantages of this system are that the bandwidth is only half that of other formats, there's no d.c. component, and the original data stream can be recovered simply by full-wave rectification of the received signal.

Redundancy Trade-off

The more efficient codes have the least redundancy: in

Fig. 5: Structure of a block code with error control.

Fig. 6: Interleaved code words.

Fig. 7: Pseudo random binary sequence generator.
general there's a trade off between the code complexity required to balance the number of consecutive similar bits and the amount of added redundancy.

Error Correction

Provided that errors in a data stream can be detected, there are various corrective techniques that can be applied. One of the error concealment techniques could be used for example. The possibilitites here include: (1) ignore the error and treat it as a zero-level signal; (2) repeat the last known correct value; (3) interpolate between two known correct values. This last method is really suitable only when there is a significant amount of storage available in the receiver to allow time for the required signal processing.

The ASCII (American Standard Code for Information Interchange) code is commonly used to represent alphanumerical characters in a digital system. This 7-bit code provides for 128 different alphabetical, numerical and control characters. The commonly used word length is 8 bits (one byte), so space is abailable for one extra redundant bit.

A single error detection code can be produced by placing the first $n-1$ bits of information in the first positions and making the nth bit (the "parity bit") a 0 or a 1 so that the complete code pattern contains an even number of ones. This is referred to as even parity. If such a code is received over a noisy channel and is found to contain an odd number of ones we know that an error has occurred. With "odd parity" the nth bit is such that all valid code words contain an odd number of ones. In either case a receiver check will show when errors have oc-

Table 1: Processing a 7,4 block code

Bit position	1	2	3	4	5	6	7
Parity/message	P	P	M	P	M	M	M
Check one	\star		\star		\star		\star
Check Two		\star	\star			\star	\star
Check Three			0	\star	\star	\star	\star
Message	1	0		0	0	1	1
Parity bits	1	0	0	0	0	1	1
Transmitted word	1	0	0	0	0	0	1
Received word	0	1		1			

Syndrome $=110$ (reverse order) $=6$, i.e. bit 6 is in error. Invert 0 and the error is corrected.
curred. The parity bits can be generated and checked using exclusive-or and exclusive-nor logic respectively. Such an arrangement of bits is known as an n, k code, i.e. n bits long and containing k bits of information. It follows that $n-k=c$, the number of parity bits. The structure of such a code pattern is shown in Fig. 5. The set of 2^{k} possible code words is often described as a "block code".

Hamming Codes

R. W. Hamming, the originator of most of the early work on error control in digital systems, devised methods that in addition to detecting errors in the bit stream can identify which bits are in error. These can then be corrected simply by inversion. The system works by interleaving the message bits with a series of parity bits. Assuming a 7 -bit pattern, parity bits are placed in positions $2^{0}(1), 2^{1}(2)$ and $2^{2}(4)$ with the message bits in the remaining positions as shown in Table 1, which also shows the mechanics of processing a 7,4 block code. The message bits to be transmitted are in positions $3,5,6$ and 7 . Three parity checks are carried out to calculate the bit values required in positions 1,2 and 4 . Arithmetically, the parity bits are found by adding the ones in the positions indicated, dividing by two and using the remainder for the even parity bit.

On receipt of the code word the parity is again checked as shown. This results in a bit pattern known as the "syndrome". When taken in reverse order this gives the number of the bit in error. An all correct transmission yields an all-zero syndrome.

This single-error correcting 7-bit code can be extended to give double-error detection by adding an extra overall parity bit check in the eighth position. The error patterns are then indicated by the following rules: (1) No errors zero syndrome and overall parity correct; (2) single correctable error - non-zero syndrome and overall parity fails; (3) double non-correctable errors - non-zero syndrome and overall parity correct.

Cyclic Codes

In practical conditions the channel noise added to a signal can give rise to errors that occur in bursts. A subclass of block codes has been devised to combat this problem - the so-called "cyclic codes". The format is as follows. If a code word say 0110 is valid then so are all the cyclic transpositions such as $1100,1001,0011$ obtained by shifting the binary sequence one bit at a time to the left or right. These codes can be easily generated or decoded using i.c.s that incorporate feedback shift registers. Since not all the possible combinations of bits in the list of valid
code words are permitted, errors tend to generate bit patterns that are non-valid and thus obviously erroneous. Cyclic redundancy checking (CRC) is an extension of parity checking, allowing bursts of errors to be detected and corrected in addition to dealing with random errors, which are effectively burst errors of length 1.

Golay codes are an important sub-set of the cyclic codes. The 23,12 version with 11 parity bits is capable of correcting any combination of three random errors, including a burst of three, in a block of 23 bits. Encoding and decoding can be accomplished using i.c.s that make the process transparent to the user.

BCH and Reed-Solomon codes are further sub-sets of the cyclic codes, developed to provide greater efficiency in terms of fewer parity bits required for the same degree of correctability. Again processing can be through i.c.s that make the operation transparent.

Interleaved Codes

The use of interleaved or interlaced codes is a simple but powerful way of dealing with both random and burst errors. Any n, k set of code words can be converted into a new code xn, xk by loading the code words into a matrix of n columns and x rows and then transmitting the bits column by column. Fig. 6 shows the principle. If, over a noisy channel, bursts of errors less than x occur there is only a maximum of one bit in error in any one word. As a lower limit, if the original code corrects t or fewer errors the interleaved code will correct any combination of t bursts of length x or less.

An extension of interleaving is sometimes used. This involves the generation of two Reed-Solomon codes from the data, then cross-leaving the coded bit patterns before transmission. Provided the encoder and decoder are synchronised, relatively long burst errors become correctable.

Pseudo Random Binary Sequences

For a series of binary digits to be in random order each symbol must occur by chance and not be dependent upon any previous symbol: over a long period the number of ones and zeros should be the same. Similarly, runs of two, three or more of each symbol should be equally probable. Sequences with similar characterisitcs can be generated using shift-registers in the manner shown in Fig. 7, where the logic states of the switches control the feedback paths through exclusive-or gates, the state of the switches Sl to $\mathrm{Sn}-1$ being set by an initialisation word.

Assuming, for simplicity, a 3-bit register (in practice the pseudo random binary sequence - PRBS - register will be much longer), with only SI set to 1 the sequence shown in Table 2 will be produced and will be repetitive There are 2^{n} possible shift register states, but the all zero combination is invalid as this would halt the generator.

Table 2: Simple PRBS sequence

State	b1	b2	b3	bn
1	1	1	1	0
2	0	1	1	1
3	1	0	1	0
4	0	1	0	0
5	0	0	1	1
6	1	0	0	1
7	1	1	0	1

Input code

Key

Secure code

(0837

Fig. 8: A simple encryption system.

There are thus 2^{n-1} bits in the sequence bn. Because of the pseudo random properties of these sequences they can by used as: (1) repeatable noise sources for testing digital systems; (2) a means of 'adding redundancy to a transmitted data stream, by coding the sequence as logic 1 and its inverse as logic $0 ;(3)$ to provide a key to ensure data security when added to a data stream via an exclusive-or gate, as indicated in Fig. 8.

Scrambling and Encryption

The terms scrambling and encryption tend to be used synonymously. We'll use the word scrambling to mean the rearrangement of the order of the original information and encryption to indicate that the original information, consisting of "plain" or "clear" text, has been replaced by some alternative code pattern known as the "cipher" or "encrypted" text. Scrambling alone is not considered to be secure - a study of the signal behaviour can usually lead to the design of a suitable descrambler.

Encryption is quite simple, particularly when the signal is in binary electronic form. The addition of a second binary sequence to the first via exclusive-or logic produces another sequence that carries no obvious information. The original code pattern can be recovered at the receiver simply by carrying out a complementary operation. The rules of addition (and subtraction) using exclusive-or logic can be stated as: $0+0=0 ; 0+1=1 ; 1+0=1 ; 1+1$ $=0$ (the carry is ignored). The following is an example of encryption:

Code word to be transmitted: 10001110
Key: 10101010
Sum (exclusive-or): 00100100 -as transmitted
Key:
Sum (exclusive-or):
10101010 - at receiver
10001110 - original code.
The keys are generally produced using PRBS generators. These keys have several advantages - they are practically random and easy to generate and change, and the longer the key the more difficult it is to obtain unauthorised access.
The one-key system just described has a significant disadvantage however: the key has to be transmitted before the message. This results in a time delay and, perhaps more importantly, there's a risk that the key might full into the wrong hands.

Multi-key Systems

In a two-key system one key is made public for encryption whilst the second is kept secret and is used as a "modifier". This is also known as the Public Key system.

A very high degree of security can be provided with the three-key system. Two secret keys, primary and secondary, are user programmable and are stored in a digital

Fig. 9: DES encryption algorithm.

Fig. 10: Key generator.

Fig. 11: Controlled access system.
memory. The third, non-secret key acts as a modifier: it can be generated as a new PRBS at the start of each transmission.

The DES Algorithm

The two most commonly used encryption algorithms are the RSA Public Key Exchange system (named after its authors Rivest, Shamir and Adleman) and the Federal Information Processing Data Encryption Standard (FIPDES).

The important rules of any encryption system can be stated as follows: (1) The number of possible keys should be very large to prevent a pirate from testing all possible keys in succession. (2) Any fixed encryption operation should be very complex, making it impossible to deduce the operation from a few plain text/cipher text pairs. (3) If security is to be based on secret information it must be created after the system is built and, if subsequently revealed, it should not jeopardise the entire system security.

The DES algorithm translates blocks of 64-bit plain text into similar blocks of cipher text using 56-bit keys. Each plain text block is divided into left (L) and right (R) groups, each of 32 bits, which are then processed as shown in the flow chart in Fig. 9. Successive R groups are combined with successive keys using a very complex function f . Each processed R group is then added via exclusive-or logic to the corresponding L group. After processing using 16 keys the L and R groups are recombined, but in the reverse order (R, L).

The 56 -bit keys are produced by the hardware shown in Fig. 10. The initial group is divided into two 28 -bit subgroups for processing through a series of shift registers. A new key is formed by combining the sub-groups after one or two left shifts. The circuit resets after producing 16 keys.

It's interesting to calculate the probability of a pirate deciphering such a 56 -bit key. This is one in 2^{56} or about one in 7.206×10^{16}. If our pirate made one attempt every nanosecond, on average it would take him more than 1.14 years. Cheaper to buy the key than rent the necessary computer time?

By using the DES algorithm repeatedly in overlapping blocks it's possible to encipher plain text blocks that are very much longer than 64 bits.

Controlled Access

Fig. 11 shows the basis of a controlled access system. It uses an extension of the DES 3-key algorithm. A PRBS is defined by a control key: this is for free access where necessary and may be made public. When restricted access is required this key can be encrypted by an authorisation key which is itself encrypted by a distribution key. Decryption of the authorisation key at the receiver is effected by the use of the distribution key, which may be transmitted over the channel or provided via a smart card. The encrypted version of the control key is decrypted by using the combination of authorisation and distribution keys: this allows the selection of the correct PRBS to decrypt the signal.

Bit Rate Reduction Techniques

The European PCM telephony system is an example of good spectrum management. Each 3.4 kHz baseband audio channel is sampled at 8 kHz and uses eight bits per
sample, seven bits representing the signal level plus one for polarity. The basic bit rate per channel is thus $8 \times$ $8 \mathrm{kHz}=64 \mathrm{~kb} / \mathrm{sec}$. Wider bandwidth signals can be accommodated by allocating a number of contiguous channels to the service. In order to conserve bandwidth quaternary or quadrature phase shift keying (QPSK) is used. Unlike biphase PSK, where each phase inversion represents an information bit, QPSK uses four phase shifts as follows: 0° $=00 ; 90^{\circ}=01 ; 180^{\circ}=11 ; 270^{\circ}=10$. Thus each phase represents two information bits, doubling the information rate without increasing the bandwidth required. Relative to bi-phase PSK however the separation between code symbols is halved, leading to a 3 dB signal-to-noise ratio penalty. Companding is used to combat this.

Bit errors can cause a problem when PCM is used for wider bandwidth signals such as music or video. The effect of a single bit error depends on its weighting. An error in the least significant bit (LSB) would probably pass unnoticed while a most significant bit (MSB) error would have considerable nuisance value. Using companded PCM with a music channel can cause the noise level to vary audibly as the signal level changes.

Delta and Differential Modulation

With delta and differential modulation (DM and DPCM) each audio sample is coded by just one bit, positive or negative, depending on whether the sample is greater or less than the previous value. Because only one bit per sample is transmitted during each sampling period the rate of sampling can be increased quite significantly. This reduces quantization noise and the bandwidth required, and simplifies the receiver's anti-aliasing filter.

The principle is illustrated in Fig. 12, which also shows the effect of a one-bit error. The general waveshape is maintained despite the error. An overload effect can occur when the signal changes by a greater amount than the quantizing step size, but since this mainly affects largeamplitude, high-frequency signal components, which oc-

Fig. 12: Differential pulse-code modulation (PCM) signal, showing bit error and overloading.
cur only infrequently with audio signals, it's not particularly troublesome.

Better results can be obtained with both DM and DPCM if the size of the quantization steps is made to vary in sympathy with the time-varying amplitude of the input signal. Adaptive circuits that provide this feature result in a significant improvement in quality. They behave as companded systems. To improve the signal-to-noise ratio further, pre-emphasis and de-emphasis can be employed in the analogue signal circuitry.

Sub-Nyquist Sampling

Alternate sampled values can be suppressed so that the sampling frequency is effectively halved. The missing samples are replaced at the receiver by using a process of interpolation or predictive coding. The overall effect is to reduce the bandwidth required by a factor of two. This technique requires the use of very stable, synchronised sampling clocks, accurate filtering and additional circuitry for interpolation.

The Fidelity ZX5000 Chassis

The trend in TV chassis design is towards increasing use of digital technology. We saw this first with remote control and teletext. More recently a set of ITT chips has enabled audio, luminance and chrominance signal processing, synchronisation and timebase waveform generation to be carried out digitally. Some of these chips form the basis of Fidelity's ZX5000 digital TV chassis. We refer to it as a digital chassis but it must be remembered that a lot of analogue circuitry is still required - in the tuner/i.f. section of the receiver and in the RGB and timebase output stages. In addition the audio signal remains in analogue form in the ZX 50000 chassis.

The first model to use the $\mathrm{ZX} 5(0) 0$ chassis is the C 20 T 04 , which includes a teletext decoder with eight-page memory and on-screen control display. Intended to sell for around $£ 3(0)$ this set is certainly competitive - the ITT Digivision range starts at around $£ 500$. ITT's top-of-therange Model MC3896, which includes picture-in-picture, has a suggested price of around $£ 870$).

The advantage of going digital at the present time is debatable. Technical progress is always welcome however
and the Digivision system does represent a radical step in TV chassis design. A simplified block diagram of the ZX5000 chassis is shown in Fig. 1.

Tuner and IF Section

A type U744 u.h.f. tuner is used in sets intended for the UK market. The output from this is fed to a fairly conventional i.f. section which consists of a screened module - it can be changed to suit different transmission standards. There is one preset accessible at the top of the module, to set the tuner a.g.c. Fig. 3 shows a simplified block diagram of this part of the chassis. The i.f. module has external audio input and output connections which are linked to pins 6 and 3 respectively of the scart socket. Pin 19 of this connector receives a composite video output signal from the i.f. module via the emitter-follower transistor TR6. Selection of composite video or RGB inputs via the scart socket, or r.f. from a VCR via the tuner, is done by selecting programmes 28,29 or 30 . The modular i.f. design facilitates production of receivers for

Fig. 1: Block diagram of the Fidelity ZX5000 chassis.

Fig. 2: Block diagram of the digital signal processing sections of the receiver.
other TV standards and eventual incorporation of NICAM 728 stereo sound.

Audio Circuit

The audio output from pin 26 of the i.f. module is passed to a conventional TDA1013A audio amplifier chip. For volume control purposes however a digital-to-analogue converter chip is required to interface the digital
control system and the TDA1013A chip. DA conversion is carried out by an MEA2050 chip (see Fig. 4) whose analogue voltage output at pin 5 controls pin 7 of the TDA1013A.

Tuning System

Much of the frequency synthesis tuning system is incorporated in the 2070 central control unit chip IC7, i.e. the

Fig. 3: Block diagram of the tuner and i.f. sections of the receiver.

Fig. 4: Block diagram of the a.f. section.

Fig. 5: The frequency synthesis tuning system.
receiver's control system microcomputer chip. In addition, a tuner control interface chip (IC6, type MEA2091) and a 1:64 prescaler (divider) which is incorporated in the tuner unit are required - see Fig. 5. The prescaler's output, at one sixty-fourth of the tuner's local oscillator frequency, is applied to pin 13 of IC7. Within the CCU a programmable divider, controlled by the programme selection part of this chip, acting on instructions from the customer controls or the IR remote control system, adjusts the division ratio to produce an output frequency of $976 \cdot 6 \mathrm{~Hz}$. This frequency forms one input to a phase detector: the other input is obtained from a 4 MHz reference oscillator who's output is divided by 4,096 to again give $976 \cdot 6 \mathrm{~Hz}$.

The phase detector's output consists of a series of positive-going pulses on one of the two lines that go to the
electronic switches in IC6 If the sample frequency from the programmable divider is higher than the reference frequency from the crystal reference oscillator, positivegoing pulses appear at pin 10 of IC7 and operate the electronic switch between pins 3 and 8 of IC6. Momentarily closing the switch decreases the charge on the hold capacitor C71. This reduces the voltage at the noninverting input to the following amplifier, in turn reducing the voltage applied from pin 16 of IC6 to the voltagecontrolled oscillator in the tuner. The oscillator frequency is thus altered until once again 976.6 Hz is produced at the output from the programmable divider. When this condition has been achieved the pulses from pin 10 of IC7 cease and the selected channel is on tune.
In the event of the tuner's local oscillator frequency being lower than the desired frequency pin 11 of IC7 supplies pulses to pin 2 of IC6 so that the charge on the hold capacitor C71 is increased. Should the tuner's local oscillator drift during operation of the receiver the circuit provides error correction to keep the channel on tune.

Digital Processing System

We now come to the digital signal processing arrangements, which are shown in block diagram form in Fig. 2. Seven integrated circuits are involved. IC5 provides a 17.7 MHz master clock signal which is the "heart-beat" of the whole system. The clock frequency is four times the colour subcarrier frequency and is locked to the colour burst by a phase-locked loop. Two of the i.c.s form the teletext decoder (IC601, type TPU2732) and its associated eight-page memory (IC6012, type KM4164B-15). Another two, the video codec and video processor, provide digital PAL signal decoding etc. The deflection processor chip IC2, type 2540 , provides synchronisation and the field and line drive waveforms. The video, deflection and teletext signal processing chips are all under the control of the 2070 CCU chip IC7. Control is applied via the IM bus (named after i.c. manufacturer Intermetall): this is a three-track bus with clock, data and ident lines.

Composite video from the i.f. module or the scart socket goes first to the 2133 codec chip. Codec stands for code-decode. This chip is mainly concerned with ana-logue-to-digital and digital-to-analogue conversion of the video signal. Selection of off-air or external composite video is carried out by an on-chip electronic switch which is operated by calling up the appropriate channel number via the on-board user or the remote control system. In the coder section of the chip the video input is sampled at 17.7 MHz to produce a 7 -bit digital output encoded in Gray code. The latter, which is used by teleprinters, is employed in preference to BCD (binary coded decimal) as it involves only one change in the states of the lines from one decimal number to the next. Gray code also has the advantage that it's easily converted to binary.

The digitally encoded video signal is then passed via a 7 -bit bus to the teletext decoder, video processor and deflection processor chips. The major effect on the received picture of digital processing is to produce an extremely steady display under severe noise conditions. In such circumstances this in itself produces a subjective improvement in the picture quality.

The teletext decoder is extremely compact, with only a handful of components in addition to the two i.c.s. The KM4164B-15 memory chip is a 64 K RAM that stores eight pages - the one being watched plus another seven. This is not a Fastext arrangement but offers storage of the seven additional pages fully under the user's control. The
teletext decoder also produces on-screen displays to indicate the status of the user controls etc.

The teletext decoder's output consists of RGB and blanking signals which are passed to the decoder section of the codec chip for digital-to-analogue conversion. RGB inputs from the scart socket are fed to the codec chip's internal electronic selector switching - a point which could help with troubleshooting.

IC4 carries out video signal processing, i.e. separation of the luminance and chrominance components of the composite video signal, luminance signal processing (delay, peaking and contrast control) and decoding of the PAL signal to colour-difference output form. Its outputs to the decoder section of IC3 consist of 4-bit multiplexed colour-difference signals and 8 -bit luminance - the latter allows for 256 shades of grey. Current sampling at the c.r.t. cathodes enables full auto grey-scale control of both background and drive, though some manual adjustment via the CCU - is permitted to cater for individual customer preferences.

The decoder section of the codec chip demultiplexes the colour-difference input signals and then carries out matrixing with the luminance input to produce digital RGB signals for DA conversion. This chip also handles beam limiting, while internal switching selects between the off-air video, teletext and scart socket inputs.

The Timebases

The 2540 chip, which provides timebase synchronisation and the line and field drive waveforms, is clocked at 4 MHz by the CCU chip and at 17.7 MHz by the master clock chip. The line drive output at pin 31 is capacitively coupled to a conventional line driver and line output stage. The former uses a BD139 transistor which is operated at 18 V and is transformer-coupled to the BU508D line output transistor. A diode-split line output transformer is used, with extra diodes providing 200 V and 26 V supplies.

Pin 27 of the 2540 chip provides a pulse-width modulated field drive waveform. The sawtooth drive required by the TDA2170 field output chip is obtained by integrating the PWM waveform - an $R C$ network, R61/C47 (sce Fig. 6), is used for this purpose. The 2540 also provides a ramp reset output at pin 26: this is used to discharge C47 to 0 V at the end of each field. Pin 7 of the TDA2170 drives the scan coils, with the $2,200 \mu \mathrm{~F}$ coupling capacitor C36 on the earthy side as is the custom nowadays.

Overall Control

The entire operation of the receiver is monitored and controlled by the CCU chip IC7 (see Fig. 7). Earlier on

Fig. 6: Field timebase arrangement.
we described it as a microcomputer chip. It's actually rather more than this, containing in addition much of the tuning system, the $I M$ bus control arrangement and interfacing with the front panel controls, the infra-red remote control receiver, power supply and customising EEPROM (IC8). The IM bus's ident line is used to identify the type of signals being carried on the data line: for the transmission of address information the ident line goes to zero, while for data as such it goes high to one. At the end of a data item the ident line momentarily goes low to indicate the end of the data transmission. The signal processor chips and the CCU are able to talk to each other via the IM bus.

The MDA2062 EEPROM IC8 is a non-volatile memory which contains the data necessary to customise the receiver for its particular range of facilities. It also includes the brand name and the receiver's serial number - a useful feature in the event of a receiver becoming stolen property.

RGB Output Chip

An innovative feature of the set on the analogue side is the use of a TEA5101 chip (IC40I) instead of discrete component RGB output stages. IC401 is mounted on the c.r.t. base panel with a substantial heatsink.

Power Supply Circuit

A conventional shunt-mode chopper power supply, see Fig. 8 , provides $120 \mathrm{~V}, 18 \mathrm{~V}, 12 \mathrm{~V}$ and 5 V outputs. In addition a small mains transformer with rectifier and regulator provide an auxiliary 5 V standby line. This supply is also used to operate the LED in a TIL111 optocoupler (IC13) which is driven by TR7. When the remote control unit gives the standby command pin 5 of the CCU goes high, turning on TR7 and illuminating the LED in the optocoupler. The associated photodiode then turns on, pulling pin 1 of the chopper control chip IC1 low. This turns off the drive to the chopper transistor. Reverse action takes place when the receiver is switched on again by signalling a channel number from the remote control unit. Regulation is achieved in the normal manner, by varying the mark-space ratio of the chopper drive, and the chopper circuit provides mains isolation. ICl is synchronised to the line frequency via capacitor C 102 $(22 \mathrm{pF}, 4 \mathrm{kV})$ which forms part of the receiver's mains isolation barrier.

The mains switch has a third set of non-latching contacts. These are used to hold TR7 off when the receiver is energised from cold and also from the standby mode. The optocoupler is manufactured to provide a high degree of insulation, forming an essential part of the mains isolation barrier along with C102 and the chopper transformer.

Servicing

The use of digital signal processing enables many of the usual preset controls to be eliminated, e.g. height, width, linearity, shift, grey scale and the colour decoder reference oscillator. Data on these parameters is held in the EEPROM (IC8) in the $\mathrm{ZX} 50(0)$, and can be altered to satisfy customer preferences, compensate for component ageing, etc. This facility is referred to as the "electronic screwdriver", and offers the advantage that most of the important adjustments can be made from the front of the set using the remote control system.

Fig. 7: Block diagram of the 2070 central control unit chip and its associated EEPROM.

Fig. 8: Simplified circuit of the chopper power supply.

The service mode is entered by depressing the handset's channel key whilst holding down the service button at the rear of the receiver's chassis. A flashing box appears on the screen to indicate that the service mode has been entered. In addition to the following items, the first anode voltage can be set correctly by watching an on-screen indicator: horizontal shift; vertical shift; height; field linearity; field symmetry; luminance/chrominance fit; chroma reference oscillator; red cut-off; green cut-off; blue cut-off; red drive; green drive; blue drive.

Any readjustments can be stored individually as they are made, stored without stepping to the next one. or not stored at all. This last option is useful when you want to test the effects of changing one or more adjustments
without altering the existing settings permanently. After storing (or not as the case may be) the new settings the service mode is cancelled by switching the receiver off.

The ZX5000 will naturally present a new and unique set of problems to the service engineer. It's interesting to speculate on how the digital circintry will behave towards the end of a receiver's life, when the automatic compensation systems hit the end-stops! Will this receiver help to eliminate the need for service engineers? I think not. Whether digital or not the chips can still fail - readers of TV Fault Finding will have noted several references to the ITT Digi 3 chassis recently. So can other components, and of course the power-handling circuits remain in analogue form.

VCR Clinic

JVC GRC1

The problem with this camcorder was a scraping noise at about one second intervals during play and record. If pause was selected during play the noise stopped, so the drum assembly could be eliminated as this was still turning. The noise intervals were too fast for the take-up spool drive but seemed to be consistent with the pinch roller speed.

The workbench was cleared and a silent prayer was offered up along the lines "Please God, let this go back together again afterwards". In the event the noise was due to the capstan flywheel rubbing on the capstan generator board. It had worn through the protective lacquer, exposing the copper tracks beneath, but thankfully hadn't worn through the tracks themselves. The plate on which the capstan generator is located had a slight but definite bend: straightening this restored silent running. The owner later commented that the noise started only after lending the camcorder to a friend. I've since noticed that the same noise can be induced in this model if extreme pressure is applied to the cabinet directly beneath the capstan flywheel. This is the part that lies against the side of your head during use - maybe the owner's friend just had hard cars.
C.H.

ITT VR3906/JVC HRD140/Ferguson 3V44

During playback this machine would periodically return to the stop mode. It might run for an hour or it might refuse to run for more than a few seconds. In the fault condition the rewind and fast forward functions would also cut out. Suspicion immediately fell on the take-up reel sensor, which has given trouble in the past, and sure enough the 6 V peak-to-peak pulses were missing when the fault was present. A replacement sensor was ordered and fitted but the problem remained.

The small PCB on which the sensor is fitted was unscrewed, and I started at it in disbelief. With the machine in this condition I selected play and as I watched the mirrors on the take-up spool turn I saw the letter D pass through the chassis aperture through which the sensor is activated. It was one of those stick-on letters that cassette makers supply with new tapes, and appeared to be catching on the edge of the chassis aperture from time to time, thus blocking out the sensor. I've often fished these letters and numbers out of VCRs, but this is the first time that one of them has caused a fault.
C.H.

Amstrad VCR7000

This machine came from a TV repairer with the complaint no colour though monochrome recordings were o.k. No fault could be found in the colour circuits, apart from the fact that the 40 FH a.f.c. potentiometer ran out of range. I then found that the $9 \cdot 3 \mathrm{~V}$ rail was at $7 \cdot 11 \mathrm{~V}$ - yes, I know, I should have checked the supply lines first. After restoring it to 9.3 V the rest of the settings were found to be all to cock. Much time had to be spent setting the record a.g.c., E-E level, white clip, dark clip, carrier, deviation and luminance playback level controls. We've had this sort of problem before, haven't we?
It seems to me that owners of what I'll refer to as lowcost recorders tend to take them to dubious low-cost

Reports from Christopher Holland, Alfred Damp, Philip Blundell, Eng. Tech., Roger Burchett, Steve Beeching, T.Eng. and Eugene Trundle
repairers - or a relation. They come back with an apology that the cause of the problem can't be found, though a charge is made for trying. The machine then comes to someone like E.T. or me to sort out, only to find that the phantom twiddler has been at work. The next hurdle is that the owner can't see why he has to pay something like a third of the purchase price for the repairs and subsequent setting up. If the machine had come to me in the first place the cost of the repair would have been more in the $£ 30$ region.

I might add that after investing in a lot of equipment the charge I have to make is $£ 25$ an hour and it matters little to me whether the machine is an $£ 800 \mathrm{JVC}$ or a $£ 250$ Taiwan special. It still costs the same to repair - and in a lot of cases the spares for the more expensive models are cheaper. Two examples: JVC spares are cheaper than anything from Mastercare; a set of VEH218 heads for a Panasonic NV370 cost $£ 34.50$ while the heads for the Philips clone cost $£ 49.96$. Work it out for yourselves S.B.

Ferguson 3V29/JVC HR7200

Intermittent failure to play was the fault noted on the job card - but it wasn't the only one! There were E-E signals but no deck functions - and the cassette lamp was on . . . A quick check around IC2 on the mechacon board revealed that the microcomputer chip was permanently reset (haven't had a reset fault since I last saw a Midway Space Invaders). The reset pulse is generated by IC3, but this and most of the surrounding components had already been changed - all except D21 which was open-circuit.

We now had play but no reel drive - IC12's circuit protector had blown. I was then left with the fault I at first expected - a slipping loading belt. What a saga! P.B.

Amstrad VCR4500

Several of these machines have come in recently with the same fault: after playing for a few minutes the tape rides down the capstan, giving loss of sound and a picture with tracking lines. It creases the tape a treat! The pinch rollers appear to be o.k. but the take-up torque is excessive. So far replacement of the large clutch drum has done the trick. Don't forget to mark the position of the mode control switch before removing the large plate! P.B.

Saisho VR1000

These machines are beginning to come in with idler problems. Roughening the tyre with wet-and-dry has so far provided an effective cure, which is just as well as replacement idlers have only just (October) become available.
R.B.

Mitsubishi HS306

In this model most of the function controls are mounted vertically on the main board and are thus likely to be damaged as a result of heavy-handed use. I recently had to change the play and rewind controls: they worked all right but due to heavy use they had holes impressed in them and the customer controls wouldn't operate them.

The movement of the switches and the plastic bracket that retains them is such that heavy use flexes them back from the vertical and increasingly heavy pressure seems to be necessary to get them to operate. Once the damage has started it's inevitable that it will continue. Some people will always use unnecessary force and I think it was a mistake to mount the controls in this way.
R.B.

Panasonic NV2010

This machine came in because the capstan was running slow. By the time the machine was put on the bench it had no clock display and a hum bar in the E-E mode. When the machine had been powered for about fifteen minutes the hum bar had all but disappeared and the clock was trying to flicker. Checks on the supply lines showed that the 18 V and capstan 18 V lines were low at 14 V . Replacing $\mathrm{Cl} 1009(1,000) \mu \mathrm{F})$ cured all faults.
A.D.

Ferguson 3V54

No colour with this machine was traced to a faulty lowpass filter, LPF301.
A.D.

Mitsubishi HS337

The indicator light wouldn't come on when the operate button was pressed, but the clock display changed from clock to counter as usual, reverting to clock after approximately five seconds. We found that the microcomputer's power-on pin went low and returned to its off setting after five seconds.
All the unswitched supply lines were correct: the problem was to check the switched lines in less than five seconds. This problem was dealt with by removing the control transistor Q9A3. Once this was done all the switched lines with the exception of the 5 V line came up. The problem was due to a defective joint at the emitter of Q9A2.
A.D.

Sony SLC6

The tape speed in the picture search and play modes was roughly the same. We found that the voltage across the reel motor was the same in both modes, but the service manual told us that this was correct. The cause of the fault was traced to the fact that the reel motor was being loaded by the relay pulley and spindle, which was binding on the bearing (drive transfer from the reel motor to the top of the deck). Cleaning and lubricating the spindle and bearing cured the fault.
A.D.

Hitachi VT17/19/57/86/88

Some machines in these ranges can suffer from contamination of the capstan shaft bearings. It seems to be due to dust or tape debris finding its way past the sealing washer at the bottom of the capstan - perhaps they were not all pushed down fully at the factory.

The effects vary: chewed tapes, poor or no frame advance, or a loop of tape left hanging from the cassette lip. The cure is to remove and clean the capstan shaft and bearings. Also ensure that posistor PH 1151 reads less than 4.7Ω at room temperature. If not, replace it.
E.T.

Sony CCD-V100E

This second-generation Video 8 camcorder is a remarkable machine - it includes time-lapse recording and wipe
effects amongst its repertoire of tricks. Far from providing time lapse, this one was doing things in double-fast time! The threading motion was normal, but thereafter the rotation of the reels, and the capstan from which they are driven, was somewhat prestissimo . . . The trouble lay in the direct-drive capstan motor, whose FG generator had gone on the blink. Replacing the capstan motor in this machine is an interesting task, involving removal and replacement of the threading ring as well as many of the underside PCBs.
E.T.

JVC HRD180

We've had some mains power interruptions here lately. This was the reason why two identical machines came to be sitting side by side on the in bench, with identical complaints: no display at all, and no record. When tested both machines worked perfectly in all respects. Two more cases of microcomputer lock-out! The microcomputer chips were obviously reset when the machines were powered up and switched on in the workshop.
E.T.

Fisher FVHP520

A no-go fault in a VCR can be caused by a multitude of things, from a blown mains fuse to some fiendish problem or other. This no-go machine's loading motor was not being driven. Investigation showed that one of the motordrive transistors, Q868, was burnt to a blob - for the very good reason that the control microcomputer chip was. simultaneously giving load and unload commands! As well as the microcomputer chip and Q868 we felt it prudent to replace both the multi-switch chips IC862 and IC864. The loading motor itself was unscathed and cheerfully did its stuff when the repairs were complete.
E.T.

JVC GXN7E

The owner told us that this camera produced no red. Certainly any bright red objects in its view were reproduced as bright blue on the monitor TV's screen. Now this camera is not very easy to check or service, because much of the circuitry is contained on daughter boards which are packed in a row and pin-soldered to the mother board.
Having overcome the physical access problem we found that the trouble lay in the $90^{\circ} 270^{\circ}$ subcarrier feed to the R-Y modulator on the PAL encoder board. The waveform at output pin 52 of IC01, the SSG (sync and subcarrier generator) chip, was sick. Replacement of the SSG module solved the problem and the only setting up required was to the fsc and fh trimmers - easily done.
E.T.

Sanyo VTC5300

The job card simply said "will not play". In fact the E-E signal remained present with the machine laced up and operating in the play mode. Unusual! With the top cover removed we found that the capstan and head drum were running continuously, even when stop was selected with no cassette present.

In this machine many of the command outputs from the syscon microcomputer chip pass through a multi-inverter i.c., Q3008 (type TC4(69). This chip had failed in a big way, with several of its output pins stuck high regardless of the input conditions. A replacement inverter chip cured the problem at much less cost than the microcomputer we initially suspected.
E.T.

	3.30	2SA940	0.59214	$\begin{array}{ll}\text { 2SC535 } & 0.79 \\ \text { 2SC536 }\end{array}$		$\text { AF } 180$	$\begin{aligned} & 0.55 \\ & 0.53 \end{aligned}$			BC560C	$\begin{aligned} & 0.14 \\ & 0.30 \end{aligned}$	BDX63A	$\begin{aligned} & 1.96 \\ & 121 \end{aligned}$	${ }^{\text {FFY52 }}$	$\begin{array}{l\|} \hline 0.27 \\ 0.49 \end{array}$	BYX77-350	0.80	
1585R	3.30	2SA940-2				BA656 BA7100		BC635		${ }^{\text {B0720 }}$		Br994				16		
16039	0.79	2SA950	0.72	${ }^{2 S C 537}$	0.54		AF186	0.53	BA841/	${ }^{2398}$	${ }^{\text {BCC336 }}$	028	BDY81	1.05	BFY90	0.61	${ }^{815} 56$	20
16181	1.04	2SA951	1.75	${ }^{25 C 605 L}$	1.16	AF239	0.43	BA843	3.96	BC637	024	${ }^{\text {BFF115 }}$	0.40	BLY49	220	${ }^{\text {BZ7993C30 }}$	1.86	
16182	1.04	2SA966-Y	1.16	${ }^{25 C 620}$	0.55	AF279	0.88	${ }^{\text {BAB54 }}$	5.76	- ${ }_{\text {BC639 }}$	020	${ }_{\text {BF }}^{\text {BF }}$ 817	0.66	BR100	029	BZY88 RANGE	${ }^{0.10}$	
16334	0.98	2SA999	1.36	${ }^{2 S C 6568}$	1.54 0.67	AL113	1.36	${ }_{\text {BAVI9 }}$	0.11	BC879	0.49	${ }_{\text {BF1 }}{ }^{\text {bF }} 1$	${ }_{0}^{0.67}$	${ }^{\text {BRIO1 }}$	${ }_{0}^{0.05}$	BZXX9 RANGE	0.10	
16335	0.94	2S8774	1.15	2SC681	4.40	AN115	${ }^{3.98}$	BAV20	0.35	вс880	0.31	BF123	021	${ }^{\text {BR103 }}$	0.15	C1060	0.46	
16446	0.98	2SB185	1.13	2SC682	1.88	AN155	1.89	BAV21	0.12	BC×34	0.18	${ }^{\text {BF1 } 127}$	0.13	${ }^{\text {BR303 }}$	1.15	C106M	0.76	
16600	1.38	${ }^{2 S 8375}$	3.87	${ }_{2 S C 684}$	1.65	AN206	258	Baw62	0.11	BCY70	0.30	BFF137	029	${ }_{\text {BRCL }}{ }^{\text {P16 }}$	2.67	C1129	0.58	
16802	1.27	2SB400	0.40	${ }^{25 C 693}$	0.63	AN208	3.55	BA $\times 12$	0.48	${ }^{\text {BCY7 }}$	021	BF153	0.58	BRC300	201	сАЗ334	1.55	
17052	5.61	2SB405	1.03	2SC710	0.69	AN210	228	BAX13	0.11	BCY72	020	BF154	0.26	BRC5296	0.71	CA3389	0.83	
17053	5.61	$2 \mathrm{SB449B}$	6.98	2SC71/A	0.50	AN211	325	BAX16	0.11	BD115	034	${ }^{85157}$	033	BRC6109	0.88	ca3090a 0	322	
17074	9.30	2SB511	220	2SC717	128	AN2140	1.50	BC107	0.13	${ }^{\text {BDI } 16}$	0.70	${ }^{\text {BFF } 158}$	0.18	BRC82	1.08	CA3034	220	
17089	3.45	${ }^{28854}$	1.39	${ }^{2 S C 7734}$	1.43	AN234	5.92	${ }^{\text {BCILO7A }}$	0.11	${ }^{80124}$	1.31	${ }^{85159}$	0.18	BRC83	219	CABI31EM	295	
17127	3.51	${ }^{2 S 8546}$	0.56	${ }^{2 S C 761-Y}$	${ }^{0} 0.95$	AN236	3.78	${ }^{\text {BCLIO78 }}$	0.18	${ }_{801241}{ }^{\text {P }}$ +KIT	0.69		0.31	${ }^{\text {BRCB4 }}$	208	CBF16848N-071 CD4001	1.56 034	
17376	1.58	${ }^{25856}$	280	${ }^{2 S C 7783}$	3.98	AN239	4.68	${ }_{\text {BCL }}$	0.15	${ }^{80131}$	0.50	${ }^{8 F 167}$	0.38	BRX44	0.60	ç4001 CO4002	0.34 0.27	
1 1N001	0.04	${ }_{2 S 6631}^{2 S 8618 A}$		${ }_{\text {2SC828 }}$	${ }_{0}^{1.85}$	AN240P	125	${ }_{\text {BCL } 109}$	0.12	${ }_{80} 133$	0.53	${ }_{\text {BFI } 17}$	0.35	${ }_{\text {BRX49 }}$	0.67	CD4008	1.35	
-1N4002	${ }_{0}^{0.065}$	${ }_{2 S 8643}$	0.80	${ }_{2 S c 8674}$	3.84	AN241	1.71	${ }^{\text {BC1098 }}$	0.15	${ }^{8 D} 135$	0.36	BF178	0.40	${ }_{\text {BSS }}$ B98	0.69	C04011	029	
1 1N4033	0.06	${ }_{2 S 8669}$	3.67	${ }_{2 S c}{ }^{\text {2 }}$ 276	0.96	AN245	4.49	${ }^{\text {BClogC }}$	0.12	${ }^{80136}$	0.26	8F179	0.35	BSS38 ${ }_{\text {BSTB0140G }}$	0.87 525	CD4012	0.24	
1 N 4004	0.05	2S8681	3.96	2SC930	0.54	AN253	1.10 3	BC113	0.14	${ }^{80137}$	0.36	${ }^{\text {BF }} 130$	0.36	${ }^{\text {BSTCO246 }}$	6.99	CD4013	0.33	
ina005	0.05	2SE695	198	${ }^{2 S C 935}$	4.13		3.85	${ }^{\text {BC119 }}$	0.36	${ }^{80138}$	0.46	8 BF 181	032	BSTC0233	${ }_{725}$	${ }^{\text {COL4016 }}$	${ }^{0.46}$	
1 104006	0.08	2S875	1.04	$2 \mathrm{SC936}$	8.66	AN262	120	BC126	023	BD139	${ }^{028}$	${ }_{\text {BF }} 182$	0	BSTCCO143	3.07	CO4017 C 04020	${ }^{0.82}$	
1N4007	0.07	${ }^{2 S 8777}$	0.10	${ }_{2 S C 940}^{2 S 51128}$	4.488	AN272 AN295	825 5.52	${ }^{\text {BC1 }}$ BC132	0.14	${ }^{8 D 140} 8$	1.70	${ }_{\text {BF }} \mathrm{BF} 183$	${ }_{0}^{0.43}$	BSTD1043	285	CO4022	123 0.39	
	0.05	${ }_{\text {2SCl }}$	1.13 6.75	2SD1138	1.00	AN301	245	BC137	0.18	BD150	125	BF185	0.39	BSV57B	3.49	C04023	0.28	
1 N5401	0.14	2SC1050	5.06	2S01273	1.56	AN302	3.99	BC138	0.34	BD15]	0.67	${ }^{\text {BFI } 194}$	0.14	BSW68	0.60	C04025	0.64	
1N5402	0.15	2SC1096	1.16	2SD1453	1.40	AN303	4.39	${ }^{\text {BC139 }}$	028	${ }^{\text {BD }} 160$	1.50	BF195	0.14	BSx19	129	${ }^{\text {C04028 }}$	0.94	
1 N5403	0.16	${ }^{2 S C 1104}$	3.98	${ }^{2 S D 152 K}$	264	AN305	8.95	BC140	0.95	${ }^{80163}$	0.71	${ }^{\text {BFF196 }}$	0.17	${ }^{\text {BSX } 20}$	0.30	CD44408	${ }_{106}^{0.85}$	
1N5404	0.15	${ }_{\text {2SCl114 }}$	${ }_{3} 4.54$	${ }_{2} 2$ 2023	${ }_{0} 0.49$	${ }_{\text {A }}$	5.53	${ }^{\text {BC142 }}$	0.23	${ }_{\text {BD1 }} 166$	0.42	${ }_{\text {BF } 198}$	0.17	${ }^{\text {BSY }} 79$	0.51	CD4049	0.46	
1 N5408	0.35	2SC1116	4.95	${ }_{2} 20235$	0.60	AN318	525	BC143	0.19	BD168	0.73	BF199	0.17	BT100A	1.61	CO4052	0.75	
${ }^{1} 1 \mathrm{~N} 914$	${ }_{500}^{0.04}$	2SC1124	128	$2 \mathrm{SD24}$	229	AN320	5.47	BC147	0.08	BD175	020	BF200	0.37	${ }^{\text {BT108 }}$	1.45	C04066	020	
1R3423	5.00	2SC1129	1.05	2SD257	1.98	AN321	225	BC148A	0.11	80179	0.45	BF218	0.36	BT119	1.76	C04069	029	
151555	0.31	$2 \mathrm{SC1131}$	0.64	${ }^{2}$ SD292	259	AN322	5.85	BC148B	0.13	${ }^{8 D 181}$	0.99	${ }^{85224}$	0.17	BT120	217	C04070	0.66	
1544	0.10	$2 \mathrm{SCl158}$	333	${ }^{250313}$	259	AN331	4.59	BC148C	0.11	${ }^{80182}$	0.99	BF237	0.05	${ }^{\text {BT121 }}$	2.48	CO4081 C 04093	0.35	
1 155012A	0.81	$2 \mathrm{SC1162}$	0.55	${ }^{2503250}$	228	AN337	1.81	- ${ }_{\text {BCT149 }}^{\text {BC148 }}$	0.11	${ }^{80183}$	129	${ }^{88240}$	0.17	${ }^{\text {BTT } 151-8008 ~}$	0.89	C04511	0.12 1.10	
15921	${ }_{0}^{0.10}$	${ }^{25 C 1172}$	25	${ }_{2}^{2 S D 348}$	16.13 5 50	${ }_{\text {AN }}{ }_{\text {AN345 }}$	1.17 58	${ }_{\text {BC153 }}$	0.14	${ }^{\text {BD1 } 187}$	0.53	BF245	0.50	В 176018	2.42	CD4528	204	
2 N 219 A	0.33	${ }_{2 S C 1212 A}$	1.97	${ }_{2 S D 350 A}$	3.05	AN362	1.50	BC154	0.14	BD189	0.69	BF245A	0.52	ВП8124	4.89	CD4556	1.47	
2N2222	0.38	2 2S1213	0.89	${ }^{2 \text { SD353 }}$	8.94	AN370	3.95	${ }^{\text {BC }}$-159	0.35	BD190	0.72	${ }^{82} \mathrm{E} 245 \mathrm{~B}$	0.49	${ }^{\text {Bu }} 106$	248	CRO2AM-8	1.0	
2N2646	0.80	${ }_{2 S C 1226}$	1.46	2 LS 389	241	AN5010	5.70	${ }^{\text {BC160 }}$	0.40	${ }^{\text {BD201 }}$	0.40	${ }_{\text {BF2 } 255}$	250	${ }^{\text {BU }}$ BU109	2.50	CX095D	4.09 3	
${ }^{2}$ N2904	0.36	${ }_{2 S C 1293}$	0.90	2 2S401	1.40	AN511	295	${ }^{8 C 168}$	0.36	BD203	0.50	BF256	0.38	BU110	5.69	CX104	9.64	
2N2305 2N206	0.59	${ }_{2 \text { 2SC1306 }}$	1.98	${ }^{\text {2SSO474 }}$	1.98	${ }^{\text {AN5 }}$	5.39	${ }_{\text {BC } 169}$	0.16	B2204	0.61	BF256LB	0.42	BU119	4.16	Cx108	10.50	
${ }^{2} \mathrm{~N} 2926$	0.15	${ }_{2 S C 1317}$	0.50	${ }_{2}$ 20560	298	AN5250	3.98	BC170	0.16	${ }^{\text {BD207 }}$	1.79	BF556LC	0.82	BU125	248	${ }^{\text {Cx109 }}$	7.86	
2N3053	0.27	$2 \mathrm{SC1364}$	0.49	2SD588A	236	AN5435	225	${ }^{\text {BC }} 1717$	0.11	B0208	0.34	${ }^{\text {BF252 }}$	0.34	${ }^{80126}$	1.45	${ }^{\text {cxi }} \times 130$	${ }^{8.768}$	
${ }_{2}^{2 N 3054}$	0.99	${ }^{2 S C 1383}$	120	${ }_{\text {2SD600 }}^{2 \text { 2S }}$	3.65	AN56610	${ }_{4}^{5.50}$	${ }_{8}^{\text {BC1728 }}$	0.13 0.27	${ }^{\text {BDO22 }}$	0.49	${ }_{\text {BF259 }}$	0.34	${ }^{\text {Bu205 }}$	1.35	${ }^{\text {c }} \times 136$	11.49	
${ }_{2}{ }^{2} 31343595$	1.51	${ }^{2 S C 1398}$	245 0.79	${ }_{2 S 0613}^{2 S 0601 R}$	1.05	AN5613	4.63	${ }_{\text {BC173 }}$	0.17	B0228	0.63	BF262	0.28	Bu206	127	CX139	11.83	
2N3702	0.14	$2 \mathrm{SC1413A}$	3.05	250621	12.85	AN5630	3.95	${ }^{\text {BC }} 1748$	027	8D229	1.05	${ }^{\text {BFF263 }}$	0.57	Bu207	1.05	${ }^{\text {Cx }} 157$	4.88	
2N3703	0.18	${ }^{2 S C 1446}$	125	2 20635	0.55	AN5701N	1.66	BC177	0.35	${ }^{80232}$	0.50	BF271	0.34	${ }^{\text {Bu208 }}$	120	${ }^{\text {cx }} 158$	5.52	
2N3705	0.16	${ }^{2 S C 1447}$	207	2SE639-R	0.72	AN6250	2.95	${ }^{\text {BC } 1788}$	0.26	${ }^{80234}$	0.42	${ }^{\text {BFF273 }}$	020	BU208,02	1.97	${ }^{\text {cxil7 }}$	${ }_{6}^{6.46}$	
2N3706	0.14	$2 \mathrm{SC1475}$	0.50	2 20655	0.98	AN6360	4.40	${ }^{\text {BCl79 }}$	0.26	${ }^{80237}$	0.47	${ }^{\text {BF274 }}$		Bu208A	1.12	Cx187	${ }^{6.84}$	
2 N 371	0.70	${ }_{2 S C}$ 15730	125	${ }_{2 S D 731}$	1.05	An 6340	10.14	${ }_{\text {BC182L }}$	0.07	BD240	0.57	BF337	0.45	BU226	295	DEC1	220	
2N372	1.71	$2 \mathrm{SC1578}$	8.74	250773	0.60	AN6341	2.02	${ }^{\text {BC } 1832}$	0.11	BD241	0.39	${ }^{\text {BFF338 }}$	033	BU326	200	DEC2	220	
2N3773	1.65	2SC1583	0.50	2 S 811	3.30	AN6342	27	BC183LB	0.26	BD242	0.39	BF355	0.31	BU323A	202	DS34868N	4.33	
2N3819	0.42	2SC1617	3.99	$2 \mathrm{SD823}$	1.98	AN6383	16.00	BC184	0.13	BD243A	0.35	BF362	0.62	BU326S	220	DS3487N	4.95	
2N3823	1.17	${ }^{2 S C 675}$	1.41	${ }^{250837}$	1.56	AN6371	924	${ }^{\text {BCl184L }}$	0.14	${ }^{82243 C}$	029	${ }^{8+363}$	0.60	BU406	1.49	${ }_{\text {E1222 }}$	0.40	
2 N 3904	0.62	${ }^{2 S C 1678}$	1.98	${ }^{250841}$	260	ANG387	${ }_{1}^{10.05}$	${ }^{\text {BC1 }}$ B64 188	0.27	${ }^{\text {BD2 } 2444}$	0.79	${ }_{\text {BF391 }}$	${ }_{0}^{0.50}$	${ }^{81} 84070$	1.9 0.82	${ }^{\text {E55336 }}$	028 0.25	
${ }^{2 N 39088}$	0.62	2 2SC1741	125	${ }_{\text {2SO855 }}$	1.55 184	AN6551	1.35	${ }^{\text {BCC187 }}$	027	${ }^{\text {BD245C }}$	0.99	BF417	0.84	BU407D	0.99	E9003	0.46	
2 N 4240	3.30	${ }_{2}$ SC1815	0.45	${ }^{2}$ 2SD882	1.15	AN6552	0.68	BC204	0.16	BD246C	125	BF418	1.87	BU412	9.15	E9005	0.50	
2N4444	0.99	${ }^{2 S C 1826}$	0.61	2 2D834	1.63	AN6610	240	BC207	0.14	BD253	1.05	${ }^{\text {BF422 }}$	029	buaz6a	1.13	ESM3108P	4.15	
2N5293	0.50	2SC1829	3.34	${ }^{2 S 08988}$	1.85	AN6677	10.45	${ }^{\text {BC212 }}$	0.11	BD278A	0.60	${ }^{\text {BF423 }}$	0.52	${ }^{\text {BU5 } 500}$	1.45	FND500	5.78	
2 N 5294	0.50	$2 \mathrm{SC1} 1875$	5.85	${ }^{\text {2SK }}$ 105 ${ }^{\text {H }}$	215	AN7111	125	${ }^{\text {BC2128 }}$	0.26	${ }^{80317}$	285	${ }^{\text {BF450 }}$	O. 0.29	${ }^{\text {BU5 } 5384}$	1.65	G0243	1.65 4.95 1	
2 N 5296	0.49	2SC1881K	298	${ }^{\text {2SK152 }}$	250	AN714E	${ }^{8} 54$	${ }^{\text {BC213L }}$	0.10 0.15	${ }^{803378}$	2.42	${ }^{\text {BF457 }}$	0.41	${ }_{\text {BUGU0 }}$	1.80	GF758	- 0.85	
${ }^{2} \mathbf{2 N 5 2 9 7}$	0.50	${ }_{2} 2 \mathrm{SCC1893}$	3.02 0.98	${ }^{\text {2SKK34 }}$	0.76 107	${ }_{\text {ANV } 120}$	3.65 4.65	${ }_{\text {BC214 }}$	0.10	во380	0.76	BF458	0.33	BU705	1.85	GH3F	1.82	
${ }^{2} \times 5271$	1.18	${ }_{2 S C 1921}$	1.37	2Sk79	298	AN7145	280	BC214LB	026	B0410	0.52	BF459	0.52	BU806	1.79	HA1215	1.75	
2N6109	1.58	${ }^{2 S C 1923}$	0.30	40478	0.50	AN7146	4.35	${ }^{\text {BCC225 }}$	0.40	${ }^{\text {B0,433 }}$	0.47	BF460	1.45 02	BU807	0.80	HA1211	253 1.50	
2N6130 2N6133	0.80	${ }_{\text {2SCl1942 }}$	225	${ }_{40636}^{40594}$	1.43	AN7151 AN7156	226	${ }_{\text {BC2378J }}$	0.12	${ }^{\text {B0, }}$ B0435	0.49	${ }^{\text {BFF470 }}$	0.55	BUW84	1.39	HA11226	10.44	
${ }^{\text {2 }}$ 26180	0.95	${ }_{2 S}{ }^{2} \mathrm{SC} 1945$	7.99	${ }_{4}^{4} \times \times 581$	0.80	AN7158	232	BC238	0.10	B0436	0.60	BF471	0.33	BUX84	1.00	HA11229	0.85	
2N6292	1.65	$2 \mathrm{SC1959}$	1.18	741	0.30	AN7218	1.64	BC233A	0.13	${ }^{\text {BDa }}$ 837	0.49	${ }^{\text {BF472 }}$	0.33	BUX85	1.10	HA11235	1.75 5.75 5.	
2N696	0.43	2SC1957	1.09	7805-T022	0.63	AN7223	425	${ }^{8 C 2388}$	0.08	B0438	0.40	BF479	0.35	BuY69a	204	HA11124 HA11249	${ }_{4} 5$	
2 N698	0.43	${ }^{2 S C 1953}$	1.93	7806	0.73	AU107	350	8C239	0.12	${ }^{\text {B0444 }}$	1.41	- ${ }_{\text {BF4 } 491}$	1.38	${ }^{\text {BYY }} 126$	0	HA11249 HA11251	${ }_{4.47}^{4.02}$	
${ }_{\text {2SA }}^{\text {2SA1006 }}$	1.50	2SC1962	1.93	${ }^{7808} \mathbf{7 8 - T 0 2 2}$	${ }_{0}^{0.85}$	${ }_{\text {AUlil }}$	225	${ }_{\text {BC251A }}$	0.31	${ }^{\text {BDSO9 }}$	1.65	BF495	0.64	BY133	0.12	HA1125	429	
2 2SA 1015	0.49	${ }^{2 S C 1983}$	200	7815	0.64	AY105k	208	BC294	0.50	BD510	0.62	BF506	0.43	BY164	0.44	HA1137W	287	
2 2SA1012	125	2 2S1985	1.55	7818	0.92	${ }^{\text {AY106 }}$	1.09	${ }^{8 C 330}$	0.35	${ }^{\text {BD519 }}$	1.50	${ }^{\text {BF509 }}$	0.41	${ }^{\text {BY176 }}$	${ }^{0.52}$	HA1138	5.03	
${ }^{2 S A 1020 Y ~}$	0.89	${ }_{\text {2SC2009 }}$	${ }_{233}^{0.34}$	7824 7905	0.080	${ }^{\text {BA524 }}$	821 225	${ }_{\text {BC301 }}^{80}$	0.53	${ }^{\text {BD5 } 530}$	1.18	${ }_{\text {BF532 }}$	0.45	BY182	0.95	HA1144	${ }_{7} 7.87$	
2SA473	0.75	${ }_{2 S C 2028}$	211	${ }_{9358}$	10.70	${ }_{840}$	1.55	${ }_{8} \mathrm{C} 303$	1.04	BD533	0.67	BF596	0.18	BY184	0.40	HA1156	1.16	
2547665	4.95	${ }^{2 S C 2063}$	0.99	${ }_{\text {A }} 133$	0.12	BA130	0.14	${ }^{\text {BC3 }} 307$	0.18	BD534	0.53	BF597	027	${ }^{\text {BY187 }}$	0.71	HA1160	4.78	
2SC1173Y	125	2SC2078	3.11	AC133	0.12	BA1310	1.98	BC307A	0.08	B0535	0.79	$8 \mathrm{ff94}$	0.22	${ }^{\text {BY189 }}$	1.79	HA1166	1.96	
$2 \mathrm{SC1474}$	125	$2 \mathrm{SC2073}$	225	AC123K	0.43	BA1320	1.38	${ }^{\text {BC3 }} 308$	0.18	${ }^{B D 536}$	0.61	${ }_{87575}^{8757}$	0.64	Bri98/2	1.50	HA166X	6.43 5 5	
2SC1509 ${ }_{\text {2SOPRL }}$	1.35	${ }_{\text {2SCO299 }}$	1.65	${ }_{\text {AC128 }}$	0.34	${ }_{\text {BA1330 }}$	275	${ }_{\text {BCO309 }}$	0.17	${ }^{\text {BD538 }}$	0.80	${ }_{87761}$	1.05	BY203/20	0.59	HA11706	3.61	
2SAliogs	374	2SC2141	244	${ }_{\text {AC1 }} 138$	0.24	BA145	0.19	BC317A	0.13	BD5448	0.83	B7762	0.50	BY207	027	HA11705	8.00	
2SA1103	6.55	2SC2166	1.98	AC141	029	BA148	025	${ }^{8 C 327}$	0.15	80598	125	${ }^{\text {Br869 }}$	0.47	${ }^{\text {BY208 }}$	0.46	HA11703	4.22	
2SA329	0.40	2SC2216	0.69	AC142K	0.35	BA154	0.40	${ }^{\text {BCC328 }}$	0.10	${ }^{80677}$	0.69	${ }^{\text {Br8780 }}$	0.30	${ }^{\text {BY210-400 }}$	0.19	HA11701 HA1710	4.56 9.50	
${ }^{254489}$	1.17	2SC2233	1.80	AC151	028	BA155	0.12	BC337 BC338	0	${ }^{80679} 8$	0.76		0.49	BY210-800	${ }_{0}^{0.34}$	HA11713	9.75	
2SA490 2SA493	225	${ }_{2 S C 2278}$	1.65	${ }_{\text {ACl79 }}$	028	${ }_{\text {BA159 }}$	${ }_{0.08}$	${ }_{\text {BC3 }}$	0.24	BD681	1.48	BF970	0.50	BY218	1.64	HA11711	20.16	
2SA562	0.57	2SC2314	217	${ }_{\text {AC183 }}$	0.72	BA182	0.24	BC440	0.69	BD696	247	BFR39	0.44	BY223	123	HA11715	325	
2SA564	0.75	$2 \mathrm{SC} 2335+\mathrm{KIT}$	13.44	AC187	0.39	BA222	1.66	${ }^{\text {BC }}$ 841 1	0.44	80699	3.49	${ }_{\text {BFR61 }}$	0.92	BY224-600	1.88	HA11714 HA1716	9.75 13.10	
${ }^{25} 5614$	4.88	2SC2551	126	${ }_{\text {AC188 }}{ }^{\text {AC188 }}$	0.43 0.47	${ }_{\text {bA3311 }}$	124	BCa54 BC460	0.42	${ }^{\text {BDD700 }}$	3.90 0.98	${ }^{\text {BFR679 }}$	0.50	${ }_{\text {B2226 }}$	1.25	HA11725	+18.10	
${ }_{\text {2SAE39S }}$	1.14	2SC2570	388 288	${ }_{\text {AC188.01 }}$	0.49	${ }_{\text {BA312 }}$	1.45	BC461	0.35	BD709	1.05	bFRB1	1.65	BY227	0.49	HA17725MP	16.00	
2SA659	0.49	${ }^{2 S C 2577}$	1.60	AC188K	0.43	BA313	0.76	BC462	1.15	BD710	0.80	BFR36	1.08	${ }^{8 Y 228}$	0.60	HA117555P	623	
$2 \mathrm{SA673}$	1.50	2SC2578	6.75	AC193k	0.65	BA317	0.08	${ }^{\text {BC463 }}$	0.64	B0809	0.85	BFAB9	1.63	${ }^{\text {BY229-1000 }}$	1.12	HA11781	19.90 5 5	
${ }^{25 A 634}$	1.61	${ }^{2 S C} 2671$	1.99	AC194K	0.65	${ }^{\text {BA3 }}$ B78	${ }^{0.010}$	${ }_{\text {BC4 }} \mathrm{BC478}$	0.37	88810	0.69	BFR99A	0.70	${ }_{\text {BY295-600 }}$	${ }_{0}^{0.929}$	HA1180 HA1196	5.15 743	
2SA6979	1.05	${ }_{\text {2SCL2888 }}$	207 1.85	${ }_{\text {AD }}$ AD 143	1.93	${ }_{\text {bas33 }}$	1.1 .7	${ }_{\text {BC479 }}$	0.41	${ }^{\text {B08889 }}$	0.79	${ }_{\text {Br }}^{4}$	0.43	BY295-600	1.00	HA13001	27.45	
2SAP15	0.95	${ }_{2 S}{ }^{2} 31535$	6.84	AD145	1.50	bA335	627	BC532	0.28	B0895	231	BFT84	0.40	BY298	0.36	Hal 306	226	
2SA747	10.74	${ }^{25 C 372}$	1.40	AD161	0.30	BA5102A	288	${ }^{\text {BC546 }}$	0.08	${ }^{80899}$	248	${ }^{\text {Brw }}$ 810	0.50	${ }^{\text {BY299 }}$	0.45	HA1338	750 738	
2 SA 748	1.36	${ }^{2 S C} 5373$	1.16	${ }_{\text {AD262 }}$	0.30 125	${ }_{\text {BA514 }}$	1.95	${ }^{\text {BC5 } 547}$	0.10	${ }^{809901}$	${ }_{0}^{0.89}$	${ }_{\text {Bra }}^{8 \times 84}$	${ }_{0}^{0.37}$	${ }^{\text {BY4 } 409}$	1.99	HA13402	238 7.87	
2SAB17 2SAB18	${ }_{1}^{0.185}$	${ }_{\text {2SC3838 }}$	$1 \begin{aligned} & 1.35 \\ & 0.50\end{aligned}$	${ }_{\text {ADF62 }}$	124	${ }_{\text {BA521 }}$	252	${ }^{\text {BCC549 }}$	0.10	BDw83C	1.45	BFX85	0.41	BY448	1.35	HA13342	265	
2SA835	250	2 SC 394 V	0.81	AF115	0.79	BA524	8.94	${ }^{\text {BC550 }}$	0.10	BDW84C	1.56	BF×86	0.36	87713	0.05	HA13365	4.02	
2SAB33	0.89	2SC403C	0.50	AF118	120	BA526	7.98	${ }^{\text {BC556 }}$	0.10	${ }^{80 \times 32}$	1.75	${ }^{\text {Brx }} 87$	0.55	BYW 96000	0.69	HA1366WR	1.50	
2 2SAB4 4	0.65	${ }^{2 S C 41}$	219	AF127	0.50	BA527	298	${ }^{\text {BC55 }}$ 8	0.10	${ }^{\text {BDX } 53 A}$	4.93	${ }_{\text {Brx }} 88$	0.34	${ }_{\text {BYW }}{ }^{\text {BY/ }}$	${ }^{0.16}$	HA1367 HA13888	${ }_{245}$	
${ }_{\text {2SA }}^{\text {2SAB87 }}$	0.80 215	${ }^{\text {2SCA58 }}$	0.15 0.92	${ }_{\text {AFF }}^{\text {AF } 1798}$	0.53 1.45	${ }_{\text {BA536 }}$	1.46 205	${ }^{\text {BC5558 }}$	0.10 0.10	${ }^{\text {BDX }}$ BX548	216	${ }_{\text {BrF50 }}$	${ }_{0} 0.34$	B ${ }^{1} \times 556500$	023	HA1368	245 207	
${ }_{\text {2SASA37R }}$	21.97	${ }_{\text {2SC515A }}$	285	${ }_{\text {AF179 }}$	0.55	${ }_{\text {BA66209 }}$	4.55	${ }_{\text {BC5598 }}$	0.11	${ }_{\text {BDX }}$ 62A	215	BFY51	025	BYX71-600	0.90	HA1370	3.30	
15 YO		SEEITIIS		K For		NEPM4		10CA		MEER		60 T		VG		JAT 1	TAL	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - 0 \&) \& 15 \& M \& T \& 0 \& \(4 \pi\) \& 5 \& 1 \& 1 \& 24 \& \& \% \(]\) \& 19 \& 7 \& \(20: 3\) \\
\hline HA1374 \& 4.80 \& LR3419 \& 9.37 \& NE565N \& 1.33 \& SKE4F2/08 \& 0.90 \& STK3042 \& 4.55 \& TA7312P \& 245 \& TD62105P 250 \& TDA3560 \& 525 \& TUA2000 \\
\hline HA1377 \& 1.75 \& LR3471 \& 9.37 \& NE6458N \& 3.35 \& SKE4F206 \& 0.44 \& STK3044 \& 5.75 \& TA7313AP \& 1.36 \& TD62104P 250 \& TDA35710 \& 3.48
5
58 \& \begin{tabular}{ll}
TV106 \& 237 \\
TV600 \& 297 \\
\hline 109
\end{tabular} \\
\hline HA1389R \& 205 \& LU1141 \& 727 \& NP106 \& 125 \& SKEAF2/10 \& 124 \& SIK4019 \& 4.50 \& TA7314 \& 5.94 \& TD62706P 4.50 \& TDA3590 \& 5.79 \& \begin{tabular}{ll}
\\
\hline
\end{tabular} \\
\hline HA1389 \& 239 \& Lu52012 \& 5.95 \& 0a802 \& 0.11 \& SKE4G202 \& 0.96 \& STK1330 \& 10.575 \& TA7323P \& 3.15
115 \& TDA10018 \& TDA3591 \& 6.45 \& ULN2204 10.55 \\
\hline HA1392 \& 3.65 \& Lu52011 \& 14.95 \& \({ }^{\text {OA47 }}\) \& \({ }_{0}^{0.16}\) \& SKEEF3/10 \& 1.60 \& STK433 \& \({ }_{825} 62\) \& TA7325P \& 1.15 \& TDA1003A \& TDA3650 \& 7.95 \& UPA53C \(\quad 4.94\) \\
\hline HA1394 \& 3.95 \& Lu03112 \& 1237 \& OA95 \& 0.13 \& SKS1/10 \& 2.15 \& STK4332 \& \({ }_{5}^{85}\) \& TA7339P \& 185 \& TDA1005A \(\quad 2.38\) \& TDA3652 \& 260 \& UPC1003 5.95 \\
\hline HA1397 \& 3.76 \& M193 \& 6.83 \& OC78 \& 229 \& SL1310 \& 3.14 \& STK435 \& \[
\begin{aligned}
\& 5.94 \\
\& 106
\end{aligned}
\] \& \({ }_{\text {TA }}^{\text {TA7340P }}\) \& 5.95
310 \& \(\begin{array}{ll}\text { TDA1006A } \\ \text { TDA1010AF } \& 211 \\ 4.25\end{array}\) \& tda3651a \& 295 \& UPC1009C \(\quad 8.95\) \\
\hline HA1398 \& 295 \& M21C \& 1.13 \& 0 C 29 \& 215 \& \({ }_{\text {SLI }}\) \& 2.0 \& SIK4352 \& \[
\begin{aligned}
\& 1.95 \\
\& 4.70
\end{aligned}
\] \& \begin{tabular}{l}
TA7607AP \\
TA7609
\end{tabular} \& \[
\begin{aligned}
\& 3.10 \\
\& 3.99
\end{aligned}
\] \& \& TDA3351 \& 1.95 \& UPC1025H \(\quad 300\) \\
\hline HA1406 \& 1.30 \& M23C \& 288 \& OC36 \& 128 \& SL4432A \& 3.4.4 \& SIK437 \& \[
\begin{aligned}
\& 4.70 \\
\& 9.65
\end{aligned}
\] \& ta7611ap \& 235 \& \begin{tabular}{ll}
TDA1010 \& \(\mathbf{1 2 5}\) \\
\hline
\end{tabular} \& IDA3551A \& 1.5 \& \\
\hline HA1452 \& 0.85 \& M293 \& 6.95 \& OC44 \& 0.35 \& \({ }_{\text {SLI432A }}\) \& \({ }_{248}^{3.44}\) \& SIK437
STK4372 \& \({ }^{9} 9.65\) \& TA7611AP \& 225 \& \begin{tabular}{ll}
TDAA010 \& 128 \\
TDA1011A \& 1.03 \\
\hline
\end{tabular} \& TDA3950 TDA4050B \& 2.295 \& \begin{tabular}{ll}
UPC 1028 H \\
UPC 1020 H \& 200 \\
\hline 7
\end{tabular} \\
\hline HBF4030AF \& 248 \& M5102L \& 4.58 \& OC45 \& 0.18 \& SL439 \& 2.88 \& STK439 \& 725 \& TA7622ap \& 12.87 \& tDA1028 245 \& TDA4280 \& 5.95 \& \({ }^{4 P C} 10032 \mathrm{H} \quad 0.62\) \\
\hline HD14538 \& 207 \& M5115P \& 524
3.15 \& 0C72 \& 0.44 \& Sl430 \& 3.98 \& STK441 \& 8.75 \& TA7628P \& 5.06 \& tDA \(1034 \mathrm{~B} \quad 242\) \& TDA4230 \& 4.47 \& UPC1042C \({ }^{8.95}\) \\
\hline HD38702-A2
HD 3850 A53 \& \({ }^{8.95}\) \& \({ }_{\text {M }}^{\text {M }}\) M12312 1231 P \& 3.15
0.95 \& \({ }_{\text {ON236 }}\) \& 1.06 \& SL490 \& 125 \& STK443 \& 10.29 \& TA7629P \& 7.50 \& TDA1035S 2.95 \& TDA4400 \& 227 \& UPC1156H \(\quad 4.50\) \\
\hline HD38750A-7 \& 725 \& M5134-9341 \& 4.13 \& ON782 \& 1.98 \& S1901B \& \({ }^{6.59}\) \& STK457 \& 1345 \& TA7630P \& 0.95 \& TDA1035T 1.85 \& TDA4420 \& 255 \& UPC1158 \\
\hline HD38800A50 \& 14.09 \& M51353P \& 535 \& \({ }_{\text {OT }}\) OTS 121 \& \({ }_{2}^{1.45}\) \& SL918A
SN16861 \& \({ }_{1}^{6.98}\) \& STK460 \& 6.10 \& TA7640AP \& 229 \& TDA1037 \& TDA44222 \& 3.05
9.00 \& \\
\hline HD44881405 \& 19.98 \& M51393AP \& \({ }_{9}^{5.45}\) \& \({ }_{\text {PTP6042 }}\) \& 245
4.98 \& SNI68862AN \& \({ }_{2} 1.58\) \& STK461 \& 9.68 \& TA7672P \& 255 \& \(\begin{array}{ll}\text { IDAIO37D } \& 205 \\ \text { TDAIO4A } \& 1.95\end{array}\) \& tda4431 \& 227 \& UPC1186H \(\quad 1.05\) \\
\hline HEF4001BP \& 0.67 \& M51394P \& 14.05 \& R1038 \& 219 \& SN16966N \& 1025 \& \({ }_{\text {STK463 }}\) \& 11.85 \& TA77768 \& 2.81
1250 \& TDA1047 4.10 \& TDA4440 \& 326 \& UPC1181H 125 \\
\hline HISH1010 \& 8.59 \& M5142P \& 6.85 \& R1039 \& 219 \& SN29717N \& 7.19 \& STK466 \& 11.7 \& TA7726P \& 12.50 \& \(\begin{array}{ll}\text { TDA } 1047 \\ \text { TDALO59B } \& \begin{array}{l}4.10 \\ 0.98\end{array}\end{array}\) \& IDA4442 \& 4.15 \& UPCL185H \(\quad 1.60\) \\
\hline HISH1004 \& 6.00 \& M5144P \& 297 \& R2008B \& 1.33 \& SN29716N \& 3.64 \& STK501 \& \({ }_{6} 6.38\) \& tan350a \& 6.45 \& TDA 1054 M \& TDA4500 \& 250 \& UPC1188
UPC1212C \\
\hline HISH1002 \& 9.50 \& M51513L \& 206 \& R2009 \& 1.98 \& SN297715N \& 6.4 \& STK502 \& 5.40 \& TAA570 \& 1.74 \& tDA \(1060 \quad 2.50\) \& TDA4610 \& 1.78 \& \(\begin{array}{ll}\text { UPCL1212C } \& 1.72 \\ \text { UPC1225 } \& 375\end{array}\) \\
\hline HM6231
HM6232 \& 9.81
10.65 \& M51515BL \& 275 \& \({ }_{\text {R2020 }}^{\text {R20 }}\) \& 133
138
13 \& SN29723 \& \({ }_{8.7}^{11.95}\) \& STK5314 \& 1232 \& tas621axı \& 4.85 \& t0A1082 295 \& TDA4620 \& 4.78 \& \begin{tabular}{ll}
UPC 1230 \& 1.78 \\
\hline
\end{tabular} \\
\hline HM6232
HM6251 \& 10.65
4.95 \& M51517L \& 220 \& \({ }_{\text {R2029 }}\) \& 1.30 \& SN29764AN \& 1.65 \& STK5730 \& 299 \& taA621A12 \& 214 \& TDA1151 122 \& tDA5500 \& 6.18 \& UPC1238 \(\quad 4.09\) \\
\hline HM7103 \& 4.85 \& M5194AP \& 5.74 \& R2257 \& 3.71 \& SN29767 \& 4.98 \& STK7216 \& 14.50 \& IAA661B \& 252 \& TJAII70S \(\quad 1.85\) \& TDA5700 \& 275 \& UPC1263 4.09 \\
\hline HM9032 \& 9.98 \& M5231L \& 1.95 \& A2265 \& 1.49 \& SN29770BN \& 1.95 \& STK772 \& 6.95 \& TAA691 \& 8.58 \& TDA1990 \(\quad 211\) \& TDA7270S \& 225 \& UPC1277H \\
\hline HM9012 \& 322 \& M 53274 P \& 133 \& \({ }_{\text {R2323 }}\) \& 1.18 \& SN297728N \& \({ }_{1}^{2.5}\) \& STR1096
STP4090 \& \(\begin{array}{r}5.45 \\ 10.55 \\ \hline\end{array}\) \& TAAP900 \& 375
487 \& TDAL 1902 ll \& TDAP4403 \& 24
1.99 \& \begin{tabular}{ll}
UPC1278f \& 215 \\
UPC 1351 C \& 1.81 \\
\hline
\end{tabular} \\
\hline HM9015 \& 324 \& M M \({ }^{\text {M }}\) \& 3.45 \& \({ }_{\text {R2323 }}\) \& 0.76 \& \({ }_{\text {SN29791 }}\) \& \({ }_{298}^{1.5}\) \& STR440 \& \({ }_{5} 5\) \& TAA970 \& 283 \& \begin{tabular}{ll}
TDA1200 \& 1.50 \\
TDA1235 \& 3.88 \\
\hline
\end{tabular} \& TDA9503 \& 1.95 \& UPC1350C \(\quad 1.40\) \\
\hline HT4207 \& 17.16 \& M 58478 P \& 8.7 \& R2354A \& 2.01 \& SN29798N \& 5.56 \& STR441 \& 3.95 \& TAA110 \& 252 \& TDA1236 \(\quad 4.30\) \& TDA9513 \& 225 \& UPCC1353 \(\quad 7.85\) \\
\hline HT4208 \& 20 \& M 584885 \& 13.65 \& R2354B \& 201 \& SN2709 \& 0.4 \& STR451 \& 5.36 \& TAG232.600 \& 0.79 \& TDA1270 \({ }^{\text {Ti.55 }}\) \& TDB1033 \& 2.68 \& \(\begin{array}{ll}\text { UPC1355C } \& 213 \\ \end{array}\) \\
\hline 1N5401 \& 0.11 \& MA06 \& 1.07 \& R2443 \& 0.88 \& SN7400N \& 0.34 \& STR453 \& 8.16 \& TAG62\%-600 \& 120 \& TDA1327A 1.33 \& TDE103 \& 7.05
1.49 \& \\
\hline 1R2403 \& 1.45 \& ma8001 \& 0.82 \& \({ }^{\text {R2461 }}\) \& 1.50 \& SN7401N \& 0.36 \& \({ }^{\text {STR }}\) 454 \& 520 \& tializas \& \({ }_{1}^{0.05}\) \& TDA1412 1.05 \& TEA1002 \& 230 \& UPC.1365C \(\quad 2.98\) \\
\hline IR2CO5
IR3P06 \& 225 \& MA8003 \& 1.16
1.98
1 \& \({ }_{\text {R2540 }}^{\text {R25 }}\) \& 2.05
3.30 \& SN7402N
SN704N \& 0.65 \& \({ }_{\text {T }}^{\text {STR02920 }}\) \& \({ }^{4.95}\) \& \({ }^{\text {TBAIz }}\) TBAI2OS \({ }^{\text {a }}\) \& \({ }_{0}^{1.05}\) \& TDA1420 255 \& TEA1009 \& 1.86 \& UPC13666 \\
\hline 1 R 3 P 08 \& 4.95 \& M 83712 \& 1.85 \& R2615 \& 0.67 \& SN7408N \& 027 \& \({ }^{\text {T } 60355 \mathrm{~V}}\) \& 0.73 \& TBAI2OU \& 0.62 \& TDA1440 3.45 \& TEA1014 \& 250 \& UPC1360C 4.51 \\
\hline IR94558 \& 625 \& M83713 \& 1.68 \& RCA16029 \& 201 \& SN7410N \& 027 \& T6036 \& 0.67 \& TBA120A \& 1.05 \& TDA1470 275 \& TEAIO20S \& 821 \& UPC.1378H \({ }^{\text {H }}\) \\
\hline 15751 \& 285 \& M83330 \& 294 \& RCA16600 \& 138 \& SN74121 \& 1.60 \& T6037 \& 211 \& TBA1440 \& 1.65 \& TDA1470P 425 \& TIC106C \& 0.61 \& \begin{tabular}{ll}
UPCL141C \& 3.75 \\
UPC1458 \\
\hline 8.65
\end{tabular} \\
\hline \(1{ }^{17425}\) \& 0.18 \& MC13002 \& 3.59 \& RCA16802 \& 1.08 \& SN7413N \& 0.35 \& \({ }_{\text {T }}\) \& 0.97
120 \& \& 1.95 \& TDA 5060 \& TiC116Y 100 \& 207 \& \\
\hline \({ }^{1200036 E}\) \& 5.37
593 \& MC1310P \& 225
133 \& RCA 17074
RCA17376 \& \({ }_{1}^{6.58}\) \& SN74141N
SN7415/AN \& 265
1.51 \& \({ }_{\text {T }}{ }_{\text {T6049 }}\) \& 1.45 \& TBA240A \& 285 \& TDA1512 3.69 \& TIC44 \& 0.72 \& UPC2002 \(\quad 1.48\) \\
\hline K174YP \& 3.46 \& MC1330 \& 1.45 \& RCA17524 \& 0.83 \& SN74 54 \({ }^{\text {N }}\) \& 127 \& T6052V \& 0.87 \& tBA395 \& 1.10 \& TDA1515 \(\quad 6.98\) \& TIC45 \& 0.50 \& UPC30C \(\quad 251\) \\
\hline KA2101 \& 292 \& MC1350P \& 1.61 \& RCA17523 \& 0.83 \& SN74190 \& 1.35 \& T6058 \& 3.08 \& TBA3950 \& 1.10 \& TDA1559 3.15 \& TIC47 \& 0.35 \& UPC324C

UPC32C

\hline KC581C \& 6.38 \& MC1351P \& 3.96 \& RCA2060 \& 2.00 \& SN7420N \& 0.58 \& T6059 \& 277 \& titas ${ }^{\text {tia }}$ \& 239 \& TDA1770 \& TPP10 \& 0.45 \& | UPC3299 | 5.35 |
| :--- | :--- |
| 4.35 | |

\hline KC5822 \& 3.97
663 \& MC1352P \& 250
215 \& RGPO1-
RGP10 \& 1.65
0.30 \& SN7440N \& 0.29 \& ${ }^{\text {T }} 9005 \mathrm{~V}$ \& 238 \& TBA440P \& 1.55 \& TDA1905 $\begin{array}{ll}\text { 1.76 }\end{array}$ \& TPP112 \& 0.54 \& UPC41C 4.10

\hline ${ }^{\text {KC5s33C }}$ \& 1.69 \& ${ }_{\text {MC1358P }}$ \& 1.35 \& RGP30M \& 028 \& SN7472 \& 1.54 \& T9011V \& 0.49 \& TBA4800 \& 1.30 \& TDA1908 1.95 \& TP1P17 \& 0.50 \& UPC4558C 215

\hline LAi201 \& 1.02 \& MC14001 \& 240 \& RT402 \& 1.58 \& SN7474N \& 0.44 \& T9013V \& 722 \& TBA510 \& 211 \& TDA1340 1.95 \& T1P121 \& 0.45 \& UPC474

\hline LA1210 \& 1.56 \& MC14013 \& 0.41 \& RT905a \& 2388 \& SN7490AN \& 0.93 \& T9014V \& 260 \& TBA520 \& 1.15 \& $\begin{array}{ll}\text { TDA1950 } & 255 \\ \text { TDA2005 } & 145\end{array}$ \& ${ }_{\text {TPP126 }}$ \& ${ }^{0} 15$ \& $\begin{array}{ll}\text { UPC554C } \\ \text { UP565 } & 1.85 \\ 295\end{array}$

\hline ${ }^{\text {LA1230 }}$ \& 1.10 \& MC14433P \& 5.95 \& \$1299 \& 7.98 \& SN741526N \& 0.53 \& T9016 \& 102 \& tBas200 \& 1.68 \& TDA2006 1.55 \& TIP137 \& 150 \& UPC574

\hline LA1320 \& 287 \& MC14499P \& 215 \& ${ }_{\text {Sl7 }} 175$ \& 31.48

0.95 \& SN760013 \& 1.50 \& ${ }_{\text {T }}$ \& | 1.98 |
| :--- |
| 1.45 | \& titas30 \& 130 \& TDA2004 3.49 \& T1P29 \& 084 \& UPC575C2 240

\hline ${ }_{\text {LAl352 }}$ \& 1.75
11.0 \& ${ }_{\text {MC1 }}$ \& 3.75 \& S28800 \& 5.54 \& SN76023N \& 235 \& T9035V \& 1.95 \& tibas40 \& 1.15 \& tDaz202 $\quad 0.90$ \& TIP2955 \& 0.95 \& UPC.576H

\hline LA1363 \& 1.05 \& MC14511BCP \& 1.10 \& S2802 \& 3.47 \& SN76023ND \& 3.96 \& T9051 \& 6.95 \& TBA5400 \& 1.15 \& TDA2003 1.75 \& TIP23A \& 0.46 \& UPC57\% 125

\hline LA1364 \& 3.02 \& MC145788CP \& 215 \& S2818 \& 0.85 \& SN76033N \& 3.5 \& ${ }^{\text {T9054V }}$ \& 0.7 \& tBabsol \& 1.40 \& TDA2010 | 1.68 | |
| :--- | :--- |
| TDA2020 | |
| | 195 |
| 1 | | \& $\operatorname{TIP}_{\text {T1Pag }}$ \& 0.63 \& $\begin{array}{ll}\text { UPC578C } \\ \text { UPC580C } & 8.70 \\ 4.13\end{array}$

\hline LA1365J \& 0.95 \& MC1712 \& 3.88 \& S3702S \& 6.15 \& SN76110N \& 0.90 \& T9057V \& 0.70 \& ibabocla \& 1.60 \& | TDA22030 | 1.45 |
| :--- | :--- | \& \& 0.75 \& | UPC5887C2 | 1.34 |
| :--- | :--- |
| 1.15 | |

\hline L41385 \& 1.94 \& MC5192 \& | 19.50 |
| :---: |
| 3 |
| 19 | \& \& | 10.50 |
| :--- |
| 880 |
| 80 | \& SN16115A \& 1.6 \& ${ }^{\text {T }} 90064$ \& 0.49

1.00 \& TBA570a \& 1.71 \& | TDA2140 | 1.68 |
| :--- | :--- | \& TIP3055 \& 0.75 \& UPC592\% 215

\hline LA1387
LA3155 \& 8.10
125 \& MC7818C \& 218 \& ${ }_{\text {S48063 }}$ \& 5.17 \& SN76227N \& 1.33 \& TA6002 \& 4.35 \& tba641A12 \& 4.13 \& TDA2150 620 \& TIP30A \& 0.41 \& UPC595 $\quad 295$

\hline LA3301 \& 1.65 \& MCR100/ \& 1.65 \& SAA1006 \& 1.75 \& SN762260 \& 1.98 \& TA7027 \& 4.80 \& tbag4ib72 \& 3.03 \& TDA2151 207 \& ${ }_{\text {TIP30C }}$ \& ${ }^{0.16}$ \& | UPC596 | 1.98 |
| :--- | :--- |
| PP1514C | |

\hline LA3350 \& 1.43 \& MCR 106-5/6 \& 0.95 \& SAA1020 \& 4.76 \& SN76228N \& 327 \& TA 7050 \& 1.74 \& ${ }_{\text {TBA651 }}$ \& ${ }_{2}^{0.87}$ \& $\begin{array}{ll}\text { TDA2160 } & 4.01 \\ \text { TDA2161 } & 185\end{array}$ \& ${ }_{\text {T1P31A }}^{\text {TIP31B }}$ \& 0.34
0.38 \& $\begin{array}{ll}\text { UPDI514C } & 8.95 \\ \text { UPD2819C } & 4.98\end{array}$

\hline LA3361 \& 3.89 \& MCR2207 \& 228 \& SAA1025 \& 4.40 \& SN76242 \& 8.59 \& TA7051 \& 1.74 \& tibab73 \& 200 \& | TDA2161 | |
| :--- | :--- |
| TDA2170 | |
| 188 | |
| 188 | | \& TIP31C \& 0.50 \& | UPD2819C |
| :--- | :--- |
| UPD4013B |

\hline LA3365 \& 3.98
5.52 \& MEEA42 \& 0.17 \& ${ }^{\text {SAA } 1024}$ SAA1075 \& 6.281 \& SN76243 \& 8.50
290 \& ${ }^{\text {T }}$ TA70560AP \& 2.71 \& TBA720 \& 3.50 \& TDA2270 2235 \& TIP32A \& 0.35 \& UPD4066B $\quad 4.95$

\hline LA34390 \& 3.516 \& ME040411 \& 0.48 \& ${ }^{\text {SAA }}$ SAA1121 \& ${ }_{7} 7.44$ \& SN76533N \& 297 \& TAP061AP \& 127 \& tBA730 \& 3.55 \& TDA2510 $\quad 7.85$ \& TIP328 \& 0.69 \& UPD553-164 1925

\hline LA4031P \& 320 \& ME6002 \& 026 \& SAA 1124 \& 3.30 \& SN76532N \& 0.95 \& TA7069 \& 3.13 \& tBa7500 \& 290 \& TDA2520 237 \& TIP32C \& 0.40 \& UPD8049C-1 11.50

\hline LA4032P \& 235 \& ME6102 \& 028 \& SAA1130 \& 4.99 \& SN76545 \& 1.95 \& TA7070 P \& 1.87 \& TBA760 \& 1.71 \& TDA2522 $\quad 3.46$ \& T1P33 \& 0.85 \& X00071/ ${ }^{\text {a }}$

\hline LA4100 \& 125 \& ME8001 \& 0.34 \& SAA1174 \& 7.7 \& SN76564N \& 3.47 \& TA7072P \& 257 \& TBA880 \& ${ }_{1}^{0.92}$ \& | IDA2524 | 4.50 |
| :--- | :--- |
| IDA2521 | 3.71 | \& TIP33C \& 0.080 \& $\begin{array}{ll}\text { X0022CE } & 5.75 \\ \times 0029 \mathrm{CE} & 7.09\end{array}$

\hline LA4101
la4102 \& 1.30
0.75 \& MEOA11
M 2501 \& ${ }_{3}^{0.75}$ \& SAA 1250 \& ${ }_{5}^{4.15}$ \& SN/6549 \& 2.59 \& TA7074P \& 1.98 \& tisabiot \& 1.50 \& TDA2525 3.8 \& TIP34 \& 0.50 \& X00331CE 4.95

\hline LA4402 \& 0.56 \& MJ3301 \& 1.76 \& SAA 11351 \& 4.95 \& SN76611 \& 2.59 \& IA7776P \& 7.80 \& TBAB10AS \& 1.00 \& TDA2532 250 \& IIP4IA \& 0.99 \& X0035TA 5.98

\hline LA4125 \& 225 \& M. 4881 \& 1.53 \& SAA3027P \& 2.55 \& SN76620 \& 280 \& TA7089P \& 3.10 \& TBA8zo \& 1.52 \& TDA2530 255 \& TIP418 \& 0.65 \&

\hline L44138 \& 3.45 \& M. ${ }^{\text {802 }}$ \& 4.90 \& SAA5000 \& 250 \& ${ }_{\text {SN }}$ SN76660N \& 248 \& \& ${ }_{3} 8.95$ \& TBAB90 \& 1.10

250 \& | IJA2531 | |
| :--- | :--- |
| IDA2540 | 248 |
| 15 | |
| 15 | | \& TIP42A \& 0.2 \& $\begin{array}{ll}\text { Y00423E } \\ \times 0043 C E & 275 \\ \end{array}$

\hline LA4140
LA4192 \& ${ }_{3}^{0.680}$ \& M.JE2955 \& 1.05 \& SAA5010
SAA5012 \& ${ }_{5} 3.65$ \& \& 4.35 \& ${ }^{\text {TA }}$ T/71093 \& 5.88 \& tıa⿱宀20 \& 1.53 \& IDA25450 5 \& T1P428 \& 0.53 \& X XOS6CE $\quad 6.25$

\hline ${ }_{\text {L44220 }}$ \& 1.10 \& M M 5340 \& 0.49 \& SAA5020 \& 5.78 \& SN76799N \& 3.30 \& TA7108P \& 1.61 \& t8a9200 \& 231 \& TDA25500 \& \& 0×5 \&

\hline LA4250 \& 6.75 \& MJE520 \& 0.49 \& SAA5030 \& 825 \& SN76707N \& 5.11 \& ${ }_{\text {TAP109 }}^{\text {TA7122B/P }}$ \& 3.71 \& TBA340

TBA950 \& 1.88 \& | IDA2555A | 0.50 |
| :--- | :--- |
| TDA2576A | 3.00 | \& ${ }_{\text {TIP48 }}$ \& 0.39

0.92 \&

\hline La4400 \& ${ }_{1} 3.92$ \& \& | 3.33 |
| :--- |
| 3.65 | \& SAA5050

SAB 1009 Sa \& 5.98 \& ${ }_{\text {SN }}$ \& ${ }_{6.50}^{6.30}$ \& TA7124P \& 234 \& tвA970 \& 3.56 \& TJA2571A 4.45 \& TiP49 \& 3.61 \& X00746E $\quad 10.00$

\hline ${ }_{1}{ }^{\text {LA44222 }}$ \& 1.72 \& M12378 \& 2.51 \& SAB3011 \& 134 \& SN76810N \& 0.50 \& TA7129P \& 1.50 \& tBa990 \& 1.82 \& TDA2578A 2.57 \& ITP5A \& 3.05 \& X00776E

\hline 144430 \& 1.56 \& M1238 \& 5.7 \& SAB3013 \& 3.76 \& ${ }_{\text {SN7 }}$ S 6832 N \& 1.35 \& TA7130P \& 127 \& TBA9900

TC400:BP \& ${ }_{3}^{1.68}$ \& | TDA2576A+KIT | 12.35 |
| :--- | :--- |
| TDA2581 | 1.65 | \& Tis90 \& 1.23 \&

\hline L44440 \& 2.295 \& $\mathrm{ML}_{\text {M } 1923}$ \& | 3.35 |
| :--- |
| 3.98 | \& SAB3321 \& ${ }_{6} 7.95$ \& SNN4431

SN94042 \& 5.54 \& TA7137P \& 0.98 \& TC40118P \& 3.50 \& IDA2582 1 \& Tl011CP \& 0.95 \& X00966CE 5

\hline L44460 \& 1.75 \& MM5314N \& 8.99 \& SAB3209 \& 5.98 \& SP8385 \& 0.55 \& TA7141AP \& 3.87 \& TC40138P \& 3.75 \& TDA2591 $\quad 2.50$ \& TLO72 \& 1.45 \& X0109CE 11, ${ }^{\text {P25 }}$

\hline LA4451 \& 295 \& MM5336N \& 9.16 \& SAB3210 \& 3.10
50 \& SPS5384 \& 138 \& TA7146 \& 250 \& ${ }_{\text {TC400168P }}^{\text {TC40538 }}$ \& 3.15

4.34 \& | TDA2594 | 326 |
| :--- | :--- |
| TDA2593 | |
| 187 | | \& TL494CN \& 8.95 \& $\begin{array}{ll}\times 0113 C E & 207 \\ \times 0195 C E & 1.50\end{array}$

\hline ${ }_{\text {L La4505 }}$ \& ${ }_{1} 5.85$ \& MM53318N
M 4369 N \& 3.11
201 \& ${ }^{\text {SAF1032P }}$ SAFI039 \& ${ }_{3}^{5.50}$ \& STIT02L
STA401 \& ${ }_{6} \mathbf{0} .76$ \& \& 1.67 \& TC4069 \& 225 \& TDA2595 1.09 \& TMP4320 \& 15.00 \& X $0204 C E \quad 8.74$

\hline LA7020 \& ${ }_{13.86}$ \& MM5387AAN \& 620 \& SAS5010 \& 839 \& STA4AIC \& 3.00 \& TA7149P \& 326 \& TC40718P \& 276 \& TDA2600 $\quad 6.50$ \& TMS1024NLL \& 13.75 \& X02261CE $\quad 8.75$

\hline 1A7025 \& 11.97 \& MM5841N \& 6.64 \& SAS560S \& 1.86 \& STA471C \& 756 \& TA7152P \& 272 \& TC48818P \& 325 \& TDAZ611ACL 258 \& TMS1025N \& ${ }_{1950}^{16.95}$ \& X1222AF

\hline LA7027 \& 10.92 \& MN1400VL \& 13.6 \& SAS560T \& 5.42 \& STK0029 \& 554 \& TA7161P \& 3.45 \& TC40Н000
TC4514BP \& 1.98

5.44 \& | TDA26120 | 4.68 |
| :--- | :--- |
| TDA2611A | 1.05 | \& TMS3748NS \& 14.95 \&

\hline LA7040
LA7042 \& 920
3.90 \& MN1405
M 1435 V \& ${ }_{1}^{12.85}$ \& SAS570 \& 2.42 \& STK0039
STK004 \& 5.11 \& ${ }_{\text {TA7169 }}^{\text {TA7162 }}$ \& 7.80 \& TC9002BP \& 11.34 \& TDA2610 3.08 \& TMS3755 \& 13.65 \& TDA3310 215

\hline ${ }^{\text {La }}$ LA78920 \& 3.05
1.05 \& MN6016A \& ${ }_{2}^{11.85}$ \& SAS580 \& 225 \& STKOOS ${ }^{\text {a }}$ \& 17.12 \& TA7172P \& 1.41 \& TCA2700 \& 1.71 \& tDa2620 215 \& TMS 3894NL \& 1925 \& ZPY120 $\quad 3.25$

\hline LA7801 \& 1.30 \& MP192 \& 5.07 \& SAS6500 \& 133 \& STK0080 \& 9.16 \& TA7776 \& 248 \& TCA270S \& 0.95 \& \& TMS5102NLL \& 625 \& 2TK33 0.43

\hline LB1274 \& 3.61 \& MP2794 \& 4.00 \& SAS660 \& 2.97 \& STK011
STK013 \& 508

925 \& TA7193P \& 278 \& TCA270S0 \& \& | TDA2831 | 273 |
| :---: | :---: |
| TDA2540 | 2.95 | \& \& \&

\hline LC77800 \& 920 \& MP2812 \& 5.07 \& SAS6700 \& 133
3.96 \& STK014 \& \& ${ }_{\text {TA }}{ }^{\text {TA203P }}$ \& 218 \& TCA420a \& 216 \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Full list available with order}}

\hline 103120
LD3150 \& 1.13
275
1 \& MP8512 \& ${ }_{213}^{1.57}$ \& SAS670 \& ${ }_{1}^{3.96}$ \& STK014 \& 7.75 \& TA7204P \& 216 \& TCA440 \& 225 \& TDA2653 $\quad 295$ \& \& \&

\hline LM1017N \& 275
1.75 \& MPF256C \& ${ }_{0}^{2} .80$ \& SBA750 \& 1.61 \& STK016 \& 8.45 \& TA7205P \& 0.99 \& TCA530 \& 224 \& TDA2654 \quad 6.18 \& \& pleas \& ase $9^{\prime \prime} \times 4^{\prime \prime}$

\hline LM1877 \& 13.43 \& MPS6570 \& 0.48 \& SC84203 \& 19.35 \& STK022 \& 525 \& TA7206P \& 6.35 \& TCA640 \& 225 \& TDA22670 $\quad 254$ \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Telephone 0902-712083}}

\hline LM224 \& 1.75 \& MPSA42 \& ${ }_{0}^{0.65}$ \& SC9554P
SDS 2006 \& 11.95 \& STK025
STK031 \& 10.35
12
125 \& TA 7207P
TA $7208 P$ \& 334
215 \& ${ }_{\text {TCA }}^{\text {TCA560 }}$ \& 3.05

260 \& | TDA2880 | 320 |
| :--- | :--- |
| TDA2690A | |
| 2.65 | | \& \& \&

\hline LM2888 \& ${ }_{5}^{625}$ \& MPSA56
MPSA92 \& 0.27
0.72 \& SDA 2006
SDA21122 \& 17.95
1285 \& STKK40 \& ${ }_{1334}^{1295}$ \& TA7210P \& 1.45 \& TCA730 \& 3.81 \& TDA2740 $\quad 6.00$ \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{(24hr. answering machine for Access \& Barclaycard users)}}

\hline LM317CKC \& 1.00 \& MPSU05 \& 0.86 \& SG264A \& 6.45 \& STK043 \& 1334 \& TA7214P \& 3.63 \& TCAF50 \& 225 \& TDA27800 11.514 \& \& \&

\hline LM 3 24N \& 0.98 \& MPSU10 \& 1.45 \& SG613
S629 \& 10.75 \& STK054
STKO58 \& 713
2750 \& TA72715P \& 258
1.45 \& TCAB000 \& 6.95

238 \& | TDA2795 | 278 |
| :--- | :--- |
| TDA791 | 25 | \& \multicolumn{3}{|l|}{TELEX 338490}

\hline LM339N \& ${ }^{0} 11.35$ \& MPSU56
MPSU60 \& 0.78
1.88 \& S6629 \& 827

11.96 \& STK07\% \& $\begin{array}{r}767 \\ \hline 1\end{array}$ \& ta7222 \& 1.95 \& TCA890 \& 5.44 \& TDA2910	1325
1023	\& \multicolumn{3}{

\hline LM348N \& 215 \& MR818 \& 0.33 \& SI-1020 \& 10.89 \& STK078 \& 848 \& TA7226 \& 3.57 \& TCA900 \& 204 \& TDA3000T 2888 \& \& \&

\hline LM380N \& 280 \& MR854 \& 0.72 \& ST-1125HD \& 17.63 \& STK080 \& ${ }_{1186}^{1650}$ \& TA7227P

TA7229P \& 225 \& TCA910 \& 204 \& | TDA3330 | 295 |
| :--- | :--- |
| 1093 | | \& \multicolumn{3}{|l|}{For quantities of $100+$ per line - Please ask for special quote.}

\hline LM384N01 \& 325
1.71 \& MR914 ${ }_{\text {MSM516RS }}$ \& 1120 \& S11125H \& 18.50
18.35 \& STK088
STK086 \& 1185
1359 \& IA ${ }^{\text {IA 2303P }}$ \& 4.95 \& TCA940E \& 293 \& TDA3506 $\quad 7.788$ \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Orders from Gov Institutions, Schools, Nationals etc., accepted with official order}}

\hline LM 4 S0202011 \& 10.23 \& MSM5840H \& 15.15 \& Sl1630HD \& 20.50 \& STK1039 \& 575 \& IA7232P \& 6.50 \& TCE330 \& 3.89 \& TDA3501 725 \& \& \&

\hline LM6402a093 \& 10.15 \& MVS $460-02$ \& 0.61 \& S16500 \& 1200 \& STK2110 \& 133 \& TA7233P \& 3.15 \& TCEP1000 \& 10.5 \& | TDA3500 | 425 |
| :--- | :--- |
| TDA 510 | 595 | \& \& thin 4 w \& orking days.

\hline LM748 \& ${ }_{3}^{0.697}$ \& NE542 \& 265
354 \& SKE1/02
SKEFF1/O4 \& 1.85
1.39 \& STK2145
STK2230 \& $\underset{770}{1625}$ \& Ta7240P \& 3.55
5.92 \& ICEP100
TD3406AP \& 9.61

3.98 \& | TOA33510 | 5.95 |
| :--- | :--- |
| TOA 5320 | 9.71 | \& \multicolumn{3}{|r|}{All items previously advertised}

\hline LM8360 \& ${ }_{3}^{3.87}$ \& ${ }_{\text {NE545 }}$ \& 3.59 \& SKE2F104 \& 1.39 \& STK2230 \& 15 ¢5 \& TA7270 \& 225 \& тD3F800 \& 4.16 \& TDA3540 6.99 \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{by Quicksave T.V. Spares are still available from us}}

\hline LR2612 \& 11.95 \& NE556 \& 0.65 \& SKE4F1/06 \& 0.35 \& STK2250 \& 1895 \& TA7310P \& 215 \& TD3F900H \& 4.16 \& TDA3541 222 \& \& \&

\hline
\end{tabular}

Helical Aerials for Band I

During the past year I've been conducting experiments into the use of helical aerials for DX-TV reception in Band I. Interest in this subject stems from a problem that a DXer reported to us - his local council instructed him to remove the DX-TV aerial system mounted on the gable of his house. This led us to consider alternative, "lowprofile" aerial sytems that could be used where a council enforces strict controls on environmental grounds. What we were seeking was a viable alternative to the usual fullsize Yagi array.

The helical form of construction seemed to offer possibilities, combining efficiency with small size. The compact, active aerial used in marine applications was discounted on the grounds of cost. This could however find application for Band III/u.h.f. use - a Triax design is to be assessed shortly. While we were initially thinking about helical aerials details of a compact, wideband v.h.f. aerial of Russian design came our way (see page 632, July 1987 issue). This appears to have remarkable gain/performance characteristics. A TV-DXer friend is at present building a prototype, and if the performance claims are substantiated we will be reporting further on this type of acrial.

On the helical aerial front I initially considered the use of a Les Wallen 27 MHz CB design, with the output directly connected to a wideband aerial amplifier - this is facilitated by the fact that these Les Wallen aerials have SO329 terminations. The aerial was mounted vertically, and a two-aerial arrangement with horizontal stacking was also tried.

Despite the harmonic relationship with Band I ($2 \times$ $27 \mathrm{MHz}=54 \mathrm{MHz}$) these aerials provided very disappointing results above their designed-for frequency. While we were conducting these experiments Les Wallen informed us that they had put into production a 49 MHz version of the aerial, intended for use in the UK paging band. It's known as the Saturn base station aerial. In all respects other than length it's similar to the $C B$ version - the overal length is 18.5 in . (approximately 0.5 m).

Tests

Our initial reaction was that the aerial was far too small to work well. It was nevertheless erected at 40 ft ., using low-loss RG58 50) 2 coaxial feeder, again with vertical mounting. During the first Sporadic E openings in 1987 it produced excellent results in comparative tests with the four-element, wideband Yagi array I've long used, mounted at 53 ft .

The test results obtained were subjective, i.e. as viewed on the TV set's screen. No measurements were made, primarily because of the completely different aerials and heights, the fluctuating nature of the signals, and so on. The output from the main, Yagi Band I array was fed to a single tuning system/TV receiver (no amplifier) while the 49 MHz Saturn aerial's output was fed to a similar tuning system via a Mutek v.h.f. amplifier with a gain of 10 dB . With short/medium-hop signals, i.e. at up to 1,000 miles from the transmitter, the signals displayed by both receivers were of generally similar strength and quality, though the vertically mounted helical aerial seemed to do better possibly because in many instances polarisation shift fa-
voured vertical mounting. Signals received via the helical aerial were often not visible via the horizontally mounted Yagi array - or different signals might be received via this aerial. By and large the helical aerial/low-noise amplifier combination provided similar results to the Yagi array with short/medium-hop SpE signals. Long-hop signals tended to retain their horizontal polarisation however. As a result they were well received via the Yagi array and poorly resolved via the vertical helical aerial.

The next step in our experiments was to obtain a second helical aerial and mount it horizontally, to correct for the poor reception of horizontally polarised signals. This it did, sufficiently to enable a weak tropospheric ch. E4 Lopik (Holland) signal to be resolved at around 4 dB lower than via the horizontally mounted Yagi array some 13 ft higher!

The Saturn aerial claims to have a $\pm 5 \mathrm{MHz}$ bandwidth centred at 49 MHz . With a head amplifier providing mismatch swamping, the aerial's basic broadband nature allowed the whole of Band I to be covered efficiently. With vertical mounting the aerial's compressed construction increases the pick-up above the horizon, which helps with the reception of SpE signals arriving in this way, while reducing pick-up from interference sources below the system.

The Les Wallen aerials are well made. The 49 MHz Saturn consists of a helical element wound within a black PVC tube, capped with PVC at the remote end. The cable outlet end has a well constructed two U-bolt mounting bracket and a short external aluminium tube. There's an exposed SO329 socket for feeder connection, taking a type PL259 CB plug. I was not too happy with this exposure and fitted a PVC electrical "boot" to prevent the possibility of moisture ingress. The aerial's length is approximately 18.5 in ., and the basic intention is that it should be vertically mounted.

Following the tests carried out during the 1987 SpE season I fitted a Fringe Electronics masthead Band I

The Les Wallen 49 MHz helical aerial.
amplifier (I think Fringe must be one of the few manufacturers of single-band amplifiers - most have gone wideband at v.h.f.). This proved most useful. The latest Fringe models have noise figures of 2 dB or lower at v.h.f.

Conclusions

In conclusion, the results achieved during the past SpE season confirm that the 49 MHz Saturn helical aerial does offer a viable alternative to a conventional Yagi array, with results maintained across the whole of Band I. With short/medium-hop signals the results obtained with a vertically mounted acrial are if anything better than with a standard aerial array. With signals that have travelled from a transmitter 1,000 miles or more away a horizontally mounted helical aerial is needed to compensate for a vertically mounted aerial's poorer performance: where a non-rotating system is used it's best to mount two aerials at 90° to obtain omnidirectional coverage, with switching between the outputs. The output voltage will be less than that from a Yagi array but this can be made good by using
an amplifier with a gain of about 10 dB - aim for low noise rather than gain. The Les Wallen aerial has a VSWR of 11.5 or better with an output impedance of 50Ω. The manufacturers advise weatherproofing the output termination.

The Saturn can be recommended for the flat/apartment resident unable to erect an efficient, large Band I DXing aerial. With a wideband v.h.f. amplifier the aerial will provide some signal pickup outside Band I, though with reduced efficiency. The helical system is compact, is not intrusive, and resembles a small marine base transmitting aerial.

The 49 MHz Saturn paging band aerial is made by Les Wallen Manufacturing Ltd., Unit 1, Trinity Place, Ramsgate, Kent CT11 7HJ (telephone 0843 582864). It is sold at around $£ 25$ inclusive in the UK. Send a s.a.e. with any enquiries. My thanks to Les Wallen for providing information and samples.

Since writing the above report a 55 MHz version of the Saturn for DX-TV use has been introduced. It's available from Aerial Techniques at $£ 22.75$ inclusive.

The Philips 3A Chassis

Harold Peters

For the past decade the design of CTV timebase circuitry and, to a lesser extent, power supply circuitry has become pretty stable, the only significant changes occurring where mains isolation is required. So we've come to expect all the novelties to be at the front end - teletext, remote control and various types of synthesised tuning. Recently however Philips, with the objective of a "go anywhere, do anything" set, have produced a chassis that takes a new approach, with novelties right across the board.

Known as the 3A, the new chassis is incorporated in the latest Matchline range of receivers. In addition to all the features expected from Matchlines it provides on-screen display of channel, analogue control settings and userprogrammable station identity in place of the familiar twodigit display. The colour decoder is a multi-standard one able to handle PAL, Secam, NTSC 3.58 and NTSC 4.43 signals. The panel incorporates a colour transient improvement circuit. Picture geometry is set by remote control and the whole bag of tricks is masterminded by a couple of microcomputer chips interconnected by the $I^{2} \mathrm{C}$ bus system used in recent Philips VCRs.

Before you start thinking "the ideal receiver for DX reception" you must realise that the r.f. end of UK versions has only a u.h.f. tuner and that the i.f. gives non switchable 6 MHz sound. Nor, at the moment, is a NICAM decoder for stereo sound included. If multistandard baseband signals are fed in via the scart etc. sockets however they can be processed by the colour decoder.

A precaution has been taken to preserve the initial geometry settings: the user's handset omits the special button needed to put the set into the service mode more about this tater.

$1^{2} \mathrm{C}$ Bus for Chip Control

Philips connect the microcomputer chips and the i.c.s they control via a two-track system called the $I^{2} \mathrm{C}$ bus. One track carries data, the other clock pulses. The microcomputer chips not only send but also receive data
and instructions, so the pulses on the data line may go in either direction. Conflicts are avoided by means of an "arbitration system" which ensures that only one chip at a time transmits data. Errors are avoided by the receiving chip sending back an acknowledge pulse.

Most of this activity is generated by the two microcomputer chips on the control panel. One of these takes care of the tuning and other functions while the other processes the commands from the handset. Doing the work are the computer-controlled teletext chip, the CITAC (computer interface for tuning and analogue control) chip which produces the station tuning voltage and the analogue control outputs, and the geometry control chip which we'll consider later. Fig. 1 shows the configuration of the set of chips used.

The shift register chip on the source selection panel acts as a sort of electronic switchboard that permits handset selection of the off-air signal, the scart socket inputs or the sound and vision phono socket inputs. Switching is not as simple as it sounds since it's necessary to ensure that the correct sound goes with the picture and that whatever is being watched is also routed to the scart socket's output ports to feed any other equipment connected to this.

Basic Layout

The monocarrier/subpanel arrangement used is carried forward from previous models. In the case of the 3 A chassis the subpanels are the source selector, the colour decoder, the teletext decoder and the sound output. The timebase and picture geometry circuits are on the monocarrier (you may prefer the more usual term mother board!): the power supply is a version of the now familiar SOPS (self-oscillating power supply) arrangement - see pages 536-7, June 1987.

Audio System

The sound signal is fed to the audio amplifier via a TDA8405 stereo decoder ship which provides stereo/
bilingual sound decoding for the system used in West Germany - this part is disconnected in the UK version apart from one sound detector and the two audio preamplifiers. The two 22 W audio output stages feature "anti-plop" circuits which provide sound muting during switching operations. A form of "quasi-stereo" is incorporated. As with previous Matchline models the full sound output is available to matching external loudspeakers, a restricted drive being supplied to the smaller built-in loudspeakers.

Multi-standard Decoding

There are three chips (TDA4555, TDA4565, TDA4580) on the colour decoder panel. The first one, the TDA4555, is a multi-standard decoder. For standards detection it samples the burst (see Fig. 2). Plain 4.43 or $3 \cdot 58 \mathrm{MHz}$ switches it to NTSC, swinging $4 \cdot 43 \mathrm{MHz}$ to PAL and alternate continuous 4.25 and 4.406 MHz to Secam. Unlike previous multi-standard decoders, such as that used in the System 4 chassis, this decoder chip is capable of decoding all these different types of colour signal internally - up to now multi-standard decoders have turned other signals into quasi-PAL and processed this as a standard PAL signal. The chip produces demodulated R - Y and B - Y outputs.

The sandcastle pulse from the timebase for gating etc. has three levels. The top of the pulse gates out the burst, the middle bit performs line blanking and a.c.c. gating and the bottom bit provides field blanking. Should the field timebase fail the bottom bit of the sandcastle pulse rises to give total screen blanking, thus preventing screen burn.

Colour Transient Improvement and Crispening

Of greatest interest perhaps is the following TDA4565 chip. This is described as a colour transient improver but it does things to the luminance signal as well. Let's consider briefly what's involved here.

Colour fit has always been a problem with colour sets. The basic cause of the difficulty is the fact that the bandwidth of the chroma channel is about 1 MHz while that of the luminance channel is about 5 MHz . Because of this the rise time of a colour pulse is around 500 nsec while that of the corresponding luminance pulse is only some 10) Onsec. The effect on the screen would be to make the colour lag behind the luminance by a quarter of an inch (assuming a 22 in . c.r.t.). See Fig. 3(a). Hence the inclusion of a luminance delay line in the decoder, to hold the luminance signal back so that the two signals appear to coincide on the screen (even then the coloured edge is a bit smeary). There's more to it than this however. The colour bandwidth with the Continental system B / G is reduced to a lopsided 700 kHz due to the proximity of the sound carrier at 5.5 MHz - our own broadcasters transmit a colour bandwidth in excess of $1 \cdot 2 \mathrm{MHz}$ (system I). Group delay has an effect too, but you can see from this that a set designed and aligned for Continental transmissions should have either a different delay line from one intended for UK use or the colours displayed in the UK will be unnecessarily scruffy. Up to now this has regrettably been the rule rather than the exception. Now however we have the colour transient improver to provide correction. It works like this.

Fig. 4 shows a simplified block diagram of the processing carried out in the TDA4565 i.c.'s R - Y channel and Fig. 5 the associated waveforms. The $\mathrm{R}-\mathrm{Y}$ signal is fed to a switched amplifier and to a high-pass filter which
detects only high-amplitude colour transients - the one between the green and magenta colour bars is a good example. Waveform A shows such a transient, with poor rise and fall times after passing through the colour decoder circuitry, and waveform B the differentiated output from the high-pass filter. A pulse former is then used to produce squared up pulses, waveform C , which are used as a second input to the switched amplifier. The result of this processing, at the output of the switched amplifier, is the delayed but now squared transient pulse waveform D - the R - Y signal has been smartened up considerably!

The delay with respect to the luminance signal introduced by this processing (and by the other factors previously mentioned) means that a compensating delay line is needed in the luminance channel. Normally the luminance delay line consists of a series of resonant circuits made by winding a thin coil of wire over capacitive patches of metal foil: the solid-state equivalent is the "bucket-brigade" i.c. which passes the signal through one storage stage after another, the delay time being adjusted by the number of stages diffused on the chip. In the TDA4565 however a gyrator circuit is used for the purpose. This is an active filter which reverses the signal phase in one direction but not, the other - in other words it behaves inductively. Its parameters can be adjusted by varying the l.t. supply to the circuit.

The TDA4565 has ten gyrator cells each of which provide a delay of 90 nsec . Varying the I.t. can alter the number of cells used between seven and ten. In the 3A chassis the l.t. selected is 7.5 V which means that nine cells are used, giving a delay time of $9 \times 90=810 \mathrm{nsec}$. A further "half cell" providing a delay of 45 nsec is deployed by connecting pin 13 of the chip to chassis, giving a total delay time of 855 nsec . A tap is taken off two cells earlier (180nsec sooner) and this signal is fed to a further feature of the 3 A chassis, a discrete component luminance crispener circuit. This detects luminance transients and provides processing in a similar way to the colour circuits. The luminance crispener itself introduces a 180 nsec delay, which is why it takes the signal early. It can be switched in and out of circuit via the user's handset. Note that the delay figures quoted are approximate - they vary with different sets/manuals.

Matrixing and Switching

The final chip on the colour decoder panel, the TDA4580, carries out matrixing, switching between the off-air and external RGB signals, blanking, beam limiting and auto grey-scale adjustment. It also provides for colour, contrast and brightness control. Its RGB outputs go to the c.r.t. base panel mounted output stages.

Geometry Setting

The other innovation in the 3 A chassis is control of the picture geometry via a remote control handset. Eleven adjustments are provided, including line hold, height, width, field linearity, scan correction, line and field e.h.t. compensation and the EW adjustments. You cannot do this with the user handset. One of the handsets with an inbuilt "print" command is required.

To put the set into the service mode, "print" is pressed while the mono button on the front control panel is held down. A box appears on-screen, with the two left-hand digits indicating the adjustment programmed and the two right-hand digits the adjustment value. For example, press 02 and you can adjust the height, using the handset's

Fig. 1: Connections via the $I^{2} C$ bus between the two microcomputer chips and the chips they control.

Fig. 2: Multi-standard decoding: identifying the signal. (a) NTSC has a fixed burst at 3.58 or 4.43 MHz ; (b) PAL has a swinging 4.43 MHz burst - the phase shifts on alternate lines; (c) Secam has the back porch alternately full of 4.25 (blue) and $4 \cdot 406 \mathrm{MHz}$ (red) colour subcarrier.
volume control: the left-hand digits will show 02 and the right-hand digits will vary with the volume control's setting. When correct, the setting is stored by pressing the green "granny" button. You then select another adjustment or leave the service mode by going to standby.

This method of control is used in the factory to set up other parameters, so don't try a twiddle. If you think that some hostile element has already done so, enter the service mode, select code 12 , and inspect the option code given on the right-hand side of the block. For UK sets this should indicate 32.

Servicing Aspects

The $\mathrm{I}^{2} \mathrm{C}$ bus system lends itself to built-in test and faultfinding aids. Because there are no two-digit displays with the 3A chassis, fault indications are given by the five LEDs on the control panel - in conjunction with use of the manual. For example, a fault in the computercontrolled teletext decoder will make the crispener and mono LEDs blink, while failure of the 12 V supply will blink the crispener and standby LEDs.

The service manual is organised in the same way as with the System 4 chassis, i.e. it has a loose-leaf presentation with subdivisions for the various "works" and separate "cosmetic" sheets that detail the presentation parts and subassemblies used in the various models. All this is available from Philips Service (604 Purley Way, Croydon,

Fig. 3: The colour fit problem. (a) The narrow chroma bandwidth has the effect of displacing the colour to the right. (b) By delaying the luminance the two signals fit but the chroma is still diffused at the transients. (c) Colour transient improvement straightens the rise time of high-amplitude chroma transients to give accurate superimposition of the luminance and colour at the screen.

Fig. 4: Block diagram of the colour transient improvement processing system ($R-Y$ channel).

Fig. 5: Waveforms associated with Fig. 4.
Surrey CR9 4DR) to whom the writer is deeply indebted for assistance in the prefaration of this article. The Philips Service Technical Survey No. 10 (code 722 17254) covers the 3A chassis in great depth.

Those of you who already have the manual will notice an empty section marked "picture in picture". This feature is incorporated in some overseas versions of the chassis and enables any scart input to be displayed in the corner of the full-screen off-air picture or vice versa. More on this when the feature arrives in UK sets.

Performance

The colour transient improver certainly works. A cleaner transition between green and magenta on a test pattern couldn't be found on a professional colour monitor, and on titling the outlines are much sharper. The crispener is also effective:" previous crispener circuits tended to add noise, but this doesn't happen with the arrange-
ment used in the 3A chassis. It's effect is not to everyone's liking however - it's probably unnecessary with system I signals - and if it's used with a VCR that has full HQ circuitry you get a double dose of overshoot. So it's a handset option.

The on-screen display is stable in the absence of an offair signal, unlike the usual ragged lettering when the background consists of snow. This is due to sync pulses being provided by the teletext sync generator when there's no signal input.

Back in the Groove

Yes, we're back in action. Well, nearly. At any rate it's better than living in a cloud all the time.

The Fidelity ZX3000

Now what was it I promised to tell you in the December issue? Oh yes, it was about the Fidelity portable (ZX3000 chassis) that wouldn't start up. It was daft really, and quite simple. I'd been checking the tracks in the chopper circuit from below and had found them to be in order. After several days I checked again, this time from above, i.e. the component side. Two tracks were found to be opencircuit. Stupid, isn't it? And all that time wasted.

Tripler Trouble

A Decca set fitted with the 80 series chassis led me a real dance. I wasn't thinking properly, but managed to discover that the tripler was faulty. Now I could see that it was a single-ended one, and instead of using a universal tripler and reading the instructions I thought I'd save time and fit a Philips G8 tripler. So I clipped off the leads and fitted it quite neatly into the space provided, noting that the e.h.t. lead wasn't quite long enough to reach when the chassis was lowered.

The result was a dark picture, and I found that there was little voltage at the tube's first anodes. A check around the first anode supply network revealed an opencircuit resistor. Time to look at the circuit diagram. It was one of the two resistors connected in series across the first anode potentiometer network. So they shouldn't have prevented the first anodes being supplied if they were faulty. In fact they were both faulty, so I disconnected them and tried again.

This time there was no picture at all. I called the set some nasty names and checked the voltages at the first anodes again. Now the readings were negative. So I hunted around for the first anode supply rectifier diode. There wasn't one, and it began to dawn on me that the new tripler wasn't the right one. This showed me what I didn't know about triplers. I thought that if they didn't have a negative diode lead they were all the same. The Philips tripler was removed, and I then selected a universal type and read the leaflet. Join the diode and earth leads together it said (as for the CVC32). With this fitted I had a nice clear picture and plenty of first anode voltage. I kicked myself for trying to be economic - and more than a little woozy.

G11 on a Hazy Day

Yesterday afternoon I was getting really hazy. It was approaching closing time, so I didn't take another tablet (those tablets to strengthen the heart action and get blood up to the brain - cries of "why doesn't he stand on his head?"). A couple of chaps arrived with this enormous

Les Lawry-Johns

Philips G11, still on its legs. They put it on the bench and I asked what I was supposed to do with it.
"There's no picture and no sound."
I thought I had an h.t. problem, but on switching the set on the tube's heaters lit up and the e.h.t. started hissing away like mad. Having cleared up the hissing I checked the loudspeaker and got a dead short reading, but on checking the audio output transistors I could hear the speaker responding. I checked the RGB output transistors and found that the base and emitter voltages were very low, with the collector voltages rather high. This explained the no picture condition. Why the loss of sound as well?

I made voltage checks and found lots of places where they were very low. I checked the line output panel but the voltages here were correct. By now my mind was completely bunged up. I had to express my regrets and wrap it up. The set was then carted off. After they'd gone I realised that the set was a remote control model, and that the fault must have been in the separate power unit which I hadn't checked. Silly me, but what do you do if you can't think?

The next day I found that the meter had a burnt out resistor in it. This explained the short-circuit reading I got when I checked the loudspeaker. With a new resistor fitted the meter read low-value resistances perfectly. If the owner of the set is reading this, as I suspect he might be, I do apologise. Just check that remote control power supply, will you? The one under the tube, left of centre.

A Glance from Tessa

It was late in the evening. We decided to have a drink before retiring. I looked at the sherry bottle. It contained about three measures, so we dediced to kill it off. After pouring one for myself and one for Honey Bunch I noticed Tess, who was sitting nearby, and was shocked by her appearance. She stared at me in a manner I'd not seen before. Not once did she blink or look away. She just stared. I knew what this meant. I'd to do something she wanted me to do. I drew H.B.'s attention to her.
"Oh, she wants your sherry,"
"The drunken bitch."
"No she's not."
So I poured my sherry into a saucer for her. She immediately stopped staring and lapped it up - before I'd a chance to finish pouring out the remainder for myself. More staring. Why didn't she stare at H.B.? I knew I wasn't going to have that sherry and it's funny, when you know you're not going to have something, how you want it far more. I've never been particularly fond of sherry, but at that moment I really wanted that last drop.

I poured most of it into Tessa's saucer, then quickly knocked back the remainder. No more staring - but she did give a few hiccups before going to bed. She snored all night, leaving the guard duty to Zeb. Typical woman

VHS Fast-search Systems

George Cole

The new VHS specification for high-speed index and address search uses CTL (control track) coding. Past indexing systems have relied upon a variety of methods: low-frequency pulses recorded across the full track (the "Automatic Programme Search System"); blank spaces left between recordings ("Auto Scan"); or detection of counter readings (the "go-to" facility). CTL coding works by recording binary code numbers on the control track in the form of specific combinations of zero and one pulses.

In a PAL VHS recorder the control track contains a stream of 25 Hz squarewave pulses. Each pulse cycle lasts for 40 msec , the pulses being used to synchronise the heads with the video tracks during playback. The normal markspace ratio is one, i.e. the mark time and the space time are each of 20 msec duration. CTL coding involves altering the mark-space ratio to enable binary numbers to be written on to the control pulses.

Fig. 1 shows how this is achieved. A zero pullse is represented by increasing the mark time to 60 ± 5 per cent of the total pulse repetition time, i.e. 24 msec , as shown at (a). For a one pulse the mark time is reduced to 27.5 ± 5 per cent of the total time, i.e. 11 msec . Because

(a) 0 pulse

(b) 1 pulse D8:8

Fig. 1: The pulse code system used. (a) Mark-space ratio representing a zero pulse. (b) One pulse.

Fig. 2: The index code system.

Fig. 3: The address code system.

Fig. 4: Use of continuous index and address coding.
the pulse frequency remains unaltered there's no loss of synchronisation and the system remains compatible with VHS machines that don't use CTL coding.

There are currently two forms of CTL coding: VHS Index Search System (VISS) and VHS Address Search System (VASS).

Index Search System

VISS is a high-speed index system that allows the user to find specific sections of the tape by means of recorded pulse codes. These codes can be added manually or automatically during the record or playback modes. The index code actually consists of 63 ± 3 bits (see Fig. 2) with a reference marker at the beginning and end to ensure operation in both the forward and reverse modes. The coding time is approximately $2.5 \operatorname{secs}$ (for $625 / 50 \mathrm{TV}$ systems).

In some machines the index codes are automatically laid down at the beginning of each new recording. With more sophisticated machines the codes can be placed on the tape as required by the user. VISS operates at 40 times the normal playback speed with PAL machines. The codes can be added or erased at will.

Address Search System

VASS makes it possible to record numerical data giving the date, time and counter number at specific locations on the control track. The VCR can thus be programmed to display this information or go to the particular address code number.

To operate VASS the user enters a four-digit address code. Each digit is then converted into a BCD (binary coded decimal) figure, i.e. a four-bit figure. For example, an address code of 3492 would be written on the control track as (011 0100 1001 (0010. Each address consists of an 11-bit header and the four BCD figures, making a total of 27 bits (see Fig. 3) - in practice however the address code is written three times to provide error correction. Another header is placed at the end to ensure operation in the forward and reverse modes. This brings the total bit number to 92 and increases the coding time to around 3.7 secs ($625 / 50$ TV systems). The address signal can be changed for renumbering.

Flexibility

CTL coding is a fast, versatile system that offers many advantages over previous indexing systems. The system will operate in the fast forward, rewind and picture search modes, and numerous permutations are possible. VISS and VASS can be combined for example, so that a recording can be quickly found with the recording date instantly displayed (see Fig.4).

Hitachi use CTL coding in their VT410/20/30 machines and have refined VISS so that on pulse detection the VCR displays fifteen seconds of picture search before moving on to the next CTL code. CTL is already appearing in other VCRs, and it probably won't be long before it becomes a standard feature in VHS machines.

HDTV '87

Geoff Lewis, B.A., M.Sc.

A major concern at the May 1986 meeting of the CCIR, held in Dubrovnik, was whether a world-wide standard for high-definition television (HDTV) could be adopted. Delegations from Japan and North America pressed for adoption of the Japanese NHK/Muse system. Its supporters claimed that if no decision was reached NHK/Muse could well become a de facto world standard by default. The major argument for or against such a decision centred on whether a revolutionary or an evolutionary approach to HDTV should be adopted. European delegations preferred an evolutionary approach based on the MAC (multiplexed analogue components) system. But as NHK/ Muse was the only HDTV system in even limited commercial use at the time it was widely felt that its acceptance was likely. It's now history that the split actually widened further at the May 1986 meeting, with divisions into 50 Hz and 60 Hz camps. The session ended with an agreement to disagree and expressions of hope that a common solution could be found at the 1988 or 1990 meetings.

The controversy continued during the International Broadcasting Convention (IBC 86) at Brighton the following September. The Europeans were then being told that the small time window for acceptance of a world standard was closing, and that they were likely to miss the boat again, or words to that effect. With this background, delegates to the HDTV 87 Colloquium in Ottawa would not have been surprised to hear the cry "NTSC (or PAL or Secam) is dead". But not so!

The four-day conference was attended by almost 400 delegates from all around the world and all disciplines and areas of image presentation. There were strong contingents from the TV, cable and film worlds. Nearly forty technical papers were presented and there were continuously running HDTV demonstrations. Particularly useful were the workshops, where small audiences could quiz the experts more closely. The papers presented a wideranging view of HDTV, from production through transmission and reception to viewer perception. Psychologists' views were valuable in explaining just what information in an image has to be transmitted and what can be left out while still producing high-definition pictures. Since HDTV requires a wide bandwidth these findings are important in the development of spectrum space saving techniques, a number of which were presented.

Discussion Points

By the end of the first day it was obvious that NTSC is still very much alive, and that it was not only the 50 Hz camp that was thinking in terms of evolution. Pointed comments were made about the financial viability of HDTV: a common view was that it would succeed only if introduced with "an already established customer base", implying the need for compatibility with current systems. It appears to be a world-wide fact that the general public is loath to spend more than the equivalent of about $£ 350$ on updating its TV or audio systems. A paper from an NHK delegate confirmed that Japan will start an NHK/ Muse DBS service in 1990, running in parallel with
transmissions using an enhanced NTSC system in order to build upon the present viewer base

The need for compatibility was questioned several times. The view was put forward that an advanced system warranted a completely new start, without the compatibility burden that's bedevilled television development throughout its history. The short answer to this is that without compatibility HDTV is likely to be a financial disaster.

Is HDTV needed? The fact is that today's display technology is about forty years more advanced than the systems that carry the images: the imperfections of these systems are now clear for all to see.

The next obvious question is who needs HDTV? For a start, cable systems need a good, clean signal. Other early uses would be in medical television, education and the "electronic cinema". The cost of any new service has to be borne by the end user of course: this implies the need to advertise and market HDTV vigorously in order to increase public awareness of the prospects.

After the conference the public in six North American cities was treated to two weeks of demonstrations, the aim being to acquire statistical data that would enable the demand for HDTV to be assessed.

Proposals and Demonstrations

Although the NHK/Muse system had a very high profile throughout the conference, both in papers and demonstrations, many other possible ways of implementing HDTV were presented. The simple approach of changing from interlaced to sequential scanning, which significantly improves the vertical resolution at the cost of increased bandwidth, formed the basis of some ingenious proposals. The use of digital processing to double the line rate was also put forward in some presentations.

A particularly impressive development was demonstrated by the David Sarnoff Research Centre Laboratory (GE/RCA/NBC). This multiplexed into a standard 6 MHz channel enough additional information on subcarriers to double the line rate, vastly improve the vertical resolution, change to progressive scanning, avoid flicker, line and dot crawl and still be compatible with a standard NTSC receiver. For direct comparison the demonstration included a wide-screen (16:9 aspect ratio) receiver and a standard NTSC receiver working side by side. The system shown in this way achieved a vertical resolution of more than 420 lines: it was stated that with a greater bandwidth this could be extended to about 750 lines, making it comparable with NHK/Muse.

The North American Philips Corporation had previously demonstrated another NTSC compatible approach to HDTV. This work was described in two papers. The two-tier HDMAC-60) system is designed to provide over a satellite link high quality signals suitable for retransmission or use as a cable system feed. It involves a complex MAC time-compression/expansion process to ensure that all the signal components are contained within a bandwidth of about 9 MHz . HDMAC-60 signals can be displayed on special high-definition receivers or transcoded for distribution via a high-definition NTSC network. The 9 MHz bandwidth occupies two cable channels: one carries the standard NTSC signal while the second carries the resolution extension components which would provide a resolution in excess of 480 lines.

These compatible developments remind one of the EPAL system that was devised by the BBC back in 1981/2.

Maybe this concept is also worth further investigation.
The B-MAC system was demonstrated in two compatible forms. One, WIDE-MAC, has a 16:9 aspect ratio with 525 lines. The other, HDB-MAC, uses a line interpolation technique to double the line rate. Both displays were free of the imperfections common to present systems while the second format gave a very high resolution as well.

Three papers put forward the European commitment to D-MAC. The paper from an IBA delegate gave the following time-scale for possible introduction of HDTV in the UK. Phase one, from 1989-1992, would see the introduction of D-MAC for use with standard PAL receivers via a set-top convertor. Phase two, 1990-2000+, would see the introduction of integrated MAC/PAL receivers costing around $£ 450$. Phase three, 1991-2000+, would see the introduction of a wide-screen service with 16:9 aspect ratio, compatible with Phase one and two operations: wide-screen receivers would cost around $£ 1,000$. Phase four, 1995-2000+, would see the introduction of the HD-MAC format with 1,250 lines, 50 fields per second and 2:1 interlacing, still compatible with the earlier stages: receivers would not cost less than $£ 1,500$.

The paper from a British Telecom Research Laboratory (BTRL) representative, though not strictly relating to HDTV, covered the D2-SMAC system that BTRL has developed as an aid to spectrum space saving. By using a subsampling process (the S in SMAC) the system discards alternate video samples before transmission: controlled interpolation is used in the receiver to replace the missing samples. The aim of this new MAC variant is to enable four MAC channels to be transmitted over each 36 MHz satellite transponder instead of two.

Assessing NHK/Muse

Some very impressive demonstrations of the NHK/ Muse system were given - over satellite links, via a cable network, and with a laser scanned video disc. For display, wide-screen receivers, a 50 in . rear-projection set and a 16
$\times 9 \mathrm{ft}$ projection system were used, giving delegates plenty of opportunity to evaluate the system quality subjectively.

There are now two variants of NHK/Muse. Muse-T has a base bandwidth of $16 \cdot 2 \mathrm{MHz}$ and requires a full 54 MHz transponder bandwidth. It has been developed for satellite signals intended for redistribution. Muse-E is intended for direct satellite reception. It has a base bandwidth of only $8 \cdot 1 \mathrm{MHz}$ and can be handled by half a transponder. The satellite/cable demonstration using Muse-E for the satellite link and 6 km of the Ottawa cable system was most impressive, though it used four cable TV channels in the process.

The NHK-Muse system has been demonstrated so many times that subjective assessment of quality can now be made. Without denying the brilliance of the concept, the system nevertheless does have its imperfections. When the carrier-noise ratio falls to about $5-6 \mathrm{~dB}$ below the designed for level false colours become apparent - in fact the choice of chrominance components was called into question. A strobing effect or blurring can be seen in picture areas where there are diagonal stripes or where diagonal movement occurs. A change of signal level produces some loss of resolution in picture areas where there is movement. No doubt further development will resolve these defects.

One or more Standards?

Whether a single world-wide standard for HDTV is desirable in itself is a question that needs to be considered. Would the VHS and Beta VCR systems provide the high-quality displays they now do had there been a single world-wide standard? Probably not - the drive for market dominance has undoubtedly led to improved performance. So two HDTV standards might in the long term be the best solution, especially if a common conversion standard is available to ensure wide distribution of the world's TV programmes.

Correction

The phased array computer program published in the January issue was incorrect in two respects. First, lines 530 to 1000 were omitted - these lines draw the aerials on the screen, and are listed below. Secondly "FOR H=8 to 9" in line 110 should have read "FOR H=8 TO 9".

530 DRAW 600,600
540 MOVE 400,700
550 DRAW 600,700
560 MOVE 400,800
570 DRAW 600,800
580 MOVE 400,900
590 DRAW 600,900
600 ENDPROC
610 DEF PROC_Angle
620 MOVE 500,400
630 DRAW 1200,800
640 PRINT TAB(32,3);"Unwanted"
650 PRINT TAB(33,5);"Signal"
660 PRINT TAB(16,17);CHR\$(224)
670 ENDPROC
680 DEF PROC_Antenna_2
690 MOVE 900,400
700 DRAW 900,900

710 MOVE 800.400
720 DRAW 1000,400
730 MOVE 800,500
740 DRAW 1000,500
750 DRAW 1000,520
760 DRAW 800,520
770 DRAW 800,500
780 MOVE 800,600
790 DRAW 1000,600
800 MOVE 800.700
810 DRAW 1000,700
820 MOVE 800,800
830 DRAW 1000,800
840 MOVE 800,900
850 DRAW 1000,900
860 ENDPROC
870 DEF PROC Result
880 MOVE 900,350
890 DRAW 900,200
900 MOVE 500,350
910 DRAW 500,200
920 COLOUR 1
930 PRINT TAB(15,1);"To Transmitter"
940 PRINT TAB $(16,23) ;<>"$
950 PRINT TAB(20,25);Dist;"cm"
960 PRINT TAB(0,6);CHR\$(224);" = ";Deg;"deg"
970 PRINT TAB $(0,8)$;"CHANNEL ";Chan
980 PRINT TAB(0,10);N;"MHz"
990 PRINT TAB(5,27);"Space the aerials "Dist;"cm apart" 1000 ENDPROC

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

AMSTRAD CTV2200

This set switches on normally, works perfectly for half an hour, then shuts down. Normal operation is restored if the on/off switch is used after a few seconds. The set then shuts down again after a shorter period. The same sequence of events occurs, with the set working for progressively shorter periods. We have replaced the chopper transistor Q501, its driver Q502 and the control chip IC501, and have remade all suspect joints. In the shut down condition there is 325 V at the collector of Q501 which seems to be without drive. Removing the c.r.t. base or reducing the picture size by turning down the 153 V adjustment potentiometer VR501 gives continuous working.

The fact that removing the tube base or reducing the h.t. voltage clears the fault suggests that the protection circuit is coming into operation. In our experience the e.h.t. section of the diode-split line output transformer T802 can cause this sort of trouble, but before condemning it check the current monitoring devices R526, Q503, etc. Overload shutdown occurs when pin 5 of IC501 rises from zero volts.

FERGUSON 3V01

The problem is no take-up. A new take-up assembly was fitted, also a new tyre on the take-up spool, but there's still no take-up. The loading mechanism moves the idler almost into position but the take-up idler isn't actually touching the take-up spool tyre - there's little space between the two. Nor is the pressure roller touching the capstan. The impedance rollers aren't rolling either.

First make sure that the tape loading is complete and that the after-load switch S6 is being operated correctly. If so, concentrate on the action of the pinch roller solenoid. Confirm by manually closing it fully that take-up begins and that there's no obstruction or excessive friction, i.e. old, hard grease. If not suspect the solenoid itself - once you've confirmed that $\mathrm{X} 6 / 7$ in the solenoid drive circuit are turning on fully, indicated by less than 1 V at pin 13 of the mechacon panel.

CIHAN 1224

The problem with this 12 in . monochrome portable is weak sync. Both the line and field have to be adjusted each time the set is switched on, and any change in picture content will make the field roll out of control. The picture is otherwise very good. The voltages around the sync separator seem to be o.k. and replacing the transistor has made no difference.

The crucial factor in these simple sync separator circuits is the transistor's base bias. We suggest you replace the
base circuit resistors and if necessary the input coupling capacitor. If this doesn't cure the problem an oscilloscope will be required to check the progress of the video waveform to the sync separator and the separated sync pulse output. These sets were imported by Network Industries Ltd.

SHARP VC7700

The only way in which this machine will turn off is to use the switch at the back. At all other times the cassette lamp stays on and the head drum continues to rotate.
The problem is due to the fact that the tape is not fully unlaced - or the machine thinks it's not fully unlaced due to failure of the unload end switch SW01. If the tape guides have not retracted fully, check the loading mechanics starting with the loading motor belt.

FERGUSON TX10 CHASSIS

This set is fitted with the PC1561 signals board. The problem we have is distortion on sharp sounds - for example when money is thrown into a till or when a paper bag is crumpled.

Very often careful adjustment of the sound detector coil L561 will clear this type of distortion. Don't turn the ferrite core more than about half a turn either way.

SHARP VC7300

On stop from rewind there's a tendency for a length of slack tape to be left. We've encountered this problem several times with this model. Previously, replacement of the unloading and rewind belts eased or cured the problem, but not this time. I'm aware of the momentary "nudge" when eject is initiated, but the amount of slack is well outside the scope of this operation.

The key to the problem is what you call the "nudge" when eject is initiated. In all such cases we've encountered replacement of the loading block assembly has cured the problem.

SONY KV2056UB

At switch on there's a short hum then nothing at all. I've drawn a blank after making various static tests, though dummy loading the power supply suggests that the fault is not in the line timebase.

Despite your dummy load test, start by making an ohmmeter test across the line output transistor Q503. If a short-circuit or low resistance reading is found, isolate for test Q503, D507, D508 and D613. If the resistance across the h.t. line is correct, concentrate on the power supply, checking Q602 and all the diodes out of circuit with an ohmmeter. If they prove to be o.k., check R602, R609 and R610 before suspecting the TDA4600 chopper control chip IC601.

GRUNDIG GSC200 CHASSIS

This set works very well except that the sound will suddenly go off and the picture become grainy, as if the aerial is disconnected. If the tuning module is tapped everything returns to normal. I've hard wired some of the connections between the tuning module and the mother board but the problem remains.

There's no doubt that a dry-joint is present in the tuning module. While we've had this situation from time to time we've not found any one joint to be commonly responsible. A close examination of the print and the soldered connections should reveal the cause of the
problem - if necessary use a magnifying glass. If nothing can be seen, get the module connected and operating then gently flex and probe it with a suitable tool to locate the trouble spot.

302
Each month we provide an interesting case of $T V / v i d e o ~ s e r v i c i n g ~ t o ~ e x e r c i s e ~ y o u r ~ i n g e n u i t y . ~$ These are not trick questions but are based on actual practical faults.

A difficult decision for service departments these days concerns how much work can practically be carried out in the field and at what point an outside technician should call a halt and bring the set into the workshop for diagnosis and repair. Much depends on the nature of the fault and the design of the set - and, of course, on the ability of the man on the spot. The problem can sometimes be solved by a quick telephone call to a more experienced bench technician, and we find ourselves resorting to this "consult the oracle" method more and more lately. Hence this month's test case, which concerns a field technician who was not as familiar as he might be with fault finding but is learning fast.

He'd been sent to see a 16 in . ITT set in a house some miles from base. The problem reported was "bright screen with lines across", about as specific a fault description as one could hope to get from a non-technical customer. Advised in advance to start by checking the c.r.t.'s cathode voltages, our technician was nonplussed to find on arrival that the picture was good. It was bright, as it should be, and it had lines across -600 -odd scanning lines that traced out a beautiful colour picture. The owner confidently predicted that the fault would perk up within a few minutes, and sure enough it did. The screen suddenly brightened up, with a prominent display of field flyback lines.

By the time the technician had got out the service manual and circuit diagram (ITT CVC40 chassis) the symptom was well established. Suspecting that the tube's cathode voltages were incorrect, our man made his first meter checks here. The circuit diagram told him that for a normal picture $90-135 \mathrm{~V}$ was to be expected. The readings obtained were somewhat higher, around 150 V . This was odd: one would expect an increase in cathode voltage to darken the screen, not light it up. It was reasoned that the cathode voltage is relevant only in relation to the grid voltage, so the tube's grid voltage (pin 9) was next checked. It was found to be about 20 V , which was reasonable from an inspection of the resistor values used in the potential divider network that provides the supply.

How about the first anode voltage? Adjustment of the first anode voltage control potentiometer R47A on the mother board made little difference to the display on the
screen, so trouble here was discounted. In fact it seemed that the tube itself was faulty, since an increase in the cathode voltage appeared to have led to an increase in brightness and a virtual loss of picture information.

On to the land-line then and dial the secret workshop number that rings the phone beside the workbench of a friendly and knowledgeable soul - Sage himself. In fact Sage was a bit short-tempered, having just had a dingdong with a customer who'd demanded a new tuner for his VCR free of charge on the basis of having had his cassette lamp replaced six months previously.

When the field technician described his troubles Sage became even more short-tempered! He was able to diagnose the fault with certainty, and to say it was very unlikely that the exact component required would be available in the mobile spares stock. It could be made with a combination of two other parts however. What was it? See next month.

ANSWER TO TEST CASE 301
 - page 208 last month -

January's test case, while relating to a Sony camcorder, was really about the wider issue of sussing out fault areas by careful observation of the symptoms and the behaviour of the equipment. Emergency shut-down took place within a few seconds of selecting a mode in which the tape moved, i.e. one involving the rotation of the spools at the very least. In this particular machine the reels are driven from the capstan motor, but the same rules of diagnosis apply where the VCR's reel tables have their own drive arrangements.

These shut-down situations nearly always have their origin in the deck sensors - the cassette lamp, loading switches, rotation sensors, slack and dew detectors and so on. In this case several of these were exonerated by the readiness of the machine to start, to thread the tape and to respond initially to keyed-in commands. In view of the fact that the machine would work in play pause, when the reel rotation sensors are inactive, it seemed almost certain that the problem was in the reel sensor circuit - and so it proved to be.

In this machine the outputs from the reel sensors - two under the take-up reel and one under the supply reel - are detected by a strobe-pulse system based on the mechacon microcomputer. There was no need for the scope however - two of the sensor optocouplers were dry-jointed to the PCB!

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd;; South Africa - Central News Agency Ltd. Subscriptions: Inland £16, overseas (surface mail) E 19 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

KENT TRADE SUPPLIES

2 Forstal Road, Aylesford, Maidstone, Kent ME20 7AU.疋 TELEPHONE 0622 79313/78136

OPEN 9am-6pm MONDAY-SATURDAY

EX RENTAL VIDEOS

3V22 AND 3V165 WDRKING FROM £59.00 3V22 NON WORKING COMPLETE FROM £29.00 3V22 FOR INCOMPLETE FOR SPARES $£ 17.50$ ELECTRONIC VIDEOS

3V30 WORKING FROM £79.00 3V30 NON WORKING BUT COMPLETE

FROM £45.00
3V30 NON FOR SPARES ONLY FROM £22.50

ALSO SHARP-AKAI-GRUNDIG-HITACHI-MITSUBISHI-GRUNDIG VHS etc P.O.A. EX RENTAL COLOUR TV's LATE SETS IN WORKING ORDER

TELETEXT MODELS FROM £59.00 REMOTE CONTROL SETS FROM £30.00 OLDER TV's 8,800 8,500 IN WORKING ORDER FROM £10.00 NON WORKERS FROM £3.00

FOR DETAILS OF OUR CURRENT STOCK TELEPHONE: ANDY OR ROY TODAY

UPDATING COURSES

HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS

VCR SERVICING

(3 WEEKS FULL TIME)

NEXT COURSES START ON FEBRUARY 1st \& FEBRUARY 29th 1988 TUITION FEE $£ 575$ FULL TIME 1 YEAR BTEC NATIONAL CERTIFICATE ELECTRONICS ENGIIIEERING

1. T.Y. \& VIDEO

(Electronic Equipment Servicing)
2. COMPUTING TECHNOLOGY
(Micro Processors, Communications and Interfacing) 3. IAFORMATION TECHNOLOGY
(Satellite TV, CD, Networks)
4. SOFTWARE EMGINEERIMG
(Assembler, BASIC, PASCAL, CADCAM)
Courses commencing 25th April 1988.
Unemployed may be eligible for new JTS grant support.
Further details from:
LONDON ELECTRONICS COLLEGE
(VC Dept.), 20 Penywern Road, Earis Court, London SW5 9SU. Tel: 01-373 8721

SPECIAL DEALS FROM CROFTON

Crofton Electronics are now able to offer C.C.T.V. cameras from as little as $\mathbf{£ 6 9 . 5 0}$ +VAT \& carriage. These cameras have been refurbished to a high standard in our own workshop. They produce a slandard composite output of 1 volt p-p and will work with any video recorder having a video input socket, digitiser, monitor, or with a domestic TV with the addition of a modulator which is availabie separately. These cameras are powered from the standard 240 volt ac mains supply.
The lens boss is a standard " C " mount (1 " diameter $\times 32$ threads per inch) and will thus allow a very wide range of camera lens to be accommodated. The sensitivity of these cameras is in the order of to lux which allows their use in the damestic envionment. Pictures can be produced with lower light levers but with a worse signal to noise ratio. Low light versions of this camera are available giving sensitivities of 0.1 lux which is equivalent to half moonlight. Typical cost is approx. E350 + VAT and carriage. Many lenses are available from stock. Please ask tor details. Mounting of these cameras is by standard tripod bush. (1/4" whitworth thread). Many other CCTV items are available from slock, ie. Pan and tilt units, housings, zoom lenses both manual and motorised, video switchers, line amplifiers, monitors both colour and monochrome as well as a complete range of surveillance and room listening devices. We are also able to supply from stock video piugs and sockets, camera tubes, monitor tubes and many specialised camera and monitor components. Equipment such as monitors we are able to offer new or refurbished.

SPECIAL CLEARANCE

BRAND NEW TTLComposite monitor drive board and 122° professional paneled green P31 tube at the give away price of $£ 10$ plus VAT and carriage ($£ 17.25$ total). These monitor boards have a bandwidth of at least 24 mHz , and only require a power supply of 12 volts at 9.25 amps to have them up and running
REFURBISHED $4: 1$ motorised zoom lenses $(22.5-90 \mathrm{~mm})$ at the incredible price of $\Sigma 110$ plus VAT and carriage ($£ 130.53$ total). These lenses are by one of the worlds largest manufacturers and have been made to a very high professional standard. The new price would be well over the $£ 600$ mark and thus it represents a really good buy. The motorisation is for 240 volt ac and thus no special power supply will be required. All three functions have been motorised ie Focus, lris and Zoom.

Most major credit cards accepted.

CROFTON ELECTRONICS

"KINGSHILL", NEXTEND, LYONSHALL HEREFORDSHIRE HR5 3HZ. 05448557

TAYLOR

 T.S. 20088 WAY U.I.F. T.V. DISTREIBUTION AMPLTPIER

We are a new Trade supplier of ex-rental TV and Videos. Top quality stock Working and non working . A good range in Philips, JVC, Sony, Toshiba, Hitachi, Teletext and National Panasonic colour TVs

All working stock professionally serviced to showroom standards
 COME ON DOWN THE PRICE IS RIGHT!

CONTACT
BRIAN MOLLETT

BLFAK BAFGADY

	200 Assorted Capaci	
	${ }^{2} \mathbf{2 0} 0$	
	(ex	(nem
val		
)
${ }^{\text {che }}$		
(exper		
yele	${ }^{3} 8$ nom tee	
v24		
v27		
∞		
	4 atemen	-
9	4 a	
venes		
visis	20.	-
v223		-
viras		-
	117	+
P285	1)	\%

BI-PAK

$$
1
$$

| pice |
| :--- | :--- |
| nive |
| nion |
| cion |

 mined

 VP21
 VP278
vP23
vP23
VP2u

Mounting bracket Powet sound. Itoesres. 8 ohms 300 mW Frat Res $20-20000 \mathrm{H}$Yes. 8 onns 300 mW Frea Res $20-20000 \mathrm{~Hz}$
10 K Lin Rolary Poteniometers, slum spindiePlug in Relays Mixed volts. elc slum spindieroots.Logic Probief Tester, supphy $45 \mathrm{~N}-18 \mathrm{~V}, 0$Universat Tester, with ceramic buzzer
GPC SIANIFY Screndrier

 hick-up Tool,
 Helping Hand
 Welping Hand
 Watchmers Screwdriver Sel 6 pieces
Miniature Side Cuters
Miniature Side Curters
Minature Benl nose Plors
Minature Bent nase Plers
Miniature Long nose Plems
AA N Cad Batraies. $125 v 500$ mah C/R miA
C-HP11 Ni Cad Batteries. Rechargeable
Sw Duainy Low Cost Sodideng It Iron, 240, AC
50 grams Elchant Granulas IFerric Chionic
Muticore Solder. resm totat. St and 22 SWG
Complete wirt iton stand and sponge Stom wide and to any ang
Luber leert Very high quality
Steel Rules $1 \times 4^{4 \prime}, 1 \times 10^{\circ}$, measunng ins and $m m$
Priace Needie File Set
4 Plece Staniess Steel Tweeter Se
Set of 4 man low cost Side \& End Cu
230ACTC Counte m${ }^{40} \mathrm{pmg}$op. Op-Amp
CAB130E MOS.FET LiP, IM27123178 K EpromErom Regulator, 1.21214 ak Static RamI.C $4.2 \mathrm{w}, 13 \mathrm{~V}$,
1 TBAA61 A
8 CO4016B
6
6$13 \mathrm{rc}, 2-4$ ohms

$C 040478$
$C O 4238$
743

 7440 Dual 1 - 1 mout, Po

88
888888
1 Ifes1
fonan
Gauss

Miniatura Long-nose Pleers
ISw "Lugtweigm" Suatiny Low Cost Soldentrigg Iron. 24 avacraso
High Suction Desoddernep Pump Teflon nozzte. Auto eiect. he sry du 64
Cong Foring. Gni Soldering and Heavy metal dose. Serrated suws with
rev weereer action ideal tor holding small con
adustabie

$$
\begin{aligned}
& \begin{array}{l}
\text { TRANSIST } \\
\text { Dencriptom } \\
\text { SMISO PNP }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ransistors, } 100 \mathrm{ov} 100 \\
\text { Transistors, uncod }
\end{array} \\
& \text { OCus germanium Af Transistors } \text { Programmable Uniunction Transisors. MEUZZ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10 MOS.FItrs Signetics, SO304 }
\end{aligned}
$$

VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

HITACHI
5000, 8000

NATIONAL PANASONIC

NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS SANYO VTC 9300,5300

 SONY C5, C6, C7 Untested from $£ 25$ HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5 VHS/Beta tapes used from 40p eachSorry must collect as we do not send through the post.

PLUS

$17^{\prime \prime} 18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from $£ 8$. Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT Discount for Quantities Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

T- TELE B $\overline{O N D}$ 325 Two Mile Hill Rc Bristol BS1 Bristol BS15 1AN.
Tel: 027267352 rentals ltd. 138 Bell Hill Rd. Bristol BS5 7 NF

QUALITY COLOUR CTV AND VIDEO

FERGUSON 3 V16,3V22,3V23,3V29 etc HITACHI $5000,8300,8700,9300$ NAT PAN 2000, 2010, 7200, 333
SHARP
383, 9100, 581, 781
PRICES FROM $£ 60-£ 120$
PLUS MANY, MANY MORE! QUANTITY DISCOUNT
9000 RANGE FROM $£ 25$
9600 ALWAYS AVAILABLE
TX 9/10 BASIC,REMOTE,TEXT,STEREO
SOUND CABINETS, REMOTES AVAILABLE
SPECIAL TX 10TEXT FULLY WORKING £100

RING OUR ACTION LINE NOW ON (0272) 352046 or pay us a personal (0272) 294692 after 6 pm visit 9-6 pm Mon to Sat

Calling all woodworkers, enthusiasts and professionals to the UK's Number I woodworking event. From 10 am to 7 pm (6 pm on Sunday), the Wembley Conference Centre will be alive with the sound of woodworking machinery and the scent of freshly-cut timber
Vistt the Craft Market, get a Christe's |ree valuation on your ofd woodworking tools, se the wmning entries to the Design a Toy Competition, the Furmiture Design Awards and the Carve a Dancing Boy Competition devised by lan Norbury to represent the children of Hamelin following the Piper
Prices on the door are $£ 4$ for adults and $£ 250$ for 165 and under and semior citizens. Book in advance and you save yourself 50 p a ticket, with even bigger reductions lor parties of twenty or more. Bookings must be received by February 2
Guidedogs and wheelchairs are wetcome We regret, however, that pushchairs and pet dogs are not permitted
POST THE COUPON IODAY enclosing your remittance to: Sovereign Exhibition Management, Park House, 55 Park Lane, Carshalton, Surrey SM5 3EE.

7th NATIONAL PRACTICAL WOODWORKING EXHIBITION Please send:

adult ticket(s) at $£ 3.50$ each	_ child/senior citizen ticket(s)
	at $£ 2.00$ each
adult party tickets) at $£ 3.00$ each	\qquad child/senior citizen party ticket(s) at $£ 1.50$ each
1 enclose remittance of $£$	cheques made payable to IPC Magazines Ltd.
Name	
Address	
	_Postcode

COMPONE AN OPPORTUNITY 1 at DIS ALI COMPONE	DEALERS ASE COMPONENTS CES. NID UNUSED.
Din Sockets 5 pin 180° S chassis mounting CAPACITORS	$\begin{aligned} & \text { c body, } \\ & £ 6.00 \text { per } 100 \\ & £ 3.00 \text { per } 100 \text { (any value) } \end{aligned}$
lycarbonate	ELLOW
$0.01 \mu \mathrm{~F} / 100 \mathrm{v}$	POLYPROPYLENE
$0.068 \mu \mathrm{~F} / 100 \mathrm{v}$	$0.0047 \mu \mathrm{~F} / 630 \mathrm{~V}$
$0.1 \mu \mathrm{~F} / 100 \mathrm{v}$	$0.01 \mu \mathrm{~F} / 400 \mathrm{~V}$
$0.68 \mu \mathrm{~F} / 100 \mathrm{v}$	$0.1 \mu \mathrm{~F} / 250 \mathrm{v}$
DIPPED	$0.15 \mu \mathrm{~F} / 250 \mathrm{v}$
(COLOUR CODED TYPE)	$0.22 \mu \mathrm{~F} / 250 \mathrm{v}$
$150 \mathrm{nF} / 250 \mathrm{v}$	
$330 \mathrm{nF} / 250 \mathrm{v}$	POLYSTYRENE
ELECTROLYTIC	(AXIAL) $120 \mathrm{pF} / 400$
(AXIAL)	$300 \mathrm{pF} / 63 \mathrm{v}$
$2.5 \mu \mathrm{~F} / 16 \mathrm{v}$	$330 \mathrm{pF} / 63 \mathrm{v}$
$47 \mu \mathrm{~F} / 25$	$360 \mathrm{pF} / 63 \mathrm{v}$
$4.7 \mu \mathrm{~F} / 50 \mathrm{v}$	$2200 \mathrm{pF} / 16 \mathrm{v}$
$47 \mu \mathrm{~F} / 50 \mathrm{v}$	$2200 \mathrm{pF} / 30 \mathrm{v}$
$6.8 \mu \mathrm{~F} / 63 \mathrm{v}$	3300pF/160v
$15 \mu \mathrm{~F} / 63 \mathrm{v}$	$4.7 \mathrm{nF} / 160 \mathrm{v}$
$64 \mu \mathrm{~F} / 64 \mathrm{v}$	$100 \mathrm{nF} / 160 \mathrm{v}$
TO ORDER: Please add $£ 1.30$ postage and packing, and then add 15% VAT to total. Cheque (made payable to Knowsley ITeC) with order to	
KNOWSLEY ITeC, Department CP, Knowsley House, Charley Wood Road, Knowsley Industrial Park North, Kirkby, LIVERPOOL L33 7BU.	
DESPATCH BY RETURN	

* TOP QUALITY ex-rental TV's \& Videos
* Fresh stock deliveries EVERY week
\star All items complete with original handsets
\star Working stock always available in quantity
$\star 24 \mathrm{hr}$ ansaphone service
Opening times: Mon-Fri 10am-5.30pm.
Sat Mornings 10am-1pm.

UNIT 5 PORTVIEW ROAD BRISTOL
 BS11 9LQ
 0272-235093
 7/8 KINGS GROVE IND. ESTATE
 INVINCIBLE ROAD, FARNBOROUGH HANTS. GU14 7QS 0252-540814

BARRY T.V. SERVICES

Are you having problems purchasing good quality used TVs and Videos with immaculate cabinets?

For a good deal no fuss call on us!
Example: KT3 standard $£ \mathbf{4 5}$. K30 standard $£ 65$. 3V29/3V30 £115.

ALSTON-BARRY INTERNATIONAL

 Don't forget our budget satellite system at only $£ 329$.Units 4 and 5, Winborn Building, Convent Drive, Waterbeach, Cambridge. Tel. 0223 862924. Fax. 0223860965.

HUSSAIN CENTRAL TU LTO.

The UK's LARGEST INDEPENDENT WHOLESALER OF EX-RENTAL TV \& VIDEO

DON'T TRAVEL THE UK LOOKING AT "BUTCHERED JUNK" CALL INTO YOUR LOCAL BRANCH TODAY FOR THE BEST SELEC. ANYWHERE IN THE UK UNTESTED EX-RENTAL VIDEO AN TV
 CK THE BEST PRICES ARE AT YOUR LOCAL BRANCH NO THE BEST STOCK AT THE B please contact Tel: 021-622 select your stock then we delivery it. Delivery Service available, select you WITH THE BEST" "FORGET THE RESTAN OUR WORKING STOCK

We have become No. 1 through our policy of supplying a good quality product with efficient and friendly service.
WHY NOT RING YOUR LOCAL BRANCH NOW

$\mathbf{f} \mathbf{f} \mathbf{O F P R O F I T} \mathbf{f} \mathbf{f}$

 THE SECRET'S OUT
EXIT 33 OFF M4

DONT GAMBLE WTH YOUR PROFIT WITH ALL THE REST

 CALL IN AND SEE US YOU WILL ONLY FIND THE BEST£ 6000 SQ. FT WAREHOUSE FULL OF TV \& VIDEO SO YOU WILL
ALWAYS FIND WHAT YOU WANT

Stereo Text TV's, Electronic Video, I/R Remote \& Front Loading Video f PRICES SUBJECT TO VAT $£$ PHONE FOR AVAILABILITY OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

BOLTEN LTD.
 63, JEDDO ROAD, LONDON W12 9EE.
 Tel: 01-749 0915 (2 lines)

Telex: 262421 GENUS G Fax: 01-749 9469
VIDEO HEADS

Sony Universal Eq. DSR 36	¢24.99
Sony Universal Eq. DSR 43	¢24.95
Sony C-9	E39.99
Ferguson/JVC Universal	£23.99
National Panasonic Universal	£23.99
National Panasonic (370/380/430/460)	£27.99
National Panasonic (777/330)	£39.90
Hitachi 5000 (Not Genuine)	$£ 24.99$
Hitachi VT11NT33/HIVI	£24.99
Toshiba 9600	£33.00
Sanyo (Genuine)	£44.95
Fisher Universal Eq. FVH D720	£31.45
Akai Universal	£23.99
Sharp	f33.95
Amstrad 7000/9000/4600	£27.99
Saisho 605/705/805/905/100	¢27.99
Triumph 9500/9501/9525	f27.99
Sanyo Pulley VTC 5150	f6.95
Sanyo Motor VTC 5150	£7. 25
Belt Kits (Most Models).	£3.99
Remote Controls TV Grundig/Philips	£16.95
Remote Controls Philips TT (4300)	£17.95
Pinch Wheels (various Models).	£5.95
Sony Idler Kits C-5/C-7	£4.50
Sony Idler Kits C-6	f2.95
Other Accessories - Mod kits, Integrated Circuits, Idler Assy, Gear Idler Assy, Reel \& Loading Belts, Capstan \& Reel motors, Reel Drive Pulley units also available in most models. Please call for full list.	
Please add 15\% VAT plus $£ 1.00$ p\&p per order.	
Delivery within 7-14 days subject to availability.	
PLEASE NOTE OUR NEW ADDRESS AND TELEPHONE NUMBER	

INTERNATIONAL LTD.

WHOLESALERS OF QUALITY EX. RENTAL EQUIPMENT TO UK \& EUROPE

It seems customary for many wholesalers to advertise the largest range in the UK, at the lowest prices. However when you arrive at some of these places the equipment looks as though it has come out of a war zone and has been delivered by tipper.

At TVS, we purchase our sets from one of the countries principal rental companies, who deal with virtually every major manufacturer thus giving us a range of products that we genuinely feel are unbeatable. Don't take our word for this though. If you care to give us a ring we will send you free of charge, by return a comprehensive price list of all our products. You will also find the prices we advertise are the prices you pay, (a refreshing change we feel these days).

SPECIAL OFFER THIS MONTH ON ALL COLOUR TV's including 9000s with Thorn New Life Tube. 3V23s with brand new hand units now available.

EXPORT INQUIRIES WELCOME

Phone Head Office, Bromsgrove FOR FURTHER DETAILS AND A COMPREHENSIVE PRICE LIST CONTACT: COLIN BROOMFIELD TVS INTERNATIONAL LTD. Head Office, Unit 7, Station St., Bromsgrove, Worcs. B60 2BS.

(0527) 71186 or 37037

or call our latest franchise dealers:

Pitchford \& Evans, Unit 2, Station Hill, Oakengates, Telford TF2 9AA. 0952616771

TV and Video loads direct from source now available at fantastic prices. Why not stock up for winter while summer prices still apply?

Prices quoted for cash payment and subject to VAT Comprehensive spares back up available Delivery service available to UK \& Europe

Universal Semiconductor Devices Ltd. UNIT 4, SPRINGRELD ROAD,
CHESHAM, BUCKS. HP PU, ENGLAND.

TEL 0494 791289/TELEFAX. 0494791296 * TELEX TO BE ADVISED NEW ADDRESS FROM NOVEMBER Ind 1987.
We offer one of the largest ranges of semiconductors at highly ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DON STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLAR - GERMANIUM AND SILICON SMALL SIGNAL
POWER
(6) DARLINGTONS - ALL SHAPES AND SIZES VHF/UHF DEVICES - ALL SHAPES AND SIZES

FITS - POWER MOSFETS UNIJUNCTIONS

DIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LED OF ALL SHAPES AND SIZES
THYRISTORS AND TRIALS - ALL
SHAPES
電 家

SIZE
integrated circuits:
CONSUMER - digitauanalogue
microprocessors and peripherals
IC SOCKETS

CATALOGUE

1988 CATALOGUE IN PREPARATION. WE WOULD ASK ALL NEW CUSTOMERS TO ENQUIRE BY LETTER; TELEPHONE; TELEX OR FAX FOR THEIR REQUIREMENTS. WE WILL GIVE PRICF AND DELIVERY BY RETURN.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS
WE WELCOME TELEPHONE AND TELEX ENQUIRIES

CREWE WHOLESALE TELEVISION CHESHIRE S LARGEST WHOLESALERS - OVER 10,000 SQ. FT.

15 MINUTES FROM JUNCTION 17, M6

OVER 7000 TV's IN STOCK NOW!

(Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, 8,500, $8,800,9,000,9,600,9,900$, full remote TX, TX Text, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

VIDEOS

VHS - MECHANICAL HITACHI, FERGUSON 3V23-3V30

BETAMAX - SONY, SANYO, TOSHIBA, etc. (Working or untouched)

RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS BULK SUPPLIES AVAILABLE - RING DAVE ON HOT LINE CREWE 582924
CREWE WHOLESALE TELEVISION
79-79A Coleridge Way, Crewe, Cheshire,
®o
0270
582924

BRITAIN'S LARGEST SUPPLIERS

 OFEX-RENTAL TV AND VIDEO SPECIAL OFFER BETA SANYO C5, C6, C7, C9 FROM $£ 20$ VHS
HITACHI 5000

£60

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV from $£ 5$
CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

CLEARANCE SALE

We are moving

 to a new warehouse. No reasonable offers refused on any stock.TELETRADERS
Forde Road, Brunel Industrial Estate,
Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

BRAND NEW VIDEO HEADS AT
 COMPETITIVE PRICES trom Luton onrv.

FOR AKAI, AMSTRAD, BAIRD, DECCA, FERGUSON, FISHER, GEC, HITACHI, ITT, JVC, MITSUBISHI, NEC, NORDMENDE, ORION, SABA, SAISHO, SANSUI, SHARP, SIEMENS, SONY, TATUNG, TELEFUNKEN, TENSAI, TOSHIBA, TRIUMPH TROPHY.
D.I.Y. TV TUBE POLISHING KIT

Kit Price $£ 57$ inc P\&P and VAT.Available from Luton only.

Quality, High Temperature Reprocessing					
TUBE SIZE UP TO \& INCLUDING	АХТЗ7-001 A51-421X A51-426X A51-570X A51-580X 451-550x A51-701X	UNE \& PI i.e. AXT51-001 510VAB22 510 V LB22 510VSB22 A56-510X A56-540X A56-701X AXT56-001	$550 \mathrm{BYB22}$ $560 \mathrm{CYB22}$ 56002822 560EGB22 A66-510x A66-540X A67-701X		
$20^{\prime \prime}$		¢44		£50	£58
22'		¢46		-	£64
$26^{\prime \prime}$		¢48		-	£85

All tubes exchange glass required.
Please add 15\% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW 114133 Miland Rad Luton, Beds. LU2 0BL.
Open Mon-Fri gam-6pm. Late opening Tuesday \& Thursday till 8 pm.
Tel. 0582-402499.
Your Local Tube Stockist
Well View, Southampton. Tel. 0703449783.
West One Distributors Ltd., Chesham. Buckinghamshire.
Tel. 0494778197
Best price paid for A66-540X, old glass

\begin{tabular}{|c|}
\hline 2SA－473 \& \({ }^{2} 0.35\) \& 2SE－545 \& 11.50 \& 2SC－1172 \& £1．90 \& 2SC－2482 \& ¢0．40 \& 2SD－882 \& 50.35 \& AN－7161 \& 52.50 \& TDA．2009 12.2 \& L－16 \& 02.80 \& SAMYO \& \& REPLACEMENT \& RW－317 \& c0． 52 \\
\hline 2SA－489 \& 50.45 \& 2S8．546 \& \＄1．00 \& \(2 \mathrm{SC}-1173\) \& 80.40 \& 2SC． 2501 \& 20．75 \& 2SD．698 \& 52.60 \& AN－7168 \& 15.60 \& TDA 2020 \＄1．40 \& L－200CH \& 18.50 \& VTC－5500 \& ¢0．98 \& STVU \& RW－320 \& 20.36 \\
\hline 2SA－490 \& 50.60 \& 2S8－548 \& ¢0．32 \& 2SC． 1195 \& ［2． 50 \& 2SC－2502 \& c0． 80 \& 2SD－982 \& £0．60 \& AN－7213 \& 81.09 \& TDA 2030AH 11.80 \& L－2605CV \& 81.80 \& 300 \& 02．50 \& We have pul \& RW－321 \& 50.52 \\
\hline 2SA－495 \& 50.25 \& 2S8－555 \& ¢1．50 \& 2SC－1212 \& 50.55 \& 2SC－2537 \& ¢4．50 \& 2SD－1135 \& \(\underline{50.85}\) \& AN－7218 \& 81.10 \& TDA－2030AV 82.41 \& MC－1458CP \& \(\underline{20.50}\) \& \& \& AMMGE OF THE \& RW． 327 \& £0．54 \\
\hline 2SA－496 \& \({ }^{2} 0.45\) \& 2S8－556 \& 61.50 \& 2SC－1213 \& £0． 20 \& 2SC－2546 \& 20.10 \& 2S0－1138 \& 50.90 \& AN－7220 \& 11.60 \& TDA 203030 H E1．c0 \& MC－1488P \& \(\underline{20.45}\) \& SHARP \& \& STILUS MOSTLY \& RW－328 \& £0． 81 \\
\hline 2SA－564 \& \(\mathrm{c}_{0} .15\) \& 2SB－557 \& ¢2．25 \& 2SC－1214 \& £0．15 \& 2SC－2550 \& c0．75 \& 2S0－1265 \& ¢0．65 \& AN－7222 \& \({ }^{2} 0.80\) \& \& MC－1489P \& 10.45 \& VC－6000 \& \({ }_{81}{ }^{40}\) \& MOOELSEPIS \& RW－329 \& \({ }^{50.45}\) \\
\hline 2SA－608 \& 50.05 \& 2SB－560 \& 50．30 \& 2SC－1222 \& ¢0．35 \& 2SC－2555 \& 61.75 \& 250－1273 \& 50.80 \& AN－7223 \& 81.40 \& T0A－2040木 \& 2 N －2219A \& 50．30 \& \& \({ }_{50.98}\) \& ASK FOA FUL \& RWW－52 \& \\
\hline 2SA－673 \& 50.20 \& 2S8－562 \& 50.30 \& 2SC－1226 \& 50.75 \& 2SC－2564 \& \(\mathfrak{\$ 2 0}\) \& 2SD－1397 \& 51.55 \& AN－7224 \& 18.25 \& \& 2N－2369A \& c0．35 \& VC－6300 \& \(\underline{51.65}\) \& UST THE UWIT \& RW－54 \& \({ }_{\text {c0，}}\) \\
\hline 2SA－677 \& 10.30 \& 2S8－566 \& ¢1．20 \& 2SC－1317 \& 50.25 \& 2SC－2565 \& \(\underline{72.80}\) \& 2SD－1398 \& 52.00 \& AN－7310 \& ¢0．60 \& TDA－2822 00.90 \& 2N－3055 \& 50.38 \& VC－6100 \& 151.40 \& PAICE：E2．60． \& RW－56 \& \({ }_{20.36}\) \\
\hline 2SA－683 \& c0．20 \& 2S8－568 \& £0．15 \& 2SC－1318 \& ¢0．25 \& 2SC－2575 \& \(\underline{20.10}\) \& 2S0－1425 \& ¢2．30 \& AN－7311 \& 120.90 \& T0A－2822 20.90 \& \(2 \mathrm{~N}-3866\) \& 20．90 \& VC－8300 \& ¢1．40 \& \& RW－57 \& 50.36 \\
\hline 2SA－684 \& \(\underline{50.20}\) \& 2SB－595 \& 120.80 \& 2SC－1327 \& 50.20 \& 2SC－2577 \& 81.25 \& 2S0－1426 \& c2．30 \& AN－7410 \& 81.50 \& T0A－2822m 20.90 \& CD4009UBE \& 50.60 \& \& \& \& RW． 58 \& c0． 36 \\
\hline 2SA－720 \& \({ }^{50.15}\) \& 2SB－596 \& ع0．85 \& 2SC－1328 \& ¢0．25 \& 2SC－2579 \& 50.95 \& 250．1427 \& \(\underline{2.50}\) \& AN－7812 \& 51.50 \& TDa－3410 \& MUE－371 \& 50.40 \& sowr \& \& cartridges \& \& \\
\hline 2SA－726 \& \({ }^{50.15}\) \& 258－647 \& ¢9．30 \& 2SC－1345 \& 50.22 \& 2SC－2611 \& c0．40 \& 2S0－1439 \& 51.60 \& BA－301 \& ¢1．00 \& T04．3590 \& MUE－521 \& ¢0．35． \& SL－c5／C7 \& 10.30 \& We have 9 \& LTHuM \& Cion \\
\hline 2SA．733 \& \(¢_{0.07}\) \& 2SB－648 \& ¢0．50 \& 2SC－1368 \& ¢0．40 \& 2SC－2551 \& \％． 80 \& AN－203 \& 51.00 \& BA－308 \& 51.00 \& TDA－3590 \& KC． 581 \& \｛4．20 \& SL－8000 \& \(\underline{2} .40\) \& MODELS OF \& Celli \({ }_{\text {BR．}} 1225\) \& 50.75 \\
\hline 2SA－748 \& 81.00 \& 2SB－649 \& \(\underline{50.40}\) \& 2SC－1383 \& ¢0． 25 \& 2SC－2944 \& 51.50 \& AN－210 \& ¢0．90 \& BA－311 \& 51.00 \& \begin{tabular}{lll}
CA－3401E \& 80.98 \\
CA－3065 \& \\
\hline 2.75
\end{tabular} \& LM－3900 \& 00.52 \& TOSHIB \& \& CARTRIDGES \& \({ }_{\text {BR－}}\)－1616 \& \({ }^{20.15}\) \\
\hline 2SA－765 \& £3．00 \& 2S8－681 \& \(\underline{26.50}\) \& 2SC－1384 \& £0．25 \& 2SC－3078 \& 20.25 \& AN－214 \& 51.50 \& BA－313 \& 50.70 \& \& LM． 723 CN \& ¢0．52 \& V－5250 \& 82.20 \& UNW．00 PAICES IS： \& 8R－2016 \& \({ }^{0} 0.75\) \\
\hline 2SA－769 \& 51.50 \& 2S8－688 \& 51.25 \& 2SC－1403 \& ¢1．50 \& 2SC－3182 \& \(\underline{52.20}\) \& AN－253 \& 50.65 \& BA－333 \& ¢1．00 \& CA－3420AE \(\mathrm{m}^{\text {a }}\) ． 20 \& CA－3140E \& ¢0．50 \& V．5480 \& 151.55 \& \& 88－2020 \& 00.75 \\
\hline 2SA－771 \& 12.50 \& 2SB－705 \& 12．50 \& 2SC－1413 \& \(\ldots 3.00\) \& 2SC－3284 \& \(\underline{51.50}\) \& AN－262 \& 51.10 \& BA．340 \& 50.75 \& TIP－29A \& CA－3089 \& 51.15 \& V．7450 \& \(\underline{51.30}\) \& \& BR－2320 \& 10.75 \\
\hline 2 2SA 794 \& \({ }_{60.60}\) \& 2S8－716 \& \({ }^{2} 0.30\) \& 2SC－1445 \& \({ }^{1} 1.00\) \& 2SC－3298 \& \({ }^{\text {c1．}} 50\) \& AN－272 \& 52.90 \& BA－343 \& 50.75 \& TIP－23A， 8 E0．23 \& \& \& V－8600 \& ¢1．20 \& ORTOFON \& BR－2325 \& \({ }^{50} 75\) \\
\hline 2SA－798 \& \({ }^{50.60}\) \& 2 SB －717 \& 50.60 \& 2SC－1446 \& c0．75 \& 2SC－3506 \& 92.30 \& AN－301 \& ¢2． 35 \& BA－402 \& 50.50 \& \& AxC： \& \& V－5475 \& ¢1．45 \& WhEADSHELL \& CR－1220 \& \({ }^{50.75}\) \\
\hline 2SA－808 \& 51.50 \& 2S8－718 \& \({ }^{1} 0.75\) \& 2SC－1477 \& ¢0．60 \& 2SC－3519 \& 61.50 \& AN－302 \& \(\underline{0.50}\) \& BA－527 \& 50.97 \& \& AKCU： \& \& \& \& cartmioges \& CR－1620 \& \({ }^{50} 75\) \\
\hline 2SA－817 \& 50.15 \& 2SE－757 \& ¢1．30 \& 2SC－1454 \& Ex．50 \& 2SC－8050 \& 20.10 \& AN－303 \& \(\ldots 3.20\) \& EA－536 \& ¢1．45 \& \& VS－10 \& \({ }_{50.73} 50\) \& \({ }_{\text {IVROO }}\) \& 0.55 \& VMS－3U 97.50 \& \({ }_{\text {CR－2025 }}\) \& \({ }^{20.75}\) \\
\hline 2SA－844 \& 50.10 \& 2S8－772 \& c0． 50 \& 2SC－1509 \& 50.45 \& 2SD－198 \& \({ }_{6} 1.90\) \& AN－315 \& 81.00 \& BA 612 \& c0． 85 \& TPP－31A． 8 E0．22 \& VS－2EG／5 \& \& 3V16 \& \({ }_{61.55}\) \& VMS－3S \(\quad \mathbf{5} 7.50\) \& \({ }_{\text {CR－2316 }}\) \& \({ }_{50} 0.75\) \\
\hline 2SA－850 \& \(\underline{20.30}\) \& 2S8－837 \& \({ }_{20.50}\) \& 2SC－1567 \& £0．50 \& 2SD－200 \& E3． 10 \& AN－318 \& \({ }^{\text {ch．}} 75\) \& 8A－714 \& ¢0．30 \& TPP－31C \& vS－9 \& £1．50 \& 3V22 \& 0.00 \& \& CR－2420 \& \({ }^{2} 0.75\) \\
\hline 2SA－893 \& 50.30 \& 2S8－857 \& 20.50 \& 2SC． 1568 \& c0．45 \& 2S0－235 \& \({ }^{50.35}\) \& AN－340 \& 51.20 \& 8A－1310 \& \({ }^{\text {c0．}} \mathbf{6}\) \& \(\begin{array}{ll}\text { TiP．32 } \& \text { E0．22 }\end{array}\) \& \& ¢1．6d． \& 3v23 \& 50.77 \& \& CR－2430 \& 00.75 \\
\hline 2SA－896 \& 50.35 \& \({ }^{2 S C}-352\) \& c0． 60 \& 2SC－1577 \& \(\underline{67.70}\) \& 2S0－288 \& 50.75 \& AN－360 \& 50.75 \& 8A－5102 \& \({ }_{61.20}\) \& TIP－32A．B \& FSHER \& \& 3 V 29 \& 50.75 \& WATCH ： calculator \& \& \\
\hline 2SA－916 \& c0．18 \& 2SC－372 \& \({ }_{50} \mathbf{2} .10\) \& 2SC－1550 \& \({ }_{50} 50.60\) \& 2SD－299 \& \({ }_{5}^{51.50}\) \& AN－5010 \& 92.50 \& BA－5402 \& \(¢_{91.35}\) \& TIP．32C \& VBS－7000 \& \(\underline{92.40}\) \& \& \& \& alkul \& （Round \\
\hline 2SA－921 \& \(\underline{50.10}\) \& 2SC－380 \& 50.12 \& 2SC－1514 \& ¢0．75 \& 2SD－313 \& 50.30 \& AN－5111 \& \(\underline{53.50}\) \& BA－5404 \& \(\underline{11.20}\) \& TIP．33A \& VBS－9000 \& E0．80 \& \& \& BATIERIES \& \& \\
\hline 2SA－940 \& \(\underline{20.45}\) \& 2SC－458 \& \(\underline{50.15}\) \& 2SC－1584 \& \({ }^{5} 5.50\) \& 2SD－315 \& c0．75 \& AN－5410 \& \(\underline{9.80}\) \& BA－6109 \& \(\underline{51.40}\) \& TIP－41 \& － \& 20.60 \& RECORO \& \& RW． \(40 \quad\) E0．48 \& 810 \({ }^{813}\) \& \({ }_{500.48}\) \\
\hline 2SA－950 \& E0．25 \& 2SC－460 \& \({ }^{2} 0.06\) \& 2SC．1586 \& \({ }_{5} 5.50\) \& 2S0．325 \& \({ }_{50.45}\) \& AN－5431 \& \(\underline{57.20}\) \& HA－1124 \& 81.25 \& TIP－418，C \& hitach \& \& RECOROES \& \& RW－42 \& \({ }_{814}^{813}\) c） \& c0．48 \\
\hline 25A－958 \& ¢0．75 \& 2SC－495 \& 50.60 \& 2SC－1627 \& c0． 20 \& 2SD－352 \& \({ }_{50.50} 50\) \& AN－5435 \& \(c 1.80\)
\(\$ 8.15\) \& HA－1125
HA－1137 \& ¢1．25

$\mathbf{1 1 . 3 5}$ \& TIP－42 \& VT－5000E \& 1. \& \& \& RW－44 \& 815 （AA） \& 150.20

\hline 2SA－968 \& ¢0．75 \& 2SC－496 \& 50.75 \& 2SC． 1667 \& ¢1．40 \& 2SD－357 \& 120.35 \& AN－5440 \& $\underline{5.15}$ \& HA－1137W \& ${ }_{6}^{1.35}$ \& TIP－42A，${ }_{\text {¢ }}$ \& \& \& soua \& \& RW－47 \& 824 （AM4） \& c0． 25

\hline 2SA－985 \& ${ }_{50} \mathbf{5} \mathbf{6 0}$ \& 2SC－497 \& 18.50 \& 2SC－1669 \& 50.75 \& 2S0－358 \& ${ }_{50} 0.35$ \& AN－5510 \& C2． 50 \& HA－1151 \& ${ }_{6}^{1.25}$ \& TPP－42C \& NVC \& \& 68×1.2 to \& \& RW－48 \& A1604 6 \& 22）

\hline 2SA－992 \& ¢0．30 \& 2SC－536 \& ¢0．06 \& 2SC－1670 \& 50.75 \& 2SO－381 \& ${ }^{50.90}$ \& AN－5612 \& $\underline{92} 80$ \& HA－1156 \& 81.30 \& TIP－48 \& HR－3330 \& 52.00 \& 86×1.2 \& $\mathfrak{L 0 . 1 2}$ \& RW－49 \& － \& ${ }_{51.05}$

\hline 2SA－1048

2SA－1060 \& ${ }_{50.10} 51.50$ \& 2SC－644 \& ${ }_{50.25} \mathbf{5 1 . 9 5}$ \& 2SC－1675 \& c0．10 \& 2SD－386 \& | 50.75 |
| :---: |
| $¢_{1} 1.80$ | \& AN－5700 \& ${ }_{50}^{20.60}$ \& HA－1196 \& 51.30 \& TIP 102 \& HR－7200

HP－3360 \& ¢0．75 \& 120×1.25
135×1.25 \& ${ }_{\text {che }} 0.12$ \& $\begin{array}{ll}\text { RW－410 } \\ \text { RW－411 } & \text { ¢0．45 } \\ \text { ¢0．45 }\end{array}$ \& PHOTO \&

\hline 2SA－1062 \& 5.20 \& 2SC－693 \& c0． 21.95 \& 2SC－1756 \& ${ }_{\text {co．}}$ \& 2S0－389 \& ¢0．95 \& AN－5722 \& 11.25
$\mathbf{6 1 . 3 5}$ \& HA－1319 \& ${ }_{11.45}$ \& TIP 105 \& HR－4100 \& 19.95 \& \& \& RW－413 \& batterie \&

\hline 2SA－1094 \& ¢1．90 \& 2SC－710 \& 50.20 \& 2SC－1760 \& 50.75 \& 2S0－400 \& $\underline{0.15}$ \& AN－5730 \& 81.35 \& HA－1366W \& 81.75 \& T1P $121 \quad$ £0．40 \& HR－6500 \& 52.25 \& FEAT \& \& RW－415 \& ${ }^{867}$（J） \& ¢1．54

\hline 2SA－1102 \& 51.90 \& 2SC－717 \& 50.25 \& 2SC． 1775 \& ${ }_{20.15}$ \& 2S0－407 \& 50.45 \& AN－5732 \& 17.25 \& HA－1366WR \& 81.75 \& TIP 125 \& HR－3300 \& \％2．58 \& 68×0 \& \& \& RPXX－14 \& ${ }_{\text {c1．}}^{10.61}$

\hline 2SA－1104 \& 52.05 \& 2SC．733 \& 50.25 \& 2SC－1815 \& ¢0． 15 \& 2S0－426 \& $\ldots 1.50$ \& AN－5738 \& 17.00 \& HA－1367 \& 53.60 \& HCF 40018E 50.18 \& HR－7700 \& c0．7t \& \& \& \& RPPX－ 14
RPX \& ${ }_{61.23}$

\hline 2SA－1106 \& ¢1．50 \& 2SC－738 \& $\underline{50.25}$ \& 2SC－1819 \& 50.71 \& 2S0－428 \& 51.50 \& AN－5900 \& 11.50 \& MA－1374 \& 81.99 \& \& HP \& c0．77 \& $88 \times 0.5 \times 5$ \& \& RW－36 \& RPX－27 \& 9.05

\hline 2SA－1110 \& ¢0．45 \& 2SC－741 \& 11.95 \& 2SC－1845 \& ${ }_{50.15}$ \& 2S0－438 \& $\ldots 0.30$ \& AN－6248 \& ¢1．20 \& HA－1377 \& 9.00 \& HCF 40178 E ¢0．52 \& matiomal \& \& $122 \times 05 \times 5$ \& ¢0．60 \& RW－37 E0．31 \& RPX－28 \& $\underline{\square 2.35}$

\hline 2SA． 1142 \& $\underline{29.90}$ \& 2SC－783 \& $\underline{1.10}$ \& 2SC－1875 \& 5.40 \& 2S0－468 \& $¢_{0.25}$ \& AN－6249 \& 1.20 \& HA－11225 \& 81.70 \& HC 40258 E ¢0． 25 \& NV 333 \& £1．35 \& $189 \times 0.5 \times$ \& E0．60 \& RW－39 \& RPX－625 \& 50.40

\hline 2SA． 1145 \& E0． 20 \& 2SC．789 \& 20．35 \& ${ }^{2 S C-1890}$ \& 50.20 \& 2SD－476 \& $\sum_{00.45}$ \& AN－6250 \& ¢0．40 \& HA－11227 \& 81.00 \& HCF40288E 20.49 \& NV－8600 \& ¢1．65 \& \& ¢0．60 \& \& \& ${ }_{50}{ }^{50.39}$

\hline 2SA． 1147 \& 51.90 \& ${ }^{2 S C}$－790 \& 50.90 \& 2SC－1906 \& 50.25 \& 2S0－478 \& ¢0．90 \& AN－6320 \& 19.00 \& HA－11235 \& 81.70 \& HCTI050日E ca． 32 \& N－777 \& 20．99 \& 205×05 \& ¢0．60 \& $\begin{array}{ll}\text { RW－310 } \\ \text { RW－311 } & \text { ¢0．38 } \\ \text { ¢0．39 }\end{array}$ \& $$
\begin{array}{|l|l}
\text { RPX }-825 \\
\text { RS-76 }
\end{array}
$$ \& ${ }_{\text {¢0．}}^{10.50}$

\hline 2SA－1156 \& 50.60 \& 2SC－828 \& $\ldots 0.15$ \& 2SC－1913 \& 50.90 \& 250－525 \& ¢0．75 \& AN－6338 \& ${ }_{5}^{5100}$ \& HA－11244 \& 81.65 \& HC1401038E 00.98 \& NV－7200 \& 20．93 \& \& \& $\begin{array}{ll}\text { RW－311 } & \text { ¢0．39 } \\ \text { RW－313 } & \text { c0．44 }\end{array}$ \& RS－76 LOWGL \&

\hline 2SA－1180 \& £1．80 \& 2SC－829 \& ${ }_{50.15}^{00}$ \& 2SC－1914 \& 50.15 \& 2SD－526 \& ${ }_{50.75}^{50.70}$ \& AN－6341 \& 0.80
51.50 \& HA－11251
$H A-11423$ \& 50.80
8.10 \& HC5 401068E 20.35 \& NV－7000 \& ${ }^{20.95}$ \& \& \& $\begin{array}{ll}\text { RWW－313 } \\ \text { RW－315 } & \text { c0．42 } \\ \text { EW }\end{array}$ \& \&

\hline 2SA－1220 \& ${ }_{81} 8.15$ \& 2SC－839 \& ${ }_{50.25}^{50.15}$ \& 2SC－1922
2S－1941 \& 59.50 \& 2S0－600
$2 S 0612$ \& ${ }_{80.90}^{50.40}$ \& AN－6342 \& ¢1．
80
8.80 \& HA－11423
HA－12002 \& $\underline{8.10}$ \& L－123CTB $\mathbf{E 1 . 3 0}$ \& NV－600 \& ع1．43 \& STEREO \& ${ }_{81.50}$ \& $\begin{array}{lll}\text { RW．} 316 & \text { ¢0．51 }\end{array}$ \& AC－3（PP） \& ¢0．52

\hline 2SA－1262 \& 81.55 \& 2SC－930 \& E0．15 \& 2SC－1942 \& $\underline{2.70}$ \& 2S0－613 \& \＄0．65 \& AN－6551 \& 81.00 \& HA－12017 \& 51.30 \& \& \& \& \& \& \& \&

\hline 2SA－1265 \& E1．30 \& 2SC－941 \& 10.25 \& 2SC－1986 \& c0． 45 \& 280－669 \& ¢0．45 \& AN－6651 \& 10.45 \& HA－12413 \& 81.30 \& \& EASE \& \& OR \& \& LISTED AB \& \&

\hline 2SA－1303 \& 11．50 \& 2SC－945 \& ¢0．15 \& 2SC－2003 \& 50.25 \& 2 2S0．716 \& ¢0．85 \& AN－6884 \& c0． 90 \& HA－12411 \& 51.60 \& \& ITEMS \& X－VA \& Paices \& H \& O AVAILABIL \& \&

\hline 2S8－324 \& 50.45 \& 2SC－959 \& 20．60 \& 2SC－2022 \& $\underline{00.30}$ \& 2 20－718 \& £1．25 \& AN－6912 \& 81.25 \& LA－1201 \& 50.75 \& P PR \& CES ARE \& X－VA \& PAICES \& N \& HaNGE WITH \& NO \&

\hline ${ }^{2 S 8}-337$ \& $¢ 1.50$ \& 2SC－998 \& $\underline{1} 0.60$ \& 2SC－2073 \& $\mathfrak{¢ 0 . 7 5}$ \& 2S0．733 \& $\underline{2} .30$ \& AN－7060 \& $\ldots 1.25$ \& LA－1207 \& f1．60 \& al \& TATIONS \& ARE \& ENTO \& 硡 \& AND EXPOR \& QUANT \& ES．

\hline 2SB－407 \& ¢1．30 \& 2SC－1012 \& E0．80 \& 2SC－2120 \& E0．06 \& 250－745 \& \％2．49 \& AN－7105 \& 51.60 \& LA－1365 \& ¢1．20 \& LL \& IST AVA \& bile \& ITH OR \& OR \& SAE PLEASE \& $4^{\prime \prime}$ \&

\hline 2S8－492 \& 50.30 \& 2SC－1018 \& ¢． 75 \& 2SC－2229 \& 50.25 \& 250－748 \& 51.50 \& AN－7110 \& 18.20 \& LA－3161 \& ¢1．20 \& \& ALL THE \& 000 \& ARE NE \& AND \& TOP QUALITY \& \&

\hline 2S8－507 \& 50.90 \& 2SC－1030 \& 92.20 \& 2SC－2236 \& 00.18 \& 2S0－761 \& ¢0． 45 \& AN－7116 \& $\underline{20.90}$ \& LA－3210 \& c0．45 \& ORDERS \& BELOW \& ． 00 （E \& X－VAT） \& P\＆ \& £0．78（For U． \& ．only） \&

\hline 2SB－511 \& 50.90 \& 2SC－1050 \& 51.20 \& 2SC－2240 \& 50.15 \& 2S0－8228 \& ¢4．50 \& AN－7117 \& 50.80 \& LA－3220 \& ¢1．60 \& BUT ORD \& DEAS A80 \& VE £5． \& 00 （EX－V \& P8 \& FREE（For U \& only）． \&

\hline 2SB－512 \& 81.25 \& 2SC－1060 \& ${ }^{20.45}$ \& 2SC－2274 \& ${ }^{29} 9.20$ \& 250.837 \& ${ }_{5} 50.85$ \& AN－7118 \& $¢_{61.30}$ \& LA－3365 \& ¢1．20 \& VISITING \& G TINE： 10 \& AM CO \& 6PM（M \& N－FRI） \& 10AM TO 12 \& OM SAT． \&

\hline ${ }^{2} 88-514$ \& 20.40

80.35 \& 2SC－1061 \& $¢_{0.75}$ \& 2SC． 2278 \& | c0．75 |
| :--- |
| c0．50 |
| | \& 2SD－8381 \& 197.50

$\$ 1.75$ \& AN－7130
AN－7140 \& E0． 60
$\mathbf{8 1 . 5 0}$ \& LA－4100
LA－4101 \& ${ }_{50.85}^{50.60}$ \& \& \& \& \& \& \& \&

\hline 2SE－534 \& c0．35 \& 2SC－1106 \& ${ }_{81.50}$ \& 2SC－2320 \& ${ }^{20.15}$ \& 2S0．850 \& $\underline{81.60}$ \& AN－7143 \& 81.50 \& LA－4102 \& 120.85 \& \& \& \& \& \& \& \&

\hline 2SE－536 \& 50.50 \& 2SC－1115 \& ¢2． 90 \& 2SC－2335 \& 51.10 \& 2S0－859 \& c0．95 \& AN－7145 \& ¢2． 20 \& LA－4110 \& 81.20 \& \& \& \& \& \& \& \&

\hline 2SE－537 \& 80.60 \& 2SC－116 \& $\underline{29} 90$ \& 2SC－2371 \& 50.50 \& 2 20－869 \& 5.20 \& AN－7146 \& ¢2． 20 \& LA－4112 \& 51.20 \& HED \& STER R \& ， \& 1H \& \& \& U1 \&

\hline 2SE－544 \& £0．40 \& 2SC－1162 \& £0．35 \& 2SC－2427 \& ¢0．00 \& 2SO－880 \& 50.50 \& 7156 \& 80 \& 4135 \& ¢1．3 \& \& Tel： \& 27 \& 13 \& lex： \& 53960 \& \&

\hline
\end{tabular}

IRELAND＇S OWN
 TV TRADE SALES at E．D．I．

LARGE QUANTITY OF BRAND NAMES． 9 AND 12 CHANNEL UHFNHF WORKING COLOUR SETS．

VIDEO RECORDERS：Ferguson 3V39，3V29，9803E，Nordmende V102K，Sharp VC482．Front and top loaders UHFNHF．All fully serviced．

HI－FI STACK SYSTEMS：As new．Sanyo，Sharp and Ferguson 15－20 Watts per channel．TVs from $£ 50$ ．VIDE0s from $£ 140$ ＂KEEN TO SELL AT KEEN PRICES＂．

T．V．T．S． E．D．I．House，Ballyfermot，Dublin 10 Clover Place，College St．，Killarney Tel．263517－264139

Tel． 06433655

TV LINE OUTPUT TRANSFORMERS prices include carriage．vat mot applicable．			 24 hour answering service
	PHILIPS		$\underset{\substack{\text { RANK } \\ \text { T20a T22．T26 Pri } \\ \text { BUS Sec }}}{\text { WINDINGS }}$
CS1730 1733 colour $\quad 10.00$			
	SIION Doic M		
			$144 \times$ coluur overwind
	PAPWORTH TRANSFORMERS 80 Merton High Street， London SW19 1BE 01－540 3955		$1690-1691$ EHT ovemind 7
			VISUAL DISPLAY UNITS We can Revind the L．O．P．T．s tor the 1．B．M．LCE FB1 and he Digital VT 100 $\varepsilon 20.00$ old unit Required．
All lopts and windings are new and guaranteed			
	Delivery by retum of post．		CALLERS WELCOME Open Mon．Fri． 9 to 5.30 pm

OVER 20，000 DORIC MK II and MK IIIA CTV＇S

Easy Conversion for V．H．F． Ideal for Export． Quantity Discounts Given． Free Delivery Service．

Also in Stock our usual exciting range of quality used TV＇s and Video＇s．
Weekly Delivery service to most areas of the U．K．Our comprehen－ sive stocks cover most makes and models serviced to a high standard or sold genuinely untested．

CONTACT THE USED TV SPECIALISTS CWirn
UNIT 80，BARRACKS ROAD， SANDY LANE INDUSTRIAL ESTATE， STOURPORT－ON－SEVERN， WORCESTERSHIRE DY13 9QB 02993799642 \＆ 79643

COMPLETE T.V.S FOR SPARES THORN FROM ONLY 9000 9600 PHILIPS G8 OTHERS
WORKING COLOUR T.V.

THORN 9000
 £20
 ALL PRICES + VAT MECHANICAL

BOLTON
LANCS

VIDEOS FOR SPARES

VHS ELECTRONIC VHS MECHANICAL £35 £20 £10

WORKING VHS VIDEO ELECTRONIC
LATE MODEL - BASIC - REMOTE - TEXT TV's AND VHS VIDEOS FULLY SERVICED AND TESTED TO HIGH SPECIFICATIONS READY FOR YOUR SHOWROOMS. A1 CABINETS
ALWAYS AVAILABLE - ENTIRE RANGE OF EX-RENTAL TV \& VIDEO FROM THE THORN GROUP - ALSO ALL OTHER MAJOR BRANDS PANASONIC - HITACHI - JVC - SHARPS - AKAI SONY - TOSHIBA - GRUNDIG - PHILIPS - ETC.
FOR SINGLE ITEMS OR BULK PURCHASES - CALL US NOW - YOU WON'T BE DISAPPOINTED LOCAL AND DISTANT DELIVERY SERVICE AVAILABLE FOR LARGER ORDERS
AGENTS REQURED
IN THE U.K. AND FOR EXPORT
01-807 4090 and 01-884 1314 GEDER HOUSE, NOBEL ROAD ELEY ESTATE, EDMONTON N18

0204384868

UNIT 1 - NHLE STREET, OFF BRIDCEMAN STREET, BOLTON, LANCS. OFF THE A666 (Nr City Centre) Next to Linfood Gashicarry

0217721591

SETS \& COMPONENTS

JAPANESE TVs. Mitsubishi, Panasonic, Sony, JVC. Toshiba. Fully refurbished. Export enquiries welcome. PEARSON TELEVISION. (1484 86.3489

G11 SPARES, Panels selectors, etc. S.A.E. for list, Landsview, Gravel Hill, Shirrell Heath, Southampton SO3 2JO.

OCHRE MILL. Technical Grundig spares 1972-1982 Comprehensive module service. Sensible prices. Also Oscilloscopes, colour bar generators test equipment manualls. Tel. 0785814643.

NEW VIDEO HEADS. Example 3HSSV £22.95 3 HSSN $£ 26.44$. Sanyo original $5(900$ 。 M MOO $£ 47.45$ E.E.P. LIMITED. Telephone 0915814544

WIZARD DISTRIBUTORS MANCHESTER

TV \& VIDEO SPARES
We stock spares for PHILIPS, PYE,
RANK, GEC, SHARP, SONY, HITACHI \& DECCA
And also THORN \& ITT
FIDELITY SPARES MAIN DISTRIBUTOR
Did you know we also stock
FUSES I.Cs

AERIALS
AEROSOLS
RESISTORS
CAPACITORS
VALVES
HANOSETS
HIDEO HEAD \quad TEST EQUIPMENT
AND MUCH TELEPHONE ACCESSORIES AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. Tel: 061-872 5438; 061-848 0060.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services
The prepaid rate for semi display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 50 p per word (minimum 12 words), box number $£ 1.00$ extra.

DHOUPER VISION
 EX-RENTAL WHOLESALER IN TV's \& VIDEOS

SPECIAL OFFERS FOR CHRISTMAS

ALL MAKES IN STOCK

COLOUR FROM £5.00 UNTESTED AND WORKING
Ferguson, G8 Philips G11, Philips G11 (Text), ITT (Text) KT3, GEC Starline, Decca, 80100, Grundig, Sony, Hitachi, Toshiba, Sharp, GEC, Pye, and black and white VHS Videos from $£ 50.00$.
DIRECT FROM EX-RENTAL SOURCES
674 Coventry Road, Small Heath, Birkingham B10 0TJ
Tel: 021-772 2743

ELECTRONIC VIDEOS

Regular supply very clean working condition Panasonic/JVC/Hitachi, etc. Relationship required with a few reliable dealers able to take js to 20 s , or thereabouts, on a regular basis. Models updated regularly and prices very $\mathrm{r} \in \mathrm{a}$ sonable. We are based in the North West.

SOME SUPERB WORKING TVs ALSO AVAILABLE Same high standard
SONY/PANASONIC/PHILIPS, etc. BOX NO 234

'BOBS'

TELEVISION WAREHOUSE A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO

WORKING TV \& VIDEO

ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM
NON WORKING
GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES
ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC. ETC. K30, KT3, TEXT, REMOTE AND BASICS

ITT, GEC, BUSH, JAPS., DECCA, ETC.
PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS
BOBS T.V. WAREHOUSE, 1 Swinbourne Court, Burnt Mills, Basildon, Essex

NEW PHILIPS NEW PHILIPS NEW PHILIPS
New philips Ex CATALOGUE RETURNS
LaRGE StOCK NOW HELD. ALL SIZES AND CURRENT MODELS
All working and SHOWROOM READY Guaranteed Рhone To ROESEREVS SUPPLY NOW

SEROICE PGCES

> All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed" "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204 B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone $01-2615942$).

TRADE SALES Decca 80/100, Bush T20/22 ITT 32/45 GEC 2002 Dorics Mk3 ㄹ-15 INC	Superdeal Ex Rental WHOLESALE THE BEST DEALS! TV's +
GEC Bon/Fronts G11's E20 INC	THE BEST SETS! VIDEOS
ITT Trimlines	
G8's Hybrid Decca, Doric $\Sigma 5$ IMC	
Phone 0515484414 Admin Television, Unit J, Admin Building, Kirkby, Liverpool L33 TTX	TEL: 0482227587
	VIDEO PROJECTORS All leading makes available. Large quantities of some lines. New bought and sold. J. H, Roche \& Co. Ltd. 36 Station Road, Wylde Green, Sutton Coldfield, West Midlands B73 5JY Tel: $0213542393(24$ hr Tet: 0213542393 (24 hrs).

MIDLAND TELEVISION

NEW EX-RENTAL CONTRACT ENABLES US TO OFFER EX. PRICES AND UNBEATABLE SERVICE
VHS Remote Infra-Red £85
VHS Electronic 3V30's, Sharp 9100, Hitachi etc

From only $£ 80$
Mech VHS Only £50
Thorn 9600 Text From only £45 TX9-TX10 Text From £78
All above working and tested and supplied with hand sets.
15 MIN M1 JUNC. 22 DELIVERY AVAILABLE UNIT 11, MARKET STREET, COALVILLE, LEICESTERSHIRE

TEL: 0530-810836/7
\square
Unit 4a, Abberley St., Smethwick Birmingham B66 2QU Tel: 021-565-1727 If you are looking for bargains then find your route to come to us

BEST QUALITY T.V. \& VIDEOS AVAILABLE NOW AT VERY KEEN PRICES

V.H.S. VIDEOS

All makes - Graded - Boxed - Working from £45.00
Betamax - Only off the pile
Brand New Video I/R-C £170.00

TELEVISIONS

Full range of Thorn from $£ 10.00$
Japanese - All makes in stock working and untested from £15.00 Many other makes working \& untested JUST PHONE US FOR PRICE LIST

NORTH WEST ELECTRONICS WINTER CLEARANCE

STOCK UP NOW

WORKING TVS AND VIDEOS ON SHOW

H.P. REPOS AND EX-RENTALS

```
    PRICES SLASHED!!!
PhilipsG11
PyeKT3
Hitachi }19
Ferguson TX
GEC2010
Pye222
Bush }71
Philips G8
```



```
100s more to choose from at only £5.00 inc.
Decca, GEC, etc.
```


REFURBISHED TELEVISIONS ,

```
Decca, GEC, etc.
```

G11
PyeKT3
Ferguson TX

.only £25.00 .only £35.00 .only £25.00 only $£ 10.00$.only £35.00 only $£ 10.00$.only £10.00
only£10.00
only $£ 8.00$

ELECTRONIC VIDEO
 EXCELLENT WORKING ORDER GOOD CABINETS

Sharps 7300 $£ 90.00$ Sharps 8300 £110.00 Sharps 9300 120.00 Hitachi 8300 $£ 110.00$ Sharps 2300 portable £90.00 Due to our excess video stock and limited time we have electronic VHS videos with slight faults from only $£ 60.00$

All prices are subiect to VAT and based on quantity
WORKING EX-EQUIPMENT PANELS
All prices include Postage \& Packing Plus VAT IF Con- De- Line Power Frame

	WORKING EX-EQUIPMENT PANELS All prices include Postage \& Packing Plus VAT						
		IF	Converger	Decoder	Line scan	Power	Frame
$£ 40.00$	T20/22	X	5	14	18	17	14
£45.00	T26	X	5	16	20	17	X
¢55.00	718	7.50	5	14	20	3	14.00
£55.00	Philips G11	14.50	5	12	20	20	11.50

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY Closed 25-26th Dec-1st Jan

ITVC

OUR NAME SAYS IT ALL

TELEVISIONS

FERGUSON 9000
$£ 15.00$
FERGUSON 9600
FERGUSON AX
FERGUSON TX Basic
FERGUSON TX T/T
PHILIPS G11 Basic
PHILIPS G11 T/T
PHILIPS KT3 Basic
$£ 18.00$
$£ 20.00$
$£ 50.00$
$£ 75.00$ £25.00

PHILIPS KT3 T/T
$£ 60.00$ $£ 50.00$

PHILIPS
PYE • BUSH • SONY
NAT. PAN. • HITACHI
GEC • GRUNDIG • ITT DECCA
BASIC FROM £ T/T FROM £

ELECTRONIC V.H.S. VIDEOS FROM £75.00
FERGUSON 3V29
FERGUSON 3V30 JVC - SHARP - NAT. PAN. HITACHI - AKAI - AMSTRAD BETAMAX VIDEOS
SONY - SANYO - TOSHIBA

Ex. Rentals Graded T.V.'s and Video's Stereo T/T Graded T / T Ex. Demo. Portables Colour TV
 1000 s IN STOCK

 \& BNThousands of late models also available Direct loads from source at low prices

TIRED OF BUTCHERED JUNK LOOK NO FURTHER
PAY US A VISIT
SATISFACTION GUARANTEED

INDEPENDENT TELEVISION \& VIDEO CO. NOTTINGHAM
 (10,000 Sq. Feet Warehouse)
 UNIT 3-3a MEADOW TRADING EST.
 MEADOW LANE
 NEAR NOTTM COUNTY FOOTBALL GROUND
 IN NATIONAL TYRE YARD
 NOTTINGHAM NG2 3HQ
 TELEPHONE (0602) 864627
 SHEFFIELD
 (6,000 Sq. Feet Warehouse)
 2 MIN FROM JUNC 34 OFF THE M1
 TINSLEY VIADUCT TO A6109
 UNIT 17, MEADOWHALL TRADING EST.
 27 AMOS ROAD
 SHEFFIELD 4
 TELEPHONE (0742) 422633

BARGAINS - BARGAINS TVs AND VCRs

VGR 2000s system from £15-Good stock clean and tidy. 2020-2021-2022. Grundig 2×4 and 2×4 super plus 2080 mod. 16hr as available. (Phone us).

G11s from under $£ 20$ Ki30s from 238 KT3 from $£ 30$ Teletext from 130 Remotes from $£ 25$ plus load of others. call and see us. Stock changes weekly.

VHS VGR Electronic from $\mathbf{8 2 5}$ and upward of the pile.
 200 plus working CTV and VCR available. All seen working in our showroom. Excellent cabinets, ready for sale or rent.

GENERAL FACTORS
 UNION ST, DONCASTER SOUTH YORKS DN1 3AE

VIDEO SPARES

NEW LOW PRICES ON MANY ITEMS

Stock items despatched by return Access \& Visa welcome

VIDEO HEADS

BELT KITS
3HSS(V) - JVC/Ferguson etc. .. Most Models................ 95 3HSS(N) - Panasonic Most 2 head models except SanyovTc5000 NV370 9210 IDLER ASSEMBLIES …......0.55 3HSSU1 (N) - Panasonic Nv370 PS38-Sony SLC5/C6/C7, SL8000 etc $3 \mathrm{HSS}(\mathrm{H})$ - Hitachi VT5000 etc. E22.10 IDLER ASSEMBLIES E27.20 Sharp VC9300. VC9500 52.75 (NIDLOOO5GEZK). £27.95 Sharo VC481, VC581 etc. (NIDLOOOCOI.... $\mathbf{£ 1 . 9 5}$ 3HSS(H)A - Hitachi VT8c000, 9500 etc. 3HSS(H)B-HitachiVT11, 33,63 etc. E29.25 HitachiVT11/14/33/17 etc. 3HSS(SF) - Fisher FVH5 10,710 etc.
29.25 Ferguson TUClutch (mechanical models). S4B2(S) - Sony SLF1 C20 C30 C40 etc. $\mathbf{E 9} .50$ Ferguson 3V29/30 Take up idier 3HSS(SP) - Sharp VC9300, VC9500 etc $\mathbf{E 9 . 5 0}$ Ferguson 3V29/30 Take up clutch
 3HSS(R) - Amstrad, Saisho, Orion etc. 3HSSA(N)A - Panasonic NV366 23.00 Ferguson 3V35 Reelidler E29.50 Ferguson 3V35/36/38/39 Take up clutch The (N)A-Panasonic:No.00 Sanyo VTC5000, 5150, 6500 Ider reprocessed heads send old head. Sharp and assembly Witsubishi models © 50 and most 4 head VHS SonyC5, C7 Rewind kit Mitsubishi models @ ©37.50 and most 4 head VHS Fisher FVHP615 Idler assembly ypes @ $£ 45.00$
VIDEO MOTORS
Drum Motors
Ferguson/JVC (Mechanical models) Sharp VC9300, VC9500 etc.

Reel Motors

Sanyo VTC5000, 5150, 5300,5400 Sharp VC9300, 9500 etc. (most models)

Capstan Motors

Ferguson/IVC (mechanical models)

 Ferguson 3V35Sony SLC5, C7 (BHF1100D) . Sharp VC9300, 9500 etc.

Fisher FVHP615 Gear ider assembly Panasonic NV370 etc. (VXP0521) Panasonic NV333/366 etc. (VXP0401) $\mathbf{E 1 . 7 5}$ $7200 / 7800$ (VXP0344) NV2000/3000 (VXP0331) (NXP0329)
921.45 PINCH ROLLERS

E26.60 Most models from MISCELLANEOUS
£7.90 IC STR6020 Modification kit for Hitachi CPT1471/ $£ 15.601473$

Universal Video Copying kit Universal Video Copying kit (scart)
E21.45 Cassette Lamps Ferguson/JVC type with or withour
E22.50 plug 50.50
E28.20 Cassette Lamps Sharp/Panasonic
g7.60 Universal Cassette Lamps.

Please add 75 p per order for $p \& p$ and then add 15% VAT Send 13 p stamp for full list.
A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE Telephone (0604) 24380

Thorn 3(M)/35(M)
Thorn YMO)
TRIPLERS

UNIVERSAL I year guarantee £5.95 | inc. |
| :---: |
| p\&p |

The UNIVERSAL TRIPLER can be used in most G.E.C., 1.T.T.. Pye. Rank. Decca \& Continental sets. WING ELECTRONICS
15 Waylands, off Tudor Rd., Hayes End, Middlesex

TURN YOUR SURPLUS

ICs transistors etc. into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

Contact:

COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs. Tel. 0945584188 Fax. 0945588844

* ESTABUSHED OVER 15 YEAAS *

SUFFOLK TV AND VIDEOS Now Open

Ex Rental TVs and Videos to the Trade.
Large selection of Working Stock in our Showroom.
0394283342 BRIDGE ROAD, FELIXSTOWE, SUFFOLK IP11 7FL

SITUATIONS VACANT

TELEVISION SERVICE ENGINEERS

Morgan Laboratories Ltd.
Is a highly respected and rapidly expanding broadcast and video projection hire/sales company based in Wembley.
We are seeking locally based experienced Television Field Service Engineers to join our friendly team. Suitable applicants should have a clean current driving licence and be prepared to travel anywhere, anytime! Salary in the region of $£ 12,000$ pa with a company vehicle provided.
If you would like a career working with National Television Broadcast companies and International Satellite Conferencing, please contact The Personnel Officer on

01-908 3856

TV SERVICE ENGINEERS

We work for most major London Department stores and, due to expansion, are looking for experienced bench and field engineers. Bench engineers will work in 'State-of-the-Art' workshops in Mitcham, Surrey and Home Counties areas. Top salaries will be paid and a 'better than average' estate car provided for field engineers.

Write to or telephone Dennis Fairweather Service Director Triadcolour TV Service Lt 189/191 London Road Mitcham, Surrey CRA 2IB Tel: $01-6402191 / 5521$

[^0]पMाE

FOR SALE

VALVES! Approx. 500 new boxed assorted offers the lot. ARNELL 0737361100.

FOR SALE, Approx 365, new boxed radio, TV, Valves f60 o.n.o. 01-520 3463.

RE-GUNNING EQUIPMENT For sale complete with two ovens 6k watt etc. Ring 0903762958.

HITACHI MANUALS mostly video some cameras, Television, 1981 onwards, details phone 089220183 after 1800 hours.

TELEVISION AERIAL BOOSTERS. 20dBs gain £8.70. Video beamers $£ 10.50$. Leaflets: Tel. EMO 0706823036.

Sabaco concunvent

SERVICE and SELL WITH CONFIDENCE

SHARP \& GRUNDIG
 PARTS ARE FAST FROM WILLOW VALE

The manufacturers who care about Service
$50,000+$ different stock parts
24 hour despatch
Over $\mathbf{9 5 \%}$ 'first pick' supply ratio from stock
Willow Vale"s comprehensive parts listings for Sharp and
Grundig products make ordering and identification easy.
Contact the Sole UK Parts Distributors and find out what SERVICE is really about.
PLUS COMPREHENSIVE STOCKS OF PHILIPS, THORN and FIDELITY PARTS TEST EQUIPMENT, TOOLS, general components and spares
Willow Vale Electronics Ltd
11, Arkwright Road, Reading, Berks. RG2 OLU.
Telephones: 0734-876444 (24 hours) 8 lines
Telex: 848953 Willow G
Faxline: 0734-867188
also at:
Enterprise Park, Reliance Street,
Newton Heath, Manchester 10
Telephones: 061-682-1415
Faxline: 061-682-9031

Please send me your comprehensive Sharp, Grundig spares catalogues together with walicharts of the other spares you stock: (TRADE ONLY) I enclose 50 p stamp for postage.

Dealer/Engineer:
Address: \qquad
Postcoce:

METERS

AVON METERS
50p or $£ 1$ TV meters
from $£ 5.95$ each plus V.A.T. (Discount for Quantity)
We also repair and buy unwanted meters.
1 Year Guarantee - Phone now: 48 Mead Road,
Stoke Gifford, Bristol BS12 6PT Tel. 0454776413

METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

WANTED

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.

PARTS WANTED for Korting 26" Hybrid television. ALAN, 89 Carlyon Ave, South Harrow, Middx HA2 8SN.

WANTED URGENTLY McDonalds Radio Television Servicing Books 1978-79, 1981-82, 1983-84, 1985-86, 1986-87. Derby 383442.

WANTED EX-RENTAL/PX TV'S (Mainly British) working non-working. East Sussex area. Box 240.

NOV-75 - JAN-76 Articles CVCS-9 also help with Thorn 3787. 19 Tottenhoe Close. Kenton, Middx. 01-253 9794/9542.

WANTED SONY Power panel 2200 UB or complete set tube not important. Tel. day 1293548684 or 51378 evening. POTTER.

TECHNICAL INFO SERVICES (T),

76 Church St, Larkhall, Lanarkshire ML9 1HE.
Phone: 0698884585 Mon-Fri, $9-5$; any other time 0698 883334, for fast quotes WORLD'S LARGEST COLLECTION SERVICE MANUALS. Thousands unobtainable elsewhere
Prices range from only $£ 4.50$ - see quotation, no obligation.
WORLD'S SOLE MO Suppliers of TV \& Video Repair Manuals, also such publishers as Heinemann, Newnes, TV Technic, etc.
Every published service sheet or set of circuits, full size from stock
CTVs or any combination $£ 3.50$ + Isae; Videos $£ 7.00$; any other $£ 2.50$ + Isae LSAE for QUOTATIONS - FREE REVIEW (with S/Sheet when available) - PRICE LISTS

Suppliers to British \& Foreign Governments, Library \& Educational Suppliers.
Complete repair \& service manuals - Mono TV 14.50; CTV 17.00; Video 19.50
Complete repair data with circuit - Mono TV 9.50; CTV 12.50; Video 10.50
$£ 3.00$ + LSAE BRINGS THE ONLY COMPREHENSIVE SERVICE \& MANUALS CATALOGUES plus FREE CHASSIS GUIDE and $£ 4.00$ OF VOUCHERS

MISCELLANEOUS

PICTURE TUBE REPAIR EQUIPMENT BMR 90

Versatile and reliable. Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.

- Regenerates picture tubes even better. Also IN-LINE Removes short-circuits, even between cathode and filament - Measures beam current, emission current, life expectancy, etc.

can pay for itself in 4 weeks, if you are not using BMR 90 you are making less profit than you could.
Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road, Penrhyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246

SPECIAL OFFERS

LINE OUTPUT TRANSFORMERS
Rank-Bush-Murphy T705 A $\mathbf{£ 8 . 5 0}$ TDA 2600 (min. Order 5) £4.95

The Above prices include P\&P
Post off your cheque NOW!!
DÖNBERG ELECTRONICS
Schoolmasters House, Ranafast,
Co. Donegal, Eire.

$\star \star \star$ K CIRCUTM DIAGRAMS
 ${ }^{\star}$ Any make, Model, Type, Audio, Music \star Systems, Colour and Mono Televisions, \star \star Amateur Radio, Test Equipment, Vintage
 Wireless etc. $£ 3.00$ plus LSAE.
 State Make/Model/Type with order.
 Full Workshop Manual prices on request with LSAE.
 MAURITRON (TV),
 8 Cherry Tree Road,
 Chinnor, Oxfordshire OX9 4QY
 $\stackrel{\star}{\star} \star$

SERVICE MANUALS

CTV irom £4.50 VCR from $£ 9.75$
Circs'Layouts: CTV £3.25 MTV £1.25
VCR from $£ 5.75$ Prices include p/p
FOR LATEST LIST SEND $£ 1.00$ + LSAE or 'Phone for quole $10 \mathrm{am}-4 \mathrm{pm}$ Mon-Fri

DATA-GO 112 amersford ro. FERNDOWN, DORSET BH22 gQE 0202894207

SERVICE MANUALS for sale from $£ 3.50$ each. Video, TV, audio, hi-fi, cameras, etc. by Sony, Sharp. Sanyo, Torhiba, Nat Pan, Hitachi, Grundig. Technics. Philips and more. Tel. 1246 419766.

REPAIR SERVICE

AVO'S OSCILLOSCOPES \& TEST EQUIPMENT Repaired. Manuals available. J. COAD ELECTRON IC SERVICES Phone 01-341) (233).

MULTI-OUTLET/MULTI-CHANNEL Instailations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

\star Do you use cathode ray tubes?
\star Can't find a replacement or shocked by the cost?
\star It may well be that a rebuilt tube will solve your problem.
Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.

WE ARE LOCATED IN

4 UXBRIDGE

At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.
 UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

> NOW OPEN
> MARSTALL LTD TV. \& VIDEO WHOLESALERS

> LARGEST SELECTION OF THORN TV \& VIDEO'S IN ESSEX PLUS MANY OTHER MAKES.

Come and pay us a visit for a chat about your requirements or give us a ring on: 0268-531683
Discount of Quantities Plus Delivery Services Available

Don't Delay Phone TODAY!

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the
British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are retumed undamaged within sever days, the purchaser's money must be refunded. Please retain proof o postage/despatch as this may be
needed

Mail Order Protection Scheme If you order goods from Mail Order advertisements in this magazine and pay by post in advance of deivery. Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided:
(1) You have not received the retumed; and
(2) You write to the Publisher Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us When you write, we will tell you how to make your claim and what evidence of payment is required
from readers made meet claims with the above procedure as sonn as possible after the Advertiser has been declared bankrupt insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

New and rebuilt for most makes of T.V. including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX etc. Thorn New Life now in stock
Two year guarantee with a four year option. Tube fitting service available.
Cash or credit allowed for certain types of In-line glass. Price list available on request

EXPRESS T.V. SUPPLIES

The Mill, Mill Lane,
Rugeley, Staffs.
$08894-77600$
Bristol
($9.00-6.00$ Mon-Sat)
0454-316285
(After 4pm)

BRIDGE ELECTRICS WHOLESALE
 36-38 KIDDERMINSTER ROAD WRIBBENHALL, BEWDLEY, WORCS. DY12 1BY.
 Qtys of Philips, Thorn, Grundig
 F/R/C, T/Text. All sets sold as seen. All working.
 VHS Video from £25.00 - Yes $£ 25.00$ Betamax from £15.00 All makes stocked
 Contact Peter Bratt on
 0299404567

Qty can be delivered.
Any surplus stock up to $£ 250.000$ purchased.

[^0]: A MEMBER OF THE TRIADCOLOUR GROUP

