JUNE 1987

TELEUSIOI

SERVICING•PROJECTS•VIDEO•DEVELOPMENTS

Recent Philips TV Chassis Build this 25kV EHT Probe Low-voltage DC Operation The Video 8 ATF System Vintage TV • VCR Clinic TV Fault Finding•DX-TV

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \＆VCR．

$\star 40$ different patterns and variations．
\star Broadcast transmission accuracy（fully interlaced sync pulses with correct picture blanking）．
＊EBU colour bars，BBC colour hars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan，green，magenta，red．blue and hlack．
＊Chequerhoard．
＊Mono outputs with border castellations，cross hatch． grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR．
\star Facilitics for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required．
＊Mains operated with stabilised power supply．
＊All kits fully guaranteed with back－up service
＊Also available with VHF Modulator．
Price of Kit
£70．00
Case（ $100^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$ ）app．
£8．60
Optional Sound Module（ 6 MHz or 5.5 MHz ）
£3．90
Built \＆Tested in Case including Sound Module £ 108.00

SPECIAL TEST

REPORT
Post／Packing $\mathfrak{£ 2 . 8 0}$
＇TELEVISLON：Add VAT 15\％T（）ALL PRICES
（182

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver acrial socket．
\star In addition to colour bars R－Y，B－Y etc．
\star Cross－hatch．grey scale．peak white and black level．
＊Push button controls，battery or mains operated．
\star Simple design．only five i．c．s on colour bar P．C．B．
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30．00．CASE £8．60．BATT HOLDERS $\mathfrak{E 4 . 2 0 \text { ．MAINS }}$ SLPPILY KIT £4．20（Combined P\＆P £2．80）．

MK 4 （BNT＂TERY）BUILT \＆TESTED）£58．（ x$)+\mathfrak{£} 2.80 \mathrm{P} \& \mathrm{P}$ ． MK \＆（MAINS）BUILT \＆TESTEI） $\mathfrak{6}$（ $8.00+£ 2.80$ P \＆P． VHF MOIOULATOR（CH I to 4）FOR（OVERSEAS E5．75． EASII，ADAPCEI）FOR VIIEO OUTPU＇I \＆C．C．T．V．

IELETEXT IDECODER PANELS（TESTED）

Mullard VM6l0 $\mathbf{£ 3 0 . 0 0}$ ，Philips KT3，K30 $£ \mathbf{£ 0 . 0 0}$ ，Texas XMII （TIFAX）£28．00（untested $£ 5 .(0)$ ）p．p．$£ 1.80$

THORN TX9 MK2／3，TX10，teletext

Mullard Decorder panel＋Interface $\mathbf{£ 3 5 . 0 0}$ p．p．£1．80
THORN TX10，PHILIPS G11 PRESTEL，TELETEXT
Mullard Units VM 6230， 6330 plus Line Coupler \＆Interface $£ 38.00$ p．p．$£ 2.50$

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \＆STAFF OF TECHNICAI．EXPERTS
1．OPTS．TRIPIERS．PANELS，TUNERS．SELECTORS ETC
SPECIAI OFFER Mullard／Philip4 yuality UfIF modulator（audio \＆video inpui）ex new equipment es．（M）p．p．fl．（0）
 （can replace eatier mechanical selector unit）．
PHILIPS（；II PANELS（tested）．
Power，Frame，IF，decoder $£ 18$ ．（0）eath p．p．£2．one．Scan £28．00 p．p．£2．80． PIIIIIPS GII PANELS ex rental（untested）．
PIIILIPS Gil PANELS ex rental（untested）．
PIIIIIPS Gil Ultrasonic Non Text Replacement Handset．New．£22．50 p．p．£． 50 （other trues availatle）．
PHiLIPS HANDSETS Ex rental．Teletext，Untested．KT3，K30，CTX．KT4． K 35 ctc $£ 3.50$ fo． E ．（ 0 ．
COLOLR MANLALS P．Silp

THORN REAOTE CONTROL，IIANDSETS
TX9 LLTRASONIC（3－button）£15．（M）；TX9，TXIO lntrat red（type 725） £18．00）：TX9．TX10 Intra red［eletext £20．00．P．p．£1．20．
TX9 Dltasonic remute handsel transducer $£ 2.0 \mathrm{M}$ ，switches 3 for $£ 1.50$ p．p． 5 mp ． TX9／TXIO leletext intertace pand（1524）\＆5．（0）p．p．8（p．

 SAW FIL＇TER IF AMPIIFIER PLDS TUNER complete and tested for T．V．Sound \＆ision．£28．50 p．p．£． 20.
PAI，DECODER KI＇（Video to R（iß）for Monitors £27．00 p．p．£ 1 ．（K）． PAL ENCOIOER KI＇T（R（iR to Video）£18．50 P．p．fl． 30
CROSS IIATCII INIT KITT，Aerial Input type，ind．I V．syne and USIF Modutator，Battery Operated，also gives Peah White \＆Black levels，wan be used low ant set £12．（N）p．p．80p．（Alum．Case £2．90p．p．

UHF SIGNAL．SI＇REVGTII METER KIT £22．0 A Alum．（ise £2．91．I）

CR＇I THSTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Casc．Pand Meter Indicator－can be adapted for latest（RTs $£ 29.50$ Br． $\mathrm{E}_{2} \mathrm{~m}$

I＇ITI（V（3）SIRIFS．Convergence \＆Purity Control Pancls，E5．（0） PD，E！ 50.

THORN TYO Panch ex tactory for small spares．Includes I．Cs de Somiconductors cte．E3．00 p．p．EL ． 80 ．
THORN TX9 Pamels saluaged ex tactory for spates inco．Electrolytic \＆

THIORN ONX IF／Decoder Pancl E6．00 p．p．f？ 30 ．
TIIORN MOW IF／Decoder Pancls Salvaged．For spares e2．50 p．p．t1．80．

 GRLNIIC；86．31 Series Varicip Tunere $\mathbf{t 5 . 0 0}$ p．p．$£ 1 .(\mathrm{KI}$ ．
VARICAP TUNERS 1321 ． $1322 / 204$ ． $\mathbf{~} 7.80$ p．p．El（K）．Makers（on－ trok IOICCA H＇SN $£ 5.80$ ，obSN £6．80 D．p．R（1p．etc．
BlSI＂TOUCH TUNE＂T20／22 Scrics Fascia Unit £7．50 p．p．£1．50

WHF／625 TUNERS，many different types in stoch．DECCA Bradford 5

1．OPTS New amal guar．P／l＇£1．50，Bobbins 80p．
FERG．．IDIV，MARCONI，MITRA
F（x），1591．1612．1613．1712． 4.80

SPECDAL OFFER IITCVE

PHILINSTO

PIILIIN к゙
£2．80
PlHLIIX（ix
PIHLINX（i）
PhHLIK（ill
MIIIIふK「る

PHLIIX（ГX）
PHALIX（TX．S

¢9．80 5.60
¢8．811
Ex．80
£16．00）
£10．64）
£9．80
E8．811
¢9．81
¢9．20
Ex．mu
\＆ 10.80
± 18.50
£9．81
£18．50
£21．（6）
£21．（M）

OT＇IIERS AVAILABLE，IRICES ON REQUEST
TRIPIERS Full range available Mono \＆Colour．
SIPCIAL，OFFEK TRIPIERS
THORN 3（KM／3．5（）
TIIORN 15005 Stick El．50， 150 N 3 Stich E1．50 p．p． 819
6－3V（RT Boost Cranstormers for Colour \＆Mono 55.90 p．p．fl． 40
TIORN TXIO focus control $\mathbf{E} 7.50$ po $f 10$
CALIJRS WEICORIE AT SHOP PREMISES
IIIOUSANDS（OF ADIDTIONAL ITEMS，ENOUIRIES INVITED LARGE SELECTION TESTED COLOLIR PANELS POPLILAR MODELS

Telephone 01－794 8751，7947346

MANOR SUPPLIES

172 WEST END LANE，LONDON，NW6 1SD
NEAR：W．Hampstead Tube Stn．（Jubilee）Buses 28，159，C11 pass door W．Hampstead Brit．Rail Stn．（Richmond，Oaiston，Stratford，N．Woolwich） W．Hampstead Brit．Rail Stn．（St．Pancras，Bedford）

Access from all over Greater London．
Mail Order： 64 GOLDERS MANOR DRIVE，LONDON NW11 9HT PINASE ADI YAT 15% TO AIL I＇RICES INCL P＋P

Vol. 37, No. 8
 Issue 440

On sale May 20th

COPYRIGHT

(C) IPC Magazines Limited, 1987. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept lega responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 16$ in the UK, £19 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4 \cdot 50$) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Price includes VAT and postage. Add 60p for overseas orders. All indexes are at present out of print.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

525 Leader

526 TV Fault Finding
Servicing hints and fault reports from Mick Dutton,
Philip Blundell, Eng. Tech., Richard Roscoe, D. Parsons,
Roger Burchett, Michael Dranfield and Philip H. Ireland.
528 A Guide to Coarse Servicing
Chas E. Miller
It was inevitable that lke Hodge would get involved
with satellite TV sooner or later. How the master went
about it.
531 Teletopics
News, comment and developments.
532 Recent Philips CTV Chassis
Harold Peters
The evolution of Philips CTV chassis from the KT3/K30 series to the most recent CP90, laking in the KT4/K40, CTX, CF1, 2A and 2B. With servicing hints and a description of the operation of Philips' self-oscillating switch-mode power supply (SOPS).
538 25kV EHT Probe
Andrew J. Heron
With care and due attention to safety factors an e.h.t.
probe/meter can be built for a modest outlay.
539 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from
abroad. Thoughts on low-profile aerial systems for use where problems arise over planning permission.

542 VCR Clinic
Fault reports from Alfred Damp, Eugene Trundle, Philip Blundell, Eng. Tech., Philip H. Ireland and Steve Leatherbarrow.

543 Next Month in Television
544 Mr. Doublecheck and Mrs. Tart
Les Lawry-Johns
Unusual customers with unusual requests.
545 Cable and Satellite 87
Harold Peters
The satellite TV equipment on show at this recent exhibition.
546 Servicing Mechanical VCRs, Part 4
Mike Phelan
The load-1/start/stop system used in early JVC machines, with a fault chart.

550 Low-voltage DC Operation
J. LeJeune

Dealing with the sorts of problems that arise when
TV/video equipment is operated from $12 / 24 \mathrm{~V}$ supplies.
552 The 8 mm Video System, Part 3
Eugene Trundle
This time an account of the autamatic "rack following system used with Video-8 machines. The techniques employed in camcorder and deck models differ somewhat - both are described.

556 Letters
559 Service Bureau
560 Test Case 294

OUR NEXT ISSUE DATED JULY WILL BE PUBLISHED ON JUNE 17

	TRADE COUNTER		 heaver tarcals e.e. cable, sonve 	THERE IS VAT OW $\mathbf{P}+\mathrm{P}$. BOOKS AND MANUALS ARE ZERO V A.T Goods are despatched on the day we receive your order If for any reason we are out of stock we will try to inform
104 ABBEY STREET, ACCRINGTON, LANCS	MON-SAT			you as uickick as opssile. We try our best to give a
Tel: 0254 36521/32611/390936 BB5 1EE.	9am-5pm			
Telex: 635562 Griffin G (For P.V.)	(not Wed pm)		sent by carrier $£ 7.00$ + VAT up to	Prices are subject to change without notice. In some cases we may have to supply an equivalent.

Fill|l|l|lill NOW OPEN AT UNIT 8, APPLE IND. EST, WHitTLE AVE. SEGENSWORTH WEST, FAREHAM. T9M27

For SALE OF TOP QUALTY

 EX-RENTAL TELEMSIONS and Var's

LOCKSHEATH (04895) 77251
FORFWHTIER IWORMATHON

MAKE YOUR INTERESTS PAY\&

 Train at home for one of these Career OpportunitiesMore than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence schooll in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics \square	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square

GCE over 40 ' 0 ' \& ' A ' level subjects
Name:
Address

International Correspondence Schools, Dept. EG.S67, 312/314 High St., Sutton, Surrey SM 1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

CCTV CAMERAS FROM ONLY £69.50 EACH!

PLUS CARRIAGE \& VAT

Crofton Electronics are now able to offer C.C.T.V. cameras from as little as $£ 69.50$ + VAT \& carriage. These cameras have been refurbished to a high standard. The output is 1 volt $p-p$ and will work with most video equipment. These cameras are powered from 240 volt mains, and have a vidicon rack giving a focusing range from an inch or two to infinity. A standard 16 mm lens is also supplied. The sensitivity is in the order of 10 ux which allows their use in the domestic environment. Pictures can be produced with only 2.5 lux but with a worse signal to noise ratio. Low ight versions are available having sensitivities of 0.1 lux (half moonlight) at $£ 350+$ VAT and carriage. Many other lens are available from stock. A mounting bush is standard. Many other cameras are available from stock both reconditioned and new, ie brand new mini $12 v o l t$ camera at only $\mathbf{f 8 0}$ plus VAT and carriage, lens extra. Many other items of C.C.T.V. equipment such as monitors (both new and refurbished) switchers, panning units, housings, time and date generators are available from stock. We also supply camera and monitor tubes, as well as scanning yokes for a wide range of equipment.

SPECIAL SPECIAL SPECIAL SPECIAL
Currently on offer is a professional drive board and tube to make a superb $12^{\prime \prime}$ professional green panelled tube monitor at $£ 23.50$ inclusive. Would normally cost well over $f 200+$. Buy 10 off and they will only cost you $£ 180.00$ inclusive. Be sure to ask us to quote for any of your camera/ monitor requirements, we will never be beaten on price. HURRY HURRY HURRY
(Not many left. First come first served)
Brand New Time Date-generators at a fraction of their original price. Only $£ 132$ inclusive. Normal price $£ 477$. These generators are mains driven and accept normal composite video in. They produce video out with time/date/day/month/and year added to the signal in normal or reverse video. Adjustable positioning anywhere on the screen. Switchable character size also provided. A REAL MUST FOR SECURITY APPLICATIONS WHEN RECORDING.
We also have a host of used items such as cooling fans power supplies at give away prices, so why not ask for a list?

Send a 40p SAE for our complete range of catalogues.
MOST MAJOR CREDIT CARDS ACCEPTED

CROFTON ELECTRONICS

零 05448557
KINGSHILL', NEXTEND, LYONSHALL, HEREFORDSHIRE HR5 3HZ

> NEW 16,000 sq.th WAREHOUSE UNIT 22, GREEN ST INDUSTRIAL ESTATE GREEN ST, KIDDERMINSTER DY10 1HN elephone (0562) 755526 or 741666

Main distributors for Skyscan Satellite Products

FIRST IX TUBE REBUILDING TEGHNOLDGY 30AX, 540 SERIISS REDUCED SERTIGLUG COST, FIT A DIIEGT REPLGEMENI
> aVAILABLE ONLY FROM CHROMAVAC. PRE CONVERGED AS ORIGINEAL.
> EXIERMAL MULTIPOLE UNTI NOT REQUIRED.

LOOK! AT NO EXTRA COST 30AX PRE CONVERGED

061
6812959

most types of Inline Re-builds or new ex-stock

PRICES SUBJECT TO GLASS EXCHANGE

Delta Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Lowfocus	+£2
A47 342 New	£28
17 FHPNew	£30
470 EHB Ne	£30

Inline Rebuilds

Up to $22^{\prime \prime}$.. From $£ 40$ Up to $26^{\prime \prime}$.. From $£ 45$ A56-540x….......... $£ 56$ A66-540x …........... £58 Bonded Coil + £5

ALL SIZES OF NEW AND

 REBUILT MONO TUBES AT COMPETITIVE PRICESIN LINE TYPES (not ReBuIns) PHONE RE STOCK POS.
Please enquire types not listed

370 HFB-A37-590	£50	AXT 56-001	
370 HUB	£50	670CZB	
AXT 37-001	¢50	A66-540	
420 CSB	£50	420 FSB	
420EDB-A42-590	¢50	New Sony Tubes Certain types below list	
420 EZB	$\underline{550}$		
420 ERB	f50		
470 KUB	f.50	MIN. CARRIAGE 55 $£ 10$ if glass collected. TERMS Cash with order ALL PRICES EXCLUSIVE OF VAT	
510 VSB	£67		
AXT51-001	¢67		
560 DYB-560 DTB	667		
561 EGB	¢67		
560 CGB	f67		

[^0]\star WE PURCHASE SURPLUS STOCKS OF INLINE TUBES: ALSO A56/ $66-510 / 540$ ETC. OLD GLASS
DELIVERY: By return on all stock items
THE COMPANY WHO PUT HIGH STANDARDS FIRST

댐TNaval

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

\section*{WHATTHE PAPERS SAY...

\section*{

 NOVEMBER 1986
 CEBVICIMC OnD.IFOTC.VID

We had the use of a Telelift for several weeks, during
which it had spells with field engineers and delivery men.
It was deliberately given a rone did.

ELECTAICAL + RADIO TRADING

weaknesses would show up - none ding ind telelift to everyone in-

 Eugene Trundle, TELEVISION
Magazine, November 1986
 handle a heavy and buky receiver stairs or lifting on to a work bench. Telelift has moved To date Telelit has mollion TV sets without one injury.

Cu uetivery lightweight con-

 Combining lightrength, restruction with hi-lech good liability and trolley will give looks, his trouble-free service, years of troubl that it usually and users find within weeks. RETRA Dealer, June 1986 se-s to allow passage through nerrow docrways, lift TV sets nand out of doorways and
 removalo all types of TV
stands. It reduces the effort stands It reduces the en
required to take appliances

ACE INTERNATIONAL

rotate bulky cois vi.uentwy. The trolley can through narrow aoole sets to allow passage vehicles, facilitate stands, reduce the effoltixing and removal of ing, and protect devericate mequared in stair climbits suspension system. Thanisms by virtue of

NEED WE SAY MORE?

WORLDWIDE DISTRIBUTORS WANTED for this amezing new product

Enquiries to:
Courier Handtrucks Pty. Ltd.,
P.0. Box 289,

Mortdale, NSW 2223
Australia.

1987 CATALOGUE available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders over £15). Includes 50p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be sent within 7 days.

[^1]

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 513 .

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671
SECRETARY
Janet Reeve
01-261 6671
CLASSIFIED
ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035
SUBSCRIPTION ENQUIRIES

HELD OVER

Due to pressure on space in this issue the vintage TV article we had planned to include has had to be held over until next month.

CORRECTION

In our test report on the Thurlby R/S PL series bench power supply last month we inadvertently specified the output impedance as $5 \mathrm{M} \Omega$ instead of $5 \mathrm{~m} \Omega$. Our apologies to all concerned.

COVER PHOTO

This month's cover photograph shows the Philips 2A chassis. See article on page 532 .

TELEOUSUOM

Competing for Viewers

European TV broadcasting has long been a rather cosy business. The BBC might have had its difficulties from time to time in getting an adequate licence fee increase, but by and large funds have been something that the broadcasters have not had to worry about unduly. Could the situation be about to change?

It's rather extraordinary that in the UK the BBC and the ITV companies have traditionally split the TV audience approximately 50:50. Cable has had little effect on this duopoly so far since only a small minority of households are linked to cable services. The effect of all those VCRs on viewing habits is harder to assess. It would seem however that the VCR tends to provide extra or time-shifted viewing rather than impinging on established viewing habits. Now, getting ever nearer, we have the prospect of competition from satellite broadcasting. This could perhaps have a more significant effect on UK TV audience figures - if it doesn't, those (British Satellite Broadcasting) running the DBS franchise are going to have something of a problem on their hands. The main difficulty of course will be that of persuading people to buy dishes and extra receiving equipment. Once that hurdle has been surmounted there will be the problem of maintaining a competitive service. But whatever success BSB achieves will be at the expense of the existing services, since there's hardly likely to be a large, unsatisfied TV audience out there waiting for something more to their liking to be served up.
In short, BSB is taking a gamble. It's surprising how many organisations are at present prepared to make a similar gamble in entering the field of TV broadcasting. Leaving aside satellite TV, there seems to be no shortage worldwide of those anxious to enter the business. It would appear that every self-respecting publishing organisation of any size feels that TV broadcasting should form part of its activities. The Murdochs and Maxwells have been making considerable efforts to find ways into the international TV scene - and the emphasis is increasingly on international operations rather than the traditional national share-out of TV audiences.

Robert Maxwell's activities in recent months highlight the way in which things have been going. His group is a member of the consortium that made the successful bid for control of France's leading TV network, TF-1. Mr. Maxwell has also held discussions with the Spanish prime minister with a view to participating in a consortium that would have an interest in Spanish TV following the proposed privatisation of the services there. In addition Robert Maxwell's group has just set up a joint ventare with the American company MTV to establish a continuous satellite/cable TV pop music channel, called MTV Europe, which is due to start operations later this summer. It seems that the Maxwell organisation is gradually building up quite a significant TV presence, something that's bound to significantly increase competition in the TV broadcasting field.

Is any of this cause for alarm? To established broadcasters, maybe. It's interesting to see what's been going on in the USA, the traditional home of commercial TV. Congress has recently been holding hearings into the state of US network television. Larry Tisch, who was recently appointed chief executive of the prestige network CBS, charged with reviving CBS's fading fortunes - CBS has reported a network loss in two consecutive quarters for the first time in its history - made some particularly interesting comments. According to Mr. Tisch, "the traditional television marketplace has not just changed, it has virtually disappeared and a far more complex and uncertain economic environment has taken its place". For 35 years there was uninterrupted growth in US network TV: over the last few years this growth has been thrown into reverse. Since 1970, some fifty basic cable TV programming services have come into being while the number of independent TV stations has risen from 129 to 317. Rupert Murdoch's new Fox TV network already reaches over 80 per cent of US homes. The net result of all this burgeoning activity is that the established US TV networks - CBS, ABC and NBC have seen their share of the prime-time TV market fall from 90 per cent in 1980 to 73 per cent in 1986. The problem for the US networks is that advertising revenue now has to be shared amongst a growing number of TV outlets. During the 70s network advertising soared, with advertisers' demand for TV time insatiable; subsequently, as Mr. Tisch put it, "everything changed". Rather wistfully he added that "while we can today look back knowingly at these changes, they were not readily apparent just a few years ago".
The moral of all this seems to be that one must be prepared for upheavals in the TV broadcasting field. It could well be an uncomfortable place in the 90 s . Large investments are being made by the newcomers, who will expect to see their efforts prosper. Some perhaps quite a few - fingers are likely to get burnt. A whiff of this is already apparent in the UK. As a result of the new viewing alternatives previously mentioned there's been a decline in ITV audience figures. At a recent conference, Television '87, held in Copenhagen advertisers and agencies strongly complained about being asked to pay more for less - during the last two years the cost of TV advertising has increased by 25 30 per cent annually. In the next few years the established broadcasters face growing competition and falling revenues. Newcomers will have to survive by getting going on a low-cost base. Intriguing times lie ahead: we shall be watching them uneasily.

TV Fault Finding

Philips G11 Chassis

We had a case recently of intermittent failure of the TDA2600 field timebase chip. We replaced the i.c. holder and swapped the panel over to a known good set. After a few hours the chip again failed. We then found that C2099, C2100 (both $1,000 \mu \mathrm{~F}$) and C2097 ($680 \mu \mathrm{~F}$) were all leaky - C2099 was particularly bad. The chip didn't fail once we'd replaced these electrolytics.

Another capacitor that's worth checking when servicing these sets is the 37 V supply reservoir capacitor C3144 $(220 \mu \mathrm{~F})$. It's on the line output panel and also has a tendency to leak.

As soon as we'd sorted out the TDA2600 problem another unusual fault came our way. When switched on the set would run up for a few seconds then shut down. We discovered that the cause of the fault was on the power supply panel - by swapping it over with one from another set. Finding the component responsible for the fault took rather longer. The 7.5 V zener diode D 4001 turned out to be leaky. This was causing the inhibit monostable to operate and shut down the power supply.
M.Du.

Triumph 8211

The customer complained that the picture on this little portable had gone very dark. The cause was simply no first anode voltage at the tube base. Tracing the source back to the main panel we found that the print land where the relevant rectifier's cathode is soldered is very close to the earth line. The panel had tracked over and it was necessary to cut away the board and replace the safety resistor to restore a good picture.
M.Du.

Philips K40 Chassis with Teletext

This new set gave a beautiful picture when we delivered it to the customer's house. Until we'd nearly finished our cup of tea that is. There was then a crack and the picture went very dull. The tube had flashed over and now the contrast control didn't work. We were a long way from base so we decided to try following the wiring back from the contrast control to see whether anything obvious could be found. Our luck was in when we discovered that $\operatorname{Tr} 7116$ (BC558B) on the teletext interface panel was short-circuit base-to-emitter.
M.Du.

Mitsubishi CP142

This set suffered from field jitter and intermittent field roll as it warmed up, but no amount of heat or freezer would induce the fault. Replacing the field oscillator transistors Q431 and Q432 (type 2SC711A) provided a cure. M.Du.

Luxor B2 Chassis

This set had suffered during a severe lightning storm. The chopper transistor TN03 was short-circuit all round, also the line output transistor TH02, while resistor RE05 in the electronic trip circuit was burnt. We replaced all these items and the chopper transistor's control thyristor TN02 (BRY55) for good measure. When we switched on the fuse blew instantly and we were left with another short-

Reports from Mick Dutton, Richard Roscoe, Philip Blundell, Eng. Tech., D. Parsons, Michael Dranfield, Philip H. Ireland and Roger Burchett
circuit chopper transistor. To cut a long story short, a phone call to Luxor produced the information that TN02 has to be a BRY55L, not just a BRY55. Fitting the correct device cured the problem.
M.Du.

Thorn 9000 Chassis

This set had teletext lines showing over the top three inches of the picture. An easy one this - C410 $(100 \mu \mathrm{~F})$ which smooths the field timebase d.c. feedback was opencircuit.
M.Du.

Finlux 1000 Series

Line output transformer failure isn't a common occurrence with these sets but if you do encounter one the effect is rather baffling. When the set is switched on it works for a split second then goes off, the channel display showing gibberish. This could set you looking around the microcomputer chip Ict2, but if you scope its supply pin 40 you will see it dip momentarily as the power supply shuts down due to the overload. If fitting a dummy load instead of the line output transistor gets the display working correctly it's a fair bet that the transformer is dud.

If the set switches itself intermittently to standby - or even no picture, just a plain white raster - replace diode Dal (1N4007) on the vision i.f. board. It's in the 12 V supply.
P.B.

Degaussing Thermistors

Whatever the make of set, if the mains fuse has blown and you can't find any short-circuits in the power supply suspect the degaussing thermistor. This applies to the Mullard and Siemens types, especially if the set if of recent manufacture.
P.B.

Hitachi CNP192

This set suffered from intermittent loss of colour - it would sometimes run for hours without the fault putting in an appearance. The colour eventually went off altogether and we were able to make some tests. The culprit turned out to be the a.c.c. amplifier transistor TR25 (2SA673) on the signals panel. An AF124 transistor proved to be a suitable replacement.
M.D.

GEC C2110 Series

Here's a handy tip when dealing with one of these sets with the no colour symptom. Look just above the aerial socket, on the luminance/chroma panel, to see whether the slider has fallen off the set burst symmetry control P203.
M.D.

GEC 20AX/PLL Chassis Mk. II

We've had lots of these sets in, all with the same fault. The symptom is a blank white raster with flyback lines. In all cases the fault lay in the bias network for the com-plementary-symmetry RGB output stages: the 3.3 V zener diode D212 was leaky and its associated $82 \mathrm{k} \Omega$ resistor

R281 was open-circuit. Another of these sets had no blue due to the blue cut-off potentiometer P209 having a faulty track.
M.D.

Teletext Faults

After three years without any teletext faults we've had a large number of problems in a variety of sets during the past few months. Although the symptoms have varied, the cause of the fault has in every case except one been the SAA5030 video input processor chip. Basic symptoms have been as follows: good text but no picture sync; text number " 100 " displayed with or without sync; text errors - may be intermittent or confined to the weakest channels; failure to switch to text. The odd man out was garbled characters due to a duff SAA5040B text acquisition chip.
P.H.I.

Ferguson TX90 Chassis

We had an interesting fault on one of these sets recently loss of field sync and no sound. A voltage check at pin 5 of IC102 (TDA4500) produced a reading of 0.5 V instead of 1.4 V . The amplitude of the waveform at this pin was also low. It turned out that one of the parallel resistors in series with this pin, R241 ($33 \mathrm{k} \Omega$), had gone open-circuit. A new resistor restored normal operation.
D.P.

Philips E2 Chassis

This was a case of a most unusual symptom caused by a very common fault. A Pye monochrome set, Model T182, fitted with the Philips E2 chassis came in with the following incredible complaint. Sometimes the sound would become distorted, but if you tumed down the brightness control (yes!) the distortion would disappear. I switched on and confirmed that this was indeed the case, but I also noticed that the width was slightly down and that there was a marked hum ripple moving up the picture. The customer hadn't mentioned these points, but it did mean that the cause of all the problems lay in the power supply. Sure enough the regulated 217 V output was well down, and as the brightness control was moved up and down the h.t. voltage followed it. I didn't confirm this with the meter, but presumably the line output stage derived 30 V line that powers the sound output chip was also affected. This would account for the peculiar symptoms.

The series regulator circuit used in these sets is shown in Fig. 1. It's unusual in that the regulator transistor TS310 is in series on the negative instead of the positive side of the supply. The operation is otherwise quite straightforward.

Fig. 1: Series regulator circuit used in the Philips E2 monochrome TV chassis.

TS305 and the associated components act as an excess current trip, shutting the regulator down in the event of excess current flowing via R310. The reference voltage at the emitter of the error detector transistor TS315 is provided by zener diode D310, which is biased by R307/ R306.

The normal cause of low h.t. output is R306 going high in value. Since it and R3017 are directly across 300 V they do work pretty hard. In this particular set R306 was found to have risen in value to about $45 \mathrm{k} \Omega$ when checked out of circuit. It's also worth checking the value of R307. When this resistor goes high in value the regulation isn't affected but D310 and D311 carry a higher current than they should and may well fail as a result.
R.R.

Panasonic TC2205 (U2 Chassis)

The problem with this set was that the sound level was affected by operation of the contrast control! The higher the setting the more the sound level would fluctuate. Only with a dim picture would the sound stay steady. I also noticed that there was some line tearing at high contrast settings. The power supply was the first suspect. It's a chopper circuit and although the output voltage was correct the 160 V line had a high ripple content. The smoothing capacitor $\mathrm{C} 857(47 \mu \mathrm{~F})$ had a badly corroded pin which had parted company with the interior. R.R.

Decca 30 Series Chassis

A fault I've not seen mentioned before, though it has become a stock one on these older sets, is the tendency for R430 ($39 \mathrm{k} \Omega$) to go gradually high in value. This resistor is the integrator in the feedback network between the line output transformer and the flywheel line sync discriminator circuit. The symptom is that after setting the line speed and removing the short (TP400 to TP401) the line timebase either takes a long time to lock after changing channels or it doesn't lock at all. The moral would seem to be to change R430 on sight in cases of poor line lock.
R.B.

Teleton CPL142

Poor field sync, lockable if the picture was overscanned, was traced to diode X302 (1S2473) being leaky. This allowed the line pulses to reach the field predriver transistor TR302. Fault-finding was made difficult by the poor quality circuit diagram: perhaps this is why the wellknown multiple that sold it couldn't be bothered to cure the fault - they turned up the height and returned the set to the customer.
R.B.

Rank T20/T22/T26 Chassis

For a long time the only things these sets have needed is replacement of the 1Ω resistor 5 R 8 in the line output transistor's base circuit and the dreaded 910Ω resistor 4 R 16 in the 12 V regulator circuit - plus the occasional tripler replacement and routine inspection of the plugs and sockets. Age tells on us all however and those in my patch are beginning to deviate from the norm.

The first line driver transistor failure (open-circuit base-to-emitter) was quickly followed by the first defective tuning voltage regulator. The latter was actually in a T26 which had the tuning flap held on by blue tack (to operate the a.f.c.) and was used with a Toshiba VCR. The a.f.c. systems in the two pieces of equipment tended to pull
against each other and the owner couldn't tune the VCR satisfactorily. I must admit that it was a sensitive pair to set up, even after the faulty stabiliser had been replaced.
R.B.

Thorn 9800 Chassis

Another first for us - one of these sets required a new line output transformer, entirely due to nicotine. The fault was reported as a "faulty on/off switch". In fact the set would start, the e.h.t. would build up, crackovers would occur at
the e.h.t. connector and from the body of the line output transformer where the lead pushes into the socket, then the set would trip. Copious applications of methylated spirits to the line output panel and a new transformer and e.h.t. lead restored the set to health. I also washed the back in soapy water and cleaned the rest of the set inside and out as well as possible. The customer's reaction to the invoice? "Steep isn't it?" Note that there was no damage to any of the semiconductor devices. Remember the slogan "Fine sets these Fergusons"? But that was before my time!
R.B.

A Guide to Coarse Servicing

Chas E. Miller

Ike Hodge eyed me carefully. "Your trouble," he said, "is that you live in the past. I bet you still use a quill pen to write those so-called articles of yours. Which reminds me, I must remember to sce my solicitor about suing you for libel some time. Now me, well I'm progressive. Always on the ball when something new that'll bring in extra business comes along."
"Such as stocking up on those new, high-gain Band I aerials in 1984?" I asked gently.
"That was what you call a long-term investment. Band I might come back. And anyway they were dead cheap, and you daren't miss a bargain. But what I'm talking about now is satellite TV. That's the coming thing."
"So I'm told. What are you thinking of doing about it?"
"Thinking! I've already done it! I'm the local agent for Dreadco Electronics. Now how about that?"
"Well I never. How did a big organisation like Dreadco get involved with a schlemiel like you?"
"They know how to pick a winner, that's how. They were seeking someone who could be looked upon for an utter commitment to sell their receiving systems - with honesty, integrity and enterprise."
"So how come they chose you, the original guy who thought ethics was a county to the north of London?"
"I'm sure you've used that gag before" frowned Ike.
"Yeah, but the old ones are always the best. Now tell the truth about how you got that agency."
"Same as usual, with a little bit of make-believe. Nothing serious of course. Just said I had the know-how and capital resources needed to set up the operation. I bunged old Sid Ball the car hire merchant a couple of quid to park his roller outside the shop for an hour whilst the Dreadco representative was talking to me, so he'd think it was mine."
"Who'd be fooled into thinking that the owner of a dump like this would have a Rolls-Royce?"
"Oh, I didn't meet him here. For another couple of quid Bernie Rogers, the local manager of Anonymous Rentals, let me use his office. Quite impressive it is too."
"That's one of the most deceitful moves I've heard of! What happens when Dreadco get wise?"
"It'll be too late," Ike said complacently. "The agreement is signed by the big boss Sir Jasper Pennyfeather. They can't cancel it without paying me compensation. Now who's daft?"

I ignored that last bit. "Do you mean to tell me you actually intend to sell satellite TV receiving systems?" I demanded.
"Intend? I'm already selling them. Making a bomb!"
"Leave off. How many pcople around here have got
that kind of money to spend?"
"What kind of money? What you're overlooking is the Ike Hodge enterprise. Thanks to my ingenuity and technical expertise I can cut the price of a dish aerial down to twenty quid."
"I know I'll be sorry I asked this, but how have you managed such a saving?"
"Easy. The aerials are normally supplied by the SkyGroper Corporation, a Dreadco subsidiary. Now I had a good look at the first one that came in and decided I could make something just as good. How's your rubbish collected?" he asked, with a puzzling switch of topics.
"In plastic bags of course, what's that got to do with it?"
"As is everyone else's around here, which means that the old metal type have become redundant. So I bunged the yard-man down at the Council 20p a go to let me scavenge all the old dustbin lids off the tip. Got 73 the first day."
"And you're selling those as satellite dishes at twenty quid a time?"
"That's where the expertise comes in. They require treatment. I give 'em a coat of paint first."
"I bet you even nicked the paint!"
"No way!" said Ike with dignity. "That's not business. I bunged the driver from the local paint merchant a couple of quid to drop me off a load of old stock. You have to speculate to accumulate."
"Strikes me what you're accumulating is a load of old junk. What's going to happen when the dustbin lids fail to work?"
"I shall take them back in part exchange for an improved type - the proper aerial - giving a generous allowance. Well, about a fiver a time."
"Ike, that's immoral. You can't do it!"
"No it's not. It's business. I know what immorality is, and it's a lot more enjoyable than scavenging the local refuse tip for dustbin lids."
"Wish I knew what's gotten into you. What happened to the old, lovable Ike?"
"He disappeared when he got his latest Income Tax demand, that's what. I have to increase my turnover to satisfy those rapacious bar-tenders."
"No good will come of this Ike. Providence will catch up with you sooner or later. You'll see."

Ike laughed dismissively. "Save that sort of thing for those novels you keep trying to write. From now on I've got to look after number one. Now if you'll excuse me, I've got some painting to do."

Will Ike be saved from himself and regain his character and self-respect? Watch this space ...

BILLINGTON VALVES

NEW, GUARANTEED VALVES + COMPONENT BARGAINS
NEW VALVES - BOXED, 90 DAY GUARANTEE

DY87	45p	KT66 USA 1000p	PL504	90p	PY88
DY802	43p	KT66 GEC. 1300 p	PL508	165p	PY800/801 .. 68p
ECC81	80p	KT88 USA 1100p	PL509	400p	PY500A.... 150p
ECC82	65p	PCF802..... 60p	PL519	440p	30FL2......135p
ECC83	65p	PCL82 63p	PL802	550p	3AT2B 295p
EL34	190p	PCL805/85 .. 80p	PL802T	390p	

PHONE FOR IMMEDIATE QUOTATION ON ANY VALVE
Almost any type available from stock. Rarities our speciality. Competitive prices.

NEW, GOOD QUALITY TRANSISTORS
BU126 70p, BU208A 80p, BU326A 65p, BU508A Sanyo 130p, BU508D 130p

E.H.T. MULTIPLIER. Good quality universal triplers $£ 4.40$ + VAT + post. Suitable for nearly all sets - B+O, Decca, GEC, Grundig, ITT, Philips, Pye, Rank + continental.
1000 resistors or 1000 capacitors $\varepsilon 3.50$ post paid.
TO ORDER: Please add 50p post/packaging per order and VAT @ 15\%. Same day despatch now guaranteed. Govt + export orders welcome. We accept Barclaycard. Possible delays during staff holidays June 8-21 [on unusual items only].
WE WILL BUY VALVES! We are short of audio types PX4, PX25, KT66, KT88 etc. (plus PP3/250, PP5/400, DA30 etc.).

BILLINGTON VALVES

39 Highlands Road, Horsham, West Sussex RH13 5LS Phone 0403210729 Fax 0403210108 Telex 87271 PRODSS G If visiting in person, please phone first to check that office is attended

> UPDATIIG COURSES
> HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS.

> VCR SERVICIIG (3 WEEKS FULL TIME) NEXT COURSES START ON JUNE 29th \& OCTOBER 12th 1987 TUITION FEE £575
> MICROCOMPUTER SERVICING
> (ONE WEEK FULL TIME) NEXT COURSES START ON JULY 20th, JULY 27th \& AUGUST 3rd TUITION FEE £250
> Unemployed may be eligible for new JTS grant support.
> Further details from:
> LONDON ELECTRONICS COLLEGE
> (VC Dept.), 20 Penywern Road, Earls Court, London SW5 9SU
> Tel: 01-373 8721

Teletopics

BUSINESS SCENE

For most consumer electronics products 1986 was a record year. According to the British Radio and Electronic Equipment Manufacturers' Association (BREMA) deliveries of colour sets to the trade increased by eleven per cent over 1985, reaching a record 3.9 million. Of these, sets fitted with FS tubes totalled 743,000 . Deliveries of teletext equipped sets increased by eight per cent over the year. At the present time (1987 first quarter) deliveries of small-screen sets have almost reached the level of largescreen sets. Deliveries of monochrome portables fell by nine per cent in 1986. VCR deliveries increased by 30 per cent in comparison with 1985 and there were record exports of UK produced CTV sets and VCRs. There was a big increase in the number of CD players delivered, at 639,000 units. Home computer deliveries on the other hand decreased by 49 per cent.
Northern electrical retailer Wigfalls has purchased from the Electronic Rentals Group fifteen Connect shops. ERG will continue to run the Connect shops elsewhere. Wigfalls has sold its rental interests to Granada.

Fidelity claims to be the largest UK supplier of 14 in . CTV sets in the UK at present, with over twelve per cent of the market. Last year Fidelity turned in a loss for its parent company Caparo Industries, which is in talks with a major foreign TV manufacturer to hive off Fidelity as a joint-venture. Recent $14 i n$. sets introduced by Fidelity include the CTV1405 and CTV1405R.

Salora-Luxor claims to have become the fourth largest TV manufacturer in Europe and to be the market leader in Scandinavia, where it has nearly a third of the market. Production is currently running at over 700,000 sets a year.

VIDEO SCENE

HQ (high quality performance) VHS machines have been around for some months now. What contributes to the improved performance in different machines varies however. The changes in comparison with the basic VHS specification are: (1) record white clip level increased by twenty per cent; (2) improved resolution; (3) luminance noise reduction; (4) chroma noise reduction. To qualify as an HQ machine item (1) and at least one of the other items must be implemented.

Fuji Photo Film (UK) Ltd. is developing a range of video cassettes for the new S-VHS system. A new magnetic particle formulation called Beridox-SHR has been developed, with ultra fine particles. The magnetic layer also uses a newly developed binder with improved dispersion characteristics, resulting in a "super high density" magnetic layer. The net result is substantially increased h.f. output. Signal-to-noise ratio has also been improved. Mass production of the tape is due to begin shortly so that it will be available in quantity when S-VHS hardware is introduced.

The latest VCR from Panasonic, Model NVG21B, features digitally-scanned bar code programming. Special programming sheets are supplied with the recorder: these have tables of codes representing all likely programming options such as channel, date, start/stop times etc. The user employs a scanning pen/transmitter to scan the appropriate bar codes - the pen has a power-save system
that switches it off if no instructions have been received for twenty seconds. Panasonic consider that users will find the system much easier than conventional VCR programming and hope that eventually, as in Japan, programme listings in the TV Times etc. will be accompanied by bar codes.

Philips have developed a couple of chips which provide a decoder for the video programming system in use by some Continental broadcasting authorities - the transmissions incorporate signals to tell a programmed VCR when the various programmes start. The SAA5253 is a data line slicer and the SAF1134P (or SAF1135P) a data line decoder. Together the two chips decode the VPS signals and control the VCR via a simple two-wire inter-chip bus.

Philips is to set up a joint-venture VCR plant in Czechoslovakia. The joint company will be 70 per cent owned by the Czechoslovakian manufacturing concern Testa, 20 per cent owned by Philips and 10 per cent owned by a Czechoslovakian commercial/distribution body. The plant at Bratislava will eventually export to the West in addition to supplying the East bloc countries. Production should start next year at a rate of 100,000 machines annually, rising to 500,000 machines a year by 1993.

Amstrad and Funai Electric have set up a joint-venture company to manufacture VCRs in the UK, at Amstrad's Shoeburyness plant. Initial production will be at the rate of 5,000 machines a month, rising to 10,000 a month.

FRENCH TV

The consortium lead by construction group Bouygues was the successful bidder for control of the leading French national TV network TF-1. Bouygues and its partners, who include UK newspaper publisher Robert Maxwell, will pay over $£ 300$ million for a fifty per cent interest in the previously government controlled network. Of the remaining interest, 40 per cent will be sold to the public and ten per cent to the network's employees.

SONY WATCHCAM CCTV SYSTEM

Warshaw (Security) Ltd. of Dorma Trading Park, Staffa Road, London E10 4QX has introduced in the UK the Sony low-cost Watchcam CCTV system. Watchcam is a development of Sony's pocket TV technology, offering TV monitoring for areas where it would previously have been too intrusive or expensive. The mains-powered system comprises a small ($8 \times 41 / 4 \times 11 / 2 \mathrm{in}$.) TV monitor linked to a miniature ($33 / 4 \times 2 \times 11 / 4 i n$.) camera. The camera can be fixed flat against the inside of the entrance door to look at right-angles through a peep-hole lens: the monitor has a flat, 4in. screen. Watchcam can perform a variety of monitoring tasks in addition to its door viewing role and is supplied with accessories to enable the camera to be placed anywhere in the home or office. A microphone in the camera, linked to a speaker in the monitor, enable users to listen in as well as viewing the scene. The system costs $£ 585$ plus VAT.

LATE NIGHT SUBSCRIPTION TV

A report by CSP International, commissioned by the Home Office following the Peacock Committee report, has concluded that it would not be feasible to finance BBC-1 and BBC-2 by subscription rather than the licence fee but that subscription could be used to finance a nighttime film and entertainment service on the BBC and ITV channels, with the signals transmitted in scrambled form.

Recent Philips CTV Chassis

Harold Peters

Looking back through past issues reveals a wealth of information about the Philips G11 chassis and its reliable successor the KT3/K30 range but little about the chassis that followed them. Time then to take a brief look at the System 4, CTX, CF1, 2A and 2B chassis. We'll start by outlining the way in which these chassis evolved.

Evolution

Philips chassis both designed and manufactured in the UK have the prefix G. There was the popular G8, then the G9 110° version. These were followed by the outstanding UK swan-song, the G11, whose modular construction pleased renters and owners alike.

At the same time the continental side of Philips was designing and manufacturing its own chassis which were prefixed K (for Kleuren), namely the K9, K12, KT2 portable and the multi-standard KM2 and KM4 for France and its border countries. These sets have a twopanel chassis: the large upright panel on the left is called the small-signal panel, and the smaller one on the right the large-signal panel, large and small relating to the size of the signals rather than the panels.

To stay competitive design became centred on Eindhoven, whose first Eurochassis was the KT3/K30 series. This is of modular construction, with all the easy faults (it seemed) on the plug-in boards and the sticky ones on the mother board which, with the same Teutonic logic that transposed the large and small panels in the previous chassis, was called the monocarrier (it being a colour chassis). The modular construction enabled national variations, indicated by the suffix, to be carried out - /05 for the UK system I, /00 for the European B/G standard and so forth. What couldn't be agreed upon was a common remote control system: there was Song, Long, Long F8, Telco and RC4. Because none of these could handle teletext, and they didn't want to use the Croydon codes working so successfully with the G11 chassis, they brought forward RC5 which, in its many forms, is with us to this day.

It takes about three years from the instant when the set designer leaps out of his bath exclaiming "I've got it" till you can buy his brainchild in the shops. Thus while the KT3/K30 range was doing great business the length and breadth of Europe the boffins were well into its successor, the KT4/K40 (System 4) series chassis, which were considered to be the chassis for all present and future needs of all nations. The format reverted to the small- and large-signal panel arrangement, with a built-in PAL decoder on the small-signal panel. Other colour systems were catered for by means of a plug-in board that turned the other systems into quasi-PAL for processing on the mother board.

The large-signal panel had variations to cater for 90°, 110° and FS (FSQ) tubes. Teletext, now common on most European PAL systems, plugged into the SSP (smallsignal panel) while stereo and hi-fi audio boards clipped around the cabinet sides. The basic sound board was confined to intercarrier sound detection and a series of switching i.c.s to route the sound as directed by the user handset command etc. The power supplies - isolated, non-isolated, etc. - were laid out on the cabinet floor.

Something as versatile as this took longer to bring into production than originally planned, esnecially by the time that all the pet rules and regulations of its intended markets had been taken into account. So System 4 rather missed its target. The gap was filled by an improved version of the K30, called the K35, which held pride of place for a couple of years.

During this time the rest of the television industry had moved to single-panel chassis - the Thorn TX9/10 for example. As a result when System 4 was released it was confined to upmarket sets (remotes, teletext, stereo sound etc.). Basic 22 and 26 in . models continued to use the K35 chassis while smaller ones - 20 in . and below - were fitted with a flat, single-panel chassis called the CTX, which we'll return to shortly.

System 4 was confined to the upmarket ranges for the whole of its comparatively short lifetime. Its cramped layout and involved service manuals didn't endear it to the trade, and once the basic 22 and 26 in . models had gone directly from the K35 chassis to a new chassis, the 2A (which bore a resemblance to the CTX), and once it became possible to add remote control and teletext to these flat chassis, the only sets left using the System 4 arrangement were the Matchline modular models.

Video/audio In/out

Something else happened during the transitional period. France and Germany made it mandatory to incorporate a SCART Euroconnector, or a similar video/audio feed arrangement, and for convenience the other coun-

Fig. 1: Quick chassis guide. (a) System 4, K40 version. (b) System 4, KT4 version. (c) CTX chassis, E version. The S version has the larger ELC2003 tuner. (d) The CF1 chassis. (e) The 2A2B chassis. Note the divided main heatsink: the rear section and the chassis corner alongside are live. (f) The CP90 chassis.
tries adopted the same standard. This meant that the TV set's chassis could no longer be live but had to be isolated from the mains supply. Philips solved this problem with their SOPS - a self-oscillating chopper power supply. Regulation feedback from the isolated secondary side of the circuit to the hot primary side is via an opto-isolator. SOPS was first fitted to later versions of the System 4 chassis and was then used in the flat 2 A chassis - also in the CF1 chassis, an interim small-set flat chassis designed as a successor to the CTX. This multitude of chassis is a bit confusing: we'll go back to the System 4 and follow the story from there.

System 4 Chassis

When you first get it, the System 4 service manual comes as a large loose-leaf binder that looks almost empty. If you've religiously kept yours up-to-date you should have at least two of these binders bursting at the seams. The electronics part of the manual is sectionalised by dividers that bear Roman numerals (which annoy me personally), each section dealing with one aspect of the electronics. For updating there come supplements on demand, stapled to a yellow contents sheet which indicates whether you have to add or replace the sheet in question. The yellow contents sheets themselves are supposed to be filed as a check in case you missed one.

There are separate service manuals for the various models. These are no more than flimsy "contents sheets". Each contains a block diagram, showing the various electronic bricks which go to make up the set, and the plug and socket numbers of the interconnectors. Parts unique to the particular model, such as cabinet mouldings, knobs and things like headphone panels, are also detailed. But to see the set as a whole you have to piece it together mentally from the separate sections of the electronics half of the folder.

The small- and large-signal panels hinge out on a common moulding for service. On 22in. upwards K40s the clips are at the sides of the frame, near the top, with possibly a third clip between the lower edge and the top of the power supply board at the bottom of the cabinet. On 20in. and smaller KT4s the retaining clips are down at the bottom of the frame, forward of the upright chassis. Switch off before delving in this deep.

To gain access to the power supply on the floor of the set, first swing down the upright chassis section as above. Unclip the various cableform retainers, then unclip and slide the power supply backwards to the extent of its leads. You can then hinge the main frame back up while you work on the power supply.

The boards plugged into the SSP can benefit from use of the extenders you have for the KT3, but not always, due to the shortness of the cable form. Most control panels, even those along the bottom of Matchlines, come out forwards for servicing once the appropriate plastic retainers have been unclipped.

Matchline SCART Sockets

The Matchline series have a special board sporting two SCART connectors and their electronics. These doubleSCART inputs are both terminated at 75Ω, but the buffer amplifiers enable the input to one to appear at the output of the other - a handy feature in the showroom, making it possible to "daisy chain" the video signal from say a satellite set without having to break into all the intermediate sets and remove the terminating resistors. Sadly you
need only a juvenile hacker to change the channel on one set in the middle for all the others down range to follow suit. If you do Saturday work in the showroom this is something you'll already have learnt to live with, but we've digressed again.

Servicing Aspects

The circuitry on the large-signal panel, the one on the right as you look in the back, closely follows that of the KT3/K30. The field timebase however consists of a TDA3650 chip and its peripheral components. Should the field scanning fail the blanking circuits will operate automatically, giving the "no picture, e.h.t. o.k." symptoms.

Another stock fault, if a chassis such as this can have such a thing, is intermittent field jump and height shrinkage due to failure of the BAX18 diode D6107 near the top of the board. Small diodes of this series abound in the System 4 chassis and appear to be only just man enough for the job in hand. Philips Service quote an improved alternative, but we use the good old BY127 and don't get any call-backs.

Another misleading fault is when the set locks up on programme 1 (usually BBC-1) with the display showing E1. Having chased red herrings all round the board we now go straight to the line output transformer and resolder all its pins. Please don't write in asking for an explanation: we found it by accident and rejoice in our good luck. Dry-joints in the line output stage can result in a dead or intermittently dead set.

KT4 90° LSPs naturally differ from the 110° panels and again from the FST (FSQ) boards, but there are even variations within these subgroups. So if you are tempted to fault find by substitution, check the boards against each other carefully. A small bit of re-engineering may be needed, though it's preferable to debug down to component level - as a rule Philips Service don't carry complete boards, though they may still have a few for the sets made in the UK.

Access to the power supply has already been described. Half way through the production run a change was made from a multivibrator driven chopper power supply to a self-oscillating chopper power supply. Should a service replacement be required you'll normally get a self-oscillating power supply with fitting instructions. Even here there are four different types of SOPS board, for 90° and 110° sets with and without teletext.

As with any switch-mode power supply, faults in this area can be sticky - with often more than one device going. Odd teletext behaviour is usually the result of an intermittent diode in the bridge rectifier circuit at the bottom left of the board. This produces a 12 V supply from

(a)
(b)
[0630]
Fig. 2: Different degaussing thermistor arrangements used in System 4 chassis. (a) The KT4 arrangement, with a dual posistor. (b) Posistor/NTC thermistor arrangement used in K40s. This arrangement reduces the total current taken and acts as a surge limiter at switch on.
which the 5 V teletext supply is derived. As before small diodes, this time BAX14s, are the problem. And once again BY127s do a better job. Circuit reference numbers are D6110-6113.

Beware of the degaussing arrangements. A dualposistor is used in KT4s, as in KT3s. In K40s however this is replaced by a positive/negative thermistor arrangement (see Fig. 2) which looks the same. Various wire links are also transposed. Put the wrong item in and you'll have a big bang that will be the envy of the stock exchange.

When it comes to the small-signal panel - the one on the left when seen from the back of the set - you have again to beware of the multitude of different chassis types if you're contemplating board swapping. Unless the set has stereo or hi-fi the sound panel will resemble that in the K35, with an extra i.c. This is a switching chip to mute the sound when the set is off station, SCART is selected or tuning is taking place. So "no sound" can become a merry chase through the cableforms and manuals. The stereo/hi-fi sets have their output panels on the right-hand cabinet side: the sound module on the small-signal panel contains only the detector chip and the switching chips. As previously mentioned, the main board contains a PAL decoder and provision to add modules for other systems to convert the incoming colour to quasi-PAL for decoding on the main board.

Tuning Systems

There are two tuning systems, VST (tuning indicated by a yellow line that traverses the screen) and TRD4 (set programmed by channel numbers). Drift with VST sets when new, patterning or poor a.f.c. are usually due to the tuner itself. With the U411 tuner there are bent tinplate contacts that touch the tuner cover. If one of these is oxidised the tinplate forms a lecher bar type coupling between sections of the tuner, producing a birdie somewhere in the upper reaches of Band V. Clean and bend them, then refit. You could try leaving the tuner covers off completely.
The a.f.c. is inadequate at the top of Band V where it takes up to 3 V to swing the varicap tuning through one TV channel. Early sets have a $2 \cdot 2 \mathrm{M} \Omega$ a.f.c. boost resistor (see Fig. 3) fitted in position R3106, beside the tuner on the small-signal panel (beware - there's also an R3106 on the large-signal panel). If you are in a high-channel area and continually need to retune, try fitting the $2 \cdot 2 \mathrm{M} \Omega$ resistor - then check that you've not produced lock-out on the video channel 36 . If necessary try reducing the value of R3106.

The symptoms are unusual when TRD4 sets go off tune - big chunks on the picture "twitch", suggesting a field fault since this usually occurs at the bottom of the picture.

Fig. 3: System 4 a.f.c. arrangement, simplified diagram. Of the $\pm 5 \mathrm{~V}$ a.f.c. swing available at the output from the a.f.c. detector, the ratio of R3106/R3107 means that only a hundredth of this is applied directly to the tuner. While this is adequate up to ch. 55, the a.f.c. action is poor from there up. Try reducing the value of R3106. A similar problem arises with the $2 A / 2 B$ chassis.

The clue it that the effect is present only on some channels. What happens is this. The tuning circuit looks for an off-tune signal in eight 1 MHz steps, starting at the nominal vision carrier and working upwards. If a vision carrier isn't found the circuit goes back to the nominal carrier and starts to look again. Because it never looks below the vision carrier it never finds a station that has drifted downwards but keeps twitching until reprogrammed. Simple reprogramming seldom puts this right. Normally you need to start the search action below the required channel and let the set tune upwards until locked, then restore the memory.

A range of flat, 53 XX series handsets covers the series. VST sets use the RC5300 and RC5350 for simple remote control and remote plus teletext respectively. TRD4 sets, usually with stereo, use an RC5370. The Matchline series use an RC5371 which is electrically identical to the RC5370 but has the Matchline livery. Sets with a teletext ${ }^{*}$ paper printer need the RC5375. As a service replacement, Philips now issue a general-purpose handset, type AG RC53: this has buttons for every RC5 function in use to date - you merely ignore those not relevant to a particular set.

CTX Chassis

The CTX was the first flat, single-panel colour chassis in the Philips range. There are two basic forms, CTX-E and CTX-S, which are made in Europe and Singapore respectively. They are not interchangeable and can be identified simply by their tuners: the CTX-E has a U411 tuner while the CTX-S has the larger ELC2003. The S chassis is confined to portables, mostly basic models, while the E version is used in sets with tubes up to 20 in . and some of the portables have remote control. They all have the same convergence as the KT3 - in fact the chassis is similar electrically to the KT3, but laid out on a single panel.

These sets are reasonably trouble-free: what trouble there is relates mostly to the power supply. UK versions generally incorporate a mains bridge rectifier arrangement which puts the chassis at mid-mains potential, encouraging the demise of the $4 \cdot 7 \Omega$ surge limiting resistor R3291 which is on the h.t. side of the bridge as in the KT3. Continental versions of both types have half-wave mains rectification, with the 4.7Ω resistor fitted on the a.c. side of the rectifier where it seldom ruptures. Later CTX chassis made for UK use have this half-wave circuit, which has put the resistor problem to bed (see Fig. 4).

The S and E versions of the chassis are so different that chassis swapping isn't practical - and there are two versions of each chassis, remote control requiring an extra stage in the regulator circuit to produce the standby condition.

Before leaving this chassis, note that beam limiter circuit faults can produce the raster but no picture symptom. Check C2565 which is adjacent to the line output transformer - and if necessary the nearby R3565 which can go high in value. The same thing can happen with the $\mathrm{KT} 3 / \mathrm{K} 30 / \mathrm{K} 35$ series where the capacitor is C565.

CF1 Chassis

The requirement for an isolated chassis with audio/ video input is no more important than with colour portables, especially now that they can be used as text monitors for pages of 40 characters per line. The CTX

Fig. 4: CTX mains supplies. (a) Bridge rectifier circuit inherited from the KT3 chassis. (b) Later version rearranged as a half-wave rectifier. You can adopt this as shown in (c) but R3291 and L3291 will still be on the h.t. side.
chassis is unsuitable for this purpose, hence the CF1, a flat chassis that's similar to the Ferguson TX90 in that the channel selector switch and tuning resistor bank, also the user controls, are all mounted on the main board. It's slightly smaller than the CTX chassis, and though isolated the circuitry around the BUT11F chopper transistor and its heatsink are all at mains potential and should be treated with respect. Unlike the SOPS arrangement used with System 4 sets, on this chassis there's no plastic cage around the live part of the chassis, though a wide area of copper on the main panel is etched away to form a boundary which, for feedback purposes, is bridged by the opto-coupler. The CF1 chassis, doesn't have a SCART connector: instead there are separate phono plugs for audio and video in/out and a DIN socket for any videofax type of input ($\mathrm{RGB}+$ sync).

The CF1's one vice for the newcomer to beware of relates to the tuning. A trimming tool is provided to tune in the channels. When you've done this the tool can be parked back in its hole in either of two ways, depending on where its flat side is. One way restores the a.f.c. after tuning, the other way doesn't. So if you suspect poor a.f.c. or tuner drift, check the position of the trimming tool first.
The CF1 is limited to use in 90° portables. The intention is to progress to new chassis known as the CP 90 and CP110, which have been designed for use with FS type tubes.

CP90 Chassis

As you'd guess, the CP90 is for 90° models and the CP110 for 110° models. At the time of writing just a few details of the CP90 have become available. It's a onepanel job, similar in this respect to the CF1, carrying not only the tuner, i.f. and teletext modules but all the user controls, the remote control receiver and even the mains on-off switch. The circuitry derives in the main from the 2 A chassis (see below) and the CF1, with a self-oscillating power supply that "ticks over" during standby. The tuning system is VST2 however. Remote control is assumed for use throughout the range: thus the user controls in the set itself transfer their commands to the receiver's infra-red eye via an adjacent infra-red transmitter. A fully wired

SCART connector has video and audio in/out and RGB inputs for use as a computer display. To save users having to fiddle around at the back of the set the video and audio inputs can be fed in via jack sockets on the front control panel beside the headphone socket: these inputs are in parallel with those on the SCART socket.

The field-frequency waveform for EW correction is derived from the tube's beam current instead of the field timebase (tube current is zero during the field flyback, so there's a 50 Hz component). An advantage of this arrangement is that it provides width correction to compensate for heavy beam currents during bright parts of the picture.

As with the CF1, a discrete two-transistor field output stage is used, with two BD939F transistors. It looks like a class $A B$ circuit though the operation is somewhat different - the operation of this type of circuit was described in the May 1984 issue (page 377).
These sets will be with us in the near future, and we'll be returning to them. Meanwhile, today's general-purpose chassis is the 2 A .

2A Chassis

The 2A chassis is used in the majority of current Pye/ Philips basic, remote control and teletext models. It's a logical progression from the CTX. Like the CF1, it has an isolated chassis, using a self-oscillating chopper power supply which, while like that in the later System 4 chassis, has the added facility of providing I.t. for the remote control receiver during standby operation. All 2As have electronic memory tuning. Basic models use a system called TUON - there are two versions, the later one being physically different from early production. This system uses an HA11484 chip for tuning and channel selection. Remote control and teletext sets employ a citac panel. This uses an MAB8441P microcomputer chip and an SAB3037 citac (computer interface for tuning and analogue control) chip. TUON closely follows the VST system, without the tuning line. Citac counts the channel numbers like TRD4. Philips also refer to citac as FST (frequency synthesised tuning), which immediately precludes use of FST to refer to the new breed of flat, square tubes - thus Philips call their FS tubes FSQ. Confused? Never mind.

The TUON panel is mounted behind the set's control panel. Although electronically similar the two versions differ in physical shape to allow for the different pushbutton presentations to which they are attached. The TUON memory is volatile, so the channel allocations are preserved at switch off by a 3 V disc-type back-up battery. The weaknesses are carried forward from previous series, namely the tendency for pushbuttons to break off prematurely and poor a.f.c. on the higher channels. The $2 \cdot 2 \mathrm{M} \Omega$ resistor previously mentioned (System 4) is present on the board - it's R3846, and can be bypassed with another $2 \cdot 2 \mathrm{M} \Omega$ resistor to improve the a.f.c. action from ch. 55 upwards. Once again, check that this doesn't lock out VCRs on ch. 36.

The citac systems are mounted on plug-in boards alongside the tuner on the main panel, and are interesting in that an ordinary BZX79 zener diode is used to stabilise the 33 V tuning line in place of the conventional ZKT33. (Newcomers who doubt whether the ZKT33 really is an i.c. should carefully break open a dud one: the "iron filing" that falls out of the gap will, if studied under a stylus microscope, reveal the etched circuits of a true i.c. The circuitry used was shown and described in the

February 1975 issue of Television, pages 159-160.) The writer finds that a ZKT33 is a suitable replacement.

The 2A chassis' audio is rather sharp, especially to the ear of a viewer who gets a set as a replacement for one of the older CTVs with a deeper cabinet. Sibilance can be reduced by adjusting the value of the de-emphasis capacitor C2121 $(0.022 \mu \mathrm{~F})$ upwards. When we used to perform a similar service with KT3s we used as our yardstick the noise which accompanied the picture snow when the aerial was disconnected. You can't do this with 2As since they mute the sound when off tune. So we use a VCR run with the aerial disconnected to give us a 6 MHz noise signal in the E-E mode.

2B Chassis

The 2 B chassis is the stereo version of the 2 A . It appears to be similar and most features are in fact identical, but it's not compatible. To identify it quickly from the rear, note that the tuner and i.f. cans are farther inboard than in the 2 A chassis (that's if you failed to notice the stereo speakers . . .). At the time of writing this chassis is too new to have developed any awkward habits. It's not, as yet, fitted with a decoder capable of handling the recently approved QPSK stereo sound system.

Computer Controlled Teletext

CCT (computer controlled teletext) was first fitted to later System 4 sets and is common to all the 2As. In essence it's a development from the original teletext board fitted to KT3/K30s, and is in fact plug-compatible and interchangeable with these boards (but you need a different handset).

It has two full page memories and displays two page headers. The upper one, called the status row, shows which page is being sought by the second or background memory while you are reading the page already stored in the foreground memory. Pressing the CCT button changes the memories over. So while you are reading the page of your choice you can also be selecting and holding the one you want to read next.

The "high tech" sets in the range couple this with the old "supertext" memory, making it possible to preselect a menu of pages (on the same channel) which can be subsequently captured for reading in rapid succession. The system has two drawbacks. As stated, the pages must all be from the magazine you're watching - the thing won't change channel on its own. And the menu is lost when you switch the set off.

CCT boards produce a different typeface to previous teletext, with character rounding which on earlier sets worked only during the mixed text and picture mode. The same chip set can be used throughout Europe by rearranging links to modify the character set for any of three in-built languages.

Self-oscillating Power Supply

A self-oscillating power supply (SOPS), i.e. a selfoscillating chopper circuit, is used in the 2A, 2B, CF1 and later System 4 chassis. Since it provides mains isolation the chassis is "dead", permitting the direct connection of audio/video feeds. The circuits differ in detail from chassis to chassis but the basic principle is common to them all.

Fig. 5 shows the basic arrangement as used in the 2 A chassis. The heart of the circuit is a power transistor, Tr7687, connected via transformer T5663 as a blocking

Fig. 5: Basic blocking oscillator circuit used in the selfoscillating power supply (SOPS).
oscillator. A pulse-width modulator is used to switch off the transistor at an earlier point in the cycle than the natural free-running point, thus leading to a regulated output. Let's consider the blocking-oscillator action first. At switch-on $\operatorname{Tr} 7687$ will begin to conduct as a result of the forward bias applied to its base via the start-up resistor R3686. As a result, a linearly increasing current will flow through primary winding 5-7 of the chopper/blocking oscillator transformer T 5663 . Tr 7687 is held in conduction by the feedback from winding 1-9 via D6672 to its base. When the transformer saturates, the feeback winding no longer drives Tr 7687 which switches off. At this point the voltage across primary winding 5-7 reverses and D6664 switches on, charging C2664. The voltage across winding 14-18 also reverses, as a result of which D6696 charges its reservoir capacitor C2697, producing the h.t. supply for the line timebase. When the currents flowing in the transformer have fallen to zero, C2664 and winding 5-7 form an oscillatory circuit and the pulse produced across winding 1-9 switches Tr 7687 on again. As already noted, Tr7687 is switched off early in the cycle, the exact switchoff time being varied to ensure that D6696/C2697 (and the other rectifier circuits connected to T5663 in the full circuit) provide a regulated output. Under normal working conditions the frequency of operation is fairly high, around 40 kHz , and is not locked to the line rate. Everything on the primary side of the circuit is live to mains, everything on the rectifier side is "dead" - so mind your fingers and the minus lead of the meter when servicing. There are two "chassis potentials", with a bite between them.

The control arrangement, in much simplified form, is shown in Fig. 6. Transistor Tr7685 acts as the pulse-width modulator. When it conducts, Tr7686 switches on, shorting out the drive to Tr7687's base via D6672. Regulation depends on the time at which Tr 7685 switches on. While the chopper transistor Tr 7687 is conducting, diode D6667 is on and the $R C$ integrating network R3678/9/C2675 produces a positive-going sawtooth at Tr 7685 's base. Tr7685's emitter sits on a reference voltage of approximately -3.5 V which is developed across C2690 by the rectifying action of D6689 and D6672. Tr7685's base is biased via R3659/R3660 and the optocoupler OC7668. Regulation works in two ways. Changes in the loading on the power supply, i.e. h.t. voltage variations, alter the bias at the base of $\operatorname{Tr} 7685$ and thus the point during the sawtooth at which it switches on. Comparator transistor Tr7717 senses loading variations and adjusts the bias via $\operatorname{Tr} 7719$ and the optocoupler OC7668. Variations in the

Fig. 6: Control arrangements for the self-oscillating power supply. Simplified circuit as used in the 2A chassis.
mains voltage alter the slope of the sawtooth at the base of Tr 7685 and thus its conduction point. Tr 7685 is switched off by applying a negative-going pulse to its base via D6675.

Servicing SOPS

The whole arrangement is to an extent self-protective against overloading. A short-circuit across the h.t. supply for example will close down the optocoupler path and thus modify the action of the pulse-width modulator. The frequency of operation falls from around 40 kHz to about 1 kHz , producing a harsh, audible whistle. In practice a crowbar thyristor is connected across the h.t. line. In the event of a voltage overload this thyristor conducts to give the short-circuit condition. There's a temptation when troubleshooting to disable this crowbar circuit to see what blows up. Since the answer is just about everything, the temptation should be resisted. You can tell whether the harsh whistle is due to a short-circuit or the over-voltage crowbar thyristor (Ty 6698 , type BT151/500R) being fired since the latter will be cold for a short and warm if it was switched on by excess voltage conditions. Incidentally, the optocoupler (type CNX62) is a small black device the size of an operational amplifier.

You can run the SOPS board (or the SOPS part of a flat chassis set) separately from the rest of the receiver by using two 60 W bulbs in parallel as a dummy load across its h.t. output. By using this facility in conjunction with a separate h.t. supply (even another SOPS) you can break the feedback loops which operate the protection action in order to home in on your trouble.
On System 4 sets the SOPS is shut off during remote standby - a control circuit closes the optocoupler. A separate power supply is fitted to the board to enable the remote receiver etc. to operate during this time.

2A chassis sets are a little more advanced. The SOPS itself generates the standby l.t. Instead of closing down it changes to a lower power mode. The lower voltages thus produced are insufficient to operate the line timebase but enable the remote control receiver to work.

A few fault-finding tips. When the chopper transistor fails it usually takes with it the two control transistors, e.g. $\mathrm{Tr} 7685 / 6$ in the 2 A chassis. No h.t. and a stopped chopper suggests loss of the supply from the mains rectifier or a
fault in its supply path. No h.t. and a low whistle indicate an h.t. short or a tripped crowbar - see above. No h.t. and no whistle, with the scope showing that the circuit is working at a high frequency (80 kHz), suggest trouble in the SOPS itself - check for dry-joints and printed circuit cracks. H.T. plus high frequency of oscillation mean that the circuit is not loaded, i.e. the line timebase has stopped.

In Conclusion

So there we are. These are the main features of the five new chassis produced by Philips since the K30. Not a settled period, to put it mildly, and with satellite TV, stereo sound and Fastext all around the corner probably a transitory one. The proliferation of models coupled with the general improvement in reliability mean that the days when you could print a list of "stock faults" has all but gone. NTSC could now mean "never twice the same component".

The Square Portables

For the sake of completeness we should perhaps mention the little colour portables with 9in. FS tubes, Models 10 CX 1120 (Philips) and 25KX1201 (Pye). These use a totally different chassis which was designed and manufactured by an associate company. It's an isolated chassis fitted with a SCART connector. Isolation is provided by a Siemens type SOPS using the well-known TDA4600-2 control chip. The PAL decoder chip is a TDA3301/3303, the sync chip a TDA2592 and the field timebase chip a TDA1770. The tuning and channel memory arrangements differ from other Philips sets.

For servicing the single panel can be slid out from the rear after releasing two lugs. It can be helpful to switch the set on before withdrawing the panel. A couple of points worth noting. When the L3875V regulator (IC661) goes short-circuit, as it sometimes does, it takes with it fuse S $661(500 \mathrm{mAT})$. This is a small black device that looks like a plastic transistor - it's known as a Wickman' fuse. Secondly intermittent colour tinting is a common trouble due to the $2 \cdot 2 \mathrm{k} \Omega$ background presets P3317, P3337 and P3357 on the tube base panel. We replace all three, using RS types.

25kV EHT Probe

Andrew J. Heron

This article describes the design and construction of a selfcontained e.h.t. probe, i.e. the probe incorporates a moving-coil meter. The probe has been designed to measure voltages up to 25 kV : the prototype has served the author reliably for over three years.

Circuit Considerations

The circuit is simple enough - the only electronic components required are resistors! It calls for careful consideration however, primarily for safety reasons.

Fig. 1 shows the circuit. The meter used in the prototype is a small (approximately 1.75 in . square) panel meter with a $200 \mu \mathrm{~A}$ moving-coil movement. The meter's scaling is unimportant as a suitable scale has to be fitted later. If a voltmeter is used the internal resistor must be removed.

Resistor R is the multiplier, which effectively converts the ammeter into a voltmeter. Its value can be calculated quite simply as follows:

$$
\mathrm{R}=\mathrm{Vin} / \mathrm{Ifsd}=25 \mathrm{kV} / 200 \mu \mathrm{~A}=125 \mathrm{M} \Omega
$$

The voltage drop across the meter can be ignored. The multiplier resistor's power dissipation is as follows:

$$
\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}=25 \mathrm{k} \mathrm{~V}^{2} / 125 \mathrm{M} \Omega=11 \mathrm{~W}
$$

Now 25 kV across a single $125 \mathrm{M} \Omega$ resistor rated at 11 W is dangerous and quite impractical. The solution is to use a number of lower value resistors connected in series.

Reference to the relevant data showed that the standard metal-film resistors used in the prototype have a maximum working voltage of 250 V . If we decide on a

Fig. 1: Circuit diagram.

Fig. 2: Mounting the resistors. Suitable resistors are available from Maplin (metal film, 0.6 W)- order number A1M (pack of ten).

Fig. 3: Details of the probe tip.
maximum of 200 V across each resistor this will be well within the working limits of these components. The number of resistors required (n) is:

$$
\mathrm{n}=25 \mathrm{kV} / 200 \mathrm{~V}=125
$$

Given that a series resistance of $125 \mathrm{M} \Omega$ is required, the value of each resistor will be:

$$
\mathrm{R}=125 \mathrm{M} \Omega / 125=1 \mathrm{M} \Omega
$$

The total chain of resistors will be capable of dissipating in excess of 70 W , which is well in excess of the required 11W.

Construction

The resistors are connected in series around a strip of 3 mm Perspex as shown in Fig. 2. Alternatively paxolin could be used - this may be easier to work with. To maintain the resistors in position, sixty one slots with a depth of approximately 1 mm were cut along the two sides of the Perspex strip. The slots have a 5 mm spacing and can be quite easily cut using a hacksaw. Form the leads of the resistors to engage in these slots, thus preventing them from sliding along the strip.

The simplest housing for the assembly is a length of PVC tubing into which the strip can be slid. The internal diameter of the tube should be about 25 mm - the assembly should not be allowed too much movement within the tube.

Insert at one end of the tube a piece of nylon or similar insulating material of 15 mm length and of diameter equal to the tube's internal diameter - see Fig. 3. Drill two holes in the tube and the plug to accept two M3 nylon screws. Drill a 4 mm hole through the centre of the plug, then bolt a short length of brass studding through the plug: file one end to produce a flat blade which serves as the probe.

Trim the other end of the tube to allow the meter to sit on its surface - glue the meter in position using a suitable adhesive. This method of mounting the meter is extremely effective when the meter's physical size makes it possible.

Drill a single 4 mm hole in a convenient position at the meter end of the tube to enable the earthing lead to be passed into the tube. Connect this lead to the meter's negative terminal: terminate the other end with an insulated crocodile clip. Connect the probe to the far end of the resistor chain by means of an M4 solder tag. The other end of the chain is connected to the meter's positive terminal.

Scaling

Cover the existing meter scale with a self-adhesive paper label. With the probe assembled, attach the croco-

Fig. 4: General assembly.
dile clip (earth lead) to a suitable earthing point and place the probe under the final anode cap of a c.r.t. operated at 25 kV . If the receiver is functioning correctly it will be safe to assume that its e.h.t. is satisfactory. Switch the receiver on and mark the 25 kV point on the new scale. The 0 V point can be marked when the probe has been removed. Divide the scale and mark at either 1 kV intervals or significant points, e.g. $12 \mathrm{kV}, 18 \mathrm{kV}, 20 \mathrm{kV}$ etc. - a linear meter must be used if it's to be scaled in this manner.

Safety Factors

Most readers should be aware of the need to exercise caution when dealing with e.h.t. circuits. The following points are worth mentioning however.
(1) Ensure that all soldered joints are smooth, i.e. avoid solder spikes.
(2) Trim the leads close to the joint.
(3) Ensure that the resistors are mounted so that they remain close to the strip on which they are assembled.
(4) Clean off any solder splashes.

The above points become increasingly important towards the probe, or e.h.t., end of the chain. The following points are general tips.
(5) Always place the probe under the c.r.t.'s final anode cap before switching the receiver on.
(6) Always hold the probe at the meter end, well away from the "live" end.
(7) Remember the golden rule: always keep one hand in your pocket.

Long-distance Television

Roger Bunney

Apart from a slight increase in Sporadic E activity, March was a disappointing month: there was no auroral or tropospheric reception, just the SpE lift and daily, random MS (meteor scatter) signals.

Very strong winds covered the UK and the Benelux countries towards the end of march (26/27th). In Holland, winds approaching force 11 overturned Ryn Muntjewerff's lattice mast. It was discovered that a boglike region some 20 cm deep, between the bottom of the concrete block foundation and the top of the frozen ground beneath, had been created by heavy rain that had been unable to drain away. When the strong wind struck the side of the mast it swivelled and toppled over. Since it fell against and was supported by a nearby barn the mast and aerials survived. We hope Ryn manages to restore his aerial system soon.

With one exception the following log covers short/ medium distance SpE reception during the period:
7/3/87 SR (Sweden) ch. E2.
8/3/87 TVE (Spain) E2; RAI (Italy) IA; TSS (USSR) R1; ARD (W. Germany) E3.
9/3/87 TSS R1; YLE (Finland) E3.
11/3/87 CST (Czechoslovakia) R1; DR (Denmark) E3; RAI IA; RTE (Eire) Gort ch. B.
19/3/87 TSS R2.
21/3/87 Unidentified ballet at 2230 BST on ch. E3.
24/3/87 RAI IA.
25/3/87 + PTT (Switzerland) E2; YLE E3; TVP (Poland) R2.
26/3/87 TSS R2; NRK (Norway) E4.
28/3/87 TSS R1.
The signal from Gort, Western Ireland on the 11th was an interesting one. Simon Hamer noted the relatively strong signal at his New Radnor (N. Wales) home during a period when tropospheric propagation was absent. Thoughts are that the propagation mode could be either a form of E layer back scatter or aircraft scatter. Did anyone else notice back scatter on the 11th, with signals at higher frequencies than is normal with SpE ?

Another cloud on the horizon is the suggestion that the

Copenhagen ch. E4 transmitter may close down when a new TV tower for TV2 is completed in 1988.

News Items

UK: In the March issue we mentioned a BBC-TV communications system operating at about $181 \cdot 5 \mathrm{MHz}$ in Band III. Since then, wideband f.m. has been measured at 181.5125 MHz , the transmissions carrying rehearsals, interviews etc. for the BBC's south east news programme, together with news bulletins for the 1550 and 2130 transmissions, in parallel with the BBC-1 or BBC-2 transmissions. The signals have horizontal polarisation and their direction suggests origination from Elstree. Just below Band II there's a base OB frequency at 87.825 MHz from Alexandra Palace, duplexing with 77.82 MHz .
Denmark: A new private TV station at Esbjerg Alt in West Denmark transmits on ch. E53. The new TV2 network will have sixteen main transmitters and 60 relay stations, all operating at u.h.f. The main transmitters will run at $100-800 \mathrm{~kW}$ e.r.p. TV2 is to start transmissions next year, providing a form of regional TV. The first transmitter will be Copenhagen ch. E53 (with horizontal polarisation).
Sweden: The Finnish YLE-TV programme is being transmitted by three stations in the Stockholm area, a main $1,000 \mathrm{~kW}$ outlet using ch. E39 and two relays (500W on ch. E47, 100W on ch. E49).
France: The US CBS News programme Good Evening is now being transmitted by Canal Plus at $0600-0630$ GMT each weekday without scrambling. The scrambling system used by Canal Plus has been modified to give greater security. Filler signals are inserted at the start/end of certain delayed lines, preventing the use of the blanking/ video transition to control descrambling. In addition the starting point in the pseudo-random sequence is varied, with approximately one second intervals between two of the eight possible values represented by the condition of three consecutive transmissions of line 622 (black or white) following white on line 309. Detailed information on the scrambling system is given in the January 1987 issue of the French magazine Science et Vie. If you're sufficiently versed in the arts you can apparently work out your own decoder design from this information (but please don't write to me for a circuit diagram!).
In brief: The US Information Agency is establishing new satellite receiving systems in South Asia, the Far East and Africa to provide video feeds for the Worldnet global TV programme (mainly news, sports and the US view of things). The USIA has recently installed a satellite receiving system to monitor the TSS-1 (USSR) output from the

Molniya series of communications satellites . . . Sony have introduced a new series of low-noise field-effect transistors for microwave use - they are referred to as HEMT devices. The 2SK676-1 and 2SK677-1 are available in ceramic or chip packs and have a maximum noise figure of 1 dB at 12 GHz , with a gain of over 10 dB . They use gallium arsenide technology with MOCVD (metal organic chemical vapour deposition) fabrication.

UHF Notch Filter

A new Triax u.h.f. notch filter is now available in the UK - the u.h.f. notch filters previously on sale in the domestic market have been from Polytron, with Band IV and Band V versions giving a rejection notch of typically $22-24 \mathrm{~dB}$. The new filter covers chs. $21-68$ with a screw adjustment at one end.
It's an in-line unit mesuring two inches tip-to-tip on the signal connection axis $\times 13 / 8 \mathrm{in}$. high $\times 5 / 8 \mathrm{in}$. deep, the housing being apparently of bright mild steel. Since there's a d.c. short between the inner conductor and the screen/case the filter cannot be used in applications where a head amplifier is powered via the coaxial downlead: it should be fitted before the head amplifier (with suitable protection) or after the power supply (assuming use of an amplifier). The Polytron filters don't have this limitation.
Measurements were made on chs. 31 and 66 . On ch. 31 the notch depth was found to be 27 dB , with an insertion loss of $8 \mathrm{~dB} \pm$ two channels, $1 \mathrm{~dB} \pm$ four channels. On ch. 66 the notch depth was 19 dB , with an insertion loss of $8 \mathrm{~dB} \pm$ two channels, 1.5 dB over six channels down and 1 dB over ten channels down.
It will be noted that the notch is both sharper and deeper at lower frequencies, the characteristic being less defined as the frequency increases. As a general purpose notch filter covering the entire u.h.f. band it's extremely useful and simple to adjust - though the setting is more critical at the higher frequencies.
Fitted after a power supply it's efficient at removing an unwanted local strong transmission when attempting to receive a more distant fringe signal some channels away. The problem of interference from airport radar equipment working on/about ch. 36 (particularly troublesome with VCR outputs in some areas) can be easily eradicated. It sells for rather less than comparable single notch filters.

Band I Interference

A strong carrier has been noticed at 49 MHz . It's generally present in the evenings and its persistence merited investigation. It was certainly not caused by an illegal cordless phone or a child's walkie-talkie. During a local street walkabout I found that the source was about half a mile from my home. At the source the signal seemed to carry vague domestic noises, suggesting an open microphone - maybe a baby alarm - but causing interference at half a mile?! The measured frequency was $49 \cdot 830 \mathrm{MHz}$, which is within the December 1987 onwards allocation of $49 \cdot 82-49 \cdot 98 \mathrm{MHz}$ for "general-purpose lowlevel devices not exceeding 10 mW output".

Friendly contact was established with the user, who confirmed that he had a baby alarm - a "plastic box" that plugs into the mains upstairs (the transmitter) and a battery-powered receiver that can be clipped to the parent's belt etc. The absence of an aerial suggests that the mains wiring is used for transmission. A label on the back stated that it conformed to an unknown FCC (US) standard and provided the information that it's a crystal controlled $49 \cdot 830 \mathrm{MHz}$ narrow-band f.m. microphone
transmitter. It's identified as Model GEE420, manufactured by the Golden Eagle Electronics Manufactory Ltd. of Hong Kong!

These alarms have been distributed in large numbers by Innovations Ltd., a mail-order marketing firm whose catalogue accompanies Access card statements. The firm is based at Gelderd Road, Leeds. I've been unable to obtain from the company any information on transmitter power or whether the equipment is DTI approved. The noise-free carrier received at such a distance suggests a high output! The DTI has been advised and an investigation is being carried out. If any TV-DXing monitor suddenly experiences constant carrier problems at 49 MHz , persisting over several hours, it may be due to either a cordless phone left "off the hook" or a Golden Eagle baby alarm.

Thoughts on DX Aerials

A TV-DXing system is of course only as good as the aerial that feeds it. In Band I, a two- or three-element wideband Yagi array will give excellent results when used with a rotating system/rotor. Similarly in Band III a tenelement Yagi array will, during appropriate tropospheric conditions and depending on your geographical location, provide many European signals. Both however are relatively large arrays, and with the end of the 405 -line v.h.f. services a DXing aerial will tend to stand out rather amongst the usual domestic u.h.f. aerials. Large u.h.f. arrays don't stand out so much.

There's a growing tendency for local planning authorities to pay attention to "unusual" aerial systems, and in view of their relative size DX v.h.f. arrays are increasingly coming in for criticism. I've received several enquiries from readers/DXers over the past year about planning problems, and during the week that I write this one

Above: Wideband Band IIIII u.h.f. aerial array made up for use during a holiday at Ventnor. It gave impressive results and could be the answer where a low-profile array is required.

Left: 49 MHz base station aerial produced by Les Wallen Manufacturing Ltd. for use with the new paging services. Another possible solution where a compact aerial is required.

Havant Dxer was told to remove all his TV aerials, including the domestic ones, when his application for permission for continued use of the aerials came up. Temporary permission had been given to him but application has to be made every three years and is subject to complaints etc. A local councillor described the aerials as "hideous" (I quote from a press cutting) and the outcome was that the applicant's housing committee gave him fourteen days to remove the structure. We are now acting on his behalf to see whether a basic low-profile wideband aerial mounted just above the roof line could be used to make continued DXing possible.

The average new house, certainly in the south, comes with a minute garden area, and with up to sixteen housing units per acre any large aerials tend to dominate the scene. I've therefore been giving the problem of aerials a great deal of thought, particularly to see whether compact systems can offer an alternative to the usual arrays.

In the July 1986 column I described a fairly compact wideband Band I/III Yagi aerial mounted on a common boom, to which an Antiference TC10/W ten-element wideband u.h.f. array could be added. One of the accompanying photos shows a system I made for use while on holiday at Ventnor, Isle of Wight. The results obtained with this were impressive. To minimise the cabling, the Band I/III outputs were diplexed into a common v.h.f. downlead which was followed with a BFY90 wideband preamplifier. An indoor BFR91 preamplifier was used for the u.h.f. signals. Where local planning problems are encountered either of these two systems might provide an acceptable compromise while retaining reasonable efficiency if used with an aerial rotor. Note that the TC10/W is available for about $£ 8$ from Tandy stores.

Another alternative is the active aerial. Datong for example produce a wideband active dipole that covers s.w. and low v.h.f. into Band I. I've tried the active encapsulated "caravan" type aerials but found the results, particularly in Band I, disappointing. Omni-directional active aerials intended for marine use are also available, but these tend to be expensive. Triax recently introduced a lower priced active disc aerial covering $40-860 \mathrm{MHz}$ (amplifier coverage), called the UFO! The diameter of this white plastic unit is approximately 14 in . It's claimed to be omni-directional with an amplifier gain from 16 dB in Band I to 22 dB at u.h.f. The noise figure is under 2 dB and the signal handling capability is good at $104 \mathrm{~dB} \mu \mathrm{~V}$. Triax have kindly provided a UFO for evaluation during the coming SpE season, and I'll be reporting on this in due course. My feeling is that for optimum results you really need full-size elements, but if your back is to the wall this aerial might offer a lower efficiency solution.

I also hope to report on the use of vertically polarised aerials for Band I reception during SpE openings. Last year I found that a vertical Tandy scanner monitoring aerial (marketed as the Telescan!) gave good reception of short- and medium-distance SpE signals - the signal level obtained was often higher than that from a horizontally-mounted four-element Yagi array. More distant signals tended to retain their original polarisation however. The performance of the Telescan fell off considerably below ch. E3, so I've been looking for an alternative.

Use of a CB base aerial looked like a possible solution, since the harmonic relationship of $27 \mathrm{MHz} \times 2$ gives 54 MHz , i.e. the middle of Band I. The inevitable mismatch could be swamped by using a wideband Band I head amplifier at the CB aerial's output. Les Wallen

FERNSEH-ANTENNA

Combined Band 1/3 Aerial for TV-DXing

The 1987 Sporadic-E season should now be with us! Time to take advantage of a special offer from Aerial Techniques to re-equip your system The Fernseh-Antenna DR1712 is an efficient low cost Wideband VHF aeria covering both Bands $1 \& 3$, it has a gain of 3.5 dB in Band 1 and 9.5 dB in Band 3. Folded dipoles for peak efficiency are used in both Band 1 \& 3 sections. Front to back ratio is $11 \mathrm{~dB}-$ Band $1 ; 25 \mathrm{~dB}-$ Band 3 . The aerial sections. Front to back ratio is 11 dB - Band has , 25 dB - Band . has been gold lacquered for high resistance against weather corrosion. This array has close spaced elements, making it a very compact length of
$72^{\prime \prime}$, ideal for the enthusiast with restricted space, or those unable to erect $72^{\prime \prime}$, ideal for the enthusiast with restricted space, or those unable to er
separate aerials. This aerial only requires a single coaxial downlead.
In certain areas the use of a wideband VHF amplifier can be advantageous, the Antiference UP1300 fits the bill. This preamplifier covers 40 230 MHz (Bands 1 to 3) with a gain of 19 dB and a low noise figure of 2.5 dB The amplifiers matching power supply unit provides $12 v$ DC via the coaxial downlead
FERNSEH-ANTENNA Combined Band 1/3 Aerial - Special offer - carriag free! .. £43.75 ANTIFERENCE UP1300 Band $1 \& 3$ Amplifer...
ANTIFERENCE PU1240 12v DC Power Supply (mains operated)
KINGROTOR Automatic 'offset' Antenna Rotator and Control Consol (uses 3 core cable) 539.95
$\mathbf{E 1 3 . 9 5}$

Aerial Techniques, the company that knows the TV-DXing hobby carry a large and comprehensive range of aerial equipment for every type of installation - and with a huge range of filters, amplifiers, cables, rotators, masts and supporting hardware. Send for our illustrated Catalogue at 65p, if it doesn't list what you want, then we can obtain it quickly.
STOP PRESS - New Triax style Notch Filter, covers whole of the UHF Band; $470-860 \mathrm{MHz}$ completely tuneable. Notch depth up to $26 \mathrm{~dB}$. E6.95 (includes postage). (See review in this column) All prices inclusive of VAT \& Carriage Delivery normally $7-10$ days ACCESS \% MSA Mail and Telephone Orders welcome.
(Ramsgate) supply a base-mounting 27 MHz aerial called the Saturn (there's a certain outer space feel to these commercial names!). When I contacted Les Wallen I found that there's a 49 MHz version of the Saturn, intended for base station paging use. This is 19in. long (see photograph) and I will be testing it alongside the UFO during the coming season. Incidentally, "base-mounting" means an aerial intended for use at home. The 49 MHz aerial is very well made. Its bandwidth is claimed to be $49 \mathrm{MHz} \pm 5 \mathrm{MHz}$ with a VSWR of $1: 1 \cdot 5$. Both the UFO and the 49 MHz Saturn are for use with PL259 termination plugs (as used with v.h.f. amateur equipment/CB rigs).

I hope that by the end of the season it will be possible to recommend a compromise that may offer a solution to readers with local planning/environmental problems. Certainly the last two aerials are small and could be lifted to a considerable height, perhaps for temporary periods. The Les Wallen aerial is available from CB stores (stress the 49 MHz type for paging) or advertisers in Citizens Band magazine. Both the UFO and the Les Wallen aerial can be obtained from Aerial Techniques.

Meanwhile, if any readers have had success with the use of compromise aerial systems I'd like to hear from them. Also from anyone who wishes to write in about planning problems and any solutions.

Help wanted/For Disposal

J.B. Colbourne of 43 Westfield Road, Stoutown, Bilston, West Midlands is seeking a complete, undamaged plastic case for a Plustron Model TVR5D. E. Goody of 20 Kent View, Aveley, South Ockendon, Essex RM15 4JP has over 100 "large" and 300 "small" radio and TV valves to give to anyone wanting them.

Panasonic NV366

This machine suffered from an intermittently noisy picture. The playback picture was very good at the start: going to search or still also produced clean pictures, but on returning to playback the picture would be noisy and the tracking control had no effect. This is a four-head machine (two for standard play and two for the search and still modes), the switching between heads being carried out by means of relays. Replacing these cured the fault.
A.D.

Grundig VS220

The playback picture had three white lines across it. One was central and the other two were in the bottom half of the picture. Advice was sought from Grundig who suggested removing the bottom of the drum motor and cleaning the brushes. When this was done and the machine was reassembled it worked perfectly.
A.D.

JVC Camera with Olympus VCR

The VCR turned out to be a Panasonic NV100 and the complaint was no recording. We found that with the camera connected to the VCR it couldn't be released from the pause mode by means of the camera's trigger. A check on the pause line input from the camera revealed a shortcircuit to chassis. This cleared when the camera was unplugged. At the time this seemed strange, because it should have prevented the VCR going into the pause mode. No short-circuit could be found in the camera, but a short-circuit was present when the two units were connected. On trying another camera we found that the VCR was o.k. So the fault was in the camera or its lead. What our customer had neglected to tell us was that the lead had been repaired recently by "the man round the corner who knows about kettles". The connections to the plug at the camera end of the lead had been reversed laterally. Hence all the confusion.
A.D.

Sharp VC9300

This machine came in with the complaint "stops after a few seconds". When we opened it up we found that it had received unprofessional attention. The mains fuse had been replaced with several strands of 5 A fuse wire and the counter belt from the take-up reel to the take-up sensor pulley was missing. As a result, the VCR went to stop after playing for a few seconds. The take-up and supply reels were well worn, as was the reel idler. In addition to all this the cassette motor continued to run when the housing was fully lowered. This was due to a deliberate solder blob. When this was removed the cassette housing stopped half way: the eject finish switch on the cassette housing was open-circuit.
A.D.

Hitachi VT8500

The remote control wouldn't provide channel change the other functions worked correctly (note that channel change won't work without a cassette in the VCR). The pulses from the remote control receiver board go to the servo board and then pass to the timer board. After

Reports from Alfred Damp, Eugene Trundle, Steve Leatherbarrow, Philip H. Ireland and Philip Blundell, Eng. Tech.
processing they go to the channel selector board. C112 on the timer board was open-circuit.
A.D.

Hitachi VT130

This VCR's voltage-synthesis tuning would scan the band correctly but failed to lock on to any transmission. The most obvious cause of the fault, failure of the sync pulses to reach the tuning system, proved not to be the case. A scope comparison with another machine showed that the a.f.c. input to the panel didn't vary during the tuning search. Replacing the combined tuner/i.f. module cleared the fault.
P.H.I.

Pye 65VR20/Philips VR6520

This machine would occasionally return to stop from fast forward or rewind, especially when warm. It was noticed that the tape counter would slow down erratically without a corresponding reduction of the tape speed. The reel sensor opto-detector IC1501 proved to have reduced sensitivity when warm.

Another of these machines had no capstan rotation. The reason was loss of the unregulated 12 V supply to the capstan control chip IC2004 due to fusible resistor R2096 (0.68Ω) being high in value. This device is not shown in my service manual.
P.H.I.

Sony SLC6 Mk. II

Low sound on ITV only was the unlikely complaint with this machine. It turned out to be true, along with a lowbrightness button three neon. A look at the circuit showed that the neon is used to bias the mute drive transistor Q010. Replacing the neon cured both faults.
P.H.I.

Grundig 2×4

There was a plopping noise on the sound and a disturbance on the screen. The cause of the fault was soon found when the head screening cover was removed - the red DTF wires had been trapped under it and were shorting to chassis.
P.B.

Sharp VC9300

For low reel torque in all modes check for dry-joints on Q8001. This transistor is mounted at the rear of the chassis, by the head drum.
P.B.

Mitsubishi HS304

Stops playing after ten minutes was the complaint with this machine. The capstan was stopping as after this period of time had elapsed the capstan drive chip was hot enough to fry eggs on! The capstan motor was faulty. P.B.

JVC HRD725/Ferguson 3V43

Intermittent failure to play can be due to resistance in the loading mechanism. Inspect the grease on the loading mechanism and gears as this can get hard.
If every segment of the display is on switch off immedi-
ately! Q2 in the power supply is probably short-circuit, causing the switched 12 V supply to rise to 23 V . Replace Q1, Q2 and D2 on the power supply panel and Q3, D13, D17, D18, D19, D20, C13, C14, L1 and IC1 on the tuner/ timer board.
P.B.

JVC HRD140/150/250

There's been a change to the intermittent bias oscillator start-up modification for these machines. Add an $0 \cdot 0082 \mu \mathrm{~F}$ Mylar capacitor (previously $0.0056 \mu \mathrm{~F}$ was suggested) across C23.

Amstrad VCR9000

For no front loading motor rotation try giving the motor a half turn and then having another go. The motors often develop a dead spot - replacements are avilable for CPC. If this doesn't do the trick, try cleaning the cassette in and lift position detect switches.
P.B.

Philips VR6462/Tatung 8490

This machine refused to rewind when a cassette was present. With no cassette inserted however it happily included rewind in its repertoire of tricks! The culprit was betrayed by a potential of $4-5 \mathrm{~V}$ at connector 4DP2. This came from the "tape begin" photodiode on the right-hand side of the deck (board P672). The diode was leaky. E.T.

Panasonic NV370/830/850

There was severe horizontal twitching and pulling on playback - the corrugation of the verticals was even worse with self-recorded material. The fault was somewhat intermittent.

The cause of the problem was "sticking" of the impedance roller up-stream of the full erase head. For a complete and permanent cure both the white roller and its insert should be replaced. This applies to Models NV370, NV830 and NV850. In the case of the latter two models, which have hi-fi sound, correct alignment of this roller is crucial to correct tracking of the hi-fi signals and hence the quality of the audio output.
E.T.

Sharp VC7700

This machine caused some amusement in the workshop whilst it was on test: the machine would intermittently eject a tape. Pulses going astray? Take-up reel stopping? Neither of these problems were found when the top of the machine was removed. The 555 timer chips on the mechacon board were the cause of the fault. These undeniably useful i.c.s have caused all manner of problems in all manner of equipment in the past. Oh yes, and the eject flap also opened without provocation even without a tape being in.
S.L.

Sharp VC383

Playback of a prerecorded tape was fine but there was a problem when a recording was made and played back: a band a few lines deep was present, with the odd kink in it, across the screen about a third of the way down. The record switching monostable was found to be at fault. Changing the cross-coupler C714 cured the problem and all that remained was to change the reel motor and idler.
S.L.

next month in

- SUPER VHS

The standard VHS and Beta specifications are inevitably something cf a compromise, dependent on the technology thet was available at the time they were adopted. As the technology advances, so improved performance can be provided. From the VHS camp, JVC recently announced Super VHS (S-VHS). Steve Beeching reports on the new specification and the picture quality achieved.

- SERIES OR SHUNT

Back to basics with Stan Amos who describes some of the subtler aspects of series and shunt component networks. It's sometimes an advantage to replace series comoonents with the equivalent shunt-connected arrarigement.

- SERVICING THE TX9

Well the earlier version anyway. Gordon Haigh on the problem of fuse blowing with the thyristor-type power supply and one or two other faults you may experience.

- THE GLUE GUN

Harold Berkley describes a recent addition to his tool kit, the glue gun. This has proved to be inveluable, extending the range of repairs that can be carried out and oten avoiding the need for a return visit.

- A VINTAGE RESTORATION

Steve Rowley has successfully restored an Ekco TAz01, the 7in. TV adaptor that was on sale almost fifty years ago. As he points out, there's a great difference between rormal servicing and vintage restoration.

- VIDEO-8 AUDIO

Eugene Trundle on the techniques used to handle the audio signal in the Video-8 equipment.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Mr Doublecheck and Mrs Tart

We've had some odd ones in here recently, and they're getting odder. Take Mr. Doublecheck for example. He's from some east European country and his use of the English language is on the quaint side to say the least. He carried in an old Ferguson record player with a BSR deck.
"It doesn't speak properly."
"Right oh! sir, we'll make it speak properly. Call for it tomorrow."
"No, I'll call for it on Wednesday" - which was tomorrow.

So we got down to it. The stylus had no tips and on auto it didn't land in the right place. This was seen to and the next item was that the turntable made a grinding noise. So we oiled the centre spindle then saw to a couple of other points. It now played La Boheme beautifully in rich Italian. Jim Reeves sung in rich English.
He came back the next day and asked to hear it working. So I plugged it in and put on La Boheme.
"It still doesn't speak properly."
I snatched off the record. Jim Reeves now sang in English.
"Ah, now it speaks properly - but what's that noise?"
I listened very carefuly and turned the sound down. Yes, I could just hear a faint thump I'd not noticed before. I took off the turntable and inspected the rubber drive wheel. This had a slight dent where it had been in contact with the spindle and left there motionless for some time. I selected a new one from the shelf. It now played without the slight thump. Jim Reeves sang again and Mr. Doublecheck nodded cautiously. He produced a length of lead from his pocket, and a.13A plug.
"Put this on for me. My landlord doesn't like me doing these things."

I sighed and fitted the plug.
"How do I run my light and record player from this?"
"You put a socket on the end of the lead and fit a twoway adaptor."
"You do this for me. I don't mind waiting."
So I fitted a socket and supplied an adaptor.
"Thank you. I'll bring the money in tomorrow."

Mrs Tart

Some time later a tall, fashionably dressed lady came in carrying a 12 in . monochrome portable. She spoke in a very la-di-da manner, obviously not her usual voice. I wondered what she had to hide.
"I've been given this TV set for my son to use in his room. The picture's very dark. Can you do something about it?"

I said I'd do my best and that she could probably have it later that day. Left alone I tried the set and found that the whites were silvery, suggesting that the tube was low or underrun. I checked the heater supply and found it to be 12 V near enough. All the other tube base voltages seemed to be right except for the first anode voltage which was under 200 V . The manual didn't specify what it should be so I checked the resistors and capacitors in the circuit and found them to be within specification. I reactivated the tube and was rewarded with a nice clear picture.

When Mrs. Tart returned I showed her the picture.
"Oh yes. That's a little better - but not as good as that one there."
She pointed to the TX9 14in. colour portable which had a needle-sharp picture and was for sale.
"That's a beauty" I said proudly.
"Is it for sale?"
"Yes indeed. It's eighty pounds."
"Will you take weekly payments? Say 50p a week?"
"No madam, I'm afraid I can't."
"Well, how much is my little portable?"
"Five pounds, madam."
"That much? I can't afford that much."
"Well take it away and don't come back any more."
"I don't mind giving you a pound."
"Just take it and go, please."
So she went, in her fashionable clothes and her put-on talk. I must be barmy.

The CVC30

Next came an ITT colour set with a 26in. tube - CVC30 chassis. For some peculiar reason I didn't tackle it the way I usually do. I checked the h.t. voltage and found none. Next I checked the chopper transistor which was in order. It had -320 V at its emitter and base, so it wasn't being turned on. The driver transistor had no voltage at its collector. I put a short across its base and emitter and h.t. appeared at its collector. As a quick check I fitted another CMP30 switch-mode power supply control panel. Still no joy. So I dug out the circuit and studied it. I moved and the edge of the manual touched the upper right EW modulator drive panel. The whole thing then came on and a nice picture appeared. I tapped here and there, hoping to find a dry-joint. I just couldn't make it go off, so I proceeded to deal with the other complaint, intermittent height.

This was an easy one, the fault being on the correction board over the scan coils. There was a nice dry-joint here which I corrected with a short length of wire. The height was now steady and I returned to investigate the mystery shut-down. I couldn't make it repeat its original performance no matter how many times I switched off and on again. The customer returned and I related the sad tale. He expressed satisfaction with the set and carted it off. Next day he phoned to say that it was dead again and he'd be bringing it in.

This time I tackled it the usual way. I tapped the line output transistor and the set came on immediately. The usual dry-joint on the collector tag. I could have kicked myself but got Honey Bunch to do it instead. Not that hard you cruel bitch . . .

The customer carried his set off again and we haven't seen him since.

How Not to Repair Sets

When Beardy and Non-beardy carried an old Thorn
3500 in I cleared my throat ready to tell them to off.
"We will pay you well to repair this TV for us."
"And guarantee it for ever no doubt."
"No, no. That was just a misunderstanding. You mis-
understood us you see."
"Oh, all right. Leave it here and pick it up later today." "We'll call for it on Friday morning." Good Friday. Another holiday lost.

When they'd gone I started on the most horrific job I've mucked up for a long time. I think I did everything wrong.

I noted that the red button had tripped, so I checked for shorts and found one straight away. A BU208 had been fitted in place of the R2010 chopper transistor. After a struggle I removed it and checked it with a meter. In the set it had recorded a dead short: now it was clear of shorts. I checked the set again. No shorts. I fitted a new R2010 and switched on. There was a click and some smoke. The R2010 was dead short. I removed it and it was still short-circuit. I called the set some nasty names, removed the power supply panel and fitted a spare. As there were no shorts I switched the set on. It coughed and the 2.5 A h.t. fuse failed. I again checked for shorts and found none. What I should have done was to disconnect the tripler, but I didn't, being the fool that I am.

I decided to change the timebase panel. When I switched on the new fuse failed (not blew). Now I
disconnected the tripler, and now the fuse held. I kicked myself (softly, not like H.B. does). I tried again after fitting a new tripler. This time the picture came on but was far too bright: with the aerial out the raster was over bright.

The first anodes were at 800 V , but with the controls turned down the raster was still too bright even with the brightness control at minimum. Like a fool I checked the beam limiter panel carefully and found nothing amiss. A check on the grids revealed that they were at the same voltage as the cathodes, well over 100 V . A check at the tube bias preset R450 showed that there was no negative voltage here. The feed resistor was all right but there was no negative supply at connector 18/1. It then dawned on me. I'd fitted the new tripler plug without seeing it properly. On inspection only this end was contacting, the far end wasn't even in. I called myself every rotten name I could think of, like the chief P.O. had called me when I swiped his head with my rifle in 1942. Now the picture was good and the controls had to be turned up to their previous settings. I didn't have the nerve to fit the original panels. I just wrapped it up and waited for Beardy and Non-beardy to collect it. They still haven't.

Cable and Satellite 87

Harold Peters

The Cable and Satellite 87 exhibition was held at the Wembley Exhibition Centre on March 26-29th. It was organised by Montbuild Ltd. in association with 21 st Century Publishing Ltd., publishers of Satellite TV Europe, the space watchers' Radio Times. There were over 60 stands in the Centre, the attendant dish farm being outside in the car park.

Although there have been no new satellite launches recently there were nevertheless several items to attract the enthusiast, especially out in the dish farm. Dishes now come in all shapes and sizes, though the 1.5 m offset-fed type is almost standard for inclusion with the average TVRO package. A huge 5 m dish was receiving C-band pictures from the USA. At the other end of the scale Matsushita was showing a range of light, wafer thin flatplate aerials with the capability of lateral stacking to increase the gain.

The flat-plate aerial could well be the shape of things to come. It was jointly developed by the COMSAT Corporation in conjunction with Matsushita Electric Works. COMSAT's contribution was the development of what is referred to as a "multilayer planar array structure" that provides high efficiencies ($60-70$ per cent) over a wide bandwidth - comparable to that of a conventional parabolic aerial. MEW will be manufacturing the aerials and have contributed printed circuit technology and low-cost manufacturing capability. It seems that inside the flat panel there's a phased microstrip array. This technology calls for quite elaborate design work to get optimum characteristics. Matsushita will be marketing a range with dimensions of typically $354 \times 20 \mathrm{~mm}$ and $720 \times 20 \mathrm{~mm}$. The aerials are expected to be available later this year at prices some 30 per cent higher than conventional parabolic aerials. Large-scale production should see lower prices.
Receivers now come with built-in aerial control. Skyscan offer two handsets with theirs, a simple one for the user and an "all-dancing, all-singing" one for the
person who has to do the programming. Drake dispense with the spaghetti bunch of wires: their control unit can be housed in the garage, with only a single coaxial connection to the receiver(s) in the house.

The broadcasters took a lot of floorspace, each trying to attract a wider audience. The Luxembourg Astra stand attracted most attention, to the chagrin of the MAC-D2 DBS protagonists.

There was some simple test gear too. Handics' precision inclinometer uses a diffraction grating to give an accuracy of 0.2 per cent. From the Cotswolds, Satellite Systems offer the "Squawker" signal strength meter and also a portable site survey viewfinder.

Even with all this gear around we noticed, as we left, a dish being lined up in the old-fashioned way - by watching the output on a portable TV set!

The Matsushita flat-plate satellite TV aerial.

Servicing Mechanical VCRs

Part 4

Mike Phelan

This month we'll start to examine the loading mechanism - it's probably the most complicated and trouble-prone part of the machine. In fairness to the manufacturer, many of the troubles stem from previous unsuccessful attempts to repair the mechanism, though wear and tear are now taking their toll as these machines are getting old. A good understanding of the principles of operation can go a long way to easing the task of curing some of the more obscure faults in this part of the machine.

When the machine is put into the play, record or audio dub mode the tape has to be extracted from the cassette and wrapped around the video head drum. This operation is followed by several others: the impedance rollers and erase head are brought into position, the pinch roller is carried towards the capstan, the back tension arm is released, and finally the guide rollers are rigidly locked. All this is done using power supplied by the capstan motor, the drive being taken from a pinion incorporated in the capstan flywheel. The drive is taken through two intermediate gears to a large gear that controls all the operations, in much the same way that an autochanger works. The process has to be performed in reverse order when stop is selected. Loading and unloading each occupy half a revolution of the large gear.

One of the intermediate gears is mounted on a rocking arm that's coaxial with the gear (see Fig. 1) to allow the drive to be engaged and disengaged.

The Play and Stop Processes

The loading-1 and play mechanisms are shown in Figs. 2 and 3 , viewed from below.
The large gear is called the timing gear - we'll keep to the manufacturer's terms to avoid confusion. This gear has two almost diametrically opposite notches in its periphery. The timing arm roller rests in one of these notches when the gear is stationary.

When the play key is depressed, either on its own or in conjunction with the record or audio dub key, the projec-

Fig. 1: The gear train between the capstan flywheel and the timing gear.
tion on the play key moves the linked play levers 1,2 and 3. The latter has an L-shaped notch in it, in which the stud on the change lever rests. Play lever 3 is lightly springloaded so that the stud is in the short arm of the L. Consequently the change lever is moved, the stud at its other end allowing the gear arm to turn and engage the drive.

Fig. 2: The loading-1 mechanism, viewed from beneath.

Fig. 3: The play mode mechanism, viewed from beneath.

Table 1: Common loading mechanism faults.

Symptom

Loading mechanism doesn't engage at all. Change lever moves.

Similar but change lever doesn't move. Machine may work when stood on end for examination.

Loud clunk from mechanism at completion of loading. Machine then unloads.

Cause

Gear arm seized on post due to lack of lubricant or flaking of plating.

End play lever 3 bent where the kick lever engages. This fouls the underside of the timing gear and prevents the L notch moving the drive arm.

Drive arm lock roller fails to engage with notch on drive arm, so latter springs back and unlocks the change arms, initiating the unloading cycle.

Remedy

Remove capstan and gear arm, clean bores of gears with cloth, clean post, grease and reassemble.

Straighten lever as necessary. Later machines have a large nylon washer over the L notch. It can become gunged up with sticky grease. Check this.

Either the timing post is loose or out of vertical. Some people find a temporary cure by leaving the cover plate off the timing gear, but this is not to be recommended (see below). The correct cure is to straighten the post and re-rivet if necessary. This can be accomplished by using a staking tool and punch (see Fig. 4).

Replace plate. Turn mechanism manually in reverse to release.

Mechanism stalls part way through the unloading cycle، Capstan belt may come off.

Someone has left the cover plate off the timing gear and the small pivoted lever on drive arm has become wedged in chassis opening.

At the same time the capstan motor is energised and the timing gear rotates clockwise, viewed from below. Play lever 2 also has a wire link to the change arm lock lever. As a result the latter rotates, allowing the drive arm lock lever roller to rest on the periphery of the drive arm. As the timing gear starts to rotate, the timing arm roller is lifted out of its notch and the large roller on the timing gear moves the drive arm until the drive arm lock lever roller engages the notch in the drive arm.

Beneath the timing gear there's a pin that collides with the kick lever just before completion of loading. This pushes play lever 3 so that the change lever stud is in the long arm of the L notch. The main reason for this is so that the change lever is free to move and disengage the drive gears. This happens when the timing arm roller drops into the notch in the timing gear, allowing the change lever to return to its resting position. By this time the loading arms etc. are in position for tape transport.

The reverse takes place to go to the stop position, the timing gear completing its rotation. This action is initiated by the play key being released either by operation of the stop key or by energising the stop solenoid. Play levers 1 , 2 and 3 move towards the rear, the link on play lever 2 pushing the change arm lock lever back, lifting the locking

Fig. 4: Use of a stake, punch and chisel for re-riveting. Four stake sizes cover all posts in the machine.
roller from the drive arm. Movement of the change arm lock lever also moves change arms 1 and 2 which push the change lever away from the gear arm, allowing the drive to start. The timing gear rotates, moving the drive arm back to the rest position. The loading arms return, and finally the timing arm roller enters its notch, pushing the change lever and releasing the drive.

The operation of the loading arms, pinch roller engagement, etc. and the faults that occur in this area will be covered next month. Meanwhile we'll look at some of the problems likely to be encountered with the mechanism under discussion.

Servicing Aspects

Many of the faults here result from the extreme spring pressures involved, particularly the springs on the drive arm and change arm lock lever. There's great strain on the posts that act as fulcrums for the various parts: they eventually become loose in the deck and need re-riveting. Fault diagnosis is made easier if the mechanism is turned slowly by hand while observing its operation. This is easier if the plate on the timing gear is first removed. Probably the best way of describing fault conditions is to list some of the more common symptoms with their causes and the appropriate remedies (see Table 1). Faults affecting the parts not yet described will be dealt with later.

Some of the heavily stressed components will benefit from a small amount of moly- or copper-based grease. Only a little though - it makes a horrific mess in quantity.

You'll find that various screws in the mechanism are locked with cellulose paint. The heads sometimes get chewed up on removal. It's not a bad idea to replace all damaged screws and relock the heads of those that were originally locked. A small car touch-up pack is ideal whatever colour you want!

Next month we'll discuss the rest of the loading mechanism - it's rather simpler than the arrangement described above, which must be one of the most complex pieces of mechanism in any domestic VCR.

Low-voltage DC Operation

J. LeJeune

In my day-to-day experience the arrival of the holiday season is heralded by a crop of complaints about unsatisfactory operation of domestic radio, television and video equipment intended for use on low-voltage d.c. supplies.
The operation of electronic equipment of any type with a supply shared by other electrical equipment places rather special demands on the installation. The electronic equipment may and probably will be sensitive to any disturbances present on the d.c. supply. Earth loops provide a second source of trouble when interconnected units are used. The source of the trouble may be perfectly evident, but the means of correcting it may not.

Radio equipment is normally not too difficult. Car radio receivers can be readily adapted for many forms of mobile operation, the only factor requiring attention being the operating voltage. Fortunately negative earthing is nowadays universal - and is assumed throughout this article. Where you have a 12 V unit and a 24 V supply some means of altering the supply voltage is required. This is most easily done by using a static regulator of sufficient currentcarrying capacity. A suitable circuit is shown in Fig. 1. Advantage is taken of the regulator's ripple-rejection features to remove electrical noise from the input to the receiver. The regulator uses a chip which incorporates an operational amplifier, providing a very "quiet" output.

12V Operation

With a straight 12 V supply the situation is, unhappily, not so simple. Advantage cannot be taken of an electronic regulation system since the voltage drop that this introduces cannot be tolerated. Furthermore, other electrical equipment operated from the same supply is likely to have a heavy current consumption, and quite possibly the manufacturers of such equipment will have made no attempts to reduce the interference produced by any motors or inverters in the equipment.
The first requirement of any low-voltage installation is that the wiring between the battery and the equipment consists of a heavy-gauge conductor. Wiring connection blocks and plug-and-socket connections should be substantial to ensure that they introduce a very low resistance in the circuit and thus a very low voltage drop under load. This is vital with a 12 V supply, as the current demand of 12 V apparatus will inevitably be higher than that of 24 V equipment, assuming similar wattage. One cannot stress this point too much - it's the most common cause of unsatisfactory operation of electronic entertainment equipment on low-voltage supplies. Caravan and boat owners are alike notorious for thinking that low voltage requires only flimsy wiring! Portable TV sets give rise to the highest number of complaints.
The most common complaint with TV sets is that of the running time per battery charge. This is often the result of poor wiring. Consider a fully charged 38Ah battery with a terminal voltage of $13 \cdot 6 \mathrm{~V}$. A colour portable with a 4 A drain will operate from this battery until the voltage falls to 10.5 V , a period of just over nine hours. If the wiring
introduces a loss of 1 V however the viewing time per battery charge will fall to around five and a half hours. This is shorter than you might expect, but remember that the receiver's inverter power unit will try to keep the receiver's input power constant and as the input voltage falls the receiver's current demand will rise accordingly. Any resistance between the battery terminals and the receiver will make matters worse.

Operators of caravan sites and boat hire yards often try to get service engineers to adjust the low voltage cutout limit to allow a longer running time. This is not recommended, mainly because below this limit most receivers will be seriously under-run and lasting damage to the tube's emission will occur. Certainly the manufacturer's warranty will be invalidated.

24V Operation

Coaches, heavy goods vehicles and some larger boats use a 24 V supply. In keeping with fundamental rules of electric power distribution, a higher voltage poses fewer problems in respect of voltage drop because the current demand of appliances is half that of similar 12 V models. This is fine as long as the TV set, radio receiver or video equipment is capable of direct operation with a 24 V supply. In practice very few receivers and VCRs have this facility. Where it's available, use it - the reduced current consumption will be an advantage.

On-board entertainment is being increasingly offered on luxury coaches. Off-air TV reception is not a practical proposition: coach companies don't want to employ an operator to steer the aerial and change the tuning as the vehicle moves from the area of one transmitter to that of the next. Neither do they want passengers arguing over which channel should be tuned in. Use of a VCR is the obvious solution.

Trouble-free operation here depends on the exact arrangement of the connections between the VCR and the TV set. Patterning may occur where a TV set with a nonisolated aerial socket is used - an earth loop is formed as a result of the common negative supply connection. Similar trouble can occur with a direct composite video and a direct sound input. The easy way out is to use an isolated r.f. lead for the signal, but if direct video and sound coupling is for some reason mandatory the filter shown in Fig. 2 should be incorporated in the supply to the TV set. The filter removes the ripple imposed on the d.c. supply to the receiver by its own inverter. This ripple is present on the negative line, and is thus part of an earth loop.

Most UK and European manufactured models can be operated at 24 V but oriental models are generally suitable only for operation at 12 V . Should it be necessary to operate a 12 V set from a 24 V supply the regulator circuit previously shown (Fig. 1) can be used with success. Portable video equipment used for playing tapes usually has a car battery adaptor accessory which is o.k. for 12 V , but again when the supply is at 24 V the regulator circuit shown in Fig. 1 should be used. A cheaper solution to this problem would obviously be to tap the coach or lorry battery at 12 V . This will work with a lorry where the TV set is used when the vehicle is stationary and the alternator is not being used to charge the battery. With a coach however the opposite situation is found - the VCR and TV combination is in use while the vehicle is moving, often at night with the lights switched on and the alternator charging the battery. Under these conditions a considerable amount of alternator ripple is present on the

Fig. 1: Obtaining a stabilised 12 V supply from a 24 V source. Tr1 should be mounted on a heatsink - suitable types are the HO70M, FL54J and FL77J from Maplin Electronics. Pins 1,8 and 14 of IC1 have no connection and pin 9 is not used in this circuit. Set VR2 for $12 \mathrm{~V} \pm 10 \%$. Set VR1 (current limit) as follows. Rotate to minimum resistance and connect an ammeter in series with the load(s) to ascertain the peak current demand, e.g. TV at peak white and VCR in the loading/unloading mode. Switch off and disconnect load(s). Rotate VR1 to maximum resistance and connect an ammeter across the regulator's output terminals. Switch on and adjust VR1 for a reading slightly above the peak current demand. This sets the current limit to operate whenever the peak demand is exceeded.

Fig. 2: Filter to remove inverter ripple. The chokes are Wilmslow Audio 8 mH "standard power" inductors.

Fig. 3: Interference can occur when supply wiring is shared by several types of equipment, as here.

Fig. 4: Method of suppressing fluorescent light hash.

Fig. 5: "Heavy" filter using a bifilar choke (see Fig. 6).

Fig. 6: Bifilar choke wound on the core of a discarded line output transformer.

Fig. 7: Suggested wiring arrangement for a caravan. The fuses should be rated as follows: F1 and F2 15A, F3 30A.
supply. As a result the possibility of picture and sound disturbance is considerable, so the use of a regulator with a high ripple rejection factor is recommended. Make sure that units are not upset by the back-feed of h.f. from a TV set's inverter unit.

The guide-lines for coach installations should be followed with 24 V marine installations. In addition, the TV set's supply should be filtered to reduce or eliminate the possibility of interference to navigational and communications equipment. The combination of high voltages and a lot of water is not always an amiable situation, so fusing of the TV receiver's supply is a wise precaution. If it doesn't drop more than a volt or so a conveniently situated circuit breaker is worth consideration.

Electrical Interference

Along with all the other problems associated with lowvoltage operation there's the possibility of reception disruption due to supply disturbances caused by other equipment that shares the same circuit. Again, this can be simply the result of inadequate wiring. This sort of interference is caused by coupling via the shared wiring. Fig. 3 illustrates how the problem arises: a separate feed should be used for the TV, video or radio.

The small 12 V fluorescent lamps used in caravans are a common cause of patterning. Diagonal bars and rippling bands are the most common signs that the fluorescent lamp inverter needs isolating. Some suppression of the h.f. energy fed back into the d.c. supply is advisable in the lamp fitting itself (see Fig. 4). Because of the high frequency of operation, usually around 30 kHz , ceramic or low-inductance Mylar capacitors should be used.

Another source of temporary but annoying interference is the caravan water pump. A filter is the only cure. It will have to be a fairly "heavy" type - see Fig. 5. Because of the large d.c. flowing in them the stopper chokes should be of the gapped or rod type. Where space permits I use the C limbs of discarded line output transformers. These are plentiful in most workshops - look under any bench! The gauge of wire to use on them depends on the current to be carried and the voltage drop tolerable. To overcome the polarisation problem, the bifilar type can be used: the go and return currents cancel and an ungapped core can be used in a closed magnetic circuit. Again, provided there's space old line scan transformers can be used (see Fig. 6). Choke design is largely empirical: their purpose is solely to provide a high impedance to h.f. currents.

Fig. 7 shows how the wiring in a typical caravan installation should be arranged. Note the separate feed to the electronic equipment.

The 8mm Video System

Part 3

Eugene Trundle

With any helical-scan tape recording system it's necessary to record on the tape something to provide an indication of the physical position of the video tracks, so that the playback head scanning can be aligned with the tracks and maintained along the track centres. In the VHS and Beta formats the position reference signal consists of pulses which are laid down at 40 msec intervals, forming a longitudinal control track at the edge of the tape. Each control pulse recorded on the tape has a fixed positional relationship to the associated video track. Thus correct tracking of the playback heads can be established and maintained as the tape passes round the head drum.

This system has served us well, but with very narrow tracks, especially those containing digital sound, a more precise tracking arrangement is required. The ideal is a system which, like the groove of a conventional gramophone record, acts as a guide for the heads as well as carrying the recorded programme material. The first example of such a system used with domestic VCR equipment was the DTF (dynamic track following) system that was adopted for the ill-fated Philips/Grundig V2000 format. The principle of the Video-8 format's ATF (automatic track following) system is very similar to DTF, though its practical implementation is different, as we shall see.

ATF Basics

The essence of the Video-8 ATF system is a recorded pilot tone which is recorded along with the picture throughout every field period. There are four pilot tone frequencies, f1 $(101.024 \mathrm{kHz})$, f2 $(117.188 \mathrm{kHz})$, f3 $(162.760 \mathrm{kHz})$ and $44(146.484 \mathrm{kHz})$. They are added to the luminance signal and recorded in track sequence, i.e. one tone frequency per field/head sweep as shown in Fig. 17.

Such relatively low frequencies are virtually unaffected by playback head azimuth offsets, so pilot-tone crosstalk from adjacent tracks is easily picked up by the heads during playback. The tone frequencies have been chosen

Fig. 17: The order of the ATF pilot tones during successive recorded video tracks.

Fig. 18 (left): Frequency relationships between the ATF tracking pilot tones.

Fig. 19 (right): Simple method of deriving an error voltage from the inter-track pilot-tone beat signals.
to have specific relationships, as Fig. 18 shows. The pilottone beat frequencies that arise from mixing the signals from adjacent tracks are always 16 kHz or 45 kHz : it's these beat frequency products that are used to steer the heads - or the tape - to the optimum tracking position. Correct tracking is indicated by equal crosstalk from the adjacent tracks: the head is then dead-centred along the track it's scanning.

There are several ways in which the pilot-beat signals can be processed during playback. The simplest is the bandpass filter system, as used in some V2000 machines (see Fig. 19), which separates the 16 kHz and 45 kHz beat products so that they can be measured and applied to the two inputs of a differential amplifier whose output forms the error signal. This error output can be applied to piezoelectic head mounts, as in the V2000 system, or used to phase lock either the capstan or drum servo. While piezoelectric mounts can (and almost certainly will) be used in Video-8 machines to give noise-free trick playback pictures, the first generation of these machines uses phase lock of the capstan servo. Before looking into this we must see how the pilot tones are generated.

Pilot Tone Generation

The ATF frequencies are derived from a crystal oscillator that runs at $5 \cdot 859375 \mathrm{MHz}$, i.e. 375 times $\mathrm{fH}-\mathrm{it}$'s shown at the bottom of Fig. 21. The ouput from this oscillator is fed to a programmable divider which has four preset ratios, $58,50,36$ and 40 . The division ratio is selected by a pair of control lines from the system control circuit. These lines are designated SEL1 and SEL2 and Table 4 shows their effect. The syscon, working from head tacho pulses, ensures that the correct sequence of pilot tones is produced, with head $\mathrm{A}(\mathrm{ch} .1)$ recording f 1 and f 3 and head B (ch. 2) f2 and f4. To understand the playback tracking system it's essential to appreciate the operation of the SEL1 and SEL2 lines. The generated tones are added to the luminance f.m. signal in the record amplifier.

Unlike the V2000 system, no pilot tones are used for head positioning in the record mode. The fixed heads are precision-mounted on the drum, and in any piezoelectric head versions that may appear the heads will be held in a nominally central position in the record mode. A fifth pilot tone is specified in this format but this relates to multi-PCM audio only recordings - we'll return to this later.

ATF Playback

In Sony and Sony-derived Video-8 machines the pilot tones are also generated during playback as an essential part of the tracking-correction process. In the camcorder models the syscon, via the SEL1 and SEL2 lines, controls the generation of tones $\mathrm{f} 1-\mathrm{f} 4$ in the reverse sequence to that during record, i.e. $\mathfrak{f 4}, \mathfrak{f} 3, \mathfrak{f} 2, \mathfrak{f} 1-$ see Fig. 20. In this diagram the off-tape ATF signal is referred to as the REC pilot and the locally-generated sequence as the REF pilot. This diagram shows the ideal tracking conditions, where the off-tape tones switch in synchronism with the REF pilot tones. At every fourth field two f1 tones appear

Fig. 20: Production of the beat tones in camcorder models: the off-tape pilot frequencies are compared with a locally generated tone sequence.
simultaneously at a mixer which in consequence produces a zero beat product. During the other fields the beat product is either zero (f 3 and f 3) or 29 kHz (f 2 and f 4) the latter is outside the bands of interest and is thus rejected.

Consider the situation when the tape speeds up. As will be noted from Figs. 17 and 20, the REC pilot will move to the left. As a result some REC pilot f 2 will appear during the REF pilot f1 period, giving rise to a 16 kHz beat product at the mixer output. In the same way f3 beats with $\mathrm{f} 4, \mathrm{f} 4$ with f 3 and f 1 with f 2 , producing a 16 kHz output in each case.
When the tape slows down the REC pilot pattern moves to the right. Some REC f4 now appears during the REF f1 period, producing a 45 kHz beat product. Likewise during the next three fields REC f1 beats with f4, f 2 with f 3 and f 3 with $\mathfrak{f} 2$, producing a 45 kHz output in each case.

Thus a fast-running tape always results in a 16 kHz output from the mixer while a slow-running tape produces a 45 kHz output. It remains only to use suitably tuned bandpass filters to select these products and monitor the outputs by means of separate peak detectors. After passing through a differential amplifier (see Fig. 21) the ATF error signal is smoothed out and is passed on to be used as the capstan servo phase control voltage.

In practice the ATF sampling process is a little more elaborate than this, as Fig. 21 suggests. There are two sample/hold circuits, fed with sampling pulses TSA and TSB from the syscon. What happens is that the REF pilot tone sequence is delayed by 2.4 msec as shown by line (c) in Fig. 22. The delay is generated by the syscon, which also produces the synchronous TSA (ATF error) and TSB (ATF lock) sampling pulses shown in rows (d) and (e). During its low periods TSA samples for capstan phase error. At these times the conditions shown in Fig. 20 are satisfied despite the timing offset of the REF pilot signal, so a coherent phase error voltage is produced.

Fig. 22: Playback ATF processing pulse timing diagram for camcorders. Error sampling is carried out by the TSA pulses and servo lock confirmation by the TSB pulses.

The REF pilot signal timing offset is present so that a method of checking for "false" servo lock can be introduced. "False" locking can arise if the servo lock is so far out that head A (ch. 1) is following a ch. 1 track with the wrong tone, i.e. f 3 instead of f 1 . The capstan servo would be satisfied so long as the tracking remained spot on, with good sound and vision reproduction. But as soon as a tracking error started to occur the 16 kHz and 45 kHz beat frequencies would be reversed, leading to violent capstan speed instability.

To prevent this the syscon produces a second, short sampling pulse, TSB (ATF lock), whose duration is $1 \cdot 2 \mathrm{msec}$. It coincides with the "overlap" period between the REC pilot and REF pilot tone sequences - line (e) in Fig. 22. During its low period pulse TSB samples, in sample/hold block B (Fig. 21), the beat product between the REC and REF pilot tones. If all is well with the tracking, comparison is made in progressive fields between f1 and f2 (16 kHz), f2 and f1 (16 kHz) f3 and f4 $(16 \mathrm{kHz}), \mathrm{f} 4$ and $\mathrm{f} 3(16 \mathrm{kHz})$ and so on. The result is a continuous low at the sample/hold B output (ATF lock) see line (f) in Fig. 22. This informs the syscon that the ATF system is correctly locked.

The false lock situation is depicted in Fig. 23. Here we have a playback $\mathfrak{f} 3$ REC pilot during the period of an $f 1$ REF pilot. During the sampling periods (TSB low) the beat products will this time all be at $45 \mathrm{kHz}(\mathrm{f} 3-\mathrm{f} 2$ or 4 f - f1). The output from sample/hold block B is thus a continuous high, see line (e), indicating false lock. Since at this stage the vision and sound are both stable, and to "kick" the servo would result in temporary instability, on

Fig. 21: Simplified block diagram of the ATF system used in camcorders.

TV LNE OUTPUT TRANSFORMERS					
TRANSISTORS, IC's, ALSO STOCKED.					
BA1RD: 8290, 8752, 8773, 8180	12.00	IT: VC200 to VC402 CVC1, CVC2 (FORGESTONE)	920		
RANK BUSH MURPHY			11.50		
A774 with stick rectifier	8.7	CVC5, CVC7, CVC8, CVC9, CVC20			
A816, T16, T18, 2112,2715	10.35	CVC800, 1100, 1150, CVC40	P.0.A		
T20, T22, T26, Z179, A823 2718 Basic unit	11.50		P.0.A		
	13.50	PYE: 169, 173, 569, 368 CT200 CT200/1 CT213			
DECCA: 1210, 1211, 1511	11.50		10.35		
1700, 2001, 2020, 2401, 2404	9.20	725-731, 735, 737, 741	9.78		
CS1730, 1733, 1830, 1835	920	PHIUPS: 170, 210, 3009.20			
$30,70,80,90,100$ $120,130,140,160$	9.20	320 series TX, T8, TX2, TX3 mono	9.78		
120, 130, 140, 160	P.0A.		P.0A		
FERGUSON, THORN: 1590, 1591	9.20	G8 and G9 Series	59.20		
1690, 1691. built in rect. $1600,1615,1700,1790$	9.78	CTX G11. K30. K4. K40. split diode P.0.A.			
	P.OA.				
3000, 3500, 8000, 8500, 8800	P.OA.	BIMATONE: 9909, 9860, 9488 P.0A			
9000, 9200, 9300 series	1200	DORIC Mk3, Mk1 SONY KV 1400, 1612, 2000	11.50		
9500, 9600, 9650 series	10.99		P.OA.		
9800, TX9, TX10,TX90, TX100	P.OA.	GRUNDIG: most models in stock			
MOVIESTAR 3781, 3787, 8180	12.00	NORDMENDE: 8290, 2206 , Z306 P.0A			
TX10 focus unit	10.87	SANYO: 5101, 5103, 7118, 7130 SHARP: C1851H, C2051H, 1405 TOSHIBA: C800, C800B	P.OA.		
FIDELTY: FTV12 mono ZX2000 ZX3000	10.35		TASHIBA: C800, C800B TANDBURG: P.OA		
	16.43				
G.E.C. 2047 to 3135 mono 9.20		TELEFUNKEN: most models in stock HTACH: 1471, CPB260, 2501 POA			
1201H, 1501H, 2114, 3133, 3135		AMSTRAD: CTVZ200, CTV2210 P.OA			
SINGLE STD solid state SINGLE STD split diode		Delivery by return of post. Shop callers welcome.			
INDEST: 24EGB, 12LGB, 12SGB 10.35		Tidman Mail Order Ltd., 235 Sandycombe Road,			
WINDINGS					
TYNE: main winding	6.80	Richmond, Surrey TW9 2			
RBM: T20, T22, T26, Z179	6.33	Approx. 1 mile from Kew Bridge			
WALTHAM: W125 eht winding	237	Phone: 01-948 3702			
WALTHAM: W190, W191 eht coil	6.00	Mon-Fri 9 am to 12.30 pm \&			
KORTING: hybrid winding	6.90	$1.30-4.30 \mathrm{pm}$			
THORN: 8000, 8500, 8800 eht	6.70	Sat 10 am to 12 noon.			

receiving a false-lock message the syscon merely toggles the SEL2 line to reverse the REF pilot sequence. Reference to Table 4 shows that this establishes stable servo operation as depicted in Fig. 22, with no disturbance in the timing or tracking of the off-tape programme signals.

Deck Machines

The ATF playback system used in Sony "deck" machines such as the EVA300, EVS600 and EVS700 is a little different. This time the playback REC pilot tones are as before but the syscon governed REF pilot is sequenced in the same order as during record, i.e. $\mathbf{f 1}, \mathrm{f} 2, \mathrm{f} 3, \mathrm{f} 4$. When the tracking is correct this gives rise to the aligned tone sequences shown in Fig. 24.

If the tape speeds up, more and more $\mathbf{f} 2$ REC pilot will be played back during the f1 REF pilot period, producing a 16 kHz beat. The same beat will be produced during the f 3 REF period, as a result of the intrusion of f 4 REC. During the 12 REF period the same circumstances (tape running fast) bring together f 2 and f 3 , so the beat product is 45 kHz . During f4 REF and f1 REC we'll also get 45 kHz . So with a fast-running tape we'll get 16 kHz for the duration of the f1 and f3 REF periods and 45 kHz for the duration of the f 2 and f 4 REF periods. Conversely, when the tape is running slow 45 kHz will appear during f1 and f 3 REF and 16 kHz during f 2 and f 4 REF. A filterswitching system is thus required to route the beat-product signal according to the track being replayed. The switch arrangement is shown in Fig. 25.

The output from the ATF tone mixer at the left passes through separate buffer amplifiers. During f1 and f 3 only, switches Q301 and Q302 are closed: during f2 and f4 only,
switches Q303 and Q304 are closed. When the tape is running fast the 16 kHz resultant during f 1 and f 3 is coupled to peak detector 1 via the high resonant impedance of the 16 kHz parallel $L C$ filter A. Thus the "fast" input of the error differential amplifier is driven. During this period peak detector 2's input is grounded by the low impedance of the 45 kHz filter B. During the alternate f 2 and f 4 field periods the 45 kHz beat is applied to peak detector 1. For this purpose Q303 and Q304 are closed, the input to peak detector 2 being grounded by the low impedance (to 45 kHz) of filter A. A slow-running tape's 45 kHz output during the f1 and f3 periods is routed to peak detector 2 only, which also receives 16 kHz during f 2 and $f 4$ as a result of the action of the switched filters. Thus all fast beat products are routed to peak detector 1 only and all slow beat products are routed to peak detector 2 . The outputs from the fast and slow detectors are applied to the inverting and non-inverting inputs respectively of the differential amplifier, whose error output polarity and voltage indicate the direction and severity respectively of any tracking error.

The switching pulses (BP cont for Q301/2 and /BP cont for $\mathrm{Q} 303 / 4$) are antiphase squarewaves at a repetition rate of 40 msec and are derived from the syscon.

The reasons for using this more complex playback ATF system in the "deck" machines are twofold. First, by reversing the BP cont and /BP cont signals during the review (reverse search) mode the servo will work "backwards" so that mistracking noise bars can be locked stationary on the screen. Secondly, in future multi-PCM audio configurations the potential is present for reversereading operation, in which continuous sound record or playback for up to eighteen hours is possible without a rewind cycle - the tape can shuttle back and forth evenly in normal speed each way.

The same REF pilot tone delay of 2.4 msec is used in the switched-filter ATF system, with TSA (error) and TSB (lock) sampling pulses producing outputs for the servo and syscon respectively - as in Figs. 22 and 23.

SP/LP Switching

When a tape is presented for playback the machine has to detect whether it was recorded in the SP or LP mode and to switch the capstan speed automatically to suit. This is the second purpose of the ATF lock output previously described. Fig. 26(a) shows the situation in a V8 camcorder when an LP tape is running at the SP speed. During the TSB sampling period the REC and REF pilot beat products produce a characteristic LHLH pulse train at the ATF lock output of the ATF servo chip. This is interpreted by the syscon as a signal telling it to switch to the LP mode. The alternative situation, SP tape moving at LP speed, is shown in Fig. 26(b). This time the ATF lock pulse pattern is LHHL, on reciept of which the syscon switches to the SP mode. The process is the same in the deck machines, but the opposite sequence of REF pilot tones gives rise to different (but distinctive) pulse patterns which the syscon is programmed to recognise. In all cases the LP/SP switching is done only after sampling the tape for twelve fields.

Cue and Review

The deck machines have facilities to lock the noise bars during the search modes. For this purpose the gain of the capstan phase control loop is increased and the rate at

Fig. 23: A false-lock situation, where the servo is running two fields adrift. It's remedied by the ATF lock output's continuous high (bottom line).

Fig. 24: Reference pilot tone sequence in deck machines: this is a more versatile arrangement than that shown in Fig. 20 but requires a more complex ATF error processing circuit.
which the REF pilot is changed increases to match the faster rate at which the off-tape REC pilot tones change. Thus for the cue mode the capstan speed is set at typically nine times normal by a programmable divider in the capstan FG path - the divider's input control data from the syscon tells it to divide by nine. Speed is established in this way: phase control is by means of the ATF system, giving three locked noise bars on the screen.
Review (minus seven times speed) is carried out in the same way, but in this case the REF pilot tone sequence must be generated backwards, i.e. $\mathfrak{f 4}, \mathrm{f} 3, \mathfrak{f} 2, \mathrm{f} 1$, to match the reversed sequence of the REC pilot tones coming off the tape. Again three solidly-locked noise bars are produced.

Freeze Frame

Good freeze-frame reproduction is available only on three-head (plus erase head) machines which have ch. 1 and ch. 1' heads. This ensures, via the ATF system, that

Table 4: Programmable divider control.

Control signals		Pilot	Division ratio
SELl	SEL2	frequency	
1	1	f1	375:58
0	1	f2	375:50
1	0	f3	375:36
0	0	f4	375:40

Fig. 25: Block diagram of the filter-switching arrangement used with the REF pilot tone sequence shown in Fig. 24. Switching transistors Q301-4 are driven by suitably timed pulses from the syscon.

Letters

EVALUATING SERVICE

With reference to Mr. Roberts' letter on surveys in the April issue, while I can find no fault with the servicing procedure carried out on the 3 V 29 in question - in fact many of us might have missed the intermittent low-gain tuner fault - I think that the problem wouldn't have arisen if (a) the customer had been advised of the fault and cost before collection and (b) the parts were returned or offered to the customer at the time of collection. We obviously can't guard against every wally who has no experience of repair procedure, but if I take a part out the customer gets the old bit and I'm confident that if there's any dispute I can prove my point by putting it back.

I'd like however to make a further criticism of the "survey". A service engineer working for one company may leave and start to work for another without losing, or gaining, any skill. It's most unlikely however that the two firms will charge the same for his labour. Wouldn't it have been better if the trading standards officer concerned had based his report on labour costs, which must have varied? An if he had evaluation experts, shouldn't they have tested the old tuner which could have developed a dryjoint on any of its trips from one shop to the next? They might even have commended the engineer on his sharp eyesight and persistence.

Doesn't anyone else out there think that it's time for a fixed charge for labour, to cut out the "surprise, surprise" element and give the customer a fair chance? It's not impossible, because if you divide jobs into categories you can charge differently for colour and monochrome sets, VCRs, audio equipment, computers and so on. The swings and roundabouts system would make up for the difference between a fuse and a line output transformer. Parts and VAT would be extra.
John Hopkins, The TV Workshop,
Felixstowe, Suffolk

CORRECT PROCEDURES

Whilst I sympathise fully with Mr. Roberts I think I should put one point forward. He states that the VCR came in with a blown fuse. Examination of the fuse would have indicated whether it had gone open-circuit due to a dead short or alternatively either a slight overload or simply ageing. In Mr. Roberts' case he was quite right in checking for a slight overload since fuses very rarely blow for no reason. He should not however have replaced the tuner at the customer's expense without first informing him. This can be an awkward situation, especially when it's difficult to locate the customer. It's better to hold on to the machine rather than give the customer an expensive repair bill (how much was he charged? - say $£ 60$, assuming $£ 40$ for the tuner plus labour plus VAT?).

I must make it quite clear that this is my only criticism. Mr. Roberts' engineer did the right thing in investigating the cause of the blown fuse rather than "blindly" replacing it. Any service engineer of good upbringing would have done the same. I sympathise with Mr. Roberts over the deceitful way in which he was treated.
I wonder what would have happened if an estimate had been given instead of completing the job? If the consumer services department had been told that the tuner was
faulty, would they have blown their cover by saying that only a faulty fuse had been fitted? Have they the knowledge and expertise to contradict Mr. Roberts' engineer and his findings?

It doesn't say much for the consumer services department's so-called expert that he simply fitted a blown fuse. Surely that's no way to prove whatever they were trying to prove. A good service department, like Mr. Roberts', mine and many others, is always vulnerable to being criticised when we honestly and conscientiously repair items that have previously been taken to cowboys - when we give a true assessment of what's involved we get frowned on and accused of over charging etc.

Keep up the good work Mr. Roberts! You have the backing of all genuine, experienced, honest engineers'
Eric Edwards, Proprietor,
Barry, South Glamorgan.

SPOT CHECKS USEFUL

I don't think it was quite fair of Mr. Roberts to suggest that Birminghm consumer services department was trying to prove that all TV and video repairmen are crooks and con men. I'm sure he would acknowledge that although most repair establishments are basically honest there is always a very small minority of dishonest get-rich-quick types out to make a quick buck. It's desirable to weed these people out so that the integrity of the trade as a whole is preserved.
I've been in the servicing trade for 24 years and during that time I've come across quite a few shady practices. Although these occurrences are not everyday practices I think it's important to have body such as the Birmingham consumer services department to make spot checks here and there to ensure that the customer gets his money's worth. I accept that Mr. Roberts acted in good faith, but he made two mistakes.

First, he should have sought more information on what was wrong with the machine when it came in. Secondly, he assumed that the customer was taping off-air and not using the machine solely for viewing cassettes from the local shops, which could have been the case!
J. McCorry,

Little Bromwich, Birmingham

LIVING WITH CUSTOMERS

While sympathising with Colin Goodman (Letters, April) I was relieved to know that I'm not alone with this problem. It's a sad situation, that the lay person doesn't appreciate the complexities of VCRs and TV sets (but then if they did perhaps we wouldn't have a job). I've been self-employed for seven years and there have been many occasions on which l've nearly thrown in the towel. But you have to live, don't you? - and it's not easy to find another job at 45. I've now resigned myself to biting the bullet and surviving. Perhaps us poor souls could find a way of communicating with one another to laugh it off instead of suffering in lonely silence.
B. Dean, Fenland TV Repair Services, Wisbech, Cambs.

TIME FOR MEMOIRS

No Colin (Letters, April), it wasn't you: you're not heading for a nervous breakdown! But it probably wasn't "the picture valve", or "the on/off switch", more likely "a wire off".

In the Black Country customers would a few years ago say "ther ay arf a lot of wirkins in them things", or "it's a piece of furniture", or "keep away from the master". Did you ever have to crouch on a slightly sloping quarry tiled floor beside a blazing fire in June with a Murphy V120C on casters, trying to centre and focus the picture with the help of one of those aluminium tools like a catapult handle? A small child is leaning over an armchair eating a banana in your ear. And when you stand up you bang your head on the bottom of the birdcage, causing much excitement and confusion, the charge for the visit being 12/kd.
In contrast, picture the hall of an ancestral home. An immaculate butler stands at the telephone. "Her Grace sends her compliments and instructs me to desire you to slip her in a picture valve on your way home."
Perhaps we should write our memoirs.
R.S. Daynes,

Dudley, West Midlands.

MAINS FILTERING

With reference to the article on mains filtering in the April issue, surely an audio tone superimposed on the mains supply wouldn't reduce the capacitor reactance and blow the fuse. The audio tone would have to be at mains voltage. Consider also the use of capacitors for power factor correction in industrial installations and discharge lighting.
It would not be good practice to connect the capacitor to the input side of the fuse as shown in Fig. 8. On the subject of carthing, the local electricity board should be consulted. Water boards sometimes carry out repairs with plastic/PVC type piping.

L. Hutchinson,

London Ell.

MAINS FILTERING/EARTHING

I was most interested in J. LeJeune's article on mains filtering in the April issue. A number of points that affect the usefulness of such filters come to mind however.
First, where a residual current circuit breaker (RCCB) is in use the filters with an $0 \cdot 1 \mu \mathrm{~F}$ capacitor from line to earth will draw 7 mA or so of unbalanced current in each capacitor. With four capacitors the RCCB will probably trip. With professional screened rooms capacitor currents of 6 A are not unknown! It doesn't however need many mains filters for the unbalanced currents to add up and. along with any leakage from washing machines, immersion heaters and so on, this could lead to RCCB tripping.

Where PME (protective multiple earthing) is installed, the earth and neutral are bonded by the electricity board at or close to the electricity meter. In the event of a rupture of the neutral, the earth pin of the mains sockets and any radiators, plumbing etc. (bonded to the mains earth) may float at a potential that could be as high as 240 V above ground. The provision of separate parallel earths in such cases, e.g. an external earth on a piece of equipment and the mains earth, could lead to large fault currents in the equipment's earth leads, with the danger of fire. For the same reasons metal-cased power tools should not be used outside if supplied from a PME installation. A point to note is that various aerials could become live: I would recommend anyone working on these to ensure that they are unplugged before climbing up to them.
Rupture of the neutral is rare, and the electricity supply authorities do their best to prevent both this and the rise
above earth of the consumers' supply. Nevertheless it can happen, which is why metalwork is bonded to the earth terminal.

Finally, Mr. LeJeune's remedy for blowing 50 mA fuses - moving the capacitor to the mains side of the fuse - is extremely dangerous. In the event of the capacitor failing the only protection is the (hopefully) 3A fuse in the plug. If the fuse is a 13 A (or even 3 A) one the energy dissipation in a failing capacitor could cause a fire. I would suggest fitting another fuse of say $150-250 \mathrm{~mA}$.
Peter E. Chadwick,
Swindon, Wilts.

TAPE CREASING

In the May VCR Clinic Philip Blundell gives advice on Sharp VCRs that crease Scotch tapes. In the cases I've come across the machines have creased all makes of tapes in the rewind search mode. The fault first shows up only with four-hour tapes, but in extreme cases it will occur with all lengths. The cause in the $3(0-40$ cases I've come across is the poles, not the guides, and in a few cases the lower drum. Don't forget to check the back tension when these have been replaced.
In the TV Fault Finding section Roger Burchett suggests that tripler faults with the Rediffusion Mk. III chassis are rare. In my experience this is the most common problem with these sets. I too think Granada were mad to close down the Rediffusion setmaking business.
P.M. Ward,

Margate, Kent.

TUNED STUBS

In his letter on tuned stubs for interference reduction (February, page 262) Geoff Lewis should have written "a short-circuit half-wave or an open-circuit quarter-wave line will present a short at the unwanted frequency when connected across the aerial feeder".
While writing, a general criticism of your otherwise excellent magazine. Why the continued use of obsolete symbols in circuit diagrams? This causes comments from students who are more familiar with the BS3939 symbols. Ron Bravery, Senior Lecturer, Radio/TV Studies, Brighton College of Technology.
Editorial comment: Our apologies for transposing the words "open" and "short". With regard to circuit symbols, we simply feel that the traditional symbols are more to the point and less confusing than the current preferred ones. We are not alone in this! Didn't BS once insist on "sender" instead of "transmitter"? The symbols have remained with us longer, but who knows!

FIDELITY HANDSET ADVICE

A problem that sometimes occurs with Fidelity ZX3000 teletext handsets is that they begin to draw excessive current, sometimes even discharging new batteries when these have been fitted. The normal average current consumption is in the region of 45 mA , but this may increase to 70 mA or more under fault conditions. The quiescent current still remains at its normal $2-3 \mu \mathrm{~A}$. The usual cause of this is that the supply decoupling capacitor C303 $(100 \mu \mathrm{~F})$ develops a rather high internal resistance. Replacing it with a good quality component will restore the current consumption to the normal 45 mA .

The current consumption is still quite high in comparison with other control units that use the same SAA5000 i.c. A simple modification that will reduce the average current taken by the unit to about $25-30 \mathrm{~mA}$ is to change the value of R 310 from $47 \mathrm{k} \Omega$ to 100Ω. When this is done the peak infra-red LED current stays about the same but the width of the base of the pulse is reduced. This consumption compares favourably with similar handsets that use the same i.c.
M.J. Edis, G4RPT,

Broughton, Northants.

VARYING SOUND

In the April Letters page John Howard mentioned the problem of varying sound with the Panasonic TC2205. I've found that the usual cause is either C852 or C857 in the 160 V supply or C854 or C856 in the 195 V supply. At least one of these capacitors will be found open-circuit. The resultant line-frequency ripple on the h.t. line is somehow interpreted by the remote control circuitry to give varying volume.
Paul Hardy,
Reading, Berks.

RECYCLING COMPONENTS

It beats me why Alastair Downs (Letters, May) is using a blowlamp to recycle components when he can use a 25 W iron fitted with a dual in-line bit and some chip removal tweezers. I've been using these for years and have had no trouble removing chips on even the oldest boards. Both items are available from Maplin.
S.P. Law, Midland Microelectronic Services,

Norton Lindsay, Warwick.

COMPUTER AID TO SERVICING

I would like to add a few comments following Chas E. Miller's recent articles on using the dBase II program. Hopefully these articles will result in a few more micros appearing in service departments - apart from faulty ones!

The statement INDEX ON MODIND FOR etc. on page 402 (April issue) won't work - "syntax error" will be the result. The correct syntax for creating an index is INDEX ON <field> to <indexfile> - in this case, INDEX ON MODEL TO MODIND. Model is the "key field", and if any changes are made to this field by EDITing the database it will be necessary to rebuild the index, either by a REINDEX command, which will recreate all the indexes for this database, or by repeating the INDEX ON etc. command.

If an index is in use, the quickest way to perform the search (page 403) is:

USE TVDATA INDEX TRANSIND

FIND BU105

DISPLAY WHILE "BU 105" \$ TRANSIND
Incidentally, the difference between LIST and DISPLAY is as follows. LIST or DISPLAY ALL will list the entire database (in order of entry if not open with an index). DISPLAY ALL however will stop at every screenful. DISPLAY without any qualification will display the record currently "pointed at". If the file has just been opened, this will be the first one (not necessarily no. 1 if an index is in use). Hence the command LIST followed by DISPLAY will list the entire database and then display the last record again.
DISPLAY FOR <expression> will search the entire
database for records answering the criterion given by the expression. DISPLAY WHILE <expression> will display only a consecutive block of records answering the criterion. This, then is more use with an index.
The advantage of using FIND with an index rather than LOCATE without one is in the time taken. A FIND on an index takes typically two seconds irrespective of the database size. LOCATE on the other hand has to start at the beginning of the file and test each record until the required one is found. It's a bit like looking for Mr . Bloggs in a tower block with and without the flat number. DISPLAY FOR <expression> will also search the entire file. For example, imagine a database of 1,000 names. The command DISPLAY for NAME = "Aardvark" may find the one entry of this at record 1 but will still carry on searching until the end of the file is reached. Maybe several minutes later.

As far as I know all command lines can be in upper, lower or mixed case. If the keyword is in upper case the speed of execution is fractionally faster, as it is if the first four letters only of the command are used, e.g. LOCA for name $=$ "Fred". This is of no advantage when using dB ase II in the interactive mode, i.e. entering commands singly. dBase II has a fairly powerful programming language that can be used to automate jobs like Chas's examples.

An important point about using any software that writes data to disc: you must ensure that any files used are properly closed. Exiting dBase II with QUIT does this, as do the CLEAR and USE commands. The point is that any data added is not written on disc until either the disc buffer is full or the file is closed. If the machine is switched off or rebooted with the file open the directory is not updated and the data in the file may be lost. The clue to this is the appearance on the disc of a file with an extension of \$\$\$, e.g. NAMES.\$\$\$.
dBase II runs quite happily on the Amstrad 6128/8256/ 8512 and IBM PC compatibles.
Mike Phelan,
Liversedge, West Yorkshire.
Editorial comment: Our thanks to Ken Holding for making similar points. Ken points out that the command LIST is most effective when a printer is attached and a hard copy is required, having previously used the SET PRINT ON command.

IDENTIFICATION HELP WANTED

I have in for repair a 22 in . set with remote control. It's one I've never seen before and unfortunately someone has removed the manufacturer's name. The Model number is still intact however, 7-758. Can anyone identify the manufacturer/brand?
John J. Hamnett, 39 Artillery Court, Wadeson Road, Manchester M13 9TX.

FOR DISPOSAL

Due to retirement I'm having to dispose of a lot of radio/ TV equipment. Would any reader be interested in a 9 in., single-channel HMV t.r.f. receiver approximately thirty years old? Also a prewar four-band radiogram (not working) which has all the original s.w. stations shown, e.g. W2XAD, W2XAF, etc. These items are availble for collection free.

[^2]
Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PHILIPS KT3 CHASSIS WITH REMOTE CONTROL

The remote control is inoperative: figure 1 appears in the window and BBC-1 sound is heard with random lines on the screen. None of the handset controls have any effect. There are two i.c.s on the small remote control panel in the set, types SAB3013 and SAA1082P. The latter doesn't seem to be listed by any of your advertisers.

First check the supply voltage at pin 1 of the SAA1082P chip: if it's not between $11.5-12 \cdot 5 \mathrm{~V}$ and free of ripple check the 12 V supply, which comes via the TMS100) panel. If the supply voltage is o.k. the SAA 1082 P chip is suspect. It can be obtained from Philips Service or one of their 'dealers/Service Centres.

GRUNDIG 2×4

This machine occasionally unloads itself when put into the playback, slow-motion or fast-motion mode, the "tape" light flashing. There's no problem with the fast-forward, rewind or APF search modes. When the fault occurs the tape is not wound round the head drum. The problem is random but is extremely difficult to stop once it has happened. The tape path has been cleaned.

The problem seems to occur with the functions where the tape is laced up completely. Most likely causes, in order of probability, are: switch segments on the loading ring not making contact; a broken or damaged loading pinion or worm; a defective capstan motor or dry-joints on the motor connection panel; dry-joints on the large transistor at the front of the power supply.

DECCA 120 SERIES CHASSIS

The chopper transistor and fuse F802 fail at random after some hours' use. Changing the TDA4600 control chip has made no difference. The fault occurs while the set is in use, not at switch on.

The problem is generally solved by replacing R808, R810 and R805. To be on the safe side it's as well to change R804 and C810 in the chopper transistor's base circuit at the same time.

SPECTRA PORTABLE 3602

The fault on this set (NordMende F8 chassis) is as follows it's getting worse. From a cold start there's good sound, correct tuning and a picture which is normal but suffers from random brightness variations that make the picture suddenly disappear. The sound continues happily. Picture geometry seems to be broadly unaffected by the fade condition, which appears visually as a rapid defocusing of the beam leading to picture disappearance. The fault clears gradually as the set warms up, correct operation being restored after about half an hour.

The fact that the focus appears to be affected when the brightness fault is present suggests that the problem is due to either the tube's heater or focus supply. Watch the heater carefully during the fault condition. If it flickers or goes out check RV01 (tube baseboard) and for dry-joints throughout the heater circuit, via pins 5 and 6 of the line output transformer. If the heater glows steadily during the fault check the focus spark gap and the associated $1 \mathrm{M} \Omega$ resistor on the baseboard before suspecting the e.h.t. tripler and control PL06.

BUSH BC6004

If this set hasn't been used for a day or so it will go off and on intermittently. It settles down after two or three such periods and then works normally all day. After this initial period the set works correctly when switched off and on. The only intermittency is during the initial period from cold. I've replaced the chopper/line output transistor, the diode in series with it and the efficiency diode.

It's quite possible that one of the protection circuits is coming into operation. Check the adjustment of P943: set it for 120 V at pin 8 of the sync/control module, using an accurate meter. If the trouble persists, check zener diode D698 in the protection circuit, diode D725 which links the two sides of the chopper/line output circuit, and the joints on the chopper transformer Tr841. If you've not already done so, check the power supply and line scan circuits thoroughly for dry-joints.

SHARP VC7300

The playback is in monochrome on a minority of prerecorded tapes. The machine records well and most tapes give good colour playback.

Although we've not encountered this specific problem on this model we have experienced failure of the HA11710 a.c.c./mixer chip 1501 and would consider this to be suspect. Before replacing it however we would suggest that you check very carefully, with a good counter, the settings of R536 and C544: if you have the slightest doubt about their stability, replace the associated crystals as necessary.

RANK T22 CHASSIS

This set was bought with 4 C 19 in the start-up circuit faulty. After correcting this fault I find that to get colour it's necessary to adjust the tuning potentiometer to an almost out of tune position. When the potentiometer is in the middle of the tuning range the picture is in monochrome, but not noisy. When the colour control is turned to maximum the picture becomes very noisy, with horizontal bars. Colour is also sometimes lost on channel change.

Start by linking TP9 and TP10 on the decoder panel to override the colour killer. If you get a rainbow hue, adjust

VC1 for the correct reference oscillator frequency. If this can't be obtained, try a new crystal (X1). If the subcarrier frequency is reasonably close to specification you'll need a colour-bar generator and scope to check the chroma/ luminance ratio at L6. If the chroma level is low, check the settings of the a.f.c. discriminator coil L4 and the detector tank coil L3, then suspect poor i.f. response at around 35 MHz .

AKAI VS5EK

When an attempt was made to record, play back, etc. this machine flashed "breakdown", with the buzzer of course. Switching off/on made no difference. The cassette lamp was found to have failed, but the manual doesn't specify the type. When the lamp for a VS8 was fitted the machine worked but tended to flash breakdown until cleared by on/ off switching.

The breakdown caption normally appears only for bulb failure, faulty loading switches or lack of reel tacho pulses. First fit the correct type of bulb (part no. EL330446) then check these points. Also check the resistor in series with the bulb.

This Decca colour set was brought to the workshop by its owner who left it with us for repair, which was just as well as it turned out - it was no five-minute job, as our description will show! The chassis was the well-known 100 series and the symptoms were described to us as sound o.k. but the picture pulling sideways and rolling, with a shading effect. This just about summed up what we saw when we switched it on.

We've got into the habit of studying all the fault symptoms carefully and taking a few mandatory minutes to mull over them before we jump in with the test gear and soldering iron: this pays rich dividends and can save a lot of fruitless investigation of innocent components and stages. In this particular case the presence of the picture shading (an ill-defined horizontal dark bar across the centre of the picture) directed our thoughts away from the sync separator circuitry towards the signal-processing stages upstream. Consequently our first action was to connect an oscilloscope to display the video output from the TCA270S vision demodulator chip IC102 - at pin 9.

The waveform here, viewed at field rate, was shocking. Each field of video information was riding on a whopping great ripple waveform which took roughly the form of a positive half-sinusoid per field. The field sync pulse train
was climbing up a steep incline at the left, and the line sync pulses were so deeply buried in the fuzz that the scope wouldn't lock to them even when switched to $20 \mu \mathrm{sec} / \mathrm{div}$! We found that the effect of the fault was much reduced on a weak signal - to the point where, provided the tuning was carefully tweaked, a satisfactory though snowy picture could be obtained. Twiddling the tuner a.g.c. preset VR127 would also reduce the fault symptoms, again at the expense of a snowy picture.

As an elimination test another i.f. panel from a working set was fitted to the troubled one. The result was a good picture, so our efforts were concentrated on the circuitry centred on the i.c. chips IC101 and IC102 (MC1349 and TCA270S respectively). The a.g.c. control potential is developed at pin 5 of IC102: no excessive ripple was found here. Even so we discovered that applying a certain critical voltage (2.4 V in fact) from a low-impedance and heavily decoupled external source restored a good picture. Replacing the a.g.c. smoothing capacitor C127 ($220 \mu \mathrm{~F}$) made no difference so we moved to pin 6 of the chip, since the a.g.c. reservoir capacitor $\mathrm{C} 126(47 \mathrm{nF})$ is connected to this pin. Could this capacitor be in trouble? The 200 mV peak-to-peak ripple across it seemed reasonable but was similar in shape to, and synchronous with, the ripple on which the detected video signal was sitting. Replacing Cl26 didn't help and suspicion started to fall on IC102.

At this point a fresh idea dawned: what about the supply lines to the two chips? These are derived from the stabilising zener diodes D102 (12V) and D101 (15V or 16 V). Both these devices were producing the correct voltages however. It wasn't the chip, and we were on the right track in investigating the a.g.c. line. So what was it? See next month.

ANSWER TO TEST CASE 293 - page 487 last month -

Our trainee's confidence in his mentor was shaken in last month's test case. They were investigating a venerable ITT hybrid colour receiver fitted with the CVC9 chassis, the fault being no colour - apart from that resulting from the grey-scale errors of an eleven-year old tube.

It had been established that there was drive at the base of the 7.8 kHz ident generator transistor T35 but that the ident signal was not being amplified at all. The transistor and a couple of associated resistors had been changed without restoring the ident signal or the colour. The key component eventually removed by the senior technician as a test was rectifier diode D37 which produces the colourkiller bias voltage. This bias is, or should be, developed across its $4 \cdot 7 \mu \mathrm{~F}$ reservoir capacitor C 218 . The diode itself was in order, but C218 had developed a leak of about $4 \mathrm{k} \Omega$ which was heavily loading the high-impedance ident tuned circuit L75/C215 - and indeed draining T35's operating voltage.

Tantalum capacitors were ever notorious in this series of chassis, and maybe eleven years is not a bad life-span. The picture on the set, now back with its grateful owner, still looks a bit tired. But at least it's now in full colour.

[^3]

New Branch Opening Soon
Watch this space for details.

CENTRAL

T.V. \& VIDEO WHOLESALERS LTD. BIGGEST SELECTION - KEENEST PRICES

SPECIAL OFFERS THIS MONTH

VHS FERG-MECH wORKING FROM
VHS ELECTRONIC WORKING FROM
VHS ELECTRONIC I-R REMOTE WORKING FROM

E65
fgg
$£ 125$ BETAMAX WORKING FROM $£ 35$

NOW IN STOCK 100's MORE TESTED-UNTESTED VHS VIDEOS - TOP MAKES HITACHI - PANASONIC - JVC - SHARP - FERGUSON - MITSUBISHI - GRUNDIG ETC. ETC.
SPECIAL OFFERS THIS MONTH
FOR THE MOST COMPREHENSIVE RANGE OF THORN TVS IN THE SOUTH OF ENGLAND

INFRA-RED TELETEXT 22"-26" wORKING FROM £75
WORKING FULL REMOTE FROM ONLY
£40
WORKING 22" REMOTE TV FROM ONLY
£25

\star COLOUR PORTABLE - WORKING FROM £60 * - ALL SETS WITH EXGELLENT CABINETS -

OFF THE PILE
PHILIPS G8 from $£ 5$
PHILIPS G11
THORN 9000
from £15
MANY LATE MODEL TVs NOW IN STOCK
ferguson t. . Stereo txt. Sony
HITACH - GRUNDIG ETC.

GRADE 'B'
TV - VIDEO - AUDIO \& HI-FI HITACHI - FERGUSON VIDEO HEADS - IN STOCK EXPORT ENQUIRIES WELCOME

PHONE NOW! FOR FURTHER DETAILS

$$
\begin{aligned}
& 01-8074090 \\
& 01-8841314
\end{aligned}
$$

CENTRAL T.V. \& VIDEO
ALL PRICES BASED ON QUANTITY \& SUBJECT TO 15\% VAT

HITACHI VHS COLOUR CAMERAS Mains Only Tested/ Working - $£ 125$ VHS VIDEOS FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35 HITACHI 5000, 8000
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010 SHARP
620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS

SANYO VTC 9300, 5000, 5300 SONY C5, C6, C7, C9 Untested from $£ 30$
HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5 VHS/Beta tapes used from 40p each

PLUS

$17^{\prime \prime} 18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from £8. Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT Discount for Quantities Complete loads delivered from pick up point

> JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

DRAKE

 The answer to your satellite TV questions.

Drake brings satellite TV down to earth. An exciting variety ot television entertainment exists and the Drake line of satellite equipment will bring it into your home - EASILY and AFFORDABLY. Get on the road to expanding your entertainment horizon by seeing the Drake line TODAY!

Become a DRAKE SATELLITE DEALER and take advantage of our special dealer prices. We are the main importers and distributors for R.L. Drake, one of the largest USA manufacturers. Don't be misled by inferior products when you can sell the best. From only $£ 495+$ VAT (inc 10 mts cable). Contact

TELEVISION AND VIDEOS AT REALISTIC PRICES FROM THE SPECIALISTS. LATE MODELS ALWAYS AVAILABLE WITH 100\% CABINETS AND TUBES. ALL SETS READY FOR INSTANT INSTALLATION AND VIDEOS FULLY SERVICED.

QUALITY AND RELIABILITY IS OUR AIM AT ALL TIMES.

ALSTON-BARRY SATELLITE SERVICES

36 MILTON ROAD CAMBRIDGE. (0223) 69215 ALSO AT ELY (0353) 61462

VHS VIDEOS

FERGUSON 3V22

WORKING	E80 NON-WORKING NASY (FAULTS)

ALL MACHINES ARE COMPLETE NO MISSING TRIM GOOD CABINETS

ELECTRONIC VIDEOS
MANY MODELS - SOME REMOTES WORKERS £100 NON-WORKERS £70

V.C.R. ELECTRONICS

(THE VIDEO PEOPLE!) UNIT 5, PRESTWOOD COURT, LEACROFT ROAD, BIRCHWOOD, WARRINGTON, CHESHIRE TELEPHONE: 0925819081

	CPSECIAL OFFERS	
EQUIPMENT D83. Dual Trace 50 MHz De ep. Latge Tube...	COSSOR OSCILLOSCOPE CDU150. Dual Trace 35 MHz . Delay Sweep. Solid State. Portable $8 \times 10 \mathrm{~cm}$	
EQUIPMENT D75. Dual Trace 50 MHz . D	35MHz. Delay Sweep. Solid State. Portable $8 \times 10 \mathrm{~cm}$ Display. With Manual. NOW ONLY $£ 180$ each	
ep		
FOUIPMENT D6if Dual Trace 10MHz		
S.E. LABS SM111 Dual Trace 18MHz Solid State		
Portable AC or External DC operation B $\times 10 \times m$		
	RANK EHT METER $30 K \mathrm{~K}$. £20 P\&P¢4 LEADER EHT METERED PROBE. 40 KV Un-used E 30 P\&P $£ 4$	
$\begin{aligned} & \text { TELEQUI } \\ & \text { Solid Stal } \end{aligned}$		
MULTMETERSAVO 9 Mk4 (Identical to AEO 8 Mk4 but scaleddifteraty difterenty) Complete with Batteries \& Leads.E55AVO 8 Mk2 Complete with Bateries $\&$ Leads.E45 Above liems in GOOD WORKING ORDER appearance not A1 hence the price. AVO TEST SET No 1 (Military version of AVO 8) Complete with batleries. leads \& Carying Case $\varepsilon 655$TEST LEADS suitabie for AVOMEIERS. Red \& Black with 2 Croc-Clips \& 2 Prods. ($\mathrm{P} \& \mathrm{D}$ 22)................. 5	OISK DRIVE PSU.240V 1N; 5V 1.6 A \& 12 V 1.5 A out. Ske: W125mm, 775 mm , D180mm. Cased. Un-used. Only 510.00 each (P\&P $\mathcal{L 2}$) Owery keyboard (as in Lynx Micro). Push to make. Cased SWITCHED MODE PSU $+/-12 \mathrm{~V} 0.25 \mathrm{~A} ; 5 \mathrm{~V}$ 15A: 24V 1.4 A £ 30 bach P\& P E_{2}	
	ISOLATING TRANSFORMERS	
	NEW EQUIPMENT HAMEG OSCILLOSCOPE 605. Dual Trace 60 MHz . Delay Sweep. Component Tester $£ 583$ HAMEG OSCILLDSCOPE 203.6. Oual Trace 20 MHz . Component Tester \& 2 Probes All Other Models Available.	
teries, leads \& instructions.		
Supplied with 2 Bases and		
	black STAR FREQUENCY COUNTERS P\&P £4 Meteor $100-100 \mathrm{MHz}$ Meteor $600-600 \mathrm{MHz}$ Meieor $1000-16 \mathrm{~Hz}$ BLACK STAR JUPITOR 500 FUNCTION GENERATOR. Sine/Square/Triangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$. P8P $£ 4 £ 110$ Black star orion. Pal tvvideo colour PATTERN GENERATOR	
Type CM6033-DB Crosshatch		
ter. Mains or Battery. OMLY¢12 each (P\&P¢2)		
M		
	HUNG CHANG DMM 7030. $31 / 2$ digit. Hand heid 28 ranges including 10 Amp ACIDC 0.1\%. Complete with 	
MARCONI VALVE VOLTMETER TF2600 10Hz-10MHz		
R		
	OSCILLOSCOPES PROBES. Switched $\times 1 ; \times 10$P\&PE2\ldots	
PHILIPS COLOURBAR GENERATOR type 5508. Video out. Many Functions \qquad		
USED EQUIPMENT - WITH 30 DAYS GUARANTEE. MANUALS SUPPLIED IF POSSIBLE. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability betore ord		

STEWART OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Teiephone: 073468041
Callers welcome 9 am- 5.30 pm Mon.-Fri. (until 8 pm Thurs.)

CREWE WHOL 77 Coleridge Wa Tel: 027058 15 mins from Junct	TV
WORKING TVs FULLY ENGINEERED AND TESTED. TRY THEM BEFORE YOU BUY. NO BUMPED TUBES.	
Decca 80s \& 100s	£25
Bush T20	£30
ITT CVC 20 \& 30 \& 32	£25
G11s	£35
GEC Starline	£25
GEC 2110, 2111	£20
Rediffusion Mk 3	£25
Thorn 8,800 to T/X from	£20
Text Available	POA
CABLE DORICS WITH OR WITHOUT TRANSLATORS PLUS A FULL RANGE OF OFF THE PILE SETS JUST ARRIVED 1000s OF COMPUTER GAMES.	

N.G.T. COLOUR TUBES
First Independent Rebuilder with B.S.I. CERTIFICATION DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke
for optimum convergence
N.G.T. ELECTRONICS LTD.
120 SELHURST ROAD, LONDON SE 25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed
Mail Order Protection Scheme
If you order goods fom Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for
Advertiser should become insolvent or bankrupt provided:
(1) You have not recelved the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
ell you how to make unti the last moment to inform us. When you wite, we wil tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been dectared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to advertisements are excluded.

UNIVERSAL NICAD CHARGER

A brand new universal charger (charges any
combination of PP3, AA, C \& D CELLS), for only $£ 5.95$ plus $£ 1$ post and packing.

NEW AA/HP7 NICADS
90 p each when ordered with charger.
FERGUSON
9.6 volt standard rechargeable battery type VA282. Use with Videostar C camera/recorder, model no. 3V41, also suits JVC camcorder models JR1 and 2 £18 each $+£ 1$ p\&p.
> E. CROYDON DISCOUNT ELECTRONICS 40 LOWER ADDISCOMBE ROAD, CROYDON, SURREY 8 01-688 2950 SHOP HOURS Mon-Sat 10-5.30 (Closed Weds)

BRITAIN'S

LARGEST SUPPLIERS

OF
EX-RENTAL TV AND VIDEO SPECIAL OFFER BETA SANYO C5, C6, C7, C9 FROM £20 VHS $\begin{array}{cc}\text { HITACHI } & \text { FERGUSON } \\ 5000 & 3 \mathrm{~V} 22\end{array}$

£60

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV from $£ 5$ CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE
BLACKBURN, LANCS TEL: 025464489

SPARKWORLD LTD.

TIIE SOUTH WEST'S NO. 1
In Ex-Rental TVs, Videos and White Goods
A large and varied selection to choose from. With new stock arriving all the time. Many late Model TVs \& Videos in stock.

FOR THE BEST PRICES AND THE BEST SERVICE CALL US NOW
AND WE WILL GIVE YOU 5\% Discount with this advert
Don't Delay - Phone Today 062655294
Unit 3, Brunel Buildings, Brunel Road, Newton Abbot, Devon Regular deliveries to most areas of London and surrounding areas weekly

NEW VIDEO HEADS -

from

$£ 24.95$ each plus V.A.T. \& carriage

Our selected range of NEW VIDEO HEADS have been manufactured to the Highest specification and are fully covered by our 1 Year Guarantee.

We supply HEADS of Most Types for
AKAI - FERGUSON - JVC - SANYO - SONY

- NAT. PANASONIC - Etc - Etc.

Please contact us for details of Our Full Range of Video Spares including Motors, Pulleys, Belts, Idlers, Etc.

Our Full List will be sent on request.
Electrovisia
LIMITED

TAYLOR
 T.S. 2008 8 WAY U.II.F. T.V. DISTRIBUTIDN AMPLIFIPR

TVS TRADE SERVICES BROMSGROVE

LARGE SELECTION OF QUALITY CLEAN TV \& VIDEO ALWAYS IN STOCK, INCLUDING:

THORN 3V22 ELECTRONIC VCR

from $\mathbf{£ 4 5 . 0 0}$
from $£ 75.00$ VHS Top Quality Workers with Leads \& Instruction Books
£80.00
We also specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone: COLIN BROOMFIELD,

2UNIT 7, STATION STREET, BROMSGROVE, WORCS. (0527) 37037/71186

W. TREE'S TVs

are moving to larger premises.

SPECIAL CLEARANCE SALE

OF VIDEO RECORDERS AND TELEVISIONS

Large Selection of Colour TVs including portables, remotes and Teletext.
Good selection of VHS Videos, National Panasonic, Model 7200 £165 inc VAT reduced to

£155 inc VAT. IN GOOD WORKING ORDER

National Panasonic basic models,
New Price $£ 115+$ VAT. IN GOOD WORKING ORDER

SPECIAL OFFER

of ex hotel video recorders, Philips VHS Model No 6560 Infra red remote

£165 + VAT. in good working order

 Present Address: Unit 9, Stonebridge Mills, Stonebridge Lane, Armley, Leeds 12.Sunshine Mills, Wortley Road, off Whingate Road, Leeds 12.
Only 5 minutes drive from our old address. We move on 8th June.

Telephone:

Leeds (0532) 638804

\begin{tabular}{|c|}
\hline \({ }^{2 S A}\)-564 \& 50.15 \& 2SD-850 \& 92.60 \& HA-1151 \& 91.25 \& TA-7229 \& 92.50 \& \({ }^{\text {BC-307A }}\) \& \({ }^{50.0555}\) \& BDX-538 \& c0. 42 \& TDA-2009 \(\mathrm{EP}^{2} .20\) \& \& \& \& \& \& \& \\
\hline 2SA-673 \& 50.29 \& 2SO-869 \& c3. 20 \& HA-1156 \& 51.30 \& TA. 7230 \& E1.30 \& \({ }^{\text {BC-307B }}\) \& 01.055 \& BDX-548 \& 80.42 \& TDA-2020 \& \[
\mathrm{L}-200 \mathrm{CH}
\] \& \& \[
\begin{aligned}
\& \text { SANro } \\
\& \text { VTC-500 }
\end{aligned}
\] \& 50.94 \& RTYU \& RW-317 RW-320 \& \[
\begin{aligned}
\& 2.52 \\
\& \sum_{0.36}
\end{aligned}
\] \\
\hline 2SA-683 \& 20.20 \& 2S0-880 \& 50.50 \& HA-1367 \& 53.60 \& TA-7240 \& 92.50 \& BC-308 \& 00.055 \& BF-173 \& \({ }_{60.05}\) \& TDA-2030AH 1.80 \& L-2005CV \& ع1. 80 \& VTC-9300 \& \(\underline{5} 5\) \& WE HaVE FULL \& RW-321 \& \({ }^{20.36}\) \\
\hline 2SA-684 \& 20.20 \& 2SD-882 \& ¢4.50 \& HA-1392 \& c2.50 \& TA-7248 \& 84.00 \& BC-308A \& 50.055 \& BF-257 \& 20.30 \& TDA-2030AV 2.41 \& MC-1458CP \& \({ }^{21.50}\) \& \& \& RAMGE OF THE \& RW-327 \& 50.54 \\
\hline 2SA-748 \& 51.00 \& 2S0-1135 \& c0. 55 \& HA-1406 \& ce. 75 \& TA-7310 \& 81.25 \& BC-3098 \& 00.055 \& 8F-258 \& 20.30 \& IDA-2030AV 2.40 \& MC-1488P \& \({ }_{50.45}\) \& SHAAP \& \& smus mostir \& RW-328 \& \(\infty .81\) \\
\hline 2SA-765 \& 53.00 \& AN-203 \& c1.00 \& HA-11227 \& 1.00 \& TA. 7313 \& c0. 08 \& 8C-309 \& 50.055 \& \(\underset{\text { BF-259 }}{ }\) \& 20.30
80.30 \& TDA-2030H 17.60 \& MC-1489P \& \({ }_{50} 8.45\) \& VC.7000 \& 57.40 \& MPANESE \& RW-329 \& 50.815 \\
\hline 2SA-769 \& 51.50 \& AN-210 \& 80.90 \& Ha-11423 \& 2.10 \& TA-7314 \& 81.35 \& BC-3098 \& 00.065 \& B8-272S \& 20.30 \& TDA-2040H 82.20 \& MC-1489P \& \({ }_{80.45} 80.38\) \& VC-6000 \& \%1.55 \& models: PLS \& RWW-51 \& 0.51 \\
\hline 2SA-771 \& 51.50 \& AN-214 \& c1.50 \& HA-12017 \& c1.39 \& TA-7315 \& ¢1.35 \& BC-327-16 \& 98.055 \& BF-457 \& c0. 51 \& IDA-2040V 82.20 \& \(2 \mathrm{N-2369A}\) \& 20.39 \& VC-9300 \& 50.98 \& ASK FOR FULL \& RW-52 \& 90.36 \\
\hline 2SA.794 \& 50.60 \& AN-272U \& 52.50 \& HA-12413 \& 57.30 \& TA-7317 \& c1.69 \& BC-327-40 \& 20.055 \& BF-458 \& 50.51 \& \(\begin{array}{lll}\text { TDA-2530 } \& \text { 52.70 } \\ \text { TDA }\end{array}\) \& \({ }_{2}^{2 N-3055}\) \& 20.36 \& \[
\begin{aligned}
\& V-6300 \\
\& V C-6100
\end{aligned}
\] \& ¢1.65 \& LUST THE UWIT \& RW-54 \& 20.38 \\
\hline 2SA-798 \& 50.\% \& AN-301 \& \(\underline{52.35}\) \& HA-12411 \& c7.64 \& TA-7323 \& \%1.20 \& BC-328 \& 20.055 \& BFY-52 \& \({ }_{8} 8.30\) \& TDA-2822 80.50 \& 2N-3866 \& 520.30 \& VC-6100 VC-8300 \& 81.48
81.40 \& PRICE: \(£ .6\). \& RW-56 \& 50.36 \\
\hline 2SA-850 \& 50.30 \& AN-302 \& \(\underline{2250}\) \& LA-1365 \& c1.20 \& TA-7324 \& c1. 16 \& BC-337 \& 20.035 \& BFY-76 \& c0. 37 \& TDA-2822M E0. \& CO4009UBE \& 50.80 \& V-830 \& 8.4 \& \& RW-57 \& \({ }^{51} 36\) \\
\hline 2SA-893 \& 50.38 \& AN-303 \& 23.20 \& La-3161 \& 51.20 \& TA-7325 \& 89.75 \& BC-337-16 \& 20.055 \& BF-50 \& 50.40 \& IDA 3410 \& MUE-371 \& \({ }_{50.40}\) \& sawr \& \& \& RW-56 \& ¢1.35 \\
\hline \(2 \mathrm{SA}-958\) \& 50.75 \& AN-315 \& ¢1.00 \& La-3220 \& c1.00 \& TA-7326 \& 81.35 \& BC-337-25 \& 50.056 \& BFF-51 \& 50.41 \& TDA-3560 E. 10 \& MUE-521 \& \({ }_{81} 2.45\) \& SL-65/C7 \& ¢1.30 \& \& ᄂти\% \& \\
\hline 2SA-968 \& c0.75 \& AN-318 \& ¢5. 75 \& La-3365 \& 81.20 \& TA-7328 \& 51.40 \& BC-337-40 \& 20.es5 \& 8FY-90 \& 97.00 \& TDA-3590 \& KC-581 \& 84.20 \& SL-8000 \& 92.40 \& \& \& \\
\hline 2SA-985 \& 51.20 \& AN-360 \& 51.75 \& LA-4100 \& 00.85 \& TA-7331 \& 51.00 \& BC-338 \& \(\underline{50.055}\) \& BFR-36 \& \$1.10 \& CA-3401E 50.81 \& LM.3900 \& 88.52 \& \& \& CAATRADCES \& BR-1225 \& 80.75 \\
\hline 2SA-992 \& 80.30 \& AN-5010 \& 92.50 \& LA-4125 \& 57.90 \& TA-7628 \& c1. 80 \& BC-37 \& \({ }^{2} 0.21\) \& BFR-38 \& 53.90 \& \(\begin{array}{lll}\text { CA-3065 } \& 98.75 \\ \text { C4-3410E } \& 9\end{array}\) \& LM-723CN \& 50.52 \& TOS \& \& UWIT PATCES is: \& BR-1616 \& 8.75 \\
\hline 2SA 1060 \& ¢1.50 \& AN-5431 \& \(\underline{22.20}\) \& LA-4183 \& c1.50 \& TA-7658 \& c1.20 \& 8C-393 \& 28.44 \& BU-104 \& E3. 90 \& \& CA-3140E \& 50.50 \& \& \({ }^{51.20}\) \& 25.00 \& BR-2016
BR-200 \& \({ }^{c} 0.75\) \\
\hline 2SA-1106 \& c7.50 \& AN-5435 \& c1.89 \& LA-4190 \& ¢1.50 \& UPC-575 \& [1.05 \& BC-546 \& 90.055 \& Bu-205 \& 50.68 \& \& CA-3089 \& 91.15 \& V-7460
\(V-750\) \& \({ }_{81} 81.35\) \& \& 8R-2020 \& \({ }_{\text {c. }}^{5} .75\) \\
\hline 2SA-1141 \& 52.9 \& AN-5440 \& \(\underline{82.15}\) \& LA-4195 \& ¢1.74 \& UPC-1031 \& c1.30 \& BC-546 \& c0.055 \& BU-208 \& 20.68 \& \(\begin{array}{ll}\text { TPP-29A } \& 50.21 \\ \text { TP-23AB } \\ 59\end{array}\) \& \& \& V-74500
V 8600 \& 91.20 \& \& BR-2320 \& ci.75 \\
\hline 2SA-1303 \& 51.50 \& AN-5510 \& E2.50 \& La-4422 \& ¢1.50 \& UPC-1181 \& ¢1.05 \& BC-547 \& 80.055 \& 8U-126 \& c0. 00 \& T1P-23A.B \& DEO BE \& \& V-5475 \& 91.45 \& ORTOFON \& \({ }_{\text {CR-1220 }}\) \& \({ }_{60.75}^{80.75}\) \\
\hline 2SB-527 \& 50.60 \& AN-5612 \& c2.80 \& LA-4430 \& 51.30 \& UPC-1182 \& c1.05 \& BC-547A, B, C \& E10.055 \& BU-500 \& 51.00 \& TIP.30A, B \& ALU: \& \& \& \& \& \({ }_{\text {CR }}\) \& \({ }^{20.15}\) \\
\hline 2S8-544 \& 00.40 \& AN-5720 \& ¢1.25 \& LA-4440 \& \(\underline{52.10}\) \& UPC-1185 \& c1.72 \& BC-548 \& 53.055 \& BU-326A \& c2.95 \& TP-30C \& VS-10 \& m0.78 \& FERGUSOW \& \& CMATHIDGES \& CP-2025 \& 50.75 \\
\hline 2SB-557 \& 22.25 \& AN-5722 \& 51.25 \& LA-4445 \& 52.20 \& UPC-1212 \& ¢1. 10 \& BC-548A, B \& 50.055 \& BU-508A \& ¢1.30 \& TPP-31 \& VS-2EG/5EG \& 80.93 \& \(3 \times 00\) \& \({ }^{22} .55\) \& \begin{tabular}{ll}
VMS-30 \& 97.50 \\
VMS-35 \& \\
\hline 7.50
\end{tabular} \& CP-2032 \& 20.75 \\
\hline 2SB-562 \& 50.30 \& AN-5730 \& 51.35 \& U-4508 \& 51.70 \& UPC-1213 \& c1.05 \& BC-549 \& 50. 055 \& BU-5080 \& \%1.40 \& -31A, 8 co. 22 \& vs-7300 \& c1. 35 \& \({ }^{3} 1616\) \& ㄷ1. 95 \& We-35 97.50 \& CA-2316 \& 80.75 \\
\hline 2SB-681 \& 2.50 \& AN-5732 \& c1.25 \& M-51 102L \& \(\underline{22.50}\) \& UPC-127 \& 52.00 \& BC-5498 \& 50.055 \& BOY-20 \& ¢1.20 \& TIP-31C \& Vs-9700 \& 51.60 \& \({ }_{3}{ }^{3} 22\) \& 9200 \& \& CP-2420 \& 20.75 \\
\hline 2S8-688 \& ¢1.25 \& AN-5738 \& 51.00 \& M-51515L \& 22.80 \& UPC-1230 \& 51.99 \& BC-557 \& c0.055 \& TBA-20S \& 20.60 \& TP-32 \& \& \& 3V23 \& \({ }_{c c}^{50.75}\) \& watch \& CP-2430 \& c0. 75 \\
\hline \({ }_{2}^{2 S 8-718}\) \& 60.75 \& AN-5900 \& 1. 51 \& M8-3712 \& 91.50 \& UPC-1353 \& 28.45 \& BC-557A, B, C \& 50.055 \& TBA-231A \& 97.05 \& \& FSHEA \& \& 3V29 \& c0.75 \& calculator \& alkaline \& \\
\hline 2S8-772 \& 50.55 \& AN-6249 \& \({ }^{1} 1.20\) \& M M 6 -3713 \& \%2.00 \& \({ }^{\text {AC-187 }}\) \& 50.15 \& BC-558 \& c9.0055 \& TBA-331 \& 50.60 \& \(\begin{array}{cc}\text { T1P-32C } \& 80.22 \\ T 1 P-33 A \& 81.50\end{array}\) \& VBS-7000 \& 52.40 \& DAME \& \& MCAO \& Cofls) \& \\
\hline 2SC-497 \& ¢1.50 \& AN-6250 \& 50.40 \& MB-3730 \& c2.50 \& AC-187K \& 20.20 \& BC-5588 \& 50,005 \& t84-520 \& 51.00 \& \& \& \& \& \& BATTEA \& 810 (N) \& 42 \\
\hline 2SC-68\% \& c1.95 \& AN-6320 \& 22.00 \& NE-646 \& ¢2.50 \& AC-188 \& 50.15 \& BC-5598, C \& 00.055 \& TBA-540 \& ¢1.00 \& TP-418C \({ }_{\text {ce }}\) \& HTACN \& \& RECORAD \& \& RW-40
RW-42

80 \& 813.0 \& 5.40

\hline ${ }^{25 C}$ C-710 \& 50.29 \& AN-6332 \& ${ }^{2} 500$ \& STK-011 \& 25.98 \& ${ }^{\text {AC-188K }}$ \& 50.22 \& BCY-70 \& 51.26 \& TBA-800 \& 81.45 \& \& VT-5000E \& ¢1.5\% \& TVRTTA \& \& RW-42
RW-44

R \& 814 (C) \& $20.3{ }^{3}$

\hline 2SC-738 \& 50.25 \& AN-6341 \& c2.00 \& STK-015 \& ¢5. 25 \& AU-113 \& 52.40 \& BCY-72 \& 50.19 \& TBA-810S \& 50.6 \& TPP-42 ${ }_{\text {\% }}$ \& \& 2.50 \& \& \& \& 815 (A) \& ${ }^{10} 2$

\hline ${ }^{25 C}$-741 \& f1.ss \& AN-6342 \& ¢1.50 \& STK-016 \& 25. ${ }^{\text {d }}$ \& AD-149 \& c2.45 \& B0-135 \& 61.21 \& TBA-810P \& c1.00 \& T1P-42A, ${ }_{\text {T1P-42C }}$ \& NC \& \& \& \& \& 824 (A4A) \& co. 25

\hline ${ }_{2 S \mathrm{SC}}^{2 \mathrm{C}}$-790 \& 50.15 \& AN-6360 \& c2. ${ }^{\text {ct }}$ \& STK-032 \& 512.45 \& AD-166 \& ¢1.00 \& BD-136 \& 81.21 \& tra-biads \& 50.90 \& \& HR-3330 \& $\underline{5.09}$ \& 68x1.2 \& 6. \& | RW-48 | |
| :--- | :--- |
| RW-49 | 50.45 |
| 1.45 | | \& \[

A1004 6 \mathrm{CL}
\] \& ${ }^{1} .05$

\hline 2 SC - 828 \& 50.15 \& AN-6551 \& c1. 1.8 \& STK-035 \& ${ }^{2} 8.00$ \& ${ }^{\text {BC- }}$-171C \& ${ }^{2} 9.055$ \& BD-140 \& 50.40 \& TBA.810AP \& 51.21 \& $\begin{array}{ll}\text { TPP-48 } \\ \pi \mathrm{P}-102 & 50.37 \\ \text { c9. }\end{array}$ \& HR-7200 \& 51.75 \& 120×1.25 \& c0. 12 \& RW-410 80.45 \& \&

\hline 2SC-829 \& 58.15 \& AN-6884 \& ${ }_{51} 8.50$ \& STK-043 \& 97.50 \& ${ }^{B C-172 A}$ \& \& 80.201 \& 59.40 \& TBA-820 \& 51.68 \& \& HR-3360 \& f1.95 \& 135×1.25 \& 50.12 \& RW-411 010.45 \& Photo \&

\hline 2 SC -1078 \& 20.75 \& AN-7060 \& \%1.25 \& STK-082 \& ¢ $¢ 18.50$ \& ${ }_{\text {BC-177 }}$ \& \& ${ }_{80-2409}$ \& 5.30 \& ${ }_{\text {T84-920 }}$ \& 8.60 \& TP-121 \& MR-4100 \& 91.5 \& \& \& \& BATIERIES \&

\hline 2SC-1061 \& 50.75 \& AN-7105 \& 51.60 \& STK-0029 \& 84.10 \& BC-1798 \& 52.22 \& BD-243C \& c. 50 \& TBA-1441 \& 81. \& TP-125 mi.4 \& HR-3300 \& $\underline{5.55}$ \& $68 \times 0.5 \times$ \& \& RW-418 \& ${ }_{\text {R P P }}$ - -1 \& n. 51

\hline 2SC-1173 \& ce. 40 \& AN-7110 \& 51.21 \& STK-0060 \& 28.70 \& BC. 182 \& 92.055 \& B0-2418 \& 90.45 \& TCA-660 \& c2.50 \& TP-126 [1.40 \& HF-7700 \& $\underline{5.7}$ \& \& 50.25 \& RW-30 50.3t \& RPX-14 \& 1.45

\hline 2SC-1383 \& 60.25 \& AN-7116 \& 50.90 \& STK-435 \& 20.50 \& BC-182A \& 20.055 \& BD-244C \& 50.48 \& TCA-750 \& 53.8 \& HCF4007BE 21.18 \& HR-7650 \& 6.7 \& $88 \times 0.5 \times 4$ \& \& RW-33 51.45 \& APX-23 \& ${ }^{2} 1.23$

\hline 2SC-1384 \& 81.25 \& AN-7117 \& ¢0.00 \& STK-436 \& 55.80 \& BC-1828 \& 21.055 \& B0-278 \& 80.71 \& TCA-760 \& $\underline{520}$ \& HCF4008BE Em. 50 \& - \& \& $88 \times 0.5 \times 5$ \& \& RW-38 \& RPX-27 \& 92.05

\hline ${ }_{\text {2SC-1413AH }}$ \& ${ }^{23} .6$ \& AN-7120 \& 91.25 \& STK-439 \& 57.45 \& BC-182C \& $\mathrm{c}^{2} \mathrm{P} .05$ \& 80-233 \& 20.39 \& TCA-900 \& 50.75 \& HCF4017BE 6.59 \& M H Womal \& \& 122×0.5×5 \& \& $\begin{array}{ll}\text { RW-37 } \\ \text { RW-39 } & \text { 81.31 } \\ \text { E1. }\end{array}$ \& RPX-28 \& $\stackrel{c}{\text { c2. }} \mathbf{}$

\hline ${ }^{2} \mathrm{SC} \mathrm{C}-1454$ \& ${ }^{23} 50$ \& AN- 7140 \& ¢1.58 \& STK-441 \& ${ }^{51} .60$ \& BC-183 \& ce. 055 \& B0-234 \& 50.38 \& TCA-940N \& E.e. 60 \& HCF40258E 9 ¢1.25 \& NV-333 \& 81.35 \& 189 $19 \times 0.5 \times 5$ \& 50.80 \& \& RPXX-625
RPX 675 \& ${ }_{512.30}$

\hline 2SC-1567 \& 20.50 \& AN-7143 \& 91.50 \& STK-457 \& 27.90 \& BC-1838 \& 50.055 \& BD-237 \& E1. 30 \& TCA-3089 \& E1. 65 \& HCF4028BE E9..48 \& N-8600
N-77] \& ${ }_{51} 9.65$ \& $205 \times 0.5 \times 5$ \& 50.60 \& RW-310 \& RPX-825 \& ${ }^{20.55}$

\hline ${ }^{2 S C-1775}$ \& fe. 15 \& AN-7145 \& $\underline{524}$ \& STK-459 \& 26.50 \& BC. 183 C \& c0.055 \& BD-238 \& ${ }^{\text {ce. }} 30$ \& TDA-40 \& 51.45 \& HC-40508E 3.32 \& N-777 \& ce.s \& \& \& RW-311 60.39 \& RS-76 \& 0.60

\hline 2SC-1815 \& ct. 15 \& AN-7146 \& $\underline{C 2} 20$ \& STK-460 \& 51.70 \& BC-184 \& c0.055 \& 80-379 \& 50.24 \& TDA-1011 \& E7. 15 \& HCF40103BE 50.8 \& NV-7200 \& 51.45 \& Cassitt \& \& RW-313 \& LOMGL \&

\hline 2SC-1845 \& $\underline{20.15}$ \& AN-7156 \& E2.40 \& STK-1030 \& ¢4.95 \& BC-184A \& 20.055 \& B0-433 \& ce. 28 \& TDA-1012 \& \%1.05 \& HCF401086E E.3.3 \& N-7000 \& ci.g \& MONO \& 20.90 \& RW-315 $\quad 20.42$ \& (Simereell) \&

\hline ${ }^{2 S C} \mathrm{C}-1913$ \& 80.90 \& AN- 7161 \& 22.51 \& STK-2029 \& [7.55 \& BC-1848 \& 50.055 \& BD-434 \& 20. 28 \& TDA-1054 \& \$7.10 \& L-123CTB \%1.30 \& NV-600 \& ¢1. \& STERE \& ¢1.59 \& RW-316 E.51 \& ${ }^{\text {AC-3 }}$ (PP) \& 50.52

\hline ${ }^{25 C-2240}$ \& 20.15 \& AN-7168 \& 52.69 \& STK-2125 \& 57.45 \& BC-184C \& 50.055 \& BD-436 \& 52.28 \& TDA-1059 \& 59.85 \& \& \& \& \& \& \& \&

\hline ${ }^{25 C-2320}$ \& ce. 15 \& AN-7213 \& E1.09 \& STK-2129 \& 51.10 \& BC-212B \& 0.055 \& BD-437 \& 50.30 \& TDA 1151 \& 21.75 \& \& LEITEMS \& IE \& IS \& NOT \& ISTEO \& \&

\hline 2SC-2550 \& 64.75 \& AN-7218 \& c1.18 \& STK-2250 \& 511.40 \& BC-212C \& 50.455 \& B $0-441$ \& E. 30 \& TDA-1170 \& 51.09 \& \& \& \& \& \& \& \&

\hline 2SC-257 \& ¢1.25 \& AN-7220 \& E1.89 \& STR-4090 \& 51.60 \& BC-213 \& c0.055 \& BD-442 \& 50.30 \& TDA-1180 \& ¢1.45 \& - \& Es Ah \& \& RICE \& R \& ANGE WITH \& NOM \&

\hline 2SC-2581 \& ${ }^{1} 1.50$ \& AN-7223 \& c1.40 \& TA-7061 \& 51.00 \& BC-213A \& 00.055 \& 80-535 \& $\underline{61.30}$ \& TDA-1220 \& 51.28 \& al \& TATIONS \& RE \& EN FOR \& RG \& ANO EXPO \& Qua \&

\hline 2SC-3298 \& c1.50 \& AN-7224 \& 91.25 \& TA-7137 \& c7.00 \& 8C-2138 \& 20.055 \& B0-536 \& $\underline{51.35}$ \& TDA-510 \& c4.10 \& 1 \& LIST AVal \& LE \& ITH OR \& OP \& SAE PLEASE \& $\times{ }^{4}$ \&

\hline 2Sc-3519 \& c1.50
$\mathbf{c 1 . 5 0}$ \& AN-7311 \& 3.90 \& TA-7140 \& ¢1.00 \& BC-213C \& 2. 055 \& B0-5508 \& 84.50 \& TDA-1905 \& 50.59 \& \& ALL THE \& \& - \& \& \& \&

\hline 2SD-288 \& ${ }^{\text {coin }}$ \& AN-7410 \& ${ }^{21.54}$ \& TA.7157 \& 19.20 \& ${ }^{8 C-214}$ \& 40.055 \& BD-675A \& 50.28 \& TDA-1908 \& 1.20 \& UT \& OLL \& 00 \& V/ \& P8 \& c0. 78 (For \& onl \&

\hline 2S0-381 \& c0. 90 \& BA-301 \& ${ }^{21.50}$ \& TA-7204 \& ${ }^{51.20}$ \& BC-214B

$B C-214 C$ \& | c0. |
| :--- |
| 60.055 |
| 0.055 | \& 80-678

$80-679$ \& ${ }_{\text {cex }} \times 1.28$ \& ${ }_{\text {TDA }}$ TDA-2002 \& 92.70 \& \& \& \& \& \& \& \&

\hline 2SD-525 \& 50.75 \& BA-308 \& 91.00 \& TA-7207 \& \%1. 35 \& 8C-237 ${ }^{\text {c }}$ \& 20.055 \& BD-680A \& 50.30 \& TDA-2002V \& ${ }^{20.7}$ \& giring \& G Imme: \& - \& P\% \& -FRI) \& 0 \& - \&

\hline $2 \mathrm{SD}-526$ \& 20.75 \& BA-311 \& 51.00 \& TA.7208 \& ¢1.08 \& BC-238 \& 50.055 \& B0-682 \& 50.30 \& TDA-2003 ${ }^{\text {d }}$ \& 51.20 \& \& \& \& \& \& \& \&

\hline 2SD-600\% \& c1.50 \& BA-333 \& 51.00 \& TA-7214 \& $\underline{29} 9$ \& BC-238A \& ct. 055 \& BD-707 \& £6. 50 \& tDa-2003V \& [1.20 \& \& \& \& \& \& \& \&

\hline $2 \mathrm{SD}-718$ \& 97.25 \& HA-1124 \& 51.25 \& TA-7215 \& 92.20 \& 8C-238C \& 50.055 \& B0.711 \& c9. 50 \& TDA-2004 \& 51.80 \& \& \& \& \& \& \& \&

\hline 2SD-837
$2 \mathrm{SD}-845$ \& ${ }_{c} 9.85$ \& HA +1125 \& ¢1.25 \& TA.7225 \& 92.50 \& BC-2398 \& 50.055 \& BD-712 \& c0.55 \& TDA-2005M \& 52.50 \& OUCE \& I \& \& , \& \& \& H1 \&

\hline 2SD-845 \& ¢1.75 \& HA-1137W \& f1.35 \& TA-7227 \& 92.20 \& BC-239C \& 50.055 \& BDX-53A \& 50.42 \& TDA-2006V \& 81.40 \& \& c. 1 \& 2 \& 13 \& lex: \& 933986 C \& \&

\hline
\end{tabular}

WE ARE LOCATED IN
4 UXBRIDGE
At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.
UNIT 4, SWAN WHARF, WATERLOO ROAD,
UXBRIDGE, MIDDLESEX.

JUNCTION 11 TV TRADE DISPOSALS LTD

Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone: 0925826387

FULL RANGE OF THORN TV'S AND VHS VIDEOS

 8800 N/R........ £20 9900/9200 N/R £40 8800 R £25 9900/9200 R.... £45 9000 N/R........ £25 9600 £40 9000 R £30 TX9/10............. £65 Text $\quad £ 70$All prices subject to VAT. Discounts for quantity.

8-10 Rhoda Street, London E2 7EF. Tel: 01-729 0506.
P+P 1 PANEL £1.50. 2 PANELS OR MORE $£ 3.00$

	IF	TUNER	DECODER	G8/G9 DECODER IF COMBINED	$\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	6.00	5.50	8.00	16.00	15.00	9.00	6.00	9.00		4.50
THORN 3000/3500	3.00	6.75	5.00		9.00	9.00	6.00	7.00	6.00	2.75
GEC 2110	11.00		6.00		13.00	7.00	6.00	6.00	6.00	6.00
PYE 731			11.00		19.00	11.00	8.00	9.00		5.50
BUSH Z718	8.50	7.50	15.00		25.00	4.00	6.00	15.00		
BUSH T/20	8.50	7.50	15.00		20.00	20.00	6.00	15.00		
PHILIPS G11	$\begin{array}{\|c} \hline 15.50 \\ \text { WITH } \\ \text { SOUNO MOOND } \end{array}$		13.00		20.00	20.00	6.00	15.50		
DECCA 80	13.00	POA	15.00		13.00	11.00		15.00		POA

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

IRELAND'S OWN TV TRADE SALES at E.D.I.

large quantity of brand names. 9 and 12 Channel uhfnhf working COLOUR SETS.

VIDEO RECORDERS: Ferguson 3V39, 3V29, 9803E, Nordmende V102K, Sharp VC482. Front and top loaders UHFNHF. All fully serviced.

HI-FI STACK SYSTEMS: As new. Sanyo, Sharp and Ferguson 15-20 Watts per channel. TVs from $£ 50$. VIDE0s from $£ 140$
"KEEN TO SELL AT KEEN PRICES".
T.V. TRADE SALES
E.D.I. House, Ballyfermot, Dublin 10 Tel. 263517-264139
T.V.T.S.

Clover Place, College St., Killarney
Tel. 06433655

TV LINE OUTPUT TRANSFORMERS
prices incwde carriage. vat mot appucable.

DECCA

CS1730 1733 colour CS1830 1835 colour '30' series Bradtord colour 80 series cotour
100 series cotour

$$
K B-I T T
$$

VC200 VC205 VC207 mono CVC5 CVC7 CVC8 CVC9 col. CVC20 series colour CVC30 CVC32 series colour CVC45
FT100 FT110 state p/no.
A/l lopts and
windings are new and guaranteed

A. Access welcome	
24 how mblweriny service	
REMATi SET/LCE	
MNDMCS	
RANK BUSH M	MURPHY
T20a T22, T26 Pri \& Sec	6.00
Z718 primary state $18^{\prime \prime}$ or $22^{\prime \prime}$	$22^{\prime \prime} 6.00$
2718 EHT overwind	8.00
SOVEREIGN FARA	\$15.00
$14^{\prime \prime}$ colour overwind	
ULTRA THORN	
1690-1691 EHT overwind	17.00
Watham 190 EHT overwind	ind 6.00
1590 EHT overwind	6.00
CALLERS WELCOME	
Open Mon.-Fri. 9 to 5.30 pm	

THE USED TV SPECIALISTS Large stocks of Quality TVs \& Videos to include ITT, CVC 20, 30, 45, 80 90; Trimline GEC2110 \& Inline Models; Bush 2714, T20, T22, T24, T26; Decca 30, 80, 90 , 100; Doric 1, 11, 111, 1V; Pye 223, 911, KT3, KT30; Philips G8, G11, KT3, KT30; Thorn 8K, 8.8K, 9K, 9.6K, TX9, 10.
MOST JAPANESE MODELS INCLUDING PORTABLES VHS \& BETA VIDEOS FRESH STOCKS DAILY

WE ALSO OFFER MATIONWIDE DELIVERY s, xirow

WHOVESANE UTD. UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9aB 02993-79642 \& 79643

CentreVision

TEL: 0222-44754
SLOPER ROAD, LECKWITH, CARDIFF
EXIT 33 Off M4

3V22 VHS VCR - WORKING

ONE OFF $£ 8510$ OFF $£ 75$ 20 OFF $\mathbf{£ 6 8} \quad 30+\mathbf{£ 6 5}$
MANY ELECTRONIC VIDEOS IN STOCK MANY TOP QUALTTY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES
PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

SETS \& COMPONENTS

TURN YOUR SURPLUS

ICS transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs.
Tel. 0945584188

* ESTABLISHED 15 YEARS

B.G. COMPONENTS T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt Open Monday-Saturday
Hill Street, Oldham OL4 2AG 061-624 1753

WE BUY SURPLUS

ICs, Transistors, Tuners \&
Transformers, etc for cash settlement. Factory redundant stocks purchased. Contact D\&S SPARES,
183 WATLING STREET, RADLETT Phone: (09276) 4252
Thorn 30(0)/3500
Thorn Y(u)())
UNIVERSAL
1 year guarantee
The UNIVERSAL TRIPLER can be used in most
G.E.C.II.T.T., Pye. Rank. Decca \& Continental sets.
WING ELECTRONICS
$\mathbf{1 5}$ Waylands, off Tudor Rd., Hayes End, Middlesex

TELEUUIIIOM
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 7.20$ per single column centimetre (minimum 2.5 cms). Classified advertisements 45p per word (minimum 12

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock. Colour $£ 3.00$ Mono $£ 2.00$
 Manual prices on request.
 All our prices include post and packing costs.
 Send stamped envelope for free catalogue and any enquirios.
 SANDHURST TV SERVICES (MAIL ORDER)
 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

200 TV TUNERS

UHF PUSH BUTTON TV TUNERS IN SLMMLINE CABINET WITH COMPOSITE VIDEO OUTPUT. CHEAP TO CLEAR. MINMUUM ORDER 10. CONTACT:
SCREENS MICPO COMPUTERS \& EECTROHICS LTD. MANI AVENJE, MOOR PAPK, MORTHWNOD, MDDX.
TEL: 0927420064
TEEX: 929224 SCPEEN G

HALTON TV
 TRADE DISPOSAL

The Wholesaler you won't find competing with you on the High St.

TV and Videos

GEC, Philips, Decca, Doric, Thorn
\star Remember, we have NO retail outlet \star
St Michaels Industrial Estate, Widnes
Tel. 0514231577

Eliminates scratching and damage to screens and cabinets, etc. "a good investment in my opinion" Eugene Trundle, Television March 87

For Televisions, Video Recorders, Audio Visual Equipment, White Goods, etc.

PERSONALISED T.V. TRANSIT COVERS These are tea-cosy stye and come in three siz

Standard (Io fit up to 22' comfortably - they will even
Stice
Slandard (10 it up to 22^{2} comiortably - they will even fit Pack of $5-\varepsilon 41.25$ each
Extre Large (to models)
Portable (lor the brutes
PERSOMALISED VCR PROTECTIVE COVERS
Designed to give all-round protection, they fit all modern models
(but may not iti some of the odder. larger models! The recorders
snugly inside the covers, which then fasten with Votcro fasterers, thus avording
dangling mains flexes during transit, and allowing discreet removal to and fro.
PERSONALISED JUMBO COVERS
A universal cover for fridges, freezers, washing machines, etc.
Tea-cosy syle $\left(36^{\prime \prime} \times 24^{\prime \prime} \times 24^{\prime \prime}\right)$
PERSONALISED TIDY WRAP
Keep the floor of your vehicle free from clutter with this
handy lithe wrap with Velcro fasteners (8×12)
handy litte wrap with Velcro fasteners (it $\times 127$)
$(2 \times$ Std TV, $2 \times$ VCR and $1 \times$ XLarge TV) $)$
PERSOMALISED SPECIAL DISCOUNT PA
$4 \times$ Std TV, $4 \times$ VCR and $2 \times$ XLLarge TV)
COMPANY LOGOS - These look absolutery super - Please 'phone for details.
OTHER EQUIPMENT - We can make protective covers for any equipment to specification - Please ring! ALL COVERS ARE MANUFACTURED IN HIGH QUALITY 135g. POLYESTER-FILLED NYLON QUILTING FOR MAXIMUM PROTECTION AND DURABILITY
2. Add Postage and Packing as follows: Orders up to $£ 50$ - add $£ 3$. P . Orders up to $£ 100$ - add $£ 5$
Orders over $£ 100$ - free P\&P. 3. Add 15% V AT
3. Add 15% V.A.T.
N.F.P.C., 'Bywell House', 3 Fenham Hall Drive Newcastle upon Tyne NE4 9UT. TEL: (091) 2724646
Please allow 28 days for delivery
Monthly account orders accepted from Education Depts Order. Public Companies.

VIDEO SPARES

Stock items despatched by return Access \& Visa welcome

VIDEO HEADS

Universal VHS heads most models 3 HSS Capstan Motors
4HSS) motch (mechanical
Hitachi Ferguson, JVC, Akai Panasonic....... (most models) (genuine) $\mathbf{\$ 5} .00$ Sharp VC2300, VC7300, VC8300, V585 (genuine) .. 666.40 Sharp VC6300, VC381, VC383, VC386, VC388, VC9300, VC9500, VC7700, VC7750, VC481, VC482 (genuine) $\mathbf{£ 6 1 . 1 0}$ Sharp VC9100, VC9300, VC9500 etc. (equivalent) .. £39.50 Sony SLC5, C6, C7 (genuine) $\mathbf{£ 4 2 . 0 0}$ Sony SLC5, C6, C7 (equivalent) $£ 31.00$ Toshiba V9600, V31, V33 (equivalent) $£ 39.60$

Reprocessed Heads

(Send old head with onder. This drum should be free of scratches and marks)

Sharp VC9300, VC9500 etc. HitachiVT11 VT33 VT14 VT17 Hitachi VT8000, VT8300, Vin T9500 V8000, VT8300, VT8500 VT9300 Ony SLC5 SLC7 (BHF 1100d -................. $\mathbf{E 3 5} .00$ BELT KITS
Most Models ... Sanyo VTC5000 Sanyo VTC9300 Ferguson 3 V31, 3 V35, 3 V 36 Fisher VBS 7000 PINCH ROLLERS
Most Models.
Sharp (most models)
HitachiVT11, VT33, VT14, VT17 HitachiVT9300, VT9500, VT8000 $E 2.95$
be free of scratches and marks)
Most VHS models, i.e. Ferguson, Panasonic, Hitachi, Fisher etc
$E 29.00$
Sharp (most models), Saisho, Amstrad, Mitsubishi etc.

E37.50
Most VHS 4 head types

$\boxed{3} 7.50$

VIDEO MOTORS

Drum Motors Ferguson/JVC Take up idler assembly (small) 3V00/3V22 etc. (mechanical models) . Ferguson/JVC Take up idler assembly (large) 3V00/3V22 etc. (mechanical models) $\mathbf{~ 7 . 9 5}$ Sanyo VTC5150, VTC5000, VTC6500 Complete reel drive pulley unit ...98 90
Sony SLC5, SLC7 rewind kit 95

IDLER TYRES

A range of idler tyres is available in different
Ferguson/JVC 3 V00/3V22 etc. (mechanical models)
$E 29.00$ Sharp VC9300, VC9500, VC9100 etc. $\mathbf{2 6 . 6 0}$

Reel Motors

Sanyo VTC5000
VTC5150,
VTC5300
VTC5400, VTC6500 Sharp VTC9300, VTC9500 etc. $\mathbf{E 1 2 . 0 0}$ models) sizes, all priced at $\mathrm{c1} 00$ earh These trerent be fitted on idler assemblies instead of replacing the whole idler assembly, making a consid erable saving. Please state size of tyre in milimetres and make \& model of video.
T.V. SPARES
\% 78.30
Please add 75 p per order for p\&p and then add 15% VAT

A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE
Telephone (0604) 24380

ERROLCE PABE5

 words), box number 75 p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).
DHOUPER VISION

Ex-Rental wholesale in T.V.s \& Videos, unbeatable prices, good quality sets at trade prices

(Sets from £7.00)

(Working or non-working sets)
674 Coventry Road, Small Heath, Birmingham B10 OTJ Tel: 021-772 2743

- SPARES, PANELS 1.V. AND MANUALS PHILIPS • GRUNDIG

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.

TV SALES \& SERVICE CENTRE
 We are component part stockists for:
 SANYO, SONY, SHARP, NATIONAL PANASONIC, HITACHI, TOSHIBA \& FERGUSON.
 Ask for details about our
 TV, VIDEO \& AUDIO TECHNICAL PROBLEMS ADVICE BUREAU

Phone (09276) 4252 185 Watling Street, Radlett, Herts WD7 7NQ.

> WHY NOT LET TELEVISION SELL YOUR PRODUCT RING NOW ON 01-261 5942

GIANT SCREEN TVs
 VIDEO PROJECTORS

All leading makes available. Large quantities of some lines. New and second hand equipment bought and sold.
J. H. Roche 8 Co. Ltd.,

36 Station Road, Wylde Green,
Sutton Coldfield, West Midlands B73 5JY. Tel: 0213542393 (24 hrs).

WIZARD DISTRIBUTORS MANCHESTER

TV \& VIDEO SPARES
We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, DECCA + ITT.
FIDELTY SPARES MAIN DISTRIBUTOR. Did you know we also stock FUSES AERIALS
AEROSOLS RESISTORS CAPACITORS VALVES VIDEO HEADS
\qquad ToOLS VIDEO LEADS AUDIO LEADS SEMICONDUCTORS SERVICE MANUALS TEST EQUPPMENT TVNIDEO TROLLEYS AND MUCH MORE
Counter open Monday-Friday 9 am- 4.45 pm
TRADE ONLY
EMPRESS STREET WORKS
EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

BRAND NEW 14" Television tubes for Fidelity, Thorn, Amstrad, etc. guaranteed. Bargain $£ 38.00+$ VAT, p\&p £3.(0). Phone Bolton 020440918.

GRUNDIG INFA-RED Remote control units VIF-KI consist TPV355 Transmitter \& VIF-EI receiver brand new $£ 4.99$ P\&P £2, box of ten ViF-E1 $£ 10$ P\&P £ 3. GRUNDIG CAMERA lead VKS 1900 (7 meters with 8 pin plug \& socket) $£ 3$ P\&P $£$ I. GRUNDIG REMOTE CONTROL 44) with 8 meters core cable $£ 3.95$ P\&P $£ 2$. GRUNDIG Portable television lead (5 meters) with car lighter plug 7000) for sale OFFERS? sample $£ 2$. DEPT 5 STAN WILLETTS 37 High Street, West Bromwich. West Midlands B70 6PB Tel 1215530186.

TECH 2000 BELFAST

Best prices for TV's or videos in Ireland, new stocks weekly (some dual frequency).

TV's from $£ 5.00$

Videos from $£ 35.00$

DISCOUNT FOR QUANTITY

CASH ONLY

Unit 44, Derriaghy Industrial Estate (Old Grundig Factory)
The Cutts, Dunmurry, Belfast. Phone: 0232620885
> I.T.V.C.

> BEST QUALITY EX-RENTAL AND GRADED TVs \& VIDEOs
> OFFERANG A FRIENDLY \& FIRST CLASS
> SERVICE TO THE TRADE
> GET ON THE WAY TO SUCCESS
> BUJY AT COMPETITIVE PRICES
> TO INCREASE YOUR PROFITS
> VHS VIDEOS (Mech. Electronic) FERGUSON, HITACHI, JVC, NAT. PAN., etc. BETA SANYO, SONY, TOSHIBA, etc.
> TELEVISION
> PHILPS 550, G11, KT3
> BUSH T20, T22, T24, $\mathbf{T 2 6}$
> THORN 8.8K, 9K, 9.6K, TX HITACHI, NAT. PAN., I.T.T., PYE, etc.

VAN LOADS DELIVERED DIRECT FROM SOURCE

PHONE STEVE 0602864627

UNIT 3, MEADOW TRADING ESTATE, MEADOW LANE, OPP. CATTLE MARKET, NOTTINGHAM NG2 3HQ

NORTH WEST ELECTRONICS NEW STOCKS ARRIVING DAIIY

SPRING BARGAINS discount for quantriy WORKING TVS AND VIDEOS ON SHOW

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.
 5 MINS FROM MOTORWAY

100's PX HOOVER JUNIOR VACS
 All models in stock Tel(0274) 660995

 'BOBS'

TELEVISION

WAREHOUSE
A NEW CONCEPT IN EXX.RENTAL T.V. \& VIDEO

WORKING TV \& VIDEO

ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM NON WORKING GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC, ETC.
K30, KT3, G11, TEXT, REMOTE AND BASICS
ITT, GEC, BUSH, JAPS., DECCA, ETC.
PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS
BOBS 4 :V. WAREHOUSE, 1 Swinbourne Ct, Burnt Mills, Basildon, Essex

'BOBS'

TELEVISION WAREHOUSE

NEW

 PHILIPS
NEW

 PHILIPSN
EW PHILIPS EX CATALOGUE RETURNS
_ARGE STOCK NOW HELD. ALL SIZES AND CURRENT MODELS

All working AND SHOWROOM READY

Guaranteed $P_{\text {hone }}$

BOB BEAN 0268728966

TO RESERVE YOUR SUPPLY NOW

$$
\begin{aligned}
& \text { LARGEST SELECTION OF } \\
& 8800,9000,9200,9600 \\
& \text { TX9, TX10, STEREO TEXT } \\
& \text { COLOUR PORTABLES }
\end{aligned}
$$

TOP QUALITY TV \& VIDEO AT ROCKBOTTOM PRICES

ALL SETS \& VIDEOS OFF THE PILE

PYE KT30, G11, T20, T26 JAPANESE \& MANY MANY MORE
9600^{\prime} NW OPEN MON-SAT 9.00-5.30 THIS MONTH'S OFFER 26° CASH ONLY - ALL GOODS ONLY $<$ SUBJECT TO VAT \& AVAILABILITY $£ 15$ EACH \quad Send SAE for full price list \& Special Offers

VHS VIDEOS
GOOD WORKING ORDER
3V22, 3V23, 3V29
PORTABLE VIDEOS etc. etc.
PHONE NOW FOR UP TO THE MINUTE COMPUTERISED PRICE \& DELIVERY DAYS

SERVICE and SELL WITH CONFIDENCE

SHARP \& GRUNDIG

PARTS ARE FAST FROM WILLOW VALE

$30,000+$ different stock parts

24 hour despatch

Over $\mathbf{9 5 \%}$ 'first pick' supply ratio from stock
Willow Vale's comprehensive parts listings for Sharp and
Grundig products make ordering and identification easy
Contact the Sole UK Parts Distributors and find out what SERVICE is really about.

Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. RG2 0LU.

Telephones: 0734-87(r.44 (24 hours) 8 lines
Telex: 848953 Willow G
Faxline: 1734-867188
also at:
Enterprise Park, Reliance Strect.
Newton Heath, Manchester 10
Telephones: ((61-682-1415
Faxline: 061-682-9031

Please send me: your comprehensive Sharp, Grundig spares catalogues together with wallcharts of the other spares you stock: (TRADE ONLY) I enclose 50p stamp for postage.

Dealer/Engincer: \square
Address

PHILIPS COLOUR TVs

 AT NEAR TRADE PRICES A large purchase of surplus warehouse returns enables us to offer the public some magnificent bargains. Choose from a wide range of features including $14^{\prime \prime}$ to $26^{\prime \prime}$ screens, remote control, teletext, text printer, flatter squarer screens, etc. Stands and video bars supplied with appropriate models. Every set tested before sale with 3 month guarantee.VISION PROMOTIONS
Branches at 3A Commerce Estate,
Kingston Road, Leatherhead Hours 9 am to 5 pm .
Phone 370066 for stock availability 321 Old London Road, Hastings
Hours noon to 8 pm , Sats 9 am to 5 pm , closed Mondays Phone 444415

ACTIVE DEFLECTORS

We produce a 4-channel power amplifier (10dB power gain) as an 'Add-on' to existing 1 volt amplifiers. Rec retail $£ 150$.

Distributors Wanted
Skywave Engineering Limited, Waternish, Isle of Skye. Tel (0478) 2843.

DEALERS

We have vast quantities of working Thorn 9000 CTVs with excellent tubes from £30. Also working VHS videos from $£ 80$

TEL: 01-729 3356

SALE! ONE OFF

Surplus to requirements 300 Mark 3 Dorics all complete. 6, 8 and 12 channels. $20^{\prime \prime}, 22^{\prime \prime}$ and $26^{\prime \prime}$ screens, mainly $22^{\prime \prime}$.

$$
£ 10 \text { + VAT }
$$

Phone: 051-548 4414 ADMIN TELEVISIONS Unit J, Admin Buildings Kirkby Industrial Estate Liverpool L33 TTX.

CRT IESTER/REJUVENATION, Leader LCT910-A never used, f235, still new. 0749 3964.

BUSH T20, 22 Panels repair/exchange service. Ring Letchworth 0462672820)

GRUNDIG SPARES TEST INSTRUMENTS. Oscilloscopes. Manuals. Ochre Mill Technical Services Limited, Stone. 0785814643.

TRADE TV SALES now open. Untested from 55 , working from $£ 15$. Tel. Manstield 0623511418.

TV's - HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp. Fully refurbished. PEARSON TELEVISION, 1484 -863489. Delivery arranged.

AS NEW SALORA 151.33 multi-standard VHF/UHF PAL/SECAM colour television. Offers Mr. Odell. Tel. 01-897 3419 daytime.

GOULD OSCILLOSCOPES 0526015 MHz Dual beam £ 110 . (153000) 41 MHz dual trace, dual timebase $£ 195$. Tel. 02774 54/96t.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

TVs GREAT BUYS G11s from $£ 20$

 REMOTES IR AND Sowic from £35 TEXT MANY MAKES from £55$20 \cap$ FULLY WORKING SETS AVAILABLE. ALL SEEN IN
EXCELLENT CABMFORTABLE TRADE ONLY SHOWROOM.
TO TEXT. NO JUNK. READY FOR SALE OR RENT, BASIC

TIC VIDEOS ALL ELECTRONIC, GOOD CLEAN MACHINES NOT KICKED ABOUT, BASIC TO FULL UR WITH DOLBY. MAKES BY PANASONIC, HITACH, JVC, MITSUBISHI, FISHER ETC. AND OTHERS AS THEY ARRIVE.

2000 SYSTEM YIDEOS FROM ONLY $£ 20$

 LOAD ON STOCK, GOOD CLEAN MACHINES AT BARGAIN PRICES, ALL HAND PICKED. 2020-2021-2022. PHILIPS, GRUNDIG 4×4 and 2×4 SUPER AS AVAILABLE.TU ALL OF THE FOLLOWING MAKES AND TYPES IN -S STOCK ON PREPARATION OF THIS ADVERT: DECCA 80-88 100. FERGUSON TX $9+10$, 9000. GEC 2642-2242, 2642 TEXT. GRUNDIG 7200-7400-6012-6610-6245-2200. SONY 1810-2040-2022. ITI CVC 8-9-20-23-25-30-32. TELEFUNKEN 8256. MITSUBISH CT200-2606. TANDBERG. KORTING. PANASONC. GOOD CLEAN CABINEIS ON MOST SETS. WE LOOK AFIER THEM FOR YOU.

GENERAL FAGTORS OBO2

 UNION STREET, DONCASTER SOUTH YORKS

SERVICE SHEETS

TECHNICAL INFO SERVICES (T) - 76 Church SL, Larkhall, Lanarkshire MLO 1HE World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues.

MAIN STOCKIST OF ALI HEINEMANN-NEWNES TECHNICAL BOOKS
DELIVERY BY RETURN FULL LIST ON REQUEST
Big Catalogues of thousands of Service Sheots \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and expense E .

Any published single service sheet for $\mathbf{£ 2 . 5 0}+$ Isae except ctv/mus-c/combis from $£ 3.50+$ Isae
A selection from our stocks of thousands of Service Manuals ready for despatch by return post.
Any Sony: Hitachi ctv from £9.50. Thorn 3000/3500 £9.50. Thom 8000/8004/8500/8600 £9.50. Philips G8 complete £9.50. Decca $30 / 31$ £8.50. Ferguson/JVC 1st video $£ 19.50$ or 3 V 00 types basic manual $£ 19.50$. Any Finlandia: Tynie CTV £9.50 each. Rank A823 complete $\mathbf{£ 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL E9.50 PRACTICAL RADIO SERVIGING \& REPAR COURSE 53.50 THE 12 TUNBRIDGE TV REPAIR MANUALS SIY THE 5 MCCOURT TV REPAR MANUALS ANY SET OF 5 INOIVIOUAL TV VIDEO REPAIR MANUALS FOR E1250 OR ALL 3 SEIS (15 MANUALS) FOR E35.
UNIOUE COLLECTIONS OF CIRCUTS, MYOUTS, ETC. . . . FANTASTIC VALIE
British ctv from hybrids to modem (3 binders) $E 60$ (20fi) Videos, all types (3 binders) $E 58 .$. . any 1 for $£ 20$ Mono TV (2) £40 Foreign ctv (2) E38 Domestic Eqpt (2) E38 Portable British ctv (1) £22 plus VAT.

COMPLETE REPAR SYSTEMS . . . huge savings from published prices

British ctv 4 binders of Circuits plus 7 Repair Manuals plus ref books, etc.
for only $£ 140$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only 870
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
Videos 3 binders plus 15 individual Repair Manuals cover all
books, etc.
for only 890
Complete integrated T.V. Repair System only £ 250 or in 12 sections at $£ 25$ per section
Contents: 8 binders of circuits/17 Repair Manuals/dozens of other manuals... Any new publications from us within 1 year of ordering 1st section will be added at no extra charge.

No VAT on Systems
NEW 1987 British CTV Repair Manuals for $£ 8.95$ NEW. NEW Repair Manuals for Spectrum with circuits only £5.00 NEW. NEW Collection of 20 Hoover's WMc circuits $\mathbf{8 8 . 9 5}$ NEW. NEW Domestic Equipment Repairs \& Servicing E14.95 NEW.
Repair data/Circuits/Service data almost any individual mono tv $\mathbf{\Sigma 1 2 . 5 0}$ basic ctv $\mathbf{\Sigma 1 2 . 9 5}$ video $£ 10.50$ LSAE BRMES ANY REQUESTED GUOTATION - FULER DETALS - FREE MMONZEE - PRUEE LSTS ETC. PHONE 0698884585 Mon-Fri before 5 min or 003883334 amy other time - FOR FAST GUOTES

SERVICE DATA-UK VCR \& CTV

Circuits + layouts or complete manuals Comprehensive lists inc. $£ 1.00$ Voucherr redeemable on first purchase. Send 50p Cheque or P.O. (No SAE required) DATA-GO, 112 Ameysford Road,

Ferndown, Dorset BH22 9QE

GERMAN SERVICE SHEET

 SPECIALISTSOur connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast
Co. Donegell, Republic of kelend.

SITUATIONS VACANT

Unique opportunity for conscientious \& qualified \& enthusiastic

TV, VIDEO \& HI-FI ENGINEER

With management ability \& good audio experience to join established service orientated retail company. Excellent prospects, pay \& conditions.
Salary circa $£ 10,000$.
Please apply to:
Mr M.G. Molyneux, MGM, 173 Old Chester Road, Bebington, Wirral, Merseyside L63 8NE

SATELLITE TV RECEPTION EQUIPMENT

 accessories. Japanese INBS from Ku Bard feedhorns ' N ' Connectors only
 todo line ampts only

KESH ELECTRICS LTD.
Main St., Kesh, Co. Fermanagh, N.i. Tel: 0365631449 TIx: 74712

MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full or trade know-how and trade equipment) fl (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane Micklebring, Rotherham. (17(19) 813419.

SPECIAL OFFERS

FREE MEMBERSHIP to a new national electronics club. For details and a free pack of components worth over £10, send only £1 P\&P to Dept Tel, Woodside, Dowsett Lane, Ramsden Heath, Billericay, Essex CM11 IJL

REPAIR SERVICE

AVO's OSCILLOSCOPES \& TEST EQUIPMENT repaired. Manuals available. J.R. COAD ELECTRONIC SERVICES. Phone 01-340 0230.

BUSINESS FOR SALE

YORK FREEHOLD TELEVISION SHOP. With accommodation over. Offers over $£ 48,000$ then stock and goodwill. Box no. 235.

MISCELLANEOUS

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. Sisheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire

VALVES AND TRANSISTORS. Rarities our speciality. Lowest prices anywhere. Billington Valves see page 529.

SUPPLIERS TO H.M. FORCES AND M.O.D.
MANUFACTURERS OF FIBREGLASS DISH ANTENMAS anNOUNCING: TWO NEW DISH ANTENNAS TO OUR RANGE 1-2M OFFSET

$\Sigma 178$

 1.6M DIA 1.8M (PETAL)
2.0M DIA
2.3M (PETAL) 3.0M DIA 1.2M OFF SET POLAR MOUNT FEED SUPPORT ASSEMB Y CLESE WOTE: WE MEE BEM EURO-SAT, 107 CROSS ST., SAAE, CHESHIRE, ENCLAND TEL: 061-437 $2631=051-8814249$

PICTURE TUBE REPAIR EQUIPMENT

 BMR 90Versatile and reliable Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.
Regenerates picture tubes even better - Also IN-LINE Removes short-circuits, even between cathode and filament - Measures beam current, emission current, life expectancy, etc.
can pay for itseff in 4 weeks, if you are not using BMR 90 you are making less profit than you could.
Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road, Penriyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246

DEALERS IN THE SOUTH WEST PLEASE NOTE

We are a new Trade Warehouse in the Newton Abbot area.

 Regular direct supplies of clean, working VHS videos and TVs available at fair prices.Discounts on Quantity Phone or Call ACORN TV WAREHOUSE 3V23 IPPLEPEN (0803) 813281

Plese
Welion
ritilisor
WHEL
RPPYM M
T0
OVERTSEEIEI

ELECTRONIC VIDEOS/TV'S
CLEAN MODERN WORKING VID's/JVC/Hitachi/Panasonic etc. TV's/Sony/Philips/Panasonic etc. Long term relationship required with a few reliable dealers able to take 5's 20's of TV's or Videos or mix on a regular basis.
Based in the North West
Prices reasonable and stable Box 234

BOOKS AND PUBLICATIONS

WANTED

SURPLUS/REDUNDANT ELECTRONHC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

> ADM Electronic Supplies Tel. 0827873311.

WANTED FERGUSON VIDEOS Portables and colour televisions cash paid. Tel. 0217725069

SERVICE MANUALS Thorn TX9 PCB! 044 D . Philips Gll Telextext circuit. Tel. 042-121 4141.

WANTED TV VIDEO REPAIR and Sales Business. Anywhere provincial Ireland considered. Contact: Roscrea (0505) 44207.

WANTED VIDEO TVs, portables. Cash paid, any quantity, fast collection. Television Direct, Manchester $061-7888997$

VIDEO SERVICE MANUALS WANTED. All required in guod condition. Tel. 0761416245.

METERS

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee. 48 Mead Road,
Stoke Gifford, Bristol BS12 6PT 0454776413

METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

GEM METERS

We buy and sell TV slot meters. Why not try our repair service?
Contact Mr Wolstenholme on: 0942826126

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for $£$...
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

"UNDER NEW MANAGEMENT" CHROMAVISION BACK IN ACTION IN MANCHESTER
 SPECIAL FIVE STAR OPENING OFFER FOR THIS MONTH

Working, Non-working + Untested TV's \& VCR's in stock at LOW LOW PRICES CLOCK TRIMS FOR 3V16/22 VCR's $£ 2.00$ COME AND SEE FOR YOURSELF OR

RING 061-736-6333

CASH ONLY

95 LANGWORTHY ROAD SALFORD, MANCHESTER MG 5PH
(All prices subject to VAT \& availability)

Universal Semiconductor Devices Ltd.
17 GRANVILLE COURT, GRANVILLE ROAD,
HORNSEY, LONDON NA SEP, ENGLAND.
TEL 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DUNT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLAR - GERMANIUM AND SILICON SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES
VHFNUHF DEVICES - ALL SHAPES AND SIZES
FESS - POWER MOSFETS UNIJUNCTIONS

dIODES - GERMANIUM AND SILICON
 RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LED OF ALL SHAPES AND SIZES \rightarrow
THYRISTORS AND TRLACS - ALL
SHAPES
妻
$\stackrel{1}{4}$
SIZES
INTEGRATED CIRCUITS:
CONSUMER - DIGITAL/ANALOGUE
MICROPROCESSORS AND PERIPHERALS

IC SOCKETS
MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST. ENCLOSING E1.00 IN STAMPS, CHEQUE OR POSTAL ORDER.
CATALOGUE
Sent free of charge, when requested on official
LETTERHEAD WITHOUT REFUND), TO OEM'S, SCHOOLS, COLLEGES, UNIVERSTIES, GOVERNMENT INSTITUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS.
special discounts and payment terms are available to above INSTITUTIONS.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

REPLACEMENT VIDEO HEADS AT

COMPETITIVE PRICES
from Luton only.
FOR AKAI, AMSTRAD, BAIRD, DECCA, FERGUSON, FISHER, GEC, HITACHI, ITT, JVC, MITSUBISHi, NEC, NORDMENDE, ORION, SABA, TAISHO, SANSUI, SHARP, SIEMENS, SONY, TATUNG, TELEFUNKEN, TENSAI, TOSHIBA, TRIUMPH' TROPHY.
D.I.Y. TV TUBE POLISHING KIT

Kit Price $£ 57$ inc P\&P and VAT. Available from Luton only.
Quality, High Temperature Reprocessing

All tubes exchange glass required.
Please add 15% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW
114-134 Midland Rd, Luton, Beds.
Open Mon-Fri 9am-6pm. Late opening Tuesday \& Thursday till 8 pm.
Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
Phone between 2-5pm.
West One Distributors Ltd., Chesham, Buckinghamshire.
Tel. 0494778197
Best price paid for A66-540X, old glass

INDEX
 58

ADM Electronic Supplies 581
Admin Televisions.. 579

Aerial Techniques
Alston-Barry Satellite Services 541

ASJAA Intemational Lto. 573
................. 581

Besco Ltd. ... 576
B.G. Components .. 574

Billington Valves ... 529
B.K. Electronics ... 516

Blendown Ltd. .. 580
Bob's Television Warehouse 577
BoltenLtd. .. 571
Bull, J\& N Electrical.. 523
Campion Wholesale Ltd..................................... 573
Carter, John (Electrical) Ltd. 564
Celtel.. 562
Central TV \& Video Wholesalers Ltd..................... 563
Centrevision ... 573
Chromavac Ltd. ... 521
Chromavision .. 582
Coles Harding \& Co. .. 574
Crewe Wholesale TV .. 566
Cricklewood Electronics Ltd................................. 565
Crofton Electronics.. 521
D \& S Spares .. 574
Data-Go.. 580
Dhouper Vision .. 575
Display Electronics Ltd. 572
East Cornwall Components 524
East Croydon Discount Electronics 567

Economic Devices548, 549	Sabaco... 578
Electric City.. 521	Sandhurst TV Services 574
Electrovisia Ltd. 568	Seme Ltd. .. 522
Euro-Sat.. 580	Semple Service .. 570
Ford, Frank.. 568	Sendz Components 530,584, Cover III, Cover IV
	Skywave Engineering Ltd. .. 519 Southside TV............
Gem Meters.. 581	Sparkworld Ltd... 568
G.G.L. Components 518	Stewart of Reading.. 566
Grandata Ltd....................................... 520	Supertel.. .. 561
Halton TV Trade Disposals 574	Taylor Bros. (Oldham) Lid. 570
Hussain Central T.V.Lid................................ 569	Technical Information Services........................ 580
	Telemanr ... 564
	Telepanels .. 573
Junction 11 T.V. Trade Disposals Ltd. 572	Teletraders .. 570
	Televideo Services...................................... 567
Kent Ledgerwood Wholesale Ltd. 583	Teleview ... 575
Kesh Electrics Lid. 580	Tidman Maail Order Ltd. 554
London Electronics College 529	Tree's, W., T.V's .. 571
LRC (Spares) Ltd. ... 562	T.V. Sales \& Service Centre 575
	T.V.S. Trade Services 571
Manor Supplies ..Cover II	T.V. Trade Sales ... 573
Meter Co. (Poole) Ltd, The................................ 570	
Molyneux, M.G. ... 580	Universal Semiconductor Devices Lto. 582
Montana Mail Order 566	U-View Tubes ... 581
N.F.P.C. ... 574	V.C.R. Electronics.. 565
N.G.T. Electronucs Ltd. 567	Vision Promotions ... 578
North East Satellite Systems 529	
Papworth Transformers 573	Wellview.. 58.
Powell, T.. 519	Willow Vale Electronics Ltd. 578
Pro-Vision .. 517	Wing Electrics ... 574
P.V. Tubes...514, 515	Wizard Distributors 575
Roche, J.H. \& Co. Ltd. 575	Zentek Electronics 572

			(1)			

[^0]: NOTE
 Surcharge
 without
 exch. glass.

[^1]: EAST CORNWALL COMPONENTS 119 HIGH STREET

[^2]: G. Snewin, 14 Woodland Gardens,

 Woodford New Road, London E17 3PS.

[^3]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (Assia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £16, overseas (surface mail) $£ 19$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 X$.

