SERVICING-PROUECTS-VIDEO:DEVELOPMENTS

Servicing the Sony KV1800UB

 TV Behind the Curtain CRT Heater Voltage Checker Brushless DC Motors • DX-TV Designing Active Deflectors TV Fault Finding • VCR Clinic
MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking)
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch. grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) ap
£8.60
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 3.90$ Built \& Tested in Case including Sound Module
£108.00

SPECIAL TEST
 REPORT
 'TELEVISION DEC. 1982

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y. B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE £8.60. BATT HOLDERS £4.20. MAINS SUPPLY KIT £4.20 (Combined P\&P £2.20).

MK 4 (BATTERY) BULLT \& TESTED E58.0N + £2.20 P \& P MK 4 (MAINS) BUILT \& TFSTED $\mathbf{f} 68.00+\mathfrak{t 2} .20$ P \& P VIF MOIOULATOR (CH 1 to 4) FOR OVERSEAS 55.75 EASILY ADAPTEI) FOR VIIEO OUTPUT \& C.C.T.V

ADD VAT

 15%THORN TX9 MK2/3, TX 10 , teletext
Mullard Decorder pancl + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS Gill PRESTEL, TELETEXT
Mullard Units VM 6230. 6330 plus Line Coupler \& Interface £38.00 p.p. $£ 2.50$

EXTERNAL TELETEXT ADAPTOR

(RADOFIN) with cable remote control. Fully tested. $£ 150.00$ p.p. £3.(0). Plugs into aerial socket of any T.V.

TV SERVICE SPARES

BACKED) BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
I.OPTS, TRIPI.ERS, PANELS, TUNERS. SELECTORS ETC. SPECIAI. OFFFR Mullard/Philips yuality UIIF modulator (audio \& viden input) ex nes é tuipment t5.(00 p.p. £1.00.
PIIIIIIS G11 6 position touch tunc channel selector units $£ 16.00$ p.p. El. 80 (can replace earler mechanical selector unit).
PIILIPS GII PaNELS (tested
 PIILIISG Gil PaNELS ex rental (untested)
Power trank. If decoder ello.00 each p.p. fle.n.
PHILIIS HANIDSETS Ex rental. Teletext, Untested. KT3, K30, CTX, KT4,
K35 etc e3.50pp. flo. 0
FERGUSON Video Manual 3 V2 48.50 p.p. £1.50
COLOUR MANDALSP-P. SOp
FERGISON O8(1) £2.00.
PHILILS GII £3.80, KT3 £3.80. (TX-E 11.50 , (TX-S $£ 1.50$.

TIORN REAIOTE CONTROL HANDSETS
TX9 (LLTRASONIC (3 -bution) £15.NK: TX9, TXI6 Infra red £18.00); TX9, TX10 \ln ira red Teletext $£ 20.00$, P.P. E 1.20
TIORN ex rental handsets untested Gow). TX9, TX10 55.00 p.p. $£ 1.00$
 TX9/TX10 Teletext interfate panel (1524) $\mathbf{E 5 . 0 0}$ p.p. $8(1 \mathrm{p}$.
THORN TX9 Ultrasonic Remote/Control'Receiver panels. 88.50 p.p. $£ 1.50$. TIIORN TXIO Serien Facia Control Panel with 8 position Channel Selector 46.50 R.p. fl .50 .

TX9, TX10 Facia control panel incl, infra-red remote control receiver $\$ 8.51$ PR. 81.80.
TX9. TXIO Remote d tuning control panel (1515) £10.50 p.p. £1.80. SAW FILTER IF AMIPIIFIER PLIS TUNER complete and tested for T.V Sound \& Vision. £28.50 p.p. £1.20.
TIIORN IX9, TX:10 Saw Filter IF Pancl. ©5.00) p.p. 80p
PAL DECOIER KIT (Video to R(GB) for Moniturs f27.010 p.p. fI (0).
PAL ENCOIDER KIT (RG|3 to Vifeol EI8.50 p.p. £1.30.
TELETEXT DECODERS New \& Tested Mullard VM 6101 £30.00, Texas

CROSS hatcil dint kit, Aerial Input type, incl. T.V. sync, and UHF Modulator. Batte y Operated, also gives Peak White \& Black Levels, can be used tor ally set £12.00 p.p. Xop. (Alum. (ase £2.90) p.p. £1.40.) ADDITIONA (ore Scait kil e2.g P.p. ts
LHF SIGNAL STREN(TH METER Kif $\mathbf{E 2 2 . 0 0}$ Alum. Case $£ 2.91$. De

CRT TESTER \& REACTIVATOR KIT Por Colour \& Mono complete with Case, Pancl Meter Indicator - can be adapled tor latest CRTs $\$ 29.50 \mathrm{p} . \mathrm{p}$. fz . 80 . Bilsh A823 (onvergenee. Time Base pancls $£ 5.010$ each. p.p. E1.sf). GEC 2110 PANEIS Sound 22.50 (tested) p P 80 p.
GEC 20AX Line ime Base f 18.00 p.p. E . K$)$.
THORN TX9 Panels ex factor for small sares. Includes I.Cs \&
Semiconductors ece ± 3.00 p p fiso Semiconductors e e. e3.00 p.p. $£ 1.80$.
THORN TX9 Piamels salvaged ex factory for spares incl. I.OPT \& Mains Transformers. £1L00 p-p. flome.

TIORN 800). 85(1), 8800 IF Decoder Pincls Tested $£ 10.000$ P.P. E. 30 .

TIIORN 9000 IF/I ceoder Pancls Salvaged. For spares $22.50 \mathrm{p} . \mathrm{p}$. E 1.80 .
THORN 900 Frame Time Base E8.50 p.p. E1.80.

 BLISII "TOCCH TUNE" T20/22 Scrics Fascia Unit £7.50 p.p. \&1.51 VARICAP LHF-VIF ELC $2 M O S$ e 9.80 p.p. E 1.06 .
thF\%25 TUNERS, many different types in stock. DECCA Bradford 5

LOPIS New and suar. P/P \&IL50, Boblins 8 tpp.

THORN MMN. 8 Sin
THORN TXXY

TIIORN'TX10

DPC SPECLAL OFFER

1'H11,IPS 320
RIBM1 AK23
CEC 21128. 2(40.2160
PYE 691-7 chassistype only
PYE 713, 715 . PHILLPS S77. 571
PIIIIISS 69
 59.80
55.60 5.80
8.80 E8.80
ES.
010 (16.06) $16.6)$
$£ 10.64$.99 .80区8. 8 £9. 80 59.20
5×80 Ex. 80
E9. $\times 0$ \&9.80

£18.50 | £ 18.50 |
| :---: |
| £ 80 | $\begin{array}{r}\text { E. } \\ \pm .80 \\ \hline 180\end{array}$ $£ 18.50$

$£ 21.00$

OTHERS AVAIL ABILE, PRICES ON RUUUESI.
TRIPISRS Full raner ,
SPECIAL. OFFER IRIPIJIRS

THORN 15005 Stick £I.50, 1.5063 Stick £1.50 p.p. $80 p$.
6.3V CRT Boost Transformers for Colour \& Mono e5.9n p.p. £1.40.

TIIORN TXIO focus control Ex.80 p.p. 80p
THOUS NDS OF ADDITIONAL THEMS PREMSE
LARCE SELECTION TESTED COLOUR PANELS IMPPLLAR MODEIS Goods available it in stock imnediately over shop counter (Mail order between 3 days and I week from receipt of order). ADD VAT 15%

Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PIEASE AII) VAT 15\% TO AII. PRICES INCI. P+P

On sale December 17th

COPYRIGHT

(C) IPC Magazines Limited, 1987. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 14$ in the UK, £17 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (vols. $30-35$ only, 75 p each) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60 p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

157 Leader

158 Servicing the Sony KV1800UB
David Botto
One of the older Sony colour sets, but typical of Sony practice at the time, with some unusual features to confuse the unwary.

162 Letters

165 TV Behind the Curtain
Keith Cummins
A short report on TV conditions in the USSR, based on a recent visit.
166 The Operation of Electric Motors, Part 5

Mike Phelan

This concluding instalment deals with the brushless d.c.
motor which has become very popular for VCR use. Basic drive circuitry and some fault conditions are included.
168 Band C Satellite TV Reception
John Standen
How North East Satellite Systems managed to resolve
low-power 4 GHz satellite signals using a modestly sized dish.
169 Micro Clinic
Reports on microcomputer servicing problems from
Roger Burchett and Nick Beer.
170 Teletopics
News, comment and developments. Peter Marlow writes on a recent 3D-TV demonstration.
172 Tiny Tim's Testing Time Les Lawry-Johns
At last the tide has turned and Tiny Tim is flooded out with faulty sets. Maybe he'll be able to pay some of those bills...
174 Low-cost Teletext Decoder, Part 2
Peter Marlow, B.Sc.(Hons.), C.Eng. Constructional details and setting up.

177 Next Month in Television

178 TV Fault Finding
Reports from Richard Roscoe, D. Burke, Michael
Dranfield and André N. Smith.
180 Long-distance Television Roger Bunney Reports on DX conditions and reception and news from abroad.
182 Practical Active Deflector Systems Roger Bunney
Practical design considerations for active deflector systems.
186 Test Report: The Hameg HM204 Oscilloscope
A suitable scope for modern high-tech servicing.
188 CRT Heater Voltage Checker
Eugene Trundle

A simple but effective checker to help sort out tube problems.
190 VCR Clinic
Reports from Philip Blundell, Eng. Tech., Les Harris,
Christopher Holland, Martin Pomeroy, Roger Burchett,
Jim Rainey and Alfred Damp.
192 Teletext Developments Peter Marlow, B.Sc.(Hons.), C.Eng.
193 Service Bureau
194 Test Case 289
OUR NEXT ISSUE DATED FEBRUARY WILL
BE PUBLISHED ON JANUARY 21

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT. HAMEG OSCILLOSCOPES

HAMEG are Europe's stop seling DUAL TRACE OSCILLOSCOPES Selea from four superb models. Allincorporate a useful COMPONENT TESTER. Size-all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear disolav $8 \times 10 \mathrm{cms}$ Mains supply $110 / 125 / 220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$. 2 YEAR WARRANTY HM203-6 20MHz Standard specification
Bandinath DC-20MHz

- Time Base $0.2 \mathrm{~s} / \mathrm{cm}-20 \mathrm{~ms} / \mathrm{m}^{2}$
- Trigger DC-40MH-z AC, DC, HF, LF, (TV Frame)
- Invert both channels.
- Variabienord-oft 10 .
- Caltorator

Pius many more features
Price $£ 298.00+£ 44.70$ V.A.T. Including two probes

FREE Securicor Delivery
HM204-2 20 MHz Multi-function SPECIFICATION
Bandwoth DC-20MHz

- Delay Line
-Time Base $1.25 \mathrm{~s} / \mathrm{cm}-10 \mathrm{~ns} / \mathrm{cm}$
- TriggerDC-50MHzAC, DC, HF, LF, TVV Frame)
- Varable hold-off 10.1
- Overscanléd indicators
- Caibrator

Price $\mathbf{£ 4 0 2 . 0 0}+\mathbf{£ 6 0 . 3 0}$ V.A.T.

HM205 20MHz Digital Storage FREE Securicor Delivery SPECIFICATION

- Analogue Real Time (Same as 203-6f
- Bandwidth DC. 20 MHz
- Sens. Chi. Ch2. $2 \mathrm{mV} / \mathrm{cm}$
- Thgger DC-40MHz AC, DC, HP, LF (TV Frame), - 100 KHz Sample Rate - $2 \times 1 \mathrm{~K}$ Storage
- Storage Range $1 \mathrm{~ms}-5 \mathrm{~s} / \mathrm{cm}$
* Valiable hok
- Callbrator

Price $\mathbf{£ 4 9 8 . 0 0}+\mathbf{£ 7 4 . 7 0}$ V.A.T. Including two probes
FREE Securicor Delivery
SPECIFICATION

Price $£ 567.00+\mathbf{£ 8 5 . 0 5}$ V.A.T.
HM605 60 MHz Multi-function

B.K.'s CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guns separately. Fitted with delta and PI.L. sockets. Compact size $120 \times 65 \times 60$ mm . Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.
B.K.'s REVOLUTIONARY DYNAMIC ‘LOPT' TESTER Revolutionary L.O.P.T. tester. Operates in dynamic mode which actually tests the L.O.P.T. under high vottage conditions Size $75 \times 100 \times 40 \mathrm{~mm}$. Suppla

$$
\text { Price } £ 25.99+£ 3.90 \text { V.A.T. }
$$

LEADER LCT910-A CRT TESTER REJUVENATOR

Price $£ 317.00+£ 47.55$ V.A.T.

SADELTA FIELD STRENGTH METER TC-402

THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels deivered by the antenna to a TV or FM receiver, in order to test the perfiormance of the antenna and evaluate the best conditions during installation etc. To faciilitate measurements, the tuning frequency readout is shown on ad igital display.

FEATURES

* Covering FM and ail TV bands (UHFNHF) including CATV freq
* Digital tuning display (3 digits) for direct frequency readout.
* Accurate 10 turn tuning potentiometer.
* Built-in loudspeaker enables monitoring of sound in AM/FM
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester $0-500$ ohms.
* Fully portable (battery)
* Sturdy carry case

$$
\text { Price } £ 249.00+£ 37.35 \text { V.A.T. }
$$

SADELTA COLOUR PATTERN GENERATORS

 THE SADELTA RANGE OF HAND HELD COLOUR PATTERN GENERATORS is intended and computer monitors, In order to control and actust the various parameme TV sets, video patterns are provided. The techntician has ready access to Laboratory, workshop and field use as the Generator has been designed using the latest micro-technology to achieve truly pocket size instruments, internaid re-chargeable Ni -Ca's. Suppled with $9 V$ power supply charge T.V. PATTERN GENERATOR PAL MC11B UK $\begin{array}{ll}\text { * Band IV }(21-34) & \text { : O/Put } 10 \mathrm{mV} \text { Vinto } 750 \mathrm{mms} \\ \text { * Band III }(5-12) \quad \text { : Sound output }\end{array}$ - PAL 1Price $£ 124.95+$ £18.74 V.A.T PAL VIDEOCOMPOSITE GENERATOR * PALB.G. * Audio O/Put 10 mV

Price $£ 124.95+\varepsilon 18.74$ V.A.T. SECAM VIDEO COMPOSITE GENERATOR * SECAMB.G.D.K.L * Audio O/Put 10 mV

* O/Put IVp.p. (i) 750 hms

Price $£ 124.95+\mathbf{E 1 8 . 7 4}$ V.A.T.
R.G.B. PATTERN GENERATOR
$\begin{array}{cc}\text { * O/Put sigs. Pos.RGB } & \text { : O/Put TTL } 5 V \text { P_P } \\ \text { Neg. Composite }\end{array}$
Neg. Composite - Blank Pulse etc. CCIR Price $£ 111.95+£ 16.79$ VA.T

DIGITAL THERMOMETER
 * Pocket Size

- $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$
- ${ }^{\circ}$ Resolution
* $0.5^{\prime \prime}$ LCD
* Supplied with thermocouple
Price $£ 59.50+£ 8.92$ V.A.T LEADER HIGH VOLTAGE METERED EHT PROBE

LEADER High Voltage Metered EHT PROBE. Measures up to 40KVDC with safety. Built in meter Accuracy $\pm 3 \%$

Price $£ 45.00$

+ £6.75 V.A.T.

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC PULSER are effective and economical tools for checking both TTL and CMOS circuits. TP1 can show 14 different circuit conditions and can detect pulses down to typically Price £23.00 damaging sensitive components. Together they can + £3.45 V.A.T. stimulate and monitor responses of components 'in each circuit' greatly aiding faut finding

200MHz DIG. FREQ. METER

* Pocket Size
* 8Dig. LED
- Frea. Range

20 Hz to 200 MHz

* Resolution 0.1 Hz
* Sensitivity 10 mV Price $£ 75.50+£ 11.32$ V.A.T.

HUSSAIN CENTRAL TV LTD GREAT NEWS FOR THE SOUTH OF ENGLAND NEW BRANCH NOW OPEN IN LONDON RING 01-961 5005 FOR THE BEST DEAL IN TOWN
 EXAMPLE BRAND NEW 14" PORTABLES FROM £100 BRAND NEW MITSUBISHI FST BRAND NEW 20" GEC
 BRAND NEW 16" PANASONIC REMOTE CONTROL

 MANY MORE LATE MODEL TVs IN STOCK BRAND NEW FRONT LOADING REMOTE CONTROL VIDEOSAll TVs have excellent cabinets
VHS: WORKING. Bring your own tape and try them yourself UNTESTED ELECTRONIC VHS ALSO AVAILABLE BETAMAX VIDEO'S
ELECTRONIC BETA Full working order. Hundreds in stock. PLENTY OF UNTESTED BETA
Toshiba 9600, 5470, Sanyo 5000, 5300, 5010, Sony C5, C6, C7. PLUS MANY MORE MODELS IN STOCK
Prices are subject to 15% VAT and based on quantity
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

SOUTHAMPTON	BIRMINGHAM 0703-777254	PRESTON $021-622 ~ 1023 ~$	$0772-312101$

LMEOUT TRAMSFORMERS		
3501	decca lio	${ }_{9} 9$
3604	DECCA 173011830	11.0
3599	DECCA 80	1.
3727	DECCA MS1730－2420	10.13
3729	FIDELTY FTV12TVR120	9.90
5523	FIOELTY XT3000 22	14.50
3808	FIOELTY 2×200033000	14.50
${ }^{3731}$	GEC 21002040	5.50
${ }^{3732}$	GEC 2114	150
3734	GEC 313	$3{ }^{\text {c }}$
3373	GEC M1201／M1501H	1325
3614	GRUNGIG 501MGO10ETC	1285
3355	INOESIT 24EGB	1125
3517	$1{ }^{1} \mathrm{cvac} 30$	1.7
3618	ITM CVC45	9.7
${ }_{3}^{3615}$	$1 \mathrm{TCVC5}$－	1025
${ }_{3509}^{3620}$	KORTING A2IIOO 90 hYbrio	14.50
4508	PHILIPS E2 CHASS	10.00
2662	PHILIPS 69	10．05
53505	PYE 691 WIRED	500
${ }^{3628}$	PVE 72390°	11.05
${ }_{3632}^{3629}$	RAEMK A823	${ }^{1328}$
3634	RANK T16A	55
3635	RANK TIOA	1259
${ }_{373} 37$	RANK TTITA	15.50
${ }^{3637}$	RANK 2179	112
3639	RANK 21822	21.15
3771	REDIFUSION MKI CHAS	
3771	REDIFUSION MK3 CHAS	15.55
${ }_{3643}^{375}$	SANYO CIPSTO1 THORN 1400 SERIES	
3364	ThORN 150020°	5.5
${ }^{3645}$	THORN 1500 24^{*}	5.55
${ }^{3646}$	THORN 1550 SERIES	10.15
3647	THORN IGOOO SERIES	10.35
3548	THORN 1615 SERIES	8.5
${ }^{3649}$	THOON 168391 SERILS	10.50
3713	THORN 1790	85
31782	THORAN 3K 3 K 5 EHT T	523
3351	${ }_{\text {THORN }} \mathbf{3 K} 3 \times 5$	73
6172	PHILIPS GB SPECIAL	7\％
2868	PHILIPS KT3	10.55
EHT Trays		
	B61895－641	
5403	8G1299－642	750
5404	862097－642／33	7.50
3663	DECCCA 100	125
${ }_{3}^{3665}$	OECCA 1830	3.11
3667	GEC 1023CS108	350
3677	ITT creas	7.5
3675	ITr CVC59	1.00
${ }_{3}^{3678}$	KORTING HYBRID	15
${ }_{3}^{3683}$	PHILPS 55068	600
3581	PHILPS 570 （5 lead）	1.50
3684	PHILIPS 69	1.00
${ }^{3685}$	PHILIPS KT3	6.9
－ 3688	PYE 6111697	6.55
${ }_{\substack{3 \\ 5388 \\ 5088}}$	PYE 725131／741	898
${ }_{55393}^{5393}$	SEEMANS $\mathrm{TK} 180 / 3$	9.50
4696	SEIMENS TVK198／17	
54006	TCE 1400 LARGE SCRN	15
${ }_{3}^{3596}$	TCE $15000{ }^{17^{-19}}$	5.68
3697 3699	TCE 150023 23824＂	4.95
${ }^{3698}$	TCE 16000 SERRIES	25
3300	TCE 4000	50
${ }_{3699}^{3703}$	TCE 9000	75
306	TVII EHT STICK	7．5
3709	TV20 EHT STICK	0.5
5275	TV4S EHT STICK	25
3705	UNIVERSAL EHT tray u．k．	4.5
TV ELECTHOLTICS		
	OECCA 10330 40002／350	280
3549	OECCA $100400+800350 / 250 \mathrm{~V}$	4.65
3548	DECCA 80／100CHAS $100 / 400 \mathrm{~V}$	2×0
5	FIDELITY ZX2000 300335 V	15
${ }_{5}^{5333}$	FIDELIT DX3000 2203885	9
${ }_{3}^{3557}$		120
3556	$17 \mathrm{CVC5s} 2200 \times 2+25+75 \mathrm{FTC}$	${ }^{2}$
3560	PHILIPS 611 470uFf250V	T
${ }^{3359}$	PH1LIPS G99 220065 V	15
${ }^{3561}$	PHIUPS $\mathrm{KT3}^{2000}+25 \times 2 \mathrm{Z} 335 \mathrm{~V}$	205
3554	PHILIPS G8GEC 2110 600300	3.16
${ }_{3}^{3558}$	PHILIPS G9PPE 7316003300 PC	3.16
3565	PYE $725 / 7318$ 800250V	190
${ }^{35564}$	PVE 6911697 200＋300750V	200
3596	RR1 AB23 2500x2／25V	1.4
${ }^{35888}$	TCE $3500 / 35001000770 \mathrm{~V}$	0.6
3585	TCE1500 1500 $2+1000300 \mathrm{~V}$	35
3587	TCE3500 200＋10002／350V	25
M \quad XED DLALECTRIC CAPACTIORS		
${ }^{4272} 0$	$0.022 \mathrm{INV} \times 5$	155
${ }_{4}^{4273}{ }^{4274} 0$	0.0381 kV	1．40
${ }^{4274}$	0.0476000×5	0.5
${ }^{2} 275$		27
42760	$0.1600 \mathrm{~V} \times 5$	120
42770	$0.11 \mathrm{NV} \times 5$	19
47780	0.12800×5	239
42790	$0.12 \mathrm{~K} \times 11$	0.75
4800	0． 23000×5	1．4
42810	$0.22 \mathrm{lv} \mathrm{x}_{1}$	0.74
${ }_{4}^{4282}$	0.47 INV Xl	1.0
42710	400pf $1.5 \mathrm{KV} \times 5$	180
SLIDE CONTROLS		
4684	150k UN STD TV	0．50
48741	IK LIN STD TV	0.5
4880	2K LN STO TV	0．5
48812	22K log sio tv	0.58
${ }_{4895}^{4875}$	333 SEMI LOG STD	0.50
${ }_{47285}^{485}$	400 Lig STo	0.5
47798	170 LIM STD TV	－090
4876 4K	ak un sto tv	
48714	47 LOG Sto TV	0.50
PRESETS		
Stanoard ranges		
	VETIICAL STANOARO $\times 5$	
	HoRITONTAL STANOARD $\times 5$	0.0
		0.60
TUNER UNITS		

ELC 103300 EXCH TUNE

范

GRUNOLG 50
GRNNDIG 50
GUUNIG
50
GRUNN
GRUN
GRUN
GRUN
GRNN
GRN
GRUN
GRN
GRUN
REMOE CONTROL UNTS

3g Mx

 REDIFTSION M
REFITHSON M
REOIFUSION M

俍 5010 FOCUS UN
5010
51515
CHON 50106610 L
5011110

 1590 MAINS TRANSFORMER | NS TRAN |
| :--- |
| SU TX |
| NS |

言

 3 T3000 MHACK FLM VID LOAO
T4000 FOCUS CONTFF SW
UWIT 18500 FOC BR CONTROL UNIT T8500 MAINS CH
18500 MAINS IX T8500 PLASTIC CUT OU
T900 OFCUS UNT T9000 FRI THICK FILM
T9000 OVER VOIT THICK FILM
TO900 7 TOO1 CHOPPEA TX． 1960000.332 KVV CAP
9600 CHOPPER IX T9600 CHOPPER IX 9600 FOCUS UNIT
$T 9600$ SWITCH MODE IX T511
9600 FOCUS UNIT 19800 FOCUS UN
$\$ 1580$ MAINS CH

COK TUNNG
SWOP NER
TUNE
RN
NPU
SA
SPAR
CCA 10
CCA 100
CA 10
CA
CA
CA
CA
CCA
CCA
CCCA
CCA

NDARO RANGES
$1 / 4$ WATM $\times 10$
12 WAT $\times 10$
12 WAT $x 10$
STANDARO RANG
5 WAT x
7 WATM
7 WAT $\times 5$
11 WAT $\times 5$
17 WAT $\times 5$

OTHER RESISTORS

 200R，250A， 500
EITY SPARES

OCUS UNIT FIOELTV CTV14
MAINS NPUT CHOKE XX2000
MAINS FITTER TX CTV14R
ORIVER TX Z30000 404397
N／OFF SH FDEEUTY CTV14A
NOFF SH FIDEUTY CTV14S

Genuine Spares Available from Stock

\star Phone NOW! For free comprehensive Sales Brochures.

\star Same Day Despatch, Securicor or First Class Post. *Open 8 till 5.30 for your convenience.
\star Answerphone Service out of office hours (0772) 555038. \#You can confidently call on us for a First Class Spares Service.

Nationwide Spares Distribution 194-200 North Road, Preston, Lancashire, PR1 1 YP England. Telex 677122.

MAKE YOUR INTERESTS PAYK

Train at home for one of these Career opportunities
More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming

[^0]FIRST IN TUBE REBULDING TECHNOLOGY 30AX; 540 SEAIIS REDUCED SERVIGIUG COST, FIT A DIREGT REPLAGEMEIT avallable oniy from chiomayac. PRE GONVERMED AS ORIMMEA. EXTEBHAL MULTPOLE UNT NOT RIEQURED.

O- Get on the hot-line today!

LOOK! AT NO EXTRA COST 30AX PRE CONVERGED
$681^{061} 2959$ most types of Inline Re-builds or new ex-stock PRICES SUBBECT TO

GLASS EXCHANGE

Delta Rebuilds

Up to $19^{\prime \prime}$.	Up to $22^{\prime \prime}$.. From $£ 40$
Up to $22^{\prime \prime}$ ….............. $£ 30$	Up to $26^{\prime \prime}$.. From $£ 45$
Up to 26"	A56-540x $£ 56$
110° up to $22^{\prime \prime}$ …...... $\mathbf{£ 3 4}$	A66-540x
110° up to $26^{\prime \prime}$.......... $£ 38$	Bonded Coil....... $+£ 5$
Low focus.............. $\quad \mathbf{f 2}$ A47	
	ALL SIZES OF NEW AND
470EHBNew $\mathrm{E}^{\text {3 }}$	REBUILT MONO TUBES
Delta only. Less $5 \% 5+$	AT COMPETITIVE PRICES

IN LINE TYPES EX-STOCK SELECTION not resulos
Please enquire types not listed
370 HFB-A37-590...... £45 | AXT56-001

420 CSB
420 EDB-A42-590
420 EZB
420 ERB
470 KUB
510 UFB/A51-590
510 VSB
$£ 45$
$£ 45$
$\mathbf{~} 45$

AXT51-001
560 DYB-560 DTB
560 EGB
560 CGB
560 DMB
QUANTITY
AVAILABLE

* WE PURCHASE SURPLUS STOCKS

OF INLINE TUBES: ALSO A56/
AVAILABLE
Ask for details
DELIVERY By

- $510 / 540$ ETC. OLD GLASS.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

CCTV CAMERAS FROM ONLY $£ 69.50$ EACH!
 PLUS CARRIAGE \& VAT

Crofton Electronics are pleased to announce that they are now able to supply C.C.T.V. cameras complete with standard lens, starting at the amazing price of $£ 69.50+$ VAT $\&$ carriage. Two models are available. Model 'A' incorporates a 33^{\prime} ' vidicon tube, and model 'B' has a 1 " tube. Both models employ vidicon racking thus allowing focusing from a few inches to infinity. Both models also have a standard 'C' mount and thus will accept a wide range of different lenses. Model ' B ' can be driven from external sync pulses and produce a composite/non composite output. Though not new each camera has been completely refurbished to a high standard in our own workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with a domestic IV set by the addition of a simple modulator - kit available.) From an input of 240 v ac, the cameras produce an output of 1 volt peak-peak and are equipped with standard tripod mounting bushes. With applications as diverse as education, amateur dramatics and shop/industria//domestic/ farming security systems, demand is sure to be high and orders will be dealt with in strict rotation.
Model 'A' all inclusive price $\mathbf{f 8 5 . 1 0}$ subject to availability.
Model ' B ' all inclusive price $\mathbf{E} 97.75$ subject to availability.

DONT DELAY - PLACE YOUR ORDER TODAY!

Also available on special offer - Brand New Time Date Generators at the amazing price of $£ 132$ inclusive. Normal price $£ 477$. These generators are mains driven and accept normal composite video in. They produce video out with time/date/day/month/and year added to the signal, and with the option of normal or inverse video of the added data. The position on the screen of the added data is adjustable. Switchable character size is also provided for, on an internal DIL switch. A REAL MUST FOR SECURITY APPLICATIONS WHEN RECORDING, There are only a limited number of these, so hurry to avoid disappointment. Orders will be dealt with on a strictly first come first served basis.
We also have for disposal a whole host of used items such as cooling fans, power supplies etc - so please ask for list. Our complete range of products include plugs, sockets and cables, TV aenial accessories, monitors, computer products, security telephones and door entry/alarm equipment, and surveillance and counter surveillance equipment. If you would like all our cats please send a 400 SAE.

MOST MAJOR CREDIT CARDS ACCEPTED
CROFTON ELECTRONICS
雨 05448557
'KINGSHILL', NEXTEND, LYONSHALL, HEREFORDSHIRE HR5 3HZ

5015
£1 BAKERS DOZEN PACKS
Price per pack is $£ 1.00$.* Order 12 you may choose another free. litems marked (sh) are not new but guaranteed ok.

4-short wave air spaced trimmers 2-30才
$10-12 \mathrm{~V} 6 \mathrm{~W}$ bulbs Philips m.e.s.
6 - round amber indicators with neons 240 V
100 - p.v.c. grommets $3 / 2$ hole size 1 with $1 / 4^{n}$ spindle
1 - three gang tuning condenser each section 500 pf with trimmers

- plastic book sloping metal front, $16 \times 95 \mathrm{~mm}$ average dept
45 mm
6-5 amp 3 pin flush sockets brown
5 - B.C. lamphoiders brown bakelite threaded entry
- in flex simmerstat for electric blanket soldering iron etc.
- thermostats, spindle setting - adjustable range for ovens etc.
10 digit switch pad for telephones etc
computer keyboard switches with knobs, pcb or vero mounting
electric clock mains driven, always right time - not cased
stereo pre-amp Mullard EP9001
-12 V solenoids, small with plunger
 - mains transformer 9 V 1 amp secondary C core construction
 - car door speaker (very tlat) $6^{1 / 2^{\prime \prime}} 15$ ohm made for Radiomobile
speakers $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm 5 watt made for Radiomobile
mans molor with gar-box very small toothed output 1
standard size pots, $1 / 2$ mea with do switch
1-13A switched socket on double plate with fused spur for wate
 - mains transtormers 9V $1 / 2$ A secondary split primany so ok also for
115 V
1 - mains transformers 15V 1A secondary p.c.b. mounting
ten turns 3 watt pot $1 / 4$ spindle 100 ohm
car cigar lighter socket plugs
mamp round pin plugs brown bakelite
10 - ceramic magnets Mullard $1^{\prime \prime} \times 3 / 8 \times 5 / 16$
 - 12 pole 3 wav ceramic wave charge switch
stereo amp $2 W$ per channel
 - tubular dynamic microphone with desk rest
T.V. turret tune (black \& white T.V.)
 - oven thermostats

313. 5 - sub miniature micro switches
314. 1 - round pin kettle plug with moulded on lead

MULLARD UNILEX AMPLIFIERS

Although probably the only firm in the country with these now in stock. We now offer the 4 Mullard modules - i.e. Manns power unit (EPYo 0 2) Pre amp modute (EP9001) and wo arnplifier modules (EPSODO) all for $\Sigma 8.00$ plus $£ 2$ postage
TWO POUNDERS.
CAR STARTER/CHARGER KIT
Flat Batery! Don't wory you will start your car in a lew minutes with
this unit - 250 watt ranstormer 20 amp rectifiers, all parts with data $£ 15$

Ex-Electricity Board.
SOUND TO

Complete kit of parts of a three charnel sound to light und corrtrolling
Over 2000 wats of lightring. Use tris at home $\#$ you wish but it is pienty rugged enough lo disco work. The uniti is housed in an altractive two The audioio inpus and output are by $1 / 4 /$ socckets and tiree panel mounting

12 volt MOTOR BY SMITHS

25A ELECTRICAL
 PROGRAMMER

carn in your sthep. Have radio playing and off inturuders - have a wamm house to come
home to. You can do all these and more. By a tamous maker with 25

THIS MONTH'S SNIP

400 Watt Mains Isolation Transtormer 230 votts in
230 votts out Supplementary 10 volt winding for ${ }^{2} 201$ vorts adjustments. Torroidal constuction make it most compact. Regular price $£ 40$. Our price only
$£ 10.00+£ 2$ prost.

MAKING SUNBEDS?

TANGENTIAL HEATERS

 units. They require ory a simply case, oc could easiy be fined ino the
botiom α a a kichen unt or book case tic. At present we have stocks of

FANS \& BLOWERS

Supolied with 230 to 115 V adaptor $\mathrm{\varepsilon 9} .50+$

IONISER KIT
 Reitesh your hame, oficice, shop, work room etc. with a harder - a complete mains operated kit, case incturded.

TELEPHONE BITS

Extersion (.i...........................
Cord lerminating with B. T. plug 3metres..
Kit for converting old entry torminal box to new B.i.T. master socket. complete with 4 core cable, cable clips and 2 BT extension

MINI MONO AMP
Fitred volume contra, and a holo ofor a. ione
control should you require it The amplifier
has three transistors and we
has three transistors and we
estimate the output to be $3 W \mathrm{~ms}$.
More tectrical data
More tecthrical data will be
with the arno. Brand new.
pertecs conation, of fiered at the very
low price of $\varepsilon 1.50$ euch, or 13 for $~$
1200

$J \& N$ BULL ELECTRICAL (T) 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5OT

MAIL ORDER TERMS: Cash, P.O. or cheque with orjer. Orders under

OVER 400 GIFTS

YOU CAN CHOOSE FROM

There is a total of over 400 packs in our Baker's
dozen rafge and you become entitled to a large free gift with each dozen pounds you spend on these packs. A classitied list of these packs and our latest ou will automatically receive our next news letter.

£2 POUNDERS*

Wall mounting therm

- Variable and rer

2P3 - Variable and reversible 8-12V pse for modet control
P6 - ${ }^{100 W}$ mains to 115 V auto-ranstormer with voltage tappings
2P9 - wound so suitabie for lifither speed control
Time and set swich. Boxed. glass fromed and with knobs
12 voll 5 amp mains transformer - - 10 velt winding on
separate bobbin and easy to remove to convert to lower
voliages for higher currents
2 P 12 - Disc or tape precision motor - has balanced rotor and is
revershble 230 V mains operator 1500 pm
2P14- Mug Stoo kit - when thown emits piercing swawk
2P15- Interrupted Bearn kit for burglar alarms. counters. etc.
2P17- 2 rev pr minute mains driven motor with
2 rev pr mirute mains driven motor with gear box, ideal to
2P18 - LQuidkgas shut of valve mains solenoid operated P20- micro switches supplied ready for mains operationge ove
2p21 - Decker garden toots elc. 10 want amplifier, Mullard module reterence 1173
2 P 22 - Motor driven switch 20 secs on or of atter push
24 - Clockwork operated 12 hour switch 15 A 250 V with clutch
2P26- Counter resettable mains operated 3 digii
2P27- Goodmans Speaker 6 inch round 8 ohm 12 watt
P28 - Drill Fump - atways useful cound 8 ohm 12 watt
2 P 31 - 4 metres make 98 way interconnecting wire easy to strip
drill
2 P31 - 4 merres 98 way interconnecting wirr easy to strip
2 P32 - Hol Wire amp meter - $41 / 2$ round surface mounting
but working and definitely a bit of history

20finisly. Gearge enough to drive a rotaling aerial or a tumbler for
den
polistring stones etc.
$2 P 43$ - Small type blower or extractor fan, motor inset so very
2P46 - Our fimous drith control kit complete and with prepared case
2 P47- Telephone nnging unit reduces mains to 50 volts and changes
P49- trequancy from 50 hz lo 25 hz to give night ringing tone
2P49 - Fire Alarm break glass switch in heavy cast cas
2P51 - Stereo Headphone amplifier, with preamp
2P55 - Mains motor, extra powerful has 1/2' stack and good length of
spindie
2- 1 pair Goodmans 15 ohm speazers for Unilox
4- 1 ive bladed fan $6^{1 / r 2}$ with mans motor

- 2 kw tancential heater 115 v easily convertible for 230 V
1 2ke tangential heater 115 v eassly convertible for 230 V
$12 \mathrm{v}-0-12 \mathrm{~V} 2$ amp malns transformer
 1 E.M.I. tape motor two speed and reversible
1115 v Muftin lan $4^{*} \times 4^{4}$ aporox, ex computer 1115 V Mufth tan $4^{*} \times 4^{4}$ approx. ex computer
2 hour timer, plugs into 13 A socket 12 hour timer, plugs into 13A sock
$90-0.9 \mathrm{v} 2$ amp mains transtormer
Modom board with press keys for telephone redialler 20v-l) $20 \mathrm{~V} 1 / 2 \mathrm{~A}$ Mains transformer
Sangamo 24 hr time swich 20 amp
120 imin time switch with knot 20 amp S.H.
90 nimin. bime switch with edgowise engraved controler
13A socket on satin ctrome plate very superior G E.C
mains transtormer 24 V 2 A upright mounting
20 m 4 core telephore cable, white outer
500 hardened pin type staples for telephone cable
2P10\% - mains transtormer 15 V 4 A upright mount 2 P 105 -capilary type thermostat adjustable for air temperatures with
2P107 - membrane keyboard, telephone type superior plug in type
 2P $109-5^{\text {² }}$ mde blac
ocllecting

2P112-6 vott 220MA Voltage regulated PSU for 13 amp socket
2P113-9 vdt 200 MA Vottage regulated PSU for 13 amp socket 2 P1 13-9 vdt 200 MA Vottage regulated PSU for 13 amp socket
$2 P 114-12$ wolt 200 MA Vottage regulated PSU for 13 amp socke $2 P 114-12$ woll 200MA Vohage regulated PSU for 13 amp socke
$2 P: 16$-FM front end with turing capacior and F.M. crocuitry 2P118-30rpm mains motor with geartox
2P119-Uncer carpet swith mat lor burgiar

LIGHT CHASER KIT Motor driven swich bank wath connection diagram, used in comnection winh sets of X-mas lights makes a very eye catching display for home, shop or disoo, only 85 ref 5P56

E5 POUNDERS

12 voit submersible purnp complete with a tap which when
brougnt over the basin swicches on the pump and when pushed back switches oft, an ideal caravan unit
Sound to light
Silt complete in case suitable for up to 750 watts. Sount sentinel utra sonic transmitter and receive kit. complete 250 watt isolating transtormer to make your service bench sate. has voltage adj. taps, also as it has a 115 v lapping it can be used to salely operate Amencan or other 15 V equpment which can't collect as thus is a heavy hiem.
12 V alarm bell winh heavy $6^{\prime \prime}$ gorn. 12 V alarm belt with heavy $6^{\prime \prime}$ gong, Suitable for outside if
protected from direct rainial. Ex GPO but in perfect order and Uuarantoed. moto driven water pump as fitted to many washing machines $1 / 4 \mathrm{mimare}$ motor, ex computer, 230v, mans operation 1450 kpm . It not collect add $\Sigma 3$ posi on or oft for varying time periods
5 527 cartridge player 12V, has high quality stereo amplitier
gear pump, mais
5P32 connex mains
${ }_{5}{ }^{5 P 35} 3$

5P41 $5 P 45$

5P45 pack
5P48 lete
5P50
SP50 box 3 t 20 intension bell in black case, ex-GPO
200 w auto transiormer 230 v to 115 v toroidal
mains trensformer 26 v 10 A uprigh1 mounting, add $£ 2$ posi
mairs motor with gear box, final speed 5 mm
Amstrad steres tuner $F M$ and LM and S . AM
dcill purring nype fanted on trame, coupled to mains motor
$2^{1 / 2 t w}$ tangenniad blow heater, add $£ 150$ posis if not colliecting
Flucrescernt light box for viewing PCB's or can be used for shop
Flucrescoern lig
wincow sign
over $£ 15$) Includes 50 p Credit Note. Special Offer Shreatly increased-over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders

EAST CORNWALL COMPONENTS

119 HIGH STREET

WEM
SHROPSHIRE SY4 5TT TEL: 093932639
TELEX: 35565

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 145.

ADVERTISEMENT
 MANAGER

David W.B. Tilleard
01-261 6671
SECRETARY
Janet Reeve
01-261 6671
CLASSIFIED
ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

PRICE INCREASE

The price of Television will be $£ 1.30$ from the next issue dated February. We regret the need to make this price adjustment to cover the increased costs we and our distributors have to meet. We aim to offer good value: larger issues have been published regularly in recent months and the present issue is the largest ever.

COVER PHOTO

This month's cover photo shows a Sony KV1800 with the rear cover removed. See servicing article on page 158.

CAN YOU HELP?

Does anyone know of a source of information/circuit diagrams/spares for the Viptronic 22 in . CTV (no model number or country of origin indicated in the set) and a 12 in . "Continental" portable, Model GA-X-31, made in Korea? Our enquirer states that these sets have been distributed in Ireland.

CORRECTION

Fig. 4, page 113 last month (low-cost teletext decoder interface panel circuit diagram) had two R8s: the resistor in series with the LED should have been shown as R18. In addition REGs's earth connection was omitted.

TELEORSDOR

Financing and Controlling TV

The Home Secretary Douglas Hurd has called for public discussion on the subject of financing the broadcasting services. So far as TV is concerned the first question must be whether any change is needed or is desirable. The government seems to think so. It set up the Peacock Committee with a view to getting proposals for change and, despite having received from the Committee a rather curious report, seems to be determined that the matter should not be allowed to rest. Addressing the Royal Television Society recently Mr. Hurd commented on "the increasingly curious system under which the public pays for TV through the licence fee" and said, on the subject of "cycles in broadcasting history", that "I believe we have now once again reached the point in this cycle when the pressures are building up for a change".

One is inclined simply to say bosh! Except that the matter is rather serious, with profound implications for the control of broadcasting. Cycles in broadcasting history? This is of course a pure flight of fancy. Broadcasting is still too young to have experienced anything that can meaningfully be described as a "cycle". There have been significant changes from time to time, but to talk of cycles is to show very little grasp of the development of broadcasting so far. Mr. Hurd is nearer the truth when he talks of pressures for change building up, but even here one has to discount a large imaginary element. It seems probable that the government is being carried away by the pressures it has itself generated through its committees, reports and so on. As to the licence fee system, being increasingly curious one has to ask why? I can see nothing remotely curious about it. Inconvenient in some respects perhaps, but not curious - unless that's how you want to get people to see it. In fact of course the licence system goes back the earliest days of broadcasting, when it was necessary to provide funds for a new service and, by great good fortune, a means of doing so while guaranteeing the service's independence was adopted. The licence fee system has proved to be a remarkably effective way of providing finance for broadcasting and seems as appropriate today as at any time.
But the government seems to hanker after what it likes to think of as radical solutions to problems, whether these are real or largely imaginary. The danger here is that of politicians - and others - who feel it appropriate to be associated with change whether or not this is required. But as Keith Cummins comments on another page, after successively sampling the offerings of US and Russian TV, "we've a lot to be thankful for". In fact we've a first class broadcasting system that deserves support and encouragement rather than being messed about with. It's true that we suffer from excessive repeats, which is a symptom of inadequate funding, but let's not fool ourselves that there's a simple way of unlocking vast new funds for broadcasting.

One problem seems to be that the government thinks the changes that technological development have made feasible imply some need to alter the ways in which the broadcasting services are operated. We've had a bellyful of nonsense about cable in recent years, a subject that the government clearly didn't understand - and wasn't helped to do so by its advisers. Satellite TV has more recently added to the confusion. It will be interesting to see who gains the franchise for this and what they make of it. But the whole way in which the subject of satellite TV has been handled to date is questionable. Excactly why are the three proposed channels to be handed over to a single operator? If the aim is that the new services should provide maximum viewer choice surely at least two franchisees should have been given the opportunity to show us what they could provide? After all several well backed groups have been competing for the franchise. What it seems to come down to, especially after the débâcle of earlier attempts to get DBS started, is a feeling that the whole thing is a bit of a gamble and that the best way of getting a service with minimum public involvement is to hand it over to a single operator.
It's perhaps surprising that five consortia have considered it worthwhile putting so much effort into getting a franchise which, as Raymond Snoddy writes in the Financial Times, could be "a licence to lose money on an unprecedented scale". Running the service is going to mean spending several hundred million pounds with no guarantee of a commercial return. Many figures have been suggested. For example, Patrick Whitten, managing director of CIT Research and a realist when it comes to broadcasting opportunities, has suggested that for DBS to be viable in the longer term it will need to attract ten per cent of viewers within five years, going into two million homes, rising to $15-20$ per cent over ten years. But he considers that the number of homes going for DBS will be a fraction of this requirement and that accumulated losses could top $£ 1 b n$ within ten years. All pure guesswork of course.
What could induce anyone to invest in such an enterprise? The danger is that the whole thing could end up in a great big shambles - and that this could coincide with the supposed need for change in broadcasting. We could in fact find the whole of broadcasting thrown into the metting-pot. If this scenario is valid, it seems important to ensure that our present broadcasting services do not suffer, though they are bound to do so to some extent. In the past, new services have been tacked on to the existing framework with such associated changes and safeguards as have been considered appropriate. The evolutionary approach has served us well. The danger of the radical approach is that we could all too easily end up with far worse services than we already haye.

Servicing the Sony KV1800UB

David Botto

Though this was one of the first Sony colour sets to be released in the UK large numbers were sold and many are still in use, giving good results. A 90° Trinitron tube is used and there's an unusual "non-PAL" colour decoder. There are a number of circuit features to confuse those not familiar with Sony practice of the time. For example the pincushion correction circuit modulates the supply to the line output transformer and there's a separate flyback transformer which is driven by the "converter" transistor Q802. The latter has a regulator arrangement in its emitter circuit. A conventional series regulator circuit produces a stabilised 110 V h.t. line.

Access

Access for service is easy. Start by pulling off the brightness and field hold knobs at the top of the cabinet back. Next remove four screws from the back and two on the underside. Lay the set on its face on your rubber bench mat and lift the entire cabinet away.

Panel Arrangement

The circuit boards are identified by letters in the usual Sony fashion and are connected together by wiring that goes to various numbered circuit points. We'll use these board identification letters in this article and identify some of the circuit points. The board mounted upright on the left-hand side when you look into the receiver from the rear is board C . This contains the decoder circuitry, the luminance channel and the RGB output stages, also the sync separator. Next to this is board S , which contains the signal circuitry - the i.f. strip, the a.g.c. and a.f.c. circuits and the intercarrier sound channel. Boards D and P are mounted horizontally at the bottom of the chassis. Board D contains the field timebase and the line timebase up to and including the line driver stage (which drives the converter transistor, the two parallel-connected line output transistors Q801A/B being driven by a winding on the flyback transformer). Board P contains the mains bridge rectifier, the series regulator control circuit, the pincushion correction circuit, the line output transformer and various rectifier diodes fed from the flyback transformer. At the right-hand side, mounted upright, is the small horizontal regulator board HR - this circuit is connected in series with the converter transistor.

Major Circuits

As with most TV sets the majority of faults occur in the power supply and/or the line timebase, so for fast fault location it's important to understand the arrangements used. Fig. 1 shows the mains input and rectifier circuits and the series regulator that produces the 110 V h.t. line. The block diagram in Fig. 2 indicates how the converter, line output and associated circuits are arranged while Fig. 3 provides a simplified circuit diagram of the system outlined in Fig. 2. At first sight it looks a bit complicated, but the whole thing breaks down into a number of relatively simple circuits.
The mains input (see Fig. 1) is fed via fuse F901 (2ÄT)
and the double-pole on/off switch (incorporated with the volume control) to the mains autotransformer T903. This feeds the heater transformer T902 and the mains bridge rectifier D $601-4$ which produces 130 V across C902A. The 2 A circuit breaker CB901 is connected in one side of the feed to the mains bridge rectifier - it seems to do a good job of protecting the circuitry. The unregulated 130 V supply is fed to the collector of the series regulator transistor Q902 which is mounted at the top right of the receiver (viewed from the rear). It's control circuit (Q601, Q602 etc.) is conventional and is mounted on board P which receives the regulated 110 V output from Q902 at point 17. VR601 is used to set up the 110 V line. If the series resistor $\mathrm{R} 631(2.7 \mathrm{k} \Omega, 0.25 \mathrm{~W})$ has to be replaced use an 0.5 W type at least. Notice that Q602 receives its collector supply via $\mathrm{R} 902 / 3$ (both 0.5 W types) which can and do fail or change value.
The 110 V line should be set up before any other adjustments are made. Do this with a digital multimeter connected between point 17 on panel P and chassis: disconnect the aerial and adjust VR601 carefully for exactly 110 V . Check the reading again after the set has been running for half an hour.
The three presets VR602/3/4 (all $250 \mathrm{k} \Omega$) on board P provide low-level white balance adjustment. You set them up by turning the first anode preset VR 605 (also on board P) to give a barely visible picture, preferably using a crosshatch input signal.
There are two presets in the pincushion correction circuit on panel P. VR608 ($5 \mathrm{k} \Omega$) sets the width while VR606 ($10 \mathrm{k} \Omega$) provides pincushion adjustment. The waveform shown in Fig. 4(a) should be present at the emitter of Q604 when a set is correctly adjusted - the d.c. voltage present at this point should be about 100 V .

Dealing with a Dead Set

What to do when a set won't start up? Since the panels are all wired together it's not easy to isolate them for fault finding. Fortunately however if the set is dead or tries to start up but can't quite make it tracing the faulty section is not too difficult.

Start by examining fuse F901 (with the mains disconnected of course). If it's open-circuit with no signs of blackening it may well have failed of old age - especially if it's the original one. Replace it - after checking that the cutout (CB901) is pushed in - and try the receiver on the mains. If the set works run it for at least three hours before returning it to the customer.
If F901 is in order but the receiver just won't start up examine C531 on board D. This capacitor forms part of the line oscillator start-up circuit (see Fig. 5). It can dry up, falling in value and leaking. It may well fall apart in your hands when you touch it. If it's the original one change it anyway - this will save you an almost certain callback later. In the event of a fault in the line timebase Sony suggest connecting a $3.9 \mathrm{k} \Omega, 5 \mathrm{~W}$ resistor between the cathode of D510 and the 110 V end of R555 in order to get the line oscillator going. We prefer to use a separate d.c. supply, variable between $11-18 \mathrm{~V}$. You'll then be able to check the line oscillator circuit with the mains supply

Fig. 1: The mains input, rectifier and series regulator circuits. D601-4 are type SA2 or U05E.
disconnected.
A variac or tapped mains input transformer is essential when working on this model: a component tester (see Television, June 1984) saves hours of time since all components on the board you're testing can be speedily checked. When a variac/tapped transformer is used the set must be switched on and the mains input increased gradually. Even if the set is in perfect order it won't start when the mains input is slowly increased from zero because the line oscillator start pulse provided by C531 will not be present. You'll need the external 18 V supply.

Now a brief warning. Always keep the mains switch in the "on" position whilst the set is connected to your variac. Don't switch it on and off. If you do there'll be a sudden surge of a.c. input that may well blow out transistors all over the receiver. Please don't ask me how we found this out . . .

If fuse F901 is o.k. and capacitor C531 is in order, make sure that the receiver is disconnected from the a.c. mains supply then check the line output transistors Q801A/B, the series regulator transistor Q 902 , the converter transistor Q802 and the two transistors Q851/2 on the HR panel. If any are faulty replace them - but don't connect the mains supply to the receiver yet. If all appears to be in order, connect the positive side of your external d.c. supply, adjusted to 11 V , to the cathode of diode D510, negative to chassis, to power the line oscillator. Connect - your oscilloscope (10:1 isolation probe) to the collector of transistor Q510 in the line oscillator circuit (it's a multivibrator, using Q509 and Q510, both types 2SC1364). A waveform similar to that shown in Fig. 4(b) should be seen. Since the line oscillator is running free you may observe some variations in this waveform. The important thing is that it is present.

If the waveform is present, disconnect the d.c. supply and instead connect it between the junction of R536/R534

- and chassis. Increase the supply to 18 V . The waveform should continue to be present.

If the line oscillator doesn't produce an output waveform check the two transistors Q509 and Q510.

While you're about it, check the flywheel line sync phase splitter transistor Q507 (another 2SC1364) and the line driver transistor Q511 (2SC867). If any of the transistors on board D show signs of corrosion on their leads replace them even if they test all right. Diode D510 (10D2), the flywheel line sync discriminator diodes D505/6 (type 1T22A) and diodes D508/9 (type 1T40) in the line driver stage should also be tested. The KV1800UB has now seen a few years service, so remember that the small tubular electrolytics tend to dry out. Check, in the following order, C525 ($4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$), C539 and C522 (both $1 \mu \mathrm{~F}$, 50 V), then $\mathrm{C} 521(47 \mu \mathrm{~F}, 25 \mathrm{~V})$. C531 we've already mentioned. If the line oscillator works with an 11 V supply but not with an 18 V supply at the junction of R534/6 and both C521 and D510 are in order check C615 $(470 \mu \mathrm{~F}, 35 \mathrm{~V})$ on board P. Check C614 and C619 at the same time. Although they are not connected to the line oscillator circuit this will save time in the long run.

If you don't have a variable d.c. supply handy, use a single PP9 battery in place of the 11 V d.c. supply and two PP9s to provide 18 V .

Fig. 2: Block diagram showing the converter and line output stage arrangements.

Make sure that the track of the line hold control VR505 is intact. It's a good idea to apply a little Castrol DWF to the slider.
Power the line oscillator from the external 18 V supply, connect your scope to the collector of the line oscillator transistor Q510 and switch the receiver on. Connect your digital voltmeter across the output from the mains bridge rectifier, i.e. between the junction of D603/4 and chassis, then slowly turn up the variac or tapped transformer until you obtain a reading of about $50-60 \mathrm{~V}$ d.c. Reduce the mains input to zero and transfer the voltmeter to point 17 on board P, i.e. Q902's emitter. If you have two meters available they can be simultaneously connected to these points. Advance the input cautiously until the reading obtained at point 17 is 110 V d.c.

Transfer the scope probe to the collector of line driver transistor Q511 then to the collector of converter transistor Q802. The waveforms should be as shown in Fig. 4 (c) and (d).

If a voltage appears at the junction of D603/4 but the 110 V line is missing the fastest way to deal with the fault is to check $\mathrm{Q} 601 / 2$ and the associated diodes on board P with your component tester. Replace any that show signs of corrosion even if they test "good". Next examine all the small tubular electrolytics on the board for signs of drying out, starting with C $616(33 \mu \mathrm{~F}, 160 \mathrm{~V})$. Also check the board for dry soldered joints.

We've not had a faulty flyback or line output transformer to date in one of these sets, but bear in mind that they are getting older. (We recently had our first ever line output transformer failure in a Sony KV2000UB.)

Once the receiver is functioning, turn the variac input voltage completely to zero before disconnecting the mains supply. Remove the external 18 V d.c. supply and, provided you're sure that C531 and R555 are in order, connect the receiver directly to the mains supply. Switch on and you should obtain picture and sound.

Despite its age the tripler, housed in block DC801 which also contains the $1 \mathrm{M} \Omega$ static horizontal convergence control VR801, seldom fails. If you suspect it, disconnect its input from the flyback transformer and see if the receiver starts up without it, i.e. the d.c. supplies and waveforms are correct. Don't be in a hurry to remove the tube's final anode cap as this contains an extra connector for the static horizontal convergence voltage - refitting it is not easy. If these two connectors short together the picture will be strange indeed!

The Field Timebase

The field timebase circuitry on board D seldom causes problems. The line-up is as follows: Q501 (2SA677) field blocking oscillator; Q502 (2SC1364) field amplifier; Q503 (2SA677) field driver; Q504 (2SA677) phase inverter; Q505 and Q506 (both 2SD291) field output transistors. Reduced field scan is usually caused by the field scan coupling capacitor $\mathrm{C} 511(470 \mu \mathrm{~F}, 25 \mathrm{~V})$ going open-circuit or leaky. If reservoir capacitor C 619 on board P dries out and C515 ($470 \mu \mathrm{~F}, 35 \mathrm{~V}$) on board D does the same (the two are in parallel) all sorts of weird fluctuations in the field scan may occur. If the field output transistor(s) Q505 and/or Q506 fail, check Q503/4/2 and the bias diodes D503/4 (type 1T40) before you replace them.

To make sure that the field oscillator is working check the waveforms at the collector of Q501 and the base of Q502 - see Fig. 4 (e) and (f) respectively. The coupling capacitor between these two stages, $\mathrm{C} 508(100 \mu \mathrm{~F}, 16 \mathrm{~V})$,
can loose capacitance, cutting off or reducing the drive to Q502. As with every board in the KV1800UB, inspect all the small electrolytics for signs of corrosion.

Signals Circuits

The tuner seldom fails. If it does the wisest course is replacement. If you've a dusty or weak picture, before condemning the tuner remove the lead from point 10 on board S (the tuner a.g.c. connection) and bias the tuner from an external source. If this results in a good picture suspect transistors Q209 (2SA677) and Q210 (2SC633A) on board S. If these are o.k. check C239 ($33 \mu \mathrm{~F}, 16 \mathrm{~V}$).

Board S seems to be relatively trouble free, though occasional faults do occur. 18 V is supplied to this board at point 15 and is fed via choke $\mathrm{L} 214(680 \mu \mathrm{H})$ to the various circuits on the board. If this choke goes open-circuit or suffers from dry-joints nothing will work. There are two i.c.s on the board, the intercarrier sound chip IC201 (AN241) and the a.f.c. chip IC202 (CX089D). Perhaps we've been fortunate, but so far we've found these i.c.s to be entirely reliable. The sound output transistor. Q901 (2 SC 867) is mounted off the board, near the loudspeaker. If you get weak or distorted sound, check Q901 then, in the following order, $\mathrm{C} 252 / 3$ (both $1 \mu \mathrm{~F}, 50 \mathrm{~V}$) and C 251 $(100 \mu \mathrm{~F}, 16 \mathrm{~V})$. These electrolytics tend to lose capacitance, giving rise to weak, distorted or no sound. Note that Q901 receives its collector voltage via point 21 and R603 ($68 \Omega, 0 \cdot 125 \mathrm{~W}$) on board P. If R 603 fails you'll wonder where the sound went

To check the video output from board S , connect your oscilloscope ($10: 1$ probe) to point 7 on board C. You should see the complete video signal - use a colour bar input. The video output from board S is fed to board C via the slider of VR903 ($\mathrm{k} \Omega$) on the front panel. Sony call this the picture control.

The i.f. output from the tuner goes first to the UIF board. This is tucked away below the tuner and causes few problems. You can however get a noisy or speckled picture if the transistors on this board (Q751/2, both type 2 SC 1128) get corroded or if the supply smoothing capacitor $\mathrm{C} 752(33 \mu \mathrm{~F}, 25 \mathrm{~V})$ loses capacitance.

The Decoder Panel

Board C contains the luminance and chroma circuitry and, with the front-panel mounted hue control, tends to remind the TV engineer of NTSC receivers. The "nonPAL" circuitry does however produce a surprisingly good colour picture - provided the hue control is correctly set to compensate for phase errors in the received signal. There are forty three transistors on the board and no i.c.s. We should perhaps mention that the circuitry was devised to avoid infringing the PAL patents. The circuitry decodes the PAL signal, but does so in a non-PAL manner that doesn't take advantage of the PAL phase error cancellation feature. There are nonetheless a chroma delay line and a bistable to carry out signal switching.

Although the chroma circuitry looks complex it's not difficult to locate the faulty section using an oscilloscope (10:1 probe) and a colour bar input to the receiver. Start at circuit point 1 , where the composite video signal is fed to C301 (39 pF). Then transfer the scope probe to the junction of C341 (39 pF) and the secondary winding on .T305 (CAT-2) where you should see the familiar cottonreel waveform. Next move the probe to the secondary of T306 (BAT-1) to check the burst waveform, then check

Fig. 3: Simplified circuit showing the converter, line output and associated stages. D608 and D610 are type SB2 or V09C. Component reference numbers indicate location, i.e. $R 165$ is on board $C, 0604$ on board P, etc.

Fig. 4: Key waveforms for testing. Peak-peak voltages: (a) 10V; (b) 4V; (c) 230V; (d) 450V; (e) 6V; (f) 1 V .

Fig. 5: The line oscillator start-up circuit.
for a 4.43 MHz signal at the junction of C362 (27pF) and the secondary of T307 (COT-1). This checks out the B - Y burst/reference oscillator channel. There's a separate burst/reference oscillator channel concerned with the R - Y signal. In this case check for the burst signal at the secondary of T308 (BAT-2) and for a 4.43 MHz signal at the secondary of T309 (COT-2). The R, G and B outputs should be present at points 18,16 and 15 respectively on the board. Make sure that there's a nice squarewave at the collector of Q162 (2SC633A) in the bistable circuit.

The 18 V input to the panel enters at point 4 and is fed via L156 $(680 \mu \mathrm{H})$ to the various circuits. If this choke corrodes or is dry-jointed you'll lose the 18 V supply. This sounds simple - but it's easy to get caught. Fluctuating or
intermittent colour is often caused by the clock pulse amplifier transistor Q324 (2SC633A) leaking. The sync separator transistor Q154 (2SA677) is mounted on this board: when it plays up it can cause colour and sync problems.

Before making a lot of voltage and scope checks on panel C it pays, as with the other panels, to examine the transistor leads for corrosion and the small capacitors for drying out. Replace any that fail this test. You'll then usually find that the circuitry works correctly! Unless someone has fiddled with the preset adjustments they are best left alone - they don't seem to drift.

Tidying Up

When all repairs have been completed spray any panels you've soldered with a thin coat of circuit varnish and make sure that all the connecting leads between the panels are in their correct positions. Run the set for a few hours before returning it to the customer.

Modifications

The main modifications of concern to the service engineer are as follows:
(1) R623 changed to $220 \Omega, 3 \mathrm{~W}$ metal oxide.
(2) R910/R 920 changed to $2.2 \mathrm{M} \Omega(0.5 \mathrm{~W})$ with a 470 pF (250 V a.c. rating) added in parallel.
(3) C 803 changed from $0 \cdot 02 \mu \mathrm{~F}$ to $0 \cdot 019 \mu \mathrm{~F}(1 \mathrm{kV})$.
(4) After serial number 25,301 a modified flyback transformer (T801) was fitted. Part no. for the earlier type is 8 -983-662-15 and for the later type 1-439-132-11. These
transformers are not interchangeable.
(5) Also after serial no. $25,301 \mathrm{R} 445$ was changed to 390Ω and R807 (originally between $0 \cdot 68-1 \cdot 8 \Omega$) was changed to $1 \cdot 5-2 \cdot 7 \Omega$. Examine the original before replacing. R807 can fail if the line output transistors go short-circuit. The precise value depends on the gain rating of the transistors fitted. This is indicated at the right beneath the transistor type number. If the rating is 3 , use a 1.5Ω resistor; if the rating is 4 use a 1.8Ω resistor; if the rating is 5 use a 2.7Ω resistor.
(6) The voltage rating of C233 on board S was changed from 16 V to 10 V - but always fit a 25 V working type when a replacement is necessary.
(7) A "squelch" circuit board was fitted in the audio circuit after serial number 33,301 . If the board seems to have little effect measure the voltage between the base of Q052 (2SC633A) and chassis. The reading should be 0 V with no signal rising to approximately $4-5 \mathrm{~V}$ d.c. or more with a good signal. If it doesn't, replace capacitor C054 $(3 \cdot 3 \mu \mathrm{~F}, 25 \mathrm{~V})$.

Letters

TELETEXT DECODER

Peter Marlow's article was of considerable interest to me since I have already constructed a teletext decoder on similar lines, albeit using a 6502 microcomputer control board and providing RGB outputs for use with a colour monitor. The decoder will also provide a printer dump of the displayed page on any Epson lookalike printer.

Like Peter Marlow I used the /AHS sync signal from the VM6101 decoder but found that the field sync was intermittently lost about thirty seconds after switch on when an incoming video signal was present. Removing the signal cured the problem - but of course removed the ability to receive teletext! I found that a better solution was to use the off-air sync from the decoder board - this is automatically switched to /AHS in the absence of a video input signal, thereby allowing after-hours display.
I also implemented a "next page" and "previous page" increment/decrement facility but found that the decoder randomly forgot one of the digits in a transmitted page number. This doesn't appear to be a timing or a decoder board fault. Any comments?
R.G. Nevell,

Warrington.

GRUNDIG GSC100 CHASSIS

The article on the Grundig GSC100 chassis (September 1984 issue) covered most faults experienced with these sets. A chroma fault I had recently was traced to C863 $(0 \cdot 1 \mu \mathrm{~F})$ which decouples pin 8 of the TDA2521 chip in the colour module. The voltage at this pin read approximately 6 V instead of 9 V because C 863 was leaky (350Ω). Failure of this capacitor also caused flashing grey lines when there was no colour. C861 ($0 \cdot 1 \mu \mathrm{~F}$) which decouples pin 9 of the chip could presumably cause similar problems.
D. Parsons,

London W12.

VCR UPDATING

After my two Philips N1500s, converted to half-speed operation, had notched up over fifty thousand hours' use each I decided that the time had come to upgrade to newer, VHS machines - the rising price of N1700 heads was a major factor in this decision.

After making enquiries I decided on Panasonic, whose machines have a reputation for reliability, and bought two NV7200Bs from a dealer in Truro (he offered me a. "quantity" discount!). To get best results I modified the receivers to work as PAL input monitors and found that the overall quality obtained using the combination of ancient Rank A823 chassis with modified line timebases
and the NV7200Bs was very good.
One of the machines developed a fault after a few weeks but we could find no reference to the fault in back copies of Television. The machine left a loop of tape after threading out, so that it was necessary to press rewind briefly before playing or ejecting. This went on for some time until I noticed that rewind got sluggish when the machine had been in use for some time, and eventually it wouldn't play for more than about half an hour before cutting out. Fearing the worst I monitored the tape motor voltage by connecting an AVO via flying leads soldered to the motor plug, but nothing seemed to be amiss. The fault was eventually cured by removing the two turntables and applying a very small amount of Three-in-One oil to the shafts, taking care not to splash the belts or rubber wheels.
For the benefit of others using NV7000 series machines here's a list of faults etc. noted in back issues:

July 1981, page 465.
October 1981, page 632.
January 1982, page 153.
March 1982, page 241.
October 1982, page 647.
May 1984, pages $386 / 8$.
August 1985, page 566.
September 1985, page 635.
March 1986, page 308.
June 1986, page 511.
July 1987, page 590.
Servicing article.
Truro, Cornwall.

S. AFRICAN SATELLITE TV RECEPTION

I understand that signals can be received here in South Africa from the Russian Ekran satellite at $99^{\circ} \mathrm{E}$ with 714 MHz transmissions. Could any S. African reader interested get in touch with a view to exchanging information on the technology involved?
Dez Boldizsar, 14 Goudsnip Road, Atlasville, Boksburg 1459, Transvaal, S. Africa.

FOR DISPOSAL

We have a Saba Ultra CSL Model 6745 fitted with the H Telecommander chassis for disposal. It's clean and was owned by a non-smoker but has a low tube and unknown faults. We just can't bring ourselves to throw this beautiful abomination on the skip! It's free of charge to anyone who likes to collect it.
R.S. Daynes, Radio and TV Service, Deepdale House, Dibdale Road, Dudley, W. Midlands (telephone 038456 355).

A new exchange service for upper drum assemblies incorporating the latest in video technology

CONTACT YOUR NEAREST DISTRIBUTOR FOR MORE INFORMATION

NEWCASTLE GENERAL
SUPPLY CO. LIMITED
4-10 Leazes Park Road,
Newcastle upon Tyne NE1 4QJ
Telephone: 902323177
VACUONICS LIMITED
Peartree Lane,
Peartree Lane Industrial Estate,
Dudley, West Midlands DY2 0QY.
Telephone: 038474182
PECO ELECTRONICS
Head Office
248 Grand Drive
Raynes Park, London SW20 9NE
Telephone: 01-5430548
PECO ELECTRONICS
New England House, New England Street,
Brighton, Sussex BN1 4GH
Telephone: 0273 688395/6

D.D.DISTRIBUTORS

27 Florence Road, Parkstone, Poole,
Dorset BH14 9JF.
Telephone: 0202722622
H.B. LITHERLAND

237 Caunce Street, Blackpool, Lancs FY3 8HG
Telephone: 0253302841

WEST RADIO LIMITED
24 St. Thomas Street, Bristol BS1 6JL
Telephone: 0272292525
WEST RADIO LIMITED
165 Goldcroft,
Yeovil, Somerset.
Telephone: 093576022
WEST RADIO LIMITED
Ferndale Road,
St. Thomas,
Exeter, Devon.
Telephone: 039279909

WILLOW VALE

ELECTRONICS LIMITED
11 Arkwright Road,
Reading, Berkshire RG2 OLU.
Telephone: 0734876444
WILLOW VALE
ELECTRONICS LIMITED
Unit 4, Enterprise Park,
Reliant Street, Oldham Road,
Manchester M10.
Telephone: 0616821415

PERKVALE

ENTERPRISES LIMITED
Unit 2,
Robin Hood Industrial Estate,
Clondalkin, Dublin 12.
Telephone: 0001519631
P.V. TUBES

104 Abbey Street
Accrington, Lancs BB5 1EE. Telephone: 0254 36521/32611

D.B. COMPONENTS

ST. Matthias Mission,
Armada Street, North Hill
Plymouth, Devon PL4 8LZ
Telephone: 075224369

H.R.S. LIMITED

Electron House,
Great Barr Street,
Birmingham,
Midlands B9 4BB
Telephone: 0217712525

> P.J. HILL

Rear of 25 High Street,
Tewkesbury,
Glous GL20 5AT
Telephone: 0684294317
COOPER ELECTRONICS
82 Terenure Road East.
Dublin 6, Ireland
Telephore: 0001 900470/900824
CHARLES HYDE AND SON LIMITED
Prospect House, Barmby Road,
Pocklington, Yorks YO4 2DP. Telephone: 075923068

UPDATING COURSES

HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS.

VCR SERVICING

(3 WEEKS FULL TIME)
NEXT COURSES START ON JAN. 26th \& MAR. 16th 1987 - TUITION FEE $£ 575$

MICROCOMPUTER SERVICING

(ONE WEEK FULL TIME)
NEXT COURSES START ON DEC. 29th, FEB. 16th \& APR. 6th. - TUITION FEE £250 (MSC grants available on JTS/ATS training schemes, subject to approval. If you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)

Further details from:
LONDON ELECTRONICS COLLEGE (VC Dept.) 20 Penywern Road, Earls Court, London SW5 9SU

Tel: 01-373 8721

 VHS \& beta ideler kit PANASONIC REEL IDLERNV7000, NV7200 PANASONIC REEL IDLER NV333, NV366 PANASONI REEL IDLER NV370, NV230, NV730 etc. HITACHI REEL IDLER.........V88000, 8300,8500 FISHER REEL IDLER PANASONIC PLAY IDLER PANASONIC PLAY CLUTCH...

Stockists of $4,11 \& 12 \mathrm{GHz}$ Equipment. Distributors for:
 DH Satellite TV

Specialists in supplying to Dealers

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
* Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ.
Phone: (0902) 29022.

TV Behind the Curtain

Last summer I took my holiday in Eastern Europe, passing through East Germany, Poland and the USSR before emerging via Finland and crossing the Baltic to Scandinavia. I was particularly interested in observing the TV scene in the USSR - we see only edited snippets on our news. There were three things to consider: the quality of the transmissions (using the SECAM colour system), the TV sets and the programmes available.

Communication in the USSR is rather difficult for the Western visitor. Not only is the language a problem but unless you know the Cyrillic alphabet it's almost impossible to read anything. A similar problem occurs in Greece of course. As a result it was much more difficult for me to get at the facts than it had been on my earlier visit (see Television January 1986) to Canada and the USA, where all you have to do is ask. In the USSR I had to depend almost entirely on observation, and although I had technical questions there was no one I could easily ask and most of them had to remain unanswered.

Having outlined the constraints I'll try to give you a picture of TV behind the curtain. First, a visit behind the Iron Curtain is not as rigidly controlled an affair as it once was. We were able to walk about freely and look at things: we weren't allowed to take photos of touchy subjects like border posts, military installations and airports, but we were otherwise not too restricted in our movements.

Receivers

The Russian TV sets I saw, in hotels and elsewhere, were generally very substantial - constructed like the proverbial brick-built outhouse. All were of hybrid design, with plenty of valves and pictures of varying quality. Some were very good, others dreadful, but this is true the world over and is not peculiar to the USSR. Most of the sets could receive two channels. All TV broadcasting in the USSR is at v.h.f. I read that the Moscow transmitter has a service area of 200 km radius and is "of sufficient power that no relay stations are needed". The area is quite flat and v.h.f. will go a long way, but even so the power must be formidable. I was told that three channels are available in Moscow.

Transmission Standards

Transmission standards appeared to be consistently good. As the USSR covers such a vast area microwave links are used for TV and other communications. I saw some that had the dishes mounted horizontally near the ground, firing upwards towards a reflector plate mounted on a tower. The plate reflected the signal horizontally in the right direction.

Receiving Aerials

A weird and wonderful variety of TV aerials were to be seen. Many had a definite DIY look about them, particularly out in the country. It was unusual to see them mounted on a house - most were mounted alongside on a pole with stays, the pole often consisting of a long sapling stripped of its branches. Band I and Band III aerials were
in evidence near centres of population: in the country Band I only was usual. I saw many "Double Diamond" aerials (see Fig. 1) west of Leningrad. These were definitely home built, probably from a bought-in kit. Judging by the varieties seen the constructor had to supply his own timber. This is a particularly unusual type of aerial - I've seen nothing like it elsewhere in my travels. Fig. 2 shows some other aerials seen.

Economic Conditions

Progress seems to be slow in the USSR: there isn't the commercial competition we see in the West, with different

Fig. 1: Double-diamond type aerial.

Fig. 2: Some other types of aerial seen and an example of a double-diamond aerial mounted on a stripped tree.
companies leap-frogging each other in an attempt to be first with the latest technology. The Russian philosophy seems to be that if something works all right stick with it and don't try to get too fancy (you can certainly see that this is true of their cars, the popular ones being mostly based on obsolete Fiat designs). In addition, economic priorities are assigned by government control, and when you see people queueing in some places for milk and bread it's obvious that there's not much cash available for luxuries. A black-and-white set costs approximately $£ 200$ and a colour set around $£ 500$. Wages are low (typically $£ 200$ a month) but since accommodation is cheap (some $£ 20$ a month inclusive) the economic conditions are not as harsh as they might at first appear. Nevertheless the purchase of a colour set represents a much bigger chunk of a Russian's income than it does for us and a typical shop had just two sets in stock.

The Programmes

I wasn't very impressed by the programmes, though
having no understanding of the language didn't help. Their shots seemed to last too long, particularly with "talking heads" and stage productions. Production techniques are nothing like as slick as ours (no Quantel) and in some ways it's like going back twenty or thirty years. Presumably the viewers don't miss what they've never seen. If Mr. Gorbachev is saying something important on the news you get the whole lot, without editing. One night he was on for half an hour solid during an hour-long news programme. Somehow there doesn't seem to be much fun in Russian TV. The complete reverse is of course the ghastly American games show, all flashing lights, screaming contestants, "big bucks" and "whammies"!

Postscript

I still believe that in the UK we have the best TV in the world, in all respects. There will always be criticisms of course, and nothing's perfect, but believe me when, after successive visits to the USA and the USSR, I say that we've a lot to be thankful for.

The Operation of Electric Motors

Part 5: Brushless DC Motors

Mike Phelan

In this final part of the present series we'll take a look at what is now becoming the most popular type of motor for video applications. This is the brushless motor which uses semiconductor devices instead of the conventional commutator and brushes to carry out pole switching.

In the commutator motors described in Parts 3 and 4 the commutator and brushes provide a means of supplying current to the rotating armature windings in turn as the motor rotates. There are several disadvantages to this arrangement. A few of these are as follows. Switching is abrupt, the self-inductance of the windings causing interference - a "ringing" component is superimposed on the armature current. In addition a large number of poles are required to give sufficient smoothness of rotation. In most cases this is not enough: the motor must run at a fairly high speed under load, with considerable gearing down to the driven component - drum or capstan - and even more inertia added in the form of a flywheel in order to allow smooth servo speed control.

Development of the Brushless DC Motor

If we make the current flowing through the windings as nearly sinusoidal as possible, with two or more poles receiving currents with phase displacements equal to 360° divided by the number of poles, then we have a fairly good polyphase a.c. motor. With a stationary set of windings and rotating magnets the resemblance to a synchronous motor can be clearly seen.
To provide sinusoidal a.c. with two or more phases it's necessary to have some sort of frequency source. Now in a VCR we are already closely controlling the speed and phase of the drum and capstan motors, so it's no use having a fixed frequency source - it has to be varied to control the speed. The motor itself can therefore be employed to provide the switching, by using some sort of pick-ups spaced equidistantly around the motor. There are several ways of doing this - magnetic, mechanical or optical to name a few. As the rotor is a magnet (see Fig.

1) this is the obvious choice. The sensing devices could be coils, but Hall effect sensors are normally used in practice. These are four-terminal semiconductor devices whose resistance varies when subjected to a magnetic field: d.c. is supplied to two of the terminals, the current flowing via the remaining two terminals being amplified by an i.c. or transistors to carry out pole switching.
This type of motor can be looked upon as a polyphase synchronous motor (it must be synchronous as the supply frequency is locked to the speed of rotation!) which behaves as a normal d.c. motor, i.e. the speed can be controlled by varying the supply voltage.
The performance is vastly superior to the commutator type in all respects. Low-speed running is smooth as the mechanical inertia is high, due mainly to the heavy magnet. In addition the current through the Hall-effect sensors can be made to approach a sinusoid by suitable design of the magnet. This also eliminates the interference problem. Mechanical design of the tape transport system is much simpler, belts, pulleys and flywheels being eliminated. There may be belt drive for ancillary functions such as reel drive and loading, but we're concerned here with drum and capstan drive. Finally the only parts that wear are the bearings, so the motor lasts longer.

Drive Electronics

The electronics required consist simply of a means to amplify the Hall current. Early systems used discrete components but more modern machines tend to use chips designed for the purpose. A stable d.c. supply is essential. Fig. 2 shows a simplified circuit. Most motors have either two or three sets of poles, with two coils per pole.

Construction

Fig. 3 shows the construction of a typical motor - the head drum motor used in the JVC HR7700, which has a discrete component drive circuit. The rotor magnet

Fig. 1: General arrangement of a brushless d.c. motor and its drive amplifier system.

Fig. 2: Basic motor drive amplifier circuit, simplified.

Fig. 3: Motor construction - cylindrical type.

Fig. 4: Motor construction - disc type.
operates the Hall sensors, and there's a multipolar magnetic ring to provide a frequency input for the servo's speed control loop - this corrects for wide speed variations before phase correction is applied. The small external magnet on the rotor triggers the drum flip-flop: this signal is used in many parts of the machine.

Fig. 4 shows an alternative form of construction. This is used in Hitachi machines and results in a very flat motor. The rotor magnet is in disc form, some four inches in diameter and no more than an eighth of an inch thick. The windings are mounted with adhesive on a PCB which also carries the Hall sensors and the drive i.c. The plasticferrite ring that provides the capstan servo tacho signal, in conjunction with a printed sinewave track, is cemented to part of the rotor.

Faults

This tends to be a trouble spot: the cement occasionally gives way, the magnet becoming detached. The result is a rumbling noise, and if this is unheeded the magnet wears through the tacho track. The capstan then runs very fast. A rather curious effect can occur when this happens: touching the live side of the tacho circuit with a finger or screwdriver reduces the speed of the capstan motor to almost the correct value. This is obviously because we are injecting mains hum into the tacho line. Whilst maybe not the correct waveform, it's better than nothing! The unwary might think they've stumbled upon a dry-joint or something similar.

This fault can sometimes be cleared by removing the flywheel and PCB carefully, then cementing the magnet back on. If the capstan speed is out the PCB is of course open-circuit and it's too late to effect a repair except by bridging the track - this is rarely possible. Careful reassembly is necessary as the clearances in this type of motor are very small.

Other brushless motors suffer from different faults. The JVC type is occasionally noisy because particles have flaked off the magnet, possibly due to rough handling. In some motors the bearings are "preloaded" and the manufacturers do not recommend any dismantling. Preloading means that where we have two bearings on a spindle pressure is applied during assembly so that the bearings are forced together. When the motor is warm the spindle expands, giving the bearings the correct clearance. If one of these motors is assembled without preloading it may be noisy in use. The ball races in this type of motor are usually sealed and cannot be lubricated. Any solvent will get past the seals however, washing out the lubricant and rendering the bearing useless.

Short-circuit turns in one winding are not too unusual. The symptoms can range from fuse blowing to a sideways displacement of part of the picture (if the offender is the drum motor). This looks like a hum-bar but doesn't move. The symptom can also occur if one pole of the motor is not being supplied with current for any reason. Shorted turns will result in overheating of the driver device(s) and their eventual failure.

In Conclusion

This concludes our discussion of the electric motor. We hope that it has given readers an insight into the operation of this important component and that it will in some cases enable repairs which may not have been attempted previously to be carried out.

Band C Satellite TV Reception

John Standen (North East Satellite Systems)

We've been involved with satellite TV since the days when the only signals that were available were those in Band C $(3 \cdot 4-4 \cdot 2 \mathrm{GHz})$. This band remains a source of considerable interest to us. In the early days it was all that we could offer, and in terms of a sensible dish size it had to be the Russian Gorizont transmissions. Although our company operates in the commercial sphere we still find that a real enthusiast from time to time appears. He may be a radio amateur who has 11 GHz equipment but finds that reception in this band is just too easy and wants something a bit more difficult. C band reception provides the answer. This article is intended for those who want something that approaches DX-TV, with the struggle for reception and the prize of receiving unexpected transmissions from the far corners of the world.

Just four years ago you'd have had to be rather wellheeled to consider reception of the very low-power transponders used in Band C. In those days Megasat advertised a Im dish at $£ 1,000$: it would just about give you a picture from the Gorizont satellite, which is almost a power generator in the sky. It all came down to dish size and efficiency. A 30 ft dish could give you some noisy but interesting results. Prices can now be reduced however, and with the latest technology it's possible to resolve pictures from low-power transponders that would have been considered impossible as signal sources four years ago. A few months back I decided to try out such a system. This enabled me to compare the results and costs of modern equipment with those of 1982.

The heart of any system is of course the dish. A poor large dish equals a very good small dish. We opted for a spun parabolic reflector. Being a single unit the efficiency is inevitably higher than that of a segment dish - and much higher than that of a mesh dish. To get a decent buying price we made a quantity purchase from the USA, but we were not happy with the US mount. So we produced our own, which we've tested and found to be stable in winds of over $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The only problem is that the structure weighs about half a ton, so it's not cheap to transport.

With good dish gain the next requirement was to transfer the signal to the LNA via a scalar horn. Too many 4 GHz horns today are of the polarotor type. This is fine if you want to receive linear, left or right circular polarity signals with some loss, but the C-band signals are so weak that such laziness will result in unacceptable
signal loss. The feedhorn required is of the basic throughfeed type, with a PTFE block to give reception of left and right polarity signals - for a linear signal, remove the block (there are no linearly polarised Band C signals available in Europe at present). Without the PTFE block, you'll lose 3 dB of your left/right polarity signal.

As we were using a spun aluminium dish as opposed to mesh dish it was considered to be easier and more accurate to set up the dish using Ku-band $(11 \mathrm{GHz})$ signals. A Ku band LNB was fitted at the focal point and the polar mount was set to track from the Intelstat satellite at $27.5^{\circ} \mathrm{W}$ to the Intelstat satellite at $60^{\circ} \mathrm{E}$. Horns and feeds were then exchanged and the polar arc was scanned at 4 GHz , using a standard Ku -band receiver. The result was nothing, apart from the old favourite Gorizont which we could have picked up using a fire element reflector. So the system was working but producing nothing from the weak transponders.

Remember that these transmissions are intended for an Intelstat A station with a 33 m dish. So what could we do with our little 2.7 m terminal? Answer: reduce the bandwidth. All good quality Ku-band receivers that cover more than the required input bandwidth of the C-band transmissions incorporate a 70 MHz outside loop. Into the loop we placed a 70 MHz bandpass filter which was variable from $10-32 \mathrm{MHz}$. With the filter in circuit the stations started to appear. Quite good reception was obtained from most 4 GHz transponders, but in search of the best we changed the 85° LNA for a 55° LNA. And that's where the system rests today.

The dish tracks from $60^{\circ} \mathrm{E}$ to $60^{\circ} \mathrm{W}$ and although I have equipment to look at all the Ku-band transponders I spend far more time plucking very weak C-band signals from space. We receive Libya, Nigeria, Argentina, Saudi Arabia, France, Spain, AFRTS, Brightstar, CBS, ABC, CNN, international news feeds and Soviet transmissions from the $14^{\circ} \mathrm{W}$ and $57^{\circ} \mathrm{W}$ satellites. There's always something interesting at any time of the day or night. Nothing really superb, except for France and Gorizont. There's lots of noise but the signals are quite watchable and there's plenty of work left for the enthusiast to do by way of improving the reception using some of the many threshold extension techniques. Band C is an experimenter's paradise, where the unexpected becomes normal. It's the closest thing to DX-TV but with a greater surety of success.

Examples of Band C satellite TV reception at Cropton, North Yorkshire using the equipment described in the article above. Left, Saudi Arabia; centre, Libya; right, Spain (TVE).

4 GHz equipment is not readily available in the UK today. To cater for enthusiasts wishing to experiment we are stocking a range of systems (the range is greater than that we stocked in the old 4 GHz only days) based on the 2.6 or 2.7 m dish. The selling price is $£ 1,335$ plus VAT (terms available), the major problem being delivery as the dish/mount assembly weighs over half a ton. Being massive a large lorry is required to move it. There are fifteen systems and the ordering delay is up to two weeks. Refinements to the feed system give reception of the 11 GHz and DBS bands.

Various transmissions are available in the 12.212.75 GHz band. The Telecom- 1 satellite provides many different French feeds, including lately Monte Carlo, also PAL feeds from France to the UK. There are also the French TV5 and TV6 network signals, some of which are
scrambled (using the discret system). Most of the signals are clear however.

Tests on the French system here in Yorkshire have provided huge signals on a 1.25 m dish. Further tests are to be carried out using a 90 cm dish: from previous results we feel that this dish size will be acceptable. For those interested a small number of LNBs have been imported and are available at $£ 198$ plus VAT.

All the systems mentioned in this article are currently in operation at our Yorkshire base. Anyone who wants to see the full range of satellite TV:from $3 \cdot 4-12 \cdot 75 \mathrm{GHz}$ in a polar arc is welcome to phone for an appointment - we can be open any evening and all weekend and enthusiasts are always welcome. For further details apply to North East Satellite Systems, Cropton, Pickering, North Yorkshire YO18 8HL (telephone 07515 598).

Micro Clinic

Sinclair Spectrum

Although this machine seemed to be working normally, when an Opus disc drive was purchased the computer ignored it. The cause was traced to pin 27 of the CPU chip being stuck low. Replacing the chip provided a cure pin 27 is the /M1 line and was telling the disc drive that something else was being loaded.

As the edge connectors appeared to have had plenty of use I was left wondering what had happened to cause the fault. As luck would have it another of these machines came along - with a blown ULA chip because the customer had pushed the computer into the disc drive and then switched on without bolting the two together. Now the slot in the Spectrum's edge connector can become slightly enlarged, and the Opus's key is rather thin. It's possible for the connectors to short together if the two are left free. After changing the ULA I checked for any other damage - and found that the CPU's pin 27 was stuck low. Problem solved!
R.B.

Dragon 32

We've been doing a few rapairs on these machines recently. The most common fault is failure of IC15 (74LS783), causing rubbish to be printed on the screen. These chips are unfortunately rather expensive.
R.B.

Sinclair Spectrum

The following tales show how careful you have to be when working on micros. The computer had a faulty ROM and after removing it and fitting a holder for the replacement I found I had a dead keyboard. After checking the ULA chip I started to look for solder splashes, using an eyeglass. Not being able to find one, out came the trusty scope. After much running around the circuit it finally dawned on me that the ЛINT line was not going low enough for the CPU to scan the keyboard. There was a minute solder splash under the CPU's holder: it was removed by sliding a piece of paper under the holder. The /INT line was going down to about 2 V . A lot of wasted time and slapped wrists!

The next machine had been "got at" in some way by a small boy, but we didn't know the exact details. Transistor

Reports on microcomputer servicing problems from Roger Burchett and Nick Beer

Tr4, the ROM and the CPU were all faulty, but the machine still wouldn't initialise when these had been replaced. Again out with the scope: data line 5 was found to be shorted to chassis. This once more meant an eyeglass search for something conductive. The cause was found under the ULA's holder: it looked like silver paper. Presumably this had got in during the said small boy's investigation, i.e. he took it apart while eating something wrapped in silver paper! Perhaps something easy now?
R.B.

Sinclair Interface 1/Microdrive

The ULA in the interface can suffer if the interface moves about or is suddenly disconnected. The usual result is a "microdrive not present" message when a microdrive cartridge is loaded, and sometimes the Spectrum won't initialise due to a grounded data line. Just occasionally a ULA chip will overheat spectacularly, causing a crater in the case just above it. As the ULAs are expensive it pays to bolt the two machines together.
It's surprising how many odd faults will go away if the main board edge connectors and the microdrive/interface connectors are given a good clean. I cannot stress this point enough. In the long run it pays to examine each machine carefully after repair.
R.B.

Sinclair Spectrum

Several of these machines have been brought in with a permanent black raster and white border. The cause is a faulty ULA chip.
N.B.

Sinclair Spectrum Plus

A common problem with these machines is no colour due to a faulty encoder chip. We find that it usually happens when the "SN" equivalent of the LM1889 is fitted. N.B.

Acorn Electron

The customer had opened up this machine and diagnosed a faulty regulator as the 5 V and -5 V lines were missing (they're marked on the PCB you see). What he didn't do,
and what I always do to give myself enough room to work, was to disconnect the keyboard. The voltage lines then returned. There's an $0.47 \mu \mathrm{~F}$ tantalum capacitor on the keyboard panel - it was leaking heavily.
R.B.

Sinclair QL

The customer brought in her Microvitec monitor, saying that it wouldn't work with her Sinclair QL. She didn't think to bring the computer in! We connected a BBC
computer to the monitor, using the nearest lead to hand, but what we didn't know was that this computer had an intermittent fault somewhere in the RGB output section (it's normally used with a u.h.f. input only TV set). Alarm and panic (this is where I was brought in). The monitor was o.k., so the QL was sent for. After much headbanging we were able to duplicate the fault - the reset button was sticking in! This all involved a lot of running around, because the customer had humped along a 14 in . monitor but not the little computer .
R.B.

Teletopics

BOOM TIME

The first six months of 1986 was certainly a boom period for the UK radio and TV trade, as the latest figures from the British Radio and Electronic Equipment Manufacturers Association show. BREMA comments that the consumer electronics industry benefited from a boom in High Street spending, with deliveries of major products registering strong growth and a marked upturn in the second quarter. Total colour TV receiver deliveries during the period amounted to $1,633,000$ compared to $1,388,000$ during the first six months of 1985. Of the 1986 total, 982,000 sets were UK produced and 651,000 were imported - the comparative figures for 1985 were 933,000 and 455,000 respectively. It will be noticed that along with increased UK production there has been a marked increase in imports. This is put down to increased ownbrand activity by the major High Street multiples, with rising imports from all the major Far Eastern exporting countries - South Korea has now become a significant supplier. A major feature in the large-screen receiver market was a six-fold increase in deliveries of sets fitted with FS tubes: by the end of the period the majority of large-screen sets were fitted with this type of tube. VCR deliveries rose to 812,000 from 555,000 in 1985. Imports of VCRs from Japan fell by 44 per cent during the period, to 239,000 . BREMA has expressed concern that overall economic trends could mean that the surge in spending will not continue into the next year.

TV BROADCASTING

A decision by the IBA on the award of the UK DBS franchise is imminent as we go to press. The period of the franchise is to be extended from twelve to fifteen years in recognition of the substantial investment required and the risks involved. The government has also decided to increase the current ITV franchise period by three years instead of two - till January 1st, 1993. Ministers of the EEC have agreed to adopt the MAC transmission standard for European DBS broadcasting.

BBC's DATACAST SERVICE

The BBC's Datacast service is now in operation. This works in a similar manner to teletext, the data being transmitted during the field blanking period, but instead of whole pages the data is transmitted in the form of addressed digital data packages which can be picked up by a receiver whose decoder has been suitably programed. This latter feature enables the service to be individually charged to users who have separate codes. Information providers send data to the transmitters over leased lines.

The service is on trial by the London Stock Exchange to transmit price information, by the banking communications service Euromoney Publications of London, and by the Financial Times.

PICTURE-IN-PICTURE VCRs

Hitachi is now selling in Japan and the USA a VCR that features a picture-in-picture facility. This is made possible by incorporating a digital memory using nine dynamic RAMs. Users can, by remote control, superimpose a smaller picture in any corner of the main picture. The picture can be off-air or via the VCR's video input socket and the two pictures can be interchanged. Either picture can be frozen. There are also special effects. For example the user can change the picture to a mosaic-like effect this is done by reducing the 64 tones to as few as only eight. A strobe effect operates at field rates of up to 16 images a second. In the USA the machine is also being sold by RCA and Sears.

TV DEVELOPMENTS

An interesting new TV chip from SGS, type TDA8100, incorporates the complete field timebase, with direct yolk drive from pin 17, plus the sync separator and line generator circuitry.

A couple of new Toshiba TV sets released in Japan incorporate a field store to enable the line scan rate to be doubled. While this doesn't increase the resolution it does make the line structure of the picture less visible. The sets have 21 and 28 in . tubes.

DIXONS LOGIK BRAND

As mentioned in this column last October Dixons have placed a substantial order for TV sets with Thorn. The sets are now being sold in Dixons' outlets under the Logik brand name.

JVC's GCR9 CAMCORDER

The JVC GRC9 camcorder, claimed to be the world's lightest and cheapest, is to be released in Europe this spring. It's a record-only version of the GRC7.

PHILIPS SERVICE VIEWDATA LINK

Philips Service has introduced a system called MOVIES (Multi-Option Viewdata Interactive Enquiry System) which enables dealers to pass orders, enquiries and messages to the Philips Service computer via the Viewdata network. A charge of $£ 300$ a year is made for this facility, but to encourage its use various benefits have been introduced including a reduced handling charge on orders under $£ 50$. In addition to placing orders, an update on orders placed can be obtained and part numbers, prices and availability can be checked. Technical and general information is also available, including service hints, de-
tails of recent modifications and technical assistance. Philips Service has also introduced floppy disc training packages.

GOLD MEDAL WINNER

Peter Richards of Criccieth TV, North Wales has won an international engineering competition. He led a strọng UK contingent to the sixth Sony International Service Contest which was held in Tokyo on October 27th. Altogether 68 contestants from 24 countries competed for gold medals in six categories - four for Sony engineers and two for dealers. Peter entered the audio competition and completed his set task in 41 minutes, 13 minutes less than his nearest rival. Our congratulations to Peter, who from time to time contributes articles to Television.

IVAC 87 MOVES TO BRIGHTON

IVAC ' 87 , the International Video and Communications Exhibition, will be held at the Metropole Hotel, Brighton, from 18-21 October 1987. While previous exhibitions tended to be dominated by equipment suppliers the 1987 event will be considerably. expanded to include not only hardware suppliers but also duplicator manufacturers, production companies and dealers offering specialist products and services. There will be a complementary programme of technical seminars and workshops, aimed particularly at programme makers and production engineers.

PUBLICATIONS

The latest edition of Roger Bunney's DX-TV book has now been published at $£ 5.95$ by Bernard Babani (publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF. The book (order no. BP176) has been retitled "A TV-DXers Handbook" and is in a new, large format. It provides a comprehensive review of propagation modes and reception techniques (with numerous practical circuits), data on international transmission standards and channel allocations, and notes on related subjects such as off-screen photography. A copy of the 1987 Babani catalogue of electronics, radio and camputer books can be obtained free of charge from the address above.

Those interested in vintage equipment may care to note that Chas E. Miller, who contributes regularly to these pages, is publishing a magazine entitled The RadioGram which is aimed at "all valve radio enthusiasts". The technical content includes complete circuits of individual sets and descriptions of unusual circuitry (and there's certainly been some of that over the years!). The magazine is published bimonthly and is available on subscription ($£ 6$ for six issues in the UK/Eire, $£ 8.10$ to Europe and to other countries by arrangement) from The RadioGram, "Larkhill", Newport Road, Woodseaves, Stafford ST20 0NP.

Electrovalue, the components by mail specialists, are now issuing an updated and currently priced catalogue three times a year. To obtain a copy send your request to Electrovalue Ltd., Freepost, 28 St. Jude's Road, Egham, Surrey TW20 8BR - you don't even have to stick a stamp on. Alternatively phone Egham (0784) 33603.

3D-TV

Peter Marlow writes: A new system of 3D-TV was demonstrated at a well attended meeting at the Institution
of Electrical Engineers on November 4th. The speaker was Dr. Reinhart Börner of the Heinrich-Hertz Institut, West Berlin, who had carried out the original research. Previous 3D-TV systems have required the use of special viewing glasses. With one system red/green filters are needed while another system uses time-sequential liquidcrystal filters. No special glasses are required with the new system however. The images are projected on to a specially designed screen from which they can be viewed directly in 3D: the method is not holography but simply that used for the 3D postcards that have been available for some years.

The basis of the new system is the "parallel lenticular" screen. This consists of many small Perspex strips of semicircular profile, placed side by side and running from the top to the bottom of the screen, with a highly reflective aluminium foil backing - the strips are not individual but are formed in a large Perspex sheet. The screen is laterally curved. A great deal of effort has gone into its design, mainly concerned with the radius, overlap and depth of the strips. The demonstration screen had been custom made in Hong Kong to a tolerance of 0.01 mm .

Initial work with the system was done using 35 mm slides. Six shots were taken sequentially to produce one complete 3D picture, with a camera mounted on an optical bench and each picture displaced slightly from the previous one. The six slides were then projected on to the lenticular screen, the projectors being placed in the same relative positions as the camera (exact placing is not critical). The result, called a panoramagram, provides the viewer with a. 3D picture consisting of five continuously following stereo images as the viewing angle changes. Hidden objects appear as in a hologram. The use of six photographs virtually eliminates blind areas where viewers cannot see the 3D effect in certain places in front of the screen.

An improvised demonstration was given using two slide projectors and a one square metre screen. The effect was good, although the viewing position was critical due to the use of only two projectors instead of six.

A 3D television system based on the principle has been built at the Heinrich-Hertz Institut, using a five by two metre screen and six monochrome cameras/projectors. The cameras are mounted in a semicircular arc with a fixed focal point. A method is being developed to allow dynamic synchronised focusing. Development of a colour system is also in progress, but this will involve colour convergence problems.

Transmission of 3D-TV images would of course require HD-TV bandwidths, but a certain amount of pre-processing could reduce the bandwidth. Synchronised video recording should be possible, though expensive, making its application in aircraft trainers attractive now. Another use for the system is in 3D molecular analysis.

The lecture certainly demonstrated the technical feasibility of the system, despite certain practical problems. The cost of TV projectors would probably limit the use of the system, particularly in the domestic context. Development of a picture tube with a lenticular screen would seem to be the best way forward, though it would need to be large to give the 3D effect properly. I look forward to having one to set up in the workshop!

Meanwhile, back with polarised viewing glasses, 3D VHD discs have been launched in Japan by JVC. The system is to be marketed by other firms in the VHD group, including Matsushita, Sharp and Toshiba.

Tiny Tim's Testing Time

Les Lawry-Johns

Things had been slack for some months and Tim was beginning to get used to it, even to like it. Except for the bills that kept coming in.

Then, last Friday, the avalanche started. The first one came in at nine o'clock.
"I'm just off down town. Be back in half an hour. Don't want to spend more than ten quid. Ta Ta."
Before Tim could say ". . . off" the chap had gone, leaving neither his name nor any other information. So Tim wrote PIG on the sheet and started to lift the set on to the bench. Another car then pulled up outside and a bloke staggered in carrying a 26 in . Bush set of the Z718 variety. He panted out his name and address and Tim felt sorry for him. "Call back at lunchtime" he said, after being told that the screen kept going blue before the tuner selectors failed. As the chap went out someone else came in. A music centre this time. None of the lights lit, one side was dead and the stylus was broken. Tim's eyes noted the Shure cartridge.
"Call back on Monday."
"But we want it for our party tonight."
"I'll try but can't promise."
Tim put the jobs in line and was about to start on the first when a woman came in with a white portable of the Thorn 1690 variety.
"I can't stop and talk about it. I want it for Sunday and the only time I can call to collect it is on Sunday morning at about ten o'clock. Do whatever needs doing. Bye for now."

She trotted off before Tim could say a word. His Sunday had gone for a Burton as usual. Oh well, mustn't moan.

Minutes later a large ITT FT110 was brought in. "Picture's very dull and it won't respond to the contrast."

Tim's mind said "beam limiter", but he didn't actually say anything. He didn't like the FT110, mainly because he'd not done a lot of them. And he couldn't remember how the beam limiter worked. But he knew the owner quite well. "Phone me tomorrow and I'll tell you all about it."

Left alone Tim started on Mr. Pig's set. It was a Pye CT200. He hardly had time to note the smashed tube base when another lady came in.
"Would you lift my record player out of the car for me?"

Tim went out to the blue Volvo estate and noted what appeared to be a radiogram standing in the back. It was one of the large, old HMV ones. A record player indeed, with a Garrard unit, twin speakers, etc.

Tim lifted it out while the woman chattered. "It was going all right except it wouldn't play the records right through, then it went dead. I said to my husband I don't want you mucking about with it, I'll take it to that little man down the road. They say he can do things all right and doesn't charge much. Not like some of these people do nowadays and you don't know what they get up to, do you? I think it's all wrong that people should take your things and interfere with them like they do, then charge you through the nose."
Tim put a tenner on the bill right away but he didn't say
much. "Pop in tomorrow" he suggested.
"Oh dear, I'll have to do without my Mozart tonight" she moaned. Tim took her name etc. and off she went, talking away to herself nine to the dozen.

The Pye's Problems

Back to the Pye. After a bit of a struggle Tim repaired the tube base socket and refitted it. When the juice was applied the heaters lit. There was a blurred raster and Tim realised he'd left the focus lead off. With that refitted the raster could be resolved but there was no picture or sound however much he fiddled with the tuner selectors. So he went down to the rear left side where the tuner joins the i.f. gain and filter unit. He removed the latter and resoldered all the contacts, noting that the one from the tuner had a track crack. Ah ha! This done the sound boomed out and a grossly misconverged picture appeared. This was attended to and he was left with a nice teletext message wishing him a pleasant day. Hardly had he finished when the owner appeared.
"Ah Mr. Pig, your set's ready after all."
"Name's not Pig, it's Sty."
"Nearly right sir."
"Actually I was only joking about calling back for it in half an hour. I've been told it's beyond repair. Thought you might give me a chit to that effect."

Tim got a bit angry. He switched the set on and showed the Sty man.
"Good lord, as quick as that. You must be a genius."
"I am but I don't let it show" said Tim modestly. He wrote the bill out and handed it to the Styman.
"Heavens. That much for such a short time?"
"Cheap for a genius, sir."
So off he went and Tim was left wondering. The set had been knocked over or off, and seeing the broken tube base someone had assumed that the tube was cracked. Oh well.

The Big Bush

Tim next turned to the big Bush. He soon found that it was a nightmare. First he took the tuner out and renewed the plastic nuts - one of the four had cracked open and was jamming the channels, as the blue ones do.
With the tuner refitted he could get a picture and was better able to see the effect of the blue flashing. He went over the blue drive from the TCA800 chip to the driver and output transistors and found that the voltages at all points varied with respect to the red and green channels. The most marked variation was at the collector of the blue output transistor.

Removing all three c.r.t. drives should have left a blank screen. It flashed blue. Tim's diagnosís was immediate and wrong. A heater-cathode short-circuit in the blue gun he thought. So he carefully removed the heaters' chassis connection and wired a resistor between the blue cathode and the heater. No change. It then dawned on him that the short-circuit was between the grid and cathode. His muddled mind recalled the adaptor he'd invented years ago to deal with a grid-cathode short in a tetrode tube by
shorting the grid to the cathode and transferring the drive to the first anode. "All right with a monochrome set but you can't do that with a colour tube with its three guns, you fool" he scolded himself. The things that go through your head when you're faced with a problem. Tiny Tim's trouble is his tiny mind. Not like you lot out there.

But he had to make up his little mind. He'd render the blue gun inoperative. He disconnected the supply to the blue gun's first anode. This left a slight blue haze in the centre. It wouldn't worry anyone but of course the picture was only a pleasant red and green, with no blue apart from the faint glow. The owner didn't complain and said he's seen enough blue to last him a lifetime...

Ribald Club Strikes Again

Next on to the bench was the FT110. Tim surveyed the displayed picture and again thought to himself "beam limiter" - and remembered that he'd been proposed as president of the Ribald Club (removal of beam limiters). He studied the tripler and its earth return circuit, then checked all the components here. Each one checked out perfectly so he moved over to the left-hand side and studied the transistors concerned with beam limiting three of them, T212, T213 and T214. He checked these and the associated components - quite a few of them and again each one checked out all right. He then removed the front panel to ensure that all the connections were good and that the controls were working. He refitted the panel and injected signals here and there from the final i.f. stage to the luminance delay line. The signals were lost somewhere between the distribution amplifier stage T211/T206 - the stage that provides separate feeds

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE

Delivery by return of post.

BAIRD: 8290, 8752, 8773	12.00
RANK BUSH MURPHY	
A774 with stick rectifier	9.78
A816, T16, T18, 7712,2715	10.35
T20, T22, T26, Z179, A823	11.50
2718 Basic unit ${ }^{\text {' }}$	13.50
DECCA: 1210, 1211, 1511	11.50
1700, 2001, 2020, 2401, 2404	9.20
CSI730, 1733, 1830, 1835	9.20
30, 70, 80, 90, 100, 120, 130	9.20
FERGUSON, THORN: 1590, 1591	9.20
1690, 1691. built in rect.	9.78
1600, 1615, 1700, 1790	P.OA.
3000, 3500, 8000, 8500, 8800	P.O.A.
9000, 9200, 9300 series	12.00
9500, 9600, 9650 series	10.98
9800, TX9, TX10,TX90, TX100	P.OA.
MOVIESTAR 3781, 3787	12.00
TX10 focus unit	10.87
FIDELTY: FTV12 mono	10.35
ZX2000 ZX3000	15.43
G.E.C. 2047 to 3135 mono	920
1201H, 1501H, 2114, 3133, 3135	920
DUAL \& SINGLE hybrid col.	10.00
SINGLE STD solid state	12.00
SINGLE STD split diode	P.O.A.

INDESIT: 24EGB, 12LGB, 12SGB 103

WINDINGS	
TYNE: main winding	6.80
RBM: T20, T22, T26, Z179	6.33
WAITHAM: W125 eht winding	2.37
WALTHAM: W190, W191 eht coil	6.00
KORTING: hybrid winding	6.90
THORN: $8000,8500,8800$ eht	6.70

to the a.g.c., luminance and chroma circuits - and the luminance delay line. The beam limiter transistors act on the distribution amplifier stage and Tim found that the voltages in the beam limiter circuit were wrong. He got more and more confused and after an hour or so he did something very naughty, he shorted out the first transistor in the beam limiter circuit, T213, by linking its collector and emitter. The picture was immediately restored to normal. He removed the short and made further investigations but still couldn't find anything wrong. He finally lost his temper, shorted T213 again and left it shorted. Ribald indeed.

Tim's Audio Department

He now turned his attention to the record player and heaved this on to the bench. On moving the pickup arm over towards the centre he found that it stuck before it got there. This was an old one indeed (the fault, not the deck). He took the turntable off and freed the small swing arms on the toothed wheel, removed them and cleaned the centres with easing oil. They now swung happily and the turntable was reassembled. He turned the unit on its end and removed the bottom cover. A fuse had gone though it didn't look like it. First bit of luck today thought Tim. It now played records and changed properly, so it was returned to the corner.

The Fidelity music centre was the one with the Shure cartridge, a fact that worried Tim a bit. He had the stylus in stock but they're costly. In fact when he'd got the whole thing working and the lamps fitted etc. the stylus cost more than the rest of the repair (shouts of traitor!), but they wanted it for that night and they happily popped down to the bank to draw out the money (why they didn't want to write out a cheque Tim couldn't say, but they paid cash and departed happily).

The Portables

Tim finally turned to the Thorn 1690 - and some other portables that had been brought in during the day. The 1690 gave him a stiff time. There were shorted turns in the line output transformer's e.h.t. overwinding. Tim selected an overwinding from the shelf - he'd sent for some a week before. He fitted the winding with care and confidently switched on. The result was a faint, small raster with poor sound. A check on the stabilised supply line showed that it was at 8 V instead of the expected 11 V . So Tim checked the regulator circuit thoroughly and noticed that it was running warm. He went through everything in this area and was getting more and more angry. At last he removed the new overwinding and prepared to give up the job. Then a thought struck him. He switched on again and the sound boomed out while the tube's heater glowed brighter. He couldn't believe it. Another overwinding was quickly fitted and a perfect picture appeared.
Tim said (shouted) some naughty words and the dogs hid away in shame. The cat licked her paws, having heard it all before. Tinker Bell appeared and announced that the vacuum cleaner had falled. Tim shouted at her as well but repaired it anyway. The Electrolux had shed a connection at the suppressor (remove four screws and take the top off to gain access). The connection was soldered back on and peace was restored. Tim then returned to the other portables and waded through half of them, the other half being deemed not worthwhile after an initial inspection.

The rest of the jobs had to wait another day. Tim hoped the whisky wouldn't be too cold.

Low-cost Teletext Decoder

Part 2

Peter Marlow, B.Sc. (Hons.), C.Eng.

Part 1 last month dealt with the theoretical aspects of the project. This month we'll provide constructional details. Fig. 5 shows the interface board component layout, Fig. 6 the track pattern and Fig. 7 the hole drilling details. Board construction is straightforward: note that the microcontroller chip IC1 is socketed and that the regulators are mounted off the board, Veropins being inserted in their fixing holes. If you decide to use Veroboard construction keep the wiring around $\operatorname{Tr} 1, \operatorname{Tr} 2$ and IC3 as short as possible. Fig. 8 provides component pinning details while Fig. 9 shows the connection points on the VM6101 decoder panel.

Work on the Decoder Panel

Some preparation work must be done on the VM6101 board before it can be used. Details are shown in Fig. 9. Reverse the polarity of the $1 \mu \mathrm{~F}$ video input capacitor. Link pins 4 and 5 of PL3. Short out the two 470Ω resistors in series with the DLIM and /DATA lines. Connect pin 2 of the SAA5050 chip to the 5 V supply at pin 1 of PL5 via a $4.7 \mathrm{k} \Omega$ resistor wired on the underside of the board.

Lastly connect pin 5 of the SAA5020 chip to pin 4 of PL5, via a link on the underside of the board, to provide the / AHS feed to the interface board. PL1 and PL3 are Pressac series 300 connectors which are not easy to obtain in small quantities: it's better to remove the sockets from the board and wire direct (it's unlikely that the board will need to be removed, unless Murphy's Law prevails). Connector 5 is a line of pins and is thus ideal for making direct solder connections. These changes should all be done carefully as the VM6101 board comes ready calibrated. Don't touch the components around the SAA5030 chip or the factory prealignment will be disturbed.

Case Drilling

Drilling details for the case are shown in Fig. 10. Proceed as follows:
(1) Stick adhesive boss mounting pillars (not the ones suppied with the box) on the inside top of the box (the top has long sides) on squares $1 \mathrm{~A}, 1 \mathrm{~K}, 5 \mathrm{~A}$ and 5 K .
(2) Drill through pillars 1 K and 5 K and the top of the box with a 3.2 mm drill and countersink holes for 6 BA bolts.

Fig. 5: Interface board - component layout and connections.

(3) Make a 3 mm slot for the keyboard lead at the front of the top of the box (dimensions as shown - the front of the box has a slight lip on its edge). Use either a drill and file or a soldering iron (avoid fumes).
(4) Screw the interface board to the boss mounting pillars with the 6 BA screws at one end and self-tapping screws at the other.
(5) Stick the keyboard to the top of the box. Bring the connector through the slot to mate with the interface board.
(6) Drill the front (plastic) panel to take the switch and LED. As the layout is not critical details are not shown. Drill the back (aluminium) panel as shown: the only critical hole is for the u.h.f. output.
(7) Put boss pillars on the teletext board, using self-
tapping screws. Stick the teletext board on the inside bottom of the box. The pillars do not take up grid positions - the board position is not critical.

Wiring

Wire up the box following the details given in Fig. 5. Use screened cable for the video and audio signals, stranded cable for the other signals and power lines.

Setting up

To set up the teletext adaptor system proceed as follows.
(1) Check the wiring, particularly the connections to the

Alt holes 0.8 mm except
$A=3.0 \mathrm{~mm} 14$
$B=2.2 \mathrm{~mm}(5)$
$C=1.5 \mathrm{~mm}(21)$
$D=1.3 \mathrm{~mm}(28)$
$E=1.0 \mathrm{~mm}(14$
[D548]
Fig. 7: Interface board hole drilling details.

7	8	9	A	5
4	5	6	B	6
1	2	3	C	7
	0	$\#$	\bullet	8
	2	3	4	

Keyboard
0549

Fig. 8: Component pinning details. If the keyboard connector is viewed from the front of the keyboard pin 1 is on the left.

Fig. 9: Connections to the VM6101 teletext decoder panel and details of the modifications required.
voltage regulator.
(2) Apply mains to the unit and check the 12 V and 5 V lines. Switch off.
(3) Connect the VCR's auxiliary video output signal to the decoder unit. Set the VCR to give a BBC-1 output. Switch it on.
(4) Connect the unit's u.h.f. output to the TV set's aerial input socket, tuned to the VCR's output channel (ch. 36) - the UM1287 (or UM1233) modulator is already tuned to this channel. Switch on the TV set and the teletext

Fig. 10: (a) Back panel drilling details. (b) Drilling details for the case top.

Fig. 11: Modulator tuning - core locations.
decoder unit. Wait for a picture to appear - Ceefax page 100.
(5) Adjust TC 1 on the interface board to get a colour picture. If suitable measuring equipment is available, set TC1 for 8.867238 MHz at pin 12 of IC3.
(6) Adjust the core of the chroma filter coil L1 for minimum interference and no smearing of letters. If a scope is available tune L1 for the maximum colour burst output amplitude at pin 6 of the TEA2000 chip (IC3). This should correspond with minimum patterning on the teletext display. If colour stability is poor, change C 17 (see comments last month).
(7) Adjust the modulator's u.h.f. output by tuning the core (see Fig. 11) to a spare channel (avoid the VCR's output channel). Connect the splitter/combiner (see Fig. 3) in series with the VCR's output. The VCR's output should appear on one channel, the teletext signal on another, without interference.
(8) Inject a sound input. Adjust the modulator's sound core (UM1287 only) for the best signal.

Final Checks

Switch the VCR to different channels and observe the teletext picture. Try different page numbers and commands. As with all teletext systems the quality of the results obtained depends on the quality of the TV signal, especially on freedom from ghosting. Pages are frequently refreshed, so characters and letters missed the first time round should be corrected.

Warning

A word of warning. We have not, for obvious reasons, been able to try out the teletext adaptor unit with each and every combination of TV set and VCR - thousands of models have been sold. The TV set should present no problems, though we have found that line-frequency pickup can cause interference to the operation of the microcontroller with the adaptor on the line output transformer side of the set - moving the unit to the tuner side provides a cure. The i.f. strip in a VCR is not designed with teletext use in mind but we would not expect problems with modern machines using SAW filters. We've tried the unit with a number of VCRs and the only machine that failed to give good results was an old Sanyo model.

Other Possibilities

This decoder design is of course only one of many possibilities, low cost being the main aim. The decoder used in the Philips KT3/K30 chassis or the Mullard VM6103 (both Eurodecoders) could be used in place of the VM6101. In this case a small change is needed in the 8748's program. Superimposition and remote control could be explored and added as piggy-back circuit boards. Additional software could be written into the 8748 to provide extra decoder functions (the 8748 EPROM can be reprogrammed). A follow-up article will provide details on how to use the KT3/K30 panel which is now readily available from suppliers.

Acknowledgement

Finally I would like to acknowledge the help given by Mark Dawson in developing the prototype.

next month in

\author{

- VERSATILE CRT TESTER-BOOSTER
}

This tube tester-reactivator was originally designed as a battery-powered unit for portable use. It could as well be built as a workshop instrument powered by the bench po'ver supply or as a mains-powered unit, with the advantage that only a low-voltage mains transformer is required. The test/boost voltages are generated by switch-mode circuits: the heater supply is continuously variable from $0-12 \mathrm{~V}$ and the woost voltage is in the region of 450 V .

- THE PROBLEM OF TAPE DAMAGE

Christopher Holland on the causes of tape damage with VHS machines and a particularly awkward intermittent problem that arose with a JVC HR7700/Ferguson 3V23 VCR.

- MORE FUN WITH THE SONY KV1810

These sets are notorious for the expense that can be involved when the two gate-controlled switches used in the chopper and line output circuits fail. Conversion to transistor operation has been described before in these pages: this latest approach has the advantage that the chopper driver transformer doesn't have to be replaced while a low-cos-, home-made line driver transformer is used. The two test-bed sets have worked impeccably for many months.

- COMPUTERS AND SERVICING

Following Vivian Capel's recent account of what a word processor can do for you Chas E. Miller describes the vays in which a computer can help witา servicing - by storing information on data held, major components used in particular chassis, customer records ard so on. The data recording prcgram used by Chas is dBase II.

- SERVICING THE SANYO VTC5000 SERIES

John Coombes provides servicing notes on fault conditions experienced with the Sanyo VTC5000, VTC5300, VTC5400, VTC5600 and VTC5150 series of 3etamax VCRs.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:
\qquad
\qquad

TV Fault Finding
 Reports from Richard Roscoe, D. Burke, Michael Dranfield and André N. Smith

Dead Mitsubishis

Mitsubishis with model numbers ending in 23B (e.g. CT1423B, CT1623B, CT2223B etc.) are now coming up to their second birthday and we are starting to get instances of them ceasing to work. The standby light is on but the set is otherwise dead. Up to now this has always been due to dry-joints on the line driver transformer T571.

More annoyingly, later sets with model numbers ending in 27BM (CP1427BM etc.) have in a few cases given trouble only a few weeks after installation, the set going completely dead. These are remote control sets with a separate power supply to drive the standby circuits on the ETS board, a secondary board mounted on the left-hand side of the cabinet. This power supply is protected by safety resistor R7A0 $(1 \cdot 2 \Omega, 0.5 \mathrm{~W})$ which goes open-circuit for apparently no good reason. It's a safety component, part no. 103P39801.
R.R.

Hitachi CTP1455 Colour Portable

Last year we sold a batch of thirty Hitachi colour portables, Model CTP1455, to a local holiday camp. Our problems began almost immediately. The mains fuse FS901 began to blow in set after set. The mains rectifier D901, type RM11C, was found to be short-circuit and usually the regulator chip (STR4211) and the R2M crowbar zener ZD953 were also damaged. We at first assumed that the problem was due to mains surges: down here the mains supply tends to be like the local scrumpy potent but pretty rough! As the number of failures increased however we contacted Hitachi who told us that the cause actually lay with D901. They recommend replacing it with two similar diodes in series (part no. 2335981), which is what we've now done to all thirty of them. R.R.

Toshiba Tips

Here are a couple of common faults we've had on the newer Toshiba chassis. There have been several cases of tuning drift on the 140 E 4 B and 140 R 4 B colour portables due to RA05 ($33 \mathrm{k} \Omega$). These sets employ the now usual pulse width tuning arrangement and RA05 is the integrating transistor's collector load. Other, larger screen models with "4 series" numbers use similar circuitry, but in the remote control and text versions R4B and T4B the tuning is on a separate blug-in control board.

On the earlier " 3 series" sets the type 202 tuner has been responsible for several cases of video streaking and picture jumping. Once seen it's unmistakeable. In this respect the 202 tuner is definitely inferior to the later 204.

We had a similar looking fault on a brand new 222R5B but this time the cause was $\mathrm{C} 833(470 \mu \mathrm{~F})$ in the 13.5 V supply. One of its solder joints had broken away from the copper track.
R.R.

Rank T22 Chassis

A 22in. Murphy set fitted with the Rank T22 chassis had field collapse with, peculiarly, the bright horizontal line bouncing up and down an inch or so on either side of the
centre of the screen. Voltage checks in the field timebase showed that all was well except in the field charging circuit, which consists of the charging capacitor 4 C 10 , the height control 4RV4 and its feed resistors (one connected to the 12 V supply, the other to the 200 V supply), and the discharge transistor 4VT10 (a pnp type with its collector connected to chassis). 4VT10's emitter was at only half a volt or so instead of several volts, though its base voltage was correct at about 4 V . The 200 V and 12 V supplies were present and correct and the feed resistors were of the correct value. 4VT10 checked out o.k. and 4C10 was not leaky. So where was the voltage disappearing to? There seemed to be no other way it could go. We then noticed that the height control has a screen which is connected to chassis. This is not shown in the circuit diagram and we had overlooked it on our first inspection of the board. Sure enough by disconnecting the screen from chassis normal voltages and field scanning were restored. R.R.

Hitachi NP83CO Mk II Chassis

The problem with an Hitachi Model CPT2248 - a remote control set fitted with teletext - was very weak field sync with severe line pulling at the top of the picture. Because of the effect of the obviously degraded sync pulses on the sound muting circuit the audio level was being intermittently reduced. We knew that the fault had been getting gradually worse over a period of two or three weeks so we felt it safe to ignore the HA11423 line and field generator chip IC701 which also contains the sync separator. The bias for this part of the chip is at pin 9 and consists of R748 ($82 \mathrm{k} \Omega$), C747 ($4 \cdot 7 \mu \mathrm{~F}$) and R747 (100 $)$). The voltage at the pin was correct at about 6 V but when we checked the bias components "cold" we discovered that R748 had risen in value to about $500 \mathrm{k} \Omega$. Incidentially C 747 was $2 \cdot 2 \mu \mathrm{~F}$ instead of the $4.7 \mu \mathrm{~F}$ shown in the circuit diagram but it seemed to work satisfactorily.

The following day I discovered that the same resistor had failed in another CPT2248. This time the symptoms were no sound (muted) and inability of the autotuning circuit to lock on to the received signal correctly. The sync seemed to be unaffected!
R.R.

Philips KT3 Chassis

This set wasn't doing very much and disconnecting plug M5 exonerated the power supply. The BU205 line output transistor was next checked and found to be o.k., showing no sign of leakage. The tripler was then disconnected, found to be faulty and replaced. Sound and e.h.t. were now present but there was no luminance. Replacing the TDA3560 colour decoder chip restored the picture and after checking the h.t. (which was correct) we were about to put the back on when the set cut out again. This time the BU205 needed replacement. Changing it didn't call for much by way of muscle power since it had never been properly tightened on the heatsink. This was probably a good idea at the time of the original assembly, considering the condition of the heatsink surface - definitely not of textbook smoothness, being a mass of abrasions that extended under the insulator. Smoothing the metalwork
and replacing the transistor and insulator (which didn't look at all well) restored normal operation.

Before the back could be replaced one other item required attention - the long tag from the heatsink was dry-jointed where it connects to the mother board. D.B.

Philips CTX-S Chassis

An impatient child had plugged this set in and switched it on just after a particularly nasty thunderstorm had rumbled by and out of earshot. The effects of lightning, especially on rural power lines, can travel a considerable distance: the result was a dead set in a short while. Unusually the surge limiter resistor was intact. But the mains fuse, rectifier, chopper transistor, excess current sensing resistors and transistors had to be replaced. This chain of failures has been reported in Television before. It seems that all the above mentioned items are vulnerable in thundery weather.
D.B.

Grundig GSC100 Chassis

Tripping was the complaint with this set. Replacing the flyback thyristor provided a cure.
M.D.

Philips KT3 Chassis

A thunderstorm can cause the mains fuse, surge limiter resistor and mains bridge rectifier(s) to fail without further damage to the set. If there's no h.t. after replacing these items check D454 and D455 (both type BAS11) which are situated near the line output transformer. They sometimes both go short-circuit along with the other items.
D.B.

G11 Chassis - Pye Version

This one looked easy. The mains fuses had blown and the usual two rectifiers on the power supply panel had gone short-circuit. There was also a loose connection in the mains plug. Replacing the faulty items produced sound and an h.t. supply that varied. It appeared that something was amiss in the active smoothing circuit, but while checking in this area the original fault recurred. A spare power supply panel was fitted, after making sure that the h.t. fuse was of the correct value and type. This time there were no results as the line oscillator start-up resistor R2010 was dry-jointed. Resoldering this restored sound but no picture. This state of affairs didn't last long since a repeat performance was not long in coming. Two panels down, the h.t. fuse intact and a fault lurking somewhere . . .
The two power supply panels were repaired first. Both needed an identical set of components - mains bridge rectifier diodes D4091-4, beam limiter circuit components $\mathrm{Tr} 4085 / 6$ and D4090, and the trigger phase control transistor Tr 4045 . Not being too familiar with the Pye version of the chassis we first thought that some extra wires from the power panel were fitted and lying around somewhere to cause mischief, but this was not so. A check on the wiring from the power supply and line scan panels soon revealed the cause of all this bother. The loom that normally resides behind the metal support for the mains input panel was jammed between the metal and the panel. The wires appeared to be undamaged but there were a few small burn marks on the metalwork - VDR R1307 with its strong, untrimmed legs was probably the culprit.

Starting the set up with all items secured revealed the cause of the h.t. trouble originally encountered - the
presence of D6011, the second zener diode in the beam limiter circuit, fitted on the chroma panels in some earlier sets. This was leaky and after taking care of it the set worked normally.
D.B.

Rank T22 Chassis

This set was dead with the 1.6 A fuse (7FS1) in the power supply open-circuit. No shorts could be found so a new fuse was fitted and the set was switched on. When theraster appeared it was very dull with bowed edges and a bright centre foldover. The bowed edges suggested an EW modulator fault so attention was turned to the line scan panel. It took us some time to discover that 5 C 15 in the line scan/EW modulator circuit was faulty. It looked o.k. but a capacitance meter check revealed that its value had fallen from $1 \mu \mathrm{~F}$ to only $0.3 \mu \mathrm{~F}$.
M.D.

ITT CVC8 Chassis

Some quickies on these sets:
(1) Touchy line sync but not total loss of line sync: change

R393 and R394 (both $2 \cdot 7 \mathrm{M} \Omega$) in the flywheel sync circuit.
(2) Weak sound: check for dry-joints on the audio coupling capacitor C75 (22nF).
(3) Intermittent loss of sound: check for dry-joints where the components in the audio output stage are earthed to chassis via the horizontal chassis support.
(4) A point to note is that faults in the line output stage can cause loss of line drive with the PL509 overheating. This is because at switch on the PCF802 line oscillator valve is powered from the h.t. line via R402 (270 kJ): when the line output stage comes into operation however its supply is taken from the boost rail, via R403 ($180 \mathrm{k} \Omega$). Thus until the line output stage is operational the line oscillator stage is run at low power, the result being a great reduction in line drive. The symptoms look like loss of line drive.
M.D.

ITT CVC30 Chassis

The problem with this set was crooked verticals: optimum adjustment of R905 (pincushion control) left the verticals bending inwards at the left and right side top quarter of the picture - adjustment for correct verticals at the top produced pincushion distortion. An additional symptom was slight change of picture width when the scene changed from a dark to a light one and vice versa. The latter symptom provided a clue. A picture breathing correction voltage from the e.h.t. circuit is applied to the EW modulator panel where it's smoothed by C901 ($22 \mu \mathrm{~F}$) and applied to the base of the correction control transistor T901. C901 turned out to be open-circuit, replacement restoring a symmetrical picture without the width flutter on scene changes with a marked contrast difference.

On another of these sets the pincushion correction was wrong at switch on from cold, correcting itself within 30 seconds or so of warm up. R905 was found to be dryjointed - the pins had not been properly cleaned during assembly.

Here are some other faults: Intermittent loss of colour was traced to poor contact between the pins of the TBA540 i.c. on the decoder panel and its holder. Intermittent loss of height with a bright white line across the top of the picture was traced to dry soldered joints between the mother board and chassis lugs. Trip operation followed by shut down was traced to EW modulator diode D24 (BY223) being short-circuit.
A.N.S.

Long-distance Television

Roger Bunney

October was relatively quict following the excellent tropospheric openings during late September and early in the month, though there was some sporadic E reception. Activity tends to fall during the winter months and for Band I reception we have to rely mainly on meteor shower activity. Sporadic E propagation often occurs during mid-December however and it's well worth keeping an eye out over the period December 10-30th. The relatively poor conditions are reflected in this month's rather bare log.

7/10/86 +PTT (Switzerland) ch. E2; RUV (Iceland) E4.
8/10/86 +PTT E2; RAI (Italy) IA, B; CST (Czechoslovakia) R1.
9/10/86 ARD (W. Germany) E2; RAI IA; JRT (Yugoslavia) E3, 4; TVE (Spain) E2, 3.
14/10/86 RAI IA; + PTT E2.
15/10/86 DFF (E. Germany) E4.
16/10/86 TSS (USSR) R1, 2; SR (Sweden) E3, 4; TVP (Poland) R2; CST R2.
17/10/86 TVP R2; SR E4; RUV E4.
19/10/86 RAI IA; + PTT E2; CST R1, 2.
21/10/86 TVE E2; TVE-2 E2; RAI IA; +PTT E2; CST R1, 2; ORF (Austria) E2a; TVP R1, 2.
28/10/86 TVE E2, 3.
30/10/86 RTP (Portugal) E3.
The above loggings cover SpE reception in the UK. Minor auroras were noted in Scotland on the 20th and 21st. Unfortunately I'm still without access to equipment due to building work - I hope to resume activities towards the end of November. My thanks to Simon Hamer (Powys), Iain Menzies (Aberdeen), Dave Shirley (Hastings), Tim Anderson (Bexhill) and Bill Cotterill (Tipton) for sending in reception reports.

Ryn Muntjewerff (Beemster, Holland) has sent in details of his reception during the excellent late September tropospheric openings. His W. German reception log resembles the EBU station list! During the period Ryn logged TVP-1 chs. R9, 12, 29, 30; TVP-2 chs. R25, 35, 38; CST chs. R9, 10, 22, 31, 33, 36, 38; many ORF, SR and

American Forces transmitters, TSS (USSR) ch. Ry and some thirteen British Forces relays/transmitters. A remarkable \log !

Adding Directors to Collinear Arrays

The stacked bowtie (collinear) wideband u.h.f. array, e.g. the Wolsey Colour King or Triax BB Grid system, is very popular for DX-TV reception due to its relatively flat response over the full u.h.f. bandwidth, its compact size and its reasonable cost. The one disadvantage in comparison with the long-Yagi with X director assemblies is the lower forward gain from mid-band upwards. A long-Yagi may peak at $16-17 \mathrm{dBd}$ whereas the maximum gain obtained from the Colour King type array is around 12.5 dBd . An attempt has been made recently in Poland to improve the performance of the standard four-bay collinear aerial by adding a boom with six director elements in front of each full-wave bowtie dipole. The director chain is cut to the top end of the aerial's bandwidth, i.e. ch. 68 for the UK but often around ch. 62 in continental Europe, giving a claimed 3 dBd gain increase at the higher frequency end of the bandwidth. This would give a typical gain of $11-15 \cdot 5 \mathrm{dBd}$ across the bandwidth. For comparison, the Fuba XC391 long-Yagi has a gain of $10 \cdot 5 \mathrm{dBd}$ at ch. 21 rising to $16 \cdot 5 \mathrm{dBd}$ at ch. 66 .
An experimental collinear u.h.f. array of this type could be fitted with a set of director elements based on those used in a domestic UK group C/D Yagi aerial, though careful thought would need to be given to the support arrangements to ensure mechanical stability.

News Items

UK: There have been suggestions that a combined transmission authority will be set up and come into operation during the mid-1990s to maintain and operate the u.h.f. TV transmitter system at present run by the BBC and the IBA at common sites.
W. Germany: Changes have been made to NDR-1 regional programming. Network origination variations occur at 1800-2000 Mondays to Fridays and 1730-2000 on Saturdays (local time). Details are as follows:
(1) NDR Hamburg transmits the "Hamburger Journal" on ch. E9. Test card indicates "NDR-1 Hamburg".
(2) NDR Schleswig-Holstein transmits the "SchleswigHolstein Magazin" from Flensburg ch. E4, Keil E5, Lubek E7, Heide E10 (vertical), Neumunster E28, Sylt E41, Lauenburg E46, Bungsberg E50 and Molin E53. The FUBK card identification is "NDR-1 Kiel".
(3) NDR Niedersachsen transmits "Hallo Niedersachsen" from Visselhovde ch. E7 (vertical), Hanover E8, Harz E10, Lingen E41, Dannenberg E43, Stadthagen E47,

Left: Reception of the 11 GHz Worldnet satellite downlink by Jaroslav Cerny in Czechoslovakia, using home-made equipment. Centre: RTM-2 Morocco ch. E27 received by Hugh Cocks in the Algarve, Portugal. The transmitter is thought'to be near Tangier. Right: Portuguese Faro, ch. E28 pirate station received by Hugh Cocks.

Osnabruck E50, Cuxhaven E51, Aurich E53, Steinkimmen E55 and Hamburg E56. The former identification was "LF HS NDS" (see mystery ch. E10 signal mentioned last month). The current FUBK card identification is "NDR-1 Hanover".

Incidentally, other FUBK card identifications are "NDR 1 SH" (Schleswig-Holstein), "NDR 1 HH" (Ham-burg-Hanzestadt), "NDR 1 ON" (East Niedersachsen) and "NDR 1 WN" (West Niedersachsen).

Various W. German local TV channels are being planned: a list will be included next month - indications are that high powers will be used in some areas.
Australia: Following the merger of SBS and ABC in January SBS will become "ABC One" and ABC "ABC Two". Proposals to restructure the commercial TV networks are causing controversy. The government suggested a single Queensland coverage instead of two, the NSW coverage to be reduced from three to two and the Albury' region to be absorbed into the single Victoria coverage, the idea being to increase the viability of the regionals in the face of the large commercial networks by expanding their market bases. Following opposition to the plan it seems that the existing stations will be given a further monopoly for up to five years before any basic changes take place.

Transmitter Listings

Latest EBU listings of interest are as follows:

France: Carcassonne ch. L3 100 kW e.r.p. vertical (this answers several queries about DX reception!), Limoges ch. L10 260 kW e.r.p. horizontal. Both transmit TDF-4/ Canal Plus.
Jordan: The Suweilih ch. E3 and E6 transmitters are to remain on air.
Sweden: Hoerby SR-1 ch. E2 closed down on July 11th.
Gosta van der Linden has sent us the following list of projected French TV5/6 transmitters. The power figures given are e.r.p.

TV5 Network

Paris/Tour Eiffel	E30	12.5 kW	Troyes	E29	60kW
Marseille	E32	90 kW	Vannes	E58	100 kW
Rouen	E59	10 kW	Mont Landon	E47	50 kW
Nantes	E21	50kW	Lens Bouvigny (near Lille)	E51	10kW
Toulon	E57	50 kW	Beauvais (St. Just)	E49	100kW
Orleans	E52	20kW	Cherbourg	E35	20kW
Bourges	E21	100 kW	Montpellier	E48	250 kW
Niort	E38	500kW	Puy-de-Dome	E30	100 kW
Rennes	E34	25 kW	Saint Raphael	E36	80kW
Brest	E34	25 kW	Metz/Luttange	E39	200kW
Reims	E53	25 kW	Le Mans/Mayet	E32	150 kW
Tours	E57	80 kW	Mont Pilat	E59	250 kW

TV6 Network

Paris/Tour Eiffel	E33	$12 \cdot 5 \mathrm{~kW}$	Toulon	E60	50 kW
Marseille	E38	90 kW	Lens Bouvigny	E54	10 kW
Rouen	E62	10 kW Niort	E31 or L4	25 kW	
Nantes	E65	50 kW			

Alex Gordon has sent us the following list of Saudi Arabian second network stations: Riyadh ch. E7; Shakra E25; Jeddah E12; Taif E8; Al Hada E59; Makkah E5; Jabal Shamse E45; Jabal Madafa E44; Al Baha E11; Damman E29; Hafr Al Batin E11; Al Houfouf E28; Abha E9 (vertically polarised); Al Qassim E6; Al Zulfi E7; Hail E7; Al Madinah E7; Jabal Silaa E11; Tabuk E8

UHF Signal Strength Meter Model SSMU1

The SSMU1 is a portable, battery-powered, signal strength meter for use in the setting up of aerials and distribution amplifier systems within the specified frequency range of coverage. The unit may be operated either with standard HP7 batteries or with rechargeable Ni-Cads, with the adaptor. Signal strength is measured in millivolts or decibels and indicated on a meter with 3 gain settings. The meter can be illuminated when required. To aid video and sound identification a low level sound source is built into the case. A carrying case is also supplied equipped with shoulder strap.
Specification
Frequency Range . . Channels 21-69 ($470-860 \mathrm{MHz})$. . . Varicap Tuned, measures $20 \mu \mathrm{~V}$ to 40 mV in three ranges, with an accuracy of $\pm 4 \mathrm{~dB}$. Power source is 12 volts derived from $8 \times \mathrm{HP} 7$ batteries or 10 size AA rechargeable Ni-Cads.
PLANET SSMU1 UHF Signal Strength Meter
(Carriage \& Insurance on above item £3.00)
WOLSEY HG36 'Quick Silver' Multi-element High Gain (18dB) Aerial available in Groups A, B and C/D Aerial TRIAX 40055 'Professional' type UHF wideband amplifier, 25dB High Gain, minimum low noise figure 1.5dB; High signal handling 102dBu .. 102dB μ
27.80

TRIAX $601 / 60$ matching $24 v$ Power supply for use with above amp
NEW-ANTIFERENCE 'SILVER SENSOR' Wideband UHF Set-top Aerial super sensitive with extra large elements for increased signal pickup...
We are the specialist aerial company for all installations - domestic, fringe distribution and DX. Try our comprehensive Catalogue at 65p packed with all the latest equipment, please include SAE with any othe enquiries.
All prices inclusive of VAT.
Delivery 7-10 days.
ACCESS \& VISA Mail and Telephone orders welcome.

AERIAL TECHNIOUES
11, Kent Road, Parkstone, Poole, Dorset, BH12 2EH. Tel: 0202738232.
(vertical); Yanbou E8; Ar Ar E8; Sharourah E8.

From our Correspondents

Jean-Louis Dubler reports from Seoul, Korea that the 1988 Olympic Games will be fully reported using the NABTS teletext system (a North American version based on the French Antiope system and currently used there by CBS and NBC). Samsung showed a NABTS adaptor with infra-red remote control, costing under US\$340, at the recent Seoul International Trade Fair. Interesting that Samsung have a design that uses the Korean alphabet. Dual-channel sound and teletext are to be provided on all Korean networks by 1988.

Jaroslav Cerny writes from Czechoslovakia that he has successfully received 11 GHz satellite TV using a home designed and built receiver and a home constructed 1.8 m dish. The receiver system uses the well-known Mitsubishi oscillator/mixer module (see Television, February 1985), with a 4.5 V motor to provide remote tuning of the module's oscillator - it takes thirty seconds for complete rotation of the oscillator screw adjustment. All channels in the 11 GHz band can be received, with noise present. Reasonable sound quality has also been achieved. A valved monochrome receiver is used as the display device.

Hugh Cocks writes from the Algarve, Portugal that he has now installed proper DXing aerials. Transequatorial skip/spread F propagation usually gives him Ghana ch. E2 from around 1600-1700 GMT, lifting to give ch. E3 video on good evenings. On some nights the signals appear at scanner level, i.e. very weak, while on other nights the signals cause overloading. Programmes start at 1800 and are preceded by a ten-minute test-card transmission - a large circle with four corner circles and the identification
"GBC" at the centre. The signals usually fade at 1900)1930. GBC local news starts at 1900 .

Hugh comments that tropospheric reception from the Canary Islands is "odd". Pozo de las Nieves ch. E59/10 fluctuates between noise level and perfect colour over a one minute cycle. He can receive some eleven TV channels from the Canaries. Pirate radio and TV is active in the region. Faro ch. E28 transmits "pirated" RTP material and films taken from the Premiere downlink. A "potent" signal is received from another pirate, TV Algarve, to the west of Faro. RTM (Morocco) is well received, though the programmes are not what you might expect - the TV5 satellite downlink is transmitted on ch. E34 while ch. E37 also carries RAI-1. These transmitters are co-sited. The EBU list doesn't mention any Moroccan transmitters at present though several have been received. When the TV5 service is not available the transmitter radiates TVRO equipment noise!

John Roper (North Walsham, Norfolk) has written to us about early DX-TV. John built his first TV receiver, using a VCR97 surplus radar unit/timebase, an R1355 receiver and RF25 tuner, as soon as Alexandra Palace resumed transmissions in 1947. His aerial was an H type made from $1 / 2 \mathrm{in}$. copper water pipe and electrical conduit fittings, with hosepipe for the insulation, all mounted atop a 39 ft . wooden pole. Foggy nights were best for reception. Improved results were later obtained by using a 45 MHz

Pye i.f. strip. More consistent reception was provided when Holme Moss opened, despite John's location being some 150 miles from either transmitter. Interesting that John has two working R1355s and has just constructed a timebase/display unit using the original VCR97 circuit. In 1947 John was 14: he comments that "you can imagine the excitement when the picture locked in and we sat in a shed watching the small green screen". Happy days indeed!

405-line Corner

John Stothart has for disposal to a good home, preferably someone with a $405-$ line TV collection, a working Sony CV2000 1/2in. video tape recorder complete with service manual - and some 405 -line recorded tapes. If anyone is interested and can collect, drop us a line with s.a.e. and we'll forward the letter to John.

Help Needed

David Moller (King's Heath, Birmingham) asks to be put in touch with an enthusiast who would build a BATC project for him - a colour version of the video sync processor. Materials, information and financial reimbursement would be provided. For medical reasons David is unable to undertake constructional work. If anyone can help, please let us know.

Practical Active Deflector Systems

Roger Bunney

The November issue contained an interesting article discussing the basics and practicalities of an active deflector system to provide TV reception at an otherwise screened location. The following notes are based on experience gained during the design of a number of such systems and will, I hope, provide further guidance for anyone tackling this sort of exercise. With one exception, in all the systems I've been involved with the signals have been retransmitted on the same channels as received. Fig. 1 shows a typical system.

Aerial Systems

The use of a Yagi aerial at the deflector site was generally avoided, the Triax BB Grid/Wolsey Colour King type of array being used for both reception and transmission. The BB Grid has a particularly good reflector screen and consequently a good front-back ratio, which is essential for avoiding feedback (r.f. "howlround"). The Grid type aerial has a relatively flat response and will have a gain variation of typically 1 dB across a given channel group. When used for transmission this type of aerial avoids the upper channel gain tilt typical with a Yagi array, so that a fairly level field strength on all channels should be available at the domestic receiving site. This avoids the need for channel equalisers with the insertion loss (and expense) they introduce. A typical Yagi aerial has a gain variation of at least 3 dB across a channel group: it's suitable for use at the domestic receiving site where the higher h.f. gain assists in overcoming cable losses etc. that tend to rise with increased frequency.

The Grid type aerial is a wideband system covering the entire u.h.f. band. It might be thought that this could give
rise to problems with adjacent channel group signals but in practice no problems have been experienced. The perfectionist might however consider the use of a Labgear CM9034 u.h.f. group pass filter. This introduces an insertion loss of typically 1 dB , with out-of-group signal attenuation of some 21 dB . For optimum noise performance such a filter should be incorporated after the head amplifier at the receiving site - though the presence of interfering signals could make it preferable to include it in the feed to the head amplifier. If aircraft radar interference in the ch. 35-36 region is a problem a u.h.f. notch filter (RSPK4) can be inserted in line before any amplification.

With horizontally polarised signals the -3 dB beamwidth of a single Grid aerial is typically 60°, which is far too broad. For reception at the deflector site two such arrays should be used, stacked side-by-side, giving a reduction in beamwidth to 30° at the -3 dB points. This will also result in a much smoother polar response than with a Yagi array, due to the phase cancellation characteristics with signals coming from the sides. Stripline filters such as the Triax 721 (or 741 if a quad stack is used) offer minimal insertion loss while allowing efficient stacking for optimum gain.

Amplifiers

The head amplifier, assuming that the received signals are weak or noisy, should be a low-noise, low-gain, high signal handling capability device: the recently introduced Labgear CM7271 with its 1.6 dB noise figure (15 dB gain) is ideal. A secondary amplifier such as the Triax wideband u.h.f. type with a.g.c. loop incorporated should be in-

Fig. 1: Practical active deflector system. Note that the receiving aerial array is horizontally mounted, i.e. the bowties are horizontal, while the transmitter aerial array is vertically mounted.
cluded some 30 ft . farther along the feeder. During highpressure, anticyclonic weather conditions an otherwise fair to poor strength signal at the receiving site can rise to very high levels. Although, as noted, a head amplifier able to handle high signal levels should be used later stages can be pushed into severe non-linearity and saturation under such conditions. The a.g.c. loop amplifiers produced by Triax for masthead/outside use are designed to overcome this problem by reducing the gain when a signal reaches a predetermined level. This arrangement will maintain signal stability over a wide and varying signal range.

The amplifier cascade gain needs to be chosen with the feeder length between the receive and transmit sites in mind. If necessary a further low-gain repeater amplifier could be inserted.

The Wolsey Amethyst distribution amplifier used at the transmitting site provides d.c. powering at its input to supply 24 V to remote amplifier(s). The 12 V Labgear range can easily be modified for 24 V operation. The Wolsey Countryman amplifier mentioned in the November article for use at the receiver site is undoubtedly a very high quality unit but does have a rather high noise figure: including a low-noise head amplifier prior to the Countryman will enable optimum signal/noise performance to be achieved.

Transmitting Site

The distance between the receive and transmit sites can be as little as 50 m , though care must be taken to avoid feedback. If necessary, erect a close-mesh screen behind the transmit aerial - the screen should be well earthed.

We generally use a wideband Amethyst amplifier at the transmitting site, fitted close to the aerial system. A grouped version of the Amethyst is available: this provides a higher output - at a cost!

The Triax Grid type aerial was generally used at the transmitting site due to its flat response, minimum back radiation and forward beamwidth that can be tailored to suit the receiving area. Of great importance is to reverse the transmit polarisation with respect to the receiving polarisation. If a horizontally polarized signal is being received, the signal transmitted from the active deflector site should be vertically polarised. This will provide protection at the domestic receiving site where low-level signals received directly from the main station could otherwise give rise to line pairing, patterning or worse. In hilly areas there's always the possibility that signals direct from the main station will be resolved along with those from the deflector, so to avoid interference effects ensure that the polarity is reversed.

Apart from being of reversed polarity the transmitted
signal needs to be as strong as possible at the domestic receiving site. A typical transmit aerial system will consist of at least two stacked bowtie grids, perhaps four. A vertically mounted four-bay Grid/bowtie array will have a beamwidth of well below 30° - nearer 20°. Two such arrays stacked side by side, i.e. eight bowties in line, will severely limit the beamwidth, which could be a problem when the home receiving sites are dispersed. Use of an Ordnance Survey map with at least $2^{1 / 2} 2 \mathrm{in}$. to the mile is recommended to calculate the required beamwidth at the -3 dB points for the transmissions. Stacking two vertical bowtie/grid arrays one above the other will maintain the signal beamwidth, limit the vertical beamwidth and increase the gain by nearly 3 dB . Results should be acceptable over a distance of about a mile. Mount the transmitting aerials a few feet above ground level and aim them at the valley/screened location to be served. It's wise to provide as high a transmitted signal level as possible to ensure that the domestic receiving aerials provide a noisefree output for the sets.

General Considerations

An 18-element Yagi aerial should provide an adequate signal at the domestic receiving sites, the high-frequency tilt overcoming the greater losses with rising frequency. Recourse to a preamplifier with a less adequate aerial is not recommended as this can result in co-channel interference being visible.

When considering an active deflector, review all locations within the intended service area - and just outside (it's possible that someone with adequate reception just outside the intended service area of the active deflector will experience interference once the deflector is in operation).

Arranging for a power supply to a remote deflector site can be difficult. If a mains supply is available, few problems will arise. I've known a remote site to be d.c. fed from the nearest dwelling via GPO twin telephone wire (on the ground) - taking into account the quite considerable voltage drop on load. At another site - in fact a second deflector in a double-hop system - a battery trickle powered by a wind-driven generator and time clock arrangement was used.

All deflector systems should have DTI approval though I suspect that more than a few systems are in use in hilly parts of the UK without the authorities being aware of their existence. From information that comes to hand from time to time it's clear that our colleagues in the southern parts of Ireland operate many deflector systems with great enthusiasm, high powers and transmission distances of several miles.

TEL 0902712083 TELEX 338490

							124 ST	TK3042	11.05 TA	A7312P	2.55	D62105P	2501 TDA	TDA3560		IUAZOOO $\text { V } 106$	${ }^{8.98}$
HA1374	$4.80{ }^{\text {LR }}$	83419	9.37 N	NE565N	1.33 335 SK Sk	KE4F208	124 0.85 ST	STK3042	${ }_{5}^{11.05}$ TA	A7313AP	1.50	$1062104 \mathrm{P}$	250	DA35710		TV106	$\begin{aligned} & 16 \\ & 297 \end{aligned}$
HA137	4.98 LR	R3471	9.37 NE					TK4019	4.50 TA	A7314	5.94 TDE2	D62706P	4.50	TDA3576			
HA1339R	205 LU	U1141	727	NP 1100	8.11	SKE4F210	129 ST	TK430	11.75 TA	A7323P	315 TDA	DA10018	231 TD	TDA3590	579	U15G	11.45
HA1339	239 LU	U52012	5.95		0.14	KE462022		TK433	1.55 TA	A7325P	1.15 TD	daldo3a	225	TDA3591	5		11.9
HA1392	3.50 LU	U52011	14.95	DA47	0.14	KE5F310	1.60	STK4332	825 TA	A7339	1.60 TD	datoosa	271	TDA3550	4,	UPC1003	5.95
HA1394	305 LU	103112	1237		0.12	KS1/10		TK435	5.94 TA	A730P	5.06 TD	daliooba	211	TDA3052 ${ }^{\text {a }}$		UPC 1009 C	6.32
HA1397	3.76	193	2.5	DC28	228 SL	L1310	3.14	TK4352	1225 TA	A7507AP	13.30 TD	DAAOIOA	${ }_{208}$	TDA3651	230	UPC 1025 H	290
HA1398	3.98 M	121C	1.00	0c29	215 SL	L1430T	ST	TK436	21 TA	A7509	328 ITA	TDAOII	235	TDA3651A	27.	UPC1026C	1.24
HA1406	207 M	1236	0.83	0, 36	SL	S414	3.09 ST	STK437	7.80 TA	A7611AP	4.80	TDADIO	325	tida3950	340	UPC 1028	00
HA1452	1.63 M	4293	9.15	DCA	0.35 SL	L432A	3.44	STK4372	385	A7616P	525	toaioila	245	TDA4450B	351	UPC1020	27
HBF4030A	248	M51102L	6.35 DC	das	0.18 SL	L439	248 ST	STK439	8.31	А有522ap	$8{ }^{84}$	doiloz	24.5	TDAA2880	120	UPC 1032 H	0.02
HD14538	207	M5115P	524 DC	DC72	0.4 SL	L471	4.78 ST	STK441	1128 TA	A17628P	5.58	Tiliou4b	295	TDAA290	1.47	UPC1042C	8.85
H0388702-A2	${ }_{8} 7.65$	M51203L	3.15 D	¢75	0.44	SL480	3.98	STK443	10.29 TA	AFI29P	2085	TDA1035	255	TDA4400	27	UPC 1156 H	2.96
HD38750A53	8.95	M51231P	3.04 DN	D 236	1.06 SL	S490	237	STK457	${ }_{148}^{13.65}$	tafisiop		TDA1037	1.98 TD	TDA4420	1.00	UPC1158	584
HD387504-7	725	45134-9341	4.13 DN	D 782	1.98	SL301B	6.95	STK460	14.83		1.55	TDA10370	205 TD	TDA4422	8.32	UPC1161C	4.50
HD38800A50	14.09	${ }^{5} 51353 \mathrm{P}$	525 DI	di2l	1.45	L918A	6.98	STK461	${ }_{1153} 9.6$		281	TDA1044	202 TD	tDa4427S	9.00	UPC1182	1.92
HD44801405	1825	M51381P	4.50 PI	PT6042	245	881 ANO	4.95	STK463	11.53	AA676P	${ }_{1025}{ }^{\text {2 }}$	TDA1047	4.10	TDA4431	227	UPC1186	0s
HEF4001BP	0.67	M51333AP	7.78 P1	PT8504	4.98 SN	SN16862AN	298	SIK466	11.7		127 TD	TDA10598	0.98 TD	TDA440	287	UPC118it	125
HISH1010	8.99	M51394P	11.97 R1	R1038	2.19	S16966N	10.25	STK4833	16.98	ta ${ }^{\text {a }}$	127 TD	TDA 1054 M	1.35 T0	TDA4442	4.5	UPC1185H	294
HISH 1004	${ }_{9}^{6.00}$	M5142P	19.1	R1039	2.19	SN29717N	7.19	STK501	632	talasia	${ }_{174} 6.15$	TDA1 ${ }^{\text {a }}$ SO	200	TDA4500	6.30	UPC1188	6.95
HISH1002	9.50	M5144P	4.25 R20	22008B	1.33 S	SN29716N	3.66	STK502	5.74	tash70	4.85	TDA1082	325 TD	TDA4600	284	UPC1213C	125
HM6231	${ }_{889} 98$	M51513L	255	R2009	1.98	9715	6.04	STK5314	9.98	TAabalial	214	TDA151	12 TD	TDA4610	4.80	UPC 1212C	7
HM6232	889	M51515BL	R	R20108	1.33 S	SN29722	11.95	SIT5730	3.95	TAab21A12	2.21	TDA170S	225	TDA4620	78	UPC 1225 H	325
HM6251	5.70	M51577	371	R2029	S	SN29723AN	7.65	STK7216	1261	taabilb	2.05	TAAIT90	211	TDA5500	4.78	UPC1230	5.24
HM7103	4.85		220 R2	R2030	1.33 S	SN29764AN	1.38	STK772	6.95	TAA691	8.58	TDAI 1902		TDA5700	200	UPC1238	315
HM9032	322	M519AP	$5.78{ }^{2}$	R2257		SN2967	4.38	STR1096	5.45	taatoo	1.5	TDAI200	150	TDA7270S	225	1263	3.45
HM9012	322	M5231L	1.95 R	R2265		SN2970BN	424	STR4090	11.98	TAa930	${ }_{280} 8$	TDA1235	3.88 TD	TDA8190	3.47	UPC127\%	5.85
HM9015	334	M53274	133	R2305	1.18	SN29728N	4.315	STR440		TAA10	258	TDA1236	4.30	tDA9403	3.15	UPC1278H	4.85
H14207	17.16	M54532P	2.15	R2322	0.59 S	SN297118N	325	STR441	6.50			TDA1270	3.50	TDA9503	2.92	UPC1351C	1.81
H14208	18.25		4.75	R2323	0.76	SN29791	1.57	STR451	8.95	${ }_{\text {TAGG62-60 }}$	106	tDA1327A	133	TDAssi3	5.44	UPC1350C	1.00
IN5401	0.11	M58478P	R		201	SN29798N	556	SIR453	8.16	TAG66-600	124	TDA1412	125	TDB1033	68	UPC1353	185
1R2403	N	M 58485 P	1245	R2354B	201 S	SN2709	0.44	STR454	150	tibaizoas	124	TDA1412	25	TDE1081	6.61	UPC1355C	213
\|R2C05	425		1.07 R	R2443	0.88	SN7400	034	STR6020	8.37	tBaizosb	1.05	TDA1440	355	TE626	1.49	UPC1363	420
RR3P06	25	MA8000	088	R2461	1.50	SN7401N	0.36	T6029V	5.75	tBaizot	0.95	TDA1470	3.15	TEA1002	3.47	UPC1362	298
1 R 3 P 08	4.5	MA8003	1.16	R2540	231	SN7402N	0 065	${ }^{6} 6835 \mathrm{~V}$	0.73	TBaizou	1.25		425	TEA1009	1.85	UPC1365C	6.98
1999558	625		1.98	R2540x	330	SN7404N	024	T6036	0.67	T8A 1204	1.05	TDAI506	7.45	TEA1014	3.30	UPC1366	125
15751	288	MB3712	1.50	R2615	0.67	SN7408N	0.7	T6037	211	TBA1440		TDA1510	5.50	TEAIO2OSP	8.21	UPC1360C	. 51
11425	${ }_{5} 0.18$	M83713		RCA16029	2.01	SN7410N	0.27	T6044V	0.97	TRA144	5		298	TIC106C	0.61	UPC1378H	425
120003GE	553	MB3730	3.25	RCA16600	1.38	SN74121	150	16045	120	T8A1440G	280	TDA1515	${ }_{6.50}$	TIC106M		C141C	3.5
[20020GE	3.38	MC13002	3.50	RCA16802	1.08	SN7413N	0.37	T6049	1.97	TEA240A			3.15	TIC116Y10	201	UPC1458	8.56
K174P	3.6	MC1310P	225	RCA17074	6.50	SN74141N	20	${ }^{160522}$	0.81	${ }_{\text {teas }}^{\text {teas }}$	1.10	TDA1670	4.48	TC44	0.72	UPC151C	285
KC5810		MC1327P	13	RCA17376	1.58	SN74151AN	1.51	${ }^{16058}$	3006	tBasso	1.10	tdaito	6.85	TIC45	0.7	UPC2002	1.48
KC582C	${ }_{3} 6$	MC1330P	1.98	RCA17524	0.83	SN74154N	127	${ }_{\text {T }} 1900393 \mathrm{~V}$	125	teas96	290	tDal995	1.76	TIC47	0.35	UPC30C	251
KC583C	5.54	MC1350P	1.9	RCAI7523	200	SN74420	203	${ }^{19005 V}$	238	TEA400	239	TDA1908	287	TIP120	1.05	UPC324C	4.70
1200 CV	1.69	MC1352P	250	RGPPO1-15	0.70	SN7430	0.4	T9011V	0.49	TEA440p	245	T0A1940	1.5	TIPP112E	0.85	UPC339C	4.90
LA1201	1.02	MC1357P	215	RGPIO	0.50	SN7440N	027	T9013V	${ }_{260} 1.96$	TEA500p	6.58	TDA2005	5.08	TIP112	0.88	UPCAIC	4.16
LA1230	287	MC1358P	1.55	${ }^{\text {RGP30M }}$	0.59	SN742	1.54	${ }_{T} 9016$	${ }_{1} 1.00$	TEA510	211	tDaz006	1.5	TIP117	0.95	UPC4558	215
LA1320	287	MC14001	2.41	RT905A	1.58 238	SNN7490AN	0.93	T9019W	1.98	TEA520	184	TDA2004	27	TTP121	0.87	UPCA74	5.11 18
LA1352	1.75	MC14433P	10.41	\$1299	5.74	SN74LS26N	0.53	T9034V	1.45	TEA5200	1.68	toazooz	0.90	${ }_{\text {TIP132 }}$	1.40	UPC566H	295
LA1357N	11.01	MC14994P	215	S175	31.48	SN76001N	1.65	${ }^{\text {T903551 }}$	235	TEA530	1.30	TJA2010	1.25	TIP137	1.50	UPC574	325
LA1364	3.02	MC14497	3.6	S2062D	207	SN76013ND	248	${ }^{\text {T }}$	1.15	T8A540	1.15	toazozo	2π	T1P29	0.84	UPC575C2	240
LA1365J	3.4	MC145108AL	3.75	\$28800	5.4 3.4	SN760023ND	3.96	T9057V	0.70	tBA5400	1.15	toazo30	1.98	TIP2955	0.95	UPC576\%	258
LA1385	1.9	MC145118CP	1.10	\$2818	4.05	SN76033N	4.15	T9062V	0.49	tBasboc	1.0	tia 2140	1.59	IIPP29A	${ }_{0}^{0.46}$	UPC578¢	${ }_{8} 80$
LA1387	7.60	MC1712	3. ${ }_{\text {¢ }}$	\$3702S	6.15	SN76110N	1.90	T9064	1.51	tBA560CO	1.00	TDA2150	200	TIPP9C	0.00	UPC580C	4.13
LA3155	125	MC5192	19.50	S40W	10.89	SN76115AN	1.61	TA6002	4.3	ibasjoa	1.71	TDA2151	4.01	TIP290	0.75	UPC587C2	34
La3301	1.0	MC724CP	3.49	S6080B	8.80	SN76131	1.92	TA7027	4.80	TBA570a	1.17	TDA2161	1.85	TIP3055	0.75	UPC5923	2.5
LA3350		MC7818C	218	SA8063	5.17	${ }_{\text {SN }}$ SN7227N	133	TAP050	1.74	TBA641b72	${ }_{3} .03$	TDA2170	3.45	TIP30A	0.41	UPC595	295
LA3365	3.98	MCR1007	1.5	SAA1006	1.75	SN762260N	1.98	${ }_{\text {Ta }}{ }_{\text {TAOOS }}$	1.45	TBA651	1.76	TDA2190	4.95	TIP30C	0.16	UPC596	1.98
La3390	425	MCR106-5/6	${ }_{28}^{05}$	SAA 1020	4.76	${ }_{\text {SN }}$	3.95	ta706aAP	0.71	taA673	200	TDA2270	4.05	TIP31A	0.34	UPD1514C	8.55
LA4030P	420	MCR2207	028	SAA1025	281	SN76243	523	TA7061AP	127	TBA700	1.85	TDA2510	787	TIP318	0.38	UPP2819	4.98
LA4031P	320	ME00404/2	0.47	SAA 1075	625	SN76396	290	TA7069	3.13	TBA720	${ }_{305}^{1.55}$	TDA2520	237	TIP32A	0.53	UPD4066B	4.95
La4633P	235	ME0411	0.23	SAA1121	7.4	SN76533N	247	TA7070p	1.85	TBA7500	290	TDA2524	4.50	${ }_{\text {TIP32 }}$	0.69	UPD553-164	1925
La4100 La4101	125 1.30	ME6002	028	SAA1124	325	SN76532N	289	TAP073P	5.85	TBA760	1.71	TDA2521	3.71	TIP32C	0.40	UPD8099C-1	10.85
LA4102	281	ME6102	0.28	SAA1130	7.7	SNT6546 ${ }^{\text {S }}$	1.47	TA7074P	1.98	IBAB00	120	TDA2525	3.30	T1P33	0.85	X00077A	${ }^{4.68}$
LA4112	${ }_{2}^{1.56}$	ME8801	0.75	SAAI250	4.25	SN76549	259	TAT776P	7.80	TBAB10S	1.51	TDA2532	250	TIP33C	1.05	X0029CE	${ }_{7} 5.09$
${ }_{\text {LA4125 }}^{\text {LA4138 }}$	225	M 22501	3.30	SAA1251	5.50	SN76570	${ }_{2} 3.08$	TA7089P	${ }_{8.5} 8$	$\stackrel{\text { tbabió }}{\text { Tbabioas }}$	1.50	TDA2541	248	TIP34	3.54	х0031CE	4.58
LA4140	1.15	M J 3001	1.75	SAA11351	4.95	SN76611	259	TA7093P	3.98	tibabza	1.52	TDA2540	2.15	TIP4IA	0.49	X0035STA	5.98
L44192	429	MJ4881	${ }_{5}^{1.53}$	SAA507P	${ }_{295}^{10.03}$	SN766660N	2.48	TA7102P	5.88	TBAB20M	0.82	TDA25450	5.94	TIPP418	0.05		4.50 4.35
LA4220	1.67	M. ${ }^{\text {LJ2955 }}$	18	SAA5010	539	SN76666N	1.41	TA7108P	${ }_{3}^{1.61}$	$\frac{18}{18} 18930$	250	TDA22575A	217	TIP42A	0.49	Хо043CE	275
LA4400	6.92 3	M. 5 E3055	106	SAA5012	5.50	SN76708		TA7109	3.92	TBA9200	231	TDA257140	3.60	TIP428	0.53	X 0 S56CE	6.25
LA4420	1.72		0.49	SAA5020	${ }_{8}^{5.78}$	SN76700N	5.11	TA7124P	234	trasto	1.78	TDA2576A	285	TIP42C	0.53	${ }^{\times 0057 G E}$	${ }_{6}^{6.50}$
La4422	1.72	M M 25231	${ }_{3} 0.33$	SAAS5050	7.74	SN76705N	1.34	TA7129P	1.50	tiBa950	194 3.56	TDA2571A	3.96 4.95	T1P48	0.92	Х0065CE	6.25
LA4440	4.95	M 12328	215	SAB1009B	5.98	SN76730	5.36	${ }_{\text {TA7130P }}^{\text {TA7136ap }}$	127	TBA990	${ }_{10} 1.5$	TDA25764 + K	1235	TIP49	3.61	X0074GE	10.00
LA4445	725	M 12378	251	SAB3011	7.34	SN76832N	325	TA7137P	0.98	TBA9900	1.68	TDA2581	225	TIP55A	3.55	X0077GE	4.95
La4460	235	ML238	13.15	SAB3313	7.50	SN96041	5.54	ta7l41AP	3.87	TC40018P	325 350	TDA2582	218 250	Tis90	0.28	X0092CE	${ }_{4}^{4.95}$
La4461		M1926	3.98	SAB3024	6.36	SN94042	4.35	TA7146	250	ITC40118P	3.50 3.75	T0A2594	230	TLOICP	1.55	X0096CE	5.98
${ }_{\text {Lasin }}$	298	MM5314N	40	SAB3209	5.82	Sp8385	${ }^{0} 0.55$	IA71469	4.15	TC40168P	3.15	TDA2593	247	T1072	285	X0109CE	1125
LA 7020	7.33	MM5316N	425	${ }_{\text {SAF }}^{\text {SAB2320 }}$	369 5.50	Sps5384	0.99	TA7149P	326	TCA0538P	4.34	TDA25990	0.85 365	TL494CN	${ }_{265}^{6.74}$	X0113CE X0195CE	207
L47025	10.21	MM5318N	201	${ }^{\text {SAFF1039 }}$	3.35	STA401	6.76	TA7152P	191	TC4069	225	TDA2595	5.50	${ }^{\text {TMP4320 }}$	15.00	X0204CE	8.74
LAP02 LA7040	${ }_{9}^{1092}$	MM 5387 AAN	N 620	SAS5010	8.38	STA441C	275	TA7153P	5.45	TC40718P	3725	tDazal1an	298	TMS1024NL	1125	X0261CE	8.75
LA7042	425	MM5841N	${ }^{6.64}$	SAS560S	220	STK0029	559	TA7162P	325	TC40H000	1.98	TDA28130	4.68	TMS1025N	16.9	X1222AF	3.53
La7800	205	MN1400V M 1405	${ }_{1295}^{13,5}$	SAS5507	5.8	STK00999	5.35	TA7169	9.54	TC45148P	5.4	tDazar11a	125	IMS3720ANS	14.95	Y969	2.8
${ }_{\text {LCl }}$	3.08 920	M N6016A	21.56 50 50	SAS550	285	STKKOS50 STK0080	7.12 9.16	ta7193ap	6.68	TCA270S	215	TDA2630	1.96	TMS3894NL	1925	ZPYY20	325
103120	1.13	MP1192	5.07 4.00	SASS600		STK0080	5.08	TA7193P	5.50	icazosa	1.55	TDA2831	273	MS5102NL		2Tk33	0.43
LD3150	225	MPP2812	5.00	SAS6700	1.33	STKO13	925	ta7201P	271	icazana	239	TDA2649	13,45				
LM1017N	429	MP8512	1.57	SAS670	3.96	STK014	980	IA7203P	218	TCAA2AA	216	TDA2653	${ }_{3}^{13,56}$	Full list available with order			
LM1877 LM24	$\begin{array}{r}10.9 \\ 1.75 \\ \hline\end{array}$	MPC596	2.13	SAS6710	1.95	STK015	8.75	TA7204P TA7205P	${ }_{1}^{21.38}$	TCA450	224	TDA2654	6.18	or SAE please $9^{\prime \prime} \times \mathbf{4}^{\prime \prime}$			
LM2808	625	MPF256C	0.50	SBA750 SC84203	1.193	STK022	${ }_{5} 25$	TA7206P	6.35	tCA640	1.36	tDA2670	254				
LM287	5.55	MPSS542	0.48	SCC5504P		STK025	1250	TA7207P	334	TCA650	200	IDA2880	320	Telephone answering			
LM317CKC	1.38	MPSA56	027	SDA2006	18.95	STK031	1295	TA7208P	215	TCA6608	330 381	${ }^{\text {TOAP2740 }}$	${ }_{6} 6.00$				
LM324N	0.75 0.80	MPSA92	0.49	SDA2112/2	1285	STK040	9.40	TA7210p	3.63	TCA750	225	TDA2780a	5.14	machine available 24 hours			
LM340k	11.85	MPSUOS	0.085	SG264A	88.75	STKOSA	7.13	TA7215P	258	TCasoon	6.98	TDA2795	$\begin{array}{r}278 \\ \hline 25\end{array}$	0902-712083			
LM342P	1.62	MPSU56	0.78	S6629	827	SIKOSE	18.5	TA7217AP	1.45	TCA830S	238	T0A27919	1325	for Access and Barclaycard customers			
LM342P	1.62 1.22	MPSU60	1.98	SG6533	11.96	STKO7	7.7	TA7222	1.95 357	TCAs90	204	TDA3000t	255	Stock queries by post only			
LM348N	215	MR818	0.33 0.72	${ }_{\text {a }}^{\substack{\text { SI-1020H } \\ \text { SI-1125 } \\ \hline}}$	10.1089	STK078 STK080	$\stackrel{18.50}{16.5}$	${ }_{\text {TA7227P }}$	281	tcas10	204	TDA33008	6.98	Mease			
LM380N	280	MR854	120		17.50	STK082	11.86	TA7229P	4.45	TCA940	1.80	TDA3330	330				
LM384N01	325	MRM14 ${ }_{\text {M }}$	S 17.35	Sl1225HD	17.7	STK086	13.58	TA7230P	4.98	TCAA40E	293	TDA3506	728	Orders from Govi Institutions, Schools, Nationals etc., accepted with oflicial order.			
LM567CN	1.71	MSM 5840 H	925	S11630HD	21.98	STK1039	5.75	TA7232P	${ }_{6} 6.50$	5 ICEP1000	1028	TDA3500	42				
LM64024093	10.15	MVS460-02	0.61	S16900	1200	Stik2110	16.35	TA7240AP	789	TCEP100	961	TDA3510	6.55	All goods should be delivered whthin 4 working days			
LM748	1.28	NE542	250	$5{ }^{\text {a }}$ SKE1/02	1.39	${ }_{\text {STK2230 }}$	1.70	TA7245P	7.50	TD3406AP	398	IDA3520	9.77				
LM8360 LM8361	3.87		${ }_{0} 0.38$	${ }_{\text {S }}{ }_{\text {S }}$	1.05	STK2240	14.40	TA7270	7.50	- 5 - TD3F800R	${ }_{4} .15$		${ }_{3}^{690}$				
LM8361	${ }_{11} 3.55$	NE556	0.95	5 SKE4F1/06	0.73	STK2250	18.95	5 TA7310P	215	5 TD3F900H							

LR2612

Test Report: Hameg HM204-2 Scope

In general test equipment has a long life. This is certainly true of oscilloscopes. Many scopes still in use date from the early seventies, when they were acquired to help with fault conditions experienced during the first colour receiver boom. Most of these scopes now have tired tubes and many of them lack the versatility required in today's high-tech world. Time perhaps to change to a more modern type?

The scope featured in this review was selected from the wide range produced by Hameg of East Germany, whose products seem to have come to the fore in the TV/video/ audio servicing sphere. In a nutshell the HM204-2 is a mains-powered 20 MHz 5 mV (1 mV at 5 MHz) dual-trace instrument with a rectangular $8 \times 10 \mathrm{~cm} 2 \mathrm{kV}$ screen, a timebase ranging from 0.5 sec to $100 \mathrm{nsec} / \mathrm{cm}$ plus $\times 10$ magnification, a variable sweep delay system plus variable hold-off time, a signal delay line to reveal the triggering edge, an X-Y display facility and a built-in component tester. It costs $£ 365$ plus VAT. An abridged specification is given in Table 1.

Evaluation

I gave my own bench oscilloscope a three-week holiday while I had this one. During this time the Hameg scope saw a great deal of TV and video work - also something of a CD player that was in for service at the time. In addition, some specific tests were set up to help evaluate the scope's performance. By the time it left I'd got to know it quite well!
The Y amplifiers worked well and were found to be able to handle a full-height display of a 20 MHz sinewave signal. The slight shortcoming I noticed with a 1 MHz squarewave was due to my probe rather than the scope. The signal delay line in the Y path made it possible to see the triggering pulse, typically the leading edge of a line sync pulse. I found the $\times 5 \mathrm{Y}$ magnification facility useful with low-level signals: signals down to $500 \mu \mathrm{~V}$ amplitude, e.g. a tape sound head output, could be examined with a straight-through probe - the reduced 5 MHz bandwidth in this mode was no handcap. The "invert 1 " and "add" facilities permit differential measurements in the Y1 and Y2 amplifiers, a useful feature though not one required every day - all common Y1/Y2 information is discarded in the display, which thus shows only the difference between the Y1 and Y2 signals. Using the "add" mode with both probes connected to the same point results in a maximum sensitivity of $500 \mu \mathrm{~V} / \mathrm{cm}$.

The instrument's front panel bristles with green LEDs that indicate what's happening. A useful pair comprise the vertical overscan indicators: these are arrow-shaped and light up to show which way the trace disappeared off the screen - very useful in "lost-trace" situations.

A choice of test signals for calibration checking and setting h.f. compensating trimmers in probes is available at front panel sockets: 200 mV and 2 V doses of 1 kHz and 1 MHz squarewaves, the former for probe adjustment and the latter a stringent test of both probe and Y amplifier performance.

The X-Y facility provided is increasingly useful for servicing, notably for servo adjustment in CD players: at
the low kHz frequencies used here the internal phase shift due to unequal X and Y bandwidths is not relevant, though it must be borne in mind when attempting to set up Lissajous or similar displays at frequencies above 50 kHz .

A good trigger performance is essential with the increasingly complex waveforms encountered when servicing modern domestic electronic equipment, particularly when only a small segment of a recurring signal has to be analysed. I found that the Hameg HM204-2 is well equipped in this respect, with provision for triggering from a.c. (normal), d.c. (very low-frequency and variable dutycycle pulses), h.f. (high-pass filtered), l.f. (low-pass filtered, e.g. field triggering from a composite video/ blanking/sync signal), or line (50 Hz mains) signals. All these coupling modes worked well for me, particularly the last two for field-rate TV work and observing mains-rate ripple on power supply lines respectively. Once a trigger mode has been selected the signal can be routed to the trigger circuit from an external source or the Y1 or Y2 channels. Two useful features are present in the latter case: triggering can be from the unused Y channel in the single-trace mode, and alternate triggering from the two Y channels is possible, permitting the simultaneous display of two asynchronous waveforms.
Either the positive- or negative-going slope of the trigger signal can be selected and the level at which the timebase fires is set by means of a rotary control - pushing this knob switches to automatic (peak value) triggering, avoiding the need to fiddle with the level control when displaying simple repetitive waveforms. The "hold-off" facility can be used in difficult cases (the timebase triggering is muted for a preset period during the signal cycle). I found its main advantage to be the provision of a clear display of sections of complex pulse trains like NRZ (non-return to zero) serial data pulse trains.
Whereas the short, fixed Y-signal delay permits the timebase to be fired before the trigger edge is displayed, a very wide-ranging monostable sweep delay system is fitted: there's a seven-position switch and a multi-turn potentiometer. With these, the start of the sweep can be delayed after the trigger point by any period from 100 nsec to one second. This system comes into its own for segment examination, for example the full screen width display of a single teletext line or a VITS pulse, the study of a single (stationary!) picture feature at some point along a TV line, or losing a preamble signal such as a framing code in a serial data pulse train. The status of the sweep delay circuit is indicated by an LED: similar indicators show when the timebase is being triggered, when the power is on and, in the single-shot mode, when the timebase is armed. Like many other features of this scope, the singleshot facility is increasingly useful in consumer goods servicing - in this case for the analysis of transient events, though you have to pay close attention to the screen.

I found that these comprehensive triggering arrangements worked excellently. It's essential to study the Hameg operator's manual if full advantage is to be taken of the facilities available. Even so, I've become used to the simpler and more reliable method of externally triggering the scope - this makes the timebase operation
independent of the amplitude, content and trace height of the displayed waveform. Virtually all the waveforms of interest in TV, video and related equipment are tied to field, line, colour subcarrier or clock rates and test points carrying these reference (trigger) signals are usually easy to find. I use a third probe (1:1) plugged into the BNC trigger input socket and get a rock-steady display - and a baseline on the screen when the signal probe falls on the floor . . .

The timebase section worked most adequately. There are 21 preset sweep speeds between $0.5 \mathrm{sec} / \mathrm{cm}$ and $100 \mathrm{nsec} / \mathrm{cm}$, expandable (at the expense of brightness) to $10 \mathrm{nsec} / \mathrm{cm}$ by using the $\times 10$ magnifier. Fine control is by means of a vernier potentiometer, which brings the minimum scan speed down to $1.25 \mathrm{sec} / \mathrm{cm}$. I found that the calibration accuracy was better than 2 per cent and looked in vain for any visible retrace.

An oscilloscope is only as good as its display system, and the price of an instrument closely mirrors the goodness of the tube fitted. In the medium price range into which this model fits, a 2 kV tube is par for the course. This is perfectly adequate for most purposes, giving a bright and reasonably sharp waveform display. In the "strobe" modes however, such as the segment observation and sweep-delay situations previously mentioned, the duty cycle of the scanning spot is very low, and since the eye responds only to the average brightness of the image the perceived brightness is correspondingly low. When the brightness control is advanced to compensate, the focus performance suffers. As a result a display of one test data line (duty cycle $1: 625$) or a single vertical line of a test pattern (duty cycle typically 1:200) will be quite dim and possibly ill-defined. The only solution to this problem is to spend a great deal more money on an oscilloscope with a very high post-deflection accelerating potential (say 10 20 kV), since this will have a greater brightness reserve to cater for such situations. That said, the display on this Hameg review model had shocking astigmatism in all the display modes. Adjustment of the internal astigmatism preset produced a great improvement, but the focus performance at high brightness levels and in the strobe

Table 1: Brief specification.

Operating modes: Channel 1, channel 2, channels 1 and 2 alternate or chopped at 500 kHz . Sum/difference: channel 2 \pm channel 1. X-Y mode.
Y amplifiers: Bandwidth d.c. $-20 \mathrm{MHz}(-3 \mathrm{~dB}$). Rise time 17.5 nsec . Deflection coefficients $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ in 12 steps. Accuracy $\pm 3 \%$. Times five magnification at d.c. $-5 \mathrm{MHz}(-3 \mathrm{~dB})$. Delay line fitted.

Timebase: $100 \mathrm{nsec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$ in 21 steps. Vernier $2 \cdot 5: 1$. X magnification to 10 . Hold-off maximum 10-1. Trigger auto/normal, \pm slope from sources ch. 1, ch. 2, alternate chs. $1 / 2$, mains, external. Coupling a.c./d.c./h.f./l.f.
Sweep delay: 100 nsec to $0.1 \mathrm{sec} / \mathrm{cm}$. Variable fine control 10:1 to 1 sec .
X deflection: Bandwidth d.c. $-2 \mathrm{MHz}(-3 \mathrm{~dB})$. Input via ch. 2.
Component tester: Maximum test voltage 8.5 V r.m.s. (open-circuit load). Maximum test current 24 mA r.m.s. (short-circuit load).
General: 8×10 internal graticule with 3 -step illumination. 2kV e.h.t. Z modulation TTL, two-state: $+=$ bright. Calibrator inputs 1 kHz and 1 MHz switchable: rise time $<5 \mathrm{nsec}$ at 0.2 V and $2 \mathrm{~V} \pm 1 \%$.
Operating voltage $110 / 125 / 220 / 240 \mathrm{~V}$ a.c., $40-400 \mathrm{~Hz}$. Power consumption 41 W .
Weight 7.7 kg . Cabinet dimensions $285(\mathrm{w}) \times 145(\mathrm{~h}) \times$ 380 mm (d). Colour brown/grey. Lockable tilt handle/stand.

The Hameg HM204-2 oscilloscope.
modes remained unspectacular.
On the credit side, the internal graticule and its illumination system are very good indeed for both parallaxfree observation and for photography. If I had the instrument I'd certainly buy the matching HZ65 viewing hood.

My enforced entry to carry out the astigmatism adjustment gave me an opportunity to assess both the internal construction of the scope and the recalibration/setting-up instructions (also layout and circuit diagrams) in the manual. Both were excellent. The instrument's circuit is conventional and reliable: it uses easy to obtain components like BC557 and BF458 transistors, 78 series regulators and 74 series logic chips. While I'm blowing the trumpet, I'd commend the clear and logical front panel layout, the tilt handle/stand and the dummy three-pin "socket" at the rear for stowing the mains lead. For field work however the front of the instrument is somewhat vulnerable without a hard protective cover - the HZ46 carrying case is an optional extra.

Component Tester

An unusual feature of this and other Hameg scopes is the component tester. This works by applying a sinewave voltage (50 Hz) to the component under test and to the X deflection system. The current flowing in the test circuit deflects the scanning spot vertically, so that the pattern traced out shows the current/voltage characteristic of the component being checked - resistors produce diagonal lines, inductors and capacitors produce ellipses and semiconductor devices produce knees and angles. Some of the prettiest patterns I produced resulted from in-circuit tests of semiconductor devices in reactive ($L C$) circuits. The principle was described by David Botto in the June 1984 issue (page 426). It's certainly a quick and effective method of testing most components, particularly semiconductor devices. Built into the scope and ready for use at the press of a button this is certainly a very convenient feature, though it's limited in both range and accuracy with passive components like resistors and capacitors.

Verdict

Apart from my minor (and perhaps carping) criticisms of the c.r.t. and the unprotected front panel I have to report that 1 was very happy with this scope, which has many of the features of its more expensive $60 \mathrm{MHz} / 15 \mathrm{kV}$
brother the MH605. It was much in demand by my colleagues (notably Tony the Audio) while it resided in the workshop. It's versatile, easy to drive and has good performance. I'm sure that it represents good value for money at $£ 365$ plus VAT and it's well backed up, during and beyond the guarantee period, by the UK service and calibration department of Hameg at Luton, Beds. There are European depots in France, Germany and Spain.

The HM605

I subsequently had the opportunity to try out the 60 MHz version, Model HM605. This is of similar construction and appearance but incorporates Y amplifiers with a bandwidth of 60 MHz and a faster sweep speed to match. My first test was to hook it to the i.f. output of an ordinary u.h.f. tuner, whereupon a beautiful carrier envelope pattern of the $39 \cdot 5 \mathrm{MHz}$ modulated carrier was
displayed, with gain to spare. The tube in this scope is operated at 15 kV which gives a dazzlingly bright trace and an excellent display of short duty-cycle waveforms.

Judged overall the HM605 does not have as good an internal trigger performance as others, such as the "pulsecounting" scope I once reviewed or the wideband Philips type (which, incidentally, is much more expensive), but at about $£ 567$ plus VAT it offers the best price/performance ratio of any wideband scope I've come across.

Availability

Hameg scopes are available from most major trade component distributors and from several of our advertisers, e.g. BK Electronics, Stewart of Reading, etc. The review scopes were kindly lent to us by HRS Electronics Ltd., Great Barr Street, Birmingham B9 4BB (telephone 021771 2525).

CRT Heater Voltage Checker

J. LeJeune

In virtually all present-day CTV receiver designs the c.r.t. heater voltage is provided by a winding on the chopper or line output transformer. Such a supply is preferable to the older mains transformer supply since the stabilisation is far higher. The shortening of tube life due to incorrect heater voltage becomes noticeable when the voltage varies from the rated figure by more than five per cent, which is less than the guaranteed mains supply limits. Since the c.r.t. is by far the most expensive single item in a receiver the changeover to a stabilised source of heater voltage has been a great advantage. A minority of service engineers maintain however that tube life was longer when the heaters were fed from a 50 Hz source.

Theory

The sole purpose of the heater supply is to raise the temperature of the c.r.t.'s cathodes to the optimum level for electron emission. Higher or lower temperatures will result in deterioration of the cathode surface, to the detriment of the tube's life.

The heating effect of an alternating current is defined by its r.m.s. value, this being the value of direct current or

Fig. 1: Circuit diagram of the checker.

Fig. 2: Set-up for calibrating the checker.
voltage that produces the same heating effect. Bench multimeters are calibrated to indicate the r.m.s. value of a sinewave, and produce misleading readings when fed with alternating voltages and currents that are non-sinusoidal, such as the pulse voltages derived from a line output transformer. Furthermore the frequency at which they are intended to operate is normally 50 or 60 Hz : they give erroneous indications when used with frequencies that are significantly different from those for which they were calibrated.

There are various sophisticated methods of measuring true r.m.s. values, but they are expensive and often delicate - two features that make them unsuitable for normal workshop use. The simple, inexpensive and very robust checker to be described was developed after the writer's endurance had been tested to the limit watching service engineers attempt to divine the correct heater voltage using a rectifier-voltmeter combination and guesswork.

Checker Features

The checker uses no batteries and can be forgotten about when not in use. It's fast in action and fairly immune to misuse, though inadvertent connection to a voltage higher than 12 V will fuse the lamp - when this item is replaced the unit's calibration must be reset. Lamp protection was considered but all attempts to achieve this resulted in loss of sensitivity and accuracy over a wide frequency range. The meter is isolated from the supply and is well protected by the parameters of the solar cell. The few components required are inexpensive and readily available - some may be found in odd corners of the workshop. In the original prototype a tape recorder level meter, a photocell from a damaged photographic exposure meter and a plastic box that once housed 35 mm transparencies were used.

Circuit Description

The checker's circuit is shown in Fig. 1. It measures the heater voltage by using the supply's heating effect to light a small lamp whose output falls on the sensitive surface of

Fig. 3: Lightproof cover for the lamp and solar cell.

(b)0540

Fig. 4: PCB component layout (a) and track pattern (b).
a photovoltaic cell. This cell generates a direct current which is indicated by the meter. A resistor is switched into the circuit to allow 12 V sources to be measured: this resistor drops the incoming 12 V to 6 V and eliminates any need for switching in the meter circuit - with the very low current involved such switching would be likely to cause trouble. The arrangement also means that the lamp's filament is rarely run at full voltage. Because of its 12 V rating an attempt to test a 12 V source with the checker's range switch set to 6 V won't damage the lamp.

In use the checker bridges the c.r.t.'s heater supply at the tube base socket, the lamp consuming only 20 mA . The effect of this on the voltage supplied to the tube's heaters via the usual ballast resistor is negligible; being of the order of 40 mV with the usual $1 \cdot 8-2 \Omega$ ballast resistor.

Calibration

Fig. 2 shows the best method of calibrating the checker. A variable voltage d.c. bench power supply is the easiest source of voltage to use, though a 12 V battery and a $470 \Omega, 0.5 \mathrm{~W}$ variable resistor can be used instead. To measure the d.c. voltage accurately an Avo 8 that's been recently recalibrated is the least that's necessary: a digital voltmeter would be ideal.

Initial setting up of the checker is simple. Uncase the checker and with the arrangement shown in Fig. 2 apply exactly 6.3 V d.c. at its input sockets - the polarity doesn't matter. The lamp should light dimly and the meter will give an indication. Any incident light falling on the solar cell from room lighting, doors and windows will also produce a meter reading, so choose a dark comer to do the setting up. Adjust the distance between the lamp and the solar cell to obtain an approximately mid-scale meter deflection. Check this with the light-tight box in position over the lamp and cell. A distance of approximately 1 cm will serve as a starting point: the components can be bent closer to or farther away from each other as required.

I chose exactly mid-scale for the 6.3 V indication and made other marks on the meter scale at 0.1 V intervals,
from 5.8 V to 6.8 V - do this with the checker's cover in place over the lamp and cell. This completes the 6 V calibration.

Set the checker's switch to the 12 V position and increase the power supply output to 11.5 V . RV1 sets the meter's indication for the 12 V range. Adjust it until the meter pointer is at the 6.3 V calibration mark. Vary the power supply output in 0.1 V steps over the range $11-12 \mathrm{~V}$ and make another set of calibration marks for this range.
Don't disturb the positions of the lamp or solar cell otherwise the unit will have to be reset all over again.

Since the lamp bulb will gradually blacken over an extended period of regular use it's advisable to check the calibration from time to time. The frequency of these checks depends on the amount of use the checker gets: in a busy rental business workshop where fitting replacement c.r.t.s is a common occurrence there will be a greater need to check the calibration - it should be done after about a year of daily use. For the casual user checking the calibration is a matter of judgement.

Use

The checker should be used whenever a reprocessed c.r.t. has been fitted to a receiver. Make the last check the c.r.t. heater voltage - after all the other operating voltages have been correctly adjusted. With some imported c.r.t. gun assemblies the heater current differs slightly from that of the original gun, and because of the heater ballast resistor you will get variations outside the normal rating of the tube. Any doubt about the correct heater voltage should be taken up with the c.r.t. supplier. The checker will also show up faulty or out-of-tolerance ballast resistors.

The prototype checker has proved to be fast and reliable in use, with well over a year's service to its credit. Although its 20 mA consumption means that it isn't universally applicable, some of the more exotic models reaching our shores being outside its capability, its usefulness in the diagnosis of tube-related complaints has been inestimable.

Components and Layout

There are few restrictions when it comes to the selection of components to use. Choice of solar cell is limited because few such devices are readily available. The Maplin MS4A (order no. BL23A) is one suitable type. The lamp is critical inasmuch as it should be a $12 \mathrm{~V}, 30 \mathrm{~mA}$ type. The one used in this instrument is an RS Components T1-25 (stock no. 586-380).

The checker's layout is largely a matter for the constructor's discretion, but the capacitance of the input to the lamp should be kept low as this could affect the checker's accuracy at high frequencies. While a PCB gives a neat finish to the unit it could be considered a luxury. Fig. 4 shows a layout - it may have to be altered to suit the components used.

Components

LP1 $12 \mathrm{~V}, 30 \mathrm{~mA}$ lamp, type T1.25
M $\quad 50 \mu \mathrm{~A}$ meter
RV1
SC1
SK1, 2
SW1

470 . 0.5 W skeleton preset
Silicon solar cell, e.g. Maplin MS4A
Wander sockets
SPSTI switch

Reports from Alfred Damp, Martin Pomeroy, Christopher Holland, Les Harris, Jim Rainey, Roger Burchett and Philip Blundell, Eng. Tech.

Sharp VC3300

The fault with this portable machine was poor wind and rewind. The AUX brake wasn't releasing on wind/rewind though it did release on playback. The solenoid that operates the brake would pull in (as it should) then release again as the return coil was pulsed. Reference to the timing diagram in the manual showed that this shouldn't have been the case. After spending some time chasing round the brake drive circuit I had a look at the block diagram for inspiration. This revealed that a power failure signal is sent to the brake circuit from the power supply, and although the low-battery LED was out the signal line was floating at 3 V . One half of operational amplifier IC901 was found to be open-circuit. Replacing the op-amp cured the fault but then the take-up spool didn't go round in playback! As this had been o.k. before I retraced my steps, one of which had been to swap over the reel drive and loading drive i.c.s. Although the circuit shows them as being of the same type one of them has an A suffix. Swapping them back restored normal operation (the A one should drive the reels).
P.B.

JVC HR7200/Ferguson 3V29

The problem with this rather worn machine was intermittent loss of drum servo lock in search. The cause was a crack in the servo panel by connector 302 .
P.B.

Toshiba V31B

Severe overloading and no sound in the E-E mode, with the playback light permanently on, was due to Q663 being short-circuit. As a result the play- 12 V line was present all the time.
P.B.

Philips/Finlux VR1010

An unusual problem with one of these machines was wow on sound and a rumbling noise coming from the capstan. The old screwdriver stethoscope trick proved that the noise was indeed coming from the bearing, but on these machines the races are riveted into the chassis. So I sent the machine back to Finlux who replaced the complete transport assembly. The noise was still there: red faces all round! If I'd tried replacing the tape servo board I may have traced the fault to a noisy TDA1432 DA converter chip. Sorry Gerry!
P.B.

JVC HR7700/Ferguson 3V23

The fault on this machine served as a reminder that logical fault finding saves time and money through ordering the correct part first time: work on the assumption that all components are innocent until proved guilty. The complaint was no sound in the E-E mode, with the monitor producing an oscillation in the record mode. A hum test at pin 2 of IC1 (HA12005) produced no output while a similar test at output pin 6 produced results. We assumed that the i.c. was faulty, but were wrong. Further checks revealed that the voltage at pin 7 was low in both the record and playback modes. This pin is controlled by switching transistor X 4 whose base was found to be
constantly high. This took us back to X 44 on the mechacon board, then to IC3 (UPD4066C) on the junction board. Replacing this item finally cured the fault.
A.D.

Hitachi VT88

This machine would accept and play cassettes properly but was loath to give them back when requested - when the cassette was ejected it was immediately taken back into the machine. We found that the cassette housing timing gears had slipped, as a result of which the cassette-in detector switch was operating too early, before the cassette had been fully ejected. Resetting the gears will provide only a temporary repair: the complete cassette housing assembly should be replaced.
A.D.

Hitachi VT8500/8700

Failure to record was the complaint with a Hitachi VT8500: there was neither sound nor picture in the E-E mode. The supplies to the tuner and i.f. strip were correct but there was no output from the i.f. module. Fault finding here didn't look to be easy because of the close proximity of the tuner, with both modules soldered into a mother board. Just before I was about to remove the tuner/i.f. pack a picture flashed on the screen then off again: tapping the i.f. module would make the sound and picture come and go. When the i.f. module was unsoldered and its covers removed three obvious dryjoints were seen at earthing points, about a third of the way across the module from the left-hand side. Because of the difficulty experienced in removing the module we decided to do a blanket soldering job. When the module was replaced we had nice E-E vision and sound with no more problems.

A similar machine, a VT8700 in a Granada case, had a pluggable i.f. module. The complaint was the same and on opening the module the same three dry-joints were noted. Resoldering just these three joints restored normal service.
A.D.

Sony SLC30

Crawling beat-frequency bars on the screen during playback (also in the E-E mode, though less evident) were eventually traced to a $\pm 1 \mathrm{MHz}$ oscillation on the UN12V line. This disappeared when plug CNOO1 was removed from the r.f. modulator - the oscillation was modulating the regulated 9 V and 12 V lines. After delving around in the modulator it was found that adding an $8 \cdot 2 \Omega$ resistor in series with the UN12V line at plug CN001 (pin 3) solved the problem. It was easily fitted by cutting the print at the pin and mounting the resistor across the break.
M.P.

Sanyo VTC5000

On playback there was a horizontal line three-quarters of the way down the screen - even with a prerecorded tape. Replacing the head disc didn't provide a cure so I tried swapping over the whole cylinder motor and upper cyl-

Nopih

CROPTON, PICKERING, NORTH YORKSHIRE, YO18 8HL. Tel. (07515) 598. Established 1982 - A PRE PIONEER COMPANY IN SATELLITE TV

Equipment suppliers to: british government, universities of: OXFORD, hULL, leeds, bradFord, kENT, Manchesier; jodrell bank radio TELESCOPE, LONDON EDUCATION AUTHORITY, SOVIET EMBASSY, OIL INDUSTRY,' HOTEL, TRADE \& DOMESTIC SYSTEMS ETC, ETC. OUR EXPERTISE AND LONG TERM INVOLVEMENT IS YOUR GUARANTEE THAT WE SHALL STILL BE OPERATIONAL IN 2010

TRAINING COURSE

In view of the number of Companies offering both equipment and courses in order to sell their own products, we intend to run a fully comprehensive course for Engineers, Installers \& Enthusiasts.
The two day course will consist of:
4/11/12/ Ghz LNALNB Tests and repair
Receiver technology, Varicap, remote, IR etc.
Parabolic dish techniques: this includes hands on experience of both offset and prime focus antennae from $1.0 \mathrm{~m}-3.0 \mathrm{~m}$.
Experience in the use of test equipment, including: Spectrum Analyser, Storage Scope, Digital Counter, Sat. TV field strength meter, etc., etc.

SMATV systems both for UK and Europe with data on both VHF and UHF systems.
The course will give a clear understanding of the technology involved in satellite TV broadcasts in the current 4 operational bands.
We will train you to install both $4 \& 11 \mathrm{Ghz}$ systems, and identify the problems that you will meet during installation.
Other aspects of the course will cover terrestrial interference and its solution, encryption \& de-encryption, legality \& copyright.
The above is but a small part of the very intensive course.
COST: $£ 100$ + VAT
FOR THE TWO DAY COURSE
If required accommodation can be arranged.
inder from a VTC5300 (same unit!). This cleared the fault. Replacing the original upper cylinder assembly brought the fault back. On these machines the fixed head section of the transformer is mounted above the head disc in the upper cylinder: I suspect that the cause of the trouble could have been a short-circuit turn.
L.H.

Toshiba V9600

This machine had very poor rewind - it would often stop. The problem was not due to the usual upper cylinder or rewind idler wear but to the two pillars that locate into the rear underside of the cassette. They were misaligned, causing the right-hand spool to drag. Unscrewing the pillar fixing screws and relocating the pillars correctly cured the problem.
L.H.

Toshiba V8600

No output from the modulator due to Q661 being faulty usually open-circuit base to emitter - has been mentioned before in these pages. I phoned Toshiba to see if any modifications were needed but it seems that the reason for this relatively common failing is not known.
R.B.

Samsung VI510T

The problem with this machine was perfect playback of a prerecorded tape but only noise on the screen from one of its own recordings, though the sound was good. With such symptoms the first check should be on the voltages that control the video head switching transistors at the head preamplifiers. The fault is normally due to either the
record voltage being incorrect or a playback voltage being present during record. What caused the problem with this repair was an apparent mistake in the manual: this suggests that during record there should be 12 V on the record line, most easily checked at pin 26 on the Y/C panel. In fact there should be 12 V here during playback with zero volts during record. Once this error had been confirmed by checking with a good machine it was easy to trace the fault to IC8 on the syscon panel. It's one of those one-sided green i.c.s with the internal components bulging through the casing.
C.H.

Ferguson 3V35/3V36

In both the playback and record modes the drum speed hunted at a regular rate. The cause of the fault was traced to $\mathrm{R} 446(270 \mathrm{k} \Omega)$ which had gone high in value. It's in the drum speed control circuit, connected between pins 14 and 15 of IC404, i.e. providing feedback in the drum speed error signal amplifier stage.
J.R.

JVC HRD120/Ferguson 3V35. Erase Problems

Over the years various VHS machines have suffered from problems at the full erase head. When you consider that each time a tape is played the supply loading arm pushes the erase head assembly out of its way after which the assembly springs back into position it's not surprising that with a number of machines you get dry-jointed erase heads or loose plugs at the erase head panel. The resultant symptoms vary from model to model. In all cases traces of colour from a previous recording will be left on the tape, since although the f.m. record current will remove all
traces of luminance information any strong areas of colour will remain. With the erase head out of circuit new audio is recorded normally though I have come across models where the previous audio remains as the erase head appears to be an active part of the h.f. circuit and, if not connected, the h.f. oscillator will not start up. In either case the accepted solution is to solder the leads directly to the pins of the erase head, removing the plug if one is used.

For some time I've been plagued by a couple of JVC HRD120s with very intermittent failure to record the audio signal, the previous track being left on the tape.

Soldering up the erase head made no difference - in fact on these machines if the erase head is left open-circuit the only apparent effect is smeary colour on the new recording. The problem is due to the h.f. oscillator circuit not starting up - if it doesn't start up for a particular recording it remains inactive throughout the recording. The solution that's finally come through is the following modification. Change transistor Q8 in the oscillator circuit from type 2SD638R to type 2SD638S and alter the value of C48 by soldering a $5 \cdot 6 \mathrm{nF}$ capacitor across it. Should the same fault be encountered in the later JVC HRD140 it's worth checking the h.f. oscillator coil T1 for dry-joints. C.H.

Teletext Developments

Peter Marlow, B.Sc. (Hons.), C.Eng.

The future of teletext was the subject of a very interesting lecture at the Institution of Electrical Engineers on October 20th. The speaker was Gerald Crowther, who is adviser for new applications to the Mullard board. As manager of the Mullard Applications Laboratory for several years he had been involved with the development of the first Mullard teletext chip set.

Initial Development

The talk began with a history of the teletext system since its early beginnings at the BBC's Kingswood Warren laboratories in 1972. The system was rugged, reliable and straightforward and could be put into practice economically using the technology of the time. No complicated data processing was required as the data was sent in a fixed format that corresponded directly with the screen position. Texas Instruments pioneered the first decoder chip set (Tifax), closely followed by Mullard.

The original system had the limitation that "black holes" would appear in graphics diagrams. This was corrected by the use of non-printed characters (escape codes) within the text to define the background colours. This limited the amount of printed information that could appear on a line however.

There are now ten million sets with teletext facilities in use in the UK. Fifty per cent of the large-screen sets now sold have teletext and there's a drive on to get the setmakers to fit teletext to smaller-screen models. This is an attractive proposition as the proportion of the cost of a TV set accounted for by the extra chips has dropped from 40) per cent in 1981 to ten per cent in 1985. UK manufactured chips dominate the market, which now covers most of western and some of eastern Europe. Mullard have recently introduced a second-generation two-chip decoder set which gives a better display (12×10 characters instead of 9×5) and allows for text and data manipulation by an external microcomputer. Other manufacturers are developing similar chips which have a wider application than just teletext, e.g. viewdata.

The Future

Teletext is evolving in several ways which the new second-generation chips are putting into use: multipage memory (up to eight pages at present); hardcopy facility using a printer; full channel operation - where the TV transmission is all text with no pictures; multilingual capability to allow for accented characters (Welsh has
some of these) and non-latin based text; programming home terminals with telesoftware; downloaded character sets to provide enhanced graphics; and faster access time with the use of editor selected linked pages. With this last feature the decoder captures several other related pages at the same time as the one selected by the user. These pages are relevant to the subject requested, decided by the editor at the teletext studio. A menu of these pages will be displayed at the bottom of the text page, in coloured boxes: by pressing the appropriate coloured button on the remote control handset the relevant page is instantly displayed. This feature is at present being tested by the BBC and the IBA and sets should be available during the course of 1987.

It's felt that the data rate and the error detection and correction system are not in need of improvement. Users of telesoftware, which is the most demanding application in terms of accurate data, have reported that transmission by teletext is more reliable than via BT, though I suppose it depends on where you live.

Any teletext improvements have to be downwards compatible so that older decoders will receive something recognisable. The present system is called level 1: level 2 will have enhanced graphics and text, level 3 highdefinition graphics, level 4 alpha-geometric graphics and level 5 full-colour still pictures.

The level 1 system uses 24 rows (or packets) of 40 characters. These are numbered 0 to 23 . A five-bit binary address defines the packet, allowing up to 32 packets to be transmitted in higher level systems while retaining compatibility - 24 to be seen and the rest for colour and graphical information about the picture (formerly called "ghost rows"). These need not be limited to 40 characters. Two more packets ($24 / 25$) can be used to display status information on the screen. Packet 30 is the most interesting addition: it will contain broadcast service data which will include a network label, an accurate clock and a programme designator - the latter could be used to control a VCR.

The applications of teletext are not confined to the domestic viewer. Subscription (not closed) user groups can obtain information nationwide - Aircall Ltd. has a system in operation already. The most startling proposed teletext use is as a credit card verifier. Shops would have a teletext receiver linked to a card reader and certain teletext pages would contain the numbers of stolen or lapsed cards, allowing a cross check. In using technology to track down criminals history seems to be repeating itself - future Doctor Cripins beware!

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON TX90 CHASSIS

Performance is perfect except for the following field collapse trouble. Onset of the fault is usually signalled by faint light or black lines jittering across the bottom quarter of the screen. This is followed by collapse of the bottom half of the raster to a greater or lesser extent: the collapse is sudden and takes the form of severe cramping of the lower lines, with reasonable linearity still maintained in the section above. Once the bottom half of the raster has completely collapsed the top half begins to collapse: again the lowest lines collapse into a central line, pulling the remainder of the picture down. Eventually there's just a single central line across the screen. A smart blow on the case will restore the picture to a greater or lesser extent persistence with this technique will usually recover the whole picture which may or may not collapse again. No amount of local panel tapping or pushing has succeeded in isolating a sensitive area and application of a multimeter produces an instant and prolonged cure.

We've known this problem to be caused by hairline cracks and dry-joints in the print around the connections to the field output transistors TR104 and TR 105. We have also found that these two transistors, types TIP29E and TIP112H respectively, can be responsible. Change them both after making a thorough check of the print and connections in the area. It's important that the transistors are obtained from Ferguson. Substitutes will not work satisfactorily.

PANASONIC NV8610

The problem is with the load/unload function and occurred after replacing the mains transformer. Operation of the power switch starts the drum and capstan motors but not the loading motor. The voltages on the transport/servo panels seem to be o.k. and the loading motor works when an alternative voltage source is applied to it.
The three symptoms (capstan running, head rotating, no loading action) are typical of a machine that thinks it is already loaded. The cause is almost always a stuck or faulty loading and/or load-end switch. These switches are mounted on sub-board VJBOO310 on the deck.

ITT CVC20 CHASSIS

Field collapse was cured by replacing the output transistors T9/10 and diode D8 which is in series with them. Next day the set came back with the complaint that there is a band across the picture. It's a dark band about a quarter of an inch wide with bright edges, about two thirds of the way down the screen. We've replaced the driver and pre-driver transistors T8 and T7 and the resistors in T7's base circuit. All resistors are of the correct value and new output
transistors have been tried. The output stage bias diode D7 has also been replaced. The linearity is good and there's plenty of height - apart from the band - but we can't get the output transistors to switch over correctly.

You've checked most of the likely culprits. We've often known D7 to be responsible for this fault and find that the correct type (BA316) is essential. Other items worth checking are $\mathrm{C} 23(1,500 \mu \mathrm{~F}), \mathrm{C} 26(22 \mu \mathrm{~F})$ and C 27 $(1,000 \mu \mathrm{~F})$ and in particular the three resistors ($\mathrm{R} 62 / 3 / 5$) associated with D7.

ITT VC300 CHASSIS

The problem with this monochrome portable is that the IIV supply line is low. Adjustment of the voltage control preset has no effect.

Start by disconnecting the tube's e.h.t. cap. If this restores the correct supply line voltage replace the e.h.t. rectifier stick. If not, measure the current flowing via supply fuse F2. If this is low (below 1A) the power supply is faulty - possibly the series regulator transistor T2 (R 2441) is defective. If the current is high, check for leakage in the line output transistor (T14) and the diodes linked to the line output transformer (D15/16/18).

SANYO CTP5101

The problem with this set is field collapse - there's about an inch of scan. The voltages in the field oscillator stage are correct but some of the voltages in the following stages are out.

With this chassis field collapse is usually caused by defective electrolytics in the field timebase. We suggest you replace the scan coupling capacitor C436 ($220 \mu \mathrm{~F}$), the boostrap capacitor $\mathrm{C} 433(10 \mu \mathrm{~F})$ and the drive coupling capacitor C431 $(10 \mu \mathrm{~F})$. If necessary check the values of R444 (18) , R454 (68Ω), R445 (1.2k 2) and R446 ($3.3 \mathrm{k} \Omega$) before suspecting the field output transistors Q905/6.

THORN TX9 CHASSIS

This set (Ferguson 37003) behaves as though it's receiving signals from the remote control unit when the latter is not being used. Mostly the set changes channels, and when it does the red LED sometimes stays lit. The fault may occur several times during an evening, then not for days. Response to operation of the remote control unit is correct at all times.

Disconnect plug 32 at the rear of the IR preamplifier. If the problem disappears the cause is noise or instability in the preamplifier, which is probably casier (and cheaper) to replace than to repair. If the fault remains, check the quality (voltage and ripple) of the 11.6 V line, at pin 13 of IC101 (SAA5012). If the supply is present and correct, IC101 itself is suspect.

> QUERY COUPON

Available until 21st January 1987.
One coupon, plus a $£ 1.50$ (inc. VAT) cheque or postal order, must accompany EACH PROBLEM sent in accordance with the notice above. TELEVISION JANUARY 1987

SONY KV2706UB

The picture on this set is marred by random white spots which appear approximately ten minutes after switching on - they can be seen clearly on a dark raster. I suspected corona discharge but have been unable to locate any. There's no interference on sound.

This problem can be caused by micro-arcing at the internal connections of electrolytic capacitors, usually those in the power supply. Check C653 then if necessary the other reservoir capacitors connected to T603's secondary windings. Check also the mains switch, the safety resistor R617 and for bad joints in the power supply and especially its plug/socket connections. If necessary check the earthing of the picture tube's external conductive coating and for corrosion/discharge at the anode cavity connector and focus connection pins 2 and 3.

It often means finis when a TV set reaches the age of seven or eight years and its tube is in trouble. The economics of replacing a picture tube and the recent tightening up of the manufacturers' seven-year spares rule (have you noticed?) conspire to put the viability of such a job in great doubt. A good tube rejuvenator will often provide the answer, but not always.

When the set is the subject of a maintenance agreement something has to be done! We had just such a case recently. The set was a 1979 vintage ITT Model CS712, fitted with the CVC30 chassis. On its first visit to the workshop - after a chequered history of field service calls - the complaint was of a "grotty picture", an apt description. All the signs of a tired tube were present, which is perhaps not surprising after seven years. We treated the tube with our wonder tube-jacker and after a soak test and set-up the receiver was returned to its owner. After no more than a couple of months the set was back on the bench. It looked better than it did when it first came in, but not as good as when it subsequently went out! Once more the impression was of a tired tube.

A suitable replacement tube was found amongst the exrental pile of old, condemned TVs. An emission test proved that this was o.k., so it was fitted to the ailing ITT set. After being set up, the picture was reasonable rather than good, but a delivery order was nevertheless raised. It was a few days before delivery could be arranged: on the appointed morning the delivery man took one look at the set's picture and decided there and then that it wasn't good enough to take back. Even the workshop fraternity
had to agree - the picture was somewhat defocused, the grey scale had that sickly green look, and the whites were crushed into grey at high settings of the contrast and brightness controls.

Off with the back and hook up the wonder tube-jacker again. It showed that the emission was quite reasonable. Each gun was then tickled rather than jacked, but this produced very little improvement in the picture. Resident Sage was worried. Not only had the reliability of his tubejacker been called into question, but the set had by now been the recipient of many man-hours of attention. And here we were back at square one. He settled himself behind the set with an oscilloscope, a test meter and a stern air. Alarm bells began to ring when a scope test revealed that the R, G and B signal waveforms at the collectors of the appropriate output transistors were crushed. A check on the h.t. line suppling these stages produced a reading of a little over 200 V instead of the expected 225 V . Hmm. When the RGB outputs at the TCA800 demodulator/matrixing chip were scoped some flattening of the white response was evident. This led to a check on the 12 V line - at pin 9 of the chip. The reading was low at about 10.2 V . Attention was next turned to the 12 V regulator transistor T14. The input at its emitter was a mere 13 V , not really enough for it to bite on . . It was proposed to change the reservoir capacitor at this point (C71, 470 F) and Resident Sage sent NAT (newly arrived trainee) to the stores to get one. Before he got back however RS had put two and two - or rather thirteen and two hundred - together and had arrived at a correct diagnosis. What was it, and why wasn't the width down all this time? What a wind-up! Answer next month.

ANSWER TO TEST CASE 288 - page 117 last month -

By way of a Christmas treat for our readers we described a Sharp XC30 colour camera fault last month. The last few lines of the story were a give-away! The nopicture condition was accompanied by a remarkable video preamplifier docility: its gain is normally so great that oscillation and instability result from any contact - or even approach to - the target connection lead. The other vital clue was the missing target voltage. In fact the target lead was earthed inside the cast screening cover over the front end of the vidicon tube. Connection to the target ring is made by a spring contact which is anchored to a supporting plastic moulding by a tiny self-tapping screw. As so often happens with plastic mouldings this one had rotted and crumbled away, allowing the spring contact to touch the earthed screen. Switch cleaner cannot be blamed this time!

The service manual contains no obvious part number for this little plastic treasure, but we found that the tube is centred within it by two moulded-on spacer blocks that contact the target ring on each side. We carefully bent and shaped a tiny strip of brass to make a U -shaped shoe to slip over one of these, forming a tight wedge-fit between it and the tube's target ring. After fitting a slightly longer signal-connection wire we were back in business.

[^1]SAVE TIME AND MONEY

SOME SELECTED SYSTEMS
 High Quality, Low Cost

 Levick 1.25 m dish SPC LNB
IN SATEL

IISHES

Alcoa 1.8 petallized (black mesh or lid) original p/mount Alcoa 2.4 petallized (bl olid) original p/mouninium Alcoa 1.2 ofset alu-horizon built-in p/rotor Levick 1.6 m spun aluminium with polar mount, feed horn \& ground stand \qquad
325
pimount and gressed aluminium
I.R.T.E. 1.5 mpresse fleed horn
with p /mountand 2 aluminium Laux Beta9 2.8 mp/mount petallized with pimoun with Skyscan 1.5 mond
DIMount \& POSITIONERS
Houston Tracker 11 controller + 18" jack 199
Hout Trackerll controller only Houston Tracker 18 " jack only
Houston Tracker Houston Tracker II remote upg Houston Tracker 24 " jack
Drake APS24E +
Drake APsack only
$r+18^{\prime \prime}$ superwinch
NEC 2025 Tracker
RECEIVERS
Drake ESR $324 E 24$ presets. manual 166
269
Drake ESR $424 E$ fully remote (black) 269
Drake ESR 2022 fully remote + graphics 320
NEWNECRE 80 manual
Maspro SRE 80 remote
Maspror Mk2 remote
Echostar SR1000
Echostar SR3000 fully remote
Skyscan receiver + built-in dish
control
LNB's
SPC electronics typ. 2.0 db
(Buy $30+$ for $£ 99$ each)
NEW NEC 2021 typ. 2.3 db NEWNEC LNB typ. 2.0 db Echostar LNB typ. 770 typ .1 .8 db
Micro-X, Europe's leading distributors of Satellite receiver systems bring you the best systems trom the World's greatest manufacturers.

POLARIZERS $\quad \underset{\text { I }}{\boldsymbol{f}}$
54.90
77.50
79.00
149.00

45.00

129.00 69.00
69.00
18.00

Luxor $/$ V
Maspro V switch

Levick feed with scaler

CABLE \& 519 low loss 139.00
 250 m drum ribbon 4 cables in 1
 149.00

New 1-Run
100 m drum
100 m drum . New Star-co
100 m drum
100 m drum
Crimp-on gilbert N -connectors
49.00

Crimp-on gilbert N -conner
3.85
(RASP) on gilbert F-connectors
1.10

Crimp-or
(RA519)
0.29

RASF nnectors
American N -crimp-on
American Crimp tool F F
F male to N female
F female to N male
Double N female or male
2 way splitter N type passive 4 way splitter N type pactive 4 way active splitter actized Line amp liclinometer

> YOUCAN MAKE OVER 100 DIFFERENT SYSTEMS FROM THEITEMS IN THIS PRICE LIST!
Buy the easy way: call
Micro-X on London 9686622 or Telex 915866 Microx G

FAX: 01-960 1130

Drake ESR 324 E
£ 46
Drake Fully Remote
Drake ESR 424 E receiver SPCLNB
Alcoa 4.8 m dish (black mesh or solid) Alcoa polarotor Houstor 899

NEC Fully Remote New NEC 2022 N LNB
New NEL dish (black mesh or solid)
Alcoa 1.8 Alcoa polarotor Houston Tracker II
£925
The "Skyscan"System
1.5 m offset dish control Receiver with built $\&$ actuator We $\mathbf{f 8 6 9}$

The Fully Remote "Spe New NEC NEC LNB aluminium offset New Alcoa 1.2 ilt-in motorized with builon-to-horizon horizon-toilt-in polarotor mount and Tracker 1 R controller Houston $£ 799$
quality products from leading manufacturers who quare about you and your customers, all products and supplied by Micro-X are covered by you require them. care about by Micro- X are covered by you require them.
supplied
spares are readily available should you
when youbuy from Micro- youre 765 -767 HARROW ROAD MICRO-X LIMITED, 765-767 HARE: 01-968 6622 LONDON NW10 5NY. TELE G. FAX: 01-960 1130 TELEX: 91

? 解

ALAN PERROW

> National Trade Sales Manager 618 Gt. Horton Road,

Bradford
BD7 3ER.
Tel: 0274501680

You've tried the rest - now try the best

ALSTON-BARRY SATELLITE SERVICES 36 MILTON ROAD, CAMBRIDGE. TEL: (0223) 69215
 Main importers and distributors for R.L. Drake, Ohio, USA.
 American satellite technology at its best, now in stock.

SYSTEM	RECEIVER	POSITIONER	L.N.B.	DISH/POLOROTOR
$£ 795$ rec. retail single satellite	Manual ESR324E	-	Drake	1.2 metre offset
$£ 995$ rec. retail multi- satellite	Manual ESR324E	APS 24	Drake	1.2 metre offset
£1195 rec. retail multi satellite	I/R remote 24 channel ESR424E	APS 24 (works remotely)	Drake	1.2 metre offset
£1275 rec. retail multi satellite	I/R remote 24 channel ESR424E	APS 424 (30 satellite programmable).	Drake	1.2 metre offset

All above prices include VAT but not installation. Multi-ribbon feed cable available by the metre. Other dish sizes on request. Trade prices available to bona fide dealers and installers.

All items sold separately. Don't delay, call today for immediate delivery.
We also stock a large range of late model Pye/Philips televisions at trade prices.
Save fffs, call us first!

Crofton Electronics,
"Kingshill", Nextend, Lyonshall, HR5 3SX. Telephone: 05448557

CUSTOMER CAN'T PAY?

DONT LOSE HIM FIT A TV METER

COINAGE AVAILABLE: $10 \mathrm{p}-50 \mathrm{p}-\mathrm{f} 1$ COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS

Contact: (0202) 674272
87-89 Sterte Avenue, Poole, Dorset BH15 2AW
Telex: 418253 PORTLX G.

WE WILL ONLY SUPPLY TOP OUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US	108SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY
PHONE (0228) 20358/39693	

A M (5)(D) $\sqrt{5}$ TEST EQUIPMENT THE DISGERNING T.V. ENGINEER'S CHOICE

Sourced from leading European manufacturers Alcon multimeters are ideal instruments for the T.V. service engineer. Precision fully protected movements, comprehensive ranges (plus optional E.H.T. probe) and clear mirrored scales make them perfect for bench applications, yet their rugged construction and stout carrying cases enable them to shrug off the rigours of field service use. Full after sales service is available, but we don't expect you to need it!

The incredible 'MINI 20'

$\star 20 K \Omega / N$
$\star 39$ RANGES

* INDESTRUCTIBLE
$\binom{$ automatically protected }{ on all ranges but 10 A}
* E.H.T. PROBE
(Reads up to 30 kV
c14.00 extra)
Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} ; 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $1 ; 50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} ; 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. a.c. I; $3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega ; 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$ dB ; from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
complete with carrying case,
leads and instructions)

ONLY £33.50

ELECTROTESTER fairly similar ranges to the above but reads up to 30A (ac \& dc) $\mathbf{E 3 4}$.
PRICES Our prices include VAT and postage and goods are normally desptached by retum.
For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone.

A) CGOM

Instruments Ltd.
19 MULBERRY WALK CONDON SW3 60Z • TEL: 01-352 1697 • TELEX: 918867

CENTRAL TV. \& VIDEO WHOLESALERS LTD. BIGGEST SELECTION - KEENEST PRICES

SPECIAL OFFERS THIS CRISTMAS
VHS - WORKING

+ STAR BUY

* STAR BUY - FERGUSON PORTABLE COLOUR TX90 - 14" from £90 PLUS LATE MODEL FRONT LOADER e.g. FERGUSON 3V45 3V24, 3V29/30 - HITACHI, PANASONIC, etc.

UNTESTED BETA from £25. PHILIPS 2020 from
\star STAR BUY - FERGUSON 9K from only $\underset{\sim}{\mathrm{E} 15}$ PHILIPS G11 from $£ 25$ G8-550 from $£ 10$ ALSO IN STOCK: FERGUSON TX10 TXT. \& STEREO TXT ALL SIZES - IN MINT CONDITION INC. HANDSET LARGE SELECTION OF HITACHIIFERGUSON VIDEO HEADS GRADE B T.V., AUDIO, HI-FI etc.

All Prices based on quantity and are subject to 15% VAT

Phone 01-807 4090 01-884 1314

CENTRAL, Cedar House, Nobel Road, Eley Estate, Edmonton N18

TAYIOR T.S. 20088 WAY U.H.F. T.V. DISTRIBUTIDN AMPLIFIER

LOOK AHEAD!

WITH MONOLITH MAGNETICTAPE HEADS
DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES. SAVE EEE's ON REPAIR CHARGES. Our replacement video heads fit most models of VHS or Betamax VCR's. Following our replacement guide and with a practical ability, you can do the whole job in your own home with our head replacement kit
VIDEO HEAD REPLACEMENT KIT

VMC-Ö2 KIT ONLY $\bar{£} 19.95$ inc. VAT $+£ 2.50 \mathrm{p} \& \mathrm{p}$ Kit does not include video head
TELEPHONE US NOW FOR INFORMATION OF THE REPLACEMENT HEAD FOR YOUR VIDEO RECORDER. CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward 50 p p\&p.
THE MONOLITH ELECTRONICS CO. LTD. 5-7 Church Street, Crewkerne, Somerset TA18 7HR, England Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTH G

$\star \star \star$ JUNCTION 11 : A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES

G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $\mathbf{E 6 0}$ plus full range of Thorn remote control including $\mathrm{T} / \mathrm{Text}$

^ DISCOUNT FOR QUANTITY

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days 9-5.30 (later by appointment)

NEW VIDEO HEADS

$£ 24.95$ each plus V.A.T. \& carriage

Our selected range of NEW VIDEO HEADS have been manufactured to the Highest specification and are fully Guaranteed for 1 Year.

Although these units are Totally New Assemblies and an exchange unit is not necessary, we offer an extra discount of £1.00 per returned drum for each New Electrovisia Head purchased.

For quantity discounts and Trade Terms please contact us.

Electrovisia LIMITED
 P.O. Box 55 Stratford-upon-Avon Warks. CV37 OUB 0789-298510

RECHARGEABLE BATTERIES SPECIAL OFFERS

FERGUSON 12v RECHARGEABLE BATTERIES TYPE VA214 - NEW!

Suits JVC 2650 PORTABLE, JVC 2200, FERGUSON 3V24. Also suits JVC 6" MONITORS, MODEL No's TM22, TM41. ONLY $£ 25$ each including post and packing

ONLY £25
UNIVERSAL
NICAD
CHARGER
A brand new universal charger (charges any combination of PP3,
 AA, C \& D CELLS), complete with 4 rechargeable AA HP7 cells (ex-equipment but tested and guaranteed) for only $£ 6.95$ plus 80 p post and packing.

NEW NICADS AA, PP3, C and D cells.
Send for Price List.
E. CROYDON DISCOUNT ELECTRONICS 40 LOWER ADDISCOMBE ROAD, CROYDON, SURREY
s 01-688 $2950 \quad$ SHOP HOURS Mon-Sat
10.5.30 (Closed Weds)

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

 FERGUSON3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" $18^{\prime \prime}$ 20" 22" $26^{\prime \prime}$ Hybrid/ Solid State CTVs
Remote Control \& Teletext
Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

BRITAIN'S LARGEST SUPPLIERS OF EX-RENTAL TV AND VIDEO SPECIAL OFFER $\stackrel{\substack{\text { HITACHI } \\ 5000}}{\star} \stackrel{\substack{\text { FERGUSON } \\ \text { 3V22 }}}{\star}$ f60 $\star \star \star \star \star$

 Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV from £5CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

FRANK FORD

(TV TRADE DISPOSALS) SCHOOL LANE GUIDE
BLACKBURN, LANCS
TEL: 025464489


```
BOLTEN LTD.
63, JEDDO ROAD, LONDON W12 9EE.
    Tel: 01-749 0915 (2 lines)
    Telex: 262421 BOLTEN G
```

VIDEO HEADS

SPECIAL OFFER THIS MONTH

PHILIPS YEARS AHEAD
THE CREDIT CARD CALCULATOR SOLAR POWERED
84.75

NEW PANELS

SENDZ components

 63 BISHOPSTEIGNTON,SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICE
All items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15\% VAT, then \& Posiage. Add Postage for Overseas. Callers: To shop at

$$
212 \text { LONDON ROAD, SOUTHEND. Tel. 0702-332992 }
$$

Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10% handing charge.

that there is a real difference at Cricklewood Electronics hat 's why you should never be writhout the FREE CRICKLE WOOD ELECTRONICS
COMPONENTS CATALOGUE for sheer COMPONENTS CATALOGUE, for sheer variety. compettive prices and service from the U.K 's number one 100% component shop. No gimmicks. no gadgets or computers. Just components, milhons of them. all easily avalable by mall order.
calthng or credit card elephone orders. Just pick up the phone (or a penl to get you Fredit card telephone orders. Just pick up the phone (or a pen
FREE copy now (no SAE required) You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITIED

 40 Cricklewood Broadway, London NW2 3ETTel: 01-450 0995/01-4520161
Telex: 914977

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:

THORN 3V22
 ELECTRONIC VCR
 from $£ \mathbf{£ 4 . 0 0}$
 VHS Top Quality Workers with
 \& Instruction Books $£ 80.00$
 FEW ONLY DIRECT TV. LOADS Available before Christmas.
 To reserve yours PHONE A.S.A.P. DON'T DELAY!

We also specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone:

 COLIN BROOMFIELD,ΣUNIT 7, STATION STREET, BROMSGROVE, WORCS.

BAEClaycard V/SA V/SM (0527) 37037/71186

CREWE WHOLESALE TV

77 Coleridge Way, Crewe Tel: 0270582924
15 mins from Junction 17, M6 motorway
WORKING TVs FULLY ENGINEERED AND TESTED.
TRY THEM BEFORE YOU BUY. NO REGUNNED TUBES.
Decca 80s \& 100s £25
Bush T20 \& T22 etc $£ 30$
ITT CVC 20 \& 30 \& 32 upwards $£ 25$
G11s $\mathbf{£ 3 5}$
GEC Starline $£ 25$

GEC 2110, $2111 \quad £ 20$
Rediffusion Mk $3 \quad \mathbf{£ 2 5}$
Rediffusion Mk 1 \& 1A $\quad \mathbf{£ 1 2}$

Thorn from 8,800 to T / X from	$\mathbf{£ 2 0}$
Text Sets Available	POA

LARGE SELECTION OF OFF THE PILE SETS FROM
£5. DECCA, GEC ITT, BUSH, REDIFFUSION, ETC. ALL UNTOUCHED, CHECK FOR COMPLETION BEFORE YOU BUY. UNTOUCHED VIDEO ELECTRONIC FROM £90. WORKING TOUCH TUNE VIDEO FROM $£ 135$. ALL WORKING PRICES QUOTED ARE FOR LOTS OF 5. ALL OFF THE PILE ARE FOR LOTS OF 10.

IMPORTANT TRADE ANNOUNCEMENT

SATELLITE TVRO SYSTEMS

Demonstration Model

Supersat have introduced a TVRO demonstration model especially for retailers who wish to display and familiarise themselves and their staff with Satellite TV systems. The Satellite TRVO system is probably the only new development in the worid of television which seems capable of capturing the imagination. The sort of interest being developed is, in our opinion, bound to lead to the acceptance of Satellite TV as the new mass entertainment medium. Most people are aware that there is something called "Satellite TV", but have not, as yet, been enthralled by perfect TV pictures which have travelled some 45,000 miles through space from a variety of different countries.

Price Revolution

It will come as a very pleasant surprise to most would be purchasers that at $£ 695$ (inc. VAT) our cheapest system is well within their reach. To copy a much used catch
phrase - "The price is right". All that is needed to stimulate the market is an increase in public awareness and it is for this reason that we make our Demonstration Model offer.

Demonstration Offer

We at Supersat know that success for both of us depend initially on our ability to persuade you to demonstrate Satellite TV. We also know that another key factor is your initial investment cost. The Demonstration Model cost will be £399. It is expected that the major portion of this initial investment cost will be recouped by way of the profit on your very first sale. Further stock investment need not be necessary because Supersat offer a next day delivery. The offer is limited to one system per retail outlet (a qualification we will strictly control). The equipment is from a well known national supplier.

If you are a genuine retailer with retail premises you should phone immediately for further details.

32 TEMPLE STREET WOLVERHAMPTON WV2 4LU
 Telephone: (0902) 29022

AUTUMN SPECIALS HITACHI VHS VIDEOS SUPERB CONDITION LARGE QUANTITIES
10 GEC SOLID STATE £150
10 BUSH T20 £250
10 ITT CVC35 £300
10 REDIFFUSION MARK 1REVAMP£120
10 THORN 8000 17" £150
ALL \div VAT
TELETRADERS
Forde Road, Brunel Industrial Estate, Newton Abbot, Devon
Telephone: (0626) 60154

Universal Semiconductor Devices Ltd. 17 GRANVILLE COURT, GRANVILE ROAD, HORNSEY, LONDON NA HEP, ENGLAND. TEL 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DUNT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLAR - GERMANIUM AND SILCON SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES VHFJUHF DEVICES - ALI SHAPES AND SIZES

FITS - POWER MOSFETS UNIJUNCTIONS
(1)

DIODES - GERMANIUM AND SILCON RECTIFIERS AND BRIDGES OPTOELECTRONIC DEVICES tEDS OF ALL SHAPES AND SIZE
THYRISTORS AND TRIALS - ALL
SHAPES

SIZES
 RATINGS

INTEGRATED CIRCUITS:
CONSUMER - DIGITAL/ANALOGUE
MICROPROCESSORS AND PERIPHERALS

MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING $£ 1.00$ IN STAMPS, CHEQUE OR POSTAL ORDER.
CATALOGUE SENT FREE OF CHARGE, WHEN REQUESTED ON OFFICIAL LETTERHEAD (WITHOUT REFUND), TO OEM'S, SCHOOLS, COLEGES, UNIVERSITIES, GOVERNMENT INSTITUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS.
SPECIAL DISCOUNTS AND PAYMENT TERMS aRE AVAILABLE TO ABOVE INSTITUTIONS.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

SPECIAL TRADE ANNOUNCEMENT
LARGEST STOCKS OF EX-RENTAL 'THORN'
COLOUR TVs \& V.H.S. VIDEOS

8800 R/C	$3 V 00$
9000 R/C	$3 V 16$
9200 R/C	$3 V 22$
9600 R/C	$3 V 23$
9600 TX	$3 V 29$
TX9/TX10	$3 V 35$

Cabinet 9600 with Brand New Hand Sets Thorn 9000's at $£ 16$ Special Offer Price and also Thorn 8800 Special Offer Price $£ 13$.

ALSO UNLIMITED SELECTION OF

BUSH T20/24 DECCA 80/100 G.E.C. SOLID STATE \& STARLINE HITACHI ITT CVC30 \& CVC45 PHILIPS G8, G11 \& KT3 R/C REDIFFUSION MK 1 \& MK 3 REDIFFUSION MK 4 \& TELETEXT

TV \& VIDEO STANDS IN STOCK Lorry Loads Delivered from Source

DON'T HESITATE TO CONTACT US

> FOR FRIENDLY SERVICE TRY US - YOU'LL LIKE US!

MIDLAND BRANCH Hockey
Discount Televisions, 94 Soho Hill, Hockey,
Birmingham B19 1AE.
021-551 2233 - Ask for Jazz

NORTHEAST BRANCH Northern TV Distributors, Unit 2, Perth Court, 11th Avenue, Team Valley, Gateshead, Tyne \& Wear. 091-4875389 - Ask for Joe

THE WORLD OF . . .8-10 Rhoda Street, London E2 7EF. Tel: 01-729 0506.P+P 1 PANEL $£ 1.50$. 2 PANELS OR MORE $£ 3.00$										
	IF	TUNER	DECODER	$\begin{aligned} & \text { G8/G9 DECODER } \\ & \text { IF COMBINED } \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDE0	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH 27718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
PHILIPS G11	$\underset{\substack{14.50 \\ \text { WITH COMBENED } \\ \text { SOUNO MODULE }}}{ }$		12.00		19.00	19.00	5.00	11.50		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25^{*} tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price $£ 57$ inc P\&P and VAT. Avaibube foom Lumon onv. Also supplied worldwide for $\mathbf{2 5 7}$ including P\&P. -Depends on depth and area to be polished.
TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

TUBE SIZE INCLUDING \& UP TO					
$20^{\prime \prime}$		£44		¢50	£58
22"		£46		-	£64
26"		£48		-	£85

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee. All tubes exchange glass required. Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube.
Delivery charge on colour tubes: Within 40 miles of Luton.
1 or 2 tubes $\mathrm{f6}$. 3 or more tubes PREE DELIVERY*
Please add 15% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW
114-134 Midland Rd, Luton, Beds.
Open Mon-Fri 9am-6pm. Tel. 0582-410787.
Your Local Tube Stockist:
Nell View, Southampton. Tel. 0703331837.
Phone between 2-5pm.
West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 0494778197
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN
UXBRIDGE
At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.
UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

CentreVision

TEL: 0222-44754
SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND, 5 MINS FROM M4

FERGUSON VHS VIDEO £65

MANY ELECTRONIC VIDEOS IN STOCK
MANY TOP QUALITY REMOTE CONTROL WORKING TVs
PHONE FOR LATEST PRICES
PRICES SUBJECT TO VAT
OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

IRISH T.V. DEALERS (PLEASE NOTICE)	
LARGE SELECTION OF IN-LINE UHFNHF DECCA, DORIC, FERGUSON, PHILIPS \& BUSH, WORKING COLOUR SETS. CABINETS RESTORED TO AI CONDITION. PRICES START FROM PLLE @ £50 INC. VAT. BN @ £25. ALSO IN STOCK RE-GUN TUBES \& vIDEO HEADS.	
(EXPORT SPECIALISTS)	
T.V. TRADE SALES	T.V.T.S.
E.D.I. HOUSE ALSO	CLOVER PLACE
EMORE PK. WEST	College St.
BLIN 10. (Off Naas Road).	KILLARNEY
Tel: 01-264139/263517	Tel: 064-33655
NA FIDE DEALERS ONLY SERVED	

APOLLO LANCASHIRE
 NATIONWIDE MAIL ORDER 3-4 DAYS
 OCAL DEUVERY 2 YA GUARANTEE SONHONE FOR QUOTE 56 \& 66 -540 GLASS BOUGHT (COLLECTED)
 A47342/343X-470 BCB22/CTB22/BGB22/DHB22

470-ESE22/ERB22/ERB22/FTB22
A51.220x/192X
A51-61×162/163/168
50-JKB22/JEB22/JDB22/JGB22/ALB22/GLB22
510-VLB22(E55) DTB22/001/RFB22/RCB22/SFB22
A51-590 New
A51-570X/580/001/210/241
A56-120X/123/140/410
560-DZB22(f56)/HB22/AKB22/TB22/AWB22
560-ETB22/DTB22/CSB22/DMB22/DNB22
A56-611x/615X
A66.120X/A67. 120 / /140/150/200/410
$20 \mathrm{AX}-\mathrm{A} 56-500 \times / 510 \mathrm{X}$-A66-500X/510X
$30 \mathrm{AX}-\mathrm{A} 56-540 \mathrm{X}-\mathrm{A} 66-540 \mathrm{X}$
PLEASE PHONE BEFORE CALLING
LOCAL DELIVERY FROM ACCRINGTON, LANCS
Phone enquiries and letters to:
Apollo, The Potters Wheel,
Mullion Cove, Mullion, Nr. Helston, TR12 7ET. 0326240781

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161 X , Sony types etc.
\star Rebanded with new adhesives

* Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.

120 SELHURST ROAD, LONDON SE 25 Phone: 01-771 3535
25 years experience in television tube rebuilding.

SETS \& COMPONENTS
TV's - HITACHI, MITSUBISHI, Panasonic, Sony, Toshilva, JVC, Sharp. Fully refurbished. PEARSON TELEVISION, $1484-863489$. Delivery arranged.
GENUINE GRUNDIG SPARES. Fast helpful service, sensible prices. TELEQUIPMENT. PHILIPS, OSCILLOSCOPES, TEST EQUIPMENT, MANUALS Ochre Mill Technical. Stone 0785814643.
CASH PAID Now for your surplus TV spares, Transistors, I.C.'s etc. Tel. MR. FORSHAW 09R2 29022.
PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845 2036

WOODSDALE COMPONENTS

RANK BUSH MURPHY

TRANSFORMERS
Line Output
Z718 (T703A, T706A)
New (Complete)
£15.00
T20, T22 (T705A)
$\mathbf{£ 1 1 . 0 0}$
T26 (T705B) £11.00

TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\mathbf{£ 6 . 0 0}$ Switch Mode
T114A
£6.00
Genuine RBM Units. Prompt Postal Service P\&P Paid. DISCOUNTS for QUANTITIES.

34 Field End Road, Eastcote, Pinner, Middlesex. HA5-2QT. Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

VIDEO SPARES

VHS video heads $-3 H S S / 4 H S S$ (state model) $£ 31.00$ Video heads for Sony C5/C6/C7 $£ 34.00$
Sanyo ree motor $£ 12.00$
Sharp Idler wheel (state model)£2.90 Sharp reel motor (state model) $\mathbf{£ 1 5 . 0 0}$

Please add 15% VAT and $£ 1.00$ p\&p per order Send sae for full list.

A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE Tel: (0604) 24380

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word (minimum 12

PRICE BUSTERS IN BIRMINCHAM FOR TESTED AND UNTESTED TV's AND VIDEO's ALSO AVAILABLE DIRECT LORRY LOAD RING - 021-772 2733 WILTSCROVE LIMITED (Next Door to UNCLE'S DISCOUNT STORE)

128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA. CASH ONLY
"STOP PRESS"
NOW IN STOCK ELECTRONIC VIDEO'S AT UNBEATABLE PRICES

BOURNEM		PHILIPS VIDEO SPARES Brand new unused includes power clock, R.F. panels cabinet, electronics $£ 35$ inc VAT and efjay products
BEST SOURCE IN THE SOUTH FOR CLEAN WORKING TV \& VIDEOS TVs Bush/Decca/GEC/ITT/Japs/Philips Thorn REMOTE \& TEXT Videos 2000, Beta \& VHS PLEASE PHONE FOR LIST Mon-Fri 9-1, 2-5		
HILLIER'S, UNIT 2A 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932		efjay products 13 Placehouse Lane, Old Coulsidon, Surre) Phone: 01-684 166
	T.V. $\begin{gathered}\text { SPARES, PANELS } \\ \text { AND MANUALS }\end{gathered}$ PHILIPS • GRUNDIG	

5ERMCE PQRE5

words), box number 70 p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

THE TRADING POST	
CLEARANCE SALE OF	WHY NOT
EX-RENTAL COLOUR TELEVISION	LET
SETS AND VIDEO'S	television
Colour TV's working from e20.00 + vat	SELL YOUR
Off the pile $£ 12.00+$ VAT (batches of 10) T.V. Stands from $£ 3.00$	PRODUCT
GOOD DISCOUNTS FOR DIRECT LOADS	RING NOW
Open 9am to 5pm Monday to Friday 10am to 4 pm Saturcay - Sunday by apooitment	ON
WESTWOOD, PETERBOROUGH TEL. 0733261500	01-261 5942

FYLDE T.V. AND VIDEO DISTRIBUTORS

 Unit 7, Arkwright Court. Blackpool/Fylde Industrial Estate Very End of M55 left at roundabout.UNLIMITED SELECTION OF
THORN 8800
8800 R/C 9000
9000 R/C
9600 R/C
9600 TTX
PHILIPS G11
G11 R/C
G11 TTX
S/S
JVC $20^{\prime \prime}$
MONO's $20^{\prime \prime}+24^{\prime \prime}$
AND MANY MORE
TRADE WORKERS TO ORDER PHONE BLACKPOOL (0253) 64413

B.G. COMPONENTS

T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday
Hill Street, Oldham OL4 2AG. 061-624 1753.

I.T.V.C.

BEST QUALITY EX-RENTAL AND GRADED TVS \& VIDEOs
OFFERING A FRIENDLY \& FIRST CLASS SERVICE TO THE TRADE
get On The way to success
BUY AT COMPETITIVE PRICES
TO INCREASE YOUR PROFITS
VHS VIDEDS
(Mech. Electronic) FERGUSON, HITACHI, JVC, NAT. PAN., etc.

BETA
SANYO, SONY, TOSHIBA, etc.
TELEVISION
PHILPS 550, G11, KT3 BUSH T20, T22, T24, T26 THORN 8.8K, 9K, 9.6K, TX HITACHI, NAT. PAN., I.T.T., PYE, etc.
van Loads delivered dikec from source

PHONE STEVE 0602864627

UNIT 3, MEADOW TRADING ESTATE, MEADOW LANE, OPP. CATILE MARKET, NOTTINGHAM NG2 3HQ

WIZARD DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES
We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR.
Did you know we also stock

FUSES
TUBES
TUBES
AERIALS
AEROSOLS
CAPACITORS
VALVES
HANDSETS
I.Cs
TOOLS TOOLS
VIDEO LEADS SEMICONDUCTORS SERVICE MANUALS TEST EOUIPMENT TVNIDEO TROLLEYS AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. Tel: 061-872 5438; 061-848 0060.

[^2]
BESCO LTD T/A
 NORTH WEST ELECIRONICS NEW STOCKS ARRIVING DAILY

NEW YEAR CLEARANCE WORKING TVS AND VIDEOS ON SHOW.

BU

```
G11 ............... £50
```

PYE KT3 £65

Others done to order.
DISCOUNT FOR QUANTITY
EX-EQUIPMENT PANELS NO EXCHANGE REQURED

IF De. Line Power Frame coder scan
$\begin{array}{llllll}\text { T20122 X } & 14 & 18 & 17 & 14\end{array}$ $\begin{array}{llllll}126 & \mathrm{X} & 16 & 20 & 17 & \mathrm{X}\end{array}$

ALL PRICES INCLUSIVE OF POSTAGE BUT PLUS VAT
CHEQUE WITH ORDER PLEASE

Ānnual Clearance Rock Bottom Prices		
PYE Gll EXC		PYE KT3 £50
CAB.	$£ 40$	GEC 2213 $£ 30$
BUSH T20/26 CH	£35	THORN 3000 £7
HITACHI 191	£20	GRUNDIG G415/
FERGUSON TX	$£ 65$	4206
		Best Stock in Country over 2000 in stock
GEC 2010	£20	(90\% of our TV's
PYE 222	£20	Switch on)
PHILIPS 550	$£ 15$	Special Price
BUSH 718	£20	Quoted
BUSH 2 CHIP	. £8	For Bulk Purchases
GRUNDIG 5010	£10	From Source.

SHARPS 7300, 8300, 9300 HITACHI, VT11, FERGUSON 3V29

SANYO, SONY, BETA

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORISSHIRE BD3 9TP.

5 MINS FROM MOTORWAY

$\begin{aligned} & \text { 100's PX } \\ & \text { HOOVER JUNIOR } \end{aligned}$ VACS All models in stock			$\begin{aligned} & \text { P.X. WASHERS } \\ & \text { COOKERS } \\ & \text { ETC } \end{aligned}$
			CASH ONTY
		0	$\begin{gathered} 0 \text { Pain } 6 \text { Din } \\ \text { Syin } 9.5 .30 \end{gathered}$

PUSH-BUTTON UNITS

New \& Exchange Mainly Preh for R.C.M./Doric/Murphy Mk. 3 \& 4, Ferguson, Decca, etc.

Send fautly units with cheque for $£ 12.50$.

B.J. ELECTRONICS

DORIC HOUSE
ROUGHTON, WOODHALL SPA,
LINCOLN LN10 6YJ
PHONE (06582) 6621

TURN YOUR SURPLUS

ICS transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance

Contact:
COLES-HARDING \& CO 103 South Brink, Wisbech, Cambs. Tel. 0945584188

- ESTABLISHED OVER 10 YEARS \star

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves - Diodes etc. any quantity considered - immediate payment.

ADM ELECTRONIC SUPPLIES
Tel: 0827873311

COURSES

TV \& Radio Aerial Rigging? Intensive

"Foundation" Training Courses for the Technician Engineer
Start off on the right course ... be fully informed! One week intensive instructional courses, run by an ex-broadcasting engineer. Residential, marvellous accommodation with excellent food. Theoretical and practical "Hands on" instruction. Training covers all aspects of television and radio reception. Become an aerial erector who can provide the best, because he's learnt the best way!
Courses held throughout the year, amidst the beautiful Highland scenery. Non-participating partners welcome at minimum extra cost. Transport from Inverness provided if necessary.

Further details by SAE to:
R.B. Mannion (Assoc. Member of Confederation of Aerial Industries), Badcaul House, Badcaul, Dundonnell, By Garve, Ross-Shire IV23 2 Y . Tel: 085-483-213.

METERS

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee. 327 Church Road,
St George, Bristol.
0454776413

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

SERVICE SHEETS

TECHNICAL INFO SERVICES (T)-76 Church St, Larkhall, Lanarkshire MLO 1HE.
World's Sole Publishers of Comprehensive TVVideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues.

MAIN STOCKIST OF ALL HEINEMANN-NEWNES TECHNICAL BOOKS DELIVERY BY RETURN FULL LIST ON REQUEST
Big Cataiogues of thousands of Service Sheets \& Manuals + Chassis Guide + £4 Vouchers - saves time and expense E 3.

Any published single service sheet for $£ 2.50$ + Isae except ctv/mus-c/combis from $£ 3.50$ + Isae.
A selection from our stocks of thousands of Service Manuals ready for despatch by retum post
Any Sony: Hitachi ctv from £9.50. Thom $3000 / 3500$ £9.50. Thorn 8000/8004/8500/8600 £9.50. Philips G8 complete £9.50. Decca $30 / 31$ £8.50. Ferguson/JVC 1st video $£ 19.50$ or $3 V 00$ types basic manual $\mathbf{£ 1 9 . 5 0}$. Any Finlandia: Tyne CTV £9.50 each. Rank A823 somplete $\mathbf{£ 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL $£ 3.50$ PRACTICAL RADIO SERVICING \& REPAIR COURSE $£ 9.50$ THE 11 TUNBRIDGE TV REPAIR MANUALS OMY $£ 88$ THE 5 MCCOURT TV REPAIR MANUALS OMY E55 ANY SET OF 5 INDIVIDUAL TV VIDEO REPAIR MANUALS FOR £12.50 OR ALL 3 SETS (15 MANUALS) FOR £36.

UNIQUE COLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . FANTASTIC VALUE
British ctv from hybrids to modem (3 binders) £58 Videos, all types (3 binders) £58 ... any 1 for £20 Mono TV (2) £38 Foreign ctv (2) £38 Domestic Eqpt (2) £38 Portable British ctv (1) £20 plus VAT.

COMPLETE REPAIR SYSTEMS . . . huge savings from published prices

British ctv 4 binders of Circuits plus 6 Repair Manuals plus ref books, etc.
for only $£ 125$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $£ 65$
Videos 3 binders plus 15 individual Repair Manuals cover ail the commonest models for only £85
Complete Integrated T.V. Repair System only $\mathbf{\Sigma 2 5 0}$ or in 12 sections at $\mathbf{\Sigma 2 5}$ per section. Contents: 8 binders of circuits/16 Repair Manuals/dozens of other manuals . . . Any new publications from us within 1 year of ordering 1st section will be added at no extra charge. No VAT on Systems
NEW - PRACTICAL TRANSISTOR From beginners/students elementary theory to more advanced. Huge section British/Foreign equivalents/

NEW - VIDEO REPAIR SYSTEM 3 E29 - NEN alternatives/other data. $\mathbf{5 5 . 5 5}$ Post Free. Binder of Circuits alone £zO 5 Repair Manuals $£ 12.50$

Repair data/Circuits/Service data almost any individual 3V31/32 Sharp 2300 to 9700 Philips Laser Disc Pan 7000/ 3V31/32 Sharp 2300 to 9700 Philips Laser Disc Pan 7000 /
72007800.

LSAE BRINGS ANY REQUESTED QUOTATION - FULER DETALS - FREE MAGATINE - PRACE LSTS ETC.
PHONE 0698884585 Mon-Fri before 5 pm or 0698883334 any other time - FOR FAST QUOTES

SERVICE DATA-UK VCR \& CTV

Circuit diagrams with layouts ONLY OR complete service manuals
(SAE brings list)
DATA-GO, 112 Ameysford Road, Ferndown, Dorset BH22 9QE

SERVICE SIIEETS ON MONO TV's, radio etc at $£ 2$ each plus S.A.E. We also stock manuals on video recorders and colour TVs. Please send for quote: BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks HGI 5JG

SITUATIONS VACANT

\triangleright ENGINEERS

Looking for a brighter future? Join the fast moving and lucrative computer servicing industry. Vacancies are now available on our MICROPROCESSOR SYSTEMS TECHNICIANS COURSE
A 16 week full time course designed for TV Engineers wishing to retrain in: MICROPROCESSOR TECHNOLOGY

The course concentrates on realistic hands on practical work.

Start date: JANUARY 12th 1987

Apply with full c.v. to:

MILTON KEYNES SKILLCENTRE

Chesney Wold, Bleak Hall, Milton Keynes
Or ring Bryan Hall on (0908) 670001
for further details.
NO TUITION FEES. A training allowance and lodging/travel allowance will be paid.
(M.S.C. - J.T.S. funded course)

'BOBS'

TELEVISION
WAREHOUSE
A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO

WORKING TV \& VIDEO

ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM
NON WORKING
GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC, ETC.
K30, KT3, G11, TEXT, REMOTE AND BASICS

ITT, GEC, BUSH, JAPS.,

 DECCA, ETC.PHONE BOB BEAN ON:

0268728966

AND DISCUSS YOUR REQUIREMENTS

TV AERIAL BOOSTERS

B45H/G UHF AMPLIFIER 20dbs gain, next to the set fitting, battery PP3 or 8 V to 14 V working. SPECIAL PRICE 77.70.
B45NG VIDEO as a transmitter (export), or feeding into a aerial system for up to 6 TV 's. On channel 36 (variable) Price $£ \mathbf{1 0} \mathbf{5 0}$.

P\&P \&1 NO VAT. ACCESSNISA CARDS WELCOME ELECTRONIC MALLORDER 62 Bridge Street, Ramsbottom, Lancashire, BLO 9AG. Tel: (070 682) 3036. (24 hr)

MULTI-©UTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $\mathfrak{f 1}$ (refundable) WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

BUSINESS FOR SALE

> | I.O.W. |
| :--- |
| RETAIL BROWN GOODS |
| DOUBLE-FRONTED SHOP |
| PRIME POSTITION |
| with excellent sales hire and rental, video library |
| premises include 2 bedroomed gas ch flat - |
| freehold E85,000 + S.A.V. |
| Reply to Box No. 229 |

WANTED

WANTED. WORKING AYR TEI.ETEXT ADAPTOR. Preferatly with service manual. Tel 0969 22598.

> SERVICE MANUALS 1974 or later. VCR. CTV, MTV. Camera, Audio, et. anything considered. cash paid (no photo copies). 0202892279.

CASH PAID now for your surplus TV spares, transistors, I.C.'s etc. Tel. MR. FORSHAW, 090229022.

GOI.D PLATED SCRAP WANTED. Scrap edge connectors, circuit boards, anything considered. Contact P \&F TURNER \& SONS. Tel. Oxford (0865) 510243.

WANTED Video's, portables. colour TV etc. Any quantity. Immediate collection. Cash paid. Tel. Stoke on Trent 416401

WANTED. SONY RMT-2I1 Remote control for TT-FI timer/tuner. Please phone Swindon 303357.

WANTED
Ex RENTAL COLOUR
TVs IN BULK
QUICK COLLECTION
Phone 0742 312832
(Sheffield)
IN STRICTEST CONFIDENCE

FOR SALE
JAPANESE TELEVISIONS FOR SALE
PRE USED $14^{\prime \prime} / 22^{\prime \prime}$ For details:
Phone: 0484863489
TURN YOUR COMPUTER into a storage multimeteI with my interface. Works with any 8 bit computer with hand-shake lines -Vic. C64, BBC. Program for Vic, C64 (State which) easily convertable. Circuit. program instructions £10. Program for Vic, C64 Xhatch, vert, hor, blank, colour bars. £3.50 send remittance to DELTRONICS. 10 Snell Hatch, West Green, Crawley. Sussex RHII 7JB (0923) 542823.
G8/550 EX-RENTAL GOOD TUBES. - Spare set panels with each TV $£ 20.5$ sets $£ 80$. Buyer collects, cash only. RENTACET. 0525403466 Bedfordshire.

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only $£ 3,995$. Tel. 0582-4117787

TV/VCR SPARES \& EQUIPMENT FOR SALE. Meteor $6(0) \mathrm{mhz}$ frequency counter $£ \$ 0$, Manor Supplies MK5 generator $£ 60$. Gould OS4(1)20 digital storage scope $£ 9(0)$. All plus VAT. For other details tel (01-841 $1769.6-7 \mathrm{pm}$.

PRECISION 3 METRE DISH ANTENNA with stand and custom built 4 wheel trailer. $£ 1,850$. Tel 061-437 2631

LEADER LCT-9IOA CRT Tester/Rejuvenator condition as new £145. Box No 228.

VHS VIDEO'S 3V00/3V22 E40 each + VAT Minimum quantily 10 TCE (0602) 397555

ACTIVE

DEFLECTORS
We produce a 4 channel power amplifier (10 dB power gain) as an add-on to existing 1 volt amplifiers. £150.00
DISTRIBUTORS WANTED SKYEWAVE ENGINEERING LTD. Waternish, Isle Of Skye Tel. 04782843

DEVONICS

Quality Tube Rebuilders

2 YEAR WARRANTY

[^3]Delta tubes from $£ 30$ Mono Portables

Sabace For a great deal! TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO'S OFF THE PILE (Mostly switch-ons) Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
 Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips 550/Grundig \& many more. bRAND NEW SETS AT LOW PRICES
 VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes OPENING HOURS: MONDAY TO SATURDAY 9am to 5.30pm

CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:

Head Office:
Sabaco
Saba House,
46A Derby Road,
Sandiacre, Nottingham
(0602) 397555
(2 minutes from M8)
Sabaco
75 Robertson Street, Glasgow
(041) 221-2146

MISCELLANEOUS

nOW TOTAL SPARES SUPPORT FOR GRUNDIG FROM yrz

ALL from STOCK (Subject to availiabliy from Grundig)
Trade Prices subject to official order
CAEINETS * KNOBS * TUNERS * CONTROLS * CRT'S * TRANSFORMERS SEMI'S * I.C.'S * CAPACITORS * REMOTES \star TRIMS \star END USER PARTS

Tel: 0734	JHIIOW V®/e Elegironios 4 fl	$\begin{aligned} & \text { Tel: } \\ & 0734 \end{aligned}$
876444	11 Arkwright Road, Reading, Berkshire RG2 0LU	876444
	SOLE UK GRUNDIG PARTS DISTRIBUTOR	

now total spapes suppoit fin P FIDELTTY

FROM $1 / 12$
ALL from STOCK (Subject to availabialy from Fidelity)
Trade Prices subject to official order - all others supplied at retail
CABINETS $\star K$ KOBS \star TUNERS \star CONTROLS \approx CRT'S \star TRANSFORMERS SEMI'S * I.C.'S * CAPACITORS * REMOTES * TRIWS * END USER PARTS
Tel:
0734
876444
GENUIRE FIDELITY PARTS AT STANDARD FIDELITY TRADE PRICES

GET
GHARP PARTS FAST
TELEPHONE
0734-876444
TELEX 848953
SHABP

Main U.K. Spare Parts Distributor
Aucio-TV-Video \star Microwave \star Photo-copier \star Typewriter
All U.K. model spares available. Same day despatch of orders received before 1 pm .
Microwave, photocopier and typewriler spares to authonised service dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for f
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME

ADDRESS

Send ro: Classified Advertisement Dept.

TELEVISION

Classified Advertisement Dept, Room 2612 King's Reach Tower, Stamford Street London SE1 9LS. Telephone 01-261 5942 Fate: woper word, minimum 12 words. Eax No. Tip etra + 19\% VAT.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street London SE1 9LS.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal Part 2. The Receiver Decoder
Part 3. Receiver Installation VHS $\star \star \star$ V2000 $\star \star \star$ 友 For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL

SOLE SUPPLIERS TV/VIDEO Repair manuals/cir cuits, 1000s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

BOOKS AND PUBLICATIONS

Ku BAND SATELLITE TV THEORY, INSTALLATION AND REPAIR

This 358 page manual is an updated version of the best seller "The Home Satellite TV Installation And Trouble Shooting Manual", by Baylin and Gale U.S.A Covers uplinks, footprints, dish theory, site survey, installation and adjustrment, de-
scrambling, cable TV, even includes a computer
 program for finding your satellite $£ 23$.
Also available "Satellite And Cable TV, Scrambling And De-Scrambling" 256 pages $£ 19.00$

Send cheque, COD, Access Mastercard:
d. VINCENT TECHNICAL BOOKS 24 RIVER GARDENS, PURLEY, READING RG8 8BX Tel: 0734414468 (Answerphone)

[^4]
SWITCH on to PROFITS

WITH

G11 PYE and PHILIPS 22" ITT REMOTES
 G11 TEXT PYE/PHILIPS
 KT3
 VIDEOS
 £20 £35 £55 $£ 50$ £10 PRICES

ALSO ON STOCK

DECCA 80-100-88-0911 TEXT. PYE 713, 725, 222. ITT CUC 20-23-25-3032. PANASONIC 2E1, 85GA, 2205 REMOTE. TELEFUNKEN 8256 REMOTE. SONY 1810, 2022. FERGUSON TX, 3740, 3757, 9000, 9200, 3722 REMOTE. GEC $2242,2642,2069$ TEXT. TOSHIBA 2095 REMOTE. GRUNDIG 3020-3022 TEXT, 4400 REMOTE, 6610 . MITSUBISHI CT200, 2606, REMOTE, 2206. HITACH 192, 260 REMOTE, 180, 2051, 210. AND MANY OTHER TYPES.

MOST OF JUR SETS OFF THE PILE SWITCH ON
100S and 100S of fuly worma setis avaliabies ALL SEEN WORKING CALL \& CHECK THEM OUT. STANDARD TYPES $17^{\prime \prime}$ TO 26", REMOTES, TEXT. CABINETS ARE EXCELLENT AND READY FOR IMMEDIATE SALE OR RENT.

> VHS VIDEO ELECTRONIC AND ALL WORKING, GOOD CASES. STANDARD TO FULL I/R REMOTE CONTROL. BY PANASONIC 2000, 2010, 366, 7200. MITSU3ISHI, SHARP, GEC 4001-4108. HITASH VT9, 8300, 8700. JVC 2200 PORTABLE, 7200, 7300,7700 . AMSTRAD, DECCA DK7200 AND MANY OTHERS.

2001 STSTEM - SWITCH ONS $£ 20$ 2020-2021-2022. GRUNDIG $2 \times 4-2 \times 4$ SUPER

> CLEARANCE COLOURS CHEAP 10 SETS $£ 80$ AND SOMETIMES EVEN LESS. SLOT METERS AVAILABLE - ASK. ALL PRICES BASED ON QUANTITY. ALL PLUS VAT.

GENERAL FAGTORS UNION STREET
DOUCASTER, SOUTH YORKS. 0302-349583

CASH NO CHEQUES ONLY $21 / 2$ MILES FROM (AIM) FOR M18-M1 10am to 5 pm MON TO FRIDAY

If an advertisement is wrong were here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority. ASA Ltd, Dept 3
Brook House, Torrington Place, London WC1E 7HN

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.
Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

INDEX TO ADVERTISERS

Aerial Techniques

Alberice Meters Ltd
Alcon Instruments Lto.
Alston-Barry Satelite Services
Apollo
AsJAA International Lt
Audio Castle .
Avon Meters.
A-Z Electronics
Besco Ltd.
B. G. Components
B. Electronics
B. K. Electronics

Bob's Television Warehouse
Bolten Ltd. ..
Bull. J \& N Electrical
Carter, John (Electrical) Ltd.
Cettel
Central TV \& Video Wholesalers Lit
Centrevision
Coles Harding \& Co
CPC.............
Cricklewood Electronics Ltd
Crotton Electronics
Cullum TV \& Video
Devonics
Display Electronics Ltd.
East Cornwall Components. East Croydon Discount Electronics.
Economic Devices
lectric City.
Electronic Mail Order
Euectrovisa Lid
Express T.V. Supplies
Flintdown Channel 4 Ford, Frank
ylde T.V. \& Video Distnbutors
Garton, D \& G.
G.G.L. Components

Grandata Ltd.
Harrison Electronics
Hilliers.
Hockley Discount Televisions
Hussain Central T.V. Lto
ICS.
TVC
Junction 11 T.V. Trade Disposals Lid
Kent Ledgerwood Wholesale Ltd
London Electronics College
LRC (Spares) Ltd.
Mannion, R.B.
Manor Supplies
Mante-XL
Mition Keynes Skill Centre
Monolith Electronics Co Ltd. . The
Montana Mail Order.
N.G. T. Electronics Lid North East Satellite Systems
Papworth Transformers
Powell, T,
Pro-vision.
P.V. Tubes

Quick Save T.V. Spares
Repossessed I V Centres Ltd.
Riscomp Ltd.
Sabaco
Semple Service
Sendz Components.
Skywave Engineering
Smiths Electronics
Smiths Electronic
Starlite Electronics
Stewart of Reading.
Supersat.
Supertel
Taylor Bros. (Oldham) Ltd. Technical Information Service
Telepanels
Tele-partaders
Televideo Services
Teleview
Thom EM
Tidman Mail Order Ltód
Trading Post, Tis
TVS Trade Servic
T.V. Trade Sates ..

Universal Electronic Distributors
Universal Semiconductor Devices Lto
U-View Tubes
Vincent, J., Technical Books
Wellview
Willow Vale Electronics Lto
Wiltsgrove Lidd.
Wing Electronics
Woodsdale Components

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE

MINT WORKING SETS. These arrive at our premises in A1 working order, cabinets are superb. $£ 45$ to $£ 70$ GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
£10 to £35

VHS Videos in stock.

Well stored in large centrally heated premises. Ample viewing space and stored only four high! Come and have a look round.

TRADE WAREHOUSE,
DAISY WORKS,
345 STOCKPORT ROAD,
LONGSIGHT,
MANCHESTER MI3 OLF
ALSO AT 335-341 STOCKPORT ROAD (NEXT DOOR)

TV LINE OUTPUT TRANSFORMERS		Barclaycard and24 mow msmering serniceREWMND SERVICE
DECCA CS1730 1733 colour CS1830 1835 colour '30' series Bradford colour 80 series colour 100 series colour	PHILIPS	
	G8 \& G9 senes colour 8.0	WINDINGS
	69,569,769 mono	RANK BUSH MUPPHY
	725-741	T20a T22, T26 Pri \& Sec 6.00
	FFUSION Doric Mk. 310.	2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime} \quad 6.00$
KB - ITT VC200 VC205 VC207 mono $\mathbf{8 . 0 0}$ CVC5 CVC7 CVC8 CVC9 col $\mathbf{9 . 0 0}$ CVC20 series colour 8.00 CVC30 CVC32 series colour 8.00 CVC45 8.00 FT100 FT110 state p/no. $\mathbf{1 0 . 0 0}$	PAPWORTH TRANSFORMERS 80 Merton High Street, London SW19 1BE 01-540 3955	718 EHT overwind $\quad 8.00$
		15.0
		ULTRA THORN
		-1691 EHT overwind
		190 EHT overwin
All lopts and windings are new and guaranteed	Delivery by return of past.	
		Open Mon.-Fri. 9 to 5.30 pm

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

aCCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only.

SENDZ Components To ооо解 SE BacK PaGE

		为										

[^0]: Name
 Address

 ## P. Code

 International Correspondence Schools,
 Dept. EGSI7, $312 / 314$ High St., Sutton, Surrey SM1 TPR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f 14 , overseas (surface mail) E 17 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: DEALERS ONLY
 gemuine regular large quantities
 Philips G8-520 £15 $26^{\prime \prime}$
 Philips G8-550 £25 20 \& $22^{\prime \prime} 10$
 Philips G11 - Guarantees Only
 WORKING
 520-30 550-45
 SPARES PANELS AVAILABLE
 Tel. 514047 or call:
 Cullum TV \& Video
 Unit 5, Worle Ind Estate, Queensway, Worle, Weston Super Mare, Avon (Junct 21 M5 200yds)

[^3]: Inline Tubes
 Up to $20^{\prime \prime}$
 $22^{\prime \prime}$
 $26^{\prime \prime}$
 Sony Tubes
 Bonded Coil
 30 AX (-540 X)

[^4]: $\star \star \star$ SERVICE PAGES SERVICE PAGES PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
 SERVICE PAGES SERVICE PAGES $\star \star \star$

