NOVEMBER 1986

SERVICING•PROJECTS•VIDEO•DEVELOPMENTS

Free inside: VCR Fault Guide

with off-screen photos in full colour

50 Years of TV Broadcasting Spectrum Analyser Project
Ferguson's Monochrome Monitors An Active Deflector System VCR Clinic• TV Fault Finding

MANOR SUPPLIES
 MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$\mathbf{£ 7 0 . 0 0}$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4} 4^{\prime \prime}$) app.
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 3.90$
Built \& Tested in Case including Sound Module

SPECIAL TEST,

REPORT
Post/Packing $£ 2.50$
'TELEVIISION' Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $\mathrm{EB.60}^{\mathbf{6}}$. BATT HOLDERS $\mathbf{~} 4.20$. MAINS SUPPLY KIT £4.20 (Combined P\&P £2.20).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20$ P \& P. MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20 \mathrm{P}$ \& P.
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS E5.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
THORN TX9 MK2/3, TX10, teletext
Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL, TELETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{5 3 8 . 0 0}$ p.p. $£ 2.50$

EXTERNAL TELETEXT ADAPTOR

(RADOFIN) with cable remote control. Fully tested. $\mathbf{£ 1 5 0 . 0 0}$ p.p. $£ 3.00$. Plugs into aerial socket of any T.V.

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC. SPECIAL OFFER Mullard/Philips quality UHF modulator (audio \& video input) ex new equipment $\mathbf{£ 5 . 0 0}$ p.p. $£ 1 .(1)$.
PHILIPS G11 6 position touch tune channel selector units $£ 16.00$ p.p. $£ 1.80$ (can replace earlier mechanical selector unit).
PHILIPS G11 PANELS (tested)
Power, frame, IF, decoder $£ 18.00$ each p.p. $£ 2.00$. Scan Panel $£ 28.00$ p.p. $£ 2.80$ PHILIPS GII PANELS ex rental (untested).
Power frame, IF, decoder £10.00 each p.p. £2.(0).
PHILIPS HANDSETS Ex rental. Teletext, Untested. KT3, K30, CTX, KT4,

THORN 9800 Manual $£ 2.00$ g.p. 50 p
THORN REMOTE CONTTROL
THORN REMOTE CONTROL HANDSETS
TX9 ULTRASONIC (3-button) £15.00; TX9, TX10 Infra red $£ 18.00$; TX9, TX10 Infra red Teletext $£ 20.00$, p.p. $£ 1.20$.
THORN ex rental handsets untested 9600 . TX9. TX10 $£ 5.00$ p.p. £1.(0).
TX9 Ultrasonic remote handset transducer $£ 2.00$, switches 3 for $£ 1.50$ p.p. 50 p TX9/TXI0 Teletext interface panel (1524) $£ 5.00 \mathrm{p} . \mathrm{p} .80 \mathrm{p}$.
THORN TX9 Ultrasonic Remote/Control/Receiver panels. $\mathbf{£ 8 . 5 0}$ p.p. $£ 1.50$. THORN TX10 Series Facia Control Panel with 8 position Channel Selector ${ }^{\mathbf{f} 6.50}$ p.p. $\mathfrak{f 1 . 5 0}$.
TX9, TXi0 Facia control panel incl. infra-red remote control receiver $\mathbf{8 8 . 5 0}$ p.f. $\mathrm{f} 1 . \mathrm{K0}$.

TX9, TX10 Remote \& tuning control panel (1515) $\mathbf{1 1 0 . 5 0}$ p.p. $£ 1.80$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. $\mathbf{£ 2 8 . 5 0}$ p.p. $£ 1.20$.
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{5 5 . 0 0}$ p.p. 80 p
PAL DECODER KIT (Video to RGB) for Monitors £27.00 p.p. $£ 1.00$.
PAL ENCODER KIT (RGB to Video) $\mathbf{£ 1 8 . 5 0}$ p.p. $£ 1.30$.
TELETEXT DECODFRS New \& Tested Mullard VM 6101 £30.00, Texas XM11 £28.00, KT3 Tested £30.00, Untested $55.00 \mathrm{p} . \mathrm{p}$. £1.60)
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any sct. $\mathbf{£ 1 2 . 0 0}$ p.p. 80 p. (Alum. Case $£ 2.90$, De Luxe Case $\mathbf{£ 6 . 8 0}$ Pip. 51.44 .) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 22.00$ Alum. Case $£ 2.90$. De Luxe Casc 88.60 (Built \& Tested £48.00) p.p. £2.30.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 29.50$ p.p. $£ .80$) BUSH A823 Convergence, Time Base Panels $£ 5.00$ each. p.p. $\mathbf{f 1 . 8 0}$). BUSH 2718 BC610 0 series IF Pancl 65.00 p.p. 90 p.
BUSH A816 IF Panel (Surplus) £I.00 p.p. 90 p , 5 for $£ 4.00$ p.p. $£ 1.40$.
GEC 2040 Decoder Panels. $£ 1.50$ p.p. $£ 1.80$.
GEC 2110 PANELS Sound E2.50 (tested) 5. P. 80 p .

PYE 691-7 CDA Pancls. Makers tested stock. E6.00 p.p. $\mathbf{1 1 . 4 5}$.
THORN TX9 Pancls ex factory for small spares. Includes I.Cs \& Scmiconductors etc. $£ 3.00$ p.p. $£ 1.80$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transforners. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 2.80$
THORN 8000, 8500, 8800 IF Decoder Panels Tested £10.00 P.p. £. 2.30 .
THORN 80008500 iF/Decoder Pancls salvaged $£ 3.20$ p.p. $£ 1$. 80 .
THORN 9000 IF/Decoder Panels Salvaged. For spares E 2. 50 p.p. $£ 1.80$.
THORN 9000 Frame Time Base $£ 8.50$ p.p. $£ 1.80$.
PHILIPS G8/G9 IF/Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $£ 1.60$

GII PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00 \mathrm{p} . \mathrm{p}$. $£ 2.50$ (tested)
G11 PANELS, Power, Frame, IF, Decoder, $£ 18.00$ each. p.p. $£ 2.00$ (tested)
GRUNIIG 8630 Series Varicap Tuners 85.00 p.p. $£ 1.00$.
U321 VARICAP 97.80 p.p. $8($ P. Makers Controls PYE CT200 4PSN 57.50 ,
BUSH 4PSN £4.80, DECCA 4PSN $£ 5.80$, 6PSN 66.80 p.p. 80 p. etc.
BUSH "TOUCH TUNE" Varicap Control $2585,710 £ 3.80$ p.p. £1.00.
VARICAP UHF-VHF ELC $2000{ }^{\circ} \mathbf{5 9 . 8 0}$ p.p. $£ 1.00$.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position. MULLARD 4 position $£ 2.50$, JAP Rotary $\mathbf{~ 4 . 8 0 ~ p . p . ~} £ 1.80$. TV SOUND IF Panels $\mathbf{£ 6 . 8 0}$ p.p. $£ 1.00$.
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80p.

FERG., HMV, MARCONI, UITRA
FERG, HMV, MARCONI, ULTRA

THORN 16(1). 1615. 1640), 1691 (69.15 DECCA 81, 101..................
GEC series 1 \& 2........................8.00 FRIDELTY 3787 (Normend
INDESTT 20124EGB
ITT/KB VC2(10, 3010..................57.90 ITTCVCs to 9 , CVC20
PHILIPS $170,210.3010$ series $\mathbf{£ 7 . 6 5}$ ITTCVC25, CVC30 series
SPECIAL OFFER
DECCA $17(0), 2001,2020,2401,2420$ E3.80 PYE $725\left(90^{\circ}\right) 731$ to 741.
GEC 2114J/Junior Finetine $£ 2.80$ PHILIPSG8
PRILAS $320 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
CEC 2028 20402100 P-…...... 4.80 PHILIPS KT3
PYE 691-7 chassis type onlye5.80 THORN 3001350.........................
PYE 713,715 £6.80 THORN $80001.8501 .88(10)$

PHILIIPS K9...66.80 THORN TX9.......
OTHERS AVAILABLE, PRICES ON REQUEST.
TRIPLERS Full range available. Mono \& Colour
6.3V CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. £1.40. THORN TX10 focus control $\mathbf{5 8 . 8 0}$ p.p. 80 p

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENOUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

Telephone 01-794 8751, 7947346

MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tuhe Stn. (Juhilee) Buses 28, 159, C11 pass door W. Hampstead Brit Rail Stn. (Richmond, Dalston, Stratiord, N. Woolwich) W. Hampstead Brit Rail Stn. (St. Pancras, Bedford) Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P

An annual subscription is the most convenient way of keeping up-to-date with all the latest news and developments in chassis design and servicing techniques in the world of

If you read Television regularly, why not save yourself trouble by placing an annual subscription order using the form overleaf and the FREEPOST envelope attached.
Start a subscription now, and keep yourself posted for all that vital information in the months to come.

COPYRIGHT

(C) IPC Magazines Limited, 1986. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 14$ in the UK, f17 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (vols. 30-35 only, 75p each) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

13	Leader
14	Teletop

14 Teletopics
News, comment and developments.
16 The Barefoot Contessa Les Lawry-Johns
Do dogs and workshops mix? Maybe, amongst the toppling tellys.
19 Spectrum Analyser Project
Peter Richards
Some relatively simple extra circuitry and a couple of
modifications enable the Philips G11 chassis to be converted to a useful spectrum analyser.
2250 Years of TV: the Beginnings
Pat Hawker
Was it technological leadership that led to the UK
starting the first regular high-definition TV broadcasting
service in the world? Or was it accident or political
considerations? The background to this remarkable event.
24 An Active Deflector System
Paul Goodwin
How an isolated valley was provided with a TV service.
25 Next Month in Television
26 Ferguson's Monochrome Monitors J. LeJeune
The MMO series of dedicated monochrome monitors
incorporates some interesting circuitry and has a high-
performance 'specification.
29 TV Fault Finding
Reports from Larry Ingram, Philip Blundell, Eng. Tech.,
Alan Shaw, J. R. Armagh, Hugh Allison and Hugh
MacMullen.
30 VCR Clinic
Reports from Steve Beeching, T. Eng., Paul Hardy,
Philip Blundell, Eng. Tech., Les Grogan, Steve Illidge,
Andrew Benham, Richard Roscoe and William G.
Lockitt, Eng. Tech.
32 Test Report: The Telelift Eugene Trundle
Transporting heavy items such as colour TV sets can
cause problems, including physical injury. The answer is
the ingenious Telelift, which we've had on trial.
33 Long-distance Television
Roger Bunney
Reports on DX reception and conditions, news from
abroad, and a review of two Fringe Electronics single-
band v.h.f. amplifiers.
38 Vintage TV: The Cossor 1210
Chas E. Miller
An appropriate time to look at the circuitry used in this
classic pre-war TV set.
40 Letters
41 Experiences with the G11 and TX9 John W. Cheshire
42 The Operation of Electric Motors, Part 4
Mike Phelan
Methods of winding d.c. motors and notes on repairs that can be undertaken.
44 C-MAC and its Variants
Harold Peters
All you need to know about these stancards for satellite
TV transmissions.
47 Service Bureau
48 Test Case 287
OUR NEXT HSSUE DATED DECEMBER WILL BE PUBLISHED ON NOVEMBER 19

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611/390936
Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER \qquad BOOKS AND MANUALS ARE ZERO V.A.T ADI
(U.K). Heavier parcels P, P. Goods are despatched on the day we receive your
order . If for any reason we are out of stock we will try cable. service aids, degausing to intorm you as quickly as possible. We try our best colls please allow $11.50 \mathrm{P}+\mathrm{P}$ to give a speedy, tair and efficient service. V.A.T. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you eed is not listed - we whenever possible. Add 15% will try to help. Prices are subject to change without
VAT to total except where it notice. In some cases we may have to supply an VAI to total ex
states zero rate. equivalent.

104 ABBEY STREET，ACCRINGTON Telex： 635562 Griffin G

FILAMENT LAMPS

 ${ }^{\circ}$$$
\begin{array}{cc}
\text { D3.2mm } \\
6 \mathrm{~V} & 0.04 \mathrm{~A} \\
8 \mathrm{~V} & 0.04 \mathrm{~A} \\
12 \mathrm{~V} & 0.04 \mathrm{~A} \\
14 \mathrm{~V} & 0.025 \mathrm{~A} \\
14 \mathrm{~V} & 0.04 \mathrm{~A} \\
\mathrm{D4} .2 \mathrm{~mm} \\
4.5 \mathrm{~V} & 0.06 \mathrm{~A} \\
6 \mathrm{~V} & 0.06 \mathrm{~A} \\
6.3 \mathrm{~V} & 0.025 \mathrm{~A} \\
6.3 \mathrm{~V} & 0.08 \mathrm{~A} \\
8 \mathrm{~V} & 0.04 \mathrm{~A} \\
8 \mathrm{~V} & 0.06 \mathrm{~A} \\
12 \mathrm{~V} & 0.04 \mathrm{~A} \\
12 \mathrm{~V} & 0.06 \mathrm{~A} \\
14 \mathrm{~V} & 0.06 \mathrm{~A}
\end{array}
$$

PLUGS AND SOCKETS	
Din Plugs	
5 pin $180^{\circ} / 240^{\prime} / 360^{\circ}$	20
6	pin
7 pin	28
8 pin	35
Chassis Sockets DIN	Line Sock．
5 pin din $180 / 240^{\circ} 360^{\circ}$	28
6 pin din	28
7	36
7 pin din	38
8 pin din	36

phono plugs

2 mm Jack plugs

.5 mm Jack .5 mm Jack Pugs 63 mm Jack Pugs Stereo Standard mono ack plugs 2 pin speaker plugs I．D．C．plugs
BNC plugs Car aerial plugs FM plugs
Coax plugs metal Loax connectors Double ended temale socket Crocodile Clips Phono line sacke Phono chassis sock Phono chassis socket
2.5 mm Jack line socket 2.5 mm Jack line socket 3.5 mm jack line sscket 3.5 mm jack chassis socket
3.5 mm stereo line jack socket 35 mm stereo ack chassis socket
6.3 mm

6．3mm Stereo ןack socket	25
IDC 36 way socket	6.90
PL259 with reducer	1.30
Redu	

PL259 with reducer Reducers for PL259

We have a hully equipped
computer store－come and visit GRUNDIG TELEPILOT 8 IR GRUNDIG TELEPILOT 160 IR
GRUNDTG TELEPILOT 300 IR GRUNDIG GELEPILO 300 IR
PHILPS G11 VS Non Text
PHILIPS G11 8 way IR Text PHILIPS G11 VS Non Text
PHILIPS G11 8 way．IR Text
PHILIPS G11 VS 31 Button PHILIPS G11 VS 31 Button
PHILIPS G11 VS 2 function PHILIPS KK3／30 IR Text 1234
PHILPS KT3／30 IR Non Text PHILIPS KT3／30 IR Non Text
THORN TX10／JVC IR Text Remote Control Tester
Repair Kits inc．foil，button，matrıx，instructions
$\begin{aligned} & \text { PHILIPS KT3／30 } \begin{array}{l}\text { 1．without } T \text { ．Text } \\ \text { 2．with } T \text { ．Text }\end{array} \\ &\end{aligned}$

DATA BOOKS（Zero VAT）	
Pair of A－Z2N2S TV180	8.50
LIN IC Books（data only not Equiv．）LINI	5.95
IC equivalent booklet $£ 3.25$ and transistor	
equivalent hooklet $£ .25$	
TDV1 Trans．Data Dictionary	7.50
TURNTABLE DRIVE BELTS	
（Suitable most types listed）	
TB42 Thorns	1.20
TB23 Philips	1.20
TB50 Garard	1.20
TB70 Hitachı	1.20
TB60 Sanyo	
TB01 Pan．，Sony，Pioneer，Technics，	1.20
Sansul	
TB03 BSR	1.20

$\frac{35545}{a}$

VIDEO PINCH ROLLERS

 SA
VHS Drum MoriES
 SUNDRIES

VHS Capstan Motor Sanyo 5000 Reel Motor Sharp Reel Motor Take up idler Ass．／Clutch Ass VHS（general purpose） Thom／JVC etc． 4.35
4.35
4.35 9300
Sanyo
Hitachi
Sita Video Lamps General Purpose 35 3V23 with plug Video Care
Care kat Delux Care kat D
Care Kit Universal Copy
Head Cleaner Head Cleaner
Beta Eccentricity Gau

B8:

3.00	
.75	Thre
.00	$3 H S S$

Three New Lite Heads 4HSS

 Philips V2000Philips 1700 Shiilps 1700 $9300 / 9455 / 9500$ Sanyo 5000／5300／5400
Toshiba 9600 Upper Ass Toshiba 9600
Toshiba 9600 Sharp 2300
Sharp 6300 Sharp $7300 / 7700 / 7750$
Sharp 8300 Hitachı HIVI 0 p
50 p
50 p
2 p
52 p
50 p
50 p
56 p
56 p

V	VIDEO IDLER TYRES			
	$0 . \mathrm{Dia}$	I．Dia	Width	
	SONY 23.7	17.4	4.9	50 p
25p	SONY 24.2	18	5.1	50 p
	HITACHI 31.8	25	4.9	50 p
	HITACHI 39.5	30	4.2	52p
	PANASONIC			
	Pavasonic 37	27	3.9	52p
	PANASONIC			
	34.5	27	3.1	50 p
	AKAI 26	20	3.9	50 p
	JVC 32.8	3.4	3.9	56 p
	JVC 23.9	4.8	4	56p

EVER READY BATTERIES

HP2R20

LR20 Gold
R20S Silver
R20B Ble
$\begin{array}{lr}\text { R20S Silver } & 39 \\ \text { R208 Blue } & 27 \\ \text { RX20 Rechargeable } & 2.61 \\ \text { HP11／R14 } & 74 \\ \text { LR14 Gold } & 33 \\ \text { R14S Silver } & 24\end{array}$

R

R148 Biue
RX14 Rechargeable
HP7／A6
LR6
BC4
LR6（BC4）Gold
LR6（BC2）Gold
LR6（BC2）Gold
R6S Silver
R6S Siver
R6B
RO6 Bechargeable
RX6 R3F22
PP
6LF22 Gold
PP3S Silver
PP3B Blue
RX22 Rechargeable
HP16／R03
HP16／R03
LR03 Gold
Blue
Blue
No 8 Battery
No． 8 Battery
Univ．Batt．Charger

	4.89
Univ．Batt．Charger	1
	REMOTE CONTR

		$\stackrel{\rightharpoonup}{\hat{E}} \mathrm{U} \simeq 0$	Noñ	Nỡ

PHILIPS K35 Remote Mo are or DECCA 100 VS Non T．Text GRUNDIG TELEPILOT 12 IR

SUNDRIES	
tor	25.50
Motor	25.50
Reel Motor	12.95
otor	15.60
Ass．／Clutch Ass．	
purpose）	5.95
tc．	
／386／9100	
	2.48
	6.95
	3.50
	1.00
e	1.41
，	1.95
	5.00
	3.50
Kit	5.50
	90
ty Gauge	55.00
DEO HEADS	
e Heads	21.45
	30.00
	31.00
a	35.00
	64.00
	64.00
455／9500	53.00
300／5400	53.00
Upper Ass．	12.50
	50.00
	58.00
	58.00
700／7750	58.00
	58.00
700	． 56.00
	35.62
GEC 4004	35.62
GEC 4100	35.62
DEO TAPES	
E120	3.00
E180	2.90
E240	4.68
1500	2.90
1750	3.20
E30	3.66
E60	4.00
E120	3.24
E180	3.86
1750	5.22
VCC240	6.20
VCC360	6.33
VCC480	7.23
LVC 17001200	17.50

LABGEAR
MULTIMETRES

Amprobe Digital Meter AM7	$\mathbf{4 5 . 0 0}$
Amprobe Digital Meter AM9	$\mathbf{5 5 . 0 0}$
Amprobe VotvAmeter／Ohmeter RF3	
Phi．00	
Phlips Meter 2000	R．per V
20.71	

11.80
12.86
15.05 04 3.66
12.72 ． 03
VI

| ANTEX | |
| :--- | :--- | ---: |
| | |
| | |
| | |

DECCA－General
Bridge Transfomer
Decca 30 Width Cont．
Decca 2M2
8R Speaker
8R Speake

MOTORS ELECTRONIC／

ROTATION CLOCKWISE

6V MD6515 9V MD9516
 9V MD9516

4.95
$-\quad 4.95$

CASSETTE DRIVE belts

35 mm	35	46 mm	37
57 mm	37	66 mm	39
71 mm	43	90 mm	43
110 mm	59		
Tumitable Belts（suitable most types			

listed）

COMMODORE ICS

6510 CPU
6526 CIA Keyboard Int
5.66
5.11

6569 Col．Vid．Cont
901225 Char．ROM
901226 Basic ROM 901227 Kernel ROM 906114 PLA
4164 RAM 4164 RAN
Timer

DECCA－Manuals
Decca 80会定

\section*{COMMODORE Sundries} Commodore PSU | Commodore Modulator | 26.04 |
| :--- | :--- |
| | |

 MロOB
P. V. TUBES

HAVE MOVED
104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.

TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

HUSSAIN CENTRAL TV LTD

NEW BRANCH NOW OPEN AT SOUTHAMPTON

BEST QUALITY AT THE LOWEST PRICES IN BRITAIN TODAY

G11 • 660
PYE G11
G11 REMOTE (with hand set)
G11 TEXT (with hand set)
G11 ELECTRONIC TUNER
THORN 9600
THORN 8800
PYE 222
GEC SOLID STATE
£25 ITT CVC 20/30 £15
£30 DECCA 80/100 £15
$£ 45$ ITT REMOTE (with hand set) £30
£55 TX TEXT (with hand set) £55
£30 THORN 9000 REMOTE £15
£25 THORN 9200 £27
£10 THORN 9800 $£ 15$
£10 G8 22" £10
$£ 10$ GEC STARLINE £15
MANY MORE LATE MODEL TVs IN STOCK INC. REMOTE, TEXT, STEREO TEXT AND $14^{\prime \prime}, 16^{\prime \prime}$ PORTABLES
All TVs have excellent cabinets

VHS: Working. Bring your own tape and try them yourself at £65 1000 Working VHS Video's in stock from $£ 120$ Untested Electronic VHS £90

BETAMAX VIDEO'S

ELECTRONIC Beta Full working from $£ 40$ Untested Beta from £25

Toshiba 9600, 5470, Sanyo 5000, 5300, 5010, Sony C5, C6, C7.
PLUS MANY MORE MODELS IN STOCK
Prices are subject to 15% VAT and based on quantity
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

SOUTHAMPTON	BIRMINGHAM	PRESTON	LONDON	CHEPSTOW
0703-777254	$\begin{aligned} & 021-6221023 \\ & 021-6221517 \end{aligned}$	0772-312101	$\begin{aligned} & 01-8074090 \\ & 01-8841314 \end{aligned}$	

PART NUMBER ACCESS AND VISA ACCEPTED DEFICIAL

WE WILL ONLY QUALITY, BRANDE REPUTATION CO	SUPPLY TOP COMPONENTS. UNTS WITH US	G.G.LCOMPOMS PHONE (0228) 20358/39693				BUY WITH		
INTEGRATED CIRCUITS	TYPE PRICE (£) STK459	TYPE \quad PRICE (E) TDA2577.............. 3.55	TRAN- SISTORS	TYPE \quad PRICE BT151/....................	TYPE FIDELTTY PRICE	THORN		
TYPE PRICE ($£$)	STK461 7.95	TDA2578A 2.95	TYPE PRICE	800R 1.10	- Line O/P Trans.			
AN303.................. 3.45	STK463 9.30	TDA2581.............. 2.15	BC107 14	BU126 1.78				
AN305..................3.50	STK465 9.95	TDA2582................ 2.20	BC108 14	BU205 1.42	2 linc Mod. Board). 1260			TYPE DIODES PRICE
AN7114E 2.33	TA7193P............... 4.30	TDA2593................... 2.30	BC109................ 14	BU208A1.45	SANYO SPARES	VID	G	BY127 10
AN7115................2.37	TA7204P 1.90	TDA2594.................. 2.95	BC142 23	BU208D 1.85	5 TYPE PRICE	INSETRUCEION		BY164 40
AN7116................ 2.35	TA7205AP 1.40	TDA2600...............6.35	BC147 \square	BU326A 1.48	8 5000 Pulley.............5.595	SERVICE M	JALS.	BY179.................... 65 BY2106800............ 30
AN7145................. 3.25	TA7222AP 1.85	TDA2611A 1.50	BC148 09	BU407 1.12	25000 Reel Motor 8.55	PHO	ITE	
AN7168................ 2.95	TA7223P 2.85	TDA2640............... 2.40	BC327 11	BU500 1.95	55000 Pinch Roller.... 5.85	FOR NEW LIS	TS. WE	BY227M. .-....... 23
HA1166............... 2.65	TA7227P.............. 2.95	TDA2653A 3.55	BC328 12	BU508A 1.95	55000 Belt Kit...........1.10	CAN ALSO	OURCE	BY229/600' . .'. . 87
HA1338............... 2.78	TBA120AS 95	TDA3560..............5.10	BC337 11	BU807 1.30	305300 Belt Kit........... 245	\& SUPPL		BY2998800 1.15
HA1339............... 2.40	TBA120SB 90	TDA3561A 5.35	BC557 10	BU826A 3.20				BYX10.
HA1342A 2.20	TBA120T................. 1.25	TDA3562A 6.95	BC558 10	R25402 .35		THREE THO	SAND	BYX55/600 SKESF3/10 $-\quad .30$
HA1366WNR $\ldots1 .95$ HA1374	TBA120U 1.00	TDA3650A TDA36.......... 3.95	BC637 35	TIP31C		l / C	$\begin{array}{ll} \mathrm{VI} \\ \mathrm{DC} \end{array}$	SXESF3/10......... iN4001-7...................... 07 in
HA1374................. 2.45 HA1377..........30	TBA520................ 1.30	TDA3651AQ 3.80	BC638 25	TIP32C 47	7 THORN 3VOO-3V22.280	CONDUC		
HA1388.................... 4.20	TBA540................ 1.37	TDA4500................. 5.85	BC639 25	TIP33................ 95	5 NAT PAN 2000256			
HA1397.................... 3.90	TBA560............... 1.60	TDA4600................. 2.85	BD124M 1.05	TP41C 48	8 NAT PAN 3000255	SUND		
LA1201 1.75	TBA720A 2.65	TDA4600(18P)....... 3.30	BD131 33	TIP42C 48	8 NAT PAN 7000....... 225	G8 Ttansduct	... 225	SPA
LA12302.30	TBA750................ 2.45	TDA9503...............2.35	BD132 33	TIP47................ 75	5 SHARP 8300 2.95	G11 EW Coil	.. 1.65	
LA1365 2.45	TBA800.................. 8.80	UPC1031H......... .2 .95	BD222 50	TIP2955............. 70	0 SHARP 9300 295	G11 Lin Coil	.. 1.80	AVAILABLE
LA41011.50	TBA810................ 1.35	UPC1032H 95	BD225 55	TIP3055 70	0 SONY C5/7.......... 285			ONENAITE
LA41021.95	TBA820................. 1.40	UPC1156H 2.45	BD237 40	2N3055........ 50	0 SONY C9 Belt Kit4.50			FOR PRICES
LA44403.55	TBA920................ 1.50	UPC1181H........... 2.20	BD238 39	15/80H 2.25	5 TOSHIBA 8600			
LA44452.65	TBA950................ 2.65	UPC1182H............ 2.20	BD438 78	15/85R............ 2.25	25 Belt Kit.............. 235	RN Ond	W1.00	SONY SPARES
LA44602.95	TBA2800............... 2.65	UPC1185H3.30	BD439 70	2SB618.......... 2.45		TX10 Focus		C7 Rewind X11 4.65
LA44612.95	TCA270................. 1.55	UPC1230H 3.95	BD677 70	2SC 8674 3.25	5 LINE O/P TR.	VCR Pilot Bu 70	C6Rewind Kit........... 3.70
SAA1250 3.85	TDA440................. 3.25	UPC1363C4.65	BD701 85	2SC 1034........ 4.85	5 DECCA 80..............7.56	cramor		C5/C6/C7 V/Head... -... 38.95
SAA1251 4.95	TDA1035T 2.75	UPC1365C5.05	BD707 1.05	2SC $1061 \ldots1 .15$	5 DECCA 100............ 8.50			C5C7 Ack Head... ... 23.50
SAA5000A 1.50	TDA1037................. 1.95	UPC1394C2.95	BF337............... 28	2SC 1114........ 4.75	5 IT CVC 20 …..........8.8.8	PCF802		C5/C7 DC Motor
SAA5010 5.10	TDA1044.................3.10	UPC2002H 1.85	BF338.................. 30	2SC 1124........... 97	97 ITT CVC 25/30/328.95	PCF802	$\begin{array}{r} 1.09 \\ \cdots . . .97 \end{array}$	C6 Reel Motor 13.55 C6 MH2 Reel Motor21.50
SAA5012 5.70	TDA1170..................... 3.65		BF458............... 30	2SC 1316......... 3.20	20 ITT CVC $45 \ldots \ldots \ldots8 .45$	PCL82......	.97	$\begin{aligned} & \text { C6 MH2 Reel Motor } 11.50 \\ & \text { C5 Serv Mamual } .7 .85 \end{aligned}$
SAF1032P3.25	TDA1470..................3.65	VIDEO SPARES	BF757 75	2SC 1413A 3.95	5 PHILLPS G8............8.75	PCL85.	$\text { . } 1.03$	$\begin{aligned} & \text { C5 Serv. Manual } \\ & \text { C6 Sev. Manual } \end{aligned}$
SAS560S 1.95	TDA1512.................. 3.35	TYPE PRICE	BFR90 1.60	2SC 1942........ 2.95	95 PHILIPS G11........13.5	PCL86.	. 1.07	${ }^{\text {C7 Serv Manual } 7.785}$
SAS570S 1.95	TDA1670A 4.50	9300 V/Head................ 33.95	BR100 18	2SC 2078............ 1.5	PHILIPS K309.560	PL504..	. 1.59	C9 Serv. Manaul.........7.85
SAS580S 2.40	TDA1770A 3.95	VT11E V/Head..... 33.95			55 RBM T20A 10.35	PL508.		KVI810UB Manual ..7.85
SAS590S 2.40	TDA2003................2.33	VT11E Idler................... 295		2SD 588A1.97	7 THORN 1615........125	PL509/519.	.. 5.99	Ipost \& packing on
SL470 2.95	TDA2030...............1.95	9300 Idler4.35	BT116................ 1.30	2SD $725 \ldots7 .7 .95$	5 THORN 169011.......9.6.	PY500A.....	. 225	anuals .95)
SL480 2.85	TDA2170................2.95	${ }_{9300}$ Capstan Motor	-16............. 1.3					
SL490 SL1430................. 2.60 1.95	TDA2190M6.95	VT11E P/Roller535	TV ELEC	LYT	PU			
SL1432.................. 1.75	TDA2521/3..........4.55	9300 Belt Kit1.55		50V3.99	NECCAITG Way			C/D Transistors
STK0039...............6.45	TDA2522.............. 1.80	VT11E Belt Kit 298	$\begin{aligned} & \text { DECCA } 30(40 / 4010) \\ & \text { DECCA } 80-100 \end{aligned}$	$\text { 0) } 350 \mathrm{~V}$				
STK077................. 7.25	TDA2525..................3.35	GEC/HITACHI	(800)250V.					
STK078...................... 7.45	TDA2530............... 2.10	SPARES TV	Pr		HITACHI 4 way ..	8.95		
STK2129............... 8.50	TDA2532...............2.20	TVPE PHICE	PHILIPS G9(2200)6		1 1TCVC5 7 Butto	10.40		,
STK43325.95			RBM A82312500/25	30V 1.65	ITTCVC8	2.80	Pleas	.
33.................... 6.50	TDA2545..................4.95	STR 441 5.90	RBM T20A(220)400V 2.35	1043/05.....	8.95		
STK437..................... 7.25	TDA2560.................. 1.80	STR 451 5.90	THORM1690/1(4700	5 V 94	U321.	8.75		
STK439................ 7.55	TDA2571A 4.95	STR 454 5.95	THORN3500(1000)		U322.	7.40		
STK441................. 8.50	TDA2576A 3.60	STR 6020 6.35	THORM9000(400)4	.. 3.10	U411.	.. 12.50		

MAKE YOUR INTERESTS PAY:

 Train at home for one of these Career OpportunitiesMore than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your Free Information Pack on the course of your choice. (Tick one box only!)

Electronics	\square	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	\square	Radio Amateur Licence Exam (City \& Cuilds)	\square
Electrical Engineering	\square	Car Mechanics	\square
Elec. Contractin Installation		Computer Programming	\square
GCE over 40 ' 0^{\prime} \& ' A ' level subjects			\square

Name:
Address:
P. Code

International Correspondence Schools, Dept. EGSE6, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

FIRST IX TUBE REBULIDING TEGHOLOGY

30AX: 540 SERIIES

REDUCED SERTIGINC COST, FIT A DIREGT REPLGENEIT

available owiy from chionavac. PRE CONVERMED AS ORIMNAL. EXTERNAL MULTPLE UNTI NOT REQURED.

Get on the hot-line today!

Delta Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to $26^{\prime \prime}$	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+f2
A47342 New	£28
17FHP New ...	£30
470EHB New	£30
Delta only. Le	\% 5

InTie Rebuids
Up to $22^{\prime \prime}$.. From $£ 40$
Up to 26" .. From $£ 45$
A56-540x £56
A66-540x £58
Bonded Coil + ¢5
ALL SIZES OF NEW AND
REBUILT MONO TUBES
AT COMPETITIVE PRICES

IN LINE TYPES EX-STOCK SELECTION not Rebuldos
Please enquire types not listed

560 DMB

QUANTITY
DISCOUNT
AVAILABLE
Ask for details

* ASK FOR DETAILS. OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBL.EMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

It costs nothing to call and connect with CELTEL the right choice for the models, quality and prices you can really profit from.

2 BREACH ROAD, WEST THURROCK, ESSEX
TEL: (0708) 861404

PHILEX CO. LTD

HAVE NOW MOVED TO PHILEX HOUSE 841 HARROW ROAD LONDON NW10 5NH
(VCR SPARES SPECIALISTS)

$$
\text { TEL: 01-968 } 9684
$$

TELEX: 89555

FAX: 01-960 0449
£1 BAKERS DOZEN PACKS Price per pack is $£ 1.00$.* Order 12 you may choose another free. ltems marked (sh) are not new but guaranteed ok.

```
5-13 amp ring maIn junction boxes
- $u amp ring main spur boxes
3- electrical switches intermediate type, will also replace 1 or 2 way
Switches, white flush mounting
- in flex line switches with neons
2- mans transformers with 6V 1A secondaries
mains transformers with 12V 1/gA secondaries
    -glass reed switches
    ultrasonic transmitters and 2 recevvers with circuit
    light dependent resistors
4- wafer switches - }6p2\mathrm{ way, 4p 3 way. 2p 6 way. 2p 5 way. 1p 12
way small one hold fixing and good length 1/4 spindle your choice
    1-6 digit counter mains voltage
    Nicad battery chargers
    -key switch with key
    acoso cans of ICI Dry Lubrican
    48-2 metre lengths colour-coded connecting wire
    - rocker Switch }10\mathrm{ amp mains SPST
    1-24 hour time switch manns operated
    10- neon valves - make good night light
    2-12V DC or 24V AC, 3CO relays
    -12V 2 C0 miniature relay very sensitive
    - mams operated relays 3 3 8 amp changeover (s.h.)
10- rows of 32 gold plated IC sockets (totai 320 sockets)
1- locking mechanism with 2 keys
    miniature uniselector with crrcut for electric jigsaw puzzle
    ferite rods \mp@subsup{4}{}{\prime\prime}\times5/1\mp@subsup{6}{}{\prime\prime}\mathrm{ dlameter aerials}
    - Mullard thyristor trigger module
    - Mularo thyristor rrigger module
    low pressure 3 level switch can be mouth operated
    25 watt pots 8 ohm
    - wre wound pots - 18,33,50 and 100 ohm your choice
1- tme reminder adjustable 1-60 mins clockwork
1- time reminder adjustable 1-60 mins clockwork
- manns shaped pole motor 3/4" stack - 1/4 shaft
    mains motors with gear box 16 rpm
    thermostat for fridge
- motorised stud switch (s.h.)
1-21/2 hours
    1- mains power supply unt - 6V DC 
    mains power supply unit - 41/2V DC
    musical boxes (less keys)
```

 heating pad 200 watts mains
 1W amplifier Mullard 1172
 - wall mounting thermostat 24 V
 - teak effect extension \(5^{\prime \prime}\) speaker cabinet
 p.c. boards with 2 amp full wave and 17 other recs
 push push switches for table lamps etc.
4 - push push switches for table lamps etc.
10 -mtrs twin screened flex white p.v.c. outer
10 - mirs twin screened fliex white p.v.C. outer
25 - clear plastic lenses $13 / 4$ diameter
4- pilot bulb lamo metal clip on type
4 - plior buib lamp metal clip on
10 - very fine drills for pcbs etc
- extra thin screw drivers for instruments

- plastic boxes with windows, ideal for interrupted beam switch
- mar radio soeakers 5 " require no onjoff switch, just spin to stat
$1-61 / 2^{\prime \prime} 4$ ohm 10 watt speaker and $3^{\prime \prime}$ tweeter
10-4BA spanners 1 end open. other end closed
2-4 reed relay kits 3 V coil normally open or cho if magnets added
 - pilot bulbs 6.5V 3A Philips
varicap push button - idean fors with knobs
 - varicap push button tuners with knobs
- short wave air spaced trimmers $2.30 f$
-12 V 6 W bulbs Philps m.e.s.
3 - oblong amber indicators with liliputs 12 V
6 - round amber indicators with neons 240 V
100 - p.v.c. grommets $3 / 8$ hole size
sthree wave funing condenser 50 pl with $1 / 4^{\prime \prime}$ spindie
45 mm
- 5 amp 3 pin flush sockets brown
B.C. lampholders brown bakelite threaded entry
in flex simmerstat for electric blanket soldering iron etc.
2 - thermostats, spindle setting - adjustable range for ovens etc.
 - mains operated solenoid with plunger 1 "travel
8 - computer keyboard switches with knobs. pcb or vero mounting
8 - computer keyboard swiches with knobs. pcb or
20 - mtres 80 ofm. Standard type co-ax oft white
1 - electric clock mans driven, always night time
electric clock mains driven, always night time - not cased
 - stereo pre-amp Mullard EP9001
 - mains transformer $9 V 1$ amp secondary C core construction
car door speaker (very flat) $6^{1} / 2^{\prime \prime} 15$ ohm made for Radiomobil
 - speakers $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm 5 watt made for Radıomobile
 - speakers $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm 5 watt made for Radomobile
- speakers $6^{\prime \prime} \times 4^{\prime \prime} 16$ ohm 5 watt made for Radiomobile
 - mains motor with gear-box very small. toothed output 1 rpm
$4-$ standard size pots. $1 / 2$ meg with $d p$ switch
$1-13 A$ switched socket on double plate with fur
 - 13A switched socket on double plate with fused spur for water
$1-13 A$ switched socket on double plate with fused spur for water
heater etc.
2- mains transtormers $9 V^{1 / 2 A}$ secondary split primary so ok also for
2- mains transtormers 9 1/2A secondary split primary so ok
15 V
1 - mains transformers 15 V 1A secondary p.c.b. mounting
 - ten turns 3 watt pot $1 / 4$ spindle 100 ohm
 - car cigar lighter socket plugs
 - 15 amp round pin plugs brown bakelite
 - mains solenoid with plunger compact type
1 - mains solenoid with plunger compact type
10 - ceramic magnets Mullard $1^{\prime \prime} \times 3 / 8 \times 5 / 16$
$1-12$ pole 3 way ceramic wave charge switch
1 - stereo amp 2W per channel
1 - stereo amp 2W per channel
tubular dynamic microphone with desk rest
T.V. turret tune (black \& white T V.)
oven thermostats
sub minature micro switches
1 - round pin kettle plug with moulded on lead
- model aircratt motor - require no on/oft switch, just spin to sta
- car radio speakers $5^{\prime \prime}$ round 4 ohm made for Radiomobile
three gang tuning condenser each section 500 pf with tnmmers
good length " $1 /{ }^{\prime \prime}$ spindle
- plastic box sloping metal front. $16 \times 95 \mathrm{~mm}$ average depth

MULLARD UNILEX AMPLIFIERS
We are probably the only firm in the country with these ncw in stock. Wha now offer the 4 Malts per channel, these give supert reproduction We now ofter the 4 Mulaard modules - i.e. Mains power unt (EP9002)
Pre amp module (EP901)) and wo amplifier modules (EP9000) all to E6.00 plus $£ 2$ postage. For prices ol modules bought separately see

CAR STARTER/CHARGER KIT

VENNER TIME

 SWITCHMains operated with 20 amp swich. One on and one off per 24 hrs . repeats daily automatically correcting for the lengithenin or shortening day. An expensive time switch but you can have it for only $£ 295$ withour
case, metal case - $£ 2.95$, ada,3or kit to convert this into a nomal 24 hr time switch but with the addod advantage of yp to
onvofts per 24hrs. This makes an ideal controller for the immersion healer Price of $\begin{array}{ll}\text { Ex-Electricity Board. } & \text { controler for the imm } \\ \text { Guaranteed } \\ 12 \text { months. adaptor kit is } \sum 2.30 \text {. }\end{array}$
SOUND TO LIGHT UNIT

Complete kit of parts of a three channel sound to light unit controlling
over 2000 watts of lightng. Use this at home if you wish but it is plenty over 2000 watts of givnting. Use this at home it you wish but it is plemty rugged enough for disoc work. The unit is housed in an altractive two
tone metal case and has controis for each channel, and a naster onvoff: The audio mout and output are by $1 / 4^{4}$ sockets and three panet mounting luse holders provide thynistor protection. A four pin plug and socket
faciltate ease of connecting lamps. Special price is $£ 14.95 \mathrm{in}$ kit form 12 volt MOTOR BY SMITHS

1/10 ho $£ 3.45$
$1 / 8 \mathrm{hp} \mathrm{E5.75}$.
25A ELECTRICAL PROGRAMMER
Leam in your sleep. Have radio playing and Iff intruders - have a warm house to come
home to You can do all these and more. By amous maker with 25

THIS MONTH'S SNIP

100 Mains Transformers for only £45.
Tax and carriage paid. Your choice from: -6 volt $1 \mathrm{amp}, 9$ volt $1 \mathrm{amp}, 12$ volt $1 / 2 \mathrm{amp}$. Mix them as you like.

MAKING SUNBEDS?

£2, post E 1 for 1 or 50 p

TANGENTIAL HEATERS
 ootom of a kitchen unit ar book cass etc. A1 present we have stocks of

FANS \& BLOWERS

FXxtractor or blower $\uparrow 15 \mathrm{~V}$ supplied with 23010115 V adaptor $\mathrm{E9.50}+$

 $10 \times{ }^{\prime \prime}$ Iangential Blower. New. Very quiet - supplied with 230 to
$115 V$ adapor on use twin in series lo give long blow $£ 2.00+£ 1.50$ pos
or $£ 4.00+£ 2.00$ post tor wo.

IONISER KIT

Retresh your home. offioe, shop, work room etc. with a
negative 1 ON generaitor. Makes you feel betler and work harder - a compleie mains operated kit. case includrod

TELEPHONE BITS

Master so

Extension socket
Dualadaptors (2 from orte sockel.
ringing condenser et) and takes
Cord terminating with B T. plug 3 metres
Kit for converting okd entry teminal box to i.............................95 Complete with 4 core caole. cable clips and 2 BT exiension socket.
cockets
MINI MONO AMP

has three transislors and we
estimate the output to be $3 W$ rms
stimate the output to be $3 W \mathrm{mms}$. More lectirmcal data will be
with the amp. Brand new.
pertect candition, offered at the very
low price of $£ 1.50$ each, or 13 for $£ 12.00$

J \& N BULL ELECTRICAL (T) 128 PORTLAND ROAD, HOVE

 BRIGHTON, SUSSEX BN3 5OL
schools and publice comparge. Monies. Acces account orders acccepted from
schools and public companies. Acces \& Bicard orders
Brighton 0273734648 . Bulk orders: write for quote.

OVER 400 GIFTS
YOU CAN CHOOSE FROM
There is a lotal of over 400 packs in our Baker's dozen range and you become entitied to a large fre gift with each dozen pounds you spend on these packs. A classified list of these packs and our latest ous Letter wic be encosed win your goods, and

£2 POUNDERS*

and thermometer
Vanatie and reversible 8-12V psu for model control
2P4 - 24 voli psul with separate channels for stereo made for Mullard
2 P 6 - $\quad 100 \mathrm{~W}$ mains to 115 V auto-transformer with voltage tapprngs
2 P 8 - Mains motor with gear box and vaniable speed selector. Series

- wounc so sulable for turther speed controf

2Pg - Time and set switch. Boxed, glass fronted and with knobs.
Controls up to 15 amps. dieal to progrant electric heater
2P10 -
12
separale bobbin and easy to remove to convert to lowe
separale bobbin and easy
votiages for higher currents
voltages for higher currents
Disc cs Tape precision motor - has balanced rotor and is
reversble 230 V mains operator 1500 rpm
Creversble 230 V mains operator 1500 rpm
Mug Slop kit - when thiown em
2P14 - Mug Stop kit - whens thrown emnis piercing swawk
2P15- Interrupted Beam kit tor burgiar alarms counters, etc
Interrupted Beam kit tor burgiar alarms, counters, etc
2 rev rar manute mans diven motor with gear box, dieal lo
2 rev mirnute mail
2P18 - Qquate mirror ball
2P19 - Disco switch-motor arives 6 or more 10 amp chang
2P19- Disco swich-motor drives 6 or more 10 amp change over
Disco swith-motor drives 6 or more 10 amp change over
micro switches supplied feady for mains operation
20 megres extension lead. 2 core - ideal most Black and
micro switches supplied feady for mains operation
20 mesres extension lead. 2 core - ideal most Black
Decker garden tools etc
Decker garden tools etc
10 watt armplfier. Mullar
10 wart amplifier. Mulara module reterence 1173
Motor dfiven swich 20 secs on or off after poush
Clockwork operated 12 hour switch 15 A 250 V with clutch
Clockwork operated 12 secs on on or of after 15 A 25

Goodmans Speaker 6 inch round 8 onm 12 watt
Orill Pump - always useful couples to any make portable drill
4 metres 98 way interconnecting wire easy to stnp.
4 metres 98 way interconnecting wire easy to stnp.
Hot Whe amp meter - $41 / 2$ round surtace mounting $0-10 \mathrm{~A}$ - old
but working and defintely a bit of history
2 P34 - Sout working and definitely a bit of history
200 MPM Geared Mains Motor 1 " stack quite powertul.
defintely large erough to drive a rotating aenal or a fumbler for
polishing stones etc.
definitely large enough
polishing stones etc.
Smail type blower or
2P43 - Small type blower or extractor fan, molor insel so very
2P43- Small type blow
2P46 - Oompact. 230V
2P47 - Telephone drill control kit complete and with prepared case
2Pit reduces mans to 50 vots and changes
P4. - Telephone ninging unit reduces mains to 50 volts and c
treuency from 50 hz to 25 hz to give nght ningng tone
Trequency from 50 hz to 25 hz to give nght nnging tone
2 2P49 - Fire Alarm break glass switch in heay cast case
2P51 - Slerec Headphone armplfier, with pre-amp
2P51 - Serec Headphone amplfier, with pre-amp
2P55 - Mans motor, extra powertul has $1^{1 / 22^{\prime}}$ stack and good lengit of
spindle
spindlue Goodlans 15 ohm speakers for Uniox

12 kw tangental heater 115 v easily convertible for 230 V . 112 l . $12 \mathrm{v}-.12 \mathrm{v} 2$ amp mans transformer
12 kw tangential heater 115 v easily conv
$112 \mathrm{v}-12 \mathrm{l} 2 \mathrm{amp}$ mans transformer
$115 \mathrm{v}-15 \mathrm{v} 2 \mathrm{amp}$ manns transformer
1 $15 \mathrm{v}-0-15 \mathrm{v} 2 \mathrm{amp}$ mains transformer
1 E.M. tape motor wo speed and reversible
1 E.MI. tape motor two speed and res
1157 Mutin fan $4^{*} \times 4^{\prime \prime}$ appox
12 heur tumer, plugs into 13 A socket
12 hcuruthmer, plugs into apa sock
$9 v 0-0.2$ map mans transformer
9V-0.9y 2 amp mans translormer
Modom board with press keys for teleph
$20 v-0-20 v 1 / 2 \mathrm{~A}$ Mans transtormer
Sangamo 24 hr trme swich 20 amp SH
120 mmn . tume switch with knob
20v-0-20v $1 / 2 \mathrm{~A}$ Mans transformer
Sangamo 24 hr tme swich 20 amp SH
120 mmnn . tume switch with knob
120 minn. tume switch with knob
120 min. time switch with knob
90 min. time swith with edgewise engraved controler
Panel meler size $21 / 2^{\prime \prime} \times 2^{\prime \prime}$ scaled power tactor
13 a sucket on satin chrome plate very superior GEC
Panel meler size $2^{1 / 2} \times 2^{\prime \prime}$ scaled power factor
13A Sucket on satin chrome plate very superio
mains transformer 24 v 2 A upright mounting
mains transformer 24 v 2 A upight mounting
20 m 4 core teiephone cable. whtue outer
20 m 4 core teiephore cable. whte outer
500 hardened pin ype stapies for telephone cable
mans transformer $15 v 4 \mathrm{~A}$ upnght mounting
500 hardened pin yppe staples for telephone cable
mans transformer 15 v 4 A upght mount ming
capilazy type thermostal adfustable for ar lemperatures with
10 A co switch
10A cio switch
membrane keyboard, telephone type superior plug in iype
2P107 - membrane keyboard, telephone type superior plug in typ
2P108 - mains motor with gear box giving 110 rpm
2P109 - 5^{\prime} wide black achesive pvc lape 33 m , add \&1 posi if not
$5^{\text {n }}$ wide black adhesive pvo lape 33 m , add $£ 1$ post it not
collecting
2 2P111- ITT lome output unn
2 P112-6 volt 200 MA volta
${ }^{2 P 111}$ - ITT urre output unt
2 P1 $12-6$ vot 2000 MA Voltage fegulalor PSU for 13 amp socket
$2 P 113-9$ volt 200MA Voltage regulator PSU for 13 amp socket

4- 12 vor 200 MA Voltage regulator PSU for 13 amp socket
6 - FM ircont end with tuning capacitior and For 13 amp sircutry
- FM front end with turning capacitor and F.M circuil

- 30 rom mains motor with gearbox
Under carpet swich mat for burglar alarm etc.

S5 POUNDERS*

12 volt sibmersible pump complete with a tap which when
12 voit submersible pump complete with a tap which when
brought voer the basin swithes on the pump and when pushed
back swiches off. an ideal caravan urut
Sole

has vottoge adj. taps. also as to has a 115 v tapping ir can be be.
has voltage adj. Laps. also as th has a 115 v tapping ir can be
used to zafely operate Amencan or other 115 v equipment which
used to saffly operate Amercan or other 115 v equipment which
is often sonly insulated to 115 V Please add $£ 3$ postage if you
Used to zarely operate Amencan or oiner 15V equipment whit
is othen unly insulated to 115 V Please add $£ 3$ postage if you
cant' coltect as this is a heavy item.
can't colect as this is a heayy item.
5P6
protelam belt with heavy 6 gorg, suitable for outside if
protect lrom drect rainall. Ex GPO but in pertect order
protected trom drect rainlall. Ex GPO but in pertect order and
guaranteed.

NEW 1986 CATALOGUE is now available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders over $£ 15$). Includes 50p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be sent within 7 days

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 1.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671
SECRETARY
Janet Reeve
01-261 6671
CLASSIFIED ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-2616035

COVER PHOTO

Our cover photo this month spans the entire fifty years of high-definition TV in the UK. The set in the foreground is a new stereo-sound model from B and O with FST display and provision for satellite TV reception. Of the other sets the most interesting is the mirror-lid console with the light wooden panel above its speaker grill: it's a dual-standard (240/405 lines) EMI set dating from 1936.

The photo was taken at Amberley Chalk Pits Museum near Arundel, West Sussex, a fascinating place to visit not only for the vintage radio and TV gear. Our thanks to the curator of the radio and communications section, Ron Ham, for his help and the use of the museum as a setting.

INFORMATION WANTED

Can anyone suggest a source of data and/or spares for a 5 in . Auritone monochrome receiver?

Fifty Years of TV

The first fifty years of regular high-definition TV broadcasting is an anniversary of note: several organisations are commemorating it in various ways - see Teletopics overpage. The situation back in the early thirties was certainly a fascinating one. TV of sorts had been demonstrated experimentally in several countries during the twenties. The pace of development increased during the early thirties, but it must not be forgotten that this was a period of severe economic depression. It was nevertheless the period when TV moved from the laboratory to experimental transmissions, and it's interesting to speculate as to whether the pace of development would have been faster - and whether the UK would have been the first country to start a regular high-definition TV service - had the economic climate been more favourable. In the USA for example RCA started to transmit experimental allelectronic TV in 1933, with 240 lines. But in the wake of the Wall Street crash it was difficult even for RCA to raise funds. The prospects for TV services and a receiver industry did not look good.

Apart from the UK, the other leading country in the development of TV during the early thirties was Germany. In fact a TV service was officially opened in Berlin on March 22nd. 1935 , using an all-electronic 180 -line, 25 Hz system. It was described as a "regular" service but it's difficult to know exactly what this meant in practice. The 16 kW transmitter certainly transmitted regular sound broadcasts. TV transmissions were mainly of film material and although they seem to have taken place for several hours on various days of the week the service was not a regularly scheduled one in the sense that we understand it. In fact it was described in a contemporary report as a "preliminary try-out". There was talk of moving to 240 lines within months, which can hardly have been an incentive to buy sets, and flicker was a problem with the 25 Hz field rate.

The 1935 Berlin Radio Show, held on August 16-28th, revealed the pace of TV development in Germany at the time. TV sets made by Telefunken, Loewe, Fernseh, Lorenz, Müller and Tekade were on show in a "Television Street". In addition to the 180line service there were demonstrations of a 320 -line mechanical system and of a 240 -line system with irterlaced scanning. The Tekade set used a mirror-screw display which was described as "feebly illuminated" in comparison to the other sets that employed c.r.t.s. But political considerations overshadowed the show. A few days before the opening television was by decree placed under the jurisdiction of the Ministry of Air. That put a real damper on things so far as the development of a public broadcasting service was concerned.

Things were also moving fast in the UK. The Baird Company had moved from its primitive 30 -line system to a more promising 240 -line system, this time with proper sync pulses! But the major leap came with EMI's development of the 410 -line system. And so we moved towards November 2nd, 1936, when the BBC started its regular service, initially with 240/405 lines on altemate weeks, going to 405 lines only in February 1936. At the August 1936 Radiolympia exhibition TV sets by Baird, Cossor, Edison, Ferranti, GEC, EMI and Philips had been on show. Hand built of course, as all TV sets were to be for many years to come. It was the beginning of a TV industry however, and it's sad that the UK failed to capitalise on this early start.

Tube technology has been a crucial factor in the development of TV all along. The c.r.t.s of 1936 were most unimpressive by today's standards. Pumping technology was primitive and the light output was poor. It's interesting to observe that the ability of the 415 -line system to produce really first-class pictures (in colour too!) became apparent only as tube technology progressed. Observers in 1936 commented that there was little to choose between the picture quality of the 240 - and 405 -line systems. That can have been only because of the tube technology of the time.

The other side of the coin was the camera pick-up device. If the display tubes of the period failed to do justice to the 405 -line system. neither did the Emitron camera tube. But the Emitron was at least the start of a very fruitful line of development. Its light-signal conversion efficiency was low, mainly because of its poor charge storage capacity. A significant improvement came with the Super-Emitron in 1937. With this tube the functions of photoemission and charge storage were separated. The Super-Emitron was so successful that it continued in use for some studio applications titl the early sixties. Both these tubes had the curious round bulb with the scanning gun at an angle familiar from photos of early TV broadcasting. The Super-Emitron was superseded by the in-line gun CPS Emitron (orthicon) in the early post-war period. For their part the Baird Company had been hoping to use with the 240 -line system a tube developed by Farnsworth. The Farnsworth image dissector lacked storage however, making it unsuitable for camera use - though it was employed for many years as a slide scanner.

The achievement of the EMI team in 1936 was to have developed a complete TV system - camera tube, studio equipment and receivers. The transmitter side was taken on by the Marconi Company, who had developed a suitable v.h.f. transmitter as early as 1932. The Marconi-EMI Television Company was set up in March 1934 to work on all aspects of the final system. In retrospect we can see that television in 1936 was still in a state of rapid technical transition - but then that's been the case ever since!

Teletopics

FIFTY YEARS OF TV BROADCASTING

November 2nd marks the fiftieth anniversary of regular, high-definition TV broadcasting by the BBC: the service was declared open at 3 p.m. on November 2nd 1936 by the Postmaster General. What was available on that epic date would be considered very small beer today however: one transmitter (Ally Pally), about 300 TV receivers out in the field, an hour of programmes in the afternoon and another hour in the evening - with nothing on Sundays. Of the 300 sets in use it's likely that many were in the hands of those professionally involved with TV in one way or another.
To commemorate this fiftieth anniversary the Institution of Electrical Engincers is holding an international conference at its headquarters. Savoy Place, London WC2 on November 13-15th. Over forty papers are to be presented at the conference, which is entitled "The History of Television - from the early days to the present". They will cover progress from the first proposals for television, via the experiments of the 1920s and the subsequent low-definition transmissions, to the realisation of high-definition in the 1930s and all subsequent advances. The Royal Television Society is presenting an audio-visual spectacular called "The Golden Box". This will run for a nine-week period until January 7th. Further details were given in Teletopics last month. The National Museum of Photography, Film and Television is publishing a 36-page book entitled "Television - The First Fifty Years", by Keith Geddes, curator of telecommunications at the Science Museum, and Gordon Bussey, historical advisor to Philips Electronics. The book includes 80 colour and monochrome illustrations and is available for $£_{1.50}$ (plus 75p postage and packing) from The Shop, National Museum of Photography, Film and Television, Princes View, Bradford, West Yorks BD5 0TR. It will also be available at the Science Museum and at the Commonwealth Institute - where the Royal Television Society's video spectacular is being held. The book's ten chapters cover the ground from early developments between 1873-1936 to the present cra of home video, sterco TV sound, satellite TV and so on - a period of "uncertainty as great as in 1936".

SATELLITE TV EQUIPMENT

NEC has introduced a new satellite TV receiver system featuring a single LNB with polariser and a noise figure of $2 \cdot 3 \mathrm{~dB}$ maximum. The heart of the system is the new 2022 tuner which offers a maximum of fifty pre-programmable channels. The parameters for all stations currently available via the Eutelsat-1 and Intelsat VA F11 satellites are preset at the factory: new programmes can easily be preset by the user with the keypad. Polarisation is automatically adjusted for the channel selected by information programmed in during the presetting procedure. Throughout the presetting procedure on-screen graphics, in the form of instructions and bar graphs, help the user to tune in each parameter exactly. The new system is designed to be compatible with channels broadcast from any satellites, including DBS birds transmitting B-MAC or D2-MAC signals. NEC has also developed an optional low-cost tracking system which enables the dish to be swung by
remote control. The unit comprises an aerial positioner and a rugged actuator using a steel-geared, one-eighth h.p. motor (actuators generally use plastic-geared $1 / 15$ th h.p. motors). The new system complements NEC's existing range and will be marketed as a complete package, including the dish aerial, backed by a nationwide installation service. Further details can be obtained from NEC Business Systems (Europe) Ltd., Camden Office, 35 Oval Road, London NW1 7EA. NEC equipment is now available nationally through DER's 369 outlets following a test market operation in London and the south east in recent months.

BELtronics Ltd. has introduced an electronically switchable LNB which dispenses with the need for a polarotor: the BEL LNB is activated simply by pressing a button on either the receiver or the hand-held remote control unit. BEL point out that doing away with an electro-mechanical polarotor greatly increases reliability. Details of BELtronics equipment can be obtained from BELtronics (UK) Ltd., Cherry Orchard North, Kembrey Park, Swindon, Wilts SN2 6BL.

A range of satellite TV receiving equipment has been introduced by Rediffusion - the systems have been designed with carry-home packs for DIY customers and feature easy installation. A UK dealer network is currently being set up. Extensive support will be available for dealers appointed as "Rediffusion Satellite Centres". The range consists of the RSR30 receiver, RKU10 LNB and $1.2 \mathrm{~m}, 1.5 \mathrm{~m}$ or 1.7 m dishes which are available with a choice of patio, wall or polar mounting arrangements. For further details apply to Rediffusion Radio Systems Ltd., Satellite Systems Division, Unit 9, Mole Business Park, Randalls Road, Leatherhead, Surrey KT22 7BA.

The range of satellite TV receiving equipment available from Comex Satellite Systems Ltd. in kit form has been considerably extended. A price list with details is available from Comex Systems Ltd., Comet House, Unit 4, Bath Lane, Leicester LE3 5BF.
The London Hilton on Park Lane hotel has been equipped with a satellite TV system which provides a service in all its guest rooms. Eight different services on four channels are available in addition to the national and London regional networks.

The board of Eutelsat has decided to ask Aerospatiale, which is building the second generation of Eutelsat birds (the Eutelsat-2 series), to implement certain modifications. The most important concerns enlargement of the service zone of the high-gain beam, allowing reception via dishes down to 1 m . With the modification requested this beam will provide an e.i.r.p. of $47-51 \mathrm{dBW}$ over a large part of Western Europe from the Iberian peninsula to Scandinavia or from Italy to Iceland depending on orbital position - the two satellites will be at 3° and $36^{\circ} \mathrm{E}$ and are due to

The new Salora SRV1150 satellite TV receiver with ACU1160 aerial control unit. Further details next month.
become operational in 1989. All 16 transponders will be able to use the high-gain beam instead of 12 only as in the previous design.

Salora has started a series of one-day satellite TV technical courses for dealers. A 55 -page A4 booklet entitled "Satellite Television - Basic Notes for TV Technicians" will be issued to all course members along with a signed and sealed Certificate of Competence. Hands-on experience with TVRO equipment is a feature of the courses. For details apply to John Breeds, Satellite Products Manager, Salora (UK) Ltd., Techno Trading Estate, Swindon, Wilts SN2 6EZ.

GOOD BUSINESS

According to AGB Lek-Trak, the retail research service run by Audits of Great Britain, spending on electrical goods during the first six months of this year rose substantially. Sales of VCRs, which are ten per cent cheaper than a year ago, rose by 44 per cent while CTV sales rose by 24 per cent. It seems that the World Cup and the royal wedding helped sales which have since dropped back though still being ahead of last year.

WORLD'S FIRST LASER PROJECTOR

The world's first laser video projector was on display at the Photokina Exhibition, Cologne - the Spectralight is the only commercially available laser projector. It provides line-free full-colour pictures up to 15 m in width from any conventional video source - tape, off-air, satellite or computer. Details are available from Dwight Cavendish Displays Ltd., Bydand Lane, Little Paxton, St. Neots, Cambridgeshire PE19 4ES.

VIDEO EQUIPMENT

Sony has extended its range of 8 mm video equipment with the full-feature camcorder Model CCDV100 at $£ 1,600$. The CCDV100 has new circuitry and heads to give improved definition and a series of trick features including a seven-colour character generator, a seven-colour screen wipe, a time-lapse switch (eight frames every fifteen seconds), frame recording (one frame in eight to give a strobe/animation effect) and in addition a real-time counter that shows elapsed and remaining tape time. The previous CCDV8AF camcorder has been replaced by the CCD7AF which incorporates a macro facility for closeups. This one has a suggested price of $£ 1,200$. The top-of-the-range EVS700 8 mm VCR has been replaced by the EVS 600 with a suggested price of $£ 700$.

Fuji has introduced a 90 minute 8 mm tape, type P5-90. The Fuji range of 8 mm videocassettes now comprises the P5-30, P5-60 and P5-90. Special features of the new tape include high-output "Super-fine Metallix" particles, an ultra-smooth tape base, a flexible 3-D binder and a unique four-layer construction.

JVC's latest VCR is the HRD170 which has a suggested price of $£ 379$. Features include infra-red remote control, HQ circuitry, power switch-on when a cassette is inserted, instant playback when the tape is rewound to 0000 , and backspace editing. A new JVC camcorder, Model GRC9, has been launched in Japan. It's claimed to be the world's smallest VHS camcorder with dimensions of $8.2 \times 4.4 \times 3.7 \mathrm{in}$. and a weight of 1.61 b .

Fuji exhibited a new range of still video equipment at Photokina, including a still video camera which uses a video floppy disc as the recording medium, a high-
resolution image sensor with field/frame recording capability, and a still video print system.
Ross Electronics, 49-53 Pancras Road, London NW2 2 QB is distributing in the UK the new Trackmate range of video/audio recorder and disc cleaners. The TM261 VHS VCR cleaner uses two vibrating brushes to spread a controlled amount of cleaning fluid and is said to give much better results than pad or tape systems. The price is £12.99.

RISCOMP RANGE EXTENDED

Riscomp Ltd. (51 Poppy Road, Princes Risborough, Bucks HP179DB) has announced an addition to its range of security products. The new CA1382 control unit provides an extensive range of facilities with simplified operation. Automatic "system testing" is carried out every time the unit is switched on, an LED indicating correct operation. The entire operation is controlled by a single key-operated on/off switch. Features include a built-in exit and entrance buzzer to give audible warning of the unit's operation, an alarm memory to allow the unit to be set up without annoyance to neighbours, and provision for sounding the alarm by means of a personal attack switch even though the unit is not switched on. The unit is available for self-assembly at $£ 39.95$ plus VAT or fully built and tested at $£ 44.95$ plus VAT.

LABGEAR'S NEW SET-TOP AERIAL

The new CM7300 Tri-Star wideband u.h.f. aerial from Labgear Cablevision is the outcome of two years of design and development work. The aerial is of the log-periodic type and has a wide range of adjustments -360° rotation, 175° side-to-side swivel and 170° tilt. It slips into a compact carton to aid stocking. There's also a version Model CM7301 Supreme - with integral amplifier for use in weak-signal areas. This provides a gain of about three times.

CATALOGUES

The 1986 VCR Trade Catalogue is now available at $£ 2$ from Willow Vale Electronics Ltd., 11 Arkwright Road, Reading, Berks RG2 (OLU. Spares for Sharp, Grundig, Ferguson, Philips and other manufacturers' machines are listed. A helpful feature is the exploded views for many popular VCRs to assist with part identification.

Cirkit's Winter 1986 catalogue is now available at $£ 1 \cdot 20$ from Cirkit Distribution, Park Lane, Broxbourne, Herts EN10 7NQ. The catalogue features over $3,0(0)$ products for the electronics hobbyist in its 164 pages.

IN BRIEF

The Japanese private research company RHD Corporation has succeeded in making a blue LED using zinc selenide. This is the missing primary colour in the LED range and opens up interesting possiblities for displays . . . Some of the latest Grundig sets employ CTI - colour transient improvement. This is said to enhance the separation of the colour signal to sharpen the colour information in the picture, and has the added bonus that video recordings give better playback . . . Heron Electronics is being wound down - closure is expected by Christmas. Heron has been distributing the York and Ingersoll brands and previously held the Thomson and Crown UK franchises.

The Barefoot Contessa

Les Lawry-Johns

Not long since H.B. decided that our Alsatian Zeb was lonely. She enquired around and located a suitable friend for him in the Medway towns - a three-year-old German Shephard who had had puppies and had been seen to . . . One of her puppies lives a few doors from us and was on heat. It had been sitting on her owner's lap, which by a chain of events led to some problems. Her owner offered to accompany H.B. to pick up our new dog you see. As H.B. was driving, the new dog ("Duchess") sat on the lady's lap during the return journey. The arrival home was spectacular. As Duchess trotted in through the door Zeb caught what he thought was her smell and went mad. There was a monumental struggle, with TV sets toppling over everywhere and me losing my temper over this unseemly mess.

Zeb's sense of smell is more acute than I thought, but it didn't take long for him to realise that his attentions were unwanted. We very nearly have peace now but their boisterous playing seems to continue nearly all day long and completely upsets my dubious ability to think straight. Being of German descent I felt that the new arrival must be a Contessa rather than a Duchess - so Tessa she is. The few customers who came nowadays tend to get a shock when confronted by two such large hounds, but at least their sets are assured of protection.

The Hitachi

A friend of mine lumbered in carrying what appeared to be a 22 in . colour set. I saw the name Hitachi and started to make excuses.
"It's my mother-in-law's, Les. Just have a look and see if you can get rid of all that green."
I guessed that the tube was at fault but thought I'd make sure. He left it and in due course I took the back off, expecting to find an ordinary in-line gun tube that needed reactivating. The more I looked at it however the more confused I became. There was a single first anode supply, which is normal. It read correctly. I looked for the red cathode and found two pins marked RK on the lefthand side, two marked GK at the bottom and two marked BK on the right. The voltages on all these pins read the same, so the tube seemed to be at fault - there was brilliant green with very little red or blue.

Not realising what I was up against I looked for a common heater to connect the reactivator to. I checked the GK pins with the set switched off and got the reading I expected. I then looked for a grid pin and found two earthed. So I hooked up to this earth and to the pin marked RK and applied the heater voltage to the GK pins. There was a funny noise and the heater lit brightly. Heater, not heaters. I disconnected the reactivator and tried the set again. The picture came on immediately but was in magenta (red and blue) with no sign of green. Mind you, it looked a lot better than that green picture, but it dawned on me that I'd damaged the green emission. I studied the base more carefully and realised that each gun had its own heater supply, hence two pins marked RK etc. The cathodes are in fact the heaters and I remembered reading in the magazine some years ago about this unusual Hitachi tube. Why hadn't I remem-
bered earlier? It would have needed a new tube anyway...

Another One

Shortly after this episode a nice couple came in and said they wanted help with their TV set which they couldn't bring in. I enquired about the make and the nature of the trouble. An Expert they said, the fault being that the top of the picture came down and went back up every few minutes shortly after switching on, the display eventually settling down. Memories of my friend's GEC-Hitachi set came back to me. Remember the elastic band that wasn't successful? I'd eventually had to take out the thick-film field output module and resolder all the contacts. In this way we gained the upper hand. I guessed that the Expert was actually an Hitachi and promised to nip over and solve the problem the following morning - only hoping that I was right.

I went, I was right, and I did it. What a clever boy! Incidentally these sets have the transit screws in the back cover in the same way as the TX9 etc. This makes removal of the cover a bit of a puzzle when you're used to dealing with sets that have been serviced before and don't have the screws fitted.

Sad Tales

Another 26in. ITT colour set fitted with the CVC5 chassis caused me a nightmare the other day. The complaint was intermittent or no colour. I had to call at the house which was well out of town, so I resolved to do it there rather than bring it back to the shop. The colour came on at first. It then went into bars and faded out, leaving a pleasant monochrome picture. I tried another channel. The colour was again present but then vanished as before. Maybe the colour reference oscillator preset R311 was out of adjustment? I tried a new setting, but no luck. I tuned in the channel and the colour briefly appeared. In a nutshell I checked every likely item on the decoder panel. Nothing seemed to be at fault and all the voltages were as expected, changing only when the colour faded. I overrode the colour killer and faint bands remained despite adjustment of R311. I shunted the crystal and adjusted the relevant cores. Nothing doing.

Eventually I took it back to the shop, having struggled through the house and down the garden with this heavy set. Back at the shop I again tried to hold the colour and found that it faded before it reached the decoder. I checked the i.f. panel but this seemed to be in order and correctly aligned. Time was slipping by and so was my patience. I suspected the channel selector unit which can cause signal problems but decided to return the set to the owner with the recommendation that he took it to one of the brighter boys in the neighbourhood. I ran away feeling very ashamed of myself.
Back at the ranch H.B. told me that an acquaintance, an ex-TV engineer, had taken his own life. He'd lost his wife some months earlier and had been very depressed ever since. This completely deflated me and I've yet to recover. I know it happens, but even so . . .

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868 Telex 99305

 ORDERS WD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSDLS, PLEASE ADD 25p PER CAN.

UPDATING COURSESHIGH PERCENTAGE OF PRACTICAL WORK INTENDED FORQUALIFIED SERVICE ENGINEERS.
VCR SERVICING
(3 WEEKS FULL TIME)
NEXT COURSE STARTS ON NOVEMBER 24th - TUITION FEE £575

MICROCOMPUTER SERVICING

(ONE WEEK FULL TIME)
NEXT COURSES START ON DEC. 15th \& 29th - TUITION FEE £250
(MSC grants available on JTS/ATS training schemes, subject to approval. If you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)
Further details from:
LONDON ELECTRONICS COLLEGE (VC Dept.) 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

Telegen-1

Rice f18.35 (Inc. VAT)
PXCEPEIONALLY LIGHT AND DURABLE
POCKEI SIZE FOR OUTSIDE SERVICE
PP3 BATTERY POWER SOURCE

* FIVE DIFFERENT TEST PATIERNS FOR

CROLOR \& NONO N OUT MATRIX
WHITE RASTER

* Horizontals * verticles
*3.5mm JACK SOCKET FOR OPTIONAL
P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuning $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ. Telegen-2
PRICE $\mathfrak{f 3 4 . 4 5 \text { (Inc. VAT) }}$

* EXCEPTIONALLY LIGHT \& DURABLE
* COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
* RED RASTER * GREEN RASTER
- BLUE RASTER

COLOUR BARS
3.5 mm JACK SOCKET FOR P.S.U.

PROVIDES UHF SIGNAL APPROX.

CHANNEL 35
Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE $\mathbf{£ 4 . 5 5}$ (Inc. VAT)
ALL ITEMS POST AND PACKING f1.44 (Inc. VAT)
All goods should be delivered within 4 working days.
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 29022
(U.K. ONLY)

Spectrum Analyser Project

Peter Richards

It's good practice to examine the spectrum of the signals being received by a customer's aerial system. In simple cases a check with a signal strength meter is sufficient. When faced with a more complicated situation however for example where there's cross-modulation, interference or poor signal-to-noise performance from an aerial amplifier - a spectrum analyser is the ideal thing to use. This article describes a way of adapting the Philips G11 chassis for use as a spectrum analyser.

The G11 was chosen for several reasons. First there are plenty of these sets that are not fit for further revenue earning use available. Secondly they are very easy to work on. And thirdly they are not too cumbersome. A monochrome receiver was not used because decent sets of this type with varicap tuners are rather rare these days.

Principles

The display is a bit unusual in that it's rotated by 90° with respect to the conventional approach: the frequency is shown vertically while signal amplitude is shown horizontally, from left to right. This was done to keep the circuitry as simple as possible.

To create the display the tube's electron beams scan the whole tube face area in the normal manner but are turned on only as required to show the presence and amplitude of the received signals (see Fig. 1). The tuner is swept through the tuning range by a field scan waveform: as this is done the a.g.c. voltage is monitored to provide an indication of received signal strength. A sawtooth waveform derived from the line output transformer is fed to a comparator stage whose other input is the a.g.c. voltage: when the instantaneous sawtooth voltage is higher than the a.g.c. voltage the screen is blanked out. The length of each horizontal line displayed is thus an indication of the signal strength at that frequency. This should be clear by referring to the block diagram shown in Fig. 2.

Preparation

It's important to give the set a good service before starting on the conversion. Since the button unit, the sound channel and the chrominance section aren't needed however these sections don't matter. A set with a poor tube will work very well as a spectrum analyser since the tube is either on or off and shades of green don't matter!

Plenty has been written about servicing the Gll in this magazine in the past so I won't go over this again. Do however replace the h.t. reservoir capacitor C4029 and the mains plug, and resolder any dry-joints.

Modifying the Chassis

The next thing to do is to reverse the scan direction (doing it this way simplifies the extra circuitry required). This is most easily done by reversing the wires to pins 3 and 4 of plug 2 B on the timebase board then rotating the scan coils through 180°. It will be necessary to readjust the purity and convergence after doing this.

There are two other things to do while there's still a picture. These are to shorten the a.g.c. time-constant by changing the value of C450 in the vision selectivity/gain can (U 400) from $10 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}(16 \mathrm{~V})$ and to bias the tuner for full gain by connecting a diode (1N4001) in parallel with $\mathrm{C} 5010(150 \mu \mathrm{~F})$, with its cathode to chassis, and give it some forward bias by connecting a $33 \mathrm{k} \Omega$ resistor from its anode to the 12 V line (tuner pins B and D). Disable the tuner a.g.c. by unsoldering pin 6 of the vision detector can (U6(0).

We can now prepare the set for the additional circuitry that's to be used with it. There are three steps here. (1) Disconnect the varicap tuning voltage from the tuner by cutting the print to pin G of the tuner. When the modifications have been completed a sweep voltage will be applied to this pin. (2) Remove the luminance delay line. All we need is an unmodulated but controllable raster. (3) Disconnect the signal feed to the sync separator by removing R2035 ($1.5 \mathrm{k} \Omega$) on the timebase panel. This ensures that both the line and field oscillators can run free without trying to lock to any fleeting glimpses of signal that may appear.

The Sawtooth Generator

The additional circuitry is shown in Fig. 3. We'll now take a detailed look at this, starting with the sawtooth generator. This consists of $\mathrm{R} 1-\mathrm{R} 4, \mathrm{Cl} / 2, \mathrm{D} 1 / 2$ and potentiometer P1. The operation of this part of the circuit is not immediately obvious, so a detailed explanation follows refer to the simplified circuit shown in Fig. 4.

D2 rectifies the -140 V line pulses from the line output transformer, producing a -140 V supply across C2. R3 is included simply to provide a discharge path at switch off. R1 and R4 provide protection by burning up in the event of either D1 or D2 going short-circuit.

D1 also conducts during the flyback line, when a 33 V pulse appears at its anode. Since the other end of C 1 is then at -140 V the total voltage developed across Cl is 173V. What happens next?
The exponential decay of voltage across a capacitor is given by the formula $V=V o \exp (-t / C R)$, where $V o$ is the voltage at time $t=0$. To see what happens at time $t=$ $64 \mu \mathrm{sec}$ (one line scan period) we must put in some numbers. The value of \mathbb{R} is unfortunately not easy to calculate, since it consists of R2 in parallel with the series of combination of P1 and the voltage across C2/R3. We can take an approximation however by assuming that C 2 has no voltage across it and presents no impedance to the discharge of C1 via P1. This approximation is valid because the value of Pl is much larger than that of R 2 .

Fig. 1: A typical display, showing four group C/D channels and two group A channels.

This gives a value of $95 \mathrm{k} \Omega$ for R . Thus at time $\mathrm{t}=64 \mu \mathrm{sec}$ the voltage across C 1 is given by:

$$
\begin{aligned}
& V=(33+140) \exp \left(-64 \times 10^{-6} /\right. \\
&\left.\left(3.3 \times 10^{-9} \times 95 \times 10^{3}\right)\right) \\
&= 173 \exp (-0.204)=141 \mathrm{~V}
\end{aligned}
$$

Since the negative end of Cl is at -140 V , the voltage at the positive end has decreased from 33 V to 1 V during the $64 \mu \mathrm{sec}$ period - in a manner that's as nearly linear as makes no difference.

This sawtooth waveform is divided by approximately three by P1, so that the voltage at its slider falls from approximately 12 V to 0.33 V during one line. This reduced amplitude sawtooth is fed via R 5 to the base of the buffer transistor Tr 1 . The output at Tr l's emitter is at a lower impedance level and is subject to a downwards d.c. shift of 0.6 V due to Trl's base-emitter voltage. Diode D3 provides a further 0.6 V d.c. shift, ensuring that the voltage at the base of Tr 2 is at zero at the end of the sawtooth regardless of component tolerances etc. This zero voltage creates the base line of the display.

The Comparator

Now to the comparator transistor Tr 2 . The voltage at the emitter of this transistor is virtually constant during a line period and will be at something between zero and 6 V depending on signal strength. Thus at some point during the line period Tr 2 will turn off - this occurs when the negative-going line-frequency sawtooth at its base falls below the a.g.c. voltage.

With a strong signal the a.g.c. voltage will be high and Tr 2 will be cut off for about half the line period. With a weak signal the a.g.c. voltage will be low and as a result Tr 2 will be cut off during only the last fraction of the line period. When $\operatorname{Tr} 2$ is off $\operatorname{Tr} 3$ is on and vice versa. $\operatorname{Tr} 3$ provides the output to bias the tube via the video circuitry in the set. It's worth recalling at this point that the line scan is reversed: thus the last part of the line period, during which the tube is biased on, appears at the left of the screen. A strong signal causes long bars while a weak signal produces short bars. This should be clear from Fig. 1 and the waveforms shown in Fig. 5. Tr3's output is applied to pin 6 of the luminance/chroma can U6200.

R14, R15 and D6 are included to prevent Tr3 going into saturation, thus improving its turn-off time. When Tr3's collector voltage falls below the voltage at the junction of R14/15 D6 conducts. R14 is then the main component of Tr 3 's load resistance. The current drive at the base of Tr 3 is insufficient to saturate it with a load of 180Ω.

C3 is included to limit the circuit's frequency response, preventing any instability that might otherwise occur. It's generally better to design a circuit to have a definite upper frequency response limit rather than leaving this to stray capacitance and transistor junction capacitance.

Sweep Voltage Amplifier

Producing a sweep voltage for the tuner is very convenient with the G11 chassis since a field sawtooth waveform with an amplitude of $2-7 \mathrm{~V}$ is available at pin 10 of the TDA2600 field timebase chip. A d.c. amplifier to increase this to $0-25 \mathrm{~V}$ can be designed using very few components. Tr4, Tr5 and the associated resistors in Fig. 3

Components list

Resistors:
R1 $1.5 \Omega 0.5 \mathrm{~W}^{*}$
R2 120k 1W H.S.
R3 820 k
R4 $1.5 \Omega 0.5 \mathrm{~W}^{*}$
R5 10k
R6 100k
R7 10k
R8 3.3k
R9 220k
R10 100k
R11 27k
R12 2.2k
R13 10k
R14 180 1 W
R15 33Ω
R16 10k
R17 4•7k
All 0.5 W unless otherwise stated. Plus 33k tuner bias resistor.
*Safety resistors.

Presets:
P1 470k
P2 220k
Capacitors:
C1 3.3n 1.5kV*
C2 4 / F 300 V
C3 22p 63 V
Plus $1 \mu \mathrm{~F} 16 \mathrm{~V}$ a.g.c. decoupler. *LOPT tuning type.

Diodes:

D1 BY210
D2 BY184
D3-6 1N4148
Plus 1N4001
tuner bias.

Transistors:

Tr1-3 BC184
Tr4 BC107
Tr5 BF337
are used for this purpose.
Because we are using an emitter-follower buffer (Tr 4) to drive one output transistor (Tr 5) we can say that the effective input voltage varies from

$$
\text { Vin }=2-(2 \times \text { Vbe }) \text { to Vin }=7-(2 \times \text { Vbe }),
$$

i.e. Vin varies from 0.8 V to 5.8 V . Let's next consider Tr5's collector voltage (the supply is 33 V).

$$
\begin{aligned}
\mathrm{Vc} & =33-(\mathrm{Ic} \times \mathrm{Rl})=33-(\beta \times \mathrm{Ib} \times \mathrm{RI}) \\
& =33-((\beta \times \operatorname{Vin} \times \mathrm{RI}) / \mathrm{Rb})
\end{aligned}
$$

where Rb is the circuit value of P 2 . Since Rl has been chosen as $4.7 \mathrm{k} \Omega$, to give a low output impedance and reasonable power dissipation, we can now calculate the ratio β / Rb for Tr 5 at $\mathrm{Vin}=5.8 \mathrm{~V}, \mathrm{Vc}=0 \mathrm{~V}$ and $\mathrm{Vin}=$ $0.8 \mathrm{~V}, \mathrm{Vc}=25 \mathrm{~V}$. Very conveniently β / Rb works out at approximately 0.001 in both cases. Thus for Tr 5 Rb is approximately equal to $1,000 \times \beta$. The value of Rb can be adjusted (it's P2) to allow for transistors with different gain figures and to adjust for the exact voltage gain required to fill the screen with the segment of the u.h.f. band you want. For a typical transistor, if $\beta=100$ then Rb $=100 \mathrm{k} \Omega$, so a $220 \mathrm{k} \Omega$ preset is used.

The simplicity of this amplifier section is due to the fact that the voltage at pin 10 of the TDA2600 chip has exactly the right order of voltage swing and d.c. shift: this d.c. voltage provides the bias for $\mathrm{Tr} 4 / 5$. Designing a circuit for use with another type of set would almost certainly require a more conventional capacitance-coupled amplifier.

Construction and Setting Up

Since the component count is small I suggest that the extra circuitry is built on two tagboards. Bolt the tagboard with the sawtooth generator circuit to the chassis, next to the line scan panel. Mount the other tagboard containing the remaining components on the left, near the i.f. strip. Layout is not critical provided normal practice is followed over construction.

Fig 2: Block diagram of the spectrum analyser.

Fig. 3: The additional circuitry used.

Set P1 and P2 to their mid-positions. Remove the aerial and switch on. Adjust Pl to give a margin of white about a inch wide at the left of the screen. Turning PI towards its "carthy" end illuminates more of the screen and vice versa.

Insert an aerial and apply group A and group C/D signals (together if possible). Adjust P2 to get a good display on the screen. If P 2 is set too low the display will be cramped and vice versa. If a combined aerial signal is not available P2 can be roughly set, with an oscilloscope connected to the collector of Tr 5 , for sufficient drive to Tr 5 just to cause saturation.

The horizontal axis can be calibrated if a signal strength meter is available, but experience has shown that this isn't particularly helpful.

Use

The analyser is best used to look for faults that make the use of a signal strength meter difficult.

Cross-modulation shows up as lots of extra frequency components that "don't belong". These are usually clustered around the frequencies of interest. This can be shown to be the case theoretically by taking the Fourier series of all the distorted waves and then finding sums and differences between the frequencies present.

Poor signal-to-noise ratio will show up as a general but even excess level of signal over the whole u.h.f. band, with the wanted signals just about rising above it.


```
            AT LAST!!
        AN EX-RENTAL. WAREHOUSE OPEN IN
            * NORFOLK
        DON'T GO WEST FOR YOUR EX-RENTALS
    100's OF
    TV's ALSO VIDEOS
    5 9 ~ H A L L ~ R O A D ~
CLENCH WARTON
    KINGS LYNN
PHONE NOW!
    (0553)}76676
```

Most striking of all is the way interference shows up. especially intermittent interference. The presence of atn unwanted signal immediately draws attention to itself. especially when it comes and goes within a reasonably short time period.

When it's not doing anything else the prototype sits in the workshop fed with a combined signal from our local relay transmitter. This enables us to tell at a glance which stations are on low power or which are simply not working at all.
For the cost of a G11 which would otherwise have gone for scrap this has lurned out to be a very worthwhile conversion. Some mathematical explanations of the operation of parts of the circuitry have been included to help anyone who wishes to improve on the design or to convert a different type of set.

Fig. 4: Sawtooth generator - simplified circuit.

Fig. 5: Spectrum analyser waveforms. Note that as the direction of the line scan has been reversed screen display (e) is the mirror image of the drive (d).

50 Years of TV: the Beginnings

Pat Hawker

As a schoolboy visitor to the 1936 Radiolympia I was one of the 100,000 who filed past a curiously anonymous display of a dozen or so TV screens. They were showing the first transmissions from Alexandra Palace - the start of the public service was not due for another few weeks. I have no idea now whether I saw the Baird 240 -line or the Marconi-EMI 405-line system in operation, and we were not encouraged to linger in front of the screens. It all seemed more of a scientific curiosity than the start of what has become the world's most powerful communications medium and the livelihood of hundreds of thousands of people.

A year later, with a special Science Museum exhibition of Scophony large-screen pictures and a more interesting Radiolympia presentation, it became clear even to this west country youth that we were at the start of something even more exciting than the cinema. But with the price tags of 12 and 10 in . television receivers approaching the cost of a small car and representing many, many weeks wages few people in the 1930s had much hope of owning their own sets.

Paradoxical Beginnings

That a public service of effective television was launched by the BBC on November 2nd, 1936, ahead of the rest of the world, remains one of the more curious paradoxes of broadcasting history. That the service survived, and that by September 1939 (when it closed for the duration of World War II) it had progressed to the stage where the BBC staff of over 400 people (including some 25 programme producers) was providing, at a revenue cost of some $£ 400,000$ a year, daily programmes for about 20,000 receivers in London and the Home Counties, is equally remarkable.

For television had many powerful "enemies". These included the BBC's top people at Broadcasting House, who remained far more interested in "the wireless"; much of the radio manufacturing industry for much the same reasons; and the cinema industry which by and large successfully prevented the showing of cinema films on TV. In addition the public had become disillusioned by the press stories about TV being just around the corner, and by the lamentable failure of Baird's low-definition mechanical system which provided experimental transmissions during the early thirties. Many people still believed that just one more advance would enable them to receive pictures via a simple low-cost add-on unit attached to their radio sets. There was also a certain apathy about the service from Ally Pally, limited as it was to a few hours a day.

Slow Start

During the eighteen months following the start of the service in 1936 fewer than 2,000 sets were sold. It was not until 1938 that monthly sales (some 1,800) began to be even a trickle. There were in fact several scares during 1937 and early 1938 that the BBC was considering closing down the service altogether, as it had done Baird's 30-line
service in 1934. The basis of these rumours may have been the known indifference of Sir John Reith, later Lord Reith, the BBC's first director-general, to TV. But Reith left the BBC in June 1938 and was succeeded by F.W. Ogilvie, who promptly installed a TV set in his Hampstead home and showed a keen interest in the fledgling but now expanding service.

The Early Thirties

How did it come about that the UK became the pioneer of "high-definition TV", a term then applied to 180 lines and above?

In the early thirties, due in part to the attempts by the Baird company to convince the public that its crude, dim, unsteady 30-line transmissions on the medium waves provided watchable pictures (true only for dedicated enthusiasts, not for the public at large), the UK fell well behind Germany and the renewed efforts of Dr. Zworykin (now with RCA) to develop a practical iconoscope electronic camera.

Baird's efforts did however have an important effect. They persuaded major firms such as Marconi, EMI and Cossor to initiate research, at first on better mechanical systems, then on electronic systems - despite the limitations of the cathode-ray tubes of the period. In about 1932 EMI sought to interest the BBC in its behind-the-scenes work. The BBC was interested, but was seeking to end its "exclusive" agreement with the Baird company at the earliest possible date.

During the ensuing row Logie Baird lost control of his companies to the Ostrer family, cinema magnates who already controlled Bush Radio. The new management installed Captain West, formerly in charge of BBC research, as technical manager. Baird himself was largely relegated to an experimental laboratory detached from the Crystal Palace laboratories where work was started on a mechanical/electronic 240 -line system for v.h.f. (then usually termed "ultra short waves"). This drew considerably on the work being carried out by the Fernsch company in Germany on a 180 -line system. In pre-Hitler days Fernseh was closely linked with the Baird company, which was one of its founder members.

With the Baird company successfully blocking the trial of EMI equipment by the BBC, the Baldwin government was persuaded to set up a "Television Committee" in May 1934. This was charged with considering "the development of television and advising the Post-Master General on the relative merits of the several systems and on the conditions under which any public service of Television could be provided". In addition to witnessing demonstrations of the various British mechanical and electronic systems members of the committee visited Germany and the USA to discover the state of the art in those countries.

The committee published its report on January 31st, 1935. It urged the early establishment of a public television service with the definition "not inferior to 240 lines, 25 pictures a second" to be run by the BBC, with the object of serving about 50 per cent of the population via ten v.h.f. transmitters, initially from a London station

An early camera dolly in use at Alexandra Palace. There were only two studios at Ally Pally and the BBC had to concentrate on programme material that could be televised inexpensively - mainly various forms of "cabaret".
using alternately the Baird and Marconi-EMI systems. It was estimated that the cost of setting up and running this service in the period to the end of 1936 would be about $£ 180,000$), all of which would come from the existing ten shilling (50 p) wireless licence.

EMI's Triumph

That brilliant engincer Alan Blumlein, working at EMI, had initally developed a 243 -line interlaced system to compete with the Baird $24(0$-line sequential system. An odd number of lines is essential for an interlaced system and 243 was a convenient number, permitting the use of divide-by-three multivibrators: 243×50 represents the line frequency. Divide the line frequency using five divide-by-three multivibrators and you get the field frequency of 50 Hz which can be locked to the mains frequency.

To steal a march on the Baird company - or perhaps just from curiosity - Blumlein decided to try an even higher definition. The casiest way was to change one divide-by-three stage into a divide-by-five arrangement. The resultant $3 \times 3 \times 3 \times 3 \times 5$ provides a 405 -line system. He persuaded (Sir) Isaac Shoenberg, head of the EMI team, to take the brave decision to write the higher figure of 405 lines into the EMI specification as a 50 -field interlaced system. The Blumlein waveform, with its positive going video modulation and negative-going sync pulses, remained in use in the UK until January 1985!

The acceptance by the BBC of both the Baird 240-line and EMI 405-line systems was not popular with the industry. In practice however the Baird system remained in use for only a few weeks. What really won the day for the 405 -line system was the sequential system's greater flicker and the convenience of the electronic camera using the Emitron tube. This had been developed at Hayes by J.D. McGee, independently of RCA's work on the similar iconoscope though in its final form drawing on some of the American work - RCA had a minority share in EMI, and there was a patent-sharing scheme between the two firms. The Baird company had over several years made great play of EMI's American connections whilst saying little about its own link with the German Fernseh company. In an agreement between EMI and Marconi the

Chelmsford company became responsible for the development of the v.h.f. transmitters and aerials.

A Political Decision

It's clear however that Britain's early start of a public TV service was not primarily due to a UK technological lead. Indeed at the time when the Television Committee recommended an early start few of the major elements of either the 240 -line or the 405 -line system had been fully developed, nor had much work been done on receivers. It was instead a political decision, and there are those who believe that the government was influenced by the urgent need to mass-produce more robust cathode-ray tubes and v.h.f. valves and components suitable for the secret work that had already started on radar. In the event the familiarity that all sides of the industry achieved in the use and maintenance of timebases, pulse techniques and the like certainly served the UK well during the war.

The Pre-war Period

Unfortunately the pre-war TV programmes failed, with a few exceptions, to appcal much to the public. As one commentator at the time put it: "The trouble is not with television; it is the comparison with the cinema. The cinema can provide programmes of a standard that television can never hope to attain, even with an army of producers." Remember that there was no way of recording programmes in advance, except on film; that cinema films could not be shown on television; that outside broadcasts of major events were rare; and that there was no television news. Broadcasting hours increased only gradually. Much of the time was devoted to various forms of "cabaret" which could be put on cheaply. There were only two studios at Ally Pally and initially less than a hundred people worked there.

The receiver industry made desperate attempts to get prices down. Picture sizes shrank dramatically when models with five-inch c.r.t.s were introduced: some sets had no sound channel and were intended for use with a separate radio receiver. But the pre-war receivers employed valve circuitry that was destined to remain familiar for many years. The rather dim pictures were due to the use of e.h.t. voltages of around 4 kV , provided by potentially lethal mains transformer arrangements - though flybacke.h.t. was a pre-war development by Blumlein, first taken up and used in the USA after the war. Philips had developed a projection tube with a 25 kV unit before the war: it gave large, flat pictures but was never very popular with viewers since one needed to sit in semi-darkness.

Closedown

From an initial total of only some 300 sets in 1936 the number of viewers increased gradually until the time when the service was abruptly closed on September Ist, 1939 finishing for the duration of the war with a Disney cartoon. By that time some 20,000 sets were in use. The sound transmitter at Ally Pally later fulfilled a wartime role in "bending" German air-navigational beams. Many TV engineers soon found themselves working on radar.

Yes, TV was a British "first". A brave effort that we can recall with pride. But let's not kid ourselves that the entire pre-war service had as much impact on the general public as a single Greta Garbo film in that heyday of the cinema!

An Active Deflector System

Paul Goodwin

There continue to be many homes in the UK without TV, not always by choice. Despite the extensive transmitter network many small communitics are without a service. The BBC and the IBA continue to build relay stations, but there's a limit to what they can provide - set by the cost per viewer reached. The situation has become worse with the closedown of the v.h.f. network and has been studied by a City University in London group. This article describes some of their work.

The simplest approach to providing a service for a small, isolated community is to rebroadcast the TV signal with or without a change of frequency. The four channels that can be picked up at a suitable receiving site could be frequency shifted en block to another position in the spectrum or shifted individually. The drawback is that the frequency processing equipment required is likely to be relatively expensive, though the approach does have the advantage of reduction in the possibility of interference with other TV sets. This approach also requires approval from the appropriate authorities. Rebroadcasting on the original channels poses the least technical problems and is inexpensive. The main technical problem is to avoid feedback between the transmitting and receiving parts of the system.

To put theory into practice we set out to design and install a TV enhancement system to provide better reception for a small community. The first problem was to find a community in need of such help. Both the BBC and the IBA keep records of people who have complained of poor reception, and with the help of the BBC Engineering Department we prepared a short list of likely locations. People being people, some of those we approached initially didn't seem to want to co-operate in the exercise. We struck lucky with our third attempt, a valley (Kilcott) in Gloucestershire.
Armed with a signal strength meter, we set off to investigate the levels of signal from the Mendip transmitter available within the confines of the valley. As predicted these were very low. The next step was to find a point with adequate signal as close to the valley as possible. Several were soon identified.
An initial approach to the eleven families resident in the valley went well. It seems that a common problem with such ideas is to get the community to agree to spend money and co-operate with one another. In this case it was agreed with the community that on completion of the scheme each participant would contribute financially to paying back the expenses incurred by the University

Fig. 1: Block diagram of the system. The receiving and transmission equipment is pole mounted.
group. The initial estimated cost was $£ 1,000$ for the equipment, with labour being given free.

The problems to be tackled can be summarised as follows: (1) overall design of the system, (2) design of the active deflector system, (3) arranging for a mains power supply and (4) obtaining planning permission.

Item (1) involves the following: (a) finding a site that provides a good strong signal, (b) finding a suitable transmission site that's shielded from the receiving site to avoid feedback, and (c) deciding on the power supply requirements.
The first step is to find a good location for the receiving aerial. The transmission site had to be in sight of all the dwellings to be served by the system: it ended up some 200 m from the receiving site, with high ground between to provide the necessary r.f. isolation. The equipment can be powered from either an a.c. or a d.c. supply. A combination of the two types of supply was used, the d.c. required being derived from the a.c. source.

Equipment

Design of the active deflector system is best tackled by considering first what equipment is available commercially, then designing the final system around a suitable choice. A number of companies manufacture cable TV distribution products and a lot of this can be used in an active deflector system.

Fig. 1 shows the final system. A bandpass filter is used at the input to remove unwanted signals from the Wenvoe transmitter, passing the wanted signals from the Mendip transmitter. This prevents retransmission of signals other than those in the required band, minimising the chance of interference to existing services. The following amplifier, a Wolsey Countryman, boosts the received signals to a level suitable for feeding via a long length of coaxial cable to the transmitting site. As a guide, the picture displayed by a receiver connected to the end of the cable should be noise free. If this is not the case the active deflection transmitter will not have an adequate input.

The purpose of the equaliser is to provide matched outputs on all four channels so that the transmitting aerial gives a uniform output. A Wolsey Amethyst amplifier provides the system's transmission power, boosting the signal to a suitable level to drive the Jaybeam transmitting aerial.

A normal domestic TV aerial can be used for reception, but for transmission as high a quality as possible aerial should be used. In choosing the transmitting aerial the extent of the area to be covered has to be considered: the aerial must provide the required beamwidth. If a very wide beamwidth is required it may be necessay to use more than one aerial. The beamwidth should not be wider than necessary

The greatest distance to be covered was $1,800 \mathrm{~m}$, but the receiving sites were very nearly in a straight line. Each domestic site was equipped with a normal, high-gain aerial and a high-power preamplifier.
The results obtained at all the domestic sites were encouraging. After initial tests it was up to the individual householders to install suitable receiving equipment - this
work was undertaken by a local dealer. Because of the narrow transmission beamwidth, receiving aerial alignment was found to be more critical than for normal TV reception.

Mains power supply arrangements ended up as a compromise between cost and versatility. A 240 V a.c. mains supply is taken to the transmission site, where most of the equipment is located. A discrete a.c. to d.c. power unit provides a d.c. output which is fed to the receiving site via the coaxial cable.

Receiving Aerial Alignment

Aligning the receiving aerial for maximum signal was more of a logistical than a technical problem. Because of the limited funds available all the test equipment had been borrowed from the university and was mains powered. Thus some members of the group aligned the aerial at the receiving site while others monitored the results at the transmitting site. Communication between the groups was by two-way amateur radio transceivers working at 144 MHz . Without these or an alternative means of communication installation of the system would have been virtually impossible, especially testing the system and positioning the transmitting aerial with its narrow beamwidth. The two groups were licensed to use the transceivers: if CB radio is used normal conditions on owners and users apply.

Legal Aspects

Planning permission and wayleave agreements should be investigated before any financial commitment is made or any technical details are finalised. It's quite likely that the equipment will be installed on the land of someone who doesn't benefit from the system. The receiving aerial has to be erected in an area of good signal strength, so anyone living there will be receiving satisfactory TV signals. Participants in the scheme will therefore have to convince the landowner of the need for the installation and the passage of the cables across his land. A wayleave agreement is necessary where cables pass across other party's land.

Provision of the electricity by the Area Board will be subject to the same provisions though the legalities will this time almost certainly be looked after by the Board.

Planning permission has to be obtained from the local council and can be a frustrating business. The plans for the system described here took quite a few months to gain final approval: they had to be submitted several times with minor changes each time.

Before installing the system a provisional licence has to be obtained from the Home Office. This allows test and development but doesn't cover the operation of the system. An operational licence will be granted only after the system has been tested by the appropriate authority to check that it doesn't produce spurious signals that will cause interference to others. The approval procedure follows the application for an operational licence.

Acknowledgments are due to the residents of Kilcott for their support in getting the scheme off the ground, to Prof. A.J. Ellison of The City University (London) for his support of the project, to Tony Newman of The City University (London) for his help, to the BBC and the IBA for their technical advice, and to the members of the study group - Pete Knock, Steve Parker, Simon Watkins, Ken Rix, Martin Hawkins, Gary Morton, Barry Gibb, John Victor and Finbar Matthews.

next month in

TELEOTSTON

- SERVICING HTACHI VT8000 SERIES VCRs

The Hitachi VT8000 series comprises the VT8000, VT8300, VT8500 and $\sqrt{2}$ (8700. They were amongst the first "electronic" type VHS machines to be sold in the UK and were aiso distributed by Granada. Derek Snelling reports on his experiences with this rance of VCRs.

- LOW-COST TELETEXT DECODER PROJECT

The aim of this project is to provide a simple, compact, low-cost, "no-frills" set-top teletext desoder that can be buit for around $£ 50$. It uses the Mullard VM6101 teletext decoder module which is reacily available fron component dealers. To simplify matters the domestic VCR is used as the tuner to provide a video signal for decoding. The decoded teletex: is then fed to a u.h.f. modulator to provide a signal for feeding to the aerial socket of a TV set. The rest of the project consists of a microcontroller chip based system to drive the decoder board.

- VCR FAULT ANALYSIS

Steve Beeching starts a new column in which trickier VCR faslts vill be analysed in greater depth.

- WORD PROCESSING

In cther words writing by TV! The new way of going about preparing letters, reports etc. Vivian Capel explains exactly what a word processor is and can do, with the aim of enabling you to assess whether one would be of help in your business or other activities.

- INTERFERENCE TO VCRs

From time to t me cases of VCR malfunctioning due to interference are reported. The symptoms can be pattern ng, loss of servo lock or breakthrough on sound. J. LeJeune on sources of interference, tests to make and ways of overcoming the problem.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Ferguson's Monochrome Monitors

J. LeJeune

The MM0 series of monochrome monitors is a relatively new product from Thorn EMI Ferguson. At a superficial glance one might assume that it uses a stripped-down TV chassis, but this would be a totally erroneous impression. Closer inspection reveals a careful and ingenious design that provides a more than adequate specification. In fact these monitors are purpose built and feature dynamic focusing, a 25 MHz video bandwidth, picture geometry better than two per cent, an 80 characters per line resolution, $50 / 60 \mathrm{~Hz}$ field timebase operation with automatic height adjustment between standards, and flywheel line sync. The range of 12 in . $(29 \mathrm{~cm})$ screen monitors is available with four different types of screen as follows:
MM02: Medium persistence P31 green phosphor.
MM06: Medium to long persistence LM amber phosphor. MM07: Medium to long persistence P39 green/yellow phosphor.
MM08: Standard white screen.
The plastic cabinet contains two PCBs plus, of course, the c.r.t. The main PCB is mounted vertically to the left of the c.r.t. when viewed from the rear of the set. It contains the power supply, deflection and signal processing stages. A smatler PCB incorporates the c.r.t. socket plus the video amplifier and output stages. There are only two user controls, contrast and brightness - the power on-off switch is combined with the brightness control.

Regulated Power Supply

Fig. 1 shows the power supply circuit. Mains isolation is provided by a double-wound transformer which is protected by a thermal cut-out. This disconnects the primary winding under fault conditions. The secondary winding is protected by a 2A fuse. The single-pole on-off switch is in series with the output from the bridge rectifier which produces about 16.5 V across its reservoir capacitor C31.

The following regulator circuit is a conventional series type which uses a TIP42 pnp transistor (TR11) as the series element. Note that the regulated output is a negative one, -12 V with respect to chassis. This approach seems to have been adopted to simplify the video and sync processing arrangements. A green LED connected across the supply and mounted on the front panel gives an indication that the monitor is operative.

The use of a negative 12 V rail makes some of the

Fig. 1: The regulated power supply circuit.
circuitry look a bit puzzling at first glance - for example the d.c. supply to the line output transistor is applied to its emitter. Additional positive supplies are provided by the line output transformer in the usual manner. The 15 V boost supply is also used for some of the video and sync circuits. A 60 V rail is used by the field output stage and the video output transistor (the c.r.t.'s grid is biased at -70 V). There are also 400 V and -245 V supplies associated with the tube's first anode, focus and brightness control requirements, and of course the e.h.t. (12 kV).

Input Signal Processing

The MM0 series will accept a composite 1 V peak-topeak video signal or a 5 V p-p TTL-sourced signal with composite or separate sync pulses of either polarity. The composite video input signal is expected to be positivegoing.

The video/sync inputs are applied to the monitor via a 6-pin DIN socket. Fig. 2 shows the associated circuitry. Pin 5 of the socket is returned to chassis via an 82Ω resistor: this can be used to terminate the input line and also allows the monitor to be used in a rudimentary "loopthrough" arrangement when more than one VDU is to be driven from the same video source.

Composite video arriving at pin 4 is limited by zener diode D4 and then a.c. coupled via C1 to the base of the emitter-follower TR1. The signal developed across its emitter load resistor R 4 is coupled to the emitter of the following common-base transistor TR2 via the contrast control RV5 and R6. Pin 6 of SK1 is used for TTL-level video, which is limited by D9 and fed directly to the emitter of TR2 via R1. TR2's common-base configuration provides a low input impedance. With a 1 V composite video input, operation of the contrast control varies the division ratio of the chain RV5/R6/R9. With a TTL input rather less control is available - less control is required. The division ratio this time is provided by R1, R6 and RV5 to the low impedance of TR1's emitter which virtually earths the bottom end of the divider chain. The amplified video appearing at the collector of TR2 is buffered by TR3 and coupled to the c.r.t. base board via R 15 and C2, with TR4 acting as a black-level clamp. The main purpose of TR1/2/3 and the associated circuitry can therefore be said to consist of adjusting the input to provide a level suitable for feeding to the main video amplifier on the c.r.t. base board.

The circuitry in the lower part of Fig. 2 is used to provide a sync pulse input for pin 5 of the TDA2579 timebase generator chip. The negative-going sync pulse input for this chip is developed across R25.

TR6 is used to provide clean sync pulses when a composite video signal is applied to pin 4 of SK1. With no input at its emitter (via D28) TR6 is forward biased via R23. The time-constant of C1 and R21 is large and results in TR6 being shut off by D28 when a negative-going sync pulse is present. As a result a clean negative-going sync pulse of approximately 1 V p-p is developed across R25. The design of the circuit allows for wide tolerances in video input levels.

Pin 1 of SKl is intended for line or composite sync

Fig. 2: The video and sync processing circuitry.

Fig. 3: The video amplifier and beam limiter circuits.
signals and pin 2 for a field sync pulse input but either pin will accept positive- or negative-going composite, field or line sync pulse inputs. As before 5.6 V zener diodes provide input limiting. TR5 operates in a similar manner to TR6, being forward biased by R22 in the absence of a sync pulse input. Negative-going input sync pulses are routed to the emitter of TR5 via D24 and/or D26. Positive-going input sync pulses are routed to TR5's base via D25 and/or D27. D2 and D3 provide d.c. restoration following a.c. coupling via C5 and C6. Input sync pulses switch off TR5 to produce clean pulses across R25.

CRT Base Panel Circuitry

Fig. 3 shows the video amplifier/output circuit mounted on the c.r.t. base panel - mounting these circuits on the base panel ensures very short connection paths to the c.r.t., minimising the stray inductance and capacitance effects that can degrade the frequency response. The input from TR3 is fed to the base of the emitter-follower TR101 which drives the cascode output pair TR102/3. Use of a cascode output stage gives a high gain/bandwidth product. Load resistor R101 has a comparatively low value and the inclusion of the peaking coil L101 sharpens the transient response to ensure crisp definition. The amplifier has a bandwidth of 25 MHz with rise and fall

TV LINE OUTPUT TRANSFORMERS

times of under 20 nsec .
Beam limiting and c.r.t. grid flyback blanking circuits are also mounted on the c.r.t. base panel. With low signal voltages extra flyback blanking is applied to the video amplifier via D102. The beam limiter circuit comprises D104, TR105, C108, R118 and R119. TR105 acts as a current source for the c.r.t.'s cathode, the close-tolerance resistor R119 setting the maximum current level. If this level is exceeded D104 becomes reverse biased and the voltage at the c.r.t.'s cathode moves positively, thus reducing the beam current.

Timebase Generator Chip

As previously mentioned, a TDA2579 chip takes care of the sync and timebase generator functions. This sophisticated device processes the incoming sync signals, generates and synchronises the line and field drive waveforms, and provides the sandcastle pulse used for blanking and black-levell clamping. Field lock at 50 or 60 Hz is automatic, the tolerance of the system being wide enough to handle both field frequencies. Two phaselocked loops operate in the line section. One locks the line oscillator to the incoming sync pulses, the other stabilising the horizontal position of the display (line phase) by comparing the timing of the line flyback and line drive pulses. Adjustment of the line drive timing is achieved by pulse-width modulation within the i.c.

Field Output Stage

The field output stage circuit is shown in Fig. 4. Transistor TR17 is driven by pin 1 of the TDA2579 chip
via R59. It acts as a class A amplifier, loaded by R65, with a positive-going sawtooth drive at its base. The scan coils are driven via R68 and D20, with C43 providing a.c. coupling. Emitter-follower TR18 is used to provide a lowimpedance charging path for C43 during the flyback. The basic circuit operation is as follows: C43 is discharged via the scan coils, D20, R68 and TR17 during the forward scan, being quickly charged via the scan coils, TR18 and R69 from the 15 V rail to produce the flyback. R71 is connected in series with C43 to produce for feedback purposes a signal proportional to scan current flow. The linearity control RV74 is connected across R71, which also provides height feedback via RV75. D.C. feedback via R 72 sets the mid-point voltage of the output stage. The waveform developed at the junction of R33 and R32 is used as the field-frequency drive to the dynamic focus circuit.

Line Timebase

The line drive output appears at pin 11 of the TDA2579 chip. Fig. 5 shows the following circuitry - the line driver and output stages. After limiting by D22 the line drive output from the TDA2579 chip is a.c. coupled to the base of the line driver transistor TR20 by C46. This transistor is in turn a.c. coupled by C 47 to the base of the Darlington line output transistor TR21 (BU806) which also incorporates a shunt efficiency diode.

The line output stage itself is conventional, but note that the -12 V supply from the regulator is applied to emitters of TR20 and TR21. D8 is the boost diode which charges C14 to provide a 15 V supply, with smoothing by R36 and C3. TR21's supply is in effect 27 V since it's connected across the 15 V and -12 V rails. Most of the apparent complexity in the output stage is due to the various supplies it produces. D11 charges Cl 5 to provide a 60 V line. The e.h.t. rectifier D10 is integral with the transformer - this ensures reliability and freedom from corona. D7 charges C13 to 400 V while D6 charges C12 to -245 V . The focus, brightness control and first anode voltages are obtained from the resistors connected across these two supplies. This wide range voltage source permits a common chassis to be used to drive the various types of c.r.t. employed in the MM0 range.

The only unusual feature of the line output stage is the winding between pins 3 and 7 of the transformer and diode D12. This circuit is incorporated to eliminate

Fig. 4: The field output stage circuit.

Fig. 5: The line driver, line output and dynamic focusing drive circuits.
kinking of the scan due to distortion introduced by transition delay between the conduction of the line output transistor and the efficiency diode. D12 is in effect a second efficiency diode whose conduction period is greater because of the inductance in series with it.

Dynamic Focusing

Dynamic focusing is employed to take full advantage of the video amplifier's 25 MHz bandwidth. It ensures that the diameter of the scanning spot is maintained over the whole screen area. The dynamic focus drive transistors TR9/10 are fed with a field-frequency signal from the junction of R33/32 and a line-frequency signal taken from the junction of the line scan coils and the coupling capacitor C49. Their output is coupled to the tube's focus electrode by C11. The focus voltage is thus modulated at both line and field frequency, preserving sharp focus over the entire screen area. No adjustments are required in the circuit.

In Conclusion

All the c.r.t.s used are of the 90° narrow-neck type. With an average consumption of only 30 W and a weight of 12 lb the MM0 series of monitors represent an interesting diversification by Ferguson into the computer and security market. Servicing and adjustment of these monitors should present no problems for the TV service engineer while a conservatively-rated design should ensure long-term reliability.

TV Fault Finding

Reports from Larry Ingram, Hugh Allison, Alan Shaw, Philip Blundell, Eng. Tech., J. R. Armagh and Hugh MacMullen

Hitachi NP8CQ Chassis

The raster was barely visible, with no signal content. Touching the c.r.t. base restored the picture so the base panel was removed, the pins tightened, joints checked etc. then refitted. It was now impossible to get a raster except for a very dim effort at maximum brightness and contrast. When the main chassis was pulled back to check the interconnecting leads we found that a normal raster could be obtained by tapping the vertical video panel. This was checked for dry-joints etc. and we next found that the raster was on until the panel was disturbed when it went off. Surely we must be getting warm? The panel was again checked and it then seemed to be even more difficult to get the raster to go, though the set was obviously still faulty. Connecting the scope or meter to the video panel was usually enough to clear the fault.

After much effort we realised that the line pulse feed to the video panel disappeared when the fault came on. The fault flatly refused to put in an appearance with the set in the service position, i.e. hung up by its plastic strap. It was no longer responsive to flexing or tapping and would appear only when it was good and ready. The line pulse feed is not in the form of copper print but consists of a sleeved lead from the line output panel to the rear corner of the main panel, at D711, then on to the video panel via connection B3. Resoldering this lead's joints cleared the fault - even though they appeared to be sound.

ITT Digi-3 Chassis

l've had quite a few of these sets through the workshop recently, all of them failing to tune in a station due to the frequency divider chip in the CMR can being faulty. When the i.c. has been replaced most of the sets have had sound but no picture, just a blank raster. Normal service is resumed when the contrast is turned up.
P.B.

Ferguson TX100 Chassis

Issue no. 26 of Ferguson Feedback has an interesting tip. Don't fit a TDA4600 chopper control chip in this chassis in place of a TDA4600-2. If you do the set will trip when switched to standby. The TDA4600-2 will work in earlier Ferguson chassis without problems.
P.B.

GEC C2290

Tripping was the problem with this set - the HM7103 voltage sensing unit was convinced that there was a fault, but where? Flexing the panel cured the fault and it turned out that there was a crack in the print by pin 1 of the line output transformer.
P.B.

GEC C2290

For hum on the sound and a ripple on the picture check for dry-joints at C1603. It's on the sub-board that stands up at the left-hand side.
P.B.

Grundig GSC100 Chassis

Reduced height with foldover at the centre of the screen can be a tricky fault on these sets. First check the 18.5 V supply (+D) which will probably be low. If so check R626
(3.3@), C628 ($2,200 \mu \mathrm{~F}$) etc. - note that in one case I had the trouble was due to the fuse in this supply, Si627. If the + D supply is correct check the voltage at pin C of the line output iransformer - this should be 49 V . If this voltage is low the excess e.h.t. protection circuit is operating and this avenue should be explored.
P.B.

ITT CVC1200 Series Chassis

Excessive height was the problem with one of these sets but an initial check on the supplies and the height control circuit proved fruitless. The voltages around the TDA2653A field timebase chip were correct but it was noticed that there was no voltage drop across R417. The associated resistor ($\mathrm{R} 416,68 \mathrm{k} \Omega$) in this potential divider was open-circuit.
P.B.

Ferguson Stereo TX9 and TX10

We've come across several of these sets with a faint whistle on sound. In each case C1104 ($1 \mu \mathrm{~F}$) on panel PC1536 was missing and fitting it cured the fault. In one case the capacitor had been fitted but a wire link connecting C1104 to earth was missing.
A.S.

Ferguson TX90 Chassis

As with all portables, it's worth making a visual inspection of the PCB for cracks, particularly around heavy components such as the line output transformer. The majority of dead TX90s seem to be due to rough handling by their owners, resulting in hairline cracks at the lower edge of the panel.
A.S.

Ferguson 9901 Chassis

This up-dated version of the 9000 chassis can suffer from teletext and flyback lines at the top of the picture when the e.h.t. is set correctly. Increasing the value of R431 from 180Ω to about 390Ω will provide a cure. This resistor is connected in series with W402 in the field oscillator circuit.
A.S.

Hitachi NP8CO Chassis

There was weak colour on the lower part of the test card, but only on channels 52 and 56 - the lower channels were all right. When a red raster at the channel 52 frequency was fed in a static hum bar was seen to be present. It seemed to affect the higher varicap tuning voltages only. The culprit turned out to be the 54 V supply reservoir capacitor C910 $(22 \mu \mathrm{~F})$.
J.R.A.

Vega 342

Several of these small Russian portables have come my way with the following fault: either the field hold control will not pull in a locked picture and/or it will lock at half field frequency. It's very rare for the value of a capacitor to increase, but that's what happens here. C 2 on the timebase board, the larger of the two boards at the bottom, changes value from $0.1 \mu \mathrm{~F}$ (the marking is ac-
tually in Russian) to about $0 \cdot 2 \mu \mathrm{~F}$. As a quick check it's possible to restore lock by decreasing the value of the timing resistor, though the linearity suffers.
H.A.

Panasonic TC2203 (U1 Chassis)

This set had an appetite for field output transistors, with the safety resistor R 442 going open-circuit. The fault would occur when the set had been running for about an hour and was caused by the output stage bias diode D403 going short-circuit when hot. It immediately recovered to become a diode once more when the set was switched off.
H. МасМ.

Philips G8 Chassis

We've had problems with two of these sets recently. The first had no line output and checking back we found that the voltage at the collector of the BC147 trigger amplifier
transistor $\operatorname{Tr} 5514$ was over 100 V instead of 2.7 V . The cause was an invisible dry-joint at this point (plenty of solder). The second set had the combined i.f./decoder panel, the problem being uncontrollable brightness. R3215 (1.8 MS) on the combined panel can go opencircuit to cause this fault but was o.k. on this occasion. We eventually traced the cause to D5544 (OA91) in the beam limiter circuit on the line scan unit. The diode read $800 \Omega \Omega$ both ways, rendering the beam limiting inoperative.
H.MacM.

Philips K30 Chassis

The fault with this set was no sound after about half an hour. This was eventually traced to an open-circuit winding on the chopper transformer - at pins 3 and 4 . When the transformer was removed the never soldered Lumex wire (self-fluxing) was exposed.
H.MacM.

VCR Clinic

The Beeching Report

Looking back over our job sheets for the last few months I see that certain repairs crop up every so often on a regular basis. Most VCR faults are random however. Here's a selection of typical faults dealt with over the past month.

Most common faults are due to mechanical wear. Lots of Hitachi VT11 idler pulleys and some VT33s with the same problem. In the Sanyo VTC5000 series replace the idlers and change the value of the resistor (R3049) in series with the reel motor drive from $2 \cdot 2 \Omega$ to 1Ω - it stands up on the top left-hand corner of the PCB, beneath a heatsink. And don't forget the AL switch. It's a good idea to stock some Sharp idler pulleys as they fit Saishos and Amstrads - these need replacement every eighteen months.

I still get Mitsubishi machines with unsecured tape guides although it's not difficult to reset them - unless it's the HS700 portable. One HS700 gave the same symptoms although the fault was a broken PG delay adjuster, probably due to the side panel being hit.

A couple of Grundig VS200s produced a surprise. They would suddenly stop during play and for no apparent reason unthread. The problem was traced to the pinch roller bearings which were seizing. Lubrication provided a temporary cure but they must be replaced.

An old JVC HR4100 portable kept blowing fuses. The power supply bridge rectifier was open-circuit, as was one of the two charge regulators and a 15 V zener diode across the charge output. This diode is not always shown on the circuit diagram. After the power unit had been repaired fuses still blew due to a short-circuit on the 12 V line within the machine. This was eventually traced to the operations panel where some idiot had interchanged connectors $51 / 53$ and $31 / 33$, with the result that the tape counter put a short on the power supply at 0000 .

An Hitachi VT64 would go into a lock-out condition when a cassette had been inserted and then removed. Unless the top cover was taken off that is. It would then function normally. The start sensor optotransistor was only just turning fully on from the cassette lamp. Replacing the transistor put matters right.

Reports from Steve Beeching, T. Eng., Paul Hardy, Philip Blundell, Eng. Tech., Andrew Benham, Steve Illidge, Les Grogan, Richard Roscoe and William G. Lockitt, Eng. Tech.

An NEC PVC746 would go into rewind when powered. The cause was a low level end sensor oscillator.

If a Grundig VS series machine starts to thread up then stops, remove the plastic dust cover from the brake solenoid switch and give the contacts a clean. Then throw it away - not the machine, the dust cover.

Toshiba V71s are giving us problems due to erratic operation of the mode cam switches. Symptoms range from silly things to playing fast - the latter is due to the threading motor switching off before the threading sequence has been completed, with the result that the pinch roller has not contacted the capstan shaft fully. A modified cam switch is being supplied.

A Sharp VC388 had no functions at all. The power supply was being held off. It was soon spotted that Q5002, a 5 V regulator, had been running very hot and had failed. The very fine double-sided print was just holding on. A replacement also got very hot - due to the microcomputer chip 15002 failing and drawing excessive current. After replacing this chip all was well, but it seems rather shortsighted of Sharp to fit a regulator transistor on a PCB with such fine print that it suffers in the event of a failure.
If the clock in a Sanyo VTC5000 resets to zero or jumps digits after a timer recording when the machine is switched back on, decoupling capacitor C3308 has gone high-impedance. Replace it with one of a higher value, say $10 \mu \mathrm{~F}$.
S.B.

Philips VR2020

This machine would occasionally stop playing a tape. The tape would then unthread and the machine would go into what appeared to be standby, though the controls on the front wouldn't do anything - it was necessary to disconnect the mains supply for a few seconds (this resets the microcomputer i.c.). After this the machine was usable until the next failure.

After a while it became apparent that the head drum speed was varying. This was noticeable with the machine switched on in the stop mode - the audio pitch produced by the rotation of the head was varying. The voltage at pin

10 of module U280 (head servo/oscillator) was then found to be varying. As a result the d.c. conditions. in the motor drive amplifier and hence the speed of the drum motor were varying. The cause was dirty contacts in the relay associated with pin 10 of the module - there are two relays selected in accordance with machine status. Fitting a new relay restored normal operation.

I've since been told that these relays (1001 and 1002) give a fair bit of trouble. Interesting that the fault managed to inhibit all the front panel controls!
P.H.

Philips VR6460 and Clones

Creasing tapes was the complaint with this one. Sure enough when the customer's tape was played a line of bright "dropouts" was displayed. The only snag was that the same "dropouts" could be seen during a recording and on any other machines playing in the workshop at the time. The interference was coming from the head drum motor. Fitting a replacement cured the problem. P.B.

Sony SLC7

As a newcomer to Sony VCRs I found this one rather baffling. The symptoms were no sound or picture in the play, E-E or record modes, but if play and pause were selected you got E-E displayed! I started by tracing where the E-E signals had gone. There was no TU reg 12 V supply as the $\mathrm{PB}+\mathrm{DUB} 12 \mathrm{~V}$ line was not going to 0 V in the E-E mode. This latter line was traced back to the AS3 board where Q423 was found to be leaky.
P.B.

Philips VR6520/Panasonic NV370

For no cassette tray or threading motor drive check whether R1101 on the power transformer panel is opencircuit.
P.B.

Sanyo VTC9300

The fault with this machine was that the servo lost lock on playback, whether the cassette was recorded by the machine or another one. The machine's recordings played back perfectly on a Sony SLC7. This repair was a favour for a friend who didn't want to spend money on a manual ("it's eight years old, so if it needs money spent on it I'd rather buy a new one . . ."). I'd no circuit details, but Steve Beeching provided details of the servo test points in his report in the November 1983 Clinic.

The waveform at TP104, derived from the off-tape control pulses, was jittery on playack. The capstan was cleaned and lubricated but this produced no improvement - so the fault wasn't the same as Steve's! A new set of belts was fitted and every pulley was cleaned. Still no better. I was ready to admit defeat and was just filling in the form to join the Foreign Legion when an idea struck me. Thirty seconds later I had a perfectly locked servo and a machine that was good for another eight years. In case anyone else encounters this problem, start by degaussing the control head.
A.B.

Akai VS1

This machine wouldn't operate at all - even the red power-on indicator wasn't lit. A quick check revealed that the sensor lamp was open-circuit. Replacing this enabled the machine to be switched on but the front loading mechanism wouldn't take the cassette into the machine.

We turned our attention to the loading motor drive chip IC4 on the mechacon panel. The supply voltages to pins 7 and 8 were present and the voltages at pins 5 and 6 would vary slightly as the cassette was gently pushed into the machine, but there was no output to drive the motor. The problem remained when IC4 (BA6109) had been replaced. We then found that the eject motor had failed this had probably damaged IC4. When both these items had been replaced the cassette would load, but some machines don't know when to call it a day. It took new fast forward/rewind/play idlers to finish the job.
S.I.

Hitachi VT33

With this machine the cassette would load but the tape wouldn't lace. A complete cure was provided by replacing IC902 (M54543L) which combines the forward and reverse switching arrangement for the front loading motor. It's mounted on the system control board.

Sharp VC9300

Every couple of weeks or so this machine would blow the $2 \cdot 5 \mathrm{~A}$ fuse (F9001). When we had finally ruled out any mains supply problems an educated guess was called for. The 13 V rail is protected by a crowbar arrangement thyristor Q903 and zener diode D901 on the mechacon panel. Replacing these components appears to have cured the problem (touch wood).
L.G.

Toshiba V65

A brand new Toshiba V65 straight from the box made a nasty clonking noise in fast forward and rewind. On stripping down the reel drive gear train we found a tiny blob of glue or varnish stuck in the teeth of the take-up reel gearing. Luckily no damage had been done and we were able to scrape the teeth clean with one of our "Walkman special" screwdrivers.

These machines are well designed from the point of view of access but there's one problem. The main board is on the top of the machine and hinges up out of the way in a similar manner to many other VCRs. It's held down by two clips and two screws. Around one of these screws there's a crimped tag on a short lead connected to an earth line on the board. So when the board is lifted up this lead goes with it and, as we know to our cost, the floating tag can and will touch PCB tracks, causing additional problems if the machine is powered. Presumably this lead was an afterthought. Whatever the story the moral is clear: if you have to work on one of these machines with the main board raised, remove the lead or cover the tag with tape.
R.R.

Panasonic NV2000

The problem with this machine was that you couldn't tune the sound and picture in together - in addition there was no sound if a prerecorded tape was played. C4019 $(0.33 \mu \mathrm{~F})$ turned out to be open-circuit.
W.G.L.

Ferguson 3V29

The fault was no fast forward/cue and rewind/review. When stop was pressed a loop of tape was left. Circuit protector CP2 in the reel drive circuit was open-circuit. Note that in some machines a resistor (R48) is used in this position.
W.G.L.

Test Report: The Telelift

Eugene Trundle

Although the monster colour TV sets of the late sixties and early seventies are no longer with us colour TV sets with screen sizes above 50 cm can still present a transportation problem. It's dangerous to attempt to lift or carry one alone, though there seems to be little alternative in the field where the need to uplift a set and take it back for workshop attention becomes obvious only on site. Even when the need for two pairs of hands can be foreseen, i.e. in the case of delivery or collection of a large set, it's expensive and often inconvenient to raise a temporary assistant, while enlisting the help of the customer can be risky from several points of view. In snowy or rainy weather, or where stairs are involved, one or both carriers may slip, with disastrous results.

As several readers of this magazine can testify, the result of back injury sustained in attempts to lift and carry large TV sets can be permanent incapacity. At the very least there is the likelihood of hand injury and damage to the set and the customer's doorways.

The Telelift provides a solution to these problems. It was developed in Australia and extensively tested there, and is now available in the UK. Basically it consists of a pair of very strong 15 cm diameter suction pads which grip the glass faceplate of the picture tube and enable the set to be manoeuvred about on a wheeled frame broadly similar to a porter's hand truck (see accompanying photograph).

The suction pads are mounted on a strong plate which can be rotated. This plate is fixed to a vertical slider and has an automatic locking device to enable it to be locked at any height. The set is thus prevented from downwards movement and is held at any required height.

The Telelift in use.

The truck's frame and slidebars are made of squaresection steel tube. At the bottom there are tough plastic shock-absorbing wheels and fold-away arms; at the top there's a fold-down extension handle for easy operation up and down steps. The bottom section of the frame incorporates spring-loaded slides to ease stair climbing and prevent damage to carpets or stair noses.

The first step in use is to centre the suction pads on the TV screen and to flip a pair of levers to seal the pads down. The truck and set can then be laid on the floor horizontally for easy removal of any stand and to slide the set to a convenient position lower down the frame - also if necessary to rotate the set through 90° for maximum clearance through doorways. The handle and fold-out feet are next extended. After lifting the truck and TV set to the upright position they can be wheeled off to the van or wherever.

When ascending stairs the stair-climber slides remain stationary on the nose of the step as the loaded truck is pulled up. As the wheels roll over the nose of the step the slide-bars are rapidly retracted ready for the next step. When descending stairs the slides act as skids.

Evaluation

We had the use of a Telelift for several weeks, during which it had spells with field engineers and delivery men. It was deliberately given a rough time so that any weaknesses would show up - none did.
The idea of the sucker-grippers is at first sight an alarming one, and customer's reactions varied. We soon gained full confidence in the sucker action - provided you see the rear steel disc pull in to the rubber disc a perfect seal has been made. We've been told that none of over half a million sets carried to date in this way has been dropped. The suckers are designed for use with the faceplates of conventional (1R) and FST (2 R etc.) tubes and won't work with Sony Trinitron tubes - or the flat glass faceplates used on monitor-style sets (most of these can be easily moved however). We found that dirty, chipped and nicotine-stained faceplates presented no problems and that the most weighty of sets can be tackled with confidence.

The maximum lift height of $1.05 \mathrm{~m}(41.5 \mathrm{in}$.) is just adequate to raise a large set to our workbenches. The fold-out handle extension proved to be very useful for extra control and confidence in this situation. After a little bit of practice we found ourselves almost throwing the set and truck about . .

The stair-climbing feature works well. Only with large sets and very tight staircases was any trouble experienced. In such a situation even two people would have to manipulate the set carefully over banister posts and around corners. The suckers apparently work well on any smooth, flat surface so that the truck can also be used to transport white goods such as fridges and washing machines. We didn't get the opportunity to try this however, and would want to experiment first in case the very thin metal sheets used these days in the manufacture of such appliances might be distorted by the sucker action.

When folded up the truck fits easily across the back of
an average estate car. Alternatively it can be stowed in the front passenger compartment and safety-belted in. With a larger delivery van it could be clipped into heavy TerryClips high on an inside wall and out of the way.

Conclusion

If used sensibly and within the above mentioned constraints regarding sucker-pad action and screen types there's no risk that 1 can see in the use of this truck. It appears to be very strong, sturdy, well designed and constructed. The life of the plastic wheels is a bit difficult to predict (spares are available from Courier Handtrucks) but the rest of the ensemble gives me the impression that it will last for many years. Perhaps the only "lifespan" part is the 5 mm diameter elastic which springs the stair climbers, but this is commonly available.

At first sight $£ 139$ plus VAT and carriage may look like a lot of money for what could be regarded as a glorified railway porter's truck. Examination and use of the Telelift soon convince one otherwise however. I consider that it is good value for money, representing less than the trade price of one respectable colour TV set. It should repay its cost in man hours over a few months - and provide much more if you are at all accident prone. More seriously, the cost of a damaged back is incalculable and the hassle of litigation - whether between customer and company or disabled employee and firm - is immense.

I can highly recommend the Telelift to everyone involved in field servicing and the collection/delivery of TV sets. It's available from SEME Ltd., Units 2 E and 2 F , Saxby Road Industrial Estate, Melton Mowbray, Leicestershire LE13 1BS (066 465 392) or Courier Handtrucks, 59 Earl's Court Road, London W8 6EE (01 937 1996).

Long-distance Television

Roger Bunney

Sporadic E conditions were relatively active during the first half of August. Sadly there was a decline towards the end of the month. Auroras provided signals in the northern part of the UK on several days later in the month, and there was just a hint of a tropospheric lift mid-month. The composite SpE log for August 1986 is as follows:
5/8/86 TVE (Spain) chs. E2, 3, 4; TVE-2 ch. E2; RTP (Portugal) E3; RAI (Italy) IA, B; + PTT (Switzerland) E2, 3; TDF C + (Canal Plus, France) L3; TVR (Rumania) R2; TSS (USSR) R1, 2; JRT (Yugoslavia) E3; NRK (Norway) E2, 3.
6/8/86 TVP (Poland) R1; TSS R1, 2, 3; CST (Czechoslovakia) R2; NRK E2; RAI IA; JRT E3; RTP E3; TVE E2, 3, 4.

7/8/86 TSS R1; NRK E4; TVE E4.
8/8/86 TVE E2, 3; NRK E3.
9/8/86 RAI IA, B; TVE E2, 3, 4; TVE-2 E2.
10/8/86 RAI IA; ORF (Austria) E3; + PTT E2; TVE E2, 3, 4.
11/8/86 TVE E2, 3; DFF (East Germany) E4; CST R1; TVP R1; TSS R1, 2; SR (Sweden) E2, 3; NRK E2, 3, 4.
12/8/86 TVP R1, 2, 3; TSS R1, 2; SR E2, 3; DFF E4; NRK E3; DR (Denmark) E3; RAI IA.
13/8/86 TSS R1, 2, 3, 4; YLE (Finland) E3; SR E3, 4; NRK E2, 3; + PTT E3; RUV (Iceland) E3, 4; TVE E2; TVE-2 E2.
14/8/86 TSS R1, 2, 3, 4; DR E3; SR E2, 3, 4; NRK E2, 3; DFF E4; TVR R2; CST R1; ORF E2a; RAI IA, B; MTV (Hungary) R2; RUV E4.
15/8/86 SR E3; DR E4; ARD (West Germany) E4; TVE-2 E2.
16/8/86 NRK E4.
17/8/86 RAI IA; TVE E2, 3, 4; TVE-2 E2; RTP E3; TDF C+ L3.
19/8/86 SR E4; DFF E4; TVP R1; TVE E2, 3, 4.
22/8/86 SR E2; TVP R1; TSS R1, 2.
23/8/86 TVE E2.
25/8/86 CST R1; TVE E3, 4.
26/8/86 +PTT E2; RAI IB.
27/8/86 TVE E2, 3, 4; RTP E3; RAI IA, B; JRT E3; MTV R1, 2; CST R1; TVP R1; TSS R1, 2.
28/8/86 DR E3; SR E3; NRK E3.
31/8/86 TVP R1, 2.

1/9/86 TSS R1.
4/9/86 Unidentified signals on ch. R1.
The days during which Auroras produced reception in Scotland (Aberdeen) were as follows: 21st, 24th. 29th and 30th. On the first two days unidentified NRK signals were received in chs. E2 and E3. The 29th and 30th produced NRK signals in chs. E2, 3 and 4, also TSS ch. R1 on the 30th.

A small tropospheric lift was noted here on the south coast on the 11th/12th. Many French u.h.f. signals were received including TV5 on ch. 38 and TV6 on ch. 60 .

I was on holiday at Ventnor, Isle of Wight for part of the month. The location was excellent for DX-TV, being several hundred feet above sea level with a clear path to the south. Reception from France was very good - in Band III and at u.h.f. I was using the previously reviewed Tandy system L/I dual-standard receiver and the Band I/ III array described in the July column (Fig. 1 page 460) plus a ten-element add-on wideband u.h.f. array - the Antiference/Tandy TC10/W. The results obtained with both SpE and Tropospheric reception proved the wideband capability of the aerial system and in Band III the directivity was up to expectations.

My thanks to Bill Cotterill (Tipton), Tim Anderson (St. Leonards), Dave Shirley (Hastings), Cyril Willis (Downham Market), Dave Moller (Birmingham), Simon Hamer (Powys) and Iain Menzies (Aberdeen) for sending in reception reports to supplement my own loggings.

During the month I received an interesting tape showing a scrambled BBC-1 test transmission from Crystal Palace. This has been confirmed as a successful test for decoder operation - see لtater.

News Items

UK: A British Standard (BS6527) has been published defining the maximum permitted levels of r.f. radiation from electronic office and data processing equipment. These levels are $32 \mu \mathrm{~V} / \mathrm{m}$ at a distance of 30 m for class A equipment (used in an industrial/commercial environment) and $32 \mu \mathrm{~V} / \mathrm{m}$ at a distance of 3 m for class B equipment (used in a domestic environment). There's increasing concern over radiation from digital equipment - as I know from my own experience. One grey area is where industrial/office buildings are close to domestic property.

A study of the Ministry of Defence's use of the frequency spectrum, initially in the $470-3,400 \mathrm{MHz}$ band, is to be undertaken.

France: Some enthusiasts have noted recently that the "CENEX-BCH" test card identification (a network card from the Buttes Chaumont Tower in south Paris) has been changed to "CENACO ROMAINVILLE". This is a new networking centre at the Romainville Fort, Aux Lilas, one of the Paris "gateways". "Cenaco" stands for "centre national de communication".
Scandinavia: A new SR-1 (Sweden) transmitter is in operation at Visby, on ch. E39 with $1,000 \mathrm{~kW}$ e.r.p. - the Visby ch. E5 transmitter continues in use. A $1,000 \mathrm{~kW}$ e.r.p. transmitter with the identification "GULEN" is in operation in Norway, on ch. E29 - transmissions are at present intermittent.
Italy: A $300 \mathrm{~km}, 2 \mathrm{GHz}$ single-hop microwave link is now in operation between Monte Pierfadne on the mainland and Monte Soro, Sicily. It operates in parallel with the Monte Famarie-Monte Soro link to provide improved service reliability during abnormal tropospheric conditions.
Australia: Coverage of the SBS (Special Broadcasting Service) has been extended to Tasmania and Western Australia, using 300 kW e.r.p. u.h.f. transmitters fed via satellite. Network feeds at Brisbane, Canberra and Melbourne using signals from the same satellite are at present being tested. The Perth feed is received and delayed by two hours in winter and three hours in summer, via direct control from Sydney. A single administration for ABC and SBS is to take effect from January 1st next.
Tunisia: The ch. E4 transmitter at Ramada in the south operates at 40 kW e.r.p. The choice of channel was mainly to avoid interference in Libya.
Satellite TV: During late August scrambled audio/video BBC-1 transmissions from Crystal Palace ch. 26 were noted. The encryption tests at 0130 hours, using colour bars, appear to consist of superimposed sinewaves at line and field rate: the audio was digitally encrypted. The suggestion is that these tests relate to the possibility of an eventual scrambled BBC DBS service.

The ch. E34 signal currently being received in Nicosia from the south east, consisting of the Soviet first programme, is thought to originate from a military camp taking a feed from a Gorizont downlink.

Hungary has started to relay Sky Channel programmes to hotels and tourist centres. This is the first time that a commercial W. European channel has been distributed within an Eastern Bloc country - though it's not intended for local consumption.

Publications

The DX-TV newsletter Screen Europe is now in its second edition. It's perhaps the nearest thing we'll get to a

TV-DXers' club, giving news, shots of test cards, hints and tips, reviews, reception logs and so on. For more information and a sample write to Dave Shirley at 93 Alfred Road, Hastings, E. Sussex TN35 5HZ, including a 17 p stamp and a stamped s.a.e.

An error crept into the September column when it was suggested that the new edition of my DX-TV book will not be published until late 1987. Not so! Proofs have now been seen and checked and the book, entitled $A T V$ DXer's Handbook, should be available from Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF by the end of this October.

The Way We Were . . .

I was fortunate recently in obtaining some further vintage copies of Practical Television, as this magazine was known in its earlier days. Significant at this time when we are marking fifty years of high-definition TV is the fact that issue 1, volume 1 (April 1950) gave details of the Brussels Treaty Organisation (now the EBU) meeting in London when France, Luxembourg, Holland and the UK discussed the possible unification of TV standards. The pre-war standards were 405 lines (UK) and 450 lines (France). The UK announced its intention to continue with 405 lines (and did so for another 35 years!) while France decided on 819 lines. Holland rejected both these standards. At a conference in Zurich France had agreed to maintain a 405 -line capability (to assist programme exchanges) for a further ten years while signifying its intention to adopt the 819 -line standard. Other countries favoured a 625 -line standard.

The October/November 1955 issues of Practical Television featured a two-part article on DX-TV by B.L. Morley. Part 1 covered propagation (Sporadic E and tropospheric), transmission standards and receiver circuits and mentioned a 5,000 -mile DX haul between TV station PRF-3 at Sao Paula, Brazil and Halifax, Nova Scotia, also Grand Rapids, Michigan. The second part of the article provided more detail on the transmission standards then current. The French were using two systems, with 441 lines in Band I and 819 lines in Band III. The 441 -line standard had double-sideband, positive-going vision. Mention was also made of two Russian transmitters, at Leningrad and Moscow - presumably transmitting in Band I. Basic circuitry was given for a dual-standard receiver, with video and line frequency switching, apparently based mainly on government surplus R1355 receivers and RF26 and RF27 front end units. The article concluded with notes on aerial systems, suggesting a fourelement, horizontally polarised array for general use. The UK, low-definition Paris and Italian Turin transmitters

Left: Tropospheric reception of NRK (Norway) ch. E29 in Holland. Centre: The FUBK test pattern in use by NOS (Holland). Right: Albanian PM5534 test pattern received in Holland on ch. IC via SpE. Photographs courtesy Ryn Muntjewerff.
were using vertical polarisation, all other European transmitters using horizontal polarisation.

I'd be interested to hear from any readers with experience of early (pre-1960) DX-TV.

405-line Corner

I'm pleased to be able to report that our Dorset reader's request for a 405 -line signal source has been met - a Glasgow TV firm was able to oblige. R. Lord of East Grinstead, Sussex, has the following equipment looking for a good home: (1) a Model C Radar video/sync generator, working when stored and easy to service; (2) a Taylor Model 20A circuit analyser with h.f. probe - it works as a signal tracer, audio analyser, a.c./d.c. tester and low/high resistance speaker tester (!); (3) a Decca projection TV receiver less cabinet - in three units, power supply, receiver and projection. Collection would have to be arranged. We'll pass any requests on.

Fringe Electronics VHF Head Amplifiers

Most aerial amplifiers nowadays are wideband types, covering either $470-860 \mathrm{MHz}$ or $40-860 \mathrm{MHz}$. The Fringe Electronics range includes both wideband and narrowband types however. There are models covering Band I ($40-70 \mathrm{MHz}$), Band II $(88-108 \mathrm{MHz}$) and Band III (170230 MHz). I decided to try out the latest Band I and Band III amplifiers which were tested for gain, stability and their bandpass characteristics - in these days of PMR, cordless phones, radio amateurs etc., high-strength out-ofband signals can cause severe overloading, making reduced/nil gain outside the frequencies required a soughtafter characteristic.
The amplifiers have a stout, reusable, polythene mastmounting strap. Internally the amplifier board is retained by two self-tapping screws, with a very efficient coaxial cable connection arrangement that gives a wide pressure contact area for the coaxial braid. Both units operate at 12 V d.c., $8-10 \mathrm{~mA}$. On test they performed well, displaying complete stability under both terminated and unterminated input conditions. The noise figure is given as 1.9 dB - earlier models had a rather higher noise figure. No equipment was available to measure this, but subjectively the results with weak signals confirm the improvement.

The voltage gain of both units at frequencies within and outside the normal TV broadcast bands was measured. Fringe provided typical measurements at spot frequencies - of particular interest were the 144 MHz amateur band readings. For Model VHF1220-1, covering $40-70 \mathrm{MHz}$, Fringe quote a gain of 20 dB with $\pm 1 \mathrm{~dB}$ ripple, a noise figure of less than 1.9 dB , and out-of-band gain figures of 3 dB at 100 MHz and -5 dB at 144 MHz . The gain figures I obtained were as follows: $40 \mathrm{MHz} 22 \mathrm{~dB} ; 45 \mathrm{MHz} 22.5 \mathrm{~dB}$; $50 \mathrm{MHz} 23 \mathrm{~dB} ; 55 \mathrm{MHz} 23 \mathrm{~dB} ; 60 \mathrm{MHz} 22.5 \mathrm{~dB} ; 65 \mathrm{MHz}$ $21 \mathrm{~dB} ; 70 \mathrm{MHz} 17 \mathrm{~dB} ; 75 \mathrm{MHz} 15 \mathrm{~dB} ; 80 \mathrm{MHz} 13 \cdot 5 \mathrm{~dB}$; $85 \mathrm{MHz} 11 \cdot 5 \mathrm{~dB} ; 90 \mathrm{MHz} 10 \cdot 5 \mathrm{~dB} ; 95 \mathrm{MHz} 8.5 \mathrm{~dB} ; 100 \mathrm{MHz}$ $7 \mathrm{~dB} ; 105 \mathrm{MHz} 7 \mathrm{~dB} ; 110 \mathrm{MHz} 7 \mathrm{~dB}$.

The voltage gain across CCIR Band I, covering chs. E24 , was over 20 dB with a slight fall off towards the top end of ch. E4. The gain variation of 3 dB within this band was considered to be acceptable. To achieve the desired bandpass characteristic the amplifier uses a simple bandpass filter at the input and two collector tuned coils. The slow fall off at the higher end of the bandwidth is a bonus for DX-TV use, since it provides a useful degree of gain over chs. R3-5 and IC.

At last - 'A TV-DXers Handbook' the new edition by Roger Bunney has been published! Extensively revised, enlarged and completely updated from its earlier editions, with new and expanded sections covering all aspects of TV-DXing - channel allocations, transmission standards, signal propagation, aerials, amplifiers, filters, test cards, satellites and lots, lots more. The essential book for all TV-DXers, being a practical guide for the beginner and a source of reference for the established enthusiast, published by the Babani Press in October 1986 and with the stocks being despatched immediately to Aerial Techniques.
The 'TV-Bildkatalog' is the ideal companion volume, detailing test cards, captions, logos and regional maps from all the European TV networks, we are the sole UK outlet appointed by the publishers.
Our comprehensive range of aerials and equipment are unbeatable for value and technical excellence, all detailed in our 65p Catalogue. Why not send for your copy today.
'A TV-DXers Handbook' - 'hot off the press'
............ 55.95 IRIAX MTH13 Wideband Band 3 Aerial, 13 elements (includes twin reflector) very rugged construction, 11.9dB Gain .. 539.95 SPECLAL OFFER! - New AR200XL Automatic Antenna Rotator (offset type) complete
 S8100 Rctator Alignment/support Bearing for heavierload app System B/G/l operation YOKO model F1 Multiband VHF/UAF (5.5/6MHz sound) for UK \& Continental USe, UHF. 12 volt, battery and mains operated (SAE leaflet).........................
(Carriage \& Insurance on above television £4.95).
All prices inclusive of VAT and Carriage. Delivery 7-10 days.
ACCESS \& VISA Mail and Telephone orders welcome.

11, Kent Road, Parkstone.
Poole, Dorset, BH12 2EH. Tel: 0202738232.

For Model VHF1220-3, covering $175-230 \mathrm{MHz}$, Fringe again quote a gain figure of $20 \mathrm{~dB} \pm 1 \mathrm{~dB}$ ripple and a noise figure of less than 1.9 dB . The gain at 100 MHz is given as -11 dB and at 144 MHz 7 dB . My figures are as follows: $155 \mathrm{MHz} 13 \mathrm{~dB} ; 160 \mathrm{MHz} 15 \mathrm{~dB} ; 165 \mathrm{MHz} 16 \cdot 5 \mathrm{~dB} ; 170 \mathrm{MHz}$ $18 \mathrm{~dB} ; 175 \mathrm{MHz} 18 \mathrm{~dB} ; 180 \mathrm{MHz} 18 \mathrm{~dB} ; 185 \mathrm{MHz} 16.5 \mathrm{~dB}$; $190 \mathrm{MHz} 16 \cdot 5 \mathrm{~dB} ; 195 \mathrm{MHz} 16 \mathrm{~dB} ; 200 \mathrm{MHz} 15 \mathrm{~dB} ; 205 \mathrm{MHz}$ $14.5 \mathrm{~dB} ; 210 \mathrm{MHz} \quad 15.5 \mathrm{~dB} ; 215 \mathrm{MHz} \quad 16.5 \mathrm{~dB} ; 220 \mathrm{MHz}$ $17.5 \mathrm{~dB} ; 225 \mathrm{MHz} 19 \mathrm{~dB} ; 230 \mathrm{MHz} 20 \mathrm{~dB} ; 240 \mathrm{MHz} 15.75 \mathrm{~dB}$; $250 \mathrm{MHz} 3 \mathrm{~dB} ; 260 \mathrm{MHz}-6 \mathrm{~dB}$.

Within the $175-230 \mathrm{MHz}$ spectrum (chs. E5-12) the voltage gain showed a variation of some 5.5 dB between minimum and maximum. "Useful" gain at 144 MHz , rising through the PMR/Marine band, is perhaps excessive: I would have liked less gain below 170 MHz to minimise the possibility of cross-modulation/overloading from potential sources of interference outside the TV band. Bipolar transistor tuners are still widely used in domestic TV sets, and will overload with the slightest encouragement! This design employs simple bandpass filtering at the input and a single collector tuned coil.

Both amplifiers have a $70 \mathrm{mV}(37 \mathrm{dBmV})$ output capability.

For the last two years I've been using the earlier VHF1220-3 head amplifier which has proved to be reliable and stable. Fringe also produce a wideband v.h.f. amplifier covering $40-230 \mathrm{MHz}$. The quoted typical gain is 20 dB with a noise figure of 1.9 dB . Many thanks to Fringe Electronics Ltd, 50 Mansfield Road, Clipstone, Mansfield, Notts NG21 9EQ (0623 643 802) for providing two random sample amplifiers for test. They have commented that the results I obtained were disappointing: the test setups used by Fringe and myself were not identical.
ECONOMIC DEVICES，PO BOX 228，TELFORD TF2 80P

15／80H $15 / 80 \mathrm{~B}$
16039
16181分 S921 2N1303 2N2219A 2N2222 NㅡN 2N2926
2N3053 2N3053
2N3054会完 N3702
N3703 2N3703
2N3705 2N3705
2N3706

2N3707 2N3711 2N3771

 2N 37712N 3772
$2 N$ 2N3772
2N3773
2N3819
$2 N 3823$ 2N3819
2 2N3823 2N39204
2N3908 2N3908
2N4101
2N4240 2N4444 2N529
2N529 2N5296
2N5297 2N529
2N5298 N N N N N N N资 2N696
2N698 2SA1006
2SA1011 2SA1015 2SA1012 2SA1027 ${ }_{2}$ 2SA473 2SA766S N～ 2SC1474 ${ }^{2 S C D 1591 R L}$ 2SA1095 2SA1103
2SA329 2SA351 2SA489 NN 2SA493
2SA562 2SA562
2SA564 2SA614
2SA628 ${ }^{\text {2SA628 }}$ 2SA639S 2SA639S 2SA684
2SA697 2SA697
2SA699 2SA715 2SA747 2SA817 2SAB18 2SA836

3 2SA940	
30	
2SA940－	

	1.81	2SC535				
2SA940－2	214	$2 S C 536$				
2SA950	1.72	$2 S C 537$		2 2SC535	0.79	AF18
:---	:---	:---	:---		0.79	AF18
:---	:---					
0.41	AF18					

0.79	2SA950
1.04	2SA951

2SA966－Y
2SA999 3in 2SC605L
2SC620

2SC643A | | | 19 | 0.55 |
| :--- | :--- | :--- | :--- |
| BA656 | | | |
| 0.41 | AF180 | 0.51 | 0.53 |
| BA7100 | | | |
| 0.54 | AF186 | 0.53 | BA841A |
| $\mathbf{1 . 1 6}$ | AF239 | 0.43 | BA843 |

 2SB3400
2SB405
2SB407
2SB449B 0.53
0.53 BA7
BA84

BA843 \begin{tabular}{r|r}
8.99 \& BC560C

10.85 \& BC635

0.14 \& BDX63A

0.36 \& BDY20

$\mathbf{0 . 4 2}$ \& BYY1

1.96 \& BFY5

1.21 \& BFY7

\&

\hline 1 \& BFY52

BFY79

B \& BFY90

0 \& BLY49

6 \& BR00

7 \& BR01

5 \& BR03

0.27 \& BYX

0.49 \& BYX94

0.61 \& BYY5

0.51 \& BYY56

$\mathbf{2 . 2 0}$ \& BZY93C30

\hline 25 \& BZY88 RANGE

BZX61 RANGE
\end{tabular} BZX79 RANG

C106D

0.25	BR03	1.26	C106D
0.213	BRC116	0.67	C106M
0.13	BRC300	2.01	C1129
0.29	BRC30	0.77	CA3046
0.58	BRC5296	0.83	CA3089
0.26	BRC6109	0.83	
0.33	BRC82	1.08	CA3090AO

1.40
0.16 1.40
0.16 5.35
3.51
$2 S$
$2 S$
1515

웅영웅 $2 S C 6$
$2 S C 6$
$2 S C 6$
$2 S C 6$
$2 S C$
$2 S C$
$2 S C$ 2SB546
2SB56
2SB618A
2SB631

2SB643 \begin{tabular}{l|l}
2.50 \& 2SC717

1.39 \& 2ST734

3.75 \& 2SC761

\hline .67 \& ALI 11

\hline
\end{tabular}

约寻 | 0.88 | BA8 |
| :--- | :--- |
| 1．36 | BAV |
| 3.98 | BAV |
| 1.89 | BAV |
| $\mathbf{2 . 5 8}$ | BAV | N88 N

－\rightarrow－wown 2SC11
2SC1
2SC1 2SC1
2SC1
2SC1
0.42 BDY8

24	BDY81
BF115	
20	BF117
BF118	

BF115
BF118
BF121
BF123
BF127

BF123	
0.40	BF127
30	BF137

긍응
$\stackrel{+}{ }$
．
0.25
0.21
0.13
0.2
M $\mathrm{N}-071$

$$
\begin{array}{l|l}
0.60 & \text { CBF168488 } \\
0.53 & \text { CD4001 } \\
0.69 & \text { CD4002 } \\
0.87 & \text { CD4008 }
\end{array}
$$

5.25 CD401

BSTC0233
BSTCC0143
BSTD1043

7.25	CD401
3.07	CD401
2.85	CD4017
3.49	

0.60 CD402 ぶうす。

0.34	CD402
0.50	CDU02
0.51	CD404

ะัロ
．

\square

 \qquad 2SD389
2SD401
2SD414
2SD471 2SC1446
2SC1447
2SC1475
2SC1447
2SC1475
2SC1505
2SC1514 2SC1514
2SC1573
2SC1578
2SC1538
2SC1583
2SC1617
2SC1617
2SC675
2SC1678
2SC1678
2SC1741
2SC1810
으우N
2SC1826
2SC1829
2SC1875
2SC1881K 2SC1881
2SC1893
2SC1906
事设事资

？
禁言式

무Nㅜㅜ が

 등 웅
808
$812-\mathrm{T} 022$
皮㐫号号
然ぞ
AC133
AC123K

为苞
苞
던
AC176
AC179
AC183
AC183
AC187
AC187k
울
AC188－01
AC193K
AC193K
AC194K
AD 140
AD 143

.85	$A D 143$
26	$A D 145$

2.54
3.87
0.49
0.60
2.29
2.9
2.59
2.59
1.9
16.13
5.20

N

$$
\begin{aligned}
& 1.98 \\
& 2.13 \\
& 2.95 \\
& 1.36
\end{aligned}
$$

2.13
2.95
2.36
3.25
0.65
1.03
12.85
0.55
0.25
0.89
2.85
0.8

．

4.65
2.80
4.39
2

0.12
0.43
0.27
0.34
0.34 BA1

| | | | | |
| :---: | :---: | :---: | :---: | :---: | NN

0
0
0

0		1.50	2SC2570
2SA659	0.49	2SC2577	
2SA673	1.27	2SC2578	

10.85	BC6635
28.98	BC636
3.96	BC637
$\mathbf{5} 75$	BC39

BF157
BF158
BFF159
B160
BF167
BF173
BF177

우ㅇㅜㅜ웅

5．26	AD 145
$\mathbf{1 . 4 0}$	AD161
$\mathbf{1 . 1 6}$	AD162
$\mathbf{1 . 3 3}$	AD262

2.33
0.54
1.38
1.56
3.65
2.25
1.84
1.50
1.50
5.45
2.15
2.95
0.76
1.07
2.98
0.50
1.53
1.43
0.80
0.30
0.63
0.73
0.85
1.16
0.64

당
AN6341
AN6342
AN6363
AN 6387

AN6531
AN6551
AN6552
AN6610
AN6677

AN6677
AN7111
AN7114E
AN7115
AN7120
AN7145

AN7223 AU107 AU110 AU113

煎运笑
B250
B40
BA130
BA1310
310
320
322
330

Niた。

ONO

$$
\begin{aligned}
& \text { 으어어N } \\
& \text { 엉엉 }
\end{aligned}
$$

Vintage TV: The Cossor 1210

Chas E. Miller

In view of TV's fiftieth anniversary it's appropriate that this vintage TV piece should take a look at a pre-war receiver design. We're not going back quite as far as 1936, but the Cossor set featured in this article is representative of the approach of pre-war TV receiver designers. They were working before any set patterns had been established, which meant that circuitry could be and often was highly individualistic.

At around the time of the Munich crisis in 1938 the backroom boys of A.C. Cossor Ltd. were preparing to launch on the British market a large combined television and radio receiver to be known as Model 1210. It's interesting to speculate as to whether this odd set would have seen the light of day had Neville Chamberlain not won that year of grace for Britain. In the event the 1210 was in steady production by March 1939.

The 1210 was housed in a large console cabinet of impressive proportions and weight. The radio/TV sound chassis, which was quite independent of the vision receiver unit, was mounted at the top, slightly angled. The c.r.t. aperture was roughly central, with three control knobs beneath it. At the bottom there was a large and handsome speaker grill. The c.r.t. was mounted just above the "vision chassis", which in fact comprised both the vision receiver proper and the timebases. The power supply chassis, which incorporated the audio output triode, was mounted at the bottom of the cabinet, behind the loudspeaker. An extra amplifier unit was available for fringe reception. When fitted it sat beside the power pack - sets so equipped had the suffix A after the model number. It was possible to fit the amplifier to a standard 1210 , but this was not recommended by the manufacturers in case instability problems arose.

Receiver Circuitry

We'll look at the radio/TV sound chassis first. This employed a most unusual feature in the pre-war era, a series heater chain. Cossor's explanation for this was that it avoided the need for cables carrying a heavy.a.c. (as would have been required for the usual parallel-operated valves), with the consequent danger of hum radiation. This seems fair enough since the equivalent 4 V heater valves of the day would have required around 4 A compared with the 200 mA taken by the Cossor 202 series valves that were used. A separate 80 V winding on one of the two mains trnsformers supplied this heater chain.

The circuitry used in the sound chassis consisted basically of a four-valve superhet radio receiver, with an r.f. amplifier, a triode-hexode frequency changer, an i.f. amplifier stage and a double-diode-triode which provided detection, a.g.c. delay and audio amplification. It worked on the long, medium and short waves plus the television sound band. The tuning was operative on all bands but, as the makers were at pains to explain, was restricted to a very small part of the dial for TV reception with u.s.w. (the ultra-short waves as they were known).

The Cossor 202VP r.f. amplifier valve was transformer coupled to the hexode section of the Cossor 202STH frequency changer valve, whose triode section worked as a conventional local oscillator. The i.f. was 465 kHz and
the transformers used are of considerable interest. Extra windings were fitted in both the i.f. transformers so that they acted as variable-bandwidth devices. The sense in which these coils were connected was determined by a switch ganged to the manual tone control: as this control was rotated to its h.f. setting the bandwidth increased. With u.s.w. selected an even greater bandwidth increase took place to enable the set to take advantage of the higher quality TV sound - and also to provide a measure of protection against tuning drift in this band. Delayed a.g.c. was applied to the r.f. amplifier, frequency changer and i.f. amplifier valves, the delay voltage being obtained from a negative bias line provided by the power supply unit. The Cossor 2XP audio output triode, mounted on the power supply chassis, is a directly heated valve and thus requires grid instead of cathode bias - hence the negative bias supply. It provided some 2.5 W of audio power to the speaker.
The power supply for the sound chassis was separate from that for the rest of the set, with its own mains transformer, rectifier, smoothing arrangements, etc. This arrangement permitted the other power supply circuit to be switched off when radio only was being received.

Another superhet receiver, this time with seven valves, was used for the vision signal. The aerial signal was transformer coupled to the Cossor 4TSP (all Cossor valves again) r.f. amplifier valve whose output was resistance/ capacitance/inductance coupled to the grid of the 4THA (later 41 STH) triode-hexode frequency changer. Simple single-inductance couplings were used between the frequency changer and the first (4TSP) i.f. amplifier valve and between this valve and the second (4TPB) i.f. amplifier valve. The second i.f. amplifier was transformer coupled to the detector however, in order to provide feeds for the two anodes of the DDL4 double-diode valve used in this stage as a balanced, full-wave rectifier.
The i.f. was centred at approximately 7 MHz , the first and second tuning coils being stagger-tuned at 5.75 MHz and 8 MHz respectively. The third coupling, to the detector, was fixed tuned. The two i.f. amplifier valves used were identical electrically but while the 4TSP has a topcap anode the 4TPB has a top-cap grid. By a crafty arrangement of the two types it's possible to couple one to the other using very short leads.

The demodulator's load resistor had a value of only $2 \mathrm{k} \Omega$ to preserve the h.f. response at the grid of the 41MPT video output pentode. This stage again had a $2 \mathrm{k} \Omega$ load, plus a small choke to improve the h.f. performance. The load resistor was split into two sections however, 500Ω and $1.5 \mathrm{k} \Omega$, with the drive to the c.r.t. taken from the tap. Grid drive was used, with d.c. connection throughout the video circuitry. An interference limiter was also incorporated in the video amplifier's anode circuitry. This used another DDL4 double-diode, the two sections being operated in parallel. When the interference limiter diodes conducted they shunted the brightness control which set the c.r.t.'s cathode bias. Thus a positivegoing interference spike would result in a positive-going pulse being applied to the c.r.t.'s cathode.

The optional preamplifier employed three r.f. amplifier pentodes (MS/PEN, MS/PENB, MS/PEN) which also had

Fig. 1: The timebase circuitry used in the Cossor Model 1210.
the alternate top cap grid/anode arrangement to ensure short couplings. Cossor's favourite $R C$ coupling was much in evidence, which is not too good from the point of view of gain but does ensure stable operation. Readers familiar with the radar receiver type 1355 will recognise the similarities.

The Timebases

The Cossor engineers really came into their own with the timebases. To start with they designed a special pentode (type 4TSA) with two anodes to act as the sync separator. It received its input from the vision detector via two $10 \mathrm{k} \Omega$ stand-off resistors and was biased at its cathode by a combination of $70 \mathrm{k} \Omega$ and $8 \mu \mathrm{~F}$. Both anodes were transformer loaded. The timebase circuitry is shown in Fig. 1.

We'll look at the field timebase first. V9 (41MTL) is used as a straightforward blocking oscillator except that the sync pulses are injected via a third winding on the transformer - the winding fed by the sync separator. C43 across this winding bypasses the brief line pulses. C2 is charged via the height control network to produce the field sawtooth, being discharged when V9 conducts. This sawtooth is $R C$ coupled to the 41 MPT field output pentode V10 which is again $R C$ coupled to the scan coils. Overall feedback to linearise the scan is introduced by returning the scan coils to the cathode of V9.

The line timebase is rather more odd since this time the Cossor engineers for some reason decided not to use a blocking oscillator. The 41MTL triode (V11) is used as a discharge valve with the sync pulses applied to its grid via a transformer driven by V8's other anode. To make the circuit run free V1I is also driven by feedback from the line output transformer. The sawtooth line drive is $R C$ coupled to the 42MPT line output valve V12 which is transformer coupled to the coils. The control in the sawtooth charging circuit is used for linearity rather than width adjustment. Control of width is effected by varying V12's screen grid voltage. In early models R5 alone was used for this purpose. It consisted of a fixed resistor that was clipped into something like an outsize fuseholder on the top deck of the timebase chassis. The value could be varied between $4 \mathrm{k} \Omega$ and $8 \mathrm{k} \Omega$, each extra $1 \mathrm{k} \Omega$ reducing the width by about a quarter of an inch. Some later
models had a variable control. The field output pentode's screen grid was fed from the same point so that the amplitude of the scans was kept in step.

TV Power Supply

Mention has already been made of the power supply unit, in connection with the radio/TV sound side. For TV operation a second mains transformer was switched into circuit to provide seven separate secondary voltages. One was used solely to power a "vision on" lamp on the radio chassis. A winding giving 4 V at 12 A supplied the heaters of the valves in the vision unit. This heavy current being rather 100 much for normal plugs and sockets, heavy screw terminals were provided for the heater wiring connections. The 45 IU h.t. rectifier had 390 V applied to its two anodes while its heater requirement was 4 V at $3 \cdot 5 \mathrm{~A}$. The SU2150 e.h.t. rectifier was also fed from this transformer, the e.h.t. winding providing some 4.5 kV for this rectifier's anode - it's heater took $1 \cdot 15 \mathrm{~A}$ at 2 V . The final winding provided a heater supply for the optional preamplifier.

Focusing System

The 1210's focus control system was distinctly unusual for the period. A permanent magnet was used instead of the then prevalent electromagnets. In fact the physical arrangement of the magnet was in many respects similar to those used in the sets of twenty or so years later. The assembly incorporated shift plates for picture centring, while on the c.r.t. neck there was a sleeve reminiscent of the closed-loop line linearity devices that were popular in the sixties. In this case however the sleeve was made of iron and provided coarse control over the tube's focusing. Fine focus was achieved by a control which varied the e.h.t. voltage slightly. This was done by returning the earthy end of the e.h.t. winding on the mains transformer to chassis via a $1 \mathrm{M} \Omega$ resistor which was shunted by a $250 \mathrm{k} \Omega$ potentiometer giving fine focus adjustment. I must admit to having misgivings about the idea of applying high voltages to the terminals of a control meant for viewer use, but the system was apparently not as fatal in use as one might fear. I wonder what Which? would have had to say about this sort of thing?!

Letters

EDUCATION AND TRAINING

I would like to take issue with you over your editorial in the September issue - you may well have stirred up a hornet's nest! To suggest that service engineers got by and progressed from monochrome TV through colour to video, and made the transition from thermionics to solidstate, without formal training is far from the truth. From personal experience extending over the whole of this period I can state that many manufacturers and educational establishments responded to such needs, often before they arose. What I know to have been fact here in Kent is almost certainly true for the rest of the country. Even today many senior service engineers "traipse back to the halls of learning", and the good establishments around are often in the forefront of such training.

How do the educators obtain their learning? Simply by keeping in touch with the thinking at the R and D establishments of the broadcasters and manufacturers. You would probably be surprised at the number of college lecturers who spend a significant part of their "holiday" in this way.

I agree that the concept of apprenticeship has changed considerably over the years. But then that's in the nature of a dynamic industry. I don't think many time-serving engineers felt at the time that their apprenticeship was the "be all and end all". Many I have known personally went on to obtain higher qualifications in their own time, often degrees, then took their place in R and D .

Your comment that a simple analogy, good diagram and a few brief sentences are often good enough to obtain an initial understanding is an over simplification of the situation. Probably one of the best introductions to the way in which computers work is in the "Ladybird Book" series. I don't really think you would suggest that this would qualify a skilled TV engineer to start servicing home computers however! Today's servicing problems tend to be particularly obscure: the long-term reliability of domestic electronic equipment has just about removed the "stock fault" from the scene - even repetitive faults occur infrequently enough to make them more difficult to clear.

It may be that the formal apprenticeship has all but disappeared. I contend that this started to happen 25 years or so ago. Continual retraining is slowly taking its place. New training techniques are being used. I think it's rather neat to use a self-learning video package to teach one to service a videorecorder!

On the subject of names for units I'm to some extent in agreement with you. The hoary old Hz instead of c / s is just about to come in useful however. A common compound unit in the satellite communications field is Watts per Herz (W / Hz): although this is perhaps less descriptive than the alternative Watts per cycle per second it's certainly simpler to use.
Geoff Lewis,
Canterbury, Kent.
Editorial comment: There's no doubt that organisations, including manufacturers and the rental firms, have done a very great deal to help with essential training. But there are many, especially those who run their own businesses, who have had to figure things out their own way. It can be done - but the industry couldn't have coped with the
public's servicing needs without the formal training so many have received.

THE INTEL CTV6000

In the August issue you asked about Intel colour receivers. A large number of these sets, Model CTV6000, were imported into Ireland by Garwood Electrical, a firm that's no longer trading.

The chassis is conventional, using a v.h.f./u.h.f. tuner, SAWF i.f. strip, TDA1170) field timebase and BU208A line timebase. A 14in. Toshiba Blackstrip tube is used. The power supply is a switch-mode type of the Siemens self-oscillating variety, very similar to that used in the Rank T20 series chassis. This gives rise to most of the problems in these sets - particularly as components are not identified on the panels. Whilst the poor quality circuit I've seen shows a thyristor-controlled BU326S chopper transistor in all the sets I've come across there's a transistor-controlled chopper. A BC177 and a BD329 on a small sub-panel can both go short-circuit, taking out the chopper transistor and causing the 1A fuse to blow violently. The BD329 can be replaced by a TIP41A or any similar power transistor. Check all the diodes in the vicinity of this panel - the BY299s are not above suspicion. Incidentally the power supply can be run unplugged from the main horizontal chassis.

The only decoder faults we've encountered have been loss of one primary colour due to the $220 \mathrm{k} \Omega$ resistor in the base circuit of the relevant BF470 output transistor going open-circuit (the RGB output stages are of the type that uses a pair of pnp/npn transistors).

Low or varying brightness can be caused by poor wiper contact in the first anode preset control on the tube's base panel. Set this for around 420 V .
Eamonn Galvin,
Ovens, Co. Cork.

DISH ALIGNMENT

I'd like to comment on this matter of setting up a satellite TVRO (see August article and letters last month). The method of using the sun to find due south at 1200 GMT is basically correct - if qualified by the fact that sundial time is not accurate. The time when the sun is due south must be looked up in an Almanac for the date in question. This time can vary by up to about fifteen minutes either way from 1200 GMT depending on the time of year. It would result in an error of about $\pm 4^{\circ}$ in the polar position of the dish if not taken into account, more than the difference mentioned for Carlisle and Liverpool. Astronomers refer to this effect as the Equation of Time. It's caused by the irregular way in which the earth moves around the sun. This due south time, called Transit Time, can for example be found in a current edition of The Handbook of the British Astronomical Association - it's given under data for the sun.
Robin Gray, B.Eng.,
Nottingham.

LOOKING BACK

Some time ago you published an article by someone who had in the early days constructed a television receiver using a VCR97 c.r.t. In 1950 I also made my first television set, using the Wireless World design which I adapted for use with the green-phosphor VCR97 tube. It worked well, bringing in pictures from Sutton Coldfield,
but the results were much better when the Holme Moss transmitter started up. I still have the EF50s, EF55s. EA50s and the original speaker - which is still going strong.

But let me go back 25 years before that - to 1925! I vividly remember listening with my dad to a series of lectures given by Sir Oliver Lodge, using the first onevalve receiver I made. The aerial was slung around four kitchen ceiling hooks that were normally used to hold the washing line. Sir Oliver thought out tuning as we know it today, but his lectures usually ended up in the realms of spiritualism. He was a grand old man.

Then there was Captain P. P. Eckersley, the BBC's first Chief Engineer, who used to give many bright and breezy lectures. I well recall his catch-phrase "don't do it". This referred to the bugbear of oscillation: many listeners used to push up the reaction coil (or condenser sometimes) too far, causing squeaks and whistles for miles around! Happy days!
H. Owens,

North Ferriby, N. Humberside.

FIDELITY ZX3000 CHASSIS

I would like to pass on a tip that we've found most useful over the years when servicing switch-mode power supply units.

In your article on the Fidelity ZX3000) chassis (September) you mention lifting one end of R97 to isolate the line output stage. If you then connect a $60 \mathrm{~W}, 240 \mathrm{~V}$ lamp between the supply side of R97 and chassis you will be
able to prove that the power supply is fully operational.
It's worth noting that, like many others, this particular power supply will produce a very low h.t. at the secondary winding of the chopper transformer under no-load conditions. The reason for this is that the feedback winding on the primary side of the supply then alters the operating conditions of the TDA46, 0 control chip. This in turn alters the mark-space ratio of the drive waveform so that the on time of the BU426 chopper transistor is reduced.

Another component well worth checking when all else fails is the h.t. rectifier DI3. It's not unheard of for this to go short-circuit, so check the line output transistor as well.

Repeated failure of the line output transistor is another nasty that can rapidly produce baldness and alcoholic disorders. If you look at the left of the chassis, between the heatsink and the line output transformer, you'll see a choke that occasionally becomes dry-jointed, carbonising the track beneath and effectively blowing the line output transistor as the e.h.t. rises.

As the first paragraph of your article suggests, the ZX3000 is to be found in many models. But don't fall into the trap of thinking that the PCBs are interchangeable. The white label that is so prominent on the c.r.t. base (front cover, September) is the identifying code that Fidelity use. It works something like this. There are apparently about ten different control panels and c.r.t. bases etc. which have to be matched together with the main panel - Fidelity at one time supplied a matrix that provided a check on which panels match each other.

Tom Carnie,

Newhaven, Edinburgh.

Experiences with the G11 and TX9

John W. Cheshire

A young couple brought their 22in. Philips set - G11 chassis - into the workshop. The female spokesperson related how it had died suddenly during the previous evening whilst an old western movie was on. It obviously couldn't take the strain of all those people shooting one another I thought.

On examination I found that the 1 A h.t. fuse was opencircuit. A few checks in the line output stage then revealed that one of the EW modulator diodes, D3133, had gone short-circuit - as often happens in these sets. A replacement was fitted and nothing else seemed to be amiss - the line output transistor read perfectly. As a precaution I checked the h.t. voltage before replacing the fuse. This read correctly at 157 V so a new fuse was fitted and we switched on again. Pop went the fuse, just as the e.h.t. was starting to rustle up. This time the line output transistor was found to be leaky, though the EW modulator diode was still intact. Suspect line output stage components were again checked but everything was o.k.

Several of these sets have come in recently requiring replacement line output transformers. The symptom is usually no results with the power supply tripping erratically - as indicated by the over-voltage glow switch. I concluded that the problems I'd got this time could be a variation on the same theme and since we'd now got a good stock of G11 line output transformers fitting a replacement seemed the best action to take.

The transformer and BU208A were replaced, along with the line generator i.c. just to be sure. The fuse lasted as long as the previous one. This time the line output
transistor was short-circuit - and we were rapidly running out of replacements.

In desperation I finally resorted to what should have been done in the first place. I hooked up the power supply to a loow lamp load and, without replacing the fuse, monitored the voltage. At switch on the lamp flickered violently in sympathy with the voltage across it - this oscillated between 157 V and 270 V as the over-voltage switch came into play. Despite replacing many defective $470 \mu \mathrm{~F}$ h.t. reservoir capacitors in these sets in the past I'd been caught out once again.

Replacement of the errant electrolytic along with a new BU208A and fuse finally brought the set back into operation - though the picture was suffering from severe EW distortion. This was cleared by replacing the EW modulator driver transistor T2150 - the BD238 on the large heatsink next to plug two on the timebase panel. The general rule with this fault is first to check L3134 on the line scan panel for dry-joints: if this item is innocent the driver transistor is usually at fault.

The original line output transformer was replaced and, so I thought, the job finally wrapped up.

TX9 Problems

Shortly after the prolonged tussle with the GII I was called out to revive a TX9 portable. Nowadays it seems that the smaller the set the more likely it is that the customer will call us out to see to it.

In this case the chopper transistor (panel $\mathrm{PC1} 1044$) had
failed, due to R165 (connected to pin 4 of the TDA4600 chopper control chip) reading over $500 \mathrm{k} \Omega$ instead of $30(0 k \Omega$. The set worked once these items had been replaced but the picture was shifted somewhat. The owner commented that the picture had been like this for some time though he'd continued to watch it! This fault almost always seems to be due to the pulse feedback resistor R217 ($220 \mathrm{k} \Omega$) being high in value. Replacement once again produced the good quality picture we expect from these nice little sets.

Return of the G11

Next day the G11 returned - much to our dismay. This time the field linearity at the bottom of the screen was
jumping, due to C 2083 ($15 \mu \mathrm{~F}$) being open-circuit - this electrolytic is at the bottom right of the TDA 2600 field timebase chip's heatsink. It would seem that the heat dries it up.

Predicament

Sets that return with a totally unconnected fault very shortly after we've carried out a repair regularly put us in an awkward predicament. To save losing custom we quite often repair the subsequent fault free of charge. Doing so is easier than trying to convince the customer of the coincidence. A long soak test would obviously be ideal, but this is impossible with call out jobs and would result in the loss of our "same-day service".

The Operation of Electric Motors

Part 4

Mike Phelan

Before going into the repair of d.c motors we'll examine the different ways of winding the armature and of connecting the windings to the commutator.

If we take the tripolar motor as an example a glance at Fig. 1 will show that there is only one possible way in which the windings can be connected. For most of the motor's period of rotation two of the windings will be connected in series across the supply while the third will be in parallel with these two windings. The parallel winding thus takes the bulk of the current. For the remaining period of rotation two windings will be connected in parallel across the supply while the third is shorted out by one of the brushes. The duration of these two states is determined by the brush width and the commutator gaps. It can be seen that the current demand varies considerably as the motor rotates, though the backe.m.f. developed and the inductance of the windings tend to smooth this. Clearly more than three poles are required for AV applications.

If we use the same method of connecting the windings of a seven-pole motor (see Fig. 2), at any one time the windings will fall into two groups of three, the windings in each group being in series while the groups are in parallel. This is known as lap winding and offers the maximum impedance, other things being equal. It's suitable therefore for motors operating with high supply voltages.

The alternative way of connecting the windings is the wave-winding method, see Fig. 3. In this case the two ends of each winding are connected to commutator segments nearly half a turn apart. This effectively places each winding in turn across the supply, which is ideal for lowvoltage motors. With a tripolar armature there's no difference between lap and wave winding of course. As the number of poles is increased the impedance difference becomes more marked.

Ideally the windings would lie in armature slots diametrically opposite each other. In practice this would lead to the end turns piling up around the shaft (see Fig. 4) so that the winding span is less.

Armatures are wound by machine. For those with laminated cores there are basically two methods. The windings are wound either directly on the core (Fig. 5) or on a former and then fitted to the core. The latter approach provides a better balanced - both mechanically and electrically - armature because with direct winding
the last windings to be put on have more wire than the first ones. Partial compensation for this can be achieved by reducing the number of turns, but this solution is far from perfect.

It's not uncommon for the commutator to have half the number of segments as there are poles. This is made possible by connecting the windings in the usual way but bringing each alternate junction out to a commutator segment. The converse is also possible - twice the number of segments, with each slot carrying two windings.

Mechanical balance can be achieved by drilling or otherwise lightening the armature core.
The majority of the electric motors used in VCRs use preformed windings encapsulated in plastic. The armature has no core and rotates in a narrow annular gap between the outer polepiece and the cylindrical magnet. Because of the proximity of the windings to the magnet poles this method of construction is very efficient.

Servicing DC Motors

Due to the very nature of these motors most problems encountered concern the brushes or the commutator. Symptoms vary, but common ones are listed in Table 1.

Shorted segments is the most common problem. Metallic dust from the brushes collects in the spaces between the segments, effectively shorting out the windings. This can be checked by using a scope to monitor the ripple across the motor. With a defective motor the ripple will be excessive - half a volt or so - and uneven. It's important that there is no significant load on the motor when this test is made, as the load will increase the ripple. Another symptom is that after disconnecting the motor from the

Fig. 1: The tripolar armature. (a) Winding arrangement, (b) and (c) equivalent circuits with no winding shorted and with one winding shorted respectively by the brushgear.

Fig. 2: Lap winding.

Fig. 3: Wave winding.

Fig. 4: A winding span of more than 180°.

Fig. 5: Comparison between direct and former windings.

Fig. 6: JVC drum/capstan motor assembly.
supply it will not spin when turned manually.
The drum motor used in the JVC HR3300/Ferguson 3292 and its derivatives tends to suffer from this fault, so we'll describe how to tackle the repair. Obviously the only way of providing a guaranteed lasting repair is to fit a new motor, but there must be instances where you want to get a little more life from the old one. Precise constructional details tend to vary a bit, but Fig. 6 shows the most common arrangement.

Remove the cover from the machine and take off the pulley. Make sure that the bench is clean, as any ferrous particles will end up stuck to the magnet when the motor is opened up. The end plate is attached by staking over the metal of the body and can be removed by filing the

Table 1: Common VCR motor faults.

VCR	Fault	Cause
Philips N1700	Capstan or drum wow	Severe brushgear wear. Usually past repair.
Toshiba V5470	Capstan wow Shorted segments - see text.	
Sanyo VTC5300	Failure to load	Reel/loading motor worn out - see text. Loading motor burnt out.
Sharp VC8300	Blown fuse	Axial displacement of
JVC HR7350 etc. Capstan motor	Axisy armature on spindle - noisy	repairable.
JVC HR3300 etc.Drum wow Dead spot on capstan motor	Shorted segments. Worn brushgear - may be beyond repair.	

metal away. Clean off the filings and lever the end plate off with a small screwdriver, taking care not to sever the supply wires. Once the end is off the brushgear will be seen. Pull the plastic carrier off with the brushes attached. The commutator can then be cleaned by running a thin, sharp blade along each gap, followed by washing in solvent (isopropanol or similar). Also wash the brushgear. Unless the motor requires lubrication, that's it. To lubricate, the armature must be removed. It's held in by the circlip at the drive end, where there are also some shims and a fibre washer - take care not to lose these. The armature cannot be removed yet as it's trapped by the polepiece which must be pushed out. Lubricate the drive end of the spindle with light oil and reassemble, being very careful with the brushes. Stake the end plate on again. Test the motor before fitting it in the machine.

The capstan motor used in the Toshiba V5470 is similar but has a tacho attached. Note the position of the tacho as there's very little clearance and incorrect assembly will result in rubbing.

The loading/reel motor used in the Sanyo VTC5300 gives problems though these are not of its own making. The cause of the trouble is the loading ring which, as in all Betamax machines, carries the pinch roller and several guides and is located at the two extremes of its travel by a spring-loaded roller which engages with a notch in the periphery of the ring. The VTC5300 relies on the motor to overcome the spring loading, a situation that leads to excessive current being passed by the brushes with much arcing. In severe cases the motor can stall completely. In time the commutator segments wear through to the underlying insulation, with the result that if the motor stops in this position it refuses to start until disturbed.

When you have a VTC5300 that occasionally refuses to load until the loading ring is moved, the cause could be either a defective motor or a stalled motor. If the former is the case it's the result of stalling. The notch in the ring can be made less steep - gently - but the motor will almost certainly need renewing if it's the original one. You see it can be the chicken, the egg, or both! A somewhat puzzling symptom before the motor's final demise is that interference from the brushes is picked up by the head preamplifiers, giving rise to white dots on the screen - as if the static earthing is amiss.

So a defective motor is not necessarily a scrap one. It's often worth attempting to repair this rather expensive item - if you can do so with confidence. In the final article of the present series next month we'll be dealing with the brushless d.c. motor.

C-MAC and its Variants

Harold Peters

In the world of satellite TV new terminology is bandied about as if it had been with us for years. It's seldom explained: the assumption is that you know. Despite the IBA's efforts to enlighten us, the European agreed satellite TV transmission standard "C-MAC packet" and its variants still confuse many. So let's go over the basics.

Over two decades have passed since colour TV broadcasting started to spread across the globe, using three different systems - NTSC, SECAM and PAL. Brilliant though these were at the time each has its deficiencies and we can now do lots of things we couldn't do then. DBS (direct broadcasting from satellites) gives us a chance to start from scratch and introduce technology to see us through the next couple of decades. It would be foolish not to seize this opportunity and adopt a new colour system that improves upon but can be converted to the existing three. Conversion is important: it gives us compatibility with existing systems - we don't want to make our investment in current technology obsolete overnight. We don't, anyway, but others might: Japan and the USA have been pressing for the adoption of a noncompatible 1,125 -line, 60 Hz system for satellite transmissions, but Europe has settled on MAC, a system developed by the IBA.

Deficiencies of Current Systems

The worst deficiency of existing systems is caused by interleaving the colour subcarrier amongst the higher definition frequencies of the luminance signal. This gives rise to moiré patterning when something like check suiting is present in the picture. The situation would be worse with satellite TV transmissions where, for optimum efficiency from a weak station so far away, frequency as opposed to amplitude vision modulation is used. Remember how with f.m. v.h.f. radio we use pre-emphasis and de-emphasis circuits to compensate for interference due to noise, which with f.m. is "triangular" - that is it affects the higher frequencies more than those close to the carrier? This is fine for the luminance signal with TV, but not for the colour subcarrier which, by virtue of its high modulation frequency, finds itself at the noisiest part of the signal (sce Fig. 1). Transmit any of the three current TV systems via satellite and the colour-to-noise ratio becomes well below that of the luminance signal on which it rides. MAC overcomes this problem - and others - but before going into detail let's define "C-MAC packet".

What is C-MAC?

The C indicates the type of digital sound and data system used. There are also systems A, B, D, D2 and E which we'll look at later. MAC stands for Multiplexed Analogue Components and refers to the way in which the picture is modulated on to the carrier as three separate components - Y (luminance), U (blue colour-difference) and V (red colour-difference). "Packet" denotes that the digital part of the signal comes in packets of 751 bits each. The packets have their own address - like the teletext clock run-in or the PAL colour burst - which makes it easy to vary the combination of sound and data signals
transmitted. But back to MAC itself.
With MAC the active $52 \mu \mathrm{sec}$ of every line is divided into two sections. The first third carries the whole of one colour-difference signal for the line, compressed in the ratio $3: 1$. The second two-thirds of the line carry the luminance signal, compressed in the ratio 3:2. The two U

Fig. 1: (a) With terrestrial TV transmissions the "white" noise affects the luminance and chroma signals equally. (b) With an f.m. transmission the "pink" noise increases with frequency, discriminating against the colour signal.

Fig. 2: (a) A single line of PAL carrying a colour-bar signal. (b) A single line of MAC, again with a colour-bar signal. The seven-bit sync word plus digital sound and data occupy the line blanking period.
($\mathrm{B}-\mathrm{Y}$) and $\mathrm{V}(\mathrm{R}-\mathrm{Y})$ signals are transmitted on alternate lines. See Fig. 2. Both signal components for each line are frequency modulated on to an r.f. carrier, and to receive them and produce a normal display each component has to be stored and stretched after detection, with the three YUV signal components correctly superimposed upon each other. This involves storing the colour-difference signals for a whole line and adding alternate lines together, as we do today with PAL but with the important difference that we are now handling baseband (i.e. video) signals and not a 4.43 MHz carrier so glass delay lines are out. Matrixing to produce the original R, G and B signals is done in the normal way.
Because there's no subcarrier there will be no subcarrier patterning, while the luminance signal will have its full $5 \cdot 6 \mathrm{MHz}$ (spot size) bandwidth instead of being restricted to about 3 MHz by subcarrier traps as at present. It also means that the colour bandwidth can be increased from the present 1 MHz to $2 \cdot 8 \mathrm{MHz}$.

The compression of the two signal components transmitted on each line means that the actual bandwidth required is $8.4 \mathrm{MHz}(2.8 \times 3$ and $5.6 \times 3 / 2)$. In the ordinary way this would clobber the sound carrier, but as we shall see the sound is digital and is included in the line blanking interval.

Thus at a stroke C-MAC gives us the following advantages: better vision definition; better colour resolution (no more smearing); no more cross-colour or subcarrier patterns; no more sound-on-vision; and it travels better through space! Mind you, if it's then converted back to PAL, SECAM or NTSC you've gained nothing.

The Variants

The European Broadcasting Union (EBU) has approved C-MAC for satellite TV transmissions. C relates to the type of modulation found in the $12 \mu \mathrm{sec}$ of nonactive (i.e. non-picture) line time - the line blanking interval. Two earlier systems were proposed:

A-MAC conveys the digital sound, teletext etc. on an f.m. subcarrier at 7 MHz . To date there are no takers for this one - it overlaps the vision signal.

B-MAC uses teletext type NRZ (non-return to zero) digital information for the signals transmitted during the line blanking interval - in the same way that the BBC has used its sound-in-syncs system to carry the sound signals throughout the network since colour began. It has a 1.625 Mbit per second capacity, locked to twice the subcarrier frequency, and is used down under by the Aussat satellite which provides TV transmissions for the outback. B-MAC reduces receiver complexity, but we can do better.

C-MAC has a $3 \mathrm{Mbit} / \mathrm{sec}$ capacity during the non-picture line time. The bit rate is $20.25 \mathrm{Mbit} / \mathrm{sec}$, making it possible to transmit in addition to high-quality stereo TV sound four different language commentaries and two stereo radio programmes, or twelve different mono radio programmes, or two stereo radio programmes and a 15 Mbit data or supertext channel - and so on.

The important difference between C-MAC and the others is the method of modulation used. With A, B and D2 the sound and data signals are added to the vision signal components at baseband and the whole lot then goes to the transmitter on one line and is all frequency modulated. C-MAC uses phase shift keying (PSK) however, or rather 2-4PSK, a quadrature phase shift keying variation in which the carrier can assume only one of two
phasors, $+90^{\circ}$ representing a digital one and -90° a digital zero. This is done to improve efficiency and use the bandwidth to the full. The transmitted signal is thus f.m. for the picture and digital for the sound, killing off sound-on-vision for good but involving the transfer of two separate signals from the studio and two different kinds of modulation in the transmitter's i.f. driver stages.

The 3Mbit/sec (approximately) digital signal is, as we said, divided into packets of 751 bits, each with its own digital address. There are 164 packets per field, or 4,100 packets per second, and since a receiver will respond only to the addresses for which it is programmed the system becomes quite versatile and changeable at will.

Compatibility with Cable

There's bound to be a snag - and there is. C-MAC uses the full 27 MHz bandwidth of a satellite channel. This is fine for DBS, but what about cable? You might think that the European cable operators have enough channels already, but in most countries their contracts include a "must carry" clause which obliges them to distribute all the national broadcasters' signals as well as their own. Now 27 MHz won't go down a cable. Even if the signal is remodulated in a.m. form it still occupies 16 MHz , all due to the sound/data signal. There are two ways of reducing the bandwidth - D-MAC and D2-MAC.

With D-MAC, instead of binary coding the data signal is duo-binary coded on to the PSK carrier (instead of going from $+90^{\circ}$ to -90° it stops at 0° as well). This permits the full $3 \mathrm{Mbit} / \mathrm{sec}$ data to be passed, after detection, through 8.5 MHz wide cable channels. It's now the same bandwidth as the vision signal. Problem solved? No! In France and W. Germany, which will be first up with DBS in Europe, there are already many kilometres of cable which have only 7 MHz spacing. They don't mind degrading the top end of the vision signal a little but as far as the sound is concerned they've decided on D2-MAC.

This uses the duo-binary coding of D-MAC but halves the data burst rate from $20.25 \mathrm{Mbit} / \mathrm{sec}$ to $10 \cdot 125 \mathrm{Mbit} / \mathrm{sec}$. The whole signal can then be passed through a 5 MHz channel satisfactorily. At the same time the picture is added to the signal at baseband, as with B-MAC. So at the expense of half the versatility and using a simple detector at the receiving end we have a signal that, as they say, is "transparent to cable", i.e. it goes down the pipe without any fuss. Mind you they could well miss out on the best bit, E-MAC or Extended-MAC.

Extended-MAC

It's possible, as an extension of the C-MAC principle, to produce wide-screen pictures with enhanced definition. This is done at the expense of the extra digital sound but is fully compatible with slandard C-MAC receivers. The C-MAC sync system remains the same, i.e. a digital word preceding every line of information, with the field sync triggered by line 625, but the sound information is limited to the digits required for the stereo sound accompanying the picture (42 packets). This leaves about $7 \mu \mathrm{sec}$ of line blanking time into which extra luminance information can be fitted, using the same compressed f.m. as the rest of the luminance signal. The extra colour-difference information required fits into the field blanking interval, 16 colour-difference extensions filling one complete line. This extra picture information (see Fig. 3), when stored, stretched and added to the standard vision signal compo-

Fig. 3: (a) Layout of one field of MAC. (b) Layout of one field of Extended-MAC.

Fig. 4: S-MAC, a variation favoured in the USA for studio work. Having the entire signal on one line makes for simpler mixing and trick work.
nents, can be displayed at either side of the normal C MAC picture with undetectable joins - and in a totally compatible way, leaving a standard C-MAC set displaying the same picture as though the side pieces had not been added.

The result is very much like the Cinemascope films on TV today, even to the extent of being able to "pan" the extra picture at either side of the standard one so that viewers with standard C-MAC receivers don't miss the action if it moves on to the "wide-screen" part. Panning instructions, along with the other control data required, are given on line 625.

Those who've seen demonstrations of Extended-MAC compare it favourably with the Japanese 1,125-line highdefinition system. The techniques devised by the IBA to improve the resolution of the E-MAC pictures have not to date been divulged - but it is done!

TV and the Human Eye

Let's go back to basics and forget about MAC for the moment. The eye is fooled into seeing a picture on the screen produced by spots of light that move faster than the persistence of vision of the human eye allows you to see. The eye sees luminance detail better than colour detail, and the central parts of your field of view focus on the eye's "rods", which are good for detail, while the peripheral scene is focused on the "cones" which sense movement better than detail.

The aspect ratio of current TV displays is $4: 3$, about the
same as the scene scanned by the rods. The recommended viewing distance $(6 \mathrm{H})$ is six times the picture height away from the screen. At this point the eye doesn't have to move in its socket to follow movement across the screen, so it's considered to be the nearest point at which viewing can be enjoyed comfortably without undue eyestrain. It also means that there is little point in adding stereo sound since if the ear detects movement but the eye doesn't an element of artificiality is introduced.

The intention with wide-screen viewing is that you sit close enough to the screen (about 3 H to 4 H) for the picture edges to go outside your field of view. This means that you have to move your head/eyes to follow the action and that stereo sound is essential to enhance the effect of "presence".

It also means that the scene will fall on the eye's cones, which because they detect movement will be annoyed by the flicker. Close viewing also makes the line structure of the $312 \cdot 5$-line interlaced field very prominent. Widescreen E-MAC receivers are intended to incorporate a field store to make it possible to up-convert the signal to either 625 -line sequential scanning or a 1,250 -line interlaced field, both of which will raise the line scan rate to $31,250 \mathrm{~Hz}$ and eliminate flicker and lineyness.

The elegance of E-MAC is that it is totally compatible with C-MAC. Down-conversions to PAL etc. would therefore still be possible. All the extra signal processing electronics would be in the wide-screen set, where there ought to be plenty of room. The IBA engineers have allowed for four teletext lines in the system and a VITS (vertical interval test signal) line. Thus far nothing seems to have been overlooked - except maybe fault-finding, the topic most likely to be in the minds of those of us who've braved the horrors of PCF80s, flywheel line sync and dual-standard switching to get this far. Maybe the youngsters will devise a diagnostic programme which, fed into a micro, will reveal all. But if you think you have problems, consider the studio end.

S-MAC

Studio MAC (S-MAC) is the name given in the USA to similar time-compression methods agreed for studio work (see Fig. 4). Digital standards have already been drawn up, and in an ideal world it would be nice to switch your broadcasting network overnight from analogue to digital. That day is some way ahead and meanwhile analogue component techniques will continue.

This approach provides many advantages in the broadcasting world: component TV converts readily to any existing system, the entire signal goes through a single cable, and so on. Trick work and studio mixing preclude the use of MAC as we know it since the U and V colourdifference signals are carried on alternate lines. Instead, the luminance signal is compressed $2: 1$ and the U and V signals are compressed $4: 1$. All are present on the same line. Such a signal needs 11 MHz bandwidth lines to carry it and can be reprocessed to C-MAC anywhere along the way. Its main use today is in America, where use of component television within a broadcaster's network overcomes many of the shortcomings of NTSC.

Acknowledgement

The writer is indebted to the IBA's Engineering Information Department for assistance in compiling this article.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V31

This machine will sometimes record normally. At other times sound recording will stop and the sound from the previous recording will come through loud and clear, although the picture has been recorded all right.

The most common cause of this problem (we've had it on several occasions) is one or more dry-joints on the PCB at the audio head or at the full-erase head. Also check the jointing at the other end of the leads - at the audio board. A second possibility is a contact problem in RY1 or RY2 on the audio board. Tapping and probing, with a scope at the head terminations, should prove this. If all these points are in order the oscillator block Tl is suspect.

PANASONIC TC2201 (PIU-S1C CHASSIS)

The problem with this set is intermittent line collapse. If the brightness or contrast is increased when the set is working normally a line whistle will develop, the width will decrease and the picture will break up. Decreasing the brightness/contrast will restore a correct display. The fault sometimes occurs without adjusting these controls. The e.h.t. is correct.

A very common cause of this type of problem is failure of $\mathrm{C} 816(220 \mu \mathrm{~F})$ and/or $\mathrm{C} 813(1 \mu \mathrm{~F})$ in the power supply. If necessary check C527 and C528 (both $10 \mu \mathrm{~F}$) on board C (line generator panel).

SONY SLC5

The reported fault was failure to record. Playback of its own recordings is muted (both video and audio), the recording being discernible in the trick modes. Removing the mute signal gives playback with cyclical noise bars. We suspect a fault in the capstan servo phase control loop.

The problem is that the control track signal is missing. This could be due to failure of the control head replay amplifier or to an open-circuit, worn or dirty control track head. A uscful clue can be obtained by recording on the faulty machine then trying the tape on a known good one. Without control track pulses the replay servo will not lock up (hence the noise bars) and the replay electronics will be muted.

PANASONIC U1 CHASSIS

For the first three-five minutes everything is o.k. Then the field starts to jitter and this sometimes becomes a momentary field collapse. After this the set may work all right for half an hour or so but the fault will return. When the fault is present there's an oscillation on the waveform at the collector of the lower field output transistor Q408.

A very common cause of this fault is that D 403 in the
field output stage is defective, increasing the output stage bias current. The correct replacement diode from Panasonic should be used. The fault can damage the field driver and output transistors Q406/7/8. It's worth replacing the h.t. smoothing capacitor $\mathrm{C} 812(220 \mu \mathrm{~F})$ in these sets, also the 20 V supply reservoir capacitor C814 $(2,200) \mu \mathrm{F})$ and the field scan coupling capacitor C415 $(2,200) \mu \mathrm{F})$. Check for dry-joints in the yoke circuit, especially at L705 and the NS phase coil L706.

ITT CVC45/1 CHASSIS

The problem is no results. The 300 V d.c. supply is present and the chopper and line output transistors are o.k. A new TBA920 line oscillator chip has been tried and the line oscillator board seems to work all right when tested with a separate supply.

In our experience this trouble is almost invariably caused by failure of resistors on the CMP40 chopper control panel. Remove this panel then disconnect and check with a high-range ohmmeter all resistors of value $100 \mathrm{k} \Omega$ and above. Replace all that read high or opencircuit.

GRUNDIG 2×4 SUPER

When a two-three hour recording is played back the first part is all right but in the later part the sound is slow - on picture search the top half of the picture curls over diagonally. Tapes recorded on other machines play back perfectly.

The tape is running too fast in the record mode. The cause is probably slight musadjustment of control APB on the servo panel. Adjust on record for a sampling pulse on every fourth ramp at test point SM2. In the absence of a scope, trial and crror adjustment after noting the control's initial setting may work - don't turn it more than 10° in either direction. Failing this, check the components in stages T1546, T1548. T1551 and T1563 with freezer and a hairdryer - an extension board will have to be used to gain access.

PHILIPS G11 CHASSIS

If the set is switched on using its own on/off switch the overvoltage glow-switch fires momentarily after which the set runs all right: if it's suitched on at the mains the glow switch fires continuously. The h.t. is correct but varies slightly ($2-3 \mathrm{~V}$) with changes of picture content.

First check the two mains rectifier thyristors for leakage - preferrably by substitution. If they are all right, use a scope to check the peak voltage at their common cathode connection at switch on. If the peak voltage does not exceed 175 V the glow switch is faulty: if it does, concentrate on the slow-start components in Tr4045's emitter circuit.

GRUNDIG MODEL 4200

The problem concerns the tuning memory batteries. The original four 1.5 V batteries lasted for several years with the set in daily use, but with only occasional use loss of memory led me to check them. I found only 3 V across them with evidence of sulphating at the last negative terminal and one battery showing a reverse voltage! A new set of alkaline batteries suffered a similar fate after a month or so.

We've had similar problems to this and have found it necessary to replace the corroded battery holder as well as fitting new batteries. Some of these cells are notorious for their poor reliability. It seems to affect some manufacturing batches. Try another make. It may be worth replacing diode Dil282 in case it leaks power into the batteries when warm.

287
Each month we provide an interesting case of $T V / v i d e o ~ s e r v i c i n g ~ t o ~ e x e r c i s e ~ y o u r ~ i n g e n u i t y . ~$ These are not trick questions but are based on actual practical faults.

We much regret the passing of Rediffusion/Doric as a setmaker. Their products were good, their back-up service excellent and their staff friendly and helpful. The Rediffusion Mk. 3 chassis was one of the more successful thyristor line timebase designs and though it's now somewhat dated many sets of this type are still going strong.

The particular Mk. 3 on the bench this month was fitted up for both cable (h.f.) and u.h.f. aerial operation. Its trouble was complete failure to produce either sound or a raster, a problem we've had before with this chassis. At switch-on there was, as expected, a momentary burst of energy. This was followed by a great big nothing. Failure of the regulating thyristor to switch on is the usual cause of this sort of thing. Briefly, the stabilisation system works by using a triggered thyristor to return excess energy from the line output stage to the h.t. reservoir capacitor (the reverse current regulator system described in Colin Boggis's article last month). Regulation is effected by adjusting the timing of the thyristor's gate trigger pulse. If anything prevents the thyristor (6THY2) from switching on there will be a rapid build up of energy in the line output stage followed by operation of the over-voltage protection circuit, which shuts down the line generator chip. Hence the initial burst of energy at switch on.

The simplest way to deal with this situation is to power the set from the mains supply via a variac. At about 60 per cent of full mains voltage the energy from the power supply section of the receiver about matches the basic requirement of the line timebase: under these conditions a good though unregulated picture should be - and indeed
was -- produced. The regulation adjustment potentiometer 6 RV 2 is inoperative under these conditions, which are ideal for fault finding. Diagnosis is quite easy: you check the d.c. voltage developed across 6 C 42 ($1 \mu \mathrm{~F}$ electrolytic) in the control circuit, the operation of the switching transistors $6 \mathrm{TR} 1 / 2$ which produce the trigger pulse, and the effect on the switching duty cycle of adjusting 6RV2 to vary the d.c. voltage at the base of 6TR2. Normally the trouble is due to failure of the 22 V zener diode 6D7 in 6TR2's emitter circuit or the trigger pulse coupling components 6 R 17 or 6 C 20 . Not this time though! The trigger-pulse waveform (37) at the collector of 6TR1 was present and correct, and moved backwards and forwards as 6RV2 was adjusted (the waveform was checked with the scope triggered by the line sync pulses). The trigger pulses were also reaching the gate of 6THY2. A dud thyristor perhaps?

Another thyristor (the type fitted, TD3F/600, incorporates the parallel diode) was tried but this didn't clear the fault. Attention was then turned to the gate bias network. 6R13/4/5 were all unhooked from the circuit and tested in turn with an ohmmeter. All were within tolerance. What do you do when a known good thyristor fails to fire with perfectly adequate triggering pulses applied to its gate? You look for further clues! Here are the two that led us to the correct diagnosis. First the line-rate pulse waveform at the gate of 6THY1 was excessively thick in the horizontal plane. Secondly the picture, despite being unregulated and produced with a mains input level of only about 145 V , had rather too much hum modulation of the line scan. Got it? We'll confirm next month!

ANSWER TO TEST CASE 286 - page 811 last month -

The situation described last month was a puzzler indeed: the playback picture produced by a Panasonic NV2000 was juddering and rolling due to an unstable and misshapen f.m. carrier signal from the video heads. The strange thing was that the spurious effects occurred at the start and at the finish of both heads' sweeps. This period of instability lasted for about eleven TV lines, which equates with about 6° of the tape wrap. Now in practice the nominally 180° wrap of the tape around the head drum is made about 186°, to give some overlap between the scanning periods of the two heads and ensure a clean switch between them.

As it came to us this machine would have needed a playback head switch to work correctly! The man who had fitted the new heads had contrived to wire all four rotating devices - the two heads and the two transformer windings - in series. The red- and brown-coded wires were connected correctly, but the two yellows had been crossed. . So each head's output was applied to its opposite number and the strange waveform was due to random reinforcement and cancellation of the signals from the two heads when both were providing signals during the 6° overlap period. This apart, the strangely-wired head assembly worked amazingly well in both the playback and record modes. No wonder none of us could make sense of it!

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f14, overseas (surface mail) $\mathrm{£17}$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

INSTALL YOUR

 SECURITY MODULES ACCESSORIES KITS

TV LINE OUTPUT TRANSFORMERS

fast return of post service

RANK BUSH MURPHY	
A816 solid state mono	9.00
CROWN 14CX25	15.00
DECCA	
MS1700200120202401mono	8.00
MS2404 24202424 mono	8.00
CS1730 1733 colour	9.00
CS1830 1835 colour	9.00
'30' series Bradford colour	9.00
80 series colour	8.00
100 series colour	8.00
FERGUSON HMV MARCONI	
1600	8.00
G.E.C.	
2047 to 2105	8.00
2000 to 2064 dual std mono	7.00
Indesit 20EGB 24EGB mono 8.00	
KB - ITT	
VC200 VC205 VC207 mono	8.00
CVC5 CVC7 CVC8 CVC9 col.	9.00
CVC20 series colour	8.00
CVC30 CVC32 series colour	8.00
CVC45	8.00
FT100 FT110 state p/no.	10.00
TXV80	10.00

PHILIPS

170 series dual std mono $\quad 8.00$
210300 series mono $\quad 8.00$ $\begin{array}{ll}\text { G8 \& G9 series colour } & 8.00\end{array}$

PYE 368, 169, 569, 769 mono 8.00 725-741 colour 8.00 REDIFFUSION Doric Mk. 310.00

WINDINGS

RANK BUSH MURPHY
T20a T22, T26 Pri \& Sec $\quad 6.00$ 2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime} 6.00$ 2718 EHT overwind 8.00 SONY 1320UB overwind 15.00

SOVEREIGN FARA $£ 15.00$
$14^{\prime \prime}$ colour overwind
ULTRA THORN
1690-1691 EHT overwind 7.00
Waltham 190 EHT overwind 6.00
1590 EHT overwind $\quad 6.00$
PRICES INCLUDE P.P. \& 15% VAT

All lopts and windings are new and guaranteed

```
Open Mon.-Fri. 9 to 5.30 pm
Delivery by return.
```

PAPWORTH TRANSFORMERS

80 Merton High Street
London SW19 1BE

REWIND SERVICE
S.A.E. all enquiries for orders Barclaycard and

placed at the post office cash
5064805 5064856
24 hour answering service 01-540 3955

PRO-VISION

TOP QUALITY SETS IN SHOWROOM CONDITION FROM

EX-HOTEL CONTRACTS \&

 SMALL RENTAL COMPANIESGRUNDIG 6100710081006400 74008400
PHILIPS 30053205 DECCA 92709011110 PANASONIC 221122212011
ITT 2600270025122612 FERGUSON 37923768 COLOUR PORTABLES TELETEXT

WE SET THE STANDARDS YOU KEEP THE PROFITS

021-471 5116

THE PROFFSSIONALS

BRITAIN'S
 LARGEST SUPPLIERS
 OF Ex RENTAL TV \& VIDEOs
 OVER 1500 ARRIVING WEEKLY

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc.

COLOUR TV VIDEO RECORDERS
from $\mathbf{f 5}$
from $£ 40$

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

FRANK FORD

(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

SPECIAL OFFER THIS MONTH

PHILIPS YEARS AHEAD
THE CREDIT CARD CALCULATOR
SOLAR POWEREI)
$\mathbf{4} 4.75$
NEW PANELS

[^0]\begin{tabular}{|c|}
\hline AN1270 \& 9.20 \& AN7146M \& \({ }^{2} 2.20\) \& HA1199 \& \(¢_{1.85}\) \& ［A1111P \& \({ }^{5} 0.95\) \& M5106P \& 9.75 \& STK5451 \& \(¢_{66.75}\) \& TA7628P \& \([2.95\) \& 2SA101 \& c00 60 \& \& \& \& \\
\hline AN203 \& \(\underline{\$ 20}\) \& AN7154 \& 51.90 \& HA1306 W \& 51.80 \& LA1140 \& \({ }_{5} 9.20\) \& M5134P \& 5.25 \& STK5720 \& ¢6．80 \& TA7640AP \& 51.75 \& 2SA \& \(¢ 0.6\) \& \& \& \& \\
\hline AN210 \& 51.75 \& AN7156N \& \(\underline{2} .50\) \& HA1319 \& \(\underline{2} .50\) \& LA1201 \& \({ }^{1} 0.85\) \& M5155P \& 91.85 \& SIK5730 \& ca． 25 \& TA76416P \& \(¢ 1.95\) \& \& \& \& \& \& \\
\hline AN211A \& 5.30 \& AN7158N \& \(\mathfrak{m} 25\) \& HA1339A \& \(\underline{11.85}\) \& LA1222 \& c1． 00 \& M51102L \& \({ }^{3} 3.95\) \& STK7308 \& \({ }_{\text {c }} 5.95\) \& TA7658P \& \(\$ 1.75\) \& \({ }_{2}{ }^{\text {SSA350 }}\) \& ¢0．60 \& \& \& \& \\
\hline AN2140 \& 1.80 \& AN7160 \& 53.75 \& HA1365W \& 51.80 \& LA1230
LA1231 \& \({ }_{5}^{51.50}\) \& M51513L \& 11.89 \& SIK825011
STR440 \& \begin{tabular}{c}
\(¢ 10.75\) \\
\(\$ 5.80\) \\
\hline
\end{tabular} \& TA7668BP \& ¢1．98 \& 2SA495 \& ¢0．40 \& 0 \& \(6 T 0\) \& Gn \& \\
\hline AN2178 \& ¢2．20 \& AN7161 \& ¢3．75 \& HA1366WR \& 51.85 \& LA1240 \& \(\underline{51.95}\) \& M51514AL \& 51.96 \& STR441 \& \({ }_{5} 5.80\) \& TA7688P \& \(\underline{2} .95\) \& 2SA562 \& 50.40 \& \& \& \& \\
\hline An228W \& \(\underline{22.90}\) \& AN7168 \& 2.75 \& HA1367 \& 23.25 \& LA1365 \& \({ }_{81} 1.50\) \& M515158 \& 20.0 \& STR2012 \& 7.20 \& UPC 16C \& ¢1．95 \& 2SA643 \& ¢0．70 \& \& \& \& \\
\hline AN234 \& ¢5．95 \& AN7178 \& \(\underline{27} 9\) \& HA1368 \& c1． 90 \& LA1368 \& \(\underline{5} 50\) \& M51516L \& \({ }_{5}^{29} 880\) \& SIR4211 \& 97.20 \& \({ }^{\text {UPCC } 20 C}\) \& 52.50 \& 2SA733 \& \({ }^{20.35}\) \& Fel：01－723 9 \& 46 \& er \& ） \\
\hline AN236 \& E2． 50 \& AN7213 \& 22.20 \& HA1368R \& \(\underline{51.95}\) \& LA1367 \& \％ 3.60 \& M51517 \& \({ }^{2} 288\) \& STR6020 \& ¢7． 28 \& UPC30C \& 12.20 \& 2SA768 \& \({ }_{50.95}\) \& ct U－720 \& 0 \& C \& 1 \\
\hline AN2390 \& £4． 20 \& AN7223 \& 23.95 \& HA1372 \& 53.50 \& LA1460 \& \(\underline{2} .50\) \& M515i8L \& c2． 20 \& ta7050P \& \(¢ 1.80\) \& UPC41C \& 12.30 \& 2SA899 \& \({ }^{20.15}\) \& VIDEO BELT K \& \& AT \& A \\
\hline AN240P \& 51.50 \& AN7273 \& 20． 95 \& HA1374 \& \(\underline{2.50}\) \& LA2100 \& \(\underline{21.95}\) \& M51521AL \& \({ }^{91} 980\) \& TA705IP \& 1.180 \& UPC561C \& \({ }_{50} 2.50\) \& 2SA952 \& \({ }_{50.35} 0.40\) \& \& \& \& \\
\hline AN241P \& \({ }_{51.50}\) \& AN7310 \& \({ }_{51} 1.20\) \& HA1377
HA1388 \& \({ }_{5}^{2} 2.20\) \& LA3160
LA3161 \& 11.50
\(\mathbf{2 2} .50\) \& M 83705
M83712 \& \({ }_{51} 91.50\) \& TA7054P \& \({ }_{\text {¢1．}} 50\) \& UPC566H
UPC573C \& 50.75
0.50 \& 2SA1015 \& \({ }_{\square}^{10.35}\) \& AKAI VS 9700EG（6） \& \(\underline{22.05}\) \& AN5430 \& £2．95 \\
\hline AN247P \& \(\underline{12.50}\) \& An7311 \& ¢1． 20 \& HA1388 \& \({ }_{5}^{2} 5.50\) \& LA3161 \& 12.50
80.95 \& M83713 \& \({ }_{81} 1.50\) \& TA7006P \& \({ }_{1}^{1} 1.50\) \& UPC573C
UPC574J \& \({ }_{60.65}\) \& 2SA1103 \& 2.20 \& AISHER VBS 7000 （6） \& 92.70 \& N7140 \& £2． 20 \\
\hline AN259 \& 2.75 \& BA301 \& \({ }^{5} 0.80\) \& HA1389 \& \(\underline{9.20}\) \& LA3210 \& \({ }_{80} 175\) \& M83722 \& 5.50 \& TA7074P \& 19.95 \& UPC5T4J \& ¢0．65 \& 2SA1104 \& 0.50 \& （000 \& 51.50 \& UPC1365C \& £3．60 \\
\hline AN260P \& \(\underline{2.20}\) \& BA311 \& \(\mathrm{c}_{5} \mathrm{C} .95\) \& HA1389R \& \(\square .20\) \& LA3300 \& 11.65 \& MB3730 \& 02.50 \& TA7104P \& C20 \& UPC576H \& 1.20 \& 2SA1105 \& \(\underline{2} .75\) \& ACHI VT5000（7） \& \& UPC1394C \& £1．95 \\
\hline AN262 \& ¢1．60 \& BA313 \& c0． 80 \& HA1392 \& 0.50 \& LA330！ \& c1． 30 \& M 83731 \& 53.50 \& TA7108P \& ［1．50 \& UPC576\％ \& \({ }_{81}^{21} 20\) \& 2SA1106 \& \(\underline{2} .75\) \& HR33003600（\％） \& \& SAA 1059 \& £1．95 \\
\hline AN271A \& §2．50 \& \({ }^{84318}\) \& ¢1． 50 \& HAA 394
HA 397 \& 0.95 \& LA3350 \& 11.30 \& M 33756 \& 9.60 \& TA7109AP \& \(\underline{0.50}\) \& UPC592H \& 1.30

00.95 \& ${ }^{25854}$ \& 10.70 \& 3300／3600（9） \& ． 50 \& SAA 1250 \& £3．25

\hline AN281 \& $\underline{5.95}$ \& BA 02 \& c0． 80 \& HA1398 \& $\underline{82} 75$ \& LA 3 36\％
LA3370 \& ${ }_{51} 1.20$ \& M88719 \& ¢10．50 \& ta7122ap \& ${ }_{¢ 0.90}$ \& UPC595C \& ¢2．20 \& 2S8341V \& 12.75 \& JVC \& $\underline{11.70}$ \& SAA1251 \& ¢4．95

\hline AN295 \& 53.60 \& 84403 \& ¢1．95 \& HA1457W \& 01.75 \& LA4030P \& 52.00 \& St．1122H \& 97.50 \& ta7130P \& c1．00 \& UPCLD001H \& $\underline{0} 20$ \& 2SB405 \& ${ }_{50} 0.80$ \& PANASONIC NV333（5） \& £1．90 \& SAA1272C \& £3．25

\hline AN301 \& ${ }_{53} 50$ \& bastia \& 1.80 \& HAl1I2W \& M3．75 \& LA4031P \& 1.95 \& STK011 \& \％．\％ \& TA7136P \& $¢ 1.00$ \& UPC1009 \& 2． 20 \& 2S8426 \& ${ }^{2} 8.95$ \& PANASONIC NV2000（5） \& $\$ 1.90$ \& SAA5000 \& ¢1．50

\hline AN302 \& ¢3．30 \& BA514 \& 1.90 \& HA1211 \& $\underline{0.30}$ \& LA4032P \& ¢1 90 \& STKO13 \& 97.8 \& TA7137P \& c1． 00 \& UPC1018C \& ¢1．95 \& 2S8471 \& ${ }_{50} 15$ \& PANASONIC NV7000（5） \& $\underline{1} 1.75$ \& \&

\hline AN303 \& 2.75 \& BA521 \& ¢1．80 \& HA11215A \& ¢4．35． \& LA4051P \& 2． 20 \& STK014 \& ［7．2 \& TA7139P \& 2.50 \& UPC1025 \& $\underline{1}$ \& 2SB492 \& 0.15 \& \& \& SaA5010 \& 24.50

\hline An305 \& ${ }^{5} 3$ \& BA526 \& $\underline{5} .50$ \& HA11219 \& ¢3． 25 \& L44100 \& $¢ 1.20$ \& STK015 \& ${ }^{\text {cx }} 38$ \& TA740P \& ${ }^{1} 1.75$ \& UPC1026C \& ${ }_{51} 100$ \& \& ${ }_{c}^{1} 1.95$ \& PANASONIC NV8600 \& $\underline{7.25}$ \& SAA5020 \& 55.75

\hline AN313U \& 52.95 \& BA527 \& 51.60 \& HAl122 \& ${ }_{c} 2.75$ \& LA410］ \& ¢1． 10 \& STK016 \& ${ }_{5}^{5} 5$ \& TA7442P \& ${ }_{7} 9.95$ \& UPC 1028 H \& ${ }_{c 1} 1.95$ \& 2SB546 \& ${ }_{81.50}$ \& SANYO VTC5500（3） \& 18.50 \& SAA5030 \& 56.50

\hline AN315 \& $\underline{3} 75$ \& BA532 \& ¢1．60 \& HA11225 \& ${ }_{c 1} 8.85$ \& LA4110 \& ¢1． 75 \& STK02？ \& E5． 30 \& TA7150P \& $\underline{7}$ \& UPC 1032 H \& 10.60 \& 2SB56 ${ }^{\text {a }}$ \& 20.35 \& SANYO VTC9300（4） \& $\ldots 2.75$ \& SAA5040A \& ¢8．50

\hline AN318 \& 14.95 \& BA536 \& \＄2．40 \& HA11226 \& ［4．50 \& LA4112 \& $\underline{51.75}$ \& STK025 \& 77.50 \& TA7152P \& 22． 50 \& UPC103 \& $\underline{1.95}$ \& 2S869 \& c0． 40 \& SHARP VC6300（5） \& $\ldots 1.25$ \& SAA5040B \& £10．50

\hline \& 28.95 \& BA547 \& $\underline{2} 58$ \& HA11227 \& 2． 20 \& LAA120 \& 9.95 \& STK040 \& c8．70 \& TA7157P \& ¢1．65 \& UPC 1037H \& 11.25 \& 2SB755 \& 23．50 \& SHARP VC7300 7700 \& 11.80 \& SAA5042 \& ¢8．00

\hline AN340P \& ¢1． 50 \& BA612 \& ¢1．80 \& HA11235 \& ［2．30 \& LA4125 \& 02.20 \& STK077 \& ${ }^{56} 50$ \& TA7176P \& 22.75 \& UPC115 \& $\underline{5.95}$ \& $2 \mathrm{SC3}$ \& ${ }^{2} 0.35$ \& SHARP VC8300（5） \& $\underline{2} .00$ \& SAA5050 \& $£ 7.50$

\hline AN360 \& 1.30 \& BA631 \& $¢ 5.75$ \& HA11244 \& ［4．60 \& La4126 \& $\underline{2.60}$ \& STK078 \& ${ }^{26} 5$ \& TA7193P \& ［4．00 \& UPC1158 \& ${ }^{1} 0.95$ \& $2 \mathrm{2SC3}$ \& $\mathrm{c}_{0} .35$ \& StIARP VC9300 \& ¢1．80 \& TDA1908 \& ¢1．75

\hline AN362L \& 51.60 \& BA656 \& ¢4．50 \& HA11401 \& E． 80 \& LA4140 \& ${ }^{5} 0.80$ \& SIK080 \& 97.50 \& TA7202P \& ${ }^{51} 40$ \& UPC116 \& ${ }_{c 1} 1.30$ \& ${ }^{2 S C 4}$ \& ${ }_{c}^{10.30}$ \& SIDNY SLTME／7（6） \& $\underline{2} .00$ \& TDA2653A \& ¢5． 20

\hline AN366P \& ${ }_{51} 1.70$ \& BA843 \& ¢4．50 \& HA 11423
HA 11440 A \& ${ }^{1} 4.75$ \& LA4160
LA4170 \& ${ }_{53} 90$ \& STK0820 \& ${ }_{96} 97$ \& TA7203P \& ${ }_{51.75}$ \& UPC1170 \& 81.60 \& 2SC461 \& ${ }_{50}$ \& SDONY SLC7／J7（6） \& 52.00 \& TDA3505 \& £4．75

\hline AN377 \& 5.00 \& \& $\underline{53.75}$ \& HA1170t \& ${ }_{5} 5.50$ \& LA4182 \& $\mathrm{SP}_{2} 10$ \& STK430 \& 55.5 \& TA7205AP \& 11．00 \& UPC＋171C \& 81.50 \& 2SC503Y \& 50.70 \& SONY SL 8008080 （6） \& 52.50 \& TDA3560 \& £4．50

\hline AN610P \& ¢1．80 \& BA1310F \& ¢1． 75 \& HA11703 \& 54.50 \& L44192 \& 81.95 \& STK431 \& Es． 5 \& TA7207P \& cl_{175} \& UPC1176C \& $\mathrm{c}_{51.75}$ \& $2 \mathrm{2SC5}$ \& ${ }_{50} \mathbf{5} .35$ \& TDSHIBA V5475（6） \& 92.20 \& TDA3651 \& ¢2．95

\hline AN612 \& 51.80 \& BA1320 \& f1．25 \& HA11704 \& ${ }_{5}^{5} .20$ \& LA4200 \& ¢1．50 \& STK433 \& ${ }_{55} 5$ \& TA7208P \& ${ }^{1} 1.75$ \& UPC117\％ \& ${ }_{c 1} 1.60$ \& 2SC53 \& ${ }_{c}{ }_{c} 0.35$ \& TDSHIBA V7540（5） \& 92.25 \& TDA4431 \& $\underline{22.25}$

\hline AN5033 \& ${ }_{5} 5.25$ \& BA1330 \& \＄1．75 \& HAl1705
HAl1706 \& ${ }_{¢ 4}^{56.75}$ \& LA4201
LA4220 \& 11.60
$\$ 1.50$ \& STK435 \& ${ }_{55.25}$ \& TA7214P \& 52.60 \& UPC 118 \& ${ }_{51} 1.10$ \& 2SC732 \& ${ }_{50.35}$ \& TDSHIBA V8600（6） \& ¢1．80 \& TDA4600 \& ¢2．95

\hline AN5510 \& $\underline{52} 75$ \& 8 81360 \& 51.80 \& HA11710 \& ¢3．75 \& LA4230 \& \＄． 25 \& STK437 \& 56.50 \& TA7215P \& 5.30 \& UPC118 \& $\underline{\$ 2} 20$ \& $2 \mathrm{SC73}$ \& ${ }^{20.35}$ \& \& \& Cassetie \&

\hline AN5620X \& $[3.50$ \& BA5102A \& $\underline{2} .75$ \& HA11711 \& c9． 50 \& LA，4250 \& E2．75 \& STK439 \& ¢5．95 \& TA7217AP \& 51.60 \& UPC118 \& $\underline{2.50}$ \& $2 \mathrm{SC8}$ \& c0． 30 \& \& \& \&

\hline AN5701 \& ¢1．80 \& BA5406 \& E． 20 \& HA17713 \& ${ }^{\text {c6．}} 50$ \& LA4420 \& $\underline{51.60}$ \& STK441 \& 97.5 \& Ta7220P \& ¢2． 50 \& UPC1188 \& c0． 90 \& 25C84 \& ${ }_{c}^{\text {c1．}}$ ¢ 30 \& \& \& \&

\hline A A5722 \& ¢1．60 \& Ba6137 \& 22.75 \& HA17174 \& c5． 95 \& LA4422 \& ¢1．40 \& STK443 \& $\stackrel{\square}{7}$ \& TA7222ap \& \sum_{2130} \& UPC118 \& ${ }_{81} 1.75$ \& 2 2c929 \& ${ }_{50} \mathbf{2 0}$ \& \& \& \&

\hline ${ }^{\text {and }}$ AN5730 \& ${ }^{1} 1.85$ \& ${ }^{\text {Bagazo }}$ \& m． 75 \& HA117 \& ${ }_{54}^{16.75}$ \& IA444 \& $\mathrm{V}_{51.50}$ \& STK459 \& ${ }_{26} 26.75$ \& TA7225P \& $\mathfrak{c} 3.2$ \& UPC12 \& $\underline{5} 20$ \& $2 \mathrm{SC93}$ \& 50.35 \& \& \& Ss \&

\hline AN5753 \& ¢1．95 \& CX0642 \& 50 \& HA11717 \& 15．75 \& LA4445 \& 52.75 \& STK460 \& 97． 50 \& TA7226P \& $5^{53} 20$ \& UPC1 \& 92.00 \& $2 \mathrm{SC1}$ \& ${ }_{54} 4.75$ \& 0 \& \& \&

\hline AN6250 \& ¢2．30 \& CX065B \& $\underline{2.95}$ \& HA11718 \& ¢4．75 \& LA4460 \& 81.80 \& STK4 \& ¢7 \& TA722 \& 9.20 \& URO \& \& \& \& \& \checkmark A \& Reves \&

\hline （631／ \& \& Cx075 \& $\underline{28.75}$ \& HA11745 \& ${ }_{59} 9.50$ \& LA4500 \& ${ }_{5}$ \& STK465 \& ${ }_{\text {c8．}}$ \& TA7230P \& 91.95 \& ， \& \& \& \& \& M \& Stereo \& 2.75

\hline 6344 \& ¢4．75 \& cx095C \& 22.85 \& HA11747 \& $\underline{9} .50$ \& LA4505 \& 2 \& 501 \& \& TA723 \& 52.95 \& \& \& \& \& \& \& \&

\hline \& ¢7．50 \& Cx1000 \& ¢5 \& HA11747A \& $\underline{9.50}$ \& LA4507 \& ¢3．85 \& STK002 \& 54.55 \& TA7240AP \& 0.95 \& UPC1 \& $\underline{51.20}$ \& 2s \& \& \& \& \&

\hline 6356 \& ¢3．85 \& cx1 \& ¢7．75 \& HA11749 \& £4．75 \& LA4520 \& $\underline{2} .50$ \& STK00 \& \& TA724 \& \& UP \& \& \& \& \& \& \& ters

\hline 62 \& ${ }^{[4.50} 5$ \& cx130
$\mathrm{CX136A}$ \& ． 50 \& HA11750
HA11751NT \& ${ }_{88.50}$ \& LA5112 \& 181.85
c1． 20 \& STK003 \& \& TA7370P \& ${ }_{51.75}$ \& UPPC 136 \& $\underline{E 20}$ \& ${ }_{2}{ }^{\text {SC19 }}$ \& ${ }_{181.75}$ \& O 000\％5こ5 \& \& \&

\hline 363 \& $\underline{5} .50$ \& CX143A \& $\underline{7} .50$ \& HA11753NT \& ［8．50 \& LA7016 \& 2.75 \& STK00 \& c6． 50 \& TA7312P \& 18.50 \& \& 2.40 \& 2SC20 \& c0．95 \& 勺njミ \& ， \& SMB \& ¢0．35

\hline \& ¢5．95 \& CX157 \& ［4． \& HA11758NT \& E8．50 \& La721 \& $\underline{2} .75$ \& STKOOS \& 27．00 \& TA7313AP \& c1．50 \& UPC13820 \& 81.10 \& 2 SC \& c0．95 \& 80 \& \& \& 20．35

\hline 610 \& ¢1．80 \& CX158 \& 13 \& HA11768 \& ¢4．50 \& LA775 \& ［4．75 \& STK00 \& c7．75 \& TA7314P \& 52.50 \& UPC13 \& ${ }^{2}$ \& 2 SC 2 \& \& \& \& \&

\hline AN6677 \& ¢6．30 \& CX1 \& \& HA \& \& \& ${ }^{1} 1.20$ \& ST \& ${ }^{\text {c }}$ 5 50 \& TA7317P \& ${ }_{27}^{2} .75$ \& UPCCI391H \& \％1．50 \& 2SC25 \& \& 宗宔 \& \& \&

\hline ${ }^{\text {ANA }}$ A 6873 \& $¢_{64} 5$ \& Cx162 \& 53.95 \& HAT1828NT \& $\underline{59.50}$ \& LA7801 \& $\underline{2.95}$ \& STK2129 \& E6． 15 \& TA7324P \& 2.50 \& UPC 1403CA \& โ5．75 \& \& \& \& \& \&

\hline 5884 \& £2．75 \& Cx170 \& \& HA12001W \& ¢6． \& LA780 \& 0.75 \& Sik22 \& \& TA7325 \& $\underline{1} 100$ \& \& \& \& \& \& \& \&

\hline 105 \& $\underline{2} 30$ \& Cx181 \& ${ }^{1} 8.75$ \& HA \& ¢2． 95 \& LA78 \& 2.95 \& \& ${ }^{26} 5.50$ \& TA7328AP \& $\underline{9} 20$ \& UP \& ${ }^{1}$ \& T0 \& ［4．50 \& quiries invited for \& lapan \& S As we \& ponted

\hline AN7110 \& ¢1．50 \& HA1124 \& \underline{C} \& HA12 \& \mathfrak{L} \& LB128 \& 12.7 \& \& \& Ta／3 \& 17.20 \& UPCL \& \& \& \& \& \& \&

\hline 111 \& ${ }_{81} 1.50$ \& HA1137W \& 81.75 \& HA12036 \& ¢5．75 \& LC4066B \& $\underline{12.95}$ \& STK419111 \& 28.95 \& ta7607ap \& 2.95 \& UPC4558C \& c0．90 \& \& \& \& CHED \& 48 \&

\hline AN7115E \& 81.60 \& HA1144 \& ¢4．25 \& HA12413 \& E．75 \& （C7）20 \& ${ }_{53} 50$ \& STK4332 \& 55.15 \& TA7603CP \& 0.95 \& UPD1514C \& 55.75 \& TA \& $\underline{\square} .75$ \& post \& ing \& en add 15\％ \& to tot

\hline 7116 \& $¢ 1.50$ \& HA115t \& $\underline{2} .50$ \& Ha13001 \& E2．95 \& LC7130 \& $[3.50$ \& STK4392 \& 27.510 \& TA7609P \& 92.70 \& UP045148＇ \& 2.50 \& TUA2006 \& ¢1． 50 \& \& 硡 \& \&

\hline 120 \& ¢1．50 \& HA1156W \& ¢1．20 \& HA13402 \& ¢4．95 \& LC7131 \& 53.75 \& ST \& c6． 5 \& TA7611 \& ${ }^{2} 3.20$ \& \& 1 \& \& \& ening tumes 10a \& m－5pm． \& Mon－Fri．9－12 \&

\hline 130 \& ${ }_{¢ 1} 1.30$ \& \& 75 \& HA13403
HA13430A \& ${ }_{¢}^{17.50}$ \& LC7137 \& ${ }_{2} \mathbf{2} 75$ \& STK5422 \& ${ }_{86} 86$ \& TA7617AP \& $\underline{2} .50$ \& XOOGaCE \& ${ }_{55}^{29.60}$ \& TDA3562A \& ${ }_{55} 5$ \& Sa／access accepted \& Mex．T \& Elephone oro \& ¢5．00

\hline
\end{tabular}

IMPORTANT TRADE ANNOUNCEMENT SATELLITE TVRO SYSTEMS

Demonstration Model

Supersat have introduced a TVRO demonstration model especially for retailers who wish to display and familiarise themselves and their staff with Satellite TV systems．The Satellite TRVO system is probably the only new development in the world of television which seems capable of capturing the imagination．The sort of interest being developed is，in our opinion，bound to lead to the acceptance of Satellite TV as the new mass entertainment medium．Most people are aware that there is something called＂Satellite TV＇，but have not，as yet， been enthralled by perfect TV pictures which have travelled some 45,000 miles through space from a variety of different countries．

Price Revolution

It will come as a very pleasant surprise to most would be purchasers that at $£ 695$（inc．VAT）our cheapest system is well within their reach．To copy a much used catch
phrase－＂The price is right＂．All that is needed to stimulate the market is an increase in public awareness and it is for this reason that we make our Demonstration Model offer．

Demonstration Offer

We at Supersat know that success for both of us depend initially on our ability to persuade you to demonstrate Satellite TV．We also know that another key factor is your initial investment cost．The Demonstration Model cost will be £399．It is expected that the major portion of this initial investment cost will be recouped by way of the profit on your very first sale．Further stock investment need not be necessary because Supersat offer a next day delivery The offer is limited to one system per retail outlet（a qualification we will strictly control）．The equipment is from a well known national supplier．

If you are a genuine retailer with retail premises you should phone immediately for further details．

> 32 TEMPLE STREET WOLVERHAMPTON WV2 4LU
> Telephone：（0902） 29022

*

 * $\mathbf{~}$ A A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $£ 60$ plus full range of Thorn remote control including $T / T e x t$ ^ DISCOUNT FOR QUANTITY
The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days $9-5.30$ (later by appointment)

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P

BETAMAX

SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P
Also Bush, Toshiba, Hitachi and Blau Punkt

> PLUS

17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER
 (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

Sourced from leading European manufacturers Alcon multimeters are ideal instruments for the T.V. service engineer. Precision fully protected movements, comprehensive ranges (plus optional E.H.T. probe) and clear mirrored scales make them perfect for bench applications, yet their rugged construction and stout carrying cases enable them to shrug off the rigours of field service use. Full after sales senvice is available, but we don't expect you to need it!

The tharecible 'MINI 20 '

28 ranges
$20 \mathrm{k} \Omega N$ d.c. \& $4 \mathrm{k} \Omega \mathrm{N}$ a.c. (With protective fuse)
Accuracy: 2% d.c. and resistance, 3% a.c. 28 ranges: d.c. $\mathrm{V} ; 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}$, $100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. I; $50 \mu \mathrm{~A}, 600 \mu \mathrm{~A}$, $6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$ a.c. $\mathrm{V}, 15 \mathrm{~V}, 50 \mathrm{~V}$ $150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. $\mathrm{I}: 30 \mathrm{~mA}$, $300 \mathrm{~mA}, 3.0 \mathrm{~A}$. $\mathrm{Ohms} ; 0-2 \mathrm{k} \Omega, 0-2 \mathrm{M} \Omega \mathrm{dB}$; from -10 to +62 in 6 ranges Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
The 28 ranges cover all likely requirements E.H.T. PROBE An optional E.H.T probe for use with this instrument, reading up to $30 \mathrm{kV} £ 14.00$ extra.

LRC (SPARES) ITD

 SONY SPARES FAST! ~ex-stock!\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{SEMICONDUCTORS DIODES}} \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|c|}{VIDEO SPARES} \& \multicolumn{3}{|l|}{SWITCHES \& RELAYS} \\
\hline \& \& \& \& \& \& \& SLC577 maoster antena \& \begin{tabular}{c}
SONY PART M \\
\(1-463-296-00\) \\
\hline
\end{tabular} \& 30.50 \& RELAY SLC7 recar \& (t-515-416-00 \& \begin{tabular}{l}
3.75 \\
3.75 \\
\hline
\end{tabular} \\
\hline \& \(\mathrm{Sen}_{\text {Gen }}^{\text {Gen }}\) \& \({ }^{0.23}\) \& \({ }_{\text {2SC }}\) 2SC 11061 \& Gen \& \& 2.25 \& MODULATOR \& 1-464.116.00 \& 50.50 \& REGAY TC-K55 \& \({ }^{1-515-597-11}\) \& 3.75 \\
\hline is 1555 \& \& \& \({ }^{\text {2SC }}\) 2SC 1114 \& Gen. \& \& 4.90 \& TAPE UP SENSOR (C7) \& - 1 - 643.145 .00 \& 1.35 \& CHANNEL KV1340/1820 \& \({ }^{1-516-847-00}\) \& 15.75 \\
\hline VIIN \& KV1810UB \& 0.91 \& \({ }_{2 S C}{ }^{\text {SC }} 124\) \& Gen \& \& \& \& \({ }^{3-6599-597-00}\) \& 0.94 \& TIMER SW SLC57 \& 1-552-438.00 \& 1.40 \\
\hline CV 12 E \& GEN \(=\) CSM -2A 4101 \& 2.20 \& 2SC 1362 -7 \& Gen \(=2\) \& 634 SP. 47 \& \({ }_{0} .23\) \& CAP 2 Shar (\({ }^{\text {c }}\)) \& \({ }_{3} 7.703 .075500\) \& \& SLIOE SW REC SL8000 \& \({ }_{1}\) \& \begin{tabular}{l}
3.95 \\
0.94 \\
\hline
\end{tabular} \\
\hline \multirow[t]{3}{*}{} \& KV 1810UB \({ }_{\text {KV }}^{\text {2704 }}\) SHOR 3042 \& \({ }_{0}^{0.94}\) \& \({ }^{2 S C}{ }^{\text {2SC }}\) 1413A \& kv Gen \& \& 6.95 \& CAPSTAA MOTOR \& \(88.838-008-10\) \& 32.60 \& SLIDE SW RP SLIB000 \& 1.552-836-90 \& 1.40 \\
\hline \& \& \& \({ }_{\text {2SC }} 1475\) \& kV 181008 \& =2SA 1174 \& \({ }^{3} .919\) \& LIMITER ASSEMBLY \& \& 2.30 \& SW Powt kV Gen \& (1.554.-966-111 \& \({ }_{3}^{3.95}\) \\
\hline \& THYRISTORS \& \& 2SC 1962 \& \& \& 1.35 \& IDLER ASSE MBLY \& x-365-932-40 \& 0.94 \& SW Pg Power kV 2060 \& 1.554-967-11 \& 3.20 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { SG-264A } \\
\& \text { SG-6.693 } \\
\& \text { SG-6533 }
\end{aligned}
\]} \& KV Gen \& \({ }_{6}^{3.82}\) \& 2SC
2SC 2009

2209 \& Gen
Gen \& \& ${ }_{0}^{0.23}$ \& BRAKE ASSEMBLY

PANCH ROLIER \& ${ }_{\substack{\text { x }}}^{\text {x-365-932-82 }}$ \& | 1.35 |
| :--- |
| 0.95 | \& \& \&

\hline \& N G Gen $=56613$ \& ${ }_{8.60}$ \& ${ }_{\text {2SC }} 2369$ \& SLC5/7ub \& \& 2.98 \& \& \& \& REMOTE \& ONTRO \&

\hline \& IC's \& \& 2SC 2551 \& KV Gen. \& \& 0.91 \& SLC6 \& \& \& RM 6048 KV + 612 \& A-100-900-8A \&

\hline \multirow[t]{2}{*}{} \& stçub \& \& ${ }^{2 S C} 2958$ \& \& \& 0.91 \& MODULATOR \& 1-464-188-00 \& 58.80 \& AM 606 KV 2704 \& A-100-904-1A \& 42.60

\hline \& kV 1810UB \& ${ }^{4.90}$ \& ${ }^{\text {2SC }}$ SO 3153 \& KV 2060UB \& \& 3.82 \& THREADING GEAR \& ${ }_{\substack{\text { a }}}^{3-6761-126-00}$ \& $\begin{array}{r}0.94 \\ 13.50 \\ \hline\end{array}$ \& AM 6038 KV 2206
AM 609 KV 1612 (MK2) \& \& 55.50

\hline CX. 108
CX 109 \& \& - \& 2S0 2257 \& SIV 515042 \& \& 2.20 \& IDLER KIT \& ${ }_{\text {A- } 670-639 \cdot 18}$ \& ${ }_{3}^{13.30}$ \& \& \& ${ }_{42.60}$

\hline CX-136A \& VTR Gen \& 7.25 \& ${ }_{2 S 0} 2773$ \& Gen. \& \& ${ }_{0} 8.48$ \& REEL MOTOR (MK1) \& A. 673.770 \& . 50 \& RM 620 kV 2 \& A. 147.02 \& 32.50

\hline \multirow[t]{2}{*}{} \& SLC57ub \& 6.90 \& 250774 \& SLLHMK \& \& 0.91 \& REEL MOIOR (MK) \& A.673.710-6A \& 21.50 \& RM 632 KV 2252 \& A. 147-064-0A \& 30.50

\hline \& \& 4.90 \& 2 20 870 \& KV 2704 \& \& 5.35 \& FORWARD ASSEMBLY \& A-674-607-1A \& ${ }^{3} .150$ \& RMM 200 SL \& A-670-107.1A \&

\hline ${ }_{\substack{\text { cx- } \\ \text { cx-186 }}}^{\text {c-7 }}$ \& SLC5UB \& 8.35 \& 2501164
250
$1497-02$ \& SLCCUB \& \& ${ }_{3.82}^{0.91}$ \& PULLEY ASSY LDAD \& X. 367 - $101-50$ \& ${ }_{0} 6.94$ \& RM 616 \& \& 192.40

\hline CX761A \& kV 2200UB \& 2.20 \& $2501497-06$ \& KV 225222 \& \& 82 \& SL-F1/C9 \& \& \& RM 72 SLC6 \& 1-463-424-00 \& 17.40

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{STK 2129}} \& \& \& \& \& \& ${ }^{\circ} \mathrm{COCO}$ \& 1-464-217-00 \& 75 \& \& \&

\hline \& \& ${ }_{8}^{12.90}$ \& PLEASE AS \& K FOR ANY \& PARTS NOT \& \& CAARIAGE MOD KIT (
CASS
COAD MECH. (C9) \& A. $675 \cdot 121 \cdot 2 \mathrm{~B}$ \& 7.55
58.60 \& GENERAL \& OMPONE \&

\hline \multicolumn{2}{|l|}{STK 4026} \& c. ${ }_{2}^{6.95}$ \& \& \& \& \& GUIDE PPN KIT \& ${ }^{\text {A-675.9190-7C }}$ \& 5.11 \& CAP 33mF 600 KV \& 1-123-024-11 \& 0.94

\hline \multicolumn{2}{|l|}{TCP 6621 Af6} \& 12.65 \& VIDEO \& HEADS \& \& ACE \& Y. \& UPPER CYLINOER

5 RING ASSEMBLY (c) \& ${ }_{\substack{\text { a }}}^{\text {A. }-366-96-943-98}$ \& ${ }_{15.05}^{22.30}$ \& \& $\xrightarrow{1-123-032-11} 11$ \& | 0.94 |
| :--- |
| 1.38 |

\hline \multicolumn{2}{|l|}{TDA A578A KV 2752ub} \& 3.85 \& SL8000,8080 \& \& DSR-43R \& 45.40 \& PINCH ROLLER (SLC20) \& x-366-930-76 \& 7.35 \& TRAP 6 M \& 1-409-333-00 \& 0.94

\hline TOA 3652
TOA $4600-2$ \& N 20526 UuB \& 8.90 \& SLC5, \& \& OSR-368 \& ${ }_{42.30}{ }^{38.85}$ \& \& TS \& \& \& ${ }_{\substack{\text { a }}}^{1-500-57-268-11}$ \&

\hline UPC 13655 \& K2 Gen ${ }_{\text {KV }} 2060.62$ UB \& 8.35
2.20 \& SLCLCO/30/40 \& \& OSR.35A \& 38.75 \& Individual belts a \& ailable if R \& \& IERMINAL ANENA \& 1-536-683-11 \& 7.30

\hline \multirow[t]{2}{*}{} \& SLCTVUB \& 16.65 \& Si-H \& \& \& -38.75 \& SLI8000 KIT 5 PIECES \& \& \& SMECPS NO 183 AG \& \& 9.75

\hline \& SLC7UB \& 8.45 \& SLC7 \& \& ACE \& 23.55 \& SLC57 7 KIT 6 PIECES \& \& 4.45 \& R.P HEAD PP128-3602C \& ${ }_{8}^{8.8292-236-x X}$ \& 13.50

\hline \multicolumn{3}{|c|}{TRANSISTORS} \& \& \& \& \& SLCO KIT 6 PIECES \& \& 6.20 \& RPP HEAD 181-36020 \& 8.829-373-40 \&

\hline PS U TRANS \& KIT 2SC 2335 SLC7 \& 7.60 \& PILOT L \& AMPS \& \& \& TAAEE UP belt tc gen \& ${ }^{3-434-172-332-00}$ \& 0.94 \& MOTOR DNF-10018 \& ${ }_{\text {coser }}^{\text {8.835-049-01 }}$ \&

\hline TRANS ASSY \& taf 40 \& 6.30 \& STR6060F \& \& ${ }^{1-518-070-00}$ \& \& belit drive ic gen \& 3-498-114.60 \& \& VIO TEST TAPE KR52H \& ${ }_{8} 8.9699995-52$ \& 32.20

\hline \multirow[b]{2}{*}{} \& TAF 5 A $=2$ SA 1206 \& ${ }^{2.20}$ \& $\stackrel{\text { cien. }}{\substack{360 \mathrm{~m}}}$ \& \& ${ }_{\text {coser }}$ \& 0.95 \& BELI MIDWAY TC 16 GSO \& ${ }_{3}^{3-531-646-00}$ \& 0.94 \& CARTRIIOGE XL 150 \& A. $450-506.9 \mathrm{~A}$ \& 17.40

\hline \& ${ }_{\text {l }}$ CFF-C8201-2SA 1115 P \& 0.91 \& 40 ma 4.5 VV Gen \& \& ${ }^{1-518.1699 x}$ \& 0.95 \& EGAPSTASTC TC 135113650 \& \& 0.94 \& \& \& ${ }^{7.90}$

\hline \multirow[t]{2}{*}{${ }_{\text {2SE }} \mathbf{2 S 8 3}$} \& SLCCM \& ${ }_{0}^{0.23}$ \& \& \& - \& ${ }^{1.15}$ \& BELT FLAT IC 18660 \& 3-543-978-00 \& 0.94 \& P. ROLLER TC 204SO \& x-354-241-30 \& 1.40

\hline \& TCK 888 \& 0.91 \& 40 mA 8V TAF-45 \& \& 1-518-409-21 \& 0.95 \& BELTAPSTANTC Gen. \& ${ }^{3} 5558-706-10$ \& 0.94 \& motor kit Mr-Gen. \& x.354-931-41 \& 13.50

\hline \& Gen \& ${ }_{1}^{1.35}$ \& \& mantals (0 \& vat rateo, \& \& TTMP BELTHMK-3000 \& - \& 0.94 \& ${ }_{\text {PMNCH ROLLER TCK }} 55$ \& ¢ \times x 3 ¢5-40-40-60 \& 0.94

\hline ${ }_{\text {2SC }}$ \& Gen \& 0.23
2.20 \& ALL SONY IV \& \& VIDEO SERV \& ulce manumls \& 7.75 \& \& \& 0.94
2.76 \& CAS HOL. ASSY. TCK44
BEARING ASSY. HMP70 \& ${ }_{\substack{x \\ \chi \\ \text { x-482-740-81 }}}$ \& 1.40
3.10

\hline
\end{tabular}

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT

Some examples of QUALITY working TVs

THORN 8800 * $\star \star \star$ £ 25
THORN 8800 (remote) $\star \star £ 30$
THORN 9000 * $\star \star £ 30$
THORN 9000 (remote) $\star \star \star$ £ 35
THORN $9600 \star £ 40$

THORN 9600 (full feature remote) | t $\star \star \star \star \star \star \star \star £ 45$ |
| :--- |

(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.
1000s of UNTESTED Colour TVs
I.E. DECCA 30s, GEC 2110, GRUNDIG, TANBERGS, G8s 520 s-550s, Thorn $3500 / 8000 / 8500$, TT, PYE, ETC.
(Many of these untested TVs just switch on)
ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
£4.95 Also Video Stands
POA
Colour TV panels \& tubes available
CALLERS WELCOME
All prices subject to V.A.T.
Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD,
CHORLTON, MANCHESTER M21 2ER.
TEL: 061-861 8501

SPARKWORLD LTD. THE SOUTH WEST'S NO. 1 IN EX-RENTAL TV's AND VIDEO's You Have Seen The Rest NOW TRY THE BEST

TV's and Videos arriving every week in superb condition. 100's of top quality working electronic V.H.S. Videos always in stock i.e. Panasonic, Hitachi, JVC etc. Including infra-red remotes with hand sets. Also Beta Videos from $£ 25$ and Philips 2000 from $£ 10$.
We have a large and varied selection of TV's including remotes and Teletext.
Delivery and Discounts on quantity.

Phone 062655294 NOW!
 Unit 3, Brunel Buildings, Brunel Road, Newton Abhot, Devon

Stockists of $4,11 \& 12 \mathrm{GHz}$ Equipment. Distributors for:

DH Satellite TV DakE

D \mathbf{D} ANTENNA

Specialists in supplying to Dealers
 CENTURY WAY, MARCH, CAMBS., PE15 80W. ENGLAND TELEPHONE: (0354) 51289 TELEX: 995801 GLOTLX-G REF: H25

-14 NeTON VAMVES							
23 Irwin Dr., Horsham, W. Sussex RH12 1NL							
Mail Order Only - Callers by Appt. only							
NEW BOXED VALVES - 90 DAY GUARANTEE							
DY87	43 p	KT66 USA	1000p	PCLL PCI 85		PL519 P1802	
ECC8	135p	KT88 USA	1100p	PL205		PL802T	390p
ECC82		边	㖪	PL504	90p		
ECC83		PCL 82				PY81/800	
EL34	250p	PCL84		PL509		PY801 PY500A	$65 p$ 150
E.H.T. MULTIPLIER. Good quality universal tripiers $£ 4.40+$ VAT + post. Sutable for most sets - B+O, Decca, GEC, Grundig, ITT, Philips, Pye, Rank \& continental sets.							
BU208A TRANSISTOR. Good quality 75p ea + VAT + post							
C.R.T. $12^{\prime \prime}$ A38/170W Hitachi with scan coils $£ 10+$ VAT post paid - Ideal for a monitor. $15^{\prime \prime}$ A38170W Hitachi $88+$ VAT post paid.							
Please add 50 p post/pkg per order and VAT (a) 15%. Please allow up to 8 days for delivery. Massive stocks of all the above types! Every popular type stocked and we specialise in unusual types. SAE quotation on any type not listed. SAE catalogue. Gov + export orders welcome. Discounts given for v. large quantities.							
WE WILL BUY VALVES + TRANSISTORS! Including complete shop clearance etc. We urgently require a qry of valves types PX4 + PX25 (or equivalents PP3/250, PP5/400, D. A30) Ex-equipment would be acceptable. Please state price required, if possible.							

Crotton Electronics are pleased to announce that they are now able to supply C.C T.V. cameras complete with standard lens, start ing at the amazing price of $669.50+$ VAT $\&$ carriage. Two models are available. Model A incorporates a 43 vidicon tube, and model B has a tube. Both models employ vidicon racking thus allowing focusing from a few inches to infinity. Both models also have a standard C' mount and thus will accept a wide range of different lenses. Model B can be driven from external sync pulses and produce a composite/non composite output. Though not new each camera has been completely refurbished to a high standard in our owr workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with ad domestic TV set by the addition of a simple modulator - kit available From an input of 240 v ac the cameras produce an output of 1 volt peak peak and are equipped with standard tripod mounting bushes. With applications as diverse as education amaeur dramatics and shoplindustrialdomestic hling rotation.

Model ' A ' all inclusive price $£ 85.10$ subject to availability
Model 'B' all inclusive price $£ 97.75$ subject to availability
DON'T DELAY - PLACE YOUR ORDER TODAY!
Also available on special offer - Brand New Time Date Generators at the amazing price of $£ 132$ inclusive. Normal price $£ 477$. These generators are mains driven and accept normal composite video in. They produce video out with time/date/day/month/and year added to the signal, and with the option of normal or inverse video of the added data. The position on the screen of the added data is adjustable. Switchable character size is also provided for, on an internal EIL switch. A REAL MUST FOR SECURITY APPLICATIONS WHEN RECORDING. There are only a limited number of these, so hurry to avoid disappointment. Orders will be dealt with on a strictly first come first seived basis.
We also have for disposal a whole host of ised items such as cooling fans, power supplies etc - so please ask for list. Our complete range of products include plugs, sockets and cables, $T V$ aerial accessories, monitors, computer products, security telephones and door entry/alarm equipment and surveillance and counter surveillance equipment. If you would like all our cats please send a $38 p$ SAE

MOST MAJOR CREDIT CARDS ACCEPTED

CROFTON ELECTRONICS

7i 05448557
'KINGSHILL', NEXTEND, LYONSHALL, HEREFORDSHIRE HR5 3HZ

CHROMAVISION MANCHESTER and BIRMINGHAM 061-736 6333

 NOW IN STOCK
WORKING, NON WORKING + UNTESTED TV's

 AT LOW, LOW PRICES THORN, ITT, MOST MAKES BUSH, PHILIPS, ETC.$$
\text { WORKING SETS FROM } £ 25.00
$$

TELETEXT, REMOTES, BASICS

ALSO COLOUR PORTABLES, NORDMENDE, T.X. ETC.
CLOCK TRIMS FOR 3V16/22 VCRs £2.00
CASH ONLY
CHROMAVISION, 95 LANGWORTHY RD, SALFORD, MANGHESTER M6 5PH
All prices subject to V.A.T.

WE ARE HERE
Only 2 minutes fror -
end of motorway

Open 6 days a week 9.30 a.m. -6.30 p.m. Sundays by appointment

CREWE WHOLE 77 Coleridge Way Tel: 0270582 15 mins from Junction 17,	TV
WORKING TVs FULLY ENGINEE TRY THEM BEFORE YOU BUY TUBES.	STED. NNED
Decca 80s \& 100s	£25
Bush T20 \& T22 etc	£30
ITT CVC 20 \& 30 \& 32 upwards	£25
G11s	£35
GEC Starline	£25
GEC 2110, 2111	£20
Rediffusion Mk 3	£25
Rediffusion Mk 1 \& 1A	£12
Thorn from 8,800 to T/X from	£20
Text Sets Available	POA
LARGE SELECTION OF OFF THE f5. DECCA, GEC, ITT, BUSH, R ALL UNTOUCHED, CHECK FO BEFORE YOU BUY UNTO TUNE VIDEO FROM $£ 135$. ALL QUOTED ARE FOR LOTS OF 5 . ARE FOR LOTS	$\begin{aligned} & \text { FROM } \\ & \text { ETC. } \\ & \text { ION } \\ & \text { JCH } \\ & \text { RICES } \\ & \text { E PLLE } \end{aligned}$

SICHT \& SOUND
 ,

 STOKE-ON-TRENT 0782335262| PHILIPS G8 | 85 | ITI | 818 | GEC | $\varepsilon 12$ | NAT./PAN. 333 | £150 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THORN 9000 | 512 | G11's | 820 | COLOUR PORTABLES | 845 | KT3 | |
| THORN 9600 | 520 | G11 TEXT | $£ 45$ | BLACKWHITE | 83 | TX9 | 860 |
| THORN $8+8$ | 511 | PYE 222 | ${ }_{58}$ | NAT./PAN. VIDEO's 2010 | ¢135 | TX10 | E70 |
| HITACHI's | $\underline{15}$ | BUSH | 4 | NAT./PAN. VIDEO's 366 | 8140 | GRUNDIG | 530 |
| DECCA 100's | $\underline{815}$ | BUSH T20 | 520 | NAT./PAN. 7200 | 8145 | NAT./PAN. | |

SATISFACTION GUARANTEED FRIENDLY SERVICE - NO GIMMICKS

 PERSONAL ATTENTION - ASK FOR JOHN SAHOTA

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'
* All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street Wolverhampton WV2 4LJ. Phone: (0902) 29022

BOLTEN LTD.
 45/46 London House,

 271, King Street, London W6 9LZ.Tel: 01-748 4137 (2 lines) Telex: 262421 BOLTEN G
Video Heads
Sony C5/C7/T7 .. 5
Ferguson/JVC(Universal) ..925
National Panasonic (Universal) $\mathbf{£ 3 2 . 9 5}$
National Panasonic (370/380) $£ 35.95$
National Panasonic (777/330) $£ 46.95$
Hitachi ...
Hitachi VT11/HIVINT33 (Originals) $\mathbf{£ 3 8 . 9 5}$
Toshiba ... $\mathbf{£ 4 6 . 9 5}$
Sanyo ..95
Fisher VHS Genuine ... $£ 51.95$
Akai (most Models)..32.95
Sharp
£46.95
Please call for full list.
Belt Kits (Most Models) .. $£ 3.99$
Remote Controls for T.V.
Grundig/Philips £16.95
Video Cable Kit
(any model to any model) ...50
Pinch Wheels (Various Models)£5.95

Please add 15\% VAT plus $£ 1.00 \mathrm{p} \& \mathrm{p}$ per order.
Delivery within 7-14 days
subject to avaHability

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer the purchaser's moriey must be refunded. Please retain proof of postage/despatch as this may be neeced.

Man Order Protecton
If you order goods from Mail Order advertisements in this magazine and pay by post a advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided
12) You have not received the goods or had your money returned, and
than 28 days from the day you sent your order and not later than wot earter from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required. procedure as soon as possible after the Advertiser has been declared bankrove insolvent. thagazie not far example, payment made in response to catalogues etc received as a result of answering such advertisements. Classified advertisements are excluded

TELEQUJPMENT DTIL. DusCOI Trace 50 MHz . Delay	Type CM6038-DB Crosshatch/Grey Scate/Blank Ras- ter. Mains or Battery. ONLY 12 each ($\mathbf{P}\{\mathrm{P} £ 2$)	
COSSOR CDU150. Dual Trace 35 MHz Solid State.		
	TELE-VERTA Converts VHF signals to UHF $£ 10$ (P8P $£$) CROSSHATCH GENERATOR IVTSM CrosshatctiDots White. RF \& Video Outputs. Tuner Control $£ 10$ (P\&P \&4) DEGAUSSING COILS E20 (P8P E4) ADVANCE AM SIGNAL GENERATÖR SG628 150 KHz -	
With		
Manual 150		
CE		
S.E. LABS SM111. Oual Trace 18MHz Solid State	adVance am signal generator type 62. 150KHz-220MHz MEIRIX WOBBULATOR Type $210.5-220 \mathrm{MHz}$ PHILIPS WOBBULATOR GM2877S $5-220 \mathrm{MHz} \& 440-$	
Portable AC or Extemal DC operation $8 \times 10 \mathrm{~cm}$		
display. With Manual		
PHILIPS PM3230. Dual Beam 10MHz Solid		
te 1100		
TELEQUIPMENT D43. Dual Trace 15 MHz . With		
Manual.............. 1100		
EQUIP	RACAL 32 MHz UNIVERSAL COUNTER TIMER Type 836 with Manual MARCONI TF2604 (Later version of TF 1041 VTVM) $20 \mathrm{~Hz}-1500 \mathrm{MHz}$ AC/DC/Ohms AC $300 \mathrm{mV}-300 \mathrm{~V}$	
AVO 9 Mk4 (Identical to AVO 8 Mk4 but scaled (P\&P £5).		
differently) Complete with Batteries \& Leads. 555	PHILIPS COLOURBAR GENERATOR type 5508 Vide0	
AVO 8 Mk2 Complete with Batteries \& Leads $£ 45$	out Many functions E125	
Above items in GOOD WORKING ORDER -		
appearance not A1 hence the price.	ISOLATING TRANSFORMER	
AVO TEST SET No 1 (Military version of AVO 8)		
Complete with battenes, leads \& Carrying Case . 655 AVO Model $7 x$. Complete with batteries, leads \&		
carying case £40	NEW EQUIPMENT	
AVO Model 73. Pocket Multimeter (Analogue) 30		
ranges. Complete with batteries \& leads		
AVO 72 - Similar to above but no AC current range. With batteries \& leads. £10		
AVO TRANSISTOR TESTER TT169		
with batteries, leads \& instructions ($\mathrm{p} \& \mathrm{p}$ £3) NOW ONLY £12	BLACK STAR FREQUENCY COUNTERS P\&P £4 Meteor $100-100 \mathrm{MHz}$	
PROFESSIONAL $9^{\prime \prime}$ GREEN SCREEN MONITORS	Meteor $600-600 \mathrm{MHz}$. $\mathbf{~} 126$	
made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in	BLACK STAR JUPITOR 500 FUNCTION GENERATOR.	
Cased. Good condition	Sine/Square/Triangle $01 \mathrm{~Hz}-500 \mathrm{KHz}$ P\&P \& 4 E 110	
OiSK DRIVE PSU.240V 1N: 5V 1.6A \& 12V 1.5A	HUNG CHANG DMM 60to. $31 / 2$ digit. Hand held 28	
out. Size: W125mm, H75mm, D180mm. Case	ranges including 10 Amp ACICC Complete with batteries \& leads. P\& P $£ 4$	
Owerty keyboard (as in Lynx Micro). Push to teries \& leads. P\&P \&4		
make. Cased. - 55 each (P\&P¢2)	OSCILLOSCOPES PROBES Switched $\times 1 ; \times 10$. P\& PE2	
Various $51 / 4^{\prime \prime}$ Fioppy Disk Drives and Stepping Motors Avaliable.		
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check avaitability betore ordering. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Cariage.		
STEWART OF READING		
110 WYKEHAM ROAD, READING, BERKS RG6 1PL		

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote)
PHILIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT
THORN 8800
(remote)
THORN 9000
(remote)
THORN TX
VHS VIDEO from $£ 85$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

STOP PRESS

Electronic Video including Ferguson 3V29/30, Amstrad 7000, Sharp 9300, now in stock at unbeatable prices. We also specialise in direct loads delivered to your door direct from source.

For further details phone:
COLIN BROOMFIELD,

UNIT 7, STATION STREET,
BROMSGROVE, WORCS.
(0527) 37037/71186

WD-TV

THE T.V. WAREHOUSE, WATLING STREET (A5) HOCKLIFFE, LEIGHTON BUZZARD, BEDFORDSHIRE
(M1 Jnct. 12 - 3 miles) TEL: 0525210686

100's

 of CLEAN WORKING COLOUR TVsHYBRID FROM £10 WORKING PHILIPS G11 $£ 50$
G11 TELETEXT £ 100 WITH HANDSETS $9000 £ 30$
9000 REMOTE £40 WITH HANDSET SOLID STATE 18" £30
COLOUR PORTABLES FROM £50

VIDEOS ALL WORKING AND CLEAN

FERGUSON FROM $£ 85$
HITACHI + NATIONAL PANASONIC FROM £125
DUAL SPEED INFRA-RED REMOTE, DOLBY STEREO £180 VARIOUS BETAMAX FROM £40 \star SPARES \star LEADS \star PANELS \star \star REMOTE UNITS \star TUBES \star \star USED VALVES \star ALL AT LOW LOW PRICES CALL OR PHONE * TNT DELIVERY AVALLABLE POSTAL DESPATCH * ACCESS OR VISA OPEN MONDAY-SATURDAY gam-5.30pm

SPECIAL TRADE ANNOUNCEMENT

LARGEST STOCKS OF EX-RENTAL 'THORN'

COLOUR TVs \& V.H.S. VIDEOS

8800 R/C	$3 V 00$
9000 R/C	$3 V 16$
9200 R/C	$3 V 22$
9600 R/C	$3 V 23$
9600 TXX	$3 V 29$
TX9/TX10	$3 V 35$

Cabinet 9600 with Brand New Hand Sets
Prices start from $£ 6$, or working sets from $£ 12$

ALSO UNLIMITED SELECTION OF

BUSH T20/24
DECCA 80/100
G.E.C. SOLID STATE \& STARLINE HITACHI ITT CVC30 \& CVC45

PHILIPS G8, G11 \& KT3 R/C REDIFFUSION MK 1 \& MK3 REDIFFUSION MK 4 \& TELETEXT

TV \& VIDEO STANDS IN STOCK
Lorry Loads Delivered from Source DON'T HESITATE TO CONTACT US

FOR FRIENDLY SERVICE TRY US - YOU'LL LIKE US!

MIDLAND BRANCH Hockley Discount Televisions, 94 Soho Hill, Hockley. Birmingham B19 1AE 021-551 2233 - Ask for Jazz

NORTH-EAST BRANCH Northern TV Distributors, Unit 2, Perth Court, 11th Avenue, Team Valley, Gateshead, Tyne \& Wear. 091-487 5389 - Ask for Joe

AUTUMN SPECIALS HITACHI VHS VIDEOS SUPERB CONDITION LARGE QUANTITIES

10 GEC SOLID STATE	$£ 150$
10 BUSH T20	$£ 250$
10 ITT CVC35	$£ 300$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $8000 \mathbf{1 7 " \prime}^{\prime \prime}$	$£ 150$

ALL + VAT

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

Universal Semiconductor Devices Ltd. 17 GRANVILLE COURT, GRANVILLE ROAD. HORNSEY, LONDON N4 4EP, ENGLAND. TEL. 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON
SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES VHF/UHF DEVICES - ALL SHAPES AND SIZES

FETS - POWER MOSFET UNIJUNCTIONS

DIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES THYRISTORS AND TRIACS - ALI
草

SHAPES

INTEGRATED CARCUITS:
CONSUMER - DIGITAL/ANALOGUE
MICROPROCESESORS AND PERIPHERALS
IC SOCKETS
MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING $£ 1.00$ IN STAMPS, CHEQUE OR POSTAL ORDER.

CATALOGUE

O CHARGE, WHEN REQUESTED ON OFFICIAL , AND DISTRIBUTORS

SPECIAL DISCOUNTS AND PAYMENT TERMS ARE AVAILABLE TO ABOVE INSTITUTIONS.

LEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

\star Do you use cathode ray tubes?
\star Can't find a replacement or shocked by the cost?
\star It may well be that a rebuilt tube will solve your problem.
Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN UXBRIDGE

At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.
UNIT 4, SWAN WHARF, WATERLOO ROAD,
UXBRIDGE, MIDDLESEX.

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill,
Kit Price $£ 57$ inc P\&P and VAT. Avaiable from Lutoo only. Also supplied worldwide for 557 including P\&P. Depends on depth and area to be polished. TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

TUBE SIZE INCLUDING \& UP TO	DELTA i.e. A44-271X A47-342X A47.343x 470CTV22 A51-110X $510 G L B 22$ A56-120X A56-410X A66-120X A66-410X A67-120x A67-150x	AXD37-001 470 ESE22 470ERE 22 A51-161X A51-421X A51-426x A51-570X A51-580X A51-590X A51-610X A51-701X	INE \& PIL AXT51-001 510JKB22 510 VAB22 510 VLB 22 510 V B22 A56-510X A56-540X A56-615X A56-701X AXT56-001	560 AKB 22 560BYB22 560 CYB 22 560 EGB 22 560FGB22 560GAB22 A66-510X A67-701X		
$20^{\prime \prime}$	£32		£44		£50	£58
22"	£36		£46		-	£64
26"	£38		£48		-	f85

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee. All tubes exchange glass required. Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube. 1 or 2 tubes $£ 6.3$ or tubes: Within 40 miles of Luto Nation wide delivery available charges on Please add 15\% VAT to all prices. Callers welcome. Please phone first

WELL VIEW
 114-134 Midland Rd
 Luton, Beds.

Open Mon-Fri 8am-6pm, Sat 9am-1pm. Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837
H. K. Television, London, E.2. Tel. 01-729 1133

West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901 Rea \& Holland, Ipswich, Suffoik. Tel. 0473827562

Phone between 12-2p.m., \& 6-9 p.m
WANTED A56/A66-510X/540X, Hitachi and Sony, old glass for cash

SETS \& COMPONENTS

CASH PAID Now for your surplus TV spares. Transistors. I.C. setc. Tel. MR. FORSHAW 09Y2 29022.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp, fully refurhished. PEARSON TELEVISION 1484863489 . Delivery arranged.

NEW AND SECONDHAND COLOUR TV SPARES. l'ancls \& Tubes most makes also panel repair service. Tel. Southport (07(4) 7441। anytime (24hr).

PHILIPS G1I AND BUSH T20 regular supplies. For prices phone 01-845 2036.

SUPERVIEW TUBES CHRIS KELLEHER'S TV, Kimturk Cork mogsuth . New plant using high beam RCA longlife electron guns new tube results Munster delivery weekly.

GIENUINE GRUNDIC; SPARFS. Fath heiptul service. sensible prices. TEIEQUIPMENT. PHILIPS. OSCII.LOSCOPES. IEST EQUIPMENT. MANUALS. Ochre Mill Terhnical. Stone 0785 814643.

HALTON TV
 TRADE DISPOSAL

The Wholesaler you won't find competing with you on the High St.

TV and Videos
GEC, Philips, Decca, Doric, Thorn
\star Remember, we have NO retail outlei \star
St Michaels Industrial Estate, Widnes
Tel. 0514231577

COLOUR BAR GENERATOR

Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster Half Black \& White, Mains Powered. $\mathbf{7 7 . 7 5}$ OUTPUTS PROVIDED UHF OUTPUT
VIDEO OUTPUT
SOUND OUTPUT LINE PULSE

Same as above plus RGB output Black and White Pattern Generator Crosshatch, Dots, Peak Whit, He3.50 ines £19.50 CRT TESTER/REJUVENATOR £160.25 PRICES INCLUDE VAT AND POSTAGE
C.M.J. ELECTRONICS

PO Box 214 ,
Wolverhampton WV11 3BE.

Then why not join our many satisfied customers VCR PROTECTIVE COVERS PERSONALISED WITH YOUR TRADE NAME - Firs all modern vCRs - excluding portasles

- Gives all-found protection against damage/scratching during transit - no dangling mains flexes
* Allows discreet removal to and fro - your customer will greatly appreciate this
* Creates good caring company image

Price lincluding P \&
Pack of $5-£ 30$
Pack of $10-\mathbf{£ 5 5}$
AND NOW BY POPULAR REQUEST PERSONALISED T.V. TRANSIT COVERS!

* No more scratched screens!

Standard size £7.50 each Exitra Larg

 DON'T DELAY-ORDER TODAY!
Just print out your trading name and enclose with your order N.F.P.C., 3 Fenham Hall Drive, Newcastle upon Tyne NE4 9UT Tel: 091-272 4645 Please allow 21 days for deliven

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word (minimum 12

> PRICE BUSTERS IN BIRMINGHAM FOR TESTED AND UNTESTED TV's AND VIDEO's
> ALSO AVAILABLE DIRECT LORRY LOAD RING - 021-772 2733 WILTSGROVE LIMITED
> (Next Door to UNCLE'S DISCOUNT STORE)
> 128-130 Ladypool Road,
> Sparkbrook, Birmingham B12 8JA.
> CASH ONLY
> "STOP PRESS"
> NOW IN STOCK ELECTRONIC VIDEO'S AT UNBEATABLE PRICES

THE TRADING POST CLEARANCE SALE OF ex-Rental colour television SETS AND VIDEO's

Colour TV's working from $£ 20.00$ + VAT Off the pile $£ 12.00+$ VAT (batches of 10) T.V. Stands from $£ 3.00$ GOOD DISCOUNTS FOR DIRECT LOADS

Open 9am to 5pm Monday to Friday
10am to 4pm Saturday - Suncay by appointment THE TRADING POST, UNIT 13, SAVILIE ROAD, WESTWOOD, PETERBOROUGH

TEL. 0733261500

NOTICE TO READERS

Whilst prices of goods

 shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine

- SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

 TELEVIEW 01-994 5537 194, Acton Lane, London W.4.
5
 EER OICE PAGES

 words), box number 70p extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC'. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).
FYLDE T.V. AND VIDEO DISTRIBUTORS Unit 7, Arkwright Court.
 Blackpool/Fylde Industrial Estate Very End of M55 left at roundahout.
 UNLIMITED SELECTION OF
 THORN 8800
 8800 R/C 9000 9000 R/C 9600 R/C 9600 TTX
 PHILIPS G11
 G11 R/C G11 TTX
 GEC $\quad \mathrm{S} / \mathrm{S}$ JVC 20 "
 MONO's $20^{\prime \prime}+24^{\prime \prime}$ AND MANY MORE TRADE WORKERS TO ORDER PHONE BLACKPOOL (0253) 64413

BOURNEMOUTH
BEST SOURCE IN THE SOUTH FOR CLEAN WORKING TV \& VIDEOS
TVs Bush/Decca/GEC/ITT/Japs/Philips Thorn REMOTE \& TEXT Videos 2000, Beta \& VHS PLEASE PHONE FOR LIST Mon-Fri 9-1, 2-5
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

PLEASE
MENTION
TELEVISION
WHEN
REPLYING

TO
ADVERTISEMENTS

TURN YOUR SURPLUS
ICS transistors etc, into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

Contact:
COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs.
Tel. 0945584188

* established over to years *

B.G. COMPONENTS

T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices,
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday
Hill Street, Oldham OL4 2AG. 061-624 1753

WIZARD DISTRIBUTORS

 MANCHESTER TV \& VIDEO SPARESWe stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR.
Did you know we also stock

FUSES

 TUBES AERIALSAEROSOLS
RESISIORS
CAPACITORS
VAIVES
HANDSETS
$\stackrel{\text { I.Cs }}{ }$ VIDEO LEADS AUDIO LEADS SEMICONDUCTORS SERVICE MANUALS
TEST EOUIPMENT TVNIDEO TROLLEYS AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

NORTH WEST ELECIRONICS NEW STOCKS ARRIVING DAIIY

NEW TRADE SHOWROOM NOW OPEN. WORKING TVS AND VIDEOS ON SHOW.

comoui ryas guld yidios

Refurbished TV's

BUSH T20/T26
PYE KT3
Others done to order.

DISCOUNT FOR QUANTITY

EX-EQUIPMENT PANELS NO EXCHANGE REQUIRED If De- Line Power Frame $\begin{array}{llllll} & & \text { coder scan } & & \\ \text { T20122X } & 14 & 18 & 17 & 14\end{array}$ $\begin{array}{llllll}\text { T26 } & \mathrm{X} & 16 & 20 & 17 & \mathrm{X}\end{array}$ ALL PRICES INCLUSIVE OF POSTAGE BUT PLUS VAT CHEQUE WITH ORDER PLEASE

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.
 5 MINS FROM MOTORWAY

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE

SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime}$ \& $26^{\prime \prime}$ ONLY £20.00 each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV f1.25 per panel plus post \& packing

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
Line Ouput
2718 (T703A, T706A)
New (Complete)
$£ 19.00$
Less Focus Module and
Rectifier
£10.50
T20, T22 (T705A) $£ 11.00$
T26 (T705B) £11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\mathbf{£ 6 . 0 0}$
Switch Mode
T114A
f 6.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT. Tel: 01-868 5580
N. Skehan

Agents Office. Callers by appointment only.

EAST ANGLIA SUPPLIES (BARRY T.V. SERVICES)

WE SPECIALISE IN LATE MODEL TELEVI SIONS AND V.H.S. VIDEOS.
T.V.'s

G11's, KT3, K30, K35, CTX
Other makes available.
VIDEOS
Ferg 3V29, 3V30, 3V35, 3V36
Nat Pan 2000, 2010, 333.
Hitachi 8000
Mitsubishi - various models.
All items fully serviced and ready for sale or rent in excellent condition. Free delivery for sensible size orders (petrol only charged).
Phone today for prices and availability to CAMBRIDGE 69215

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

//Cs - Tuners - Transistors - Valves - Diodes etc. any quantity considered - immediate payment

ADM ELECTRONIC SUPPLIES
Tel: 0827873311
WANTED EX RENTAL colour televisions in bulk Regular supplies. Casth paid, will collect. (1533) (666483 694936 Leics
GOLD PLATEI) SCRAP WANTED. Scrap edge connectors. circuit boards, anything considered. Contact P \& F TURNER \& SONS. Tel. Oxford (0865) 510293. SHARP MODEL 12P 414 B/W Portable. Will collect. Phone 01-451 3093

COURSES

Run Your Own Aerial Erection Service!

Start off on the right course ... be fully informed! One week intensive instructional courses, run by an ex-broadcasting engineer. Residential, marvellous accommodation with excellent food. Theoretical and practical "Hands on" instruction. Training covers all aspects of television and radio reception. Become an aerial erector who can provide the best, because he's learnt the best way!
Courses throughout the year amidst the beautiful Highland scenery. Non-participating partners welcome at minimum extra cost. Transport provided if necessary.

Further details by SAE to: R.B. Mannion,

Badcaul House, Badtaul,
Dundonnell, by Garve,
Ross-Shire IV23 20Y.
Tel: 085-483-213.

MISCELIANEOUS

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation

VHS $\star \star$ V2000 $\star \star \star$ п BETAMAX $\star \star \star$ UMATIC bas
For full details telephone
0253725499 (Day)
0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS

SOLE SUPPLIERS TV/VIDEO Repair manuals/cir cuits, fooks s/manuals supplied by return. S/sheets $£ 2.50$ except (TV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone (6698 884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

PICTURE TUBE REPAIR EQUIPMENT BMR 90

Versatile and reliable. Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.
Regenerates picture tubes even better Also IN-LINE - Removes short-circuits, even between cathode and filament • Measures beam current, emission current, life expectancy, etc.
can pay for itself in 4 weeks, if you are not using BMR 90 you are making less profit than you could.
Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road,
Penrhyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246

NOW TOTAL SPARES SUPPORT FOR GRUNDIG
 FROM
 ALL from STOCK (Subject to availability from Grundig)
 Trade Prices subject to official order
 CABINETS \star KNOBS \star TUNERS \star CONTROLS * CRT'S $*$ TRANSFORMERS SEMT'S * I.C.'S * CAPACITORS * REMOTES $*$ TRMMS \star END USER PARTS
 $$
\begin{array}{ccc} \text { Tel. } & \text { W/I/ow Va/e Elecironics Ltd } & \text { Tel. } \\ 0734 & 11 \text { Arkwright Road, Reading, Berkshire RG2 0LU } & 876444 \\ 876444 & 11 & \end{array}
$$

 $876444 \quad 11$ Arkwright Road, Reading, Berkshire RG2 0LU

 $876444 \quad 11$ Arkwright Road, Reading, Berkshire RG2 0LU 876444 876444 SOLE UK GRUNDIG PARTS DISTRIBUTOR

 SOLE UK GRUNDIG PARTS DISTRIBUTOR}

NOW TOTAL SPARES SUPPORT FOR

FROM

ALL from STOCK (Subject to availability from Fidelity)
Trade Prices subject to official order - all others supplied at retail CABINETS $*$ KNOBS \star TUNERS \star CONTROLS * CRT'S * TRANSFORMERS SEMIS * I.C.'S * CAPACITORS * REMOTES * TRIMS * END USER PARTS
Tel:
.0734
876444
GENUINE FIDELITY PARTS AT STANDARD FIDELITY TRADE PRICES

METERS

AYON MEEEBS

We buy and sell and repair TV coinmeter Reasonable prices, one year guarantee. 327 Church Road,
St George, Bristol.
0272559761

[^1]22 SMITHS 2 man 50 pence coin meters. Most unused t150) to clear. (1322 29581
METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498

AERIALS

MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) £1 (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

TV AERIAL BOOSTERS

B45H/G UHF AMPLIFIER 20dbs gain, next to the set fitting, battery PP3 or 8 V to 14 V working. SPECIAL PRICE $\mathrm{E}^{7} .70$.
SEND OR TELEPHONE FOR OUR COMPLETE LIST OF RADIO AND TV BOOSTER INCLUDING VIDEO (VCR) BEAMER-BOOSTER $\mathbf{~} 10.50$.

P\&P £1 NO VAT. ACCESSNISA CARDS WELCOME ELECTRONIC MAILORDER
62 Bridge Street, Ramsbottom, Lancashire, BLO 9AG.
Tel: (070 682) 3036. (24 hr).

Euro-Sat Parabolic Dish Antennas (Parent company est in SATELUTE TVRO ANTENNAS TOP QUALITY SOLD GLASSFIBRE DISH ANTENNAS TRADE PRICES
1.6M. DAA 11-12-4 GHZ BAND
1.8 M .

2.3M. DIAA (PETAA 11.12.-4 GHZ BAND
3M. DIA $11-12-4$ GHZ BAND

Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. 061-437 2631 061-881 4249

SATELLITE TV
 RECEPTION EQUIPMENT
 Dishes 0.9 to 2.8 m , complete systems $10.9 .12 .7 \mathrm{GHz}, 4 \mathrm{GHz}$ LNB's, demodulators, and atl those accessories Manufacturers and Distributors of high quality satellite TVRO equipment.
 KESH ELECTRICS LTD.
 Main St., Kesh, Co. Fermanagh, N.I.
 Phone: KESH (03656) 31449
 SATELITE TELEVISION DISCOUNT SALES
 T.V.R.O. OELUXE SYSTEM 1.2 m offset dish polar mount + sland + feeding inc polarizer + INB + motor dive + remote receiver and handset. Cash Price $£ 895$ inc. VAT
 Dish wall brackets $£ 40$ extra. Demonstrations by appointment. personal collection advised.
 S.A.E. for colour brochure:
 LEAK ELECTRONICS
 Littlemoor Lane, Sibsey, Boston, Lincs PE22 OTU Tel. (0205) 750630

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost, full band satellite TV systems. Full band system £495 + VAT and Carriage
Write or telephone for details or call in at our factory showroom
NETWORK SATELLITE SYSTEMS LTD.
Unit 7-8, Newburnbridge Ind. Estate, Hartlepool, Cleveland
Tel. 0429274239 or 869366

SERVICE SHEETS

SERVICE SHEETS ON MONO TV's, radio etc at $£ 2$ each plus S.A.E. We also stock manuals on video recorders and colour TVs. Please send for quote: bell.s television services. 19) Kings Road. Harrogate, N. Yorks HG15JG.

SERVICE DATA-UK VCR \& CTV
Circuits only or complete with layouts setting-up instruction etc.

CTV from $£ 2.55$ VCR from $£ 4.25$ (17p L.S.A.E. brings list)
DATA-GO, 112 Ameysford Road, Ferndown, Dorset BH22 9QE

GERMAN SERVICE SHEET SPECIALISTS

We furnish any kind of German service sheet and manual. Also thousands of different sheets and manuals available.

For any enquines:
DÖNBERG ELECTRONICS
Schoolmasters House, Rannatast,
Co. Donegal, Republic of Ireland.

TECHNICAL INFO SERVICES (T) - 76 Church St., Larkhall, Lanarkshire ML9 1HE. World's Sole Publishers of Comprehensive TV/Video Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues. MAIN STOCKIST OF ALL HEINEMANN-NEWNES TECHNICAL BOOKS DELIVERY BY RETURN FULL LIST ON REQUEST
Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and expense £3.
Any published single service sheet for $\mathbf{£ 2 . 5 0}+$ Isae except ctv/mus-c/combis from $\mathbf{£ 3 . 5 0 + \text { Isae. }}$
A selection from our stocks of thousands of Service Manuals ready for despatch by return post.
Any Sony: Hitachi ctv from $£ 9.50$. Thom $3000 / 3500$ £9.50. Thorn $8000 / 8004 / 8500 / 8600$ £9.50. Philips G8 complete $£ 9.50$. Decca $30 / 31$ £8.50. Ferguson/JVC 1st video $£ 19.50$ or 3 V00 types basic manual $£ 19.50$. Any Finlandia: Tyne CTV £9.50 each. Rank A823 complete £9.50.
COMPREHENSIVE PRACTICAL TV REPAIR MANUAL $£ 9.50$ PRACTICAL RADIO SERVICING \& REPAIR COURSE $£ 9.50$ THE 11 TUNBRIDGE REPAIR MANUALS OM Y £88 THE 5 MCCOURT REPAIR MANUALS

ANY SET OF 5 INDIVIDUAL VIDEO REPAIR MANUALS FOR E12.50 OR ALL 3 SETS (15 MANUALS) FOR £36.
UNIQUE COLLECTIONS OF CIIRCUITS, LAYDUTS, ETC. . . . FANTASTIC VALUE
British ctv from hybrids to modern (3 binders) £58 Videos, al types (3 binders) $£ 58$... any 1 for $£ 20$ Mono TV (2) £ 38 Foreign ctv (2) £38 Domestic Eqpt (2) £3£ Portable British ctv (1) £20 plus VAT.

COMPLETE REPAR SYSTEMS . . . huge Savings from published prices

British ctv 3 binders of Circuits plus 6 Repair Manuals plus ref books, etc.
for only $£ 140$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $£ 65$

Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models for only $£ 85$ Complete Integrated T.V. Repair System \quad only $\mathbf{E 2 5 0}$ or in 12 sections at $£ 25$ per section Contents: 8 binders of circuits/16 Repair Manuals/dozens of other manuals . . . Any new publications from us | within 1 year of ardering 1st section will be added at no extra charge. . . Any new publications from us |
| :--- |
| No VAT on Systems |

NEW - PRACTICAL TRANSISTOR - NEW - VIDEO REPAIR SYSTEM 3 £28 - NEW From beginners/students elementary theory to more Binder of Circuits alone $£ 295$ Repair Manuals $£ 12.50$ advanced. Huge section British/Foreign equivalents/ 3V31/32 Sham 2300 to 9700 Philips Laser Disc Pan 7000 attematives/other data. $£ 5.80$ Post Free. 72007800 .
Repair data/Circuits/Service data almost any individual mono tv $£ 12.50$ basic ctv $£ 16.00$ video $£ 25.00$ Repair data/Circuits almost any individual mono tv £10.50 ctv E12.00 video £10.50 LSAE BRIMGS ANY REQUESTED QUOTATION - FULLER DETAILS - FREE MAGAZME - PRICE LISTS ETC. PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock. Colour E3.00 Mono E2.00 Manual prices on request. All our prices include post and packing costs.
 Send stamped ervelope for free catlogue and any enquiries.
 SANDHURST TV SERVICES (MAIL ORDER)
 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

SITUATIONS WANTED

BUISINESS WANTED Video. T.V.. Hi Fi sales and service business in London or within 20 miles radius of London. Frechold preterred but good leasehold will be SATEIDITTE SYSTEMS Installations Manager wanted for company based at Manchester, (12045 503570 (Mikc). considered. Tel. 01-917 3410 .

ENGINEERS HOW SECURE IS YOUR FUTURE?

Would you like to be part of one of the FASTEST GROWING MOST EXCITING organisations in the "Service Industry"?
As major trade contractors and "authorised Service Centres" for a number of top Japanese and European manufacturers, we are interested in hearing from Engineers (Field and Workshop) who have at least three years experience, and are able to provide a high standard of service on Video, CTV, Audio and Microwave products.
Still interested!! and would like to join a team of highly regarded professional people who are rewarded accordingly, then write now to:

Audrey Marshall, Service Operations,

ExtraCare, 46 Henconner Lane, LEEDS, LS13 4ER

ExtraCare

FAST RELIABLE SERVICE

SWITCH ON TO PROFITS

WITH

G11 PYE and PHILIPS 22" ITT REMOTES
G11 TEXT PYE/PHILIPS
KT3
VIDEOS

£20
£35
C55 $£ 50$ $£ 10$

> OFF THE PILE PRICES

ALSO ON STOCK

DECCA 80-100-88-0911 TEXT. PYE 713, 725, 222. ITT CVC 20-23-25-3032. PANASONIC 261, 85GA, 2205 REMOTE. TELEFUNKEN 8256 REMOTE. SONY 1810, 2022. FERGUSON TX, 3740, 3757, 9000 , 9200 , 3722 REMOTE. GEC 2242, 2642, 2069 TEXT. TOSHIBA 2095 REMOTE. GRUNDIG 3020-3022 TEXT, 4400 REMOTE, 6610. MTSJBISH CT200, 2606, REMOTE, 2206. HITACH 192, 260 REMOTE, 180, 2051, 210. AND MANY OTHER TYPES

MOST OF OUR SETS OFF THE PILE SWITCH ON

100s and 100 s
 OF FULLY WORKING SETS AVAILABLE, ALL SEEN WORKING. CALL \& CHECK THEM OUT. STARNDARD TYPES 17" TO 26", REMOTES, TEXT. CABINETS ARE EXCELIENT AND READY FOR IMMEDIATE SALE OR RENT.

> VHS VIDED ELECTRONIC AND ALL WOR<ING, GOOD CASES. STANDARD TO FLLL I/R REMOTE CONTROL. BY PANASONIC $2000,2010,366,7200$. MI-SUBISHI, SHARP, GEC 4001-4108. HITACHI VT9, 8300, 8700 . JVC 2200 POヨTABLE, 7200, 7300, 7700. AMSTRAD, DECCA DK7200 AND MANY OTRERS.

> 2010 STSTEM - SWITCH ONS 2020-2021-2022. GRUNDIG $2 \times 4-2 \times 4$ SUPER

> CLEARANCE COLOURS CHEAP 10 SETS $£ 80$ AND SOMETIMES EVEN LESS. SLOT METERS AVAILABLE - ASK. ALL PRICES BASED ON QUANTITY. ALL PLUS VAT.

CENERAL FAGTORS

 UHION STREETDONCASTER, SOUTH YORKS. 0302-49583

CASH NO CHEQUES

 ONLY $21 / 2$ MLES FROM (AIM) FOB M18-M1 10am to 5pm DALLY
TELEVISION, VIDEO SALES

 AND RENTALSESTABLISHED 27 YEARS

FOR SALE

SUCCESSFUL, PROFITABLE, MAIL ORDER SERVICE SHEET BUSINESS Large number of regular customers. Price includes stock, equipment, and starting assistance.
\&6,000
Suitable for technician with trade and repair experience. Phone Sandhurst TV on 0252876968

```
        RADIO, T.V., HI-FI,
        RECORDS & TAPES
            BUSINESS FOR SALE
    DO YOU HAVE
    (a) A wish to quit the ratrace?
    (b) Drive and enthusiasm?
    (c) E31.500?
    (c)
    (a) It is situated in popular N. Devon resort.
    (b) Present T/O £62,000 (could easily be in
        creased with D & E, lacking in present
        owner)
    (c) Lease =f12,500 S.A.V. =£17,000 approx
        F&F=£2,000 арprox. = £31,500
    Weekly rent f80.00 per week, plus rates.
    Freehold option available.
    Serious applications to: Box No. }216
```

 BOOKS AND PUBLICATIONS
 SUCCESSFUL TELEVISION DEALING - Practical Business Guide: Chepuc/P.O. £4 to I.P. PUBLICA. TIONS. P.O. Box 21.3. Wolverhampton WVII 2PQ

THE DOMESTIC VIDEO RECORDER SERVICING BOOK

THE ENGINEERS BIBLE
with chapters on hi fi, digital servos, LUMINANCE AND CHROMINANCE SIGNAL CIRCUITS, FAULT GUIDES AND CONNECTION DATA A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS. THE COMPLETE REFERENCE TO VIDEO RECORDER CIRCUITS
ORDER YOUR COPY NOW FOR ONLY $\mathcal{L} 16,95$ inc. P\&P OTHER TITLES AVAILABLE
SEND S.A.E. FOR LIST DIRECT FROM: GROVE FARM, LONG LANE, BARNBY IN THE WILLOWS, NEWARK, NOTTS
CHEQUES AND PO'S PAYABLE TO D. BEECHING.

MACDONALDS RADIO \& TV SERVICING BOOKS, NEW 74-75, 75-76, 76-77, 77-78, 79-80, 80-81, 82-83, 83-84, 84-85, 85-86.		
Macdonalds Price		£24.30
OUR PRICE	85-86	£22.50
Two or more	10	£21.00 each
Full set of 10	AVAILABLE	£199.00
Prices include delivery U-VIEW, 29 Warmsworth Road.		
Doncaster, Yorkshire DN4 0RP.		
Tel. 0302-855017. Callers ring fir		

Sabaco For a great deal! TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO'S OFF THE PILE (Mostly switch-ons) Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips 550/Grundig \& many more. bRAND NEW SETS AT LOW PRICES VHS VIDEO'S
Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes
OPENING HOURS:
MONDAY TO SATURDAY 9am to 5.30pm
CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:

Sabaco
75 Robertson Street,
Glasgow
(041) 221-2146

Head Office:
Sabaco
Saba House, 46A Derby Road, Sandiacre, Nottingham (0602) 397555

SOLARTRON OSCILLOSCOPE, 50 MHz bandwidth dual timebase with delay. $\mathbf{\text { 275 }}$. Rayleigh (12 (1) 743520 . SECONDHAND INSTRUMENTS. Send S.A.E. for list. Viking Electronics, Orford, Woodhridge, Suffolk IP12 2 SS .
PHILLIPS V 20(6) TAPES, V2mm heads \& spares, various service manuals, PM2517 digital meter. Telephone 17463241 k.
FOR SALE, REDIFFUSION MK3 AND MKI brand new cabinets. Also other Rediffusion spares. Pleatse enquire Tel. (0533) $69+4936 / 6664.43 \mathrm{Lcic}$.
LEADER LCT - 910A CRT Tester/Rejuvenator, under guarantee, excellent condition. fly). Tel. (151-426

2 SETS OF FULIY RECONDITIONED tule re gunning plants for sale. Training provided. From only £3,995. Tel. 0582-410787.
FOR SALE QUALITY WORK BENCHES. Two ycars old isolating transformers $£ 225$ eacl, cosi $£ 450$ new Tcl (1533) $644936 / 666483$ Leic

CRT RE-BUILDING PLANT

REFURBISHED AS NEW INCLUDING AUTOMATIC TRIPLE OVENS, PUMPS, LATHES. B.G. Components Hill Street, Oldham, Lancs. 061-624 1753
VHS VIDEO'S 3V00/3V22
E45 each + VAT Minimum quantity 10 Te: (0602) 397555
DEVONICS
Quality Tube Rebuilders
2 YEAR WARRANTY
Inline Tubes
Up to $19^{\prime \prime}$
$£ 43$
$20^{\prime \prime}$ to $22^{\prime \prime}$
$25^{\prime \prime}$
Bonded Coil
$30 \mathrm{AX}(-540 \times)$
Delta tubes from
All plus carriage and VAT
We currently seek sound inline glass for narrow neck (29 mm) and 30 AX types espeically 560 AWB/BUB/BYB/

2A BARTON HILL ROAD, TORQUAY TQ2 8JH. 080333035

WANTED

WANTED

Ex RENTAL COLOUR TVs IN BULK QUICK COLLECTION Phone 0742312832 (Sheffield) IN STRICTEST CONFIDENCE

CASH PAID now for your surplus TV spares, transistors, I.C's etc. Tel. MR. FORSHAW, (0912 29122. SERVICE MANUALS ancient or modern required. VCR, CTV, MTV, Audio, etc. anything considered. cash paid (no photo copies). (1212 892279.
WANTED Video's, portables, colour TV etc. Any quarrity. Immediate collection. Cash paid. Tel. Stoke on Trent 4 (64t) 1 .

THE Worlo of..."TELEPANELS"

52 Mount Pleasant Road, Chigwell, Essex, 1G7 5ER. Tel: 01-729 0506.

	IF	TUNER	DECODER	$\begin{aligned} & \text { G8/G9 DECODER } \\ & \text { IF COMBINED } \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	5.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
PHILIPS G11	$\begin{gathered} 14.50 \\ \text { WITH COMBED } \\ \text { SOUND MOOULE } \end{gathered}$		12.00		19.00	19.00	5.00	11.50		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 vears experience in television tube rebuilding.

APOLLO LANCASHIRE
 NATIONWIDE MAIL ORDER 3-4 DAYS PHONE FOR QUOTE

 LOCAL DELIVERY - 2 YR GUARANTEE - SONY TYPES - VDU \& BW 56 \& 66-540 GLASS BOUGHT (COLLECTED)A47342/343X-470 BCB22/CTB22/BGB22/DHB22
470-ESB22/EFB22/ERB22/FTB22
A51-220X/192X E39

A51-161X/162/163/168
510-JKB22/JEB22/JDB22/JGB22/ALB22/GLB22
510-VLB22(E55) DTB22/001/RFB22/RCB22/SFB22
A51-570X/580/001/210/241
A56-120X/123/140/410
560-DZB22(256)/HB22/AKB22/TB22/AWB22
560-ETB22/DTB22/CSB22/DMB22/DNB22
A56-611X/615X
A66-120X/A67-120X/140/150/200/410
$20 A X-A 56-500 \times / 510 X-A 66-500 \times / 510 X$ E53
E39

30AX - A56-540X -AEE 540 X
PLEASE PHONE BEFORE CALLING
LOCAL DELIVERY FROM ACCRINGTON, LANCS.
Phone enquiries and letters to:
Apollo, The Potters Wheel,
Mullion Cove, Mullion, Nr. Helston, TR12 7ET. 0326240781

CentreVision

TEL: 0222-44754 SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND, 5 MINS FROM M4

FERGUSON VHS VIDEO £65

MANY ELECTRONIC VIDEOS IN STOCK MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

INDEX TO ADVERTISERS

Aerial Techniques
Alcon Instruments L.td
Apollo.
Avon Meters
Baker Loudspeaker Co
Barry TV Services
Besco T/A North West Electronics
B.G. Components

Billington Valves
B.K. Electronics

Blendown Ltd.
Bob's Television Warehouse
Bolten Ltd.
Broughton Radio
Bull, J \& N. Electrical
Carter, John (Electrical) Ltd.
Celtel.
Centrevision.
Chromavac Ltd
Chromavision.
CMJ Electronics
Coles Harding
Crewe Wholesale TV.
Cricklewood Electronics Ltd
Crotton Electronics
Data-Go.
Devonics
Display Electronics Ltd
Donberg Electronics
East Cornwall Components
East Croydon Discount Electronics
Economic Devices
Electric City.
Electric City ..
Electronic Mail Order
Extra Care Ltd.
Flintdown Channel 5
Ford, Frank
Fylde T.V. and Video Distributors
Garton, D \& G
General Factors : .
G.G.L. Components

Grandata Ltd.
Halton TV Trade Disposal
Harrison Electronics
Hillier, Anthony
Hockley Discount Televisions
Hussain Central T.V. Ltd.
ICS.
Junction 11 T.V. Trade Disposals Lid.
Kent Ledgerwood Wholesale Ltd.
KeshElectrics Ltd.
Leak Electronics
London Electronics College
LRC (Spares) Ltd.
Mannion, R.B.
Manar Supplies
Manel
Monolith Electronics Co. Lto., The
Network Satellite Systems Ltd.
Newark Video
N.F.P.
N.G.T. Electronics Ltd

Papworth Transformers
Philex Co. Ltd.
Post A Part Electronics
Powell, T.
Powney, John
Pro-Vision
Pro-Vision.
P.V. Tubes.
P.V. Tubes..............

Repossessed T.V. Centres Ltd
Riscomp Ltd.
R.K. Electrics

Sabaco
Sandhurst TV Services
Semple Service.
Sendz Components
Sight and Sound.
Smiths Electronics
Southside TV.
Sparkworid Ltd.
Starlite Electronics
Stewart of Reading
Supersat
Technical Information Service
Telepanels
Tele-part
Teletraders
Televideo Services
Teleview
Tidman Mail Order Ltd.
Trading Post, The
TVS Trade Services
T.V. Irade Sales

Universal Electronic Distributors
Universal Semiconductor Devices Ltd
U-View Tubes.
WD-TV.
Willow Vale Electronics Ltd.
Wiltsgrove Ltd. .
Wing Electronics
Wizard Distributors
Woodsdale Components

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE

MINT WORKING SETS. These arrive at our premises in A1 working order, cabinets are superb.
$£ 45$ to $£ 70$
GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
£10 to £35

VHS Videos in stock.

Well stored in large centrally heated premises. Ample viewing space and stored only four high! Come and have a look round.

TRADE WAREHOUSE,
DAISY WORKS,
345 STOCKPORT ROAD, LONGSIGHT,
MANCHESTER MI3 OLF
ALSO AT
335-341 STOCKPORT ROAD (NEXT DOOR)

IRISH T.V. DEALERS

(PLEASE NOTICE)

LARGE SELECTION OF IN-LINE UHFNHF DECCA, DORIC, FERGUSON, PHILIPS \& BUSH, WORKING COLOUR SETS. CABINETS RESTORED TO A1 CONDITION. PRICES START FROM PILE ((w) $£ 50$ INC. VAT. BM (1) £25. ALSO IN STOCK RE-GUN TUBES \& VIDEO HEADS.
(EXPORT SPECIALISTS)
T.V. TRADE SALES

E.D.I. HOUSE

KYLEMORE PK. WEST DUBLIN 10. (Off Naas Road).

Tel: 01-264139/263517
BONA FIDE DEALERS ONLY SERVED
T.V.T.S.

AlSO
CLOVER PLACE
COLLEGE ST.
KILLARNEY.
Tel: 064-33655

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - l.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

aCCESS AND BARCLAYCARD ACCEPTED.

SENDZ Components To ORDER SEE BACK PAGE

		为		

[^0]: SENDZ соmponents 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICE
 All items subbiect to availability. No Accounts: No Credit Cards. Postal Order Cheque with order. Add 15\% VAT, then £1 Poslage. Add Postage for Overseas Callers: To shop at
 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
 Open 9-1/2 30-6. GVMT + school orders accepted on official headings. Add 10% handing charge

[^1]: COINMECHS DOUBLE POLE 50p Shometers required, working or faulty. Must be complete, state quantity and price. Boy No. 224.

