

Satellite TVRO Installation Simple RGB Interface Circuit Scan Yokes for Colour Tubes Timebase Synchronisation • DX-TV Operation of Electric Motors VCR Clinic•TV Fault Finding

THE 'TELEVISION' PHOTO SERVICE

 the coupon below and send together with your film and remittance in a strong envelope io: Readers Photo Service, FREEPOST, PO Box No. 42, Brunel Road, Newton Abbot, Devon TQ12 4XJ. All popular makes and sizes of film are accepted, and you have a full moneyback guarantee. Credit is given for prints that do not come out.
PERSONALISED SERVICE
Readers know we care for their prints. If you have any queries, phone 062667150.
SPECIAL FILM OFFER
Even if you do not have an exposed film ready for processing, you can obtain films from us at highly competitive prices. Fresh Kodacolor VR Film for colour prints from only £1.99. Konica SR High Resolution Film for colour prints from $£ 1.50$ and when you order three you get another one FREE.
To take advantage of this offer, you must use the special order form on this page.
Sizes of Photos (Approx.)
Superprint sizes: 4" $\times 4$ " (126) 4" $\times 5$ " (110 and Disc) 4" $\times 6$ " (135) Standard print sizes: $3.5^{\prime \prime} \times 3.5^{\prime \prime}$ (126) $3.5^{\prime \prime} \times 4.5^{\prime \prime}$ (110 and Disc) 3.5 " $\times 5^{\prime \prime}$ (135)

(C) IPC Magazines Limited, 1986. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 14$ in the UK, £17 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4-50$) and indexes (75p) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add $60 p$ for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this m

$\left.629 \begin{array}{l}\text { Leader } \\ 630 \\ 632 \begin{array}{c}\text { Letters } \\ \text { Single-cha } \\ \text { The aim } \\ \text { channel }\end{array} \\ 635 \begin{array}{r}\text { Thanks De } \\ \text { The Net } \\ \text { Other co } \\ \text { blind we }\end{array} \\ 636 \text { Satellite T } \\ \text { What to } \\ \text { TV recei } \\ \text { finding t }\end{array}\right\}$

A simple but effective circust for using the rGis plus sync outputs from a microcomputer to drive a standard TV receiver.
642 Teletopics
News, comment and developments.
644 Modern Receiver Circuitry, Part 5
J. LeJeune

Synchronising the timebases, including a look at the complex arrangements used in a modern sync/timebase generator chip.
646 TV Fault Finding
Reports from Steve Leatherbarrow, Hugh MacMullen, Philip Blundell, Eng. Tech., Keith Hamer, Garry Smith and J.K. Potts.

648 The Development of Colour Tubes, Part 3
Eugene Trundle
The design of scan yokes to produce astigmatic deflection fields and shadowmask developments.
654 The Operation of Electric Motors, Fart 1
Mike Phelan
VCR electric motors can be expensive items, so it's
desirable to know whether repair might be possible. The basic theory of a.c. induction motors is covered in this instalment.
656 Servicing Sinclair Microcomputers, Part 4 Ken Taylor
The rest of the Spectrum circuitry plus memory checks and fault finding
659 Next Month in Television
660 Saturday Plight Fever
Chris Avis
Saturday seems to be the day when all the problem sets come in. This was no exception.
661 Resistor Troubles
Gordon Haigh
Some resistor tips worth noting.
662 Long-distance Television
Roger Bunney
Reports on DX reception and conditions, news from
abroad and details of a narrow-band i.f. amplifier circuit.
666 Service Bureau
667 Test Case 284
OUR NEXT ISSUE DATED SEPTEMBER WILL BE PUBLISHED ON AUGUST 20

Kos pep ins
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. £28.50 p.p. El. 20
THORN TX9, TX10 Saw Filter IF Panel $55.00 \mathrm{p} . \mathrm{p}$. 8 ()p
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p. £f 104
PAL ENCODER KIT (RGB to Video) £18.51) p.p. $£ 1.30$
TELETEXT DECODERS New \& Tested Mullard VM $6101 \mathbf{£} 30 \mathrm{mo}$, Texas XMII $£ 40.00$, K' $^{\prime}$ Th Tested $£ \mathbf{3 0 . 0 0}$, Untested $\mathbf{~} \mathbf{5} .00$ P. P. £1 60
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be
 P.p. £1. 40.) ADDITIONAL GREY SCAIE Kit $£ 2.90$ p.p. 45 p.

UHF SIGNAL. STRENGTH METER KIT $£ 22.00$ Alum. Case $£ 2.90$. De Luxe Case 88.60 (Built \& Tested $\mathbf{E 4 8 . 0 0) ~ p . p . ~} £ 2.31$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case. Panel Meter lndicator - can be adapted for latest CRTs $£ 29.50 \mathrm{p} . \mathrm{p}$. ± 2.80.
BUSH A823 Convergence. Time Base Panels $\mathbf{i 5} \mathbf{5 0 0}$ each. p.p. $£ 1.80$ BUSH $Z 718$ BC6100 series IF Panel 55.00 p.p. 90 p.
BUSH A816 IF Panel (Surplus) £1. ©0 p.p. Y0p, 5 for $£ 4.00$ p.p. $£ 1.40$. GEC 2040 Decoder Pancls. £1.50 p.p. t1. 80.
GEC 2110 PANELS Frame $£ 8.50$ p.p. $£ 1.40$. Sound $£ 2.50$ (tested) p.p. 80 p. GEC 20AX Line Time Base $£ 18.00$. IF-Decoder $£ 12.50$ p.p. $£ 2.00$
PYE 691-7 CDA Panels. Makers tested stock. £6.00 p.p. £1.45.
THORN TX9 Pancls ex factory for small spares. hactudes I.Cs \& Semiconductors etc. $\mathbf{£ 3 . 0 0}$ p.p. $£ 1.80$
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $\$ 2.80$
THORN TX9 Pancls ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 2.80$.
THORN 8000, 8500, 8801 IF Decoder Panels Tested $£ 10.00$ p.p. £. 30 .
THORN 8000 8500 IF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$.
THORN 9000 IFDecoder Panels Salvaged. For spares 22.50 p.p. $£ 1.80$. THORN 9000 Frame Time Base $\mathbf{4 8} .50$ p.p. E1.sil.
PHILIPS G8/G9 IF Decoder Pancls for small spares mel ICs $£ 2.50$ p p. $£ 1.60$. PHIIIPS G8 Line Driver Panel incl. Equalizing Coil. £1.00 p.p. (0)p.
G11 PANELS, Ex Rental SCAN (incl LOPT) $\mathbf{E} 28.00$ p.p. $£ 200$ (tested)
G11 PANELS, Power, Frame, IF, Decoder, $£ 18.00$ each. p.p. $\$ 2.00$ (tested) GRUNDIG 86,30 Series Varicap Tuners $\mathbf{£ 5} .00$ p.p. $\mathbf{f} \mathrm{f}$ (x$)$.
U321. ELCl(43 5 £7.80 p.p. Nop. Makers Controls PYE CT200) 4PSN £7.50, BUSH 4 PSN $£ 4.80$, DECCA 4 PSN $£ 5.80,6 P S N ~ £ 6.80$ p.p. 80 p. etc.
BUSH "TOUCH TUNE" Varicap Control $2585.710 £ 3.80$ p.p. £1.(K)
VARICAP UHF.VHF ELC $2(10) S$ £9.80 p.p. $£ 1(0)$.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position. MULLARD 4 position $£ 2.50$, JAP Rotary 44.80 p.p. $£ 1.80$ TV SOUND IF Panels $\mathfrak{£ 6 . 8 0}$ p.p. £1.(x).
1.OPIS New and guar. P/P Mono £1.35, Colour £1.50, Bobbins 80p. BUSH, MI RPHY 774 series $£ 9.80$ BUSH, MLIRPHY AS16 weric-
FERG., HMV. MARCONI, ULTRA
1500.1590 .1591 . 1612.1613 .1712
${ }^{-1}+80$
 $£ 4.80$
$£ 9.15$ Ge senes 1 \& 2
NOESIT 2024EGB
88.00
R.B.M. T20. T22

DECCA Bradford (stite ModNo)
DFCCABOI $1(x)$
FIDELITYZ2000 3an
GEC?I 10 series
ITTCVC5 to 4, CVC30
Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $\mathfrak{£ 3 0 . 0 0}$. CASE $£ 8.60$. BATT HOLDERS $\mathbf{£ 4 . 2 0}$. MAINS SUPPIM KIT £4.20 (Combined P\&P £2.20).
MK 4 (BATTERY) BUILT \& TESTEL) $\mathbf{£ 5 8 . 0 0}+£ 2.20$ P \& P. MK 4 (MAINS) BULLT \& TESTED $868.00+£ 2.20$ P \& P. VHF MODULATOR (CH I to 4) FOR OVERSEAS $£ 5.75$.
(TT/KB $\vee(200), 300$
PHLLIPS 170, $210,3010 \mathrm{crics}$
PE, inVICTA, EKCO
368, $169,569.764$ series
17.90

IOECCA (70 0, 2(M)1, 2020, 2401
GEC $2114 \mathrm{~J} / \mathrm{J}$ unur Fineline
PHILIPS 320
GEC 2128, 2140,2100
PYE 713.715
PHILIPS 570, 571
7.90
$\mathbf{7} 7.65$
$£ 7.65$
ITTCVCAS
PYE691-697 (state nadel no
PYE 725 (以年) 731 to 741 .
PHELIPSCi8
PHILIPSC: 9
PHILLIPS KT3
THORN $3 \times X 3$ OOSCAN. EIIT

THORN OKOIO OXM
THORNTK9

OTHERS AVAILABIE, PRICFS ON REQUEST.
TRIPIERS Full range available. Mono \& Colour.
Special Offer: THORN $3(\times n) / 3500$ EHT Tripler $£ 2.50$ p.p. $£ 1.30$.
6.3V CRT Boost Transformers for Colour \& Mono 55.90 p.p. £1.40. THORN TX10 focus control 88.80 p . 8 . 8 (pp

CALLERS WELCOME A'T SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COIOUR PANEIS POPUIAR MODELS Goods available if in stock immediately over shop counter (Mail order between 3 days and I week from receipt of order). ADI) VAT 15%

Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Strattord, N. Woolwich) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADI) VAT 15\% TO ALL PRICES INCL, P+P

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overse as carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

E] B. K. ELEGTRONIOS Dent T,

UNIT 5, COMET WAY, SOUTHEND-ON-SEA,
ESSEX. SS2 6TR TEL: 0702-527572

CHANNEL 35
Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2 PRICE £4.55 (Inc. VAT)
ALL ITEMS POST AND PACKING $£ 1.44$ (Inc. VAT) All goods should be delivered within 4 working days. 32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 29022
(U.K. ONLY)

MAKE YOUR INTERESTS PAY:

Train at home for one of these Career Opportunities
More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!!

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (city \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
GCE over 40 ' O^{\prime} \& 'A' level subjects		\square

[^0]Address:
P. Code

International Correspondence Schools, Dept. EGS86, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 $1 E E$. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

ADO $\begin{gathered}\text { HOW TO OROEA } \\ \text { 87P }\end{gathered}$
 catle, service aids, depaus. to inform you as quickly as possible. We try our best colls please allow $£ 1.50 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you need is not listed - we Whenever possible. Add 15% will try to help. Prices are subject to change without states zero rate.

P V TUBES filus 104 ABBEY STREET, ACCRINGTON

SUNDRY EQUIPMENT

Test Lead Set Degaussing Col
Signal Ejector Signal Ejector
Elect. Circuit Tester Elect. Circuit Tester
5A Choc Bloc (12) Fuse Wire 5A, 15A, 30A 4-way 13A Mains Conn. Safe Block (mains)
13 A Plug Top (box 10 Probes ($\times 10$) Probes ($\mathbf{x} 1$)
Micro Pliers
Micro Cutters
Prilips Switchable Probes $(\times 1.2 \times 10)$ Factory reco
Avo Battery
Vero Board Vero Board
LG Solder Sucke LG Solder Suck
Solder 500 g D.I.Y. Solder Solder Sucker Antistatic Nozzles
Trim Tools
Metal End
Solda Mop Stnd.
Sidecutters sm.
Surge Protector Plug
Quick Set Adhesive
Lg. Neon Screwdriver
I.C. Inserters

Automatic Wire Strippers Scart Plugs
Scant Leads
Ta81 Leads 1690/91
TA51 Car Battery Leads/port. TV
1613/1615
Car Battery Leads'port. TV Philips
Universal Car Accessory Cable
Dynascan 467
Dynascan $470 \quad$ Rejuv.
B+K tube bases Dynascan

Insulated Copper Wire (0.4 mm dia.) 9.11
Battery Press Studs Min.

LOCKING CABLE TIES	
Up to 25 mm diameter, Up to 55 mm ,	$\begin{aligned} & 100 \text { at } 54 \mathrm{p} \\ & 100 \text { at } £ 1.41 \end{aligned}$
SOCKETS ELECTRICAL BA	
320A Single Gang	1.30
3208 Single Switched	1.95
320c Two Gang	2.53
3200 Two Switched	3.92
Switches	
320E One Gang/One Way	80
320F One Gang/Two Way	1.05
320G Two Gang/Two Way	1.78
CABLES 100 m	
F031 2 Core Round $.75 \mathrm{~mm}^{2}$	15.47
F032 3 Core Round . $5 \mathrm{~mm}^{2}$	15.75
F035 3 Core Round $1.25 \mathrm{~mm}^{2}$	$\mathrm{m}^{2} \quad 28.21$
F041 Speaker $7 / 02 \mathrm{~mm}$	3.90
Coaxial 75R	13.50

FILAMENT LAMPS
HES ROUND BULBS $123 \mathrm{~m} \times 011 \mathrm{~mm}$
$6.5 \mathrm{~V} \quad 0.3 \mathrm{~A}$ $6.5 \mathrm{~V} \quad 0.3 \mathrm{~A}$
$12 \mathrm{~V} \quad 2 \mathrm{~W}$ LILLIPUT (L.E.S.) BULBS $120 \mathrm{~m} \times 05 \mathrm{~mm}$

$6 \mathrm{~V} \quad 0.025 \mathrm{~A}$ | 6 V 0.025A |
| :--- |
| $12-14 \mathrm{~V}$ | $12-14 \mathrm{~V} \quad 0.1 \mathrm{~A}$

CAPLESS LAMPS | L11mm \times D4m |
| :--- |
| 6 V |
| 12.04 A | $\begin{array}{ll}12 \mathrm{~V} & 0.04 \mathrm{~A} \\ 12.04 \mathrm{~A}\end{array}$

TUBULAR LAMPS CAPPED
$L 31 \mathrm{~mm} \times 06.3 \mathrm{~mm}$
6.3 V 0.15 A
$6.3 \mathrm{~V} \quad 0.25 \mathrm{~A}$
$\begin{array}{cc}6.3 \mathrm{~V} & 0.3 \mathrm{~A} \\ 8 \mathrm{~V} & 0.15 \mathrm{~A} \\ 8 \mathrm{~V} & 0.25 \mathrm{~A}\end{array}$
$8 V$
$8 V$
$12 V$
$8 V$
12 V
12 V
12 V
WIR
WIRE NEONS
65 VAC 90 VDC
in bJAC/90VDC Series res
100 K for $110 \mathrm{~V}-330 \mathrm{~K}$ for 240 l WIRE ENDED LAMPS $\quad 25 p$
03.2 mm
$6 \mathrm{~V} \quad 0.04 \mathrm{~A}$

6 V	0.04 A
12 V	0.04 A

$\begin{array}{ll}12 \mathrm{~V} & 0.04 \mathrm{~A} \\ 14 \mathrm{~V} & 0.025 \mathrm{~A} \\ 14 \mathrm{~V} & 0.04 \mathrm{~A}\end{array}$
14 V 0.04 A
04.2 mm
$4.5 \mathrm{~V} \quad 0.06 \mathrm{~A}$
$\begin{array}{ll}6 \mathrm{~V} & 0.06 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.025 \mathrm{~A}\end{array}$
$6.3 \mathrm{~V} \quad 0.08 \mathrm{~A}$
$8 V$
$8 V$
8 V
12 V
12 V
12 V
14 V
14 V
TUBULAR LAMPS (Wire ended) $31 p$
$1.22 \mathrm{~m} \times \mathrm{D} 4.25 \mathrm{~m}$
$\begin{array}{ll}3 V & 0.06 A \\ 6 \mathrm{~V} & 0.05 \mathrm{~A} \\ 8 \mathrm{~V} & 0.05 \mathrm{~A} \\ 9 \mathrm{~V} & 0.045 \mathrm{~A} \\ 12 \mathrm{~V} & 0.05 \mathrm{~A} \\ 14 \mathrm{~V} & 0.05 \mathrm{~A}\end{array}$

PLUGS AND SOCKETS
5 pin DIN plugs 180°
5 pin DIN chassis sockets $180^{\circ} \quad 20$
5 pin DIN line sockets 180°
5 pin DIN chassis sockets 360°
5 pin DIN line sockets 360
6 Din DIN plugs
6 pin DIN chassis sockets
6 pin DIN line sockets
7 pin DIN plugs
7 pin DIN chassis sockets
8 pin DIN plugs
8 pin DIN chassis sockets
Phono plugs socke
Phono chassis sockets
Phono line sockets
2.5 mm Jack plugs
2.5 mm Chassis sockets
2.5 mm Line sockets
3.5 mm Chassis sockets
3.5 mm Line sockets
3.5 mm Stereo chassis sockets 3.5 mm Stereo line sockets
6.3 mm Stereo jack plugs
6.3 mm Stereo jack line sockets

Loud speaker plugs 2 pings
Loud speaker plugs 2 p
I.D.C. plugs 36 conn.

Coax plugs
Pack of ten
Line connectors
Double ended female sockets
Car aerial plugs
PL259 with reduc
Reducers for the PL259
FM plugs
Crocodile Clips
Crocodile Clips
In Line Socket (Metal)
Banana Plug
We have a fully equipped computer
store - Come and visit us -

VIDEO PINCH ROLLERS
15 p ? PANASONIC
PANASONIC

SUNDRY VIDEO ACCESS.
VHS Drum Motor VHS Capstan Motor
Samyo 5000 Reel Motor Samyo 5000
VHS Idler
Video Lamps 3V23 Lamps with Pug Video Care Kit

WE HAYE A FULL RANGE OF AERIALS AND ACCESSORIES FROM TRADE COUNTER AERIAL EQUIPMENT	
Outdoor Splitter	5.50
Plastic Tape	50
F.M. Plugs	25
Set Top Ȧerial	2.30
Loop Aerial	1.00
Attenuator 6dB. 12dB, 18dB	B $\quad 1.80$
27 MHz Filter 50 dB	2.10
Cable Clips 7mm per 100	per 1001.18
Single Outlets	80
Suriace Splitter	1.70
A Splitter	70
100M Coax	00
Coax Plugs	101.80
$1 "$ U Bolts	30
J Bolts	25
ANTIFERENCE	
S811 Splitter	2.37
COB11 Outlet	. 96
CS1000 Combiner/Splitter	6.15
PU1240 Power Unit	11.65
UP1300 MHA	9.09
XS2U Xtraset	14.56
4 way VHF/UHF Amp	40.71
6 way VHF/UHF Amp	50.68
XG8 High Gain Aerial A-B-CD-WB	CD-WB 17.10
LABGEAR	
CM7261 Power Unit 12V	11.80
CM7262 Reg. Power Unit 12V	$12 \mathrm{~V} \quad 12.85$
CM7065 VHF/UHF MHA W/B 12V	B 12V 15.05
CM7066	14.04
CM7067 UHF 12V MHA (Specity	Specity A-B or
CD)	11.25
CM7068 UHF 12V MHA High Gain (S	h Gain (Specity
A-B or CD ${ }^{\text {(}}$	16.74
CM7253 Behind Set UH	UHF Amp.
(Mains)	13.66
CM1243 Second Set Amp. UHF	UHF 12.72
CM7093 Behind Set UHF Amp	UHF Amp. 3
	16.03
CM7063 Dist. Amp. VHF/UHF 17db/	db/output
	23.27
CM7108 VHF/UHF $8+1$ Dist. Amp.	st. Amp. 43.26
CM9700 27mhz CB Suppress.	退s. 4.45
CM6011 Outdoor Splitter (2	ter (2 way)
CM9003 Flush Single Outlet	1.95
CM9010 Flush Twin Outlet	2.04
CM9034 UHF Group Filters with	ters with DC
Through Pass (state AB/CD)) 8.07
CM9033 6 Way Passive Solitter	Solitter 9.72
CM7042 TV Games Combin.	ก. 3.09
CM9009 Flush TV/FM Outlet	t 3.20
CM7091 Col. Bar Gen.	133.98
CM9006 VHFJUHF Diplexer	3.78
Televerta up converta CM7122	$122 \quad 36.20$
Televerta down converta CM7057	M7057 41.01
7064 DA UHF VHF 28dB	30.06
7094 DA 4 way	19.50

REPAIR KITS
Remote control handsets for Philips sets KT3/
K30 chassis inc. foil unit button matrix and K30 chassis
instructions.

Philips part numbers:

Foil 21227582
21227583.
Button matrices: 43237037 or
No. 1 without Teletext.
No. 2 with Teletext

Universal Copying Ki

- Video Head Cleaner Video Head Cleaner
Shap Reel Motor Ree Idier (Sharp)
$381 / 383 / 386 / 9100 / 9300 / 9500$ Sanyo Reel Drive Pulley Hitachi Idlers 3HSS
4HS
PS3
Phi
Phil
San
San
Tos
Tos
To
Sha
Shap
Sha
Shap
Sh
Hita
Hita
Hita
Beta

SKC

Scol

Beta

VIDEO HEADS
ISS UHS 33B Beta/Sony Philips 1700 Saryo 9300/9455/9500 Sanyo 5000/5300/5400 Toshiba V5470A BDP

Toshiba 9600 Upper Ass. Toshiba 9600 | Sharp 6300 |
| :--- | Shap 7300/7700/7750 Sharp 8300

Sharp 3300/9700 Hitachi HIVI
Hitachi VT33E Hitachi VT11/GEC 4004

Bea eccentricity gauge	55.00
VIDEO TAPE	

gysy b geg

NEW LABGEAR	
- CM7274-MHA 15db	8.66 *
CM7274 4 Way Dist.	21.45 *
CM7082 UHF VHF DA	65.69 *
* CM7080/10 UHF NHA	15.71*
SERVICE AIDS	
SERVISOL Freeze-It	1.20
SUPER SERVISOL	1.04
SERVISOL Foam Cleanser	1.02
SERVISOL Plastics Seal	1.14
SERVISOL Silicone Grease	1.30
SERVISOL Tubes Silicone Grease	1.66
SERVISOL Aero Klene	94
SERVISOL Aero Duster	1.28
SERVISOL Excel Polish	96
SERVISOL Video Head Cleanser	90
Super 40	1.66
Fire Extinguisher 640G	3.08
Heat Sink Compound 25G	1.10
Silicone Rubber Tube 110G	2.98
Solda Mop standard reel	77

REMOTE CONTROL HAND UNITS

Some are original some are compatible types
DECCA 100/101 US Non T Text GRUNDIG TELEPILOT 12 IR GRUNDIG TELEPILOT 160 IR GRUNDIG TELEPILOT 300 IR PHILIPS G11 US Non Text
PHILIPS G11 \& way.IR Text PHILIPS G11 \& way.IR Text
PHLIPS G11 US 31 Button PHILLPS G11 US 2 function
PHILIPS KT3/30 IR Text 1234 PHILIPS KT3/30 IR Text 1234
PHILIPS KT3/30 IR Non Text 120 THORN Tx10ßJVC IR Text Remote Control Tester

compatible types.	
US8513	23.80
RTPT20	13.87
RTP05	25.10
RTP06	25.10
RTP07	18.87
U88253	22.00
IR8435	23.80
G917187	27.100
US8518	21.00
IR1234	19.87
IR1201	19.87
TP8431R	22.00

REVER READY BATTERIES

R20S
R6B
R14S
R03B
PP3B
PP3S
PP6
PP7
PP9
128

RECHARGEABLES Ever Ready

RX6 (HP7)
RX14 (HP11)
RX20 (HP2)
RX22 (PP3)

RX20 (HP2)
RX22 (PP3)
Universal Charger
ANTEX SOLDERING
EQUIPMENT
C.15W Iran 240V

C15w Iran 240V	6.20
C240 Element	2.75
Bits 102	1.10
106	1.10
820	1.10
821	1.10
CS17W Imon 240V	6.40
CS240 Element	2.75
Bits 1100	1.10
1101	1.10
1106	1.10
XS25W Iron 240V	6.50
XS240 Element	2.75
Bits 50	1.10
51	1.10
Temp. Controlled	
30W Iron CSTC	16.95
40W Iron XSTC	16.95
Unit for above TCSU1	68.95
Stand	2.10
MLXS Auto Repair Kit	8.40
Cordless Gas Iron	15.99
Tips for Gas Iron	5.00
25 Watt Philips Iron	5.50

WELLER

Heat gun	
Heat gun tips (pair)	15.95
	57

$3 / 16^{* \prime}$ Iron tips 25 W (MT5)

AUDIO HEADS AND MOTORS

 Mono record/playStereo playback Stereo record/playback
 $\begin{array}{lr}\text { Electronic/rifation clockwise motors } \\ \text { 6V MD6515 } \\ \text { 9V MD5916 } & 4.95 \\ 12 V \text { MD12517 } & 4.95 \\ & 4.95\end{array}$

CASSETTE DRIVE BELTS

35 m	35	46 mm	37	57 m	37
66 m	39	110 m	59	76 m	43
90 m	43	43			

WE WILL ONL QUALITY, BRAND REPUTATION C	SUPPLY TOP COMPONENTS. UNTS WITH US	108 SCOTLAN PHONE (0228)	ROAD, CAR 358/39693	SLE, CUN	RIA CA3 9E		ITH				
INTEGRATED CIRCUITS	$\begin{aligned} & \text { TYPE PRICE (£) } \\ & \text { STK0039............6.45 } \end{aligned}$	$\begin{array}{lr}\text { TYPE } & \text { PRICE (E) } \\ \text { TDA440...........3.25 }\end{array}$			TYPE PRICE	THORN/SONY LARGE RANGE OF					
TYPE PRICE (E)	STK0040...................6.5.95	TDA1006A			2N3055............. 50						
AN214................... 1.95	STK0050 7.50	TDA1035T 2.75	BC107 14		2N3773.......... 3.45						
AN301.................... 3.45	STK077 7.25	TDA1037................. 1.95	BC108 14		28 15/80H $\ldots225$						
AN303......................3.45	STK078.....................7.7. ${ }^{\text {7 }}$	TDA1044.................. 3.10	BC109 14	BF458................... 30		MAKES OF TVI vIDEOS INCLUDING					
AN305....................3.50	STK082..................... 9.75	TDA1170.................... 1.80	BC141 26	BF459................... 36	36 2SA 835............ 2.35	VIDEOS INCLUDING INSTRUCTION AND		TYPE BYI2 PRICE 10			
AN7110................. 1.93	STK2129 8.50	TDA1270................... 2.20	BC142 23	BF757.................... 75	75 2SB618............ 2.45			BY133 15			
AN7114E 2.33	STK415................ 9.66	TDA1470...............3.65	BC143 25	BFR90 1.60	60 2SC 867A 3.25	SERVICE MANUALS.		BY164 …........ 40			
AN7115................ 2.37	STK430 7.75	TDA2002...................1.85	BC147 09	BR100 18	18 2SC 1034......... 4.85	PHONE OR WRITE		$\mathrm{BYIV}^{\text {BY7 }}$.... 85			
AN7116................ 2.35	STK43325.95	TDA2003..................2.33	BC148 09	BR101 32	32 2SC 1061........... 1.15	FOR NEW LISTS. WE		BY210/800 30			
AN7145................. 3.25	STK433..................... 6.50	TDA2004.................3.15	BC157 10	BR103 55	55 2SC 1114.......... 4.75	CAN ALSO SOURCE		BY223			
BA312 1.25	STK435................ 6.75	TDA2006................... 2.25	BC158 11	BR303 2.95	95 2SC 1124............ 97	\& SUPPLY OVER					
BA511A 1.95	STK437................. 7.25	TDA2020.................. 2.25	BC159 11	BT106............. 1.15	15 2SC 1316.......... 3.20			BY298/400 24			
BA521.................. 1.85	STK439................ 7.55	TDA2522................... 1.80	BC237 11	BT116.............1.30	30 2SC 1413A...... 3.95	THREE THOUSAND		BY2998800...................... 25			
BA532............................... 25	STK441............... 8.50	TDA2523.................. 2.25	BC327 11	BT151/	2SC 1739......... 2.45	l/Cs \& SEMI		BYX10 20			
BA536.................. 2.55	STK4597.35	TDA2530...................2.10	BC328 12	800R 1.10	10 2SC 1942........ 2.95	CONDUCTORS.					
HA1322.................... 2.10	STK463 9.3 .30	TDA2532............... 2.20			18 2SC 1962........ 1.65	SONY SPARES		SKE4F206 - 80			
HA1338............... 2.78	STK465..................... 9.95	TDA2540............... 1.95			15 2SC 1969.........1.95	C5/C7 Rewind Kit....4.05		SKE5F3/10 1.45			
HA1339............... 2.40	TA7193P................... 4.30	TDA2560............... 1.80		BU208D 1.85	185 2SC 2335 (Kit) 7.55	C5/C7 Belt Kit......... 3.50		W005....................... 57			
HA1342A 2.20	TA7204P............... 1.90	TDA2578A 3.25	BC557 10	BU326A 1.85	$\begin{array}{l\|l\|l} 85 & \text { 2SC } 2335(\text { Kit) .7.55 } \\ 48 & \text { 2SC } 23693 .25 ~ \end{array}$	C6 Rewind Kit4.36		1N4001-7			
HA1366 WWR 1.95	TA7205AP 1.40	TDA2581............... 2.15	BC558 10	BU407 1.12	12 2SC257.............. 2.45	C7 Pinch Roller.........4.45		IN5401-8 16			
HA1374................ 2.45	TA7208P 1.95	TDA2582............... 2.20	$\mathrm{BC637} \text {.................. } 35$	BU407D 1.45	45 2SD 588A........... 1.97						
HA1377............... 3.80	TA7222AP 1.85	TDA2591............... 2.30	$\text { BC638 } 25$	BU500 1.195	95 2SD 725............. 7.95	SG 613/6533 8.95		HITACHI VCs			
HA1388................4.20		TDA2593.............. 2.30	BC639 25	BU508A 1.95	$\begin{array}{l\|l\|} 95 & \text { 2SU } 25 ~ \\ 95 & \text { 2SD } \\ \hline \end{array}$	CX 143A 6.95		STR 441 6.95			
LA1201 1.75	TA7310.................... 2.95	TDA2594..............2.95	BD124M 1.05	BU526.............. 2.00		TDA 3652 4.35					
LA1230 2.30	TA7313.................... 1.45	TDA2611A6. 1.50	BD131 33	BU807........... 1.30	30 LINE OP TR.	Large range of Sony					
LA1365 2.45	TAA550...................... 43	TDA2640................. 2.40	BD132 33	BU826A 3.20	20 DECCA $807 .95$	spares available					
LA33501.65	TBA120AS 95	TDA3560...................2. 5.10	BD222 50	R2010B........... 1.45	45 DECCA 100............. 8.50						
LA41011.50	TBA120SB 90	TDA3561A 5.35	BD225 55	R2540............. 2.35		VALVES					
LA4102 1.95	TBA120T................... 1.25	TDA3562A 5.50	BD235 32	TIP31C 46	46 ITT CVC 25/30328.55	PCF802.................. 1.09		G11EW Coil......1.65			
LA4400 2.50	TBA120U 1.00	TDA4500................... 5.85	BD236 43	TIP32C 47	47 ITT CVC $458 .45$	PCL82..................... 97		G 11 Lin Coil......1.80			
L44430 2.45	TBA520................. 1.30	TDA4600.................... 2.85	BD237 40	TIP33................ 80	80 PHILIPS G8............. 8.75	PCL85......		G11 Bridge Coil 1.35			
LA4440 3.55	TBA5300................ 1.00	TDA4600-16PIN...... 3.95	BD238 39	TIP34.................... 95	95 PHILPS G11..........13.50			G11EHT Lead.225			
LA44452.65	TBA540.................... 1.37	TDA9503................ 2.35	BD410 50	TIP41C 48	48 PHILIPS KT3............9.95	PCL86.........		PYEIF Gain M007.75			
LA4460 2.95	TBA550................... 2.45	UPC555C.................... 70	BD437 70	TIP42C 48	48 PHILIPS K301650	PL504....................1.59		ITTOMOH SW 1.10			
LA4461 2.95	TBA560................ 1.60	UPC566C................. 2.10	BD438 78	TIP47.................... 75	75 RBM T204............ 10.35	PL508.................... 299					
MB37122.30	TBA720A 2.65	UPC585C 1.40	BD439 70	TIP2955................ 70	70 IHORN 1615......... 1235	PL509/519................. 5.98		TX10 focus UNit ..			
MB3713 2.25	TBA750................ 2.45	UPC1031H........... 2.95	BD677 70	TIP3055............. 70	70 THORN 169011........9.65	PY500A 225		VCR Pilot Bulb			
$\begin{aligned} & \text { ML231B } ~ \\ & \text { ML232B } \\ & \text { ML.........55 } \end{aligned}$	TBA800..................... 1.30	UPC1032H 95	TV ELECTROLYTICS								
					PUSH BUTTONS NEW TUNERS		Available also a range of 2SAB/C/D Transistors. Phone or write for lists.				
SAA1250 3.85	TBA820............... 1.40	UPC1 181H........... 2.20	DECCA $30(400 / 400) 350 \mathrm{~V}$								
SAA50105. 510	TBA8920.................... 2.95	UPC1182H 2.20	DECCA $80-80 / 100(400) 350 \mathrm{~V}$		$\text { DECCAITT } 6 \text { way } 8.50$						
SAA50i25.70	TBA950..................... 2.65	UPC1230H3.35			PHILIPS G8 S/L 14.90						
SAF1032P............ 3.25	TCA270.................... 1.55	UPC1238H 2.35	PHILIPS G8(600)300V3.99 $\mathbf{2}$.65		PHILIPS G8S/Q...................... ... 14.75						
SAF1039P............ 4.55	TCA940............... 1.55	UPC1350C 4.50	PHILIPS G9(2200)63V 1.45		PYE-G11 P/B............................. 8.50		ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELIVERY BY RETURN ON ALL STOCK ITEMS.				
SAS560S 1.95	TDA2030.............. 1.95	UPC1353C2.60			HITACHI 4 way	-.............. 8.95					
SAS570S 1.95	TDA2190M 6.95	UPC1365C 5.05	RBM A823(2500/2500)	130 V 1.65	ITTCVC57 Button.	10.40					
SAS580S2.40	TDA2576A 3.95	UPC1394C2.95	RBM T20A(220)400V	2.35	ITT CVC8/9	12.80					
SAS590S 2.40	TDA2577.............. 4.85	UPC2002H 1.85	THORN1690/1(4700)25	5V 94							
SL1430 1.95	TDA3651AQ 3.75	7805.................... 0.65	THORN3500(1000)70V	V 99							
SL1432 1.75	TDA3652...............4.35	7812.................... 0.65	THORN9000(400)400V	V 3.10	U322 8.757 .40					

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
Tel: 0254 36521/32611
Telex: 635562 Griffin G (For P.V.)
WE CAN NOW SUPPLY ON AN
ONLY EXCHANGE "HEAD FOR HEAD" BASIS £22

+ VAT
inc P8P

THORN EMI VIDEO HEAD UPPER DRUM ASSEMBLIES						SEND YOUR OLD HEAD PACKED UP CAREFULLY AND WE WLL SEND AN EXCHANGE ONE BY RETURN POST
ORDER FROM 3 VHS TYPES						
		(L)	(J)	r	(17)	
JVC MODELS		$\begin{aligned} & 3 \text { HRD } 110 \\ & 0 \text { HRD } 120 \\ & 00 \end{aligned}$	HR 7200 HR 7300 HR 7350	HR 3 HR 3 HR 4	$\begin{aligned} & 0 \text { HR } 3300 \\ & 10 \\ & 10 \end{aligned}$	
AKAI MODELS	$\text { VS } 97$	$10 \text { VP } 77$		VS 93		
FERGUSON MODELS	$\begin{aligned} & 3 \mathrm{~V} 16 \\ & 3 \mathrm{~V} 23 \\ & 3 \mathrm{~V} 24 \\ & 3 \mathrm{~V} 38 \\ & 3 \mathrm{~V} 49 \end{aligned}$	$\begin{aligned} & 3 V 31 \\ & 3 V 35 \\ & \text { 3V36 } \\ & \text { 3V39 } \end{aligned}$	$\begin{aligned} & 3 V 29 \\ & 3 \mathrm{~V} 30 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} 01 \\ & 3 \mathrm{~V} 22 \end{aligned}$	$\begin{aligned} & 3 V 00 \\ & 3292 \end{aligned}$	
BAIRD MODELS	$\begin{aligned} & 8904 \\ & 8924 \\ & 8941 \end{aligned}$	$\begin{aligned} & 8943 \\ & 8944 \end{aligned}$	$\begin{aligned} & 8930 \\ & 8940 \end{aligned}$	$\begin{aligned} & 8900 \\ & 8902 \\ & 8922 \end{aligned}$	8928	TO
DECCA MODELS	8400	8500	8300			
TATUNG MODELS	8400		8300			
I.T.T MODELS	VR360	VR3905	VR3913			
New Life Upper Drum Assemblies have been thoroughly life tested and carry a 12 month guarantee covering normal domestic use.						THORN EMT

Universal Semiconductor Devices Ltd.

17 GRANVILLE COURT, GRANVILLE ROAD,

HORNSEY, LONDON N4 4EP, ENGLAND.

TEL. 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON
SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES
VHF/UHF DEVICES - ALL SHAPES AND SIZES
FETS - POWER MOSFETS UNIJUNCTIONS

DIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES THYRISTORS AND TRIACS - ALL
東
突
SHAPES
SIZES

INTEGRATED CIRCUITS:
CONSUMER - DIGITAL/ANALOGUE
MICROPROCESSORS AND PERIPHERALS
IC SOCKETS
MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING £1.00 IN STAMPS, CHEQUE OR POSTAL ORDER.
CATALOGUE sent fre of charge, men reaussied on official LEIIERHEAD WITHOUT REFUNDI, TO OEM'S, SCHOOLS, COLLEGES, UNIVERSTIIES, gOVERNMENT INSTITUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS.
SPECIAL discounts and payment terms are available to above INSTITUTIONS.

> PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.

WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

HUSSAIN CENTRAL TV LTD Sale Sale Sale of the Century

BEST QUALITY AT THE LOWEST PRICES IN BRITAIN TODAY

G11 • 660
PYE G11
G11 REMOTE (with hand set)
G11 TEXT (with hand set)
G11 ELECTRONIC TUNER
THORN 9600
THORN 8800
PYE 222
GEC SOLID STATE
£25 ITT CVC 20/30
£15
£30 DECCA 80/100 £15
£45 ITT REMOTE (with hand set) £30
£55 TX TEXT (with hand set) £55
£30 THORN 9000 REMOTE £15
£25 THORN 9200
£27
£10 THORN 9800 £15
£10 G8 22" £10
£10 GEC STARLINE

MANY MORE LATE MODEL TVs IN STOCK INC. REMOTE, TEXT, STEREO TEXT AND $14^{\prime \prime}, 16^{\prime \prime}$ PORTABLES

All TVs have excellent cabinets
VHS: Working. Bring your own tape and try them yourself at $£ 65$
Untested Electronic VHS £90
Working Electronic VHS £135 Ferguson 3V29, Hitachi 8000, J.V.C. 7200

ALSO IN STOCK

PANASONIC 7200, 7000, 2000, 2010, 366, NV777
HITACHI VT14, VT11, 9700, 9500, 8700, 8500, 8300
FERGUSON 3V31, 3V30, 3V23
ELECTRONIC Beta Full working $£ 60$ Untested Beta from £35

PLUS MANY MORE LATE MODEL VIDEOS IN STOCK
Prices are subject to 15% VAT
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

BIRMINGHAM
48-52 PERSHORE ST. 021-622 1023 021-622 1517

PRESTON	LONDON
UNIT 439	CEDAR HOUSE
OAKSHOT PLACE	NOBEL RD.
WALTON SUMMIT IND. EST.	ELEY ESTATE
M6 JUNCTION 29.	EDMONTON N18 3BH.
0772312101	$01-8074090$
	$01-8841314$

CHEPSTOW UNIT 4 BULWARK IND. EST. GWENT.
0291271000

QUICK SAVE TV SPARES $\begin{gathered}\text { THE LOACH HOUSE, MUXTON LANE, } \\ \text { TELORD, SALLOP }\end{gathered}$

How to teach your old remote new tricks

The man who invented the Apple Computer has just discovered a way to make your TV and VCR remote controllers work better than ever.
He's Steve Wozniak and, at his
 new company, CL9, he needed to
create a portable test device to
improve those sluggish remote controllers. This test device became the world's first power booster.
With this brand new power booster, you should be able to operate your remote controller the way Steve could in his laboratory: From as far away as 40 and 50 feet. You'll no longer have to aim the controller carefully. The remote will now be able to bounce signals around obstacles. And very often it will work when aimed in the opposite direction.

This great power enhancer is called the TYRON**. It works with almost all infrared remote controllers. It attaches without any tools to your present controller. And it even includes the great Duracell Alkaline 9 -volt battery You can retail it now, for only £19.95 inc. VAT.
Generous terms for trade stockists.
Distribution in Europe by:
Advanced International Marketing (U.K.) Ltd.
74a Heath Road, Twickenham, TW1 4BW. Tel: 01-891 3644. Telex: 946461

FIRST IN TUBE REBUILDING TECHNOLOGY

30AX, 30AX, 30AX LOOK! AT NO EXTRA COST, FIDDLE FREE 30AX REBUILDS.

WHY STRUGGLE WITH EXTERNAL MAGNETS to obtain convergence and purity. FIT OUR DIRECT REPLACEMENT.

LOOK! NO EXT. POLE PIECES 30AX PRE CONVERGED
 most types of Inline Re-builds or new ex-stock PRICES SUBJECT TO

Delta Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+E2
A47 342 New	£28
17FHP New	$\ddagger 30$
470EHB New	£30

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES
Delta only Less 5
TN LINE TYPES EX-STOCK SELECTION NOT REEULDS Please enquire types not listed

[^1]QUANTITY
AVAILABLE

* ASK. FOR DETAILS. OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES
Ask for details
DELNERY: Ex stock items immediate dispatch on receipt of order
Others allow 14 days.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 617.

ADVERTISEMENT
MANAGER
David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-2616035

TV BRANDS

Many thanks to readers who provided spares/data information on Tensai and Winthronics sets - see note in Teletopics (page 642). Can anyone help with information on Intel colour receivers? These sets seem to have been distributed mainly in N. Ireland.

COVER PHOTO

Not much explanation required this month - tuning in to satellite TV! See article on page 636 .

TELEOTSUOLI

Broadcasting Options

At the time of writing this, official publication of the report from the Peacock committee, set up by the previous Home Secretary to consider the future financing of broadcasting in the UK, is still a couple of days off. Not very helpful timing for us! There has nevertheless been a lot more leaking of the committee's conclusions. The report has been under consideration by a Cabinet subcommittee and it appears that disagreement amongst ministers has been the basis of the considerable press coverage that has appeared recently.
It seems that the report could instigate quite a lively public debate. In fact this could possibly be its main aim - to stir up discussion and see what comes of this, whether or not specific recommendations made in the report are adopted. Strong words have already appeared in the press. According to the Financial Times, the present Home Secretary feels that "the committee did not appear to have understood the nature of public service broadcasting, had gone beyond its brief and had produced a mixture of incompatible proposals that would offer very little obvious benefit to the public". He has been asked to prepare a more diplomatic statement for the House of Commons.
What lies behind this dissension? As far as TV broadcasting is concerned the Peacock committee's views seem to envisage a three-phase development during the period up to the end of the century. In the first phase the BBC would be left to continue as at present, with its income tied to changes in the cost of living. ITV franchises would be put up for auction when they lapse. The second phase would see a strong move towards subscription services, with scrambled transmissions. It's emphasized that changes during this phase would depend on technological developments. Phase three would see a move towards consumer purchase of the individual programmes he wishes to view, a computerised credit card system being used for this purpose. While the Peacock committee makes definite recommendations for phase one it seems that its proposals for phases two and three are to be taken more as "possibilities which the government might care to consider".
Going bevond its brief? Well, the committee was originally set up, in early 1985, to consider the future financing of the BBC. It seems to have come to the conclusion along the line that it should broaden its terms to take an overall look at all forms of broadcasting. This is no bad thing in itself. There was a strong feeling when the committee was set up that its main purpose would be to commercialise the BBC. In the event it decided to take a much broader view - and to recommend shelving the idea of advertising on BBC during phase one.
Phases two and three would depend on the technology available. Scrambling and signal decoding are nothing new, but the idea of computerised programme selection is. Whether this would have to rely on cable distribution or whether enabling signals could be transmitted to a receiver/decoder in the set is not clear. It looks as if we shall have to wait to see what's technically feasible.
The Peacock committee included members with strong "free-market" views, i.e. that things - in this case programmes - should be paid for separately by the consumer. There's been a move in this direction in many fields, for example the provision of pensions and health care and the privatisation of services such as the supply of water and gas. The question here is whether broadcasting is in some fundamental way different. Some members of the committee seem to have felt that the public should purchase programmes in the same way that it buys newspapers, books, cassettes and so on. There is certainly some logic in this, but while a wide range of newspapers, cassettes, etc. can be made available to the public with broadcasting we come up against the limited number of channels available. Given this limitation, the emphasis has to be on "public service" - making the best use of the available broadcasting time to provide the public with a balanced supply of programmes giving reasonable choice.

This of course is a difficult problem that can lead to some unpleasant conclusions. What is balanced programming and who is to decide? The reason that the BBC lost its original monopoly was to some extent public feeling that the BBC took an unduly paternalistic view of what the public should be offered. Competition altered that. But would marketing of individual programmes change things for the better? Suck it and see seems to be the only possible answer, but the problem with this is that you jeopardise existing arrangements that by and large work perfectly well.

This brings us to the problem of whether the public is being well served. AGB Cable and Viewdata recently carried out, on behalf of Tyne Tees Television's Nightline programme, some research on public opinion in this field. It found that 45 per cent of all adults polled felt that the quality of TV had declined over the past five years - the percentage rose to 48 per cent of adults aged 35 and over. When asked whether television overall provides the programme mix viewers want 48 per cent answered no while 44 per cent answered yes. Amongst those aged under 3559 per cent considered the mix to be wrong. The results were admittedly based on only a small sample - 555 adults - though the sample was weighted by age, sex and housing tenure to correspond with general UK census data. The findings should nevertheless leave broadcasters with an uneasy feeling.

Whether radical changes in the way that TV programmes are disseminated would end up by giving the public a better service is impossible to know. The safe policy seems to be to make the best of the institutions we already have, adapting them as the technology advances. One thing's for sure; the debate will go on!

Letters

TEST CARDS PLEASE

After reading the comments from Keith Lane (June) I wholeheartedly agree about the absence of test cards on our television network. Test Card F is the ideal test pattern for setting up a television receiver, not only for the more technically minded but for general purposes, i.e. line and field linearity, height, width etc. Also, I think most engineers will agree that the colours in the centre circle have become so well known that most of us can set the grey-scale, colour etc by eye with very good results provided that tube emission is all right.
For early birds Test Card F is transmitted on BBC-2 between 8.30 and $9 \mathrm{a} . \mathrm{m}$. I've recorded an HG three-hour VHS tape in half-hour sessions, putting on my own sound. It produces very good results despite two and a half years' use eight hours a day in the workshop. But of course it's not as good as an off-air Test Card F. So how about it BBC and ITV: let's have Test Card F on one channel where it can do us engineers proud. After all, we do have the best television service in the world, so let's keep our receivers giving optimum performance.
P.G.A. Crockett (thirty years' service),
D. Clarke - Radio and Television,

Hemel Hempstead, Hers.

TIFAX TELETEXT DECODERS

In view of recent letters in Television concerning the Tifax teletext decoder the following information may be helpful to your readers. The first joint BBC/IBA/BREMA teletext specification was issued in October 1974. Minor changes were added in January 1976. Certain control codes however were left undefined until September 1976, when the final teletext specification as used by broadcasters today was published.
The Texas Tifax XM11 decoder was the first to use custom LSI chips and was introduced before the final specification. It therefore lacks the features which at that time were undefined (double height, separated graphics, graphics hold, background colour) although a later version (XM11/DH) did offer double height.

There's another problem with the XM11 however, and this could be causing some of the effects described by your readers. It concerns row address decoding and arose following a refinement in the teletext specification introduced between 1974 and 1976. The manufacturer was aware of this and the XM11 was soon replaced by the XM12 mentioned by Mr. Sears. However only prototype quantities of this decoder were made before Texas withdrew from the market.

Each teletext TV line contains a 5 -bit row address which can be of any value from zero to 31 . Zero to 23 directly correspond with the 24 rows of text display. The range $24-31$ was reserved for other uses, many of which have now been defined. Receivers offering additional features (e.g. page linking) provided by these should be available later this year.

Both 1976 specifications stated that decoders should ignore row addresses $24-31$, but when confronted by one of these an XM11 ignores both that line and the following data line containing data intended for display. The effect is to miss out a row of text and either leave it blank or
continue to display text left behind from another page. The chances are that this will be filled in next time round in the transmission sequence, providing it's not part of a rotating page set.
Since February 1982 the BBC has been transmitting occasional row numbers above 23 to assist with the development of the next generation of decoders. In September 1985 one teletext line per field blanking interval on BBC-2 was dedicated to Datacast, an experimental data service which also uses these row addresses. The remaining teletext lines (four initially, now five) carry the normal BBC-2 Cefax service. Unfortunately this has highlighted the row decoding fault, causing the effect described by Mr. Cummins, i.e. every fifth line of any BBC-2 Cefax is missed by the XM1I.
The fact that these decoders are obsolete and that the problem is caused by them not precisely meeting the agreed specification is of no consolation to viewers still using them, especially as they gave satisfactory service initially. In view of this the BBC ran an experiment to try to establish how many XM1 Is are still in use. In late 1985 a message normally visible only with XM11 decoders was transmitted on the index page, asking viewers to call a telephone number. The response to this was so small that we came to the conclusion very few XM11s could still be in use. Those that are probably tend to be owned by television enthusiasts.
M.J. Winston, Senior Planning Engineer,
Planning and Installation Department, Television,
British Broadcasting Corporation.

Editorial note: Mr. G. Beard, who started this correspondence off, comments as follows: The index page referred to in Mr. Winston's letter could have been page 100 or the alphabetical index page, which in either case would be missed by numerous viewers as the XMII doesn't initialise on page 100 and most viewers go straight to pages of their choice. Readers using XM11 decoders might like to notify the magazine: if the number of letters received is sufficient details could be forwarded to the BBC.

AMSTRAD CTV1400

Further to the note on the Amstrad CTV1400 (TV Fault Finding, June) the following may be of interest to readers. An apparently dead set with an audible whistle coming from the chopper transformer should direct attention to the soldered joints around the line driver transformer. Even when they appear to be good this has been the cause of the problem on a number of these sets.
D.G. Hopwood.

Worsley, Manchester.

VHF/UHF SOUND RECEIVER

I've received several letters from readers asking about my v.h.f./u.h.f. sound receiver (May issue). The 40673 dualgate MOSFET mixer transistor, about which some readers enquired, is available from Maplin Electronics and East Cornwall Components. Cirkit have a similar device which is somewhat cheaper, type 3SK81.

For L3 a Maplin former type $722 / 8$ (order no. LB21X) can be used with screening can type 15 (LB39N) and cores type 4 (LB4IU). Ten turns instead of 13 will probably give the correct tuning range but I'd suggest using two 22 pF film dielectric trimmers instead of the 10 pF mica capacitors. An alternative circuit using prewound coils

Fig. 1: Alternative circuit using prewound coils.
type TKXCA34732CON (Cirkit type 35-47320) is shown in Fig. 1. I've not tried this in the original receiver though it works in an alternative set-up I've built.
Paul Barton,
Harrogate, Yorks.

SOUTH AFRICAN VIEW

I am with your correspondent Keith Lane (June) on the matter of the failure of the BBC to broadcast test cards, having been one of these engineers who lobbied the BBC many years ago to change the early test card when its frequency charts were becoming outdated by the arrival of the 625 -line services. Here in South Africa the SABC broadcasts a test pattern on TV2 during all non-programme hours: on TV3 there are teletext samples for 45 minutes in the hour and a test card during the other fifteen minutes. There are sometimes colour bars before each programme start.

The new M Net commercial, privately-owned service has started test transmissions here on channel 39, much to the annoyance of many viewers who are losing their reception of Bop TV on ch. 37 due to interference - at the moment there's a market for notch filters to help. The SABC have always been against us whites receiving Bop TV and have made it diffucult for us here in the Reef area to get more than a few microvolts - to this end they erected large side screens to prevent overspill into the suburbs of Johannesburg. The M Net system is owned by a consortium of local newspapers and will be a rental service - about R200 for a decoder plus approximately R30 per month to receive the station. About five hours of transmissions a day are planned and up-to-date movies are expected. The present service is TV1 alternately English/ Africaans, TV2/3 vernacular - English mainly but some Africaans each night from 9.30 p.m. to midnight or thereabouts.

To return to the subject of test cards, if the SABC can do it with such a small population surely the $\mathrm{BBC/IBA}$ could manage some transmissions?
Leonard E. King,
Kempton Park, Transvaal, RSA.

FUSE PROBLEM

Here's a fault that had me running around in circles on a Grundig set fitted with the GSC1OO chassis. The symptoms were lack of height with non-linearity at the top of the picture. My reaction was that the supply to the TDA1170 field timebase chip was low, and sure enough a check on the +D line revealed that it was at 15 V instead
of 18 V . The supply is derived from the line output transformer but a thorough check on the rectifier and filter components failed to reveal anything amiss while the pulse input was correct. Changing the TDA1170 had no effect.

In desperation I changed the fuse in this supply, Si627 (1A anti-surge) - with immediate success. A check on its resistance produced a reading of 1Ω compared to $0 \cdot 2 / 0 \cdot 3 \Omega$ for a good fuse. Placed as it is between the cathode of the rectifier and the reservoir capacitor C628 this small resistance had a devastating effect on the $+D$ supply. Maybe I was slow in diagnosing this fault but one does get used to thinking of an operational fuse as a short-circuit, which an anti-surge type certainly isn't.
L.P. Watkinson, Telesonic Services, Holsworthy, Devon.

GRUNDIG CUC SERIES

I was interested in the article on the Grundig CUC series chassis (July). Here are a couple of faults I've come across on a number of occasions on these sets: (1) Distorted sound with the CUC220 and CUC720 - when the station is detuned the sound will come in perfectly but the picture will be distorted. The cause is the TDA120T intercarrier sound chip in the tunerii.f. module. (2) Excessive width with the CUC720 chassis, the width control having no effect and the voltages around the BC875 diode modulator driver transistor T576 being low. The cause is modulator diode D572 (SKE4G2/06) being short-circuit.
George Farrueia,
M'xlokik, Malta.

NORDMENDE F10/F11 CHASSIS

A printing error occurred in my article on the NordMende F10/F11 chassis (June). In the caption to Fig. 3 it mentioned that RF12 is $3 \cdot 3 \Omega$ in the F11 chassis whereas it's normally $2 \cdot 7 \mathrm{M} \Omega$ or on occasion $3 \mathrm{M} \Omega$. Since compiling the list of common faults one more has appeared in recent months - set dead due to failure of the mains fuse FP01 caused by the degaussing thermistor going short-circuit. This would appear to be due to a faulty batch of thermistors that fail after a few months' service.
Christopher Holland,
Dundalk, Co. Louth.
Editorial note: The error was our fault - we meant RF21 which is in series with the field scan coils. Our apologies.

COSSOR CDU150 OSCILLOSCOPE

Readers may be interested in the following modifications to the Cossor CDU150 oscilloscope. These twin-channel oscilloscopes have been sold on the surplus market for about $£ 170$. They are all solid-state and feature delayed timebases, a quoted bandwidth to 35 MHz with observable signals at over 100 MHz , and many features. They are also small and light despite the six inch screen. The rugged, military style construction should protect them against rough handling in the workshop or in the field.

My scope failed due to a flashover between the p.d.a. multiplier and the e.h.t. and blanking board. Remove the rear cover to locate these. I fitted an aluminium guard between them to prevent a recurrence.

I noticed that the c.r.t.'s heater glowed brightly at switch on before reaching an even temperature. Fearing that this could eventually lead to filament failure and
costly c.r.t. replacement 1 have installed a slow-start circuit for the heater to eliminate the fault. It's built on an aluminium panel fixed to the tube base - the whole circuit floats at about the tube base potential. Fig. 2 shows the circuit. Power is obtained by using a bridge rectifier to rectify the heater voltage. At switch on the $3 \cdot 3 \Omega$ resistor R3 is in series with the tube's heater. The $470 \mu \mathrm{~F}$ electrolytic C2 charges slowly via R1, eventually switching on Tr 1 to operate the relay and short out R3. Trl can be a BC384L or similar npn transistor. R3 needs to be a wirewound type. The relay is an STC type 4184GC.

This arrangement could be used for any c.r.t. heater or lamp that might be damaged by a switch on surge. Once the relay has closed the tube will receive the same heater current as in an unmodified unit. The only change will be the additional power dissipation in the 170Ω relay coil. With a 6.3 V heater this will be under 0.5 W , even allowing for rectification and smoothing.

This has little to do with oscilloscopes, but I've found a

Fig. 2: Slow-start c.r.t. heater circuit.
good way of stopping cables pulling out of 13 A plugtops. With appliances such as garden tools the cable often slips out of the plug leaving only the insulated wires. To prevent this happening, put a blob of thermosetting glue on the cable inside the plug, past the clamp.
John de Rivaz. B.Sc (Eng.),
Porthtowan, Cornwall.

Single-channel Indoor Aerial

Ivor Nathan

A distant signal can often be received in only a quite closely-defined position: moving the receiving aerial by a few feet in either the vertical or horizontal plane may cause complete loss of signal. At my location in Southgate, North London even reception of the four local channels can be a problem because of the hilly nature of the surrounding district. I've nevertheless found it possible to receive alternative signals by using a separate indoor aerial and aerial amplifier.

I started experimenting using a commercial indoor logperiodic aerial and amplifier. This established that reception of TVS (Television South) on ch. 42 was feasible, providing a choice of extra programmes when they differed from the London ITV ones. The aerial was placed in various positions about the room. For a noise-free signal the best position was found to be three and a half feet above the floor, surprisingly not very near to a southfacing window - and with nothing of the correct height to rest the aerial upon. This prompted me to build the aerial and its floor-stand described in the present article: see Fig. 1 , right.

The base of the stand can be made of plastic or wood: it needs to be heavy to ensure stability. The aerial itself consists of a half-wave dipole, reflector and director - all made of heavy-guage wire - on a boom, and an extra horizontal reflector made of domestic aluminium foil sheet. The height of the stand and the mounting position for the aerial depend on the locally available signal(s): trial and error with an existing indoor aerial is the only way to check on this, with an aerial amplifier if need be. The aerial element dimensions shown in Fig. 1 are calculated for ch. 42: if you wish to receive a different channel optimum results will be achieved only by recalculating the dimensions for the appropriate half-wave dipole and its associated elements and their spacings.

The dipole is assembled on a four-screw plastic terminal block: the connections to the low-loss coaxial feeder can be made as shown. Tape the feeder to the stand - the feeder should be long enough to enable the assembly to be placed anywhere in the room. The director and reflector are similarly assembled on four-screw plastic
blocks. The extra reflector, which is mounted on an arm below the main array, provides a surprising degree of extra gain. It consists of a rectangular sheet of aluminium foil pasted on a piece of stout card.

It's best for the floor-stand support components to be of square or rectangular section rather than circular so that they can easily be joined together and so that the plastic terminal blocks and the foil reflector can readily be fitted to the supporting arms.

If an aerial amplifier is already in use it's a simple matter to change aerials at the amplifier input when using the newly constructed aerial instead of the existing localchannel installation. Regardless of whether an aerial amplifier is in use some readers may prefer to add a changeover switching system.

Fig. 1: Details of the aerial.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD. CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868
 Telex 99305

TRADE COUNTER OPEN
ORDERS DESPATCHED SAME DAY ADD 75p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS ORDEFS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

	FUSES		
	20 mm		11/
$\begin{aligned} & 50 \mathrm{MA} \\ & 250 \mathrm{MA} \end{aligned}$	10 for $70 p$ 10 for 50,	$250 \mathrm{MA}$	10
315 MA	10 for 500	7A	10 for
500 MA	10 for 500	10A	10 to
254	10 for 1.00	20A	
3.15A	10 for 1.00	50A	10 for

Thom Mains IX 3000/3500
Thom Mains IX $8000 / 8500$

Thom Mains IX
Thom Mains IX 90000
9500

Thom Mains IX 9600 (T512)
Thom S.O.P.T 80008500
Thom Scan TX 3000/3500
Thom EHT TX $3000 / 3500$
Thom LOPT 9000
Thom LOPT 1590191
Thom LOPT 1690191
Thom LOPT 8000
Thom LOPT 8500
Thom LOPI IX9
Thom LOPT TX10
Thom LOPT TX90
Pye LOPT 713
Pye LOPT 725
Pye LOPT 731
Philips LOPT G9
Philips LOPT G11
GEC LOPT 3113
Diode Split LOPT AT2076/35
Sanyo LOPT AM-WM- 21
Sanyo LOPT AM-WM-4
Philips LOPT G8
Sanyo LOPT (CW2I) 4-2751-44700
ITIOPT CVC5-9
IT LOPT CVC5-9
IT LOPT CVC30
ITT LOPT CVC30
Baird 8750
Baird 8752
Thom Line Drive TX. TX9 (T2)
Thom Line Drive TX. 8K etc. (T402)
Thom Line Drive PX. 9K (T705)
Thom Swith Mode IX 9K6 (T511)
Thom Input Choke TX9 (L64)
Thom Choke TX90 (L120)

300 Mixed Resistors 300 Mixed Capacitors 150 Mixed Electrolytics 100 W/W Resistors 20 Mixed Conv Pots 40 Mixed Pots 20 Mixed Sliders 40 Mixed Presets 20 Mixed VDR \& Thermisto 100 Mixed Ceramic Discs

$\begin{aligned} & 1.90 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { BC158 } \\ & \text { BC159 } \\ & \text { BC171 } \\ & \text { BC172 } \end{aligned}$	$\begin{array}{rl} 12 & B C 557 \\ 15 & B C 558 \\ 9 & B C 559 \\ 9 & B C 595 \end{array}$	$\begin{array}{rl} 10 & B D Y 20 \\ 10 & B D Y 82 \\ 8 & B F 137 \\ 8 & B F 153 \end{array}$
$\begin{aligned} & 0 \text { for } \mathbf{6 5 p} \\ & 0 \text { for } \mathbf{6 5 p} \\ & 0 \text { for } 50 p \\ & 0 \text { for } 50 p \\ & 0 \text { for } 50 p \\ & 0 \text { for } 50 p \end{aligned}$	INTEGRATED CIRCUTTS		
	BRC1330	1.40	SN76013NO
	${ }^{\text {BRC }} 3064$	1.00	SN76023N
	BRC/M 200	1.00	SN76033N
	BRC/M/300	1.00	SN76115
	CA3060	1.58	SN76131N
		1.48	SN76226N
		220	SN7627N
	ML2378	200	SN76530P
7.50	ML239B	28	SN76622N
10.00	MC1327AP	125	SN76660N
10.00	MC1358P	1.30	SN76666N
10.00	MC1455P	18p	SN76744
3.50	MC14516BCP	CP sop	SY153A
6.00	SAA1025	720	TA7117P
6.00	SAA1124	4.50	ta7109AP
10.00	SAA5010	6.00	TAAGI1
1200	SL432A	1.00	tBalzob
725	SL1430	250	tBalzoc
7.25	SL1432	250	tbalzoco
980	SN15846N	50p	tbaizos
9.80	SN74123N	$6{ }^{6}$	tBaizou
9.85	SN74154N	1.40	IBA395
19.00	SN76001N	1.00	TBA4800
13.5	SN76110N	1.14	TBA510

	1.90	2.53		2.50

BC1748
BC177
BC182LB $\begin{array}{ll}\text { BC17 } & 24 \\ \text { BC182LB } & 12 \\ \text { BC183L } & 12 \\ \text { BC184L } & 13 \\ \text { BC187 } & 24 \\ \text { BC204 } & 15\end{array}$

1. | $8 C 212 L$ | 9 |
| :--- | ---: |
| BC213L | 12 |
| BC238B | 12 |
| BC238L | 8 |
| BC250A | 15 |

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.

WE ARE LOCATED IN

 UXBRIDGEAt probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.

UNIT 4, SWAN WHARF,
WATERLOO ROAD,
UXBRIDGE, MIDDLESEX.

SADELTA

FIELD STRENGTH METER MODEL TC-402

THE SADELTA FIELD STRENGTH METER TC. 402 has been designed to measure the signal levels delivered by the antenna to a TV or FM receiver, In order to test the performance of the antenna and evaluate the best conditions during installation etc. To facilitate measurements, the funing frequency readout is shown on a digital display

U.K. POST PAID, export enquiries welcome, Visa/Access or cheque with order, payable to B.K. Electronics. Official orders welcome from Govt. Depts., Coileges, P.L.C.s etc. Large S.A.E. for technical leaflets of complete range delivery normally
within 7 days.

B. K. ELEGTRONIOS Dett.T

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702.527572

THE FULL THORN RANGE now available from
 Unit 4 Rubastic Road, Southall, Middlesex 015744631 EXT 28
 9K-9K6-TX9-TX10 TEXT \& FULL REMOTE ALSO VIDEOS V.H.S. \& BETA. LOTS OF WORKERS FOR BUSY DEALERS

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the sheif'.
\star Unusual types repaired same day as received (subject to spares availability)

32 Temple Street,
Wolverhampton WV2 4LJ. Phone: (0902) 29022.

Thanks Denis

Les Lawry-Johns

Some months back (January) I mentioned a Network colour portable - Model NW1414, fitted with the Grundig GSC100 chassis. The original fault was that the fusible resistor R607 in the start-up circuit would go open-circuit for no apparent reason. Resoldering it restored normal operation, and despite my suspicions nothing showed up during a prolonged soak test. Network's service manager Denis Mott subsequently got in touch and provided some tips. He drew my attention to his article in the September 1984 issue of Television and said that the set would come back to me. Well it did, after some months though.

This time I followed Denis's suggestions and also checked a number of other things. No fault could be found. I eventually resoldered R607 and everything was lovely for a day and a half. Then it pinged again and we started replacing components en bloc. The result of this was that the set refused to come on at all when R 607 was resoldered. My language was deplorable and Zeb went away and hung his head. Spock jumped up on to the highest shelf in the shop. Honey Bunch was out so she didn't have to hear it. Suddenly I stopped swearing. This is what we'd wanted in the first place, a fault that was there all the time. Unless I'd put it there when replacing various resistors and transistors. Supposing one had been defective? But I'd tested them all before fitting, as I always do. So I put this thought out of my mind and started a general check.

The line output thyristor, which had checked all right during previous tests, was now open-circuit between its gate and cathode. It should record about 30Ω one way and about 200Ω the other, with no reading between the anode and the other two electrodes when disconnected. Now it showed no reading at all. It was speedily replaced: the set worked for the rest of the day and the week that followed.

The Blind Comes Up

A chap staggered in carrying a 26 in . Ferguson set fitted with the TX10 chassis. He explained that after about an hour's use a blind came up from the bottom, leaving just a few inches of picture at the top with the rest of the screen blacked out. I'd never heard of this one before.

I let the set run for some time, not really expecting anything to happen as the shop is a lot cooler than the customer's home. Then I removed the back cover and brought the hairdryer into action. I directed hot air at the field output transistors and the surrounding components. When I lingered on the TDA1044 chip the bottom of the screen blacked out and the blind rose until only the top few inches of picture remained. I grabbed the freezer but with the heat off the blind came down again and a normal picture was displayed. Again I heated the chip and again the blind rose, only this time I was ready with the freezer and the blind came down as soon as the chip was cooled. I didn't have a TDA1044 in stock so I looked under it to see what the ventilation was like. As there wasn't any near the chip I drilled a hole to let in some air. I explained to the chap what I'd done and mentioned that the TDA1044
would be here when the blind came up again - if it does come up again.

The Bush BC6004

Shortly after our second encounter with the Network set a Bush BC6004 colour portable came in. Another German chassis, this time manufactured by Saba. The customer's complaint was that it would be fine for an hour then shut off! It's the set with the small enclosed unit at the top right containing the line output transistor (BU208), line driver transformer etc. I changed the BU208 and the set worked fine for the best part of an hour. Then it shut down again.

I tapped the BU208 with the handle of a screwdriver, more out of frustration than anything else. The set then started up and shut down after an hour. This time I moved the line output stage housing cautiously and the set started up again. So I took the housing out of its socket, having removed the two screws, and carefully resoldered all the input joints - though none looked suspicious. I then touched up any other joints that looked the slightest bit shaky and refitted the unit. It played away for the rest of the day and as far as I know it's still playing away quite happily. I wish I was.

GEC C1404H Series

These 14 and 16 in . portables are made by ITT in W. Germany, using the CVC1110/CVC1112 series chassis. They suffer from a common fault: a bright white screen, suggesting that the tube's cathodes have lost their bias. The RGB output transistors with their $12 \mathrm{k} \Omega$ collector load resistors are mounted on the tube base panel. No voltage will be found on these resistors. The source of the 150 V supply is the line output transformer: the series-connected rectifier diodes D504 and D505 are on the right side of the main panel. There's a small surge-limiter resistor in the feed from the transformer, R514 (1-5 $)$. It looks very small and is intended to be, acting as it does as a fuse. It doesn't burn out for nothing. The cause could be leakage in the diodes or in the associated $10 \mu \mathrm{~F}$ reservoir capacitor C506 or the $1 \mu \mathrm{~F}$ smoothing capacitor C 1002 on the tube base panel. Occasionally one of the three RGB output transistors may be at fault, but this doesn't happen very often. Then of course it may be the tube ...

This and That

The editor must be taken to task for a couple of mistakes that got into my column in the June issue. First about my overcoat. I said it cost $37 / 6 \mathrm{~d}$ made to measure, also that this works at one pound eighty seven and a half pence. In print it said one pound thirty seven and a half pence. I also said that we filled up with petrol on the A2 just a little way from home. This came out as the A3, which is a long way from home. Oh well, I suppose we can't all be perfect . . .

It amazes me what Honey Bunch gets given to her. Boxes of chocolates by the dozen (we don't eat chocolates but Zeb does, so does her aunt). Last Sunday lunchtime we were in Dave's for a drink and H.B. happened to mention that she hadn't had duck's eggs for years. Next day one was brought in. I haven't had (given to me) a bottle of whisky since Christmas, and I'm not likely to till next Christmas. It won't be long now however. This year has simply rocketed by.

Satellite TVRO Installation

Part 1

Harold Peters

It's one thing to get a dish up and working outside your own premises with all your colleagues to help, quite another to install a satellite TV receiving system on the patio of one of your best customers. At that time you're on your own and possibly beginning to wish you'd given more attention to all those Television articles that didn't seem relevant at the time. So if your company has recently decided to expand into satellite TV here's a recap of the things you ought to know and a bit of background information to tie it all together. Some specialist firms are now offering equipment at below the $£ 1,000$ mark: we'll assume that one such outfit has arrived and that you've been selected to get it going. Fig. 1 shows a typical satellite TV receiving system block diagram.

Commissioning the Receiver

Commissioning the receiver will be the part most familiar to you, so we'll tackle this first. Hopefully the manufacturer will have air tested it and left it tuned to a known channel - usually Music Box. If so you leave the tuning severely alone: your first problem has been overcome before you start!

Table 1 gives a list of the satellite TV stations currently available in the UK. Receivers generally have a baseband video output of 1 V at 75Ω, with a separate audio output at around the 300 mV level. A modulator is usually included to give a standard u.h.f. TV signal at around

Fig. 1: Block diagram of a typical TVRO installation.
channel 36 . Where this is missing but needed a VCR's auxiliary input does equally well.

An integral part of the receiver is the low-noise amplifier and down-converter mounted on the dish. This assembly is often referred to as a low-noise block (LNB). An 18 V d.c. supply goes from the main receiver to the LNB via the same coaxial feeder that the i.f. signal from the converter comes down to the receiver. It's a good policy therefore not to disconnect the LNB with the receiver powered up.

A rough and ready test can be applied before aligning the dish. With the receiver on but the LNB disconnected you should see about the same order of noise (snow) as on a domestic set. Connect the LNB and the snow should increase perceptibly. Point the LNB at a warm patch of sunlit ground and there should be more snow still. An AVO 8 on the low-ohms range connected across a cold LNB input should give a typical diode reading: low one way, high the other.

The Dish

Assembly of the dish from its flatpack is simply a matter of following the leaflet enclosed. Make sure that the dish doesn't get distorted: store it flat, not on edge.

There are two kinds of mount: "Az-El" (azimuth/ elevation) with simple vertical and horizontal adjustment of the dish, and "polar" which permits the dish to be tracked across the sky, following the Clarke Orbit, and stopped at any satellite of your choice. Both types should be bolted to a firm base. The connections to the LNB and the LNB/feedhorn junction should be sealed over with waterproof material.

With the dish roughly in position, take care when working at the focus: you may need sunglasses to counter the glare concentrated by the dish - and watch out for passing jets that may cross the beam (dishes concentrate sound as well as s.h.f.!).

Siting the Dish

The whole dish must have a clear sight of the satellite you want. Eutelsat 1 (originally known as ECS-1 and officially designated Eutelstat I-F1) is at $13^{\circ} \mathrm{E}$ of south while Intelsat VA F11 is at $27.5^{\circ} \mathrm{W}$ of south. Their elevations are roughly 29° and 24° respectively above the horizon. As a rough guide, the sun should fall on the chosen spot between $11 \mathrm{a} . \mathrm{m}$. and 3 p.m. in November and February. For more precise surveying you can make up a

Fig. 2: A simple theodolite for site surveys. There's little point in making it taller than the dish bottom. Put the pipe at the satellite's elevation and set the azimuth with a compass. Look up the pipe and hope to see just the sky.

Fig. 3: Eutelsat 1 finder. Pinpoint your site on the map and interpolate dish elevation from the sloping horizontal lines and the azimuth east from your site from the vertical lines.
simple theodolite as shown in Fig. 2. You'll be surprised how few domestic sites are suitable for mounting a $1 \cdot 8 \mathrm{~m}$ dish.

Finding due south is important, especially with a polar mount. You can use a compass, allowing for magnetic variation. True south is 7° to the right of magnetic south. The trouble with compasses is that unless they are used well away from the gear they always point to the dish or the van. The Pole Star is an accurate north, if you keep late hours, but there's nothing like the sun if it's available at the time.

Table 1: Station finding guide by frequency.

Frequency $(G H z)$	Station/ polarisation	Satellite
10.986	Teleclub $/$ N	
11.005	RAl/H	Eutelsat 1
11.015	Premiere/Childrens/H	Eutelsat 1
11.135	Screen Sport/H	Intelsat VA F11
11.138	Filmnet/N	Eutelsat VA F11
11.155	CNN/N	Intelsat VA F11
11.170	Europa/H	Eutelsat 1
11.471	TV5/H	Eutelsat 1
11.507	Sat-1/	Eutelsat 1
11.650	Sky/H	Eutelsat 1
11.674	Music Box/N	Eutelsat 1
11.676	NRK/H	Eutelsat 2

Table 2: Solar transit times.
Times (GMT - add one hour for BST) when the Sun is due south.

Aberdeen	12.08	Douglas	12.18	Manchester	12.08
Belfast	12.24	Dublin	12.25	Newcastle	12.06
Birmingham	12.08	Glasgow	12.16	Norwich	11.54
Bristol	12.10	Leeds	12.05	Plymouth	12.16
Edinburgh	12.12	London	12.00	Swansea	12.16

Fig. 4: Intelsat VA F11 finder. Pinpoint your site on the map and interpolate dish elevation from the sloping horizontal lines and the azimuth west from your site from the vertical lines.

Allow four minutes of time for every degree you are off the meridian. The sun is due south at 12 noon GMT (1 p.m. BST) at Greenwich, Cleethorpes and Newhaven but at Ipswich you plot at 11.56 a.m., at Portsmouth and Nottingham 12.04 p.m., at Birmingham and Manchester $12 \cdot 08$ p.m. and at Liverpool and Carlisle $12 \cdot 12$ p.m. Table 2 shows some more times. As a double check use an Ordnance Survey map: the popular series shows magnetic and grid variations at the edge of the sheet.

The hinge where the dish swivels on the mount should be pointed due south. This need be only approximately so with an Az-El mount. With the dish in position and everything connected up, point the dish at the required satellite, using the maps (Figs. 3 and 4) and a simple inclinometer (see Fig. 5) to get the elevation as nearly correct as you can. Set the azimuth with respect to south.

Fig. 5: A primitive inclinometer using a long straight lath and a protractor. Accurate enough at 4 GHz and for dishes up to 1.8 m at 11 GHz .

Fig. 6: Declination offset for polar mounts. Pinpoint your site on the map and read off to the nearest declination offset line.

You'll notice that the azimuth angle is always greater than the difference between the site longitude and the satellite longitude. For example Eutelsat 1 is at $13^{\circ} \mathrm{E}$ of south, Ipswich at $1^{\circ} \mathrm{E}$ of south, a difference of 12°. The azimuth setting however is $15^{\circ} \mathrm{E}$ of south. Why? Well the stated longitude of a satellite is that seen by an observer at the North Pole. The farther south you go the wider the azimuth angle becomes, until you reach the equator when you have only elevation to worry about.

Tuning in

Having done all the above according to the book, why do we still get nothing? With a 1.8 m dish you have to be within 1.5° to get the slightest hint of a signal. Your LNB might be on the wrong polarity or the set not tuned to a station. Call your supplier if the latter is suspected - all those the writer has dealt with have been most helpful and can give you a dial setting to correspond with the wanted signal. Many leave them tuned to the station on which the set was air tested. If the polarity is in doubt turn the LNB to 45° when it should resolve a readable signal from transponders with either type of polarisation. Music Box and Sky share the same nominal band but their carriers are sufficiently offset to come in on quite different settings with the average receiver.

You will need to monitor the results at the dish. A battery operated monochrome set adapted to take a video feed is ideal. If the satellite receiver is provided with an a.g.c. port, take a meter out as well, with a long lead. If you're going to do a lot of installations a spectrum analyser is a worthwhile investment. It will do the whole job, better than a TV set. The writer has used the lowpriced AVCOM PSA 35 (imported from the USA) to good effect.

Loosen the mount adjustments so that the dish can be
rocked about 10° in both planes, then methodically scan the patch of sky thus covered. Don't go too fast, and be prepared to freeze at the first sniff of signal. Remember that the signals are f.m. and once captured will hold over a small amount of detuning.

From now on everything is a matter of squeezing the lemon to get the last picowatt of signal into the system. Optimise the azimuth, elevation, polarisation and receiver tuning, then go over the lot again until no improvement can be obtained. Bear in mind that you need to allow for some 2 dB loss in heavy rain or snow.

If, having got a strong signal, you find that the picture jitters badly you've chosen the wrong video output port on the set. There are often two: one with the sound and the dispersal signal removed and another with both left in for feeding to a descrambler or whatever - that's the one you've got.

Don't be surprised to find that the polarisation of the LNB - this is best adjusted for minimum crosspolarisation of the unwanted signal - is not exactly horizontal or vertical. Unless the satellite is due south you'll be looking at it somewhat obliquely.

If you cannot make sense of Music Box you've either got Sky which is scrambled, or Norway on the wrong satellite (Eutelsat I-F2) with MAC-C encoding. If the picture looks o.k. but the sound is in German you're on the right satellite but the wrong channel - watching Music Box on Sat-1, one channel down.

Keep monitoring the signal as you tighten the adjusters on the mount. You can easily lose the picture altogether as you wrap up the job.

Polar Mounts

In the three decades during which this writer has contributed to Television he's always left the awkward bits till last. This is no exception.

The current trend is to use polar mounts. These permit the dish to be swung round either by hand or a motor to follow the Clarke Orbit, stopping at any satellite at will. If this could only be done by a single simple adjustment to the azimuth it would be a piece of cake, but unless you are either at the North Pole or the Equator (strictly speaking the Clarke Orbit isn't visible from the Pole) the orbit, as seen from the ground, is not a simple radius but an oblate ellipse. To correct the dish tracking truly, so that it follows the orbit exactly right down to the horizon, would require a complex tracking mechanism of the, kind found on an observatory telescope. In practice however it's sufficient to offset the dish so that it leans a few degrees forward on its mount when facing due south.

For most of central England this declination is 7°. It varies by only the odd degree over the whole range of latitudes we occupy (see Fig. 6). If you swing a polar mount you will see that the effect of this offset is less as you get to the horizon, compensating for the extra distance between you and any satellites at the two ends in comparison with a satellite at the meridian a mere 22,300 miles away. All this is difficult to check because there are few satellites that can be received well enough at the horizon. Provided the dish tracks well enough over the centre of the range it will suffice for your purposes.

You must first ensure that the hinge of the dish is pointing exactly due south. Don't bolt it down yet as you may have miscalculated. Start with the average offset (or use the table provided with the dish) and capture Eutelsat I-F1 as previously described. Then swing round to Intelsat

VA F11 and note how much elevation (upwards) or declination (downwards) you need to capture the signal. So that you can get back to them, mark your settings at every turn on the adjusters using a Magic Marker. The best two channels to use for alignment are RAI on Eutelsat I-F1 - this is at the other end to Sky, with the same polarisation - and Children's Channel (shared in the evenings with Premier/MirrorVision) which has the same polarisation but is on Intelsat VA F11.

Since RAI is at 11.005 GHz and Children's Channel at 11.015 GHz virtually no retuning will be needed. Thus whatever errors there are will be due to incorrect setting of the polar mount. If for optimum resolution of Children's Channel you have to point the dish upwards it means that your hinge is too much to the east of south. If you have to point the dish downwards it's a little to the west. Adjust it and try again.

Once signals from these two satellites are coming in at equal strength check the polar tracking of the dish by picking up Eutelsat I-F2 at $10^{\circ} \mathrm{E}$. This has NRK (Norway) with MAC-C encoding on virtually the same channel as Sky on Eutelsat I-F1. You should also now be able to pick up Intelsat V F2 at $1^{\circ} \mathrm{W}$, where you can usually tune in two scrambled channels. This will enable a precise check on the declination adjustment to be made. If elevation
adjustment is needed to optimise reception from this satellite do it with the declination screw, noting how much change is required, then set the declination to half the error, making up the rest with the elevation screw.

It's quite likely that the tracking may still be out towards the horizon, but there's little to see down there at present. The next launches of any interest, Eutelsat I-F4 at $7^{\circ} \mathrm{E}$ and the French/German DBS satellites at $11^{\circ} \mathrm{W}$, are well within the arc of the adjustment achieved. A new head end will be needed for the DBS satellites since their channels start above the high end of the ones at present in use.

Note that for best results as you swing between Eutelsat I-F1 and Intelsat VA F11 the polarisation of the LNB should be optimised to reduce interference from signals with the other polarisation.

All that now remains is for you to tighten up all your adjustments and grease well around their threads.

Next Month

Having got you started, the next part in this series will recap on the basics of satellite TV reception and look at some of the equipment available. The final part will deal with the theory in more detail and discuss future trends.

VCR Clinic

No Playback: JVC HR2650

Two general rules of thumb apply to VCRs that return to the stop mode a few seconds after play has been selected. First; if the tape loads to the heads, or even partially to the heads, and the machine then cuts out, the fast forward and rewind modes appearing to function correctly, suspect missing drum pick-up head pulses. If however the VCR plays for a few seconds before cutting out, while fast forward and rewind also trip out soon after selection, the problem is that the machine thinks the tape spools aren't rotating due to the absence of reel pulses or take-up pulses depending on the model in question. In this case there's usually no counter movement during the brief time that the tape is moving, since these pulses are used to drive the counter. This would apply to electronic counters and not the earlier mechanical counters, though it should be mentioned in passing that in the early JVC piano-key machines there are no take-up pulses when the counter belt is displaced.

And so to the machine under consideration. The HR2650 is a small portable VCR with stereo sound capability. It runs off a rechargeable 12 V battery and has an accompanying tuner/charger unit. The fault with this one was no play, though an apparently good picture did appear for a few seconds. Fast forward and rewind were equally brief and what caught my eye was that the tape running indicator LED was illuminated all the time. All this pointed to an absence of take-up reel pulses, so the outside covers were removed and sure enough the pulses at pin 1 of connector 3 on the front control panel were found to be very weak, less than one tenth the amplitude the diagram said they should be. This voltage swing would be insufficient to activate the operational amplifier in IC6 and thus give an output to the tape running indicator, the counter and the mechanon panel. The problem was due to the reel sensor itself. Before condemning it we removed it

Reports from Christopher Holland, Philip Blundell, Eng. Tech., Mick Dutton and Jeff Herbert, G4JJH
and checked that there was no dirt affecting its optocoupler, something we've encountered previously with other machines.
C.H.

Samsung V1510T

A number of these Korean made VCRs have passed through our workshops recently. Amongst the run of the mill problems of head cleaning and extracting foreign objects from the mechanism, something that seems to go with front-loading machines, we've on several occasions had no playback colour. The usual cause seems to be poor quality 4.43 MHz crystals that either won't oscillate or can't be adjusted properly. If both crystal oscillator circuits work correctly however try a recording. If this shows that the drum servo is out of lock in the record mode the fault is due to the colour a.f.c. circuit which also provides sync pulses for the drum servo. Check for a bad joint at plug 11-16.
C.H.

JVC HR7650/Ferguson 3V31

The machine JVC brought out to replace the HR7700 proved to be much more reliable. A problem I've encountered on several occasions however has been absence of any reel motor drive. A check on the mechacon panel will reveal that transistors Q18 and Q19 have blown apart physically. Further checks with an ohmmeter will show that Q10 and Q11 have also failed and will lead you to the ultimate cause of the mayhem - Q15 which will be found to be short-circuit. Don't use the nearest European style transistors as equivalents - this will only end in tears, not to mention small puffs of smoke as the replacements expire shortly afterwards.

Another problem I had with one of these machines was a complaint about intermittent failure to eject a cassette.

We could never produce the fault in the workshop and every time suggested that the owner bring along a tape that wouldn't eject. He replied that it happened only with library tapes and that this couldn't be the problem as no one else complained. Eventually the machine came in with the owner clutching a cassette. One attempt at ejecting the tape showed the cause of the problem: the library proprietor was sticking code numbers on dymo tape on the body of his cassettes in such a way that they caught on the left-hand side of the cassette housing during an attempt at ejecting them. Naturally only this model was affected. The customer was quite happy with the solution we offered: pull off the dymo tape each time and stick it back afterwards.
C.H.

Philips VR6460 and Clones

These machines use special Torx screws to hold the motors but the manual doesn't say which size of screwdriver is needed - and there are 25 to choose from! Many thanks to my SEME rep. Dale for telling me that it's Torx size T10. This size doesn't fit the rotating guides however - does anyone know which size does? I've had a few cases of Finlux and Marantz VCRs with too little take-up torque - this causes tape spillage on forward search. Replacing the reel motor usually cures this. P.B.

Mitsubishi HS700B

Any intermittent sound or erase problems with this machine should be cured by removing plugs AF and DF and soldering the wires directly to the audio panel and the full erase head.

Hitachi VT11/GEC V4100

Over a period of several weeks I struggled with one of these machines that had a very intermittent capstan speed fault. What would happen is this: the machine would play a three-hour tape all the way through without a fault, but if it was rewound and played a second time the capstan would be "held back" and rotate very slowly - even though its voltage was sufficient. Changing the capstan motor had no effect, but changing the clutch assembly seems to have cured the fault. I hope . . .
P.B.

Sharp VC9700

Timer display faults are quite common with this machine. The two usual ones are as follows: either no or intermittent display due to C 5005 or the timer microcomputer chip 15002 , or the display goes dim after an hour due to PR6601 on the audio board.
P.B.

Blaupunkt VCR

This machine (a Panasonic NV333 in disguise) came in because the tape was playing too fast - it looked more like search speed than play speed. The output voltage from the servo was correct and an FG pulse was being fed back from the motor. We concluded that the capstan motor was faulty: a replacement plus setting up restored normal operation.
M.D.

Hitachi VT7000

This portable had been dropped on to its base with the multi-plug that connects it to the timer/power supply unit
plugged in. The result was a cracked PCB around the connection socket. There's a lot of very fine print in this area and much careful work was required. We eventually got the machine to work but there was no colour. This was traced to a crack in the chroma panel under a plastic fixing lug.
M.D.

Ferguson 3V31

This machine wouldn't load a tape and the drum motor was running all the time. Although the loading arms were fully retracted it seemed the machine thought that loading was at least partly completed. An investigation of the lower mechanism revealed that the after-loading switch had jammed. Freeing this restored normal operation.
M.D.

Ferguson 3V35

The complaint was that noise bands moved up the picture at regular intervals on playback. We found that a recording made on the faulty machine had the same noise bars (tracking errors) when played back on another machine. On both machines the sound was perfect, with no wow or flutter. The capstan servo was ruled out therefore and investigations were made in the drum servo circuit. While playing the standard test tape the usual "clover leaf" strobe effect on the head drum screws could be clearly seen to rotate at regular intervals that coincided with the noise bar travelling up the screen. Since the drum servo obviously wasn't locking the drum discriminator adjustment R463 was checked as detailed in the manual. The slightest turn resulted in the picture breaking up into lines (the servo going way off speed) then returning slowly to a locked picture. It was impossible to adjust for 4.6 V at TP423 with a digital voltmeter as the voltage was varying all the time.

Scope checks on the drum FG signal were normal but the output from the frequency-voltage converter in IC404 was incorrect - pulsating d.c. at pin 15 with a superimposed sawtooth, where the stable drum speed correction voltage should be. Replacing IC404 made no difference but when the feedback resistor R 466 ($270 \mathrm{k} \Omega$) was checked it turned out to be open-circuit. Replacing R466 corrected IC404's output waveform and after R463 was adjusted a perfectly locked picture with no noise bands was obtained.

I had the same machine in a month before with a similar complaint, but at that time it could be locked by adjusting R463. I suspect that R466 goes high in value before going open-circuit and would recommend checking it whenever the drum servo requires adjustment. J.H.

Hitachi VT63/GEC V4005

The drum and capstan motors both stopped just after the tape had loaded: the spool rotation sensor then returned the machine to the stop mode. When rewind or fast forward were pressed the brakes released but there was no spool rotation. This turned out to be due to loss of the 12 V supply from the STK5451 regulator i.c. During motor start-up 16 V is applied to the motor drive chip IC603. Once the motors are running the microcomputer i.c. switches on the regulator to provide the 12 V output. The 16 V line is used in the search mode to supply the extra load with the increased motor speeds. This provided the
clue. Fitting a new regulator chip (IC151) cured the trouble - the internal 12 V regulator produced no output.

We've found that the capstan bearing is very often noisy on these machines, causing groaning and vibration. This can be difficult to diagnose as it's often intermittent and stops when the machine is put on end to remove the
bottom cover. Hitachi technical recommend that the capstan flywheel is removed and the chromed shaft checked for scoring. Renew if marked, then lubricate with Castrol MS3 grease. We now do this as a matter of course when these machines come into the workshop. To date lubrication has provided a cure in every case. J.H.

Simple RGB Interface Circuit

Brian Webb

Having recently bought a computer with RGB output, and realising the advantages of using this mode of direct c.r.t. drive to eliminate the cross-colour and bandwidth limitations that are inherent in the PAL system, I decided to convert a ten-year old GEC colour set to RGB input as cheaply and as simply as possible while still maintaining safety.

The first requirement (a must) was to provide mains isolation for the chassis. A suitably VA rated $1: 1$ ratio transformer is used for this purpose, with the set's chassis earthed via the earth pin of the mains plug. Such a transformer can be expensive: I have it in a separate box so that it can be readily used for other purposes, e.g. servicing, making the purchase more economic.

Circuit Description

The circuit I decided upon (see Fig. 1) was kept as simple as possible while maintaining an upper working frequency of around 10 MHz . The 74LS240 TTL chip was chosen for its high speed and cheapness. It's an eight-stage inverting buffer with separate enabling for the two groups (A and B) of four buffer/inverters. The RGB inputs are applied to three of the A group buffer/inverters with enabling from the sync input, ensuring good blanking. The sync input goes to one of the B group buffers. Another can be used depending on the requirement for positive- or negative-going sync pulses in the timebase department. The output from a TTL circuit at 5 V peak-topeak may be too large for some timebase arrangements. Fig. 2 shows a simple emitter-follower to enable the pulses to be potted down. It may also be necessary to use this circuit where there's a long run to the timebases - a suitable screened cable may also be required.

The GEC solid-state C2110 series chassis, like many of its contemporaries produced during the early 70s, uses a TBA920 sync separator/line generator chip. This will work directly from a TTL buffer, positive-going sync pulses being required.

Should connecting the sync input to the timebase section of the set be rather impractical an alternative option that could be adopted is to use an off-air signal, feeding the demodulated video to the sync separator in the usual manner. The sync signal available at the RGB socket should still be used for blanking.

The digital RGB signals are fed to the emitters of the three BF259 RGB output transistors via $2 \cdot 2 \mathrm{k} \Omega$ presets. These are used in conjunction with the set's first anode controls to set up the black level.

Construction

Spread the circuit out as much as possible, bearing in mind that the output transistor collector load resistors
dissipate a certain amount of heat - a heatsink should be provided for the transistors themselves. Also remember that since the upper working limit of the circuitry is hopefully around 10 MHz suitable separation should be used - especially if construction is on Vero board.

I disconnected the i.f., sound, colour decoder and video drive sections of the set. This has the advantage of minimising the power across the isolating transformer.

The older type of delta-gun tube can give a good account of itself at up to 10 MHz . The convergence has to be looked at carefully, especially with a computer display.

Remember good common chassis connections throughout.

I hope the circuit presented here will give you ideas for cheap ways to improve your computer displays. Have fun with it!

Fig. 1: RGB/sync interface circuit.

Fig. 2: Emitter-follower stage for sync pulse interfacing.

Teletopics

TVRO RECEIVER IN KIT FORM

Here's something of a breakthrough in the cost of satellite TV reception. Comex Systems Ltd. (Comet House, Unit 4, Bath Lane, Leicester LE3 5BF, telephone 053325 084), the small order trade and retail distributors for Astec TVRO modules, TV and computer products, have introduced a TVRO receiver in kit form. The kit comprises a motherboard and components for mounting the r.f. and i.f. modules, the video, control and i.f. circuits, plus two Astec modules, a tunable converter covering 950$1,450 \mathrm{MHz}$ and an i.f. processor with wideband f.m. quadrature detector. The board is silkscreen printed and is simple to construct. Detailed paperwork covers the many possible options for the board's use - the kit has been designed for versatility. Comex is also able to supply much of the other equipment required for a satellite TV receiving installation - dishes, wideband preamplifiers, F type plugs (at least one is required for the board), scalar horns and Mitsubishi heterodyne converters. Price details are as follows:
TVRO receiver motherboard and component kit $\quad £ 35.00$
Motherboard only
£11.75
Astec AT1020 tuner module
£35•10
Astec AT3010 i.f./demodulator module
£54.65
F type plug for AT1020
Mitsubishi 10 GHz heterodyne receiver
£00.50
Scalar horn for above
$£ 47.00$
$60-1,700 \mathrm{MHz}$ wideband, low-noise preamplifier kit $£ 35.00$
F-to-BNC adaptors are available at $£ 1.70$ each. The prices include VAT. For orders below $£ 100$ add $£ 1.50$ post and packing, for orders above $£ 100$ add $£ 2 \cdot 50$. Comex plans to introduce shortly a tuning display for the TVRO receiver, a tunable sound i.f. giving the kit stereo sound, a keyer unit and a portable power supply with 13.8 V input and 18 V output. A 1.6 m spun aluminium dish with polar and horn mounts is available at $£ 365$. Comex can also supply ATV transmission equipment for the 23 cm band.

IBA TO REPLACE TRANSMITTERS

The IBA has started a u.h.f. TV transmitter replacement programme that will involve expenditure of around $£ 40$ million - some of the existing transmitters are now over twenty years old. A $£ 7.5$ million contract with Marconi Communication Systems has been signed covering the first phase of the programme. This provides for replacement of the original fourteen high-power transmitters. Associated engineering work will bring the total cost to $£ 11.5$ million. The programme envisages transmitter replacement at a rate of six a year starting in 1988.

EUROPE ADOPTS MAC

European trade ministers, meeting in Luxembourg, have decided to adopt the MAC-packet system as the standard for satellite TV transmissions to Europe. The advantage over the Japanese high-definition system that has been advocated as a worldwide DBS standard is that MAC signals can be decoded and displayed on a standard TV receiver. The system allows for a wider aspect ratio with higher definition to be added, again compatible with
existing European TV standards. The agreement lasts until the end of 1991 and allows each Community country to choose the system best suited to its needs, provided it conforms to the basic MAC specification - whilst C-MAC is favoured by the UK, a variant known as D2-MAC is favoured by France and W. Germany. A chip to make these two systems compatible is being developed. The whole DBS program has unfortunately been put back by the recent Shuttle and Ariane failures.

The board of Eutelsat has received a report on the potential for a European DBS system called Europsat. What further action to take on this project will be decided at the board's next meeting in September.

NEW SALORA/LUXOR TVRO EQUIPMENT

New satellite TV receiving equipment is to be introduced by Salora and Luxor at Cable 86 (July 8-10th), the satellite and cable TV show. Salora's new receiver, Model SRV1150, features remote control. The ACU1160 actuator control unit is also new and the equipment available includes an aerial actuator with polar mount and a polariser with 1.2 m dish. A similar range is available under the Luxor brand name.

MICROELECTRONICS SERVICING SEMINAR

The Institution of Electronic and Radio Engineers (IERE) and the Society of Electronic and Radio Technicians (SERT) are to run a one-day seminar, entitled Microelectronics Repair and Maintenance, at the Royal Institution of Great Britain, 21 Albermarle Street, London W1 on September 9th. Application forms can be obtained from the IERE Conference Dept., 99 Gower Street, London WC1 (01-388 3071). Registration fees, inclusive of attendance, documentation, coffee, lunch and tea, are: $£ 45$ plus VAT, members rate $£ 35$ plus VAT (members of the IERE, IEE, SERT or IEEIE), or $£ 16$ plus VAT for student and retired members.

TENSAI AND WINTHRONICS SPARES

Our thanks to readers who have come up with sources of spares for Tensai and Winthronics TV sets. Spares and data for Tensai sets are available from the UK agents John Walker Ltd., First Floor Suite, 55 North Street, Thame, Oxfordshire OX9 3BN (telephone 084421 6929). For Winthronics spares and data contact Laltex and Co., Ltd., 1 Canal Street, Manchester (061-832 6132).

ZANUSSI CHANGE

Seleco UK, 43 West Street, Reading have taken over from IAZ International (UK) Ltd. the UK distribution of Zanussi TV receivers. A new range of models is being introduced.

GOOD BUSINESS IN CASSETTES

The British Videogram Association reports record first quarter sales of prerecorded video cassetes by its members. Approaching a million cassettes worth over $£ 24$ million were distributed, an increase of 32 per cent compared to the same period in 1985.

A report entitled Home Video Recorder Populations and Cassette Usage, distributed in the UK by Benn Electronics Publications Ltd. (Chiltern House, 146 Midland Road, Luton, Beds LU2 0BL) for US consultants Magnetic Media Information Services Inc., predicts a fourfold increase in worldwide sales of video cassettes by 1989 (compared to 1984). It expects sales to reach $2 \cdot 5$ billion units in 1989, including both prerecorded and blank
tapes. The report expects 140 million VCRs to be in use worldwide by 1989. A fall in Japanese VCR production of 10 per cent in 1986 (the first ever) is predicted, with further falls of 13 per cent and 15.5 per cent in 1987 and 1988 respectively. This is likely to depend very largely on currency movements. The report is available from Benn at US\$995 per copy.

Market research consultants Mackintosh International (Mackintosh House, Napier Road, Luton, Beds LU1 1 RG) have also published an optimistic report which predicts an "explosion" in the market for consumer tapes and discs over the next ten years. The 500 -page report, entitled Discs and Tapes - the next ten years, expects the world market for consumer discs and tapes to reach a value of $\$ 30$ billion by 1995.

NEW GENERATION INDOOR TV AERIAL

Antiference have introduced an interesting new indoor aerial which has taken two years to develop at a cost of a quarter of a million pounds. Its performance is certainly impressive, with a forward gain of $6-8 \mathrm{dBd}$ across the entire u.h.f. bandwidth and good directivity. While the design is basically a log-periodic one the elements are formed on two aluminium sheets giving a large surface area. The Silver Sensor incorporates electrical isolation to BS5373 and is expected to retail at around $£ 10$. For further details apply to Antiference Ltd., Bicester Road, Aylesbury, Bucks.

TELELIFT's UK LAUNCH

One of the dangers - a very real one - to which those in the TV trade are exposed is injury caused by lifting and manipulating heavy TV sets. It will be avoided by the use of a new trolley which has been designed to enable one person to transport safely heavy TV receivers and other domestic appliances. The Telelift trolley comes to the UK after three years of extensive field trials both here and

The Antiference Silver Sensor log-periodic set-top aerial, shown here with the boom position for reception of vertically polarised transmissions.
abroad. To date it has moved over half a million sets without injury to users. The trolley incorporates a number of well thought out features. It enables a bulky console set to be rotated to allow passage through narrow doorways, has a built-in suspension system to protect delicate mechanisms, provides lifting into and out of vehicles and incorporates a unique, patented stair climbing system. The Telelift is available from Courier Handtrucks Pty, Ltd., 59 Earls Court Road, London W8 6EE (01-937 1996) at $£ 139$ plus VAT and transport.

According to the National Institute for Safety and Health, Washington DC, USA serious and permanent spinal injury is likely if an attempt is made to lift a TV set or appliance weighing more than 44lb from ground level to workbench height, regardless of body size. Use of the Telelift trolley, which is solidly made and should give many years trouble-free service, is recommended.

NEW COLOUR PATTERN GENERATOR

A versatile, mains-operated colour pattern generator, designed and manufactured in the UK, has been introduced by Black Star Ltd., 4 Stephenson Road, St. Ives, Huntingdon, Cambs PE17 4WJ (048 062 440). The Orion pattern generator has been developed for those engaged in servicing, manufacture or design of TV sets, VCRs and monitors. Features include separate r.f. and composite video outputs with level control, tunable r.f. carrier, internal or external sound modulation, switchable sound carriers $(5 \cdot 5,6$ and 6.5 MHz$)$ and positive or negative vision modulation. A front panel source of field and line sync pulses is provided for scope triggering. The generator covers the v.h.f. and u.h.f. channels and is compatible with the PAL systems B, D, G, H, I and K. The full range of colour and monochrome test patterns includes colour bars, grey scale, focus, raster purity, dots, gratings and vertical/horizontal lines. There are also rear panel R, G, B and sync outputs with switchable signal levels and sync conditioning to ensure compatability with the majority of video and computer monitors. We expect to publish a review of this generator in the next few months.

VCR SPARES DISCONTINUED

Ferguson have announced that from August 1st spares will no longer be supplied for the following VCRs, tuners and cameras: Models 3292, 3V00, 3V01, 3V03, 3V04, 3V06 and 3 V 17 . In addition cabinet and presentation parts will from the same date no longer be available for Models $3 \mathrm{~V} 20,3 \mathrm{~V} 23,3 \mathrm{~V} 24,3 \mathrm{~V} 25,3 \mathrm{~V} 26$ and 3 V 28.

REMOTE CONTROL BOOSTER

A booster unit for use with infra-red remote control transmitters has been released by Advanced International Marketing (UK) Ltd., 74a Heath Road, Twickenham TW1 4BW (01-891 3644). The Tyron "power enhancer" is said to increase the range of an IR transmitter to $40-50 \mathrm{ft}$ and make careful aiming unnecessary. It simply clips on and operates from a 9 V battery.

MITSUBISHI DEVELOPMENTS

Mitsubishi has announced in Japan the development of a 40 in . colour tube along with a monitor/receiver to drive it. It's intended initially for business use and is to be shown at the Chicago Summer Consumer Electronics Show. Also announced are a 200 in . projector system with a newly developed optical arrangement and the Mark II version of the Diamond Vision colour display system. The latter has a display size of $4.8 \times 3.6 \mathrm{~m}$ and weighs three tons.

Modern Receiver Circuitry

Part 5: Timebase Synchronisation

J. LeJeune

Faithful reproduction of a television picture depends not only on adequate video bandwidth, accurate colour decoding and luminance-chrominance registration but also on precise synchronisation of the line and field scanning in the camera and the receiver. The use of integrated circuits has led many service engineers to take synchronisation for granted, but a knowledge of the basic circuits and principles is always an advantage.
One requirement for precise synchronisation is that the received sync pulses are free from impulsive electrical interference and noise generated in the receiver's tuner and i.f. strip. With simple, direct sync the effect of noise is ragged verticals and occasional loss of field sync. An important step in improving the line synchronisation is to use an indirect system to control the line oscillator - the flywheel line sync system, in which the timing of the received line sync pulses and the line flyback pulses is compared by a phase detector which produces an error voltage to pull the oscillator back into lock. With this arrangement the oscillator is controlled by a voltage that's proportional to the phase difference between the incoming sync pulses and its own operation. The speed of the correction can be slowed down by including a timeconstant in the phase detector's filter circuit: the effect of this is to give correction of longer-term drift while making the system immune to short-term disturbances such as interference and internally generated noise.

Simple Transistor Sync Separator Stage

Before any synchronising arrangement can work it requires a clean sync pulse which has been separated from the composite video signal. A simple transistor sync separator stage is shown in Fig. 1(a). The demodulated composite video signal, with positive-going sync pulses, is fed via Cl to the base of the transistor. The important thing is that the output should consist of sync pulses only, i.e. with no picture information. C1, R1, R2 in the base circuit provide the conditions required for this. R1 and R2 apply a small bias voltage to Trl's base - too small to bias Trl as a normal class A amplifier. Trl conducts when a positive-going sync pulse appears at its base. The combination of the small bias provided by R1, R2 and the positive-going sync pulse drives Tr 1 into saturation. As a result, the tip of the sync pulse is clipped, thus removing noise - see Fig. 1(b). When Tr1 saturates the coupling capacitor Cl will be charged by Trl's base current, acquiring a negative charge on its right-hand plate. This holds the transistor cut off during the picture part of the line scan. During this period C1 discharges via R1. The time-constant is such that Tr 1 will saturate rapidly as soon as the next sync pulse arrives. The value of R1 is thus important - it's a common cause of sync problems in some chassis.

Flywheel Line Sync

The sync separator stage itself cannot provide sufficient immunity against interference - which with negative-going vision modulation is of the same polarity as the sync
pulses. Thus for good line locking the flywheel sync system already touched upon must be used.

Fig. 2 shows a typical discrete component flywheel line sync phase detector circuit. The inputs consist of negativegoing line sync pulses which are coupled to the cathodes of diodes D1 and D2 by C1 and a flyback pulse from the line output transformer. The flyback pulse is integrated by R4 and C4 to produce a sawtooth waveform that's coupled to the detector circuit by C . Capacitive coupling removes any d.c. component, ensuring that the waveform at the junction of D1, R1 swings positively and negatively about zero volts. D1 and D2 conduct when a negativegoing sync pulse arrives. If the sawtooth voltage is at zero at this time synchronisation is correct and the circuit produces zero output. If the sawtooth is positive with respect to zero volts when the sync pulse arrives the circuit will be unbalanced: D1 will conduct more than D2 and C1 will acquire a positive charge. This is filtered and used to adjust the phasing of the line oscillator. Conversely if the sawtooth is negative with respect to zero when the sync pulse arrives D2 will conduct more than D1 and C1 will acquire a negative charge. C2 fulfils two functions in this circuit configuration: it acts as coupling capacitor for the sawtooth and as the reservoir capacitor for the output the charge established on C 1 when D $1 / 2$ conduct is transferred to C2 during the picture period. R3/C3 provide filtering and R5/C5 add a time-constant to the filtering action to damp the effect of short-term disturbances.

The Modern Approach

The circuit just described is rather crude in comparison with the arrangements used in modern sync processing/ timebase generator chips. It nevertheless forms the basis of flywheel line sync action. A typical modern sync processing chip may provide line and field drive signals, AV switching, between-channel sound muting and a sandcastle pulse that's used for flyback blanking and burst gating.

A block diagram of a typical sync processor i.c., the TDA2578A, is shown in Fig. 3. Composite video is fed in at pin 5 where it goes to the sync separator. The slicing level is determined by the components connected to pins 6

Fig. 1: Simple sync separator circuit using a transistor (a), operating conditions (b).

Fig. 2: Typical discrete component flywheel line sync circuit. Note the RC time-constant network in the filter.
and 7: this level is maintained over a wide range of video input signal levels. The output from the sync separator goes to a pair of phase detectors, 1 fast and 2 slow, to a coincidence detector, and to the field sync pulse integrating stage. It also goes to a burst timing circuit which produces a pulse to coincide with the colour burst: this pulse forms part of the sandcastle pulse output at pin 17.

Phase detectors 1 and 2 have different response times and are used to lock the line oscillator to the incoming line sync pulses. The gating circuit determines which phase detector is used. For good noise immunity with off-air reception the phase detector with the slow response time is used. With an off-tape signal a faster response time is required: the AV switching thus brings phase detector 1 into operation. The fast-acting phase control loop is also used to restore sync rapidly after momentary loss of signal due to a change of channel and when the set is first switched on.

In the absence of a video signal the coincidence detector brings the muting circuit into operation. The voltage at pin 13 will then be at about zero and can be used to give inter-station sound muting.

Although the line oscillator has been locked a further problem has to be overcome before a completely stable picture can be guaranteed. With a power transistor such as the type used in the line output stage there's a time delay between the removal of the base drive and the cessation of collector current. This delay lengthens as the demand made on the line output stage increases. Nearly all line output stages are called upon to generate flyback e.h.t., and the beam current requirements will vary rapidly from one moment to the next. The timing of the line drive switch-on is not too critical since there's some overlap in the operation of the line output transistor and the efficiency diode. The timing of the line drive switchoff, i.e. the start of the flyback, is critical however since it governs the position of the picture within the raster. A second control loop is used to offset the effect of delays in the line output device. Phase detector 3 compares the output from the line oscillator with the line flyback pulses. Its output adjusts the timing of the trailing edge of the line drive pulse via a pulse width modulator circuit. The central position of the picture is thus maintained. A d.c. voltage can be applied to pin 14 for horizontal shift purposes.

The field sync pulse integrating capacitor is connected to pin 4. The field oscillator stage is simply a discharge circuit for the field ramp capacitor connected to pin 3: the capacitor is charged from a relatively high voltage via a high value resistor. The sawtooth produced in this way is scan-corrected before passing to the linearity correction section where feedback from the field scan circuit is applied. The voltage at pin 2 is also monitored for tube protection purposes: if the voltage at pin 2 is less than 2.5 V or more than 5 V the screen blanking circuit produces 2.5 V at pin 17 to give a blank screen.

The sandcastle pulse generator produces a composite blanking and burst gating pulse at pin 17. The output here is at three levels: 2.5 V gives field flyback blanking and

Fig. 3: Block diagram of a modern synctimebase generator chip, the TDA2578A.

Fig. 4: Voltage conditions at pin 18 of the TDA2578A for flywheel sync phase detector switching and sound muting.
$4 \cdot 5 \mathrm{~V}$ line flyback blanking. The 10 V burst gating pulse sits on top of the line flyback blanking pulse.
Fig. 4 shows the voltage levels at pin 18 under various conditions. With the set receiving a TV transmission the synchronised condition will be marked by the presence of
7.5 V , phase detector 2 will operate and the muting circuit will be inoperative. When the receiver is detuned the voltage at pin 18 will fall: phase detector 1 is switched in at 3.5 V and muting operates at $1 \cdot 2 \mathrm{~V}$. With no signal the voltage is approximately zero, rising again as another signal is tuned in. Muting ceases at 1.7 V and return to control by phase detector 2 occurs at 5 V . Application of an external AV voltage of approximately 3 V for VCR or disc playback purposes should produce control by phase detector 1 without muting: the AV voltage should obviously be stable - to prevent unwanted switching to control by phase detector 2 or muting.

This then is the contemporary way of generating and synchronising the set's scanning signals.

TV Fault Finding

Reports from Steve Leatherbarrow, Philip Blundell, Eng. Tech., Hugh MacMullen, Keith Hamer, Garry Smith and J. K. Potts

Ferguson TX9 Chassis

Intermittent colour can be a problem and this case was no exception. A fellow engineer had attacked the set with freezer and a hairdryer: after demonstrating his ability to produce colour at will he replaced the crystal. The set then worked all right in the shop for a couple of days after which the colour went off. With the set back on the bench we found that heating the TDA3560 decoder chip brought back the colour. Unfortunately heating the replacement chip had the same effect.

Careful examination of a test pattern revealed what looked like a slight hum bar. Like a man possessed I stabbed the meter on the 115 V rail. Bingo! - a good 6 V low. Resetting the h.t. voltage removed the hum from the picture and put an end to the thermal sensitivity of the decoder circuitry.

This time the set gave four days' service before the colour went off again. I'll save you from reading through the rest of the torture. Suffice it to say that if similar problems come your way it pays to replace the chroma delay line before going any further. It seems that everyone was aware of this except me.
S.L.

ITT CVC32 Chassis

This set had the rather daunting symptoms of no bottom scan accompanied by distorted sound. The remote control unit worked outside the set but not when in the "parked" position. What field scan there was in the top half of the screen was non-linear and "synchy". We eventually discovered that the 35 V supply reservoir capacitor C64 $(2,200 \mu \mathrm{~F})$ was responsible for all the symptoms, the only clue being that the 35 V rail was 3 V low.

While on this chassis, the symptom of low h.t. when cold (or sometimes when warm just to add to the fun), often intermittent and looking like a fault in the chopper control module, is often due to the h.t. smoothing capacitor C52 ($47 \mu \mathrm{~F}$). This capacitor can also produce the fault permanently of course.
S.L.

Grundig CUC41 Chassis

There was low output from the power supply and a loud whistling. The latter is symptomatic of a loaded h.t. rail. A check around the line output transformer revealed an 0.33Ω safety resistor that was burning. This provides a
feed to the deflection module which, in an attempt to isolate the fault, was removed. The output from the power supply then returned to normal so attention was turned to the deflection module. The rectifier that produces the 25 V supply for the TDA2655 field output chip lives on this module - D2751. When it goes short-circuit, as in this case, it loads down the line output transformer. A BY298 seemed to be a suitable replacement. S.L.

Tandberg CTV2 Chassis

The problem with this set was intermittent contrast variations - the fault was tappable (dry-joints are common in this otherwise excellent chassis). After carrying out some resoldering however the fault was still present. The board was particularly sensitive around the 12 V regulator transistor's heatsink and a meter check revealed that the rail would rise to 14.5 V . The transistor itself was responsible.
S.L.

ITT $80-90^{\circ}$ Chassis

If you're faced with one of these sets that suffers from tuning drift a good place to start looking is in the line output stage! If the 90 V supply reservoir capacitor C514 $(10 \mu \mathrm{~F})$ has dried up the supply will be low, affecting the regulation of the tuning voltage stabiliser.
P.B.

Decca 80 Chassis

This set had suffered from poor field lock for several years. When the set came to us however the report was "dead". The usual faulty tripler had killed the line output transformer and BU208. There was also the common burning of the now famous orange wiring and connectors. After all this had been sorted out the set worked perfectly but with very poor field lock. A hole had been cut in the back for the customer to adjust the field hold control (a very unwise action) - the customer had mentioned that the trouble had been present from new.

The sync output from the TBA920 sync/line generator chip goes to the TDA1170 field timebase chip via an active field sync pulse integrator stage comprising Tr301 and associated components. A check here revealed that

Tr 301 had no collector volts and about 2 V at its base. In other words either the transistor was hard on or its load resistor R328 was open-circuit. Both the resistor and the transistor were o.k. however. We then found that the field sync pulse at the base of Tr 301 was almost non-existent. The next step was to discover why Tr301 had a positive voltage at its base. Every resistor and capacitor in the base circuit was removed, also the transistor itself. We were alarmed to find that there was still a positive voltage at the base print - and the reading was now 100 V . This voltage disappeared when the print was cut away $1 / 8 \mathrm{sin}$. back from the base hole. There was no sign of any burning, even when the panel was examined with a magnifying glass, but drilling a few small holes between the base print and the nearby red first anode print cured the fault. I can only assume that the panel had been defective from the start. Incidentally there was no discolouration around the first anode controls and their series resistors - a common problem with these sets.
H.MacM.

Philips G11 Chassis

A G11 with persistent h.t. fuse blowing caused us quite a problem because the BU208A line output transistor was always o.k. The usual h.t. reservoir electrolytic on the power panel and other components here had been changed and a new BU208A tried just in case. Normal operation might last for days or in some cases weeks and there were never any faulty components to blow the fuse. Once again two pairs of specs and a magnifying glass came to the rescue. There was a microscopic pip on the BU208A's cooling plate. When this was compressed via the insulating pad the result was occasional earthing of the BU208A's collector - with no damage to the transistor itself.
H.MacM.

Field Judder - sort of

I hesitate to include this item in a fault-finding section but it shows that you sometimes have to study the owner as well. His complaint was of field judder, but only at certain times of viewing - his set was a brand new Philips receiver but could have been one of any type. We gave it a thorough soak test in the workshop and checked all relevant components but couldn't find anything amiss. After its return the customer made the same complaint - I might add that his previous set, which he'd traded in, had been an old 22 in . GEC model with a very dim tube. When conversing with the owner I noticed that he chewed all the time. When he stopped chewing the field stopped bouncing! If you try chewing a tough boiled sweet while looking at the screen you'll find that the crack does cause a definite bounce.
H.MacM.

Ferguson TX9 Teletext Chassis

The complaint was simple - no sound. Without further ado the sound channel chip's feed resistor R156 was checked for being open-circuit, which it wasn't. The loudspeaker and associated connections proved to be innocent but a check at pin 6 (volume control) of the i.c. produced a very low reading. Operation of the volume control had no effect whatsoever so our efforts were directed to the PC1515 remote control processing board. To prove that the sound chip was o.k. the lead between panel PC1515 and the d.c. volume control input pin on the main panel (pin 5 of PL8) was disconnected. This
restored the sound at full blast. On checking around the volume control output transistor (TR106) on panel PC1515 we found that its emitter voltage was absent. This was due to a dry-joint at one end of D123 (AA143). A dob of solder soon put matters right and the musical delights of boring Ceefax blared out once more. K.H.-

Philips CTX-S Chassis

The symptom was a dead set and our first reaction was to check the 4.7Ω surge limiter resistor which commonly goes open-circuit. It was o.k. this time and there was voltage at the collector of the BUX84 chopper transistor. But not at its base and emitter. The BF422 driver transistor had the same voltages at its collector and base due to a collector-base short-circuit.
K.H.-G.S.

Panasonic TC2031

A quickie on these sets. If you get called out because the remote-control unit is stuck inside turn the set upside down to release it. Then tighten the screw holding the remote control casing together. The screw works loose due to vibration: it then catches in the housing mechanism.
K.H.-G.S.

GEC C2110 Series

An elderly GEC Model C2121 came our way recently. The customer insisted that the picture flashed up green intermittently and that water had entered the set from a burst pipe. We couldn't find any sign of water damage and as usual the fault refused to appear during our call (we did notice a dry-joint on the RGB output panel, but this was purely coincidental). Our attention was also drawn to the fact that the local "poke-and-hope" brigade had tried to trace the fault without success - a quick check revealed that the fuseholder had been linked with wire and a 3Ω fusible resistor mounted between dropper sections had been shorted out. These matters were attended to and the video drive presets were then cleaned - these are a common cause of colour flashing in this chassis.

The repair bounced and when we got the set back to the workshop we were able to analyse the fault more carefully. The picture's green content was indeed increasing, especially from cold. The voltage at pin 13 (green output) of the TBA530Q i.c. was erratic, and further discrepancies were encountered when we traced back to the preceding TBA9900 demodulator chip. We swapped over the drive connections between these two i.c.s and the picture then began flashing in blue. The demodulated colour-difference outputs from the TBA990Q are passed to the TBA530Q via simple $R C$ filter networks: C313 $(27 \mathrm{pF})$ in the G - Y filter was the offending item - it read leaky on the AVO.
K.H.-G.S.

Some Quickies

Sharp C2072: For lack of height check C511 ($22 \mu \mathrm{~F}$) in the field output stage - it tends to dry out. For no sound check whether $\mathrm{R} 319(270 \Omega, 0.5 \mathrm{~W})$ is open-circuit.
Sharp C2095: Set dead - check whether the 130 V , 1 W zener diode ZD702 in the line oscillator supply is shortcircuit.
Saba T51S20: A two-inch high unmodulated raster was traced to RL27 ($4 \cdot 7 \Omega, 1 / 8 \mathrm{~W}$) being open circuit. Don't be misled by no sound on this set due to interstation muting.
J.K.P.

The Development of Colour Tubes

Part 3

Eugene Trundle

The basic job of the yoke is to deflect the electron beams so that they scan out a raster on the screen. In very small colour tubes the deflection angle may be as small as 50°. The most common deflection angle is $90^{\circ}: 100^{\circ}$ is widely used in the USA and 110° is popular for minimum cabinet depth, particularly in Europe. The widest deflection angle tubes in regular production are some Trinitron types that have a deflection angle of 114°. These deflection angles refer to the angle through which the beam is deflected in scanning the tube's diagonal. For a 90° tube the horizontal scan angle is 78°, the vertical scan angle 60°.

As we've seen, the key to the self-converging picture tube lies in the distribution of the magnetic field produced by the yoke. The principle was understood and proved as long ago as 1954, when Haantjes and Lubben filed a patent in the USA describing an in-line gun array operated in conjunction with an astigmatic deflection field.

The Precision Static Toroid

Some of the earliest in-line gun tubes used toroidally wound deflection yokes. The precision static toroid (PST) was shown in Fig. 12. It depends for its precision on the exact positioning of every single turn of copper wire in moulded slots at each end of the core. By this means the flux field shown in Fig. 11 is created with sufficient accuracy to need only a trimming adjustment at the factory - the flare end of the yoke is panned and tilted for optimum screen-edge convergence before being wedged and sealed to the glass with hot-melt adhesive.

The PST gives the best possible precision and repeatability in yoke manufacture but does have some drawbacks. Its deflection sensitivity is low, due to the relatively small number of turns that can be wound; it has a powerful stray field and strong coupling between the line and field coils; it runs very warm, due to low efficiency and resulting $I^{2} R$ losses; it allows the designer almost no freedom in terms of impedance optimisation and restricts the setmaker to low-voltage, high-current output stages; and inherent in it is an effect called coma, i.e. the rasters produced by the outer beams are larger than the raster produced by the centre beam. To correct for coma, early PIL type tubes were fitted with internal magnetic field shapers that were incorporated in the guns - shunts and enhancers for the outer and centre beams respectively. Unfortunately these tended to have a deflection defocusing effect on the outer beams.

Semi-toroidal and Saddle Yokes

The traditional saddle-wound yoke is much more efficient and adaptable. More copper can be got into it and its greater length means that the electron beams stay under its influence longer, giving high deflection sensitivity. The problem is to achieve sufficient precision in the winding of a layered coil to provide the astigmatic fields required for self-convergence. Semi-toroidal yokes made an appearance initially. These have a layered toroidal winding for field deflection and a carefully wound pair of saddle coils
for line deflection. The semi-toroidal yoke halved the power required for vertical deflection and improved the efficiency of the horizontal deflection by 25 per cent.

In their 20AX design Philips/Mullard introduced saddle/ saddle yokes. These were refined and improved for the 30AX series. Modern in-line gun tubes use semi-toroidal and saddle/saddle yokes in a variety of designs.

Producing an Astigmatic Field

How is the astigmatic field produced? Fig. 26 shows the basic form of a symmetrical pair of single-turn deflection coils. The angle subtended by each is a. The critical angle for a is 120° : this will generate a homogeneous magnetic field in the gap between the coils. If the angle a is made less than 120° the magnetic field produced will be barrelshaped: the wide spacing of the coil edges - see A in Fig. 27 (a) - permits some of the flux to "escape" at the edges of the field gap, as shown. This is what's required for the field deflection coils. If on the other hand the angle subtended by the coil halves is greater than 120° the distance between the coil edges is small - B in Fig. 27(b) and the result is a concentration of flux in this region. Here the diametric centre line is subject to the least flux density and the result is a pincushion-shaped field, as required for line deflection in a self-converging tube.
Astigmatism and coma both depend on the magnetic flux distribution. Whereas the main influence on astigmatism is the field distribution at the front (screen side) of the yoke, coma depends on the field distribution throughout the length of the yoke. Here lies the key to generating a coma-free astigmatic field. In the yoke design evolved for 20AX and 30AX tubes the field shape developed by each pair of deflection coils has both forms of astigmatism - see Fig. 28. To achieve this result the line coils are wound with an a angle of 90° at the electron gun end

Fig. 26: Elementary scan-coil configuration.

Fig. 27: Winding arrangements for generating astigmatic deflection fields.

Fig. 28: Field shape engineering for minimum coma. The beam deflection characteristic depends mainly on the curves at the right.
increasing to 150° at the screen end. Conversely the field coils have an angle of 150° at the rear end narrowing to 90° at the flare end. This winding arrangement imparts the necessary astigmatism to the deflection field without introducing the coma effect.

The required winding precision is achieved by the socalled "pin-shooting" technique. Each winding is divided into many sections, the starting point and direction of each being defined by a separate index pin. Cumulative errors are thus avoided.

Four-pole Convergence Coil

Not all in-line gun tubes are fully self-converging. In some consumer tube designs provision is made for dynamic line convergence by means of a four-pole coil - see Fig. 29. This has the effect of pulling the outer beams into registration with the central one and operates at both line and field frequency, as the waveforms show. Parabolic waveforms adjustable for tilt are fed to the coil which becomes the main source of convergence correction. In such tubes the deflection fields are wholly or nearly homogeneous for minimum aberration - Trinitron finepitch monitor tubes are an example.

Pincushion Distortion

The flatness of the screen's curvature relative to the image field gives rise to pincushion distortion. It's worse with 110° tubes than with 90° types and is more pronounced with FST screens than with the older, more radiused types. How much correction is called for in the scan drive circuits, in the form of amplitude modulation of the deflection current, depends very much on yoke design. The astigmatic fields required for self-convergence compensate for much of the NS pincushion effect while increasing the amount of EW pincushion distortion.

Various means of countering pincushion distortion can be built into the yoke: cutting and shaping the ferrite cup core; fitting permanent magnets; adding field sharpers on or within the yoke; and varying the density of winding across the coil's span are examples. By these means pincushion-distortion free tubes have been produced mainly with 90° deflection. Wider deflection angle tubes require some EW correction, typically a modulation depth of 6-10 per cent of the line scan current for a 110° tube.

Shadowmasks

The four current shadowmask configurations are shown in Fig. 30. Delta-gun arrangements are now used only in special purpose tubes where very high resolution is required. Sophisticated dynamic convergence circuitry is

Fig. 29: Four-pole correction field generated by elecromagnets. In some tubelyoke designs the outer faces of the ferrite U cores are capped by rotary permanent magnets for static convergence adjustment.

Fig. 30: Basic gun/mask/screen arrangements. (a) Delta-gun configuration. (b) In-line gun with dot screen. (c) Slotted shadowmask. (d) Trinitron system.
required in this case. The phosphor dot screen/in-line gun arrangement is used for medium and high resolution applications. The slotted mask is used in most domestic and monitor tubes and the Trinitron system in Sony TV sets and monitors.

Whatever form it takes, the task of the shadowmask is not to "guide" the electron beams to the correct phosphor dots/stripes but rather to provide a solid barrier to prevent the beam from any gun striking any but the appropriate phosphor. The apertures in the mask are not straight sided but chamfered in a special way to prevent electrons bouncing off the side walls and scattering on to surrounding phosphor material - see Fig. 31. Each mask is chemically etched from both sides to achieve this precise aperture profile.

The mask material is low-carbon steel which is washed and dried before being coated on both sides with photoresist material. The sheet is then clamped between two photographic glass plates and the image of the required shadowmask pattern is then fixed on both sides by pulsed xenon lamps. The resist areas exposed in this way are insoluble: a wash removes the unexposed areas to leave dots, slots or stripes, as the case may be, of bare steel for the acid etchant. These are smaller at the back
(gun side) than at the front of the mask to give the profile shown in Fig. 31(b). Thus exact alignment of the two photographic glass plates is crucial. It's held to better than 2.5 microns by accurate alignment of registration marks on the plates.

A development in the mask pattern for in-line gun slotted screens is the contoured-line type in which the vertical phosphor lines are bowed to match the profile of the screen edges - see Fig. 32. The effect is pleasing to the eye whether the set is on or off. The biggest problem here is in the mathematics involved in computing and plotting the geometry of the master photographic plates used for mask etching. The bow at the sides must be gradually and evenly reduced until the lines become straight at the screen centre line. The etching pattern must also take into account the fact that the mask is domed, not necessarily to the same profile as the screen. Once the required pattern has been obtained however the contoured-line mask is easier to etch and the phosphor-fixing (lighthouse) process is also simpler.

Phosphor Fixing

For slot-mask tubes the ultra-violet lamp used for phosphor fixing is not a point source, as for phosphor-dot and Trinitron screens, but a vertical line source. This prevents the slot-bridges in the mask casting shadows on the phosphor and permits the formation of continuous lines of phosphor.

Phosphor fixing is not quite as simple as the usual description suggests. The problem (see Fig. 33) is that the apparent deflection centre varies with the deflection angle. A correction lens must therefore be interposed between the light source and the mask/screen ensemble. The beam landing accuracy at the corners of the screen depends very much on the design of this lens. For highresolution tube manufacture Hitachi use a segmented correction lens that gives a closer simulation of the deflected beam paths.

Pitch Grading

To ensure correct purity at the screen edges and corners a reduced beam landing tolerance can be provided by decreasing the size of the mask apertures here. The presence and degree of this "pitch-grading" varies with different makes and types of tube. In current FS tubes a grading factor of 20 per cent is applied at the screen edges. The consequent 20 per cent loss of brightness goes virtually unnoticed by the human eye, largely because of the very gradual transition.

Mask Dissipation

The main problem with shadowmasks relates to heating effects. Depending on the tube design, around 80 per cent of the beam energy is intercepted by the mask. Since the total of the three beam currents with a bright scene and a large-screen tube can exceed 1.2 mA at 25 kV , mask dissipation can reach 24 W . The average dissipation is way below this - say $5-10 \mathrm{~W}$ for normal pictures and control settings - but the steel of which the mask is made expands as it gets hotter, and particularly where the beam current is strong in a small area (a stationary highlight on the screen) local overheating can occur. The mask then bulges to upset the colour registration at this point - in practice white usually gets a red tint.

(a)

Fig. 31: Shadowmask hole contouring. To prevent the impurity and loss of definition caused by beam scattering see (a) - the apertures in all types of mask are chamfered. A typical pattern for a slot mask is shown at (b), viewed from the screen side.

Fig. 32: Phosphor line patterns, new and old. Note the ugly foreshortening of the stripes at the right: contoured line phosphors were introduced in the late seventies.

Fig. 33: The deflection centre appears to move forwards as the scan angle increases - the effect is due to the varying curvature of the beam paths.

Fig. 34: Heat compensating suspension system for a shadowmask: bimetal mounting strips are used.

Fig. 35: The areas at risk of being impure during the initial warm up of a conventional shadowmask.

Fig. 36: Conventional shadowmask arrangement (a). Mask expansion has a greater effect on beam landing with this than with the Super Arch Mask shown in (b).

Fig. 37: Applying a ceramic coating to reduce hot bulge.

Fig. 38: Invar as an alternative mask material is less affected by high power dissipation.

Heat conductivity away from a hot spot is more difficult with a grille type mask (Trinitron), where in large-screen sizes three horizontal microfine tiebars are welded across the screen to stiffen the fine vertical grille strips. Local conductivity is better with other types of mask due to their continuous nature, though a concentrated stationary highlight can cause impurity with early types of tube, especially when the purity is not set up at centre tolerance or when the beam limiter is not doing its job properly.

Design Aims

Designers of shadowmasks have the triple aims of making the mask more "transparent" to the electron beams, minimising the heat developed in the mask and minimising the effects of their inevitable expansion when they do heat up. Some types of delta-gun tubes have masks with hexagonal rather the circular holes. This gives a small gain in transparency. Even so delta-gun mask transparency never exceeded more than about 17 per cent at the centre and 12 per cent at the corners. This compares with about $21 / 16$ per cent for Trinitron tubes and 19/14 per cent for slot-mask tubes. "Hi-Bri" slot masks just exceed 20 per cent transparency.

Mounting the Mask

The mask would buckle as expansion occurs if it was rigidly mounted, completely upsetting the purity. To prevent this the frame on which the mask is mounted is fitted with bimetal temperature compensating elements on spring arms (see Fig. 34) to permit the whole mask assembly to move along the tube axis (towards the phosphor screen) as it heats up. There are usually four such mounting points that clip on to tapered studs heatsealed into the panel side walls.
The bimetal mount system doesn't work until the mask and its heavy and thermally inert frame have reached thermal equilibrium. This leads to a risk of purity errors in the first five or ten minutes of operation. The regions
most at risk are not at the screen centre, where mask doming has little effect on beam landing, nor at the extreme edges, where the heatsinking effect of the frame prevents rapid rise of temperature. It's the midway areas that suffer (see Fig. 35), and various remedies have been devised by tubemakers.

Super Arch Mask

An early one was RCA's Super Arch Mask, in which a very pronounced curvature is given to the cold mask. As a result, short-term, localised and warm-up expansion effects have much less effect on beam landing. This type of mask has greater slot spacing at the sides, which helps with beam-landing tolerances here but does slightly reduce the brightness at the extreme edges of the picture. Fig. 36 shows the Super Arch principle.

Surface Treatment

Some alternative approaches to the problem involve surface treatment of the mask. A simple and widespread technique is to blacken the mask. Many tubes have the back of the phosphor screen (after aluminising) painted black as well to act as a heatsink of sorts - the large glass screen has the makings of an excellent heat radiator. A further step is to coat the surface of the mask with a low thermal expansion ceramic material then fire it on the steel surface at high temperature in an oven. This leaves considerable residual tension in the mask material when cool - to be relieved in operation as the coated mask warms up. The presence of the ceramic coating reduces the mask temperature for a given dissipation while mask expansion is minimised by the relief of internal tension. The prunciple is not unlike that of continuous welded railway track. It gives a reduction of about 20 per cent in beam landing error (see Fig. 37).

Invar Mask

For fine-pitch tubes Toshiba use an alternative metal (Invar) for the mask - its coefficient of expansion is much lower than that of steel (see Fig. 38). Invar is more expensive than steel and more difficult to handle, hence its restriction to expensive fine-pitch tubes.

45AX Mounting System

A better way to avoid localised and transient overheating of the mask is to do away with the heavy metal frame and bimetal spring support system with their thermal inertia and long thermal paths. Philips/Mullard have adopted a completely new approach to mask suspension in their 45AX tube system. Here the mask is attached to a light diaphragm which defines the picture borders and is suspended at each corner by a swing link that pivots on a stud fused into the glass. As the mask warms up its expansion forces the suspension links to rotate about their mounting studs, moving the enlarged mask forward towards the screen to maintain correct beam landing. This system reaches thermal equilibrium within fifteen minutes of switch on and is unaffected by ambient temperature. The closer control and more precise placement of the mask allow a larger beam landing reserve.

Coming Next Month

Next month we will continue with screen phosphors.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{}

\hline HA1374 \& 4.80 \& LR3419 \& 9.37 \& NE565N \& 1.38 \& SKE42208 \& 124 \& STK3042 \& 11.05 \& TA7312P \& 245 \& TD62105P \& 250 \& TDA3560 \& 525 \& TUA2000
V106 \& 8.88
1.76

\hline HA13T \& 3.95 \& LR3471 \& 9.37 \& NE645BN \& 3.35 \& SKK4F206 \& 0.12 \& STK3044 \& 5.55 \& TAT313AP \& 1.50 \& ${ }_{\text {cose }}^{\text {T062204P }}$ \& 250 \& TTA3576 \& 7.09 \& TY60108 \& 2.17

\hline HA1399R \& 205 \& LU1141 \& 727 \& NP1106 \& 5.61 \& SKE4F2 10 \& 124 \& STK4019 \& 9,50 \& TA3143 \& 3.15 \& TDA1001B \& 23 \& TDA3590 \& 5.79 \& \& 1.14

\hline HA1389 \& 239 \& Lu52012 \& 5.95 \& OA202 \& 0.11 \& SKE4G202 \& ${ }_{10} 0.9$ \& SIK430 \& 5.45 \& ${ }_{\text {TA }}{ }_{\text {TA3325 }}$ \& 1.15
1.15 \& TDA1003A \& 225 \& tDa3591 \& 6.45 \& ULN2204 \& 11.15

\hline HA1392 \& 3.90 \& LU52011 \& 4.95 \& OA47 \& ${ }_{0}^{0.14}$ \& SKE5F310 \& 1.00
215 \& STK4332 \& 8.25 \& TA7339P \& 1.35 \& TDA1005A \& 27 \& tDA3650 \& 7.50 \& UPA53C \& 4.94

\hline HA1394 \& 3.35 \& LU03112 \& 1237 \& OA91 \& 0.09 \& SK1310 \& 215
314 \& STK435 \& 595 \& TA7340P \& 5.05 \& tDal006A \& 211 \& TDA3652 \& 5.4 \& UPC1003 \& 1.95

\hline HA1397

$H A 13$ \& 3.76
3
3 \& M193 \& 1275 \& OC29 \& 2095 \& SL1430 \& 3.21 \& STK4352 \& 1225 \& ta7607ap \& 13.90 \& toaloliaf \& 425 \& tDa3651Aa \& 296 \& UPC1009C \& 6.30

\hline HA1398
HA 1406 \& 358 \& M21C \& 1.00 \& OC29 \& 215 \& SL414 \& 3.0 \& STK436 \& 721 \& ta7609 \& 328 \& tDA1011 \& 298 \& tDA3351 \& 330 \& UPC1025H \& 2.50

\hline HA 41400
HA1452 \& 1.61 \& M23C \& 0.85 \& OC36 \& 128 \& SL432A \& 3.4 \& STK437 \& 780 \& TA7611AP \& 4.80 \& TDA1010 \& 9.15 \& TDA3351A \& 206 \& UPC1026C \& 124

\hline HBE4033AF \& 248 \& M293 \& 9.15 \& OC4 \& 0.35 \& SL439 \& 248 \& STK4372 \& 385 \& TA7616P \& 525 \& TDA1011A \& 5.25 \& TDA3950 \& 4.98 \& UPC1028 \& 200

\hline HD14538 \& 207 \& M51102L \& 6.35 \& OCA5 \& 0.18 \& SL471 \& 4.78 \& STK439 \& 8.31 \& TA7622AP \& ${ }_{50}^{8.9}$ \& ${ }^{\text {IDA } 10288}$ \& 265 \& TDA40508 \& 730 \& UPC1020 \& ${ }_{0}^{27}$

\hline HD38702-A2 \& 7.45 \& M5115P \& 524 \& 0 C 72 \& 0.4 \& SL480 \& 3.14
23 \& STK441 \& 1128
1029 \& TA76289P \& 750 \& TDA1035S \& 295 \& TDA4230 \& 4.47 \& UPC 1042C \& 8.95

\hline HD33750A53 \& 8.71 \& M512031 \& 3.15 \& \& 1.05 \& ${ }_{\text {SLP901B }}$ \& 239 \& STK457 \& 13.45 \& TA7639 \& 290 \& TDA1035T \& 255 \& tDa4400 \& 271 \& UPC 1156 H \& 296

\hline H038750A-7 \& 125 \& M51231P \& 3.01 \& ON362 \& 1.96 \& SLP018
SL988 \& ${ }_{9.07}$ \& STK460 \& 14.88 \& ta7640ap \& 1.19 \& \& 1.98 \& tDa4420 \& 5.01 \& UPC1158 \& 584

\hline HDP4880 1005
HEF401BP \& 18.51
0.5 \& M51381P \& 54.50 \& PTG042 \& 245 \& SN16882AN \& 258 \& STK463 \& 11.53 \& TA7676P \& 281 \& tDA1044 \& 202 \& TDA4427S \& 9.00 \& UPCC182H \& 1.82

\hline HISH1010 \& 8.59 \& M513934P \& 7.78 \& P18504 \& 4.98 \& SN16966N \& 1025 \& STK466 \& 11.7 \& TA7726P \& 1025 \& tDA1047 \& 4.10 \& toa4431 \& 27 \& UPC1188 \& 1.05

\hline HISH1004 \& 6.00 \& M51394P \& 11.97 \& R1038 \& 219 \& SN29717N \& 7.19 \& STK4833 \& 16.95 \& taaszaa \& 127 \& TDAIO598 \& 0.80 \& TDA4440 \& 287 \& UPC1181H \& 125

\hline HISH1002 \& 9.50 \& M5142P \& 5.49 \& ${ }^{R 1039}$ \& 219 \& ${ }_{\text {SN2 }}$ S2716N \& 3.65 \& STK501 \& 6.38
574 \& taA350A \& 0.80 \& TDA1054M \& 121 \& TDA4442 \& ${ }_{7} 80$ \& UPC1188 \& 6.95

\hline HM6231 \& 9.81 \& M5144P \& 425 \& R20088 \& 138 \& SN29715N \& 11.95 \& STK502
STK5314 \& 9.48 \& TAA561AX1 \& 208 \& TDA1082 \& 325 \& TDA4600 \& 284 \& UPC1213C \& 0.99

\hline HM6332 \& 8.89 \& M51513L \& 255 \& ${ }^{\text {R22009 }}$ \& 1.98 \& SN29922 \& 7180 \& STK53730 \& 3.98 \& TAA621A12 \& 214 \& TDAII51 \& 12 \& TDA4610 \& 4.80 \& UPC1212C \& 1.72

\hline HM6251 \& 5.75 \& M51515BL \& 323
3.7 \& ${ }_{\text {R }}$ \& 133 \& SN29764AN \& 138 \& STK7216 \& 1267 \& TAA661B \& 262 \& tDallios \& 225 \& tDA4620 \& 4.78 \& UPC1225 \& 325

\hline HM7103 \& 296 \& M51927 \& 230 \& ${ }^{\text {R22029 }}$ \& 130 \& SN29767 \& 1.98 \& STK72 \& 6.95 \& TAA691 \& 8.58 \& tdaliso \& 211 \& TDA5500 \& 4.78 \& UPC1230 \& 124

\hline HM9032 \& \& M5194AP \& 5.74 \& R2257 \& 3.71 \& SN297708N \& 4.24 \& STR1096 \& 4.50 \& tas700 \& 3.75 \& TDA11902 \& 3.96 \& tDA5700 \& 200 \& UPC1238 \& 228

\hline HM9012
HM9015 \& 332 \& M5231L \& 1.95 \& R2265 \& 1.49 \& SN297728N \& 4.91 \& STR4090 \& 11.75 \& taA930 \& 4.87 \& TDA1200 \& 1.50 \& TDA7270S \& 225 \& UPC1263 \& 3.45

\hline H14207 \& 17.16 \& M53274P \& 1.33 \& R2305 \& 1.18 \& SN2971BN \& 4.93 \& STR440 \& 7.85 \& taAg70 \& 289 \& TDA1235 \& 388 \& TDAB 190 \& 3.45 \& UPCI2 27 H \& 5.85

\hline HT4208 \& 18.25 \& M54532P \& 215 \& ${ }^{\text {R2322 }}$ \& 0.59 \& SN29791 \& 1.67 \& STR441 \& ${ }_{6}^{65}$ \& TAAIT32-610 \& 258 \& TDA1270 \& 3.30
3.76 \& TDA99503 \& 3.15
29 \& UPC13581C \& 1.81

\hline IN5401 \& 0.11 \& M54544L \& 4.75 \& R2323
R2344 \& 201 \& SN27709 \& ${ }_{0}^{5.4}$ \& STR453 \& 8.15 \& TAG626-600 \& 1.05 \& TDA1327A \& 133 \& tDass 13 \& 5.4 \& UPC1350C \& 1.40

\hline \& 425 \& M58478P \& 16.74 \& R2234B \& 201 \& SN7400 \& 0.34 \& SIRA54 \& 7.50 \& tBaizoas \& 124 \& TDA1412 \& 1.05 \& TDB1033 \& 6.68 \& UPC1353 \& 785

\hline \& 225 \& MA06 \& 1.07 \& R2443 \& 0.89 \& SN7401N \& 0.36 \& STP6020 \& 8.31 \& TBA120SB \& 1.05 \& TDA1420 \& 15 \& TDE1081 \& 6.61 \& UPC1355C \& 213

\hline \& 2.95 \& MA8001 \& 0.82 \& R2461 \& 1.50 \& SN7402N \& 0.65 \& T5029V \& 5.75 \& tBAIzot \& 0.55 \& TDA1440 \& 3.45 \& TE626 \& 1.49 \& UPC1363 \& 420

\hline | R183P08 |
| :--- |
| RP95588 | \& 495 \& MA8003 \& 1.16 \& R2540 \& 231 \& SN7404N \& 024 \& T5035V \& 0.7 \& tBaizou \& 250 \& TDA1470 \& 3.16 \& TEA1002 \& 3.47 \& UPC1362 \& 7.75

\hline |S751 \& 285 \& M83705 \& 1.58 \& R2540x \& 3.30 \& SN7408N \& 0.27 \& T6036 \& 0.57 \& TBA120A \& 1.55 \& TDA1470P \& 4.25 \& TEA1009 \& 1.85 \& UPCC1356C \& 6.98

\hline 117425 \& 0.18 \& ME3712 \& 1.85 \& R2615 \& 0.67 \& SN7410N \& 027 \& T6037 \& 211 \& TBA1440 \& 203 \& TDA1506 \& 7.45 \& TEA1014 \& \& UPC13 \&

\hline 120003GE \& 5.37 \& M83713 \& 1.08 \& RCA16029 \& 2, 201 \& SN74121 \& ${ }_{0}^{1.30}$ \& ${ }_{\text {T6004 }}^{\text {T604V }}$ \& 0.97 \& ${ }_{\text {TBA }}^{\text {TBA } 404}$ \& 51.20 \& TDA1512 \& 5.50
298 \& TEA1020SP \& 8.61
0.61 \& UPCC 13780 H \& 4.25

\hline 1200206E \& 5.93
3.4 \& M 83730
MC13002 \& ${ }_{35} 3$ \& RCA
RCA16600 \& 1.08 \& SN74131
SN414 \& 2×5 \& T6049 \& 1.15 \& TBA1441 \& 1.75 \& TDA1515 \& 16.60 \& Til 106 M \& 0.7 \& UPC141C \& 3.75

\hline K174YP \& ${ }_{298} 29$ \& MC1310P \& 225 \& RCA17074 \& 6.60 \& SN74151AN \& 1.51 \& T6052V \& 087 \& TBA240A \& 399 \& TDA1559 \& 3.15 \& TIC116Y100 \& 207 \& UPC1458 \& 8.65

\hline KA2201
KC581C \& 292
6.32 \& MC1327P \& 133 \& RCA17376 \& 1.58 \& SN74154N \& 127 \& T6058 \& 0.59 \& tBA395 \& 1.10 \& tDA1670 \& 4.48 \& TIC44 \& 0.72 \& UPC151C \& 25

\hline KC5822 \& 3.97 \& MC1330P \& 1.69 \& RCA17524 \& 0.83 \& SN74190 \& 200 \& T6059 \& 0.55 \& tba3950 \& 1.10 \& TDAITO \& 6.85 \& Ticas \& 0.7 \& UPC2002 \& 1.48

\hline KC5833C \& 5.54 \& MC1350P \& 1.61 \& RCA17523 \& 0.83 \& SN7420N \& 0.34 \& T9033V \& 125 \& tBA399 \& 0.80 \& TDA 1905 \& 1.76 \& ${ }_{\text {T1P4 }}^{\text {Tica }}$ \& 0.35 \& UPC324C \& 2510

\hline L200CV \& 1.09 \& MC1351P \& 3.35 \& RCAOO60 \& 200 \& SN7430 \& 0.27 \& $\xrightarrow{\text { TS005V }}$ \& 0.238 \& TBA440P \& 229 \& TDA1940 \& 281 \& TPP10 \& 0.53 \& UPC32C \& 4.94

\hline LA1201 \& 1.102 \& MC1352P \& 2.15 \& ${ }_{\text {RGP10 }}$ \& 0.50 \& SN7472 \& 1.54 \& T9013V \& 7.96 \& TBA480a \& 130 \& TOA1950 \& 4.75 \& TIP122E \& 0.85 \& UPC339C \& 4.90

\hline LA1230 \& 287 \& MC1358P \& 1.5 \& RGP30M \& 0.58 \& SN7474N \& 0.4 \& T9014V \& 260 \& TBASOOP \& 6.58 \& tidazoos \& 5.08 \& T1P12 \& 0.88 \& UPC41C \& 4.10

\hline LA1320 \& 287 \& MC14001 \& 240 \& ${ }_{\text {RT402 }}$ \& 1.58 \& SN7490AN \& 0.93 \& ${ }_{\text {T }}{ }_{\text {T9019 }}$ \& 1.02 \& TBA510
TBA520 \& 2.11 \& TDA2006 \& 1205 \& ${ }_{\text {T1P117 }}^{\text {TIP121 }}$ \& 0.85 \& UPPC4558 ${ }^{\text {U }}$ \& 215
5.11

\hline LA1352 \& 1.75 \& MC14013 \& 0.41 \& RT905A \& 5238 \& SN74526N \& 1.58 \& ${ }_{\text {T9034V }}$ \& 1138 \& ${ }_{\text {TBA5200 }}$ \& 1.00 \& TDA2002 \& 0.90 \& TPP126 \& 0.73 \& UPC554C \& 1.85

\hline Lais37N \& 11.07 \& MC1493P \& 3.4
215 \& S1759 \& 31.48 \& SN76013ND \& 248 \& T9035V \& 139 \& tBA530 \& 1.30 \& tdaz003 \& 1.75 \& TIP132 \& 1.00 \& UPC566H \& 295

\hline LA1364 \& 3.02 \& MC14497 \& 3.65 \& S20620 \& 207 \& SN76023N \& 5.15 \& T9051 \& 7.6 \& tBA530 \& 130 \& tDAz2010 \& 185 \& TIP137 \& 1.50 \& UPC574 \& 325

\hline LA1365J \& 3.4 \& MC14510BAL \& 3.75 \& S28800 \& 5.54 \& SN76023ND \& 3.35 \& ${ }^{\text {T9054V }}$ \& 1.15 \& tidasto \& 1.15 \& TDA2020 \& 27 \& ${ }_{\text {T1P292955 }}$ \& 0.65 \& UPC575C2 \& 258

\hline LA1385 \& 1.9 \& MC145118CP \& 1.10 \& S2802 \& \& SN76033 \& 4.15
0.90 \& ${ }_{\text {T }}$ \& 0.49 \& TBA560C \& 1.40 \& TDA2140 \& $1{ }^{15}$ \& TIP29A \& 0.46 \& UPC577 \& 125

\hline LA1387
LA3155 \& 7.00 \& MC145288CP \& 278
388 \& S3702S \& ${ }_{6}{ }^{4.15}$ \& SN76115AN \& 1.61 \& ${ }_{\text {T }} 90064{ }^{\text {a }}$ \& 1.51 \& TBA560CO \& 1.60 \& TDA2150 \& 620 \& TIP298 \& 0.63 \& UPC578C \& 735

\hline LA3353 \& 1.65 \& MC5192 \& 13.50 \& S40W \& 10.89 \& SN76131 \& 1.9 \& TA6002 \& 435 \& TBA5700 \& 1.60 \& TDA2151 \& 1.93 \& T1P29C \& 0.40 \& UPC580C \& 4.13

\hline L43350 \& 1.43 \& MC7724CP \& 3.49 \& S60800 ${ }^{\text {a }}$ \& 880 \& SN76227N \& 133 \& TA7027 \& 4.80 \& TBA570a \& 1.7 \& TDA2160 \& 4.09 \& TIP290 \& 0.75 \& UPC588C2 \& 1.34

\hline L43361 \& 123 \& MC7818C \& 218 \& sa8003 \& 5.17 \& SN162260N \& 1.9 \& TA7050 \& 1.74 \& TEA641/12 \& 4.13 \& TDA2161 \& 1.5 \& TIP3035 \& 0.15 \& UPC595 \& 215

\hline 433355 \& 3.98 \& MCR1007 \& 1.06 \& SAA1006 \& 1.75 \& SN76278N
SN7624 \& 88.5 \& ${ }_{\text {T }}{ }_{\text {TA7055 }}$ \& ${ }_{25}^{1.4}$ \& ${ }_{\text {TBA651 }}$ \& 3.185
1.76 \& TDA2190 \& 4.95 \& TPP30C \& 0.16 \& UPC596 \& 1.98

\hline LA3390 \& 4.25 \& MCR100-5/6
MCR2207 \& 228 \& SAA1020 \& 4.40 \& SN76243 \& 823 \& TA7060AP \& 0.71 \& TBA6T3 \& 260 \& tDa2270 \& 4.65 \& TIP31A \& 0.34 \& UPD1514C \& 8.98

\hline La4i330
La4031P \& 420
320 \& MCR2207 \& 0.17 \& SAA1024 \& 281 \& SN76396 \& 290 \& TA7061AP \& 127 \& TBA700 \& 185 \& TDA2510 \& 7.85 \& TIP318 \& 0.38 \& UPD2819C \& 4.98

\hline ${ }^{\text {LA4032P }}$ \& 235 \& ME6404/2 \& 0.47 \& SAA1075 \& 6.25 \& SN76533N \& 247 \& TA7069 \& 3.13 \& teaizo \& 15 \& TDA2520 \& 237 \& TIP31C \& 0.50 \& UPP40138 \& 4.00

\hline La4100 \& 125 \& ME0411 \& 028 \& SAA1121 \& 5.14 \& ${ }^{\text {SN176532N }}$ \& 258 \& TA 7070 P \& 2.83 \& TBA730 \& 355 \& TDA2522 \& 3.45 \& ${ }_{\text {TIP32B }}^{\text {T1P3A }}$ \& 0.05 \& UPD40668 \& 1925

\hline LA4101 \& 130 \& ME6602 \& 0.28 \& SAA1124 \& 325 \& ${ }^{\text {SNa }}$ N76545 \& | 4.87 |
| :--- |
| 3.4 | \& ${ }_{\text {l }}^{\text {TA7072P }}$ (A7073P \& 257 \& TBAF500 \& 290

1.1 \& TDA2524 \& 3.71 \& ${ }_{\text {TPP32C }}$ \& 0.40 \& UPD80996-1 \& ${ }^{10.14}$

\hline La4102 \& 281 \& ME6102 \& 023 \& SAA1130 \& 7.7 \& ${ }_{\text {SNN }}$ SN6549 ${ }^{\text {a }}$ \& 259 \& ${ }_{\text {TA }}{ }_{\text {T }}$ \& 1.98 \& TBAsod \& 1.08 \& TDA2225 \& 3.90 \& T1P33 \& 0.85 \& $\times 000774$ \& 4.68

\hline La4112 \& 488 \& ME8001 \& 0.75 \& SAA1250 \& 3.96 \& SN76570 \& 3.08 \& TA7076P \& 7.50 \& TBAB10S \& 1.61 \& TDA2532 \& 250 \& TIP33A \& 1.05 \& X0022CE \& 5.75

\hline LA4138 \& 3.38 \& MJ2501 \& 330 \& SAA1251 \& 9.85 \& SN76611 \& 259 \& IA 7089P \& 1.50 \& TBAB10T \& 1.50 \& TDA2530 \& 270 \& ${ }^{\text {T1P33C }}$ \& 0.50 \& X0029CE \& 4.95

\hline LA4140 \& 1.15 \& MJ3001 \& 1.08 \& SAA11351 \& 1.95 \& SN76620 \& 259 \& TA7092P \& 7.50
309 \& ${ }_{\text {TBAB }}^{\text {TBAB10AS }}$ \& 1.100 \& ${ }_{\text {TOA2541 }}$ \& 248 \& TIP4IA \& 3.45 \& X0035TA \& 5.11

\hline LA4192 \& 4.29 \& M. ${ }_{\text {M }}$ \& 1.53
5.4 \& SAA3027P
SAA5000 \& $\stackrel{10.03}{295}$ \& SNN6660N \& 1.41 \& TA7102P \& 398
588 \& ${ }_{\text {TBAB }}$ TBAOM \& ${ }_{0}^{1.58}$ \& TDA25450 \& 599 \& TIP418 \& 0.65 \& x0040TA \& 4.50

\hline LaA220 \& 1.62 \& MJ802 \& ${ }_{1} 5.4$ \& SAAS50010 \& 539 \& SN766708 \& ${ }_{4} 1.80$ \& TA7108P \& 1.51 \& tBA890 \& 250 \& TDA2560 \& 217 \& TIP4IC \& 0.49 \& \times хOO22CE \& 4.35

\hline La4400 \& 225 \& M. JE3055 \& 1.65 \& SAAS012 \& 520 \& SN76709 \& 5.12 \& TA7109 \& 3.71 \& \& ${ }_{231}^{1.89}$ \& TDA2575A \& 0.50 \& ${ }_{\text {TIP42A }}$ \& 0.53 \& X0056CE \& 5.11

\hline La4420 \& 1.12 \& MJE340 \& 0.49 \& SAA5020 \& ${ }_{8}^{5.7}$ \& $\xrightarrow[\text { SN76707 }]{ }$ \& 5.11 \& ${ }_{\text {TA7 }}$ TA24P ${ }^{\text {a }}$ \& 234 \& tbas ${ }^{\text {ta }}$ \& 1.87 \& IDA2576A \& 285 \& TIP42C \& 0.53 \& X0057GE \& 6.00

\hline La442 \& ${ }_{1}^{1.72}$ \& M ${ }^{\text {J } 5520}$ \& | 0.49 |
| :--- |
| 3 | \& SAA55050 \& 7.74 \& SN76705N \& 1.34 \& TA7129P \& 1.50 \& tBA950 \& 1.94 \& TDA2571A \& 3.65 \& TIP47 \& 0.65 \& X0062CE \& 6.52

\hline La440 \& 4.95 \& M12328 \& 25 \& SAB 1009B \& 6.81 \& SN76730 \& 5.30 \& TA7130P \& 127 \& tBA970 \& 1.79 \& TDA2578A \& ${ }^{4.56}$ \& ${ }_{\text {TIP448 }}^{\text {T1P48 }}$ \& 3.61 \& | $\times 0005 C E$ |
| :--- |
| $\times 00746 E$ | \& 5.59

\hline LA4445 \& 725 \& ${ }^{\text {M12378 }}$ \& 251 \& SAB3011 \& 734 \& SN76810N \& 0.60

325 \& TA7136AP \& 127 \& $\xrightarrow{\text { TBAA990 }}$ TBA990 \& | 1.88 |
| :--- |
| 1.68 | \& \& 1235

225 \& TTIP55A \& 3.61 \& X00074GE
$\times 1076 E$ \& ${ }^{15.96}$

\hline La460 \& 235 \& ML238
$\mathrm{ML923}$ \& 5.7
3
3 \& SAB3013 \& ${ }_{7}^{5.90}$ \& SN96041 \& 5.54 \& TA7141AP \& 3.87 \& TC40018P \& 325 \& TDA2582 \& 218 \& TIS43 \& 1.3 \& X0079CE \& 4.55

\hline LA4505 \& 5.94 \& ML926 \& 3.58 \& SAB3024 \& ${ }_{5} 636$ \& SN94042 \& 435 \& TA7146 \& 250 \& TC40118P \& 350
355 \& TDA2991 \& 250 \& TISs0 \& 028 \& \& ${ }_{4}^{4.95}$

\hline LA5112N \& 265 \& MM5314N \& 4.02 \& SAE3329 \& 5.8 \& SP8385 \& 0.55 \& TA7146P \& 4.63
1.67 \& TC40138P
TC40168P \& 3.15
3 \& TDA25943 \& 326
297 \& TL011CP \& 285 \& X0096CE

$\times 01096 E$ \& | 10.90 |
| :--- |
| |
| 180 |

\hline L47020 \& 733

805 \& MM5316N \& | 4.25 |
| :--- |
| 3 |
| 11 | \& SAB3210

SAF1032P \& 3.4
6.50 \& SPS5384 \& 0.98 \& TA7149P \& 3.26 \& TC40538P \& 434 \& TDA25910 \& 0.88 \& TL494CN \& 6.74 \& X0113CE \& 207

\hline La7023
LA7027 \& ${ }_{9}^{8.05}$ \& MM5359 \& 201 \& SAF1039 \& 3.35 \& STA401 \& 6.76 \& TA7152P \& 1.72 \& ${ }^{\text {T C44069 }}$ \& 1.52 \& TDA2599 \& 526 \& TLO72CP \& ${ }_{1}^{25}$ \& X0195CE \& 4.00

\hline La7040 \& 9.20 \& MM5387AAN \& 620 \& SAS5510 \& 839 \& STA441C \& 275 \& TA7153P \& | 7.4 |
| :--- |
| 5.4 | \& TC40718P \& 3276 \& TDA2800 ${ }_{\text {TDA }}$ \& 5.50

290 \& TMP4320 \& 15.00

685 \& | X0204CE |
| :--- |
| $\times 0261 C E$ | \& 8.74

8.75

\hline L47042 \& 425 \& MM58A1N
M 1400 L \& ${ }_{9.96}^{6.64}$ \& SASS60S
SAS560T \& 226 \& STA47IC

STK0029 \& | 6.76 |
| :--- |
| 5.54 | \& TA7162P \& 298 \& TC40H000 \& 1.98 \& tiaz6120 \& 4.68 \& TMS1025N \& 6.25 \& $\times 12224 \mathrm{~F}$ \& 3.63

\hline La7800
LA7801 \& 4.15 \& MN4005 \& ${ }_{9} 9.58$ \& SAS570T \& 5.0 \& STK0039 \& 5.35 \& TA7169 \& 9.54 \& TCA5148P \& 4.15 \& tDaz611a \& 125 \& TMS3720ANS \& 19.50 \& IX0111CE \& 298

\hline LB1274 \& 3.08 \& MN14356X \& 11.488 \& SAS570S \& 261 \& STK0040 \& 1200 \& TA7172P \& 1.41 \& TC90023P \& 11.15 \& TDA2810 \& 279
215 \& TMS33755 \& 13,55 \& T0A3310 \& 215

\hline LC77800
L03120 \& 1.13 \& MN6016A \& ${ }_{2}^{20.56}$ \& SAS580 \& 285 \& STK0050
STK0080 \& 7.67
9.16 \& TA77193AP \& 268 \& tcazics \& 2.15 \& TDA2630 \& 196 \& TMS3894NL \& 1925 \& ZPY120 \& 0.95

\hline L03120
L03150 \& 1.13
22 \& MP1792 \& ${ }_{4} 5.00$ \& SAS6660 \& 297 \& STK011 \& 3.96 \& TA7193P \& 5.50 \& tcaz70sa \& 1.0 \& tDazz31 \& 273 \& MS5102NLL \& 6.25 \& 2TK33 \& 0.43

\hline LM1017N \& 429 \& MP2812 \& 5.07 \& SAS6700 \& 133 \& STK013 \& 925 \& TA7201P \& 2.7 \& TCA293a \& 238 \& TDA2640 \& 239 \& \& \& \&

\hline LM1877 \& 10.92 \& MP8512 \& ${ }_{213}^{1.57}$ \& ${ }_{\text {SAS670 }}$ \& ${ }_{1}^{3.96}$ \& STK014
STK015 \& 7.980 \& TA7203P
TAT204P \& 218
216 \& TCAA240 \& 216
1.93 \& TDA2652 \& 3.65 \& \& \& \&

\hline LM224
LM2808 \& 1.75
59
5 \& MPC5256 \& 213
0.60 \& SAS6710 \& 1.63 \& STK016 \& 7.5
6.9 \& TAA205P \& 1.38 \& tcas30 \& 216 \& tDA2654 \& 6.18 \& \& \& \&

\hline LM2877 \& 4.93 \& MPS6570 \& 0.48 \& SC84203 \& 19.35 \& STK022 \& 525 \& TA7206P \& 6.33 \& TCA640 \& 7.36 \& TDA2670 \& 2.48 \& \& ple \& ease 9 \&

\hline LM317CKC \& 138 \& MPSA42 \& ${ }_{0}^{0.65}$ \& SCS504P
SDA 2006 \& 1.55
1895 \& STKO25
STK031 \& 1250
1285 \& ${ }_{\text {TA }}^{\text {TA 72072 }}$ TAP \& 334
215 \& TCA6560 \& 2000 \& TDAA8680 \& 320
205 \& Tel \& hone \& e answer \&

\hline ${ }_{\text {LM324N }}^{\text {LM39 }}$ \& 0.05 \& MPSA56 \& 0.45 \& SDA2006
SDA21122 \& 18.95
1285 \& STKK34 \& ${ }_{8,70}^{125}$ \& TAP210P \& 3.58 \& TCA730 \& 381 \& TDA2740 \& 6.00 \& machine \& ava \& ailable 24 \& ours

\hline LM3390 \& 11.25 \& MPSA92
MPSU05 \& 0.85 \& SG264A \& 526 \& STK043 \& 13.4 \& TA7214P \& 3.63 \& TCA750 \& 225 \& tdaz780a \& 5.14 \& \& \& \&

\hline LM342P \& 1.62 \& MPSU10 \& 1.56 \& SG613 \& 8.7 \& STK054 \& 7.13 \& ${ }_{\text {TAP7217 }}$ \& 2.58 \& TCA8000
TCASAOS \& 6.95
238 \& TDA2791 \& 27
25 \& \& \& \&

\hline LM342P \& 1.50 \& MPSU56
MPSU60 \& ${ }_{1}^{0.63}$ \& SG629 \& 8 \& STK058
STK077 \& 18 \& TAA2727AP \& 195 \& TCAB99 \& 5.4 \& TDA2910 \& 1325 \& \& for Ac \& d custom \&

\hline LM342P
LM348N \& ${ }_{2}^{1.62}$ \& MRB18 \& 1.33 \& Sl-1020 \& 10.89 \& STK078 \& 8.52 \& TA7226 \& 1025 \& TCA900 \& 204 \& TDA3000T \& 258 \& Stock \& queri \& es by post \&

\hline LM380N \& 280 \& MR854 \& 0.72 \& ${ }_{\text {Sl-1122 }}$ \& 17.10 \& STK090 \& 16.50 \& TA7273P \& 281 \& TCA9910 \& 1.05 \& ${ }_{\text {TDA33008 }}^{\text {TDA330 }}$ \& 9.00
30 \& qua \& \& $100+$ per line \&

\hline LM384N01 \& 3.25 \& MR914 ${ }^{\text {M }}$ \& 1120 \& ${ }_{\text {S }}^{\text {S11225 }}$ \& 7.50
17.73 \& SIK082
STK086 \& 111.85 \& TA729P \& 4.98 \& TCA94) \& 293 \& TDA33506 \& 7.98 \& \& fors \& special quote. \&

\hline LM567CN \& 1.171 \& MSM5816RS
MSM5440H \& $\underset{9.15}{17.35}$ \& S11225HD
Sl1630HD \& 17.85
1785
120 \& STK1039 \& ${ }_{5} 135$ \& TA7232P \& 6.60 \& TCE330 \& 3.89 \& TDA3501 \& 725 \& Orders fre Nationals \& Govt \& Institutions, \& hools,

\hline LM6402A093 \& 10.15 \& MVS 460.02 \& 0.61 \& S16590 \& 1200 \& STK2110 \& 733 \& ${ }_{\text {TA A } 2323}$ \& 5.38 \& TCEP 1000 \& 1025 \& TDA3500 \& 4.25 \& National \& \& epted with o \&

\hline LM748 \& 182 \& NE542 \& 250 \& SKE1/02 \& 18 \& STK2145 \& 16 \& ${ }_{\text {TA72404P }}^{\text {TA725P }}$ \& 783
750 \& TCEP100
TD3403ap \& 9.61
398 \& TDA33510 \& 6.58
9.7 \& \& mods sh \& hould be deliver \&

\hline LM8360
LM8361 \& 3.87
3.5 \& Ne545B
NE555 \& 4.38 \& SKE2F1/24 \& 139
1.05 \& STK2320 \& 1.14 .40 \& ta7245 \& 7.75 \& TD3F300R \& 3.92 \& TDA3540 \& 298 \& \& within 4 \& workng days. \&

\hline ${ }_{\text {LM83312 }}$ \& ${ }_{1158}^{35}$ \& ${ }^{\text {Ne5s5 }}$ \& 0.55 \& SKE4F106 \& 0.73 \& STK2250 \& 18.55 \& TA7310P \& 2.15 \& TD3F90\% \& 4.16 \& TDA3541 \& 3.00 \& \& \& \&

\hline REGISTER \& RED 0 \& OFFICE: TH \& HE CO \& АС' H \& E, M \& UXTON \& NE, 1 \& TELFORD \& * MA \& IL ORDER \& - CAL \& LERS ST \& CTLY \& Y BY APPO \& NTM \& MENT \&

\hline
\end{tabular}

The Operation of Electric Motors

Most of the components we have to replace from time to time in consumer electronics equipment are relatively inexpensive - capacitors, resistors and the like. There are also more costly items such as cathode-ray tubes, wound components, etc. These are not normally scrapped without at least trying to do something with them. With VCRs, another group of expensive bits and pieces has joined the ranks. Of these the two that carry the highest prices are the video head assembly and the various motors. Sadly both have a limited life, due to mechanical wear.

Video head drums can now be refurbished by specialist companies. But to the best of our knowledge no equivalent facility is available for the motor, despite the fact that one of these can easily cost more than a video head assembly for the same machine.

This series of articles will attempt to redress the balance, by outlining the theory of electric motor operation and providing a few practical hints on how a motor can possibly be retrieved from the scrap bin and put to further service. We hasten to add that such a motor could be less reliable than a new one and that it's often not practical to attempt repair. But if we stuck to the principle of fitting new replacements every time we had to deal with a failure there would be no need for such things as tube boosters maybe not even of switch cleaner! In addition one is quite often stuck for a part that's not immediately available: attempting a repair in these circumstances is quite justified.

The electric motor comes in many shapes, sizes and types. They can be broadly divided into two groups: the a.c. induction type and the universal commutator type that will run from an a.c. or a d.c. supply. We'll deal with the theory of each separately, though if you go back to first principles they are fundamentally the same. Indeed
it's debatable to which group the direct-drive brushless motors we now have in VCRs belong. Table 1 shows a sort of motor family tree: we've left out types that are not relevant to the sort of equipment with which we are concerned - you won't find a three h.p. three-phase motor in a VCR (despite the propensity of some users to try to squeeze various large objects into the cassette slots of their machines . . .).

Basic Theory

To return to the theory (sorry!), the basis of all electric motors is that a conductor carrying a current will try to move when positioned in a magnetic field. Its direction of movement depends on the directions of the flow of current and the magnetic field. Fleming's left-hand rule (see Fig. 1) gives the relationship between these three characteristics. If the left hand is held with the thumb, the first finger and the second finger at right angles to each other, then with the first finger (F) pointing in the direction of the magnetic field and the second finger (C) pointing in the direction of current flow the thumb (M) will point in the direction of motion of the conductor. In practice it's probably not necessary to know this. Suffice it to say that any conductor carrying a current will tend to move at right-angles to a magnetic field. As far as an electric motor is concerned the magnetic field may be provided by a permanent or an electromagnet and the current may be supplied to or induced in the conductor.

The AC Induction Motor

We'll discuss the a.c. induction motor first. As its name suggests, its operation depends on inducing a current into something. This type of motor was used in some first-

Table 1: Types of electric motor.

Fig. 1 (left): Fleming's left-hand rule.
Fig. 2 (right): Elements of a simple induction motor.

Fig. 3 (left): The shaded-pole arrangement.
Fig. 4 (right): The squirrel-cage rotor.
generation VCRs. It was also used with the motor-driven turret tuners employed in some television sets made in the sixties. Consider the arrangement shown in Fig. 2, consisting of a horseshoe magnet embracing a disc of conductive material, e.g. aluminium. If we rotate shaft A which carries the magnet shaft B will attempt to follow it but will never reach the same speed. This effect is due to induction: rotating the magnet around the disc will induce a current in the disc - this is in effect a dynamo. What we have here is the converse effect of the reaction between a magnet and a current carrying conductor - we'll refer to this as repulsion henceforth. The current induced in the disc by the rotating magnet repels the disc which thus tries to follow the magnet. It can never reach the same speed since if there was no relative movement between the two there would be no induced current in the disc.

If a mechanical load is applied to shaft B the disc will slow down. But the relative motion between the disc and the magnet, and therefore the induced current, will increase, thus giving more torque to drive the load. It can be seen that if we replace the mechanically driven magnet with a rotating electromagnetic field we shall have a motor of sorts. If you think that the device with the dise is useless, consider the situation when the disc's shaft is spring loaded and the disc carries a pointer. This will indicate the speed of shaft A and is the principle used for speedometers and revolution counters.

Producing a Rotating Field

We now have the makings of an electric motor but require a method of producing a rotating field. If instead of shaft A and its associated magnet in Fig. 2 we have a stationary electromagnet that's energised by a source of alternating current the direction of the magnetic field will reverse itself at twice the frequency of the a.c. This is not quite a rotating field but if shaft B , carrying the disc, is spun in either direction it will continue to rotate in that direction. The reason for this is that although a pulsating field cannot get the disc to rotate in either direction from
rest the repulsion principle will provide sufficient impulse to maintain rotation if the dise is already rotating. This will become clearer when we come to consider synchronous motors.

All we now require to produce a motor to run on a.c. is some means of providing a rotating field to start the motor. If this rotating field is maintained for running the motor the result will be a smoother delivery of torque. One way of providing a rotating field, used in many small motors, is the "shaded pole" arrangement. The polepiece (see Fig. 3) is split into two lobes: around one of them there's a copper ring that acts as a shorted turn. The effect of this is that the flux in this half of the pole is delayed in its growth and decay as the current reverses. The moving field thus produced across the polepiece provides sufficient torque to overcome the initial inertia of the disc.

Rotors

At this point we should mention that a disc is not the usual form of rotor, as this part of an a.c. motor is called (the stationary part is called the stator). The type of rotor normally employed is the "squirrel cage" type - I decline to offer a reason for this odd term. The squirrel cage rotor (see Fig. 4) consists of a laminated soft iron cylinder, slotted or punched to carry typically about twenty axial copper rods, and two copper end rings into which the rods are soldered or riveted. Aluminium is sometimes used for the rods. The laminations, and thus the rods, are usually given a slight helical twist to provide smoother running. As you can see the rods form conductors which are connected in parallel by the end rings. A laminated core instead of an air core is used for greater magnetic efficiency: lamination is necessary to prevent currents being induced in the iron - its resistance would give rise to heating as a result of such "eddy currents".

This type of motor was used in the Philips N1500 VCR and in many autochanger mechanisms. It gives a fairly constant speed which is always just below the field's speed of rotation. The latter, for a two-pole motor run off a 50 Hz mains supply, is 3,000 r.p.m. So the motor will run at something like 2,850 r.p.m. Incidentally this is the highest speed that can be achieved from an induction motor running off a domestic 50 Hz mains supply - you cannot have fewer than two poles. A four-pole motor runs at approximately 1,425 r.p.m. - most audio motors were of this sort. The shaded-pole motor performs reasonably well with very light loads but always runs hot, due to the loss introduced by the shorted turns.

The disc rotor was actually used in some early gramophones, with a copper rotor some ten inches in diameter driving the 78 r.p.m. turntable directly. It also drove a governor of the brake variety - a hangover from the earlier spring-driven motors - as a result of which the motor ran at less than its free-running speed. This made the speed independent of the load.

The induction-disc motor is far from dead. Almost all of us use at least one. The humble electricity meter consists of an induction-disc motor loaded with a permanent magnet brake, with a winding in series with the house supply as well as one across it. This means that the speed depends on the energy supplied by both windings - in fact the product of current and voltage, i.e. watts. As the disc rotates in time it measures watts multiplied by time -kilowatt-hours.

Our saga will continue next month with more types of a.c. induction motor.

Servicing Sinclair Microcomputers

Part 4

Last month we dealt with the main parts of the Spectrum, including the CPU, ROM, ULA and 16K RAM. Fig. 1 showed the main computing circuitry (issue 3 version) while Fig. 4 showed the voltage stabiliser and generator circuits. Fig. 5 this month completes the Spectrum circuit: it covers the tape recorder input and output and sound sections, and the video circuits. You'll find several references to Figs. 1-4 in this month's article: these refer to last month's diagrams.

The 32K Extension RAM

Before looking at these new areas of the circuit there are a few points that remain to be dealt with concerning last month's circuitry. The first of these is the extension memory. This section, ușing IC15-IC26, extends the RAM memory from the initial 16 K to 48 K . It was originally an optional extra, with sockets provided to enable these i.c.s to be fitted later. So you sometimes find that these i.c.s can be easily removed for checking or for eliminating a possible source of trouble. The extension
memory chips are IC15-IC22 and may be Texas TMS4532 or OKI MSM3732 chips - the memory chips must all be of the same type. These are both 64 K DRAMs with only 32 K of serviceable area. This area is sometimes in the address range zero to 32 K and sometimes in the range 32 K to 64 K . This is why there's a link panel on the printed board (between the MIC socket and the edge connector see Fig. 2 last month). The connections required for the various memory permutations are as follows:

Memory chip

Texas TMS4532-3
Texas TMS4532-4
OKI MSM3732-H
OKI MSM3732-L

Links required
TI and 3
TI and 4
OKI and H
OKI and L

The pin connections for these chips are shown in Fig. 6. Pin 9 , which is normally the A7 address connection, is here referred to as AR - high/low memory address select: it's connected to either 5 V or 0 V depending on whether the useful memory area is high or low.

The other chips associated with the extension memory

Fig. 5: Final part of the Spectrum issue 3 circuit diagram, showing the keyboard matrix, the tape input and output and the video and TV output circuitry. Note that C65 is $0.1 \mu \mathrm{~F}$ in some issues of the Spectrum, also that to simplify the circuit many of the supply line decoupling capacitors have been omitted, also the edge connector connections (see Table 3). R47, R56 and $R 63$ were 220Ω in early versions: C72 is present in issue $3 B$ versions. Some pin numbers were missed off IC3/4 last month: R23 goes to pin 12, R22 to pin 4, R21 to pin 7, R20 to pin 9, R19 to pin 12, R18 to pin 4 and R17 to pin 7.
are the address decoders (IC23 and IC24) and the row/ columin multiplexers (IC25 and IC26). The decoders activate the memory only when the A15 address line is high, thus setting the address range from 32768 (decimal) upwards.
While we're discussing addresses it's worth noting the memory map for the Spectrum. The 16 K ROM starts at address zero and is followed at 16 K (16384 decimal) by the 16K RAM (the 4116 chips). This continues to address 32767 and is followed by the 32 K extension memory which carries on to the final address of 64 K (65535). The model description -16 K or 48 K Spectrum - indicates the size of the RAM. The 48 K model often has a label on the underside.

RAM Checks

When you've finished a repair, especially when it has involved removing the extension memory, it's good practice to check that the entire memory is operational. This is a simple matter since one of the tasks in the initiation program is to determine the maximum usable memory available. This data is needed by the computer and is therefore stored in one of the system variables. Access is by entering the following line:

PRINT PEEK $23732+256$ * PEEK 23733
(Enter)
Note that print and peek are words on the keys. The printout should be 65535 , or 32767 if it's a 16 K model. Any shortfall indicates that there's a memory fault that will have to be traced. If it's simply a defective memory chip diagnosis should be possible using the computer, because each i.c. is responsible for the same binary data bit at each of its addresses. If we can find the faulty bit in the data word and we know which i.c. handles which bit we shall be home and dry.

The above check will have told us that the faulty address is the one beyond the printout address number. We now need to find out which bit at this address is wrong. To do this we put 85 at this address, using the command poke. If you remember your binary you will know that 85 is 01010101 . We next read what is in the address, using peek, and see if there's an error. If there is we can tell which i.c. is responsible because we know which data line goes to which i.c. (see Fig. 1). We also know that D 0 is the least significant digit - the one at the right-hand end - and D7 the most significant digit, the first figure on the left.

So there we are. Except that an error may not show if the faulty cell registers the same digit we've put into it. In this case try again, this time putting in 170 which swaps the bits to 10101010 . This must reveal the culprit.

Fig. 6 (left): Pin connections for the 32 K extension memory chips. Pin 3 is write enable, pin 4 row address strobe, pin 9 high/low address select, pin 15, column address strobe.
Fig. 7 (right): The TV line waveform at pin 18 of the edge connector when the computer is displaying a yellow border, blue paper and no characters.
TV LINE OUTPUT TRANSFORMERS

Delivery by relurn of post.			
BAIRD: 8290, 8752, 8773	12.00	ITT: VC200 to VC402 CVC1, CVC2 (FORGESTONE)	$\begin{array}{r} 9.20 \\ 11.50 \end{array}$
RANK BUSH MURPHY		CVC5, CVC7, CVC8, CVC9, CVC20	10.35
A774 with stick rectifier	9.78	CVC25, CVC30, CVC32, CVC45	920
A816, T16, T18, Z712, 2715	10.35	CVC800, 1100, 1150, CVC40 CVC1200, 1204, 1210, 1215, 2600	P.0.A.
T20, T22, T26, 2179, A823 Z718 Basic unit	$\begin{aligned} & 11.50 \\ & 13.50 \end{aligned}$		P.0.A.
		PYE: 169, 173, 569, 368	9.20
DECCA: 1210, 1211, 1511	11.50	CT200, CT200/1, CT213	10.35
1700, 2001, 2020, 2401, 2404	9.20	725-731, 735, 737, 741	9.78
CS1730, 1733, 1830, 1835			
$30,70,80,90,700,120,130$	9.20	PHILPS: 170, 210, 3009.20	
FERGUSON, THORN: 1590, 1591	9.20	320 seri	9.78 P. 0.4
1690, 1691. built in rect.	9.78	G8 and G9 Series	E9. 20
1600, 1615, 1700, 1790	P.O.A.	KT2. KT3. series CTX G11. K30. split diode	920
3000, 3500, 8000, 8500, 8800	P.0.A.		P.0.A.
9000, 9200, 9300 series			
9500, 9600, 9650 series	10.99	BINATONE: 9909, 9860, 9488 P.0.A.	
9800, TX9, TX10 series	P.OA.	DORIC Mk3, MkI SONY KV 1400, 1612, 2000	11.50
MOVIESTAR 3781, 3787	12.00		P.O.A.
TX10 focus unit	10.25	GRUNDIG: most models in stock	
FIDELITY: FTV12 mono	10.35	NORDMENDE: 8290, Z206, Z306 P.OA.	
ZX2000 DX3000	P.OA.	SHARP: C1851H, C2051H	P.O.A.
G.E.C. 2047 to 3135 mono	9.20	TOSHIBA: C800, C800B TANDBURG: 190, CTV2, CTV3	P.0A.
1201H, 1501H, 2114, 3133, 3135	9.20	TELEFUNKEN: most models in stock	
DUAL \& SINGLE hybrid col.	10.00	$\begin{array}{ll}\text { HITACHI: 1471, CPB260, } 2501 & \text { P.OA. } \\ \text { SIEMANS: FF series } & \text { P.0.A. }\end{array}$	
SINGLE STD solid state	12.00		
SINGLE STD split diode P.0.A.			
INDESIT: 24EGB, 12LGB, 12SGB	10.35	Tidman Mail Order Ltd.,	
WINDINGS		Richmond, Surrey.	
TYNE: main winding	6.80		
RBM: T20, T22, T26, 2179	6.33	Approx. 1 mile from Kew Bridge.	
WALTHAM: W125 eht winding	237	Phone: 01-948 3702	
WALTHAM: W190, W191 eht coil	6.00	Mon-Fri 9 am to 12.30 pm \&	
KORTING: hybrid winding	6.90	1.30-4.30 pm	
THORN: 8000, 8500, 8800 eht	6.70	Sat 10 am to 12 noon.	

Table 1: RAM check procedure.
The following routine will isolate a fault at one address of the RAM:
(1) Enter the following:

PRINT PEEK $23732+256$ * PEEK 23733
(2) If the result is other than 65535 or 32767 (16K version) there's a fault.
(3) Add one to the faulty result. Let's say it was 54321. Enter:
POKE 54322,85 (Enter)

then:

PRINT PEEK 54322 (Enter)
Use your result +1 in place of the example quoted above. (4) If the answer returned is 85 , repeat step (3) using 170 instead of 85 .
(5) One of the answers should differ from the 85 or 170 entered. Provided there is only one faulty i.c. at the address, Table 2 will indicate which one it is. Find the line with the wrong data bit then refer to IC6-13 if the address is below 32768 or IC15-22 if the address is above 32768.
(6) Repeat step (1) after the repair to ensure that there isn't another fault.

Table 2: Identifying the faulty chip.
Wrong answer obtained Wrong data Defective chip from procedure given in Table 1
bit

84 or 171	0	IC6	IC15
87 or 168	1	IC7	IC16
81 or 174	2	IC8	IC17
93 or 162	3	IC9	IC18
69 or 186	4	IC10	IC19
117 or 138	5	IC11	IC20
21 or 234	6	IC12	IC21
213 or 42	7	IC13	IC22

If you don't want to exercise your binary skills, Table 1 lists the check procedure and Table 2 the faulty i.c. against the number read out. Remember that the system works only for a single fault at an address, though it's unlikely that there will be more than one when all the rest of the memory is operational. But there may be a fault at a higher address, so repeat the procedure until the correct final address has been obtained.

ROM Check

The program given below will enable you to verify that the ROM is satisfactory:

```
10 LET \(1=0\)
20 FOR n=28003 TO 28033
30 READ a
40 LET \(1=1+\mathrm{a}\)
50 POKE n, a
60 NEXT \(n\)
70 DATA \(17,0,64,62,0,33,0,0,1,0,0,134,48,2,3,63,35\),
        \(29,32,247,21,32,244,50,96,109,237,67,97,109,201\)
80 IF \(1=2033\) THEN GO TO 110
90 PRINT "Error in Data"
100 STOP
110 RANDOMIZE USR 28003
120 PRINT PEEK \(28000+256\) * PEEK \(28001+65536\) *
PEEK 28002
180 STOP
```

This will work with either make of ROM and should return the number 1926175. If "Error in Data" appears you've entered a wrong number in line 70. Incidentally if you remember that the ZX81 ROM check took over a minute to run you may be surprised at the speed of this one. Although the ROM is twice the size the check uses machine code, giving an almost instantaneous result. This is a measure of the difference between BASIC and machine code: when you consider that apart from all the addressing procedures etc. over 16000 additions have been made in the time you can see the potential speed of the CPU .

A connection link similar to that for the RAM is provided for the ROM. It provides for fitting a chip of either NEC or Hitachi manufacture. The link is no longer used since current ROMs work with either set of connections.

The Keyboard

Like the ZX81, the Spectrum's keyboard is of membrane construction wired in matrix form with decoding by the CPU. The keyboard (see Fig. 5) is scanned by sequentially putting a low on each of the address lines A8 to A15 and monitoring the data lines D0 to D4. If a key is pressed the appropriate pin of the ULA chip is pulled low: this is transmitted to the relevant data line via an inverter in the ULA.

Fault diagnosis is straightforward - the usual faults are in the tails that connect the membrane to the sockets. A fault here affects either a row or column of keys. It's a simple task, with the aid of the diagram, to determine which tail is at fault. If the whole keyboard is dead a quick check is to make connections across from one socket to the other in place of the keyboard. This can also be done quite safely when the keyboard is removed for servicing the computer. No damage will be done even if more than one socket contact is shorted.

The Spectrum Plus keyboard has an extra complication. In order to simulate the pressing of two keys by operation of one of its special keys it has a double-layer membrane. The connections between these are made by clamping the tails together, print side to print side, using a plastic clamp. This is not entirely satisfactory and can lead to some unexpected characters appearing. Replacing the Spectrum Plus keyboard is much simpler than with the earlier model however since it's assembled with screws instead of double-sided adhesive tape.

Keyboards are relatively cheap and as they often take a lot of punishment it's expedient to replace any that give trouble.

Tape and Sound Circuits

The tape recorder input and output and the speaker are always operated independently so only one pin of the ULA is used for all three. This combined circuit also provides a sound output from the speaker when the recorder is loading. There are few components in this area and it should be a simple matter to check that the circuit is working correctly. As a guide, a 5 V peak-to-peak signal at the EAR socket should give a 2 V p-p signal at the ULA. With almost all such tests however the best guide is to compare the suspect signal with that in a good machine. In this particular case, if the signal is o.k. but there's no

Table 3: Connections to edge connector pins.

Pin	Component side (top)		Underside	
1	A15	(1)	A14	(1)
2	A13	(1)	A12	(1)
3	D7	(1)	5 V	
4	NC		9-11V	
5	Slot		Slot	
6	D0	(1)	Chassis	
7	D1	(1)	Chassis	
8	D2	(1)	Clock. ULA pin 32	
9	D6	(1)	A0	(1)
10	D5	(1)	A1	(1)
11	D3	(1)	A2	(1)
12	D4	(1)	A3	(1)
13	INT. CPU pin 16		IOROULA. ULA pin 33	
14	NMI. CPU pin 17	(2)	Chassis	
15	HALT. CPU pin 18	(2)	U.H.F. modulator input	
16	MREO. CPU pin 19		Y. ULA pin 17	
17	IORQ. CPU pin 20		V. ULA pin 16	
18	RD. CPU pin 21		U. ULA pin 15	
19	WR. CPU pin 22		BUSRO. CPU pin 25	(2)
20	-5V		RESET. CPU pin 26	
21	$\overline{\text { WAIT. CPU pin } 24}$	(2)	A7	(1)
22	12 V		A6	(1)
23	-12V	(3)	A5	(1)
24	MI. CPU pin 27	(2)	A4	(1)
25	$\overline{\text { RFSH. }}$ CPU pin 28	(2)	ROMCS. ULA pin 34	(4)
26	A8	(1)	BUSAK. ULA pin 23	(2)
27	A10	(1)	A9	(1)
28	NC		A11	(1)

Notes: (1) These pins connect directly to the CPU address or data lines.
(2) Some CPU control lines are used in the Spectrum, some are not. The latter connect only between the CPU and the edge connector and are not shown on our circuit diagrams. (3) Sinclair refer to this as -12 V . It actually connects to TR4's load coil (see Fig. 4). TR4's collector waveform superimposed on a d.c. voltage is present at this pin.
(4) This pin does not connect directly with pin 34 of the ULA: it goes to the ROM side of R33, at its junction with the ROM link (see Fig، 1).
loading the ULA must be at fault. From bitter experience I'd recommend that you make this test before quoting for the job: the ULA is the most expensive item in the computer, costing over eight pounds at present, so it's not the sort of pricing detail to overlook.

The tape output at the MIC socket should be sufficient to produce a clean recording on a standard mono tape recorder. As this level is rather low the easiest check is to save a simple one or two line program then check that it loads.

Colour and Video Circuits

The colour and video section is where you come into your own. At least you can work on signals you recognise, even though they are being assembled into a composite video signal rather than being decoded from it.

The initial organisation of the display is carried out by the ULA, which every fiftieth of a second reads the display file - the memory area that holds the display details - and produces U, V and inverted-Y output signals. The U and V signals are fed to pins 4 and 2 respectively of the LM1889 video modulator chip IC14 which produces a standard PAL chroma output signal at pin 13. The chip incorporates a 4.43 MHz oscillator which, in conjunction with the external crystal network, produces phase-shifted subcarriers at pins 1 and 18. The inverted-Y output from the ULA is inverted by TR1 and added to the chroma signal at the base of TR2. The resultant composite video output is then fed to a standard Astec u.h.f. modulator which produces an output on channel 35.

If the sound output works all right but there's a problem with the display you'll need to check the circuit with a scope. One of the best points for making checks, if you have a suitable socket, is at the edge connector (see Table 3). Pin 15 on the underside of the connector is the u.h.f. modulator's video input, pin 16 carries the invertedY signal from pin 17 of the ULA while pins 17 and 18 carry the ULA's V and U outputs. With the computer initiated, i.e. switched on, and no key pressed pins 17 and 18 will carry only the sync pulses. These are positive-going and of 0.8 V p-p amplitude. If a colour border, or paper, is displayed blocks appear between these sync pulses. Fig. 7 shows a typical waveform but you must appreciate that the amplitude and polarity of the signal, i.e. whether it's above or below the sync base line, changes with the colour.

With a full-screen display the inverted-luminance signal at pin 16 is a normal looking TV line signal of 2.5 V p-p with no colour burst. The colour burst is very pronounced at pin 15 , which carries the u.h.f. modulator's input signal. The overall signal here is only IV p-p however.

The Edge Connector

Having just referred to the edge connector, this seems a good point at which to provide the details of this output port. It's a double-sided 28 -pin board-edge connector sockets to mate with it are readily available. Every useful line in the computer is brought out to a pin and the connector provides a ready means of linking the computer to the outside world. Rather too ready at times since, as I've said before, my belief is that most of the damage to these machines occurs when devices are fitted or removed without first switching off.

Next month we'll review some of the differences between earlier and later versions of the Spectrum.

next month in

『ELEOUSOOTI

SERVICING THE FIDELITY ZX3000 CHASSIS These sets like to go dead, blowing the chopper transistor and fuse. After careful tests the service engineer fits replacements and the set may work well for five to thirty minutes, after which there's a bang and the same faull is present. Using a variac at this stage is no help... If a certain procedure is followed however servicing becomes straightforward and the sets go on to give reliable service. Also the service engineer is relieved of considerable stress! David Botto explains how to go abjut it.

COLOUR TUBE DEVELOPMENTS

This time we reach the screen: types of phosphor, methods of improving the contrast ratio, stripe pitch and faceplate glass characteristics. Also flashover and X-ray protection.

THE SAA5000 REMOTE CONTROL SYSTEM
The final instalment in J. LeJeune's modern receiver circuitry series deals with remote control, specifically the Mullard SAA5000 system with infra-red transmission link.

- OL TEST PATTERN PROGRAM

A comprehensive test pattern program for the Sinclair QL computer, which is capable of producing a high-quality display. Devised by John de Rivaz, B.Sc. (Eng.).

SERVICING THE TOSHIBA V5470

John Coombes provides a detailed guide to common faults on this Betamax VCR - symptoms and what to check. The same chassis was used in the Bush Model BV6900.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the September issue of TELEVISION ($£ 1 \cdot 20$), on sale August 20th, and continue every month until further notice.

NAME
ADDRESS

Saturday Plight Fever

Chris Avis

Why does it all happen on Saturdays? From Monday to Friday business is just hectic: on Saturday the temperature rises to a fever pitch that no self-respecting fusible resistor would tolerate. Witness a few events during a typical Saturday in the life of yours truly. . .
$\mathbf{8} \cdot 30 \mathrm{a} . \mathrm{m}$. Open shop-cum-workshop, then open bleary eyes and see Friday's leftover Ferguson 3765B (TX10, early version) on the bench. Complaint intermittent tripping. Find h.t. rail correct at 150 V . Original focus unit replaced with improved version a few months before. Try further replacement anyway, just in case. Leave set on test.
9.00 a.m. Reconditioned Philips 550 (G8 chassis) running on display appears to have slight lack of height. About to remove back and adjust when first customer arrives with Rank T20 chassis (fortunately in cabinet).
"It's been going off for several weeks, but we could always get it back with a thump. Now it's gone right off."

Resist temptation to say it's probably concussed, agreeing instead with owner's request to collect set after lunch in time for wrestling - or boxing? TX10 trips again, but no tube flashover. T20 reveals an assortment of classic faults, including a short-circuit BU208A line output transistor and burnt pin 1 of connector 5 Z 1 on the line output panel. The BU208A's 1Ω base resistor (5R8) has been replaced with a 2.2Ω resistor and the 910Ω resistor (4R16) in the 12 V regulator circuit with two paralleled 470Ω 1W resistors in series with one $680 \Omega 2 \mathrm{~W}$ resistor! 5 R 8 replaced with a $1 \Omega, 4 \mathrm{~W}$ resistor and 4 R 16 with a $1 \mathrm{k} \Omega, 1 \mathrm{~W}$ resistor mounted half an inch off the board. New BU208A fitted, set switched on and adjusted. Good picture, left on test.
10.00 a.m. TX10 back on bench. Decide to disconnect e.h.t. and focus leads from tube and try again.
$10 \cdot 15$ a.m. Philips 550 definitely loosing height - and width too. Must investigate before potential buyer appears but diverted by arrival of Prinz T125 monochrome portable and Amstrad CTV1400 colour portable, closely followed by respective owners. Prinz "comes on then blacks out", Amstrad "makes loud buzzing noise but there's no sound or picture". Both owners happy to collect on Monday - considerate, my customers.
Tackle Prinz first and discover sound o.k. but dark, fluctuating picture with low e.h.t., then no picture. Start signing "Some day my Prinz will come on", beat time on chassis with screwdriver and picture appears. Remember common fault associated with TO3 cased line output transistors and tighten this one's mounting nuts and bolts: e.h.t. now normal with good picture.
11.00 a.m. Amstrad CTV1400 sounds like wasp sprayed with freezer. H.T. rail at zero. Switch off, extract nearly twenty sewing pins from surface of main PCB and switch on - wasp still shivering. For two pins feel like giving up, but lengthy search reveals just those very items still clinging to the line linearity coil's magnet and shorting across to the collector of the line output transistor. No damage caused, thanks to power supply protection circuitry. (Female owner later confessed to keeping needlework box on top of set - makes a change from flower
vases.)
12.00 a.m. TX10 hasn't tripped for two hours. Reconnect e.h.t. lead only and try again. Philips 550 now no picture or sound with the h.t. down to 100 V on the BA13 power supply panel. Parallel $100 \mathrm{k} \Omega$ resistors R1386/1373 in the charging/phase shift network look immaculate but one is open-circuit. Replacement restores status quo (and picture).
$\mathbf{1 2 . 3 0} \mathbf{~ p . m}$. Early lunch break, necessitated by diabetes and early breakfast.
12.45 p.m. Investigate previously reconditioned Thorn 1590 12in. monochrome portable that had misbehaved recently when demonstrated to an interested customer. The picture rolled erratically, though the set had appeared to be o.k. on test earlier. Sync crushing in the i.f. stages suspected, perhaps due to an a.g.c. fault? The voltage readings around the first two i.f. amplifier transistors VT2/ 3 were o.k. but closer inspection revealed that they had both been replaced at some time with BF194s. The correct BF196 is appropriate for forward a.g.c., the BF194 isn't. hence ineffective a.g.c., excessive i.f. amplification and crushed sync pulses. Fitting the correct transistors cured the trouble. The set was put back on the shelf to await further interest.
1.45 p.m. Still no hiccups from the TX10: reconnect focus lead and switch on again - set trips once then runs normally. Watch closely for ages (at least two minutes) but no repeats. Interrupt vigil to serve customer with Shure N70B stylus at $£ 6 \cdot 24$ including VAT (Valuable Avis Time). "I've thried everywhere but nobody has them. One place said they could order it for $£ 15$ then tried to sell me a new cartridge." No wonder I'm still struggling. TX10 takes another trip. Remove focus connector cover on tube base but no clue at spark gap. Could it be?. . Order new base from HRS and hope.
$\mathbf{2 . 3 0}$ p.m. Mr. Karate calls and collects his satisfactorily performing T20. Says he can manage to load set into car boot unaided but tries to take shop door frame with him as he passes through.
Door remains intact enough to admit gentleman with Sony TV121 12 in . monochrome portable. "The picture is very bright with poor contrast and won't keep still, then it almost disappears. Someone has looked at it and says the high gain control may be faulty but it would have to be looked at by a Sony approved dealer." Doubt whether Sony would approve of several Ghastly Catastrophic Semiconductor conversions I've successfully done to KV1810s, KV2000s etc. thanks to helpful Television articles but promise to search diligently for "high gain control". Fortunately this proves unnecessary as the picture is large enough for a 20 in . tube and the l.t. rail is 15 V instead of 11.6 V due to a faulty error detector/driver transistor (Q602, type $2 \mathrm{SC1209}$) in the series regulator circuit. Fit BC338 and find set none the worse for overdose of electronic adrenalin but put it on soak test to convalesce.
$3 \cdot 30$ p.m. Mr. Karate returns with T20 and red face. "It's just the same as when I brought it in to you and paid good money for you to fix it." Well he didn't quite put it that way but that's what it amounted to. Set immediately checked on bench. Trips when switched on. Find plug 5 Z 2 on line output panel half off and EW modulator driver transistors 4VT17/18 damaged. Customer had put set into car boot on its back, which had pushed against 5Z2's plastic locating peg. Transistors replaced, 5 Z 2 refitted (peg length cut by 50 per cent) and set placed face down on back seat of car, all "under guarantee". We live
and learn - though live and earn would be better. 4.00 p.m. Just the set to end the week comes in - a Sony KV1810 Mk. I with no sound or picture. Set plugged in with sinking heart and preparation for last rites when gloom is pierced by noise on sound and raster on screen, though attempts to tune in signals are thwarted by wildly erratic tuning voltage variations. Voltage at tuning supply stabilising zener diode D209 o.k. so channel selector unit replaced with one from scrapped set. No difference. These sets have a tuning meter to show the approximate channel positions. It's driven by a transistor (Q215, type

2SA678) whose base is connected to the selected tuning voltage. Fitting a BC213L in this position restored stable tuning and good performance to this ten year old Senior Sony, but how long before Guesswhats Commit Suicide?

So another week drew to a close as a weak and drawn engineer locked up and tilled up. Good, there's enough to see us through Sunday and some left over for the VAT return and the morgage and the rates and the Inland Revenue and. . . Oh well, at least the replacement TX10 tube base eventually cured the tripping. Makes it all worthwhile, doesn't it?

Resistor Troubles

Gordon Haigh

A good number of TV faults are due to resistor troubles of one sort or another. Here's a collection of resistor faults worth noting.
Thorn TX9 chassis: In the event of a poor, dark degraded picture with perhaps only the highlights present check the value of R233 ($390 \mathrm{k} \Omega$, changed in late production sets to $300 \mathrm{k} \Omega$) which is in series with the first anode preset control. For reduced height or almost complete field collapse check $\mathrm{R} 268(1.5 \mathrm{M} \Omega)$ and $\mathrm{R} 269(1.8 \mathrm{M} \Omega)$ which are in series with the height control - in the early version of the chassis (main panel PC 1001) a single $3 \cdot 3 \mathrm{M} \Omega$ resistor is fitted in this position (R268). If R223 (panels $\mathrm{PC1001}$ and $\mathrm{PC1040}$) is burning or distressed it's certain that the line driver transistor VT67/TR67 is faulty, also the 15 V zener diode W87/D87: the replacement resistor should be a 470Ω type.
Thorn $\mathbf{3 5 0 0}$ chassis: If the 10Ω wirewound resistor R751 on the convergence panel fails plenty of smoking, burning and damaged components will need replacing.
Fidelity CTV14R/CTV14S (ZX2000 chassis): If R826 (39 , 1W) goes high in value the chopper transistor TR13 will soon fail.
Grundig 2210/2222/2252R/5012/6022: The trouble with one of these sets was no + B supply (14V) for the line generator/driver circuits. This supply is derived from a mains transformer which also supplies the c.r.t.'s heaters. The mishap here was that the fine primary wires were too close to R615 (4W) and R643 (7W): having got toasted and brittle they'd finally gone open-circuit.

A point to note with any Grundig set using a cluster of vertical wirewounds and with an unstabilised h.t. supply is that the h.t. can be alarmingly high, say over 300 V when it should be around 280 V , if surge limiter/dropper resistors have been replaced with types of the wrong value. I had a case where over-generous resoldering had unwittingly shorted one out.
Autovox $2284 \mathrm{~GB} / 2684 \mathrm{~GB}$ etc.: Failure of the resistors in the focus control network is a common problem and getting replacements is often difficult. The focus VDR (type E298ZZ/103) from a GEC, Decca or ITT hybrid colour chassis can be used instead with a series resistor see Fig. 1.
JVC 7440GB: The problem with one of these sets, which had been fitted with a newly regunned tube, was alarming picture size expansion accompanied by clicking noises. I turned the h.t. down from 120 V to the correct 110 V but there was no change. All roads led to the tripler but the
circuit I had showed this as a "black box" - no internal details were given. Experiments with universal types were not successful - the original is a special (it's a special price too at nearly 660). Feeling lumbered with the set and having a bit of spare time I decided to attempt an economy repair. After painstakingly removing the soft rubbery filler from the original tripler I found that all the original components could be recovered and that the design was conventional though with three additional $47 \mathrm{M} \Omega$ resistors to provide a feed for the focus control (see Fig. 2). Using a universal tripler as a replacement, with the three recovered $47 \mathrm{M} \Omega$ resistors, a stable, well focused picture was obtained though there are annoying brightness changes with camera switches (any ideas?). A complete waste of time? Not quite: I found out how the tripler had failed - the series resistor R had burnt out.
Harnesses and leads: l've been caught out on occasion through not tying up harnesses. I always now watch that the wires near the dropper in the G8's power supply don't touch the dropper - amongst other things the field output transistors don't then need to be changed. When the chassis is hinged up in solid-state Decca sets I always watch the RGB leads.

Fig. 1: Autovox focus circuit conversion - original circuit shown on the left. Bolt the focus v.d.r. to the right-hand heatsink on the Autovox chassis, high up, using a plastic nut and bolt.

Fig. 2: JVC 7440 GB tripler circuit.

Long-distance Television

Roger Bunney

Long-distance television reception conditions improved greatly during May. Many long, intense Sporadic E openings produced reception from most parts of Europe while several signals were received from Arabic sources. Here's a general \log of SpE reception in the UK:

7/5/86 ORF (Austria) ch. E2A; TSS (USSR) R1, 2; TVR (Rumania) R2; ARD (West Germany) E2; RAI (Italy) IA; + PTT (Switzerland) E2; TVE (Spain) E2, 3.
8/5/86 CST (Czechoslovakia) R1, 2.
9/5/86 SR (Sweden) E2, 3, 4; CST R2; RTP (Portugal) E3; TVE E2, 3.
10/5/86 RAI IA; TVE E2, 3, 4; TSS R1.
11/5/86 TVE E2, 3, 4; RAI IA; ORF E2a; CST R1; TVP (Poland) R1; MTV (Hungary) R1.
12/5/86 TVE E2.
13/5/86 +PTT E2.
14/5/86 TSS R1; MTV R1.
15/5/86 TSS R1, 2, 3; CST R1; MTV R1; TVP R1, 2; JRT (Yugoslavia) E3; RAI IA, IB.
16/5/86 TSS R1, 2, 3, 4; YLE (Finland) E3, 4; SR E2, 3, 4; NRK (Norway) E2, 3, 4; TVP R1, 2; DR (Denmark) E3, 4; ARD E4; DFF (GDR-East Germany) E4; MTV R1; RAI IA; TVE E2, 3, 4; TVE-2 E2; RUV (Iceland) E3, 4.
17/5/86 NRK E2, 3, 4; SR E2, 3, 4; MTV R1; TSS R1, 2, 3, 4; TVP R1, 2; YLE E3, 4; +PTT E4; RUV E3, 4.
18/5/86 TSS R1; RUV E4; NRK E2, 4; RAI IA.
20/5/86 RAI IA.
21/5/86 CST R1, 2; MTV R1, 2; TSS R1, 3; TVR R2; JRT E3, 4; RAI IA, IB; ORF E2a.
22/5/86 RTP E3; TVE E2, 3, 4; TVE-2 E2.
26/5/86 TVE E3, 4; RTP E3; RAI IA, IB; JRT E3, 4; MTV R1, 2; TVR R1; ARD E2; RTS (Albania) IC.
27/5/86 RUV E4; NRK E2, 3; SR E2, 3; TVE E2, 3, 4.
28/5/86 TVE E2, 3, 4; RAI IA, IB; ARD E2, 3, 4; + PTT E2, 3; ORF E4; JRT E4.
29/5/86 NRK E2, 3, 4; SR E2.
30/5/86 TSS R1, 2, 3, 4; TVP R1, 2, YLE E3; RUV E3, 4; CST R1, 2; ORF E2a; ARD E2; MTV R1; RTS IC; RTP E3; TVE E2, 3, 4; +PTT E2; JRT E3, 4.
31/5/86 TSS R1, 2; RAI IA; NRK E2, 3, 4; SR E3; TVE E2, 3, 4; ARD E3; TVP R1, 2; RTM (Morocco) E4.
1/6/86 RUV E3, 4; NRK E2, 3; TVE E2, 3, 4; RAI IA.

2/6/86 SR E2; TSS R1, 2; TVP R1.
3/6/86 DFF E4; TSS R1, 2; RAI IA; TVP R2, 3.
4/6/86 TSS R1; RAI IA, IB; +PTT E2.
An extremely busy month then, with several points of interest. On the 15 th and 16 th the SpE m.u.f. reached the $2 \mathrm{~m}(144 \mathrm{MHz})$ amateur band - at 1900 GMT on the 15 th and for the whole morning from 0915 GMT on the 16th, the latter giving reception from Sweden, the USSR, etc.
At 1100GMT on the 16th Cyril Willis (Norfolk) noted a ch. E4 programme that went to Arabic credit titles at 1119. The same programme was visible on ch. E3 but much weaker. Any ideas? At 1358 GMT on the 26th Cyril received a ch. E3 signal with poor picture quality and, in poor English, the following words: "Good evening. The Royal Garden Company will now play. . .". The signal was from the SSE. Thoughts are maybe NTA Nigeria, though the "good evening" would perhaps be too early! Again, any ideas?
At 1403GMT on the 30th Cyril received RUV ch. E4, a very strong signal that was followed by and changed with a much weaker, fluttery and rolling signal. The latter could have been a 525 -line signal on ch. A2. Later that day Tony Privett logged Arabic singing/chanting along with TVE on ch. E3 at 1647 GMT . The following day Tony hit the jackpot with RTM (Morocco) ch. E4 at 15991620GMT, showing an Arabic film. The signal was from the south west.
I had myself noted Arabic singing at 1356 GMT on the 30th: the signal was at 52.8 MHz , probably an obscure harmonic. On the same day here NCT or another Italian (ch. IA) private station was noted with a most unusual test card, vaguely resembling the FUBK pattern but with a prominent series of black/white squares across the top and a moving (right to left) caption at the lower centre.
Other reception notes are few. A small aurora was noted in Scotland on May 6th. There was a tropospheric lift over the 24-25th, giving DXers in the central and southern UK high-level signals from W. Germany and the Benelux countries in Band III and at u.h.f. Dave Shirley and Tim Anderson (Hastings) have both received French TV5 signals from Paris ch. E30 and Maubeuge ch. E32. Thanks to the following for reception reports to supplement my own log: Derek Juniper (Angus), Roger Pates (Nottingham), Reg Roper (Torpoint), Bill Cotteril (Tipton), Iain Menzies (Aberdeen), Tony Privett (Basingstoke), Simon Hamer (Powys), Cyril Willis (Norfolk), and Dave Shirley and Tim Anderson at Hastings.

News Items

France: The TV5 and TV6 networks are being distributed

Left: Newsfeed via Satcom F1 transponder 5 during the Libyan crisis, showing the signal routing. Centre: Newsfeed from New York to A2 France. Both photos from Frank Lumen in Denver. Right: The PM5544 test pattern put out by Kalaallit Nunaata Radioa, Nuuk, Greenland. Six ch. E10 transmitters operate in the south west of the country with powers
around 1-5W.
throughout mainland France by the Telecom satellite, in scrambled form to prevent unauthorised viewing. Close examination of off-air signals along the south coast of the UK should reveal telltale random black ends to the scanning lines to confirm scrambling.
Denmark: The new TV2 network should commence operations in 1988, with twelve main regional transmitters and eventually fill-in relays where necessary. The service will be independent of Danmarks Radio (DR) and will be commercially financed. A 100 W ch. E9 relay is at present operating near the main ch. E7 Sonderjylland transmitter. Stereo sound: The Italian RAI-3 network (u.h.f.) is at present experimenting with stereophonic sound, using the two-carrier system. There are some two hours of stereo transmissions a week. In the USA NBC is gradually converting its entire system to stereo: over twenty hours of stereo broadcasts a week are at present being transmitted from fifty main stations covering 47 per cent of mainland USA, with satellite signal distribution.
Satellite news: The 4 GHz Intelstat bird at $31^{\circ} \mathrm{W}$ has ceased operations. Libya (transponder 17) and Argentina (transponder 24) have moved to the Intelstat satellite at $27.5^{\circ} \mathrm{W}$. NTA (Lagos) is on transponder 19 with "appalling quality" - the sound is likened to speech down a cardboard tube! The USSR has been testing a new satellite, with three TV channels at 32 dBW level, at $11^{\circ} \mathrm{W}$. TSS-1 remains on the 3.675 GHz satellite at $14^{\circ} \mathrm{W}$. Thanks to Nick Harrold for this information on 4 GHz transmissions.
An unusual Ku band aerial was shown by the US firm Focus Technology at a recent exhibition. It's a flat, frequency-selective device made from a two-inch thick sheet of aluminium on which concentric parabolas are machined. The feedhorn is mounted at the focal point of the centre parabola.

On a personal note, I was surprised to see lightning flashes displayed on the picture while watching the CNN Europe 11 GHz feed via a 2 m dish during a heavy thunderstorm! Then down came the summer rain, the picture became noisy and virtually disappeared with loss of syncs. The picture gradually returned to the noise-free condition as the torrent subsided.

Multi-standard TV Receivers

The use of multi-standard TV sets with automatic

Table 1: S channel allocations.

Ch.	Bandwidth $(M H z)$	Ch.	Bandwidth $(M H z)$	Ch.	Bandwidth $(M H z)$
S2	$111-118$	S14	$251-258$	S26	$342-350$
S3	$118-125$	S15	$258-265$	S27	$350-358$
S4	$125-132$	S16	$265-272$	S28	$358-366$
S5	$132-139$	S17	$272-279$	S29	$366-374$
S6	$139-146$	S18	$279-286$	S30	$374-382$
S7	$146-153$	S19	$286-293$	S31	$382-390$
S8	$153-160$	S20	$293-300$	S32	$390-398$
S9	$160-167$	S21	$302-310$	S33	$398-406$
S10	$167-174$	S22	$310-318$	S34	$406-414$
S11	$230-237$	S23	$318-326$	S35	$414-422$
S12	$237-244$	S24	$326-334$	S36	$422-430$
S13	$244-251$	S25	$334-342$	S37	$430-438$

Belgian variations: $\mathrm{S} 1-\mathrm{S} 10$ referred to as M1-M10, S11-S19 as U1-U9, S20-S37 not used. Belgian channel S1 is $69-76 \mathrm{MHz}$, S2 $76-83 \mathrm{MHz}, \mathrm{S} 383-90 \mathrm{MHz}$.

CATALOGUE ONLY 65p

EQUIPMENT \& PRCFESSIONAL ADVICE

Aerial Techniques offer a unique blend of the best equipment and impartial professional advice for Television/FM DXing or simply better domestic reception.
LabGEAR UPCONVERTERS ideal for TV-DXing, used but guaranteed in good working order, mains powered, limited steck ... £17.95 FERNSEH-ANTENNA DR1712 Combined Band $1 / 3$ wideband aerial for TV-DXing, covers $47-68 \mathrm{MHz}$ and $175-230 \mathrm{MHz}$; 2 evements (Band 1); 9 elements Band 3 gold nodised requires single downlead .SPECIAL OFFER! - ANTFERENCE XG14 Multi-element 17dB (peak) High Gain Wideband UHF aerial, covering channels 21 -68...
LaBgear cm 271 UHF Wideband Masthead Pre-amplifier, 15dB Gain; very low noise figure of only 1.6 dB . High signal handling 200 mV
ABGEAR CMF261 Matching Power Supply for above pre-amp............................. $\mathbf{8 1 3 . 5 0}$ SPECML OPER1 - THOMSON TS 2503P1 10° screan Colour Television/Monitor SPECAL OFFER! - THOMSON TS 2503 B 1 SMF-UHF, mains and 12/24v oper-Min-standard PALISECAM for Systems B/Cl. VHF-UHF, ma with infra-red ropote ation, video/Audio i/p \& o/p connections, comes complete with infra-red remote control (SAE leaflet)
NEW' BEST OF CO-TV book by John Wood .. 23.50 Whether your need is for local or fringe reception, alternative channels, TV/FM DXing, or for a distribution system, Aerial

Techniques is the 'one stop' address for all equipment.
All prices inclusive of VAT and Carriage.
ACCESS \& VISA Mail and Telephone orders welcome

AERIAL TECHRIOUES (T)
11, Kent Road, Parkstone,
Poole, Dorset, BM12 2EH. Tel: 0202738232

switching between standards is increasing. Luxor, Salora and Grundig all produce such sets. Our Brussels correspondent recently bought a Grundig P40/242/90 which can tune over $48-340 \mathrm{MHz}$ plus u.h.f., has 99 channel memory selection and a wide range of fine tuning. It covers systems $\mathrm{B} / \mathrm{G}, \mathrm{L}, I$ and D / K with switching between PAL/NTSC/SECAM - the NTSC option is useful for watching AFN-TV in suitable locations. The set's coverage includes the S channels used for cable distribution. Because losses are greater at u.h.f. than v.h.f. in a cable system there's a tendency for cable operators to convert to v.h.f. Table 1 lists S channel allocations.

Narrow-band IF Amplifier

The use of a narrow i.f. bandpass response for weak signal reception or for improved selectivity during an intense SpE opening gives greatly improved results. Most established DXers use a degree of switched selectivity. Originally use of a $405 / 625$-line dual-standard receiver would do the trick, the 405 -line section providing the narrow vision i.f. bandwidth required. Subsequently use has been made of surplus Philips G8 chassis vision selectivity modules and designs have appeared in this magazine (see the February 1982 issue). More recently HS Publications of Derby have introduced a commercial unit, type D100, that consists of an integrated tuner/i.f. strip with switched selectivity. Narrowing the i.f. bandwidth will reveal signals that are completely lost with a standard, wide i.f. bandwidth.

Paul Barton recently sent us a relatively simple circuit (see Fig. 1) that will provide a 2 MHz bandwidth when correctly aligned. The components required are readily

Fig. 1: Narrow-band i.f. amplifier circuit suggested by Paul Barton. All coils Toko type KANK3335R - available from Cirkit, order no. 35-33350.

Fig. 2: Wideband version of the circuit.
available - mainly four Toko coils that can be obtained exstock from Cirkit. A pair of tuned circuits apply the input to the gate of a BFW11 f.e.t.: the output is taken from a second pair of tuned circuits of the same type. Construction is simple but lead lengths should be kept short. Alignment is also simple. Connect the circuit immediately after the tuner's i.f. output, tune in a weak but steady signal, then peak the four coils for minimum noise on the screen - start from the output.

It would in practice be better to build two such stages with one operated in the standard wideband mode. Fig. 2 shows a wideband circuit: damping resistors of about $1.8 \mathrm{k} \Omega$ are required. Connect the two stages in parallel with switch selection at the input and output for wide/ narrow bandpass operation. Our thanks to Paul for providing details of these circuits.

European Test Pattern Book

An excellent publication has recently been published in W. Germany, "TV-Bildkatalog", a collection of test cards/patterns etc. at present in use by various broadcasters in the European area. The 176 -page book is in A5 size format and is bound with a thick gloss card cover: the reproduction is clear and sharp - noise is present on some of the pictures since they are off-air photos taken under DX conditions. The book covers Europe, the Mediterranean including Cyprus/Turkey and, to the east, the USSR. Unfortunately it doesn't cover the Middie East and North Africa. In addition to the photos there's a two-language (German and English) text describing the broadcasting
activities in each country. This highly recommended book is available from Aerial Techniques (T), 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH at $£ 5.95$ including post and packing.

Cordless Phones

The DTl plans to introduce new legislation that will make it illegal to import, sell, manufacture or own nonapproved cordless phones. This would make the at present commonly used 49 and 70 MHz systems illegal. A New Malden company is now marketing an upmarket radiophone system operating in these bands. It's known as the Shuttle Ace System and has a basic range of 12 km . Improved base aerials increase the range to 20 km while a linear amplifier gives 100 km .

Publications

Dave Shirley and Tim Anderson are distributing a DXTV newsletter called Screen Europe. It aims to provide news and information on basic DX-TV techniques for all those interested in alternative TV reception. The first newsletter contains quite a lot of information on the French TV5 and TV6 networks, with valuable updated transmitter listings, and a page of test cards. For further information, a sample copy and details of "club subscription" write to Dave Shirley at 93 Alfred Road, Hastings, E. Sussex TN35 5HZ enclosing three 12p stamps and a foolscap s.a.e.

The German monthly magazine Tele-Audiovision has expanded from being a TV/FM DXing publication to a high-quality magazine covering TV/FM and in particular satellite reception. The latest issue runs to some 50 A 4 pages. It contains much material for the satellite enthusiast and is perhaps the only European magazine that provides regularly updated technical details on this subject. Recommended, albeit in German. A single copy costs DM8 in Europe, annual subscription DM90. Write to Tele-Audiovision, Postfach 801965 , D- 8000 Munchen 80, W. Germany (telephone 0894480328 from the UK). The first large edition (May/June 1986) is no. 36: it includes reviews of satellite downlinks and receivers, information on developments and general news on TV, radio and cable activity.

A Tribute

A correspondent well known in the DX-TV field passed away very suddenly on May 22nd. Reg Roper of Torpoint, Cornwall was in his 78th year and had been TVDXing for over two decades. He was a true enthusiast who made most of the equipment he used, from aerials to amplifiers and receivers. Some years back he wrote for this magazine an article giving constructional details of a short backfire u.h.f. array - an aerial of this type subsequently became available commercially for a while.

Reg's finest hour came with reception of 860 MHz signals from the ATS-6 satellite, broadcasting to India at $35^{\circ} \mathrm{E}$, in 1976 using entirely home-constructed equipment. Reg introduced many enthusiasts in the Plymouth area to DX-TV, and on the night before his death had been planning a portable DX-TV expedition with several friends. He was also an active CB enthusiast and had experimented considerably with "hidden" aerials for 27 MHz . He wrote to us only a few days before his death, giving details of SpE reception during early May - active to the end. Our sympathy goes to his immediate family in their sad loss. We will miss you Reg, rest in peace. Roger B.

If you've Got it, Flaunt It!

With Telelift, one man can transport heavy TVs and appliances alone and in complete safety.
Whilst Telelift has just become available in the UK, it has been extensively field-tested both here and abroad - in fact to date, hundreds of Telelifts have lifted and shifted in excess of half a million TVs without injury to the set or the operator.
Telelift was specifically designed for TVs, but it has proved equally successful for a wide range of heavy appliances.

> For further information please contact Malcolm Richardson, SEME Limited, Unit 2E Saxby Road Industrial Estate, Melton Mowbray, Leicestershire LE13 1BS. Telephone (0664) 65392.

Satellite TV
Stockists of $4,11 \& 12 \mathrm{GHz}$ Equipment. Distributors for:
 DX ANTENNA

Specialists in supplying to Dealers

BILLNCTON VALVES							
23 Irwin Dr., Horsham, W. Sussex RH12 1NL							
Mail Order Only - Callers by Appt. only							
NEW BOXED VALVES - 90 DAY GUARANTE							
	45 p	KT66 USA					
	115 p	кт88				P1802T	
	- ${ }_{\text {250p }}$						
E.H.T. MULTIPLIER. Good quality universal triplers $\mathbf{£ 4 . 4 0}+$ VAT + post. Suitable for most sets - B+O, Decca, GEC, Grundig, ITT, Philips, Pye, Rank \& continental sets							
C.R.T. 12" A38/170W Hitachi with scan coils $£ 10+$ VAT post paid - Ideal for a monitor. $15^{\prime \prime}$ A38/170W Hitachi $£ 8+$ VAT post paid.							
Please add 50 p postiokg per order and VAT @ 15%. Please allow up to 8 days for delivery. Massive stocks of all the above ypest Every popular type stocked and we speciailse in unusual types. SAE quotation on any type nitios.							
possible							

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY A816 solid state mono CROWN 14CX25

DECCA

MS1700200120202401 mono 7.00
MS2404 24202424 mono
CS1730 1733 colour
CS1830 1835 colour
' 30 ' series Bradford colour
80 series colour
100 series colour
FERGUSON HMV MARCON
1600
G.E.C

2047 to 2105 7.00
7.00

2000 to 2064 dual std mono 7.00
Indesit 20EGB 24EGB mono 8.00
KB - ITT
VC200 VC205 VC207 mono 8.00 CVC5 VVC7 CVC8 CVC9 col 9.00 CVC20 series colour col. 9.00 CVC20 series colour
$\begin{array}{ll}\text { CVC30 CVC32 series colour } & 8.00 \\ \text { CVC45 } & 8.00\end{array}$
CVC45
FT100 FT110 state p/no.
TXV80

PHILIPS
170 series dual std mono $\quad 8.00$ 210300 series mono G8 \& GS series colour

PYE 368, 169, 569, 769 mono 8.00 $725-741$ colour 8.00 REDIFFUSION Doric Mk. 310.00

WINDINGS

Autovox $22822693 \quad 8.00$
RANK BUSH MURPHY
A640, A 793, A774 overwind 6.00 T20a' T22, T26 Pri \& Sec 6.00 2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime} 6.00$ 2718 EHT overwind 8.00 SONY 1320UB overwind 15.00

SOVEREIGN FARA $\quad \$ 15.00$
$14^{\prime \prime}$ cotour overwind
ULTRA THORN
1690-1691 EHT overwind 7.00
Waltham 190 EHT overwind 6.00
1590 EHT overwind

PRICES INCLUDE

 P.P. \& 15% VAT| All lopts and windings are new and guaranteed | | |
| :---: | :---: | :---: |
| Open Mon.-Fri. 9 to 5.30 pm Delivery by return. | REWIND SERVICE S.A.E. all enquiries | For orders |
| PAPWORTH
 TRANSFORMERS | welcor | at the post office
 frans
 ${ }_{506}^{23856}$ |
| 80 Merton High Street, London SW19 1BE | $\begin{aligned} & 24 \text { hour answering service } \\ & 01-5403955 \end{aligned}$ | |

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

MITSUBISHI CT202B

The picture is good apart from the presence of Hanover bars. An attempt to adjust the decoder has produced only a marginal improvement. Any hints on likely component failure would be welcome.

Associated with the chroma delay line are a potentiometer marked "level adjust" or "amplitude adjust" and a miniature coil which is directly connected to the pins of the delay line. Clean the potentiometer thoroughly with switch cleaner/lubricant, scrubbing the slider to and fro to clean the track, then carefully adjust the potentiometer and coil to remove the Hanover bar effect. If the bars cannot be eliminated it's likely that the delay line itself is faulty.

TOSHIBA V31B

Peak white parts of the display have a sideways wobble to the right, especially captions and teletext (Ceefax in vision etc.). There's also spaghetti though this is not as noticeable as the wobble which is sometimes severe, making the picture unwatchable. The f.m. deviation and sync tip frequency controls have been set up correctly. Turning down the deviation reduces the wobble but gives a duller picture. One or two voltages around IC201 (TA7693P) are slightly out. Could this be the cause of the trouble?

While IC201 could be faulty it's unlikely - we would expect greater voltage changes if it was defective. From our experience of this machine we feel that the problem lies in the head itself. Before condemning the disc, try thoroughly cleaning it. We've found that rotating the head tips against a stiff card, e.g. a visiting card, held against the cylinder sometimes does the trick.

GRUNDIG 6010

This set suffers from an intermittently over bright raster with flyback lines and foldover. I've replaced the components in the line scan thyristor's gate circuit - they showed signs of previous damage - and have also gone over the joints in the line timebase area. The first anode presets and their feed resistor R546 have been replaced - they had also suffered some damage - but the problem persists.

The field foldover is an important clue, suggesting that the supply to the field timebase is falling when the fault is present. Assuming that pin E of the line output transformer is firmly earthed, this may well be due to a heavy load on the e.h.t. supply and the line output stage during the fault condition. Check the c.r.t. base voltages when the fault is present. If the grid voltages rise, suspect control Ab which sets the bias applied to the colour-
difference output transistors, and the colour-difference panel. If the cathode voltages vary, check the continuity of the 279 V supply to pin 13 of the luminance panel then suspect the BF459G output transistor and IC365 (TBA970) in that order. If the first anode voltages rise, check R545 on the "earthy" side of the presets.

ITT CVC1112 CHASSIS

At switch on there's no sound or colour. The brightness and contrast appear to be normal but the customer contrast control has no effect. No commands from the remote control handset alter the settings. The standby LED is lit all the time and after several minutes the set goes off. Operating the on/off switch restores the initial conditions, the fault sequence being repeated.

A very common cause of these symptoms is failure of the 18 V regulator IC1401. If replacing this three-legged chip doesn't cure the problems the SAA1251 remote control receiver chip is suspect.

HITACHI VT8300

The machine unlaces about five-six seconds after selecting the play mode. All the motors turn but the pinch roller doesn't engage. The solenoid has been replaced with no effect.

It seems that loading is not being completed. The most likely cause of this is a stretched loading belt, in which case replacement will cure the problem. If not, check at pin 29 of IC901. This should change state at the end of the loading sequence. If it doesn't, check the loading switches under the loading motor and replace or adjust as necessary. If you still have problems there's a mechanical fault as the pinch roller is mechanically engaged by the loading motor, the solenoids being merely for the operation of the various brakes. Try loading the machine by hand, turning the loading motor with the machine unplugged: examine the mechanical operation carefully.

DECCA 80 CHASSIS

The original fault was low, distorted audio. I've changed the i.c.s that handle the sound signal and have checked thoroughly for dry-joints. There don't seem to be any obviously leaky capacitors. The sound is now good, after adjusting the appropriate coils, but is still of low amplitude.
First ensure that the shunt regulator controlling the supply to the audio amplifier chip is working correctly: there should be 25 V at pin 1 of the TBA800 audio chip this voltage should vary little with load. If necessary disconnect PIC4 on the i.f. panel. If this increases the volume pin 5 of the TBA120S intercarrier sound chip is being incorrectly biased. If there's no change check the speaker coupling capacitors C146/7 (both $220 \mu \mathrm{~F}$) before suspecting the speaker itself.

RANK T16A CHASSIS

The problem with this monochrome portable is excessive height. Extensive checks in the field timebase have failed to reveal anything at fault.

Excessive height usually suggests lack of negative feedback. We suggest you check R43 (1 Ω), C34 ($47 \mu \mathrm{~F}$), R41 (33Ω) and R39 (220 Ω). Leakage in D5 (1N4148) could also increase the scan amplitude by supplementing the height control network.

Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The Philips K30 chassis was designed for use with the 30AX tube and produces a good picture. It's difficult for us to assess its reliability since we've never sold any of these sets (we're not Philips agents). The odd one or two that come our way will have moved into this area with their owners or been sold by other dealers in the district. Unfamiliarity is no excuse however for the ninth-rate diagnostic procedure to be described.

The owner staggered into our service department carrying the set in his arms. Between panting and puffing he managed to get out that the problem was no colour. The set went on to the bench in due course: it produced a very good black-and-white picture without a trace of colour. Just as the man said. With the set tuned to the workshop colour-bar generator's output a subcarrier dot pattern was seen, indicating that the chroma signal was being correctly received. An oscilloscope check at the chroma channel input coil L3195 then proved that adequate chroma signal was being applied to the TDA2560Q luminance/chroma chip IC3192 - the set had the earlier two-chip decoder.

The next check carried out with the scope probe was for the presence of the reference signal at crystal X3233. The signal was present but the scope wouldn't lock to it in the usual way. The excitement died down when it was realised that the crystal is an 8.86 MHz one, as is usual with more recent sets.

To override the colour-killer on this decoder panel you earth pin 16 of the TDA2523/4Q reference signal generator/demodulator/matrix chip IC3223. This was done but it had no effect on the monochrome picture. Back to the scope. A check at pins 5 and 6 of IC3223, where the output signals from the delay line circuit should be present, revealed that the colour signals were not reaching this point. They weren't present at the input to the delay line or at the output pins of the TDA 2560 Q i.c. either. There was a perfectly good burst signal however, and this disappeared into noise when the colour-bar generator was switched off. Well!

The presence of the burst signal in the delay line circuit, followed by a long gap where the colour-bar chroma signal should have been, convinced our man (who shall remain nameless) that something very strange was happening in the TDA2560Q i.c. He scoped pin 5 of the decoder panel and after some deliberation pronounced that the sandcastle pulse was present and correct with respect to amplitude and shape. He then confirmed that it was reaching pin 3 of the TDA2560Q unscathed. A
further check at pins 1 and 2 of the i.c. (balanced chroma input) confirmed that the complete chrominance signal was present here. It seemed safe to assume that the TDA 2560 Q chip was faulty, so a new one was ordered from our friendly supplier. While he awaited its arrival however our man was beset by doubts as to whether the replacement would cure the fault.

And it didn't! Of course not! The new chip produced exactly the same results, with the same burst only output at pin 6. The problem was really down to lack of knowledge on the part of the man with his oscilloscope. He would have done better in fact with a test meter! A read of the circuit description might also have helped, but wouldn't have been essential.

What did our man miss? Why was the burst signal coming through the delay line without the chroma signal? One voltmeter reading would have revealed the root of the problem, as we'll see next month.

ANSWER TO TEST CASE 283 - page 596 last month -

Last month we followed the progress of an Hitachi Model CBP220 (NP8CQ chassis) through field and workshop diagnosis of two faults. The first was simply solved on site but the second, intermittent problem was something of a puzzler. In spite of reasonably correct cathode and first anode voltages the raster would sometimes, especially from cold, be of vastly increased brightness with flyback lines. The tube itself could have been responsible, but this seemed unlikely in the circumstances (fault clearing as tube heated).

The only logical conclusion in view of the symptoms and test results was that the common grid pin was "floating", and so it proved to be. The tube's grid pin was firmly in contact with its base socket: the problem lay on the c.r.t. base panel. On this panel the printed lands for the electrode connections have a narrow neck connected to a printed earthing ring: during manufacture the neck is broken by a machined slot to provide a spark gap. In the case of the earthed control grid land print the copper neck is made wide to give continuity around the ends of the short slot - the print pattern can just be discerned at about seven o'clock on the base panel in the photo on the front cover of the June 1985 issue. In our set a hairline crack had spread sideways from each end of the machined slot . .

[^2]
SPECIAL OFFER THIS MONTH

PHILIPS YEARS AHEAD
THE CREDIT CARD CALCULATOR SOLAR POWERED
£6.00
NEW PANELS

QENDD COMPONENTS

 63 BISHOPSTEIGNTON,SHOEBURYNESS, ESSEX SS3 8AF. SAME dAY SERVICE
Alt items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15% VAT, then $\varepsilon 1$ Postage. Add Postage for Overseas. Callers: To shop at
212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
Open 9 -1/2.30-6 GVMT + school orders' accepted on oticial headings. Add io\% handing charge.

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC
NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P

BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" $18^{\prime \prime}$ 20" 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER

(Electrical) LTD
FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124

CINEMAVISION

 PROJECTION UNITS $\star \star \star \star$Philips, Grundig,
Toshiba, National
Panasonic and ITT. 40", $45^{\prime \prime}$ and $78^{\prime \prime}$ screens.
Floor and suspended models. New boxed and used. Quantity of test equipment.
Oscilloscopes, cross hatch - pattern - colour match - colour bar and signal generators. Avo and Taylor test meters. Televerters slot meters.

RADIO TELEPHONE SYSTEMS

$$
\star \star \star \star
$$

John Carter (EElectrical) Ltd., Furnace Road, Gallows Inn, llkeston, Derbyshire. Phone 0602303124

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock Large Quantities of Late Model Thorn TVs. All with first class cabinets. TELE-TEXT/ULTRASONIC/INFRARED/REMOTES All at UNBEATABLE PRICES for QUANTITY \& QUALITY Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT Some examples of QUALITY working TVs

THORN 8800 **********************\&25 THORN 8800 (remote)
THORN 9600 TELETEXT $\star \star \star$ from $£ 75$ (VARIOUS MODELS)
 THORN 9000 (remote)
THORN 9600

THORN 9600 (full feature remote) $\star \star \star \star \star \star \star \star \star \star £ 45$
$$
\text { THORN } 9900 \star £ 50
$$

(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.
\section*{1000s of UNTESTED Colour TVs}
I.E. DECCA 30s, GEC 2110, GRUNDIG, TANBERGS, G8s 520s-550s, Thorn 3500/8000/8500, TT, PYE, ETC.
(Many of these untested TVs just switch on)
ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
$£ 4.95$ Also Video Stands
POA
Colour TV panels \& tubes available
\section*{All prices subject to V.A.T.

Export Orders Welcome for those Countries using the P.A.L. System

419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501}
CALLERS WELCOME

A

SADELTA

TV COLOUR PATTERN GENERATOR

 MODEL PAL MC 11B UKTHE SADELTA TV HAND HELD COLOUR PATTERN GENERATOR is intended for use in production, installation and service of both colour and
monochrome TV sets. In order to control and adjust the various parameters of the colour TV, eight switchable patterns are provided. The technician has ready access to laboratory workshop and field use as the generator has been designed using the latest micro technology to achieve a truly pocket size instrument.

FEATURES

 PAL System Eight switchable patterns:- colour bar, grey scale, red, crosshatch, dots, centre cross, centre dot, white and vertical lines. Sound outputBand IV (21-34)
Band III $(5-12)$

- Output 10 mV into 75 Ohms.
- Internal rechargeable NiCd battery.
- Supplied with soft carry case and 9 volt power supply/charger. Pocket size $131 \times 81 \times$ 23 mm .
- Weight only $\mathbf{2 5 0}$ gms.

PRICE $£ 124.95+£ 18.74$ VAT

Also available to special order SECAM, Video Composite, and R.G.B. versions. Details available upon reques
U.K. POST PAID, export enquiries welcome, Visa/Access or cheque with order payable to B.K. Electronics. Official orders welcome from Govt. Depts., Colleges P.L.C.s etc. Large S.A.E. for technical leaflets of complete range delivery normally within 7 days

COSSOR CDU150. Dual Trace 35 MHz Solid State. ADVANCE OS250TV. Dual Trace 10 MHz With Portable $A C$ or External DC operation $8 \times 10 \mathrm{~cm}$ display. With Manual Manual. TELEQUIPMENT S54A. Single Trace 10MHz Th Staie. With Manual 4 digit, auto ranging. Complete with batteries and TYPE PM2517X (LCD). AVO 8 Mk2 Compiete with Batteries \& Leads $£ 45$ appearance not A1 hence the price.
AVO TEST SET No 1 (Military version of AVO 8) Complete with batteries, leads \& Carryino Case AVO Model 73. Pocket Multimeter (Analogue) 30 range. With batteries \& leads but no AC current Un-used. Only E10.00 each (P\&P E2)
onverty keyboard (as in Lynx Micro). Push to Motors Avaliable.

Portabie $8 \times 10 \mathrm{~cm}$ display. With Manual TELEQUIPMENT D61 blual Trace 10 MHz With Manual.

TELEOUIPMENT D43. Dual Trace 15MHz. With

Manual
PHILIPS DIGITAL MULTINETERS

> MULTINETERS

AVO $9 \mathrm{Mk4}$ (Identical to AVO $8 \mathrm{Mk4}$ but scaled difterenty) Complete with Batteries \& Leads. . E55
ave $7 x$. Complete with batteries, leads \& ranges. Complete with batteries \& leads $\mathcal{F} 18$

AVO TRANSISTOR TESTER TT169
Handled. GONO GO for in-situ Testing. Complete
(8 D E3) MOW OMLY Ct ?
PROFESSIONAL $9^{\prime \prime}$ GREEN SCREEN MONITORS made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in. DISK DRIVE PSU.240V 1N; 5V 1.6A \& 12V 1.5A out. Size: W125mm, H75mm, D180mm. Cased. make. Cased........................ 5 each (P\&PE2) Various 51/4" Floppy Disk Drives and Stepping
This is a VERY SMALI SAMPLE OF STOCK. SAE or Telephone for Lists. Please check avail ability before ordening. CARRIAGE all units £12. VAT to be added to Total of Goods \& Carriage.

STEWART OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
LABGEAR COLOURIMATCH PATTERM GEMERATOR Type CM6030-DB Crosshatch/Grey Scale/Blank Ras-
ter. Mains or Battery. OMLY 12 each (P\&P $\mathcal{1}$) ADVANCE AM/FM SIGNAL GENERATOR Type SG63A ADVANCEAM SIGUAL GENERATOR SGE2B 150 KH7 220 MHz ADVANCE AM SIGNAL GENERATOR TyPE 62 $150 \mathrm{KHz}-220 \mathrm{MHz}$...................................... 530 PHILIPS WOBBULATOR TYPe 210. 5-220MHZ50 880 MHz B LABGEAR COLOUR BAR GENERATOR CM6037 (P\&P \&4)
VIDEO CIRCUITS V31A CRT ANALYSERBO.................................. WAYNE KERR COMPONENT BRIDGE B521 (CT375) 100uH-500KH; 1DF-5F; 1 milliohm-1000Mohm ... 25 836 with Mantal MARCON TF2604 (Later version of TF 1041 VTVM) $20 \mathrm{~Hz}-1500 \mathrm{MHz} ; \quad A C / D C / 0 \mathrm{hms}$ AC $300 \mathrm{mV}-300 \mathrm{~V}$ MARCONI VALVE VOLTMETER TF2600 1OHZ-10MHZ; PHILIPS COLOURBAR GENERATOR type 5501 (P\&PES) COLOURBAR GENERATOR type 5508. V100 TES FIEL M STRENGTH METER WDE HCG61 I..... 1125 Case (P\&P P 5)

ISOLATING TRANSFORMER

 $240 \mathrm{~V} \mathrm{In}-240 \mathrm{~V} 0 \mathrm{U} 500 \mathrm{VA} ~ £ 15$ each P\&P E5 NEW EQUIPMENTHAMEG OSCHLLOSCOPE 605. Dual Trace 60 MHz . Delay Sweep. Component Tester2515 Component

All Other Models Availabie.
BLACK STAR FREQUENCY COUNTERS P\&P $£ 4$ Meteor $600-600 \mathrm{MHz}$
Meteor $1000-1$ GHz .. 2126
BLACK STAR JUPITOR 500 FUNCTION GENERATOR sine/Square: Triangle. 0.1 Hz - 500 KHz . P\$P $£ 4 \mathrm{E} 110$ HUNG CHANG DMM $6010.3^{1 / 2}$ digit. Hand held 28 ranges including 10 Amp AC/DC. Complete with bat-
teries \& leads. P\& $P £ 4$
OSCILLLOSCOPES PROBES. Switched $\times 1 ; \times 10$. P\&P 2 ..
elephone: 073468041
Callers welcome $9 \mathrm{am}-5.30 \mathrm{pm}$ Mon.-Fri. (uatill 8 pm Thurs.)

JUNCTION 11 A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M. Now in stock V.H.S. V.C.R.s from $\mathbf{\varepsilon 6 0}$ plus full range of Thorn remote control including $\mathrm{T} / \mathrm{Text}$

* DISCOUNT FOR QUANTITY *

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road,
Birchwood, Warrington. Phone 0925826387.
Open 6 days $9-5.30$ (later by appointment)

A4117	$9 p$	BC337	ep	BF	20p	8 F	${ }^{28 p}$	TIP32A	24p	2N.1131	28p	8Y296	78	35p	PCL805	55	LA-4461	180p	TBA560	100	74LS22	17p
AA119	9	8C338	ep	BF185	20p	8FY64	${ }^{25 p}$	${ }_{17 P 32}$	280	2N. 1132	28p	${ }^{81298}$	7824	${ }^{350}$	PF	${ }^{850}$	LA-5112	120p	T8A750	100p	74LS24	$8 p$
		8C557	80	8 F 194	5 p	BFY90	${ }^{45 p}$	71733	50	2N.1613	24	${ }^{\text {BY} 299}$ 289	7905	P			LM301	2ep	TBA800	35 p	74LS26	17p
AC107 ${ }_{\text {ACl26 }}$	${ }_{17 p}^{28 p}$	BCY^{2}	${ }^{150}$	BF195	Sp	-	${ }_{880}$	$\xrightarrow[\text { TP4TA }]{ }$	${ }^{620}$	2N. 2102	24	$\begin{array}{ll}8 Y 476 \\ 8 Y \times 10 & \text { 15p }\end{array}$	7912	${ }_{40 \mathrm{p}}$	${ }_{\text {Pl83 }}$	32	LM31)	35p	teabzo	${ }^{30 p}$	741527	17p
AC127	160	${ }_{\text {BCry3 }}$	150 p	${ }^{\text {BF } 196}$	${ }^{6}$	8R100	14 p	$\mathrm{THPaic}^{\text {a }}$	25 p	${ }^{2 N} 2160$	300p	$8 \mathrm{BX} 55 / 350$	7918	40%	PLEA	80	LM324	35p	tBaszo	100p	74LS28	17p
AC128	159	8CY34	${ }^{1500}$	8F197 8 FF 98	7 p	BR101	43p	TTP42A	22p	2N.22184	$24 p$	8Y $\times 55660080$	7924	400	PL95	140p	LM325	45 p	tbas50	100p	${ }_{7}^{741530}$	17p
AC128k	23p		18 p	${ }_{\text {BF }}$	${ }_{8 p}$	${ }^{88103}$	37 p		250	2 N .2219	240	$\begin{array}{lll}8 Y \times 55000 & 320\end{array}$	78805	280	PL500	110 p	LM339	40p	iragio	1000	$74 \mathrm{LS32}$	17p
AC141K	300	ВС¢70	$1{ }^{\text {Pp }}$	BF200	16p	${ }_{\text {BS }}$	${ }_{18 p}$	${ }_{7 \times \text { P4 }}$	40	2N 2222	${ }^{239}$		78115	28 p	${ }^{\text {P1508 }}$	170	LM 3880	100p	TCAB60	2000	${ }^{74.537}$	17p
AC153k	23p		$16 p$	8F240	160		190	TPP50	${ }^{40}$	2N. 2369	150	BY×706500 360	78L18	28p	PL519	460 p	LM381	150 p	TCA940	1000	74L538	17p
AC176	$18 p$	BD195	26^{5}	BF255	120	${ }^{\text {BT } 106 ~}$	$90 p$	TPP51	120\%	${ }^{2 N} 2484$	20p	BYX71/600 80p	78824	${ }^{28 p}$	PY81	70 p	LM382	130p	TDA170	100p	74L540	17p
AC176K	200	8D124P	-	BF256	180	-8T109	${ }_{80 p}^{900}$	TPP53	120	2N. 2646 2N 2904	20p	OAA7 ${ }_{\text {OASO }}$	${ }^{79105}$		PY8600A	${ }_{180}^{48 p}$	M38	100 p	TDA1412	80	${ }^{74 L S 42}$	39p
${ }_{\text {AClig7 }}$		8 D 124	1100	${ }^{\text {BF257 }}$	169	ET119	1000	TPP54	1200	2N. 2905	200	${ }_{0491}{ }_{0}$	799175	$48 p$		160p	LM72	300	TDA2003	150p	S48	700
AC188	$17 p$	${ }^{80128}$	350	${ }^{\text {BF258 }}$	180	BT120	$100 p$	7P105	66p	2N. 2906	$16 p$	OA200 $7 p$	Lм3о9к	100p	AN. 214 P	200p	LM7410.L	$18 p$	TDA2020	140 p	74LS51	17 p
AC188K	23p	80132	26	BF262	25	BU100A	1100	$\mathrm{TPP106}^{\text {P10 }}$	${ }^{66 p}$	2N 29907	18 p	OA202 7p	LM317K	2200	AN-240P	180p	LM741 MET	T 40	TDA2030	${ }^{140 p}$	74LS54	$17 p$
	${ }_{48 p} 8$	80135	$20 p$	${ }_{8} 8263$	$25 p$	BU104 Bu105	${ }_{80}^{1009}$	${ }_{\text {TPP107 }}$	68p	2N.2926	${ }^{88 p}$	IN. 914 ll	LM317\%	180\%	AN-360	120p	LM747	${ }_{35} 8$	TDA2522	100\%	744.555	17p
${ }_{\text {A A }}$ A 142	${ }_{80}{ }_{80}$	8D136	200	${ }^{8 F 270}$	160	Bu108	1000	${ }_{T P 111}$	${ }^{60}$	2N 3053	18 p	IN.4002	LM 723	${ }_{320}$	AN-7110	1400	LM1458	3350	TDA2532	${ }^{100}$	74.514	28p
AD149	$45 p$	80137 80138	200	${ }_{88511}^{8 F 273}$	150	Bulio	1100	TP112	40 p	2N 3054	${ }^{35 p}$	IN. 4003 4p	${ }^{78} \mathrm{HGGC}$	570	AN-7114	1800 1600	LM3900	330	TDA2540	100 p	74LS75	32 p
AD161	220	8D139	20	${ }_{\text {BF324 }}$	28 p	8U11	1409	TP115	${ }^{45 p}$	${ }_{2 \sim}^{2 N .3055}$	${ }^{359}$	IN. 4004 4p	78HO5KC	5200	AN-7120	1400	M-515131	1800	TDA2560	${ }^{100} \mathrm{p}$	${ }^{741576}$	28p
AD162	${ }^{225}$	${ }_{80} 8140$	200	${ }_{8 F 336}$	200	BU124 Bu126	${ }_{700}$	TPP117	${ }_{80} 80$	${ }_{2}^{2 N .305585}$	$80{ }^{80}$	IN.4005	78GU1C	${ }^{1909}$	AY3-1270	880\%	$\mathrm{M}_{\mathrm{M}}^{\mathbf{M} 51515815}$	270p	TDA2593		74LS78	$34 p$
${ }_{\text {AF }}{ }_{\text {AF }}$	25p	${ }^{\text {BDI }} 144$	90	$8{ }^{8537}$	200	${ }_{8 U 204}$	$76 p$	${ }_{7 P 1}{ }^{\text {I }}$	43 p	2 N .3442	85 p	IN. 4007 \% ${ }^{0}$	79HGKC	87\%	AY31350	30	${ }_{M-51517}^{\text {M-5 }}$	280\%	UPC-555	600	${ }^{74 L 585}$	${ }_{50} \mathbf{4 6 p}$
AF126	25p	${ }^{80150} 8$	380	8F338 8×355	280	Buz05	70p	ก1P129	46p	2N. 3702	9	1N.4148 2p	Valves		AY3-8912	${ }^{3000}$	M83712	150p	UPC-556	${ }^{80}$	74L586	30p
AF127	${ }^{25 p}$	${ }_{80158}$	389	${ }_{\text {BF362 }}$	300	BU208	789	TP122	$47 p$	2N. 3703	9	IN.5400 ${ }^{\text {N }} 54010$	DAF96	60p	AY5-3600	8700	M83730	2600	UPC.575C	100p	74LS90	390
AF139	22 p	${ }_{80166}$	30p	BF367	130	BU208A	100	TP^{125}	47 p	2N. 3704	9	NN.5401 100	Df96	sop	caz70	400	M83756	2800	UPC-577H		744591	750
AF239	${ }_{70 p}^{220}$	$8 \mathrm{BD75}$	30\%	${ }^{\text {BF5371 }}$	$17 p$	${ }^{\text {Bu }}$ Bu25	${ }^{1009}$	${ }_{7 P 127}$	8 Sep	2N.3706	9	N. 5402 ll 109	D192	47 p	${ }_{\text {cas }}$ Ca3046	80p	${ }_{\text {M }}^{\text {M } 13555}$	${ }^{70 \%}$	UPCP- 100	2200	${ }^{741592}$	40p
All13	$80 p$	${ }^{80177}$	30p		18	BU326	${ }^{85 p}$	TiP141	90	2N. 3707	9	in. 5404 11p	DY86	${ }^{60 p}$	CA3048 CA3060	1900	NE556	${ }_{40}{ }^{20}$	UPC-1025	230p	74.595	62 p
ASZ15	1009	${ }_{80181}$	${ }_{4}$	BF421	180	$8 \mathrm{BU406}$	${ }^{85 p}$	${ }_{7 P 142}$	$90 p$	2N.3708	9	N. 5405 12P	DY802	46	Ca3080E	700	SAS560	1100	UPC. 1026	${ }^{1050}$	74L596	${ }^{63 p}$
AU110	1100	${ }^{\text {BD } 188}$	${ }^{80 p}$	${ }^{\mathrm{BF} 422} \mathrm{BF} 23$	210	BU407	75	${ }_{\text {TP146 }}$	${ }_{90}$	2N. 3772	${ }_{\text {80p }}$	$\begin{array}{ll}\text { N. } 5406 \\ \text { N. } 5407 & \text { 13p } \\ \text { 13p }\end{array}$	EABC30	500	Ca30	${ }^{550}$	SN76003N	11400	UPC-1031		${ }^{7445109}$	${ }^{36 p}$
AY102	180\%	${ }^{80188}$	${ }^{50}$	BF423 BF440	18	BU4070	96	T1P147	1000	2 N .3773	1000	IN. 5408 13p	E88F90	449	CA3089E	1500	SN76013N	140p		${ }^{180}$	7445112	$3{ }^{\text {3\%p }}$
AY106	800	BD201	33p	BF451	17 p	8U408		${ }_{7 \times 3954}$	42 p	2N.3819	${ }^{298}$	zenems	Ebfeg	$50 p$	CA3130E	${ }_{80}$	SNT76023N	140p	UPC. 1032	700	7415113	32 p
${ }^{84145}$	100	${ }^{80202}$	389	${ }_{8}^{8 F 4558}$	$14 p$	Bu409	98p	7P3055	420	2N. 3903	110	${ }^{400 M 15}$	ECCas	${ }_{4}^{40}$	CA3130S	${ }^{100 p}$	SNT6110N		UPC-115		7415114	${ }_{44 \mathrm{p}}$
8A1489	${ }_{60} 0$	${ }^{\text {BD223 }}$	42 c	${ }_{8 \mathrm{BF} 459}^{85858}$		BU426	120p	ITS43	$45 p$	2N. 3904	$11 p$	${ }^{\text {Brzas Range }}$	ECC83	${ }_{40 p}^{4.3}$	CA3140E	${ }_{280}^{380}$	SN761	70p	UPC-118	115	7445123	60 p
84157	12 p	80222	$31 p$	BF461	60	${ }^{\text {BU5 }}$ 8150	1109	TIS44	${ }_{10 p}$	2N.3905	119	1.3W Zeners op	ECC85	40p	CA3240E	900	T28000	52 p	UPC.-118	180p	74LS124	85
88101	$13 p$	$8 \mathrm{BD225}$	$31 p$	${ }^{85} 462$	${ }^{620}$	BU526	${ }^{\text {80p }}$	nsera	${ }_{45 p}$	${ }_{2} \mathrm{~N} .4039$	${ }_{28 p}$	B2861 Range	ECH81	490	HA.1156W	110 p	TA.7120	${ }_{83 p}$			${ }^{744} 5125$	420
B82	24p	B2	28	BF471	$28 p$	BU807	$96 p$	TSS91	18 p	2N. 4037	${ }^{25 p}$	Japanese	ECL82	59p	HA-1319	250p	TA.7193P	400p			7415133	34 p
${ }^{8 C 107}$	$7 p$	${ }^{\text {B0236 }}$	30	BF479	300	C1060	23p	tis93	200	${ }^{2 N} .4058$	13p	TRANS	ECL84	67p	H4. 1339	170p	TA. 727201	200 p	74.5		${ }^{7445136}$	$35 p$
BC108 ${ }_{\text {BC1 }} 109$	$7 \mathrm{7p}$	80237	${ }_{24}^{21 p}$	${ }^{\text {BFF493 }}$	p	M 25500	100p	VK1010	${ }_{80}^{80}$	2N. 4444	78	${ }_{2 S 8507}^{258324}$ 68p	ECL85	${ }^{579}$			TA.-7203	${ }_{180}$	74LS01	$17 p$	7445139	${ }_{408}$
${ }_{\text {BCl }} 115$	100	80244 8	50p	${ }_{\text {BF5 } 59}$	16p	M12501	1100	VN. 46 AF		2N. 5061	${ }^{200}$	${ }_{2 S 854}{ }^{2580}$	${ }_{\text {EFP80 }}$	31p	HA-1366Wh	180p	TA-7204	1100	741502	170	7445145	830
$8 \mathrm{BC118}$	11 p	${ }^{80245}$	50p	${ }^{\text {BF596 }}$	180	M12955 M13000	${ }_{1}^{1650}$	VN.66AF	1000	2N.5294	30\%	${ }_{\text {2SC495 }}$	EFB5	340	HA 1358	180	TA-7205	800p	74LS03 741504	170	${ }^{74 L S 147}$	1200
${ }^{8 C 140}$	19p	B0433 80434	28p	8F597 86675	${ }^{100}$	M13001	1180	VN. 88.8 AF	115p	${ }^{2 N} \mathbf{2 N 1 0 6}$	400	${ }_{\text {2SC1060 }}{ }_{\text {2SC100 }}$	EF699	43p	HA-137 HA-1389	${ }^{2200}$	TA-72222A	${ }^{200}$	${ }^{741505}$	$17 p$	7415151	380
${ }_{\text {BC }} 142$	19p	BD435	$31 p$	BF758	$41 p$	M ${ }^{\text {LEP29a }}$	30		110p	2N.6107	400	2SC1096 78p	EF184	${ }^{63 p}$	HA 1392	2300		1200p	74.508	$17 p$	7445153	42 p
${ }^{8 \mathrm{PC} 143}$	19p	${ }^{80437}$	280	BF889	220	MJE30A	${ }^{300}$	21)	$11 p$	${ }^{2 N} \mathbf{N N . 1 2 9}$	E8p	2SC7161 110p	EL34	1900	HA. 1397	250	TA-7310P	${ }_{270}^{100}$	${ }^{\text {74LSSO9 }}$	178	74LS154	S10
SC147 BC148	6p	80438 80439	${ }^{380}$	${ }_{\text {BFP772 }}^{\text {BF87 }}$	22p	MJE 350	800	2 T 109	12 p	3 N	6sp	${ }_{2 S C 1306}{ }^{\text {SSCl }}$	${ }_{\text {ELLB4 }}$	60\%	HA-1398	${ }^{240 p}$	TAA550	180	74511	17 p	74LS156	49
BC149	${ }_{6 p}$	BD440	40	BF960	38 p	MJE520	300	27 $\times 212$	${ }_{13} 27$	drooes		${ }_{2 S C 1307}^{1000}$	EL95	500	LA-1352	120 p	T8a1z05	459	$74 \mathrm{S12}$	17 p	74LS15]	$35 p$
BC157	${ }^{8 p}$	BD441	$40 p$	BF963	40p	MUEZ9\%5K	90p	$1{ }_{21} \times 3000$	130	AA119	$9 p$	${ }^{25 C 1678}$ 120p	EL500	800	L4-1365	140	traj3s	${ }^{80 p}$	74513 74514	280	74415158	p
${ }^{\text {BC159 }}$	${ }^{6 p}$	BD442	40	${ }^{\text {BF964 }}$	38 p	OC28	1000	21x302	169	BY100 BY103	40.	2SC1969 2SC2028 130p 150	EL504	1000	LA.330	120	tBasse	${ }^{600 p}$	${ }_{74515}$	300 $17 p$	74.5161	p
${ }_{\text {BC182 }}^{\text {BC1 }}$	${ }^{6 p}$	80533 80534	${ }_{3} 38$	${ }_{\text {BFR } 40}$	20	0×35	1000	$\underline{21 \times 303}$	249	BY126	320	2SC2029 ${ }_{\text {2S0p }}$	EY87	310	LA.336	${ }_{115}$	tBa530	$100{ }^{\circ}$	741520	170	7415162	0 p
BC183	$6 p$	B0535	$38 p$	BFR51	$21 p$	${ }_{0} \mathrm{C} 36$	1200		17p	BY127	${ }^{\text {p }}$	$2 \mathrm{SC2078}$ 120p	EY88	42 p	LA 4030	2000	t8a540	100p	74LS21	17p	74LS163	50 p
${ }^{\text {ACC1832 }}$	${ }^{8 p}$	BD536	33 p	BFR662	$21 p$	OC45	50 p	27x326	29	8 BY 133	88	LOw Prorme	E235	${ }^{45 p}$	LA-4031	${ }^{140 p}$	PLEASE PHONE US FOR TYPE NOT LISTO HERE AS WE ARE HOLDING 3000 ITEMS AND OUOTATIGNS ARE GIVEN FOR LARGE QUANTITES. Please send 50 P P\&P and VAt at 15%. Gove. Colleges, etc. Orders accepted. Quotations given for large quantitias. Please allow 7 days for delivery. All brandquantities. Please allow 7 days for dellvery Alh br new Components. All valves are new and boxed.					
${ }_{\text {BC184 }}^{\text {BC1 }}$	${ }^{6 p}$	80537 80538	$4{ }_{4} 409$		28p	$0 C 71$ $0 C 72$	300	27×500	130		80p	SOCKETS	Ez80	${ }_{80} 8$	LA-4032	140 p						
${ }^{\text {BC212 }}$	${ }_{\text {ep }}$	${ }^{80657}$	400	BFrga	99	OC200	1800	21×507	${ }_{180}^{130}$	BY179	350	${ }_{\text {8pin }}^{\text {8pin }}$	${ }_{\text {G734 }}$	1800	LA-4051	$160 p$						
${ }_{\text {BC213 }}^{\text {BC212L }}$	${ }_{6 p}^{6 p}$	80676 80677	380		20p	R20088	1000	ZTX503	$18 p$	BY182 BY 184	32 p 32 p	16pin 9p	${ }_{\text {PCCO }}$	${ }^{1000}$	LA-4100	${ }^{1200}$						
BC213L	${ }_{6 p}$	BD678	400	${ }^{8 F \times 85}$	200	R2010B	100p	27X504	$25 p$ 240	${ }_{\text {BY } 187}$	32 p	$\begin{array}{ll}18 \text { poin } & 12 p \\ 20 \text { in } & 14 p\end{array}$	PCF80	58 p	LA-4102							
${ }_{\text {BC214 }}^{\text {BC214 }}$	${ }_{6 p}^{6 p}$	80679 80680	400	${ }_{\text {BFX }}^{8 \times 8}$	${ }_{15 p}^{150}$	tagatas	${ }_{76 p}$			${ }_{\text {BY1 }}$	20p	22pin 18p	$\underset{\text { PCFF }}{ }$	1100	LA-4122		- A D ATA T					
BC237	7 p	BD681	480	BFX89	eop	T1P29	15p	2N. 697	22p	BY207	$11 p$	${ }_{2}^{24 \mathrm{pin}}$ - ${ }^{200}$	PCF802	${ }_{87}{ }^{\text {P }}$	LA-4140	70p						
BC238	7 p	8D682	46p	BFY17	30p	TP29A	22p	2N.698	40p	BY208	${ }^{18 p}$	${ }_{40 \mathrm{pin}}^{288 \mathrm{O}}$	PCFF806	$115 p$	LA-4201	120p	THE BROADWAY, PRESTON					
	$16 p$	B0x32	${ }_{180} 0$	${ }_{8 F Y}^{818}$	40 p	${ }_{7 P 39}$	25p	2N.699	28p	8Y210	22p	voltage	${ }^{\text {PCH200 }}$	${ }_{100}^{100}$	LA 4220	120p						
${ }_{8 C 302}$	18p	BDY92	${ }_{1000}^{80}$	${ }_{\text {BFY }}{ }^{8}$	140	TiP3	${ }_{300}$	2N.708	220	${ }_{8} \mathrm{Br} 225$	120p	${ }_{7805}^{\text {REGULATORS }}$	${ }_{\text {PCL82 }}$	${ }_{63 p}$	La-4420	140p	WEM	BLE	, MIDD	LESEX	, ENGL	AND
${ }^{\text {EC3 }} 303$	$18 p$	BF 180	160	8FY51	149	7P31A	240	${ }^{2 N} .914$	28 p	${ }^{8 Y 226}$	$18 p$		PCL84	50 p	LA-4422	1300						
BC327	${ }^{8 p}$	BF181	180	BFry 2	14p		30p	2N. 918 2N. 930	1380	${ }_{\text {BY228 }}^{\text {BY27 }}$	190	${ }_{7815}^{7812}$	${ }_{\text {PCLI }}$	58	LA 4430	300p	Telephone: 01-904 2093 \& 904-1115/6 Telex No: 932885 (Sunmit)					
BC328	Ep_{p}	BF 183	20.	日FY56	25p	TP32	240	2N. 930	180	BY228	32p	7815 35p	PCL86	$56 p$	LA-4460	70p						

BRITAIN'S LARGEST SUPPLIERS OF
 Ex RENTAL TV \& VIDEOs

OVER 1500 ARRIVING WEEKLY

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc.

COLOUR TV from $£ 5$ VIDEO RECORDERS from £40

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

> FRANK FORD
> (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

WD-TV

THE T.V. WAREHOUSE, WATLING STREET (A5)
HOCKLIFFE, LEIGHTON BUZZARD, BEDFORDSHIRE (M1 Jnct. 12 - 3 miles) TEL: 0525210686

100's

of CLEAN WORKING COLOUR TVs
HYBRID FROM £10 WORKING PHILIPS G11 £50
G11 TELETEXT £100 WITH HANDSETS $9000 £ 35$
9000 REMOTE £40 WITH HANDSET SOLID STATE 18" £30
COLOUR PORTABLES FROM £50

FERGUSON FROM £85
HITACHI + NATIONAL PANASONIC FROM £150
DUAL SPEED INFRA-RED REMOTE, DOLBY STEREO £200
VARIOUS BETAMAX FROM $£ 50$
\star SPARES \star LEADS \star PANELS \star \star REMOTE UNITS \star TUBES \star \star USED VALVES \star ALL AT LOW LOW PRICES
CALL OR PHONE \star TNT DELIVERY AVAILABLE POSTAL DESPATCH \star ACCESS OR VISA OPEN MONDAY-SATURDAY 9am-5.30pm

HOCKLEY DISCOUNT TELEVISIONS

We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!

Prices start Working sets From $\mathbf{£ 6 . 0 0} \quad$ From $£ 12.00$

OR

Lorry loads delivered from SOURCE

We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's \qquad Thorn 8000, TX9, Pye Solid State \qquad 9000,9600, TX10, Pye Chelsea Latest Hitachi G.E.C. Solid StateT.T.T. CVC30, CVC45, Rediffusion Mkl, MklII Bush T20, T22

ALSO

VIDEO + T.V. STANDS AVAILABLE!

DONT HESITATE TO CONTACT US because You will never loose!!

MIDLANDS BRANCH:-
Hockley Discount Televisions,
94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

NORTH-EAST BRANCH:-

Northern TV Distributors, Unit 2, Pert Court, 11th Ave, Team Valley, Gateshead, Tyne \& Wear. 091-487-5389 - Ask for Joe

BOLTEN LTD.

45/46 London House, 271, King Street, London W6 9LZ. Tel: 01-748 4137 (2 lines)
Telex: 262421 BOLTEN G
Video Heads
Sony C5/C7T7 ...95
Ferguson/JVC (Universal) ..95
National Panasonic (Universal) $£ 30.95$
National Panasonic (370/380) 33.95
Hitachi ...95
Sanyo ...95
Fisher VHS Genuine ...95
Akai (most Models) .. $\mathbf{5 0 . 9 5}$
Sharp.. £44.95
Heads suitable for many other Brands also available.
Please call for full list.
Belt Kits (Most Models) .. $\mathbf{£ 3}$
Remote Controls for T.V.
Grundig/Philips .. $\mathbf{£ 1 6 . 9 5}$
Video Cable Kit
(any model to any model) ..50
Pinch Wheels (Various Models) $£ 5.95$
Please add 15\% VAT plus $£ 1.00$ p\&p per order.
Delivery within 7-14 days
subject to availability

that there is a real difference at Cricklewood Electronics.
That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE for sheer varlety, compertive prices and service from the U.K s number one 100% component shop No girmmicks, no gadgets or computers, fust components, milions of them. al easily avalable by mail order FREE copy now (no SAE required). You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITED

 40 Cricklewood Broadway. London NW2 3ETTel: 01.4500995/01-4520161
Telex: 914977
\square VISA Axcass

UPDATING COURSES

HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS.

VCR SERVICING

(3 WEEKS FULL TIME)
NEXT COURSE STARTS ON OCTOBER 6th - TUITION FEE £575 MICROCOMPUTER SERVICING
(ONE WEEK FULL TIME)
NEXT COURSE STARTS ON OCT. 27th - TUITION FEE £230
(MSC grants available on JTS/ATS training schemes, subject to approval. If you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)

Further details from:
LONDON ELECTRONICS COLLEGE (VC Dept.) 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

D.I.Y. TV TUBE POLISHING
with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
NTt Price P49 inc P\&P and VAT. Available from Luton only. Depends on depth and area to be polished. TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLECTED FROM LUTON Quality, High Temperature Reprocessing

$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	DELTA i.e. A51-110X A56-120X A67-120X		WN UNE \& PAL i.e. 470ESB22 470ERB22 A51-161X A51-570X $510.0 \mathrm{KB22}$ 5 A5AKB22 A56-510X A66-510X			
UP TO 20'	£30	£32	£40	£44	£44	E58
UP TO 22'	$£ 34$	£36	£42	£46	£46	f64
UP TO 26"	£36	£38	£44	£48	£48	£70

All tubes sold with 1 or 2 year auarantee with
Prices shown are for 12 months guarantee. Your good, working tubes with scratches or small chips, can be POLSHED with our purpose built polishing equipment. From $£ 7$ per tube. elivery charge on colour tubes: Within 40 miles of Luton 1 or 2 tubes £6. 3 or more tubes FREE DELVERY*
Please add 15\% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW 141234 Misiland Rd
Open Mon-Fri 8am-6pm, Sat Sam-1pm. Tel 0 .
Your Local Tube Stockist.
Well View, Southampton. Tel. 0703331837.
H. K. Television, London, E.2. Tel. 01-729 1133

Nest One Distributors Ltd., Gt. Missenden, Buckinghamshire Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562
Phone between 12-2p.m. 8 6-9 p.m.
WANTED A56/A66-510X/540X, Hitachi and Sony, old glass for cash

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:

> BUSH T20/24 DECCA 80/100

GEC STARLINE
HITACHI
ITT (full remote)
PHILIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT THORN 8800 (remote)

THORN 9000 (remote)

THORN TX

VHS VIDEO from $\mathbf{£ 8 5}$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

STOP PRESS

Electronic Video including Ferguson 3V29/30, Amstrad 7000, Sharp 9300, now in stock at unbeatable prices. We also specialise in direct loads delivered to your door direct from source.

For further details phone:
COLIN BROOMFIELD,

UNIT 7, STATION STREET, BROMSGROVE, WORCS.
(0527) 37037/71186

APOLLO LANCASHIRE
 MAIL ORDER GB 3-4 DAYS PHONE FOR COST SONY TYPES
 LOCAL DELIVERY - 2 YR GUARANTEE - PILL GLASS BOUGHT
 PORTABLES. 37-590, AXT 37001, 370HUB, NEW E65 INC. DELIVERY
 A47342/343X-470 BCB22/CTB22/BGB22/DHB22
 A51-220X/EFB2
 510-JKR2/JEB22/JDB22/JGB22/ALB22/GIB?
 510-VLB22(E55) DTB22/001/RFB22/RCB22/SFB2
 A51-590 Now
 A51-570X/580/001/210/241.
 A56-120X/123/140/410.
 $560-0 Z 822(556) / H B 22 / A K B 22 / T B 22 /$ AWB22
 560 -ETB22/DTB22/CSB22/DMB22/DNB22
 $466-120 \times / 467.1$
 A66-120X/A67.120X/140/150/200/410
 30AX - A56-540X-A66-540X

PLEASE PHONE BEFORE CAL IING
LOCAL DELIVERY FROM ACCRINGTON, LANCS
Phone enquiries and letters to
Apollo, The Potters Wheel
Mullion Cove, Mullion, Nr. Helston, TR12 7ET
0326240781

LONDON'S LARGEST

 TELEVISION WHOLESALER . with over $41 / 2$ thousand sq. feet8-10 RHODA STREET (off Bethnal Green Road) LONDON E2. FREE CAR PARK SPECIAL OFFER!!
Parcel of 25 Monos
-Parcel of 10 Philips $22^{\prime \prime}$ G8550
E1.00 each:
Parcel of 10 Decca Bradfords (6 buttons) $£ 12.00$ each
Parcel of 10 Japs Colour.................................... $£ 20.00 \mathrm{eac}$
LORRY LOADS DELIVERED DIRECT FROM SUPPLIERS
NO CHARGE FOR DELIVERY IN THE LONDON AREAI
01-739 2707 \rightarrow UNES $\leftarrow 01-7393123$
FREE CAR PARK + NO YELLOW LINES OUTSIDE

CREWE WHOLESALE TV
 77 COLERIDGE WAY, CREWE Tel: 0270582924

G11s working GEC from $£ 11$

 Delivered in Bulk
BUSH T2O T22 and 24s ITT CVC 20 Upwards Series 3 DORIC working from $£ 40$

 Remote + Text Available Large range of THORN from 8800 upwards. Price and availability on request CASH ONLY UNLESS BY PRIOR ARRANGEMENT ALL PRICES + 15\% VAT
$\star \star$ CHANGE OF ADDRESS $\star \star$

ALL ORDERS SHOULD NOW BE SENT TO OUR NEW ADDRESS SHOWN BELOW

TOP 50 VIDEO SPARES

CASSETTE LAMP (FERG/JVC) CASSETTE LAMP (PANASONIC). CASSETTE LAMP (SHARP, 9300 ETC) BELT KIT SONY ISTATE MODEL)... BELT KIT FERGUSON (STATE MODEL) BELT KIT SHA.RP (STATE MODEL) BELT KIT PAMASONIC (STATE MODEL) BELT KIT SANYO $19300,5300,5400$) BELT KIT SANYO (5000) BELT KIT HITACHI (STATE MDDEL) REWIND KIT SONY C5/C REWIND KIT SDNY CG REEL IDLER (SHARP, 9300, 381, ETC) FFFREWIDLER (HITACHIVT-11,ETC FFFREW IDLER (HITACHIVT8000) FF/REW IDLER (HITACHIVTT300) REEL IDLER IIFERG, 3V29/30 PLAYIDLERIHITACH 9300) FFREWIDLER(NAT/PAN NV370) reEl IDLER(NATPAN) STATE MODEL PLAYIDLER (NAT/PAN) STATE MOOEL PLAY CLUTCH (PAN NVIOOO) PLIYCLUOLCH (PANN
PINCH ROLER IFERG) PINCH ROLER (FERG) PINCHROLiER (SHARP)
PINCH ROLER (PANASONIC)
§1.80 PINCH ROLLERISANYO) al.80 PINCHROLLERXSONYC5/C7 E15 VIDEOHEAD DRUM (FERG) ד. 50 VIDEO HEAD ORUM (PANASONIC) E650 VIDEO HEAD DRUM (PAN NV366) 66.50 VIDEO HEAD DRUM (HITACHI) f6.50 VIDEO HEAD CISC (SONYC5/C6/C7) E6.50 VIDEO HEAD DISC (SONY SL8000) ©1.99 VIDED HEAD DISC (SANYO)
E6.50 VIDED HEAD (SHARP 7300, 7700) E. 95 VIDED HEAD (SHARP 9300, 381 ETC) E6.55 VIDEO HEAD (TOSHIBA 9600 E33.90 VIDEO HEAD (TOSHIBA 8600) E6.50 REEL DRIVE PJILEY YSANYO 5000) E4.72 REELMOTOR (SANYO 5000 ETC)... fa.TS REELMOTOR (SHARP 9300,381 , ETC) 63.45 CAPSTAN MOTOR (SONY C5/C7) E6.50 A.C. HEAD (SONYC5/C7)
e4.50 CAPSTAN MDTOR FERG/JVC $3 V 22$ ETC E3.45 DRUM MOTCR FERG/JVC JV22 ETC E4.72 TAKE-UP CLUTCH (FERG/JVC) E5.50 CLUTCH ASSY (FERG 3V29/30) E595 AUOIO RELAY (SONYC5/C7) 67.90 HEAO CLEAMING STICKS E5.5 HEAD CLEANING FLUIO

E5.55
 637.50 639.50
 | E36.45 |
| :--- |
| |
| 360 | . 66.55 . 64.50 f 4.50 $\begin{array}{r}64.50 \\ \\ \hline 5355\end{array}$ 63.55 50.50 f1.50

MOST SPARES AVAILABLE FOR HITACHI, PANASONIC, SONY, SANYO, SHARP ETC. RING FOR AVAILABILITY.

TELEVIDEO SERVICES

NOTTINGHAM (0602) 226070
145 STATION RD, BEESTON, NOTTINGHAM.
Please add 50 p post \& packing and then add 15% VAT to the total.
ALL STOCK ITEMS ARE DESPATCHED BY RETURN OF POST
Send 17p stamp for full list

SETS \& COMPONENTS

NEW AND SECONDHAND COLOUR TV SPARES. Panels \& Tubes most makes also panel repair service. Tel. Southport (17144) 74411 anytime (24 hr).

CASH PAID Now for your surplus TV spares. transistors, I.C.'s etc. Tel. MR. FORSHAW, (0912 29022.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink. Wishech, Cambs. 0945584188 . Immediate settlement

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, IVC, Sharp, fully refurbished. PEARSON TELEVISION 1484863489 . Delivery arranged

PHILIIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845 2036.

GENUINE GRUNDIG SPARES. Fast helpful service Sensible prices. TELEQUIPMENT PHILIPS Oscilloscopes. Test equipment, manuals. OCHRE MILL TECHNICAL. Stone 0785814643.

REDIFFUSION SPARES AND PANEIS for Mk3 and Mht etc, mostly new and refurbished. Approx. 25 large cartons. $\{1,5(0)$. TELESCENE, Nottingham (kg()2 291665.

WIZARD DISTRIBUTORS MANCHESTER

TV \& VIDEO SPARES
We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR Did you know we also stock FUSES AERIALS AEROSOLS RESISTORS CAPACITORS CALVES
HANDSTS AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. Tel: 061-872 5438; 061-848 0060.

PRECISION VISION LTD.
 For:
 * Late model used colour tvs
 * REFURBISHED TO HIGH StandardS
 * BECOME ONE OF OUR REGULAR HICHLY SATISFIED CUSTOMERS
 * EARLY COLOUR TVs FROM $£ 5$
 Unit 10, Chiltern Business Centre, Garsington Road, Cowley, Oxford (next to B.L. Works).
 Phone 0865711966

TV SPARES, PANELS
AND MANUALS PHILIPS • GRUNDIG
TELEVIEW 01-994 5537
194, Acton Lane, London W.4.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40 p per word (minimum 12

> PRICE BUSTERS IN BIRMINCHAM FOR TESTED AND UNTESTED TV's AND VIDEO's ALSO AVAILABLE DIRECT LORRY LOAD RING - 021-772 2733 WILTSGROVE LIMITED (Next Door to UNCLE'S DISCOUNT STORE)

> 128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA. CASH ONLY
> "STOP PRESS"
> NOW IN STOCK ELECTRONIC VIDEO'S AT UNBEATABLE PRICES

IF YOU OR YOUR COMPANY ARE INVOIVED IN VIDEO SERVICING
 READ THIS

VCR PROTECTIVE COVERS
PERSONALISED WITH YOUR TRADE NAME * Fits all modern VCR's - excluding portables * Made from sturdy quitted material
*Gives all-round protection against damage/ scratching during transit - no dangling mains fiexes
Allows
Allows discreet removal to and fro - your customer will greatly appreciate this
Creates good caring company image
Price (including P \& P)
Price (including P \& P) OONT DELAY
E6.50 each

- ORDER TODAY! Pack of $5-£ 30 \quad$ Youill $^{\text {End }}$ wonder what you

Just print out your trading name and enclose with your order and cheque/P. 0 . to:
N.F.P.C. 3 Fenham Hall Drive, Newcastle upon Tyne NE4 9UT Tel: (0632) 2724646
Please allow 21 days for defivery

PHILIPS VIDEO SPARES

Model VR 2324. Brand new unused includes power supply tuner, timer clock, R.F. panels, cabinet, electronics only, no mechanism £35 inc VAT and postage.

EFJAY PRODUCTS
13 Placehouse Lane, Old Coulsdon, Surrey Phone: Downland (07375) 55287 anytime

EAST ANGLIA SUPPLIES (BARRY T.V. SERVICES)

WE SPECIALISE IN LATE MODEL TELEVISIONS AND V.H.S. VIDEOS. T.V.'s

G11's, KT3, K30, K35, CTX Other makes available.
VIDEOS
Ferg 3V29, 3V30, 3V35, 3V36.
Nat Pan 2000, 2010, 333.
Hitachi 8000.
Mitsubishi - various models.
All items fully serviced and ready for sale or rent in excellent condition. Free delivery for sensible size orders (petrol only charged).
Phone today for prices and availability to:
CAMBRIDGE 69215

B.G. COMPONENTS

T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday.
Hill Street, Oldham OL4 2AG. 061-624 1753.

EERUICE PQGES

vords), box number 70p extra. All prices plus 15% VAT. All cheques, postal rrders etc., to be made payable to Television, and crossed "Lloyds Bank 'LC'. Treasury notes should always be sent registered post. Advertisements, ogether with remittance, should be sent to the Classified Advertisement Jept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach「ower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

COME OVER TO DATEL LTD. FOR GREAT DEALS ON SUPER SETS

$\star 96$ CHASSIS IN 5’s £25.00 \star
$\star \quad 9,000$ CHASSIS IN 10’s $£ 17.00 \star$ \star VHS VIDEO'S FROM $£ 50.00 \quad \star$
All Thorn range in stock from 8.8 to TX 10 Stereo Large stocks of working TV's and Video's. Phone or call in today. You won't be disappointed. Delivery to you can also be arranged.
Also complete postal service for all Thorn range of panels and spares. All panels and spares for mech. videos.
DATEL LTD.
0245469779
2 Oyster Place, Montrose Rd., Dukes Park Ind. Est., Chelmsford, Essex

FYLDE T.V. AND VIDEO DISTRIBUTORS Unit 7, Arkwright Court.
 Blackpool/Fylde Industrial Estate Very End of M55 left at roundabout.

> UNLIMITED SELECTION OF
> THORN 8800
> 8800 R/C 9000
> 9000 R/C 9600 R/C 9600 TTX PHILIPS G11 G11 R/C G11 TTX S/S
> GEC S/S MONO's $20^{\prime \prime}+24^{\prime \prime}$ AND MANY MORE TRADE WORKERS TO ORDER PHONE BLACKPOOL (0253) 64413

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, CrossHalf, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White, Mains Powered.
$\mathbf{f 7 5 . 9 0}$
OUTPUTS PROYIDED
UHF OUTPUT
VIDEO OUTPUT
SOUND OUTPUT
LINE PULSE
Same as above plus RGB output
Same as above plus RGB output
Line Output Transformer Tester

, Peak White, Dots, Half $\begin{array}{ll}\text { Black \& White and Grey Scale UHF output } & \mathbf{£ 1 8 . 5 0} \\ \text { Same as above but with Video Output } & £ 20.50\end{array}$ Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ complete with moving coil meter $£ 14.75$

CRT TESTER/REJUVENATOR SEND S.A.E. S.A.E. for details. Prices include VAT.

Postage on Colour Bars $\mathrm{f1.75}$, others 75 pence
C.M.J. ELECTRONICS

Unit 8, 16 Union Mily Street, Horseley Fields, Wolverhampton WV1 3DW.

Tel: (0902) 871563

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2 TEL. 01-258 0328
ALL VHS PARTS AVAILABLE. EXAMPLES:
VIDEO HEADS
JVC, Ferguson, Akai, Saba, Telefunken $£ 35.00$
Sony (Betanax) Aki, Saba, Telefunken . $£ 45.00$
National Panasonic
All Hitachi heads from
INTEGRATED CIRCUITS
UPC 1365C . £42.00

UPD 5520 .. 26.30

HA11711
£10.20
$\ldots10 .50$
All makes of idlers, pressure roliers, clutch assembly and motors in stock.
Many other parts available. Send SAE for list. ALL PRICES INCLUSIVE OF VAT

ADD £2.00 FOR P\&P

	TRADE TVs \& VIDEO'S Ex-Rental \& Repossessed Video's from $\mathbf{\Sigma 2 0 . 0 0}$ TV's Colour $\mathbf{\Sigma 5 . 0 0}$ TV's B/W £1.00 Working TV's Colour from $\mathbf{\Sigma 1 0 . 0 0}$ Spares, Panels from 50p Tel. Bradford 480281/733373
	TELEFIX 1 Ellingthorpe St, Wakefield Rd., Bradford 4

TUBES

ONE YEAR GUARANTEE
14" FROM £45 370 - KRB - LHB - HGB - HFB - HUB BRB - EGB - EFB - MEB - GUB - AXT 37 -001 - AXM 37 -001-37-565-570-552-554-590-A34 EAC 00X. Broken Tube We Can Help.
16" 420 EDB - EFB - CZB, 42-001, 42-556. 20" $51-161640,51-500-554-570-575-580-590-51$
$-001 A X T-510$ JKB-VB-UFB-RJB-UDB-HWB-510 ABUB from $£ 45$.
$22^{\prime \prime} 56-500 £ 45,56-540-610-611-615-700-712-$
560 EGB-DAB-DMB-BYB-EGB-TB-GAB-AXB-ETB - HB - OYB - ATB - BMB-HW 56-001 AXT. FROM E45. 26" 66 - 500 - 510 - 540 - 611 - 615 FROM $£ 55$. HITACHI 510 HWB - VLB - VSB - 560 DZB - HWB - 490 DKB22 FROM £34.
SONY efs Cash \& Carry only
DELTAS 529.00 Reguns. One year guarantee
E14.50 Slightly used. 6 month guarantee.
A56-120 A56-140 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A66-140 (410) A67-120 (All $26^{\prime \prime}$ add m^{5})
PROFESSKNAL STICK
DE-GAUSSING COILS £21.00 (1 YEAR GUARANTEE)
Philips G11 AND DECCA 100
Panels from $£ 10.00$. Breaking for spares. Push button units, Tube bases. All good working order.
RADIO and TELEVISION SERVICING BOOKS (MacDonalds). New 7475, 75/76, 76777, 77/78, 78779, 799/80, 80/81. 82/83, 8384, 24/85. 85/86. See our special offer advert under Books. FREE DELIVERY
Except Tubes $\mathrm{f5}$ each. All prices are inclusve
U-VIEW
29, Warmsworth Road, Doncaster,
Yorkshire DN4 0RP. Tel: 0302855017. Callers ring first, open every day including Sunday

NEW TRADE SHOWROOM NOW OPEN. WORKING TVS AND VIDEOS ON SHOW.

BUSH T20/T26 £45 Gll
PYE KT3
Others done to order.

DISCOUNT

 FORQUANTITY

Annual Clearance Rock Botom Prices		
PYE Gll EXC		PYE KT3 $£ 50$
CAB.	£40	GEC 2213 £30
BUSH T20/26 CH	$£ 35$	THORN 3000
HITACHI 191	£20	GRUNDIG G415/
FERGUSON TX		4206
(NOT D.E.R.		Best Stock in Country
Etc.)	£65	over 2000 in stock
GEC 2010	£20	(90\% of our TV's
PYE 222	£20	Switch on)
PHILIPS 550	$£ 15$	
BUSH 718	£20	Special
BUSH 2 CHIP	£8	For Bulk Purchases
GRUNDIG 5010	£10	From Source.

Video

SHARPS 7300,
8300, 9300 HITACHI, VT11, FERGUSON 3V29
(Not Ex D.E.R. etc.)
SANYO, SONY, BETA

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY

'BOBS'
 TELEVISION
 WAREHOUSE

A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO BOB IS BACK AND OPENS HIS NEW WAREHOUSE
IN ESSEX ON JULY 1ST

NO FREE HOLIDAYS OR WINE. JUST THE USUAL GOOD HONEST T.V. \& VIDEO AT GOOD HONEST PRICES. WORKING T.V. AND VIDEO ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM. NON-WORKING GUARANTEED COMPLETE AND UNCANNIBALISED.
COMPLETE LOADS DIRECT FROM SOURCE. NEW GRADE "B" T.V. \& VIDEO AT LOW PRICES. DELIVERY SERVICE AVAILABLE.

PHONE BOB BEAN ON:

0268728966

AND DISCUSS YOUR REQUIREMENTS - ALL MAKES AND MODELS AVAILABLE BOBS T.V. WAREHOUSE, 1 Swinbourne Ct, Burnt Mills, Basildon, Essex

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of

Television for
insertions. I enclose Cheque/P.O. for f
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

INDEPENDENT TELEVISION
 AND VIDEO COMPANY
 LARGE STOCKS TO CLEAR EVERY WEEK

$\underline{y}-1+\frac{1}{4 x}$
COMPETITIVE PRICES

EXAMPLES:B\&W $20^{\prime \prime}-24^{\prime \prime}$	
Bush 1-2 I.C.	£4.00
Philips 520-550, $26^{\prime \prime}$	£6.00
Thorn 3500	£6.00
GEC-Decca-IT	£6.00
- O	
Philips $55022^{\prime \prime}$	£10.00
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$	£10.00
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime}$	£12.00
Thorn 8800-9000-9800 \quad £15.00	
O	
Many Other Modern Sets and VHS Videos	
$\begin{aligned} & \text { PHILIPS G11 - ITT - Bush T20-T22- } \\ & \text { T26, Hitachi, Nat. Pan.- Sony } \\ & \text { Off Pile from £ } 40 \end{aligned}$	
Phone Steve: Nottingham (0602) 864627	
Unit 3	
Meadow Trading Estate,	
Meadow Lane,	
Nottingham NG2 3HO.	

WORKING CTVs
 THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{f 2 2 . 0 0}$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime}$ \& $26^{\prime \prime}$ ONLY $\mathbf{f 2 0 . 0 0}$ each
Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED

ALL SETS TESTED \& WORKING

CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
f1.25 per panel plus post \& packing

Abstract

G.11s Pye \& Philips ITT Remote with handset

\section*{ALSO ON STOCK}

THORN, DECCA, BDFD, 80-88-100, PYE CHELSEA 222, TTT CVC 20, 23, 30, 32 Remote, PANASONIC, HITACHI, TANDBERG, GRUNDIG, GEC 2002, 2242, 2642, 2202, and many others, changing daily.

VIDEO as avalabie from $\mathbf{£} \mathbf{2 0}$.

PANASONIC, 366,7200 , TRIUMPH 9500, JVC, FERGUSON.
BETAMAX sONY c5-c6, c7, sANYO, 5000, TOSHIBA.
2000 SYSTEM PHILPS 2020, 2021, 2022, GRUNDIG 244.

STANDS, SLOT METERS, PANELS, SETS FOR SPARES, CLEARANCE COLOURS CHEAP.
PRICES BASED ON QUANTITY. ALL PLUS VAT.

GENERAL FACTORS

 UNION STREET,DONCASTER, SOUTH YORKS. 0302-49583

CASH NO CHEQUES. ONLY $21 / 2$ MILES FROM (A1M) FOR M18-M1. 10 am to 5 pm Daily
BOURNEMOU
LARGE STOCKS O
CLEAN WORKING
MOST MAKES AND
FAIR PRICES - TRAD
WAREHOUSE OPE
Mon-Fri 9-1, 2-5

PLEASE

MENTION
TELEVISION
WHEN
REPLYING
то
ADVERTISEMENTS

NORMAN ENTERPRISES LTD	
Weston-Super-Mare, Avon. Tel: 518335	
Colour TVs fully en with a special care	eered tubes
Hitachi 217 Remote Contro	
Thorne 9000 Remote Cont	Hel $£ 42.50$
Pye G11	$£ 47.50$
Rank T20	$£ 42.50$
Pye Chelsea 6 Button	$£ 27.50$
Pye 725	$£ 37.50$
Pye 721	£27.50
Thorne 9600	£45
Thorne 9200	$£ 42.50$
Bush T20 Remote Contro	$£ 49.50$
Bush T2	£55
ITT 20 INLINE TUBE	
$\mathbf{£ 4 5 . 0 0 ~ + ~ V A T . ~}$	
All above prices include hand sets if available. Ready for sale.	
Phone now, limited number each month. All the above off the pile, less a 3 rd	

EUROLEC U.K.

VCR CASSETTES
BASF LVC £8.00, LVC 150 £6.50, LVC $120 \mathbf{~} 5.00$, PHILIPS LVC 90 £4.00, LVC 60 E3.00 (Some have outer wrappings removed but are all new). Above prices include V.A.T. \& P\&P NTSC-PAL-NTSC trans-
fers, VHS, BFTA + UMATIC \& 15 first hour, thereatter 10 per hour (Tapes included in price). Optical transfer 8 mm standard \& super 8 transfer to VHS 50 p per minute, tape \& postage extra. We specialise in the sale \& purchase of NTSC
equipment. We aiso buy and sell Sony edit equipment \& equipment. We
recorder/players.

35 Sandy Mail Order address.
35 Sandy Lane, South Wallington, Surrey. Telephone 01-669 2611

EXPRESS PANELS

A highly skilled staff using specialized service jigs and some of the most up to date techniques and test equipment available means we can save you time, money and heartache.

EXAMPLES FROM OUR RANGE (exch. basis)
Bush T20/22/26 Sony $1820 / 2000 / 2204$

power supply	power supply
$£ 14.75$	$£ 16.75$
G11	GEC 20AX/30AX
power supply	power supply
$£ 14.60$	$£ 1475$

All prices subject to VAT, P\&P FREE (if orders over $£ 10.00$) Panels also available for outright sale, discount for quantities (any mix) all panels guaranteed 3 months, are chemically cleaned and print re lacquered, and have no damaged print etc, so they not only work they book good too. Send S.A.E. for Etc, so CATALOGUE or ring with your requirements.

TRADE SERVICE AVAILABLE for VCR's
Callers by appointment only. Telephone orders accepled using Access \& Visa
021-3593753
ARGO SERVICES (B.HAM) 53 Lawley St, B.Ham B4 7XH

STARLITE ELECTRONICS

WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238. EX RENTAL TVs UNTESTED FROM £15.00 WORKING TVs $£ 20.00$ RE-GUNNING TUBES 2 year guarantee Most types available including Sony

WANTED

WANTED FOR CASH. Ex rental colour televisions and videos. Large or small quantities. Will collect. Tel. 0272 211179.

WANTED VIDEO'S, Portables, colour TV etc. Any quantity. Immediate collection, cash paid. Tel. Stoke on Trent 416401.

WANTED. First and second edition servicing with the oscilloscope by G. J. King. (Good price paid). Launceston (1566-4517, hpm-11)pm.

WANTED. Cossor 21(0) Oscillescope manual-circuit. Telephone Belfast 623456.

CASH PAID now for your surplus TV spares, transistors, I.C.'s etc. Tel. MR. FORSHAW, (0902 290122.

CASH PAID for service manuals VCR, CTV, or V/ Camera 1971 onwards. Must be complete and originals in new or good-used condition (no photeropies). Tel. 12012892279.

WANTED
 Ex RENTAL COLOUR TVs IN BULK QUICK COLLECTION Phone 0742312832 (Sheffield)
 IN STRICTEST CONFIDENCE

REPAIR SERVICE

INSTRUMENT REPAIRS, Oscilloscopes, generators multimeters \& more. `Phone VIKING ELECTRONICS 1394450 M 6.

> PRINTED PANEL REPAIR SERVICE
> for example: G11-T20-AX PSU-£15.00 G11-T20-AX PSU - £15.00
G11 - T20-AX - LTB - $\mathbf{£ 1 6 . 0 0}$ Most makes and models covered. RING 0934418545
> for price list or quotation

GET
 GHARP PARTS FAST TELEPHONE

0734-876444 tELEX 848933

Audio-TV-Video \star Microwave \star Photo-copier \star Typewriter
All U.K. model spares available. Same day despatch 0° orders received before 1 pm. Microwave, photocopier and typewrter spares to authorised service dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

The Theory and

 Practice of PAL Colour Television in three important Video Cassette Programmes
Part 1.

The Colour Signal

Part 2.

The Receiver Decoder Part 3.

Receiver Installation
VHS $\star \star \star V 2000 \star \star \star$,
BETAMAX $\star \star$ UMATIC
BETAMAX $\star \star \star$ UMATIC
For full details telephone 0253725499 (Day)
0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1 LP (enclosing this advert)
NAME
ADDRESS
TEL:.
\qquad

NOW TOTAL SPARES SUPPORT FOR

FROM
ALL from STOCK (Subject to availakility from Fidelity)
Trade Prices subject to official order - all others supplied at retail CABINETS \star KNOBS \star TUNERS \star CONTROLS \star CRT'S \star TRANSFORMERS SEMI'S * I.C.'S \star CAPACITORS \star REMOTES \star TRIMS \star END USER PARTS

Tel: 0734	Whllow Vale Elactronics Litd	Tel:
876444	11 Arkwright Road, Reading, Berkshire RG2 0LU	876444
GE	DELITY PARTS AT STANDARD FIDELITY TRA	

SERVICE SHEETS
TECHNICAL INFO SERVICES (T) - 76 Church St., Larkhall, Lanarkshire MLD 1HE.
World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues. Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide + $£ 4$ Vouchers - saves time and expense £3.

Any published single service sheet for $\mathbf{£ 2 . 5 0}+$ Isae except ctv/mus-c/combis from $\mathbf{8 3 . 5 0}+$ Isae. A selection from our stocks of thousands of Service Manuals ready for despatch by return post.
Any Sony: Hitachi ctv from £8.50. Thom 3000/3500 £9.50. Thorn 8000/8004/8500/8600 E9.50. Philips G8 complete £9.50. Decca $30 / 31$ £8.50. Ferguson/JVC 1st video £19.50 or 3 V00 types basic manual E19.50. Any Finlandia: Tyne CTV E9.50 each. Rank A823 complete $\mathbf{1 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL E9.50 PRACTICAL RADIO SERVICING \& REPAIR COURSE $\mathbf{5 9 . 5 0}$ THE 11 TUNBRIDGE REPAIR MANUALS OMY $£ 88$ THE 5 MCCOURT REPAIR MANUALS ANY SET OF 5 INDIVIDUAL VIDEO REPAIR MANUALS FOR $£ 12.50$ OR ALL 3 SETS (15 MANUALS) FOR Ex6.
UNIQUE COLLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE
British ctv from hybrids to modern (3 binders) £58 Videos, all types (3 binders) £58 . . . any 1 for £20 Mono TV (2) £38 Foreign ctv (2) £38 Domestic Eqpt (2) £38 Portable British ctv (1) £20.

COMPLETE REPAIR SYSTEMS . . . huge savings from published prices

British ctv 3 binders of Circuits plus 6 Repair Manuals plus ref books, etc.
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models within 1 year of ordering 1 st section will be added at no extra charge.

MEM - PRACTICAL TRANSISTOR From beginners/students elementary theory to more advanced. Huge section British/Foreign equivalents/ altematives/other data. £5.80 Post Free.
Repair data/Circuits/Service data almost any individual mono tv $\mathbf{£ 1 2 . 5 0}$
NEW - VIDEO REPAIR SYSTEM 3 E28 3V31/32 Sharp 2300 to 9700 Philips Laser Disc Pan 7000 7200/7800.

LSAE BRIMGS ANY REquESTED QUOTATION - FULLER DETAILS - FREE MAGAZINE - PRICE LSTS ETC. PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

SERVICE MANUALS, SERVICE SHEETS

For Television, Radio and V.C.R. Prices from $£ 2.00$
Send large s.a.e. for free catalogue with your enquiries. Mail Order only.
TECHNICAL DEPARTMTNE, YOLANCEN LIMITED,
1 Buckingham Street, York YO1 1DW.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request S.A.E. with enquiries to B.T.S., 190 Kings Road Harrogate, N. Yorkshire. Tel. (0423) 505885.

SERVICE DATA-UK VCR \& CTV

Circuits only or complete with layouts setting-up instruction etc

CTV from $£ 2.25$ VCR from $\mathbf{£ 4 . 7 5}$ SAE bring lists
DATA-GO, 112 Ameysford Road,
Ferndown, Dorset BH22 90E.
METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498

METERS

AVON METERS

We buy and sell and repair TV coinmeter Reasonable prices, one year guaratee.

> 327 Church Road, St George, Bristol. 0272559761
for only $£ 140$
for onty 8140

THE DOMESTIC VIDEO RECORDER SERVICING BOOK

THE ENGINEERS BIBLE
WITH CHAPTERS ON HI FI, DIGITAL SERVOS,
LUMINANCE AND CHROMINANCE SIGNAL
CIRCUITS, FAULT GUIDES AND CONNECTION DATA.
A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS. THE COMPLETE REFERENCE TO VIDEO RECORDER CIRCUITS

ORDER YOUR COPY NOW

 FOR ONLY f16.95 inc. P\&PFROM NEWARK VIDEO CENTRE (0636) 71475 OR DIRECT FROM:
GROVE FARM, LONG LANE, BARNBY IN THE WILLOWS, NEWARK, NOTTS.
CHEQUES AND PO'S PAYABLE TO D. BEECHING.

SPECIAL OFFER MACDONALDS RADIO \& TV SERVICING BOOKS, NEW 74-75. 75-76. 76-77, 77-78, 78-79, 79-80, 80-81, 82-83, 83-84, 85-86.
Mactionalds Price

 Pricos include delivery
U-VIEW, 29 Warmsworth Road,
Doncaster, Yorkshire DN4 0RP.
Tel. 0302-8550I7. Callers ring first
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorkshire. Tel. (0423) 505885.

AERIALS

SATELLITE TV RECEPTION EQUIPMENT
 Dishes 0.9 to 2.8 m , complete systems $10.9-12.7 \mathrm{GHz}, 4 \mathrm{GHz}$ LNB's. demodulators, and all those accessories
 Manuiacturers and Distributors of high quality satellite TVRO ANTENA equipment.
 KESH ELECTRICS LTD.

TELEVISION METERS. All types required for cash. We collect. P \& J WALES, Tel. (0803) 25832.

FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE 01-261 5942

AERIALS (cont.)

MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

Euro-Sat Parabolic Dish Antennas Paprent company ost in TV communicationa since 1969) SATELLITE TVRO ANTENNAS GLASSFIBRE DISH ANTENN TRADE PRICES IM. DA 11.12 GZ BAND 1.2M. D|A 11 -12.4 GHZ BAND ${ }_{\text {E }}^{\text {E93.00 }}$.6M. DIA 11.-12-4 GHZ BAND \quad E117.00 1.8M DIA (PETALL 111.12 .4 GHZ BAND $£ 157.00$
 3M. DIA 11-12-4 GHZ BAND $£ 737.00$ Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. 061-437 2631 061-8814249

SITUATIONS VACANT
T. V. VIDEO ENGINEER wanted to share small business in Herefordshire. Full or part-time use of premises. Very low overheads. Box No. 221

FOR SALE

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only £3,995. Tel. 0582-410787.

PHILLIPS V20MO TAPES. V20M0 heads \& spares, various service manuals. PM2517 digital meter. Telephone $07+3632406$.

Leader c.r.t. Tester, Rejuvenator Model LCT 910A $£ 168$. Telephone 051-648 1627 evenings

DEVONICS

Quality Tube Rebuilders 2 YEAR WARRANTY

Inline Tubes

Up to $19^{\prime \prime}$
$£ 43$
$20^{\prime \prime}$ to $22^{\prime \prime}$
$26^{\prime \prime}$
Bonded Coil
30 AX ($-540 \times$)
$+£ 5$

Delta tubes from
£30
All plus carriage and VAT
We currently seek sound inline glass for narrow neck (29 mm) and 30 AX types espeically 560 AWB/BUB/BYB/ CSB and 510 CJB.

2A BARTON HILL ROAD, TORQUAY TQ2 8JH. 080333035

Sabaco For a great deal! TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO'S OFF THE PILE (Mostly switch-ons)
 Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
 Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips $550 /$ Grundig \& many more. BRAND NEW SETS AT LOW PRICES
 VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes OPENING HOURS: MONDAY TO SATURDAY 9am to 5.30pm SUNDAY 10am to 4 pm
CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES and delivery days, be here when lorry arrives FOR FIRST CHOICE - PHONE US NOW ON:

Sabaco
75 Robertson Street, Glasgow
(041) 221-2146

	IF	TUNER	DECODER	$\begin{aligned} & \text { G8/G9 DECODER } \\ & \text { IF COMBINED } \end{aligned}$	$\begin{gathered} \text { LINE } \\ \text { OUTPUT } \end{gathered}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
PHILIPS G11	$\begin{aligned} & 14.50 \\ & \text { WITH COMBINED } \\ & \text { SOUND MODULE } \\ & \hline \end{aligned}$		12.00		19.00	19.00	5.00	11.50		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA
POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!										

SPRING SPECIALS

10 BUSH 2 CHIP	$£ 50$
10 BUSH T20	$£ 250$
10 REDIFFUSION MARK 3	$£ 250$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $8000 \mathbf{1 7 " \prime}^{\prime \prime}$	$£ 150$

LARGE QUANTITIES OF BETA VIDEOS RING FOR SPECIAL PRICES

ALL + VAT
 TELETRADERS

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154

THE NO. 1 WHOLESALER IN THE SOUTH

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television rube rebuilding

SPECIAL ANNOUNCEMENT From: NORGROVE TV TRADE SERVICES Water Street, Birmingham B4 6BJ.

Hundreds of TVs and Videos arriving weekly. Available for sale to the trade.

Most makes in stock including the full Thorn range, RBM, Philips, Pye, ITT, Hitachi, Sony, Pansonic, Sharp, Sanyo, Decca and many others.

Spares available. Deliveries arranged. Export enquiries welcome.

OPEN SUNDAYS BY APPOINTMENT.
For quotation. Please ring:

0212369616

CentreVision

TEL: 0222-44754
SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB OPPOSTTE CITY FOOTBALL GROUND, 5 MINS FROM M4

FERGUSON VHS VIDEO £65

MANY ELECTRONIC VIDEOS in Stock MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

INDEX TO ADVERTISERS

Advanced International Marketing (U.K.) Ltd.

Aerial Techniques
Apollo
ArgoServices (B'ham)
Avon Meters
Barry TV Services
Besco Ltd. (T/A North West Electronics)
B.G. Components
B.K. Electronics

Billington Valves.
Bobs T.V. Warehouse
Bolten Litd
Burrows Service
Carter, John (Electrical) Lto
Celtel
Centrevision.
Chromavac Ltd
Chromavision
Crewe Wholesale Ti
Cricklewood Electronics LTt
Data-Go
Datel Ltd.
Devonics
Display Electronics Ltd.
East Cornwall Components
Economic Devices
Efiay Products
Electric City
Eurolec (UN
Euro-Sat.
FlintdownChanne 5
Ford, Frank.
Fylde T.V. and Video Dist
Garton, D. \&G.
General Factors
G.G.L. Components

Grandata Ltd.
Halton TV Trade Disposals
Harrison Electronics.
Hillier's.
Hockley Discount Televisions
Hussain Central T.V. Lto.
ICS
Independent Television and Video Co.
Junction 11 T.V. Trade Disposals Ltd
Kent Ledgerwood Wholesale Ltd.
Kesh Electronics
LRC (Spares) Ltd.
London Electronics College
Manor Supplies.
Mantel.
Monolith Electronics Co. Ltd., The
N.F.P.C.

Network Satellite Systems Ltd
Newark Video Centre
N.G.T. Electronics

Norgrove TV Trade Services
Norman Enterprises .
Papworth Transformers
Post A Part Electronics
Powell, T.
Powney, John.
Precision Vision Lito.
P.V. Tubes.
$.620,621,622,623,62$
Quick Save T.V. Spares
Repossessed T.V. Centres Ltd.
Sabaco.
SEME LId. (Telelift)
668, 688, Cover III, Cover IV
Sendz Components.
Sight and Sound
Southpark Distributors
Starlite Electronics
Stewart of Reading
Technical Information Services
Telefix
Telemann
Telepanels
Tete-part.
Teletraders
Televideo Services
Teleview.
Tidman Mail Order Lto.
TVS Trade Services
T.V. Trade Sales

Universal Electronic Distributors
Universal Semiconductor Devices Ltd
U-View Tubes
Video Hi Fi Electronics.
WD-TV
Well View.
Willow Vale Electronics Ltd
Wiltsgrove Limited
Wing Electronics
Wizard Distribution.
Yolancen Ltd.

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE

MINT WORKING SETS. These arrive at our premises in A1 working order, cabinets are superb. $£ 45$ to $£ 70$ GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
$£ 10$ to $£ 35$

VHS Videos in stock.

Well stored in large centrally heated premises. Ample viewing space and stored only four high!
Come and have a look round.

TRADE WAREHOUSE,
DAISY WORKS
345 STOCKPORT ROAD,
LONGSIGHT,
MANCHESTER MI3 OLF

ALSO AT STOCKPORT ROAD
335-341 STOR)
(NEXT DOOR) (NEXT DOOR)

IRISH T.V. DEALERS

(PLEASE NOTICE)
LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF COLOUR TVs, SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTORED TO A1 CONDITION" PRICES START @ $£ 60.00$ VAT INCLUDED. ALSO $20^{\prime \prime} \& 22^{\prime \prime}$ RE-GUN TUBES IN STOCK, QUANTITY DISCOUNT, DELIVERY ARRANGED. VIDEO HEADS ALSO IN STOCK.
(EXPORT SPECIALISTS)
T.V. TRADE SALES
E.D.I. HOUSE

ALSO
KYLEMORE PK. WEST
DUBLIN 10.
Tel: 0001-264139 (Local calls 01-)

T.V.T.S.

CLOVER PLACE COLLEGE ST. KILLARNEY. Tel: 064-33655

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES
ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the pat you require and we will send it - no quibble - no hold up for status check. Satisty us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.

SENDZ Components TO ORDER SEE BACK PAGE			Rank 720 Z136 Panel NEW Pack THORN 17 off Manual NEW 1617 THORN Chassis with ICs \& AU113 30 V Power Supply 500M/A $4 \times 21 / 4$			Tube Thermpath 167 $\mathbf{£ 1 . 0 0}$ Rank Secam Decoder Panel UHF V1IF TI15A $\mathbf{~ V 1 3 . 0 0 ~}$			
		K35 Deoxder ${ }^{28}$	NEW PYE 725 line O/P panel with L.O.P.T. \& Tripler NEW GEC 20AX Power Supply Switch Mode						
		K35 Sound OP 54				4,70075 6 amp Rip			
		K35 Split Diode 3122-138-35930	NEW GEC 20AX Power Supply Switch Mode Complete new GEC portable chassis M1201H/M1501H with P.B.U./			$350 \mathrm{~V} 300 \mathrm{M}+300 \mathrm{M}$	51.00		
		$E 10.0$	v.caplopml		110	400 V 400 M	60 p		
		Fidelity Tube Base with transitor \&	Field + Jungle panel for GEC 3133/3135		${ }_{817.50}$	350 V 400 M	60p		
		focus por fi.	GEC 2110 line panel with transformer		E12.00	Thorn 350			
		Bush Tube Base on panel $\quad \mathbf{5 1 . 0 0}$	PyelChelsea Line op panel		${ }_{512.0}$	175/100 100/350v	${ }_{51.00}$		
		line Trantormers	Pye 205 T/unit		5750	$300+300+150+100+50 \mathrm{MFD}$			
T605 1VNPN T066880v/ta		Hitachi Split Diode and GEC 1981 to	Pye 713 IF panel and tuner		87.00	350 V	52		
90000 Sound output panel	${ }_{51}^{51}$	${ }_{2} 1984$	$\xrightarrow{\text { Pye }} 713$ If panel and tuner		E10.00	47/2203500	${ }_{60} 6$		
3500 Focus unit 3500 Mains Trans	S0		PyelChelsca Timebase panel with LOPTI			150150/100\%			
3500 cut outs	10 for EA_{4}	C11 Split Diode	${ }^{\text {Pye }}$ Pyi Frame Panel		${ }_{\text {E5 }}^{5 \times 100}$	2500 25.500663 v	S0p		
3500 IF panel		CYC820 Split Diode ITT $\quad \mathbf{8 1 0 . 0 0}$			\&10.00	15024002000	\%		
3500 Frame panel	,	Thorn B/W AD5 $308 \mathrm{~F}+$ Stik			${ }_{516.00}$	400100100016275v	${ }_{\text {c1.50 }}$		
3500 Line panel 3500 Al Diode	230	${ }^{\text {Lead }} 1690$ Thorn EHT over-wind with	Pye 731 If panel + tunerPeCDA205 panel		Ee.00	1002000325v ${ }^{\text {a }}$	${ }_{\text {ctic }}$		
Exporn 35001 F pa	${ }_{20}$	diode lead \& anode cap	GEC portable chassis + LOPTI 2114 New		${ }_{4} 64.00$	1501501100375	. 50		
${ }^{1 / C}$ board with set or ${ }^{\text {SN }}$ (44LS	51	GEC 2040 E3.00	G9 Power Panel		ct.00	20072007525 M 325 V			
4000 Tube base	5	GEC 2110	Mono RANK Chassis 127A NEW		E14.00	30030001000323230074	O00		
${ }^{3500}$ Al pots	研	Mullard AT 2036	NEW G9 Frame PanelNEW Gll If Panel		£10.00	150020000303	Sp		
Beam limiter panel 3500 Power panel with Y969 51 3 Way regulated adaptor $240 \mathrm{~V} 6 \mathrm{~V} /$		Pye 169 Line Trans			800	Jelly pot Thmorn 00D4013			
			G8 Tuner Unit + Panel		${ }_{3}^{30 p}$	1501501001100320 V	E2.00		
3 Way regulated adaptor $240 \mathrm{~V} 6 \mathrm{~V} /$ $7.5 / 9 \mathrm{~V} / 30 \mathrm{mmA}$		Split Diode Trans $\quad \mathbf{5 7 . 0 0}$	G8 Power Supply 55.00 G8 6 Sloping PBU 58.00 G8 IF \& Chroma $\mathbf{5 6 . 0 0}$ G8 Chroma 53.00		Sp	$225+25 / 380$ GEC			
	¢9.50	GEC 20 AX Rank 2522		22100	10 p	20010011000350 V	81.50		
2 banks of 3 PB unt. Pre 731 4 Push button unit pret	${ }_{51.00}^{52}$	Rank Le.O.P.T. 2970		$4.7 \mathrm{M} / 100$	p	50050025v	sop		
		CVC20 ITT		${ }^{20300100}$	20p	150150100300	75p		
${ }^{\text {v/cap. GEC.Decat type }} 7$		ATrosals	G11 IF Detector $\mathbf{5 3 . 0 0}$ G11 Selector gain module $\mathbf{E 3}$		750	200/150150300N	00		
		CVC301TT Ta		47160					
${ }^{\text {G8 Push Bution Unit }}$	0	CVC32 Line Tran CVOXN0 line Trans		300300	sop	ITT 8 and 6 Push Button			
KT3 12 Push butics (mit	${ }_{\text {E22 }}^{1200}$	CVC40 Slip Diode	panels ${ }^{\text {a }}$	${ }^{8000160}$	sop	Pre 725 LOPTs	${ }_{\text {ckem }}^{60.00}$		
6 Push button Uni Thorn	51.00	CVC 45	AECC6ap Resistor Unit UHF with IC	2.2500	10 p	Thorn $8500-8800$ LOPTs	${ }_{65.00}$		
6 Push bution Unic fis GEC\& Decca elc.		GEC Porable G1OTzO41	2714 RANK IF Panels $6 \mathrm{MHz} 1 \mathrm{IC}$.						
		EHT Spplit Diode Leads ITT E1.00		$\begin{aligned} & .33 / 250 \mathrm{~V} \\ & .39250 \mathrm{~V} \end{aligned}$	${ }^{200}$	CMD 800 Chassis. No tuner	520.00		
			Expor 5.5 MHz 21.	${ }^{4} 77250$ tested 5 K					
7 Button Unit GEC with Lamps ${ }^{57}$			TRA 120 B TCAZ7050	22750	5p	TAG 226600	ap		
Bush TSisA 6 bu ton unit with Pos \& mains lead. 6 bust buttons. Bushe6.00 697 Push Button JnitE6.00			K3S IF ${ }_{\text {2 }}$						
		Triplers		100250 $\mathrm{G11} 470250 \mathrm{~V}$	\%				
697 Push Button Init $\quad \frac{\mathbf{E 6 . 0 0}}{\mathbf{M a n s}}$		TTT CVC 5-8.9			${ }_{60} 1$	BSS 38			
$\mathrm{G} 82 \mathrm{R} 2+68 \mathrm{R}$ (51.25		Rank 12SLE Tripler		700250					
47R 15 watt		$\begin{array}{ll}\text { Rank } 11 \text { TCP A823 } \\ \text { TU } 2530 \mathrm{~K} \text { Rank } & \text { E3,50 } \\ \text { E3.00 }\end{array}$		${ }^{3000}+3000 \mathrm{MFD} 350 \mathrm{v}$	81.00 400	G11.C. Receiver Panel	. 50		
Thom 5017/1K5		11 TEZ Rank		32300					
	50	G9 Philips	C V/ap VHFUHF tuner and IF +	+4350	5				
	5	GEC 2110	sound OPP PC 706B3 (Export) \quad E12.00	83504.7 M 350 v		31.C. Power Supply GII Full Remote Receiver Panel			
1833207039 Thorm $50-40 \mathrm{R}-\mathrm{IkS}$		35100 Thorn \quad E3.00	GEC Line O/P PC 65983						
Aescocke \& Lead		9510) Thorn	${ }_{\text {GEC Power Supply (Expori) }}^{210 \mathrm{GEC} \text { Power Panel }}$ (88.00	z20350	Sop		5		
		9040 GEC	G11 dynamic correction panelCVC 20 Front panel with sliders +	${ }^{3003350} 400350$		Fits on top of TV with handset.			
$7 \times 3^{3 / 4}$ Thworm ${ }^{\text {dox }}$		GEC TVM25 Tripler ${ }^{\text {2 } 2.00}$							
Thorm Toshiba T	30p	Universal Tripler	CVC 40 PUSH BUTTON ASSY with sliders: complete with lamp assy +	103735	100	FET Power VN88AF	sop		
Speakers						PHILIPS SBC 469 Stereo Microphone			
$6 \times 4 \mathrm{Gll} \quad 25 \mathrm{ohm}$	£1.00			330385 CVC 820 HT					
$51 / 2 \times 21 / 2 \quad 30 \mathrm{ohm}$	E1.00	Decca 801100 E4.50	CVC9 slider pots panel Sop	$0.1 / 400$					
5×3 (30 ohm	70p	Grundig TVK 52 E2.50	CVC 5 Mains onoff +5 pots 22	KT3 EW . 39/400	200	Meters Hills 520			
${ }_{5 \times 3}^{5 \times 3}$	\%	117 TBO Pye $731 \quad 53.00$	Universal Focus. Fits Pye, Thorn	${ }^{\text {S }} .56 \mathrm{~K} 4400 \mathrm{~V}$	${ }^{200}$	Meters Hills 420 Hads	${ }_{\text {ctile }}$		
5×3 (35 ohm	700	11 THY 54.00	Decea Units.	(Infra-red Tester Handset			
6x4 7×3 (15 ohm	£1.00		T147 Rank tube base on panel $\quad 81.00$						
7×3 8×5	81.00			$\begin{aligned} & 8 / 400 \\ & 33 / 400 \end{aligned}$					
${ }_{8 \times 5}^{8 \times 5}$	52								
5×3 (8 ohm	70 p	${ }_{\text {PO7 BG20 }}{ }^{\text {ent }}$		394//400	$20 p$				
7×3 (16 ohm	81.00	Thext ultrasonic rec'r panel $\quad \mathbf{8 1 4 . 0 0}$	${ }^{\text {KT3 Focus Unit }}$	2204500	\%p				
	${ }^{1} 1.00$	Video cassette lamps in lead.	$\begin{array}{lr}\text { K30 Focus Poi } \\ \text { K30 Tube base on panel } & \text { 75p } \\ \text { ci.00 }\end{array}$	${ }_{\text {a }}^{4}$					
	${ }^{\text {c1. }}$ c10	20 for $85.00 \quad 200$ for 525.00							
${ }^{6} 12^{\prime \prime}$ dia ${ }^{\text {cha }}$	c1. 50								
6/2/ dia 3 ohm	1.50					$\begin{gathered} \text { Repaired Handsets } \\ \text { Philips K4-K35, RC5350-RC5300. } \end{gathered}$			
	${ }^{75}$		Fedility Focus Unit 14R-14S3500 Thorn Focus Unit$\mathbf{8 1 . 0 0}$.047600		RC5370, RC5375, repaired :ame day			
	7sp	G11 E.W. Transormer ${ }_{\text {cop }}$		${ }^{0.1} 0.1 / 10000$					
		G11 Transient Suppressors 245v ${ }^{\text {E1.00 }} 10$	ITT Small for use with Split			RC4001 Full Remote KT3 K30 Teletext			
3 dia speaker 115 oh				.4771100 w .47250 V A.C.		Handsets exchanged $\quad 59.00$			
16905×3									
K44 Prilip			Remo	. $0011 / 1250$	$10 p$	GEC Full Remose Infra-red. 1983 models $\$ 15.00$			
OF-550 OF-513 OF-55	$\begin{aligned} & 10 \mathrm{p} \\ & 10 \mathrm{p} \\ & 50 \mathrm{p} \\ & \hline \end{aligned}$	KT3/K30 infra-red receiver head	TV14 ${ }_{\text {TV13 }}$	- 01005151500	${ }^{10 p}$	Timers, 60 mins. small $\quad \mathbf{1 1 . 0 0}$			
			TV18 600						
		K30 drawer unit with IC's (home) K3) drawer unit with IC's	TV20 51.00	2nOU1500 2 n 21500 109 150					
	DIODES 10		Thern 14/1500 ree stick	$.01 / 1600$ $15 p$ G11.82002KV $15 p$ 0.12 KV 20		G11 Touch Unit Full Remote			
BY 127BY 133Br	10 p10 p10 p	(exporaw)				${ }_{8}$ 8. H. U Ulirasonic GEC Full Remote			
		$\begin{array}{lr}\text { KT3 AE Sockets } & \text { 50p } \\ \text { KT3 receiver panel } & \mathbf{8 8} \\ \text { KT3 line driver transformer } & \text { sop }\end{array}$				C2014H/C2219H 515.00			
BY ${ }_{\text {BY } 134}$	$10 p$$50 p$			10h2KV		New Replacement for C1h UltrasonicFull Remote$\mathbf{1 2 . 0 0}$			
BY ${ }_{\text {BY }}^{164}$ BY 176		KT3 line driver transformer ${ }^{\text {Sop }}$	- $\begin{aligned} & \text { G11 drawer ASS } 3 \text { pots Mains swich } \\ & \text { and lead } \\ & \text { E2.00 }\end{aligned}$						
BY 176 BY 179	${ }^{25 p}$			$\operatorname{sn} 22 \mathrm{KV}$	$10{ }^{\circ}$	Thern 4000 inser with 7 huttons			
BY 184	$25^{\text {p }}$	Decoca $80 / 100$ IF panel ${ }^{\text {c }}$		${ }^{6022 \mathrm{KV}}$	15 p	Decca RC 12	E14.00		
BY 187	109	NPN PNP 80V 6 Amp TO66 O.P.	forme	$2 \mathrm{~m}(2) 2 \mathrm{KV}$ 2 n 2 KV	15	G11 Infra-red full teletext	$\underline{52.00}$		
BY 190 BY 196	${ }^{400}$	Trans. pair 25p			150	Dynatron-Full remote CTV 62, 63			
BY 198	10 p	video with ic SAS $560 \mathrm{~T} / 570 \mathrm{~T}$. 57.00		7500pfzKV	10 p		9.30		
BY $204 / 4$	8 p	Control panel 5 sliders + mains			109	Hitachi infra red handset	¢18		
BY 206	p	lead 81.50		${ }^{4 n 772 \mathrm{KV}}$	15 p	Philips full remote KT3, 16 C	4;		
BY 2081800	${ }_{8 p}$	Gl1 8 toutch button unit replaces old 6		80.002225	${ }_{15 p}^{15 p}$	72287324; K12 26C 797/15T			
${ }_{\text {BY } 210480}$	10 p	Tube base + base unit for 820 Euro	Lays	15003500)	10 p	G11, Full remote top tution assy.			
BY 223	60 p		${ }_{7}^{4040}$ Clock	180044 KV	5 p	G11, Full remote repair service (e:			
BY 224600: 4.8 A (00) bridge	50 p	GEC Line O/P Trans. \& Rec Stick for		${ }^{4.7 n+5 K V}$	100		E12.00		
BY 227	$15 p$	Porable	2 digit LED $\div 1.8$ with panel +	17008KV	10 p	Philips infra red full remote 9 chas	nel for		
BY 227 BY 228	$15 p$ $10 p$	${ }^{\text {CVC }}$ 2025/3013540 decoder pancl 10	MC14511 ${ }^{11.00}$	21088 KV	10 p	60 CP2605			
BY 229/4	30 p	(uniested)	${ }_{2}^{479016364}$	1000100\%	10 p	Philips infra red full remote 12 cha			
BY 237	Sp			47300\%	850	${ }_{\text {for } 60} 6$ CP2605	E12.		
BY 254 BY 255	100	40K Transducer ${ }_{\text {a }}^{\text {Sop }}$		oder Panel	75p	${ }_{\text {KT3/K30 }}$ T/Text			
${ }^{\text {BY }} \mathrm{BY} 2985$	30 p 10 p	LM337M Reg.	RANK \& ITT Mains Remote On-Off Swich	(720R)	${ }_{51.50}$	KT3/K30 Full remote	\$15.00		
BY 299	10 p	20 GEC Black Spark Gaps \quad E1.00	RANK \& ITT Mains Remote Switch 2865 o		E1.50	KT3 Power supply	${ }_{54.00}$		
BY 406	8 p	G11 Line Driver Transformer 39p	RANK \& ITT Remote Switch 2800 chm		51.50	Hitachi 8 button unit with resistor			
BY 527	20	KT3 Front Panel Control	GII Mans Switch		50 p	last year mod.	57.00		
	10 p	$\begin{array}{ll}\text { Assy } \\ \text { BTW 3u50 } & \text { E2.50 } \\ \text { S0p }\end{array}$	${ }^{\text {a mec }}$ - Mains Switch 4 amp		30 p	GEC infra-red 2236-2125	£4.00		
BY 602	10 p	TElETEX DECODER	KT3 Mainswich		${ }_{5} 1.00$	GEC push pad hand set button tlo	bs 10p		
${ }_{\text {F }}^{\text {GP20G }}$	$\stackrel{10 p}{10 p}$	I.C. SAA 5051 K30	G8 Mains Switch Mans Switch		50 c	Pye \& Philips handsei KT3-K30 ct	assis.		
XK3192	sp	I.C. SAA so4z	Thyristor 600/4 amp Cl 1062		24 p	No RCS150-RC5176-RCS5171-			
BYY 282800	30 p		G11 Preh Red LED P/Bution for C.H. Chas		20 p	Speciel Price ITT Hand Set with TV-Tele	£13.00		
800 v 2.75 mmps	10p	1.C. SAA $020 \mathrm{elC}$. - 88.00	RANK TOSHIBA Transductors TPC-2011			and Sel with TV-Telet			
(International Rectifier EHT Dio	iodes ${ }_{20 p}$		Mains switch Prilip Loong Pype TAG		75p	RC4001 KT3 and Teletex	${ }_{\text {¢ }}^{1214.00}$		
6A/1000V Stud Diodes	$20 p$	25A473 PNP CP	M	nrable colour T/N	(${ }^{75 \mathrm{p}} \times$	We have all parts for Philips He	dsets		

	(1)			

[^0]: Name

[^1]: DMB

[^2]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A)sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 14$, overseas (surface mail) $£ 17$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

