JUNE 1986

SERVICING•PROJECTS•VIDEO-DEVELOPMENTS

Also inside:
Servicing the NordMende F10 and F11 Chassis Video Signal Processing Microcomputer Servicing • DX-TV VCR Clinic • TV Fault Finding

THE 'TELEVISION' PHOTO SERVICE

all you have to do

Send your film together with cheque or postal order in the Freepost envelope enclosed with this issue. Or fill in the coupon below and send together with your film and remittance in a strong envelope to: Readers Photo Service, FREEPOST, PO Box No. 42, Brunel Road, Newton Abbot, Devon TQ12 4XJ. All popular makes and sizes of film are accepted, and you have a full moneyback guarantee. Credit is given for prints that do not come out.

PERSONALISED SERVICE

Readers know we care for their prints. If you have any queries, phone 062667150.
SPECIAL FILM OFFER
Even if you do not have an exposed film ready for processing, you can obtain films from us at highly competitive prices Fresh Kodacolor VR Film for colour prints from only $£ 1.99$. Konica SR High Resolution Film for colour prints from $£ 1.50$ and when you order three you get another one FREE
To take advantage of this offer, you must use the special order form on this page.
Sizes of Photos (Approx.)
Superprint sizes: $4^{4} \times 4$ " (126) 4 " $\times 5$ " (110 and Disc) $4^{\prime \prime} \times 6^{\prime \prime}(135)$ Standard print sizes: 3.5 " $\times 3.5^{\prime \prime}(126) 3.5$ " $\times 4.5^{\prime \prime}$ (110 and Disc) 3.5 " $\times 5$ " (135)
USE THIS LABEL IF YOU HAVE NO ENVELOPE OR PASS TO A FRIEND. IT IS USED TO ENCLOSE YOUR PRINTS.

TO DRDER NEW KOOACOLOR FILM
Please write quanity rewired in the

TO DRDER NEW KONICA FILM						TO SEND FILMS FOR PROCESSING
Please write quanity required in the box(es) below.						I enclose \quad films for processing. (lick boaxes)
KONICA SR film for Colour Prints	size	each	euty 4	4 for 3	amount	SUPERPRINTS
	126.24	£ 1.50		£4.50		Standard Print
	110.24	£1.50		£4.50		EXTRA SET OF PRINTS
	135.24	£1.50		£4.50		I enclose cheque/PO for
	135.36	£2.20		¢6.60		ξ READERS PHDTO SCRICe payable to READERS PHOTO SERVICE.
	15 Disc	£1.50		£4.50		ENCLOSE ORDER FORMS \& PAYMENT
Cheque/PO payable to READERS PHOTO SERVICE Name \qquad						FOR NEW FILMS TOO IF REQUIRED. Name \qquad
						Address
Address						
Post Code,						[_Post Code___

Extra set of prints (any size) $£ 1.40$.

RELIABILITY AND QUALITY

All our prints are made on super high-gloss Kodak paper. They are checked at every processing stage for accurate colour reproduction by the Kodak Monitoring Service-a Gold Award Winner in both 1984 and 1985. After allowing for postal and peak-period delays, you should normally expect your prints by First Class return post after seven to ten days.

[^0]

COPYRIGHT
(C) IPC Magazines Limited, 1986. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 14$ in the UK, $£ 17$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (75p) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 140$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

485 Leader
486 Modern Receiver Circuitry, Part 3 J. LeJeune
-The way in which the signals at the output from the vision detector are separated and processed, including an account of the operation of a modern single-chip PAL decoder and a look at RGB output circuits.

488 Next Month in Television

489 Grundig's Satellite TV Receiver Steve Beeching, T. Eng. A preview of Grundig's approach to satellite TV reception.
490 Letters
494 Servicing the NordMende F10/F11 Chassis Christopher Holland This major European CTV chassis features some novel circuitry, specifically a step-up chopper power supply and a thyristor field output stage. An account of the operation of these circuits and guidance on fault finding.
498 Teletopics
News, comment and developments.
500 The Development of Colour Tubes, Part 1 Eugene Trundle
This initial instalment outlines the evolution of the
different types of colour tube from the earliest delta-gun type to the 45AX - via the Trinitron, PIL, 20AX and 30AX types.
504 Servicing Teletext Decoders, Part 5
Mike Phelan
How to go about fault finding, with specific reference to the initial Philips/Mullard chip set. Interpreting display errors and using an ASCII table to relate errors to data lines and memory locations. Notes on the effects of LSI chip faults.
510 VCR Clinic
Reports from Christopher Holland, Les Harris, Philip
Blundell, Eng. Tech., Steve Illidge and Mick Dutton.
512 LCD TVs from Citizen
How Citizen's pocket TV set produces a picture on its 18,000 pixel liquid-crystal display.
513 TV Fault Finding
Reports from Alan Shaw, Michael Dranfield and Philip
Blundell, Eng. Tech.
514 Long-distance Television
Roger Bunney
Reports on DX reception and conditions, news and a
review of the Fringe Electronics f.m. radio preamplifier.
517 Other things and other places Les Lawry-Johns
Les takes a break from TV matters and heads for far off
Dersingham - in a rather roundabout way.
518 Servicing Sinclair Microcomputers, Part 2
Ken Taylor
Complete circuit for the ZX81, along with a detailed
fault-finding procedure and data on chip pin conditions.
An easy way to get acquainted with microcomputer servicing techniques.
Service Bureau
524 Test Case 282

OUR NEXT ISSUE DATED JULY WILL BE PUBLSHED ON JUNE 18

MANOR SUPPLIES

MKV PAL. COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.

- Chequerboard.
- Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
Facilities for sound output.
Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
All kits fully guaranteed with back-up service. Also available with VHF Modulator.
Price of Kit
£70.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app. $£ 8.60$
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 3.90$
Built \& Tested in Case including Sound Module
$£ 108.00$

SPECIALTEST	Post/Packing $£ 2.50$
'television	Add VAT 15\% TO ALL PRICES
DEC. 1982	Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $£ 8.60$. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P $£ 2.20$).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+12.20 \mathrm{P}$ \& P . MK 4 (MAINS) BUILT \& TESTED $168.00+£ 2.20$ P \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS 55.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

THORN TX9 MK2/3, TX10, teletext

Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL, TELETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{5 3 8 . 0 0}$ p.p. $£ 2.50$

EXTERNAL TELETEXT ADAPTOR
(RADOFIN) with cable remote control. Fully tested. $\mathbf{£ 1 5 0 . 0 0}$ p.p. £3.00. Plugs into aerial socket of any T.V. SPECIAL OFFER (shop customers only). SURPLUS 'AYR' TELETEXT EXTERNAL ADAPTOR UNITS. Ideal for experimental use $\mathbf{5 5 0 . 0 0}$.

OTHERS AVAILABLE, PRICES ON REQUEST
TRIPLERS Full range available. Mono \& Colour
Special Offer: THORN 3000/3500 EHT Tripler £2.50 p.p. £1.30
$6 \cdot 3 \mathrm{~V}$ CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. $£ 1.40$. HORN TX10 focus control $£ 8.80$ p.p. 80 p.

THOUS
IHOUSANDS OF ADDITIONAL ITEMS, ENOUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit. Rail Stu. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampetead Brit Rail Stu. (St. Pancres, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope. FTTS IN A BRIEFCASE
-10 MHa bondwidih. - 10 mv/ per division sengitivity.
-10 MHa bondwidih. - 10 mv/ per division sengitivity.

- Ful trigger facilities are provided inchuding TV \rama, or TV fiterin
- Ful trigger facilities are provided inchuding TV \rama, or TV fiterin
- Auns on 4 to loV DC vis disposabie balteries, te-chargeoble celif. or AC
- Auns on 4 to loV DC vis disposabie balteries, te-chargeoble celif. or AC
- sisptor. }255\textrm{mm}\times148\textrm{mm}\times50\textrm{mm}.\quad\mathrm{ PRICE £165.00 +£24.75 VA
- sisptor. }255\textrm{mm}\times148\textrm{mm}\times50\textrm{mm}.\quad\mathrm{ PRICE £165.00 +£24.75 VA
Accessories: Carry Case 55.95 + 60.89 V.A.T
Accessories: Carry Case 55.95 + 60.89 V.A.T
x 1 Probe E7.50 + £1.13 VA.T
x 1 Probe E7.50 + £1.13 VA.T
* 10 Probe E8.50 + £1.28 V.A.T
* 10 Probe E8.50 + £1.28 V.A.T
AC Adap Swithed Probe E10.50 + £1.58 V.A.T.
AC Adap Swithed Probe E10.50 + £1.58 V.A.T.
AC Adaptor £8.95 + £1.04 V.A.T.
AC Adaptor £8.95 + £1.04 V.A.T.
'HAMEG HM $203-5 \quad 20 \mathrm{MHz}$.
DUAL TRACE OSCILLOSCOPE:
SPECIFCATION
*BANDWIDTH DC-20MHz
-SENSITIVITY CH1, CH2 $2 \mathrm{mV}-50 \mathrm{~W}$ /DIV
TINEBASE 40 nS to 0.2 S CM
-TRIGGER DC-40MHz Auto-Normal-TV
 - CHI ADD AND INVERT FACILITY
 - CHE ALT/CHOP SWITCH
-LAAGE RECTANGULAR SCREEN $8 \times 10 \mathrm{cms}$.
-BLILT IN SEMICONDUCTOR CCIMP. TESTER
SIZE $285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$.
SUPPLY $110-125-220-240 \mathrm{~V}$ AC $50-60 \mathrm{~Hz}$
2 YEAR WARRANTY
$£ 270.00+£ 40.50$ VAT
Optional probes as above

WITH COMPONENT
TESTER
PRICE
£270.00 + £40.50 VAT
Optional probes as above

 Pphath
U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/A
etc., with order please. Large S.A.E.
B. K. ELEGTRONIGS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA,
Dept. ' T ', ESSEX. SS2 6TR TEL: 0702-527572

Universal Semiconductor Devices Ltd.

17 GRANVILE COURT, GRANVILE ROAD, HORNSEY, LONDON N4 4EP, ENGLAND.
TEL. 01-348 9420/9425 * TLX. 25157 usdco g

We offer one of the largest ranges of semiconductors at highly ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST. TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON

RATINGS
integrated circuits:
CONSUMER - DIGITALANALOGUE
MICROPROCESSORS AND PERIPHERALS
ic SOCKETS
JAPANESE COMPONENTS - VAST RANGE OF DISCRETES AND CONSUMER IC'S. MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING £1.00 IN STAMPS, CHEQUE OR POSTAL ORDER.
catalogue sent free of charge, when requested on official letterhead (WITHOUT REFUND), TO OEM'S, SCHOOLS, COLLEGES, UNIVERSITIES, GOVERNMENT INSTIUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS. special discounts and payment terms are available to above INSTITUTIONS.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

$$
\begin{aligned}
& \text { SMALL SIGNAL } \\
& \text { POWER } \\
& \text { DARLINGTONS - ALL SHAPES AND SIZES } \\
& \text { VHF/UHF DEVICES - ALL SHAPES AND SIZES } \\
& \text { FETS - POWER MOSFETS } \\
& \text { UNIJUNCTIONS } \\
& \text { dIODES - GERMANIUM AND SILICON } \\
& \text { RECTIFIERS AND BRIDGES } \\
& \text { OPTO-ELECTRONIC DEVICES } \\
& \text { LEDS OF ALL SHAPES AND SIZES } \\
& \text { THYRISTORS AND TRLACS - ALL } \\
& \text { SHAPES } \\
& \begin{array}{l}
\text { POWER } \\
\text { DARLINGTONS - ALL SHAPES AND SIZES } \\
V H F / U H F ~ D E V I C E S ~-~ A L L ~ S H A P E S ~ A N D ~ S I Z E S ~
\end{array} \\
& \square
\end{aligned}
$$

MAKE YOUR INTERESTS PAY\&

 Train at home for one of these career opportunitiesMore than 8 million students throughout the world have found it worth their while! An ICs home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics	\square	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	\square	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	\square	Car Mechanics	\square
Elec. Contracting Installation		Computer Programming	\square
GCE over 40 ' O^{\prime} \& ' A ' level subjects			

 (

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADD 87p per order P+P
Goods are despatched on the day we receive your
(U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try
cable, service aids, degaus. to inform you as quickly as possible. We try our best
coils please allow £1.50 P+P
to give a speedy, fair and efficient service. V.A.T.
(U.K.). Export orders charged
ainvolce on request. Give us a ring - well give you
at cost. First Class Mail is used
whenever possibe. Please. Add 15%
will try to help. Prices are sub need is not listed -we to change without
VAT to total except where it it
notice. In some cases we may have to supply an
states zero rate.

P. V. 104 ABBEY STREET, ACCRINGTON

SUNDRY VIDEO ACCESS. VHS Drum Motor VHS Capstan Motor
Samyo 5000 Reel Motor Sanyo
VHS loler Video Lamps 3V23 Lamps with Plug Video Care Kit Universal Copying Kit
Video Head Cleaner Video Kead Cleant
Shap Reel Motor Shapp Reer Motor
Reel Idler (Sharp) 381/383/386/9100/9300/9500 Sanyo Reet Drive Pulley
5
WE HAVE A FULL
RANGE OF AERIALS
AND ACCESSORIES
FROM TRADE COUNTER
AERIAL EOUIPMENT

Outdoor Splitter

 Plastic Tape Set Top Aerial Loop Aerial Aerial Isolator Kit Attenuator $6 \mathrm{~dB}, 12 \mathrm{~dB}, 18 \mathrm{~dB}$$7 \mathrm{M} H \mathrm{~F}$ Fitter 50 dB 27MHz Fitter 50 dB
Cable Clips 7 mm Cable Clips 7 mm
Single Outlets Suriace Splitte A Splitter 100M Coax
Coax Plugs
1" $^{\text {U }}$ Boits 1" U Boit
J Boits

SB11 Solitter C0811 Outlot

CS1000 Combiner/Splitter PU1240 Power Unit UP1300 MHA 4 way VHFNHF Amp $\begin{array}{ll}\text { XG8 High Gain Aerial A-B-CD-WB } & 50.68 \\ 17.10\end{array}$

LABGEAR

 $\begin{array}{ll}\text { CM7261 Power Unit 12V } & 11.80 \\ \text { CM7262 Red. Power Unit 12V } & 12.06 \\ \text { CM7065 VHFNHF MHA W/B 12V } & 15.05\end{array}$ CM7066CM7067 UHF 12 V MHA (Specity A-B o
CD) CM A-B or CD) A-B or
CM7253 Behind Set UHF Am
(Mains)
CM7243 Second Set Amp. UHF
13.6
12.7 CM7093 Behind Set UHF Amp. 16.0 CM7063 Dist. Amp. VHF/UHF 17db/outpput
12V
CM7108 VMFNHF $8+1$ Dist. Amp. 43.26 CM9700 27 mhz CB Suppress.
CM6011 0 . W/B
CM90

CM9003 Flush Single Outlet CM9010 Flush Twin Outhet

$$
\begin{aligned}
& \text { CM9910 Flush Twin Outtat } \\
& \text { CM99034 UHF Group Filters with } \\
& \text { Through Pass (state ABCD) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CMso34 UHF Group Filters } \\
& \text { Trough Pass (state ABCD) } \\
& \text { CM9033 } 6 \text { Way Passive Splitter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CM9033 } 6 \text { Way Passive Splite } \\
& \text { CM7042 TV Games Combin. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CM7042 TV Games Combin. } \\
& \text { CM9009 Flush TVIFM Outlet }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CM7091 Col. Bar Gen. } \\
& \text { CM9006 VHFNHF Diplex }
\end{aligned}
$$

CM9006 VHFNHF Diplexer $\begin{array}{ll}\text { Televerta down converta CM7057 } & 31.20 \\ 7064 \text { DA UFF VHF 28dB } & 30.06 \\ 7094 \text { DA } 4 \text { way } & 19.56\end{array}$

REPAIR KITS
Remote control handsets for Philips sets KT3/
K30 chassis inc. foil unit button matrix and K30 chassis
instructions.
Phillips patt numbers

1227583.
2752.

21227583.

Button matrices: 43237037 or
43237038.

No. 1 without Teleter
No. 2 with Teletext

ANTEX SOLDERING
EQUIPMENT
C15W Iron 240 V

CS17W Iron 240V
CS240 Eleme
Bits 1100
1101
1106
XS25W hron 240 N
Xits 50
51
51
Temp. Controlled
30 W Iron CSTC
30W Iron CSTC
Unit for above TCSU1
Stand MLXS Auto Repair K
Cordless Gas Imon
Tips for Gas Imon
WELLER
Heat gun
Meat gun tips (pair)
$3 / 16^{\circ}$ tron tips $25 W$
ever ready batteries

${ }^{\text {R10 }}$

1896	
PP6	1
Pp7	
Pp9	
1289	74

RECHARGEABLES Ever Ready
RX6 (HP7)
RX14 (HP11
RX14 (HP11)
RX20 (HP2)
RX 20
$\mathrm{RX22}$
(PP3)
Universal Charger

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US		PHONE (0228) 20358/39693				UY WITH		E.H.T. TRAYS DECCA 8 DECCA 100 7.20 IT CVC $20 / 30$ PHILPS G8-550 PHILIPSKT3. RBM T20:T22A THORN 85001 THORN 9500.			
INTEGRATED CIRCUITS	TYPE PRICE (E) STK0039_............45	TYPE PRICE (E) TDA440 3.25	TR	TVPE PRI	E TYPE PRICE	THORN/SONY					
	STK0040..................... 5.45			BD701	5 2N3055............. 50						
14..................1.95	$\begin{aligned} & \text { STK0040. } \\ & \text { STK0050. } \end{aligned}$	TDA1006A 2.95	TYPEI PPICE	BD707 1.05	2N3773........... 3.45	LARGE RANGE OF SPARES FOR ABDVE					
AN301........................3.45	STK077 7.25	TDA1037 2.75	BC108 14	BF337 28	28 15/80H............ 2.25						
AN303...................3.45	STK078 7.45	TDA1044.................3.10	BC109 14		2SA771.	MAKES OF TVI					
AN305.................. 3.50	STK082 9.75	TDA1170.................. 1.80	BC141 26	BF459................... 36	36 2SA 835........... 1.55	VIDEOS INCLUDING		MPE ${ }_{\text {BY127 }}$.................... 10			
AN7110................. 1.93	STK2129 8.50	TDA1270................... 2.20	BC142 23	BF757.................. 75	5 2SB618............ 2.45	SERVICE MANUALS		BY133 15			
AN7114E 2.33	STK415.................9.66	TDA1470.................. 3.65	BC143............... 25	BFR90 1.60	20 2SC 867A 3.25			8Y164 0			
AN7115................... 2.37	STK430..................... 7.75	TDA2002................... 1.85	BC147 08	BR100 18	8 2SC 1034.........4.4.85	SERVICE MANUALS. PHONE OR WRITE		8Y179			
AN7116................ 2.35	STK4332 5.95	TDA2003..................2.33	BC148 09	BR101 32	2 2SC 1061..........1.15	FOR NEW LISTS. WE		Br210800			
AN7145.................3.25	STK433.................6.50	TDA2004...................3.15	BC157 10	BR103 55	55 2SC 1114.........4.75	CAN ALSO SOURCE					
BA312.................. 1.25	STK435.................6.75	TDA2006...................2.25	BC158 11	BR303 2.95	5 2SC 1124........... 97			BY229/600 87			
BA511A 1.95	STK437................ 7.25	TDA2020..................2.2.95	BC159 11	BT106............. 1.15	5 2SC 1316.........3.20	\& SUPPLY OVER		BY2984400........................ 24			
BA5211.85	STK439................7.55	TDA2522...................1.80	BC237 11	BT116............. 1.30	30 2SC 1413A...... 3.95	THREE THOUSAND		BY299/800 25			
BA536...................... 2.55	STK	TDA2523...............2.25	BC327	BT151/	2SC 1739........ 2.45	UCs \& SEMI CONDUCTORS.		BYx10................... 20			
HA1166................... 2.65	STK4617.7.95	TDA530...............2.10	BC328 BC33		2SC 1942......... 2.			$B \times 71 / 600$			
HA1322....................2.10	STK463 9.30	TDA2532...............2.20	BC338 110		2SC 1962........1.65	SONY SPARES		SKE4F206 ${ }^{0}$			
HA1338................ 2.78	STK465.................. 9.95	TDA5540............... 1.95	BC547 10		2SC $19691 .1 .95$	C5/C7 Rewind Kit....4.65		SKE5F3/10 1.45			
HA1339............... 2.40	TA7193P 4.30	TDA5560.............. 1.80	BC548 10	BU208D	2SC 2335 (Kit) . 7.55			W005....................... S_{5}			
HA1342A 2.20	TA7204P1.90	TDA257843.25	BC557 10	BU326A 1.48	48 2SC $2369 \ldots3 .25$			iN4001-7 07			
HA1366WNR 1.95	TA7205AP 1.40	TDA2581............... 2.15	BC558 10	BU407 1.12	$12 \text { 2SC } 257 \ldots2 .45$	C7 Pinch Roller485		iN5401-8 16			
HA1374................ 2.45	TA7208P1.95	TDA2582............... 2.20	BC637 35	BU407D 1.45							
HA1377............... 3.80	TA7222AP 1.85	TDA2591...............2.30	BC638 25	BU500 1.95	5 2SD 725............. 7.95	SG 613/6533...........ds		HITACHI UCs			
HA1388................4.20	TA7223P...............2.85	TDA2593.............. 2.30	BC639 25	BU508A 1.95	$\text { 2SD } 870 . .$	CX 143A69		STR 441 1................. 5.55			
LA1201 1.75	TA7310................... 1.55	TDA2694.............. 2.95	BD124M 1.05	BU526 2.00		TDA 3652...............435		STR 6020 7.90			
LA1230 2.30	TA7313.................... 1.45	TDA2611A 1.50	BD131 33	BU807 1.30	30 LNE OP TR.	Large range of Sony spares available					
LA13652.45	TAA550....................... 43	TDA2640................. 2.40	BD132 33	BU826A 3.20	20 DECCA $807 .55 ~$						
L433501.65	TBA120AS 95	TDA3560.................. 5.10	BD222 50	R2010B........... 1.45	5 DECCA 100........... 250	VALVES		G8 IRANSDUCTOR 25			
LA4101 1.50	TBA120SB 90	TDA3561A 5.35	BD225 55	R2540.	IT CVC 20885			G80N/OFF SW. 1.40			
L441021.95	TBA120T................. 1.25	TDA3562A 5.50	BD235............... 32	TIP31C 46	6 ITT CVC 25/30328.5	PCF602..................1.09		G11 EW Coil. 10			
L44400 2.50	TBA120U 1.00	TDA4500................ 5.85	BD236 43	TIP32C 47	47 IT CVC 45845	PCL82....................... 97		G11 Lin Coil.............. 190			
L44430 2.45	TBA520............... 1.30	TDA4600................ 285	BD237 40	TIP33................. 80	0 PHILPS 68............ 275	PCL85........................... 1.03		G11 Bridge Coil.......... 1.35			
L44440 3.55	TBA5300 1.00	TDA4600-16PIN.....3.95	BD238 39	TIP34 95	5 PHILPS G11 13.50	PCL86.......................1.07					
LA4445 2.65	TBA540................ 1.37	TDA9503...............2.35	BD410............... 50	TP41C 48	8 PHILPS KT39.55	PL504........................... 1.50		ITTOn/Off SW 1.10			
L44460 ….................. 2.95	TBA550................ 2.45	UPC555C 70	BD437 70	TPP42C 48	88 PHIUPS K30 16	PL508....................... 299		THORN ONOHT SW.. 1.00			
MB3712 2.30	TBA720A 2.65	UPC585C 2.10	BD439 78					CUT OUT 2Ai.i.i. 15s			
MB3713................2.25	TBA750...................2.45	UPC 1031H.............. 2.95	BD677 70	TP3055................ 70	O TH	PL509/519............... 5.98		OCUS UNIT.. LSE			
$\begin{aligned} & \text { ML231B } .25 ~ \\ & \text { ML232B } \\ & \hline \end{aligned}$	TBA800................... 800	UPC1032H................... 95		1P305.............. 7		PY5004 225					
			TV ELECTROLYTICS				Available also a rance of				
SAA1250 3.85	TBA820................ 1.40	UPC1181H 2.20	DECCA 30(400/400)350V3.99								
SAA1251 4.95	TBA899................. 2.95	UPC1182H 2.20					2SAB/C/D Transistors.				
SAA5010 5.10	TBA920................ 1.50	UPC1185H............ 3.30	DECCA $80-801001400) 350 \mathrm{~V}$....... 3.98$(800) 250 \mathrm{~V}$		DECCAIT 6 way50						
SAA50 12 5.70	TBA950................ 2.65	UPC 1230H			PHILIPS G8 S/Q............................. 14.75						
SAF1039P.............. 4.55	TCA940................... 1.55	UPC 1350C............... 2.35					ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELIVERY BY RETURN ON ALl STOCK TTEMS.				
SAS560S 1.95	TDA2030............... 1.95	UPC1353C 2.60	PHILIPS G11/470)250	V 2.20	HITACHI 4 wa	8.95					
SAS570S1.95	TDA2190M6.95	UPC 1365C5.05	RBM A823(2500/2500)	130 V 1.65 П	ITT CVC57 Butto	10.40					
SAS580S 2.40	TDA2576A 3.95	UPC1394C 2.95	RBM T20A(220)400V	2.35	ITTCVC8/9						
SAS590S 240	TDA2577.............. 4.85	UPC2002H 1.85	THORN1690114700								
SL1430 1.95	TDA3651AO 3.75	7805.................... 0.65	THORN3500(1000)7	99	U321						
SL1432 1.75	TDA3652............... 4.35	7812.................... 0.65	THORN9000(400)400V	3.10	U322						

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT

Some examples of QUALITY working TVs

Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501

HUSSAIN CENTRAL TV LTD sale Sale Sale of the Century

BEST QUALITY AT THE LOWEST PRICES IN BRITAIN TODAY

G11 • 660
PYE G11
G11 REMOTE (with hand set)
G11 TEXT (with hand set)
G11 ELECTRONIC TUNER
THORN 9600
THORN 8800
PYE 222
GEC SOLID STATE

£25 ITT CVC 20/30

£15
£30 DECCA 80/100 £15
£45 ITT REMOTE (with hand set) £30
$£ 55$ TX TEXT (with hand set) £55
£30 THORN 9000 REMOTE £15
£25 THORN 9200 £27
£10 THORN 9800 £15
£10 G8 22" £10
£10 GEC STARLINE £15

MANY MORE LATE MODEL TVs IN STOCK INC. REMOTE, TEXT, STEREO TEXT AND $14^{\prime \prime}, 16^{\prime \prime}$ PORTABLES

All TVs have excellent cabinets
VHS: Working. Bring your own tape and try them yourself at $£ 65$ Untested Electronic VHS £90
Working Electronic VHS £135 Ferguson 3V29, Hitachi 8000, J.V.C. 7200

ALSO IN STOCK

PANASONIC 7200, 7000, 2000, 2010, 366, NV777
HITACHI VT14, VT11, 9700, 9500, 8700, 8500, 8300
FERGUSON 3V31, 3V30, 3V23
ELECTRONIC Beta Full working $£ 60$
Untested Beta from $£ 35$
PLUS MANY MORE LATE MODEL VIDEOS IN STOCK
Prices are subject to 15% VAT
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

BIRMINGHAM
48-52 PERSHORE ST.
$021-622$ 1023 021-622 1023 021-622 1517

PRESTON
UNIT 439
OAKSHOTT PLACE
WALTON SUMMIT IND. EST.
M6 JUNCTION 29.
0772312101

LONDON
CEDAR HOUSE NOBEL RD.
ELEY ESTATE
EDMONTON N18 3BH.
01-807 4090
01-884 1314

CHEPSTOW
UNIT 4 BULWARK IND. EST. GWENT.
0291271000

SPECIAL OFFER THIS MONTH

PHILIPS YEARS AHEAD
THE CREDIT CARD CALCULATOR SOLLAR POWERED
$£ 6.00$

NEW PANELS

kr. Line Cuncir Translormer $\$ 5.00$

SENDZ components 63 BISHOPSTEIGNTON,

SHOEBURYNESS, ESSEX SS3 8AF.
All items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15% VAT, then £1 Postage. Add Postage for Overseas Callers: To shop at 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992 Open 9-1/2.30-6. GVMT + schiool orders accepted on official headings. Add 10% handiling charge.

DUVIIN ${ }^{\text {Sabe }}$

Get on the hot-line today!

SUPERIOR QUALITY TUBES
DELTA RE-BUILDS most types of Inline Re-builds or new ex-stock

PRICES SUBJECT TO GLASS EXCHANGE

Deita Rebuilds

Up to 19"	£28
Up to 22"	f30
Upto 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+£2
A47342 New	£28
17 FHP New	£30
470EHB New	£30
Delta only.	\% 5+

Inline Rebuilds

$26^{\prime \prime}$	From $£ 45$
56-540x	£56
466-540x	
Aonded	

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES

IN LINE TYPES EX-STOCK SELECTION not Rebuldos
Please enquire types not listed

420 EZB 45
420 ERB f 45
f 50 470 KUB f50 510 UFB/A51-590 510 VSB. AXT51-001 560 DYB-560 DTB 560 EGB

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

EAST CORNWALL COMPONENTS 119 HIGH STREET

WEM

SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 473.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

CAN YOU HELP?

A friend of ours requires a volume-on/ off knob and a turnlock-tuning knob for a Philips RM712 car radio. Can anyone supply these? Does anyone know the agents or a source of spares for Tensai TVs?

CORRECTION

A correction to the c.r.t tester/booster circuit published last month appears on page 493.

FRONT COVER

This month's cover photograph shows a close up of a test pattern displayed on the screen of a PIL type tube.

More on Spares

No apologies for returning to the subject of spares so soon: it's likely to be an increasing headache for all concerned - setmakers, stockists, repairers and customers. Let's look at it first from the setmaker's point of view, prompted once more by Ferguson who have just announced that spares for the 14in. colour portable Model 3787 will no longer be supplied by them - nor will any repair work be undertaken. That's the popular little Movie Star portable fitted with a NordMende chassis, dating from the period in the early seventies when thryristor line output stages were all the rage amongst Continental setmakers.

The fact that these sets are now some ten years old highlights the problems. A setmaker of any size will have introduced a vast range of models over such a time scale. Just think of some of the permutations - different tube sizes and tuning arrangements, remote control, teletext and more recently stereo sound capability. Dealers and their customers expect to be able to order spares of every description: not just droppers, LOPTs and various safety specials but knobs that fall off and various bits of trim. Anything in fact that might be required to restore a set in for service to its original condition. This implies the need to stock thousands and thousands of different TV spare parts - spares also for a wide range of VCRs, radio and audio equipment. In terms of storage space and handling the costs involved are enormous. It's no use saying reorder when necessary from component manufacturers. They too alter their ranges, while the cost of ordering small quantities is prohibitively high even for the largest setmakers. Then there's the fact that many components are supplied to meet the specification for a particular model/chassis. We're thinking not just of safety components but of items shaped to fit particular PCB assemblies, cabinet mouldings and so on. There have been jokes in the past about computers running the show and part numbers as long as your arm: they just serve to emphasise the difficulties.

The vastly increased reliability of modern chassis hasn't helped in this respect. Cool running and low power consumption mean that sets can be expected to give years and years of service with comparatively few breakdowns. It's also a fact that a ten or fifteen year old set can still look quite new. But failures are inevitable from time to time and then the hassle starts. Just what is a fair time after which to put up the no longer available sign? Ten years sounds a nice round figure and seems to be the sort of time scale manufacturers now have in mind. After all if you've had ten years' service from a set you've not done badly, particularly in view of the modest initial price of consumer electronics equipment. But one has to admit that though this sounds reasonable it's not likely to assuage the customer who can't get his set repaired for want of some perhaps fairly minor item.
The repairer doesn't have to go back to the original maker for parts of course, though special items, whether to meet a safety requirement or an exacting performance specification - flyback tuning capacitors, the chopper and line output transistors used in some sets, and so on - are likely to cause problems. Increasingly, setmakers are farming out the supply of spares to specialist distributors. This ensures that spares are readily available around the country and has the advantage from the stockists point of view that he's not obliged to hold stocks of any and everything that might be required. He knows that a good range of tuners, LOPTs, triplers, droppers, electrolytics and transistors will meet the vast majority of calls for parts. Experience will provide a guide to what to stock for particular models and the independent distribulor has no obligation to search for an obscure item for an unusual set. For the most part repairers can, as they've always done, rely on various standard component lines. We hope that doesn't sound too complacent, being all too well aware of the frustrations that can arise when a customer can't be provided with the sort of service you aim to give.
When you come to think of it the service nowadays being provided by specialist component suppliers is remarkably cheap and efficient. While a setmaker buys components in bulk to feed to his computer-controlled production lines the stockist has to locate, pack, despatch and invoice items on an individual basis. It's amazing how they manage to do it and not surprising that a special screw, belt or plastic moulding can bring with it quite a hefty bill. This all reflects the incredibly tight costing that modern mass production brings with it: what costs the setmaker pennies must cost you pounds.
The problems all too lightly touched upon above are likely to involve us all in increasing problems of one sort or another. A year or so back some readers were contemplating the idea of providing computerised fault finding and data services, but no computer will solve the problem of the missing part. Anything for which there's an obvious need is likely to be made available by someone or other - think of the universal tripler and the solid-state PL802 for example. Alternatives for most electronic components could probably be found - if only one could lay hands on the original performance specification and they could be made to fit the bracket, board or other mounting requirement!

INDEX TO VOLUME 35

Copies of the index to volume 35 (November 1984 - October 1985) of Television are now available from the editorial office at 75p each. The index includes full lists of VCR Clinic and TV Fault Finding items. Would readers please note that indexes are not available until approximately six months after the last issue concerned. We've already had a number of requests for the index to volume 36 - despite the fact that four issues have still to be written, prepared and printed . . .

Modern Receiver Circuitry

Part 3: Video Signal Processing

J. LeJeune

The use of integrated circuits has enabled some sophisticated techniques to be adopted in TV receivers, techniques that might not have appeared had the use of discrete component circuitry continued. For a good few years now video signal processing in TV sets has been carried out in i.c. form: while RGB output chips have been devised, the advantage at the end of the video chain still lies with discrete component circuitry, due to the dissipation and high voltages involved.

Filtering the Video Signal

The output obtained from the vision detector of a colour receiver consists of the baseband luminance signal $(50 \mathrm{~Hz}-5.5 \mathrm{MHz})$, the chrominance signal on its 4.43 MHz carrier with sidebands extending some $1 \cdot 1 \mathrm{MHz}$ on either side, and the 6 MHz intercarrier sound signal which is a beat frequency between the vision and sound i.f. carriers (39.5 MHz and $33 \cdot 5 \mathrm{MHz}$). We'll return to the sound signal in a later article. The chrominance subcarrier and its sidebands are interleaved with the upper luminance signal frequencies: because of the line structure of the TV picture, there are gaps in the luminance signal spectrum into which the chrominance signal is slotted.
The various components of the vision detector's output have to be separated for individual processing. Filtering arrangements vary from chassis to chassis but a typical way of going about this is shown in Fig. 1. The composite video signal is fed to the base of transistor Q1 via the bridged-T notch filter L3/C6/C7/R10 which removes the 6 MHz intercarrier sound signal. The chrominance signal feed is via $C 2$, the attenuator $R 8 / R 7$ and $C 4$ to the following signal processing i.c., with the series rejector circuit C3/L2 included to remove the l.f. video components - this arrangement is used in preference to a lossy bandpass acceptor circuit. C2 is of low value to contribute to the filtering. Q1 provides the sync and luminance feeds. It's made unresponsive to signals at the 4.43 MHz chroma subcarrier frequency by the inclusion of the parallel tuned circuit $\mathrm{L} 1 / \mathrm{C} 1$ in its emitter circuit: this introduces frequency selective negative feedback, reducing the stage gain at $4 \cdot 43 \mathrm{MHz}$. The unbypassed resistor R5 provides overall negative feedback - Q1 has low gain but good linearity and is primarily used as a buffer to prevent interaction between the sound and chroma subcarrier rejectors. Delay line DL1 is incorporated in the luminance signal path to compensate for the different bandwidths of the chrominance and luminance signal circuits.

Luminance-chroma Processing Chip

Today's sets generally use a single chip to process both the chrominance and luminance signals. A good example of this type of i.c. is the Mullard TDA3560. Fig. 2 shows a block diagram of this widely used i.c.

Processing of the luminance signal is straightforward: amplification with d.c. clamping to restore the correct conditions following a.c. coupling (C 5 , Fig. 1), d.c. contrast control, then matrixing with the colour-difference
signals to provide R, G and B signals for the output stages.

Before we look at the processing of the chrominance signal let's just recap on its composition. Two colourdifference signals, $B-Y$ and $R-Y$, are transmitted. At the transmitter these signals amplitude modulate two 4.43 MHz subcarriers which have a phase difference of 90° - this means that when one subcarrier is at its peak the other is at zero. The two signals are then added to give the composite chroma signal - the technique is known as quadrature amplitude modulation. There's further complication with the PAL system since the phase of the R Y signal is shifted by 180° on alternate lines. About ten cycles of 4.43 MHz subcarrier (the colour burst) are transmitted during the post line sync pulse back porch period to act as a reference for the decoding process. The only modulation on this carrier is the 180° PAL signal swings, as a result of which the phase of the burst swings $\pm 45^{\circ}$ on alternate lines.

Within the TDA3560 the chroma signal is fed first to a gain-controlled amplifier (a.c.c. - automatic chrominance control). The control potential is obtained by rectifying the colour burst since this is not amplitude modulated. The burst signal has to be separated from the chroma signal for this purpose: this is done by using a suitably timed line pulse to open a gate. The separated burst signal is also applied to a phase detector which is part of a phase locked loop controlling the phase and frequency of a reference oscillator. In earlier decoders this oscillator operated at 4.43 MHz : for reasons that will become clear shortly in the TDA3560 and similar chips the frequency is 8.86 MHz .
Returning to the chroma channel itself, the signal is next subjected to saturation and contrast control - the latter so that the correct luminance to chroma ratio is maintained. The control stage is gated by the burst gate pulse so that operation of the contrast and saturation controls does not affect the amplitude of the burst. The chroma signal then leaves the i.c. for application to the delay line circuit which serves two purposes: it separates the $B-Y$ and $R-Y$ components of the signal and, by averaging the signal over pairs of lines, converts any phase error to slight desaturation. The separated signals are then

Fig. 1: Separating the outputs from the vision detector.

Fig. 2: Block diagram of the TDA3560 luminance and chroma signal processing chip.
applied to two synchronous demodulators. These require inputs from the reference oscillator, which takes us back to the a.p.c. loop.

The main purpose of the colour burst is to synchronise the reference oscillator which drives the synchronous demodulators. These operate on the sample-and-hold principle, sampling the modulated colour-difference signals at the peaks of the carriers to detect their amplitudes. The reference signal drives to the demodulators must have a phase difference of 90° - the same as the original carriers at the transmitter. In earlier decoders this was achieved by incorporating a 90° phase shift network in one of the reference signal feeds. The use of an 8.86 MHz oscillator avoids the need for this and provides more accurate results: its output is fed to two flip-flops which provide

Fig. 3: Obtaining quadrature reference signals to drive the R - Y and B - Y demodulators by using two flipflops to divide by two the output from an 8.86 MHz oscillator. FF2 is positive-going edge triggered to produce an in-phase $4 \cdot 43 \mathrm{MHz}$ signal; FF1 is negative-edge triggered to produce a signal with a 90° phase difference.

Fig. 4: Principle of the chroma delay line circuit.
division by two. By taking opposite polarity outputs from the flip-flops two drive signals with an exact 90° phase difference are obtained. See Fig. 3.

It's also necessary to invert the drive to the $\mathrm{R}-\mathrm{Y}$ demodulator on alternate lines to counter the effect of the 180° switching at the transmitter. This must be synchronised with the switching at the transmitter. The burst swings provide an identification signal for this purpose: the 7.8 kHz (half line frequency) ident signal synchronises the PAL switch (inverter) which is driven by line frequency pulses.

The presence of the burst/ident signals is a convenient way of establishing that the transmission is a colour rather than a monochrome one. No burst means no colour: the colour-killer then switches off the chroma delay line driver stage. If this is not done the a.c.c. circuit will operate the chroma amplifier at maximum gain and the monochrome display will be marred by colour noise.

Fig. 4 shows the operation of the delay line circuit. The composite chroma signal is fed directly and via the oneline duration delay line to add and subtract networks. Because of the $R-Y$ signal inversion (180° shift) on alternate lines the $\mathrm{R}-\mathrm{Y}$ signal cancels out in the adder circuit while the $B-Y$ signal cancels out in the subtract circuit.

Matrixing and Data Insertion

The third colour-difference signal $(G-Y)$ is obtained by matrixing the demodulated $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals. The luminance signal is then added to obtain RGB signals. These pass to the data insertion circuit which consists of three fast electronic changeover switches - they can operate at 10 MHz . The state of all three switches is controlled by the voltage at the insertion control pin 1.5 V at this pin changes the switches from off-air RGB to external inputs, the mode generally used for teletext. For mix-mode teletext a monochrome version of the text is fed

next month in

- SERVICING THE PANASONIC NV7000

Though a fairly early VCR, dating from 1981-2, this machine was of advanced design. It had directdrive motors, Dolby noise reduction, full cable remote control, slow motion and back-space edits. David Botto has handled large numbers of these machines and provides servicing notes and advice based on this experience.

- COLOUR TUBE DEVELOPMENTS

Eugene Trundle continues his series with a detailed look at colour tube electron gun technology and the developments that have taken place in this area over the years. Just about everything has changed, from the heaters to the electron lens arrangements. Tube neck magnet systems are also considered: did you know why a combination of two-, four- and six-pole magnets is required?

- MODERN RECEIVER CIRCUITRY

The line output stage, which does so much more than just provide horizontal scanning, has always been a bit of a mystery to those not versed in TV technology. The need for EW modulation with 110° tubes has further complicated matters. Tuning is a key to line output stage operation but more than one frequency is involved - the line scan, flyback and harmonic frequencies in fact. J. LeJeune provides an account of the various things that go on in the line output stage.

- SERVICING SÖNATELMR MONO PORTABLES

Sonatel monochrome portables were distributed by House of Carmen and were amongst the first to break the $£ 50$ price barrier. They were widely sold through the big retail chains and via mail order catalogues. When House of Carmen took over Morphy Richards the sets were sold under this well known brand name. Ian Rees provides detailed information on common faults and how to deal with them, also on adding a.g.c. to some models.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:
(Name of Newsagent)
Please reserve/deliver the July issue of TELEVISION (E1-20), on sale June 18th, and continue every month until further notice.
NAME
ADDRESS \qquad 1 $\cdots \mid$

Fig. 5: How long video leads and a tube's input capacitance form a low-pass filter that attenuates h.f. components of the signal.

Fig. 6: Basic class $A B$ video output circuit.

Fig. 7: Video output circuit used in the Thorn TX100 chassis.
to the insertion control pin. From the data insertion section the RGB video signals pass to the i.c.'s output stages where line and field flyback blanking is carried out.

Video Output Circuits

The external RGB output stages drive the tube's cathodes. For optimum results the tube's heater-cathode and cathode-grid capacitances must be charged and discharged in the shortest possible time. It helps to mount the RGB output stages on the tube base panel. This eliminates the long leads otherwise required - these long leads, in conjunction with the tube's input capacitances, form lowpass filters that affect the set's h.f. performance - see Fig. 5.

The problem with a simple class A output stage of the type shown in Fig. 5 is that while the tube's input capacitance is quickly discharged on a negative-going signal transition, when the output transistor is rapidly driven to saturation, on a positive-going transition when the transistor is switched off the capacitance has to charge via the load resistor, which is typically about $12 \mathrm{k} \Omega$ in
value. Class AB output stages are favoured as a way of overcoming this disadvantage. Fig. 6 shows the basic circuit. Adding the emitter-follower transistor Tr2 in Tr1's collector circuit provides a method of rapidly charging the tube's input capacitance on positive-going transitions. Another advantage of the circuit is reduced dissipation.

Fig. 7 shows one of the RGB output stages used in the Thorn TX100 chassis. The pnp transistor Tr 60 is used to hold the emitters of all three output transistors at 2.5 V . Video from the chroma-luminance processing i.c. is applied to the base of the output transistor Tr65 via RV63: negative feedback via R609 sets the gain of the amplifier and stabilises the d.c. operating conditions. No adjustment of the grey-scale black level is required because the stage is designed to operate with the later TDA3562A
processor i.c. which incorporates automatic black-level control. If such adjustment was required, R610 could be made variable. Tr65 provides a peak-to-peak drive of 150 V at the base of the emitter-follower transistor Tr69. Up to this point the circuit follows a similar arrangement to that shown in Fig. 6. The final transistor Tr66 serves a dual function. It provides signal coupling to the tube via its base-emitter junction, acting as an emitter-follower on negative-going transitions - diode D603 provides coupling on positive-going transitions. The other function is to provide feedback from its collector to the beam current sensing (in the TDA3562A chip) and beam limiting circuits. The feedback to the chip is part of the black-level correction system. The power consumption of the stage is around 600 mV .

Grundig's Satellite TV Receiver

Steve Beeching, T. Eng.

Grundig will be launching a new satellite TV receiver during the May trade shows in London. I was pleased to be present at a prelaunch appraisal with a friend of mine who has already looked at a number of satellite receiver systems.

The receiving dish was pointed at Eutelsat-1 F1 (ECS-1). Various programmes are available from this satellite. All were very well received - with the exception of scrambled transmissions for which at the time decoders had not been made available.

The main television set was a Grundig Model M70 with a 28 in. FS tube and a CTI decoder - this is an automatic PAL/NTSC/Secam decoder with a variable luminance delay line for correct luminance-chrominance registration (to put the red back on top of the snooker balls).

The pictures from the Italian channel RAI were stunning - not only because of the scantily clad ladies running about but also due to the shots being live from the studio and the wide TV bandwidth being used.

The satellite receiver itself is the size of a midi hi-fi unit $-320 \times 70 \times 270 \mathrm{~mm}$ - which is quite compact. It's a 29 station programmable receiver with the capability to tune each programme through the full $950-1,750 \mathrm{MHz}$ bandwidth in 99 channel steps. Channel selection is by means of an IR remote control unit.

The range of controls and inputs is comprehensive. There are two dish aerial inputs at the rear, X and Y . While the inputs can be from separate dishes the intended use is with a dual head end at the dish, i.e. a dish with two low-noise converters fitted, one for vertical and the other for horizontal signal polarisation. Selection of either is programmable via each input.

There are two scart connectors and a six-pin AV DIN socket. One scart socket is for use with a VCR and the other for connection to the main TV set (with the AV DIN socket as an alternative). Through connection via a relay is available when the satellite receiver is off. When in operation the VCR can record the channel currently being received: so you can watch a terrestrial programme (BBC-1, ITV etc.) on the main TV set while recording a satellite TV broadcast.

The low-noise converters at the dish are each fed with 15 V at 250 mA via the connecting cables: the power supply to them can be switched off by a small switch at the rear -of the unit. There's also a switch to select only input X in
the event of a single low-noise converter being used.
The unit uses a standard VCR type modulator and combiner amplifier - there's an audio level preset mounted below the modulator. The terrestrial TV aerial can be plugged in and the output next to it connected to any standard u.h.f. TV set. The additional satellite TV outputs are modulated on to u.h.f. channels in the region ch. 31-39, adjustable. We found that the modulator was good enough to be able to decode Italian teletext on a standard receiver.

There's a four-state voltage output for dish switching: 0 V dish 1 , horizontal; 3 V dish 1 , vertical; 6 V dish 2 , horizontal; 9 V dish 2 , vertical. The switching is done at the head end by h.f. relays.

Each programme (1-29) can be set not only to the required satellite channel (1-99) but also for input X or Y , for de-emphasis d1 or d2 and for deviation h1 or h2. The inputs from the low-noise converters are in the band 950 $1,750 \mathrm{MHz}$ (first i.f.). X or Y input selection is by switching voltages of +5 V or -5 V to bias on or off two pin diodes in the signal paths. After signal selection an a.g.c. stage caters for a range of between $47 \mathrm{~dB} / \mu \mathrm{V}$ to $75 \mathrm{~dB} / \mu \mathrm{V}$. A second mixer then produces an output at 480 MHz which, after two stages of i.f. amplification, is converted to baseband video by the f.m. demodulator. An a.f.c. output is fed to the microcomputer as a reference: the tuning is microcomputer controlled, using a phase-locked loop synthesiser. The input to the loop is from the local oscillator and the frequency of operation is set by the microcomputer: tuning drift is thereby eliminated, the range of control being sufficient to accommodate any drift in the low-noise converters.

The sound circuit caters for carriers at 4.5 MHz or in the range $6-7 \mathrm{MHz}$. A wideband phase-locked loop is used. Any channel can be set for 4.5 MHz or 6.5 MHz and stored in the memory. The 6.5 MHz carrier can be in the range 6 6.5 MHz : the phase-locked loop is arranged to demodulate within these limits without need for adjustment. The carrier is mixed to produce a $10 \cdot 7 \mathrm{MHz}$ sound i.f. signal which is demodulated by a standard TBA120 chip with an error signal fed back to the mixer - all this path is within the PLL.

The ECS-1 satellite at present carries eleven channels. Two of these are on east spot beams and were thus very faint, two were scrambled and the others were received
with excellent pictures - albeit a 2 m dish was being used. No adjustments to the TV set or the satellite receiver were necessary - reception of the whole band was simply by changing channels via the remote control unit. Different signal polarisation, de-emphasis, sound carriers and colour systems were all taken care of. My friend remarked how good it was - and he's not easily impressed.

Letters

WHY NO TEST CARDS?

Despite following the normal TV engineer's traditionally moderate line, after the events this week I really feel it's time to put pen to paper in a letter of complaint to the broadcasting authorities. I hope it will in no small way be supported by your good selves and the majority of Television's readers. In a nutshell, where have all our test cards gone? Since their disappearance from the BBC channels in what seems an age ago I've noticed little complaint or comment in these pages. Why hasn't anyone questioned the need for two channels of text consisting of repeated information every ten minutes or so on most days of the week? Apart from the occasional "glimpse" on Channel 4 it seems that test cards are now considered to be pointless.
Anyone involved in front line servicing will know this situation is far from ideal. At the time of writing a typical morning's programmes consist of BBC-1 text, BBC-2 text, ITV black-and-white film, Ch. 4 text. This situation doesn't allow the engineer let alone the customer evaluate the performance of a TV set or VCR.
So please BBC reconsider your policy and bring back our Effy at least on one channel. A display even every half hour would help, but please don't consider her redundant. I and many other engineers will tell you that this is far from the truth.
Keith Lane,
Southsea, Portsmouth.
Editorial comment: Whenever this comes up the broadcasting authorities tend to comment that it's not their job to provide a pattern generator that's expensive in terms of power consumption. But a portable pattern generator doesn't allow the complete transmission path to be assessed. There seems to be no reason why the broadcasters shouldn't oblige the trade in the way suggested: the present situation is unsatisfactory indeed.

TELETEXT TROUBLES

I have some further news concerning XM11 teletext decoder problems. Suddenly, about three weeks before Easter, the problem I'd had with missing rows of data on BBC-2 vanished. Text has been fine on this channel ever since. The period of malfunction was about three months. A problem with ITV text, i.e. not getting it right first time, still comes and goes but I've now noticed that this occurs only with networked information - locally generated text from TVS is always right first time. Throughout this period of difficulty BBC-1 and Ch. 4 text have always been o.k.
So what can I conclude from this? First I don't believe anything has changed locally, neither do I think the receiver was ever suspect. The broadcasters assured me
that everything was o.k. at their end, which prompted me to look into the possibility that something might be wrong at my end. I believe, from what I've heard, that the XM11 may be less tolerant of variations in transmission parameters than later designs. I feel that this is the root of the problem, even though the broadcasters would deny it.
The original fault showed every fourth row missing. Later this changed to every fifth row, before the problem disappeared altogether. Perhaps something changed as a result of a three-monthly maintenance schedule somewhere. I doubt whether l'll ever find positive proof of my suspicions and will just have to be thankful that the fault has gone away.

Keith Cummins,

Southampton.

MICROCOMPUTER FAULTS

Further to my letter in the March issue, here's some more information on microcomputer faults.
The Sinclair Spectrum's power supply seems to be responsible for a number of faults. The main item that fails is, as I stated, a ZTX450 transistor (TR4). On later versions of the board it's a ZTX650. TR5 (ZTX213), diode D15, the 7805 regulator chip and even the inductor itself have been known to fail. With all these failures there's no buzzing noise from the inductor. A screen full of horizontal black-and-white lines can be caused by failure of the Z80A microprocessor chip or the ROM. These components should be available from advertisers in the pages of Sinclair User magazine.
The BBC computer has a strip of stiff conductors that link the keyboard to the main board. Repeated movement of this strip due to the addition of ROMs to the expansion sockets located beneath the keyboard can lead to failure of areas of the keyboard.
VIC20 computers have given us the following faults. Every other numeral not working (1 o.k., $2 \mathrm{w} / \mathrm{s}$ etc.): the 6522A chip in position UBA1 faulty. Poor or no colour: suspect the modulator or the Commodore chip. Intermittent loss of picture at switch-on: the 7402 chip in position UB9 sensitive.
G. Jackson,

Hyde, Cheshire.

COMMODORE 64 TIP

Problems with home computers have been featured in recent issues. Here's one relating to the Commodore 64. It may save other readers a small fortune. The trouble is loading problems, with the computer not waiting for the play key to be pressed before going into the play or save mode. The I/O port for the cassette unit is in the 6510 CPU, along with the data direction registers. If you type in this one-line program:
10 print peek (1): GOTO 10
the computer should, if working properly and with no cassette keys depressed, respond with a solid row of 55 s . What you're more likely to see is a row of continuously changing numbers. Obviously something weird and wonderful is going on inside the chip. Next shock, phone Commodore and ask the price of a replacement chip: twenty four pounds!
A small modification (bodge) has so far proved very successful however. R1 ($3 \cdot 3 \mathrm{k} \Omega$) is connected to pin 25 of the chip: it's a pull-up resistor connected to the cassette sense line. Wire a $47 \mathrm{k} \Omega$ preset in series with this resistor

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPQ.
 Telephone 0268690868
 Telex 99305

CHROMAVISION MANCHESTER and BIRMINGHAM $061-7366333$

A

 WORKING VIDEOS 100's IN STOCKHUNDREDS OF ELECTRONIC VIDEOS WORKING NOW IN STOCK

WORKING, NON WORKING + UNTESTED TV's

AT LOW, LOW PRICES MOST MAKES

THORN, ITT,

 BUSH, PHILIPS, ETC.WORKING SETS FROM E25.00
TELETEXT, REMOTES, BASICS
ALSO COLOUR PORTABLES, NORDMENDE, T.X. ETC.
CLOCK TRIMS FOR 3V16/22 VCRs $£ 2.00$
CASH ONLY
GHROMAVISION, 95 LANGWORTHY RD, SALFORD, MANGHESTER MG 5PH
All prices subject to V.A.T.

Telegen-1

PRICE f18.35 (Inc. VAT) EXCEPTIONALLY LIGHT AND DURABLE - POCK BAI SIZE FOR OUTSIDE SERVICE

* FIVE OIFFERENT TEST PATERNS FOR folour a moni d patterns for * CROSSHATCH GRID *DOT MATRIX * WHITE RASTER
* horizontals * verticles *3.5mI JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour TV. alignment and service at the customer's home. At the tum of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.

Telegen-2

PRICE E34.45 (Inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE
* RED RASTER * GREEN RASTER

RED RASTER * GREEN RASTER

- blue raster
* 3.5 mm JACK SOCKET FOR P.S.U
* PROVIDES UHF SIGNAL APPROX * PROVIDES UH

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colou bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE f4.55 (Inc. VAT)
ALL ITEMS POST AND PACKING $£ 1.44$ (Inc. VAT)
All goods should be delivered within 4 working days.
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 29022

SADELTA

FIELD STRENGTH METER MODEL TC-402

THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered by the antenna to a TV or FM best conditions during installation etc. To facilitate measurements the tuning frequency readout is shown on a digital display.

FEATURES
Covering FM and all TV bands (UHF/VHF) including CATV freq. Digital tuning display (3 digits) for direct frequency readout Accurate 10 turn tuning potentiometer. - Built-in loudspeaker enables monitoring of sound in AM/FM

- Meter measurement in voltage and dB from $20 u \mathrm{~V}$ ($26 \mathrm{~dB} / \mathrm{uV}$).
- Continuity tester 0-500 Ohms
- Fully portable (battery) - Sturdy carry case

PRICE $\mathbf{f} 249+£ 37.35$ VAT
U.K. POST PAID, export enquiries welcome, Visa/Access or cheque with order payable to B.K. Electronics. Official orders welcome from Govt. Depts., Colleges, within 7 days. Large S.A.E. for technical leaflets of complete range delivery normally
B. K. ELEGTRONIOS Dent. 'T',

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: O702-527572
and adjust it until the row numbers stabilise at 55 (again all cassette keys up). The trick is also worth knowing since with many 64 s this 40 -pin chip is soldered in. It not only saves a fortune in chip, also a fortune in solder!
D.C.J. Tilley,

London E2.

RC HANDSET CHECK

Here's a tip I've been using for the past three years when servicing remote control handsets. If you have a suspect handset in a customer's house and would like to check that it's the unit and not the TV set take a radio - if you have a car radio this will do - and tune it to an MW station with no modulation. Press the buttons on the handset: if the unit is working you'll hear a whistle as you do so. If you use a car radio the handset must be near the aerial.
William G. Lockitt, Eng. Tech.,
Rhyl, Clwyd.

GRUNDIG SPARES

In the April Service Bureau column two possibilities were given for the problem of increasing sound with the Grundig 6010TD. These answers (manual control paddleswitches becoming leaky or a faulty SB2 memory module) were absolutely correct. You went on to say however that spares for these 13-14 year old sets are becoming difficult to obtain.

Well, a quick phone call to Grundig, using the number given in your TV/VCR spares guide, revealed that both the paddle-switch (part no. 29501.110.01) and the SB2 memory module (correct part no. $9.47041,1101$) are available ex stock, as is the complete remote control receiver module (part no. 29301.012.01) for those who need the "module exchange" repair system.

Alternatively anyone requiring Grundig TV parts would be pleasantly surprised if he consulted your classified advertisement columns. Our company has had a small but regular advertisement for a number of years. We can supply any part for the 6010 and have a fairly comprehensive module exchange scheme for many sets from 1970 to the current chassis.

Grundig thyristor line timebase sets such as the 6010 tend to lead a healthy existence, with excellent colour, superb picture and decent sound - provided they are carefully treated for the dry-joint syndrome at intervals of about five years. They are far too good to pension off in the prime of life because of fears of scarce spares.
Les Austin, Ochre Mill Technical Services Ltd.,
Lower Moddershall, Stone, Staffs.

CRT BOOSTER CORRECTION

Please note an error in the simple c.r.t. booster/tester circuit shown in my article last month. The

Fig. 1: Correction to the simple c.r.t. tester/booster circuit featured last month (see page 450). An extra pole on S1 switches off the first anode supply in the boost position.
'boost/test switch S1 should be a three-pole two-way switch, the third pole removing the 90 V supply to the first anodes during reactivation (see Fig. 1).
Jim Littler,
Wigan, Lancs.

HITACHI NP81CO CHASSIS

In the April TV Fault Finding column fellow sufferer Les Grogan mentioned top cramp on these sets due to C608 going open-circuit. We've also had this fault. Another top cramp fault in this chassis and in the CPT2051 (not the E variety) also produces gross nonlinearity in the middle part of the raster. This is due to $\mathrm{R} 614(150 \mathrm{k} \Omega)$ in the feedback network going open-circuit - a clue is given by the fact that the collector voltage of the top field output transistor is far too high. In one chassis (which one I forget) the set will be left tripping due to the guard circuit if R614 is removed to see whether this leaves the fault unchanged. Some chassis in this family use what looks like a half-watt job which usually doesn't fail: other sets use smaller resistors which do fail.

J.R. Armagh,

Portadown, Craigavon.

NORDMENDE FV/SK2 CHASSIS

I've had a couple of these sets in for repair lately. My patience was more than severely tried during the hours spent fixing them: perhaps some of the faults and symptoms may be of interest to others.
(1) Barrel distortion, i.e. bowing in from both sides. The trouble is in the EW modulator panel P. Check for open-circuits in resistor RP36 (1Ω safety type), coil LP30 or the EW modulator driver transistor TP04 (BD544B or 2N6107). The transistor has to be one of these two types. I tried several similar silicon pnp power transistors but they all broke down after a short period, taking the safety resistor with them. (Editor's note: some sets have a fuse in the RP36 position.)
(2) Dead set. This had me for a long time until eventually the second set came in and I was able to do some panel swapping. I'd originally thought that the trouble lay in the thyristor line output module U and had taken out every thyristor and tested it, all to no avail. The set just sat there dead until the horizontal line generator module Z was swapped. In went a new TDA2590 i.c. and the set sprang to life. I gritted my teeth.
(3) After a few minutes the set would lose tuning with jumping neons and hum on the field scan. Tapping hard in the bottom right-hand corner of the main PCB (track side) would restore normal operation for a few minutes. I eventually found that $\mathrm{CA} 30(2,200 \mu \mathrm{~F})$, the 36 V supply reservoir capacitor, was coming adrift - the ring making contact for the negative side of the capacitor had parted from the main body.
(4) Touch tuning trouble with intermittent and jumping tuning (neons varying) was inevitably the SAS580/SAS590 pair. Correct tuning was obtained when these i.c.s were replaced.

It seems that the NordMende SK2 chassis is reliable but tricky to repair if you're not familiar with the circuitry Both the faulty sets have now been working normally for some time, fortunately. Ploughing through has given me the confidence to work on the chassis again!
Des Walsh
Carrigaline, Co. Cork.

Servicing the NordMende F10/F11 Chassis

Christopher Holland

Despite its prominence in several West European markets the NordMende brand name has made relatively little impact in the UK, though NordMende chassis have appeared in sets sold with other names on the cabinet most notably the Ferguson 3787 colour portable. This lack of market impact has not been helped by the fact that different firms have acted as importers/agents at various times. In addition NordMende TV sets have traditionally been v.h.f./u.h.f. receivers, which means extra complication and cost in the UK market. NordMende is a leading brand in Ireland however and it's interesting that their colour chassis have always been at the forefront of TV receiver technology - some of the circuit techniques used in these chassis will be new to many TV technicians.

Chassis Specification

The F10/11 series chassis have been in production since 1981. They are to be found in other makes of set, notably Thomson and Saba. Hitachi have also used the F11 chassis in some of their sets for markets where v.h.f./u.h.f. receivers are required. The design brief was to produce an international chassis with a single mother board on to which colour decoder, tuner and sound decoder panels could be fitted to suit the requirements of individual countries. Remote control sets can be converted for teletext use by fitting the relevant panel. All sets have a scart socket for direct connection of composite video, RGB or audio signals.

The F10 chassis was designed for use with 90° tubes in sizes from 14 to 22 in., the F11 for 110° tubes in sizes from 20 to 27in. The F11 thus requires a higher output from its power supply and an EW correction circuit. Otherwise it's essentially the same as the F10. There's a later version of the F11, the F11B: more on this later.

The notes in this article will be based on the F10 chassis, with F11 chassis differences noted in brackets as they arise. Most of the circuitry is fairly conventional, particularly the signal stages, and can be quite easily understood by referring to the appropriate circuit diagram. The only areas where these chassis vary greatly from normal practice are in the power supply and field output stages. We'll look at these in greater detail.

Power Supply Circuit

The power supply is of the step-up chopper type: the voltage level supplied to the chopper circuit by a mains transformer and bridge rectifier is raised to and stabilised at a level suitable for the line output stage which then produces other d.c. lines. Line flyback pulses provide the necessary switching. The principle of the chopper arrangement is shown in Fig. 1: the complete circuit is shown in Fig. 2.

The bridge rectifier delivers a d.c. level of 80 V (F11 100 V) to coil LP01. When the chopper transistor TP01 is switched on current flows through the transistor and this coil. Consequently energy builds up in the coil in the form of an electromagnetic field. When the chopper transistor is switched off by a flyback pulse from the line output
transformer the voltage at its collector will swing positively due to the collapsing field around LP01. This positivegoing pulse is rectified by DP14 which charges CP14 to produce the 109 V h.t. line (F11-140V). As is usual with W. German sets, this is referred to as the U1 rail. Note that the h.t. obtained in this way results from a combination of the $80 \mathrm{~V}(100 \mathrm{~V})$ d.c. supply and the switching action of TP01.

The centre-tapped secondary winding on the mains transformer supplies a bridge rectifier which provides a 24 V line (F11-31V) to power the audio output stage. The centre-tap is used to provide an 11.5 V line for startup purposes. This feeds the emitter of TP21 via diodes DP21, DP24 and DP03, with a chassis return via RP26, RP24 and RP21. The current flowing through RP26 develops a voltage to switch TP21 on, as a result of which CP10 charges via DP12. This line starts up the TDA1950 sync/line oscillator chip via RP27. During the start-up period the collector of the line driver transistor TL01 is fed from the centre tap via DP13. Once the line output stage comes into operation a line output transformer derived 13 V supply takes over from the 11.5 V line, via diode DP15. RP25 is included in series with CP10 to provide a slow-start action.

When CP10 has charged sufficiently transistor TP05 will switch on, charging CP12 via RP23. The positive-going voltage developed across CP12 will eventually switch on TP06, and in turn TP02 and the chopper transistor TP01 will switch on. Positive-going line flyback pulses are fed to the base of TP04, which is thus switched on once per line scan, discharging CP12. Drive to the chopper transistor is thus provided by the sawtooth waveform generated across CP12. The charging of CP12 is controlled by TP05 whose base samples the h.t. voltage whilst its emitter is held at a constant voltage by zener diode DP20 and DP19. Regulation is thus achieved since TP01's switch-on time is determined by the conduction of TP05: TP01 is switched off by negative-going line flyback pulses which are applied to its base via diodes DP43 and DP42. Note that this power supply arrangement is very tolerant of varying mains supply voltages. The mains level is monitored via the 11 V start-up tap on the mains transformer: diodes DP21, DP24, DP03 and resistor RP07 provide a d.c. bias at the base of TP04 proportional to the level of the mains

Fig. 1: Principle of the step-up power supply. (a) Chopper transistor on. (b) Chopper transistor off. (c) Waveform at the collector of TPO1.

input. The line flyback pulses thus switch TP04 on sooner or later as the mains input is varied over the range 150 260 V .

There are a couple of other points to note in this power supply. First, in remote control sets TP21 is used to switch the set to the standby condition: in this condition resistor RP21 is not connected to chassis, so there's no voltage developed across RP26 and TP21 is switched off.

Secondly, transistor TP18 and zener diode DP18 provide excess voltage protection. The emitter of TP18 monitors the line output transformer derived 21 V supply: should this rise above about 24 V TP18 switches on and diode DP25 conducts. TP21 then switches off, removing the supply to the TDA1950 i.c. with the result that the line timebase closes down.

The Field Timebase

The field output stage uses a form of pulse-width modulation with a thyristor for the switching. It has great reserve of amplitude, which enables essentially the same circuit to be used with tubes from 14 to 27 in . It also uses very little energy as the output switching is carried out at line frequency - note that no heatsinks are required.

The complete field timebase circuit is shown in Fig. 3. Field sync pulses from the TDA1950 sync/line oscillator i.c. are inverted by transistor TF02 and applied to the base of TF04. The field sawtooth waveform is produced by the charging circuit RF12/CF04: when the voltage across CF04 exceeds that at the slider of the hold control TF04/03 switch on to discharge CF04, producing the flyback. Transistors TF05 and TF09 simply act as amplifiers for the field sawtooth waveform, which appears inverted (nega-tive-going) at the collector of TF06. Line pulses via DF06 and RF13 are added to this waveform. The result of adding these two waveforms is to produce a form of pulsewidth modulation at the base of TF07 (see Fig. 4). TF07 in turn triggers thyristor DF08. When DF08 conducts, current flows via the thyristor, coil LP01, winding 4-7 on
the diode-split line output transformer, the field scan coils and resistor RF21 to the U3 line. CF10 with the inductive components form a filter to integrate the pulse waveform. DF08 is switched off by the negative-going line flyback pulses applied to its anode by winding 4-7 on the line output transformer. DF09 is incorporated to ground the circuit during the field flyback. The power consumption is low since DF08 switches on for relatively short intervals of time.

Later Chassis

As mentioned earlier, the F11 110° chassis has been superseded by the F11B. The basic changes are that a different EW correction i.c. is used (a TDA4950 instead of a TDA4610) while much of the circuitry is now incorporated in a TEA2026 i.c. This device contains the line oscillator, the field timebase with the exception of the thyristor and the step-up chopper power supply circuit with the exceptior of the chopper transistor itself. The i.c. uses a 500 kHz crystal oscillator with internal divider circuits, eliminating the need for line and field hold controls. If the chassis is fitted with a PAL/NTSC decoder panel in place of the standard PAL panel the presence of an incoming NTSC signal will be detected and the field frequency will be automatically switched to 60 Hz .

In addition to the new version of the 110° chassis, the F10 is being replaced by the F12 for non-remote control 14in. sets and the F14 for remote control sets with 14-20in. tubes. Also the $\mathbb{F} 15$ was introduced recently, designed with the new generation of square tubes in mind. No F13 chassis you'll notice: I never realised before that the Germans are superstitious!

Servicing Aspects

As with other modern TV chassis designs the reliability of these sets is good. Stock faults are not something one can list. A few faults have occurred on several occasions
however and the following notes should prove helpful.
Any line output stage problems that cause the d.c. supplies derived from the line output transformer to rise in value will result in TP18 conducting, thus switching off the line oscillator via TP21. In this condition the full U1 value of $109 \mathrm{~V}(\mathrm{~F} 11-140 \mathrm{~V})$ is not developed due to the absence of line pulses. As there's no load on the power supply the U8 80 V supply will rise to almost 90 V . Note also that if there's a power supply fault that prevents the step-up switching taking place, e.g. transistor TP01 opencircuit, the 80 V present on the U1 line is enough to allow the line output stage to operate. The result is a small raster with a severe hum bar. These symptoms are a sure sign that the line timebase is operating correctly and that the fault is in the power supply.

Fault Notes

The following is a comprehensive list of the problems most likely to be encountered when working on sets fitted with these chassis.
Set dead, fuse FP02 blown: Check whether the chopper transistor TP01 is short-circuit. If it has to be replaced, check the other transistors in the power supply and resistor RP06 before switching on. A short-circuit line output transistor will also blow this fuse (the F10 chassis uses a BU208D, the F11 a standard BU208 and the F11B a BU508AV).
Set dead, fuse FP02 intact: Check for 80-90V (F11 100110 V) at the collector of the line output transistor. If absent check for broken tracks around the diode-split line output transformer - it's heavy and in early sets the PCB was not very well supported in this area. Check for 11 V at the collector of the line driver transistor TL01. If there are no line pulses at pin 2 of the TDA1950 chip IL01 check the d.c. level at pin 14 . This is normally 12 V but 8 V will enable the line oscillator to start up. The start-up voltage is obtained from the 11 V tap on the mains transformer via transistor TP21. If sufficient voltage is present at pin 14 but there's no output at pin 2, change the i.c.
Set dead, remote control models: Check whether transistor TP21 is being switched off by the front remote control decoder panel. If so, suspect the 400 kHz crystal first with microcomputer controlled systems.
Set puising on/off: Remove the field scan coil plug (connector BF01). If the set now starts up with field collapse there's no field sawtooth for modulation by the line flyback pulses so the line output stage is being loaded down. Check resistors RF12 and RF15 followed by the transistors in the field timebase. The culprit could also be thyristor DF08 loading the line output stage via winding $4-7$ on the transformer.

If the set continues to pulse with the field scan coils disconnected check resistor RP11 in the power supply. If this is open-circuit the h.t. line will be too high. The supplies derived from the line output transformer will also be too high with the result that transistor TP18 will switch on. A fault of this type can be seen by monitoring the U1 line with an analogue meter: the voltage will flick between $80-130 \mathrm{~V}$ as the set pulses on and off (F11-100-160V). If the power supply appears to be all right check for something in the line output stage causing TP18 to operate the trip circuit. The line output stage can be checked by disconnecting the base of the chopper transistor TP01: if the set now starts up, albeit with a reduced raster size and a hum bar, the line output stage is all right. Line tearing with excessive h.t. ripple: Check the U8
supply reservoir capacitor CP11 - it could be dry-jointed. Also check CP12.
Field collapse: The usual field collapse symptom of a thin horizontal line across the centre of the screen is not often encountered with the type of circuit used in these chassis. If experienced check for something open-circuit between the anode of thyristor DF08 and the field scan coils via coil LP01 - this coil is a separate winding on the same former as the coil used in the switch-mode power supply and the PCB tracks to its pins should be checked.
Picture shifted upwards, with field roll: This is the most common field fault with these sets: it's caused by transistor TF09's d.c. biasing being incorrect. Check RL52 (15 Ω - this is the U3 supply surge limiter resistor), RF20, RF21 and RF10, also the height preset control PF02. In earlier chassis PF02 was a 100Ω preset: it was changed to 47Ω with a fixed 47Ω resistor in series.

The transistors used in the field timebase seldom give trouble: unfortunately when they do they often appear to be good when checked with an ohmmeter, so substitution is the only effective test.
Uncontrollable field roll: Check transistor TF02 and capacitor CF01.
No raster except for a wide horizontal band near the bottom of the screen: Check whether the U4 (200V) supply surge limiter resistor RL51 (39) is open-circuit.
E.H.T. but no raster: Check RL54 if the tube's heaters are out. If the tube's first anode voltage is absent or low (should be $350-400 \mathrm{~V}$) check the adjustment of the lower preset on the diode-split line output transformer: if adjustment is not possible the transformer will have to be replaced. Otherwise check transistor TV81 (BC557B) and resistor RV82 (10 2) on the tube base panel. Note that a fault in any of the three RGB output stages on the tube base panel can cause the TDA3506 RGB matrixing i.c. IV02 to cut off all three guns, thus giving a blank raster.
Excessively bright raster with flyback lines and no luminance: Check for excessive first anode voltage. If this cannot be adjusted, or adjusts to the correct level then drifts again, replace the diode-split line output transformer. This fault can also be caused by failure of the TDA3506 RGB matrixing i.c. IV02: first check whether its d.c. supply resistor RV23 (10 2) is open-circuit. In the unlikely event of IV02 failing after replacement check whether CV91 $(0.001 \mu \mathrm{~F})$ on the tube base panel is shortcircuit.
One primary colour weak: Check CV38, CV39 or CV40 $(0.68 \mu \mathrm{~F})$ associated with the TDA3506 chip as appropriate. Could also be caused by the chip itself.
Excess of one primary colour: Check CV47, CV48 or CV49 $(0.022 \mu \mathrm{~F})$ associated with the TDA3506 i.c. as appropriate.
No colour: Suspect the 4.43 MHz crystal QC02 or the AN5620X colour decoder chip IC01 on the PAL decoder panel. If the positive-going line flyback pulses are missing at pin 7 of this i.c. check transistor TL41 (BC548B).
Raster but no noise spots: Suspect the combined tuner/i.f. block which produces a composite video signal at pin 23, but first check the d.c. supply to the tuner. Can also be caused by the TEA2014 video switching chip IV03 - this i.c. is used to switch off the video signals from the tuner/ i.f. block and switch in the signal from the scart connector when the correct switching level is connected to pin 8 of this connector.
No tuning: Before changing the tuner block, check that the U1 supply is reaching the front panel where it feeds the 33 V zener diode (the circuit reference number for this

Fig. 3: Complete field timebase circuit, F10 chassis. RF12 is 3.3Ω in the $F 11$ chassis - there are other minor variations.
diode varies with different models). If the U1 supply is not present at the front panel check RL53 (100 Ω) and CP24 $(0 \cdot 01 \mu \mathrm{~F})$. Check the 33 V zener diode itself, also the u.h.f./v.h.f. band selection circuit on the front panel. The usual culprit however is the tuner block itself. Note that it is also almost the only cause of tuning drift.
No sound: These sets all have a sound mute system which operates when no video signal is received. It compares the composite video signal with line flyback pulses within the TDA1950 chip: if the sync pulses in the video signal don't coincide with the flyback pulses pin 7 of this i.c. goes to 0 V (it's normally at 11 V) and the sound is muted via pin 2 of the TBA120UB intercarrier sound i.c. This muting circuit should be kept in mind when fault finding: for example, on a set with no sound and a video fault don't chase a sound fault as the muting circuit will operate due to the absence of the video signal. The muting circuit can also give clues however: for example, a set with no video but good sound means that the fault is in the latter part of the video channel, certainly after pin 6 of the TEA2014 switching chip IV03 (this is the take-off point for the video feed to the muting circuit).

Where there's no sound and the muting is not in operation, i.e. pin 7 of the TDA1950 chip is at 11 V , check the TDA2006 audio output chip IS01. Note that many of these sets have been built with stereo use in mind: a second audio output chip is often fitted but not connected up - this is a convenient source of a replacement if you do

Fig. 4: Showing the way in which adding line pulses (three only shown) to a field sawtooth waveform gives pulse width modulation at the collector of TF07 so that DF08 is switched on progressively earlier as the field scan progresses.
not have one readily to hand.

Spares

The agents for NordMende sets in Ireland are Reynolds Electronics Ltd., Finnabair Industrial Park, Dundalk, Co. Louth (042 31281). The UK agents are Hayden Laboratories Ltd., Hayden House, Chiltern Hill, Chalfont St. Peter, Gerrards Cross, Bucks SL9 9UG (0753 888 447).

NE OUTPU	RANSFORMER \& CARRIAGE	
Delivery by return of post.		
BAIRD: 8290, 8752, 8773	ITI: VC200 to VC402 CVC1, CVC2 (FORGESTONE)	
RANK BUSH MURPHY	CVC5, CVC7, CVC8, CVC9, CVC20 10.35	
A774 with stick rectifier $\quad 9.78$	CVC25, CVC30, CVC32, CVC45 9.20	
A816, T16, T18, 2712,2715	CVC880, 1100, 1150 P.0A	
T20, T22, T26, Z179, A823	CVC1200, 1204, 1210, 1215, 2600 P.0A.	
2718 Basic unit	PYE: 169, 173, 569, 368	
DECCA: 1210, 1211, 1511	CT200, СТ200/1, CT213 $\quad 10.35$	
1700, 2001,2020, 2401,2404 9.20	$725-731,735,737,741 \quad 9.78$	
$\begin{array}{ll}\text { CS1730, 1733, 1830, } 1835 & 920 \\ 30,70,80,90,100,120,130 & 9.20\end{array}$	PHILPS: $170,210,300$ series $\quad 9.20$	
	320 series $\quad 9.78$	
FERGUSDN, THORN: 1590, 1591 9.20 TX, T8, TX2, TX3 mono P.0A 1690, 1691. built in rect. 9.78 G8 and G9 Series £9.20		
$\begin{array}{ll}1600,1615,1700,1790 & \text { P.OA } \\ 3000,3500,8000,8500,8800 & \text { P.OA }\end{array}$	$\begin{array}{lr} \text { G8 and G9 Series } & \mathbf{£ 9 2 0} \\ K T 2 \text { KT3. series } & 9.20 \end{array}$	
	$\begin{array}{lr} \text { KT2. KT3. series } & 9.20 \\ \text { G11. K30. split diode } & \text { P.O.A } \end{array}$	
9000, 9200, 9300 series 12.00 $9500,9600,9650$ series 10.99 9800, TX9, TX10 series PDA. MOVIESTAR 3781, 3787 12.00 TX10 focus unit 1025	BINATONE: 9909, 9860, 9488 P.OA. DORIC Mk3, Mk1 11.50 RNLUX 9560, 9670 P.0A. GRUNDIG: most models in stock	
FDELUT: FTV12 mono 10.35 OX2000 XX3000 P.DA.	SANYO: 5101, 5103, 7118 P.0A.	
	SHARP: C1851H, C2051H P.OA.	
G.E.C. 2047 to 3135 mono $\mathbf{9 . 2 0}$ TOSHIBA: C800, C800B P.OA 1201H, $1501 \mathrm{H}, 2114,3133,3135$ 9.20 TANDBURG: 190, CTV2, CTV3 P.0A TELERUNKEN: most models in stock		
DUAL \& SINGLE hybrid col. $\quad 10.00$	HITACHI: 1471, CPB260, 2501 P.OA. SIEMANS: FF series P.OA.	
SINGLE STD solid state \quad E2.00		
INDESTT: 24EGB, 12LGB, 12SGB 10.35	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.	
WINDINGS 6		
TYNE: main winding RBM: T20, $22, \mathrm{~T} 26, \mathrm{Z179}$ 6.80 1.33		
WALTHAM: W125 eht winding 237		
WALTHAM: W190, W191 eht coil 5.00		
KORTING: hybrid winding 5.90		
THORN: 8000, 8500, 8800 eht 6.70		

Teletopics

Agreed uk stereo TV Standard

The BBC has been carrying out tests on a digital stereo sound system of its own design since late 1983 - we last reported on the subject in this column in August 1984, after tests to confirm the system's compatibility with nonstereo receivers had been carried out. The system that's been evolved is called 728 -Nicam (near instantaneous compansion) and has been agreed by the IBA. It's at present awaiting approval by the Department of Trade and Industry. Since transmitters are already installed at Crystal Palace a London area service could be started in a matter of weeks: it would take some years to convert all the BBC/IBA transmitters. It's understood that Thorn EMI Ferguson has a decoder chip set at an advanced stage of development and that incorporating stereo sound would add about $£ 30$ to the cost of a receiver.

The system uses a single carrier spaced at 6.55 MHz above the vision carrier, with four-phase shift-key modulation: the transmitted data rate is $728 \mathrm{Kbits} / \mathrm{sec}$. The original analogue sound signal is sampled at a rate of 32,000 times a second, the samples being converted to 14 -bit words. To get the signal into the spectrum space available 10 bits are transmitted along with a signal to indicate to the receiver the compansion that has taken place. As a result the receiver can reconstruct and decode the original 14 -bit samples. One advantage of the system is its compatibility with the MAC standard proposed for satellite TV transmissions.

DBS PROGRESS

The IBA has now advertised for contractors to provide three new TV services by satellite transmission, to be receivable throughout the UK. Applicants have been invited to submit proposals by August 29th with a view to the IBA selecting and appointing contractors by the end of the year with services coming into operation by 1990 . Applicants have been invited to apply for a contract to provide all three services - with a variety of programming between the three channels - to be financed either by advertising, by subscription or a combination of the two. Those proposing to provide fewer than three services are asked to indicate what forms of co-operation they would plan with other contractors. Applications have also been invited for contracts to provide teletext DBS services, both from those applying for the programme contracts and others. The government intends to introduce legislation so that the contracts would last for up to fifteen years, under the terms of the Cable and Broadcasting Act 1984.

Meanwhile the election of a new government in France has called into question the Maxwell group's plans (see last month) to provide programmes on two of the French TDF-1 satellite's channels. Mr. Maxwell maintains that he has a binding contract but the new government has indicated that it plans to cancel this, with six months' notice, and open the allocation of TDF-1's DBS channels to competitive tendering.

INTERNATIONAL TRADE

The effects of the rise in the value of the yen, mentioned in our leader last month, are already showing through. Matsushita has reported the first fall in sales and profits
for eleven years, during the first quarter of its financial year which ended on February 20th. Consolidated profit fell by 19.3 per cent and sales by 8.7 per cent. Domestic sales fell by only $1 \cdot 1$ per cent while overseas sales recorded a decline of 16 per cent - sales of video/TV equipment fell by 17.2 per cent. Reduced colour receiver exports to China and a sluggish demand for components were given as contributory factors. Matsushita proposes to increase overseas selling prices and transfer some production to other south east Asian countries.
Sanyo is increasing the prices of its VHS VCRs in the UK by between $£ 30$ and $£ 50$ depending on model and predicts that other Japanese manufacturers will be doing the same.
The Thomson group is to cut its workforce in European colour receiver plants by between 20 and 25 per cent about 1,000 jobs in W. German plants will go, 550 jobs in France and 300 in Spain. Last year Thomson's consumer electronics group made a loss of $£ 30$ million on sales of some $£ 2 \cdot 1$ billion. The overall proposal is to cut the workforce from 8,500 to around 7,000 . Thomson, whose brands include NordMende, Saba and Telefunken, is one of Europe's two largest CTV manufacturers: colour TV accounts for roughly fifty per cent of Thomson's estimated annual consumer electronics output. Europe's other major consumer electronics manufacturer, Philips, plans to close a number of TV manufacturing plants.
Matsushita has announced the development of a 1 Mbit video DRAM. Mass production is expected to start by the end of the year. Two such chips are required to store a TV field.

THORN-JVC DEAL

An agreement has been reached between Thorn EMI Ferguson and JVC for the manufacture at Ferguson plants of colour receivers to meet JVC's requirements in the UK and continental European markets. Under the terms of the agreement a range of products incorporating JVC's newly developed BX chassis will be manufactured by Ferguson with technical and production support from JVC: the new manufacturing operation will be managed by Ferguson and will require substantial additional equipment and dedicated production facilities. A new production line to be installed at Gosport will be able to produce over 200,000 sets a year. Enfield will supply PCBs and High Wycombe cabinet mouldings.

ORION's UK PLANT

The Orion Electric Corporation of Japan is to set up a VCR/TV manufacturing plant at Kenfig Hill, South Wales - the 50,000 square feet factory was previously used by computer manufacturer Dragon Data. The first phase of the operation will be the installation of a production line for VHS VCRs: production is expected to be running at a rate of 10,000 machines a month by the end of the year. A CTV line will probably be added next year to produce sets for sale in the UK and continental Europe. Assistance tied to the number of jobs created will be provided by the Welsh Development Agency. Orion products will continue to be distributed in the UK by L and M Raymond of Watford. Sales are mainly to major retailers - Orion VCRs are sold by Dixons under their Saisho brand name.

TV SYSTEMS TESTED

With the co-operation of Swindon Cable Ltd. IBA engineers recently demonstrated for the first time successful distribution of full-capacity MAC TV signals via a mod-
ern, operational cable system. Full-resolution MAC-encoded vision with digital sound at a data rate of $20 \cdot 25 \mathrm{Mbits} / \mathrm{sec}$ were inserted at the head end of Swindon Cable's multichannel system, using the EBU's "cut and rotate" scrambling system. A receiver connected to an existing domestic socket outlet produced pictures without any significant degradation.

A demonstration of the MUSE system has been carried out by RAI and NHK at Turin. The Japanese MUSE (multiple subnyquist sample encoding) system has been developed to enable high-definition TV signals to be transmitted using standard satellite TV channel bandwidths. Reception of MUSE-encoded signals via a noisy satellite transmission path is said to have produced pictures virtually identical to the original HDTV ones.

NEW FILM CABLE CHANNEL

British Telecom is to offer cable operators a new film channel, with material sourced from MGM/UA, Paramount and Universal initially. It will compete with Robert Maxwell's Premiere channel, with which MirrorVision was recently amalgamated. Distribution of the new channel to cable operators will be via cassette rather than satellite transmission.

VCR SERVICING VIDEOCASSETTES

Flintdown Ltd. (Mountauban Chambers, 339 Clifton Drive South, Lytham St. Annes FY8 1LP) has produced a series of seven cassettes on servicing domestic VCRs. The series consists of (1) an overview of VCR systems, (2) servo control systems, (3) colour recording systems, (4) frequency modulation, (5) VHS, Betamax, V2000 and Video 8, (6) component video and (7) VCR faults. Each cassette is available in any standard format and costs $£ 35$ plus VAT - a discount of 10 per cent is given on a complete set of seven cassettes.

VIDEO EQUIPMENT

JVC has launched a midi-sized hi-fi VCR, Model HRD470, which is expected to retail at around $£ 600$. The tape deck has been rotated through 180° to give frontloading of the cassette end first.

Kodak is test marketing some electronic still picture systems in the USA. A disc recorder-player enables 50 TV fields from a TV set or other video source to be recorded on a standard 2 in . floppy disc. Recording is triggered by remote control. A companion printer produces prints of any recorded field on instant colour film. There's also a film to disc transfer service which enables 35 mm colour film negatives to be recorded on disc for playback via the recorder-player.

Grundig has introduced a combined colour receiver/ VCR unit, Model TVR5000, which is expected to sell at around $£ 950$. The VCR incorporated is the new VS300 which features auto tape time select, electronic locking and can record two programmes up to a year ahead.

AMSTRAD TAKES OVER SINCLAIR'S COMPUTER INTERESTS

Amstrad has bought the world-wide rights to Sinclair Research's current computer interests. Sinclair is now a research organisation without marketing operations. A computer under development by Sinclair will be offered to Amstrad at a later date.

Amstrad is to continue production of the Spectrum computer in the UK for the present. Sales of the QL will
continue while stocks last but this machine will probably be phased out. Interesting that Amstrad decided not to take on Sinclair's pocket monochrome TV set. Amstrad paid $£ 5$ million for the right to use the Sinclair brand name and current stocks.

TV/VCR SPARES GUIDE

Some corrections and an addition to the spares guide published with our April issue. Spares for recent NEC products are available from NEC Business Systems (Europe) Ltd., NEC House, 164-166 Drummond Street, London NW1 3HP or from SEME Ltd., Unit 2E, Saxby Road Industrial Estate, Melton Mowbray, Leics. Models include CTVs 12T311, 20T772, 20T773, 14T412, 14T1406, CT1404, FS1901, FS1902, CT1416 and FS1502 and VCRs PVC744E and PVC746E (Beta) and N830EK, N831EK, N833EK, N9013 and N9014 (VHS). Spares for earlier NEC models distributed in the UK by Cap Ten are available from Tech Semco.

The address we gave for Tensai was the last known one. It appears that this company is no longer represented in the UK. Don't use the phone number we gave - it's been transferred to a domestic user.

Spares for three Gold Star monochrome portables, Models VW300, VR317 and VR700, are available from Uni-Com Electronics, Station Road, Edenbridge, Kent TN8 6EW (0732 865 238).

CPC of Preston was mentioned in the Letters column last month as a supplier of spares for Sinclair microcomputers. The full address is CPC Electronic Component Distributors, 194-200 North Road, Preston, Lancs (0772 555 034). CPC are also official spares stockists for Fidelity, Ferguson, Philips, Pye and Sony.

TVRO EQUIPMENT

Megasat's new top-of-the-range satellite TV receiving system is said to be the only totally automatic remotecontrolled system on the market with a computer-generated "menu" of programmes presented on the screen for user selection. Any programme can be selected by remote control without the user leaving his chair. The remote control system includes the motorised dish and automatic polarisation. Price is $£ 2,645$ including VAT (plus installation). The Megasat system is available from Harrods, Wallace Heaton and Lasky's Tottenham Court Road and Brent Cross stores.

NEC's NESAT satellite TV receiver system is now available with an automatic aerial tracking system. The actuator motor is linked by cable to a microprocessor controlled tracker unit which can be located anywhere in the vicinity of the TV set. An LED display shows the dish position.

Sat-Tel has developed a battery-operated satellite TV signal meter to simplify dish installation. The meter, called the Skyhound, plugs directly into the LNC's output and in addition to the meter display has a variable audio pitch indicator.

A new transistor from Mullard, type BFG195, has a transition frequency of typically 7.5 GHz and a unilateral power gain of 12 dB at 2 GHz . It can handle a power dissipation of 0.5 W and is said to have the highest presently available power handling capability for this category of transistor. The four-lead, dual-emitter transistor is intended for applications in high-gain wideband systems up to 2 GHz , e.g. in the first i.f. section of a satellite TV receiver.

The Development of Colour Tubes

Eugene Trundle

The picture tube is the very heart of a colour set or monitor, its characteristics dictating not only the shape and size of the set but the design of every other section of the receiver apart from the tuner, the i.f. amplifier and the control system. Even the sound system is related to the tube in that the loudspeaker usually has to be accommodated alongside and its shape, size and magnetic field must conform, while the audio amplifier is (or should be) tailored to the type of loudspeaker in use.

The Early Days

Colour picture tubes have been with us since late 1949, when Dr. Harold B. Law made the first shadowmask tube at the RCA company's Princeton, New Jersey laboratories. The picture was small, about 11 cm in diameter, and the resolution and convergence performance were very poor by today's standards. Most of the ingredients of subsequent tube technology were there however: three guns, one for each primary colour; a tri-colour phosphor screen; and above all the shadowmask. In one form or another the shadowmask has been present behind our screens ever since.

The original RCA design was based on an idea by A. C. Schroeder, patented by him, for a delta-gun/mask/ triad-phosphor-dot screen configuration. A much earlier patent for a colour display tube, filed in Germany by Werner Flechsig in 1938, proposed the shadowmask in an aperture-grille form: this uncannily anticipated the Trinitron tube introduced by Sony of Japan some thirty years later.
The first delta-gun tubes had an internal phosphor-dot screen which was flat, as was the shadowmask mounted some 1.2 cm behind it: the curved glass faceplate acted merely as a clear window. It wasn't until 1954 that tubes with the phosphors deposited on the rear of the curved faceplate went into production. These had a deflection angle of 70°, a circular 21 in . (53 cm) screen, a huge 51 mm diameter neck and a metal cone. An all-glass version went into production three years later.

Tube Evolution

Gradual improvements in the phosphors, mask and faceplate light transmission characteristics were introduced before the next big step in 1964, the 90° deflection tube with a rectangular 25 in . (63 cm) screen. This was followed shortly after by a 19 in . (49 cm) version. The popular 22in. (56 cm) 90° tube came in 1967.

1968 was a significant year. In April the Sony Trinitron tube was released, initially in a 33 cm (13in.) rectangular format with 90° deflection. With its in-line gun assembly and striped phosphor screen it was the precursor of all the current tube designs: a grille with slots from top to bottom performed the same function as the shadowmask. The rest of the world followed: RCA's PIL (precision in-line) tube with its slotted shadowmask and striped screen was introduced in 1972 and was followed over the next few years by many variants. The great advantage of the PIL tube was the elimination of the need for the convergence
circuitry required with delta-gun tubes.
The first 110° shadowmask tube was introduced in 1969 - especially for Europe, as the US market wasn't at that time into wide-angle colour tubes. It was a delta-gun tube with a thick neck (36.5 mm). 110° tubes with 29 mm neck diameters appeared as early as 1970 . The seventies saw a succession of developments: saddle-toroidal yokes in 1973; internal magnetic shields, quick-heat cathodes and the Philips 20AX tube in 1974; "soft flash" in 1977; the Philips 30AX system with no need for setmaker or service technician adjustments in 1978, along with pincushiondistortion free (pin-free) tubes from Japan. In 1979 the mini-neck tube (22.5 mm diameter) came from Japan and in 1982 Toshiba introduced the FST (flat square tube) screen. To bring us up to date, the Philips 45AX tube was introduced in 1984 and in 1985 Sanyo demonstrated small, prototype beam-indexing tubes - this type of tube has a single gun with switched RGB inputs and no shadowmask (the idea is not new but its realisation has always proved difficult, mainly because of the problem of switching the video signals at the high frequency required).

The Delta-gun Tube

Since we're going to describe the components and techniques used in colour tubes in some depth it's important that their basic operation and principles are understood. Although delta-gun tubes are now obsolete as far as domestic TV sets are concerned they are still in production for use in monitors and advanced computer displays since they are capable of giving very high definition displays when fitted with a fine-pitch shadowmask. Let's start then with a brief rundown on delta-gun tubes.

The virtue of all types of direct-viewing colour displays (as opposed to multi-tube projection systems) is that the tube used simultaneously produces on its screen light in the three primary colours red, green and blue. This implies the presence on the screen of three different phosphors, and the trick is to ensure that the electron beam from each gun strikes only the appropriate phosphor material. Hence the shadowmask which, for each beam, casts a shadow over the phosphors the beam shouldn't reach. The delta-gun tube has three electron guns arranged in equilateral triangular formation in the tube's neck - see Fig. 1. The guns are each tilted towards the tube's major axis so that their electron beams converge at the shadowmask. Because the beams come from three different "aiming points" their approach angles differ: this is the key to the operation of the mask (see Fig. 2). The beams cross over at the shadowmask and diverge beyond it, each to strike its correct phosphor dot.

Colour Purity

So far as the mask and screen are concerned the origin of the beams is not the delta-gun assembly itself but a point in space in the tube neck, at the centre of the deflection yoke, called the deflection centre. By fitting a lamp at the apparent source of each beam in turn the positions of all the phosphor dots for each colour can be

Fig. 1: The thick-neck, delta-gun arrangement. (a) Positions of the three guns in the tube neck. (b) Configuration of the gun electrodes and convergence pole-pieces. (c) Axial view of the pole-pieces mounted at the end of the guns: the polepieces guide the magnetic fields from the adjacent radial convergence coils.

Fig. 2: Trajectories of the beams in a delta-gun tube. In practice each beam is larger than one shadowmask hole.

Fig. 3: The inherent raster geometry errors with a delta-gun tube.
fixed photographically with reference to the perforated shadowmask. This is done during manufacture and ensures that provided each beam is correctly aligned at the deflection centre perfect colour purity will be produced in operation, with no overshooting of the electron beams on to phosphor dots of the wrong colour at any point on the screen. Purity setting is easy to adjust: we manipulate a pair of ring magnets to align the beam trajectories through the deflection centre, then adjust the position of the deflection centre itself by sliding the deflection yoke along the tube's axis.

Convergence

The problem with the delta-gun picture tube configuration is its inherent registration errors. The three rasters, red, green and blue, are traced out by separate electron beams coming through the deflection centre at three different angles - each is subject to different aberrations in the scanning process. This results in the complex raster geometry errors shown in Fig. 3. Each colour raster has a different combination of trapezium and pincushion distortion. To pull these odd and divergent rasters into registra-

Fig. 4: Principle of the Trinitron tube.
tion, i.e. to overlay them, calls for individual and close control over the positioning of all three beams as they enter the deflection field. A static magnetic field will suffice to pin together the raster centre points (static convergence) but to make the edges of the three individual rasters register each beam must be subjected to a continuously varying magnetic field (dynamic convergence). A parabolic correction waveform is required to iron out the pincushion distortion while a sawtooth correction waveform will cancel trapezium distortion. Hence the "tilted sawtooth" current waveforms in the radial dynamic convergence correction yoke. These are required at both line and field rate, and must be adjustable in amplitude and tilt - and in shape in the case of the blue horizontal correction waveform for 90° tubes and for most functions with 110° tubes.

The difficulties, the compromises necessary, the expense of providing the convergence hardware, the skill needed in aligning the many presets, the power loss in the entire convergence network and its vulnerability to drift prompted the tubemakers to investigate different arrangements for the picture tube. The goal was to produce a tube that has an inherent self-converging characteristic. So long as there are three beams travelling along the tube on different paths this is very difficult! The solution adopted was to mount the guns in line so that the three beams travel abreast and to build correction into the tube and its yoke, something that calls for a very high degree of manufacturing accuracy. Before we come to the selfconverging PIL tube however we should look at the first in-line tube to be mass produced, the Sony Trinitron.

The Trinitron Tube

The principles of the Trinitron tube are shown in Fig. 4. The tube has several advantages over the delta-gun type of tube. These spring from its use of a single in-line electron gun assembly and an aperture-grill form-of shadowmask. The electron gun has three separate cathodes arranged side-by-side: all the other electrodes are common to the three beams. This facilitates the use of a single, large-diameter electron lens (see later) in the centre of which the beams cross over, making for minimum aberration and a reduction of the scanning spot size (in comparison with the delta-gun tube) of about 25 per cent. The two diverging outer beams are redirected by an electronic prism (a set of electrostatic deflection plates) so that they converge and cross over at the aperture grille.
The aperture-grille shadowmask consists of a metal sheet with a large number of evenly-spaced vertical slits to provide shadowing for groups of three (RGB) phosphor stripes. This form of construction has little stiffness in the vertical direction and has thus to be kept under considerable tension to prevent sag or buckle. One consequence is that a parabolic faceplate contour cannot be used Trinitron faceplates have a cylindrical contour with the
vertical profile straight. The transparency of the aperture grille was about 33 per cent greater than that of the shadowmasks used in contemporary delta-gun tubes, giving a brighter image for a given beam current. This and the 25 per cent smaller spot diameter gave the Trinitron tube a considerable advantage, which was widely acclaimed.

Having the three beams in the same horizontal plane brings two benefits: first the purity is virtually unaffected by horizontal magnetic fields such as the Earth's; secondly the need for vertical convergence correction disappears because the deflected beam trajectories remain in a single horizontal plane. The fact that the three beams are very close together on their journey through the deflection field also minimises horizontal misregistration of the three rasters. Total errors are reduced to those shown in Fig. 5. The standing voltage on the prism electrodes is adjusted to achieve correct static convergence on the vertical centre line, leaving a relatively simple dynamic convergence correction problem which can be solved by applying a parabolic waveform to the prism electrodes, see Fig. 6. Minor trimming is carried out by tilting the deflection yoke and adjusting the line-rate (and, in large-screen versions, field-rate) sawtooth current in a single four-pole convergence coil associated with the deflection yoke. These are purely trimming adjustments to take up tube and yoke manufacturing tolerances, not correction for inherent geometrical errors as in delta-gun tubes.

The PIL Tube

The Trinitron design showed the advantages of the inline gun configuration. It was not long before the PIL tube came along. The main differences between the two tubes are as follows: in the PIL tube there are staggered crossties in the mask assembly (see Fig. 7) to provide sufficient mechanical rigidity to enable a conventional parabolically curved faceplate to be used, and the elimination of all need for dynamic convergence correction. This is achieved by a very special deflection yoke design in which the density of the magnetic flux in the tube's neck is not homogeneous, as in a monochrome or delta-gun tube, but astigmatic.
The degree of deflection applied to an electron beam is proportional to the deflection field's magnetic flux density. To scan a picture tube horizontally and vertically both deflection field strengths change continuously according to a sawtooth law, but at any given instant the total flux density present is proportional to the distance from screen centre to the point at which the beams strike the screen. If the magnetic field required is carefully distributed in the tube's neck it's possible to achieve good convergence all over the screen area. Fig. 8 shows the effect of a uniform deflection field in a tube cross-section: the three beams converge at the screen centre and since each is affected equally by the deflection field they will converge at a point along a circular line (the image field) whose radius is the deflection centre to screen centre spacing. Beyond this crossover point the beams will diverge, striking the relatively flat tube screen at points a, b and c.
The operating principle of the PIL tube depends on a special deflection yoke design which produces magnetic flux lines distributed in the tube's neck in the manner shown in Fig. 9, which is again a tube cross-section drawn looking from above the tube to show horizontal deflection. In this astigmatic field the deflection force acting on

Fig. 5 (left): The Trinitron tube's basic convergence errors. The absence of crossover with the R and B verticals is due to the use of an astigmatic vertical deflection field.

Fig. 6 (right): Voltage and waveform applied to the prism electrodes to correct the misregistration shown in Fig. 5.

Fig. 7: Configuration of the slots in a PIL shadowmask.

Fig. 8 (left): An in-line gun array projecting three beams through a homogeneous deflection field.

Fig. 9 (right): With careful distribution of the deflection field flux density, convergence is automatically achieved over the entire screen area.

Fig. 10 (left): Errors arising from vertical deflection of in-line beams by a homogeneous magnetic field.

Fig. 11 (right): Opposing astigmatic line and field deflection fields in a fully self-converging yokeftube system.
a given beam depends on the path taken by the beam through the deflection field. The centre beam, taking this first, passes through the relatively weak field in the middle of the deflection centre and is deflected to point A on the screen. The right-hand beam will start to turn left as it enters the deflection field. It then passes into an area of reduced flux. As a result the deflection force acting on it is reduced and it turns through a lesser angle than the centre beam. If the flux density in the deflection field is tailored to be just right the beam will converge with the centre beam at point A instead of crossing the centre beam's path to strike the screen at some point B. As the left-hand beam starts to turn left it encounters an increasingly strong magnetic field. This bends it farther to the left with the result that it's aimed precisely at point A on the screen

Fig. 12 (left): Earliest form of toroidal deflection yoke for a PIL tube.

Fig. 13 (right): Saddle-wound yoke for a 110° 20AX selfconverging tube, showing the horizontal deflection coils.

- if it passed through a homogeneous field it would strike the screen at some point C . The same principle applies when the three beams are deflected to the right instead of to the left.
Now for vertical deflection. As the beams are deflected upwards or downwards from screen centre the yoke-toscreen beam path becomes progressively longer, which would lead to horizontal displacement of the three images due to crossover of the beams before they reach the screen, see Fig. 10. To counter this the horizontal lines of magnetic flux, which produce the vertical deflection, are given an increasing vertical component away from the tube's axis - the field is increasingly barrel shaped.

The horizontal and vertical field patterns required are shown in Fig. 11. These astigmatic fields are achieved by the deflection yoke's winding pattern: the configuration of the toroidally-wound yoke is shown in Fig. 12. The effective field pattern (and hence dynamic convergence trimming) can be adjusted by tilting the front (screen) end of the deflection yoke to achieve optimum registration of the three rasters. In the original PIL tube design this was carried out at the tube factory, using a yamming jig (YAM $=$ Yoke Alignment Machine), after which the yoke was wedged and sealed to the tube with a thermosetting adhesive. The tube and yoke thus became effectively a single assembly and replacement tubes came with sealed on yokes. In subsequent designs the yoke and tube were treated as separate components, with alignment left to the setmaker or TV technician.

Purity (initial alignment of all three beam paths) and static convergence (individual control of the effective point of origin of the two outer beams) is provided by a combination of two-, four- and six-pole magnets mounted on the tube's neck behind the deflection yoke. These were sealed in the original type of PIL tube but can be adjusted in later in-line tube designs.

To summarise, the PIL type tube trades the complications of delta-gun tube convergence for very tight manufacturing tolerances in both the tube and yoke design. We'll return to both of these later, but before doing so we must examine the approach taken by Philips/Mullard in their 20AX in-line tube design.

20AX System

This was the first European successor to the delta-gun tube. It has three separate guns mounted in-line in a thick tube neck (36.5 mm diameter). The deflection angle is 110° (the deflection angle with the original, smaller screen size PIL tubes was 90° : the later larger screen tubes have 110° deflection). With the 20AX tube the manufacturing tolerances are sufficiently tight not to require any tilting of the yoke assembly. Instead, manufacturing tolerances are taken up by introducing adjustable sawtooth currents at
line and field rate in a four-pole convergence correction coil built on to the deflection yoke and by differential adjustment of the sawtooth scanning currents flowing in the separate halves of each deflection coil pair. These current controls are provided by half a dozen preset potentiometers or links. Static convergence and purity are catered for by a cluster of two-, four- and six-pole ring magnets of similar design and working on the same principles as those used with the PIL tube.

The 30AX Design

All the adjustments required with the 20 AX tube were eliminated when the next Philips design, the 30AX, came along some four years later. This is similar in principle to its predecessor but with such close yoke design tolerances that dynamic convergence trimming adjustments are no longer necessary. The cluster of ring magnets on the tube neck was replaced by a special magnetic ring mounted inside the tube, on the top of the triple-gun assembly. This has a combination of two-, four- and six-pole fields printed into it during manufacture, using a computercontrolled external magnetising jig. These fields are "customised" for each tube, which is thus brought to design centre tolerance in respect to picture geometry, purity and static convergence: the magnetic characteristics of the ring do not drift during the tube's life. With the 30AX system any tube will work with any yoke (for a given tube size) without need for setting-up adjustment the yoke is precision located by three bosses moulded into the tube's glass flare.

20AX and 30AX tubes use saddle-wound yokes with the distribution of the wires controlled by the precision mandrel on which they are wound. Fig. 13 shows the winding pattern for the 20AX tube: it's the "bunching" of the individual wires that provides the astigmatic deflection field required.

FS Tubes

The next significant change in tube design came in 1982 with the FST glass envelope. This was pioneered by Toshiba of Japan and involved increasing the radius of the faceplate to make it flatter while squaring off the corners in order to approach the rectangular shape of the transmitted picture more closely. The reduced bracing effect of the flatter faceplate necessitated an increase of around 30 per cent in the thickness of the front glass and a corresponding increase in tube weight. Benefits of the new design include reduced reflections from the tube screen, a greater angle of legibility and less pattern distortion in the picture. The characteristics of the FS tube were described in an article in the June 1985 issue of Television.

The 45AX

The latest example of an FS type tube is the Philips/ Mullard 45AX design, in which the triple-gun assembly and thick neck have finally been abandoned in favour of single-gun, narrow-neck technology.
This article has briefly set the scene in outlining the main developments in colour tube technology over the years. Next month we will start to look in greater detail at the individual components that go to make up a picture tube and its deflection system. This will give greater insight into design philosophy and the continuing quest for better performance with lower power consumption.

Servicing Teletext Decoders

Part 5: Fault Finding

In this concluding article in the present series we'll examine methods of tackling faults that affect teletext reception. By now many readers will be well versed in servicing digital circuitry since this is becoming more and more common in consumer electronics equipment. An indepth knowledge of this is not essential for teletext servicing however. There are two main reasons for this. First the use of LSI chips means that we cannot go down to gate-level fault-finding: most decoder faults are caused by failure of one of the LSI or memory chips. Secondly there's the advantage that since teletext is basically a display function the screen usually tells us what's happening. Thus many faults can be diagnosed without even removing the set's back cover.
It must be said at the outset that many of the faults that affect teletext reception are not caused by a decoder malfunction. Ignoring for the moment faults with the power supplies, earths etc. we should emphasise that the digital signal obtained from the vision detector must be of good quality with few errors: thus everything from the transmitter to this point must be working reasonably well.
Faults in the early stages of the set show up as text display errors, such as wrong characters or graphic blocks, possibly not on all channels and possibly very intermittent. Incorrect characters can be caused by a decoder fault but in his case the errors repeat themselves, i.e. either the fault occurs at the same screen position, the same character or group of characters are wrongly displayed or maybe rows or columns are repeated. More on this later.
Starting at the front, the aerial must provide a ghostfree signal. It's difficult laying down any hard and fast rules here: various things affect reception and the type of set is also relevant. It's true to say however that signal
strength is not the most important thing: excessive patterning due to beats with other transmissions, i.e. crossmodulation, and ghosts - especially those close to the original signal - can wreak havoc with teletext reception.

The tuner and i.f. strip must have good h.f. performance. In general this means that if we were to look at the reprodúction of a perfect staircase signal, using a perfect oscilloscope, there would be slight overshoot on each step but it would be possible to tune the vision detector to obtain square corners. Every stage from the aerial socket to the vision detector has a bearing on this. To return to teletext versions of the Philips G11 chassis, which we took as our basic example of a teletext receiver, in these the i.f. panels (incorporating the tuner) were selected for teletext performance and so labelled. This doesn't mean that an i.f. strip not so labelled won't work it probably hasn't been tested for text performance.

G11 Teletext Conversion

We'll digress here for a moment to mention, for the benefit of anyone wishing to make up a teletext G11, that the other differences lie in the colour decoder, the text power supplies and the additional remote control circuitry. The colour decoder has the RGB interfacing panel described. in Part 1 added - this can be done on a nonteletext panel by removing the links to the bases of the RGB output transistors.

Power Supply Arrangements

In early models with ultrasonic remote control there's a separate power supply panel that lives in the bottom of

Fig. 1: The teletext decoder/remote control power supply arrangement used in early teletext versions of the Philips G11 chassis. The circuit is shown in basic outline only.

the cabinet - a simplified circuit is shown in Fig. 1. The mains transformer feeds a bridge rectifier which produces 19 V across C12. IC19 provides a regulated 12 V supply from the 19 V supply: this voltage is used to power the remote control receiver and is also passed to the VIP chip in the decoder. R25 drops this supply to 5V for the M911 remote control decoder chip. The 19 V supply is also fed to the emitter of the chopper transistor T50. This is part of a series chopper circuit with L54 the reservoir inductor and D51 the "efficiency diode". The 11 V output developed by the chopper is applied to the 5 V regulator IC61 whose output powers the rest of the teletext decoder. At least it does once the line timebase has started up. The delay is necessary to allow C 12 to become fully charged before the chopper starts. Note that the supply for the 18 kHz astable multivibrator $\mathrm{T} 41 / 43$ comes from the set's main 12 V line, which is derived from the line output transformer. So T50 is without drive until the line output stage is operative. There's elaborate over-voltage protection - teletext decoders were worth a fortune at that time!

Later models with infra-red remote control have a simpler arrangement - the decoder's 5 V supply is derived from an extra winding on the line output transformer, making the line output panels non-compatible. The pulses from the line output transformer are fed to a small panel at the bottom of the cabinet. This panel contains a large diode, a 5 V regulator and a few other bits. The teletext decoder's 12 V supply comes from the set's main 12 V line via the remote control receiver.

Servicing either of these power supplies should pose no problems, but we'll mention the effect of either teletext decoder supply being absent: no 5 V rail produces a bright blank raster, no 12 V supply gives absence of text only.

Needless to say any voltage change or defective decoupling can cause some very strange faults indeed! The moral is to check both lines, preferrably with a scope, when presented with an inexplicable fault symptom.

Misadjusted Clock Coil

An odd effect occurs when the 6.93 MHz clock coil is incorrectly adjusted: the errors increase towards the righthand side of the screen. This shows up clearly when the clockcracker page is selected. Don't forget that adjustment will have no visible effect until the page is reselected. Leave any adjustments on the decoder alone unless absolutely necessary.

Memory Faults

Most of the faults on the G11's teletext decoder panel are due to the 2102 memory chips. If wrong characters are persistently displayed at a particular row/column position one of the memory cells is stuck at one or zero. Many characters wrong but always the same errors means that one of the data bits is stuck. This may occur during read or write but this makes no practical difference. If row or column address pins are shorted to either rail groups of text will be repeated.

A "hard" RAM failure means the device is permanently damaged. This sort of thing usually occurs during the initial test period - the so-called burn-in. There are on the other hand "soft" failures that recover or occur only once. Soft failures can be caused by mains noise, static, c.r.t. flashovers or cosmic particles. No, we're not entering the realms of science fiction: it's a fact that our seven

Table 1: ASCII code for the SAA5050.

Dec.	Binary	Means	Dec.	Binary	Means	Dec.	Binary	Means	Dec.	Binary	
0	0000000		32	0100000	Space	64	1000000		96	1100000	-
1	0000001	Red*	33	0100001	!	65	1000001	A	97	1100001	
2	0000010	Green*	34	0100010	"	66	1000010	B	98	1100010	b
3	0000011	Yellow*	35	0100011	f	67	1000011	C	99	1100011	c
4	0000100	Blue*	36	0100100	\$	68	1000100	D	100	1100100	d
5	0000101	Magenta*	37	0100101	\%	69	1000101	E	101	1100101	d
6	0000110	Cyan*	38	0100110	\&	70	1000110	F	102	1100110	f
7	0000111	White*	39	0100111		71	1000111	G	103	1100111	
8	0001000	Flash	40	0101000	(72	1001000	H	104	1101000	h
9	0001001	Steady	41	0101001)	73	1001001	1	105	1101001	,
10	0001010	End box	42	0101010	*	74	1001010	J	106	1101010	j
11	0001011	Start box	43	0101011	+	75	1001011	K	107	1101011	k
12	0001100	Normal height	44	0101100	,	76	1001100	L	108	1101100	k
13	0001101	Double height	45	0101101	-	77	1001101	M	109	1101101	m
14	0001110		46	0101110		78	1001110	N	110	1101110	
15	0001111		47	0101111	1	79	1001111	O	111	1101111	-
16	0010000		48	0110000	0	80	1010000	P	112	1110000	o
17	0010001	Redt	49	0110001	1	81	1010001	Q	113	1110001	p
18	0010010	Greent	50	0110010	2	82	1010010	R	114	1110010	a
19	0010011	Yellowt	51	0110011	3	83	1010011	S	115	1110011	s
20	0010100	Bluet	52	0110100	4	84	1010100	T	116	1110100	t
21	0010101	Magenta \dagger	53	0110101	5	85	1010101	\cup	117	1110101	u
22	0010110	Cyant	54	0110110	6	86	1010110	\checkmark	118	1110110	v
23	0010111	White \dagger	55	0110111	7	87	1010111	W	119	1110111	w
24	0011000	Conceal	56	0111000	8	88	1011000	X	120	1111000	x
25	0011001	Norm. graphics	57	0111001	9	89	1011001	Y	121	1111001	Y
26	0011010	Sep. graphics	58	0111010	:	90	1011010	Z	122	1111010	Y
27	0011011		59	0111011	;	91	1011011	\leftarrow	123	1111011	$1 / 4$
28	0011100	Black backg'd	60	0111100	$<$	92	1011100	1/2	124	1111100	1/4
29	0011101	New backg'd	61	0111101	=	93	1011101	$\xrightarrow{ }$	125	1111101	3/4
30	0011110	Hold graphics	62	0111110	?	94	1011110		126	1111110	-
31	0011111	Release graphics	63	0111111	?	95	1011111	\#	127	111111	

* Alphanumerals. \dagger Graphics.

Notes: Graphics see Fig. 2. ASCII = American Standard Code for Information Interchange.

2102 s, innocently sitting there, are occasionally hit by charged particles from space or from other sources - even i.c.s emit them! The result can simply be that one of the cells is flipped over without damage. More often however one of the gate layers is punctured: this is not always permanent.

Êquipment for fault-finding can consist of just a meter (or logic probe) and, most importantly, an ASCII table (see Table 1 and Fig. 2). It's important to know which memory chip deals with which bit. We refer to the bits of a byte by number, starting with the left-most bit which is also referred to as the most significant bit (MSB) as it represents 64 . This is bit number one. The least significant bit (LSB), the right-most one, is equal to one. This is bit seven (our character set is a seven-bit one so we don't use a full-sized byte, i.e. one with eight bits). The RAM chips in this decoder are numbered IC6671-IC6677: IC6671 is

Fig. 2: Graphics characters are from 33 to 127 (ASCII code) and are built of six blocks. To ascertain the ASCII value of a graphic, add together the blocks and add 32 to the total. These are displayed if preceded by attribute 30 (hold graphics).
for bit seven, IC6672 for bit six, etc.
In the event of wrong characters note at least two wrong characters and decide what they should have been. Then see what the difference is in the binary ASCII code. You should find that only one bit differs between the correct and incorrect versions, and that this applies to all the wrongly displayed characters. Note that some characters will be correct despite the presence of the fault: these correspond to the ones in which the stuck cell or data line is stuck at the correct level. For example, bit seven stuck at one means that the even numbered codes can't be displayed. The displayed alphabet will consist of AACCEE etc. At the other end, bit one stuck at zero will make it impossible to count above 63 , so that codes from 64 to 127 will be displayed as zero to 63 . This means that the alphabet cannot appear. All you'll get is numerics, attributes and some punctuation marks. Clearly the possibilities are legion. For example, bit two stuck causes all letters to be in upper or lower case: bit two stuck at zero makes an attribute of anything with bit one low - this gives a very strange display, with psychedelic colours everywhere - whereas if bit two is stuck high the display is in monochrome with everything in lower case and no graphics.

The way in which the errors are displayed depends on whether a memory cell or data line is stuck. If a memory cell is stuck, one location only will show errors. A stuck data line will affect the whole screen. Returning to our earlier example of bit seven stuck high, if say row six column two shows D when it should show C one memory cell is defective and will produce display errors only when
it should contain an even code. If the bit seven data line is high however no even codes will be displayed anywhere on the screen.

When row or column address lines are stuck the effect is that groups of rows or columns are repeated depending on which bit is stuck or missing. The addresses can count only in steps of $2,4,8,16$ or 32 , remembering the bit of wizardry carried out in this decoder to make the RAMs compatible with the screen format. Problems here are usually due to faults in either one of the three 74LS chips in the row/column address decoder or because one of the five little white chokes in the column address lines is opencircuit. A logic probe with a pulse indication is useful here. The chokes can safely be shorted out.

There are many other fault possibilities. When two pins of one of the 2102 memory chips short together internally there will be all sorts of weird effects, the usual one being an almost blank screen with just one character repeatedly displayed at random. Check by removing each RAM i.c. in turn, followed by reselecting a page: when the faulty i.c. has been removed the display will return to the one byte missing condition, as when a data line is stuck low.

So this part of the decoder is not too bad after all - a little thought and detective work will sort out any problems.

LSI Chip Faults

The various LSI chips can fail. The VIP and TIC chips usually give a blank screen with no text and the TAC chip incbility to select text or pages. An interesting variation occurs when an SAA5040 is fitted instead of an SAA5040A. The only difference is that the status displays

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available. Demonstration by appointment.

L \& S Bear Electronics Ltd Yeo Lane, Colley Lane,

 Bridgwater, Somerset.Telephone: Bridgwater (0278) 421719
for channels two and three (BBC-2/ITV) are transposed the converse is also true of course.

The TROM chip is first in the firing line in the event of any c.r.t. flashovers, so the output pins are prone to getting stuck. The funny one is when pin 16 (TLC transmitted large characters) which is connected to the TIC chip gets stuck, either due to a duff TIC or TROM chip: the RACK stops and the header row is repeated all down the screen. Remember that the outputs can be high, low or open-circuit. No luminance output affects only the mix mode: the result is not too obvious - the picture can be seen through the text. No blanking output (pin 25) gives mix mode instead of text; if this pin is stuck high there's text only, with no picture; if stuck low the text in the mix mode is faint. The results of the RGB oatputs packing up should be fairly obvious.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

1580 H	330	2SA940	1.9	$25 C 535$	0.79	AF180	0.55	BA656	159	BC560C	0.14	80X63A	156	BPF2	07		
15885R	330	2SA940-2	214	2 SC 536	029	AF181	0.53	BA7100	10.5	B6635	0.35	B0Y20	1.21	${ }_{8 F}{ }^{\text {F79 }}$	0.96	${ }^{8 \times 1 \times 94}$	0.14
16039	0.79	${ }^{254950}$	0.12	${ }^{25 C 537}$	0.51	AF186	0.53	BA841A	16.72	BC536	0.2	BDY81	1.18	BrY90	0.6	BM56	120
16181	1.0	2SA951	126	2 SC 505 L	1.16	AF239	0.13	bAB43	356	ВС637	024	BF115	0.40	BLY49	220	BZY93c30	1.26
16182	1.04	2SA996-Y	1.16	$2 \mathrm{SC620}$	1.46	AF279	0.0	BAB54	5.76	BC639	020	BF117	0.56	BROO	022	BZYBE RANGE	0.10
16334	0.88	2SA999	136	2Sc6a3A	159	AL13	1.36	bavis	021	BC540	024	BF118	0.6	BR01	0.75	BZX61 RANGE	0.18
16335	0.9	2 2S874	1.15	${ }^{2 S C 658}$	0.67	ANH15	3.98	BAV19	0.11	BC879	0.39	8F121	0.25	BROS	0.75	BZX79 RANGE	0.10
16446	0.98	2SB185	1.13	2 2C681	4.40	AN155	1.29	bavzo	0.31	BC880	0.31	BFi23	0.13	${ }_{\text {BROS }}$	125	${ }_{\text {Closd }}$	0.45
16600	138	${ }^{258375}$	3.7	${ }^{25 C 688}$	188	AN206	250	BAV21	0.34	ВСхз	0.40	BF127	0.13	BRC116	0.67	C106M	0.76
16802	17	2 284400	0.40	${ }^{2 S C 684}$	1.05	AN208	35	BAW62	0.19	вCryo	0.30	BF137	0.20	BRC300	201	C1129	0.58
17052	5.51	2 288405	1.03	$2 \mathrm{SC693}$	0.50	AN210	278	BAX12	0.4	BC71	021	${ }_{\text {BFF }} 153$	0.58	BRC5296	0.7	CA3046	206
17053	5.51	2SB407	324	$2 \mathrm{SC710}$	0.50	AN211	325	BAX13	0.11	BC72	020	BF154	0.25	BRC6109	0.83	CA3099	0.83
17074	9.30	2S84498	6.93	2SC711A	0.50	AN2140	275	BAX16	0.11	BD115	0.46	BF157	0.33	BRC82	1.08	casosala	325
17089	5.35	${ }^{288511}$	250	${ }^{2 S C 717}$	128	AN231	14.65	BC107	0.13	80116	0.70	BF158	0.18	BRC83	219	Ca3094	220
17127	3.51	${ }^{2 S 854}$	139	$2 \mathrm{SC734}$	1.43	AN234	5.58	bCiola	0.11	80124	131	BF159	0.18	BRCO4	208	CA3131EM	3.12
17376	1.58	${ }^{288546}$	375	${ }^{2 S C 761-Y}$	0.55	AN236	378	BC1078	0.18	8D124P+KIT	0.09	BF160	0.31	BRX44	0.90	CBF16848N-071	1.56
17523	132	${ }^{258565}$	200	${ }^{25 C 7783}$	3.98	AN239	589	BC108	0.15	${ }^{80131}$	0.42	${ }^{\text {BFF167 }}$	0.30	${ }^{\text {BRXX49 }}$	0.53	CD4000	0.38
17524	1.32	2S86184	22	${ }^{25 C 730 \%}$	1.64	AN240P	1.52	${ }^{\text {BC1 } 1888}$	0.15	80132	0.2	${ }^{\text {BFI73 }}$	0.34	BRY39	0.59	CD4002	0.7
in400	0.06	${ }^{2588631}$	325	${ }^{25 C 828}$	0.28	AN241	1.7	BC109	0.12	${ }^{80133}$	0.53	BF1T	0.35	BSS38	0.87	CD4008	135
1 14002	0.06	${ }^{258643}$	0.54	25 C887A	3.05	AN245	4.49	BCL1098	0.15	80135	0.36	BF178	0.60	BSTB0140G	525	CD4011	029
1 1 4003	0.06	${ }^{258659}$	3.7	${ }^{25 C 876}$	0.56	AN253	297	${ }^{\text {BCI } 109}$	0.12	${ }^{80136}$	0.25	BF179	0.35	BSTCO246	725	CD4012	024
${ }^{1} \mathrm{~N} 4004$	0.05	2S8681 2S8695	3.96 158	${ }_{2}^{2 S c} 5838$	0.54	AN260	336	${ }^{\text {BCII }} 13$	0.14	${ }^{80137}$	0.35	${ }^{\text {BFIP0 }}$	0.36	BSTCO233	725	CD4013	0.47
${ }^{1} \mathrm{~N} 4005$	0.08		19	${ }_{2 S}{ }^{25 c 935}$	4.13	AN262	1.98	BC119	0.35	${ }^{80138}$	0.45	BF181	0.32	${ }^{\text {BSTCCOOL43 }}$	307	CD4016	0.46
1/2006 iN4007	0.09	$\left\lvert\, \begin{aligned} & 2 S B 75 \\ & 2 S B 774 \end{aligned}\right.$	1.04	${ }^{2 S C 336}$	8.56	AN272	7.98	BC126	020	${ }^{80} 139$	0.3	BF182	0.34	BSTD1043	28	CO4017	0.92
1N4007 iN4148	0.07	$\begin{aligned} & 2 \text { 2SB774 } \\ & 2 S B 819 \end{aligned}$	0.08	${ }^{2 S C 940}$	${ }_{2} 4.90$	AN281	${ }_{50} 6$	BC132	0.14	80140	0.37	${ }^{\text {BFIP3 }}$	039	BSV578	3.48	CO4420	123
${ }^{\text {N4, }} 148$	0.04	${ }_{2}{ }^{2 S} 881924$	0.89	2SD1128	230	AN295	559	BC135	0.14	80144	1.70	BF184	0.6	BSW58	0.50	CD4021	0.39
(1N4488	0.005	$\begin{array}{\|l} \text { 2SC1034 } \\ \text { 2SC1050 } \end{array}$	6.75 5.06	${ }^{\text {2SD1138 }}$	0.95	AN301	${ }_{359} 5$	${ }^{\text {BCI37 }}$	0.18	80150	125	${ }^{\text {BFIP5 }}$	0.39	${ }^{\text {BSX1 }} 19$	0.34	CD4023	028
1 N5402	0.15	${ }^{2 S C 1096}$	1.16	${ }^{2 S D 1453}$	0.75	AN303	4.39	${ }^{8 \mathrm{BC}} \mathrm{BC} 389$	031	${ }_{80150}$	1.60	${ }_{\text {BFIOs }}$	0.14	BSX20	03	C04022	0.64
1 N 403	0.16	2SC1104	3.8	2SD152K	251	AN305	9.7	BC140	0.45	BD163	0.7	BF196	0.17	${ }^{\text {BSY79 }}$	0.51	CD40408	0.85
iN5404	0.15	2SC1106	4.5	2SD198	3.7	AN315	245	BC141	0.3	80165	0.62	BF197	0.16	BT100A	1.6	C0.4047	1.06
1 N 5408	0.35	${ }^{2 S C 1114}$	6.75	2 2SD234	0.49	AN316	553	BC142	0.3	80166	0.42	BF198	0.17	Вт 106	1.55	CD4049	0.45
$1 \mathrm{NO14}$	0.04	2SC1116	4.95	2 2S235	0.60	AN318	6.71	BC143	0.3	BD168	0.3	BF199	0.17	ВT108	1.65	CO4052	0.75
IR3403	5.00	${ }^{2 S C 1124}$	120	${ }^{2 S D 24}$	229	AN320	5.47	BC147	008	80175	0.60	BF200	0.37	BT119	1.76	C04066	0.38
${ }_{\substack{1 \\ 1 \\ 1 \\ 1 \\ 1545}}$	0.20	${ }^{2 S C 1129}$	0.30	${ }_{2}^{2 S D 257}$	29	AN321	225	BC1488	0.10	80179	0.49	${ }^{85218}$	0.36	BT120	217	C04069	029
1 155012A	0.81	${ }^{2 S C 1158}$	330	${ }_{2 S}{ }^{\text {2S313 }}$	259	AN331	4.59		0.13 0.11	${ }^{80181}$	0.99	${ }_{8 F 237}^{8 F 24}$	0.17	${ }^{8 T 121}$	24	CD4070	0.65
15921	0.10	2SC1162	1.05	2503250	1.95	AN37	5.37	BC149	0.11	BD183	0.99	BF240	0.17	TBA970	3.06	${ }^{\text {co4093 }}$	0.35
2 N 1303	03.	2SC1172	22	2SD348	16.13	AN340P	1.17	BC1498	0.13	8D184	121	BF241	0.17	BT151-800R	1.15	CDS511	1.10
2 22219A	0.40	${ }^{2 S C 1195}$	37	${ }^{2 S D 350}$	520	AN355	5.59	BC153	0.14	80187	0.53	BF245	0.50	В 1 ¢5018	20	CD4528	204
${ }^{2}$ N2223	0.38	${ }^{2 S C 1212 A}$	1.5	${ }^{2 S} 2$ DJ35a	200	AN362	1.75	BC154	0.14	80189	0.80	BF245A	0.37	BT8124	4.89	CD4556	3.4
${ }^{2} \mathbf{N} 2646$	0.80	${ }^{\text {2SC1213 }}$	0.89	${ }_{2 S 03535}$	7.50	AN370	338	BC159	0.35	8D190	0.80	BF245B	0.49	BU106	248	CRO2AM-8	1.50
2N2905	0.6	2SC1280	0.90	$2 S 0401$	255	AN5111	29	BC160	0.0	8020	0.53	BF246A	252	BU108	1.50	CV12E	307
2N2906	0.38	${ }^{2 S C 1306}$	1.98	2 SD 14	1.98	AN5120N	4.50	BC168	0.36	BD203	050	${ }_{8 F 256}$	03	${ }^{\text {BU10 }}$	50	Cx0950	3.14
2N2926	0.15	2SC1316	4.10	2SD471	213	AN5132	4.39	BC169C	0.16	80204	098	BF256L8	0.2	BUIIIY	4.16	Cx104	9.64 10.50
2 N 3053	027	2SC1317	0.87	2 25560	295	AN5250	209	BC170	0.16	BD207	1.79	BF256ic	0.2	BU125	240	Cx109	785
2 N 3054	0.98	${ }^{2 S C 1364}$	0.48	2S5588A	1.98	AN5435	308	BC171	0.11	BD208	123	BF257	0.3	BU126	1.5	Cx130	8.76
2N3055	0.61	2SC1383	120	2SD600	30	AN5610	7.6	BC172	0.13	BD22	0.49	BF258	0.36	BU137	925	Cx134	11.04
2N3442	1.14	${ }^{2 S C 1391}$	205	2SD601R	0.65	AN5612	3.81	BC1728	0.27	8023	0.49	BF259	0.34	8U205	1.08	Cx136	11.49
${ }^{2133702}$	0.14	${ }^{25 C 1398}$	0.4	${ }^{2 S D 613}$	1.03	AN5613	380	BC173	0.17	B0278	0.03	BF262	0.57	BU206	17	Cx139	11.83
${ }^{2133703}$	0.14	${ }^{2 S C 14134}$	3.05	${ }^{2} 2$ S6621	1257	ans630	3.55	BC1748	027	${ }^{80239}$	1.05	${ }^{\text {BF223 }}$	0.57	BU207	1.65	CX157	4.84
2N3705 2N3706	0.16	2SC1446	120	${ }_{\text {2SO636 }}^{\text {2SD }}$	0.55	AN5701N	$\underline{1.65}$	${ }^{\text {BC1717 }}$	020	${ }^{80232}$	050	${ }_{\text {BF271 }}$	0030		1.12	${ }^{\text {Cx1 }} 58$	4.10
2N3707	0.16	${ }^{2 S C 1475}$	0.31	2S0655	0.98	ANG300	700	${ }^{\text {BC179 }}$	0.25	${ }^{80237}$	0.4	${ }^{\text {BF274 }}$	0020	${ }^{\text {Bu }}$	1.12	Cx187	${ }_{5}^{675}$
2 N 3711	0.11	2SC1505	1.00	2 20657	285	AN6310	8.74	BC182	0.09	B0238	0.45	BF324	023	BU2080	1.95	CX755	1205
2N3771	204	${ }^{2 S C 1514}$	13	2SD661A	0.80	ANG320N	428	BC182L	0.10	80239	0.6	BF336	0.33	BU209	128	CX885A	689
${ }^{2} \mathrm{~N} 372$	1.71	${ }^{2 S C 1553}$	125	2 2SD731	255	AN6340	6.46	BC182LB	0.14	80240	0.51	BF337	0.40	BU228	295	DEC1	220
2N373	229	2SC1578	8.74	$2 \mathrm{SD773}$	0.33	AN6341	4.00	BC1834	0.11	BD241	0.39	BF338	0.40	BU326	200	DEC2	220
2N3819	0.42	2SC1583	1.17	2 2SD811	559	angzar	1.51	BC183LB	0.25	BD242	0.39	BF355	0.49	BU328A	220	DS3486	433
${ }^{2} 133823$	1.17	${ }^{25 C 1617}$	388	${ }^{250823}$	1.98	Ang333	16.00	BC184	0.13	${ }^{\text {B2a } 234}$	037	BF362	0.56	BU326S	220	DS3487N	4.33
${ }_{2}^{2}{ }_{2} \mathbf{N} 39394$	0.02	2SC675 2SC1678	1.41	${ }_{2} 2 \mathrm{SDO837}$	120	AN6371	${ }_{7}^{650}$	BC184L	0.14	${ }^{80213 C}$	0.79	${ }^{\text {BFF333 }}$	0.00	${ }^{\text {B44 }}$	1.19	E1222	0.40
2N4101	1.33	${ }^{2 S C 1741}$	125	${ }^{2} 250856$	225	ANA383	195	${ }_{\text {BCI86 }}$	028	80244	0.51	${ }^{85} 8391$	0.50	8U4060	1.78	E5024	028
2 N 240	330	2SC1810	1.70	2 SD 8570	1.54	AN6551	1.35	BC187	028	BD245C	0.95	BF417	0 O	${ }_{\text {B44 }}$	1.00	E9003	0.45
2 N 444	0.90	2SC1815	0.65	250882	1.50	AN6552	0.65	Вс204	0.16	BD246C	0.30	BF418	1.87	BU412	9.15	E9005	0.50
${ }^{2}$ N5239	0.50	${ }^{2 S C 1828}$	0.05	${ }^{2 S 0894}$	1.50	AN6610	240	8C207	0.14	BD253	1.05	BF422	029	BU426A	1.5	ESM310BP	4.15
2N5294 2 2N5296	0.50	2SC1829 2SC1875	22	${ }^{\text {2SOB98 }}$	25.4	AN667\%	${ }^{6.50}$	${ }^{8 C 212}$	0.11	${ }^{\text {B20 278A }}$	0.80	${ }^{\text {8F423 }}$	0.52	BU500	1.95	FND500	5.78
2N5297	0.50	2SC1881K	298	${ }_{2 S k}{ }^{\text {2Sk }}$	295	ANT114E	${ }_{59} 1$	${ }_{\text {BCl }}^{\text {BC2128 }}$	0.10	BD317 BD318	200	${ }^{87450}$	0.3	8U508A	158	GC374	1.55
2N5298	0.61	2SC1893	302	2SK34	0.76	AN7115	1.75	BC213LB	0.15	BD375	0.9	BF457	0.41	${ }^{\text {BU }}$	265	${ }^{60243}$	4.85
2N5771	1.18	2SC1906	0.98	2SK41	1.07	AN7120	4.65	BC214	0.10	BD380	0.76	BF458	0.39	BUT05	4.07	${ }_{6}$	18
${ }^{2}$ N6109	1.58	${ }^{2 S C 1921}$	137	2SK79	298	AN7145	280	BC214L8	0.25	8D410	0.52	8F459	0.52	Bu806	1.79	HA11215	5.06
${ }^{\text {2N6130 }}$	0.72	${ }^{25 \mathrm{SC}} 1923$	1.07	40408	0.50	AN7146	4.35	BC25	0.40	BD433	0.47	8F460	156	BU807	0.80	HA11211	2.53
2 N 6133	125	${ }^{2 S C 1929}$	225	40594	1.53	AN7151	225	BC237	0.10	BD434	0.49	BF469	0.31	BU828A	215	HA11225	429
${ }^{\text {2N6 }}$ N6292	0.95	2SC1945	5.50	4EX581	1.13 0.90	AN7156	285	${ }_{\text {BC238 }}{ }^{\text {BC273J }}$	0.12	${ }^{80435}$	0.69	${ }^{85470}$	0.05	BUW84	138	HA11226	8.7
2N696	0.43	2SC1959	0.31	741	0.30	AN7218	1.64	BC238A	0.13	${ }^{80437}$	${ }_{0}^{0.60}$	${ }^{\text {Bra72 }}$	0.33	BUX84	1.00	HA11229	288
2N698	0.43	2SC1957	0.55	7805-T022	0.63	AN7223	425	BC2388	0.13	BD438	0.40	B5479	0.61	BUY69a	204	HA11124	2438
2SA1006	1.50	2SC1953	193	7806	0.3	AU107	350	BC239	0.12	BD441	1.0	BF480	0.60	${ }^{\text {BY126 }}$	0.13	${ }_{\text {HA11244 }}$	280
2SA1011	1.05	${ }^{25 C 1962}$	198	7808	0.5	AU110	225	вс2398	025	BD442	0.66	Br491	0.38	BY127	0.13	HA11251	4.47
${ }_{\text {2SA }}$ SA1015	0.0	2SC198939	310	${ }_{7815}^{7812-1022}$	1.16	${ }_{\text {AU }}{ }_{\text {Al13 }}$	525	${ }^{\text {BC2531a }}$	0.12	${ }^{\text {BD509 }}$	1.0	${ }^{\text {BF495 }}$	0.54	${ }^{\text {BY133 }}$	0.11	HA1125	429
2SA1020Y	0.85	2SCIges	0.55	${ }_{7818}$	0.58	${ }_{\text {AYıOS }}$	208	${ }^{8 .} 8$	0	${ }^{\text {BD5 }} 10$	1.0	BF506	0.6	${ }^{8 Y 164}$	0.47	HA137W	287
2SA1027R	0.45	2SCron9	0.34	7824	0.54	BA524	82	BCOO1	0.6	${ }^{\text {BD529 }}$	1.30	${ }_{8}{ }_{5} 23$	024	${ }^{817179}$	0.92	HA1138	
2 2SA73	0.75	$2 \mathrm{SC2029}$	233	7905	0.80	8250	205	BC302	0.58	80530	1.10	BF532	0.45	BY182	1.05	HA1144	7.7
${ }^{2 S A 7665}$	4.58	${ }^{\text {2SC72028 }}$	211	9358	10.70	840	1.5	BC303	1.04	${ }^{\text {BD5 } 533}$	0.67	BF^{596}	0.18	BY184	0.47	HA1156	1.16
${ }^{2 S C 1173 Y}$	125	$2 \mathrm{SC2ab3}$	0.98	AA133	0.12	BA130	0.14	BC307	0.18	BD534	0.53	BF597	0.27	BY197	0.7	HA1160	4.78
${ }_{2 S}^{2 S C 1474}$	12	${ }^{2 S C 20778}$	239	${ }^{\text {ACI33 }}$	0.12	${ }^{\text {BAA } 1310}$	1.98	BC307A	0.14	${ }^{80555}$	0.78	$8 \mathrm{Bf694}$	02	BY189	1.79	HA1166	525
${ }^{\text {2SCLI }}$ 2S09 ${ }^{\text {S }}$	1.35 3.95	${ }_{\text {2SC2073 }}{ }^{2 S}$	1.54	AC123k ACin	0.43	BA1320 BA132	138 395	BC308 BC308A	0.18	${ }^{805536}$	0.91	${ }^{87757}$	005	${ }^{\text {BY198 }}$	1.20	HA1166X	5.36
2SA1095	4.10	$2 \mathrm{SC2091}$	130	${ }^{\text {ACC128 }}$	0.34	BA1330	275	${ }_{\text {BC309 }}$	0.17	${ }^{80} 5538$	1.18	${ }_{\text {BF761 }}$	${ }_{0}^{0.4}$	BY2012	1.50	HA1167	5.35
${ }_{2}$ SA11103	8.5	${ }_{2 S C 2141}$	1.56	${ }^{\text {A Cl138 }}$	024	BA145	0.19	BC317A	0.13	BD544	0.38	BF762	0.75	${ }_{\text {BY207 }}$	027	HA11705	800
${ }^{2 S A 329}$	0.00	${ }^{2 S C 2156}$	198	AC141	020	BA148	0.30	8c327	0.15	8 C 588	125	8F869	0.65	BY208	0.45	HA11703	9.56
${ }^{2 S A 351}$	1.17	${ }^{25 C 2} 216$	0.00	${ }^{\text {ACLI42K }}$	0.43	${ }^{\text {BA154 }}$	0.0	BC328	0.11	${ }^{80677}$	0.53	8 F 780	0.30	BY210-400	0.18	HA11701	9.56
2SA489 2SA490	1.17	2SC2333 $2 S \mathrm{Cz236}$	220	${ }^{\text {AC151 }}$	0.03	${ }^{\text {BA }}$ B4155	0.12	${ }_{\text {BC3 }}{ }_{8}$	0.09	${ }^{8 D 679}$	0.57	${ }^{\text {BFFS59 }}$	0.02	${ }^{\text {Br }}$ B10-600	027	HA11710	9.50
2 SA493	225	2 SC 2778	1.14	AC179	028	${ }^{\text {BA159 }}$	0.12	${ }_{\text {BC3 }} \times 8$	024	${ }_{80681}$	1.4	${ }_{\text {BF970 }}$	${ }_{0} 0.9$	${ }_{\text {BY218 }}$	1.64	HA1713	8.13 20.15
${ }_{2} 254562$	0.57	${ }_{2 S \mathrm{~S} 2314}$	217	${ }^{\text {ACI } 183}$	0.72	BA182	029	BC440	1.08	BD696	27	BFF39	0.44	$8 Y 23$	123	HA11715	8.13
2SA564	0.58	${ }_{2 S C 2}^{2 S 535-11}$	10.41	${ }^{\text {ACC187 }}$	0.39	BA232	1.12	${ }^{\text {BC441 }}$	0.4	${ }^{\text {BDG999 }}$	3.49	BFP61	0.50	BY224-600	1.88	HA11714	7.76
2SA614	4.88 1.14	2SC2551	123	AC187K AC188	0.43	${ }_{\text {BA3311 }}^{\text {BA32 }}$	1.24	${ }_{\text {BC454 }}$	036	${ }^{\text {BDOT00 }}$	3100	Bff62	0.50	BY2z-100	1.13	HA11716	13.10
2546995	1.50	2SC2570	1.5	${ }^{\text {AC1 } 188-01}$	0.49	BA312	0.97	${ }_{\text {BCA61 }}$	0.4	${ }^{\text {BDO }}$ 809	1.12	${ }_{\text {BFRP81 }}$	0	${ }^{8 Y} 827$	0.05		1826 1600
2SA659	0.19	2SC257	1.75	AC188K	0.4	BA313	0.75	${ }^{\text {BC462 }}$	1.15	BD710	0.20	BFR26	1.0	${ }^{81}$	0.60	HA11725MP	${ }_{6}^{16.00}$
${ }^{25 A 573}$	17	${ }_{2 S \mathrm{C} 2578}$	6.5	AC193k	0.55	bA317	0.05	BC463	0.61	BD809	0.75	BFP89	1.63	8Y229-1000	1.12	HA11781	8.50
${ }^{254656}$	1.61	${ }^{2 S C 22771}$	1.90	${ }^{\text {ACL }}$ S 14 K	0.55	BA318	0.09	${ }^{\text {BC47 }}$	037	B0810	0.09	BFFPsa	130	${ }^{8 Y 229500}$	0.98	HA1180	5.15
2SA697 2SA699	10.82	${ }_{\text {2SC2828 }}$	207	${ }_{\text {AD }}$ AD 143	1.06	${ }^{\text {BA328 }}$	4.7	BC478	0.38	BD879	0.74	8F42	0.43	BY255		HA1198	7.03
2 2SA715	0.95	${ }^{2553153}$	5.26	${ }_{\text {AD }}{ }^{\text {AD }} 145$	1.50	${ }_{\text {BA33 }}$	6.17	${ }^{\text {BC539 }}$	0.28	${ }_{\text {BD895 }}$	207	8F743 8 FF 84	0.03	${ }^{\text {BYY295 }}$-600	1.03	HA13301 HA1306	${ }_{225}^{625}$
2 2A747	826	$2 \mathrm{SC372}$	1.40	AD161	0.56	BA5102A	37	BC546	0.17	${ }^{81899}$	24	BFW10	0.00	${ }_{\text {BY299 }}$	0.00	${ }_{\text {Hal }}$	220
2SA748	1.08	${ }^{25 C 373}$	1.16	AD162	0.6	BA511	232	8C547	0.10	BD901	0.79	$8 \mathrm{Br} \times 29$	0.34	BY407	0.84	HA1339	230
${ }_{2 S A B 17}$	0.65	2 SC 333	1.35	AD262	125	BA514	225	BC548	0.10	8D932	085	8fx84	0.31	${ }^{8 Y 409}$	1.49	HA13402	787
2SAB18 2SAB35	180 250	${ }_{2 S c}{ }^{2 S c 39898}$	0.00	${ }_{\text {AFP }}^{\text {AF1 }}$ A 14	247	${ }_{\text {BA524 }}$	200	${ }_{8}^{8 C 549}$	0.10	BDWB3C BDW	${ }_{1} 15$	- ${ }^{8 \times 1} 885$	0.41	${ }^{8 Y 448}$	0	HA13342	205
2SAB36	009	${ }^{2 S C 4} 43 \mathrm{C}$	039	AF118	120	${ }^{\text {BA526 }}$	79	${ }^{\text {BC555 }}$	0.16	BD×32	1.75	${ }_{8 \times 8 \times 8}$	0.55	BYW19/1000	1.10	HA13365 HA1356WR	${ }_{180}$
${ }^{2 S A B 44}$	0.30	${ }^{25 C 41}$	219	AF127	0.50	BA527	298	BC557	0.10	B0X53A	4.93	BFX88	0.34	Brws	0.34	HA1367	4.38
${ }^{\text {2SABAB7 }}$	0.70 215	2SC458	0.39	${ }_{\text {AFP139 }}^{\text {AFF }}$	0.53	${ }_{\text {BAF32 }}$	207	${ }^{8 C 558}$	0.10	${ }^{80 \times 538}$	335	BEX89	0.40	${ }^{\text {BYX10 }}$	029	HA1388R	245
${ }^{2 S} 2$ SAB37\%	20.9	${ }^{\text {2SC55s }}$	${ }_{2} 8$	${ }_{\text {AF179 }}$	0.55	${ }_{\text {BA6 } 209}^{\text {BA3 }}$	2.75	${ }_{8}^{8 \mathrm{C} 55998}$	0.10		216 215	${ }^{\text {BFY50 }}$	0.38	8Yイ55.600	0.19 125	HA13588 HA1370	1.90 30
IF YOU	NT S	EE IT US	-	FOR QU	GN	E MAKE	ODEL	LOCATIO	REME	MBER TO A	DD 0.6	60p POS	HAN	DUNG. AD	15\%	VAT TO TOT	TAL

TEL 0902712083 TELEX 338490

VCR Clinic

Reports from Christopher Holland, Les Harris, Philip Blundell, Eng. Tech., Steve Illidge and Mick Dutton

JVC HRD140 - Ferguson 3V44/45

The latest generation of JVC VCRs have been around for about a year. Though proving to be reliable a fair number have appeared in our workshops in recent months. I'd hesitate to describe the following as stock faults: we've nevertheless encountered most of them more than once.
First a note about the circuit protectors used in the power supply. These look like two-legged transistors and appear to go open-circuit for little or no reason. Different sets of symptoms occur when the various d.c. lines produced by the power supply panel are absent. With any VCR that appears to be non-functional or has all the motors spinning at switch on, first check the unswitched 12 V line and the switched 5 V and 12 V lines. Replacement of the appropriate circuit protector will normally provide a complete cure. Note that it's also easy to cause them to fail while you're working on a machine. The unswitched 12 V line remains throughout the machine even when the front operate switch is at off, and there's no on-off switch at the back. Don't let the meter's probe slip while checking the output at plug CN3 of the power supply. Absence of the switched 5 V line with the relevant circuit protector intact can be caused by Q10 and D3 on the power supply panel.

The use of resistors in place of circuit protectors is not recommended. Even very small value resistors will produce a voltage change that can interfere with normal working. Here's an example. The problem with the machine was that the drum motor would not spin when the tape loaded to the heads. This was eventually traced to someone having used a 4.7Ω resistor in place of a circuit protector in the switched 12 V line.

Some other problems. The tape loading half way to the heads then returning to the cassette is due to the absence of drum pickup head pulses. I've had the lead open-circuit at the head, also a defective head where the pin fell out of the head body. If the machine plays for a few seconds then unloads, with fast forward or rewind for only a few seconds, the take-up pulses are missing: I've twice had Q1 on the deck terminal faulty - on both occasions the transistor checked o.k. on an ohmmeter.

The symptoms associated with absence of the switched 12 V line are that the operate indicator comes on as soon as the machine is plugged in, the drum and capstan motors turn, the machine switching itself off after a few seconds. Should these symptoms continue after replacing the appropriate circuit protector, or if the protector is intact, check the outputs from the two loading sensors. These should give d.c. levels of 0 V and 12 V at pins 34 and 35 of the main microcomputer chip. If either level is wrong yet both loading arms are back in the cassette housing the timing of the gear train from the loading motor has slipped. Ideally you'll need a second open VCR to see how to put it all back together again. Why does the timing slip? Check that the back-tension arm is not fouling the left-hand loading arm during the unloading procedure.

Two problem areas with the previous generation of JVC machines were the cassette housing and a tendency for the video heads to clog with dirt very easily. The latest machines do not suffer from these problems to the same extent. If you have to remove the screening plate over the heads for any reason, take care when replacing it - it's
very easy to dry-joint Q1 on the head motor driver amplifier panel but very difficult to resolder this properly. There speaks the voice of experience!

On one occasion when I thought I had an instance of dirty heads the culprit turned out to be IC102, which is really a luminance subassembly soldered in at right-angles to the main PCB. Each to his own way of removing it. I've also had this assembly cause picture overloading after a few seconds of play, a squirt of freezer putting things right again for a further few seconds.
A case of failure to record was caused by the 9 V line to pin 2 of IC101 being absent: Q111 had gone open-circuit.

An unusual problem was a VCR with no tuner channel change, being stuck on number one. A few preliminary checks failed to bring anything to light so as I'd a similar machine already on the bench I swapped the front panels. This didn't cure the fault. Back went the original front, whereupon I inadvertently discovered that the timer indicator wasn't responding to the timer switch. Deciding to follow this lead instead took me to pin 51 of the main microcomputer chip. Due to some form of corrosion there was a leak to pin 52 , the 5 V supply line. Cleaning the print provided a cure. A few weeks later another machine came in with the same fault symptoms and the same cause as well.

Another unusual problem was poor playback pictures with the machine's own recordings. The f.m. waveform at TP106 was continually varying in amplitude, with the output from one head occasionally disappearing altogether. The effect on the screen was that the pictures would fade into noise maybe twice or three times a minute. Examination of the record f.m. signal showed that nothing was amiss and the odd thing was that the noise appeared at different points when the same recording was played again. The answer was that no control pulses were being recorded. The cause: R438 was missing - it had never been fitted. This would have been easy to miss during a quick visual check as the picture was stable for up to twenty seconds at a time. Very good these digital servos!

There we have it then. All in all the best machine developed by JVC to date, and by quite a margin. The only design problems from a servicing point of view appear to be the bottom cover retaining screws, which can be awkward to remove, and the relatively inaccessible motor driver amplifier panel. There's also a knack to removing the bracket which holds the combined aerial amplifier/r.f. modulator unit. A weak point here appears to be the external aerial connection centre pins. We've found them to be broken on a greater number of machines than we would expect - potentially a very expensive repair. Otherwise these machines will in years to come greatly lighten the workload of harassed video engineers.
C.H.

Ferguson 3V29/30 - JVC HR7200/7300

There have been various comments in these pages in recent months concerning the problem of loading motor belt slippage in these very popular machines. Perhaps the following notes will help. We've had a large number of
these machines through our workshops over the years and have found that a contributory factor seems to be dust on the motor and worm pulleys - the fault often occurs with VCRs that have a dusty interior, though not exclusively so. Before replacing the belt clean both pulleys and examine the two cogs that protrude into the upper part of the chassis and engage the loading rings - clean out any grit that's become embedded in hardened grease. Take care not to get any of the grease from the worm drive on the replacement belt.

Another point I've noticed is that belt slippage can occur as the machine warms up: on many occasions I've left a VCR on soak test while trying to trace a servo fault or whatever and after playing a three hour tape once or twice have found that the machine refuses to load. Most customers don't put their machines to this sort of extended use, but a case could perhaps be made for belt changing whenever one of these VCRs is brought in for service. Don't ask me how a belt stretches as a VCR warms up. Maybe the motor would be a more likely candidate for suspicion. Changing the belt however has always in my experience provided a complete cure.

Finally, I see a lot of VCRs that have been "looked at" elsewhere. A few intriguing solutions to this problem have been noted. I cannot comment on belt boiling as it's difficult to tell when a belt has been boiled, but bending the contacts of the after-loading switch is very popular: it doesn't work. Neither does replacing D3, an 11V zener diode on the mechacon panel, with a higher voltage type the loading arms will come out of the cassette housing like greyhounds out of their traps but the belt will still slip. What will work is removing the loading motor from its bracket and elongating the bracket mounting holes using a needle file. I did this once with a local customer's machine when we'd no spare belts and told him to come back when the problem recurred: that was over a year ago, and I've not seen him since. Maybe he just didn't want to return to someone who confessed to carrying out a temporary repair. It's quicker of course to replace the belt. C.H.

Sharp VC581

This was a good one! At stop the capstan rotated backwards and when play was selected the capstan stopped . . . Investigation started at the capstan forward/reverse switching i.c. (IC701) where the reverse select pin 2 was found to be high all the time. The track was traced back to D7018 via wire link J20 which was shorting to link J25. These links are at the right-hand side of the mother board.
P.B.

Panasonic NV7000

The fault with this machine was no sound in the E-E mode. Checks in the sound section revealed that the audio mute circuitry was operating: pin 1 of connector P4009 was high at approximately 5 V . The cause of the trouble was the quad, two-input nand gate chip IC6010. Replacing this provided a complete cure.
S.I.

Panasonic NV333

The capstan wouldn't lock in the playback mode. Both the reference and capstan FG signals were present and on checking the d.c. voltages around the capstan servo chip IC2003 the voltage at pin 16 was found to be low at about half the correct level. Tracing this voltage back to its
source we found that the 9 V supply to connection E on the system control board was missing. The cause was Q6003 being open-circuit: this transistor acts as a switch, supplying 9 V except when the machine is in the record mode.
S.I.

Hitachi VT8000

On pressing the play button the drum motor would creep up to speed slowly, in an irregular manner. The capstan motor would then start, again in a very erratic manner. The 9 V supply at PG502/6 and the 12 V supply at PG502/7 were both low. The cause was traced to R054 on the system control board being high in value. S.I.

Sharp VC8300

We had two of these in during the same day. The first wouldn't switch off, with the operate light always on. Q902 was found to be short-circuit. The second machine would lose the playback picture - the screen intermittently became a blank white raster. This was traced to dry-joints on plug/socket connector CD on board PWB-C. M.D.

Sharp VC7700

The complaint was no play. The machine would lace up then unlace after about three seconds. We checked the inputs to the microcomputer chip and found that the source of the trouble was a false signal from the slack sensor mounted on the pinch roller bracket. Replacing this cured the problem.
M.D.

Panasonic NV370 with TX5500

We delivered a new Panasonic NV370 VCR and TX5500 colour receiver. This set employs a budget-type search tuning system that's difficult to fine tune exactly. We tuned in the TV channels, but when the VCR was tuned in there was loud intercarrier buzz on the ITV channel (41) in the E-E mode. We tried shifting the modulator frequency but this didn't help. It was possible to cure the problem by fine tuning the set but when the video channel was reselected the buzz returned. The problem remained even when both the TV set and the VCR were exchanged. As Panasonic had no suggestions we resorted to opening the VCR's modulator in the customer's house and adjusting the sound coil and video level potentiometer for no buzz. This cured the problem but means that the VCR is no longer compatible with other TV sets (low sound).
M.D.

Hitachi VT33

The problem with this machine, which had been faulty from new, was a ringing on playback of its own recordings. I replaced IC201 but the fault remained: this meant I had to think! A check through the recording signal path revealed that R222, which damps L204, was $270 \mathrm{k} \Omega$ instead of 150Ω. Replacing this resistor produced correct operation.
L.H.

Philips VHS VCR with Thorn TX9

A Philips VHS machine would work all right with any other set but on playback of some recordings via a set fitted with the Thorn TX9 chassis the top of the picture pulled and there was a white band at the top. The
problem was cured by fitting a 10 dB attenuator between the TV set and the VCR.
L.H.

GEC V4004/Hitachi VT33

The problem with this machine was intermittent loss of colour on playback. After a few checks I suspected the
colour processing chip IC203 as I've had this fail before, but the fault remained when a new HT4239 was fitted. On making voltage checks at Q217 and Q358 I found that the 9 V collector supply was only 5 V , due to choke L215 in the supply line being open-circuit - the 5 V was coming from pin 27 of IC203 via the base-collector junction of Q217! Normal operation was restored after replacing L215. L.H.

LCD TVs from Citizen

Pocket TV sets using liquid-crystal panels to produce the picture have been on sale in Japan and the USA for some time. Late last year Casio released an LCD set in the UK and the 1985-6 Tandy catalogue lists two such sets, one by Casio and another by Citizen. Citizen are now marketing the set themselves in the UK and we have been lent one to see how it performs.

The present model has a 2.7 in . (diagonal) screen with just over 18,000 pixels (picture elements). A model with 3.5 in . screen, more pixels and incorporating $\mathrm{f} . \mathrm{m}$. radio is due for release shortly and a colour set is expected by the end of the year. The current model measures just $7.5 \times$ $135 \times 23.6 \mathrm{~mm}(15 / 16 \times 53 / 8 \times 3$ in. $)$ and weighs approximately 230 g (270 g with batteries). It consumes 0.4 W and can be operated from four size AAA batteries, an a.c. adaptor, a car battery or an optional NiCd rechargeable battery pack. Battery life is approximately ten hours with continuous use of four AAA alkaline batteries. There's a video input jack, earphone jack, external acrial jack and a.c. adaptor jack.

The LCD panel is illuminated from the rear and produces the picture by either allowing the light through or blocking it to a greater of lesser extent. Natural light (outdoors), a back-lighting attachment or other light source can be used. The panel consists of two sheets of glass with a gap of about 0.3 mil between them: the twisted nematic (TN) liquid crystal material fills the gap between these sheets. Two sheets of polarising material cover the rear and front surfaces of the panel. Inside the

Fig. 1: Block diagram of Citizen's LCD TV receiver.
panel are 122 horizontal row elements backing one glass sheet and 148 vertical column elements backing the other sheet. The intersections of the row and column elements produce the pixels.

Light entering the rear of the panel is first polarised, i.e. only light waves polarised in one direction are allowed through by the rear polarising sheet (ordinary light has random polarisation). The effect of the TN liquid crystal material is to change the polarisation of the light by 90°. The second polarising sheet at the front allows this light through. Control of the panel's light transmission is achieved by applying an electric field to each row/column intersection, i.e. pixel, in turn. The fields alter the alignment of the liquid crystal molecules with the result that the light transmission characteristic changes.

A block diagram of the Citizen receiver is shown in Fig. 1. The top part is conventional - a tuner, i.f. strip and audio amplifier - the rest is not. The LCD panel requires row and column drive, and there are 122 rows not 625 lines. The heart of the set is the control i.c. which provides synchronised timing for the display drives and converts the analogue video signal to a four-bit digital signal. This signal is then processed in the column driver i.c., using shift registers, latches and pulse-width modulation. The digital video signal is alternately stored in two shift registers, the switching being at $0.3 \mu \mathrm{sec}$. When a complete line of video signal has been stored it's read out at a rate that conforms with the row timing. It's then converted to pulse-width modulation to drive the column electrodes. The row drive circuit addresses the row electrodes in sequence: when a row is switched on, the column electrodes apply the pulse-width modulation to the pixels in that row.

The brightness of the display is varied in two ways, by the pulse-width video modulation and by the brightness control which sets the amplitude of the pulses applied to the column electrodes. Note that the brightness control has to vary several voltages so that its operation does not affect the pixel address switching.
It's necessary to generate higher voltages than the 6 V input: the varicap tuning system requires 38 V while the row address system requires up to 19 V . An $L C$ oscillator and two rectifier circuits produce these higher voltages.
Some sophisticated electronic technology is used in the set and the construction is a masterpiece of miniaturisation - the PCBs use surface-mounted component technology. We found the set to be sensitive, using its built-in rod aerial, and easy to tune. What of the picture? We feel that any attempt at lengthy viewing would not be easy on the eyes. But then the set is not meant as a main TV picture source, rather as a portable picture source to refer to as and when the user wishes to do so. The limited resolution unfortunately makes most: lettering illegible.

TV Fault Finding

Reports from Alan Shaw, Michael Dranfield and Philip Blundell, Eng. Tech.

Thorn TX100 Chassis

This is the best TV chassis produced to date by Thorn-EMI-Ferguson. It's used in sets fitted with various types of tube, certain component values being changed to suit. As with most new TV chassis there's no such thing as a common "stock" fault. Anyone with experience of the later TX9 and the TX10 chassis will be at ease with the TX100. I hope the following notes will be of interest to those who are not too familiar with Ferguson colour sets.

One interesting feature is the automatic grey-scale adjustment. If you reduce the height of the picture you'll see three test lines above the picture area. These test lines (23,24 and 25) are used to produce a beam current of $10 \mu \mathrm{~A}$ to set the c.r.t. cut-off point for each gun. The only variable controls are for the highlights. A start-up delay circuit (TR3 etc.) earths pin 18 of the colour decoder chip when the set is first switched on to prevent the rapid warm-up c.r.t. producing a bright picture that drifts down to black level.

The power supply is built around the popular TDA4600-2 self-oscillating chopper control chip. A replacement must have the suffix -2: the early TDA 4600 will not work in the chassis. Start up is via a thyristor (SCR1) which provides a supply to pin 9 of this chip - around 56 V at this pin is sufficient to get the circuit going. D10 stops SCR1 working once the chopper circuit comes into operation. When the h.t. voltage rises so does the voltage across pins $10-8$ of the chopper transformer: this voltage controls the mark-space ratio of the output from the chip. The chopper circuit's normal operating frequency is 20 kHz , rising to 60 kHz with remote-control versions in standby and dropping to 4 kHz when there's a heavy load on the 119 V line, e.g. a short-circuit line output transistor.

Important servicing note: the 15 V regulator chip IC9, the sound channel chip IC5 and the field output chip IC6 are all temperature conscious - never apply freezer to any of them under fault conditions. IC6 will automatically turn off when the temperature exceeds $175^{\circ} \mathrm{C}$. If you apply freezer you'll turn it back on, with possibly alarming results - the i.c. can literally explode, with consequent damage to the board.

Faults we've had to date are as follows. (1) Blown mains fuse due to the chopper transistor TR6 being leaky or short-circuit. Check the TDA4600-2, R121 (27 Ω) and R114 (0.47Ω or 0.39Ω depending on chopper transformer), also R115 ($330 \mathrm{k} \Omega$ or $270 \mathrm{k} \Omega$ depending on chopper transformer) - repeated failure of TR6 is likely if this latter resistor is out of tolerance. (2) Grainy picture due to the r.f. amplifier transistor in the tuner or the SL1432 i.f. preamplifier chip IC1 being faulty. (3) Intermittent field collapse due to $\mathrm{C} 95(0.01 \mu \mathrm{~F})$ being intermittently leaky. (4) A small picture due to D28 (BY299) being leaky - this diode is present only in 110° models.
A.S.

Some Quickies

Ferguson TX90 chassis: We've had a couple of these portables in with the mains fuse blown due to one of the c.r.t. fixing screw washers trapping the degaussing coil and shorting it to the earthed c.r.t. rimband.
ITT CVC32 chassis: Blank raster, sound o.k. Check
whether R28 ($820 \Omega, 1 / 2 \mathrm{~W}$) on the mother board is opencircuit.
Amstrad CTV1400/Orion 14PC portable: Intermittent flashing and drifting is usually caused by faulty eight-way channel selection switches but can also be due to a faulty tuning potentiometer bank. Note that while they look the same the potentiometers in non-remote control models are $100 \mathrm{k} \Omega$ each while those in remote-control versions are $20 \mathrm{k} \Omega$ each.
Pye 725/737 chassis: For weak field sync check C941 ($4.7 \mu \mathrm{~F}$).
Thorn 9000 chassis: Line off speed. C715 ($22 \mu \mathrm{~F}, 275 \mathrm{~V}$) open-circuit.
Philips KT4/K40 chassis, remote control versions. Unable to tune any stations, on-screen line not moving and no channel display - the 5 V regulator on the VST panel is open-circuit. Remote receive light permanently lit, channel change slow to react - D6103 (BA317) on the VST panel leaky.
A.S.

Thorn TX90 Chassis

A few of these sets have been in for repair with the same fault - intermittent collapse of the bottom half of the field scan and height variations from the bottom upwards. This is caused by dry-joints around the field output transistors. As there aren't many components in the field output stage we generally resolder the lot.
M.D.

GEC C2110 Series

Some quickies on these sets.
Field collapse: Check the voltage at the collector of the discharge transistor TR452. If abnormally high (33V) change R455 ($470 \mathrm{k} \Omega$).
Slight field jitter at the top of the picture: Replace the midpoint voltage preset P 454 (470Ω).
Height shrinks as the set warms up: Change the field driver transistor TR453 (AC188).
Picture only ten inches high, with unlocked colour and distorted sound: Replace the 40 V supply rectifier D601 on the line timebase panel. A BY210-800 is suitable.
Loss of one primary colour with a dark picture, the relevant first anode voltage being low: Replace the tube base spark gap associated with the missing colour. M.D.

Thorn 1790 Chassis

We've had a lot of these sets in for repair lately, all with the no results symptom. In every case the cause has been bad cracking around the mains transformer. One set came in with an intermittent fault: no signals, no video and a jumping picture. When the fault eventually appeared we found that the 90 V rail was missing. This was traced to a crack around one of the line output transformer's pins.
M.D.

Philips G9 Chassis

There was a very odd fault on this set. The top quarter of the field scan was missing: it wasn't compressed or folded
over, and the rest of the picture was normal. The set was left on and after ten minutes the scan had filled more of the screen, leaving a circular patch at the top left. A quick timebase panel swap proved that the fault was in this area and a number of electrolytics in the field timebase were changed: the fault was cleared when $\mathrm{C} 22(10 \mu \mathrm{~F})$ and C 51 $(47 \mu \mathrm{~F})$ were replaced. Surprisingly if either one of these capacitors was replaced the fault remained: the two capacitors had to be replaced as a pair and we couldn't find anything wrong with the originals. M.D. (Editorial note: In this chassis changes in the conditions in the field timebase affect the line blanking.)

Philips KT3 Chassis

This set led me a merry dance: there were intermittent black lines at the top of the picture. As usual the fault disappeared as soon as the chassis was disturbed. Over a
period of time the decoder panel and the blanking transistor were replaced to no avail. Then one day the test card was on when the fault appeared and I noticed that the top of the picture was bending over to the right. Examination of the soldering on the sync separator and i.f. modules revealed that C2148 at the input to the TDA2540 chip, inside the i.f. can, hadn't been soldered in.
P.B.

Philips K35 Chassis

This set had no colour till you turned up the brightness. Then along with the colour came flashing horizontal lines. Substitution proved that the fault was in the decoder module. A new TDA3560 decoder chip stopped the flashing lines but a replacement for $\mathrm{C} 66(100 \mu \mathrm{~F})$ was required to bring back the colour - this electrolytic decouples the 12 V supply to the chip.
P.B.

Long-distance Television

Roger Bunney

March was another relatively quiet month but now that April is here there should be increasing Sporadic E activity - mid-April SpE openings usually indicate a good season ahead. A brief outline of SpE signal propagation is given later in the column for the benefit of new readers. -

The repeat performance 27 days after the massive Aurora on February 8th produced little by way of reception here in the south - I noted only heavy patterning from the north on chs. E2/R1 on March 6th. Iain Menzies, well placed in Aberdeen, logged AR signals on the 6th, 7th and 9th, but only NRK (Norway) chs. E2/3 and TSS (LISSR) ch. R1, during the later evening periods. NRK/ TSS signals were again logged via AR on March 17th, $20 \mathrm{th}, 22 \mathrm{nd}, 23 \mathrm{rd}$ and 26 th . Further information on the February aurora has come to hand. On the 8th a Swedish amateur (SM6PU) heard a US amateur (K1TOL) operating at $50 \cdot 11 \mathrm{MHz}$ (time $0050-0052$). SM's aerial was aimed at 279°. During the midnight period K1TOL heard the UK 50 MHz beacon on Anglesey (GB3SIX). This shows that transatlantic DX-TV reception must have been possible in Band I, though it would have been of poor quality.

There was minimal SpE propagation during March. The best days were the 18 th with TVE (Spain) ch. E3 and TVP (Poland) ch. R1, both at 1220-1230, and the 27th with SR-1 (Sweden) ch. E3.

Tropospheric propagation matched the poor weather conditions. There was a slight lift on the $14 / 15$ th, giving enhanced reception from France. Dave Shirley at Hastings and Tim Anderson at St. Leonards claim the first reception in the UK of the new French local stations. Dave logged TV5 from Lens on ch. E51 at 0200 on the 15th, with a PM5544 pattern carrying the identifications "TDF" and "RES 5". On the following night he received the Lens TV6 signal on ch. E54, this time on programme with a "TV6" insert at the top right corner, then the PM5544 pattern with similar identifications though "RES 6". The signals were not visible until stronger main network TDF transmitters came on air.
Not an exciting month then, but by the time this is read things should be happening. During the strong gales over the weekend of the $22 \mathrm{nd} / 23$ rd Cyril Willis's aerial system collapsed: repairs are in hand.

News Items

UK: Gloomy news concerning Band III. It appears that up to five mobile radio networks are to be established in the London area with up to twenty channels each. Regional networks with up to nineteen channels are to be established in Birmingham, Merseyside, Nottingham, Leeds and Central Scotland. National Radiophone should be in operation by the end of the year, covering the London area to the M25 with four transmission sites using twenty channels each.

Left: The FUBK test pattern in use by Copenhagen on ch. E56 at 200W - a French signal transmitted during the October tropospheric opening. Centre: An unusual test card received from Hamburg, ch. E9, in early 1985. Right: A Danish regional identification on ch. E7. Photographs of reception by Ryn Muntjewerff in Holland.

Ireland: The Republic is permitting an experimental amateur radio allocation at $50-51.75 \mathrm{MHz}$, on a limited basis about twenty operators will be allowed to operate in the first phase, provided there's no interference to cable TV and the RTE-1 outlet at Maghera.
France: A seventh TV network (TV7) is expected to start operations in mid-1987, with programme linking by satellite.
Spain: Full daytime transmissions are planned. We understand that Breakfast TV will be via the TVE-1 transmitters.
In brief: China is to launch a TV/communcations satellite . . . RTM (Morocco) is now testing all day on chs. E25/6, using the PM5544 pattern . . . SBS-TV (Australia) started services from Hobart (Tasmania) and Perth during March, on ch. 28: a new ch. 10 commercial service is planned for Perth.

Satellite TV News

There's been a severe fall off in sales of satellite TV receiving equipment in the USA, mainly because of uncertainty caused by the increased use of scrambling. There have been redundancies in at least two equipment manufacturers - Amplica and Birdview Satellite Communications have announced redundancies approaching forty per cent. The latter company says advances in equipment technology mean that fewer manufacturing personnel are required. There's also a general move to Ku band (11-7$12 \cdot 2 \mathrm{GHz}$) operation by cable programme originators in the USA in order to avoid their material being received without payment by those with C-band TVROs. Major NBC feeds have recently been transferred to the SBS-3 satellite at $95^{\circ} \mathrm{W}$ (transponder 1) in preference to adopting scrambling in Band C. Anderson Scientific has produced a "low-cost video stabiliser" which will unscramble VideoCipher 2 and Oak-Orion transmissions - the former has digitally encrypted sound, which is likely to pose a problem.

The AUSSAT satellite is now relaying ABC-TV (Victoria) TV programmes on a full-time basis. Interesting that Tony Dunnett in North Island, New Zealand has received the C-band downlink at his company's NZ location. Tony's company (SAT-TEL - no connection with the UK firm of the same name) makes dishes in sizes up to 3 m and LNAs down to $50^{\circ} \mathrm{K}$.

Fringe Electronics FM Radio Preamplifier

Fringe Electronics Ltd. (Fringe House, 50 Mansfield Road, Clipstone, Notts NG21 9EQ) has introduced a mains-operated, set-back preamplifier intended for use with f.m. radio equipment: the noise figure quoted is 1.9 dB and the claimed gain is typically 20 dB . I've recently had one for assessment. Internally the single stage of amplification, using a bipolar transistor, has bandpass input tuning and a tuned collector load circuit. A voltage stabiliser is incorporated and the circuitry is built on a high-quality, low-loss PCB. I've no criticism of the construction. The noise could be checked only subjectively but measurements of gain were made. Over the 88 108 MHz band the gain varied from 22 dB to 23.5 dB , comfortably exceeding the claimed figure. Gain was also checked at various frequencies outside the band to assess the response to known or possible sources of high-level interference. These tests indicate that the unit should minimise if not eliminate all but the strongest local sources of interference. At 41 MHz the gain was -25 dB , at $50 \mathrm{MHz}-18 \mathrm{~dB}$, at $65 \mathrm{MHz}-5 \mathrm{~dB}$, at $75 \mathrm{MHz}+7 \cdot 5 \mathrm{~dB}$, at

EQUIPMENT \& PROFESSIONAL ADVICE
Aerial Techniques offer a unique blend of the best equipment and impartial professional advice for Television/FM DXing or simply better domestic reception.
LABGEAR UPCONVERTERS ideal for TV-DXing, used but guaranteed in good working order, mains powered, limited stock .. £17.95 WB5/FD - Wideband Band $1(47-68 \mathrm{MHz})$ VHF Aerial, 5 element, high gain with folded dipole forcorrect matching.. $£ 38.60$
 ANTIFERENCE UP1300 VHF masthead amplifier ($40-230 \mathrm{MHz}$) for Bands 1,2 \& 3 . Gain 19 dB , low noice figure of only 2.5 dB
Matching power supply unit (12V) for use with above amplifier $£ 12.33$ NEW ARZ50 offset Aerial Rotator complete with latest type of Control Consol SB100 Alignment/Support bearing for above Rotator, allows greater aerial head loads to be used ..50 Whether your need is for local or fringe reception, alternative channels, TV/FM DXing, or for a distribution system, Aerial Techniques is the 'one stop' address for all equipment. All prices inclusive of VAT and Carriage.
ACCESS \& VISA Mail and Telephone orders welcome.

AERIAL TEOHRIOUES (T) 11, Kent Road, Parkstone,
Poole, Dorset, 日H12 2EH. Tel: 0202738232.
$146 \mathrm{MHz}-17 \mathrm{~dB}$, at $160 \mathrm{MHz}-28 \mathrm{~dB}$ and at 170 MHz -43 dB : 50 and 146 MHz were chosen in view of current or pending amateur radio operations while 75,160 and 170 MHz were chosen since they relate to PMR activity.

Checks with weak signals above 100 MHz in all instances gave a very clean improvement to a signal that had previously been just above the noise level. In general a weak signal at the noise level was raised to give acceptable, "cleanish" mono reception. I found no evidence of overloading at the bottom end of the band despite the presence of very strong signals locally - this was when listening to weak commercial/BBC stations between strong local ones. It's possible however that the gain could be too great for use with inferior tuners/receivers with bipolar front ends (and thus more susceptible to overloading). My own receiver, a mid-range Sanyo with MOSFET front end, gave no problems. I tested the amplifier thoroughly with a view to DX-FM use and the results were excellent.

The unit comes blisterpacked and sells for $£ 15.75$ plus VAT. With appropriate splitters it could also be used in a distribution network.

Old Sets for Disposal

Two elderly sets have recently been passed on to me they'll be dumped if no one wants them! The first is a midfifties Ekco mains/battery portable, Model TMB272. It was working when put into store many years ago. The other is a set I know better - a Bush TV62 in a Bakelite cabinet. I used this type of receiver for many years and can recommend it despite it being made back in 1957: it works, the screen lights up and the cabinet is uncracked -
it'll be a collector's item in years to come! These sets are free but must be collected (Southampton area). If interested, drop us a line with s.a.e. The TV62 can be converted to 625 -line operation but it would be nice to see it left as a memorial to 405 lines.

New Book

The latest publication from the BATC (available from 14 Lilac Avenue, Leicester LE5 1FN) is "The Best of CQTV". It contains the more important and innovative articles that have appeared over the last five years in the BATC journal CQ-TV - interest in amateur TV has increased greatly in recent years and back copies of the magazine are now generally unavailable. The articles cover operation at both $70 \mathrm{~cm}(435 \mathrm{MHz})$ and 23 cm $(1.3 \mathrm{GHz})$, f.m. and a.m. video, test equipment and even a vision mixer, with full circuit diagrams and with some PCBs offered to members. I truly recommend this $100-$ page (A5 format) book: it's well worth the $£ 3.50$ (including UK postage) price, being packed with information. Overseas readers should send a London based bank draft and include sufficient extra postage.

Australian Channel Allocations

Robert Copeman (Melbourne) has sent us an up-todate listing (May 1986) of the Australian v.h.f. and u.h.f. TV channel allocations (see Table 1). The B/G system applies, i.e. with $5 \cdot 5 \mathrm{MHz}$ sound-vision spacing and also PAL colour. Note that the use of Band II for TV is being gradually phased out as the number of f.m. radio stations using the band increases.

From our Correspondents . . .

First a couple of corrections. In the December 1985 column we showed a Tele Malta Corporation test pattern received by Mel Thurlbourn whilst he was in the area and suggested that the power of the ch. E10 transmitter was 10 kW . Edmond Friggiere tells us that the power is less than 2 kW . In the April issue we showed a slide received by Marios Colocassides in Cyprus and captioned it as being from Tunisia. We got the channel right (ch. E33) but the transmission was from Beirut.

In the April column we mentioned a query about reception of an AFRTS signal in Rastanura, Saudi Arabia, on ch. E27. A London-based reader has solved this mystery for us. The source of the signal is a 100 W transmitter owned/operated by the Omani Prime Min-

Table 1: Australian TV channel allocations.

Ch.	Freq. (MHz)	Ch.	Freq. (MHz)	Ch.	Freq. (MHz)
0	$45-52$	33	$561-568$	53	$701-708$
1	$56-63$	34	$568-575$	54	$708-715$
2	$63-70$	35	$575-582$	55	$715-722$
3	$82-92$	39	$603-610$	56	$722-729$
4	$94-101$	40	$610-617$	57	$729-736$
5	$101-108$	41	$617-624$	58	$736-743$
$5 A$	$137-144$	42	$624-631$	59	$743-750$
6	$174-181$	43	$631-638$	60	$750-757$
7	$181-188$	44	$638-645$	61	$757-764$
8	$188-195$	45	$645-652$	62	$7641-771$
9	$195-202$	46	$652-659$	63	$771-778$
10	$208-215$	47	$659-666$	64	$778-785$
11	$215-222$	48	$666-673$	65	$785-792$
28	$526-533$	49	$673-680$	66	$792-799$
29	$533-540$	50	$680-687$	67	$799-806$
30	$540-547$	51	$687-694$	68	$806-813$
31	$547-554$	52	$694-701$	69	$813-820$
32	$554-561$				

ister. It's of Acrodyne manufacture and is fed with signals from an 11 m Scientific Atlanta Intelstat (B standard) earth station. Apparently there are several such receiveonly stations dotted around the Gulf area, privately owned by prominent people. The Omani transmitter broadcasts the AFRTS-Southern Europe service for the benefit of local residents, taking the feed (without censorship) from transponder 9 on Intelstat V F-02. There were plans at one stage for a similar service in Abu Dhabi. Interesting that in Turkey the AFRTS relay is delayed for 24 .hours for censorship purposes - even for US Forces!

Sporadic E Propagation

The "season" for Sporadic E propagation normally extends from about the second week in May to midAugust, with sometimes a minor spell of activity in midApril and another period in mid-December. The ionosphere's E layer is some 70 miles above the Earth during the day and though reflective to short-wave signals is generally transparent to v.h.f. signals. M.W. signals are normally absorbed by the D layer during the day, though reflection from the E layer occurs after dark when the D layer disperses. Reflection of v.h.f. signals from the E layer occurs when ionised clouds are present. These occur at random and cannot be forecast. Incident Band I signals can be reflected over great distances, typically $500-1,500$ miles in a single hop. The higher the intensity of the ionisation the higher the signal frequency that can be reflected. Reflection of Band III signals occurs only rarely: reflection of Band II radio signals is rather more common.

During an opening the reflective clouds vary in number and may be stationary or move at some speed. As a result the signal reflections will vary: the skip conditions change and alternative signals may appear on a channel. With widespread reflection the result is severe interference. Reflective conditions can last for minutes or hours. There's a greater chance of SpE activity when the weather is humid and thundery.

Since SpE signals can be very strong a simple wideband dipole will often suffice for reception: two fixed dipoles mounted at right angles will allow switched coverage of all directions. Alternatively a two-element wideband system with a rotator can be used. Aerial height need not be high - the signals tend to arrive at an angle relative to horizontal - but it's best to have the aerial at 20 ft or so to clear nearby objects. Most signals start off horizontally polarised, but a propagation shift tends to occur. The general rule however is to mount the aerials horizontally. We hope to feature shortly a wideband Band I/III design as a DIY project.

Double-hop reflection will bring in signals from 2,000 miles or beyond, signals from the Middle East often being seen in the UK. Use of an indoor preamplifier will often help with weaker signals. Local interference tends to occur in Band I and is best filtered out before amplification: provided premium quality coaxial cable is used there will be little loss and the optimum signal/noise ratio will be maintained.

A 625 -line receiver with v.h.f. coverage can be used or alternatively a u.h.f. receiver, preferably with single-knob, slow-motion tuning, can be used in conjunction with an upconverter. Improved results will be obtained by using a narrow i.f. bandwidth to reduce adjacent channel interference. Finally a commercial: my DX-TV book, published by Babani publications, is at present out of print - a new edition is expected shortly.

Other things and other places

Les Lawry-Johns

There's more to life than TV sets, though there are times when this is none too obvious. Anyway, I thought you wouldn't mind if for a change I told you about some other things and places.

The Coat

One of these things is my overcoat. It was made to measure in 1938 by M. Burton and cost $37 / 6 d$. For those of you who want that in present day money it comes to one pound thirty seven and a half pence (I think). That coat is as good as new and still fits. It's double breasted and waisted. I've worn it twice during the last thirty years, which all goes to show how many funerals I've attended. Not quite true that, because an overcoat isn't needed in summer. Jealousy will get you nowhere. Oh yes, black melton.

The Journey

Next places. A couple of weeks ago the phone rang during the evening. HB answered it. She sounded a bit excited and I heard her say "We'll come up and get it". Since her daughter Colleen was with us at the time she didn't say anything more about the conversation. After Colleen had left I was told all about it. Colleen had always wanted a small Dachsund and we'd sent out signals a month or two back in the hope of getting one for her birthday. One of the signals had now been answered: there were three puppies ready to leave their mother and we could have our pick. All we had to do was to hang up the Closed sign and pop up to Dersingham. Lovely, but where's that?

I consulted my AA New Book of the Road. It's just up from Kings Lynn, near the Wash. My eye wandered down the A10 to Ely, thence to Cambridge and Theydon Bois to pick up the M25 to Dartford Tunnel. Not far. Any idiot could do it with a full tank of petrol.

On the following Tuesday the tank was full, the oil was checked and we were ready to go. Colleen arrived at nine thirty and we were off. First to the Dartford Tunnel which is practically on our doorstep. I missed it. We circled round and after a slight detour through Bexley we got there. Never mind, we were on our way in my safe and strong hands. Straight up the M25 towards Theydon Bois, steer to the right and up the M11 and on our way to Cambridge. On and on like the brave six hundred my Grandad used to sing about. Harlow came and went, then Bishop's Stortford. Flashing along the motorway while other cars flashed past as though we were standing still.

Undeterred we fought our way up past Cambridge and on to Ely, my eyes like diamonds behind my new specs (first time wearing them for two years), though I must admit they were getting tired. King's Lynn loomed up and we went round a roundabout and took the A149 past Castle Rising on the left and finally hit Dersingham. By now the Ouse was ousing all over the place and had been
for some time: waterways to the right of us, waterways to the left. On we went, past the fish and chip shop, slowly now, looking for the flags. At last we found them and turned into our destination. A man was waiting at the gate. He'd been waiting for a long time.

HB jumped out and greeted him profusely. I was amazed. Then Colleen did the same. I got out and we shook hands like gentlemen.
"This is my Uncle Roy" said HB.
"Well I'm buggered" said I.
"This is my husband."
"Well I'm buggered" said Roy.
HB hadn't even said we were going to relatives.
Into the house where Roy's wife greeted us warmly. Colleen looked at the large box on the floor from which some wimpering issued. "Goodness, aren't they beautiful!" she cried. One had a black patch on its back. She leaned over and picked him up, then realisation dawned. "He's yours" we told her.

We had lunch and gossiped. I finished off my whisky and started on some wine. They'd a lovely garden where the birds were well catered for. While we were admiring its features we saw a bag containing a marrow and some beans being passed over the wall on a rope. Roy took the bag in and came out with a bottle of home-made wine. It was tied to the rope and and pulled over the wall. Nary a word was said.
"Does that happen often?" I queried.
"Several times a week - the wife makes good wine."
"So I'd noticed."
By now it was almost two and I was beginning to wonder how long it would take to get back. So with Dacksy in a box and plenty of food for him we took our leave and departed, heading for King's Lynn. Somehow I took the wrong road and we went through miles and miles of country. There wasn't much sun but what there was I kept to the right of me so I knew we were going south. Eventually we arrived at Ely. HB glanced at the petrol gauge. "We're half empty."

I'd also been looking at it. "We're half full" I said.
We were well on the way to Cambridge now, but instead of bypassing it I found myself in the town centre. So many bikes, I've never seen so many. We went round the market square just for fun and headed out of town, eventually finding the M11. Down we hurtled while cars flashed by in the outer lane. The petrol gauge by now read very low. It suddenly occurred to me that there are no filling stations on these motorways. I didn't want to go off and get lost again; I also knew that an empty reading meant that there were still two gallons on board. But at the speed we were going they wouldn't last very long. So I gritted what teeth I had and slowed down. We crept along the M25 and under the Dartford Tunnel. Then along the A3 till we were able to fill up just three miles from home. We were glad to be back. Dacksy had slept all the way and even Douggie (Colleen's husband) likes him.

So much for the trip and its confusions. I don't know how ET manages it: from one end of England to the other about twice a week. But I'm not that bad at navigation. JAR gets lost trying to find his way from one side of London to the other (almost) on a good day with the light behind him . . .

Oven Problem (Microwave)

You remember HB's sister Dot - her with the brown eyes? Well Dot has a microwave oven with two bulbs in it.

These are in series which means they are rated at 125 V (20W). One went so they both went out. HB brought the good one down so that we could match it. We couldn't. Not only becuase we don't have any 125 V bulbs but also because the base is slightly larger than the normal SES.

So HB trudged around the town, getting the same
response. One shop assistant gave her detailed instructions on how to get to our own shop, which pleased her no end. Our wholesalers don't seem to have them either, so Dot's going to have to make do with a one lamp (240V) oven with the other lamp shorted out. If we can find a 240 V lamp with that unusual base.

Servicing Sinclair Microcomputers
 \section*{Part 2}

Ken Taylor

Last month we considered some of the i.c.s used in microcomputers and ended with a block diagram of the simplest computer possible. It had just a Central Processing Unit (CPU - the microprocessor), a Read Only Memory (ROM) that contained the operating instructions, a Random Access Memory (RAM) for storing the program and data and an Uncommited Logic Array (ULA) for doing all the hardware jobs, including interfacing with the TV modulator and the tape input/output ports. Fig. 5 last month was in fact a block diagram of the Sinclair ZX81 microcomputer which is probably the simplest possible home computer design. We'll now examine this model as an introduction to computer servicing.

In producing such a simple computer Sinclair Research introduced several features which make both the circuitry and operation rather different from that of the more usual type of microcomputer. For instance, where have all the other chips one might expect to find gone? The ones that generate the TV display signals and the decoder chips that decide whether it's the ROM or RAM you want? Or the special that looks after the keyboard? They all seemed to be essential in the Amstrad machine described in this magazine last year. In the ZX81 these jobs are all shared between the CPU and the specialised circuitry in the ULA, the timing and decision making being carried out by the former. There's a penalty to be paid for doing things in this simplified way however: the time the CPU has available for processing the program is severely limited. In fact whenever there's a display present the CPU is free only for the period of the field flyback - for the rest of the time it's producing the line sync and display details!

Sinclair ZX81 Circuit

So when you study the ZX81's circuit details (Fig. 1) remember that this is a very specialised machine with a component count unlike most other microcomputers, though it does have a standard CPU and a system that functions in the same way despite looking so different.
Further examination of Fig. 1 will help to explain some of the differences and clear up many of the problems described above. You'll see that the ULA chip is connected to the TV and tape circuits directly at pins 16 and 20. It can decode the address lines and then enable either the RAM or the ROM via one of the Chip Select (CS) lines at pins 12 and 13. It also assists the CPU in reading the keyboard, via the KBD0-KBD4 lines. These link the ULA to the keyboard via a five-pin socket (KB1) that's not shown in the diagram. This PCB-mounted socket connects the keyboard "tails" to these lines while an eightpin socket (KB2), also not shown, connects the other keyboard tails to diodes D1-8. The ULA also produces
the 3.25 MHz clock signal from the 6.5 MHz ceramic filter (X1) connected to pin 35.
The machine has only 1Kbyte of RAM fitted to the board. Provision is made for this to consist of either one 4118 memory chip or two 2114 chips. There's also provision for fitting a 2Kbyte RAM for the export model. The usual memory extension consists of a 16 K unit which plugs into the edge connector at the back of the machine. Fitting an extension memory disables the internal 1 K memory however - the following test procedure assumes that only the internal memory is in use.
The data lines to the ROM and RAM and some of the ROM address lines incorporate buffer resistors. These enable the lines to be used by more than one device without conflict. They are very useful in a fault situation for determining which device is still functioning satisfactorily. Lines downstream of these resistors are given an identifying accent, e.g. A1'. The edge connector also has these identifications on some of the contacts to show which side of the resistors link up with them.
There have been at least three versions of the PCB. Fig. 1 represents the issue one board but I've experienced no difficulty in identifying the circuitry on later boards. They vary a little in layout but the component numbers on the boards seem to be the same. One of the only differences on the issue three board is the use of individual resistors in place of packs RP1 and RP3 - R35-42 and R43-47 respectively. There's a photograph of an early version of the issue one board, without component numbers, on page 162 of the ZX81 BASIC Programming Book that was supplied with every machine. This photograph shows all the i.c.s mounted in sockets, which certainly isn't the case with later boards. Note also that the ULA is called the "Sinclair Computer Logic" which is a less standard but perhaps more sensible name.

The power supply unit is separate from the computer and connects to it via a 3.5 mm jack plug. It's not shown in Fig. 1 but is a simple d.c. unit that gives very little trouble - except for the moulded jack. If you have one that's been changed, make sure that the tip is positive.

Initial Checks

When the computer is first switched on the display should consist of a white-on-black K (inverse K) cursor at the bottom left of the screen.

If it doesn't, carry out the following simple checks. Remove any extension memory plugged into the rear connector. Check the power supply - the plug should provide an open-circuit voltage of about 14 V , tip positive. If the plug has been changed for a solder-on type it's easy to check the on-load voltage which should be about 11 V . This will show whether an overload or open-circuit con-

Fig. 1: Basic circuit diagram for the Sinclair ZX81 microcomputer.
dition is present in the machine. In the latter case suspect that the plug has at some time been connected with reversed polarity - this often blows the 5 V regulator and saves the rest of the circuitry.

Check the tuning. The modulator is usually set to channel 36 quite accurately, but sweep the band in case the tuning has moved or been altered. If there's no output signal from the ULA the modulator's output will consist of carrier only, devoid of even sync signals. In this case the indication on the TV screen will be negligible.

Dismantling the ZX81

If you haven't found the fault by now you'll have to make internal tests. This means dismantling the unit. First remove the four screws from the base. Three of these should be hidden under rubber feet - if these are still there (the two at the front and the one at back left). Lift
off the base and remove the two screws securing the PCB. If you turn the board over towards the front the keyboard tails can be removed from the two sockets. Treat these plastic strips with the utmost care - they are very easily damaged (more about this later).
With the board completely removed the TV and power supply leads can be reconnected. Initialisation of the computer to give the inverse K cursor display occurs without the keyboard being connected, so we can leave it disconnected until the fault has been found.

Fault Finding

Table 1 provides a quick fault-finding sequence: the numbers refer to the following paragraphs which give details of the procedure. Remember that there can often be more than one fault present, so repeat the sequence if necessary.

Table 1: ZX81 fault-finding sequence.

(1) The power supply should provide about 11 V at 400 mA on load. Less than 7 V will be insufficient for the regulator to function correctly. An excessive current reading indicates a fault on the board.
(2) The regulator should deliver 5 V to each of the i.c.s on the board. Its heatsink normally runs hot to the touch, but not unbearably so.
(3) The signal from pin 16 of the ULA chip to the modulator should give a ' PH ' indication on the logic probe (see Table 2). An oscilloscope should display a signal of 2 V peak amplitude from the peak to the bottom of the sync pulses. Inverse K will produce a very faint signal near the end of the field trace.
(4) If the modulation signal is present but the TV output is absent check the modulator's supply voltage and the tuning adjustment screw - this should be approximately 3 mm down inside the former.
(5) If the cursor is present, connect one of the contacts of the small keyboard socket KB 1 to a contact on the large socket KB2. Check whether a character or keyword appears on screen. Don't worry about shorting more than one connector in either of the sockets as this won't cause any damage to the computer - but it won't produce a display either as the software checks that only one key (apart from the shift key) is being pressed before it produces a screen display.
(6) Two faults that can affect the keyboard circuit are shorts between the lines or open-circuit lines or diodes. They can be identified by their effect on the system. Open-circuits affect only the keys they connect (see Fig. 1). A short effectively holds one key on, disabling the whole keyboard. Faults can occur anywhere in the circuit, from the address bus side to the diodes to the ULA chip's KBD pins. Check for shorts where the PCB tracks run obliquely under socket KB1. The resistance between these KBD tracks should be a few thousand ohms.
(7) The keyboard connection tails are very vulnerable, so to avoid unnecessary work make a thorough check that the computer is working satisfactorily before reconnecting the keyboard. Connect each contact on the small five-pin socket KB1 to at least two contacts on eight-pin socket KB2, checking the screen entries. Finally make sure that the tails are not splitting across (see following paragraph) and that the metallised contacts at the ends are in good condition. Then reconnect the keyboard by turning the case face down, front towards you, with the PCB laid component side up on the case so that the edge connector is at the front left: loop the tails over and push them carefully into the sockets, with a slight rocking movement. Don't push too hard or the plastic will buckle and split. When both tails have been fitted turn the PCB over on to its screw pillars and secure with two short screws.
(8) Often one bank or row of the keyboard fails to operate. This is usually due to cracks across the plastic tails severing one or more of the tracks. If the crack is near the end of the tail a clean square cut can sometimes be made, removing the fault. If not too short the tail can then be refitted. As mentioned above the end contacts of the tails should be checked to make sure that there's a good contact for the connectors. If the ends look a little dirty don't be tempted to apply a liquid solvent cleaner some of these attack the plastic (they don't soften it, they completely disintegrate it!).

If a satisfactory repair proves to be impossible a new keyboard will have to be fitted. These are readily obtainable and are easy to fit to the case with the self-adhesive backing.
(9) Here's a simple ROM check to establish that all the

A FEW WORDS TO ALL ELECTRONICS ENGINEERS IN SEARCH OF A NEW CAREER PATH

 TRAK TRAINING AT KALAMAZOO...An intensive, full time 20 week course based at our Watford Training Centre, that gives people with a good practical electronics background the chance to break into a challenging new area of work. Computers... or, to be exact, micro-computer repair and maintenance - a field that's growing nationwide, which means excellent job opportunities. Funded by the MSC, the course is just one of TRAK's specialist computer training programmes, tailormade to meet the needs of industry, commerce and government, for today and the future.

The course which commences shortly is free, and government sponsorship is available for successful candidates.

To qualify for a place you should be aged over 19, trained to TEC, C\&G or equivalent level, and live within daily travelling distance of Watford.

Find out how re-training with TRAK can help your future career prospects by coming along to our informal Qpen Day at the TRAK TRAINING CENTRE (Former Lloyds Bank Building), Church Street, Off Watford High Street, Watford, on Monday 2nd June between 10am - 5 pm.
If you can't make it, ring Kerry Gregson on 021-475 2191, ext. 2013.

Kalamazoo
business systems

bytes of memory are being read correctly. Although it's unlikely that a ROM fault could continue to be present at this point in the test sequence without being detected the check will set your mind at rest. Enter and run the program below - it takes just over a minute to run. Check that the answer printed out is 855106 . If the answer is 854885 the ROM is an early version. To prove this enter: PRINT SQR 25 (square root of a quarter). An answer of 1.359 instead of .5 proves that the ROM is an early type which has a few faults. Any other answer to the program indicates a ROM error. Here's the program:

10	FAST
20	LET L $=0$
30	FOR N $=0$ TO 8191
40	LET L $=$ L + PEEK N
50	NEXT N
60	PRINT L

(10) At this stage it remains only to check the tape save/ load operation and box up the computer. Put in a short program - the one above will do - and save it on tape. Switch off the machine to clear it, then restart and load the program. These operations are both described in Chapter 16 of the BASIC Programming Book supplied with the ZX81.

If the tape tests o.k. the case can be assembled, the four screws fitted and the rubber feet restuck in their sockets. (11) This is the stage you'll probably end up at if the computer has suffered major damage. You've proved that the fault lies in one or more of the chips or on the PCB.

First check whether the computer has been repaired previously. If you find evidence of modifications or soldering, check the board carefully for solder splashes, shorted
tracks etc. Where Sinclair Research fitted i.c. sockets originally I've found that they fitted them to all the i.c.s. So if you find a board that has sockets for some of the i.c.s treat it with suspicion - it's probably been modified.

I don't intend to tell you how to extract a suspect i.c. but let me tell you one of the pitfalls of the method I use in order to illustrate an elusive fault condition. I use a sucker on each pin of the i.c. and having removed most of the solder finally free each pin with a pair of pliers and if necessary the use of solderwick. This often leaves the odd pin still slightly secured in the hole: as the i.c. is carefully removed it's important to free any such pins before they lift and break the print. It's very easy to end up with a print crack on the top of the board and if undetected this crack will be covered when the socket is fitted. So if you have a particularly difficult fault, make sure that this hasn't happened. Check the signals at the i.c. pins and at the line end (the next component) to ensure track continuity.

Checking the ICs

Next, i.c. checks. Table 2 lists the conditions at each pin of the i.c.s. The readings were taken using the Tandy Micronta logic probe featured in last November's issue of Television. The computer was at the inverse K cursor stage and the supply for the probe was taken from the 5 V rail - I always fit a short wire with a small loop to the 5 V plated-through hole near the regulator.

To simplify checking, the pins are listed in numerical order in Table 2 though quick checks at selected pins might speed up the testing. For example I always make an initial check on the 5 V and chassis pins of all the i.c.s, then the reset line and memory request pins of the CPU and the cell select and read pins of the ROM and RAM chips. But this is only my own view of what are the more important checks or those most likely to lead to a fault indication. All the pin signals are listed, even those directly connected to the pins of other i.c.s, as this makes for easier checking. As mentioned earlier when describing the circuit some data and address lines incorporate buffer resistors between the i.c.s. These can be very useful as failure of an i.c. at one end of a resistor won't affect the i.c. at the other end, so you can establish with certainty which i.c. is faulty.

It's often easy to locate a fault or anomaly in the signals on the lines but very difficult to establish the reason. The unnecessary removal of a 40 -pin i.c. is a non-profitable pastime to be avoided if possible. Other approaches can be adopted. One that has been with us since the earliest days of printed circuits is to cut the track. This is useful for tracing shorts, the computer equivalent of which is the loss of a logic signal. When deciding where to make the cut remember what was previously said about track cracks under sockets and try to avoid making any cut that would subsequently be covered by a socket. Another method of checking a suspect i.c. is to mount a good one on top piggy-back fashion: the legs should be sprung in and care taken to ensure that there's contact at all the pins of the suspect i.c. This doesn't always work but it's worth a try when you have two or three suspect soldered-in i.c.s. The method complements track cutting as it's particularly effective with open-circuit chips.

One last tip. When you suspect that ULA chip and don't have a spare - I usually suspect the item for which I don't have a replacement - remember that the TV screen will be bright if the ULA is all right, even if all the other

Table 2: Signals on the i.c. pins.

Pin	N1	IC2	IC3	$1 C 4 a / b$
	(ULA)	(ROM)	(CPU)	(RAM)
1	P	P	P	P
2	P	P	P	P
3	P	P	PL	P
4	P	P	P	P
5	P	P	P	P
6	P	P	P	P
7	PH	P	P	P
8	PH	P	P	P
9	P	P	P	L
10	P	P	P	P
11	P	P	H	P
12	P	L	P	P
13	P	P	P	P
14	P	P	P	P
15	PH	P	P	P
16	PH	P	P	P
17	P	P	PH	P
18	P	P	P	H
19	P	P	P	
20	L	P	PH	
21	P	P	P	
22	OC	P	PH	
23	P	P	H	
24	P	H	PH	
25	H		H	
26	P		H	
27	H		P	
28	P		P	
29	H		L	
30	P		P	
31	H		P	
32	P		P	
33	H		P	
34	L		P	
35	H		P	
36	P		P	
37	P		P	
38	P		P	
39	F		P	
40	H		P	
$\begin{aligned} & \text { P = pulse, high and low LEDs lit. } \\ & \text { PH = pulse and high LEDs lit. } \\ & P L=\text { pulse and low LEDs lit. } \\ & H=\text { high LED lit. } \\ & L \quad=\text { low LED lit. } \\ & O C=\text { no LED lit (open-circuit). } \end{aligned}$				

chips are defective. So a bright screen without a cursor usually means that you should look elsewhere for the fault.

Spares

The above paragraph reminds me that I mentioned in the introduction to this series last month that Sinclair spares are readily available. The supplier I use is PV Tubes, 104 Abbey Street, Accrington, Lancs BB5 1EE 025436521 or 025432611 . I find that when in a hurry a phone call quoting my Access card number will rush a spare to me - sometimes by the following morning. (Editorial note: the full address of CPC , mentioned in Roger Burchett's letter last month, is CPC Electronic Component Distributors, 194 North Road, Preston, Lancs - 0772555 034).

This concludes the notes on servicing the ZX81. Next month we'll start on the Spectrum and Spectrum Plus.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

SONY KV2704UB

There are vertical stripes right across the screen, darker on the left-hand side and more noticeable on a plain raster. than a picture. There are also outlines to the left-hand side of verticals. These are more noticeable on faces and clothes. An outdoor aerial is in use, directly aligned with the transmitter.

For the striations we suggest you check the damping components in the line scan and EW modulator circuits R828 ($10 \Omega, 2 \mathrm{~W}$), R831 ($2 \cdot 2 \mathrm{k} \Omega$) and C834 ($0 \cdot 01 \mu \mathrm{~F}$). If these are in order suspect ripple on a supply line - the 250 V supply reservoir capacitor $\mathrm{C} 825(22 \mu \mathrm{~F})$ is a strong possibility. Scope checks on the supply lines and at the c.r.t. electrodes should lead you in the right direction. If the ghosting effect is still present when the striations have been cleared, try the aerial with another set. If this gives ghost-free reception we would suspect the SAW filter SWF201.

THORN 9000 CHASSIS

The problem with this set is mains fuse blowing. Replacing the Syclops transistor restores normal operation, but only for a few days or weeks.

The cause of this trouble is generally either latchety sockets on the base and emitter pins of the Syclops transistor, dry-joints on the Syclops and/or line output transformer, or intermittent failure of diode W702 or W704 in the Syclops circuit. These things should all be checked, the diodes preferably by substitution.

PANASONIC NV366

The front panel controls frequently lock up - the cassette cannot be removed and all functions except for the clock and programmer are inoperative. Switching off the power for a lengthy period of time restores normal operation until the next lock-up.

Assuming that the supply lines are all present and correct, it sounds as if the syscon microcomputer chip is coming unhinged. Check first that its 5V supply (pin 39) is present and correct, with no ripple/hash. If all is well here you could try a mains "conditioner" before condemning the chip itself (MN1405VKK). A conditioner is likely to help only if you live in an area with a noisy mains supply. You'll most likely find one at the local computer shop - it goes between the VCR's mains plug and socket.

GRUNDIG 8610

The picture is bright and sharp but there's a red background with red flyback lines. Interchanging the red and green drives changes the background to green with green
flyback lines. The effect is more noticeable with dark scenes and monochrome film.

Your R-G transposition check leaves little doubt that the problem lies on the RGB panel. Most often this inability to reach black level is due to a changed value component in the relevant $\mathrm{R} / \mathrm{G} / \mathrm{B}$ clamp/feedback circuit.' R1916 ($100 \mathrm{k} \Omega$) and R1918 ($470 \mathrm{k} \Omega$) are the first suspects. R1902 ($220 \mathrm{k} \Omega$) which with R1901 biases the base of the pnp transistor in the red output stage is also well worth checking. Make sure that the red drive control R1911 is in order, then if necessary check C1912 $(4 \cdot 7 \mu \mathrm{~F}), \mathrm{C} 1914$ $(0.22 \mu \mathrm{~F})$ and the clamp pulse coupling capacitor C 1917 $(0 \cdot 1 \mu \mathrm{~F})$.

RANK T20 CHASSIS

The channel indicator is stuck on 0 . All touch contacts seems to try channel selection but 0 remains.

We suggest you dismantle and thoroughly clean the touch contacts, the associated insulating surfaces and even the back of the touch pads. If the fault remains on reassembly it's likely that the SAS580/590 chips are faulty - we generally replace them as a pair (take precautions against static charges when handling them).

THORN 9600 CHASSIS

Occasionally the set functions perfectly. Usually however after switching on it starts up then shuts down. In the shutdown condition voltages are still present at all major points.

The most common cause of this fault is dry-joints on the PCBs. Check the pins of the chopper transformer T512 carefully, then the pins of the line output transformer T801. If necessary check the line drive connecting pins of plug/socket 810 and the jointing and condition of the 0.47Ω series resistor R510.

SANYO CTP7118

The set has an appetite for e.h.t. triplers - a replacement lasts for only about six months. This happened again recently and an examination showed that the casing had burnt through from the inside, near the fixing lugs. R764, which is in series with the EW driver transistor, also needed replacement. This time the new tripler lasted for only halr an hour however. The line output transistor, EW modulator diodes and small passive components in the line output stage all seem to be o.k. - we suspect the line output transformer. The h.t. is correct at 150 V though excessive demand from the line output stage pulls this down to about 70 V .

We would agree that the line output transformer T602 is probably faulty - we've had this happen with more than one of these sets. It's likely however that a faulty tripler ruined the transformer rather than the reverse. There

should be no more trouble when both have been replaced, but make sure that terminals D and M on the tripler are wired correctly (incorrect connection of these is a common mistake).

282
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

It's been a long and weary winter and on this spring day everyone in the workshop seemed to be out. Resident Workshop Sage (RWS) was gallivanting in Wales, RT (Real Technician) had taken a precious day's holiday to dig his garden while TS (Techno-Supersleuth) was out on the road fitting a teletext retrokit to a Sony TV set two villages away. The harassed Service Manager eyed the trainee with a beady eye: now was his chance to shine and put some of his college learning to practical use. Problem: his bench was equipped only for audio servicing. SM rigged up a portable 200W isolating transformer, then the mirror from the washroom, and supplied a conductive wristband - the latter a pointless if impressive gesture since there were unlikely to be any chips vulnerable to static in the motley collection of TVs in the waiting-repair queue.

The first of them was an ageing Pye colour set fitted with the 725 chassis. It was accused of intermittent low gain, the symptom being spasmodically snowy pictures. The trainee was in trouble from the moment he switched on! It took some time for the picture to appear, and when it did it was small and fluttering in size. Once tuned in the sound was present but was somewhat overwhelmed by a squeal from the area of the power supply circuitry on the right-hand panel. With these symptoms present the question of snowy pictures seemed somewhat irrelevant. Plainly the power supply department - a thyristor mains rectifier/regulator - was in pain. A circuit diagram was found and a brief study of the arrangements was made.

The trainee decided that a check on the 170 V h.t. line at fuse F971 would be a good start, especially as it's so accessible at the centre of the baseboard. The voltage here was found to be low and varying - its average level seemed to be around 140 V . The current passed by the fuse was less than 500 mA , so the trainee rightly concluded that the problem was not due to any excessive loading on the line. His next move was to squirt all the components in the PSU with freezer. This made the picture contract a little more. A few minutes of poking and prodding in the PSU was terminated when the phone rang. It was TS! He knew all about Pye TVs! Could he suggest anything for
the small, fluttering picture on the Pye 725 ?
TS was full of suggestions. Kick off by backing down the overvoltage trip potentiometer; if the picture still flutters check the trigger diac's $8 \cdot 2 \mathrm{M} \Omega$ bias resistor R 924 ; make sure that the feedback resistor R897 hasn't changed value; then suspect the diac (D892) and the thyristor (D888) said he. Magic thought the trainee as he walked back to his bench with a new spring in his step. Alas for pride! So much for experience! None of these things did any good at all. With a new BR100 trigger diac and BT116 thyristor, with the overvoltage trip transistor VT881 taken out of circuit, with replacement resistors in the R924 and R897 positions - and several others - the problem remained. The control transistor VT902 was changed, also its 7.5 V reference zener diode, but the fault remained.

Further thought led to a careful check on the huge $3 \cdot 3 \Omega$ surge limiter resistor R978. It measured $3 \cdot 21 \Omega$. A mighty muffer was procured and substituted for the h.t. reservoir and smoothing capacitors C880 and C877 in turn. It made little difference. An oscilloscope was brought into play and hooked to various points in the PSU, with confusing and inconclusive results. The main message provided by the waveforms was that the h.t. voltage was fluttering and that the conditions around the control transistor VT902 were also fluttering. The one crucial and revealing point in the power supply circuitry never saw the scope probe! What was it? Where did the fault lie? See next month!

ANSWER TO TEST CASE 281 - page 452 last month -

The Hitachi VT33 VCR described last month was suffering from intermittent loss of drum servo lock, the effect being confined to the record mode. The fault condition was related to the white content of the off-air picture being received and recorded. The steps taken during the diagnostic procedure were logical and sensible - almost to the end! The cursory check of the video signal being received by IC202 on the Y/C board was inadequate. With a new i.c. fitted the symptoms remained the same. A more careful check was then made on the video waveform at the input to the Y/C panel. The field-rate display on the scope revealed that the video signal had a d.c. level that wandered wildly, with the field sync pulses on such a steep gradient that they fell across the same scope screen graticule as much of the video signal itself the effect of poor l.f. response.

The same sorry waveform was present at the i.f./ detector panel's video output, but not at the output from the video detector i.c. itself or at any of the three subsequent video amplifier transistors Q851/2/3. What had happened was that the video output coupling capacitor C859 ($470 \mu \mathrm{~F}, 6.3 \mathrm{~V}$) had dried up and gone low in value, knocking off the l.f. response.

The simple test to prove all this? The technician should have injected a baseband signal at the video input socket. This would have produced consistently good drum servo locking during record.

[^1]
3 WEEK FULL-TIME
 COURSES HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS.

VCR SERVICING NEXT COURSE STARTS ON JUNE 30th - TUITION FEE £575

MICROCOMPUTER SERVICING NEXT COURSE STARTS ON JULY 21st - TUITION FEE £690

(MSC grants available on JTS/ATS training schemes, subject to approval. If you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)

Further details from:

LONDON ELECTRONICS COLLEGE (VC Dept.) 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

VMC-02 KIT ONLY £ 19.95 inc. VAT. + £ 2.50 p\&p (Kit does not include video head)
TELEPHCNE US NOW FOR INFORMATION OF THE REPLACEMENT HEAD FOR YOUR VIDEO RECORDER. CATALOGUE: For our full Catalogue of Replacement Video and Kudio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward $50 p \mathrm{p} \& \mathrm{p}$.
THE MONQLITH ELECTRONICs CD. LTD. 5-7 Church Street, Crewkerne, Somerset TA18 7HR, Englany Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTHG

\star

JUN
 cT 。
 A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES

11
\square $x+$

G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $\mathbf{\varepsilon 6 0}$ plus full range of Thorn remote control including $T / T e x t$ \star DISCOUNT FOR QUANTITY \star
The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

> COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387. Open 6 days 9-5.30 (later by appointment)

SPECIAL ANNOUNCEMENT

 From: NORGROVE TV TRADE SERVICES Water Street, Birmingham B4 6BJ.Hundreds of TVs and Videos arriving weekly. Available for sale to the trade.

Most makes in stock including the full Thorn range, RBM, Philips, Pye, ITT, Hitachi, Sony, Pansonic, Sharp, Sanyo, Decca and many others.

Spares available. Deliveries arranged. Export enquiries welcome.

OPEN SUNDAYS BY APPOINTMENT.
For quotation. Please ring:
0212369616

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

 FERGUSON3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC
NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, $630,640,2300 \mathrm{H}$ T/P

BETAMAX

SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P
Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" $20^{\prime \prime}$ 22" $26^{\prime \prime}$ Hybrid/ Solid State CTVs
Remote Control \& Teletext Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER
 (Electrical) LTD
 FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

CINEMAVISION

 PROJECTION UNITS$$
\star \star \star \star
$$

Philips, Grundig, Toshiba, National Panasonic and ITT. 40", $45^{\prime \prime}$ and $78^{\prime \prime}$ screens. Floor and suspended models. New boxed and used. Quantity of test equipment.
Oscilloscopes, cross hatch - pattern - colour match - colour bar and signal generators.
Avo and Taylor test meters. Televerters slot meters.

RADIO TELEPHONE SYSTEMS

$$
\star \star \star \star
$$

John Carter (Electrical) Ltd., Furnace Road, Gallows Inn, Ilkeston, Derbyshire. Phone 0602303124

UNTESTED EX-RENTAL CTVs OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES
BEST SOURCE IN U.K.

COLOUR TVS FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON: GRUNDIG ETC.

> CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRET FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489
„ \star CHANGE OF ADDRESS $\star \star$
ALI ORDERS SHOULD NOW BE SENT TO OUR NEW ADDRESS SHOWN BELOW

TOP 50 VIDEO SPARES

CASSETTELAMP (FERG/JJC)f1.00	PINCH ROLIER (SANY0)f7.95
CASSETTELAMP (PANASONIC)f100	PINCH ROLIER (SONY C5/C7)55.55
CASSETTE LAMP (SHARP, 9500ETC) $\mathbf{2} \mathbf{2} 15$	VIDEO HEAD DRUM (FERG) $\mathbf{E 7 . 5 0}$
BELT KIT SONY (STATE MODEL)..................8650	VIDEOHEAD DRUM (PANASONIC) $\mathbf{E 3 9 . 5 0}$
BELT KIT FERGUSON ISTATE MODEL) 5650	VIDEO HEAD DRUM (PAN NV366) E56.95
BELT KIT SHARP(STATE M00EL) 6650	VIDEO HEAD DRUM (HITACHI) E39.95
BELT KIT PANASONIC (STATE MODEL) 66.50	VIDEO HEAD DISC (SONY C5/C6/C7)f39.50
BELT KIT SANYO ($9300,5300,5400$) .-............. 6650	VIDEO HEAD DISC (SONY SL8000) £4.50
BELT KIT SANYO (5000)f199	
BELTKIT HITACHI(STATE MODEL)6650	VIDEO HEAD (SHARP 7300, 7700) E51.5
REWIND KIT SONYC5/C7e. 6.95	VIDEO HEAD (SHARP 9300, 381 ETC)efasi
REWIND KIT SONYC6............................. 56.55	VIDEO HEAD (TOSHIBA 9600)e49.s5
REEL IDLER (SHARP, 9300,381, ETC) 23.50	VIDEO HEAD (TOSHIBA 8600)..654.60
FF/REWIDLER(HITACHIVT-11, ETC) C6.50	REEL DRIVE PULLEY (SANY0 5000)c888
FF/REW IDLER (HITACHI VT8000)4.72	REEL MOTOR (SANYO 5000 ETC)................f14.20
FF/REW IDLER (HITACHI VT3300)44.75	REEL MOTOR (SHARP 9300,381, ETC)f15.30
REEL IOLER (FERG, 3V29/30)C3.65	CAPSTAN MOTOR (SONY C5/C7)E38 ${ }^{\text {en }}$
PLAY IDLER (HITACHI 930C)E550	ACEE HEAD (SONY C5/C7)....................... E\%6\%
FF/REW IDLER (NAT/PAN NV370)................ 4450	CAPSTAN MOTOR FERG/JVC 3VZZETC E3E65
REELIDLER(NAT/PAN) STATE MODEL.........C3.65	DRUM MOTOR FERG/JVC 3V2EEC) $\mathbf{5 3 6 . 6 0}$
PLAYIDLER(NAT/PAN)STATE MODELE4.72	TAKE-UPCLUTCH (FERG/JVC)66.5
PLAY CLUTCH (PAN NV7000)E5.50	CLUTCH ASSY (FERG 3V29/30) $\mathbf{5 4 . 5 0}$
PINCH ROLLER (FERG)e5.95	AUDIORELAY (SONY C5/C7)e3.55
PINCH ROLLER (SHARP) $£ 7.90$	HEAD CLEANING STICKS 50.50
PINCH ROLLER (PANASONIC)e.f5.95	HEAD CLEANING FLUIDf1.50

TELEVIDEO SERVICES

 NOTTINGHAM (0602) 226070 145 STATION RD, BEESTON, NOTTINGHAM.Please add 50 p post \& packing and then add 15% VAT to the total. ALL STOCK ITEMS ARE DESPATCHED BY RETURN OF POST

Send 17p stamp for full list

CREWE WHOLESALE TV 77 COLERIDGE WAY, CREWE Tel: 0270582924

G11s working
$£ 50$
GEC from $£ 11$
Delivered in Bulk

BUSH T20 T22 and 24s ITT CVC 20 Upwards Series 3 DORIC

 working \qquad from $£ 40$Remote + Text Available Large range of
THORN from 8800 upwards.
Price and availability on request CASH ONLY UNLESS BY PRIOR ARRANGEMENT
ALL PRICES + 15\% VAT

AN1270	9.75	Cx143A	0	析	A.	M54543L	02.75		97.00	
${ }^{\text {AN203 }}$ AN210	5.20		${ }^{3} .95$	HA11816\%	${ }^{6} 5.50$	M54548L	68.75	TA7737P	${ }^{90} .80$	UPCTIO311
${ }_{\text {AN2 }}{ }^{\text {AN2 }} 110^{4}$	c1. 75	CX158	${ }^{33} 50$	HA118288T	${ }_{5} 5.50$	M83705	81.60	TA7139P	91.50	UPC 1032 H
AN2114	0.25	${ }^{\text {cx1 }} 160$	$\underline{7} 50$	HA12035	${ }^{\text {c. }} 50$	M83712	51.50	TA7145P	E1.80	UPC1035
AN2140	ת1.80	Cx161A	950	HA12413	$\underline{20}$	MB3730	18.75	TA7746P	0.50	UPC1037
AN2178	9.20	Cx162	\%3. 40	HA13402	9.50	M83731	${ }_{2} 2.50$	TA7750p	\%1.80	UPC 1043C
AN228W	0.75	Cx170	5.50	HA13403	77.50	M83756	${ }_{0} 8.50$	TA7152P	51.70	UPC1156
AN236	5.50	Cx 181	${ }_{68} 50$	HA13430A	3.50	M83756	0.60	TA7173P	51.60	UPC1158
AN2390	9.80	HA1124A	5.73	La1t11P	${ }^{50.80}$	M88719	${ }^{2} .50$	TA7176P	91.50	UPC1161C
AN240P	\%1.50	HA1125	51.50	LA1201	c0. 85	Pllo1a	[2.30	TA7193P	$\ldots 30$	UPC1163H
AN241P	9.50	Ha1137	91.75	L1222	50.80	P.llo3a	E4.95	TA7200	52.00	UPC1167C
AN247P	5.50	HA1149	51.40	L1230	91.50	Si-1125	¢7.50	TA7209	$\underline{2} .00$	UPC1168C
AN259	$\underline{5} .75$	HA1151	9.50	LA1240	¢1.75	STK011	ต. 75	TA7202P	5.100	UPC 7170 H
AN262	${ }^{51.50}$	HA1156	91.10	LA1320	91.50	STK013	56.25	TA7203P	97.80	UPC1171C
AN271A	5.50	Ha1166	81.60	LA1365	91.20	STK014	65.25	TAT204P	91.10	UPC11760
AN274	$\underline{2.50}$	HA1196	E. 75	LA1368	92.20	STK015	5.00	TA7205AP	$\underline{\$ 1.00}$	UPC 1177
AN295	${ }^{23.25}$	HA1197	81.50	L14600	9.95	STK016	${ }^{2} 4.75$	TA7207P	51.50	UPC1178C
AN303	0.50	HA1193	51.40	La2200	51.75	STK020	${ }^{1} 4.15$	TA7208P	\%1.50	UPC11800
AN313U	F2. 75	Hat306W	81.60	La3101	\%1.60	STK020	E4.50	TA7210p	$¢ 2.00$	UPC1181
AN315	$\underline{0.00}$	HA1319	12.00	LA3155	c0. 95	STKO22	6.25	TA7214P	$\underline{5} .50$	UPC 1182 H
AN316	23.50	HA1322C	¢7.60	La3160	20.90	STK025	¢6.75	TA7215P	51.80	UPC.1983
AN318	84.75	Ha1339a	91.60	la3201	$\underline{50.95}$	STK041	¢6.50	TA7217AP	¢1. 20	UPC1
AN331	52.75	Ha1342A	91.70	La3300	51.40	STK077	E5. 95	TA7220P	¢1.75	UPC11
AN360	51.20	HA1366W	$\underline{1.50}$	LA3301	91.20.	STK078	¢. 50	TA7222AP	91.20	UPC1
AN362L	51.30	HA13664	$\underline{15.50}$	La3350	51.20	STKояO	\%7.20	TA7223P	51.95	UPC1
AN366P	¢1. 50	Ha1367	$\ldots .25$	LA3361	51.20	STK082	¢7.75	TA7224P	$\square .75$	UPC1
AN610P	¢7.75	HA1368	5.60	LA4030p	0.00	STK086	c9.25	TA7225P	19.50	UPC1
AN612	¢1.75	HAT368R	[1.65	La4031P	51.40	STK430	E4.75	TA7226P	$\underline{2} 20$	UPC1
AN5722	cc. 9.5	HA1370	9.75	LA4032P	51.40	STK433	¢4.50	TA7227P	51.50	UPC1
AN5730	¢1.85	Ha1374	¢2.50	La4051P	51.50	STK435	¢5.c0	TA7229P	\%3.00	UPC1211V
AN5732	¢1.85	HA1377A	0.20	LA4 100	$\underline{11.00}$	STK436	55.00	ta ${ }^{\text {a }}$ 230P	51.75	UPC1215V
AN5753	91.95	HA1388	$\ldots 2.35$	Last01	91.00	STK437	c6. 30	TA7232P	0.75	UPC1216V
AN6250	9.30	HA1389	9.75	LA4102	51.20	STK439	c5.50	TA7310P	51.40	UPC1217G
AN6344	54.75	HA1389R	¢1. 40	LA4110	51.40	STK441	58.00	TA7312P	51.30	UPC1218H
AN 7105	\%. 20	HA1392	$\underline{2} .30$	LAA 112	91.30	STK443	16.95	TA7313AP	51.30	UPC1222C
AN7110	c1. 40	HA1394	5.75	La4120	${ }^{2} .50$	STK457	¢5. 50	TA7315AP	91.75	UPC1223C
AN7114E	c 9.60	HA1397	0.50	LA4125	8.00	STK459	¢5.75	TA7325P	${ }^{50.85}$	UPC1225H
AN7115E	¢1. 60	HA1398	9.40	LA4140	50.70	SIK460	57.50	TA7328	51.60	UPC
AN7120	51.40	HA1457W	50.90	LA4182	$\underline{2} .00$	STK461	c5. 50	tap607aP	$\underline{1} 75$	UPC122\%
AN7130	$\underline{51.50}$	HA11215A	54.25	La4192	91.95	SIK463	57.40	TA7608	¢3. 50	UPC1230H
AN7145M	c. 80	HA11221	$\underline{29} 30$	LA4200	91.50	STK465	${ }^{\text {cti }}$. 50	TA7609P	${ }_{57} \mathbf{3}$	UPC1238V
AN7 746 +	¢1.85	HA11223W	9.80	La4220	51.20	STK0025	¢4.95	TA7511	2.75	UPC1245V
AN7154	91.75	HA11225	91.95	L44230	91.75	STK0029	${ }^{5} 4.35$	TA7658P	c1. 50	UPC1
AN7156M	$\underline{\$ 2} 40$	HA11235	5.50	L44400	51.90	SIK0039	E4.25	UHICOO1	$¢_{4.80}$	UPC1
AN7 758 N	${ }^{51} 25$	HA11423	E4.75	L44420	$¢ 1.40$	STK0040	¢5.50	UHICOO4	[4.80]	UPC
AN7168	$\underline{2} .50$	Ha11701	¢4.50	LA4422	91.20	STK0049	65.73	UPC16C	¢1.30	UPC13
AN7310	50.80	HAP1702	¢4.90	L44430	¢1.30	STK0059	26.00	UPC20C	$\underline{5} 20$	UPC1
AN7311	91.00	HAP1703	¢4. 50	LA4440	$\underline{\%} 20$	STK0080	${ }^{26} 50$	UPCC30C	¢1.80	UPC1
8 8,301	¢0.75	Hal1704	E4.75	LA4460	¢1.75	STK2028	โ6.50.	UPC41C	12.00	UPC
84311	¢0.95	HA11705	c6. 50	LA4461	91.75	STK2029	$\underline{23.75}$	UPC554C	51.25	UPC1
8A313	c0. 73	HA11706	E4.73	L44500	$\underline{2} .50$	STK2230	¢5.00	UPC555	c0. 60	UPC13
8A318	51.30	HA11710	c5.50	La4505	\%2. 50	STK2240	29.75	UPC561C	$\underline{8.00}$	UPC1
BA402	50.75	Ha11711	59.50	L46458	50.90	STK3042	26.50	UPC566H	50.60	UPCt3
BA511A	¢1.80	HA1713	¢6.00	La7300	91.95	STK5211	26.75	UPC571	9.95	UPC13
BA514	91.75	Ha11744	¢5. 75	LA7306	2.50	STK5421	¢6. 50	UPC573C	52.20	UPC1370C
	¢1.75	HAST175	${ }_{66} 6.25$	LC7120	9.50	STK5451	¢6.75	UPC574J	c0. 35	UPC1373
BA532	51.50	Ha1716	E6.25	LC7130	23.50	STK5720	E6. 80	UPC575C	$\underline{51.00}$	
${ }_{\text {BAS }}$ B6	c. 5.5	HA1717	¢5. 25	LC7131	$\underline{9} .75$	STK5730	E6. 73	UPC576H	9.75	UPC1
	52.25	HA	1.75		$\underline{3} \cdot 7$	ta7	20. 80	UPC5	$\underline{60.70}$	
BA1310	\%1. 73	Ha11;25	516.00	M5106P	\%	TA705	ci. 70	PC550	1.75	UPC1458
8A1320	¢. 25	Ha11726	515.00	M5115P	93.50	TA7063	c0. 80	UPC592	${ }_{\text {coig }}$	UPD2703
BA1330	¢1. 75	HA11727	c9.50	M5134P	8.75	TA7068	c1. 50	UPC595C	9.70	2SA3
8A6304	5.20	Ha11736	\$16.00	M5135P	52.30	TA7070	51.40	UPC596	91.50	2SA495
Cx064	${ }^{58.50}$	Ha11145	29.00	M5155	91.50	TA7073	$\underline{\square} .25$	UPC1001H	0.00	2SA539
Cx065	$\underline{2} .50$	HA11747	c9. 50	M51513L	91.50	TA7074P	91.95	UPCC 1009C	51.20	2SA562
Cx075B	52.20	HA11747ANT	29.50	M51514AL	51.75	TA7104P	${ }_{51} 1.35$	UPC1077G	c1. 30	2SA634
Cxo95C	9.80	HA11749	£4.50	M515158L	\% 5.50	TA7108	81.50	UPC1018C	c0. 95	${ }^{2 S A G 43}$
Cxicoo	${ }^{2} 5.75$	Hal1750	¢. 00	M51516L	\%2. 50	TA7109	0.30	UPC1020	18.75	SA673
Cx1016	97.50	HA11753NT	ca. 50	M51517L	T2. 50	TAP119	51.75	UPC1023	20.60	2SA6
CX130	¢4.50	HAP1758NT	28.50	M51518L	51.73	TA7120P	50.50	UPC1025	\% 230	2SA699A
C×136	55.50	HA11768	$\underline{4.50}$	M51521AL	81.75	TA7130P	1.60	UPC 1026 C	81.60	2SA762

That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for Sheer varlety, competifive prices and service trom the U.K s number one 100% component shop No gimmicks, no gadgets or
computers, just components, millions of them, all easily available by mail order. FREE cony now ino SAE required You the phone for a pent to get your
CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET Tel: 01.450 0995/01.4520161
ex: 914977

10 BUSH 2 CHIP £50
 10 BUSH T20 £250
 10 REDIFFUSION MARK 3 $£ 250$ 10 REDIFFUSION MARK 1 REVAMP £120 10 THORN 8000 17" £150
 LARGE QUANTITIES OF BETA VIDEOS RIING FOR SPECIAL PRICES

All + VAT
TELETRADERS
Forde Road, Brunel Industrial Estate,
Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

```
                IRISH T.V. DEALERS
                    (PLEASE NOTICE)
LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF.COLOUR TVS,
SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTORED TO A1 CONDITION",
PRICES START @ £60.00 VAT INCLUDED. ALSO 20" & 22"RE-GUN TUBES IN STOCK,
    QUANTITY DISCOUNT, DELIVERY ARRANGED. VIDEO HEADS ALSO IN STOCK.
                                    (EXPORT SPECIALISTS)
```

T.V. TRADE SALES
E.D.I. HOUSE KYLEMORE PK. WEST DUBLIN 10.
Tel: 0001-264139 (Local calls 01-)
T.V.T.S.
also CLOVER PLACE COLLEGE ST. KILLARNEY. Tel: 064-33655

THE FULL THORN RANGE now available from SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Southall, Middlesex
015744631 EXT 28
9K-9K6-TX9-TX10 TEXT \&
FULL REMOTE ALSO VIDEOS
V.H.S. \& BETA. LOTS OF WORKERS FOR BUSY DEALERS

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote) PHFLIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT
THORN 8800 THORN 9000
(remote)
(remote)

THORN TX

VHS VIDEO trom $\mathbf{£ 8 5}$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

STOP PRESS
Electronic Video including Ferguson 3V29/30, Amstrad 7000, Sharp 9300, now in stock at unbeatable prices. We also specialise in direct loads delivered to your door direct from source.

For further details phone: COLIN BROOMFIELD,

UNIT 7, STATION STREET,
BROM'SGROVE, WORCS.

(0527) 37037/71186

HOCKLEY DISCOUNT TELEVISIONS

> We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!

Prices start	Working sets
From $£ 6.00$	From $£ 12.00$

OR

Lorry loads delivered from SOURCE

> We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's Thorn 8000, TX9, Pye Solid State 9000, 9600, TX10, Pye Chelsea Latest Hitachi
G.E.C. Solid StateIT.T. CVC30, CVC45,

Rediffusion Mkl, MklII Bush T20, T22

ALSO

VIDEO + T.V. STANDS AVAILABLE!

DON'T HESITATE TO CONTACT US BECAUSE YOU WILL NEVER LOOSE!!

MIDLANDS BRANCH:Hockley Discount Televisions,

> 94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

NORTH-EAST BRANCH:-
Northern TV Distributors, Unit 2, Pert Court, 11th Ave, Team Valley, Gateshead, Tyne \& Wear. 091-487-5389 - Ask for Joe

OSCILLOSCOPES COSSOR CDU150. Dual Trace 35MHz Solid State. Portable $8 \times 10 \mathrm{~cm}$ display With Manual $\quad \mathbf{Z 0 0}$		
TELEQUIPMENT D61 bual Trace 10MHz With		
ADVANCE OS250TV. Dual Trace lomiz With		
	ADV	
Portable AC or Extemal DC operation $8 \times 10 \mathrm{~cm}$		
IELLOUPMENT D43. Dual Trace ismiz. With		
Solid State. With Manual 8110		
TELEQUIPMENT SA3 Single Trace 25MHz WithManual...		
PHILLPS DIGITAL MULTIMETERS 4 digit, auto ranging. Complete with batteries and leads TYPE PM2517X (LCD) 		
	V	
MULTIMETERS ${ }_{\text {M }}$ M ${ }^{\text {Mk4 }}$ (identical to AVO 8 Mk4 but scated		
difterenty) Complete with Batteries \& Leads.. 555 AVO 8 MK2 Complete with Batteries \& Leads £45		
Above liems in GOOD WORKING ORDER -	COLOURBAR GENERATOR Type 5508. Video	
appearance not A1 hence the price. ${ }^{\text {a }}$ AOT TEST SET No 1 (Mitary version of AVO 8)		
Complete with batteries, leads \& Carrying		
AVO Model $7 \times$. Complete with batteries, leads $\&$		
Carying case - Model 73 Pocket Mutitimeter (Anajogue) 30		
ranges. Complete with batteries \& leads AVO 72 - Similar to above but no AC curreni range. With batteries \& leads.	NEW EQUIPMENT HAMEG OSCILLOSCOPE 605. Dual Trace 60MHz. Delay Sweep. Component Tester515 HAMEG OSCILLOSCOPE 203.5. Dual Trace 20MHz Component Tester All Other Models Available.	
aVO TRNHSISTOR TESTER TTIE9 Handled. GONO GO for In-situ Testing. Compiete with batteries, leads \& instructions. (P 8 p E)) HOW OMLY £12		
PROFESSIONAL $g^{\prime \prime}$ GREEN SCREEN MONITORS made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in.		
Good condition......... OMLY $£ 32$		
	Square/riangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$. P\&P £4 £110	
out. Size: W125mm, H75mm, D180mm. Cased.		
Owerty keyboard (as in Lynx Micro). Push to		
Various $51 / 4$ Floppy Disk Drives and Slepping Motors Available.		
This is a VERY SMALL SAMPIE OF STOCK. SAE or Telephone for Lists. Ploase check availability before ordering. CARRIAGE all units £12. VAT to be addod to Total of Goods \& Cariage.		
TEWART OF READING		
110 WYKEHAM ROAD, READING, BERKS RG6 1PL		

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.

UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx $25^{5}{ }^{\circ}$ tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price f49 inc P\&P and VAT. Available from Luton only.
"Depends on depth and area to be polished. TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON Quality, High Temperature Reprocessing

$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { DELIA i.e. } \\ & \text { A5IT-10x } \\ & \text { A56-120x } \\ & \text { A66-120x } \\ & \text { A67-1200 } \end{aligned}$					
UP TO 20'	£30	£32	£40	¢44	£44	£58
UP TO 22'	£34	£36	¢42	E46	£46	£64
UP TO 26"	E36	£38	£44	£48	£48	E70

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee. All tubes exchange glass required.
Your good, working tubes with scratches or smatl chips, can be POLSHED with our Your good, working tubes with scratches or smalt chips, can be roush
purpose buitt polishing equipment. Fromm E7 per rube.

Delivery charge on colour tubes: Within 40 miles of Luton
1 or 2 tubes 86 . 3 or more tubes FREE DELIVERY*
Please add 15% VAT to all prices. Calliers welcome. Ploase phone first.

Open Mon-Fri 8am-6pm, Sat Yam-1pm. Tel. 0592-410787.
Your Local Tube Stockist:
Well View, Southampton. Tol. 0703331837.
H. K. Television, London, E.2. Tel. 01-729 1133.

West One Distributors Ltd., Gt. Missenden, Buckinghamshire.
Tel. 024063609
Rushden Rontals Ltd., Rushden, Northants. Tel. 0933314901
Rea \& Holland, Ipswich, Suffolk. Tol. 0473827562.
Phone between 12-2p.m., \& 6-9 p.m.
Phone between 12-2p.m. a
WANTED A56/A66-510X/540X, Hitachi and Sony, old glass for cash

CentreVision TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 FERGUSON VHS VIDEO £65
 MANY ELECTRONIC VIDEOS IN STOCK
 MANY TOP QUALITY REMOTE CONTROL WORKING TV's. PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS: MONDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

JUST OPENED - FOR

South Yorkshire/Derbyshire Dealers
Come and see our range of Colour TVs from $£ 6$

BARGAINS GALORE

South Yorks Trade Supply, Anderson House, Callywhite Lane, Dronfield, Sheffield, S18 6XR.

PHONE 0246411325
Chesterfield

SETS \& COMPONENTS

XM 11 - $£ 20$ NEW. Tested repair spares XM12 transistors - lowest prices. SAE for list BURLINGTON TV, 17 High Street, Bridlington, E. Yorks. (0262) 673374.

NEW AND SECONDHAND COLOUR TV SPARES. Panels \& Tubes most makes also panel repair service. Tel. Southport (0204) 74411 anytime (24 hr).

GRUNDIG 2×4 SUPER VIDEO remote control VIF-KI with tele-pilot TPV355. Brand new, boxed. £12.95 p\& $\& \ddagger 2$ (plugs straight in). STAN WILLETTS, 37 High Street. West Bromwich, West Midlands B70 ${ }^{6}$ PB. Tel. 0215530186

OCHRE MILL TECHNICAL. Genuine GRUNDIG spares, massive stocks, sensible prices, fast helpful service. OSCILLOSCOPES manuals testgear TELEQUIPMENT PHILIPS. 0785814643.

CASH PAID Now for your surplus TV spares, transis tors, 1.C.'s etc. Tel. MR. FORSHAW, 090229022.
hitaclit, Mitsubishi, Panasonic, Sony, Toshiba, JVC. Sharp, fully refurbished. PEARSON TELEVISION. 1484863489 . Delivery arranged.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

THORN, GEC, DECCA's stripped for spares. Panels, Tuners from $£ 2.50$. Phone for prices: WELLINGTONS. Dartford 0322337212 .

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink. Wisbech, Cambs. 0945 584188. Immediate settlement

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{f} \mathbf{2 0 . 0 0}$ each in 6 units

Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{f 2} .00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY £15.00 each
Philips G8 (520) 22" \& 26" ONLY $\mathbf{f 2 0 . 0 0}$ each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn.
1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV £1.25 per panel plus post \& packing

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word (minimum 12

FYLDE T.V. AND VIDEO DISTRIBUTORS Unit 7, Arkwright Court. Blackpool/Fylde Industrial Estate Very End of M55 left at roundabout.

UNLIMITED SELECTION OF

 THORN 8800 8800 R/C 9000 9000 R/C 9600 R/C 9600 TTXPHILIPS G11
G11 R/C
G11 TTX
S/S
GEC JVC 20" MONO's $20^{\prime \prime}+24^{\prime \prime}$

AND MANY MORE TRADE WORKERS TO ORDER PHONE BLACKPOOL $(0253) 64413$

TV Business

HALTON TV
TRADE DISPOSAL
Wide range of TVs available.
Working and non-working. TRADE ONLY
We have NO retail outlet)
St Michaels Industrial Estate, Widnes
Tel. 0514231577

[^2]
EERUICE PAGES

words), box number 70p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be nade payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

G.11s Pye \& Philips
 E35
 ITT Full Remote $\mathbf{f 3 5}$
 T/TEXT Infra Red
 GEC Modern 2242-2642 Types Mint £35

ALSC ON STOCK
THORN, DECCA, BDFD, 80-88-100, PYE CHELSEA 222, TTT CVC 20, 23, 30, 32 Remote, PANASONIC, HITACHI, TANDBERG, GRUNDIG, GEC 2002, 2242, 2642, 2202, and many others, changing daily.

VIDEO as avalable. from $\mathbf{£} 20$.

VHS HITACHI, 9500, 9300, VIS, 8500, 8300, 8000
PANASONIC, 366, 7200, TRIUMPH 9500, JVC, FERGUSON.
BETAMAX sonv C5.c6, c7, sANYo, 5000, Toshiba
2000 SYSTEM PHILPS 2020, 2021, 2022, GRuNDIG 244

STANDS, SLOT METERS, PANELS, SETS FOR SPARES, CLEARANCE COLOURS CHEAP.
PRICES BASED ON QUANTITY. ALL PLUS VAT.

GENERAL FACTORS UNION STREET,
 DONCASTER, SOUTH YQRKS. 0302-49583

CASH NO CHEQUES.
ONLY $21 / 2$ MILES FROM
(A1M) FOR M18-M1.
10 am to 5 pm Daily

STARLITE ELECTRONICS

WILLOWS FARM,
A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.
EX RENTAL TVs UNTESTED FROM $£ 15.00$ WORKING TVs $£ 20.00$ RE-GUNNING TUBES

2 year guarantee
Most types available alationd including Sony

NORMAN ENTERPRISES LTD

Weston-Super-Mare, Avon. Tel: 413991/418545
Colour TVs fully engineered with a special care on tubes Hitachi 217 Remote Control....... $£ 85$ Thorne 9000 Remote Control $£ 42.50$ Pye G11 $£ 47.50$
Rank T20 $£ 42.50$
Pye Chelsea 6 Button......£27.50
Pye 725 $£ 37.50$
Pye 721 $£ 27.50$
Thorne 9600 $£ 45$
Thorne 9200 $£ 42.50$
Bush T20 Remote Control . . . $£ 49.50$
Bush T24 £55.50

SPECIAL OFFER

$20^{\prime \prime}$ ITT Pill Tubes completely engineered, superb Spotless condition cabinets. 200 only.

$£ 49.50$ tvat

All above prices include hand
sets if available. Ready for sale.
Phone now, limited number each month. All the above off the pile, less a 3rd

EXPRESS PANELS

A highly skilled staft using specialized service jigs and some of Ahe most up to date tecthiques and test equipment avaiiable means we can save you time, money and heartache.

EXAMPLES FROM OUR RANGE (exch. basis)
Bush T20/22/26
Sony $1820 / 2000 / 2204$
Bush T20/22/26 Sony 1820/2000/220 power supply power supply E14.75 G11 £16.75 G11
power supply £14.60 E14.75
All prices subject to VAT, P\&P FREE (if orders over $£ 10.00$) Panels also available for outright sale, discount for quantities (any mix) all panels guaranteed 3 months, are chemically cleanec and print re lacquered, and have no damaged prin etc, so they not only work they look good too. Send S.A.E. for NEW CATALOGUE or ring with your requirements.

TRADE SERVICE AVAILABLE for VCR's.
Callers by appointment only. Telephone orders accepted using Access \& Visa.
021-359 3753

Lawley St, B.Ham B4 7XH

B.G. COMPONENTS

T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday
Hill Street, Oldham OL4 2AG. 061-6241753.

20/22" BUSH T20/22 MODEL EXC CABINETS IN 100 LOTS £25 EACH + VAT
EX EQUIPMENT BUSH PANELS NO EXCHANGE REQUIRED

	IF	Decoder	Line	Power	Frame
			Scan	Supply	17
T20/22	X	14	18	17	14
T26	X	16	20	17	X

All prices inclusive of postage but plus VAT Cheque with order please

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY

> PRICE BUSTERS IN BIRMINCHAM FOR TESTED AND UNTESTED TV's AND VIDEO's

ALSO AVAILABLE DIRECT LORRY LOAD

 RING - 021-772 2733 WILTSGROVE LIMITED(Next Door to UNCLE'S DISCOUNT STORE)

128-130 Ladypool Road,

 Sparkbrook, Birmingham B12 8JA. CASH ONLY "STOP PRESS" NOW IN STOCK ELECTRONIC VIDEO'S AT UNBEATABLE PRICES

TUBES

 ONE YEAR GUARANTEE14" FROM E45 370 - KRB - LHB - HGB - HFB - HUB SAB - EGB - EFB - MEB-GUB-AXT 37-001- AXM $37-$ Broken Tube We Can Help.
16" 420 EDB - EFB - CZB, 42 - 001, 42-556.
$20^{\prime \prime} 51-161$ £40, 51-500-554-570-575-580-590-51 - 001 AXT - 510 JKB-VB-UFB-RNB-UDB-HWB- 510 ABUB from $E 45$.
22" 56 - 500 £45, 56-540-610-611-615-700-712HB - DYB-ATB - BMB - HW 56-001 AXT 26" 68 - 500 - $510-540$ f55.
HITACHI 510 HWB - VLB - VSB - 560 DZB - HWB - 490 DKB22 Doltise 579 .
SONY és Cash \& Carry only.
DELTAS $£ 25.00$ Reguns. One year guarantee
14.50 Slightly used. 6 month guarantee.

A56-120 A56-140 A51-110 A49-191 A47-342 or 343 A4-270-1 A6E-120 A6E-140 (410) A67-120 (All 26° add $\mathrm{E5}$)

E-GAUSSING
De £19.50 (1 YEAR GUARANTEE) Philips G11 AND DECCA 100
Panels from $£ 10.00$. Beaking for spares, Push button units, Tube bases. All good working orde.
RADIO and TELEVISION SERVCING BOOKS
(MacDonalds). New 7475, 7576, 76/7, 7778, 7879, 79980, 80819, 82883,
83/84, 84885. Soe our special ofter advert under Books: FREE DELIVERY
Excop Tubes es sech. All prices are inclusive U-VIEW
29, Warmsworth Road, Doncaster,
Yorkshire DN4 ORP. Tel: 0302855017. Callers ring first, open every day including Sunday $1 / 2$ a mile from AI

WIZARD DISTRIBUTORS

 MANCHESTERTV \& VIDEO SPARES
We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR.
Did you know we also stock
FUSES
AERIALS
AEROSOLS
RESISTORS
CAPACITORS
VALVES HANDSETS AND MUCH MORDE
Courter open Monday-Friday 9am-4.45pm
TRADE ONLY
EMPRESS STREET WORKS EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

[^3]

TELEEUISIOM

COME OVER TO DATEL LTD. FOR GREAT DEALS ON SUPER SETS

* 96 CHASSIS IN 5’s £30.00 \star VHS VIDEO'S FROM $£ 50.00 ~ \star$

All Thorn range in stock from 8.8 to TX 10 Stereo Large stocks of working TV's and Video's.
Phone or call in today. You won't be disappointed.
Delivery to you can also be arranged.
Also complete postal service for all Thorn range of panels and spares. All panels and spares for mech. videos.

DATEL LTD.

0245469779
2 Oyster Place, Montrose Rd., Dukes Park Ind. Est., Chelmsford, Essex

AT LAST!

QUALITY USED TELEVISIONS \& VIDEOS

EXCELLENT CABINETS \& GOOD WORKERS
TELETEXT \& REMOTES (BOTH WITH HANDSETS)
THORN TX $9600,9000,9200,8800 \& 8000$ BUSH T20 \& Z TYPE PHILIPS G11
WORKING VHS VIDEOS FROM £85
NON WORKING VIDEES FROM £50
MONITEC
The Heathlands, Kidderminster Road, Bewdley, Worcs. Tel. 0299 400233/400933

PRECISION VISION LTD.

For:
LATE MODEL USED COLOUR TVS
\star REFURBISHED TO HIGH STANDARDS
\star BECOME ONE OF OUR REGULAR HIGHLY SATISFIED CUSTOMERS
\star EARLY COLOUR TVS FROM £5
Unit 10, Chiltem Business Centre,
Garsington Road, Cowley, Oxford (next to B.L. Works).
Phone 0865711966

PHILIPS VIDEO SPARES

Model VR 2324. Brand new unused includes power supply tuner, timer clock, R.F. panels, cabinet, electronics only, no mechanism $£ 35$ inc VAT and postage.

EFJAY PRODUCTS
13 Placehouse Lane, Old Coulsdon, Surrey
Phone: Downland (07375) 55287 anytime

IRISH T.V. DEALERS New re-gunning plant - TUBES -

Super View - Delta - In-line - P.I.L. CHRIS KELLEHER'S T.V. Kanturk, Co. Cork
Large stock G. 8 - Decca - Ferg - T.V.'s UHF/VHF 029-50046 - Cash/Carry

EERUICE PAGES

TRADE TVs
Yorkshire New Outlet
Ex-Rental \& Repossessed TVs
Colour From $£ 10$
Mono From $\boldsymbol{\varepsilon 2}$
TRADE REPAIRS AND SPARES
WANTED VIDEOS IN QUANTITY
TELEFIX
Ellingthorpe Street,
Wakefield Road, Bradford 4.
Phone: $\mathbf{0 2 7 4} 480281$ or 733373.

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2 TEL 01-258 0328 ALL VHS PARTS AVAILABLE. EXAMPLES:

VIDEO HEADS

JVC, Ferguson, Akai, Saba, Telefunken ©35.00 Sony (Betamax) National Panasonic All Hitachi heads from INTEGRATED CIRCUITS 845.00
\qquad 845.00

UPD 553 C $£ 10.20$
UPD 552C
HA11711 ..810.50
All makes of iders, pressure rollers, clutch assembly and motors in stock
Many other parts available. Send SAE for list
ALL PRICES INCLUSIVE OF VAT
ADD $£ 2.00$ FOR P\&P

T.V. SPARES, PANELS

 PHILIPS • GRUNDIG TELEVIEW 01-994 5537 194, Acton Lane, London W.4.| BOURNEMOUTH | PLEASE |
| :---: | :---: |
| LARGE STOCKS OF NICE | MEITION |
| CLEAN WORKING SETS, | TELVIIION |
| MOST MAKES AND SIZES. | WHEM |
| FAIR PRICES - TRADE ONLY | REPYYIMG |
| WAREHOUSE OPEN: | TO |
| MII-Fri 9-1, 2-5 | HILIER'UNT 2A, |
| 11-15 FRANCIS AVENU,, | ADVERTISEMENTS |

BUSINESS OPPORTUNITES

WELL ESTABLISHEII (19 YEARS) Video, Audio, Hi Fi Sales \& Service Business for sale in popular N. Devon resort. TЮ $£ 62,000$ (without V.A.T.). Only $£ 12.500$ for quick sale plus S.A.V. Details: Box No 216.

> TV VIDED-AUDIO SALES AND SERVICE BUSINESS FOR SALE
> Modem premises shop and workshop. Good class North London area. Ideal for ambitious engineer. Established 30 years, new lease.

> PRICE $£ 18,500$ + S.A.V
> Details: Box 201

VIDEO

V.H.S. VIDEO'S 100's IN STOCK

Famous brands:
JVC • PANASONIC • FERGUSON Also stockists of Grade B Units, Microwaves, $\mathrm{Hi}-\mathrm{Fi}$, Radio/Cassettes etc. etc. CONTACT MICK ON:
021-772 1591

EXPERIENCED, LONDON TRAINED Television, electronics technician seeks employment in Australia. Reply to: D. CHETTY, Box 20\%, Ladysmith 3370, South Africa.

METERS

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

TELEVISION METERS. All types required for cash. We collect. P \& J WALES, Tel. (08013) 25832.

AVON METERS

We buy and sell and repair TV coinmeter Reasonable prices, one year guarantee. 213 Cheltenham Road, Redland, Bristol. 0272-425281

WANTED

WANTED VIDEO'S, Portables, colour TV ctc. Any quantity. Immediate collection, cash paid. Tel. Stoke on Trent 416401.

CASH PAID now for your surplus TV spares, transistors, I.C.'s etc. Tel. MR. FORSHAW. (0)O2 29122

GOLD PLATED SCRAP WANTED. Scrap edge connectors, circuit boards, anything considered. Contact P \& F TURNER \& SONS. Tel. Oxford (0865) 50293.

WANTED FOR CASH. Ex rental colour televisions and videos. Large or small quantities. Will collect. Tel. 0272 211179.

JVC 7600 MS VIDEO RECORDER, condition immaterial. Also video head assembly for Grundig $4(1) 4$ VCR. Cash available. Tel. 042 523027.

TUNGSGRAMS TELEMODEL F2277 Mk II chassis 470146 copy of S/S required urgent. Box No 214.

WANTED TECHNICAL PUBLICATIONS, Service Manuals. Circuits. Trader ERT Service Sheets - Fault Guides. Box No 217.

WANTED VIDEOS, Sanyo VTC 50(\%). Hitachi KOHO_{1} series. Any condition/quantity. Cash paid. Box No 218 .

WANTED

 Ex RENTAL COLOUR TVs IN BULK OUICK COLLECTION Phone 0742312832 (Sheffield) IN STRICTEST CONFIDENCE
AERIALS

MULTI-OUTLET/MULT1-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring; Rotherham. (0709) 813419.

EXPANDING AERIAL MANUFACTURER with capacity invites enquiries from wholesalers and contractors. Highly competitive prices for TV/FM Aerials, masts, brackets etc. Replies to Box No 215 .

Euro-Sat

Parabolic Dish Antennas TV (Pormmunt compony ett In SATEUTE TVRO ANTENNAS
TOP QUALITY SOUD gLassfibre dish Antennas TRADE PRICES IM. DIA 11-12-4 GHZ BANDS ET1.00 1.2M. DIA $11-124.4$ GHZ BANDS 23500 2M. DIA $11-124$ GHZ BANDS xport Enquiries Weloome
Trade \& Export Enquile waicor
Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. $061-4372631061-8814249$

AERIAL BOOSTERS

B45-UHF TV next to the set fitting. Gain 1odbs (trebles gain), works off PP3 type battery or 8 V to 14 V working. Price complote (excluding bettery) E5.70.
Beam Video This will beam good quality pictures and sound more than 30t. Price complete (excluding battery) £10.50
We also make aerial boosters for VHF/FM radio $£ 7.70$, and VHF television, prices $£ 7.70$ \& 88.70 . p\& 50 p per order.

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom, Lancashire, BLO 9AGT.
Tel: Ramsbottom (070 682) 3036. (24 hir).
Phone for leaflets. Access Nisa Welcome.

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost, full band satellite TV systems. Full band system £650 + VAT and Carriage
Write or telephone for details or call in at our factory showroom
NETWORK SATELLITE SYSTEMS LTD. Unit 7-8, Newburnbridge Ind. Estate, Hartlepool, Cleveland
Tel. 0429274239 or 869366

REPAIR SERVICE

INSTRUMENT REPAIRS, Osciloscopes, generators, multimeters \& more. 'Phone VIKING ELECTRONICS, 0394450006 .

PRINTED PANEL REPAIR SERVICE

for example: \quad G11 - T20 - AX PSU - $£ 15.00$ G11 - T20 - AX - LTB - $\mathbf{£ 1 6 . 0 0}$ Most makes and models covered. RING 0934418545 for price list or quotation

BRISTOL - SOUTH WEST SOUTH WALES

Scratched and chipped CRTs can be Re-polished.
Tel: 0454778635 for details

SERVICE MANUALS, SERVICE SHEETS

For Television, Radio and V.C.R.'s. Prices from $£ 2.00$ inclusive of VAT.
Send large s.a.e. for free catalogue with your enquiries, Mail Order only.
TECHNICAL DEPARTMENT, YOLANCEN LIMITED, 1 Buckingham Street, York YO1 1DW.

TECHNICAL INFO SERVICES (T) - 76 Church SL, Larkhall, Lanarkshire ML9 1HE.
World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues.
Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and expense E 3 .

Any published single service sheet for $\mathbf{\Sigma 2 . 5 0}+$ Isae except ctv/mus-c/combis from $\mathbb{\sum 3 . 5 0}+$ isae A selection from our stocks of thousands of Service Manuals ready for despatch by retum post.
Any Sony: Hitachi ctv from £8.50. Thom 3000/3500 £9.50. Thom 8000/8004/8500/8600 £9.50. Philips G8
 Finlandia: Tyne CTV $£ 9.50$ each. Rank A823 complete $\mathbf{£ 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL 59.50 PRACTICAL RADIO SERVICING \& REPAIR COURSE 59.50 THE 11 TUNBRIDGE REPAIR MANUALS OMY £88 THE 5 MCCOURT REPAIR MANUALS ANY SET OF 5 INDIVIDUAL VIDEO REPAIR MANLALS FOR $\mathbf{1 2 . 5 0}$ OR ALL 3 SEIS (15 MANUALS) FOR $£ 35$.
UNIQUE COLLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE
British ctv from hybrids to madem ($\mathbf{3}$ binders) £55 Videos, all types (3 binders) £58 . . . any 1 for $£ 20$ Mono TV (2) £35 Foreign ctv (2) £35 Domestic Eqpt (2) $£ 35$ Portable British ctv (1) £20.
COMPLETE REPARR SYSTEMS . . . huge savings from published prices
British ctv 3 binders of Circuits plus 6 Repair Manuals plus ref books, etc.
for only $£ 140$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $\varepsilon 85$
Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models
Complete Integrated T.V. Repair System only $£ 250$ or in 12 sections at $\mathbf{\Sigma 2 5}$ per section. Contents: 8 binders of circuits/ 16 Repair Manualsidozens of other manuals . . . Any new publications from us within 1 year of ordering 1st section will be added at no extra charge.

Repair data/Circuits almost any individual mono tv $£ 10.50$

LSAE BRIMES ANY REQUESTED QUOTATION - FULER DETALLS - FREE MMCAZINE - PRHCE LSTS ETC.
PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 505885.
$\star \star \star$ SERVICE PAGES SERVICE PAGES PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
SERVICE PAGES SERVICE PAGES
$\star \star \star$

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock. Colour E3.00 Mono E2.00 Manual prices on request. All our prices include post and packing costs. Send stamped envelope for free cotalogue and any enquiries. SANDHURST TV SERVICES (MAIL ORDER) 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

MAIL ORDER MANUALS BURROWS SERVICE 33 HANCOCK ROAD, LONDON SE19 3JN.

£1 LISTS (Refundable on orders)

C.R.T. REBUILDING PLANT AND EQUIPMENT

Installation, commissioning, training and technical after sales assistance. C.R.T. INTERNATIONAL 136 Badmington Road,

Coalpit Heath, Bristol BS17 2SZ
Tel: 0454778635

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets £2.50 except CTV/m.centres/stereos $£ \mathbf{3 . 5 0}$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire

The Theory and
 Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal
Part 2. The Receiver Decoder Part 3.

Receiver Installation
VHS $\star \star \star$ V2000 $\star \star \star$ BETAMAX $\star \star$ \#UMATIC $\frac{1}{4 \times 151}$ For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details
FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS

SITUATIONS VACANT

TELEVISION ENGINEER

Experienced engineer required for bench \& field work on industrial and domestic video equipment. Good salary and prospects for the right person.

BUPA membership and bonus scheme.

For application forms please write (with brief career history) to:

Mr. Colin Lippitt,
E.S. Video Ltd.,

5 Mead Lane,
Farnham, Surrey GU9 7DY.

BOOKS AND PUBLICATIONS

A-Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio etc plus many hard to get ones. Send Cheques/PO for $£ 3.75$ to DOWNS ELECTRONICS, 135 Main Street, Newton Grange, Midlothian EH22 2 PF .
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 505885.

SPECIAL OFFER

 MACDONALDS FADIO \& TV SERVICING BOOKS, NEW $74-75,75-76,76-77,77-78,79-80,80-81,82-83,83-84,84-85$ macdonalds Price $\quad £ 24.30$ deliveredpUR PRICE two or more $\quad £ 22.50$ delivered Full set of $10 \quad £ 21.00$ each Pnces inctude delivery U-VIEW, 29 Warmsworth Road Doncaster, Yorkshire DN4 0RP. Tel. 0302-855017. Callers ring first

"THE HOME SATELLITE TV INSTALLATION \& TROUBLESHOOTING MANUAL 1986"

One of the latest and best American books which gives all the practical advice every TV service engineer will need to earn a living in the future
This 313 page text explains how the satellites operate and provides ali the information for installation of a dish system, and is complete with several hundred illustrations.

To order

Send cheque for £23. COD also available. J. Vincent Technical Books, 24 River Gardens, Purley, Reading RG8 8BX. Tel: 0734414468.

FOR SALE

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only £3,995. Tel. 0582-410787.

PHILIIPS 2020 A/V ADAPTOR. V2000 Video Tapes. Miscellaneous VR2022 spares PM2517 digital meter including various accessories. Telephone 074632406.

PRACTICAL TELEVISION 197/83 Complete RTV servicing 1968/77. Good condition. Offers. Tel. 0483 60580.

COL-PATT GEN EPG 86 B, mint, other instruments, compo's, RTS Vols, service data. S.A.E. WILLOW HOUSE, Conway Road, Llandudno.

DEVONICS
 Quality Rebuilt Tubes 2 YEAR WARRANTY

470 ERB22 $£ 43$

510 KCB22

$£ 45$

A51-161/500/510/
570/580/590X
$£ 45$
560 AKB/DZB/TB22
A56-500/510X
A56-540X
A66-500/510X
A66-540X
$670 \times B 22$
E45
$£ 45$
$£ 53$
$£ 46$
-
£53
$£ 46$
Deltas from $£ 30$
Plus carriage and VAT
2A BARTON HILL ROAD, TOROUAY TO2 8JH
0803-33035

> FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE $01-2615942$

Sabaco

 For a great deal! TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO'S OFF THE PILE (Mostly switch-ons)Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips 550/Grundig \& many more. bRAND NEW SETS AT LOW PRICES

VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes OPENING HOURS: MONDAY TO SATURDAY 9am to 5.30pm SUNDAY 10am to 4 pm
CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:

Head Office:
Sabaco Saba House, 46A Derby Road, Sandiacre, Nottingham (0602) 397555

MAIL ORDER ADVERTISING

British Code of Advertising Practice Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded
 is wrong were here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.

SICHI \& SOUND STOKE-ON-TRENT 0782335262
 Factory Reconditioned I G11

FERCUSON 3 V23
NAT-PAN 7200
NAT-PAN 366
HITACHI 8690
HITACHI
NAT-PAN 2010

Infra Red Vídeo I T-20
Cord Remote Video I THORN 9600
Infra Red Video I G11 TEXT
Cord Remote Vídeo I COLOUR PORTABLES Basic Video I THORN 9000

SATISFACTION GUARANTEED

FRIENDLY SERVICE - NO GIMMICKS

PERSONAL ATTENTION - ASK FOR JOHN SAHOTA

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE
 MINT WORKING SETS. These arrive at our premises in A1

 working order, cabinets are superb.$£ 45$ to $£ 70$
GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
$£ 10$ to $£ 35$
VHS Videos in stock.

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A5 161X, Sony types etc.
\star Rebanded with new adhesives

* Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke
for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

$$
5
$$

[^0]: Prices and materiats corlect at time of printing and are Subyect to change withoul notice, This service is operated in association with Nashua Photo Products Ltd Brunel Road Newion Abbot Devon TO12 $4 P B$ Regisiered no 1021605 England

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £14, overseas (surface mail) $£ 17$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 X$.

[^2]: Thorn 3000/3500
 Thorn 9000
 Thorn 9000 ,

 解 G.

 WING ELECTRONICS
 15 Waylands, off Tudor Rd, Hayes End, Middiesex

[^3]: ## TV TUBES

 NEW AND REBUILT. ALL BOXED DELTA TYPES:- £15 TO £25
 P.I.L. TYPES:- £25 TO £35

 OLD GLASS NOT REQUIRED
 FREE DELIVERY IN LONDON
 FOR ORDERS OVER £100
 PHONE FOR QUOTE
 CALEDONIAN RADIO
 208 Caledonian Road, London N1.
 Tel: 01-837 0631

