

Decca-Tatung Chassis Up-date The N. American TV Scene Servicing Sets with Teletext SMATV Systems • Vintage TV TV Fault Finding • DX-TV VCR Clinic • Tuning Troubles

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

40 different patterns and variations.

- Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service Also available with VHF Modulator.
Price of Kit
$£ 70.00$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module
£105.00 SPECLALTEST

REPORT
'TELEVISION
Post/Packing $£ 2.50$

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $£ 30.00$. CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P $£ 2.20$).

MK 4 (BATTERY) BUILT \& TESTED $558.00+£ 2.20$ P \& P.
MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20 \mathrm{P} \& \mathrm{P}$.
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS £5.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
THORN TX9 MK2/3, TX10, teletext
Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{8 4 8 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15\%

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS. PANELS, TUNERS, SELECTORS ETC
PHILIPS G11 P4NELS (tested)
Power. frame. IF. decoder $£ 18.00$ cach p.p. $\mathfrak{f 2 . 0 0)}$. Scan Panel $£ 28.00$ p.p. $\mathfrak{f 2 .} \mathbf{K 0}$. PHILIPS GII PiNELS ex rental (untested).
Power. frame. 1^{7}, decoder $£ 10.00$ each p.p. $\left.£ 2.00\right)$
SPECIAL OFFE \mathbf{R} Philips, Pye KT3 Seres infra-re
SPECIAL OFFER Philips, Pye KT3 Series infra-red remote control handsets ex rental (untested) Teletext or normal versions available $£ 2.50$ p.p. 80 p $(5$ for $£ 10$ p.p. $£ 1.50$). (TX, K35 Teletext $+V$ ideo $£ 5.00$ p.p. $\$ 1$ p
THORN 900 Feult Finding Guide 11.00 p.p. 30p
THORN REMOTE CONTROL HANDSETS
8800/9800 (2-bution) $£ 10.00$; TX9 ULTRASONIC (3-button) $£ 15.00$; TX9 TX10 Infra red $£ 18.00$; TX9, TX10 Infra red Teletext $£ 20.00$, p.p. $£ 1.20$.
TX10 Remote \& Tuning control panel (1515) $£ 9.40$ p.p. $£ 150$ TX10 Remote \& Tuning control panel (1515) $£ 9.40$ p.p. $£ 1.50$
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver $\$ 7.50 \mathrm{p} . \mathrm{P}$. $£ 1.50$.
THORN TX10 Serries Facia Control Panel with 8 position Channel Selector P6.50 p.p. $£ 1.50$.
PHILIPS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{£ 7 . 5 0}$ p.p. 80 p
PAL DECODER KIT (Video to RGB) for Monitors £27.00 p.p. $£ 1.00$.
PAL ENCODER KIT (RGB to Video) $£ 18.50 \mathrm{p}$. P . f1.30.
TELETEXT DECODERS New \& Tested Mullard VM 6101 £.30.00, Texas XM11 $£ 40.00, \mathrm{~K}-3$ Tested $£ 30.00$, Untested $£ 5.00 \mathrm{p.P}$. fl .60
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can b used for any set. $112.00 \mathrm{p} . \mathrm{p}$. 8 8 p . (Alum. Case $£ 2.55$, De Luxe Case $\mathbf{£ 6 . 8 0}$ P.p. £1.40.) ADDTIONAL GREY SCALE Kit $£ 2.90$ p P. P. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VHF verser

UHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VHF version $£ 24.00$)
Alum Case $£ 2.55$. De Luxe Case $£ 7.40$ p. $\mathbf{£ 1 . 8 0}$ (Alum. Case $£ 2.55$. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono with Panel Meter Indicator - can be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$.
BUSH A823 Conwergence, Time Base Panels $£ 5.00$ each. p.p. $£ 1.80$.
BUSH Z718 BC6H0f series IF Panel $£ 5.00 \mathrm{g.p}$. ${ }^{90} \mathrm{p}$.
BUSH A816 IF Pinel (Surplus) $£ 1.00$ p.p. $50 \mathrm{p}, 5$ or $£ 4.00$ p.p. $£ 1.40$.
GEC 2040 Decoder Panels, $£ 1.50$ p.p. $£ 1.80$.
GEC 2040 Decoder Panels, $£ 1.50$ p.p. $£ 1.80$.
GEC 2110 PANELS Frame £8.50 p.p. $£ 1.40$. Sound $£ 2.50$ (tested) p.p. 80 p GEC 20AX Switct Mode Power Supply $\mathbf{5 5 . 0 0}$, IF-Decoder $£ 12.50$ p.p. £1. 80 PYE 691-7 CDA Panels. Makers tested stock. $£ 6.00$ p.p. £1.45.
THORN TX9 P inels ex factory for small spares. Includes I.Cs \& THORN TX9 Parels salvaged ex factor
THORN TX9 Par els salvaged ex factory for spares incl. LOPT \& Mains Transtormers. $£ 1000$ p.p. $£ 2.80$
THORN TX9 Panels ex factory salvaged complete cond. $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 2.80$. THORN TX10 T.B. Panels salvaged ex factory. £15.00 p.p. $\mathfrak{£ 3 . 0 0}$.
THORN 3 OO 85 (10 880 IF Decoder Pands
THORN $\mathbf{8 0 0 0} \mathbf{8 5 0 0 , 8 8 0 0}$ IF Decorer Panels Tested $£ 10.00$ p.p. $£ 2.30$.
THORN 80008500 if/Decoder Panels salvaged $£ 3.20$ p.p.
PHILIPS G8/G9 IF/Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $£ 1.60$
GII PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested).
G11 PANELS, Pover, Frame, IF, Decoder, $\mathbf{1 8 . 0 0}$ each. p.p. $£ 2.00$ (tested)
GRUPANELS, Power, rame, IF, Decoder, 18.00 each.
VARICAP. ELCIL43/5 57.80 p.p. 80 . Makers Controls PYE CT200 4PSN £7.50, BUSH 4PSN £4.80, DECCA 4 PSN $£ 5.80$, GPSN $£ 6.80 \mathrm{p} . \mathrm{p}$. 80p. etc. BUSH "TOUCH TUNE"' Varicap Control Z179, Z718 types £3.80 p.p. 95p. VARICAP UHF-VHF ELCZOOOS $£ 9.80$, BUSH $£ 7.80$ p.p. $90 p$ p.
VARICAP VHF PHILIPS, 66.90 . ELC 1042 £7.90 p.p. 80 p
UHF/625 TUNERS many different types in stock. DECCA Bradford 5 position, MULLARS 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $\mathbf{f 1} 80$ TV SOUND IF Panels $\mathbf{x 6 . 8 0}$ p.p. $£ 1.00$
LOPT TESTER, Strvice Dept approved $£ 15.90$ p.p. £1. 20.
LOPTS New and g tar. P/P Mono £1.35, Colour £1.50, Bobbins 80p.

14(0), 15(1), 1590, 1591 , ULTRA

GEC seris 18,
GEC series 1\&2...
INDESTT 2024 EGB
PHILIPS 170 , 210, mio series
PYE, INVICTA, EKCI
368. $169,569,769$ yeric:
f9.15
DECCA 80, 100
FIDEIITYZXZOXO), 3000
GEC 2110 series ..
ITT CVC 5 to 9 . CV................................50
ITT CVC25 CVC30 2................... £10.60
ITT CVC45, CVC30 series
PYE 691-697 (state model no.
PYE 725 (90°) 731 to 741
PHIIIPSG8.

PHILIPSG9 PHILIPS KT3

DECCA 1700, 2001, 2021, 2401, 2420 £3.80
(GEC $2114 \mathrm{~J} / \mathrm{J}$ unior Fineli e $\mathbf{£ 2}$
PHII IPS 320 .
RBMA893
GEC 2028. 2040,2100
£2.80 THORN 30N13500 SCAN, EH

PHILIPS $570.571 \quad$ THORN 9801
THORN TX9
OTHERS AVAILABLE, PRICES ON REQUEST.
TRIPLERS Full range available. Mono \& Colou
Special Offer: GEC $3(14) / 21(0)$ EHT Tripler $£ 2.50$ p.p. $£ 1.30$
THORN 8000 EHT
$6.3 \vee$ CRT Boost Transformers for Colour \& Mono $£ 5.40$ p.p. $£ 120$
THORN TX 10 focus control 58.80 p 80
THORN TX10 focus control $£ 8.80 \mathrm{p} . \mathrm{p}$. 80 p.
THORN 8000 mains input choke $£ 6.80$ p.p. $£ 1.40$.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS (3F ADDITIONAL ITEMS, ENOUIRIES INVITED
LARGE SELECTIGN TESTED COLOLR PANELS POPULAR MODELS
TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE
Talephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead Brit Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich)
W. Hampstead Brit Rail Stn. (St. Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT
PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P

COPYRIGHT

(C) IPC Magazines Limited, 1986, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, £15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

| 149 | Leader
 Leng-distance Television
 Reports on DX conditions and reception and news from
 abroad. | Roger Bunney |
| :---: | :---: | :---: | :---: |

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

ADD HOW TO ORDER
ADD 87p per order P+P Goods are despatched on the day we receive your
(U.K.). Heavier parcels e.g. order. If for any reason we are out of slock we will try (U.K.). Heavier parcels e.g.
cable, service aids, degas. for any reason we are out of stock we will try
to inform you as quickly as possible. We try our best cable, service aids, degaus.
coils please allow $£ 1.50$ inform you as quickly as possible. We try our best
to give a speedy, fair and efficient sevvice. V A.T. colls please allow $£ 1.50$ P+P to give a speedy, tair and efficient sevice. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you
at cost. First Class Mail is used service. Please ask it what you need is not listed - we at cost. First Class Mail is used service. Please ask if what you need is not listed - we VAT to total except where it notice. In some cases we may have to supply an states zero rate. equivalent.

P V TUBES
 104 ABBEY STREET, ACCRINGTON
 36521/32611

SUNDAY EQUIPMENT

Test Lead Set
Degaussing Coil St
Signal Ejector
Elect. Circuit Tester
5A Choc Bloc (12)
Fuse Wire 5A, 15A, 30A
4-way 13A Mains Conn.
Sate Block (mains)
13A Plug Top (box 10)
Probes (x10)
Probes $|x|$ Micro Pliers
Micro Cutters
Factory recon. Avo meters Avo Battery
Vero Board
LG Solder Sucker
Solder 500 g
D.I.Y. Solder
Solder Sucker Antistatic
Nozzies
Trim Tools
Solda Mop Stnd Sidecutters sm.
Long Nose Pliers
Surge Protector Plug
Quick Set Adhesive
Sm. Neon Screwdriver
Lg. Neon Screwd
I.C. Inserters

Scart Plugs
TA81 Car Battery Leads/port. IV Thom
1690/91
1613/1615
Car Battery Leads/port. TV Philips
Universal Car Accessory Cable
$\begin{array}{ll}\text { Dynascan } 467 & \text { Rejuv. } \\ \text { Dynascan } 470 & \text { Testers }\end{array}$
$\mathrm{B}+\mathrm{K}$ tube bases Dynascan
No

320A Single Gang
320B Two Gang
320D Two Switched
3200 Two
Switches
Switches
$320 E$ One Gang/One Way
320t. One Gang/One Way
320f One Gang/Two Way
$320 G$ Two Gang Two Way

CABLES 100 m
F031 2 Core Round $.75 \mathrm{~mm}^{2}$ F032 3 Core Round $.5 \mathrm{~mm}^{2}$ F041 Speaker $7 / 02 \mathrm{~mm}$
Coaxial 75R
F051 Multicore 8×7/0

25	
20	
10	

FILAMENT LAMPS HES ROUND BULBS
L23m \times D11mm $123 \mathrm{~m} \times \mathrm{D} 11 \mathrm{~mm}$

6.5 V 0.3 A | $6.5 V^{0.3 A}$ |
| :--- |
| $12 V^{2}$ |

$12 \mathrm{~V} \quad 2.2 \mathrm{~W}$

```
ULUPUTT (L.E.S.) BULBS
L20m x D5mm
6V 0.025A
```

CAPLESS LAMPS
L11mm $\times \mathrm{D} 4 \mathrm{~m}$
6 V 0.04 A
$\begin{array}{ll}\text { 6V } & 0.04 \mathrm{~A} \\ 12 \mathrm{~V} & 0.04 \mathrm{~A}\end{array}$
TUBULAR LAMPS CAPPED
$131 \mathrm{~mm} \times 06.3 \mathrm{~mm}$
$\begin{array}{ll}6.3 \mathrm{~V} & 0.15 \mathrm{~A}\end{array}$
$\begin{array}{ll}6.3 \mathrm{~V} & 0.15 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.25 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.3 \mathrm{~A}\end{array}$
$\begin{array}{cc}6.3 V & 0.25 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.3 \mathrm{~A} \\ 8 \mathrm{~V} & 0.15 \mathrm{~A}\end{array}$
$\begin{array}{cc}8 V & 0.25 A \\ 8 V & 0.3 \\ 12 V & 0.1 \\ 12 \mathrm{~V} & 0.2 \\ 12 \mathrm{~V} & 0.2 \\ \text { WIRE MEO } \\ \text { GSVAC } 90 \mathrm{~V} \\ 100 \mathrm{~K} & \end{array}$
65VAC/90VDC Series res
100 K for $110 \mathrm{~V}-330 \mathrm{~K}$ for 240 V

$\begin{array}{cc}6 \mathrm{~V} & 0.04 \mathrm{~A} \\ 8 \mathrm{~V} & 0.04 \mathrm{~A} \\ 12 \mathrm{~V} & 0.04 \mathrm{~A}\end{array}$
$\begin{array}{ll}12 \mathrm{~V} & 0.04 \mathrm{~A} \\ 14 \mathrm{~V} & 0.025 \mathrm{~A}\end{array}$
$\begin{array}{ll}14 \mathrm{~V} & 0.025 \mathrm{~A} \\ 14 \mathrm{~V} & 0.04 \mathrm{~A}\end{array}$
14 V 0.04 A
04.2 mm
4.5 V
$4.5 \mathrm{~V} \quad 0.06 \mathrm{~A}$
$\begin{array}{ll}6 \mathrm{~V} & 0.06 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.025 \mathrm{~A} \\ .3 \mathrm{~V} & 0.08 \mathrm{~A}\end{array}$
${ }^{\circ}$
3.95
1.99
8
8
8
8
12 V
12 V
14 V
14 V

TUBULAR LAMPS (WIre ended)
L2m \times D 4.25 m
3 V
6 V
0.06 A
8 V
9 V
0.05 A
12 V
12.045 A
14 V

 PLUGS AND SOCKETS
 5 pin DIN pluggs 180°
5 pin DIN chassis sockets 180°
5 in DIN line sockets 180°
5 pin DiN line sockets 18
5 pin DiN plugs 360°
5 pin DIN chassis sockets 360°
5 in DIN line sockets 360°
6 pin DIN plugs
6 pin DIN chassis sockets
6 pin DiN line sockets
7 pin DIN plugs
7 pin DIN chassis sockets
7 pin DIN line sockets
8 pin DiN plugs
8 pin DIN chassis sockets
8 pin DIN line sockets
8 pin DIN line sockets
Phono plugs
Phono chassis sockets
Phono chassis sockets
Phono line sockets
Phono line sockets
2.5 mm Jack plugs
2.5 mm Chassis sockets
2.5 mm Line sockets
3.5 mm Jack plugs
3.5 mm Chassis sockets
3.5 mm Chassis sock
3.5 mm Line sockets
3.5 mm Stereo jack plugs
3.5 mm Stereo chassis socket
3.5 mm Stereo chassis sockets
3.5 mm Stereo line sockets
6.3 mm Stereo jack plugs
6.3 mm Stereo jack line sockets
Standard mono jack plugs
I.D.C. plugs 36 conn.
I.D.C. sockets 36 conn.
BNC piugs
Coax plugs Each $18 p$ Pack of ten
Line connectors
Double ended female sockets
Car aerial plugs
Reducers for the PL259
15.47
47 FM pls for the PL259
Crocodile Clips
In Line Socket (Metal)
We have a fully equipped computer store
- Come and visit us -

TUBULAR LAMPS (Wre ended)
L22m \times D4.25m
3 V
6.06 A
6 V
8 V
9.05 A
9 V
12.05 A
12 V
14 V

5
3 皆

조ํ

Some are or
DECCA 100/101 US Hon T.Text
GRUNDIG TELEPILOT 12 IR
GRUNDIG TELEPILOT 8 IR
GRUNDIG TELEPILOT 8 IR
GRUNDIG TEEEPLOT 60 IR
GRUNDIG TELEPILOT 300 IR
PHILIPS G11 US Mon Text
PHILIPS G11 8 way.IR Text
PHILIPS G11 8 way.IR Text
PHILIPS G11 US 31 Button
PHILIPS G11 US 31 Buttion
PHILIPS G11 US 2 function
PHILIPS G11 US 2 function
PHLLIPS KT3/30 IR Text 1234
PHILIPS KT3/30 IR Non Text 1201
THORN TX10
PHILIPS K13/30 IR NOn Tex
THORN TX10/JV IR Text
Remote Control Tester

SUNDRY VIDEO ACCESS.

VHS Drum Motor

 VHS Capstan MotorSanyo 5000 Reel Motor VHS Idler Video Lamps 3V23 Lamps with Piug Universal Copying Kit
Video Head Cleaner Video Head Cleaner
Shap Reel Motor Reel Idiler (Sharp)
$381 / 383 / 386 / 91009300 / 9500$

VIDEO HEADS

3HSS UHS

4HS VHS
PS3B Beta/Sony
Philips V2000
Philips 1700
Sanyo 9300/9455/9500
Saryo 5000/5300/540
Toshiba V5470A BDP
Tosniba V5470A BDP
Toshiba 9600 Upper Ass.
Toshiba 9600
Sharp 2300
Sharp 6300
Sharp 7300/7700/7750
Shap 8300
Sharp $381 / 3$
Shap
Sharp 3300/9700
\square

	VIDEO TAPE
SKC	E180
	L750
Scotch	E30
	E60
	E120
Beta	E180
VCC	240
	360
	480

NEW LABGEAR

VIDEO IDLER TYRES				
	0.019	1.01a	Width	
SONY	23.7	17.4	4.9	50p
SONY	24.2	18	5.1	50p
HITACH	31.8	25	4.9	$52 p$
HITACHI	39.5	30	4.2	52 p
PANASONIC				
	31.2	25	3.1	50p
PANASONIC				
	37	27	3.9	52 p
PANASONIC				
	34.5	27	3.1	50 p
AKAI	26	20	3.9	$50 p$
JVC	32.8	3.4	3.9	56 p
JVC	23.9	4.8	4	56 p

REMOTE CONTROL HAND UNITS
옹훙

Temp. Controiled
30 W Iron CSTC
30 W Iron CSTC
40 W Iron XSTC
Unit for above TCSU1
MLXS Auto Repalr Kit
$\begin{array}{lr}\text { MLX } & 8.80 \\ \text { ORYX Gas Cordess Iron } & 19.50 \\ \text { Tips tor Gas Iron } & \mathbf{5 . 0 0}\end{array}$

HUSSAIN CENTRAL T.V. LTD.

TRADE ANNOUNCEMENT

NEW BRANCH NOW OPEN AT

TO OFFER YOU TOP QUALITY VIDEOS \& T.V.s JUST LOOK AT WHAT WE CAN OFFER YOU!

VIDEO

HITACHI	- 9700-9500-8700-5000-5500-8000-VT17E
PANASONIC	- NV2000-NV7000 - NV7002
J.V.C.	- HR7655EK - HR7700EK - HRD120EK - HR7200EK
SHARP	- 8300-9300-7300-7700
FERGUSON	- 3V31-3V29-3V23-3V22-3V16
MITSUBISHI	- SH303B - SH304B - SH310B - R00302 - SOH300 -
NORMENDE	- RO500 - VOV100 - VOV101-VOV500
G.E.C.	V04001-SO4000
TATUNG	- SO8300 - FISHER - VOO615-VO0520
AKAI	- RVS5EK
BETAMAX	- SONY - C9 - C7 - C6 - C5 - FLC9UB - RO8080 - SO8000 - SCC6UB - VC40UB - VOC6UB
SANYO	- VTC500 - VTCM10 - TO5150
TOSHIBA	T09600

 ALL PRICES ARE BASED ON QUANTITY AND + 15\% VAT.

UNIT 439
OAKSHOTT PLACE
WALTON SUMMIT IND. EST.
PRESTON (M6 Junc. 29)
0772312101

48-52 PERSHORE STREET BIRMINGHAM
021-622-1023
021-622-1517

HUSSAIN CENTRAL T.V. LTD.

 the LARGEST RANGE AT THE LOWEST PRICES IN THE U.K.
B GRADE T.V.s - REMOTE - TEXT

 \& STEREO TEXTLATE LATE MODEL T.V. GRUNDIG TEXT 7400, 6400, AND 16" TEXT 100's in stock
VIDEO CAMERA, CAMCORDS, VRC100P, SANYO LATE LATE TANDBERG - PANASONIC - SONY - SANYO ITT - FERGUSON TX - G11 TEXT $\mathbf{2 0 - 2 0}$ VIDEO, working $£ \mathbf{~} 30$, untested from $\mathbf{£ 8}$ V.H.S. VIDEO, untested - 100's in stock STILL THE No. 1 FOR EX-RENTAL T.V.s

LARGE STOCKS OF QUALITY T.V.s

200 T.V.s A DAY ARRIVING AT OUR PRESTON BRANCH. WHY NOT COLLECT STRAIGHT FROM OUR LORRY? RING FOR DETAILS AND DELIVERY ARRANGEMENTS OR LOADS DIRECT FROM SOURCE TO YOUR DOOR.

ALL PRICES ARE BASED ON QUANTITY AND + 15\% VAT.

01-807-4090
01-884-1314
CEDAR HOUSE
NOBEL ROAD
ELEY ESTATE
EDMONTON
LONDON N9.

0291-271000 UNIT 4 BULWARK INDUSTRIAL EST.

CHEPSTOW GWENT.

BROAOCAST86. International Trade fair for film, Radio and Television Frankfurt am Main 24-28 June 1986

BROCDCAST86:IODER TINIES FOR FILII. AL DIO

$$
\mathrm{n}-\frac{\mathrm{a}^{1}}{\pi}
$$

It will include all areas of technology (from the micro chip
to the satellite) as well as the important areas of "Programmes and Production:
 workshops and special shows is clearly aimed at all areas involved. Therefore Frankfurt
will be able to cater for your special needs.

In Frankfurt with all its advantages ffavourably situated. attractive halls, well designed grounds, excellent catering service etc.) the new era for Film and Broadcasting in Trade Fair Marketing has begun.

UALITY, BRAND REPUTATION C	UPPLY TOP COMPONENTS. ITS WITH US	G.G.L.COMPONENTS 108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693				BUY WITH					
INTEGRA	TYPE PRICE (E)	TYPE PRACE (£) TDA440		TYPE PRICE BD439 70	TVPE PRICE	THORN/SONY					
CIRCUITS PRICE (E)	SAS570S1.95	TDA440.....................2.25	TYPE SISTORS PRICE	BD439................. 70	$\begin{aligned} & \text { 2N3055................ } 50 \\ & \text { 2N3773.......... } 3.45 \end{aligned}$	LARGE RANGE OF SPARES FOR ABOVE					
TYPE PRICE (£)	SAS580S2.40	TDA1002................1.50	TYPE PRICE	$\begin{aligned} & \text { BD707 } 1.05 \\ & \text { BF337............. } 28 \end{aligned}$	2N3773............3.45						
AN214..................1.95	SAS590S2.40	TDA1003.............. 2.80	BC107 14	$\begin{aligned} & \text { BF337................... } 28 \\ & \text { BF338.......... } 30 \end{aligned}$	15/805R................. 2.25	SPARES FOR AbOVE MAKES OF TV/		DIODES			
AN301..................3.45	SL1430 1.95	TDA1006A 2.95	BC109 14	BF458................. 30	2SA 771 2.35	VIDEOS INCLUDING					
AN303..................3.45	SL1432 1.75	TDA1035T 2.75	BC109 14	BF458................. 30	2SA 835........... 1.35	INSTRUCTION AND					
AN305..................3.50	STK0039............... 6.45	TDA1037............... 1.55	BC141 26	BF757.................... 75	2SB618............. 2.45						
AN7110.................1.93	STK0040...............5.95	TDA1044................3.10		BFR90 1.60	2SC 867A 3.25	SERVICE MANUALS.		BY164 …… 40			
AN7114E 2.33	STK0050 7.50	TDA1170...............1.80	BC143 69	BR100 18	8 2SC 1034.......... 4.85	PHONE OR WRITE		BY179.6................ 805			
AN7115................ 2.37	STK077................. 7.25	TDA1270............... 2.20	BC148 09	BR101 32	2 2SC 1061........... 1.15	FOR NEW LISTS. WE		BY210/800			
AN7116................235	STK078................ 7.45	TDA1470...............3.65	BC157 10	BR103 55	5 2SC 1114.......... 4.175	CAN ALSO SOURCE					
AN7145................. 3.25	STK082 9.75	TDA2002............... 1.85		BR303 2.95	5 2SC 1124............ 97	\& SUPPLY OVER		BY229/600 8^{21}			
BA312.................. 1.25	STK415 9.66	TDA2003...............2.33	BC159 11	BT106............... 1.15	5 2SC 1316............ 3.20	THREE THOUSAND		BY2984400.................... 24			
BA511A 1.95	STK $4307 .75$	TDA2004............... 3.15	BC237 11	BT116................ 1.30	0 2SC 1413A.......3.35	V/Cs \& SEMI CONDUCTOPS		BY299/800..................... 25			
BA521................. 1.85	STK4336.50	TDA2006............... 2.25	BC327 11	BT151\%.................	2SC 1739......... 2.45			BYXIO \qquad 20			
BA532 1.55	STK435..................6.75	TDA2020............... 2.95	BC328 12	800R 1.10	10 2SC 1942......... 2.95	CONDUCTORS.		$\begin{aligned} & \text { BYX55/600 } \\ & \text { BYx1/60........... } 26 \\ & \hline 18 \end{aligned}$			
	STK439.....................7.25	TDA2190M 4.95	BC337 11	BU126............ 1.78	8 2SC 1962.........1.65			$\begin{aligned} & \text { SKE4F206 } \\ & \text { SKE5F3/................. } 0 . \\ & \hline 10 . \end{aligned}$			
HA1322.................... 210	STK441..................... 8.50	TDA2522............... 1.80	BC338 10	BU205........... 1.42	2 2SC 1969.........1.95	C5/C7 Rewind Kit4.65					
HA1338................... 2.78	STK459..................... 7.35	TDA2523...............2.25	BC547 10	BU208A 1.45	5 2SC 2078........1. 1.55	C5/C7 Belt Kit 350		W005 5 5			
HA1339................... 2.40	STK461 7.95	TDA2530............... 2.10	BC548 10	BU208D 1.85	5 2SC 2335 (Kit) . 7.55			$\begin{aligned} & \text { iN4001-7 } 07 \\ & \text { IN5401-8 } 16 \end{aligned}$			
HA1342A 2.20	STK 463.................9.30	TDA2532.............. 2.20	BC557 10	BU326A 1.48	8 2SC 23693.25	Cb Rewind Kit \qquad C7 Pinch Roller. \qquad 4.5					
HA1366 W/WR 1.95	STK465 9.95	TDA2540............... 1.9	BC558 10	BU407 1.12	2 2SC 257.......... 2.						
HA1370................ 275	TA7193P 4.30	TDA2560...............1.80	BD124M 1.05	BU407D 1.45	5 2SD 588A 1.97	C7 Pinch Rolier SG 613/6533		HITACHI VCs			
HA1374................ 2.45	TA7202................ 2.25	TDA25784 3.25	BD131 33	BU500 1.80	0 2SD725......... 7.95	SG 613/6533 8.95		STR 441 8.95			
HA1377................ 3.80	TA7203P...............2.25	TDA2581................ 2.15	BD132 33	BU508A 1.9	2SD B70.......... 5.95	CX 143A6.56		STR 451 8.55 STR 6020 7.50			
HA1388................ 4.20	TA7204P............. 1.90	TDA2582.................2.20	BD201 80	BU526........... 2.00		TDA 3652...............4.35					
HA1397................3.90	TA7205AP 1.40	TDA2591................2.30	BD202 70	BU807 1.	0 UNE O	Large range of Sony spares available		SUNDRIES			
LA1201 1.75	TA7208P.............. 1.95	IDA2593................ 2.30	B0203 70	BU826A 3.20							
LA1230 2.30	TA7222AP 1.85	IDA2594................2.95		R2010B.......... 1.45	5 DECCA 100............. 8.50			GB TRANSDUCTOR 225 G8 ON/OFF SW			
LA1365 2.45	TA7223P2.85	IDA2600................5.55	BD222 50	R2540............ 2.35	IT CVC 207.5	$\text { PCF802................... } 1.08$					
LA33501.65	TA7227P 2.95	IDA2611A............. 1.50	BD225.............. 55	T1P31C 46	6 ITT CVC 25/30/32 800	PCF802.................... 1.09PCL 82		G11 EW Coil..............1.05			
LA403135	TA731055	$\begin{aligned} & \text { TDA2640.................. } 2.50 \\ & \text { TDA3560......... } 10 \end{aligned}$	BD235 32	T1P32C 47	7 ITT CVC 4545			G11 Lin Coil.............1.80			
LA4101 1.50	TAA550....................... 43	TDA3561A.............. 5.35	BD236 43	T1P33................ 80		PCL82....................... 97		G11 EHT Lead 225			
LA4102 1.95	TBA120AS 95	TDA3562A 5.50				PCL86................... 1.07		PYEIFGain MOD155			
LA4400 2.50	TBA120SB 90	TDA4500............... 5.85			8 PHILIPS K30........... 16.5	PL504.................... 1.59		THORI			
44430 2.45	TBA120T............... 1.25	TDA4600............. 2.85	BD410 BD434		5 RBM TZOA 11.50	PL508........................ 299PL509/519............ 5.99					
LA4440 3.55	TBA120U 1.00	TDA4600-16P1N..... 3.95	BD434 BD437		70 THORN 1615 12.35			CUT OUT $2 A$......... 1.55 TXIO FOCUS UNIT. 8.55			
L44460 2.95	TBA520............... 1.30	TDA9503.................. 2.35	$\begin{aligned} & \text { BD437 } \\ & \text { BD438 } \end{aligned}$	TPP3055................. 70		$\begin{aligned} & \text { PL509/519.................5.92 } \\ & \text { PY500A } 225 \end{aligned}$		VCR Pilot Bulb 70			
4461	TBA5300 1.00	UPC555C …............... 70	BD438								
		UPC566C2.10	TV ELECTROU YTICS		PUSH BUTT		Available also a range of 25AB/C/D Transistors. Phone or write for lists.				
ML231B................... 2.35	TBA560.................... 1.60	UPC1031H............. 2.95			DECCATTT 6 way 7.95						
ML232B 2.55	TBA720A 2.65	UPC1032H............. 95									
L2378 2.50	TBA750................ 2.	UPC1156H	DECCA 80-80/100(400)350V		PHILIPS G8S						
SAA1124 3.45	TBA800.................. 80	UPC1181H	PHILIPS G8(600)300V \qquad 2.65 PHILIPS G9(2200)63V \qquad 1.45		PHILIPS G8S/Q..						
SAA1125 4.70	TBA810................. 1.35	UPC1 182H 2.20			ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELUVERY BY RETURN ON ALL STOCK ITEMS.						
1250	TBA820.................... 1.40	UPC1 185H 3.30	PHILIPS G11(470)250	V 2.20			HITACHI 4 way..ITTCVC5 7 Button 10.40				
10 5.10	TBA920.................... 1.50	UPC1238H 2.35	RBM A823(2500)2500)30V 1.65								
SAA5012 5.70	TBA950..................... 2.65	UPC1350C 4.50	RBM T20A(220)400V 2.35							
SAF1032P............. 3.25		UPC1353C2.60	THORN 1690/1(4700)25V 94				1043/05 8.95				
SAF1039P.............. 4.55	TCA800	UPC1365C	THORN3500(1000)70V 99THORN $9000(400) 400 \mathrm{~V}$............... 3.10								
SAS560S 1.9	TCA940................. 1.55	UPC2002H 1									

TV LINE OUTPUT TRANSFORMERS prices include vat \& carriage

Delivery by return of post.

TELEVISION/COMPUTER FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL

2 YEAR

BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis
15 MONTHS
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fauk Diagnosis)

15 MONTHS

BTEC National Certificate (ONC)

COMPUTING TECHNOLOGY

(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Faulk Diagnosis, ATE, Robotics)
these courses imclude a high percentage of coufge based
PRACTICAL WORK TO ENHANCE FITURE EMPLOMMENT PROSPECTS
SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLDGE

NEXT SESSION TO COMMENCE ON JANUARY 6th

H.N.C. SEPTEMBER 1986

FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept TN) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

AN1270	91.75	CX143A	${ }^{57.50}$	HA11788	E4．50	M54543L	$\underline{2.75}$	TA7136P	£1．00	UPC1028H	23.00	254899	23.73	2SC1427	4.30	VDEO BELT KITS		LATE EXTRA	
${ }_{\text {AN203 }}{ }_{\text {AN2 }}$	9.78	CX157 CX 158	\％3．95	HA11816NT	${ }^{81} 50$	M54548L	8.73		${ }^{51} 50$	UPC1031H	${ }^{9} 1.50$	2SA940	21．40	2SC1505	38.74	AKA			
AN211A	9.25	CX160	9.50	HA12035	c． 2.50	M83705	${ }^{1} .6$	TA7145P	91.80	UPC1035C	E1．20	${ }^{2 S 4052}$	91．38	2SC1546	${ }^{51} 3.3$	AKAI VS 9700EG（6）	11．75		25
AN2140	¢1． 80	Cx161A	E． 50	HA12413	$\underline{\square}$		${ }_{81} 815$	IAT146P	2.50	UPCtosh	9.75	2SA1015	9．3．	${ }_{2 S C 1664}^{2 s}$	52.51	FISHER VBS 7000 （6）	≥ 2.20	AN5620X	6.25
AN2178	92.29	CX162	83.40	HA13402	M，50	M M 3731	$\underline{5} .50$	IA7150P	9	UPC103	9.9		\％． 0.0	2SC1741	5.31	FISHER VBS 9000 （3）	£1．00	AN6387	£5．63
${ }_{\text {AN }}$ 228W	9.75	Cx170	83.50	HA13403	7．50	Me3756	E． 20	IA7152P	c1． 70	UPCC1 156 F	c1．4	2SA1104	E1．0．	2SC1815	E．${ }^{\text {a }}$	HITACHI VI5000（7）	11.70	HA11440A	£3．75
AN2360	${ }_{8} 9.50$	CX181	${ }^{\text {c．}} \mathrm{E}$ ． 59	Hal3430A	¢ ${ }_{\text {¢ }}$	M88719	5.51	IA7173P	9	UPCI 158 H UPC1161C	${ }^{51} 9$	2SA105	$\underline{9} 2.25$	2SC1826	$\underline{21.00}$	NCC HR3300／3600（9）	$\underline{8.00}$	HA12001W	$\underline{56.50}$
AN2390	${ }^{2} 1.80$	Ha1125	2.50		2.05	Plota	$\underline{2} .3$	TA7193P	${ }^{1} 50$	UPC 1163	51.80	2SA1106	$\underline{2.50}$	2SC1849	$\underline{9.3}$	JVC HR3360／3660（7）	\％200	HA12038	$£ 6.75$
${ }_{\text {AN }}$ 241P	\％1．50	HA1137	\％1．73	W1222	\％．${ }^{\text {¢ }}$	PLLO3A	4． 0	ta7200	$\underline{8}$	UPC1167C	${ }_{60.71}$	2SA1198	$\underline{51.35}$	2SC1945	83.50	JVC HR7700（3）	£1． 20	LA1140	£1．75
AN247P	9.50	HA1149	\％1．40	L41230	21．50	SI－1125	ع7．50	IA 7201	$\underline{5200}$	UPC1168C	59.9	2 SB 22	50.4	2SC1946A	2． 50	PANASONIC NV333（5）	E1．40	LA3370	$\varepsilon 2.80$
AN259	9.75	Ha115t	$\underline{2} .50$	LA1240	$\underline{51.75}$	STK011	83.75	TA7202P	520	UPCC1170H	9.75	$2 \mathrm{SB54}$	28.74	2SC1957	28.0	PAMASONIC NVZ000（5）	¢1．40	L44126	52.50
AN262	c1． 50	Ha1156	c9．10	L1320	21．50	STK013	2.25	IAT203P	9	UPC1171C	¢1．51	25875	50.60	2SC1959	c1．39			L44507	E4． 85
AN271A	8.50	hat166	c1．60	La1365	51.21	STKO 14	8.25	TA7204P	¢1．10	UPC1176C	c． 1.2	258341 V	52.00	2SC2021	20.30	PANASONIC NVB6C0 ${ }^{\text {（7）}}$	91.45	La4507	$\underline{24.85}$
${ }^{\text {AN }} \mathbf{2 7 4}$	C． 3.5	HA1196	83.75	41368	9.24	STK015	D．e	TAT205AP	${ }^{1} 1.00$	UPC1177	${ }^{5} 1.20$	2 S 8405	¢．${ }^{10}$	2Sc2026	m．	PANASONIC NV8600（7）	ci． 75	LA7016	£2．50
${ }^{\text {ANA }}$ A 2935	E3．25	HA1197 HA1199	cc1． 50	L41460 LaZ200	${ }_{¢}^{\text {c1．}} 1.75$	STK016 STK020	8．75	TAT207P	${ }^{\text {c1．}}$ 80 50	UPC1178C	\＄1．00	2S8426	52.00	2scraze	58.75	SANYO VIC5500	${ }^{2} 1.00$	LA7215	¢2．75
AN313U	$\underline{8.75}$	HA1306W	c1．00	LA3101	91.60	STK022	5.25	TA7210p	9.00	UPC 1181 H	11.00	2 28171		2SC2075	5．25	SHARP VC6300		LA7521	¢4．50
AN315	cem	HA1319	$\underline{\mathrm{E} .00}$	L43155	20．05	STK025	20．75	TA7214P	cm． 58	UPC1182\％	51．0．	2S8492	59.75	2SC2078	90.75	SHARP VC7300 ${ }^{\text {St00（5）}}$		LA7751	¢4．75
AN316	C3．50	HA1322C	E1．60	LA3160	50.0	STK041	$\underline{51.50}$	TA7215P	¢1．0	UPC1183H	¢1．29	2585090	51.70	$25 C 2091$	n．${ }^{\text {cot }}$	SHARP VC7300		LA7755	¢2．95
AN318	84.75	Ha1339a	51.60	La3201	82.05	STK077	5.5	Ia7217AP	51.2	UPC1185	$\underline{21.20}$	${ }^{2586534}$	51.00	2sczos？	$\underline{5.50}$	SHARP VC3300（5）	E1．50	LA7801	$\underline{2.95}$
AN331	$\underline{22} 75$	HA1342A	81.70	LA3300	8.4 .4	STK078	55.50	TA7220p	9.75	UPCC1186	5.8	${ }^{\text {2SB533 }}$	c0．${ }^{\text {c }}$	$2 \mathrm{SC2098}$	ce．m	SHARP VC9300	51.30	LA7808	$\underline{\Sigma 2.50}$
AN360	51.2	Ha1366\％	c1．50	La3301	8.24	STK080	87.24	TA7222ap	¢1．28	UPC1187	21．30	2SB546	¢1．50	2SC2166	E1．ts	SONY SLT7MET7（6）	81.60	LA7910	¢1．95
${ }_{\text {AN36 }}$ A 366 P	9.30	HA1366WR	c1． 50	LA3350	91.20	STK082	¢7．75	TA7223P	¢1．95	UPC1190C	${ }^{\text {c．}}$ ． 5	2SB661	91．3．	$2 \mathrm{SC2238}$	£1．05	SONY SLC7／J7（6）	81.70	LC4066B	
	c． 9.50	HA1367 HA1368	$\mathrm{cc}^{8} .25$	L43361	¢1． 28	STK086 STK430	28.25 84.75	TA7224P	$\underline{82.75}$	UPC1191V	\％． 2.78	2S8698 $2 S 8754$	${ }^{20.39}$	${ }_{2 S} 252278$	2.78	SONY SLEO0／8080（6）	$\underline{2} .00$	M51102	£2． 20
AN612	m1．75	Ha1368R	51.65	L44031P	\＄1．40	STK433	E4．50	ta7226P	E． 20	UPC1200V	58.00	$2 S 8755$	$\underline{2.50}$	2SC2335	21．50	TOSHIBA V547（6）	¢1．70	TA7140P	75
A 45722	¢1．50	HA1370	9.75	LA4032P	51.40	STK435	55.0	TA7227P	E1．50	UPC 1208 C	51.5	2SB7720	51.9	2Sc23 40	F12．25	TOSHIBA V7540（5）	81.75	UPC1387C	$\underline{82.50}$
A A S7330	9.85	HA1374	G． 50	L44051P	c1．50	STK436	55．0．	TA7229P	E3．00	UPC121V	${ }^{\text {c1．}} 1.00$	${ }_{2}{ }^{2 S C 372}$	20．30	2562570	$\underline{12.75}$	TOSHIBA V8600（6）	£1．30	UPC1391H	E2．50
${ }^{\text {A }}$ A 573732	${ }_{81} 1.05$	MA1377A	${ }_{9} 9.20$	La4100	91.00	STK437		TA7230P	${ }_{c} 91.75$	UPCLI215V	${ }^{9} .25$	2Sc380a	51.30	2SC2577	¢1．90				
AM6250	$\underline{2} .30$	HA1389	E1． 75	LA4102	E1．20	STK441	¢．\％	TA7310p	E1．40	UPCT217G	¢1．60	${ }^{25 C 45}$	¢． 20	2SC2578	$\underline{2.2}$	888		Ssetie	
AN6344	¢4．75	Ha13898	21．40	LA4110	21．40	STK443	28．55	TA7312P	¢1．30	UPC12184	51.4	2SC460	28.30	2SC2579	9.28	¢5\％\％		2 Vohs	2.50
AN7105	2.20	HA1392	$\underline{2} .30$	L44112	E1．30	STK457	${ }^{\text {E5 }}$ 5 5	TA7313AP	¢1．31	UPC1222C	cı． 20	${ }^{25 C 461}$	51.30	2SC2580	$\underline{2.20}$			Cassemte	
AN7110	91.40	HA1394	9.75	L44120	9.50	STK459	${ }^{6} .75$	TA7315AP	¢1． 75	UPC1223C	${ }^{\text {c1．}} 175$	${ }^{2 s c} 503 \mathrm{c}$	51.70	25024	52.50		M		
AN7114E	\％1．60	HA1397 HA1398	${ }_{72} \mathbf{7} .50$	L44125	${ }^{9} 9.00$	STK460	${ }^{7} 7.50$	TA7325P	c． 85	UPC1225H	${ }^{\text {c．}}$ ．${ }^{\text {cof }}$	2scas3a	51.20	$2 S 0170$	50.60				
ANT120	81.60	HA1457	5.90	LA4182		STK463		ta7607ap		UPC1227V	${ }_{21} 1.0$	$\stackrel{1}{25 c 620}$	${ }_{60.50}$	2SD187	51.60	$0 \stackrel{0}{5}$	Anto	Reverse	92.75
AN7130	c1． 50	HA11215A	84.25	L44192	21．\％	STK465	\％8．50	TA7608	8.50	UPC1230H	2.50	2Sc632	2.30	${ }_{2} 250313$	n．m				
AN7145M	c1． 00	HA11221	¢2．30	LAA200	51.50	STK0025	64．05	TA7609P	$\underline{52} 30$	UPC1238V		$25 C 681$	$\underline{\%} 2$	${ }^{2} \mathrm{SDO325}$	${ }^{2}$			mic soul	ERS
AN7146m	E1． 85	HA11223W	c3． 20	La4220	21．20	STK0029	E4．35	ta7611	22.75	UPC1245V	¢1．00	2sc687A	2．30	250348	E．50	I－¢		EAD	
AN7154	c1． 75	HA11225	c1．95	La4230	¢1．75	STK0039	¢4．25	TA7658P	¢1．50	UPC1277H	$\underline{7.75}$	2sc710	50.30	${ }^{2}$ 20352A	¢1．50			MB	
AN7156N	$\underline{8} .40$	Ha11235	9.00	La4250	22.50	STK0040	23.50	UHIC001	54.80	UPC 1278 H	2.50	${ }^{2 S C 717}$	50.50	250371	£1．38	\％			50.25
AN7158N	${ }^{2} .25$	Hal1423	84.75	La4400	F1． 0	STKCO49	${ }^{\text {E }}$ ． 75	UH1C004	54.80	UPC1350C	91.28	2SC732	89.30	2S0401	c1．50			OMB	20.25
AN7168	$\underline{2} .50$	Ha11701	E4．50	44420	11．40	STKCO59	g．e	UPC16C	¢1．30	UPC1353C	21.75	2SC733	50.30	2S04678	51．30			5MB	${ }^{\text {c．}}$ ． 25
AN7310	50.80	Hal1702	ca．so	L44422	9．20	STK0080	Ex．59	UPCZzaC	22.20	UPCT1556C	¢1．50	2SC798	9.85	2504686	2．5t			．01c	50.30
AN7311	51.00	Ha17003	E4．50	La4430	E1．39	STK2028	8.59	UPC30C	E1． 80	UPCC1358H	c1． 50	2sc799	${ }^{11.75}$	${ }^{2 S 0718}$	¢1．50	8 易		MC	£0． 30
BA301	ce． 75	Ha11704	¢4．75	L44440	$\underline{5} 20$	ST12029	E3．75	UPCA1C	2.0	UPC1360C	${ }^{51.60}$	2sc823	5.20	2S0734	\％．				
BA311 Ba313	8． 2.75	MA11705 Ha11706	${ }_{54} 8.50$	la4460	${ }^{81.75}$	STK2230	${ }_{58 .} 8.15$	UPC554C	${ }_{51}{ }^{51.25}$	UPC1363C	${ }_{\text {c1．}}^{51.80}$	2Sc847	${ }_{51.50}$	${ }^{2 S 0916}$	${ }_{81} 8.15$			4 LEAD	
BA318	21．30	Ha11710	33.50	La4500	$\underline{4} 2.5$	STK3042	$\underline{21.50}$	UPC56iC	$\underline{2} .00$	UPC 1366 C	£1．50	2sc900	52.35	2S01276	$\underline{51.50}$			OMA	ce． 75
84402	50.75	Hal1711	20.50	LA6458	21.90	STK5211	28．75	UPC566H	59.60	UPC1367C	27.50	2 Sc 9230	21．35	2SG613	25．58				
basila	¢1．50	HA11713	${ }^{2} 5.00$	LA7800	91．s5	STK5521	5.50	UPC571	c1． 85	UPC 1368 H	${ }^{5175}$	${ }^{25 C 9300}$	${ }^{5} 9.3$	${ }^{25149}$	81.00				
BAS14	${ }_{91} 9.75$	HA11714	${ }_{8.75}$	478806	${ }^{9} \mathbf{9} .50$	STK5451	8.85	UPC573C	8.20	UPC1370C	${ }_{6} 1.05$	2 tc 44	${ }_{6} 59.35$	${ }^{2 S} 150$	84.9	隹隹es invitod for any	mese	As we ha	
84527	\％1．50	HA11716	25.25	LC7130	［2． 51	STK5730	6 E .75	UPC575C	E1． 09	UPC13784	E1．0．0	2Sctos1	¢0．05	2SK384	$\underline{E .7}$	post and	ding	then add 15	
BA532	¢1．50	HA11717	${ }_{56} \mathbf{2 5}$	LC7131	53.75	TA7050P	51． 10	UPC576H	¢1．75	UPC．13820	51.75	2SC1096	¢．${ }^{\text {che }}$	2SK49	cime			Spm，Mon－	Sats．
${ }^{84536}$	$\underline{3} 25$	Ha11718	54.75	LC7136	9.75	TA7051P	80.8	UPC57\％	53.78	UPC	82.50	2sc1114	83.59	2SK120	E．	（closed December	24in	nuary 2nd）．	
84612	c1．${ }^{\text {co }}$	HA1724	c18． 25	LC7137	$\underline{E} .75$	TA7054	81.7	UPC580	92.75	UPC1458	c． 90	2 Cc 1115	63.75						
${ }^{\text {BA1310 }}$	${ }^{51.75}$	HA11725	cc16．00	M5106P	9.20	TA7063	83.80	UPC585C	¢． 50	UP0277	E4．54	${ }^{25 C 1124}$		${ }^{\text {2SK135 }}$	cam	WACCESS ACCEPTED	max．	EPHONE OR	
BA1320	¢1．20	HA11726	E15．00	M5115P	\％3．50	TA7066	81.50	UPC5S9	¢0．$\%$	2SA103	5.00	2SC1 162 C	51.80	${ }^{35<22}$	E1．7\％				
BA1330 BA6304	${ }_{c}^{1} .75$	Hal1727 HA11736	\＄18．50	MS134P M 5135 p	$\underline{9.75}$	TA7070 ${ }^{\text {TAP }}$	\％1．40	UPC595C UPC596	c1．70	2SA350		${ }_{\text {2SCli }}$	E． 75	${ }^{3} \mathbf{3} 5 \times 85$	5.6				
Cx0642	88.50	HA11745	28.00	M5155	21．50	TA7073	98.25	UPC1001H	$\underline{2} .00$	254539	20.35	$2 \mathrm{SC1507}$	． 21.25	TDA1515	\＆4．3				
CX065B	9.50	HA11747	c9．50	M51513L	91.50	TA7074P	M1．95	UPC1009C	51.2	2SA562	$\underline{51.30}$	$2 \mathrm{SC1} 1308$	9.79	TDazoe	50.00				
CX0758	c． 21	HA11747ANT	¢2． 50	MS514AL	E1．75	TA7104P	E1．35	UPC1017G	${ }^{\text {c1．}}$（1）	2SA634	${ }^{20.68}$	2 Sc 1316	$\underline{8} .5$	tDazors	2．00				
Cx095C	ci．${ }^{\text {cos }}$	HA1749	84.50	M515158	$\underline{7} .50$	TA7108	c1． 50	UPC1008C	c1． 05	2Sa643	${ }^{\text {c．}}$ ．${ }^{\text {ch }}$	$2 \mathrm{SC1317}$	50．39	tidazoca	$\underline{\square} 2$	ND		1	
Cx1000	28.75	HA11750	23.00	M51516L	$\mathrm{c}_{2} .50$	TA7109	${ }^{27} 38$	UPC1020	${ }_{51}{ }^{5} .75$	2SA673	20.36	${ }_{2 S}^{2 S 1342}$	8.75	TDA2005	8.75				
Cx130	Q4．50	HA117588T	81.50	M51518i	8.75	TA71209	${ }^{10} 150$	UPC 1025 H	$\underline{8.30}$	2SA693A	${ }_{20.05}$	$2 \mathrm{SC1417}$	$\underline{90.30}$	TDA2020	\％1．	8：01－723 92	46	ISWE「	ne）
C×136	¢． 50	Ha117	54.50	M51521A．	91．75	TA7130P	E1．00	UPC1026C	¢1，${ }^{\text {co }}$	2SA76	\＄1．05	$2 \mathrm{SC14196}$	$\underline{51.75}$	TDACO	\ldots	IIEMS DESPATC	W W	V 48 HOLRS	

THE DOMESTIC VIDEORECORDER SERVICING BOOK

THE ENGINEERS BIBLE
UPDATED SECOND EDITION IS NOW OUT WITH NEW CHAPTER ON HI FI，DIGITAL SERVOS，LUMINANCE AND CHROMINANCE SIGNAL CIRCUITS，FAULT GUIDES AND CONNECTION DATA

A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS．THE COMPLETE REFERENCE TO VIDEORECORDER CIRCUITS
ORDER YOUR COPY NOW FOR ONLY £16．95 inc P\＆P FROM：

NEWARK VIDEO CENTRE

（0636 71475） OR DIRECT FROM： GROVE FARM，LONG LANE， BARNBY IN THE WILLOWS， NEWARK，NOTTS．NG24 2SG．
Cheques and PO＇s payable to D．BEECHING．

Name：
Address：
P．Code

International Correspondence Schools， Dept．EGS16， $312 / 314$ High St．，Sutton，Surrey SM1 1PR．Tel：01－643 9568 or 041－221 2926 （both 24 hours）．

EAST CORNWALL COMPONENTS

We wish you a happy and successful 1986

NEW 1985/86 CATALOGUE is now available - range of components greatly increased - over 136 pages fully illustrated Price $£ 1.00$ per copy (free upon request with orders over £15). Includes 50 p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be despatched within 7 days

EAST CORNWALL COMPONENTS 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 137 .

PRICE INCREASE

The price of Television will be $£ 1 \cdot 20$ from the next issue dated February. We regret the need to make this price adjustment to cover the increased costs we have to meet. We hope you've noticed the additional pages in recent issues: our aim is to offer readers better value.

COVER PHOTO

This months cover photo shows the latest Decca-Tatung CTV chassis, the 165. Our thanks to Tatung (UK) Ltd. for their help with this.

CORRECTIONS

Two editorial slips occurred in the i.c. field timebase article last month. First, under the heading Direct Yoke Drive, the time-constant calculated should have been given as 1.6 ms , not 1.2 ms . Secondly, under the heading Picture Shift, it's the field flyback current that's exponential, not the field scan current.

The wrong transistor type was given for Tr9 in the video fader unit (May 1985, page 376). A BFX88 can be used in this position. Our thanks to Mark Lamb whose letter will appear next month.

The Great Satellite TV Gamble

The French certainly have the capacity to surprise. Who'd have thought that anyone would go to the trouble of putting a DBS satellite into orbit only to hand over one of the four channels to a foreign newspaper magnate (Robert Maxwell) and another to a consortium headed by a French industrialist and an Italian commercial TV entrepreneur? But then broadcasting in France has always been a rather curious business. It has a reputation for being leaden and has remained so despite successive attempts by governments over the years to improve the services offered by reorganising the broadcasting arrangements. It seemed strange on the face of it that a Socialist government should early in its period of office announce its intention to introduce commercial TV - strange certainly to those of us who recall the almighty fuss that accompanied the Conservative government's establishment of commercial broadcasting in the UK in the early fifties. They certainly do things differently in France. It seems that the decision to hand the new, fifth French TV channel to the Seydoux/Berlusconi group was largely President Mitterrand's. No lengthy consultations, Royal Commissions or anything like that, just a sudden fiat. But then he seems to have felt that an urgent decision was necessary while he still had parliamentary backing, and that the alternative of handing most of the new channels over to CLT (the traditional Radio Luxembourg commercial broadcasting operation), now linked for TV purposes with Rupert Murdoch's News Corporation group, was not acceptable. Then of course there was the urgent need, when it comes to satellite channels rather than the new terrestrial network, to ensure that something would be beamed down by TDF-1 once it gets up there. In this day and age it's no great feat to shove a satellite into orbit: to fill all those hours of channel time with material able to attract an audience is another matter again.

As for Robert Maxwell and his "Maxwell channel" (his words), he certainly seems to have pulled off a major coup. His TDF-1 channel is likely to be receivable on a modest sized dish over a substantial swathe of Northern Europe. Those who subscribe to the conspiracy theory of history will note Maxwell's long interest in broadcasting and his manoeuvres in the satellite TV field - he already has the MirrorVision channel, via Intelsat VA F11. Those of us more inclined to accept the accident theory of history will note the trials and tribulations that have attended efforts to get satellite TV services started in Europe and feel that Robert Maxwell was in the happy position of being able to respond to a golden opportunity that came out of the blue - literally!
The interesting thing next will be what the Mirror group will be able to do with its new Maxwell channel once it comes into operation. The rent for the channel, reputed to be around $£ 5 \cdot 3 \mathrm{~m}$ a year, looks a snip but is still quite a lot of cash to have to find year after year. Then of course there will be the cost of providing the programme material. The idea is to finance the channel through advertising. But this brings us to a classic chicken and egg situation. Advertisers will be reluctant to advertise until the viewers are ready and waiting to see the programmes. Viewers on the other hand will be reluctant to buy/ rent the equipment required until they are assured of a worthwhile service. There are precedents here. In the USA for example early efforts to get u.h.f. TV services started mostly failed because manufacturers wouldn't produce sets with u.h.f. tuners when there were no customers, and advertisers wouldn't support programmes when there were no viewers. In the UK things went rather better after the start of the second service. Following a relatively short period when losses were made, the era of the "licence to print money" came into being.
Has Robert Maxwell stumbled upon another such "licence"? He will have to persuade viewers to acquire satellite TV receiving equipment for a start. This shouldn't be too much of a problem since the cost of the equipment is likely to fall substantially once the market opens up. Then there's the sheer size of the prospective audience/market - some 280 million people are expected to be within TDF-1's service area. This is a far greater audience than any previous TV channel has ever had, and in consequence advertisers may well be ready to fall over themselves to book advertising time. But then again those 280 m viewers will be spread over several countries and speak several languages. How many will be glued to Robert Maxwell's English language channel? That, one supposes, will depend to some extent on what he will be able to offer. In addition the wide bandwidths will make it possible to transmit multi-language sound.
For prospective UK viewers there are also the problems that if they want to receive UK DBS transmissions as well (if and when these start) a steerable dish will be required. In addition no transmission standard has so far been agreed for European satellite TV broadcasting. The French have a very great advantage here: by putting up the first European DBS satellite they can choose whatever standard they like without worrying too much about anyone else.
Rupert Murdoch, who shares satellite TV broadcasting ambitions with Robert Maxwell, has not been left out in the cold over all this. His joint venture with CTL is likely to guarantee him an interest in DBS TV before long. It's extraordinary that these newspaper tycoons have been able to get a major stake in the new TV systems at the outset.

Long-distance Television

Roger Bunney

October 1985 was a very active month for DX-TV reception. There were extensive and prolonged tropospheric openings and Sporadic- E propagation was fairly frequent. With lots to report, we'll go straight to the collated UK SpE reception log:

7/10/85 TVE (Spain) ch. E4.
8/10/85 CST (Czechoslovakia) R1; RAI (Italy) IA; SR (Sweden) E3; TVE E3; TVP (Poland) R1.
10/10/85 TVE E3; CST R1.
12/10/85 RAI IA.
14/10/85 ARD (W. Germany) E3, 4.
15/10/85 A long, extensive opening: TVP R1, 2; TSS (USSR) R1-4; RAI IA; JRT (Yugoslavia) E3; ORF (Austria) E2a, 4; +PTT (Switzerland) E2; CST R1; ARD E2; TVP R1, 2.
18/10/85 TSS R1; TVP R1.
20/10/85 RAI IA; TVE E2, 3.
22/10/85 + PTT E3; TVE E3; CST R1.
25/10/85 TVE E3; CST R1; TVP R1.
27/10/85 TSS R1; MTV (Hungary) R2; TVE E2-4; TVE-2 E2.
2/11/85 TVE E2; RAI IA.
3/11/85 NRK (Norway) E2.
Small auroral manifestations were observed on nine days in N. Scotland: both TSS and NRK were identified in Band I by Iain Menzies.

A relatively static high-pressure system was centred over the UK and W. Europe throughout much of October, giving considerable lift to tropospheric propagation in Bands I and III and at u.h.f. Although conditions improved here in central southern England, giving reception of TV signals from W. Germany, France, Scandinavia and the Benelux countries, they weren't dramatic. Enthusiasts in the east/NE fared much better, with reception from Scandinavia and as far as the Eastern bloc. For many the tropospheric lift extended throughout the whole month, from late September. In general there were two prolonged lifts, from the 11th to the 18th with peaks on the $13 / 14$ th and 18th, and a perhaps more intense lift from the 20th to the 30 th with peaks on the 24 th, 26th and 27 th.

The first period gave widespread reception in the UK of signals from W. Germany, France (TDF and Canal Plus), Ireland and the Benelux countries in Band III and at u.h.f., while Norwegian Band III signals were present in profusion in NE Scotland. Band III/u.h.f. signals from Spain were received in the west country - Reg Roper (Torpoint) noted the local programme from TV de Galicia ch. E37 with its distinctive test pattern. Roger Pates' (Nottingham) log included signals from E. Germany, Denmark and many W. German Band III/u.h.f. stations. Simon Hamer (Powys) received Swiss signals on chs. E6 and 7 on the 13 th, a very good catch.

The second period produced similar reception but with certain highlights. Roger Pates logged Gdansk ch. R10 and Wroclaw ch. R12 on the 24-27th along with a mass of Band III signals from Norway and Denmark and Band III/u.h.f. signals from Sweden. Iain Menzies received the Norwegian ch. E29 Viker relay (80W) on the 27th, using the "Gulen" identified test pattern - I suspect that this is
the first reception in the UK of NRK at u.h.f. Many other main NRK/SR/DFF transmitters were received by Iain. Danish signals on chs. E5, $6,7,8$ and 10 were well received throughout the UK - there was evidence of trop ducting on certain days.

There was a certain amount of ATV activity here in the south, but not much. A highlight of the month was the reception of high-quality stereo TV sound from ZDF, the W. German second chain, by Keith Chaplin and Tim Anderson. Keith was using a Luxor set and Tim a Finlux receiver.

In all a good month. My thanks to the following for sending in their reception reports: Reg Roper (Torpoint), Cyril Willis (nr. Cambridge), Tony Privett (Basingstoke), Tim Anderson (St. Leonards), Derek Juniper (Angus), Iain Menzies (Aberdeen), Bill Cotterill (Tipton), Roger Pates (Nottingham), Simon Hamer (Powys) and Keith Chaplin (Barrow-on-Soar, Leicestershire).

Following some quiet weeks solar activity is now on the increase, indicating the start of the new Solar Cycle. Hopefully this cycle will again see m.u.f.s reaching into the low v.h.f. spectrum.

Keep a look out for "Telecine", the new ch. E69 service from La Dole, Switzerland, which has been transmitting unscrambled programmes with the PM5544 test pattern filling the gaps. The intention is to introduce Discret-1 coding.

A list of channel allocations for the new French private stations has just arrived. Those listed as being available from the end of 1985 are Paris chs. E33 and E36 (provisional), Lillie ch. E47, Cherbourg ch. E35, Dijon chs. E46 and E51 and the Lens-Bethune-Douai-Arras region ch. E51. Le Havre ch. 4 is listed for early 1986 the only other prospective Band I allocation is SaintEtienne. Further details next month.

News Items

Poland: Starting with Katowice later this year the eight main regional TV studio centres are to begin producing their own programmes - at present the regional centres opt out of the network for half an hour daily.
Mozambique: The experimental TV service has proved successful with weekend programming; mid-week TV is to start shortly.
W. Germany: NDR-1 splits into three areas for regional news from 1920-1958 local time. These are Hamburg, Schleswig-Holstein and Niedersachsen. Variations in the NDR FUBK test pattern have been noted for regional identification: Lingen ch. E41 carries "LFHS-NDS" (Lietfunk Haupt-Stelle-Niedersachsen), Hamburg "LfHH" while other variations indicate the originating studio, e.g. Hanover. WDR-3 now provides a regional programme from 1945-2000 local time.
France: Winter has brought an increase in subscribers to Canal Plus. The TV licence has been increased to 541 Fr (colour) or 356 Fr (monochrome): in addition VCR owners are supposed to pay a 659 Fr fee to compensate broadcasters for loss of copyright.
High-band u.h.f. TV: In addition to the new ch. E69 Telecine service from La Dole the BDXC report other u.h.f. high-band stations. Soesterberg (Holland) with AFRTS output uses ch. A80 (above E70 at $867 \cdot 25 \mathrm{MHz}$ vision). TMC (Monte Carlo) is transmitted in Italy on even higher channels - from Monte Giarolo ch. E72 ($879.25 \mathrm{MHz}, \quad 50 \mathrm{~kW}$) and relays using chs. E74 $(895 \cdot 25 \mathrm{MHz})$, E79 $(935 \cdot 25 \mathrm{MHz})$, E80 $(943 \cdot 25 \mathrm{MHz})$ and E81 ($951 \cdot 25 \mathrm{MHz}$).

Satellite TV: The Europa transnational service via transponder 3 on Eutelsat I-F1 started on October 5th with predominantly English language programming.

NASA recently launched two multipurpose satellites to provide Australia with communications and TV services. The latter will consist of low-power transmissions in the $12 \cdot 5-12.7 \mathrm{GHz}$ band for reception on 1.5 m dishes, using BMAC coding - the service is called the "Homestead and Community Broadcasting Satellite Service".

North East Satellite Systems of Cropton, Pickering, N. Yorkshire YO18 8HL and "Connexions Satellite Systems" of Barnet, North London are together offering a complete TVRO system covering the $10 \cdot 9-11 \cdot 7 \mathrm{GHz}$ band for $£ 995$ inclusive of VAT, with 1.25 m dish. For $£ 1,790$ you get a full polar mount (motor drive) and dish controller with other electronics. Further proposed developments include a polorotor (for remote, indoor adjustment of polarisation), a stereo sound demodulator and an infrared remote controlled receiver. Much of the equipment is being produced in Taiwan. Trade terms are available.
In brief: Syrian TV uses the PM5534 test pattern with the identification "ORSOS-DAMAS" and Arabic script. The SBS-TV network (Australia) will close down all its ch. 0 transmitters on January 5th.

Publications

Edition 30 of the "List of European Television Stations", published by the EBU, Technical Centre, Avenue Albert Lancaster 32, B-1180 Bruxelles, Belgium will be available shortly. This very thick volume, listing the situation as at September 1st 1985, together with the six bimonthly updating supplements that come with it through the following year, is an essential guide to everything from relays of a few milliwatts to megawatt powerhouses. The area covered includes N. Africa and the eastern Mediterranean countries. Cost is 750 Belgian francs, payable to the European Broadcasting Union via foreign draft from your nearest main or foreign branch bank.
"The United Kingdom Table of Frequency Allocations" covers both broadcast and non-broadcast transmissions, various band subdivisions and tables of both international and UK allocations. This useful guide, with some 310 pages, is published by the Department of Trade and Industry and is available from HMSO at $£ 12$ (ISBN 0115138196).

Subscriptions for the British Amateur Television Club fall due on January 1st each year. Membership costs only $£ 5$ per annum (UK) and is highly recommended if you have an interest in ATV or video/transmitting techniques. There's an excellent magazine (CQ-TV) that's sent free and is available only to members. Write to BATC Membership, Grenehurst, Pinewood Road, High Wycombe, Bucks HP12 4DD for further details/application form with a stamped, self-addressed foolscap envelope.

Fringe Electronics Ltd., Fringe House, 50 Mansfield Road, Clipstone, Mansfield, Notts NG21 9EQ have just published a "Pocket Application Guide" that covers various diplexing, splitting and filtering arrangements for u.h.f./v.h.f. applications, based on their own range of mast/indoor units. Copies are available to aerial riggers on receipt of a stamped, self-addressed foolscap envelope. Several diplexing units are of particular interest, e.g. for diplexing group K with C / D or group A with E . Fringe is one of the few manufacturers that still offer Band I and Band III masthead amplifiers!

Publication of the new edition of my book "Long

Distance Television Reception (TV-DX) for the Enthusiast" (Babani Publishing) has been put forward to Spring 1986 - copies were originally expected to be available in Autumn 1985.

The Teutoburger Collapse

The collapse of the Westdeutscher Rundfunk (WDR) Teutoburger Wald transmitting mast on January 15th, 1985 and the steps taken to restore services were recorded in this column at the time. The mast was 300 m high and was erected in 1970. An investigation of the causes of the collapse has recently been completed by the WDR and reported in the "EBU Review - Technical". We are grateful to these organisations for permission to report the following conclusions.

Temperatures had been as low as $-20^{\circ} \mathrm{C}$ during the week before the collapse and hadn't risen above $-15^{\circ} \mathrm{C}$. The result was a high degree of snow/ice loading, though this was not the main cause of the collapse. Instead, blame is placed on "wind-stimulated vibrations and fatigue cracks in welded seams at highly stressed parts of the steel structure". During the day before the collapse the top of the mast had been subjected to a sustained warm air flow, produced by a temperature inversion. This affected the top section only. A meteorological phenomenon referred to as a "hydraulic jump" then occurred, the result of high energy air turbulance. This set up self-resonant mechanical vibrations within the mast structure. After some 15 hours of sustained stress the top stay anchoring point, which was already fatigue cracked, fractured. The mast folded at this point and then cracked at 160 m producing collapse of the $70-160 \mathrm{~m}$ section. This cut the stay wires on the rest of the lower structure leading to complete collapse

Fig. 1.

Fig. 5.

Fig. 9.

Fig. 13.

Fig. 2.

Fig. 6.

Fig. 10.

Fig. 14.

Fig. 4.

Fig. 8.

Fig. 12.

Fig. 16.

- interesting that apart from the upper fibre-glass aerial section the mast fell within the area bounded by the stay anchoring blocks.

Gulf Test Patterns etc.

Fred Pilkington (Newmarket) has lent us a VHS tape. recorded in the Gulf area, showing local test patterns and the opening sequences of the various TV stations. Some of these are shown in Figs. 1-16.
The Kuwait Television (KTS) first programme PM5544 test pattern (Fig. 1) features a flashing "CH 5" identification, with Western background music. Station opening is followed by the Kuwaiti anthem and a series of shots including the national emblem (Fig. 2), a live eagle, the national flag, shots of army equipment, a march past, the royal family thence to the Koran. The Kuwaiti-2 service also uses the PM5544 pattern with its own identification.

Saudi Arabian Television has a distinctive pattern (Fig. 3). This is followed by the call to prayer caption (Fig. 4) and a gentleman seated with the Koran (Fig. 5) interesting to note the English subtitle.
The United Arab Emirates Television Service (UAE) from Abu Dhabi again uses the PM5544 pattern (Fig. 6) which is followed by a rather dramatic slide (Fig. 7). The

Fig. 3.

Fig. 7.

Fig. 11.

Fig. 15.

test pattern is accompanied by Western background music.

Bahrain Television has both Arabic and English channels, the latter on ch. E55 (Fig. 8). This is followed by an announcer (Fig. 9) advising "it's time for the Holy Koran" quickly followed by Arabic (Fig. 10) and English Koran captions thence to the actual reading (Fig. 11). There's a slow zoom to a close-up, the lights dim and English captions then appear (Fig. 12).
The shots so far are unlikely to be seen in the UK (Bahrain also operates on ch. E4 but this is not featured on the tape). Dubai, also in the UAE, is received fairly regularly however on ch. E2 via SpE during the summer months. Its distinctive test pattern is shown in Fig. 13. An outline tower follows (Fig. 14), then a caption with several towers and the call to prayer script (Fig. 15). The Koran reading then takes place, accompanied by a series of film inserts of views, mountains, flowers and streams with Arabic script subtitling. The sequence ends with script on delicately bordered captions (Fig. 16).

Our thanks to Fred. The shots were taken at $1 / 15$ th second, f4 using 100ASA standard colour film and a Zorky Russian camera at 5 ft from the 22 in . TV set's screen.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868
 Telex 99305

Δ

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available. Demonstration by appointment.

> L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.
> Telephone: Bridgwater (0278) 421719

UK ‘Universal’ TRIPLER from 55.00

 inc post \& VAT

1. Input 200 mm . 2. Output 780 mm . 3. Focus 390 mm . 4. Pulse 390 mm . 5. Earth 390 mm . Instruction sheet available on request beware imitations
1×10 ($£ 5.00$ each) $£ 50.00$ 1×5 ($£ 5.50$ each) $£ 27.50$ $\mathbf{1 \times 3} \mathbf{(£ 5 . 7 5}$ each) $\mathbf{£ 1 7 . 2 5}$ 1×2 (£5.95 each) $£ 11.90$

NB: Includes Post \& VAT
Strictly cash with order Goods despatched by return. Access Barclaycard accepted

THRFE INTO ONE WIIL GO- WITH THE CROIECH 3132

1 SCOPE:
DC -20 MHz Bandwidth 2 mV /div Sensitvity 40ns - 0.2s/div Sweep 14 Trigger Functions Including active TV trigger on line \& frame.
3 Triple Output DC Source
+5 V (1 A); - ve grounded $\pm 12 \mathrm{~V}(200 \mathrm{~mA})$ Common Floating

2 Active Component Comparator
(for checking Transistors, diodes and I.C.'s etc)

Test Voltage: $8.6 \mathrm{Vrms}(28 \mathrm{~mA})$

All for the price of a scope at £295*

*(Excluding Delivery and VAD) Correct at time of going to press

Crotech onstruments Limited

2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ Telephone: (0480) 301818

Tuning Troubles
 - an historical survey

Jeff Herbert, G4JJH

One of the first things I learnt when I started TV servicing as an apprentice thirteen years ago was how to deal with flashing or intermittent turret tuners with poor switch contacts. This was in the days of 405 -line monochrome TV sets of course. Numerous sets would come in with the complaint "it cuts off, then comes back on when the channel switch is tapped". Depending on the model, cleaning the contacts was either quick and simple or time consuming and extremely difficult.
Many tuners consisted of a rotating shaft that held tuning biscuits with round contacts on one side and coils and capacitors on the other. This type could usually be easily removed and the contacts cleaned with RS switch cleaner and a cloth. The fixed contacts in the unit itself were then wiped and their tension checked. A smear of silicone grease and the job was done. Care had to be taken to ensure that the biscuits were refitted in the correct order otherwise they wouldn't coincide with the knob numbers. After this treatment good contact would last for probably two years or so before the exercise had to be repeated. Poor tuner contacts were so commonplace that customers would often put up with the trouble and were quite happy to give the channel switch a good thump when the picture cut off.

Dual-standard Operation

The advent of 625 -line operation brought dual-standard sets fitted with large slider switches that were often almost the length of the chassis or panel. These were necessary to carry out switching in the i.f. strip and the line timebase. They caused all manner of faults from no sound, low sound, no picture, ghosting picture and weak contrast to loss of line lock. It was amazing how many troubles disappeared when the system switch was given a tap or push. Cleaning these was usually a job for contact cleaning aerosols, and many cans were expelled in order to get to all the many contacts. This was often only a temporary cure, since if the plating had worn off it would not be long before poor contacts were back. Due to the expense and difficulty in replacing these switches many were permanently wired in the 625 -line position towards the end of the $405 / 625$ change over era.

Rotary UHF Tuners

With the change to u.h.f. tuners switches went, replaced by a variable capacitor. I recall a colleague saying "well, that's the end of all the switch contact problems". He was right in a way but adoption of the variable capacitor brought along a new problem. Not switch contacts, since it didn't have any, but the earthing fingers that earthed the shaft of the moving vanes. Both the shaft and the fingers would tarnish. To remove, clean and retension the fingers was a job calling for expertise. If the moving vanes were bent during removal the result would be at best low gain or at worst no signals at all. Many a
unit must have been ruined by unskilled hands. These early rotary u.h.f. tuners were difficult for customers to use, being without the click stops they were used to with v.h.f. tuners. Older people with shaky hands in particular couldn't master the fine tuning - and it had to be fime to get the sound and picture tuned correctly.
The pushbutton selector was the next step forward, but most mechanisms had poor reset due to the mechanics. A twist of the button was often required to restore colour and sound after changing station and the earthing fingers were still a problem.

Varicap Tuning

I thought that the advent of the varicap tuner would bring an end to the troubles described above. After all there were no switch contacts and no moving variable capacitor. It soon became obvious however that tuning problems were not at an end. The tuners themselves are pretty reliable - only a few failures in comparison with earlier mechanical types. The stumbling block with this arrangement is the tuner control unit. The varicap tuner requires a d.c. tuning supply to bias the diodes, between approximately $1 \cdot 5-33 \mathrm{~V}$ to tune over the band. The usual arrangement is to have a group of preset potentiometers with switches to connect the slider of the selected potentiometer to the tuner. Back to the old switch contact problem again. Tarnish build up and plating that flakes introduces resistance, with the result of drift and flashing of the picture. Unlike the early days, the increasing use of plastic mouldings makes it impossible to remove the contacts for cleaning. Aerosol contact cleaner can help but is only a temporary cure. For a lasting repair the only solution is to replace the channel selector unit complete. These units are often expensive, but the more common makes are available from HRS, SEME, etc. This type of unit is still used on basic models. We find that on most sets there are signs of contact problems after about twothree years. The tuning voltage stabiliser device, generally a TAA550 or ZTK33, also commonly causes tuning drift: a check on the tuning voltage supply should show whether or not this is the cause of the trouble though leakage in the tuner can also affect the tuning voltage.

Touch-button channel selection has been around for some years. This gets over the switch contact problems and, apart from dirty touch buttons, leaves only the presets themselves to cause trouble. These can suffer from noisy sliders and loose rivets.

Current Sets

The varicap tuner is still current and has a good reliability record. Control voltage switching is now often performed by various i.c.s. Remote control implies electronic channel selection and the only switches are for initial tuning and storing in a memory. Due to the infrequent use of these buttons they should, and to date have, given no trouble. The source of problems now lies not with the set but with the buttons on the remote control unit!
With basic, i.e. non-remote controlled, sets noisy switches are still very much a problem and you could say that manufacturers have not learnt their lessons. But I suppose the cost of the unit is the foremost consideration and the reason why we still don't see better designed units. I wonder if tuning troubles will still be around thirteen years hence?

Decca-Tatung Chassis Up-date

The Decca 120 series chassis was the very latest thing back in 1981 when we described its design in these pages. Time and technology haven't stood still however (I sometimes wonder which is the faster!) and the Tatung design laboratory at Bradford has not been idle in the intervening years. The present articles bring the story up to date by describing the 140,150 and 160 series chassis all of which are in current production. It's also by way of being a swan-song for the Bradford laboratory since Tatung's design department has now been moved to the Telford manufacturing complex.

Design Requirements

The design principles mentioned in the previous articles apply today as they did four years ago. It's still necessary to reduce manufacturing costs while maintaining or bettering the product's performance and reliability. With the 140 series we wanted to design a version that was a true single-panel chassis, i.e. with the customer controls also on the chassis. To help the stylists we wanted to make provision for alternative plug-in control units as well as having remote and non-remote control versions. The usual export requirements had to be catered for, for example tuning over the v.h.f. as well as the u.h.f. bands, and there would be a need for mains-isolated versions as well as live chassis. A version (the 150 chassis) to drive 110° tubes was also envisaged from the start.
The number of permutations was thus considerable. These objectives were all achieved however and the full range of versions is or has been part of the production programme. If you deal with these sets you may be interested in the chart (see Table 1) which lists the many versions of the $140 / 145$ series chassis, i.e. different tubes, vertically or horizontally mounted chassis, and integral/ separate/monitor-style controls. Mains-isolated versions with an extra interface panel for audio and video inputs/ outputs were introduced during 1985. These chassis have the suffix X . In addition all current monitor-style models have a remote-on facility (i.e. standby): these have the suffix S. Only UK versions are shown in the chart: including export models there have to date been 44 versions of the chassis.

Construction

From the photograph you can see that the positions of some of the circuit sections have been changed around when compared to the arrangement used in the 120 series. The switch-mode power supply is at the top right, above the line timebase, and the i.f. section is at the far left (looking from the rear). One reason for this was to keep all the high-power stuff well away from the small-signal circuits.
The top section varies depending on whether the chassis has mechanical push-button channel change (types 140144) or voltage-synthesis tuning with remote control (types 145-149). The rest of the PCB is the same for all models except for a few component value changes to cope with different screen sizes. On models where the control
panel is mounted on the board it's soldered edgewise at the front. The panel can be mounted vertically at the side of the c.r.t. or horizontally under the tube. The latest monitor-style models also have a moulding on the front of the chassis to hold the mains switch, the programme number digital display and the infra-red preamplifier in its screening can.

Main Changes

Fig. 1 shows the 140 series chassis in block diagram form. The two main areas of change are the timebases and the colour decoder. The tuning and remote control systems are also new - we'll come to these later.
In the 120 series chassis a TDA1170 field timebase i.c. was used, with a TDA2576A sync/line generator i.c. (sync processor). The sync processor in the 140 series chassis is the TDA2578A, its companion field output device being the TDA3651. This combination produced some cost saving and also gave us some extra features. The partitioning of the circuitry within these i.c.s is such that most of the field timebase functions are in the TDA2578A, the TDA3651 acting as a power output stage and flyback generator. The main feedback from the output goes right back to the sawtooth generator in the TDA2578A. Great care had to be taken with the board layout to avoid pickup problems.

It's not all that clear from the 140 circuit diagram how this part of the set works. Fig. 2 shows the principle in simplified form. A sawtooth waveform, synchronised to the video input to the i.c., is generated at pin 3 of the TDA2578A. A voltage sample of the scan current is applied to pin 2. These signals are mixed and then applied to the power output stage via the driver stage in the TDA2578A. R303/4 provide d.c. feedback, the linearity control being connected to their junction. The height control sets the amount of sawtooth sample fed back. There's some degree of interaction between the field frequency and height controls: to minimise this the setting up method recommended in the manual (hands up those who read service manuals!) should be followed if the frequency control needs to be tweaked, e.g. after changing the i.c.

Some of the improvements provided by the

View of the 145 series chassis, from the front.

Fig. 1: Simplified block diagram of the 140 series chassis. A TDA8190 intercarrier sound/audio output chip is used in versions of the chassis suffixed X. Chassis types 140-144 have mechanical switches and tuning potentiometers in place of the tuning voltage selector and remote control decoder section.

Fig. 2: Arrangement of the field timebase.

TDA $2578 \mathrm{~A} / 3651$ combination may not be immediately apparent. They include: (1) Provision of a sound muting signal when the set is tuned to noise or when the line scan is not in sync. (2) More sophisticated circuitry for controlling the time-constant of the line oscillator control loop under various signal input conditions (strong or weak signals, VCR, channel change, etc.). (3) Better control of the line drive output mark-space ratio under start-up and fault conditions (e.g. if the flyback pulse disappears). This gives better line output transistor protection. (4) Thermal
and short-circuit protection in the field output stage. (5) Video blanking if the scan coils are removed.

In the 150 chassis a TDA3654 with a larger heatsink is used to provide the higher scan current required for the 110° Toshiba c.r.t.

The other major change in the timebase area is the use of a diode-split line output transformer. We were one of the last manufacturers to retain the traditional transformer/tripler combination and were unhappy to go over to the use of a diode-split transformer until we were fully

Fig. 3: The voltage-synthesis tuning system.

Fig. 4: Remote control command processing.
confident of its performance and reliability.
Removal of the transformer, tripler and focus module has helped us to reduce the size of the chassis and simplify its assembly.

The PAL decoder i.c. chosen for use in the 140 chassis is the TDA3561A (a number that's easy to confuse with the field output i.c.). This was adopted in preference to the $\mu \mathrm{PC} 1365 \mathrm{C}$ used in the 120 chassis partly because of supply difficulties with the latter and partly due to the TDA3561A's compatibility with the new teletext decoder

Fig. 5: Remote control pulse code - typical word.
chip set. There are also a few less peripheral components.
The improvements we found with the new decoder chip were mainly in the way in which the external circuitry could be designed. For example, the sandcastle pulse is separated into its three components (burst gate and blacklevel clamp pulse; line flyback blanking pulse; field flyback blanking) within the TDA3561A, so that no extra external network is needed. Then the use of an 8.8 MHz subcarrier crystal means that there's no need for a 90° phase adjustment. Also the chroma delay line driver transistor is within the i.c. - the $\mu \mathrm{PC} 1365 \mathrm{C}$ required an extra transistor for this purpose.

Tuning Arrangements

Chassis types 140-144 have push-button mechanical channel selection with multi-turn potentiometers for tuning. Whilst many of these sets are still around they have now been superseded by the 160 chassis which we'll discuss next month.

Chassis types 145-149 and all the 150 series have

Table 1: Chassis variations.

140 series: mechanical channel change			
Tube (in.)	Vertical chassis, integral	Horizontal chassis	
	Integral controls	Separate controls	
	-	-	140
20	141	141 AH	143
22	142	142 AH	144

145 series: remote control with voltage synthesis tuning				
Tube (in.)	Vertical chassis, integral controls	Horizontal chassis		
		Separate controls	Integral controls	Monitor controls
14/16	-	145(A)*	-	145AB
20	146(A)*	148(A)*	146AH	146AB
22	147(A)*	149(A)*	147AH	147AB

* When the 150 series chassis was introduced the 145 board layout was modified slightly to produce a common basic panel - hence the (A).
voltage-synthesis tuning with remote control of channel selection and all other customer control functions. The remote control system is known as System 40: the hand units are numbered RC40, RC41 etc. depending on style and so on. The system also decodes the teletext control codes received from the hand unit.

The i.c.s in this section are of SGS manufacture. They are used by several setmakers so some details of the system's operation may be of interest.

Fig. 3 shows the basic elements of the tuning system. It's been drawn in a similar way to the full System 40 circuit diagram to make it easier to relate the two. To illustrate the principle of operation we'll go through the sequence for tuning in and storing a channel.

Pressing "tune + " or "tune -" (or "P+", " $\mathrm{P}-"$ ") starts the tuning voltage obtained from pin 19 of the M293 tuning voltage synthesiser i.c. moving up or down. The actual output at pin 19 is an increasing (or decreasing) number of pulses up to 256 per cycle: after this the number of pulses remains the same but they become wider. These pulses are integrated (digital-analogue conversion), the emitter-follower QR10 supplying the tuner with the resultant tuning voltage. While either tune button is pressed the a.f.c. is inhibited (via RR20): when the button is released the time-constant network CR03/ R114 delays reinstatement of the a.f.c. for a few seconds to make fine tuning easier. The search starts slowly and gradually quickens while either button is pressed.

When a signal has been tuned in to your satisfaction you press the store button. On release of this button the memory supply (pin 8) is switched on for a few milliseconds and the tuning voltage is recorded, as a pulse code, in the non-volatile memory for that particular programme number. If you want to transfer it to another programme number (there are sixteen to choose from) press the store button again and without letting go select the required programme number. Then release the store button.

The M293 i.c. decodes the programme number, for its own internal reference, from the four-digit code on lines A, B, C, D. This code is generated by the M104 remotecontrol decoder i.c. from the information it receives either from the " $\mathrm{P}+$ " or " $\mathrm{P}-$ " buttons or over the remote control link. The local buttons index just one programme at a time but the remote control hand unit has direct programme access. Lines A, B, C, D are also decoded by an LM1017 i.c. to drive a seven-segment, $11 / 2$-digit display for programme number indication.

Remote Control

Fig. 4 shows the main bits around the M104 i.c. which decodes the remote control signals. The coded infra-red signal is received, amplified and limited in the remote
control receiver which is housed in its own screening can and feeds an output of about 2 V peak-to-peak to pin 2 of the M104. Notice the resistor at the receiver's output and at pin 2 of the M104: these resistors are included and split in this way to give some protection to the i.c.s against large transients, e.g. due to tube flashovers. Most of the pins of these MOS i.c.s have resistors as close as possible to them. The M104 checks the signal in several ways to make sure it's a valid command and not noise or some interfering signal. Only when all the checks are correct does it decode the pulses and issue the appropriate command output.

Channel selection commands produce corresponding codes on lines A, B, C and D as mentioned above. Other control commands, i.e. brightness etc., result in a variation of the 7.8 kHz squarewave present at the appropriate analogue output - the brightness control circuit is shown in Fig. 4 and is typical of the others. The squarewave output's duty cycle can be varied in 63 steps: the output is integrated by RR37/C526 and matrixed with the local control and a preset potentiometer before being applied to the PAL decoder i.c.

The on/off command can be used either to operate the solenoid on the mains switch (for remote off only models) or the standby power supply (for remote on/off models). The programme strobe output at pin 27 is used to mute the sound during channel change. The signals appearing at pins $4,11,12$ and 13 are used for the teletext decoder.

Finally this month a brief note on the way in which the commands are sent over the infra-red link. The system used is pulse-code modulation. Each binary command word consists of twelve bits, the state of each bit depending on the time interval between pulses (see Fig. 5). Having different codes for odd and even bits helps to protect against unwanted or interfering signals.

The example of a complete word shows that before an actual command is transmitted a preliminary pulse is sent to warn the receiving end that something is about to happen. This is followed by a start pulse then four address bits are sent. Up to sixteen different addresses are possible but in the System 40 this code is permanently wired as 0000 . The six command bits are followed by a parity bit to help the checking procedure further and the word finishes with a stop pulse.

In order to synchronise the transmitter and receiver, the receiver measures the time interval between the start pulse and the first data pulse and uses this as a reference for time T .

While a button is pressed the relevant twelve-bit word is repeatedly transmitted by the hand unit at intervals of 112 ms . About 18 ms after the button has been released a code representing "end of transmission" is sent and the transmitter returns to the standby mode.

TV Fault Finding

Tube Reactivation

The complaint with a Panasonic TC2207 was intermittent red, but the picture displayed revealed a very tired Mullard A56-540X tube - after all of four years' use. After "cleaning and balancing" (a very mild reactivation) on the B and K Dynascan 467 analyser excellent emission was restored to all the guns and the picture was perfect -, until the red disappeared. Fortunately resoldering the red output transistor's collector connection was all that was required.
I originally bought the 467 instrument after reading Eugene Trundle's review of it in this magazine (April 1984). Despite the high cost (over $£ 400$) it has proved to be an excellent investment, even for my modest one-man business. Incidentally I find it useful to code the tubes I've processed by marking the neck with a permanent felt pen. "984" for example means complete reactivation in September 1984, "RGCB1085" means red and green guns cleaned and balanced in October 1985, etc.
C.A.

Binatone 01/9771 Visioncorder

This combined radio/cassette/TV had no sound and on investigation a $10 \Omega, 1 \mathrm{~W}$ resistor (RB40) embedded inside the case was found to have been overheating. It feeds the UPC2002 audio output i.c., which had gone short-circuit. Not having this type of i.c. in stock I fitted a TDA2003, which is listed as an equivalent, replaced the scorched 10Ω resistor and switched on. The sound had been restored and after a while on test the unit was returned to the customer.

A week later it was back again with the symptom of intermittent low volume and distortion. To cut a long story short, an eventual scope check across the speaker revealed that a high-frequency oscillation (nearly 4 MHz !) was present during the low volume periods while the audio chip then overheated. Any attempt to increase the level of negative feedback via RB112/CB113 made matters worse. By now you clever readers will have realised that the input/output phase relationship of the UPC2002 and the TDA 2003 is different, in fact 180° different. The result was that my "equivalent" i.c. effectively converted negative to positive feedback and produced an intermittent v.h.f. oscillator. Fitting the correct i.c. restored normal service - and taught me a lesson!
C.A.

ITT VC300 Chassis

Some sets play the meanest of tricks. This ageing monochrome portable had severe top field foldover, caused by T12 (BC140) in the field output stage being leaky. A replacement BC140 was fitted and the result was - complete field collapse! After fruitless checks through the field timebase I turned the field hold control R76 to minimum resistance and obtained a full though unlocked picture. In the time taken to replace one transistor the field hold control had gone open-circuit at one end of its track. Must have been a frame up
C.A.

Ferguson TX90 Chassis

This dead set had blown the mains transformer secondary fuse FS102. Temporarily substituting my 20 mm fuse shell

Reports from Chris Avis, Brian Renforth, Philip Blundell, Eng. Tech., Keith Hamer, Garry Smith, Hugh MacMullen, Hugh Allison and Steve Leatherbarrow

wired to a 2 A cutout produced a humming, chirruping noise from the set before the cutout tripped. My Diagnostically Immaculate Mind instantly deduced that there was a heavy current somewhere and incorrectly directed my attention to the 12 V regulator chip IC 105 . The line output transistor TR112 was then checked in situ for shorts but appeared to be in order. Other semiconductor devices in the power supply/line timebase were similarly checked. After much wasted time TR112 (T9064V) was removed. and rechecked. This revealed a $2 \mathrm{k} \Omega$ leak from the base to the collector. Moral: always remove before checking for shorts - in case of a leak.
C.A.

Service Tips

A noisy control is sometimes difficult or impossible to reach with the applicator tube supplied with cleaning fluid aerosols. A spare tube with about 40 mm of 2 mm PVC sleeving pushed halfway on one end makes a useful extension which can be push-fitted on to an existing aerosol tube to reach otherwise inaccessible points.

It's difficult to find a suitable test point at which to measure the l.t. rail voltage on some obsćure monochrome portables. I find that the tube heater pins $3 / 4$ provide an easily located and reliable monitoring point (provided the tube has an 11V heater of course!). Since one pin is connected to chassis it takes a maximum of only two attempts to get a reading.
C.A.

ITT CVC1202 Chassis

One of these sets had an odd fault on the CMC301 remote control module. When the set had been on for about half an hour the on-screen channel display stopped working: after a further half an hour there was no remote control operation. The cause of the trouble was traced to reduced output (15V) from the $\mu \mathrm{A} 781818 \mathrm{~V}$ regulator chip (IC1401).
P.B.

ITT 80-90 Chassis

The ticket said dead but the set did have some life in it. The h.t. was very low (60 V) and there was no sound or picture. The h.t. voltage remained the same with a dummy load connected instead of the line output stage, so battle with the power supply commenced. The known suspect components - R632 ($820 \mathrm{k} \Omega$), R630 ($1 \cdot 5 \mathrm{M} \Omega$), R628 (thermistor) and D611 (1N4002) - all checked o.k. so the pulse-width modulator transistors T613/4 were replaced - to no avail. There was a working set with the same chassis in the workshop at the time, so the collectors of the chopper transistors in the two sets were disconnected and the d.c. voltages compared. The voltage at the collector of T616 was found to be low in the defective set - it's part of the trip circuit. R651 ($100 \mathrm{k} \Omega$) had gone open-circuit.
P.B.

Rank T114B Power Panel

The set came in with the complaint of fuse blowing after various periods of time. Having eliminated the main chassis we got to work on the T114B power supply panel. A 60 W bulb was connected as a dummy load and the
mains input was applied via a variac. For the first few days the power supply would work quite happily for an hour or so with a reduced output of 115 V , after which there would be violent fuse blowing (both fuses). Subsequently the fault became more destructive, killing BU326 chopper transistors. After several days just about every component in the power supply had been removed, checked, refitted or replaced - we all know how naughty solid-state components can be under operating conditions. We found it difficult to check the very low voltages around the switching thyristor TTHY1. To save fuses the over-voltage crowbar thyristor 7THY2 was removed. We then found that the BU326 chopper transistor just acted as a rectifier and d.c. resistance, i.e. it wasn't being switch on and off (at about 25 kHz) as it should have been. The set would work quite happily with an input of 110 V , but the e.h.t. regulation was poor. The panel was next examined in microscopic detail (two pairs of specs). Yes, there it was, a tiny hairline crack in the print between the gate of TTHY1 and the set-current limit potentiometer - it was invisible to the naked eye. The end of a long, frustrating search.
H. MacM.

Philips K30/K35 Chassis

This fault was rather naughty: it appeared only when I wasn't looking or the set was in the customer's lounge. Every now and again the luminance disappeared, leaving only weak chrominance. We eventually found that when. the fault was present the field flyback blanking transistor's collector voltage was rather high. Replacing this transistor (T1535 - BC558) cured the fault for good - we assume that the transistor was intermittently shorting internally.
H.MacM.

Rank A823 Chassis

This early 22 in . colour set had bowed vertical red and green lines, which couldn't be straightened by adjusting the R/G field tilt control, at the top and bottom of the raster. It turned out that $7 \mathrm{C} 4(400 \mu \mathrm{~F})$ was open-circuit, a replacement restoring satisfactory convergence after readjustment.
B.R.

Dwek Classic TV130

Two of these sets were reported to have a line sync fault and on investigation we found that the picture jittered horizontally. The obvious suspect was the TBA950 sync separator/line generator chip (IC400) but replacing this made no difference. In both cases the culprit eventually turned out to be C403 $(0 \cdot 1 \mu \mathrm{~F})$ which is connected from pin 8 of IC400 to chassis.
K.H.-G.S.

Sinclair Microvision MTV1A

In a moment of weakness I bought one of these sets for a tenner at a car boot sale. The seller demonstrated that it would run on an external supply by plugging it into his car's cigar lighter socket: it then produced a grotty picture with severe sound-on-vision. He said it didn't have the internal battery option.

When I opened it up I found that it had four rechargeable pencells in it, but the interlocking pins that interconnect the boards were misaligned, with the vital battery pin bent. Straightening the pins and reassembly cured the sound-on-vision and improved the picture - I
presume the battery acts as the main smoothing capacitor. It then took five short hours of sheer frustration to coax the chassis back into the case. Incidentally, never ever operate the exposed chassis in the the palm of your hand: the Walton-Cockroft e.h.t. multiplier is on the bottom board and packs a punch - it caught me three times. Allison 0, Sinclair 3.
H.A.

Fidelity CTV14

This colour portable was tripping. Disconnecting the line output stage stopped the tripping but replacing the secondary supply rectifiers, the output transistor and the transformer failed to cure the fault. The culprit was the focus control.
S.L.

Ferguson TX10 Chassis

A common problem with these sets is that discharges in the focus control unit cause tripping or intermittent tripping. After replacing this you may find that with remote control (later versions) only even channels are selectable, e.g. press channel 7 and channel 8 appears. The SAA5012 is always the culprit. After replacing the above items in one of these sets the customer complained of intermittent mumbling and crackling on sound. Replacing the sound i.c. cured this.

Incidentally, if a new focus unit is not to hand and the discharge is fairly minor, removing one of the mounting screws and positioning so that the unit is clear will suffice until a new one can be obtained and fitted.

Whilst on these sets, note that the connections to the thermistor in the degaussing circuit tend to deteriorate, giving impurity and/or fuse blowing.
S.L.

Philips TX Chassis

This chassis has few real vices and is thus a particular favourite. A fault that could easily set you off on a wild goose chase however is no line hold. A check on the l.t. rail voltage will usually show that this is high, due to a leaky or short-circuit regulator transistor (TS110, BD434). A glance at the tube heater tells all of course.
S.L.

Philips G11 Chassis

If the Philips G11 on your bench has slowly decreasing width (as much as five inches on either side) which corrects itself if you even think of touching the set you'll not be surprised to find a dry-joint. On one occasion recently the dry-joint was at the line driver transformer's connections.
S.L.

Ferguson TX9 Chassis

Dead sets always form a large proportion of an engineer's workload. A TX9 we had recently became a bit of a trial however - the fault was intermittent. After carrying out various tests in the power supply nothing wrong could be found - because the set had decided to work . . . It went off again two days later. The board was removed and various dry-joints under plugs were dealt with. Result: faultless behaviour. Until, that is, it was asked to work for the customer. After several days it stayed off long enough for us to prove that the on/off switch was faulty. It was of the white Lorlin variety. On reflection these have caused many a dead set with various different chassis - the Rank T20 and GEC C2110 series spring to mind.

The North American TV Scene

Keith Cummins

On a recent visit to Canada and the United States I was struck by the fact that the TV scene there is rather different from that in the UK. Cable and satellite TV are much more common and, upon reflection, one can see why.

My first stop was at Vancouver in British Columbia. One hardly sees any TV aerials of the conventional kind there: the whole city is wired for cable TV. Since nearly all N. American TV is commercially operated there's no licence fee. The annual cost of the basic cable connection, apart from scrambled pay-TV, is around 120 Canadian dollars (roughly $£ 60$ at the time of writing). For this you get over twenty channels from various sources - local studio programming, the Canadian Broadcasting Corporation, transmissions from the USA (e.g. Seattle and Bellingham) and satellite transmissions.

Utility Poles

In most cases the wiring of a city for cable TV is relatively easy because of that N. American facility the Utility Pole. These are everywhere: they carry the electricity supply, street lamps, telephone lines and cable TV. It's usually a simple matter to hang the cable TV system from existing poles. Furthermore most N. American towns and cities are laid out using the grid format, the parallel avenues intersecting the streets at right angles to divide the city into blocks, making the provision of services easier. I have to say that utility poles are unsightly. As one goes downtown their complexity and number increases.

Power Distribution System

While on the subject of services, it's worth mentioning the power distribution system. As most people know, the standard mains voltage in N. America is 117 V (110 V and 115 V are commonly mentioned, but 117 V is the standard). Quite how this voltage was arrived at is difficult to ascertain - the truth about this would be welcome if anyone knows! The mains frequency is 60 Hz . I'd often wondered how one copes with heavy consumption appliances like cookers and tumble driers on 117 V . The answer is to double the voltage.

People say that because they have three lines coming
off the utility pole they employ three phases. This is incorrect. What they have is a biphase 117 V supply, in other words the distribution transformer has an overall secondary voltage of $2 \times 117 \mathrm{~V}=234 \mathrm{~V}$, which is centretapped. The centre tap is neutral and earthed. The lines pass through a two-phase kWH meter. Lights and the normal 117 V distribution sockets (very small and neat, with flat blade plugs) are connected between one phase and neutral. Heavy consumption appliances are connected across the phases, either by hard wiring or via a hefty metal-clad plug and socket.

The utility poles carry the distribution transformers. In most suburban areas a single h.t. cable to feed the transformer primaries is strung along the very tops of the poles. The other end of the primary winding is returned to the system neutral referred to. This strikes me as being slightly dubious practice but it obviously works all right!

The 60 Hz Field Rate

The TVs naturally run off 117 V and with the NTSC system the field scan rate is 60 Hz because in the old days the field scanning was locked to the mains supply frequency in the same way that ours used to be locked to 50 Hz .
The use of 60 Hz , i.e. 30 complete frames per second, is a mixed blessing. The increased scanning rate virtually eliminates picture flicker - I'm told that a five-fold increase in brightness can take place before the flicker becomes as obvious as it is at 50 Hz . Certainly the pictures I saw were flicker free provided the programme source was to N. American standards. The problems arise with the scanning of film and with standards conversion of programmes using the 50 Hz system (like the endless repeats of 1975 -vintage Monty Python, Dave Allen and more recent Benny Hill shows).

Standards Conversion

The original method of coping with 24 frames per second film is first to run its average speed to provide 25 frames per second - we do this in Europe, which means that a one hour film runs for 57.6 minutes - then, to cope with the 30 frames rate, five frames of the film are scanned at 30 frames per second with the last one held

Off-screen shots of N. American cable TV. Left, caption for Shaw Cable which runs a network in N. Vancouver. Centre, logos of some of the channels available from Shaw Cable. Right, cable TV advert seen in a motel room at Kamloops.

A typical suburban utility pole hook-up. Photograph taken in N. Vancouver.
and scanned again so that six frames are transmitted for every five frames of film. This works quite well until fast panning shots are transmitted, when 5 Hz edge flicker becomes obvious. More modern telecine equipments use field storage techniques, i.e. they use electronic standards conversion. These give rise to a blurred edge under fast motion conditions, which is less objectionable. Likewise, $50-60 \mathrm{~Hz}$ conversion introduces a 10 Hz edge flicker - the same as when we do it the other way. Our standards converters appear to be of better integrity than some \mathbf{N}. American ones however.

When looking at a severely censored and edited Dave Allan show I kept noticing that the picture appeared to be over-scanned. Captions were lost at the top and bottom of the screen, and sometimes parts of heads were cut off at the top. It then occurred to me that a "poor man's converter" must be in action: what appeared to be happening was that the top and bottom fifty lines of our 625 -line picture were being thrown away, thus producing a 525 -line picture! Change the field rate and you don't need an elaborate line store. Ugh!

NTSC Colour

So far I've said nothing about NTSC colour. It's not that words fail me. In fact I did see some very good pictures in N. America. There weren't many, mind you, and it's true to say that the overall standard and consistency are not as good as in the UK. Modern receivers have a.f.c. which helps maintain consistent results. The reasons for this are not immediately clear until you think about the problem, as it applies only to NTSC. I should point out too that the turret tuner is only just being displaced by electronic tuners - many new sets at the cheaper end of the price range still use turret tuners.

So how does a.f.c. help an NTSC receiver? Remember that unlike the PAL system NTSC has no colour phaseerror correction facility and is therefore very vulnerable to colour subcarrier phase errors. Phase errors with PAL result in colour desaturation (and have to be really bad to be noticeable) whereas small phase errors with NTSC produce noticeable hue errors. The user is provided with a subcarrier phase (hue) control on his NTSC receiver. Every such control I saw was labelled "tint". The user thus has two colour controls to manipulate, compared to one with a PAL set. Fine receiver tuning moves the vision carrier and colour subcarrier positions within the receiver's i.f. passband, and as I noticed whilst twiddling this can also produce visible colour phase errors - something that

House in N. Vancouver, B.C., with roof-mounted dish aerial for satellite $T V$ reception.
just doesn't happen with PAL. So the user in fact has three variables to contend with. Add to this the inconsistencies in broadcasting and you'll appreciate why some NTSC pictures look so awful! A.F.C. removes one variable. Very often it's tied to a "colour auto" button which also vastly reduces the range of adjustment provided by the colour and tint controls, setting them to a central nominal position. This seems to work quite well and one was able to flick around the channels without seeing one sea-sick green face.

I'm told that some more recent receivers take advantage of reference signals transmitted during the field blanking period, but no one I spoke to seemed to know whether this was so and if so what was involved.

While on the subject of the field flyback blanking interval, I managed to roll a few pictures and saw some kind of teletext like signals dancing about, though there's at present no agreed teletext standard in N. America.

Cable and Satellite TV

Most towns have cable TV systems. This applies particularly because small towns can be hundreds of miles apart and might otherwise have no TV at all. The use of a satellite TV receiving station, local studios and a cable network is an obvious solution to the problem. This situation does not arise in the UK, so I'm not altogether surprised that cable hasn't taken off here in the same way as in N. America.

Quite a lot of people in N . America live in the middle of nowhere - grain farmers in Idaho for example - and buy their own dishes and receiving equipment in preference to having no TV. I was told that there's talk of scrambling all satellite TV broadcasts and that this slowed sales of individual receiving systems in 1985. There's a strong lobby against scrambling however. As nearly all TV is paid for by advertising, it's felt that the advertisers will apply pressure against scrambling on the grounds that it would limit audiences and thus be against their interests. The situation is at present in the melting pot.

Most satellite transmissions are in the 4 GHz band though some are shifting to 12 GHz . This introduces further uncertainties with satellite systems.

Crosstalk

One disadvantage I noticed with several cable systems was crosstalk. On some channels the interfering signals were very obvious, floating around in the background of
the main picture. This "ghost" was often negative. Severe ringing could also occur on some channels.

Dealers

I met several TV people in my travels. My thanks go first to Al DeHart of HiGrade TV in Penticton, B.C. who showed me a huge Electrohome back-projection TV set that sold for over 3,000 Canadian dollars. There were also the large, low cabinets in the N . American tradition, carrying various names including Zenith and Hitachi. We chatted for a while then Al gave me a photocopy of an article by a Mr. Paul Seelig in the July 1985 issue of Marketnews. The subject was future multi-standard video recorders and TV sets to enable the standards gulf between Europe and N. America to be bridged.

Seelig made some interesting statements in his article, which I'll quote with minimal comment. "In Britain for example one normally buys an electrical unit without a plug since the sockets are different from place to place, even from town to town." How long have we had the 13A plug? Thirty years? "Both v.h.f. and u.h.f. are in use in Europe, however the bandwidth is generally much smaller than in N. America. Channels are used or reserved for use by the governments, so television sets aren't supposed to be able to receive them . . . France decided to use u.h.f. channels 16 to 30 for aviation, England however decided to use channels 61 to 79 for this purpose and leave 16 to 30 open for commercial use." "In N. America we have settled on a 117 V supply with a frequency of 60 cycles . . with our plentiful supply of generating facilities this lowvoltage, high-amperage system is ideal." We don't need
centre-tapped double voltage supplies in Europe - even if we are more likely to get killed.

My thanks are also due to Gunther of Jan's TV in North Vancouver and Ed Knippelberg of Elgered TV Sales and Service in Priceton, B.C. for their time and trouble. Ed makes and sells his own satellite dishes.

Summing Up

It was interesting to see a different approach to TV and to be able to make my own assessment of NTSC. The satellite and cable situation in N. America is quite different from the UK. In all cases it's a matter of "horses for courses". Satellite and cable TV represent solutions to a N . American problem. In the UK cable TV is an answer looking for a question. The only question we have is how to get twenty channels instead of four, though most people l've spoken to don't want them. The British seem to have taken to the VCR instead of cable.

VCR sales and market penetration in N. America are much lower than in the UK. Profit margins on their sales are small and they are regarded as a maintenance liability by both servicemen and the public alike. Remember that if you live in a small town in the vast area of N. America you may need to take your equipment 100 miles to get it serviced!
Lastly a laugh I had while looking at an ancient monochrome Perry Mason film being broadcast by KVOS-TV of Bellingham, Washington State. After the end of one reel the next one started with the picture upside down while the sound and picture ran backwards. Who'd forgotten to rewind?!

Teletopics

SATELLITE TV LATEST

Robert Maxwell's plans to run one of the four TV channels to be transmitted via the first French DBS satellite TDF-1, due for launch this July, were mentioned in this column last October. Mr. Maxwell has now signed an exclusive eight-year contract to run the channel, with an option to renew the agreement. The fee for renting the channel, which will cover an area of W. Europe with some 280 m viewers, is understood to be approximately $£ 5.3 \mathrm{~m}$ a year. The plan is to use the channel for a news and entertainment service (in English) financed by advertising. Since TDF-1 is a high-power satellite reception will be possible using an 0.9 m dish - much of the UK will be within the service area. Mr. Maxwell is currently engaged in negotiations with television companies and independent producers on the supply of programmes. He is also considering making an offer for Thorn's cinema and filmmaking business, which is up for sale.

There has been a change in Mr. Maxwell's arrangements with the French authorities. He had originally agreed to take a stake in the company operating the satellite. The agreement to lease the satellite channel supersedes this earlier proposal.

TV services company Carlton Communications, whose recent proposal to take over Thames Television (which joint owners Thorn and BET want to sell) was blocked by the IBA, has bought Television International Operations (TVI) from Rank Video for $£ 2 \cdot 6 \mathrm{~m}$. TVI's customers
include Rupert Murdoch's Sky Channel and Robert Maxwell's MirrorVision (broadcast via Eutelsat I-F1 and Intelstat VA F11 respectively): it supplies studio and production facilities and transmission uplinks.

A dozen organisations, including broadcasters and industrial concerns, responded to the IBA's request for ideas/proposals for a UK DBS service (see Teletopics, November). While the IBA has released no information on those providing proposals two organisations have made public statements, National Broadcasting Service and Britsat. NBS was set up recently by James Lee who was previously chief executive of Goldcrest Films and Television. It hopes to bid for a franchise to run three channels, two initially - an information channel and an entertainment channel for young people. Britsat's proposal is to provide a satellite system costing $£ 170 \mathrm{~m}$ over a fifteen year service span. A broadcasting profit approaching $£ 300 \mathrm{~m}$ is anticipated after ten years' operation. Britsat would use three RCA satellites, each providing five channels with beams covering most of Europe. A July 1988 launch date is proposed for the first satellite provided approval is received by early 1986.

The sixteen ITV companies are planning to go ahead with a satellite-delivered SuperChannel which would supply European cable TV networks with a service using programme material from the existing four UK channels, with news from ITN and TV-am. The BBC is understood to have agreed to supply programmes for an initial payment plus a percentage of the profits, though it does not intend to become a member of the group. The channel would be financed by advertising and would compete with Rupert Murdoch's Sky Channel which is at present available to over four million European cable TV subscribers.

SES of Luxembourg (see last month) has now signed a contract with Arianespace for the launch of a 16 -channel RCA TV satellite next year - April or May is the expected launch date. The satellite power will be 45 W per channel (the high-power TDF-1 will operate at 250 W per channel while the Eutelsat and Intelsat satellites operate at $10-20 \mathrm{~W}$ per channel).

The options for those seeking satellite TV reception in the UK are steadily increasing. DER has launched a pilot satellite TV rental scheme through twenty of its outlets in the Home Counties. The firm will install a 1.8 m dish of NEC manufacture and align it for reception from either Eutelsat I-F1 or Intelsat VA F11. The rental is $£ 50$ a month for the equipment plus a monthly charge of $£ 12$ for the right to receive the programmes. It's expected that the equipment charge would fall to $£ 15$ a month by the third year of the rental contract. DER will probably extend the rental scheme nation-wide if a total of a hundred or so rentals is achieved during the initial six-month trial period. Alternatively you could go to Harrods, which claims to have become the first major store in Europe to offer satellite TV receiving equipment. The main line is a 1.8 m dish with or without motor drive: all equipment is being supplied by Megasat, who ran an intensive sales training course for eight members of Harrods' staff. The in-store display consists of a dish, the motor drive controller and a bank of TV screens which show the various channels available. A basic installation costs $£ 1,150$ plus VAT: with the more sophisticated motor drive arrangement the cost is $£ 2,100$ plus VAT. Megasat expects a modest initial sale of around twenty systems during December/January.

LEARNING VIA SATELLITE TV

A system called ASTRID - short for Automatic Satellite Telemetry Receiver and Information Decoder - has been developed by Steve Webb to give easy access to educational signals from the Oscar 9 and Oscar 11 satellites. The equipment is available from M.M. Microwave Ltd., Kirkbymoorside, York YO6 6DW for $£ 149$ inclusive of VAT and packing. It includes a receiver-decoder, aerial, power supply and leads plus a test tape with display software and will operate with any computer that has a suitable serial interface. The system was originally developed for use with the BBC microcomputer because of the good quality educational software readily available for use with this machine: it has since been adapted for use with the Sinclair Spectrum and other computers.

PRESTEL'S YEAR

Prestel has reported a successful year with use of the service increased by 44 per cent - more than a million pages a day were being called up by users and over 100,000 electronic mail messages a week were sent. At the end of last October the number of Prestel installations was 62,000 , the business/domestic ratio being $55 / 45$ per cent respectively.

TELETEXT ADAPTOR FOR MICROS

Morley Electronics of 1 Morley Place, Earsdon Road, Shiremoor, Tyne and Wear (091 251 3883) has introduced a teletext adaptor for use with microcomputers. The adaptor takes aerial and mains inputs and is controlled by the microcomputer's keyboard. Models are available at prices ranging from $£ 98$ to about $£ 150$ for use with various computers including the BBC, Electron and Commodore $64 / 128$. A u.h.f. modulator is available as an optional

The Morley Electronics microcomputer teletext adaptor.
extra for the Electron version so that the output can be fed to a standard TV set.

The company has also introduced a one Mbyte RAM dise with battery backup: this is not a sideways RAM but a true silicon disc that connects with the 1 MHz bus - up to 64 RAM discs can be connected to the BBC micro.

FIFTH FRENCH CHANNEL

The French government has decided that a new company headed by Jerome Seydoux, chairman of the Chargeurs industrial holding company, and the Italian TV entrepreneur Silvio Berlusconi will run the new, fifth national TV channel, which is to be financed by advertising. The new service is due to start before February 20th with about four hours of programmes a day during prime TV time, building up gradually to about eighteen hours of transmissions daily. In addition to a terrestrial network, which is expected to reach 28 million viewers by the end of the year, the service will be given one of the TDF-1 satellite channels. The decision to award the service to the new group caused a political storm with protests from all parties, particularly those on the right - the new channel will come on air just before national elections are due to be held this March. The Luxembourg group CTL, which had hoped to run the service, has threatened to take legal action to block the start of the transmissions.

SCOTCH VIDEO HEAD CLEANER

Scotch have introduced a video head cleaning cassette which is available in both VHS and Beta formats - the patented system uses the TV screen to show when the heads are clean. The tape is a dry cleaner requiring no detergents or liquids: the cassette is simply inserted and play selected. A recorded message - "when message is clear stop recorder!" - becomes clearer as the cleaning action takes effect. In addition a recorded audio message acts as a reminder to the user to stop the cleaning. Scotch comment that many of the rival cleaning tapes they've tested have completed the cleaning action in far less than the time specified for use, resulting in excessive head wear. Cleaning tapes are on average ten times more

The message on the Scotch video head cleaning tape.
abrasive than recording tapes, though the Scotch cleaning tape is said to be notably "gentle" on the heads.

CHANNEL 4 COVERAGE

Over 98 per cent of the total UK population can now receive Ch. 4 transmissions - only about one per cent less than the ITV coverage. Full parity with ITV coverage will be achieved by the end of 1987 and during 1986 a further 99 relay stations will be equipped with Ch .4 transmitters.

CABLE SETBACKS

The difficulties in raising finance experienced by UK cable companies already awarded franchises by the Cable Authority has led the Authority to defer advertising the next batch of franchises. The original plan was to advertise groups of five franchises every four months: the second group was to have been advertised at the end of November, with the franchises awarded this month. Most of the original eleven companies awarded franchises in November 1983 have so far failed to start operations. Shaw Cable, which was to provide a service in the London borough of Wandsworth, has been put into receivership. The economics of Aberdeen Cable, which commenced operations last summer, have been put into question by the local council's decision to levy wayleave charges for laying cables on council owned property - just under fifty per cent of the property in Aberdeen is owned by the council.

GRUNDIG-BLAUPUNKT TV DEAL

In a move designed to reduce excess TV manufacturing capacity in Europe Grundig and Blaupunkt have reached an agreement whereby Blaupunkt will cease to manufacture TV sets at its Hildersham TV plant and instead take supplies of sets from Grundig. In return Grundig will be supplied with car radio/audio equipment by Blaupunkt. As part of the deal Blaupunkt will purchase a twenty per cent interest in Grundig, which is controlled by Philips. Blaupunkt's TV manufacturing operation has been running at a small loss: the company intends to review its W. German distribution network, reducing the number of dealers.

NEW MAPLIN CATALOGUE

The massive 1986 Maplin Buyers' Guide to Electronic Components is now available from Maplin stores for $£ 1.45$ or from Maplin Mail Order, PO Box 3, Rayleigh, Essex SS6 8LR for $£ 1.85$ including post and package. The prices of over 3,000 lines have been reduced and store/mail order prices brought into line.

POCKET INSPECTION MICROSCOPE

Cobonic Limited of 32 Ludlow Road, Guildford, Surrey GU2 5NW (0483 505 260) has introduced a self-illuminated pocket microscope roughly the size of a long, slim pack of cigars. A version giving a clear 30 times magnification is available at $£ 18.90$: a second version with 100 times magnification costs $£ 27.90$. Ideal for examining PCBs for print cracks and flaws.

DISC DEAL

Thomson of France and the Japanese company Nakamichi have signed an agreement to develop a new audio/video disc system. The audio equipment would be compatible with the current compact disc system while the
video equipment would also provide a recording capability. Production is expected to start in Japan in 1988.

NEC INCREASES US TV OUTPUT

Japanese domination of the US TV market has been increased by NEC's latest moves. The company has opened a CTV plant in Georgia with a production capacity of 240,000 sets a year. A second plant to produce special TV sets/monitors at a rate of 48,000 a year is expected to start up by the end of 1986 while a third plant with the capacity to produce a further 240,000 colour sets a year is planned for 1987. NEC intends to increase its share of the US CTV market from one to five per cent, increasing the number of outlets from one to five thousand. NEC is also seeking three per cent of the US VCR market.

ADDRESSES

A couple of address changes worth noting. Toshiba's UK service department has moved to: Toshiba Technical Centre, Units 6 and 7, Admiralty Way, Southern Trading Centre, Blackwater, Surrey GU15 3DT (0276 36 222). Morphy Richards Consumer Electronics has moved to Swinton Works, Swinton, Mexborough, S. Yorks S64 8AJ (0709 582 402).

ANTISTATIC WIPES

A new series of anti-static wipes designed to keep equipment, c.r.t. screens, lenses, etc. clean and free of dust has been introduced by The Process Control Company, Griffin Lane, Aylesbury, Bucks HP19 3BD (0296 84 877). Called Procostat wipes, each cleaning wipe measures 6×4 in. They come in packs of ten at $£ 1 \cdot 70$ per pack. The wipe is impregnated with a static eliminating additive suspended in a solution containing ISP, giving an effective antistatic cleaning action without smearing.

TV SETS WITH TIMERS

NEC has introduced two 14in. TV sets that incorporate a timer to control the switch-on and switch-off times. The timer can be set from the control panel or the remote control handset. Model FS1401PI is fitted with an FST tube and sells for around $£ 284 \cdot 50$: Model CT1416PI is fitted with a standard type tube and sells for around $£ 235$.

MULLARD ICs FOR STEREO TV SETS

Mullard has introduced a family of quasi-split sound (q.s.s.) i.c.s which give setmakers flexibility in designing the i.f. and sound demodulator stages of stereo TV sets and VCRs. In quasi-split sound systems the vision and sound signals are separated at the input to the i.f. strip. There are three levels of complexity with the new i.c.s: the TDA2556 gives dual-channel q.s.s. processing; the TDA2546A gives q.s.s. processing with single-channel sound demodulation; the TDA2545A/TDA2555 pair gives q.s.s. processing with dual-channel demodulation. The new i.c.s provide weighted signal-to-noise ratios in the audio channel of around 53 dB . The quality of the video signal is also improved due to reduced sound-on-vision interference and a wider video bandwidth. The tuner's i.f. output is passed through parallel vision and sound i.f. filters, the signals then being processed separately. The i.c.s are suitable for all TV standards except standard L.

The TDA3803A stereo/dual-sound decoder i.c. has been designed to handle the W. German transmission standards.

More About RC5 Remote Control

Harold Peters

We've touched upon Philips remote control systems before (see November 1984 and February 1985). Since then a new range of models has appeared and the RC5 digital code has been established as a standard for Pye/Philips sets for some years to come. Moreover "basic" sets are on the decline and first line servicing is likely to involve more than plugging in a module: faults often need to be traced to component level. So, as servicing becomes more of a bench job, it's a good time to take a second look at RC5 and to sort out the proliferation of handsets. But first a recap for newcomers.

RC5 is a fifteen-bit digital code comprising two start bits, one control bit, five system bits and six command bits. The start bits provide synchronisation (like a burst), the control bit changes state every time a button is pressed, the system bits tell the set "TV" or "VCR" and the six command bits permit 64 different instructions per system. With few exceptions the same command code gives the same instruction on every system. The most significant exception is code ten, which is "tens/units" on VST and "single/double figures" on TRD4. Were it not for this and the fact that the VCR channel is 0 on current sets and 12 on KT3/K30s one handset could be made to work the lot. The pulses are 20 msec long and are repeated every 114 msec .

We should emphasise that RC5 is the handset code. The buttons on the set do not necessarily duplicate the bit streams for the same function. Note also that handsets having VCR commands on them give these out only while the side button is pressed at the same time - more on this later.

KT3/K30 Teletext Series

A brief note on this range first. These are not truly RC5 sets: they have a teletext and remote control system originally designed around the Southampton codes used in the G11s and others such as the Ferguson teletext range. To translate the RC5 Dutch code into English a panel incorporating a TMS1000 microcomputer chip is interposed between the remote control receiver and the decoder. The sets have twelve channels, with position twelve shortening the line sync time-constant for VCR operation. Since then, multichannel and cable requirements have made the VCR position 0 and the switching voltage can be made to select inputs as well as altering the time-constant.

The TMS1000 board can give rise to some odd faults. The situation was further complicated by a chip change half way through the production run. The 0096 and 0117 versions are not interchangeable, but Philips Service issue only the later (0096) type with fitting instructions for earlier models. At about the same time the l.t. supply connection was changed from a single pin to one pin of a multiconnector (W8.3) to suit the K30. It pays to keep the late version in the toolkit since it fits anything.

Other misleading symptoms on these models come from the power supply on the floor of the cabinet. The regulator i.c.s can give low outputs, and unless the supplies at the decoder are within 0.5 V of 5 V and 12 V respectively decoding errors and unexpected trips to
standby can occur. If the 500 mA fuses on the power supply blow for no apparent reason, replace them with 650 mA anti-surge types.

The VST System

The VST (voltage-synthesised tuning) system, which is used on medium-priced models, can be immediately identified by the yellow tuning line that traverses the screen from left to right during tuning. The heart of the system is an MSM5840H microcomputer i.c. which accepts commands from both the local keypad and the remote control system. generating data to control the analogue functions, channel change and where relevant teletext. For continental Europe there can also be bandswitching with on-screen indication by changing the colour of the tuning line. It will also select "first or second language" with European dual-channel TV sound systems.

Twenty tuning voltages, including VCR on 0 , are memorised together with the "Granny" or personal preference settings of the analogue functions at switch on. The microcomputer chip has a volatile memory so a 2.4 V nicad battery is float charged as the set is run, providing data retention in the memory for many months.

There are two more chips on the VST board. The LM339 quad operational amplifier chip handles the blanking and a.f.c. arrangements and an SAB3013 converts the data stream into voltage levels for the main chassis. System 4 sets have these two latter devices on small thick-film subassemblies.

You are likely to encounter six types of VST board, fitting the K35, CTX and System 4 chassis in either teletext or non-teletext versions. Stock control in workshops can be simplified by stocking only the teletext versions of each type - lift up the teletext mode control diode fitted between pins 16 and 28 of the microcomputer chip when fitting a board in a non-teletext set. This has to be done for the following obscure reason: if the remote control handset has to be returned to Philips Service for replacement an RC5352 flat, general-purpose type will be supplied and this provides teletext commands. If the user of a non-teletext set puts it into the teletext mode accidentally he'll not be able to change channel until he presses "reset" or "TV". The result is a nuisance service call.

The microcomputer chip, being pluggable, is not only easy to replace but is seldom the cause of trouble. Odd faults such as going to standby at random or reduced handset range of operation are generally due to either of the two $5 \cdot 1 \mathrm{~V}$ zener diodes going low. As the circuit references vary from model to model we must identify the diodes as the one across the eyeball receiver supply line and the one that regulates the 5 V supply to the board.

A frequent user complaint is "poor teletext" after a new set has been in use for a while. This is usually due to the tuner having drifted to the end of the a.f.c. pull-in range. It can be seen when changing channel: the new programme will be snowy at first, then suddenly clear to normal as the a.f.c. works. The cure is to reprogramme
the memory completely, not by using the fine tuner plus and minus buttons but by tracking the yellow line up to the station from the low-frequency end.

If you earth pin 16 of the microcomputer chip as shown in the manual the board goes into the service mode, offering a limited number of fault indications for use in conjunction with the published repair method. Unless a number of boards is being repaired on a flow-line basis it's probably better to adopt the conventional approach.

The yellow tuning line stops at every acceptable station and is halted by the state of the sound muting line which keeps down the hiss during tuning. This in turn depends on detection of the intercarrier sound signal, so if you get a set in which the yellow line won't stop at stations check the sound circuits as well as the VST board. Incidentally this feature is used by a colleague as a signal failure dector: should the local transmitter fail, the change of state on this line automatically switches the output from a pattern generator into the system instead.

The TRD4 System

TRD4 is the up-market remote control system. Why two systems you may ask, with some justification since the component count on the two boards is roughly the same. Moreover both systems use the RC5 code. What's the difference? Well TRD4 has a larger, non-volatile memory on a separate subpanel. This EAROM (electrically alterable read only memory) is capable of storing up to 90 cells of programme information (channel, band and system) together with the personal preference settings for the analogue controls without need for a back-up battery. Receivers for UK use employ only fifty memory cells for channel selection, leaving spare capacity for novelties such as Supertext, about which more later.

The microcomputer chip contains its own ROM which is programmed with data corresponding to the local oscillator frequencies required to tune in all the available TV channels (frequency-synthesis tuning). This data is compared with the actual local oscillator frequency via a conventional phase and frequency locked loop. The ROM is accurate to plus 500 kHz of the nominal vision carrier (never minus). When selecting a channel, if the system fails to find a carrier to lock to it hops 1 MHz up and tries again. It will repeat this up to eight times if need be (8 MHz being the width of a channel) then go back and start all over again. This process is necessary in order to be able to tune to computers and VCRs whose outputs may not be spot on a particular channel frequency.

TRD4 sets can be tuned up in three different ways. (1) By changing to the Channel mode and dialling up the required channel on the handset. In this mode a full stop after the two digit numbers displayed on the set distinguishes Channel from Programme. (2) By pressing the plus and minus buttons. This will advance or retard the channel selected by one channel per push. (3) By pressing the search button. This starts the set tuning up the band, starting from the last channel in use. After any of these methods the chosen programme can be stored in any of the fifty available cells.

These sets can also suffer from tuner drift once the works have settled down. Unlike VST sets however the symptoms show up in a totally different and misleading way. Horizontal chunks of picture will flash brighter or go dark, symptomatic of a sync or video fault. What's happening is that the a.f.c. has got to the end of its catching range and the system has jumped up 1 MHz to
look for the carrier, as previously described. As before the cure is to reprogramme the whole bunch of channels, with the set fully warmed up, approaching each channel from the station lower down.

Thus to reprogramme ch. 62, press the open store button to open the memory, select the programme of ch. 59 (as an example), press C/P to select the channel mode, press the plus botton thrice, press C / P again, select the cell number in which you store ch. 62 (e.g. 3) and then press store. During the time that the memory is open the twodigit display will flash.

Not "user friendly"? You soon get used to it.
When it comes to fault finding the TRD4 board is a little more helpful than VST. As part of each initiation sequence it runs through a programme of tests before letting you have a picture. If there's a fault, an error indication is presented on the two-digit display as follows: E0, parity error (faulty memory unit U15 or the microcomputer chip itself).
E1, missing supply voltage - check the 13 V and -22 V rails.
E2, faulty RC5 input. Check TS26 and the remote receiver unit.

If the message-received LED doesn't light when the handset buttons are pressed check the handset and the eyeball remote receiver. If the LED does light but nothing happens, suspect the microcomputer chip.

There's about a page full of different TRD4 boards likely to be encountered. Philips Service stock five types which between them cover the lot. Slight modifications are sometimes needed, and in this case fitting instructions come with the board.

Supertext

Some TRD4 sets use spare memory cells to store programme and page details for up to twenty most used teletext pages, using a five-figure code. The BBC-1 news headlines would be 01101 (programme 01, page 101). Entry into the memory is made with the store opened and the two-digit display flashing. The Supertext button is pressed at the end of each five-digit programme/page selection. At the end of the store process the store button is pressed: the set then reverts to normal use.

To display selected pages, call up the wanted channel (it won't change channel for you), go to teletext and press the Supertext button. The decoder will then hunt for and eventually display the first of your selections on that particular magazine. Press Supertext again and the decoder hunts for the next preselected page on that channel and so on. Note that Supertext doesn't store the whole page of your selection for instant display, only the access data. You still have to wait for the broadcast magazine to reach the wanted page.

A frequent Supertext complaint is that the set displays pages other than those you've chosen to note in the memory. The usual reason for this is that the factory test programme of selections is still in the memory and turns up when you press the appropriate buttons. To erase this involves entering a bogus programme/page number such as 50000 and pressing the Supertext button. Repeat this procedure as many times as it takes to clear the memory.

Computer-controlled Teletext

Assuming that you can stand being confused even further, the replacement for Supertext on current models
is CCT (computer-controlled teletext). Sets with either VST or TRD4 can incorporate CCT and the teletext decoder does have a double memory so that you can hunt up a page while reading another. Two new handset types cover the extra command, RC5353 for VST and RC5373 for TRD4.

CCT sets have a double-page header, the usual one and above it another showing your next page selection - in green during search, turning to white when found. You could for example be reading news headlines on page 101 while the decoder searches for the weather on page 152 at the same time. Pressing the CCT button changes over memories and you then watch page 152 while the decoder hunts and stores the next selection. If you don't ask it to do anything it will automatically store the next available page, i.e. page 153 in our example.

It's rumoured that the CCT teletext decoders are pincompatible with their single-memory counterparts. So if you're so inclined it should be possible to produce a set with both Supertext and CCT.

The FST System

At the start we said that RC5 is likely to be with us for a long time. If you inferred from this that VST and TRD4 will be with us for as long, not so. A third system FST (frequency-synthesised tuning) is on the near horizon. It has the direct channel selection facility of TRD4 but has such an economic component count that it's cheaper to fit to a basic chassis than a bank of tunable potentiometers. It's featured in the new single-chassis models to replace the K35 in the 22 and 26in. sizes.

FST is a three-chip system with an MAB8441 microcomputer chip on the keypad, an SAB3037 control chip for presenting analogue and tuning voltages to the main chassis and a PCD8571 RAM. The facilities are about the same as TRD4 but with fewer channels. There are basic, remote control and teletext versions, with every possibility that further handset types will be introduced to work the system.

VCR Control

RC5 can be used to control VCRs of both the 2000 and VHS types. A different set of command codes is used, so there's no interaction between the TV and VCR handsets - unless you press them both together, when nothing happens.

The later flat, metal-faced slim handsets issued with recent TV sets incorporate a number of VCR command buttons on the lower half. To control a VCR these buttons must be used simultaneously with the button on the side. In the same way some VCR handsets can be made to issue a limited number of commands to TV sets using RC5.

Problems

The "limitations" can get you into a knot when servicing or installing a "twosome", so keep on reading. The RC5 code can enter a VCR in either of two ways, directly via the infra-red eyeball fitted or added to the VCR or through the interconnecting SCART lead, where fitted. In the latter case the RC5 code is detected within the TV set and passed as data to the VCR via line 16 on the SCART connector.

Not all TV sets and VCRs with SCART connectors

Table 1: RC5 handsets

Type \quad Chassis Wedge types	Details
RC5150 K30	Teletext. VCR on button 12. RC5171 K35 RC5300. RC5172 K35
VST, 20-way. Superseded by RC530 As RC5171 but with first and second language button.	
RC5177 K35	VST, 20-way with teletext. Replaced by RC5350.
RC5267 K35	TRD4, teletext, stereo. Superseded by RC5370. RC5275 K35
	TRD4, teletext, stereo, VCR Super- seded by RC5370.

Flat types	
RC5300 -	General purpose, VST. Replaces RC5171. VCR buttons.
RC5350 -	General purpose, VST with teletext. Replaces RC5177. VCR buttons.
RC5352 -	Replacement type, VST. Like RC5350 plus first and second language button. Sent by Philips Service as replacement for RC5171/5172/5177/ 5300/5350.
RC5353 KT4/K40	VST. As RC5350 with CCT.
RC5356 -	Replacement type, VST. Issued to replace RC5353 (CCT plus stereo).
RC5370 K35/KT4/K40	TRD4, Supertext, stereo, tone controls, VCR.
RC5371 KT4/K40	As RC5370 but printed "Matchline".
RC5373 KT4/K40	As RC5370 plus CCT.
RC5375 KT4/K40	As RC5370 plus printer button. Issued as replacement for RC5267/ 5275/5370/5375.

actually incorporate the line 16 facility, so you must check on the proposed combination before ordering it. It also means that the TV set must be on to be able to control the VCR. With VCRs that have their own infrared eyeball the TV handset will permit control of play, record, forward and reverse search, channel change and standby, but not wind or rewind. Instead there's a go-to button with which rapid access to any tape counter position is possible - but only on 2000 system models at the time of writing. The handset that comes with the VR6920 VHS machine with hi-fi sound will perform volume, channel change and standby operations on any RC5 TV set with which it is linked once its TV mode button has been pressed. A word of warning here. The insertion of batteries in this handset for first time use leaves it in the TV mode, so unless you press the VCR mode button (which it doesn't tell you to do) it won't control the VCR and you'll think you've got a dud handset.

Handset Types

In conclusion (for the time being!) Table 1 lists the handsets used with RC5 receivers. Note that the RC5352 replacement type can't be used in place of the RC5150 because of the VCR position, which is 0 on all VST/TRD4 sets and 12 on the RC5150. Wedge types suffer if damp or exposed to gin and coke (gin and what? - editor) and the foil often chafes at the bend. Flat types don't like being dropped: the battery contacts go intermittent, the small blue crystal resonator goes off frequency and the PCB develops hairline cracks.

VCR Clinic

Pye 65VR20/Panasonic NV370

The Pye 65VR20 is, I believe, equivalent to the Panasonic NV370, so the following fault which has come our way several times is likely to apply to both machines. The symptom is no capstan drive. This gives no fast forward, no rewind and no play, but unlike the Mitsubishi HS306 front loading and eject are not affected as a separate motor is used for these operations. The cause of the fault is the AN3822 capstan motor drive i.c. You'll probably also find that the motor supply to the i.c. is missing, due to failure of an 0.68Ω resistor. This is not shown on the circuit diagram - it feeds pin 24 of the i.c. On early machines it's fitted in place of a wire link but on later versions it's labelled as R96.
D.S.

Faulty Eject Damping Mechanisms

A fault we've had several times recently with both the Ferguson 3V29/30 and the Hitachi VT8000 series is rapid eject due to failure of the eject damping mechanism. This is of the air-damped type and except for one tiny nylon cog is of metal construction. It's the cog that fails, splitting from the centre to the circumference. The units used on all these models are the same, so only one needs to be stocked.
D.S.

Ferguson 3V29

The complaint with this machine was no sound in the E-to-E mode. A quick check showed that the sound was disappearing in the r.f. converter. Replacing the BA7003 i.c. in this unit cured the fault.
D.S.

Mitsubishi HS306

No channel down was the complaint with a newly installed Mitsubishi HS306, but only when it was being operated via remote control. Channel change up and down was o.k. via the front controls, as was channel up with remote control. It's a cable remote control unit and the showroom had already checked this on another machine and found it to work correctly. A look at the circuit showed that there were only a couple of components specifically concerned with remote channel down, one of which was R712 which turned out to be missing.
D.S.

Sony SL8000

This is an old machine. The complaint was that the whites in the picture sometimes went blue. We assumed that the customer meant the picture highlights. This could easily have been due to a fault in the modulator but in fact the deviation control needed cleaning.
S.B.

Hitachi VT8000 Series

The modulator in this machine didn't work so a replacement was fitted. At a later date I decided to check it out as often only a series choke is open-circuit. The circuit diagram is given in the manual in the bottom left-hand corner of the tuner/i.f. page and on seeing it I was intrigued to know how power is supplied to transistors Q1, Q2 and Q6 since no direct connection is shown. Maybe this was why it didn't work! On checking through

Reports from Steve Beeching, T. Eng., Derek Snelling, Philip Blundell, Eng. Tech. and Eugene Trundle
the r.f. modulator PCB I found that the supply comes via two pins on transformer T2 - or in this case it didn't. A link soon made sure that it did. Whilst it's now o.k. for testing I won't fit it. Maybe I'll boil it . . .
S.B.

Sharp VC9300

There was no power as the mains fuse (F9001, 2-5A) had blown. After replacing this there was no take-up spool drive while rewind and fast forward were both very slow. The reel motor was suspected at first as the drive voltage to it from pin 2 of IC7751 via the emitter-follower buffer transistor was correct. It turned out that Q7754 was opencircuit, which left just the unloading torque control resistor R7758 (27) to chassis. This is in series with the motor: normally Q7754 would be on, which would ground the motor by shorting out R7758.
S.B.

Panasonic Video Movie NM1

After three weeks the power supply/battery charger/ modulator failed. A well known high street store quoted ten weeks for the repair, which the customer thought was unreasonable. The cause of the fault was an open-circuit resistor in the switch-mode power supply start-up circuit $\mathrm{R} 2,3 \cdot 3 \mathrm{k} \Omega 2 \mathrm{~W}$. Andy charged him $£ 45$ which I thought was extremely reasonable since it wasn't our sale and it was done in two weeks.
S.B.

Panasonic NV333

The problem was occasional failure to record the audio track, though erase was o.k. It caused some difficulty as the fault was intermittent. In fact we checked with Panasonic's technical department to find out whether there were any problems in the audio record section. A man told me that the modification to overcome intermittent recording was to short out R4049. Ah! But this is the bias oscillator transistor's emitter resistor, and there were no erase problems. The man insisted that in the event of intermittent audio recording this modification would provide a cure. For anyone else's information, after checking D4001 and then Q4003 by replacement the fault went away.

The circuit operation here is not obvious (see Fig. 1). In the playback mode line PB is low. Zener diode D4001

Fig. 1: Audio record/playback switching circuit used in the Panasonic NV333.
conducts and so does Q4003 since the emitter of this pnp transistor is at 8 V and its base is returned to chassis via D4001. Thus Q 4001 and Q 40012 are on, earthing the record drive side of the audio head. In the record mode line PB is held high at 6 V . This, via D4003, cuts of D4001 and all three transistors. If $\mathrm{Q} 4001 / 2$ are on in record then either D4001 or Q4003 is leaky.
S.B.

JVC HR7700/Ferguson 3V23

The tape remaining indicator came on as soon as play was selected - it should have stayed off while the VCR measured the differential reel rotation and then displayed the result as a bar segment display. In addition the tape remaining display flashed erratically. Replacing the data gate array TA2 on the tuner/timer board cleared the fault.
S.B.

Hitachi VT57

We had the same fault on two of these machines - the capstan motor intermittently stopped, with the result that unthreading took place. In the first machine the trouble was caused by a dry-joint on posistor PH1151. This removed the motor's power supply. In the second machine the motor drive switching chip IC1151 had failed.
S.B.

Ferguson 3V36

Ray was having problems with a search tuning fault on this 3 V36. It wouldn't stop when it found BBC-1 though it would stop on the other stations. Investigation revealed that the sync detect line wasn't going low when BBC-1

Fig. 2: Modifications to the sync detect circuit on the i.f. board, Ferguson Model 3V36.
was found, so attention was turned to the sync detecting circuit on the i.f. board. Adjusting coil T5 made the line go low on BBC-1 but then it didn't go low on BBC-2 - we also found that if the coil was tuned too far a buzz developed on sound! When I looked through past issues of Ferguson Feedback I found a modification for sound buzz - change Q12 to type 2SD637 and add the components shown in Fig. 2. Doing this cured the fault. What a team!
P.B.

Tatung VRH8400

A new machine straight out of the box would sometimes fail to accept a cassette fed into the front slot, due to an intermittent high-resistance contact in its "cassette hous-ing-up" switch. Problems of a converse nature, i.e. a cassette stuck in and won't eject, have been traced to a faulty cassette housing-down switch. Strangely the equivalent JVC and Ferguson machines (Models HRD120 and 3V35 respectively) we look after haven't developed this problem - so far! The sooner Hall-effect or optical position sensors are fitted the better.
E.T.

VIDEO CASSETTE RECORDER SERVICING COURSE

INTENSIVE COURSE INTENDED FOR QUALIFIED TELEVISION SERVICE ENGINEERS OR APPLICANTS WITH SIMILAR BACKGROUND. THE COURSE COMBINES THE ADVANTAGES OF INDUSTRIAL AND ACADEMIC TRAINING WITH A HIGH PERCENTAGE OF PRACTICAL WORK.

Further details from:

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

Commissioning a SMATV System

Geoff Lewis

The liberalisation of satellite TV reception regulations announced by the Department of Trade and Industry in May 1985 also included Satellite Master Antenna TV (SMATV) systems. These are basically satellite TV reception systems designed to supply signals to premises such as clubs, hotels or blocks of flats via a small cable network. Since only a single set of premises is usually involved the regulations are more liberal than those that apply to wideband cable systems. The following report aims to give guidance on the development and installation of SMATV systems, supplementing our earlier article "Commissioning TVRO Systems" (November 1985). The installation of a SMATV system is basically similar to that of a TVRO system, with the following differences.

Aerials

To provide a service for even a limited number of viewers will almost certainly mean that signals are required from two satellites simultaneously. This in turn means that two aerials will be required, one for each of the satellites of interest (ECS-1 and Intelsat VA F11). With operation from ECS-1, dual-polarity reception will need to be considered.

As the SMATV system will involve more signal processing, which will introduce signal-to-noise ratio degradation, a larger dish will be necessary. Whereas a $1 \cdot 2 / 1 \cdot 8$ metre dish with offset feed is perfectly adequate for a TVRO installation, for a SMATV system a $2 \cdot 5 / 3 \cdot 5$ metre diameter dish will increase the gain by $3-4 \mathrm{~dB}$, giving allowance for the signal-to-noise ratio degradation that occurs in the signal splitter stages. Planning permission will almost certainly be required for the dishes.

ECS-1 alone will provide a useful SMATV system with international appeal. This would involve the use of a 3.5 m
dish with an ortho-mode transducer. Apart from the English language programmes, ECS-1 carries programmes from W. Germany, France, Holland, Belgium, Spain, Norway and Italy.

Equipment Required

The main elements of a SMATV system, with typical average unit prices, are as follows:

Three-metre dish with "A" frame mount	$£ 1,000$
Ortho-mode transducer for dual polarity operation	$£ 125$
Low-noise block (LNB) converter, one for each polarity and dish	
Signal power splitters (2,4 or 8 way), average Receiver/demodulator/remodulator, one per channel	$£ 30$
SECAM/PAL transcoder, one per SECAM channel	$£ 700$

Plus r.f. signal combiner and low-loss cable distribution equipment.

The use of a u.h.f. distribution system has two significant advantages: standard TV receivers can be used, and it's fairly easy to combine the u.h.f. terrestrial services to add four more channels. This is achieved at the expense of using low-loss coaxial cable in the system.

Legal Aspects

Guidance notes are available from the Cable Authority, Gillingham House, 38-44 Gillingham Street, London SW1V 1HU. These are quite complex and should be studied by anyone contemplating a SMATV system. The

following is an extract to outline the licensing requirements.

Copyright of all programme material transmitted over the satellite link rests with the provider, to whom a fee is payable. Systems serving more than one dwelling or single set of premises require a licence under the Wireless Telegraphy Act. A hotel, being classed as a single set of premises, does not require to be licensed under the Telecommunications Act 1984 or the Cable and Broadcast Act 1984: a licence under the Wireless Telegraphy Acts, covering satellite reception, is necessary however. This must be obtained from the Department of Trade and Industry, Room 513, Waterloo Bridge House, Waterloo Bridge Road, London SE1 8UA.

The terms of the Cable and Broadcast Act involve some restrictions to a SMATV operator. He will be expected to give way to any operator who is granted a franchise for a wideband cable system in the same area, wideband cable systems being defined as those projects being licensed by the government to carry prescribed diffusion services and being regulated by the Cable Authority. Where a wideband franchise has already been granted in an area only the holder of the franchise can install and operate SMATV systems as a short-term measure.
There's a tendency today to build new hotels and motels on the outskirts of towns and cities. These are usually outside present cable system areas and may thus provide opportunities for SMATV operation.

Quick Tests: Hybrid Receivers

S. Simon

In the last article in this series we concentrated on two hybrid colour TV chassis. There's another, the Pye 697 chassis, that should be mentioned before we return, via a slight detour, to more recent designs. Since the 697 chassis has been extensively covered in past issues we'll keep the following notes to the bare minimum.

PYE 697 CHASSIS

The important thing to remember with this chassis is that the mains supply is taken direct to the top centre of the right-hand vertical panel, where the 2.5 A mains fuse FS1 is to be found. Thus the fuse and its contacts, the associated print and plugs, are live when the set is switched off. Remove the mains plug to render this area safe.

Mains Transformer

There's a thermal cut-out incorporated in the input to the mains transformer, which is used for the l.t. supplies. In the event of a severe overload here, for example a short in the l.t. bridge rectifier, the mains fuse won't blow: instead, the transformer will overheat and the thermal cutout will open. This is a common fault: if the tube heaters are not alight and there's no sound, this is what has happened. Locate the bridge rectifier, at the bottom right, and note that its four contacts are in a vertical strip. Check for shorts. Due to its position replacement is rather difficult and the writer has his own pet way of doing this: I hesitate recommending this however because it's easy to get it wrong. So have patience and do it right.

After fitting a new bridge the cut-out must be repaired or replaced. Access is by removal of the main smoothing block, which is no bad thing since the condition of this often means that it should be replaced. The cut-out was not present in the earlier versions of the chassis (the 691 and 693). With these a short in the bridge can result in the demise of the transformer. So be grateful for the cut-out. If difficulty is experienced a 315 mA fuse can be fitted across the cut-out's contacts to restore normal operation.

No A1 Supplies

If a meter check at the tube base reveals lack of first
anode voltages, the $100 \mathrm{k} \Omega$ filter resistor R 227 will be found to be damaged due to a short in the associated $0 \cdot 1 \mu \mathrm{~F}, 1 \mathrm{kV}$ capacitor C224. The resistor is located above the line output transformer in the centre of the main panel: the capacitor leads off to the right. Replacement of these two items will restore normal working.

Field Collapse

A very common symptom is a white line across the centre of the screen. Although the cause could be a fault on the field timebase subpanel (under the tube's neck) the first step should be to ensure that both the 20 V positive and 20 V negative supplies are present at the plug and socket on the right of this panel. More often than not one of these will be absent, the cause being over on the main, vertical panel. Concentrate on the upper centre section where the heat is. Examine this very carefully for fine hair cracks and test the continuity of the long tracks that go down to the bottom. The weak points are where these tracks pass an area that normally runs hot. To avoid further damage, run wires from the top to the bottom. This unsightly step will prove to have been a wise one. If the supplies to the field timebase panel are present, check the AC128 driver transistor under the board (this transistor is mounted under the board because it's inclined to be heat sensitive), the two BD124 output transistors on the vertical heatsink, the associated resistors and the electrolytic capacitors, especially those that may be black with silver markings.

The CDA Panel

The CDA panel is the left side unit with four valves, the PL802 luminance output valve and the three PCL84 colour-difference output valves. This is the unit that's most likely to give trouble, due mainly to the heat from the valves affecting the panel, causing cracks and poor connections. Good earthing of the rear clips is essential to avoid blue/green shading. Check the voltages at the test points near the three $12 \mathrm{k} \Omega$ PCL84 pentode section anode load resistors. All three test points should be at approximately 140 V . The absence of any of these voltages should direct attention to the $12 \mathrm{k} \Omega$ wirewounds: a high voltage (say 200V) should direct attention to the relevant PCL84 and its base contacts - check for an open-circuit cathode
tag etc. Similar remarks apply to the PL802: the brightness decreases as this valve loses emission. If you find odd voltages on the CDA panel, e.g. negative readings at the anodes of the triode sections of the PCL84s instead of approximately 100 V , check the condition of the main h.t. reservoir/smoothing electrolytic C306/C315.

Weak Sync

In the event of poor sync locate the sync separator transistor VT7 on the right side of the left side swing out i.f. panel and check the value of its $4 \cdot 7 \mathrm{M} \Omega$ base bias resistor R 33 . This regularly goes high in value.

Blown Mains Fuse

When the situation is no results with a blown fuse, make the usual checks for shorts across the h.t. supply and also check the resistance between the PY500's top cap and chassis. If the reading is low, check the $0.47 \mu \mathrm{~F}$ boost reservoir capacitor which is mounted on the line output transformer. Its voltage rating is 1 kV . Disconnect one end for a conclusive test. Alternatively the trouble could be due to the previously mentioned $100 \mathrm{k} \Omega$ resistor (R 227) having fallen to a very low value or perhaps to the disc capacitor (C219, 180pF) associated with the line output transformer.

If no shorts can be found replace the fuse, switch on and observe the behaviour of the PY500 and PL509 valves in the line output stage. Allow time for them to warm up then note whether one or both overheat. Check both valves and the PCF802 (line oscillator) at the bottom of the panel and if necessary the associated components. R219 ($33 \mathrm{k} \Omega$) and C214 (820 pF) are suspect, also R210 ($100 \mathrm{k} \Omega$).

Line Hold Problems

For line hold troubles check the PCF802 and R210 which regularly changes value. If these items are not at fault check the value of R 203 ($47 \mathrm{k} \Omega$). This resistor is farther up the panel and is mounted horizontally.

MONOCHROME HYBRID SETS

These few notes should allow these old sets to be approached with a fair degree of confidence. But wait a minute. The hybrids we've mentioned so far have all been colour sets. We've not mentioned monochrome sets at all. Yet a goodly percentage of sets that come in for service attention are monochrome hybrids, e.g. the Thorn 1500, ITT VC200 and Bush A640 and A774 chassis. It's all right for more experienced engineers to shrug their shoulders and say "kids' stuff", but what about those who encounter these sets for the first time? For them, a few notes on the Thorn 1500.

THORN 1500 CHASSIS

This chassis was used in a large number of Ferguson, HMV, Marconiphone, Ultra and other models, ranging from 24 in . sets down to 17 in . portables. They can be identified by the four-button u.h.f. tuner at the front and the rear aspect with three controls arranged vertically at the right side - line hold at the top, field hold in the centre and contrast at the bottom. If the set looks like that it's a 1500.

First some stock faults with these sets. For weak sync check R44 ($47 \mathrm{k} \Omega$). For lack of contrast check $\mathrm{C} 37(64 \mu \mathrm{~F})$, R40 $(2 \cdot 2 k \Omega)$ and R41 $(5 \cdot 1 \mathrm{k} \Omega)$. For field linearity troubles check R103 (300Ω), C79 $(160 \mu \mathrm{~F}$) and R101/2 (both $18 \mathrm{k} \Omega$). For lack of width check the preset R132 ($1 \mathrm{M} \Omega$).

Blown Mains Fuse

The mains supply is taken to the front on/off switch then neutral to chassis and live to the $1 \cdot 6 \mathrm{~A}$ fuse F 1 at the top of the panel. With the set switched on the a.c. can be checked at this fuse to prove that it's intact. If the fuse has blown, switch off and check diodes W7 and W8, again at the top. It's common for one of these to go short-circuit. W7 is the "heater dropper" diode and W8 the h.t. rectifier. The mains filter capacitor $\mathrm{C} 84(0.1 \mu \mathrm{~F})$ is near W8. If this has gone short-circuit - as it frequently does the replacement must be rated at 300 V a.c. or 1 kV d.c. The 600 V d.c. type fitted is not reliable.

If these items are without fault, check the resistance between the top cap of the PY801 valve or the PL509 and chassis. A low reading indicates that C95 (180pF), a highvoltage disc capacitor wired on the line output transformer, is probably short-circuit. It could have damaged the PY801.

These are the usual causes of F1 failing.

Heater Chain Faults

If the set appears to be dead but F1 is intact, with a.c. at both ends, transfer attention to the long mains dropper at the top. The centre section should read 148Ω. It often goes open-circuit, thus robbing the valves of their heater supply. Beware: the h.t. is still present - switch off to test. Ideally the whole dropper should be replaced but it's quite in order to mount a 150Ω wirewound resistor, rated at 20W or more, securely across the defective section. Dabbing a hot iron on the wire ends to secure the new resistor is not acceptable: wrap the ends firmly round the arms of the dropper, having thoroughly cleaned these to accept the final soldering.

In rare cases the dropper may be intact and one of the valve heaters may be open-circuit. Check at pins 4 and 5 of the PY801, then at the same pins of the other valves, to ascertain which one is faulty. The c.r.t.'s heater is the last one in the chain but is not returned direct to chassis: the earth link is via R79 (left section of the dropper) which has a value of 317Ω thence R136 (62Ω). Pin 1 of the c.r.t. goes to R79, and this point is decoupled by C58 ($330 \mu \mathrm{~F}$) which is at the lower left centre of the main panel. It's very important to appreciate that the 26 V supply for the transistors is taken from this point. Why? Because R79 can go open-circuit. The excess voltage applied to the transistors can then ruin one or more of them. Usually the final i.f. transistor VT7 (BF179) is the one that suffers. Its collector voltage should be 23 V . If it's over 26 V , check R79 before proceeding further. Read that again and remember it.

HT Resistors

Valves glowing, no results means that the h.t. supply is missing. Check the right side of the dropper, second section in. The reading should be 20Ω. In fact this section rarely goes open-circuit. It's more common for either the sound or the raster to be lost due to one of the h.t. feed resistors going open-circuit.

The fusible resistor R124 (80) often springs open due to excess current in the line output stage. The cause is usually a faulty PL509 or lack of drive to it from the 30FL2. Lack of sound with a normal picture should direct attention to $\mathrm{R} 96(2 \cdot 2 \mathrm{k} \Omega)$ which supplies the PCL82 audio
output valve. This resistor is either immediately below the dropper (right side) or farther down the right side edge. Although it can fail on its own there could be a contributory cause, either the PCL82 itself or leakage in the audio coupling capacitor $\mathrm{C} 64(0 \cdot 022 \mu \mathrm{~F})$.

Servicing Teletext Receivers

Part 1

Mike Phelan

The purpose of this new series will be to explain briefly the operation of a typical teletext decoder and to give guidance on fault finding. We will use as our example the Philips/Mullard teletext decoder as fitted to the G11 chassis. Many of these sets are now available from trade disposal warehouses at reasonable prices. They perform quite well if thoroughly serviced - a recent article (October 1985) covered the basic chassis.

Surprising as it may seem to the unitiated, the diagnosis of teletext faults is quite easy. Being a mainly digital device the teletext decoder tends to produce on the screen a display that indicates precisely what ails it. A large percentage of faults can be diagnosed by watching the display, those that remain needing only the application of a logic probe. The multimeter and scope can meanwhile gather dust (assuming that this is not their normal role!).

Teletext Basics

As most of us know, teletext is transmitted in the form of a digital signal that occupies some of the lines following the field sync pulse train, before the picture information starts at line 336 or 23 . The decoder basically has two functions which it must carry out concurrently. It must receive the digital signal and store it in a memory if the page number matches the one selected, and it must convert this digital signal to achieve the required page display on the screen. The page will then remain on the screen until another is called up or we return to the TV mode.

The data reading and display are not, strictly speaking, simultaneous: the data can be read into the memory only during the field flyback blanking period, the display being during the picture period. At the start of teletext transmissions only two lines per field carried data. This has since been increased several times. Each TV line of data represents one row of the display. A row is a horizontal line of characters or graphic symbols - there can be 40 per row. Each row occupies the centre $40 \mu \mathrm{~s}$ of the active line period, leaving a border of $6 \mu \mathrm{~s}$ at the left and right of the display. There are 24 rows per page, using the centre 240 lines of each field. So there's a border at the top and at the bottom, similar to those at the left and right. This allows for a normal amount of overscan.

As just mentioned the data is transmitted using one TV line per row. Rows are transmitted sequentially, so the time taken to transmit a page depends on how many lines are being used for teletext. As the pages are transmitted sequentially this affects the waiting time for the selected page to appear - in practice it depends also on which page was being transmitted when the required page was selected.

The first row, the page header, contains slightly dif-
ferent information from the other rows. It includes the real-time clock information, status (BBC, ITV etc.) and the page number, leaving little room for other characters.

A page is read into the memory only if the page number corresponds to that selected by the viewer. The display information is stored as ASCII codes - 32 to 127 for presentable characters or graphic symbols, the numbers below 32 being used for control codes (attributes). Those who followed my articles on microcomputers may recall that we spoke of series attributes. A control code occupies one character space and can determine the method of displaying the rest of the line, i.e. the background/foreground colours, text or graphics, or whether the line is flashing or double height. An attribute can be cancelled by a succeeding attribute or automatically by the line coming to an end: the space occupied by an attribute cannot contain anything else.

The transmitted data consists of a train of highs and lows corresponding to binary one or zero. If there are several ones in succession the signal remains high - this is called NRZ (non-return to zero) code. The data frequency can be as high as 6.9375 MHz , corresponding to a succession of alternate ones and zeros. Hence the need for excellent front-end performance in a teletext set (I did once receive two out of three channels perfectly on a much modified Kuba Florence with a diode vision detector, but that's another story).

When the page has been safely stored in the memory it must be displayed by converting the printable characters into the correct pattern of dots and applying any attributes. All this requires some sort of synchronisation to the incoming data. This is taken care of by beginning each row with two bytes of 10101010 , i.e. a $6 \cdot 9375 \mathrm{MHz}$ signal. This causes a high- Q tuned circuit (bit clock) to ring throughout the line, providing a master signal to control the various functions. The arrangement is reminiscent of the passive chroma subcarrier generator used in the Rank A823 series chassis. The two bytes are referred to as the clock run in.

The Mullard Decoder

The Mullard decoder used in the G11 chassis employs a set of four i.c.s which operate with matching remote control transmitter and receiver chips and standard TTL RAM i.c.s for the memory. We'll go into TTL later: for now, suffice it to say that except for the first part of the circuit that amplifies the incoming video signal everything runs off a 5 V supply. Fig. 1 shows a simplified block diagram. We'll consider this first then examine each section in more detail.

The first item on the left is the VIP (video input processor). Associated with this are a crystal oscillator and

Fig. 1: Simplified block diagram of the Mullard decoder.
an $L C$ tuned circuit - the latter is the 6.9375 MHz bit clock which is synchronised to the incoming data. This frequency has no relationship to the display function however, so we need another clock to control the character generator (TROM - teletext read only memory). As there are forty characters per row of 40μ s the character rate is 1 MHz . Each character is formed on a 6×8 matrix of dots (pixels) so the pixel rate is 6 MHz (dot clock). This is what the crystal oscillator is for --but unlike the bit clock it's an active oscillator since there's nothing within the incoming signal to synchronise it to.

The VIP also contains a sync separator that produces line and field sync pulses. These, together with the dot clock signal, are passed to the TIC (timing chain) i.c. which uses these signals to provide various control pulses for the decoder. One of these, the DEW (data entry window), acts as a gate for the incoming video, opening only during the data period.

The data is clocked into the TAC (text acquisition and control) i.c. which also receives a data stream from the SAA5010 remote control receiver i.c., clocked in by the DLIM (delimiter) signal. The TAC also takes care of page number matching, timed text selection and, most important, converts the serial data stream to a parallel one of seven bits for storing in the RAM - after parity checks on the data.

We'll deal with the row and column decoder later. The final i.c. in the Mullard set, the TROM, is fed with 1 MHz and 6 MHz clock signals and seven bits of parallel data and produces the correct dot patterns in the correct colours. It also performs character rounding. As its outputs are at the TTL 5 V level these are followed by level-shift buffers. The luminance and blanking signals are added here.

The DE (display enable) line goes low for the picture mode - this causes the TROM's blanking output to go low. As the luminance (Y) and blanking outputs are added and inverted to give a combined signal (data inlay), a low blanking signal causes the data inlay line to go permanently high, switching the interface so that the RGB signals from the normal chroma decoder are displayed. For subtitles, newsflashes etc. the blanking signal goes high for the duration of the box only.

In the mix mode the picture and teletext signals are displayed simultaneously but the picture contrast must be reduced so that the text is legible in areas of saturated colours that match the text. In addition the parts of the display occupied by text must not contain picture informa-
tion. The latter requirement is taken care of by the fact that the Y output from the TROM goes high for the duration of each text pixel, i.e. it gives monochrome teletext. This has no apparent effect in the text mode but in the mix mode when the blanking signal is low the Y signal causes the TV/text output to go low for the duration of each text pixel, i.e. it cuts "black holes" in the picture into which the text is inlaid.

For contrast reduction the superimpose output from the TROM goes low in the mix mode. This makes the RGB interface reduce the contrast and also brings into operation an extra beam limiter which neatly gets round the problem that because the normal beam limiter operates on the brightness control, which has no effect on a text

Fig. 2: Beam limiter modification for the G11 chassis.

Fig. 3: Basic interfacing circuitry used in the G11 chassis.
display, it would otherwise be possible to exceed the maximum beam current in the mix mode.

While on the subject of beam limiters we'll digress slightly to give details of a very useful modification to all G11s, not just teletext models. You may have noticed that the G11's beam limiter has a slightly delayed action. This is caused by the time-constant of C 1 and the brightness control's high impedance - see Fig. 2(a). Fortunately the layout in module U6200 makes it very easy to arrange things so that the beam limiter controls the contrast rather than the brightness - see Fig. 2(b). The practical effect of this is to give much smoother control with no time lag. It's well worth the trouble. Simply remove the screening can from U6200 and locate D211 and R216 behind the preset brilliance potentiometer - see Fig. 2(c). Unsolder D211's anode lead and solder it to the top end of R216-Fig. 2(d). Hey presto the job's done and after seeing the improved results you'll probably want to do it on every G11 that passes through your hands.

Interface Circuitry

Back to teletext. Fig. 3 shows the basic circuitry used at the output of the teletext decoder and on the RGB interface panel. Only the red channel is shown, the other two being identical. The outputs from the TROM are all open-drain f.e.t.s, so external load ("pull-up") resistors are required. Where these are taken to the 12 V rail the output will be 12 V peak-to-peak. The red signal is fed to the interface panel via the emitter-follower transistor T711. The interface panel contains the beam limiter, blanking and three RGB interface circuits.

In the picture mode the data inlay line is high. D1 is thus reverse biased and D5 and T11 pass the TV video
signal to the red output stage. In the text mode the data inlay line goes low, D1 conducts and the TV video is blocked - D5 and T11 are both off. The red text output from the teletext decoder then passes to the red output stage via T17. T17's conduction, and therefore the text brightness, depend on the voltage at R43's slider since the incoming signal is clipped when D29 conducts.

Mix mode is a combination of the two modes just described. The data inlay line goes low for each text pixel, punching holes in the display as previously mentioned. The superimpose line also goes low, with the result that D41 conducts and the voltage at the slider of the contrast control, and thus the contrast, decreases. The amount of reduction is preset by R38.

For the reason mentioned above there's an auxilliary beam current limiter. This consists of T48 and T49 which are active in the mix mode. In the picture mode the superimpose line is high: D56 is reverse biased and D55 and T49 conduct, the voltage developed at T49's emitter holding T48 cut off. When the mix mode is selected the superimpose line goes low. D56 conducts and D55 turns off. This leaves T49 under the control of the beam limiter line: when the voltage on the latter falls, T49 turns off, T48 comes on and the voltage at the slider of R43 - and hence the text brightness - is decreased. In the text mode the superimpose line is high and the data inlay line low: thus D55 and D56 are both reverse biased. The beam limiter T48/49 is active but beam limiting should occur only if a fault occurs - or if R43 is incorrectly set.

It may look as if we've started our description of the teletext decoder at the wrong end. It seemed sensible however to cover the analogue circuitry before getting involved in the detail of the digital side. Next month we'll take up the digital story with the VIP.

Vintage TV: The McMichael Story

The Leslie McMichael company was one of the most venerable of British radio concerns, predating even the BBC. Over the years it had established an excellent reputation for radio receivers, and when it came to develop TV sets the designs avoided a lot of the overcomplication that seemed to afflict the sets produced by so many of its contemporaries. The company started to make TV sets in the late thirties, but we've been unable to unearth any details of these. The chassis used in Model 912 and its associated models, the 909 and 129, marked McMichael's re-entry into the TV field after the war.

Model 912

During the thirties some of the best-selling McMichael radio receivers had been housed in pseudo-antique cabinets with Queen Anne style legs. The 12in. Model 912 followed this same pattern. It had a superhet receiver section designed for reception of the London or Sutton Coldfield transmissions: it also provided radio reception on three preset, switch-selected frequencies, normally the BBC Home, Light and Third programmes though full coverage of the medium and long wavebands was possible. Radio reception facilities were by no means uncommon on early television receivers, but the way in which McMichael accomplished it in this set was extremely unusual, as we shall see.

For TV reception the signal from the aerial was switched to the control grid circuit of an EF42 pentode that operated as an r.f. amplifier, passing next to an ECC91 double triode arranged as a mixer/oscillator. The local oscillator operated above the signal frequency, at 68.5 MHz for London or $85 \cdot 25 \mathrm{MHz}$ for Sutton Coldfield. This produced 27 MHz and 23.5 MHz sound and vision i.f.s (in those days it was not always the case that the sound i.f. was higher than the vision i.f.). Two further EF42s provided vision i.f. amplification. These were followed by an EB41 detector/interference limiter, then another EF42 which drove the cathode of the MW3I-14C c.r.t.

The sound i.f. signal was meanwhile taken to the grid circuit of a second frequency changer, this time an ECH42 triode-hexode. The local oscillator again operated on the high side, at 29 MHz , producing a second i.f. at 2 MHz which was amplified by an EF41 variable-mu pentode then passed to an EB41 demodulator/interference limiter. The detected audio signal was returned to the EF41's control grid before going to the interference limiter section of the EB41, the EF41 thus acting as both an i.f. and a.f. amplifier (reflex amplification). The EL33 audio output pentode drove a 10 in . speaker in the base of the cabinet, sound quality being an important feature of these sets.

For radio reception a low-pass filter was switched into the ECH42 frequency changer's grid circuit. Whilst it cut off sharply at around $1,600 \mathrm{kHz}$ it had a substantially flat response over the long and medium wavebands. No r.f. tuning was employed here, station selection being achieved by switching in one of three oscillator coils that were tunable over ranges 2 MHz higher than the long/ medium frequencies. This arrangement didn't provide a great degree of r.f. selectivity, but for local station
reception the wide i.f. bandwidth assured high quality.
Yet another EF42 was used as the sync separator, operated in the conventional manner. The field and line timebases both used blocking oscillators. Fig. 1 shows the field timebase circuit. An interesting point here was the care taken over synchronisation. The field sync pulses were fed to the grid of the first section of the 6SN7 double triode, whose cathode voltage was set by the field hold control. This triode acted as a limiter, so that equal amplitude sync pulses were applied to the oscillator section of the 6 SN 7 to ensure good interlacing. The sync pulse coupling was to the grid of the second section of the 6 SN7 via the $1: 1$ blocking oscillator transformer. The sawtooth waveform developed across C70 was fed to the EL33 output valve via the linearity control. Chokecapacitance coupling was use to the high-impedance scan coils.

The line output stage is modern looking (see Fig. 2) but operated in the class A mode. An EF42 was used as the line blocking oscillator, the sawtooth developed across C76/R76 being used to drive the EL38 line output pentode. The overwinding on the line output transformer developed some 4 kV which was fed to a voltage doubler circuit using two EY51s. V12 (EZ35) was included to damp the circuit following the flyback - it's not an efficiency diode. The EZ35 full-wave rectifier valve had a well-insulated cathode and was primarily intended for use in car radio receivers. Setting up this circuit, with its two linearity controls, was not easy: the coarse linearity and hold controls were to some extent interdependent, as were the fine linearity and width controls.

The 912 had two power supply units that delivered 275 V at 70 mA and 385 at 220 mA respectively. Switching reduced the consumption for radio reception. The heaters were supplied by a $6.3 \mathrm{~V}, 9.5 \mathrm{~A}$ secondary winding on the main power supply transformer.

The 909 was a 9in. model that omitted the radio reception facilities and was housed in a simple console cabinet - no Queen Anne legs this time. It was fitted with an 8in. speaker. A 12 in . version, Model 129, was also produced.

The Economical 512

McMichael's next effort was the 512 , which was similar in appearance to the 912 . It was another 12 in . set, this time with an r.f. tuning system that gave complete coverage over Band I with simple three-knob tuning. The number of valves used was small for the time - just thirteen. This was achieved by the use of some ingenious circuitry, as we shall see.

A conventional superhet circuit employed an EF91 r.f. amplifier followed by a 12AT7 mixer/oscillator. There were two stages of vision i.f. amplification, using EF91s. One then looks in vain for the detector/limiter valve preceding the video output valve. This was the first bit of simplification. McMichael took the very unusual step of using anode bend detection in the video output valve itself. This method involves biasing the valve near to its cut-off point, the result being rectification plus amplification. It's not a very efficient form of detection but offers

Fig. 1: Field timebase circuit, Model 912.

Fig. 2: Line output stage, Model 912.

Fig. 3: Sync separator circuit, Model 512.
the advantages of high input impedance, high amplification and a good measure of self-limiting as regards interference. A filter was included in the anode circuit to remove the i.f. component.

The sound section was straightforward. An EF91 provided both i.f. and a.f. amplification, an EB91 provided detection and interference limiting, and a PL33 served in the output stage.

A conventional pentode sync separator was used (see Fig. 3) but the load circuitry was unusual. The field sync pulses were tapped from the screen grid and then integrated while the line sync pulses were developed across
a coil (L12) in the anode circuit, differentiated and fed to the line timebase.

There was considerable simplification in the timebases, the field timebase in particular revealing the modest scan powers required for the narrow deflection angle tubes of the time. It consisted of a miniature 12AU7 double triode acting as blocking oscillator and output stage. The 12AU7 has a rated anode current of only 10.5 mA at 250 V , and supposedly a maximum anode voltage of 300 V . McMichael applied 330 V and presumably got away with it. The 17 V cathode bias implies that the anode current was just over 7.7 mA . No one could say that the field timebase was not economical of h.t.! Negative feedback for linearity correction was applied between the anode and grid of the output triode and the scan coils were transformer coupled.

The line timebase was even simpler. It consisted of a PL38 in a self-oscillating arrangement and an EY51 to provide the e.h.t. When we say a self-oscillating arrangement there were in fact two modes of operation. The valve was connected as a transitron oscillator, with capacitative coupling between the suppressor and screen grids, and as a feedback oscillator with coupling from the secondary winding on the line output transformer back to the control grid.
H.T. was provided by a PZ30 rectifier fed from an overwinding on the mains autotransformer - this provided an input of 315 V a.c. Secondary windings gave two 6.3 V supplies, one for the c.r.t. heater and another for use with an optional preamplifier. The other heaters were series connected and supplied via a thermistor and a mains dropper resistor in the conventional a.c./d.c. manner.

TM51 and TM52 Series

The 512 set the pattern for a while. The following 512 RV , which incorporated a separate five-valve radio, and TM51 differed mainly in reverting to a comventional EF91 video output stage with an EB91 as vision detector and interference clipper of the time-constant type. In the sound section reflex amplification was out, an ECL80 being used as audio amplifier/output valve.

The following TM52 series again saw little change. A GZ32 came in as the h.t. rectifier, the vision interference limiter was changed to an adjustable type and in the line timebase the transitron coupling was deleted. Maybe in earlier versions it had simply provided a start-up action? In later versions the line sync pulse coil was omitted apparently this gave improved line hold performance. So much for earlier efforts! A Metrosil was added to give improved e.h.t. regulation and the first anode supply was tapped from this.

A Full-specification Chassis

1953 saw the introduction of the TM53 series, of more modern design and incorporating just about everything flywheel line sync of the coincidence detector type, gated vision a.g.c., a triode vision interference limiter, multivibrator timebase oscillators and a line output stage with efficiency diode (PL81, PY81, EY51). The e.h.t. regulating Metrosil was retained and a further Metrosil (voltage-dependent resistor) was used as the cathode bias resistor in the video output stage. As with previous designs, McMichael took care over the field sync pulses. The circuit used here is shown in Fig. 4. This strange circuit used a triode as second sync separator followed by

BILLINGTON VALVES

We have now diversified into the supply of cathode ray tubes (new and rebuilt), transistors and integrated circuits. We aim to provide popular types at very competitive prices and specialise in obsolete and unusual types, eg geranium transistors, silicon diodes.
Write today for a quotation on your requirements.
VALVES: Send today for our catalogue of new, guaranteed valves - we can supply from stock virtually any type, vintage or modern.
CLEARANCE OF USED VALVES: All tested, boxed, 28-day guarantee - all clean condition (mostly Mullard).
ECC81 40p, ECC82 35p, ECC83 30p, EF80 30p, EF183/4 30p, GY501 50p, KTT66 £4, PCL84 30p, PL504 50p, PL509 £2, PY88 40p, PY81/800/801 45p.
All prices exclude 70p post/pkg per order and VAT @ 15%. Please allow 14 days for delivery of used valves. Transistor quotations by return (2nd class post unless SAE provided). We still require a quantity of valves PX4 \& PX25 to fulfil an outstanding order. We will pay high prices for these in any quantity, large or small, including equivalents PP3/250, PP5/400, DA30.

Mail Order Only - Callers by Appt. only 23 Irwin Drive, Horsham, West Sussex RH12 1NL

inductive integration with a diode that was described as a "field pulse damper". It seems that there was trouble with the line output transformer, since a different type was supplied for replacement purposes.

Swan-song

The chassis introduced in 1954 for the TM54 series of models marked the swan-song for McMichael as an independent manufacturer: soon after, the firm was taken over by Sobell. Yet looking at a contemporary brochure there was nothing to suggest - much the opposite - that the Slough firm was running out of ideas or steam. The models were all fitted with twelve-channel turret tuners and some incorporated f.m. radio facilities (the BBC's first f.m. radio station, at Wrotham, Kent, was officially opened in May 1955). The radio unit was completely separate electrically and could thus be used independently: for models that didn't have a radio fitted a trolley with a compact m.w./l.w. superhet built into the top platform was available at $£ 25$. It had a mains socket for the TV set so that only one mains lead was required, a thoughtful touch to avoid "spaghetti" around the carpet.
As with the TM53 series, up-to-date valves (EF80 etc.) were used but the valve complement was reduced from 22 to seventeen (plus six crystal diodes and a metal rectifier). The tuner employed the then standard PCC84/PCF80 combination and was followed by a brace of EF80s each for vision and sound i.f. amplification. Crystal diodes were used for detection in both channels. Out went the vision a.g.c. and flywheel sync for some reason, but the chassis was still quite a complicated affair. One strange arrangement was the two-valve video amplifier, an EF80 driving a

PL83 (see Fig. 5). According to the contemporary Trader service sheet the reason for this was to provide sufficient drive for the c.r.t., as an alternative to using an extra stage of i.f. amplification (weren't two EF80s sufficient?). Anyway, a lot of effort went into the design of this curious arrangement. There were video correction chokes in V5's control grid circuit and in the two anode circuits and a preset video gain control was provided (R16). Because of the a.c. coupling between the two stages, d.c. restoration was provided by driving the second valve into grid current.

Care was also taken over the design of the sync circuitry. The pentode sync separator was followed by an EB91 plus an integrating network in the field sync pulse feed and by no fewer than three clipper and clamping diodes in the line sync feed (all GEX34s). The timebases otherwise followed the pattern set by the TM53 series, with multivibrator oscillators and separate pentode output stages. On the line output side, the contemporary brochure claimed that the "exclusive McMichael Direct Drive Line Output is a far greater safeguard against Electrical Breakdown. The prestige of British research has been enhanced throughout the world by this exclusive McMichael development (McMichael's capitals)." Looking at the circuit diagram one finds it difficult to see what precisely was meant here: there was no scan coupling capacitor (there generally wasn't at the time) while the high-impedance scan coils were wired in series with the primary winding on the line output transformer.
The h.t. rectifier was an LW7, which will be well remembered by all "old hands". The output from these little fellows used to drop sharply with age, and much engineers' time was spent in replacing them, often with the bewilderingly small new silicon rectifiers (plus addi-

Fig. 4: Field sync circuit, TM53 series chassis.

Fig. 5: Video amplifier circuit, TM54 series.
tional 21Ω surge limiter). Apart from the odd open-circuit dropper section and dried up electrolytic, nothing else ever went wrong with this type of power supply. The McMichael circuitry here was a little more complex than that of some of its contemporaries, but it still used only seven components apart from the rectifier and mains
dropper. I think of this sort of thing when I see circuits of modern power supplies that take up a whole page of Television . . .

Thus ended the story of another of the pioneering firms in the history of TV. Following McMichael modek were fitted with chassis developed by the Sobell team.

Letters

TELETEXT PROBLEM

I wonder whether anyone can offer any help with the following problem? Being one of those who like to be in at the beginning I obtained a set fitted with the Tifax XM11 teletext decoder module. The trouble is that it doesn't seem to like today's transmissions with extra teletext lines. The symptoms for me are mainly lack of perfect decoding: on Ch. 4 for example lines of teletext will be lost and only sometimes regained next time round. So there we are. Has anyone any ideas or do I have to suffer evermore the consequences of buying an early design?
G. Beard,

Wandsworth, London.

WHERE ARE THE TUBES?

The problem l've had for the last twelve months or more is in trying to obtain small monochrome c.r.t.s for monitors. I've at present two Shibaden 9in. (230mm) monitors requiring tubes and it seems that there are no stocks anywhere in the UK. Suppliers of spares for TV sets seem to be able to provide everything you require from a PL81 to the very latest microcomputer chip - but not the display component. So if any supplier does have stocks of such c.r.t.s, please let us all know!
C. D. Thompson, Senior Lecturer,

Liverpool 18.

PCB TIP

Here's a quick tip worth adopting. After working on a printed circuit board remove any dried flux with a suede shoe brush (not a Hush Puppy brush) and spray the board with PCB lacquer (RS type 554 989). If we all did this repairs would look like first ones every time.
J. Hopkins, The TV Workshop,

Wisbech, Cambs.

SIMPLE FADER CIRCUIT

The little circuit shown in Fig. 1 might give readers food for thought (or a bloody good laugh!). It's a very simple fader unit. I use the word fader but in fact the circuit actually limits the amplitude of the video signal depending

Fig. 1: Simple video fader circuit.
on the setting of VR1: VR2 stops the bias dropping too far so that the sync is lost. As the signal is removed from the top down the burst is the last thing to go, so chroma remains to the very end.

To set up, turn VR1 to minimum resistance then adjust VR2 until all video is only just removed. VR1 should then fade the video in and out.

This little circuit can't compare with a proper fader of course, but it does allow you to go down to black level for a cheap and cheerful edit.
D. C. J. Tilley,

London E2.

BELTS ' N ' MOTORS

I'm not sure how serious Steve Beeching intended to be in his letter in the November issue. My colleagues and I have changed over thirty loading belts in Ferguson 3V29s and $3 V 30$ s and have never had a comeback for the motor, though we have had a motor fail. The difference in the time required to change an assembly and a belt is about thirty seconds in favour of the belt, mainly because you don't have to wait for the soldering iron to heat up. As for Steve's final comment, it's well known that all engineers in this trade are paid very low wages.
Derek Snelling,
Brownhills, Staffs.

COLOUR PORTABLE PROJECT

Although the Television colour portable project dates from 1981 the design was so good that many readers may still be interested in building it. One problem that would arise is with the SL470 chip (IC3) in the remote control decoder/interface unit - the BCD to one of ten decoder/ varicap tuning i.c. The SL470 chip in our receiver recently failed and on trying to get a replacement we were told that it has now been superseded by the SL471.

The SL470 is used in the remote control receiver system in many Ferguson TX9 and TX10 receivers. On odd occasions we've replaced this chip with an SL471 that's worked admirably without any need for modifications. This is not the case with the remote control receiver panel in the colour portable project however. We found that when we replaced the SL470 with an SL471 the display read $1,2,3,4,8,8,8,8 \ldots 1,2,3$ etc. Also the varicap drives were all over the place. So we set out to find why this was happening.

We found that the SL471 and the MC14493 LED driver/decoder together reduced the outputs at pins 8,9 and 10 of the SAA1251 receiver chip (IC1) to such an extent that the SL471 and MC14493 couldn't be driven properly. The modifications required to overcome this problem are simple and relatively cheap. We also found that the MC14493 doesn't like operating at much less than 5 V , and discovered that the voltage at the anode of the BZX61C13 zener diode D7 is barely 4 V . The first modification therefore was to replace this zener diode with a 78055 V regulator. The input to this is taken from the 18 V rail via a 150Ω current limiting resistor. The second
modification was to add $100 \mathrm{k} \Omega$ resistors in series with the A, B, and C inputs to the MC14493 LED display decoder chip, i.e. between pins 8,9 and 10 of IC3 and connections D3/4/5.

All this suggests that the SL471 consumes more current than the SL470. In the Ferguson TX9 and TX10 chassis the use of different receiver chips enables the SL470 to be replaced with the SL471 without modification.

Our main reason for writing is to help people who've
built the project and find that they have to replace the SL470 with an SL471 due to failure of the device.
K. Stanley and R. Wateridge,

Stanley Television, Portsmouth.
Editorial comment: Our thanks for this helpful suggestion. We would not recommend constructors to build this project today since difficulties are likely to be experienced in obtaining line output stage components.

In the Workhouse

Les Lawry-Johns

Yes we're back in the workhouse again - after a very lean period that extended from before spring until well into the autumn, a period when we fretted and wondered whether the trade would ever come back. The theories we pondered were many and varied, e.g. more reliable sets, too many spare sets and so on. Whatever the real reason, the wheel seems to have turned and the sets are now coming in thick and fast. Mainly G11s and T20s, with the odd ITT and GEC set for good measure. I'm glad of this since I don't like those odd sets with strange sounding names that were born half a world away, and I don't take in videos or computers either. They're too complicated for me. Fault tracing with a logic probe? Ugh! "How does he live?" I can hear you say. I suppose the answer is that we don't have a staff to pay, we don't want expensive holidays and we're always here when wanted. In the workhouse so to speak.

Tony's Ordeal

It seems that not only us men read this magazine. Apparently lots of women do as well. I know Keith Cummins' wife does, but then she was a local lass before she met him - him and that Casablanca image he projects. It would appear that Tony's wife also reads this Macho Magazine and when she read that bit in the November issue about Tony wearing black tights etc. she wasn't very pleased. What can I say? It was all by way of a joke dear, honest. The fact that Tony has been threatening to throw bricks through our windows late at night has nothing to do with this apology, nothing at all. It wasn't Tony who wore the tights. It was Jim (now I'm for it).

The Pye 725

Do you remember me telling you about the struggle I had with a friend's Dynatron fitted with the Pye 731 series chassis? If you recall, the trouble was to do with changing the BU208 line output transistor. Following the nightmare of removing the vertical panel I found that the screws holding the BU208 refused to budge. Son-in-law Douggie came upon the scene and offered to help using his car repair kit. The BU208 then came out all right but the panel was well nigh destroyed and took hours to repair. When I say how much I welcome a well known name on a set that comes in for repair I do have to admit to being dubious when one of these Pyes comes along.

One that I'd sold several years ago came in the other day. The centre 800 mA h.t. fuse had failed but a meter check didn't record a short. Now this usually means that
the $0 \cdot 1 \mu \mathrm{~F}(1 \cdot 25 \mathrm{kV})$ first anode supply reservoir capacitor inside the top of the line output stage screening has shorted, but it hadn't. So a new fuse was fitted. It blew and another check was made. This time there was a shortcircuit, and it just had to be the BU208. I tried to slacken the screws without removing the panel but had to accept defeat. So the nightmare started. It eventually came out and the BU208 was replaced. Now it's one thing to remove these panels, another to put them back complete with all the plugs etc. I know there's an easy way. It just doesn't seem to work for me and reading instructions is an art I've never mastered. I always forget what I've read as soon as l've read it you see. No, the 725/731 series isn't one of my favourites - not when there are line output stage troubles.

Droopy Draws

I suppose the G11 is one of my pets. These sets don't seem to give much trouble when they come in - and they do come in, thick and fast. EW troubles are normally due to dry-joints or the fact that the BY223 has caused the BD238 to fail. One that was a little different came in recently. No dry-joints could be found so we swung the line scan panel round and there it was: old droopy draws. The EW loading coil hung down in shame. It was like looking at myself. We always keep a few of these in stock, so in no time the new and more substantial coil was fitted and the raster sides were nice and straight again. It did look sad though, drooping down like that.

Such a Nice Girl

A car stopped outside and I could see that the driver was a young and very pretty girl with long blonde hair. So I resolved that I would do my best for her. She got out and I could see that there were two young kids and a baby in the car. Someone else had been doing his best already. She yanked a 22 in . T20 out of the back of the car and casually brought it into the shop. Strong too I thought. She put it on the bench and without further ado told me about it.
"Fucking thing's gone again" she declared.
I didn't know what to say, me with my delicate upbringing.
"Where's it gone?" I gasped.
"It ain't gone nowhere you nit" she snapped. "I mean it's gone wrong again and I'm bleedin' fed up with it."
"When did I last do it?" I asked.
"Ain't bin here before. Those Snappy Service idiots had it - three times."

So I ventured a look and found that the BU208 was short-circuit. "Call back in half an hour and I'll tell you more about it" I whispered.
"Hope it's going to be done properly."
"So do I."
And away she went, roaring off down the road and
leaving me to fit a new transistor and test the set.
It had a funny way of coming on, remaining faint with curled edges for quite some time. This suggested to me that the power supply module was at fault, with probably one of the small $47 \mu \mathrm{~F}$ capacitors suspect. So I fitted a replacement power panel and everything came on nicely and behaved itself.

She came to collect it. "Do you think the bloody thing will be all right now?'
"I hope so, but I've only fitted a power board and line output transistor so I can't speak for the rest of it. It's yours dear, not mine."

She said something nasty, paid up and went.
She was back next day and the air was blue. I yelled for help and Zeb came bounding in. He took one look and bounded out again. Some guard dog. H.B. popped her head around the corner and popped it back again. I was alone and felt lonely. I got the set in - she didn't carry it this time - and found that the 1.6 A fuse on the power panel had blown. Fortunately I'd fitted a pair of $47 \mu \mathrm{~F}$ capacitors ($7 \mathrm{C} 4 / 5$) on the original board and this was now in full working order. It was replaced in a flash.
"Just a little thing. I'm sorry you've been bothered" I apologised.
"I suppose you want another small fortune?"
"Oh no madam, it's on the house. Our pleasure, so pleased to see you . . ."
"Bollocks" she snapped as she departed, I hope never to return.

The Network Colour Portable

After all those G11s and T20s and the experience just recounted an old friend popped in with a set I'd not seen before. It was a Network NW1414 14in. colour portable. I took the rear shell off, peeped inside and was depressed to see a chassis that lowered just like a NordMende, with a thyristor line output stage etc. Dead was the complaint and I just happened to spot a wirewound resistor sprung open at the top centre. R607, $1 \cdot 2 \mathrm{k} \Omega, 5 \cdot 5 \mathrm{~W}$. The set started up when I touched the resistor together so I soldered it back. The set then worked perfectly and I left it on for some time, noticing that the resistor remained quite cold. I concluded therefore that it was a start-up resistor that had been suddenly asked to do a bit more than usual and wondered why. Having run it for some time I returned it to its owner.

He brought it back next day and I said I'd keep it for a week just to make sure. Once more the resistor was open and the set functioned perfectly when the contact was restored. It then continued to function every day for a week and has now gone back. I wonder what it was - and hope I don't have to find out.
(Editor's note: The set is one of the Grundig Networks, GCS100 chassis. See page 608 of the September 1984 issue for information on R607 going open-circuit.)

Zeb

I mentioned Zeb's cowardice when confronted with the young lady of the blue language. He's not really like that. It's just that he doesn't like high pitched noises - and she was certainly high pitched. Fireworks have the same effect. Otherwise he seems to know no fear. He's a very good guard dog and kicks up merry hell when anyone comes near the door and we're not around. That means a lot to us. Just thought I'd put the record straight. Now, about that cat . .

next month in

- VCR DEVELOPMENTS

Major develop nents in VCR technology, including lorig-play operation and hi-fi sound recorded using he'ical tracks, have been introduced on up-market machines released during the last year. Steve Beeching explains the techniques used, with sje cif c reference to the JVC HRD725, a full-specification machine with all the "trick" features and a vision noise reduction system.

AMSTRAD CPC464 SERVICING NOTES

Practical fault-findirg guidance on the Amstrad CPC464 micrccomputer and its associated monitcrs, based on eighteen months' experience of the machine.

DECCA-TATUNG 160 SERIES

Ray Wilkinson brings us right up to date with the clirent $160 / 165$ series chassis. The 160 is noteworthy for the design simplification achieved. Interesting points of detail include the absence of a luminance deay line and line drive that keeps the line output transistor out of saturation.

- QUICK CHECKS - PHILIPS CTVs

S Simon continues his series with quick check procedures for the 38, G9 and KT3 chassis, covering the common fault conditions (very few with the reliable KT3).

TEST REPORT: THE PORTASOL IRON

What's this - a gas-operated soldering iron! W'hile not suited to general bench use there are many applications where it's a boon. Eugene Trundle found the peformance very good, with an adjustable capability of $10-60 \mathrm{~W}$.
VIDEO SCRAMBLING TECHNIQUES
Video signal scrambling has come into wider use vith the increase in the number of cable and satellite TV services in Europe. Andy Emmerson reviews the basic techniques employed.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO

(Name of Newsagent)
Please reserve/deliver the February issue of TELEVISION ($\mathbf{(1 - 2 0) \text { , on sale January }}$ 15th, and continue every month until further notice.
NAME
ADDRESS

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT CVC25 CHASSIS

The set works perfectly when switched on from cold, but if switched off then on when warm the h.t. trips on and off for about ten seconds then the set goes dead. It works perfectly again from cold.

The fact that the set operates happily from cold suggests that the line timebase and other stages are probably o.k. The most common cause of this effect is incorrect setting of the trip circuits in the CMP30 chopper control module. First set R808 for 160 V at C52 then trim R817 (over-volts) and R810 (excess current) as laid down in the manual.

SONY KV2000UB

There's picture break up in a horizontal band that's about an inch wide and four inches from the top of the screen. This is accompanied by a loud, irritating buzz.

We've had this very fault. It took a long time to find the cause, which turned out to be C612 $(3.3 \mu \mathrm{~F}-4.7 \mu \mathrm{~F}$ will do) in the chopper power supply. This electrolytic had dried up: it's the 21 V rail's reservoir capacitor.

PANASONIC NV366

The fault is present with prerecorded tapes only - saturated colours streak to the left of the luminance image. There's no trace of the fault with the machine's own recordings. With the machine in the still-frame mode the effect is less pronounced but still very obvious. When a tape recorded on the machine is played back on another one the symptom is reversed, the streaking being to the right.

This problem is not uncommon and is caused by incorrect back tension in the afflicted machine. You can prove this by manually altering the position of the back tension pole while watching the picture from a prerecorded tape. The trouble doesn't arise with the machine's own recordings because self-recorded tapes are laid down and read off under the same tension conditions. The back tension with this machine should be $25-30$ grams. Adjustment requires the use of a Tentelometer type gauge.

GRUNDIG 8610

The sides of the picture are bowed in by about two inches at the centre. The EW modulator diodes and the Darlington driver transistor have been checked and found to be o.k. and the supplies in this area are correct. One odd fact is that the bowing reduces to about half an inch at each side when the set has been on for half an hour. A check for dry-joints failed to reveal anything amiss.

It sounds as if the EW drive circuit is operational but
being starved of a field-rate parabolic input. This can be caused by a dried up or open-circuit coupling capacitor. Check, by substitution, $\mathrm{C} 480(4 \cdot 7 \mu \mathrm{~F})$ on the EW module, $\mathrm{C} 468(47 \mu \mathrm{~F})$ on the field timebase module and C490 $(220 \mu \mathrm{~F})$ on the mother board.

FERGUSON 3V43

This machine gives perfect results apart from the fact that the still tracking control has to be set fully clockwise to eliminate noise on a still picture. This is so whether the tape has been recorded on the machine or on another one. With the control in the centre-click position the bottom third of the screen is obliterated by horizontal streaks.

It's our experience that this machine doesn't give a good still frame with half-speed recordings: also, if the machine isn't on a level surface the chassis can distort sufficiently to produce a noise bar.

PYE 731 CHASSIS

With the brightness, colour and contrast controls at minimum there's a bright, greyish raster with flyback lines. Adjusting the colour drive and first anode controls has little effect on this. The thick-film unit has been replaced and all the resistors in the first anode control networks are within specification.

These symptoms are basically those of a c.r.t. with grid emission, when a particle from the emissive cathode gets detached and lodges on the gun assembly sufficiently close to the cathode to become hot enough to start emitting. This produces a colourless raster that cannot be controlled by any adjustment and is usually displaced by a few millimetres from the picture raster. You can try tapping the neck of the tube when cold and with the set face down, replace the tube or put up with the condition.

SONY KV1810UB Mk I

There are two problems with this set. First the verticals on a test pattern are bent at the bottom of the screen, predominantly on the right-hand side. Secondly there's a slight ripple on certain pictures.

For the bent verticals, replace the pincushion correction signal coupling capacitor C585 ($4.7 \mu \mathrm{~F}$) then adjust the pincushion controls VR585 and VR586 as specified in the manual. The ripple on picture effect is likely to be due to a dried-up smoothing capacitor in the power supply: check the h.t. smoothing capacitor $\mathrm{C} 621(47 \mu \mathrm{~F})$ and the 19 V rail smoothing capacitor $\mathrm{C} 624(47 \mu \mathrm{~F})$, also if necessary C616 $(0.47 \mu \mathrm{~F})$ which decouples the emitter of the error amplifier transistor. Replacement capacitors should be obtained from Sony.

TOSHIBA V8600

The fault occurs on playback of material recorded on my other machine (a Sanyo VTC9300), sometimes with prerecorded tapes and very rarely on playback of the machine's own recordings. It takes the form of a loud buzzing whenever there's a noticeable amount of white in the picture - switching the NR doesn't affect the noise or its amplitude.

Remove the top of the cabinet and check for at least 9 V on the red wire going to the r.f. converter. If this supply is o.k., reduce the setting of the modulation level preset inside the converter slightly. If the supply is below 9 V , Q661 on the servo/logic board is defective - any mediumpowere npn transistor will do in this position (remove the cabinet base for access).

277
Each month we provide an interesting case of $T / v i d e o$ servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Fidelity Radio has by tradition been associated with value for money radio receivers and audio products: its entry into the television world represented a brave venture into a field dominated by the big boys. The TV sets are well designed and presented, and maintain the low price/good value image associated with the company.

Our concern this month is with a Fidelity 14in. colour portable, Model CTV14. It's an up-to-date design with most of the of the circuitry in i.c. form. The chopper is controlled by a TDA2581, a TDA1180 looks after the sync processing and the field timebase consists of a TDA1170S. Our problem is easy to describe: complete loss of line hold. Should have been easy to diagnose too

The line sync wasn't far out - there were ten or twelve slanting lines across the screen. The line hold control P14 had no effect whatsoever on the number or angle of these lines. Field lock was good and the first, perhaps misguided, step taken was to check the sync separator stage's bias resistor R 604 ($1 \cdot 8 \mathrm{M} \Omega$). Not surprisingly it turned out to be all right. A more sensible check was made next - for correct voltage variation at the slider of the line hold control. It ranged from zero to around three volts, which was judged to be correct for the resistor values involved. Certainly the crucial voltage, 2.8 V , could be obtained at pin 15 of the TDA1180. The voltages at the other pins were reasonably correct, though it was not easy to interpret those at pins 11,12 and 13 because of the out-of-lock condition. The feedback pulses from the line output transformer were present and correct at pin 6, though out of lock of course. The next step taken was replacement of the $0.0047 \mu \mathrm{~F}$ frequency-determining capacitor C611, again with no effect on the symptom. This was followed by substitution checks on C608, C607 and C606 and resistance checks on R609, R610, R613, R614 and R619. These components all proved to be in good health. A low-impedance bias voltage was then applied direct to pin 15 of the i.c.: by this means a large voltage swing could be and was applied to the i.c., again with no effect.

At this point the technician involved became convinced that the TDA1180 was faulty. It's not one of the most common devices, and since none were held in stock a written order was sent off and the set was put to one side. During the few days that elapsed before the replacement
chip arrived the details of the struggle became half forgotten, and when the time came to complete the job it was given to the workshop trainee ("general bleedin' dogsbody" is his own description of the role he plays). He fitted the i.c., checked over the set and switched on. "Can't get rid of the lines 'ere" he said, winding the hold control P14 from one end to the other of its travel.

It wasn't the TDA1180 then. The faulty part was finally tracked down and another written order went winging off to Fidelity. This time the diagnosis was right, and the little telly's correct operation was finally restored. Most of the hassle described above could have been avoided if someone had taken a good look at the circuit diagram at the outset. What had been overlooked? Full details next month.

ANSWER TO TEST CASE 276 - page 114 last month -

Some strange cases turn up on this page, and last month's puzzle was perhaps as strange as any. The unhappy participant was Mrs. Tedham, whose new ITT VR3905 wouldn't record clear pictures in the timer mode. Unattended recordings were very snowy, but investigations at the site and in the workshop failed to bring to light the cause of the problem.

Our trouble was that we were too near the trees to see the wood! If we'd had it set out as we've done for you maybe we'd have twigged it much sooner. It will be recalled that Ace Aerials had installed a high-gain aerial atop a tall pole, and of course a masthead amplifier was involved. This was powered from the usual set-back mains power unit whose mains lead was wired into the TV set's 13 A plug in the usual way. Whenever the lady left home, off went the wall switch for the TV set and off went the power to the masthead amplifier. So there were virtually no signals for the VCR to pick up when it clicked into life in the absence of its meticulous mistress.

The set-back power unit now shares a 13A plug with the VCR and all is well. Mrs. T is convinced that she'll return one day to find that the house has burnt down. If it does we may have material for another Test Cast item what caused the conflagration? Did the aerial pole buckle in the heat? Perhaps not .

[^0]| | |
| :---: | :---: |
| PHILIPS YEARS AHEADTHE CREDIT CARD CALCULATORSOLAR POWERED $\quad £ 6.00$ | |
| NEW PANELS | |
| THORN 4000 LOPT Panel | £15.00 |
| Gll IF Panel | £8.00 |
| THORN 9600 Line Panel | £12.00 |
| G11 Decoder Panel | $£ 12.00$ |
| POWER SUPPLY 731 | £6.00 |
| G11 611 Condenser 470/250V | 89p |
| G9 Power Panel | 13.50 |
| G9 Frame | £8.00 |
| TX10 Remot Panel with 5AA1012A-SL47I-HCF4070-MCl4493P 4IC | |
| | |
| 9000 SERIES Decoder 01929014 080 Thorn | £5.00 |
| THORN TX remot panel. 51.C. ML923-SL490-MC14528B-MC14493P-SL470 \& Main Trans | |
| HITACHI LOPT Split Diode 2432871 | £7.00 |
| RANK T20 Fouces Pot | 75p |
| RANK 718 Foucs Pot | £1.00 |
| THORN 9000 LOPT Panel | £12.00 |
| 26" HITACHI LOPT Split Diode 2432301 | 88.00 |
| 16" HITACHI LOPT Split Diode 2433481 | £6.00 |
| HITACHI Transformer P2270851 | 50p |
| HITACHI AE Socket | 30p |
| $\cdot 1$ CONDENSER Axail Leads 450 A/C $1200 \mathrm{D} / \mathrm{C}$ | 15p |
| MAINS TRANSFORMER 240 v in/20v/8v | £1 |
| VM6103/GBR01 Decoder Teletex | E^{3} |
| CANON Tape Motor 6 v . | 35p |
| MICROPHONE with Switch | 25p |
| HITACHI $6 \times 4-8 \Omega$ Speaker | 50 p |
| ET596 UHF V/CAP Tuner, small | $£ 2.50$ |
| FIDELITY Panels with I.C. | $£ 1.00$ |
| FIDELITY LOPT Split Diode AT2076/80 | $£ 3.00$ |
| FIDELITY FBS 1245AE LOPT Mono | £1.00 |
| FIDELITY Split Diode FCC2015BE | 15.00 |
| HI-FI MICROPHONE N8501 Philip | 18.00 |
| G8 TUNER V/CAP on Panel | £3.50 |
| THORN 9000 Sound OP Panel | £30p |
| THICK FILM, Hitachi RB-32 4A | £2.00 |
| THICK FILM, Hitachi Frame | £5.00 |
| SL917 | $£ 3.50$ |
| 80 S THORN Speaker | 15p |
| 9000 Speaker | £1.00 |
| HITACHI Split Diode 2433752 | £6.00 |
| THORN CHASSIS 1600-1700 Series Mono | $£ 10.00$ |
| THORN 1600 Rec- \& Anode Cap | 50p |
| ET-614 UHF V/CAP Tuner | £2.00 |
| $6 \times 21 / 4$ SPEAKER $5 W$ Hitachi 8Ω | 50p |
| K35 20 Turn Pots | 6p each |
| K35 12 way Push Bution Unit | $£ 1.50$ |
| PP3 DURACELL 4 for | £1.00 |

SENDZ components

 63 BISHOPSTEIGNTON,SHOEBURYNESS, ESSEX SS3 \& AF.
SAME DAY SERVICE
All items subject to availability. No Accounts: No Credit Cards. Postal Order/Cheque with order Add 15\% VAT, then £1 Postage. Add Postage for Overseas.

Callers: To shop at 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10\% handling charge.
> W. TREE CASH \& CARRY UNIT 9, STONEBRIDGE MILLS, STONEBRIDGE LANE, LEEDS 12. Tel: 638804

TRADE WAREHOUSE.

Prestel, T.V.s, Videos, VACS, Monitors.

3 hour Video Tapes, $£ 3$ each. V.H.S.

VIDEOS

FERGUSON 3V22, working £110
SONY C5, working £85
SONY C5, off pile £35
SONY 8080's £55
SANYO 9300's £55
SONY C6's off pile £45
EX-HOTEL SETS
Mint condition Tubes and Cabs
ITT $20^{\prime \prime}$ £80 each
DECCA $£ 70$ each
PHILIPS KT3 £90 eachTeletext makes include PHILIPS, PYE andFERGUSON
NOW IN STOCK
Top grade fully remote T.V.s from $£ 65$
Mint condition tubes and cabinetsMakes include PHILIPS, NATIONALPANASONIC, HITACHI, SONY andSALORA
ImEOUT TRANSFORMERS Sol

29 File

A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE tO the trade at competitive prices

OUR RANGE INCLUDES
G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $£ 60$ plus full range of Thorn remote control including $T / T e x t$

\star DISCOUNT FOR QUANTITY ฝ

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.
 COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387. Open 6 days $9-5.30$ (later by appointment)

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100 GEC STARLINE HITACHI ITT (full remote) PHILIPS G8
PHILIPS GII PHILIPS KT3 THORN 9600 including TELETEXT THORN 8800 THORN 9000 (remote) (remote) THORN TX

We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone:
COLIN BROOMFIELD,

UNIT 7, STATION STREET, BROMSGROVE, WORCS. (0527) 37037

TV LINE OUTPUT TRANSFORMERS FAST RETURN OF POST SERVICE	
	170 series dual std mono
	170 series dual std mon 210 300 series mono
	CROWN $14 C \times 250$
	Yo 5
	WINDIN
${ }_{16 \text { FERGUSOL }}$	RANK BUSH MUAPHY
G.E.C. 2047 to 2105 2000 to 2064 dual std mono 2147 single std	
	SOVEREIGN
it 20EGB 24EGB mono 8.00	PLUSTRO
KB. ITT C2200 VC205 VC207 mono 8.00 CVC30 CVC32 seriies colour CVC45 TT100 FT110 state $p / n o$. TXV80 10.00 TXV80	ULTRA THORN $\quad 7.00$
All lopts and windings are new and guaranteed	
Open Mon.-Fri. 9 to 5.30 pm Delivery by return.	smid servce
PAPWORTH TRANSFORMERS	
80 Merton High Street, London SW19 1BE	01-540 3955

IN LINE TYPES EXSTOCK SELECTION Not revulos

Please enquire types not listed

370 HFB-A37-590...... £45	560 DMB $\mathbf{£ 6 2}$
370 HUB £45	AXT 56-001 $\mathbf{f 6 2}$
AXT 37-001 £45	660 AB 665
420 CSB	A67-701 £65
420 EDB-A42-590 £45	670 CZB
420 EZB $£ 45$	A66-540
420 ERB	420FSB £55
470KUB $\mathbf{E 5 0}$	
510 UFB/A51-590...... £55	CARRIAGE
510 VSB................ $\mathbf{£ 6 0}$	ff^{5} Singles. $2.3 \mathrm{fl10.4} \mathrm{fl2}$
AXT51-001.............. $£ 60$	10 £15. 10+ Carriage pai
560 DYB-560 DTB £62	EXCLUSIVE OF VA
560 EGB £62	TERMS
560 CGB £62	Cash with order

[^1]THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working VHS VIDEOS FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010 SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt
PLUS

17" 18" 20" 22" 26" Hybrid/ Solid State CTVs Remote Control \& Teletext

Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Mit Price 149 inc P8P and VAT. Available from Luton only. Depends on depth and area to be polished. TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON

TUBE SIZE	DELTA i.e. A51-110X A56-120X A66-120X A67-120X	DELTA SPECIALS i.e. A47-342X 470CTB22 510GLB22 A56-410X A66-410X A67-150X A67-200X	IN LINE \& PIL i.e. 470ESB22 470 ERB22 A51-161X A51-570X 510 JKB22 560AKB22 560BYB22 A56-510X A66-510X	$\begin{aligned} & \text { HITACHI } \\ & \text { IN LINE } \\ & \text { etc. } \\ & \text { AXT37-001 } \\ & \text { AXT51-001 } \\ & \text { AXT56-001 } \\ & 510 \mathrm{VLB22} \\ & \text { 510VSB22 } \\ & \text { 560DZB22 } \\ & 560 \mathrm{~GB} 22 \\ & \text { A56-540X } \\ & \text { A56-711X } \\ & \text { A66-540X } \\ & \text { A67-711X } \end{aligned}$	SONY TR1NITRON $330 A B 22$ 400EFB22 470BEB22 470 DLB 22 520 KB 22 520 SB 22 570 EB 22 $570 \mathrm{HB22}$ 680 DB 22
UP TO 20'	¢30	£32	£40	£44	£58
UP TO 22"	£34	£36	¢42	£46	£64
UP TO 26 ${ }^{\prime \prime}$	£36	£38	£44	£48	£70

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee All tubes exchange glass required.
Your good, working tubes with scraiches or small chips, can be POLSHED with our purpose built polishing equipment. From $\mathbf{£ 7}$ per tube. eivery charge on colour tubes: Within 40 miles of Luton. 1 or 2 tubes $£ 6.3$ or more tubes FREE DELIVERY*
Nationwide delivery available, charges on application.
Please add 15% VAT to all prices. Callers welcome. Please phone first
WELL VIEW Inata Milland fo,
Open Mon-Fri 8am-6pm, Sat 9am-1pm. Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837
H. K. Television, London, E.2. Tel. 01-729 1133.

West One Distributors Ltd., Gt. Missenden, Buckinghamshire
Tel 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901
Daventry Rentals, Daventry, Northants. Tel. 0327277436
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562
WANTED A56/A66-510X/540X and Sony. Old glass for cash

Telegen-1

PRICE E18.35 (inc. VAT)
EXCEPTIONALLY LIGHT AND DURABLE

* POCKET SIZE FOR OUTSIDE SERVICE
* PP3 BATTERY POWER SOURCE
* FIVE DIFFERENT TEST PATTERNS FOR

COLOUR \& MONO TV
CROSSHATCH GRID * DOT MATRIX

- WHITE RASTER
* HORIZONTALS * VERTICLES
3.5 mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 75 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 35 mm jack socket allows use of external power supply with battery in situ
Telegen-2
PRICE $£ 34.45$ (Inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE

COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
*RED RASTER GREEN RASTER

* BLUE RASTER
* colour bars
* 3.5 mm JACK SOCKET FOR P.S.U
- PROVIDES UHF SIGNAL APPROX

CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 voits D.C.

Power Supply
A switchable power supply ideally suited to both Telegen 1 and Telegen 2. RICE E4.55 (inc. VAT

$\star \star$ CHANGE OF ADDRESS $\star \star$

ALL ORDERS SHOULD NOW BE SENT TO OUR NEW ADDRESS SHOWN beLow

TOP 50 VIDEO SPARES

CASSETTE LAMP (FERG/JVC) CASSETIE LAMP (PANASONIC) CASSETTE LAMP ISHARP, 9300 ET BELT KIT FERGUSON (STATE MODEL) BELT KIT SHARP (STATE MOOELI BELT KIT PANASONIC (STATE MODEII BELT KIT SANYO (9300, 53300. 5400) EIT KIT SANYO 15000
BELT KIT HITACHi (STATE MODEL) REWIND KIT SONY C5:C7 REWIND KIT SONY Cb REEL IDLER (SHARP, 9300, 381, ETC) FFREWIDLER (HITACHIVT-11,EIC FF/REWIDLER (HITACHIVT8000) FFIREW IDLER IHITACHIV 9300 REEL IDLER (FEERG, 3V29/30) PLAY IDLER (HITACH 9300) FF/REW IDEER (NAT PAN NV370). reel Ioler inat/pani State model PLAY IDLER (NAT/PAN) STATE MDDEL PLAY CLUTCH(PAN NVI000) PINCH ROLLERIFERG) INCH ROLELER (SHARP) PINCH ROLLER (PANASDNICI

E1.80 PINCH ROLLER(SANYO) f1.80 PINCHROLIER ISONY C5CI 9180 VIDEO HEAD DRUM (EERG) E6.50 VIDEO HEAD DRUM (PANASONIC) f6.50 VIDEO HEAO DRUM (PAN NV366) 66.50 VIDEO HEAD DRUM (HITACHI) f6. 50 VIDEO HEAD DISC (SONY C5/C6/C7) f6.50 VIDEO HEAD OISC (SONY SL8000) f1.99 VIDEO HEAD DISC (SANYO) f6.50 VIDEO HEAD (SHARP 7300, 7700) f6.95 VIDEO HEAD (SHARP 9300, 381 TC) f6.95 VIDEO HEAD (TOSHIBA 9600 E3.45 VIDEO HEAD (TOSHIBA8600) £6.50 REEL DRIVE PULLEY (SANYO 5000) f4.72 REEL MOTOR (SANYO 5000 ETC) f4.75 REEL MOTDR (SHARP 9300, 381, ETC) f3.45 CAPSTAN MOTOR (SONY C5 C7) 66.50 A.C.E. HEAD (SONY C5/C7) f4.50 CAPSTAN MOTOR FERG/JVC $3 V 22$ ETE E3.45 DRUM MOTORFERG/JVC 3 V22 ETC) E4.72 TAKE-UP CLUTCH (FERG/JVC) [5.50 CLUTCH ASSY (FERG 3V2930) £5.95 AUDIO RELAY (SONY C5/C7) E5.95 HEAD CLEANING STICKS 5595 HEAD CLEANING FLUID

MOST SPARES AVAILABLE FOR HITACHI, PANASONIC, SONY, SANYO, SHARP ETC. RING FOR AVAILABILITY.

TELEVIDEO SERVICES

NOTTINGHAM (0602) 226070 145 STATION RD, BEESTON, NOTTINGHAM.

Please add 50 p post \& packing and then add 15% VAT to the total ALL STOCK ITEMS ARE DESPATCHED BY RETURN OF POST

BOLTEN LTD
 45/46 London House, 271, King Street, London W6 9LZ
 Tel: 01-748 4137 (2 lines) Telex: 262421 BOLTEN G

Video Heads

Ferguson/JVC (Universal)	£29.50
National Panasonic (Universal)	£29.50
Sony C5/C7/T7	£29.50
Toshiba 5470	£29.50
National Panasonic 370/380	£32.95
Hitachi	£32.95
Sanyo	£44.95

Belt Kits (Most Models) $£ 3.99$

Pinch Wheels (Various Models)f.95
Remote Controls
Grundig/Philips) ..95
Video Cable Kit
(any model to any model) $£ 7.50$

Solder Pumps Midsize ..95
Solder Pumps Large ...£5.95
Please add 15\% VAT plus $£ 2.00$ p\&p per order. Delivery within 7 days.

UNTESTED EX-RENTAL CTVs OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

BEST SOURCE IN U.K.

COLOUR TVS FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON: GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY

FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

TELEOUIPMENT D67 Dual Trace 50 MHz Delay Sweep with manual.		
	H	
Portable $8 \times 10 \mathrm{~cm}$ display With Manual Y 200		
Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$ display. With Manual		
TELEQUIPMENT D43. Dual Trace 15MHz. With	Meteor $600-600 \mathrm{MHz}$............................. $£ 126$	
Manual....................................... 1100	Meteor 1000-16Hz 1775	
TELEQUIPMENT S54A. Single Trace 10MHz	BLACK STAR JUPITOR 500 FUNCTION GENER-ATOR Sine/Square/Triangle. $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$	
Solid State. With Manual		
PHILIPS DIGITAL MULTIMETERS 4 digit, auto ranging. Complete with batteries and leads TYPE PM2517X (LCD) (pat chy	HUNG CHANG DMM 6010. $3^{11 / 2}$ digit. Hand held 28 ranges including 10 Amp AC/DC. Complete with batteries \& leads. P\&P 44 E33.50 MULTIMETER type U4324. 33 ranges. Complete with batteries and leads. P\&P $£ 4$	
MULTIMETERS AVO 8 Mk 3. Complete with batteries \& leads. ONLY 560 AVO 8 Mk 4. Complete with batteries \& leads. 565 AVO Model $7 x$. Complete with batteries, leads \& carrying case .. $\mathbf{£ 4 0}$ AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batteries \& leads $\mathbf{Z 5}$ AVO 72 - Similar to above but no AC current range. With batteries \& leads.		
	OSCILLOSCOPES PROBES. Switched $\times 1 ; \times 10$. P\&P@2	
	ADVANCE AM/FM Signal Generator type SG63.	
	ADVANCE AM Signal Generator type 62. 150kHz	
	METRIX WOBBULATOR type 210. 5 - ${ }^{\text {E }}$ Z20MHZ...	
	LABGEAR COLOUR BAR GENERATOR.	
MARCONI RF MILLVOLTMETER TF2603 50KHT1500MHz; 1mV-3V. FSO 2175 MARCONI ELCTRONIC VOLTMETER TF2604 $20 \mathrm{~Hz}-1500 \mathrm{MHz} ; \quad A C / D C / 0 \mathrm{hms} \quad A C 300 \mathrm{mV}-300 \mathrm{~V}$.	LABGEAR CROSSHATCH GENERATOR.	
	CM6004.................................. \&15P\&PY	
	LABGEAR CROSSHATCH GENERATOR. CM6038. Input 240V AC or 6V DC €25 P\&P€2	
	WAYNE KERR COMPONENT BRIDGE. B521 (CT375) L 100uH - 500 KHz ; C $1 \mathrm{pF}-5 F$; R 1 milliohm- 1000 Mohm	
PROFESSIONAL $g^{\prime \prime}$ GREEN SCREEN MONITORS made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in. Cased. Good condition ONLY $£ 40$ each	AVO TRANSISTOR TESTER TT169 Handled. GO/NO GO for In-situ Testing. Complete with batteries, leads \& instructions. ($\mathrm{p} \& \mathrm{p}$ £) NOW ONLY $£ 12$	
DISK DRIVE PSU.240V 1N; 5V 1.6 G \& 12V 1.5A out. Size: W125mm, H75mm, D180mm. Cased. Un-used. Only 515.00 Various $51 / 4^{\prime \prime}$ Floppy Disk Drives and Stepping Motors Available.	PLEASE NOTE - From January 1st 1986, we will be closed Saturdays. Opening times:- Monday to Friday 9 am- 5.30 pm with LATE NIGHT THURSDAY until 8 pm .	
This is a VERY SMALI SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Camiage.		
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL		

V.H.S. VIDEOS PIANO KEY \& ELECTRONIC

COLOUR T.V.S WORKERS OR NON-WORKERS

DECCA
 THORN
 SALORA DORIC

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road
Brent Park Industrial Estate
Southall, Middlesex UB2 5LL 01-574 4631 Ext. 28

HOCKLEY DISCOUNT TELEVISIONS

GOOD NEWS! We have now expanded our Midlands Branch
THAT MEANS! More bargains for you \& more selection
We now have HUGE STOCKS of TV's \& V.H.S. VIDEOS
LORRY LOADS DELIVERED DIRECT FROM SOURCE!
Prices start from $\mathbf{£ 6 . 0 0}$
Working Sets from $\mathbf{£ 1 2 . 0 0}$
Unlimited Selection of:

Philips G8's \& G11's
Pye Solid State
Pye Chelsea
G.E.C. Solid State

Rediffusion Mk. I \& Mk. III

Thorn 8800, 9000 9600, TX9, TX10
Latest Hitachi
I.T.T. CVC30, CVC45

Bush T20, T22

Midlands Branch: HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill, Hockley, Birmingham, B19 1AE, Tel. 021-551-2233 - Ask for Jazz

North-East Branch: NORTHERN T.V. DISTRIBUTORS, Unit 2, Perth Court, Eleventh Avenue, Team Valley
Trading Estate, Gateshead, Tyne \& Wear. Tel. 091-4875389 - Ask for Joe

CREWE WHOLESALE TV
77 COLERIDGE WAY, CREWE
TEL: (O270) 582924
SPECIAL. OPENING OFFER
G11s working £47 in lots of 5
Decca 80s and 100 s working £33 lots of 5
Pilisp G8s working £22 lots of 5
GEC 2111 working £25 lots of 5
GEC Starline and 8 channel
working £30 lots of 5
Thorn 9000 working £30 lots of 5
MANY OTHER MAKES IN STOCK
ALL WORKING
\star
\star
\star
VHS VIDEOS TO ORDER P.O.A.
\star
\star
\star
PANELS AVAILABLE
\star
\star
\star
REMOTE CONTROL SETS AVAILABLE
Delivery available on lots of 10 or more

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

 Large Quantities of Late Model Thorn TVs. All with first class cabinets.TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT
Some examples of QUALITY working TVs

$$
\begin{aligned}
& \text { THORN } 8800 \text { * } \star £ 25 \\
& \text { THORN } 8800 \text { (remote) } \star £ 30 \\
& \text { THORN } 9000 \text { * } \star £ 30 \\
& \text { THORN } 9000 \text { (remote) } \star £ 35 \\
& \text { THORN } 9600 \text { * } \star £ 40 \\
& \text { THORN } 9600 \text { (full feature remote) } \star £ 45
\end{aligned}
$$

(VARIOUS MODELS)

$$
\text { THORN } 9900 \star £ 50
$$

$$
\text { THORN } 9900 \text { f/f remote } \star £ 60
$$

(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E. DECCA 30s, GEC 2110, GRUNDIG, TANBERGS, G8s 520 s-550s, Thorn 3500/8000/8500, TT, PYE, ETC. (Many of these untested TVs just switch on) ALL AT LOW LOW PRICES VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
£4.95 Also Video Stands
POA Colour TV panels \& tubes available

CALLERS WELCOME
All prices subject to V.A.T.
Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501

HIGH QUALITY COLOUR TELEVISIONS

 + AUDIONEW BRAND NAMED STOCKS AVAILABLE!
Various HiFi Systems £55.00
Videos A and B GradeP.O.A.
Computers/Disk Drives £25.00
Stereo T/Text Colour TVsP.O.A.
Portable R/ControlsP.O.A.
Part Exchange C.T.Vs From $£ 7.00$
Ex Rental C.T.Vs................ From $£ 5.00$
3V25 Video Tuner Timers £35.00
3V26 Video Power Supply........... £20.00
37397 Loudspeaker Amplifiers £20.00 (P.O.A. price on application)

EXCELLENT PRICE OFFER FOR ORDERS ABOVE 40 UNITS
COLOURTRADE,
221 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19.

Tel: 021-359 0449.

CentreVision

 TEL: 0222-44754SLOPER ROAD
LECKWITH
CARDIFF CF1 8AB
OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4
FERGUSON VHS VIDEO £75
MANY TOP QUALITY REMOTE CONTROL WORKING TV's.
PHONE FOR LATEST PRICES
PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30
SATURDAY 9.00-1.00

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.
WE ARE LOCATED IN
UXBRIDGE

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
* Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ.
Phone: (0902) 773122.

TRADE ANNOUNCEMENT

CHROMA VISION (Manchester) NOW OPEN!!!

95 LANGWORTHY RD, SALFORD M6 5PH. Tel. No. 061-736-6333 811 WASHWOOD HEATH RD, WARD END, BIRMINGHAM 8. Tel. No. 021-784-2561

Large range of late model TV's and Videos at low, low prices
THORN AND PHILIPS TELE-TEXT, REMOTES AND BASICS

WINTER SPECIALS

10 BUSH 2 CHIP	$£ 50$
10 GEC SOLID STATE	$£ 150$
10 GEC STARLINES	$£ 250$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $800017^{\prime \prime}$	$£ 150$
ALSO BUSH T20, G11, 9000, 9600,9800,	
GEC STARLINES	

PL509 £1.50, PY500 £1 ELC 1043 Tuners Ex-panel £2.50 RING FOR QUOTE
ALL + VAT

TELETRADERS

Forde Road, Brunel Industrial Estate,
Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS LIMITED

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue,
Poole, Dorset. BH15 2AW.
Telex: 418253 LUMIC G

The World P+P 1 PANE 2 PANELS OR £3.00	$\begin{aligned} & 50 \\ & \mathrm{RE} \\ & 52 \end{aligned}$			Chigwe		5ER	01			
	IF	TUNER	decoder	$\begin{gathered} \text { G8/G9 DECODER } \\ \text { COF } \\ \hline \end{gathered}$	$\begin{aligned} & \text { UNE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	frame	VIDEO	6 WAY TUNER BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		4.00		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA
POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!										

T.V.'s FOR EXPORT

PHILIPS G8 and G9, DECCA, BUSH and FERGUSON
All sets with VHF/UHF Tuners and suitable for countries using the PAL system. We also supply the home market.

TELE SPARES LTD.

Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.
N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up

* Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

APOLLO MANCHESTER

FAST MAIL ORDEA GB 34 dAYS ALI AREAS PLEASE PHONE FDR COST free local delvery same day o fiting senvice foo
2 YR GUARANTEE - QUANTITY DISCOUNTS - PIL GLASS BOUGHT

470-ESB22/EFB22/ERB22/FTB22
A51-220X/192X
A51-161 $5192 / 163 / 168$
1820)

510-VB22(E53) DTB22/001/RFB22/RCB22/SFB2
A51-590 Now
A51-570X/580/001/210/241
A56-120X/123/140/410
50-DZB22(E53)/HB22/AKR22/TB22/AWB22
560-E1B22/DTB22/CSB22/DMB22/DNB22
A56-611X/615X
AG6-120X/A67.120X/140/150/200/410
$20 A X$-A56-500X/510X-AE6-500X/510X
30AX-A56-540X - A66-540X
If your tube type is not in stock we can arrange collection - rebuilding + redeliver PLEASE PHONE BEFORE CALLING
061-799 0854. 24 hour answering service
43 Clarke Crescent, Little Hulton, Worsley, Nr Manchester Mes 6XL

JUST OPENED

FOR
South Yorkshire/Derbyshire Dealers
Come and see our range of Colour TVs from $£ 6$
BARGAINS GALORE
South Yorks Trade Supply, Anderson House, Callywhite Lane, Dronfield, Sheffield, S18 6XR.

PHONE 0246411325
Chesterfield

SETS \& COMPONENTS

HITACHI PANELS repaired/exchanged. CSP680, CNP19), (NP192 etc. Phone Littlehampton 0903714717 anytime.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp. fully refurbished. PEARSON TELEVISION. 0484863489 . Delivery arranged.

OCHRE MILL. TECHNICAL. Grundig sets, panels, manuals. TELEQUIPMENT oscilloscopes, manuals. spares. LABGEAR pattern generators. 0785-814643.

PRECISION VISION LIMITED THE COMPANY THAT CARES

Offers for sale

* Ex hotel rental colour TVs
\star Graded colour TVs and Audio
* VHS Video Recorders

Please phone for current stock position
Unit 10, Chiltern Business Centre, 198 Garsington Road (Opposite BL works), Cowley, Oxford.
Phone: (0865) 711966.

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS
Chassis IF Decoder Line Power Frame

Philips Gll	18	16	20	18	16

Bush T20	X	12	16	15	12
Bush T26	X	16	18	15	X

Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months. T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

WIZARD DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES

We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DE'CCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR. Did you know we also stock

FUSES
AERIALS AEROSOLS RESISTORS CAPACITORS HANDSETS

TOOLS VIDEOL LEADS AUDIO LEADS SEMICONDUCTORS SERVICE MANUALS TVNIDEO TROLLEYS AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word

TV Business

COLOUR TV PANELS Fully Tested \& Working

	If	CDA/	Decoder	LTB	Line Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-
DECCA 13/30	3.00	-	7.00	5.00	-	4.00
BUSH A823	4.00*	-	10.00*	5.00*	2.50	4.00
THORN 8/8.	-	-	10.00	5.00	-	5.00
PYE 205	3.00	3.50	5.00	10.00	-	-
THORN 3/3 ${ }^{1}$	5.00	5.00	5.00	8.00	5	10.00
G8	6.00	-	8.00	7.00	15.00	5.00
-Please specif					fitted with	
Please add 15\% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc.					brand new transformer	
Hybrid panels do not include valves.					Terms cash with order.	

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock

GOLCAR T.V. SERVICES (formerly Lavite lid.).
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment only.

NORMAN	
ENTERPRISES LTD	
Weston-Super-Mare, Avon. Tel: 413991/418545	
Colour TVs fully engineered with a special care on tubes	
Hitachi 217 Remote Control.	£85
Thorne 9000 Remote Contro	£42.50
Pye G11.	£47.50
Rank T20	£42.50
Pye Chelsea 6 Button	£27.50
Pye 725	£37.50
Pye 721	£27.50
Thorne 9600	$£ 45$
Thorne 9200	£42.50
Bush T20 Remote Control	£49.50
Bush T24	£55.50
All above prices include hand sets if available Ready for sale. Phone now, limited number each month. All the above off the pile, less a 3 rd	

STARLITE
ELECTRONICS
WILLOWS FARM,
A13 RANHAM, ESSEX.
Rainham 23225 also
Hornchurch 50238.
EX RENTAL TVs
UNTESTED FROM £15.00
WORKING TVs £20.00
RE-GUNNING TUBES
2 year guarantee
Most types available
including Sony

VIDEO \& HI-FI ELECTRONICS379 EDGWARE ROADLELDON W2TEL 01-258 0328			
ALL VHS PARTS AVAILABLE. EXAMPLES VIDEO HEADS			
VIDEO HEADS ${ }^{\text {a }}$ aj Saba Telennen			
National Panasonic			
All Hitachi heads from INTEGRATED CIRCUITS			
UPG 1365C			
UPD 553CUPD52C			
All makes of idilers, pressure rollers, clutch assembly			
and motors in stock Many other parts available. Send SAE for list.			
all paices inclusive of vat			

SERUICE PAGEE

(minimum 12 words), box number 70p extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

EXAMPLES:
B\&W 20"-24" COLOUR:
Bush 1-2 I.C.
Philips 520-550, $26^{\prime \prime}$
Thorn 3500
GEC-Decca-ITT

Philips 550 22"
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime}$
Thorn 8800-9000-9800

From $£ 1.00$
$£ 4.00$ £6.00 £6.00 £6.00
£10.00 £10.00 £12.00 £15.00

Many Other Modern Sets and VHS Videos

PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Frank: Nottingham (0602) 864627

Unit 3

Meadow Trading Estate, Meadow Lane, Nottingham NC2 3HO.

RE-GLOW TUBES
 (ESTABLLSHED 1959) INLINE TUBE
 20AX SPECIALISTS 30AX DELTAS FROM $£ 28$ INLINE from $£ 36$
 RE-GLOW TUBES $\quad 33-37$ miles place (off delce rd) ROCHESTER, KENT TEL: MEDWAY 43952 (STD 0634)

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 2.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each Philips $\mathrm{G8}$ (520) $22^{\prime \prime} \& 26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
£1.25 per panel plus post \& packing

TELFORD ELECTBICAL SPARES \& SERVICE

GENUINE SONY SPARES		NEW- GENUIN FERGUSON SPARES
VIDEO HEADS		SINCLAIR
TRANS: FORMERS		PRODUCTS
		Beswick FUSES
E.H.T. TRAYS		INSTRUMENTS
		AERIAL
AUDIO PRODUCTS		RESISTORS
		VALVES
CAPACITORS	TRADE	CONS M-
TUNERS Varicap 2 Push Button	COUNTER OPEN 6	Integrated Circuit \& Socket
	DAYS EACH	TUBES Monochrome 8 Regunned Colour
CONDUCTORS Diode	WEEK	
	Television Video	$\begin{aligned} & \text { SOLDER \& } \\ & \text { ACCESSORIES } \\ & \hline \end{aligned}$
	Mcrowave	S.A.E. FOR
SOLDERING IRONS	VISA	CATALOGUE. A4 SIZE

LOOK HEAR TV

NOW OPEN. Our new trade warehouse. For the best service and quality in the East Midlands.

* Good quality working TV's
* Off the pile also available
* Low prices
* No minimum quantity
* Limited number of VHS videos
* Lots of TV panels for sale

Open Mon.-Fri. 10-5.30, Sunday 10-1.00 CASH ONLY
UNIT 4, KING STREET BUILDINGS, KING STREET, ENDERBY, LEICESTER Only 5 mins. from Junction 21, M1 Ring Adrian on Leicester (0533) 867530. MR. A. L. BALMER

GEMINI TUBES

THE PRICE IS RIGHT FOR QUALITY REBUILDS ALL WITH 2 YEAR WARRANTY
Phone now on St. Helens 37672
Or call at Unit 3,
Delphwood Drive, Sherdley Road Ind. Estate, St. Helens.

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
G11s from $£ 70$ + VAT KT3s from $£ 85$ + VAT K30s from E 95 + VAT ITTs from $\mathbf{E 5 0}+$ VAT Decca from $£ 50$ + VAT T20s from $£ 50$ + VAT 9000 s from $£ 35+$ VAT

FHS Videos. 3 V29, 3 V 30
NatPan NV2000, NV2010
Contact John, Dave or Steve for personal
friendly attention on
022369215 or 035361462
C.T.V. PANEL SERVICE

Exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months g'tee, large range incl Decca 80 \& 100, G11, G8, ITT, GEC, Rank, TCE, Jap \& euro models, despatched same day.

d S.A.E. for lists or ring with your requisement

Argo Services (Birmingham)
53 Lawley Street, Birmingham B4 7XH Tel. 0213593753
relephone orders accepted using Access/MastercardVisa
CALLERS RING FIRST

- SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

[^2]
NWEIECTRONICS 25 YEARS SUPPLYING THE TRADE

COLOUR TV'S RND VIDEOS

 FIPRRPPOS AND EK, RENTALS
PYE Gll EXC CAB
£40
BUSH T20/26 CH.................. 35
HITACHI 191............................ 20
FERGUSON TX
(NOT D.E.R. Etc.)............£65
$£ 20$
BUSH 718
£20
BUSH 2 CHIP........................ 8
GRUNDIG 5010................£10
PYE KT3........................... 50
GEC 2213............................ $£ 30$
THORN 3000 .£7
GEC 2010
$£ 20$
GRUNDIG G415/4206
PYE 222................................... 20
PHILIPS 550
. 15

Best Stock in the Country - over 2000 in stock (90% of our TV's Switch on) Special Price Quoted For Bulk Purchases From Source.

PYE KT3......£70, Others done to order.

DISCOUNT FOR QUANTITY

11151

SHARPS 7300,8300,9300,HITACHI,VT11
FERGUSON 3V29 (Not Ex D.E.R. etc.) SANYO, SONY, BETA

100's PX HOOVER JUNIOR VACS

- All models in stock

Fully reconditioned HOOVER JUNIORS (Like new)£27
노개, 0274 688458

CASH ONLY

 UNLH 12, Wharfeclale i\% M606 Luroway Istate BradfordOP利6DAIS Stiv 9-5.30

IRISH T.V. DEALERS
Brand new re-gunning plant operating. - TOP CLASS TUBES -

B/W - Delta - In-Line - PIIL
CHRIS KELLEHER'S T.V.
Kanturk, Co. Cork
Store open 9 to 8 pm . Sunday $10-1 \mathrm{pm}$. 029-50046.
Pal Colour Generator with 11 patterns plus sound. Grey
scale, Colour Bars, Red, Green \& Blue Raster, Cross-
hatch, Dots, Chequer Board, Black Raster, White Raster,
Half Black \& White, Mains Powered. $£ 75.90$
OUTPUTS PROVIDED UHF OUTPUT
SOUND OUTPUT
LINE PULSE
FIELD PULSE
Same as above plus RGB output Line Output Transformer Tester
 Black \& White Same as above but with Video Output Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ complete with moving coil meter $£ 14.75$
CRT TESTER/REJUVENATOR SEND S.A.E.
S.A.E. for details. Prices include VAT.
Postage on Colour Bars $£ 7.75$, others 75 pence
C.M.J. ELECTRONICS
Unit 8, 16 Union Mill Street, Horseley Fields,
Woiverhampton W1 30W

FOR THE BEST QUALITY AND BEST PRICES IN BIRMINGHAM. TESTED AND UNTESTED TV's AND VIDEO's RING - 021-772 2733 WILTSCROVE LIMITED (Next Door to UNCLE'S DISCOUNT STORE) 128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA. CASH ONLY

BRISTOL TELEVISION TRADE DISTRIBUTORS (BTTD)
 4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.
Tel: (0272) 25266

TRADE TVS
Yorkshire New Outlet
Ex-Rental \& Repossessed TVs Colour From E 10 Mono From E2 2
TRADE REPAIRS AND SPARES WANTED VIDEOS IN QUANTITY TELEFIX
Ellingthorpe Street,
Wakefield Road, Bradford 4.
Phone: 0274480281 or 733373.

TELEVISION
WHEN
REPYYIMG
TO
ADVERTISEMENTS
PLEASE
MENTION

WAREHOUSE OPEN:
Mon-Fri 9-1, 2-5; Sat 9-1
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

BOURNEMOUTH

LARGE STOCKS OF WORKING NON-WORKING SETS, MOST MAKES AND SIZES.

FAIR PRICES - TRADE ONLY

likh

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Krytal Marketing Ltd,
Breedon Cross
Storage,
Phone 021-471 3023
Telex 335540-6
Ask for Les
Dale Road, Selly Oak,
Birmingham B29 6A0

WOODSDALE COMPONENTS

 RANK BUSH MURPHY TRANSFORMERSLine Ouput
2718 (T703A, T706A)
New (Complete)
£19.00
Less Focus Module and
Rectifier
£10.50
T20, T22 (T705A)
£11.00
T26 (T705B) £11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\quad \mathbf{E 6 . 0 0}$ Switch Mode T114A
£6.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2OT.
Tel: 01-868 5580
N. Skehan

Agents Office. Callers by appointment only.

VIDEO HEADS

GENUINE SONY C5 C6 C7 HEADS $£ 37.50+£ 1$ p.p. + VAT LINWOOD HOME ELECTRONICS Unit 15, Pier Road Industrial Estate, Pier Road, Gillingham, Kent.
Tel. Medway (0634) 573421

TELEEUISIOM

BOLTON T/V
 NEW BUSINESS NO RIP OFFS

TEL: (0204) 22592

JANUARY SALE TIME ON

Colour TV's, Videos, Slot Meters, Stands, Legs, Panels etc.
Colour TV from $£ 5$, Videos from $\mathbf{£ 2 5 , G 8}$'s from $\mathbf{£ 7}$, G11's from $£ 29$, Remotes from $£ 35$.
Loads of other models, makes, prices. Japanese, European, British, huge selection. (Truck loads by arrangement delivered).

AND OUR SPECIAL JANUARY DEAL
 SPEND OVER £250 ON SELECTED TV IN JANUARY AND GET A CASE OF WINE FREE GIVE YOURSELF SOMETHING TO CELEBRATE WITH

So grab the cash £ff wagon and head in our direction GENERAL FACTORS

UNION STREET,
DONCASTER
TELEPHONE 0777-817386

CASH ONLY, NO CHEQUES ONLY $2 ½$ MILES FROM A1M FOR M18 - M1

SERUICE PACES

VIDEO CAMERAS

VIDEO CAMERAS SPECIAL OFFER Grundig FAC1700 - £90

 OPTICAL VIEWFINDERGrundig FAC1900 = £220
ELECTRONIC VIEWFINDER
ADAPTORS for use with VHS Camera Sockets

FAC1700 @ £21 FAC1900 @ £39

ALL PRICES INCLUDE VAT @ 15\%

Please add $£ 10$ Carriage \& Delivery per Camera

TELEVIEW
 194 ACTON LANE, LONDON, W4 5DL Tel.: 01-994 5537

FOR SALE

Sabaco

For a

 great deal!
VAN LOAD DIRECT FROM SOURCES
 ALL SETS OFF THE PILE
 Large selection of Ferguson TX 9600/9200/9000/ 8800/4000 mainly teletext with remote control at best prices in UK
 ```Large selection of VHS Video's \\ and TV's in quantities of \\ 2's or 100's at very \\ competitive prices. \\ OPEN 6 DAYS A WEEK \\ 9.30 am to 5.45 pm \\ For further details telephone:```

VHS VIDEOS
Good working order
3V22 £95
Non-working
3V23/3V29 £100
All prices subject to VAT and availability

ANNOUNCEMENT TO SCOTTISH TRADERS TOP QUALITY OF VHS VIDEO'S \& TV'S

Sabaco

75 Robertson Street, Glasgow.
Glasgow. 041-221 2146.
(2 minutes from M8).

Sabaco
46A Derby Road,
Sandiacre,
Nottingham. (0602) 397555.

DEVONICS
 Quality Rebuilt Tubes 2 YEAR WARRANTY

470 ERB22
$E 43$
510 KCB22
$£ 45$
A51-161/500/510/
570/580/590X
£ 45
560 AKB/DZB/TB22
A56-500/510X
$\Sigma 45$
A56-540X
£45
A66-500/510X
$E 53$
A66-540X
246
$670 \times B 22$
£46
Deltas from £30 Plus carriage and VAT 2A BARTON HILL ROAD, TORQUAY TQ2 8.JH
0803-33035
PHILIPS TEST EQUIPMENT: PM 3214 dual trace with delayed time base oscilloscope. Various protes etc. PM 5519 colour TV. Pattern generator. PM 51 dit L.F. generator $10 \mathrm{~Hz}-100 \mathrm{MHz}$. PM 2554 AC millivoltmeter $2 \mathrm{~Hz}-12 \mathrm{MHz}$. PM 2517E digital multimeter + various attachments. Also spares \& service manuals, mainly Philips/Pye. Video heads for VR2220 Philips/Pye portable VCR V2000 system. For further details telephone 074632-4(16.

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only 23,995. Tel. 0582-410787.

60 COLOUR TELEVISIONS. Suitable for dealer, $£ 480$ + VAT. 0272-651463.

AVO 8 MKV $£ 60$. Keitheley digital multimeter $£ 60$. Ring 01-594 4126.

AERIALS

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, splitters, channelpass filters, diplexers, masthead amplifiers, distribution amplifiers, brackets, masts, aenals, etc. Use trade gear and save pounds. Catalogue 75p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

Elero-Sat
Parabolic Dish Antennas ${ }^{\text {(Pament }}$ compony est in SATEUTE TVRO ANTENNAS TOP QUALTY SOLL GLASSRBRE DISH ANTENNAS TRADE PRICES IM. DIA 11-12-4 GHZ BANDS 1.2M. DIA 11-12-4 GHZ BANDS 2M. DIA 11-12-4 GHZ BANDS Trade \& Export Enquiries Wolcome Prices do not include delivery

Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. 061-437 2631 061-881 4249

SATELLITE T.V. RECEPTION EQUIPMENT $10.9-11.7 \mathrm{GHz}$ low noise block downeonverers 2-way and 4 -way power dividers $/ 2 \mathrm{~m}$ dia GRP
dishes and polar mounts/ Brass scalar feechoms dishes and polar mounts/Brass scalar feedhoms
and feed supporstindoor demooluatars and inand feed spyports/
sel demodulators. Sol demodulators.
SAE tor details to:
KESH ELECTRICS LTD MAW ST, KESH CO FERMANGGH, NT IRELAMD

AERIAL BOOSTERS

B45-UHF TV next to the set fitting. Gain 10 dbs (trebtes gain), works off PP3 type battery or $8 V$ to 14 V working. Price complete (excluding battery) E5.00. Video Transmitter. This will transmit good quality pictures and sound more than 30ft. Price $\mathbf{E 8 . 9 0}$ (S.A.E. for more details).

We also make aerial boosters for VHF/FM radio $£ 7.70$, and VHF television, prices $£ 7.70$ \& $£ 8.70$. p\&p 50 p per order.

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom Lancashire, BL0 9AGT.
Tel: Ramsbottom (070 682) 3036
S.A.E. leaflets. AccessNisa Welcome.

METERS

METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee.

> 213 Cheltenham Road, Redland, Bristol. 0272-425281

SERVICE SHEETS

TECHNICAL INFO SERVICE - 76 Church St - Larkhall - Lanarkshire ML9 1HE World's sole publisher of Comprehensive T.V. Repair Manuals. Largest known stocks of Service Manuals \& Sheets便 1935 to latest for all kinds of equipment, espec. T.V. \& Video.
Save time \& expense - our big catalogues of Service Manuals
$\&$ Sheets with
Any published Service Sheet $\mathbf{£ 2} \mathbf{5 0}$ \& I.s a.e except CTVMusic Centres - $\mathbf{6 3 . 5 0}$ \& 1.s.a.e.
Service Manuals from $£ 4.50$ to $£ 39$ - e.g. Thorn $8000 / 8004 / 8500 / 8600$ only $£ 9.50$.
T.V. Repair Manuals $\mathbf{£ 8 . 5 0}$ each. Special offers The 5 Mc Court $£ 40$. The 11 Tunbridge $£ 88$.

Video Repair Manuals $£ 4.50$ per Chassis or all 10 for $£ 25$.
Comprehensive Practical T.V. Repair Manual 59.50 . The Practical Radio Servicing \& Repair Manual $\mathbf{£ 9 . 5 0}$ UNIOUE COLLECTIONS OF CIRCUITS \& LAYOUTS
British CTV from hybrid to modern in 3 giant binders for only $£ 55$. Also 2 giant binders packed full for $£ 35$ pair. Foreign CTV. Portable/Standard Mono TV. Domestic Equipment. NEW RELEASE:- Offered to 'TELEVISION' readers for $£ 20$ (full price $£ 25$).
Giant collection of modern portable British CTV circuits and layouts.
The Integrated British CTV Repair System - 4 giant binders full of circuits \& layouts with 6 big Repair Manuals. Covers 1968 to the '80s. Plus! £140
The integrated TV Repair System - 16 big Repair Manuals/8 giant binders plus service data and other manuals. Covers 1968-1985. Priced separately over $£ 300$. Our Offer for $£ 250$ cwo or supplied in 12 monthly sections at $£ 25$ month. Offer includes any new $T V$ publications we publish during 1 vear from placing order. Service manuals to cover our The Integrated Video Repair System - 10 bookiets and 4 giant binders co

$$
\text { all formats to V2000, } 3 \mathrm{~V} 30 \text {, Sanyo } 9300 \text {. Only } 555 \text {. }
$$

S.A.E. brings any quotes required plus free magazine, service sheet \& other offers.

Phone 0698884585 before 5 pm; 0698883334 after 4 pm.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.
$\star \star \star$ SERVICE PAGES SERVICE PAGES PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
SERVICE PAGES SERVICE PAGES
$\star \star \star$

TELEVISION SERVICE SHEET SPECIALISTS
Thousands of British, European and Japanese models in stock.

> Colour $£ 3.00$ Mono $£ 2.00$
> Manal prices on request.
> All our orices include nost

All our prices include post and packing costs.
Send stamped envelope for free catalogue and any enquiries. SANDHURST TV SERVICES (MAIL ORDER)
57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

MISCELLANEOUS

> GET Main U.K. Spare Parts Distributor TELEPHONE Audio-TV-Video \times Microwave \& Photo-copier \& Typewriter All U.K. model spares available. Same day despatch of orders received before 1pm. Microwave, photocopier and typewriter spares to authorised service dealers/centres only. wiLLow vale ELECTRONICS LTD. 11 Arkwright Road, Reading, Berks.

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

TWO SIX KILOWATT OVENS and neck welder for re-gunning plus other items. Ring 0903-762958.

NICAD CELLS AA/HP7 $500 \mathrm{~mA} / \mathrm{Hr}$, pack of $4 £ 1.80$. 4 pks $£ 6.00$. Ex-equip tested \& guaranteed. NICAD CHARGER + 4AA's and holder $£ 6.00$. CROYDON DISCOUNT ELECTRONICS, 40 Lower Addiscombe Road, Croydon CR0 6AA.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation VHS***V2000*** " BETAMAX***UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL:

FAST SPARES/MANUALS

Subject to availability C.O.D./C.W.O./CREDIT Send for details: Mail only:
Burrows TV Service
33, Hancock Road, London SE19 3JN.

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

REPAIR SERVICE

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced.

RING 0934418545
for Price List or Quotation.

WANTED

> WANTED Ex RENTAL COLOUR TVs IN BULK QUICK COLLECTION Phone 0742754865 (Sheffield) IN STRICTEST CONFIDENCE

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" bwoks, new editions for the last 6 years usually in stock. Prices on request BELLS TELEVISION SERVICES. 190 Kings Road, Harrogate, N. Yorkshire. Tel. (423 55885.

MACDONALDS R\&TV BOOKS. New 74/75 £15. 75 76, 76/77, 77/78, 78/79, 79/80), 80/81, 82/83, 83/84. 84/85 £22.50. Free delivery. U-VIEW, 29 Warnsworth Road. Doncaster. 1301855017.

VIDEO

V.H.S. VIDEO'S 100's IN STOCK

Famous brands:
JVC • PANASONIC • FERGUSON
Also stockists of Grade B Units, Microwaves, Hi-Fi, Radio/Cassettes etc. etc. CONTACT MICK ON:

$$
\text { 021-772 } 1591
$$

BUSINESS OPPORTUNITES

TELEVISION AND RADIO REPAIR BUSINESS
Shop, workshop and store in affluent area outskirts W. Sussex seaside resort. Offers around $£ 16,000$ for lease (16 years remaining). All current clients.
S.A.V. if required.

0243-262671.

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (Avsia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £13, overseas (surface mail) £15 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: OUANTITY
 DISCOUNT
 AVAILABLE

 * ASK FOR DETAILS. OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES
 Ask for details DELNERY: Ex stock items immediate dispatch on receipt of orde

[^2]: JABCO Combination Lopt Tester \& full distance Infra Red Remote Control Tester Total price inc. P.P. etc. $\mathbf{£ 2 2}$ C.W.O.
 Hitachi/GEC Frame module HME251 Replacement $\mathbf{q 7 . 5 0}$ inc. P.P
 J. BAKER \& CO.

 1 Old Shoreham Road,
 Southwick, Sussex BN4 4RD. Tel: $0273-593315$

