OCTOBER 1985

TI

 ?SERVICING•PROJECTS•VIDEO-DEVELOPMENTS

Field Timebase Circuit Survey Philips G11 Fault Finding Chart TV Line Selector Unit
Quick Checks on the Rank A823 VCR Clinic • Test Report TV Fault Finding • DX-TV

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

40 different patterns and variations

Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.

* Chequerboard. Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
Facilities for sound output.
Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
All kits fully guaranteed with back-up service Also available with VHF Modulator.
Price of Kit
$\mathfrak{£ 7 0 . 0 0}$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
$£ 7.40$
Optional Sound Module (6 MHz or 5.5 MHz)
£3.90
Built \& Tested in Case including Sound Module £105.00「SPECIALTEST

REPORT
'TELEVISION'
Post/Packing $£ 2.50$
L_DEC. 1982_」 Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.

* In addition to colour bars R-Y, B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour bar P.C.B.

PRICE OF MK 4 COLOUR BAR GENERATOR KIT $\mathfrak{£ 3 0 . 0 0}$. CASE $\mathfrak{£ 7 . 4 0}$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20 \mathrm{P} \& \mathrm{P}$.
MK 4 (MAINS) BUILT \& TESTEI) $668.00+£ 2.20 \mathrm{P}$ \& P .
VHF MODULATOR (CH I to 4) FOR OVERSEAS 55.75 .
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
GEC TELETEXT EXTERNAL ADAPTOR UNIT
Complete \& ready for use. Converts any TV into a Teletext Receiver with Infra-Red Remote Control (incl. 25 Button Handset) new, boxed and fully tested. $£ 130.00$ p.p. $£ 3 .(0)$

THORN TX9 MK2/3, TX10, teletext

Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230. 6330 plus Line Coupler \& Interface $\mathbf{8 4 8 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC PHILIPS GII PANELS (tested).
Power. frame. IF, decoder $£ 18.00$ each p.p. $£ 2.00$
Scan Panel $£ 28.00 \mathrm{p}$. $£ 2.80$.
PHILIPS GII PANELS ex rental (untested)
Power, frame. IF, decoder $£ 10.00$ each p.p. $£ 2.00$
SPECIAL OFFER Philips. Pye KT3 Series infra-red remote control handsets ex rental (untested) Tectext or normal versions available $£ 2.50 \mathrm{p} . \mathrm{p} .81 \mathrm{p}$

THORN 9000 Fault Finding Guide $£ 1.00$ p.p. 31 p p.
THORN 9000 Remote Control Handset (2-fitton) $£ 10.00$ p.p. $£ 1$ (o)
TX10 Remote \& Tuning control panel (1515) £9.40 p.p. £1.50
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver £7.50 p.p. £1.50.
THORN TX10 Series Facia Control Panel with 8 position Channel Selector 85.00 p.p. f1. 50 .

PHILIPS UHF Modulator (Audio \& Vidco Input) $£ 15.00$ p.p. £1.00.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. $£ 28.50 \mathrm{p} . \mathrm{p}$. $£ 1.20$.
THORN TX9. $\mathrm{TX10}$ Saw
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{£ 7 . 5 0}$ p.p. 80 p
PAL DECODER KIT (Vidco to RGB) for Monitors $£ 27.00$ p.p. fl .00 .
PAL ENCODER KIT
(RGB to Video
£18.50
PAL ENCODER KIT (RGB to Video) £18.50 p.p. £1.30.
TELETEXT DECODERS New \& Tested Mulard VM $6101 \mathbf{£ 3 0 . 0 0}$, Texas XM11 £40.00, KT3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.60$
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $£ 2.50$ p.p. $£ 1.20$

CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. 112.00 p.p. 80p. (Alum. Case $£ 2.55$, De Luxe Case $\mathbf{x 6 . 8 0}$ fip flitio) ADDITIONAL GREY SCALE Kit $\mathfrak{£ 2 . 9 0}$ pp. 45 p .
UHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VHF version £24.00) Alum. Casc $£ 2.55$. De Luxe Case $£ 7.40 \mathrm{p} . \mathrm{p} . \mathrm{f1.80}$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono with Panel Meter Indicator - can be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$. BUSH A823 Convergence, Time Base Pancls £5.00 each. p.p. $£ 1.80$ BUSII 2718 BC6100 serics IF Panel 55.00 p.p. 91 p
BLSH A816 IF Panel (Surplus) $£ 1.00,5$ for $\mathbf{4 4 . 0 0}$ p.p. $£ 1.40$
GEC 2040 Decoder Panels. $£ 1.50$ p.p. $£ 1.80$.
GEC 2110 PANELS Frame $£ 8.50 \mathrm{p} . \mathrm{p}$. $£ 1.40$. Sound $£ 2.50$ (tested) p.p. 80 p GEC 20AX Switch Mode Power Supply $\mathbf{£ 5 . 0 0}$, IF-Decoder $£ 12.50$ p.p. $£ 1.80$. PYE 691-7 CDA Panels. Makers tested stock. $\mathbf{E 6 . 0 0}$ p.p. $£ 1.45$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. £3.00 p.p. f1.80.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. £10.00 p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $£ 20.00 \mathrm{p}$.p. $\mathfrak{£ 2} 80$. THORN TX10 T.B. Panels salvaged ex factory. $£ 15.00$ p.p. $£ 3$.(0)
THORN 3000 3500 Power supply P.C.B. £3.50 p.p. $£ 1 .(0)$
THORN 8000 8500 IF/Decoder Panels salvaged 33.20 p.p. $£ 1.80$.
THORN 9000 IFDecoler Panels Salvaged. es.00 p.p. £1.60.
THORN 900 Scrics. Long panel facta unit incl. 6 Position Channel Sclector \& Loudspeaker t6.00 p.p. ± 2.00.
Phil Pans
G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested).
G11 PANELS, Power, Frame, IF, Decoder, $\mathbf{1 8 . 0 0}$ each. p.p. $£ 2$.(1) (tested)
GRUNDIG 80,3) Series Varicap Tuners $£ 5.00$ p.p. £1.00
£750 BUS ELCIO43/5 87.80 p.P. 810 . Makers Controls PYE CT200 4PSN
 BuRicap UCH TuNE" Varicap Control Z179, Z718 types £3.80 p.p. 95p. VARICAP UHF-VHF ELC2000S $£ 9.80$. BUSH $£ 7.80 \mathrm{p}$.p. 90 p
UARICAP TUNERS, many different types in stock. DECCA Bradford 5 position. MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$.
TV SOUND IF Panels $\mathbf{t 6} .80$ p.p. $£ 1.00$.
IOPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins $80 p$.

FERG., HMV, MARCONI, ULTRA
14(10). 1500.1540 .1591
THORN $16(6)$ I 615.16×2 I 691
GEC2(x) to 2038 series
GEC veries 1\&2
INDESIT 2024EGB
PHIIIPS 1701.210, . 40) series
PYE. INVICTA. EKCO, FERK
368.169 .5649769 series

Sk. 169. SPECAL OFFER
DECCA 20124. $17(0) .20000 .24101$.
GEC $21141 / / 3$ unior Fineline.
PHILIPS 320).
RBM A823
GEC 21028,2(040,21(x)
. $£ 9.80$
. 55.90
DECCA Bradford (state Mod No).
GEC 2110 series
ITTCVC5to9. CVC20
ITTCVC25.CVC30 series
TTT (VC45..................
PYE69I-697 (state moxel no.
PYE691-697 (st
PYE713, 715
PYE $725\left(90^{\circ}\right)$
PHHLIPSGR
PHILIPS 570.571
PHILIPS 570.5

…............4.80 THORN $90(1)$ (1) 960.80
THORN TX9
OTHERS AVAILABIE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour
Special Offer: GEC 204)/21()) EHT Tripler $£ 2.50$ p.p. $£ 1.30$.
6.3V CRT Boost Transformers for Colour \& Mono $\mathbf{~} 5.40$ p.p. £1.20.

THORN TX 10 focus control $£ 8.80 \mathrm{p} . \mathrm{p} .80 \mathrm{p}$.
THORN 8000 mains input choke $£ 6.80$ p.p. $£ 1.40$
CALIERS WEICOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILIL AVAIIABLE

Telephone 01-794 8751, 7947346

MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Stratford) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford) Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDDN NW11 9HT PLEASE ADD VAT 15% TO ALL PRICES

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television". IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, £15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45 p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

677 Leader

678 Quick Checks: Rank A823 and Pye 725 Chassis
S. Simon

How to deal quickly and efficiently with common faults on the Rank A823 series and Pye 725 CTV chassis.
680 Test Report
Eugene Trundle
The Miniscope is an unusual soldering iron whose small bit can generate a great deal of heat, making it suitable for a wide variety of uses. A report on how it fared in day-to-day work on the bench.
683 The Lid off Microcomputers, Part 6
Mike Phelan
A look at the sorts of faults that can arise in the computer itself and in peripheral equipment.
684 Letters
Including fault notes on the ITT CVC20/30 series chassis and two microcomputer programs.
686 Teletopics
News, comment and developments. How the first European DBS satellite, the French TDF-1, is likely to be financed and run.

688 VCR Clinic

Fault reports from J. Hopkins, Mick Dutton, William G.
Lockitt and Philip Blundell, Eng. Tech.
690 Field Timebase Circuit Survey, Part 1 S.W. Amos and E. Trundle Start of a new series describing the techniques used in
TV field timebase circuitry. This part deals with the basic
drive and output waveforms and valve circuits from the
pre-war era to the hybrid chassis of the early 1970s.
695 TV Fault Finding
Reports from Les Grogan, Larry Ingram and John Coombes.
698 The Tantrums of Tiny Tim
Les Lawry-Johns
Tim got real mad when he found someone had done
something naughty to a CVC5, then discovered that he was in terrible trouble.
699 Next Month in Television
700 Line Selector Unit
A.R. Bradshaw

A method of obtaining trigger pulses so that the lines
with test signals during the field flyback blanking period
can be examined on an oscilloscope. Also provides
bright-up and X -scan signals.
702 Philips G11 Fault-finding Chart
Dennis Apple
A comprehensive guide to faults in the Pye/Philips G11
chassis arranged in chart form for easy reference.
704 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from
abroad, with notes on changes to the DTI's radio
interference service and the US satellite TV scene.

707 Service Bureau

708 Test Case 274
OUR NEXT ISSUE DATED NOVEMBER WILL
BE PUBLISHED ON OCTOBER 16

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

How To onobr

 states zero rate.

TRADE ANNOUNCEMENT

FERGUSON 3V16/3V22 VHS VIDEOS

 THORN

 THORN 8800/9000/9600 COLOUR TV's
 MAINLY REMOTE CONTROL HAND UNITS NOW AVAILABLE

MINIMUM PURCHASE 5 UNITS LOWEST PRICES IN U.K.

$\star \quad \star \quad \star$

OTV TRADE DIVISION OTV HOUSE 144 LEA BRIDGE ROAD LONDON E5 9RB

Telephone: Bob Munson 01-985 6111

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

 Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES All at UNBEATABLE PRICES for QUANTITY \& QUALITY

Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT Some examples of QUALITY working TVs

$$
\text { THORN } 8800 \text { **************£25 }
$$

THORN 8800 (remote) $\star \star \star \star \star \star \star \star \star \star$ £ 30

THORN 9000 (remote) $\star \star \star \star \star \star \star \star \star \star \star$ £ 35
THORN 9600 ************** $\mathbf{f 4 0}$
THORN 9600 (full feature remote) $\star \star \star £ 45$

THORN 9600 TELETEXT from $£ 75$ (VARIOUS MODELS)

PHILIPS G11 **************£55
(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E. DECCA 30s GEC 2110 GRUNDIG TANBERGS
(Many of these untested TVs just switch on) ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands $£ 4.95$ Also Video Stands POA Colour TV panels \& tubes available All prices subject to V.A.T. CALLERS WELCOME Export Orders Welcome for those Countries using the P.A.L. System 419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501
electrodes.

- Tests cathode emission characteris.
- Sepa
* Removal of shorts and leakage be-
tween electrodes.
- Checks heater warm-up characteris-

Hics.

- Rejuvenation of low emission
cathodes with automatic
cathodes with automatic timing.
- Super rejuvenation with manual control.
Size: H 230 mm W 330 base adaptors

PRICE
£28.00
$+£ 4.49$
VAT

* FULLY

GUARANTEED

LOPT TESTER

BK'S REVOLUTIONARY DYNAMIC
'LOPT' TESTER
Revolutionary L.O.P.T. tester. Operates in dynamic mode which actually tests the L.O.P.T. under high voltage conditions without de-soldering or removal. Size $75 \times 100 \times 40 \mathrm{~mm}$. Supply 240 V AC
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope. FITS IN A BRIERCASE
\#ull sized Porrormance
\#ull sized Porrormance
- Full wiggef facititios are provided inclutingTV Trame, or TV fritering., or, AC
- Full wiggef facititios are provided inclutingTV Trame, or TV fritering., or, AC
- Sizontor. 255mm* 148mm*50mm. PRICE E165.00 + E24.75 VAT
- Sizontor. 255mm* 148mm*50mm. PRICE E165.00 + E24.75 VAT
Accessories: Carry Case f5.95+60.89 V.A.T.
Accessories: Carry Case f5.95+60.89 V.A.T.
x 1 Probe E7.50 + f1.13 V AT
x 1 Probe E7.50 + f1.13 V AT
\times10 Probe E8.50 + £1.28 V.A.T
\times10 Probe E8.50 + £1.28 V.A.T
x 1/\times10 Switched Probe £10.50+£1.58 V.A.T
x 1/\times10 Switched Probe £10.50+£1.58 V.A.T
AC Adaptor £6.95 + £1.04 V.A.T
AC Adaptor £6.95 + £1.04 V.A.T
HAMEG HM 203-5 20 MHz
DUAL TRACE OSCILLOSCOPE

SPECIFICATION:

*BANDWIDTH DC-20MHz
-SENSITIVITY CH1, CH2 2 mV -50V/DIV - TIMEBASE 40nS to 0.2 SCM TRIGGER DC-40MHz Auto-Normal-T -CH1 ADD AND INVERT FACILITY *ALT/CHOP SWITCH
*LARGE RECTANGULAR SCREEN $8 \times 10 \mathrm{cms}$ *BUILT IN SEMICONDUCTOR COMP. TESTER *SIZE $285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$.
2 YEAR WARRANTY
WITH COMPONENT
TESTER
PRICE
$\mathbf{£ 2 7 0 . 0 0}+\mathbf{f 4 0 . 5 0 ~ V A T ~}$
Optional probes as above

BK's C.R.T. TESTER-REJUVENATOR Tests and rejuvenates blue, green $\&$ red guns separately. Fitted with delta and mm Supply. Compact size $120 \times 65 \times 60$ PRICE £32.00 + £4.80VAT
 Optional probes as above
U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft,
U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overse as carriage cost. Barclaycar
etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

E] B. K. ELEGTRONIGS Dent. 'T',

UNIT 5, COMET WAY, SOUTHEND-ON-SEA,

Telegen-1
PRICE f18.35 (Inc. VAT) * EXCEPTIONALLY LIGHT AND DURABLE

- POCKET SIZE FOR DUTSIDE SERVICE * PP3 BATTERY POWER SOURCE * FIVE DIFFERENT TEST PATIERNS FOR COLOUR \& MONO N * CROSSHATCH GRID * DOT MATRIX * WHITE RASTER
* HORIZONTALS * VERTICLES *3.5mm JACK SOCKET FOR OPTIONAL *3.S.U.
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fas checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.

Telegen-2

PRICE £34.45 (Inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE

COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$

* RED RASTER * GREEN RASTER
- bLUE RASTER
* 3.5 mm JACK SOCKET FOR P.S.U.
- PROVIDES UHF SIGNAL APPROX. CHONDEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE $\mathrm{EP}^{5} 55$ (Inc. VAT)
ALL ITEMS POST AND PACKING f 1.44 (inc. VAT) All goods should be delivered within 4 working days.
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 773122

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price $£ 49 \mathrm{inc} P \& P$ and VAT. Avaiable from Luton only.
AQUADAG COATING $\mathbf{£ 1 7 . 2 5}$ per litre inc P\&P and VAT. Sufficient for approx 100 tubes. Available from Luton only.
TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON

$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$		DELTA SPECILS i.e. 510GLB22 A47-342X A67-150X	IN LINE \& PIL i.e. A51-16X A51-570X A56-510X A66-510X	HITACHI IN LINE i.e. 4900VB22 $510 \mathrm{VLB22}$ $560 \mathrm{DZB22}$	SONY TRINITRON
UP TO 20'	£30	£32	£40	£44	£58
UP TO 22"	£34	£36	£42	£46	£64
UP TO 26"	£36	£38	£44	£48	£70

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee. All tubes exchange glass required
Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube.
Delivery charge on colour tubes: Within 40 miles of Luton. 1 or 2 tubes $£ 6$. 3 or more tubes FREE DELIVERY* Nationwide delivery available, charges on application.
Please add 15% VAT to all prices. Callers welcome. Please phone first

WELL VIEW
 114-134 Midland Rd,
 Luton, Beds.
 Open Mon-Fri 8am-6pm, Sat 9am-1pm. Tel. 0582-410787.

Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837
H. K. Television, London, E.2. Tel. 01-729 1133.
H. K. Television, London, E.2. Tel.
Ex rental TV supplier to the trade:
est One Distributors Ltd., Gt. Missenden, Buckinghamshire
Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901
Daventry Rentals, Daventry, Northants. Tel. 0327277436
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562
WANTED A56/A66-510X/540X Old glass for cash

Get on the hot-line today!
SUPERIOR QUALITY TUBES
051
DELTA RE-BUILDS
4288777 most types of Inline Re-builds or new ex-stock $\begin{aligned} & \star 2 \text { YEAR WARRANT } \\ & \star 4 \text { YEAR OPTIONAL }\end{aligned}$

Delta Rebuilds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	$£ 38$
Low focus	+£2
A47342 New.	£28
17FHP New	£30
470EHB New.	£30
Delta only. Les	5+

Inline Rebuilds

ALL SIZES OF
NEW MONO TUBES AT COMPETITIVE PRICES
IN LINE TYPES EX-STOCK SELECTION not rebuldos
Please enquire types not listed

370 HFB-A37-590...... £45	560 DMB
370 HUB £45	AXT 56-001 $£ 62$
AXT 37-001 £45	660 AB $£ 65$
420 CSB	A67-701................... £65
420 EDB-A42-590 £45	670 CZB $£ 65$
420 EZB £45	A66-540 $£ 65$
420 ERB	420FSB £55
470 KUB £50	
510 UFB/A51-590 £55	CARRIAGE
510 VSB................... £60	${ }_{6} 5$ Singles. $2-3 \mathrm{E} 10.4 £ 12$
AXT 51-001 $\mathbf{6 0}$	10 ¢15. $10+$ Carriage paid
560 DYB-560 DTB E62	EXCLUSIVE OF VAT
560 EGB …….......... $\mathbf{6 6 2}$	TERMS Cash with order
560 CGB $\mathbf{£ 6 2}$	

OUANTITY
DISCOUNT
AVAILABLE
AVAlLABLE

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

DISTRIBUTOAS	NORTHERN IRELAND ELECTRONICS
CGS (MASTERCARE) LTD - High Wycombe	Belfast PV TUBES - Accrington
COOPERS. Dubion	NORMAN ROSE - London
COMPONENENT BUREAU - Cambridge	PACT - Peterborough
CHARLES HYDE \& SON LTD - York	RADIO SUPPLIES - Hartiepook
DOUBLE D DISTRIBUTORS - Poole	SEME - Mellon Mowbray
hRS ELECTRICAL COLTO-	TAIT COMPONENTS - GIasgow
Bramingham	WILLOWVALE ELECTRICAL [TID -
KILROY BROS - Dubin	wIZARD-Manchester
MONOLITH ELECTRICAL CO.LTD Somerset	Mclelland-Leeds
	01-6310985

SPECIAL OFFER SUMMER SALE

MINIMUM LOTS OF 20

20" VARICAP	£10
DECCA 22" MECHANICAL	£8
DECCA $22^{\prime \prime}$ VARICAP	£10
DORIC 20" \& $22^{\prime \prime}$	£10 each
SALORA 22" HYBRID	£4.50
SALORA 26" TOUCH TUN	£10
BUSH A823 $20^{\prime \prime}$ \& $\mathbf{2 2}^{\prime \prime}$	£5
GEC 2110 22" \& 26"	£12
CRs and	

SOUTHPARK DISTRIBUTORS Unit 4 Rubastic Road, Brent Park Industrial Estate, Southall, Middlesex UB2 5LL Tel: 01-574 4631

FREE CAREER BOOKLET

Train for success, for a better Job, better pay!
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.
Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!
Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your free career bookier todav - at no cost or obligation at all.

Please send FREE DETAILS for the courses ticked above.
Name
Address
P. Code

Dept. EGSA5, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568/9 or 041-221 2926 (all hours).

EAST CORNWALL COMPONENTS

EAST CORNWALL COMPONENTS 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689
 TELEX: 35565

ORDERING: All components are brand new and to full specification. Please
add 60 p postage/packing (unless otherwise specified) to all orders and then add 15%-VAT to the total. Minimum order $£ 5.00$. Either send cheque/cash/postal order or send/telephone your Access or Visa number. Official orders from schools, universities, colleges etc most welcome. (Do not forget to send for our 1985 catalogue - only E1.00 per copy). Delivery by return on ex-stock items.

PELEORSIOM

Long-term Strategies

It is quite common to hear criticism of city institutions and large firms for failing to take a long-term view of investment. The argument is that when a quick return on investment is the prime aim long-term industrial development will suffer and we shall all end up the poorer. Investment is seen as a good thing that should be encouraged, undertaken with long-term developments in mind and maintained despite market hiccups. Well yes, but one must also acknowledge that long-term investment and research are very difficult things to control and that they require the discipline of constant economic monitoring. Some research programmes can and have in the past got out of control, developing a momentum of their own that has eventually led to the creation of a white elephant aptly described recently by Karl-Erik Sahlberg (see below) as "a magnificent product that is hopeless to market"

In practice terms like investment and research cover a vast number of very different things. The development of a new aeroplane engine or main-frame computer requires longterm commitment indeed. But few firms are engaged in activities of this sort. At the other end of the scale the practical development of a simple idea can produce a very quick return. Such investment is often into ways of making things rather than in scientific research.

Our own industry highlights the divers results of research and investment. Perhaps the most profound discovery was of the bipolar transistor effect. The extraordinary thing is that it was discovered by accident, which seems to suggest that commitment to long-term research is a wise course on the ground that something is bound to turn up eventually! Well maybe, but spotting a significant discovery and exploiting its potential is the vital thing.

The world of TV displays a more purposeful approach to what research and development can achieve. The famed development of a complete TV system by EMIMarconi in the early thirties occurred within a very brief span of time. When one looks at the history of the period however one sees that many people worldwide were working along similar lines. The c.r.t. had been in existence in primitive form since the end of the nineteenth century, which also saw the discovery of photosensitive materials. Someone was bound to come up with a working photosensitive electron tube before long. The problem at that time was not so much any lack of ideas so much as sheer shortage of money in a period of acute economic depression. Basic TV, and radar for that matter, are two results of effective research that developed from an idea to its practical realisation very quickly. More recently the development by the Japanese of domestic VCR systems is another example of applied research producing quick results. It can be done: the problem is in getting it done.

The British Association's annual meeting, held recently, had as its main theme putting science to work. Many speakers were concerned with the relationship between commercial firms and the research activities of the educational institutions. GEC's chief scientist Dr Cyril Hilsum stressed the importance of market research in innovation, something at which our Japanese competitors have always been particularly good. One of the factors that has underpinned electronic development has been research into materials. The development of the VCR depended on suitable tape becoming available, and solving that problem took a great deal longer than devising the mechanics and circuit techniques. The problem with early camera tubes was the lack of a suitable target material. Materials technology has of course been vital to semiconductor development, also to such things as producing mechanical parts with the best characteristics. But few firms carry out much research on materials. This area tends to be the preserve of academic research.
Much was made at the BA meeting of problems in this area, of the need to link universities and industries in common innovative objectives (Cyril Hilsum again) and of the need for research to be interdisciplinary (Professor Gareth Roberts, chief scientist of Thorn EMI). These are old problems that still seem to block innovative progress. Gareth Roberts commented on the need to restructure science research funding and on authorities being "too compartmentalised and wedded to a peer review system that's inherently weak at exploiting the interfaces between sciences". The BA's president, Professor Sir Hans Kornberg, spoke of the need for scientists in industry to become involved with research in universities at an early stage and to blur the distinction between "basic" and "strategic" research.
The problem of getting things right, i.e. of short-, medium- and long-term strategies, in research and innovation, lies not only in the provision of funds therefore, i.e. the traditional criticism made of the city. There's the problem of whether industry can make the best use of academic research and how the latter should respond to industry's needs; also the problems of the best use of available funds and how to monitor progress. It's interesting that in a recent interview with the Financial Times Karl-Erik Sahlberg, managing director of the Swedish firm Perstorp, reported that his firm had closed down its central research and development unit in 1971, each separate business area instead being responsible for its own R and D work and for keeping its researchers close to its marketing staff.
There's little doubt that the control of research and innovation is a difficult and demanding business. One thing that's certain is that simply pouring more money in, as is so often advocated, is no solution at all. The vital element (Karl-Erik Sahlberg again) is "to find the right people to manage innovation projects". Also, one might add, to keep long-term strategies under continuous review and retain maximum flexibility so that opportunities can be seized as they arise.

Quick Checks: Rank A823 and Pye 725 Chassis

S. Simon

We have received comments recently to the effect that we ought to mention more of the older models. After all they're the ones that are more likely to require attention, and the right approach is required to save time and patience. One chassis mentioned is the still popular Bush A823 series (Model CTV1122 etc.), so we'll kick off with this.

RANK A823 SERIES

No Sound or Raster

In the event of no sound or raster one should first appreciate that whilst a conventional thyristor regulated power supply circuit is used to provide the h.t. line most sections of the receiver, including the line driver stage, are operated from l.t. lines derived from the mains transformer at the bottom left-hand side. Hence lack of sound and a picture could well be the result of l.t. supply failure. As a first step, a glance at the rear of the tube will show whether the transformer is being supplied. If the tube's heaters are out, make your first voltage check at the h.t. fuse at the top of the panel (630 mA , anti-surge). If 200 V is recorded here, you know that the mains supply is intact, including the $3 \cdot 15 \mathrm{~A}$ anti-surge (5 A on early models) mains fuse at the bottom of the panel. Thus if the tube's heaters are out but h.t. is present either the mains transformer isn't being fed or (very rarely) it's defective. In this event look for a floating line fuse in the feed to the transformer. Most versions don't have this extra fuse but if the tube's heaters are out the chances are that the set does have it. It has a low-current rating - 315 mA maximum.

If the tube's heaters are glowing the transformer is functioning and the chances are that the 2A l.t. fuse (antisurge again) midway on the rear edge of the power board has failed. If this is so, don't replace the fuse until the circuit has been checked for shorts. The usual failure is a faulty bridge rectifier which may consist of a single unit or four separate diodes. In the latter case you may well find that two are short-circuit - BY126 diodes can be fitted. If you find a short-circuit single unit a BY225 can be used as the replacement. There can be many other causes of I.t. fuse failure of course, but the usual one is a shorted bridge.

Sound but no Raster

With the sound present but no raster symptom you know immediately that the transformer is functioning and therefore (you hope) the tube's heaters are glowing. So the fault is probably in the h.t. supply, and this is where most confusion seems to arise. Check for 200 V at the top fuse. If there is h.t. at one end only it will be necessary to check for shorts.' Before diving into the line output stage disconnecting the tripler etc. - check under the centre section where you will find that a $47 \mathrm{k} \Omega$ resistor is wired across the tags of both electrolytics. These resistors are included to render the circuit stable and safe in the event of an open-circuit. They deteriorate with age and heat
however and often decrease in value, getting lower until the rush of current completes their demise and blows the h.t. fuse. Check these points. Incidentally, the connections to the tripler are plugs so disconnection is simple indeed - just pull out the rear end plug to leave the line output transformer unloaded. But we digress: back to the power supply.
If the fuse is intact but there's no h.t. present, check that a.c. is reaching the anode of the thyristor (body of the BT106). If 240 V a.c. is present here, switch off and check the continuity of the wirewound resistors under the centre section in front of the electrolytics. The left side one (h.t. smoothing) is suspect and should read 68Ω. If this is opencircuit the thyristor will not be triggered and no h.t. will be produced. A replacement resistor must be rated at 20 W or more and the contacts must be mechanically sound - a dab with the soldering iron will not do as considerable heat is dissipated.
If there's no a.c. on the body of the thyristor it's highly likely that the VA1104 thermistor, a disc type on the lower part of the panel next to the degaussing thermistor, has deteriorated - perhaps to the point where the disc has parted company with the contact wires and has dropped out. It's common practice in some quarters merely to twist the wires together, thus leaving out the surge limiter. This is not the correct action: a new thermistor should be fitted to preserve the life of other components. If the thermistor is intact, or replacement still leaves the thyristor without a.c., check the continuity of the tracks to and from the thermistor - they could have burnt away, though this should have been seen when the thermistor was replaced.
What if the h.t. supply is in order and there's sound but no raster? Remember what we said about the l.t. supplies. Check the condition of 8 R 2 at the upper left of the power panel. This 6.8Ω wirewound resistor supplies the line oscillator and driver stages. If it's cold it could be opencircuit and replacing it could restore normal results. If the new resistor runs hot or the original one is found to be running hot suspect the BD131 line driver transistor - on the right side of the timebase board, bottom right. Fit a new one with heatsink washers or a frame to dissipate the heat if a heatsink isn't fitted.

If the line drive is in order, remove the line output stage cover and hold a neon near the transformer. If it lights up, the line output stage is probably in order and the tube base voltages should be checked (if this has not already been done). The first anode voltages on the tube base give a good indication as to whether or not the line output stage is working.
If the neon doesn't light up, first try disconnecting the tripler to see what effect this has. If it makes no difference, check the h.t. voltage on the body of the line output transistors. If h.t. is present on one only, switch off and prepare to remove the timebase panel to gain access to the reverse side of the output transistors (remove small panel). There should be a very low resistance reading between the base and emitter of each transistor due to the presence of the secondary windings on the driver transformer and two low-value resistors. A reading of just below 10Ω suggests that the associated $2 \cdot 2 \Omega$ series resistor
is open-circuit - remove and check it.
If you suspect that the set has been tampered with, check the setting of the overvoltage preset on the timebase panel - 5RV1 in the A823 chassis, 5RV5 in the A823A chassis. If in doubt, set this midway.

Rapid fluctuation of the picture size is often due to a faulty item on the power supply panel. The BT106 thyristor is the usual culprit, though the BR100 trigger diac can also be responsible. It cannot be measured: if a replacement is not to hand, removing it and reversing its connections could solve the problem, i.e. try turning it round.

There are many other common faults we could discuss, but the aim here is to outline quick steps to take to deal with basic fault conditions.

No Colour

We will however discuss one other common problem since the following points could save much time and worry. In the event of no colour the tendency is to rush to the decoder panel and accuse the SL917 i.c. (on later panels - earlier ones used discrete circuitry in this area, i.e. just one i.c. instead of two) of causing the trouble. The correct procedure is first to check on the upper left side of the i.f. panel, where the chroma amplifier resides. On the later models there's a small preset control adjacent to the amplifier's screening can. This is often the cause of the trouble - it may need only a clean and adjustment. If the preset is not at fault, remove the screening can and check the three transistors (two BC148s and one BC158) in the usual way. The small round types are more suspect than rectangular ones. If all is well here move over to the decoder panel and check the SL917's voltage supply which comes from the BC148 emitter-follower 3VT2. Check this transistor if necessary. If the voltages are present the SL917 may be suspect, but check the other transistors on the panel first as one or two of these can give trouble and the SL917 is an expensive item compared to say a BC148. Note that in the earlier A823 chassis, which does not have the preset next to the chroma amplifier can, the transistors within the can are two BC148s and a BF197 (no pnp transistor).

PYE 725 CHASSIS

This chassis is used in the Pye Models CT222, CT223 etc. We mentioned it briefly in the first article in this series (July) but only to illustrate a point or two. It's worth making some general points.

Power Supply Faults

Most problems centre around the power supply board on the lower right side. To obtain access, remove the top strap (if still fitted), raise the bottom latch and slide out the vertical panel containing the field output (upper) and power supply (lower) boards. When the panel has been withdrawn a certain way it can be rotated to provide access to both sides. This enables the $3 \cdot 15 \mathrm{~A}$ mains fuse F913 to be replaced if necessary, also possibly the mains filter capacitor C915 which often goes short-circuit, leaving the fuse with a distressed appearance (if the glass is left intact that is). Replace the fuse with the normal $3 \cdot 15 \mathrm{~A}$ anti-surge type and the capacitor with an $0.22 \mu \mathrm{~F}$ type rated at 1 kV or 300 V a.c.

If there's no sign of life but the mains supply is clearly
in order check that a.c. is present at the anode of the mains rectifier thyristor. The input choke L909 often works itself loose on the print, as do the main electrolytics - a check on these points will often pay dividends:

If the a.c. is reaching the thyristor but this is not being fired check the condition of the two $82 \mathrm{k} \Omega$ charging resistors R898/899. These tend to deteriorate and go open-circuit. If these are in order, switch off and check the conditions of the centre section dropper elements the $3 \cdot 3 \Omega$ section R978 often goes open-circuit to produce the dead set symptom and your search will often end here.

If the droppers are intact go back to the power supply and carry out a general check on the transistors, resistors, zener diodes etc. The preset controls should also be checked to ensure that they are intact and don't have a dud spot where the wiper contacts the track.

You will often find that the h.t. supply is all right but the h.t. fuse F971, on the centre section, is open-circuit. Remember what we said before, because this can be difficult. Check the $0 \cdot 1 \mu \mathrm{~F}, 1 \cdot 25 \mathrm{kV}$ capacitor C563, which lives under the top of the line output section, first. This may save a lot of heartache and unnecessary replacement of the tripler etc. On the other hand it may already have ruined the tripler, the transformer and the BU208.

Thick Film Unit

The other weak spot in this chassis is at the top of the left side signals panel. The thick film unit resides here it's an angled metal structure which contains the load resistors for the RGB output stages and the feedback resistors. If there's no voltage here check R476 (47) to the left of the unit. This is the h.t. feed resistor and may be found open-circuit. Normally h.t. will be found at the body of the unit. If the voltages at the collectors of the three BF336 transistors are not roughly equal, first check the TBA530Q i.c.'s $39 \mathrm{k} \Omega$ output load resistors R474/ R458/R442. If these are in order, remove and check the thick film unit. The act of removing it may complete its demise, leaving no choice other than replacement.

Grainy Picture

We should also mention the other trouble spot in these sets - the i.f. gain and filter unit. This is the screened unit at right angles to the tuner on the lower part of the left side. The faults that occur tend to throw suspicion on the tuner, producing as they do the grainy, weak reception typical of a faulty tuner. It's a fairly easy matter to unsolder the pins and remove the unit. This done, concentrate on the input end. Carefully resolder the coil ends and remake all the soldered joints, carefully lifting the small capacitors to ensure that the solder is in contact with the leads. The unit can then be refitted with a good chance that all will be well and that the trouble will not recur. On the rare occasions when this does not produce the desired result the tuner may after all be at fault - or a second attack on the gain/filter unit may be required.

The Moral

These various points show that each type of TV chassis calls for a different approach even though the symptoms or the reported faults may appear to be the same. Next month we'll outline the approach required to deal with some of the hybrid CTV chassis, many of which are still in constant use and seem to confuse younger engineers.

Test Report: MiniScope Soldering Iron

Eugene Trundle

Up to now I've known only two basic types of electric soldering iron for radio/TV work: the gun type, in which the bit is part of a loop incorporating the secondary winding of a mains transformer; and the conventional type, which contains a resistive heating element to raise the temperature of the bit. In the latter type, the bit acts as a heat reservoir, interfacing the varying load presented by the soldering job (in terms of duty cycle and thermal suck-out) and the steady heat output from the element, which is typically rated at about 25 W .

Unless the iron is thermostatically or thermomagnetically controlled, the bit temperature depends very much on circumstances - it stabilises when the heat gained from the element equals the heat lost by radiation and convection from the bit. This is fine for light work, but there can be a tendency to run out of steam as it were during prolonged operation on heat-hungry components such as screening cans.

As a result it's been necessary to have available two or more soldering irons to cater for the variety of work we encounter - typically a small-bit, 15-25W type for PCB and light applications and a 60 W gun for use where heatsinks, screening cans and the old-fashioned metal chassis have to be tackled. A thermostatically-controlled iron has a wider range of applications, but again a single type is unlikely to cover all requirements.

Enter the MiniScope

The Australian manufactured Scope iron uses a principle of operation that's totally different from those described above. Instead of storing heat in the bit, this design develops heat energy within a very small bit assembly that's intended purely as a heat conductor. It works as follows. A voltage of around 4 V , a.c. or d.c., is applied between the body of the iron (including the copper bit) and an insulated central stem which moves axially along the centre of the barrel. The stem is springloaded and has a small plug of carbon at its front end. When the operating lever is depressed this plug is pushed into contact with the rear face of the copper bit. The contact resistance depends on the physical pressure: the current flow can reach 20 A , giving a capability of around 70-80W.

As can be imagined, having a dissipation of this order in a bit with a volume roughly equivalent to a matchstick can be dramatic. If the operating lever is held down without any thermal load for the bit you'll have a red hot bit in eight seconds! In practice the effective dissipation is regulated by "dabbing" the control lever. An equivalent power from 10 W upwards can thus be achieved.

The iron is supplied with about a one and a half metre length of heavy-duty twin cable with eye terminations. These bolt to the terminals of the mains power supply unit, which consists of a transformer housed in a smart orange case with a metal holder for the iron on top. The transformer provides a "floating" supply of 3.3 V r.m.s., 30A intermittent rating.

On the Bench

I used the MiniScope iron exclusively for all TV, video etc. bench work for some weeks. It took three-four seconds to reach the operating temperature, and I was amazed at its thermal capacity - I could use it to solder a large bracket to the body of an ELC1043 tuner and to deal with very heavy copper heatsinks such as those used on sound and field output chips etc. I've no doubt that it would be well able to tackle tinplate, brass and copper assembly work at up to reasonable sizes - s.h.f. plumbers take note!

At the other end of the scale, the tiny pointed bit was equally capable of dealing with i.c. leadouts on PCB assemblies, though it's necessary to maintain a suitable temperature by dabbing the operating lever - I found that with the iron too hot the print tends to lift from the PCB surface rather than component damage occurring.

At one point the gorgeous lady presenter of a children's programme on a soak-testing TV set (Louise H.T. for those who know her) attracted my attention and I went into a daydream with the lever pressed down. This resulted in virtual collapse of the bit. Apart from this episode I got on well with the iron, and it with me . . .

It was difficult in the time I had during the trial to gauge the life of the bit and the carbon-block element. There's no doubt that the latter will need replacement more often than the element in a conventional iron. At 75 p plus VAT each however bit and element expenses won't break the bank.

Conclusion

The iron is very versatile and easy to use once the "switch-mode" technique of temperature control has been mastered. I was impressed by the range of jobs it can tackle - a unique feature in my experience. Some colleagues expressed concern at the exposure of the output terminals at the front of the mains unit, not from the point of view of shock hazard but because of the danger of a conductive object accidentally short-circuiting them. I found that the moulded side and centre shields provided adequate protection against this possibility, but perhaps a cover flap would have been a good idea: it's not too difficult to devise a suitable shroud if required.

The price of $£ 21$ for the iron and $£ 16 \cdot 15$ for the power supply gives a total of $£ 37.15$ plus VAT. Certainly the ensemble would be worth this to most potential users, but I wouldn't be happy about any higher price!

The MiniScope is available from SEME Ltd., Units 2E and 2F, Saxby Road Industrial Estate, Melton Mowbray, Leics LE13 1BS (0664 65392).

POST A PART ELECTRONICS
 6 CHAPMAN COURT, CHARFLEETS ROAD,
 CANVEY ISLAND, ESSEX SS8 OPO.
 Telephone 0268690868
 Telex 99305

Δ
TRADE COUNTER OPEN
ADERS DESPATCHED SAME DAY
ADD 75p P\&P THEN 15\% VAT ADD POSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN

TRADE ANNOUNCEMENT

CHROMA VISION (Manchester) NOW OPEN!!!

95 LANGWORTHY RD, SALFORD M6 5PH. Tel. No. 061-736-6333
811 WASHWOOD HEATH RD, WARD END, BIRMINGHAM 8. Tel. No. 021-784-2561
Large range of late model TV's and Videos at low, low prices THORN AND PHILIPS TELE-TEXT, REMOTES AND BASICS * PHILIPS

Too many to list! Why not come along and have a look

* WORKING \& SERVICED!!! VHS VIDEOS 100 's IN STOCK 1000's MORE UNTESTED SETS OFF THE PILE \star Lorry loads direct from source \star Delivery arranged

The Lid off Microcomputers

Part 6

Mike Phelan

From the servicing point of view microcomputer faults fall into similar categories to those experienced with other forms of consumer electronics equipment. A goodly proportion result from owner misuse in one way or another. This category includes mechanical damage (including spillage), operating errors, misuse of or faults in peripheral equipment, and defective software.

There's also a "grey area" where the user is trying to make the computer do, via his own software, things it was never intended to do. This may be due to a misunderstanding of the language dialect or maybe because the user is unaware of operating system changes that affect his programs, particulary those written wholly or partially in machine code. Dealing with this type of "fault" requires a fairly good acquaintance with the microcomputer concerned.
Taking mechanical damage first, in addition to obvious things like damaged plugs, sockets and edge connectors the keyboard is susceptible to spillage. The rubber membrane type, as used in the Amstrad CPC464, is fairly waterproof. If liquid gets on to one of the printed boards there can be a lot of trouble, especially if the machine is switched on before it has dried out. Spilt liquids can corrode the printed tracks, i.c. pins and holders, in which case a new board is the only cure. In less severe cases a good wash in warm soapy water, followed by thorough drying, may do the trick.

Peripheral failures can cause many problems. Monitor faults should be easy to diagnose (we'll discuss the Amstrad monitors next month).

Printer Troubles

Printer troubles can be mechanical or electronic. The latter usually show up when one of the bits of the parallel printer code is either missing or stuck at one or zero. Careful comparison between what's been printed and what should have been printed will usually pinpoint this. Don't forget that the cause of this sort of fault can lie in the computer's print latch or buffer - or the lead to the printer.

Cassette Failures

Cassette department failures probably account for more complaints than anything else, especially with first time users of a machine that doesn't have its own cassette recorder. The best way to illustrate what's involved is to list the requirements for the system to work - this application is far more critical than normal audio signal recording. To load and save software successfully we must have:
(1) Correct azimuth setting of the record/playback head.
(2) A clean head, tape transport system and a good h.f. response. Don't use a stereo machine.
(3) An undamaged tape, recorded at correct level on a machine with correct azimuth and a good h.f. response.
(4) The recording must start after the tape starts, otherwise information contained in the header will be lost.
(5) Correct playback level - this often means using the
external speaker socket on the recorder rather than the "audio output" which is at a much lower level.

Attention to these points will eliminate most troubles. It's worth bearing in mind that there are recorders whose response has been tailored to make then suitable for computer use - other models can be given a slight h.f. boost by altering the values of feedback or equalisation capacitors. A good way to set the azimuth is to play a good commercial software tape and listen to the audio: the correct azimuth setting should be obvious and fairly critical.

Computer Faults

This leaves us with genuine microcomputer faults. Due to the operating principles, fault finding can be difficult especially with intermittent faults or those of a thermal nature, since the symptoms may remain even when the fault clears.

Quite often a test ROM and/or test cassette is available from the manufacturer. This carries out a series of tests, maybe selected by the user from a menu. The test ROM takes the place of the normal one so it cannot test this, while a test cassette relies on the cassette interface working correctly.
Obvious faults would be things like malformed characters, e.g. the lower dot missing every time a colon is printed. Finding the cause may not be so simple however. Say the fault is in the ROM. At switch on the character set is loaded into the RAM so that the symptom would remain even if the ROM fault cleared as the machine warmed up. Alternatively the character location in the RAM could be corrupt, giving the same symptom except that in this case the contents could be put right by the user. One of the tests provided by a test ROM or tape is to fill every RAM location with ones and zeros and read these back. Any failure has its address displayed so that the i.c. concerned can be replaced.
CRTC failure affects the screen display, sync or blanking, or there may be failure to scroll or for anything to appear on the screen. With many microcomputers there's a faint, audible breakthrough from the speaker when a programme is running - almost like a repetitive tune. This can prove that the CPU is operating though the screen may be blank.
Failure of the operating system to get the computer going correctly can result in some strange errors that will persist even when the fault clears - until a complete reset is performed. A screen full of garbage could be the result of something like this, or of a missing or malformed system reset pulse at switch on. This type of fault often leaves the keyboard dead.
The Amstrad test ROM includes a very useful test of the cassette interface. It gives a display like a spectrum analyser of two groups of frequencies corresponding to ones and zeros. These should be in two well-defined groups, with not too many "stragglers" between - the latter would mean poor "eyeheight". Don't forget that in most programs there's at least one bit that if changed will cause a system crash (stop): this bit would coincide with a
section of missing tape oxide or a crease. The result could be anything from premature finish of a game of Space Invaders to the loss of five years' household accounts.

The most critical part of a BASIC program consists of the byte(s) stored at the beginning of each line to show where the next line starts in the RAM. It needs only one of these links to be corrupt for the program from that point onwards to be lost. To explain this further, say the microcomputer in question fills its RAM with 01010101 at switch on then loads the operating system. All unused RAM will still contain 85 (01010101 binary). Lines of BASIC are stored with a zero to show the end of a line while the first two bytes in each line are the address of the start of the next line (link address). If one of these link addresses is corrupt (usually due to excessive playback
level from tape) it will probably point to an unused section of RAM. As this will be taken as the next line, the link address for the following line will be \#5555 $(85,85)$. So will the line number - it will be taken as 21845 , i.e. $(85 \times$ $256)+85$. The line will be shown as a string of capital zeros (ASCII 85) - pages and pages of them until the micro finds something else! We can sometimes get out of this: if we edit a program the operating system is forced to recalculate all the link addresses from that point on. So if you load a BASIC program that comes out as a few lines of good code followed by 2184500000 etc. add a line then' remove it. This should put matters right. Then check the cassette volume.

Next month a slight move towards TV servicing as we look at the Amstrad CTM640 colour monitor.

Letters

ITT CVC20 SERIES

Having serviced many ITT sets I found S. Simon's article on the CVC20 chassis and its derivatives (August issue) interesting. It covered the majority of common faults, though more obscure troubles are beginning to occur as these sets age. I've come across the following faults and hope that these notes will be of help.

The most common cause of a dead set, i.e. no LEDs alight on the CVC30 etc., is the tags on the on/off switch parting company with the PCB. Hand wiring to the spare tags at the top of the switch is more effective.

A fault we've occasionally had on the CVC30 chassis is R28 (820Ω) going open-circuit. The result is a bright, blank unmodulated screen. R28 feeds the flyback pulse from the line output transformer to the TBA560C i.c. in the decoder.

Continuous springing of R101 in the CVC20 chassis with nothing amiss on the EW modulator panel and the driver transistor T17 o.k. is caused by the EW modulator transformer L33/L34 burning up. This burning up can be the result of C72 $(4.7 \mu \mathrm{~F})$ going open-circuit.

As mentioned in the article D8 in the CVC20's field output stage can fail, causing field collapse. But this component has a habit of being intermittent: it's the first component to replace when a set with intermittent field collapse comes along. The driver transistor T 8 (BC337) can be destroyed during one of D8's tantrums. Demise of the output pair T9/T10 at regular intervals has been traced to $\mathrm{C} 21(10 \mu \mathrm{~F})$, the reservoir capacitor for the negative supply to 77 , drying up - a clue to this is that the anode of D 8 is at around $5-6.5 \mathrm{~V}$ instead of 8 V .
$\mathrm{C} 19(22 \mu \mathrm{~F})$ and $\mathrm{C} 20(10 \mu \mathrm{~F})$ in T7's base circuit can be responsible for insufficient height with bottom foldover.

If $C 26(22 \mu \mathrm{~F})$ and $\mathrm{C} 24(1 \mu \mathrm{~F})-\mathrm{C} 23(22 \mu \mathrm{~F})$ in the CVC30 chassis - in the field flyback blanking pulse circuit go open-circuit text/flyback lines are visible at the top of the screen. The print from these capacitors is quite thin as it goes around the aerial socket. We've known this to break on its way to plug L1.

The most common cause of field collapse or lack of height in the CVC30 is the print around the emitter of T9 disconnecting itself from the chassis. Slight field bounce is caused by C2001 $(2 \cdot 2 \mu \mathrm{~F})$ going open-circuit.

C701 (all chassis) on the line oscillator panel drying up
(its value is $100 \mu \mathrm{~F}$) results in the set tripping a few times before coming on. It can also cause a slight line squeal. Another electrolytic on this panel, C708 ($4.7 \mu \mathrm{~F}$), is responsible for striations extending a few centimetres from the top of the screen.

C45 $(4.7 \mu \mathrm{~F})$ - C42 in the CVC30 chassis - drying up can result in intermittent tripping, horizontal black lines and a deafening whistle. This electrolytic is in the power supply.

Low volume has been traced to the audio output coupling capacitor $\mathrm{C} 3(470 \mu \mathrm{~F})$ - it's C5 in the CVC30.
In the event of a hum bar, with hum on sound and reduced height, check the soldering of the earth tags around the line output transformer. Similar symptoms can be present when the 12 V regulator transistor plays about T14 (BD136) in the CVC30, T15 (BD132) in the CVC20.

Finally, with a tripping set removal of the line oscillator panel tells you whether there's a direct or an indirect short across the h.t. supply.
Ray Dunleavy,
Raphoe, Co. Donegal.

SONY KV1810UB MODIFICATION

I dreaded the fate of my Sony KV1810UB every time my wife Hoovered from the same bank of mains sockets. Last week the inevitable happened, and I decided I wouldn't spend any more money on GCSs. Instead I turned to Bernard Pruden's article in the December 1984 issue (page 82). I want to thank him for that article, because the KV1810UB now works a treat and I no longer have the fear of big expense.

The article was concerned mainly with the Mk. I version of the set but the suggestions worked for my Mk. II. Instead of a BU426A I used a BU326A with further mechanical modification to the original chopper metal plate. I also kept the old line driver transformer: I cleaned its metal fin and put plenty of heat transfer compound between the fin and the main aluminium framework.

Anyone willing to convert their KV1810UB should not hesitate about following the recommendations in the article. The modification really does work.
G. Bakawala,
G.B. Electronics, Coventry.

THORN 1613 CHASSIS

An interesting but simple fault came our way recently on a 12 in . Ultra portable fitted with the Thorn 1613 chassis. The basic symptom was a noticeable drop in brightness over several months. The first anode voltage was checked
and found to be correct and we then found that a good brightness range could be obtained by adjusting the set video level preset. This produced four or five faint vertical lines however, approximately one third of the way in from the left-hand side. Checks in the line timebase failed to reveal anything amiss and after much head scratching we found that the lines disappeared when the brightness was reduced. We also obtained a clue by doing this - the third of the screen with the lines went dark more quickly than the other two thirds of the screen.

The penny then dropped. The supply for the video output transistor is obtained from a winding on the line output transformer. W14 is the rectifier concerned and $\mathrm{C} 106(10 \mu \mathrm{~F})$ the reservoir capacitor. When C106 was removed it was found to be open-circuit, a replacement restoring normal results. The same sort of thing happens with the National Panasonic Model TC85G when the reservoir capacitor for the supply to the luminance output transistor dries up, producing a darker display on the lefthand side of the raster.
Michael Dranfield,
Dranfield and Harrop, Buxton, Derbyshire.

BBC MICROCOMPUTER PROGRAM

The following program for the BBC microcomputer Model B will provide an external trigger pulse, coincident with each field, for an oscilloscope. Sync, which can be taken from PB7 at the user port, can use the 'negativegoing transition at the start of each field or the positivegoing transition $10,240 \mu \mathrm{sec}$ later, about half-way through the field.

```
10 MODE 2
20 ?\&FE6B = \$80
\(30!\& 220=\&\) FFA 60074
\(40!\& 72=\$ 28\) A90000
50 ! \(\& 76=\& 60\) FE658D
60 VDU\&419; 0; 1023; \&419; 0; 0; 5
70 FOR a\% = 7 TO 0 STEP - 1
80 VDU18; a\%/2+4*(a\%AND1), \&5119; 160; 1023; \&5119;
    0; - 1023;
90 NEXT a\%
100 *FX14, 4
110 IF GET MODE 7
120 *FX13, 4
130 END
J. M. Collick,
Westbury-on-Severn, Glos.
```


SUPPRESSING MAINS TRANSIENTS

In connection with Derek Snelling's article on VCRs and the mains supply in the July issue, Maplin have a component which can be fitted inside the mains plug of these expensive units. It's referred to as a mains transient suppressor, type HW13P (Maplin list number), and is very good. Whilst it looks like and is about the size of an ceramic disc capacitor it's very different, acting like a high-power, bidirectional zener diode. When connected across the live and neutral terminals it conducts when the voltage across them exceeds a certain value, around 600 800 V , thus clipping any spikes present. The usual mains filter components within the VCR, microcomputer or whatever then reduce what's left of the spikes further, leaving all those micro chips to get on with their work undisturbed. Note that when an HW13P is used in a mains plug the fuse there should be of 3A maximum, and quick-blow at that.

I think the time will soon come when the manufacturers of VCRs, microcomputers etc. will have to provide at the end of their mains leads a big plug case containing a very good mains filter - if you rock the mains plug of a microcomputer when inserted in the socket a number of nasties can occur in the computer circuits.
R. M. Porter,

Bristol.

SPECTRUM 48K PROGRAM

The following program produces on the 48 K Spectrum a crosshatch pattern with the horizontal lines extending into the border at the edge of the screen. Lines 10-50 enter the code into the memory while line 60 tests for the correct check sum. Note that this test is not infallible, so save the program before trying it out. After the screen goes dark, press any key to get the crosshatch: the break key returns to BASIC.
10 LET C $=0$
20 FOR Z = 32802 TO 32975
30 READ N: POKE Z, N
40 LET C = C + PEEK Z
50 NEXT Z
60 IF C <> 18810 THEN PRINT "ERROR IN PROGRAM": STOP
70 RANDOMIZE USR 32883
80 DATA 251, 201, 62, 10, 237, 71
90 DATA 237, 94, 118, 62, 0, 211
100 DATA 254, 227, 227, 134, 134, 0
110 DATA $14,30,205,102,128,6$
120 DATA 150, 16, 254, 13, 32, 246
130 DATA 62, 127, 219, 254, 31, 48, 2
140 DATA 24, 225, 62, 62, 237, 71
150 DATA 237, 86, 205, 107, 13, 201
160 DATA $80,82,79,71,82,65,77$
170 DATA 32, 66, 89, 32, 77, 32, 74
180 DATA 32, 69, 68, 73, 83, 62, 7
190 DATA 211, 254, 6, 16, 16, 254
200 DATA 62, 0, 211, 254, 201, 62, 0
210 DATA 205, 155, 34, 62, 7,50, 141
220 DATA $92,205,107,13,62$
230 DATA 2, 205, 1, 22, 17, 83, 128, 1
240 DATA 19, 0, 205, 60, 32, 1, 0, 0
250 DATA 205, 61, 31, 205, 107, 13
260 DATA 62, 255, 230, 255, 24, 2
270 DATA 214, 15, 245, 79, 6, 191
280 DATA 197, 175, 120, 205, 176, 34
290 DATA 205, 236, 34, 193, 16, 244
300 DATA 241, 32, 235, 6, 7, 14, 0
310 DATA 197, 175, 120, 205, 176, 34
320 DATA 6, 32, 54, 255, 35, 16, 251
330 DATA 193, 120, 198, 10, 71, 254
340 DATA 191, 56, 234, 205, 36, 128
350 DATA 201
M. J. Edis, G4RPT,

Broughton, Northants.

VIDEOTAPE BIASING

In reply to Mr. Catchpole's letter "Videotape Warning" (September), as with audio tape recorders the bias frequency for recording must be chosen for the tape type and the speed of the tape past the heads. The effective tape speed with the V2000 system is different from that of the VHS system, so the tape isn't biased correctly. The "fundamental difference in the composition of the tapes" is thus the tape bias frequency.
Colin McCormick,
Plymouth, Devon.

Teletopics

SATELLITE TV MOVES

While UK efforts to start a DBS service have for the time being fizzled out the French are busy getting their DBS act together. The four-channel French DBS satellite TDF1 is due to be launched next July. The company running it will be 50 per cent French and 50 per cent foreign owned, with the French government taking a 34 per cent blocking interest. Of the foreign organisations, Robert Maxwell (Pergamon Press/Mirror Group Newspapers). has taken the largest interest, 20 per cent. The Luxembourg financial institutions Sofilec and Marner are expected to share a 17 per cent interest, Silvio Berlusconi who runs Italy's largest private TV network is to take an 8 per cent interest while the remaining 5 per cent interest will be held by Philips. The initial capital will be FFr $30 \mathrm{~m}(£ 2 \cdot 5 \mathrm{~m}$): this is expected to rise to FFr 600 m .
At least 150 m W. Europeans will be within the satellite's service area. One of TDF-1's channels is to be devoted to a cultural/educational service for which the French government is to provide funds totalling FFr 700 m . Robert Maxwell plans to run a second channel which will provide general entertainment and be financed by advertising. The other two channels may be run by CLT (Compagnie Luxembourgeoise de Telediffusion).
It seems that many financial details remain to be sorted out. CLT for example is unhappy at the suggested charge of FFr $90 \mathrm{~m}(£ 7,625,000)$ a year to lease a channel in view of the small initial audience (the charge for leasing a channel on the lower power ECS-1 satellite is FFr 15-. 20 m).

One interesting aspect is the transmission standard to be used. Japanese setmakers would be able to supply receiving equipment very quickly if the signals were transmitted in PAL or SECAM form. The MAC system, developed in the UK for satellite TV use, would provide improved performance and is protected by IBA patents. Considerable investment has gone into MAC decoding chips and the use of this system would give European setmakers an initial advantage. Unfortunately it would make the receivers more expensive and it might well be thought by the TDF-1 authorities that this would be detrimental to getting the service started on an economic basis.

A World Administrative Radio Conference with representatives from some 120 countries is at present being held in Geneva to consider procedures for the allocation of orbital positions and frequencies for geostationary communications satellites. Developing countries have been demanding orbital allocations and have expressed concern that the geostationary orbit is being rapidly filled with satellites. There are already some 120 satellites in this orbit and a further 100 are expected to be launched during the next five years. The USA has called for a simplified procedure for notifying plans for satellite launches to the ITU and a voluntary moratorium on the use by industrial countries of certain frequency bands.

Unisat, the consortium set up by GEC-Marconi, British Aerospace and British Telecom to produce the satellites for the now abandoned UK DBS project, has closed its London office. It will not be shut down completely: a holding operation is to be retained in case of future DBS
work coming its way. Unisat invested $£ 50 \mathrm{~m}$ in the DBS project and whether any of this can be recovered is in doubt.

REDIFFUSION TV PLANTS FOR SALE

A question mark hangs over the future of the Rediffusion setmaking operations. The plants, at Bishop Auckland, Co. Durham, Billingham, Teesside and Rochdale - there is also a design centre at Chessington, Surrey - have a maximum production capacity of 150,000 sets a year. They were originally established to supply sets for the Rediffusion cable and rental operations - the sets have also been sold by Doric Radio, a Rediffusion subsidiary, and under the Murphy brand name. When Granada bought the Rediffusion rental chain from BET in mid1984 an agreement was reached that Rediffusion would supply Granada with sets until the end of 1985 . It seems that Granada, who have at various times bought sets from Salora, GEC, ITT and Tatung, are unwilling to continue to take Rediffusion sets while BET wishes to withdraw from the consumer electronics field completely. BET has been having discussions with overseas companies on the future of Rediffusion Consumer Manufacturing. While BET would prefer to sell RCM a joint venture has not been ruled out. Sharp has provided technical know-how in the past (the Rediffusion Mk. V small-screen TV chassis): since it's the only major Japanese setmaker without production facilities in the UK Sharp might be interested in running the plants.
Tatung (UK) Ltd. has decided to move its Research and Development Department from Bradford, W. Yorkshire to Telford, Shropshire, adjacent to the new Tatung CTV plant.

TED TURNER

Our June leader commented on the attempt by Ted Turner's Atlanta based Turner Broadcasting Systems to take over the USA's premier television network CBS. CBS responded by taking protective measures, including a buy back of shares, but before the crunch came Ted Turner decided to take over MGM/UA instead, offering $\$ 29$ a share. The deal, which has yet to be finalised (Ted Turner still has to find $\$ 1 \mathrm{bn}$), is a complex one which will be partly financed by selling United Artists to the group's main investor Kirk Kerkorian for $\$ 470 \mathrm{~m}$. The attractions of MGM to Ted Turner include its large film library, world-wide distribution network and production studios. MGM's profit record has been patchy in recent years but Ted Turner evidently feels that the price he is paying twice the market value before takeover speculation began - will be worthwhile once MGM has been linked up with his cable and satellite TV interests.

SERVICING PROSPECTS

In a recent address to the Television and Radio Industries Club Dr. Jim Maxmin, director of Thorn EMI's home electronics division, had some ominious comments to make on the prospects of the domestic electronics servicing trade. It's possible, he said, "to envisage a situation where service is reduced to virtually nil and when a major fault occurs you simply replace the set". Well, he did say a major fault: those of us dependent on the servicing trade can console ourselves with the thought that mains switches and aerial sockets will continue to break, tuners to drift,
transistors to leak, electrolytics to dry up and dry-joints to put in an appearance. With all due respect to Dr. J., we've heard this one before! It's unlikely that the public will ever accept that its treasured tellys have to be scrapped when simple or even not so simple faults occur. The setmakers could be awkward of course and refuse to supply things like LOPTs etc., but past experience has always been that when there's a proven need for such an item some bright spark will produce a suitable replacement type. Odder still was Dr. Jim's remark that dealers will be deprived of the support of their servicing revenue. For all too many dealers the servicing side has traditionally been a pain in the neck!

Perhaps a more interesting development is Sony's decision to sell a 50 per cent interest in its five servicing centres to existing managers and engineering staff. The centres, at Dulwich, Oldbury, Cumbernauld, Leeds and Staines, will continue to trade as Sony Service Centres. Sony's future plans are to reduce its financial interest in the centres further and to set up additional independent service centres. In fact Sony seem to be open to offers right now - provided the proposed location is suitable.

MULLARD WIDEBAND HF AMPLIFIER IC

Mullard have introduced a new four-terminal, fixed-gain, wideband h.f. amplifier, type NE5205, which is designed to provide a non-inverted gain of 20 dB from d.c. to 500 MHz with low noise - the -3 dB bandwidth extends to over 600 MHz . A 6 V supply at 25 mA is required and the noise figures are 4.8 dB in a 75Ω system and 6 dB in 50Ω applications. It's available in several packages include SO and TO46 - plastic DIL and cerdip packs are to follow. Applications include cable TV decoder circuits, aerial amplifiers etc.

RECORD INDUSTRY IMPROVING

Not a TV matter perhaps but of interest nevertheless to those who watch the trade. It seems that the compact disc is at last catching on: deliveries during the second quarter rose to 542,000 in comparison to 135,000 during the same quarter last year. Sales of records, cassettes and compact discs have all been on the increase and expansion seems to be the present preoccupation in the record industry, with proposals for several large new stores having recently been announced.

VIDEOCONFERENCING EQUIPMENT

GEC McMichael have developed some sophisticated equipment for videoconferencing use - videoconferencing enables groups of people to hold conferences via a video link. The Hilton Hotels Corporation has inaugurated a network in four major US cities (New York, Washington, Chicago and San Francisco) using GEC McMichael video codecs. These transmit only those parts of the TV picture that change between one field and the next, allowing the picture to be transmitted at lower cost without loss of quality. GEC McMichael's new split-screen unit, Model TE561, enables the images from two cameras to be transmitted over a single video link. This allows the number of participants at a table to be increased to at least six when showing their heads and shoulders. The unit exploits the inherently superior linearity and resolution of the centre horizontal portion of the picture. The top and bottom portions of the pictures from two cam-
eras, each viewing three individuals, are eliminated using digital techniques: the resulting half-height pictures are then stacked one above the other and transmitted to the remote conference room. If the remote terminal has TE561 facilities the stacked images can be decoded and viewed on two adjacent screens to recreate the original scene. In the absence of decoding facilities the stacked images can be viewed on a single monitor.

CES DOUBTS

There seem to be doubts as to whether the 1986 Consumer Electronics Show (see Teletopics June) will in fact take place. Twenty two major brown goods manufacturers and suppliers have decided instead to hold the traditional hotel shows and many, including Binatone, Grundig, Hitachi, JVC, Luxor, Mitsubishi, NEC, Network, Panasonic, Salora, Samsung, Sanyo, Sharp, Teleton and Toshiba, have already made bookings. Alan Taylor, organiser of CES, nevertheless reports that out of 10,000 square metres of space available at Earl's Court some 6,300 have already been reserved, about half of which have been actually booked.

BBC MICROCOMPUTER SYSTEM

The BBC has announced that from August 1st the price of the teletext adaptor part of the BBC microcomputer system, required for telesoftware use, has been reduced to $£ 149$ including VAT. The adaptors are available by mail order from Vector Marketing, London Road, Wellingborough, Northampton NN8 2RL.

CABLE NEWS

The Cable Authority has announced approval of the second batch of cable franchise applications - final confirmation of the schemes has to come from the DTI. Schemes approved are East London Connections in the London Docklands development area; Bolton Telecable in Bolton, Lancs; British Cable Services (Rediffusion) in W. Surrey/E. Hampshire; Cotswold Cable in Cheltenham and Gloucester; and Shaw Cable in Wandsworth, London. The East London Connections scheme is of particular interest in that it will involve laying two sets of cables, one to provide an entertainment service and the other for voice and data communications. The intention is to offer customers connections to the British Telecom and Mercury telecommunications networks and overseas links. Members of the East London Connections consortium include Mercury Telecommunications, United Telecoms of the USA, Ferranti and various city organisations.

Robert Maxwell's SelecTV company, which runs a number of the older types of cable networks, has reported a reduced loss of $£ 355,570$ for the year to end March and is considering a substantial rights issue to enable it to participate in new cable franchise applications. Managing director Alan Morris reported that the number of subscribers had increased during the year.
Greenwich Cable continues to make losses and has reported a continuing and substantial loss of subscribers during the spring and summer months. The company has halved its staff, abandoned its local TV and radio production facilities and is endeavouring to raise further funds.

Rediffusion's Reading cable network has introduced an information and classified advertisement channel called LocalVision. It will carry Shop TV, Littlewoods' home
teleshopping service, which is already available on Prestel. The goods on offer will vary from week to week and will initially include electrical and electronic lines: orders are placed by phone and payment is by credit card, with free delivery to the door and a satisfaction or money-back guarantee. Reading LocalVision is the first channel to use a highly automated cable advertising system from Diverse Pictures Systems, specialists in high-resolution quality graphics.

TV PRINTERS

Mitsubishi are to launch two new TV printers, successors to the SCT-P50 digital TV printer that was introduced in October 1983. The new printers, types SCT-P60 and SCTP70, offer far higher resolution - 630 dots horizontal by 476 dots vertical, more than four times higher than the SCT-P50's resolution. Black-and-white prints are made in 16 -shade gradation and the print-out speed has been increased. The new printers incorporate facilities for connection to various types of equipment. Features include duplication for multiple copies of the same picture, negative/positive reversal printing, three-step contrast change, $525 / 625$-line switching and field mode/frame mode switching.

TV SETS

The recently introduced Sony 14 in . colour monitor Model KX14CP1 has been designed for microcomputer and
video enthusiasts, offering high resolution (a fine aperture grill is used in the, Trinitron tube), multi-standard capability (PAL, SECAM and $3 \cdot 54 / 4 \cdot 43$ NTSC) and a wide range of input sockets including eight-pin digital RGB, 21-pin SCART (analogue RGB, composite video and audio), composite video via BNC and phono connectors and audio phono, catering for most microcomputer systems.

Ingersoll have introduced a mains/battery portable, Model XK512, comprising a $5 \cdot 5 \mathrm{in}$. colour TV section and a two-band radio. VCR input and earphone sockets are provided. The suggested price is around $£ 220$.

Goodmans Loudspeakers (2 Marples Way, Kingscroft Centre, Havant, Hants.) has been appointed sole distributor for Saba TV and video equipment in the UK and will be honouring all outstanding guarantees. Saba is a subsidiary of Thomson-Brandt.

VIDEO EQUIPMENT

Sanyo's latest Beta VCR, Model VTCNX100, features instant timed recording and has a suggested price of under $£ 300$. Panasonic’s latest VCR, Model NV230B, switches on and off automatically as a cassette is loaded or unloaded. The suggested price is $£ 430$.

Canon is about to introduce an 8 mm camcorder, Model 8 VM-E1, with a suggested price of around $£ 920$. Features include a sophisticated infra-red auto-focusing system. Unlike other mainly photographic firms, Canon manufacture the camcorder themselves. Sanyo is to introduce a Sony-sourced 8 mm camcorder.

VCR Clinic

Sharp VC9300

This Sharp machine came in with a no-go fault. The tape was inside the machine and was badly screwed up. Now it's quite common for the reel motor to have a tight spot on this model and although it's not a two minute job replacement is simple enough. So I set to with a will and having removed what was left of the tape I loaded up and watched the action. Sure enough the reel motor hesitated. So out came the old one and in went a new one. Switch on, insert cassette and select play. Nothing!! Try fast forward and rewind. Again nothing. Faulty motor? Try record and it works . . .
At this moment the missus brought in the tea and asked why I was so distressed. "Is that all?" she said, "probably a dry-joint." I think she must have gone to school with Les's wife. My Sharp manual is not too hot to say the least: no waveforms and a magnifying glass is needed to read the circuit diagrams. Oh well
The only thing common to all functions is a 64 -pin microcomputer i.c. The supplies were o.k. and the clock pulses present so it seemed sensible to replace the i.c. Just then John came round. He works for himself so I suppose we are in competition but we don't work on it. "Had that fault yesterday and it was the cassette down switch" he said, "but it wouldn't record. If you haven't lost one of the supply voltages it must be the microcomputer i.c."

A new i.c. left the situation exactly as before of course. Time for a closer look at the circuit. What happens when you push record and what happens when you push play? Well on record waveform AD5 comes into the pushbutton unit as a row of spikes and goes to diode D8109.

Reports from J. Hopkins, Mick Dutton, Jeff Herbert, William G. Lockitt and Philip Blundell, Eng.Tech.

On play, fast forward, rewind and stop waveform AD4 does the same thing, passing through four other diodes. That was it then, no waveform AD4. It was present on the main board and at the connector to the small board but not at the diodes, due it turned out to a dry-joint under plug HA13 - under the nice protective paint there was a hair crack too small for my old eyes. Can't tell the missus, she'd never let me live it down.
J.H.

Sanyo VTC5400

Wow on sound was the complaint. On investigation we found that the problem was actually capstan speed fluctuation: the speed was approximately correct but there was no tracking servo action. We disconnected the output from pin 23 of Q 4002 to disconnect the capstan phase servo. The speed could then be set with VR4008 to just run through. Checks were then made on the waveforms around the i.c. When we came to the monostable we found that it had an equal mark-space ratio. The voltages here were correct so we started to check components by substitution. When $\mathrm{C} 4040(0 \cdot 47 \mu \mathrm{~F})$ was changed the servo locked in solidly, though we ran through the servo set-up procedure to be on the safe side.
M.D.

Sharp VC7700

The customer moved house and during this process the machine got knocked. When he came to use it he found that a tape had jammed in the loaded position. We removed the covers, hinged down the bottom panel and
found that the loading motor was trying but the loading rings were jammed. These are held in place by three plastic retaining clips, one of which had broken. Fitting the replacement was very difficult and after doing this the loading motor wouldn't rotate - because the thermal cutout in the main solenoid had succumbed. Replacing this restored the machine to working order but the action of the loading motor was still weak. We had to replace Q8091 which controls the loading motor: it's a Darlington type and was not switching hard on, with the result that the loading motor was nor receiving the full supply voltage. It's worth noting that this transistor grounds one side of the loading motor to switch it on.
M.D.

Ferguson 3V29

The customer complained that this machine kept switching itself off. We found that when a cassette was inserted and play was selected the tape would load up then unload and return to stop. The capstan motor wasn't turning, so with no take-up drive the reel sensor stopped the machine. In playback the voltage across the capstan motor was found to be only 0.2 V instead of 9.3 V . The circuit says that the motor's d.c. resistance is 70Ω, but it measured only 17Ω. Short-circuit turns perhaps? We measured the d.c. resistance of a new motor and found that it was 17Ω, so we amended the circuit (the machine has the combined mechacon/servo panel) and checked back to the drive transistor Q216 (2SD880).

The problem was loss of base drive. When 10 V was applied to the base via the variable bench supply the capstan motor turned. The lack of drive was traced back to IC204 which was producing no output at pin 1. Replacing this i.c. made no difference and to keep the machine running the bench supply was set to 11.1 V and connected to pin 1 - otherwise the reel sensor would shut the machine down before any voltage or waveform checks could be made. The next step was to move back to IC1 (VC1029) which contains the capstan speed control circuit (frequency-to-voltage converter). The speed control output voltage at pin 10 was low at 1.2 V instead of 2.7 V . Applying 2.7 V here from the bench power supply got everything working correctly so a new VC1029 was fitted. This time we'd got the right i.c.! Pin 10 of IC1 drives pin 3 of IC204: the voltage at this latter pin had been 5.9 V instead of 6.2 V , a difference that's easy to miss.

After a soak test in the play mode the machine failed to complete a loading cycle and again went to stop. This time the loading belt was slipping just before the loading rings reached their stops - a new belt cured this trouble.

Hitachi VCRs

Faults that have come our way on Hitachi machines are as follows.
VT8300: (1) Squeaking and distortion on sound. Check the audio/control head. (2) Machine will not work, stop light flashing. Cassette bulb open-circuit.
VT8000: No record, no sound or vision in the E-to-E mode, no channel lights, playback o.k. Check the 12 V line on the tuner/i.f. board. Check the not-12V playback voltage. R069 ($1.5 \mathrm{k} \Omega, 0 \cdot 5 \mathrm{~W}$) may be open-circuit.
VT9300: Take-up spool stops, tape chewing. Replace the playback idler wheel.
VT9700: Runs slow intermittently. Capstan motor has an internal short.
VT8500: Goes to stop when put in the cue/review mode.

Also does this with remote operation. Check the voltage at pins 3 and 4 of the HD44801A05 i.c. (IC901). Should be low. If high suspect the i.c.
VT11: Chews tapes. Replace the playback/rewind/fast forward idler.
VT14: Will not change channels up or down. Check around the programme control chip IC721. If the voltage at pin 13 is low (should be 10 V) check C712 $(0.01 \mu \mathrm{~F})$.
W.G.L.

Philips VR2020

We've had the following faults on this model.
Pressure roller doesn't engage after threading up. Suspect T7008 (BD577) or T7007 (BC548) in module U180.
Machine threads up, pressure roller flicks over and back,
then the machine unthreads and cuts out. The pressure roller solenoid SK5 is not engaging. Check the voltage at pin 15 of module U220: if low (below 5V) T7002 (BC548) is suspect.
No sound on loop-through, playback and record o.k. Replace IC7051 (RC4559) in module U160.
Video tuning mark on all the time. Check T7005 (BC548) in the U14i) sync module.
W.G.L.

Sharp VCRs

Some faults we've had on Sharp VCRs are as follows.
VC9300: For no rewind, fast forward o.k., check relay R7751 - this relay changes the polarity across the reel motor.
VC8300: Check the drum belt if the cassette ejects after insertion -lit may be broken or stretched.
VC2300: Machine dead with tape trapped in the laced-up position - check Q914 (2SA770) on the servo board.
VC9300: Machine plays for three seconds then the capstan and drum motors stop with the tape still threaded: press the play button and the machine works. The after-loading switch is faulty.
W.G.L.

Sanyo VCRs

We've logged the following faults on Sanyo machines.
VTC5000: No results with the mains fuse F5201 opencircuit, a replacement fuse blowing - suspect the STK7216 switch-mode power supply i.c. (IC5101).
VTC9300: No picture on record, E-to-E and playback o.k. Check Q4 (2SK68A) on board W1.

VTC5150; No playback colour. Check the chroma signal at pin 27 of IC1009 (TP1016), also the voltage at pin 26. If the latter is incorrect check R1297 ($12 \mathrm{k} \Omega$).
VTC5600: No E-to-E colour, loop-through o.k. Check the pilot burst cleaning pulse: suspect Q177 (2SC536KE).
W.G.L.

Mitsubishi HS306B

Here's arother stock fault on these machines - intermittent tuning drift and a whistling noise on the sound. The cause is a dry-joint on C 703 which decouples the tuning voltage.
P.B.

Grundig 2×4 GB

The fault with this machine was a negative picture on E -to- E and playback for the first ten minutes. The $-22 \mathrm{~V} / \mathrm{R}$ supply to the modulator was found to be low at -14 V due to R477 ($27 \mathrm{k} \Omega$) having gone high-resistance.
P.B.

Field Timebase Circuit Survey

Part 1

S.W. Amos and E. Trundle

The main emphasis in this series will be on field output stage circuits: we will review practice from the earliest days to the present. The task of the field output stage is to drive the field deflection system, i.e. to supply it with a signal (voltage or current) of waveform and amplitude suitable to give the required vertical deflection of the scanning electron beam. The normal requirement is to deflect the beam downwards linearly with time. With the moderate deflection angles used in early picture tubes the field output stage was called upon to supply a linear sawtooth or ramp signal to drive the deflection system. Such a waveform is shown in idealised form by the solid line in Fig. 1. With the wider deflection angles used in modern flat-faced tubes the scanning beam must slow up at each end of the working stroke to give a truly linear scan on the face of the tube: the dashed part of the waveform in Fig. 1 shows the required wave shape. This alteration to the basic sawtooth waveform is called scan correction. Methods of achieving it will be described later.

Electrostatic Deflection

The chief application for early cathode-ray tubes was in oscilloscopes. So it was natural, when public service television started in late 1936, that the first picture tubes should resemble oscilloscope tubes and use the electrostatic deflection system employed in oscilloscopes. The e.h.t. voltage used for these early tubes was by today's standards modest - around $3-4 \mathrm{kV}$ - but even so sawtooth voltages of the order of 1 kV peak-to-peak were needed on the deflection plates. Moreover it was desirable to drive each pair of plates in push-pull to get a truly rectangular raster. Fig. 2 shows a simplified circuit of a typical field output stage of that era. Note that an h.t. voltage of 700 V was needed to give the required output voltage swing.

The basic sawtooth is generated by the charging circuit C 1 , R1, with switch S1 (the field oscillator) providing periodic discharge of C 1 . As C 1 charges via R1 the voltage across it increases. This rise in voltage is used as the forward stroke of the field sawtooth output waveform. At the end of the forward stroke S1 closes, short-circuiting C 1 to produce the flyback. The next forward stroke commences when S1 opens again.
A variety of field oscillator arrangements have been used over the years. A blocking oscillator or multivibrator is perhaps the most common circuit. Thyratrons were widely used in the pre-war and early post-war periods while the modern equivalent, the silicon controlled switch, was quite common in early solid-state field timebase circuits. The oscillator is synchronised by the field sync signal and provides a once per field period short-circuit path to discharge C 1 .
The voltage rise across a capacitor that charges from a d.c. source via a resistor is of course exponential, but the early part of such a curve is a good approximation to a linear rise. In this example (Fig. 2) only 20 V out of a possible 700 V voltage rise is used as the forward stroke: the departure from linearity over such a small proportion of the full potential is negligible. The curvature of the voltage rise can however be used to provide scan correc-
tion in the second half of the forward stroke - an example will be described in Part 2.

Since two output stages of the type shown in Fig. 2 were required - the other for line deflection - such timebase systems were rather extravagant in terms of valves and h.t. power. During the years preceding the war it was gradually realised that an electromagnetic deflection system would be more economical on both counts though the design of the coils and the circuit was a more difficult proposition. Moreover as larger-screen tubes requiring large deflection angles and short necks were introduced the superiority of electromagnetic deflection became more obvious: it soon became standard practice in TV receivers.

Coil Current and Voltage Waveforms

The ideal sawtooth waveform shown in Fig. 1 has a linear forward stroke and a linear flyback. With electromagnetic deflection the field output stage has to drive a current with such a waveform through the field deflection coils. Although the output was specified as a current (because it's on the current that the deflection of the beam depends) this doesn't mean that the voltage waveform is unimportant. Consider the shape of the voltage waveform. At the low field frequency the coil windings are predominantly resistive, but there's necessarily an inductive component: the coils can be represented as a resistance and an inductance in series. In flowing through the resistance the sawtooth current generates across it a voltage of the same sawtooth waveform - see Fig. 3(a). In flowing through the inductance the sawtooth current generates across this a voltage proportional to the rate of change of the current, i.e. a pulse waveform - see Fig. 3(b). The voltage across the coils is therefore the sum of these, see Fig. 3(c), and this is the voltage waveform that the field output stage must supply. As we shall see later, this voltage waveform's excursion during the flyback can be large enough to damage valves and transistors so that protective measures may be necessary.

Frequency Response Required

Now consider the frequency range required for a field output stage. A waveform such as that shown in Fig. 1 obviously contains a strong component at the fundamental frequency of 50 Hz , but in addition there is a wealth of harmonics extending theoretically to an infinite frequency. In fact Fourier analysis of the waveform shows that the amplitude of the fundamental component is nearly two thirds that of the sawtooth. Odd harmonics predominate, and their amplitudes are inversely proportional to their order, e.g. the third harmonic has one third the amplitude of the fundamental. Thus the 51st harmonic has less than two per cent of the amplitude of the fundamental and in consequence this and the higher harmonics have only a small effect on the shape of the waveform. This means that the effective upper limit to the frequency range need extend to a few kHz only - in fact the overall frequency range is similar to that of an audio amplifier.

Fig. 1: Ideal sawtooth waveform (solid) with modification for scan correction shown in broken line at top and bottom.

Fig. 2: Field output stage for electrostatic deflection.

Fig. 3: Voltage across (a) a resistor, (b) an inductor and (c) the sum when a sawtooth is passed through them.

The output power required from a field output stage is usually a few watts, again similar to the requirement with an audio output stage. It's not surprising therefore that many field output stage circuits bear a strong resemblance to those of audio output stages. This analogy with a.f. practice is useful but must not be pushed too far. The signals handled by the two types of output stage are quite different for example: the field output stage handles a repetitive waveform of constant amplitude and frequency whereas the audio output stage handles a complex signal whose components are constantly changing in amplitude and frequency. At times an a.f. signal can have zero amplitude: if this occurred in a field output stage there would be something radically wrong somewhere!

Field Scan Coils

With electromagnetic deflection the angle through which the electron beam is bent is proportional to the magnetic field set up in the tube by the scan coils: this in turn depends on the product of the number of turns on the coils and the current flowing through them - the ampere-turns in fact. Provided the ampere-turns product remains constant there can be considerable variation in the two. For example a low-impedance pair of coils might have 200 turns and require a peak-to-peak current swing of 0.5 A for full deflection. This gives an ampere-turn product of 100 : such a pair of coils might have a resistance
of 15Ω and an inductance of 7 mH . At the other extreme a high-impedance pair of coils might have 2,500 turns and require a çurrent swing of only 40 mA for full deflection. The resistance is likely to be about $2 \mathrm{k} \Omega$ and the inductance around 1 H .

To give some idea of the practical magnitude of the currents and voltages, consider the low-impedance coils mentioned above. The peak-to-peak current required for full deflection is 0.5 A , i.e. +0.25 A to -0.25 A . By a simple application of Ohm's Law we know that the voltage across the resistance will swing between +3.75 V and -3.75 V . If, to get an approximate answer, we take the field forward stroke as occupying 19 ms and the flyback 1 ms , then the voltage across the inductance during the forward stroke is given by $L . \mathrm{di} / \mathrm{dt}$, i.e. $7 \times 10^{-13} \times$ $0.5 /\left(19 \times 10^{-13}\right)=0.18 \mathrm{~V}$. During the flyback the voltage is 19 times as great, i.e. $3 \cdot 5 \mathrm{~V}$. The voltage across the coils thus swings between -3.93 V during the forward stroke and +7.25 V during the flyback, a total swing of $11 \cdot 18 \mathrm{~V}-$ 50 per cent greater than for the resistance alone.

If we repeat this calculation for the high-impedance coils with an inductance of 1 H , a resistance of $2 \mathrm{k} \Omega$ and a 40 mA peak-to-peak current flow we find that the voltage across the resistance swings between -40 V and +40 V while that across the inductance swings between $2 \cdot 1 \mathrm{~V}$ during the forward stroke and 40 V during the flyback. The voltage across the coils thus swings between $-42 \cdot 1 \mathrm{~V}$ and +80 V , a total change of $122 \cdot 1 \mathrm{~V}$ - again about 50 per cent greater than for the resistance alone.

Early Valve Circuits

In the early days of television the only active device available for use in field output stages was of course the valve. The obvious way to drive the field deflection coils was to pass the anode current of a class A amplifying stage directly through them, a sawtooth input voltage being applied to the valve. High-impedance coils would clearly be needed to provided the valve with a load approximating to the optimum value, but if direct connection is used the static deflection produced by the d.c. component of the anode current is a nuisance, as also is the considerable dissipation in the scan coils themselves.
These disadvantages can be overcome by using $R C$ coupling between the valve and the coils - see Fig. 4(a). This arrangement was used in a number of early TV receivets. The coupling capacitor had to have a value of around $64 \mu \mathrm{~F}$ in order to maintain an adequate response at 50 Hz . It was sometimes connected on the chassis side of the coils - see Fig. 4(b) - as a result of which the coils were at h.t. potential, say 250 V . This arrangement was adopted not so much to catch out unwary service engineers (though there's little doubt that it did do this - see Chas E. Miller, Television May 1984, page 374) but because an electrolytic capacitor was used and it was converient to mount it directly on the metal chassis to provide a connection to its negative terminal. Dissipation in the anode load resistor (commonly between $2-7 \mathrm{k} \Omega$) was considerable, necessitating a 5 W or 10 W component. In some designs this dissipation was reduced by using a choke instead of a resistor but the choice of choke inductance posed a difficult problem which is discussed below

With 30 mA mean anode current the valve, usually a pentode but sometimes a triode, could readily accommodate the $\pm 20 \mathrm{~mA}$ anode current swings and, with an h.t. supply of 250 V , the 112 V anode voltage swing needed
by the high-impedance coils whose characteristics were quoted above. For input the valve typically required a sawtooth voltage of 10 V peak-to-peak which could be readily obtained with good linearity from an $R C$ charging circuit connected across the $200-250 \mathrm{~V}$ h.t. supply. Thus it was common in valve TV sets for the field timebase to consist of a single output valve driven by an $R C$ charging circuit controlled by the field oscillator. This was fortunate because it's difficult to design intervalve coupling circuits that give the exceptionally good low-frequency response required to preserve a 50 Hz sawtooth. Direct coupling is perhaps the best technique to employ but this isn't easy with valves. As shown in Part 2, transistor field timebases normally have a number of stages - an oscillator, driver and output transistor at least - but transistors, particularly complementary-symmetry pairs, lend themselves readily to direct coupling.

Transformer Coupling

When TV receiver manufacture resumed after the war most makers decided to use low-impedance field scan coils requiring deflection currents of up to 1 A , with coupling by means of a matching transformer (sometimes an autotransformer) as shown in Fig. 4(c). The transformer's turns-ratio was chosen to present the valve with a suitable value of load impedance. The coils were more robust than the high-impedance type and the transformer eliminated static beam deflection. This seenned to be an ideal solution though the effective shunt reactance present, due to the transformer magnetising current required, caused difficulties - this applied also with choke-capacitance coupling to high-impedance coils.

Ideally the inductance of the primary winding should be so large that its reactance at the lowest frequency of interest $(50 \mathrm{~Hz})$ is many times the optimum load of the valve. It then has negligible shunting effect. If the optimum load is $3 \mathrm{k} \Omega$, the shunt reactance should not be less than $30 \mathrm{k} \Omega$, which at 50 Hz calls for an inductance of approximately 100 H (with probably 30 mA of d.c. flowing in the primary winding). Such a component is large, heavy and expensive, so it's not surprising that setmakers preferred to use smaller transformers and to compensate in some way for the deficiencies in performance resulting from the inadequate primary inductance. For example, if the matching transformer didn't have to carry d.c. it would not require a gapped magnetic core and could thus have greater inductance. Accordingly some setmakers $R C$ coupled the transformer to the output pentode as shown in Fig. 4(d). But this again necessitated the use of a highwattage anode load resistor and a coupling capacitor with a large value. So the standard technique was to pass the anode current directly, through the transformer's primary winding. The shunt reactance then causes a bad l.f. loss.
The loss of a dB or so at 50 Hz in an audio amplifier might worry the hi-fi fiends but is hardly disastrous because the listening process can effectively restore the attenuated components. In a field output stage however such a loss at the fundamental frequency would introduce obvious errors in the vertical linearity of the display and these could not be corrected subjectively. The low-frequency response of a field output stage must therefore be excellent. To obtain this the loss due to the primary winding's shunt reactance can be offset by introducing a low-frequency boost. This is done by modifying the primary current waveform as shown in Fig. 5, which illustrates the effect of the increased boost needed to
maintain a good sawtooth output as the primary winding's inductance is reduced. A significant point is that if the primary inductance is reduced below a certain critical value the primary current waveform must start each forward trace with a negative-going slope. It's difficult to design a network to produce such a waveform, though it's comparatively easy to devise a means of producing waveforms such as OA which have zero initial slope and a positive slope thereafter. Fig. 6 shows the anode current waveform required in practice: the output transformer has the minimum inductance consistent with this waveform and the valve's drive waveform is adjusted to achieve the required output current waveform. The next problem is to provide the required predistortion.

Waveform Shaping

The shape of the curve shown in Fig. 6 is similar to the $\mathrm{Ia}-\mathrm{Vg}$ characteristic of a triode valve and in some immediate post-war sets this characteristic was used to shape the primary current waveform, the valve being driven by a sawtooth input voltage from the charging circuit. It was also possible to exploit the full length of the charging waveform. Unfortunately the shape of the $\mathrm{Ia}-\mathrm{Vg}$ characteristic varied from valve to valve of the same type and also changed as the valve aged. A preset control was therefore included in the circuit to provide linearity adjustment as the valve's characteristic changed. This preset was usually part of an $R C$ combination - such combinations were and still are widely used to obtain waveform shaping.

By suitable choice of component arrangement and timeconstant, $R C$ networks can be used to derive from a recurrent waveform any shape between the first derivative and the time integral of the waveform: by combining a controlled amount of the waveform thus obtained with the original waveform it's possible to alter the shape considerably. In this way setmakers were able to obtain an approximation to the waveform shown in Fig. 6, starting with the sawtooth waveform provided by the charging circuit. It's still considered desirable to have at least one preset resistor to give a degree of linearity control.

The $R C$ shaping networks required could be included in the valve's control grid coupling circuit, but as valve ageing would still affect the performance it became the general practice to include the networks in a negativefeedback loop, thus making the output stage's performance substantially independent of the valve's characteristic and thus of valve ageing. It must not however be thought that the values of R and C used in the shaping circuits were arrived at empirically: there were sound theoretical reasons for the choice as the following account shows.

When negative feedback is used to linearise the waveform of the current flowing in the secondary winding the feedback voltage should ideally be directly proportional to this current and should be taken from a lowvalue resistor in series with the field scan coils. If the coils have a low impedance the value of the series resistor should not exceed about 1Ω in order to minimise waste of scan power. But the voltage generated across such a resistor is unlikely to exceed 1 V peak-to-peak, which is too small to be of use as negative feedback for application to the control grid of an output pentode, where the normal input signal is likely to be around 10 V peak-topeak. If there was an earlier stage of amplification the voltage feedback could be applied to its input, but as

Fig. 4: Field scan coil coupling arrangements.

Fig. 5: The effect on the primary current waveform required to produce a sawtooth in the secondary winding as the inductance of the primary winding is reduced. $X-Y$ shows the primary current waveform needed for a sawtooth secondary current as the primary inductance is reduced.

Fig. 6: The primary current waveform used in practice.

Fig. 7 (left): Feedback circuit to correct for the effects of coil and leakage inductance.
Fig. 8 (centre): Addition of I.f. boost (C2, R2).
Fig. 9 (right): Alternative arrangement to Fig. 8.

Fig. 10: Field output circuit used in the Pilot TV107.
we've seen with valve field timebases the output stage is driven by the $R C$ charging circuit without intervening stages.
The only practical solution to this problem is to take the negative feedback voltage from the output pentode's anode, where there is no lack of signal voltage. Unfortunately the voltage waveform at the anode is not proportional to the current flowing in the scanning coils - due to the effect of the inductance of the coils and of the leakage inductance in the output transformer. There's a simple method of overcoming this difficulty however: as shown in

Fig. 11: Field output circuit used in the Cossor 948.
Fig. 7, the anode voltage can be applied to an $R C$ circuit with the voltage developed across the capacitor used as the feedback. Provided a suitable time-constant value is used, the voltage across C 1 is proportional to the current flowing in the scan coils.

The value of time-constant required is equal to that in the valve's anode circuit, i.e. $(L \mathrm{c}+L \mathrm{I}) /(R \mathrm{c}+R \mathrm{~s})$ where $L \mathrm{c}$ is the inductance of the coils, $L \mathrm{l}$ the transformer's leakage inductance, $R \mathrm{c}$ the resistance of the coils and $R \mathrm{~s}$ the resistance of the secondary winding. If for example $L \mathrm{c}$ $=7 \mathrm{mH}, L \mathrm{l}=6 \mathrm{mH}, R \mathrm{c}=15 \Omega$ and $R \mathrm{~s}=2 \Omega$, the timeconstant required is $760 \mu \mathrm{~s}$. Somewhat greater values were used in practice and the resistor was made preset for linearity adjustment. For example in one chassis the capacitor was $0.05 \mu \mathrm{~F}$ and a $50 \mathrm{k} \Omega$ preset was used, giving a maximum time-constant of $2,500 \mu$ s.

A second $R C$ combination has to be included in the feedback। path to provide the I.f. boost necessary to produce the current waveform shown in Fig. 6. C2, R2 in Fig. 8 give the required effect provided a suitable timeconstant is used (R1, C1 compensate for the effects of coil and leakage inductance as before). An indication of the order of time-constant required is given by $L \mathrm{p} / R \mathrm{p}$, where $L \mathrm{p}$ is thel inductance and $R \mathrm{p}$ the resistance of the primary winding. Typical practical values are 20 H and 500Ω, giving a time-constant of 0.04 s . The Alba Model T744 used $0.03 \mu \mathrm{~F}$ and $2.2 \mathrm{M} \Omega$, giving a time-constant of 0.066 s .
The negative feedback due to R1, C 1 , being concerned with correcting deficiencies due to coil and leakage inductance, is effective chiefly at the upper range of the fieldfrequency spectrum; that due to $\mathrm{R} 2, \mathrm{C} 2$ is concerned with the other end, being required to provide l.f. boost. It's possible therefore to combine the networks as shown in Fig. 9. At very low frequencies the reactance of Cl is so high that the network is effectively ($\mathrm{R} 1+\mathrm{R} 2$) $\mathrm{C} 2-$ equivalent to $\mathrm{R} 2, \mathrm{C} 2$ in Fig. 8. At very high frequencies R 2 is latge compared with the reactance of C 1 and the network is effectively C1, R1, C2 which is similar to Fig. 7 if we neglect the effect of C2.

Practical Circuits

Most of the field output stage designs of the immediate post-war period and the fifties were based on the principles described above. As illustrations, here are a few examples. The circuit shown in Fig. 10 was used in the Pilot Mbdel TV107 which was introduced in September 1956 - it's the same as that shown in Fig. 8. The circuit shown in Fig. 11 was used in the Cossor Model 948 (August 1958) and is an example of the combined net-

Fig. 12: Triode-pentode field timebase circuit used in many GEC chassis, with the pentode section acting as the output valve and as half the oscillator (multivibrator).
(a)

Fig. 13: Sawtooth waveform (a), its first derivative (b) and the waveform obtained (c) when the time-constant is comparable to the period of the input waveform.

Fig. 14: Sawtooth waveform (a) and its integral (b).
work arrangement (Fig. 9).
Because valves age, die and have to be replaced, one of the aims in designing valved equipment has always been to keep the valve complement to a minimum. Any opportunity to economise in the number of valves used was eagerly seized (paradoxically the aim in modetn equipment seems to be the opposite - to use as many active devices as possible: modern i.c.s use them by the thousand!). One way of reducing the valve count was to make one valve do the work of two. This became the practice with valve field timebase circuits where a triodepentode would provide all that was required: the pentode section often acted as half of a multivibrator circuit in addition to being the output valve - Fig. 12 shows a typical circuit which was used in a number of GEC chassis up to and including the final hybrid monochrome ones.
The triode and pentode are cross-coupled to form an astable multivibrator: the grid circuit time-constants are markedly dissimilar so that the pentode conducts for a much longer period than the triode. During this time the triode is cut off and C2 charges via R2 and R3 to produce the basic sawtooth. Feeding the height control via the potential divider R1/VDR1 provides a stable charging supply: taking this supply from the boost rail helps to give
a linear sawtooth. We can ignore the multivibrator action during the forward stroke when the pentode acts as a straightforward output valve. The feedback network follows the lines previously described, with C8, R11, R12 providing l.f. boost and R13, R14, C9 contributing h.f. correction. Negative-going field sync pulses cut off the pentode just prior to the natural oscillatory cycle to initiate the flyback, which is produced by primary current reversal in the output transformer. The VDR across the primary winding reduces the flyback pulse voltage.

RC Networks

Before going on to transistor field timebases in Part 2 it's worth mentioning another way of looking at the waveform correction brought about by $\mathrm{R} 1, \mathrm{C} 1$ and $\mathrm{R} 2, \mathrm{C} 2$ in Fig. 8. Instead of regarding them as h.f. and l.f. correction networks or as correctors for leakage inductance and shunt inductance they can be treated simply as waveform shapers used to get the required signal shape. This is worth considering in more detail.

Any recurrent signal applied to a series $R C$ combination yields two outputs - one across the resistor and the other across the capacitor. When the output is taken from the resistor the circuit is often referred to as a differentiating network because, if the time-constant is small compared to the period of the input signal, the output waveform approximates to the differential coefficient (or first derivative) of the input. Thus if the input is a sawtooth as shown in Fig. 13(a) the output is the pulse waveform shown in Fig. 13(b), the relationship between them being that the ordinate at any instant in waveform (b) measures the gradient at the corresponding instant in waveform (a). If the time-constant is not short but is comparable with the period of the input the output waveform is as shown in Fig. 13(c). With a long timeconstant the input and output waveforms are the same, this being the condition required for an interstage $R C$ coupling network in an analogue amplifier.

If the output from the series $R C$ combination is taken from the capacitor the arrangement is known as an integrating network because, if the time-constant is long compared with the period of the input signal, the output waveform approximates to the time integral of the input. Thus if the input is a sawtooth, as in Fig. 14(a), the output has the parabolic form shown at (b), the relationship between them being that the ordinate at any instant in waveform (a) measures the gradient at the corresponding instant in curve (b). In this case when the time-constant is decreased the output waveform changes until, with a small time-constant compared to the period of the input waveform, the input and output waveforms resemble each other.

It's possible therefore with suitable choice of output point and time-constant to obtain from a series $R C$ combination any shape of signal between the full differential and the full integral of the input. Sometimes the output from the $R C$ circuit is itself the wanted waveform: this is the case when the network is used as an integrator or differentiator. Alternatively the network can be used to give a correcting signal which, after attenuation if necessary in a potentiometer, can be added to or subtracted from the waveform to be shaped. Thus the use of $R C$ networks is a most versatile method of waveform shaping and is one that's extensively used in field timebases. With wide-angle tubes the values are adjusted to achieve the scan-correction required.

TV Fault Finding

Reports from Les Grogan Larry Ingram and 'John Coombes

Decca 130 Series Chassis

An unusual fault came our way on a Decca/Tatung set fitted with the 130 chassis, remote control and teletext: the set would intermittently go into standby when changing channels, either manually or via remote control. Changing the microcomputer i.c. on the frequency synthesis panel made no difference and the d.c. supplies from the regulators on this panel checked o.k. with a digital voltmeter. A scope check on the output, from the 5 V regulator (IE01) provided a clue: there was a nasty hum present on this rail, which feeds the microcomputer i.c. The input to this regulator is obtained from the centre tap on the standby transformer winding that feeds the bridge rectifier. The winding has two 7 V a.c. sections and one of these was open-circuit. A new standby transformer cleared the trouble.
L.G.

Hitachi CTP1471/1473

The picture collapsed, then went off. Several things were found to be faulty, the root cause apparently being the chopper i.c. (IC901). The field output i.c. - two diodes and the output pair of transistors encapsulated in a block and two associated resistors R772 and R682 were found to be faulty (the resistors were charred and one of the output transistors was leaky). Unfortunately the i.c. is available only from the makers. Further examination revealed that the 2SD898B line output transistor was leaky and when we checked the h.t. with a dummy load we found it to be 175 V instead of 111 V . Replacing IC901 and the associated components didn't effect a cure so the makers were contacted. It appears that early production runs of the chopper i.c.s sometimes went haywire, and that this can be the case with stock items. The "modification" kit from Hitachi consists of IC901 (STR6020), a 2SD898B, Q681 (2SC1213A), fusible resistor R772 and an STA441C field output i.c. if this was found to be faulty.
L.I.

Thorn 8500 Chassis

At odd times over many months the red button cutout ' would operate. Resetting it would restore the vision and sound for days or weeks on end with no other reported symptoms. After three days on soak test there was a slight increase in picture size and the cutout operated. Eventually R724 ($120 \mathrm{k} \Omega$) in the set h.t./e.h.t. control network was found to be varying in value.
L.I.

Hitachi CBP260 (NP9A Chassis)

The complaint was erratic starting from cold using the on/ off switch while it became increasingly difficult to switch on and off by means of the remote or mains switch as the set warmed up. The switch operated correctly and it seemed that the cause of the trouble was something to do with the chopper circuit. This is on its own board in the middle of the main board and is not very accessible. The chopper transistor's collector fixing screw was found to be loose but tightening this and replacing the transistors and small electrolytics in the control circuit didn't improve matters.
At this point a similar set arrived in the workshop. In this case the chopper circuit stopped working intermit-
tently when hot. There was no reason to suspect dry-joints - everything looked quite sound - but each and every joint on the PCB was resoldered with great care. This cured the problem. Back to the first set. Maybe it was the same trouble? Again nothing looked at all suspect, but the same treatment worked. There was still the problem of intermittent starting. The plug and leads were checked one more time: solder up, tighten again and the fault had been cured.
L.I.

Grundig CUC720 Chassis

There was no field scan and R2771 ($6 \cdot 8 \Omega$) in the supply to the output section of the TDA2653 field timebase i.c. on the deffection module had burnt out. The i.c. was replaced and we found that the flyback boost capacitor C2768 ($100 \mu \mathrm{~F}$) between pins 7 and 11 had a nasty leak. This has been the trouble on several occasions: C2768 seems to be the start of the problem and should be changed if there is any suspicion. In passing, most of the field timebase modules of this and similar Grundig types seem to have daylight between the i.c. heatsinks as fitted. It would seem to be good practice to correct this. L.I.

Decca 70/90/110 Series Chassis

Here's a summary of some of the faults we've had on these sets.
Set tripping: Check, in the following order, the overvoltage zener diode D602 (ZPD22) for leakage, the current sensing resistor R636 for being open-circuit, and C633 $(680 \mathrm{pF})$ in the h.t. rectifier circuit for being shortcircuit or leaky. Other possible causes are the TDA2581 chopper control i.c. (IC601) - check by substitution - and a break in the c.r.t.'s Aquadag earth return.
Intermittent tripping: Check C617 (6.8 nF) in the set-h.t. control circuit for leakage.
Intermittent chopper transistor failure: Check whether R637 $(2 \cdot 2 \mathrm{k} \Omega, 7 \mathrm{~W})$ in the snubber circuit is open-circuit and for dry-joints around Tr604 (BSR59) in the driver circuit.
Power supply not working: Check whether the bridge rectifier's reservoir capacitor $\mathrm{C} 624(100 \mu \mathrm{~F})$ is open-circuit. White screen/curved black area on the screen: Check the TDA2571 line oscillator/sync i.c.
Vertical red stripes on the screen: Check the $\mathrm{R}-\mathrm{Y}$ coupling capacitor C208 (22nF).
Poor field lock: Check whether $\mathrm{C} 308(10 \mu \mathrm{~F})$ in the field sync pulse integrator stage is open-circuit.
Lack of brightness: Check R910 ($180 \mathrm{k} \Omega$, 1W) in the first anode supply circuit for being open-circuit, also if necessary the control (VR908, 2.2M Ω) for the same condition. (70/90 series chassis).
Bright red/green/blue raster with flyback lines: Check R913 ($220 \mathrm{k} \Omega$) on the tube base panel for being opencircuit. (110 series chassis.)
J.C.

Editorial note: An error occurred in Fig. 1, page 597 of the September 1983 issue. The output across C 637 should have been shown as 150 V , not 195 V , for the 90 series chassis. The diagram showed the switch-mode power supply circuit used in these sets.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

HA1338	7.50	M1130	535	NE646N	298	SAS560	1.85	SN76520	2ㄷ9	TA7109	3.71	TC4053BP	4.34	tDaz611a	238	TIP30C	0.40
HA1339	233	M191	6.32	Ne650	4.34	SAS560S	1.55	SN76522	1.6	TA7120P	0.64	TCA 150	1.79	TDA26120	4.68	T1P	34
HA1342	23	M193	18.55	NE654BN	4.18	SAS5601	5.42	SN76623	0.69	TA7128/P	0.92	TCA1608	1.79	tDA2620	1.96	TP318	38
HA1350	327	M51021	6.35	NP1106	5.61	SAS570	1.78	SN76530	250	TA7124P	234	TCAz70a	1.71	tDA2530	1.96	TIP3	0.50
HA1365	4.02	M5115P	524	OA200	0.11	SAS570S	261	SN76640	424	TA7130P	127	tcazos	215	tDazz31	273	T1P328	0.09
HA1356WR	1.85	M51231P	3.04	OA202	0.11	SAS570	5.10	SN76551	1.49	TA7136AP	127	tcazzosa	1.65	TDA2640	258	${ }_{\text {T1P32C }}$	0.40
HA1367	4.32	M5124P	4.82	0447	0.14	SAS580	285	SN76850N	248	TA7137P	0.98	TCA290a	239	TDA2643	1212	П1P33C	0.80
HA1368	1.90	M5134-9341	4.13	0A90	0.08	SAS5500	289	SN76665	1.19	ta7141AP	3.87	tcaazaa	216	TDAzas ${ }^{\text {d }}$	295	TIP34	1.18
HA1368R	1.98	M51394P	11.97	0a91	0.09	SAS590	285	SN76666	1.41	TA7146P	423	TCA440	1.21	TDA2652	6.95	TIP4IA	0.49
HA1370	371	M5142P	5.43	0A95	0.03	SAS5900	256	SN76705N	1.34	TA7148P	1.67	TCA4500A	215	tDaz653	6.18	TIP91B	0.31
HA1374A	8.80	M5143P	733	0 C 28	252	SAS650	297	SN76707N	4.39	TA7149P	323	TCA530	216	TDA2654	4.73	TP41C	0.45
HA137	3.95	M5144	3.7	0 C 29	215	SAS6600	1.33	SN76709	5.12	TA7161P	623	TCA640	1026	TDACas5	5.41	T1P42A	0.99
HA1339	239	M51513L	255	0С35	1.05	SAS660S	1.33	SN76709N	5.45	TA7162P	298	TCAG50	204	TDazaso	24	TP428	0.9
HA1393R	205	M51515BL	323	0c36	128	SAS6810	1.33	SN76730	4.56	TA7169	9.54	TCA660]	330	TDA2661	24	${ }_{7 P 42 C}$	088
HA1392	350	M51516L	3.95	OCA4	0.35	SAS670	3.96	SN76810N	0.60	TA7171P	27	TCA730	3281	tDaz670	248	T1P47	0.65
HA1394	3.95	M51517L	371	OC45	0.18	SAS6700	1.33	SN76920N	290	TA7172P	1.41	TCA740	248	tiazrifa	1.94	T1P48	0.92
HA1397	3.76	M5152	288	0 C 75	0.4	SAS670S	133	SN94041	5.54	TA7176P	268	TCA750	225	TDA2680	320	T1P49	3.61
HA1398	3.98	M5152	5.39	ON188	1.87	SAS6710	1.33	SN94042	4.35	TA7193AP	6.67	TCA800	5.95	TDA2699a	265	7P55A	3.5
HA1406	207	M5191P	4.94	ON236	1.06	SAS6800	253	SP8385	0.5	TA7193P	726	TCA8000	5.5	TDA2780a	5.14	TIS43	134
HA1452	1.63	M5192	220	OT112	1.08	SAS6810	1.40	STA441C	27	TA7001P	271	Tcas30S	238	DA27900	250	Tis91	021
HA1723	5.94	M5194AP	5.74	OT121	1.32	SBA550B	215	STK0029	5.54	TA7202P	27	TCA900	204	TDA2791 TDA2795	250	TMS91000NL	029
HBF4030AF	248	M53723P	1.0	PD144	224	SBA750	1.61	STK0039	${ }_{7} 5.35$	TA7203P	$\begin{aligned} & 218 \\ & 216 \end{aligned}$	TCA910	1.05	TDA3009	275	TMS3048HS	116.13
HD38750a53	8.71	M53274P	1.33	PT2014	304	SC9488P	209	STK0050	${ }_{7}^{7.67}$	TA7204P	$\begin{aligned} & 216 \\ & 128 \end{aligned}$	TCA930E	293 3.89	TDA3030a	11.9	TMS4116	16.13 206
HC4480	17.16	MA06	1.07	PT5006	248	SC9503	1.55	STK0059	$\begin{aligned} & 7.13 \\ & .16 \end{aligned}$		6,38	TCE527	1.86	TDA3190	268	W106	1.76
HD44801A	17.46	MA8801	0.82	PT6042	1.79	SC9504P	1.95 209	STK0080 STK011	79.16 3.96	$\underset{\text { TA7207P }}{ }$	3.34	TCE82	1.08	TDA3300B	6.47	TY6010B	297
HEF4001P	0.67	MB3705	1.79	${ }^{R 1038}$	219 219	sc9511P Sches7	209	STK013	9.35	TA7208P	215	TCE83	1.08	TDA3500	4.25	U056	1.14
HEF4001BP	0.67	MB3712	1.85	${ }_{\text {R1039 }}^{\text {R208B }}$	219 1.33	SCR957	1.33 526	STK014	88.8	TA7210P	3.56	TCE84	1.08	TDA3501	1209	U143M	3.08
HEF4011	029	M83713	1.69 3 3	${ }_{\text {R2009 }}^{\text {R20 }}$	1.38 1.98	SG613	8.75	STKO15	7.75	TA7214P	3.63	TCEP 1000	1025	fDA3506	9.98	U37003	0.49
HM ${ }^{\text {H/23 }}$ H6232	889	MC1303P	216	${ }_{\text {R2029 }}$	1.33	SG6533	10.31	STK022	525	ta7217AP	1.37	TD190	0.95	toa3520	9.71	UA758PC	529
HM9102	32	MC1307P	1.92	R2330	1.33	SI-1125HD	13.86	STK025	8.2	TA723	1.95	TD3F700H	6.60	TDA3521	13.39	UA783P3C	338
HM9104	324	MC1310P	1.30	R2257	238	S11125H	7.50	STK040	8.70	TA727P	281	TD3F800 H	4.86	TDA3540	238	UAA170	225
HM9105	324	MC1327P	1.33	R2265	1.46	SKE2F 1/04	1.39	STK043	10.48	TA7229P	4.45	TD3F800R	3.66	TDA3560	5.00	UAA180	235
H 44207	17.16	MC1330P	1.09	R2205	1.18	SKE2G 204	0.95	STK054	7.13	TA7233P	335	TO3F900	4.16	TDA3561	${ }^{6} 5.50$	U1N2165	1.79
1 IT2003	022	MC1349P	081	R2306	1.36	SKE26 304	1.05	STK070	22.3	TA72424P	785	TDAAOC3A	1.79	TDA3561A	750	UNW204	7.15
K174YP	3.46	MC1350P	121	${ }^{\text {R23222 }}$	0.59	SKE4F $1 / 22$	1.39	STK07	7.57	TA7245P	750	TDAA	222	TDA35710		UPC1009C	215
KA2101	258	MC1351P	1.33	${ }_{\text {R2323 }}^{\text {R23 }}$	076	SKE4F 106 SKE4F 206	0.73	STK078 STK082	$\stackrel{8}{11.56}$	TA7314	5.98	toaloio	1.138	TDA3576	7.09	UPCI001H	275
KC5silC $\mathrm{KC582C}$	6.98 3	MC1352P MC1557P	1.12 215	$\stackrel{\text { R2248 }}{\text { R2344 }}$	201	SSK4F4F 208	0.85	STK086	110.89	TA7609	3.17	toailil	240	TDA3590	6.79	UPC1026C	124
KC583C	5.54	MC1358P	1.30	R2354B	201	SKE4F 210	124	STK2101	638	TA7676P	281	TDA1028	245	tDa3s50B	1.54	UPC 1028 H	200
L129N	025	MC14001	240	R2441	1.36	SKE4G 202	0.96	STK2110	7.33	tan300	297	IDAIO29	45	TDA4050a	3.47	UPCC1020	27
L200CV	1.69	MC14013	0.41	R2443	0.88	SKE5F 3/10	1.60	STK2330	7.70	taA310a	1.16	TDA1035	255	TDAA180P	1.92	UPCC1025	290
LAll11AP	0.88	MC14016CP	0.84	R2461	1.50	SL1310	3.14 13 1	STK415 STK439	${ }_{4} 7.50$	taA3z2a	127		29	TDAA280	1.50	UPCLIO32OH UP	2.47
LA1201	1.08	MC14011 MC14025	${ }_{0}^{0.60}$	R247 R2501	1.128	SL13230	11.35	${ }_{\text {S }}$	5	TAA435	128	TDAICB70	325	tda4290	4.47	UPC1031H	8.58
LA1230	2.87	MC14049UBC	0.58	R2540	1.98	SL1430T	231	STK436	721	taA550	0.37	TDA1041	216	TDA440	4.90	UPC1031H2	6.00
LA1320	287	MC1438R	1.05	R2540X	3.30	SL1432	225	STK437	7.80	TAA570	1.74	TDA1044	262	TDA4400	227	UPCC1154H	1.93
LA1352	1.54	MC14433P	288	R2615	0.67	SL414	3.09	STK439	8.31	TAA611812	130	TDA1047	4.10	TDA420	8.3 .95	UPCCIS6H	258
LA1357N	6.49	MC14556BCP	3.4	RC4195NB	216	SL432A	3.4	STK441	1128	TAAG21AXI	248	TJA1054M	121	toanzo	8.78	UPCCIIESH UPC1182H	1.82
LA1353	621	MC1712	3.88	RCA16083	5.30	SL437	7.43	STK443	10.29	taAb40	4.24		0.80 208	Tda4a31	278	UPCI186H	1.05
LA1354	3.02	МС7724СР	3.49 218	RCA19023	201	SL439	248 3.14	STK459 STK 40	10.75	TAA700	250	TDA1082	3.06	TDA4432	227	UPCI181H	125
LA1365]	3.4	MC7824CP	218 4.68	RCA1633 RCAI6335	1.02	S4490	237	STK461	${ }_{9.68}$	TAA840	2.50	tDalios	6.55	TDA4400	287	UPC1213C	0.99
${ }_{\text {LAl }}$	1.81	MC78M12	0.83	RCA16600	138	SL901B	232	STK453	11.53	TAA930	4.87	TDA1151	1.17	TDAA500	284	UPC1217C	247
LA1387	7.60	MC78M24	0.94	RCA16799	238	SL9178	11.96	STK485	10.31	TAA970	283	TDA1170	237	tda4610	3.11	UPC1212C	1.72
LA3155	125	MCR100	0.38	RCA16801	0.98	SL918A	9.07	STK466	11.7	TADİ0	258	TDA1170S	325 325 21	TDA4620	${ }^{4.43}$	UPC1351C	1.81
LA3300	1.54	MCR101	0.67	RCA16802	1.08	SN16861N-07	272	STP441	10.73 8.16		1.06	TDA1190	211	TDA5700	231	UPC1350C	1.07
${ }^{\text {L43301 }}$	1.481	MCR106/5 MCP220	228	RCA17028 RCA17074	24.80	SN16880N	83.95	STHR6020	8.16 8.3	TBA120	1.05	TDA11902	248	TDAs400	292	UPC1355C	213
LA3361	123	Me0402	0.17	RCA17376	1.58	SN16856\%	1025	T600 N	0.95	ibaizoa	1.05	TDA1200a	1.43	tpasa03	5.15	UPC1362	8.75
LA4030P	4.20	ME0404	026	RCAS0857	4.95	SN29715N	${ }^{600}$	T6007	0.62	TBAIzas	124	TDA1220		TDAS503		UPC1365	7.10
LA4031P	320	MELS04/2	0.47	RGP10	0.50	SN29716N	3.656	T6016	0.40	TBAIzOS	1.05	TDAI230	323 3.88	${ }_{\text {TVA527 }}$	1.38	UPC1360 UPC1360C	${ }_{4} \mathbf{4} 51$
L44032P	1.92	MEO411 ME0412	028	RT402 RT905A	1258	$\xrightarrow{\text { SN } 229712}$	71.19	${ }_{\text {T }}$ T6018V	0.72	${ }_{\text {TBAIVOT }}$	0.05	TDA1270	3.76	TE538	0.40	UPC1458	8.66
L44051P	1.79	ME4102	0.50	S0280	214	SN29723AN	7.65	T6021	0.40	TBA120U	250	TDA1327A	1.50	TE626	1.49	UPCR202	1.48
L44100	125	MES54B	10.02	S0281	214	SN29744N	229	${ }^{T 60222}$	352	TBA140	203	${ }^{\text {TDA }} 13273 \mathrm{~B}$	1.82	TEA1002	18.4	UPC륻	2519
la4101	1.30 281	ME6002	0.28	S1299 S175	4.74	SN29764AN	1.38	${ }_{\text {T }}{ }_{\text {T } 6027}$	0.98	${ }_{\text {TBA1441 }}$	720	TDA1365	6.99	TEA1020SP	821	UPCAIC	4.10
la4102	281	ME6102	028	S175 S20620	3207	SN29967 SN2970BN	4.98	${ }^{16027}$	0.39	TBA240a	3.99	TDA1412	1.05	TEA1087	0.51	UPC554C	1.85
LA4125	225	MED411	0.75	S2880	5.78	SN29T18N	4.93	T6022V	4.86	tBa3ss	1.10	TDA1420	1.52	TIC 106C	0.61	UPC558C	4.04
LA4138	3.38	MJ2501	330	S28000	5.54	SN29728N	4.91	T6032	0.98	${ }_{\text {TBA3950 }}$	1.10 0.80	TDA1470		TiC116		UPC572	3.85
LA4140	0.88	MJ2955	0.98	S2802	3.47	SN2973	251	T6033V	0.00	TBA396	038 239	TDA1512	289	TiC44	207	UPC575C2	3.8 240
LAA192	3.65 1.62	MJ33000 M 3001	231 1.10	S3702S	521	SN29770AN SN2991	225 1.67	${ }_{\text {T }} \mathrm{T} 6035 \mathrm{SV}$	0.73	${ }_{\text {TBAA400 }}$	235	TDA1770	4.88	TIC4	0.71	UPC576H	258
L44400	225	M 33028	$2{ }^{2} 5$	S3707	4.35	SN28845	236	T6037	211	tBa480	1.5	TDA1905	1.76	T1C47	0.7	UPC57H	0.76
L44420	1.72	M 4488	1.53	S40W	10.89	SN29848 SN29861		$\xrightarrow{\text { TE041V }}$	0.73 0.95	${ }_{\text {TBA }}^{\text {TBA800 }}$	1.30	TDA1908	3.20 1.95	TiPtio	1.06 0.53	UPC5592\%	1.34 1.13
LA4423	1.72	M. 1802 C	5.45	S551	4.54	SN288662	229	${ }_{\text {T }}^{5045}$	1.20	TBA520	1.84	tDal950	9.75	TIP112	0.88	UPD1514C	8.38
LA4460	232	MJE3055	1.05	S60808	8.80	SN72709	0.4	T6049	1.45	TBA5200	1.108	tDazo02	0.90	T1P17	0.95	UPX27C	218
LA4461	295	MJE340	0.49	S6087AR	4.90	SN75110N	0.83	T6052V	0.87	TBA530	1.30	to azous	1.75	T1P120	0.55	X0022CE	5.01
LA4520	215	MJE520	0.49	SAAIOZ20	4.76	SN760014NO	1.05	${ }_{\text {T60559 }}$	1.15	${ }_{\text {TBA5300 }}$	130 1.15	TDAz204	225	${ }_{\text {TIP126 }}$	0.87	X003sta $\times \times 0056 C E$	5.11
LAFIVE2N	265	M12328	215	SAAIO24	${ }_{281}^{4.76}$	SN76013ND	28	T8001V	1.20	tBA5400	1.15	toaz010	185	T1P127	1.13	X 0062 CE	6.52
LA7025	8.05	M1237B	251	SAA1025	4.40	SN76013N	3.98	Tsposk	0.95	T8A550	225	toaz200	27	TIP2955	0.86	Xodasce	4.78
La7027	9.35	ML238	5.7	SAAIO50	4.16	SN76013NDG	8.90	T9005V	238	IBA5500	255	toazzo	1.99	T1P298	0.46	X0096CE	4.29
LA7880	286	ML741CS	0.59	SAAIO51	${ }_{3}^{5.83}$			T9010V	1.90	TBA560C	1.40	TDA2140	1.59 6.20		${ }_{0}^{0.63}$	X $\times 1070944 \mathrm{C}$	${ }_{7}^{9.00}$
LA7801 L81274	4.15	M1923 MLO926	328 3 3	SAA1061 SAAIO75	3.61 4.86	SN76023ND	${ }_{2} 3.50$	T901V Toli3V	1.96	IBA550C0	1.60	TDA22151	1.93	ITP3055	0.60	X C 9494 P	1.33
${ }^{\text {LC4011] }}$	124	MM5314N	4.02	SAA1082	8.85	SN76105N	054	T9014V	1.68	TBA570a	1.71	TDA2160	4.01	IIP30A	0.41	7730	0.005
1D3120	1.13	MM5336N	3.96	SAA1121	4.13	SN7610N	0.50	${ }^{\text {T9016 }}$	1.02	tBa5700	1.35	TDA2161	1.25	TP30B	0.70	Y699	0.82
LM1011N	3.46	MM5318N	3.11	SAA1124	245	SN76115AN	1.51	T9034V	1.38	${ }_{\text {TBA6523 }}$	217		237	Full list available			
LM1017N	3.41 4.29	MM 5369 N MM5387AAN	2201	SAA1130 SAA1174	4.78	SN76131	1.98	$\xrightarrow{\text { t9035V }}$ T9038V	1.39	${ }_{\text {TBA6228 }}$	217	TJA2520	237 3.71				
LM1333P/N	1.5	MM5841N	6.49	SAA1250	3.96	SN7627N	0.75	T9051	3.71	TBA6413X1	1.79	toaz522	1.50	with order or SAE			
LM1310P/	1.38	MP8112	1.49	SAA1251	4.98	SN76288N	327	Tsocsiv	1.40	tBab41A12	4.13	TDA2523	303				
LM187	10.9	MP8113	1.49	SAA5000	4.02	SN76231	255	T9054V	1.19	TBA651	1.76 245	TDA2524	4.50 3.90	please $9^{\prime \prime} \times 4^{\prime \prime}$			
LM3065N	10.85	MPP5626C	1.50	SAA5010	5.59 4.50	SN76242	523	${ }_{\text {T }}^{19065 \%}$	324	${ }_{\text {TBATOOO }}$	200	TDA2530	270				
LM339N	0.80	MPS6570	0.48	SAA5020	5.78	SN76322	27	TA5814	1.49	tBA720	250	TDA2532	250	Telephone answering			
LM3407	1.42	MPSA42	0.05	SAA5030	8.25	SN76360	217	TAT7200P	4.80	tbat30	214	TDA2533	230				
LM34075	0.83	MPSA56	027	SAA5040A	16.23	SN76390	3.08 200	TA7027	480	TBA7500	250	TDA2540	215	machine availabie			
	$\begin{array}{r}10.83 \\ 0.83 \\ \hline\end{array}$	MPSA92 MPSU05	0.05	SAA5050	7.74 1.98	SN76396 SN76510N	290	TAPO50	1.74	TBA760	1.71	TDA25450	5.9.9				
LM342N	0.62	MPSU10	1.56	SAA700	3.30	SN76532N	0.97	ta	0.71	TBA800	1.08	TDA2550	217		24 hours		
LM342P 12V	1.50	MPSU55	0.99	SAB1009B	4.98	SN77532N	247	TA706iAP	127	${ }_{\text {IBABIOAS }}$	1.00	TDA2571A TDA 275 A	3.65 0.50	0902-712083			
M342P 15V	1.00	MPSU56	${ }_{0}^{0.60}$	SAB1046P	4.03	SN76530P	1.7	TA7069	3.13 1.68	TBA810S	0.1 .18	TDAA354	0.50 285				
LM342P ${ }_{\text {LM }}$	1.02 215	MPSU60	0.35	SAB3011 SAB3012	734 588	SN77566N	1.98	TA7071	1.68	${ }_{\text {TBABSO }}$	1.101	TTA2575	3.70	for Access and			
LM380N	280	MR812	021	SAB3013	5.61	SN76540N	1.98	TA7072P	257	tBasoo	248	TDA2581	218	Barclaycard			
LM384NO1	325	MR914	0.51	SAB3021	7.90	SN76544	289	TA7073P	5.86	tbagzo	1.65	TDA2582	218				
LM567CN	1.43	MVS240	0.51	SAB3022B	1358 120	SN76546 SN76549	1.58	TA7074P	1.98	${ }_{\text {TBA9300 }}$	231	TDA25990	250 250	customers			
LM7748	182 32 1	MVS460	0.61 0.3	SAB30238	1230 6.36	-SNN6549 S 18550	203	TA7089	1.56	TBA950	1.50	TDA25910	0.83				
LM8361	29	NE555	0.38	SAB3209	523	SN76551	1.49	TA7089P	1.50	TBA970	1.78	TDA2593	24	Stock queries by			
LM8361	3.5	NE556	0.95	SAB3210	323	SN76570	308	TA7092P	689	TBA9700	328	TDA2S94	3.08 508	post only			
M1024 $M 1025$	281	NE5560N	3.48 1.33	SAFIO31	${ }_{3}^{253}$	SN76600	121 0.00	TA703sp TA7102P	358	TBA99900	11.8	TDA2600	5.50 279				
M1124	280	NE645BN	335	SAS5010	839	SN76611	259	TA7108P	1.51	tbazz1	25	TDA2611A	125				

The Tantrums of Tiny Tim

Les Lawry-Johns

Tiny Tim had seen the set before but couldn't remember much about it.
"It keeps flicking in from the sides, sort of bowing in if you know what I mean, and we've still got those bars that travel up the screen" said Mr. Crankcase.
"Sometimes they travel down" said Mrs. Crankcase, "but we don't mind that - we're used to the bars."
"Don't worry" said Tiny Tim, "I'll sort it out tout suite."

Clearly impressed by Tim's confidence, the Crankcases. departed and left him to it.

The CVC5

The 26in. CVC5 proved to be a nightmare. Bowing in at the sides on a set fitted with a 90° tube and no EW diode modulator circuit . . . Tim plugged the set into the mains supply and pressed the on/off switch. Being a hybrid chassis, the valves lit up and Tim waited. And waited. There was no cover over the line output stage (shades of Ike Hodge) so Tim held his little neon near the PL509. It didn't light up and he noticed that the valve was getting red hot. So he checked the h.t. supply to the PCF802 line oscillator valve. This was present and the PL509 cooled down. Suspecting the polywhat'sname capacitors in the line oscillator stage Tim changed the PCF802 - this was easier than changing the capacitors. There was no further trouble with the line drive and the e.h.t. rustled up. The picture appeared but it kept flicking sideways and doing all sorts of funny things like bowing in quickly then bowing out again.

Tim's diagnosis was immediate. "Up with this I'll put no more" he said, "it's poor earthing like in the Bush TV181 series, tabs not soldered properly." So he ran wires from the top to the bottom of the chassis and soldered them securely at each earth point. This solved the flicking and bowing and left Tim with the hum bar.

The Hum Bar

Now we all know what to do about this. Change the AD161 series regulator transistor in the I.t. supply and the bridge rectifier for a start. Tim did all this and more, though the curve that accompanied the hum bar should have told him that the I.t. supply wasn't responsible. He turned to the h.t. lines and found that all the electrolytics had been resoldered - not very tidily.
"I'll shunt them one by one" he thought. He switched off and used a $470 \mu \mathrm{~F}$ test capacitor with jump leads and crocodile clips. First he clipped it across the h.t. reservoir capacitor - that couldn't be it because the h.t. was well up, but just in case - and switched on. No change. Why had he switched off? Because the spark might have frightened him (and the dog). Actually he hadn't switched off, he'd pulled the plug out - that was easier. Now that the test capacitor was charged it could be applied to the other electrolytics without frightening him and the dog.

While he was playing around the lower electrolytic he accidentally touched the earth tag with the live lead. This should have produced a nasty spark and made him jump.

It didn't and he frowned a little. He touched it to the main frame and jumped for his life at the loud crack. The dog fled and Tinker Bell came in demanding to know what he'd done to him.
"Sod the dog" said Tiny Tim. "What about me? I nearly jumped out of my skin."
"Yes but you know what happens when you discharge those things. The dog doesn't."

So Tinker Bell went out and Tim was left on his own. Why hadn't the capacitor discharged when he'd touched the lower electrolytic's earth tag? Because it wasn't earthed. He connected the voltmeter to the tag and it said 200 V . He took his glasses off and peered closely. The earth track was very thin and was open-circuit. Tim soldered another wire in to ensure that the earthing was sound. But he still hadn't cured the hum trouble.
"If it's not the smoothing, what else?" thought Tim, getting a bit edgy now. Heater-cathode leakage in the PCF802? He'd just replaced that. Fit another one. Still no change. That side ripple had a sort of ghost like foldover in the background, like you get when the tuning is out and the a.f.c. is off.
So Tim operated the a.f.c. switch, which is incorporated with the brightness control. The set went off. The switch had already been in and pressing it had allowed it out (a.f.c. off). So he pressed it in and the set came back on. He pressed the volume control switch - the real on/off switch - and nothing happened. Tim jumped up and down in rage. "Where's the bloody cat" he bawled.
"She's in the kitchen and she'll stay there until you've done your job properly" said Tinker Bell. "She's not here for you to kick when you can't think of anything better to do."
"Someone's taken the mains leads off the volume control and connected them to the brightness control" moaned Tim.
"What's wrong with that?" asked Tinker Bell.
"Putting them on the brightness control will put hum on the picture" said Tim.
"In that case" said Tinker Bell "putting them on the volume control will put the hum on the sound, and anyway why don't you take the mains leads off the controls and tape them up so that the set is on all the time, like on that Philips portable you were so proud of no set should have an on/off switch you said, they're dangerous."

So Tim did what he was told. He took the leads off the a.f.c. switch and connected them together. He replaced the plug and was rewarded with a cloud of smoke from the i.f. strip. The neutral mains lead should have gone to chassis via the switch. He'd taken off the mains live and neutral leads, also the a.f.c. lead that's taken to chassis via the switch. The net result was that mains neutral was finding its way to chassis via the a.f.c. circuit.

Tim bashed his head on the bench and broke his glasses. He replaced the burnt out 470Ω resistor and checked inside the a.f.c. can. There was a scorched resistor but the transistor read all right. He decided to put the lot back in and wired the neutral direct to chassis, refitting the brown a.f.c. lead back to chassis where it
belonged. Then he plugged in, gingerly, and waited.
The picture came on and was lovely. Who said he wasn't a good engineer? - apart from Tinker Bell. Mr. Crankcase came back at five o'clock to pick up his set and was told that in accordance with Tiny Tim's new rules the on/off switch was no longer operative.
"We never used it anyway. We always pulled the plug out." Mr. Crankcase took out the CVC5 and came back in with a CVC20. "Run the rule over this will you Tim?"

The CVC20

Tim peered into the back and was surprised to see the front control panel lying inside the set in pieces. This upset him in view of the trouble he'd had with the previous set. His little mind immediately rang up fifteen quid. He removed the pieces and put them back together. The control panel now fitted nicely and he had a.c. leaving it and making its way across to the chopper. But nothing came from the chopper.

The driver is often the cause of this but turned out to be o.k. Tim then took out the chopper control subpanel and checked this, that and the other. He could find nothing wrong and was by now feeling fed up. So he locked up the shop, put out the lights and went upstairs.

The Next Day

Tim was up bright and early next day - in a vain bid to stop the dog chewing the morning paper.
"You're not a dog. You're just a pig and barking machine. We'd be better off with a tape recorder that makes barking noises than with you" said Tim.
"Leave the dog alone" bawled Tinker Bell. "What's he done for you to kick up such a fuss?"
"He only chewed up your competition page. The rest is untouched."
"I'll kill the dog when I come down."
Tim hurriedly taped together the pieces of the page then got on with breakfast.
"Before you start eating, nip down to the newsagent and get me an untorn paper" said Tinker Bell, "I must have my entry in the post before nine o'clock."

What a start. But Tim was soon at work on the CVC20. He put the chopper control panel back, switched on and was surprised to hear the e.h.t. rustle up and the sound boom out. "Fancy that" he said. "The control panel couldn't have been making proper contact. What a clever boy I am". He then wrapped it up and moved it to the soak test bay - the other end of the bench.

Another ITT

Tim was a bit surprised to see this CVC5 come back since it had been collected only a couple of days ago after he'd restored the colour. He'd spent .some time checking around the top left comer of the chassis and had eventually moved down to the chroma amplifier transistors T27 and T28 where he'd found that slight pressure applied to T 28 (the small round BF128) would restore the colour. Although there didn't appear to be any poor contacts he'd resoldered the base, emitter and collector. After doing that the colour couldn't be lost: the set had behaved itself on test but here it was back again with the same fault.

This time he dived straight for the BF128 transistor. A cold check revealed that it was non-conductive. So he fitted a BF197, leaving the screen unused, and switched

next month in

USING A LOGIC PROBE

Logic circuitry has been used in VCRs from the start for system control purposes. As a result there are many faults that can be dealt with only on a trial-and-error basis or by investigating the logic conditions. Voltage readings provide some clues but the type of scope used for TV servicing will not usually handle fast changing pulse trains. The simplest approach to this problem is to use a logic probe - a device that will become more useful to you the more you get to use and know it, and will of course also help to sort out problems in TV control systems and microcomputers. David Botto outlines the minimum requirements for a probe for servicing purposes and describes its use in typical circuitry.

- COMMISSIONING TVRO SYSTEMS

Many dealers and enthusiasts are probably thinking about installations for satellite TV reception, something that can already provide additional channels in the UK from low-power satellites. What's involved technically and what sort of expense is likely to be involved? Geoff Lewis provides a simple guide in question and answer form.

SERVICING HYBRID CTVs

The Decca Bradford and ITT CVC5-9 series chassis have proved to be able to provide fine pictures over a much greater than originally expected life span. Many are still in use and of course fail from time to time, causing confusion to those engineers who know only solid-state circuitry. Sam Simon provides a quick-check guide to dealing with common basic faults.
TRANSISTOR FIELD TIMEBASE CIRCUITS While the vast majority of valve field timebase circuits employed the same basic configuration a wide variety of circuit techniques, including class A, B and $A B$ operation, have been used in transistor field timebases. Part 2 of this series describes the operation of these circuits.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the November issue of TELEVISION (£1-10), on sale October 16 th, and continue every month until further notice.
NAME

on. He was bitterly disappointed to find no colour. A voltage check showed that there was no forward base bias, a cold chieck revealing a short-circuit from the base to chassis. This was due to a speck of solder between the base and the screen (unused) print: a flick of the screwdriver blade restored normal operation which lasted for hours on end.

Tim's Terrible Trouble

Tim thought it was time he paid some bills. So he gathered them all together and added them up. The total frightened him out of his life and as he lay dead Tinker Bell came in to find out what the scream had been for. She kicked Tim in the ribs and he stirred and moaned.
"Get up and get something done you fool. How am I going to get a new dress if you just lie there moaning?"

Tim got to his feet and showed Tinker Bell his piece of paper. "Look, this is what we owe. Now look at this one which shows what we've got. It's not enough."
"You ought to be able to afford me a new dress" snapped Tinker Bell. "If you can't earn enough by mucking about with those daft TVs you could always write about them like that clever Mr. Trundle and that Silly Simon. I've been looking at that magazine and I'm sure the editor is a nice man who might pay you if you could bestir yourself and do a bit of writing instead of keep complaining and trying to kick the cat."
"He might, he might" mused Tiny Tim. "If I could learn to type, that is."

Line Selector Unit

Many lower-priced oscilloscopes have good wideband deflection systems but poor triggering facilities. This is particularly a disadvantage if you want to examine the vertical interval test signals transmitted during the field flyback blanking period - these signals are very useful for monitoring the performance of the TV transmission path.

The unit described in this article has been in use for several years to provide improved TV triggering. It's in two sections, the first of which produces trigger pulses for display of the selected line. The second section was originally desighed to provide X-scan and bright-up signals for the Hewlett-Packard 1707 oscilloscope, but if required the unit can be used to provide line triggering only. If the unit is also used to provide X -scan and bright-up outputs the only oscilloscope controls that need to be operated are horizontal and vertical position with sweep magnification by ten times. In this mode the oscilloscope's timebase is switched to "external" - see Fig. 1 for typical connections. When the oscilloscope's timebase provides the X scan the unit provides a selectable line trigger pulse at the start of the line required. Fig. 2 shows the complete circuit.

There are three switches which provide the following functions. The rotary switch S1 selects the line to be displayed. The latching push-button fast-scan select switch S2 is for use with the oscilloscope's sweep magnification \times 10 control, enabling the 2 T pulse to be displayed over a large percentage of the scan - thus K rating graticules can be used. The non-latching field select push-button switch S3 is used to give a "field slip" so that the alternate field can be selected. This latter arrangement is a simple solution - the alternative logic circuit technique would

Fig. 1: Typical scope/line selector unit connections.

A. B. Bradshaw

mean that the last line of the field would have to be identified (half or full line). The "field slip" method is not elegant but is very cheap!

Circuit Operation

Positive-going composite video with an amplitude of 1 V peak-to-peak is fed to Tr 1 which provides a voltage gain of ten. The output is capacitively coupled to the base of Tr 2 with d.c. restoration by means of D1. The sync pulses are stripped off at the collector of Tr 2 while Tr 3 provides a TTL compatible output for the following i.c.s.

IC1 and one of the gates in IC2 are arranged as a field sync pulse separator, the output being made available at TP2. IC3 is a "start delay" monostable multivibrator which drives IC4. This latter i.c. is used to provide an enable pulse for the following BCD decade counter IC5. Line sync drive for IC5 is provided by IC2b. When enabled, IC5 counts the line sync periods: its outputs are decoded by the BCD-to-decimal decoder IC6.

The decimal decoded outputs from IC6 are brought out to Vero pins on the PCB. These are the basic line trigger pulses used for display selection. IC6's outputs are "loose wired" to a low-capacitance rotary selector switch (S1). Switching the live logic signals in this way is done for cheapness: the method works satisfactorily in practice provided the leads are kept short (2in.).

We now have pulses for each line during the flyback period of interest. The second part of the circuit provides bright-up and X -scan signals. The emitter-follower Tr 8 is used to drive the cable bright-up pulse feed to the oscilloscope. The reason for the unusual arrangement in its collector circuit is to provide a measure of protection should the feed from $\operatorname{Tr} 8$ become short-circuit.

The selected line trigger pulse is fed to the fast-scan latching switch S2 and to the delay gates IC2c/d. The need for this delay in the fast-scan position will vary depending on the starting rate of the X amplifier in the scope and may require adjustment to the values of C 9 and C 10 to centre the displayed pulse in the scan.

The selected line pulse is also fed to IC7 and Tr4, via $\mathrm{R} 22 / \mathrm{C} 11$ and $\mathrm{R} 23 / \mathrm{D} 6$ respectively. Tr 4 is used to discharge $\mathrm{C} 13 / 14$. When Tr 4 is off, these capacitors charge linearly via the constant-current source Tr5. The resultant voltage ramp is buffered by the cascaded voltage-followers

Fig. 2: Circuit diagram. (a) Line selector section. (b) Scan generator section.

Tr6/7 to provide a low-impedance output - the X-scan signal. The charging rate is increased when the fast-scan push-button switch S 2 is operated.

The field gating multivibrator IC7 is made to slip to the alternative field by operating S3.

Components list

Resistors:

R175月	R30 1k	C1 100, 12 V
R2 56 k	R31 1k	C2 20, 12V
R3 10k	R32 3k9	C3 820p, S.M.
R41k	All 5\% and	C4 470p, S.M.
R5 100Ω	0.25 W unless	C5 470p, S.M.
R61M	otherwise	C6 0.1, polyester
R7 10k	indicated	C7 0.1, polyester
R8 1k8		C8 0.001, polyester
R9 10k	Presets:	C9 0.022, polyester
R10 1k		C10 0.022, polyester
R11 13k	VR1-3 10k	C11 150p, S.M.
R12 100	multiturn	C12 6-4, tant
R13 100		C13 2,200p, S.M.
R14 8k2	Semiconductor	C14 0.033, polyester
R15 100	devices:	
R16 100	Tr1,2 BC107	Switches:
R17 1008	Tr3 2N4121	
R18 27k	Tr4 BC107	S1 Low-capacitance,
R19 1k	Tr5 BCY70	10-pole 1-way rotary
R20 680, 1 W	Tr6-8 BC107	S2 Dual-latching
R21 680, 1W	D1-4 BAX16	push-bution
R22 100	D5 6V8, 1W	S3 Single push-
R23 100k	D6,7 BAX16	button (non-latching)
R24 5k2	IC1 74121	
R25 10k	IC2 7402	
R26 100の	IC3,4 74121	
R27 13k	IC5 7490	
R28 100k	IC6 7442	
R29 75k	IC7 74121	

A dual-beam oscilloscope is required to set up the unit as the various start and stop waveforms must be related to the TV waveform. VR1/2/3 are adjusted until the correct waveforms are obtained at the test points - see Fig. 3.

Fig. 3: Waveforms at various points (a) in the counter section and (b) in the scan generator section.

Philips G11 Chassis Fault Chart

Dennis Apple

Before itemising specific fault conditions we'll provide some general comments on the chassis.

Voltage Surges

The G11 has been found to be susceptible to h.t. and mains surges which tend to destroy the BU208A line output transistor and the TDA2600 field timebase chip, also other components as indicated later. Such surges can be caused by intermittent mains leads and by the h.t. reservoir capacitor $\mathrm{C} 4029(470 \mu \mathrm{~F})$ which tends to produce internal arcing due to ppor riveting at its terminals. Since other components can be responsible for mains fuse blowing, failure of the line output transistor etc. the following procedure is recommended in cases where this transistor breaks down for no apparent reason - as well as to ensure more reliable working:
(1) Check that the mains plug is securely wired and that the bared mains wires have not been soldered before fitting into the mains plug (any connections so made tend to become intermittent over a period of time).
(2) Change the h.t. reservoir capacitor C4029 to a DALY/

ITT type (Philips part no. 124-47056).
(3) Check for dry-joints, especially around the top, righthand line scan panel.
(4) Connect a $1 \Omega, 4 \mathrm{~W}$ resistor (Philips part no. 11380245) in series with the anode of each of the mains rectifier thyristors (4018/4020).
(5) Remove mains fuse FS1302 and replace it with a $1.5 \Omega, 10 \mathrm{~W}$ resistor - ensure that it's well clear of surrounding components.
(6) Ensure that the mains on/off switch is in good condition, with fast snap action. The contacts should be clean and nonpitted.

Intermittent Faults

Erratic performance and various intermittent faults have usually been found to originate in dry-joints, loose connections etc. on the various panels. These poor joints and connections are common on the line scan panel at the top right-hand side of the chassis. Attention should be paid to this section first not only when the chassis has obvious poor connections but also when the symptoms range from a completely dead set through lack of width to bowed picture edges etc. By tapping the panels whilst the set is switched on the poor joints are often revealed as the set resumes normal operation, often giving a spark to assist with the accurate location of the faulty part of the panel. In severe cases it may be quicker to resolder the whole line scan panel than attempt to trace transient faults that seldom seem to put in an appearance when the set is on the bench.

Now to specific faults.

1: Dead set.

Check R3106 (820 2); R2010 ($5 \cdot 6 \mathrm{k} \Omega$); R4044 ($120 \mathrm{k} \Omega$); R3120 (15 Ω); R4059 ($15 \mathrm{k} \Omega$); diodes D4091, D4092 in the mains bridge rectifier circuit; $\operatorname{Tr} 4085(\mathrm{BC} 148)$ and $\operatorname{Tr} 4086$ (BC 158) in the beam limiter circuit; the BF458 RGB
output transistors. Also check for dry-joints in the interconnecting plugs and sockets, especially around 3D6, 3D7, 15A15 and 15A16; on the top right line scan panel around R3106; and at the mains filter chokes.

2: Blown mains fuses FS1301/2.

Check mains bridge rectifier diodes D4091/2. It's best to replace all four diodes in the bridge with more robust types, e.g. BY127s. Carry out modifications given in the introductory comments, especially if no specific reason can be found for the fuse blowing.

3: Blown h.t. fuse FS4037.

Check D3133 (BY223) which often destroys Tr2150 (BD238) as well; the h.t. decoupling capacitor C4040 $(47 \mu \mathrm{~F})$; the series smoothing transistor $\operatorname{Tr} 4032$ (BD201); the 27 V zener diode D4021; C4029 (see introductory comments); the BU208A (see general comments and fault 8); C3135 ($0.91 \mu \mathrm{~F})$. Ensure that the screened cable between the timebase panel and the line output panel is making good contact and that the screening is earthed at both ends, also that the foil on the line output transistor's heatsink is not punctured.

4: No sound or raster, e.h.t. present.

Check the TDA1412 12 V regulator (IC5073) on the i.f. panel.

This i.c. can go faulty a short time after switch on, in which case the picture fades away and colour is lost. It can be responsible for many symptoms including a dark picture with normal sound, and a dark picture with no colour and the h.t. pulsating when the brightness is turned up.

5: Blank screen, e.h.t. present.

Check the $4 \cdot 7 \mathrm{~V}$ zener diodes D4090 and D6011 in the beam limiter circuit (in later sets D4090 was replaced with an $0.0022 \mu \mathrm{~F}$ ceramic capacitor); $\operatorname{Tr} 2164$ (BC148) in the field flyback blanking circuit.

6: Blank raster, no sound.
Check Tr6462 (BF196) in module U5400.

7: Blank raster with teletext sets (sound normal).

Check the SAA5050 i.c. on the teletext panel.

8: BU208A line output transistor short-circuit.

Check C4029 (see introductory comments); the screened cable from the timebase panel to the line output panel (see fault 3); C3135 ($0.91 \mu \mathrm{~F}$) - this capacitor sometimes disintegrates spontaneously. Also check for sparking at the mains switch or plug.

9: Intermittently pulsating raster.

Check R4059 ($15 \mathrm{k} \Omega$) on the power supply panel.

10: Dark picture, no colour, h.t. pulsating.

Check the TDA 2590 Q sync separator/line generator i.c. (IC2510). In later sets this i.c. is a TDA2591Q which is a direct replacement.

11: Intermittent h.t. variations.

Check the TDA2590Q i.c. (see fault 10); R4059 ($15 \mathrm{k} \Omega$, 9 W); and for dry-joints, especially around the upper righthand line scan panel.

12: Intermittent tripping, i.e. regular clicks heard from an otherwise dead set.
Check the diode-split line output transformer.

13: No h.t. at fuse FS4037.

Check R4059 ($15 \mathrm{k} \Omega$) and the beam limiter transistors $\mathrm{Tr} 4085 / 6$ - to confirm, temporarily disconnect the emitter of Tr4086.

In sets with full ultrasonic remote control check standby switch transistor T519 (BC158) on the remote control receiver panel.

14: Hum bars.

Check Tr4032 (BD201); Tr4033 (BCX32); C4034 (10 $\mu \mathrm{F}$); D4021 (BZX79-C27).

15: Field flyback lines present (often intermittent).
Check C2156 ($0 \cdot 0022 \mu \mathrm{~F}$) - this component may be found dry-jointed.

16: Whole raster shifts vertically (often intermittently) followed by blowing of FS3143 after a short time.
Check IC2520 (TDA2600); poor timebase panel connections; poor contact at pins of IC2520; C2099/2100 (both $1,000 \mu \mathrm{~F})$.

17: Striations (faint vertical lines, especially at the left-hand side of the screen).
 Add a ferrite tube on the wire link between tag 14 of the line output transformer and C3128; ensure that flying leads are correctly tied in their original positions.
 18: Dark vertical bar at the right-hand side of the screen.
 Check the TDA2590Q sync separator/line generator i.c. see fault 10 .

19: Line jitter.

Most likely with sets using a TDA2591Q sync separator/ line generator i.c.: to eliminate, connect a $27 \mathrm{k} \Omega$ resistor in parallel with C2029.

20: Field collapse with FS3143 probably blown.

Check IC2520 (TDA2600) - destruction of this i.c. is often caused by a defective C4029 (see introductory comments); poor contact between IC2520 and holder (fault may be present after FS3143 has been replaced); R2066 if the voltage at pin 16 of the TDA2600 is much lower than 19 V ; C2099/2100 (both $1,000 \mu \mathrm{~F}$); L2092/ C2060/R2066 - dry-joints around these components are likely.

21: Top cramping, often with bright horizontal line.
Check C2072 (4.7 $\mu \mathrm{F}$).
22: EW raster distortion with width and shaping controls inoperative.
Check D3133 (BY223); Tr2150 (BD238); D3132 (BYX55600); L3134; L3137; Tr2119 (BC148C)/Tr2140 (BC158)/ Tr 2149 (BFX85). Check also for dry-joints around the above components - a dry-joint is often found at pin 14 of
the line output transformer, usually on the wire link to C3128.

23: Field bounce with VCR operation.

Check the tuner a.g.c. smoothing capacitor C5010 $(150 \mu \mathrm{~F})$. Ensure that C 2039 on the timebase panel is $0.0039 \mu \mathrm{~F}$; if necessary R 2003 can be reduced in value but not below $1.5 \mathrm{M} \Omega$.

24: No field sync (vertical rolling).

Check for broken print at the left-hand corner of the timebase panel. If necessary check C2072 and C2080.

25: Narrow picture.

Check C3135 ($0 \cdot 91 \mu \mathrm{~F}$).

26: Intermittent black horizontal lines.

Suspect the tuner. This is normally not repairable though it may be worth using a very hot iron to resolder all earth connections etc.

27: Inability to tune over the whole range.

Suspect the tuner - assuming that preset adjustments have not been altered.

28: Low gain.

Suspect the tuner.

29: Tuning stuck on channel 1.

Check for poor contact at pin 2, plug 4C, on the power supply panel.

30: Gradual detuning over a long period.

Replace the TAA550 tuning voltage stabiliser i.c.; check for dry-joints on the control panel.

31: Set goes into the standby mode when remote control on/off is operated.
Suspect failure of small contact pair on the mains on/off switch.

32: Volume and brightness controls inoperative in manual or remote mode.
Check IC1 (SAA5010) and R49 (10) on the remote control panel.

33: Loss of one colour.
Check for open-circuit print in control unit 1617.
34: Remote control unit battery has limited life.
IC3606 (SAA5000) has been replaced by an SAA5000A to reduce current drain: with this the values of R3601-5 and R3609 are increased to $100 \mathrm{k} \Omega$ (from $33 \mathrm{k} \Omega$).

35: Loss of colour.

Check C6062/6070 (both $0.33 \mu \mathrm{~F}$) on the decoder panel; alignment of L5630 in module U5600.

36: Pulsating red/green/blue picture.

Check relevant BF458 RGB output transistor - Tr6105 blue, Tr6093 green, Tr6083 red.

37: Intermittent bottom cramping. Check C2083 ($15 \mu \mathrm{~F}$).

38: Picture pulsates on high contrast scenes.
Check C3129 ($0 \cdot 47 \mu \mathrm{~F})$.

Long-Distance Television

Roger Bunney

Though Sporadic E reception during July was less than during the exceptional preceding month of June, conditions were nevertheless very good. There was also tropospheric enhancement on several days, producing central European Band I/III/u.h.f. signals in the UK. The collated UK SpE reception \log is as follows:

7/7/85 ARD (West Germany) ch. E2; ORF (Austria) E2a; MTV (Hungary) R1; NRK (Norway) E2, 3, 4; JRT (Yugoslavia) E3; RAI (Italy) IA; TVE (Spain) E2, 3, 4; RUV (Iceland) E3; TSS (USSR) R1, 2.
8/7/85 EPT (Greece) E3; RAI IA, B; SR (Sweden) E2; CST (Czechoslovakia) R1; TSS R1; YLE (Finland) E3.
9/7/85 RAI IA; RTP (Portugal) E2, 3; TSS R1, 2, 3; SR E2, 3, 4; NRK E2, 3, 4; ARD E2.
10/7/85 RAI IA, B; TVE E2, 4; RTP E2, 3; MTV R1, 2; JRT E3.
11/7/85 RAI IA, B; TVE E2; TVE-2 E2; EPT E3; JRT E4; RTS (Albania) IC; CST R1; ORF E2a.
12/7/85 RAI IA, B; EPT E3; DR (Denmark) E3; TVE E3; SR E2; VOA harmonic on ch.E2!
13/7/85 NRK E2, 3, 4; SR E2; TSS R1, 2; CST R1; JRT E3, 4; RAI IA.
14/7/85 RAI IA.
15/7/85 RAI IA; TVE E3; CST R1; SR E3; DR E3.
16/7/85 MTV R1, 2; JRT E3, 4; RAI IA; TVE E3; TSS R1, 2 ; DR E3.
17/7/85 RAI IA, B; MTV R1, 2; JRT E3, 4; ORF E2a; CST R1, 2; TVR (Rumania) R2; TVE E2, 3, 4; ARD E2; DR E3; SR E3; + PTT (Switzerland) E2, 3.
18/7/85 ARD E2; ORF E2a; RAI IA, B; CST R1, 2; JRT E3, 4; TVP (Poland) R1; SR E3; TSS R1.
19/7/85 ORF E2a; TSS R1, 2; RAI IA, B.
20/7/85 TVE E2, 3, 4; TVE-2 E2; RAI IA, B; RTP E2; MTV R1.
21/7/85 CST R1, 2; JRT E3, 4; ORF E2a; ARD E4; TSS R2; TVP R2; TVE E2, 4; Aramco TV ch. E3, see later.
22/7/85 RAI IA, B; NRK E2, 3; TVE E2, 3.
23/7/85 JRT E3; RAI IA, B; NCT (Udine - Italian private station) E3; EPT E3; MTV R1, 2; NRK E3; TVE E2, 3, 4; Arabic exotics on chs. E2, 3-see later.
24/7/85 TSS R1, 2; CST R1; YLE E3; TVE E2, 3, 4; RAI IA.
25/7/85 TSS R1, 2; TVP R1, 2; CST R1, 2; DR E3; TVE E3; ARD E2.
26/7/85 TVE E2, 3, 4; TVE-2 E2; RAI IB; ORF E2a; ARD E2, 4; DFF (GDR) E4; MTV R1; JRT E3; +PTT E3; RTP E2, 3; SR E2, 3, 4; NRK E2, 3, 4; RUV E4; YLE E3, 4; TSS R1, 2; CST R1, 2.
27/7/85 TSS R1, 2; NRK E2, 3; SR E3; YLE E3, 4; CST R1; RAI IA.
28/7/85 RUV E3, 4; NRK E2, 3, 4; TSS R1, 2; TVR R2; ORF E3; TVE E2, 3; suspected RTM (Morocco), see later.
29/7/85 MTV R1; JRT E3, 4; RAI IA, B; RTS IC; CST R1; DR E3; NRK E3; SR E2, 3, 4.
30/7/85 TSS R1, 2; SR E2, 3, 4; NRK E3; TVP R1; JRT E3; RAI IA, B; TVE E2, 3, 4; RTP E2, 3.
31/7/85 MTV R1; JRT E3, 4; RAI IA, B; TVE E2, 3, 4; TVE-2 E2; TVR R2, 3; NRK E2.
1/8/85 NRK E2, 3; TSS R1, 2.
Several exotic signals were received during the month. Between 0855-0945 BST on July 21st Tim Anderson (St. Leonards) noted a ch. E2 electronic test pattern compris-
ing pulse and bar/sawtooth - rather smeary and unstable from the south. Thoughts as to the origin suggest GBC (Ghana) though I wonder if it could have come from Dubai? At 1840 on the same evening Iain Menzies (Aberdeen) clearly identified the station logo "Aramco TV Saudi Arabia" on ch. E3 from the south east, floating over a JRT signal. This transmitter is sited at Dhahran and has an e.r.p. of 5 kW - a very good catch.

Between 1656-1706 on the 23rd Tony Privett (Basingstoke) noted Arabic type figures with "Kurdish" style headgear on ch. E3. This would suggest JTV (Amman). On the 28th Iain Menzies logged a ch. E4 Arabicsubtitled programme without VITS from the south, consisting of Tom Sawyer with US dialogue. This suggests RTM (Morocco) though the time (1130 BST) seems a little too early for RTM to be on programme.

There was an intense Band I opening on July 30th, to the eastern USA as far south as Florida: various UK amateurs worked two-way contacts with many US amateurs from 2230 onwards at 50 MHz . This suggests that the path could have supported ch. A2 vision but at the time of writing there have been no reports of TV reception. The opening came some 28 days (solar rotation) after an aurora but I feel that the mechanism was more likely to be intense E layer ionisation giving multiple-hop propagation. Unfortunately I was away on holiday from July 27 th through to August 4th - typical!

Tropospheric propagation was similarly very active. Two small openings on the 7th and 13th produced Benelux and French Band III/u.h.f. signals in the southern UK. The main event occurred on 23rd/24th however when an intense spell produced very strong Band $I / I I I / u$ u.h.f. signals throughout much of the UK and central Europe. In particular W. German Band III signals were well received in the midlands and as far west as Plymouth late on the 23rd and from early on the 24th to midday. Switzerland was well received along the south coast on chs. E4, 7, $12,30,31$ and 34 . Very deep fading was experienced here at Romsey in Band III. At the same time West German signals were noted by several enthusiasts in the south west. TVE ch. E3 was a very steady signal from 2250BST at St. Leonards, with picture quality up to P5 (noise free).

Swiss signals on chs. E3, 4, 9, 30, 31, 35 and 59 were again seen on the 24th. French Band III/u.h.f. signals were present during this period at very high levels. There appeared to be a degree of ducting with many of the more distant signals. The tropospheric lift didn't help much with reception in the north of the UK. Finally, NOS Lopik ch. E4 has in recent weeks been seen with an occasional FUBK test pattern, fortunately including an identification. Sound tests with two-channel stereo and mono information are carried from 0945-1020 and 1345-1420 CET on Mondays-Saturdays.

In all a good month. My thanks to the following for sending in details of their reception: Reg Roper (Torpoint), Tony Privett (Basingstoke), Roger Pates (Nottingham), Simon Hamer (Powys), Jeremy Cecil (Shoreham), Alan Beech (Dollar), Tim Anderson (St. Leonards), Cyril Willis (Ely), Dave Shirley (Hastings), Bill Cotteril (Tipton) and Iain Menzies (Aberdeen).

News Items

France: Changes are being made to the structure of TV broadcasting in France. Briefly, there will be four private TV channels; the existing third channel FR3 will be split into two forms of programming, one purely regional and the other as "the foundation of a European cultural
channel" which will eventually be broadcast to Europe by satellite; Canal Plus is being reorganised as a nonsubscription channel, obtaining finance from commercials. Incidentally the French government has been providing technical and financial assistance for a radio/TV service in the overseas colony of Cape Verde.
Finland: The Swedish first programme is to be transmitted by a number of local stations in Finland, starting with Aaland Island (ch. E28, 20kW) and Pyhavuori. YLE has proposed a third channel, financed by advertising, to start initially in built-up areas.
Hungary: MTV is drawing up plans for a third channel, with regional content, to start in the late 1980s. Additional programming may be obtained via satellite links. MTV-2 currently has regional programming in Budapest, Pecs and Szeged.
Eire: A new (July 1985) transmitter network information sheet is available from Reception Investigation Department, Radio Telefis Eireann (RTE), Dublin 4, Eire those interested should send a stamped s.a.e. (foolscap) for a copy.
UK V.H.F. allocations: Further information on the reallocation of the emptied v.h.f. TV bands has been released. Apart from a 500 kHz paging service (frequency not specified) the $49 \cdot 82-49 \cdot 9 \mathrm{MHz}$ band will be used for "low-power devices, such as toys and telemetry equipment" - this may result in greater use of cordless phones, a situation that must be monitored. There's to be a considerable expansion of private mobile radio in Band III throughout the UK, though not with networking, i.e. excluding circuit interconnections. Five 1 MHz blocks in Band III are to be used for commercial cordless phones. Various data handling systems will also be permitted.

DTI Radio Investigation Service

Until now the DTI's Radio Investigation Service could be called in to investigate causes of interference to the reception of broadcasting services at domestic premises. The DTI recently announced a "phased withdrawal" from the provision of this service, justifying this action on the basis that most complaints are due to defective aerials, poor installations or customer misuse of equipment. The RIS staff is to be reduced from the present 340 to around 240 and will be mainly concerned with tracing radiation from unlicenced sources. The following measures have been announced:
(1) A comprehensive booklet, available from post offices now and including pictures, has been published to assist viewers in identifying the causes of problems.
(2) BS905, which specifies minimum interference immunity standards, is to be incorporated in legally binding regulations as soon as possible, making it an offence to make, sell or import receivers not complying with this standard.
(3) A charge of $£ 21$ will be made prior to an RIS call to a domestic property, the call being subject to confirmation that an external aerial is in use and that a detailed log of interference observations has been made on the appropriate form.
(4) The names of all applicants for an interference call will be sent to the TV licence office.
(5) From January 1st 1987 visits will be made only when they coincide with other visits to the same area and when a TV dealer has been unable to remedy or identify the cause of the problem.
(6) From January 1st 1988 the RIS will only visit receivers that comply with BS905.

We are the sole UK retailer for the impressive and unique TV-BILDKATALOG' the up to date (1985) Test Card guide for Europe. Of very high quality, it runs to 114 pages, contents include Europaan Test Cards, Logos, broadcast organisations/abbreviations, transmission standards and Regional Maps. Another useful feature is the Picture Section Of Clocks, essential for All DXers.
Section Of Clocks, essential for AI DXers.
Roger Bunney's new TV-DX Book - TV DXING FOR THE ENTHUSIAST is due out this Autumn - we'll have the first retail supplies. Enlarged and completely revised from the earlier Babani BP52 editions, this is essential reading for enthusiasts at all levels. We are taking advance orders on this new book. For DXing the correct way, consult SOUTH WEST AERIALS the experts, we carry a vast range of Aerials, Amplifiers (head, distribution, set-backs etc.) Cable, Rotators, Filters and many other items too numerous to mention, but all listed in our comprehensive 22 page CATALOGUE costing only Elp. Why not send for a copy today.
TV-BILDKATALOG 1985 Test Card guide for Europe.
TV-DXing For The Enthusiast by Roger Bunney (new edition) available Oct 85 £2................................. AMATEUR TELEVISION HANDBOOK completely revised editionE2.95
WALTHAM $4166^{\prime \prime}$ screen VHF/UHF Television for DXing, covers Bands 1, 3 \& UHF with continuous varicap tuning; System B/G operation (adjustment to 6 MHz sound for UK TV standard available at additional cost of $£ 2.50$); 12 volt and mains operated .. 773.70

Also available Colour Multi-Standard PAL/SECAM Televisions and Video Recorders. We are THE DXing Specialists, advice given on ALI reception problems (SAE please).

All prices inclusive of VAT and Carriage
Delivery 7-10 days ACCESS \& VISA Mail and Telephone orders welcome

SOUTH WEST AERIALS (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 02022738232.
FCLATCLRD
VISA

TV LINE OUTPUT TRANSFORMERS
 PRICES INCLUDE VAT \& CARRIAGE

Delivery by return of post.	
RANK BUSH MURPHY	IT: VC200 to VC402 9.20
A774 with stick rectifier 9.78	CVC1, CVC2 (FORGESTONE) 11.50
A816, T16, T18, 2712,2715	CVC5, CVC7, CVC8, CVC9 series 9.20
T20, T22, T26, Z179, A823 11.50	CVC20 10.35
2718 Basic unit 13.50	CVC25, CVC30, CVC32, CVC45 9.20
T24e, T24h split diode P.0.A	CVC40, CVC1200, 1210, 1215 P.0.A
	F110, Flill. P/no AT2063/02 11.50
1700, 2001, 2020, 2401, 2404 9.20	PYE: 169, 173, 569, 368 series 9.20
CS1730, 1733, 1830, 1835	CT200, CT200/1, CT213 series 10.35
30,70,80,90,100, 130 Series 9.20	725-731, 735, 737, 741 Series 9.78
FERGUSON, THORN: 1590, 1591	PHILIPS: 170, 210, 300 series 9.20
1690, 1691. built in rect 9.78	320 series 9.78
1600, 1615, 1700 series P.O.A.	TX, T8 mono P.OA
1790 mono portable P.OA.	G8 and G9 Series 9.20
3000, 3500, 8000, 8500, 8800 P.0.A.	KT2. KT3. series colour 9.20
9000, 9200, 9300 series 12.00	G11. K30. split diode P.OA.
9500, 9600, 9650 series 10.99	BINATONE: 9909, 9798, 9860 P.0.A.
9800, TX9, TX10 series P.0.A.	DORIC Mk3 11.50
MOVIESTAR 3781, 3787	FNLUX 9560, 9670 P.OA.
FDELITY: FTV12 mono 10.35	GRUNDIG: most models in stock NORDMENDE: FC125, $2206,730611.50$
CTV14R, CTV14S colour 15.83	NORDMENDE: FC125, 2206, 230611.50 SANYO: 5101, 5103, 7118, 7130 P.O.A.
G.E.C. 2047 to 3135 mono 9.20	SHARP: C1851H, C2051H P.0.A.
1201H, 1501H, 2114, 3133, 31359.20	TOSHIBA: C800, C800B 19.45
DUAL \& SINGLE hybrid col. 10.00	TANDBURG: 190, CTV2-2, CTV3-3 P.0.A.
SINGLE STD solid state 12.00	TELEPUNKEN: most models in stock
SINGLE STD split diode P.O.A.	LNE OUTPUT TESTER 16.79
INDESIT: 24EGB hybrid 9.50 12LGB, 12SGB mono portables 10.35	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to $12.30 \mathrm{pm} \&$ $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.
WINDINGS	
TYNE: main winding 6.80	
RBM: T20, T22, T26, 2179 l 5.33	
WALTHAM: W125 eht winding 237	
WALTHAM: W190, W191 eht coil 66.00 KORTING: hybrid winding $\quad 6.90$	
KORTING: hybrid winding 6.90	

(7) From the present time all commercial users will be charged at a business rate for diagnostic/remedial work.

If there is sufficient demand, the RIS may provide training courses in interference location and correction.

These changes mark a profound alteration to a service that's been available for many years. Weak-signal enthusiasts will in future have to carry out much more investigative work themselves. Rectification of mains-operated equipment causing interference must be carried out by qualified and experienced personnel, but location of many sources of interference can be carried out using a cheap a.m. v.h.f. air-band portable with its whip aerial, by gradually closing the whip as one gets closer to the source.
We're always interested in hearing about readers' interference problems - and any solutions devised. Notes on this subject may well be featured in future columns.

From our Correspondents . . .

Jeremy Cecil of Shoreham has written to tell us of his experiences as a DXer over some twenty years. He commenced TV-DXing with a rented TV set and 13channel turret tuner, using a home-made double elevenelement Band III array with adjustable polarity via four parachute strings. This gave such 405 -line memorabilia as St. Hilary, Lichfield and Emley Moor, plus at times 819line signals from RTF (France). He found that reception of long-haul signals was often best with polarisation of other than the correct (transmitted) type - his infinitely variable polarisation system was obviously most effective (has anyone any comments on this polarisation shift?).
His experiments continued until 1977 when he married and moved to Portslade, some seven metres a.s.l., where he concentrated on reliable daily reception of Caen using a single 21-element group A Yagi which cost all of $£ 2.19$ s.6d! In 1981 he acquired a PAL/SECAM Grundig set able to receive $\mathrm{B} / \mathrm{G} / \mathrm{L} / \mathrm{L}$ standard transmissions, a Fuba XC391 u.h.f. array and a three-element wideband Trumatch Band I array. In addition a VCR with system L capability was acquired. He also uses a Philips VR2120 (2000 system) machine that works well in terms of stability with deep fading signals - unlike the VHS machine.
He's at present using a Salora Model J60/90, an all singing/dancing set with system $B / G / / / L / D$ capability, plus teletext and stereo sound, giving v.h.f. coverage from 45300 MHz and slightly extended u.h.f. coverage. Teletext DX reception has been successful and Jeremy is seeking any comments on real-time and recorded teletext recovery. As a result of ill health Jeremy has now retired, but his DX-TV activities provide him with a full and satisfying hobby. We wish him the best of luck with future reception.

US Satellite TV

As mentioned briefly last month, Frank Lumen of Denver, Colorado paid us a short visit recently. He had much of interest to tell us about the satellite TV scene there. Readers may recall that we showed a shot of his dish last December (page 95). Frank is now using an $85^{\circ} \mathrm{K}$ LNA feeding a Luxor (Swedish) 4GHz satellite receiver, his interest having drifted from v.h.f. DX-TV because of the large number of high-power local transmitters that can be received at his location, leaving few channels open for DXing.

Satellite TV has become big business in the USA as viewers.seek alternatives to their normal programmes. Over 15,000 dealers attended the recent Las Vegas SPACE/STTI trade show where over 600 dish aerials were
on display. Services at 4 GHz are seen as the growth market, with an estimated sale of some 600,000 units this year. Two problems are beginning to arise for satellite TV viewers however. First, zoning (planning) control - local authorities are beginning to take an interest in large dishes in suburban back yards. Secondly there's the prospect of programme scrambling. The 4 GHz satellites were originally intended for programme distribution to cable networks, the cable operators paying for the programme material they received and put out over their networks. The explosion in 4 GHz TVRO installations means that there's no check on who is actually watching, a situation with which the programme companies are not exactly happy - hence the likelihood that scrambling will be increasingly used.

The many US satellite TV magazines are full of advertisements for dishes, LNAs, LNBs, receivers, feedhorns, actuators and even dish surface warming elements (to prevent snow/ice build up, dish distortion and thus reduced gain). Many include programme guides. There is generally 4° spacing between satellites, but with the shortage of orbital space 2° spacing is being suggested. This will introduce problems where smaller dishes are used since these tend to have a beamwidth of 2° at -3 dB : sidelobes will add to the possibilities of adjacent satellite interference. Dishes start at 5 ft in diameter: most of those sold are in the 6 -10ft range but dishes are available at up to 30 ft diameter.

The large number of satellites that can be received means that computer control of the aerial is desirable. You pre-programme the computer with the positions and polarities of your favourite satellite transponders then just push the button and the dish swings to the appropriate position, adjusting the polariser for either vertical or horizontal polarisation. The market has reached the stage where discount satellite outlets are being opened.

Many of the domestic US satellites (DOMSATS) have up to 24 downlink transponders with output powers of 810 W . With such a large number so the programming is comprehensive, from popular sit-coms to specialised language programmes for ethnic majorities and of course not forgetting prime-time movie channels. As an example of ethnic programming, RAI-TGI (Italian TV news) is uplinked via a N. American Intelsat bird and downlinked via Satcom 1, giving US-wide RAI though the programme was originally intended for a community_in New York. Frank views ITN news (News at One, News at 5.45) which is again Intelsat uplinked then cross linked via Satcom 1 from New York to Los Angeles where a further Pacific link takes it to TCN9 Sydney. The signals Frank receives have PAL colour and 625 lines.

Frank can receive signals from 19 satellites at his Denver home. With anything up to 20 downlinks on some of these craft Frank reckons that 150 channels are available to him for viewing with acceptable quality. His future plans include a lower noise LNA, possibly down to $65^{\circ} \mathrm{K}$, and resiting his dish so that it can see several Atlantic ocean satellites which are at present obscured by a neighbour's house. With prices for complete systems starting at $\$ 1,000$ for a system with 6 ft dish and $100^{\circ} \mathrm{K}$ LNA one can readily appreciate how satellite viewing has grown as both a hobby and a source of home entertainment. With a mass of equipment that can be merely plugged in (your friendly local satellite dealer will install) no technical knowledge is required apart from the need to be able to programme the dish control system.
We hope to include some photos of reception next month.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V29

The problem is loss of colour on playback. Colour is present to start with but fades when the machine has warmed up. Checks around the AN6360 colour signal processing chip revealed that pin 16 is 6.3 V instead of 1.4 V , but fitting a replacement chip has made no difference.

It looks as if either the coupling capacitor C415 (120 pF) between pins 16 and 17 of the i.c. is defective or that the burst gating pulse at pin 4 is missing or low in amplitude. This pulse gates the burst to provide the a.c.c. action. Suspects are L407 $(5 \cdot 6 \mu \mathrm{H})$, C441 $(0 \cdot 012 \mu \mathrm{~F})$, C440 $(1 \mu \mathrm{~F})$ and IC402 (AN6362) in that order, plus all the tubular pink capacitors in this part of the circuit. Use of freezer and a hairdryer should localise the component responsible.

HITACHI CNP190

There are two faults on this set. First excessive ballooning when the brightness is turned up. Secondly retuning is necessary every ten-fifteen seconds. The latter condition is present whether the set is warm or cold and applies to all buttons.

The tuning control assembly used in these sets gives a lot of trouble. A replacement four-button unit can be obtained from Hitachi or wholesalers such as HRS and SEME and may well solve the problem. If not the tuner is suspect. For the ballooning, check the h.t. voltage as the brightness control is adjusted. If it varies, suspect the series regulator transistor TR41 and its control circuit, especially the zener diode CR40. If the h.t. remains steady, suspect the e.h.t. rectifier circuit which is inside the line output transformer assembly.

ITT CVC32 CHASSIS

A month after fitting a new line output transformer the EW correction transformer L22/3 burnt up and the driver transistor T13 failed. These items were replaced with the correct types but two days later they again failed following the appearance of centre line foldover. No obvious faults can be found in this area.

The trouble can be caused by intermittent failure of one of the capacitors in this part of the circuit. Suspects are C65 (EW tuning), C68/69 (scan correction) and C70 (T13 collector supply filtering). Ensure that the replacement EW correction transformer is fitted the right way round.

DECCA 100 CHASSIS

A fault in the line output stage keeps blowing the mains fuse. To start with there was what looked like loss of EW drive (bowing at the sides). A few weeks later the fuse blew
and the BU208A line output transistor was found to be short-circuit. The line drive waveform is correct but the set will operate for only a fraction of a second before ruining thé BU208A. A new line output transformer has been fitted and no obvious faults can be found on the line output panel.

The e.h.t. tripler could well be at fault, loading the line output stage. Check by disconnecting it. If the problem persists, ensure that no reverse leakage can be measured in the EW modulator diodes D401 and D402. If these are o.k. the EW correction transformer T 402 could be in trouble: the only way to check it is by substitution.

PHILIPS G8 CHASSIS

There's intermittent. ballooning which lasts for only a fraction of a second. It occurs every few seconds and is sometimes more pronounced than at other times.

The problem is probably due to an h.t. voltage fluctuation, but a scope will be required to confirm this - a meter will not respond quickly enough. The BT106 mains rectifier thyristor could be responsible but the BR100 trigger diac is a more likely suspect. The 4EX581 is a more reliable replacement which will work only one way round: if you fit one, change R1382 to 47Ω. Also make sure that the set-h.t. control R1370 is in good condition and working smoothly.

SONY KV1810UB

The display consists of three separate rasters displaced from each other by about one and a quarter inches. Disconnect the red and blue drives and you get a perfectly centred, linear green picture. Reconnect red and a second, impure green picture appears to the left of centre. The picture produced by the blue gun is to the right of centre.

The effect is tied up with the convergence voltage that's passed to the c.r.t.'s button connector along with the e.h.t. The e.h.t. lead and tube connector are both coaxial types. Remove the e.h.t. cap carefully and check the central spring and claw connector. If these are in order and not shorted, and adjustment of the static convergence control (mounted on the tripler) doesn't eliminate the problem, a new tripler assembly will be required.

TOSHIBA V9600

The rewind is at first sluggish, then ceases. The counter turns slower and slower and finally stops. The fault has become progressively worse over a period of months though some tapes rewind satisfactorily. I suspect the rewind idler clutch assembly - would you agree with this suggestion?

The problem is unlikely to be in the reel drive mechanism: excessive friction in the tape path is more likely.

First check the voltage across the reel motor (pins 1 and 3 of connector P611 on the servo/syscon/audio panel). This should be at least 11 V : if not, replace the two Darlington drive transistors Q636 and Q640. If this check proves o.k., replace the upper drum assembly above the video heads the fault is almost certainly due to the tape sticking to the surface of this assembly. Toshiba changed the type of alloy used for this, so a replacement will provide a permanent cure. Some improvement can be achieved by removing the assembly and scouring the surface with fine steel wool used wet. When replacing it, make sure that the surface is hard up against the vertical locating post: take care not to disturb any spacers fitted and to avoid damage to the heads themselves.

274
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The most common fault with the Sony C5, C6 and C7 series VCRs is failure to rewind as a result of problems in the friction-drive system for the feed spool turntable. So when a C7 arrived in the workshop with the complaint that it "sometimes fails to rewind" we weren't expecting any great challenge to our intellect!

After confirming with a known good prerecorded tape that the video heads were in reasonable condition we dismantled the cassette cradle and fitted the rewind modification kit. This was the work of a few minutes (we've had plenty of practice) and within another twenty minutes the deck had been serviced - heads cleaned, tensions checked, guide alignment tested and so on. In went an L750 tape to record a test card while we wrote out the invoice. That completed it remained only to replay the recording as a test before wrapping up the job.

Pressing the rewind button stopped the tape transport system but did nothing to wind the tape back. The fastforward mode worked correctly, as did the cue (search forward) function. The tape wouldn't reverse on selecting review, and it soon became apparent that this had nothing to do with the mechanics of the reel-drive system - which had just been renewed anyway.

It seemed obvious that the cause of the trouble lay in the tape-end sensor system, the likelihood being that it was falsely signalling "end-foil present" to the syscon department, thus inhibiting rewind. In Betamax machines the sensors take the form of ferrite-cored coils which are mounted close to the tape path. Their inductance falls considerably when the tape's end-foil passes nearby, this
loading effect stalling an oscillator of which the sensor coil forms a part. When this happens a "high" signal passes to the syscon chip which then prevents tape transport in the prohibited direction.

The forward (left-hand side of the deck) and rewind sensors in the C7 use identical circuits, each built around a BX342 chip that contains an oscillator and a detector. In view of the intermittent nature of the fault we started by thoroughly checking for dry-joints in the relevant plugs, sockets and PCBs. Finding none, and with the fault becoming rarer, we had an inspiration: we interchanged the two BX342 chips so that if the suspect IC9 was responsible the fault would be transferred to the forward sensor department. It was fairly easy to transpose the two i.c.s, but when we'd done this the forward and rewind functions behaved perfectly!

The machine was set to run on test, with us thrashing the rewind and fast-forward buttons at frequent intervals. Nothing untoward happened until next morning, when the machine once again malfunctioned, shutting down halfway through a rewind cycle. So it wasn't the chip! We'd taken the precaution of hooking an oscilloscope to the rewind sensor coil and were able to see the sinewave "twitter" and fall in amplitude before the syscon shut the show down. No amount of tapping, flexing, heating or cooling of the SY11 (syscon) or LS3 (junction) panels would instigate or settle the fault.

The next test we made established with certainty the faulty component, but in carrying it out we had to take certain precautions to forestall the murder of a tape cassette. What were they? And where lay the root of the evil? Fast forward to next month's issue!

ANSWER TO TEST CASE 273

 - page 646 last month -September's puzzle was a mixture of nostalgia and recalcitrance! You'll recall that the display obtained on a set fitted with the ITT VC200 hybrid monochrome chassis obstinately lacked width while there was some overheating of the large components in the line output stage. All likely and several unlikely suspects were fruitlessly checked before we were left wondering whether we'd have done better (and quicker) to exchange the whole chassis for the one in the scrap set.

Our approach in such cases however is "better the devil you know" - what evil faults, intermittent or otherwise, might have been lurking in the other well-worn chassis? In fact if we'd replaced it complete the fault would still have been present!

So what cabinet or tube mounted component could have been responsible? The deflection coils of course. There must have been short-circuit turns in the line section because swapping over the yokes produced a fullwidth raster, enabling us to reclaim most of the bits and pieces we'd fed into the falsely accused line oscillator and output stages. With normality restored to this vintage set, back to the problems associated with more recent equipment - see test case 274 alongside!

[^0]
CENTRAL T.V. \& VIDEO WHOLESALER

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

VIDEO CASSETTE RECORDER SERVICING 6 WEEKS FULL-TIME

(September 16th to October 25th)
Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentage of practical work.
Selected applicants will be eligible for a full grant from MSC under TOPS to cover tuition fees and maintenance.

6 MONTHS LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training e.g. BSC, HND, CGL, B/EC, etc.)
(Course commences on Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \&
TECHNICIAN EDUCATION COUNCIL
(These courses commence on Sept. 16th)

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassente Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessors, Microcomputer Fault Diagnosis, Robotics \& Control Systems, CADCAM \& CAE Principles).
overseas students are charged the SAME TUITION FEES AS UK STUDENTS

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

	Meteor $600-600 \mathrm{MHz}$ - 1276
	Meteor 1000-16Hz $\quad 1775$
	BIACK SIAA JUPPTOR 500 FUNCTION GENER-
	$\begin{aligned} & 281 \\ & \text { with } \end{aligned}$
MULTIMETERS UNBELIEVABLE - AVO 8 Mk IV and AVO 9 Mk IV complete with batteries \& leads. FOR ONLY .. 285	
	wobbulat
ranees Coll 73 . Poxith patenes 8 leads 	
AVO TRANSISTOR AMAA YSER CTA46. Suitcase style - bater operated (bateries not supplied) With Intomation ONIY $\Sigma 20$ EACH avo transistor tester tib9 	
MARCOHI RF MILLVOLTMETER TF2603 50 KHZ 1500MHz: 1 mV -3V. FSD	,
${ }^{2}$ 2HLZ-1500MMz; ACDCOhms AC300mV-300V	
z; 1 mV V-300V. FSD	Good condition -........ Omtr \&40each
This is a VERY SMALI SAMPLE OF STOCK. SAE or Telephone for Lsts. Please check avaiability before ordering. CARRIAGE all unitis $£ 12$. VAT to be added to Total ol Goods $\&$ Camage. Please allow 21 days for delivery.	
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL	
\%exhrin	073468041

CLEARANCE SALE Massive Savings TELEVISION

Secondhand and ex rental. Many to clear at $£ 5$ and $£ 10$.
New but faulty or marked remote control Teletext from only $£ 90$.

AUDIO

Music centres, Hi-Fi, Radios, Cassettes, etc., etc.
Many to choose from.

VIDEOS VHS and SONY

Several models and types at various prices. Stocks are constantly changing.
Please phone now for further details: COLOURTRADE
221, Bridge St. West, Hockley, Birmingham, B19 2 YU. Telephone 021-359 0449

Olminerscall chectronuic IDistrơburtors 119 JARROM STREET, LEICESTER LE2 7DX Telephone: (0533) 544849						PS ${ }_{\text {cess }}$ 3350 86108. 9500. per kit
SPECIAL OFFER. UNIVERSAL TRIPLER ONLY £4.25						
SEMICONDUCTORS					ICs	
${ }_{\text {AD161 }}$		$\begin{aligned} & B 0243 A \\ & B O 433 \end{aligned}$	(10.35		${ }_{\text {TRA }}^{\text {TPA520 }}$. 59
${ }^{\text {ACC }} 107$	${ }^{60.09}$	${ }_{8}^{80539}$	50.45	2N3055 250178 M 80.45 fo 29	${ }_{\text {TBAS3200 }}^{\text {TBA }}$	¢1,00
${ }_{\text {BCiliog }}^{\text {BCOC }}$	$\underset{\substack{\text { E0.09 } \\ \text { E0.10 }}}{ }$		¢0.45		T885330	${ }_{\text {c1, }}$
${ }^{\text {BC }}$ 8147	${ }_{\text {coios }}$		60.45	$\xrightarrow{25 C 7940}$	teasteo	¢120
8C148 8C149		80678 80679	${ }_{80.45}$		T8A56500	${ }_{\text {c1, } 10}$
${ }_{\text {BC157 }}$	50.09		f0.20	$\xrightarrow{\text { NTN0022 }}$	${ }_{\text {TBA5 }}$	${ }_{\text {E1, }}^{1.45}$
${ }^{\text {BCL }} 1598$	$\underset{\substack{\text { f0.09 } \\ \text { f0.06 }}}{ }$	$\begin{aligned} & 8 F 246 \\ & \hline 8 F 595 \\ & \hline 85595 \end{aligned}$	co 25 coid	$\xrightarrow{\text { co. }}$	TEABOO	${ }_{\text {c0. }}^{\text {¢0. }}$
${ }^{\mathrm{BCC}} 1838 \mathrm{~B}$	${ }_{50.07}$		${ }^{\text {co }}$	${ }^{1 \times 4006}$ (1006	TBABAOAOS	
${ }_{\text {BCO2078 }}$	E0.07		${ }^{50.10}$	${ }^{1 \text { Na148 }}$	teazom	${ }_{60,65}$
	${ }_{60.07}^{80.09}$		${ }_{\text {cose }}^{\text {c0. }}$		TBAA20	
${ }^{\text {BC2 } 2884}$	f0.07		-	insta3	${ }_{\text {T®вяs90 }}$	${ }_{\text {c1.70 }}$
		8126	(- 1 inctas	${ }_{\text {TCABOO }}^{\text {TCASA }}$	
${ }_{\text {BC351 }}^{\text {BC546A }}$	c.0.07 c.07		${ }_{\text {c0, }}^{50} 5$	1NS406 ins67		${ }_{\text {f10, }}^{5156}$
${ }_{\text {BCS57 }}{ }^{\text {BCLIC }}$	${ }_{\text {cose }}$	${ }_{84326}$	80.35	1NS408 60.13	${ }_{\text {TDA }}$	${ }_{\substack{81 \\ 6149 \\ 6140}}$
${ }^{\text {BCbasc }}$			cois	ZENER DHOLS	cose	ciliti
	coter				隹	
BDI36 B0137	${ }_{\text {co }}$	${ }_{\text {BY179 }}$			${ }_{\text {To }}^{\text {TDA2541 }}$	${ }_{\text {f11.69 }} \mathbf{6 1}$
${ }^{\text {80, }}$	coiv	${ }_{\text {BY/ }}$	coin		TDASA0	c1.50
${ }_{8}^{80139}$	${ }_{\text {coin }}$	${ }_{\text {cke }}$	${ }_{\text {coin }}$	FUSES	Lat ${ }^{\text {a }}$	${ }_{\substack{\text { fos } \\ 60}}$
${ }_{\text {l }}^{\text {80166 }}$	${ }_{\text {co. }}^{\text {c. } 29}$	-	${ }_{6}^{60.08}$			${ }_{\text {cose }}^{\text {co. }}$
80201 80202 80		${ }^{\text {E9003 }}$		20anm ANIISUVGE PKS ol	${ }^{\text {UPCES75C2 }}$	${ }_{\substack{\text { coi.90 } \\ \text { E1.75 }}}^{\text {cis }}$
		${ }_{\text {ceseas }}$			UPC118iH	¢0.99
${ }_{\substack{\text { B0204 } \\ \text { B0237 }}}$		$\underset{\substack{\text { R2010 } \\ \text { TIP31 }}}{ }$	${ }_{6025} \mathbf{6}$		${ }^{\text {UPC, }}$ UPC1885	

PLEASE ADO 90p PRP and 15% VAT, All COMPONENTS BRAND NEW

TV LINE OUTPUT TRANSFORMERS

fast return of post service

CentreVision

 TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8ABOPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO (VHS + BETA) FROM £85

* ITT CD752 REMOTE WORKING £90
PHILIPS G11 FROM £40
* GEC STARLINE 22-20 (Remote) £35
PYE CHELSEA £25
* THORN 9000 20" £35
* DECCA 22" BLACK FRONT VERICAP £15
* RANK T20 REMOTE £48
* PHILIPS 550 IN 10's £18
PRICES SUBJECT TO VAT OPENING HOURS:MONDAY - FRIDAY 9.00-5.30SATURDAY 9.00-1.00

TOP TWENTY VIDEO SPARES

Cassette lamp (Ferg/JVC)
Cassette
lamp (Panasonic)
$\mathrm{f1.80}$ Video head (Ferg) (state model)........ $£ 37.5$
Cassette lamp (Panasonic) f1.80 Video head (Panasonic) (state model) $£ 30,50$
Take-up clutch (Ferg) ... E6.55 Head cleaning fluid.
Belt kit (Sony) (state model).............. $£ 650$ Head cleaning sticks (each) Belt kit (Ferg) (state model)............... $\mathbf{6 6 5 0}$ Reel Drive Pulley (Sanyo VTC5000) $£ 8$. Belt kit (Panasonic) (state modell $\mathbf{f 6 . 5 0}$ Reel Motor (Sanyo VTC5000) $\mathrm{fl}^{2} 2$ Belt kit (Sanyo 9300) Rewind kit (Sony C7) \qquad . 56.50 Reel Motor (Sharp) E6.95 Overhaul kin (Ferg) (state mode..................1296 Reel idler (Sharp VC \qquad E3. 45 Overnaul ki (Ferg) (state model)....... 19.9. Rideo head (Sony C7/C5) \qquad . 33.50 Overhaul kit (Sharp) (state model)f19.95 Most spares available for Hitachi, Panasonic, Sony, Sanyo, Sharp etc. Prices on request.

TELEVIDEO SERVICES NOTTINGHAM (0602) 226070
 76 Wollaton Rd., Beeston, Nottingham

Please add 50p post \& packing and then add 15% VAT to total
ALL ORDERS DESPATCHED BY RETURN OF POST
Send $24 p$ stamp for full catalogue.

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
* All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street, Wolverhampton WV2 4LJ. Phone: (0902) 773122.

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote) PHILIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT
THORN 8800 THORN 9000 (remote) (remote)
THORN TX
VHS VIDEO trom $\mathbf{£ 8 5}$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone: COLIN BROOMFIELD,

NOW OPEN AT
MES JUNOTION 30

EX-THORN
TVs + VIDEOS
TELETEXT PORTABLES ETC
ALL IN IMPECABLE CONDITION
2 BR=A PH ROAD
WEST THURROEK
$\begin{aligned} & \text { PURFLEET } 0708 \\ & 861404 \end{aligned}$

UNTESTED EX-RENTAL CTVs OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

BEST SOURCE IN U.K.

COLOUR TVs FROM £3

VIDEO RECORDERS

 FROM £60TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON : GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES
LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY

FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

HOCKLEY DISCOUNT TELEVISIONS

GOOD NEWS! We have now expanded our Midlands Branch THAT MEANS! More bargains for you \& more selection We now have HUGE STOCKS of TV's \& V.H.S. VIDEOS

LORRY LOADS DELIVERED DIRECT FROM SOURCE!

Philips G8's \& G11's
Pye Solid State
Pye Chelsea
G.E.C. Solid State

Rediffusion Mk. I \& Mk. III

Thorn 8800, 9000
9600, TX9, TX10
Latest Hitachi
I.T.T. CVC30, CVC45

Bush T20, T22

Midlands Branch: HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill, Hockley, Birmingham, B19 1AE. Tel. 021-551-2233 - Ask for Jazz
North-East Branch: NORTHERN T.V. DISTRIBUTORS, Unit 2, Perth Court, Eleventh Avenue, Team Valley Trading Estate, Gateshead, Tyne \& Wear. Tel. 091-4875389 - Ask for Joe
SUMMER BARGAINS
10 BUSH 2 CHIP $£ 50$
10 PHILIPS G8 550 £150
10 DECCA 6-BUTTON 20" £7010 REDIFFUSION MARK 1REVAMP£120
10 THORN 8000 17" £150
ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES
PL509 £1.50, PY500 £1
ELC 1043 Tuners Ex-panel £2.50 RING FOR QUOTE

ALL + VAT

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available. Demonstration by appointment.
L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

[^1]| ${ }_{\text {AN }}$ AN273 | ¢1.75 | cx095C | $\mathrm{fl}_{65.80}$ | LA4051P LA4100 | ${ }_{61.00}$ | STK439 STK441 | 65.50 6800 | TA7226P | $\frac{59.20}{61.50}$ | $\begin{aligned} & 2 \mathrm{SANA} \\ & \text { 2SA9? } \end{aligned}$ | $\begin{aligned} & 60.00 \\ & 50.00 \end{aligned}$ | $\begin{aligned} & 258471 \\ & 2 S 8475 \end{aligned}$ | $\begin{aligned} & 63.50 \\ & 50.50 \end{aligned}$ | $\begin{aligned} & \text { 2SC1047 } \\ & \text { 2SC } 1061 \end{aligned}$ | $\begin{aligned} & 60.35 \\ & 60.55 \end{aligned}$ | $\begin{aligned} & 2 S D 718 \\ & 2 S O 733 \end{aligned}$ | $\begin{aligned} & 61.50 \\ & \boldsymbol{1}, 0 \end{aligned}$ | LM8361 | 87.50 | $\begin{aligned} & \text { TBA673 } \\ & \text { TBA700 } \end{aligned}$ | ¢120 $\mathbf{6 1} 20$ |
| :---: |
| AN203 | 1220 | cx1000 | E5.75 | La4100 | $\underline{51.00}$ | STK441 | 68.00 | TA7227P | E1.00 | 2SAS2 | 50.60 | $25 B 475$ | 00.50 | $2 \text { SC } 1061$ | fass | $\begin{aligned} & 2 \mathrm{2} S 733 \\ & 2 S D 734 \end{aligned}$ | | $\begin{array}{\|c\|c\|c\|} \hline \\ \text { MC358 } \end{array}$ | $\begin{aligned} & \mathbf{1} .00 \\ & \mathbf{1 . 0 0} \end{aligned}$ | $\begin{aligned} & \text { TBA } 700 \\ & \text { TBATOOO } \end{aligned}$ | $\begin{aligned} & \text { f1.50 } \\ & 2.0 \end{aligned}$ |
| AN210 | 61.75 | CX101G | 87.50 | Lasiol | 61.00 | STK443 | 66.95 | TA7223P | ${ }_{6} 100$ | 2SA101 | 50.00 | 2S8481 | 2000 | 2SCC1096 | 60.60 | 2S084 | 20.30 | MC946P | 51.00 | tbabioas | E1.00 |
| AN211A | 12.5 | CX130 | ¢4.50 | La4102 | 6120 | STK451 | E5.50 | TA7230P | 81.75 | 2SA102 | 50.60 | 2SB492 | 50.75 | 2SC1098 | E2, | 2S0916 | E0.95 | MC1310P | 11.50 | TBA810SH | 11.75 |
| AN2140 | 51.80 | CX136 | E5.50 | LAA110 | 61.40 | STK459 | E5.75 | TA7310P | E1.40 | 2SA103 | clan^{1} | 2 2SB5090 | 81.70 | ${ }_{2 S C 1114}$ | 6350 | 2S6613 | 65.50 | MC34031 | 00.60 | tBas00 | E1.50 |
| AN2178 | f2 20 | CX143A | 67.50 | LAA112 | 61.30 | STK460 | 87.50 | TAT312P | E1. 30 | 2SA104 | ${ }_{60} 9000$ | ${ }^{2 S B 511 C}$ | 51.20 | 2SCl115 | ${ }_{850} 83$ | 2SJ50 | E4.00 | MFC8020A | 80.75 | tBaszo | 51.00 |
| AN228W | 927 | CX157 | E3.55 | LA4120 | $\underline{6250}$ | STK461 | 26.50 | TAT313 | f1,30 | 2SA201 | $\mathrm{cm}_{50.00}$ | ${ }_{\text {2SB536 }}$ | 80.55 | $\begin{aligned} & 2 \mathrm{SC} 1124 \\ & 2 \mathrm{SCl} 164 \end{aligned}$ | 50.20 | ${ }^{2} \mathrm{SK} 19$ | [1.70 | M12378 | 5120 | trag90 | f1.00 |
| AN236 | 8250 | CX158 | 13.50 | LA4125 | 6200 | STK463 | $\mathrm{fl}_{57.40}$ | TA7315 | 11.5 | 2SA202 | ${ }_{60} 60$ | $\left\lvert\, \begin{aligned} & \text { 2SB5555 } \\ & 2 S B 561 \end{aligned}\right.$ | $\begin{aligned} & 83.50 \\ & 0.30 \end{aligned}$ | 2SC1164 | ${ }_{520}$ | 2SK3AA | $\underline{5270}$ | ML2398 | $\underline{200}$ | TBA9900 | 51.00 |
| AN2390 | ${ }_{53} 50$ | Cx160 | 0250 | La4140 | ¢0.70 | STK465 STK0025 | ${ }_{68.50} 6$ | TAT325 | ${ }^{20} 5$ | 2SA203 | 50.50 | 2SB5647 | 20000 | 2SCl172A | 6275 | ${ }^{\text {2SK49 }}$ | f0.60 | MSW901 | ${ }^{6} 3.50$ | TCA2700 | 51.20 |
| AN240P | 51.50 | Cx161A | 0250 | laszor | 61.50 | STK0029 | f4.35 | TAT328 | ${ }^{\text {E1/ }} \mathbf{5}$ | 2SAZ34 | E0.00 | 258698 | 20.30 | 2SC1172B | 52.15 | 2SK120 | ${ }_{5} \mathrm{f0} 50$ | NES21F NE5628 | 61.75 | ${ }^{\text {TCA }}$ TCA 730 S | ${ }^{20} 50$ |
| AN247P | 9250 | CX162 | 63.40 | La4230 | f1.万5 | STK0039 | E425 | TA7607 | 82 | 2SA235 | E0.05 | 2SB754 | 20.55 | $2 \mathrm{SC1307}$ | 81.25 | 2Sk130 | $f 1.75$ | NE5917 | | tcabso | ± 200 |
| AN259 | E2.15 | CX170 | 66.50 | LA4400 | E1.90 | STK0040 | ELSO | TA7608 | 1230 | 2SA341 | 17.15 | 2SB755 | 0250 | 2SC1308 | $\underline{82} 7$ | 2SK135 | ¢400 | NES504N | $\underline{250}$ | TDA1024 | 81.25 |
| AN262 | f1.50 | CX181 | 88.50 | LA4420 | £1.40 | STK0049 | E5.75 | TA7611 | 127 | 25 S342 | $f 1.15$ | ${ }^{2 S C} 352$ | 60.50 | 2SC1316 | $\underline{725}$ | 3SK22 | E1.75 | NE553 H | f120 | TDA IOS36 | 1200 |
| AN271A | $\underline{9250}$ | HA1125 | E150 | L44422 | ¢1.20 | STK0059 | EGG_{600} | TA7658 | 6150 | 2 2SA350 | ${ }^{80}$ | ${ }_{2 S C}^{2 S 5}$ | $\mathrm{c}_{0} 30$ | $2 \mathrm{SC1342}$ | ${ }_{60} 0.3$ | 3SK35 | 63.50 | SAA570 | 61.00 | TDA1170S | \$1.30 |
| AN274 | 5750 | HA1137 | f1.75 | L44430 | f1.30 | STK0080 | ${ }_{6650}$ | UHICOO1 | E400 | 2SA353 | ${ }_{\text {cin }}$ | ${ }_{2 S C 37}^{2 S}$ | C0.30 | ${ }_{2}{ }^{2 S c 1364}$ | cal 20 | 3SK45 | 60.60 | SAA1058 | 61.5 | TDA1515 | $\underline{4} .30$ |
| AN295 | f325 | HA1149 | E1.40 | LA4440 | 62.20 | STK2028 STK2029 | ${ }^{6650} 5$ | UHICOO4 | E150 | 2SA354 | ${ }_{50} 50.70$ | 2SC372 $2 S C 373$ | c0.30 | ${ }^{\text {2SC136A }}$ | 82.30 | ${ }^{3} \mathrm{SK48}$ | ¢4.30 | SAA1059 | 6180 | TDA2002 | 2000 |
| AN303 | $\underline{720}$ | HA1156 | 11.10 | La4460 | 81.75 | STK2029 | $83 / 8$ | UPCIEC | 51.30 | ${ }_{2 S A 43}^{2 S A 35}$ | f1. 15 | ${ }^{2 S} 2538304$ | 6030 | 2SC14198 | 50.75 | 3SK49 | 5230 | SAA5000 | £1.30 | TOA2003 | 20.50 |
| AN313U | $\underline{22.5}$ | HA1166 | 81.60 | La4461 | f1.75 | STK2230 | E6,00 | UPC20C | 020 | 2SA4935 | | | | | 30 | 3SK88 | 50.50 | SAA5010 | 64.50 | TDA2004 | 220 |
| AN315 | $\underline{200}$ | HA1197 | 11.50 | LA7800 | f1.85 | STK2240 | | UPC30C | f180 | 2SA4595 | ${ }_{60} 60.35$ | ${ }^{2 S C 482}$ | 20.30 | 2SC1505 | 20.70 | AY51013A | ¢2.50 | SAS590 | f1.60 | tDaz005 | 0275 |
| AN316 | $\underline{5350}$ | HA1199 | 51.40 | LC7120 | 63.50 | STK3042 | f6. | UPC554C | 6125 | 2SA509 | 6 ± 30 | ${ }_{2 S C 458}^{2 S C 45}$ | E0, 20 | 2SC1546 | 29.30 | AY52376 | $\underline{7} .50$ | SL403D | f3.55 | TDA2006 | 61.20 |
| AN318 | 64.万 | HA1306W | £1.00 | LC7130 | E350 | TA7028M | E1. 30 | UPC555 H | c0.c0 | | 80.30 | | | | ¢250 | BRC-M-200 | 20.60 | SL437F | $\underline{8275}$ | TOA2020 | 11.00 |
| AN331 | 8275 | HA1319 | 1200 | LC7131 | 6375 | TA7045M | f1,30 | UPC561C | 200 | 2SA562 | 50 | 2SC461 | C0. 30 | 2SC1675 | ${ }_{50} 35$ | BRC-M-300 | 60.60 | SL9178 | 85.50 | TDA2030 | 51.40 |
| AN360 | f120 | HA1322 | 11.00 | LC7136 | $\frac{625}{975}$ | TA7050P | ${ }_{50}$ | UPC566H | c0.60 | ${ }^{\text {2SA6 }}$ 243 ${ }^{\text {2 }}$ | c0.65 | ${ }^{2 S C 486}$ | 50.50 | 2SC1682 | 00.30 | BRC1330 | 81.40 | SL60745 | 61.50 | TDA2532 | E1.40 |
| AN362L | ¢1.30 | HA1339A | f1.00 | LC7137 | $\underline{275}$ | TA7051P | 81.70 | UPC571 | 11.5 | ${ }^{2 S 46764}$ | ${ }_{60.35}$ | ${ }^{2 S C 494}$ | $\underline{6}$ | 2SC1722 | coss | BTT822 | 81.00 | SN15845N | E1.00 | TDA2540 | $\underline{1} 20$ |
| AN366P | f1.50 | HA1342A | 1.70 | M5106P | | TAA054 | 81.0 | UPC572C | 1200 | | 50.5 | | 50.30 | | 025 | BT16018 | E1.00 | SN15846N | £1.00 | Cass | |
| AN610P | f1. ${ }^{\text {P }}$ | HA1366W | 11.50 | M5115P | ${ }_{63} 8.50$ | TA1063 | f150 | UPC573C | 0220 | 2SATzo | 60.35 | 2SC503y | 60.70 | 2SC1826 | 60.60 | 8178124 | 1.100 | SN16862N | 81.00 | MOT | |
| AN612 | E1.73 | HA1366W | 61.50 | M5134P | 123 523 | TAJ070P | f1.00 | UPC576H | 61.75 | 2SA726 | 60.35 | 2SC535 | 20.30 | 2SC1849 | c0.30 | 8718224 | 15.30 | SN72560P | f100 | 6-9 | |
| ANS5730 | E1.50 | HA1367 | f120 | M5155 | f1.50 | TA7072P | f120 | UPC577H | E0. 70 | 2SA748 | f1.00 | 2 2S536 | ¢0020 | 2SC1945 | 0250 | Ca748C | f0.50 | SN76227N | f100 | | 250 |
| AN5732 | E185 | HA1368R | f1.05 | M51513L | 61.50 | TA7073 | E225 | UPC592 | 20.95 | 2SA762 | 51.55 | 2 2S537 | 60.30 | ${ }^{2 S C 1957}$ | 50.20 | CA1310E | . 20.80 | SN76228N | 61.30 | cassette | EADS |
| AN5753 | 61.55 | HA1374 | 64.50 | M51514AL | 1.15 | TA7074P | E1.55 | UPC595C | 61.70 | 2SA777 | 60.60 | $2 \mathrm{2SC558}$ | 82.5 | 2SC1 | 6130 | CA3018 | 51.50 | SN76530P | ¢1.40 | Mono | 81.50 |
| AN6250 | $\underline{230}$ | HA1377A | 1220 | M51515BL | 250 | TAJ104P | £1.35 | UPC596 | f1.50 | $2 \mathrm{Sab44}$ | 60.35 | 2SC620 | $\underline{80} 5$ | ${ }^{25} \mathrm{SC222}$ | E0.6 | CA74ICS | -2035 | SN7647N | ¢4.50 | Stereo | 250 |
| AN6344 | 64.5 | HA1388 | | M51516L | 2750 | TAJ108 | 61.50 | UPCLIOOIH | ¢200 | 254839 | 80.75 | ${ }_{2 \text { 2SCas2 }}$ | E0, 30 | 2Sc2028 | 40 | CA3365 | 00.50 | SN76660N | 50.50 | Auth/Revers | E275 |
| AN7105 | $\underline{520}$ | HA1389 | 61.75 | M51517L | $\underline{2} 50$ | TAD109 | $¢ 230$ | UPC1018C | 60.95 | ${ }^{2 S A 940}$ | E0.20 | ${ }_{2 S C 644}$ | 60.40 | ${ }^{2 S C 2075}$ | 50.25 | CA3076 | f1.50 | TAA300 | $\underline{720}$ | Mini/Stereo | 22.75 |
| AN7110 | 61.40 | HA1389? | 81.40 | M51518L | 81.75 | TA7119 | f1.5 | UPC1020 | f1.5 | 2SA5015 | $\underline{80.30}$ | ${ }_{2}{ }^{25 C 681}$ | ¢220 | 2SC2078 | E0.75 | CA3085 | 81.50 | TAA350 | 80.70 | TV CERA | LC |
| AN7114E | E1.00 | HA1392 | 9730 | M83705 | 11.60 | TA7120P | 60.50 | UPC1023H | E0.co | 2SA1015 2SA102 | $\underline{81.30}$ | 2SC681 | $¢ 2.30$ | 2SCu0e6 | c0.50 | ca3096 | 00.50 | TAA550 | 80.30 | SOUND A | |
| AN7115E | f1.60 | HA1397 | 7250 | M83730 | E1.75 | TAJI36P | 61.00 | UPC1025H | $\underline{9} 30$ | 2SA1103 | 61.90 | 2SC682 | E2, 40 | 2SC2091 | 20.60 | CA3088 | 51.50 | TAA570 | 80.85 | 3 LEAD 7 | |
| ANT130 | 81.50 | HA1457 | 50.50 | M83731 | 2.50 | TAJI3]P | 50.80 | UPC1026C | 51.00 | 2 SA1104 | f190 | 2SC6s\% | 81.50 | 2SC2092 | E0.s5 | CA3034E | 80.50 | TAAG661B | | SFE 4.5MB | 60.25 |
| AN7145M | 81.00 | HA11221 | E230 | MB3756 | f200 | TA7139P | 51.50 | UPC1028 | ${ }^{\text {c10 }}$ | 2SA1105 | 72.5 | $2 \mathrm{SC710}$ | 50.30 | 2SC2098 | 60.95 | LM10CH | 81.55 | TAACDI00 | 2020 | SFE 5.5MB | 0025 |
| AN7146M | 61.80 | HA11225 | 61.55 | MB8719 | 63.50 | TA7145P | 6180 | UPC1032 | 51.20 | 2SA1106 | 620 | 2SC717 | 60.50 | 2SC2120 | 20.30 | LM324N | ${ }_{6}$ | TBA120A | 60.50 | SFE 6.0MB | 50.25 |
| AN7154 | 51.5 | HA1223 | f200 | PL101A | 1730 | TA7146 | 62.50 | UPCC1156H | 61.40 | ${ }_{2}^{2 S 822}$ | 50.40 | $2 \mathrm{SC732}$ | E0.30 | ${ }^{2 S C 2166}$ | ${ }_{\text {cose }}$ | LM391-80 | 6150 | TBA120B | 60.50 | SFE 6.5MB | ${ }^{602}$ |
| AN7156N | 61.89 | HA11705 | 64.7 | PLl03A | ¢4.55 | TA7150P | E1.00 | UPCC1158 | 60.60 | ${ }_{2}^{2 S 833}$ | ${ }^{2} 120$ | ${ }_{2} 2 \mathrm{CC733}$ | f0.30 | ${ }^{2 S C 2275}$ | ${ }_{60} \mathbf{8 0} 5$ | LM566N | 1120 | TBA395 | 50.00 | CDA 6.0MC | ${ }_{60} 80.30$ |
| AN7158N | 6325 | LA1111P | 60.80 | SI-1125 | 67.50 | TA7152P | 1.70 | UPC1171C | E1.50 | 2SB54 | 0.70 | ${ }^{2 S C 735}$ | El | 2sc2275 | 5 | LM747CN | 60.50 | TBAMOC | 51.30 | CDA 6.5 | |
| AN7310 | 50.20 | LA1201 | $\underline{20.85}$ | SI-1125H | 67.50 | TA7153P | f1.6 | UPCC1181H | 61.00 | 2SB56 | ${ }^{20.55}$ | ${ }^{2 S C 772}$ | 8180 | 2SC2323 | f150 | LM1017N | E27 | tBa520 | 11.00 | HIGH SEIEC | TVITY |
| AN7311 | 81.00 | La123 | 50.80 | STK011 | E3. 7 | TA7176P | 61.50 | UPC 1182 H | $\underline{1} 1.00$ | ${ }_{\text {2SB15 }}$ | 50 | ${ }_{\text {2SC781 }}$ | 51.5 | 2SC2365 | ${ }_{6} 1.50$ | LM1872N | E2.5 | TBA5400 | 81.00 | TPPE 4 LEAD | TYPE |
| BA301 | f0.75 | LA1230 | 81.50 | STK013 | ${ }_{6655} 6$ | TA7193P | 23.50 | UPC1183H | F20 | ${ }_{\text {2S815 }}^{2 S 8158}$ | 5005 | ${ }^{2 S C 795}$ | 10.30 | 2SC2570 | ${ }_{\text {c0.95 }}$ | LM2917N | 22.7 | BA | 61.30 | SFT 6.0MA | 60.75 |
| BA311 | E0.s5 | La1240 | 61.7 | STK014 | 6625 | TA7200 | $\underline{200}$ | UPC1185H | 520 | ${ }_{2} 28171$ | 8120 | 2SC79? | 57 | 2SC257 | E150 | Enquiries invited for any Japanese 1.6s. As we have imported for over to pasers.
 Proase add 60p past and packing and stion add 15% VAT to loted Callers by appointrent: opaning dimes tosm-5pm Mon-Fin 9-12 Sats (ciosed Bent Halldays). | | | | | |
| BA313 | 60.75 | La1320 | 61.50 | STK015 | E5.00 | TA7201 | 1200 | UPC1186 | 50.8 | ${ }_{2} 288172$ | ${ }^{\text {com }}$ | 2SC799 | 61.75 | 2SC2578 | 923 | | | | | | |
| BA318 | 61.30 | La1365 | ¢120 | STK016 | E4.75 | TA7202P | 5180 | UPC118N | ¢230 | 2SB173 | ${ }_{0}$ | 2SC828 | 50.20 | 2SC2579 | ¢20 | | | | | | |
| BA402 | 60.75 | LA1368 | $\underline{620}$ | STK020 STKO22 | ¢4525 | TA7204P | 61.10 | UPC 1230H | $\underline{6250}$ | 2S8187 | 20.5 | 2SC839 | 80.35 | 2SC2580 | $\underline{420}$ | | | | | | |
| BA511A | 81.80 | LA1460 | ${ }^{\text {E1. }} 1.5$ | STK041 | $\underline{65.50}$ | tap205AP | 81.10 | UPC1350C | 61. 20 | 2SB34IV | 5200 | $2 \mathrm{SC8} 40$ | E1.50 | 2SD24 | 60.50 | | | | | | |
| BA514 | 81.75 | La3101 | 61.50 | STKM | E5.95 | TA7207P | 81.50 | UPC13536 | 61.75 | 2SB364 | 50.8 | 2SC856 | f0.c0 | 2SD72 | f0.60 | VSNACCES | | | | | |
| BA527 | 61.50 | A 3155 | $\underline{50.55}$ | STK078 | 65.50 | TA7208P | 5150 | UPC13650 | 4700 | 2S8365 | 50.20 | 2SC\%6 7 | 827 | 2SD170 | 60.60 | | | | | | |
| BA532 | 51.50 | LA3160 | 50.90 | STK080 | 6720 | TA7210 | 1280 | UPC1485C | E0. 50 | 258370 | caso | 2SC500 | 60.35 | 2SD187 | $\underline{20 . c 0}$ | | | | | | |
| BA536 | 22.25 | LA3201 | 20.55 | STK082 | E7.7 | TA7214P | 275 | UPD277 | ¢4.50 | 228405 | 5080 | 2SC923 | 00.50 | $2 \mathrm{LSO313}$ | E15 | | | | | | |
| BA612 | 5180 | La3300 | ¢1.40 | STK086 | 69.5 | TA7215P | 61.80 | | | 2S8407 | 205 | 2Sc9280 | 00.5 | 2 SO 315 | ${ }^{81205}$ | 16 | | | | | |
| BA1310 | 51.75 | La3301 | 81.20 | STK415 | E5.75 | TAT217AP | 1120 | TRUNSIS | ORS | 2S8422 | 00.80 | $2 \mathrm{2Scc200}$ | 20.30 | 2 LO 245 | 60.6 | | | | | | |
| BA1320 | E125 | La3350 | ¢1.20 | STK430 | E4.75 | TA7220P | 61.7 | ${ }_{2}{ }^{\text {SAA12 }}$ | 90.50 | 2SB426 | 7260 | ${ }_{2 S c}^{2 S c 3300}$ | 20.30 | 2SD3 | c0.50 | LONDON W2 1LG | | | | | |
| BA1330 | E1.75 | La3361 | $\underline{¢ 1.10}$ | STK433 STK435 | ¢ 65.50 | TA7222AP | ${ }^{6120}$ | 2SA15 2SA52 | 60.50 80.50 | 2SB449 2SB463 | E1.05 | 2 Cc 945 | 80.35 | 2S0371 | f1.30 | Tel: 01-723 9246 (Answerphone) | | | | | |
| CX0642 CX065B | ${ }_{28.50}$ | LA4030P | f1.40 | STK436 | $\underline{6500}$ | TA7224P | $\underline{\square}$ | 2SA70 | c0. 5 | 2S8467 | f1.55 | 2SC1030 | $2{ }^{2} 75$ | 2SD389 | 20.35 | | | | | | |
| CX075B | 1220 | LA4032P | f1. 10 | STK437 | E6.30 | TA7225P | $\underline{2} 50$ | 2SA71 | c0.c0 | 2SB468 | 6325 | $2 \mathrm{SC1034}$ | E3.75 | 2SD467B | 0 | MS OESPATCHEO WITHIN 48 HOURS | | | | | |

Adult Literacy

 In 1975 the adult literacy campaign was launched to help the 2,000,000 adults who had difficulty with reading and writing.
 By 1985 350,000 adults had received help with literacy. For further information
 Adult Literacy \& Basic Skills Unit PO Box 213 London WCIV 7ET For help with Reading and Writing ©F 01-405 4017

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P

BETAMAX
SANYO VTC 9300, 5000, 5300 SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" 20" $22^{\prime \prime}$ 26" Hybrid/ Solid State CTVs

 Remote Control \& Teletext Discount for QuantitiesComplete loads delivered from pick up point

> JOHN CARTER
> (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT ATV METER

COINAGE
AVAILABLE
$10 p$
$10 p$
$50 p$
\&1

COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202) 674272 87-89 Sterte Avenue,
Poole, Dorset. BH152AW. Telex: 418253 LUMIC G

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day. Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded."

A NEW COMPANY IN THE NORTH WEST

 OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDESG.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $\mathbf{£ 6 0}$ plus full range of Thorn remote control including $\mathrm{T} / \mathrm{Text}$ ^ DISCOUNT FOR QUANTITY *
The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days $9-5.30$ (later by appointment)

WELLVIEW TUBES

(REBUILT UNDER LICENCE)
FOR TELEVISION TUBES AT KEEN PRICES REBUILT IN OUR OWN FACTORY AND FULLY GUARANTEED

TUBE REPLACEMENTS

 (Prop. Middletons TV Ltd) MONMOUTH TRADING CENTRE, BRIDGWATER, SOMERSET.Tel: 0278-425690-722816
We also do Mail Order.

JUST OPENED

 FORSouth Yorkshire/Derbyshire Dealers
Come and see our range of Colour TVs from $\mathbf{£ 6}$
BARGAINS GALORE
PHONE 0246411325
Chesterfield

WD-TV 100's of WORKING COLOUR TVs

 DECCA. PHILIPS G8 \& G11 BUSH • PYE s/s • IT • THORN $880090009600 \cdot$ GEC s/s KORTING • JAPS
PRICES FROM

 $\mathbf{f 1 5}+$ vat Videos Always Available
Tested Tubes All sizes from

£10 + vat

Always Scrapping Down Decca, Philips \& Thorn

- Spares Always Available

WD-TV
TV Warehouse (former Tritel Place), The Chestnuts, Watling Street (A5), Hockliffe, Bedfordshire.
(Jnct. 12 M1 - 3 miles)

Tel: 0525210768 \& 210686.

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.

WE ARE LOCATED IN UXBRIDGE
At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40. The Poyle/Colnbrook section of the M25 was completed in September with the exception of the M25/M4 interchange which will be completed soon.

LOCAL AREA MAP AND PRICE LIST AVAILABLE ON REQUEST

DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX. UXBRIDGE (0895) 55800.

UK 'Universal' TRIPLER from 55.00

inc post \& VAT

1. Input 200 mm . 2 Output 780 mm . 3. Focus 390 mm . 4. Pulse 390 mm . 5. Earth 390 mm . Instruction sheet available on request

IMITATIONS
$\mathbf{1 \times 1 0}$ ($£ 5.00$ each) $£ 50.00$ 1×5 ($£ 5.50$ each) $£ 27.50$ 1×3 ($£ 5.75$ each) $£ 17.25$ $\mathbf{1 \times 2} \mathbf{(£ 5 . 9 5 \text { each) } £ 1 1 . 9 0}$

NB: Includes Post \& VAT
Strictly cash with order. Goods despatched by return. Access Barclaycard accepted
32 TEMPLE STREET
WOLVERHAMPTON WV2 4LJ PHONE (0902) 773122

AT LAST!!
 Quality Used Televisions EXCELLENT CABINETS - GOOD WORKERS

Thorn 9600 Teletext
Thorn 9200 Remote
Thorn 9000 Remote
Thorn 8800 Remote
Philips G11
Bush T20 Remote $\mathbf{£ 6 0 . 0 0}$ Basic $£ \mathbf{4 5 . 0 0}$
Thorn Mechanical VIDEO 7 day timer $\mathbf{£ 1 1 0 . 0 0}$,
All remotes with handsets Delivery can be arranged
We also have large stocks of TV, Video, Small Appliances, etc:
MANUFACTURERS END OF LINE MANUFACTURERS B GRADE CATALOGUE RETURNS MANUFACTURERS B GRAD CATALOGUE RETURNS WESTCO, Unit D, Perrywood Trading Park, Wyld's Lane, Worcester. Telephone: (0905) 359003.
\(\begin{array}{ll}\mathbf{£ 8 5 . 0 0} Remote \& \mathbf{£ 5 5 . 0 0}
\mathbf{£ 5 5 . 0 0} Basic \& \mathbf{£ 3 5 . 0 0}
\mathbf{£ 3 0 . 0 0} Basic \& \mathbf{£ 2 5 . 0 0}
\mathbf{£ 3 0 . 0 0} Basic \& \mathbf{£ 2 5 . 0 0}
\mathbf{£ 5 5 . 0 0} \&
\mathbf{£ 6 0 . 0 0} \& Basic
\mathbf{E O} \mathbf{~} \mathbf{7} day timer \& \mathbf{£ 1 1 0 . 0 0}\end{array}\)

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PH - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE 25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

SETS \& COMPONENTS

LEADER LCT - 910A Tester, complete, all bases, boxed, little use, $£ 150$. Clacton 435700.

BIRMINGHAM AREA-TRADE. Service workshop, all makes Video-Audio T.V. Free warranty repairs for Sony, Sharp, Ferguson, Sanyo. Two minutes from H.R.S. ARGO SERVICES (B'HAM), B.HAM 4. 021-359-3753.

HITACHI PANELS REPAIRED/EXCHANGED. CSP680, CNP190/192/CTP202/204, CTP203, CTP210, CBP220 etc. Phone Littlehampton 0903-714717.

QUALITY SETS FROM CORNWALL. Workers/non workers. Spares, panels, etc. Details ring 072681 5389.

OCHRE MILL TECHNICAL for GRUNDIG sets, moduales, manuals. TELEQUIPMENT OSCILLOSCOPES spares, manuals. Assorted items RECONDITIONED TEST EQUIPMENT. 0785814643.

HITACHI, Mitsubishi, Panasonic, Sony, Toshiba, JVC, Sharp. Sharp fully refurbished. PEARSON TELEVISION. 0484 863489. Delivery arranged.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.
R.B.M. A823 PANELS. S.A.E. for details: SCHOFIELD, 28 St Albans Road, St Annes, Lancs. FY8 1 TH.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

THORN GEC Deccas stripped for spares. Panels, tuners from $£ 2.50$, phone for prices. WELLINGTON, Dartford 0322337212.

WIZARD DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES

We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA, ITT and now also FIDELITY.

Did you know we also stock

FUSES AERIALS AEROSOLS RESISTORS CAPACITORS VALVES HANDSETS

Counter open Monday-friday 9 am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 9EN. Tel: 061-872 5438; 061-848 0060.

HALTON TV TRADE DISPOSAL

Wide range of TVs available. Working and non-working. TRADE ONLY
(We have NO retail outter) St Michaels Industrial Estate, Widnes Tel. 0514231577

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40 p per word

NORTHERN IRELAND DEALERS

COME AND SEE OUR LARGE RANGE OF

 S/H COLOUR TVs AT LOWEST PRICES EVER CONTACT:
S. M. ELECTRONICS 11 SANDHOLES ROAD, COOKSTOWN, CO. TYRONE Telephone: Cookstown 06487/64277

Open: Mon.-Sat. 9.00 am-6.00 pm (Closed Wednesday)

TELEVISION

Trade \& Retail supplies of Ex Rental TVs and Video Recorders. Most makes. Workers and Non-Workers.

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Brent Park Industrial Estate,
Southall, Middx. UB2 5LL.
01-574 4631. Ext 28

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Cross Half Black \& White, Mains Powered. $£ 75.90$

OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTPUT
LINE PULSE
FIELD PULSE

Same as above plus RGB output Line Output Transformer Tester BIW Generator, Crosshatch, Peak White, Do Black \& White and Grey Scale UHF output Same as above but with Video Output Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ with moving coil meter Car Alarm with built in Siren
E.

保
SA.E for dails. Prices include P\&P \& 20.50
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields. Wolverhampton WV1 3DW. Tel: (0902) 871563

- SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

INDEPENDENT TELEVISION AND VIDEO COMPANY

LARGE STOCKS TO CLEAR EVERY WEEK

COMPETITIVE PRICES

EXAMPLES:
 B\&W 20"-24"

COLOUR:
From $£ 1.00$
$\begin{array}{ll}\text { Bush 1-2 I.C. } & \mathbf{£ 4 . 0 0} \\ \text { Philips 520-550, 26" } & \mathbf{£ 6 . 0 0}\end{array}$
Thorn $3500 \quad \mathbf{£ 6 . 0 0}$
GEC-Decca-ITT $£ 6.00$

Philips 550 22" $£ 10.00$
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime} \quad £ 10.00$
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime} £ 12.00$
Thorn 8800-9000-9800 $£ 15.00$

Many Other Modern Sets and VHS Videos

PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $\mathbf{£ 4 0}$
Phone Frank: Nottingham
(0602) 864627

Unit 3
Meadow Trading Estate, Meadow Lane,
Nottingham NG2 3HQ.

EERUICE PQGE

(minimum 12 words), box number 70p extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

NOW OPEN FOR THE BEST OUALITY AND BEST PRICES IN BIRMINGHAM.

WORKING AND NON-WORKING TVS AND VIDEOS IN STOCK.

RING SINGH - 021-772 2733

WILTSGROVE LIMITED (Next Door to UNCLE'S DISCOUNT STORE) 128-130 Ladypool Road,
Sparkbrook, Birmingham B12 8JA.

WOODSDALE COMPONENTS

 RANK BUSH MURPHY TRANSFORMERSLine Ouput
Z718 (T703A, T706A)
New (Complete)
Less Focus Module and
Rectifier
£19.00

T20, T22 (T705A)
T26 (T705B)
£10.50

TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\quad \mathbf{£ 6 . 0 0}$
Switch Mode
$\mathbf{£ 6 . 0 0}$
Genuine RBM Units.
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.

34 Field End Road, Eastcote, Pinner, Middlesex. HA5-2QT. Tel: 01-868 5580. N. Skehan

Agents Office. Callers by appointment only.

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee
Most types available
Japanese including Sony
Ex-Rental TVs from \qquad £15.00 Untested Panels............................£4.00
> C.T.V. PANEL SERVICE

> Exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months g'tee, large range incl. Decca 80 \& 100, G11, G8, ITT, GEC, Rank, TCE, Jap \&
> Send S euro models, despatched same day. S.A.E. for lists or ring with your requirements. Please note new address:
> Argo Services (Birmingham), 53 Lawley Street, Birmingham B4 7XH. Tel. 0213593753

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{f 2 2 . 0 0}$ each in 6 units Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY £15.00 each
Philips G8 (520) 22" \& 26" ONLY £20.00 each
Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
f1.25 per panel plus post \& packing

NORMAN ENTERPRISES LTD

Weston-Super-Mare, Avon. Tel: 418545/413991
Colour TVs fully engineered with a special care on tubes Hitachi 217 Remote Control ... £95 Thorne 9000 Remote Control . $£ 45$
Pye G11
4
Rank T20 $£ 40$
Pye Chelsea 6 Button.... $£ 29.50$
Pye 725 £40
Pye 721 $£ 35$
Thorne 9600.................. $£ 55$
Thorne 9200 $£ 49.50$
Bush T20 Remote Control. $£ 55$
Bush T24 £75
All above prices include hand sets and VAT.
Ready for sale.
Phone now, limited number each month. All the above off the pile, less a 3rd

[^2]
NWEELECTRON/CS

25 YEARS SUPPLYING THE TRADE

COLOUR TV'S AND VIDEOS

 F.P.REPOS AND EX RENTALS

PYE Gll EXC CAB
.$£ 40$ BUSH 718
.£20
BUSH T20/26 CH
$£ 35$ BUSH 2 CHIP. .$£ 8$
HITACHI 191......................£20 GRUNDIG 5010................... 10
FERGUSON TX
PYE KT3 £50
(NOT D.E.R. Etc.)............ 665
GEC 2213
£30
GEC 2010...........................£20 THORN 3000.............................
PYE 222.................................. 20 GRUNDIG G415/4206
PHILIPS 550........................£15
Best Stock in the Country - over 2000 in stock (90% of our TV's Switch on) Special Price Quoted For Bulk Purchases From Source.

BUSH T20/T26......£45, G11......£50, PYE KT3.......\&70, Others done to order. DISCOUNT FOR QUANTITY

SHARPS 7300,8300,9300,HITACHI,VT11
FERGUSON 3V29 (Not Ex D.E.R. etc.) SANYO, SONY, BETA

100's PX HOOVER JUNIOR VACS

- All models in stock

Fully reconditioned HOOVER JUNIORS (Like new)£27
LमNㅔ, 0274688458

UNAt 12, Whariedaleid M606 3uroway Mstate Bradford

OPHN 6DiAS stit 9-5.30

TV Business

COLOUR SETS FROM	£5.00
MONOS FROM	£3.00
PANELS BY POST - PRE-CALIBRATED	
WORKING SETS TO ORDER	

$£ 5.00$ $£ 3.00$
PANELS BY POST - PRE-CALIBRATED WORKING SETS TO ORDER

Phone Baldock 894905 SECTION 3, UNIT 4, SERL COMPLEX, LONDON ROAD. BALDOCK, HERTS.
OPEN 6 DAYS 10-6.30pm/10-5pm SAT.

TELFORD ELECTRICAL SPARES \& SERVICE

GENUINE
sonv SPARE
SONY SPARES
video heads

TRANSFORMERS

E.M.t. Thays

AUDIO PRODUCTS

CAPACITORS
TUNEAS
Vantap \&
Push Buton

SEmiconouctons
Darode

BRISTOL TELEVISION TRADE DISTRIBUTORS

 (BTTD)4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.

Tel: (0272) 25266

Thorn $3000 / 3500 \mid$ TRIPLERS Thorn 9000 UNIVERSAL
 The UNIVERSAL. TRIPIER $a n$ be used in most G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental sets.
 WING ELECTRONICS
 15 Waylands, off Tudor Rd, Hayes End, Middlesex

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame Philips GII
Bush T20
Bush T26
Bush 718 All panels
All panels are repaired and aligned according to
rank std.
inclusive of postage, etc.
All panels guaranteed for 3 months.
T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2
 TEL. 01-258 0328
 ALL VHS PARTS AVAILABLE
 EXAMPLES:

VIDEO HEADS
JVC, Ferguson, Akai, Saba, Telefunken £35.00 National Panasonic

CuITs
NTEGRATED CIRCUITS
UPC 1365C
UPD 553C
UPD 553C
HA11711
Many other parts available. Send SAE for list.
ALL PRICES INCLUSIVE OF VAT
ADD $£ 2.00$ FOR P $\&$.

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

| Kryan Marketing Ltid | Phone 021-471 3023 |
| :--- | :--- | :--- | Breedon Cross Telex 335540 - 6 Storage,

Dale Road, Selly Oak,
Ask for Les
Birmingham B29 6AC.

GEMINI TUBES

THE PRICE IS RIGHT FOR QUALITY REBUILDS ALL WITH 2 YEAR WARRANTY
Phone now on St. Helens 37672 Or call at Unit 3, Delphwood Drive, Sherdley Road Ind. Estate, St. Helens.

TRADE REPAIR WORKSHOP
Video, T.V., Hi-fi. Any make. Free Estimates same day. Exchange Panels G8, G9. G11, GEC. Thom 3000, 8500, 9000, 9600, Grundig

S011 6011. Bush T20/22, 3 months guarantee. Panels $\mathrm{E} 1725+52.50 \mathrm{p} / \mathrm{p}$.
COLOURTRONIC SERVICES,
96 Ifford Lane, IIford, Essex. 01-478 0782 ACCESS - VISA

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
G11s from $£ 70$ + VAT KT3s from $£ 85$ + VAT K 30 s from $£ 95+$ VAT ITTs from E50 + VAT Decca from $\mathbf{f 5 0}+$ VAT T20s from $£ 50$ + VAT 9000 s from $£ 35$ + VAT

VHS Videos.
NatPan NV2000, NV2010
Contact John, Dave or Steve for personal friendly attention on
022369215 or 035361462

IRISH T.V. DEALERS
Brand new re-gunning plant operating. - TOP CLASS TUBES BM - Delta - In-Line - P.I.L CHRIS KELLEHER'S T.V. Kanturk, Co. Cork Store open 9 to 8 pm . Sunday $10-1 \mathrm{pm}$. 029-50046 - Wanted 300 VHS video tapes

COLOUR TV PANELS Fully Tested \& Working

Hybrid panels do not include valves. Terms cash with order. Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock.
GOLCAR T.V. SERVICES (formerly LAVITE LTD.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel. : 0484643273 Callers by appointment only.

FOR SALE

Sabaco

For a great dea!!

VAN LOAD DIRECT FROM SOURCES

ALL SETS OFF THE PILE

Most makes/sizes available
e.g. Black faced Decca $\mathbf{£ 1 0}$,

Thorn 8800/9000 etc. $£ 20$, $\mathrm{B} W \mathrm{f} £ 1$.
All above offers minimum quantity of 10 sets or more.
ALL PRICES SUBJECT TO VAT \& AVAILABILITY.

VHS VIDEOS with guarantee in good working order.
Ferguson 3V22 from $£ 100$. Any quantity

ANNOUNCEMENT TO SCOTTISH TRADERS TOP QUALITY OF VHS VIDEO'S \& TV'S

Large selection of VHS Video's
and TV's in quantities of
2's or 100's at very
competitive prices.
OPEN 6 DAYS A WEEK
9.30 am to 5.45 pm

For further details telephone:
Sabaco
75 Robertson Street, Glasgow.
Glasgow. 041-221 2146.
(2 minutes from M8).

Sabaco
46A Derby Road,
Sandiacre,
Nottingham. (0602) 397555.

LEADER LCT910A C.R.T. Tester rejuvenator. 5 months old. Used twice. As new and complete $£ 149$. M. Russell, 01-891 4268.

REPAIR SERVICE

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced.

RING 0934418545

for Price List or Quotation.

2 SETS of fully reconditioned tube re-gunning plants for sale. Training provided from only $£ 3,995$. Tel: 0582 410787.

YAESU. Scanners up to 902 MHZ . (No gaps) others from f175. Heathkit SB200 1200W. Linear. AR88D. B40 Lafayette 585 . Oscilloscopes wavemeters. Receivers. Transceivers. Large stock manuals. Crystals. etc. SSB PRODUCTS, 42 Halvarras Road, Playing Place, Truro. (0872) 862575 - SAE.

SALDELCO Field strength meter model FS-719-BE coverage V.H.F. $47.5-230$ U.H.F. $470-860$ built in speaker \& $2 \times 20 \mathrm{db}$ ATT $£ 15005672371$ evenings.

TELEVISION AND VIDEO BUSINESS. Rental accounts. Sales and repairs. Includes service equipment, spares and stock. No premises. $£ 15,000$. Tel. Southampton 814318 for details.

EERUICE PAGES

TOROUAY, South Devon

TV Sales, Repairs and Rental Business.
Warehouse + W/shop, Office and Display area. Established 10 years.
Main Agency and Sole
Distributor in Devon for
Colour TV manufacturer.
Long lease.
Profit Margin 30% per annum. Price $£ 65,000$.
Reply to:
Box No. 200 please.

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY

470 ERB22
$£ 43$
510 KCB22
E45
A51-161/500/510/
570/580/590X
560 AKB/DZB/TB22
$£ 45$
A56-500/510X
A56-540X
A66-500/510X
A66-540X
670 XB22

AERIALS

AERIAL BOOSTERS
B45-UHF TV next to the set fitting. Gain 10dbs (trebles gain), works off PP3 type battery or 8 V to 14 V working. Price complete (excluding battery) $£ 5.00$ Video Transmitter. This will transmit good quality pictures and sound more than $30 f t$. Price 88.90 We .
 and VHF television, prices $£ 7.70$ \& $£ 8.70$. p\&p 50 p per order.

ELECTRONIC MAILORDER
62 Bridge Street, Ramsbottom,
Lancashire, BLO 9AGT.
Tet: Ramsbottom (070 682) 3036.
S.A.E. leaflets. Access/Visa Welcome.

Abstract

CLEARVIEW AERIALS Tunable masthead amplifiers for FM and Band 3 (mostet) gain 30dB. NF 0, 7dB and UHF incl amateur band gain $30 \mathrm{~dB} \mathrm{NF} .1,6 \mathrm{~dB} .15 \mathrm{~dB}$ and 26 dB masthead ampl. WB, grouped NF 2 dB split ters, combiners, notchfilters, diplexers etc. Trade and retail.

Send large SAE for our comprehensive cataiogue CLEARVIEW AERIALS,

173 Kings Road Kingston Upon Thames, Surrey.

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, splitters, channelpass filters, diplexers, masthead amplifiers distribution amplifiers, brackets, masts, aerials, etc. Use trade gear and save pounds. Catalogue 75 p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring Rotherham.

SATELLITE T.V.
 RECEPTION EQUIPMENT
 Throughout Ireland

2 m G.R.P. dish with feed support and polar mount. 11 GHz block downconverters and indoor receivers. PAL/SECAM colour T.V.'s with in-builh receiver
KESH ELECTRICS LTD.
Main St., Kesh, Co. Fermanagh, N. Ireland
Phone Kesh (03656) 31449.

BUSINESS OPPORTUNITES

T.V. VIDEO \& HI-FI REPAIR \& RECON SALES BUSINESS hord area.

Established 9 years. Long lease. Large fully equipped workshop. Shop showroom. Great potential. Capital investment needed Would consider partnership or for sale $£ 20,000$ BOX No. TV 196

VIDEO TV. HI FI SHOP NW6

Stock RoomsWorkshop.
T/O exceeding $£ 115,000$ p.a. ($£ 4,000$ from repair). Main dealership.
12 years new lease. Rent $£ 2,300$ p.a.
PRICE $£ 25,000$ FOR OUICK SALE Please reply to: TV BOX 197

GET GHARP PARTS FAST TELEPHONE
 0734-876444 TELEX 848953

 shanp WIF Main U.K. Spare Parts DistributorAudio-TV-Video \star Microwave \star Photo-copier \star Typewriter
All U.K. model spares available. Same day despatch of orders received before 1 pm.
Microwave, photocopier and typewriter spares to authorised service dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.

The Colour Signal Part 2. The Receiver Decoder Part 3.

Receiver Installation
VHS $\star \star \star$ V2000 $\star \star \star$ BETAMAX $\star \star \star$ UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details
FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1 LP (enclosing this advert)
NAME
ADORESS
TEL:

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone $0698884585(883334$ outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

BOOKS AND PUBLICATIONS

MACDONALDS R \& TV BOOKS. New $74 / 75$ £15. 75/ 76, 76/77, 77/78, 78/79, 79/80, 80/81, 82/83, 83/84, 84/85 $£ 22.50$. Free delivery. U-VIEW, 29 Warmsworth Road, Doncaster. 0302855017.

NEWNES RADIO AND TELEVISION servicing, book one to 1974-75. 25 books $£ 60$. Tel. 0767260524.
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

WANTED

WANTED. FREQUENCY COUNTER and Sweep Marker generator for video servicing. Telephone Grimsby 884362.

WE PURCHASE UNDAMAGED old T.V. tubes of types A67-150X A66-500X or equivalents. Good prices paid. Phone 0527852639.

WANTED. Good condition exhaust pumps. Backup and diffiusion with inlet port. For tube plant. What available and price Box 199.

AGENTS REQUIRED. To wholesaler FULL range of rebuilt CR tubes. Full details: 0602813329.

WANTED, EX RENTAL colour TVs. Any quantity. Prompt collection, cash paid. Sheffeld 754865.

WANTED. For new small business, regular supplies of good ex-rental videos - colour TVs, trade repair enquiries welcome. Doncaster 0302744330.

METERS

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee.

213 Cheltenham Road, Redland, Bristol. 0272-425281

VIDEO

EX RENTAL VHS VIDEOS

$\star \star$ 100's IN STOCK
\star * \star
CONTACT MICK ON 021-772 1591

Ifan advertisement is wrong we're here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority. ASA Ltd. Dept 3
Brook House, Torrington Place, London WC1E 7HN

IRISH T.V. DEALERS \& ENGINEERS

Make extra money selling Ex-Rental Colour TV's. NEW LOW summer prices. Off the pile from £30, good working order from £50, all prices VAT INCLUSIVE. Most leading makes in stock, fresh stocks weekly. Delivery to any part of Ireland. Export orders welcome for countries using PAL System. We also stock VHS Videos and regunned Colour tubes.

TELE SPARES LTD.

Unit 113, Elm Road, Western Industrial Estate, Dublin 12, Ireland. Telephone: Dublin 521211/521756.

T.V. VIDEO STANDS from $£ 2.50$

Direct from manufacturer, slight seconds, ends of runs and current models.
For details . . . TELEPHONE: 0422240011 or write: ACRE PRODUCTS LIMITED
Jumples - Mixenden - Halifax - W. Yorks HX2 8UD

EMCO - EUROSONIC - GRUNDIG - TELETON + ALI BRITISH MAKES ETC. ETC. ALI SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN

 IF YOU NEED SPARES FAST - RING NOW!
TUBES

We are specialist suppliers of new and rebuilt T.V. tubes including:

44-271	66-510
47-342	66-540
47-343	67-611
49-191	67-701
51-110	470 ERB22
56-120	470ESB22
56-140	470FTB22
63-120	470GYB22
66-120	490DVB22
66-140	510 HGB 22
67-120	510 JEB22
67-200	$510 J G B 22$
67-150	510 JKB22
	$510 \mathrm{KCB22}$
470BGB22	510RCB22
470EJB22	510RFB22
490DKB22	510RJB22
510GLB22	510 SFB22
	510VLB22
AXT37-001	510 VSB 22
AXT51-001	560AKB22
AXT56-001	560AWB22
37-590	560BYB22
51-161	560DAB22
51-500	560DMB22
51-510	560DTB22
51-570	560DYB22
51-580	560DZB22
51-590	560EGB22
56-500	560 HB 22
56-510	560 TB22
56-540	560 VB 22
56-611	560ZB22
56-701	670XB22
66-500	

T.V.s

We have quantities of Trade T.V.s including:

Philips G8
Thorn 8.8K
Thorn 9K
Thorn 9.8K
Decca 80
Decca 100
Bush T. 20
EXPRESS
T.V. SUPPLIES

The Mill, Mill Lane, Rugeley, Staffs. 0889477600

[^0]: Pubiisied on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (\mathcal{A} sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 13$, overseas (surface mail) $£ 15$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: VIDEO HEADS MоNourt electronic products
 HIGH QUALITY UNIVERSAL VIDEO HEAD
 REPLACEMENTS FOR ALL VHS AND BETAMAX VCR MACHINES
 VHS Part No. 3HSS (5 mm Centre Hole) £29.95 PRICE
 VHS Part No. 4 HSS (15 mm Centre Hole) E29.95 EACH
 BETAMAX Part No. PS3B $£ 38.95$ EX.
 REPLACEMENT KIT (17 Pieces Boxed) £17.35 V.A.T. PLEASE ADD 15\% V.A.T. PLUS P\&P £2.00 PER ORDER
 OUR FULL CATALOGUE AVAILABLE ON REQUEST.
 Please allow between 14 and 28 days for delivery.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributors/Service Organizations

 THE MONOLTH ELECTRONICS CO. LTD
 5.7 Church Street, Crewkeme. Somerset TA18 7HR. England

 Telephone Crewkerne (O45OI 74321 Telex 46306 MONLTHG

[^2]: TRADE TVs Yorkshire New Outlet
 Ex-Rental \& Reposses TVs Colour From $\mathbf{E 1 0}$
 Mono From $\mathcal{E 2}$
 TRADE REPAIRS AND SPARES
 TELEFIX
 Ellingthorpe Street,
 Wakefield Road, Bradford 4.
 Phone: 0274480281 or 733373.

