SEPTEMBER 1985

An Approach to Adding Teletext Quick Steps in TV Servicing VCR Clinic • A Visit to MCES Variable Stabilized HT Supply A Case of Liquid Spillage TV Fault Finding• DX-TV

MANOR SUPPLIES

MKV PAL COLOUR
TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver acrial socket.

* Additional video output for CCTV \& VCR
\star Facilities for sound output.
\star Easy to build kit. standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
£70.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
£7.40
Optional Sound Modulc (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module
$£ 3.90$
$£ 105.00$
「SPECIAL TEST]
REPORT
'TELEVISION
Post/Packing $£ 2.50$
Add VAT 15% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $£ 30.00$. CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $\mathfrak{£ 4 . 2 0}$ (Combined P\&P $£ 2.20$).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20$ P \& P.
MK 4 (MAINS) BUILT \& TESTED $\mathbf{~} 68.06+£ 2.20$ P \& P.
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS E5.75.
EASILY ADAPTEI) FOR VIDEO OUTPUT \& C.C.T.V.

GEC TELETEXT EXTERNAL ADAPTOR UNIT

Complete \& ready for use. Converts any TV into a Teletext Receiver with Infra-Red Remote Control (incl, 25 Button Handset) £130.00 p.p. £3.00
TELETEXT EXTERNAL ADAPTOR KIT (Less case) TEXAS with cable remote control $£ 120.00$ p.p. $£ 3.00$

THORN TX10, teletext

Mullard Decorder panel + Interface $£ 35.00$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $£ 50.00$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC. PHILIPS GII PANELS (tested).
Power. frame. IF, decoder $£ 18.00$ each p.p. $£ 2.00$.
Scan Panel £28.00 p.p. $£ 2.80$
PHILIPS GII PANELS ex rental (untested).
Power, frame, IF, decoder $\mathbf{1 1 0 . 0 0}$ each P. P. $£ 2.00$.
SPECIAL OFFER Philips, Pye KT3 Senes infra-red remote control handsets ex rental (untested) Teletext or normal versions available $£ 2.50$ p.p. 80 p (5 for $£ 10 \mathrm{p} \cdot \mathrm{P}$. 1.50) CTX. K35 Teletext + Video $\mathbf{£ 5 . 0 0} \mathrm{p} . \mathrm{p} .80 \mathrm{p}$.
THORN 9000 Fault Finding Guide $£ 1.00$ p.p. 30 p .
TX10 Remote \& Tuning control panel (15 Sis) $\mathbf{£ 9 . 4 0}$ p.p. $£ 1.50$
THORN TXIO Facia Control Panel incl. Infra Red Remote Control receiver $£ 7.50$ p.p. $£ 1.50$.
THORN TX10 Series Facia Control Panel with 8 position Channel Selector f5.00 B.p. 1.50 .
PIIILIPS UHF Modulator (Audio \& Video Input) £15.00 p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision, $£ 28.50$ p.p. $£ 1.20$.
THORN TX9, TK 10 Saw Filter IF Panel. $£ 7.50$ p.p. $80 p$
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00 \mathrm{p} . \mathrm{p} . £ 1.00$).
PAL ENCODER KIT (RGB to Video) $£ 18.50$ p.p. $£ 1.30$.
TELETEXT DECODERS New \& Tested Mullard VM 6101 £30.00, Texas XM1 1×40.00, KT3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.60$
TELETEXT 33 Bution De-Luxe Handset with 5 yds Cable. $£ 2.50$ p.p. $£ 1.20$. 5 V Stab. Power Supply $£ 3.80$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated. also gives Peak White \& Black Levels, can be used for any set. £12.00 p.p. 80p. Alum. Case $£ 2.55$, De Luxe Case $\mathbf{6 6 . 8 0}$ PiP £1.40) ADDITIONAL GREY SCALE Kit £2.90 p.p. 45 p .
UHF SIGNAL STRENGTH METER KIT £22.00 (VHF version £24.00) Alum. Case £2.55. De I.uxe Case $£ 7.40$ p.p. £1. 80 .
CRT TESTER \& REACTIVATOR KIT For Col
CRT TESTER \& REACTIVATOR KII FOr Colour \& Mono with Panel
Meter Indicator - can be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$.
BUSH A823 Convergence, Time Base Panels $£ 5.00$ cach. p.p. $£ 1.80$.
BUSH 2718 BC6100 serics IF Panel $£ 5.00$ P.P. 90 p
BUSH A816 IF Patnel (Surplus) £1.00, 5 for $\mathbf{E 4 . 0 0} \mathrm{p} . \mathrm{p}$. 90 p .
GEC 2040 Decoder Panels. $£ 1.50$ p.p. $£ 1.80$.
GEC 2110 PANEI S France $£ 8.50$ p.p. $£ 1.40$. Sound $£ 2.50$ (tested) p.p. 80 p . GEC 20AX Switch Mode Power Supply $£ 5.00$, IF-Decoder $£ 12.50$ p.p. $£ 1.80$ PYE 691-7 CDA Pancls. Makers tested stock. £6.00 p.p. £1.45.
THORN TXY Panels ex factory for small spares. Includes 1.Cs \& Semiconductors cte. $£ 3.00$ p.p. $£ 1.80$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex tactory salvaged complete cond. £20.00 p.p. $£ 2.80$.
THORN TX10 TB Panels
THORN TX10 T. B . Panels salvaged ex factory. £15.00 p.p. E3. (t).
THORN $3000 / 3500$ Power supply P.C.B. $£ 3.50$ P.P. $£ 1.00$.
THORN $8000 / 85001$ IF/Decoder Panels salvaged $\mathbf{E 3 . 2 0}$ p.p. $£ 1.80$.
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selecto 2.(\%).

PHIIIIPS (88/G9 IF Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $£ 1.60$. G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested). G11 PANELS, Pouer, Frame, IF, Decoder, 18.00 each. p.p. $£ 2.00$ (tested) MRICA
VARICAP. ELCIM, $/ 5$ £
 BUSH "TOUCH TUNE" Varicap Control Z179. Z718 types £ 3.80 p.p. 95p CARICAP UHF-VHF ELC2010) 99.80 , BUSH 87.80 p . P. 90 p
HIM/625 TUNERS, many different types in stock: DECCA Bradford position. MUILARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$

IOPYT TESTER, Sctvice Dept approved $\mathbf{£ 1 5 . 9 0}$ p.p. $£ 1.20$.
LOPTS New and glar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80p.
BUSH lol to 180 (tuin panel)55.90 R.B.M. T20. T22.
BUSH. MIURPHY 774 series99.80 R.B.M. T20. T22 Bobbin
DECCA Bradford (state ModNo)
$1+(9), 15(k) .159(1591$ DECCA 80,100

GEC 2000 to 2038 series6.80 ITT CVC25.CVC30 series
GECsenes 1 \& 2......................... 8.00 ITT CVC 55
INDESII 2024EGB $\mathbf{£ 7 . 6 5}$ PYE 691-697 (state model no.)
IT1/KB VC2(10, 301) $\mathbf{5 7 . 6 5}$ PYE 713, 715.
PHILPS 170 20 P14 (twin panel) E5.90 PYE 725 (90°) 731 to 741 . PYE NYIC BKCO FE
YE, INYICTA, EKCO. FERR.
DECCA 2024, 1700, 21061,2401....... $\mathbf{\& 3} 80$ THORN $3000 / 3500$ SCAN, EHT

RBM A823.
GEC202x,2(140,2100
£2.80 THORN 900 to 9606

TRIPI ERS Full range available. Mono \& Colour
special Offer: Thorn 80)0 (2 lead) EHT Tray $£ 2.80$ p.p. 80p. 6.3V CRT Boost Transformers for Colour \& Mono $£ 5.40$ p.p. $£ 1.20$. THORN 1×10 focus control 28.80 p.p. 80 p .
THORN 8000 mans input choke $£ 6.80$ p.p. $£ 1.40$.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL. AVAILABLE

September 1985

COPYRIGHT

© (c) IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, £15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20 \mathrm{p}$ inclusive of postage and packing

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

611 Leader

612 Letters
Including comments on microcomputer programs, more on the Ferguson 3787 and soft-start for the Philips G8 chassis

617 The Vet's Problem
Les Lawry-Johns
On BO and other matters.
618 A Visit to MCES
Steve Beeching, T.Eng.
MCES now provides a VCR head drum reconditioning service. Steve's visit to see what's involved reveals much about the intricate business of head alignment.
620 TV Fault Finding
Reports from Mick Dutton, Larry Ingram, Keith Hamer and Garry Smith

621 Approaches to TV Servicing
S. Simon

Quick steps that will remedy most fault conditions on the ITT CVC800/CVC801 series chassis and the Thorn 3000 through to the 9800 chassis.

623 Next Month in Television

624 An Approach to Adding Teletext
Keith Cummins
How to assess a set's suitability for adding teletext
reception facilities, with practical details on converting the
Sony Model KV1820UB to provide teletext. In addition
to a teletext interfacing circuit there's a simple remote
channel change circuit and a sound mute system.
634 VCR Clinic
Fault reports from Derek Snelling, Eugene Trundle, Les Grogan and Hugh Allison.

636 The Lid off Microcomputers, Part 5
Mike Phelan
This time a look at disc drive systems and printers.
638 Teletopics
News, comment and developments.
640 A Case of Liquid Spillage
Nick Lyons
VCRs are often written off due to the damage caused to the innards by liquid spillage. It was possible to restore this Sharp machine to normal, reliable operation
however.
641 A Variable Stabilised HT Supply
Gordon Haigh
An external regulated supply that can be set to give a
variable h.t. output to suit different chassis is a useful aid
to fault diagnosis. The design is based on the thyristor
circuit used in the Philips G8 chassis.
642 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from
abroad. June 1985 was remarkable for SpE reception.
645 Service Bureau
646 Test Case 273

OUR NEXT ISSUE DATED OCTOBER WILL BE PUBLISHED ON SEPTEMBER 18

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADC 75 p per order $P+P$ Goods are despatched on the day we receive your cable, service aids, degaus. to inform you as quickly as possible. We try our best coils please allow $£ 1.30 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. at cost. First Class Mail is used invoice on request. Give us a ring - we'l give you whenever possible. Add 15% will try to hetp. Prices are subject to change without VAT to total except where it notice. states zero rate.

SEMICONDUCTORS		BF355 $\quad 56$	R2265 1.50 R2322 62	INTEGRATED CIRCUITS				$\text { TCA940 } 1.95$		UPC1190G 1.20	OIDDES					
AC107 35	BC558			AN2140	3.91	SN76131N	2.00			AA119 9						
AC126 30	BCY72 13	BF362 68		AN240	3.84	SN762260N	2.00	TDA440	2.20		UPC1198C 84	BA102 17				
AC127 32	BD115 45	BF363 72	R2323 $\quad 67$	AN318	3.98	SN76227N	1.18	TDA1002	1.95	UPC1200V 1.18	BA115 13					
AC128 32	8D116A 65	BF371 30	R2461 1.50	AN262	2.45	SN76533N	1.70	IDA1003A	5.50	UPC1211V 2.70	BA145 17					
AC128K 40	BD124P 79	BF392 35	$\begin{array}{ll}\text { R2540 } & 2.80 \\ \text { RC458 }\end{array}$	AN301	5.15	SN76033N	2.49	TDA1006A	2.50	UPC1212V 1.34	BA148 17					
AC141K 39	8013150	BF422 34	$\begin{array}{ll}\text { RC4558 } & 2.20\end{array}$	AN7150	3.15	SN76544N	2.35	TDA1005	3.60	UPC1215V 1.66	BA154 6					
AC142K 38	${ }^{8 D 132}$ - 49	BF423	RCA16334 90	AN6340	3.97 7	SN76650N	1.05	TDA1010	1.54	UPC1216V 1.20	BA155 14					
AC176 35	80133 60	BF435 BF423	RCA16029 99	AN6340	7.85	SN76660N	80	TDA1035	4.70	UPC1217G 1.13	BA156 15					
AC176K	$\begin{array}{ll}80135 & 38 \\ 8 D 136\end{array}$	BF457	RCA16039 RCA16092 99 99	AN63444	7.85	SN76666N	80	TDA1037	2.95	UPC1218H $\quad 1.80$	BA317 26					
AC186 41	$\begin{array}{ll}8 D 136 & 38 \\ 80137\end{array}$	BF457 BF458 35 8	RCA16092 99	AN6344	7.85	SN76530A	1.47	TDAT044	4.37	UPC1223C 2.20	BAX13 4					
AC187 38	$8 \mathrm{BD137}$ - 38	BF458 ${ }^{\text {PF459 }}$	RCA16040 96	BA521	2.80	STK015	6.25	TDA1060A	4.44	UPC1225H 2.00	BAX16 8					
AC187K 38	3 8138 35	BF459 ${ }^{43}$	RCA16041 84	BA536	3.00	STK032	$=$	TDA1062	1.56	UPC1226C $\quad 1.50$	8B105G 30					
AC188 35	8 8139 35	BF460 $=$ BF462 86	RCA16334 90	CA555	46	STK078	13.25	TDA1083	1.68	UPC122TV 1.20	BY126 12					
AC188K $\quad 39$	80140	BF469 46	RCA16335 90	CA556	84	STK043	11.05	TDA1170S	3.00	UPC1228H 54	BY127 11					
AD143 82	80144	BF470 66	RCA16957 2.88	CA741	25	STK433	5.65	TDA1190	3.50	UPC1230H $\quad 3.95$	BY133 15					
AD161 54	8 8150 60	BF597 10	TIC45 90	CA748	45	STK435	9.06	IDA1180	2.91	UPC1238V 1.16	BY164 45					
$\begin{array}{lll}\text { AD162 } & & 54 \\ \text { AD161 }\end{array}$	$\begin{array}{ll}8 D 159 & 65 \\ 80\end{array}$	8F757 54	$\begin{array}{ll}\text { IIC46 } & 60 \\ \text { T132 } & 65\end{array}$	CA3065	1.80	STK436	5.50	TDA1200	2.95	UPC1245V 1.35	BY176 85					
AD161/62 MP 1.15	88166	BF758 54	T1132 65	HA1151	3.89	STK437	7.85	TDA1220A	2.12	UPC1350 4.15	BY179 63					
AF106 AF114	BD179 8D182	BFR39 27	$\begin{array}{ll}\text { T1178 } \\ \text { TIP29C } & 48 \\ \end{array}$	HA1322	2.65	STK439	6.62	TDA1270	3.95	UPC1353C 1.92	$\begin{array}{ll}\text { BY182 } & 87 \\ \text { PY184 }\end{array}$					
AF114 89	$8 D 182$ 18183	BFR40 30	TIP29C 43	HA1342	2.49	STK459	8.20	IDA1327	1.70	UPC1365C 6.38	BY184 55					
	$\begin{array}{ll}8 D 183 & 75 \\ 8 D 201 & 85\end{array}$	BFR79 $\quad 85$	$\begin{array}{ll}\text { TIP30A } & 47 \\ \text { TIP30C } & 43\end{array}$	HA 1306 N	2.60	STK441 ${ }_{\text {STK461 }}=465$	8.10	IDA1352B	1.60	UPC1356C2 2.08	BY199 28					
AFF124 AF	BD202 91	BFR90 $\quad 1.74$	TIP31C	HA1366WR	2.80	STK463 ${ }^{\text {S }}$	14.30	TDA1415	1.20	UPC1367 2.08	BY206 ${ }^{14}$					
AF125 46	BD203 80	BFT42 39	TIP32C 42	HA1392	3.95	SW153	2.74	TDA1470	4.67	UPC1358H 1.88	BY210800 33					
AF126 46	BD204 99	$8 \mathrm{FT} 43 \quad 39$	TIP338 75	HA11219	2.49	TA7050P	95	IDA1770	5.60	UPC1360C 2.20	BY223 90					
AF127 38	$3 D 22246$	BFW10 60	TIP348 1.06	HA11244	1.98	TA7051P	95	TDA2002	2.80	UPC1363C 2.16	BY227 28					
AF139 58	BD223 56	BFX29 40	TIP41C 47	LA4031P	3.21	TA7063P	2.20	TDA2003	1.20	UPC1366C 1.84	BY298 22					
AF178 $\quad 1.54$	$8 \mathrm{CD25}$ - 47	BFX84 42	TIP42C 50	LA4032P	2.90	TA7074P	1.00	TDA2004	2.52	UPC1368H2 2.15	8 Y 299					
Af239 60	$\begin{array}{ll}\text { BD232 } & 68 \\ 8 D 233\end{array}$	8FX85 30	$\begin{array}{ll}\text { TIP47 } & 70 \\ \text { TIP120 }\end{array}$	La4102	3.37	TA7108P	3.43	TDA2006	1.78	UPC1370C2 2.58	8×10					
$\begin{array}{ll}\text { AL } 102 & 4.90\end{array}$	$\begin{array}{ll}80233 & 60 \\ 8024\end{array}$	BFX86 $\quad 30$	TIP120 6	LA4400	3.05	TA7120P	2.43	TDA2010	2.00	UPC1382C 1.08	BYX36/10 30					
$\begin{array}{ll}\text { AU106 } & \\ \text { All13 }\end{array}$	BD234 BD235	BFX88 45	T1P2955 6	LA4422	3.28	IA7129AP	3.76	IDA2140	5.95	UPC1384	BYX551600 30					
$\begin{array}{lr}\text { AUC13 } & 5.20 \\ \mathrm{BC107} & 20\end{array}$	BD236 65	BFY50 BFY51	TIS91	LC7130	5.93	TA7730P	1.93 4.67	TDA2150	2.22 4.95	UPC1447H UPCA1C 	BYX DY2 21600 200					
BC108 20	BD237 5	8FY51	TU106/02 1.80	20	5	TA7193P	5.67	TDA2020	4.66	UPC5743	OA47 ${ }^{\text {O4, }}$					
BC109 20	BD238 65	BFY52	2N696 21	LC7137	5.50	TA7171P	1.85	TDA2030	2.80	UPC577H $\quad 2.46$	OA90 10					
BC114 12	BD243 8	BFY90	2N918 82	LM1011	3.25	TA7172P	1.85	I0A2522	2.40	UPC585C $\quad 1.28$	OA91 10					
BC115 17	BD244	BR100 ${ }^{\text {BR101 }}$	2 N 29045	LM1340T	75	TA7173P	1.85	TDA2523	3.40	TDA $1011 \quad 4.00$	OA95 6					
BCT16A 16	88410	BR101 BR103 85 83	$2{ }^{2} 2905$	MB3712	1.95	TA7176P	2.50	TDA2524	2.25	1144112	OA202 11					
BC118	BD437 8	BR303 1.46	2N3055 60	MC1310P	1.60	TA7204P	3.77	TDA2530	2.70	TAA570 3.98	N914					
BC119 36	80438	BRC4443 9	2N3702 11	MC1327	1.70	TA7205AP	3.72	TDA2532	2.56	while stocks last	\| N 4002					
BC139 28	BD507 52	BRC4444 98	2N3703 10	MC1351P	2.93	TA7208P	3.40	IDA2540	3.84		IN4003					
BC140 32	80508	BRY39 56	2N3705 10	MC1349	1.99	TA7210P	6.60	TDA2541	3.84		IN4004					
${ }^{\text {BC141 }}$	BD509 56	BRY55 45	2 N 3706 10	MC1350	1.50	TA7222	2.42	TDA2560	3.50		IN4005					
BC142 30	BD510	BRY56 $\quad 17$	2N3708 17	MC1352	1.75	TA7223P	3.74	TDA2571	2.56		in4006 10					
BC143	8D278A	$\begin{array}{ll}\text { BSR59 } & 1.80 \\ \text { BSV578 }\end{array}$	2N5294 48	MC1358P	1.50	TA7227P	5.98	TDA2576	3.75	We will try to	1N4007 10					
BC147 BC148 13 18	BD517 BD520 60 85	$\begin{array}{lr}\text { BSV578 } & 89 \\ \text { BT100 } & 1.65\end{array}$	$\begin{array}{ll}\text { 2N5296 } & 48 \\ \text { 2N5298 } & 69\end{array}$	MC1495L	3.00 66	TA7228P	5.98 278	TDA2576A	3.75 4.50	supply the	IN4448					
BC149 12	8 8535 82	$\begin{array}{ll}\text { BT101 } & 1.20\end{array}$	2SB337 1	MC14049UB	43	TA7609P	4.39	TDA2581	3.30	original part	IN5401					
BC157 16	BD536 $\quad 91$	BT102/500 1.20	2N5496 53	MC7742	1.35	TA7611AP	2.92	TDA2582	2.60	when we can.	IN5402 14					
BC158 16	BD696A 1.49	BT106 $\quad 1.60$	2N6107 75	MC7812	1.35	TAA310	2.83	TDA2590	3.25	Under certain	IN5403 12					
BC159 $\quad 15$	BD697 1.24	B1108 1.69	2N6109 81	ML231	2.20	TAA320	2.00	TDA2591	2.95	circumstances	in5404 12					
BC160 $\quad 52$	BD695 1.39 1.50	BT109	2SA715 1.98	ETR6016		TAA550	55	TDA2593	2.95	we may have to	IN5405 13					
BC161 28	$\begin{array}{ll}\text { BD698 } & 1.50 \\ \text { B7707 }\end{array}$	$\begin{array}{ll}\text { BT116 } & 1.21 \\ \\ \text { ST1 }\end{array}$	2SC495 1.10	ML232	2.20	TAA630	3.90	IDA2600	5.90		IN5406 16					
$\mathrm{BC170B}$ 15 $\mathrm{BC171}$ 15 15	BD707 BD 32 15	$\begin{array}{ll}\text { BT119 } & 3.66 \\ \text { BT120 } & 3.66\end{array}$	${ }^{2 S C 496}$	ML236	5.35	TAAB400S1	1.96	TDA2610	3.20	equivalent.	IN5407 16					
BCC 11 BC 72 15 85	$\begin{array}{ll}\text { BF115 } & \\ \text { B6F }\end{array}$		$\begin{array}{ll}\text { 2SC1096 } & 1.50 \\ & 1.72\end{array}$	ML238	2.50 6.00	TAAA120A	1.20	daz671a	1.95		1 N5408 ${ }^{20}$					
$\begin{array}{ll}\mathrm{BC} 173 & 12\end{array}$	BF117 36	BU104 2.00	$2 \mathrm{SC1172Y} \quad 2.20$	ML239	2.50	(A), (S), (A)	,(SA).	TDA2652	7.31		$2=$					
BC174 10	BF125 26	BU105 1.58	2SC1173Y 1.69	ML920	4.12	TBA120B	1.30	TDA2653	5.90		REP BZX85 30V					
BC177 27	BF127 47	BU108 1.80	2SC1306 2.73	ML922	3.29	TBA120SB	1.37	TDA2680	3.40		General Purpose					
BC178 26	BF154	BU124 1.90	2 2SC1307 3.00	ML928	2.18	TBA120T	95	IDA2690	1.35	COMPUTER	Triac 95					
BC182L 9	BF158	BU126 1.75	2SC1449 1.67	MM5387ANN	4.15	TBA120U	1.10	TDA3190	2.00							
BC183L 12	BF160 27	BU204 1.50	2SC1520 68	MRF475	2.50	TBA395	1.20	TDA3500	6.90							
BC184L 14	BF167	BU205 $\quad 1.42$	2 2SC1678 2.67	MRF477	10.00	tBA396	80	TDA3560	6.00	PLEASE ASK FOR						
BC186 35 BCi87 85	Br173 ${ }^{\text {Br }}$	B0206 1.80	2SC1909	MSN5807	7.87	TBA440N	2.75	IDA3561	6.50	NOT LISTED						
BC204	BF178 ${ }^{\text {86 }}$	BU208A 1.65	2SC2028 1.82	MS1515L	328	(BAAMP		,								
BC208 13	BF179 28	BU208D 2.20	2SC2029 $\quad 2.60$	SAA 1025	4.40	TBA4800	1.50	tda3651A	4.50	21						
BC209 10	BF180 39	= BU800	2SC2078 $\quad 2.90$	SAA1124	2.50	TBA510	3.00	TDA4420	4.22	4532-2 ${ }^{27160}$						
BC212 9	8F181 39	BU208/02 2.10	2SC2091 1.34 	SAA1250	3.94	TBA520(0)	1.68	TDA4600	2.95	$880 \mathrm{CPU} \quad 3.53$	SPECIAL					
BC212L 13	BF182 36	BU326A $\quad 1.75$	2SC2166 2.73	SAA1251	4.90	TBA530(0)	1.38	TDA9503	2.50	2TX 21317	DIO					
BC213 13	8F183	BU4407 1.70	DEC1 2.20	SAA5000	4.39	TBA540	1.68	TEA1002	3.50	2TX 31317	SKE 4F $¢ 1.09$					
$\begin{array}{ll}\mathrm{BC} 214 & 10 \\ \mathrm{BC} 237\end{array}$	BF184 PF 185 36 185	BU426 BU500	DEC2 2.20 $T H Y+50$ 2.20	SAA5010	6.30	TBA5600	8.59	TEA1009	1.37	LM1889 1.77	SKE 5F					
$\mathrm{BC237}$ BC238 14	BF BF $194 / 3944$ 36 16	$\begin{array}{ll}\text { BU500 } & \\ \text { BU526 } & 2.30 \\ & 2.45\end{array}$	$\begin{array}{ll}\text { THYY5/80 } & 2.20 \\ \text { THY15/85 } & 2.20\end{array}$	SAA5012	6.50 5.90	TBA570	1.79 1.50	UPC554	1.34 2.95	8271	$\begin{array}{ll}\text { Y827 } & 81.30 \\ \text { ¢12 }\end{array}$					
BC251A 18	BF195 16	BU508 $\quad 3.20$	BUW81A $\quad 3.84$	SAA5030	8.25	TBA641BX1	3.50	UPC575C2	3.40	27128 $\begin{array}{l}\text { 9.50 }\end{array}$ 164						
BC252 12	BF196 16	BU806 $\quad 1.40$	T6006V 1.50	SAA5050	8.50	TBA673	2.45	UPC576H	1.90	27X650						
BC261 18	8 F 19715	BU807 $\quad 2.94$	T6021V 90	SAA3210	2.93	TBA700	2.12	UPC587C2	1.60	$74 \mathrm{LS} 260 \quad 55$						
BC262 18	BF198	BUW84 1.45	T5022V 1.80	SAS560S	1.89	TBA720	2.64	UPC1025H	2.95	UHF modulator						
BC300 50	BF199 $\quad 21$	BUX84 1.50 120	T6026V 90	SAS570S	1.89	tBA750	2.98	UPC1028H	2.52	UM1233 2.80						
BC301 53 BC303 33 8	$\begin{array}{l}\text { 8F200 } \\ 8 F 224\end{array}$ 35	E1222 MCR101 40	$\begin{array}{ll}\text { T6027V } & 63 \\ T 6028 \mathrm{~V} & 66\end{array}$	SAS660	3.25 3.25	${ }_{\text {TBAB00 }}$	1.62	UPC1032H	${ }^{64}$	Micro cutters						
BC307 20	BF225 20	MCR220 1.50	T6029V 2.50	SAS580	2.90	TBA820	1.70	UPC1156H	4.26	5.00 a pair						
BC308 $\quad 25$	BF241 PF256	ME0411 20	T6034V 81	SAS590	2.90	TBA820M	1.25	UPC1158H	78	An 4.80 a pair	$\begin{aligned} & \text { LENER } \\ & \text { DIDDES } \end{aligned}$					
BC323 BC327 18 8	BF256 BF257	$\begin{array}{ll}\text { MJE340 } & 68 \\ \text { MJE520 } & 50\end{array}$	$\begin{array}{lr}\text { T6036V } & 90 \\ \text { T9002V } & 1.12\end{array}$	SL901B	7.00 800	TBAB90	3.3	UPC1163H	98	Anti static solder	BZX61 130V 28					
BC328 18	BF258 25	M $33000 \quad 1.98$	T9003V 60	SL1310	1.80	TBA950(2X)	3.25	UPC1168C	1.28	Std 5.40	BZX61 Range 20					
BC337 18	BF259 35	MPSAS2 $\quad 35$	Transistor mounting	SL13270	1.20	TBA970	4.09	UPC1176C	1.46	Double sided ${ }^{\text {Le }} 6.20$	(1.3W)					
BC 338 18	BF262 PF263	MR814 45	kit TO66. T03,	SL1430	1.25	TBA990	1.90	UPC1177H	1.56	adhesive repair tape,	Bzx79 Rang (400 mV)					
$\begin{array}{ll}\text { BC461 } & 30 \\ \text { BC547 } & 13\end{array}$	BF263 BF271 15	$\begin{array}{lr}\text { MR854 } & \text { [} \\ \text { MR475 } \\ & 2.46\end{array}$	T0220AB $\quad 30$	SL1432	3.36 2.05	TBA14406	2.44 2	UPC1178C UPC180C	1.28	Heaw duty	BZY88 Range 10					
BC548 13	BF273 24	$\begin{array}{ll}\text { MR479 } & 2.60\end{array}$		SN76003N	2.49	TCA270Sa	250	UPC1181H	1.62		(4000 mV)					
BCX32 $=\mathrm{BC} 63739$	BF274 ${ }^{\text {P23 }}$	$\begin{array}{ll}\text { OT112 } & 1.91\end{array}$		=SN76013N		TCA800	5.95	UPC1182H	2.95		BZY93, $90 \quad 1.18$					
BC549 8	BF336 36	OT121 $\quad 1.91$		SN76023N	2.00	TCA830	3.44	UPC1183H	1.38	ALSO SE						
BC557 8	BF338 41	R20108 1.92		SN76115N	2.27	TCA910	2.20	UPC1188H	2.2							
SONY REPLACEMENT PARTS				Sony C7 Video Motor £30.00		SONY MANUALS										
IL494CN	$\begin{array}{rlr}\text { £4.70 } & \text { Idler assembly SL3000, C5 \& C7 } & 87 p \\ £ 12.36 & \text { Power switch KV } 1810 / 20 / 22 \text { \& KV2000 } & £ 5.50\end{array}$					${ }^{¢} 2.00$										
${ }_{\text {SG653ard }}$ Bett C5 C7				Motor $£ 30.00$							(instruc	隹佼 ma	ual SL-C6			
Forward Bett C5, C7 Capstan Belt C5, C7	${ }_{87 \mathrm{p}}^{23 \mathrm{p}} \mathrm{P}$	Push button switch $2060 / 1$	400 $0 / 2022$ E3.00 156	Alignment tape		40 Instruc	ion ma	ual SL-C5			$\underline{2} .00$					
Capstan Bett SL8000/80	80 87p S	Slide switch REC	(1)2025.96 $87 p$	Sony Video Heads		ds Instruct	tion ma	ual SL-C6 U			$\sum_{2.00}$					
Extension Belt SL8000/30	8080 ¢	Slide switch REC/PLAYBAC	K 51.26	DSR36R SL C5.		- Service	manu	KV-1400UB SL-C5UB			£8.25					
Drum Belt SL80008080	$\underline{\$ 1.26 . P}$	Wesh switch KV2020/2066	53.66			00 Service	manu	SL-C6UB			${ }_{28.25}^{28.25}$					
Rewind kit SLC5/SLC7	${ }_{5} 5.95$	imer lid C5 \& C7	$7{ }^{\text {c }} 3000{ }^{877}$	$\begin{array}{ll} \text { C6 \& C7 } \\ \text { DSR21R SL } \\ \text { C9 } & \\ \text { £42.00 } \end{array}$		Service	manu	SL-C9UB			E8.25					
Rewind kit SLC6	$\mathrm{cl}_{3} .00 \mathrm{~N}$	Motor DC BHF-110D C5,	C7. SL3000 298.83			00 Service	manu	SL-C6UB			$\underline{28.25}$					
Idler wheel and pulley	it SLC5, SLC7. SLC3000	¢ £5.95	2SD 870 £6.35			00 Service	manu	SL-C7UB			£8.25					

TRADE ANNOUNCEMENT

FERGUSON 3V16/3V22 VHS VIDEOS THORN 8800/9000/9600 COLOUR TV's
 MAINLY REMOTE CONTROL HAND UNITS NOW AVAILABLE

MINIMUM PURCHASE 5 UNITS LOWEST PRICES IN U.K.

OTV TRADE DIVISION OTV HOUSE 144 LEA BRIDGE ROAD LONDON E5 9RB

Telephone: Bob Munson 01-985 6111 the largest range at the lowest prices IN THE U.K.
JUST LOOK AT THESE PRICES

WE CANNOT BE BEATEN

UNTESTED	WORKING
PHILIPS G11	£30 \| PHILIPSG11 £45
PHILIPS G8 550 22"	£8\| PHILIPS G855022"............................... £15
PHILIPS G8520 22"	£6 \| PHILIPS G8520 22" £12
PHILIPS G8560 20"	£18 \| PHILIPS G8560 20"................................ £25
THORN TEXT 9650	£45 THORN 9600 REMOTE £40
THORN REMOTE 9600	£30 THORN 9800 £35
THORN 9800	£25 THORN 9000 £30
THORN 9000	£20 THORN 8800 ... £20
THORN 8800	£14 THORN8500 .. £15
THORN 8500	£10 THORN 3500 £10
THORN VERYCAP 3500	
DECCA80	£20 DECCA80 £30
DECCA 88	£30 DECCA88 £40
DECCA 100	£25 DECCA 100 £35
DECCA HYBRID	£5 DECCA HYBRID £10
PYE 200 18"	. £14 \| PYE200 18" £20
PYE CHELSEA 18"	£18 \| PYECHELSEA 18" £25
PYE 222	£10 \| PYE222 £15
PYE 72520	£18 \| PYE 725 20" £25
ITT SOLID STATE	£23 ITTSOLID STATE £30
ITT FULL REMOTE	£50 ITT FULL REMOTE £60
ITTHYBRID	£5 ITTHYBRID £10
GEC 2201 .. £18	. £18 I GEC 2201 ... $£ 25$
	JAP STOCK £20

Prices based on quantity and are $+15 \%$ VAT. Large stocks of Audio B. Grade.
LATE MODEL VIDEO SOFT TOUCH - REMOTE
B. GRADE T.V.'s $22^{\prime \prime}-20^{\prime \prime}$ TEXT, $20^{\prime \prime}-22^{\prime \prime}-26^{\prime \prime}$ REMOTE, 14" BRAND NEW IN BOX £110 $22^{\prime \prime}$ STEREO-TEXT BRAND NEW IN BOX WITH STAND £270 ALSO 2020 PHILIPS VIDEO £30 WORKING
HUSSAIN CENTRAL TV LTD
48-52 PERSHORE ST, BIRMINGHAM B5 4RR 021-622 1023-021-622 1517

CENTRAL T.V. \& VIDEO WHOLESALE

The No. One for late model T.V. \& Video's at the lowest prices can now offer soft touch $\&$ remote video records at very cheap prices.
$\star \star \star$
$\star \star \star$ SPECIAL OFFER THIS MONTH $\star \star \star$
22" Stereo-Text Brand New in Box $£ 270$
$14^{\prime \prime}$ Portable Brand New in Box $£ 110$
$\star \star \star$
Working C.T.V. $\quad \star \quad$ Untested C.T.V.
Philips G11 660 22"
Philips G8 550 22"
Thorn 9000
Thorn 8800
Thorn 8500
£45 * Philips G11 660 22"
£35
£20 \star Philips G8 550 22" $2^{\prime \prime}$
$\mathbf{£ 3 5} \star$ Thorn $9000 \quad £ 20$
£25 * Thorn 8800 £15
$\mathbf{£ 2 2 ~} \star$ Thorn $8500 \quad £ 13$
Special price on Decca Solid State Untested from $£ 20$
$\star \star \star$

PRICES BASED ON QUANTITY AND EXCLUSIVE OF 15\% VAT

$\star \star \star$

Large stocks of B. Grade T.V. \& VIDEO 20"-22" TEXT, 20"-22"-26" REMOTE, $14^{\prime \prime}$ PORTABLE

Many more bargains in stock. Phone and have your order ready for collection, lorry loads direct from sources. Delivered to your door. All sets have first class cabinets.

HOTE LINE LONDON 01-807 4090 01-884 1314 CEDAR HOUSE, NOBLE RD., ELEY ESTATE, EDMONTON, LONDON

HOT LINE
0291-271000 UNITE 4
BULWARK INDUSTRIAL ESTATE, CHEPSTOW, GWENT

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US		G.G SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693				BUY WITH					
INTEGRATED CIRCUITS	TYPE \quad PRICE (£)	TYPE \quad PRICE (1)	TRAN	TYPE PRICE	E TYPE PRICE	THORN SPARES AVAlLABLE					
TYPE PRICE (£)	SAS560S 1.95	TCA800.................... 5.45	Price	BD236................... 43							
AN214.................. 1.95	SAS570S1.95	TCA940.................. 1.55	BC107 14	BD237 40	0 BU826A 3.20			DIODES			
AN301..................3.45	SAS580S 2.40	TDA1002................... 1.50		BD238 39	9 R2010B 1.45						
AN303................... 3.45	SAS590S 2.40	TDA1003.................... 2.80	BC109 14	BD410	0 R2540.............. 2.35	UNE OR TR. DECCA 80 \qquad		$\begin{array}{ll}\text { TYPE } & \text { PRICE } \\ \text { BY127 }\end{array}$			
AN305................... 3.50	SL901 5.65	TDA1006A 2.95	BC141 26	BD434 50	0 TP31C................. 46						
AN7110................. 1.93	SL907 7.35	TDA1035T 2.75	BC142 23	BD437 70	0 ПP32C 47			BY 133 BY164 45 0			
AN7114E 2.33	STK0039...............6.45	TDA1037............... 1.95	BC143 25	BD438................... 78	8 TP33.................... 80	$\text { DECCA } 80 \text {................ } 7.95$					
AN7115................ 237	STK0040 5.95	TDA1044............... 3.10	BC147 09	BD707 1.05	5 TP34 95	DECCA 100................ 8.50		$\mathrm{BY179}$ BY 210600 … 30 30			
AN7116................ 2.35	STK0050 7.50	TDA1170............... 1.80	BC148 09	BF194............... 12	2 TP41C 48	IT CVC 20...............7.75		BY2101800 30 BY223 80 8			
AN7145.................3.25	STK077................. 7.25	TDA1270............... 2.20	BC157 10	BF195............... 13	3 TP 42C 48	IT CVC 25/30/32 8.00		BY227M - 3^{3}			
BA312.................. 1.25	STK078 7.45	TDA2002............... 1.85	BC158 11	BF196................... 11	1 TP47 75	IT CVC 45................ 8.4		BY229/600 …… 87			
BA511A 1.95	STK082.................9.75	TDA2003...............2.33	BC159 11	BF197............... 11	1 TIP2955............. 70	PHIUPS G8.............. 875 PHILLPS G11 1350		BY239/400 24			
BA521 1.85	STK415................ 9.66	TDA2004............... 3.15	BC182L............. 11	BF241 15	5 TIP3055............. 70	PHILIPS G11........... 13.50		$\|$BY299/800.................. 25 BYX10 20			
BA532 1.95	STK430 7.75	TDA2006............... 2.25	BC183L.............. 11	BF256LC............ 25	5 2N3055............. 50	PHILPS K 30 16.50					
BA536.................. 2.55	STK433................. 6.50	TDA2020............... 2.95	BC184L............. 11	BF258............... 25	5 2N3773........... 3.45	PHILIPS K30............. 1650					
HA1166................ 2.65	STK435 6.75	TDA2190M 4.95	BC212L............. 10	BF259............... 26	6 15/80H........... 2.25	THORN 1615 9.75					
HA1322................ 2.10	STK437.................7.25	TDA2522................ 1.80	BC213L............. 10	BF337................ 28	28 15/85R............. 2.25			SKE5F3/10 ...			
HA1338................ 2.78	STK439................. 7.55	TDA2523............... 2.25	BC237 11	BF338............... 30	0 2SA 771.......... 2.35	THORN 169019.65					
HA1339................ 2.40	STK441 8.50	TDA2530............... 2.10	BC327 11	BF458............... 30	0 2SA 835........... 1.55						
HA1342A.............. 2.20	STK459.................7.35	TDA2532...............2.20	BC328 12	BF459.................. 36	6 2SB 618............. 2.45	SONY SPARES					
HA1366WMR 1.95	STK461 7.95	TDA2540............... 1.95	BC337 11	BF757............... 75	5 2SC 867A 3.25			CASS MOTORS			
HA1370................ 2.75	STK463................. 9.30	TDA2560............... 1.80	BC338 10	BFR90 1.60	0 2SC 1034.......... 4.85	C51C7 Rewind Kit....... 4.65					
HA1374................ 2.45	STK465................. 9.95	TDA2581...............2.15	BC547 10	BR100 18	8 2SC 1061........... 1.15						
HA1377................ 3.80	TA7193P 4.30	TDA2582............... 2.20	BC548 10	BR101 32	2 2SC 1114.......... 4.75	C6 Rewind Kit.		$\operatorname{9VCW}$ $12 V C W$. .00 $13.2 V C W$ 13.00			
HA1388................ 4.20	TA7202............... 2.25	TDA2591............... 2.30	BC557 10	BR103 55	5 2SC 1124........... 97	C7 Pinch Roller...........4.85					
HA1397................ 3.90	TA7203P 2.25	TDA2593............... 2.30	BC558 10	BR303 2.95	5 2SC 1316............ 3.20						
LA1201 1.75	TA7204P............... 1.90	TDA2594...............2.95	BD124M......... 1.05	BT106............. 1.15	5 2SC 1413A...... 3.95	CX 1434 6.55		SUNDRIES			
LA1230 2.30	TA7205AP 1.40	TDA4500...............5.85	BD131 33	BT116............. 1.30	0 2SC 1739 2.45			G8 TRANSDUCTOR 225 G8 ON/OFF SW. 1.40			
LA1365 2.45	TA7208P 1.95	TDA2600...............5.95	BD132 33	BT151/.	2SC 1942......... 2.95						
LA3350 1.65	TA7222AP 1.85	TDA2611A 1.50	BD201 80	800R 1.10	0 2SC 1962......... 1.65	PCF802................. 1.09		G8 ONJOFFSW. 1.100 G11 EW Coil..... 185			
LA4031 2.45	TA7223P...............2.85	TDA2640............... 2.40	BD202 70	BU126............ 1.78	8 2SC 1969..........1.95			G11 Lin Coil120			
L440322.30	TA7227P 2.95	TDA3560............... 5.10	BD203 70	BU205.............. 1.42	2 2SC 2078........... 1.55	PCL82............................ 97		G11 Bridge Coil..... .. . 1.35			
L44101 1.50	TA7310................ 1.55	TDA3561A............5.35	BD204 83	BU208A 1.45	5 2SC 2335 (Kit) . 7.55	PCL85 ${ }^{\text {a }}$.-...........................1.09		GI1 EHT Lead..........225			
LA4102 1.95	TA7313.................... 1.45	TDA3562A 5.50	BD222.................... 50	BU2080 1.85	5 2SC 2369.........3.25	PCL86..............................107					
LA4400 2.50	TAA550................... 43	TDA4600............... 2.85	BD225.................. 55	BU326A 1.48	8 2SC 257............2.45	PL504 1.159		IT On/OHFSW THORN On/OHE SW. 1.10 1.00			
LA44302.45	TBA120AS 95	TDA9503...............2.35	BD232 50	BU407 1.12	2 2SD 588A 1.97	PL508 ...-...................... 2.29		CUTOUT 2 A - SW. 1.85			
LA4440 3.55	TBA120SB 90	UPC555C..................... 70	B0233 37	BU407D 1.45	5 2SD 725........... 7.95	PL509/519 5.59PY5004		IX10 FOCUS UNIT .. 8.55 VCR Pilot Bulb 1 .			
LA4460 2.95	TBA120T...............1.25	UPC566C 2.10	B0234 40	BU500 1.80	0 2SD $870 ~ 5.95 ~$						
LA4461 2.95	TBA120U 1.00	UPC585C 1.40	TV ELECTROLYTICS		PUSH BUTTONS NEN TUNERS						
MB3712 2.30	TBA520................ 1.30	UPC1031H 2.95			Available also a range of 2SA/B/C/D Transistors. Phone or write for lists.						
MB3713 2.25	TBA5300.............. 1.00	UPC1032H 95	DECCA $30(400 / 400) 350 \mathrm{~V}$................ 3.99OECCA $80-80 / 100(400) 350 \mathrm{~V}$								
ML231B2.35	TBA540................ 1.37	UPC1156H 2.45			OECCAITT 6 way 7.95						
ML232B2.55	TBA550................ 2.45	UPC1181H 2.20	(800)250V 3.99				PHILIPS G8 S/L 14.90PHILIPS G8SIQ................ 12.00				
ML237B 2.50	TBA560................ 1.60	UPC1182H 2.20	PHILIPS G8(6001300V 2.65PHILIPS G9(2200)63V								
ML238B4.22	TBA720A2.65	UPC1185H 3.30			PHILIPS G8S/Q..$~$	ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELVERY BY RETURN ON ALL STOCK ITEMS.					
SAA1124 3.45	TBA750................ 2.45	UPC1230H 3.95									
SAA1125 4.70	TBAB00.................. 80	UPC1238H 2.35	RBM A823(2500/2500	$\text { jV } 3 \text { …............ } 2.20$	ITT CVC57 Butto			8.95			
SAA1250 3.85	TBA810................ 1.35	UPC1350C 4.50	RBM A823(2500/2500 RBM T20A(220)400V	$\begin{array}{r} \\ \hline\end{array}$	ITT CVC89			$\begin{aligned} & 10.40 \\ & 12.80 \end{aligned}$			
SAA1251 4.95	TBA820................ 1.40	UPC1353C 2.60	RBM 1 20A (220)400V THORN $16901(4700)$	$25 \mathrm{~V} \text {.......................... } 94$	$\begin{aligned} & \text { IT CVC8/9 } \\ & 1043 / 05 \end{aligned}$			$\begin{aligned} & 12.80 \\ & .8 .95 \end{aligned}$			
SAA5010 5.10	TBA890................. 2.95	UPC1365C5.05	THORN169001(4700)25 THORN3500(1000)70V	25 V 94	$\begin{aligned} & 1043 / \\ & \text { U321 } \end{aligned}$			$\begin{aligned} & 8.95 \\ & 8.35 \end{aligned}$			
SAA5012 5.70	TBA920................ 1.50	UPC1377C4.60	THORN9000(400)400V 3.10		U322 7.40						

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

SPECIAL OFFER SUMMER SALE

MINIMUM LOTS OF 20

DECCA 20" VARICAP	$\mathbf{£ 1 0}$
DECCA 22" MECHANICAL	$£ 8$
DECCA 22" VARICAP	$£ 10$
DORIC 20" \& 22"	$\mathbf{£ 1 0}$ each
SALORA 22" HYBRID	$£ 4.50$
SALORA $26^{\prime \prime}$ TOUCH TUNE	$£ 10$
BUSH A823 20" \& 22"	$£ 5$ each
GEC $211022^{\prime \prime} \& 26^{\prime \prime}$	$£ 12$ each

TOUCH TUNE VCRs and other CTVs also available. All Plus VAT

Please allow 14 days for delivery

SOUTHPARK DISTRIBUTORS Unit 4 Rubastic Road, Brent Park Industrial Estate, Southall, Middlesex UB2 5LL Tel: 01-574 4631

FREECAREER BOOKLET

Train for success, for a better job, better pay! Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career
learn in your own home in your own time, at your own pace through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or obligation at all.

CCE '0	Choose from over 40 ' 0 ' and ' A ' level subjects.		\square
COMPUTER PROGRAMMING	\square	CAR MECHANICS	\square
BOOK-KEEPING \& ACCOUNTANCY	\square	INTERIOR DESIGN	\square
POLICE ENTRANCE	\square	HOTEL MANAGEMENT	\square
ELECTRONICS	\square	COMMERCIAL ART	\square

Please send FREE DETAILS for the courses ticked above. Name

Address

P. Code

Dept. EGS95, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568/9 or 041-221 2926 (all hours).

SUPERIOR QUALITY TUBES
DELTA RE-BUILDS

051 4288777 most types of Inline Re-builds or new ex-stock $\quad \begin{aligned} & \star 2 \text { YEAR WARRANT } \\ & \star 4 \text { YEAR OPTIONAL }\end{aligned}$

Delta Rebuilds
 Up to $19^{\prime \prime}$..................... $\mathbf{£ 2 8}$
 Up to $22^{\prime \prime} \ldots \quad \mathbf{£ 3 0}$

 110° up to $26^{\prime \prime}$........... £38
 Low focus. $+£ 2$
 A47 342 New … £28
 17FHP New $\mathbf{£ 3}$
 470EHBNew.

Intine Beounds
Up to 22"
A56-540x $£ 5$
A66-540x £
Bonded Coil . . . +
ALL SIZES OF NEW MONO TUBES AT COMPETITIVE PRICES

IN LINE TYPES EX-STOCK SELECTION NOT REBULDS

Please enquire types not listed

370 HFB-A37-590..... $\mathbf{f 4 5}$	560 DMB $£ 62$
370 HUB £45	AXT 56-001 $\mathbf{6 6 2}$
AXT 37-001 $£ 45$	660 AB 665
420 CSB	A67-701 $\mathbf{E 6 5}$
420 EDB-A42-590 £45	670 CZB $\mathbf{f 6 5}$
420 EZB $\mathbf{f 4 5}$	A66-540 65
420ERB 445	420FSB 555
470 KUB $\mathbf{E 5 0}$	
510 UFB/A51-590 £55	Carriage
510 VS8	f_{6} Singles. $2.3 ¢ 10.4 \mathrm{f12}$
AXT51-001............. $\mathbf{f 6 0}$	10 £15. $10+$ Carriage paid
560 DYB-560 DTB ... $\mathbf{£ 6 2}$	EXCLUSIVE OF VAT
560 EGB $\mathbf{f 6 2}$	Cash with order
560 CGB $\mathbf{£ 6 2}$	

$$
\begin{array}{|c|c|}
\hline \text { QUANTITY } & \begin{array}{c}
\text { OUR TECHNICAL DEPT WILL ADVISE YOU ON } \\
\text { DISCOUNT } \\
\text { AVAILABLE }
\end{array} \\
\begin{array}{c}
\text { PROBLEMS YOU MAY ENCOUNTER ON FITTING } \\
\text { Ajkk for details } \\
\text { DELVERY: Ex stock items immediate dispatch on receipt of order } \\
\text { Others allow } 14 \text { days. }
\end{array} \\
\hline
\end{array}
$$

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON RDAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

EAST CORNWALL COMPONENTS

VALVES

DY802
DY86/87
DY8687
ECC81
ECC82
ECC84
ECC
ECC85
ECC88
ECF80
ECH81
ECH84
ECL82

EF86
EF183
EF184
EH90
EL34
EL84
EL509
EM87
EY8687
ECC8A
PCC85
PCC89

PCC
PCF
PCF
號

EAST CORNWALL COMPONENTS 119 HIGH STREET
WEM
SHROPSHIRE SY4 5TT TEL: 0939 32689

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897
Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 601 .

COVER PHOTO

This month's cover photo shows adjustment and final checking of a Philips Matchline video tuner/source selector in the Philips factory at Norrköping, Sweden. The Matchline TV system was launched in European markets last year. There are three Matchline models at present on sale in the UK, the 6620, 6720 and 6820 (20,22 and 26 in . screens respectively): they are complete sets with teletext, remote control and optional speaker arrangements. Our thanks to Philips for permission to reproduce the photograph, which was taken using a fish-eye lens.

CORRECTION

An error occurred in line 180 of the Commodore 64 Test Pattern Program published last month: CHR\$(152) should be followed by a semicolon, not a colon.

ADDRESS PLEASE

Would Mr. R. S. Narwan of Visionhire please send his address (omitted from VCR fault notes) to the editorial department.

NO MORE GLAMOUR?

It's difficult to recall a time of woe quite like the present in the electronics industries of the West. There've been downturns before, in particular a chip glut that led to severe price cutting in the early seventies, but there's not previously been a period in which business has been poor generally throughout the electronics industry.

The chipmakers have been doing badly for some time. The latest news on this front comes from Texas Instruments, the world's largest semiconductor manufacturer, which made a loss of $\$ 3.9 \mathrm{~m}$ on turnover down by 16 per cent during the second quarter of the year. Texas Instruments has cut back on its investment plans, laid off another 1,800 employees, and is expecting a further business deterioration in the third quarter.

Poor sales of semiconductor devices reflect poor business in the computer field. We all know about the collapse of the microcomputer market. It seems that the makers of large computers haven't been doing all that well either. IBM's half year results show profits down by 15 per cent though turnover was up slightly - by two per cent. Reduced earnings during the period have also been reported by Honeywell, Burroughs, Data General, NCR and Control Data. Lay-offs and shut-downs have been widely reported. The major electronics and computer group Hewlett-Packard has announced that most of its US operations will be closed for one or two days a month from August - its 45,000 US employees are expected to take unpaid time off during the shut-downs. In Europe Philips, the only truly multinational European-based electronics group, has reported "appreciably lower" income in the second quarter of 1985 compared to 1984 , mainly due to the performance of its US subsidiaries. The UK scene has been one of declining profits, with STC - owners of ICL since last year - reporting a loss for the six months to June 30th. In this case the computer side of the business (ICL) is said to have "performed satisfactorily", the problems being on the components, telecommunications and submarine cable sides of the business. The components industry worldwide seems to have been doing poorly, as one would expect when end-product business is in decline. Reports on the European telecommunications industry comment on increased competition and lower profits, and we all know that with the exception of the Japanese it has been hard to make any money out of producing consumer electronics products in recent times. In this field the Japanese continue to report improved results. Matsushita, the world's largest manufacturer of electrical/electronic consumer goods, has reported pretax profits up by 17 per cent during the first half on turnover up 11 per cent. Matsushita's largest single line is VCRs." sales of these increased by 20 per cent and "continued strength" in this market is reported.
Even the Japanese consumer goods manufacturers seem to be concerned about future prospects however. As mentioned in Teletopics last month, both Matsushita and Sony have announced plans to diversify substantially into other fields, specifically component manufacture and industrial electronics. In view of the weak state of electronics markets generally one wonders how successful this policy will turn out to be - and about its implications in terms of increased competition.

Is all this woe just a temporary phenomenon? Certainly there's pessimism about the prospects for an upturn in the immediate future. It's nevertheless worth making the point that many of the reduced profit figures that have been reported have been made on increased turnover, indicating severe competition rather than a market collapse. Mullard's managaing director Ivor Cohen has commented that "in terms of fundamental usage of electronic components the trend is not far from the usual pattern". But it's difficult to see the electronics industry returning to the high growth rates experienced during recent decades.

Most of the present pessimism originates in the USA, in particular from the computer industry. It's contagious because the US is still the world's largest market. One tends to feel that if US chip and computer manufacturers can't make a good living, what hope is there for the rest of us? Nevertheless conditions in the US economy in recent months have been rather different from those elsewhere. A boom phase has come to an end, and the excessive value of the dollar has had depressing implications for the competitiveness of much US industry. More logical exchange rates would doubtless help, but these are subject to uncontrollable shifts in currency demand - and, in the case of the dollar, the effect of the budget deficit.

It would probably be true to say that the electronics industry worldwide will never again be a very comfy place in which to operate. Excessive investment has led to over capacity, and this is something that's very hard to deal with - which firms would willingly forgo the chance to have a share in the next generation of electronic components/ equipment? In the past, stockmarkets have often given electronics firms "glamour stock" ratings. The glamour has quite definitely gone for the time being. Perhaps this doesn't matter too much. The situation in the industry is nevertheless disconcerting, since through much of the post-war era it's been in the forefront of economic advance. Are we to expect a continuation of the present worldwide economic stagnation until some other industry comes along to take the lead?

Letters

NOTES ON RANK CHASSIS

The problem of ringing on the left-hand side of the screen with the Rank T20 chassis came up on the July issue problems page. The cause in every case I've come across has been $5 \mathrm{C} 17(0 \cdot 47 \mu \mathrm{~F})$ open-circuit or more often intermittent - it's the same type of capacitor that blows the BD131 line driver transistor in the older A823 series chassis. It's easy to check 5 C 17 : just bridge the PC connections with an $0 \cdot 1 \mu \mathrm{~F}$ capacitor and the lines will disappear.
On the subject of the A823, I've always cured the IBA's "new" teletext lines by changing the value of the field flyback tuning capacitor 5C35 (5C34 in the A823A chassis) from $2.2 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ - there's often a spare, i.e. redundant, $0.47 \mu \mathrm{~F}$ capacitor on the convergence panel (7C1).

I recently had a T22 with a star-shaped crack in the neck of the A56-510X tube and a black mark in the plastic convergence clamp. Suffolk Tubes mentioned the Philips G11 when I took the tube to them for regunning, i.e. the problem of C4029. I haven't found any likely capacitor trouble in the T22 and have put extra polythene under the clamp to increase the gap length. I reckon it's tube weakness rather than anything else, but no one's going to admit it!
D. A. Ferriday, Rowlands Radio, Rowlands Castle, Hants.

THE NORDMENDE FV1/90 ${ }^{\circ}$ CHASSIS

I was sorry to read (June issue) of Les Lawry-Johns' problems with a set (Ferguson 3787) fitted with the NordMende FV1/90 ${ }^{\circ}$ chassis. As importer for NordMende television sets in Ireland we've distributed thousands of sets using this chassis, both manual and remote control versions, and while I would hesitate to be the expert Les is seeking perhaps the following points would help him and others in a similar position.

With a dead set, check that h.t. is reaching the anode of the flyback thyristor DA12. The usual culprit is one of the thyristors in the line output stage, DA12 or DA14 - if one of them proves to be faulty, change them as a pair. These thyristors can cause other problems, for example a tendency to blow the TDA 1170 field timebase chip on an irregular basis: if you have a set with a blown TDA1170 the odds are that DA12 or DA 14 was the cause. Faulty output thyristors can also give you a set with no raster but plenty of e.h.t. and arcing at spark gap VA26: if this is experienced, be prepared to refurbish the line output stage completely to be confident of not seeing the set again. In this instance the capacitors in the gate circuits of the two thyristors - CA13, CA15 and CA16 - should be changed.

The set that gave Les such a headache had the top core of the line output transformer missing. This situation is now quite common with these sets since they are fairly lightweight portables and get moved around a fair bit. The missing core will normally be found in the bottom of the set, but note that there's a mica insulator at each of the junctions of the two cores: these must be positioned correctly before reglueing. Such repairs to the transformer are not always successful and in some cases a replacement
is the only answer. Similarly if the loose core is found to be damaged in any way it's best to discard the transformer, as a replacement will prove to be the only longterm solution.

The e.h.t. adjustment must be checked after any work is carried out on the line output stage. Set RZ13 for 55 V d.c. at pin 10 of the line output transformer with the contrast and brightness controls at minimum. At this setting the e.h.t. and all the other voltages derived from the line output stage are correct.

Finally a problem that can cause some trouble. An earthing strip runs to the right-hand side of the sound and line oscillator panels, from the top of the chassis to the bottom. If either of these panels, more especially the line oscillator panel, is removed the strip can become dryjointed. This can cause intermittent start-up, random cutting out, and persistence of the e.h.t. at switch off - the latter condition can eventually lead to a burn in the tube. Soldering a wired bridge between the chassis and the part of the main panel to which the anode of DA06 is connected is a good idea whenever one of these sets requires attention.

Apart from the above there are no real pitfalls waiting to trap the unwary. Despite their advancing years, the excellent pictures these sets give will amply justify the work involved in returning them to a fully working condition.
Anthony Cronin, Service Manager,
Reynolds Electronics Limited,
Dundalk, Co. Louth.

BBC MICRO PROGRAM

The pixels produced by the BBC microcomputer are not quite square and in order to produce a true circle it's necessary to increase the lengths in the horizontal direction by 8.4 per cent. In Patrick Kniveton's program for example (July issue, page 516) the following lines should be changed:
790 PLOT5, 1.084 * 350 * COS C, 350 * SIN C
800 PLOT5, $1 \cdot 084^{*} 352$ * COS C, 352 * SIN C
Similar changes should be made in PROCcard. This technique will improve the appearance of many designs which use circles (or squares) which would otherwise be stretched vertically. Incidentally, this means that the aspect ratio of the active part of the raster is $1 \cdot 15: 1$ rather than $1 \cdot 25: 1$ as suggested by the co-ordinate size of the screen (1280:1024).

The colons in lines 100-180 should be the double-bar character found on the key above the pound sign key on the BBC micro.
Alan Pemberton,
Sheffield.

PROGRAMMING OFFER

Following my article on a Spectrum test card program it became apparent that many readers with home computers don't have the time or inclination to write programs for them. If readers with ideas for programs that may be suitable for publication in Television would like to write in I would be willing to write the program and let the first reader with the idea have a copy for evaluation. Programs about VAT, bookkeeping etc. are excluded as there are many of these already in circulation. I mainly use a

Spectrum computer but can also produce programs in BASICODE2, the BBC's computer esperanto system that will run text and numbers programs on most home computers. BASICODE2 will not produce colour or graphics however, so it would not be suitable for test card or colour bar programs. A BASICODE2 kit is available for $£ 3.95$ from the BBC: it covers most popular makes in one booklet and cassette.
John de Rivaz, B.Sc. (Eng.),
Truro, Cornwall

THORN TX90 TIP

Anyone using a Ferguson 14in. colour set (TX90 chassis) as a monitor may be interested in a modification from Ferguson to shift the picture slightly to the right - useful with computers. Simply short out R106.
Derek Snelling,
Brownhills, Staffs.

SOFT START FOR THE G8

Several articles on the Philips G8 chassis have appeared in Television over the years, the most recent being excellent articles by Tony Thomson in the May issue and Dennis Apple in the July issue. I agree that when correctly adjusted, and provided the tube is good, these sets are still capable of providing very worthwhile results. One problem with this chassis however is the omission of a soft-start circuit in the power supply. In fact on several examples of these sets I've been alarmed by the tendency for the h.t. line to overshoot the correct 205 V at switch on, causing a large surge current and strain on the line output and related stages.

When repairing a G8 with a picture jitter fault recently (the fault was caused by defective zener diodes in the power supply, D1397 and D1371) I decided to look at the possibility of adding a soft-start circuit. After some investigation I discovered that the power supply circuit is very similar to that used in the GEC C2110 series which do have soft start.
In both cases the operation of the power supply is controlled by sensing the d.c. output and mains input voltages and adjusting the firing point of a thyristor to compensate for varying load and changing mains input conditions. Both circuits have a 7.5 V zener diode in series with the emitter of the control transistor to provide temperature stabilisation - D1371 in the case of the G8. If the components shown in Fig. 1 are added to the G8 power supply circuit, in parallel with D1371, the result will be soft start, with the output voltage rising from zero to 205 V in about two seconds.

The operation of the circuit is as follows. At switch on Trl shunts D1371. This delays the firing point of the thyristor until very late in the positive-going half-cycle of the mains, the result being minimum output voltage. As

Fig. 1: Soft-start circuit for the Philips G8 chassis.

4 + 11GHz SATELLITE TV RECEIVING EQUIPMENT LNA's LNC's RECEIVERS, FEED HORNS ETC. dealer enquiries welcome
For further details contact
HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 7JX Tet: (0702) 332338

C2 charges the shunt is slowly removed, until at the end of the soft-start period normal control action is restored. D1 and R 1 provide rapid discharge of C 2 at switch off: C 1 is included to prevent ripple across D1371 from forward biasing D1.
The action of the circuit appears to be completely compatible with most versions (see note below) of the G8's power supply and does not affect the operation of the overvoltage trip and the setting up procedure. The extra components are normally readily to hand and can easily be added on the print side of the panel. Note that some very early versions of the G8 had D1371 in the base instead of the emitter circuit of $\operatorname{Tr} 1374$: these cannot be modified in the way described. In some other versions the positions of R1375 and D1371 are transposed - check that the anode of D1371 is connected to chassis.

In conclusion I feel that this modification will increase the life and reliability of a G8 considerably.
D. R. Bracknell,

Farnborough, Hants.

CONVERGENCE ERROR POSSIBILITY

A number of microcomputer test pattern programs have appeared in the magazine recently. I'm sure these are excellent but would like to point out a possible source of error. Much convergence circuitry consists of reactive components which are frequency dependent. When setting up the convergence of a colour set these components are supplied with waveforms at line frequency, adjustment being made for optimum convergence of the displayed raster. As most modern colour receiver line timebases will lock with a frequency error of up to ± 20 per cent from the correct frequency the accuracy of the alignment will depend on the accuracy of the computer's sync generator. B. D. Webb, Havant, Hants.

BUZZING TRANSFORMERS

Hugh Allison's report on a mains transformer with lamination buzz interested me as I've just cured a really noisy one in a disco deck. Toroidal transformers, C cores and vacuum impregnation have made this a rare fault nowadays, but it was common in the days of valves, when home radios had transformers with stacks held by bolts. Hugh's tormentor would appear to be a U-clamp version. The cure for open types is a few taps from a clouting iron to the end of the stack - varying the tension of the bolts
sometimes helps. I learnt this in the "good old days" (?) when a tester was allowed twenty minutes to put a radiogram with record changer through its paces - the pay was $6.4 p$ per hour, 7.2 p for troubleshooters, and we worked a 47 hour week . . .
William Harrison,
Windsor, Berks.

BBC MICRO PROGRAM

Users of the BBC Micro Test Pattern program (July) should be cautioned that the circles it produces aren't circular! Instead of being square, the graphics units produced by the BBC micro are rectangles with a height:width ratio of $13: 12$ when displayed on a correctly adjusted TV set or monitor. To produce a properly proportioned circle, the program should be written as if to plot an ellipse with a height of $12 / 13$ its width. The following modifications to Patrick Kniveton's program will have the desired effect:

```
790 PLOT5, 350*COSC,323*SINC
800 PLOT5, 352*COSC,325*SINC
1460) PLOT85, 315*COSD,291*SIND
1510) PLOT5, 320*COSC,295*SINC
1560 PLOT85, 309*COSF,285*SINF
1700 DRAW-60,280
```

I hope that not too many BBC Micro owners have been diligently adjusting the aspect ratio of their monitors using the program published!
Richard Russell, M.A., C.Eng. M.I.E.R.E.,
Gravesend, Kent.

VIDEOTAPE WARNING

In view of the poor availability and greater cost of V2000 type cassettes I decided to try my hand at transferring the tape from a new VHS E120 cassette to a VCC240 cassette - they both use half inch wide tape so I could see no reason why this shouldn't work. Accomplishing the transfer was a very fiddly job and when I tried the cassette in my V2000 recorder the results were hopeless: only a very weak and noisy monochrome picture with very poor sync was obtained. The tape had not been damaged during the transfer because when I put it back in the VHS cassette and tried it in a VHS machine it still worked well.

I'm rather puzzled about this. Although there's about twice as much information stored on a V2000 tape as there is on a VHS tape used in the standard way, halfspeed recordings are now made on some VHS machines. I assume therefore that there are fundamental differences in the composition of the tapes, making them incompatible. My advice to anyone thinking of trying this idea is not to bother - and I'm not inclined to try it with a Beta tape. M. Catchpole,

Broughton Radio (Worthing).

AERIAL SOCKET PROBLEM

An aerial rigger friend recently rang me very worriedly. He had fitted a mains-powered aerial amplifier and the fuse had blown when the set was switched on. When I called to help I found that the trouble was due to the chassis being, as so often today, at half mains potential, i.e. approximately -170 V d.c., while the negative side of the aerial socket was not isolated - in fact it was directly connected to chassis. This raises several points of interest.

First, the technical aspects. The negative side of the aerial socket was at -170 V from a bridge rectifier while the aerial amplifier was connected to earth, thereby taking the negative side to earth. One could leave the amplifier's earth disconnected, but this would be negligent since it's designed to have an earth connection. Or one could use a battery-powered amplifier. But what if a masthead amplifier is required as well? Assuming you fit a batterypowered amplifier you must remember that the coaxial plug and cable will be at -170 V . These are exposed and potentially lethal. Thus an insulated coaxial plug is required as a minimum. But even this isn't safe!

The obvious and I believe correct action is to fit an isolated socket. But if the set is under guarantee doesn't this invalidate it? The set in question was an Hitachi one. Other sets use similar techniques.

Secondly there's the legal side of the question. Under the present liability laws the last person to service a TV set or any other equipment must ensure its safety. Who is liable in the event of someone coming into contact with a coaxial plug on a set of this type? Does responsibility lie with the aerial rigger, the service engineer or the setmaker? Personally I believe it would be the setmaker's responsibility. What are your views?
Rothley Stevens,
Coventry.

COMMODORE 64 PROGRAM

May I, with acknowledgements to D. J. Jackson (letters, June), offer the following version of his Commodore 64 colour bar program? The entry is considerably simplified the result is the same. Incidentally I assume that the opening statement on line 15, PRINT" " s ", is intended to be a clear-the-screen command for which the keystrokes are "SHIFT - CLEAR HOME". This command prints as a reversed heart - see the second statement on line 10 of my program - but in any event in neither program is it strictly necessary.

[^0]
SETS FOR DISPOSAL

Owing to a move to a smaller house I have for disposal the following sets: three Thorn colour receivers fitted with the 2000 chassis, two working well, and a Ferranti 20T4 table type projection set dating from about 1954. As the 2000 was the first large-screen, all solid-state chassis to go into production and the 20 T 4 is certainly a venerable item I'm wondering if they would be of interest to a TV collector or historian. No payment would be required but they would have to be collected by appointment.
C. E. Williams, 6 Swallowdale, Wightwick, Wolverhampton, WV6 8DT.

POST A PART ELECTRONICS
 6 CHAPMAN COURT, CHARFLEETS ROAD,
 CANVEY ISLAND, ESSEX SS8 OPQ.
 Telephone 0268690868
 Telex 99305

	FUSES		$11 / 4$
	20 mm		
50 MA	10 for 70p	250MA	10 tor 85 p
250MA	10 for 50p	750MA	10 for 65
315MA	10 for 50p	7A	10 tor 50p
500MA	10 for 500	10A	10 for 50p
2.54	10 for 1.00	zaA	10 for 50p
3.15A	10 for 1.00	50A	10 for 50p

Thorn Mains TX $3000 / 3500$
Thorn Mains TX 9000 (T701
Thorn Mains TX 9600 (T512)
Thorn S.O.P.T 8000/8500
Thorn Scan TX $3000 / 3500$
Thorn EHT TX $3000 / 3500$
Thorn LOPT 9000
thorn LOPT 9600
Thorn LOPT 1615
Thorn LOPT 1590/91
Thorn LOPT 169091
Thorn LOPT 8500
Thorn LOPT TX9
Thorn LOPT TX10
Thorn LOPT TX90
Pye LOPT 713
Philips LOPT G9
Philips LOPT G11
GEC LOPT 3113
Diode Split LOPT AT2076/35
Sanyo LOPT AM-WM-21
Sanyo LOPT AM-WM-4
Philips LOPT G8
Sanyo LOPT (CW21) 4-2751-44700
11 LOPT CVC5-9
TT LOPT CVC45
Baird 8752
horn Line Drive TX. TX9 (T2)
Thorn Line Drive TX 8K etc. (T402
Thorn Line Drive TX. 9 K (T705)
Thorn Switch Mode TX. 9 K 6 (T511)
Thorn Input Choke TX9 (L64) Thorn Choke TX90 (L120)
300 Mixed Resistors
300 Mixed Capacitors
150 Mixed Electrolytics
100 WW Resistors
20 Mixed Conv Pots
40 Mixed Pots
20 Mixed Sliders
40 Mixed Presets
20 Mixed VDR \& Thermistors
100 Mixed Ceramic Discs
20 Mixed Valve Bases

1.50	10 Spark Gaps	1.00
1.50	10-16 pin Quil IC Socket	90p
2.00	20 Asscrted TV Knobs	1.00
1.00	10-16 pin Quil to Dil IC Socket	90p
1.00	100 Mixed Diodes	1.00
1.50	50 Mixed Mica Washers	${ }^{65 p}$
1.00	300 Mixed Resistors \& Capacitars $10-16$ pin Dil to Dil IC Socket	1.50
60p	50 Electrolytics \& 50 Capacitors	1.00
1.00	50 Mixed Poly Capacitors	1.00
1.00	20 Mixed Valve Bases	1.00

INTEGRATED CIRCUITS		
BRCI330	1.40	SN76013ND
BPC3064	1.00	SN76023N
BRC/M/200	1.00	SN76033N
BRC/M/300	1.00	SN76115
CA3060	1.58	SN76131N
1M1303P	1.48	SN76226N
ML2318	220	SN76227N
ML2378	2.00	SN76530P
ML2398	2.86	SN76622N
MCI327AP	125	SN76660N
MC1358P	1.30	SN76666N
MC1455P	18 p	SN76744
MC14516BCP	CP 60p	SY153A
SAA 1025	120	TA7117P
SAAl124	4.50	ta7109AP
SAA50to	6.00	TAA611
Sl432A	1.80	TBA120B
SL1430	2.50	TBA120C
SL1432	2.50	tBalzoca
SN15846N	50p	TBA120S
SN74123N	65	tBalzou
SN74154N	1.40	tBA395
SNT6001N	1.40	TBA4800
SN76110N	1.14	tBa510

7.50
10.00
10.00
10.00

	tBA530	126	TDA2002	2.00
180	TBA540	1.00	tDA2030	210
1.00	tba550a	182	TDA2522	2.10
2.00	tBA560C	150	TDA253a	2.61
200	t3a641	205	TDA254G	3.50
1.58	TBA651	250	TDA256C	3.50
125	TBA720a	2.5	TDA2581	3.00
1.00	tba750	220	TDA2591	1.96
1.30	tBa800	1.20	toarcila	208
1.00	TBA810S	1.00	To ATz690a	1.50
80 p	tbabioas	1.00	TOA3560	6.00
75p	TBA9zo	208	tDa4500	5.40
1.92	tBA950	1.55	TDA95[B	290
2.50	TBA1440	1.92	TCEP 100	3.48
1.00	tCaz70SA	1.5	TEA10CP	1.95
2.20	TCA270C	1.05	MC144 ${ }^{168}$	4.80
1.40	tcaz70ca	1.05	MC14429P	4.50
120	toalopa	4.10	MC14544	5.00
120	tDa1035T	350	UA758PC UA1003A	2.50 2.66
70 p	TDA1037	2.72	ULN2165	2.56 1.30
70p	TDA1170	215	ULN2216A	125
1.00	TDA11705	150	UPC1 1 S5 5	5.75
1.00	TDA1200	242	SC9488P	1.40
1.40	TDA1270	276	SC95 HP	1.40
1.90	TDA1327	2.53	SW153	2.50

Thom/Decca/GEC On/OH Switch. Push to make	15p
Philips 611 On/Oth Swith. Push to make	$15 p$
ITI CVC9 On/OH Swich + Relay	900
Philips 68 Ondoff Swith	75p
Thom 3/3500 A1 Switch	50
Thom 4000 Al Swith	50
Korting Shitt Pot son	Eng
2.54 Push to make on/off switch	15p
Thom TX90 On/Off Swith	1.85
10K LT Pot TX9\%XX90	75p

\begin{abstract}

CAN TYPES		
0.2MF 250V 50p	1250 MF 40 V	500
2MF 250 V 50p	1250 MF 50 V	50 p
22MF 275V 50p	1500MF 100V	1.05
50 MF 275 V 50p	2000 MF 30 V	50p
100MF 150V 65p	2200 MF 40 V Thorn	
100MF 250 V 700		95p
220MF 450V Thom 4 K	2200 MF 63V Philips 69	
1.30		
400MF 350V Thorn 8K	2500MF 35V	65p
1.00	2500 MF 40 V	6\%p
400 MF 400 V Thorn 9 K	3000 MF 30 V	65p
295	3300 MF 16 V	500
800MF 250V 70p	3300 MF 25 V	$60 p$
1000MF 100 V Thorn	4700MF 16 V	72
TX90 2.90	4700 MF 40 V	75p

	DIODES	
AA112	8 p	IN4003
AA119	$8 p$	IN4004
AA143	8 p	IN4005
BA115	${ }^{8 p}$	1 N 4006
BA154	${ }^{8 p}$	IN4007
BB103	8 p	1N4148
BB105B	30	IN4149
BR103	52p	IN4742A
8R303	78p	IN5254B
BT106	1.50	- N 5349
BT116	1.00	IN5400
BT119	256	IN5401
BT120	282	IN5402
BT151 650	1.00	IN5404
BY127	12p	IN5406
BY188	16p	IN5408
BY204	$26 p$	15025
BY206	16p	\|S131
BY207	16p	IS1658
BY208/800	38	MR854
BY223	95p	SKE1/02
BY225	120	MCR106/1
8Y227	${ }^{28}$	MCH406
BY298	22p	2N4444
BYX22/400	30 p	Y827
BYX55/600	30 p	$Y 969$
BYX71/350	80 p	ZX150
B2V15 C12R	1.16	OA91
B2V15 C24R	1.16	MCR106/
IN60	8 p	MCR106/8
IN2070	8 p	T03F800H
IN4001	4 p	TD3F800R
IN4002	40	BY255

TRADE ANNOUNCEMENT

CHROMA VISION (Manchester) NOW OPEN!!!

95 LANGWORTHY RD, SALFORD M6 5PH. Tel. No. 061-736-6333
811 WASHWOOD HEATH RD, WARD END, BIRMINGHAM 8. Tel. No. 021-784-2561
Large range of late model TV's and Videos at low, low prices
THORN AND PHILIPS TELE-TEXT, REMOTES AND BASICS
\times PHILIPS
Working

Too many to list! Why not come along and have a look
\star WORKING \& SERVICED!!! VHS VIDEOS 100's IN STOCK 1000's MORE UNTESTED SETS OFF THE PILE \star Lorry loads direct from source \star Delivery arranged

The Vet's Problem

Les Lawry-Johns

Not BO but B\&O - one that gave me almost as much heartache as that NordMende. If it had been anyone else's I'd have told him to take it back where he got it from, but he's such a nice chap and we do have a dog, a cat and a bird. That bird is definitely female by the way: she doesn't talk but makes a lot of noise. You can't touch her unless she's having one of her freak outs, when she hunches her shoulders, sticks her neck out and babbles away in some strange alien tongue. You can then stroke her till she comes to. She then straightens up and lashes out with her beak. I think it's part of the mating game but she hasn't got one (so far).

The Spiders

Which brings me to the next horror story. Upon removing the B and O's rear shell - release bottom catches, lift up and off the top tongues - I caught sight of a long brown envelope stuck to the right side of the chassis. Removing the envelope and opening it I found a folded booklet with the circuit details. Inside the fold were the bodies of two spiders which must have been there a long time: one was complete but only the shell of the other remained, no doubt the male who had provided the female with her last meal.

The Set

The actual repair (having buried the spiders with due ceremony) turned out to be something of an ordeal, as the fault was intermittent. The set would suddenly trip (partially) after it had been on for quite some time, the picture shrinking and then returning rapidly to normal. It didn't shut off to enable proper tests to be made. The power unit is at botton centre and was removed so that we could try to make some voltage checks. After a long time it transpired that the voltage at the collector of the chopper transistor remained steady while the base and emitter voltages varied, suggesting an overload. I rather doubted this, feeling that the fault was in the power supply itself.

Cold tests were out of the question as the fault was of such an intermittent nature, so we invoked Dante's Law: go where the heat is. This proved valid and the fault no longer occurred when the chopper driver transistor, BD something or other, was replaced. My fading memory suggests that we fitted a BD203 but I could be wrong. I can't check up on it as the circuit is back inside the set, at the vet's home (sans spiders), and I don't have another copy to jog my memory. I've even forgotten the model number and as no bill was presented I can't look up the copy.

Who's a Ninny?

Next balls up. Who was it who completely stripped down a Fidelity IS100 audio stack system to get at the cassette head in order to solder one wire on, then put it all together again only to find that removal of two screws from the front cassette cover exposes the head and just
gives room to resolder? I won't tell you who it was but I won't do it again.

Mack and Millie's G11

You remember me calling at Mack and Millie's house, parking on the pavement and getting a rocket from Millie . . .
"Curb crawlers are creepy Les but pavement parkers are putrid."
"Only two wheels, Millie."
"Half a wheel is enough - MORE THAN ENOUGH!"
Well they don't seem to have much luck with their G11. They phoned to report "a white line across the screen".

So along I went and parked in their driveway. I'd taken with me a spare timebase panel (upper left) and some fuses. I checked the second fuse up on the line output panel. It was intact. I checked the soldering to the base of the TDA2600 field timebase i.c.'s holder, and as this seemed to be o.k. I fitted my spare panel. After this I switched on, confidently expecting to see a full raster. Just a white line. Feeling a bit deflated, I tapped the top centre dynamic convergence correction panel. The line flicked to a full raster then collapsed again. Oh dear, I've brought the wrong panel.
I removed the correction panel and examined it closely for cracks and dry-joints. As there didn't seem to be any I refitted the panel and without clipping it down switched on to see if a bit of probing might help to identify the culprit. There was a good, full picture. It wouldn't collapse until I clipped it down. So I unclipped it and told them I'd be back on the morrow with a replacement but that the set would meanwhile be all right as I'd taken the pressure off the trouble spot.

Next day I returned with the required panel and to save time I ran the car up on the pavement outside. I fitted the panel and prepared to depart. Millie said she had to collect her grandchildren from school and came out with me to get her car from the garage.
"THAT CAN'T BE YOUR CAR STUCK UP ON THE PAVEMENT AFTER ALL I'VE SAID!"
"After all you've shouted Millie. See you in court dear."

The Repair

Back at the shop it took an ohmmeter to locate the intermittently open-curcuited track, very near to connector 15A4. A jumper lead was quickly soldered in place to put paid to any further hanky-panky.

A Solution

I'm fed up with the way this country's going. Everybody seems to be convinced that unless they put up prices, charges, wages - everything every year - they'll be uneconomic and go under. What we need is a universal catch phrase for use at every check out, written on every invoice and bill. Everybody together then, "LESS TEN PER CENT". Salaries, wages, fares, charges. O.K., some won't do it, some perhaps can't. They'll be the unpopular minority. Leave marked up prices as they are, but subtract ten per cent at the time of payment. "Less ten per cent, less then per cent" - can't you just hear it? I can hear the objections: importers etc. But it could be done if we really wanted to. All right we don't. But dafter things have happened.

A Visit to MCES - VCR Head Alignment Principles

Regular readers will recall that I had a problem over obtaining suitable video heads when I was busy rebuilding some VHS machines earlier this year. The VCRs were of the very early type, with a round video drum turntable. The later type with relay connector pins wouldn't fit. I needed a supply of the earlier type of drum with the PCB type terminal connector.
This was when I came across the video head drum reconditioning service provided by MCES of Stretford near Manchester. Provided a drum is in good condition and is not scratched or marked they will fit new ferrite tips for less than half the cost of a new head assembly.

I was sceptical about the idea of replacing head tips because of the accurate alignment required but nevertheless decided to try a few. The results they provided were very good, much better than I had expected. It seemed worth investigating further and I was invited along to. MCES to see for myself.

MCES's Services

MCES are fairly well known in the TV trade for their tuner, teletext and remote control panel repair services. They now handle VCR aerial booster amplifiers and modulators in addition to providing the drum reconditioning service. The investment that was required to install equipment for tuner repair work was considerable but the cost of equipment for fitting video heads is very high indeed, well into six figures. At the time of writing a single alignment jig console is in use: a second is on order for delivery this autumn and a third is due next spring.

The alignment equipment is situated in a room entered via an air lock of two doors, though you are not obliged to wear a space suit! Air conditioning maintains a clean air supply and the temperature is stabilised to maintain correct alignment conditions.

Head drums sent to MCES are first stripped of the old tips, then washed in detergent and dried. This is followed by further cleaning in an ultrasonic bath. New heads are then fitted, ready for aligning.

Alignment Console

The alignment jig (see Fig. 1) has a central turntable on which the drum to be aligned is clamped. Microscope lenses are situated at either side, precisely 180° apart. Cameras are fitted to the lenses, the images being displayed on two monitors mounted above and behind the lenses. A view of each video head tip is thus seen, along with vertical and horizontal cursor lines that seem to be electronically generated. There are also three digital readouts, two beneath the monitors and a third in the centre.

Head Projection

A micrometer vernier adjuster on the left-hand lens moves it towards and away from the drum. It's used to measure the head tip projection. The head tip is first

Steve Beeching, T. Eng.
moved out of the way by revolving the turntable. The lens is then adjusted to focus on the drum surface. The projection counter is zeroed, the lens is moved out again and is refocused upon the head tip when this has been revolved back into view. Correct focus occurs when a special moiré interference pattern appears - at the precise focal point on both surfaces. The distance moved by the vernier adjuster is displayed by the digital projection counter. For correct alignment the tip projection from the drum is $51.5 \mu \mathrm{~m}$. The projection of both tips is set by the same lens - the drum is revolved on the turntable by 180° to bring the second head into view.

Head Differential Adjustment

The 180° differential is set to a lateral tolerance of $1 \mu \mathrm{~m}$ by adjusting the head tips so that they sit between two vertical cursor lines displayed on each monitor, the cursor lines having been calibrated to exactly 180°. If one head is out of specification, the cursor line is set to centralise the gap within the pair on the left-hand monitor, using an electronic shift of both the left-hand and right-hand pairs of lines in tandem, thus maintaining calibration. The gap shown on the right-hand monitor is then moved into the cursor area by means of the lens vernier adjuster, the counter beneath the right-hand monitor showing the lateral shift in microns. Each head is then adjusted by half this figure to bring them into line. This is repeated a number of times, gradually adjusting the heads so that they are 180° apart to within a lateral tolerance of $1 \mu \mathrm{~m}$.

Head Height

An interesting point I learnt is the difference in head tip height between different types of drums. MCES had determined their own $0 \mu \mathrm{~m}$ reference level then measured a large number of standard production heads to obtain an accurate height value above this reference, including production spreads.

The counter in the centre is used for height adjustment. The right-hand microscopic lens can be moved up and down by a vernier adjuster, the counter reading the

Fig. 1: Layout of the head alignment console.
amount of this adjustment. The difference in height between the two heads in the drum is measured by first setting the lower edge of one head tip on a horizontal cursor line on the right-hand monitor. The drum is then rotated through 180° and the counter zeroed. The lens is adjusted so that the lower edge of the second head is aligned on the same cursor, the amount of adjustment being displayed on the counter. The height difference between the two heads on a drum is kept to within $2 \mu \mathrm{~m}$, though the overall height of the pair may be within $5 \mu \mathrm{~m}$ of the value for a particular type of drum.

In general, the height of Hitachi head tips is $36 \mu \mathrm{~m}$ while for Panasonic the figure is $45 \mu \mathrm{~m}$. JVC head heights are $54 \mu \mathrm{~m}(\mathrm{~F}), 62 \mu \mathrm{~m}(\mathrm{~J}), 64 \mu \mathrm{~m}(\mathrm{~L})$ and $66 \mu \mathrm{~m}(\mathrm{M})$: the early D types are $104 \mu \mathrm{~m}$ and the G10 series $95 \mu \mathrm{~m}$. In terms of replacement drums this means that replacing an F type with a G10 type will result in the new head tips being $41 \mu \mathrm{~m}$ higher in the VCR. This is almost a track width, and the audio/sync head will require lateral adjustment to set the tracking range to compensate, using a standard test tape as a reference. MCES ensure that reconditioned heads for Ferguson/JVC machines have head tip heights that conform with the suffix letter to within $\pm 5 \mu \mathrm{~m}$. They have found that other "general purpose" heads do not conform to any height specification, some being more than $12 \mu \mathrm{~m}$ out. Whether or not this is critical depends on the engineer's ability to set the tracking range by the audio/sync head.

VCR Adjustments

One normally sets up the PG switching points and the response of the replay preamplifiers as necessary after drum replacement. The preset tracking control is set for maximum f.m. output on replay of the machine's own recordings with the main tracking control set midway. The final adjustment, to compensate for head tip height difference, is to replay a standard reference tape and adjust the audio/sync head laterally (sideways).

Tip Thickness

So that the heads are suitable for a wide range of models, MCES use a ch. 1 head tip that's $60 \mu \mathrm{~m}$ thick and a ch. 2 head tip 80μ m thick (thickness being the track width). This makes the heads equally suitable for standard or slow motion/still picture machines. Note that whilst the two heads have a width greater than the standard $49 \mu \mathrm{~m}$ track the alignment of their lower edges on the same plane ensures that the recorded tracks are $49 \mu \mathrm{~m}$ wide - by over recording of the excess track width. The head gaps are glass filled, and in order to maintain consistent quality all head tips come from the same Japanese manufacturer.

In Conclusion

After alignment, the drums are vacuum packed in polystyrene boxes for long shelf life.

MCES have spent a lot of time and money on ensuring that their reconditoned head drums are of high quality. Output is at present limited - at least until more alignment jigs have been installed - due to the careful quality control exercised. They have a large quantity of JVC drums in stock awaiting reconditioning but are short of Hitachi, Panasonic and Sharp drums - they'd welcome surplus drums. MCES can be contacted at 42-46 Moss Road, Stretford, Manchester (061-865 6021).

BILLINGTON VALVES

23 Inwin Drive, Horsham, West Sussex RH12 1NL Mail Order only - No Callers
CLOSING DOWN FEBRUARY 1986 - CLEARANCE OF REMNANT STOCK AT BARGAIN PRICES!
These wholesale prices when buying 10 or more of one type. EF80 30p, ECC82/12AU7 35p, GY501 £1, PCF802 50p, PCL 82 60p, PCL84 40p, PCL805 50p, PCL86 50p, PL504 90p, PL508 £1.70, PL509 £4.25, PY500A £1.50, PY88 40p, PY81/800 60p, PY801 60p. Please add post/packing @ 70p and VAT @ 15% to all orders (whotesale or retail).
TRADE/EXPORT ENOUIRIES WELCOME. Please ask for wholesale price on any type not listed.

ALL VALVES (WHOLESALE/RETAIL) ARE NEW, BOXED, PERFECT AND GUARANTEED 90 DAYŚ. MUL/MAZ denotes Mullard/Mazda brand; \dagger denotes foreign made valve
WE CAN SUPPLY CRTs FOR CTV, SCOPES AND VDUs - SAE FOR
QUOTATION. ALSO UNUSUAL VALVE TYPES, EG: FOR JAPANESE AUDID/TV EQUIPMENT, AND RUSSIAN NUMBERED TYPES - SAE FOR QUOTATION Please allow 7 days for delivery.
WANTED: We require a quantity of valves PX4, PX25 to fulfil an outstanding order. We will pay high prices for these, in any quantity large/small (including equivalents PP3/250, PP5/400, DA30)

TV LIE OUTD PUT	TRANSFORMERS AT \& CARRIAGE
Delivery by return of post.	
RANK BUSH MURPHY	IT: VC200 to VC402 9.20
A774 with stick rectifier 9.78	CVC1, CVC2 (FORGESTONE) 11.50
A816, T16, T18, 7712,2715 10.35	CVC5, CVC7, CVC8, CVC9 series 9.20
T20, T22, T26, Z179, A823 11.50	CVC20 10.35
2718 Basic unit 13.50	CVC25, CVC30, CVC32, CVC45 9.20
T24e, T24h split diode P.0.A.	CVC40, CVC1200, 1210, 1215 P.O.A.
DECCA: 1210, 1211, 1511 1700, 2001, 2020, 2401, 2404 CS1730, 1733, 1830, 1835 $30,70,80,90,100,130$ Series	FT110, FT111. P/no AT2063/02 11.50
	PYE: 169, 173, 569, 368 series 9.20
	CT200, CT200/1, CT213 series 10.35
	725-731, 735, 737, 741 Series 9.78
FERGUSON, THORN" 1590, 1591	PHILPS: 170, 210, 300 series 9.20
1690, 1691. built in rect.	320 series 9.78
1600, 1615, 1700 series	TX, T8 mano P.OA
1790 mono portable	G8 and G9 Series 9.20
3000, 3500, 8000, 8500, 8800	KT2. KT3. series colour 9.20
9000, 9200, 9300 series	G11. K30. split diode P.OA.
$9500,9600,9650$ series $\quad 10.99$	
9800, TX9, TX10 senes P. 0	$\begin{array}{lr} \text { BINAIUNE: SSO9, Y/58, 580U } & \text { PORIC Mk3 } \end{array}$
MOYIESTAR 3781, 3787120	FINLUX 9560, 9670 P.OA.
FDELTY: FTV12 mono 10.35	GRUNDIG: most models in stock
CTV14R, CTV14S colour	NORDMENDE: FC125, Z206, Z306 11.50SANYO: $5101,5103,7118,7130$ P. \mathbf{n}.
G.E.C. 2047 to 3135 mono 920	SHARP: C1851H, C2051H P.0A
1201H, 1501H, 2114, 3133, 3135920	TOSHIBA: C800, C800B 19.45
DUAL \& SINGLE hybrid col. 10.00	TANDBURG: 190, CTV2-2, CTV3-3 P.0A.
SINGLE STD solid state $\quad 12.00$	TELEFUNKEN: most models in stock
SINGLE STD split diode P.OA.	LNE OUTPUT TESTER 16.79
INDESTI: 24EGB hybrid $\quad 9.50$	Tidman Mail Order Ltd.,
12LGB, 12SGB mano portables 10.3	236 Sandycombe Road,
WINDINGS	Richmond, Surrey.
TYNE: main winding 6.80	Approx. 1 mile from Kew Bridge.
RBM: T20, T22, T26, Z179 6.33	Phone: 01-948 3702
WALTHAM: W125 eht winding 237	
WALTHAM: W190, W191 eht coil $£ 6.60$	$1.30-4.30 \mathrm{pm}$
KORTING: hybrid winding 6.90	

TV Fault Finding

Reports from Mick Dutton, Larry Ingram, Keith Hamer and Garry Smith

Philips K30 Chassis

Tripping was the complaint with this set. We checked the diodes in the line output stage, the line output transistor, and swapped the power supply panel. There was no obvious fault so we decided to lift the line output transistor's collector to see whether the power supply then produced the correct output. As the h.t. voltage was right we came to the conclusion that the line output transformer was probably defective, but the fault was still present when a replacement had been. fitted. Drastic action was now called for so we supplied the set via a variac and removed R 7354 to disable the excess current trip. We increased the supply slowly and a small, bottleshaped raster appeared: the h.t. started to fall despite increasing the supply. The penny then dropped. The output from the mains bridge rectifier was low at only 220 V instead of 285 V because the reservoir capacitor C1560a $(200 \mu \mathrm{~F})$ had gone completely open-circuit. M.D.

Grundig 8610

This was one of the last models to use a thyristor line output stage. It has an in-line gun tube and an EW diode modulator module. The symptoms were bends in the centre of the raster, similar to a hum effect, and not quite enough width. After no more than fifteen minutes the bends went and just enough width was obtained - none of the adjustments gave any more width. No voltage readings or scope displays gave any clues, except that the output from the EW module seemed to be a little on the low side. A great many things were tried before we discovered that the culprit was the +D (36 V) supply reservoir capacitor. Obvious when you realise that the + D supply to the field output stage is derived from the EW modulator circuit, but not at the time!
L.I.

ITT CVC45/1 Chassis

"Dead" said the job card but on switching the set off it momentarily came to life, suggesting that the line timebase was all right. A replacement power supply panel was to hand and fitting this restored normal operation. The offending item turned out to be R809 (220k Ω) in the trip circuit: it was completely open-circuit. K.H.-G.S.

Hitachi/GEC NP8CQ Chassis

Intermittent chroma on one of these sets was traced to an uncropped lead on R620 on the main panel - it's part of the field flyback pulse coupling network. The rear plastic panel support retaining strip was pressing against the lead, causing it to short intermittently to jumper lead J723.

K.H.-G.S.

Thorn TX9 Chassis

This receiver (PC 1040 main panel) was dead and on inspection the mains input filter choke L64 was found to be short-circuit. There was also some evidence of burning. Replacement of the choke revived the set but after a short soak test it would intermittently go dead. The trouble was found to be due to the mains rectifier thyristor CSR1
(T9053V): freezing it brought the set back to life, heat it and the set went dead again. The only other snag was a badly fitting back cover: those top turnbuckles are something of a nuisance.
K.H.-G.S.

Pye 725/735 Series Chassis

The main complaint was that the sound level fluctuated, especially at low settings of the volume control. The field engineer had already checked the plug/socket connections at the front control subpanel. Movement of the volume control at low settings produced the fault so a replacement was fitted. On soak test the fault was still found to be present however. A TBA750Q intercarrier sound/audio amplifier i.c. is used, with the slider of the d.c. volume control linked to pin 13 which is decoupled by C238 $(10 \mu \mathrm{~F})$. This electrolytic gave a leaky reading, replacement providing a complete cure. After replacing the usual first anode supply feed resistors and a couple of the presets, which had fallen in value, the overall picture quality was much improved.
K.H.-G.S.

Thorn TX10 Chassis

The fault with this set was e.h.t. but no raster. The tube's first anode voltages at pins 5, 7 and 11 on the base panel were correct but the voltages at all three cathodes were high at 200 V instead of $120-150 \mathrm{~V}$. The voltages at the emitters of TR651/2/3 in the RGB output stages were all higher than the correct 2.2 V and it turned out that the green LED D657, which should link them to chassis, was open-circuit. This LED acts as a voltage stabilizer.
K.H.-G.S.

GEC C2110 Series

The complaint was intermittent colour. Fortunately the colour was absent when we switched on. Our luck soon vanished however when the colour suddenly returned a few seconds later. Then it disappeared again.

Attention was directed to the small subpanel that bridges the upper and lower decoder panels. Slight movement of this made the chroma come and go and examination revealed dry-joints at both ends of C251 $(0 \cdot 33 \mu \mathrm{~F})$, which is connected to pin 13 of the TBA540Q reference oscillator i.c. In fact the capacitor could be pulled from the panel with very little effort. Thinking back, we came across the same fault some years ago. The capacitor in question is a green rectangular block type bearing the name "FILMCAP".
K.H.-G.S.

Thorn TX9 Chassis

We've encountered two cases of an effect not unlike sound-on-vision on receivers fitted with this chassis. When the first one came along a fault on the i.f. subpanel was suspected and a replacement board cleared the fault. The culprit was traced with the help of a can of freezer. In both cases it turned out to be C38 $(0 \cdot 22 \mu \mathrm{~F})$ in the a.g.c. circuit. This capacitor sits directly below the SAWF.
K.H.-G.S.

Approaches to TV Servicing: Quick Steps

S. Simon

Last month in this series we discussed the ITT CVC20 chassis. This time we propose to dwell for a little while on the later CVC800-CVC801 chassis employed in models such as the CT0500 etc. But before doing so we should make good an unforgivable omission that occurred in the original Approaches article which dealt with several chassis including the Philips G11. Sorry. Whenever a set fitted with this chassis is serviced the colour of the $470 \mu \mathrm{~F}$ h.t. reservoir capacitor C4029 should be checked - it's at the upper centre of the lower right power board. If it's red or green, remove it (three tags). Examine the rivets of these tags. If they appear at all blackened, fit a new capacitor one with larger rivets. If there's no sign that arcing has occurred, apply a screwdriver blade to the rivet and hit the screwdriver's handle with a heavy object such as a hammer to indent the rivet on to the tag. Only the red and unmarked tags require this treatment - the yellow tag is unused. It's essential that the rivet makes good contact with the tag as arcing here can and does harm the BU208A line output transistor, the TDA2600 field timebase chip and the tube. Most of you will already know about this, but there may be one or two who don't.

ITT CVC800/CVC801 CHASSIS

The CVC800/CVC801 chassis employ a switch-mode power supply that can cause some headaches - and severe depression - on occasions. Many factors can cause complete shut down, and some can be difficult to trace. Routine steps to take are to check that the mains supply is reaching the bridge rectifier and that this is producing some 300 V or so across its reservoir capacitor C658 $(220 \mu \mathrm{~F})$. This voltage should be present at the collector (body) of the BU126 chopper transistor (right side front). The similar looking transistor farther to the rear of the panel is the BU208 line output transistor, which is driven by a secondary winding on the chopper transformer. The BU126 is driven by a small transformer whose secondary winding is connected between its base and emitter. The emitter of the BU126 is also connected to pin A of the chopper transformer. 110 V should be present at the output from this transformer, pin C. This output is taken to a point marked +110 V on the lower part of the board.

Now note this. It's marked +110 V and that's what it should be. If a reverse or pulsed reading is obtained, as it often is, it's most likely that the h.t. smoothing capacitor C757 is open-circuit. This is a $10 \mu \mathrm{~F}$ electrolytic and one of 450 V rating should be fitted as a replacement. Failure of this capacitor is becoming quite common on these and several related ITT chassis that use a switch-mode power supply.

If on the other hand the voltage is d.c. but very low, remove the scan coils plug (the one with the loop on it) from the horizontal panel and try again. This action disconnects the h.t. supply to the line output stage. If the 110 V supply is then restored, check for shorts in the line output stage, starting with the BU208 output transistor. This simple line of attack will be found to be successful in a surprising number of cases.

In cases where the 300 V supply is present at the body of
the BU126 but there's no output at the +110 V point, the condition of the driver stage should be checked. Look for the driver transistor T750, a BC546A, just below the small transformer it drives. The 300 V line supplies its collector via the $33 \mathrm{k} \Omega$ wirewound resistor R752. Check these items carefully before continuing the search by checking the transistors, diodes etc. in the rest of the switch-mode power supply.

We cannot speak with any authority about the rest of these sets simply because we've not had any troubles worth speaking about. These few remarks should help to clear up most faults in the power supply however. Remember that $10 \mu \mathrm{~F}$ electrolytic.

THORN 3000/3500 CHASSIS

The first switch-mode power supply to appear in a UK TV set was that in the Thorn 3000 (-3500 series chassis. Many of these sets are still giving sterling service. Although they are often considered to be unworthy of serious servicing attention, the condition of the tube should really be the deciding factor. The power supply and line timebase panels are available at very reasonable prices if a repair proves too difficult or time consuming. A replacement panel can be fitted if held in stock, the repair being completed when time permits.

Several items on an old power supply panel may need to be replaced. Neglect to do so may cause trouble later being a lazy person myself, I know only too well what the penalties are. Reverse the panel and examine the condition of the large multisection main electrolytic can. Bumps and corrosion are a sure sign of trouble to come and one or two of the tags may be found badly burnt. Replace this item then turn the unit over and examine the $1,000 \mu \mathrm{~F}, 63 \mathrm{~V}$ electrolytic at the front end. All too often this is responsible for failure to start up. A voltmeter connected to the positive tag should record 45 V . If the electrolytic has dried up a lower voltage reading will be obtained and this will prevent the chopper firing.

Small Picture

Quite often the fault is a small picture with the bottom folded up. This may be intermittent. The voltage at the h.t. fuse (should be 60 V) may be low when the fault occurs. One common cause of this is often overlooked. The large preset (red) at the rear of the power supply is the main voltage control. To the right of it there's a small preset. This is the item to replace (R631). It's in series with the main preset.

Serrated Picture

Other, smaller electrolytics on the power supply panel can become open-circuit or partially open-circuit. The $140 \mu \mathrm{~F}, 75 \mathrm{~V}$ h.t. smoothing capacitor C619 for example. This causes serrated verticals. A word of warning. Don't just slap a similar capacitor across the suspect while the set is working unless the test capacitor is already charged: switch the set off, wire the test capacitor across the suspect
and then switch on to note the effect. If the serrations are still present, move over to the line timebase panel where you may well find that the core of L502 has dropped out on to the decoder panel. If it has dropped out and can be found, refit it and seal it in. No more dropouts.

No HT

If there's a high voltage at the body of the chopper transistor but nothing at the h.t. fuse (F 603) proceed as follows. First check the voltage at the right side tag of the rear upper "dropper" resistor. The reading should be 12 V . If the reading is very low, check at the second tag from the right where you should find 45 V . If this is also low, remember what we said about the $1,000 \mu \mathrm{~F}$ electrolytic (C607). If however the voltage at the inner tag is approximately correct but the voltage at the right side tag is low, the dropper section concerned (R607, 100) should be running hot. If it's cold, waste no time - fit a new 100Ω section. Nearly always however you'll find it running hot, the usual cause being an emitter-collector short in the chopper driver transistor VT605 (E1222) under the left side with a heatsink on it. There are other possibilities, including the dynamic trip, but VT605 is the usual cause.
Attention may need to be paid to the diode in series with VT605's emitter. This can go open-circuit, as a result of which VT605 ceases to conduct - thus leaving the right side tag of the dropper at a higher than normal voltage. The voltage at this tag is therefore a key check.

The second thing to do is to ensure that the 30 V line is present and correct. Check the 30 V regulator transistor VT601 (front right) and its base and emitter tags which may be dry-jointed. Still at the right front, note the diode in front of the $400 \mu \mathrm{~F}$ electrolytic - the 30 V zener diode W605. There should be 30 V at its cathode and 0.7 V at its' anode. This 0.7 V is part of the start-up cycle: it switches the delay transistor VT602 (BC184LC) on. This item is another suspect that will often be found faulty.

Another essential for the chopper circuit to get going is pulses from the line oscillator. Hence the power supply cannot be checked on its own: you need the upper right side line timebase panel if a test rig is being used.

THORN 8000 SERIES

The following notes should prove helpful when servicing the $8000,8000 \mathrm{~A}, 8500$ and 8800 chassis. We must start with an item found only in the 8000 and 8000 A - the extreme left side "dropper", a black wirewound vertically mounted. The one in the 8000 has two main sections. The bottom consists of two 6Ω elements to make up the 12Ω surge limiter required at the input to the thyristor (via a BY127 diode). The upper 47Ω section is the h.t. smoothing resistor. In the event of a "no results" condition, start at the dropper. Check for a.c. at the bottom tags. It's very common to find that one of the 6Ω sections is opencircuit. The temptation to transfer the tag connections and use only the active 6Ω section must be resisted. The makers intended 12Ω and 12Ω it should be. Well perhaps 10Ω can be permitted, but not less. A $10 \Omega, 17 \mathrm{~W}$ wirewound resistor could be used to bridge the faulty sections or a 4.7Ω resistor to shunt the open-circuit section only.

The upper 47Ω section in the 8000 can give trouble, but the stress is more on the lower 6Ω sections. We mentioned the BY127 diode in series with the BRC4443
thyristor. This diode is suspect, also its contact with the panel - this will often be found burnt away. When a BRC4444 thyristor is fitted you may find that the BY127 has been omitted.

The 8500 and 8800 chassis don't have the 12Ω dropper section. A VA1104 thermistor is used instead as the surge limiter. This device tends to corrode and fall apart, leaving the thyristor with no a.c. supply.

One may ask why no h.t. should result in no sound? It's because in these chassis the MJE340 sound output transistor is supplied from the h.t. line, with transformer coupling to the speaker. This means that the transistor must be a high-voltage type, MJE340 or equivalent.

Whereas the power panel is fitted under the tube, in the centre, in the 8000 and 8000 A , the panel is at the left side in the 8500 and 8800 . This makes access much easier.

Also at the top left is the a.c. input panel which carries the fuses, l.t. rectifiers, mains filter capacitor C801 and the degaussing components. If the mains fuse F802 has failed and is blackened, suspect C801 - disconnect one end to check. In some cases its appearance leaves no doubt. If there's no a.c. supply at the fuse, check at the on/off switch and if the supply is present here move over to the rear centre red button cutout: an overload, e.g. a shortcircuit line output transistor (VT401), will trip this rather than blow the fuse.

EHT but No Picture

If the symptoms are e.h.t. rustle but no picture, with normal sound, the first test to make is at the tube base to ascertain whether the first anode supplies are present. Their absence is the usual cause of these symptoms. Check the rectifier circuit on the lower left of the right side timebase panel. The small $3.3 \mathrm{k} \Omega$ resistor (R 402) in series with the BY184 rectifier diode may present a scorched appearance and when measured prove to be open-circuit. The most frequent cause of this is that the $0.047 \mu \mathrm{~F}$ reservoir capacitor C 401 , to the right, has gone short-circuit. A replacement must be rated at 1 kV at least, the capacitance being of secondary importance.

Line Output Stage Hint

One last hint on these chassis. When you're faced with an inactive line output stage though the line oscillator and driver stages are working, don't immediately jump for the line output transistor. Check it by all means, but pay particular attention to the reading between the base and emitter. This should be very low both ways round due to the low value resistors and the driver transformer's secondary winding. These resistors may need to be checked.

THORN 9000 CHASSIS

The 9000 chassis was discussed in some detail in our last servicing series (see the May 1983 issue), so we'll make these notes very brief and to the point. Apart from any minor routine repairs that may be necessary, say to the switch selector unit where cleaning may be required, the more troublesome repairs centre around the power supply and the tripler.

The Syclops Circuit

There are two items to check first in the power supply. One is the centre section Syclops transistor VT701
(R2540) which lives in its heatsink house. The great thing to remember is that the base and emitter pins are not soldered but clip into the holder, the collector being secured by two screws. If the transistor hasn't gone shortcircuit (this blows the mains fuse) try removing it then bending the base and emitter pins slightly to improve their contact before refitting it. Screwed to the side of the heatsink housing is the second villain, the SKE4F diode which is connected in series with VT701. It will often be found short- or possibly open-circuit. A replacement for this is the SKE5F3.10.

A general check on the diodes on the centre section usually pays dividends, particularly on the right side where one of the EW modulator diodes W711/W712 may be found decomposed. A BYX71-600 may be used as the replacement, neatly soldered under the panel, observing the polarity.

Weak Points

These models tend to develop dry-joints under the rear of the main panel, particularly in the region of the the interconnecting plugs, scan coils etc. The other weak point is the e.h.t. tripler, which is screwed to the upper metal support strut. This proximity of 25 kV to a chassis member leads to all too frequent breakdown of the insulation, the consequent arcing and sparking leaving one in little doubt as to the source of the trouble.

THORN 9600 CHASSIS

This unwise siting of the tripler was rectified in the later $110^{\circ} 9600$ chassis. Failure of the tripler is far less common in this chassis. The weak link here is diode W810 in the EW modulator circuit. Again a BYX71-600 can be used.

THORN 9800 CHASSIS

The 9800 chassis is a very close relative of the earlier 8800 chassis: it has similar panels and a 90° delta-gun tube. There is one important difference. The 45 V supply is derived from the line output transformer instead of from the mains. As a result, a start-up circuit is required. This makes a difference to the fault-finding routine.

Start by listening carefully at the moment of switching on. If the e.h.t. rustles up momentarily or a pulse of sound is heard one knows that the start-up circuit is working. If there's no noise other than the degaussing buzz, the start-up circuit should receive attention. For this purpose an external source of 24 V is most useful. First check the mains input and make sure that some 200 V is present at the anode of the thyristor (via diode W704 which should be carefully checked for condition, soldering etc. if necessary). Then identify socket 4 on the decoder panel and apply the external 24 V supply to pin 5 (mauve lead), negative to chassis of course. If the receiver fires up and continues to work when the external supply is disconnected the start-up circuit is at fault and should be carefully checked. You may well find that R814 (470) on the right side of the upper left degaussing/start-up panel is open-circuit.

Unlike the 8800 , the 9800 chassis has a separate line output stage panel with a diode-split line output transformer. As with the 9000 series chassis, dry-joints in this area can be a problem. Lift the panel to gain access to the connector etc. A dry-joint on connection 851-10 is the usual cause of field collapse.

next month in

- FIELD TIMEBASES SURVEYED

The start of a hew series in which field timebases through the π ' era will be reviewed - beginning appropriately enough with the electrostatic deflection system used at the start of TV broadcasting in 1936 The aim is to bring out the main requirements for linear field deflection and the ways in which these are met in practice. From valves the series will progress through transistors to the i.c. circuits widely used at present. A surprisinc variety of circuits have been used and there are many small but important points of detail to note. The authors are Stanley Amos and Eugene Trundle.

G11 FAULT-FINDING GUIDE

Dennis Apple recently provided much useful informa ticn on the Ph lips GB chassis (July issue). He's now put together an extensive fault-finding guide on the G11 chassis. The information is presented in tabular form for easy reference to symptoms and causes.

TV LINE SELECTOR UNIT

Many lower-priced scopes have good wideband deflection systems tout poor triggering facilities. This is particularly a disadvantage if you want to examine the insertion test siçnals transmitted during the field flyback period. This 」nit gives good TV triggering and can also provide X-scan and bright-up signals.

TEST REPORT

Eugene Trundle reviews an unusual soldering iron v/hose very small bit can generate a great deal of heat - the dissipetion capability is around $70-80 \mathrm{~W}$. It's versatile and easy to use once the method of heat control has been mastered.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

An Approach to Adding Teletext

Keith Cummins

I recently decided to try to interface a Tifax XM11 module and wired keypad with a Sony Model KV1820UB. The exercise was successful and the majority of this article relates to it. Consideration will also however be given to the general problems that such interfacing raises, in the hope of assisting readers first to assess the viability of a proposed modification and secondly to carry it out successfully.

In my case the Sony set with its Trinitron tube was working reliably, producing a well-converged picture regular readers may recall the $\mathrm{GCS} /$ transistor line output stage modification I carried out in this set (see March 1985 issue). The set seemed to be a more suitable candidate for teletext conversion than my other one (a B and O set) for reasons that will become clearer later.

The Tifax module and wired remote control keypad were obtained from Manor Supplies. Examination of the keypad showed that in addition to the teletext controls there are four channel selector buttons and a sound muting facility. This led to a knock-on situation: in addition to incorporating teletext it seemed sensible to build in remote channel selection and sound muting. There seemed little point in having a remote control keypad some of whose controls did nothing. The result of this has been the design of a relatively simple remote channel selection facility and sound muting. This part can stand alone if required, not having to be part of the complete teletext modification.

In order to assess whether or not a proposed modification will be viable we have to carry out a feasibility study which is a nice way of saying engage brain before grabbing the sidecutters and soldering iron. This feasibility study may involve a lot of thought before anything is done, the objects being (a) to identify the problems and (b) to see whether there are viable solutions. It could happen for example that there isn't a viable solution to a problem that has been identified: far better to think this through in the first place rather than do a lot of work on something that won't yield satisfactory results.

Tube Drive

Take for example a hybrid colour set with colourdifference tube drive (my B and O set fell into this category). The colour-difference output stages that drive the tube's grids must provide a large voltage swing, which is incompatible with a wide bandwidth. For ordinary colour reception this doesn't matter since the colourdifference signals are of reduced bandwidth anyway - the tube gets its high-definition information from the fullbandwidth luminance signal that drives the cathodes.

If we tried to use the colour-difference output stages for teletext the reduced bandwidth would result in very poor text definition, though the graphics wouldn't be too bad. Is there an answer? There's usually a solution of some sort to a problem. In this case it would involve changing over to RGB tube drive. This would mean dematrixing the colour-difference and luminance information and designing new output stages. It could be done, but what a tremendous amount of work it would involve! It just
wouldn't be worth it, particularly if the existing set was working very nicely thank you. Further, unless one is prepared to carry out careful design and testing it's possible that the end result would be a TV set that gave results inferior to those before the modification was carried out.

The Sony Trinitron tube requires RGB drive - there are separate cathode connections but only a single grid connection. As a result Sony sets look interesting from the point of view of teletext modification - because of their tube drive arrangements and good convergence, which is especially important with a text display.

Other Receiver Considerations

From the channel selection point of view the KV1820UB uses a varicap tuner, which lends itself to remote control operation. This is another point in the set's favour.

Further investigation is needed however before we can feel confident that the set is a "good bet". There are other aspects to be considered, some of which can still leave us taking calculated risks.

One such factor is the amplitude and phase response of the i.f. strip - if unsatisfactory, the result could be reduced eyeheight and the risk of data corruption. It's not easy to assess these factors by looking at a test card: a receiver whose i.f. characteristics are unsuitable for text can still produce a respectable picture.

In modern sets the performance in this area is maintained by the use of a SAW i.f. bandpass filter and synchronous demodulation. A look at the circuit diagram shows that the KV1820UB has conventional i.f. shaping. filters between the i.f. preamplifier and the main i.f. strip while demodulation is carried out in IC201 (CX100D) and the circuit doesn't tell us much about what goes on inside this device.

While it looked as if little could be done with the demodulator it was possible to hedge our bets in the selectivity circuits. One problem that affects the phase/

Fig. 1: RGB output stage circuits, Sony Model KV1820UB.
amplitude characteristic adversely is asymmetry in the slope of the i.f. response around the 39.5 MHz vision carrier frequency. The slope is a necessary part of satisfactory vestigial sideband reception, but it often slopes away too quickly from the ideal shape because of the presence of the 41.5 MHz trap which was included to prevent breakthrough of the old channel 1 sound carrier. Since 405 -line transmissions have now ceased there's no need for this trap which can thus be removed. The circuit used in the KV1820UB allows the trap to be removed completely without need for further modification. All that remains in circuit is a 6.8Ω resistor.

I decided to remove this trap (T204) before doing anything else. Removing the screening plate from the bottom of the PCB is a tedious task since it's soldered down in several places. Solder wick and patience are required. Once the plate is off it's easy to unsolder the trap can and remove it. The plate must then be replaced.

The Video Signal

Having done this I decided to take a look at the video waveform just ahead of the luminance delay line. The scope, a Philips 3215, was connected to the junction of L301/R314: by manipulation of the timebase speed and with the TV sync facility in use it was possible to look at the teletext lines. Use of the $\times 10$ expansion revealed pulses of approximately the right height (70 per cent of peak white) with rounding at the top and bottom. Between there was an area of fast transitions, indicating that the teletext decoder's data slicer shouldn't have much difficulty in seeing the difference between data highs and lows. My faith in this "poor man's eyeheight" check seems to have been justified, since error-free text reception was achieved over a wide range of input signal levels when the modifications had been completed. There was no need to alter the i.f. response and none of the i.f. adjustments were touched.

The above test also suggested a suitable point for extracting a video feed to drive the Tifax module, via an emitter-follower. The latter was incorporated on the interface panel. A positive-going video signal of between $1-2.7 \mathrm{~V}$ is required to drive the Tifax module: the nominal signal level at the point mentioned in the KV1820UB is 2.8 V , positive-going. All very nice and convenient. An emitter-follower with a level-control potentiometer as its emitter load is all that's needed. Had the signal level been too small, or inverted, it would have been necessary to include an amplifier (inverting or not as required) ahead of the emitter-follower.
Up to this point the modifications to the KV1820UB had been minimal - only the 41.5 MHz trap had been removed. It remained to work out what was needed (apart from the video feed) to interface the teletext decoder with the set.

Inserting the Text Signals

The next critical problem concerned substitution of the text information in place of the normal picture. Examination of the KV1820UB's circuit diagram showed that matrixing of the colour-difference and luminance signals takes place on the c.r.t. base pancl, on which the RGB output stages are mounted (panel C). The luminance signal is applied via drive potentiometers to the emitters of the RGB output transistors while the colour-difference signals are applied to their bases (see Fig. 1). As the drive
potentiometers vary the gain they also affect the amplification given to the signals at the bases. An important point is that while the colour-difference signals are bandwidth limited there's no bandwidth limiting in the RGB output stages themselves, whether looked at from the emilters or bases.

As a consequence of this we can consider using the text signals to drive the bases of the RGB output transistors while connecting their emitters to a d.c. reference level in the text mode. As the output stages are on their own board, it's a simple business to break into the interboard connections (connector CNA-9) to introduce the teletext interfacing. This arrangement was found to work well in practice.

Interfacing

Now to the details of the interfacing. The Tifax module's outputs are at TTL level (5V) and have to be translated to any other level that may be needed - the d.c. level on the colour-difference drive lines in the KV1820UB is typically 7 V . There are also TTL monochrome and blanking signals that need level shifting. Furthermore it's a good idea to buffer the Tifax module to reduce the chances of damage due to calamities elsewhere - including such horrors as flashovers.

The requirements of the interfacing unit thus become clearer. We have to buffer the digital signals; switch between digital and analogue (ordinary picture) video; and feed the selected signals as drives to the RGB output stages.

Simple switches or maybe even relays could be used to switch between the digital and analogue signals were it not for the fact that the switching has to be controlled by the blanking signal, which comes from the Tifax module. One of the facilities provided by the module is boxed display of subtitles or newsflashes. For this purpose it's necessary to cut a hole or holes in the picture and insert the text. This involves blanking on a line-by-line basis, which calls for fast electronic switching. Relays and suchlike are out: solid-state analogue gates are in! Now analogue gates are not very tolerant of voltage transients, so to be careful when taking their outputs to the c.r.t. drive circuits it's advisable to include emitter-follower buffer stages to protect against the transients that occur with tube flashovers.

In the particular case under consideration it's also necessary in the text mode to switch out the luminance signal and substitute for it a d.c. voltage. Variation of this d.c. voltage provides control over the text background level.

Tifax Module Connections

Before describing the interface board in detail we should first consider the Tifax module's needs.

The Tifax module has pins marked 1 to 22 (see Table 1). There is no connection to pin 9 while pins 11 and 14 are intended for polarising key positioning. Pins 1 to 8 connect to the keypad. When the equipment is first switched on, pins 3 and 8 have to be linked temporarily to "initialise" the decoder in the picture mode.

There are two 0 V connections and two 5 V supplies are required, one for the digital circuits and the other, with extra smoothing, for the analogue signal processing. There are five outputs, RGB, monochrome and blanking, and inputs for the video and for a line pulse.

Fig. 2: Circuit of the keypad.

It's possible for the Tifax module to consume nearly 1 A at 5 V . Since it's not easy to provide such a supply in a TV set unless this is done at the initial design stage a separate power supply forms part of the interfacing exercise. The same unit provides the 12 V supply required by the analogue and some digital parts of the interface board and by the separate channel selector board.

The keypad operates by either cross-connecting the control lines from the Tifax module in a 4×4 matrix or by pulling lines down to 0 V (for audio control and channel selection) - see Fig. 2.

The interface board has four i.c.s, six transistors and 26 connections. These are listed in Table 2.

Interfacing Circuit

The circuit of the interface board is shown in Fig. 3. We'll start by considering the situation during normal picture reception, when the board is "transparent" to the TV set's signals and the set behaves as though nothing had been done to it.

The three colour-difference signals come on to the board at connections 1, 2 and 3 and pass via the 4053 triple changeover analogue switch chip IC2 to the three emitter-followers $\operatorname{Tr} 2, \mathrm{Tr} 3$ and $\operatorname{Tr} 4$. They leave the board at connections 12,13 and 14 , going to the bases of the RGB output transistors. The d.c. level is maintained, except for an approximately 0.6 V offset introduced by the base-emitter voltage difference of the three emitter-follower transistors. The signals pass through the three analogue switches because the switching bus line is high. This switching bus is the key to the changeover process and we'll give more details when we come to the text mode.

The luminance signal comes on to the board at connection 9 and passes via one section of a second 4053 (IC3) to emitter-follower Tr5. This is a pnp device since it needs to be "on its head" to supply the emitters of the RGB output transistors. Diode D4 is included to provide flashover protection. Note that the combination $\mathrm{Tr} 5 / \mathrm{D} 4$ performs the same function as Q305/D303 in the KV1820UB.
So when the switching bus is high the interface is transparent to picture video and in effect we've done nothing - the TV picture appears as normal.

When we come to viewing text we first need to know the normal conditions of the Tifax module's outputs. The three RGB and the monochrome outputs are all opencollectors which pull active low, i.e. they are high until something happens. The blanking output is normally low and goes high when blanking is required.
You'll see that the outputs from the Tifax module are returned to the 5 V line via resistors $\mathrm{R} 1-5$. The outputs are also connected to five of the inputs of the 7416 TTL hex inverter buffer chip 1 C 1 . This chip has open-collector outputs that can withstand 15 V , though the chip is operated from a 5 V supply.

When the" user presses "text" on the handset the blanking input at connection 8 goes high and pin 12 of IC1 goes low. This is the switching bus line, which is otherwise held at 12 V via R11. When the switching bus line goes low the states of the four analogue switches in IC2 change over. As a result $\operatorname{Tr} 2 / 3 / 4$ are linked to pins $2 / 4 / 6$ of IC 1 instead of to input connections $1 / 2 / 3$. As the outputs from ICl try to rise to 12 V they are caught by diodes $\mathrm{D} 1 / 2 / 3$ whose cathodes are taken to the pnp emitter-follower Tr 1 . This transistor's base voltage is set by VR2, which can be varied to determine how far the outputs from IC1 are allowed to move in the positive direction. By this means the amplitude of the text signal drive to the RGB output stages is adjusted, i.e. VR2 sets the text signal brightness. It's a preset control since there's no need to adjust the text display once it has been set up satisfactorily.

In the text mode the luminance signal is disconnected by its analogue switch (in IC3). In its place a d.c. level set by VR1 is introduced. This is the text background control which sets the pedestal level on which the text signal sits in the video stages. For initial setting up test points 1 and 2 are linked, forcing the switching bus low. With no text present VR1 can be set for a true black background in readiness for the text when it appears.

The switching process, including the creation of subtitle boxes as mentioned earlier, is under the control of the blanking signal. The Tifax decoder also has a "mix" mode in which text is superimposed upon the picture. In this mode the monochrome signal, after passing through two inverting buffer stages to get its polarity right, cuts character shaped holes in the main picture. Because the Tifax module's RGB outputs all go low together in this mode the result is an inlay of monochrome text and graphics. Personally I don't like this mode very much, preferring the picture or text on its own.

Note that this interface arrangement allows the set's picture controls to work normally in the picture mode: they have no control over the text display, which is preset as described above.

Rest of the Circuitry

Now to the other circuitry on the interface board. The Tifax module needs a carefully smoothed 5 V supply for its analogue circuits. This is provided by the decoupling

Fig. 3: Interface board circuit.
network R6, C 1 which is fed from the logic 5 V supply.
Buffering and level adjustment of the video drive to the Tifax module are provided by the emitter-follower Trb. The video input comes from board A in the receiver as described earlier - see Fig. 4. The transistor's base is biased positively by the standing voltage of around 4 V . R25 and C7 filter the supply to this transistor. Screened lead is used to link the video to and from the interface board.

A latch circuit using two sections of a 4011 quad dual NAND gate i.c. to control an analogue switch is used for audio muting. This switch can handle a.f. or d.c. audio level control. The KV1820UB uses a d.c. volume control which sets the voltage at pin 13 of the CX095C intercarrier sound chip IC203. The analogue switch passes either the d.c. voltage corresponding to the required volume, i.e. the voltage from the volume control, or 0 V which corresponds with zero volume. Lines from the keypad set the latch one way or the other to give audio enable or mute. In common with all latch circuits of this type the circuit could settle in either of its two states at switch on. To overcome this difficulty an initialisation circuit is used to set it in the enable condition when the set is switched on.
As mentioned earlier, the Tifax module also needs initialising at switch on. This is done by momentarily linking keypad input 3 to keypad strobe 4 to ensure that
the TV set starts off in the picture mode - otherwise there's a possibility that it would start off in the mix mode. The last remaining analogue switch is used to carry out this procedure. It's controlled by a Schmitt trigger circuit that uses the two remaining parts of the 4011 chip as inverters. At switch on C6 is discharged: it then charges to 12 V via R26. While it's charging, pin 3 of IC4 is high, closing the analogue switch to initialise the Tifax module. Pin 4 of the i.c. is low, taking pin 9 low via D6 to set the audio mute latch in the audio enabled position. The output from pin 4 also leaves the panel at connection 17, passing to the channel selector board which will be described later. When C6 has charged to the level at which the gate connected to R27 and R32 starts to invert, the circuit rapidly switches to its opposite state because of the positive feedback via R32. Initialisation of the Tifax module and the audio mute circuit is thus achieved and these circuits are ready to accept commands from the keypad. At switch off C6 discharges via D5 into the collapsing 12 V line.

C 4 decouples the 12 V line and C 8 the 5 V line.

Channel Selector Circuit

The circuit of the remote channel selection board is shown in Fig. 5. Its main components are a quad latch

Fig. 4: Method of tapping the video from board A in the Sony Model KV1820UB.
(IC2), a four-input dual NAND gate (IC1) and four relays with their drivers. The function of the channel selector is to remember which channel selection button on the keypad has been pressed. This is achieved as follows.

The four channel selection lines from the keypad are taken to data inputs D1-4 of the 4042 quad latch IC2. These lines will be at 12 V , via R3-6, until one is taken to 0 V by pressing one of the channel selector buttons. The four lines are also connected to the four inputs of one of the NAND gates. When a button is pressed, the appropriate data line goes low. Let's say that the BBC-1 button has been pressed. Thus pin 4 of IC2 goes low and because one of its inputs has gone low pin 13 of IC1 goes high. This latter excursion is differentiated by C3 and R8 and used to clock IC2 via R7. When the button is released, the D1 latch has clocked in a low while the other three latches have clocked in highs. The outputs (inverted-Q) at pins 3/9/ $12 / 15$ are applied to the bases of the relay driver transistors $\operatorname{Tr} 1-4$. These outputs go high when the clocked-in data is low. Thus having pressed the BBC-1 button we ensure that the output at pin 3 is high. Tr4 then switches
on, closing RL4. If another button is pressed the pattern of clocking three highs and a low into IC2 is changed. The appropriate output pin goes high and the associated relay operates.

Initialisation is used to ensure that the same channel, BBC-1, is selected at switch on. When the system has been powered and can accept a clock pulse the back edge of the initialisation pulse from the interface board is coupled to the other half of ICl , which is used as a simple inverter, via the differentiating network C2, R2 and R1. This positive-going edge produces a momentary low at pin 1 , forcing a low on to the BBC-1 select line via D1. Thus the set always comes on tuned to $\mathrm{BBC}-1$.

The four relays used are of the reed type - those in the prototype had a resistance of $1 \mathrm{k} \Omega$. Quenching diodes D 2 D5 are fitted to limit the back-e.m.f. when the driver transistors switch off.

One side of the relay contacts is taken to the local/ remote switch SW1 which enables either the keypad or the original channel selector buttons to be used. The other sides of the relay contacts go direct to the sliders of the tuning potentiometers on their PCB. The system could be extended to control more channels by using say two 4042 chips and a common clock generator with an eight-input NAND gate (4068). Another gate or maybe a transistor could be used for initialisation.

The Power Supply

The last bit of circuitry is the power supply, which is shown in Fig. 6. This is very simple, using a transformer with a $9-0-9 \mathrm{~V}$ secondary winding rated at 1 A . Its primary winding is connected to the switched 240 V supply from the set's on/off switch. One half of the secondary winding feeds a bridge rectifier whose reservoir capacitor is C2. This is followed by a 78 H 055 V regulator, a chunky device with very low ripple on its output - a prime requirement with the Tifax module. It's very much underrun in this application and should therefore prove very reliable. The

Fig. 5: Remote channel selector circuit.

Table 1: Tifax module connections

Pin	Connected to	Coded
1	Keypad input 1	Blue
2	Keypad input 4	Grey
3	Keypad input 3 and pin 15, interface board	Light green
4	Keypad input 2	Pink
5	Keypad strobe 1	Red/blue
6	Keypad strobe 2	White
7	Keypad strobe 3	Mauve
8	Keypad strobe 4 and pin 16, interface board	Orange
9	No connection	
10	Pin 10, interface board (analogue 5V)	Blue
11	Polarising key connection - not used	
12	Chassis	Black
13	Chassis	Black
14	As 11	
15	Line pulse from TV set	Screened
16	Pin 24, interface board (video input)	Screened
17	Pin 4, interface board (blue output)	Blue
18	Pin 5, interface board (green output)	Green
19	Pin 6, interface board (red output)	Red
20	Pin 7, interface board (mono output)	White
21	Pin 8, interface board (blanking output)	Brown
22	Pin 4 power supply/pin 18 interface board (logic 5V)	Red

Tifax module is intolerant of excessive voltage and could end up as a write-off in the event of regulator failure. Note that the 78 H 05 is in a TO3 can.

Some readers may not have come across the crafty use of the other half of the secondary winding with a half-

Table 2: Interface board connections.

12 Pin 2, KV1820UB board C13 Pin 1, KV1820UB board C

15 Pin 3, Tifax module
16 Pin 8, Tifax module
16 Pin 8, Tifax module
17 Pin 6, ch. select board
18 Pin 22, Tifax module/pin 4 power supply (logic 5V)
Keypad
Slider of TV set's volume control CNA-1 pin 2, KV1820UB
Keypad
Junction L301/R301 on board A, KV1820UB
Pin 16, Tifax module
Chassis
Pin 4, KV1820UB board C

Coded
-
Plain White
Blue
Green
Red
White
Brown
Blue
Orange

Blue

Green
Red
Light green
Orange
Pink
Red
Green/red

Green
Screened
Screened
Black
White

Note: Some of the colour codes are suggestions only.

Fig. 6: Circuit of the power supply for the Tifax decoder and the interface and remote channel selector panels.

Fig. 7: Recommended earthing arrangements.
wave rectifier (D1) as a means of getting 12 V . If you think about what happens in a bridge rectifier you will note that one of the diodes completes the path to chassis while the top end of the secondary is at 18 V r.m.s. above 0 V . This enables the half-wave rectifier to work: because of the low load on the 12 V supply, half-wave rectification is acceptable. In this case Cl is the reservoir capacitor which is followed by a 7812 regulator. A word of warning if you're not familiar with these regulators: don't be tempted to leave out any of the decouplers $\mathrm{C} 3 / 4 / 5 / 6$ - the devices can "hoot" and put noise on the lines. In extreme cases they can damage themselves and fail.

Construction

The power supply can be built on a small chassis which doubles up as a heatsink for the bridge rectifier and the regulators, then fitted in the vacant area behind the loudspeaker.

The earthing arrangements are important - see Fig. 7. Component layout is not critical, though common sense should prevail. The basic sketches (Fig. 8) show the positions of the main components. I used Veroboard but haven't given all the track cuts and component locations: constructors may well have their own ideas and different TV sets will need different shaped boards. My opinion is that if you need a detailed board layout you're not ready for this kind of exercise! Component lists are provided.

The Big Question

Could you fit teletext to your TV set? The foregoing remarks and technical details should help you to make up your mind. Knowledge of the pitfalls helps enormously if success is to be achieved. There is always an element of risk, and we have to live with this. If you don't want the teletext bit you can still use the remote channel selector

Fig. 8: Basic board layouts: (a) interface panel; (b) remote channel selector panel.
section on its own (provided you lay on local initialisation). Even the sound mute bit could come in useful somewhere.

Hopefully I've provided some ideas which you will find useful about interfacing. As I said at the beginning, the smart thing is to identify the problems carefully in the first place, to ensure that you don't come across a difficulty that makes it pointless to go any further with the exercise.

Testing

It's a good idea to test the separate assemblies on the bench before incorporating them in the TV set, applying
voltages to the inputs and seeing for example that the outputs follow. Likewise test the power supply on dummy load before installing it. Make sure that all the other parts work properly in the set before fitting the Tifax module. Remember that without the Tifax module fitted you'll have to pull the blanking input low to get the switching bus to go high and select pictures. Also, because of the d.c. offsets introduced by the interfacing circuitry, you may have to adjust the first anode voltages - VR705 in the KV1820UB. By tackling the job in this way I found that I had only one change to make after everything had been connected up - that was to change the values of R7-9 on the interface board from the original $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{k} \Omega$ to

Components list Channel selector board								
Interface board				Resistors		Semicond	ctor devices:	
					100k		4012	
				R2	1M	IC2	4042	
Resistors:		Capacitors		R3-R8	100k	D1-D5	1 N4148	
R1-R5	4.7k	C1	2200, 10 V	R9-R12	15k	Tr1-Tr4	BC109B	
R6	2.2, 1/2W	C2, C3	10, 16 V	R13-R16				
R7-R9	2.2k	C4	220, 16 V	All 0.3W 10\%		Hardware:		
R10	4.7 k	C5	10, 16 V	Capacitors: ${ }^{\text {10, }} 16 \mathrm{~V}$			ver	
R11	2.2k		4.7, 16 V tant			RL1-RL4		
R12, R13	470		220, 16 V	$\mathrm{C} 2, \mathrm{C} 3$	$10,16 \mathrm{~V}$ $0 \cdot 1,30 \mathrm{~V}$ ceramic		$12 \mathrm{~V}, 1 \mathrm{k}$ reed	
R14	10k	C8	47, 10 V				relays with	
R15	1.8k						single-make	
R16-R19	220	Semiconductor devices:				Veroboard, i.c. carriers, etc.		
R20	47	IC1	7416					
R21-R23	2.2 k	IC2, IC3	4053					
R24	470	IC4	4011	Power supply				
R25	47	D1-D6	1N4148					
R26	100k	$\begin{aligned} & \text { Tr1, Tr5 } \\ & \text { Tr3-4, Tr6 } \end{aligned}$	BC212L	Semiconductor devices:		Resistor: R1		
R27	1M		BC109B	IC1	7812		10, 0-3W, 10\%	
R28, R29	100k			IC2	78H05			
R30	47	Sundries: IC carriers, Veroboard, link wire, terminal pins		D1	1N4002			
R31	56			D2	2A bridge, 100 V			
R32	4.7 M				p.i.v.			
$0.3 \mathrm{~W} 10 \%$ unless otherwise indicated						Hardware:		
				Capacitors:			$200 \mathrm{~mA}, 20 \mathrm{~mm}$,	
				C1	2200, 25 V		slow fuse with	
Presets				C2	4700, 16V		carrier	
VR1	1k			C3	$0 \cdot 22,30 \mathrm{~V}$ ceramic	T1	Pri. 240 V a.c.;	
VR2	4.7 k			C4	1, 16 V tant		sec. 9-0-9V, 1A	
VR3	470			$\begin{aligned} & \text { C5 } \\ & \text { C6 } \end{aligned}$	0.47 , 30 V ceramic $0.1,30 \mathrm{~V}$ ceramic	Aluminiu wire, etc.	chassis/heatsink	

ensure a fast enough pull-up (the character verticals were a bit weak).
Care and planning cannot be stressed enough - imagine how you'd feel if the Teletext decoder blew up because of a power supply fault or a wrong connection!
Remember too that because of the use of a mains bridge rectifier in the KV1820UB the chassis is always live. So the use of a mains isolating transformer when testing is essential.

Teletext Operation

Finally, here are some "driving instructions" for the teletext facility.
(1) With the TV set running normally, select the channel appropriate to the service required, i.e. $\mathrm{BBC}-1$ for Ceefax pages from 100 , BBC-2 for Ceefax pages from 200 , ITV for Oracle pages from 100 and Ch. 4 for Oracle pages from 400 .
(2) Press the text button. The picture will disappear and a few random characters will appear on the screen.
(3) Press the page button, followed by the page number. To get the index pages, call up 100 on $\mathrm{BBC}-1,200$) on BBC-2 and 100 on either ITV or Ch. 4.
(4) Wait for the page to appear. When you want another page, press page again and enter the new number via the keypad. The page number called up appears at the top left-hand comer of the screen. When the required page is found the rolling numbers at the top centre of the screen stop, frozen at the number called up.
(5) To hold a page, press page but do not enter a new number. To continue a series of pages, re-enter the page number (the one at the top of the screen).
(6) The real-time clock at the top right of the screen gives an idea of the signal integrity. If it jumps and changes data, the signal is suspect. A good test of the system is the clockcracker page 391 on Oracle, 197 on Cecfax.
(7) Alarm clock. Ceefax provides an alarm clock facility on page 196. The time is entered using the 24 -hour clock, by pressing the time button after first selecting the page.

Fig. 9: Providing the line pulse required by the Tifax decoder.

Fig. 10: Positions of the extra panels and the Tifax module in the Sony Model KV1820UB.

Teletext on the Sony KV1820UB.

The Sony KV1820UB before (top) and after (bortom) adding teletext and remote channel selection/sound muting.

Instructions are given on the alarm clock page.
(8) A page can be called up at a particular time, e.g. the stock market figures which are constantly changing. First enter the page, then press time and enter the time via the keypad. Get back to the picture by pressing update. Upon returning at the specified time - by pressing text - the updated page will be found.
(9) Switching between text and picture is done by pressing the appropriately marked buttons.
(10) The reveal facility is labelled RD (reveal datd?) on the keypad This is used under instruction from the screen to give answers to puzzles, riddles, etc. - mainly on the fun pages.
(11) Missing characters or a garbage display of nonsense is generally caused by noisy or ghosty signals.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

VCR Clinic

Reports from Derek Snelling, Eugene Trundle, Les Grogan and Hugh Allison

Ferguson 3V29

This machine had an interesting fault. When switched on channel 1 would come up as normal but the machine would then select channel 8 and stay there no matter which programme button was pressed. Spillage was at first suspected, but a thorough clean of the presetter panel did no good. A check with the remote control unit then showed that channel change this way was also inoperative. Checks around the UPC1362C i.c. on the panel (IC201) proved that the oscillator was working and that pulses were present when the buttons were pushed, but a replacement chip made no difference. Further checks showed that the voltages at pins 2 and 3 were incorrect though the most significant difference was at pin 13 , which was low at 3 V . The voltage at this pin should normally be high at 9 V , going low when channel change is pressed on the remote control unit, initiating channel change and preventing further channel change until the pin goes high. Further investigation showed that diode D221 was leaky, a replacement curing the problem.
D.S.

Mitsubishi HS700

The complaint with a Mitsubishi HS700 was "smoking". When the machine was stripped down and set to play we found that the drum didn't revolve and that the HA11715 drive i.c. had gone up in smoke. A replacement was fitted and worked all right for a couple of days after which it went up in smoke again. This time when we replaced it the head went flat out - a few seconds of this would cause the i.c. to overheat and go up in smoke. The fault was traced to IC4P0 (TL082CP).
D.S.

Mitsubishi HS306

On the subject of fuse blowing (see VCRs and the Mains Supply, July), the rating of the mains fuses in the Mitsubishi HS306 has now been officially increased to 630 mA (previously 400 mA).
D.S.

Hitachi VT5000

This machine had nasty intermittent mechanical problems. It would sometimes refuse to come out of the pause mode, going to stop instead after a few seconds: in addition speed variations were sometimes present during record or playback. These things were all caused by the after-load switch $S 931$ - its contact was erratic. The speed variations occurred because of insufficient pinch roller pressure against the capstan, due in turn to the slightly premature termination of the loading process.
E.T.

Sony SLC9/F1

We were left with an excruciating noise from the threading mechanism after we'd sorted out the primary fault on one of these machines. It sounded exactly as if the teeth of a cog were catching against a stray cable. In these models a small threading motor belt drives a tight little assembly of gears whose final drive simultaneously turns the threading ring clockwise and the slider arm (carrying the pinch roller) anticlockwise. It's not easy to see down into this
lot, so we carefully dismantled the threading drive system. It looked all rigl:t, and no problems could be felt when we rotated things by hand.

Back together it all went, but the results were exactly the same as before. After a great deal of investigation the problem was traced to the loading pulley. This plastic member consists of a pulley and cog moulded in one piece. The cog section had a tiny radial crack between two teeth: the resultant irregular tooth spacing had caused the shocking rattle. Sony part no. X-3670-087-0.
E.T.

Sanyo VTC5000

The complaint with this machine was no colour. We so seldom encounter real colour faults on VCRs these days that we find ourselves a bit rusty when it comes to the principles of colour-under systems! It wasn't necessary to look very far in this case however. The fault was present in both record and playback, and we found that the signal from the sub-mixer in IC1006 (pin 30) was virtually nonexistent. Both the sub-mixer inputs were present and correct -4.43 MHz at pin 27 and the divided-by-eight voltage-controlled oscillator output at pin 26 . The voltages at pins $26-30$ of the i.c. were also correct, so what was happening to the mixer's $5 \cdot 12 \mathrm{MHz}$ output? It was getting lost in T1010, the first half of the bandpass filter. The tiny signal downstream at C1179 increased as we wound the core of T1010 right out: either this little transformer had developed short-circuit turns or the tiny resonant capacitor built into it had gone bad. Since the transformer is connected to the 9 V rail there was no effect on the voltage at pin 30 of the i.c. A replacement transformer (part no. $4-259 \mathrm{~V}-20800$) cured the problem.
E.T.

Sharp VC381

The motors used in Sharp VCRs have not distinguished themselves in the reliability stakes. A recent example occurred in a VC381 which suffered from intermittent failure to rewind and sporadic tape spillage during unthreading - when the supply spool would fail to take up the slack from the returning guide poles. These symptoms are often down to a worn reel idler, but on several occasions we've found that the reel motor has been at fault. The problem seems to be due to the design of the brushgear and commutator: its effect is to make the motor lazy and current hungry, sometimes to the point where one of the power supply fuses F901 or F902 (on panel PWB-0) blows. Miraculously, the reel motor drive chip IC706 seems to survive all this. A modified motor is now being supplied for replacement purposes by Sharp and its spares agents.
E.T.

Ferguson 3V29/30, JVC HR7200/7300

One or two mechanical faults are beginning to occur with some regularity now that these machines are three or so years old. A slipping loading belt can give rise to misleading symptoms: the machine will thread up (but not quite fully) on play, then after a few seconds of nothing signalwise unthreading will take place, the machine going to stop. The clue here is that the loading motor continues to
rotate when the tape is apparently fully laced. We replace the belt rather than boil it - the latter practice is confined to an establishment at Newark, Notts!

Another problem arises due to the end of loading switches not being activated as a result of the arerating lever being bogged down in old, stiff grease." "symptoms here are that the drum and capsta note me to life at switch on (regardless of whets a : acite is present) or the machine accepts a casset. a and loads the tape, only to crunch it when the pinch roller :omes in. The cure is fairly obvious: a good degrease and light oiling of the offending lever and its contact surfaces.
E.T.

Panasonic NV7200

The "shoulder" of the supply spool turntable is made in two sections in this machine, the lower part being held in place by a plastic retainer. Between the lower and upper sections there's a coil spring. We had a case recently where the two halves had parted company, with the result that in the play mode the table and reel jammed. Fast transport worked all right. Repair wasn't possible - a new "supply reel table unit" had to be ordered and fitted. E.T.

Ferguson 3V23/JVC HR7700

This machine would play back library tapes all right but with its own recordings there was noise due to the capstan servo being unlocked. A scope check showed that control track pulses were not being recorded, so with the machine in the record mode we checked the voltages around IC8 on the servo-1 panel - this i.c. is used to square the pulses
and send them to the control head. The 12 V supply at pin 3 was absent due to transistor X 6 , which is connected across the 12 V supply, remaining on. X6 is controlled by the output from pin 14 of IC9 (UPD4027C). The voltage at this pin should go low on record, turning X6 off to enable IC8 - also turning X11 on to cut out the tracking controls. Replacing IC9 cured the fault.
L.G.

Ferguson 3V29/JVC HR7200

From time to time you come across one of these machines that's stuck on channel one with fuse F5 on the power supply panel blown. F5 is in the 40 V supply to the 32 V regulator on the tuner/i.f. panel. The cause of the trouble is that the 32 V regulator transistor $\mathrm{Q} 8(2 \mathrm{SB} 644)$ and its reference zener diode IC3 (UPC574J-KL) go short-circuit. The regulated 32 V line feeds the presetter panel. L.G.

Baxall V3401 Camera

I've had quite a lot of these TV cameras in for repair they've all suffered from the same fault. The first time it happened to us caused some trouble. The symptoms were no heater supply and no e.h.t. Problem: no circuit diagram . . . It quickly transpired that a good, hefty line pulse was going to TR3 but nothing was coming out. Various transistors were tried to no avail, then a smarty pants junior noticed that the original was marked 512. Success was achieved when an IRF512 was fitted - it's the first VMOS device I've come across in an inverter. Note that the e.h.t. winding on the pot core often develops shorted turns: it's quite an easy job to rewind it yourself. H.A.

CA	3.	2320	032 Thorn T $\times 9$	SPECIFC COWPONENTS	390 G8 Metal Mains	450 ELC104306 Tuner
$915 \times .0047 / 1500$ AB23	65 Thom $3500 \quad 7.50$	180 TDA2540 9.65	Chass. 1450	352 Thoen 1600	Switch 123	6.00
Chassis $\quad 1.50$	70 Thom $8500 \quad 5.00$	181 TDA2541 267	Chass. 033 Philips KT3 1000	352 Dropper 0.10	391 G8 Line Stor/Eql.	461 U321 New Tuner 7.55
$9210 \times 220 \mathrm{MFD} 16 \mathrm{~V}$	71 Philips G8 6.30	182 TDA2560 378	033 Philips KT3 800	353 T $\times 10$ Presat	Coil 225	462 U322 New Tuner 7.55
Elect 0.50	72 Pre 731	183 TDA2571 215	034 RR1 T24 Chass. 14.00		392 G8 R/G Symetry	46398003 Posister 0.95
$9310 \times .047 \mathrm{MFD} 400 \mathrm{~N}$	$8910 \times$ Anti Track EHT	184 TDA2591 0.98	037 Split Diode EHT	Drawer $354 \mathrm{~T} \times 10$ CRT Base	Coil 333	46498009 Posister 0.99
Mul Pol 0.50	Cap 200	185 TDA2593 223	Lead 1.35	354 T $\times 10$ CRT Base	$39720 \times 3.15 \mathrm{~A}$ AS 20 mm	465 Mull.DL50 Delay
$\begin{aligned} & 9710 \times 0.1 / 2000 \mathrm{~V} \\ & \mathrm{~W} / \mathrm{E} \end{aligned}$	TED C	190 TDA2600	It	$\begin{array}{llll}\text { Assy } \\ 355 & 300\end{array}$	$33820 \times 800 \mathrm{MA} \mathrm{A/S}$	$\begin{array}{ll}\text { Line } & 0.95 \\ 465 \\ 5\end{array}$
$985 \times 1 / 250$ Supp ITT	$1405 \times$ TDA440	191 TDA26	Nay 787	355 Speaker Round	20 mm Fuse 1.50	469 Cut Out Metal GEC
etc. 1.50		192 TDA2640 235	111 Pye 7156 Way 11.56	Speaker $3585 \times$ Tho/3500 200	$39920 \times 2.54 \mathrm{ASS} 20 \mathrm{~mm}$	2100 1,00
	$1415 \times$ TBAIZAAS 1.00	210 ETTR6016 228	111 Pre 7156 Way 11.56	$3585 \times$ \#ho/3500 300	Fuse 1.0	$4705 \times$ GEC2100 3 Leg
		211 ET6016 228	\%	Conv. Pot 1.00	$40020 \times 2 \mathrm{~A}$ AS 20 mmm	Themist 1.00
	$\begin{array}{ll}\text { BA5400 } & 4.00 \\ \text { BA550 } & 3.50\end{array}$	212 ВТT6018 228	113 Phil G8 Sloping M45	$3595 \times$ The/3500 30R	Fuse $\times 1.0$	$4795 \times$ Gen. Purp. Rotary
50 ITT CVC 5/9	A550		114 Thom 9000 250	Conv. Pot nom	40120×1 ASS 20 mm	Swtch. 3.60
51 Decca 1730/1830 5.00	A810	LTNE OUIPUT XX	ay	$3605 \times$ TCE3500 A1		$4805 \times$ Gen. Purp.Push/
52 Oecca 80 Series $\quad 4.50$	$1475 \times$ TBAS200 4.50	001 Philips G8 7.50		actifier		Swtch. 3.75
53 GEC 2040 Hybrid 3.00	$1485 \times$ TBA990 325	002 Decca 30 Series 7.00	116 Decca 6 Way	363 T3500 Mains TX 5.00	$4035 \times$ RRI T20 Tube	$48120 \times$ Neons GEC
54 T1500 5 Stick 3.50	$1495 \times$ TBA5200 4.00	003 Decca 100 Series 6.50	117 Decca 4 Way	30313500 Mains TX 5.00	Base 4.35	etc. 225
55 Thom $9000 \quad 7.00$	$1505 \times$ TBA530	004 ITT CVC 25/30/32 7.00	118 GEC 21106 Way 7.95		410 Phil. G11 ENW Load/	$4825 \times$ Univ. Aerial Skt.
56 Thom 1400	$1515 \times$ TBA950	005 Philips $69 \quad 7.50$	119 GEC 2136/7	Out 1.50	Coil 1.50	Kit 5.50
57 Philips $69 \quad 3.50$	$1555 \times \mathrm{MC13270} 2.50$	006 RRI T20		370 Pye 731 Thick Film	411 Phil. G11 Bridge	$48310 \times$ Metal Coax
58 Universal ITT Type4.50	16	007 RRI A823 7.00		Resis. 1.50		Plug $\quad 1.70$
$595 \times$ TV11 EHT Rec for	161 TDA1	008 RRI $771818{ }^{\prime \prime} \quad 18.95$	120 ITI CVC5 925	371 Pye $713 / 331$ Vis. Gain	412 Phillips G11	484 Focus Unit T20
PIVs 1.00	162 TDA1006A	009 RRI $27188^{20122 / 26^{\prime \prime}}$	121 ITT CVC8 11.6	Mod. 6.50	Speaker ${ }_{\text {d }} \times 10 \times$ TDA2600 ${ }^{1.00}$	Type 125
$603 \times$ TV45 EHT Rec	164 TDA1035	009 RRI 2718 2012r 18.	122 ITT 6 Way with	372 Pye 731 3R3 50W	$41310 \times$ IDAZ600 Hoider 1.50 15	485 Foc/Unit Thom 8500
2718 180	16	RRI A774 Mono $\begin{array}{r}18.55 \\ \hline 1087\end{array}$	122 IT 6 Way wid		Holder 415 PALKT3 Speaker 150	Type 125
61 ITT CVC $45 \quad 4.00$		RRI A774 Mono 10			$43510 \times$ Decca 3010 P	486 4.43Mhz Crystal 0.40
63 RRI Z179 3.00		011 Thom 16S0/91		$373100 \mathrm{~K} \times 3$ Drawer P'set	Fusible $\times 10$	$48810 \times$ Ring Type Spk/
64 Pre 691/697 3.50	167 TDA1412 0.50	012 Thom $1615 \quad 6.50$	124 Hitachi 4 Way 7.55	At Pye $731 \quad 200$	$4365 \times$ Decca $303 \mathrm{R9}$	Gap 1.50
65 Pre CT200 4 Lead 3.50	172 TDA2002 180	013 ITT CVC 45 6.50	125 RRI T20 6 Way 8.5	378 Grundig 50106010 Vid	Modulohm $\quad 1.75$	496 TX10 Chass. Focus
66 Pre CT200 5 Lead 4.50	173 TDA2020	015 RRI Ranger $1 / 2 \quad 5.00$		Mod. 4.00	437 Decca 30 47k	Unit 7.00
67 Korting 90 DGR	174 TDA2030	016 ITT CVC 5/9 8.50			Voi. + Switch 125	497 De-Soldering
Hyb 5.80	178 TDA2523 235	017 Philips E2 Chass. 5.00	CAPACTOAS	88	4535×5 R Universal	Pump 3.50
All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days. Please add 15\% VAT and 90p P \& P		018 Thom 9000 1200	0/400 CVC32/720 120	5×15 Phil 68	Conv. Pot 1.00	4381×10 Trimming
		019 Thom 9500/9600 8.50	200+300 Pye 691200			
		021 Thom 3500 Scam 4.50	82 600/300 Phil G8 1.90		$4555 \times 100 \mathrm{R}$ Universal	TRANSISTOR/DIODES
		022 Thom $8500 \quad 11.00$	$83-175+100+100$		Conv. Pot 1.00	$3550 \times$ BC213L 2.50
		023 Thom 15909918.50	5001.50	ight.	$4565 \times 470 R$ Universal	$5010 \times 8 \mathrm{BD} 124$
		024 Thorn 150015 KV 4.00		$3875 \times$ Phil. G8 10k Log.	Conv. Pot 1.00	$27010 \times$ BU208A 8.50
		025 GEC 20402100 Hybrid		Colour 2.50	$45710 \times 100 \mathrm{~T}$ TunPPres	$27110 \times$ BU208 750
		CIV		$3885 \times$ Phil. 68 47k Log.	TCE ELC.	$27210 \times$ BU326 $\quad 10.00$
		027 GEC Single Std	$86400+400$ Decca 30			$2735 \times$ BU205 $\quad 375$
		Mono 500	250	389 G8 Plastic Mains	459 ELC1043/05 Tuner	$28025 \times 2 N 3055$
		028 Pye 691 twired) 5000	88 400/400 Tho 90001.50	Switch 0.75	6.00	[Texas] 7.50
MUXTON HOUSE, MUXTON, TELFORD, SALOP. REG. OFFICE ONLY. CALERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.						BC161/303) 0.50
						$29010 \times$ BT106
						Thyristor 9.00
						$2925 \times$ BT119 4.50
						$2935 \times$ BT120 4.50
						$33550 \times 8 Y 127$
						Diodes 3.00
						$34025 \times$ TIP41A

The Lid off Microcomputers

Part 5

Mike Phelan

Last month we talked about storing computer programs on ordinary audio tape cassettes. This has the advantage of using tapes that are readily available and comparatively cheap. In addition, if the microcomputer doesn't have a built-in cassette recorder any small mono cassette recorder can in most cases be used. There are exceptions however. One popular make of home microcomputer requires a special dedicated cassette recorder that contains part of the interfacing circuitry. Note that we said a mono recorder: with stereo machines the track width is less and the output is thus more susceptible to the effects of azimuth errors and pinholes in the tape's oxide coating. A good treble response is necessary. Different machines vary in their degree of tolerance on all these points.

On the debit side, loading from tape is slow - with some machines a complex game can take twenty minutes. More importantly the tape must be played or fast wound to the part required if there's more than one item on it. If we have stored a file of data on tape, say names and addresses etc., we cannot load just one name and address, we must continue loading until the required information appears.

Disc Systems

These disadvantages can be solved by using one or more disc drives. These come in several sizes: the one that can be added to the Amstrad CPC464 is a three inch floppy disc drive. The discs themselves are made from flexible plastic sheeting and are covered on both sides with magnetic oxide. They are permanently fitted in rigid plastic cases - see Fig. 1. The slot in the case enables the disc drive to gain access to the disc surface to read and write (play and record) information. With a three inch disc these slots (one on each side) are normally covered by metal shutters which slide back when the disc is put in the drive. These discs have a capacity of 180 Kbytes per side. On this machine there is only one head, so only one side can be used at a time. When the disc is inserted the centre, exposed part is gripped by two limbs to rotate it: the head is lowered into a position where it just contacts the disc.

The head is mounted on a sliding carriage that travels radially along the slot, from the centre to the periphery, under the control of a servo-operated stepping motor and the spiral track. Head position and disc rotation are controlled by the computer and disc drive electronics.

A new disc is totally blank and must be "formatted". This process remagnetises the disc in such a way that it's divided into 40 concentric tracks and nine radial sectors (see Fig. 2), giving a total of 360 sectors each of which can hold 512 bytes, i.e. 180 K bytes per side. Formatting can be thought of as the equivalent to ruling lines and columns on a sheet of paper before use. The alignment or index hole tells the electronics, with the aid of an optical sensor, the rotational position of the disc.

The total of 180 K bytes is a lot of information in such a small space, so the data is stored in a very compact form. The head gap is quite small and, for good h.f. response, the rotational speed is quite rapid. The system is intolerant of disc wear, dust and damage (such as fingermarks on
the oxide coating) but is very reliable when looked after properly.

Two of the disc's tracks are reserved for a special purpose. These are the directory and file allocation table. Between them they hold information on the files on the disc, on what type of files they are and on what sectors and tracks the files occupy. Thus if the computer looks here first it can rotate the disc and move the head directly to the required sector and track. In this way the two disadvantages of tape storage are overcome - loading speed is typically a few seconds.

The DD1 disc drive used with the CPC464 needs an interface for connection to the computer - the newer CPC664 has a built-in disc drive in place of the cassette deck. A second disc drive can be added to either machine to enable discs to be copied.

Copying and formatting cannot be done using the microcomputer's resident language, BASIC. Renaming or erasing files or copying single files only are useful features. For all these purposes a disc operating system, like another language, is needed. There are various disc operating systems: the one used with the Amstrad machines is CP/M, which stands for Control Program for Microcomputers. Part of it resides permanently in the disc drive ROM - this part is sufficient only to load the rest of the program from a CP / M disc, or to give the appropriate error message when a disc is not inserted or the disc doesn't contain CP/M. The disc drive contains the CP/M command processor and other CP/M programs to do things like formatting and copying discs.

When a disc drive is fitted the microcomputer starts off with BASIC as normal, selecting CP/M from BASIC as required. Alternatively some but not all CP / M commands can be operated from BASIC - the converse is not true. Note that the disc drive must be switched on before the computer for the latter to recognise the drive's presence. Any or all the CP/M programs can be copied on to a disc: there is also a facility to embed a command line so that, when $C P / M$ is entered, a command can be executed automatically.

Copying can be done with only one disc drive, but it's a laborious business as the source and destination discs have to be swapped several times. This is because only so many tracks at a time can be read into the RAM: the discs are then swapped over and the information written out to the second disc.

In contrast, with most business machines the operating system(s) and language(s) have to be loaded in before use. There could be several of each - some languages are available only with a particular operating system. Some of these machines use a hard disc system with a capacity of 5 or 10 Mbytes per disc - this is a sealed item that never comes out of the machine. One way of arranging things is for the operating system to start, automatically, a program that loads a language, then to execute a program that allows the user to select various languages and/or programs. After switching on, the next thing to appear is a menu of choices - after a minute or so since some 640 K of RAM takes more than a second or two for the machine to check.

Unless the fault is a fairly obvious one it's best not to

Fig. 1 (left): Three inch floppy disc.
Fig. 2 (right): Arrangement of tracks and sectors.

Fig. 3 (left): Matrix printer operation.
Fig. 4 (right): Daisy wheel printer operation.

Fig. 5: Printer/plotter system.

Fig. 6: Ribbon reversing mechanism.
attempt to carry out repairs to disc drives - though we said that about Band III tuners at one time!

Printers

The other popular peripheral for the home microcomputer is a printer. There are bascially three types, matrix, daisy wheel and printer/plotter - there are also some very sophisticated types that are used for commercial purposes.

The matrix printer (see Fig. 3) is usually the cheapest and fastest in operation. Printing is done by a vertical row of steel pins operated by tiny solenoids. Each character is constructed from say a 6×8 matrix of dots. This means six printing operations, one for each vertical row of up to eight dots: between each the print head moves laterally the width of one dot or slightly less. A stepper motor is

Fig. 7: Two types of ribbon cassette.
used to drive the print head laterally - another stepper motor drives the platen that feeds the paper.

The daisy wheel printer (see Fig. 4) is slower, usually noisier, but gives better quality printing. It works like a modern typewriter. The daisy wheel itself is made of springy plastic or metal and has as many radial arms as there are characters in the character set: each arm has a typeface character at its end, which is struck by a sole-noid-operated hammer. A stepper motor rotates the wheel to bring the required character in front of the hammer, the rotational position of the wheel being optically sensed by a short arm or wide gap. The daisy wheel can be quickly changed to get a different typeface - thus the characters printed out may not be identical to those appearing on the monitor's screen.

The printer/plotter (see Fig. 5) is much slower but is quieter than either of the above: it can draw or print in a mixture of different colours. It draws the characters rather than printing them, using four miniature coloured ballpoint pens mounted on a rotating head that tilts forward to contact the paper. The usual method of rotating the head to bring a different colour into use is to traverse the pen head to a position past the margin, where it contacts a detent or pawl that rotates it through 90°. Printing and drawing are done by a combination of lateral movement of the pen head and vertical movement of the paper, by rotating the platen in either direction. Often the software can select up to 64 sizes of letters as well as the colour.

All printers require some fairly sophisticated electronics to translate the serial or parallel code from the computer into the various mechanical operations required. Provision is also usually made for feeding one line or form length by switches, or taking the printer "off line" - in effect pausing it. Switching back on line enables the printer to carry on where it left off. Some printers have error lights to show things like "no paper" etc. As a rule an error takes the printer off line.

Printers can develop faults and require regular cleaning - paper, dust and fragments accumulate. Daisy wheels must be cleaned because the typefaces become clogged with ink. Ribbons can be on a spool or in a cassette, fabric or plastic. The spool type operates like that in a typewriter, the direction of travel reversing when either end is reached - eyelets in the ribbon reverse the drive. Fig. 6 shows the arrangement.

The cassette type of ribbon (see Fig. 7) usually travels with the print head. They don't usually auto-reverse - the extra drive tension when the ribbon reaches one end operates a warning light. Others store the ribbon in concertina form, as an endless loop from which it's pulled by a flat belt. This type just gets progressively fainter. Both types can sometimes be obtained for a given printer, the once-only type being plastic based, the other usually fabric based. The plastic ribbon has just a coating of ink rather than being soaked in it, so there will be a bare

Fig. 8: Tractor feed arrangement.
patch where a character has been printed.
Sheet and tractor feeds are common printer accessories. The sheet feeder prints out on separate sheets, e.g. for letters: the cut sheets are stored in a bin, loaded automati-
cally, then ejected into another bin. The feeder usually has its own motor and electromagnetic clutch. The tractor feed transports the perforated edge sheets that we think of as typical computer printout. To appreciate the reason for using this arrangement, consider printing out fifty feet of continuous sheet, relying on the platen for drive. There's no way of ensuring that the paper will travel squarely so before the fifty feet could be printed there would be an awful crumpling noise, as the paper would have gradually crept over to the right or left. The use of tractor feed gives positive paper transport via the perforations, using two drives best described as "plastic belts with bumps on"! It's usually driven by gears on the platen - see Fig. 8.

Next month the Amstrad monitor and fault finding.

Teletopics

FIRST QUARTER RESULTS

Sales of colour sets to the public during the first quarter of 1985 rose by over 7.5 per cent in comparison to the same period last year, though deliveries to the trade decreased (there was a certain amount of destocking). So while the high street tills were ringing away merrily there's been increased financial pressure on setmakers. VCR deliveries increased by 7.6 per cent, with about a sixth being UK assembled. CTV imports decreased slightly despite a continuing trend towards small-screen sets, which now account for approaching fifty per cent of deliveries to the trade.

ECONOMIES ALL ROUND IN BROADCASTING

The BBC has announced economies to meet the financial problems it faces following the less than asked for increase in the licence fee. The aim is to spend more on programmes and the provision of extended services while cutting down severely on the office and engineering side. Some 4,000 of the present 25,500 staff jobs are expected to go while over 1,000 of the 7,000 staff engaged in programme making are to be transferred to a contract basis. The proposals are described by the director general Alasdair Miln as the "most radical changes in thirty years". Engineering research and the design and production of in-house equipment are to be cut back; catering, cleaning, security and building maintenance are to go to outside tender if this is cheaper; and a ten per cent cut in secretarial jobs is to be sought. In addition, more programmes will be bought in from independent producers and the regional structure is to be changed, with single management teams for regional TV and local radio.

On the positive side, a full daytime BBC-1 service is to be introduced next year; there's to be a twenty per cent increase in news magazine budgets, both national and regional; an extra $£ 3$ million a year is to be devoted to the production of "blockbuster" TV drama; the local radio chain in England is to be completed as a matter of priority; and Radio 1 at v.h.f. is to be started as an "urgent" priority. As an economy on the radio side, Radio-2 will be broadcast by all local radio stations after 7 p.m.

As a result of the IBA's intention to increase the charges it makes to the ITV companies by five per cent more than the rate of inflation, the Independent Television Companies Association has been in talks with the

BBC and the IBA on ways of cutting costs. Suggestions include shared transmitter costs, privatising the provision of transmitters or allowing the ITV companies to own instead of rent the transmitters; a reduction in the research and development work carried out at the IBA's Crawley Court engineering centre, with equipment research carried out by industry under contract; and a proposal that the IBA should be allowed to fund its capital investment by means of long-term commercial loans instead of via rentals from the ITV companies.

UK SATELLITE TV MOVES

The Satellite Broadcasting Board has been wound up, since there's at present no industry for it to regulate. It was chaired by the IBA's chairman Lord Thomson, who has been asked by the government to investigate whether companies might be interested in starting a DBS service organised by the IBA. It's understood that this time those intending to start such a service would be able to put out to tender the provision of a satellite system - the government's insistence that a UK satellite system provided by Unisat should be used was the main stumbling block that lead to the collapse of the proposed consortium of 21 DBS service.

Sky Channel, which is at present available to over three and a half million cable TV subscribers in twelve European countries, is to extend its broadcasting hours. The service will run from $7.45 \mathrm{a} . \mathrm{m}$. to $12 \mathrm{p} . \mathrm{m}$. on weekdays and 7 a.m. to 12 p.m. at the weekends, UK time.

VIDEO CAMERA MARKETS

A survey of international video camera markets has been published at $£ 25$ by Euromonitor Market Direction, 87-88 Turnmill Street, London EC1M 5QU. It points out that while VCR market penetration in the UK is high camera sales have been weak - a mere 35,000 last year out of total world sales of $1,165,000$. Most video cameras are sold in W. Germany, Japan and the USA.

VCR TARIFF INCREASE

EEC industry ministers have agreed to increase the tariff on imported VCRs from 8 to 14 per cent from next year. A compensation plan, required by GATT regulations, includes a proposal to reduce the tariff on imported semiconductor devices from 17 to 14 per cent. Not unexpectedly, the proposed increase in VCR tariffs has come in for criticism from the Electronics Industry Assocation of Japan and from South Korean trade ministry officials. Counter measures are being considered by South Korea while Japanese manufacturers are expected
to concentrate on increasing the output from their European plants.

Philips is to set up a joint venture with the South Korean manufacturer Dongwon Electronics to build a plant to produce VHS machines for sale in the Far Eastern and US markets. Initial plans are for production to start at 500,000 machines a year, rising to a million a year by 1989. The plant would require an investment of $\$ 50$ million and would be 70 per cent owned by Philips.

DTI RADIO SERVICE CHANGES

The Department of Trade and Industry has decided to alter the services provided by its Radio Investigation Service. More resources are to be devoted to tracing those who operate without a licence or fail to keep to the terms of their licence, and there's to be a phased withdrawal from dealing with domestic radio/TV reception problems. A booklet is to be issued to help members of the public to deal with their own problems. Business users are to be charged a commercial rate for RIS advice and domestic users will be charged a call-out fee of $£ 21$ to investigate cases of poor reception.

FERGUSON'S PROBLEMS

The reduced profit announced by Thorn EMI for the year to March 31st, despite an increase in turnover, has been partially attributed to the Ferguson consumer electronics side of the business - also to difficulties at Inmos, which Thorn EMI bought during the year. A provision of $£ 28$ million has been made for reorganisation at Ferguson, which will involve job losses of around 1,000 and rearranged production facilities. In future the Enfield plant will produce subassemblies - remote control and tuning systems etc. - with all complete receiver assembly work being carried out at the Gosport plant.

The problems at Ferguson, which have continued into the first quarter of the present financial year, are put down mainly to over-capacity in the UK television manufacturing industry: profits fell from $£ 85.3$ million to $£ 65.5$, with the situation worsening towards the end of the year. The retail and rental side announced increased profits however, up from $£ 77.9$ million to $£ 86.6$ million.

Sir Graham Wilkins has replaced Peter Laister as chairman and chief executive of Thorn EMI.

The Ferguson service department at Chadderton, Lancashire has been closed down with a loss of fifty jobs: the trade counter and dealer training school remain in operation.

TELETEXT PROMOTION

The industry and broadcasters are combining to promote teletext set sales this autumn. The aim is for one million teletext set sales/rentals over the next twelve months. According to the latest IBA annual report over 2.6 million homes now have a teletext set, i.e. over eight million people have access to teletext.

Both the BBC and the IBA are planning to use spare teletext capacity to provide commercial services.

dEMONSTRATION TVRO PACKAGES

Both Luxor and Salora have introduced demonstration 11 GHz band satellite receiver packages for sale to dealers. Details can be obtained from Luxor (UK) Ltd., 87-89 Farnham Road, Slough, Berks, SL1 4UL; and Salora (UK) Ltd., Techno Trading Estate, Swindon, Wilts, SN2

6 EZ . Several 11 GHz satellite channel programme providers, including Premiere and Music Box, have set up a marketing company called Galaxy Satellite Television. A demonstration agreement charge from Galaxy costs $£ 25$ a month (this is included in the Salora package).

NEW MULLARD LINE OUTPUT TRANSISTORS

The BU506 and BU706 line output transistors from Mullard are lower-current rated versions of the established BU508A, intended for use in small- and mediumscreen size sets. Both transistors have the same electrical characteristics -3 A rated collector saturation current and 1.5 kV maximum coilector-emitter voltage - the difference being in the encapsulation. The BU506 is housed in a TO220 pack and the BU706 in a SOT93A pack.

PUBLICATIONS NOTED

The latest issue of the BATC's journal CQ-TV, no. 131, includes an interesting practical article on converting the Thorn TX90 chassis for receiver/monitor use. A PCB for the interface circuit is available from the author. For British Amateur Television Club membership details, write to D. Lawton, Grenehurst, Pinewood Road, High Wycombe, HP12 4DD.

A new catalogue is available from Anglia Components, Burdett Road, Wisbech, Cambs. PE13 2PS.

A brief but helpful introduction to DX-TV, "TV DX for Beginners" by Simon Hamer, is available from HS Publications, 7 Epping Close, Derby DE3 4HR at $£ 1.65$ including post and package. Airmail despatch is extra. Roger Bunney's more substantial publication "Long Distance Television Reception (TV-DX) for the Enthusiast" (Bernard Babani Publishing Ltd.) is at present out of print - a new edition is expected shortly.

VIDEO NEWS

The latest VCRs from Ferguson, Models 3V44 and 3V45, replace the 3 V 38 and 3V39. They are slim-line models featuring simple operation and use the same basic chassis as the JVC HRD140. The 3V45 incorporates remote control. Grundig has added a hi fi machine, Model VS380, to its VCR range: the suggested retail price is around 6650 . A version of the Sony Super Beta machine (see Teletopics, July), Model SLHF950, is to be released in the UK with a suggested price of just under $£ 800$: the performance is claimed to be of almost broadcast standard. Canon is to launch an 8 mm camcorder in the UK this autumn.

BUSINESS MOVES

ITT Consumer Products (UK) has relocated its head office in Basildon in a move that takes it from premises shared with STC. The new address and telephone number are: ITT Consumer Products (UK), Paycocke Road, Basildon, Essex, telephone 0268 27788. The service departments remain at Chester Hall Lane, Basildon; East Kilbride, Glasgow; and Kearsley, Bolton.

NordMende consumer electronics products are in future to be handled in the UK by Hayden Laboratories Ltd. (0753 888447) who will take on all outstanding guarantee commitments. Previously NordMende (and Saba) products were handled by the European Electronics Corporation of Aylesbury, which has now ceased to trade. NordMende, Saba - and the European Electronics Corporation - are all part of the Thomson Brandt group.

A Case of Liquid Spillage

Nick Lyons

The spillage of liquids on to and into electrical equipment is always bad news. The situation will be much worse if the equipment is on at the time of the spillage, though many liquids will cause bad corrosion when the equipment is off. I find that soft drinks and household cleansers are the usual cause of the trouble, closely followed by cups of tea. Really, accidents are almost bound to happen - and children will be children.

The result of one such accident appeared on the workbench recently - a very sad looking Sharp VC381H. The owner seemed unsure of the nature of the spillage. I tend to think it was a soft drink, but whatever it was it had certainly done considerable damage. The company from whom the machine had originally been purchased - a large retail chain - had declared it to be a write off, being more costly to repair than to replace. This had rather upset the owner as the machine was not that old, so he'd brought his custom to me.

Layout

For those not familiar with this machine I'll give a brief outline of its layout. The majority of the electronics are arranged on two large boards. The lower one encompasses the entire bottom of the machine and is mounted foil side down, component side up. It's mainly concerned with the servo systems. One nice feature of this board is that all the "tweaks" are at the rear right-hand corner. Thus with the top cover off and the top PCB hinged up, which takes but a minute, the full range of servo adjustments can be immediately performed without the usual tedious business of hunting around the board for the various VRs.

The other major board sits foil side up beneath the top cover: it's about two thirds the area of the lower board and carries the circuitry for signal processing from off-tape r.f. through to composite video. Off-air demodulation, the power supply etc. are arranged on much smaller boards dotted around the chassis.

The liquid had entered the machine through the ventilation holes in the top cover, mainly on the right-hand side. It had run over the print side of the top board, dripping off the right-hand side of this on to the board beneath. The lacquer on the foil side of the top board had saved the print, though some of the soldered joints were blackened.

Repairs

The first step was to clean up the panels, then assess the damage. Most of the crystalline deposits were removed with the dust brush: sponging the panel down with a damp (not wet) cloth removed the rest and much of the staining. The contaminated areas were next washed down with isopropanol - we use this for head cleaning and have a quantity on hand - aided by an old toothbrush to make sure that the isopropanol got everywhere. The isopropanol served more than one purpose: it helped remove the remaining contamination and, being volatile, readily evaporated driving off the remaining water. Not being enough of a solvent it didn't damage the board - if
you use too much on the foil side it makes the lacquer go sticky.

The next move was to plug the machine in and see what happened. The good news was that the machine threaded up and went into the play mode, the bad news was that there was no picture. Video information was present however, in the form of a pattern that looked as if the monitor's line hold control was grossly misadjusted. This was obviously due to the speed of something or other being wrong. Well, the sound seemed to be of the correct pitch, so the capstan circuit was probably o.k. When we looked at the head drum beneath the workshop fluorescent lights it appeared as just a blur. I should perhaps point out that the strobing effect of the mains supply in relation to the head drum can be a useful aid to fault diagnosis. Because of the strobe effect the larger drum details should appear to be virtually stationary, slight apparent rotation being caused by the difference between the machine's 50 Hz reference and the mains frequency. As these features were just blurs the drum must have been running grossly off speed. It's usually possible to see whether a drum is running very slow. This one appeared to be running too fast however. To test this I rested a finger lightly on the upper rim of the drum to slow it down, gradually increasing the pressure. Sure enough when the drum was slowed down sufficiently the picture dropped into lock. In monochrome, but a picture nonetheless.

This gave me a cluc as to where to start. The head drum servo circuitry is on the bottom board, in an area that had been badly contaminated. Close examination revealed that some of the legs of the relevant IZOOO3GE i.c. had rotted through. Substantial corrosion of the legs of the surrounding transistors and diodes had also taken place. There are only a few passive components in this area. I took the decision to replace these as well.

This time switching on produced a fully locked monochrome picture. Further investigation was required on the upper panel therefore. Suspicions centred on the HAI 178 INT chroma chip IC501. Unfortunately the manual doesn't give the waveforms to be expected with this i.c. so a bit of educated guesswork was required: some of them didn't look too good, so the chip was replaced. At this point colour returned. It would stay for hours and hours then twitter up and down in level, subsequently disappearing.

Much alternate freezing and heating of the components in the area of IC501 and IC502 revealed little of help, so the wrong conclusion that the replacement chip was faulty was drawn - the machine would work for entire days with the first replacement. After tediously working around one component after another with the freezer, using a piece of card to shield adjacent components from the spray, I eventually found that filter unit FL503 was the culprit. The agents supplied an alternative type: maybe the original type has given trouble elsewhere.

And trouble elsewhere was exactly what was happening in the shuttle-search department. This had a tendency to go from play into search in either direction, but wouldn't change direction. Replacing miniature relay RY7751
cured the problem - its armature was sticking.
During the exhaustive soak testing the machine underwent in the course of the repair work the video heads clogged quite frequently, so it was decided to change these as well.

The machine now gave first-class results, fully justifying the trouble that had been taken. A final touch to try to
secure the maximum reliability possible was to desolder and resolder all joints blackened by corrosion. The bill came to rather less than half the cost of the cheapest new machine available, which I think justified the repair as being economical. The owner was very pleased to have his VCR back - the only sour note was a problem over the order for spares and its invoicing.

A Variable Stabilised HT Supply

Gordon Haigh

Some of the stabilised power supplies used in TV sets turn out to be nothing of the sort: they may regulate correctly only when the load is exactly what the designer intended. A faulty line output stage may present the power supply with an open-circuit or excessive current demand condition. In addition, the inclusion of excess current/voltage trips can make diagnosis awkward, i.e. which trip is tripping? Then again the power supply itself could be the cause of the trouble, producing a too high or maybe too low h.t.

When a misrepaired Philips set fitted with the E2 chassis came my way with faults in both the power supply and the line output stage I needed an independent source of 215 V d.c. to sort things out. This was nicely provided by a Philips G8 power supply unit used with flyleads. The set-voltage control needed only slight advancement. This speeded up diagnosis greatly and I later decided to build a unit for occasional bench use.

Design Notes

A check on the h.t. supplies used in various chassis suggested that a unit able to produce $100-220 \mathrm{~V}$ d.c. with some stabilisation and modest output current would be attractive. A switch-mode design was ruled out first because of complexity and cost, secondly because they need special wound components and can be rather touchy under variable conditions. A full-wave thyristor design was discounted because a rather complex drive circuit is required.
The circuit shown in Fig. 1 was finally adopted. It's based mainly on the Philips G8 power supply unit and uses a minimum number of components, most of which can be pruned from old chassis. The input choke L1 is from the Rank A823 chassis: this was preferred for quiet running. The VA1104 thermistor will check an h.t. burst at switch on and wall socket contact bounce trouble. The 15 W bulb at the output may appear to be wasteful of current but a thyristor design needs some kind of load for it to be turned down effectively. The bulb provides for this if no external load is connected: it also discharges the electrolytics at switch off and provides a relative output and an on indicator.

Construction

Most of the components can be mounted on a piece of Veroboard, with the thyristor bolted to a section of L-shaped aluminium screwed into the base of a wooden box. The "dropper" unit from the Philips G8 chassis is used for R1/R11. This needs to be positioned high and clear of wires and components, with ventilation holes provided. It's best to use 5 per cent, high-stability carbon
film resistors in positions $\mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4, \mathrm{R} 5, \mathrm{R} 6$ and R 9 . Make the fuses accessible but safe. The h.t. control VR1 becomes a panel control. The mains filter capacitor C1 should be of the type designed for this purpose.
Check that everything is wired up correctly then connect a 240 V bulb of up to 100 W and a d.c. voltmeter across the output. Switch on and adjust the preset control VR2 to obtain a range of about $1(0)-220 \mathrm{~V}$ d.c. with the swing of VR1.

Use

When using the supply as a substitute, don't leave the TV set plugged in at the same time. Don't earth either output. In some sets the power supply may need to be disconnected to avoid interaction: if you do this, don't switch a set on with a chopper output open-circuited chopper transistors can die! The use of an extra bench supply giving $0-30 \mathrm{~V}$ may be needed with some chopper circuits.

Fuse replacement may seem to be a bit of a bind but an electronic trip would have doubled the number of components used. If you suspect an overload, you can start off with a low h.t. output with perhaps wirewounds in series.
In addition to the obvious missing h.t. substitution check the unit can be used for proving other power supply faults, e.g. flutter, jitter, etc.

Finally, I built a similar, miniature version of the circuit into a Sony Model KVI340UB to check for conversion evaluation. The only give away was a faint hum bar. These sets tend to suffer from a domino effect on the power supply panel, damage also spreading to the line output stage. The thyristor circuit was fitted in place of the series regulator arrangement used in the KV1340UB, with a BU208 used in one of the line output/e.h.t. output positions.

Fig. 1: Circuit of the variable stabilised h.t. supply.

Long-distance Television

Roger Bunney

The month of June 1985 was one of the most intense ever for Sporadic E reception, with openings on all days. Arabic signals were received in profusion and there have been numerous mystery signals. Without further ado herewith the log, which is extensive.

6/6/85 RAI (Italy) ch. IA, B; JRT (Yugoslavia) ch. E3; ORF (Austria) E2a, E3; NCT (private commercial station at Udine, North Italy) IA; EPT (Greece) E3; +PTT (Switzerland) E2, 3; MTV (Hungary) R1, 2; DFF (GDR) E4; ARD (West Germany) E2; CST (Czechoslovakia) R1; TVP (Poland) R1, 2; TSS (USSR) R1, 2; SR (Sweden) E2, 3, 4; TVE (Spain) E2, 3, 4.
7/6/85 TVE E2, 3; RAI IA, IB; RTP (Portugal) E2, 3; TVE-2 E2; JTV (Jordan) E3.
8/6/85 RAI IA, IB; TVE E3; JRT E3, 4; TVP R1; CST R1; TSS R1; SR (Sweden) E2, 3, 4; RUV (Iceland) E3, 4; NRK (Norway) E2, 4-SR carried a programme called MTV during the day!
9/6/85 RAI IA, IB; TVE E2, 3, 4; TVR (Rumania) R2; TVP R1, 2; MTV R1; CST R1; TSS R1, 2; YLE (Finland) E4.
10/6/85 SR E2, 3; TSS R1, 2, 3, 4; NRK E2, 3; TVP R1, 2, 3; ORF E2a; CST R1; MTV R1: JRT E3, 4; RAI IA, IB; +PTT E2; TDF (France) L3; TVE E2, 3, 4; RTP E3; DR (Denmark) E3, 4.
11/6/85 ARD E2, 3; DR E3; +PTT E3; CST R1, 2; MTV R1; RTS (Albania) IC; JRT E3; DFF E4; TVP R1; SR E2, 3, 4; NRK E2, 3, 4; YLE E3, 4; TSS R1, 2, 3, 4; TVE E2, 3, 4; TVE-2 E2; RTP E2, 3; TVR R2; RUV E3, 4.
12/6/85 YLE E3, 4; TSS R2; SR E2, 3, 4; DR E3; NRK E2, 3; MTV R1; TVR R2; JRT E4; TVE E2, 3, 4; RTP E2, 3; TVE-2 E2; RAI IA, IB.
13/6/85 TVE E2, 3, 4; RAI IA; JRT E3, 4; NCT IA; ORF E2a; CST R1; MTV R1; TVP R1; TSS R1, 2; SR E2, 3, 4; NRK E2, 3; YLE E3, 4.
14/6/85 RTP E3; RAI IA, IB; JRT E3, 4; NCT IA; ORF E4; TVE E2, 3, 4; TDF L3; ARD E2; EPT E3; TVP R1; TSS R1, 2; SR E2, 3, 4; NRK E2, 3; RUV E4; CST R1, 2; MTV R1; DR E3, 4.
15/6/85 RAI IA, IB; ARD E2; +PTT E2; MTV R1; ORF E2a; NCT IA; JRT E3; EPT E3; TVE E2, 3, 4; RTP E3; CST R2; SR E2, 3; NRK E2, 3, 4.
16/6/85 ORF E2a, 3, 4; RTS IC; RAI IA, IB; JRT E3; ARD E2; TVR R2, 3, 4; CST R1, 2, 4; DFF E4; MTV R1, 2, 4; TVP R1, 2, 3; DR E3; JRT E3; TSS R1, 2, 3, 4;

SR E2, 3, 4; NRK E2, 3, 4; TVE E2, 3, 4.
17/6/85

18/6/85

19/6/85

20/6/85

21/6/85

22/6/85
23/6/85 RAI IA, IB; RTP E3; TVE E3; JRT E3, 4; JTV E3; ORF E4; SR E3.
24/6/85 RAI IA, IB; TSS R1, 2; EPT E3; JRT E3; TSS R1, 2; TVP R1; TVE E2, 3; RTP E3; DR E3; SR E2, 3, 4; JTV E3; UAE E2.
25/6/85 DR E3; TVP R1; SR E2, 3, 4; TSS R1, 2; RAI IA.
26/6/85 TSS R1, 2, 3, 4; YLE E3, 4; MTV R1, 2; CST R1; TVP R1, 2; DFF E4; ORF E2a; JRT E3, 4; NRK E2, 3; SR E2, 3, 4; RAI IA, IB; TVE E2, 3, 4; EPT E3; DR E3; +PTT E2, 4; ARD E2, 3; RTP E2, 3; RUV E4.
27/6/85 NRK E2, 3, 4; RUV E3, 4; TVP R1; DR E3; JRT E3; RAI IA, IB; TVE E2, 4.
28/6/85 TVE E2, 3, 4; RAI IA, IB; + PTT E2; JRT E3; EPT E3; RTP E3; MTV R1; TSS R1, 2, 3, 4, 5; DFF E4; ARD E2; RUV E4; NRK E2, 3, 4; TVP R1, 2; YLE E3; CST R1, 2.
29/6/85 TSS R1, 2; TVP R1, 2; SR E3; RAI IA, IB; NCT IA; TVE E2, 3.
30/6/85 TVP R1, 2; CST R1, 2; ORF E2a; TSS R1, 2.
1/7/85 RAI IA, IB; TVE E3, 4.
2/7/85 TSS R1; RAI IA, IB; JRT E3, 4.
4/7/85 TSS R1.
Now to various points of interest. Ryn Muntjewerff (Holland) received Bulgarian TV (BT) on ch. R3, at 1410 CET on June 5th. The test card was followed by a clock with studio identification at 1429 , news at 1430 and fade out at 1445. From 0825-(0840 BST on June 12th Bill Cotterill (Tipton) received a coloured announcer with a programme on satellite dishes and equipment on ch. E3. Any ideas? Mike Gaskin (Caterham) logged the TSS clock at plus four hours UK time (plus one hour Moscow time) on ch. R1, at 0600 BST on June 19th. Despite the low power of the ch. L3 TDF/Canal Plus relay stations signals from several of them have been received in the UK. Mike Gaskin reports that at Caterham Band III

Left: NHK identification (Japan). Centre: NTV test card (Japan). Photos taken by Gordon McCrae during a recent visit. Right: Syrian clock, ch. E3, received by Ryn Muntjewerff (Holland) on May 20th at 1927 GMT.
suffers invasion from a British Telecom speaking clock: this must be the start of Band III PMR tests.

Tim Anderson (St. Leonards) logged TVE ch. E9 via meteor scatter on June 6th! At the time of writing this (on July 4th) the humid, hot weather is producing enhanced tropospheric propagation, though with thunderstorms forecast it seems unlikely that there will be reception over long distances. On several occasions during June SpE propagation occurred in the 144 MHz band but there have been no reports to date of SpE activity in Band III. At 0200 GMT on June 23 rd the RSGB 50 MHz beacon was heard across the Atlantic in both Washington and Maine.

An extensive log covering a busy period. My thanks to the following for sending in details of their reception: Cyril Willis (Downham), Trevor Rose (Lowestoft), Dave Shirley (Hastings), Allan Beech (Dollar), Reg Roper (Torpoint), Joe Dickson (Belfast), Bill Cotterill (Tipton), Keith Chaplin (Barrow/Soar), Tony Privett (Basingstoke), Mike Gaskin (Caterham), Ian Johnson (Bromsgrove), Roger Pates (Nottingham), Iain Menzies (Aberdeen), Tim Anderson (St. Leonards), Simon Hamer (Powys) and Ryn Muntjewerff (Holland).

Frank Lumen (Denver, Colorado) paid us a two-day visit during the month. He told us that he can receive entertainment quality programmes on approximately 150 channels from nineteen 4 GHz satellites via his 12 ft dish!

The 50 MHz Amateur Band

The Minister for Industry and Information Technology has announced that the band $50-50 \cdot 5 \mathrm{MHz}$ is to be devoted to amateur radio. No information is available at the time of writing on permitted powers and modes of operation, though rumours suggest that Class A licence holders only will be able to use the band.
With the present excellent SpE conditions in mind, this announcement raises the question of interference to DXTV reception in Band I. The relatively small band allocation given to amateur radio means that notching out the majority of amateur signals should be fairly easy, though ch. R1 vision at 49.75 MHz could suffer excessive attenuation if a poorly made filter is used. To this end, details of a very simple ferrite toroid notch filter are given below. It provides a notch depth of $26 \mathrm{~dB}:-10 \mathrm{~dB}$ at +0.5 MHz , -5 dB at $+1 \mathrm{MHz},-2 \mathrm{~dB}$ at +2 MHz and -0.8 dB at +3 MHz . Alternatively a quarter-wave stub filter could be employed: a 3.9 ft length of $75 \Omega, 0.8$ velocity factor cable would provide attenuation at 50.4 MHz . The stub filter is simply a length of coaxial cable connected at one end to the feeder between the aerial and the receiver, with the other end left open-circuit. It produces signal cancellation due to the 180° phase reversal at resonance.

The toroid notch filter is simple to make using an Ambit/Cirkit T50-12 ferrite toroid. Wind ten turns of 26 s.w.g. enamelled wire around the toroid, with a centre-tap at turn five. The aerial is connected (inner coaxial cable conductor) to the centre tap and a $2-20 \mathrm{pF}$ or $3-30 \mathrm{pF}$ subminiature trimmer is connected across the coil - take the output from either end of the winding. The filter can be housed in a small diecast box with coaxial sockets: it covers the whole of Band I.

News Items

Scandinavia: Swedish TV broadcasting is to be reorganised. From March 1986 the various regional centres will opt out of the network for their own programme blocks. Use of the whole v.h.f.-f.m. band is being

SOUTH WEST AERIALS

TRIAX BB OUAD GRID 16 BAY DEEP FRINGE STACKED BOWTIE ARRAY FOR WIDEBAND UHF RECEPTION.

Triax stacked bowtie aerial systems offer the most consistent overall performance for high gain wideband UHF reception. The above Quad-stack 16 bay array gives
18.1 dB very high gain for extreme long distance fringe reception with an excelient front/back ratio of 28 dB . The wide capture area ensures optimum signal gathering essential for fringe and scattered signal working. The 'Grid' is available in single, win or quad formation. Our 'UHF DX Package 1' comprises 2 'Grids', stripline stacking filter, cross support boom and clamp. The 'UHF DX Package 2' comprises 4 'Grids' stacking filter, cross support booms and clamps.
(TVM Dxing enthusiast and for ALL typer of domestic installation.
Send for a copy of our Comprehersive 1985 CATALOGUE only 60 p.
IRIAX single 'Grid' UHF Wideband Aerial 12.5dB Gain (470-860MHz) . TRIAX 'UHF DX Package 1 ' twin 'Grid' 8 bay Wideband UHF Array 15.3 dB G...... $\mathbf{E 2 4 . 1 0}$ 860 MHz (includes all hardwarerilter etc) Gain, 47.80 TRIAX UHF DX Package 2 quad Grid 16 bay Wideband UHF Array 18.1 dB Gain, $470-86 \mathrm{GMHz}$ (includes all hardwareffilter etc)
TRIAX 40055 High Gain (25dB) Wideband UHF Masthead Pre-Amplifier, very low noise figure; $1.5-1.9 \mathrm{~dB}$..
TRIAX $601 / 60$ Matching 240 V AC Power Unit for use with above amplifier UNISON AR250 offset Aerial Rotator, complete with Control Consol

EELECTIVITY ${ }^{15}$ VISION GAIN MODULES, all at $\mathbf{£ 2 . 5 0}$ each or $£ 4.50$ for 2 , all in screening cans. Multi-Standard VHFNUHF'Televisions and Video Recorders available (SAE please and state requirement). We are The TV/FM DXing Specialists, advice given on ALL reception problems (SAE please)
All prices inclusive of VAT and Carriage
Delivery 7-10 days
ACCESS \& VISA Mail and Telephone orders welcome

SOUTH WEST AERIALS (T)
11. Kent Road, Parkstone,

Poole, Dorset, BH12 2EH. Tel: 0202738232.

reorganised in Finland, with the Finnish first programme at the bottom of the band, followed by regional, local and Swedish language programming at the top end.
Belgium: A German language programme was transmitted for the first time on May 25th by Belgischer Rundfunk, using the identification BRF and the familiar BRT/RTB logos. There are plans for this to be a regular service from Brussels on ch. E45 at 1 kW , with possibly a $1,000 \mathrm{~kW}$ ch. E42 transmitter at Liege coming into operation at a later date. The government proposes to allow advertising on the radio/TV services. Programme interruption would not be allowed and advertising periods would not exceed eight minutes. Cable networks would be expected to comply with the regulations.
W. Germany: Radio Bremen is now using a ch. E45, 10 kW e.r.p. transmitter instead of the former ch. E5 outlet in Band III.
Portugal: Because of interference caused by current transmissions it's proposed to move RTP-TV from Band I to Band III/u.h.f. when funds allow. Local radio has now been legalised and nearly 30 independent commercial local radio stations have been set up.
Tunisia: Following agreement between the Tunisian and Italian governments, RAI-1 is to be transmitted by eight high- and low-power stations in Tunisia.
Middle East: Both Jordan and Kuwait are carrying out teletext test transmissions, using the French Antiope system.
USA: The land mobile radio lobby has petitioned the FCC for greater use of Bands IV/V for mobile radio. At present chs. A14-20 are shared between TV and mobile radio in thirteen of the larger cities. The lobby want to extend this and eventually to open the whole of the 470-

Fig. 1 (top left): Czech notch filter.
Fig. 2 (top right): Version for use with a d.c. feed.
Fig. 3 (above): Response of the notch filter.

806 MHz band (chs. A14-69) for land mobile use, arguing that the band is under utilised by broadcasters.
Australia: SBS-TV network transmitters at Wollongong (ch. 59), North Wollongong (ch. 44), Newcastle (ch. 55), Brisbane (ch. 28), Gold Coast (ch. 61), Adelaide (ch. 28) and Adelaide Foothills (ch. 43) came into operation on June 30th. Transmitters at Perth (ch. 28) and Hobart (ch. 28) are due to open next January. There is talk of ABCTV transmitting for 24 hours a day once the Aussat satellite becomes operational.

Publications

The 1985 edition of the IBA's Transmitting Stations - a pocket guide is now available, free of charge, from the Engineering Information Department, IBA, Crawley Court, Winchester, Hants SO21 2QA. Include a foolscape s.a.e. with requests.

The second edition of my DX-TV book, published by Bernard Babani (BP52), has sold out. A revised and expanded third edition is in preparation and should be available in the late autumn.

From our Correspondents . . .

Gordon McCrae of Kesh Electronics, Kesh, Fermanagh has entered the satellite TVRO field, offering a range of dishes and electronics. Following a recent visit to Japan he reports that sales of satellite TV equipment there are at present very slow, with only NHK available on a 12 GHz downlink.

Mohammed Hanif is able to receive Oman chs. E7 and E10, Abu Dhabi ch. E9 and Bombay ch. E12 on a fairly regular basis in Karachi but experiences considerable interference from the local ch. E4 outlet. He would like to contact other enthusiasts in Pakistan to share experiences and develop filters: letters sent in to us will be forwarded.

Satellite TV

Transponder 9 on the Intelsat bird at $1^{\circ} \mathrm{W}$ is now carrying a new 4 GHz TV channel, SEB TV. This AFRTS programme/entertainment feed is intended for US forces
in Italy. The signal is reported as being "very strong" thought to be a spot beam at 30 dBW , with the sound at $6 \cdot 8 \mathrm{MHz}$. Sky Channel has been received in the Canary Islands using a 4.5 m dish. This is very good going considering the footprint and has produced considerable interest - two cable firms in Gran Canary are putting Sky on to their networks.

French Channel Allocations

In future French system L channel allocations will be denoted as L2, L3 etc. instead of F2, F3 - the frequency allocations remain the same, i.e.:

Ch.	Vision	Sound $M H z$	Ch.	Vision $M H z$	Sound $M H z$
L2	MHz	55.75	49.25	L7	192

All system E (819-line) transmitters in Bands I/III have now been taken out of service. The Monaco ch. F10 system E transmitter has been replaced with a ch. L8 transmitter (50 kW e.r.p. with horizontal polarisation) for the TMC-1 service.

The following Canal Plus transmitters are now in operation: Le Plessis-Robinson ch. L 3 (16 W H), Clermont Ferrand ch. L4 (75W H), Mont Brian ch. L4 (70W H), Etampes ch. L4 (15W H), Le Mans ch. L5 (200kW V), Lille ch. L5 (200 kW H), Toulouse/Pic du Midi ch. L5 (100 kW H), Gex ch. L5 (30 kW V), Le Havre ch. L5 (2 kW H), Paris/Eiffel Tower ch. L6 (100 kW H), Cherbourg ch. L6 (8kW H), Hyeres/Cap Benat ch. L6 (2 kW H), Rouen ch. L7 (65 kW H), Bordeaux ch. L8 (50 kW H), Nantes ch. L9 (300kW V), Caen ch. L9 (200 kW H), Lyon/Mt. Pilot ch. L10 (400 kW H), Saint Raphael ch. L10 (70kW V), Saint-Etiene ch. E38 (10kW H), ParisEast ch. E53 (5kW H).

Czech Notch Filter

As previously mentioned in this column, Czech f.m. radio stations are being moved from the $68-73 \mathrm{MHz}$ band to $87 \cdot 5-108 \mathrm{MHz}$ - this is part of a general move in E . Europe to Band II for f.m. radio. Unfortunately problems have arisen. Communal TV systems aligned to receive W. European Band III transmitters (low-level fringe reception) have been suffering from second harmonic interference and severe head amplifier overloading due to nearby Czech Band II transmissions which are often $70-80 \mathrm{~dB}$ higher in level.

Various filters have been designed to overcome the problem and a particularly interesting circuit (see Fig. 1) appeared recently in the Czech magazine Amatorsk Radio. It provides an attenuation of 45 dB over a bandwidth of 1 MHz , with an insertion loss of 2 dB at $\pm 2 \mathrm{MHz}$. The circuit consists of a lightly coupled absorption trap (L1, C1) with series acceptor circuits L3, C2 and L4, C3 tapped via a four-turn toroid at either side of the absorption trap. Fig. 2 shows a version for use where a d.c. feed to a masthead amplifier is required. All the coils are wound using $26 / 24$ s.w.g. enamelled wire. $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ have four turns, centre tapped, on a single toroid (Cirkit FXHO balun core). L1, L3 and L4 consist of $61 / 2$ turns on a 7 mm former (Maplin 351/8BA). L2 consists of a half turn positioned at the centre of L1. A single hole toroid could be used.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PHILIPS G11 CHASSIS

The trouble is field roll which is difficult to stop with the field hold control. When the picture does stop rolling there's a blank space at the bottom of the screen (threefour inches). Lock cannot be held for long.

The two $4 \cdot 7 \mu \mathrm{~F}$ electrolytics C 2080 and C2072 mounted close to the TDA2600) field timebase i.c. can cause this fault. Also check for dirty field hold and height controls and intermittent contacts in the TDA2600's holder. The holder nowadays needs replacement more frequently than the chip.

THORN 3500 CHASSIS

This set gives quite a good picture but the voltage across the beam sensing resistor is 1.8 V with the aerial out and 2.2 V with the aerial in instead of 1.3 V . By disconnecting circuits I've found that the voltage returns to normal when the line scan coils are disconnected. Are these suspect? there doesn't seem to be anything wrong with them and they both measure 5Ω. Also a small bending of the verticals on the right-hand side can be seen with a test pattern.

It's unlikely that the yoke is faulty - the balanced readings really exonerate them. Much more likely is shortcircuit turns in the shift coil L504 which can be removed as a check. If the voltage across R 907 then returns to normal and the picture centring is reasonable L504 can be left out. The bent verticals on the right may well be due to a faulty transductor - T751. Also check the associated 120Ω resistor R773.

ITT CVC32 CHASSIS

The line output transistor blows after about four hours. Until then the picture is first rate and steady. The h.t. voltage is correct.

The problem seems to be due to excessive dissipation in the BU208. Try replacing R1101 ($0 \cdot 47 \Omega$) which is in series with its base and $\mathrm{C} 56(0 \cdot 1 \mu \mathrm{~F})$ which decouples the supply to the line driver transistor. If this fails to do the trick it could well be that the driver transformer has short-circuit turns. The waveform at the collector of the line driver transistor would be most revealing.

SONY KV2206UB

When the on switch is pressed the standby light comes on instead of channel one. If you press the channel change or use the remote control the standby light just flickers or goes out, none of the channels coming on. Jabbing the on button a few times sometimes produces channel one, the set
then working normaly. The on switch and the small make-and-break switch that should produce channel one both work correctly.

Transistor Q003 on board M2 should turn off when on is invoked from the standby mode. To turn it off a low from pin 6 of IC001 is required. If this low occurs, Q003 is suspect. If the low does not occur the chip (SAA5010) is suspect. Before condemning it, check that 5 V is present at pin 24 , that input data is present at pin 22 , and that the oscillator is running - waveform 33 at pin 18.

ITT CVC9 CHASSIS

With the brightness and contrast controls adjusted for normal viewing the picture along the centre horizontally is pulled towards the edges, giving bowed edges and wavy verticals. Retard either control and normal linearity is restored. The width is otherwise correct.

This symptom is sometumes present in the ITT hybrid colour chassis and is to some extent inherent in the design. We've found that it occurs if the c.r.t.'s outer Aquadag coating is not properly earthed to chassis via the c.r.t. base panel. If all is well here and the beam limiter control is correctly adjusted check R426h (470Ω) in the c.h.t. adjustment tapping arrangement then try fitting a new universal type e.h.t. tripler.

GRUNDIG CUC95 CHASSIS

The problem is that this set persistently destroys the TDA4600 chopper control i.c. There is nothing obviously wrong with the chopper circuit and the only possible clue is that the e.h.t. appears to be on the high side, going by the noises.

It's unusual for the i.c. to blow in this type of circuit it's the chopper transistor that normally takes the brunt of any malfunctioning. We suggest you replace the BU208A chopper transistor along with the associated base feed components C631 ($100 \mu \mathrm{~F}$) and R631 (0.68Ω), also R646 ($270 \mathrm{k} \Omega$) which is connected to pin 4 of the i.c. It may be that the output voltage is excessive due to the tuning capacitor C $634(0) \cdot 0022 \mu \mathrm{~F}, 2 \mathrm{kV}$) being open-circuit, so replace this too. Before applying power, make a resistance check on the rectifier diodes fed from the chopper transformer

THORN 9000 CHASSIS

After about half an hour the picture takes on a slight greenish fuzziness, with a definite green ghost to the right of whites. From then on the picture corrects itself every few seconds but after a few hours the fault stays.

Interchange the red and green tube drive leads (at the top of the signals panel), turn down the colour and watch
in monochrome. If the fault remains in green the tube is probably faulty - before replacing it, check that the contacts at the tube base socket are good. If the symptom now appears in red, check the 560 pF correction capacitor C175 in the green channel (the most likely suspect) then if necessary the presets R190 and R194 and transistors VT106 and VT109 in the green output stage. Check carefully for dry-joints in this area of the panel.

273
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
When colour TV systems were first being considered one of the main criteria was compatibility with monochrome reception. In 1985 this factor has lost much of its significance. The ratio of monochrome to colour sets in use is now very low indeed. New large-screen monochrome sets are almost non-existent - try and find one in a retail shop! - small-screen portables accounting for such sales activity as still exists. On the servicing front too the repair of monochrome sets is becoming rare and the demand for such nostalgic hardware as PL504 and PY88 valves has virtually dried up. We had occasion recently to get out these very items however: readers who can drag themselves away from their microcomputers and s.h.f. dishes may be interested in the problem we had.

The set was an ITT model fitted with the VC200 chassis. The symptom was straightforward: lack of width the 50 cm tube was underscanned by about 3 cm on each side, while a degree of ballooning was present on highbrightness scenes. This was a fairly common problem with the VC200 and similar chassis, the usual cause being a defect in the width control circuit. The preset width control was in order however - indeed the control worked to some extent. The two high-value resistors that provide the d.c. feed to the control, R159A/B, were then confidently changed - with virtually no effect on the width. In went the aforementioned PL504 and PY88 bottles, along with a PCF802 line oscillator valve for good measure. These produced a small increase in scan amplitude but it was plain that we hadn't got to the source of the fault. Off we went for some coffee and a service manual.

On our return the abnormally high temperature of the two new valves in the line output stage, after ten minutes' running, indicated that we had been barking up the wrong tree in investigating the width stabilisation loop. We decided that the problem was due to excess line output stage loading and kicked off by replacing the e.h.t.
rectifier stick - getting a sharp nip and spilling the coffee in the process. The stick having been proved innocent we went on to carefully examine other suspect components for signs of distress, checking them either by measurement or substitution. The boost capacitor C137, third harmonic tuning capacitors C135/C141, scan-correction capacitor C138 and the l.t. supply rectifier and reservoir capacitor D9/C132 were all checked, but no defects were found. The h.t. voltage at the anode of the PY88 was on the low side, but this was to be expected in view of the excessive line output stage current flowing through section R106 of the dropper resistor.

What was left other than the line output transformer? Resistance checks on the windings are seldom conclusive in such cases so a replacement was prescribed. We didn't have one in the stores (plenty of digital i.c.s and VCR head drums but no VC200 LOPTs), so we cannibalised a scrap set with a dud tube. Fitting didn't take long, though we removed the wire links to the print side of the board, beneath the transformer - these can arc to the transformer's windings. Lo and behold the trouble was still present when we switched on again!

Maybe we should have swapped the chassis over? We didn't, but fitting one other component from the scrap set got the patient going. What was it? Answer next month.

ANSWER TO TEST CASE 272 - page 582 last month -

We dropped so many clues last month that most readers must have solved the Mitsubishi CT2206TX puzzle! The set features remote control and having obtained the infrared handset we were able to demonstrate more clearly what was going on. As with all modern remote-control systems, the analogue function commands (brightness, volume etc.) are decoded by a chip, in this case an SAA5010, which produces squarewave outputs whose mark-space ratios vary when the appropriate up/down buttons on the remote handset are operated.

The longer we dwelt on the "colour-up" button the thinner the grey lines on the display became. When we held the "colour-down" button the grey lines increased in width to a point where we had a black-and-white picture with narrow, diagonal lines of bright, locked colour superimposed. What was happening of course was that the colour up/down squarewave from the command decoder chip was finding its way to the colour decoder section of the set. The cause was failure of the colour command integrating capacitor C752 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$). Normally an $R C$ low-pass filter integrates the squarewave output from the chip to produce a d.c. control voltage whose level depends on the mark-space ratio. With C752 open-circuit integration was not taking place and raw pulses were being passed to the colour control line.

The interference frequency is governed by the SAA5010's clock oscillator of course: this runs with no particular relationship to any other signals in the set, hence the unlocked grey bars.

[^1]

UNTESTED EX-RENTAL CTVs
 OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

beSt source IN U.K.

COLOUR TVs FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON : GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY

FRANK FORD

(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

Telegen-1

PRICE 18.35 (Inc. VAT)

* EXCEPTIONALLY LIGHT AND DURABLE * POCKET SIZE FOR OUTSIDE SERVICE * PP3 BATTERY POWER SOURCE * FIVE DIFFERENT TEST PATTERNS FOR COLOUR \& MONO TV * CROSSHATCH GRID * DOT MATRIX *WHITE RASTER
* HORIZONTALS * VERTICLES * 3.5 mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a swich the generator can provide five essential test patterns for correct installation, fas checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.
Telegen-2
PRICE £34.45 (Inc. VAT
*EXCEPTIONALLY LIGHT \& DURABLE
*COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$

* RED RASTER * CREEN RASTER
* BLUE RASTER
* colour bars
* 3.5 mm JACK SOCKET FOR P.S.U.
* PROVIDES UHF SIGNAL APPROX. CHANNEL 35

Telegen 2 is a colpur bar generator at a very modest price and vet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

Power Supply
A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE £4.55 (Inc. VAT)

CLEARANCE SALE Massive Savings TELEVISION

Secondhand and ex rental. Many to clear at $£ 5$ and $£ 10$.
New but faulty or marked remote control Teletext from only £90.

AUDIO

Music centres, Hi-Fi, Radios, Cassettes, etc., etc.
Many to choose from.

VIDEOS
 VHS and SONY

Several models and types at various prices. Stocks are constantly changing.
Please phone now for further details:
COLOURTRADE
221, Bridge St. West, Hockley, Birmingham, B19 2 YU. Telephone 021-359 0449

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES All at UNBEATABLE PRICES for QUANTITY \& QUALITY

Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT Some examples of QUALITY working TVs

THORN 8800 (remote) $\star \star \star \star \star \star \star \star \star \star$ £ $\mathbf{3 0}$

THORN 9000 (remote) $\star \star \star \star \star \star \star \star \star \star$ £ 35

THORN 9600 (full feature remote) $\star \star \star £ 45$

$$
\text { THORN } 9900 \star £ 50
$$

$$
\text { THORN } 9900 \mathrm{f} / \mathrm{fr} \text { remote } \quad \star \star \star \star \star \star \star \star \mathrm{£} 60
$$

(prices quoted are based on quantity) NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E. DECCA 30s GEC 2110 GRUNDIG
TANBERGS
(Many of these untested TVs just switch on) ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands $\begin{gathered}\text { Colour TV panels \& tubes available }\end{gathered} \quad$ POA
Also Video Stands All prices subject to V.A.T. CALLERS WELCOME Export Orders Welcome for those Countries using the P.A.L. System

> 419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER.

JUNCTION 11

A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES

OUR RANGE INCLUDES
G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M. Now in stock V.H.S. V.C.R.s from $\mathbf{£ 6 0}$ plus full range of Thorn remote control including T/Text
\star DISCOUNT FOR QUANTITY \star
The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387. Open 6 days $9-5.30$ (later by appointment)

COMPLETELY VARIABLE TIMINGS

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE
RANK BUSH MURPHY

RANK BUSH MURPHY Z146 A640 dual std mono 7.00
single std mono A774 single std mono A816 solid state mono 7.00 7.00

DECCA

MS17002001 20202401 mono 7.00 MS2404 24202424 mono CS1730 1733 colour CS1830 1835 colour '30' series Bradford colour 00 series colour
100 series colour
FERGUSON HMV MARCONI
1600
PHILIPS
170 series dual std mono 210300 series mono $\begin{array}{ll}210300 \text { series mono } & \mathbf{8 . 0 0} \\ \text { G8 \& G9 series colour } & \mathbf{8 . 0 0}\end{array}$ 8.00 KT2
PYE $368,169,569,769$ mono 8.00 725-741 colour 8.00

WINDINGS

Autovox $22822693 \quad 8.00$
Crown 14CX25 15.00

RANK BUSH MURPHY T20a T22, T26 Pri \& Sec 2718 primary state $18^{\prime \prime}$ or $\quad 6.00$ 2718 EHT SONY 1320UB overwind | $\mathbf{8 . 0 0}$ |
| :--- |
| 15.00 |

SOVEREIGN FARA $\mathbf{E 1 5 . 0 0}$
PLUSTRON PALLADIUM
$14^{\prime \prime}$ colour overwind
ULTRA THORN
1690-1691 EHT overwind $\quad 5.00$
1590 EHT overwind $\quad 5.00$
Waltham 190 EHT overwind 6.00

PRICES INCLUDE
 P.P. \& 15% VAT

All lopts and windings are new and guaranteed
Open Mon.-Fri. 9 to 5.30 pm

Delivery by return.
PAPWORTH TRANSFORMERS

80 Merton High Street, London SW19 1BE

REWIND SERYICE S.A.E. all enquiries Barclaycard and Access welcome

01-540 3955

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.

* All popular tuners/tuner repairs supplied ‘off the shelf'.
* Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ. Phone: (0902) 773122.

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME CJURSES INCLUDE A HIGH PERCENTAGE OF COLLE IE BASED PRACTICAL WORK TO enhance fliture emplovment prospects

VIDEO CASSETTE RECORDER SERVICING

 6 WEEKS FULL-TIME(September 16th to October 25th)
Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentace of practical work.
Selected applicants will be eligible for a full grant from MISC under TOPS to cover tuition fees and maintenance.

6 MONTHS LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training - e.g. BSC, HND, CGL, B/EC, etc.)
(Course commences on Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL
(These courses commence on Sept. 16th)

2 YEAR

BTEC National Diploma (OND) ELECTRONIC 8
COMMUWICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fauh Diagnosis)
15 MONTHS
BTEC National Certificate (ONC) ELECTROMIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS
BTEC National Certificate (ONC)
CONPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTIPIG TECHNOLOGY \& ROBOTICS
(Microprocessars, Micracomputer Fault Diagnosis, Robotics \& Control Sys tems, CADCAM \& CAE Principles).

OVERSEAS STUDENTS ARE CHARGED THE SAME TUITION FEES AS UK STUDENTS

> Fill Prospectus from:

LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt
PLUS
17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext

Discount for Quantities

Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price $£ 49$ inc PRP and VAT.Available foom Lutoo only. Depends on depth and area to be polished.
AQUADAG COATING $\mathbf{£ 1 7 . 2 5}$ per litre inc
P\&P and VAT. Sufficient for approx 100 tubes. Available from Luton only.
TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

TUBE SIZE	$\begin{aligned} & \text { DELTA i.e. } \\ & \text { A51-110X } \\ & \text { A5 } 6-120 X \\ & \text { A66-120X } \end{aligned}$	DELTA SPECIALS i.e. $510 G L B 22$ A47-342X A67.150X	IN LINE \& PIL i.e. A51-161X A51-570X A56-510X A66-510X	HITACHI IN LINE i.e. 490DVB22 510 VLB22 560DZB22	SONY TRINITRON
UP TO 20"	£30	£32	£40	£44	£58
UP TO 22"	[34	£36	£42	£46	£64
UP TO 26"	£36	£38	f44	f48	f70

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years. Prices shown are for 12 months guarantee. All tubes exchange glass required
Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube. Delivery charge on colour tubes: Within 40 miles of Luton. 1 or 2 tubes $\mathbf{£ 6}$. 3 or more tubes FREE DELIVERY* Nationvside delivery available, charges on application. Please add 15% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW Ilataz Milanand fid Luton, Beds.
Open Mon-Fri 8am-6pm, Sat Gam-1pm. Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
H. K. Television, London, E.2. Tel. 01-729 1133.

Ex rental TV supplier to the trade.
West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901 Daventry Rentals, Daventry, Northants. Tel. 0327277436 Rea 8 Holland, Ipswich, Suffolk. Tel. 0473827562 WANTED A56/A66-510X/540X Old glass for cash

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned wada proged of postage/despatch as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become irisolvent or bankrupt provided:
(2) You tiave not received the goods or had your money returned; and than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your ciaim and what evidence of payment is required. procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers ondy advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

CATAHEADH

 His ?MANUFACTURERS GUARANTEE 1500 Hrs

WD-TV 100's of WORKING COLOUR TVs

DECCA P PHILIPS G8 \& G11 BUSH • PYE s/s • ITT • THORN $880090009600 \cdot$ GEC s/s KORTING • JAPS PRICES FROM f15 + vat Videos Always Available Tested Tubes
All sizes from $\mathbf{f 1 0}+$ vat
Always Scrapping Down Decca, Philips \& Thorn

- Spares Always Available

WD-TV
TV Warehouse (former Tritel Place),
The Chestnuts, Watling Street (A5), Hockliffe, Bedfordshire. (Jnct. 12 M1 - 3 miles)

Tel: 0525210768 \& 210686.

CentreVision TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO (VHS + BETA) FROM £85
 * ITT CD752 REMOTE WORKING £90
 * PHILIPS G11 FROM £40
 * GEC STARLINE 22-20 (Remote) £35
 * PYE CHELSEA £25
 * THORN 9000 20" £35
 \star DECCA $22^{\prime \prime}$ BLACK FRONT VERICAP $£ 15$
 \star RANK T20 REMOTE £48
 \star PHILIFS 550 IN 10's £18
 PRICES SUBJECT TO VAT OPENING HOURS:
 MONDAY - FRIDAY 9.00-5.30
 SATURDAY 9.00-1.00

UK 'Universal' TRIPLER from $£ 5.00$
 inc post \& VAT

 BEWARE IMITATIONS
1×10 ($£ 5.00$ each) $£ 50.00$ $\mathbf{1 \times 5}(£ 5.50$ each) $£ 27.50$ 1×3 ($£ 5.75$ each) $£ 17.25$ 1×2 ($£ 5.95$ each) $£ 11.90$

NB: Includes Post \& VAT
Strictly cash with order.

1. Input 200 mm . 2. Output 780 mm . 3. Focus 390 mm . 4. Pulse 390 mm . 5. Earth 390 mm . Instruction sheet available on request

Goods despatched by return. Access Barclaycard accepted

TELEPART
 PHONE (0902) 773122

[^2]
VHS VIDEOS

3V16/3V22 Untested, off the pile $\mathbf{£ 8 5}$ each (no minimum quantity) $\star \star \star \star \star \star$

THORN 8800/9000/9600's - £25 each

$\star \star \star \star \star \star$ DECCA 80/100's \& ITT S/S - £25 each
$\star \star \star \star \star \star$
PHILIPS 550's - £10 G11's - £35
$\star \star \star \star \star \star$
PYE CHELSEA'S/PHILIPS 571 etc. $18^{\prime \prime} \mathbf{-} \mathbf{£ 1 5}$
All sets off the pile, untested and including workers. Prices based on singles. Quantity rates available. Free delivery London area, other areas negotiable. All prices exclusive VAT.

SOUTH LONDON TELEVISION, Mission Hall, Southey Road, London SW19. Tel: 01-543 5437

COSSOR CDU150. Dual Trace 35 MHz Solid State.		
rtable $8 \times 10 \mathrm{~cm}$ display. With Manual $£ 200$	Delay Sweep Component Tester	
E. LABS SM111. Dual Trace 18MHz Solid State.	HAMEG OSCILLOSCOPE 2035 Dual Trace	
Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$	20 MHz Component Tester 270	
display With Manual ADVANCE OS250TV. Dual Trace 10 MHz . With	BLACK STAR FREQUENCY COUNTERS P\&P £4	
Manual	Meteor $100-100 \mathrm{MHz}$ - $£ 99$	
LEQUIPMENT S	Meteor $600-600 \mathrm{MHz}$. £126	
Solid State. With Manual. $£ 110$	Meteor 1000-1GHz $£ 175$	
TELEQUIPMENT D43. Dual Trace 25 MHz . With	BLACK STAR JUPITOR 500 FIJNCTION GENER-	
Manual ${ }_{\text {TELEQUIPMENT S }}$ (43 . Singie Trace 25 MHz . With		
Manual.-	HUNG CHANG DMM 6010. $31 / 2$ digit. Hand held 28 ranges including 10 Amp ACDC. Complete with batteries \& leads. P\&P $£ 4$ MULTIMETER type U4324. 33 ranges Complete with batteries and leads P\&P $£ 4$..	
gi, aut ranging. Complete win batteries and		
(Ss (p\&p 55)		
TYPE PM2517E (LED)		
TYPE PM2517X (LCD) $£ 95$	OSCILLDSCOPES PROBES. Switched $\times 1 ; \times 10$. P\&P 2	
MULTIMETERS UNBELIEVABLE - AVO 8 Mk IV and AVO 9 Mk IV, complete with batteries \& leads. FOR ONLY. E65	ADVANCE AMFM Signal Generator type SG63. $7.5-230 \mathrm{MHZ}$ ADVANCE AM Signal Generator ype $62 \quad 150 \mathrm{KHz}$	
complete with batteries \& leads. FOR ONLY . E55 AVO TEST SET No 1 (Similar to Av08 Mk3).	-220MHz \% .̈..... $\mathbf{5 3 5}$	
Complete with batteries, leads \& carrying case $£ 80$	MEIRIX WOBBULATOR lype 210.5 -	
AVO Model $7 \times$ Complete with batteries, leads \&	$220 \mathrm{MHz} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.	
carrying case		
Model 73. Pocket Multimeter (Analogue) 30	LABGEAR COLOUR BAR GENERATOR. CM6037 E60 P\&P 2	
(72 - Stmilar to above but no AC cu	LABGEAR CROSSHATCH GENERATOR.	
range. With batteries \& leads $£ 18$	LABGEAR CROSSHATCH GENERATOR. CM6038. Incut 240 V AC or 6 V DC E25 P\&PE2	
AVO TRANSISTOR ANALYSER CT446. Suitcase style - battery operated (batteries not supplied). With Information ONLY E2O EACH		
	WAYNE KERR COMPONENT BRIDGE. B521	
AVO TRANSISTOR TESTER TT169 Handheld. GONO GO for in-situ Testing Complete with batteries, leads \& instructions. ($\mathrm{p} \& \mathrm{p} £ 3$) NOW ONLY $£ 12$	milliohm - 1000 Mohm HUNTS CAPACITANCE ANALYSER \& RESISTANCE BRIDGE type CR3B - E 20 P\&P $£ 7$	
	LABGEAR UHF FIELD STRENGTH METER CM6016 E50 P\&P $£ 5$	
MARCONI RF MILLUVOLTMETER TF2603 $50 \times \mathrm{KHz}$ -1500 MHz 1mV-3V. FSD		
	LABGEAR DEGAUSSER COILS E5186 £10 P\&P ¢3	
MARCONI ELCTRONIC VOLTMETER TF2604 20 Hz		
1500MHz: ACDC/Ohms AC300mV-300V. FSD ¢95		
MARCONI VALVE VOLTMETER TF2600 10Hz-	KGM condition. GREEN SCREEN - USED. \& 40 each	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Flease check availability before ordering. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Carriage. Please allow 21 days for delivery.		
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL \square Telephone: 073468041 Callers welcome 9 a.m. to 5.30 p.m, Monday to Saturday inclusive		

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.

WE ARE LOCATED IN
UXBRIDGE
At probably the most accessible part of S.E. England. Constructional work on the Poyle/ Uxbridge section of the M25 is now in progress. When completed we shall be less than 10 minutes from M3/M25 junction 2/12. M4/M25 junction 4/14. M40/M25 junction 1/15.

LOCAL AREA MAP AND PRICE LIST
AVAILABLE ON REQUEST AVAILABLE ON REQUEST

DISPLAY ELECTRONICS LTD.
UNI 4, SWAN WHARF,
WATERLOO ROAD,
UXBRIDGE, MIDDLESEX.
UXBRIDGE (0895) 55800.

HOCKLEY DISCOUNT TELEVISIONS

GOOD NEWS! We have now expanded our Midlands Branch THAT MEANS! More bargains for you \& more selection

We now have HUGE STOCKS of TV's \& V.H.S. VIDEOS

LORRY LOADS DELIVERED DIRECT FROM SOURCE!

Prices start from $\mathbf{£ 6 . 0 0}$
Working Sets from $£ 12.00$
Unlimited Selection of:

Philips G8's \& G11's
Pye Solid State
Pye Chelsea
G.E.C. Solid State

Rediffusion Mk. I \& Mk. III

Thorn 8800, 9000
9600, TX9, TX10
Latest Hitachi
I.T.T. CVC30, CVC45

Bush T20, T22

Midlands Branch: HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill, Hockley, Birmingham, B19 1AE. Tel. 021-551-2233 - Ask for Jazz

North-East Branch: NORTHERN T.V. DISTRIBUTORS, Unit 2, Perth Court, Eleventh Avenue, Team Valley Trading Estate, Gateshead, Tyne \& Wear. Tel. 091-4875389 - Ask for Joe

SUMMER BARGAINS

10 BUSH 2 CHIP	$£ 50$
10 PHILIPS G8 550	$£ 150$
10 DECCA 6-BUTTON 20"	$£ 70$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $8000 \mathbf{1 7}^{\prime \prime}$	$£ 150$

ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES

PL509 £1.50, PY500 £1
ELC 1043 Tuners Ex-panel £2.50 RING FOR QUOTE
ALL + VAT

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available.
Demonstration by appointment.
L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

TOP TWENTY VIDEO SPARES

Cassette lamp (Ferg/JVC) $\mathbf{£ 1 . 8 0}$ Video head (Ferg) (state model)......... $£ 37.50$ Cassette lamp (Panasonic) $\mathbf{£ 1 . 8 0}$ Video head (Panasonic) (state model) £39.50 Take-up clutch (Ferg)66.95 Head cleaning fluid............................... $£ 1.50$
 Belt kit (Ferg) (state model)................ $\mathbf{£ 6 . 5 0}$ Reel Drive Pulley (Sanyo VIC5000)£8.88 Belt kit (Panasonic) (state rinodel) $\mathbf{£ 6 . 5 0}$ Reel Motor (Sanyo VTC5000) $£ 14.20$

 Reel idler (Sharp VC)............................45
Video head (Sony C7/C5) $\mathbf{E 3 9} 50$ Overhaul kit (Sharp) (state model) 19.95 Most spares available for Hitachi, Panasonic, Sony, Sanyo, Sharp etc. Prices on request.

TELEVIDEO SERVICES
 NOTTINGHAM (0602) 226070

76 Wollaton Rd., Beeston, Nottingham
Please add 50 p post \& packing and then add 15% VAT to total ALL ORDERS DESPATCHED BY RETURN OF POST Send 22 p stamp for full catalogue.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.

IRISH T.V. DEALERS (PLEASE NOTICE)

LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF COLOUR TVS, SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTORED TO A1 CONDITION". PRICES START (w) £60.00 VAT INCLUDED. ALSO $20^{\prime \prime} \& 22^{\prime \prime}$ RE-GUN TUBES IN STOCK, QUANTITY DISCOUNT, DELIVERY ARRANGED.

(EXPORT SPECIALISTS)

T.V. TRADE SALES E.D.I. HOUSE KYLEMORE PK. WEST DUBLIN 10.
Tel: 01-264139

ALSO
CLOVER PLACE
COLLEGE ST. KILLARNEY.
Tel: 064-33655

IRISH T.V.
 DEALERS \& ENGINEERS

Make extra money selling
Ex-Rental Colour TV's.
NEW LOW summer prices. Off the pile from £30, good working order from £50, all prices VAT INCLUSIVE. Most leading makes in stock, fresh stocks weekly. Delivery to any part of Ireland. Export orders welcome for countries using PAL System. We also stock VHS Videos and regunned Colour tubes.

TELE SPARES LTD.
 Unit 113, Elm Road, Western Industrial Estate, Dublin 12, Ireland. Telephone: Dublin 521211/521756.

WORIKING PANEES TO CLEAR

Sets of 4 panels $£ 15$ inc. VAT \& P\&P RBM Chassis A802 - Single chip RBM Chassis A823 - Dual chip Decca 30 series - Mechanical tuner Decca 30 series - Varicap tuner Quantities of second hand valves available Please allow 14 days for delivery
Southpark Distributors, Unit 4, Rubastic Road, Southall, Middlesex. 01-574 4631, Extn. 28

Callers Welcome

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.L CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebancied with new adhesives
\star Excellent high voltage clean-up

* Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535
25 vears expurience in television tube rebuilding.

SETS \& COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

PANELS TESTED \& GUARANTEED, 1,000 s of panels for all makes and models. British/Foreign ready for despatch. If you need a panel fast, telephone Brighton $33367 / 33512$. We'll be amazed if we haven't got what you want.

HITACHI, Mitsubishi, Panasonic, Sony, Toshiba, JVC, Sharp. Sharp fully refurbished. PEARSON TELEVISION. 0484 863489. Delivery arranged.

USED TEST EQUIPMENT. Crosshatch generators, scopes. EHT probes, marker generators. etc. at bargain prices. Send SAE for lists CIRCLE TV CO. 80 Merton High Street, London SW19 1BE, 01-540 9553.

OSCILLOSCOPE TELEQUIPMENT S54A good working order. £85, no probes. Northallerton (16(1)9) 341%.
R.B.M. A823 PANELS. S.A.E. for details: SCHOFIELD, 28 St Albans Road, St Annes, Lancs. FY8 1 TH.

THORN GEC Deccas stripped for spares. Panels, tuners from $£ 2.50$, phone for prices. WELLINGTON, Darfford 0332337212.

GRUNDIG TELEVISIONS, telequipment oscilloscopes. Also spares. Manuals. Panel exchange. Ochremill. 1785814643

QUALITY SETS FROM CORNWALL. Workers/non workers. Spares, panels, etc. Details ring 0726815389.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

WOODSDALE COMPONENTS

RANK BUSH MURPHY

TRANSFORMERS

Line Ouput
Z718 (T703A, T706A)
New (Complete)
£19.00
Less Focus Module and
Rectifier
T20, T22 (T705A)
£10.50
T26 (T705B) £11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and $\begin{array}{ll}\text { any set using same device } & £ 6.00\end{array}$ Switch Mode
T114A
£6.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid.
Add 15\% VAT to all prices.
DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

HALTON TV TRADE DISPOSAL

Wide range of TVs available.
Working and non-working. TRADE ONLY
(We have NO retail outlet) St Michaels Industrial Estate, Widnes Tel. 0514231577

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know or your products and services.
The prepaid rate for semi display setting $£ 6.30$ per single column centimetre (minimum 2.5 cms). Classified advertisements 37 p per word

NORTHERN IRELAND DEALERS

COME AND SEE OUR LARGE RANGE OF S/H COLOUR TVs AT LOWEST PRICES EVER

CONTACT:

S. M. ELECTRONICS 11 SANDHOLES ROAD, COOKSTOWN, CO. TYRONE Telephone: Cookstown 06487/64277

Open: Mon.-Sat. $9.00 \mathrm{am}-6.00 \mathrm{pm}$ (Closed Wednesday)

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
G11s from $£ 70+$ VAT
KT3s from $\mathbf{£ 8 5}+$ VAT K30s from $\mathbf{E 9 5}+$ VAT ITTs from $\mathbf{6 5 0}+$ VAT Decca from $\mathbf{£ 5 0}+$ VAT
T20s from $\mathbf{£ 5 0}+$ VAT 9000s from $£ 35+$ VAT VHS Videos.
Ferg $3 V 29,3 \mathrm{~K} 30$ MAKES REGULARLY STOCKED AND NatPan NV2000, NV2010
Contact John, Dave or Steve for personal friendly attention on
022369215 or 035361462

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major
companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Kyatal Marketing Ltd,
Breedon Cross
Storage,
Dale Road, Selly Oak,
Birmingham B29 6A0

NDEPENDENT TELEVISION
AND VIDEO COMPANY LARGE STOCKS TO CLEAR EVERY WEEK

COMPETITIVE PRICES

EXAMPLES:
B\&W 20"-24" COLOUR:
Bush 1-2 I.C.
From $\mathbf{£ 1 . 0 0}$
£4.00
Philips 520-550, $26^{\prime \prime} \quad \mathbf{£ 6 . 0 0}$
Thorn 3500 £6.00
GEC-Decca-ITT
Philips 550 22"
£10.00
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$
GEC 20"-22" $26^{\prime \prime}$
£10.00
Thorn 8800-9000-9800
£12.00
$\mathbf{£ 1 5 . 0 0}$
> - -

> Many Other Modern Sets and VHS Videos

PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Frank: Nottingham (0602) 864627

Unit 3
Meadow Trading Estate, Meadow Lane,
Nottingham NG2 3HQ.

EERUICE POGEF

(minimum 12 words), box number 70 p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

COLOUR TV PANELS Fully Tested \& Working						
	\%	cosil	Decoder		$\underbrace{\text { line }}_{\text {line }}$	Pow
	${ }_{3}^{3.50}$	${ }^{3.50}$	${ }_{\substack{4,000}}^{\text {a }}$	${ }_{5}^{5.00}$		4.00
	$\stackrel{4.00 *}{ }$		${ }^{10.000^{*}}$	$\stackrel{5}{5.000^{*}}$	2.50	¢ 5.00
		${ }_{5.00}^{3.50}$	$\stackrel{5}{5.00}$			00
${ }_{\text {GPlase spacily }}$					${ }_{\text {freded }}^{15.00}$	00
Preas add 15\% VAT to above pricess then add post + pecking						
Hybrid panels do not include valvesAlso a vast selection of moder						
GOLCAR T.V. SERVICES (formerly Lavite lid.),						
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273						

TV Business

Phone Baldock 894905 SECTION 3, UNIT 4, SERL COMPLEX, IONDON ROAD. BALDOCK, HERTS. OPEN 6 DAYS $10-6.30 \mathrm{pm} / 10-5 \mathrm{pm}$ SAT.

> NORMAN ENTERPRISES LTD Weston-Super-Mare, Avon. Tel: 418545/413991
> Colour TVs fully engineered with a special care on tubes Hitachi 217 Remote Control ... £95 Thorne 9000 Remote Control . £45 Pye G11
> R T10...................... 249
> Pye Chelsea 6 Button
> Pye 725
> ,
> Pye $721 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots 35$
> Thorne 9600 £55
> Thorne 9200................. £55
> Bush T20 Remote Control . $£ 55$
> All above prices include hand sets. All plus VAT.
> Ready for sale.
> Phone now, limited number each month. All the above off the pile, less a 3rd

> WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER
> Working Decca Bradford Including Black Fronts
> $18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
> Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
> Philips G8 (520) $22^{\prime \prime} \& 26^{\prime \prime}$ ONLY $£ 20.00$ each
> Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
> ALL SETS TESTED \& WORKING CALL
> JOHN POWNEY
> TRADE TV SALES \& SERVICE Unit 31 Progress Industrial Estate,

> Kirkham, nr Preston (0772) 683392

> UNTESTED PANELS FOR ALL MAKES OF IV £1.25 per panel plus post \& packing

IRISH T.V. DEALERS
Brand new re-gunning plant now in operation. $\overline{-N}^{\text {TOP CLASS TUBES }}$ -
Distributors: KELLEHER'S T.V. Kanturk, Co. Cork
Store open 9 to 8 pm. Sunday $10-1 \mathrm{pm}$. Tel. J29-50046 - Catalogue and Expert Advice

GEMINI TUBES

THE PRICE IS RIGHT FOR QUALITY REBUILDS ALL WITH 2 YEAR WARRANTY
Phone now on St. Helens 37672
Or call at Unit 3,
Delphwood Drive,
Sherdley Road Ind. Estate, St. Helens.

NWEELECTRONICS 25 YEARS SUPPLYING THE TRADE

COLOUR TV'S AND VIDEOS H.P.REPOS AND EX. RENTALS achum ल का
LOCis:040N Pillax
PYE Gll EXC CAB £45
BUSH 718 £22
BUSH T20/26 CH £35
BUSH 2 CHIP £8
HITACHI 191 £20 GRUNDIG 5010. £10
FERGUSON TX PYE KT3 $£ 50$
(NOT D.E.R. Etc.) £65
GEC 2213 £35
GEC 2010 £20
THORN 3000 £7
PYE 222 £25PHILIPS 550£20Best Stock in the Country - over 2000 in stock (90% of our TV's Switch on)
BUSH T20/T26....£50,Gll....£55, PYE KT3....£75,Others done to order.DISCOUNT FOR QUANTITYD1D 1
SHARPS 7300,8300,9300,HITACHI,VT11FERGUSON 3V29 (Not Ex D.E.R. etc.)SANYO, SONY, BETA
100's PX HOOVER JUNIOR VACS

- All models in stock
full reconditions HOOVER JUNIORS (Like new) £27

난․ 0274688458
UNH 12, Wharfecale Rd M606 xumoway istate Bradford

CASH ONLY

OPXNGDiys Stix 9-5.30

TELEVISION

GOOD QUALITY TRADE TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

GENERAL FACTORS

UNION STREET DONCASTER DN1 3AE

TEL (0302) 68416

GOOD MOTORWAY ACCESS

NOW OPEN FOR THE BEST QUALITY AND BEST PRICES IN BIRMINGHAM.

WORKING AND NON-WORKING TVS AND VIDEOS IN STOCK.
RING SINGH -021-772 2733 WILTSGROVE LIMITED (Next Door to UNCLE'S) 128-130 Ladypool Road, Sparkbrook Birmingham B12 8JA.

BRISTOL TELEVISION TRADE DISTRIBUTORS

 (BTTD)4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.

Tel: (0272) 25266

T SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG
 TELEVIEW 01-994 5537
 194, Acton Lane, London W.4.

 f14.50 GUARANTEE, OUANTITY DISCOUNTS SIX A56-120 A56-140 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A66-140 (410) A67-120 No need to spend 65 returning Slightly used in-line tubes from $£ 29$.
Six months quarantee. IN-LINE 1 YEAR GUARANTEE $9^{\text {TOSHIBA NEW SI-110 }}$ $51-510$
$51-570$ $51-570$
$56-500$ \qquad fins
56.540
$66-540$
66.500 \qquad Sectail ofter

330 AB . 470 K inclusive $\quad \frac{56-540}{66-540}$ \qquad $\ddagger 64$
$330 A B \cdot 470 \mathrm{KLB} \cdot \mathrm{FWB} \cdot \mathrm{DLB} \cdot \mathrm{KTB} \cdot \mathrm{KLB} 520 \mathrm{HB}$
$\mathrm{TB} \cdot \mathrm{KB} \cdot \mathrm{LB} \cdot \mathrm{NB} \cdot \mathrm{MB} \cdot 570 \mathrm{HB} \cdot \mathrm{CB} \cdot \mathrm{CB}$ KB L LB NB MB. 570 HB EB. DB. GB. JB
MOST IN STOCK. IMMEDIATE DELIVERY HTTACHI
490DKB22
f 34
Plus 490 DVB 510 or 560 VIB
Philips G11s
Panels from $\mathbf{£ 1 0 . 0 0 ,}$ Breaking for spares, Push button units, Tube bases for sale or exchange etc All good working order.
RADIO and TELEVISION SERVICING BOOKS
Mac.Donalds!. New $74 / 75 \mathrm{f} 15 ; 75 / 76,76 / 77,77 / 78$,
$7879,79 / 80,80 / 81,81 / 82,82833,83 / 84$,
FREE DELIVERY
Except Tubes f 5 each. All prices are inclusive U-VIEW
29, Warmsworth Road, Doncaster, Yorkshire DN4 0RP. Tel: 0302855017. Callers ring first, open every day including Sunday $1 / 2$ a mile from A1

COLOUR BAR GENERATOR

Pal Colour Generator with 11 patterns plus sound. Grey
scale, Colour Bars, Red, Green \& Blue Raster, Cross-
hatch, Dots, Chequer Board, Black Raster, White Raster,
Half Black \& White, Mains Powered.
E75.90
OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTPUT
SOUND OUTPUT
LINE PULSE
FIELD PULSE

Same as above plus RGB outpu £81.50 Line Output Transformer Tester $£ 11.50$ Bu Cenerator, Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale UHF output Same as above but with Video Output 10 pF to 1 E 20.50 with moving coil meter

Omplete
$£ 14.75$ Car Alarm with built in Siren

Wolverhampton WV1 3DW.
Tel: (0902) 871563

EX-RENTAL	
TV	
${ }_{\substack{\text { G12 } \\ \text { T22 } \\ \text { T2 }}}$	$\left.\begin{array}{l} \text { PLLUS } \\ \text { MANY } \\ \text { Mon Cb } \\ \text { Sanyo } \\ \text { Shat } 5000 \end{array}\right\} \text { E65 }$
ALL UNTESTED MIN 5's	

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame Philips Gll $18 \quad 16 \quad 10$ Scan Supply $\begin{array}{llllll}\text { Bush T20 } X & 12 & 16 & 15 & 16\end{array}$ $\begin{array}{llllll}\text { Bush T26 } & X & 16 & 18 & 15 & X\end{array}$ $\begin{array}{llllll}\text { Bush } 718 & X & 12 & 18 & X & 12\end{array}$ All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc
All panels guaranteed for 3 months T. K. PANELS SERVICE 31 Bronte Paths, Stevenage (0438) 61567

The UNIVERSAE TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank, Decca \& Continental sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middlesex

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2 TEL. 01-258 0328
all Vhs parts avallable EXAMPLES:
VIDEG HEADS
JVC, Ferguson, Akai, Saba, Telefunken $£ 35.00$
Sony (Betamax) £45.00 National Panasonic £45.00
INTEGRATED CIRCUITS
UPC 1365C
UPD 553 C
UPD 552C
.. $£ 7.30$
HA11711
. 114.75
HA11711 .. 14.20
AL parts available. Send SAE for lis
ALL PRICES INCLUSIVE OF VAT
ADD £2.00 FOR P\&P

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee
Most types available
Japanese including Sony
Ex-inental TVs from
................£15.00
Untested Panels.

VIDEO

$\star \star \star$
100's IN STOCK $\star \star \star$
CONTACT MICK ON 021-772 1591

WANTED

WANTED Copies of Television magazine. Top prices paid. 041-423 16(0) anytime.

WANTED. For new small business, regular supplies of good ex-rental videos - colour TVs, trade repair enquiries welcome. Doncaster 0302744330.

WANTED. HAMEG HM $203,20 \mathrm{MHz}$, dual trace, oscilloscope in good condition. Telephone Orpington 39260.

WANTED. EX RENTAL colour TVs. Any quantity. Prompt collection, cash paid. Sheffield 754865 .

SERVICE MANUAL or circuit for Heathkit 10-12U oscilloscope. 041-424 0435.

BUSINESS FOR SALE

RETIREMENT

Opportunity for self motivated TV engineer to own his established business by the sea. Excellent premises, location and potential try. £8,000 all in.
SEATON (0297) 20201.

VIDEO TV. HI FI SHOP NW6

+ Stock RoomsWorkshop
T/O exceeding $£ 115,000$ p.a. ($£ 4,000$ from repair). Main dealership.
12 years new lease. Rent $£ 2,300$ p.a.
PRICE E25,000 FOR QUICK SALE
Please reply to:
TV BOX 197

TV - VIDEO - AUDIO SALES \& SERVICE North Humberside
Double fronted shop, spacious luxury three bedroomed accommodation.
UNOPPOSED DEALERSHIP GREAT POTENTIAL
£ 46,000 freehold + SA.V. if required. Offers considered: Details: Box No. TV 198

RETAIL BUSINESS FOR SALE

Bournemouth: established sixteen years: excellent retail outlet producing substantial profits. Situated busy main road and comprising large showroom and workshops with spacious luxury 3 bedroom flat over. Immaculate property. Retirement sale.

FREEHOLD AT E95,000
 0202-35653

TELESUISIOM

FOR SALE

Sabaco

For a great deal!
VAN LOAD DIRECT FROM SOURCES ALL SETS OFF THE PILE

Most makes/sizes available
e.g. Black faced Decca $£ 10$, Thorn 8800/9000 etc. $£ 20$, BN $£ 1$.

All above offers m:nimum quantity of 10 sets or more.
ALL PRICES SUBJECT TO
VAT \& AVAILABNITY.
Sabaco
Saba House,
46A Derby Road, Sandiacre,
Nottingham.
VHS VIDEOS with guarantee in good working order.

Ferguson 3V22 from $£ 100$. Any
quantity

Open 6 days a week
$9.30 \mathrm{a} . \mathrm{m} .-5.45 \mathrm{p} . \mathrm{m}$.
Telephone: (0602) 397555

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY
In line from $£ 41$
Deltas from £30
UNUSED TUBES ex stock
complete with scan coils
370 KRB 22
A51 JAR00X02 560 DYB 22

$£ 40$ ea $+£ 5$ carr + VAT

2A BARTON HILL ROAD, TORQUAY TQ2 8JH 0803-33035

UNIVERSAL AVOMETER AVO 8, excellent inclusive case, battery leads $£ 85.50$. 01-843 9942.

RETAILER HAS GOOD QUALITY part exchange colour televisions to clear. (1494 814317.

NEW 3 - Saticon tubes, Hitachi H. 4105 current price $£ 268$ will accept $£ 168$ ono. Phone 053472626 day, 0534 62733 evening.

ADVANCE OS3000 uscilloscope, dual beam, delayed time basc, ext. trigger, reliable instrument $£ 3(0)$. $01-2014$ 2752.

WORKING COLOUR/B\&W Televisions, also panels, good prices. FOUR ACES ELECTRONICS, 74 Old Oak Comon Lane, London W3. 01-749 9338.
-

SERVICE SHEETS

Alba, Cossor, Baird, GEC
Defiant, Echo, Ferguson, Philips etc. etc.
30,000 SERVICE SHEETS IN STOCK ALL AT £3.00 + SAE ALSO COLOUR MANUALS AVAILABLE AT £6.00 EACH TV Sheets, Black and White, also Radiograms, Record Players, Music Centres. Japanese models in stock. Circuit diagrams only. Also Tape Recorders etc. Car radios also in stock. Radio Mobile, Sharps etc. Philips, Car Radios Service sheets $£ 3+$ SAE. Manuals $£ 6+$ SAE. Old radios AM/FM
Ferguson, Pye, Please forward s.a.e. Send cheque or P.O. and Valves.
Sanyo. Mono
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. Old transistors, N.

TELEVISION SERVICE SHEET SPECIALISTS
Thousands of British, European and Japanese models in stock
Colour $£ 2.00$ Mono $£ 1.50$
Manual prices on request.
All our prices include post and packing costs. Send stamped envelope for free catalogue and enquiries

SANDHURST TV SERVICES (MAIL ORDER)

49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

EERUICE PAEES

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders. prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.

METERS

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee 213 Cheltenham Road, Redland, Bristol. 0272-425281

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact TliE METER CO. (Poole) LTD. (0202) 683498

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books. new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

MACDONALDS R \& TV BOOKS. New $74 / 75$ £ 15.75 76, 76i77, 77/78, 78/79, 79/80. 80/81, 81/82, 82i83, 83/84 $85 / 86 £ 22.50$. Free delivery. U-VIEW, 29 Warmsworth Road. Doncaster. 1302855017.

REPAIR SERVICE

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced.

RING 0934418545

for Price List or Quotation.

MISCELLANEOUS

GEI
 GHAFP PARTS FAST TELEPHONE
 telex 849353

Audio-TV-Video \star Microwave \star Photo-copier \star Typewriter
All U.K. model spares availible. Same day despatch of orders received before 1 pm. Microwave, photocopier and typewriter spares to authorised senvice dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.
The Colour Signal

Part 2.

The Receiver Decoder
Part 3.

Receiver Installation

VHS $* * * V 2000 * * *$
BETAMAX $\star \star \star$ UMATIC
For full details telephone
0253725499 (Day)
0253712769 (Night)
Or send for precise details
FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, looks simanuals supplied by return. S/sheets $\mathfrak{f} 2.50$ except (TV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc ssheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street. Larkhall. Lanarkshire.

PHILIPS (:8 Tested panel clearance. Power f5 1.F. £4.75. Tuncr $£ 3$. Chroma $£ 6.50$. Signal $£ 15.520$ Triplers $£ 1.75$. Focus $\mathbf{£ 1 . 2 5 \text { . Control knobs } 5 \text { p. Mains }}$ switch/controls unit $£ 2.25$. Thorn 30×0 IF $2-50$. Untested power $£ 4.51$. S.A.E. for list of other parts and service manuals. MR McHUGH, In Copperkins Road, Hednesford. Staffis WSI2 5NW

SATELLITE TV

The difficult part made easy! LNB
(Block Down Convertor) i/p 3.7-4.2 GHz o/p (IF) 400-900 MHz

Send SAE for details to: OXMANN LTD.
West End Industrial Estate, West End, Witney, Oxon OX8 6UA.

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

NICAD CELLS AA/HP7 500MA/hr, pack of $4 £ 1.80$ 4 pks $£ 6.00$ Ex-equip tested \& guaranteed. NICAD CHARGER +4 AA's and holder $£ 6.00$. CROYDON DISCOUNT ELECTRONICS, 40 Lower Addiscombe Road, Croydon CR0 6AA.

AERIALS

AERIAL BOOSTERS

B45H/G-UHF TV next to the set fitting, gain abou 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price 88.70. P8P 300

UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to $14 \mathrm{~V} / \mathrm{W}$. Price $\mathbf{f 2} .50$. P\&P 30 p . SET/TOP AERIAL and matching aerial booster (trebles and gain). Price £8.70. P\& P 50p.
Video Transmitters. This will transmit good quality pictures and sound more than $30 f t$ (SAE for more details

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom,
Lancashire, BLO 9AG.
Tel: Ramsbottom (070682) 3036.
S.A.E. for leaflets. Access/Visa Welcome.

> CLEARVIEW AERIALS
> Tunable masthead amplifiers for FM and Band 3 (mosfet) gain 30 dB . NF $0,7 \mathrm{~dB}$ and UHF incl. amateur band gain 30 dB NF. $1,6 \mathrm{~dB}$. 15 dB and 26dB masthead ampl. WB, groped NF 2 dB splitters, combiners, notchfilters, diplexers etc. Trade and retail.
> Send large SAE for our comprehensive catalogue
> CLEARVIEW AERIALS,
> 173 Kings Road,
> Kingston Upon Thames, Surrey.

SATELLITE T.V. RECEPTION EQUIPMENT
 Throughout Ireland

$2 m$ G.R.P. dish with feed support and polar mount $11 G H z$ block downconverters and indoor recelvers. PAL/SECAM cotour T.V.'s built receiver.

> KESH ELECTRICS LTD

Main St., Kesh, Co. Fermanagh, N. Ireland Phone Kesh (03656) 31449.

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, splitters, channeipass filters, diplexers, masthead amplifiers, distribution amplifiers, brackets, masts, aerials, etc. Use trade gear and save pounds. Catalogue 50 p (refundable). Professional advice. WRIGHTS AERLALS. 43 Greaves Sike Lane, Micklebring, Rotherhan.

[^3]

[^0]: 5 REM COLOUR BAR SHORTENED ENTRY 10 POKE53280,11:PRINT" ${ }^{\square}$ "
 20 FORB $=1$ TO8:READA:GOSUB40:NEXT
 30 GETA\$:IFA $\$=\times$ "THEN30
 40 FORY $=0$ TO $24: \mathrm{FORX}=\mathrm{ZTOZ}+4$:
 POKE $1024+\mathrm{X}+40^{*} \mathrm{Y}, 160$:POKE $55296+\mathrm{X}+40^{*} \mathrm{Y}, \mathrm{A}:$ NEXTX,Y
 $50 \mathrm{Z}=\mathrm{Z}+5$:RETURN
 60 DATA0, $6,2,4,5,3,7,1$
 I trust this simplified entry will encourage more readers to try it.
 R. A. Ramsden,

 London N8.

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £13, overseas (surface mail) £15 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]:
 HIGH QUALITY UNIVERSAL VIDEO HEAD
 REPLACEMENTS FOR ALL VHS AND BETAMAX VCR MACHINES
 VHS Part No. 3HSS (5 mm Centre Hole) £29.95 PRICE VHS Part No. 4HSS (15 mm Centre Hole) £29.95 EACH BETAMAX Part No. PS3B
 238.95 EX.

 REPLACEMENT KIT (17 Pieces Boxed) £17.35 V.A.T. PLEASE ADD 15\% V.A.T. PLUS P\&P £2.00 PER ORDER

 OUR FULL CATALOGUE AVAILABLE ON REOUEST.
 Please allow between 14 and 28 days for delivery.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributors/Service Organizations
 THE MONOLITH ELECTRONICS CO. LTD
 5-7 Church Street, Crewkerne, Somerset TA1日 7HA, England
 Telephone Crewkeme (D4BO) 743こ1 Telex 46306 MONLTH G

[^3]: $\star \star \star$
 SERVICE PAGES SERVICE PAGES
 PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
 SERVICE PAGES SERVICE PAGES
 $\star \star \star$

