## MAY 1985

 * EXTRA PAGES THIS MONTH $\star$


Colour Capable Video Fader Unit Clearing Teletext Interference Renovating the Philips G8 Spectrum Test Pattern•DX-TV Chips for Tomorrow's Sets VCR Clinic.TV Fault Finding

## MANOR SUPPLIES

MKV PAL COLOUR
TEST GENERATOR FOR TV \& VCR.

| $\vdots$ | TEST |
| :---: | :---: |
| $\vdots$ |  |
| DEMONSTRATIONS |  |
| AT 172 |  |
| WEST END LANE |  |

$\star 40$ different patterns and variations.
$\star$ Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
$\star$ EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
$\star$ Chequerboard.
$\star$ Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
$\star$ Additional video output for CCTV \& VCR.
$\star$ Facilities for sound output.
$\star$ Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
$\star$ Mains operated with stabilised power supply.
$\star$ All kits fully guaranteed with back-up service.
$\star$ Also available with VHF Modulator.
Price of Kit
$\mathbf{£ 7 0 . 0 0}$
De Luxe Case ( $10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$ )
Optional Sound Module ( 6 MHz or 5.5 MHz ) $\mathbf{£ 3 . 9 0}$
Built \& Tested in De Luxe Case including Sound Module special test $£ 105.00$ REPORT
TELEVISION
_DEC. 1982. Add VAT $15 \%$ TO ALL PRICES

## PAL COLOUR BAR GENERATOR (Mk4) ath successful year <br> 

$\star$ Output at UHF, applied to receiver aerial socket.
$\star$ In addition to colour bars R-Y, B-Y etc.
$\star$ Cross-hatch, grey scale, peak white and black level.
$\star$ Push button controls, battery or mains operated.
$\star$ Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P $£ 2.20$ ). MK 4 DE LUXE (BATTERY) BULIL \& TESTED E88.00 + £2.20 P \& P MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20$ P \& P. VhF MODULATOR (CH 1 to 4) FOR OVERSEAS 55.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

## GEC TELETEXT EXTERNAL ADAPTOR UNIT

Complete \& ready for use. Infra-red remote control $£ 130.00$ p.p. $£ 3.00$
TELETEXT EXTERNAL ADAPTOR KIT (Less case)
with cable remote control $\mathbf{£ 1 2 0 . 0 0}$ p.p. $£ 3.00$
THORN TX10, teletext
Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}$ p.p. £1.80
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{8 6 0 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT $15 \%$

## TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs. TRIPLERS, PANELS. TUNERS, SELECTORS ETC.
SPECIAL OFFER PHILIPS, PYE KT3 SERIES INFRA RED REMOTE CONTROL HANDSETS EX RENTAL (UNTESTED) TELETEXT OR
 THORN 900 Fault Finding Guide 11.00 p.p. 30 p.
SPECIAI OFFER NEW VALVES
Branded makes, PCF80, PY88, PFL200, PCLA4 FOUR for $£ 2.00$. PL5(4 $\$ 1.00$ p.p. 80 p.
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver ${ }^{\mathbf{E} 7.50} \mathrm{p} \cdot \mathrm{P}$ £1.50.
THORN TX10 Series Facia Control Panel with 8 position Channel Selector PHID P. ELSE
PHILISS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$
PAL DECODER KIT Saw Filter IF Panel. $\mathbf{~} 7.50$ p.p. 8 pp.
PAL ENCODER KIT (RGB to Video) $£ 18.50$ Monitors $£ 27.00 \mathrm{p} . \mathrm{p}$. $£ 1$ (o)
PELETEXT DECODERS N to Video) $£ 18.50$ p.p. $\mathfrak{f l} 1.30$.
XMII E40.00 DECODERS New \& Tested Mulard VM 6101 £30.00, Texas TELETEXT P B. A.
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 2 . 5 0}$ p.p. $£ 1.20$. 5 Stals. Power Supply $£ 3.80$ p.p. £1. 20
CROSS HATCH UNIT KIT, Acrial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. 12.00 p.p. 8 (1). (Alum. Case $£ 2.55$, De Luxe Case $£ 6.80$ Pif El 41 ) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p
Alum. Case $£ 2.55$. De Luxe Case $£ 7.40$ p.p. 11.80
AluT TESTEP \& PEACTIVATOR KIT F.p. LI. 80
$£ 28.60$ p.p $£ 2.80$

BUSH A316 IF Panel (Surplus) £1.65 p.p. Y.p.p. Mo
DECCA 80 Series IF. Frame. T.B. E5. 00 p.p. 11.40 .
GEC 2040 Convergence Panels, Decoder Panels. £1.50 p.p. $\mathbf{£ 1 . 8 0}$
GEC 2110 PANELS Frame 88.50 , Preser (Tune) Control 5.00 p.
PYE 691-7 CDA Panels. Makers tested steck $£ 6.00$ p p 5 . 45 p.p. f1.40.
THORN TX9 Pancls ex tactory for small spares. Inclu
semiconductors etc. $\mathbf{£ 5} \mathbf{0} 0 \mathrm{p}, \mathrm{p} . £ 2$. (\%)
THOKN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $\mathbf{E}^{2} .80$.
THOKN TX9 Panels ex factory salvaged complete cond $£ 20$. 00 po p 280
THORN TX10 T.B. Pancls salvaged ex factory. $£ 15.00 \mathrm{p}$.p. $£ 3.0$.
THORN TX10 IF/Decoder Panels salvaged ex factory Pis.00 p.p. $\mathfrak{i z}$. (0)
THORN 3000/3500 Power supply P.C.B. £ 3.50 p.p. $£ 1$. (1)
THORN 8000/8500 IF/Decoder Pancls salvaged \&3.20 p.p. f1.80.
THORN 9000 IF/Decoder Pancls Salvaged. E5.00 p.p. if (x)
THORN YOMO Series. Long panel facia unit ind. 6 Position Channel Selector \& Loudspeaker $\mathrm{E}^{2} .00$ p.p. $\mathrm{E2}$.(0).
PHILIPY G8/G9 IF/Decoder Pancls for small spares incl ICs $£ 2.50$ p.p. $£ 1.60$. G11 PANELS, Ex Rental SCAN (incl LOPT) £28.00 p.p. $£ 2.50$.
G1I PANELS, Power. Frame. IF, Decoder, £18.00 each. p.p. £2.00).
GRUNDIG 86.30 Series Varicap Tuners $\mathbf{5 5} .00 \mathrm{p} . \mathrm{p}$. $\mathrm{fI} .(0)$.
VARICAP. ELCI(43/5 $\mathbf{£ 7 . 8 0}$ p.p. 80 p. Makers Varicap Controls PYE CT200 4PSN $£ 7.50$, BUSH 4 PSN $£ 4.80$, DECCA 4 PSN $£ 5.80,6$ PSN $£ 6.80$ p.p. 80p.
BUSH "TOUCH TUNE" Varicap Control Z179, Z718 types $£ 3.80$ p.p. 95 p. VARICAP UHF-VHF ELC2M01 $£ 9.80$, BUSH $£ 7.80 \mathrm{p} . \mathrm{p}$. 90 p .
VARICAP VHF PHILIPS, $\pm 6.90$. ELC 1042 £7.90 p.p. 80 .
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$.
OPT TESTER Pancls $£ 6.80$ p.p. $£ 1.00$.
LOPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOIPIS New and guar. P/P Mono £1.35, Colour $£ 1.50$, Bobbins 80p.
BUSH IGtollxo (twin panel)
BUSII, MURPIIY 774 series.
E. 50 R.B.M. A823

BUSI, MURPHY A 10 (6 cries
PERG. HMV, MARCONI, UITKA
$14(0) .15(0) .15(x) .1591$
ع9.80 R.B.M. $120 . \mathrm{T}$
HORN IKNO 1615, 1600 , 169
GEC wries $1 \& 2$
R.B.M. T20, T22 Bobbin

INDESIT 20124EGB
COETITY 2000.3M0
TT/KB VC2(0). 300
$£ 7.65$ (:EC 2110 series
MURPHY 1910 to 2414 (twin panel) $\mathbf{£ 7 . 9 5}$ ITT CVC 5 to 9 ( VVC20................
PIIILIPS 170.210, 300 series ........... $\mathbf{8 7 . 6 5}$
PYE, INVICTA, EKCO, FERK.
688. 169, 569, 769 scries PYE 01 -697 (state model no.)
PYE $713,715$.
PYE 725 ( ON $^{\circ}$ ) 731 to 741 .
PHILIPS G8
PHILIPSG9
PHILIPS 570.571
PliliIPS KT3
DECCA $20124.1700,2000$ ), 2401
EC $21141 / / \mathrm{H}$ nior Fincline
HILIPS 320
KB VC EIEVEN (OM13)


| $\mathbf{4 4 . 9 0}$ $\mathbf{9 9 . 8 0}$ |
| :---: |
| £9.80 |
| 55.60 |
| c8.80 |
| c8.80 |
| ¢14.50 |
| $\pm 5.80$ |
| ¢10.60 |
| £9.80 |
| c8.80 |
| ¢10.00 |
| ct. 80 |
| $\underline{59.20}$ |
| c8.80 |
| $\underline{10.80}$ |
| ¢6.80 |
| 19.80 |
| 6.90 |

OTHERS AVAII ABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour.
TRecial Offer: Thorn $X(x) y$ (2 lead) EHT Tray $£ 2.80$ p.p. 80 p
6.3V CRT Boost Transformers for Colour \& Mono etc. 40 p.p. fip. 20 . 50 p
6.3V CRT Boost Transformers for Colour \& Mono $\mathbf{E 5 . 4 0}$ p.p. £.i. 20 .

THORN TX10 focus control $£ 8.80$ p. 8 . 80 p.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL. ITEMS, ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL. AVAILABLE
Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass doo W. Hampstead British Rail Stns. (Richmond, Broad St) (St. Pancras, Bedford) W. Hampstead (Brit Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11 PIEASE ADD VAT 15\% TO ALL PRICES


## COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

## CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

## SUBSCRIPTIONS

An annual subscription costs E 11 in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

## BINDERS AND INDEXES

Binders ( $£ 4.50$ ) and Indexes ( 45 p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

## BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $\mathbf{£ 1 - 2 0 p}$ inclusive of postage and packing.

## QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

## this month

## 361 Leader

362 Teletopics
News, comment and developments.
364 Driven to Drink
Les Lawry-Johns
Well wouldn't you be, by some of Les's fabled customers?
367 Letters
370 Dealing with Teletext Interference
Eugene Trundle
The causes of teletext interference effects on the screen, methods of overcoming them and modification notes for chassis commonly affected by the problem.
374 Renovating the G8
Tony Thompson
Ex-rental sets fitted with the Philips G8 chassis have
become available in large quantities in recent times. They
are easy to work on and worth renovating when in
reasonable condition. Notes on what you may have to do.
376 Video Fader Unit
Malcolm Burrell
A simple fader circuit designed to handle colour signals. The unit is cheap and easy to build using the suggested PCB.
379 Spectrum Test Pattern Program John de Rivaz, B.Sc. (Eng.) The pattern is similar to that shown on our May 1984 cover, with circle, colours and frequency gratings, and offers music as an optional extra!
380 TV Fault Finding
Reports from Malcolm Burrell, P. Welsh and Philip Blundell, Eng. Tech.
382 Vintage TV: The Autumn of '55
Chas E. Miller
The start of ITV - how it came about and the ways in which it affected the trade.
383 Next Month in Television
386 VCR Clinic
Reports from Steve Beeching, T. Eng., Derek Snelling,
Mick Dutton, Les Harris and Peter Richards.
388 Waveforms from Space
Harold Peters
Characteristics of the satellite TV signals at present receivable in the UK without too much difficulty.
390 Chips for Tomorrow's Sets
Notes on the latest TV chips from Mullard: future chassis may feature microcomputer control of all functions and a field store memory.
393 Some G11 Problems
Ivan C. Tucker
Servicing notes on the Philips G11 chassis.
394 The Lid off Microcomputers, Part 2
Mike Phelan
This time what goes on in the microprocessor chip.
396 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. Also thoughts on 4 GHz DX-TV.
399 Service Bureau
401 Test Case 269

## OUR NEXT ISSUE DATED JUNE WILL BE PUBLISHED ON MAY 15


104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.

Telephone: Accrington (0254) 36521 Accrington (0254) 32611 Telex: 635562 Griffin G (For P.V.) SUPPLIERS
OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m.-5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 $1 E E$. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

ADD HOW TO ORDER
ADD 75 p per order $P+P$. Goods are despatched on the day we receive your
(U.K.). Heavier parcets e.g. order. If for any reason we are out of stock we will (U.K.). Heavier parcets e.g. order. If for anty reason we are out of stock we will try
cable, service aids, degaus. $t$ inform you as quickly as possible. We try our best coils, please allow $£ 1.30 \mathrm{p}+\mathrm{p}$ to give a speedy, fair and efficient service. V AT (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please askif if what you need is not listed - we whenever possible. Add $15 \%$ will try to help. Prices are subiect to change without VAT to total except where it notice. states zero rate.



Telegen-1


PRICE £17.20 (Inc. VAT)

- EXCEPTIONALLY LIGHT AND DURABLE
- POCKET SIZE FOR OUTSIDE SERVICE
- PP3 BATIERY POWER SOURCE
- PP3 BATTERY POWER SOURCE

FIVE DIFFERENT TEST PATTERNS FOR
COLOUR \& MONO TV

* CROSSHATCH GRID * DOT MATRIX
- WHITE RASTER
- HORIZONTALS
* HORIZONTALS * VERTICLES
-3.5mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattem generator for black/white and colour T.V. alignment and service at the customer's home. At the turm of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattem stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.

## Telegen-2

PRICE E34.45 (Inc. VAT)

- EXCEPTIONALLY LIGHT \& DURABLE
- COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
* RED RASTER * GREEN RASTER

BLUE RASTER

- 3.5 mm JACK SOCKET FOR P.S.U.
- PROVIDES UHF SIGNAL APPROX.

CHANNEL 35


Telegen 2 is a colour bar generator at a very modest price and yet is extsemely effective, stable and durable. It is the perfect compliment to Telegen 1, giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

## Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen. 2


Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploms Course, training you ready for a new, higher paid, more exciting career. Loern in your own home, in your own time, et your own pece, through ICS hom study, used by over 8 million alreedy! Loolin at the wide renge of opportunities avaiting you. Whatever your interest or skill, there's en ICS Diplome Course there for you to ues.
Send for your FREE CAREER BOOKLET today-at no cost or obligation at All

| $\begin{aligned} & \text { COMPUTÉR } \\ & \text { PROGRAMMING } \end{aligned}$ | RADIO AMATEUR'S LICENCE |
| :---: | :---: |
| ELECTRONICS | INTERIOR DESIGN |
| COMMERCIAL ART | WRITING FOR PROFIT |
| $\begin{aligned} & \text { TV, RADIO \& } \\ & \text { AUDIO SERVICING } \end{aligned}$ | CAR MECHANICS |
| BOOK-KEEPING \& | OUNTANCY |



| WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US |  |  | E.C.SOCOMPMTS108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INT | TYPE PRICE (£) | TYPE PRICE (£) | TYPE PRICE (£) |  |  |  |  |  |  |  | 5 S - $\quad 5.40$ |
| CIRCUITS | LA3350.......... 1.93 | STK035....... 12.67 | T8A7500...... 2.45 | UPC 1176C ...2.15 |  | BC54 |  | BR100 ....... 18 |  |  | THORN3500 $\quad . \quad 8.25$ |
| TYPE PRICE (E) | LA4031.......... 1.66 | STK036 ...... 12.67 | TBA800 ......... 80 | UPC1177H.... 2.30 | TYPE PRICE |  |  | BR101 ....... 48 | RBM 271818 | 2.95 | THORN8000 .......... 5.20 |
| AN103......... 1.95 | LA4031P...... 2.45 | STK043.......11.33 | TBA810AS ...1.15 | UPC1178C ....2.20 | AC127........ 22 | BC558 |  | BR103 ........ 55 | PHIUPS G8 |  | THORN8500/8800 $\ldots . . .7 .60$ |
| 214.......... 2.25 | LA4032......... 2.34 | STK050 ....... 20.75 | TBA820 ........ 1.40 | UPC1180C ....3.05 | AC128....... 22 | BD124P |  | BT106 ...... 1.15 | PHILPS G9 | . 45 | THORN9000 $\quad . \quad 8 . \quad 8.70$ |
| 240...........2.20 | LA4051......... 2.79 | STK070 ...... 21.95 | TBA890 ........ 2.95 | UPC1181H.... 2.20 | AC128K ..... 30 | BD131. |  | BT116 ...... 1.30 | PHILPS G11 | 50 | PYE $731 \quad 1 . . . \quad 130$ |
| $53 . . . . . . . . . . .1 .93$ | LA4101.........1.88 | STK077 ........ 8.56 | TBA9200..... 1.50 | UPC1182H....2.35 | AC187K ..... 30 | BD132. |  | BU126.... 1.78 | THORN 1590/1 |  | DECCA 2230 ........... 720 |
| AN315...........1.66 | LA4102......... 1.97 | STK078 ......... 8.45 | TBA950/2X ... 2.65 | UPC1183H.... 2.35 | AC188K ..... 33 | BD20 |  | BU205.... 1.42 | THORN 16901 | 68 | DECCA $80 . . . . . . . . . . . . ~ 120 ~$ |
| AN318...........6.95 | LA4112......... 2.97 | STK082 ........ 9.75 | TВА990 ....... 1.55 | UPC1185H2 $\quad 3.30$ | AD149....... 70 | BD202. |  | BU208A 1.40 | THORN 1615 |  | DECCA $100 \ldots \ldots . . . . . .355$ |
| AN337......... 4.41 | LA4201......... 2.95 | STK086 ...... 12.89 | TCA270S ...... 1.30 | UPC1188H.... 3.30 | AD161 | BD203 |  | BU208/02 1.70 | THORN TX10, | . 1250 | $1{ }^{1 T \mathrm{CVC}} 20 / 30 \quad \ldots \ldots . . . .6 .85$ |
| AN360 ......... 1.45 | LA4400.......... 2.80 | STK415 ........ 9.66 | TCA800 ....... 5.10 | UPC1190C ....2.10 | AD162 | BD204 |  | BU326A 1.4 | PYE 731/13(110) | 10.20 | IT CVC $45 \quad 8 \quad 8.95$ |
| AN6332........ 6.97 | LA4420......... 1.94 | STK433 ........ 7.25 | TCA940....... 1.55 | UPC1198H.... 1.30 | AF127........ 36 | BD222 |  | BU407.... 1.12 | PYE 225 (90) | 10.20 | Universal |
| AN7110........ 1.93 | LA4422.........2.75 | STK435 ........ 7.75 | TDA1003A ... 2.80 | UPC1200V ...1.90 | AU110..... 3.10 | BD232 |  | BU426A 1.75 |  |  |  |
| AN7114........2.33 | LA4430......... 1.93 | STK437 ........7.77 | TDA1004A .... 2.70 | UPC1208C .... 1.85 | AU113 .....4.60 | BD233 |  | BU500 ..... 1.80 | DECCA |  | ODES |
| AN7115........ 2.37 | LA4460......... 2.95 | STK439 ........ 7.86 | TDA1035...... 3.20 | UPC1211C .... 4.05 | BC107 ....... 14 |  |  | BU526..... 2.00 | DECCA 80 |  | PE PRICE |
| N7116.......2.35 | LA4461......... 2.95 | STK441 ........ 9.52 | TDA1044......3.10 | UPC1215V ...2.50 | BC108 ....... 14 | BD2 |  | BU826.... 3.20 | D |  | BY127. |
| N7120........ 2.43 | MB3712 ....... 2.30 | STK443 ...... 11.33 | TDA1170......1.80 | UPC1216V ...2.00 | BC109 ........ 14 | BD236 |  | BUX84 ...... 90 | $1{ }^{1 T}$ CVC 20 |  | BY133 ......... ........ 15 |
| AN7140........2.10 | MB3713 ....... 2.25 | STK459 ........ 9.55 | TDA1412........ 90 | UPC1217G ...3.35 | BC141 ....... 26 | BD237 |  | R2010B ... 1.45 | ITT CVC 25/30/32 |  | BY164. |
| N7145........ 3.25 | MB8719 ....... 5.20 | STK461 ........ 9.95 | TDA2004A ... 4.35 | UPC1218H.. .2 .75 | BC142 ....... 23 | BD238 |  | R2540..... 2.35 |  |  | BY179. |
| N7150........2.89 | MC1327A .... 1.00 | STK 463 ...... 10.88 | TDA2020 ...... 2.95 | UPC1222...... 2.05 | BC143 ....... 25 | BD410 |  |  |  |  | BY210.800 |
| AN7151........2.89 | MC1358P...... 1.60 | STK501 ........8.98 | TDA2522......1.80 | UPC $1223 \ldots . . .3 .40$ | BC147 ........ 09 | BD434 |  | TIP32C ........47 | ANTL-SURG | FUSES | BY223 |
| HA1137 ........ 2.30 | MC1330P........ 90 | TA7072P | TDA2523...... 2.25 |  | BC148 ........ 09 | BD437 |  | TIP33B | A/S20 |  | BY227M |
| HA1144 ........ 2.39 | ML231B ....... 1.95 | TA7108P ...... 2.10 | TDA2530 ...... 2.10 |  | BC157 ....... 10 | BD438 |  | TIP41C....... 48 | 100, 160, 200 M | 1.70 | BYX10 $\quad 20$ |
| HA1151 ........ 1.97 | ML232B ....... 1.70 | TA7120P ...... 2.05 | TDA2532.......2.20 | UPC $1230 \mathrm{H} \ldots . . .4 .45$ | BC158 ....... 11 | BD707 | ..... 1.05 | TIP42C....... 48 | 315, 400, 500 |  | BYX55/600 |
| HA1156 ........ 1.97 | ML237......... 2.50 | TA7129........ 3.00 | TDA2540...... 1.95 | UPC1245...... 1.99 | BC159 ....... 11 | BDX32 | .... 1.65 | TP2955 ..... 70 | 800MA. 1A. |  | OASO |
| HA1166 ....... 2.65 | ML238......... 4.22 | TA7130P ...... 1.20 | TDA2560...... 1.80 | UPC1250....... 2.45 | BC160 ....... 22 | BF194. |  | TIP3055 ..... 55 |  |  | 1N4001-7 ............. . 07 |
| HA1197 ........ 2.30 | SAA1024 ..... 2.55 | TA7139P ...... 2.80 | TDA2581 ...... 1.70 | UPC 1350 C ... 4.50 | BC172 ....... 10 | BF195 | 13 | TV106/02. 1.60 | 2, 3,15, 4, 5A |  | 1N5401-8 |
| HA1199 ....... 2.30 | SAA1125..... 4.70 | TA7157P | TDA2590...... 2.25 | UPC1353C.. .2 .60 | BC177 ....... 22 | BF 196 |  | 2N $3054 \ldots . . .55$ |  |  | BZX61-range ……. . 18 |
| HA1202 ........ 1.75 | SAA1250 ..... 3.85 | TA1171P ...... 3.40 | TDA2591...... 2.70 | UPC1356C2 3.05 | BC182 ....... 10 | BF197 |  | 2N3055 ..... 50 |  |  | BZY88-range |
| HA1211 ........ 1.87 | SAA1251 ..... 5.20 | TA7172P ..... 3.40 | TDA2593.......2.30 |  | BC182L ...... 11 | BF198 |  |  |  |  |  |
| HA1306....... 2.97 | SAA5010 ..... 5.10 | TA7176AP ... 2.90 | TDA2600......5.50 |  | BC183L ..... 11 | BF241 |  | 2SC1034 4.55 | PCF802 |  |  |
| HA1319....... 2.9 | SAA5012 ..... 5.70 | TA7193P.... .4 .20 | TDA2611A.... 1.50 |  | BC184L |  |  |  |  |  |  |
| HA1322 ....... 2.10 | SAS560S ......1.83 | TA7202P | TDA2640 $\ldots . . .2 .3 .20$ |  | BC212L …..... 12 |  |  |  | CL86 |  |  |
| HA1325 ....... 2.30 | SAS570S ......1.90 | TA7203P | TDA3560 ......5.10 | UPC1368C $\ldots .3 .76$ | $\begin{aligned} & \text { BC212L } \ldots \ldots .10 \\ & \text { BC213L ..... } 10 \end{aligned}$ | BF259 |  | NEW | $\begin{aligned} & \text { PLLD86 } \\ & \text { PL504 } \end{aligned}$ |  | EE IF GAIN |
| HA1338 ....... 2.78 | SAS580........2.40 | TA7204P | TDA3561 ......5.35 | UPC1370C2 3.80 | $\begin{aligned} & \text { BC213L ...... } 10 \\ & \text { BC214L } \ldots \ldots .10 \end{aligned}$ | BF338 |  |  | $\begin{aligned} & \text { PL504 } \\ & \text { PL508 } \end{aligned}$ |  | EW COIL G11 .......1.65 |
| HA1339 $\ldots . . . .2 .80$ <br> HA1342A 2.33 | $\begin{aligned} & \text { SAS590.........2.40 } \\ & \text { SL901B.......5.65 } \end{aligned}$ | TA7205AP .... 1.60 | TDA3562 .......5.50 | UPC1373H.... 1 | BC237B ..... 11 | BF458 |  | Son | PL509/519 |  | VA1104 $\quad .70$ |
| A1366 | SL917B........6.95 | TA7210P .......5.60 | UPC554C ..... 1.30 |  | BC337 ....... 11 | BF459 |  | SG61 | PY88. |  | RANSDUCTOR. 225 |
| WNR ....... 2.30 | SN76003N.... 2.30 | TA7222P ...... 1.70 | UPC555H........ 70 | UPC 1384C .... 5.50 | BC338 ........ 10 | BFR90 | 1.60 | 6533 | PY500A |  |  |
| HA1368 ....... 2.20 | SN76013N.... 2.30 | TA7223P ...... 3.15 | UPC566H3 ... 2.10 | UPC2002H.... 2.20 | BC547 ........ 10 | B |  | SAE ..... 8.7 | 0 |  |  |
| HA1371 $\ldots$...... 2.97 | N76023N... 2. |  |  |  |  |  |  |  |  |  |  |
| HA1374 HA1377 | SN76110N..... 90 <br> SN76226D <br> 1.45 | TA7310P $\ldots$..... 1.70 | UPC585C ... .1 .40 <br> UPC1018C  <br> 1.15  |  |  |  |  |  |  |  |  |
| HA1377 $\ldots . . . . .3 .80$ <br> HA1388 | SN76226DN 1.45 SN76227N... 1.00 | TA7313P ....... 2.10 | UPC1018C |  | 500 | 2.95 | DECCA | T6W | $\begin{aligned} & 6.45 \\ & 7.95 \end{aligned}$ |  |  |
| A1397 ....... 4.15 | SN76660N...... 65 | TBA120AS ...... 70 | UPC1026C .... $\mathbf{1 . 4 5}$ | (800) 250 V |  | 3.30 | PYE-G | B | 7.9 |  |  |
| HA11211 ...... 2.43 | STK0039 ......6.45 | TBA120SB...... 90 | UPC1028H.. .2 .15 | PHILIPS G8(600)30 | 300 V | 2.00 | PHILIP | BS/L | 14.90 |  |  |
| KIA7217....... 2.75 | STK0040 .......5.95 | TBA120U...... 1.00 | UPC1031H ... 2.85 | PHILIPS G9(2200) | ) 63 V | 1.15 | PHILIP | 8S/0 | 12.00 |  |  |
| HA11221 ...... 2.77 | STK0050 ...... 7.50 | TBA395 ....... 1.25 | UPC1032H...... 85 | PHILIPS G11(470) | )250V | 1.95 | HITAC |  | 8.95 |  |  |
| LA1201.........1.88 | STK011 ........ 7.35 | TBA396 .......... 85 | UPC 1035C .... 2.50 | PYE 691/7(200-3 | 2001350V | 2.10 | ITCVC5 | W | 10.40 |  | Stor for P/P U.K. |
| LA1230.........2.30 | STK014 ........ 7.65 | TBA520 ........ 1.30 | UPC1042C .... 2.40 | RBMA82312500 | 2500130 V | 1.10 | ITCVC8 |  | 12.80 | Add 15 | VAT To This Total. |
| LA1365......... 2.25 | STK015 ....... 7.15 | TBA530 ........ 1.00 | UPC1043C ... 2.45 | ORN350 | /100/100/ |  | PHILIPS | 11 | 26.90 |  |  |
| LA2200......... 2.25 | STK016 ........ 7.45 | TBA540 ........ 1.27 | UPC1156H.... 2.45 | 400)350V |  | 2.25 | U |  | 8.70 870 | EL | AY BY RETURN ON |
| LA3122........ 2.10 | STK020 ........ 9.05 | TBA550 ....... 1.40 | UPC1168C ....2.70 | THORN3500 100 | (40)70V | . 875 | U321 |  | 8.70 7.85 |  | STOCK |
| 3301......... 1.9 | STK032 ......11.32 | TBA5600..... 1.60 | UPC1170C .... 1.55 | THOR 900014 | 1400V | 2.75 |  |  |  |  |  |


U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders weicome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.


|  | BARGAIN PACKS |
| :---: | :---: |
| All the packs listed below contain full spec marked dovices as described, and are mailable matil stocks are exhausted. The price for each pack is $\mathbf{5 1 . 0 0}$ inc VAT. Post and pecking Cop any quantiry. |  |
| $K 102$ | 15 BC349A transistors |
| ${ }_{6103}$ | 10 BC546B transistors |
| K10\% | 82 N 5060 30V 0.8A T092 case SCR's |
| $K 109$ | 15 BC114 transistors |
| $K 112$ | 133450 V wire ended rects |
| $K 113$ | 30 DA002 150V 0.5A rects |
| $K 114$ | 15 XK6116 (BF241) transistors |
| $K 115$ | 18 SP1218 \{2N3702) transistors |
| $K 115$ | 10 MPSL01 NPN 140V T092 transistors |
| $K 118$ | 16 ME4101 NPN GON AF low noise transistors |
| K115 | 102 N 5401 PNP 160V T092 transistors |
| $K 120$ | 6prs2SD96/2SB4S6AFO/P simtoAC128/176 |
| ${ }_{6121}$ | 20755400 mW zeners |
| $K 123$ | 1056 V 1 W zener |
| K124 | 50.02 ¢F disc ceramic |
| Kı25 | 200 1k 5\% 1/4W carbon film resistors |
| $K 126$ | 100 3000pF 63V poystyrene preformed caps |
| K127 | $2547 \mu \mathrm{~F} 25 \mathrm{~V}$ axial lead caps |
| $K 128$ | 8 AA113 diodes |
| K130 | 25470 O V O.IW presets |
| $K 131$ | 10 VA1006 thermistor |
| $\underline{133}$ | 203 way 5A term blocks |
| K134 | 50 unmarked untested OC71 type transistors |
| K136 | 304.7 [uF 10 V radial elacs |
| K136 | 4 AC187k transistors |
| K13 | $301 /{ }^{\prime \prime}$ coil former with slug |
| K140 | 30.05 uf 50 V mylar caps |
| $K 141$ | 400.01 l F 400 V axial caps (C296) |
| K12 | 25 wire ended neons std size, 90 V |
| K143 | 200 squares mica insulation 25 mmm sq . |
| K14 | 301 1R5 3W wirewound resistors |
| K14 | 25330 UF 4 V axial caps |
| $K 147$ | $3150 \mu \mathrm{~F} 350 \mathrm{~V}$ radial cans |
| K14 | 30 transformer formers, cat type $\times 278$ |
| K149 | 12 ferrite rods, cat type X036 |
| K150 | 10 switches, cat type W430 |
| $K 151$ | 123 mm red LED's |
| K152 | 105 mm red LED's |
| $K 153$ | 30 T05 heat sinks, cat type 6104 |
| K 154 | 155 pin $180^{\circ}$ DIN skt clip fix |
| $K 156$ | $1511 / m^{\prime \prime}$ chassis mritg fuseholder |
| $K 15$ | 1216 pin Oll-OIL IC Sockets |
| $\mathrm{Kl}_{58}$ | 6 SPCO centre off white rocker switches |
| K198 | 200.3 W presets $500 \mathrm{k} V$ knurled knob |
| $K 161$ | 200.3 W prasets 2 k 5 V |
| K102 | 200.3 W presets 2 M 5 V knurled knob |
| K160 | 400 15R 1/WW 5\% pretormed vert motg R's |
| K14 | 50 22pF 2\% silver mica caps |
| $\mathrm{K}_{165}$ | 20 min reed switch, 20 mm long body |
| K165 | $1003300 p \mathrm{~F} 63 \mathrm{~N}$ polyester PC matg caps |
| K15 | 50 AA144 diodes, pretormed for horiz. mntg |
| K160 | 308 V 2400 mW zeners pretormed as above |
| K 171 | 25 IIV ditto |

```
K173 121.54 F 25V tant bead caps K17 24 150H O.IW V presots 4.72 24 4 O.IW H presets t179 24 470 D O.W V prasets
K191 24 K181 242 k 20.1 WH presets
K18 15 PN72 plastic BCY72 TOS2 case \(\begin{array}{ll}\text { K183 } & 14 \text { PN71 plastic BCY71 TO92 case } \\ \text { K1M } & 14 \text { PN70 plastic BCY70 TOA2 case }\end{array}\) K1E5 200 IR I/WW CF R's proformed for horiz mnts K193 256 VE 400 mW zeners, preformed for horiz mounting
3022 V 400 mW zeners, pretormed for hori. mounting
K1ss 1001 N914silicondiodes praformedforhoriz. mounting
K195 100 IN4148 silicon dions horiz. mounting
\(K 19750\) AA139 diodes preformed for horiz. mntg IC2M 25 100uF 6.3V PC mntg electrolttics 1002225330 uF 10 V PC mntg electrolvtics \(102032022 \mu \mathrm{~F} 50 \mathrm{~V}\) radial lead electrontrics \(1647 \mu \mathrm{~F} 5 \mathrm{~V}\) radial lead electroytyics \(400.33 \mu \mathrm{~F} 50 \mathrm{~V}\) radial lead elactrolytics \(400050.47 \mu \mathrm{~F} 50 \mathrm{~V}\) radial lead electrolytics 207 15 in-line \(11 / 4\) in fuseholders for cars, etc. 10SGS27212NPNT05 transistorshife75VCE coas 11 VG MF10 LCE 4OV PNP TO92 transistors hte200 VCE 13ED 1802 PNP TO92 transistors hfez00 VCE
1 C211 16 ED1502B 10106 NPN Si 30V switching C212 20 TJ525 TOQ2 NPN Si GOV
1221325 FW5247 T105 NPN Si
1214 100 Silicon signal Diode, like N4148 621525 E544 TOS2 NPN Si 30 N
K215 1027 -6025 T05 PNP Si 80 V hfe 50
\(127-4659 \mathrm{C}\) T018 NPN Si hfeloo, 40V sim 64000
K12 2648005 T 03 Ge . hi-gain 30 V
mains operation with red bezal incorporatin mains operation wort to mount neon, then this assembly clips into panel hole \(10 \times 5 \mathrm{~mm}\). 8 sets of parts \(£ 1.00\)
Send \(£ 1\) for full catalogue, or SAE for 28 page bargain list
Official orders welcome - minimum in voice charge \(£ 10\). No min. on CWO Goods normally desperthed by return of post. Our shop has enompous stocks on
```






## IN LINE TYPES EX-STOCK SELECTION not rebulos

Please enquire types not listed

| 370 HFB-A37-590..... $£ 45$ | 560 DMB .................. $\mathbf{£ 6 2}$ |
| :---: | :---: |
| 370 HUB ................. £45 | AXT 56-001 ............... £62 |
| AXT 37-001 .............. £45 | $\mathbf{6 6 0 ~ A B ~ . . . . . . . . . . . . . . . . . . . ~} £ 65$ |
| 420 CSB .................. £45 | A67-701 ..................... $\mathbf{£ 6 5}$ |
| 420 EDB-A42-590 ... £45 | 670 CZB $\ldots . . . . . . . . . . . . . . . . . . . ~ ¢ 65 ~$ |
| 420 EZB .................. £45 | A66-540 ................... $\mathbf{£ 6 5}$ |
| 420 ERB ................... £45 | 420FSB |
| 470 KUB ................. £50 |  |
| 510 UFB/A51-590...... £55 | CARRIAGE |
| 510 VSB ................. £60 | ¢5 Singles. 2-3£10.4£12 |
| AXT 51-001 .............. £60 | 10£15. $10+$ Carriage paid |
| 560 DYB-560 DTB .. . £62 | EXCLUSIVE OF VAT |
| 560 EGB ................ £62 |  |
| 560 CGB …................ $\mathbf{6} 62$ | Cash with order |

QUANTITY
DISCOUNT
AVAILABLE

* OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES
tems immediate dispatch on receipt of orde.
THE COMPANY WHO PUT HIGH STANDARDS FIRST


CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

## EAST CORNWALL COMPONENTS



[^0]

EDITOR
John A. Reddihough

## ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

## CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897
Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 353.

## COVER PHOTO

Our cover photo this month shows the world's first low-noise downconverter for satellite TV reception to go into large-scale production. The converter is manufacturered by General Instruments for the American Market.

## CORRECTIONS

The power of the Danish local TV transmitter at Syd should have been given as 200 W , not 200 kW (page 332 last month). A confusing misprint occurred on page 306 last month (The Lid off Microcomputers): the fourth line of the second column should read "care of by a large i.c. called a ULA . . ". Two letters this month (page 370) comment on the Oric test pattern programme published last month.

## HELD OVER

Part 2 of Hugh Cocks' article on receiving satellite TV will appear next month.

## Revenue for the BBC

So the BBC got an increase in its CTV licence fee from $£ 46$ to $£ 58$ instead of the $£ 65$ for which it had asked (the monochrome licence fee went up from $£ 15$ to $£ 18$ ). There is also to be an inquiry under Professor Alan Peacock into the methods of providing revenue for the BBC. One wonders why this should be necessary. After all, the BBC has only just emerged from a detailed inquiry, carried out by management consultants Peat, Marwick and Mitchell, into its internal financial arrangements, an inquiry which by and large established that the BBC gives good value for the money it gets and spends. There seem to be all too many who will not let the BBC alone despite the fact that it provides a service recognised worldwide for its quality and impartiality.

The Corporation can't complain - and in fact has "welcomed" the decision to set up an inquiry - since it relies on money provided by the public. You have to pay whether you watch/listen to BBC programmes or prefer to stay tuned to the alternative services. It's a touchy problem that will not go away. But do we have to keep fretting over it every three years or so? One could say that the present time, when numerous changes in the broadcasting field are in the offing for technical reasons, is an appropriate one at which to set about reconsidering the position of the BBC in the media world. There is, we are assured, no intention to jeopardise the BBC in any way, merely to review the way in which it is financed - in particular to assess the effects of advertising or sponsorship on the BBC's services, either as an alternative or a supplement to the income at present provided by the licence fee. But the fact remains that any government wishing to make life difficult for the Corporation or exercise tighter control over it has the power to do so - by cutting the funds available.
The situation is a difficult one. The ideal of an independent, impartial broadcasting organisation that is not beholden to the government of the day or to political or commercial interests is worth a great deal. But at the same time the organisation has to get its income from somewhere and must be answerable to the public in some way. It's quite a conundrum. That said however it would appear that the present arrangements have more or less got it right. There is little one can justifiably object to about the way in which the BBC goes about its tasks. So why do we have to go through all this heartsearching every three or so years? Provided the BBC maintains its independent stance, which is pretty well guaranteed by its organisational structure, and provides services that the public find acceptable, as can be ascertained by listening/viewing figures, isn't it best to let the BBC get on with it? One can of course argue that the BBC must justify itself from time to time, and that the appropriate time for this is when it asks for more money. But to do this with the present frequency simply gives an opportunity to those with some sort of sense of grievance to get plenty of publicity for their views.

Public discussion this time round has concentrated largely on the subject of advertising - and we shall doubtless hear a lot more about this when the Peacock Committee reports next year. Chas E. Miller touches on this subject on a later page in the course of looking back at the start of commercialíindependent TV in the UK. He mentions the fact that magazines/newspapers carry a far higher proportion of advertising matter than any broadcasting network could ever hope to get away with. True enough, but the two are not strictly comparable. With printed matter you can choose whether or not to look at the ads. You can ignore them almost completely if you want to. This is not so with the serial presentation of broadcast material. When the ads come up, everything else comes to a halt. The proportion of advertising matter may not be so great as with the printed page, but it's far more intrusive and to many of us objectionable. Quite apart from this, could there ever be enough advertising revenue to finance four or more TV channels plus radio services? The ITV companies are rightly concerned here: any shift of advertising revenue to the BBC would be to their loss. We could end up with four inadequately funded channels turning out cheap pap.

There's been a certain amount of speculation about the interests of various media companies (all right, press barons!) who have managed to get a foothold in the TV field via cable and satellite TV operations. This speculation has been coupled with concern over growing concentration in the publishing field. Some of this concern seems to this observer to be misplaced. Publishing is a highly competitive business where it's as easy to loose a packet as to make a fortune. The BBC does of course have valuable assets in the form of its channel allocations. It's not surprising that commercial organisations should find these attractive and feel that they could be put to good use to earn a profit. But this brings us back to the limitation imposed by finite advertising revenue. The danger is that if the bingo merchants ever did get their hand's on the BBC's airwaves the result would be ruthless competition and a totally emaciated service. It's not very likely to happen.

The present broadcasting set up services us well. You don't have to take anyone's word for this, merely to look at what's provided in other countries. The way in which it's funded is indeed a rather curious compromise. But then so is much else that works well in practice. There are plenty of guarantees built into the present system to ensure fairness and value for money. We shall have to await the results of the Peacock Committee's deliberations now, and indeed it might come up with some worthwhile alternative methods of providing broadcasting revenue, but one feels that the Committee's inquiry should be the last for a good few years to come.

## Teletopics

## DBS - THE CONTINUING SAGA

Last month's leader commented on the progress - or lack of it - in getting a UK DBS service started. During the intervening month the saga has continued on its dismal course: the DBS consortium appears to have come to the conclusion that the cost of a Unisat provided and operated satellite transmission system would be prohibitive; the Satellite Broadcasting Board (which has yet to be formally set up) has asked the Home Secretary for permission to negotiate directly with British Aerospace for the supply of satellites; while the Home Office minister responsible for broadcasting, Giles Shaw, told the Financial Times Cable Television and Satellite Broadcasting Conference that the government might ask the IBA to set up a new DBS consortium if the present one pulls out. Mr. Shaw is reported as saying that "there are alternative options for creating a DBS service in the UK". The reason for the present consortium's request to deal with British Aerospace instead of Unisat (of which British Aerospace is a member) is its view that it might be cheaper to buy the satellites and operate the system itself.

A great deal of effort is clearly going into seeking ways and means of reducing the cost of providing a DBS service for the UK. As Lord Thomson of Monifieth, chairman of the Satellite Broadcasting Board and of the IBA, told the Financial Times conference: "The UK is the only country in Europe seeking to develop DBS services on a commercial basis with no subsidy from public funds either direct or hidden. There are enormous risks involved. If the project is to break even, some $£ 900$ million will have to be paid by the consumer in subscriptions to receive the service over the first six years in addition to the cost to the consumer of buying or renting the equipment necessary to enable television sets to receive DBS signals. Even assuming that this money is forthcoming, the investors in the DBS joint venture will have had to face considerable financial exposure - perhaps as much as $£ 400$ million when interest rates are taken into full account."

Elsewhere in the local satellite TV scene, the ITV companies are giving consideration to setting up a live 18hours daily "Super Channel" which would supply European cable networks with a programme based on ITV and Channel 4 material; British Telecom has announced plans to take a stake in the Life Style channel (see Teletopics March); ITT has announced plans to market an add-on satellite receiver system in Europe, starting next year; Egypt has applied to Eutelsat for permission to link the Cairo earth station to the Eurovision network; and Thorn EMI has announced its intention to enter the satellite master antenna television (SMATV) market as soon as the legalities of satellite reception have been cleared up. Thorn believe that the SMATV market could be worth some $£ 50$ million annually by 1987 and propose to set up a national network of franchised satellite TV installation and servicing companies.

## HITACHI TO PRODUCE VCRs IN UK

Hitachi, which has already invested heavily in updating the CTV production lines at its Hirwaun, S. Wales plant, is now adding a VCR production line which will assemble machines from Japanese supplied kits. Production is due
to start in July at a rate of 5,000 a month and will be increased to a rate of 10,000 a month by December. Production at Hitachi's W. German plant is being increased to 30,000 a month, which will give Hitachi a European-based production capacity of 480,000 machines a year, estimated as being about a tenth of the W. European market. Present CTV production capacity at Hirwaun is 25,000 sets a month. The start of VCR production at Hirwaun will coincide with the introduction of a new range of Hitachi VCRs.

## SONY'S EUROPEAN 8mm VIDEO LAUNCH

Sony has acted quickly in launching the Video 8 camcorder on the European market. The machine was launched in Japan only last January and is now available, for about $£ 1,100$, in W. Germany, Belgium, France and the UK. A tuner/timer unit can be added for some $£ 200$.

An interesting feature of the Video 8 is the use of a CCD solid-state image sensor instead of a tube. The cassettes, loaded with metal tape, sell for around $£ 7$ and have a playing time of thirty minutes - cassettes giving up to ninety minutes' playing time are to follow. The Video 8 will record at half speed for tape economy.

## ELECTRONIC RENTALS ACQUIRES CAROUSEL COLOURHIRE

Dixons, who took over Currys last December, has sold the Currys' Carousel Colourhire business to Electronic Rentals (Visionhire) for $£ 28$ million. The deal includes 210,000 CTV and VCR rental contracts and thirteen shops. Dixons made it clear after taking over Currys that it did not wish to become involved in the rental business. The deal leaves Visionhire in third position in the rental market, with 17.5 per cent, after Thorn/Radio Rentals (40 per cent) and Granada/Rediffusion ( 28 per cent). Visionhire at present has 419 outlets and expects turnover per shop to increase after the merger. Philips Electronics has a 25 per cent interest in Electronic Rentals.

## CANAL PLUS DÉBÂCLE

TV service changes suggested by the French government the aim is to introduce commercial TV - have lead to a sharp fall in subscriptions to the Canal Plus off-air pay-TV system which was set up only last November. The first year's operations are expected to result in a heavy loss: government assistance is being sought while right-wing press owner Robert Hersant has put in a takeover offer.

## PHILIPS' CHINESE SUCCESSES

Philips has announced substantial orders for CTV sets, LaserVision equipment and assembly plant from the People's Republic of China. A CTV plant with a production capacity of 200,000 sets a year is to be supplied. The LaserVision order is for 20,000 machines plus kits for 200,000 machines to be assembled during 1985-87. The Chinese CTV market is growing rapidly: sales increased fourfold to 2.8 million in 1984 and are expected to rise to 6.5 million this year.

## NEW FROM FERGUSON

Two further versions of the Ferguson monochrome monitor, which was described in this column last month, have been released. The MM07 incorporates a c.r.t. with a P39 green (shifted towards yellow) phosphor screen. This is preferred to the green P31 phosphor by some computer users as the longer persistence reduces screen flicker.

Model MM08 is fitted with a monochrome c.r.t. for black and white picture or text displays, making this version ideal for use with security systems. The complete range, Models MM02, MM06, MM07 and MM08, is in production at the company's Gosport plant.

A new 14in. monochrome portable, Model 38050, has been introduced to replace the 38710 . It's fitted with the 1790 series chassis and has monitor-look styling to appeal to the increasing market for portable sets for use with home computers and video games.

The Ferguson MA20 interface unit has been designed for use with the Sinclair ZX range of microcomputers, enabling them to be linked to the MC01 colour monitor or the MM02 range of monochrome monitors. The MA20 converts YUV outputs to RGB signals, takes audio signals from the Spectrum and feeds them through the MC01's output stages to give enhanced sound performance, has the ability to produce a switchable "green screen" effect on the MC01, and incorporates a separate socket for feeding signals to the monochrome monitors. The MA20 also features a duplicated Spectrum interface edge connector so that the user can continue to take advantage of the Sinclair range of peripherals.

Ferguson's new FST CTV sets were mentioned last month: details of the latest additions to the VCR range are given elsewhere in this column.

## NEW COAXIAL PLUGS

A new range of coaxial plugs for the aerial and cable TV industry has been introduced by Advid Electronics (17a, Mill Lane, Welwyn, Herts AL6 9EU). The plugs are of one piece design giving neat appearance and ease of fitting without the need to use special tools - after cutting back and preparing the braid the cable is simply screwed into the plug. The S6 plug conforms to BS3041:1958 and comes in two versions, with either a polished aluminium or nickel-plated brass body.

## SECOND-GENERATION LASERVISION PLAYER

A second-generation LaserVision disc player, Model LD700, has been introduced by Pioneer. The most striking features of the player are the greatly reduced size - now only 420 mm in width, matching Pioneer's hi-fi component range - the front-loading which enables it to be stacked, and the use of a solid-state gallium arsenide laser. A completely redesigned servo mechanism gives quieter and more accurate operation: other points of interest include automatic CX noise reduction and an infra-red remote control system that gives a wider range of trick features than with the LD1 100. The new LD700 will interface directly with Pioneer's MSX personal computer, which is planned for introduction next summer. The LD700 is expected to sell at around $£ 500$.

Pioneer have also announced a new top-of-the-range component TV system designated SD26. This consists of a 26 in . colour monitor, an on-board amplifier which can be switched to drive either built-in or external stereo speakers, and an integral surround-sound processor which can


The Pioneer LD700 LaserVision disc player.
be connected to a separate amplifier and a second set of speakers to create a concert hall or theatre effect. The unit has ports for inserting optional tuner and teletext packs and comes with infra-red remote control.

## MICROCOMPUTER SERVICING

Newnes Technical Books (Borough Green, Sevenoaks, Kent TN15 8PH) have published what appears to be the first book on microcomputer servicing to appear in the UK, "Servicing Personal Computers" by Mike Tooley. The book has 272 pages and is priced at $£ 17.95$. We hope to publish a review in a couple of months' time.

## COMPUTER SOFTWARE FOR TV SALES/ SERVICING

Telepack, the television sales and service system designed by New Miracle Software Ltd., is now available from Tatung (UK) Ltd. for use with the Einstein colour microcomputer. Telepack is programmed in Cobol for use with two diskette drives. Reports on customer records, product sales, servicing etc. are produced in a standard $80-$ column format on the Tatung dot-matrix printer. The system can handle approximately 1,500 customer records and 1,500 product records on a single disk drive or some 7,000 customers and products with a hard disk drive.

## TV SYNC SEPARATOR UNIT

Video Techniques (101 Derby Street, Bolton, Lancashire BL3 6 HH ) have introduced a new, improved version of their TV sync separator unit which enables an oscilloscope to be triggered from composite video waveforms. The SS1 Mk 2 has been completely redesigned and is priced at $£ 33.50$ (postage included) plus VAT at 15 per cent. The unit is simple to operate - just one switch - and can be used with $\mathrm{X} 1 / \mathrm{X} 10$ scope probes. It gives mixed sync or field only trigger pulse outputs. Power is provided by a PP3 battery.

## NEW VCRs

JVC's latest VCR, Model HRD455, is a two-speed machine with two audio channels and switchable Dolby noise reduction. It replaces the HR7655 and has a suggested price of about $£ 630$. ITT's recently introduced VR3986 has similar features. The VR3995 is ITT's first machine with hi-fi sound: it's a two-speed model to sell at about $\mathfrak{£ 7 0 0}$. Two new machines have been added to the Ferguson range. The 3 V 49 is a budget-priced model expected to sell for around $£ 430$. The 3 V 52 "component VCR" is similar to the JVC HRS10/TUS10 mentioned last month, comprising a portable VCR and linked tuner/mains adaptor. A price of around $£ 650$ is suggested.

## TV TRANSMITTERS

Some unusual products - TV transmitters for restricted use - have been demonstrated by Waveview Holdings, the firm that briefly operated a pirate TV transmitter in the London area late last year to get publicity for the "suitcase" TV transmitter it was developing at the time. The new products include a low-power ( 4 mW ) transmitter with an output on approximately ch. 36 intended for domestic use to link a TV camera or VCR to a TV set. without the need for cabling and, even more adventurously, a microwave transmitter for communal signal distribution to avoid the need for street cabling. Government approval for the latter system is being sought.

## Driven to Drink

## Les Lawry-Johns

A smart grey Honda pulled up outside. A rather flash female jumped out and pranced into the shop, immediately filling it with French perfume or something.

## Mrs Upyew

"Oh darling, will you be a pet and get my box out of the car for me?"

I went and dragged the ITT CVC32 out of the car. I then brought it in and put it on the bench while she prattled away.
"I'm going into town for an hour, so I'll collect it on the way back if it's done by then. I don't mind spending a fiver on it if necessary."

I picked the set off the bench and started to put it back in the car.
"Oh darling, I was only joking. I'll pay whatever it costs of course, but fuses don't cost all that much do they?"

I continued to plonk the set on the back seat.
"Oh you are an old grumpy today aren't you? Please do it for me, I'll be so grateful - you'll see."

So I got it out again and started to prepare the sheet.
"What name is it please, madam?"
"Upyew darling."
So I wrote Up You Darling. She screamed with laughter. "No no you naughty boy, the name is Upyew, the darling was meant for you sweatheart."

To shorten the story a bit she then pranced off to her car which refused to start. So I had to push it after telling her to put it in gear and keep her foot on the clutch until we picked up a bit of speed. Then off she went and I returned to the CVC32.

## The Nightmare

It was tripping. Going hump, hump. So I switched off and disconnected the tripler. I then checked the line output transistor which was short-circuit. With this replaced and the tripler still disconnected I switched on again. The set still tripped and this time there was a whisp of smoke from the lower part where the BSX21 chopper driver transistor lives. The set became silent and I found the BSX21 short-circuit. With this replaced the set remained silent and I had to replace the TDA2640 chopper control i.c. As a precaution, the h.t. feed to the line output stage was disconnected before switching on again. When I did switch on the set didn't trip and some pretty red LEDs lit up to show that the set was happy enough without the load presented by the line output stage.

The items connected to the line output transformer's primary and secondary windings were checked and found to be in order. So a new transformer was fitted and, fool that I am, I reconnected the tripler before switching on. When I did this the set continued to trip and then gave up - the BU126 chopper transistor was short-circuit. With a heavy heart and gloom all round I replaced the transistor and this time disconnected the tripler before switching on again. Everything was just fine, i.e. no tripping and the LEDs glowing merrily. A new tripler was fitted and I now had a picture - with severe EW distortion. The BD238
diode modulator driver transistor was short-circuit. By now I was in a filthy temper but to complete the job I replaced the BD238. This enabled me to adjust the presets and a really good picture was obtained. I wrote out the report and bill.

When Mrs Upyew returned she pranced in as usual.
"Set ready darling? I hope it didn't cause you too much trouble."

I gave her the bill and the smile faded. She paid by cheque and I put the set in the car for her and not a word was said. Fortunately the car started first time and off she sped, a very unhappy woman. So much for her fuse. Oh yes I forgot to tell you, I removed the small panel over the scan coils and found the usual dry-joints there.

## Elephants

A well known component firm has for its trademark a small elephant leading a large one, the latter's trunk holding the tail of the small one. I've often wondered about the origin of this and when Stan Westover called last week I asked him about it.

Apparently the firm's two founders started it by combining their separate firms - South East Electronics and Midland Electronics. Naturally they decided to call the firm South East and Midland Electronics. When they came to register the name they were sternly told that this could not be done as there was already such a firm. So they said they'd just use the initials, SEME. No they were told. SEME stands for South East and Midland Electronics which is already registered. "Oh no it doesn't" they replied, "it stands for Small Elephants and Mammoth Elephants." So now you know . . . I think. And I'd always thought it was to do with See Me.

## Fooled

This one made me blush. A chap I know quite well - he works on the river - brought this small ITT (STC) portable in. It was a VC11 with valves and things like that in it. I had quite a tussle, restoring full width and height, repairing the i.f. stages, etc. The aerial was then connected to the u.h.f. socket and the set switched to 625 . I next discovered that it didn't have a u.h.f. tuner. So I switched back to 405 , plugged in the v.h.f. aerial and tried to tune in Channel 1 or 9. I spent some time on the tuner before realisation dawned on me that it had all been in vain. The signals weren't there any more.

When he came back to collect the set he told me it had been out of commission for a few weeks. It had gone wrong just before the shut down.

## Confusion

I've been in a state of confusion for some time now. I fear it's getting worse, and anyone who brings anything to me expecting to find efficiency must be living in cloud-cuckoo-land. It took me hours last weekend to prepare a car radio (Radiomobile 80) for positive earth use just because the polarity turn key was missing and it had been wired for negative earth and the AD149 output transistor had gone short-circuit and blown its emitter resistor. You see, Dave collects vintage cars and everything has to be right. Not Dave from the pub, Dave from the garage down the road. He often sends me car radios to fix. Some keep their dial lights on when they are switched off anything to worry me . . .

ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT. ADD FOSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.


The World of . . . .

# "‘TelePanels" 

52 Mount Pleasant Road, Chigwell, Essex. Telephone 01-729 0506.

COMPARE OUR PRICES!

|  | IF | TUNER | DECODER | G8/G9 DECODER IF COMBINED | $\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$ | PDWER | CONVERG | FRAME | VIDEO | 6 WAY TUNER SWITCH BANK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHILIPS G. 8 | 5.00 | 4.50 | 7.00 | 15.00 | 14.00 | 8.00 | 5.00 | 5.00 |  | 3.50 |
| THORN 3000/3500 | 2.00 | 5.75 | 4.00 |  | 8.00 | 8.00 | 5.00 | 6.00 | 5.00 | 1.75 |
| GEC 2110 | 10.00 |  | 5.00 |  | 12.00 | 6.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| PYE 731 |  |  | 10.00 |  | 18.00 | 10.00 | 7.00 | 8.00 |  | 4.50 |
| PUSH Z718 | 7.50 | 6.50 | 14.00 |  | 24.00 | 3.00 | 5.00 | 14.00 |  |  |
| BUSH T/20 | 7.50 | 6.50 | 14.00 |  | 19.00 | 19.00 | 5.00 | 14.00 |  |  |
| DECCA BRADFORD | 3.00 |  | 7.00 |  |  | 4.00 |  | FRAME TIME BASE £4 |  |  |
| DECCA 80 | 12.00 | P.O.A. | 14.00 |  | 12.00 | 10.00 |  | 14.00 |  | P.O.A. |

Other makes of panels - telephone for prices!
TRIPLERS FOR ALL MODELS $\mathbf{£ 3 . 0 0}$ SPEAKERS $\mathbf{£ 1 . 5 0}$
P+P 1 PANEL $£ 1.50 \quad 2$ PANELS OR MORE $£ 3.0 \mathrm{C}$
CASH WITH ORDER - PLEASE

## POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!!

\section*{SPRING SALE BARGAIN OFFERS <br> ```

10 BUSH 2 CHIP <br> 10 SALORA <br> 10 GEC SOLID STATE <br> (WOOD CABINET)

10 DECCA 6-BUTTON $20^{\prime \prime}$ \& $22^{\prime \prime} £ 120$. 10 REDIFFUSION MARK 1 REVAMP $£ 120$. 10 THORN $800017^{\prime \prime} £ 150$.
ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES

MONO 24" SINGLE STANDARD £2
DIRECT LOADS FROM SOURCE RING FOR OUOTE

> ALL + VAT

## TELETRADERS

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154

## THE NO. 1 WHOLESALER IN THE SOUTH

## TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
* All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied ‘off the shelf'.
* Unusual types repaired same day as received (subject to spares availability).


32 Temple Street, Wolverhampton WV2 4LJ. Phone: (0902) 773122.

## MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this pubication are required to conform to the British Code of Advertising Practica. In respect of mail order advertisements where money is paid in
advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is sitated. Where goods are returned undamaged within seven days the purchaser's money must be refunded. Please retain proof of postage/despatch
as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of detivery. Television will consider you
Advertiser should become insolvent or bankrupt provided
(1) You have not recelived the goods or had your money returned; and

You write to the Publisher of Television summarising the situation not earlie than 28 days from the day you sent your order and not later than two month from that day
rell you how to make your claim and what evidence of payment is required We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or This gu
This guarantee covers only advance payment sent in direct response to an catalogues etc., recrived as a result of answering payment made in response to advertisements are excluded.

Letters

## TV LICENCE PROBLEMS

I read in the Financial Times, February 27th, that the BBC is considering a licence fee per television receiver rather than per household. Whoever put forward this idea can't possibly appreciate the problems that this would cause for the setmaking and retail industries.

Many of the solid-state colour receivers made ten years ago are still working today. They are sold at around ten pounds each from ex-rental warehouses, a mere fraction of the licence fee. Often, sales of new receivers are made where the old receiver is not scrapped but is moved to another room.

At $£ 10$ each you don’t have to be rich to own several receivers. In this context the comparison that has been made between a millionaire and the unemployed steelworker is ridiculous. If the BBC should want to charge according to the ability to pay, why not scrap the licence altogether and provide funding through taxes? The BBC could for example be paid a sum which is a percentage of the viewer's tax bill: television ownership would be declared on the income tax return and the sum collected by the inland revenue.

The sets being made today are orders of magnitude more reliable than those of ten years ago. Apart from newly established households, it would seem that industry turnover can be maintained only if people put more and more sets into their homes. But an annual licence fee of six and a half times the cost of an ex-rental receiver or a third of the cost of a new one would soon put an end to that.

The suggestion of licensing each set could destroy the setmaking and retailing industries, and the resulting unemployment and knock-on effects would not be insignificant.
John de Rivaz, B.Sc. (Eng.),
Truro, Cornwall.

## THE SCART CONNECTOR

Harold Peters' article in the March issue aired some relevant points concerning the Peritel system. In the interests of accuracy I'd like to correct some minor errors and amplify some points left unclear.

First his drawing of the SCART connector is only one pattern. Other varieties have a screw to stop the two halves coming asunder plus location for the restraining clip he misses. My example also has the cable entry at the top centre, designed for the flat ribbon cable some French manufacturers favour: this is unlikely to force the plug to pull out.

Secondly the table. Pin 6 should be specified as audio in, mono or left-hand channel. Where "varies" is printed this indicates that the specification allows some latitude within defined limits. Pin 8, source switching, is actually off-air/direct input switching, $0-2 \mathrm{~V}$ off-air or $10-12 \mathrm{~V}$ for monitor use, into $12 \mathrm{k} \Omega$. The term fast blanking (pin 16) has caused some head scratching. This pin should be referred to as off-air/RGB input switching, $0-0.4 \mathrm{~V}$ off-air or $1-3 \mathrm{~V}$ for RGB inputs to the set. To use the TV set as an RGB monitor pins 8 and 16 must thus both go high. Pin 16 can go high and low during a single active TV line,
e.g. for teletext display, which is why it's called fast blanking! - I'm grateful to Steve Beeching for pointing this out. The so-called intercom or domestic data bus lines, pins 10 and 12 , are in fact for remote control. They can be used to switch a VCR via the set's remote control system. Pin 10 is for inverted control or clock pulses. Pin 20 is also used for sync pulses in the RGB input mode.

Incidentally CVBS does not stand for composite video, blanking and sync. This is VBS. The extra C stands for colour. It's a Philipsism, from a translation of the German FBAS which means the same thing.
Andy Emmerson, G8PTH,
Northampton.

## TELETEXT LINES

Since the number of lines used for teletext has been increased, sets fitted with the Rank A823 series chassis have been prone to displaying these lines at the top of the picture due to the inherently slow field flyback. Apart from a suggestion by one of your readers to readjust the midpoint balance and linearity controls to minimise the effect, no remedy has previously been suggested in your pages.

It seemed to me that the trouble is basically due to the field output stage being operated with an inadequate supply. This is supposed to be about 40 V , but with the h.t. and width correctly set the voltage is usually somewhat below this figure. If one reduces the width tapping and increases the h.t. to compensate, the supply to the field timebase is increased and the picture can be set up correctly. The trouble is that the e.h.t. also rises. With the set I tried this out on, with only one step reduction in width the h.t. had to be increased to 210 V and the e.h.t. rose to 28 kV .

There is however a simple way to increase the 40 V supply with correct operation of the set. This is to add more turns to winding 6L17 on the line output transformer. To do this, unsolder the connection to pin 6 on the upper base of the transformer, take about two feet of enamelled copper wire, connect one end to the now vacant pin and wind on six or seven turns in an anticlockwise direction looking towards the base of the transformer, then remake the connection to the rectifi$\mathrm{er}(\mathrm{s})$ and secure with tape. This increases the field timebase supply to at least 40 V and enables the picture to be set up correctly with no teletext lines showing.
M. Catchpole, Broughton Radio (Worthing),

West Worthing, Sussex.

## LASERVISION TELETEXT CHECK

It may be worth mentioning that anyone who owns a Laser Vision video disc player can use it for checking or testing the teletext option on TV sets by using the BBC disc "BBC Videobook of British Garden Birds". This has a teletext signal recorded on it throughout the whole disc: the pages include a test page and a clock-cracker page. M.F., Coventry.

## LINE DRIFT - TX9 AND TX10 CHASSIS

Line drift with versions of the TX9 chassis incorporating the U725 remote control system has been mentioned in your TV Fault Finding feature twice recently, the cause in both cases being a leaky diode (D916) on the remote control receiver panel (PC1528 or PC1548). This has also
been mentioned in Ferguson Feedback. The important point to note however is that the replacement diode should be a BAW62 (to specification T0184W) which is available under part no. 03V4-110-200' or 03V4-168. The same comment applies to versions of the TX10 chassis using the U725 remote control system, also to D117 on panel PC1515 and D1120 on panel PC1536.

## Frank Pack, Editor

Ferguson Feedback.

## SILENT TAPES

Beware when using blank Scotch L250 cassettes - the one we have had the oxide wound outside in! The silence it gives matches what you'll get from the makers if you ask for compensation for lost time.
Brian Henniker,
Henniker and Kerr, Edinburgh.

## SONY GCS CONVERSION

I too had a Sony KV1810UB that was shelved due to the ridiculous price of the GCSs and their unreliability. I've now carried out the modifications suggested in the December 1984 issue and the set is back in working order - a few other faults needed correction and were due to the original GCS failure. Two points cropped up however.

First, the layout of the line driver transformer was not as shown - the tags were differently arranged. As the variac was wound up, the timebase board current was found to be too high. Reversing the line driver transformer's secondary lead connections cured this. The current should be around 630 mA at full mains voltage. If it goes over 700 mA as the output from the variac is increased, try reversing these leads.


Fig. 1: Suggested heatsink arrangement for use with a BU426A transistor used as a chopper in the Sony Model KV1810UB. Use bush from the original GCS.

Secondly, although the set worked it blew the 2.5 A mains fuse after running for several hours. I had doubts about the BU426A's heatsinking. The small tab and highvoltage washer reduce its effectiveness considerably, even with heatsink compound applied. So I added extra heatsinking as shown in Fig. 1 to give more immediate heat transfer and a much larger area through the insulator. This cured the problem and the set now works satisfactorily.

L.F. Sinfield, T. Eng.,<br>Luton, Beds.

## STREAMLINED SERVICING

Further to my letter in the March issue, I've given some very serious thought to the matter of streamlined servicing and would like to ask readers for their reaction to the following proposals. If there's a large enough response I'll make a start on putting the system together. I'll itemise the proposals briefly.
(1) The service would be by telephone enquiry, using same day return, with an answering machine for out-ofhours use.
(2) Subscribers would be asked to pay $£ 12$ per year, i.e. $£ 1$ a month, and $£ 1$ per enquiry. All information relevant to the set etc. would be supplied, together with details of local parts suppliers and reference to circuits in technical books plus any other material to hand if possible with, again if possible, a photostat of the circuit diagram.
(3) Possible modem use for direct access including out of hours and weekends.
(4) Non-subscribers could obtain information at $£ 2$ per call though the service would be slower and cash up front.
(5) Credit would be allowed for usable information. Anyone supplying information on a regular basis for the benefit of all could use the service free.
(6) The information provided would be that available at the time of posting and could not be guaranteed to cover the fault concerned. It would nevertheless save hours of searching through material in different places and should thus pay for itself over and over.
(7) The response would have to be big enough as I'm at present employed full time with prospects and would have to drop everything to give it a try.
Robert Easton, 131 Rose Avenue,
Upton, Nr. Pontefract, W. Yorks WF9 IDS.

## DEPRESSED INDUSTRY

May I comment on Mr. Lockitt's letter (A Demanding Job, March)? It seems to me that the root of the problem is that the servicing trade, like many other labour-intensive operations, is rapidly becoming a depressed industry, mainly because of the relatively low first cost of massproduced entertainment equipment (John de Rivaz's letter in the same issue touches on this), the continually rising cost of llabour and overheads, and the difficulty of rapid fault diagnosis with complex equipment. Such factors as five-year guarantees, diversification of product (Mr. Lockitt's first paragraph) and intrinsic reliability also come into the equation. It might be a sobering experience for your correspondent to inspect his employer's books!

Most employers in this industry today are finding it increasingly difficult to make ends meet in their service departments. Many have gone to the wall during the last decade, even without providing day-release facilities for engineers or participating in the crazy manufacturer-
sponsored extended guarantee schemes currently being operated and discussed.
Regarding college courses, my own experience is that the local college is ready, willing and able to arrange technical courses at any level in any subject required. All their efforts founder on the rock of apathy: without a student quorum of twelve or twenty or whatever, no course can be economic or justifiable. Many a worthwhile project has been nipped in the bud for this reason.
Eugene Trundle,
Hastings, East Sussex.

## GOING YOUR OWN WAY

In reply to Mr. Lockitt's letter, I feel I must take him to task on a few of the points he raises. Of course the job of a TV engineer is a demanding one - I should know, I've been at it far longer than he has! But the job has evolved at only the same rate as the technology itself, and is now in some ways a lot simpler than it was twenty years ago. Remember "Comet" Murphys and English Electric P40s? A call to a TX10 or a KT3 is far simpler, quicker and more lucrative. As to microcomputers and VCRs, what do you find when you open one up? Wonder of wonders resistors, inductors, capacitors, transistors and integrated circuits! Maybe Mr. Lockitt should stick to glass rattling and leave the clever stuff to L.L.-J. and me!

The "political" aspects worry me more. Some years ago I was employed by one of the major national rental companies and was very happy - well paid, well looked after and with a high degree of job satisfaction. Then one of my colleagues got the union bug. We ended up with a closed shop and overnight the good relations between employers and employees and the job satisfaction at all levels evaporated. Overall efficiency suffered and the eventual result was mass redundancies.

As to gaining qualifications, these are obtained for one's own benefit to enable the job, for which one is paid, to be completed more easily.

It's a fact that unions cannot be effective in this trade due to the nature of the job, with every engineer working alone in the field, regulating the style and rate of his work and its quality. Mr. Lockitt could always start his own business. He would have to work longer hours for less, but would be compensated for this by 100 per cent job satisfaction. I tried it and found that one has to be not only an ace technician but also a businessman, accountant, diplomat, salesman and tea boy. It's not only a case of being all these things but being good at all of them!
David Swann, Managing Director, Accountant,
Senior Engineer, Toilet Cleaner, Tea Boy and
General Factotum, Peakview TV, Buxton, Derbyshire.

## A DYING TRADE?

William Lockitt's letter on status and the demands of the job and Les Lawry-Johns' comments the previous month on a procession of idiots encourage me to put pen to paper on the state of the electronics service industry, particularly with respect to domestic TV and video equipment.

For many reasons, we appear to be mixed up in a dying industry. The cost of new equipment, especially TV sets, has not kept up with inflation. Virtually everything else has kept pace with or gone ahead of inflation. For example the motor industry has kept its prices up and, more importantly and relevantly to our industry, its
servicing labour costs. This is much easier to do if the cost of servicing something, be it a car or a TV set, is a small percentage of the cost of a new item. Who can blame anybody for not wanting to pay $£ 12$ to have a monochrome portable repaired when this represents 25 per cent of the cost of a new one? It's fine if you're in the retail trade as well. Sell 'em a new one - if they don't suspect that the repair estimate is a con.

On to the idiots. People still ask for the picture valves to be replaced in their two-year old sets and cannot begin to understand why it should take more than ten minutes to find the cause of such a small thing as intermittent line sync - after all the picture's still there, so it can't be anything serious. They'd do it themselves but just don't have the time. Some do have a go and I suppose we've all seen the results at some time or another. If you hand it back unrepaired they think you're no good at mending "these things".

The general reliability of most equipment nowadays may not be such a good thing, as people are getting used to not having their TV sets and VCRs repaired. In the majority of cases when a VCR comes in for the first time it will require a new head drum in addition to anything else that might be wrong with it. I estimate that 80 per cent of customers are not prepared to accept the cost and go away to try to find someone who'll do it more cheaply. Maybe they do - there's always one of the rental boys who want a bit on the side and can get the parts from their firm for nothing. It happens in my area all the time.

Modern TV sets are very reliable, but what about the tubes? Modern c.r.t. manufacture seems to involve builtin obsolescence. Nothing lasted longer than a good old 56120 shadowmask tube, and when it did go it didn't cost an arm and a leg. Now when a quote is given for replacing the prematurely worn out tube in a two and a half year old set the customer rushes off to the nearest Comet or wherever for a new one.

My advice to anyone thinking of joining this service industry is don't. It can't have more than a few years left to support the present number of people in it. Yes, there is a lot of new technology on the horizon, and there will always be the need for retail and someone to resolder the odd wire that falls off, but before long it's likely to be a case of "if it goes wrong, buy a new one". If you're already in the industry, it's an idea to get a job in a nonrelated field but continue as a "private engineer, will call", charging realistically for a decent, reliable repair. R.M.D., Sidcup, Kent.

## ANOTHER PUZZLER

I would like to offer my theory as to why terminal screws in plugs become loose. Whenever copper is put under a localized stress, such as by the point of a terminal screw, the metal will tend to "flow" away from the stress. Thus the screw appears to have become loose though in fact the copper has moved away from it.

Another mystery I'd like to put before your readers concerns the lead-acid battery as used in a car. When topping up cells with distilled water I've noticed that the one which always requires more water in relation to the rest is the one nearest the negative terminal. In most cars this is the chassis connection.

In connection with microcomputer colour bar programs, has anyone devised one for the Commodore 64?
R. Horton,

Melton Mowbray, Leics.

## ORIC TEST PROGRAM

When I tried the Oric-1 test pattern program (April, page 329) I couldn't get the circle to work. On checking, a mistake was found in the program: line 690 should read ". . . . CHR\$(99)THEN 690", i.e. not "CHR\$(67)". Earlier the program told the computer to be in the small letter mode but in line 690 it says look for capital $C$ (CHR\$(67)).

## P. Marston,

Somerton, Somerset.
I entered the Oric-1 program into my Oric Atmos and found that I couldn't get a circle when pressing key C. A
small change is needed to the program. First "CHR\$(67) in line 690 should be changed to CHR\$(99). Secondly, line 650 should have an addition so that it reads "PRINT CHR\$(20): TEXT:CLS:END".

I think this change to the program will also be needed with the Oric- 1 microcomputer.

The reason for all this is that caps lock is switched off in line 40 . Thus when line 680 asks you if you want a circle drawn by pressing C , if C is pressed code 99 is placed in 2 S . Code 99 is for lower case C - with the Oric in the caps mode 67 would be correct.
Dave Garrett, Calne, Wiltshire.

# Dealing with Teletext Interference 

Eugene Trundle

The first experimental teletext-type transmissions were carried out by the BBC in the summer of 1973, outside normal broadcasting hours. These trials used two lines during the field flyback blanking period for simulated data-pulse transmission - lines 13 and 14 in the even fields and the corresponding lines 326 and 327 during the odd fields. At that time lines 17 and 18 (plus 330 and 331) were allocated to the international insertion test signal (ITS) and were not freely available for data signals.

## Results of the Tests

The effects of these data transmissions were monitored by viewer-participants who completed questionnaires. On analysis, these showed that up to seven per cent of observers saw data lines of twinkling dots superimposed on their pictures. Most of the receivers then in use have long since been scrapped, and on the basis of a BREMA recommendation of 1973 most new receiver designs took into account the need to suppress the effects of data pulses in the field blanking interval - even though teletext decoders were not in general production at that time.

## Number of Lines in Use

When the UK teletext service began in 1975 the ITS signals were moved to lines 19/20/332/333 and lines 17/18/ 330/331 were used for the text signals - see Fig. 1. In late 1981 the number of text lines per field was increased to four ( $15 / 16 / 17 / 18$ and $328 / 329 / 330 / 331$ ). The first half of 1984 saw a further increase to six lines per field, with lines 13, 14, 326 and 327 being added for text use. As an experiment, in late 1984 the IBA inserted further "dummy" lines of data type pulses in the ITV-1 transmissions from certain stations to test for interference effects on picture and sound. The transmitters chosen for this experiment were Crystal Palace, Rowridge, Hannington and Midhurst, all in the south east. From October 1st to 4th twelve lines of data were broadcast, reaching down to lines 7 and 320 . This was followed by several weeks of eight-line data. In November there were two weeks of nine-line tests, followed by a period with eight lines. It seems that the twelve-line tests gave considerable problems with older receivers though eight-line data was. very much less troublesome. My own experience (I'm unfortu-
nately outside the range of the transmitters used for these tests) is that certain sets are prone to displaying twinkling data lines superimposed on the upper quarter of the display even with the current six-line transmissions - more on this later.

There's little doubt that in the fullness of time the "spare" lines available in the field blanking period will be put to good use - the teletext specification allows for the use of up to sixteen lines per field for text. We can't encroach on lines 6 and 318, the first "clear" lines following the post field sync equalising pulse train, while at the other end of the blanking "window" picture information starts coming through on lines 23 and 336. Lines 19, 20, 332 and 333 are currently used for the ITS. Lines 21, 22, 334 and 335 are reserved, with 21 and 334 being used as network status/switching control lines.

The steady increase in the number of lines used for teletext has obvious advantages for viewers with text decoders - faster access time, a greater number of pages of information, or a combination of these. Certainly I've noticed the improvement since six-line text was introduced, though in the various tests of up to twelve lines the additional ones used carried dummy data rather than actual magazine data. For those without text decoders however this flood of coded information can be something of an embarrassment, particularly where older TV sets are being used.

## Nature of the Problem

The problem is mainly with sets designed before the advent of teletext. In some cases the combination of a relatively slow field flyback with less than adequate beam blanking gives rise to interference with the reception of the basic broadcast pictures. This interference takes the form of lines of twinkling dots across the upper part of the picture or, a more subtle condition in some more modern sets, a reflection effect - the symptom is a white haze at the top of the picture, most visible on dark scenes and in low ambient lighting conditions. This effect is caused by secondary emission from the shadowmask frame in certain makes and types of tube when bright data lines are present above the picture display area.

The field flyback waveform in a typical older colour chassis, the Thorn 3000, is shown in Fig. 2. The luminance


Fig. 1: The field blanking interval in the 625-line system, showing the sync pulses, text, control and ITS lines.
information shown below the sawtooth brings out the potential for data lines being displayed on the picture, since by line 13 the beam's flyback has reached only about seven-eighths of the way to the top of the screen. In any set, the slower the flyback the farther down the screen the data lines will appear.

Provided the field flyback blanking arrangement used in the set is adequate, the beam will be fully extinguished during the flyback and nothing will be introduced on the screen. Thus slow flyback will not necessarily cause problems - unless it's so slow that the next field of video information arrives before the flyback has been completed, in which case the result will be top foldover. Many modern sets have a field flyback of around $800-1,000 \mu \mathrm{sec}$ (12-16 lines) and a very effective blanking pulse generator which is timed so that the blanking ends 22 lines $(1,400 \mu \mathrm{sec})$ after the start of the field flyback.

## Modifying a Set

Some modifications to remove teletext, interference involve speeding up the flyback. This is not recommended however unless approved by the setmaker - a faster flyback generates a higher peak voltage across the inductance of the field scan coils, and this voltage spike can have dire effects in older sets, for example punching through the junctions of field output transistors and breaking down the insulation of field output transformers. A faster flyback will also do nothing for the reflection problem. Thus modifications to remove teletext effects on the picture are in most cases best confined to the blanking circuit.

Shortcomings with field flyback blanking performance fall into two categories, which can be crudely defined as "depth" and "width". Depth problems are caused by


Fig. 2: The effects of slow flyback and inadequate blanking. Text pulses will be displayed on the screen if the beam is not fully extinguished during the flyback.
inability to suppress completely the high brightness ( 66 per cent of peak white level) data pulses - the blanking system is probably adequate for dealing with only the much lower level "flyback lines" originally transmitted at black level. What's required in this case is to increase the amplitude of the field flyback blanking pulse to the point where it fully extinguishes the luminance signal during the flyback. Far more common however are pulse width problems, where the duration of the blanking pulse is insufficient to cover all the text lines - ideally beam blanking should continue until the beginning of the first active picture lines, 23 and 336 . Most of the modifications given at the end of this article are designed to lengthen the blanking pulse so that it reaches this point - and this approach is the only way of eliminating the effects of internal reflections and secondary emission in picture tubes.

It's not difficult, with an oscilloscope (preferably a double-beam type) and a reasonable working knowledge of the circuit, to identify the cause of the trouble in an affected set. A cure can then usually be devised. Once it has been proved that defective components are not to blame, a modification can be tried, generally involving a changed time-constant in the blanking pulse generator or fitting a pulse-stretcher. The latter takes the form of a monostable multivibrator with an adjustable timing element to set the end of the blanking period so that it coincides with the start of the picture at the top of the screen.

## Fault Finding

There's little point in trying a modification unless the blanking circuit is o.k. and the field timebase is in good order, properly set up and not afflicted by low-emission valves, leaky output transistors or dried-up electrolytic capacitors (particularly supply line smoothing electrolytics). Any of these things can slow down the flyback. With a discrete transistor field output stage the mid-point voltage setting is critical and has a profound effect on flyback time - this is relevant to Pye hybrid sets, Philips G8s, the Rank A823 series and similar designs. The "sit up" control in the field timebase circuit used in the Thorn $3000 / 3500$ series chassis is also a critical adjustment. The most common offenders in blanking circuits are leaky or high-resistance diodes.

## Suggested Modifications

What follows is an alphabetical list of TV sets that can be prone to the teletext intrusion problem, with details of preventive measures. Most of the information relates to
modifications, but where common faults that can give rise to data line interference are known these are briefly described. If a set is not included it's probably because no modification is necessary, any problems being likely to arise from a fault rather than a design characteristic. Some very old chassis are not included, due mainly to their rarity and a lack of recently generated information on them. For sets not mentioned, some idea of what's required and possible avenues of approach may be suggested by modifications applicable to similar chassis. My own view is that a data-twinkle problem in a set around ten years old may be taken as reason to pension it off in favour of something new - possibly one that includes teletext facilities!

## Acknowledgement

Much of the modification data given in the following notes was provided by the setmakers themselves. My thanks are due to them for their patience and co-operation. I've not had the opportunity to try out all the modifications suggested: feedback from readers, particularly worthwile additions, would be welcome.

## Bang and Olufsen

Problems are confined to hybrid models. For $90^{\circ}$ types ( 2600,3000 and 3200 ) use the circuit devised by Keith Cummins (see Letters, April 1984, pages 314-5) or use the circuit shown in Fig. 3(a). For the $110^{\circ} 3400$ type use the circuit shown in Fig. 3(b).

## Decca

30 series hybrid chassis: A modification kit to prevent tube reflections is available, part no. 503266. The circuit is shown in Fig. 4 for those wishing to build it up themselves.
80,88 and 100 chassis: Check by substitution D203, D204 and D205 on the decoder panel. With the $80 / 88$ series chassis also check C332, C333 and C334 on the timebase panel.

## Doric/Rediffusion

Mk I colour chassis: Change C 612 to $47 \mu \mathrm{~F}, 63 \mathrm{~V}, \mathrm{R} 607$ to $3.3 \mathrm{k} \Omega$ and R 443 to $12 \mathrm{k} \Omega$.
Mk III colour chassis: Fit improved TDA9400 chip, part no. 38326 . Change 4 R 14 to $10 \mathrm{k} \Omega$ and remove any $33 \mathrm{k} \Omega$ resistor mounted on the print side of the timebase panel.

## Finlandia

Model C22HZ: Change C101 to $150 \mu \mathrm{~F}$.

## Grundig

Early solid-state sets (Models 5010 to 6632) used col-our-difference drive, with blanking via the colour-difference output stages. Decoder panel 07247.072.00 should be replaced with type 29301.024 .61 which incorporates a monostable multivibrator to stretch the field flyback blanking pulses. If the superimposed data lines are coloured, trouble in one of the CDA output stages is indicated. The voltages at the collectors of the output transistors should be $150 \mathrm{~V} \pm 20 \mathrm{~V}$ : if incorrect, the trouble could be due to a faulty BF459 output transistor. Correct adjustment of the first anode and SP presets is important with these sets.

Slow flyback in early models can be caused by a leaky or low-gain output transistor. Replace with type GD241


Fig. 3: Modifications for Beovision hybrid colour sets. (a) for $90^{\circ}$ models, (b) for $110^{\circ}$ models.


Fig. 4: Monostable multivibrator pulse-stretcher circuit for use with the Decca 30 series chassis. Adjust the preset just to clip the top of the picture.
or GD243. In early production some sets (notably Model 5010) did not have blanking components fitted to video panel 29301.005.01, though in practice their presence or absence seems to make little difference. Fig. 5 shows the blanking circuit.

## Hitachi

Models CFP470 and CSP680: Renew C607. Change R619 to $120 \mathrm{k} \Omega$.

## ITT

CVC8, CVC9 and CVC9/1 chassis: Some sets fitted with these chassis exhibit reflections at the top of the screen. An auxiliary circuit can be fitted to supplement the existing tube grid blanking circuit where necessary. It provides additional cathode blanking via the luminance section of the TDA1327 decoder chip IC2d. The subpanel is no longer available from ITT but the simple circuit is easy to make up - see Fig. 6. The pulse feed is taken from the white lead to the field scan coils. Desolder and remove the print at pin 6 of the i.c., taking care that pin 7 remains connected to the print. Remove C138d and replace it with two $22 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum capacitors wired in series, the negative connections together, then connect the extra circuit to pin 6 of IC2d. Adjust R1 so as just to "clip" the top line of the picture.
CVC20 etc.: No design problems, but faults can cause teletext interference. C24, C26, R56 and R57 in the field timebase are worth checking - if a tendency to top


Fig. 5: Luminance blanking circuit used in Grundig sets with colour-difference tube drive. Di350, Di351, C351, R350, R351, R354 and R355 were not present in early production sets.


Fig. 6: Additional blanking circuit for the ITT CVC8-9 series chassis. See text for interfacing details.


Fig. 7: Suggested modification for the Skantic BC chassis.


Fig. 8: Suggested modifications for the Toshiba $\times 53$ chassis.
foldover is present, C19/20/21 can be responsible or more rarely $\mathrm{R} 47 / 48 / 49$. If the field timebase is healthy, the cluster of diodes associated with pin 8 of IC501 on the decoder panel should be checked by substitution.

## Luxor/Skantic

BC chassis (Models 5111, 5114, 5601, 5608, 6711, 6718 etc.): Check and if necessary implement the following modifications on the signal processing module: change RF92 to $120 \Omega$, change RF77/RF84/RF91 to $1 \mathrm{k} \Omega$, add the components shown in Fig. 7 on the solder side of the mother board.

## National Panasonic

Model TC202G: Add an $0.47 \mu \mathrm{~F}$ capacitor across D603.

## Philips

G8 chassis: Fit an additional resistor in series with the base of the field flyback blanking transistor T4488. For early panels its value should be $330 \Omega$ or $470 \Omega$; for later panels with BD131 field output transistors $220 \Omega$ or $270 \Omega$ will be needed. The value of this resistor determines the width of the blanking pulse: if necessary adjust on test to prevent blanking the top of the picture.
KT4 chassis: Add a $2.7 \mathrm{k} \Omega$ resistor and 27 V zener diode in series between pin 4 of IC7110 and the junction of R3109
and pin 4 of socket L53, with the diode's cathode to pin 4 of the i.c.
K30 chassis: Early production didn't have an $0.015 \mu \mathrm{~F}$ capacitor (C1530) connected across the collector and emitter of T1535. If it's absent, fit one.

## Pye

Hybrid colour chassis: If R257 is $560 \Omega$, change it to $1 \mathrm{k} \Omega$. Change R262 to $10 \Omega$. Add an $0 \cdot 1 \mu \mathrm{~F}$ capacitor from the anode of D44 to chassis. If necessary reset RV24 to eliminate text lines and top foldover.

## Rank

A823 chassis: Reduce the value of 5 R 40 to $18 \mathrm{k} \Omega(15 \mathrm{k} \Omega$ in obstinate cases) and reset 5RV5 as necessary.
A823A etc. chassis: As above but component reference numbers are 5R23 and 5RV4.

## Sanyo

Model CPT5101: Renew R429 (410ת). D426, D421 and D422 can also be responsible. Note that R429 is $820 \Omega$ in Model CPT5101W.

## Sony

In some earlier sets (e.g. the KV1300 and KV1320 up to serial no. 100,000 ) an improvement can be achieved by increasing the value of C 534 to $4 \cdot 7 \mu \mathrm{~F}$. With Model KV2206 reflections can be overcome by increasing the value of C518 (board D) until the text lines are just blanked.

## Thorn

$3000 / 3500$ chassis: Usually, changing R 441 to $5 \cdot 6 \mathrm{k} \Omega$ will suffice. If necessary change R425 to $82 \Omega$ and R442 to $39 \Omega$; use a $\mathrm{BC107A}$ instead of a $\mathrm{BC107B}$ in position VT422; if VT421 (BC115) is a Texas device replace it with one manufactured by SGS; in older models C429 may need to be changed to $10 \mu \mathrm{~F}$.
$\mathbf{8 0 0 0}$ series: Problems are mainly confined to reflections with certain tubes fitted to the 8800 chassis. Change C440 to $0 \cdot 1 \mu \mathrm{~F}$.
TX10 chassis, panel PC1550-001: The TDA2576A i.c. used on this panel has a count-down field sync system from which the field flyback blanking pulses are derived. In the AV mode however direct field sync is used, so the field flyback blanking signal disappears. A supplementary narrow blanking pulse comes from pin 6 of the field timebase chip IC771. In a recent case I found this inadequate for suppressing data twinkle on live or taped broadcast signals via the VCR. The pulse was stretched to the extent required by adding an $0 \cdot 1 \mu \mathrm{~F}$ capacitor from the anode of D641 (panel PC1551-001) to chassis.

## Toshiba

C2000 series: $\mathrm{C} 461(220 \mu \mathrm{~F}, 107 \mathrm{~V}$ line decoupler) can dry up to cause text superimposition.
X53 chassis (Models C1695/2090/2095/2290/2295): Change R332 to $15 \mathrm{k} \Omega$. Replace R321 with a $2.2 \mathrm{k} \Omega$ resistor and $5 \cdot 1 \mathrm{~V}$ zener diode in series as shown in Fig. 8.

## Components and Safety

Unless otherwise stated, resistors are 0.5 W , capacitors are greater than 60 V working and zener diodes are 400 mW types. Ensure that any modifications made do not degrade the safety of the set or infringe BEAB or BS415 requirements.

# Renovating the G8 

Tony Thompson

Large quantities of sets fitted with the popular Philips G8 chassis have become available over the last year or so, due mainly to stock rationalisation exercises by major rental companies. This article is based on recent experience servicing a considerable number of these sets. By and large the G8 represents a worthwhile opportunity for those interested in obtaining economy TVs. There can be few of us who've not encountered this chassis, but as it's been some time since a servicing feature on it appeared in these pages I felt that it would be useful to provide a rundown on the more common faults - also a few less common ones.

Before embarking on serious work it's useful to obtain service data for the model concerned. Due to the great flexibility of the basic chassis design, with its edge connectors and multiple plug/socket configurations, many variations were produced over the years, including some complete panel redesigns. The earlier range, the 520 series, is recognisable by the six square tuner buttons and the fact that the convergence panel is accessible from the front by levering out the metal plate with the Philips logo and loosening the grill retaining plate beneath. The later 550 series has flap-type tuner buttons and a convergence panel inside - for access remove the cabinet rear cover.

## Power Supply

Apart from fuses going open-circuit - the h.t. ones sometimes die and are sometimes killed by faults elsewhere in the set - the most common power supply fault seems to be failure in one way or another of the mains rectifier thyristor. You can't miss this component: it's located roughly centrally on the power supply panel and may be mounted on a heatsink or have a cooling fin in one form or another fitted. Several different types of thyristor were used, and most of the boards are designed to take differing packages. The thyristor usually goes dead short, taking the $3 \cdot 15 \mathrm{~A}$ anti-surge mains fuse with it. This latter fuse is located on the outer metalwork of the power panel, under a safety cover that's held in place by the connector for the a.c. from the on/off switch.

You may find the mains fuse blackened but be unable to find any obvious cause. Further a new fuse may well restore normal operation. One reason for this is that the power supply does not have soft-start "cushioning". At switch on there's a very low impedance which, though momentary, can weaken the fuse. Even so, the fact that the fuse is likely to be blackened internally as opposed to having failed gently suggests that there's a cause for this. It's prudent on these occasions to feel for the smoothness of the action of the switch in the set and at the wall. Also check the wall socket itself for tightness of grip on the plugtop. The connections inside the plug should also be looked at, because arcing at any of these points can blow the fuse and probably damage the thyristor too - which can itself be the cause of such baffling fuse failures even though it smiles sweetly and looks innocent.

The "dropper" resistor is inclined to go open-circuit. There are two sections, $2 \cdot 2 \Omega$ (R1367) which is the surge
limiter and $68 \Omega$ (R1381) which is the h.t. smoothing resistor. When R1367 goes open-circuit there's no supply at the anode of the thyristor. When R1381 goes opencircuit there's no h.t. but the h.t. reservoir capacitor receives a hefty charge - it's better to discharge it through a resistor than your hand.

The main smoothing block can give the symptoms of poor sync before much evidence of hum, in the form of a dark band moving slowly up or down the screen, becomes apparent. These electrolytics are becoming more of a problem with age and it pays to look for leakage in the form of a white encrustation at the business (tag) end of the component.

The c.r.t. heater transformer can give rise to a buzzing which the customer often mistakenly assumes comes from the loudspeaker. As this buzz often develops only some time after switching on from cold you could miss the true cause and waste time searching for a non-existent audio or sound i.f. problem. Due to the form of construction it's not feasible to tighten the core, so the only certain cure is replacement. We've had some success with slightly buzzing transformers however by applying a silicon sealant to damp the core vibrations. Note that the transformer has a built-in thermal fuse.

If the fault is poor or non-existent h.t. regulation, perhaps with excessive e.h.t., after changing the dreaded thyristor check the trigger diac D1377 (BR100). These odd little components read open-circuit both ways and are therefore confusing when checked with the multimeter. Try swapping the ends about if another one is not to hand - this could do the trick. If regulation is not restored and you're sure that the thyristor and diac are o.k. you'll have to check the regulating transistor T1374 (BC147) and its associated 7.5 V zener diode D1371. These two items are best checked by replacement.

Picture flutter should lead to a check on the setting of the h.t. preset potentiometer R1370 and its condition. The problem could possibly be in the overvoltage circuit.

## Timebase Panel

The bottom right-hand panel carries the field timebase plus the line oscillator. The vertical right-hand panel consists of the line output and driver stages.

Amongst the more common field timebase faults is failure of the output transistors, the symptoms being partial or complete field collapse and a variety of poor linearity effects. Replace them both I say. Check for poor connections though, especially where reliance is placed on securing bolts only. If possible hard wire as well.

Dry-joints will often be found in the vicinity of the raster distortion correction transductor, creating problems of the type where any disturbance - even walking across the floor near the set - will cause field flicker or collapse. The transductor itself is troublesome and can cause field collapse or burn-ups, sometimes of a severe nature (it can also load the line output stage). The hazard can be permanently avoided by removing the transductor completely and linking points C and D to maintain supplies. Alternatively you can simply disconnect plug H . We much prefer the former approach, on the grounds that a troublesome component, especially one that's a potential fire risk, is best removed to avoid the possibility of future inadvertent connection.

If the trouble is intermittent field collapse check the tightness of connector $U$ on the bottom rear edge of the line timebase board before delving too deeply: this plug
and socket is the source of the field timebase's 45 V supply.

Other fault symptoms can be traced to this point - field blanking pulses and the high voltage for the tube's first anode presets also travel this way from their source, the line output transformer.

## Line Driver and Output Stages

The line output transformer very often fails (you don't say . . . !). This is usually evident from its burnt appearance and/or the fact that it runs very warm. Check the tripler before rushing to fit a new transformer however - a new line output transformer won't be new for many minutes if the tripler is short-circuit. Many chassis show signs of rushed and untidy line output transformer replacement. It's worth checking the soundness of the many wired connections - it's also worth doing an annotated sketch of the wiring and its colour coding before removing a defective transformer. I tend to use transformers of a modified design, Continental types with smaller overwindings: though not Philips' originals, they seem to be very reliable.

Focus faults usually turn out to be due to the series resistor on the c.r.t. baseboard. This may be $4.7 \mathrm{M} \Omega$, but as usual with this chassis there are other permutations.
The largish wirewound anti-breathing resistor R5535 ( $47 \Omega$ ) mounted in brackets at the lower edge of the line timebase panel frequently goes open-circuit, giving the symptoms no results with the c.r.t. heaters lit. The reason for this is that the line output stage, from which all the low-voltage supplies are derived, is deprived of its h.t. supply. The fact that most supplies are derived from the line output transformer should be borne in mind at all times when investigating puzzling faults on this chassis: it's instructive to lift fuses, switch on, and see the fault symptoms produced.
The line output transistors can go short-circuit of course, often with very evident blown fuses. One or other of them can also quietly die, leaving the remaining one to soldier on. The symptoms may be blooming (unstable picture size, increasing with white content), a narrow, poorly linearised scan or a large, poorly focused picture. A clue is given by feeling them for equality of warmth, though this is not infallible - and don't do it with the set switched on! Remember the base balancing coil which might require adjustment. If the core is jammed, as it often is, replace the coil (L5003). Where one transistor has failed we consider it prudent to replace them both.

One set had the symptom of very slow start up when switched on from cold, two or three minutes elapsing before anything at all was heard from the loudspeaker even then it was only a faint but gradually increasing hiss. :When the screen finally lit up, some seven minutes later, there was a badly distorted picture accompanied by much itearing, distorted sound and evidence of stress from the line output transformer in the form of a loud audible twittering. Increasing the h.t. settings to well beyond normal produced a reasonable result. The power board came under suspicion of course but proved to be blameless. After a lot of effort the cause of the fault was traced to the line driver transistor T5519 (BD144). Apart from this odd fault the line driver transistor has given very little trouble. The faulty one measured o.k. and had to be replaced before its guilt could be established.

Cases of brightness variations over say an evening's viewing may be resolved by changing the 12 V zener diode

D5582 on boards coded BY14 and upwards. It's part of the beam limiter circuit. The two transistors in this circuit on boards with the same coding, T5581 and T5587, can also give rise to brightness fluctuations, but this is less common.

We've not had much trouble with triplers. The type used seems to be one of the more reliable ones but it's possible to use a universal component if the specified replacement is not to hand.

## Signals Circuits

The video/decoder/i.f. panel arrangements vary considerably: in later chassis the original three boards are combined into one large signals panel. Unfortunately this change did little for reliability, the large panel being if anything less reliable than the ones it replaced.

As usual, one of the RGB output transistors can be responsible for excess of one colour. The TBA530Q matrixing i.c. (IC3570) in the four-chip decoder has on a few occasions given us the no video symptom with large magnitude voltage errors at the collectors of the output transistors.
Distorted or intermittent sound can usually be cured by replacing the TBA750Q intercarrier sound i.c. (IC3530). In earlier versions with a separate i.f. panel a TAA570 i.c. is used (IC002). This gives its share of sound problems and if faulty usually responds to heat/freeze treatment. A pair of BD131 transistors is used in the audio output stage: they can also be the cause of distortion. Many sound faults don't have an electronic cause however: the loudspeaker is prone to cone distortion and as its impedance is $60 \Omega$ it's important to fit the correct replacement.

Earlier i.f. units have a subpanel that supports the tuner. The two panels are linked by rigid soldered wires and cracks can occur at the joints on the lower panel. These can be difficult to cure, though a good clean up and a check on the print for cracks and lifting should put matters right. If you suspect one of these boards of being intermittent, perhaps producing low gain or snow, gentle flexing while the set is running may give observable proof. Instability or patterning is often caused by the same basic problem of dry-joints or hairline print breaks.

The tuner itself is not above suspicion of course. The tuner switchbank is troublesome but can be dismantled, cleaned and the springs retensioned. If necessary the unit can be replaced.

A 12 V regulator is used for the low-voltage tuner, i.f. and decoder supplies on the combined signals panel. The series transistor T 3401 (BD131) receives its 23.5 V collector supply from the line output transformer. So if supply problems arise, start at the transformer and work forward.

## General

When you pick up G8s through the trade a stand is rarely supplied. Somewhere in the country there must be a veritable mountain of these stands. You'll also find that the cabinets lack any kind of front feet and won't sit level, tilting forward awkwardly. One way round this is to screw small, countersunk wooden plates under the front corners, staining the wood with dark-scratch cover. These improvised feet work well provided you make sure that the screwhead is well inset and won't scratch the table top. They can easily be removed in the event of a stand being fitted.

It's as well to check sets visually for completeness: you
may find small but essential components missing, such as the R/G symmetry coil L5551 on the line timebase panel. You may also find whole panels missing!

The later type of convergence panel ( 550 series chassis) was a step backwards in design and may produce drift over a period, making your carefully set convergence look pretty sick. The main trouble is heat and we find that the AC128 transistors on the panel are particularly prone to thermal change. Replacing these elderly devices helps. The redesigned replacement panels available from SEME Ltd., Unit 2E/F, Saxby Road Industrial Estate, Melton Mowbray, Leics are expensive but effective.

The G8 is an accessible chassis. It has its share of problems but for the most part these can be dealt with by using logical fault-finding techniques. Replacement components are readily available from a number of
suppliers in addition to Philips.
Given a good tube and cabinet, G8s usually make a worthwhile return on the investment when bought in quantity for resale or renting - or as a one-off for personal use. Remember though, buyer beware! Sets don't appear in trade disposal outlets for no reason and you may have to put a lot of work in before a set is working satisfactorily. The condition of the tube is the biggest stumbling block. While it would probably be worthwhile fitting a replacement for personal use this cannot be sensible for resale unless you can be sure of getting a good price for the set. Watch out when offering guarantees: as these sets are getting on in years they can now best be described as moderately reliable. If someone out there can design a portable, battery-operated tube checker, please let us know . . .

## Video Fader Unit

A friend of mine built a version of the video effects generator featured in the April 1976 issue of Television. What he wanted was a fader, but he found that the one in the effects generator wouldn't work with colour signals. He told me that he'd also tried tapping video directly from the slider of a potentiometer. The trouble with this was picture break-up and loss of colour with the control near the minimum position. The reason of course was that to be able to fade to black the sync pulses must be preserved while to retain colour the burst must be preserved.

Despite the millions of VCRs now in use in the UK, few people make and edit their own programmes. As a result, not many faders are available. The design presented in this article is based on a number of circuits that have been found to work - it owes much to the previously mentioned effects unit. It has been found to work consistently and is relatively cheap to build.

## Malcolm Burrell

The video input is fed to the emitter-follower Tr 1 whose output is split to allow maximum video to be fed to the sync separator transistor Tr 9 and slightly less to the fader circuit. This helps to overcome any jitter that might be caused by overloading due to a strong input signal. The fader circuit is almost identical to that used in the effects generator, though the component values have been changed to enable a better range to be obtained from the single rotary potentiometer used (a slider type could be used but requires a rectangular cutout in the case). It acts as a variable clamp following a.c. coupling of the video signal via C2/3. The burst signal is removed by feeding a broad line-frequency blanking pulse that coincides with the back porch period to the base of Tr4. This is done because the burst must remain of constant amplitude regardless of the position of the fader control. We therefore remove the burst and reinsert it after sync restoration



Fig. 1: Circuit diagram of the fader unit.
of the video signal.
Tr4/5 form a differential amplifier with the preset VR2 providing black level adjustment. When this control is set correctly excessive loss of the picture's darker tones is prevented. The output developed across R13 is applied to the base of the emitter-follower Tr6 which provides a nominal $75 \Omega$ output. The burst is simply coupled to the base of this transistor.

Tr 9 acts as a sync separator whose output consists of inverted (i.e. positive-going) mixed line and field. sync pulses which are sufficient to drive the NAND gate ICla. At the minimum setting of the fader control there would be no sync pulses. So the inverted pulses from ICla are fed to the base of $\operatorname{Tr} 5$ via R14. IC1a also drives the monostable multivibrator IC2 which provides the burst blanking pulse. It also provides a pulse, via the shaping network $\mathrm{R} 29 / \mathrm{R} 30 / \mathrm{C} 11$, to gate on Tr 7 . This transistor passes the colour burst present at the emitter of Tr1 to the base of Tr6 when it's gated on. Trl's high-level output is used so that any slight loss compared with the video signal can be cancelled out.

If a line blanking signal only was used for burst blanking
a slight imbalance would occur between the line and field sync pulses. Under certain conditions this could cause poor field sync. To combat this, a new field blanking pulse is produced by the monostable multivibrator IC3 which has a long time-constant and is triggered by field sync pulses derived from the integrator Tr10 and NAND gate IC1b. IC1c combines the outputs from IC2 and IC3, with IC1d providing inversion. A bonus of this arrangement is that any teletext or data signals present in the field blanking interval will be removed when the unit is used for editing off-air tapes.

The power supply required is obtained from a 200 mA mains transformer which feeds a bridge rectifier. The latter is mounted on the board along with the two regulator i.c.s. The 12 V regulator gets moderately hot and is best clamped to a small heatsink. The 5 V regulator doesn't do a lot of work - a larger rather than a miniature one is used for reasons of cost and increased reliability. A LED fed via a series resistor is included in the 5 V supply: this is purely for the convenience of having an indication that the unit is operational.

The unit can be fed with signals from almost any video

[TML53]
Fig. 2: Component layout on the PCB.


Fig. 3: PCB print pattern. Shown actual size.
source. Computer graphics could probably be fed in and fades added though this has not been tried. Provided a good quality, first generation tape is being copied there should be no problems. Some video should be present on the tape at all times so that the fader receives sync pulses: no input means no sync and thus no black-level signal. Pictures can be faded up and down at the required moment so that some form of editing is possible using even the most basic of VCRs. Use of the pause control
should be done during black level when picture break-up will be minimised.

The use of poor quality or noisy tapes may result in black flashes across the picture or the accentuation of white tones used in sharp transitions such as lettering, even with the fader at minimum. The black flashes are caused by false triggering of the monostables. With a simple unit like this the aim should be to start off with the best possible picture quality.

# Spectrum Test Pattern Program 

John de Rivaz, B.Sc. (Eng.)

In the March issue letters page a reader requested a program for generating colour bars and a test pattern using the Sinclair Spectrum computer. A program for colour bars appears on page 109 of the Spectrum manual, in the chapter on colours. This article describes a test pattern based on the design shown on the front cover of the May 1984 issue of Television.

## Features

The pattern has a coloured border with a similar order of colours. There are no arrows at the edges because the Spectrum doesn't display right up to the border of the screen - this is so that the computer will work with overscanned domestic TV sets. I've put the pattern inside a blue border, but altering BORDER 1 to BORDER 0 in line 100 will put the pattern in a black border if this is preferred.

The pattern itself is on a black background with a grid of white lines and has a centre circle. There are two columns of colours, approximately a quarter and three quarters of the way across. Within the circle there's a vertical white column, with the bottom half twice the brightness of the upper half, and to the right of this there's a column of frequency gratings. These gratings are somewhat larger than on conventional test patterns however due to the limitations of the Spectrum's 256 vertical line resolution. At the top centre there's a black bar on a white background while at the bottom there's a bright white rectangle with the word TELEVISION.

While the pattern is being displayed randomly composed music will play. If a sound-through-the-TV adaptor is fitted to the Spectrum the music will be reproduced by the set being tested. If you don't want the music, press any key other than ENTER on the computer and the music will cease. Press any key other than ENTER again and the music is resumed. Press ENTER to end the test pattern program.

## Entering the Program

Putting the program in the computer should be straightforward. If you don't want to bother with the music, leave out lines 460 to 590 and insert PAUSE 0 as line 460 . Then, pressing any key deletes the pattern and finishes the program. When you have completed the program, GOTO 9000 will save it three times on a cassette. Enter GOTO 9000 and start the tape before pressing ENTER. If any reader would like the program on a cassette, one can be provided for $£ 2$ post free by RTL, Westowan, Porthtowan, Truro TR4 8AX.

[^1]190 REM
200 FOR $1=1$ to 2: FOR $m=0$ to 1: FOR $n=8$ to 1 STEP -1 : PRINT\#1; AT m, (8-n)*2; PAPER c(n); " ": PRINT\#1;AT m,16+(n-1)*2; PAPER c(n); " ": NEXT n : NEXT m: NEXT 1
210 FOR $\mathrm{m}=0$ TO 30 STEP 30: FOR $\mathrm{n}=2$ TO 6 STEP 2: PRINT AT $n * 3 / 2-1, m ;$ PAPER $c(n)$; INK $c(n+1)$; " ";AT $n * 3 / 2, m ; "$ " ${ }^{\prime \prime}$ AT $n * 3 / 2+1, m ; " \square ":$ NEXT $n$ : NEXT m
220 FOR $\mathrm{m}=0$ TO 30 STEP 30: FOR $\mathrm{n}=2$ TO 6 STEP 2: PRINT AT $23-(n * 3 / 2-1), m$; PAPER $c(n)$; INK $\mathrm{c}(\mathrm{n}+1)$;" ";AT 23-n*3/2,m;""";AT 23-(n*3/2+1),m; "口्a": NEXT n : NEXT m
230 REM Draw grid
240 REM
250 FOR $n=16$ to 144 STEP 16: PLOT 16,n: DRAW 223,0: NEXT $n$
260 FOR $\mathrm{n}=32$ to 224 STEP 16: PLOT $\mathrm{n}, 0$ : DRAW 0,160: NEXT $n$
270 PRINT PAPER 7: INK 0; BRIGHT 1;AT 20,11;"TELEVISION": CIRCLE 127, 80, 60
280 REM pulse bar
290 REM
300 FOR $n=150$ TO 154: PLOT 114,n: DRAW 10,0: PLOT 126,n: DRAW 16,0: NEXT $n$
310 REM white block
320 REM
330 FOR $n=6$ TO 17: PRINT AT $n, 13 ;$ BRIGHT ( $n>11$ );"■": NEXT $n$
340 REM gratings
350 REM
360 FOR $\mathrm{n}=$ USR "a" TO USR "1" STEP 8: READ n1: FOR $\mathrm{m}=0$ TO 7: POKE $\mathrm{n}+\mathrm{m}, \mathrm{n} 1$ : NEXT m: NEXT n
370 DATA $170,170,204,204,227,142,240,240,248,62,252,15$
380 FOR $\mathrm{n}=6$ TO 17 STEP 2: FOR $\mathrm{m}=0$ TO 1: PRINT ;AT $m+n, 17 ;$ CHR $\$(138+n)$; CHR $\$(139+n)$ : NEXT $m:$ NEXT $n$
390 REM Restore centre line
400 REM
410 FOR $m=104$ TO 136 STEP 32: FOR $n=79$ TO 81 STEP 2: INVERSE 1: PLOT m,n: DRAW 15,0: INVERSE 0: NEXT n : NEXT m
420 PLOT 138,80: DRAW 16,0
430 REM colour columns at sides
440 REM
450 FOR $m=5$ TO 25 STEP 20: FOR $n=4$ TO 18 STEP 2: PRINT BRIGHT 1; INK. c((n-4)/2+1);AT n,m;"■■";AT $\mathrm{n}+1, \mathrm{~m}$; "무": NEXT n: NEXT m
460 LET i\$=INKEY\$: IF i\$="" AND nn>0 THEN GO TO 460
470 IF $\$$ =CHR $\$ 13$ THEN GO TO 600
480 REM MUSIC SECTION
490 REM
500 LET nn=3+INT (6*RND): DIM a(nn,2)
510 FOR $\mathrm{n}=1$ TO nn : LET $\mathrm{a}(\mathrm{n}, 1)=(1+$ INT $($ RND $* 8)) / 32$ : LET $a(n, 2)=1+\operatorname{INT}(12 * R N D)-4:$ NEXT $n$
520 FOR $\mathrm{j}=1$ TO nn*(1+10*RND)
530 FOR $n=1$ to $n n$ : BEEP $a(n, 1), a(n, 2)$ : IF INKEY\$ $<>" "$ THEN GO TO 570
540 NEXT $n$
550 LET $n 1=$ INT $(1+n n * R N D):$ LET $a(n 1,1)=(1+\mathbb{N T}$ (RND*8)/32: LET a(n 1,2 ) $=1+$ INT ( $12 *$ RND $)-4$ : NEXT j
560 PAUSE 100: GO TO 500
570 LET i\$=INKEY\$: IF i\$=CHR\$ 13 THEN GO TO 600
580 IF i\$ < >"" THEN GO TO 570
590 GO TO 460
600 BORDER 7: PAPER 7: INK 0: CLS : STOP
9000 FOR $\mathrm{f}=1$ TO 3: POKE 23736,181: SAVE "testcard": NEXT $\dagger$

## TV Fault Finding

## ITT CS0614

A common fault with this set is no remote control operation. It's usually due to a faulty remote control transmitter or TEA1009 receiver i.c., but not always. In this case the data from the remote control receiver was. correct but the SAA 1251 decoder i.c. was taking no notice of it. Replacing the i.c. made no difference of course. The keyboard module can sometimes cause this fault if the decoder thinks a button is being pressed, but disconnecting the board didn't restore remote operation. Voltage checks were then made around the SAA1251 and pin 15 was found to be at a lower voltage than it should. Transistor T3a (BC237) was leaky.
P.B.

## Hitachi NP81CO Chassis

Have you noticed that the stock faults dry up whenever you're busy? Take this example: the fault reported on the ticket was field collapse when cold. Normally you resolder the dry-joints on the field output thick-film module and the trouble's gone. Not this time. I was rewarded with a rolling picture that was very difficult to stop with the field hold control. So out with the scope and the manual. Things now became very puzzling: the waveforms at pins 6,7 and 8 of the LA7801 sync/timebase generator i.c. had a negative-going hump that shouldn't have been there on them. The hump was even larger at the output from the field output module. Now the scan coupling capacitor $\mathrm{C} 610(220 \mu \mathrm{~F})$ is very close to the hot field output module heatsink, so it seemed a good idea to replace this. Bingo!
P.B.

## Decca 130 Chassis

The complaint with this stock set was "goes beserk". Sure enough when I switched it on it would go to standby, change channel etc. all by itself. The first step was to change transistor QR16 on the frequency synthesizer PCB as this has been responsible for some weird faults in the past. It wasn't guilty this time. The microcomputer i.c.'s clock signal was of the correct amplitude but its 5 V supply was slightly low at 4.7 V instead of 5 V . A check at the 5 V regulator's input revealed that this was also low at 6 V : it came back to 8 V when the board was flexed. We eventually found that one of the mains transformer pins was bent over and making only intermittent connection to the print.
P.B.

## GEC C2236

Excessive brightness was the complaint with this set. The RGB output stages are of the complementary-symmetry type and the voltages at the collectors of the lower, npn transistors were low. The bases of the upper, pnp transistors are biased by a network that iricludes R281 ( $82 \mathrm{k} \Omega$ ) which had gone open-circuit.
M.B.

## Rank T20 Chassis

We've had two of these sets in recently. The first had a fairly straightforward EW fault due to 4VT13 (BC148C) in the EW modulator control circuit being open-circuit. The trouble with the second set was a pulsating picture
due to h.t. flutter. The cause was traced to $7 \mathrm{C} 5(47 \mu \mathrm{~F})$ in the chopper transistor's base circuit, though no fault could be found with this component.
M.B.

## Philips CTX-S Chassis

There was a raster and sound but no picture. A check on the voltages around the decoder chip produced a negative reading at pin 7 (contrast control). Simple I thought, something wrong in the contrast control network. The search took a bit longer than expected however. Beam limiting is also carried out at this pin and R3565 at the earthy end of the e.h.t. circuit was found to have increased in value from $36 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.
M.B.

## GEC C1402H

A while back I reported a sound fault on one of these sets - no sound for the first two minutes then distorted sound. A couple more have since come in with much the same fault, except that the distorted sound was present from switch on. Again the trouble was due to C228 $(100 \mu \mathrm{~F})$ in the audio feedback circuit. In both cases removing the capacitor revealed corrosion around one of the connecting leads. This looks like becoming a stock fault.
M.B.

## Sony KV2022UB

A picture usually appeared at switch on but eventually there'd be line break up and the power supply would shut down. A little probing around the line oscillator circuit suggested that the trouble was to do with the feedback capacitor C507 ( $0.033 \mu \mathrm{~F}$ ). It wasn't dry-jointed but was internally defective in some way - this was confirmed by refitting it as a check after clearing the fault with a replacement.
M.B.

## Thorn TX90 Chassis

This set had been struck by lightning. Replacing all the chips restored the picture but there was still no sound. Now if you have any ideas about fitting substitute audio output transistors I hope you have better luck than I had. I strongly advise that you save time and get the correct types from Thorn.

Low brightness was the fault on another of these sets. R231 ( $150 \mathrm{k} \Omega$ ) in the network that feeds the base of the beam limiter transistor had gone high in value. M.B.

## Hitachi CNP190/CNP192

There was a tendency for the picture on one of these sets to pull on bright scenes: the picture was also slightly off centre. The trouble was traced to C711 ( $10 \mu \mathrm{~F}$ ) which smooths the supply to the line oscillator stage - it had gone low in value.

The trouble with another of these sets was that the colour faded to monochrome within an hour and a half. On soak this took about five hours, though applying a little heat to the decoder panel speeded things up. Applying freezer didn't have the opposite effect however! This was a tricky fault to trace. The cause was eventually found to be the first ident amplifier transistor TR26 (2SC458)
which was leaky though capable of operation (the output from the second ident amplifier stage was only slightly low). Fitting a BC237 in the TR26 position restored the gain and correct decoder operation.
M.B.

## Thorn 9800 Chassis

Whenever I come across one of these sets which is dead but ticking I start to have misgivings about the line output transformer. A new one had been fitted only a couple of months previously however. This time the trouble was traced to the 25 V stabiliser circuit: since $\mathrm{R} 708(1.8 \mathrm{k} \Omega)$ was open-circuit the series regulator transistor VT702 couldn't operate.
M.B.

## Hitachi NP82CO Chassis

There was no output from the chopper circuit though h.t. was present at pin 1 of the STR454 chopper i.c. As a matter of course the transformer and print were examined but this failed to bring anything to light. The chopper feedback capacitor $\mathrm{C} 907(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ turned out to be open-circuit.
M.B.

## Thorn TX9 Chassis

We've had three faults in the chopper power supply (PC1044 main panel) recently. The trouble with the first set was no results with no voltage at the collector of the chopper transistor TR62: L105 which is in series with the transistor had a broken lead which we were able to repair. The second set was also dead but there was voltage at the collector of TR62. A check across the 115 V h.t. line
produced a short-circuit reading - the h.t. rectifier D71 had gone short-circuit. The fault on the third set was intermittent. At first glance it appeared to be a line output transformer fault: at high beam current the picture had ragged edges and there was a distant hissing noise, rather similar to the effect caused by a faulty tripler. Probing around the power supply seemed to cure the fault temporarily however. The cause was a dry-joint on C138 which is connected to pin 4 of the chopper control i.c.

The fault on another of these sets was excessive brightness at switch on. The voltages at the collectors of the RGB output transistors seemed about right and when the c.r.t.'s grid pin (pin 5) was touched the picture returned to normal. There was a dry-joint from the white lead to the series resistor R704.
M.B.

## Philips CTX-E Chassis

This set was only three months old, but what a lot had gone wrong! The report was dead set and I thought it would be a simple matter of replacing the $4.7 \Omega$ surge limiting resistor R3291. I had to replace this of course, also the mains fuse and the h.t. rectifier. The chopper transistor was next found to be short-circuit. It had taken with it the two $1.8 \Omega$ current sensing resistors and the two transistors in the trip circuit. Replacing these items restored the h.t. and the line output stage started up. Faults left were -1 on the channel display and no vision or sound.

A new VST panel cured the digital fault and on checking the 12 b rail the $15 \Omega$ smoothing resistor was found to be open-circuit, though replacing this didn't cure the remaining faults. The voltages around the TDA2541

| CAPACITORS | 68 Grundig 301~/500 3.00 | 179 TJA2532 | 030 GEC 2100 Hybrid 4.00 | SPECIFCC COMPONENTS | ${ }^{396}$ G8 Metal Mains | 460 ELC1043/06 Tune |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $915 \times .0047 / 1500$ AB23 | 69 Thorn $3500 \quad 7.50$ | 180 TDA2340 | 032 Thom $T \times 9$ | 351 Thorn 1591 | Switch 123 | $5.00$ |
| Chassis ${ }^{\text {a }}$ | 70 Thorn 8500 | 181 TPA2341 267 | Chass. 14.50 | $\begin{array}{ll}\text { Speaker } & 200\end{array}$ | 391 G8 Line Stor/Eal. | 461 U321 New Tuner 7.95 |
| $9210 \times 220 \mathrm{MFD} 16 \mathrm{~V}$ | 71 Philips $68 \quad 6.30$ | 182 TDA2560 328 | 033 Prilips KT3 800 | 352 Thorn 1600 | Cob 225 | 462 U322 New Tuner 7.95 |
| Elect $\times 0.50$ | ${ }^{72}$ Pre $731 \quad 4.50$ | 183 TDA2571 215 | 034 RRI T24 Chass. 14.00 | $\begin{array}{ll}352 \\ \text { Drspper } & \text { Thorn } \\ & 1600 \\ 0.50\end{array}$ | $392 \mathrm{G8}$ R/G Symetry |  |
| $9310 \times .047 \mathrm{MFD} 400 \mathrm{~V}$ | ${ }^{89} 10 \times$ Anti Track ${ }^{\text {EHT }}$ | 184 TDA2591 | 035 Sanyo CTP5101 $\quad .50$ | ${ }_{353}^{\text {Dropper }} \mathrm{T} \times 10 \stackrel{0.50}{\text { Preset }}$ | Coil ${ }^{3}$ |  |
| Mul Pol 0.50 | Cap 200 | 185 TDA2593 223 <br> 190 TDA2600 4.00 | 037 Lead | $353 \mathrm{~T} \times 10$ Preset | $39720 \times 3.15 \mathrm{~A}$ AS 20 mm | $\begin{array}{ll}465 & \text { Mull.DL50 Delay } \\ \text { Line } & 0.95\end{array}$ |
|  |  | 190 TDA28600 4.00 <br> 191 TDA2611 124 | Lead 1.3 | Drawer 3.00 | Fuse 1.50 | $\begin{array}{ll} \text { Line } \\ 4665 \times \text { vallo4 } & 0.95 \\ 2 \pi \end{array}$ |
| $\begin{aligned} & { }^{T 3500} \\ & 95 \end{aligned} 5 \times \quad .47 / 10000$ |  | 191 TDA261 124 <br> 192 TDA2640 235 |  | 354 T $\times 10$ CRT Base | $33620 \times 800 \mathrm{MA}$ AS | 469 Cui Dut Metal GEC |
| Dubilier |  | 210 ETRR0016 238 |  |  | 20 mm Fuse $\quad 1.50$ |  |
| $9710 \times 0.1 / 2000 \mathrm{~V}$ |  | 211 ETTE016 22 |  | $355{ }^{3}{ }^{3}$ Round BR | $39920 \times 2.54$ AS 20 mm | $4705 \times 6 E C 21003$ Leg |
| W/E 200 | WTEGRATED CIRCUITS | 212 ВП76018 228 |  | Speaker 1.00 |  | Thermist 1.00 |
| $985 \times 1 / 250$ Supp 117 | $1405 \times$ TDA440 3.00 | 220 SL5018 Int Circuit 5.00 |  | $3585 \times$ Tho/3500 200 | $40020 \times 24 \mathrm{~A} / 520 \mathrm{~mm}$ | ${ }^{4} 795 \times$ Gen. Purp. Rotary |
|  | $1415 \times$ TBAI2OAS 1.80 |  | 112 Phil G8 Square 1275 | Conrs. Pot 1.00 |  | Swich. 3.60 |
|  | $5 \times$ TBA5 |  | 113 Phil G8 Sloping 14.58 | $3595 \times$ Tho/3500 | fuse $\times 1.40$ | $4305 \times$ Gen. Purp.Push/ |
|  | $\begin{array}{lll}1455 \times \text { TBA560 } & 3.50\end{array}$ |  | 114 Thorn 9000 250 | Conv. Pot | $40220 \times 1.25 \mathrm{~A}$ AS 20 mm | $48120 \times$ Neons GEC |
| 51 Decca 1730183085 | $1465 \times$ TBAB10S $\quad 3.00$ | LNE OUITUT TX | 115 Thorn 16154 Way 787 |  | Fuse $\times 1.20$ |  |
| 52 Decca 80 Series 4.50 | $1475 \times$ T8A9200 $\quad 4.50$ | 001 Philips G8 7.50 | 116 Decca 6 Way ${ }^{\text {ches }}$ |  | $4035 \times$ RRI T20 Tube | $4825 \times$ Univ. Aerial Skt. |
| GEC 2040 Hybrid 3.00 | $1485 \times$ TBA990 325 | 002 Decca 30 Series 7.00 | 117 Decca 4 Way 650 | 362 T9000 Rem. Receive |  |  |
| 54 T1500 5 Stick 3.50 | $1495 \times$ TBA5200 4.00 | 003 Decca 100 Series 6.50 | 118 GEC 21106 Way 7.95 | Assy ${ }^{\text {a }}$ | 410 Phil. Gll EN Load | $48310 \times$ Metal Coax |
| 55 Thom 9000 | $1505 \times$ TBA530 | 004 ITT CVC 25/3032 7.00 |  | 333 T3500 Mains TX 5000 |  |  |
| 56 Thom 14002.00 | $1515 \times$ TBA950 $\quad 4.50$ | 005 Philips G9 $\quad 1.50$ | Tapered | 364 T8500 Mains TX 7.50 | 411 Phil. G11 Bridge | 484 Focus Unit T20 |
| 57 Philips 69 3.50 | $15410 \times$ TCA270SO 4.00 | 006 RRI T20 9.90 | $121110{ }^{12}$ | 365 T8500 (PLastic) Cut |  |  |
| 58 Universal ITT Type 4.50 | $1555 \times$ MC13270 250 | 007 RRI A823 7.00 | $1221176{ }^{12}$ Way with |  | $412 \quad$ Phillips 611 | 485 Foc/Unit Thorn 8500 |
|  | 160 TDA1170 1.35 | 008 RRI $2718188^{\prime \prime} 18.85$ | VCR 122 Way | 370 Pre 731 Thick Film | Speaker $\quad 1.00$ |  |
| PTV's ${ }^{\text {che }} 1.00$ | 161 TDA1190 1.90 | 009 RRI 2718 20/23/26" | 123 RII AB23 etc. ${ }^{\text {7. }}$ | Resis. 1.50 | $41310 \times$ TDA2600 16 | 4886 4.43Mhz Crystal 0.40 |
| $603 \times$ TV45 EHT Rec | 162 TDA1006A 1.6 | 125 | 124 Hitachi 4 Way 7.95 | 371 Pye 713731 Vis. Gain |  | $48810 \times$ Ring Type Spk |
| 2718 | 164 TDA1035 1.83 | 010 RR1 A774 Mano 10.87 | 124 RRIT T20 6 Way |  | 415 PALKT3 Speaker 1.50 |  |
| 61 IT CVC $45 \quad 4.00$ | 165 TOA1044 233 | 011 Thorn 1690931 7.00 |  | 372 Pye 73138350 W | $43510 \times$ Decca 30 10R | 496 TX10 Chass. Focus |
| 63 RR1 2179 3.00 | 166 TOA1190 | 012 Thorn 1615 6.50 |  |  | Fusible ${ }^{4385} \times$ Derca 30.500 |  |
| Pre 691/697 $\quad 3.50$ | 167 TDA1412 0.50 | 013 ITT CVC $45 \quad 6.50$ |  |  | $4365 \times$ Decca 303189 | 497 De-Soldering |
| 65 Pye CT200 4 Lead 3.50 | 172 TDA2002 | 014 Phil TX Chass |  | 3/3 look $\times 3$ Drawer $P$ 'ser | Modulohm ${ }_{\text {a }}$ | Pump 3.50 |
| 66 Pye CT200 5 Lead 4.50 | 173 TDA22020 | 015 RRI Ranger 1/2 5.00 | SmPOTHING | Alt Pre 731 | 437 Decca $30 \quad 47 \mathrm{k}$ | $4981 \times 10$ Trimming |
| 67 Korting 90 DGR | 174 TDA2230 | 016 IT CVC 599 8.50 | CAPACTIORS | 378 Grundig 50106010 Vid | Vot+Switch 125 |  |
| Hyb 5 | 178 TDA2523 238 | 017 Philips E2 Chass. 5.00 | 80 220400 CVC32 [20 1.20 | Mod. 4.00 | $4505 \times 5 R$ |  |
| All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days. <br> Please add 15\% VAT and 90p P \& P |  | 019 Thom 9500\%9600 8.50 | ${ }_{82}^{82000300}$ Phil 681.190 |  | ${ }^{\text {Conve }}$ ¢ Pot $\times 20 \mathrm{R}$ Universal |  |
|  |  | 020 Polish 161 Mono 6.00 | $83 \quad 175+100+100$ | 3 354 $5 \times 15$ Phil. 68 | Conv. Pot 1.00 | STORD |
|  |  | 021 Thorn 3500 Scant 4.50 | T3500 $\quad 1.50$ | Conv. Pot 240 | $4555 \times 100$ R Universal | $22350 \times$ PC2213L |
|  |  | 022 Thorn 8500 | $8820001100 \mathrm{~V}^{1 / \mathrm{t}}$ 0.50 | $3065 \times$ Phil. $682 \mathrm{k} \times 2$ Lin. |  | $25010 \times$ BD124 $\quad 9.00$ |
|  |  | 023 Thorn 159091 ${ }_{0} 825$ | ${ }_{808}^{85} 4700 \times 400$ Decca 30 | Bright. 250 | $\begin{array}{ll}456 & 5 \times 470 R \text { Universal } \\ \text { Conv Pot }\end{array}$ | $25110 \times 80131$ |
|  |  | 024 Thom 150015 KV 4.00 025 GEC 20002100 Hybrid | 68 $400+400$ Decca 30250 | $3875 \times$ Phil. 6810 k Log. | ${ }_{457}^{\text {Conv. }} 10 \times 100 \mathrm{kot}$ Tun/Pres | $27010 \times 8 U 208 A$ 8.50 <br> $27110 \times$ BU208 1.50 <br> 20  |
|  |  |  | ${ }^{87}$ 200 $+200+75+25110$ | ${ }_{388}^{\text {Colour }} 5 \times$ Phil. G8 47k Log. | TCE etc. 3000 |  |
|  |  | 026 Bush 161 Mono 5.00 027 GEC Single Std | ${ }_{88} \mathrm{CV}$ C50/4000V Tho 90001.50 | $\begin{array}{r}3885 \times \text { Phil. } 68 \text { 47k } 2 \mathrm{Log} . \\ \text { Val. } \\ \hline 250\end{array}$ |  |  |
|  |  | Mono 028 Pye 691 (wired) O200 | 80 91 | 3e9 G8 Plastic Switch | 459 ELC104305 Tur | 280   <br> (Texas) 25 $\times$ |
|  |  | 028 Pye 691 (wired) 5.00 | 0.00 | Swich 0.75 |  | $28110 \times 2 \mathrm{~N} 2905$ (Equiv. |
| MUXTON HOUSE, MUXTON, TELFORD, SALOP. REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE OUOTE STOCK NO. |  |  |  |  |  | $29010 \times 8 \mathrm{BT} 106$ |
|  |  |  |  |  |  | Thyristor |
|  |  |  |  |  |  | $2935 \times 8$ BT120 $\quad 4.50$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | Diodes ${ }^{\text {a }}$ |
|  |  |  |  |  |  | $\begin{array}{ll}34025 \times \text { T1P41A } \\ 34125 \times \text { T1P41C } & 6.50 \\ 7.00\end{array}$ |

i.f. i.c. were next found to be incorrect. The 12 V feed resistor R3153 had gone open-circuit and the a.g.c. output pin 4 was short-circuit to chassis. Replacing the i.c. left me with a snowy raster and a check on the tuner voltages revealed 12 V at every pin including earth. A choke (L9157) in the earth line was open-circuit - it's not shown
in the circuit diagram. When this was replaced we had sound and weak luminance: the video emitter-follower Tr 7148 was the cause of the final fault.

Hopefully this was a one-off situation. I don't like to think what the cost would have been with the set out of guarantee.
P.W.

# Vintage TV: The Autumn of '55 

This autumn will see the thirtieth anniversary of the start of ITV in the UK, something that's now a subject fit for this vintage TV column.

After a period of honeymoon euphoria in the early fifties, viewers soon came to think that single network TV as then provided by the BBC left much to be desired. The level of discontent became so great that the government of the day was eventually moved to do something about it. Led by the then Mr. Winston Churchill, it produced in 1952 a White Paper (Cmd. 8550) which contained the words "(The government) has come to the conclusion that in the expanding field of Television provision should be made to permit some measure of competition". Consequently the BBC charter, which was then up for renewal, for the first time came to contain the description "non-exclusive". There was still a long way to go before viewers could hope to see alternative programmes however.

Although it was likely that any new service would be paid for by advertising, there was a great deal of opposition to the idea - especially to the US practice of sponsored programmes, in which advertisers can and do insert excessive commercial breaks. In addition to the legitimate objection to programme sponsoring there were those who felt that the prospect of advertising on TV would spell the end of civilisation as they knew it. Hordes of disgusted colonels and others from Cheam and elsewhere wrote to the top papers to protest, ignoring the facts that no one was going to twist their arms to make them watch the new service and that the newspapers to which they wrote were also strictly commercial enterprises that carried a far higher proportion of advertising to editorial matter than any TV station could ever hope to get away with! Then there was the celebrated politician who solemnly pronounced that a second network was unnecessary as no one could watch two programmes at once!

## Getting the Service Going

The battle for commercial ("independent" as its supporters preferred to call it) TV was an intense one but in 1954 the Television Act was passed, setting up the Independent Television Authority. The ITA lost little time in planning a London service. Programmes were to be supplied by Associated-Rediffusion on weekdays and by ABC Television at the weekends. Then as now the news was provided by Independent Television News Ltd. A temporary transmitter was erected at Beulah Heights, South Norwood, prior to the building of the main Croydon station which would eventually have an e.r.p. of 350 kW . With that side of the business settled it was over to the dealers, service engineers and aerial riggers to ensure that the public would be able to tune in on the
opening night, which was planned for September 22nd, 1955.

## Reception Problems

Generally speaking however many manufacturers were poised to make just the same sort of daft design mistakes that they had only a few short years earlier when they were feeling their way with Band I sets. It had for example taken perhaps five years for most firms to come to the conclusion that the normal coaxial plug/socket was best for aerial connection, after experimenting with all sorts of odd types. As soon as Band III came about back they went to the latter for another few years - as always, the poor old service engineer was on the losing end! We took this in our stride at the time because we were happy with the vast amount of extra business that ITV created. But we were having to learn about the vagaries of upper v.h.f. band reception as we went along, discovering that the new, tiny by comparison aerials could give a brilliant picture in one location but only a horrible graininess a few yards away. Reflections too seemed to be much more of a problem than in Band I. Nevertheless no engineer of that period will ever forget the sheer thrill of seeing for the first time a test card that wasn't being transmitted by the BBC!

It's impossible for anyone who didn't live through the period to appreciate the tremendous anticipation with which that date was awaited. The only more recent event in any way comparable, and even so to a much lesser extent, was the advent of ITV colour in November 1969. Long before the actual setting up of the ITA it had been known that Band III would be used for the new service, and setmakers had for some time been incorporating some form of conversion facility in their receivers in the knowledge that they would otherwise soon become unsaleable. Sometimes however the "convertible" label on a set meant no more than that a mains-power socket had been fitted for plugging in a converter! Pye fitted genuine 13 -channel tuners in their new models - they used the incremental-inductance principle - and the firm's contemporary advertisements suggested that in due course a selection of stations on various v.h.f. channels might become available to viewers. Oh well, it was a nice thought.

## Effects on the BBC

At last the great day dawned, but even then the effect of the new programmes was being felt by the BBC's viewers in a most unwelcome way. Until the imminence of competition, BBC TV enjoyed great flexibility in respect of programme timing. Most items were live, and if one should happen to overrun for a few minutes there was seldom any need to worry since the rest of the rather
meagre schedule could also be delayed. Then some bright person at the Beeb came up with the notion that ITV would have to be much more precise about their timing if the advertisements were to be shown at the times booked and that the BBC should follow suit. No one seemed to grasp the idea that the BBC might perhaps retain more viewers by remaining different. This was not to be the only occasion when that organisation was to display a regrettable tendency to imitate the competition. Shortly after the new policy was announced, an exciting boxing match was cut off only seconds before the final verdict merely to permit the commencement of a studio commedy show on time. This caused an awful lot of unnecessary bad feeling that lasted for a long time.

## Official Opening

ITV's official opening was marred by two events. One was completely accidental - an electricity failure in London. The other one is open to speculation. The horrifying death of one of the fictional characters in the BBC's veteran "Archers" serial was timed to be broadcast just before the ITV's opening ceremony. It says much for the pulling power of radio at the time that such a ploy could have been considered as suitable for distracting viewers from the new service! That it was a forlorn gesture was soon to be demonstrated, for ITV took off in no uncertain manner.

## The Conversion Business

About five million sets were in use during 1955-56, the vast majority of which were ripe for conversion to Band III. The orders poured in. All manner of "universal" converters appeared on the market, as well as the setmakers' own special jobs for specific models. Many of the universal converters used two humble EF80 r.f. pentode valves, demonstrating that they would work successfully at frequencies far higher than those envisaged by their designers! Of all the universal converters however the one that this writer will always recall was the "Stirling", an extraordinarily compact unit that employed just one valve, the ECC85 double triode which was primarily intended for use in v.h.f./f.m. tuners. It had a built in power supply with a small mains transformer and a contact-cooled rectifier, making it self-contained. Thus only one connection, a coaxial lead to the aerial socket, was required to the associated TV set. In practice however we used to favour soldering the converter's mains lead to the receiver's on/off switch so that there was no danger of the converter being left on accidentally. It's no exaggeration to say that we bought several dozens of these converters at the time. We sold them very rapidly at ten guineas complete with a three-element aerial, fully fitted, or at eleven guineas with a five-element aerial.
It seems incredible now. The demand was so great that we had to work until at least ten o'clock at night to satisfy it - using a spotlamp fitted on the van to illuminate the chimneys after dark! Inevitably there were a few odd places in our town where it was impossible to obtain a satisfactory off-air picture. In these cases we were able to offer a special converter which permitted an ordinary TV set to obtain signals from the local Rediffusion cable network. This cost six guineas, plus $3 / 9 \mathrm{~d}$ per week to Rediffusion for the BBC and ITV programmes and four or five sound channels. But wait a minute: cable television? Isn't that supposed to be something frightfully new and revolutionary?!

## next month in

## - SERVICING THE HITACHI NP8CO CHASSIS

Large numbers of these sets were sold under the Hitachi brand name. The chassis was also used in the GEC C205E/C2255/C2057/C2257 range and in several Expert models. David Botto summarises faults and serv cing procedures, concentrating on the chopper power supply where most of the problems occur

## - VCR AUDIO/CONTROL HEADS (VHS)

The audio/con-rol head assemblies used in VHS machines have four adjustments, two of which may require resettirg during the life of a head assembly. Derek Snelling describes how to go about it and provides guidelines on head assembly replacement.

## THE FS TUBE

More and more sets are being fitted with the new flat face, square screen tubes. Why haven't we had this nice shape before? In fact there are considerable mechanical problems in the design and manufacture of this type of tube, due to the huge stresses present - hence the thicker glass and greater weight. Eugene Trundle looks at what's involved in the design of tubes of this type.

## - SERVCING THE TOSHIBA V9600

Tr is is the front-loading VCR with the four-head drum for gool stills and slow-motion replay. It tends to need a fair amount of mechanical attenticn, as John Coomve describes in this servicing guide.

## - UNSCRAMIBLING CANAL PLUS

Sotires Eleftheriou writes from Paris on the Canal PI as scrambling system and decoding methods, in particular the differences between the officia approach to unscrambling and the techniques adopted by the magazine Radio Plans whose issue on the subject was stopped by court action.

PLUS AL THE REGULAR FEATURES

## ORDER YOUR COPY ON THE FORM BELOW:

Please reserve/deliver the June issue of TELEVISION (f1.10), on sale May 15th, and continue every month until further notice.

NANE
ADDRESS

## ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP



## ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP



# VCR Clinic 

Reports from Steve Beeching, T. Eng., Derek Snelling, Mick Dutton, Les Harris and Peter Richards

## Mitsubishi HS306

More problems with the HS306. We've had three with buzzing mains transformers due to loose laminations. Two were cured (by the use of a large hammer) but the third had to be returned for replacement. We've also had one with an open-circuit primary winding. A problem we sometimes get in Birmingham is radar interference from the Birmingham International Airport. It's at around ch. 36 and usually affects Hitachi machines. The cure is to tune down to ch. 32. We've now had this problem with an HS306 and unfortunately the r.f. converter tunes only from ch. 36 to ch. 40 . With BBC-2 on ch. 40 it proved impossible to find a point where radar interference was missed and BBC-2 was not interfering or interfered with, even with the use of attenuators. Apparently the r.f. converter in this model is made by Panasonic, so perhaps the difficulty can arise with some of their current models.

## Ferguson 3V29

The complaint with this machine was that it "switched off after twenty minutes while playing". Sure enough after playing for twenty minutes the machine did just that. Pressing play resulted in the machine working for another ten minutes, after which it switched off again. It seemed to us that a pulse was disappearing occasionally, but when the machine was taken apart and a scope was connected it refused to go wrong. After resoldering a few likely joints we returned it to the customer.
The fault appeared two weeks later, but this time when we got the machine it was completely dead with the operate light failing to come on. A check around the fuses with a meter suddenly resulted in a working VCR. F8 turned out to be loose in its holder, and since tightening this the fault has not recurred.
D.S.

## Sharp VC7700

Intermittent recording was traced to the f.m. record amplifier section of i.c. I301: the output at pin 8.went off every so often. This was a case of connecting up one of the oscilloscopes and leaving it in a corner with the machine to monitor various signals until the cause of the signal loss could be tracked down.
S.B.

## Sanyo VTC5000

This model can exhibit similar threading problems to the VTC5300, but for a different reason. Reluctance to load and unload the tape in the 5300 is due to the drive belt and loading ring: with the 5000 it's due to wear on the worm gear clutch which drives the loading ring. The clutch must be replaced.
S.B.

## Hitachi VT8700

An interesting one here - an intermittent tuner/i.f. signal and no rewind. Rewind was no problem but the tuner/i.f. panel had to be removed to check for the intermittent loss of signal. I initially thought that this was probably a oneoff case, but on investigation it seems that it could happen on other machines. The problem area is the earth connection to Q851 within the i.f. module: it's part of the can
and vibration causes a very subtle crack around the metal tag where it's soldered. This leaves the collector of Q851 floating with no common return, which is not good for a common-base amplifier.

After cleaning the machine it was ready for the customer and the test cassette was rewound. It hit the end of rewind with a bit of a thump and after a couple of seconds the stop mode was entered. Funny, I thought. Tried it again. The start sensor wasn't working. The cassette lamp wasn't lit either, due to the resistor (R653, 220 $)$ in series with the cassette lamp being open-circuit. This is certainly the first case I've come across where a VCR will operate with no cassette lamp: most others will shut down and refuse to perform as the system control is inhibited. S.B.

## Ferguson Feedback

I was interested to read in the December issue of Ferguson Feedback about liquid contaminated PCBs. The point was made that cleaning the panels is only a short-term measure as further degradation and consequent failure will occur. If more than one panel in a VCR is affected the cost of replacement and subsequent alignment becomes prohibitive. I've never held the view that VCR panels should be replaced as part of servicing except in exceptional cases where panels are temporarily swapped to eliminate a suspect area when fault finding.
The January issue of Ferguson Feedback mentions the number of cases where microcomputer chips that are not faulty are returned under guarantee. Unless you know a machine very well it can be extremely difficult to determine whether a microcomputer chip is indeed faulty and it's often necessary to replace one on an elimination basis. It can sometimes be reasonably surmised that a microcomputer chip is faulty as the next case illustrates.
S.B.

## Panasonic NV7200

When this machine was put into the timer mode the record indicator flashed on and off and the tape threaded up and ran in a stop-start fashion - this without even the set time being reached. A clue to the culprit was given when the clock came on to read 11.86 . The microcomputer i.c.'s record output was pulsing on and off as soon as the timer mode was selected. Replacing the timer microcomputer i.c. restored normal results. S.B.

## Sony SLC9

The complaint was that the clock had gone off and that the machine would not record though playback was possible. In fact the machine would record, but there was no output from the tuner. Power supply problems were correctly suspected and the power unit was removed. The cause of the fault was a small d.c.-d.c. converter module which should have produced a 38 V supply and a -27 V supply. Although the manual gives part numbers the module was well sealed and I couldn't find the number in the parts list. It's in fact 1-464-217-11, though there's a later version 1-464-217-21 with extra ventilation holes. I assume that the original version tended to overheat - it does run continuously.

I found an anomaly in the SLC9's power supply circuit diagram. This can be confusing. The supply line connected to pin 5 of CN657 is shown as 5.9 V . The same reading is shown at the emitter of Q682. Now although the voltages across diodes D681 and D682 add up to around 5.9 V they are not connected to chassis. There's a further voltage across R682 as a result of which the supply will measure more like 8 V until loaded, so don't chase a red herring in this area.
S.B.

## JVC HR2200

This machine went into the alarm mode when switched on, which is all it will do under a fault condition. Usually, that is. So we checked through the inputs to the microcomputer control i.c. to find the cause of the problem. The clue was at input A2, which is connected to the brake switch. With the switch open the voltage should have been 10 V . It was only 5 V . I've encountered this problem before with these switch inputs. As the inputs are left floating when the relevant switches are open it seems that they're susceptible to static. Note that the micro fitted to earlier machines, type $\mu$ PD553C-066, has been changed. The later type $\mu$ PD553C-159 can be fitted in its place. It won't provide the improvements but carries on all right.
S.B.

## JVC HR7700

This HR7700 was sent in by a dealer as it wouldn't accept a cassette: The cassette-in switch worked but the message didn't get through to the control microcomputer via the data selector i.c. The reason for this was that the data selectors were not being scanned by the micro. A new micro failed to sort matters out but at least eliminated the device. We next found that the micro interrupt pin 6 was low, indicating a safety system fault. The trouble seemed to lie in the direction of the cassette lamp failure detector in IC30 - but the lamp was on! The input to IC30 was too low to switch the gate concerned and the lamp did seem a bit dim . . . the wrong type of lamp was fitted! It just goes to show that you can't go around stuffing any old substitute component into a VCR. The micro will know what you've done, very clever they are. So watch it! S.B.

## Amstrad 7000

This machine wouldn't operate because the dew sensor was on. No problem we thought, just let it dry out for a while. After half an hour we came back to see if it had come on and found that the dew sensor light was still on. So we removed the top cover and tried again. This time the machine worked normally. We left it overnight and tried again next morning. The fault was back again and this time we were able to measure the dew sensor. There was a voltage at the earthy side and when we followed the lead to the chassis connection we found that it was corroded. Stripping this down and cleaning it provided a cure.
M.D.

## Panasonic NV333

Fast forward and rewind worked normally but sometimes the machine wouldn't go into record or play. We noticed that in the fault condition the capstan didn't rotate and the play idler wheel didn't move into its operating position. There was no capstan-on pulse from the microcomputer i.c. so we went chasing off after this and wasted a lot of time. We then found that the mode select switch wasn't
travelling right into the play position, so we set up the cam gear and action gear as per the manual. This cured the problem for a while, but we then found that as the machine was loading the belt that drives the large pulley was slipping on the intermediate pulley. Cleaning the belt and the pulley wheels solved the problem.
M.D.

## Sony SLC7

We've had several tuning faults with these machines. For example the tuner might not select the right station - it may well lock on to a non-local station elsewhere in the band, depending on what's tuned in. Alternatively some channels might not work, or certain numbers can't be selected. The cause is the same - the CX761 tuner memory i.c.
The problem with another of these machines was that it ejected when switched on from standby, then worked normally. Now when any microcomputer i.c. misbehaves it's important to check the reset circuit. In this case replacing D6 and Q2 on the system control board SY11 cured the fault.
P.R.

## Sony SLC5

Intermittent crackling and/or instability on playback sound is often due to corrosion on one of the three relays in the audio amplifier circuit. The best cure is to replace all three, but note that they're not all the same.
P.R.

## Sony SLC9/SLC30

If the customer complains that the remote control transmitter works but the red LED doesn't light up don't be too keen to break it open to investigate. Check the batteries first! This is a telltale sign that the batteries are flat.
P.R.

## GEC V4100

A motorboating sound was accompanied by noise bands on the screen. To aid diagnosis I changed the audio board. Still the same. Next I unplugged PG619, the lead to the control head, and the motorboating stopped. The problem was found to be due to leakage of a few hundred ohms between the audio and control heads and was cured by cleaning the head terminal PCB. The leakage must have been lowering the level of the control pulses so that the capstan was unlocked, hence the noise bars. Methinks something had been spilt into that VCR!
L.H.

## Ferguson 3V22

Very snowy replay was not due to worn heads - the f.m. output at the head amplifier test point looked o.k. on the scope. The fault was traced to the SN76670N limiter i.c. (IC7) - there was an input signal at pin 14 but virtually no output at pin 6.
L.H.

## Hitachi VT33

The cassette loading mechanism on this machine was faulty due to two teeth broken off a small cog. Now this is a sturdy mechanism compared to that used in the Ferguson 3 V 35 etc. so 1 wondered how (the customer was a lady) it came to be broken. I subsequently found the lady's occupation from the shop manager - she's a dumper truck driver! Anyway, a replacement $\operatorname{cog}$ and much fiddling put the machine to rights.
L.H.

## Waveforms from Space

## Harold Peters

Once a DBS enthusiast has collected his gear together and got it all working the problem arises that the dish is well out of sight and reach of the receiver. So even if it sports an S meter the initial capture of the wanted signal isn't going to be easy. Few of us have a spectrum analyser that we can watch at the foot of a dish, nor a suitable monitor, so we end up using an oscilloscope with a long input lead. Once a signal is obtained the scope can be of further use in identifying the broadcast - especially if it doesn't for some reason lock well on the TV display. Close inspection of the line and field blanking intervals can tell you quite a lot, as the waveforms shown in the present article will reveal.

We are lucky that six of the strongest 11 GHz band signals receivable in the UK employ standard PAL. The waveform shown in Fig. 1 can be seen from Music Box, RAI and the Swiss Teleclub via the ECS-1 (Eutelsat) satellite, all noise-free using a 2 m dish, also from Premiere, Screen Sport and TEN via Intelsat V F4 which calle for a slightly larger dish. There are teletext magazines on Music Box and RAI and the Teleclub signal has a strong unmodulated subcarrier at 5.5 MHz .

NTSC signals look very similar, with a smaller duration burst and a slightly different picture-to-blanking ratio - a monitor will show the difference better (the field will roll until you adjust to 60 Hz , whereupon the picture will appear, squashed vertically). The only "local" NTSC bird is Intelsat IV F8 at $1^{\circ} \mathrm{W}$, but it's very weak and has just lost its supply of steering propellant.

The waveform shown in Fig. 2 is SECAM. Note the extended burst on the back porch, which is unmodulated (neutral grey) red and blue subcarrier on alternate lines. Note also that the subcarrier is present throughout the active picture period of each line - it has to be, in order to stop "colour snow" appearing in uncoloured parts of the scene. The field blanking interval contains the original


Demonstration aerials at Megasat's central London premises. From left to right: transportable dual-polarised 2.8 m dish aligned with ECS-1; 1.8 m dish aligned with Gorizont; 3.7 m motorised dish aligned with Intelsat V; 1.8 m dualpolarised dish for ECS-1.

SECAM ident signal - ten lines of alternate red and blue subcarrier, the so-called ten green bottles. Modern SECAM decoders identify from the extended burst on the back porch.

The Russian 4 GHz Gorizont satellite and the French TV5 service via ECS-1 (with the religious EBNET programme sharing the same channel) use SECAM. TV5 and EBNET scramble the signal, using the Discret-1 system described in Andy Emmerson's Canal Plus article last December, though the transponder is sometimes used to relay unscrambled material with PAL colour to Catalina.

The waveform shown in Fig. 3 is to be seen on the two W. German channels Sat1/PKS and the weaker 3Sat, both via ECS-1. The line sync pulse is shortened and digital sound is inserted up to the burst and again after the burst. This upsets the sync and chroma on the average monitor/ receiver and can be regarded as a form of scrambling.

## Oak Orion Encryption

Fig. 4 shows the Racal/Oak Orion scrambling system used for Sky Channel via ECS-1. It has no line sync pulse as such and the total amplitude is 0.7 V peak-topeak. Line sync is by means of a burst of a.c. sinewaves which are followed by full-amplitude digital sound pulses right up to the PAL colour burst, which is in the correct place. Between the burst and the start of the picture there's a computer-controlled inversion signal. The picture information itself may or may not be inverted.

## The MAC Waveform

The waveform shown in Fig. 5 will turn up sooner or later: it's MAC and can be regarded as scrambled since the sound is digitised and the chrominance and luminance information is compressed and transmitted in sequence, producing an effect on a conventional set similar to a cinemascope film shown on an ordinary screen. At the present time it's used only by the Norwegian transponder on ECS-2 at $7^{\circ}$ (was $10^{\circ}$ ) E.

## Sound Channels

Sound channel frequencies are shown in Table 1. An intercarrier receiver tunable from 6 MHz to 7 MHz is required for sound. The only transmissions likely to give problems are TV5 whose non-standard pre-emphasis produces sibilance and Teleclub whose strong unmodulated


Fig. 1: Standard PAL line blanking period waveform.

Table 1: 11GHz band satellite TV services.

| Service | Country | UK E.I.R.P. <br> dBW | Sound |
| :--- | :--- | :---: | :--- |
| Sky Channel | UK | 47 |  |
| Music Box | UK | 47 | Digital |
| Sat 1/PKS | W Germany | 47 | $6.6 \mathrm{MHz}^{*}$ |
| TV5 | France | 47 | Digital |
| RAI | Italy | 47 | 6.55 MHz |
| Teleclub | Switzerland | 47 | 6.7 MHz |
| Euro TV | Holland | 47 | 6.5 MHz |
| Esselte | Belgium | - | 6.6 MHz |
| Premiere | UK | 45 | - |
| Screen Sport | UK | 45 | 6.6 MHz |
| TEN | UK | 43 | 6.65 MHz |
|  |  |  |  |

*Digital stereo at $7 \cdot 1 \mathrm{MHz}$ and $7 \cdot 2 \mathrm{MHz}$.
5.5 MHz subcarrier could produce beat effects. Without the proper decoders there seems little point in trying to resolve the digitised sound signals, which include Wegener stereo with Music Box at $7 \cdot 1 \mathrm{MHz}$ and $7 \cdot 2 \mathrm{MHz}$.

## Signal Capture

Satisfactory reception of ECS-1 at $13^{\circ} \mathrm{E}$ is possible with dishes as small as $1 \cdot 2 \mathrm{~m}$. Intelsat V F 4 at $27 \cdot 5^{\circ} \mathrm{W}$ requires a 3 m dish for clean signals. The bigger the dish the touchier the alignment - even tightening up can tune it right off.

If you're unsure of the polarity of the wanted signal, mount the converter assembly at $45^{\circ}$ until initial signal capture then rotate it for optimum reception.

The two easy K (11GHz) Band signals are Music Box via ECS-1 and Premiere/the Children's Channel via Intelsat V F4 as they are both on all day. Music Box even transmits mixed syncs out of hours to carry the teletext signals.

Fig. 6 shows how Band K is split, with a gap between 11.2 GHz and 11.45 GHz . Most available receivers will cover either but not both sections of the band since they are based on US 4 GHz designs.

Our own way of capturing Intelsat V F4 was to tune first to ECS-1 at $13^{\circ} \mathrm{E}$ and display the RAI signal. This puts the receiver and low-noise converter on the right channel and polarity for the Children's Channel from Intelsat V F4 at $27 \cdot 5^{\circ} \mathrm{W}$. We then swung the dish around by the right amount and dropped its elevation by $3^{\circ}$. Once we find a signal we mark the adjusting arms of the dish mount and produce from this a linear calibration of azimuth and elevation. This will be handy in the coming months.

ECS -3 is due up in August and is already fully booked. It will be at $7^{\circ}$ or $10^{\circ} \mathrm{E}$. There will be two UK TV transponders and RAI intend to move across from ECS-1. Finally, before M. Binet, Head of Eutelsat's Conference, Documentation and Public Relations Division writes in,


Fig. 6: Broadcast signals available in the 11 GHz band.

# Chips for Tomorrow's Sets 

Details of a comprehensive range of new-generation i.c.s for use in TV chassis have recently been released by Mullard. The range extends from i.c.s that enable a relatively simple economy chassis to be produced to those capable of providing a great many extra features, for example more sophisticated PAL decoding, computer control throughout the chassis and features based on the use of a memory able to store a TV field. Some of the i.c.s are already in production while others are being supplied to setmakers in preproduction form for development work. The following notes describe some of the i.c.s we're likely to be seeing in new chassis before long.

## Economy CTV Chassis

Two i.c.s in the range provide the entire signal processing required in an economy set: only a tuner and the necessary output stages have to be added. The TDA4501 contains the i.f. strip, with a.g.c. and a.f.c. outputs for the tuner, the sound channel up to an audio preamplifier, inter-station sound muting, the sync separator, VCR timeconstant switching, and the line and field timebase and sandcastle pulse generators. The similar TDA4500 has been used in the Thorn TX90 chassis for some time. The TDA3565 is an economy, 18-pin version of the TDA3561A PAL colour decoder chip without teletext compatibility. The pinning of the TDA3565 has been arranged so that a dual-pierced PCB can be used with either this or the TDA3561A.

## Alternative PAL Decoding Techniques

Picture quality can be considerably improved by increasing the slope of the detected colour-difference signal transitions to match those of the luminance signal, thus compensating for the narrow chroma signal bandwidth. The TDA4510, TDA4560), TDA3505 chip set provides
this feature - see Fig. 1. The TDA4510 is a conventional PAL decoder with YUV outputs. The TDA4560 provides the colour-difference signal sharpening feature, using differentiation and integration with sample-and-hold circuits for the purpose. This delays the colour-difference signals by some 800 nsec , so the luminance signal must be delayed by the same amount. A switchable gyrator luminance delay line is incorporated in the TDA4560 for this purpose. The following TDA3505 provides signal clamping; RGB matrixing; contrast, brightness and saturation control; beam limiting; RGB inputs with signal source switching; white point adjustment; and c.r.t. black current stabilisation.

An alternative approach to PAL decoding is provided by the TDA3569 and TDA8450 - Fig. 2 shows the general arrangement. The TDA3569 is a conventional PAL decoder chip designed to interface with the TDA8450 which incorporates all the filters and delay lines required for PAL (and SECAM) decoding in solid-state form. This latter i.c. employs time-discrete analogue signal processing, i.e. for the purposes of filtering and delay the signals are sampled. as in digital signal processing, but the signals are not converted to digital form. There are therefore no AD or DA converters, there is no need for shielding to prevent interference from a clock signal, and the power consumption is minimal. This method of analogue signal processing requires very few peripheral components or adjustments and can be integrated on reasonable areas of silicon. Profiled peristaltic charge-coupled devices are used for the delay lines and filters.

## Digital Tuning/Remote Control

The latest Mullard digital tuning/remote control system is based on the use of an MAB8400 series microcomputer chip with a non-volatile memory such as the PCD8572 to store the preset channels and the preferred analogue



Fig. 2: Decoding with solid-state filters and delay lines.
control settings. All connections to and from the microcomputer i.c. are made via a simple bidirectional twowire bus. The system is upwards compatible in that it can be extended via the bus to provide microcomputer control of teletext operation and automatic setting of the picture geometry and colour balance.

## Teletext Chip Set

The latest teletext chip set consists of the SAA5230 and SAA5240, see Fig. 3. The SAA5230 processor is used to convert the video input to a serial data stream. It incorporates an adaptive data slicer for optimum performance under poor signal conditions: the circuit provides automatic compensation to improve the eye pattern if it detects that the incoming signal has poor h.f. response. The clock generator uses an a.p.c. loop and a doublefrequency crystal oscillator to provide a constant-amplitude clock signal of the correct phase: this is an improvement on earlier clock regenerator circuits using a tuned circuit.
The SAA5240 carries out data acquisition and incorporates the timing chain, character generator and memory


Fig. 3: Two-chip (plus memory) teletext decoder.
interface: it's designed for microcomputer control. The data acquisition section receives the data and clock signals from the SAA5230 and provides a Hamming o.k. signal which can be interfaced with an echo equaliser for use under poor signal conditions. Outputs from the timing chain include composite sync signals to allow pages to remain displayed in the absence of an off-air signal. The character generator provides RGB drive signals, dot and box blanking, a contrast reduction signal and a luminance output for use with a page printer.

This new generation of teletext chips gives faster access to pages, owing to simultaneous search of up to four pages, storage of up to eight pages, improved display features (non-interlaced with $12 \times 10$ dot matrix), and new features such as linked pages and language switching (a three-language character set is included).

## Computer-controlled TV

The Mullard approach to computer-controlled TV via the bidirectional two-wire bus referred to earlier is sketched in Fig. 4. Several new i.c.s are used to enable computer control to be put into effect - the TDA8460 PAL decoder, which operates with the TDA8450 previously mentioned, the TDA8431 sync processor/timebase generator and the TDA8440 video/audio signal switch (there are also computer-controlled i.c.s in the sound channel).

The TDA8460 decoder chip is similar to the established TDA3561A but with a YUV interface to match the TDA8450 and the addition of bus control. The TDA8450/ TDA8460 combination forms a complete, alignment-free


Fig. 4: Computer-controlled $T V$ via a two-wire bidirectional bus.


Fig. 5: Feature processing with a field store memory.
PAL decoder without any wound components and with a minimum of peripheral components: the subcarrier oscillator is self-adjusting.

## Digital Timebase Control

The TDA8431 sync processor/timebase generator i.c. performs all the functions carried out by the well-known TDA2579. Additional computer-controlled functions are: switching between internal and external composite video sources, automatic control of the line oscillator, and automatic adjustment of the raster size, position and geometry. The voltage-controlled line oscillator is set up under the control of a production line computer via the bus line and a DA converter. As the DAC's output voltage is incremented, the oscillator frequency falls until it coincides with the signal frequency. At this point a "centre" bit is generated and is read via the bus: the production line computer then stops incrementing the DAC and the digital value required is stored in the set's non-volatile memory.

The line oscillator's output is passed through a divider to obtain an accurate field frequency input for the field waveform generator. This circuit generates four basic waveforms which are used to produce drive signals for the field output stage and for raster geometry correction. The waveforms are produced by multipliers so that there are no integrator time-constants. As a result, the waveforms are frequency independent and bounce free. These waveforms are fed to multipliers and adders in the field and EW correction drive circuits where they are mixed under the control of the bus-line data. Raster amplitude, linearity and shift can be independently set via an optical sensor on the screen and the production line computer. The correct digital values for scan and dynamic amplitude correction can be stored directly in the set's non-volatile memory. Picture width (static and dynamic), parabola, trapezium and corner correction can be independently set via the bus line and the sensor system.

## Sound Channels

There are several i.c.s for use in the sound section of a TV set. These provide stereo/dual-channel sound and computer-controlled operation. One problem here is that no dual-channel sound transmission standard has yet been agreed upon for UK use. Interesting i.c.s for the sound channel include the TDA2556, a quasi-split sound i.f. channel with intercarrier mixer and dual f.m. demodulator, and the TDA8405 computer-controlled ste-reo/dual-sound decoder. The computer-controlled

TDA8420 is not dependent on the TV standard being used: it incorporates an internal/external audio source selector, mode selector (mono/stereo/dual-channel A/ dual-channel B), spatial/pseudo stereo sound facilities and stereo volume and tone controls. It also has a separately controlled channel for connection to headphones.

## Field Store

The incorporation of a field store in a TV receiver opens up all sorts of possibilities - teletext page storage, picture noise suppression without having to limit the bandwidth (the noise may be due to a weak aerial signal or a poor quality VCR output), reduced cross-colour interference and picture freeze under remote control via the bus line. All these can be achieved by Mullard's "feature processor" arrangement (see Fig. 5). It will also eventually be possible to reduce flicker and incorporate zoom and picture-in-picture with this system.
The Mullard field store consists of seven SAA9000 CCD memory chips with a capacity of over $2 \cdot 2 \mathrm{Mbits}$. The cell size per bit with this type of memory is only a third of that of a conventional memory (RAM). In addition its serial nature (no addressing required), high speed ( 20.25 MHz clock) and on-chip logic minimise the number of data lines and peripheral components required.

## Feature Processor

Several chips have been developed for use in conjunction with the field store in the Mullard feature processor. Since the system operates digitally, AD and DA converter multiplexers/demultiplexers are required at the input and output - the PNA7507 and PNA7518 respectively. The SAA9010 picture enhancement processor incorporates noise reduction algorithms together with a movement detector and cross-colour reduction circuitry. The SAA9020 field memory controller adjusts the timing of the line and field sync pulses: it also controls the delay of data from the field memory (previous field information).
If teletext data from an SAA5230 video processor i.c. is to be stored in the field memory before application to an SAA5240 teletext decoder i.c. two further i.c.s must be incorporated in the feature processor, an SAA9030 background memory controller and an SAA9040 computercontrolled teletext extension i.c. - these two i.c.s could be used with up to fourteen CCD memory i.c.s as a teletext page store independent of any feature processing.

## In Conclusion

In conclusion, the introduction of computer control and alignment of TV sets brings several important advantages. Manufacturing costs can be reduced since the time taken to produce a set is decreased while the process becomes less labour intensive - this also means that the likelihood of human errors is minimised. Furthermore the much simplified peripheral circuitry and monitoring of alignment throughout a set's life should increase reliability and reduce the need for servicing. The latter should be simplified by the fact that a diagnostic tester can be connected to the bus line.

In addition to the devices mentioned in the above notes. there are others for SECAM and NTSC signal processing and for handling various sound signal transmission systems used in Europe and N. America.

## Some G11 Problems

Ivan C. Tucker

There have been several articles in these pages on the Philips/Pye Gll chassis: this present contribution describes some problems that have come my way recently.

The first started with a call from a very pleasant gentleman who said that his set had a very wavy picture. As I was a bit pressed for time I took him a loan set and brought the G11 back to the workshop. When I switched it on the next day there was a picture with an hour-glass appearance: not the usual convex curved sides we get with EW correction faults but a sharp Ving in at the sides and a hum bar that moved slowly downwards. The h.t. was high at some 166 V instead of 153 V .
My first move was to check the $470 \mu \mathrm{~F}$ h.t. reservoir capacitor C4029 which was of the notorious red variety. I changed it for a pretty green one - the old one's pins had obviously been arcing and sparking at the rivets, and we all know the problems that this causes. When I switched on again the picture remained the same, so I checked the conditions around the BD201 series transistor (see Fig. 1) in the active smoothing circuit. Its collector and emitter voltages were roughly the same, at about 166 V , which meant that the circuit was inoperative. I suspected that either the BD201 or its BCX32 base bias transistor was short-circuit: wrong again, cold checks showed that they were in order. I changed them anyway, in case they were breaking down under load. The hour-glass picture was still there when the set was again switched on, so in desperation I changed the $10 \mu \mathrm{~F}$ electrolytic (C4034) that smooths the voltage at the base of the BCX32, not really suspecting that it was the culprit. Sure enough, back came the hour glass.

All the resistors in the circuit were found to be well within tolerance so İ turned my attention to the 27 V zener diode D4021. It didn't appear to be leaky when cold checked, but you know how sensitive these devices can be. So I thought I'd change it and - bingo!, a perfectly shaped picture appeared with the voltages back to normal. On went the back cover and the set was returned to a thankful customer who remarked "that's great, we've been watching the wavy picture for months". It's amazing what some people with put up with, and I hate to think of the other problems that might be lurking in the set after operating for all those months with a high h.t. voltage.

The next Gll caused much head scratching and turned out to be a very expensive repair. My customer reported that the picture had collapsed to a horizontal white line


Fig. 1: The active h.t. filter circuit used in the G11.
and then gone off. The set was dead when I arrived: resistance checks revealed that the mains fuses were intact while the h.t. fuse F4037 was open-circuit - the h.t. voltage on the supply side of the fuse was slightly high and steady at 159 V , which is fairly normal with an unloaded supply. A check on the BU208A line output transistor showed that this was short-circuit, so a replacement was fitted. I then checked over the line output panel for the usual dry-joints and, not forgetting the customer's original complaint, checked the TDA2600 field timebase i.c. on the timebase panel. This was short-circuit internally and the l.t. supply fuse F3143 on the line output panel was open-circuit.

After replacing the fuse and the i.c. I switched on, to be greeted with violent arcing and spluttering from the pins of the h.t. reservoir capacitor. Yes, another red one. Silly me, why hadn't I noticed? I replaced it with one of the recommended type and switched on again. To my dismay, this time the power supply started cycling on and off. As this is usually due to faults in the beam limiter circuit or a heavy beam current I decided to disconnect the e.h.t. cap. The power supply then functioned normally, with the e.h.t. only slightly high, which was to be expected as it was not loaded.

I then noticed that the c.r.t. heaters were not alight. The heater supply fuse F3155 was intact and there was a heater supply at the c.r.t.'s pins on the base panel. It seemed that the c.r.t. itself was defective so I applied my trusty B and K analyser to its task. When the tester was switched on only one gun lit up (not over brightly) then slowly died away. There was no indication of a heatercathode short on the tester but a resistance test on the heaters revealed that these were now open-circuit.

A new c.r.t. was quickly fitted - it's quite a simple task with these sets - and after setting up the convergence etc. the set behaved very well with normal beam current. On examining the old tube I discovered that internal arcing just under the retaining collar on the scan coils had punched a star shaped hole through the glass neck, as a result of which the tube was down to air. I subsequently learnt from tube rebuilders that they receive a fair number of these tubes in this condition, which coincides with arcing at the pins of the h.t. reservoir capacitor. So it's as well to replace this item as a matter of course if of the suspect type.

These violent fluctuations in the power supply had created destructively high pulses in the line output stage (hence the demise of the BU208A and the TDA2600) and then broken down the c.r.t. insulation - a very costly chain reaction. Fortunately the line output transformer survived. Or will it fail before long? - I always was a pessimist.

Another set had a slight hum bar on the picture, again with the voltages at the collector and emitter of the BD201 in the active filter circuit equal and the h.t. high at 160 V . This time R4051 had burnt and gone open-circuit, in turn due to the 5 W wirewound resistor R 4025 having gone open-circuit.

Field jitter or intermittent fold-up at the bottom of the picture can be caused by poor contacts on the TDA2600 i.c.'s holder. Cleaning may help, but the best course is to change the holder - don't forget to clean the i.c.'s pins carefully. I suspect that many a good i.c. has been discarded because the holder is faulty - and these i.c.s are expensive.

Until another day then here's wishing you successful fault-finding!

# The Lid off Microcomputers 

## Part 2

Mike Phelan

This month we'll consider in a little more detail what goes on inside the microprocessor i.c. used as the central processing unit in a microcomputer. As we've seen, the microprocessor can do no more than fetch a series of instructions from a block of memory together with any data to be operated on (these are termed the operate codes and operands respectively) and carry out the required operations. The microprocessor decodes the op code and will know how many of the following bytes, if any, are operands, and increments the programme counter by one each time a byte is fetched - it can, therefore, decide when the next byte is an op code. To initiate all this we need a series of bytes resident in a block of memory and to feed the lowest address (base address) of the block into the microprocessor's programme counter. These tasks can be built into the hardware or performed by the user - see later.

## Microprocessor Architecture

Fig. 1 shows the internal structure (architecture) of a microprocessor in as much detail as we need to know it a circuit diagram with tens of thousands of transistors would not be of much help! We'll take the 6502 microprocessor as our example - most of our discussion will centre around this device as the writer is more familiar with it than with others.

## Registers

To recap, a register is something that can store eight bits (one byte), i.e. any number from 0 to 255 or, in hexadecimal, from 0 to FF. It's much easier to work in hex, splitting each byte into two groups of four bits - each can then be represented by one hex digit. Imagine that the registers consist of eight bistables each. Eight such registers are shown in Fig. 1 - though one of them seems to have nine bits!

Starting at the bottom, we have an instruction register (IR). This is for the microprocessor's internal use only and receives the next byte from the data bus if this is an op code. It's then decoded by the instruction decoder which organises what happens next - how many bytes to fetch and what to do with them, the latter being the actual execution of the op code. If the instruction decoder receives an invalid op code the system will probably "crash" and nothing more will happen until reset occurs.

Registers PCH and PCL form the programme counter sixteen bits as it has to be able to contain addresses from 0 to 65,535 (\#FFFF) to address 64 K of memory. PCH and PCL can be read from or written into via the data bus.

## Accumulator and ALU

The accumulator register A works in conjunction with the contraption marked ALU (arithmetic/logic unit). All additions and subtractions - the only calculations that can be done by the microprocessor - are carried out here: one of the quantities usually comes from the accumulator, the other from the data bus. The result of the calculation goes
back into the accumulator. Certain instructions are to tell the microprocessor to jump forward or back several addresses: this is the reason for PCH and PCL being connected to the ALU.

## Status Register

The processor status register PSR is exceptional in that the different bits of the byte it contains have no connection with each other - they represent different "flags" that are set if conditions occur such as the result of an operation being negative or zero, or that a carry has occurred - the bits are not all used. Some of the instructions in the set that cause forward or backward jumps do this if a certain flag in the PSR is set to 1 or 0 . For example, an instruction which we call BNE (branch if not equal to zero) will branch if the Z (zero) flag is not set ( 0 ) by the result of the previous operation. The op code for BNE (\#D0) will be followed by one byte of operand, this being the number of addresses to jump. The programme counter has its contents changed by this amount, the calculation being performed by the ALU. Conversely if the Z bit is set (1), the programme counter will be incremented by one and the next op code will be fetched.

## Working Registers

Registers X and Y at the top are working registers that can be used to park bytes. More importantly, they can be used as index registers. This means that the contents can be added to say an address to fetch data from the accumulator. As there are also instructions to increment or decrement X and Y by one this facility can be used to read data from a "table" somewhere in memory.

## Stacking

The remaining register, the stack pointer ( S ), has nine bits, though the extra bit is permanently set to 1 . We had better first explain what a stack is.

During complex calculations it's often necessary to park bytes somewhere. We could admittedly use any area of memory for this purpose, but it's useful if the program doesn't have to keep track of the addresses. We can put bytes on the stack and take them off in reverse order. Some microprocessors have their own internal stack, which of course is limited in size. The 6502 uses a page of memory ( 255 bytes). Here we hit a snag, as unless we use page zero ( $0-\mathrm{FF}$ ) more than one byte is needed for the address. For speed, page zero is reserved for special instructions that have operands of only one byte, so this cannot be used. The 6502 gets around the problem rather neatly by using page one (\#100-\#1FF). The S register contains the address of the top of the stack, the ninth bit always being one - this goes on the ninth bit of the address bus. There are instructions to put the contents of the accumulator on the stack and vice versa.

Another important use of the stack is to save the contents of all the registers prior to an interrupt, so that the microprocessor can carry on where it left off. Also,


Fig. 1: Microprocessor architecture - the internal arrangements used in the 6502.
there are certain instructions that cause a jump to a segment of program somewhere: this will be executed and the main program resumed where the microprocessor left off. We must clearly save the content of the program counter on the stack so that we can go back to the next address - this is rather like putting a bookmark in a book before we look at the end to see whodunnit! Some sort of stack is obviously essential then.

## Summary of Microprocessor Operation

To summarize, the microprocessor i.c. fetches data from the addresses held in the program counter registers, attempts to decode it, next fetches any operands, executes the decoded instruction using the operand(s) if required and present, increments the program counter and then repeats the cycle of fetch, decode and execute. For those who still "think that fetching a byte from RAM has something to do with obtaining a meal from an Indian takeaway, we are working on a future series to be called "servicing the abacus". . .

What we have up to now is a machine that will carry out instructions provided we've put them there in the first place. Provision has to be made for doing this. All those nice new micros we see in the shops or play with at home say things like "BLOGGS BASIC V2:0" on the screen when we switch on. What's called for is an "operating system". At this point we must digress slightly on to the subject of computer languages.

## Computer Languages

We have talked about the microcomputer carrying out a program stored in memory as a series of eight-bit binary words, each of which the microprocessor decodes as one of a set of fifty or so instructions it can follow. This is the
lowest level of computer language, "machine code" direct microprocessor instructions that do not take up any memory space apart from that needed to store the op codes and operands. On the debit side this approach requires many steps to carry out a simple process. It's very fast however.

For the average home user a method of programming that's much easier is required - a "high-level" language. The one most used is Basic. One of the features of a highlevel language is that it's relatively easy to look at a program and ascertain what it does. For example, a Basic command "PRINT $1+3+4$ " will display 8 on the screen. Home computers usually have Basic as a resident language, i.e. it's in the ROM (see Fig. 1 last month).

Basic is what's known as an interpreted language, which means that the ROM contains an interpreter. The Basic commands that are keyed in or that come from an external program are interpreted as a machine code routine which is carried out to produce the required result. It takes time and memory space, but this is the price we pay for user convenience. Basic also contains commands to place bytes in RAM locations and to run a machine code program from this, i.e. the base address is loaded into the program counter.

## Conditions at Switch on

So far so good. But when the machine is powered the program counter will contain zeros after the reset, the RAM could contain anything, the microprocessor will fetch whatever is in address 0 in the RAM, attempt to decode it, and will then crash! So maybe we should put something in address 0 at switch on. But we need a working microcomputer to do this. Back to the operating system. Still with the 6502 , remember that page 0 of a memory is part of the RAM, so we cannot start with any known values in address 0 onwards. We need something in the ROM to get the thing off the ground, but the ROM addresses are above page 0 , also above page 1 (the stack). In fact the top 16 K or so of the memory map is generally used - \#C000 to \#FFFF, assuming a 48K RAM (0 to \#BFFF).

What's needed then is some way of getting a ROM address into the program counter at switch on. The method used is to employ an interrupt. There are two types of interrupt with the 6502: suffice it to say that they are called IRQ and NMI. IRQ can be used for such things as keyboard scanning but NMI is much more powerful - it overrides everything else. What an NMI interrupt does is to jump to an address stored in the ROM at \#FFFA and \#FFFB and carry out the routine found at this address. It's a bit like going on a service call and finding a note on the door saying "go to number FFFA and you'll find a note telling you where the key is". So if an NMI is carried out at switch on, following reset - this is done by applying a reset pulse to the interrupt line - the system will start from whatever the marufacturer has put into the ROM at address \#FFFA and \#FFFB. This routine carries out several "housekeeping" jobs - emptying the RAM (more often filling it with bytes of \#55 - binary 01010101), clearing the screen and printing the welcome message.

## Next Month

Next month how all this relates to the microcomputer i.c.s used in VCRs etc. and a closer look into a state-of-the-art machine, the Amstrad CPC464.

# Long-distance Television 

Roger Bunney

Another quiet month with very little by way of longdistance TV signal propagation. The only rays of light in the prevailing gloom were two tropospheric openings, though these were only fair. They occurred on February 15 th and, for a longer period, around the 23rd-24th. The earlier opening produced signals mainly on an east-west path, giving excellent reception from Benelux and France at u.h.f. and in Band III. Here in central Hampshire W. German signals didn't quite make it, though reception was reported in Kent. The opening on the 23rd-24th, with prevailing thick fog, was more active with widespread reception of signals from distant UK stations, Benelux, France and, for those more fortunately located, W. Germany, though it must again be said that the opening was hardly fantastic. Canal Plus is being increasingly received - more on this later. Reg Roper at Torpoint, Cornwall received excellent, noise-free signals from RTE1 Dublin on channel IH. Dave Shirley (Hastings) reported an unusual tropospheric logging on February 4th - a negative-going TFl (French) signal on roughly ch. E46/47, seemingly not the result of overloading and from the east. Could this be a French forces' transmitter? Any ideas?

Sporadic E reception during February was minimal. My $\log$ is as follows:

12/2/85 TSS (USSR) ch. R2; unidentified programmes on chs. E2/R1.
21/2/85 TSS R1; CST (Czechoslovakia) R1; TVE (Spain) E4.
26/2/85 Unidentified signals from Scandinavia and the south at 1245 .

Simon Hamer (Powys) received the RETMA test pattern on the 18th, thought to be from Czechoslovakia (ch. R2). This is a rare catch in these days of electronic pattern generation. The RETMA card was common in the early sixties, mainly from MTV (Hungary) and TVP (Poland).

Solar activity has remained relatively quiet, though slight Auroral activity was noted in Scotland on February 27 th, at 2200.

In all then another rather depressing month. My thanks


General view of a Hirschmann single-channel Band III aerial array with forward-angled elements.
to Simon Hamer, Tony Privett (Basingstoke), Iain Menzies (Aberdeen), Dave Shirley and Reg Roper for supplementing my own meagre loggings.

Simon Hamer took to the hills with his Hitachi K2300 receiver and a u.h.f. log-periodic aerial and extended his range of reception considerably - from the Borders down to the south coast, even in mediocre conditions. ATV has also been quiet, though Dave Shirley logged G4CRJ (High Wycombe) on the 4th, with quality P4, using domestic bowties and preamplifiers.

## News Briefs

Tele-Monte-Carlo is now available from TDF operated transmitters at Marseilles and Toulon, more than doubling its coverage . . . A private satellite broadcasting company, Japan Satellite Broadcasting Inc., is to be established to operate the BS-3 service that's due to start in 1989. Burundi is investigating the possibility of starting a TV network . . . A new S. African network, channel TV4, was due to start this February, using TV2/3 transmission facilities initially . . . Zaire plans to extend its TV service with up to 45 transmitters throughout the country.

The 500 W ch. E48 Brussels relay closed last November. New EBU listing: Bonn WDR-1 ch. E43, 100kW e.r.p. with horizontal polarisation.

## Canal Plus

Following the recent announcement by the French government that private, local commercial TV stations are to be allowed, Canal Plus subscriptions have fallen considerably. As a result, a further three hours of unscrambled "prime time" programming is planned - provided commercial backing can be found.

Band I Canal Plus channel allocations (previously chs. B, C' and C) are now as follows: ch. F2 $55.75 \mathrm{MHz}, \mathrm{F} 3$ $60.5 \mathrm{MHz}, F 463.75 \mathrm{MHz}$. The sound carrier is spaced 6.5 MHz below the vision carrier. The Band III allocations (previously numbered 1-6) are now: ch. F5 176 MHz, F6 184 MHz, F 7192 MHz, F 8200 MHz, F 9208 MHz, F 10216 MHz . In Band III the sound carrier is spaced 6.5 MHz above the vision carrier.

No Band I transmitters are in operation so far. The main transmitters now on air are Paris (Eiffel) ch. F6, Lille F5, Marseille F5, Lyon F10. Rather than list all the other known allocations, if any reader wants details I can provide a list on receipt of a stamped foolscap SAE and a 13p stamp (to cover the cost of photocopying). For another 13p stamp I can supply a list of the W. German ZDF transmitters with stereo sound.

## The 50 MHz Amateur Band

Twenty five Norwegian amateurs have been given permission to operate experimentally in the band 50 54 MHz , with a maximum of 25 W e.r.p. from a dipole and using all modes - as for the 144 MHz allocation. An application for 24 -hour use of the experimental UK 50 52 MHz allocation has been turned down - the RSGB says that no extension of the present permitted operating hours is likely in the foreseeable future. Only the UK and Norway (in Europe) have allowed amateur operation in this band, which is still in use for TV broadcasting in most of W./E. Europe. No complaints of interference from amateurs have to date been received by the DTI in the UK, but the DTI has suggested that the experiment will be terminated if such a report is received.

A 50 MHz beacon has been proposed for siting on

Mount Eagle near the Rosemarkie transmitter, with call sign GB3RMK. The site makes it an ideal pointer for Auroral conditions. During a recent tropospheric opening I received the RSGB's Potters Bar $50 \cdot 5 \mathrm{MHz}$ beacon here in Romsey, though it was very weak.

In view of the impact that 50 MHz amateur operation could have on Band I TV-DXing I'll be keeping an eye on this subject.

## From our Correspondents

Nick Harrold reports that despite a snow covering of more than one inch over about half the area of his 12 GHz TVRO dish during recent weather conditions there was no noticeable loss of picture quality. Robin Crossley has for sale a 1.9 m dish, $100^{\circ} \mathrm{K}$ LNA, downconverter and receiver - in fact a complete working 4 GHz station - for around $£ 425$. If any DXer is interested - Robin hopes to sell the equipment as a package - write in with an SAE and letters will be forwarded.

Peter Simpson has started DXing in Folkestone. His equipment includes an omnidirectional Band I aerial, a four-element Band III array and a Wolsey Colour King for u.h.f., the receivers being a modified Rediffusion Mk. 13 monochrome set and a Philips G8 with switchable 5.5/ 6 MHz sound. The Belgian BRT-1 and -2 programmes are received in colour all the time and French Band III/u.h.f. signals come in at colossal strengths. Unfortunately overloading is experienced as Peter lives just two miles from the main Dover u.h.f. transmitter (group C).
Robert Copeman (near Melbourne, Australia) reports that the ch. 0 outlets at present used for the Ethnic TV services will be closed down next January. This will clear much of the v.h.f. spectrum for DXing!
Reg Roper has been thinking of using a small Yagi with the elements bent in the form of a shallow V , the point of the V being away from the transmitter. He mentions that old US arrays were often manufactured like this and that he's been using a two-element Band I array of this type in his loft for some years, with much success. I recall a firm that traded as C Aerials and produced Band III aerials of this type with a strange form of loop dipole at the rear. It's interesting that the W. German Hirschmann company still manufacture up-market arrays with the elements slanted forwards. This tends to narrow the forward acceptance beamwidth and results in a cleaner polar response. A relatively high front-to-back ratio and high gain is claimed: for example a ten-element, single-channel array is quoted as having a gain of 13 dBd , a front-back ratio of typically 30 dB and a horizontal -3 dB beamwidth of around $38^{\circ}$.

## Blue Eagle TV

Detailed information on the airborne Blue Eagle transmissions during the Vietnam War was included in this column last month. I've since heard from Noah


Fig. 1: Polar response of the single-channel, ten-element Hirschmann 313AN (ch. E7) angled-element array.


South West Aerials offer a unique blend of the best equipment and impartial professional advice for long distance Television DXing or simply better reception. Examples from our range:
FUBA XC391 Multi-element 'Anodised' 16.5dB High Gain UHF Aerial, available in Groups A, B, CDD and Wideband (channels 21-68).
UNISON AR250 Rotator complete with Control Consol (uses 3 core cable) UNISON SB100 Alignment/Suppor Bearing for above to increase head loading f1620
 WOLSEY GUANTMM 260 Wideband 26 di for Gew above amplifier WOLSEY OT Matching Power Suppty PLANET TFC-1 Upconverter, with Gair Control - Mains Powered; no runing
required. Ideal for TV-DXing............................................................
WE CAN NOW OFFER AN ATTRACTIVELY PRICED 11GHZ SATELUTE SYSTEM FOR
THE RECEPTION OF E.C.S. AND OTHER SATELITES. (S.A.E. For Details)
Also available Black \& White and Colour Multi-Standard VHF/UHF Televisions and Video Recorders (SAE or ring stating requirement)
We are THE DXing Specialists, advice given on ALL reception problems (SAE please) All prices inclusive of VAT and Carriage Delivery 7-10 days Access \& Visa welcome


SOUTH WEST AERIALS (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202738232.

| TV LINE OUTPUT TRANSFORMERS |  |
| :---: | :---: |
| Delivery by return of post. |  |
| RANK BUSH MURPHY | IT: VC200, VC205, VC207 920 |
| A774 with stick rectifier 9.78 | VC300, 301, 302, 400, 401, 402 g 20 |
| A816, T16, T18, $2712,2715 \quad 10.35$ | CVC1, CVC2 (FORGESTONE) 11.50 |
| T20, T22, T26, Z179, A823 11.50 | CVC5, CVC7, CVC8, CVC9 series 9.20 |
| 2718 Basic unit 13.50 | CVC20, CVC30, CVC32, CVCA5 9.20 |
| T24e, T24h split diode P.OA. | F110, F1111. P/no AT2063/02 11.50 |
| DECCA: 1210. 1211, 1511 | PYE: 169, 173, 569,368 series 9.20 |
| 1700, 2001, 2020, 2401,2404 9,20 | CT200, CT200/1, CT213 series 10.35 |
| CS1730, 1733, 1830, 1835 9, 9.20 | 725-731, 735, 737, 741 Series 9.78 |
| 30, 70, 80, 90, 100, 110, 130 Series 9.20 | PHILPS: 170, 210, 300 series 920 |
| FERGUSON, THORN: 1590, 1591920 | 320 series 9.78 |
| 1690, 1691. built in rect 9.78 | TX, 18 mono series P.O.A |
| 1600, 1615,1700 series P.0.A. | $\mathrm{KT} 2 \mathrm{KT3}$ series colour $\quad 9.20$ |
| 1790 mono portable P.OA. | G11 series split diode P.OA |
| 3000, 3500, 8000, 8500, 8800 P.0.A. | G8 and 69 Series |
| 9000, 9200, 9300 series $\quad 1200$ | K30 EP.O.A |
| 9500, 9600, 9650 series 10.59 | BINATONE: 9509 mono 13.04 |
| 9800, TX9, TX10 series P.O.A. | FNLUX 9560, 9670 13.91 |
| MOVIESTAR 3781, 3787 | GRUNDIG: most models in stock |
| FIDELTY: FIU12 mono 10.35 | NORDMENDE: FC125, Z206, Z306 11.50 |
| CTV14R, CTV14S colour 15.83 | SANYO: CTP5101, 5103, 7118 P.OA. |
| G.E.C. 2047 to 3135 mono 7.50 | TEIFTON: TH14 mono 13.68 |
| $1201 \mathrm{H}, 1501 \mathrm{H}, 2114,3133,31359.20$ | TOSHIBA: C800, C800B 19.45 |
| DUAL \& SINGLE hybrid col. 10.00 | TANDBURG: 190, CTV2-2, CTV3-3P.0A |
| SINGLE STE solid state 1200 | TEIEPUNKEN: most models in stock |
| SINGLE STD split diode P.O.A. | UNE OUTPUTT TESTER 16.79 |
| INDESIT: 24EGB hybrid 9.50 <br> 12LGB, 12SGB mono portables 10.35 | Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. <br> Approx. 1 mile from Kew Bridge. <br> Phone: 01-948 3702 <br> Mon-Fri 9 am to $12.30 \mathrm{pm} \&$ $1.30-4.30 \mathrm{pm}$ <br> Sat 10 am to 12 noon. |
| WNDINGS |  |
| $\begin{array}{ll}\text { TYNE: main winding } & 6.810 \\ \text { RBM: T20, T22, T26, } 2179 & 6.33\end{array}$ |  |
| WALTHAM: W125 eht winding 237 |  |
| WALTHAM: W190, W191 eht coil $\mathbf{E 6 . 0 0}$ |  |
| KORTING: hybrid winding 6.90 |  |

Hutchison who now works at a NY State USAAF base and was posted at the Blue Eagle base during the late sixties. He recalls that the TV sets used were mainly standard US household types and that telescoping "rabbit ear" indoor aerials were generally used. Reception was fair to good depending on the position of the plane. He remembers only English language programmes and mentions that Gls felt the service improved morale considerably.

## Danish Local TV

A local TV service is being set up in Denmark using 200W e.r.p. u.h.f. transmitters. The associated STLs (studio-transmitter links) also operate at u.h.f., with some 50W (directional). Alexander Wiese has provided the following transmitter list:

| Transmitter | Channel | STL | Name |
| :---: | :---: | :---: | :---: |
| Aalborg | E54 | E38 | TV Aalborg |
| Aarhus | E54 | E36 | Kanal A |
| Horsens | E52 | - | HDH-TV |
| Kobenhavn-1 | E53 | E38 | Kanal 2, KKR or Weekend TV |
| Kobenhavn-2 | E56 | E38 | Kanal 2, KKR or Weekend TV |
| Kobenhavn-3 | E25 | - | Vestegnes Lokal TV |
| Odense | E53 | E28, E36 | Kanal Fynn |
| Skjern | E54 | - | - |
| Svendborg | E52 | E36 | TV-Svendborg |
| Bornholm <br> Island-Renne | E59 | E56 | TV-Bornholm |

There are test transmissions during the daytime, generally with the FUBK pattern or a variant of this, also studio identification slides. Approximate programme timings are $1800-2100$ weekdays plus possibly afternoon transmissions at the weekends.

## Falklands TV

The British Forces Broadcasting Service is at present working on a project to bring TV to the Mount Pleasant airfield complex some 28 miles south west of Port Stanley. Completion is due next spring: the programmes will consist of BBC and IBA material played out locally on high-band U-matic machines. An omnidirectional aerial will provide an e.r.p. of between 500 W and 1 kW giving a coverage of five-six miles radius. Extending the coverage to Port Stanley would involve additional linking and relay equipment - Sapper Hill at 160 m a.s.l. provides screening behind Port Stanley. The BFBS already operates a v.h.f. radio service covering the Falkland Islands and providing programmes for 16 hours daily. This supplements a limited MW/SW service from Port Stanley.

## 4GHz Satellite DX-TV

Is 4 GHz satellite TV reception a worthwhile extension of our DX-TV activities in the UK? I've been giving thought recently to the signal sources and financial aspects of this. With terrestrial TV it's a question of what may or may not come over the radio horizon, whereas with satellite TV if you can see it you can receive it.

Gorizont at $14^{\circ} \mathrm{W}$ provides excellent reception of the Russian Programme-1 on a dish as small as 90 cm via its $46 \mathrm{dBW}, 3.67 \mathrm{GHz}$ spot beam. Apart from this, 4 GHz reception in Europe calls for a dish of 1.9 m minimum, preferably 2.5 m , and a $100^{\circ} \mathrm{K}$ LNA to get even DX-TV quality pictures. With this equipment acceptable signals could be resolved with e.i.r.p.s. down to 30 dBW , but for
really exotic signals such as Libya, Oman, Nigeria, Sudan etc. where the e.i.r.p.s. are much lower dishes of 3 m or more would be required.

Thus apart from Gorizont, reception calls for considerable financial outlay. A one-channel Gorizont TVRO terminal can be purchased for under $£ 800$, whereas a 1.9 m dish and receiving package from Harrison Bros, with $120^{\circ} \mathrm{K}$ LNA, costs $£ 945$ plus VAT and anything extra required to take into account exchange rate variations. This package allows some freedom in tuning to other satellites, though the quality would be somewhat noisy even with reduced receiver bandwidth.

A further complication for most of us with limited garden space is the physical size and visual impact of the aerial. Planning authorities do not take kindly to six foot dishes and may well object to a dish mounted on a permanent foundation - suffice it to say that my own local authority wrote to query a 1.9 m dish propped against a fence in my garden and advised that planning permission would have to be sought should I intend to erect it! In theory a 4 GHz TVRO installation requires DTI permission in the form of a development licence, which is provided only for test and development by manufacturers of receiving equipment.
Though 4 GHz TVRO terminals are in common use in N. America, Europe has opted to use the $11 / 12 \mathrm{GHz}$ band for DBS purposes. With high-level 4 GHz signals available only from Gorizont, budget-priced US TVRO systems have not appeared in the UK in any quantity. I'm forced to the conclusion therefore that we must dismiss thought of $4 \mathrm{GHz} \mathrm{DX}-\mathrm{TV}$ activity and concentrate on the $11 /$ 12 GHz band. Here again however prices are high with present small-quantity production - far too high for most enthusiasts - though Hugh Cocks is at present providing in these pages details of a modestly priced 11 GHz system (down converter February, LNA to follow). Doubtless inexpensive 12 GHz equipment will be with us before long, meanwhile has anyone thought of converting a Radiospares Doppler Microwave Module (RS8960) for receiving use? It operates at $10 \cdot 69 \mathrm{GHz}$. .


A Harrison Bros. 5 m dish installation for 4 GHz reception at a mountain top site in the Canary Islands.

# Service Bureau 

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

## HITACHI NP8CQ CHASSIS

There's a strange colour fault on this set (GEC C2055H) the three colour outputs from the decoder have to be rearranged at the flyleads to produce a correctly coloured picture. The decoder chip has been replaced and the output transistors checked. All voltages in these areas are correct. I suspect that the shadowmask has moved or warped, but the picture is only slightly impure at the sides.

Go through the purity setting adjustment procedure carefully. If you cannot get a correct magenta field (work in red if it's easier) there's little doubt that the tube is faulty. If acceptable purity can be obtained "wrong beam" as it were it might be best to settle for this and save the cost of a new tube - at least until the mask slips farther.

## THORN 1612 CHASSIS

The original fault with this monochrome portable was field collapse. This was cured by replacing the TBA641 field output i.c. The problem now is intermittent field slip with line pulling and bent verticals.

It's essential to check with an oscilloscope at pin 9 of the sync/timebase generator i.c. to see whether the sync pulses here are crushed when the fault is present. If not, the bias resistor at this pin (R75 $220 \mathrm{k} \Omega$ ) and the i.c. itself (SN76544N-07) are suspect. If the sync pulses are crushed, first check the TCA270Q video demodulator/a.g.c. chip and zener diode W1 which stabilises its supply. If necessary go on to check the voltages around the i.f. amplifier transistors VT1, VT2 and VT3. Incorrect voltages here could be due to failure of one of the $0.01 \mu \mathrm{~F}$ emitter decouplers C14, C24 or C34 or the $100 \mu \mathrm{~F}$ electrolytic C23. The latter is the a.g.c. smoothing capacitor and should have 2 V across it.

## FINLUX PEACOCK

Have you any details as to how to disable the colour-killer on this set?

You will find a grey link wire connected to R24 on the chrominance, module. To override the colour-killer, disconnect this from its pin and plug it on to the adjacent pin.

## GRUNDIG $2 \times 4$ SUPER

On playback of any tape the picture starts in monochrome. Poor colour appears after about twenty minutes - with greenish faces and slight rainbow effects. After a further quarter of an hour there's a perfect colour picture.

Check the voltage at pin 11 of IC610 with the chroma off (fault condition). If the reading is 1 V or less, the killer is in operation because the a.p.c. loop is not locked or no
signal is reaching the burst gate. Check the two crystals, IC610, IC509 and the associated components with a freezer and hairdryer. If the killer voltage is 1 V or more the fault must lie in the signal circuit - T649 onwards. Voltage checks should track it down.

## SOVEREIGN SR17

Both the field output transistors Q503/4 in this Korean made 17in. monochrome set have gone short-circuit. Q503 is type KSD401 or KSD298-0.Y and Q504 type KSA614-0.Y. Unfortunately no one seems to be able to supply them or suggest alternatives. Any ideas?

These are obscure devices indeed! We've discovered however that they are 4A silicon transistors with a dissipation of 40 W and a gain of 75 . It should be possible to use a TIP31 in the Q503 position and a TIP32 in the Q504 position. Be careful to get the connections right.

## HITACHI CBP260 (NP9A CHASSIS)

When first switched on the set goes to standby and cannot be turned on with the remote control unit. If the set is switched off and on several times it will come on and remain on. After it comes on, if it's switched off for a short time (less than five minutes) then on again it comes on: if it's left off for any longer you have to go through the on/off switching routine. We have two of these sets with the same fault.

There are several common causes of this symptom. Start by removing the chopper transformer T901: clean and tin all its pins then replace it. If necessary remove the solder from the pins of the line output transformer T703, treat them with flux and resolder. Next replace the h.t. error sensing module CP901 (HM9105) and check its jointing, along with that of the associated resistor R910. Finally make sure that the "ever 18 V " line (at C984) is correct.

## SONY/FIDELITY VCR/TV COMBINATION

On playback there's a continuous background hum on sound. This is not present when the TV set (CTV14R) is used for off-air reception, either on its own or via the VCR. The hum is not noticeable when there's background music or noise that masks it and varies with the volume control setting. The problem does not arise when the VCR (SLC30) is used with another set. Apart from the hum the sound is clear with no distortion.

It could be that the Fidelity TV set is being overloaded by the output from the VCR, in which case a 6 dB coaxial attenuator in the set's aerial lead will probably cure the problem. If not the things to check are (a) the setting of the playback video level in the VCR and (b) the adjustment of the TV set's sound detector coil L10 - only a very slight adjustment to this should be necessary.

## PHILIPS T-VETTE 11TG190AT

The DY51 e.h.t. rectifier and its base are both broken but these items are difficult to obtain. Would it be possible to use a silicon e.h.t. rectifier and if so which type should be used?

There is no reason why a stick rectifier of the type used in the ITT VC300 chassis or Thorn portables shouldn't be used. Discard the heater winding and connect the anode to the line output transformer's overwinding, cathode to the c.r.t. cap, ensuring that the soldered connections are smooth and well-rounded and that the stick has at least 3 cm clearance to adjacent wiring or metalwork.

## TELEFUNKEN 711 CHASSIS

When the set is switched on there's neither sound or vision, just snow and a loud hiss, as though the aerial was disconnected. The channel selector (touch control) is locked to the number one indicator.

Start by dismantling the touch-control unit and thoroughly cleaning the contacts - leakage here can cause the problem. If the fault persists, check R1001 ( $8 \cdot 2 \mathrm{M} \Omega$ ) which is in series with selector one by substitution, then the two selector i.c.s (SAS560 and SAS570). R1101 (6.8M $\Omega$ ) in the selector one circuit is also worth a check.

## SANYO VTC5000

Playback is o.k. but on record there's an intermittent fault that can sometimes be present for anything up to a week. It consists of a constant variation of the speed of both the drum and the capstan motors and occurs only when the machine is tuned to ITV, the other channels not being affected. The machine will work satisfactorily on ITV if the colour is tuned out.

This machine suffers from a slight shortcoming in its sync separator circuit as a result of which the field sync pulses, from which the control track pulses are derived, get distorted. Sanyo supply a tiny panel ("noise-masking kit") which can be added to solve the problem.

## PHILIPS TX2 CHASSIS

The problem is no signals, just a rushing noise on sound and a screen full of snow.

The trouble is either in the U321 tuner or the 33 V regulator alongside (IC155). If the latter produces 33 V and this voltage reaches the tuner, try scratching the tuner's i.f. output pin. A sensitive i.f. strip will give twinkles on the screen and possibly some shortwave signals on sound when this is done. If so, the tuner is faulty.

## GRUNDIG $2 \times 4$ SUPER

On record everything works up to the programme/day and start/stop switches, from which there are no results.

If playback is o.k. and the display shows CASS when record is attempted check the record safety switch under the deck, front left - it tends to become intermittent. If the display doesn't change on pressing prog/day and/or start/stop, check the continuity of the key switches and lines to the microcomputer i.c. - the conductive paint on the "bubble pack" keyboard can go open-circuit.

## RANK 2179 CHASSIS

The report that came with this set was "smoke from the back". I found that $4 R 38$, which is in series with the emitter of the line output transistor, had burnt out - and burnt a hole in the panel - while the three nearby capacitors had partly melted. These items were replaced, along with the line output transformer, and everything seemed to be in order, with all rail voltages correct. A couple of hours later however the trip operated and the line output transistor was found to be short-circuit. After fitting a new BU208A the set worked all right apart from lack of width - full width could just be obtained at maximum adjustment. After three hours the line output transistor again went short-circuit. Any ideas?

It seems to us that the line output transistor is not being correctly driven. The most likely suspect is its $1 \Omega$ base resistor 4 R29. If replacing this fails to cure the problem,
replace or check the line driver transistor and the driver transformer's damping components $4 \mathrm{Cl} 8(0.0068 \mu \mathrm{~F})$ and $4 \mathrm{R} 26(4 \cdot 3 \mathrm{k} \Omega)$. A more remote possibility is the driver transformer itself.

## THORN 3000 CHASSIS

The contrast level jumps about. Sometimes it's so low it's as if the rear control has been turned right down. Then it will flick up to an overioading level. The fault is on the video panel - established by panel substitution - but I'd like to repair the original panel.

Concentrate on the area of the post-luminance delay line amplifier transistor VT201 - this is the most likely fault area. The transistor itself is suspect, as are the coupling electrolytics C204/5 and diode W210. First however carefully examine the print in this area for dry-joints, particularly at the lead-outs from the luminance delay line L203.

## GRUNDIG 5010

The initial fault was a dead set with the trip operating at switch on. On investigation the thyristors in the line output stage were found to be defective. Replacing these gave us sound but a field scan that covered only half the screen. The supply to the field output stage was found to be low while the transistors were cold. The mains fuse then blew and one of the surge limiter resistors went open-circuit. These items were replaced and a new mains bridge rectifier was fitted. There now appears to be an audible pulsating oscillation from the line output stage area of the set which is dead apart from the tube heaters being alight.

There may well be a link between the lack of field scan and the line output stage trouble since the supply for the field outpul stage is derived from the line output transformer. Check the relevant rectifier diode, Di627 (BY197), also the soundness of the connections to the line output and combi transformers. Di504 (1N4004) and R504 (39』) which are in series with the width control transductor can cause the oscillatory effect described. Another possibility is that the e.h.t. tripler is loading down the line output transformer.

## PYE 697 CHASSIS WITH VCR

The problem is field roll when the set is used with a VCR. I've carried out the recommended modifications to the line sync circuit (May 1982 issue) - these give nice straight verticals but the field hold won't lock.

Check that the field sync pulse integrating capacitor C41 is 4.70$)_{\mathrm{p}} \mathrm{F}$ and is not open-circuit, also the value of the contrast control which tends to go high. If necessary try decreasing the value of the sync separator's base bias resistor R 33 from $4.7 \mathrm{M} \Omega$ to $3 \cdot 3 \mathrm{M} \Omega$.


## TEST CASE

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

When a Sony colour set comes in with the complaint "no go" the thing to do is to check the model number and screen size! The small 13 and 14 in . sets will probably not present too great a problem, the 18 in . KV1810UB is bad news while the KV1820UB will usually be suffering from no more than a short-circuit efficiency diode. Sets fisted with 20 in. tubes vary considerably . . .
The problem this month concerns a 20 in . Model KV200)UB Mk. II whose symptom was just that - no go. Its power supply arrangements are a little different from the Mk. I version (see August 1984 Television), some of the relevant detail being shown in Fig. 1. The mains fuse had shattered and there was a measurable short-circuit across the 135 V h.t. line. Suspecting the efficiency diode (D807 on board E - this was the later version of the Mk. II chassis) we first disconnected the red wire that goes to the anode of the line output GCS Q901 as a check. Back dropped the ohmmeter pointer! Inspection showed a burn mark on the 330 pF protection capacitor C 901 which is in parallel with the GCS so this was quickly replaced. Since the h.t. line resistance reading was now correct we replaced the fuse and switched on. Bang! Somewhat demoralised, we rechecked the h.t. line resistance then turned to the power supply board. The chopper transistor Q607 was short-circuit.

Taking no chances with doubtful substitutes we found and fitted the correct $2 \mathrm{SC1670}$ device then carried out thorough cold checks on the other semiconductor devices on the board. Finding all well, and by now surrounded by jeering workshop staff, we switched on. This time we were rewarded by instant sound and the rustle of e.h.t. voltage build up.

No sooner had the gaggle of so-called engineers dispersed than a low and ominous squealing sound came from the bowels of the set. This lasted a few seconds. Then the set cut out, leaving the neon "on" indicator alight, the mains fuse intact and no activity in the power supply department. The set was switched off and after restoring power a few minutes later the same ten-second sequence of events occurred - normal operation, three seconds of squeal, then shut down. Why didn't we pick a simple job like editing a magazine or driving a train?
Voltage checks on the power supply panel quickly revealed that the protection circuits were operating. After shut down some 600 mV was present at the base of Q603
in the trip circuit. We weren't going to disconnect it: discretion is the better part of valour! Instead we replaced the 12 V zener diode D606 in the over-voltage sensing circuit. This made no difference, and the possibility that the power supply's output voltages were high was discounted by making meter and scope (for ripple) checks on the h.t. line. Perhaps the trip was coming into operation due to excess current? The sensing is done in the chopper transistor's emitter circuit (voltage across R635/6). Unlikely we decided: the total h.t. current drawn from the 135 V line in the few seconds of normal operation from switch on was around 500 mA , which is well within the norm for this chassis.

One further clue to aid our diagnosis was obtained. By resetting the h.t. preset control RV601 for an h.t. supply of about 95 V we got the set to run continuously though with a small picture. So what was wrong? See next month!

## ANSWER TO TEST CASE 268 - page 336 last month -

Our JVC HR7200 VCR last month was guilty of unprovoked and spasmodic attacks on innocent tapes. From time to time it would sweep them, during the loading phase, into its gnashing teeth - à la Jonah and The Inscrutable Whale. After some fruitless investigation of the friction on the feed spool and some liberties with the loading tension brake we turned our thoughts to the head drum itself. Its rate of acceleration during the initial stages of loading was normal - why was it picking up the tape?

Thoughts of the friction problems we've encountered with the upper drums in Toshiba machines (tape binding on fast rewind) prompted us to concentrate on the surface of the head drum periphery. Could it be that this was somehow "sticky" to pick up the tape in this way? We cleaned the surface (it looked all right) and finally polished it with a soft cloth. This greatly improved matters, but on some occasions with some makes of tape the spilling and crunching of the ribbon would still occur.

The trouble wasn't eliminated entirely until we'd fitted a gleaming new head drum. It was a sad case, because the heads themselves were in perfect order.


Fig. 1: Power supply trip circuit, Sony KV2000UB Mk. II.

[^2]
## TRADE ANNOUNCEMENT

# LARGE OUANTITIES AVAILABLE 

OF THE FOLLOWING:

# FERGUSON 3V16/3V22/3V23 VHS VIDEOS 

 THORN8800/9000
COLOUR TV'S
(MANLY REMOTE CONTROL)
$\star \quad \star \quad \star$

TELEPHONE
BOB MUNSON 01-986 9026














 $\qquad$

天


 GRANDATA LTD 9 THE BROADWAY, PRESTON ROAD, Telephone: 01-904 2093 \& 904 -1115/6
Telex No: 932885 (Sunmit)

## ELECTRON GUNS TV TUBE COMPONENTS

If you are rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
STUDLEY,
WARWICKSHIRE B80 7LY ENGLAND.

Telex: 336924 Grifem G.


## TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

| RANK BUSH MURPHY Z146 A640 dual std mono 9.00 |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | 170 series dual std mo | 9.0 |
| Bush A792, A793 |  | 210300 series mono | 9.00 |
| single std m | 9.00 |  |  |
| A774 single std mono |  |  |  |
| A816 solid state mono |  | PYE 368, $169,569,769$ mono | 8.00 9.00 |
|  |  |  |  |
|  |  | WINDINGS |  |
| CS1730 1733 colour $\quad 8.00$ |  | Autovox 22822693 | 1500 |
| CS1830 1835 colour |  | Crown 14CX25 $\quad 15.00$ |  |
|  |  |  |  |
| '30' series Bradford colour 80 series colour |  | RANK BUSH MURPHY |  |
| 100 series colour |  |  |  |
|  |  |  |  |
| ${ }_{1600}$ FERGUSON HMV MARCONI ${ }^{\text {8 }}$ |  | Z718 EHT overwind $\quad 8.00$ |  |
|  |  | SOVEREIGN FARA |  |
| 2047 to 2105 <br> 2000 to 2064 dual std mono | 8.00 |  |  |
|  |  | PLUSTRON PALLADIUM <br> $14^{\prime \prime}$ colour rewind |  |
| Indesit 20EGB 24EGB mono 9.0 |  |  |  |
|  |  | A |  |
| VC200 VC205 VC207 mano |  |  |  |
| CVC5 CVC7 CVC8 CVC9 col. |  |  |  |
| $\begin{aligned} & \text { CVC30 CVC32 series colour } \\ & \text { CVC45 } \\ & \text { FT100 FT110 } \\ & \text { TXV80 } \end{aligned}$ |  |  |  |
|  | 10.00 | PRICES INCLUDEP.P. \& 15\% VAT |  |
|  | 10.00 |  |  |
| All lopts and windings are new and guaranteed |  |  |  |
| Open Mon. Fri. 9 to 5.30 pm Delivery by return. |  | REWND SERVICE S.A.E. all enquiries |  |
|  |  |  |  |
| PAPWORTH <br> TRANSFORMERS |  | Barclaycard and Access welcome |  |
|  |  |  |  |
| 80 Merton High Street ${ }_{\text {t }}$ London SW19 1BE |  |  |  |
|  |  | 1-540 3955 |  |

# MANTEL Manchester's No. 1 in Ex-Rental TVs VHS Video now in stock 

Working sets ready for re-sale
Philips G8 550s
Philips $18^{\prime \prime}$
Philips G8 520s 22/26 £35
GEC S/State
Thorn 17" 8000
Decca 30
Japanese from $£ 30$

Many other makes available from $£ 25$
Discount on quantity
Some Examples of UNTESTED TVs available

| Thorn | 10 for $£ 125$ |
| :--- | ---: |
| Philips | 6 for $£ 90$ |
| Bush | 6 for $£ 80$ |
| GEC | 6 for $£ 60$ |
| Decca | $\mathbf{6}$ for $£ 60$ |
| Mono TVs avail. s/s | $£ 4$ each |
| New TV trolly stands |  |
| All sizes | $£ 4.95$ |
| All Prices subject to V.A.T. |  |

Ex Equipment Panels \& Tubes Available Over 2,000 TVs in stock

Ring for quote. Callers welcome.

## 419 Barlowmoor Road, Chorlton, Manchester M21 2ER. Tel: 061-861 8501

$\star$


| NORTH WALES |
| :---: |
| TELEVISION |
| SUPPLIES |
| FLINT 5878 |
| $\star \quad \star \quad \star$ |
| SPECIAL OFFER |
| PHILIPS G8's 550 |
| COMPLETE LOTS OF |
| TEN f15.00 EACH |
| $\star \quad \star \quad \star$ |
| Unit 32, |
| Manor Industrial Estate, |
| Bagillt, Clwyd. |



## HIGH QUALITY COLOUR TELEVISIONS

Thorn, Phillips, GEC R/Controls, ITTs, T/Text etc. etc. . . .

NEW BRAND NAMED STOCKS AVAILABLE!
Various HiFi Systems .......................... $\mathbf{£ 5 5 . 0 0}$
Videos (Philips 220) ....................................... $\mathbf{£ 3 5 . 0 0}$
Computers/Disk Drives .......................£25.00
Stereo T/Text Colour TVs ..................P.O.A.
Portable R/Controls ............................P.O.A.
Part Exchange C.T.Vs ................From $£ 7.00$
Ex Rental C.T.Vs ..........................From $£ 5.00$
3V25 Video Tuner Timers .................. $£ 35.00$
3V26 Video Power Supply ................£20.00
$\mathbf{3 7 3 9 7}$ Loudspeaker Amplifiers ........£20.00 (P.O.A. price on application)

EXCELLENT PRICE OFFER FOR ORDERS ABOVE 40 UNITS . . .

## COLOURTRADE,

 221 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19.Tel: 021-359 0449.

## CentreVision TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB <br> OPPOSITE CITY FOOTBALL GROUND <br> 5 MINS FROM M4 <br> TELEVISION/VIDEO <br> (VHS + BETA) FROM £165

[^3]PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30
SATURDAY 9.00-1.00

$\star 1000$ sets now being taken per week. All makes and sizes.
Untouched off the pile. Ring now for prices. From $£ 3$.

PRICES AVAILABLE ON THESE SETS NOW!!!

PYE G11's PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s (Remote Control)
THORN 8000 \& 8800s THORN 9000, 9200, 9600 (Remote Control)
OF THE ABOVE SETS, MOST HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

Massive reductions for bulk Minimum 5 Sets
20 Salora 22" Colour £100
Big reductions for export orders over 100 sets

> COLOUR TELEVISION \& MUSIC CENTRE 35 Stafford Road, Weston Super Mare, Avon

Opening hours: 9-6 Mon-Sat, Sundays by appointment
(Weston Super Mare 413537)
(Note new address)
( 15 minutes past Bristol Southward on M5)

## TRAINING COURSES

## TELEVISION \& VIDEO SERVICING

these full-time courses include a high PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

## VIDEO CASSETTE RECORDER SERVICING

 6 WEEKS FUL-TIME(September 16th to October 25th)
Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentage of practical work.

## 12 MONTHS

LEC Diploma
TELEVISION \& VIDEO SERVICING
(Basic Electronics, TV, VCR, CCTV, Testing \& Fault Diagnosis)

## 6 MONTHS <br> LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training - e.g. BSC. HND, CGL, B/ECC, etc.)
(All the above courses commence on April 22nd \& Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \&
TECHNICIAN EDUCATION COUNCIL
(These courses commence on April 22nd $\& /$ or Sept. 16th)

## 2 YEAR

BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)
15 MONTHS
BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Vidao Cassette Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS
BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

## 9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessors, Microcomputer Fault Diagnosis, Robotics \& Control Systems, CADCAM \& CAE Principles).

MSC grants of up to 1 year available for selected applicants with previous electronics training and work experience.
overseas students welcome at uk student TUITION FEE RATES

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

## VHS COLOUR CAMERAS

Mains/Mains Battery Portable TESTED WORKING EXPORT
Multiband CTVs. 22" \& 26"
Ideal PAL B
Philips 2000 Series Video Recorders

PLUS
17" 18" 20" $22^{\prime \prime}$ 26" Hybrid/ Solid State CTVs
Discount for Quantities

## Hitachi <br> VHS Video machines playback only

TV and Video Tables and Stands available in quantity, also computer desks.
FREE 50CTV's
22" \& 26" Hybrid \& Solid State mixed with purchases over $£ 1000$ JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124

## HOCKLEY DISCOUNT TELEVISIONS

\author{
North-East Branch: <br> NORTHERN T.V. DISTRIBUTORS, <br> Unit 2, Perth Court, <br> Eleventh Avenue, <br> Team Valley Trading Estate, <br> Gateshead, Tyne \& Wear <br> Tel. 091-487-5389 <br> ASK FOR JOE <br> NOW THE MOST RAPIDLY EXPANDING WHOLESALERS WITH HUGE STOCKS <br> TO ENSURE YOU OF BETTER BARGAINS! LORRY LOADS DELIVERED DIRECT FROM SOURCE! <br> PRICES START FROM £6 WORKING SETS FROM £12 100's OF G11's IN STOCK $22^{\prime \prime}$ \& $\mathbf{2 0}^{\prime \prime}$. VHS VIDEO'S NOW IN STOCK UNLIMITED SELECTION OF: <br> ```
PHILIPS G8's (G11 Now in Stock) <br> SONY PYE SOLID STATE LATEST HITACHI PYE CHELSEA <br> I.T.T CVC30, CVC45 <br> GEC SOLID STATE, STARLINES <br> BUSH T20,T22 <br> SPECIAL OFFER ON VARICAP 6 BUTTON DECCA

``` \\ * Delivery can be arranged.
}

\section*{SATELLITE RECEIVING SYSTEMS}

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems.
Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719


\section*{REBUILT TUBES?}

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

NO WORKERS!WITH OVER 1,000 ARRIVINGWEEKLY WE DON'T HAVE TIME
ALL SETS UNTESTEDSTOP PRESSWEEKLY INPUT NOWAPPROACHING 1,500 SETSVERY LOW PRICESFOR BULK BUYERS
WE ARE ONE OF THE OLDESTESTABLISHED EX-RENTALDEALERS WITH THE SAME RENTALCOMPANY FOR OVER 15 YEARS.
GEC S/State ..... £15
GEC Hybrid ..... \(£ 5\)
BUSH 1 and 2 Chip ..... £10
DECCA ..... from \(£ 10\)
AUTOVOX ..... £10
NORDMENDE ..... f10
SALORA Hybrid ..... £3
TANDBERG S/State Dual Tuners ..... £20
TANDBERG Hybrid Dual Tuners ..... £5
PHILIPS G8 ..... from \(£ 10\)
17" THORN ..... £15
22/26" THORN ..... from \(£ 10\)
REDIFFUSION \(20^{\prime \prime} / 2^{\prime \prime}\) ..... £15
NO 20" S/STD ..... £5
MONO 24" and D/STD ..... f1
SALORA S/State, some Remotes.Sale price \(£ 5\) each.Minimum 20 at this price.
BEST DEAL IN U.K. CASH ONLY, IT DOESN'T BOUNCE!MIXED LOADS DIRECT FROMSOURCE AVAILABLE ATKEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS)SCHOOL LANE, GUIDE,BLACKBURN, LANCS.Telephone: 025464489

\section*{CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER}


COINAGE AVAILABLE

500
E 1

COMPLETELY VARIABLE TIMINGS


MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW.
Telex: 418253 LUMIC G
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{UNIVERSAL ELECTRONIC DISTRIBUTORS 119 JARROM ST., LEICESTER LE2 7DX Tel: (0533) 544849} \\
\hline & & \\
\hline &  & \\
\hline & & \\
\hline & & \\
\hline &  & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{T.V. DISTRIBUTORS NORTHERN} (LEEDS)
KNOCK DOWN PRICES
Big savings to be made on the following C.T.V.'s THORN, ITT, PHILIPS, GEC, PYE, DECCA, BUSH, JVC
GOOD \({ }^{\star}\) DISCOUNT \({ }^{\star}\) FOR QUANTITY

For further details phone TEL: LEEDS (0532) 624996 TV DISTRIBUTORS NORTHERN, UNT 10, Ashley Trading Estate, Buslingthorpe Green, Leeds LS7 2HG.


\section*{SPRING SALE OFFERS}

\section*{LARGE STOCKS TO CLEAR AT LOW PRICES}

PHILIPS 550s

f15

G11's

\(E 35\)IT HYBRIDf14THORN \(8000^{\circ}\)£12
PYE 222 ..... \(£ 15\)
BETA n/wk VCR's
SONY C5, SANYO, TOSHIBA etc. .....  50
SONY C7 .............................f65 PHILIPS 1700 ..... \(f 20\)
NEW PHILIPS LVC (1500/1700) TAPES
MIXED LOADS DELIVERED DIRECT FROM SOURCE
UNTESTED AND INCLUDING WORKERS \(£ 15\) ..... + V.A.T.
Also Stands, Panels and Tested TubesFREE DELIVERY LONDON AREA
SOUTH LONDON TELEVISIONMission Hall, Southey Road,London SW19.Telephone: 01-543 5437
EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES
ETC. ETC. ALL SPARES READILY AVAIUABLE
INMMEDIATE CREDIT AVAILABLE - TRADE ONLY
If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up
for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV
component by return "off the shelf", e.g. LOPTZ-EHT trays - droppers - OSC coils - switches - cans -
smoothers - l.c.'s, etc. etc.
YOU CAN BE 95\%/ SURE WE CAN SUPPLY ANY
TV COMPONENT BY RETURN
IF YOU NEED SPARES FAST - RING NOWI
ACCESS AND BARCLAYCARD ACCEPTED.

\section*{TOP TWENTY VIDEO SPARES}
\begin{tabular}{|c|c|}
\hline & \\
\hline Cassette lamp (Panasonic) .............f1.80 & \\
\hline Take-up clutch (Ferg) ......................E6.5 & Head cleaning fluid..........................51.50 \\
\hline Beth kit (Sony/Toshiba early) ............66.50 & Head cleaning sticks \\
\hline Belt kit (Ferg) (state model)............. 66.50 & Reel Drive Pulley (Sanyo VTC5000)..... 88.8 \\
\hline Belt kit (Panasonic) (state model) 56.50 & Reel Motor (Sanyo VTC5000) ............f14.20 \\
\hline Belt kit (Sanyo 9300).....................66.50 & Loading Belt (Sanyo 9300) .................f150 \\
\hline 56.9 & Ovemaul kit (Ferg) (state modell.......f19.95 \\
\hline idler (Sharp VC)....................E.E.45 & Ovemaul kit (Sony) (state model)......f19.95 \\
\hline o head (Sony C7)......................E39.50 & Overhaul kit (Sharp) (state model). \\
\hline
\end{tabular}

\title{
TELEVIDEO SERVICES \\ NOTTINGHAM (0602) 226070
}

76 Wollaton Rd., Beeston, Nottingham
Please add 50 p post \& packing and then add \(15 \%\) VAT to total ALL ORDERS DESPATCHED BY RETURN OF POST Send \(22 p\) stamp for full catalogue.

\section*{IRISH TV NOTICE \\ (EX RENTAL T.V. SALE)}

We can supply in good working order Bush, Pye and Ferguson from \(\mathbf{£ 6 0}\), Fhilips G.8. From \(\mathbf{£ 8 0}\), Decca from \(£ 80\), B/White \(£ 25\), Re-Gunned C.R.T.s from \(£ 44\) (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

ALL PRICES INCLUDE V.A.T.
We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate,
Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

\section*{SETS \& COMPONENTS}

SUITABLE for parts or repair, all £15; GEC 2147, Thom 9000, Thorn 8000), Decca 2240, Thorn 3500. Dorking 880854 .

JAPANESE COLOUR TVs. Panasonic. Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489.

NEW VIDEOS, Televisions boxed guaranteed below retail prices. Details Hemel Hempstead 44351

WANTED - SURPLUS COMPONENTS, Valves, Transistors, Transformers. ICS Capacitors. Ring (0246) 211682 , immediate settlement.

COMPLETE GRUNDIG, Nordmende televisions, telequipment, oscilloscopes, panels, manuals, spares. Ocre Mill. Tel. 0785814643

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

PHILIPS G11 ANI) BUSH T20. Regular supplies. For prices phone 01-845 2036.

QUALITY SETS FROM CORNWALL. Workers'nonworkers. Spares, panels, etc. Details ring 0726815389.

\section*{likh}
* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
\begin{tabular}{l|c} 
Kryatal Marketing Ltd, & Phone 021-471 3023 \\
Breedon Cross & Telex 335540-G \\
Storage, & Ask for Les \\
Dale Road, Selly Oak, & \\
Birmingham B29 6AQ. & \\
\hline
\end{tabular}

\section*{EAST ANGLIA SUPPLIES}

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
\begin{tabular}{lrc} 
G11s & \(\mathbf{£ 7 0}+\) VAT & MANY OTHER \\
T20s & \(\mathbf{8 6 5}+\) VAT & MAKES \\
S/state from & REGULARLY \\
ITTs & \(£ 55\) + VAT & STOCKED AND \\
Decca from & CHEAPIES FROM \\
& \(\mathbf{~} 55\) + VAT & ONLY £25 + VAT \\
& & FULLY SERVICED.
\end{tabular}

Contact John, Dave or Steve for personal friendly attention on
022369215 or 035361462


No other consumer magazine in the country can reach so effectivel those readers who are wholly engaged in the television and affiliate electronic industries. They have a need to know or your products an services.
The prepaid rate for semi display setting \(£ 6.30\) per single column cent metre (minimum 2.5 cms ). Classified advertisements 37 p per wor

\section*{\(\star \star t \star\) TELEBEST V.H.S. VIDEOS \\ FERGUSON . . . Working to a High Standard Min of 3 hrs soak test per machine \(\mathbf{£ 1 4 0}\) inc. Min of \(5+\) VAT \\ Off the pile, as seen, \(£ 95\) inc. Min of 5 \\ PLUS OUR USUAL RANGE OF TVs WORKING OR NOT. \\ 8,800, 5000, 9600, G8, G11, etc \\ Phone Paul for stock availability \\ 01-514 1333 \\ 841 Romford Road, Manor Park, London E12. \\ get in on videos NOW and make a packet. \\ }

\section*{CANVEY COLOUR TUBES}

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

\section*{CURRENT PRICE LIST}

\section*{DELTA TUBE TYPE FROM \(£ 27.50\) to \(£ 31.50\)}

INLINE TUBE TYPE FROM \(£ 35.00\)
MONO TYPES P.O.A.
ALL PRICES EXCLUSIVE OF VAT.
All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{COLOUR TV PANELS Fully Tested \& Working} \\
\hline \multirow[t]{4}{*}{} & &  & Decooser & \({ }_{4} 17\) & \({ }_{\text {cinerd }}^{\text {line }}\) & Pon \\
\hline & 3.50,
\(\substack{3.00 \\ \text { a.0. }}\) & & (7.00 &  & & 4.00 \\
\hline & & & - & 5.500 & & 5.00 \\
\hline & & \({ }_{5} 550\) & cis. & \(\underset{\substack{8.00 \\ 7.00}}{\text { 80,00 }}\) & 15.00 & \(\underset{5.00}{10.00}\) \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
-Please specity prefix A or \(\mathbf{Z}\) \\
Please add \(15 \%\) VAT to above prices, then add post + packing.
Post + Packing: 1 panel \(£ 1.50 ; 2\) panels \(£ 2.25 ; 3\) panels \(£ 3.00\) etc
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Hybrid panels do not include valves. \\
erms cash with ord ring for current stock. GOLCAR T.V. SERVICES (formerly LAVITELTD)
\end{tabular}}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Old C of E School, Church Street, Golcar, Huddersfield. Tol.: 0484643273} \\
\hline
\end{tabular}

Rebuild those broken G11 Line Scan Units! NEW GLASS FIBRE PCBs to suit all versions.
\(\mathbf{£ 7 . 5 0}\) each. P\&P 30p. From G. Noyce
15 Parkside Avenue, Luttlehampton,
Sussex BN17 6BG. Tel: (0903) 716633.

\section*{EERUICE POCES}
(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

\section*{COLOUR SETS FROM
MONOS FROM
PANELS BY POST - PRE-CAL
WORKING SETS TO ORDER
INDEPENDENT TELEVISION
AND VIDEO COMPANY
In}

Suppliers of colour and mono sets to the trade. Worker and/or direct from source, van loads negotiable.
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600, Bush T20 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.

For quotation and prompt service:
Ring Notts (0602) 864627 UNIT \(3+3\) A,
Meadow Trading Est. Meadow Lane,
Nottingham NG3 3HQ.

> 31 RADCLIFFE ROAD,
> WEST BRIDGFORD, NOTHINGHAM THE OUAUTY' REBUILDER PHONE: (0602) 813329
> ALL TUBES CARRY A TWO YEAR GUARANTEE EXTENDABLE TO FOUR YEARS All Sizes of Standard Deltas
> ONLY \(£ 29.00\) (A56-120 - A66-120 etc Buy 10 at ONLY £26.00 ea. A51-161-A51-163 £42.00 A55-66 500/510 (20 AX) £43.00 A56-S40-A66-S40 ( 30 AX\() £ 49.00\)
> 560 DZB 22 £ 45.75 - 560 EGB 22-510 VLB 22 £45.75 1000's more available. VDUs, MONOs, Industrial etc. WE NOW REBUILD SONY TUBES Phone for details from \(£ 55.00\) Peterborough: H. DONNOA 0733 7180s TECHNICAL ADVICE SERVICE All prices + VAT \& Exchange Suppliers to Broadcasting Authorities and National Companies Quantity Discousis
> Wholesale supplies at VERY compatitiva retas We bry for CASH Sony Tubes. \& A5F/AOF-510 \& A \(56 / A 66-540\) Tubes

Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392
untested panel. for all makes of NV
£1.25 per panel plus post \& packing

\section*{TELEVISION}
good quality trade
TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

\author{
GENERAL \\ UNION STREET DONCASTER DN1 3AE \\ TEL (0302) 68416 \\ GOOD MOTORWAY ACCESS

FACTORS
}

\section*{WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER}

Working Decca Bradford Including Black Fronts
\(18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}\) ONLY \(£ 20.00\) each in 6 units
Working GEC Plastic \& Wooden. All models \(20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}\) ONLY \(£ 2.00\) each in 6 units Working Bush \(20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}\) ONLY \(£ 15.00\) each Philips 68 (520) \(22^{\prime \prime}\) \& \(26^{\prime \prime}\) ONLY £20.00 each

\section*{CALL \\ JOHN POWNEY}
55.00

E3.00

\section*{Your Friend in the TV Business}

Phone Baldock 894905 SECTION 3, UNIT 4. SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS.
OPEN 6 DAYS \(10-6.30 \mathrm{pm} / 10-5 \mathrm{pm}\) SAT.
\begin{tabular}{|c|c|}
\hline & \\
\hline \(£ 29.00\) INCLL & STWO Year \\
\hline £14.50 Sl & RaN \\
\hline  &  \\
\hline No need to smend fit & \\
\hline IN-LINE 1 YE & ANTEE \\
\hline  & £45 \\
\hline & \\
\hline \(56.5800^{66-500} 66.500\) & £55 \\
\hline & \\
\hline All sizes \(\mathbf{£}\) & SIVE \\
\hline 隹 & \\
\hline & \\
\hline \(4900 \times 622\) & \\
\hline \({ }^{560028222}\) & £49 \\
\hline \[
\begin{gathered}
\text { No o } \\
\text { ROFES }
\end{gathered}
\] & \\
\hline
\end{tabular}

DE GAUSSING COILS \(£ 19.50\) INCLUSIVE

\section*{Philips G11}

WORKING PANELS - POWER AND UNE \(£ 19\) or \(£ 13\) exchange
IF - DECOCER - FRAME f16 or E12 exchange PUSH BUTTON UNITS \(£ 16\) or \(£ 12\) exchange 2 BUTTON ULTRASONIC REMOTE UNITS
NEW £17.50

RADIO and TELEVISION SERVICING BOOKS
(MacDonalds). New \(74 / 75 \mathrm{£15;} \mathrm{75/76,76/77,77/78}\), \(78 / 79,79 / 80,80 / 81,81 / 82,82 / 83,83 / 84 € 22.5\)
MAINS ISOLATING TRANSFORMERS

500 Volvamp \(£ 39\) inclusive. 1000 Volvamp E59 inclusive
FREE DELIVERY
Except Tubes 55 each
All prices are inclusive U-VIEW
29, Warmsworth Road,
Doncaster, Yorkshire DN4 0RP. Tel: 0302855017.
Callers ring first, open every day including Sunday \(1 / 2\) a mile from \(A_{1}\)

\section*{COLOUR BAR GENERATOR}

Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White
Raster, Half Black \& White, Mains Powered

OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTPUT
SOUND OUTPUT
LINE PULSE
FIELD PULSE


Line Output Transformer Tester
f11.50
BW Generator, Crosshatch, Peak White, Dots Half BW Generator, Crosshatch, Peak White, Dots,
Black \& White and Grey Scale In Circuit Transistor Tester \(\quad \mathbf{1 4 . 2 5}\) Capacitance Meter measures 10pF to \(1 \mu \mathrm{~F}\) complete with moving coil meter
f 14.75 Car Alarms
f14.75
£ 12.50
S.A.E. for details. - Prices include P\&P \& VAT
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields,
Wolverhampton W1 3DW. Tel: (0902) 871563

\section*{STARLITE ELECTRONICS}

NOW MOVED TO: WILLOWS FARM,
A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.
- TV TUBES -

2 year guarantee
Most types available Japanese including Sony
Ex-Rental TVs from .................£15.00
Untested Panels. .\(£ 4.00\)

\title{
NWELECTRONICS 25 YEARS SUPPLYING THE TRADE
}

\section*{NewLow Prices Thats a Fract!}

\section*{100's of good class HP Repos and Ex Rental Colour TV's reduced to ROCK BOTTOM PRICES!}
\begin{tabular}{|c|c|c|}
\hline Bush T20 (Excellent Cabs) & was 260 & 040 \\
\hline Bush 718 P.I.L. Tube & was £30 & NOW £25 \\
\hline Bush 2 Chip Decoders & was \(£ 15\) & NOW £8 \\
\hline Philips G8 & was £28 & NOW £23 \\
\hline Philips G11 & was £70 & NOW £55 \\
\hline GEC 2010 & was £25 & NOW £20 \\
\hline Thorn 3500 & was £12 & NOW £8 \\
\hline
\end{tabular}


Hybrids \(£ 5\) all makes! Many more inc Pye KT30, Ferguson TX etc.
Fully Refurbished r's's Ready for Rent/Sale
Models include Bush T20, Pye Gll,Pye KT3,Bush Z718, GEC. Ring for Quotation.
Mono LIV's cl each (lots of 25)
Thorn \(1500 £ 4,1600 £ 12\). Discount for Quantity (like new). No cheques.

\section*{White goods}

Hoover Twins from £6. Hotpoint 1460 from \(£ 10\). Autos all makes from \(£ 10\).


P\&P 1 panel \(£ 1.50,2\) panels \(£ 2.00,3\) panels \(£ 2.50\) etc. Quick Despatch - C.W.O. please. All prices plus VAT
CASH ONLY-NO CHEQUES DELIVERY CAN BE ARRANGED-TRADE ONLY (0274) 688458 OPENGDAYS AWEEK

Unit 12, Wharfedale Road
M606 Euroway Estate
Bradford

OPEN MON-SAT 9-5.30 Don't forgetl We are open all day Seturday!

WOODSDALE COMPONENTS
RANK BUSH MURPHY TRANSFORMERS
Line Ouput
Z718. (T703A, T706A)
New (Complete)
Less Focus Module and Rectifier \(£ 10.50\)
T20, T22 (T705A) f 11.00
T26 (T705B) E11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device \(\quad \mathbf{8 7 . 5 0}\) Switch Mode
T114A/B
£8.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices.
DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

\section*{BRISTOL TELEVISION TRADE DISTRUBUTORS (BTTD)}

4 Victoria Street
(Bristol Bridge) BS1 6BN
Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.

Tel: (0272) 25266

\section*{C.T.V. PANEL SERVICE}
exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months G.tee. Exampl Bush T20:22/26
PSU LINE Frame Decoder
4.7516 .0013 .0014 .50 plus VAT

Other makes inc. Jap \& Euro models, G11 Decca 100 Other makes inc
\(80, \mathrm{GEC}\), Thorn. SAE for catalogue:
ARGO SERVICES (Birmingham), Elliott Road, Birmingham 29

\section*{T.V PANELS}

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder line Power Frame \(\begin{array}{lllll}\text { Philips GII } & 18 & 16 & 20 & 18\end{array}\) \(\begin{array}{llllll}\text { Bush T20 } & \mathrm{X} & 12 & 16 & 15 & 12 \\ \mathrm{X} & 16 & 18 & 15 & \mathrm{X}\end{array}\) \(\begin{array}{llllll}\text { Bush T26 } & X & 16 & 18 & 15 & X\end{array}\) \(\begin{array}{llllll}\text { Bush } 718 & X & 12 & 18 & X & 12\end{array}\) All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months. T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

\section*{EX-RENTALS TELEVISIONS} IN BULK
Most makes include late models. MONITEC 0299-400233

\section*{IRISH TV TRADE CAN WE BE OF SERVICE TO YOU? Regular supplies of Quality Colour TVs LOWEST PRICES}

\section*{Working Sets from \(£ 18 \quad\) Non-working Sets from \(£ 8\) FREE DELIVERY ANYWHERE}

Ј. TI. G. Electionics

\section*{FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE 01-261 5942}

\section*{TELEVISION TUNER REPAIRS}

BRITISH, EUROPEAN JAPANESE ETC.

ELC 1043/05 TUNERS AS NEW £4.60 inc.
MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS. Tel: 0329-235116

\section*{WIZARD DISTRIBUTORS TV \& VIDEO SPARES}

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and techincal assistance Fast friend
available.
Come in

\section*{offers.}

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS Empress Street
Manchester M16 9EN
Tel: 061-872-5438, 061-848-0060

\section*{BOOKS AND PUBLICATIONS}

FULL SIZE TOP QUALITY service sheets \(£ 2.50+\) 1.s.a.e. CTV/Music Centres \(£ 3.50+1\). .s.a.e. Repair data almost any named TV Video \(£ 10.50\) inc. circuits. L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

RADIO AND TELEVISION SERVICING BOOKS. New 74/75 £15. 75/76, 77/78, 78/79, 79/80, 80/81, \(81 / 82,82 / 83,83 / 84 £ 22.50\) each. Free delivery. UVIEW, 29, Warmsworth Road, Doncaster. 0302 855017. Callers ring first.

\section*{TELEVISION}

Trade \& Retail supplies of \(\mathrm{s} / \mathrm{h}\) colour \& mono TVs. Most makes available, workers or non-workers

\section*{SOUTHPARK DISTRIBUTORS} Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

\section*{TV SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG \\ TELEVIEW \\ 01-994 5537 \\ 194, Acton Lane, London W.4.}

\section*{WANTED}

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

WANTED EX RENTAL COLOUR T.V.s. Any quantity. Prompt collection. Cash paid. Sheffield 754865.

LATE MODEL COLOUR TELEVISIONS, videos, etc. Any quantity. Monitec. Tel. \(0299400233 / 400933\).


\section*{FOR SALE}

\section*{Sabaco}

\section*{For a} great deal!

\section*{VAN LOAD DIRECT FROM SOURCES}

\section*{ALL SETS OFF THE PILE}

Most makes/sizes available, any quantities. e.g. Black faced Decca \(£ 10\), solid state GEC. £10, PYE 22"/18" (solid state) £12, Thorn 8800/9000 etc. £16, Thorn 3500 £8, Philips G8 (550/520) £9, ITT (CVC5, 8, 9) £9, Grundig 5010/6010 £10, \(26^{\prime \prime}\) ( \(3500 / \mathrm{G} 8\) etc.) \(£ 5\), Jap £10, Pye GEC Hybrid £4, BN £1.
All above offers minimum quantity of 15 sets or more.
ALL PRICES SUBJECT TO VAT \& AVAILABILITY.

\section*{Sabaco}

Saba House,
46A Derby Road, Sandiacre,
Nottingham.


Open 6 days a week
9.30 a.m. - 5.45 p.m.

Telephone: (0602) 397555

\title{
TUBES BY \\ DEVONICS
}

\section*{Deltas £30-£36}

In line from £41

\section*{2 YEAR WARRANTY}
on Quality Rebuilds
Phone 0803-33035 or call 2A BARTON HILL ROAD, TORQUAY TQ2 8JH

SLOW SCAN TV CONVERTER BOARDS. Comprising picture store and modem for transmission via telephonc line or radio, \(128 \times 128\) pixells 16 shades \(£ 2(0), 256 \times 256\) l6 shades \(£ 250\) per board. X-FEL, 92 b Manton Road, Earlstrec Industrial Estatc. Corby. Northants (05363) 66493

\section*{MONITORS}

Quantities of \(20^{\prime \prime} 22^{\prime \prime}\) GEC Starline converted to monitors ideal for BBC etc computer good definition. \(\mathbf{£ 4 0 . 0 0}\)
```

Tel: (0602) 397555

```

\section*{TELEVISION \& COMPUTER REPAIR BUSINESS}

Excellent potential. Super 700 sq . ft leased workshop, office, showroom etc. In good position, Devon seaside town.

L, S. \& B. £8K.
Seaton (0297) 20201.
THREE GRUNDIG \(2 \times 4\), two Grundig \(170(1)\) plus tapes £150. Telephone: 068452224.

OSCILLOSEOPE, portable mains I MEG-Hz £99, no offers. Doncaster 0302855017.

18 VOLUMES RADIO \& TELEVISION Servicing manuals, pre 1953 to 1974. Offers please. Fordingbridge \(52(193\).

\section*{AERIALS}


> CLEARVIEN AERIALS Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronically remote controlled masthead pre-amp 1.6 db noise CH. \(17-69\). Set side amplifiers, distribution amplifiers, notch filters 4 in 1 or 2 in 1 etc. Combiners for 2 UHF aerials 3 db gain or 46 db gain. Trade and retail. Send farge SAE for our comprehensive catalogue CLEARVIEW AERIALS, 173 Kings Road, Kingston Upon Thames. Surrey.

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, splitters, channelpass filters, diplexers. masthead amplifiers, distribution amplifiers, brackets, masts, acrials, etc. Use trade gear and save pounds. Catalogue 50 p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lanc. Micklebring. Rotherham.

\section*{Satcom}

Communication Systems
SATELLITE T.V. RECEIVERS \(4 \& 11-12 \mathrm{GHz}\) PARABOLIC DISH ANTENNAS 1.2M WEATHER SATELLITE SYSTEMS Also full range of arcodan antennesystemer High quality Danish manufactured Antennas - Bands I, II, III, IV \& V - Mast \& Distribution Amplifiers - Channel Converters - Splitters, Filters; Combiners - Cable Systems.
Arcodan products: Satellite products:

Satcom, Satcom,
Trigfa,
Clynnog Road,
PENYGROES,
Gwynedd.
(0286) 880814


\section*{VIDEO}


\section*{EX RENTAL VHS VIDEOS}
* * *

100's IN STOCK
\(\star \star \star\)
CONTACT MICK ON 021-772 1591

TELEVISION SERVICE SHEET SPECIALISTS
Thousands of British, European and Japanese models in stock. Colour \(£ 2.00\) Mono \(£ 1.50\) Manual prices on request.
All our prices include post and packing costs.
Send stamped envelope for free catalogue and enquiries.
SANDHURST TV SERVICES (MAIL ORDER) 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. \(£ 1.50\) plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICE SHEETS. TV and Audio equipment. S.A.E. £1.50. H.M. Earle, 173 Northbrooks, Harlow. Essex CM19 4DQ.

\section*{SERVICE PAGES}

SERVICE PAGES
please mention television when REPLYING TO ADVERTISEMENTS.

SERVICE PAGES
SERVICE PAGES


\section*{MISCELLANEOUS}

\section*{GET \\ GHARP PARTS FAST \\ TELEPHONE}

0734-876444
TELEX 848953
shanp
Main U.K. Spare Parts Distributor
Audio-TV-Video \(\star\) Microwave \(\star\) Photo-copier \(\star\) Typewriter All U.K. model spares available. Same day despatch of orders received before 1 pm .
Microwave, photocopier and typewriter spares to authorised service dealers/centres on'ly. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

\section*{The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes}

Part 1.
The Colour Signal Part 2.

The Receiver Decoder Part 3.

Receiver Installation

BETAMAX \(\star \star \star\) UMATIC
For full details telephone 0253725499 (Day)
0253712769 (Night)
Or send for precise details
FUNTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH
LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL:

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

\section*{BUSINESS FOR SALE}

EXTREMELY PROFITABLE SHOP. KentSussex border. \(£ 40,(0) 0)\) Net Profit. \(2 / 3\) people. Personal reasons force fast sale. \(£ 25,000\) SAV ( \(£ 5,0100)\) ). Colin Guy 089240521.

Established TV Video Sales Repair business FOR SALE in London SW16 area due to illness in the family. Details: 01-677 4174

TV/VIDE() REPAIR Sales and rental shop in North Shropshire market town. Small growing business showing good profits run at present by engineer/wife. 3 bedroomed property attached. Excellent order, gas c.h., private walled garden. Outbuildings. \(£ 41.5(0)\) S.A.V. 09484201.

\section*{IRISH T.V. DEALERS}

Large selection of fully reconditioned precision in-line UHF-VHF colour T.V.s at keen prices

Quantity discount. Delivery arranged.
(Limited amount of spare panels, components, button units, etc.)

SPECIALISTS IN OVERSEAS ORDERS
T.V. TRADE SALES

Edi House, Kylemore Park West,
Ballyfermot, Dublin 10. Tel: 264139
(Open 10 a.m.-5.30 p.m.)
 is wrong wére here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.

ASA Ltd.Dept 3
Brook House, Torrington Place,
London WC1E 7HN


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} & & & \\
\hline & & & & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\
兑 \\

\end{tabular}} & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|l|}{} \\
\hline & & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{3}{|l|}{ －} & & & & \\
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{} & \multicolumn{4}{|l|}{} \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\
 （陪 \\

\end{tabular}} & & \\
\hline
\end{tabular}```


[^0]:    EAST CORNWALL COMPONENTS
    119 HIGH STREET
    WEM
    

    SHROPSHIRE SY4 5TT TEL: 093932689

[^1]:    Program
    100 LET nn=0: BORDER 1: PAPER 0: INK 7: CLS
    110 REM Test card program
    120 REM
    130 REM by J. de Rivaz
    140 REM array of colours
    150 REM
    160 DIM $\mathrm{c}(8)$ : FOR $\mathrm{n}=1$ to 8: READ $\mathrm{c}(\mathrm{n})$ : NEXT n
    170 DATA $0,2,4,6,1,3,5,7$
    180 REM Print borders

[^2]:    Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the seling price is subject to currency exchange
    

[^3]:    * ITT CD752 REMOTE
    £115
    * PHILIPS G11 £50
    $\star$ GEC STARLINE 22-20 (Remote) £35
    ^ PYE CHELSEA £25
    * THORN 9000 20" £39
    * DECCA 22" BLACK FRONT VERICAP £25
    * RANK T20 REMOTE £50
    * PHILIPS 550 £25

