

Electronic Speech for TVs and VCRs Sony KV1820 GCS Conversion

Manual Lace-up for the N1500

VCR Clinic

Dynamic Width Control TV Fault Finding Long-distance TV

The SCART connector

MANOR SUPPLIES

MKV PAL COLOUR
TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking)
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.

* All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
De Luxe Case ($1\left({ }^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1 / 4 ")}{\mathbf{~})} \quad \mathbf{~} 7.40\right.$
Optional Sound Module (6 MHz or 5.5 MHz) $\mathbf{8 3 . 9 0}$
Built \& Tested in De Luxe Case including Sound Module SPECIAL TEST:
$\mathbf{~} \mathbf{1 0 5 . 0 0}$
REPORT
'television \quad Post/Packing $£ 2.50$
DEC. 1982 Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $\mathfrak{£ 3 0 . 0 0}$. DELUXE CASE $\mathfrak{£ 7 . 4 0}$. BATT HOLDERS $\mathbf{£ 2 . 8 0 .}$ MAINS SUPPLY KI'T $£ 4.20$ (Combined P\&P £2.20).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20 \mathrm{P} \& \mathrm{P}$. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20$ P \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS $£ 5.75$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

TELETEXT EXTERNAL ADAPTOR KIT (Less case)
 with cable remote control $£ 120.00$ p.p. $£ 3.00$

THORN TX10, teletext

Mullard Decoder panel + Interface $£ 35.00$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{£ 6 0 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTS, TRIPLERS, PANELS, TUNERS, SELECTORS ETC SPECIAL OFFEL PHILIPS. PYE KT3 SERIES INFRA RED REMOTE CONTROL HAFIDSETS EX RENTAL (UNTESTED) TELETEXT OR NORMAL VERSIONS AVAILABLE $£ 2.50$ p.p. 80 p (5 for $£ 10$ p.p. £I. 50). THORN 9000 Fat it Finding Guide $\mathbf{£ 1 . 0 0}$ p.p. 30 p .

SPECIAL OFFEF NEW VALVES

Branded makes, PCF80, PY 88 , PFL200, PCL 84 FOUR for $£ 2.00$ p.p. 80 p
THORN TX 10 Facia Control Panel incl. Infra Red Remote Control receiver £7.50 p.p. £1.50).
THORN TX10 type Remote \& Tuning Control Panel £9.40 p.p. f1.50.
THORN TX 10 Series Facia Control Panel with 8 position Channcl Selector 55.00 pep $f 1.50$.

PHILIPS UHF M•xdulator (Audio \& Video Input) $\mathbf{1 1 5 . 0 0}$ p.p. $£ 1.00$
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $\equiv 28.50$ p.p. 11.20 .
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{9 7 . 5 0}$ p.p. 80p.
PAL DECODER KIT for RGB Monitors $\mathbf{\$ 2 7 . 0 0}$ p.p. $£ 1.0($
TELETEXT DECODERS New \& Tested Mullard VM $6101 £ 30.00$, Texas XM11 £40.00 p.p. $£ 1.6(0)$
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 2 . 5 0}$ p.p. $\mathbf{f 1}$. 20 . 5 V Stab. Power S Ipply. $£ 3.80$ p.p: $£ 1.20$
CROSS HATCH NIT KIT, Acrial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be
 P.p. f1.40.) ADDUIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p .

UHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VIF version $£ 24.00$). Alum. Case $£ 2.55$ De Luxe Case $£ 7.40$ P.p. $£ 1.80$.
$\underset{£ 28.60}{ }$ CRSTER \& REACTIVATOR PROJECT KIT For Colour \& Mono 228.60 p.p. $£ 2.80$.

BUSH Z718 BC61 0) series IF Panci $\mathbf{5 5 . 0 0}$ p.p. 9 p.
BUSH A816 IF Panel (Surplus) $£ 1.65$ p.p. 90 p
DECCA 80 Series IF, Frame, T.B. $£ 5.00$ p.p. $£ 1.40$
GEC 2040 Convergence Panels. Decoder Panels, $£ 1.50$ p.p. $£ 1.81$
GEC 2110 PANELS Frame $\mathbf{8 8 . 5 0 ,}$, Preset (Touch Tune) Control $\mathbf{5 5 . 0 0} \mathrm{p} . \mathrm{p}$. GEC.
GEC "20AX" Ser es Switch Mode Power Supply $\mathbf{£ 5} \mathbf{0 0}$ p.p. £1.X0.
PYE 691-7 CDA l'anels. Makers tested stock. E6. 00 p.p. 1.45
THORN TX9 Pands ex factory for small spares. Includes I.Cs \& Semiconduc-
${ }^{\text {tors cte. }} \mathbf{£ 5 . 0 0} \mathrm{p} . \mathrm{p} £ 2 .(0)$.
THORN TX9 Pansls salvaged ex factory for spares incl. LOPT \& Mains Transformes. $£ 10.10 \mathrm{p} . \mathrm{p} . \not 2.80$
THORN TX9 Pant ls ex factory salvaged complete cond. $\mathbf{£ 2 0 . 0 0} \mathrm{p} . \mathrm{p}$. $£ 2.80$.
THORN TX 10 T.E. Panets salvaged ex factory. $\mathbf{£ 1 5 . 0 0} \mathrm{p}$.p. $£ 3.0$. .
THORN TX 10 IF/Decoder Panels salvaged ex factory $115 .(00$ p.p. $£ 2 .(0)$
THORN $3000 / 3500$ Power supply P.C

THORN $8000 / 8500$ Frame T.B. Panels salvaged/spares $£ 2.50 \mathrm{p}$
THORN $9000 \mathrm{IF} /[$ ecoder Panels Salvaged. 55.00 p.p. $£ 1.60$.
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selector \& Thorn gho senes. Long pan
PHILIPS G8/G9 IF-Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $£ 1 .(0)$
G11 PANEIS, Ex Rental SCAN (incl LOPT) £28.00 p.p. $\mathbf{f} 2.50$).
GII PANELS, Power, Frame. IF, Decoder, £18.00 each. p.p. $£ 2$. (k)
GRUNDIG 8630 Se ries Varicap Tuners $\mathbf{~ 5 . 0 0}$ p.p. £1.0).
VARICAP. U322, $\operatorname{ILCI} 143 / 5 \$ 7.80$ P. 8 . Xip. Makers Varicap Controls PYE CT200 4PSN $\mathbf{E 7 . 5 0}$, BUSH 4 PSN 54.80 , DECCA 4 PSN £5.80, 6 PSN $£ 6.80$ p.f. ${ }^{8 / p}$ p. etc. Man 1 others available.

BUSH 'TOUCH TUNE' Vancap Control Z179, Z718 types $\mathbf{£ 3 . 8 0}$ p.p. 95p

UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position. MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$. TV SOUND IF Parels $£ 6.80$ p.p. $£ 1.00$
LOFT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOPTS New and gear. P/P Mono $£ 1.35$, Colour $\mathfrak{E} 1.50$, Bobbins $80 p$.
BUSH 161 to 186 (twin panel)55. 50 R.B.M. A823
BUSH, MURPHY 774 senies........... 88.50 R.B.M. 2179
BUSH. MURPHY A8Ie sencs ….... £8. 50 R.B.M. T20, T22

THORN IG00, 1615, iem), 1691
GEC 200) to 2138 series
$\begin{array}{lll}\text { EECsenes } 1 \& 2 \ldots \ldots & \text { CEC2128,2(14), } 21\end{array}$
NDFSIT 2024 EGB
MURPHY 1910 to $241 \times$ (twin panel) $£ 5.9$

368.169 .569 .769 series

OCCCA SPECLAL DFFR
DECCA $2024,17(x), 2(1), 2411$
GEC 2I $14 / / /$ Junior Finel ne
PYE 40). 67
KB VC ELEVEN (013).
OTHERS AVAILABLE, PRICES ON REQUEST. AISO LOPTS.
TRIPLERS Fuli range available. Mono \& Colour
Special Offer: Thori 8000 (2 lead) EHT Tray $£ 2.80$ p.p. $81 p$

THORN 8010 focu: control $£ 8.80$ p.p. $81 p$ p.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL, ITEMS, ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
TELEVLSION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE

Celephone 01-794 8751, 7947346

MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hempstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St) (St. Pancras, Bedford)
W. Hampstead (Brit. Rail) access from all over Greater London. Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11. PLEASE ADD VAT 15% TO ALL. PRICES

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go'to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television". King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1.20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

249 Leader

250 Teletopics
News, comment and developments
252 Nobody Told Me
Les Lawry-Johns
Changing power supply fault patterns with the Rank
T20 and GEC C2110 series, plus a visit from Pinky and Perky.
255 Electronic Speech for TVs and VCRs.
David Botto
Several semiconductor manufacturers have developed
speech synthesizer i.c.s that enable electronic equipment
to talk. They usually work with an external rom that
provides the main word store. How they work and a
practical circuit for the General Instruments chip set.
258 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad.
261 Fault Finding
Reports from Steve Illidge, Tony Thompson, Mick
Dutton and Philip Blundell, Eng. Tech.
262 Video Servicing
Mike Phelan
How the step energy recovery colour-separation system
works and a look at some of a video camera's control
arrangements - systems for dynamic focusing, dark
current correction, colour temperature control, etc.
266 Sony KV1820 GCS Conversion
Keith Cummins
How to use a BU208A line output transistor in place of
the expensive and unreliable SG613 gate controlled switch.

267 Next Month in Television

270 Letters
273 Adding a Second Reflector
Ivor Nathan
Reception in difficult conditions can be greatly
improved by adding a second, larger reflector to a Yagi
array. This increases the gain and directivity.
274 Dynamic Width Control
George R. Wilding
A look at the various ways in which the operation of a
line output stage can be stabilised and EW correction applied.
276 Problems with Peritel
Harold Peters
Details of the SCART socket and some of the problems, mechanical and electronic, that have arisen in use.
278 Service Bureau
279 VCR Clinic
Reports from Steve Beeching. T. Eng., Derek Snelling and Philip Blundell, Eng. Tech.
280 Manual Lace-up for the N1500 John de Rivaz, B.Sc. (Eng.)
The threading system is one of the weak points with
these machines, which now sell very cheaply second-
hand. Details of a manual threading system that will give extra life plus a list of articles on other worthwhile modifications to the machine.
282 Test Case 276

OUR NEXT ISSUE DATED APRIL WILL BE PUBLISHED ON MARCH 20

P. V. TUBES

HAVE MOVED

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US
104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER

$A D D 75 p$ per order $P+P$ Goods are despatched on the day we receive you (U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try cable, service aids, degaus. to inform you as quickdy as possible. We try our best (U.K.). Export orders charged invoice on request, Give us a ring - we'll give you at cost. First Class Mail is used invoice on request. Give us a ning - we lise gisk if what you need is not listed - we Whenever possible. Add 15% will try to help. Prices are subject to change withou vat in notice states zero rate.

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days

B. K. ELEGTRONIOS Dent T,

An easy introduction to television in all its aspects

Questions + Answers on Television by Eugene Trundle
Q + A on Television examines its subject in the form of a series of progressive questions and answers, starting with the basics of television and graduating to a discussion of the most modern equipment and techniques. It is written in a down-to-earth way which is easily interpreted and digested.
Introduction - The Camera - TV Waveforms, timebases and synchronisation - Transmission and reception

- The Receiver - Picture tubes and alternatives
- Colour TV - Advanced TV and the future.

$$
128 \text { pages Illustrated }
$$

0408015519
?
 A concise and comprehensive guide to all aspects of radio in simple-to-

understand terms

Questions + Answers on Radio by Eugene Trundle $Q+A$ Radio is intended for the newcomer to radio. It forms an introduction to radio and allied technologies by describing in simple questions and answer form the principles and practice of radio.
128 pages
IIlustrated
0408015500
Only $£ 2.95$ each Order now from your bookseller
Newnes Technical Books

Borough Green, Sevenoaks, Kent TN15 8PH

FRE
 CAREER BOOKLET

Train for success, fon a better job, better pay
Enjoy all the advantages of an ICS Diploma Course, training you ready for a now, higher paid, more exciting career.
Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already Look at the wide range of cpportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today-at no cost or
obligation at all.

> SUPERIOR QUALITY TUBES
> DELTA RE-BUILDS 4288777 most types of Inline Re-builds or

4 YEAR OPTIONAL

\section*{Delta Rebuilds
 | Up to 19" | £28 |
| :---: | :---: |
| Up to 22" | £30 |
| Up to 26" | £34 |
| 110° up to $22^{\prime \prime}$ | £34 |
| 110° up to $26^{\prime \prime}$ | £38 |
| Low focus | +£2 |
| 47342 New | |
 Delta only. Less $7 \frac{1}{2} \% 5+$}

IN LINE TYPES EX-STOCK SELECTION Not rebulios

370 HFB ….......... $\mathbf{£ 4 5}^{\mathbf{4}}$	560 DMB $£ 62$
370 HUB....................... $\mathbf{£ 4 5}$	AXT 56-001 $£ 62$
420 CSB $\ldots \ldots \ldots \ldots \ldots \ldots$	660 AB $£ 65$
420 EDB $\mathbf{E 4 5}$	A67-701 665
	670 CZB 665
420 ERB $\mathbf{E 4 5}^{\mathbf{4}}$	H6817 $£ 65$
510 UFB/A51-590 $\mathbf{6 5 5}$	370 KRB 555
A51-570 $\mathbf{6 5 5}$	
A51-210 $\mathbf{5 5 5}$	CARRIAGE
510 VSB660	${ }_{65}$ Singles. 2-3 $£ 10.4$ ¢ $£ 12$
AXT 51-001................... $\mathbf{6 6 0}$	${ }^{10}$ ¢15. $10+$ Carriage paid
	EXCLUSIVE OF VAT
	Cash with order
560 CGB $\mathbf{6 6 2}$	Cash with order

QUANTITY

- Scour
* OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITING INLINE TUBES
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

Telegen-1

PRICE 17.20 (Inc. VAT) EXCEPTIONALLY LIGHT AND DURABLE * POCKET SIZE FOR OUTSIDE SERVICE PP3 BATIERY POWER SOURCE * FIVE DIFFERENT TEST PATTERNS FOR COLOUR \& MONO TV * CROSSHATCH GRID * DOT MATRIX * WHITE RASTER
HORIZONTALS * VERTICLES
3.5 mm JACK SOCKET FOR OPTIONAL PSU
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ
Telegen-2
PRICE E34.45 (Inc. VAT)
EXCEPTIONALLY LIGHT \& DURABLE
* COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
RED RASTER * GREEN RASTER
* RED RASTER * GREEN RASTER
* BLUE RASTER
- COLOUR BARS
* 3.5 mm JACK SOCKET FOR P.S.U.
* PROVIDES UHF SIGNAL APPROX
CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1, giving colou bars arranged in the following sequence: white, yellow, cyan, green, magenta, red blue and black. The unit provides a signal in the UAF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2 PRICE f4.55 (Inc. VAT) POST AND PACKING E1.44 (Inc. VAT)
All goods should be delivered within 4 working days. 32 TEMPLE STREET, WOLVERHAMPTON WV2 4LJ. TEL: (0902) 773122

VIEO HEADS MONOLITH
 HIGH QUALITY UNIVERSAL VIDEO HEAD
 REPLACEMENTS FOR ALL VHS AND BETAMAX VCR MACIHINES
 VHS Part No. 3HSS (5 mm Centre Hole) £29.95 PRICE VHS Part No. 4HSS (15 mm Centre Hole) £29.95 EACH BETAMAX Part No. PS3B $£ 38.95 \mathrm{EX}$
 REPLACEMENT KIT (17 Pieces Boxed) £17.35 V.A.T. PLEASE ADD 15\% V.A.T. PLUS P\&P £2.00 PER ORDER
 OUR FULL CATALOGUE AVAILABLE ON REQUEST.
 Pleaso allow between 14 and 28 days for delivery.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributors/Service Organizations
 THE MONOLITH ELECTRONICS CO. LTD - 7 Church Street, Crewkeme, Somerset TA18 7HA, England

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US			G.G. COMM PON ENS108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693						BUY	H	
INTEGRATED	TYPE PRICE (E)	TYPE PRICE (£)	TYPE			TY		TYPE PRICE			THORN1500-3S5.05 THORN $1500-5 S$ 5 .40
	LA3350.........1.93	STK035 12.67	TBA7500...... 2.45	UPC1176C2.15	SISTORS	BC5		BR100 18			THORN3500 8.25
TYPE PRICE (E)	LA4031...........1.66	STK036....... 12.67	TBA800 80	UPC1177H....2.30	TYPE PRICE			BR101 48	RBM271818/0	. 22.95	THORN8000.............. 5.80
AN103..........1.95	LA4031P....... 2.45	STK043...... 11.33	TBA810AS1.15	UPC1178C 2.20	AC127....... 22	BC5		BR103 155	PHILIPS G8.	... 820	THORN8500188007.50
AN214.......... 2.25	LA4032......... 2.34	STK050 20.75	TBA820 1.40	UPC1 180C3.05	AC128....... 22	13D		BT106 1.15	PHILIPS G9	7.45	THORN9000 8.70
1240............2.20	LA4051........... 2.79	STK070 21.95	TBA890 2.55	UPC1 181H.... 2.20	AC128K 30	BD 1		BT116 1.30	PHILPS G11	1350	PYE 731 7.30
AN253..........1.93	LA4101.........1.88	STK077 8.56	TBA9200..... 1.50	UPC1182H....2.35	AC187K 30	BD1		BU126.... 1.78	THORN IS50,		DECCA 2230 … 720
AN315..........1.66	LA4102......... 1.97	STK078........ 8.45	TBA950/2X ... 2.65	UPC1183H	AC188K 33	BD2		BU205.... 1.42	THORN 1690	96	DECCA 80720
AN318............6.95	LA4112........... 2.97	STK082 9.75	TBA990 1.55	UPC1185H2 3.30	AD149....... 70	3D2		BU208A 1.40	THORN 1615		DECCA $100 \ldots \ldots7350$
AN337..........4.41	LA4201......... 2.95	STK086 12.89	TCA270S 1.30	UPC1188H....3.30	AD161....... 42	302		BU20802 1.70	THORN TX10	.. 1250	ITT CVC 20/30645
AN360..........1.45	LA4400.........2.80	STK4159.66	TCA800 5.10	UPC1190C 210	AD162....... 42	BD2		BU326A 1.A	PYE $731 / 713$ (110)	-. 1020	ITT CVC 45.......8.s5
AN6332........6.97	LA4420.........1.94	STK433........ 7.25	TCA940 1.55	UPC1198H.... 1.30	AF127........ 36	8D2		BU407.... 1.12	PYE 725 (90).	.. 1020	Universal550
AN7110......... 1.93	LA4422...........2.75	STK435......... 7.75	TDA 1003A.... 2.80	UPC 1200 V 1.90	AU110.....3.10	BD2		BU426A 1.75	ITI CVC 1-9.9.80	
AN7114........2.33	LA4430.........1.93	STK437 7.77	TDA1004A.... 2.70	UPC1208C1.85	AU113.....4.60	8D2		BU500..... 180	DECCA 2230	8.30	DIODES
AN7115.........2.37	LA4460.......... 2.95	STK439......... 7.8	TDA1035......3.20	UPC1211C4.05	BC107 14	BD2	40	BU526..... 200	DECCA 80		TYPE PRICE
AN7116........2.35	LA4461......... 2.95	STK441 9.52	TDA1044......3.10	UPC1215V 2.50	BC108 14	BD2	.. 32	BU826.... 320	DECCA 100.	8.58	BY127.................... . 10
AN7120........ 2.43	MB3712 2.30	STK443 11.33	TDA1170 1.80	UPC1216V 2.00	BC109 14	BD2	. 43	BUX84...... 90	17 CVC 20.	...7.7	BY133......... 15
AN7140........2.10	MB3713 2.25	STK4599.55	TDA1412......... 90	UPC1217G 3.35	BC141 26	BD23		R20108 ... 145	ITT CVC 25/30	. 0	BY164.......... 40
AN7145........3.25	MB87195.20	STK $4619 .95$	TDA2004A... 4.35	UPC1218H 2.75	BC142 23	BD2		R254			BY179........... 50
N7150........2.89	MC1327A 1.00	STK 463 10.88	TDA2020......2.95		BC143 25	BD4		-			BY210800 30
N7151........ 2.89	MC1358P...... 1.60	STK5018.98	TDA2522......1.80	UPC1223......3.40	BC147 09	BD43		TIP32C....... 47	ANT-SU	SES	BY223................... 26
A1137......... 2.30	MC1330P........ 90	TA7072P2.75	TDA2523.......2.25	UPC1225......3.10	BC148 09	BD43	. 70	TIP33B....... 80	A/S20MM 8 275	BY227M 23
A1144 2.39	ML231B1.95	TA7108P $\mathbf{2 . 1 0}$	TDA2530......2.10		BC157 10	BD438		TIP41C...... 48	100, $160,200 \mathrm{~N}$1.70	Brx10: 20
HA1151....... 1.97	ML232B 1.70	TA7120P2.05	TDA2532...... 2.20	UPC 1230H...... 4.45	BC158 11	BD70 1.05	T1P42C...... 48			BY455/600: 26
HA1156 1.97	ML237......... 2.50	TA7129....... 3.00	TDA2540...... 1.95	$\text { UPC } 1245 \ldots1 .99$	BC159 11	BDX3 1.65	TIP2955 …. 70	800MA. 1A.	1.6	OA90 07
HA1166 2.65	ML238.......... 4.22	TA7130P 1.20	TDA2560 1.80	$\text { UPC } 1250 \ldots . . .2 .45$	BC160 22			T1P3055 55		.	1N4001-7 07
HA1197 2.30	SAA1024 2.55	TA7139P 2.80	TDA2581 1.70	UPC1350C4.50	BC172 10	8F19	. 13	TV106.02. 1.60	2, 3.15, 4, 5A	...1.35	
HA1 199 2.30	SAA1125 4.70	TA7157P 3.00	TDA2590...... 225	UPC1353C 2.60	BC177 22	BF1	.. 11	2N3054 55			-range 18
HA1202 1.75	SAA1250..... 3.85	TA7171P3.40	TDA2591...... 2.70	C1356C2 3.05	BC182 10	BF197		2N3055.... 50			BZY88-range 11
HA1211 1.87	SAA12515.20	TA7172P3.40	TDA2593...... 2.30	$358 \mathrm{H} \ldots .3 .05$	BC182L 11	BF198		2SC867A. 355			
HA1306 2.97	SAA50105.10	TA7176AP ... 2.90	TDA2600 5.50		BC183L 11	BF24	. 15	2SC1034 . 4.55	PCF802		
HA1319....... 2.99	SAA5012 5.70	TA7193P 4.20	TDA2611A.... 1.50		BC184L 11	BF256	LC. ... 25				
HA1322....... 2.10	SAS560S 1.83	TA7202P 3.00	TDA2640......2.30		BC208 12						
HA1325 2.30	SAS570S1.90	TA7203P 3.00	TDA3560......5.10	3.76			$\begin{aligned} & . . .26 \\ & \ldots \\ & \hline .28 \end{aligned}$	NEN	PL50		PYE IF GAIN MOD ..180
HA1338 2.78	SAS580 2.40	TA7204P \ldots..... 1.80	TDA3561...... 5.35	1370 C 23.80	$\left\|\begin{array}{\|c} B C 213 L \\ \text { BC214L...... } 10 \\ 10 \end{array}\right\|$		$\begin{aligned} & . .28 \\ & \ldots \\ & \ldots 0 \end{aligned}$		PL508		EWCOIL G11 1.65
HA1339 2.88	SAS590........ 2.40	TA7205AP 1.60	TDA3562...... 5.50	UPC1373H.... 1.20	$\begin{aligned} & B C 214 L \ldots \ldots10 \\ & B C 237 B \end{aligned}$... 30		PL509519		VA1104 70
HA1342A2.33	SL901B........5.65	$\begin{aligned} & \text { TA7208P2.20 } \\ & \text { TA7210P5.60 } \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \text { UPC41C2.95 } \\ \text { UPC554C } 1.30 \end{array}$	UPC 1377C UPC I	$\left\|\begin{array}{\|c} \text { BC237B....... } 11 \\ \text { BC337..... } 11 \end{array}\right\|$	BF459 36	SG61	PY88.........		G8 TRANSDUCTOR. 225
WWR 2.30	$\begin{aligned} & \text { SL917B.........6.95 } \\ & \text { SN76003N... } 2.30 \end{aligned}$	TA7222P1.70	UPC555H........ 70		BC338 10		1.60	6533	PY500		ONOFPW........1.9
HA1368 2.20	SN76013N ... 2.30	TA7223P 3.15	UPC566H3... 2.10	UPC2002H.... 220	BC547 10			SAE 270	PY81/80		TX10 FOCUS UNIT .. 8.5
HA1371 2.97	SN76023N.... 2.30	TA7227........ 4.65	UPC577H...... 3.00								
HA1374 2.56	SN76110N...... 90	TA7310P 1.70	UPC585C 1.40		-						
HA1377 3.80	SN76226DN 1.45	TA7313P $\mathbf{2 . 1 0}$	UPC1018C 1.15		4001350	5	DECCA	4W	6.45		
HA1388....... 4.20	SN76227N.... 1.00	TAA550.......... 28	UPC1025H.... 3.30	DECCA 80-80/	400)350V		DECCA	6W			
HA1397 4.15	SN76660N 65	TBA120AS 70	UPC1026C 1.45	(800)250V		. 3.30	E-G				
HA11211 2.43	STK00396.45	TBA120SB...... 90	UPC1028H	PHILIPS G8(600)30	300 V	2.00	PHILIP				
KIA7217....... 2.75	STK00405.95	TBA120U..... 1.00	UPC1031H.... 2.85	PHILIPS G9(2200	$163 V$. 1.15	PHILIPS	-			
HA11221 2.77	STK0050 7.50	TBA395 125	UPC1032H...... 85	PHILIPS G11(470)	250 V		HITACH				
LA1201......... 1.88	STK0117.35	TBA396 85	UPC1035C	PYE $691 / 7(200-30$	0) 350 V .	. 1.10			$\begin{aligned} & 10.40 \\ & 12.80 \end{aligned}$		
LA1230......... 2.30	STK0147.65	TBA520 1.30	UPC1042C $\ldots . .2 .40$	THOARN3500(175	$\begin{aligned} & 2500 \\ & \hline 1100 \\ & \hline 100 \end{aligned}$		PHILIP		26.90		AT To This Total.
LA1365......... 2.25	STK015 7.15	TBA530 1.00	UPC1043C	$400) 350 \mathrm{~V}$		2.25	104310		8.70		
LA2200..........2.25	STK016 7.45	TBA540 1.27	$\begin{aligned} & \text { UPC1156H.... } 2.45 \\ & \text { UPC1168C } 2.70 \end{aligned}$	THORN 350011000) 70 V	. 85	U321		8.70		
LA3301........... 1.97	STK03211.32	TBA5600...... 1.60	UPC1170C1.55	THORN 9000 (400)	1400 V	2.75	U322		7.8		

EAST CORNWALL COMPONENTS

1985 CATALOGUE AVAILABLE - Many prices reduced - range increased - 125 pages fully illustrated. Price 65p, per copy (free upon request with orders over $£ 5$) - includes 30 p Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COPY.
Valves Type
DP802
DYges ECC81
ECC82
ECC83
ECC84
ECC88
EC80
ECH81 ECH84
ECL82
ECR 86 EF86
EF183 EF184
EH90
EL34
EL84 EL509
EMM87
EY86/87 EY86/87
EY500A
PCC84 PCC85
PCC89
PCC189 PCF80
PCF86
PCF200 PCF801
PCF802
PCF806 PCLE82
PCL83
PCL84
PCL 86 PCL805/8
PD500 PFL200
PL33
PL36 PL82
PL83
PLL4
PL95 PL508
PL509/519 PY500A
U26 U26
UCH81
UCL82
 TYpe
BC108
$A B$ or C
$B C 113$
$B C 114$
$B C 115$
$B C 116$
$B C 117$
$B C 118$
$B C 119$
$B C 125$
$B C 140$
$B C 141$
$B C 142$
$B C 143$
$B C 147$
A
$A C 148$
A
A
B

 (f)
0.32
0.32
0.10
0.10
0.99
0.14
0.14
0.12
0.12
0.14
0.30
0.32
0.32
0.12
0.12
0.12
0.18
0.18
0.12
0.12
027
0.15
0.17
0.18
1.68
1.45
0.80
0.68
0.34
0.34
0.95
0.32
0.36
0.36
0.38
0.38
0.38
1.60
1.82
0.51
0.65
1.65
0.45
0.60
1.00
1.10
120
0.72
0.87
0 Type
BD244
BD375
BD4i0
BD434
BD436
BO437
BO438
BO439
BD507
BD508
BD509
BD510
BD517
BD520
BD699
BD707
BDX18
BD

 OOOOOOOOO

 4.50
350
4.55
4.50

 | TEL |
| :--- | :--- |
| B.T. A |
| PLug |
| B. |
| BT.A |
| Sock |
| B. |
| Sock |
| Sot |
| B. |
| avail |

$$
\begin{array}{r}
\\
0.21 \\
0.06 \\
0.06 \\
0.312 \\
0.12 \\
\hline 0.10
\end{array}
$$

peach $15 \rho / 10.78 / 100$
 0.28
 0.2
0.22
0.22
0.22
0.22 023
\qquad (1)
8 p
0 -

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

PATTERN GENERATOR PCB

A PCB for the simple pattern generator in our January issue is available from Readers' PCB Services Ltd. (TV), Fleet House, Welbeck Street, Whitwell, Worksop, Notts at $£ 5$ inclusive.

CORRECTION

On page 212 last month (VCR Clinic) the second line above Fig. 1 should have read "the machine working normally: the voltage at the cathode of D814", i.e. not the anode of D814. Our apologies.

COVER PHOTO

How they do it, US style! Most of the broadcast transmitters for the greater Los Angeles area are at a single site, shown in this month's cover photo, atop Mount Wilson in the Angeles National Forest. The photo was provided by Moseley Associates, Inc. (Santa Barbara Research Park, 111 Castilian Drive, Goleta, California 93117) and was taken by Bert Weiner. Our thanks to them for permission to reproduce it here. Moseley Associates produce the microwave studio-transmitter links used by the vast majority of Mount Wilson based broadcasters. Careful receiver design in particular is required in the sort of conditions shown to prevent overloading while maintaining signal level and dynamic range.

TE[EOT50 On

Tomorrow's Sets

The CTV market has been in an odd state recently, with sales of small-screen sets doing well as the affluent apparently install one in every room while large-screen sets move much more slowly. In fact the traditional family, living room set market has been very flat of late. There was a period a year or so back when first generation colour sets were being replaced in large numbers. Now most people seem to be viewing fairly recent and very reliable sets. So it won't be long before the market requires a boost of some sort.
The setmakers are aware of this of course. So are their suppliers, particularly the i.c. manufacturers. What are they likely to come up with? We have reported in the past on the ITT approach - digital TV (Digivision) with the video and sound signals converted to digital form for processing then converted back to analogue form to drive the tube and loudspeaker, the timebase waveforms also being generated and processed in digital form. Doing all this under the control of a microcomputer chip enables precise control of a set's performance to be achieved and maintained. There is also much scope for future development along this path, with features such as still pictures and picture within a picture being added. More recently, Mullard have issued detailed information on how they see the next generation of TV sets, from basic models to more complex sets that are capable of very high performance standards, incorporate many new features and are compatible with a variety of signal sources - in short, the type of set to get sales moving again.
The Mullard information lists a whole mass of new i.c.s for TV use, able to do all sorts of things to exploit the possibilities of TV reception and signal processing. The basic approach is evolutionary, so that the market for more sophisticated sets can be opened up gradually as the public becomes aware of the possibilities and can be persuaded to pay for them. More complex models will employ a microcomputer i.c. to provide central control of all functions, linked to the various signat processing i.c.s by a simple twoconductor bus line. Digital techniques are used for some of the more complex processing. Many operations can be carried out perfectly satisfactorily with the signal in analogue form however, and Mullard see no point in going through A-D and D-A conversion for the sake of it - for one thing it's wasteful in terms of power consumption. There is much that can be done to improve and update analogue signal processing, for example by using delay lines in CCD form and gyrators (active filters). As with the ITT approach, transferring adjustments at present carried out manually (linearity etc.) to computer control provides long-term performance stability. Setting up data is fed into the set during production and stored in a non-volatile memory (one that continues to hold its data when the power supply is removed). Feedback control can then be used to compare the actual operating conditions with the stored data and carry out any correction necessary.
A major advance in the possibilities for signal enhancement and modification is opened up by the use of a memory that holds a whole field of video information. Features made possible once such memory capacity is built into the set include reduced flicker, noise and cross-colour interference, faster teletext page access and, in the longer term, the introduction of new viewing facilities such as freeze frame, picture-in-picture and picture zoom.
One development that could be introduced quite soon in up-market models is improved chroma processing performance. The Mullard TDA4560 provides considerably improved picture quality by increasing the speed of chroma signal transitions to match the luminance signal transitions - in effect it compensates for the narrow chroma signal bandwidth. The TDA4560 operates with YUV instead of RGB signals, so it's preceded by a decoder chip (type TDA4510) that provides YUV outputs and is followed by a TDA 3505 i.c. for RGB matrixing, d.c. control of contrast, brightness and colour and the insertion of external signals. The TDA3505 incorporates white point adjustment and beam limiting while the TDA4560 incorporates a variable luminance delay line in gyrator form so that the luminance and chrominance delays can be matched. Back to a three-chip decoder - but with very different chips and much improved performance.
A further decoder possibility is opened up by the TDA8450 which integrates all the delay lines and filters required in a PAL decoder - it uses profiled peristaltic chargecoupled devices ($\mathrm{P}^{2} \mathrm{CCDs}$) to perform time-discrete signal processing. With this technique the analogue signal is sampled, as in dugital signal processing, but is not converted to digital form; saving on power consumption and the need for shielding.
The biggest changes will come with the introduction of field stores. The Mullard approach here is to use a serial memory in CCD form rather than a conventional RAM - the latter is appropriate for computer use but for video applications a serial memory provides better organistion, eliminating the need tor memory address circuitry. The CCD designed by Mullard is basically a shift register with a very high bit density (approximately four times that of a dynamic RAM). It consists of seven SAA9000 i.c.s to give a storage capacity of 2.2 Mbits and operates in conjunction with an SAA9020 field memory controller and SAA9010 picture enhancement processor. The SAA9010 incorporates noise reduction algorithms, a movement detector and cross-colour reduction circuitry. For teletext use two further i.c.s are added.

Only a few of Mullard's ideas have been touched on here. There's a great deal of scope for development in what for many years has been a rather static device, the domestic telly.

Teletopics

GLUT

While sales of small-screen colour sets continue to do well, there's been a glut of large-screen sets and VCRs on the market recently. It's been estimated that Europe has excess production capacity of around a million largescreen sets a year at present, and in the UK there are substantial quantities of ex-rental sets on the market. One of the problems for setmakers is that large-screen tubes are produced in Europe while the smaller sizes are produced mainly in Japan - in addition you can't suddenly switch a highly automated assembly line from producing say TX10s to TX90s. On the video side, sales/rentals of VCRs fell from 2.2 million in 1983 to an estimated 1.5 million last year - the rental share of the market has fallen from a peak of around 70 per cent to around 35 per cent. Setmakers have been trying to maintain prices, but recent interest rate increases may make this difficult - stocks are costly to finance. Expect to see some bargains about.

The microcomputer market has also been going through a bad phase. Demand during the important Christmas period was well down on a year ago. Acorn and Sinclair have announced price cuts while a receiver has been called in at Oric and at computer distributor Prism.

CONTRASTING RESULTS

Thorn-EMI's poor results for the half year to the end of last September, with profits down 28 per cent, reflect mainly the difficulties in the Ferguson consumer electronics division which, caught in the situation described above, just about broke even and is not expected to make a profit for the full year. While Ferguson cut back large-screen set production early in the year stocks have remained high: good business with colour portables is reported, but price competition is severe in this sector of the market and margins are low. Thorn's rental operations have fared much better - in the first nine months an increased share of the market was obtained, with rental contracts advancing by 100,000 to 900,000 .

Philips have reported good results for 1984, with profits up 55 per cent. This takes in the company's activities world wide of course: in the UK, trading profit declined. Philips UK's chairman and managing director Anton Poot commented that "the struggle for commercial survival in the UK is tough now and 1984 turned out to be a very difficult year".

Grundig's struggle to return to profitability is likely to lead to further job losses. The firm had over 38,000 employees in 1979 and the total is already down to 24,000 . A further 5,000 jobs are expected to go. Grundig is now controlled by Philips.

Matsushita, which like Philips operates world wide, has reported a profit increase of 4.5 per cent last year on sales up 19.9 per cent to a record level. The main increases were in VCRs, office automation equipment and electronic components. VCR sales increased by 29 per cent.

SONY'S VIDEO EIGHT

Sony have opened up the 8 mm video market in Japan with the introduction of a camcorder called the Video

Eight. Production will initially be at around 20,000 a month, increasing by 50 per cent this summer, but there are no plans so far for launches in export markets. Those who saw the camcorder at its Tokyo launch are reported to have been impressed by the picture quality. The price is around $£ 950$ and the weight some 51 b including the batteries and cassette. Unlike the Beta Movie the Video Eight includes an electronic viewfinder that can be used for playback.

The cassettes, which Sony will be producing at the rate of a million a month, have playing times of $30,60,90$ and 120 minutes. Prices start at around $£ 6$.

PANASONIC'S FOUR-HOUR CAMCORDER

Panasonic have announced a new camcorder, the VHS Movie Model NVM1, which is due for release in the UK early this summer and is unique so far in having a fourhour capability, i.e. it uses standard VHS tapes. A battery charge is required after two hours.

Like VHS-C camcorders, it has a small head drum (41.33 mm instead of the standard 62 mm) with four heads that operate in sequence: the tape wrap is increased to 270° and the drum speed is increased to compensate for the reduced drum diameter.

The VHS Movie is larger than VHS-C camcorders, in order to accommodate the standard VHS cassette, but nevertheless weighs only 5.51 b (without battery). Normal power consumption is 8.5 W . Features include clean edits, cue and review and still playback pictures. The Newvicon pickup tube gives operation at light levels down to 10 lux. Price will be around $£ 1,000$.

MITSUBISHI's 35in. CTV

Mitsubishi have announced in Tokyo the development of a 35 in . colour tube, the world's largest for domestic direct viewing, and a chassis to drive it. One of the main problems was to reduce the weight of the tube and make it suitable for mass production. This was done by using computer simulation to optimise the distribution of glass thickness, in conjunction with experience gained in the development of a 40 in . tube for high-definition TV. The deflection angle is 110° and the screen area is over three times that of a 20 in . tube.

NEW JVC VIDEO TAPES

Video tapes using two new formulations have been introduced by JVC - they're called "HF" and "New HG". Cassettes loaded with HF tape are intended for use with VCRs that employ the VHS hi-fi sound system and are available in half-hour to three-hour lengths. The New HG formulation has been devised to give greater magnetic energy for optimum performance generally and is available in half- to three-hour standard cassettes and VHS-C cassettes.

MAC-C IN OPERATION

The IBA's Engineering Centre at Winchester reports successful reception via ECS-2 (Eutelsat I-F2) of Norwegian (NRK) TV transmissions using the C-MAC/packet system. The NRK service, which started on December 22nd, is being transmitted by the Norwegian Telecommunications Administration for communal or direct reception in the Svalbard Islands off the northern coast of

Norway, well within the Arctic Circle. NRK is the first broadcast authority to use the EBU recommended CMAC/packet system operationally. The EBU specification provides for up to eight high-quality digital sound channels to accompany each vision channel: NRK is using this capacity to provide the TV sound channel plus two stereo radio channels.

IBA engineers who developed the original MAC system are at present working on an experimental enhanced form of wide-screen MAC transmission.

SATELLITE DISHES - LEGALITIES

Under the 1949 Wireless Telegraphy Act a letter of authorisation from the Home Office is required to use a dish aerial for satellite TV reception. Officials appear to have come to the conclusion that enforcement of this regulation is impractical and are understood to be recommending that the law should be "liberalised".

VIDEO BATTERY PACK

Powercell International (Unit 7, Fleetwood Road, Leicester LE2 1YA, telephone 0533 706080) have introduced a nickel-cadmium battery pack, type VB4, for use with video cameras and recorders to give extended location shooting. The $12 \mathrm{~V} / 4 \mathrm{AH}$ capacity pack weighs only 3.5 lb , measures roughly $8 \times 6 \times 2 \mathrm{in}$. and costs $£ 79.95$ complete with mains charger and full instructions. Connection is via a cigar lighter socket for simplicity and the pack is unharmed by long storage periods - it's claimed to be capable of 2,500 charge/discharge cycles. It can be topped up at any time without need for deep discharge.

CABLE FRANCHISES - BATCH TWO

The new Cable Television Authority, which hopes to advertise a further five cable TV franchises shortly, has written to forty companies with a view to determining the present level of interest in bidding for cable franchises. The aim is to advertise five franchises every four months. With the initial batch of eleven franchises, which were awarded before the legislation on cable TV came into effect, prospective cable operators were able to specify the areas in which they were interested but were encouraged to adopt a high-technology approach. In future the Authority will specify the areas and will sound out local opinion before coming to a decision: the use of advanced technology will not be a major consideration but will still be taken into account. A more flexible approach is being adopted as a result of the difficulties experienced by the initial eleven franchisees, only one of whom has so far started a service.

EURO VHS VCRs

Grundig and Philips have both added a budget priced VCR to their ranges of European manufactured VHS machines. The Grundig VS180 and Philips VR6460 are both front-loaders: the VS180 has a recommended price of $£ 379$ or $£ 399$ with IR remote control; Philips' VR6460 comes at $£ 399$ or $£ 431$ with IR remote control. Two Pye European made VHS machines have been announced: the 64VR60 budget model is a version of the Philips VR6460 while the 65 VR60, with top loading and extra features, is a version of the recently introduced Philips VR6560. In addition, Philips have announced the Japa-
nese manufactured Model VR6920 which features hi-fi sound: it's a single-speed, front loading machine with IR remote control and a suggested price of $£ 679$.

TV COMPONENTS

A new generation of video output transistors for use in monochrome and colour sets has been introduced by Mullard. The new transistors, type numbers BF483/485/ 487 and BF583/585/587, have a novel mask design with ring emitter structure. The BF483-7 series has TO92 encapsulation and a maximum power dissipation of 830 mW ; the BF583-7 series has TO202 encapsulation and a maximum power dissipation of 1.6 W . Both series have a collector-base voltage rating of 400 V , a peak non-repetitive collector current rating of 100 mA , a d.c. gain of 50 and an upper frequency cut-off at $70-110 \mathrm{MHz}$. The new transistors are all npn types and are regarded as successors to the BF420/422 and BF869/871 series respectively.

Mitsubishi have announced a new range of gallium arsenide field-effect transistors, the MGF1300 series, for use in domestic satellite receiver front-ends. The most expensive transistor in this range, type MGF1305, has a noise figure of 0.6 dB or less at 4 GHz . A super low-noise device, the MGF1405, has been designed primarily for microwave communications use: it has a noise figure of 0.5 dB at 4 GHz and 1.4 dB at 12 GHz .

BBC SURVEY VANS

We have, quite rightly, been taken to task by the BBC for referring to " BBC detector vans" in the subscription service adverts that were contained in our last two issues. The notion of a BBC detector van was dreamt up by our advert copy writer. As the BBC point out, the licence evasion detector vans are operated by the Home Office. The BBC's particular concern is that these detector vans should not be confused with their own reception survey vehicles which are used to survey the coverage from all new radio and TV transmitters so that queries on reception problems can be dealı with. The BBC has a special telephone number, 01-927 5040, for enquiries about reception.

LIFESTYLE TV CHANNEL

A consortium consisting of W.H. Smith, Reed Publishing, Blackrod Video and Yorkshire Television has been set up to create a "lifestyle" channel for cable and satellite television. The aim is to provide a service covering such subjects as food, health and fitness, fashion, domestic finance, travel and leisure activities. Initially the partners will produce a business plan with a view to establishing the project's viability.

PHILIPS' 60 YEARS IN THE UK

Philips Electronic and Associated. Industries Limited have been celebrating the sixtieth anniversary of their operations in the UK. Philips first came to the UK as Philips Lamps Limited on January 23rd, 1925. The business subsequently spread to other fields and over the sixty years no less than $20,000 \mathrm{JK}$ patents have been granted to the company - a rate of around one per working day. Philips have always been at the forefront in the TV field from 30 -line TV sets for the Baird system in the early thirties to today's microcomputer controlled models.

Nobody Told Me

Les Lawry-Johns

A while ago I commented that no one in this trade ever has the chance to get a big head. No sooner does one overcome an impossible job and start to glow than another presents itself and you're back in the dumps, wondering how you ever had the gall to think you could cope. So often it's a question of a dead set, but where does one start with modern designs?

Power Supplies

Take the Rank T20 and related chassis for example. They come in and without switching on you check the usual things with an ohmmeter. There's a good chance that you'll score a bullseye right away. The 910Ω resistor (4 R 16) in the 12 V regulator circuit tends to go high in value; the 1Ω resistor (5R8) in the BU208A's base circuit tends to go open-circuit; and the two EW modulator diodes 5D6/7 tend to fail. The drill is to check these items first. Suppose they are all o.k? You may plug in and find that there's no 200 V output from the chopper power supply circuit. This has happened to me several times recently, so I thought I'd dwell on it for a moment.

There are two fuses on the centre power supply panel. The one nearest to you (7FS1, 1.6A HRC) is on the d.c. side of the mains bridge rectifier. You may well find that it has blown and wonder why. As a first step you check the BU326 chopper transistor 7VT7 and find it short-circuit. "Ah ha" you say as you replace it. If you're daft you then replace the fuse and see it blow just like the first one did. The next step is the tedious business of checking all the other components in the area. Start with the two diodes in the overvoltage crowbar circuit - 7D12 (1N4148) and the 27V zener diode 7D13 (BZX79/C27). One or both will probably be short-circuit. You then scurry around looking for a 27 V zener diode - naughty boys settle for 30 V if they can't find a 27 V diode. The two thyristors 7 THY 1 (chopper drive) and 7THY2 (crowbar) could have suffered and should be carefully checked together with all the associated diodes. If you're lucky you'll have got the 200 V back by now. If the tube's heaters don't light up, go on to check the line timebase.

The GEC C2110 Series

The GEC C2110 series is another old stager with which we should all be thoroughly familiar. Most troubles arise in the line output stage. The BU108 (use a BU208) line output transistor goes short-circuit, taking the 47 V zener diode D51 with it; the $1 \mathrm{M} \Omega$ resistors R607/8 on top of the line output transformer cook up; and the $560 \mathrm{k} \Omega$ resistor in series with the first anode presets goes high or opencircuit. Once again however the pattern is changing.

We've had several of these sets in recently with excessive e.h.t. due to the h.t. line rising to well over 200 V . This will occur if transistor TR701 in the thyristor control circuit isn't conducting sufficiently. The cause is likely to be one of the resistors in its base circuit changing value. The usual culprit is the feedback resistor R706 ($470 \mathrm{k} \Omega$). It goes high, a replacement bringing the firework display to
a halt. The excessive voltages in the line output stage may have resulted in one of the wirewound resistors on the side of the line output transformer housing springing open after the associated zener diode has gone short-circuit.

Pinky and Perky

We all get our share of strange customers. I think I get more than my share, but they do give us a laugh now and again.

An elderly couple pulled up outside, in an equally elderly Morris Minor. I heard them arguing away so I went out to see if I could be of help.
"You get in and get one end and I'll pull it out this way."
"No, you get in and I'll lift it from here."
I solved the problem for them and thought the dispute was over. No such luck. It was a 20 in . Philips G8. The man was rather small and had a pink tam-o'-shanter on his head. The lady was equally small and wore a black hat with a white feather in it. So he was Pinky and she was Perky and they never stopped chattering (mostly both at once) and arguing.
"The switch doesn't work."
"No it's not the switch because you can hear it click."
"That doesn't mean it's doing its job."
"Shut up and let the man look at it."
So I looked. I could hear the degaussing buzz, so the switch was working. I started at the bottom of the mains dropper, to ensure that the mains a.c. was present here. It was, and was also present at the next tag up. I switched the meter to d.c. and checked the upper section. The set immediately started up - as soon as the meter probe was applied. I thought there was a dry-joint and checked carefully, but there were no obvious ones. Switch off, wait a while, then switch on again. Nothing. Check for h.t. at the upper tags and again the set starts up. I switched off and checked the dropper cold. It was intact. To cut a long story short and to cut out Pinky and Perky's tirade, which continued non-stop, I was called upon to make a decision and despite the fact that I nearly always make the wrong one this time I rose to the occasion.
"Well what's wrong with the bloody thing?" asked Perky.
"My opinion, which in your view may be silly, is that the thyristor has an internal open-circuit which makes when the circuit is disturbed - in this instance by application of the test prod."

Pinky gazed at me for a while. "To me that's a load of old bull."

Perky wasn't going to let him get away with that.
"If you had any sense you'd realize the man knows what he's talking about, which is a damn sight more than you ever do. You just rabbit on and on while saying nothing."

It was time to put my theory to the test. I'd noted that the thyristor wasn't the usual BT106. It was of the BT116 type, though the number couldn't be read. I removed it and transferred the nut, bolt and washer to a new SN4444. With this installed the set came on each time it was asked to. I coughed slightly, straining to hear the thunderous applause that should have been forthcoming. It wasn't.
"Well, will it be all right from now on?" demanded Pinky.
"How the bloody hell should I know?" I snapped, losing my cool at last. "You brought the thing in because it wouldn't switch on and now it does. That's my job

POST A PART ELECTRONICS

6 CHAPMAN COURT, CHARFLEETS ROAD,
CANVEY ISLAND, ESSEX SS8 OPO
Telephone, O268 690868
Telex 99305 ROSSER G.
TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS
ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

USSAM CENTRAL		
STAR BUY PHILIPS G11 660 from £35 LATEST T.V. NOW IN STOCK		
G. 11 REMOTE CONTROL TELETEXT, ITT REMOTE CONTROL AND TELETEXT THORN 9600, 9800, BUSH T20/T22/T26, DECCA 80/100, G.E.C. IN LINE		
WORKING TV,SPECIAL OFFER FOR THIS MONTH ONLY		
G852022		
o		
VHS VIDEOS - 100's IN STOCK WORKING BRAND NEW 14" AND $16^{\prime \prime}$ PORTABLES		
BRAND NEW PYE 20", $\mathbf{2 2}^{\prime \prime}$, $\mathbf{2 6 "}$ " WITH STEREO - TEXT - REMOTES MANY MORE BARGAINS IN STOCK - PHONE AND HAVE YOUR ORDER READY FOR COLLECTION LORRY LOADS DIRECT FROM SOURCES DELIVERED TO YOUR DOOR		

TOP TWENTY VIDEO SPARES

Cassette lamp (Ferg/JVC)f1.80 Video head (Ferg) (state model)......... $\mathbf{f 3 7} 50$ Cassette lamp (Panasonic) $\mathbf{f 1 . 8 0}$ Video head (Panasonic) (state model) $\mathbf{5 3 9 . 5 0}$ Take-up clutch (Ferg)5650 Head cleaning fluid..................................51.50
 Belt kit (Ferg) (state model).................66.50 Head cleaning tapes (VHS/Beta)...............5.55 Bett kit (Panasonic NV7000) Rewind kit (Sony C7)
Rew
\qquad ${ }^{\mathbf{f 6} .50} 50$ Loading Belt (S 8000) £6.50 Loading Bett (Sanyo 9300) f6.95 Ovehaul kit (Ferg) (state modell50 Reel idler (Shap VC). . $£ 3.55$ Ovenhaul kit (Ferg) (state model)....... £19.95 Video head (Sony C7)45 $\mathbf{E 3 9}$ Overhaul kit (Sony) (state model).......f19.S

TELEVIDEO SERVICES

NOTTINGHAM (0602) 226070

76 WolHaton Rd., Beeston, Nottingham
Please add 50p post \& packing and then add 15\% VAT to total ALL ORDERS DESPATCHED BY RETURN OF POST

T.V. DISTRIBUTORS NORTHERN
 (LEEDS)

KNOCK DOWN PRICES
Big savings to be made on the following C.T.V.'s THORN, ITT, PHILIPS, GEC, PYE, DECCA, BUSH, JVC GOOD ${ }^{\star}$ DISCOUNT ${ }^{\star}$ (OR QUANT GOOD DISCOUNT FOR QUANTITY \star For further details phone TEL: LEEDS (0532) 624996 TV DISTRIBUTORS NORTHERN, UNIT 10, Ashley Trading Estate, Buslingthorpe Green, Leeds LS7 2HG.
completed. What happens hereafter is up to you."
I put the set back in the Minor and off they went, still nattering away at each other like mad. I reflected on the quiet life that HB and I lead. We are such nice people. If only she wouldn't stir the coffee up so quickly.

The Bush BC6004A

This Rank colour portable was made in West Germany and I wasn't familiar with the circuit at all. As it belonged to the "hire and fire" man at the local builders' yard, and as Don has been helpful to us on occasions, I couldn't say no.

It has full v.h.f. as well as u.h.f. reception facilities, so the tuner is not the run of the mill type. The poor reception with very grainy picture suggested that the tuner could well be at fault, but careful investigation failed to reveal anything amiss. The a.g.c. also seemed to be about
right. The tuner and i.f. sections are of the plug-in type, so I next removed the covers of the i.f. section and carefully checked the input and first stage. This consists of a BF199 transistor (T251) which is followed by a TDA440 i.f. i.c. The voltages around the transistor didn't seem right but a replacement produced no improvement. I repeated the voltage checks and injected signals to see where they went missing. The trouble still seemed to be in the first stage, and as I was probing around a small item caught my eye. It was a tiny $4.7 \mathrm{k} \Omega$ resistor with the wire ends doubled up ready for insertion into the printed board - but it had never been fitted. It had just layed there inside the i.f. unit, doing nothing until (I presume) it had got jolted and upset things. A look at the circuit revealed that it was part of the tuner a.g.c. circuit, but as the tuner a.g.c. voltage seemed o.k. I simply removed it. This restored normal operation, but I won't tell you how many hours were spent before the errant resistor was spotted.

Electronic Speech for TVs and VCRs

David Botto

Pete pushed the workshop door open and turned on the main power switch. A babble of electronic voices immediately greeted him.
"Good morning!" "It's 9.17 a.m." "Attention please!" "Danger! Smoke!"
"Quiet" yelled Pete, and the voices stopped as built in sensors in the TV sets and VCRs detected his voice. It was well past the time to start work, so Pete picked up his much-used digital meter - he refused to use the new talking multimeter the Boss had ordered from a rep in a weak moment . . .

No, this is not the start of a futuristic story, merely a pointer to what TV engineers may have to put up with in the not too distant future. Thanks to the recent development of very low priced speech generating i.c.s, TV sets, VCRs and perhaps a whole host of domestic appliances will soon be talking electronically. They'll inform, remind and warn in a natural sounding voice, using inexpensive circuitry built into the equipment.

Before discussing electronic speech synthesis it's useful to know how human speech is produced - being able to talk is something we tend to take for granted, but it's quite a complex business. A column of air is sent up by the lungs, pushed up by a dome-shaped muscle called the diaphragm, the lungs acting as a sort of bellows. This air goes through the windpipe, entering the larynx - the voicebox or Adam's apple - in the middle of the throat. There are two small folds of muscle inside this voicebox - the vocal chords - which open and shut to let air in and out (and also to stop foreign objects getting into the lungs). As air is forced from the lungs the vocal cords vibrate, producing sound, the speed of vibration controlling the tone.

After passing through the larynx the air enters the upper part of the throat, going on into the mouth and nasal passages. Overtones are added, and the roof of the mouth, the teeth, gums, jaw and lips break up and control the sound waves so that the listener hears sounds he can understand.

Speech Synthesis

To synthesize speech calls for an entirely different
approach, but one that takes into account the way in which the human voice works. Integrated circuits can do the job easily, cheaply and reliably by combining the component parts that go to make up speech. The basic unit of speech is the phone, a sound made by one's vocal system. Alter a phone just a little and you get an allophone. Bring together phones and allophones and you've the sounds that enable one word to be distinguished from another: these sounds are called phonemes and are composed of many different frequencies.

There are two basic methods of - electronic speech synthesis. The first uses digitally stored words and/or phrases. The second stores phonemes or allophones which are combined to produce words and sentences. This second method enables any word in almost any language to be formed - and is thus ideal for robots with a lot to say! For talking TVs and VCRs however the former, stored words/phrases method is more likely to be used: the number of words is limited by the storage method, but is still considerable.

The cost of electronic speech was until quite recently prohibitive so far as domestic equipment is concerned. Now however several large-scale speech processor i.c.s have become available: they contain extremely complex circuitry yet cost only a few pounds. Some examples will be considered in a moment.

An input code such as a binary number is fed to the synthesizer i.c. which then selects the required word/ phrase or stored speech element from an internal or external read-only memory (ROM). It then processes the ROM's output before passing this to an electronic circuit that models the human voice tract. The output is amplified and then fed to a normal loudspeaker. The synthesizer could be controlled by switches for single words/phrases or single parts of speech: in practice control is done by a microprocessor or microcomputer.

Synthesizer ICs

The National Semiconductor MM54104 speech processor i.c. is designed for use with specially designed speech roms - type MM52164 - and is housed in a 40 -pin pack.

The MM52164 contains stored phonemes and words which have been converted from analogue to digital form by changing analogue values into binary ones. These are n channel mos devices: the MM54104 requires a 9 V d.c. supply while the MM52164 requires a 5 V supply. They are able to synthesize high-quality speech - the voice of a man, woman or child. Operation can be "stand alone" with switches or by means of a microcomputer i.c. using an eight-bit address code. The output from the processor is fed via a filter to an audio amplifier.
The Votrax SC01A 22-pin speech processor i.c. uses phonemes. It has two voicing generators, four speech bandpass filters that model the human voice tract, an internal audio amplifier designed to drive a larger external one, and a 720 kHz clock oscillator that can be crystal controlled. Sixty four phonemes for voice, nasal, fractive sounds (those made by friction, such as F, S etc.) and also silence are stored in the i.c. To get the i.c. to select the required phoneme, a binary signal is fed to input port PO 5. The SC01A can form words and sentences in any language and can select words and phrases stored in external roms. It requires a $7-14 \mathrm{~V}$ (usually 10 V or 12 V) supply at about $20-28 \mathrm{~mA}$. The Heath Company's Hero-1 robot uses this i.c.
The General Instruments SP0256-AL2 voice synthesizer is a 28 -pin, n-channel mos device that produces very good natural-sounding speech, music and other sounds. Its own memory contains 64 allophones for speech and sound synthesis and it can select stored words and phrases from an external rom. Normal operation is at 5 V d.c. maximum 12 V . As with all speech i.c.s it contains extremely complex circuitry: it's nevertheless easy and simple to use.
The SP0256-AL2 has an electric vocal tract consisting of a 12 -pole digital filter. The output from this goes to an internal pulse-width modulator whose digital output is fed to an external low-pass filter to produce an analogue signal for amplification. The eight-bit binary input data, to select the required words or sounds, is fed into a start address latch. The SP0256-AL2 operates as a "stand alone" device or can be interfaced with a microprocessor or microcomputer. Fig. 1 shows a simplified block diagram of the device and Fig. 2 the simplest possible circuit for speech synthesis, using the stored word (or "canned speech") method. It's simple to build and is shown here so that TV engineers can become familiar with the method TVs and VCRs will probably use to talk.

Using the Gl Chip Set

The SP0256-AL2 and the associated SPR16 rom are best obtained as a matched pair from Tandy - the cost is an extremely reasonable $£ 12.95$ (including VAT). The rom is preprogrammed with words, phrases and music (see Table 1). The unit is easy to construct on a solderless breadboard: the i.c.s and components simply plug in, connections being made with push-in wires (simple to alter if you want to experiment). A stabilised 5 V supply is required, or a 9 V battery can be used as shown in Fig. 2: power consumption is 130 mA with a 9 V battery, 68 mA with a stabilised supply.

Switches SW1-6 enable single words and phrases to be selected. When using the switches, leave the 20 -way lead (only seven connections are used) disconnected. Omit the connector altogether if you don't intend to use the circuit with a microcomputer. The switch positions that produce various words and phrases are shown in Table 1: 1

Table 1: Binary commands for some of the words etc. in the SPR16 ROM.

Binary number	Sound
000000	oh
000001	one
000010	two
000011	three
000100	four
010100	twenty
010111	fifty
011110	good morning
011111	attention please
100001	Big Ben chimes
100011	tune plays
Note: maximum number $=\mathbf{3 5}$ decimal.	

represents a closed switch and 0 an open one. The various $1 / 0$ combinations are the binary equivalents of $0-35$ decimal.
Speech quality is good and natural. With all the switches open you'll hear "oh, oh, oh . . ." repeated indefinitely when the unit is powered. If the circuit doesn't start up, connect and disconnect the power a couple of times - pin 20 (address load) requires the leading edge of a negative pulse to start loading the address and is capacitively coupled (C4) to pin 6. Don't exceed the binary numbers shown in Table 1 or you'll get horrible noises that won't stop until you remove the power.
To use the speech synthesizer with a BBC Model B microcomputer, connect the 20 -way link to the computer's user port (see Fig. 3) - ensure that switches SW1-6 are all open. Enter the simple program shown in Table 2. It may not be brilliant, but it works! Run the program, then switch the synthesizer unit on. You should hear voices.

Fig. 1: Simplified block diagram of the General Instruments SP0256-AL2 speech synthesizer i.c. The i.c.'s internal memory holds 256 phonemes. The stored phoneme data is applied to the vocal-tract model (VTC) in two ways, via twelve hold registers that alter the tract's filter characteristics and the source/interpolation registers that control the pitch, amplitude and repeat periods. Alternatively, data stored in an external ROM can be applied to the hold and source/interpolation registers: this data generally consists of complete words, phrases or sound sequences. The output from the VTC goes to a 7-bit pulse-width modulator which in conjunction with an external low-pass filter provides digital-to-analogue conversion.

Fig. 2: The simplest way of using the SP0256/SPR16 combination to provide electronic speech.

Table 2: Simple program for use with the BBC microcomputer Model B.

```
40?&FE62=&FF
50?&FE60=33:PROCDEL
60?&FE60=30:PROCDEL
70?&FE60=32:PROCDEL
80?&FE60=24:PROCDEL
90?&FE60=12:PROCDEL
100?&FE60=25:PROCDEL
110?&FE60=31:PROCDEL
120?&FE60=32:PROCDEL
130?&FE60=18:PROCDEL
140?&FE60=29:PROCDEL
150?&FE60=12:PROCDEL
160?&FE60=29:PROCDEL
170?&FE60=24:PROCDEL
180PROCDEL
190GOTO60
200DEF PROCDEL
210FOR V=1TO2000
220NEXT
230ENDPROC
```


Fig. 3: Twenty-pin plug for a BBC microcomputer user port, looking into the socket holes - the arrows denote the cable coming away from the plug.

Fig. 4: Possible visual/talking multimeter arrangement.

Press the escape button, type RUN on the computer keyboard, and you'll hear the chimes of Big Ben followed by spoken words, phrases and numbers that continue until you stop the program. This may give you an idea of the workshop of the near future!

Talking Meters and Speech Recognition

A talking multimeter could be made in much the same way as a standard digital meter but with the signals that activate the display also applied, via an interfacing i.c. to produce the required binary signals, to a speech synthesizer i.c. with a suitable set of speech roms. See Fig. 4.

Inexpensive speech recognition systems that operate with a microprocessor or microcomputer are being developed. They detect the voice and transform the audio signal into multiple blocks of digital signals that give instructions to the controlled equipment. Thus the TV service engineer of the future will be able to hold a conversation with a set being repaired!

* components list

Long-distance Television

Roger Bunney

Time to pause for a moment and consider the year just past. 1984 was hardly spectacular from the DX-TV viewpoint. Perhaps the most dramatic event was reception of CBHT Halifax, Nova Scotia ch. A3 in Yorkshire, with remarkably clear sound, while on the same day an "NTV" ch.A2 caption which subsequently turned out to be from a 3 kW e.r.p. transmitter in Newfoundland was received. Various Arabic Band I signals were received during the SpE season, including Iran ch. E2. Just recently the important event has been the final closedown of the BBC's 405-line transmitters, on January 2nd. This leaves the future of Band I in the UK largely undecided. Band III subsequently lost its IBA 405 -line transmitters, on January 3rd - many of the transmitters have been donated for medical research purposes.

The new French fourth channel Canal Plus duly arrived, with scrambled video, Lille in particular being well received over much of the UK - as it was in the days of 819 lines! The main stations are at present in Band III, with u.h.f. relays, though openings in Band I are expected. Interesting to note that the decoders apparently create interference in Band I.

With Band I empty of local TV transmissions in the UK, DXers have a golden opportunity in 1985. It will be worth making every effort to exploit the situation during the SpE season. During the next few years it's expected that more Band I networks will close, while alternative uses for the spectrum will come into operation. Things could be much more difficult and frustrating in five years' time.

TV-DXers have not shown a great deal of interest in satellite reception during 1984, primarily due to the cost of the equipment required and the limited potential in the 4 and 12 GHz bands.

The New Year

So to the start of 1985, and may I first wish readers all the best for the coming year. The period under review this time is December/early January. There was a characteristic mid-winter lift to SpE conditions, with strong signals on certain days if you were lucky enough to be about -

December 18th was particularly lively. The $\mathrm{SpE} \log$ is as follows.

8/12/84 SR (Sweden) ch. E2; TVE (Spain) E2.
9/12/84 TVE E4; ARD (W. Germany) E2.
10-11/12/84 Unidentified signals on the E channels.
13/12/84 TSS (USSR) R1. An aurora was noted in Scotland.
14/12/84 TSS R2.
16/12/84 JRT (Yugoslavia) E4.
18/12/84 TSS R1, 2; TVP (Poland) R1; RAI (Italy) IA; MTV (Hungary) R1.
19/12/84
2/1/85 Unidentified signals on ch. E2.

December 12th saw active MS conditions which also occurred at the start of January with the Quadrantids shower.

The most important event during December was undoubtedly the enhanced tropospheric spell that started on the 9 th, improved on the 10 th, peaked on the 11th and gradually faded on the 12th. As with the other tropospheric openings in 1984 this one was hardly dramatic though good signals were received from W/E Germany, Norway and Denmark. Here at Romsey there were intense W. German signals up to ch. E50 but very little above that. Band III was jammed with W. German, Benelux and Canal Plus signals though there was no sign of E. Germany or Denmark. RTL (Luxembourg) ch. E7 was seen with the RTL comer insert identification, not unlike RAI during summer openings. Certainly Belgium provided excellent signals throughout most of the UK.

Simon Harmer did well to receive Denmark ch. E7 in deepest Wales on the 10th. Cyril Willis (Ely) received "lots of WGs" and many ATV stations (Benelux 435 MHz operators) on the 11th. On the 12th he had Norway chs. E7-10, Denmark ch. E7 and E. Germany chs. E12 and 34. Iain Menzies in Aberdeen found that the southerly path was best on the 12th, with signals from Holland and Belgium - the sea path gave deep fading. The identification "Hessen Dre", a third network identification, appeared on several test patterns and captions. In Dunstable Robin Crossley received Shape-AFRTS ch. 34 on the 11th with about P3 picture quality. The inland pirate Thameside TV came on air at 2100 on the 28th in the London area, with seasonal cheer. So the year ended with a flourish for DX-TV enthusiasts.

My thanks to many readers for their support during the year. Thanks for reception reports this month from Tony Privett (Basingstoke), Cyril Willis (Ely), Arthur Milliken (Wigan), Graeme Wilson (Cleveland), Ryn Muntjewerff (Holland), Simon Hamer (Presteigne), Tim Anderson

Left: A sight that was familiar in the early days of ITV, the Rediffusion clock - something to remind us of the now departed 405-line system. Centre: New identification carried on French PM5544 test patterns - this one is for Antenne-2. Photo Ryn Muntjewerff. Right: Programme schedule from SVF, Faroe Islands TV, received in Holland by Ryn Muntjewerff on ch. E6.
(Bexhill), Iain Menzies (Aberdeen) and Robin Crossley (Dunstable).

News Items

Belgium: There are plans to open two transmitters, Eupen (ch. E59) and Malmedy (ch. E63 or E65), to provide a service for the German speaking part of the country. Transmitter powers will probably be 20 kW and the service will be known as BHF (Belgische Horfunk).
W. Germany: In last month's column reception of BFBS in Finland on ch. E51 was reported. It was assumed that the signal came from the 10 W Celle transmitter. Hobeck provides a directional BFBS link to W. Berlin on ch. E51 at 200 kW e.r.p. however - TV pictures but no sound.
Africa: Zimbabwe (ZTV) is to expand its radio/TV network with transmitters at Gokwe, Binga, Kenmaur and the Zambezi Valley where reception is difficult. Equipment purchased from Pye in 1975 for the expansion of TV into the northern part of Nigeria has still to be installed. The v.h.f. equipment was never commissioned as the national government took over the v.h.f. channels, allocating u.h.f. channels to the regions. There have been attempts recently to get the equipment into operation and an experimental service is expected to start shortly. Ghana (GBC) is upgrading its TV system with new transmitters, studio and production equipment supplied by NEC.
Asia: Two standards are now in use in Afghanistan, with Kabul using system B PAL and a new transmitter at Kandahar providing system D SECAM signals received via the Statsionar-T u.h.f. downlink. Chinese network-1 programmes are being transmitted from Lhasa, Tibet, the link being via a Chinese communications satellite. Delhi's new 1 kW transmitter came into operation last autumn, carrying the second TV channel for some two-three hours nightly. The primary service area has a 20 -mile radius. The extensive v.h.f. network covering Sabah and Sarawak will carry a service compiled from the Malaysian first and second TV networks when, as planned, the East Malaysian Network-3 comes to an end.

Canal Plus Decoder

The French magazine Radio Plans was served with an injunction to prevent distribution of its December issue which carried a full constructional feature on a Canal Plus decoder. It appears that the newspaper Le Quotidien de Paris went ahead and published the circuit before they too could be served with an injunction! The Radio Plans feature had ostensibly been for the benefit of readers outside France unable to obtain decoders from Canal Plus. The matter is complicated by the Treaty of Rome which in section 59 et seq. states that a service available in one EEC country should be available to residents of a neighbouring EEC country on the same conditions.

Circuit details of the decoder have come our way. The sound section is fairly simple but the vision section is complicated by the need to introduce a delay of 888 nsec for each of the steps in the timing of each line - the delay is provided by two TDA4560 i.c.s. The system works by detecting the three per cent (or less) change from the blanking level to picture black at the start of each line to determine how much delay to insert.

Interference

The problem of high-power 49 MHz cordless phones is causing considerable difficulty in many areas. Interesting to report that the Hampshire National Farmers' Union

EQUIPMENT \& PROFESSIONAL ADVICE
South West Aerials offer a unique blend of the best equipment and impartial professional advice for long distance Television DXing or simply better reception. Examplas from our range:
JAYBEAM MBM 46 Group B UHF Aerial, 17dB High Gain (special price limited stocks).
LABGEAR CM7068 Group B High Gain 28dB UHF three stage Masthead Amplifier, also available in Groups A \& CID..
LABGEAR CMT261 Power Supply Unit for above Amplifier................................... 11350 @8dB, one@10dB, one@ $@ 2 \mathrm{~dB}$ GainiMains Powered. DULCIA DUGO04 Wideband VHFNUHF Distribution Amplifier. One input, four outputs @ +6dBgain. Mains Powered...E340 DULCAA DU6006 Wideband VHFUHF Distribution Amplifier. Two inputs, six outputs $@+6 \mathrm{~dB}$ gain. One high level output @ +23 dB gain. Separate inputs for VHF \& UHF.
Mains Powered... Also available Black \& White and Colour Multi-Standard VHFNHF Televisions and Video Recorders (SAE or ring stating requirement)
We are THE DXing Specialists, advice given on ALL reception problems (SAE please) All prices inclusive of VAT and Carriage Delivery 7.10 days Access \& Visa welcome

SOUTH WEST AERIALS (T)
11, Kent Road, Parkstone,
VISA
Poole, Dorset, BH12 2EH. Tel: 0202738232.

Left: Exotic reception of an Arabic ch. E2 signal in Holland by Ryn Muntjewerff - an example of double-hop SpE reception. Centre: The RTL Plus (Luxembourg) identification slide. Received by Robin Crossley on ch. E7. Right: Bophuthatswana TV test pattern received in S. Africa by Jim Maden - the 200W, ch. E37 transmitter was received at a distance of 70 miles.
issued a warning to its members advising them to avoid the use of unapproved types - such as the five-mile Supaphone. Attractive as these units are for a farmer out in the fields with his tractor, the NFU warns that fines of up to $£ 1,000$ are possible. Interference has also been experienced from the British Telecom Ambassador line phone using the type 852 handset Models 1, 2 - it can produce a high-pitched tone and pulses at frequencies up to 150 MHz . If this problem is encountered, BT should be contacted.

A paper on TV head amplifier overloading near a highpowered Band II f.m. transmitter was presented at the 1984 Las Vegas NAB convention. The high energy from the f.m. transmitter can result in harmonic distortion, a second harmonic being sent down the aerial feeder. This causes Band III (High Band in the USA) interference to the installation concerned and also to neighbouring ones, with complaints to the innocent f.m. station. The requirement is for aerial amplifier manufacturers to ensure that the second order intermodulation distortion and crossmodulation performance of their products is such as to minimise the problem.

Interference from computers, particularly Spectrums, is an increasing problem. Radiated interference levels in the USA are lower and strictly regulated. There was an attempt recently by a manufacturer to get large industrial computer installations produced in quantities of 300 or less exempted from the stringent suppression standards laid down by the FCC. The FCC ruled against such a production level exemption, suggesting a level of ten or less instead. Further research on the subject is being carried out.

The FCC is studying a proposal for a long-range cordless phone band at 900 MHz , known as PRCS. Tests are currently being carried out by General Electric in New York. There would be some 133 channels with a five-mile limit in built-up areas and a limit of up to twenty miles in open terrain, with an extendable range via a community repeater. Channel bandwidth would be 30 kHz with a transmitter output of 10 W .

Radio Telefis Eireann

An updated list covering the RTE radio and television transmission network, dated November 1984, is available on request from Reception Investigation, Radio Telefis Eireann, Dublin 4, Eire.

Satellite Scene

ECS-2 has now moved to $7^{\circ} \mathrm{E}$. Intelsat IV at $1^{\circ} \mathrm{W}$, which operates in the 4 GHz band and carries the AFRTS
downlink amongst other services, has exhausted its sta-tion-keeping fuel and is now in an inclined orbit. The Australian "Homestead and Community Broadcasting Satellite Service" will carry the ABC TV service with stereo sound plus three ABC radio channels, one in stereo. The service is expected to start this year, using the B-MAC system. Receiver prices of around Australian $\$ 1,500$ are expected.

FAI Propagation

The subject of FAI (Field Aligned Irregularities) scatter propagation was discussed in a recent RSGB publication. The E layer irregularities tend to align with the Earth's magnetic field and produce weak scatter signals at distances similar to SpE propagation. One characteristic is that the signal reflection can be from a direction other than the correct great circle direct path, another is that the reflected signals are generally of low level and provide fluttery reception, though they can be present for long periods. FAI propagation tends to occur during the SpE season, i.e. May to early September with an additional small mid-winter peak. The trop-like signals could be confused with distant (about 2,000 mile) single-hop SpE signals such as those received in the UK at times from the Middle East. Any comments/observations would be welcome.

New Products

There have been some changes to the Solent Scientific product range. The price (in kit form) of the u.h.f. f.m. receiver, which is ideal for use with 24 cm ATV f.m. video or for satellite reception, has been reduced to $£ 74.95$ plus $£ 2$ post and packing. A 24 cm ATV transmitter with 1 W output, again in kit form, has been added to the range. It's easy to build, using a PCB, and the output can be preset anywhere in the $23-24 \mathrm{~cm}(1 \cdot 245-1 \cdot 325 \mathrm{GHz})$ ATV band. The output can be increased to 10 W using a complementary power amplifier kit. The original 24 cm ATV converter, with i.f. output at u.h.f., has proved to be very popular and has excellent weak signal performance. For full details of the complete range send a 9×4 in s.a.e. to Solent Scientific, 75 Chalk Hill, Southampton, Hants.

RIC Capacitors Ltd., Budds Lane, Romsey, Hants SO5 0 ZQ have introduced a new range of r.f. interference filters and suppressors. They're listed in a glossy catalogue that also describes types of mains-borne interference and the suppression required. If you have a problem of this sort, send 30 p in stamps to RIC for a copy of the catalogue. As with all types of interference, suppression should be at source rather than at the receiving end.

Panasonic TC2203 (chassis U1)

We've had several of these sets in recently with the complaint no sound or raster. Having replaced the shortcircuit BU208A line output transistor and the overvoltage protection diodes D812/D809 and checked the chopper control transistors Q802 and Q803 we would switch on. At best the result would be severe fluctuation in the picture size, at worst the BU208A and the protection diodes would suffer an early demise. The cause of the problem was in each case a bad spot on the preset h.t. control R810. We now replace R810 before commencing work, remembering to set it for minimum h.t. of course. It costs little and can save much time and expense.
S.I.

ITT CVC5 Chassis

This set came in because the h.t. fuse had failed - a simple case of old age. With the set working we noticed that the colour lock was poor and that the colour would drop out from time to time. In the past we've found that this problem is often caused by mistuning of the ident coil L75d. A check with the scope showed that the tuning was correct though the output was low at 5 V instead of 12 V peak-to-peak. The ripple output from the burst detector was also low, and on checking back further to the collector of the burst amplifier transistor T34d we found that the output was well down. Close inspection showed that at some time a BCl 107 had been fitted instead of a BC171B. Fitting the correct type of transistor and adjusting L75d provided a cure.
M.D.

Philips K30 Chassis

This set suffered from field roll with reduced height as soon as it warmed up. We decided to change all four transistors on the sync/timebase generator panel and this cured the problem. When we checked the transistors we found that one of them measured low gain.
M.D.

Thorn TX9 Chassis

This portable suffered from line drift as it warmed up the customer pointed out that the problem wasn't so bad when he was using his video recorder. We checked around the line oscillator department but everything remained stable, despite using freezer and a hairdryer. It occurred to us to investigate the AV switching to see if the AV channel was more stable. This turned out to be the case and a further check revealed that D916 in the W725 remote control receiver leaked as it warmed up. This didn't matter with the set switched to AV as the diode was then conductive.
M.D.

Körting Skylab 1 (chassis 10)

This colour portable was slow to come on from cold: the picture flickered on and off with line collapse showing in between. After twenty seconds or so the set would operate normally. The power supply is of the discrete component self-oscillating chopper type and a visual check here drew attention to R623 which looked rather hot and bothered - it had fallen in value from 15Ω to $7 \Omega(2 \mathrm{~W})$. It's
in the circuit on the earthy side of the chopper transformer's feedback winding.
P.B.

Mitsubishi CT2630

When the weather was cold the line oscillator wouldn't start due to its supply voltage being only 6 V . D501 which isolates the start-up supply from the 20 V line was found to be short-circuit.
P.B.

Thorn 9800 Chassis

The odd symptom with this set was that it would start up only when cold - if switched off then on again once warm it would remain obstinately dead for about half an hour. We've occasionally had to replace the transistor in the start-up circuit (VT810, a Thorn T6034V), so this was our first move. Doing this made no difference so we examined the inertia start panel more carefully. Whilst probing with a screwdriver there was a small flash which gave us a clue. A meter check then confirmed that the $4.7 \mu \mathrm{~F}$ electrolytic capacitor C810 was unable to discharge because its shunt resistor R810 ($390 \mathrm{k} \Omega$) was open-circuit. At switch-on C810 applies a start-up pulse to the gate of the mains rectifier thyristor W703: if it's charged it can't do this.
T.T.

Luxor $9 \mathbf{0}^{\circ}$ Hybrid Colour Chassis

The width control of one of these sets got warm and had a short life. Replacing the PC92 valve in the width/e.h.t. regulation circuit cured that. The complaint with another of these sets was very intermittent lack of height. Not total field collapse we were told, more like a "cinemascope picture". We watched the set for hours - no days! Finally the raster did collapse to a fairly narrow band, but with perfect linearity. Almost immediately it returned to normal. No amount of prodding around would produce the fault condition, neither would heating and freezing every component in the field timebase circuit. The only thing we could do was to change parts, component by component, and await results. To cut a long story short, there are two $0.047 \mu \mathrm{~F}$ capacitors between the blocking oscillator and output sections of the PCL805: one is the field charging capacitor, the other the coupling capacitor between the two sections of the valve. Replacing them both (to save time) cured the fault - we were not prepared to check further to find out which one was responsible!
T.T.

GEC C2110 Series

The fusible resistor R60 in the h.t. supply was open-circuit and the protection zener diode D51, which is in series with the line output transistor, was short-circuit. The line output transistor itself seemed to be o.k., but rectifier diode D601 which produces the 40 V supply from a winding on the line output transformer was short-circuit. It seemed prudent to check around for further possible damage after replacing these items. This led us to the pincushion distortion correction transductor T602 which, along with three associated resistors, was burnt up. Replacing these various items produced a good, stable picture. The set will function without the transductor but
the vertical scan will be short and cramped - rather as if one of the field output transistors is defective.

The problem with another of these sets was vertical striations - the performance was otherwise very good. It looked like a simple case of an undamped line linearity coil, but the damping resistor was fine. While looking around for further suspects we came to the fifth harmonic
tuning coil L604 which lives on a small panel mounted on top of the line output transformer. It too is damped, or should be - in fact the damping resistor $\mathrm{R} 610(33 \mathrm{k} \Omega)$ was open-circuit, as were the nearby $1 \mathrm{M} \Omega$ resistors $\mathrm{R} 607 / 8$ in the first anode supply circuit. Replacing these items restored correct operation - we can only suppose that they died of old age.
T.T.

Video Servicing

Mike Phelan

As mentioned last month, two colour-separation techniques are used with single-tube domestic colour video cameras, based on either phase or amplitude. We'll start this month by looking at the second chroma processing method which is used with slightly more expensive cameras such as the Ferguson 3V06 and 3V20.

Step Energy Recovery System

This is known as the "step energy recovery" system and, like the arrangement described last month, starts with a stripe filter that's integral with the vidicon's faceplate. Unlike the phase/delay system however the stripes are vertical (see Fig. 1). As with the other system, the vidicon's output consists of a low-frequency luminance component plus a high-frequency colour component whose frequency is dependent on the pitch of the stripes in the filter - typically $4 \cdot 1 \mathrm{MHz}$.

Consider a signal containing no colour information. Maximum output will represent peak white. It will consist of steps however, as shown at A in Fig. 1, since the cyan stripes will remove the red component of the light while the green stripes will remove red and blue. After passing the signal through a low-pass filter the output will be evened out to give us a luminance signal.

Now let's consider the colour side of things. The stripes represent a carrier frequency of $4 \cdot 1 \mathrm{MHz}$. If we pass the output from the vidicon through a bandpass filter with a centre frequency of $4 \cdot 1 \mathrm{MHz}$ we will get the signal shown at A in Fig. 2. Pass this through a pair of envelope detectors to recover the upper and lower sides of the envelope waveform and we get the signals shown at B. These are symmetrical, equal and opposite. Add them together and they cancel, which is what we want since the signal has no colour information. What happens when colour is present in the scene being viewed by the vidicon is that the outputs from the detectors are no longer symmetrical and no longer cancel. Because of the way in which the stripe filter is arranged we then get an R signal from one detector and a - B signal from the other.

A block diagram of the colour signal processing system is shown in Fig. 3. For PAL encoding we require $R-Y$ and $B-Y$ signals of course. Subtracting the luminance signal from R gives us $R-Y$, adding it to our $-B$ signal gives us $\mathrm{Y}-\mathrm{B}$, which is the same thing as $-\mathrm{B}+\mathrm{Y}$ or - ($\mathrm{B}-\mathrm{Y}$). Note that the luminance signal is passed through a second filter before being used to produce the colour-difference signals. This is done to reduce its bandwidth to that of the chroma channel in order to avoid spurious beat patterns.

The circuitry used in the $3 V 06$ camera is shown in
simplified form in Fig. 4. In this case the vidicon's colour signal frequency is 3.8 MHz . The colour multiple signal (CMS) is applied to the base of the emitter-follower transistor X12. High- and low-pass filters then separate the luminance and colour components of the signal. After buffering by X43 the colour signal splits into two paths to go to the upper and lower envelope detectors. D51/D52 detect the part upper of the envelope while D61/D62 detect the lower part of the envelope. Because of the polarity of the signal D51/2 produce -B and D61/2 R. Both circuits include emitter-followers and X55 feeds an adjustable amount of the R signal into the B channel VR53 acts as the -B gain control while VR52 provides

Fig. 1: Vertical colour stripe filter used with the step energy recovery colour-separation system.

Fig. 2: Use of detectors to recover the two sides of the signal envelope.

Fig. 3: Block diagram showing signal processing with the step energy recovery colour-separation system.

Fig. 4: Colour circuitry used in the Ferguson 3V06 camera - simplified.
phase adjustment. This is part of the matrixing process. Further matrixing is carried out by R92 and R93. The luminance signal is introduced at this point - applied to the base of X71 and the emitter of X75. Carrier rejection filters are present in each signal path. The net result of all this is that we get $\mathrm{Y}-\mathrm{B}$ at the emitter of X 76 and $\mathrm{R}-\mathrm{Y}$ at the emitter of X72.

Linearity and Focus

To produce a correct colour display on the monitor, the vidicon's line scanning must be perfectly linear (to ensure that the colour carrier frequency is constant) and of the correct amplitude (to ensure that the carrier frequency is correct). Any carrier frequency errors will result in reduced amplitude outputs, due to the signal loss in the filtering circuits.

Similarly if the scanning spot isn't accurately focused no carrier will be produced at all, as the spot size will exceed the stripe width. Focus setting is in fact very critical. It's
carried out by monitoring the colour carrier with a scope colour is lost before any picture blurring is noticeable on the monitor.

The problem of making the line scan linear is solved by feeding a combination of sawtooth and parabolic currents to the deflection yoke. If this sounds familiar, yes the controls do have the same names as some of the convergence controls used with a delta-gun colour tube. Sometimes there are tilt and second harmonic controls too.

On cameras using delay line colour-signal processing (described last month) the vertical scanning is just as important, in order to maintain the correct spacing between the scanning lines. Errors lead to phase changes (coloured shading). So we have another set of potentiometers - for vertical shading correction.

The method of adjustment is to point the camera at an evenly illuminated peak white card and adjust for zero colour-difference signals at all parts of the raster. Adjustment is very long-winded, has to be repeated several times, and should not be undertaken lightly. For numbers

Fig. 5: Generating and using field and line frequency correction waveforms: (d) Shows dark current shading correction, (e) chroma shading correction.
of presets per square inch, video cameras must be top of the league.

We haven't paid much attention to the luminance channel. It's usually fairly straightforward but there are a few other points that require explanation.

Vidicon Modulation

When all light is removed from the camera, say by putting the lens cap on, a small beam current still flows in the vidicon. This is known as the dark current and is adjustable by varying the grid-cathode bias. Unfortunately the dark current is not quite d.c. - it contains a linefrequency component that would cause shading at one or both edges of the display. Compensation is provided by driving the cathode with a correction circuit that has both sawtooth and parabolic line waveform inputs.

The need for accurate focusing has already been mentioned. Vertical and horizontal waveforms are used to modulate the focus electrode so that the effect of changing beam length on spot shape is corrected.

Fig. 5 shows the generation and use of the various correction waveforms in the Panasonic 3000 camera. My previous comment about presets will be appreciated! Excluding the six controls labelled tracking, the rest of the
circuit should be self-explanatory. We'll come to tracking later.

Dark Current Offset

As mentioned last month, there's an opaque optical black (OB) section on the front of the vidicon. The current produced when this is scanned corresponds to the vidicon's dark current - the OB is actually outside the active area of the target, so there's a difference between OB current and the normal dark current (OB offset). As the dark current is temperature dependent, this offset must be monitored and corrected to zero. Yet another adjustment!

AGC

As the colour carrier in effect rides on the edge of the luminance signal, excessive luminance amplitude will cause peak white crushing and loss of the colour carrier the effect being green burnt-out highlights. To minimise this effect we need some form of beam current limiter and an a.g.c. system to provide a linear gain reduction in the luminance channel. The auto iris does this to a certain extent, but the usual arrangement is to provide gain
reduction while the iris is in operation and remove this when the iris is wide open, thus giving increased gain for low light conditions. The result is a much wider dynamic range. There are three user accessible coarse a.g.c. settings on the Sony 3000.

Gamma Correction

Both the vidicon and the monitor's c.r.t. are non-linear devices in converting light to current and vice versa. To correct for this it's necessary to amplify the luminance signal in a non-linear manner - and the non-linearity must also be adjustable. The colour carrier amplitude is for the same reason reduced at low light levels.

For camera setting up a double grey-scale wedge, which is a rather expensive and accurately produced test chart, is used - see Fig. 6. Three tracking signals are produced by processing the luminance signal with successive low-pass filters and employing level detectors. The tracking range corresponds to roughly a third of the luminance range. By modulating the gains of the R and B channels with these three signals the colour carrier amplitude can be kept fairly constant - this system is used by Panasonic. Further gamma correction is required in each colour channel, also white balance.

Colour Temperature

It's necessary to correct for the different colour temperature of light from different sources - tungsten lighting and an overcast sky, to give the two extremes. Nearly all cameras have a built-in filter, of yellow-orange colour, which is moved into the optical path when the daylight setting is selected. This lowers the colour temperature of the daylight to something like $3,000^{\circ} \mathrm{K}$. We could just as easily insert a blue filter for the indoor setting, but filters reduce the image brightness by an amount called the filter factor and we generally have a greater amount of light to spare when operating outside. Between these two settings we have to compensate for small differences within the shift of $2,000^{\circ} \mathrm{K}$ that the filter gives. Simpler cameras achieve this by means of a hue control that usually varies the gains of the R and B channels differentially. This is adjusted until the colour looks about right. The disadvantage of this system is that a colour monitor isn't always handy.

Fig. 6: Double grey-scale wedge and tracking signals.

It's useful to be able to adjust the hue until a white subject produces no colour signal' - the balance between R and B must then be correct. In some cameras this is done by capping the lens with a translucent polythene diffuser and pointing the camera at a light source. The result should be an output devoid of colour information. The peak amplitude of the CMS signal from the tube is lower when there's no colour carrier, so a peak detector can be used to monitor the CMS signal, the output from the detector being used to move a line on the EVF display. This system is used in the Sony 3000 camera, which also has a four-position light-source switch - the four positions switch a series of resistors into the gain-controlled sections of the R and B channels, two of the positions inserting a filter.

Other cameras carry out the white balance adjustment automatically by storing the amplitudes of the colourdifference signals produced by the neutral light source via the diffuser lens cap whilst in the "set white" mode. In subsequent use these two values determine the gains of the R and B channels.

This business of colour temperature might puzzle you: after all we don't ourselves see any difference in colour when the colour temperature of the light source is changed. If the image is recorded however then the difference in overall colour becomes evident. Why this should be so is not fully understood. Recent theories suggest that although the eye sees a scene in similar fashion to a camera tube - or colour film - the brain adjusts the results so that the image we actually "see" depends on the colour difference between adjacent elements rather than their actual colours. When we record an image, the photograph or monitor picture is only a part of the total scene we see, so we see it as it was recorded without mental correction.

Servicing Hints

We'll close with a few quick servicing hints.
No results, camera "dead", zoom motor not working: check the camera lead which may be open-circuit near the plug, the fuse in the camera, and the regulator which may be producing no output.

No monitor picture, sound o.k.: check the vidicon's high-voltage supplies - if missing the converter or line output stage is probably at fault, though failure of the field timebase might result in the protection circuit stopping the line oscillator.

Green picture with no chroma: adjust the electronic focusing.

Very faint display with vague, moving vertical bars: the camera's field timebase has failed.

Image or bright marks on the picture, remaining when the lens is capped: vidicon target has a burn caused by pointing the camera at a bright light. Try pointing the camera at a white card for fifteen minutes. If this produces no improvement the vidicon will have to be replaced. It's a long and expensive job - don't undertake it without the manual and all the equipment specified in the manual.

What Next?

That's it for now. Next time we'll look at something new, nothing to do with either VCRs or cameras but an item that many TV shops are now selling and which many service engineers will be called upon to repair - yes, the home computer!

Sony KV1820 GCS Conversion

Keith Cummins

Recently I bought a Sony KV1820UB from a colleague: the set was a non-worker and had caused several headaches during attempts to get it to work. It turned out that the line output transformer was defective, with a shorted turn, and that this had caused the line output gatecontrolled switch Q901 (SG613) to fail. I rewound the transformer, which was a tedious task but not costly as I was doing the job myself. The next step was to ring my ex-colleagues in the TV trade to see whether they could supply an SG613. The conversation went along the lines:
"Oh, we don't service those sets any more. They're too much trouble: you can easily blow up the line output device and they're fifteen quid a throw. In any case we've not got one, though we could order one for you. Are you sure you want to risk fifteen quid? How come you're getting yourself involved with one of those sets anyway? I'd keep clear of it if I was you."
So I said I'd think the whole thing through. What I meant was that I couldn't see why the line output device had to be a GCS - most other manufacturers at the time used a perfectly ordinary line output transistor that costs much less. A perusal of the ads in Television showed that the BU208A is available for around $£ 1 \cdot 65$. That's more like it! All I had to do now was to investigate the possibility of fitting one.

From the mechanical point of view the BU208A in its TO3 can won't fit where the SG613 lives: there's plenty of room just above the SG613's site to drill the holes necessary to mount a BU208A however. In fact the top SG613 mounting hole can be used as the bottom hole for the BU208A. The TO3 mounting kit washer can be used as a template to mark out the drilling centres.

Electrical Considerations

The idea appeared to be practical from the mechanical point of view therefore. What about the electronic aspects? Fig. 1 shows the original circuitry involved. The two 33Ω parallel resistors $\mathrm{R} 809 / 10$ limit the gate drive current in the positive direction while diode D805 provides a solid negative turn-off for the SG613. This circuit is not suitable as it stands for driving a BU208A: the base drive requirements for a switching transistor are stringent - and are not too well understood.

A line output transistor must be switched on and off rapidly to minimise dissipation, which can rise to a dangerous level if the switching action takes too long. The main difficulty arises with the switch-off stage of the cycle. Driving the base negatively will reverse bias the baseemitter junction, cutting off the flow of emitter current, but a considerable charge will remain in the base region and the transistor will not cease to conduct until this has been removed. This process occurs while the collector voltage is swinging positively due to the flyback pulse. There are two problems here: high dissipation, aggravated by switch-off delay since the base-collector junction is reverse biased, behaving as a slow-recovery diode. As the current falls and the collector voltage increases, heating occurs at the base-collector junction. The reverse recovery time increases with temperature, so the effect is cumula-
tive and can result in destruction of the transistor.
During the transitional turn-off phase of the transistor's switching the base current must not be optimised to minimise the charge storage time: the requirement is for minimum current fall time, which occurs when the collector and emitter currents fall to zero simultaneously. One way of achieving this result is to place a small inductance in series with the base (in practice the driver transformer

Fig. 1: Original circuit used in the Sony KV1820.

Fig. 2: Modified circuit with a BU208A transistor as the line output device. L806 is replaced by a link; R809 is removed; R810 is replaced with a 2.2Ω 2.5W resistor; D805 is replaced with a $1 u F, 63 V$ non-polarised electrolytic; R811 is removed; the $33 \Omega 2.5 \mathrm{~W}$ resistor is added across the pins of the BU208A (see Fig. 4).

Fig. 3: Waveforms. (a) BU208A collector; (b) BU208A base. Scope - Philips 3212 with X10 probe.

Fig. 4: Component layout around the BU208A.
is generally designed so that its leakage inductance serves this purpose) and to include resistance to limit the reverse base current during this critical part of the cycle.

During the turn-on phase the current must rise steeply, preferably with overshoot, to a level at which the transistor is held saturated for the on period of the cycle.

Practical Circuit

The drive circuit adopted is shown in Fig. 2. The $2 \cdot 2 \Omega$ resistor in series with the base limits the current for both forward and reverse base drive. The $1 \mu \mathrm{~F}$ capacitor provides overshoot by its shunting effect on the resistor. The $3 \cdot 3 \mu \mathrm{H}$ choke is already present in the form of L804 and appears to be satisfactory as the inductance required. The 33Ω base-emitter resistor is fitted directly across the transistor's pins while the small choke (L806) in series with the GCS's cathode in the original circuit is shorted out.

An oscilloscope and variac were essential to enable the conditions to be monitored and thus ensure that the transistor's operating conditions are satisfactory. Fig. 3(a) shows the collector voltage waveform. The critical area lies in the $4 \mu \mathrm{sec}$ period during which the voltage starts to rise: lack of squareness here shows that energy is being dissipated while the transistor is turning off. There's only a slight rounding in the corner however, indicating that the dissipation has been minimised - and by considering the earlier remarks about base drive it will be seen that some of this dissipation is distributed in the base circuit resistors. High-voltage switching transistors are very reliable provided they are driven correctly. The peak voltage of approximately $1 \cdot 15 \mathrm{kV}$ is well within the device's quoted maximum collector-emitter voltage rating (1.5 kV).

Fig. 3(b) shows the voltage waveform at the base of the BU208A, which requires greater drive than the original SG613 device. There appears to be plenty of drive available however and the driver transistor seems to cope easily. The losses in the driver transformer T803 are greater: this didn't appear to cause a problem and a small heatsink was added to the top, using Araldite. The transformer now runs cooler.

Conclusions

What can we conclude from all this? The line output device acts as a switch, and we can substitute one sort of switch for another. The suggested replacement is cheap and has a good track record for reliability compared with the SG613. The modifications are quite simple - the most demanding bit being to drill the heatsink to take the BU208A (this task can hardly be classed as a mind bender!). We can take heart from the fact that if an accident does occur it's not likely to be expensive. The parts required are generally available, not Sony specials. Good engineering practice is essential of course - plenty of heatsink compound on both sides of the BU208A's insulating washer and good soldered joints. Fig. 4 shows the layout at the BU208A.

It seems to me that this modification would also work for the KV2000UB. The KV1820UB I modified was a Mk. II version. Remember that when carrying out any repairs in the chopper and line output stages of these receivers a variac is essential - as mentioned in previous trouble-shooting articles in the magazine. I found David Botto's articles in the August/September 1984 issues very helpful during my investigation.

next month in

- SATELLITE TV RECEPTION

Satellite TV might not be with us yet as a broadcast service but V satellites are up there and signals are about. You may be wondering whether it's time to get acquainted with satellite TV techniques. Hugh Cocks provides a practical guide to what's involved.

IR REMOTE CONTROL TESTER

This useful little device, which is cheap and simple to build, enables you to make an instant check on whether or not an IR remote control transmitter is wor<ing. With a working transmitter pointed at it the tester will give an audible response - an LED indicator is also included so that older \mathbb{R} handsets that give an "unmodulated" output can be checked.

- TEST PATTERN PROGRAM

A program for the Oric-1 microcomputer giving the following paterns: dots; crosshatch; splitscreen bars; bars with a three-frequency multiburst; a centre circle on any of these patterns; plus a plain raster in black, white or any of six colours.

- TELETALK

Malcolm Burrell discusses a question of diagnosis - what to make of some reported fault symptoms. Plus cuidance on some VCR reception problems.

- A LOOK AT MICROCOMPUTERS

Plicrocomputers ir a TV magazine? Well, you use a TV set/monitor for the display, and many TV technicians are now being asked to handle them. The microcomputers sold during the boom period over the last couple of years are now going ex-guarantee, so there may well be opportunities for profitable work. Anyway, we're taking a look to see what's involved.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

IF YOU DONT SEE IT LSTED ASK FOR QUOTE. GIVE MAKE MODEL LOCATION. REMEMBER TO ADO 0.60p POST 8. HANDUNG. ADD 15% VAT TO TOTAL

Letters

A DEMANDING JOB

When I joined the trade fourteen years ago my job was very clearly defined: I was a radio and TV engineer. Then came the increase in the number of colour sets (more training) and the introduction of VCRs (yet more training). We're now servicing videotex equipment, microcomputers, microwave cookers, music centres, audio recorders and laser video disc players.

Despite all this increase in what we're expected to be able to deal with, several things have not changed.
(1) We don't have our own union. Most people are lumped together in the EETPU with the plumbers and power workers. In my six years of being a member I can't recall a single relevant article in the quarterly magazine.
(2) Large firms seem to be unwilling to give time off for further education. During my fourteen years in the trade I've been to college night classes every year (one year on my day off), all in my own time. This is in sharp contrast to organisations such as British Telecom and the armed forces, where time off for education is given.
(3) Our professional image remains that of the valve tapper.
(4) Colleges don't arrange the courses for higher qualifications, e.g. H.N.C., T.E.C., etc., so that they can be completed at night class.

It would be nice to have a correct job title, and for people to be aware of the training we have to undergo. William G. Lockitt, M.I.S.M., L.C.G., Rhyl, Clwyd.

PRICE COMPARISONS

A ten per cent increase in the price of Television is announced in the January issue. The magazine will be hit that much harder should VAT have to be added to this after the budget. You also report that the BBC is asking for a 41 per cent increase in the licence fee. Yet the price of the equipment required for reception has remained roughly the same over the years - despite considerable increases in the features offered, e.g. colour and improved definition. I've not been able to discover what the licence fee was in 1956, but the other prices compare as follows:

	1956	1985	Increase
Practical Television/Television	$£ 0.0625(1 / 3 \mathrm{~d})$	$£ 1.10$	$1,760 \%$
State of the art receiver			
chassis, as advertised	$£ 32.40$	$£ 41.25$	27%
CRT as advertised	$£ 11.00$	$£ 29.75$	270%
TV licence	$?$	$£ 65^{*}$	$?$

${ }^{*}$ If proposed increase is implemented.
The 1956 chassis was the Premier Radio 13-channel design advertised on the back page of the August issue. The 1985 chassis was an ITT colour one, complete from Sendz, advertised on page 176 of the January issue. Both chassis were less tube, but VAT has been added to the 1985 advertised price (why do advertisers insist that we do this arithmetic every time?). The CRT comparisons are between a 16in. monochrome type with ion trap from Laskys (page 1, August 1956) and an 18in. PIL tube with scan coils advertised by Sendz. Neither type necessarily goes with the chassis quoted.

In the shops a 12 in . colour portable sells for around $£ 150$ compared to about $£ 50$ for a 12 in . table model in

1956, an increase of 300% - comparing monochrome sets however the price remains much the same, but with a dramatic decrease in weight and power consumption also two extra channels, improved definition and the option of battery operation.

John de Rivaz,

Porthtowan, Cornwall.

Editorial comment: Setmakers have been able to keep prices down because of highly automated plants, large production runs and the economies of scale generally. Even so their achievement is remarkable - you won't find such price stability in the face of inflation in many other fields. The price of surplus equipment is a law unto itself of course. To make a comparison with magazines is not to compare like with like. Printing can and has been made more efficient, but editorial, advertising and distribution productivity cannot be improved by employing mass production techniques! Television is larger in size and in the number of pages than in 1956, while the production quality has been much improved.

THE MIGHTY RGDs

Chas E. Millers's article on The Mighty RGDs gave me great pleasure. You will quickly understand why when I tell you that I was the assembly foreman in the late forties, in charge of production of the B2351T and subsequent $1700 / 1800$ series. And what sets they were! They weighed a ton - even the power unit in the B2351T required two chaps to hoist it into the cabinet, with its massive Woden transformers and chokes.

Each set was assembled on a trolley which was pushed up a ramp to bring the assembly of the tube and control panels to eye level. All this to produce a little 12in. picture on a CRM121/3 tube with a rubber mask to give the correct aspect ratio - the price of one of these sets was nearly $£ 300$. As Chas says, the name RGD is now almost forgotten.
W.H. Bate,

Bridgnorth, Salop.

THE THORN 1400 CHASSIS

Brian Renforth (letters, January) made some very fair comments on the Thorn 1400 chassis. I still have a few in the field, working with their original tubes - in fact I've put tubes from several 1400s into later 1500s and got further useful life from them. The main reason for scrapping 1400s has been holes burnt in the board, either due to the system switch jamming or a massive burn-up in the line output stage area.

The rental companies didn't like these sets very much when new. It didn't seem possible to get good results on both systems. Without the need for 405 , and with a bit of care, superbly crisp 625 -line pictures can be obtained however. Thorn Rentals issued pages of suggested modifications, mainly to cure caption buzz which could be deafening. Nowadays ceramic filters would be cheaper and quicker. One or two modifications are still relevant however. To centralise the line hold change R70 to $33 \mathrm{k} \Omega$ and R62 to $2.7 \mathrm{k} \Omega$. To cure the width circuit burn-up problem, change the control to $2 \cdot 2 \mathrm{M} \Omega$ and R143 to $680 \mathrm{k} \Omega$.

I note the comments about reconnecting the earthing strips to the chassis. Thorn Rentals advised removing the strap between the u.h.f. tuner and chassis and the one between the on/off switch bracket and chassis to cure hum on 625 lines. This hum and/or ripple is noticeable if C52 is
still $4 \mu \mathrm{~F}$ - change it to $12 \mu \mathrm{~F}$.
All in all it's a very nice chassis once the troubles have been ironed out. Quite a few people changed to later monochrome sets for no other reason than fashion, when the tube still had years of life in it, and got poorer value for money. Also, what a pleasantly accessible layout!
Roger Burchett,
Hythe, Kent.

THORN 950/1400 CHASSIS

May I offer the following comments on Brian Renforth's letter in the January issue?
(1) While the Thorn 1400 chassis is capable of giving good results, I can also recommend the earlier 950 Mk II chassis which is rather more solidly constructed. It has much in common with the 1400 electrically but one area of difference is the vision i.f. strip, which produces much better results (assuming the c.r.t. is in good order). The reason for this would appear to be a much superior group delay performance, providing crisp transitions on vertical edges and resolution (just) of all the frequency gratings on the IBA ETP1 electronic test pattern (Channel 4). The gain and selectivity are also excellent and 625 -line v.h.f. operation is just as easy.

Most of these sets were fitted with rotary u.h.f. tuners of the two-speed variety, though some had push-button tuners. The choice is dictated by the use to which the set is to be put, i.e. DX-TV or domestic viewing.

I've yet to come across a mass-produced monochrome TV chassis that gives better results than the 950 .
(2) Many modifications were made to the 1400 chassis during its long production run, mainly to improve the
a.g.c. operation and to reduce severe intercarrier buzz. The a.g.c. modifications are: $\mathrm{C} 130.33 \mu \mathrm{~F}$; $\mathrm{C} 400.015 \mu \mathrm{~F}$; R4 $5.6 \mathrm{M} \Omega$; R $73.9 \mathrm{M} \Omega$; R $431 \mathrm{M} \Omega, 0.5 \mathrm{~W}$; R 46 deleted. Intercarrier buzz modifications: R $368.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$; R 74 and R75 both $10 \mathrm{k} \Omega$; R35 taken to the junction of an added potential divider consisting of R176 180k Ω (top) and R175 $22 \mathrm{k} \Omega$ (bottom), both $5 \% 0.5 \mathrm{~W}$, connected across the 625 -line contrast control R6, instead of to the junction of R3/Z1. I can thoroughly recommend these modifications. See the schedule E service manual supplement for further modification details.
(3) I've also encountered the problem with the 30FL14/ PCF808 valve, which was only ever used in these Thorn chassis. The secret is to specify only a Mazda UK manufactured version of the valve - this can be readily identified by the bright, circularly perforated pentode section screen. When Thorn closed the Rochester valve factory several years ago they continued to market Mazda branded valves obtained from other sources. These never performed as well as the originals - the main problems were with the 30FL14/PCF808 and the 30C18/PCF805.
(4) Another useful modification on both the 950 and 1400 chassis is to fit a modern 6 MHz sound section using the familiar ceramic filter/TBA120 combination. This greatly reduces the severe intercarrier buzz that plagued the original design.
(5) I've been using a restored 950 Mk II receiver for the last couple of years as a DX set, both on u.h.f. and v.h.f. (405 and 625), with excellent results.

Finally, a point to note was the abysmal state of the IBA's 405 -line v.h.f. broadcasts over the final couple of years - the pictures were so poor they couldn't be used for normal viewing. The cause was mainly defects in the 625/

405 -line standards converters. It was quite a revelation to compare the quality of the IBA and BBC 405 -line broadcasts. The BBC maintained a high standard to the very end. Sigh of nostalgia . .
D.J. Hazell,

Witney, Oxon.

COLOUR BAR PROGRAM

I would like to suggest the following changes to the computer colour bar program (January):
(1) Alter line 10 to read "MOVE 0,1023 ". This will fill in the missing portion of the white bar.
(2) Add line 8 , reading "VDU23;8202;0;0;0;". This will switch off the flashing cursor.
(3) Alter line 100 to read " $\mathrm{A}=\mathrm{GET}$ ". This makes the computer wait at line 100 until a key is pressed: whilst it's waiting the prompt does not appear on the screen.
(4) Alter line 110 to read "MODE 7 ". Amongst other things this will switch the flashing cursor on again when one of the keys is pressed in line 100.

Finally the BBC Model B's BNC video output socket gives monochrome only. It can be converted to colour simply by closing link 39 on the computer's main circuit board (see page 488, Advanced Uses Guide).
Brian Wheatley, T. Eng.,
Spalding, Lincs.

VINTAGE SET ON OFFER

Amongst my recently deceased father's possessions is a completely intact Philips Model 1100U TV set dating from 1951, though I don't know whether it's in working order. The model was described by Vivian Capel in your April 1980 issue. Perhaps a collector or museum might be interested in this vintage TV item? Anyone interested should write to me at the address below - it'll have to be collected of course.
Alastair G. Pink, M.Sc., 98 Manor Road, Borrowash, Derbyshire DE7 3LN.

STREAMLINED FAULT FINDING

For some time I've been toying with a similar idea to that outlined by Colin Guy in the January issue. What I have in mind to do is to use computer storage in conjunction with information from manufacturers' technical departments in order to provide an up to date service on fault problems. Subscribers would have direct access by telephone, with a fixed charge per call. This all depends of course on obtaining permission from various sources to use information. I feel that there's a promising market here and would like to ask the opinions of engineers generally on the idea. If enough interest is shown I might give it a try, which I'm sure would be of benefit to many people.
Robert Easton,
131 Rose Avenue, Upton,
Pontefract, W. Yorks WF9 1DS.

I was very interested to read Colin Guy's letter in the January issue. I've compiled an extensive fault list based mainly on reports in Television from January 1983 to the present day, covering dozens of makes and chassis types. Each fault is recorded on a card giving the manufacturer, model/chassis, where the information came from and the symptoms. Both common faults and obscure ones that
have caught engineers out from time to time are listed, including some from our own workshop experience - not wishing to get caught out again!

I feel that the information could be expanded in three ways. First, which would be the bulk of the file, would be more common faults. Secondly there could be modifications provided by manufacturers, mainly on troublesome problems and ways around them. Lastly, a boon to every engineer (I wish I had more information of this kind), there would be step-by-step guides to get a set in the trip or shutdown state going. For example, the first time I was confronted with a Rank T20 chassis that gave no results though the 200 V h.t. line was present I was exasperated until a friendly engineer told me about adding a resistor across the start-up capacitor etc. Such information on various chassis would be a valuable time saver and would take the pain out of many a long, frustrating day.

It's taken me a long time to write these cards out but, as Colin Guy says, employers should welcome the prospect of having access to information of this type. For the engineer who might think that consulting a file is taking the easy way out I'd say that the information is not intended to take over from thinking about fault conditions but rather as an extra tool when the going gets tough.

If someone could get going with the provision of a service of this sort I'd say great, hurry up!!
Geoff Fardon,
Station Television, Llanelli, Dyfed.

PROGRAM WANTED

Having contemplated the purchase of a colour bar generator for some time, but been put off by price and uncertainty about which model to choose, I was most impressed by the microcomputer colour bar program in the January issue. The only problem is that I own a Sinclair Spectrum, not a BBC B! Has anyone devised a colour/monochrome test pattern program for the Spectrum?
Oliver J. Bowry,
Southall, Middx.

PLUGTOP HINTS

The plugtop mystery has been discussed at length in recent months. Although we may not have come to firm conclusions as to why the terminal screws become loose and why the neutral pin in some cases gets burnt, there are some ways in which the various problems can be cured. The following methods have proved to be very successful over a period of time.

The problem of loose terminal screws can become worse if the manufacturer's soldered cable ends are not cut off. Remove these and, as Keith Cummins suggests (January), strip the conductors back so that they can be bent over to make a double thickness. To cure loose screws once and for all, obtain a small tube of Loctite Torque Seal. Apply a very small amount to the upper half of the screw thread then tighten the screw into the conductor. When the seal dries the screw will remain tight, though loosening it with a screwdriver is simplicity itself!

Remember to check the plug's fuseholder to see that it's tight. This is a weak point in some cheap plugtops.

The above points are all worth checking and trying. And next time you have a Sony KV1810 in for repair with both GCSs blown, check the plug!

Finally a safety point. Always connect the live wire properly when wiring a standard 13 A plug. Cut to the correct length and connect. All too often the live wire is left the same length as neutral, with the surplus wire looped back. The reason for cutting the wire to the correct length is that if the cable is pulled with such great force (it does happen!) that even the cable grip can't hold, the live
wire will be pulled from its terminal while the neutral and earth leads will usually be left connected. Thus with the neutral wire connected to chassis the risk of the chassis becoming partially live as a result of no common return when the neutral wire has been yanked out is avoided.
Simon D. Tredinnick,
Penzance, Cornwall.

Adding a Second Reflector

An existing u.h.f. aerial system may need to be upgraded for several reasons. The usual one, mainly in fringe areas, is that new buildings erected between the transmitter and the receiver interrupt the line-of-sight path required for satisfactory reception. This results in either signal attenuation or, depending on the position of the new buildings in relation to the receiving site, severe ghosting. Another reason for upgrading an aerial system is that whilst the existing array might provide sufficient signal for general family viewing it may not be good enough for teletext reception or for producing good video cassette recordings.

A further consideration relates to fringe areas where there's a choice of more than the four local channels. The use of diplexers and splitters to combine the outputs from two or more aerials to provide extra channels can introduce sufficient insertion loss to mar the picture quality on one or more channels. Similarly, attempts to use a single aerial array without a preamplifier to feed two separate TV sets can result in poor picture quality.

Where problems are experienced the first thing to do is to check for corrosion and damage to the aerial system and feeder. If these are in order, a simple and efficient method of providing extra forward gain while vastly reducing ghost images is to add an extra, larger reflector to the array.

Reception of the four Crystal Palace u.h.f. transmitters at the author's location in Southgate, N. London, tends to be sporadic because of the distance and the hilly nature of the surrounding terrain. The nearest local relay is at Alexandra Palace. This station is not receivable locally due to the low output power and again the local topography.

Some months ago reception of BBC-1 from Crystal Palace using a Yagi array in the loft became unsatisfactory because of the construction of a new tall building near the top of a nearby hill and directly in the signal path: the building and the giant cranes used during its construction resulted in an extremely sooty picture that was very smeary and accompanied by several ghost images. BBC-1 viewing was in fact quite intolerable. As a first, temporary measure a preamplifier was added. The BBC-1 pictures were still poor, so the preamplifier was removed.

The next step was to raise the aerial to as high a position as possible in the roof space. This gave better BBC-1 reception but the ITV picture was now smeary. Reception of Channel 4 and BBC-2 remained good throughout these experiments - even with the aerial in its original position. I then decided to try adding an extra reflector to the aerial array: this improved reception on all channels dramatically, bringing ITV up to standard and providing near-enough uniform reception of the four Crystal Palace transmissions.

Since the aerial is mounted indoors, a simple method was used to make the second reflector. A section of

Ivor Nathan

aluminium foil (baking foil is ideal) was cut as a single piece measuring about 20 by 30 in . so that when folded and stretched smoothly over a piece of rigid plastic sheet it would, with the edges folded and overlapped, form a rectangle measuring 9 by 13 in . (group A). The arrangement is shown in Fig. 1. Two flat plastic lids from empty ice-cream containers were found to be ideal: taped together side by side, they formed a rigid surface measuring 9 by 13 in . After covering the entire surface, back and front, with the single piece of aluminium foil the new reflector was enclosed in a plastic bag to provide protection. A round plastic ice-cream container was used to support the reflector and secure it to the end of the boom. The six-inch lid was bolted to the reflector while the body of the container was fixed to the end of the boom by driving a wood-screw through its centre into the plastic bung in the end of the boom. The two were then simply clipped together. The body of the container, $31 / 4 \mathrm{in}$. deep, placed the extra reflector at a suitable distance behind the existing reflector (observe correct polarisation).

This wouldn't do for an outside aerial of course. A piece of aluminium sheet 9 by 13 in . would be suitable, mounted rigidly at the rear of the boom.

Adding an extra reflector has given me perfect reception at this difficult site, with no need for a preamplifier. A second reflector that's larger than the existing one will give greatest improvement at the low-frequency end of the band. The design of a wideband Yagi aerial is something of a trial-and-error business since the Yagi is basically a narrow-bandwidth system. The addition of a second reflector along the lines described here cannot fail to help in difficult conditions however.

Fig. 1: Extra reflector. (a) Forming the reflector from plastic lids and aluminium foil. (b) Mounting arrangement.

Fig. 2: Assembling the extra reflector on the boom.

Dynamic Width Control

George R. Wilding

To produce the flyback, the line output stage in a TV set is arranged as a resonant circuit. Fig. 1 shows the basic transistor line output stage. At the end of the forward scan, when the c.r.t.'s beam has reached the right-hand side of the screen, the output transistor Tr 1 is switched off by the drive waveform. Capacitor C 1 then tunes the output transformer and scan coils to produce a half cycle of oscillation, the flyback pulse. At the end of the pulse the beam has been returned to the left-hand side of the screen. We don't want the oscillation to continue, so when the circuit tries to swing negatively the efficiency diode D1 conducts, damping the tuned circuit and providing a current path to give the initial part of the forward scan. In large-screen sets the collector-base junction of the transistor may be used to provide the efficiency diode action.

Timing

It follows from all this that from the timing point of view the important thing is the exact time when the output transistor is switched off to initiate the flyback. The resonant circuit then produces the flyback and the point at which the transistor is switched on during the forward scan could be adjusted to control the width, i.e. the power in the circuit.

Generating the EHT

An advantage of this basic scheme is that the flyback pulse can be stepped up across an overwinding on the transformer and fed to a rectifier to produce the e.h.t. for the tube.

Valve Circuit

A simple valve line output stage is shown in Fig. 2. No tuning capacitor is shown because in a valve line output stage the output transformer's self-capacitance is used to tune the flyback. Dynamic width control can be achieved by feedback to adjust the bias at the output pentode's control grid. This is done by feeding the flyback pulse to a v.d.r. which acts as a rectifier, producing a bias voltage to add to the self-bias produced by the pentode itself (grid current charges the coupling capacitor negatively when the valve saturates). Preset width control is achieved by feeding an offsetting positive voltage to the circuit - the control is often labelled "set boost". Since the amplitude of the flyback pulse depends on the conditions in the line output stage, dynamic width control is achieved, i.e. the operation of the stage is stabilised to counter supply voltage and load variations.

Problems with Transistors

This arrangement is possible because although a line output valve is used as a switch it doesn't have to be switched on and off all that sharply. So the drive can consist of a steep sawtooth or a pulse with a sloping leading edge, the point along the positive-going edge of the drive waveform at which the pentode switches on
being controlled by the bias voltage at its control grid. This sort of thing will not do for a transistor, which must be switched from off to on and from on to off very rapidly to minimise power dissipation in the device. To provide dynamic width control with a transistor line output stage we can vary the mark-space ratio of the drive waveform, vary the effective h.t. voltage applied to the stage, or add

Fig. 1: Basic transistor line output stage.

Fig. 2: Valve line output stage with pulse feedback to stabilise the operating conditions. The VDR acts as a pulse rectifier, producing a negative bias voltage proportional to pulse amplitude.

Fig. 3: Line output stage circuit, Thorn TX10 chassis.

Fig. 4: Basic transistor line output stage with inductor to provide width control (a). Modified arrangement with highlevel EW diode modulator circuit (b).

Fig. 5: Line output stage circuit used in the Thorn TX9 chassis - simplified to show basic operation.
a controlled variable impedance in series with the scan circuit.

The technique of varying the mark-space ratio of the drive waveform is used in chopper circuits, which operate in much the same way as a line output stage. The Syclops combined chopper/line output stage used in the Thorn 9000 chassis employed the technique. The other two methods have the advantage that the circuitry used for the purpose can also be used for EW raster correction. In most chassis varying the h.t. voltage applied to the line output stage is not a practical proposition since the e.h.t. is obtained from the line output transformer - and we don't want it to vary with the EW correction. In some chassis however the e.h.t. is generated elsewhere. An example is the Thorn TX10 chassis, where the e.h.t. is generated in the chopper circuit which employs a diodesplit type of transformer. The TX10 chassis makes use of the technique of varying the h.t. applied to the line output stage to provide dynamic width correction.

Thorn TX10 Chassis

The TX10's line output stage circuit is shown in Fig. 1. Tr831 is the line output transistor whose emitter is returned to chassis via R835 and the Darlington transistor Tr851 which provides the dynamic width control action. The d.c. voltage across Tr 851 can be varied between 0 and 40 V and is typically 22 V . Thus the effective h.t. applied to
the line output stage is reduced from 150 V to typically 128 V .
The base of $\operatorname{Tr} 851$ is driven by the pnp transistor $\operatorname{Tr} 852$ whose d.c. base voltage is set by the width control. For EW correction a field frequency parabola derived from the field scan circuit is applied to Tr852's base via the pincushior control. The d.c. conditions in the dynamic width control circuit are stabilised by R851 which applies negative feedback from the collector of $\operatorname{Tr} 851$ to the emitter of Tr852.
Now no matter how good the e.h.t. regulation there will be some e.h.t. variation with brightness changes, causing slight width and height variations. This is known as breathing. To minimise the effect feedback is applied to the emitter of Tr852 from the earthy end of the e.h.t. circuit via R867. Breathing correction is also applied to the field timebase.

Thorn TX9 Chassis

In the Thorn TX9 chassis the e.h.t. is derived from the line output transformer in the conventional way and width control/EW correction is effected by inserting a variable impedance in series with the scan coils. The problem of keeping the e.h.t. constant despite the application of EW correction remains. It's resolved by using a diode modulator.

Before looking at the actual circuit, let's see how the basic line output stage is modified by the use of a highlevel diode modulator. Fig. 4(a) shows a basic transistor line output stage with impedances in series with the scan coils to provide width and linearity correction. Tuning capacitor Cl controls the resonant frequency of the flyback. Fig. 4(b) shows the arrangement with a high-level diode modulator added. The tuning capacitor Cl is now connected in series with a second capacitor C3: since the value of this capacitor is much larger than that of C 1 , the main flyback tuning is still provided by C 1 . The modulator diodes are connected in series in the efficiency diode position and the width control is replaced by a variable impedance to which a parabola for EW correction, superimposed on a d.c bias for width setting, is applied.

Fig. 5 shows a simplified circuit of the TX9's line output stage. It can be seen that the variable impedance consists of C198 and the Darlington transistor Tr72. L78 simply filters out the line frequency component so that this doesn't affect Tr72. The input to the base of Tr72 consists of a parabola plus a d.c. component set by the width control, supplemented by an anti-breathing voltage. It's important to appreciate that in addition to the flyback tuning the scan coils are resonant with the coupling/Scorrection capacitor C188. With the diode modulator circuit included, the energy in the scan circuit is divided between C188 and C198: the Darlington transistor represents a variable shunt across C198 to modify the width, which is maximum when Tr 72 is fully conductive, shorting out C198. The combined action of the tuning inductor L77 and C185 maintains the correct flyback tuning/e.h.t.

Thorn TX90 Chassis

Many of the latest generation of colour tubes are pincushion distortion free, so that EW correction is not required. Thus when Thorn came to design the smallscreen TX90 chassis an entirely different approach to width control, i.e. stabilising the voltage conditions in the line output stage, could be adopted. The circuit used (see

Fig. 6: Line output stage circuit - again simplified - used in the Thorn TX90 chassis, with chopper-controlled boost supply.

Fig. 6) provides an interesting contrast to those just described.

The line output stage is operated from a boosted h.t. rail of 95 V . Compare the circuit with the valve circuit shown in Fig. 2: D114 is the boost diode, equivalent to V2, and C 189 the boost reservoir capacitor, equivalent to Cb . Here the comparison ends! The unstabilised 70-95V h.t. supply is obtained from a transformer-fed mains rectifier circuit. Stabilisation is achieved by a chopper
circuit that regulates the boost voltage: $\operatorname{Tr} 107$ is the chopper transistor which is controlled by $\operatorname{Tr} 108 / \operatorname{Tr} 111$ these two transistors generate a variable mark-space ratio drive for $\operatorname{Tr} 107$. The line output part of the circuit, Tr112 etc., is conventional.

The extreme conditions are with an h.t. input of 95 V or 70 V . If the h.t. reaches 95 V D 109 conducts and C191 is charged to 95 V : the whole chopper/boost circuit is shorted out. With the h.t. at 70V Tr107 remains switched on and the boost diode charges C 189 , generating 95 V across C191. At voltages between 70 V and $95 \mathrm{~V} \operatorname{Tr} 107$ acts as a chopper whose reservoir is L120. When Tr107 switches off, the voltage at its collector swings positively and D109 conducts, supplying energy to the boost rail. Thus Tr107/L120/D109 supplement the action of D114 to maintain the boost voltage at 95 V . The subtlety of the action is that the energy stored in L120 depends on Tr107's on/off times which are in turn dependent on the boost voltage.

The variable mark-space ratio chopper drive waveform is produced by Tr108 which acts as a pulse-width modulator. The d.c. bias at the base of Tr 108 is set by the error detector transistor Tr111 which samples the boost voltage at its base. The other input at the base of $\operatorname{Tr} 108$ is a line-frequency sawtooth which is produced by the integrating circuit $\mathrm{R} 222 / \mathrm{C} 186$. Thus Tr 111 sets the point, depending on the boost voltage, at which $\operatorname{Tr} 108$ switches on along the positive-going slope of the sawtooth.

Perhaps we could call it a dynamic boost/width circuit!

Problems with Peritel

Harold Peters

You've got to hand it to the French. If they don't want oriental goods imported into their country they make it so difficult that the entrepreneurs give up. The most recent example was when foreign VCRs were routed through a small, inland customs post capable of clearing only a handful of machines per day.

In the "golden age" of TV they used the moribund 819line system as a deterent. "No 819 lines, no entry" was the rule, which worked for quite a time till something else had to be thought up. The new obstacle hit upon was the

Fig. 1: Physical details of the SCART socket, showing the pin numbering and some of the weak points in the mechanical construction of the connector.

SCART socket, a 21 -way connector that's been a mandatory feature on all TV sets sold in France since 1980. It served its purpose well enough until recently, when with the coming of home computers etc. people (you've guessed it!) actually started to use the thing. It began giving trouble, culminating in a wave of complaints when the pay TV programme Canal Plus started just before Guy Fawkes night and three per cent of the initial subscribers (about 6,000 families) had their opening night spoilt by technical problems with the connector, through which the new programmes have to come.

Now that we here are using the SCART connector to an increasing extent, let's take a detailed look at it and consider some of the problems.

SCART stands for Syndicat des Constructeurs d'Appareils Radio Recepteurs et Televisieurs. In practice most people nowadays seem to use one of the alternative names for the device - Euroconnector or Peritel (peripheral television) socket.

The SCART Connector

The non-reversible plug has twenty spade-shaped contacts in an insulated block surrounded by a near-rectangular metal skirt protruding from a wedge-shaped moulding. Its wrap-round construction is held together by the cable clamp alone (see Fig. 1). The flat pins come in the form of stamped ribbon (like Amp connectors), the idea being that you fit only as many as you need. The socket is complementary and is moulded to fit either directly or at

Table 1: SCART socket connections.

Pin	Function	Signal
1	Right audio out	$0.5 \mathrm{~V} / 1 \mathrm{k} \Omega$
2	Right audio in	$0.5 \mathrm{~V} / 10 \mathrm{k} \Omega$
3	Left audio out	$-.5 \mathrm{~V} / 1 \mathrm{k} \Omega$
4	Audio earth	-
5	Blue earth	$0.5 \mathrm{~V} / 10 \mathrm{k} \Omega$
6	Left audio in	$0.7 \mathrm{~V} / 75 \Omega$
7	Blue in*	-
8	Source switching	-
9	Green earth	-
10	Intercom. line	$0.7 \mathrm{~V} / 75 \Omega$
11	Green in*	-
12	Intercom. line	-
13	Red earth	-
14	Intercom. earth	$0.7 \mathrm{~V} / 75 \Omega$
15	Red in*	-
16	Fast RGB blanking	-
17	CVBS earth	$1 \mathrm{~V} / 75 \Omega$
18	Fast blanking earth	$1 \mathrm{~V} \pi 5 \Omega$
19	CVBS out	-
20	CVBS in	

*RGB inputs from computers often need attenuation since they are usually TTL ($0-5 \mathrm{~V}$). For BBC etc. use circuit shown in Fig. 2 in each leg, fitted as close to the computer as possible.
right-angles on to a standard PCB. Three dimples in the plug's metal skirt (which is chassis, and is called pin 21) click into the socket moulding as a retainer.

The electrical possibilities opened up by the connector are many (see Table 1). At the square end of the connector, pins 1-4 and 6 are allocated to stereo sound in and out. At the pointed end, pins 19 and 20 give video in and out (if yours are labelled CVBS don't worry - this stands for composite video, blanking and sync, the pedant's definition of video). In between are pins for RGB inputs and various control lines, which don't appear to be standardised and are used by different setmakers in different ways. The circuits have separate chassis return pins (seven in all) and sets incorporating the connector must be mains isolated to provide a dead chassis.

Mechanical Problems

Although the reported Canal Plus trouble was attributed to loose sockets, especially with sets of Japanese and W. German origin, the writer has yet to experience such a socket fault. Paradoxically the socket tension with UK sets is if anything too tight - you get the impression that your plug was the very first to enter the socket, and you're probably right. The effort needed to push the plug home and click it in can easily bend back or push connecting pins up into the plug housing: if you decide to unplug as a check, the chances are that the second time you plug it in the click dimples will have become a slack fit. The metal skirt can also easily be pushed back, and because it's the

Fig. 2: Simple potential divider to reduce the amplitude of a TTL video signal from a computer to a level suitable for feeding to a TV set via the SCART connector.
main chassis connection the result can be buzzes and crackles: it should be 8 mm proud of the plug moulding.

The leadout cable may be as thick as your finger - very heavy and stiff in cold weather, containing as it does up to twelve individual screened leads. As no provision is made for a retaining clip, it makes good engineering sense to support the cable using a purse clip through a ventilation hole in the TV set's back cover.

Electrical Problems

The electrical problems are interrelated with the mechanical ones inside the plug. If one spade contact has moved back, the chances of it shearing off its wire on the other side are pretty good. Hum loops due to earth connections touching can also be a problem, and continuity checks won't help much. You can get "open base" hum from the TV set's loudspeaker when using this with a microcomputer that has its own inbuilt sound system. This can of course be controlled by the TV set's (or should we say monitor's?) volume control.

Compatibility

Another problem is that not all SCART cables contain a full set of leads, nor do all TV sets accept the full set of feeds. Instruction books don't generally tell you what's been left out. The Philips group have made a start at clarifying matters with their products by calling their connectors Euro*, Euro** and Euro***, but to date this information is to be found only in service data summary charts. The system is as follows:

Euro* has stereo sound in and out plus video in and out.

Euro** has the above plus an RC5 control line linked to pin 8.

Euro*** has all the above plus RGB on pins 15,11 and 7 respectively.

RC5 is the current Philips group remote control code, the purpose of the link to pin 8 being to permit remote control of the SCART inputs via the TV set. A simple way of checking for RGB inputs is to put a 1 , using a 1.5 V battery, on pins 15,11 and 7 and look for a coloured screen.

In General

Things should improve as more connectors come into use, but until then it's sound advice to leave a connector alone once it's making good contact. Do all your switchcraft at the other end of the lead. Some sets boast two sockets, which are switchable, and since what goes in one comes out of the other video "daisy chains" are possible. Buffer amplifiers are interposed, making feedback loops possible.

Because of the use of better modulators in the newer VCRs, the improvement in picture quality obtained by using the SCART socket is barely perceptible - the only advantage is the ability to get stereo sound off a tape. Even this is of questionable merit. The EBU standard viewing distance is 6 H (six times picture height), at which distance the eye doesn't move to follow movement across the screen. Get any closer (like the kids do) and you're struck by the dreaded vertical and temporal aliasing. So if you sit back far enough to avoid undue eye strain what's the point of having moving sound to accompany a stationary picture? Or have I got it wrong again?

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed onvelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

THORN TX9 CHASSIS

From new this remote control set (U725 system) has switched from standby to on, from any selected channel to channel one, and from higher to lower volume levels without using the remote control handset. Switching any electrical appliance in the vicinity on or off does the trick.

The symptom suggests that random noise is being generated in the IR receiver section. Check the supply decoupler C $921(4 \cdot 7 \mu \mathrm{~F})$ by substitution, also filter resistor $\mathrm{R} 972(1 \mathrm{k} \Omega)$ and R 970 which is in series with the detector diode - its value should be $120 \mathrm{k} \Omega$. If the fault persists suspect the SL480 preamplifier i.c.

TYNE 5221

On monochrome there are faint vertical striations all over the screen. Tuning for colour is extremely critical and when achieved there's a peculiar chequerboard effect due to the presence of the striations. Also the set tends to overload at maximum brightness, the a.g.c. preset control making little difference.

This sort of fault is never easy to diagnose. It's probably due to some form of instability in the vision i.f. strip. First, carefully check the a.g.c. and l.t. line reservoir/ smoothing capacitors - $\mathrm{C} 4(10 \mu \mathrm{~F}), \mathrm{C} 3(0 \cdot 22 \mu \mathrm{~F})$ and C 12 $(10 \mu \mathrm{~F})$ in this case. The tuner could just be responsible, but before condemning it check the earthing of the chassis print on the i.f. panel.

DECCA 100 CHASSIS

After the set has been running for a while a white strip about an inch wide appears across the bottom of the screen. Are there any stock faults that might cause this?

It sounds as if the problem is field foldover - the usual culprit is the lower transistor in the field output stage, $\operatorname{Tr} 803$ (BD278A). If necessary check its driver $\operatorname{Tr} 309$ (BC327), R371 ($2 \cdot 2 \mathrm{k} \Omega$) which tends to change value, and the 32 V line - if ripple is present here, $\mathrm{C} 505(2,200 \mu \mathrm{~F})$ or the jointing on the convergence panel is suspect.

MITSUBISHI CT202B

The problem with this set is lack of width, about an inch to an inch and a half on each side of the screen. There doesn't seem to be a width control.

Check the h.t. from the series regulator circuit. There should be 105 V across C902, adjustable by means of VR901. If the h.t. voltage cannot be set correctly, check the 12 V zener diode D901. If the h.t. is normal, check the current consumption through terminal 5 of the regulator panel. It should be 1 A . If it's excessive, progressively unload the line output transformer, starting with the tripler and the first anode supply rectifier D571. The
width should be correct with the right h.t. voltage and flyback tuning.

THORN 1690 CHASSIS

The set works o.k. to start with but after about a quarter of an hour the tuning becomes unstable and sporadic.

First check by substitution $\mathrm{C} 39(1 \mu \mathrm{~F})$ which decouples the slider of the tuning potentiometer. Then if necessary make sure that the tuning calibration control R21 is clean and sound and that $\mathrm{R} 41 / 2$ (both $6 \cdot 8 \mathrm{k} \Omega$) which feed the stabiliser i.c. are o.k. If all these items are in order the tuner is suspect.

GRUNDIG 6010

The remote control works only when the transmitter is within five-six inches of the set. Should I start by checking the transmitter or the set?

One or other of the ultrasonic transducers often looses sensitivity but it's impossible to say which. In our experience the one in the transmitter is the most likely culprit. First check the $10 \mathrm{M} \Omega$ resistor R183 in the transmitter unit.

THORN TX9 CHASSIS

This set has suffered from sibilant sound since new. Have there been any modifications?

Slight, careful adjustment of the quadrature coil L62 should cure the sibilant sound effect. If not, try altering the value of the de-emphasis capacitor C 114 - select a value between 0.0022 and $0.01 \mu \mathrm{~F}$.

PHILIPS TX CHASSIS

The problem is lack of supplies from the line output stage. The 10.8 V l.t. line is present and the diodes in the line output stage all read correctly. I suspect the line output transistor or transformer.

While there could be a fault in the line output stage it's more likely that the line output transistor is not being driven. Check the BC337 line driver transistor (TS410) and particularly the print in this area - the print in this chassis is prone to dry-joints and hairline cracks.

THORN 9000 CHASSIS

The set goes out of focus now and again. Each time this is preceded by flashing on the screen. After a further flash the picture becomes very good again.

First check for contamination or discharge at the focus spark gap on the tube base, and examine the c.r.t.'s focus pin and its socket for green corrosion. If all is well and the series resistor R 906 ($100 \mathrm{k} \Omega$) measures all right a new focus control will probably be required. In very rare cases the e.h.t. tripler can be responsible for this fault.

QUERY COUPON

Available until 20th March 1985. One coupon, plus a $£ 1.50$ (inc. VAT) cheque or postal order, must accompany EACH PROBLEM sent in accordance with the notice printed above.

TELEVISION MARCH 1985

Mitsubishi HS306

A number of faulty HS306s came in over the Christmas period. Well we do have a lot of them out on rental, but the number that fail in one way or another during the first few weeks is in my experience greater than with any other machine we've handled. Several more have had the squeaking problem due to the head earthing spring (see last month), though the sticking cassette door problem seems to have gone. The problem of fuse blowing has started to occur with this machine, though not yet to the extent that it did with the Toshiba V31B. Both 400 mA fuses blow (completely blackened) for no apparent reason, replacement resulting in a perfect working VCR. Incidentally fuse blowing tends to be associated with the use of two-way plug adaptors, but more on that at a later date. The capstan motor drive i.c. seems to be a weak link. We've had four failures already: two gave no rewind or eject with fast forward and play o.k.; the other two gave no operation at all. Intermittent E-E and playback on one machine was traced to dry-joints in the booster/ converter, while tuning problems were traced to dryjoints/loose plug-socket connections to the front panel on several others.

A colleague may have had one of these machines with a faulty head. The drum in question couldn't be removed however, neither could that on another of these machines. The fit over the centre spindle was too tight, so it's going back to the manufacturers. Only once before have we had a drum stuck on in this way - that was also a Mitsubishi VCR, though an earlier model.
D.S.

Mitsubishi HS700

The HS700 has also been giving us a bit of trouble lately. A colleague had one that produced no output due to a faulty r.f. converter. The problem with several of them was vertical lines on playback, most noticeable on dark scenes. The Mitsubishi technical representative drew my attention to a modification for this problem, which seems to show up only in certain batches of the machines. The cure is to fit a $100 \mu \mathrm{H}$ choke across R 6 G 3 on the reverse side of the luminance/chrominance board. This modification had in fact been mentioned in one of their technical bulletins: it's just that I hadn't made the connection. D.S.

Mitsubishi Rewind Modification

Those with a Mitsubishi HS303, HS320 or HS700 will know that these machines tend to be rather slow on rewind. This is a deliberate design point to prevent damage to four-hour tapes. Other machines seem to be able to do it much more quickly however, without any problems.

Mitsubishi say that provided the machine rewinds an E180 cassette in less than four minutes, ten seconds it's working all right. If yours takes longer than this the first thing to do is to check for faults - one of the two motors (supply or take-up) is usually the cause. If all is well the following (unofficial) modification may be of interest.

First, how does the rewind circuit work? Fig. 1 shows the arrangement used in the HS320 - the other models are
similar, just with different component reference numbers. During rewind the supply reel drive motor is driven by Q575, under the control of Q5D8 etc. The take-up motor is not driven and freewheels, acting as a generator that produces a negative voltage proportional to its speed - the faster it goes, the greater the voltage produced. This voltage is fed via D5E6 and R5B4 to the reel revolution detector transistor Q5E0, which adjusts the drive via D5E1. As the tape nears the end the take-up motor revolves more quickly and the drive to the supply motor is reduced, slowing down the rewind. A similar thing happens on fast forward, using D5E7, R5M4 and D5E3.

To speed up the rewind and fast forward all that's necessary is to reduce the voltage generated by whichever motor is freewheeling by increasing the values of R5B4 and R5M4. On one machine I increased the value to $4.7 \mathrm{k} \Omega$, but it's best to fit a $10 \mathrm{k} \Omega$ preset in series with a $1 \mathrm{k} \Omega$ fixed resistor temporarily, adjusting the speed for whatever is best in the particular case. Remember that if you use four-hour tapes the speed will have to be a little slower than if you use only three-hour tapes. With threehour tapes the rewind time can be reduced by a minute without undue worry. The resistors to change in the HS303 and HS700 are R5K6 and R5K5.
D.S.

Mitsubishi HS306

This machine employs an unusual arrangement in which the cassette loading mechanism is powered by the capstan motor. The first of these machines to come my way wouldn't load a cassette, though if you loaded one by hand the machine would eject it when asked. When an attempt was made to load a cassette the supply to the capstan motor drive i.c. would rise from 11 V to 17 V but none of this was supplied to the motor. Replacing the i.c. (type STK6962) restored normal operation.
P.B.

Grundig 2×4 Super

It started off with a dead machine - no operation at all. The power relay didn't operate and a tape had been left in the machine. The report read "stopped in playback". Response to the keyboard was nil. A check around showed that there were no key-scan output pulses from the microcomputer control i.c. (IC220) so a new one was sent for.

After fitting this key-scan operation was restored but the machine insisted on selecting search even when there

Fig. 1: Mitsubishi rewind modification.
was no cassette in it. Everything was checked, even to the point of removing all the PCBs except for the DTF panel (this was done on the advice of a certain person from Grundig!). Another IC220 was tried, then the clock microcomputer i.c. (IC280) was changed. Still the power relay refused to budge (it could be operated by connecting one pin to chassis - this feature had been used to unload and remove the cassette).

It was decided between Grundig Pete and myself that there was no reset. Pete asked me if there was an extra reset subpanel on the keyboard: no there wasn't. So what i.c. did I put in for IC220? An SDA2010-B316 like it says on the circuit diagram. Ahaa!! - that's the problem. You
need an SDA2010-E316. What's the difference? The B316 suffix i.c. requires additional reset circuitry consisting of IC160 on a subpanel whereas the E316 has the circuitry built in. Try an E316. I did.

At least some operations were restored. But when a cassette was inserted the tape was almost chewed due to lack of threading tension and the drum revolved like something possessed. Pulses were missing from the DTF microcomputer i.c. (IC2640, an SM591), as a result of which the drum servo had no reference. A new SM591 was fitted to cure this and full operation was then restored. A new 5 V regulator i.c. was fitted to protect the new micros - just in case.
S.B.

Manual Lace-up for the N1500

John de Rivaz, B.Sc.(Eng.)

Because the price of spare parts for the Philips N1500 series of VCRs is rising steeply while the cost of the cassettes is relatively high per hour, N1500 VCRs are now being scrapped at a much greater rate. As a result, they are available at very low prices, making it possible for the knowledgeable experimenter to get into video very cheaply indeed. Taking inflation into consideration, it can be said that the cost of buying a few scrap machines to make into one good one is comparable with the early fifties hobby of building television receivers from war surplus parts.

One of the most unreliable sections of the N1500 is its tape threading mechanism. This uses a thin cord prone to wear and a fragile mechanism of contacts and levers, all driven by gearwheels that can fracture and break. The lot can be removed and replaced with a manual lace-up system that's one hundred per cent reliable. The system described in this article has been in use for well over a year without giving any trouble.

The new arrangement has two disadvantages. With the original system, the pressure roller is not brought into contact with the capstan in the timer mode until a recording starts. This feature is lost when the modification has been made, so there's the theoretical possibility that the capstan will be deformed if a lot of timed recordings are made. The machine used as the test bed has only occasionally been employed for timed recordings and no ill effects have been noted to date.

The second disadvantage is that Philips employed what looks like a bit of a bodge to reduce the servo's settling time during threading - a signal was sent to the servo system during lace-up to provide a "shake up" action. This feature has to be removed - if the slower servo settling time proves to be a problem, an electronic equivalent could no doubt be made and added.

Dismantling

Let's assume that you're faced with a thoroughly snarled up lacing system and that the choice is either to modify or scrap the machine. A second assumption we must make is that a full service manual for the machine is to hand.

The first step is to remove the video head drum and set it aside somewhere safe - a new one will now cost you just under $£ 100$! Next remove the threading motor and lacing cord and the small chassis with the contacts. Remove all wiring from this chassis back to the point of origin, except
for the leads to the threading motor and those to the mains switch SK7. Finally remove wire D/E184 between E169 and D229 (the servo speed-up connection).

Mains Circuit

This leaves points $160,161,166,168$ and 187 on the rectifier panel free. Connect 160 to 166 and 161 to 168 : it can be seen from the circuit in the manual that this will provide a 20 V supply when the on button is pressed. Connect a 24 V relay capable of switching the mains voltage at an Amp (at least) to the wires that previously went to the motor, with the contacts connected to the wires that previously went to SK7.

Thus when the on button is pressed 20 V is supplied via relay Re151 to the new 24 V relay which should apply the mains to transformer T1 and the motors. When the off button is pressed Re151 is de-energised, also the new relay, shutting off the machine. In the case of timer operation the solenoid will still remove the pinch roller from the capstan when the machine is shut off.

Cassette Unlock

In normal operation the cassette is unlocked by a small rod that moves back as the threading process starts. Remove this rod and take out the linkage that operates it. Make a small bracket as shown in Fig. 1 - adjust by experiment so that the locking levers are pushed back as a cassette is inserted. Bolt it to the main chassis through a small hole.

Pinch Roller Linkage

Lock the pinch roller linkage by means of a 4BA or similar nut and bolt inserted through a convenient hole left by the threading chassis, so that when the play button is pressed the pinch roller is brought to bear against the capstan.

Interlock

In this condition it would be possible to switch the machine on and attempt to play a cassette without it being laced up - which would be disastrous. To overcome this problem solder a small piece of copper to the interlock bar to prevent the play key being pressed until the tape has
been laced. The cam on the video head drum assembly remains in position, providing the displacement of the interlocking mechanism. The tape has to be hand-laced first when a timed recording is to be made.

Drum Modifications

In order to accommodate this modification my machine is permanently run without the head drum cover. It might well be possible to cut holes in the cover for the new controls to protrude.
Fit a 5 mm diameter, 40 mm long rod to the head drum top support. This is used to rotate the drum by hand when lacing. Make an L-shaped piece of aluminium to the pattern shown in Fig. 2 to hold the drum in the threaded position. Bolt this to the cassette holder as shown in Fig. 3. Looking at the right-hand rear of the cassette holder you can see that there's a piece that stands proud of the level of the support brackets. Bend the top 5 mm of this

Fig. 1: Cassette unlock bracket.

Fig. 2: L-shaped crank for holding the drum in the laced position. It may be necessary to adjust on assembly - what has to be done should be clear when the actual machine is on the bench.

Fig. 3 (left): Connecting the crank to the rear right side of the cassette carrier.
Fig. 4 (right): Crank bearing.
over and make a hole in the centre to take a small selftapping screw.
Make a bearing for the crank, from washers, as shown in Fig. 4. Tighten the screw so that the washers are held firmly - their thickness is chosen so that the crank will move freely. Install a spring between the crank and the rear of the VCR. When the cassette is laced, the crank holds the head drum in place by latching against the vertical part of the top head drum support. Fix another $5 \mathrm{~mm}, 40 \mathrm{~mm}$ long rod to the crank to move it to one side when unlacing.

Servo Link

Finally, if the servo fails to work you've forgotten to remove wire D/E184.

Articles on the N1500

The following list of articles that have appeared in Television on the N1500 may be of interest to experimenters.
(1) October/November 1975, Inside the Philips VCR by M.P. Riley (contains rare diagram of N1500 track arrangements).
(2) February 1977, miscellaneous modifications by John de Rivaz. Includes metering the servo system, which is well worth doing.
(3) July 1977, a DIY picture sharpener by John de Rivaz. You may want this if Philips sharpeners are no longer available at a reasonable price.
(4) September 1977, an addi-on timebase for receivers that work badly with VCRs, by John de Rivaz.
(5) October 1977, adding the Philips sharpener and notes on cassette salvage, by John de Rivaz.
(6) February 1978, modifying the N1500 for skip-field operation. With N1700 heads available this modification is somewhat out of date. With head prices soaring however the modification may come into use again to make use of old N1500 heads at slow speeds.
(7) May 1978, notes on adding N1700 heads to N1500s to obtain increased playing time, by John de Rivaz - basically, fit new head, install a second capstan servo head and turn down the drive motor pulley to half the original size. This is fine for own recordings, but further work is required for N1700 compatibility, i.e. fit new sound/sync head and turn capstan down to $1312 / 1429$ ths of original size.
(8) January 1980, a rewird machine by John de Rivaz. Thoroughly recommended to rewind cassettes on an otherwise dud machine, saving a lot of head wear. The article describes how to use a stripped down machine for rewinding only.
(9) July 1980 , a step-by-step guide to converting an N1500 machine to full N1700 standard by G. Beard, with several photographs of a converted machine and many line drawings.
(10) April 1983, N1700 speed reduction by M. Phelan. This may show the way to further speed reduction with N1500s, although there will be severe mechanical problems due to the mains motors used.
(11) May 1984, VCR clock repair by John de Rivaz rewind your burnt out clock coil with thick wire and wind a few turns of thick wire around the transformer to get your clock going again. Note that excessive noise may arise if you don't position the worm gear correctly when reassembling the clock.

TEST CASE

267

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical fauts.

A surprising number of sets that bear the names of UK manufacturers are fitted with chassis of W. German origin. Recent ITT receivers are produced in W. Germany and such homespun firms as Doric (Rediffusion), Ferguson, GEC and the now defunct Rank Radio International have all at various times used European designed and made chassis. The internal appearance of these sets is unmistakably continental, while the multi- or bilingual service manuals usually leave a lot to be desired. We've not had much luck servicing these "step-chassis" in our workshop, principally because of the lack of information on circuit operation in the manuals. This month's patient is a small-screen GEC colour set (Model C1401H) of continental ITT origin - the chassis is much the same as that used in the CVC 800 series.
The set had been working quite well until its owner moved home. The little set then seemed very unhappy, even though it had a good aerial signal and pride of place in the dining room. The picture had shrunk all round, and performance was very dependent on the settings of the controls. At high brightness and contrast levels the picture broke up horizontally, finally disappearing into a short horizontal line across the middle of the screen.

We soon discovered that the cause of these failings was a low and poorly-regulated h.t. line. The chassis uses a discrete component chopper circuit, with the line output transistor driven from a secondary winding on the chopper transformer. The outputs provided by the chopper circuit are 106 V and 15 V : both were down some 50 per cent. Concentrating on the 106 V h.t. line, we found that the set h.t. control R 746 varied the output between $40-80 \mathrm{~V}$. The output was very dependent on tube beam current, and at some settings of the customer controls the vertical lines in the test pattern would "twin" in a way we'd not seen for years.

The h.t. is smoothed by C757 ($10 \mu \mathrm{~F}$), and we've known

Fig. 1: Waveforms at the emitter of the chopper transistor in the small-screen GEC colour set. (a) The correct waveform. (b) Waveform found in the faulty set.
such symptoms to be caused by the capacitor in this position in power supplies of this type. We jumped on C757 and soon had a replacement installed. This made no difference at all. The input (290 V) to the chopper circuit comes from a mains bridge rectifier with a $300 \mu \mathrm{~F}$ reservoir capacitor. This supply measured 300 V and as there was no excessive ripple we turned to the chopper control circuit.

The main items here are an oscillator, an emittercoupled pulse-width modulator and the chopper driver stage. The oscillator and pulse-width modulator are powered by a 20 V supply that's produced at the driver transistor's emitter. There are also a couple of trip transistors. The 20 V supply was present and correct, and the trip circuit was simply disconnected to eliminate it from the list of suspects. We started at the oscillator, whose output waveform was correct. The mark-space ratio of the pulse-width modulator's output waveform had widened in an attempt to correct the low h.t. output. So far so good. The waveform at the collector of the driver transistor was much as it should have been, but that at the emitter of the BU126 chopper transistor was strange indeed - see Fig. 1. Having made this discovery we turned the chassis over and found the cause of the trouble straight away - and no replacement components were needed! What had happened? See next month.

ANSWER TO TEST CASE 266 - page 227 last month -

The Ferguson TX90 featured last month had a little auxiliary, and continuous, degaussing system that affected the lower left-hand corner of the display only. The immediate cause was a very hot and bothered mains transformer that became too hot to touch after a short run. In all other respects the set seemed to be working satisfactorily, and we'd proved by substitution that the transformer's distress was not of its own making.

Turning to the main panel, we made a start by investigating the rectifier diodes fed from the transformer's secondary winding, expecting to find leakage in one of the three diodes we'd not replaced when the chassis had originally been in the workshop. There was no leakage, but one of the full-wave h.t. rectifier diodes, D123, was completely open-circuit - probably blown internally when its companion D120 died on the wild night of rain and tempest. This of course made the rectifier circuit into a half-wave system, with the result that excessive current was being drawn from the transformer on alternate half cycles of the mains supply - and none on the other half cycles. Hence the overheating and excessive magnetic field.

The surprising aspect of all this is that the self-regulating line output stage, with its switch-mode boost circuit, was able to operate normally despite the half-cocked h.t. input. Had it not been for the effect of the fault on the mains transformer the trouble might well have gone unnoticed - a tribute to the effectiveness and tolerance of the design.

[^0]| "Tele Panels"
 52 Mount Pleasant Road, Chigwell, Essex.
 Telephone 01-729 0506.
 COMPARE OUR PRICES!
 COMPARE OUR SERVICE! | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | IF | TUNER | decoder | G8/G9 DECODER IF COMBINED | $\begin{gathered} \text { LINE } \\ \text { OUTPUT } \end{gathered}$ | POWER | CONVERG | FRAME | VIDEO | 6 WAY TUNER |
| PHILIPS G. 8 | 5.00 | 4.50 | 7.00 | 15.00 | 14.00 | 8.00 | 5.00 | 5.00 | | 3.50 |
| THORN 3000/3500 | 2.00 | 5.75 | 4.00 | | 8.00 | 8.00 | 5.00 | 6.00 | 5.00 | 1.75 |
| GEC 2110 | 10.00 | | 5.00 | | 12.00 | 6.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| PYE 731 | 8.00 | | 10.00 | | 18.00 | 10.00 | 7.00 | 8.00 | | 4.50 |
| PUSH Z7718 | 7.50 | 6.50 | 14.00 | | 24.00 | 3.00 | 5.00 | 14.00 | | |
| BUSH T/20 | 7.50 | 6.50 | 14.00 | | 19.00 | 19.00 | 5.00 | 14.00 | | |
| DECCA BRADFORD | 3.00 | | 7.00 | | | 4.00 | | FRAME TIME BASE $£ 4$ | | |
| DECCA 80 | 12.00 | P.O.A. | 14.00 | | 12.00 | 10.00 | | 14.00 | | P.O.A. |
| Other makes of panels - telephone for prices!
 TRIPLERS FOR ALL MODELS $£ 3.00$ SPEAKERS $£ 1.50$
 P+P 1 PANEL $\mathbf{£ 1 . 5 0} 2$ PANELS OR MORE $\mathbf{£ 3 . 0 0}$
 CASH WITH ORDER - PLEASE
 POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!! | | | | | | | | | | |
| | | | | | | | | | | |

ELECTRON GUNS TV TUBE COMPONENTS

If you are rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production.
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD,

\bullet BRIFTRONIC

STUDLEY, EMission LTD

WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: 336924 Grifem G.

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tunerș/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ. Phone: (0902) 773122.

VHS COLOUR CAMERAS

Mains/Mains Battery Portable TESTED WORKING

EXPORT

Multiband CTVs 22" \& 26"
Ideal PAL B

Philips 2000

 Series Video RecordersPLUS
17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Discount for Quantities

TV and Video Tables and Stands available in quantity, also computer desks.

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

CentreVision

TEL: 0222-44754 SLOPER ROAD

LECKWITH
CARDIFF CF1 8AB
OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4
TELEVISION/VIDEO
(VHS + BETA) FROM £165

\star PHILIPS G11 £50
\star GEC STARLINE 22-20 (Remote) £35
\star PYE CHELSEA £25

* THORN 9000 20" $£ 39$
* DECCA $22^{\prime \prime}$ BLACK FRONT VERICAP £25
\star RANK T20 REMOTE £50
\star PHILIFS 550 £25
PRICES SUBJECT TO VAT OPENING HOURS:

SATURDAY 9.00-1.00

湆		
	$\begin{array}{\|l\|l} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	等 N.
$\begin{aligned} & \text { W } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

TV TUBE POLISHING
AT
YOUR Own Premises
with our DIY Polishing Kit

COLOURTRADE
MANY YEARS OF SUPPLYING TRADE WORKING COLOUR TVs PHILIPS 550 £35.00 BUSH £25.00
BUSH 2718 £45.00
THORN 22" V-CAP £35.00
THORN 8-800 £45.00 JVC 20" £35.00 GECITT DECCA etc!

DISCOUNT FOR QUANTITY

WIDE RANGE OF MAKES AND MODELS ARRIVING DAILY - ALL WITH GOOD CABINETS - MANY TO CLEAR FROM 'ONLY' $£ 5.00$. MIXED LORRY LOAD OF SETS DELIVERED TO YOUR DOOR DIRECTLY FROM SOURCE!

TELEPHONE NOW 021-359 0449 COLOURTRADE 221 Bridge Street West, Hockley, Birmingham B19 2YU

> TRADE COLOUR TVs Always 2000 in stock

> GEC Starline £45 GEC Remote $£ 65$ 2020 Videos E 79
> All sets have been fully serviced by factory trained engineers and in perfect working order with excellent cabinets
> Deliveries arranged and export orders welcome
> Deliveries weekly to any part of Ireland ALL STOCK CHANGES WEEKLY!

> We also clear bankrupt stock Dealers returns, catalogue returns and small rental companies, cash waiting Quantity $\mathbf{2 0}^{\prime \prime}$ tubes $\mathbf{E 1 0}+\mathbf{p \& p}$ $18^{\prime \prime}$ PlL tubes $\mathbf{E 2 0}+\mathrm{p} \& \mathrm{p}$ Brand new GEC spares or secondhand spares.
> All models GEC. Price on application. PQRSUPPIIES
> Unit 5, Worle Industrial Centre, Weston-Super-Mare, Avon 1 minute off exit 21, M5 (0934) 514047/512792/513633

SEND NO MONEY

Your order despatched C.O.D. from our comprehensive stocks of Audio, Video and T.V. spares.
Price list sent with your first order.

$$
\begin{aligned}
& \text { Simply phone us } \\
& 0934-419147
\end{aligned}
$$

Freeway Components, The Airport Weston Super Mare, Avon BS24 8RA

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

VIDEO CASSEITE RECORDER SERVICING 6 WEEKS FUL-TIME (April 2nd to May 31st)
Intensive course intended for qualified television service engineers or applicants with similar background. The course combines the advantages of industrial and academic training and includes a high percentage of practical work.
Selected applicants will be eligible for a full grant from MSC under TOPS to cover tuition fees and maintenance.

12 MONTHS

LEC Diploma
TELEVISION \& VIDEO SERVICING
(Basic Electronics, TV, VCR, CCTV, Testing \& Fault Diagnosis)

6 MONTHS
 LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training e.g. BSC, HND, CGU, B/EC, etc.)
(All the above courses commence on April 22nd \& Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL
(These courses commence on April 22nd $8 /$ /or Sept. 16th)

2 YEAR

BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Faut Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Faurt Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessors, Microcomputer Faulh Diagnosis, Robotics \& Control Systems, CADCAM \& CAE Principles).
overseas students welcome at uk student TUITION FEE RATES

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

NO WORKERS!

WITH OVER 1,000 ARRIVING WEEKLY WE DON'T HAVE TIME

ALL SETS UNTESTED

> WE ARE ONE OF THE OLDEST ESTABLISHED EX-RENTAL DEALERS WITH THE SAME RENTAL COMPANY FOR OVER 15 YEARS.
GEC S/State £15
GEC Hybrid $£ 5$
BUSH 1 and 2 Chip £10
DECCA from $£ 10$
AUTOVOX £10
NORDMENDE £10
SALORA Hybrid £3
TANDBERG S/State Dual Tuners £20
TANDBERG Hybrid Dual Tuners $£ 5$
PHILIPS G8 from $£ 10$
17" THORN £15
22/26" THORN from $£ 10$
MONO 20" S/STD £5
MONO 24" and D/STD £1

SALORA S/State, some Remotes. Sale price $£ 5$ each. Minimum 20 at this price.

BEST DEAL IN U.K.

CASH ONLY, IT DOESN’T BOUNCE!

MIXED LOADS DIRECT FROM SOURCE AVAILABLE AT KEEN PRICES

HOCKLEY DISCOUNT TELEVISIONS

 94 Soho Hill, Hockley, Birmingham B19 1AE. Telephone: 021-551-2233 PRICES START FROM £6 WORKING SETS FROM £18 FROM OUR SHOWROOM DISCOUNT ON QUANTITY BEST QUALITY SETS AVAILABLE AT UNBEATABLE PRICES PHILIPS G8 550 FITTED WITH REGUNNED TUBES E 38 Philips G8, G11, Bush T22, GEC, Starline, Japs, Decca 1800, Pye 222s, BRC 9000, 9600, 9800, Sony, latest Hitachi, ITT, CVC30, CVC45, plus remote control models.NORTHERN T.V. DISTRIBUTORS Unit 2, Perth Court, Team Valley Ind. Estate, Gateshead, Tyne \& Wear Telephone: 091-487 5389 Opening hours 9-7 Monday - Saturday Sundays by appointment.

SATELLITE RECEIVING SYSTEMS

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems. Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset. Telephone: Bridgwater (0278) 421719

APOLLO MANCHESTER
 FAST MAIL ORDER GB 3-4 DAYS AIL AREAS

FREE LOCAL DELIVERY SAME DAY - FITING SERYICE £ZO
2 YR GUARANTEE - QUANTITY DISCOUNTS - PILL GLASS BOUGHT
A47342/343X-470 BCB22/CTB22/BGB22
470-ESB22/EFB22/ERB22/FIB22
A51-220X/192X
A51-161X/162/153/168
510-JKB22/JEB22/JDB22/JGB22/ALB22/GLB2 €49
510-VLB22/0T822/001/RFB22/RCB22/SFB22
A51-570X/580/001/210/241
A56-120X/123/140/410
560-DZB22/HB22/AKB22/TB22/AWB22
560-ETB22/DTB22/CSB22/DMB22/DNB22
A56-611X/615X-A66-611X/615X
A66-120X/A67-120X/140/150/200/410
$20 A X-A 56-500 \times / 510 X-A 66-500 X / 510 X$
$30 A X-A 56-540 X$-A66-540X

1,000 EX-RENTAL COLOUR TV's AVAILABLE	
Philips 550's18 Philips 520's14	
Pye Chelsea Series ... $\mathbf{£ 1 5}$ Pye 72515 $\mathbf{1 5}$	
GII's, DECCA 80 \& 100's and S/State ITT now Arriving. Mono Single Standard - $£ 2$	
PHILIPS LVC (1500/1700) Tapes.	
\star SPECIAL \star	
MIXED LOADS DELIVERED DIRECT FROM SOURCE	
Also Stands, Panels and Tested Tubes	
FREE DELIVERY LONDON AREA	
All Pricee Exclusive V.at.	
SOUTH LONDON	
TELEVISION	
Mission Hall, Southey Road, London SW19.	

SETS \& COMPONENTS

QUALITY SETS from Cornwall. Workers/non workers. Spares, panels etc. Details: Ring 0726-815389.
$100+$ COLOUR TELEVISIONS, many makes, $£ 500$ + VAT, or will sell singly. Southampton 814318 .

JAPANESE COLOUR TVs. Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489.

MULTISTANDARD Colour Television. LUXOR VHF/UHF TV/Monitors to most standards, including PAL'L/SECAM'L (UK/French) option. $20^{\prime}, 22^{\prime \prime} \& 26^{\prime \prime}$ from $\mathfrak{f 2 8 0}$. ex VAT. PORTATEL CONVERSIONS LTD., 25 Sunbury Cross Centre, Sunbury, Middlesex. Tel. 0932788972

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

GRUNDIG SETS, PANELS, MANUALS Nordmende and Telequipment spares, manuals. Ochre Mill. Tel. 0785814643.

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

Kratal Marketing Ltd,	Phone 021-471 3023
Breedon Cross	Telex 335540-G
Storage,	Ask for Les
Dale Road, Selly Oak,	
Birmingham B29 6A0.	

TELEUMISIOM

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know or your products and services.
The prepaid rate for semi display setting $£ 6.30$ per single column centimetre (minimum 2.5 cms). Classified advertisements 37 p per word

TV Business

NEW YEAR CLEARANCE

26" SOLID STATE 3 ASSORTED ONLY JAPANESE 20" ONLY
£28.00 $\mathbf{£ 2 5 . 0 0}$
MONO'S . . . 1500/1600/MISCELLANEOUS
5 FOR ONLY
£19.00
STANDS, AERIALS, ACCESSORIES ETC.
PANELS BY POST
RECONDITIONED AND PRE-CALIBRATED FOR THORN/ PHILIPS ETC.
WORKING SETS TO ORDER (UNBEATABLE PRICE)
CHOICE! - WEEKLY DELIVERIES OF DIVERSE STOCK.
PHONE US NOW FOR A STRAIGHT ANSWER.
OPEN 6 DAYS $10-6.30 \mathrm{pm} / 10-5.00 \mathrm{pm}$ SAT.
Phone:
Baldock 894905
SECTION THREE, UNIT FOUR, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS.

SONY and HITACHI

All sizes from $\mathbf{£ 6 6}$ inclusive 1 year Guarantee
Some in stock send old glass later. Other in-lines from $£ 30$. 99.9% of tubes we have a new gun for, plus new $16^{\prime \prime}$ tubes f66. Other in-lines in stock. 56 500-10 51-161 51-570 66-540

Radio and television servicing books (MacDonalds). New 74/75 £15; 76/77. $77 / 78,78 / 79,79 / 80,80 / 81,81 / 82,82 / 83$, 83/84 £22.50

Phillips G11's

 Panels from $\mathbf{£ 1 0 . 0 0}$ Breaking for spares Push button units Tube bases for sale or exchangeU-VIEW TUBES, 29, Warmsworth Road, Doncaster, Yorkshire DN4 ORP. Tel: 0302855017
Callers ring first, open every day including Sunday

EERUICE PGCES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

		CDA/			Line	
	${ }^{17}$	Video	Decoder	L7B	Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-
DECCA 13/30	3.00	-	7.00	5.00	-	4.00
BUSH A823	4.00*	-	10.00*	5.00*	2.50	4.00
THORN 8/81	-	-	10.00	5.00	2.5	5.00
PYE 205	3.00	3.50	5.00	10.00	-	5.00
THORN 3/31	5.00	5.00	5.00	8.00	-	10.00
G8	${ }_{7}^{6.00}$	-	8.00	7.00	15.00	5.00
					fitted with	
Please add 15% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc.					brand new transformer	
Hybrid panels do not include valves.					Terms cash with order.	

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current sitock.
GOLCAR T.V. SERVICES Iformerly Lavife Lio.).
Old C of E School, Church Street, Golcar, Huddersfield. Tol.: 0484643273 Callers by appointment onk.

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{2 2} .00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$
ONLY f15.00 each
Philips G8 (520) $22^{\prime \prime} \& 26^{\prime \prime}$ ONLY £20.00 each
Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston
(0772) 683396

UNTESTED PANELS FOR ALL MAKES OF TV
f1.25 per panel plus post \& packing

C.T.V. PANEL SERVICE

Exct/repair \& sales - chemically cleaned - no bumed or damaged print. 3 months g'tee, large range inct. Decca 80 \& $100, \mathrm{G} 11$, G8, గT, GEC, Rank, TCE, Jap \& euro models, despatched same day. Send S.A.E. for lists:
Argo Services (Biminintifem), Elliott Road, Birmingham 2 . Tel. 0214714697

WIZARD DISTRIBUTORS TV \& VIDEO SPARES

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and techincal assistance available.
Come in and see our trade counter special offers.

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS Empress Street
Manchester M16 9EN
Ted: 061-872-5438, 061-843-0060

EX-RENTALS TELEVISIONS IN BULK

Most makes including late models. MONITEC 0299400233.

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput
2718 (T703A, T706A)

New (Complete)	
Less Focus Module and	
Rectifier	
T20.50	
T22 (T705A)	$\mathbf{£ 1 0 . 5 0}$
Switch Mode	$\mathbf{£ 1 1 . 0 0}$
T114A/B	

Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay Bowtie (12.5 dB) E20.00
Above with built-in Broadband amp. (27dB) plus stabilised power supply
£45.00
Prompt Postal Service P\&P Paid.
Add 15\% VAT to all prices.
DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-20T.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

BEST PRICES on all your transistor, semi conductor, thyristor, etc requirements. Also Teletext XM E40k+ all I.C.s.for same.	
AT 290	
BC 160 25 p	
BC 183C.....................8p	BU426
BC 183LA...................8p	BU 500
BC 214 L	N4
34.....................25	YRISTO
	IIC 126A
BD 2498 2.50	¢C120A
	C25
BF 258	
BF 259	TS
BFR 39....................... 15p	TIP 645 (Darlington) .. 1.00
BRR 40.. 15p	TP 31
41	
BFR 79....................... 15p	T1P 34A
	6C
BFT 39 30p	
	TP 2955 40p
To Order: State requirements add 15% VAT and $£ 1$ postage, Enclose cheque. Or send for stock list $\&$ prices, enclose SAE. Discounts, 1-10 price as stated, $10-25$ 21/2\%, 25-100 5\%, over 100 on application.	
BURLINGTON TV 8 AUDIO 17 High Street, Bridlington, East Yorks. YO16 4PR. Telephone: 0262673374.	

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

CAT. HEADING

TELEVISION

NAME
Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street, London SE1 9LS. Telephone 01-261 5846 Rate
37p per word, minimum 12 words. Box No. 70p extra.

NWELECTRONICS 25 YEARS SUPPLYING THE TRADE

New Jow Prices Thais a Fac!

100's of good class HP Repos and Ex Rental Colour TV's reduced to ROCK BOTTOM PRICES!

Bush T20 (Excellent Cabs) was £60 NOW £40
Bush 718 P.I.L. Tube was $£ 30$ …........NOW $£ 25$
Bush 2 Chip Decoders was £15 NOW £8
Philips G8
Philips Gll
GEC 2010
Thorn 3500
\qquad was £28 NOW £23 was $£ 70$......... NOW $£ 55$ was £25 NOW £20 was £12 NOW £8

Hybrids $£ 5$ all makes! Many more inc Pye KT30, Ferguson TX etc. Video
VHS - Sharp 7300, 8300, 9300. Ferguson 3V28, 3V22. Sony Beta. Mono IT's \& each (lots of 25)
Thorn $1500 £ 4,1600$ £12. Discount for Quantity (like new). No cheques.

White goods

Hoover Twins from £6. Hotpoint 1460 from £10. Autos all makes from £10.

Unit 12, Wharfedale Road
M606 Euroway Estate
Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00,3$ panels £2.50 etc. Quick Despatch - C.W.O. please. All prices plus VAT
CASH ONLY-NO CHEQUES DELIVERY CAN BE ARRANGED-TRADE ONLY (0214) 688458 OPEN GDAYS A WEEK

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

TELEVISION
GOOD QUALITY TRADE
TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES A.ND MODELS

GENERAL UMIN STREET FACTORS DONCASTER DN1 BAE

TEL (0302) 68416

GOOD MOTORWAY ACCESS

TV spanas. Pancis AND MANUALS PHILIPS • GRUNDIG

 TELEVIEW 01-994 5537 194, Acton Lane, London W.4.
REBUILT COLOURTUBES

EXAMPLE PRICES DELTA
All sizes up to $22^{\prime \prime}$ - $£ 28.00$ 26" From - $£ 32.00$
Al/ In Line P.I.L. Mono Gaming Machine C.R.T.s 560EGB22 56-611-510JKB22 20 AX $£ 40.00$ 30 AX £48.00 Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

IRISH TV TRADE CAN WIE BE OF SERVICE TO YOU?
 Regular sisupplies of Quality Colour TVs ILOWEST PRICES

Working Sets from £18 Non-working Sets from $£ 8$ ffiEE DELIVERY ANYWHERE
J. TI. Ei. Electronics contact:
Omagh, Co. Tyrone, Northern Ireland. Omagh (0662) 46032 nigh Omagh (0662) 47911 day

EAST ANGLIA :SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from cur retail shelves. Most makes are availables and small regular orders are welcome. I Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery a vailable (only petrol ch.arged).
Contact John, Dave or Steve at
Barry T.V. Services
on Cambridge 69215 or Ely 61462

"RETUBE YOUR T.V. SETS WITH RETUBE"

No wonder this is heard in Service Departments all over our area.
There is no substitute for experience. 26 years in the business.
Same man still actively in charge.
Latest types and Delta are in our range.
If you want to be sure, whether for one rebuilt tube or many, you can't do better than give us a ring.

RETUBE LTD
NORTH SOMERCOTES, LOUTH, LINCOLNSHIRE Phone 050785300

TELEVISION TUNER REPAIRS
BRITISH, EUROPEAN JAPANESE ETC

ELC 1043/05 TUNERS AS NEW $£ 4.60$ inc.
MEN-TU ELECTRONICS LTD. SALTERNS LANE
FAREHAM, HANTS.
Tel: 0329-235116

INDEPENDENT TELEVISION AND VIDEO COMPANY

Suppliers of colour and mono sets to the trade. Worker and/or direct from source, van loads negotiable.
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600, Bush T20 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers. For quotation and prompt service:
Ring Notts (0602) 864627 UNIT 3 + 3A,
Meadow Trading Est. Meadow Lane,
Nottingham NG3 3HQ.

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM,
A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee Most types available Japanese including Sony
Ex-Rental TVs from £15.00
Untested Panels
£4.00

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS
Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5 LL. 01-574 4631, Ext 28
Pal Colour Generator with 11 patterns plus sound.
Grey scale, Colour Bars, Red, Green \& Blue Raster Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White, Mains Powered. $£ 75.90$

OUTPUTS PROVIDED
 UHF OUTPUT
 VIDEO OUTPUT
 LINE PULSE
 FIELD PULSE

Line Output Transformer Tester
BN Generator, Crosshatch, Peak Whi $\mathbf{1 1 . 5 0}$
Black \& White and Grey Scale
In Circuit Transistor Tey Scale
$\begin{aligned} & \text {. } 18.50 \\ & \mathbf{~} 1.50\end{aligned}$
Capacitance Mistor Tester 10pF 10 $\quad \mathbf{~} 14.25$
with moving coil meter
Car Alarms
£14.75
作
A.E. for details - Prices include P\&P \& VAT
C.M.J. ELECTRONICS
Unit 8, 16 Union Mill Street, Morseley Fields,
Wolverhampton WV1 3DW.
Tel: (0902) 871563

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame Philips GII Bush T2 | | Scan | | | |
| :---: | :---: | :---: | :---: | :---: |
| l | Supply | | | |
| X | 16 | 20 | 18 | 16 |
| X | 12 | 16 | 15 | 12 |
| X | 16 | 18 | 15 | X |
| | 12 | 18 | X | 12 | $\begin{array}{llllll}\text { Bush T26 } & \mathrm{X} & 16 & 18 & 15 & \mathrm{X} \\ \text { Bush 718 } & \mathrm{X} & 12 & 18 & \mathrm{X} & 12\end{array}$ All panels are repaired and aligned according to rank std.

Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months. T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

Tpent Tubes

WEST 31 RADCLIFFE ROAD THE OUAITV REBUINGHAM PHONE: (0602) 813329
ALL TUBES CARRY A TWO YEAR GUARANTEE EXTENDABLE TO FOUR YEARS
All Sizes of Standard Deltas
ONLY £29.00 (A56-120-A66-120 etc.) A51-161-A51-163 £42.00 A55-66 500/510 (20 AX) £43.00 A56-S40-A66-S40 (30 AX) £49.00
560 D28 22 £45.75-560 EGB $22-510$ VLB 22 £45.75 1000° s more available. VDUs, MONOs, Industrial etc. WE NOW REBUILD SONY TUBES Phone for details From $\mathbf{£ 5 5 . 0 0}$ stockists
Peterborough: H. DONNOR 073371009 TECHNICAL ADVICE SERVICE All prices + VAT \& Exchange Suppliers to Broadcasting Authorities and National Companies Quantioy Discernts
Wholesale supplies at VERY competitive rates

FOR SALE

CRT Regunning Plant: Comprising of:-
$2 \times$ Ovens,
$2 \times$ Vacuum Pumps and Diffs,
$1 \times$ Spot Knocker,
$1 \times$ Getter Fireer,
$1 \times$ Welding Machine,
$1 \times$ Annealing Oven,
$1 \times$ Precision Emission Tester,
$1 \times$ Let Down Station,
$1 \times$ Custom Built Extraction System, All gun and glass stock, plus goodwill. Plus many other items.
To be sold as a complete lot, £6,500.

Contact: Mr Adolpho on

 0622872400
T.V.S. TRADE SERVICES BROMSGROVE

LARGE SELECTION OF QUALITY COLOUR TV ALWAYS IN STOCK, INCLUDING LATE MODELS, JAPANESE, AND REMOTE CONTROL. WORKING OR GENUINE UNTESTED. WORKING FROM $£ 45$ DELIVERY AVAILABLE ANYWHERE IM U.K.

Contact

COLIN BROOMFIELD (0527) 37037

TVS UNIT 7, STATION STREET, BROMSGROVE, WORCS B60 2BS

AERIALS

EVERYTHING NECESSARY for multi-outlet systems. Filters, diplexers, amplifiers, etc. Use trade gear and save pounds. Catalogue 50 p (refundable). Professional system planning/advice $£ 5.00$ (refundable). Quick queries free. Wrights Aerials, 43 Greavesike Lane, Micklebring, Rotherham.

CLEARVIEN AERIALS

Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronicaly remote controlled masthead preamp 1.6db noise. CH. 17-69. Set side amplifiers, distribution amplifiers, notch as gain or 46 db gain. Trade and retail.
Send large SAE for our comprehensive catalogue
CLEARVIEW AERIALS
173 Kings Road
Kingston Upon Thames, Surrey.

AERIAL BOOSTERS
 B45H/G-UHF TV next to the set fitting, gain abou 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price f8.70. P\&P 30p
 UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to $14 \mathrm{~V} / \mathrm{W}$. Price $£ 2.50$. P\&P 30p SET/TOP AERIAL and matching aerial booster (trebles and gain). Price £8.70. P\&P 50p.
 SINCLAIR SPECTRUM COMPUTER. For DC on/of unit, can be fitted in seconds. Saves unplugging the DC lead. Price $\mathcal{2} \mathbf{7 0}$. P\&P 30p.
 ELECTRONIC MAILORDER,
 62 Bridge Street, Ramsbottom. Lancashire, BL0 9AG.
 Tel: Ramsbottom (070 682) 3035.

S.A.E. for leaflets. AccessVVisa Welcome.

WANTED

SONY KV1330 UB or KV1310 UB worker or nonworker will collect. Ring Brosk 40114 (Lancashire) after 6 pm .
405 SPG - Full specification; N1702 jigs, tools, test cassettes: NI512 CVBS panel; monoscope camera tubes, C912 or equivalent; broadcast test card slides; RTS "Service News", Murphy "Service News", RBM "Service Skill", BRC "Bulletin" etc. (0993) 882238 anytime.

LATE MODEL COLOUR TELEVISIONS, videos, etc. Any' quantity. Monitec. Tel. $0299400233 / 400933$.
WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.
WANTED: Quantity Pye Philips G11. Televisions also Ferguson videos. Telephone 0402458513.
SERVICEABLE TOSHIBA tube $510 \mathrm{JGB} 22 \mathrm{TC01}$ with bonded yoke for Sharp C2051. Cheltenham 0242 517048.

TV SLOT METERS required in quantity. Details by phone or letter: Conwy 3782; or TV \& VIDEO SERVICES, Breton Street, Llandudno, Gwynedd, N. Wales.

5/10 BUSH T/20/22 any size, must be clean wood finish cabinets, maximum 20 miles Burgh Heath. Tel. (07373) 61100

WANTED: set of "radio and television servicing" books. Telephone 045276201

SITUATIONS VACANT

ADAPTABLE TV \& RADIO ENGINEER with clean driving licence to work in Herriott country. Accom modation provided, excellent prospects for right man. Ring evenings 096950227

VIDEO

ARE YOU A TV ENGINEER WHO WANTS
TO KNOW ABOUT VIDEO RECORDERS? THEN YOU NEED
"DOMESTIC VIDEO CASSETIE RECORDERS A SERITCING GUIDE BOOK" by S. R. BEECHING
Available for only $\mathbf{£ 1 5 . 5 0}$ inc. $\mathrm{p} \& \mathrm{p}$
From: NEWARK VIDEO CENTRE,
108 London Rcl., Balderton, Newark, Notts.
Tel: 063671475
ACCESS OR VISA

SERVICE SHEETS

TELEVISION SERVICE SHEET SP'ECIALISTS
 Thousands of British, European and Japanese models in stock Colour $£ 2.00$ Mamual prices on request All our prices include post and packing costs
 Send stamped envelope for fnee catalogue and enqui ries.
 SANDHURST TV SERVICES (MAIL (IRDER)
 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

$\star \star \star \star \star \star \star$
SERVICE PAGES
SERVICE PAGES
PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS.
SERVICE PAGES SERVICE PAGES

BELL'S TELEVISION SERVICES for service sheet on Radio, TV, etc. £:1.50 plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorks hire. Tel. (0423) 55885.

[^1]
Sabaco

For a great deal！
VAN LOAD DIRECT FROM SOURCES
Remember all sets cleaned and soak tested．Most makes available，any quantity e．g．GEC，Bush，Decca，IT，Pye G11，T22，9000， 9800 etc．Mixed sizes．
WORKING SETS FROM $£ 20$ upwards．e．g GEC $2110 £ 25 \mathrm{~min}$ of 6 and etc． Bush non workers complete in quantity $£ 8.00$ each．
Black face decras non workers complete in quantites
at $\mathbf{£ 1 2 . 0 0}$ each．
COMPLETE NON－WORKERS from $£ 10$ in quantities． CLEARANCE OFFER
Bush twin chip £4．00．22＂G8 $520 \mathbf{E 8 . 0 0}$
$26^{\prime \prime}$ G8 $520 / 55026^{\prime \prime} 35 £ 5.00$ ． $20^{\prime \prime} / 22^{\prime \prime}$ GEC Hybrid $£ 3.00$ Black face Decca $£ 10.00$
Grundig 5010／5010 £14．00
ITT CVC $5 / 9 £ 12.00$ ．GEC S／F $2110 £ 12.00$ ．Mono $£ 1.00$
All above offers minimum quantity of 20 sets or more．
all PRICES SUBIECT TO VAT \＆AVAILABILITY．

Sabaco

Saba House，
64A Derbv Road，Sandiacre，
Nottingham．

Open 6 davs a week 9.30 a．m．－ 5.45 p．m．

Telephone：（0602） 397555

GUARANTEED 90\％WORKING 100＇s of GEC $2110 / 2111$ stripped to spares						
Desoner	r Line output		Convergan	nee Tram Bas		Tripler
$\begin{aligned} & 13.00 \text { single } \\ & \text { rcomibined } \end{aligned}$	$\text { ged } \mathrm{ga} 400$	M． 50				52
Other types e．g．Bush，G8，Thorn 8500，Pye，GEC Hybrid all non－working／complete．						
	Oesoiter Lue	Power	Conyer－ gence	Frame		Itrpler
Bush	85．00 $\quad 2500$	¢8－00	83.00	£3．00	\％ 00	凹． 50
68	$18.00 \quad 5500$	24．00	－	83．00	500	¢2．50
$\begin{aligned} & 3500 \\ & \text { Thorn } \\ & \hline \end{aligned}$	${ }_{93.00}^{515400}$	£4．00	13．00	๕．00	52.00	¢2．50
GEC	$\begin{array}{lll}\text { E3．00 } & \text { 25 } & 00\end{array}$	24．00	5200	82.00	m，00	29．50
Pye	¢3．00 2500	¢5，00	800	200	8200	2.50
SABACO，Elastic Yarns Building， Derby Road，Sandiacre，Notts． Tel：（0602） 397555						

TELETEXT（ORACLE／CEEFAX）external edaptors fit any television．Free cordless remote control f149．95 including VAT and delivery．Access／Visa． Nufax Ltd，Freepos，，Bristol BS6 7YZ．Telephone Bristol（0272）68780 L744500．

WORKSHOP CLOSURE．Everything must go Spares， manuals，C．R．T．s，penels，etc．Some test gear．Mainly British makes．Telep ione $07463241 / 6$.

100 TELEVISION RENTALS accounts for sale in North London／Herts area，turnover 10，000 pa．TV Box No． 191

PHILISS PM5326 R．F．signal／sweep generator ． 1 － 125 MGz ．Any reascnable offer accepted．Further de－ tails telephone 1746324 kK ．

MISCELLANEOUS

The Theory and
 Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.
The Colour Signal
Part 2.
The Receiver Decoder
Part 3.
Receiver Installation
 BETAMAX太丈＊UMATIC

For full details telephone 0253725499 （Day） 0253712769 （Night） Or send for precise details FUNTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH， LYTHAM ST ANNES FY8 1LP （enclosing this advert）
NAME
ADDRESS
TEL：

A－Z LIST OF MANUFACTURERS＇addresses．All major TV，audio，etc，plus many hard to get ones．Send cheque／PO for $£ 3.75$ to DOWNS ELECT， 79 High Street，Dalkieth，Midlothian

GOULD DIGITAL STORAGE SCOPE，（054020．DC to 10 MHz dual beam．Ideal for VCR use，probes \＆ manual． $\mathrm{fl},(000+$ VAT Southampton 814318

BURGLAR ALARM EQUIPMENT．Latest discount catalogue out now．Phone C．W．A．S．ALARM 0274 731532.

BOOKS AND PUBLICATIONS

＂RADIO AND TELEVISION SERVICING＂books， new editions for the last 6 years always in stock．Prices on request．BELLS TELEVISION SERVICES， 190 Kings Road，Harrogate，N．Yorkshire．Tel． 042355885.

FULL SIZE TOP QUALITY service sheets $£ 2.50+$ 1．s．a．e．CTV／Music Centres $£ 3.50+1$ ．s．a．e．Repair data almost any named TV／Video $£ 10.50$ inc．circuits． L．s．a．e．brings any quite free magazine／pricelists．TIST， 76 Churches，Larkhall，Lanarkshire．Tel． 0698883334.

RADIO AND TELEVISION SERVICING BOOKS． New 74／75 £15．76／77，77／78，78／79，79／80，80／81， 81／82，82／83，83／84 £22．50 each．Free delivery．U－ VIEW，29，Warmsworth Road，Doncaster． 0302 855017．Callers ring first．

DISPLAY ELECTRONICS

UNIT 4，SWAN WHARF， WATERLOO ROAD， UXERIDGE，MIDDLESEX UXBRIDGE 55800

Your Accessible Regunner

UXBRIDGE
Constructional Work on the Poyle／Uxbridge section of the M25 is now in progress and when completed we shall be less than 10 minutes from：M3／M25 junction $2 / 12$ M4／M25 junction 4／14 M40／M25 junction 1／15
PRICE UST
Delta types
90° up to 19 $£ 33$
$£ 36$
$£ 39$
$£ 42$
$£ 45$

$£ 46^{*}$
$£ 49^{*}$
90° up to $26^{\prime \prime}$
110° up to $22^{\prime \prime}$
110° up to $26^{\prime \prime}$
In－Line types
Up to 22°
＊Mutipole 30AX ADD E6． ＇Specials＇may have a gun surcharge QUALTY CHECK UST
BRAND NEW GUNS
is HOT PUMPED
a R RF BOMBED
is PULSE FLASHED
茲 EMMSSION STABILISED
REGUNNERS SINCE THE＇60s TO MANOR AIRUNES，M．O．D．，UNIVERSITIES INDUSTRY AND OF COURSE TO THE TV TRADE IN GENERAL

If you see an advertisement in the press，in print，on posters or in the cinema which you find unacceptable， write to us at the address below．

The Advertising Standards Authority．

ASA Ltd．Dept 3
Brook House，Torrington Place， London WC1E 7HN

[^0]: Published on approximateiy the 22 nd of each month by $i \bar{P} \bar{C}$ Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) f12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

[^1]: Alba, Cossor, Baird, GEC,
 30,000 SERVICE SHEETS IN STTOCK ALL AT £3.00 + SAE Defiant, Echo, Ferguson, Philips etc. etc. ALSO COLOUR MANUALS AVAILABLE AT e6.00 EACH

 TV Sheets, Black and White, also Radiograms, Record Players, Music Centres Japanese models in stock. Circuit diagrams only. Also Tape Re:corders etc., etc. Please forward s.a.e. Send cheque or P.O.
 C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.

 Old radios A.MFM
 and Valves.
 and Valves.

