SEPTEMBER 1984

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

VCR Servo Systems

Servicing the Grundig GSC100

 The Salora Ipsalo-2 Circuit CCTV Commentary O VCR Clinic TV Fault Finding O DX-TV
MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
* Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
£70.00
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime \prime}$)
$£ 7.40$
Optional Sound Module (6 MHz or 5.5 MHz) £3.90 Built \& Tested in De Luxe Case including Sound Module SPECIAL TEST?
$£ 105.00$
REPORT
Post/Packing $£ 2.50$
TELEVISION d Add VAT 15\% TO ALL PRICES
PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
* In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED 858.00 + £2.20 P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $\mathbf{1} 68.00$ + $\mathbf{1 2 . 2 0}$ P \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS £5.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ADD VAT 15\% TO ALL PRICES)

MANOR SUPPLIES TELETEXT ADAPTOR KITS (LESS CASE)

MK 1 (Texas XMII) remote control $\mathbf{£ 1 2 0 . 0 0}$ p.p. $£ 3.00$.
MK 2 (Mullard) infra red remote control $£ 150.00$ p.p. $£ 3.00$
Further details on request. Tel 01-794 8751/7346
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order)

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS

COLOUR PORTABLE TV
MONO PORTABLE TV, SMALL SCREEN MONITOR ETC
THORN TX10 type Remote \& Tuning Control Panel $£ 9.40$ p.p. $£ 1.50$ PHILIPS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$ SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. £28.50 p.p. £1.20.
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{£ 8 . 5 0}$ p.p. 80p.
PAL DECODER KIT for RGB Monitors $£ 27.00$ p.p. £1.00.
SPECIAL OFFER TEXAS XM11 Teletext Decoder New \& Tested at reduced price. $£ 40.00$ p.p. $£ 1.60$.
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $£ 6.80$ p.p. $£ 1.20$. XM11 Stab. Power Supply. £3.80 p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 12.00$ p.p. 80 p. (Alum. Case $\mathbf{£ 2 . 5 5}$, De Luxe Case $\mathbf{£ 6 . 8 0}$ p.p. £1.40.)

ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $\mathbf{£ 2 0 . 0 0}$ (VHF version also available). Alum. Case £2.55. De Luxe Case £7.40 p.p. £1.80.
CRT TESTER \& REACTIVATOR PROJECT KIT For Colour \& Mono £28.00 p.p. $£ 2.80$.
BUSH 2718 BC6100 series IF Panel £5.00 p.p. 90 p
BUSH A816 IF Panel (Surplus) £1.65 p.p. 90p.
DECCA 80 Series IF, Frame, T.B. $£ 5.00$ p.p. $£ 1.40$.
GEC 2040 Convergence Panels, Decoder Panels, $£ 2.50$ p.p. $£ 1.80$. GEC 2040 IF Panels $£ 2.80$ p.p. $£ 1.60$.
GEC 2110 Convergence Panels $£ 5.00$ p.p. $£ 1.80$.
GEC "20AX"'Series Switch Mode Power Supply $\mathbf{£ 5 . 0 0}$ p.p. $£ 1.80$
PYE 691-7 CDA Panels. Makers tested stock. £6.00 p.p. £1.45.
PYE 725 T.B. Unit. Makers tested stock. $£ 20.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& THORN TX9 Panels ex factory
Semiconductors etc. $\mathbf{£ 5 . 0 0}$ p.p. $£ 2.00$. Semiconductors etc. $\mathbf{£ 5 . 0 0}$ p.p. $£ 2.00$
THORN TX9 Panels salvaged ex
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX10 T.B. Panels salvaged ex factory. $\mathbf{£ 1 5 . 0 0}$ p.p. $£ 3.00$.
THORN TX10 IF/Decoder Panels salvaged ex factory. £15.00 p.p. $£ 2.00$.
THORN $\mathbf{3 0 0 0}$ Line T.B. PCB, Power PCB $£ 5.00$ each p.p. $£ 1.30$.
THORN 8000/8500 IF/Decoder Panels salvaged £3.20 p.p. £1.80.
THORN 8000/8500 Frame T.B. Panels salvaged/spares $£ 2.50$ p.p. $£ 1.40$.
THORN 9000 Series Control \& Receiver Unit $\mathbf{E} 6.80^{\mathbf{p}}$ p.p. $£ 1.80$.
THORN 9000 IF/Decoder Panels Salvaged. $\mathbf{£ 5 . 0 0}$ p.p. $£ 1.60$.
PHILIPS G8/G9 IF/Decoder Panels for small spares $£ 1.50$ p.p. $£ 1.40$.
G8 Decoder Panels salvaged $£ \mathbf{3 . 8 0}$. Panels for spares $£ 1.75$ p.p. £1.40. G9 Scan Panel. Basic PCB in Fibreglass £14.50 p.p. £1.80.
G9 Scan Panel. Basic PCB in Fibreglass $£ 14.50$ p.p. $£$
G11 Frame Panels, IF Panels $£ 18.00$ each p.p. $£ 2.00$.
G11 Frame Panels, IF Panels $£ 18.00$ each p.p. $£ 2.00$.
GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
GRUNDIG 8630 Series Varicap Tuners $\mathbf{£ 5 . 0 0}$ p.p. $£ 1.00$.
VARICAP. U321, U322, ELC1043/06, ELC1043/5 £6.80 p.p. 80 p. G.I. typ (equiv. $1043 / 05$) $£ 3.50$ p.p. 80p. Makers Varicap Controls PYE CT200 4PSN $£ 7.50$, BUSH 4PSN $£ 4.80$, DECCA 4 PSN $£ 5.80$ p.p. 80p. SPECIAL OFFER ELEVEN POSITION Varicap Control Unit UHF/VHF £1.80 p.p. £1.00.
BUSH "TOUCH TUNE"' Varicap Control Z179, Z718 types $£ 3.80$ p.p. 95p. VARICAP UHF-VHF ELC2000S, ELC2060 £9.80, BUSH £7.80 p.p. 90p. VARICAP VHF MULLARD ELC 1042 , PHILIPS, 66.90 p.p. 80 p.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $\mathbf{£ 2 . 5 0 , ~ J A P ~ R o t a r y ~} \mathbf{£ 4 . 8 0}$ p.p. $£ 1.80$.
TV SOUND IF Panels $£ 6.80$ p.p. $£ 1.00$.
LOPT TESTER, Service Dept approved $£ 15.50$ p.p. $£ 1.20$.
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80p.

BUSH 161 to 186 (twin panel) $\mathbf{5 5 . 9 0}$	R.B.M. A823 $\mathbf{4 . 9 0}$
BUSH, MURPHY 774 series $\mathbf{5 8 . 5 0}$	R.B.M. $\mathrm{Z179}$.............................. $\mathbf{5 9 . 8 0}$
BUSH, MURPHY A816 series 88.50	R.B.M. T20, T22......................... $\mathbf{5 9 . 8 0}$
FERG., HMV, MARCONI, ULTRA	R.B.M. T20, T22 Bobbin $\mathbf{5 . 6 0}$
950, 1400, 1500, 1580, 1590, $1591 \mathbf{£ 5 . 9 0}$	DECCA Bradford (state Mod No) ... 58.80
THORN 1600, 1615, 1690, $1691 \quad \mathbf{¢ 9 . 1 5}$	DECCA 80, 100 88.80
GEC 2000 to 2038 series $\mathbf{5 6 . 8 0}$	GEC 2028, 2040, 2100 $£ 5.80$
GEC series 1 \& 2 88.00	GEC 2110 series £10.60
INDESIT 20/24EGB $\mathbf{5 7 6 5}$	ITT CVC 5 to 9, CVC20 £9.80
ITTT/KB VC200, 300..................... $\mathbf{8 7 . 6 5}$	ITT CVC25, CVC30 series $\mathbf{8 8 . 8 0}$
MURPHY 1910 to 2414 (twin panel) 55.90	
PHILIPS 170, 210, 300 series $£ 7.65$	PYE 713, 715 $\mathbf{E 6 . 8 0}$
PYE, INVICTA, EKCO, FERR.	PYE 725 (90°) 731 to 741 $\mathbf{£ 9 . 2 0}$
368, 169, 569, 769 series $£ 7.65$	PHILIPS G8 $\mathbf{8 8 . 8 0}$
SPECIAL OFFER	PHILIPS G9 £10.20
DECCA 20/24, 1700, 2000, 2401 ... $\mathbf{1 3 . 8 0}$	PHILIPS 570, 571 $\mathbf{E 6 . 8 0}$
GEC 2114J/Junior Fineline $\mathbf{£ 2 . 8 0}$	THORN 3000/3500 SCAN, EHT ... $\mathbf{8 6 . 9 0}$
PYE 40, 67 £1.75	THORN 8000/8500/8800 $\mathbf{1 2 . 9 0}$
KB VC ELEVEN (003)................ $£ 1.75$	THORN 9000 to 9600 $\boldsymbol{1 1 2 . 9 0}$
KB VC1 £2.80	¢19.05

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 8000 (2 lead) EHT Tray $\mathbf{£ 2 . 8 0}$ p.p. 80 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. £1.50 p.p. 60p. $6.3 V$ CRT Boost Transformers for Colour \& Mono $£ 5.00$ p.p. $£ 1.20$

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St) (St Pancras, Bedford) W. Hampstead (Brit Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.
PLEASE ADD VAT 15\% TO ALL PRICES

TE[EOUSLOR

Vol. 34, No. 11
 Issue 407

COPYRIGHT

9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

585 Leader

586 The Salora Ipsalo-2 Circuit
Salora's second Ipsalo (integrated power supply and line output) circuit makes use of a pair of transistors to perform the chopper action.

587 CCTV Commentary
Andy Denham
Notes on Frowds' cameras and faults experienced with
Hitachi monochrome monitors.
588 Tiny Tim's Dilemma
Les LawryJohns
Thirty years of writing for Television, and a little longer
than that dealing with errant TVs, and what has Tim to show? Piles of bills and not much in the bank.
591 TV Fault Finding
Notes on TV faults from Mick Dutton, Jim Rainey, Tony Thompson, Robin D. Smith and Malcolm Burrell.
592 Servicing the Grundig 2×4 Super, Part 2
Mike Phelan
Operation of the DTF and servo circuits and how to tackle faults in this part of the machine.
596 Cable 84
Harold Peters
A visit to Cable 84, the second annual conference and exhibition for the cable and satellite TV industry.
596 Teletopics
News, comment and developments.
598 VCR Servo Systems, Part 1
Eugene Trundle
A surprisingly wide variety, of servo arrangements have been used in domestic VCRs. The purpose of this article is to consider the approaches adopted by different designers and see how they achieve the required results.
602 TV Test Pattern Generator, Part 4 Tony Jenkins, G8TBF This concluding instalment covers modifications, setting up and constructional notes.
606 VCR Clinic
Notes on video faults from Mike Phelan, Steve
Beeching, T.Eng. (C.E.I.), Peter Dolman, Tony Thompson,
Malcolm George, Ian Hutton, Les Grogan, Hugh Allison, John Coombes and Peter Blundell, Tech. (C.E.I.).
608 Servicing the Grundig GSC100 Chassis
Denis G. Mott
A detailed run-down on faults experienced with this second-generation thyristor line timebase chassis.
611 Letters
612 Servicing the Sony KV2000UB, Part 2
David Botto The timebase panel and the signals circuits.
613 Next Month in Television
614 Long-distance Television
Roger Bunney
Reports on DX conditions and reception. Also
interference problems and details of a 12 GHz satellite receiver developed by Chris Wilson.
617 Service Bureau
618 Test Case 261
OUR NEXT ISSUE DATED OCTOBER WILL
BE PUBLISHED ON SEPTEMBER 19

HOCKLEY DISCOUNT TELEVISIONS

MIDLANDS NEWEST WHOLESALERS FRESH STOCK WEEKLY SEPTEMBER SALE PRICES
Bush from .£6.00
G8 520 from $\mathbf{£ 5} \mathbf{0 0}$
G8 550 from $£ 10.00$
G.E.C. Solid State $\mathbf{£ 2 0 . 0 0}$

Pye Solid State $£ 18.00$
Pye Chelsea $\mathbf{2 0 . 0 0}$
I.T.T. Hybrid 18.00

Decca Hybrid $£ 12.00$
Japanese Models£22.00
Also latest stock G11. B.R.C. 9000. Decca 80 \& 100 Series I.T.T. CVC30, 45 etc.

WORKING SETS FROM $£ 18.00$
SPECIAL OFFER ON WORKING SETS. MINIMUM 6 SETS
RING US NOW
021-551-2233 94 Soho Hill, Hockley, Birmingham B19 1AE.
Opening hours 9-7 Monday - Saturday Sundays by appointment.

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COINAGE AVAILABLE

10 p
50 p
${ }^{50 \mathrm{p}}$
COMPLETELY VARIABLE TIMINGS

87-89 Sterte Avenue,
Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

WE WILL QUALITY, BRA REPUTATION	ONLY SUPPLY ANDED COMPO N COUNTS WI	TOP ONENTS. TH US	E. \square 108 SCOTLAND PHONE (0228)	D ROAD, CA 20358/1396	RLISLE, 3	UM	RIA	CA3 9EY	BUY W	TH	
INTEGRATED	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (f)	TRANSIBTORS	TYPE BC548	PRICE	$\left\|\begin{array}{ll} \text { TYPE } & \text { PRICE } \\ \text { BR100 } & 18 \end{array}\right\|$			THORN $1500-5 \mathrm{~S}$ THORN3000/3500 THOR .7 .755
CIRCUITS	LA3122 ….... 2.10	TBA520 1.30	STK00507.50	UPC1185H2 . 3.30	SIBTOR8	BC548 BC557	$\begin{array}{r} 10 \\ \cdots \quad 10 \end{array}$	BR100 BR1...... 18 BR101	RBM T20/22A	${ }_{0 / 22}^{1220}$	$\text { THORN8000 } \quad .500$
TYPE PRICE (f)	LA3301 ….... 1.97	TBA530....... 1.00	STK011 735	UPC1188H 330	TYPE PRICE	$\begin{aligned} & \mathrm{BC557} \\ & \mathrm{BC558} \end{aligned}$	$\begin{gathered} \ldots .10 \\ \cdots \\ \hline 10 \end{gathered}$	BR101 \qquad	RBM 271818		$\text { THORNB500 } 8800.690$
AN103 1.95	L43350 1.93	TBA540 127	STK014 $\ldots7 .65$ STK015 1.15	UPC1190C.. .2 .10 UPC1 1984 H .1 .30	$\left\|\begin{array}{llll} A C 127 & \ldots & 22 \\ A C 128 & \cdots & 22 \end{array}\right\|$	BC558 BD124P 10	BR103 55		$\begin{array}{r} 22.95 \\ \ldots . . .90 \end{array}$	THORN9000 8.8 .40
AN214 2.25	LA4031 1.66	TBA550 1.40	STK015 7.15	UPC1198H UPC - 1200 1 1.30	$\left\|\begin{array}{lll} \text { AC128 } & 22 \\ \text { AC128K } & \ldots . .30 \end{array}\right\|$	BD124P BD131 B 132	P..... 55	BT106 1.15 BT116 BU	PHILIPS G8 PH:LIPS G9..	$\begin{aligned} & 7.90 \\ & \hline . . .75 \end{aligned}$	PYE 731 6.55
AN217 ….... 2.44	LA4031P 2.45	TBA560Q 1.60	STK016 7.45	UPC1200V 1.90	$\left\|\begin{array}{l\|l} A C 128 K & \ldots .30 \\ \text { AC187K } & \ldots . .30 \end{array}\right\|$	BD131 BD132		BT116 … 1.30	PHILIPS G9 PHILIPS G11	$\begin{array}{r} \mathbf{8 . 7 5} \\ .13 .50 \end{array}$	OECCA 2230 630
AN240 220	LA4032	TBA7500 2.45	STK020 9.05	UPC1208C1.85	AC187K AC188K 30	BD132 BD201	$\begin{array}{r} 33 \\ . .80 \end{array}$	$\left\|\begin{array}{l} \text { BU126.... } 1.78 \\ \text { BU204 } \\ \hline 1.50 \end{array}\right\|$	PHILIPS G11 THORN $1590 / 1$	$\begin{array}{r} 13.50 \\ . . .58 \end{array}$	DECCA 80 6.30
AN253	LA4051	TBAB00 \ldots........ 80	STK032 STK.... 11.32 STK035 12.67	UPC1211C \ldots...4.05	AC188K 33	BD201	$\begin{array}{r} . . .80 \\ -\quad .70 \end{array}$	$\left\|\begin{array}{l} \text { BU204 } 1.50 \\ \text { BU205 } 1.42 \end{array}\right\|$	THORN 15901	$\begin{aligned} & 8.58 \\ & 9.68 \end{aligned}$	OECCA 100 6.76
AN264 \ldots........1.77	LA4101 1.88	TBAB10AS ...1.15	STK035 $\ldots12 .67$ STK036	$\begin{array}{ll}\text { UPC1215V } & . .2 .50 \\ \text { UPC1216V } & 2.00\end{array}$	AD149 70	BD202	$\begin{array}{r} . . .70 \\ \times . .70 \end{array}$	$\left\|\begin{array}{l} \text { BU205..... } 1.42 \\ \text { BU206.... } 1.35 \end{array}\right\|$	THORN 1615	$\begin{array}{r} 9.68 \\ 9.75 \end{array}$	$1{ }^{17 \mathrm{CVC}}$ 20/30 $\quad . .6 .6 .85$
AN315 AN318	LA4102 1.97	TBAB20......... 1.40	STK036 12.67 STK04311.33	UPC1216V2.00	$\left\|\begin{array}{c} A D 161 \ldots \ldots42 \\ \text { AD162 } 42 \end{array}\right\|$	$\begin{array}{\|l} \mathrm{BD} 203 \\ \mathrm{BD} 204 \\ \hline \end{array}$	$\begin{array}{r} .70 \\ \cdots .83 \end{array}$	BU206 … . 1.40	THORN $1615 .$.	$\begin{aligned} & 9.75 \\ & \hline . .50 \end{aligned}$	Universal 5.90
AN318	LA4400 …....2.80	TBA890......... 2.95	STK043 11.33 STK050 20.75	UPC1217G 3.35		$\begin{aligned} & \mathrm{BD} 204 \\ & \mathrm{BD} 222 \end{aligned}$	$\begin{array}{r} \ldots 83 \\ +\quad .50 \end{array}$	$\begin{aligned} & \text { BU208A } 1.40 \\ & \text { BU208/021.70 } \end{aligned}$	PYE 731//13	(1.)...12.50	
AN337	LA4420 1.94	1BA9200 \ldots.... 1.5 .65	$\begin{aligned} & \text { STK05020.75 } \\ & \text { STK07021.95 } \end{aligned}$	$\left\|\begin{array}{\|l\|l\|} \hline U P C 1218 H \\ \text { UPC1222 } 2.75 \\ \hline \end{array}\right\|$	AU110 2.10	$\begin{aligned} & \mathrm{BD} 222 . \\ & \mathrm{BD} 232 . \end{aligned}$	50	BU326A .. 1.48	PYE 725 (90).	-.... 1020	
AN5431 2.76	LA4430 1.93	TBA9901.55	STK077 8.56	UPC1223 3.40	AU113 3.50	BD233		BU407 1.12	IT CVC 1-9	9.60	
AN63326.97	LA4460 2.95	TCA270S130	STK078 8.45	UPC1225 3.10	BC107 14	BD234	40	BU500..... 1.80	OECCA 2230	8.30	
AN7110 1.93	LA4461 2.95	TCA8001.95	STK082 9.75	UPC1226..... 2.55	BC108 14	BD235	32	BU526..... 2.00	DECCA 80.	8.58	
AN7114 2.33	MB3712 230	TCA940........ 1.55	STK086 12.89	UPC12272.10	BC109 14	BD236	43	BU826 3.20	OECCA 100	8.58	
AN71152.37	MB3713 225	TDA1002A ...1.50	STK4159.66	UPC1230H ...3.45	BC141 26	BD237		R2008B ... 1.45	IT CVC 20	7.75	
AN71202.43	MB8719 5.20	TDA1003A2.80	STK433 725	UPC12451.99	BC142 23	BD238		R2010B ... 1.45	IT CVC 25/3013	$32 . .8 .00$	
AN/140 2.10	MC1327A..... 1.00	TDA1004A ...2.70	STK435 7.75	UPC1250 2.45	BC143 25	BD410		R2540 2.35	ANTI-SURGE	FUSES	
AN7145 3.25	MC1358P 1.60	TDA1035...... 3.20	STK437 7.77	UPC1350C	BC147	BD434		TIP31C 46	A/S20MM 80N	A ... 2.75	
AN7150 2.89	MC1330P........ 90	TDÁ1044.......3.10	STK439 7.86	UPC1353C ...2.60	BC148 08	BD437		TIP32C 47	100, 160. 200M	. 1.70	
AN7151 2.89	ML231B 1.95	TDA1170......1.80	STK441 9.52	UPC1356C2 . 3.05	BC157 10	BD438		T1P338 80	315, 400, 500.		
HA1137........ 2.30	ML232B 1.70	TDA1412......... 90	STK44311.33	UPC1358H ...3.05	BC158 11	BD707	. 1.05	TIP41C 48	800MA, IA, 1	6.	
HA1 144........ 2.39	ML237 2.50	TDA2020 2.95	STK459 9.55	UPC1363C ...320	BC159 11	BDX32	... 1.65	TIP42C 48		120	
HA1151........ 1.97	ML238 422	TDA2522......1.80	STK463 10.88	UPC1365C $\ldots . .5 .05$	BC160 22	BF194 12	TIP2955...... 70	2. 3.15, 4, 5A	${ }^{-1.35}$	
HA1 156........ 1.97	TA7072P 2.75	TDA2523...... 225	STK501 8.98	UPC1366C ...2.85	BC172 10	BF195	... 13	TIP3055..... 50	NEW VAL		
HA1166........ 2.65	TA7108P2.10	TDA25302.10	UPC41C 2.95	UPC1367C ... 2.85	BC177 22	BF196	.. 11	TV106/02 1.60	DY802.. 72	
HA1197........ 2.30	TA7120P 2.05	TDA2532 2.20	UPC554C 1.30	UPC1368C 3.76	BC182 10	BF197	-.. 11	2N3054 $\ldots . . .55$	PCF802		
HA1 199.........2.30	TA7129 3.00	TDA2540 1.95	UPC555H	UPC1370C2 .3.80	BC182L 11	BF198 14	2N3055..... 50	PCLB2		
HA1202........ 1.75	TA7130P 1.20	TDA2560 180	UPC566H3 2.10	UPC1373H 120	BC183L 11	BF241	…... 15	2SC1172Y	PCL84		
HA1211........ 4.87	TA7139P 2.80	TDA2581 1.70	UPC577H3.00	UPC1377C 4.60	BC184L ….. 11	BF256L	C 25		PCL805		
HA1306....... 2.97	TA7157P $\mathbf{3 . 0 0}$	TDA2590...... 225	UPC585C 1.40	UPC1378H	BC208 12	BF258	.. 25	2SC2029 - 2.00	PCL86...		
HA1319........ 2.99	TA7171P 3.40	TDA2591 2.70	UPC1009H2.15	UPC1384C ...5.50	BC212L 10	BF259	.. 26	2SC2078 - 2.00	PFL200.		
HA1322........ 2.10	TA7172P3.40	TDA2593 230	UPC1017G	UPC2002H ...2.20	BC213L 10	BF337	.. 28	2SC2078 . 2.20	PL504,		
HA13252.30	TA7176AP ... $\mathbf{2 . 9 0}$	TDA2600...... 5.50	UPC1018C ...1.15		BC214L .-.... 10	BF338		2SC1969 . 2.45	PL508.		
HA1338........2.78	TA7193P...... 4.20	TDA2611A 1.50	UPC1025H ...3.30		BC237B 11	BF458	. 30	Sony. SG613/	PL509/519	5.65	EW COIL G11 . . . 1.65
HA1339........2.80	TA7202P	TDA2640 1.80	UPC1026C ...1.45		BC337 11	BF459		6533 8.50	PY88		VA104 70
HA1342A 2.33	TA7203P 3.00	TDA3560 5.10	UPC1028H		BC338 10	BFR90	1.60		PY5004		TRANSDUCTOR 275
HA1366	TA7204P1.80	SAS560S 1.83	UPC1031H		BC547 10	BFY5	.. 22		PY81/800		1.40
W/ WR 2.30	TA7208P	SAS580	UPC 1035C... .2 .50		Olvics		PU	BUT	NERS		
HA1371 2.97	TA7210P	SAS590 2.40	UPC1042C ...2.40	DECCA 301400/) 350 V	2.55	DECCA	T	6.45		
HA1374........ 2.56	TA7222P 1.70	SL901B 4.80	UPC1043C ... 2.45	DECCA $80 / 100140$	0)350V		DECCAI	ITT 6W 7.95		
HA1377........ 3.80	TA7223P3.15	SL917B6.95	UPC1156H ... 2.45	(800)250V		2.90	PYE201		15.80		ne or write for lists.
HA1388........ 420	TA72274.65	SN76003N 2.05	UPC1168C ...2.70	PHILIPS G8(600)30	300 V	2.00	PHILIPS	G8S/L	13.90		
HA1397........4.15	TA7310P1.70	SN76013N 1.80	UPC1170C ...1.55	PHILIPS G9(2200))63V	1.15	PHILIP	G8S/O	12.00		NG
HA11211 2.43	TA7313P 2.10	SN76023N 1.80	UPC1176C2.15	PHILIPS G11(470 PYE $6917(200-300$	$1250 \mathrm{~V}$ 001350 V	1.95 2.10	HITAC	$14 \mathrm{~W}$	8.95 .40	Teas	Add 50p For P/P U.K.
KIA7217....... 2.75	TAA550 28	SN76110N90 SN76226DN 1.45	UPC1177H UPC1178C .. .2 .30	PYE 691/7(200-30 RBMAB23 $2500 / 2$	$\begin{aligned} & 001350 \mathrm{~V} \\ & 2500130 \mathrm{~V} \end{aligned}$	2.10 1.10	$\begin{aligned} & 1 \pi \mathrm{CV} \\ & 1 \pi \mathrm{CV} \end{aligned}$	$\begin{aligned} & 57 \mathrm{~W} \\ & 8 / 9 \end{aligned}$	9.40 12.80	Add	\% VAT To This Total.
	$\begin{aligned} & \text { TBA120AS } 70 \\ & \text { TBA120SB } 90 \end{aligned}$	SN76226DN $\quad 1.45$ SN76227N $\quad 1.00$	$\begin{array}{ll}\text { UPC1178C } & . . .2 .20 \\ \text { UPC1180C } & \ldots .05\end{array}$	RBMAB23\{2500/2 THORN3500(175	$\begin{aligned} & 2500130 \mathrm{~V} \\ & 100 / 100 / \end{aligned}$	1.10		G11 (Tip SW.)	$\begin{aligned} & .12 .80 \\ & .25 .80 \end{aligned}$		O Orders - Cost.
LA1201 1.88	$\begin{aligned} & \text { TBA120SB } 90 \\ & \text { IBA120U } 1.00 \end{aligned}$	$\begin{array}{\|l\|} \text { SN76227N } \ldots .1 .00 \\ \text { SN76660N65 } \end{array}$	UPC1180C UPC1181H 2.20	$\begin{aligned} & \text { THORN350 } \\ & 400 / 350 \mathrm{~V} \end{aligned}$	00/100/	2.25	$\begin{aligned} & \text { PHILIPS } \\ & 1043 / 05 \end{aligned}$	TFK (TP SW.).	$\begin{array}{r} 25.80 \\ . \quad 8.30 \\ \hline \end{array}$		
LA1365 225	TBA395........ 1.25	STK00396.45	UPC1182H ...2.35	THORN3500(1000	170V	. 85	U321 TF		7.95		
LA2200 2.25	TBA396.......... 85	STK00405.95	UPC1183H ...2.35	THOR N9000(400)	400 V	. 2.75	U322 TF	K . .	. 7.40		

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

EAST

400 mW Plastic $3 \mathrm{~V}-75 \mathrm{~V} 8 \mathrm{p}$ each. $10 / 75 \mathrm{p}$
1.3 W Plastic $3 \mathrm{~V}-200 \mathrm{~V}$ 15p each. $10 /$ $\begin{array}{lll}1.5 \mathrm{~W} \text { Flange } & 4.7-47 \mathrm{~V} & \varepsilon 1.40 \\ 2.5 W & \text { Plastic } & 7.5-5 \mathrm{~V} \\ \mathrm{E} & 1.26 \text { each }\end{array}$

${ }^{\text {2 }}$ 2.5W Plas	$\begin{aligned} & 4.5-75 \mathrm{~V} \\ & 7.5-75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 81.40 \\ & \text { E } 1.26 \text { each } \\ & 870 \text { each } \\ & \text { fl.31 each } \end{aligned}$		$\begin{aligned} & \text { TBAB00 } \\ & \text { TBA810P } \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.10 \end{aligned}$
20W Stud				TBAB1OS	1.20
UNTEGRATED CIRCUITS (1)			() EACH	TBA820	1.60
AN240P	3.42	SN76530P	1.40	TBA920/0	3.00
AN2140	3.88	SN76533N	1.60	TBA950/2A	3.05
AN7150	2.90	SN76650N	1.05	TBA970	4.05
CA3065	1.75	SN76660	0.75	TBA990	1.88
CA4031P	2.88	SN76666N	0.80	TCA160C	3.90
CA4 102	3.30	STK015	6.50	TCA270S	4.00
CA4250	3.50	TA>108P	3.20	TCA270SA	4.02
CA4400	2.98	TA7120P	2.20	TCA800	3.10
CA4422	3.07	IA7129AP	3.65	TCA940	1.90
LC7120	5.33	TA7130P	1.65	TDA440	3.80
LC7130	5.26	TA7172	1.80	TDA1002	1.90
LC7137	5.16	TA7193	5.50	TDA1003A	5.50
LM380N	0.80	TA7172P	1.80	TDA1004a	3.50
LMi303N	2.52	TA7176	2.50	TDA1006A	2.40
HA1151P	3.12	TA7202P	4.18	tda1035S	4.50
MC1307P	1.85	TA7204P	1.86	TDA1044	4.30
MC1310P	1.85	TA7205AF	150	TDA1170S	3.00
MC1312P	2.25	TA7208P	3.27	TDA1190	3.50
MC1327P	1.25	TA7210P	650	TDA1200	2.98
MC1330	0.83	TA7222P	1.88	TDA12700	3.70
MC1349P	1.85	TA7223P	3.68	tDA1327a	1.66
MC1350P	1.20	TA7227P	5.60	TDA1352A	1.56
MC1351P	250	TA7310P	1.80	TDA1412	1.20
MC1352P	1.50	TA7609P	4.28	TDA2002	2.80
MC1357P	2.88	TA7611AP	2.88	TDA2020	4.60
MC1359P	1.30	TAA263	2.46	TDA2030	2.78
MC1496L	1.15	taA3T0a	2.68	TDA2140	5.90
ML2318	2.10	TAA550	0.50	TDA2521	4.10
ML2328	2.10	TAA570	1.99	TDA2523	3.50
ML2378	2.30	TAA611A12	3.50	TDA2530	2.70
NE555	0.25	TAA630S	3.90	tDa2540	3.80
C-mos 555	0.88	TAA661日	1.70	tDA2541	3.80
NE556	0.80	TAA700	2.80	TDA2560	3.50
SAA 3024	5.35	TAA840	3.38	tDA2571A	2.50
SAA 1025	8.40	TAD100	2.80	TDA2581	3.20
SAS560A	2.50	FM FILTER	1.20	tDA2590	3.20
SAS560S	1.85	TBA120 AS,		TDA2591	2.98
SAS570S	1.85	S,SA.SB	1.30	TDA2593	2.98
SAS580	2.85	O.T,U.UQ	1.32	TDA2610	3.20
SAS590	2.82	TBA1208	1.30	TDA2611A	1.94
SC9503P	1.10	TBA231	1.45	TDA2640	2.90
SL432A	4.00	TBA281	2.65	TDA2680	3.40
SL9018	520	TBA395	1,20	TDA2690	3.50
SL917B	7.25	TBA4800	1.50	TDA3950a/	2.60
SL13270	1.10	T8A400	2.30	UPC554C	1.32
SN76003N	2.44	TBA510	2.60	UPC557H	0.90
SN76013N	1.90	TBA5100	2.50	UPC566H	2.95
SN76023ND	2.90	TBA520/0	1.60	UPC575C2	3.20
SN76033N	2.45	TBA530/O	1.30	UPC 1018C	1.10
SN76110N	1.12	TBA540/0	1.40	UPC1025	2.90
SN76115N	2.00	TBA550/O	1.52	UPC1032H	0.90
SN76131N	1.65	TBA560C	1.70	UPC1156H	420
SN76226DN	1.80	tBa560Ca	1.60	UPC1158H	0.76
SN76227N	1.10	TBA570	1.50	UPC1163	

4.50	UPC1181H $\quad 1.60$
2.40	UPC1185H2 3.7
2.85	UPC1212C $\quad 1.30$
2.80	UPC1230H $\quad 3.90$
1.60	UPC $1350 \mathrm{C} \quad 4.25$
1.10	UPC1367C $\quad 3.40$
1.20	UPC1378H $\quad 4.40$
1.60	UPC2002H $\quad 2.80$
3.88	FLJOS \& SUCKETS
3.00 3.05	Matal Co-ax Plug 0.18
4.05	Plastic Co-ax Plug 0.14
1.88	Metal Line Socket 0.50
3.90	Single Junc Socket0.80
4.00	Plastic Phono 0.10 F.M. Plugs 0.20
4.02	F.M. Pugs 0.20 P259 Plugs 0.38
3.10	Reducer $\begin{array}{ll}\text { Rel } \\ \end{array}$
3.80	Soldering
1.90	section
5.50	XS25 Watf ron com
3.50	plete with steel and
2.40	plug attached 7.20
4.50	CS 18W, as above
3.00	Anter 15 W - 5.00
3.50	Antex 15 W iron 5.00
2.98	Antex 25W iron 5.20
3.70	Antex elements 2.00
1.66	Antex bits 0.95
1.56	Antex stands 1.90
1.20	Soldersucker 4.50
2.80	5.
2.78	SERVICĖ alds
5.90	ALL SERVISOL
4.10	PRODUCTS
3.50 2.70	Swich Cleaner 0.88
3.80	Circuit freezer 0.96
3.80	Aero Klene 0
3.50	
2.50	(Aerosol) 1.00
3.20	Antistric Spray 0.82
3.20	Plastic Seal 0.88
2.98	Excel Polish 0.76
3.20	Fire Extinguishar
1.94	Video Head
$\begin{aligned} & 2.90 \\ & 3.40 \end{aligned}$	Clasner 0.88
3.50	Sillcone Gras
2.60	Solda Mop(Std) 0.72
1.32	Solda Mop
0.90	(L/Gauge) 0.72
2.95	Acdititonal P\&P on
1.10	above 30p
2.90	NI-CAD
0.90	Universal N-Ca
420	charger, charges
0.76	PP3, AA, C, D

\qquad

ILC. SUCKETS		
Dil to DII		
	0.08	0.70/10
14 pin	0.10	0.95/10
16 pin	0.11	1.00/10
22 pin	0.21	1.95/10
28 pin	0.30	2.75/10
40 pin	0.34	3.10/10
Co-AXIAL CABLE		
$5{ }^{5}$		
MINIATURE MULTI-CORE		
-9-core ${ }^{\text {TWIN FIGURE }}{ }^{\text {46p }}$ per metre		
Grey \& Clear 10 p per metre TEST LEAD WIRE		
TEST LEAD WIRE Red B Blacik 38 p		
Fuseholders		
20 mm Pariel Mounting 20 mm Chassis Mounting $1 \mathrm{~d}^{\prime}$ Panel Mounting $1]^{\prime \prime}$ Chassis Mounting Carline 11^{14} hoider		

GEC2010
Gherilip
Philes
G
Philips 70
Phill 300
Philiss 300
RAIA
S40

Thorn $3000 / 3501$
Thorn 8ooo

- includes 30p. Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COP

EAST CORNWALL COMPONENTS
 119 HIGH STREET WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

\qquad

 rice
0.30
0.32
0.30
0.30
0.30
0.26
0.18
0.32
0.92
0.26
0.26
0.28
0.42
0.82
0.24
0.27
0.38
0.38
0.33
0.36
0.4
0.22
0.22
0.22
0.30
0.32
0.28
0.34
1.72
0.38
0.38
0.79
0.76
0.28
0.30
3.56
0.24
0.26
0.26
0.26
0.65
0.21
0.21
0.21
0.40
0.90
1.34
0.20
0.49
0.58
0.76
0.42
0.86
0.56
0.92
0.3
0.34
0.62
0.29
0.94 \qquad

Pinco

add 45 p postage/packing (unless otherwise specified) to all orders
and then add 15% VAT to the total. Either send cheque/cash/postal
order or send/telephone your Access or Visa number. Official orders
from schools, universities, colleges etc most welcome.
(Do not forget to send for our 1984 catalogue - only 65 p per copy details in middle of advertisement.)

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671
CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

CORRECTION - SONY KV2000UB

Under the heading "power supply fault finding" in Part 1 last month the advice was given to start off at about 150 V a.c. from a variac. This should have read about 110 V . It's important to start at 110 V and then increase the input voltage gradually.

BUMPER ISSUE!

Watch out for our October issue which will contain extra pages and a data card listing AV in/out connections for the majority of VCRs that have been sold in the UK.

FRONT COVER

This month's cover photo shows an engineer carrying out VCR tests in the Thorn-EMI-Ferguson video laboratory. Our thanks to Ferguson for their assistance.

TELEORSDOR

Lessons from the Japanese

The effect that Japanese consumer manufacturing companies have had on standards of quality and reliability world wide is now appreciated by all. So much so that the question is why US and European companies lagged behind for so long? The fact seems to be that manufacturing, certainly in the consumer sector, had become something of a shambles in the west during the fifties and sixties. There was a happy go lucky approach and an understanding that when things went wrong the dealer would put them right. So we had stock faults, cars that were never right from new and so on. Inevitably there was a backlash and the consumer movement was born.
This dilatory approach to quality control didn't do for the Japanese at all. For their mass produced goods to be accepted world wide they had to work correctly from new and keep on working. Distance and the language problem made it difficult to rely on dealer networks to sort out the problems, but quite apart from this there was a different emphasis in Japanese manufacturing firms. The shop floor was seen as the centre of the operation and all attention was focused on it. The Japanese have an extraordinary aptitude for organising production. Not only efficient production lines but stock control, manning, quality control and everything else. Everyone concentrated on getting the product right, which meant producing it right. Contrast this with what tended to happen in the west. There, getting the product right meant market research, finding out the subconscious motives of prospective purchasers and so on. So emphasis was placed on the look of the product and its "sales features". The shop floor was left to take care of itself - you'd probably get trouble with the foreman or union if you interfered too much anyway. Salesmen, nay marketing men, concentrated on putting the firm's image across, accountants concentrated on making a profit, and production was supposed to come up with something or other in the required quantity at the appropriate time - the preChristmas rush, the spring sales boom and so on.
A vast mythology grew up over this - the supposed sex appeal of cars for example. The sales manager was assumed to know what he was about: his graphs showed when sales peaked, and production was organised to suit. Let's not belittle salesmanship however. It had become quite an art in the west and to some extent the engine of economic growth.
Because of cultural differences, this approach didn't suit the Japanese. Japanese women are regarded in a very Victorian light, so you don't devote time to getting the sex appeal of the latest car, stereo or whatever right. The emphasis in the highly ordered Japanese society is on the firm, and within the firm on production. It's interesting that the Japanese have been able to apply this technique wherever they've set up - and Japanese consumer goods manufacturers have now spread their operations around the globe. For geo-economic reasons, Japanese manufacturers had to be export orientated, but it was appreciated that you couldn't simply flood the west and destroy jobs there. That way the public wouldn't be able to buy the goods. So production lines were set up in the USA, the UK and elsewhere - the Japanese had learnt about the dangers of protectionism in the thirties. From being export orientated, Japanese manufacturers became multinational.
This fitted in rather neatly with the west's ability at salesmanship. Couple the latter with Japanese manufacturing ability and you've a sure formula for success. It's ironical that western sales organisations have contributed so much to the success of Japanese manufacturing concerns. But western countries would have been in difficulty had they come to rely on Japan as the consumer goods workshop of the world. Could Japanese manufacturing ability be exported? Could something so rooted in Japanese attitudes be successfully transplanted?
The answer as we know is yes. The story of Japanese success in this direction is an interesting one - with the same fundamental emphasis placed on the shop floor. The Japanese approach has not been rigidly applied elsewhere however - you don't start the day in Devon or California by singing the company song, and local management is left to get on with it subject to the overall requirements of quality control and efficient production.
It's interesting that the Japanese seem to have a different time scale to that usual in western countries. A fascinating report in the Financial Times recently chronicled Matsushita's approach to getting established in the USA. The story has parallels in the UK. Rather than start up in open competition on a green field site, the decision was taken to buy market share. By great good luck this suited Motorola, whose technical and manufacturing interests were moving in other directions. So in 1974 Matsushita took over Motorola's rundown TV plant in the suburbs of Chicago - and then spent some ten years getting it right!
Whilst being flexible, it seems that Japanese control has to be total. Hence Plymouth worked once Rank had left it to Toshiba but the joint GEC-Hitachi operation at Hirwaun failed to work successfully. It will be interesting to see how things develop now that GEC have pulled out.
Japanese concentration on the manufacturing process seems to be coupled with an element of benign neglect elsewhere. In another recent Financial Times piece Shizuo Takano, senior managing director of JVC, commented on the lack of auditing in Japanese companies. "We do have auditors but, to be honest, they don't do very much"! With that sort of management approach, it's not surprising that Japanese firms can adopt a longer time scale than is usual in the west!

The Salora Ipsalo-2 Circuit

The Salora Ipsalo-1 circuit was described in the September 1980 issue of Television and was employed in versions of the Salora G chassis up to serial number 300,000 and versions of the H chassis up to serial number 200,000. To recap, Ipsalo stands for integrated power supply and line output, i.e. it's an ingenious circuit in which a single transformer is used as the switch-mode and line output transformer while also providing mains isolation. The aim is reduced power consumption. In the Ipsalo-1 circuit two thyristors were connected in series with the transformer's primary winding, one providing protection and a soft-start action while the other acted as the chopper device to provide regulation. Hence two separate driver transformers were required.

Now thyristors have tended to become unpopular for use as switching devices in TV sets. They're more difficult to control than transistors, and tend to produce interference. So transistors have come to predominate in power supplies and line output stages. The Ipsalo- 2 circuit, which is used in later versions of the G and H chassis and the current J chassis, is an example of this tendency. The thyristors are out, replaced by a couple of switching transistors, while a single driver transformer (with separate secondaries) further simplifies matters.

A simplified circuit of Ipsalo-2 is shown in Fig. 1. At switch-on the mains bridge rectifier DB708-711 produces a 320 V supply across the reservoir capacitor CB721. This is smoothed by RB713/CB722. Once the circuit comes into operation, the switching transistors TB700 and TB701 connect the primary winding of the transformer MB500 across this supply when they are switched on. As
with any switch-mode power supply, the energy delivered to the secondary windings on the transformer is controlled by the on/off times of the switching arrangement, in this case the two transistors TB700/1. By using a pulse-width modulator whose output mark-space ratio is controlled by feedback, regulation is achieved. Energy saving is provided by the diodes associated with the two switching transistors. When the transistors are switched off, the voltage across the transformer's primary winding will try to reverse. DB705 and DB704 will then conduct, returning the unused energy to the smoothing capacitor CB722. DB703 and DB706 conduct on the overshoot.

The line oscillator provides trigger pulses for both the chopper control and the line drive circuitry. The action of the line output stage charges CB513 to 142 V .

Since the set's supplies are derived from the secondary windings on the transformer, a start-up system is required. A neat arrangement is used for this purpose. At switch-on CB715 will charge via RB734/716/715. When the voltage across it reaches some 35 V the diac DB725 will fire, discharging CB715 (partially) and providing TB701 with base drive. TB700 is driven by transformer action. When the voltage across CB715 has fallen to 25 V DB725 and the transistors switch off. As a result of this action a 10 V p-p sawtooth drive waveform is developed across CB715. This mode of operation enables DB504 to produce a 28 V supply across CB510. The 28 V is fed to a simple emitterfollower regulator in the switch-mode control circuit (within the thick-film hybrid i.c.). This produces an 8.5 V start-up supply for the control circuit and the line oscillator and driver stages. Once the line oscillator gets going,

Fig. 1: Simplified circuit/block diagram of the Salora lpsalo-2 system.
full operation commences. The start-up system is then disabled since DB714 switches on each time TB701 conducts, ensuring that the charge on CB715 doesn't reach the level at which DB725 fires. During normal operation the line oscillator, driver and switch-mode control circuit are powered by $15 \mathrm{~V} / 12 \mathrm{~V}$ supplies derived from another secondary winding on the transformer.

The switch-mode control circuit consists of a bistable multivibrator (the pulse-width modulator) and a driver transistor for transformer MB700 plus extra bits for regulation etc. Regulation is achieved by using an $R C$ charging circuit which is fed from the 142 V h.t. rail, i.e. the supply to the $R C$ network is proportional to the e.h.t. The $8 \mu \mathrm{sec}$ trigger pulses from the line oscillator are used to discharge the capacitor in this $R C$ network. The capacitor then charges at a rate depending on the supply to the network. When the voltage across the capacitor has risen
sufficiently, the bistable is triggered. The width of the output pulse from the bistable is thus dependent on the e.h.t. This arrangement also provides the soft-start action, the h.t. voltage building up gradually after switch-on. In addition, overload protection is incorporated by bringing a zener diode into operation under overload conditions to disable the $R C$ charging network.

The short ($8 \mu \mathrm{sec}$) trigger pulses provided by the line oscillator necessitate some complication in the line drive circuit. A monostable multivibrator is used to stretch the pulses before application to the line driver transistor, the width control being incorporated in the monostable's $R C$ timing network. To obtain a standby condition, an inverter is powered and used to invert the input to the base of the line driver transistor. As a result, the switch-mode and line output sections of the circuit operate with the wrong phase relationship and the energy is drained from the line side.

CCTV Commentary

Andy Denham

When I heard that EMI had sold their camera interests to Frowds of Portsmouth, my first hope was that the new owners would introduce some improvements. Having almost always worked on the Surveyor II in pouring rain atop a 20 ft pole, I've on many occasions cursed the lack of access. I eventually came to the conclusion that the only way to work on the beast was to take a spare panel to the site, fitted with some coaxial cable and mains flex, and take the camera down for removal to an on-site workshop. Most of our cameras are fitted with silicon diode tubes, so they usually have a motorised lens with remote lens control for zoom and focusing, and usually a remote iris servo amplifier. These extras demand a highly technical piece of equipment for testing - a PJ996 battery lantern. This completes the test equipment.

We were recently asked to update and add to an existing installation, using Surveyor IIs, so it was with some misgivings that I fitted three of them from Frowds. Access is still difficult, and the old complaint that the camera has to be dismantled for access to the interior still holds. Once inside, we had to fiddle with nuts and bolts to set up the camera with its large lens assembly. The modified video circuit seemed to give better results than the original version, and the internal iris servo is very good. All in all however this is still the familiar EMI camera.

The Surveyor VI

More recently still a Surveyor VI arrived from Frowds. I carefully unpacked all the boxes - sun shield, wiper unit, washer unit and, in the last box (of course), the camera itself. The first thing we noticed was the change to plugs and sockets at the rear of the housing - no more dicky edge connector. Perhaps the only minus point here is that pan head connections can no longer be made at the rear of the camera unless you are using the internal telemetry. Access is much improved: by simply removing four screws the innards slide out of the housing, complete with the lens assembly.

The only external control is still mechanical focusing, which positions the tube for the lens in use. Our camera
sported a massive $15-150 \mathrm{~mm}$ 10:1 zoom lens, with motorised gearing fed from a socket at the rear of the camera.

A quick look through the technical specification showed some improvement on the earlier design. As usual, the sync can be by crystal, mains lock or external gen-lock. The standard is CCIR 625 lines 50 Hz , or EIA 525 lines 60 Hz , with $2: 1$ interlace in both cases. Internal protection is provided in the event of scan failure or excessive tube heater voltage, and the heater is soft-started to improve its life. The h.t. is not applied until the heater reaches its normal temperature, improving tube reliability. Links on the SPG board enable 900 V to be selected for highresolution tubes, e.g. vidicons and Newvicons, or 500 V for silicon diode tubes.

The camera consumes only 14 W , plus 4 W for the window heater, and can be run off $200-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ or $100-1.25 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ a.c. supplies, or 24 V a.c. $(50 / 60 \mathrm{~Hz})$ or $+12 \mathrm{~V} /-12 \mathrm{~V}$ d.c. supplies with slight modification (a single rail 12 V version is to be made available later).

An internal telemetry panel that takes control commands via the coaxial cable is available as an optional extra.

In my opinion a much improved camera.

Hitachi Monochrome Monitors

Some servicing experiences with the Hitachi VM905910 range of monitors are worth relating. The cause of cogging/line tear can often be traced to the boost reservoir capacitor or alternatively the line output stage supply filter capacitor. These are both electrolytics of $220 / 330 \mu \mathrm{~F}$. The usual cause of no line scan (line down the middle of the screen) is failure of the non-polarised electrolytic line scan coupling capacitor $(3 \cdot 3 / 4 \cdot 7 \mu \mathrm{~F})$. No e.h.t. is often due to the U06C boost diode being dry-jointed. If you need to replace the boost diode, a BY298 is a suitable alternative. For no or weak sync, check the sync separator transistor's base coupling and emitter decoupling electrolytics. In the event of no or smeary video, poor contrast or shading on the left-hand side, check the video output transistor's h.t. supply decoupling capacitor. For no field scan/cramping, check the $1,000 \mu \mathrm{~F}$ field scan coil coupling capacitor. In the $906 / 910$ poor field linearity/lack of height can be caused by the $10 \mu \mathrm{~F}$ coupling capacitor connected to the slider of the height control. In the 905/909, severe field foldover can be caused by the $100 \mu \mathrm{~F}$ coupling capacitor to the base of the field output transistor. All these capacitors are electrolytics.

Tiny Tim's Dilemma

Les Lawry-Johns

Tiny Tim sat on his bench stool and looked at his little feet swinging beneath. He looked back at his desk, at what was causing him such acute pain. His bank statement said he'd a small amount in his current account. The income tax man said he owed a great deal more. The VAT was due and the wholesalers' statements completed the mess.

What was Tiny Tim to do? Go into the red? He already owed the bank a lot of money for something else, so he didn't feel inclined to throw himself on their mercy any more - even if they would play with him. He could throw himself off a cliff, but that might hurt. So Tiny sat and pondered. It was easier than working. After all, he'd worked his little fingers to the bone for more years than he could remember, not even having a day off, except Christmas Day that is. Even then old Fred had brought his set in at seven o'clock one Christmas night, which made Tim very angry though he didn't show it - good will to all men, except Fred. Now, after all that work, what had he to show for it? A nasty great tax demand for a start.

War Effort

Tim thought of the time years ago when he didn't have to work so hard. On D-day, when the soldiers were storming ashore amidst all that flack, Tiny Tim was in Gibraltar unpacking Blackburn Barracudas from their crates and helping to assemble them. He then helped to take them to bits again for crating and sending on to India. This procedure had puzzled Tim until he was told that they were originally unpacked and flown to India. As they needed a complete overhaul when they arrived it had been decided to ship them all the way instead. But no one had issued an order to stop the unpacking. So they were unpacked and built, then unbuilt and repacked and put on another boat. Thus Tim's war effort never received the acclaim it deserved. But the sun had shone and Tim had got his knees brown and had been repeatedly thrown out of the bars on Main Street - because he didn't like the pianist playing the White Cliffs of Dover and kept throwing a chair at him.

He'd done the same thing in Alexandria and got thrown out of the bars in Beer Street. This was the time when Subby Thomson was shooting down those Junker JU52s that dropped the comettos over Benghazi. Oh dear how Tim's little mind rambles on. He was young then, and naughty of course. Tales have it that he should be blind, but instead he's just short-sighted. He got fed up last year, not being able to see properly through his glasses which he's repeatedly mended for the last twenty years or so. So he went off to see the man who makes you see better and ended up with an expensive pair of spectacles that enabled him to see a bumble bee about a mile away. He was so pleased, until he discovered that he couldn't see anything less than two feet away. So his nice new glasses remain in their case and he still has to wear his battered ones.

Tim sat and looked at his feet, or rather his shoes. His old shoes. He'd like some new ones, even if they did come from Italy. But he certainly couldn't afford to buy a pair with all this tax hanging over him - especially since Tinker

Bell had demanded a new gas cooker, and had got it of course. So he'd have to put up with the pebbles hurting his little feet as he walked his dog across the car park to where Peter Ripley parks his nice new car. Peter always laughs when he sees Tim, and Tim's glad he's so happy. Must be something to do with his wife being so pretty and all that.

Memories of FJC

Tim scolded himself for being so selfish. He mustn't want new things when he can make do with old ones. He remembered being scolded by F.J. Camm, the original editor of Television. F.J. had told him off for sending in too high an account for answering readers' queries. "Two and sixpence is too much, especially as they are mainly repetitive." So Tim had knocked ten per cent off each monthly account for a while. For a little while.
F.J. was a formidable man. Someone not to be trifled with. After all his brother Sidney Camm had designed those lovely Hawker aircraft, including the Hurricane which Subby Thomson used to shoot down the JU52s. Yes indeed, F.J. was a man to be reckoned with in the Practical days. Not at all like the present editor who is kindly and helpful, always ready to cut large tracts of nasty bits out of Tiny Tim's articles so as not to offend our readers, who are such sensitive souls. I bet they didn't get slung out of the bars in Alex during the war. Or in Gib.

Thirty Years Ago

Tim remembered the very first article he'd submitted to F.J., thirty years ago in 1954. On servicing the HMV 1807. Tim had suggested that this could form the start of a series on servicing TV receivers - practical hints on commercial models. "We shall require more than one to start a series" came the reply, "so we suggest you submit a further three or four." Tim struggled and came up with a further couple of hundred or so and blushes to think how serious he was, studiously writing them all with his little pen because he couldn't afford a typewriter. Tinker Bell bought him one for Christmas some years ago, so that he could earn more money to buy gas stoves and things like that.

So it was that in September 1954 we kicked off: "This series of articles is designed to help those who possess a commercial set of popular make, or who may be asked to help in the servicing of such a receiver. The whole point of these articles is that nearly every television set possesses its own peculiarities which, if known, make servicing much simpler. Time and again the same faults crop up with surprising regularity." There was a lot of "kitchen table" servicing back in the days when sets were cumbersome but amenable and service engineers were few and far between. We've come a long way together since then.

Back to Earth

After a sleepless (almost) night Tim came down to see what bills the postman had brought to upset him further. A nicely typed letter caught his eye. It was from his accountant. "Don't pay that tax demand Les (I mean Tim). It's a mistake and you've paid too much already. Wait until you hear from them to confirm our figures." Oh Glory be, Glory be - and a nice new pair of shoes. The little angel that used to sit on Tim's shoulder and look after him is still there after all. And Tim thought the bitch had gone.

POST A PART ELECTRONICS 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY ADD 60p P\&P, THEN 15% VAT. ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

Some Examples of UNTESTED TVs available

Thorn	10 for $£ 125$
Philips	6 for $£ 90$
Bush	6 for $£ 80$
GEC	6 for $£ 60$
Decca	6 for $£ 60$
Mono TVs avail. s/s	$£ 4$ each
New TV trolly stands.	
All sizes	$£ 4.95$
All Prices subject to V.A.T.	

Thorn
保 Bus Decca

Ex Equipment Panels \& Tubes Available Deliveries may be arranged to the North and Scotland.

Ring for quote. Callers welcome.

419 Barlowmoor Road, Chorlton, Manchester 21 2ER. Tel: 0618618501

TV Fault Finding

Reports from Mick Dutton, Jim Rainey, Tony Thompson, Robin D. Smith and Malcolm Burrell

Decca 140 Chassis

One or two problems have cropped up recently on this chassis. First, we had a batch of faulty line output transformers. The problem was with the built-in first anode control, which either drifted downhill making the picture dark or uphill causing excessive brightness with flyback lines. The power supply consists of the now familiar self-oscillating chopper with TDA4600 i.c.: we've had several BU426A chopper transistors fail after just a few hours' use, a replacement working perfectly. We've also had two cases of the mica washer behind this transistor breaking down - this is not obvious until the transistor is removed. In this case the symptom was recycling tripping.

One set suffered from very intermittent colour dropout, leaving a green and white display. This was due to the collector tabs of Q211 and Q203 on the tube base panel touching together - the wiring harness had been dressed too tightly, pulling on the components.

R423 ($2 \cdot 2 \mathrm{M} \Omega$), which is in series with the field hold control, tends to change value. The result is lack of height or more often field roll with a false lock position when the control is adjusted.

Very occasional failure to start was in one case traced to a crack in the print between D805 and R802 in the startup circuit.

A set with remote control had a flickering LED display with occasionally no remote control. This was traced to a dry-joint where the lead is connected to the 5 V line on the display panel.
M.D.

Thorn TX9 Chassis

The problem with this 14 in . portable (PC1001 main panel) was slight lack of height. Even with the height control at maximum the raster was about half an inch short at the top and bottom. A voltage check at the control showed that the cause was lack of voltage - due to the $3 \cdot 3 \mathrm{M} \Omega$ feed resistor R 268 having gone high in value.

Fidelity CTV14R

The initial fault was reduced field scan ($2 \frac{1}{2} \mathrm{in}$.) with foldover. Whilst making voltage measurements around the TDA1170S field timebase i.c. the field collapsed then the set tripped and went dead. A replacement chip restored the original fault condition. The linearity control had little effect other than making matters worse, and gentle prodding around the area of the chip restored the picture to normal - though only momentarily. A dry-joint perhaps? I've had them before on this chassis. After running over the area with fresh solder we'd lots of shiny joints but the problem remained. Tap again, same result. No print cracks could be found so component prodding with a plastic knitting needle was resorted to. The culprit turned out to be $\mathrm{C} 706(10 \mu \mathrm{~F})$ in the feedback circuit. T.T.

Rank T22 Chassis

The symptom was low brightness, flickering to full brightness intermittently. At times the picture would disappear,
leaving almost total darkness apart from an odd line of colour here and there. It's seldom easy to make voltage checks with an intermittent fault, but the blacked out screen remained long enough for me to discover that the first anode voltages were low. $4 \mathrm{R} 42(150 \mathrm{k} \Omega)$ in the first anode supply network was found to have a circular burn, a replacement restoring normal operation.
T.T.

Philips G9 Chassis

The problem of tuning drift with one of these sets caused us a lot of trouble. Checks on the tuner and tuning control circuit failed to reveal anything of any significance - and the fault wouldn't show up in the workshop. The set went back and forth between us and the customer two or three times before we changed the tuner, which solved the problem. Our local channels are in group A, but the customer was linked to a communal system that uses group C/D channels. It appears that the tuner didn't like operating at the higher frequencies.
R.D.S.

Rank T20 Chassis

The power supply was working correctly, providing the 200 V h.t. line, but the line output stage was dead. A quick check revealed that 5 R8, the 1Ω resistor in series with the line output transistor's base, was open-circuit.

Another fault we had on one of these sets was bad EW bowing with excessive width. The EW loading coil 5L2 had shorted turns.
R.D.S.

ITT Hybrid CTVs

We still get these sets in occasionally. An unusual fault we had recently was maximum colour saturation with the customer's colour control having no effect. The colour control circuit consists of a bridge arrangement with a tapped coil, a couple of varicap diodes, a capacitive trimmer and a resistive bias network. Various tests on the resistors and diodes were carried out before we decided to try the effect of adjusting the trimmer (C 160). A quick turn cleared the fault and after setting it up (for no colour at the minimum setting of the colour control) correct saturation control was achieved. We can only assume that C160 was dirty/noisy.

The fault on another of these sets was intermittent low gain with slight tuner drift. Every day the set would suddenly go low gain (snowy picture). We looked for dryjoints on the i.f. strip and changed the tuner, but the fault persisted. In fact we spent quite a lot of time on it before we discovered that the i.f. preamplifier transistor T13d was faulty.
R.D.S.

Philips G8 Chassis

The set was dead as a result of a lightning strike. Inspection showed that the earth part of the power supply printed circuit had blown away, and after bridging the print and switching on the h.t. was restored - but there was no e.h.t. Many checks were made to find out why the

- continued on page 594

Servicing the Grundig 2×4 Super

Part 3

This month we'll look at the machine's servo and DTF departments. As the V2000 system has been described in detail in these pages before, we'll give just a brief recap on the DTF system.
With DTF (dynamic track following) the video heads are mounted on piezoelectric arms which can be bent to move the heads in the vertical plane to centre them on the recorded tracks. On a basic machine this means that the customer's tracking control is eliminated; on a machine with trick playback facilities there will also be no noise bars on the picture at the various speeds.
The process is in two parts. In the record mode the servos work normally but no control track is laid down. Instead, a master oscillator produces five frequences (f1f5) four of which are recorded in sequence field by field along with the luminance and colour signals. The frequencies lie below the lower chroma sideband and are chosen so that the harmonics cause no picture interference. The fifth frequency $f 5$ is recorded as a one and a half line burst following the field sync pulse. After this the machine goes into playback for one and a half lines: as there's a one and a half line offset between successive tracks, the burst from the previous track may be picked up. If this occurs the head is moved to give greater track
spacing before recording is resumed. Only one head is controlled in this way.

In the playback mode the four frequencies that were recorded in track by track sequence are filtered out. Any crosstalk between a previous or following line produces difference signals which are used to control the head positions. The order in which the frequencies are recorded on successive tracks is $\mathrm{f} 1,2,4,3$ (firing order!). The difference frequencies produced by crosstalk between tracks are approximately 15 kHz and 46 kHz (alternately and opposite from one head to the other) and are filtered out for control purposes. When one head is playing back, the presence of a 15 kHz signal will bend it up while a 46 kHz signal will bend it down; vice versa for the other head. The output stages that control the actuators (arms on which the heads are mounted) are operated from the $\pm 150 \mathrm{~V}$ rails.

DTF Module

A block diagram of the DTF module is shown in Fig. 6 The microcomputer i.c. (IC2640) is reset every time threading occurs to reset the programme at the start of record or playback. The external clock IC2660 also clocks

Fig. 5: Block diagram of the servo panel.

Fig. 6: Block diagram of the DTF panel.
the sequence control microcomputer on the keyboard and supplies the erase head and the real-time clock. A flip-flop divider within IC2640 provides outputs for head switching and chroma carrier phase shifting. This is also used as the servo reference, keeping the component count down.

Pins 36,37 and 38 of IC2640 programme the divider in IC2720 to give the correct sequence of frequencies, while the WR pulse from pin 32 opens the gate for one and a half lines to record the f5 "burst". The RE pulse follows this to switch the head preamplifier to playback. The offtape burst is rectified on the servo board and fed via switch B1 to the comparator IC2630 whose other input is fed with a d.c. level from IC2700. As the microcomputer i.c. is a digital device, IC2700 and a resistive network are used as a DAC to convert the 8 -bit output to a voltage. This 8 -bit word indicates the previous DTF burst's amplitude. So the machine knows how the track spacing is varying and corrects this by moving actuator 2 . In the record mode A2 is closed while A1 and A3 are open.

During playback f1-f4 are filtered out by a broadband tuned amplifier and mixed in IC2620 with f1-f4 from IC2720. The output from IC2620 consists of a mixture of 15 kHz and 46 kHz which is then amplified and rectified. If the proportions of the two signals are unequal, the output from IC2600 goes high or low. This output is passed via switch B2 to comparator IC2630 whose output is fed back to the microcomputer i.c.

The DTF process is not continuous. Sixteen samples per field are looked at, the results being fed back to IC2700 in the form of an 8 -bit data word. The outputs from IC2700 go to switches A1-3. A2 and A3 operate on alternate fields, sixteen times per field, the output capacitors hold-
ing the charge between each switch-on. A1 is switched on every 20 msec during playback, feeding an output to the capstan servo. We'll return to this later.

Servo Module

A block diagram of the servo module is shown in Fig. 5 Table 1 shows the WS code table - you'll recall that this 3 bit code tells the servo and DTF which mode the machine is in.

The servo circuit is very simple and uses standard linear and logic i.c.s. We'll look at the head servo first. This is a phase control loop only but is slightly different from VHS ones. The two signals to be compared are applied to IC1501. One signal comes from an optodetector on the lower drum, the other from pin 33 of the DTF microcomputer i.c. This latter signal is derived from the field sync pulses on record and from the DTF clock on playback. As the servo operates in the same way in both modes no switching is involved - selection of the appropriate reference is done on the DTF board. IC1501 does away with the need for a speed control loop as its output is a squarewave whose mark-space ratio is determined by the phase difference between the two input signals - if there's a speed error the output will be predominantly high or low. The output is integrated to form a ramp which is sampled by gate A3, the gate being switched by the reference pulse after differentiation. The charge on the hold capacitor controls the head MDA. Should the motor tend to run excessively fast, T1534 turns on to operate the brake circuit. Simple but effective.

The capstan servo has a speed loop and, in record, a

Table 1: WS codes			
Mode	WS1	WS2	WS3
Record	0	1	0
Playback	0	1	1
Still	1	1	1
Slow	0	0	1
SFF	1	0	1
SREW	1	0	0

phase loop which compares the capstan FG with the reference. The phase loop is inoperative on playback, but the output from switch A1 on the DTF board is fed via B1 through a bleed resistor to the control line. We can now go into this.

If the tape speed is too high (within the confines of the speed loop) the DTF will bend both heads in the same direction. If the error is cumulative, control will periodically be lost. This won't do of course, so the DTF sample voltage is bled into the capstan servo to correct the tape speed - in effect altering the tracking as with a manual control.

The two 14526 programmable dividers IC1640-1 cater for the different capstan motor speeds (playback, slow motion, etc.). The division ratio is determined by whether pins $2,5,11$ and 14 are low or high, the output being 100 Hz irrespective of mode - the input frequencies are shown in Fig. 5. An array of logic gates decodes the WS signals to give the dividers the appropriate instructions and reverses the motor for SREW - there's no reel servo on this machine.

Some of you may be wondering how the head speed is altered in the trick modes to avoid loss of line sync - there doesn't seem to be anything in the head servo to do this. It's done by the DTF microcomputer altering the 25 Hz reference frequency slightly.

Fault Finding

Now to faults. The first question must be: how does one distinguish between DTF and servo faults? You are presented with a picture covered in noise bars, but where does the fault lie? Totally incorrect head or capstan speed is fairly obvious. Failure of the head or capstan phase control loop in record will cause slowly moving noise bars on the machine's own recordings: if the head servo is at fault the noise will move even in still frame. Misadjustment of APB (capstan servo) produces severe wow during record. Failure of one or both DTF channels will give passable playback but several noise bars in fast search - don't forget the two 100Ω resistors in the power supply for this one.

A scope on the slipring brushes should show a sort of wobbly squarewave - only on one in record. Test point DTF-3 gives rows of dots and dashes - adjust APB to make them coincide, using a known good tape. If the dots are not fairly straight there's a tape path fault - look for bent guides, the cassette lift not square, dirt on the capstan, etc.

In fast search the rows of dashes become triangular but the rows of dots stay straight. Adjust VA1 and VA2 (DTF output gain controls) to make this so, on the machine's own recordings. The triangular ramp of dashes is because the heads have to be moved to cross several tracks. In the trick modes the microcomputer produces a ramp, leaving the DTF to apply only a small amount of correction.
We've had a few failures of IC1590 (LM2877) which gets very hot when faulty - the capstan motor runs very
slowly. If the capstan speed is incorrect, don't forget that the output from IC1 640 will still be at 100 Hz . The cause is sometimes a defective gate in the WS decoder. If one of the WS codes is stuck permanently high or low however the machine will go into the wrong mode but will be working correctly for that mode - not doing what it's told in other words.

We've had a few failures of passive components in the servos - sometimes difficult to locate. In one or two cases we've had to scope a good working machine and draw waveforms all over the manual to find the fault!

The DTF module is reliable. Up to now the only problems we've had have been failure of IC2620 and the 4.9 MHz crystal - both giving no DTF. The DTF output transistors (on the servo board) can go short-circuit repeatedly, burning out the 100Ω resistors in the power supply. Slight noise bars during fast search, sometimes clearing, can in most cases be removed by carefully adjusting VA1 and VA2. The head servo adjustment APK moves the switching point: so this is the way to adjust it finely, using a good prerecorded tape and a monitor with the picture height reduced.

Next month a few words about the tape deck, the motor connection board, etc.

TV Fault Finding

- continued from page 591

line timebase wasn't working, and as the oscillator receives its supply from the output stage (after starting up) I decided to power it from an external 18 V source. A scope check then revealed that the oscillator was working, but the rest of the timebase was still dead. I eventually found that part of the earth print on the i.f. strip had blown apart, and after bridging this the set came to life. Why this should prevent the oscillator from driving the rest of the line timebase is not clear, but it did!
R.D.S.

Thorn TX9 Chassis

The 1.6 A mains fuse FS1 kept on blowing. The line timebase can be isolated from the power supply by disconnecting the fault-finding link (PC1040 main panel). This proved that the fault was in the power supply, and D66 (1N4007) which is in series with the h.t. rectifier thyristor turned out to be short-circuit. Odd that - it's not fitted in later production, though the thyristor type was changed.
R.D.S.

Waltham W190

The fault with this set was a plain raster with no modulation. Some quick checks revealed that the 13 V supply was missing due to the 13 V zener diode D608 (ZY13) having gone short-circuit. It's a 20 in . monochrome set with some unusual circuitry - there's a common transformer for the chopper and line output circuits.
J.R.

Philips K30 Chassis

The set was dead with no h.t. at the collector of the line output transistor. There was 300 V at the collector of the chopper transistor however so it seemed that this was without drive. It's always worthwhile removing the chopper drive panel and checking the semiconductor devices before condemning the TDA2581Q control i.c. The BSS58 driver transistor turned out to be short-circuit base-to-emitter.
M.B.

New Video Head Replacement Service

 }

Substantial savings on video head replacement will be made possible by our new service which we are launching in September. New Japanese glass-filled heads to the latest specifications will be mounted and aligned on customers' existing upper cylinders, providing a rapid and profitable service to the trade. Manchester Colour Engineering Services is the first independent company to be permitted to install the same fully-automated, computer-controlled optico-electronic equipment as is used by the world's leading VCR manufacturers in Japan as part of their production lines. Our own staff in Manchester have been Japanese-trained to ensure the extremely high standards of precision involved - replacement heads have to be aligned to a tolerance of one-third of a micron.
Initially the service will be offered on 2-head VHS units only, for the following makes:
Akai, Ferguson, Hitachi, ITT, JVC, National Panasonic,
Nordmende, Saba, Telefunken
BETA system heads will be included at a later date - please contact us to
discuss your BETA requirements.

SIX-MONTH GUARANTEE

Every repaired unit will be vacuum-packed for extended shelf-life. All units carry our six-month guarantee from the date of fitting.

HOW TO SEND

The cost of replacing both heads on customers' own upper cylinders is only £ 18.50 plus post/packing and VAT, total $£ 21.75$ per unit. Upper cylinders (which must be undamaged) must be packed in original makers' cartons, with an advice note detailing types and quantities enclosed.
Existing account customers will be invoiced in the normal way
Non-account customers must send full remittance with order. A VAT invoice will be enclosed with the repaired units.

OUR TRACK RECORD

MCES are highly-experienced in the servicing of electronic components. Over the past decade we have realigned more than 500,000 UHF tuners of all types and makes. We also service a wide range of other items for the TV industry:

Video Modules
 Aerial boosters
 Modulators

Mullard Text Decoders
Eurodecoders VM6101. VM6230 View Data as used by Philips. Ferguson. National. etc

Philips Handsets
Simple \& Full Remote
Teletext Remote
Full Stereo Remote

Printed Board Assemblies ITT CMP 800. ITT CMR 803. Teletext. View Dala

Cable 84

Harold Peters

Cable 84, the second annual conference and exhibition for the cable and satellite industry, was held at Wembley over July 10-12th, only eight and a half hours after the Cable and Broadcasting Bill had finally passed through the Commons and about three weeks before it was due to receive the Royal Assent. Some 300 delegates attended the conference itself and were mainly concerned with the problems of getting cable networks started. At the exhibition greater interest was being shown in the stands displaying receiving and test equipment rather than cable machinery and electronics.

The show was much larger than Cable 83, and this time you could walk out on to the roof to inspect the "dish farm" that provided signals from ECS and Intelsat V to the stands below. Distribution of the signals was entrusted to Megasat Ltd. who were picking up all the transponders available, including Music Box which had started operations early to catch the show. Music Box shares the same transponder as Sky, offset and with different polarisation. The transmissions are unscrambled and the sound carrier
is at 6.6 MHz with a pair of stereo coding signals at $7 \cdot 1 \mathrm{MHz}$. It was being received and demonstrated via a 1.2 m dish on one stand - two exhibitors were offering complete 11 GHz packages to pick up Music Box at around $£ 1,200$. Signals from the Russian satellite Gorizont were hardly to be seen, which was not surprising in view of what was on offer from ECS and Intelsat V.

GEC demonstrated Pal and MAC-C signals side-byside, using the PM5544 test pattern, a severe test. The difference was about the same as between 405 and 625 lines when BBC-2 began in the sixties - impressive to the enthusiast, but not enough of a difference to sell the extra gear necessary from a general public point of view.

The slow and bumpy ride the Cable Bill had through parliament forced many of those involved in this field to consider other outlets, producing increased interest in smaller distribution systems, e.g. a modest dish atop a block of flats to provide extra channels to the communal system below. The logical progression towards DBS is only a matter of time, particularly now that the signals from ECS are coming in better than expected.

Some of the programmes are scrambled, but this seems to be something that programme contractors agree to only with reluctance - they'd like a simpler way of collecting their revenue.

Cable 85 next year will be held at Brighton on July 9 11th.

Teletopics

VIDEO DISCS

CBS, the US broadcast and entertainments group, are to cease production of CED videodiscs. The company has been producing the discs at their Carrollton, Georgia plant since 1982. CBS comment that the decision by RCA to end production of CED disc players led to a substantial fall in the demand for discs.
The future of the video disc appears to lie increasingly in specialised applications - for educational/training purposes where the interactive possibilities are an advantage, for juke box use (as previously mentioned in this column), and for use with microcomputers for video games and other purposes. It's interesting to note that JVC were showing an MSX microcomputer (the Japanese microcomputer standard adopted by a number of Japanese electronics firms) linked via an interface unit to a VHD player for video games purposes at the recent Chicago Consumer Electronics Show.

WHITHER 8mm?

As the year progresses, the likelihood of 8 mm video equipment being introduced on the European market seems to be receding. Back in March we reported that the system "is to be introduced by a number of firms later this year". That was at the time of Kodak's announcement of the Matsushita-developed Kodavision 8 mm video system. Shortly after this came the announcement that Polaroid would be introducing a Toshiba-developed 8 mm system. It seems that the film companies saw 8 mm as a way of getting into the video field in a big way. Video firms appear to have reservations however. Development of 8 mm systems continues, but the VHS-C and Betamovie compact video
systems look set to dominate the portable video field for some time to come.

One problem with 8 mm systems is the tape. Due to the higher recording density, the more recently developed types of video tape will have to be used, either metal powder or metal evaporated. The trouble with metal powder tape is that special heads are required. Metal evaporated tape can be used with standard head technology but is difficult and expensive to manufacture. Both types of tape are a lot more expensive than standard video tape. This presents something of a chicken-and-egg problem: the price of the tape won't come down until bulk production starts. In addition, it seems that PAL/SECAM operation with a drum speed of 1,500 r.p.m. (set by the European field frequency) is more difficult than NTSC operation with a drum speed of 1,800 r.p.m. $(60 \mathrm{~Hz}$ field frequency).

VIDEO HEAD REPLACEMENT SERVICE

A new service being launched by Manchester Colour Engineering Services Ltd. of 42-46 Moss Road, Stretford, Nr Manchester (telephone 061-865 6021/2) will enable substantial savings to be made when VCR video heads wear out. Instead of having to buy a complete upper drum when the heads are worn or damaged, service departments and VCR suppliers will be able to send the defective drum to MCES who will re-equip it with new glass-filled Japanese heads to the latest specifications. The cost of this is considerably less than that of a replacement drum.

MCES is an independent company and is the first to be permitted to install the same fully automated, computercontrolled optico-electronic equipment used by leading Japanese VCR manufacturers on their production lines. MCES staff have received training in Japan as part of the operation. The complex equipment used enables replacement heads to be aligned to an accuracy of some 0.3 microns.

The service is to start at the beginning of September and
will initially be restricted to two-head VHS drums used in Akai, Ferguson, Hitachi, ITT, JVC, Panasonic, NordMende, Saba and Telefunken machines. A service for Beta units is to be offered later.

MCES has provided various services to the TV trade for over a decade, including u.h.f. tuner alignment and servicing of units such as Mullard text decoders, aerial boosters, Philips handsets, printed panels, etc.

TELETEXT-SPECTRUM ADAPTOR

O.E. Ltd. (North Point, Gilwilly Industrial Estate, Penrith, Cumbria CA11 9BN, telephone 0768 66748) have introduced an adaptor that enables a Sinclair Spectrum microcomputer (either 16 K or 48 K type) to be used as a teletext decoder. The TTX2000 adaptor, with interface cable and instructions, is available from the manufacturers at around $£ 145$ inclusive of VAT and postage/packing. It sits directly beneath the Spectrum to form a compact unit and will work with standard monochrome or colour receivers. There are four preset channel controls and the pages are called up by keying the appropriate number. The usual options such as hold and reveal are provided for. Teletext pages can be held on screen, stored on a microdrive for later recall, or printed out using a Spectrum or any compatible printer. O.E. Ltd. have also announced plans for a telesoftware programme to allow TTX2000 users to receive and download broadcast software for use with the ZX Spectrum. This downloader facility will be available as an upgrade ROM.

NEW COLOUR ENCODING IC

The New Motorola MC1377P 1.s.i. encoder chip accepts RGB inputs and provides a composite output to either the NTSC or PAL standard. To simplify interfacing with a variety of sources, the RGB inputs are a.c. coupled: 1 V peak-to-peak signals give full colour saturation. The only other input required is composite sync. The chroma and luminance signals are looped out of the chip to allow for bandwidth and delay tailoring. The device contains a subcarrier oscillator which can be used as a master oscillator or be driven from an external source, a voltagecontrolled 90° phase shifter, two double-sideband modulators, RGB input matrixes and blanking level clamps.

MITSUBISHI'S 40in. HIGH-DEFINITION TUBE

Mitsubishi have announced in Tokyo the development of the world's first 40 in . (diagonal) high resolution tube for high-definition TV (1,125 lines) use. The aspect ratio is 5:3 and the phosphor dot pitch 0.45 mm . Previous highdefinition tubes had been limited to the 30/32in. sizes by the strength and weight of the glass required. Mitsubishi have also developed a wide-range, high-output video circuit with a flat response to 30 MHz , and deflection circuits to ensure a high standard of linearity. In addition a digital convergence circuit achieves a precision of 0.1 per cent of screen width over the entire screen.

SINGLE-CHIP TELETEXT DECODER

The new ITT TPU2700 provides a single-chip teletext decoder with the capability of acquiring and storing eight pages simultaneously in conjunction with a 64 K bit DRAM. It decodes the standard level-1 teletext transmissions and has been designed to interface with the Digivision 2000 series chips. The TPU2700's on-chip FIFO buffer enables it to be used with standard low-cost DRAM without speed problems.

The new, compact Marconi Model P3400 satellite TV receiver is only 44.5 mm thick. It's been designed for high quality, cost effective reception of the new European satellite TV transmissions from satellites such as ECS and the Intelsat series. The main users are likely to be cable system operators and telecommunications organisations requiring high quality vision and sound signals for distribution via terrestrial networks. The receiver is also intended for uses such as hotels and conference centres, language teaching institutes and for broadcasting organisations. The input at $900-1,700 \mathrm{MHz}$ comes from a low-noise downconverter mounted on the outdoor dish. For encrypted transmissions a further decoding unit is employed after the receiver to recover the vision and sound from the composite signal.

Compensation for ghost images with delays of up to $0.8 \mu \mathrm{sec}$ is automatically performed by the chip, which has underline capability and automatic character set selection it will serve in receivers for eight different language teletext transmissions. The device comes in a 40 -pin plastic DIP encapsulation, requires a single 5 V supply and consumes typically 1.25 W .

VCR SERVICING COURSES

The London Electronics College will from September be offering, in conjunction with the Manpower Services Commission, a full-time, six-week intensive training course in VCR servicing. The course includes a high percentage of practical work and instruction on state-of-the-art techniques such as digital and microcomputer technology as applied to VCRs. It's been developed in liaison with industry to help alleviate the present shortage of skilled video engineers and is intended for qualified TV technicians, or applicants with a similar background, who wish to extend their skills. The first two courses start on September 17th 1984 and January 7th 1985 and are open to both private fee paying and MSC sponsored applicants. Tuition fee for the full course is $£ 600$ plus VAT. For further details apply to the London Electronics College, 20 Penywern Road, London SW5 9SU (telephone 01-373 8721).

DIY HEAD MAINTENANCE KIT

The Monolith Electronics Co., Ltd. (5-7 Church Street, Crewkerne, Somerset, telephone 0460 74321) have introduced a new and more comprehensive video head replacement and maintenance kit for the home enthusiast. The VMC02 kit contains a novel head-concentricity guage for aligning Betamax heads to an accuracy of better than three thousandths of a millimetre, a stroboscopic tacho disc for verifying the head rotational speed with VHS machines, handling gloves, a cross-head screwdriver, an inspection mirror, a can of air-blast dust remover, an antistatic cloth, cleaning fluid, shaped spatulas, replacement service labels and a quality mains-operated soldering iron with solder all for $£ 19.95$ including VAT plus $£ 1.50$ post and packing by mail order. A set of step-by-step instructions and a stock list of heads available from Monolith are provided. Cus-
tomers can make free use, by telephone, of Monolith's advisory and service department.

PORTABLE CCTV SURVEILLANCE SYSTEM

The Viguard portable CCTV surveillance kit, which is designed to provide temporary security, has been introduced by Pilkington Security Equipment Ltd. (Colomendy Industrial Estate, Rhyl Road, Denbigh, Clwyd, N.

Wales). It consists of a video camera, 7 in . screen monitor, interfaces and a power supply, all contained in two lightweight suitcases, plus a separate fibre-optic cable reel to provide a video link of up to 1 km . The fibre-optic cable allows the system to be used in an electronically noisy environment, cannot be bridged or tapped without detection, and provides good signal quality. Viguard can be powered from the mains or a 12 V car battery via a cigarette lighter socket.

VCR Servo Systems

Part 1

The circuits used in VCRs to process the luminance, colour and sound signals are fairly standardised and by now well understood. When it comes to system control and the servos however there's a wide diversity of techniques in use, varying between machines of different age and manufacture. It's also here that the major differences between basic "record and play" machines and those with added "trick" modes - still frame, slow motion and so on are to be found. In the syscon department microcomputer techniques are now universally used - up to three of these complex i.c.s may be found lurking on the syscon panel. In the most advanced of current models microcompter i.c.s are also finding their way into "trick-servo" circuits.
Many of us last made a study of servo circuits and techniques in the days of piano-key operated machines of one type or another. The simple arrangements used in these VCRs are not difficult to understand and service. Things have come a long way since then however, as a glance at the manual for a modern machine will show. The basic principles remain the same, and it's the purpose of this article to identify these and relate them to the various circuit arrangements that have been used over the years.

Basic Requirements

Let's start by setting down the bare essentials of servo operation in a domestic helical-scan machine. During record the capstan motor must rotate at an even speed to pull the tape past the heads at a rate appropriate to the format (N1500/N1700/VHS/Beta/V2000). This can be done without using a servo, but because variations in friction and load can effect the speed a simple servo system is generally provided to ensure steady passage of the tape.
The capstan speed is tied to a reference, usually a stable crystal oscillator though in some early machines (Philips and single-motor Beta models) the 50 Hz mains supply was used. Hence the simple servo system shown in Fig. 1. Here we have a phase comparator that produces an error voltage proportional to the time difference between its two inputs, in this case the reference waveform and the

Fig. 1: Basic servo control loop.

Eugene Trundle

PG (pulse generator) feedback pulses. The error output voltage is used to modify the motor's speed and set it so that a steady relationship exists between the reference and the PG pulses. The shaft's position is thus phased to the reference. The PG pulses are produced by a couple of magnets mounted of the flywheel. Thus two PG pulses are produced per revolution of the flywheel.

When it comes to the head drum, the first point is that we have to record one 20 msec TV field per head sweep. With two heads mounted diametrically opposite to each other in the drum, this implies 20 msec per half revolution of the drum, 40 msec per revolution and a precise speed of 1,500 r.p.m. This in unalterable where we have a 50 fields per second TV system: regardless of format, 1,500 r.p.m. is the required speed.

Having set the drum's speed, we have a second requirement. At some point during the field we have to switch from one recording head to the other. This will create a minor picture disturbance which must be kept out of sight. The field blanking period seems to be the ideal time to do this switching, but this period contains a series of critical timing pulses. Discontinuity here due to the head switchover could well cause vertical jitter on playback. The head switchover point is thus chosen to be about seven lines before the field sync pulse, and is "lost" off the bottom of the screen in the normally slightly overscanned raster. Now to keep the head switching point at this precise location we need a means of synchronising the drum's rotation to the incoming field sync pulses. A PG on the head drum provides a signal that indicates the head's position. We can compare the timing of this signal with that of the field sync pulses, using a servo like that shown in Fig. 1, to ensure that each head sweep starts just before the arrival of the field sync pulse in the TV signal being recorded.

So much for record. How about playback? Starting again with the capstan, we have the same requirement of a steady rotational speed, and some machines use the same arrangement as on record with no switching at all. The head drum must rotate at precisely 1,500 r.p.m., as during record, so that the heads pass over the tape at the correct angle. This will ensure that the head sweeps are parallel with the tracks recorded on the tape but will do nothing to ensure that they coincide, with the heads centred on the correct tracks - remember that due to the head azimuth offset, each head can read only its "own" tracks correctly.

Control Track

Unlike a conventional gramophone record groove which guides the stylus in addition to carrying the signal. information, a magnetic tape track is not mechanically

the capstan servo. Fig. 2 shows the effect of the tracking control. It normally has a range of about 180° of head rotation, thus embracing about two track widths. This ensures that correct tracking can be achieved with any tape under any conditions.

Speed and Phase

So far we've identified two distinct characteristics of the behaviour of a rotating shaft under servo control. These are its speed, which with a VCR is determined by the TV system and the format, and its phase, whose importance lies in the need to establish a specific head position/sync pulse relationship on record and head path/track position relationship on playback. The basic servo loop shown in Fig. 1 makes a poor job of speed control, so a separate means of establishing the correct speed quickly is required. In early machines this took two forms, see Figs. 3 and 4.

Fig. 3 shows a simple servo arrangement in which the error voltage output is mixed with a steady voltage from a potentiometer network connected across the supply rail. The potentiometer network provides a standing bias corresponding to the motor's normal running voltage, the overall arrangement providing a "window" of servo operation around the 6 V point. The standing bias forms a crude speed control circuit: when "forward" is selected, the charging current of C 1 via D1 increases the voltage applied to the motor so that it accelerates rapidly from standstill to a point within the lock-in range of the phasecontrolling servo circuit.

The alternative approach shown in Fig. 4 was used in N1500 series Philips machines and takes the form of a lock-in or starting circuit. This governs the gain of the motor control amplifier according to the degree of ripple generated in the sample-and-hold phase comparator circuit - this ripple is proportional to the speed error. As the correct speed is approached, this ripple decreases and the effect of the circuit lessens. Once phase lock is achieved, it has no effect on the operation of the servo. As we shall see, later VCRs use a feedback loop for speed control in addition to that used for phase control, with an FG (frequency generator) on the controlled shaft to provide feedback pulses.

Sample-and-hold Technique

Let's briefly recap on the sample-and-hold principle. It's a very common arrangement and has only recently been succeeded by digitally-based systems. Fundamental to either technique is the requirement to produce an error voltage output proportional to the time lapse between two inputs - reference and sample. The reference will be some local timing source and the sample a tacho pulse (PG) from the controlled shaft/flywheel.

The basic idea is illustrated in Fig. 5. The reference pulse (a) is used to start a ramp (trapezoid) generator which produces a linear ramp (b) whose amplitude at any subsequent instant will be proportional to the elapsed time. At some point during the ramp the sample pulse (c) arrives. This briefly closes a switch between the ramp source and a storage capacitor. As a result, the latter is charged to a voltage proportional to the elapsed time. Provided its discharge path is a high-impedance one, the capacitor holds its charge between sampling pulses. This charge forms the error voltage (d) and (e) which is used to control the motor. Note that some means must be pro-

Fig. 6: Use of a monostable multivibrator (MMV) for pulse stretching, providing an adjustable delay.

Fig. 7: Use of a frequency generator (FG). In the first FG circuits the "tone wheel" output was matched to a crystal oscillator in a phase-lock loop.

Fig. 8: Dual-loop servo system using an FG for speed feedback and a PG for phase control.
vided to "discharge the storage capacitor between the sample pulses - otherwise it will charge to the peak voltage and stay there.

To obtain a symmetrical pull-in range, the ramp is normally sampled at about its mid-point. Since the error voltage output is proportional to the time lapse between the two input pulses, the circuit can be arranged so that either the reference or the sample feedback pulse triggers the ramp generator while the other does the sampling both configurations are used in practice. The error voltage output along with the speed correction voltage is used to control the motor. A closed control-loop is thus established, and once conditions have settled down the motor's shaft will be phased to the reference source.

We've now got a phase-lock situation, but it's unlikely that the phase relationship established will be exactly correct. During record we may be recording the field sync pulses half way along the track. On playback the control pulses may be aligning the heads beside rather than in the centre of the tracks. In both cases we need to be able to adjust the servo's phasing in order to achieve the required result.

Phasing Adjustment

For record, presets labelled "head-switching point" are provided to adjust the head phasing and set the changeover point to just seven lines before the field sync pulse. During playback a similar control is provided on the
front panel to align the head sweeps with the tape tracks the tracking control. The technique used in both cases is to delay either the reference or the feedback sample pulses in order to establish the exact phase relationship required.
This variable delay is simply achieved by using a monostable multivibrator (MMV for short) whose adjustable $R C$ time-constant network provides the delay required. Once triggered, the multivibrator will provide a delay governed by the tracking control which is incorportated in its $R C$ network. This delay or pulsestretching feature is widely used - you'll find lots of MMVs in servo circuits. Fig. 6 illustrates the idea.

Speed Control

If a shaft is rotating in phase with a reference signal its speed must be spot on. After a disturbance however the correct speed must be re-established quickly. If we try to do this via the phase-control loop we will require a gently sloping ramp in order to cater for a wide range of speed variations - and this doesn't make for accurate phase control, because the small error voltage produced by a gently sloping ramp will have little effect on the servo action, leading to "soft" phase locking. A steep ramp gives tight and accurate phase locking because a large correction voltage is produced by small phase errors, but once a speed error is present the sampling pulses will appear at random on the ramp, confusing the sample-and-hold circuit and producing a jittery error voltage. As a result the motor will hunt, the instability playing havoc with the picture (and sound if it's the capstan motor that's being controlled).
Thus for close and accurate control it's best to have a dual servo loop, one to establish the correct speed and another to maintain the correct phase condition. This dual system is particularly important in portable VCRs where gyroscopic effects can occur, and in trick-speed and cleveredit machines where fast, precise control and quick speed recovery are necessary. All current and recent VCRs have dual loops for one or both servos.
For speed control we need a frequency feedback signal in the form of a tone whose frequency is proportional to r.p.m. Most motors nowadays are direct-drive types with the FG (frequency generator) built in. It takes the form of a multi-toothed wheel or a series of magnets that pass over a stationary coil system. Unusually, the Ferguson 3V01 (a piano-key portable) has a capacitive FG system for both the drum and the capstan: the toothed wheel spins within a toothed stator, the regular capacitance variation being sensed and amplified by a high-impedance f.e.t. stage.

For capstan speed control, the FG signal can be "paced" by a crystal oscillator, equilibrium being established when (say) one FG pulse occurs for every 9,800 crystal clock pulses - this is easy to arrange with i.c.-based counting circuits. This offers rigid speed lock with no necessity for a capstan tachogenerator, see Fig. 7. While an FG is used in this system, it's still basically a phaselocked loop, but with the advantage of closer control over the motor since there are more "beats to the bar". The system shown is a sort of half-way house between PG phase control and the true FG speed feedback control technique described below. A circuit like that shown in Fig. 7 must be supported by a resistive potential divider to establish the normal rotational speed initially.

The head drum's rotational speed cannot be locked to the likes of a crystal clock because phase locking to the incoming field sync pulses is required when recording -

Fig. 9: Simple drum and capstan drive system using a single synchronous a.c. motor and a single servo loop.
and you can't lock anything to two independent clocks! For this reason the FG feedback tone is passed through a frequency-to-voltage converter (see Fig. 8). This produces a motor drive voltage that's inversely proportional to motor speed, and has a powerful and fast control action. The converter's output is added to the phase control error voltage before application to the motor drive amplifier. The "reference" in this case is a d.c. potential tapped from the set-speed preset. Fig. 8 shows a simple dual-loop servo system for drum control - this configuration is used in both drum and capstan servos in modern machines.

Faut Symptoms

When faced with a servo fault it's usually not difficult to decide which of the loops is in trouble. If the phase loop is is trouble, say due to a missing control track pulse on playback or no field sync input during record, the speed will be correct but the phasing will drift about. As a result there'll be cyclical tracking errors during playback. These errors can be momentarily corrected by the set-speed potentiometer but not by the tracking control. During record, a tape whose head switching point drifts up and down the screen at random will be produced.

Speed errors are usually more dramatic. A capstan running at the wrong speed will affect the tracking and the playback sound pitch, while drum speed problems will usually break the line sync on the replayed picture. Loss of the reference signal will often result in the motor trying to run at 10,000 r.p.m. which, hopefully, will invoke stop via the syscon. On the Sony C9 for example this symptom can be caused by lack of the 4.43 MHz colour subcarrier signal due to a blown fuse on the chroma board.

Practical Arrangements

So far we've covered basic servo requirements and the basic circuit blocks used in servo implementation. We'll go on to examine some of the ways in which different manufacturers have gone about arranging their servo systems. The earliest design, used in the Philips N1500 machine, has been described at length on previous occasions. Instead of going over this ground again we'll start off with the unusual and ingenious single-motor design used with great success in the Sony SL8000 and the Sanyo VTC9300 series.

A block diagram is shown in Fig. 9. These machines use a single a.c. motor energised from a 100 V secondary winding on the mains transformer. It's an eight-pole hysteresis type motor, and at 50 Hz rotates at exactly 750
r.p.m. Separate motor-shaft mounted pulleys drive the capstan and the drum, the pulley diameters being such that the capstan shaft rotates at a peripheral speed of $1.87 \mathrm{~cm} / \mathrm{sec}$ (the Beta linear tape speed) while the head drum rotates at 1,520 r.p.m., which is 1.3 per cent fast. The single servo system works on the head drum only, providing control by means of an eddy-current braking system attached to the drum shaft. The idea is that the magnetic brake slows down the head by 1.3 per cent to achieve the correct drum speed of 1,500 r.p.m. The drum's phase is controlled over a narrow range by varying the current in the brake coil.

During record, the capstan speed is determined by the mains frequency. Drum speed is set by the mains frequency "minus" the effect of the standing bias current in the brake coil, the drum's phasing being controlled by the output from a sample-and-hold circuit. The reference for the latter is a 25 Hz pulse derived from the incoming field sync pulses via a divide-by-two bistable circuit. The feedback sample pulses are obtained from the two PG coils on the drum. The head changeover point is set by varying the delay provided by a MMV in the reference pulse path.

During playback the capstan speed is again set by the mains frequency, and again a standing bias is applied to the brake coil to set the drum's speed at 1,500 r.p.m. The servo reference this time is the 25 Hz off-tape control track pulses, with feedback from the drum PG as previously. The exact phase relationship is established by the user's tracking control, which varies the delay in the reference signal path.

This very simple single-servo idea works well. There is little to go wrong, and it's rugged and reliable. It does however make for a large and weighty machine with a fairly high power consumption, and the potential for any trick-mode playback other than a ragged picture-pause facility (produced by withdrawing the pinch roller) is nil. It won't tolerate much variation in external timing references either. During playback, the signals are governed by the frequency of the a.c. mains supply. For recording, the timebases used in any video source must be very accurate - a camera with a 1.5 per cent scanning speed error can cause complete loss of servo operation.

Servo systems with independent motors for the capstan and drum offer not only better stability and closer control but also the potential for various trick-speed playback modes and noise-free still frame. The degree to which these possibilities are exploited depends very much on the price and vintage of the machine. Next month we'll go on to consider separate motor systems.

TV Test Pattern Generator

Part 4

Experience with the unit has resulted in some minor modifications.

It's been found that some batches of SN74LS04 i.c.s (IC1, logic board) are reluctant to oscillate at 20 MHz though they are perfectly happy running at 10 MHz . We therefore recommend the use of an SN74S04. The values of R1 and R2 have to be reduced to take into account the greater current taken by the S version of this i.c. -330Ω has been found to be satisfactory in both positions. The idea is that both sections of the i.c. are biased for linear operation.

C 2 is increased to $0 \cdot 1 \mu \mathrm{~F}$ for correct operation of the even/odd field detector. As the line ident output is not used it's been deleted from the board. A separate positivegoing composite sync output has been added.

The following modifications have been made to the encoder/modulator board. The colour burst enable pulse at pin 15 of the TEA1002 was found to occur too early and to have insufficient duration. As a result the receiver's burst detector is likely to have an inadequate burst input, resulting in loss of colour. The first problem was overcome by introducing a delay in the sync pulse feed to pin 4 of the 4528 . This consists of a 470Ω resistor in series with the pin and an $0.001 \mu \mathrm{~F}$ capacitor to chassis. The modification has been incorporated in the board design. The duration of the enable pulse has been increased by changing the value of R 4 to $8.2 \mathrm{k} \Omega$.

We also found that the action of the background control VR4 was too fierce in operation. The cure is to connect R1 to 5 V instead of 12 V . This is also taken care of in the board design.

Later batches of the TEA1002 appear to have a lower d.c. pedestal at the output, requiring D 2 to be changed to the 1.5 V type BZV46-1 V5. If a 2 V type is fitted, there can be sync crushing. We also recommend changing the value of R11 to $3.9 \mathrm{k} \Omega$ to provide better biasing conditions for the UM1286.

If the sound facility is not to be used we suggest earthing pin 3 of the modulator to prevent spurious signals and general noise producing modulation. Most constructors will probably require some sort of sound facility and one of the simplest possible circuits that can be used is shown in Fig. 10. It consists of a CMOS type 4017 synchronous decade counter/divider. The i.c. is clocked by the 7.8 kHz output pulses from IC5: its output is taken from the carryover pin and consists of 780 Hz squarewaves with a 1:1 mark-space ratio. This signal is connected directly to pin 3 of the modulator. If an audio output is

Fig. 10: Simple way of obtaining a 780 Hz audio signal.

Tony Jenkins, G8TBF (JRW Developments)
required, use a $10 \mathrm{k} \Omega$ potentiometer and take the output from the slider. The circuit is so simple that it can be built on a small piece of Vero board or hard-wired on a 16 -pin i.c. socket. A more sophisticated audio oscillator with a variable frequency sinewave output is planned for the near future.

Construction

The logic and encoder boards have been laid out to allow very simple interconnections when the two boards are stacked, i.e. one board is mounted atop the other. We suggest placing the encoder board on top as it has to be set up. A clearance of about 25 mm between the boards is recommended - use spacers, threaded or unthreaded, plastic or metal. Once the boards have been stacked the connecting leads can be made, using either tinned copper wire (approximately 20 s.w.g.), individual insulated wire, or ribbon cable. If ribbon cable is used, leave a small loop to allow the top board to be hinged for access to the component side of the logic board. The power supply leads connect directly to the encoder board: the interconnecting leads include the 5 V supply for the logic board.

Take the u.h.f. output from the modulator to a u.h.f. coaxial socket on the front panel via a phono plug and a short piece of 75Ω coaxial cable. The composite video output can be taken from the encoder board to a 75Ω BNC socket on the front panel via a short length of 75Ω coaxial cable. Note the extra earth pad on the encoder board for the coaxial cable braid. Composite sync and/or field sync can also be brought out if required, direct from the logic board. For the case we suggest the RS Components 508655 , but any plastic or metal enclosure of suitable size will do. Efficient decoupling throughout results in low radiation from the unit.

Assuming that there are no constructional errors, setting all the controls midway should produce a display, probably in colour. The first adjustment required is to the 8.8 MHz oscillator. This is best done with a frequency counter connected to pin 14 of the TEA1002, but setting C1 midway or even using a fixed 12 pF capacitor will probably be adequate. The grey-scale setting procedure is as follows.
(1) Turn VR1, VR2 and VR3 full anticlockwise.
(2) Adjust VR4 for a grey background to the crosshatch pattern.
(3) Adjust VR3 until the left half of the grey-scale rectangle is at the same grey level as the background.
(4) Adjust VR2 until the extreme left square is almost but not quite black.
(5) Adjust VR1 until the extreme left square is black.

Some final tweaking may be necessary to ensure that there's a progressive black-to-white scale. If any control is advanced too far the d.c. level will drop below black level and cause sync disturbance - visible on the screen as pulling.

All key points on the logic board are labelled in the circuit diagram and probing a "dead" board with a scope

TMK872
Fig. 11: Encoder/modulator board component layout.

TMK873
Fig. 12: Power supply panel component layout.
will quickly reveal the cause of the fault. The ZNA234E (IC8) does not normally run hot, but if you are concerned a small U-shaped heatsink can be bonded to the top using cyanoacrylate adhesive. The total current consumption of the unit is around 600 mA from the 5 V rail and 60 mA from the 12 V rail.

If an i.c. on the logic board develops a fault extraction can be a messy business. We suggest cutting the pins from the body then removing each pin separately, taking great care not to lift tracks from the top of the board. It's best to
use sockets for the i.c.s.
The bandwidth of the chroma signal is not limited. This leads to interference on colour transitions and some moiré effects. A bandpass filter would be required to reduce these effects. As this would delay the chroma signal, a compensating delay line would have to be added in the luminance circuit to ensure correct timing of the two signals. We decided that the extra complication was not justified since the interference is negligible with any use to which the generator is likely to be put.

18029	1.54	2SC1061	0.54	2SD0988	2.07	AN320	4.97	BC171	0.10	8D108	0.3	8F137	0.11	BLY49	200	8Y200／20	0.14
16181	1.13	${ }_{2 S C 1096}$	1.85	40108	0.45	An322	4.38	BC172	0.09	B0168	0.5	8F152	0.21	BR100	0.20	Br206	0.17
1618	1.13	${ }_{2 S C 1104}$	2.0	4059	139	AN331	299	вс128	0.24	8 D 175	0.39	8F153	0.52	BR101	0.37	8 Y 207	0.22
16331	0	${ }^{2 S C 1105}$	4.12	40595	139	AN337	3.98	BC173	0.15	BDIT	0.39	8F154	0.23	BR103	0.45	81210400	024
16355	0.72	2SC1114	5.11	40536	0.96	Ans30p	1.05	вС174	0.21	B0179	0.4	BF157	0.23	8R8B8	0.58	8Y210－000	0.27
1846	0.00	2 SC 1124	1.10	40871	139	AN355	3.36	BC17	0.16	80181	0.50	8F158	0.16	BRC－M－300	1.50	$8 \mathrm{Br10} 000$	0.30
18000	125	2SC1151A	429	40872	139	anser	1.47	BC178	0.23	80182	0.90	8F159	0.16	BRC116	0.0	81223	085
16790	2.15	${ }_{2 S C 1152}$	4.25	60857	1.10	AN5111	234	BC179	0.23	8D183	0.90	BF190	028	BRC1330	1.00	$8 \mathrm{Pr24} 400$	0.50
18001	0.0	${ }_{2 S C 115}$	4.12	74S132	0.72	AN5138	3.99	BC18	0.08	80184	1.10	BF167	0.34	BRC300	1.02	8Y25－100	0.79
18800	1.80	$2 \mathrm{SC1182}$	0.55	74.1338	0.85	AN5250	3.33	${ }^{81} 1828$	023	80187	0.18	$8{ }^{\text {8F173 }}$	0.30	BRCMO3	1.12	8Y23	0.25
18000	481	${ }_{2 S C 117}$	1.92	74.515	0.79	AN5135	2.0	BC182	0.09	8D199	0.35	8 F 17	0.50	BRCum	1.12	${ }^{8127}$	0.4
10805	1.35	2SC1195	23	74S161AN	1.11	AN5610	6.75	BC182 ${ }^{\text {d }}$	0.12	80150	0.59	8F178	0.35	BRC5296	0.70	$8{ }^{81288}$	0.54
17074	c．00	${ }_{2 S C 1213}$	0.75	74S196	125	AN5013	3.72	BC183	0.09	80201	0.5	8 FF 179	0.32	BRC6109	0.75	${ }^{81255}$	0.97
1712	3.91	2SC12\％	1.38	74．520	025	Ans620x	4.03	BC1836	0.09	BD20	0.54	8F180	0.32	brcas	0.9	8Y298	0.25
173\％	1.4	2SC1306	0.5	74．524	1.08	Antaseon	3.09	BC183LB	0.23	80203	0.54	$8{ }^{8 F 181}$	029	${ }^{\text {BRCC83 }}$	0.98	$8 \mathrm{Brg9}$	0.25
$1 \mathrm{~N} / 001$	0.05	25 C 1307	1.35	74.530	029	A Ma3k	136	BC194	0.09	80204	0.54	BF182	0.30	BRCs	9．58	BY476A	0.76
1 M1002	0.06	2SC1316	3.9	74.5367	1.05	AN634	$4{ }^{18}$	BC184	0.09	80207	1.00	8 FF 183	0.35	BRXM	0.54	${ }^{81456}$	0.30
1 1N003	0.85	2SC1364	0.49	74．5373	1.55	Ancze3	10.20	BC184B	0.38	80208	1.00	8 F 184	0.39	BRX ${ }^{\text {P }}$	0.45	$8 \mathrm{rr10}$	0.25
invor	0.85	2SC1338	1.39	74．547	1.05	Anes5	0.55	BC186	0.2	8022	0.4	8F195	0.35	Bfr39	0.50	87X56－350	0.48
in 4005	0.07	$2 \mathrm{SC1398}$	0.51	74573	0.39	ANes5	0.52	BC187	0.14	80225	0.4	$8{ }^{85194}$	0.15	8RY55	0.60	8 Br 551000	0.25
in400s	0.07	2SC1410	2.17	74574	0.39	AN7145	204	8 C 204	0.14	80228	0.57	8F195	0.12	BRY56	0.38	8 Br 71.350	0.87
1 N1007	0.07	${ }^{25 C 1413}$	3.4	74.575	0.52	AN7150	222	BC2OT	0.12	80229	0.13	8F996	0.15	BSF59	1.17	$8 \mathrm{BX71} 600$	0.45
144148	0.93	2SC1505	0.56	74．586	0.49	AN7151	2.05	${ }^{8} 212$	0.10	80231	0.45	8 BF 197	0.14	BSS38	0.30	87x94	0.18
1×148	0.12	2SC1578	6.51	74L590	0.75	AN7156	205	BC2128	0.23	80238	0.4	BF198	0.15	ESTBD1409	2.40	8W56	1.09
1N5601	0.12	2 2S1817	3.35	74.592	0.75	ANV158	234	${ }^{8} \mathrm{C} 212 \mathrm{~L}$	0.09	${ }^{80234}$	0.38	${ }_{8}^{8 F 199}$	0.15	${ }_{\text {BSTCOO }}$	4.37 225	8ZV15－C12	0.72
IN5402	0.13	2SC1670	2 M	74．593	0.75	AN7218	1.49	BC21218	0.23	${ }^{80235}$	0.43	8F200	0.33 0.32	BSTCO146	225	BZV15－C12 BZV15－C24	0.72
1 N 5103	0.14	${ }^{25 C 1678}$	125	74.5958	$0_{085}^{0.3}$	AP5076	4.25	${ }_{\text {BC213 }}^{8,2131}$	0.09	${ }^{80236}$	0.0	${ }_{\text {8F216 }}^{818}$	0.38	${ }_{\text {BSTCO2 }}$	225	88V15－C24	0.72
in5．04 in500	0.15 0.18	${ }_{2 S C 1815}^{2 S C 1810}$	1.00 0.41	${ }^{78055}$ 70－20	0.68	${ }_{\text {AUS }}$ AStos	1.43	${ }_{\text {BC2 }}^{\text {BC213L }}$	0.09	80237	0.39		0.05	${ }_{\text {BSTCI2 }}$	3.91	BZV15－C30R	0.72 0.72
1 N 914	0.86	2SC1829	201	7805	0 0	Aul10	1.95	BC214	0.09	80239	0.4	BF224	0.15	BSTC3146	0.71	BZX61 Range	0.15
1544	0.8	2SC1875	4.75	7808	0.54	AU13	2.15	BC214	0.12	80240	0.36	$8 \mathrm{Pr23}$	0.59	BSTCC014	279	82070－C11	0.54
1S5012A	0.3	2SC11891	3.35	7812 10－3	0.54	AY102	2.2	BC21418	0.23	80240	0.47	BF240	0.15	BSTC0643	30\％	B200－C12	0.54
15921	0.08	2SC1929	225	7812 70－220	1.05	AY105K	129	BC225	0.2	80241	0.45	8524	0.15	BSV578	2.00	8200－C15	0.54
2582	1.94	2SC1940	5.70	7815	0.55	AY106	1.95	BC237	0.08	8024	0.45	8F24	0.33	8SWE	0.38	82070－c30	0.54
2N1312	0.24	${ }^{25 C 1945}$	4.11	7818	0.55	baice	0.30	8C238	0.09	80243	0.40	8F245A	0.31	BSX19	0.30	88770－C47	0.54
2N1303	0.34	2SC1953	1.75	784	0.55	BA 1310 （IC）	1.72	8， 2338	0.11	802334	0.50	8 8255	0.18	BSx 20	0.30	B2x79 Range	0.09
2×2218	0.38	2SC1957	0.5	AC107	0.5	BA1320（IC）	122	$8 \mathrm{Cz398}$	0.15	8024	0.4	$8{ }^{8256}$	0.25	${ }_{\text {BSXY21 }}$	0.45	8Z7re Range	0.09
2N22194	0.29	${ }_{2 S C 1959}$	0.35	${ }^{\text {ACCII7 }}$	0.39	BA1330（IC）	1217	BC251A	0.15	8024A	0.7	${ }_{\text {BF25 }}$	0.38	${ }_{\text {BSY79 }}$	0.45	${ }_{8}^{82}$	${ }_{0}^{0.99}$
	0.34 0.75	2SC1990 2SC1909	1.75 2.98	${ }_{\text {AC123 }}{ }^{\text {AC123 }}$	0.39	${ }^{8 A 145}$	0.17	${ }_{\text {BC25 }}$	0.12	${ }^{80245 C}$	0.74	${ }^{8725} 8$	0.30 029	BSY79 BTIOAA	0．1．46	${ }_{\text {BZ7 }}$	0.99 0.99
2 N 2001	0.32	${ }^{2 S C 2007}$	2.8	${ }^{\text {ACl3 }}$	0.6	BA155－01	0.12	BC261A	0.20	80253	0.55	87259	0.30	BT106	1.20	BZY93－C24R	0.99
2 N 2905	0.39	25 Cazaz	1.91	AC141	0.25	BA156	0.12	BCza	0.20	80278	0.00	8F262	0.51	8T108	1.31	82793－c30	0.99
2N2905	0.34	25 C 2029	1.49	${ }^{\text {AClisk }}$	0.39	8 A 157	0.17	BC287	0.45	80317	1.55	87263	0.51	BT109	1.31	8Z793－47	0.99
$2 \mathrm{~N} \times 1053$	0.24	25 C 2051	1.07	AC151	0.25	8A159	0.12	${ }^{8 \mathrm{Cc} 29}$	0.45	80318	2.0	8F264	0.33	8T112	225		0.99
2 N 3505	0.50	2SC2073	1.00	AC153	0.30	BA182	0.17	BC301	0.35	80375	0.38	8F271	0.30	$8 \mathrm{PT113}$	225	82rsacha	0.99
2 N 3055	0.55	$25 C 2078$	1.25	ACI533	0.36	BA222（IC）	125	8 Cm	0.30	8037	0.23	${ }^{81273}$	0.18	${ }_{8 T 119}^{87115}$	1.52	${ }_{7 \times 18}^{27183}$	0.39 247
$2 \mathrm{NBOCO5H}$	0.7	2SC2091	0.59	AC176	0.17	BA23／2	0.15	8c3as	0.34	80379	0.69		0.18	87119	1.00	${ }_{\text {2x18 }}$	2.4
22×3720	1.06	${ }_{2 S C 2121}$	${ }_{10} 0.05$	${ }_{\text {ACl179 }}$	0.60	${ }_{\text {BABCO }}{ }^{\text {BA301 }}$（IC）	0.92	${ }_{\text {BGCOM }}$	0.09		0.40	－	0.15	${ }^{87120}$	1.80 225	c1080 $C 1129$	0.45 0.52
2 N 3702	0.12	2SC2141	1.10	AC179	0.25	${ }_{\text {BABCP }}^{\text {BA3 }}$（IC）	1.05	${ }_{\text {BCa }}^{\text {BCOPA }}$	0.14	B0 10 80412	5.70	${ }_{8}^{81} 838$	0.37	8 BT 12	2.25	CA1310E	0.58 2.45
${ }_{2}$	0.12	${ }^{2 S C 2168}$	1.15	${ }_{\text {ACI }}$	0.30	BA312（IC）	0.9		0.09	80418	0.75	$8{ }^{\text {F3 }} 38$	0.36	8T123	1.0	Ca304	3.18
2 L 3005	0.12	$2 \mathrm{SCz233}$	220	AClisk	0.50	8A313（IC）	128	BC309	0.15	BD433	0.33	8f335	0.35	87125	225	Ca3046	223
2 N 3706	0.12	${ }^{25 C 2771}$	3.4	AC187	0.35	BA316	0.07	8G317a	0.11	80，34	0.39	8F362	0.54	8T126	225	casaso	1.50
2N3707	0.14	$2 \mathrm{SCZ278}$	1.3	AC187－01	0.69	${ }^{84317}$	0.07	${ }_{\text {B }}$	0.98	${ }_{\text {BDK }}$	0.42		0.51	${ }_{\text {BTI }}^{\text {BTI2P }}$	225	cas0es CA3089	1.17 3.35 1
2 N 3711 $2 \mathrm{~N} / 71$	0.14		7.71	${ }_{\text {ACI }}^{\text {A } 181 \mathrm{~K}}$	0.39	${ }_{\text {BA328 }}^{\text {8A3 }}$（IC）	0.20	BC327 $B C 328$	0.15	8043 8047	0.41	${ }^{818391}$	0．45	${ }_{8 T 129}$	2.79 225	CA3zose	3.35 1.30
	1.5	${ }_{\text {2SC25251 }}$	1.00 0.95	${ }_{\text {AC1880，}}$	0.40	BA3z3（IC）	1.24	BC37	0.0	80138	0.4	8F393	0.90	8T151－800	1.97	ca3080	125
2 N 373	1.85	2SC2570	1.0	AClabk	0.39	BAMOI（IC）	0.5	BC338	0.10	80441	129	8F417	120	$8 \mathrm{PT151} 500 \mathrm{P}$	125	Ca3094	2.00
2 N 3819	028	2SC2570A	0.95	ACis3	0.59	basil（ic）	1.9	BC380	0.30	B042	0.55	BF418	1.70	8778018	220	CA3131EN	2.00
2 N 32823	1.05	${ }^{25 C 2234}$	4.38	ACI94＊	0.59	BA521 IC）	1.11	${ }^{86368}$	0.23	${ }^{80} 80507$	0.54	BF42	0.28	8T6，${ }^{\text {818 }}$	220	CA3132EN CAH70023N	203
2 N 3504	0.58	2SC2671	1.98	AD140	0.95	BA532（IC）	$1{ }^{17}$	${ }^{8 C 40}$	0.95	${ }_{8}^{80508}$	${ }_{1}^{0.59}$	8F43	0.8 0.49	818024	4.4		6.00 1.41
2 N 3509 2 M 101	0.55 1.10	${ }_{2 S c 372}^{2 S C 2738}$	${ }_{1} 0.95$	${ }_{\text {A }}^{\text {AD14 }}$	0.95		2.20	${ }^{8 C 454}$	0.09	${ }_{8}^{80509}$	0.45	BF450	0.30	817824	5.4	COH001	0.24
2 N 240	3.00	$2 \mathrm{CL373}$	1.05	AD145	1.45	BABM（（C）	3.00	BCas5	0.32	80518	1.35	8F451	0.27	良T8224	2.70	Cator	0.4
2×443	135	${ }^{25 C 383}$	120	AD149	0.51	Bavio	0.10	BC400	0.38	80519	135	8 8457	0.37	8U105	1.65	COOOM	0.95
2 NTH	1.12	${ }_{2 S 5}^{25888}$	0.45	AD161	0.30	BAV18	0.10	${ }^{8 C 461}$	0.42	${ }^{80529}$	0.3	${ }^{8 F 458}$	0.35	${ }^{\text {BU }}$ 8106	225	COOO11	023
2 N 914	0.05	2 SCA1	1.99	ADIG2	0.30	BAVI9	0.10	BCH2	0.27	80550	0.50	${ }^{85459}$	0.35	BUL108 BUIOSS	1.90	COM COPO12	0.34
$2{ }^{255084}$	0.4	${ }_{2} 25 \mathrm{CH58}$	0.55	AD282	0.95	BAV20	0.10		0.51			${ }_{8}^{8 F 4409}$	0.07	－ $\begin{aligned} & \text { BU109S } \\ & \text { Bulio }\end{aligned}$	1.90 2.52		0.37 0.37
2N5293	0.45	2SC495 2SC50	${ }_{3}^{0.23}$	${ }_{\text {AFF11 }}$	229 0.79	8AV21 BAX 12	0.17	8CA64 $\mathrm{BCH65}$	0.58	B0534 80535	0.34	${ }_{\text {8F }}^{8 \times 469}$	027	BUl10 BUliY	2.52	COP016 CDS017	0.37 0.74
2N5296	0.40	2 SC515A	121	AF116	0.79	Bax13	0.10	BC4	0.25	80536	0.55	85471	0.28	BU124	125	CO4020	0.92
2N5297	0.45	${ }^{25 C 533}$	0.49	AF117	0.75	BAX18	0.10	8C478	0.29	80537	0.00	${ }^{85472}$	035	$8 \mathrm{Bl26}$	1.11	COMe2	0.25
2N5239	0.55	$25 C 558$	3.35	AF118	0.75	881058	0.22	BC479	0.29	8D538	0.00	85479	0.55	BUI34S	4.15	${ }^{\text {couchas }}$	0.25
2N5490	1.35	25 cososi	1.05	AF121	0.50	88119	0.15	$8 \mathrm{BCs52}$	0.25	80548	0.75	$8{ }^{81480}$	0.54	晈205	12	${ }^{\text {comas }}$	0.54
2N5406	0.45	25 cose	1.36	AF124	0.36	${ }^{8 C 107}$	0.13	${ }^{8 C 556}$	0.15	80580	1.06	BF495	0.50	晈205	0.98	C00408	0.76
${ }^{215107}$	0.53	2scema	1.40	AF125	0.30	8C1078	0.14	BC547	0.09	80550	1.05	${ }^{8 \times 306}$	0.39	BU206	120	${ }^{\text {codel }}$	0.55
${ }^{2 N 6108}$	1.48	${ }^{25 C 673}$	1.11	AF126	0.35	${ }^{8 C 108}$	0.12	${ }^{8 C 548}$	0.09	${ }^{80598}$	1.13	${ }^{8+509}$	0.31	${ }^{81} 8207$	1.50		${ }_{0}^{0.52}$
${ }_{2}^{2 N 612120}$	1.0	${ }_{2} 25 \mathrm{Csse8} 1$	4.50	${ }_{\text {AF127 }}$	0.38	8C108A	0.12	${ }_{\text {BC549 }}$	0.09	${ }^{80} 8045$	3.55	${ }_{8 B}$	0.24	8U208，02	0.9	CDOW5	0.0
2 N 6133	0.57	${ }_{25 c} 5885$	20	${ }^{\text {AFF178 }}$	0.75	8C109	0.11	BC556	0.12	BD680	0.69	8F595	0.24	BU203a	0.9	c04053	0.72
${ }^{2 N 6178}$	0.65	2 Sc 883	0.69	AF179	0.50	$8 \mathrm{Cl1098}$	0.13	${ }^{8 C 557}$	0.09	$8 \mathrm{CB81}$	134	8F596	0.16	BU2030	1.13	C04093	023
2N6180	0.56	$2 \mathrm{SC710}$	0.0	AF180	0.50	BC113	0.12	BC558	0.09	80695	2.09	8 8597	0.2	BU209	1.00	C0008	0.28
${ }^{2 N} \mathbf{N} 968$	0.39	$25 \mathrm{C7717}$	1.98	AFIB1	0.09	$8 \mathrm{BC114}$	0.17	${ }^{81} \mathrm{C} 559 \mathrm{c}$	0.09	${ }^{80596}$	224	${ }^{8 F 6617}$	0.95	${ }^{81236}$	29	CD0093	0.12
$2 \mathrm{Neg8}$	0.39	$2 \mathrm{SC734}$	1.30	AF182	0.50	BC115	0.14	BC560C	0.10	${ }^{80697}$	3.21	8f618	0.95	${ }^{81812}$	2.16	CDO5611	1.00
	0.39	${ }_{2 S c}^{5 S 735}$	1.05	${ }_{\text {AFF }}^{\text {AFS }}$	0.4	${ }_{\text {BC1 }}$	0.20	${ }_{\text {BCaz3 }}$	0.18	${ }^{80698} 8$	1.10	${ }^{86} 895$	0.59	${ }_{\text {Bu }}^{\text {Bu326 }}$	1．75	${ }^{\text {CP55521 }}$	1.05
2SA107 2SA1076	1.15	2SC798	${ }_{1}^{22} 15$	${ }_{\text {AF279 }}$	0.80	${ }_{8 C 117}$	0.11	${ }_{8 C 637}$	0.19	BD700	3.35	BF75	0.59	Bu326S	225	$\mathrm{CV}-12 \mathrm{E}$	2.49
2SA329	0.38	$2 \mathrm{SC806}$	1024	Alloo	3\％	BC118	0.10	BC038	0.18	BDTQ	2.9	87759	0.30	BU406	1.35	CX034	10.75
${ }^{2 S 5351}$	1.05	${ }^{25 C 814}$	1.28	${ }^{\text {All }} 10$	1.75	${ }^{8 C 19}$	0.30	8 Cas	0.18	${ }^{80777}$	0.57	8790	0.59	84407	0.74	Cxoss	285
${ }^{2 S 4469}$	1.05	${ }^{25 C 828}$	0.25	All103	2.43	BC125	0.18	BC540	0.18	BD709	0.72	8FTO2	0.30	84407D	129	Cx104	8.49
254490	1.5	${ }^{2 S c 8677}{ }^{\text {a }}$	2.48	All13	120	${ }^{8 C 126}$	0.18	${ }^{818879}$	0.28	${ }_{80810}^{8087}$	0.72	8F870	0.7	${ }^{8412}$	1.95	Cx 108 C 109	6.98
${ }_{2 S A C 28}$	${ }_{1} 0.95$	2sc926A	$\underline{129}$	AN208	32.07	${ }_{\text {BC132 }}^{\text {BC13 }}$	0.12	${ }_{\text {BCx }}$	0.33	${ }_{\text {BDO }}$	0.50	${ }_{8 F 900}$	0.6	BUL26A	1.67	C×121	19.75
254657	1.38	25cses	3.75	AN214	2.05	BC136	0.15	${ }_{8 C \times 3}$	0.24	8 D 810	0.00	8F907	1.12	8u427	2.57	Cx 130	4.90
$22^{\text {Sab／3 }}$	1.11	${ }^{2 S C 536}$	15	AN2140	205	BC137	0.15	${ }^{8 C} \times 34$	0.35	80879	0．M	8 8F959	0.38	$8 \mathrm{BL500}$	1.61	${ }^{\text {Cx }} 131$	10.75
${ }^{254683}$	1．45	25 Cs 37	3.25	${ }^{\text {AN231 }}$	5.5	${ }^{\text {BC138 }}$	0.30	B6x3	0.60	8D880	0.00	$8{ }^{8970}$	0.55	818503 A	1.33	${ }^{\text {Cx }} 134$	10.75
${ }^{254604}$	1.33	2 SCsio	0.25	${ }^{\text {AN234 }}$	5.09	${ }^{8 C 139}$	0.33	${ }^{\text {BCF70 }}$	0.27	${ }^{8 D 095}$	1.98	8 8fras	0.35	${ }^{81525}$	1.05	${ }^{\text {cx }} 138$	10.75
${ }^{254748}$	0.6	2SD1138	0.7	AN235	4.4	${ }^{8 C 140}$	0.33		0.19	${ }^{80989}$	2.55	${ }_{\text {BRFR5 }}$	0.45	8U6906	1.92	cX137 cx139	10.75 10.75
${ }_{2 S A 818}$	1.05	250198	3.51	AN233	4.30	－	0.38	${ }_{\text {BC7 }}$	0.19 0.29	B0SV ${ }_{\text {B }}$	2.55 1.14	${ }_{\text {BRFR }}$	0.29	${ }_{\text {BUseoso }}$	129	${ }^{\text {c }} \times 159$	10.75 4.45
${ }^{2 S A S A S O}$	${ }_{1} 2$	${ }_{\text {2SO24 }}$	0.42	AN239	3.55	${ }_{\text {BC1 }}$	0.28	80116	0.09	BDVG5B	1.14	Bmb1	0.45	Bu80	1.9	CX158	3.4
2 2SA951	123	$2 \mathrm{SO257}$	207	AN240P	$1{ }^{1}$	BC14	0.10	80124	1.19	BDX32	1.50	87R86	0.98	BU8264	2.79	Cx 170	6.92
2SASPEYY	0.54	250291	2.85	AN21	1.55	BC174	0.412	8D124P＋KIT	0.2	80X53	0.00	8 8fras	0.39	Buv46	1.13	${ }^{\text {cx }} 177$	5.98
258325	3.51	250292	235	AN245	2.54	BC148	0.11	BD131	0.38	BDX53A	3.61	BFT41	0.77	Buvs	1.12	CX506	8.40
${ }^{2 S 8337}$	1.85	250313	2.59	AN273	2.2	${ }_{8} \mathrm{Cl} 148 \mathrm{Br}$	0.11	${ }^{80132}$	0.38	BDX518	237	8F10	0.39	BUNB1A	3．15	${ }^{\text {Cx507 }}$	6.92
2S8375 288400	3.51	${ }_{2 S 03250}$	${ }_{1}^{2.87}$	${ }_{\text {ANO52 }}$	2.23		0.11 0.10	${ }^{80133}$	0.48	BDX62A BDXE3A	1.98 1.95	${ }_{8 F \%}$	0.35	BUXSA	1.97	D1093	2.35
258107	2.9	250350	7.3	Anter	1.51	BC149	0.11	${ }^{\text {BD135 }}$	0.32	BDXEAA	237	BFW10	0.79	BY126	0.11	DEC1	1.52
258411	3.00	2503504	2.06	AN272	5.36	BC153	0.12	80137	0.39	BDXESA	237	$8{ }^{8 \times X} 29$	0.30	$8 Y 127$	0.11	DECP	1.52
258511	1．10	250353	3.25	${ }^{\text {A }}$ A ${ }^{281}$	${ }_{5}^{5.52}$	${ }_{8}^{8 C 154}$	0.12	${ }_{8}^{80138}$	0.41	${ }^{80 \times 76}$	0.53 1.10	${ }_{\text {8 }}^{8 \times \times \times 8}$	0.59	${ }_{\text {BY164 }}$	0.11	${ }_{\text {E5024 }}$	0.25
${ }^{258554}$	1.28 128	${ }^{2 S 0399}$	2.15 1.57	${ }_{\text {and }}$	3.01	${ }_{\text {BC158 }}^{8-158}$	0.14	${ }_{8}^{80139} 8$	0.37	${ }^{\text {BDYE2／01 }}$	4.20	${ }_{\text {BPX }}$	0.25	${ }_{8 Y 176}$	13	E5386	022
${ }_{2 S 886184}$	1.40	$2 \mathrm{SO551}$	220	AN3CD	312	BC159	0.14	BD14	1.30	BDY91	1.07	Br× 87	0.50	8Y179	1.42	E5529	022
258881	2.4	2S0568A	125	ANSOB	3.25	BC180	0.36	8D150	1.00	BF115	0.36	${ }^{8 \times \times 88}$	0.30	8Y182	0.95	E8021	1.17
$2 \mathrm{SBPes5}$	1.70	2SDC21	88	AN305	4.07	${ }^{\text {BC1 }} 161$	0.35	8 BD 57	0.00	8F17	0.35	${ }^{8 \times \times 89}$	0.35	8Y184	0.42	${ }_{\text {E9003 }}$	0.41
${ }^{258875}$	0.90	250857	2.54	AN313	3.10	${ }^{81167}$	0.32	${ }^{80159}$	0.0	${ }_{8 F 121}^{8 F 18}$	0.00		024	${ }_{\text {BY197 }}$	0.70		
${ }^{258881}$	0.4	2 SD731	1.12	AN315	2.12	${ }^{8 C 188}$	0.32	${ }^{80160}$	1.45	${ }_{\text {BFF }}^{8121}$	0.22	${ }_{\text {BFY51 }}$	0.24	${ }_{\text {BY1 }}^{\text {BY1 }}$	120	ERT400	10.12 3
${ }_{2 S C}^{2 S C 1034}$	5.15	2 SD811	3．3	AN316	5.58	8С1＊9C	0.14	${ }^{80163}$	0．${ }^{\text {c }}$	${ }_{8 F 127}$	0.11	${ }^{8 F Y} 5$	0.24	$8{ }^{8}$	230	ESN3108P	35
$2 \mathrm{SC1050}$	3.56	2SDes9	2.40	AN318	4.75	BC17	0.14	8 105	0.56	BF127	0.11	BFY9	0.96	BY201／2	136	ESM432C	4.18
IF YOU	＇T	EIT LIST	ASK	OR OU	GIV	MaKE	DEL	CATIO	EEME	BER	DD 0	60p	HAN	LING	15\％	VAT TO TO	TAL

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

ESM53zC	4.18	LM1303P/N	1.5	MPSU05	0.7	SAA5010	4.9	SN74190	1.1	T6009V	4.41	tBa3	35	tDal230	2.95	TDA9503	200
ESMESTC	4.18	LM1310P/N	125	MPSU10	0.78	SAA5012	5.58	SN7420N	0.30	18032 ${ }^{\text {d }}$	0.81	tbassana	100	TDA1235	52	TOA9513	2.40
ESMT32C	4.18	LM3065N	0.7	MPSU55	0.90	SAA5020	525	SN7430	8.21	T803OV	0.73	t8a3s	1.00	TDA1270	2.4	TE527	1.25
ETT0016	2.05	LM31TCKC	1.30	MPSU56	0.30	sab5030	7.50	SN740N	0.25	T6035V	0.8	tBanoo	2.17	TDA1327A	1.65	TE538	0.35
ETTR8016	2.16	LM339N	0.0	MPSUEO	1.20	SAA5090a	14.75	SN7473	0.56	T8036	0.4	TBAMOP	1.55	TDA1327B	1.05	TE626	1.35
RND500	5.25	LM307	129	MR510	0.30	SAA5050	6.50	SN7474N	0.12	T8037	1.91	TBAM	1.4	TDA1330	1.00	tealouz	3.15
FT3055	1.5	LM34075	0.75	MR812	0.0	SAAbs1B	1. 10	SNTISOAN	0.93	T6041V	0.0\%	TBahsoo	1.57	TDA1365	6.35	toaioos	0.94
GF758	0.2	LM3 ${ }^{\text {a }}$	0.75	MR914	0.4	SaA700	3.0	SNT5110N	0.75	teonv	0.56	TBA500PO	4.95	toal412	0.55	teal coosp	5.34
GF759	1.e.	Lм3\#0т5	0.75	MSSDTOCP	0.55	SAB1009B	4.53	SN76001ANO	225	T8004	1.09	TBA510	1.55	TDA1420	1.44	TEA1087	0.45
GF761	0.7	LIMSEN	0.55	MVS240	0.52	SAB1046P	3.55	SN76003N	2.15	T8019	1.10	trasios	6.39	TDA1470	2.15	TIC106C	0.55
GH3F	1.85	LM380N01	14	MVS400	0.30	SAB3011	7.34	SN7e003N	3.03	T6052V	0.76	TBA520	1.07	TDA1512	220	TIC1063	0.55
HA11211	2.30	LM567CN	1.30	MYS40002	0.55	SAB3012	5.3	SN76013ND	225	T8058	0.5	TBA5200	135	TDA1670	3.05	TC1160	000
HA11215	4.00	LM749	1.05	ME545B	2.95	SAB3013	324	SN70013NDG	8.07	T8059	1.05	TBA530	0.65	TDA170	5.54	$11 \mathrm{Ca4}$	0.05
HA11225	3.50	Lmbsso	278	ME555B	3.0	SAB3Cl 1	7.18	SNTComes	235	T8001V	1.9	tBA5300	0.55	TDA1995	1.25	TIC45	0.70
HA11238	7.5	LMB361	2.7	ME5534N	1.4	SAB3czab	1234	SNTGgezand	1.4	T9008V	0.9	tBA540	0.50	TDA1908	2.95	T1C47	0.70
HA11229	2.51	M1024	2.55	ME555	0.34	SAB3m238	11.18	SN70003 ${ }^{\text {N }}$	233	TScosV	2.16	TBA5400	1.15	TDA1910	238	TIP120	0.98
HA11235	3.00	M1025	4.70	ME556	0.75	SAB3ce 4	$4 . \pi$	SNT6105N	236	Ts000	0.87	TBA550	1.95	TDA1940	2.54	TP110	0.44
HA1124	4.70	M1124	2.54	ME5560N	3.16	SAB3209	4.75	SN76110N	1.13	r9011V	1.7	TBA5500	2.25	TDA1950	25	TP112	0.0
HA1124	4.32	M1130	4.51	ME565N	120	SAB3210	2.33	SN7615AN	1.46	T9013V	5.11	TBA560C	0.56	TDA2002	120	TP17	0.6
HA1125	3.90	M191	5.74	MEE45BN	3.00	SAB4209	12.75	SN76131	1.74	Ts014V	1.52	tbaseoca	1.15	tidazoze	1.05	T1P120	0.73
HA11251	3.30	M193	18.55	MEEGEN	300	SAF1031	230	SNT6260N	129	TS016	0.92	trasto	1.55	toazon	2.52	T/P121	1.06
HA113TW	2.57	M51102L	4.0	MEESON	3.94	SAF1032	5.00	SNTEOZTN	0.8	TSMO2N	0.39	tBasfoa	1.55	TDAX206	125	T1P126	0.55
HA1138	3.55	M5115P	4.34	ME645BN	3.00	SAF1009	11.0.	SN76288N	2.97	T9034V	125	tbasion	1.35	TDA2010	2.79	${ }^{\text {T1P127 }}$	1.30
HA11414	2.50	M51231P	2.79	MP1106	4.0	SAS5010	7.0	SN76231	2.31	T9035V	125	TBA625A	1.97	idazzeo	${ }^{2} .75$	${ }^{11} 129295$	0.78
HA114	6.38	M5124P	4.31	0azdo	0.10	SAS550	1.09	SN78242	4.75	T9038V	${ }_{2} 6.15$	TBACz5B	1.97 1.97	TDA2030	${ }_{1}^{1.4}$	T1P298	0.41
HA1156	123	M5134-931	3.75	OA202	0.10	SAS550S	2.97	SN76243	4.75	${ }^{\text {T9051 }}$	2.55	TBAG62C	1.97 3.75	TDA2140	${ }_{5}^{1.40}$	${ }_{\text {T1P29C }}$	
HA11580	7.0	M51394P	525	0A47	0.10	SAS560]	2.5	SN76322	2.51	${ }_{\text {T9053V }}^{\text {T906 }}$	1.09	tbabilal	3.75 2.07	TDA2151	1.75	T1P3055	0.05
HA1160	3.45	M5142P	43.3	OAsO	0.07	SAS570	1.51	SN 76380	1.97 200	T9065V	0.98	${ }_{\text {TBA651 }}$	2.01 1.00	TDA2150	${ }_{3} 1.5$	TPP30A	0.41
HA1166 HA1167	5.813	${ }_{\text {M514P }}^{\text {M }}$	${ }_{3.4} 6$	OA91	0.00	SAS570S	${ }_{2} \mathbf{0} 2.50$	SN76390	2.08	${ }_{\text {T9060 }}$	2.9	TBA673	2.35	TDA2161	1.8	TIP308	0.63
HA11711	16.13	M515131	2.05	OC28	0.55	SAS580	4.41	SNTE510N	0.95	TA5814	1.35	tBA7000	2.19	TDA2190	3.11	T1P318	0.35
HA11713	6.70	M51515BL	3.10	OC29	1.95	SAS5600	2.2	SN70530P	1.50	tatozop	4.36	tBA7zo	2.5	TDA2510	1.2	TP31C	0.63
HA11714	7.05	M51516L	3.40	OC35	0.56	SAS590	4.55	SN76532N	10	tatmez	4.35	tibatio	1.75	TDA2520	2.15	TIP328	0.35
HA11715	7.05	M51517	2.90	OC36	1.16	SAS5900	238	SN76533N	1.56	taposo	1.50	TBA7500	1.65	TDA2521	2.15	TIP32C	0.65
HA11718	6.79	M5152L	1.00	OC4	0.40	SAS690	2.50	SN78540N	1.00	TATOS 1	1.50	tBA760	1.55	TDA2522	2.11	${ }_{\text {T1P3 }}$	125
HA11724	15.40	M51522	4.50	OC45	0.10	SASceno	120	SN76544	1.00	TATogap	0.0	TBA780	$\begin{aligned} & 3.00 \\ & 0.00 \end{aligned}$	TDA2524	2.75 4.50	TPPIA	1.07
HA11725	16.0	M5191P	4.49	${ }^{\text {OC75 }}$	0.00	SASE00S	120	SN76545	${ }_{3}^{4.55}$	TATO61AP TATOE9	0.7	${ }_{\text {TBA }}^{\text {TBABOO }}$	${ }_{0}^{0.00}$	TDA2524	2.50	T1P418	0.28
HA1180	4.08	M5192	2.00	ON188	1.70	SAS6610	1.20 2.50	SN76546	3.15 3.15	TAT0090	2.5	TAABIOS	1.4	TDA2530	2.19	TP41C	0.4
HA1203	1.55	M53273P	0.92	ON236	2.90	SAs670	2.50	SN76546N	3.15 235	TA7071	3.35		1.4			TIP42A	0.39
HA1306	1.74	M ${ }^{\text {53274 }}$	120	OT112	0.90	SAS6700	1.20	SN76549	2.35 0.30	TA7071	3.35 1.35	tBAS80	1.90	TDA2533	2.09	TIP42B	0.71
HA1323 HA1339	1.74	MADSOO	0.97	${ }_{\text {OTI }}^{\text {OTI }}$	0.70	SAS67710	1.20	SN776550	0.30 1.35	TA7073P	4.05	TBABZOM	1.65	TDA2540	1.95	T1P42C	0.4
HA1342	1.0	m83705	1.2	PT1017	2.43	SAS6300	230	SN76570	200	TA7074P	1.95	тBAbso	1.5	tDA2341	1.95	TPP4	0.65
HA1350	2.97	M83712	2.05	PT2014	2.76	SAS6810	1.30	SN78000	1.10	TA7076P	4.95	tBAs00	225	TDA25450	3.16	TP48	0.10
HA1335	3.05	M83713	1.30	PT8042	10	SBA550B	1.95	SN76611	235	TAToesn	1.41	tragzo	1.50	TDA2560	1.97	TP49	3.28
HA1336WR	1.9	M83730	2.9	R1038	1.99	SBA750	1.45	SN76820	235	TA70esp	1.36	TBA9zoo	2.10	TDA2571A	2.18	TISA3	121
HA1367	320	MCi3002	4.6	R1009	1.99	SCs\%e8p	1.50	SN76022	1.50	TATosep	3.5	tBaym	1.70	TDA2575A	2.95	TISs0	020
HA1338	1.09	MC1303P	1.55	R2008B	120	SC9503	1.50	SN76823	0.2	tanossp	1.5	tBA950	1.50	TDA2576A	2.58	TIS91	0.26
HA13s88R	1.05	MC1307P	1.90	f2009	120	SCs504P	1.45	SN76030	2.31	TA7102P	5.34	tiagzo	2.0	TDA2577	5.31	T.017CP	2.02
HA1370	2.97	MC1310P	125	R20018	120	SCs511P	1.90	SN76640	3.85	TA7108P	1.47	TBA9700	2.5	TDA2581	1.95	TMS1000NL	10.78
HA13T	2.0	MC1327P	120	R23e9	120	SCR957	120	SN780850N	1.24	TA7109	3.37	TBA990	1.65	TDA2582	1.5	TMS3748NS	11.10
HA1389	1.2	MC1330P	123	R2200	120	SG264A	4.30	SN78851	1.35	TA7120P	0.5	TBA9300	${ }_{2}^{1.95}$	TDA2590	200	${ }_{\text {TMS }}$	1.7
HA1399R	1.74	MC1349P	120	R2237	2.16	S6613	7\%	SNTCeson	225	TA71228/P	0.54	TBA231	2238	TDA2991	20	${ }_{\text {TVel }}$	120
HA1339	2.	MC1350P	1.10	R2265	1.95	SG629	6.27	SN76885N	1.35	TA7124P	2.00	TC4001	129	TDA2593	220	TY056	2.70 1.03
HA1337	2.97	MC1351P	0.75	${ }^{\text {R2305 }}$	1.07	S6efz	9.37	SN788880N	0.9	TA7130P	1.15	TCA0538P	3.9 1.18	TDA2593	${ }_{200}^{224}$	UOSG	1.08 2.00
HA1398	208	MC1352P	1.01	R2306	123	SI-10020	4.76	SN76705	3.30	TA7133AP	1.15 0.25	TCA150	1.12	TDA2000		U3700	2.55
HA1400	1.9	MC1337P	1.95	R2323	125	Sl-1125HO	$\underset{\substack{10.70 \\ 80}}{ }$	SN76705N SN76707	3.99 3 3	${ }_{\text {TAA714 }}^{\text {TAPAP }}$	3.25	TCA180 TCA270	1.58	TDA2610	2.53	U37003	0.4
HA1723	5.40	MC1358P	1.55	R2323	123	Sl-1130N	6.30	SN76707N	3.98	TAA141ap	3.51 8.01	Y'CAZ7OS	1.55	TDA2811A	125		
HBF4330AF	225	MC14001	7.15	R2348	$1{ }^{10}$	SKB2/08	0.70	SN76709 SN76709	4.05	TA7146P TA7148P	8.00	TCA2205	1.95	toazeliA	2.55	UAF58PC	3.00
H04480	15.60	MC14011	0.23	R23544	1.18	SKE2F $1 / 04$ SKE2G 204	0.26	SN7670eN SN76730	4.95	TA74*PP	1.51 2.10	TCA290A	2.05	TDA26120	4.25	UA783P3C	1.07
H044801A05	15.90	${ }_{\text {MC1 }}$	0.37 0.37	${ }_{\text {R234 }}$	$1{ }_{123}$	SKE26 SKE2G $3 / 04$ 3/04	0.95	SN76810	0.23	TA7153P	4.53	TCAL2a	1.90	TDA2820	1.96	uaiaro	2.14
HME231 HM6232	7.50	MC14016CP	0.54	R241 R243	123	SKEFF	1.25	SN76s820	2.03	TA7161P	5.56	TCA40	1.05	TDAzz30	234	ualiso	2.14
HM9102	2.98	MC14019UBC	0.52	R2461	2.10	SKE4F 106	0.65	SNshel 1	3.45	TA7122P	4.25	TCA4500A	1.55	TDA2631	2.4	ULN2165	1.35
HM9104	2.9	MC1433R	0.95	R2477	0.92	SKE4F 206	2.10	SN9M012	3.55	TA7169	4.00	TCA530	1.00	TDA3640	225	ULN2204	7.00
HT/207	15.50	MC1493P	2.5	R2501	1.16	SKE4F 2 208	0.0	Spriseb	0.50	TA7171P	2.53	TCAGH0	2.13	tDazal3	6.93	ULN22168	${ }^{1.55}$
IS6e9	12	MC14510BAL	3.15	R2540	1.0	SKE46 2102	0.87	STAMIC	227	TA7172P	127	TCABSO	1.5	TDA2561	2.95	UPC1001H	2.50
15751	1.7	МС14556BCP	3.15	R2540X	300	SKE5F 3/10	1.45	STK0029	3.12	TA7176P	225	TCA6608	2.58	TDAzest	7.05	UPCLIOOS	5.74
1712003	0.20	MC1712	3.52	R2615	0.00	SL1310	285	STK0009	4.00	TA7193P	4.4	TCA730	3 M	TDA2853	2.95	UPC102OH	2.12
K174YP	2.95	мс7724СР	3.17	RC4195NB	1.50	SL1327E	1.20	STKDOSO	4.95	TA7201P	3.25	TCA740	225	TDA2854	2.91	UPCIO25H	2.49
KA2101	2.85	MC7818C	1.98	RCA19029	12	SL1430	126	STK0059	5.4	tatzap	224	TCA750	1.75	TDA2¢555	3.15	UPCLICsic	124
KC581C	5.47	MC7824CP	4.5	RCA19083	4.1	SL1430T	2.10	STK0060	8,39	TATzo3p	1.95	TCA7800	2.79	TDAz880	22.24		200
KC582C	3.45	MC78M 12	0.75	RCA1634	0.92	SL1432	2.25	STKO11	3.6	TATzoPP	1.95	TCASEO	1.05	TDA2861	2.24 2.0	UPCI0391H	8.05
KC583\%	40	MC78924	0.05	RCA16335	123		3.35 3.12	STKO13 STK014	7.01	TATO25 TATz09P	1.25	TCABSOS	2.9 1.9	TDA2870a	1.75	UPC1031 ${ }^{\text {a }}$	6.00
${ }_{2}^{21290}$	1.7	MCR101	1.17	RCA16 RCA1699	2.16	SL437	3.12 60	STK015	5.12	TAR210P	3.25	TCAsoo	155	tDazreo	230	UPC1032 ${ }^{\text {H }}$	0.94
LA1111AP	0.0	Mcrazon	1.3	RCA16801	0.5	SL139	225	STK016	48	TAT214P	2.50	TCA910	1.50	TDA28904	2.40	UPCC154H	1.75
LA1201	0.90	Megaz	0.27	RCA1680	0.58	SL480	5.00	STK02	4.7	TA7215P	2.09	TCAgM0E	1.9	T0A27raAO	2.18	UPCCILSEH	
La1210	1.30	Meome	023	RCA17028	225	SL490	1.7	STK025	720	taz217ap	1.35	TCE330	3.53	TDA27900	5.92	UPCC1181H	125 10 10
LA1320	1.45	MEOMO4/2	0.42	RCA1074	6.00	SL201]	6.04	STK010	7.09	TAFz2	1.95	TCE527	1.37		2.50		
Lai352	1.40	MEPA11	0.45	RCA17376	1.43	SL19178	7.95	STKOU3	7.09	TAT27P	1.69	TCE828	0.98	${ }_{\text {TDA27900 }}$	2.95 6.12	UPCC1185\%	2.99
LA1355]	2.79	MES468	9.10	RT402	1.00	SN16581N-07	1.59	STKOT 7	7.00	tat313AP	1.35	TCEP 100	40	tDa3030a	10.4	UPC1213C	0.95
Lai3e5	1.70	Me6002	0.23	RT905A	2.00	SNimazal	1.0	STK078	5.52	TA7314	5.10	TCEP1000	9.31	tDa3190	1.75	UPC1217C	224
LA1387	4.57	ME6102	0.45	S0280	1.94	SN16800N	3.30	STKOPS	7.54	TA7609	3.00	T0190	0.54	TDA33008	${ }_{7}^{7.75}$	UPCII3SCO	1.75
La3155	0.90	ME8001	0.25	S0281	1.94	SN16985	8.13	STK006	9.50	TA7611AP	3.54	TD3F700	6.00	TDA3500	5.95	UPC1351C	1.45
LA3300	1.40	M/2501	4.95	Sonlp	126	SN169880	5.49	STK2101	5.74	TA7676P	3.05	T03F800	225	TDA3501	10.99		6.75 4.10
LA3301	1.28	MJ2955	1.34	Salep	1.46	SN29715N	5.49	STK2110	${ }^{5} .5$	TAA300	2.95	T03F800R TOF5004	321 3.7	TDA3506	10.12 5.95	UPCC1380C	4.10 7.95
La3360	1.30 1.30	M. 33000 $M .35001$	2.15 1.30	${ }_{\text {S175 }}^{\text {S129 }}$	10.50	SN29716N SN29717	3.53 6.53	STK2330	${ }_{6}^{6.0 .5}$	ta ${ }^{\text {tas3320a }}$	0.27 1.15	${ }_{\text {L }}$	3.78	TDA3520	5.95	UPCL365	7.95 5.79
La4000 P	237	M 33028	2.00	S20620	18	SN2972	10.5	STK143	9.35	TAA350A	1.9	TDA1001A	2.10	TDA3521	12.17	UPC1356	423
L44031P	3.00		1.39	\$2800	525	SN29723AN	6.95	STK135	5.4	TAAM35	1.05	tDaloma	2.15	TDA3560	6.18	UPC1458	7.78
La4032P	1.48		4.95	\$28000	2.55	SN2974N	2.00	STK135	5.70	TAA550	0.35	TDAlcoua	2.15	TDA3561	7.50	UPC2002	1.48
LAM050P	1.42	MJE2955	1.71	\$2002	3.15	SN29764AN	3.30	STK437	8.10	TAA570	1.5	TDA1005A	2.15	TDA35710	225	UPCOOC	228
LAM05IP	1.20	MJE3055	0.74	S3702S	4.73	SN27767	3.51	STK439	5.25	TAA611812	1.50		2.15		${ }^{5} .467$		4.49 372
Lation	1.2	MJE340	0.4	S3703F	4.73	SN2970an	2.04	STK41	8.96	TAAge2ax	${ }_{3}^{2.00}$	TDA1010	2, 213	TDA3576 TDA3950	4.76 2.1	UPCAC UPC554C S	${ }^{3.72}$
L4A101	1.18 2.55	${ }_{\text {MLILS32 }}$	2.24	S3707	3.98 7.99	SN29772BN	4.23	STK459	9.35 6.55	Tasbio	3.31 3.5	TDA1028	220	TDA3950	1.10	UPC558C	3.67
L4A112	4.35	M12328	3.30	\$551	4.12	SN2973	2.20	STK400	5.7	TAA661B	1.50	TDA1029	4.4	TDA40504	3.15	UPC565H	2.78
La4125	2.45	ML2378	2.20	S552	4.12	SN29791	1.51	STK461	7.14	tas700	2.35	TDA10348	220	TDAAIEPP	1.74	UPC572	3.51
144138	2.00	ML238	4.02	S6000B	2.75	SN2979eN	3.9	STK463	8.05	TAAB40	227	TDA1035	118	TDAA250	1.40	UPC575C2	3.72
LAF140	0.50	ML741CS	0.35	S6007AR	4.45	SN29945	2.14	STK4E5	730	taAs30	4.42	TDA1037	1.45	TDA2380	8.45	UPC576\%	2.00
L41929	2m	ML933	2.18	SAA1020	4.39	SN2S948	1.65	STK46\%	10.70	taAgro	2.57	tDA1041	1.56	TDA4230	4.05	UPC575	0.4
L4420	1.34	MLOS26	3.25	SAA1021	4.32	SN23961	2.00	STK501	5.74	TAD100	1.97	TDAIOM	1.51	TDA40	1.95	UPC587C2	234
[4400	2.04	MM5314N	3.7	SAA1024	2.55	SN2es\%	2.0	STK5C	5.74	TAG232 600	0.5	toalon	2.14	TDA400	2.05	UPC592H	7.02
L44420	1.56	MM533in	3.72	SAA1025	4.70	SN72709	0.40	STR411	6.34	TAGGzz-600	0.4	TDA1054M	1.10	TDA4EO	425	UPD1514C	7.58
L44422	1.5	MM53318N	20	SAA1050	3.78	SNTICON	0.24	STRU53	6.75	traizo	0.95	TDA10598	0.58	TDAM22	${ }_{5} 513$	UP0851	14.39
La4330	1.40	MM5339N	1.28	SAA1051	5.30	SN7401N	0.24	STRECLO	720	tbaizaa	0.55	TDA1080	2.01	TDAM30	4.34	UPX27C	1.98
La460	1.98	MM5387AA/N	11.50	SAA106!	327	SNTIMEN	0.59	T8007V	0.69	tBAIzas	0.55	TDA1082	2.65	TDAM31	2.05	xocozce	3.67
La461	2.00	MM5841N	5.90	SAA1075	4.41	SNTHON	0.21	${ }^{180077}$	0.9	TBAIzOS	0.95	TDA1104	5.95	TDAM32	2.05	x0035 ${ }^{\text {ra }}$	4.35
LA5112 N	1.0	MP8112	1.35	SAA1082	8.0.	SN7408N	0.24	T8016	0.36	TBAIzasb	0.55	TOA1151	0.05	TDAM40	2.52	хо0056CE	3.50
Latceo	6.5	MP8113	1.35	SAA1121	4.32	SN7410N	0.24	T8017	0.05	TBAIzOT	0.55	TDA1170	2.15	TDAAE00	2.51	X0062CE	${ }_{3}^{4.95}$
latces	7.31	MP6512	123	SAA1124	2.55	SN74121	1.20	T8018V	0.05	TBAIzaU	${ }_{3}^{0.95}$	TDA170S	1.15 225	TDA4610	2.42 4.50		3.48 5.10
La7800	2.12	MPF256C	0.54	SAA1130	4.06	SN74122	0.95	T8S21	0.35	TBAI20UB	3.47 20	TDA1180	225	TDACE20	4.50	X0109CE $\times 1074 \mathrm{~F}$	6.10 6.36
La7001	3.80	MPS6570	0.43	SAA1174	5.75	SN7413N		T8002V				TDA1190	1.91	TDA5500	2.4	x1074AF $\times \mathbf{C g 4 9 P}$	1.20
103120	120	MPSAQ	0.59	SAA 1250	3.75 50	SN74141 SN74151AN	1.41	${ }_{\text {TECO6 }}$	0.08	${ }_{\text {TBAA }}^{\text {TEAOG }}$	3.40 1.59	TDA11902	285 1.30	TDA5s00	2.10	¢ 730	1.24
LM1011N	$\underline{2.55}$	MPSA56	0.24 1.11	SAA1251	5.30	SNT7151AN SN7415AN	1.51	${ }_{\text {T60028 }}^{\text {T80 }}$	0.73	TBALM	1.5	TDAIz20	132 225	TDA9403	2.10	${ }_{\text {r969 }}$	0.60

VCR Clinic

Panasonic NV333

A couple of faults on this otherwise quite reliable machine have come to light on a number of occasions. First, if the customer tends to use the wired remote control and the machine won't respond to on-board commands, working only with the remote control system, it's a good idea to change the minijack remote control input socket. This is a weak link and can go open.

Secondly, when a cassette has been loaded but the machine won't respond to any commands, even eject, don't get too involved before you've checked the cassettedown switch. This little devil lives under the main board and is a bit fiddly to get at due to the construction of the machine. It's a simple looking device with thin, long springy contacts. To check, bridge across it with wire: the machine should then respond to all function commands. It can be cleaned up but won't last. A replacement is necessary, though you can leave it bridged across as a temporary measure.
T.T.

Grundig 2×4 Super

One of these machines would occasionally refuse to go into playback - it would move the loading ring slightly, then return to stop. Fast forward and rewind were o.k., but search fast forward and rewind did the same. We finally found that the autostop adjustment (BEA) was slightly out: the autostop worked, but in all modes except fast wind the too sensitive adjustment prompted the stop mode.
M.P.

Hitachi VT9700

This machine had given us trouble for over a year. Every time it was brought in with the complaint that it ran slow it worked normally, much to our customer's embarrassment. Even bench testing with a scope tied to the servo failed to show anything amiss. Eventually, while on the bench for the umpteenth time, it stopped dead in its tracks. The capstan motor had seized solid, but by now it was some five months out of guarantee. Anyway I sent the motor to Hitachi with a covering letter describing the problem and asking whether they could see their way to supplying an under-guarantee replacement. Those nice people at Hitachi sent me one FOC and after fitting it the machine ran fine. For an hour or two anyway, then the original fault appeared, the first time we'd seen it.

After a certain amount of probing about we found that the output from the capstan servo sample and hold circuit was a squarewave, which also made the machine warble badly. The capstan trapezoid wasn't there and the charging capacitor C506 was found to be hanging on by only one leg. Refitting it restored normal operation.
S.B.

JVC HRC3

It seems that all the world knew about it except me, and maybe some of you. It came to pass that a customer with a JVC HRC3 mini portable VCR had problems. These occurred when his recordings were placed in a cassette adaptor and then into an Hitachi VT19. At the beginning

> Tony Thompson, Steve Beeching, T. Eng. (C.E.I.), Mike Phelan, lan Hutton, Peter Dolman, Les Grogan, Malcolm George, Hugh Allison, John Coombes and Peter Blundell, Tech. (C.E.I.)

of each new recording the VT19 would go into the LP mode for about five-ten seconds. Not a lot, but it seemed like ages before it reverted to normal speed. Well, I blamed the Hitachi VCR, which has suffered from certain problems (clock display keeps resetting; motorboating on one of the audio channels). Not so however - the same difficulty arose when a two-speed JVC HR7655 was tried. The problem lies within the HRC3's control track pulse recording level circuit. But don't try to do the modification yourselves - you'll only end in tears!
S.B.

Odds and Ends

As if boards with double sided print aren't enough, the latest information on the new JVC camcorder (GRC1) to be launched this autumn has it that there will be "dedicated i.c.s, special four-layer boards and increased component density". Only a fool would try to repair one without specialised knowledge.

Did you hear about the stereo hi-fi VCR that records stereo audio on the helical tracks but has only a mono static head, thus making it non-compatible with current stereo VHS tapes? Panasonic did. So beware Sony - inside information from a long way away indicates that at least one Beta manufacturer has done the same thing. The audio switching is left, right and normal. Left and right are the new hi-fi channels and normal is a mono static head. Good authority has it that the forthcoming JVC HRD725 hi-fi will have a stereo static head.
S.B.

Mitsubishi HS310

Playback was not possible because the head drum was running at the wrong speed. A recording was made and played back on another machine. This was successful, so whatever was wrong was something that acted on the drum servo on playback but not on record. On record the reference signal is obtained from the field sync. On playback the signal is divided down from the 4.433 MHz crystal oscillator on the YC board - the oscillator and divider are both in IC6F3. Checks showed that both these signals were missing. Spraying the crystal (X6F2) with freezer restored normal operation and a replacement cleared the fault.
I.H.

Ferguson 3V35

This machine came in with the head drum running at about 3,000 r.p.m.! Slowing it down by hand gave quite a good picture. We first checked the supply voltage to the HA13008 drum motor amplifier chip (IC407), having been caught out by this before. It was spot on at 13 V . The HA13008 and quite a few other bits had been changed. We moved back to the preceding error amplifier chip and found that the drum phase error input (pin 12) was bouncing around all over the place while the drum speed input (pin 13) was low. As pin 13 goes low to increase the motor's speed, this meant that the fault was prior to this point - had it been high, this would have meant that the fault was between this point and the motor, and that the servo was making an attempt to correct the situation.

The FG feedback signal was o.k. in amplitude at pin 3 of the BA6328 drum speed discriminator chip IC404, where it enters for amplification, but the output at pin 4 was low and noisy. There's a feedback loop between these two pins and the culprit was in this network - C465 (100 pF) was leaky.
M.P.

Mitsubishi HS310

Several of these machines have been brought to us with vague complaints such as "sometimes stops in the timer mode, I think" and "just won't run satisfactorily". They've all worked faultlessly in the workshop however. Following much inaccurate speculation, the cause was eventually found to be a simple one - failure of the cassette lamp. The type used has a nasty habit of going open-circuit intermittently and momentarily, thus returning the machine to the stop mode. A defective lamp can usually be identified by watching for changes in its brightness while administering a deft flick with the thumb and forefinger.
P.D.

Hitachi Disc Player

Sound o.k. but very weak video was the complaint with this disc player. We bypassed the r.f. modulator by feeding directly into the TV set's video input socket. The modulator is fed by an emitter-follower transistor (Q503) and we could find little when we made a scope check at its emitter (TP43). Furthermore Q503's collector voltage was only 5.4 V instead of 10.8 V . The 10.8 V output from the power supply was correct (TP91) and the only thing between this and the collector of Q503 is the filter resistor R574 ($2 \cdot 2 \Omega, 0 \cdot 25 \mathrm{~W}$). Replacing this cleared the fault. L.G.

Sony C7

The customer brought in a dusty looking C7 saying that it had stopped, a puff of smoke coming from just above the clock display. Checks in the power supply revealed that the chopper transistors Q101/2 were short-circuit while the resistor in series with them (R101) was open-circuit. Ah ha! I thought, I've read about this one (January 1984). So I sent off to Sony for the A6738-159A replacement kit. This was fitted and the power supply was run up under no load conditions, performing o.k. The rest of the C7 was powered from a 12 V bench supply and produced talking pictures with colour, without taking too much current. So the power supply was confidently refitted and all plugs and sockets were connected. Guess what happened when I turned on? Another puff of smoke and Q101/Q102/R101 had again bit the dust. Further checks revealed that the two $4 \cdot 7 \mu \mathrm{~F}$ electrolytics associated with $\mathrm{Q} 101 / 2$ had fallen in value to something like $0.5 \mu \mathrm{~F}$. Sony replacements for all these items provided a final cure, but the next time it happened to me I decided that BU408s and $4 \mu \mathrm{~F}, 350 \mathrm{~V}$ electrolytics seem to provide a cheaper, reliable solution. M.G.

Akai VS5EK

While chatting up one of our lovely secretaries it transpired that she had to take her video cassettes round to a neighbour's house to rewind them since her machine would only play and record! When we checked the machine, attempting either fast forward or rewind created a furious "bleeping" and the ejected cassettes came out with a foot of tape hanging loose.

A look over the top mechanics revealed that the fast forward/rewind jockey wheel wasn't moving: careful examination underneath then revealed that the spring connecting the jockey wheel and the tape supply wheel brake had broken. This spring is well obscured by a lever, and is an experiment in self-control to replace. Since half the broken spring was missing, the unit was held "right way up" and gently shaken until the spring fell out - along with two hairgrips, a paper clip and a dead moth . . .
H.A

Ferguson 3V22

The problem was loss of line lock on playback. The drum pickup head was producing output pulses but the waveforms around the AN318 drum servo i.c. didn't seem to be of the correct shape. Replacing the chip cured the trouble
J.C.

Ferguson 3V30

When the machine was switched on the cassette's supply reel would rotate for approximately ten seconds then stop. After this no commands would be accepted. I at first suspected the end sensor of being leaky, but a replacement didn't provide a cure. It was then noticed that the same thing happened if no cassette was present. Checking the inputs to the control microcomputer i.c. showed that the unload switch wasn't making contact.
P.B.

Sharp VC9700

This machine would work perfectly for about four hours. Hooking at the top of the picture would then start. Removing the covers cleared the fault of course, but no amount of board heating with a hairdryer would make it return. At this the covers were replaced and the machine was left to warm up. During a lull in the passing traffic we noticed a rubbing sound. This was finally traced to the head drum bearing - pricey ...
P.B.

Sharp VC8300

We've had quite a few of these machines that will load and eject a tape but do nothing else. If the bulb is o.k., the fault is usually a crack in the connector panel below the solenoids at the front of the deck. Amongst other things this panel connects the cassette-down switch with the system control microcomputer. It's necessary to remove the tape deck to repair the panel, but this isn't difficult.
M.P.

Sanyo VTC5300

Intermittent failure to lace up or eject is generally caused by excessive resistance to travel of the loading ring. Clean the loading motor belt and sparingly lubricate the rollers that engage with the cam on the loading ring. If the fault persists, replace the reel/loading motor which probably has a dead spot. The reason for this is that it doesn't take kindly to being stalled: the commutator metal wears away, leaving exposed insulation - hence the dead spot.
M.P.

Sanyo VTC5000

One of these machines came in with the complaint "intermittent lines on the picture on its own recordings". Sure enough the drum servo lost lock occasionally on
record - it varied with picture content. A scope connected to pin 10 of the BA848 servo i.c. showed that there were twice as many pulses here as there should have been - the rate was 50 Hz . The input to the sync separator in this i.c. (pin 13) seemed to be o.k. but there was a very small pulse midway between the field sync pulses. This wasn't present
with a video input, the servo then working all right. While checking around the i.f. strip we noticed that the picture looked as though the a.f.c. was off tune. And that was it not by enough to cause patterning, but enough to upset the sync separator action by emphasising h.f. transitions. from peak white (on captions etc.).
M.P.

Servicing the Grundig GSC100 Chassis

Denis G. Mott

During the past two-three years I've had to deal with a large number of these sets. This has enabled me to compile a faults list which I hope will be of help to other engineers. The chassis consists of a large, vertical main panel with a number of modules that take care of various circuit functions. The tubes are of the 90° in-line gun type while the line output stage is of the thyristor type. Unlike earlier Grundig colour chassis that employed a transductor for width/e.h.t. regulation, in this chassis a thyristor driven by a rather unusual circuit (more on this later) is used for the purpose. There are no less than six thyristors dotted around the chassis - e.h.t. regulator (Ty503), line scan and line flyback (Ty508 and Ty501), line generator start-up (Ty607), excess current trip (Ty615) and overvoltage trip (Ty2517).

Power Supply

We'll start with the power supply. Fig. 1 shows the basic power supply arrangement (in addition, 200 V and 18.6 V supplies, fused by Si629 and Si627 respectively, are derived from the line output stage). It's uncanny how many phone calls I get about this. As soon as people see a thyristor they throw up their hands in horror! In normal operation, a supply (+ B13.5V) derived from the combi coil is used to power the line generator and e.h.t. control modules. So a start-up supply is required. This is provided by Ty607 whose anode is fed via the fusible resistor R607. The output is limited by the 10 V zener diode Di607. Once the line timebase has come into operation, Di511 rectifies pulses developed across a secondary winding on the combi coil, feeding the Darlington series regulator transistor Tr635 via fuse Si511 and the fusible resistor R632. Assuming that there's no fault condition, the regulator circuit produces a 15 V supply and Tr 608 switches on, shorting the gate of Ty 607 to chassis to disable the startup system.

One of the most common conditions is no results due to R607 having sprung open. In this event, check the following: Ty607 short-circuit; Tr608 open-circuit or low gain; R608 high in value; R633 high or open-circuit; no 311 V h.t. supply; no output from the line generator module; no drive to Ty503 from the e.h.t. control module; Si511 or Di511 open-circuit; Ty503 open-circuit; Di636 low voltage. This covers 90 per cent of faults causing R607 to ping. The cause of R621 in the h.t. supply being open-circuit is usually excess current trip operation due to a line output stage fault.

Excess Current Trip

The excess current trip module gives relatively few problems. If Ty615 has gone open-circuit there'll be no h.t. supply of course; if it's gone short-circuit there'll be no
protection until R621 pings. The operation of this circuit is as follows. If a fault condition causing an increase of 100 per cent in the h.t. current occurs, the voltage developed across R621 will increase from approximately 9 V to 13 V plus. As a result zener diode Di619 will conduct, turning on Tr618 to short Ty615's gate-cathode junction so that it switches off. The time-constant of C618/R618 is approximately 120 msec , so that the trip "oscillates" until R621 pings. To check the operation of this module, connect a $10 \mathrm{k} \Omega$ resistor from the junction of R619 and D619 to chassis: the module should now oscillate at the trip frequency.

EHT Control Module

The e.h.t. control module (see Fig. 2) may come as a surprise. TTL in a line timebase! Very useful actually. Here's how it works. IC2511 is a monostable multivibrator which is triggered at pin 5 by pulses from the line generator module. The multivibrator's on time is set by the time-constant network R2514/C2513. It's output at pin 1 is capacitively coupled to $\operatorname{Tr} 2506$ which provides a transformer coupled drive to the regulating thyristor Ty503. Pulses from the line output transformer enter the module at pin 9 and are rectified by Di2521/C2522. The resultant supply controls transistor $\operatorname{Tr} 2516$ which in turn controls the supply to the monostable's time-constant network, thus providing e.h.t./width regulation. The same line output transformer derived pulses enter the module at pin 8. Under excess voltage conditions Di2517 and in turn Ty 2517 conduct, shutting the whole operation down.

The usual fault conditions are as follows. C2507 changes value, reducing the drive to $\operatorname{Tr} 2506$ which gets hot and dies due to the slower turn-off time. Ty2517 goes short-circuit, with the result that the monostable doesn't trigger. Zener diode Di2502 goes low which upsets things because TTL devices like a supply of 5 V or thereabouts.

If you can't adjust the set e.h.t. control R2523, change the 9.1 V zener diode Di2516. Then set the control midway, reinsert the module, monitor tag b on the line output transformer with an AVO 8 or 9 and adjust R2523 for 49 V d.c. This will give correct e.h.t. and width. If you wind the control too far Di2516 will snuff it, so be careful.

Line Output Stage

Thyristor line output stages are not the easiest circuits for fault finding. The problem is that it either works or it doesn't, no half ways. A very useful tool is the transistor/ thyristor tester featured in the June 1981 issue, since this enables you to check the power devices in situ before substitution. If you don't have a tester, the following checks and observations are worth making.

R621 and maybe R607 in the power supply will usually

Fig. 1: Power supply arrangements used in the GSC100 chassis.

Fig. 2: E.H.T. control module circuit.
have pinged. When resoldered, the trip module will "plop" repeatedly, proving that excess current is flowing. If disconnecting the anode of the flyback thyristor Ty501 stops the tripping, it's probably short-circuit. If the set continues to trip, replace the scan thyristor Ty508 as it may be open-circuit. Also check the efficiency diode

Di508. Try disconnecting the tripler. Check the continuity of the scan coils, and the scan-correction capacitor C526 $(2 \cdot 3 \mu \mathrm{~F})$. It's also worth inspecting the solder around R502 ($180 \Omega, 11 \mathrm{~W}$) in the scan thyristor's gate drive circuit - it gets a bit hot and tends to get dry-jointed.
I always replace devices in this area with exact Grundig

Fig. 3: Diode sniffer probe. Can be built on Veroboard.
replacements and not other types, though alternatives may be o.k. The line output transformer and combi coil don't readily fail, though I suppose some engineers will have found duff ones.

A useful tool, essential when running up a GSC100 line output stage, is a 2 A variac. It saves on fuses and nerves.

Line Generator

The only problems we've had with the line generator module concern the TDA2591 chip. If the module fails to oscillate at start up the chip may be faulty - some are a bit funny about the voltage when cold.

The Field Timebase

The field timebase module employs a TDA1170 i.c. There've been some odd faults in this area. C441 ($0 \cdot 22 \mu \mathrm{~F}$) leaky causes poor field sync. Tr467 leaky causes funny field flyback blanking - sometimes almost anywhere during the field period. The field scan coupling capacitor C473 is on the main panel: when it's leaky or short-circuit the result is field collapse with the line shifting upwards to near the top of the screen.

Audio Module

There's little to report about the audio module apart from the TBA800 i.c. occasionally dying.

IF Module

The smoothing capacitor $\mathrm{C} 2321(10 \mu \mathrm{~F})$ on the i.f. module is a tantalum type and can go short-circuit, R607 eventually pinging. Don't forget that there are separate chroma and luminance outputs, with the chroma signal inverted. If you suspect that the SAWF is out of specification, the writer has access to a sweep generator especially designed for use with this module - contact is welcomed.

The Tuner

The tuner used by our company is of the v.h.f./u.h.f. type, part no. 29500. For many people, delving into tuners is taboo. If certain ground rules are observed however many common faults can be cleared.

Tuning drift or failure to tune is caused by one of the varicap diodes going leaky. These diodes normally have a very high impedance and any leakage at all will cause drift. The best method of tracing this fault is to connect a sensitive d.c. meter, switched to $50 \mu \mathrm{~A}$, in series with the varicap control line, disconnecting each of the diodes in turn until the current returns to zero. Replace these diodes with the exact type - no substitutes.
The r.f. amplifier transistor $\operatorname{Tr} 118$ tends to go sick after a thunderstorm. To confirm this, inject a signal via a loop into the output tuning area - some sort of signal should then be evident. To check that the mixer circuit is
operating, use the diode sniffer shown in Fig. 3. Insert the probe near the tuning elements and check for r.f. from ch. 21 to ch. 68. If any component has to be replaced, observe exactly how the original was fitted before removing it. Fit the replacement in the same way, otherwise severe mistuning may occur.

RGB Module

The RGB module can present difficulties due to the feedback paths. If a number of panels need repairing it's worth finding a good one and fitting a 24 -pin i.c. socket so that the TDA2800 i.c. can be proved before making further investigations. Most faults occur in the RGB output stages however. Here are one or two odd faults: no luminance, $\mathrm{C} 907(22 \mu \mathrm{~F}$) or the delay line (on the main panel) open-circuit; no luminance and low brightness, C977 $(2 \cdot 2 \mu \mathrm{~F})$ leaky.

There are obviously many internal faults that could occur in the i.c., causing obscure symptoms. Some less common faults we've had on the module are as follows. R1919 open-circuit, no contrast control. Zener diode D1948 open-circuit or L1920 high-resistance, uncontrollable brightness. Other faults depend on which output stage is involved. For the red output stage, R1904 open-circuit causes a tint of that colour on the background and loss of h.f. response; C1912 or C1914 leaky causes no red; R1911 open-circuit results in full beam current, as does T1908 going leaky or short-circuit; T1901 going shortcircuit causes no colour. The relevant components in the blue and green output stages give analogous' faults.

Chroma Module

Many chroma module faults are due to the two i.c.s (TDA2510 and TDA2521). There seem to have been difficulties with the TDA2521 as at least three versions were made, the TDA2521/3 being the latest. If there's no colour, check the colour burst level at pin 7 of IC861. It should be 0.5 V peak-to-peak. Under fault conditions it may rise to 2.5 V p-p and not be controllable with R827. Check C833 which could be leaky, IC861, and C823/832 which could be open-circuit. If there's still no colour, check the reference oscillator and its tuning. As with the RGB module, if you've many panels to look after it's worth fitting i.c. sockets to a known good one for use as an i.c. test bed. If the $\mathrm{R}-\mathrm{Y}$ or $\mathrm{B}-\mathrm{Y}$ signals are missing, suspect IC861 and either L854 or L857 for being opencircuit. If R828 has burnt up, check whether C831 is short-circuit. Di881 (12V zener diode) leaky causes green flashing lines while C809 causes weak flashing colours.

As mentioned in a letter (June issue) C843 must be changed to $0.0047 \mu \mathrm{~F}$ if you have a colour locking problem with the Sinclair Spectrum microcomputer.

In Conclusion

I hope this article has shed light on the problems that can be encountered with the GSC100 chassis. Most of the comments also apply to the GSC200 chassis which differs in only minor respects from the GSC100 (vision i.f. module, tuning system and the inclusion of a relay board). The author is Service Manager of Network Industries (Haycliffe Lane, Wisbey, Bradford). Finally the editor wishes to apologise for an error in last month's next month box: the width/e.h.t. control system is not of the currentdumping variety as was assumed from a quick glance at the circuit.

Letters

THE DECCA 100 CHASSIS

I've bought a lot of Decca 100s in the past and thought I knew all there was to know about them. Recently however I bought two of them, cheaply, with the same fault. I was told that every panel had been changed in both sets.

The fault was as follows. Both sets had been fitted with regunned tubes and after being switched on produced perfect $\mathrm{BBC}-1$ pictures but severe picture judder on BBC-2, ITV and the Welsh channels. The only way to clear the fault was to lift the chassis upwards about six inches from its downwards position. On lowering the chassis the fault reappeared.

My first thought was that there might be some interaction between the line and field, so a good deal of time was spent moving wires, checking plugs, etc., all to no avail. But why was BBC-1 all right?

The TCA270 vision demodulator i.c. plugs in, so replacing this was simple. Still the same. Next try the MC1349 i.f. amplifier i.c. A little bit more difficult as the iron has to be used. Start to remove i.f. panel with the set still on, grabbing C110 to hold panel. Lo and behold, the fault clears! Replace C110 and all is well. Do same with second set and the result is two good sets ready to go out on rental. $\mathrm{Cl} 10(0.01 \mu \mathrm{~F})$ acts as a filter at the MC1349's a.g.c. input pin 5. I hope this warning about an obscure fault may help others.
Ted Lunt,
Great Sutton, South Wirral.

ECONOMICS OF SERVICING

A couple of recent items prompt me to write a few words on the economics of fault finding. The point that concerns me is how much time one should spend on a repair before starting to replace likely components, particularly with an intermittent fault. Take Malcolm Burrell's a.g.c. fault in the June issue. A very neat piece of detective work to arrive at C10 as the culprit, but the time spent setting up the biasing and connecting it to the various stages, also the equipment tied up, couldn't be justified in many firms where sets have to be turned around fairly quickly to avoid a backlog building up. There often comes a point where the fault is narrowed down to perhaps as many as a dozen or so components and the cost of replacing these en masse is less than the cost of the time that might be required to narrow down the cause of the fault further. You don't learn as much this way of course, so beginners in the trade should be encouraged to go the whole way after all they're expected to take longer with repairs.

I freely admit that after a few quick checks, e.g. on supply lines and oscillators, and with signal faults a couple of scope waveform checks, I'll change a couple of likely items before making a more detailed study of the fault. I'm perhaps lucky in that we keep most spares in stock, including i.c.s, and that components don't seem to get damaged when removed, i.e. they can be replaced if the fault isn't cured. This may not be the most elegant way of doing repairs, but it gets results and in my experience achieves a higher repair turnover (with no more "bouncers" than with other methods). I think this must be particularly the case with intermittent faults. We
all know that they never happen when you want them to, and having to tie up the only scope and maybe half the meters whilst waiting for the fault to appear can delay other repairs. You may say use two scopes, but they're expensive - and what happens when you get two sets with intermittent faults that tie up scopes? Do you go out and buy a third?

There will always be the occasional set that doesn't yield to this approach, but then you also get the occasional fault that seems to defy logical analysis. Obviously the "proper" repair method shouldn't be given up entirely. Do the occasional one in slack moments to keep your hand in also stick to the full routine until you're confident that you can narrow the fault down to a particular component if necessary.
Derek Snelling,
Brownhills, Staffs.

CLOCKS AND FUNNIES

In July's VCR Clinic Derek Snelling mentioned an ITV teletext clock time discrepancy. I've also seen this from time to time (sorry!). I suspect that it's due to the insertion of local magazines in the national Oracle broadcasts when they are used in the regions. The time is derived from a local source and not taken from London, so either could be "out" by a few seconds.

There are other funnies with Oracle. Headers containing clear-page bits are quite often repeated several times per frame, which can confuse some decoders. Also some data lines occasionally disappear for no apparent reason! Laurence Cook,
Appleby-in-Westmorland, Cumbria.

ELECTRONIC CUTOUT

I think that Ged's cutout (July) is an excellent idea but wonder whether its cut off delay isn't perhaps rather long. Since the current detector is only half-wave, overloads that occur on the undetected half cycle are not passed on to the comparator until the next half cycle. The relay drive then works quickly but the relay itself will take 20 msec to operate. So three or four half cycles of overload current pass uninterrupted. This must be much longer than a TX9's mains fuse takes to blow when the crowbar trips, and could invite more damage. Ged didn't say whether he still had the fuse in circuit, but I presume not as it would probably blow first in a crowbar set. I'm tempted to build a cutout but would prefer to use full-wave detection and triac power switching so that the first overload half cycle is also the last.

G. M. Colebourn, Colebourn Electronics,
 St Albans, Herts.

Ged Whitney comments: I considered using a bridge rectifier instead of the half-wave circuit but to be honest the reason why this was not adopted was simply that the cutout seemed to work just fine without it, so I left it at that. The unit has been tried with a large number of sets since it was built some months ago and on only one occasion has the set's mains fuse blown - I think this was due to my inadvertently setting the trip too high.

In use I set the cutout so that it operates just a little way above the normal running current. For a set that consumes 80 W , this will be approximately 0.33 A , so a setting for 0.4 A would normally be o.k. and assuming that a 1.6 A semi-delay fuse is fitted there should be adequate time for the trip to operate. Information gleaned from a number of
sources reveals that a 1.6 A semi-delay fuse takes about $60-80 \mathrm{msec}$ to rupture at ten times rating. As I don't have access to any transient recording equipment I accept Mr. Colebourn's estimate of a 20 msec relay operating time.

A look at the TX9 circuit (PC 1040 main panel version) shows that the crowbar thyristor CSR2 is connected in series with the mains fuse via the h.t. reservoir inductor L65, the regulator thyristor CSR1, the mains bridge rectifier and the mains filter coil L64, all of which should limit a surge current to some extent. If these components are damaged when the 1.6 A mains fuse blows then the use of a crowbar arrangement appears to be dubious. Either way I think my unit would be preferable to say a thermal cutout wired across the fuseholder as suggested elsewhere in the July issue - as mentioned in my article, I tried this and it certainly didn't work for me!

I agree that a full-wave bridge rectifier would be an improvement. When I originally set down some thoughts on paper I roughed out a circuit with two operational amplifiers and a dual-gang potentiometer as the comparator, sensing the peak a.c. value directly without the use of rectifiers etc. The outputs from these operational amplifi-
ers were to be summed and fed to a CMOS latch, then via an optocoupler to a triac. At the time this seemed to me to be too complex for what was being asked of it, so I settled for the transistor circuit. The relay was used because I wanted genuine isolation - and because it was convenient.

I'd be interested to see alternative designs. Any improvement on a basic idea is a good thing, and if we engineers can provide ourselves with better "mousetraps" our jobs will be that much easier.

GREAT PLUGTOP MYSTERY - CONT.

Some of the plugtops in use in my flat and the one in my workshop are never subjected to any kind of "waggling" (see letters July) yet their neutral pins still cook when cooking occurs. I've seen a vacuum cleaner wired up in the reverse polarity and although the negative lead enjoyed the mechanical isolation provided by the fuseholder it was still burnt. Perhaps Les's friend E.T. could point an enlightened finger for us? Ouch!
C. A. Burrows, Burrows Service,

Thomton Heath, Croydon.

Servicing the Sony KV2000UB

Part 2

David Botto

This month we'll deal with the rest of the timebase circuitry, the signals side and mention one or two odd faults.

Timebase Panel

As in other Sony TV sets, the field timebase circuitry is extremely reliable. But faults can occur! The 33 V supply for the timebase is line output transformer derived - it leaves board E at pin 3 of connector E5 and arrives at pin 3 of connector D1. Absence of the 33 V supply means no field timebase operation of course. The rectifier diode on panel E is D803 in earlier versions, D806 in later sets: the reservoir capacitor is $\mathrm{C} 807 / \mathrm{C} 812(330 \mu \mathrm{~F}, 50 \mathrm{~V})$.

We've never had to replace the CX157 field oscillator i.c. The field output transistors Q502 (2 SC 1663) and Q503 (2SA835) sometimes fail. In this event the driver transistor Q501 (2SC1670) should also be checked. There are several low-value resistors in this area. Check them all carefully, starting with the $1 \cdot 2 \Omega, 1 \mathrm{~W}$ resistors in series with the emitters of the output transistors. Nasty field foldover at the top of the screen means that the bootstrap capacitor C508 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$) is loosing capacitance or leaky. Replace it with a small 100 V type.

If you've a picture that's curved in at the sides and the pincushion bias and amplitude controls have no effect, check the coupling capacitor C537 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$ - C544 in later versions) first. Then check the two transistors Q512 (2SA733) and Q513 (2SC1124). These are Q508 (FRB829) and Q509 in later versions. The pincushion correction transformer T802 on board E can also fail.

Tuner

The tuner seems to lead a quiet life and seldom fails. If it does, the only reliable course is to replace it. There are two associated faults in earlier chassis: if the set drifts off tune, replace zener diode D111 (MZ12); if the set tunes
all right but switching on the a.f.c. detunes it, replace IC202 (M5134P).

Mk. I A Panel

Now to the signals panels, starting with the A panel in the Mark I chassis. All sorts of nasty things can happen on the displayed picture if the transistor leads become corroded, though it must in faimess be said that this only seems to happen when the set is used in a steamy atmosphere such as the kitchen or near a paraffin stove.

Examine the first two i.f. transistors Q201 and Q202 (both 2 SC 1129) - the slightest leakage in either of them will bring problems. A quick check on the video output from the panel can be made with an oscilloscope connected via a $10: 1$ probe to pin 2 of connector A1. Before leaving this panel, carefully examine all the small signal transistors and the small electrolytics for any signs of deterioration. We've never had to replace the CX095 intercarrier sound i.c.

Mk. I B Panel

There are no i.c.s on the B decoder board used in the Mk. I chassis - but there are 29 transistors. If you've colour problems, start by connecting your scope via its $10: 1$ probe to the junction of R438 (1502) and VR301 ($3.3 \mathrm{k} \Omega$). With a colour-bar signal you should see the colour bars. The passive subcarrier regenerator technique is used, i.e. the 4.43 MHz crystal is driven by the bursts. With the scope connected to the junction of the driver transformer T303 and C316 (27pF) the burst should be seen. If it's missing or of less than 13 V p-p, check the driver transistor Q303 (2SC403C). Its emitter decoupling capacitor C312 $(4.7 \mu \mathrm{~F}, 25 \mathrm{~V})$ can dry up and cause problems. The 4.43 MHz reference signal can be checked at the collector of the following transistor Q304 (2SC403C). Adjustment of T303 is critical.

To override the colour-killer, connect the base of Q308 (2SC633A) to chassis. Check the bistable circuit by transferring the probe to the collector of Q312 (2SC633A) where a nice squarewave should be seen.

The luminance signal should be seen at pin 6 of connector B 5 and the $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals at pins 4,3 and 2 respectively.

Strange green lines that vanish when the colour control is turned to minimum are due to failure of diodes D302/3 (1T40) - replace them both.

The main problem on this board is faulty transistors but you'll find that the panel seldom gives trouble.

Mk. II A Panel

There's no B board in the Mark II chassis, the circuitry being included in the new A panel. Most of the signal handling here is done by i.c.s, making for even better reliability. IC201 is the vision i.f. i.c. Two different types have been used, CX100D and CX177. A scope at the junction of L301/R366 in the former case or L204/R314 in the latter should show the complete video waveform chroma, luminance and sync pulses. At the junction of T301/R315 (earlier Mk IIs) or C311/R313 chroma alone should be seen. IC301 (CX108) contains the chroma and luminance amplifiers and the reference oscillator. Pins 4 and 8 are connected to the 4.43 MHz coil which is linked to the 4.43 MHz crystal via a 16 pF capacitor (C325 or C317). With the scope probe at the collector of Q303 the 4.43 MHz subcarrier should be seen at 1.2 V p-p. IC302 (CX109) contains the chroma detectors, the G - Y matrix, the PAL switch, the a.c.c. and ident detectors plus one or two other bits and pieces. Two puzzling faults can be caused by this i.c.: wrong colour at the bottom one or two inches of the picture only, and sometimes an upright red bar on the left-hand side of the picture.
$\mathrm{G}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ should be seen at pins 1,2 and 3 respectively of connector A9 on this board, with Y at pin 4. To disable the colour-killer, unsolder pin 2 of IC302 and apply 4V to pin 2 of IC301 (you can use one of your PP9 batteries and a $5 \mathrm{k} \Omega$ preset).

Miscellaneous Faults

Finally some odd faults. Nasty horizontal lines on the picture plus plenty of line whistle can be due to bad contact on power supply panel connector F3. This can also be caused by R640 ($10 \mathrm{k} \Omega$ - R639 in later Mk. II sets) or C628 ($68 \mathrm{pF}, 500 \mathrm{~V}$ - C623 in later Mk. II sets) going open-circuit.
There's a blanking circuit on board E. If the picture blanks out, the cause may be leakage in the transistors involved, Q802 (2SA677) and Q801 (2SC633A). Also test the two associated diodes D810 (1T40) and D809 (1T19-15B zener) and the values of $\mathrm{R} 820(22 \mathrm{k} \Omega, 2 \mathrm{~W})$ and R821 ($3 \cdot 9 \mathrm{k} \Omega, 1 \mathrm{~W}$). If R821 goes open-circuit you'll get ringing on the left of the picture. In later versions the resistors are R813 and R814 respectively, the zener diode is D811 (EQA01-16R), D810 is type 1TT600, Q801 type FRB829 and Q802 type FRB828B.
A disconcerting fault is the width varying in and out on odd occasions. While this can be due to the line output transformer, it's usually the scan coils playing up.
In conclusion, it's good to do two things to save yourself future headaches. Use only correct Sony replacement parts, including transistors, and spray a very thin coat of circuit varnish on any joints you've soldered.

next month in

SPECIAL ISSUE!

The October issue of Television will contain EXTRA PAGES and a DATA CARD.

- VIDEO INFO CARD

Details of plug and socket types and connections for hundreds of VCRs to enable baseband links (audio and video) to be made. Tabulated for easy reference.

- A LOOK AT MONITORS

Once upon a time a monitor was simply a TV set with no tuner/i.f. section, used in closed-circuit applications where there was no need to modulate the video signal. Things are changing fast and monitors of various types are being increasingly used. Some are TV sets with extra circuitry for baseband links added. Others have varying degrees of resolution to provide displays for the growing number of video signal sources games, computers and so on. Different line standards and wideband video give extremely highquality displays for graphics and data. Next month Eugene Trundle takes a look at this expanding section of the TV scene.

- PANORAMIC SPECTRUM DISPLAY

It's useful to be able to display the TV bands on the screen of a scope - when looking for signals or aligning tuners for example. Denis G. Mott describes a simple way of going about it.

- N1700 VCR RENOVATION

Philips N1700 VCRs are now obsolete but can be picked up cheaply and are capable of giving very good results. Freddie Archer provides tips on renovating these machines.

SYSTEM A MODULATOR

How to feed your 405-line sets once the transmissions have ceased! David Looser describes a vision and sound modulator that provides highquality System A signals.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPYON THE FORM BELOW

TO
(Name of Newsagent)
Please reserve/deliver the October issue of TELEVISION (E1), on sale September 19th, and continue every month until further notice.

NAME
ADDRESS \qquad
\qquad
\square

Long-distance Television

Roger Bunney

Despite a few quiet days there was some dramatic reception during June. Tropospheric activity was high on the 8th and 9th, with reception from Denmark, Norway, W/E Germany and the nearer continental stations. There were two unusual events on the 8th: Cyril Willis (Cambridge) received Denmark chs. E3 and E4 and Ryn Muntjewerff (Holland) received the new Faroe Islands service on chs. E6 and E9. The signals from the Faroes, over a long sea path, were of fair strength and were present between $0915-1045 B S T$. Congratulations to Ryn on this European "first" - the photograph shows the quality of the reception. On the 9 th a large number of Swiss Band III/u.h.f. stations were received as far as the central Midlands: during the evening strong Luxembourg ch. E7 signals were present till closedown.

SpE also produced some dramatic reception. The following log collates reports from a number of UK DXers unidentified signals have been omitted.

6/6/84 TVE (Spain) chs. E2, 3, 4.
7/6/84 TSS (USSR) R1, 2; RAI (Italy) IA; JTV (Jordan) E3 at 1710; EPT (Greece) E3; JRT (Yugoslavia) E3. An unidentified Arabic E2 station was logged at 15201635.

8/6/84 TSS R1, 2, 3, 4, 5, 6 (ch. R6 is in Band III); RTS (Albania) IC; RTVE (Spain) E2, 3, 4; ORF (Austria) E2a; + PTT (Switzerland) E2, 3; RAI IA, B; JRT E3; MTV (Hungary) R1, 2; DFF (East Germany) E4; Italian free station "Antenna Sicilia" (ch. not specified); CST (Czechoslovakia) R1, 2. An intense opening - also many unidentified signals!
9/6/84 TSS R1, 2; CST R1; TVP (Poland) R1, 2; MTV R1, 2; TVR (Rumania) R2; DFF E4; ARD (West Germany) E2; RAI IA; +PTT E2, 3; TVE E2, 3, 4; NRK (Norway) E2, 3; RUV (Iceland) E4.
10/6/84 JTV E3; JRT E3; RAI IA, B; TVE E3; TSS R1.
11/6/84 TVE E2, 3; RAI IA, B; ORF E2a; CST R1; SR (Sweden) E2.
12/6/84 TSS R1; SR E2; NRK E2; CST R1, 2; TVP R1, 2; JRT E4; RTP (Portugal) E2, 3; TVE E3, 4.
13/6/84 CST R1.
14/6/84 TVE E2; +PTT E2; TSS R1, 2.
15/6/84 TSS R1, 2, 3; TVP R1, 2; TVE E2; ZTV (Zimbabwe) E2 via TE.

16/6/84 CST R1; TVE E2.
17/6/84 RAI IA, B, C; JRT E3, 4; MTV R1, 2; ORF E2a, E3, E4; JTV Amman E3 (1305BST); ARD E2, 3; CST R1; NCT E3 (Italian free station - Udine).
18/6/84 TSS R1, 2; TVP R2; CST R1, 2; TVE E2, 3, 4; JRT E3; ORF E2a, E4; suspected Iran E2 FUBK test card with digital clock and white lettering at 1316BST; RAI IA, B, C; ARD E2, 4; ZTV E2 via TE.
19/6/84 TVE E2, 3, 4; TVP E3; RAI IA, B; JRT E3; MTV R1; ARD E2; ZTV E2 via TE; + PTT E2.
20/6/84 TVE E2, 3, 4; TSS R1, 2; TVP R1; RAI IA; RTP E2, 3.
21/6/84 NRK E2, 3, 4; SR E2, 3, 4; TSS R1, 2; ORF E2a; TVE E2, 3; RAI IA; TVP R1.
22/6/84 CST R1, 2; ORF E2a, 3, 4; RUV E4; TSS R1, 2 : RAI IA; CBC Canada!
23/6/84 RTP E2, 3; TVE E3.
24/6/84 TSS R1, 2; NRK E2; SR E2.
25/6/84 TVP R1, 2; RAI IA; TSS R1; CST R1, 2; SR E2; EPT E3; unknown free Italian station "Studio 2 Italy".
26/6/84 TSS R1, 2; TVE E2 and TVE-2 E2; RAI IA.
27/6/84 RAI IA, B; TVE E3; +PTT E2; SR E2; TVP R2; Iran E2 at 0900, FUBK card with digital clock.
28/6/84 MTV R1; EPT E3; TVE E2.
29/6/84 RAI IA.
30/6/84 CST R1, 2; TSS R2; TVR R2; ORF E2a, 3; JRT E3, 4; EPT E3; RAI IA, B; TVE E2, 4; unidentified Arabic religious programme at 1100 BST on chs. E2/4, possibly Egypt; CBC chs. A2/3 with weak video at 2120-2145, identified by programme sound.
4/7/84 RAI IA; EPT E3; TVE E3.
6/7/84 TVP R1; TSS R1, 2; TVE E2, 3, 4; RAI IA, B.

A remarkable \log, with the once rare Greek ch. E3 (Akarnaika) becoming commonplace. This year certainly seems to be a good one for reception of Arabic stations: Iran was received in May and there've been a couple more possible sightings; Dhahran (Saudi Arabia) Aramco TV was logged by Ryn Muntjewerff on May 23rd - as a floater to JTV Amman between 1403-1550BST!

Perhaps the most dramatic reception was on June 22nd when system M, 525 -line signals were received on chs. A2, 3, 4 between $1545-1605 B S T$. Don Bassnett (Glasgow) received all three channels; Paul Barton (Harrogate) received ch. A3, which was undoubtedly the best signal "Sesame Street" followed by the CBC news and at the end of the headlines the identification "this is CBHT Halifax". I've heard Paul's sound cassette and the quality is remarkable. A second Canadian signal is present but unidentifiable. The ch. A2 signal provided the identification caption "NTV" at 1600, but my WTFDA guide gives no clue as to its location. Can anyone help with this one? The ch. A4 signals were much weaker and couldn't be

Left: Torshavn, Faroe Islands ch. E6 received by Ryn Muntjewerff (Holland) on June 8th via tropospheric propagation. Centre: Typical ECSITV5 reception at 12 GHz by Chris Wilson using the set-up shown in Fig. 1. Right: Appearance of home computer interference with programme, as radiated in Band I (photo from Robin Crossley).
identified. Don uses an Hitachi Model CMT2060 with PAL/SECAM/NTSC-system M switching: Paul uses a more conventional 625 -line receiver and locked the video with reduced height. Congratulations to them both!

With Band III SpE on the 8th, the Faroe Islands via tropospheric propagation and Arabic signals in abundance, a very rewarding month! My thanks to the following for sending in reports of their reception. Graeme Wilson (Nunthorpe), Don Bassnett (Glasgow), Paul Barton (Harrogate), Cyril Willis (Cambridge), J. Bray (St. Neots), Simon Hamer (Powys), Bill Cotterill (Tipton), Tony Privett (Basingstoke), Iain Menzies (Aberdeen), Arthur Milliken (Wigan), Hugh Cocks (Sussex), Dave Shirley (Hastings).

.News Items

South Africa: Bop-TV, the Bophuthatswana TV service, is now operating with reduced coverage. The authorities were displeased about enthusiastic reception in Soweto and Johannesburg - the programmes are uncensored and include American films and national/international news.
France: Three free TV stations are in operation in the Paris area - Canal 24, TIME and Antenne 1. The transmission times are irregular and the technical details unknown to us at present. French Canal Plus signals have been logged on ch. E29, thought to be from either Maubeuge (3.2 kW e.r.p.) or Dunkirk (200 kW e.r.p.) and causing co-channel interference with Goes, Holland. The identification "CDM BCH" on the French test pattern indicates origination from the main switching station at Butte Chaumont, Paris.
DX Publications: Mention of a booklet by Simon Hamer was made in the July column. This and the journal of the North England Radio Club International are no longer available.
Eire: New radio and TV transmitter lists are available on request from RTE, Reception Investigation Department, Dublin 4. The new Band III channel J (vision 223.25 MHz , sound 229.25 MHz) is at present being used by two low-power relays (Rosscarbery and Listowel) for RTE-2. It will also be used by the 100 kW Kippure main transmitter which is undergoing tests and is expected to be brought into service by mid-1985.

EBU Listings

W. Germany: Neumuenster ch. E28 NDR-1 now 500kW e.r.p.

Belgium: Profondeville ch. E49 H RTBF-2 200kW e.r.p.; Brussels ch. E56 H RTBF 1 kW e.r.p. - this station carries the TV5/ECS French language downlink signals.

From our Correspondents...

Robin Crossley (Dunstable) now works for a wellknown UK satellite firm. Using a SAT-TEL receiver, he's successfully received all the available 12 GHz downlink channels from ECS and Intelsat. This receiver is quite popular, its microcomputer control system being able to select the different bandwidths, audio subcarriers and preemphasis systems at present in use. Following a move, Robin has renewed his DX aerial system. This now consists of an Antiference XG14W with Schrader tunable head amplifier, an eight-element wideband Band III aerial and a three-element wideband Band I array. Like others, Robin is suffering from computer interference.

Nick Harrold (Rochford) is making good progress with

SOUTH WEST AERIALS

South West Aerials offer a unique blend of the best equipment and impartial professional advice.
Examples from our range:
WOLSEY HG36 'Quicksilver' High Gain (18dB) Grouped UHF Aerial (state group A.B or C/D)
LABGEAR CM7068 High Gain (27-29dB) Grouped UHF Masthead Amplifier (state group A, B or C/D) .f16.75
LABGEAR CM7061 12 volt Matching Power Supply Unit for above Amplifier $£ 13.50$ JVC CX-610 6" Colour Television, Multi-Standard PAL/SECAM System B/G/I/D/K VHF/UHF 5.5/6/6.5MHz Sound switching, 12/240 volt operation £285.40 HIRSCHMANN RO250 Rotator complete with Control Consol luses 3 core cable)

We are THE DXing Specialists, advice on reception problems freely given, please include SAE with all enquiries.
All prices inclusive of VAT \& Carriage
Delivery 7-10 days
SOUTH WEST AERIALS (T)

11, Kent Road, Parkstone
Poole, Dorset, BH12 2EH.
Tel: 0202738232

TV LINE OUTPUT TRANSFORMERS prices wculue var a carahage

Fig. 1: Block diagram of Chris Wilson's present 12 GHz satellite receiver system.

Fig. 2: Outline of the single-stage LNA.
his 12 GHz receiver system, using a 10 ft dish and no LNA. Six ECS transponders have been identified - Sky Channel, PK5, RAI, Teleclub, TV5 and ZDF.

Interference

Several enthusiasts have sent in reports indicating that interference from home computers is a growing problem. We are still awaiting replies from Sinclair and other firms/ organisations approached. A local Spectrum here can be resolved, over a distance of 120 ft via my aerials at 53 ft , sufficiently well to be able to recognise and identify specific programmes being displayed and activity thereon - the video information is positive-going. The output is particularly high at 78.4 MHz - try this if you wish to view information displayed on neighbouring Spectrums! I'd appreciate any further reports and observations on this problem.

Another problem that causes heartache in some areas is the 49 MHz cordless phone. One version operates at $1.6 /$ 49 MHz (1.6 MHz base unit). The situation could become worse: apart from the DTI's proposal for a "low-power device band", the US FCC has approved a new type of cordless phone operating in the $46 / 49 \mathrm{MHz}$ band. The 1.6 MHz type is to be withdrawn since the FCC intend to extend the medium-wave band to 1.705 MHz . In the UK we could well find $1 \cdot 6 / 49 \mathrm{MHz}$ units being dumped at cheap prices. The $46 / 49 \mathrm{MHz}$ equipment will have ten base frequency channels between $46 \cdot 61-46 \cdot 91 \mathrm{MHz}$ with a matching ten handset channels between $49 \cdot 67-49 \cdot 97 \mathrm{MHz}$ and a predicted range of "three blocks", though larger aerials would increase this. The new channels are to come
into operation on October 1st. Five of them correspond to the cheap walkie-talkie unit channels. New models are already appearing, one manufacturer claiming a $1,500 \mathrm{ft}$ range with indoor aerials extending to much greater distances with external ones.

David Moller (Eastboume) has written in about another source of interference. The problem started with streaking on his ch. E37 pictures from Boulogne - regular bursts of streaking flashing on and off throughout the day and night. The source of the trouble was found to be radar pulses used for coastal surveillance. It can be largely eliminated by using a ch. E36 notch filter. Radar interference in the Southampton area originates from two sources, one at St. Boniface (high on the down above Ventnor, Isle of Wight) and the other at an airfield at Boscombe Down near Salisbury. The latter operates during daylight/flying times only.

12GHz Receiver System

Chris Wilson has sent in an impressive shot of TV5 reception via ECS and has provided details of his present receiver set-up (see Figs. 1 and 2). A 1.8 m diameter fibreglass dish with focus at 70 cm is used, with a subreflector and a five inch tapered feedhorn (this arrangement gives a 4 dB gain compared to a "normal" system with the hom at the focal point of the dish). The dish is on a polar mount which can be swung from $60^{\circ} \mathrm{E}$ to about $35^{\circ} \mathrm{W}$. The LNA and first converter are mounted at the rear of the dish. The LNA consists of a single stage using an NE700 gallium arsenide f.e.t. mounted on WG18 waveguide. The Gunn diode oscillator operates above the signal frequency, an arrangement that seems to be better when an LNA is used. The output from the head unit is at 900 MHz .

The indoor section is fairly conventional except perhaps for the second conversion to 40 MHz . The incoming sync is phased with a computer sync source to provide improved locking - a ZNA234 sync chip is awaited to replace the computer derived sync pulses. At the time of writing (late June) reception includes Sky, RAI, West Germany, Teleclub and PK5 (RAI and Teleclub with sound). The coverage is $10.9-12 \mathrm{GHz}$.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon printed below and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

RANK T22 CHASSIS

There's severe EW distortion, the sides of the raster being bowed in. An earlier fault was no raster due to one of the EW modulator diodes 5D6 being short-circuit. The fault may have been present before this was replaced.

The area in which the fault lies can be determined by disconnecting 5 L 2 to remove the EW drive. If the fault remains, check the EW modulator diodes 5D6/7, ensuring that neither is leaky. If the width decreases, check the EW driver transistors 4 V17/18 and if necessary find out why they are hard on.

MITSUBISHI CT200B

The fault consists of a line of increased brightness that moves slowly up or down the screen. Otherwise the set works well.

This sort of thing is normally caused by a 50 Hz hum waveform getting into the signal stages. While there could be a fault in the power supply (smoothing etc.) it's more likely to be coming in on a high-impedance tuning line, i.e. via the a.f.c. or programme selector circuits. This can be proved by using a capacitor of say $0.1 \mu \mathrm{~F}$ to decouple the tuner's tuning voltage pin. Hum can also be picked up by badly-dressed leads or cableforms.

BUSH A640 CHASS/S

This set is plagued by intermittent instability: every few minutes the vision signal is lost (raster o.k.) and the sound signal is severely reduced. This is accompanied by a whining noise that starts at a low frequency and rises over a second to a constant high pitched sound. Light tapping around the i.f. stages clears the fault for a while but won't instigate it.

Make sure that the earth bonding of the i.f. panel is good and that the mounting screws are tight. Clean the system switch contacts or solder them in the 625 -line position. If necessary check the earth bonding of the i.f. lead from the tuner to P/S1 then check the decouplers associated with each i.f. stage - 2C18, 2C19 and 2C27.

G8IVCR COMPATIBILITY

The problem with this Philips G8/Ferguson 3V23 VCR combination is buzz on sound, with no effect on the picture, i.e. no sound on vision. It gets worse the longer one watches. The problem arises with prerecorded tapes or tapes recorded on the machine. Slight improvement can be obtained by fine tuning the VCR, but the colour drops out.

This is a common problem when a G8 is used with a VHS machine. If retuning the sound detector coil in the
set fails to provide a cure the VCR's modulation level will have to be reduced.

SONY SL8000UB

The original fault was fallure of the keys to latch. This was cured by replacing a broken drive belt. The problems now are that the record key won't press down with play, the clock is stuck at $\mathbf{1 2 . 0 0}$ and the timer LED is flashing.

For the record fault, check that the safety tab activator is operational. If it's jammed, the machine will think the cassette has had the recording safety tab knocked out. The clock problem could be due to the timer control i.c. (IC3101, μ PD552C-011) but is more likely to lie in the timing switch system, e.g. D3104 in the clock set line or a panel problem.

ITT CVC40 CHASSIS

The fault on this set is wavy verticals affecting only the top three inches of the screen. It's most noticeable with a lamp post, telegraph pole etc. which will have a kink at the top. Turning down the brightness, colour or contrast control setting straightens the lines but the brightness is affected. The lines also straighten on picture fade outs.

There seems to be something wrong with the e.h.t. regulation. The trouble could well lie in the earthing of the tube's Aquadag coating - this is done via the base panel. Alternatively check R39A ($220 \mathrm{k} \Omega$) in the beam limiter circuit. If necessary check the value of the sync separator bias resistor R 703 ($2 \cdot 2 \mathrm{M} \Omega$) on the sync/line oscillator module (CMS40).

GEC 2028

The fault with this hybrid, dual-standard colour set is foldover (a shadow) that extends about half-way across the screen from the left-hand side. It was intermittent to start with but is now permanent. The linearity does not seem to be affected.

Start by disconnecting the line shift coil L5. If this cures the problem it probably has short-circuit turns. If not, check the line oscillator supply smoothing electrolytic C68 then the shape of the line drive waveform. If these and the PL509 line output valve are o.k., the line output transformer could be faulty. Before condemning it, check the tuning capacitor $\mathrm{C} 83(200 \mathrm{pF})$ and the damping components C82 $(180 \mathrm{pF})$ and R59 $(1 \cdot 5 \mathrm{k} \Omega)$.

HITACHI NP8C CHASSIS

There's sound distortion, of an intermittent nature. Bass or loud passages are badly affected while some newsreaders, especially female, are at times barely intelligible.

Slight adjustment of the quadrature coil L402 might well clear the problem. If not, check whether the 11 V zener diode ZD401 in the audio coupling network is

leaky. Alternatively the audio output stage thermal fuse TF401 could have developed high internal resistance.

GRUNDIG 6011

The field scan is distorted, with bowing at the top and bottom - the top curvature is greater than that at the bottom.

A very common cause of this symptom is failure of C475 $(0.27 \mu \mathrm{~F})$ in the NS correction circuit. If necessary check for dry-joints around the NS correction transductor PTC1 and its associated components.

261
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical fauts.

It's some years now since the TV setmaking division of the Rank Organisation shut its doors for the last time. Many of their products are still with us however, and it's interesting to speculate about what RRI would have been up to had they survived. Bush and Murphy TV sets are not difficult to service (we refer of course to the original Rank products) though some of our field technicians are none too familiar with them. Those we service are "adopted" as it were, since we never had a Bush or Murphy dealership. Hence this month's saga...

The cry for help came via the telephone, to the effect that a Bush Model BC6340 (T20A chassis with 22in. tube) had failed completely after several stop-and-start sessions over the previous week. After a hurried conflab between the Resident Workshop Sage and the lucky field man assigned to the job, he was sent off with a circuit diagram, the means of making a 910Ω resistor, some BYX71 diodes and a TBA950 chip. In the event, none of this was of any use whatsoever! On site he found 200 V at one end of the h.t. fuse 5 FS 1 on the line output stage panel and nowt at the other.

His first move was to insert a meter switched to the $0-1$ A d.c. range across the fuseholder, disconnect the tripler and switch on - then off again quickly as the meter's pointer hit the right-hand stop! The performance was repeated after open-circuiting the line driver transistor's fusible collector feed resistor to remove the line drive. Again there was a high current reading. A resistance check across the BU208A line output transistor then revealed that it was virtually short-circuit. Thinking that his troubles were over, our technician replaced the fuse and the transistor and reconnected the link on the fusible resistor. Switching on with a flourish, he was mortified to hear a momentary "squegging" noise from
the line output stage followed by a resounding silence . . .
Meter checks showed that the fuse was this time intact, with normal voltage at the collector of the BU208A. The EW modulator diodes were removed and tested but proved to be o.k. The not-to-be-recommended strategem of disconnecting the protection transistor 5VT2 made no difference to the symptom. A scope check at the collector of the line output transistor produced a trace of a decaying burst of line-rate waveform at the output transistor's collector at each switch on. It's at times like these that a man resorts to his radio-telephone (swank!) and consults his Resident Workshop Sage. Summoned to the reception office where the RT base station lives, RWS spoke thus: "Connect a $10 \mathrm{~W}, 5.6 \mathrm{k} \Omega$ resistor across the kick-start capacitor 4 C 19 , then check the oscillator, driver and output stages with your scope - look out for fireworks if you leave the overvoltage protection disconnected."

There were no fireworks, but there was now some line drive. Pulses at the TBA950's output pin and pulses at the collector of the line driver transistor. No line output transformer activity though, and no current through the line output stage h.t. fuse. There was 200 V at the collector of the line output transistor but not a bean at its emitter.

The diagnosis was made without any further reference to the RWS, but the technician had to return to the stores to obtain the necessary spare part. Not something you use every day, but something he should have taken along with him. What was it?

ANSWER TO TEST CASE 260 - page 561 last month -

The tale related last month is typical of many caravan TV installations we encounter during the holiday season. The set in question, a JVC CX500GB, is rated at 17 W when operated from a 12 V d.c. supply, representing a current drain of just under 1.5 A . Between the car's battery and the TV set's 12 V supply point there were three sets of plugs and sockets, two fuses and two sets of switch contacts. The caravan's internal wiring had been extended and adapted by somebody, using 2A mains flex. All these added up to a series resistance of perhaps 1-5-2 , insignificant in most mains installations but crucial in a low-voltage circuit. Two ohms will produce a voltage drop of 3 V at 1.5 A , and this is quite enough to upset the operation of the voltage stabiliser within the set. Unusually for a colour set, the CX500GB's series regulator produces an output at 10.7 V .

Meg's tap incorporated an electric pump to raise water from the floor-level tank, and this took a fair gulp of power via the same path as the TV set. This and the lighting system between them drew sufficient current virtually to stop the TV set from working.

The cure was to reduce the series resistance by rewiring the caravan properly with 60 A cooker cable, and perhaps to provide separate leads for the various appliances. We also sold Andra one of those wideband TV aerials with a sucker mount and universal joint - the one he had on the pole was a group B type, rigidly vertical and quite useless for Heathfield or Walmington.

[^0]
CentreVision

$$
\begin{gathered}
\text { 0222-44754 } \\
\text { SLOPER ROAD }
\end{gathered}
$$ LECKWITH CARDIFF CF1 8AB

OPP CITY FOOTBALL GROUND 5 MINS FROM M4

TELEVISION/VIDEO (VHS + BETA) TRADE WORKING ORDER WITH STAND

\star ITT CD752 REMOTE £115 \star GEC C2639H (PRESTEL/TELETEXT) £150 \star GEC STARLINE 22-20 REMOTE £45 \star PYE CHELSEA £38
\star GEC B/W PORTABLES £16

* DECCA 22" BLACK FRONT VERICAP £30 \star RANK T20 REMOTE $£ 75$ + VAT \star OFF THE PILE SETS FROM £8

PRICES SUBJECT TO VAT

The World of

"'Tele Panels"

52 Mount Pleasant Road, Chigwell, Essex. Telephone 01-729 0506. COMPARE OUR PRICES!

COMPARE OUR SERVICE!

	IF	TUNER	DECODER	G8/G9 DECODER IF COMBINED	$\begin{aligned} & \text { LINE } \\ & \text { UUTPUT } \end{aligned}$	POWER	CONVERG	frame	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731	8.00		10.00		18.00	10.00	7.00	8.00		4.50
PUSH Z 718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		FRAME TIME BASE £4		

TRIPLERS FOR ALL MODELS £3.00 SPEAKERS £1.50

P+P1 PANEL £1.50 2 PANELS OR MORE £3.00
 CASH WITH ORDER - PLEASE

POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!!

CAPACTTORS	${ }^{69}$ Grundig 3010/1500300
$915 \times .007 / 1500$ AB23	${ }^{69}$ Thom 35000
Chassis ${ }^{\text {a }} 1.50$	70 Thom 85005
$9210 \times 220 \mathrm{MPD} 16 \mathrm{~V}$	71 Pritips G8 6.30
Eloct 0.50	72 Pye $731 \quad 4.50$
$9310 \times .077 \mathrm{MFD}$ 400	$8910 \times$ Anti Track ERT
Mul Pol 0	Cap 200
$945 \times 4.7 / 100 \mathrm{OC514}$	
T3500 125	
$95 \times 5 \times .47 / 1000$	
9710	
$9710 \times 0.1 / 2000 \mathrm{~V}$	
W/E $5 \times 1 / 250$ Supa ${ }^{200}$	$1405 \times$ TAA 40
$5 \times 1 / 250$ Supp $\prod_{1.50}$	$1415 \times$ TBAIZAAS 1.0
	$125 \times$ TBA5 10×400
emp trays	$143 \times$ TBA5400 400
50 TT CVC 5/9 ${ }^{\text {a }}$ 300	$1455 \times$ TBA550 3 3.50
51 Deccs 1730/1830 5.00	$1465 \times$ TBA810S 300
52 Decca 80 Series 4.50	$145 \times$ TBAS200 4.50
53 GEC 20000 Hybrid 350	$1485 \times$ TBAS90 3 35
54 T1500 5 Stick 3.50	$1495 \times$ TBA5200
55 Thom 9000	$1505 \times$ TBA530 $\quad 4.25$
56 Them $1000 \quad 200$	$1515 \times$ TBA950 4.50
57 Prilips $69 \quad 3.50$	$15410 \times$ TCAZ20SO 400
58 Universan ITT Type 4.50	$1555 \times$ MC13270 250
$595 \times$ TV11 EHT Rec for	180 TDA1170
PTVs 100	161 TDA1190 1980
$803 \times$ TV45 EHT Rec	162 TDAI003A
278180	184 TDA1035 1/3
61 TT CVC $45 \quad 4.00$	165 TDAIOM 23
63 RR1 2179	166 TDA1190 $\quad 1.90$
64 Pre e91/807 3 350	167 TDA1412
es Pye CTze0 4 Lead 3.50	172 TDA2002 190
6\% Pye CT200 5 Leod 4.50	173 TDA2020 250
67 Korting 90 DGR	174 TDA2330 215
Hy\% 5 500	178 TDA2523 235
All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days. Please add 15\% VAT and 90p P \& P	

MUXTON HOUSE, MUXTON, TELFORD, SALOP.
REG. OFFCE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.

TV LINE OUTPUT TRANSFORMERS fast return of post service	
All lopts and windings are new and guaranteed Open Mon.-Fri. 9 to 5.30 pm PAPWORTH TRANSFORMERS 80 Merton High Street, London SW19 1BE	

ELECTRON GUNS
 TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than $\mathbf{2 5 0}$ gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production.
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information. NEW ROAD,

STUDLEY,
WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: 336924 Grifem G.

Up to 19"....................£24	Up to 22" $\mathbf{£ 4 0}$
Up to 22"....................£28	Up to 26"...................$£ 45$
Up to 26"...................£32	Bonded Coil + ¢5
110° up to $22^{\prime \prime} £ 32$	
110° up to $26^{\prime \prime}$............. $\mathbf{£ 3 4}$	ALL SIZES OF
Low focus...................30	NEW MONO TUBES
A47 342 New...............£32	AT COMPETITIVE
Delta only. Less $7 \frac{1}{2} \% 5+$ Less $10 \% 10+$ and over	AT CRICES
IN LINE TYPES EX-STOCK SELECTION not rebuilds	
370 HFB $£ 45$	560 DMB $£ 62$
370 HUB...................... $£ 45$	AXT 56-001.................. $£ 62$
420 CS8 $£ 45$	560 ATB $£ 65$
420 EDB $£ 45$	660 AB $£ 65$
420 EZB........................ $£ 45$	A67-701 £65
420 ERB $£ 45$	670 CZB $£ 65$
510 UFB/A51-590 £55	H6817.......................... £65
A51-570 $£ 55$	
A51-210 £55	CARRIAGE
510 VSB $£ 60$	${ }^{55}$ Singles. 2-3 $£ 10.4 ¢ 12$
AXT 51-001................... $£ 60$	10 £15. $10+$ Carriage paid
560 DY8 $£ 62$	EXCLUSIVE OF VAT
560 EGB $£ 62$	TERMS Cash with order
560 CGB $£ 62$	

[^1] INLINE TUBES
ASk for details DELNERY: Ex stock items immediate dispatch on receipt of order.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON; LIVERPOOL 25 A'sk for MR.BUTTERWORTH ON:051-428 8777

VIDEO CASSETTE RECORDER SERVICING COURSE

6 WEEKS FULL-TIME (September 17th to October 26th)

intensive course intended for oualified television service engineers or APPLICANTS WITH SIMILAR BACKGROUND. THE COURSE COMBINES THE ADVANTAGES OF INDUSTRIAL AND ACADEMIC TRAINING AND INCLUDES A HIGH PERCENTAGE OF PRACTICAL. WORK.
The training is divided into two 3 WEEK MODULES, the first module covering essential theory and practical, and the second module providing a wider coverage to include logic, microprocessor and computing applications.
MODULE 1 MAY BE TAKEN AS A SEPARATE COURSE EITHER AS A FULL-TIME DAY COURSE OR ON EVENINGS.
(Financial assistance for the full 6 week day course may be obtained from the Manpower Services Commission subject to acceptance).
Further details from:

LONDON ELECTRONICS COLLEGE (Dept TDE)

20 Penywern Road,

Earls Court, London SW5 9SU
Tel: 01-373 8721.

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs

Chaparral Feed Horns
Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX.
Telephone: Southend (0702) 332338

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

$\star \star \star$
$\star 1000$ sets now being taken per week. All \star
\star makes and sizes. Untouched off the pile. \star Ring now for prices.
$\star \star \star$

MOST SETS HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

PRICES AVAILABLE ON THESE SETS NOW!!!

PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s (Remote Control)

THORN 8000 \& 8800s THORN 9000, 9200, 9600

(Remote Control)
Special Offer SALORA 22" £35 inclusive Massive reductions for bulk Minimum 5 Sets

Big reductions for export orders over 100 sets

ALSO THE ABOVE SETS OFF THE PILE BEST PRICES IN THE COUNTRY. COLOUR TELEVISION \& MUSIC CENTRE

35 Stafford Road, Weston Super Mare, Avon
Opening hours: 9-6 Mon-Sat, Sundays by appointment (Weston Super Mare 413537)
(Note new address)
(15 minutes past Bristol Southward on M5)

CENTRAL TV

 * STAR BUY * * 30 PHILIPS G8/550 22"

WIDE RANGE OF MAKES AND MODELS ARRIVING DAILY WHY NOT TAKE A PICK

DISCOUNT ON QUANTITY

Mixed lorry load of sets delivered to your door.

HOT LINE: 0216221023 and 1517 018074090

UNDER NEW MANAGEMENT
NORTHERN T.V. DISTRIBUTORS (Taten ove be toockivy Itsocunt)

PRICES SLASHED!

 WITH HUGE DISCOUNTS FOR BULK BUYERS!G8 520 From $£ 7.00$
G8 550 From $£ 8.00$
Pye Solid Statef22.00
Pye Chelseaf22.00
G.E.C. Solid State£20.00

ThornsFrom $£ 8.00$
I.T.T. Hybrids $£ 16.00$

Decca Hybrids .£12.00
Working Sets \qquad From $£ 12.00$
Hundreds of working sets in stock
Also latest stock G.11, I.T.T., Decca etc. Delivery arranged for bulk buyers.
091-487-5389
UNIT 2, PERTH COURT, TEAM VALLY IND. ESTATE, GATESHEAD, TYNE \& WEAR

IRISH TV NOTICE

(SUMMER SALE)
We can supply in good working order Bush, Pye and Ferguson from $\mathbf{£ 6 0}$, Philips G.8. From $£ 80$, Decca from $\mathbf{£ 9 0}, \mathrm{B} / \mathrm{White} £ 25$, Re-Gunned C.R.T.s from $\mathbf{£ 4 0}$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

> ALL PRICES INCLUDE V.A.T.

We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate,
Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TRADE AND QUANTITY DISCOUNTS FREE LOCA DENERY - SAME DAY - FTITNG SENMCE EX FAST MKI OHDE GB 2-3 DAYS - OVENSEAS OW REOUEST.

$$
\text { A47 32/343x } 470 \text { BCB22 . } 837
$$

40 ESB22/EFB22/ERB22 $£ 45$
A51-220X/192X \&37
510 JKB22/JEB22/JDB22/ALB22 E 38
560 D2B22/HB22/AKB22 £45
A63-120X E 39
E 99
A66-120X A67-120X/140/150/200X848
20AX A56-500X/510X A66-500X/510X f48
30AX A56-540X/A66-540X
If your tube type is mot in stock we cas arrange colvction - rebuiting + rodefiver

COLOUR TELEVISIONS

PYE CHELSEA - 6 button PYE 723
PHILIPS G8 550 THORN 8000, 8800 THORN 9000, 9200, 9600 Remote Control Working panels and tubes available.

REBUILT TUBES

Delta - In Line - PIL. SOUTHBRIDGE TV CENTRE 120, Selhurst Rd., London, S.E.25. Tel: 01-771 3535.

TEL-X BLACKBURN

FOR THE VERY BEST IN TELEVISION DISPOSALS

Decca Thorn	Pye	Bush
Philips		
ITT REC	Remotes	

DELIVERIES ARRANGED ON QUANTITY

TEL-X BLACKBURN
 Unit P3, Roe Lee Industrial Estate, Whalley New Road, Blackburn, Lancs. Tel: 0254679984

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. - ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hoid up for status check. Satisfy us over the phone that you are a trader and we will supply aimost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - l.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY

 TV COMPONENT BY RETURNIF YOU NEED SPARES FAST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. onty
THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

Its easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.
If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code. Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN

LONDON'S LARGEST TELEVISION WHOLESALER...
with over $4 \frac{1}{2}$ thousand sq. feet

"TELEMANN"

8-10 RHODA STREET (Off Bethnal Green Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

ALL MAKES IN STOCK AND GUARANTEED COMPLETE

The only wholesaler with a guaranteed single price. If the sets work or not our price is the same Free delivery to the London area.

Telephone 01-739 2707 NOW!

Philips VCR 1700 with new boxed $1 \frac{1}{2}$ hour cassette and mains lead $£ 45$. Single standard mono's $£ 3$.

PHILIPS 22" (Model 520) Parcel of ten $£ 15$ PHILIPS 22" (Piano Key 550) Parcel of ten $\mathbf{f 0}$ JAPANESE MODELS $18^{n-20 " ~} \mathbf{£ 3 0}$

FREE DELIVERY TO THE LONDON AREA

SETS \& COMPONENTS
GRUNDIG, WORKING FROM E40. Reconditioned panels from $£ 4$. Remote handsets wanted. Telequipment oscilloscopes. Ochre Mill 0785814643

JaPanese Colour TVs. Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489.

NEED RS. COMPONENTS for your project. No account?. We will supply you. For details phone 0376 519208.

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

PANELS

GOOD WORKING

POST PAID NO VAT

Power Line T.Base Decoder GonverMake Supply Panel Panel D IF Tripler gence

 $\begin{array}{lllllllll}\begin{array}{lllllll}\text { Bush Twin } \\ \text { Ber } \\ \text { Chip }\end{array} & £ 6.50 & £ 6.50 & £ 6.50 & £ 11.00 & £ 6.50 & £ 4.00 & £ 5.00\end{array}$ Chip

Decc $\begin{array}{lllllllll}$| Becca | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bradford | | $£ 6.50$ | $£ 6.50$ | $£ 6.50$ | $£ 8.50$ | $£ 6.50$ | \& $£ 4.00 & £ 5.00\end{array}$

TUBES

£29.00
INCLUSNE, REGUNS TWO YEAR GUARANTEE, QUANTTTY DISCOUNTS

P44.50 A56-120 A56-140 A51-110 A49-191 A47-342 or 343 A44-270-1 A66-120 A67-120 (All 26" add E5) IN-LINE 51-161 From E 35 plus 100 's more

Delivery $£ 5$ per tube. British Isles. No need to spend 55 returning old tube if you buy from us.
U-VIEW TUBES, 29 Warmsworth Road, Doncaster, Yorkshire DN4 ORP. Tel: 0302-855017.
Callers ring first: Open every day including Sunday

PORTABLE TV TUBES
 25 5 Inclusive delivery with one year
 110° only - A31-101-120-300-410-510 A34-100-101-120-510
 U-VIEN (TUBES)
 29 Warmaworth Road, Doncester DN4 ORP. (0302) 8 E6017.
 Open 7 days. Callers ring first.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

CENERAL TELEVISION TRADE SALES
 Bisulos sf FACTORS mimin

Regular weekly supplies of good quality TVs, all with excellent cabinets, we look after our sets, we don't knock them about, as you'll see if you call, suitable for re-sale or rent. Working or off the pile. We're always happy to see you, whether its for one TV or one hundred and one.

MONDAY TO SATURDAY 9 to 5.30

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

PROJECTION TVs, 60 inch screen. Also projection TV. D.I.Y. kits. For details phone 0376519208.

SATELLITE TV RECEIVER

Receives 4 GHz band. Ideal for demonstration terminal in U.K. 100 degree Kelvin LNA. $\quad £ 392+$ VAT (+ Carr). LNA/down converter PCB's stocked for the constructor. SAE data.

HUGH COCKS TV SERVICES,

Cripps Corner, Robertsbridge
Sussex TN32 5RY. Tel. 058083317.

\section*{| Thorn $3000 / 3500$ | TRIPLERS |
| :--- | :--- | $\underset{\text { I year guarantee }}{\text { UNIVERSAL }}$
 The UNIVERSAL TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental sets.
 WING ELECTRONICS}

15 Waylands, off Tudor Rd, Hayes End, Middlesex
TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settement

NORTHERN IRELAND DEALERS

We have the best value in secondhand televisions. And our low, low prices are second to none. Philips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $£ 20$. Guaranteed workers from $£ 38$.

We deliver bulk orders anywhere in Northern Ireland. New loads arriving regularly so phone now for latest stocks.

SM ELECTRONICS

11 Sandholes Road, Cookstown N. Ireland.
Tel: Cookstown (NI) 06487/64277.

EFRUICE PACES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

Guaranteed-Complete Sets
 Trade Workers
 Panels By Post from $£ 25.00$ Mono's Stands - Aerials - Accessories Etc.

 WORKING SETSPhone us first for quantity, we can give an UNBEATABLE PRICE! ! ! OPEN 5 DAYS -
Phone: Baldock 894905, Hitchin 31644 SECTON THREE, UNIT FOUR, SERLCOMPLEX, LONDON ROAD, BALDOCK, HERTS.

REBUILT COLOURTUBES

EXAMPLE PRICES DELTA All sizes up to $22^{\prime \prime}$ - $£ 28.00$ $26^{\prime \prime}$ From - $£ 32.00$ All In Line P.IL. Mono Gaming Machine C.R.T.s 560EGB22 56-611-510.JKB22 20 AX £40.00 30 AX £48.00
Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

COLOUR TV's AT
 ROCK BOTTOM PRICES

SOME EXAMPLES ARE:
G8 520 Untested Working G8 520 From £12.00 From $£ 20.00$ GEC Solid State From $£ 15.00$ From $£ 25.00$ $\begin{array}{lll}\text { GEC Solid State } & \text { From } £ 15.00 & \text { From } £ 25.00 \\ \text { ITT Hybrids } & \text { From } £ 12.00 & \text { From } £ 20.00\end{array}$ $\begin{array}{lll}\text { JTAP } & \text { Fybrids } & \text { From } £ 12.00 \\ & \text { From } £ 25.00 & \text { From } £ 30.00\end{array}$ Many other makes always available ALL SETS SOLD AS WORKING ARE PREPARED TO HIGH SPECIFICATIONS AND ARE READY FOR RETAIL OR RENTAL
REGUNNED TUBES:
Up to $22^{\prime \prime}$ Delta 90° Up to $26^{\prime \prime}$ Delta 90° Up to $22^{\prime \prime}$ Delta 110° Up to $26^{\prime \prime}$ Delta 110° PIL \& In Line

E45.00 2 yr. guarantee
REGUNNED (A66 410) Add 55.00 for magnets. REGUNNED TO THE HIGHEST SPECIFICATIONS (OVER 15YRS. EXPERIENCE).
OURS ARE THE best because we want our CUSTOMERS TO COME BACK
INERTEL TELEVISION SERVICES Unit 27 Whessoe Road Darlington Co. Durham Telephone Darl. 486896

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex.
Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$
INLINE TUBE TYPE FROM $£ 35.00$
MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.
A.B.D. TELEVISIONS

Suppliers of colour and mono televisions to the trade.
Workers and non-workers:
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800,
9000 and 9600 , Bush 120 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.
For quotation and prompt service:
Ring Notts (0602) 864627 UNIT 3+3A,
Meadow Trading Est. Meadow Lane, Nottingham NG3 3HQ.

TO ADVERTISE
 IN THIS SPACE RNG
 420n
 $01-2615846$

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
Line Ouput
Z718 (T703A, T706A)
New (Complete)
$£ 20.50$
Less Focus Module and
Rectifier
£10.50
$\mathbf{T 2 0 , ~ T 2 2 ~ (T 7 0 5 A) ~} £ 10.00$
T26 (T705B) £11.50
Switch Mode
T114A/B
$£ 8.00$
Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay Bowtie (125 dB)
Above with built-in Broadband amp. (27 dB) plus stabilised power supply

Prompt Postal Service. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

THE TV WAREHOUSE

Your local Trade and Retail suppliers of CTV's, Special clearance of older models.

THE TV WAREHOUSE

 Watling Street (A5) Hockliffe, Beds.Tel. Leighton Buzzard 210686

NWELECTRONICS 25 YEARS SUPPLYING THE TRADE

 HUGE STOCKS OF COLOUR TV'S

 HUGE STOCKS OF COLOUR TV'S 2000 NOW IN STOCK

 2000 NOW IN STOCK}

ROCK BOTTOM PRICES. ALL MAKES, ALL MODELS. 90\% WORKERS (off the pile)
GENUINE REPOSSESSIONS AND EX RENT, NOW IN STOCK! PYE KT 3, PHILIPS G11, G8, BUSH T20, 22, 718, GEC, 2010, 2201, 2002, 2659. HITACHI, SANYO, PYE 222 THORN 9000, 3500, 8800 ETC.

SPECIAL OFFERS

BUSH 2 chip 20" $22^{\prime \prime}$ Exc. CAB Cond. GENUINE CHANGE OVERS £15 EACH (special quotes on bulk orders) . . . Single Chip $£ 10$.
PHILIPS 26" G8 EXC. COND. 550 model__ £20 each BUSH 718 PIL TUBE ___ £30
BUSH 22" REMOTE 718 ONLY__ £30 BUSH TZO LIKE NEW__ £65
HITACHI 20" MODEL 190 EXC. CAB__ £25 in lots of 10 ___ £55
THORN 9000 PIL TUBE
£40 in lots of 50

VHS VIDSO

SHARP 7300, 8300, 9300. FERGUSON 3V28 3V22. SONY BETA.

MONO TV'S \&2 SACH

BUSH,GEC,PYE,PHILIPS ETC.THORN 1500 £6.THORN 1600 £15 (like new).

REFURBISHED TV'S TO ORDER

PHILIPS G11 £85 BUSH T20/22 £75 GEC 2010 £38
LATER MODELS PHONE FOR QUOTATION

WHITE COODS

HOOVER TWINS FROM £6. HOTPOINT 1460 FROM £10.
AUTOS ALL MAKES FROM £10

SPARES!SPARES!TV PANELS

	I.F	OECOOER	LIAE O/P	POWER	COMVERG.	VIOED	FRAME T3
BUSH 2 CHIP	3.00	8.00	6.00	3.00	3.00	-	5.00
3000/3500	2.00	4.00	8.00	8.00	5.00	5.00	6.00
G8	5.00	7.00	14.00	8.00	5.00	-	5.00
	with sound						
pansl							
GEC 2110	10.00	5.00	12.00	6.00	5.00	5.00	5.00
BUSH 718	8.00	15.00	25.00	3.00	5.00	-	15.00
BUSH T20	B.00	15.00	20.00	20.00	5.00		15.00

Unit 12, Wharfedale Road
M606 Euroway Estate
Bradford

P\&P 1 panel $£ 1.50 .2$ panels $£ 2.00$.
3 pane!s E2.50 etc. Quick Despatch - C.W.O. please ALL PRICES PLUS VAT.
CASH ONLY - DELIVERY CAN BE ARRANGED

AWEEK

OPEN MON-SAT 9-5.30
Don't forget! We are open
all day Saturday!

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail sheives. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available lonly petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services
on Cambridge 69215 or Ely 61462

TELEVISION

Trade \& Retail supplies of s/h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

ELECTRONIC SUPPLIES

Large superflous stocks for disposal. 3000-3500 Power Packs Line Timebase Frame Chrominance Video V/F Etc. Complete but untested AUDIO Speaker Cabinets various types small to large, also various types comP146R C173 GARRARD 620 S SP25MK4 125 SB RECORD CHANGERS BSR 123 C129-D1 C129-R2 2025 TC 6300 5300 . COMPONENTS Resistor Condensers Jack Plugs Sockets Transformers Switches Skeleton Preset EHT Tripers ETC.

Send $17 p$ stamp for Catalogue to: 18 LEUCHA ROAD, LONDON, WALTHAMSTOW E17 or Phone $01-5213912$ after 6.30 evenings TRADE ENOUIRIES WELCOME

TELEVISION TUNER REPAIRS

BRITISH, EUROPEAN JAPANESE ETC. ELC 1043/05 TUNERS AS NEW $£ 4.60$ inc. MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

Tpert'ubes 31 RADCLIFFE ROAD

 WEST BRIDGFORD, NOTTINGHAM THE QUALITY REBUILDER PHONE 0602813329 ALL TUBES CARRY A 2 YEAR GUARANTEE EXTENDABLE TO 4 YEARS
ALI SRES OF STD DELTA's $£ 26.50$

A51-161. btc. $£ 37.00$
56/66-510 (204x)
A56/66-510 (20AX) £40.00
A56/66-540 (30AX) feo

1000's MORE TYPES AVAILABLE
VOU MONO
VOU MONO INDUSTRIAL TYPES PLEASE PHONE
LIERBO CKIST8
IENESFORD: Parivision LHOR, 073371809
HENESFORO: Redivision Lid 0643877135

Thorn Colour TVs - Most models
Decca 1051/2 (100 series)
Philips 660 etc (G11) 550 (G8 Series 05)
ASSORTED GEC/BUSH/PHILIPS/JAP etc
Working or guaranteed untested basis
Competitive prices/good cabinets/top quality
If your standards are as high as ours, we want to deal with you - regularly!
REPOSSESSED TV CENTRES LTD $061-2732854$
335-341 Stockport Rd, Longsight, Manchester 13.

Øandwêll T.V. Centre

1000's of T.V.s at tremendously low prices. mono's from £1-00.-- -- -- colour from £7-00.

WORKING HYBRID £15-

[0]

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Kryztal Marketing Lord,
Breedon Cross Storage
Dale Road, Selly Oak,
Birmingham B29 6AO.

TRADE COLOUR TV's ALWAYS 200 IN STOCK Colour from 55.00

Mono $£ 2.00$

BRAND NEW VIDEOS V2022 and V2023
VHS and BETA
Just in
$20^{\prime \prime}+22^{\prime \prime}$ GEC
Boxed with stand $\mathbf{£ 8 5 . 0 0}$
ALL STOCK CHANGES WEEKLY (0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5 , Worle Industrial Estate,
Weston-Super-Mare. Exit 21 M5.

COLOUR TV PANELS Fully Tested \& Working

 Hybrid panels do not include valves.

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock
GOLCAR T.V. SERVICES (formerly LAVITE LTD.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273
Callers by appointment only.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME
ADDRESS

Send to: Classified Advertisement Dept.

TELEVISION

Classified Advertisemem Dept., Room 2612. King's Reach Tower, Stamford Streat, London SE1 SLS. Telephone 01-2815846. Rate
35 p per word, minimum 12 words. Box No. Top extra
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Starnford Street, $\begin{gathered}\text { London SEl 9LS. }\end{gathered}$

COLOUR T.V.s

the best in LoNDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO ORDER - ALL MAKES

WINDSOR WHOLESALE TEL: 01-968 8771.

IRISH DEALERS

Most brand names of UHV - VHF Colour \& B/W working.
Clean sets at very keen prices. Delivery arranged.

Quantity discount.
(SPECIALISTS IN EXPORT ORDERS)
TV TRADE SALES
E.D.I. House,

Kylemore Park West, Dublin 10.
Tel. 01.264139 Ext 11.

WORKING CTV's

The Best \& Cheapest in Lancashire

.E. Decca $18^{\prime \prime}$ to $26^{\prime \prime}$ £24.00

 GEC $20^{\prime \prime}$ to $26^{\prime \prime}$ Philips G8 22" to $\mathbf{2 6}^{\prime \prime} \quad £ 25.00$ Bush $20^{\prime \prime}$ to 26 " 2 chip $£ 18.50$All sets are tested \& working
Many more makes \& types available. Working mono's only $£ 3.50$. Non workers available.

Phone: John Powney at Kirkham, near Preston
(0772) 683392.

TRADE-TEL TV DISPOSALS

G8550s from $£ 8.00$ Polished \& Tested $£ 30.00$ UNIT B11A South West Brunswick Dock Liverpool L3 Merseyside

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Heif Black \& White

T.V. SPARES, PANELS AND MANUALS
 PHILIPS • GRUNDIG

TELEVIEW
 01-994 5537
 194, Acton Lane, London W.4.

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING";" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885. RADIO AND TELEVISION SERVICING BOOKS 76/77-77/78-78/79. 79/80-80/81-81/82-82/83 ($83 / 84$ available August) $£ 22.50$ Free Delivery. U-VIEW, 29 Warmsworth Road, Doncaster. Tel. 0302855017.

RADIO AND TELEVISION SERVICING MANUALS 1970 to 1976, mint condition. Also Television Monthly 1977 to 1982. Offers. Tel. 061-865 6570. COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3$ + LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1HE. Phone (0698 883334).

SERVICE SHEETS

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock. Colour $£ 2.00$ Mono $\mathbf{£ 1 . 5 0}$ (post free)

Manual prices on request.
Send stamped envelope for free catalogue and enquiries
SANDHURST TV SERVICES (MAlL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

30,000 SERVICE SHEETS IN STOCK

 ALSO COLOUR MANUALS AVAILABLETV Sheets, Black and White, also Radiograms, Record Players, Music Centres. Japanese models in stock. Curcuit diagrams only. Also Tape Recorders etc etc., ALL AT £3. Please forward s.a.e. Send cheque or P.O.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

TECHNICAL INFO SERVICES

76 Church St - Larkhall-Lanarks
Giant TV \& VCR DIAGRAM MANUALS
Brit CTVs
3 vols $£ 45$
Vol. 1 Decca G.E.C. ITT
Vol. 2 Philips Pye Redif
£ 17
Vol. 3 Rank Bush Thorn $£ 17$
Foreign CTVs (now updated) 2 vols $£ 32$
Mono (Stand + Port) 2 vols $£ 32$
Early VCR (VHS/Philips) £17
VCR later models inc. Betamax $\quad \mathbf{E 1 7}$
Domestic Equipment Exploded Diagrams in 2 huge binders for $£ 32$
New T.V. Rep. Manuals $\mathbf{£ 7 . 5 0}$ each 1983 Brit. CTV or Foreign CTV 4 Complete set of 15 TV Rep Mans for $£ 105$ Unique T.V. Repair course $\mathbf{£ 9 . 5 0}$ The only practical radio servicing and repair course
£9.50
Large SAE brings FREE 50p magazine inc. service sheet/details of unique T.V. publications. Any quotation plus price lists, etc.
Full size service sheets $£ \mathbf{£ 2}+$ l.s.a.e. CTVs/Music Centres
$\mathbf{f 3}+$ lis.a.e
Worlds largest collection of service manuals 1930 to date. From $£ 4.50$ to $£ 35$ each.
e.g. Autovox/G8/A823 £7.50 each Integrated TV repair sy
£195 Contains over $£ 250$ normal prices.

FOR FAST QUOTES
RING 0698883334

EQUIPMENT FOR SALE

\star VIDEO FADER UNIT *

\star SUITABLE FOR ALL VIDEO TAPE FORMATS

* PRODUCE YOUR OWN HOME VIDEO
\star ALLOWS TAPE ASSEMBLY AT BLACK LEVEL
* FULL COLOUR T.V. BANDWIDTH
* MAINTAINS FULL SYNCHRONISM
* OPERATES ON 12 VOLTS DC
(P.S.U. AVAILABLE IF REQUIRED
* UNIQUE PRESENTATION
\star FULLY GUARANTEED
* ONLY £59.95 INCLUDING P\&P
or send large S.A.E. for full spec
\star FIRST OF AN EXCITING RANGE OF NEW PRODUCTS AVAILABLE EXCLUSIVELY FROM:

LEAP PRODUCTS

5A London Road,
Loughton, Milton Keynes MK8 OAE
Please allow up to 28 days for delivery
When replying to Television Classified Adver tisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

EERUICE PQGEF

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

AERIALS

APEX ELECTRONICS \& AERIALS CENTRE: TV Stereo - CB aerials/accessories. 5 Park Road, Wellingborough - 73040 .

CLEARVIEW AERIALS

Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipcontrolited marthead proamp 1.8 db noise CH , $77-69$ Set alde amplifiers, distribution amplifiers, notch filters 4 in 1 or 2 in 1 etc. Combiners for 2 UHF aerlals 3db gain or 4 gdb gain. Trade and retail.

Send large SAE for our comprehensive catalogue
CLEARVIEW AERIALS.
KIngston Upon Thames, Surrey.

AERIAL BOOSTERS

B45HG-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to 14 V /working. Price 88.70 . Par ${ }^{30} \mathrm{P}$.
UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9dbs. 8V to 14VN. Price E2.50. P8P 30p. AMPLIFIED SET TOP AERIALS. Trebles the gain, fully portable, price includes batteries. Price $\mathbf{E 9 . 7 0}$.

CAPACITOR PACKS. Mixed C280 \& Electrolytics values from . Oluf to 500uf. Price per pack of 150 capacitors \&2.00. PEP 50 p .

> ELECTRONIC MAILORDER, 62 Bridge Street, Ramsbottom, Lancashire, BLO 9AG.
> Tel: Ramsbottom (070 682) 3036.
S.A.E. for leaflets. Access/Visa Welcome.

WANTED

'RADIO \& TELEVISION SERVICING' books 1974 1984. Also T.V./video manuals. Stourbridge 0384 377209.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

BUSINESS/PROPERTY FOR SALE

FANTASTIC OPPORTUNITY
 SHOP LEASE FOR SALE!
 TV and Video repair/sales premises. Busy main road into London. Low rent/long lease. New shop front, grills and fully alarmed.
 ONLY $£ 7,950$ for quick sale
 TEL: 9079232

FOR SALE

EX RENTAL VHS VIDEO'S. Trade only. Ring 0462 55960 for details.

CASSETTE MOTORS

6 volt D.C. with electronic speed control will fit Japanese decks.
New and unused $£ 2.50$ inc. p8p. C.W.O. please.
STEWART ELECTRONICS 4 Russell Street,
Ashton-U-Lvne, Lancs. OL6 9PX. - CALLERS WELCOME -

FOR SALE

TANONTON ELECTRONICS SUPPLIES LIMITED

59 PALMERSTON ROAD, WALTHAMSTOW E. 17
bargain corner

SEMI-CONDUCTORS

IC's 12 PIN

New Service Manuals

BU5005	£2.00	BTT8024	£1.50
BU208	¢1.00	TOBF900	£1.50
BDX32	£2.00	TECP100	£3.30
R2210	80p	TDA1327A	£2.50
R009	£1.30	TD3F800	£1.50
R008B	£1.50	TCA640	80p
R2029	$80 p$	TBA1205	£1.00
R2781	80p	TBA395	E1.00
79038	£1.00	TBA650	¢1.50
T9013V	E1.50	TBA650	£1.50
2.58425	E2.00	ET6018	£1.25
2SC1030	E1.50	TM54034NL	£1.25
2N6254	80 p	HBF4021AE	E2.00
2N3055	50p	MC1358P	£1.00
3 K 5 LTB Under Panel		ML237B	£1.80
(New)	£2.00	BRC300	£1.00
Add f1.50 P\&P		CA270AE	£1.00
Special Offer 3K5 Convergence Panels.		ULN22160	£1.00
Blank \& New	each	SN76228N	£1.80
Or 2 for $\mathbf{£ 2 . 0 0}$		SN7417N	£1.30

60p P\&P Unless Otherwise Specified
ADD 15\% VAT TO TOTAL, CHEQUE OR POSTAL ORDERS MADE PAYABLE TO: TANONTON ELECTRONICS SUPPLIES LIMITED

PATTERN GENERATOR PROGRAM for Spectrum $16 / 48 \mathrm{~K}$. Colour bars, crosshatch, dots, chequer board, red, green, blue, black, white rasters. Send $£ 3.50$ for tape to: GW TVs, 1 Eachard Road, Cambridge CB3 0 HZ .

VIDEO RECORDERS, Philips V2000 system. Working. $£ 120.00$. RETACH LTD. $01-8452036$ or Northwood (09274) 27019.

SATELLITE RECEPTION: 4 low noise 12 GHz Ga . As Fets type CFX13. £80. Tel: 062823641.

JAPANESE CTV CIRCUTT SHEETS 79 models from 11 brands. Send name and address to: ABDULLAH JUSOH, 1235, L/14, KG, Besut, Kemaman, Trengganu, Malaysia.

RADIO AND TELEVISION SERVICING 1972 to 1976. Very good condition. $£ 12$ each, $£ 40$ set. Telephone Polegate, Sussex 3667.

LABGEAR COLOURBAR GENERATORS $£ 55.00$ post paid. J. CAHILL, Beacon Television, 335A Cotmanhay Road, Ikeston, Derbyshire.

TOP QUALITY TELEVISIONS SCOTTISH TRADERS

\star Wide range of CTV's in good working order from $£ 25$. E.g. Thern 3500, 8500, 8800, Bush, Philips G8, GEC S/S CTV etc.
\star Plenty of working and complete nonworking sets at competitive prices.

* Ready sell or to rent.

For further particulars telephone:
SABA CO. LTD.
72 Robertson Street,
Glasgow.
Telephone: (041) 221-2146.

BEST VALUE IN SECONDHAND TV's SETS CLEANED AND SOAK TESTED									DISCOUNT FOR VANLOAD DIRECT FROM SOURCES						
MAKES Philips G8, 5, 2 chip Bush/Murphy Thorn 3000, 3500 Thorn $8800,9000,9600$, touch tune sets etc. Bush 720's, Philips G11, ITT CVC 35 Pye $18^{\prime \prime}, 22^{\prime \prime}$ GEC Solid State, all types Japanese, Hitachi, National Panasonic IT CVC 5/8/9 Decca Broadford GEC/Pye Hybrid										co NON.	PLLE IORK 14 13 25 250 16 16 16 15 14 10 $\mathbf{1 5}$			WOR	
Mono in SPECIAL Philips G8	ER!	820	$\begin{aligned} & g 20 \\ & \text { ho } \\ & \text { ye } \end{aligned}$				Other makes available on request. Discount for quantity. \star Tubes tested all sizes at $\mathbf{£ 8 . 0 0}$ each \star Good quality stands at $£ 2.00$ each								
T.V. PANELS			T.V. PANELS				T.V. PANELS								
MAKES	POWER		LINE		TIBASE		VIDEO		DECODER		CONVERG		IF		TRIPLER
	W	N/W	WORKING												
Thorn 3500	6	3	6	3	4	1.50	4	1.50	3	1.50	4	1.50	4	1.50	2.50
Philips G8	6	2.50	12	6	6	3			6	3	6	4	4	2	2.50
Pye S/S	8	6	15	10	5	3			10	5	6	3	10	5	3.00
GEC S/S	6	4	11	8	5	3	5	3	5	3	4	3	10	8	3.00
Decca (H)	6	,			6	3			8	4	4	2	3	1	2.50
Pye (H)	8	4	8	4	4	2			6	3	4	2	3	1.50	2.50
GEC (H)	6	3			6	3			6	3	4	2	3		2.50
$\star \mathbf{W}$ - Working fully tested panel \star N/W - Non-working panel				\star Express delivery, subject to availability Ł Add 15\% VAT P\&P 1 panel 1.50, 2 panels 2.00, 3 panels 2.50 etc.									ELASTIC YARN		
SABA CO LTD., Unit A, Derby Road, Sandiacre, Nottingham. Tel: (0602) 397555.															

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 11$, overseas (surface mail) $£ 12$ per annum, payable to $\mathbf{Q u a d r a n t}$ Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: QUANTITY
 DISCOUNT
 AVAILABLE

 * OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS. YOU MAY ENCOUNTER ON FITTING

