AUGUST 1984

SERVICING•PROJECTS-VIDEO-DEVELOPMENTS

Servicing the Sony KV2000UB

Stereo TV Sound Systems TV Receiver Fault Mechanisms Vintage Hi-FI TV Sound Unit Test Report O VCR Clinic TV Fault Finding O DX-TV

What better way of ensuring your pleasure than to actually see your prints before you pay－and then to be charged only for the successful pictures within the price ranges quoted．That is the deal you get from our colour print service providing the best all－round value for money available．

Over the past ten years，hundreds of thousands of magazine readers have been delighted with our postal service．They have sent their films in to us again and again．So why not give it a whirl yourself？＇ QUALITY
Every print is checked at every stage of processing to ensure accurate colour reproduction．

RELIABILITY

Processing and printing take up to 48 hours．Allowing for postal or peak－period delays，you should normally expect your prints after seven to ten days．
LARGER PRINTS
Our Superprints give you 30 per cent more picture area at no extra charge． EASY CREIDIT
You pay only for your successful shots within the price ranges quoted－and then only after you have seen the prints． COMPARE PRICES
If you are invoiced for $£ 2.70$ ，plus 30 p postage and packing per film，that could be for as many as 24 successful prints．

USE THIS LABEL IF YOU HAVE NO ENVELOPE，OR PASS IT TO A FRIEND．IT IS USED TO SEND YOUR PRINTS．

To：Television Colour Print Service，
FREEPOST，Reading，RG1 1BR．
－Print my enclosed film（Please tick box） Superprint size Standard size
－Rush me \qquad of $35 / 24$ \qquad of $110 / 24$
＿of $126 / 24$ at $£ 1.20$
or three for $£ 3$ ．

From：Television Colour Print Service， FREEPOST，Reading．RG1 1BR
Name
Address
issue．Or fill in the coupon below and send with your colour print film in a strong envelope to：Television Colour Print Service．FREEPOST．Reading．
RG1 1BR．

PERSONALISED SERVICE

Our valued readers know we care for their prints．If you have any queries about this highly－personalised service． contact Customer Service，Kenavon Drive，Reading，RG1 3HT，or ring Reading 10734$) 597332$.

YOU BENEFIT IN FOUR WAYS

1．Processing is free－you pay only for successful prints（plus p \＆p）．
2．You enjoy a highly personalised service with every care taken over each individual print．
3．You are not hampered with credit vouchers．
4．You get more prints for your money， so it is worth your while always having your camera action－ready．Compare the shop prices．

FILMS AT REDUCED PRICES

Order replacement films 35／24， $110 / 24$ or $126 / 24$ at a special price of $£ 1.20$ a roll． or three for $£ 3$ ．

Offer excludes Black \＆White． transparency，sub－miniature． C 22 \＆ Agfa CNS film．Superprints can be produced only from Kodacolour II．C41 cassette，cartridge and disc film，not half frame．Prices are correct at the time of going to press and are for UK readers only．Standard terms of business are available on request．

Just send any good make of colour print film，including disc film，inside the Freepost envelope enclosed with this

Price（inc 15% VAT £1．20 £1．70 £2．20 £2．70 £3． 20
23．70

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of your prints． They have elegant rounded comers and are borderless to give you maximum picture area．Choose either standard prints or the larger Superprints by ticking the appropriate box on the enclosed envelope or on the coupon below．
Superprints Print size（approx．）
$\begin{array}{llll}35 \mathrm{~mm} & 110 & 126 & \text { Disc } \\ 4^{\prime \prime} \times 53 / 4^{\prime \prime} & 4^{\prime \prime} \times 51 / 8^{\prime \prime} & 4^{\prime \prime} \times 4^{\prime \prime} & 4^{\prime \prime} \times 51 / 8^{\prime \prime}\end{array}$
Standard prints Print size（approx．） $31 / 2^{\prime \prime} \times 5^{\prime \prime} \quad 31 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} 31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \mathrm{N} / \mathrm{A}$
NO MONEY－NO STAMP

COPYRIGHT

9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscripition Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

529 Leader

530 Stereo TV Sound
David Looser
Adding a second sound channel to a TV transmission presents a number of problems. A review of the difficulties and the various techniques that have been tried.
535 Some Confessions
Les Lawry-Johns
Effective diagnosis in the field isn't always achieved...
especially when various hounds are present to complicate matters.
536 Servicing the Sony KV2000UB, Part 1
David Botto
This was the first 20 in . Sony colour set sold in the UK and was a very popular model. As with all Sony sets, care is required when fault finding - a recommended test sequence should be followed. This part deals with the chopper power supply and the line timebase.
537 Next Month in Television
540 The Unaohm EP730AFM Panoramic Monitor
Eugene Trundle
A detailed test report on this unusual item which provides pictures, a visual display of signal strength and panoramic spectrum displays covering Bands I-V. An asset to anyone who has to sort out signals and interference and install aerial systems.
543 Teletopics
News, comment and developments.
545 TV Fault Finding
Notes on faults and servicing from Mick Dutton, Tony Thompson and Malcolm Burrell.

546 VCR Clinic
Fault reports from Steve Beeching, T.Eng. (C.E.I.), Ian Hutton and Les Harris.
550 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. The problem of interference caused by home computers is increasing.
552 TV Fault Mechanisms
Tony Thompson
The basic causes of most TV faults are few in number.
A review of the factors that lead to set failure.
Letters
Servicing the Grundig 2×4 Super, Part 2 Mike Phelan
This time the signals side of the machine.
588 A Vintage Hi-Fi TV Sound Unit
Chas E. Miller
A vintage hi-fi audio circuit using a pair of ECL80s in a push-pull configuration. The unit is a plug-in replacement for the standard PCL82/6 audio valves.

560 Service Bureau
561 Test Case 260
OUR NEXT ISSUE DATED SEPTEMBER WILL BE PUBLISHED ON AUGUST 15

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking)
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \mathbf{t}^{\prime \prime}$)
Optional Sound Module (6 MHz or 5.5 MHz) $£ 3.90$
Built \& Tested in De Luxe Case including Sound Module

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE £7.40. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $\mathbf{8 . 2 0}$ (Combined P\&P £2.20).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 58.00+\varepsilon 2.20 \mathrm{P}$ \& P . MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 68.00+52.20 \mathrm{P}$ \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS £5.75. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ADD VAT 15\% TO ALL PRICES)

MANOR SUPPLIES TELETEXT ADAPTOR KITS (LESS CASE)

MK 1 (Texas XMII) remote control $£ \mathbf{1 2 0 . 0 0}$ p.p. $£ 3.00$
MK 2 (Mullard) infra red remote control $£ 150.00$ p.p. $£ 3.00$.
Further details on request. Tel 01-794 8751/7346
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS
 COLOUR PORTABLE TV

MONO PORTABLE TV, SMALL SCREEN MONITOR ETC
THORN TX10 type Remote \& Tuning Control Panel $£ 9.40$ p.p. $£ 1.50$
PHILIPS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$ SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$
THORN TX9, TX10 Saw Filter IF Panel. 88.50 p.p. 80 p
PAL DECODER KIT for RGB Monitors $£ 27.00$ p.p. £1.00.
Special OfFER TEXAS XM11 Teletext Decoder New \& Tested at reduced price. $\mathbf{£ 4 0 . 0 0}$ p.p. $£ 1.60$.
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 6 . 8 0}$ p.p. $£ 1.20$ XM11 Stab. Power Supply. $£ 3.80$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 12.00$ p.p. 80 p. (Alum. Case $£ 2.55$, De Luxe Case $£ 6.80$ p.p. $£ 1.40$.)

ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45p.
UHF SIGNAL STRENGTH METER KIT $£ 20.00$ (VHF version also avail-
able). Alum. Case $£ \mathbf{2 . 5 5}$. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT For Colour \& Mono
£28.00 p.p. $£ 2.80$.
BUSH 2718 BC6100 series IF Panel $\mathbf{E 5 . 0 0}$ p.p. 90p.
BUSH A816 IF Panel (Surplus) $\mathbf{1 1 . 6 5}$ p.p. 90 p.
DECCA 80 Series IF, Frame, T.B. $£ 5.00$ p.p. $£ 1.40$
GEC 2040 Convergence Panels, Decoder Panels, $\mathbf{£ 2 . 5 0}$ p.p. $£ 1.80$
GEC 2040 IF Panels $£ 2.80$ p.p. $£ 1.60$
GEC 2110 Convergence Panels $£ 5.00$ p.p. $£ 1.80$.
GEC "20AX" Series Switch Mode Power Supply $\mathbf{£ 5 . 0 0}$ p.p. $£ 1.80$
PYE 691 - 7 CDA Panels. Makers tested stock. $£ 6.00$ p.p. $£ 1.45$
PYE 725 T.B. Unit. Makers tested stock. $£ 20.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. $£ 5.00$ p.p. $£ 2.00$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 2.80$. THORN TX10 T.B. Panels salvaged ex factory. $£ 15.00$ p.p. $£ 3.00$.
THORN TX10 IF/Decoder Panels salvaged ex factory. $\mathbf{£ 1 5 . 0 0}$ p.p. $£ 2.00$
THORN $\mathbf{3 0 0 0}$ Line T.B. PCB, Power PCB $£ 5.00$ each p.p. $£ 1.30$.
THORN 80018500 IFIDecoder Panels salvaged $\mathbf{\varepsilon 3} 20$ p p $\mathbf{f 1} 80$.
THORN 8000/8500 IF/Decoder Panels salvaged £3.20 p.p. 51.80 .
THORN 9000 Series Control \& Receiver Unit $£ 6.80$ p.p. $£ 1.80$
THORN 9000 Series Control \& Receiver Unit $\mathrm{E}^{6.80}$ p.p. 1.80
THORN $9000 \mathrm{IF} /$ Decoder Panels Salvaged. $\mathbf{~} 5.00$ p.p. 1.60 .
PHILIPS G8/G9 IF/Decoder Panels for small spares $£ 1.50$ p.p. $£ 1.40$.
PHILIPS G8/G9 IF/Decoder Panels for small spares $£ 1.50$ p.p. $£ 1.40$.
G8 Decoder Panels salvaged $£ 3.80$. Panels for spares $£ 1.75$ p.p. $£ 1.40$.
G8 Decoder Panels salvaged $£ 3.80$. Panels for spares $£ 1.75$
G9 Scan Panel. Basic PCB in Fibreglass $£ 14.50$ p.p. $£ 1.80$.
G9 Scan Panel. Basic PCB in Fibreglass $£ 14.50$ p.p.
G11 Frame Panels, IF Panels $£ 18.00$ each p.p. $£ 2.00$.
GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
VARICAP. U321, U322, ELC1043/06, ELC1043/5 £6.80 p.p. 80p. G.I. type (equiv. 1043/05) $\mathbf{8 3 . 5 0}$ p.p. 80 p . Makers Varicap Controls PYE CT200 4 PSN $£ 7.50$, BUSH 4PSN 84.80 , DECCA 4PSN $£ 5.80$ p.p. 80 p
SPECIAL OFFER ELEVEN POSITION Varicap Control Unit UHF/VHF $£ 1.80$ p.p. $£ 1.00$.
BUSH "TOUCH TUNE" Varicap Control Z179, Z718 types $\mathbf{£ 3 . 8 0}$ p.p. 95 p. VARICAP UHF-VHF ELC2000S, ELC2060 £9.80, BUSH $£ 7.80$ p.p. 90 p.
VARICAP VHF MULLARD ELC 1042, PHILIPS, $\mathbf{\varepsilon 6 . 9 0}$ p.p. 80 p.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50$, JAP Rotary $\mathbf{£ 4 . 8 0}$ p.p. $£ 1.80$
TV SOUND IF Panels $£ 6.80$ p.p. $£ 1.00$
LOPT TESTER, Service Dept approved $£ 15.50$ p.p. $£ 1.20$
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80 p.

55.90	R,B.M. A823
BUSH, MURPHY 774 series 58.50	R.B.M. Z179 £9.80
BUSH, MURPHY A816 series 88.50	R.B.M. T20, T22
FERG., HMV, MARCONI, ULTRA	R.B.M. T20, T22 Bobbin $\mathbf{5 5 . 6 0}$
950, 1400, 1500, 1580, 1590, 1591 ¢5.90	DECCA Bradford (state Mod No) ... 58
THORN 1600, 1615, 1690, $1691 \quad \mathbf{¢ 9 . 1 5}$	DECCA 80, 100 58.80
GEC 2000 to 2038 series 86.80	GEC 2028, 2040,
GEC series 1 \& 2 88.00	GEC 2110 series $£ 10.6$
INDESIT 20/24EGB 87.65	ITT CVC 5 to 9, CVC20 $\mathrm{EP}^{\text {a }}$
ITT/KB VC200, 300 87.65	ITT CVC25, CVC30 series 58.8
MURPHY 1910 to 2414 (twin panei) 55.90	PYE 691-69710.0
PHILIPS 170, 210, 300 series $\mathbf{8 7 . 6 5}$	PYE 713,715
PYE, INYICTA, EKCO, FERR.	PYE 725 (900) 731 to 741 89.20
368, 169, 569, 769 series $£ 7.65$	PHILIPS G8 88.
SPECIAL OFFER	PHILIPS G9 $\mathbf{8 1 0 . 2}$
DECCA 20/24, 1700, 2000, 2401 ... $£ 3.80$	PHILIPS 570, 571 86
GEC 2114J/Junior Fineline £2.80	THORN 3000/3500 SCAN, EHT ... 66.9
PYE 40, 67 $\mathbf{8 1 . 7 5}$	THORN 8000/8500/8800 12.9
KB VC ELEVEN (003) $\mathbf{1} 1.75$	THORN 9000 to 9600 $\mathbf{1} 12.9$

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour.
Speclal Offer: Thorn 8000 (2 lead) EHT Tray $£ 2.80$ p.p. 80 p
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.50$ p.p. 60 p
6.3 V CRT Boost Transformers for Colour \& Mono $£ 5.00$ p.p. $£ 1.20$ CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW. 6
NEAR: W. Hempstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead British Rail Smas. (Richmond, Broad St.) (St. Pencras, Betiord) W. Hampsteed (Brit. Rail) access from all over Gremer London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11. PLEASE ADD VAT 15\% TO ALL PRICES

Get on the hot-line today!

> SUPERIOR QUALITY TUBES
> DELTA RE-BUILDS
> 4288777 most types of Inline Re-builds or new ex-Stock $\quad 2$ YEAR WARRANTY

Delta Rebuilds

Up to 19"	£24
Up to 22"	¢28
Up to $26^{\prime \prime}$	£32
110° up to $22^{\prime \prime}$.	£32
110° up to $26^{\prime \prime}$.	E34
Low focus	¢30
A47 342 New	£32
Delta only. Le Less 10\% 10	$65+$ over

Inline Rebuilds

Up to $22^{\prime \prime}$...................... $£ 40$
Up to $26^{\prime \prime} ~$
45
Bonded Coil $£ £ 5$

ALL SIZES OF

 NEW MONO TUBES AT COMPETITIVE PRICESIN LINE TYPES EX-STOCK SELECTION not rebuldos

370 HFB	£45	560 DMB	¢62
370 HUB	£45	AXT 56-00	£62
420 CSB	¢ 45	560 ATB	£65
420 EDB	£45	660 AB	¢65
420 EZB	£45	A67-701	£65
420 ERB	£45	670 CZB	£65
510 UFB/A51-590	£55	H6817	¢65
A51-570	£55		
A51-210	$£ 55$	CARRIAGE f5 Singles. 2-3 f10. 4 £12 10 £15. 10+ Carriage paid EXCLUSIVE OF VAI TERMS Cash with order	
510 VSB	£60		
AXT 51-001	£60		
560 DYB	£62		
560 EGB	¢62		
560 CGB	¢62		

QUANTITY bscoun

 AVAILABLE\star OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS. YOU MAY ENCOUNTER ON FITTING INLINE TUBES
Ask for details DELNERY: Ex stock items immediate dispatch on receipt of order Others allow 14 days.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25 A゙SK POT MR. BUTTERWORTH ON:051-428 8777

-4 FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering - now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition anc 80 Years of Success The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You sludy at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

| PI |
| :--- | :--- |

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US			G. SO COTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY108 SCOTLAN PHONE (0228) 20358/139693						BUY	TH	
INTEGRATED	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (£)			PRICE	$\left\|\begin{array}{ll} \text { TYPE } & \text { PRICE } \\ \text { RR100 } & 18 \end{array}\right\|$			$\begin{aligned} & \text { THORN } 1500-5 S \\ & \text { THORN3000/3500 }\end{aligned} . . .7 .75$
CIRCUTR	LA3122 2.10	TBA520........ 1.30	STK0050 7.50	UPC1185H2 . 3.30	SISTORS	BC5		BR100 18	RBM T20/22	$\ldots . .1220$	THORN8000 100
TYPE PRICE (f)	LA3301 1.97	TBA530 1.00	STK011 735	UPC1188H3.30	TYPE PRICE	BC5	... 10	BR101 32 BR103	RBM 218		THORN85COMB800 . 6.50
AN1031.96	LA3350 1.93	TBA540........ 1.27	STK014 7.65	UPC1190C ... 2.10	AC127 22	BC5	... 10	BR103 55		$.2295$	THORNGO00 B. .
AN214 2.25	L44031 1.66	TBA550........ 1.40	STK0157.15	UPC1198H 1.30	AC128	BD1	$\begin{array}{r}. \\ \hline\end{array}$	BT106 1.15	PHILIPS G8.	$\begin{aligned} & 7.90 \\ & \ldots .85 \end{aligned}$	$\text { PYE } 731 \text {. } 6.55$
AN2172.44	LA4031P 2.45	TBA56001.60	STK016 7.45	UPC1200V ...1.90	AC128K	BD131	$\begin{array}{r} 33 \\ \cdots 3 \end{array}$	BT116 ... 1.30 BU126 1.78	PHILIPS G9... PHILPS G11	$\begin{array}{r} . .8 .75 \\ \cdots \\ \hline 13.50 \end{array}$	OECCA 2230 6.30
AN240 220	LA4032 2.34	TBA7500 2.45	STK020 9.05	UPC1208C1.85	AC187K 30	BD13		BU126 1.78	PHILIPS G11	$.13 .50$	$\text { DECCA } 80 \text {. } 630$
AN253 1.93	LA4051 2.79	TBA800......... 80	STK03211.32	UPC1211C4.05	AC188K 33	BD20	.. 80	BU204 1.50	THORN 1590\%	868	DECCA 100 6.76
AN264 177	LA4101 1.88	TBAB10AS ...1.15	STK035 12.67	UPC1215V ...2.50	AD149....... 70	BD202	.. 70	BU205 1.42	THORN $1690 / 1$9.68	ITT CVC 20.30 \ldots... 6.68
AN315 1.66	LA4102 1.97	TBAB20........ 1.40	STK036 12.67	UPC1216V ... 2.00	AD161....... 42	BD203	.. 70	BU206 ... 1.35	THORN 1615.	$\begin{array}{\|c\|c\|} \hline . .955 \\ \hline 1250 \end{array}$	Universal 5.90
AN3186.96	LA4400 2.80	TBAB90........2.95	STK043 11.33	UPC1217G ...3.35	AD162 42	BD204		BU208A 1.1 .40	THORN TX10	$.12 .50$	
AN337 4.41	LA44201.94	TBA9200 1.50	STK050 20.75	UPC1218H 2.75	AF127 36	BD22		BU208402 1.70	PYE 731//13	$\begin{aligned} & 1020 \\ & 1020 \end{aligned}$	
AN3601.45	LA44222.75	TBA950/2X ...2.65	STK07021.55	UPC1222..... 2.05	AU110 2.10	BD232		BU326A .. 1.48	PYE 725 (90)	10.20	
AN54312.76	LA4430 1.93	TBA990........ 1.55	STK077........ 8.56	UPC1223...... 3.40	AU113 3.50	BD23		BU407 ... 1.12	IT CVC 1.9		DIODES
AN63326.97	LA4460 2.95	TCA270S130	STK078 8.45	UPC12253.10	BC107 14			BU500 1.80	DECCA 2230		
AN71101.98	L44461 2.95	TCAB00........1.96	STK0829.75	UPC1226..... 2.56	BC108 14	BD235			DECCA 100		BY127 10
AN7114 2.33	MB3712 2.30	TCA940 1.55	STK086 12.89	UPC1227 2.10	BC109 14	BD23		BU826 3.20			BY133 15
AN71152.37	MB3713 2.25	TDA1002A ... 1.50	STK4159.86	UPC1230H	BC141 BC1	BD237 BD238		R2008E ... 1.45 R2010E $\ldots . .145$	IT CVC 25/3		
AN71202.43	MB8719 5.20	TDA1003A 280	STK433 725	UPC1245 1.99	BC142 23	BD2	$.39$	R2010E ... 1.45	IT CVC 25/3	ISES	
AN71402.10	MC1327A 1.00	TDA1004A 2.70	STK435 7.75	UPC1250......2.45	BC143 25	BD4	$\begin{array}{r} . . .50 \\ \hline \end{array}$	$\left\|\begin{array}{lll} \text { A2540 } & \ldots .2 .35 \\ \text { TIP31C } & & 46 \end{array}\right\|$			BY210800 30
AN71453.25	MC1358P 1.60	TDA1035 320	STK437 7.77	UPC1350C4.50	BC147 09	BD	$\begin{aligned} & . .50 \\ & 70 \end{aligned}$	TIP31C 46	A/S20MM 80	$\begin{aligned} & A \\ & A \end{aligned}$	BY223 ${ }_{\text {8 }}$
AN71502.99	MC1330P 90	TDA1044 3.10	STK439 7.86	UPC1353C ...2.60	BC148 09	BD	$\begin{gathered} \\ \ldots \\ \cdots \end{gathered}$	TIP32C 47	$\text { 100, 160, } 200$ 1	BY227M 23
AN7151 …... 2.89	ML231B..... .1950	TDA1170...... 1.80	STK441 9.52	UPC1356C2 . 3.05	BC157 10	BD438	$\begin{array}{r} 78 \\ \cdots \quad . \quad 05 \end{array}$	TIP338 80	315, 400, 500		BYX10 2020
HA1137........2.30	ML232B 1.70	TDA1412......... 90	STK443 11.33	UPC1358H 3.05	BC158 11	BD707 BDX32	-. 1.05 1.65	TIP41C 48	$\left.\right\|_{2 \mathrm{~A}} ^{800 \mathrm{MA}, 1 \mathrm{~A}}$		BYX55/600 26
HA1144	ML237 2.50	TDA2020 2.95	STK $459.19 .56$	UPC1363C	BC159 11 BC160 22	BDX32	... 1.65 .. .12	$\left\|\begin{array}{l\|l\|l\|} \hline \text { TIP42C...... } 48 \\ \text { TIP2955..... } \end{array}\right\|$	$2 \mathrm{~A} .$	$\begin{array}{r} . . .120 \\ -\quad . \quad 135 \end{array}$	8Yx71/600 78
HA1151........ 1.97	ML238 4.22	TDA2522 $\ldots1 .80$	STK $463 \ldots . . .10 .88$	UPC1365C UPC1366C	$\begin{aligned} & \text { BC160 } 22 \\ & \text { BC172 } 10 \end{aligned}$	BF194	$\begin{gathered} . . .12 \\ \ldots . .12 \end{gathered}$	$\left\|\begin{array}{l\|} \text { TIP2955...... } 70 \\ \text { TIP3055..... } 55 \end{array}\right\|$		VES	0A90 07
HA1156.........1.97	TA7072P 2.75	TDA2523 225	STK501	UPC1366C ... 2.85	$\left\|\begin{array}{c\|c\|c\|c\|} \mathrm{BC} 172 & \ldots . . & .10 \\ \mathrm{BC} 177 & \ldots . . \\ 22 \end{array}\right\|$	BF195	$\begin{gathered} \ldots . \\ \cdots \\ \cdots \end{gathered} 11$	$\left\lvert\, \begin{aligned} & \text { TIP3055......55 } \\ & \text { TV106/02 } 1.60 \end{aligned}\right.$			1N4001-7 07
HA1166........ 2.65	TA7108P 2.10	TDA2530 2.10	UPC41C	UPC1367C … 2.85		$\begin{array}{\|l\|} \mathrm{BF} 196 \\ \mathrm{BF} 197 \end{array}$	$\begin{gathered} \ldots \\ \ldots \\ \ldots \end{gathered} 11$	$\left\|\begin{array}{l} \text { TV106/02 } \\ \text { 2N305450 } \\ \text { 25 } \end{array}\right\|$	DY802...	$\begin{aligned} &72 \\ & \cdots86 \end{aligned}$	1N5401-8 12
HA1197........2.30	TA7120P 2.05	TDA2532 $\ldots . . .220$	UPC554C	$\begin{array}{ll}\text { UPC1368C } & . . .3 .76 \\ \text { UPC1370C2 } & 3.80\end{array}$	$\left\lvert\, \begin{array}{c\|c} \mathrm{BC} 182 \\ \mathrm{BC} \\ \hline \end{array} 102 \mathrm{~L}11\right.$	BF197	$\begin{gathered} . . .11 \\ \ldots . .14 \end{gathered}$	$\left\|\begin{array}{l} \text { 2N3054 } \ldots . . .55 \\ \text { 2N3055 } \ldots . .50 \end{array}\right\|$	PCF802 PCL 82		BZX61-range 18
$\begin{aligned} & \text { A1199......... } 2.3 \\ & \text { A1202....... } \end{aligned}$	TA71293.00	TDA2540 1.95	UPC555	UPC1370C2 ..3.80	$\left\|\begin{array}{l\|l\|} \text { BC182L } & \text {..... } 11 \\ \text { BC183L } & 11 \end{array}\right\|$	$\begin{aligned} & \text { BF198 } \\ & \text { BF241 } \end{aligned}$	$\begin{gathered} \ldots .14 \\ \ldots . \end{gathered}$	$\left\|\begin{array}{l} 2 N 305550 \\ 2 S C 1172 Y \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { PCL82 .. } \\ & \text { PCL } 84 . . \end{aligned}\right.$		BZY88-range 11
A1211..........1.87	TA7139P 2.80	TDA25811.70	UPC577H3.00	UPC1377C	BC184L 11	BF256	LC..... 25	1.85	PCL805		
HA1306........ 2.97	TA7157P3.00	TDA2590 225	UPC585C 1.40	UPC1378H3.80	BC208 12	BF258	25	2SC2029 . 2.00	PC		
HA1319........ 2.90	TA7171P3.40	TDA2591 2.70	UPC1009H2.15	UPC1384C ...5.50	BC212L 10	BF259		2SC2078 . 2.00			
HA1322........2.10	TA7172P 3.40	TDA2593 2.30	UPC1017G2.55	UPC2002H 2.20	BC2 13L 10	BF337	28	2SC2078 . 2.20	PL504		
A1325........2.30	TA7176AP ... 2.90	TDA2600...... 5.50	UPC1018C ...1.15		BC214L 10	BF338		$2 \mathrm{SC1969}$. 2.45	PL508		E IF GAIN MOD .785
HA1338.........2.78	TA7193P 4.20	TDA2611A ... 1.50	UPC1025H ...3.30		BC237B..... 11	BF458	30	Sony SG613/	PL509/51		EN COIL G111.06
HA1339........ 2.80	TA7202P	TDA2640 1.80	UPC1026C1.45		BC337 11	BF4		6533 8.50			
HA1342A 2.33	TA7203P3.00	TDA3560 5.10	UPC1028H 2.15		$\mathrm{BC}^{\text {C33 }}$........ 10		1.60				G8 TRANSDUCTOR 2\%
HA1366	TA7204P	SAS560S 1.83	UP		BC547 10						
HA1368....... 220	TA7205AP 1.60	SAS580 2.40	UPC1035C .. 2.50		8						
A1371......... 2.97	TA7210P5.60	SAS590 2.40	UPC1042C ... 2.40	DECCA 30(400		2.55			6.45		
HA1374........ 2.56	TA7222P 1.70	SL901B 4.80	UPC1043C ... 2.45	DECCA $80 / 100 / 40$	350 V		DECCA	6W			
HA1377 380	TA7223P3.15	SL917B6.95	UPC1 156H2.45	(800)250V		2.90	PYE201		15		
HA1388 4.20	TA72274.65	SN76003N ...2.05	UPC1168C ... 2.70	PHILIPS G81600		2.00	PHILIPS	G8S/L	3.90		
HA1397........4.15	TA7310P 1.70	SN76013N ...1.80	UPC1170C1.55	PHILIPS G9(2200)	J63V	1.15	PHILIP'S	G8S/	2.00		
HA112112.43	TA7313P2.10	SN76023N 1.80	UPC1176C ...2.15	PHILIPS G11(470)	250 V	1.95	HITAC		8.95		
K1A72172.75	TAA550 28	SN76110N 90	UPC1177H2.30	PYE 691/7(200-30	0)350V	2.10	ITT CVC5	W	9.40		
HA11221 2.77	TBA120AS 70	SN76226DN .1.45	UPC1178C ... 2.20	RBMA823(2500/2	500130 V	1.10	ITT CVC8		12.80		
LA1201 1.88	TBA120SB 90	SN76227N ... 1.00	UPC1180C ...3.05	THORN3500(175/	00/100/		PHILIPS	G11 (TiP SW.)	25.80		
LA1230 2.30	TBA120U 1.00	SN76660N65	UPC1181H ... 2.20	400)350V		225	1043/05	TFK	30		
LA1365 225	TBA395........ 125	STK00396.45	UPC1182H2.35	THORN3500(1000))70V	65	U321 TF		7.95		
LA2200 225	TBA396......... . 85	STK00405.95	UPC1183H ... 2.35	THORN9000(400)	400 V	2.75	U322 :F	K	. 7.40		

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft. etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572

NEW 1984 CATALOGUE NOW AVAILABLE - Many prices reduced - range increased - fully illustrated. Price 65p, per copy (free upon request with

VALVES

EAST CORNWALL COMPONENTS
 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 0939 32669

[^0]

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our cover photo this month shows a Sony KV2000UB awaiting attention at the service headquarters of R.N. French Ltd. (Audio Visual Rentals), Sedlescombe, East Sussex. Our thanks for their help.

HELD OVER

Due to shortage of space in this issue the concluding instalment of the TV Test Pattern Generator series has had to be held over until next month.

TELEOR5LOM

DBS PROSPECTS IMPROVE

The conventional view not long since was that there was no conflict of interest between cable and satellite TV. We were to have them both. Satellite links would serve the cable networks, providing programme feeds. The public would also get its DBS channels. A cable socket at every front door plus a dish on the roof or in the garden. We've come a long way in a short time however. As the sums have been worked out, so the vista of endless lines of communication of every possible sort has receded. At present, satellite reception looks to be the more likely way in which most of us will eventually be given a wider choice of programme material. True this will mean fewer channels than a cable service, with less scope for extra facilities and a higher initial outlay for the viewer, but the economics of satellite broadcasting are beginning to look rather less daunting than those associated with cable TV.

The cable lobby has been calling "foul". The government, having first encouraged potential cable operators, then changed the rules of the game - at a delicate time, before anyone had got around to raising the funds required to buy the cables and associated equipment and get them installed. The changes came with the last budget, when the regulations on capital allowances for tax purposes were altered. The effect of this for prospective cable operators was to defer the likely break even point from seven to nine years. Well, having to wait for seven years to show a profit was bad enough. If the prospect is one of having to wait for a decade or so before profitability is achieved one might as well call it a day. The funds would earn a lot more in the building society or some other more prosaic investment.

In what looked like a rather desperate move the Cable Television Association proposed to the Information Technology Minister Kenneth Baker that the government should provide grants under a section of the Industry Act. The section concerned has been used to encourage investment in areas that promise growth, and would help compensate for budget induced difficulties. Industries of all sorts have always had to live with the problems caused by budget changes however. In the event, the Cable Television Association seems to have received a dusty answer.

Even before the budget changes, which could increase cable TV costs by up to 45 per cent, those companies awarded the initial eleven cable franchises were expressing serious doubts about the prospects. Several have already postponed the start of their services by a year, and reservations over the terms of the draft contracts have been expressed. A director of one of the companies has commented that with the increased costs on top of everything else ". . . quite frankly I do not think cable is going to get off the ground in the United Kingdom'".

That could all be part of an attempt to bring pressure on the government. But it doesn't create the sort of image that will encourage prospective cable customers. The impression at present being given is one of companies so strapped for funds that a decidedly lack-lustre service will be on offer when it does come along. The government has been less than helpful, but if the end result is simply that a lot of expensive cable doesn't get installed then at least we'll be spared another of those white elephants born of misplaced enthusiasm.

Both Thorn-EMI and British Telecom have been reviewing the extent of their commitment to cable TV in the light of the present gloomy outlook. Those of us who are dedicated Thorn watchers will see this as a sign of the way in which things are going Thorn generally get it right. The other side of this coin is the fact that Thorn's interest in satellite broadcasting appears to be on the increase. In addition to being one of those planning to participate in the official UK satellite service, along with other companies, the BBC and the IBA, Thorn are understood to have had talks with the Luxembourg Coronet venture (see Teletopics, July). This venture is primarily intended to provide satellite links for cable TV operators, but the medium-power satellites involved would provide signals receivable by individual households using a dish of a metre or less. Whether Coronet comes to anything remains to be seen. Finances have yet to be raised, and although agreement has been reached with the Luxembourg government there's been strong opposition from European post/telecommunications organisations, Eutelsat and various governments, especially the French, mainly due to Coronet being backed by US interests. Remember that Luxembourg helfed pioneer commercial radio however. The Irish government appears to be anxious to establish a satellite service that's likely to be commercial, and various smaller countries have been given satellite channel allocations - San Marino, Lichtenstein, Monaco and Andorra for example. There appears to be a lot of scope for commercial DES services in Europe, though one can't help but wonder what sort of programmes would be pumped out.

Fifteen organisations have applied to the IBA to participate in the proposed UK satellite TV service. At the time of writing the IBA is reviewing the applications prior to making recommendations to the Home Secretary. For its part the government is introducing measures to assist in getting DBS going. The IBA is to be given the discretionary power to extend the franchises of ITV companies participating in the DBS service at the next renewal date without advertising, i.e. going through the usual franchise renewal procedure. The life of the IBA is to be extended, and a satellite broadcasting board is to be set up to regulate UK DBS services. It seems that DBS TV is at last on the move.

At this point it appears that those interested in investing in TV service extensions in the UK are more inclined to put their money into satellite rather than cable ventures. Apart from the wider coverage, it's likely to be easier to sell the idea of satellite TV to the public than cable.

Stereo TV Sound

David Looser

The American Electronic Industries Association (EIA) recently announced that it was recommending the Zenith proposal for stereo sound on American TV. Following shortly after the BBC's successful tests of a digital sound system, this raised the prospect that there will be at least four totally different and incompatible stereo TV sound systems in use world wide in a few years' time.

The Pilot-tone System

To see how this state of affairs has come about, it's instructive to consider the stereo system widely used for stereo on f.m. radio and why this is unsuitable as it stands for TV use. Fig. 1 shows a simplified block diagram of a coder for this system, which was originally designed by Zenith in the 60s and is known as the "pilot-tone" system. Left and right audio signals are each fed via $50 \mu \mathrm{sec}$ preemphasis networks and 15 kHz low-pass filters to a matrix which produces a compatible mono signal ($L+R$) and a stereo difference signal ($L-R$). The $L-R$ signal is double-sideband, suppressed-carrier, amplitude modulated on to a 38 kHz subcarrier which is then combined with the $\mathrm{L}+\mathrm{R}$ signal and a 19 kHz pilot tone to form the composite signal. This composite signal is fed to the f.m. transmitter. Fig. 2 shows the spectrum generated by this process. The low-frequency portion up to 15 kHz is occupied by the mono compatible signal ($L+R$) while the region from $23-53 \mathrm{kHz}$ carries the stereo difference signal ($L-R$).

With this system the bandwidth of the modulation handled by the transmitter and the receiver is increased by a factor of $53 / 15$, or about 3.5 times that of a mono transmission. It's an unfortunate fact that the noise output of an f.m. discriminator increases as the square of the bandwidth. So the noise performance of this stereo system is about twelve times or 22 dB worse than that of a mono transmission. This sensitivity to noise applies not only to random noise (hiss) but also to interfering signals, where it can give rise to whistles and other annoying background sounds.

The TV sound carrier (which of course is also f.m.) has to contend with large amounts of interference from the vision carrier. This interference can be coupled into the sound signal in various ways, but the most important factor is the conversion of the vision carrier's amplitude modulation to phase modulation (p.m.). Although this conversion can occur in almost any part of the transmission path, it occurs mainly in the vision transmitter's final power amplifier and the receiver i.f. amplifier's bandshaping filter. At the vision detector, the 6 MHz intercarrier sound signal acquires this phase modulation which cannot be removed by the limiting that removes a.m. Since the unwanted p.m. is generated by the vision carrier's a.m., it's a distorted version of the video signal and thus has a similar frequency spectrum to the video signal.

Although the frequency spectrum of a video signal varies with picture content, there's a pattern that's dictated by the scanning process and is thus common to all pictures. The most significant frequencies present are the
field frequency (50 Hz) and its harmonics $(100 \mathrm{~Hz}, 150 \mathrm{~Hz}$ etc.) which produce the characteristic buzz sound, and the line frequency $(15.625 \mathrm{kHz})$ and its harmonics $(31.25 \mathrm{kHz}$ etc.). Each of these line scan harmonics also has its own "family" of field harmonics at either side - see Fig. 3.

In a mono transmission the field rate components cause most annoyance. The line frequency will in theory cause a problem but in practice this doesn't arise because its amplitude is much reduced by the de-emphasis components in the receiver and because, for those who can actually hear 15.6 kHz , it tends to be masked by accoustic radiation from the set's line scan components. The line scan harmonics, being well beyond the limits of human hearing, are no problem at all. If a stereo transmission using the pilot-tone system is involved however the results will be very different. It will be seen by comparing Figs. 2 and 3 that two line scan harmonics, 2 fh at 31.25 kHz and 3 fh at 46.875 kHz , occur within the sidebands of the modulated $\mathrm{L}-\mathrm{R}$ signal. The subcarrier demodulator would convert them to new frequencies of $38-31.25=$ 6.75 kHz and $46.875-38=8.875 \mathrm{kHz}$, both of which are audible and very annoying. The "family" of field harmonics around each line harmonic would give the whistle a rough quality and, since the amplitudes of these harmonics vary with picture content, the "quality" of the sound would vary with picture content, further increasing the annoyance.

There are three ways of overcoming this problem. (1) To improve the transmission system to reduce the video crosstalk in the audio signal. (2) To alter the stereo system's parameters to reduce its susceptibility to such crosstalk. (3) To abandon the pilot-tone system in favour of something more robust. The Americans have chosen to combine methods (1) and (2) while other countries have opted for a combination of methods (1) and (3).

Split-sound Reception

There are several ways in which the signal-to-interference ratio can be improved, the most obvious being to abandon the use of the intercarrier sound technique. Intercarrier sound is almost always used in TV sets nowadays, but it's quite in order to use a u.h.f. f.m. receiver of conventional superhet design to receive the TV sound. Because such a receiver doesn't use the vision carrier as a "local oscillator" (as in the intercarrier system), it's immune to the effects of p.m. on the vision

Fig. 1: Pilot-tone coder block diagram.

Fig. 2: Pilot-tone system frequency spectrum.

Fig. 3: Video signal spectrum.

Fig. 4: The i.f. response required for correct reception of a vestigial-sideband transmission.

Fig. 5: Response for improved sound reception.
carrier and should thus be free from video interference.
Unfortunately this technique has its drawbacks. In particular, the tuner's local oscillator stability requirements are severe. To illustrate this point, if it's desired to receive the ch. 37 sound (sound carrier frequency $605 \cdot 25 \mathrm{MHz}$) using a superhet receiver with an i.f. of 33.5 MHz (the standard UK sound i.f.), the local oscillator will be operating at 638.75 MHz . Since the peak deviation of the sound carrier is 50 kHz , the local oscillator's spurious f.m. must be held at less than 50 Hz peak, or 0.1 parts per million, to keep the signal-to-noise ratio better than 60 dB . Using a standard varicap tuner, the hum and noise at the tuning pin would have to be kept below $3 \mu \mathrm{~V}$, a very difficult matter.

The Quasi-split Technique

As an alternative to this "split-sound" technique, it's possible to improve the intercarrier receiver's performance. The problem with the intercarrier receiver centres on the i.f. bandpass shaping required. Nowadays this is done by a filter (often a SAWF) between the tuner and
the i.f. amplifier chip. Fig. 4 shows the required shape. The most noticeable feature of this is the asymmetry around the vision carrier frequency. It's this asymmetry, necessary for the correct reception of vestigial-sideband transmissions, that causes the a.m./p.m. conversion.
It's not possible to have a full bandwidth symmetrical response because most of one sideband is removed at the transmitter, but if a response shape like that shown in Fig. 5 could be adopted then a substantial reduction in vision carrier p.m. could be expected. This is clearly impossible for the vision signal, since it would attenuate all but the lowest frequencies. One way around this is to adopt the so-called "quasi-split" or "split-intercarrier" receiver technique shown in block diagram form in Fig. 6. This arrangement is becoming popular on the continent, largely because of the W. German stereo system (of which more later), and is a valid technique for mono receivers. The split-intercarrier receiver is still an intercarrier receiver and is sensitive to vision carrier p.m. generated in the transmitter and other parts of the receiver, but with care in the design of all parts of the system it can offer a reduction in vision buzz levels of around 10 dB .

Improvements to the Pilot-tone System

This improvement is not sufficient to allow noise-free operation with a pilot-tone stereo system, and some alterations to the parameters of the system are called for. The major change suggested by Zenith is to alter the subcarrier frequency to $2 \mathrm{fh}(31.468 \mathrm{kHz}$ in the US system). This means that the major interference within the bandwidth of the modulated $L-R$ signal is reduced to zero when the subcarrier is demodulated. But the fieldrate sidebands of this interfering signal are reproduced at their original frequency and produce a similar buzz sound to the field frequency harmonics themselves.

Zenith considered that their proposed changes would be sufficient to produce a system with adequate performance, but the EIA seem to disagree since they've recommended the use of the DBX noise reduction system. This - a rising competitor to the better-known Dolby system for tape noise reduction - offers a noise improvement of about 20 dB over the audio band.

The FM-FM System

A different approach was taken by the Japanese when they introduced their own stereo system, which has been in regular broadcast service since 1978. This system, known as the f.m.-f.m. system, uses a frequency modulated subcarrier to overcome the noise problem. This subcarrier, again centred on 2fh, carries the $L-R$ signal, the $L+R$ signal being carried at baseband as with the pilot-tone system. Because of the use of an f.m. subcarrier, the $L-R$ signal suffers from a significantly lower noise

Fig. 6: Block diagram showing the quasi-split technique for improved souna reception.
level than that associated with the Zenith system's a.m. subcarrier. It also allows the subcarrier channel to be used to carry a separate programme from the main channel. This gives bilingual capability or alternatively allows viewers to decide whether they wish to hear the answers in quiz shows in advance of the participants.

These improvements are not obtained without a price however. The price is the relatively high distortion associated with the use of an f.m. subcarrier - due to the fact that the modulated subcarrier must be closely band limited before being combined with the main channel at the transmitter, in order to prevent it causing interference with the main channel. This band limiting removes the f.m. signal's higher order sidebands, i.e. those that enable lowdistortion demodulation to take place. In practice the f.m.f.m. system produces about two per cent distortion on its subcarrier channel, compared to the less than 0.1 per cent that can be achieved with an a.m. subcarrier. In addition the video derived interfering signals, though silent in themselves, can interfere with the subcarrier in a complex way, producing a form of distortion known as "buzz beat". It results in a "rough" sound to high frequencies such as the harmonics of piano or violin music.

In this context it's interesting that the Zenith proposals. allow for a second programme to be carried by an f.m. subcarrier at $4 \mathrm{fh}(62.936 \mathrm{kHz})$. It's admitted that this would be a fairly "lo-fi" service.

The Two-carrier System

Instead of using subcarriers in the manner described above, the "wide open spaces" of the broadcast TV bands suggest an altemative solution - the use of two carriers. This is the method chosen by W. Germany in the system used there since 1980. This uses a second sound carrier, spaced at 0.24 MHz from the main one and transmitted at a level of -7 dB with respect to it. As with the Japanese f.m.-f.m. system, this allows either a stereo signal or a second programme to be transmitted.

When used in the stereo mode the main carrier carries $L+R$ while the second carrier carries a $2 R$ signal. The reason for transmitting $2 R$ instead of $L-R$ is as follows. Since both carriers are interfered with by the same video signal they acquire the same background noise. If $L+R$ and $L-R$ signals are matrixed to L and R in the decoder, this noise will add in the case of the L signal and cancel in the case of the R signal, producing a one-sided buzz. By using $L+R$ and $2 R$ the noise becomes equal in the two speakers and is at a lower level.
This system seemed to be sufficiently attractive for UK use for the BBC to investigate a UK version. Tests have been carried out using a second carrier spaced at $0 \cdot 304 \mathrm{MHz}$ from the existing sound carrier, i.e. $6 \cdot 304 \mathrm{MHz}$ (actually 6.3046375 MHz) from the vision carrier. These tests were considered to be disappointing. To avoid intermodulation effects causing patterning on the picture it was found to be necessary to lower the level of the main sound carrier by 6 dB , to -13 dB with respect to the vision carrier, and to use a maximum level of -22 dB for the second sound carrier. In W. Germany the main sound carrier has always been transmitted at -13 dB , and a level of -20 dB is used for the second carrier.

The BBC Digital System

The BBC engineers felt that these levels were too low to guarantee high-quality sound reception, particularly in
fringe areas, and as a result the BBC have proposed a further system. This would retain the use of a second carrier, but digitally modulated. A second carrier spaced at 6.55 MHz from the vision carrier allows the system to carry about $700 \mathrm{kbit} / \mathrm{sec}$, enough for two high-quality sound channels. Digital modulation is inherently more tolerant of poor signal-to-noise ratio in the transmission system than f.m. or any other analogue modulation technique. In addition, since the spectrum occupied by the digital signal is wider than with f.m., the visibility of any intermodulation patterning is reduced.

The BBC system was tested last year in the Wenvoe area. This was chosen because the hilly terrain would result in any multipath propagation problems showing up. In addition, the long chains of rebroadcast transmitters that derive their signals from Wenvoe enabled the ability of existing, unmodified transposers to handle the system to be evaluated.

The tests were very successful. Using carrier levels of -10 dB for the normal f.m. sound and -20 dB for the extra digital sound, the system was found to be very robust. Even when the signal had passed through as many as five transposers, the system gave good sound quality at virtually all sites where a colour picture could be received, and even a few where no picture at all could be resolved! Further tests have been carried out to ensure that the additional signal doesn't cause any significant impairment to the picture and performance of existing domestic receivers.

Cost Factors

Assuming that further tests don't bring to light any as yet unexpected problems, the success of the system will depend on one major factor - cost. This has two aspects.

First there's the cost to the broadcaster. Going stereo can be very expensive to a broadcaster, particularly one like the BBC whose operation is spread over many studio and transmitter sites. Re-equipping studios for stereo sound and the addition of two-channel audio capacity to microwave links would be expensive, though possibly most expensive of all would be the extra production costs associated with making programmes in stereo. Compared with this the extra cost of digital encoders at the main transmitters is negligible.

Secondly there's the cost to the viewer. Whilst many would like to receive stereo sound if it was available, it seems that few would be prepared to pay a significantly higher price for sets that enable them to do this. Receivers for the BBC system would, at least in the short term, be noticeably more expensive than those for any of the alternative systems. This is likely to lead to pressure from the trade to adopt one of the other systems. I feel that this would be a pity. The BBC system has several attractive features. Apart from the promise of higher sound quality than the alternative systems could provide, it's the only one in which the stereo signal is entirely separate from the normal mono sound. This means that the mono and stereo signals can each be separately optimised in terms of dynamic range, equalisation etc. for their respective audiences. In particular, the user of a stereo receiver could expect a true "hi-fi" sound that's not been compromised to take account of existing sets with their usually tinny speakers and inadequate audio amplifiers.

Handled properly, stereo could bring to TV sound the quality that's been absent for too long. It would be a pity to accept a compromise for short-term ends.

				SPECIFIC COMPOMENT	39068	400 ElC1043/06 Tuner
$\times .0047 / 1500 \mathrm{AB}$		19	038		Switch	
5sis $\times 10{ }^{1.50}$	70 Thom 8500	181 TAAS51 200	${ }^{\text {Chass }}$	Speaker 200	391 G8 Line Stor/EqI.	461 U221 Now Tuner 7.95
$10 \times 20 \mathrm{MFD} 18 \mathrm{~V}$	63	182 TDA2500 32	083 Philips KT3 ${ }^{100}$	${ }_{352}{ }^{\text {Speaker }}$ Thorm ${ }_{1600}$		462 U32 New Tuner 7.55
Elect 205	4.50	183 TDA2571 215	034 RRI T24 Chass. 14.00		392 G8 R/G Symery	46939003 Posister 0.59
$9310 \times .077 \mathrm{MFO} 4000$	$10 \times$ Anti Track EMT	184 TAA599	035 Senyo CTP5101 9.50	Dropper	Coill 3.33	46498009 Posister 0.59
1 Pol 0.0 .50		238	037 Split Diode EHT	353 T $\times 10$ Preser		465 Mull.DLL5 Delay
$945 \times 4.7 / 100 \mathrm{C}$ C514		190 TAA2000		Drawer 3.80		
${ }^{\text {T3500 }} \times{ }_{5} \times 125$		191 TAA2811 124		$\times 10 \mathrm{Cst}$		
$95.5 \times .47 / 1000$		198 TAAZS40 235		Assy \times dor		469 Cut Out Meut GEC
Dubilier		28			20 mm fuse 1.50	
$\times 0.12000 \mathrm{~V}$		211 ETP0016 23		$3553^{3 \prime}$ Round BR	$39920 \times 25 \mathrm{~A}$ A/S 2	$4705 \times$ GEC2100 3 Log
TIT		2128780018	110 PVe 7134 Wor 718	Speaker ${ }^{\text {cher }}$	Fuse ${ }^{1}$	Thermist. ${ }^{100}$
50 Supp iT	$\begin{aligned} & 1405 \times \text { TAAKO } \\ & 1415 \times \text { TBAIZASS } \end{aligned}$	220 SL5018 int Circuin 500	111 Pre 7156 Way 11.55	$3585 \times \mathrm{Th} / 3500200$	$40020 \times 2 \mathrm{~A} / \mathrm{S}^{2 \mathrm{mmm}}$	
150			112 Phiu G9 Square 1275	Corv. Pot.		ry Swtch. 3, ${ }^{\text {3 }}$
	$1435 \times$ TBA5400		113 Phil G8 Sloping 14.9	$3595 \times$ Tha/3500 50	20	$5 \times$ Gen. Purp. Push/
17 CrC 5	$1455 \times$ TBASE0 $\quad 3.50$			Corr. Pot 190		
51 Decca 1730/1830 500	$1465 \times$ TBABIOS 300		115 Them 16154 Way7 78		$40220 \times 1.25 \mathrm{~A}$	$48120 \times$ Neons
4.50	$1475 \times$ TBASP00		116 Dacca 6 Way 68	Rectifier \times a/5	T	
53 GEC 2040 Hybrid 3.00	$1485 \times$ TBA990 $\quad 335$	OOR Decca 30 Series 70	117 Gecca 411 Woy 6 Way	362 Ts000 Rem. Receive	$5 \times$ RRI T20 Tube	
54 T1500 5 Stick 350	$1495 \times$ TBA5200 4.00					ax
7.0	$1505 \times$ TBA530	001 IT CVC 25/30/38 78	Tapered 7.95 1.585	3335 T3500 Mains TX		Plug \times Metar Cose
56 Thorn 1400	$1515 \times$ TBA950	Philips $69 \quad 7.50$	$12017 \mathrm{CVC5}$ 925			
51 Philips $69 \quad 3.50$	$15410 \times$ TCA220SO	006 RR1 720	121 TT CVCa 11.5			
Unixareed IT Type 4.50	$1555 \times$ MC13270	007 RII AR23 7		Out	112 Phillips G11	$485{ }^{50 c}$ Fo/Unit Thom 8500
$5 \times$ TVII EHT Rec for	180 TDA1770	008 RRI 21818	V.C.R. Woy 7 \%			
PTVs ${ }^{\text {che }} 1.00$	161 TJA1190	O09 RR1 718 20/22/26"	1218 RRII A823 日tc. 7.95	370 Pre 731 Thick	Speaker $10 \times$ TDAz800 10	
20 $3 \times$ TV45 EHT Rec	182 TDAIOOSA		124 Hitachi 4 Way 7.5		5	
2718	164 TDAIOSS 183	010 ARI AT4 Mono 10 M			115 PALKT3 Speaker 1.50	
	106 TaAlou ${ }^{106}$	011 Thom 1800/91 7.0			$13510 \times$ Decca 30108	498 TX10 Chass. Focus
9R12179 3 3,00	106 TAA190 1.50	012 Thom 1615		372 Pre 731 3R3 50 W	Fusible $\times 10$	
Pe $691 / 5973$	167 TDA1412 aso	013 ITr CVC 45			$5 \times$ Decca 303 3R9	497 De-Soldering
Pve CT2000 4 Lend 350	172 TDA2002	014 Phil TX Chass. 50		373 100K $\times 3$ Dewer $\mathrm{P}^{\text {saset }}$		3.50
66 Pye Criou 5 Leod 4.50	173 T0arceo 250	015 RR1 Renger 1/2 5.00	CAPACTIOR	Att Pya 7	437 Decc	4981×10 Trimming
67 Korting			80 220/400 CVC	378 Grundig 5010/8010	Voll + Switch $\quad 125$	
Hyto 500	$2523 \quad 235$	017 Philips E2 Chass 5co	$\begin{aligned} & 80 \\ & 100 \end{aligned}$	Vid Mod. 40		
All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days. Please add 15\% VAT and 90p P \& P		018 Thom 9000 1200	$81200+300$ Pye 691200	3845×108	1	
		019	600/300 Phil G8 1.90	Corr. Pot. $\quad 210$	5×208 Universal	$23010 \times$ AC128 $\quad 1.50$
		020 Poisht 161 Mono 6000	$175+100+100$	$5 \times 15{ }^{5}$	5 Por.	$23550 \times 8 C 2131$ 250 10
			2000/100 Vat	N. Pot. 200	4555×1008 Universal	30124
				$5 \times$ Phil G8 $2 \mathrm{k} \times 2$		${ }_{270}^{2510 \times 80} \times$ BU208A
		004 Thom 1500 15KV 4.0	${ }_{86} 800+400$ Decce 30	Bright 250		$\begin{array}{ll}2710 \times 802008 \\ 2710 \times 8 \cup 209 & 7.50\end{array}$
		025 GEC 2040/2100 Hetrio		$75 \times$ Phil. 6810 k	457 io $\times 100 \mathrm{kTun/Pras}$	$27210 \times$ BU328
			25		3.80	$2735 \times$ BU205 $\quad 3.75$
		0228 Bush 161 Mono 500	1.5	$3885 \times$ Phil. 6887 kLog .	Tune	28025×2 20055
		GEC Singla	100/400 Tho 90001.50		ElCioumos Tuner	(Texas) 7.50
			89 91	389 G8 Plastic $\begin{array}{l}\text { Nains } \\ \text { Switch } \\ 0.75\end{array}$	ELC1063/OS Tuner	${ }_{\text {20, }}^{291161 / 1003)} \times$ 2N2S05 (EquiN.

TELEVISION \& VIDEO SERVICING

(FULL-TIME \& EVENING COURSES)

- ELECTRONIC PRINCIPLES
 - TELEVISION SERVICING
 - VIDEO CASSETTE RECORDER SERVICING

High percentage of practical video servicing provided

Courses from 3 weeks to 15 months. College Diploma \& BTEC Awards.

(Also full-time day courses in Computing Technology \& Robotics).

Free prospectus - please state whether interest is in day or evening training.

> LONDON ELECTRONICS COLLEGE 20 Penywern Road, Earls Court, London SW5 9SU.
> Tel: 01-373 8721.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mai order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direc response to an advertisement in this magazine not, for example, payment made in response to catalogues etc. received as a result of answering such advertisements Classified advertisements are excluded."

Some Confessions

Les Lawry-Johns

It's either that I'm getting old and senile (true says HB) or it's that I'm drinking too much in a frantic effort to thin down my blood (my story). The result of a recent blood test showed it to be 70 per cent proof. Maybe this explains my antics, which are becoming more and more worrying. Listen to this.

The 3500

You'd think these elderly Thorn sets couldn't possibly cause a problem. They never used to. When I was capable of rational thought, that is. Anyway, June phoned to say that her's had gone wrong and that she couldn't bring it in. It's the large 26in. version in a heavy cabinet, so this was understandable. I said I'd call. At the same time another lady popped in to say that her large G8 required attention and would I call. I thought I'd do June first, then pop over and do her. June said her colour had gone (I thought).

So, armed with the usual boxes plus a 3500 decoder panel, a G8 line output transformer and tripler, I set off. On arrival at June's I was savaged by her dog. My fault. I'd gone in the back way and opened the kitchen door. I was flat on my back with him about to rip my throat out when a puzzled look came over his dear old face as he recognised whom he was about to kill. "Get off Piddler you fool, its only me" I gasped. Then he trotted off to find his ball and threw it at me, thinking it was fun time. June came down from wherever she'd been and dragged him away, enabling me to collect my things and go through to where the set lived.

I switched it on and it hummed away to itself, but no colourless picture appeared. I queried this with June who insisted she'd reported that the colour went first, then the set went off. Ah. Remove rear cover and check voltage at h.t. fuse. 30 V instead of 60 V . So I raised the right side line timebase panel and unhooked the tripler. Still 30 V . I then checked the R2008 line output transistor which was o.k. and went on to check other things that tend to load the h.t. line. Nothing came to light. I was inclined to suspect the e.h.t. transformer, and thought it would be prudent to nip back to the shop, pick up a spare panel and fit this to clear the job up quickly. It took some ten minutes, during which time Piddler forgot who I was which led to a repeat performance.
"Stop it you daft bugger. Go and find your ball and leave me alone for Gawd's sake." He trotted off into the lounge and settled on the armchair next to the set. Once more June dragged him off and I was left to fit a replacement panel. Hummm the set went, and again there was 30 V at the 60 V fuse. Check tube base voltages for clues. Cathodes normal at over 100 V - but so were the grids. These should have been at zero or slightly negative. I could hear a slight bubbling noise and the penny then dropped. No negative supply to the grid bias control meant that the tripler wasn't working. Oh dear. Off went the set and off went I to get a tripler.
Something was worrying me. If the tripler had caused the trouble in the first place it could well have damaged the transformer on my replacement panel. So I thought it
would be wise to pick up another working panel as well as a tripler - if I had one. II managed to find one and test it in the rig. It said it was o.k. Back to June's. This time Piddler wagged his tail and dropped his ball under my feet. Over I went and bang went the panel.
"I hate you, soppy great sod" I bawled.
"Come along darling" said June as she dragged him off again.

I fitted the tripler first and my fears were confirmed by 30 V at the h.t. fuse. Fit spare panel. The e.h.t. now rustled up nicely, but the Channel 4 test pattern lacked height and linearity. Whilst I was adjusting the controls the 60 V fuse failed. It hadn't done this before so something new was afoot. The R2008 had shorted - and I was at the end of my tether. Blinking back the tears, I fitted a new transistor and wondered what would happen next.

With a new 2.5 A fuse in place the picture was back and I carried on setting up the test pattern, finding it difficult to obtain full height without a fold-up at the bottom or teletext at the top. At last it was done and I reported to June. She surveyed the picture and expressed satisfaction. Suddenly there was a clonk as something dropped down and the picture became severely rippled. I knew what had happened. Tripping over Piddler's ball had jolted the panel with the result that the core of the coil in the 60 V line had been loosened. It had now dropped on to the decoder board.

Once more the rear cover was removed, after which the core was retrieved, fitted and secured. I was paid off and departed, cursing myself at making a right muck up of a straightforward job. At least a G8 wouldn't cause any troubles. Not a dear old G8.

The G8

Still feeling confused, I arrived at my next destination. The door was opened and a pretty little bitch hurled herself at me. After various doggie pleasantries she ran through to show me where the set was. Taking the back off, I checked the left side fuses to ensure that h.t. was present. It was, and as expected the 800 mA fuse on the right side scan panel was open-circuit. I checked the current briefly. Over 1A and the line output transformer was discoloured. A new transformer was fitted with no trouble at all. The snag was that I'd forgotten to pack 800 mA fuses. Since the normal current is under 500 mA , I fitted a 630 mA anti-surge type. The set then worked nicely and after being paid and saying goodbye I prepared to depart.

As I was about to drive off there was an irate call.

"Didn't last long did it?" So back with the gear and I could hear the power supply tripping away. The 630 mA fuse had failed, but why was the power supply tripping? Absence of the load after failure of the fuse should have produced sullen silence.

I then did what I should have done initially. I'd merely checked that the h.t. was present, not measuring it carefully. It was 220 V , not $200-205 \mathrm{~V}$. I set it at 200 V and the tripping stopped. The load on the right side fuse was under 500 mA so J went through my pockets. Joy - an 800 mA fuse!
"There'll be no callbacks this time madam" said I, wishing that I could be a bit more sure. All was well however and it was back to base, feeling shattered at this lack of expertise, care and ability to think straight.

The Fidelity

A Fidelity CTV14R colour portable was awaiting our (lack of?) attention. We'd sold it a year or so ago. The owner's complaint about it was repeated but intermittent shut down, reverting to channel one each time. Fie said it was random channel change, but it was really shutting down then coming on again in the start-up condition.

Slight pressure on the front panel produced the shut down and restart. A tap on the top did the same. So we removed the back and applied pressure here and there. It seemed that the front panel was the focal point, so we removed it, expecting to find a cracked track or a dryjoint. No amount of disturbance would produce the shut down with the panel out however, so we tried the main panel. This did it and out came the panel. Again no disturbance would produce the shut down. Tapping the now nearly empty cabinet did. I was puzzled and idly tapped the tube base - very lightly. That did it. Oh please, not the tube! Lightly disturbing the base panel then led us to the focus control, where the earthy end was not securely bonded to the print. Resoldering this restored continuous operation. Well, well!

Greetings

Best wishes to Alan Daines of Canterbury, a hard working member of the clan. Keep it going Alan. Message via Stan Westover of SEME. Thanks to A.S. Foster of Brixham, Devon. The doctor had only one hand on my shoulder, rest assured. They don't really do that ... do they?

Servicing the Sony KV2000UB

Part 1

David Botto

This was one of the most popular Sony TV sets. There are two versions, the Mk. I and Mk. II. They differ in many respects, but it's simple to find out which version you have on the bench. As is usual with Sony receivers, the KV2000UB is made up of a number of printed circuit boards that are identified by letters. In the Mk. I version there are two main signals panels, A and B: the Mk. II version has a single, larger A panel containing the circuit functions of the two previous boards. Looking into the rear of the Mk. II version with the back removed, you'll see the larger A board mounted vertically on the left-hand side. Much of the discrete component i.f. and decoder circuitry used in the Mk. I version is replaced by three i.c.s on this later panel.

Power supply panel F is at the bottom left. The mains bridge rectifier is followed by a transistor chopper circuit which incorporates three protection arrangements, ECL (excess current limiting), ECC (excess current cut-out) and OVP (over-voltage protection). These protective circuits are well designed and if a fault condition causes any one of them to sense that all is not in order the receiver trips or shuts down completely. The power supply circuit (Mk. I version) is shown in Fig. 1. The panel is accessible and dealing with faults is straightforward - provided you understand the principles of operation.

The a.c. mains supply passes via switch S901, connector F1, the mains fuse and filter then R602 ($2 \cdot 7 \Omega, 7 \mathrm{~W}$ w.w. non-flammable)/thermistor TH601 (part no. 1-800-35600) to bridge rectifier diodes D601-4 (four U05Gs). The 320 V produced across reservoir capacitors C606/C621 is fed to the chopper circuit via fuse F602. T601 is the chopper transformer and Q607 the chopper transistor. The 18.5 V supply at the collector of the driver transistor Q606 is derived from the 320 V rail via R 617 ($33 \mathrm{k} \Omega$, 7W metal oxide non-flammable).

Transistors Q604/5 are connected in an astable
multivibrator circuit that acts as a pulse-width modulator. The start-up supply for the multivibrator and the error amplifier transistor Q601 is obtained via R604 and R605 (both $47 \mathrm{k} \Omega, 1 \mathrm{~W}$ metal oxide non-flammable). Once the circuit is working normally these stages are supplied by D609/D614 which produce 21 V across the reservoir capacitor C612. The emitter of the error-amplifier transistor is held constant at 12 V by R612/D605 - R612 should always be replaced with a 1 W type.

The multivibrator free runs at about 10.8 kHz - measured using our workshop frequency counter. In normal operation it's triggered by pulses from the line output transformer T801. In the Mk. I version these are derived from $\operatorname{tag} 4$, which also supplies the 33 V rectifier D803: in the Mk. II version they are taken from tag 6 which supplies the 18 V rectifier.

Preset VR601 sets the voltage at the base of Q601. This voltage is derived from the 135 V h.t. line via R607 etc. and varies with any h.t. voltage fluctuations. Q601's collector voltage is thus varied to provide the control action - at the junction of R615/6 in the pulse-width modulator circuit. If the voltage at the base of Q601 falls, the on time of Q604 will be increased, and vice versa.

In addition to the 135 V supply, panel F produces a 16 V start-up supply for the line oscillator i.c. This is developed across C626 and appears at pin 2 of connector F3.

The ECC circuit operates if the power supply's output is short-circuited or more than twice the correct load current flows. Under these circumstances the voltage across C610, which is charged via D606/R614, rises sufficiently for Q603 and Q602 to latch on, shorting the base of Q604 in the multivibrator circuit and thus killing the 135 V h.t. supply.

The ECL circuit operates if the peak current flowing into the load exceeds 1.3 A . Under these circumstances the voltage across R628 will be sufficient to turn Q608
hard on. The effect of this on the multivibrator circuit is to switch Q604 off and leave Q605 on, again killing the h.t. supply. Even a brief overload will trigger the ECL protection circuit.

The OVP circuit operates when the 135 V line rises above its correct level. In this event zener diode D615 conducts, switching on Q602/3.

There are some differences in the Mk. II version of the F board. The mains filter circuit T603/C601/C629 can be missing; C606/621 are replaced by a single $250 \mu \mathrm{~F}$ unit (C606); L602 becomes L601 and fuse F602 is deleted. Several component reference numbers differ, e.g. D609 and D614 are interchanged.

Power Supply Fault Finding

A common fault with these receivers is tripping - the set seems to be trying to work but can't quite make it! To deal with this you need a variac or a tapped mains input transformer - something that's essential for tests on the KV2000UB - to enable you to reduce the mains input voltage. Start off with about 150 V a.c. If the set then starts to work, you've almost certainly got a fault on the power supply panel.

Connect a digital voltmeter - best for all tests on this receiver - across the h.t. line. A handy place is pin 1 of socket F3. Slowly turn up the mains input voltage. If the h.t. voltage rises above 135 V and the set cuts out at about $140-150 \mathrm{~V}$, the OVP circuit is operating and there's a fault in the power supply regulation.

The first component to suspect, always assuming that some person unknown hasn't twiddled VR601, is the h.t. reservoir capacitor C620 (it's C622 in later versions of the Mk. II chassis). The h.t. voltage goes high when this capacitor's capacitance falls - if it starts to leak, line ripple appears on the h.t. line, giving the rather puzzling effect of blanking out the luminance signal. Then test resistors R607 ($33 \mathrm{k} \Omega$, 2 W metal oxide non-flammable), R633/R609 ($1 \mathrm{k} \Omega$), R610 ($2.7 \mathrm{k} \Omega$) and R608 ($3.9 \mathrm{k} \Omega$). Replace these last three with small 1 W types for greater reliability. Carefully check the preset VR601 and make sure that thermistor Th602 (TH4700) is intact.

Should you ever have low h.t., probably with picture ballooning, and VR601 has no effect when turned, Q601 almost certainly has an internal short-circuit.

When the set trips and reducing the mains input to 110 V a.c. doesn't restore operation - or perhaps the set is completely dead - the power pack can easily be checked for correct operation before moving on elsewhere. To do this, remove connectors F3 and F4 and connect a dummy load - a $100 \mathrm{~W}, 240 \mathrm{~V}$ bulb works well - between pin 1 of F3 and chassis. With 240 V mains input the lamp should light and the h.t. rail should measure 135 V d.c. plus. Also check for 16 V d.c. plus at pin 2 of F3. If it's not present, check R638 (1.2ת, 1/8W), D611 and D612 (R640/D612/ D613 in later versions). Make sure that there are no dryjoints at the appropriate winding of T 601 . The 16 V supply reservoir capacitor $\mathrm{C} 626(100 \mu \mathrm{~F} 25 \mathrm{~V}$) likes to dry up, causing all manner of problems - such as intermittent start up.

If the lamp doesn't light, further tests on the power pack will be required. Fortunately it's easy to work on if tackled in the right way. If the mains fuse F601 has blown, check C601 ($0.22 \mu \mathrm{~F}, 300 \mathrm{~V}$ Mylar) - replace it using one with a higher working voltage rating. Also check C629, though this one seldom seems to fail, and the diodes in the bridge. The mains switch S901 has been known to go open-circuit.

next month in

- VCR SERVO SYSTEMS

We all know that VCRs require servos to maintain close control of the capstan and head drum motors. In practice however it's all too easy to get confused when trying to come to grips with the servo system used in a particular machine. The reason for th s is the wide variety of servo arrangements in use. They vary from the very simple some early machines used only one motor - to the latest designs employing digital techniques. The basic principles remain the same: the difficulty lies ir relating them to the various circuit arrangements found in practice. Eugene Trundle reviews the epprozches that have been adopted in machines of different age and complexity, relating these approaches to the basic servo requirements.

SERVICING THE GRUNDIG GSC100

This was the basic Grundig "second generation" thyristor line timebase chassis, using the currentdumping width/e.h.t. regulation principle instead of the transtuctor employed in earlier Grundig solid-state colour chassis. Denis Mott provides a run-down on common fault conditions. Much of the information also applies to the GSC200 chassis which differs only in its i.f. module.

IPSALO-2

Salora's ingenious Ipsalo-1 circuit was described in our September 1980 issue. Ipsalo-2 is used in the subsequent H and J chassis. In both cases a single transformer acts as the switch-mode power supply and line output transformer: Ipsalo-2 uses a transistor drive circuit.

- SERVICING FEATURES

- VCR Clinic, TV Fault Finding, plus Les and more on :he Sony KV2000UB and the Grundig 2×4 Super.

- TV TEST PATTERN GENERATOR

The conclud ng instalment provides layouts for the nain boards, setting up instructions and notes on nodifications made during the development of the Jesign.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the September issue of TELEVISION (£1), on sale August 15th, and continue every month until further notice.
NAME
ADDRESS ..
\qquad

Connect the receiver to the a.c. supply via the variac and gradually increase the input from about 110 V a.c. while measuring the voltage across C606. This should rise to 320 V d.c. A word of warning. If F602 has blown and the set is connected to the mains supply and then disconnected, C606 and C621 will take a little time to discharge (via R603). So don't touch the fuseholder until these capacitors have been discharged or you could get a very nasty shock. Discharge them to chassis via a $5 \mathrm{k} \Omega$ resistor whatever you do don't short out these capacitors or horrible things may happen with damage to the circuitry.

The power panel can be removed by disconnecting F14 , unscrewing two self-tapping screws at the rear, then sliding it out. The metal cover is easy to remove by taking out the four screws that hold it to the printed board. You will now need a d.c. supply so that the panel can be operated whilst disconnected from the mains and the rest of the receiver. Use either a really well-smoothed supply or two PP9 batteries to produce 18 V , negative to chassis. Connect the positive side of this supply to the cathode of D614 (Mk. I version). The current flow from the 18 V supply should be about $17-18 \mathrm{~mA}$.
Use an oscilloscope with $10: 1$ probe to check the waveforms at the collector and base of Q604. These should be as shown in Fig. 2. Remember that the multivibrator is running free, so there may be some slight variations is these waveforms. If all is well, reduce the d.c. supply to 9 V (or one 9 V battery) and link the anode of D614 to the junction of VR601/R608 - leave the 9V supply connected to the cathode of D614. It's helpful to solder short lengths of bare wire, only half an inch, to the various test points to make connections easier. Mark or note the position of VR601's slider before disturbing it. Connect the scope to Q605's collector. With the d.c. supply now at 9 V , the consumption should be about 9.8 mA . If all's in order, the waveform shown in Fig. 3 should be seen. Turn VR601 anticlockwise and the pulse width will narrow: turn it clockwise and it will widen. Return the slider of VR601 to its initial position and check the waveforms at the base and collector of the driver transistor Q606 (see Fig. 4).

To check the action of the protection transistors Q602/ 3 , connect one end of a $10 \mathrm{k} \Omega$ resistor to the 9 V positive supply and touch the anode of the zener diode D615 with the other end. The waveform at the collector of Q605 will disappear and you'll have to disconnect the 9 V supply and reconnect it to start things up again.

Leaving all connections as they are, connect a linking wire from the positive side of the 9 V supply to the junction of L602/R617. Increase the supply to 18 V d.c. The complete power pack is now operating from the 18 V d.c. supply and the waveforms at the base and collector of the chopper transistor Q607 should be as shown in Fig. 5. A digital voltmeter connected between pin 1 of F3 and chassis should give a reading of about 11.5 V d.c. The start-up voltage at pin 2 of F3 should be 1.2 V d.c. plus.

The procedure outlined above should enable faults on board F to be speedily located. If the chopper transistor has failed, don't replace it before making further tests. It's best to replace the insulating washer as well. Dried out electrolytics and leaky diodes can cause problems. Check the print for dry-joints, especially around the chopper transformer T601. Rapid checks on semiconductor devices and capacitors can be made with a component tester connected to the scope, saving lots of time.

If the power supply works all right when loaded with a 100 W bulb but not when connected to the rest of the set,
a few simple tests will quickly reveal in which section of the receiver the fault lies.

Fault Isolation

Connect a digital voltmeter between the h.t. line and chassis on panel F. Unplug connector F4 from the board and switch the mains supply on. F4 feeds the audio circuit and the tuning system. If the 135 V supply is present there's almost certainly a fault in the audio circuit. Check the driver and output transistors and the $33 \mu \mathrm{~F}$ smoothing electrolytic - this is C249, C247 or C253 in different versions. The audio section is reliable, but has been known to fail.

If the fault is still present, switch off, replace F4 and remove connector E 5 on the E (line output) panel. Switch on. If the 135 V line is absent you've eliminated boards B and D (timebase board). Switch off and replace E5. Remove E2, power up and if the 135 V line is present there's a fault on the tube/RGB output board C. Check transistors Q701-3 (type 2 SC 1127 or 2 SC 2278) and, in the Mk. I version, D701 (HF-1C) and C709 ($4 \cdot 7 \mu \mathrm{~F}, 250 \mathrm{~V}$ electrolytic).

If you've still no 135 V line, switch off, replace E2 and disconnect E6 in the centre of the E board. This takes the line scan coils, the pincushion transformer and the horizontal shift system out of circuit. Switch on and see whether the 135 V line is present along with a vertical line at the centre of the screen.

If there are still no results, switch off, replace E6 and disconnect E1. This disconnects the e.h.t. department, containing the tripler etc.

If there are still no signs of the 135 V line when the set is switched on again the fault must be on board E . All this plugging and unplugging sounds like hard work but can be done in a few minutes. It's a good idea to clean the connectors as you remove them, with just a spot of switch cleaner.

Line Timebase Faults

The first thing to check on board E is the efficiency diode, D806 (SID30-15) in earlier versions, D807 (ERC26-15) in later sets. Secondly check the gate controlled switch line output device Q901 (SG613). This is the same device as used in the KV1810UB (see previous article, March 1983). Fortunately, it's much less vulnerable in the KV2000UB. Remember that these devices are very expensive however: never replace one without at the same time replacing its insulating washer, the efficiency diode, and the protection capacitor C812/ C814 (depending on version). Also examine choke L807/ 806 (SRC - sine resonance choke) for any signs of burning or overheating. Change C901 as well - it's connected across Q901.

Then check the whole of board E for dry-joints. Connect the scope, via the $10: 1$ probe, to the base of Q901 and supply 110 V a.c. to the receiver. A picture and the drive waveform shown in Fig. 6 should be obtained. Slowly and cautiously increase the mains input to 240 V .

If the set keeps tripping and the connector unplugging procedure previously outlined has been carried out, check the line driver transistor's collector feed resistor. This is R808 or R809 depending on version - $39 \Omega, 1 / 8 \mathrm{~W}$ nonflammable. It likes to go open-circuit with the result that the set trips. If necessary check the start-up diode D507 (SIB01-02) and the following feed resistors: R551 ($1 \mathrm{k} \Omega$,

Fig. 1: Power supply circuit, Mk. I version.

Fig. 2: Waveform at the base of $Q 604$ (a) and at its collector (b) with an 18 V supply, free-running at 10.793 kHz .

Fig. 3: Waveform at the collector of Q605, with 9 V supply.

Fig. 4. Waveforms at the collector (a) and base (b) of 0606 with a 9V supply.

Fig. 5: Waveforms at the base (a) and collector (b) of Q607 with an 18 V supply.

Fig. 6 (left): Drive waveform at the base of 0901.
Fig. 7 (right): Waveform at pin 14 of IC502 (CX158).
$\frac{1}{2}$ W), R555 and R563 (both 120Ω) in the earlier chassis, R552, R555 and R556 respectively in later versions of the Mk. II.

On rare occasions the CX158 line generator i.c. (IC502) has been known to fail or behave intermittently. Before condemning it, examine the various capacitors around this i.c. carefully - the small electrolytics tend to dry up and corrode. C532 ($4 \cdot 7 \mu \mathrm{~F}$) and C530 ($3 \cdot 3 \mu \mathrm{~F}$) are the ones to check first - they are C538 and C535 in later versions of the Mk. II.

To check IC502 - with the receiver disconnected from the mains supply - connect 9 V d.c. positive to the cathode of D507 and the scope, via the $10: 1$ probe, to pin 14 . The waveform shown in Fig. 7 should be seen - it may vary as the line oscillator is running free. It's a good idea to heat and cool the i.c. whilst running it at 9 V . This helps to show up any tendency to intermittent operation of either the i.c. or associated components. If necessary check the line driver transistor (Q510 or Q507 depending on version).

If the 18.5 V supply rectifier D 804 (S 34) fails or the 33 V supply rectifier D803 (HF1) goes short-circuit the set can trip. This is in the Mk. I version. In the Mk. II the supplies are 18 V and 33 V , the diode references varying with the two variants of this version (before and after serial number 600,001). The $1 \cdot 2 \Omega$ resistor in series with the 18 V rectifier sometimes goes open-circuit, the result being tripping.
There are several low-value, low-wattage resistors on all versions of the E board. It's a good policy to test them all - it takes only minutes and can save hours of time in fault location. $\mathrm{C} 807(330 \mu \mathrm{~F}, 50 \mathrm{~V})$ on the Mk . I panel can go partially open-circuit, giving rise to weird effects in the field timebase circuitry.

In Part 2 we'll deal with the rest of the timebase circuitry, the signals panels and mention a few odd faults.

The Unaohm EP730AFM Panoramic Monitor

Eugene Trundle

When the u.h.f. network in the UK is complete - and it's almost there - there'll be about 650 TV transmitting sites, each radiating four services. This represents around 2,600 vision transmitters operating on the 44 channels available. The corresponding sound transmissions bring the total number of carriers in the u.h.f. broadcast band to over 5,000 . There have been developments in Band II as well. Where there were once but three national programmes, a multiplicity of local services has sprung up in the last few years. Down here on the south coast the v.h.f./f.m. band is crowded with Continental broadcasts, despite their being "behind" the directional Band II receiving aerial. Although activity in Bands I/III is currently declining in the UK, there are various European CCIR standard B transmissions that are receivable in southern England and these have to be sorted from such 405 -line transmissions that remain.

Where does all this leave the aerial rigger? Straddling the chimney with his dipole in his hand! No problem in a Welsh valley where he's cut off from the rest of the world, alone with his 80 W relay down the road and multiple reflections off the hillsides around. But thoroughly confused perhaps in the home counties, midlands and coastal areas, with transmissions from several sites, wanted and unwanted, adjacent and dispersed, all perking up on his field strength meter so that its little needle works like a fiddler's elbow as the bands are tuned... Is this the BBC2 vision signal from the Bretch Hill relay or the sound carrier from Sutton Coldfield BBC-1? Has the pointer gone off the Band II clock as a result of Wrotham's Radio 4 , or are we picking up the CB rig down the road? These and similar problems assail the hapless aerial contractor all the time. With the blossoming of Ch. 4 and S4C transmissions and the spread of teletext receivers, our rigger's lot is not getting any happier - and the customer still expects it to be done for a fiver. . .

There's also a race of people called systems engineers. The ones I mean are concemed with installing and maintaining cable TV systems of the multi-outlet type - in blocks of flats, hotels, schools and similar places. They often need to check the level, balance, reflections and

The Unaohm EP730AFM panoramic field strength meter.
other parameters of their v.h.f. and u.h.f signal carriers. Again, a simple field strength meter is becoming inadequate - and the average tenant's TV set may be in poorer shape than his distribution system! TV service and installation men who know not a smoke cowl from a hip tile also have an increasing need to be able to analyse the r.f. signals coming into their equipment - and generated by it where r.f. modulators are concerned, as is increasingly the case with domestic equipment.

Panoramic Principle

The idea of a spectrum type of broadcast band display really came along with the advent of the varicap tuner - an early example was the excellent panoramic monitor featured in the November 1971 issue of this magazine. The mechanics are surprisingly simple. A field frequency sawtooth waveform is applied to the tuner's tuning voltage input so that it scans the band under observation every 20 msec . As the sweep is field synchronous, it's only necessary to apply the output from the vision detector to the horizontal deflection system to build up a spatial "blip" display of all the carriers picked up. The result is a spectrum-analyser type display. The instrument under review goes a step further, producing a more practical and readable display based on a 625 -line raster, with the blips reproduced in white against a black background.

Features of the Unaohm EP730AFM

The accompanying photo shows the EP730AFM panoramic TV field strength meter whose main features consist of a 15 cm monochrome tube and a calibrated tuning scale.

In the picture mode the instrument is in effect a portable TV set which provides a very good quality picture. The geometry is reasonable rather than good, and there is a little more that three per cent raster expansion over the range of the brightness and contrast controls this e.h.t. regulation was the same with mains and battery operation. The definition is very good, with all the Ch. 4 test pattern gratings easy to see. The finest grating $(5 \cdot 25 \mathrm{MHz})$ seems to be about 3 dB down on the others. To help in identifying short-term reflections and similar shortcomings (very important with text reception), a "zoom" button stretches the picture horizontally so that the test pattern frequency gratings or needle pulse can be closely examined. There's also an audio channel with built-in speaker.

The second mode of operation is "field strength". Here the upper section of the screen displays a horizontal white bar whose length varies according to the strength of the input signal. A scale at the top is calibrated in dB relative to $1 \mu \mathrm{~V} / \mathrm{m}$ to read field strength within the range $20 \mathrm{~dB} \mu \mathrm{~V}$ $(10 \mu \mathrm{~V})$ to $130 \mathrm{~dB} \mu \mathrm{~V}(3 \mathrm{~V})$. This is done in conjunction with a pair of BNC input sockets and a series of push-button attenuators. To cater for tuner tolerances, each instrument comes with an individual calibration graph at the bottom of the screen. This gives the required correction factor to the readings obtained. Unless one's looking for a very high
degree of accuracy it can be ignored!
It's becoming conventional nowadays to quote field strengths in $\mathrm{dB} \mu \mathrm{V}$. The conversion to microvolts or millivolts is easy - particularly with this instrument, since a small slide-rule type abac is supplied as an accessory. There's a carrier frequency chart on the back of this: beware of the sound carrier frequencies given - they're for the Continental system, 5.5 MHz above the vision carrier!

The third and most interesting mode however is the "panoramic" one, in which the whole of the selected Band's spectrum is displayed. A typical example is shown in Fig. 1, where the four channels of the local group A relay can be seen - the long traces represent the vision carriers and their shorter companions the accompanying sound carriers. Further up the display a group of carriers from a more distant transmitter, operating towards the top of Band V, can be seen. Similar displays are provided in the other bands covered, though the modulation differs the display shows this.

Identification of individual carriers is facilitated by the electronic cursor at the left. This takes the form of a black line that moves up and down the displayed band with the action of the tuning dial: overlay this with the carrier in question then, on switching to the TV mode, the picture and sound will come up. In Band II the programme is reproduced through the loudspeaker (push the dB button), a beacon lighting up where appropriate to indicate the presence of a stereo subcarrier.

By selecting "expansion" while in the panoramic display mode any section of the band being displayed can be closely examined. Manipulation of the tuning and expansion controls enables the user to zoom in on individual carriers. A typical example is shown in Fig. 2, where the sound and vision signals from a single u.h.f. transmitter occupy almost the entire screen area.
Basically, the machine is mains powered. A sealed leadacid accumulator is available as an optional extra however. This fits inside the case and can be recharged by the mains-powered charger incorporated. A fully charged

Fig. 1: U.H.F. band display, with the four transmissions of a local group A relay dominant at the bottom.

Fig. 2: The expanded mode - a single channel from Fig. 1 enlarged for detailed examination.

NO WORKERS!

WITH OVER 1,000 ARRIVING WEEKLY WE DON'T HAVE TIME ALL SETS UNTESTED

We are One Of The Oldest ESTABLISHED EX-RENTAL DEALERS WITH THE SAME RENTAL COMPANY FOR OVER 15 YEARS. LOW SUMMER PRICES

GEC S/State
£15
GEC Hybrid £8
BUSH 1 and 2 Chip £10
DECCA from $£ 10$
AUTOVOX £15
NORDMENDE £15
SALORA S/State, some Remotes £15
SALORA Hybrid £8
TANDBERG S/State Dual Tuners £20
TANDBERG Hybrid Dual Tuners £8
PHILIPS G8 from $£ 10$
17" THORN £15
22/26" THORN from $£ 10$
MONO 20" S/STD £5
MONO 24" and D/STD £1SOURCE AVAILABLE ATKEEN PRICES
FRANK FORD(TV TRADE DISPOSALS)SCHOOL LANE, GUIDE,BLACKBURN, LANCS.Telephone: 025464489

Table 1: Specification

Sensitivity: $20-130 \mathrm{~dB} \mu \mathrm{~V}$ in ten ranges ($0 \mathrm{~dB}=1 \mu \mathrm{~V}$ at 75Ω). Input Impedance: 75Ω with a.c. coupling. BNC type input socket.
Field strength accuracy: $\pm 3 \mathrm{~dB}$ on Bands $\mathrm{I}-\mathrm{III}, \pm 4 \mathrm{~dB}$ on Bands IV/V.
Coverage: Band I $45-100 \mathrm{MHz}$; Band II $88-110 \mathrm{MHz}$; Band III $110-290 \mathrm{MHz}$; Bands IV/V $470-860 \mathrm{MHz}$.
Frequency readout accuracy: $\pm 2 \%$.
Monitor: CCIR standard I. Others on request.
Field strength indicator: Peak white to sync tip amplitude. Analogue readout.
Spectrum analysis: Panoramic display of selected band, with selective expansion of any section.
Picture 200 m : Double size expansion in the horizontal direction.
Display: 15 cm rectangular monochrome tube with magnetic deflection and electrostatic focusing.
Audio output: 300 mW via built-in speaker.
Stereo indication: Red LED beacon.
D.C. output: 11 V at 50 mA .

Power: $220 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$, or 12 V d.c. from optional accumulator. Battery charge facility.
Dimensions: $30 \times 16 \times 39 \mathrm{~cm}$.
Weight: 8 kg without accumulator.
accumulator will give two-three hours' use. Whilst on the subject of power supplies, a facility is provided for powering a mast-head amplifier at 11 V . For the odd nonstandard supply systems that may be encountered, recourse can be made to the set-back power supply itself, though I found that most 16 V systems operate well enough at 11 V . Other features are listed in the specification table above.

A good range of accessories is supplied with the instrument, including a $\mathrm{BNC} /$ coaxial adaptor, protection cover, carrying strap, viewing hood and an instruction manual. The latter contains a basic circuit diagram which is just adequate for first-line servicing.

On Test

I lived with this instrument for a couple of weeks, during which I spent a lot of time playing with it. I found that my signals at home were all around an enviable 15 mV and wondered why there were no overloading problems with the TV set or VCR. The machine didn't tell me why my teletext reception is a bit garbled, so I assume that this isn't due to aerial or reception problems. I discovered that the broadcast signals are attenuated by exactly 6 dB in the VCR (a Sanyo VTC9300PN which does not incorporate an aerial amplifier) and that the VCR's r.f. output is just 2 mV . Studying the VCR's output signal characteristics further, I was surprised to find that the vision/sound carrier ratio (two sound carriers, one each side of the double-sideband vision carrier) is $8: 1$ instead of the conventional $2: 1$! The $260 \mu \mathrm{~V}$'s worth of sound is adequate for all the TV sets I've used it with however. Intriguingly, the ITV and Ch. 4 ratios were found to be very close to $2: 1$ while the BBC-1 and BBC-2 ratios were around $2 \cdot 6: 1$.

Having exhausted the possibilities of the local relay, I went into the wider world and found the instrument very useful when installing and adjusting aerials of all types. Imbalance amongst the received channels can be seen at a glance, though the displayed carrier amplitudes tend to jump up and down rather disconcertingly in the panoramic mode. Not all of this is due to amplitude modulation of
the vision signal: it seems to arise from a beat effect between the "blip" and the line structure of the raster the effect is much less marked in the expand mode.
The instrument really comes into its own when swinging a directional aerial to null out interference from a co- or adjacent channel source. For v.h.f. radio aerial alignment, a compromise between the field strengths of the various transmitters required can easily be obtained. The instrument is not really suited to chimney-pot life, even with the accumulator fitted: it's fairly weighty and burdensome when climbing a ladder or balancing on a roof ridge, and the carrying strap has a similar effect to a cheese-cutting wire!

The detection of ghosts due to TV signal reflections, with or without use of the picture zoom feature, was easy on test-pattern transmissions, difficult with other programme material. For complete analysis of received picture quality, the ideal is to examine the pulse-and-bar and text waveforms. More on this below.

I'd no standard against which to check the absolute accuracy of the field strength readings, but had no reason to disbelieve the quoted accuracy. This was reinforced by investigation of the accuracy of the attenuators fitted - I found a maximum error of just over 1 dB , with virtually no variation over the bands. Frequency calibration, measured at three widely different points, is well within two per cent - the dial and pointer system don't allow much greater sighting accuracy than this anyway.

Interference tracing and suppression is greatly facilitated by this instrument. It's much easier to tune a notch filter on an expanded panoramic display than when observing a live picture. Other sorts of interference, including harmonics of amateur radio transmissions and $C B$ rigs, are quite easily seen and recognised, even when they're sporadic in nature. It was fascinating to watch odd transmissions such as v.h.f. communcations, beacons and so on coming and going, and with continuous coverage from $45-290 \mathrm{MHz}$ and $470-860 \mathrm{MHz}$ there's a lot to see! Radio amateurs, experimenters, BT interference investigators and r.f. test engineers should all find uses for this instrument. I imagine that the DX-TV enthusiast would also find it a boon. There would seem to be much potential for the instrument in the educational field, bringing to life as it does the theory of modulation, sidebands and r.f. spectra.

As mentioned above, it's useful to be able to analyse the vertical interval test signals and teletext data lines. In the absence of a facility for this on a test set like the EP730A the best course is to add a video output socket for driving other equipment. Modification and fitting details are available from the importers. Equipment for eyeheight checking and VITS analysis will hopefully become cheap enough one day for general use: the aerial installer and the systems man may then be able to assess quantitively the more subtle characteristics of the signal he's providing - it would be very nice to quote figures rather than guesses as to the goodness of received signals.

Conclusion

The value and desirability of this instrument depend entirely on how involved you are in this type of work and the standards you set. Though it does have shortcomings, it's a vast improvement on the traditional field strength meter and is, as far as I'm aware, unique in its price bracket and able to fulfil many of the functions of very expensive professional spectrum analysers. £639 plus

VAT is not an unreasonable price if the instrument will be well used, and I get the impression that it will last the course. A spares, recalibration and repair service is provided by the importer's service agents. The instrument is
available from Advid Electronics, 17a Mill Lane, Welwyn, Herts AL6 9EU (telephone 0438832641 and 714159).
Finally I must thank my colleague J. Guppy for his advice and assistance in the preparation of this review.

Teletopics

TV CHIPS

Details of several interesting new i.c.s for TV receiver use have been released recently. The Mullard TDA4503 is a 28 -pin device that handles most post-tuner signal processing, i.e. vision and sound i.f. amplification and demodulation, a.g.c., a.f.c., sync separation and the generation of line and field drive pulses. It can be used as the basis of a monochrome set in conjunction with a tuner and audio, video, field and line output stages. A similar device, the TDA 4500, is already in use in the Thorn TX90 chassis. For a low-cost colour set the TDA4503 can be used with the Mullard TDA3565 decoder i.c. This addition to the TDA3500 series of single-chip decoders has only 18 pins, resulting in an economical design. An i.c. incorporating all small-signal colour receiver functions (the TDA4501) is under development.
The TDA4503 operates at typically 10.5 V 75 mA and is encapsulated in a SOT117 DIL pack with internal heatspreader.

Mullard are also working on a two-chip signal handling system for use in more sophisticated colour receivers that employ microcomputer control. These i.c.s, designated TDA8430 and TDA8460, are expected to be in volume production by the end of 1985. They're analogue devices but will be digitally controlled to reduce the number of adjustments necessary during manufacture. A Philips/ Mullard spokesman commented that the analogue approach will offer a more economical solution to TV signal processing for "at least five years - maybe even ten". CCD field stores are also being developed.

The SGS TDA8170 field output chip is encapsulated in a seven-lead "Heptawatt" flat-pack with tab for heatsink attachment. It's suitable for use in monochrome and colour receivers and is said to be capable of driving all types of yokes in common use. The TDA8172 version is modified for use in receivers with digital signal processing.

BBC'S DIGTAL SOUND SUCCESS

On May 24th BBC engineers carried out what is believed to have been the first "all-digital" transmission (from the initial recording through to the receivers) of stereo TV sound, using the Crystal Palace transmitter after normal closedown. The programme consisted of a pop concert with the sound recorded in digital form. Equipment used for the transmission included a Studer sampling-rate changer to convert from 44.4 to 32 kHz and a BBCdesigned software-controlled processor to alter the preemphasis characteristic from that used by the recorder to that required for transmission. These tests are the latest in a series that began at Wenvoe last October - that test confirmed the ruggedness of digital stereo TV sound in difficult reception areas, the Crystal Palace trial establishing the compatibility of the system, i.e. that no significant interference is caused to sound or vision reception on
existing receivers. The BBC is now convinced that a digital system is the best way of providing stereo TV sound from a terrestrial transmitter and is holding discussions with the Home Office, the IBA and the industry to establish an agreed UK specification. Now that compatibility has been established it's hoped to arrange for tests to be carried out from time to time during normal broadcasting hours.

NARROW-BAND TV DEMONSTRATION

Demonstrations with several amateur-built TV cameras working on a low line standard were given at the tenth annual convention of the Narrow Bandwidth Television Association at Clifton, Nottingham on April 29th. Tony Bridgewater, until 1968 Chief Engineer, BBC Television and a pioneer of broadcast television, was a guest at the convention. He spoke of his experience in both planning and operating the Baird 30 -line system during the period 1928-35.

The N.B.T.V.A. was formed in the early 70s to link amateurs working on the application of modern techniques to low-definition and mechanical TV. Membership has grown steadlly in the UK and in several other countries and members are at present exploring the possibilities of continuous, moving-image TV using a bandwidth of under 15 kHz . Systems that have been tried frequently involve mechanical image analysis. A common standard, which was used at the recent demonstration, is 32 lines at 12.5 frames per second. This can be tape recorded and is a viable amateur radio technique. Remarkable detail can be reproduced within its $6-9 \mathrm{kHz}$ bandwidth. Work in progress includes trial transmissions on the amateur bands. For further details contact the chairman Doug Pitt, 1 Burnwood Drive, Wollaton, Notts.

BIB DISC CLEANER

Bib have introduced a cleaning kit for use with laser scanned video and audio discs. It consists of a bottle of special formula cleaning liquid, applicator cloths and a chamois polisher. The kit is packed in a storage wallet for dust free protection and has a recommended retail price of $£ 2.99$ including VAT.

CALL FOR A SCOTTISH ATV BEACON

Amateur television enthusiasts in Central Scotland who would be willing to participate in financial support or the construction of a 24 cm ATV repeater for the area are asked to contact Norrie Macdonald, GM4BVU, 3 Townhill Road, Earnock, Hamilton, Lanarkshire ML3 9UX.

IBC 84

Some ninety papers are to be delivered during the fourteen technical sessions that will form part of the tenth International Broadcasting Convention at Brighton from September 21-25th. They'll cover technical developments in sound and TV broadcasting and allied fields, including satellite broadcasting and reception, higher definition television and video scrambling techniques. A record number
of firms (134) will be present at the IBC exhibition. IBC 84 is sponsored by the Electronic Engineering Association, the Institution of Electrical Engineers, the Institute of Electrical and Electronics Engineers, the Institution of Electronic and Radio Engineers, the Royal Television Society and the Society of Motion Picture and Television Engineers. For further information apply to the IBC Secretariat, IEE, Savoy Place, London WC2R 0BL.

VIDEO SHOP DECLINE

The number of outlets devoted to selling and renting prerecorded video tapes is declining and, according to Steve Bernard of distributors RCA, could fall sharply from some 6,000 to $3,500-4,000$ by the end of the year. Research carried out by RCA suggests that about half the population regard the local video shop as a sort of sex emporium catering mainly for "extreme tastes". As a result, tape rental is being taken over by supermarkets, tobacconists and other outlets that concentrate on a small selection of best sellers. Derek Mann, chairman of the Video Trade Association, feels that video shopkeepers' interests would be best served by a single trade association - at present there are at least twelve.

BANDWIDTH COMPRESSION FOR HDTV

The Japanese broadcasting authority NHK has announced the development of a system called MUSE (Multiple SubNyquist Sampling/Encoding) that enables a 20 MHz highdefinition TV channel to be compressed for transmission via an 8 MHz channel. It relies on the eye's insensitivity to fine detail in a moving picture. The key to MUSE is a multiple sub-sampling system that reduces the number of picture elements per field to a quarter of the initial number. The receiver requires a 10 Mbit memory to carry out conversion to the basic standard: four fields per frame are used, reducing the frame rate from 30 to 15 per second. Experiments with MUSE and other HDTV techniques are being conducted via the Japanese BS2a satellite.

US SCRAMBLED TV SERVICE ABANDONED

The US TV network $A B C$ has abandoned after only five months a novel service it was operating as a pilot project in the Chicago area. The idea was to broadcast scrambled programmes during the periods when the transmitters are normally off air. Subscribers could hire a decoder that enabled the transmissions to be recorded on a standard VCR for viewing later. Despite the growing number of VCRs in use in the USA, it seems that the system was not sufficiently attractive to viewers at an economic price.

DBS LATEST

Fifteen firms, rather more than expected, have applied to the IBA to participate in the proposed UK DBS service. They will form a "third force" in partnership with the BBC and ITV companies as outlined last month.

Luxor has announced that it expects to be able to supply equipment for DBS reception in the UK at $£ 320$ per installation, to include the electronics, a 60 cm dish aerial, setting up and VAT. This assumes a production run of some 200,000 units - a further reduction in price of around ten per cent is anticipated at higher production volumes. Luxor claims to have around twenty per cent of
the domestic satellite receiver market in the USA.
A new DBS transmission standard for European use has been proposed by the French government. The system, called D2-MAC, appears to have certain features in common with the MAC-C system proposed by the IBA last year and backed by both the UK government and the EBU. Philips and Thomson are both backing the new French system.

ALL-DAY TTV POSTPONED

The ITV companies, represented by the Independent Television Companies Association, have informed the IBA that they intend to postpone plans for all-day programming until 1986. The IBA had offered to transmit ITV services after TV-am closedown, but there are doubts whether the likely advertising revenue would make this worth while.

Meanwhile Channel 4 is to extend transmission times from mid-October. Programmes will begin at 2.30 p.m. during weekdays and at 1 p.m. over the weekend.

VIDEO EQUIPMENT

Panasonic have introduced a lightweight portable video recording system consisting of a VCR, Model NV180, that uses standard sized cassettes instead of the VHS C type, the WVPA1E camera and VWET180 tuner/timer. The VCR and tuner/timer together weigh about 6 lb , the camera being just over 2lb.
Sony's Betamax VCR with hi-fi sound, Model SLHF100UB, was demonstrated at the recent trade shows. It lays the sound signal on the tape helically along with the video signal, as with the VHS hi-fi sound system.

CED video disc players are now being produced by Korean manufacturer Samsung.
Markplan have introduced a combined VCR/TV set called the Videoport. It's primarily intended for professional/business use and is priced at $£ 1,600$ plus VAT. A 12 in . colour tube is used for the display.

TV EQUIPMENT

A couple of a.c./d.c. colour portable TV/video monitors have been introcluced by Panasonic. Model TC1100G has an 11in. tube and Model TC801G an 8in. tube. Features include video/audio input/output terminals, a dark-tinted glass cover to improve viewing under all lighting conditions, dual-standard PAL operation, and DEF-MOS memory up/down tuning with three controls, plus, minus and store. The suggested retail prices are $£ 388.50$ and $£ 355.50$ respectively.
An "audiovision" system called TriCon has been introduced by ITT. Instead of connecting cables, the units are linked via 11 -pin connectors at the top, bottom and sides. There are seven units, as follows, also a matching trolley stand: 7010 record deck; 7020 cassette deck; 7040 preamplifier/audio control unit; $7060 \mathrm{LW} / \mathrm{MW} / \mathrm{FM}$ stereo tuner; 7070 TV tuner; 7080 22in. receiver/monitor with teletext decoder; 7090 speaker unit. The latter has bass, mid and treble speakers with built-in amplifiers and level controls for the mid and treble units.

Ferguson have introduced a 22 in . component TV set, Model 22B5, based on the TX10 chassis. Called the "Professional Series", the comprehensive specification includes microcomputer control, teletext, a SCART socket, jack connector and bargraph plus numerical displays.

Amstrad Colour Portables

Two of these sets came in for repair recently. The first was a 10 in . model (CTV1000) whose problem was intermittent line hold drift. This was easily solved once the back had been removed: the line hold control, a vertical preset, was dry-jointed on one leg. The second was a 14 in . model (CTV1400) with the complaint of intermittent no results. The h.t. and e.h.t. supplies were present in the fault condition, and the audio output stage was lively. We decided to check the low-voltage supplies and found that the 12 V rail was missing. This was due to a crack in the print between pin 6 of the line output transformer and the $2 \cdot 2 \Omega$ surge limiter resistor R749.
M.D.

Decca 120 Chassis

A common cause of the no results symptom in this chassis is failure of the BU426A chopper transistor (Q801). Before replacing this it's worth checking the two series-connected resistors R808 ($47 \mathrm{k} \Omega$) and R810 ($150 \mathrm{k} \Omega$) to make sure that they are not open-circuit. This applies to other chassis using a TDA4600 i.c. in a self-oscillating chopper circuit, for example R165 (300k Ω) in later versions of the Thorn TX9 and R646 (270k Ω) in the Grundig CUC series chassis.
M.D.

IT180-110 ${ }^{\circ}$ Chassis

The problem was top foldover with the TDA2652 field timebase i.c. getting very hot. Changing the i.c. and the two diodes D421/2 (they looked as though they'd been running warm) in the output stage supply circuit made no difference. The output stage supply reservoir capacitor C421 ($220 \mu \mathrm{~F}$) was eventually found to be open-circuit. I've since been told that this is quite a common problem. M.D.
fuse, which is on the power board, has been killed. The fuses are not component identified but this one is easy to recognise as the input to it should be 26 V a.c., slightly more if the fuse has ruptured. The bridge can be replaced with four BY126s, two mounted on one side of the sound panel and two on the other side. If you plan to do this, note carefully the sense of the plus and minus signs on the block: it's all too easy to get confused.
We had an odd fault with one of these sets recently. The complaint was "lines". When I saw the fault, it had some of the hallmarks of interference - three or four narrow horizontal sections of the picture appeared broken and twitching, though the sound was all right. The latter didn't preclude external interference as a possible cause, as the f.m. sound system gives efficient a.m. limiting (though not every set shines in this respect!). As I altered the brightness however I noticed that the fault varied in intensity, being worse at lower brightness levels. This suggested e.h.t. problems - perhaps a winding on the line output transformer about to break down or arcing in one of the line output stage valves.

As a first line of attack I changed the PCF802 line oscillator valve - I've had weird problems with this on various occasions. For once it was blameless. The line output stage cover was then removed so that the valves could be scrutinised for signs of arcing between the electrodes or the bluish glow that denotes impaired vacuum. Nothing. It then occurred to me to check the c.r.t. base panel where there are several spark gaps that give trouble, though the usual effect is bands of colour imbalance in time with the gap "ticking". You often find that these gaps have been open circuited because of their nuisance value, which is unfortunate for the tube's comfort to say the least. Anyway, there was a dry-joint where the lead carrying the focus potential is anchored, and when this had been attended to the fault had cleared.
T.T.

Grundig 2222

This set initially had a stabiliser fault, but I noticed that one of the neons flickered. So the touch tune unit was replaced. Now to get this out you first have to remove the "electronic module" which lives on the side of the set and contains the tuning potentiometers and several chips. The neon was changed, and the set was then checked before refitting everything.

When I switched on however the tuning voltage had disappeared. A lot of checking ensued before I discovered that there was no voltage at any of the potentiometer sliders. A further check showed that 30 V was being fed to the potentiometer bank, which is rather difficult to remove from the panel. Closer examination revealed that though not shown on the circuit each track is fed via a common strip of carbon track. A check on the voltage at each end showed that it was open circuit, possibly due to my clumsy handling.

Ideally the bank should have been replaced, but we didn't have one and the customer was screaming. It looked as if a temporary repair would be impossible, but I remembered once seeing an engineer clean a volume control and then run a pencil round the track. This was

Thorn 1696/7 Chassis

The problem with this monochrome portable was a hum bar. The l.t. rail was found to be 0.5 V low but could be corrected by means of the preset control. A check on the mains rectifier diodes and reservoir capacitor proved negative so we decided to look into the regulator circuit where we found a crack in the print between the collector of the series regulator transistor and its control circuit. Repairs here cured the problem.
M.D.

Luxor 90° Hybrid CTVs

In my article on the Luxor/Rediffusion 90° colour chassis (July and September 1982 issues of Television) I mentioned that I'd not had trouble with the l.t. supply bridge rectifier. Well, guess what? You're right of course! Don't confuse this bridge, which is near the inner edge of the transistor regulator/sound output panel, with the h.t. one that consists of separate diodes mounted on a small plugin unit on the main horizontal power panel - bottom left as viewed from the rear of the set. This latter bridge gives its share of trouble but the diodes can be easily replaced with BY127s. The l.t. one is an encapsulated type and should be replaced whenever its 710 mA time-delay feed
worth a try, so I borrowed a pencil and ran it over the area of the open-circuit track. On switching on again the tuning voltage was present and the set worked normally. I haven't seen it since, but we must remember to order a new bank of potentiometers ...
M.B.

Glue and Matchsticks!

I've always had reservations about these new adhesives that enable heavyweight boxers to swing from the ceiling. In most household repairs I find they only fasten my fingers together. One day however I had a Grundig set -
one of those with a thyristor line timebase - the fault being a rather narrow picture. Occasionally the set would trip. Investigation revealed that the commutating transformer was falling apart: a drop of glue on the former held it together firmly and restored normal working.

Next day I repaired the line panel in a Philips G8. Clumsy as usual, I snapped the linearity coil. The adhesive was rather more reluctant to work on this until a matchstick was inserted inside the former to link the two halves together. It then worked quite happily, reminding me of an uncle who told me some twenty years ago "never to be without a matchstick in the toolbox!" M.B.

VCR Clinic

Sharp VC9500

A local engineer, Dave, dropped in with a Sharp VC9500 that suffered from sound warble. "No problem" said I. "I'll stick a new capstan motor in it." A valid point to note here is never to open your mouth unless you're prepared to stick your foot in it!

The fault persisted after the new motor was fitted, so various tension measurements were made with my extremely expensive Tentelometer tension meter. The takeup tension varied between 20 gms and "wrap the needle round the stop" kgm . This was entirely due to the reel motor practising some kind of stop/start method of takeup drive. Replacing this motor put matters right. S.B.

Mitsubishis

Those of you in the servicing trade will know how difficult it is to work your way around an unfamiliar machine. This was the case with a couple of Mitsubishis that came to me from another dealer. The first was an HS304 with an intermittent timer. If it was left for a longish period, say a weekend, then set on Monday morning for timed operation, the first go always failed. After that it worked fine. I spent a lot of time checking through the system. When it failed, the tape started to thread then unthreaded again. As power supply line switching was involved various checks and tests were made on this side of things, all to no avail. I decided to call Mitsubishi.
"Can I speak to VCR technical please?"
"No. They answer calls only between 2 and 4 p.m."
"What happens if you have a fault outside these hours?" Silence.
"You'll have to call back." Click. Sh . . .
Once you do get through however they're very helpful. I related the symptoms and my findings to the man at the other end of the phone.
"Have you checked the PG pulse level?"
"No. Should I? What's that got to do with the timer?"
"Well the power supplies load up and if the PG level is low the systems control thinks the drum's stopped!"

No way, it can't be, I thought whilst checking the PG level. Guess what? It was low and what's more after setting the correct level the timer fault went away.

The other machine was an HS320 that acted funny, like threading up whilst the tape was being ejected and then unthreading again. We initially thought the trouble was due to a damaged front panel, but after fitting a replacement the fault remained along with a reluctance some-

Reports from Steve Beeching, T.Eng. (C.E.I.), lan Hutton and Les Harris

times to thread up when play was selected, resulting in a semi-fast forward. Not knowing the machine's history we decided to fit a new microcomputer control i.c. This was done with difficulty because the low-cost print lifts when heat is applied. That didn't do any good either, so between 2 and 4 p.m. I phoned the man again.
"Have you checked the after loading and unloading switches?"
"No. Where are they?"
"Hidden in the top left-hand corner."
Well, he'd been right last time. So I checked the adjustment of the AL/UL bracket - and another peculiar fault went away.
S.B.

Hitachi VT19

We've had some fun recently with Hitachi VT19s - after they've been in service for a couple of months. The main fault is intermittent clock setting. My friend Dave had three in various states - one reset intermittently and then couldn't be reset, another couldn't be reset after failing, whilst a third had no clock display at all. Hitachi were very nice about it and gave us some modifications which included replacing transistor Q1795 on the power supply back-up board with a 2SD468. As neither of us had one, we put in BC338s.
S.B.

JVC HRD110

"My JVC HRD110 works only with JVC tapes" said the customer.

I was in a rough mood. "Got taste then, hasn't it?"
Andy pointed out that if I didn't mend it, we'd lose tape library revenue.

The left-hand cassette detector slide switch lever wasn't in its guide slot.
S.B.

JVC HR7655

A friend of ours rents a JVC HR7655 from us. He rang one day to say that he couldn't set the channel select on the programmable timer. I didn't think much about it as a fellow JVC engineer agreed that it must be the microcomputer i.c., so I ordered a replacement. Tim brought the HR7655 in a couple of weeks later and sure enough when it was put into the programme set mode the channel indicator didn't pulsate nor could it be set. So the
replacement i.c. was fitted. The problem remained. Then smarty-pants Andy pointed out that the tuning selector switch shouldn't be left in the "skip" position but in the "off" position. In this position the channel select could be set and the channel numbers flickered correctly.

I think Tim was mumbling something about no one touching it and he'd murder the kids as he left with the machine.
S.B.

Clock Faults

Having had enough of making mistakes and misjudgements due to off-hand diagnosis, I decided to take more care with a couple of Panasonic (note - not National any more!) VCRs that had strange timer faults.

The report with the first one, an NV2000, was of clock resetting to zero and not keeping time. Now we're aware of such things as multisocket adaptors and faulty 13A sockets. This one had a loose neutral connection in the plug. So I set the clock and we put the machine on soak test in the showroom. Next day it was pointed out that the machine showed 5.56 a.m. at 8.56 . I decided that someone had set the clock wrongly. Next day the minutes were again correct but the hours were wrong. The timer i.c. was the cause of the trouble.

The complaint with the second machine, a new NV370, was that the timer would reset to zero, and after being correctly set would reset to zero later. It was put on soak test for a couple of days and nothing happened till just after 5 p.m. on the second day - after Andy had told the customer that nothing was wrong and he was on his way to collect it. The clock reset to zero. I reset it once more and a few minutes later it again reset to zero. After checking the timer supply line and a "reset level" potentiometer I put the machine back on soak test.

It was fine the following day, but on the second day it reset to zero once more just after 5 p.m. I decided to leave it but there were cries of "look at this". The clock display was randomly flashing different digits at different brightness levels. I put it back on the bench and froze the timer i.c. The display went back to zero. Just for fun I set the clock and heated the timer chip with a hairdryer. First it reset to zero, then it proceeded to give a display that any disco would be proud of.

Pity about the idler pulleys in this model. Maybe the modified ones will be more reliable.
S.B.

Tape Chewing

Here are some mechanical causes of tape chewing we've experienced.
Hitachi VT11E: Take-up spool stopping due to the fast forward/rewind/play idler stopping in the play mode. The cure is to replace the idler.
Hitachi VT9300/9500/9700: Take-up spool stopping due to a worn play idler. Replace the idler.
Panasonic NV370 and NV850: The cause is again a worn play/fast forward/rewind idler. If the idler has a blue dot on the right-hand side it should be replaced with a modified one that has a black spot on the left-hand side (part no. VXP0521).
I.H.

Sanyo VTC5400

I've had the same fault on several of these machines - the tape jammed in the machine and no functions working. On inspection I found that the motors would rotate but the machine wouldn't load due to the loading ring being

Fig. 1: Loading ring problem, Sanyo Model VTC5400.
jammed. What happens is that the loading end roller catches on a sharp edge on the ring. Filing a small piece off the sharp edge allows the ring to run smoothly on the roller, curing the problem. You'll find that there are two of these sharp edges on the ring (see Fig. 1) - file both down and fit a new loading belt (Sanyo now supply a smaller one).
I.H.

Sony SLC6 Mk. II

There's an official Sony modification for tape damage upon insertion of the cassette. I've had this problem and the modification does indeed provide the cure. Details are as follows.
(1) Cut the track between pin 23 of IC501 and R530 on panel SS-9. Add a 1 S 1555 diode between these points, anode to pin 23.
(2) Add a 1 S 1555 diode between pin 30 of the i.c. and R530, anode to pin 30.
(3) Add a 1S1555 diode between pin 37 and pin 2 of the i.c., anode to pin 37.
(4) Add a $3.9 \mathrm{k} \Omega$ resistor in parallel with R 579.

The modification also cures another fault. The complaint is that the machine erases only half of the previous recording. Usually the new recording appears on the bottom half of the picture while the previous recording is left on the top half. The cause is that the tension arm is not brought back far enough when the tape is ejected: thus when the next tape is put in the machine the arm doesn't pull the tape far enough across the erase head.
I.H.

Ferguson 3V29/30

The fault was no colour on playback. On tracing the signal through the machine I found that there was an input at pin 18 of the colour processing i.c. (IC401) but no output at pin 7. Voltage checks then showed that the colour killer was operating. Pin 8 of the i.c. goes via diode D401 to the ch. set/monochrome/colour switch at the back of the machine, and on disconnecting the plug to this switch the colour returned. A measurement from the switch to chassis gave a reading of 200Ω ! So the switch was removed from the panel and checked. As it seemed to be o.k. the board was checked for a short. Again no luck. Refitting the switch gave us colour for a short while then off it went again. Another resistance check at the switch produced a reading of 500Ω. So where was this resistance? I found it just before having a nervous breakdown. There was this clear, tacky substance on the rear panel - it could have been flux. Anyway, cleaning if off cleared the fault. L.H.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

Long-distance Television

Roger Bunney

This year's Sporadic E season was late in starting though there's been much exotic reception to compensate. There's a lot of news, so we'll give the \log without further ado.
10/5/84 RTP (Portugal) ch. E2; TVE (Spain) E2, 3.
11/5/84 TSS (USSR) R1, 2.
14/5/84 SR (Sweden) E2; TVE E3; EPT (Greece) E3.
15/5/84 RAI (Italy) IA.
1.6/5/84 RTP E3; TVE E2, 3, 4.

1; 1/5/84 TSS R1, 2; RTP E3; TVE E3.
18,15/84 TSS R1; TVE E3; EPT E3.
19,'5/84 TSS R1, 2; TVP (Poland) R1, 2; CST (Czechoslovakia) R1; TVE E2, 3; RAI IA; ARD (W. Germany) E2.
2'0/5; 84 TVE E2, 3.
2.1/5,/84 SR E2, 3, 4; EPT E3.

22/5/84 TSS R1, 2, 3, 4; RAI IA, B; SR E2.
23,'5/\&34 TSS R1, 2; TVP R1, 2; CST R1, 2; TVR (Rumania) R2; MTV (Hungary) R1, 2; RAI IA, B; RTP E3; +PTT (Switzerland) E2; TVE E2, 3, 4. Two Arabic signals were present from 1734-1800 BST on ch. E3, JTV (Jordan) Amman and the other unidentified. F.M. radio reached a m.u.f. of 100 MHz .
24/5/8. 4 TSS R1, 2; RAI IA, B; TVE E2, 3, 4; ORF (Austria) .E2a; JRT (Yugoslavia) E3, 4; IRIB (Iran) E2 at 0920(1930 BST.
25/5/84 TSS R1, 2; CST R1; MTV R1; RAI IA; RTP E2, 3; T VE E2, 4; JRT E3.
26/5/84 Tris R R1, 2; ORF E2a; +PTT E2; SR E2.
27/5/84 S. K: E3; YLE (Finland) E3.
28/5/84 TV'E E2, 3, 4; RTP E3; RAI IA; +PTT E2; ORF E ${ }^{\prime}$:i ; ; CST R1; ARD E2; TSS R1, 2; TVP R1.
29/5/84 NFuK (Norway) E2.
30/5/84 RU' $/$ (Iceland) E3, 4; NRK E2; RAI IA, B.
31/5/84 TVIE E2, 4; RTP E2, 3; RAI IA; MTV R1.
1/6/84 TVE: E3.
2/6/84 TVE $\operatorname{iE2}, 3,4$.
3/6/84. TSS 1 R $1,2$.
4/6/84 RTP IE'2.
5/6/84 MTV F:1.
Modes of propagation other than SpE remained generally quiet dirting the period. The solar disturbances towards the encl of the month didn't lead to any sustained auroral activity unfortunately, at least not here in the south, and none las been reported from elsewhere.
Perhaps the nuost startling reception occurred on the

24th, when both Ray Davies (Norwich) and Cyril Willis (Cambridge) received the FUBK test card from Iran, with the identification "IRIB" and a digital clock insert at the bottom right-hand corner, via multiple-hop SpE . The clock was at $+3 \frac{1}{2}$ hours BST: the signal was weak and slow fading, resembling tropospheric propagation. A quite remarkable and first achievement in the UK - our congratulations to the pair.

EPT Greece was received on three occasions by Hugh Cocks and Cyril Willis. The EBU lists Akarnaika (ERT-1 network) on ch. E3, with 1.58 kW e.r.p. and horizontal polarization (20E59, 38N49). The PM5544 test pattern is used, with the EPT identification clearly visible.
May 23rd produced several sitings of Arab transmitters, with two stations floating between 1734-1800.

An increasing number of computer interference reports have been received and further information on suppression methods is being sought. Radio amateurs have been noted at 50 MHz twice during normal 405 -line broadcast hours - such operation is supposed to be confined to nonbroadcast hours until January 1985.
During the afternoon of May 20th Cyril Willis logged a French system L, ch. 2 (just l.f. of ch. E4) signal via SpE. This suggests that the Canal Plus service will be operational in Band I from Corsica.
My thanks to Iain Menzies (Aberdeen), Hugh Cocks (E. Sussex), Cyril Willis (Cambridge), Paul Barton (Harrogate) and Brian Renforth (Newcastle) for sending in details of their reception to supplement my own log.

Nova TV

Following our request for information on Nova TV in the Dublin area, Peter Coghlan has written in with details. Test transmissions started on December 3rd on chs. E60 and E66, using system I with full specification PAL colour. The ch. E66 signal was transmitted from the studio in Herebert St., Dublin at 25W e.r.p. and was received and re-radiated at 100 W from Three Rock Mountain. The test pattern consisted of colour bars with a central white band and the identification "NTV ch. 60/66". Programmes consisted of news, information and films. The equipment was seized on December 8th. Following this the Radio Nova v.h.f./f.m. radio programme was jammed, though transmissions continue at $102 \cdot 7 \mathrm{MHz}$ (stereo) and 819 kHz . Radio Nova can be contacted at PO Box 1433 , Dublin 1 (telephone 01-931 710).

News Items

Faroe Islands: Ryn Muntjewerff reports that the following transmitters are now carrying out tests: Torshavn ch. E6 $116-145 \mathrm{~kW}$ directional, Sudbury ch. E9 5.6 kW , plus one

Left and centre, two sexamples of DX-TV reception in the Falkland Islands - Argentina ch. A2 La Plata and A3 Rosario respectively. Right, the! Almerican Forces identification slide, received'on ch. E70 by Ryn Muntjewerff.

700W ch. E10 relay. This could be an ideal source of Band III signals via aurora. The PM5544 test pattern carries the identification "SJONVARP FOROYA".
Private TV: A "private" TV service operated by a local newspaper is in operation at Vaesteraas, Sweden. Another private TV service is expected to start in Lower Saxony, W. Germany, in mid-1985.

In brief: RUV (Iceland) now transmits programmes on Thursdays... SR-TV (Sweden) is using the PM5534 pattern with either TV1 or TV2 identification and no regional/transmitter identification.
Satellites: The Australian Homestead/ABC TV downlink service is due to start at the end of next year, using the PAL standard... Hungary plans to establish a satellite TV receiving equipment manufacturing capability to exploit reception of neighbouring countries' TV services ... The discussions over alternative proposals for a Luxembourg satellite TV service continue.

Computer Interference

The problem of interference due to computers seems to be increasing rapidly. I've found that some Sinclair Spectrum computers radiate over 200ft. My own unit produces severe radiation which is very difficult to reduce. Experiments with a double ferrite toroid (two FX1588 units) and densely screened coaxial cable wound ten times around and through the toroids adjacent to the Spectrum's r.f. output reduced the problem only slightly. Toroids can also be used on the mains lead, but the main problem seems to be the plastic case. Removal of the cassette leads has no effect and advice from Sinclair is being sought.

Further problems have been caused by a neighbour who's started a part-time word processing operation using a Commodore VDU, keyboard, disc drives, printer etc. This produces an effect similar to short-wave overloading in a badly designed preamplifier. The interference is not as intense as that from the Spectrum (the equipment is metal cased) and the use of toroids provides a solution. A mains distribution extension box with filtering (see Fig. 1) has been provided to ensure that the r.f. doesn't flow into the immediate house wiring. The coil around the toroids consists of single-core PVC covered lead, though threestrand lead would suffice. I was fortunate in acquiring a short length of screened mains three-core.
The increasing use of cheap home computers is going to make matters worse and we'd welcome comments from readers with experience in dealing with the problem. Incidentally, the British Telecom Radio Interference Service is in the process of being transferred to the Department of Trade and Industry. I've heard that problems at v.h.f. in the Bournemouth/Poole area are being caused by r.f. heating in a biscuit factory that operates 24 hours a day.

The Future of Bands //I/I

The DTI have released a study document entitled "Bands I and III" (Cmnd 9241) which is available from HMSO at $£ 4 \cdot 15$. The document outlines various uses, systems and possibilities and it must be said that things look tough for the TV-DXer in the UK.

What could become a serious problem is the suggestion of frequency allocations for "low-power devices"- the plan is to exempt a range of such devices from the need for a transmitting licence or special permission. The paper comments that "many of these devices operate at 49 MHz and it would seem appropriate to set aside a small band to be used with a minimum of restriction..." - the vast

SOUTH WEST AERIALS

As market leaders we supply a comprehensive range of aerial equip ment for domestic, fringe, DXing and distribution systems.
We supply a full advisory and after sales service.
We supply aerials/equipment for all bands, the big aerials and the small fitters - and all the bits in between!
We are active DXers - your guarantee of honest and accurate advice fficient equipment at competitive prices.
We've listed just some of our DXing aerials below - prices include VAT, packing and Securicor delivery.

S.W.S.S. Wideband Band 1 Aerials4768 MHz ind. (SAE leaflet)		Wideband Band 3-175.230MHz Triax - MTH6-6el., 7.2d8 gain MTH13-13el., win ref.,	. 35
WB1 dipole with stub mast	624.60		
WB2 2 element budget array	¢27.40	high gain 11.9dB	$\underline{53.10}$
WB3 3 element (very popular)	631.40	Jaybeam - Astrabeam 5-5el	521.60
WB4 4 element high gain	\$35.40	ABM8-8el., 9.5dB gain	$\underline{\mathrm{E} 27.35}$
WB5 crossed dipoles (WB1) for		ABM12-12al., 11.6 dB gain	£33.85
omnidrectional use	234.10	Antiference - HC2015R-17el., mu	
86 as WB5 but with reflectors	837.85	ref. 12dB gain	635.10

SOUTH WEST AERIALS IS UNIOUE - TRY OUR COMPREHENSIVE CATALOGUE AT 54p. Please include an SAE with all enquiries. customer reception consultancies and for our own VHF aerial leaflets. (Access/Barclaycard wolcome).

SOUTH WEST AERIALS
11. Kont Road, Parkstone,

Poolo, Dorset, BH 12 2EH.
Tel. 0202738232

number of 49 MHz devices outlawed by the Telecoms Bill could become legal overnight. The possibility of land mobile operation in Band I is recognised and comments from the PMR industry are awaited.

The DTI has proposed that the $173 \cdot 2-173 \cdot 35 \mathrm{MHz}$ band is made available for wideband low-power alarms in addition to low-power telemetry/telecontrol.

From our Correspondents.. .

Mel Thurlbourn (Leighton Buzzard) has sent us some excellent photographs he took whilst at Port Stanley -DX-TV Falkland Islands style. Whilst in the area he met Mike Peake who's had considerable success there over several years. Apart from stations in Argentina he's

Fig. 1: Simple mains filter. Suitable ferrite toroids (FX1588 etc.) are available from Bredhurst Electronics, High Street, Handcross, W. Sussex RH17 6BW at 40p plus postage. Wind on ten turns of PVC covered wire. $C=R S 238-299$ suppressor capacitor pack. An RS509-995 diecast box was used.
received Cuiaba ch. A2 (system M) in central Brazil and Santiago (Chile). Another distant reception was Rosario in central Argentina. Transequatorial skip reception of system M signals has been seen but identification is impossible.

Commercial Corner

M. Barson informs us that reinforced polyester masts are available from Met Antennas, 12 Kingsdown Road, St. Margarets at Cliffs, Dover CT15 6AZ (telephone 0304 853021). These enable optimum performance to be obtained from aerials (especially if vertically mounted) that would be affected by the use of a metal mast. A 1.5 m or double 1.5 m kit is available with 1.5 in diameter.

Allan Latham (G8CMQ) can supply ATV converters for $23 / 24 \mathrm{~cm}(1.3 \mathrm{GHz})$ in either kit, partial or wholly
assembled form, also u.h.f. f.m. receivers (i.e. video f.m.) and a low-power $23 / 24 \mathrm{~cm}$ source for test/alignment purposes (though a four-mile range has been attained). For further information send s.a.e. to Solent Scientific, 75 Chalk Hill, Southampton (telephone 0703464 675).

Transmitter Information

Belgium: Brussels-RAC BRT-2 ch. E25 10kW e.r.p. horizontal. Wavre chs. E25/28 now listed as taken out of service.
Egypt: The transmitting authority is now known as the Egyptian Radio and Television Union (ERTU). The first service is being transmitted on ch. E4 and the second service on ch. E2 from Dumyat at 0.9 kW .
Switzerland: The sound e.r.p. for all transmitters is now 5 per cent of the vision e.r.p. (formally 10 per cent).

TV Fault Mechanisms

Tony Thompson

Despite the apparently endless variety of the faults we encounter in TV sets their basic causes are few in number, consisting of weak spots in circuit design, poor physical construction and layout, the use of unsuitable components, and inadequate quality control during all or some stages of manufacture. Added to this there's the problem of adverse operating conditions, also the use of poor repair methods.

Basic Design Problems

Let's consider these in practical terms. There's inevitably an element of compromise in circuit design. Often it's the availability of certain key components that dictates the final form the circuitry takes. The average viewer sees nothing of the latest i.c.s etc. buried deep within his set, but can't fail to be impressed by the latest tuning systems with digital displays and so on. Appearance and price are key factors in selling sets, and styling is arguably the most important aspect of the design brief.

There's nothing new about this. The demands of styling seem on occasion to have called for technology to fit - as with the case of wide-angle deflection tubes to reduce cabinet depth. The situation in the industry in the early sixties was so bad that many companies, in desperate bids to remain in the field, cut production costs and technical quality while placing the emphasis on appearance. Reliability and accessibility both suffered. Many of these sets were troublesome from the time they were installed tuning the biscuit cores on an awkwardly placed fireball tuner was a matter of hit and miss (and watch out for the mains switch with your hand in the back!). But the sets looked good and sold in millions, creating a boom that was equalled only when colour became popular in the early seventies.

The latest solid-state designs with their low component counts make it easier to reconcile such contradictory factors as those mentioned. It's no longer necessary to try to cram a quart into a pint pot. In fact a glance in most new sets will reveal that the situation is quite different. The crowded days have gone forever, and because of this and advances in the technology used reliability has in-
creased in leaps and bounds.
There remains however a vast quantity of middling sets that though reliable in any sensible interpretation of the term were built at a time when chassis were more massive, more delicate and consumed more power. It is these that are likely to fail, simply because the design problems at the time of their manufacture didn't allow for maximum reliability over an extended lifetime. Some manufacturers regarded the average lifetime as about five years - this for an average colour set of the early seventies! Most such sets are still running, but few reliably. It's usually the critical components that give up, apparently suddenly.

Mechanical Considerations

Take mains droppers. Like all resistors they function by dissipating power in the form of heat. A dropper dissipates a considerable amount of energy and gets very hot as it does so. It follows that they should be sufficiently substantial to do the job asked of them and that they should be mounted where air can circulate freely to carry away the heat. In addition they shouldn't be sited in areas likely to be affected by this heat. If on a board they should be mounted well above the surface. The lifetime of most electronic components is reduced by the presence of high ambient temperatures.

Remember too that the connections to such high-power resistors are likely to become hot due to thermal conduction. Dry-joints are likely unless some provision is made for this. In the past some manufacturers advocated the use of high-temperature solder alloy, but this was inconvenient for field servicing. Most cheap irons had to struggle to melt the stuff, with the result that normal solder and hefty wire wrapping came to be adapted - which is o.k. for loom-connected droppers. The body of the dropper must of course be of a high-grade insulating and heat-resisting material. Fortunately the ideal material exists - ceramic!

Large electrolytic capacitors should be mounted either by means of a stout metal fixing such as a clip to a chassis member or, for economy, directly into the board with extensions from the outer casing soldered firmly into earthed print areas for support. It's undoubtedly wrong to mount such components upright, i.e. with the tags down, as electrolyte can leak and cause damage, possibly quite extensive. Similarly they should not be mounted in hot spots or above the dropper.

For reasons basically the same as those given for electrolytics, careful thought about the placing of transformers is necessary. They should not be mounted on
panels without support, especially in the case of a vertical panel, or their weight will strain the soldered joints and lead to cracked print, arcing at the tags and intermittent operation.
The placing of triplers seems on the face of things a simple matter. Keep them well clear of the chassis metalwork by means of high-grade plastic stand-offs, and make sure that there's a hazard-free path for the lead to the tube's anode cavity.
Most of the foregoing is common sense, but it's amazing how many sets can be found in which one or more of these guidelines have been ignored.
Poor performance due to such mechanical problems is commonplace in most makes of receiver, but some models seem to have more than their fair share. It would appear that manufacturers are sometimes slow to learn from their mistakes. Take valveholders for example. Charred panels and poor or corroded pin contact often occur with output valves, resulting on occasion in the issue of modified panels with stand-off holders. Why were they not fitted in the first place? Possibly because the man who designed the panel didn't know where it would be mounted in the set. All right, it's easy to be wise with hindsight. But these people were not new to the game. Valveholders in monochrome sets had been giving similar trouble for many years.

Again, what looks elegant in the scaled up panel drawings becomes dangerously thin print tracks on the finished board. Much trouble was and still is caused by panel flexing with heat/cold cycles, as a result of which the flimsy print goes intermittent.

Valves have a tendency to develop electrode sag when horizontally mounted, but in practice only the less robust types suffer from this malady. These of course were the frame grid types with their ultra-close electrode spacing. I have a suspicion however that the heaters of power valves are more likely to go open-circuit when the valve is not vertically mounted, possibly due to heater-cathode shorts in situations where the cathode is at a high potential.

Practical Example

It's interesting to take a particular well known chassis from the past and consider the design/reliability aspects. We'll take the Thorn 1500 , a popular single-standard monochrome chassis that was produced in vast numbers over several years and was the mainstay of many a rental company on the monochrome front.

First impressions are a little mixed, though there's a good spot for the dropper - horizontally mounted along the top rear edge of the vertical, single-panel chassis. Couldn't be better for heat dissipation. Being horizontal, the heat from a lower section can't affect the higher sections. The dropper is linked to the print by long, slender tags - sufficiently long to limit heat transfer, so few problems at the board joints.

The big panel has plenty of metal support. Being vertical, the few valves are of necessity mounted horizontally. Accessibility is good and the valves are in an updraught. The main electrolytic is also mounted horizontally: it's purpose designed for this, being a short, stubby type with substantial mounting lugs. This minimises leverage on the panel, and in practice few dry-joints develop at the capacitor's leadouts even with sets that have seen a lot of service.

One snag we've often had with this chassis is poor valve-to-holder contact. The holders seem to be inadequate for
the job and are best replaced if trouble persists.
If ail is well with the electrolytic, it certainly isn't with the field output transformer. The slender tags take the weight, with the result that dry-joints giving intermittent field collapse are quite common. Additional support should have been provided at this point.

Lastly, quite a reliable four-button manual tuner is made a nuisance by the fact that the spring-loaded bar used to rotate the tuner vanes is crudely soft-soldered into retaining forks and, as there's no damping during channel changing, the physical blow it receives practically guarantees fractured joints and the sudden loss of one or more of the preset channels. We resolder to repair - until the next time.

The foregoing should not be taken as condemnation of the 1500 . It was and still is a successful design of its type, easy to work on and predictable in its fault patterns. There's evidence of compromise, but no more so than in any other set - if you look. It seems then that the designers managed to balance the requirements of their brief with medium-term reliability and cost. But even if you get everything right mechanically, there will still be the occasional electronic component failure. Let's take a look at the problems that arise with different types of components.

Resistors

Resistors fail by going open-circuit (permanently or intermittently) or by changing value. Burn-ups occur most often with low to medium values, usually resulting in reduced resistance. The process may be slow initially therefore but the effect will gather pace, and will begin to affect other components, perhaps loading a power transistor or valve. Resistors in such locations often show evidence of distress in the form of discolouration sometimes to the point where their value is no longer readable. The component may disintegrate on being removed from the panel. The inference is that the rating was adequate in the short term but not in the long.

Wirewound resistors rarely change value - though this is not totally unknown. The main malady affecting this type of resistor is of course dry-joints, especially when they are of the printed circuit type with short, rigid leadouts so that the component has to be mounted close to the soldered joint. The link on the fusible type often becomes brittle.

Resistors that are subject to high voltages lead a hard life, especially if they suffer from spiky transients or have a high potential difference across them. This is why many megohm value resistors go open-circuit with no external sign of distress - though the types used in early focus chain circuits, for example those in Autovox sets, are often found with a neat, circular burn mark right around their bodies. Many sets use special high-voltage resistors in such applications: you can spot them by looking for the spiral track.

Presets give trouble in several ways, not least of which is intermittency due to a gradual loss of springyness in the slider construction. Most seem to be not robustly enough made. Convergence potentiometers on the other hand are generally well made, failure being more often due to poor circuit design. Carbon track rotary or slider type controls often give trouble in solid-state circuitry. The reasons for this seem to be twofold. First the values used are often smaller than the values used in the equivalent valve circuitry, so that the component is more likely to add its own noise as the slider is shifted along the track. Secondly,
in order to obtain adequate coupling under low-impedance conditions the designer usually employs electrolytics which by their nature tend to have slight leakage currents, causing a current flow through the potentiometer. This produces an audible rustling as the slider is adjusted, so if you've just changed a noisy potentiometer and not cured the problem, check the coupling components.

Capacitors

Capacitors of the electrolytic type seem to have a limited life, often drying up and going down to a fraction of their original value or going short- or open-circuit. Paper or mixed-dielectric types, usually used in medium to high voltage positions such as for mains and boost line filtering, often short out in a very definite way. If you can't see it from the outside, dismantling the faulty capacitor will show a hole punched through the tubular layers of foil and dielectric. The reason for the failure is often that the component rating is too tight, i.e. boost capacitors rated at 600 V when at least 1 kV should have been chosen. Capacitors used for line output stage harmonic tuning should be above reproach. When they fail the result can be a dramatic rise in the e.h.t. voltage. If they've gone open-circuit that is: shorted ones cause fires . . .

Working Environment

Atmospheric conditions affect sets considerably. Dampness in particular causes tracking around the tube's e.h.t. cavity connection and "spray" from sharp points on line output transformers, c.r.t. bases and other high potential areas. In some sets this can lead to violent discharges that deal death blows to vulnerable components that are, due to lack of foresight by the designer, within range. This is not to mention the hapless service engineer's feelings when confronted with such a set. I well remember some of Les's comments on a Rank Z718 chassis where there was a truly spectacular e.h.t. flashover, apparently causing a vast area of air between the cavity connector and the power supply panel to ionise. You're not alone Les: I've also been practically blinded by the same problem, and the cost of the repairs to the power supply and decoder panels didn't exactly please the customer.

High-frequency coronal discharge can damage components such as tuning capacitors that may be mounted on the transformer's tags, but it's my belief that far worse damage is done by the e.h.t. potential developed after rectification. It can puncture the tripler itself, flash through wrongly dressed leads and cause a blaze, or track from the cavity connection across the glass to the Aquadag coating so severely that not only is the e.h.t. cap damaged but the tube glass can become badly scarred, rendering the tube unusable. The remedy is to clean and dry the area thoroughly, fit new anti-discharge capacitors that have a high air-spaced construction, and treat the area with silicone grease. Coronal areas on the transformer can be treated with grease too, or use a sealant. Don't forget to position the e.h.t. lead with care, using any plastic locating clips to keep it firmly out of harm's way. The same comment applies to other wiring looms, especially any that might swing near the tripler or line output transformer, or the dropper units.

I've said it before, but it gives me the creeps to see topheavy vases of flowers adorning set tops. Educate the customer if you can.

Then there's the tendency of some folk to put the set
into a space that just fits it, such as a niche alongside a custom-built fireplace. This, and where curtains muffle the back of the set, restricts the natural flow of air, producing a heat build up. The life of any component or even the entire set can be shortened by this - design tolerances can be only so wide.
Sets used in smokey atmospheres, such as in pubs and clubs, get gummed up, but the only real problem that this causes is where sets have touch tuning or remote control the tarry build up may interfere with the action.

Semiconductor Devices

Diodes used for power rectification may be found mounted hard against a panel - in fact some types of diode packaging allow for this. I contend that it's wrong: the component is sure to warm up in operation and should be allowed to breathe.

Hot spots can cause failure. Transistors are often sat on a panel, soldered firmly in place with a substantial heatsink attached. This is typical with a group of RGB output transistors. The design has allowed for heating with the heatsink, but it seems that nobody has considered that the leadout/casing joints could become strained and intermittent. Such transistors should be mounted a little way above the panel to allow the wires a little flexibility and prevent any heating of the soldered panel joints leading to dry-jointed connections.

Fairly substantial components such as thyristors will often be found fixed in such a way that their only support is the soldering on their leads. Add heatsinks and you've got potential trouble. In the main however designers seem to have given thought to such components and other than natural failures little trouble of an avoidable type is experienced.

Hints and Tips

When it comes to replacing components such as resistors, transistors and diodes in vulnerable positions, leave a little space between the component and the panel. Where there's a considerable voltage difference across a resistor supplying a valve screen grid or in a boost line it doesn't hurt to increase the rating a little - say from $\frac{1}{2} \mathrm{~W}$ to 1 W though the manufacturer's specifications should be observed when it comes to safety rated components.

Make sure you refit heatsinks - manufacturers don't fit anything that's not needed! It's worth checking the tightness of fuseholders in older sets, or where adverse conditions have turned all the normally bright bits such as preset sliders a dull browny yellow. On/off switches are often responsible for intermittency or the dead set condition: if they don't feel right they're best changed. Badly fitting mains plugs and loose wiring in them can cause faults that damage power supply components - it's always worth a quick look. E.H.T. settings are often incorrect and should be checked to ensure reliability - even a slight increase in the h.l. voltage can affect the life of a set and its tube.

Finally, many faults don't just happen - they spend years developing. But with the improved design of present day sets it's likely that an ever larger percentage of our future service calls will be to deal with problems of a mechanical rather than an electrical nature, such as broken knobs and switches, damaged panel mountings, intermittent aerial sockets and the like. I wonder what the field engineer's toolbox will contain in ten years' time?!

Letters

SHARP VC7300

A problem with the Sharp Model VC7300 was mentioned in the March VCR Clinic. I've had experience of this fault and would suggest that lubrication of the main solenoid plunger will not provide a permanent cure. The cause of the trouble is side tension on the plunger due to the length of the cotter pin, making the plunger jam in the solenoid cylinder. The fault is intermittent and can be dealt with as shown in Fig. 1. Remove the spring and refit it directly in line with the solenoid plunger - a hook can be made by cutting off a lead from an old 10 W resistor, doubling it over to form a loop and pushing the ends into the split cotter pin. Hook the other end of the spring into the fast forward/rewind solenoid.
Bob Jones,
Perth, Western Australia.

BATTERY ELIMINATOR FOR THE AVO 8

Though RS Components now have available a 15 V battery for the AVO Model 8 an alternative solution is this simple battery eliminator which can easily be fitted. The circuit is shown in Fig. 2. It can be built on Vero board and mounted between the shunt boards. The 15 V outputs and the inverter positive are wired to the battery contact studs while the inverter negative connection is made to switch contact N on the d.c. ranges switch cam. The lead from switch contact N goes to a pin marked D on the shunt board.
Les Harris,
Church, Accrington, Lancs.

TUNING TROUBLES

When a Philips G8 tuner push-button unit becomes "rather fiddly to tune" (Tony Thompson, June) a common cause is rotary backlash between the potentiometer spindle and its small plastic bevel wheel, whose boss splays and cracks. In advanced cases tuning becomes impossible, but even then there's an effective and simple remedy. A 6BA nut, drilled and tapped 4BA, is of suitable size to serve as a collar that can be forced over the splayed boss, making it grip the spindle flats firmly ever after. Getting at these little black bevels may seem to be a daunting puzzle, but they give in to a logical attack. Note precisely how the metal bracket comes away, to save time and temper later, and watch the Y-shaped switch blades which are easily lost.

Elderly GEC 2040 mechanical tuners are prone to two common faults that are also curable by simple means. If a depressed push-button can be shaken sideways far enough to disturb the tuning, this is due to wear of the spindle hole in the rear plate which is detachable (two screws) without removing the tuner. A few well aimed centre punch indentations will deform one side of the hole inwards, and careful trimming with a round file can restore the hole to a close, freely sliding fit - best kept that way by greasing the spindle.

If the frictional grip of the tuning nut on its screw becomes slack the result is annoying, inadvertent detuning when switching channels. The friction can be increased by fitting a spring collar to compress the nut. To take out the
spindle, detach the rear plate, the front plate (four screws), the small circlip, washer, spring and spacer - but leave the nut on the screw. This resilient plastic "nut" is basically of C-shaped section, with a projecting boss of approximately $5 / 16 \mathrm{in}$. diameter, over which a spring collar can be fitted. The latter can be made from a single-coil spring washer (nominal $\ddagger \mathrm{in}$. bolt size) by grinding away about a quarter of its circumference so that its gap passes over the screw. The boss, being rounded and tapered, may tend to throw off the collar, but a few strokes with a file to make a reverse taper undercut will make the boss retain it. The spring collar can be bent by trial and error until the degree of frictional grip is satisfactory. During reassembly, fifth and sixth buttons can easily be added if desired, taking spindles from a scrapped tuner. The extra holes are easy to cut in the cabinet trim.
L. A. C. Dopping-Hepenstal, Ampthill, Beds.

BASEBAND LINKS

There was mention last month of signal degradation due to PAL encoding/decoding and the use of a u.h.f. link between a TV set and equipment such as computers, games and VCRs.

When the signal is locally generated in RGB form I agree that baseband links have much to recommend them - for data and graphics involving colour the use of PAL

Fig. 1: Suggested modification to the Sharp VC7300.

[927]
Fig. 2: Battery eliminator for the AVO Model 8. T1 is an audio driver transformer from a Japanese transistor radio.
coding and decoding is little short of disastrous. In the case of VCRs and video disc players however the signal is already PAL coded, in most cases with bandwidth limiting, i.e. $2 \cdot 5 \mathrm{MHz}$ luminance and less than 500 kHz chrominance. In this case baseband linkage is of very little advantage, especially in view of the spaghetti web of wires involved, and the tremendous problems encountered (with some TV/VCR combinations) by setmakers and the retail trade due to "bleed" of the audio signal from the TV receiver into the VCR's sound recording system.

Regarding modulator performance, I've yet to encounter any drift in VCR u.h.f. modulators, even with sets (like Finlux) that have synthesis tuning without a.f.c. In my experience a correctly adjusted modulator will on any make of VCR give pictures and sound that are indistinguishable from off-air transmissions, even in an A-B comparison test. Save your leads and AV/RGB sockets for computers and MAC-C satellite tuners.
E. Trundle,

St. Leonards on Sea, Sussex.

Servicing the Grundig 2×4 Super

Part 2
Mike Phelan

This time we'll take a look at the signal sections of the machine - where better to start than at the aerial?

HF Sections

The aerial amplifier/splitter and r.f. modulator are combined in one unit and any suggestion of a snowy picture in the E-E mode and/or with loop-through throws suspicion on this (we'll refer to it simply as the modulator). If E-E operation only is noisy, connect the aerial directly to the tuner through a suitable adaptor as the tuner could be faulty.

Before condemning the modulator, check that the -22 V supply is present at pin 6 of the edge connector. This comes from pin 22 of the power supply and is usually o.k. there, but the print that runs all round the edge of the mother board tends to crack where the latter is attached to the cabinet. Unless you relish the job of removing all the modules, the tape deck and finally the board itself, take six inches of wire, nudge, wink, say no more! There's also a 33 V supply to the KE (set channel) control. If this is absent the monitor will have to be tuned down to ch. 21 or thereabouts - see the power supply notes last month. 15 V supplies should be present at pins 4 and 5 .

The tuner is the same unit that's used in most Grundig colour sets produced during the 70s. It's very reliable and to date the only problem we've had has been leakage in the feedthrough capacitor that carries the tuning voltage this results in drifting.
We haven't had any problems with the i.f. strip, which is as well since the unit cannot be worked on while it's in the machine.

Luminance Module

A block diagram of the luminance module is shown in Fig. 3. Briefly, during playback the switch in IC731 is normally in the position that allows the direct f.m. signal through for processing. In the slow, still and search modes pulses from the DTF board operate the switch on alternate fields so that the signal via IC705 and the $64 \mu \mathrm{sec}$ delay line (equal to the head offset) passes through. This obviates the need to add a dummy vertical pulse. IC731 also contains the dropout detector and switch - the dropout channel has its own f.m. limiter and demodulator, with a $128 \mu \mathrm{sec}$ delay line in the signal path. When a dropout occurs, IC783 is switched off and IC741 on so that the delayed signal passes to the following stages. For
dropouts of more than one line duration the same line is continually recycled and fed out, giving a series of vertical random bars that disappear gradually as losses occur.

Both the dropout threshold (DS) and insertion level (YAD) are adjustable. There's a test tape available for these adjustments, but we made our own. Purists please ignore the following! We put a small piece of adhesive tape half way round the machine's lower drum and made a recording of monochrome grey-scale bars containing a horizontal noise band. DS can then be adjusted so that the noise is just replaced by inserted video and YAD so that the level corresponds with the mid-grey of the grey-scale wedge.

The crispener circuit works in the same way as that used in certain Philips machines - by differentiating the signal twice, inverting it and adding it to the delayed original signal. There's a control at the front of the machine to enable the crispening level to be adjusted.

The record circuit is straightforward.
To date, the only troubles have been total lack of E-E signal due to failure of IC860, no playback due to failure of IC731, and one or two instances of strange cogging and clipping caused by failure of various small capacitors associated with filters. Sync pulling coupled with low contrast on playback and E-E is normally due to someone having had a go at the video modulation depth potentiometer in the r.f. modulator (this is accessible through a hole in the cabinet).

Chroma Module

A block diagram of the chroma module is shown in Fig. 4. Fortunately there have been no chroma faults in the few hundred of these machines that have passed through our hands!

An interesting feature is the separation of the chroma and luminance signals and their recombination to give the E-E signal on record. The usual 625 kHz oscillator locked by the line sync pulses provides the a.f.c. loop. In the playback mode the output from this is mixed with the output from the 4.43 MHz crystal oscillator T503. The 4.43 MHz oscillator is inoperative in the record mode. Instead the output from the 8.86 MHz oscillator, which is locked to the burst, is used after division by two. This is in effect the opposite of the VHS method, i.e. there's no playback a.p.c. loop.

There are a few more peculiar features. For example the burst amplitude is boosted by 6 dB when recording and

Fig. 3: Block diagram of the luminance module.

Fig. 4: Block diagram of the chrominance module.
reduced by the same amount on playback, and the chroma channel is muted for $90 \mu \mathrm{sec}$ after the field sync so that the DTF burst (more on this next month) does not interfere with the chroma signal on playback. The chroma is
remarkably noise-free on this machine, and there's none of the edge patterning effect found on others.

In Part 3 well be covering the servos and the DTF (dynamic track following) system.

A Vintage Hi-Fi TV Sound Unit

Chas E. Miller

A common complaint from TV viewers over the years has been that the sound quality produced by a receiver doesn't match the picture quality. Anyone who watches a jazz concert for example will be familiar with the sight of a bass player plucking away like mad to no audible effect whatsoever from the TV set's "super hi-fi full-range $2 \ddagger \mathrm{in}$. speaker"! The general design of the audio output stages used in hybrid colour sets followed much the same lines as those found in the "midget" radios of thirty odd years ago. The tiny output transformers and under-sized speakers live on, producing noises that are no more acceptable than they were long ago.

One obvious solution would be to extract the TV sound and feed it to a decent audio system. Various ways of doing this have been described in past articles. There are problems with this, not the least of them being the live TV chassis. For a long time I toyed with the idea of producing a small add-on unit that could be plugged into the audio output valve socket in a hybrid receiver to give reasonable quality sound with a minimum of trouble. The targets I set for the design proved rather difficult to achieve however.

Requirements

First and foremost there had to be a push-pull output stage, with all the attendant advantages such as cancellation of hum voltages and magnetizing currents in the output transformer, permitting the use of a modestly sized unit without incurring other penalties. It had to be a true plug-in replacement for the standard output valve (usually a PCL86), drawing the same heater and h.t. currents. This implied no more than 13.3 V at 0.3 A for the heaters, and around 230 V at 45 mA for the h.t. supply. A minimum of two triodes and two pentodes would be required (a.f. amplifier, phase inverter and push-pull output), but even the use of double valves seemed to be ruled out since most
triode-pentodes require some $12 \cdot 5-16 \mathrm{~V}$ each for the heaters for a start. The idea remained no more than that for a long time, until I found the complete answer during one of my trips down memory lane for a vintage TV article.

I was browsing through some ancient service manuals they must have been literally thrown out by someone, since my son rescued them from a rubbish tip - when I came across one for the Ferguson Models 983T and 988T. These were Band I only receivers released in early 1951. The 988 T was a 12 in . table model while the 983 T was housed in a console cabinet. This made it possible to employ an 8 in . speaker in the 983 T . It was complemented by the addition of a push-pull output stage - they did things like that in those days! It was evident that this had involved the same design problems that had been exercising my mind, and it was highly satisfying to discover how they'd been overcome.

The valves chosen were ECL80s, small triode-pentodes that were originally designed for use as the field blocking oscillator and output stage but which came to see service in all sorts of applications - in audio, sync and multivibrator circuits, even as the frequency changer in some sets. Their advantage was the modest heater requirements -6.3 V at 0.3 A - though for some applications there was the disadvantage of a common cathode for both sections of the valve. The total h.t. consumption for a pair of them would amount to very nearly the 45 mA mentioned earlier, with a 200 V h.t. rail.

Circuit Description

The circuit used in the 983T, modified very slightly for this add-on unit, is shown in Fig. 1. V1A is a voltage amplifier and, to overcome the common cathode restriction, V2A is an inverter with unity gain (controlled by

Fig. 1: Circuit of the vintage hi-fi sound adaptor module.
feedback via R6). The antiphase outputs obtained at the anodes of the two triodes drive the push-pull output pentodes. It's a delightfully simple circuit that can be built up quickly and easily.

Construction

Literally everything required was already to hand - in some cases from the junk box! The valves in particular were no problem, since the ECL80 was an extremely popular valve and a dedicated hoarder such as you-knowwho is bound to have quantities of them stashed away. The chassis consists of a standard two-gang metal box, switch sockets for the use of, which was conveniently stamped on its base to give knock-outs for. conduit entry. Two of these knock-outs were just the right size for B9A valveholders. A standard twelve-position tagstrip was rivetted down the centre of the box to carry much of the wiring, the box itself being inverted so that all components except the valves and the output transformer are contained within it.

The transformer is a standard RS multi-ratio type - I'd several in stock from way back. As I couldn't find any reference anywhere to the correct matching for a pair of ECL80s in push-pull, I adopted the reasonably reliable formula of multiplying the anode resistance of a single valve by 1.4 . In many cases this gives an acceptable approximation, as was confirmed by the results achieved with this unit. The ECL80's pentode section has an anode resistance of $11 \mathrm{k} \Omega$, indicating the need for a $15.4 \mathrm{k} \Omega$ anode-to-anode load for a pair. This was satisfied by using primary tappings 1 and 4 , with 2 as the centre tap. As I was using a 3Ω speaker, the secondary tappings were C and D .

Modifications

Simple though the circuitry is, it will be apparent at even a quick glance that if anything should go wrong the circuit has the makings of a very efficient cathode-coupled multivibrator. With hindsight, it seems likely that stray capacitances formed by the wiring in the original Ferguson sets had some beneficial stabilising effects. During the initial testing of my version 1 found that there was supersonic oscillation, the only direct confirmation of this being a heavy negative voltage at the grid of V2A. It was suppressed by adding a 400 pF capacitor (value selected at random) between the junction of R5/6 and chassis. The oscillation was caused by positive feedback, which degraded the frequency response. Fitting C3A greatly improved matters. It transpired that Ferguson subsequently modified their circuit, adding $100 \mathrm{k} \Omega$ grid stoppers and 5 pF feedback capacitors in the output stages (R10A/ R11A/C4A/C5A). I didn't find this necessary, but these components could be added if instability is experienced.

Interconnections

All connections to the TV set were made via a B9A plug, itself very old new stock - if you see what I mean! Ordinary thin flexible leads were used for the h.t. and heater supplies and for earthing, with a fine screened cable for the audio input. The exact connection will depend on the set being adapted. In most cases the input from the slider of the volume control is taken to the grid of the triode section of the PCL86 (pin 1). Thus the amplifier's input will be tapped from this pin. In GEC hybrid colour sets however the volume control is connected between the triode and pentode sections of the PCL86, so in this case

BILLINGTON VALVES

Specialist valve and vintage service NEW, BOXED, GUARANTEED VALVES

3 AT 2 B	1420	ECFBP	¢1. 25	Elusos	53.75	PCFE00	11.35	PL95	53.00
615	11.55	ECH81.Mul	33.00	Er86/ +	20.50	PCFB01.Mul	¢135	PL50 +	51.20
6SJ7M	23.50	ECH84	50.70	EY5004	11.50	PCFEDE +	cas	PL50	6240
12BY7A	83.15	ECL80+	c0.en	E880	11.05	PCF805	11,0	PL509.Mul	f5.ce
12HG7	f18.0	ECLB2	68.75	E881	[1.05	PCFE0s	$\underline{1.15}$	PL519 +	E5.25
170W4A	83.75	ECLBA	80.14	Gr501	1.45	PCFE08. Maz	E1.85	PLRCRT	14.50
21LUB	$E 3.10$	ECL8	fins	G234	220	PCH2OO.Maz	1.42	PLCOQ	56.50
$30 \mathrm{FL1/2}$	18.50	EF80.Maz	En. 90	KTE6.(UK)	$\underline{89.75}$	PCLI8	1120	PY88	
30 FL 12	\$1.70	EF85	60.50	KT88.(UK)	E16. 69	PCLes.mul	1250	PY500A +	11.90
DYeg/. Maz	5.0.	EFs6.Mul	E1.50	PC86	50.74	PCL84.Maz	11.10	PY800/1.Ma	11.30
DY802 +	4.11	EFP9.Mul	E210	PC88	60.75	PCL85 +	50.50	U26.Maz	11.70
EABC80	81.20	EFS5.Mul	E5. 75	PCSO	83.45	PCL86+	60.91	UCC85.Mut	110
ECC81	61.10	EF183	60.74	PC97	11.00	PCLSO5+	$\underline{1.00}$	UCH81.Maz	62.20
ECC82	c0.5	EF184	88.74	PCC84	fnco	PO500	53.00	UCLBrmul	f1.70
ECC83	69.75	EH90	50.50	PCC85 +	60.51	PR 200 Maz	11.30	UCL83	11.85
ECC84		El34.Mul	53.20	PCC89	f0. 70	PL36	$\underline{1.45}$	UF69	62.00
ECC85	gis 5	Elba+	En. 70	PCCPOS	¢1.30	PL81	61.70	UL41	[4.c)
ECC38.Maz	11.30	Elso	f1. 20	PCF80	\$1.00	PL83+	18.40	UY\%.Maz	1130
ECFEO	60.74	EL509	68.50	PCFF200.Mul	6.45	PL84	f 9.75	X78.	118.00

+ Denotes imported brand of valve, Mul = Mullard, Maz = Mazda.
Most of our valves are Mullard, Mazda, Philips, GECC but where shortages occur we supply impolted brands, in common with all other retailers. If denoted Mul, Maz etc. valves supplied will always be Mullard, Mazda. These valves are in stock at time of going to press. PRICES GUARANTEED UNTIL SEPTEMBER 1984
We can supply, direct from stock, virtually any valve, radio, TV, audio, transmitting etc. Send SAE for quotation by return or 35 p for our new catalogue (with a $50 p$ voucher!). Huge stocks of all popular types.
DISCOUNTS ON $25+$ OF ANY ONE TYPE!
USED VALVES Tested working. Clean. Boxed. 28 day guarantee.
Reduced to 20p: DY86/7, DY802, EF80, ECL80, EF183, EF184, PCC84, PCC189, PFL200, PY33 25p: ECC81, ECC82, ECC83, PCF80, PCL84, PCL85, PCL86, PCF802, PL36, PY800/1 35p: PL504, PZ30.
50p: PD500. £2.50: PL519
CRDERING INFORMATION:
List price is inclusive, no VAT to add to list price. Add 60p post \& packing to all orders. Mail order only. Same day despatch. SAE enquiries. 35p for catalogue. 90 day guarantee on new valves.
Mail Order Only: No Callers Please
BILLINGTON VALVES
Irwin Drive, Horsham, W. Sussex RH12 1NL.
pins 1 and 9 of the adaptor must be connected together and the a.f. taken from pin 8. The earth connection (an ordinary cable plus the screening) is taken to pin 2 , which in GEC sets is connected directly to chassis. In other sets it will be necessary to add a shorting link beneath the valveholder. The h.t. is tapped from pin 6 (pentode anode). If it's necessary to reduce the h.t. voltage (in general 200 V should not be exceeded) this can be done very conveniently by removing the h.t. and anode leads from the original audio output transformer and linking them via a suitable resistor with decoupling - if the rail is already at about 200 V , simply bridge across the transformer. For sets using a PCL82 audio valve the connections are the same for the audio input and h.t. (pins 1 and 6 respectively), with either pin 2 or 8 used for earthing via a link inserted in the set. The heater connections are 4 and 5 in both cases.

Results

The results were most satisfying and made the whole project worthwhile. The most noticeable improvement is with music that's been heard many times before, for example that with the test pattern or commercials. The sound has that elusive and hard to describe quality that makes for listening pleasure: the frequency response seems to be even throughout the range, with the lower notes clear and the treble free of tinniness. The sound will be enhanced even more if a good external speaker is used. At present I'm using (not unnaturally) a vintage 8in. unit taken from a Bush TUG68. Do try this little amplifier: it's very easy to build and will repay the time spent.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon on page 561 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

TOSHIBA V5250B/SONY SL8000UB

The problem shows up with prerecorded tapes. Red lines streak across blue areas of the picture, making it unstable from a colour point of view. Turning down the colour produces a normal monochrome picture while adjusting the tracking control produces head switching noise at one extreme and a slight improvement of the colour at the other. The machine plays back its own recordings perfectly.

We've encountered this sort of problem on several occasions. In each case it's been solved by cleaning the tracks of all the presets associated with the chroma circuitry, then realigning the chroma section following the procedure given in the manual - this either cures the trouble directly or pinpoints the fault area. An accurate oscilloscope and frequency counter are required for alignment.

PHILIPS G8 CHASSIS

When the Channel 4 test pattern is viewed the top two inches or so of the verticals can be seen to oscillate slightly. There's also slight tearing towards the bottom of the picture, over just a few lines.

The usual cause of this trouble is failure of the electrolytic C4518 $(47 \mu \mathrm{~F})$ that decouples the supply to the line oscillator.

RANK A823A CHASSIS

The trouble started as intermittent loss of colour, then after a few days there was complete loss of colour. Changing channels would produce the colour momentarily, and adjustment of the ident control 3RV4 has now restored the colour except during the first ten minutes after switch on, when it's intermittent and smeary in the top half of the picture. Tuning for colour seems to be very critical.

Check that the line hold control setting is correct. Trouble here will upset the burst gating and thus the colour. Items worth checking in this area are the 15 V zener diode 5D3 and the smoothing electrolytic 5C31 $(400 \mu \mathrm{~F})$. The cause of the trouble could be on the i.f. panel: try careful adjustment of the i.f. gain control 2 RV2 and the preset colour control 2RV6.

ITT CVC25 CHASSIS

One of the scan-correction capacitors (C69) had to be replaced due to a width fault, but within two days the set was back with a burnt out EW correction transformer (L22/3). C69 and the transformer were replaced but continue to run hot.

Assuming that the EW controls have some effect on the
picture and that the EW correction driver transistor T13 is not leaky, we suggest that you disconnect L26 in the shift circuit. If this appears to cure the problem, replace the shift transformer L26/7. If not, it's likely that one of the EW modulator diodes D24/5 is in trouble or that the EW loading coil L24 has short-circuit turns.

PYE 697 CHASSIS

All of a sudden the picture went very bright, then very dull with loss of colour, though the raster is still full sized and the geometry correct. The decoder and CDA panels have been replaced with known good ones and the tube is o.k., but the fault is still present.

Loss of the line pulses used for gating is the most likely cause of the trouble. This could be quickly checked with a scope. The edge connectors on the timebase panel are a frequent cause of this sort of trouble.

ITT CVC8 CHASSIS

It seems that the e.h.t. system is tiring. Any pictures with a significant amount of light area now defocus quite badly and there are two related effects - a billowing inwards of the right-hand side of the raster on some very white shots, and a fair amount of change in picture size dependent on brightness. I assume that the line output stage valves require replacement. Any other suggestions?

Fitting a new PY500A and PL509 could well do the trick. If the fault is still present after this, check the harmonic tuning capacitor C308 and the damping network components C306 and R422. If this doesn't help and the h.t. voltage is constant, the tripler is suspect.

RANK A823 CHASSIS

I have three of these sets, all suffering from the same complaint to a greater or lesser degree - reduced width on scenes with a dark content, varying from half to one and a half inches on each side of the raster. The reduced width is present only in the areas of dark picture content. The h.t. and e.h.t. voltages are correct on all these sets and new line output transformers and triplers have been tried without success.

The symptorr could be due to problems with 6 R8/6C6, which are in series with the tripler, or the clipper diode 6D1. Check these items first. The e.h.t. regulation will be poor unless the line output transistors are balanced. Adjust the balance coil for minimum width after reducing the h.t. voltage in the way described in the manual.

HITACHI NP8C CHASSIS

Initially the problem was intermittent colour which returned when the crystal was touched. Replacing the crystal restored the colour for only a week, so the decoder i.c. was replaced. Two weeks later the colour disappeared again.

It seems likely that there's a dry-joint on the decoder board - check for this and make sure that there's 12.5 V at pin 22 of the chip and that line-frequency pulses are present at pin 13. If so, link TP502 and TP503 and earth TP504 via a $22 \mathrm{k} \Omega$ resistor. Adjust R514 (colour sync) for zero beat, then remove the test link and resistor.

ITT VC400 CHASSIS

There's a raster but no picture - the fault occurred suddenly. The sound is tunable throughout each channel but is very distorted at all volume levels. Voltages have been checked and the only discrepancies are no d.c.
voltage at pin 7 (input) of the TDA1330 demodulator i.c. and low voltages around the TDA1352A i.f. amplifier i.c. The TDA1330 i.c. has been replaced.

Ensure that the 11 V and 24 V rails are correct, then check the components in the a.g.c. gating pulse feed to pin 5 of the TDA1352A - resistor R92 ($18 \mathrm{k} \Omega$), and the two clipper diodes D3 (ITT44) and D2 ($8 \cdot 2 \mathrm{~V}$ zener) for leakage. If these are in order and you're sure that the replacement TDA1330 is o.k., the TDA1352A is suspect. This assumes that there's little or no noise on the raster if there is, suspect the aerial, the tuner or the BC252B i.f. preamplifier transistor T4.

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
260
"Whaur's yer local, laddie?" Framed in the doorway stood a huge Scotsman, looking and sounding like Rob Roy himself - apart from the colourful Bermuda shorts.
"The Queen's Head. Down the road - they're closed till half past twelve though."
"Och, no' the pub . . . the local transmitter. Ye ken?"
"Heathfield, up the road. There's a relay at Walmington-on-Sea. Where are you?"
"Parked in yer yarrrd. Are these transmitters no' verra good? Thaur's terrible interference and we've tae pit the lichts oot befaur we can watch at all. Even the water tap interferes wi't".

The subject of this strange conversation turned out to be a JVC CX500GB, a remarkable set with colour TV, radio and a cassette recorder. As we soon discovered, it lived in a twenty-two foot caravan towed by a Jaguar, the like of which was far beyond the ken of the real Rob Roy. In fact his name was Man-Andra - or so his wife (Megwumman?) called him. When we tried the little set in the caravan up came a noisy raster only, which was not surprising since the only signal source was its built-in telescopic aerial.

Man-Andra was busy outside, struggling not with a caber but a slim pole on which he'd lashed a u.h.f. aerial. This produced a noisy, ghosty test card falling a centimetre or so short all round the screen. The Caledonian couple poured out their troubles. The radio worked all right, and the tape section was o.k. provided they weren't recording TV sound. If they were, the results were marred by incorrect speed and wow. Meg-wumman turned on the tap and the picture got worse. Switching from TV to tape replay seemed to cure all the ills, even with the tap on. Further demonstrations involved pulling the curtains and turning the lights on and off, then starting the engine and
revving it alarmingly. The TV section behaved differently under these various conditions, though the ghosting and snow remained throughout.

The upshot of this encounter between Scottish affluence and English logic was not a screwdriver and meter exercise. Though we got the manual out for interest (it's an ingenious design) we didn't need to use it. No, Andra and Meg were directed to our local retail department for one of those and some of that. Andra lost one evening of his holiday busily working while Meg-Wumman fretted and scolded. A nice sequel to the story was the arrival, at the end of the week, of a "wee dram" of whisky (down, Les!) for their mentor - it's with me as I write this. Back to the point however. What did they buy in the shop? What basic problem did it solve? And how on earth did the water tap get involved? We'll reveal all next month.

SOLUTION TO TEST CASE 259 - page 502 last month -

All very mystericus: an ITT CVC20 with its screen as bright as a searchlight, the tube's cathodes virtually grounded and a whopping 9 V coming from the TCA800's RGB output pins. The other voltages around the chip were about correct - but it wasn't the chip itself. What the block diagram of the i.c. in the manual doesn't show (though it's obvious perhaps with a little thought) is that the RGB clamps need line frequency drive pulses - the same pulse that triggers the PAL bistable is used. It enters at pin 8 , after a bit of delay and shaping by the $R C$ network between this pin and the relevant winding on the line output transformer (pin 12). The pulse at pin 8 should be a positive-going one of 15 V peak amplitude. Our scope revealed the presence of a 7 V negative-going pulse. This was mucking up the clamping, thus accounting for the trouble.

The pulse at pin 12 of the line output transformer should be of 70 V peak amplitude. In fact we found a negative-going 100 V pulse at this pin. This was because the winding was open-circuit, as a result of which negativegoing pulses from the NS transductor drive winding were being fed back to pin 12. This would have affected the NS raster correction - also the flywheel line sync - but these effects weren't visible with the bright blank raster present. A new line output transformer was fitted - after we confirmed that the fault was inside the winding rather than at the earth connection.

[^1]
CENTRAL TV

STAR BUY \star 30 PHILIPS G8/550 22"

WIDE RANGE OF MAKES AND MODELS ARRIVING DAILY WHY NOT TAKE A PICK

DISCOUNT ON QUANTITY
Mixed lorry load of sets delivered to your door.

HOT LINE: 0216221023 and 1517 018074090

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than $\mathbf{2 5 0}$ gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production.
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD.
STUDLEY,
WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: 336924 Grifem G.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. At the turn of a switch, the generator can provide five essential test patterns and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.) POST \& PACKING £1.15

The World of.... "TELEPANELS" 52 Mount Pleasant Road, Chigwell, Essex. Telephone 01-729 0506. COMPARE OUR PRICES! COMPARE OUR SERVICE!										
		TUNE	ofcooer	G8/G9 DECODER IF COMEINED	OUNET	Power	conv	fan	voeo	
PHILIPS 6.8	5.00		7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		${ }^{8.00}$	8.00	5.00	6.00	5.00	1.75
	10.00		5.00		12.00	6.00	5.00	5.00	5.00	
31	,		10.00		18.00	10.00	7.00	8.00		

CentreVision

 0222-44754SLOPER ROAD LECKWITH

CARDIFF CF1 8AB

OPP CITY FOOTBALL GROUND 5 MINS FROM M4

TELEVISION/VIDEO (VHS + BETA) PERFECT WORKING ORDER WITH STAND

	ITT CD752 REMOTE	£115
	GEC C2639H (PRESTEL/TE	LETEXT) £150
\star	GEC STARLINE 22-20	£45
\star	PYE CHELSEA	¢38
\star	THORN 9000 20"	£29
	DECCA 22 " BLACK FRONT	VERICAP £30
\star	RANK T20 REMOTE	£75 + VAT
	OFF THE PILE SETS FROM	8
	ES SUBJECT T	

OPENING HOURS 9-5.30 MONDAY - FRIDAY. SATURDAY 9-1pm

AA117	$9 p$	BC182L	6 p	80225	31p	BU110	110p	TIP42A	22p	2N 2484	20p	$2 \mathrm{SC1} 969$	130p	IN. 4002 4p	LM323K	420p	PCL85	55p	4032	${ }^{67 p}$	4506	110 p
AA119	9 p	BC183	6 p	80232	31 p	BU111	140p	TIP42C	25p	2N. 2646	33 p	2SC2029	120p	IN. 4003 4p	LM723	32p	PCLB6	55p	4034	145p	4507	p
AAY32	9 p	BC183L	6 p	BD234	32p	BU126	70p	TIP47	40 p			2SC2078	120p	IN. 4004 4p	78HGKC	570p	PCL 8006	55p	4035	70 p	4508	125p
AC107	2 pp	BC184	6 p	B0237	$21 p$	BU204	75p	TIP48	40 p	2N 2904	20 p	2SC2122A	200p	IN. 4005 ip	78H05KC	520p	PFL200	$8 \mathrm{8p}$	4038	$71 p$	4510	57p
AC126	17p	BC184L	6 p	B0238	24 p	BU205	70p	TPP10	47p	2N. 2905	20 p	2SC2952	27p	IN. 4006 4p	78GUIC	190p	PL36	80 p	4040	57p	4511	57p
AC127	15p	BC212	6 p	80433	20 p	BU208	75p	TIP112	51 p	2N. 2907		2 SD 234	37p	IN. 4007 5p	79GUIC	215p	PL504	95 p	4041	40 p	4512	57p
AC128	15p	BC212L	6 p	B0437	2 p	BU208A	sop	TIP115	45p	2N 29028	${ }_{80} 8$	2SK135	400 p	IN. 4148 2p	79HGKC	670p	PL508	$190 p$	4042	59 p	4513	120p
AC128k	23 p	BC213	60	80535	38 p	BU2080	120p	TIP117	5ep	2N 2928	8p	MB3712	150p	IN. $5400 \quad 9 \mathrm{p}$			PL519	450p	4043	57p	4514	110p
AC141K	$23 p$	BC213L	6 p	80536	38 p	BU326	25p	TIP120	43 p	2N. ${ }^{2}$	$2{ }_{18}$	TA7205	${ }^{90} \mathrm{p}$	IN. 5401 10p	VALVES		PY81	$70 p$	4044	56p	4516	65 p
AC142K	22 p	BC214	$6 p$	80537	40p	BU406	85p	TIP121	40 p	2N 3054	${ }_{35} 1$	UPC575	1000	IN.54CO 10p	DY87	53 p	PY88	40 p	4047	65p	4518	${ }_{65} 6$
AC153K	23 p	BC214L	${ }^{69}$	80538	40p	BU407	75p	T1P122	47p	2N. 3055	350 320	DIODES		IN. 5400 11p	DY802	45p	PY500A	160p	4048	49 p	4520	$65 p$
AC176	18 p	BC237	7 p	B0×32	100p	BU406	100p	TIP125	47p	${ }_{2 N}^{2 N} 3055$	32p	AAl19	9 p	IN. 5404 11p	ECCS2	40 p			4049	40 p	4522	80 p
AC176K	20 p	BC238	7 p	80X65	80p	BU500	110p	TP126	54p	2N. 3440	58 p	8Y100	40 p	IN.5405 12p	ECCO3	43 p	CMOS		4050	40 p	4526	${ }^{60 p}$
AC197	15p	8C300	$15 p$	BF180	16p	BU526	80p	TIP127	58p	2N. 3442	${ }^{35 p}$	BY103	32 p	IN.5406 13p	ECC84	40 p	4000	27p	4051	62 p	4527	${ }^{60 p}$
AC187K	20p	BC301	18p	BF181	18 p			TIP147	100 p	${ }^{2 N} \mathbf{N} .3402$	${ }^{9 p}$	8Y126	6 p	IN. 5407 13p	ECC85	40 p	4001	$27 p$	4052	$61 p$	4528	65
AC188	17p	BC302	18p	BF183	20 p			TIP2955	34 p		$9 \mathrm{9p}$	${ }^{8 Y 127}$	8 p	IN. $5408 \quad 13 \mathrm{p}$	ECL81	49 p	4002	${ }^{27 p}$	4053	61 p	74 SE	
AC188K	23p	BC303	18p	BF184	20 p	C1080	25	TIP3054	34 p	2N. 370	9 p	BY^{8133}	8 p	LOW PhOFILE	ECH84	52 p	4006	80 p	4054	85 p	7400	22 p
ACY18	41 p	BC327	6 p	BF185	20 p			TIP3055	34 p	2N. 3705	9 pp	8Y164	22 p	SOCKETS	ECLBO	57p	4007	${ }^{27 p}$	4055	90 p	7401	$15 p$
ACY19	$4{ }^{4} \mathrm{p}$	BC328	$6 p$	8F194	50	MJ2500	100p	TIS43	45 p	2N. 3706	$9 p$	BY176	${ }^{85 p}$	8 pin 6p	ECL82	59 p	4008	65 p	4056	85 p	7402	$1{ }^{10}$
AD142	60	BC337	$8 p$	8 BF 195	$5 p$	MJ2501	110p	TIS44	40 p	2N. 3707	$9 p$	BY179 BY/	35 p	14 pin 8 p	ECLB4	57p	4009	50 p 500	4060	72p	74093	22p
AD149	$45 p$	BC328	6 p	BF196	$6 p$	MJ2955	55p	TIS61	15p	2N. 3708	9 p	BY182	32 p	16 pin $\quad 9 p$	ECL85	$57 p$	4010	$50 p$	4065	$42 p$	7404	18p
AD161	22 p	BC557	69	BF199	${ }^{8 p}$	MJ3000	115p	TIS88A	45p	2N 3771	85p	BY184	32 p	18 pin 12p	EFCP0	49p	4011	27 p	4068	$25 p$	7405	10 p
AD162	2 pp	8С932	$150 p$	BF200	$16 p$	MJ3001	115p	TS90	15p	2N3772	90 p	BY187 BY196	32 p	20 pin 14p	EF80 EF85	31 p 34 p	4012	27p 50p	4069	$\begin{aligned} & 27 p \\ & 277 \end{aligned}$	7400 7407	100p
AF124	25p	8CY33	150p	BF240	${ }^{18 p}$	MJE29A	30 p	S91	18 p	2N. 3773	100p	BY196	20 p	22 pin 180	EFF89	34 p	4014	S0p	4071		7408	
AF125	25 p	8CY34	150 p	BF241	10 p	MJE30A	30 p	TIS93	20p	2N. 3819	29p	BY206 $8 Y 207$ 18	$11 p$	24 pin 18p	EF183	$43 p$	4015	60 p	4072	27p	7409	20p
AF127	25p	BCY42	20 p	BF255	12p	MJE340	$25 p$	VK1010	88	2N. 3866	88p	BY207	$11 p$	28 pin 20 p	EF184	53p	4016	45p	4073	27p	7413	35 p
AF139	$22 p$	$8 \mathrm{BCY56}$	16 p	BF256	18 p	MJE350	80 p	VN.10KM	60p	2N. 4831	25p	BY208 $8 Y 210$	10 p	40 pin 25p	El34	190p	4017	65p	4075	27 p	7414	45p
AF239	$22 p$	$8 \mathrm{BC7} \mathrm{\%}$	16 p	BF257	18p	MJE520	30 p	VN.46AF	80p	2N. 4036	25p	BY210 BY23	2 p		EY86	31p	4018	$60 p$	4076	70 p	7417	32 p
AL112	700	8C71	16p	${ }^{\text {BF258 }}$	18p	MJE2955K	90p	VN.68AF	100p	2N. 4037	$25 p$	Br223 BY225	120p	2ENERS 400 MV	EY87	31 p	4019	60 p	4077	27p	7420	22p
AL113	${ }^{800}$	8C772	16p	BF259 BF336	${ }_{20 p}^{18 p}$	MJE23OK		VN. 884 F	$115 p$	2 N .4443	$78 p$	BY23 BY226	12p	BZY88 Range	PC97	100p	4020	75p	4078	27p	7421	25p
ASZ15	$100 p$ $100 p$	8D115 BD124P	${ }^{26 p}$	BF336 BF337 8	$20 p$ $20 p$	28	100 p	VN.89AF	110p	2N. 4444	$76 p$	BY27	19 p	2V7 to 39V 6 p	PCC85	42 p	4021	58p	4081	27p	7425	15p
AU110	110p	BD124	110p	BF338	20 p	OC29	80 p	2TX107	11p	2N. 5	$20 p$	BY228	32 p	13 W Zeners	PCP80	58p	4022	58p	4088	27p	7430	25p
AY102	180 p	80128	35p	BF362	30p	OC35	100p	2TX108	11p	2N. 52996	30 p	BY296	200	BZX61 Range	PCF200	135p	4023	${ }^{27 p}$	4093	45p	7437	210
AY106	180 p	8D131	$25 p$	8F422	21p	OC36	120 p	2TX109	12 p	2N.6106	40p	BY298 BY299	26 p	2V7 to 39V 12p	PCFB01 PCFPer	110p 57p	4024	47p	4094	85p	$\begin{array}{\|l\|l\|} \hline 7447 \\ 7442 \end{array}$	60p
		8 B 132	25 p	${ }^{\text {B }}$ F458	19 p	OC45	50 p	2TX212	27p	2N. 6107	40 p	$8 Y 299$ $8 Y 476$	20 c	VOLTAGE	PCFB68 PCFE06	57p	4025	26p	4098	85p	$\left\lvert\, \begin{aligned} & 7442 \\ & 7450 \end{aligned}\right.$	$45 p$ 220
81145	10 p	80135	20 p	8F459	19 p	0C71	30 p	21x300	13p	2N. 6109	40 p	$8 Y 476$ $8 Y \times 10$	90p	Voltage	PCFE06 PCH200	115p $100 p$	44026	$80 p$ $38 p$	4509	$\begin{aligned} & 82 p \\ & 40 p \end{aligned}$	$\begin{array}{\|l\|l} 7450 \\ 7451 \end{array}$	10 p
BA148	10p	80136	20 p		20 p	OC72	50p	2TX301	16p	3N. 128	55	$8 Y \times 10$ $8 Y \times 55 /$	15p	REGULATOR 7805	PCH200 PCL 81	$100 p$ $50 p$	${ }_{4}^{4027} 4$	38 p	$\begin{aligned} & 4501 \\ & 4500 \end{aligned}$	55p	7451	25p
BA154	6 p	80137	20 p	BFX84 Bfx Bf	20 p	0 O 200	100 p	21x302	16 p	3N. 143	65 p	8Y×55/ 350	30p	$\begin{array}{ll}7805 & 35 p \\ 7812 & \text { 35p }\end{array}$	PCL81 PCL82	${ }_{64} 5$	$\begin{aligned} & 4028 \\ & 4029 \end{aligned}$	55p	4500	52p	7470	$25 p$ $30 p$
BA157 B8101	12p 13 13	BOY92 BD138 80198	$100 p$ $20 p$	BFX85 BFX87 B88	${ }_{15 p}^{20 p}$	R2008B R2010B	60p	21×308 T1X304	24 p	JAPAN		8YX55/		$\begin{array}{ll}7812 & 35 p \\ 7815 & 35 p\end{array}$	PCL82 PCLB4	509	4030	36 p	4504	75p	7473	30p
88103	16 p	BD139	$20 p$	BFX88	15p			ITX320	29p	TRANS	ORS		30 p	7818 35p								
881058	18 p	80140	20 p	${ }^{8 F Y 50}$	14 p			27x326	29p	2SA73	${ }^{30 p}$	BYX55/ 800		$\begin{array}{ll}7824 & 35 p \\ 7905 & 35 p\end{array}$								
882058	29	${ }^{8 D 144}$	90 p	BFY51	14 p	TAGO6-60	42p	2TX500	13p	2SA104	32 p	${ }^{800}$	32 p	7905			Col	es,	c.	's	cept	
BC107	$7 \mathrm{7p}$	8D150	30 p	${ }^{\text {BFY52 }}$	14 p	TAG521-		2 21×501	13p	2SA198	$\mathrm{mpp}_{30 \mathrm{p}}$	BYX70/ 300		$\begin{array}{ll}7912 & 40 p \\ 7915 & 40 p\end{array}$					for	O	ntit	
BC108	7 p	80157	33 p	BFY56	$25 p$	200	${ }_{76 p}$	Z1x500	18 p	2SA203	30 p 250	$300 \times 70 /$	29 p	7915 40p			ase	,		de		
BC109	7p	80158	38 p	$8 \mathrm{BF57}$	$25 p$	TAG4443	$76 p$	2TX503	18 p	2S854	${ }^{25 p}$	BYx 500		7918 40p						deli		
BC115	10p	80168	30 p	${ }^{8 F Y} 64$	${ }^{25 p}$	TAG4444	$76 p$	2TX504	25p	2S877 2S837	1200		$31 p$	$\begin{array}{ll}7924 & 4805 \\ 7805\end{array}$			All b	-n	w	ne		
BC	11p	80175	${ }^{30 p}$	BFY90 BR100	60p	TIP29A	15p 2pp	ZTX550	24p	2SB405	120p	800	35p	78.12			Al val	ar	ne	box		
BC141	19p	BD179	32 p	BSX20	15p	TIP29C	25p	2N. 1131	20 p	2SC460	21p	BYX71/		78L15 28p								
BC142	19p	$8 \mathrm{BD181}$	45p	8T106	${ }^{90 p}$	T1P30	${ }^{16 p}$	2N. 1132	24 p	2SC495	${ }^{60 p}$	${ }^{600}$	${ }^{80 p}$	78 L 18 26p								
BC143	19p	BD182	60 p	8T109	90 p	TIP31A	24 p	2N. 1613	24 p	2SC733	40 p	DA47	6 p	74124								
BC147	5 p	80183	${ }^{60 p}$	8T116	${ }_{100 p}$	TIP32A	$24 p$ $24 p$	2N 17711 2N 22184	$24 p$ $24 p$	2SC1161 2SC1172	110p	${ }_{\text {OASO }}$	4 4	$\begin{array}{ll}79 L 05 & 40 p \\ 79 L 12 & 45 p\end{array}$								
BC148	6 p	80201	33 p 380	8T119 BTI20	100p	TIP32A	$24 p$ $50 p$	2N.22184	$24 p$ $24 p$	2SC1172Y	$150 p$ 24	OA200	${ }_{7 p}$	$\begin{array}{ll}79 L 15 & 48 p \\ 79 \mathrm{~L}\end{array}$								
BC149 BC157	${ }_{6 p}^{6 p}$	BD202 BD203	38 yp	B712 BU104	100p	TIP34	50 p	2N. 2221	23 p	2SC1306	100p	OA202	7 p	LM309K 100p			E		E	EN	LA	
BC159	$6 p$	B0204	42 p	BU105	80p	TIP4IA	2 z	2N. 2232	23p	${ }^{2 S C 1307}$	100p	IN. 914	2p	LM317K 230p		p	ne	90	20	9	11	
BC182	6 p	8022	31 p	BU108	100p	TIP41C	25p	2N. 2369	15p	2SC1520	25p	IN. 4001	4p	LM317T 180p			Telex	o. 93	2885	unm		

VIDEO CASSETTE RECORDER SERVICING COURSE

6 WEEKS FULL-TIME (Sept. 17th to Oct. 26th)

Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial \& academic training \& includes a high percentage of practical work.
(Selected applicants will be eligible for a full grant from MSC under TOPS to cover tuition fees and maintenance.)

Full details:
LONDON ELECTRONICS COLLEGE, (Dept V6) 20 Penywern Road, London SW5 9SU.
Tel: 01-373 8721

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns Demonstrations by appointment only Dealers wanted

HARRISON ELECTRONICS

 22 Milton Road,Westcliff-on-Sea, Essex SS0 7JX. Telephone: Southend (0702) 332338

Two new TV books from Newnes

SERVICING DIGITAL CIRCUITS IN TV RECEIVERS R Fisher

Specifically for colour television engineers, this book is an in-depth guide to digital circuits used in current TV receivers. The early chapters deal with digital techniques and their specific applications like teletext and videotex, their respective decoders being described in detail. Remote control systems, digital tuning and other digital circuits are also covered. A glossary of terms is included which will be useful to both engineers and students.
Softcover 288 pages $£ 13.95$

BEGINNER'S GUIDE TO COLOUR TELEVISION Third Edition
 Gordon J King - revised E Trundle

Colour TV has been greatly developed since it was first introduced. This new edition has been re-written to include, as well as the basic introduction to the subject, an up to the minute account of such innovations as satellite and cable, flat panel receivers, 3-D displays and "digitization" of TV signals.

$$
\text { Softcover } 192 \text { pages } £ 4.50
$$

Also available

DOMESTIC VIDEOCASSETTE RECORDERS A Servicing Guide

S Beeching

This book takes the subject from basics and then shows later modifications to the techniques, giving examples of various manufacturers' approaches to the subject. Includes VHS, Betamax, Grundig and Philips V2000 systems. Softcover 144 pages £14.95

SERVICING MONOCHROME PORTABLE TELEVISION
 G R Wilding

This dual purpose boak explains the circuity of current standard miniature and 'combi' monochrome portables, together with typical faults and probable causes, and contains full size reprints of British. Japanese and Continental manufacturers' circuit diagrams and service information.
Softcover 160 pages $£ 13.95$
COLOUR TELEVISION SERVICING
Second Edition
Gordon J King
Softcover 350 pages $£ 11.50$

Order now from your Bookseller or direct from

Newnes Technical Books Borough Green. Sevenoaks. Kent TN15 8PH

TV SALES

MOVING PREMISES - SALE! SALE! SALE!

G8s $£ 7-£ 35$, Bush Twin Chip $£ 5-£ 22$
GEC Hybrid $£ 3-£ 19$, Grundig $£ 12-£ 30$ 3500s $£ 15-£ 27$, ITT Hybrid $£ 14-27$ G9s, 8800, JVCs Pyes etc etc.
Picture Tested Tubes from $£ 10$ (or Re-Guns) Mono Sets $£ 1-£ 4$. Stands $£ 3$ Tested Panels etc etc. PHONE NOW!!

WATFORD 45590

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.

* All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf.
\star Unusual types repaired same day as received (subject to spares availability).

13 Worcester Street.
Wolverhampton, WV2 4CJ. Phone: (0902) 773122

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

TV LINE OUTPUT	RANSFORMERS t \& CARRIAGE
Delivery by return of post.	
RANK BUSH MURPHY	ITT: VC200, VC205, VC207 7.50
A 744 with stick rectifier $\quad 9.78$	VC300, 301, 302, 400, 401, $402 \quad 9.20$
A816, T16, T18, $2712,2715 \quad 10.35$	CVC1, CVC2 (FORGESTONE) $\quad 11.50$
T20, T22, T26, Z179, A823 $\quad 11.50$	CVC5, CVC7, CVC8, CVC9 series 8.50
2718 Basic unit $\quad 13.50$	CVC20, CVC30, CVC32, CVC45 8.50
T24e, T24h split diode P.O.A.	CVC40 split diode 16.74
	F110, FT111. P/no AT2003/02 11.50
1700, 2001, 2020, 2401, $2404 \quad 1.50$	PYE: 169, 173, 569, 368 series 8.50
CS1730, 1733, 1830, 1835 8, 8.50	CT200, CT200/1, CT213 series $\quad 10.35$
$30,70,80,90,100,110,130$ Series 8.50	725-731, 735, 737, 741 Series $\quad 9.78$
FERGUSON, THORN: 1590, 15919.20	PHILIPS: 170, 210, 300 series $\quad 8.50$
1690, 1691. built in rect. 9.78	320 series 9.78
$1600,1615,1700$ series $\quad 11.20$	TX. 18 mono series P.O.A
1790 mono portable 9	KT2, KT3 series colour 9.20
3000, 3500, 8000, 8500, 8800 P.0.A.	G11 series split diode P.O.A.
9000, 9200, 9300 series $\quad 12.00$	68 and G9 Series $\quad \mathbf{6 9 . 2 0}$
$\begin{array}{lr}9500,9600,9650 \text { series } & 10.99 \\ 9800,7 \times 9, \text { TX10 series } & \text { P.0.A. }\end{array}$	BINATDNE: 9909 mono 13.04
MOVIESTAR 3781, 3787	GRUNOIG: most models in stock NORDMENDE: FC125, Z206, Z306 11.50
FIDELITY: FTU12 mono 10.35	SANYD: CTP5101, TJ series $\quad 11.50$
CTV14R, CTV14S colour $\quad 15.83$	SHARP: C1851H, C2051H $\quad 12.32$
G.E.C. 2047 to 3135 mono 7.50	TOSHIBA: C800, C800B 19.45
1201H, 1501H, 2114, 3133, 31359.20	TANOBURG: 190, CTV2-2, CTV3-3 P.0.A.
DUAL \& SINGLE hybrid col. $\quad 10.00$	TELEFUNKEN: most models in stock
SINGLE STD solid state $\quad 12.00$	LINE OUTPUT TESTER 16.79
SINGLE STD split diode P.0.A.	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx 1 mile from Kew Bridge. Phone: 01-948 3702 $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.
INOESIT: $24 E G B$ hybrid 9.50 12LGB, 12SGB mono portables 10.35	
WINDINGS	
TYNE: main winding $\quad 6.80$	
RBM: T20, T22, T26, 2179 6.33	
WALTHAM: W125 ent winding 2.37	
KORTNG: hybrid winding $\quad 6.90$	

IRISH TV NOTICE

(SUMMER SALE)
We can supply in good working order Bush, Pye and Ferguson from $£ 60$, Philips G.8. From $£ 80$, Decca from $\mathbf{£ 9 0}$, B/White $£ 25$, Re-Gunned C.R.T.s from $£ 40$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

> ALL PRICES INCLUDE V.A.T.

We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

[^2]
... on the lowest priced TV's
Buy from the largest stock of used TV's in the U.K. More than 6,000 sets including high class refurbished colour sets; tested and un-tested mono sets Many recent models, all from big name manufacturers including Philips and Pye G11
... on domestic appliances
New products, end of line clearances and manufacturers' seconds. all at knock down prices.

Big names, big quantities, big profits for you!

Visit our showroom or phone us now

SATELLITE RECEIVING SYSTEMS
1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems. Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

TELEVISION TUBE SHOP LTD NEW MONO TUBES			
A31-120W/300W	17.00	230DB4	25.00
A31-510 W	17.00	240DB4	22.00
A34-100W	18.50	310EUB4	. 19.95
A38-160W	18.00	310FXB4	17.50
A44-120W	25.00	310GNB4A	26.50
A50-120W	19.00	340CB4/RB4	26.00
A61-120W	21.00	RIGONDA ${ }^{\prime \prime}$	
OTHER TYPES STOCKED - RING FOR QUOTE MULLARD COLOUR TUBES STOCKED P.O.A.			
ADD 15\% VAT TO ALL THE ABOVE PRJCES.			
Please allow 7 days for delivery.			
all tubes tested before sales and fully guaranteed			
TELEVISION TUBE SHOP LTD			
52 BATTERSEA BRIDGE ROAD, LONDON, SW11.			
I: 22868	8 CAR	GE: Mono	

MOST SETS HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

PRICES AVAILABLE ON THESE SETS NOW!!!
PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s
(Remote Control)

THORN 8000 \& 8800s THORN 9000, 9200, 9600
 (Remote Control)

Special Offer

SALORA 22"
£35 inclusive Massive reductions for bulk Minimum 5 Sets
Big reductions for export orders over 100 sets

ALSO THE ABOVE SETS OFF THE PILE BEST PRICES IN THE COUNTRY.

 COLOUR TELEVISION \& MUSIC CENTRE 35 Stafford Road, Weston Super Mare, Avon Opening hours: 9-6 Mon-Sat, Sundays by appointment (Weston Super Mare 413537)(Note new address)
(15 minutes past Bristol Southward on M5)

TEL-X BLACKBURN

TELEVISION DISPOSALS

TEL-X BLACKBURN have now moved into larger premises and now offer you a more wider selection of TV's.

Here are a few examples:		
	Off the pile from	Workers from
	$\mathbf{£ 1 5 . 0 0}$	$\mathbf{£ 2 5 . 0 0}$
DECCA	$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$
GEC S/S, all types inc. remotes	$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$
THORN 8000	$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$
PYE $18^{\prime \prime}$		

Other makes are available. - Min. 4 sets.
WORKING SETS ON DISPLAY

TEL-X BLACKBURN

 Unit P3, Roe Lee Industrial Estate, Whalley New Road, Blackburn, Lancs.Tel. 0254679984

, GUARANTEE AP	20/30 AX
TRADE AND QUANTITY DISCOUNTS frex local denery - same day ortmig semice cm. FAST MMK OMDER GB 2-3 DATS - OVERSEAS OW REOUEST.	
A47 32/343X 470 вС822	1837
470 ESB22/EFB22/ERB22	E45
A51-220X/492X	E37
510 JKB22/JEB22/JDB22/ALB22	¢45
A58-120X/123/140/410	E38
560 D2B22/HB22/AKB22	£45
A63-120X	E39
A66-120X A67-120x/140/150/200X	139
20AX A56-500X/510X A66-500X/510X	
30AX A56-540X/A66-540X	
H your tuke ippe is not in stock we cme arrage collection - rebuiding + mediver	
PLEASE PHONE BEFORE 081-799 0884. 24 hour an	

A.B.C. TRADE SALES

COLOUR T.V.'s
Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's
Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from $£ \mathbf{£ 2 0 0}$ Jap. sets from $\mathbf{£} \mathbf{3 0 . 0 0}$ Special prices for quantity 9,000 sq. feet Warehouse 83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS.
Tel. Wolverhampton 722637

TELETRADERS

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154

The Best Quality Sets Available Anywhere

All First Class working order and excellent cabinets.

Philips G8 550	$\mathbf{£ 4 0}$
Philips G11	$\mathbf{£ 8 5}$
GEC Solid State	$\mathbf{£ 3 5}$
Thorn 3500 Electronic 22"	$\mathbf{£ 3 5}$
Thorn 9000	$\mathbf{£ 6 0}$
Thorn 8800	$\mathbf{£ 4 5}$
Thorn 9800	$\mathbf{£ 5 5}$

Full spares back-up of tubes and panels send for list e.g. PL509 £1, PY500 £1 Bulk terms to other wholesalers

THE NO. 1 WHOLESALER IN THE SOUTH

COLOUR TELEVISIONS

 FIRST COME! FIRST SERVED!NOT EX-RENTAL
All in Excellent Cabinet Condition Many Working
Largest Selection of Makes \& Models FRESH STOCKS WEEKLY

Available in Singles or in Quantity
Clearance Sale of Old Models PHILIPS G8 $\mathbf{£ 1 0 . 0 0}$
BUSH A823 $\mathbf{£ 1 0 . 0 0}$
HYBRID MIXED .. $£ 5.00$
THORN 3000 $\mathbf{£ 1 0 . 0 0}$
COMPETITIVELY PRICED AND AVAILABLE TO DRDER WORKING \star
RING US NOW!!!
COLOURTRADE
221 Bridge St West • Hockley Birmingham - B19 2YU Tel: 021-359 0449

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE	
IMMEDIATE CREDIT AVAILABLE - TRADE ONLY	
If you are a trader simply phone for the part you req for status check. Satisfy us over the phone that yo component by return "off the shelf". e.g. LOFTX - E smoothers - l.C.'s, etc. etc.	and we wili send it - no quibble - no hold up a trader and we will supply almost any TV s - droppers - OSC coils - switches - cans -
YOU CAN BE 95\% SURE TV COMPONE IF YOU NEED SPARE	CAN SUPPLY ANY BY RETURN AST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED.	Applies to U.K. only.
2	THE TELECENTRE, WORCESTER ST. WOLVERHAMPTON (0902) 773122

COLOUR TELEVISIONS

PYE CHELSEA - 6 button PYE 723
PHILIPS G8 550 THORN 8000, 8800 THORN 9000, 9200, 9600 Remote Control

Working panels and tubes available.
REBUILT TUBES
Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E.25.
Tel: 01-771 3535.

SETS \& COMPONENTS

UPCONVERTERS. Vhf-Uhf converter. PC module. $12 v$ supply required. Very sensitive unit. Suit UK sets abroad, DX etc. $£ 14.50$ inc pp. SAE data. H. COCKS, Cripps Corner, Robertsbridge, Sussex. Tel. 058083 317.

ELECTRONIC SUPPLIES

Large superflous stocks for disposal. 3000-3500 Power Packs Line Timebase Frame Chrominance Video V/F Etc. Complete but untested AUDIO Speaker Cabinets various types small to large, also various types com-
plete RECORD DECKS Trancription Type BSR P128 F146R C173 GARRARD 620 S SP25MK4 125 SB RECORD CHAMGERS BSR 123 C129 1 C129-R2 2025 TC 6300 5300 . COMPONENTS Resistor Condensers Jack Plugs Sockets Transformers Switches Skeleton Preset EHT Tripers ETC

Send $17 p$ stamp for Catalogue to: 18 LEUCHA ROAD.
LONDON, WALTHAMSTOW E17 or Phone 01-521 3912 after 6.30 evenings.

TRADE ENOUIRIES WELCOME

WORKING CTV's

The Best \& Cheapest in Lancashire

I.E. Decca $18^{\prime \prime}$ to $26^{\prime \prime} \quad £ 24.00$

GEC $20^{\prime \prime}$ to $26^{\prime \prime} \quad £ 30.00$
Philips G8 22" to $\mathbf{2 6}^{\prime \prime} \quad £ 25.00$
Bush $20^{\prime \prime}$ to $26^{\prime \prime} 2$ chip $£ 18.50$
All sets are tested \& working
Many more makes \& types available. Working mono's only $£ 3.50$. Non workers available.

Phone: John Powney
at Kirkham, near Preston
(0772) 683392.

INTERTEL TELEVISION SERVICES
Unit 27 Whessoe Road, Darlington, Co. Durham.
Telephone: Darl. 486896
Colour TV's at Rock Bottom Prices
Some examples are:

G8520	UNTESTED	WORKING
	From $£ 10.00$	From $£ 20.00$
G8550	From $\mathrm{Cz0.00}$	From $£ 35.00$
GEC Solid State	From f 15.00	From $£ 25.00$
$1 \mathrm{IT}_{\text {Jap }}$ Hybrids	From $£ 10.00$	From $£ 20.00$
	From £25.00	From $£ 35.00$
Many other makes always available. All sets sold as working are primed and engineered to high specifica tions and are ready for retail or rental.		
Regunned Tubes:		
	$\begin{gathered} 1 \mathrm{yr} \\ \text { Guarantee } \end{gathered}$	
Up to $22^{\prime \prime}$ Delta 90°	127.00	£30.00
$26^{\prime \prime}$.. 90°	¢30.00	£33.00
$22^{\prime \prime}$.. 110°	128.00	531.00
$26^{\prime \prime}$.. 110°	E31.00	¢34.00
PlL and in line		£45.00

30AX (A56.410/A66.410) add $£ 5.00$ for Magnets. All tubes are regunned to the very highest standard (over 15 years experience).

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panel. We charge only $£ 16$ to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG.
Tel. (0438) 61567.

[^3]

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word
${ }^{*}$

- TELEBEST

We Specialise in Working Sets In Retail Condition
BUSH DECCA G.E.C. GRUNDIG
PHILIPS THORN etc
From 25 + VAT
HUNDREDS OF NON WORKERS AVAILABLE

MANY SWITCH ONS WITH EX. CABS.

```
GRUNDIG 26" 25.00 + VAT
```

BUSH 2 CHIP $\quad 10.00$ + VAT
GEC s/s wood cabs. $\quad 20.00$ + VAT

Phone PAUL on 01-514 1333 For Stock Availability

841 Romford Road, Manor Park, London E12.

TELE-MASTER

We are a good reliable supplier of QUALITY colour T.Vs. We can DELIVER Try use for SIZE ($18^{\prime \prime}-26^{\prime \prime}$) PHILIPS, PYE, DECCA, BUSH

TELE-MASTER

Rotherham (0709) 863614 24hr Answering Service

* Britains most reliable source of quality TVs.
* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Lud,	Phone 021-471 3023
Breedon Cross Storage,	Telex 335540-G
Dale Road, Selly Oak,	Ask for Les
Birmingham B29 6A0.	

one 021-471 3023 Telex $33540-G$
Ask for Les

A.B.D. TELEVISIONS

Suppliers of colour and mono televisions to the trade.
Workers and non-workers:
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600 , Bush 720 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.
For quotation and prompt service:
Ring Notts (0602) 864627 UNIT 3+3A, Meadow Trading Est. Meadow Lane, Nottingham NG3 3HQ.

Thorn Colour TVs - Most models

Decca 1051/2 (100 series)
Philips 660 etc (G11) 550 (G8 Series 05)
ASSORTED GEC/BUSH/PHILIPS/JAP etc
Working or guaranteed untested basis
Competitive prices/good cabinets/top quality
If your standards are as high as ours, we want to deal with you - regularly!
REPOSSESSED TV CENTRES LTD $061-2732854$
335-341 Stockport Rd, Longsight, Manchester 13.

EERUICE POGEF

(minimum 12 words), box number 70 p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

```
Thorn 3000/3500 Thorn 9000 UNIVERSAL year guarantee TRIPLERS
The UNIVERSAL TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank, Decca \& Continental sets.
WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middesex
```


REBUILT COLOURTUBES
 EXAMPLE PRICES DELTA

All sizes up to $22^{\prime \prime}$ - $\mathbf{£ 2 8 . 0 0}$ $26^{\prime \prime}$ From - $£ 32.00$
All In Line P.IL. Mono Gaming Machine
C.R.T.s 560EGB22 56-611-510JKB22 20 AX $£ 40.00$ 30 AX $£ 48.00$
Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO ORDER - ALL MAKES

WINDSOR WHOLESALE
TEL: 01-968 8771.

IRISH DEALERS

Most brand names of UHV - VHF Colour \& B/W working.
Clean sets at very keen prices. Delivery arranged. Quantity discount.
(SPECIALISTS IN EXPORT ORDERS)

TV TRADE SALES

IE.D.I. House,
Kylemore Park West,
Dublin 10.
Tel. 01.264139 Ext 11.
GRUNDIG, working colour from $£ 40.00$. Reconditioned panels from $\mathbf{5 4 . 0 0}$. Remote control handsets wanted. Reconditioned telequipment oscilloscopes. Repairs, spares, manuals. OCHRE MILL, 0785 814643.

COLOUR BAR GENERATOR

Pal Colour Generatbr with 11 petterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White

E75.90.

Line Transformer Tester f 11.50
B/W Generator, Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale

E18.50
In Circuit Transistor Tester $£ 14.25$
Capacitance Meter measures 10pF to $1 \mu \mathrm{~F}$ complete with
S. A.E. for detarts. - Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields, Wolverhampton WV1 30V Panels By Post Mono's
Stands - Aerials-Accessories Etc.
WORKING SETS
Phone us first for quantity, we can give an UNBEATABLE PRICE!!!
OPEN 5 DAYS -
Phone:
Baldock 894905, Hitchin 31644
SECTION THREE, UNIT FOUR, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS.

Wetsted ubes
PRESENTS AN UNBEATABLE OFFER

£26 all deltas one price

£40 ALL PILL ONE PRICE

* SPECIAL CRT POLISHING SERVICE WHILE U WAIT Only $\mathbf{E 5}$
* ALL DELTA SIZES FROM STOCK
* DISCOUNT FOR ORDERS OF 5 CRTS OR OVER
* FREE DELIVERY WITHIN 20 MILE RADIUS-OF MAIDSTONE Ring Now
Maidstone 872400
or visit our factory.
Unit 32, Branbridges Ind Est. East Peckham, Kent.
* Agents required in South Prices do not include VAT

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO. 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

TELEVISION TUNER REPAIRS

BRITISH, EUROPEAN JAPANESE ETC. ELC 1043/05 TUNERS AS NEW $£ 4.60$ inc.
MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

THE TV WAREHOUSE

Your local Trade and Retail suppliers of CTV's, Special clearance of older models.

THE TV WAREHOUSE Watling Street (A5), Hockliffe, Beds.
Tel. Leighton Buzzard 210686

SCBEEDPLA Bursting with Stock!

 Guaranteed-Complete Sets from $£ 10.00$ Trade Workers from £25.00 from $£ 3.00$ from $£ 1.00$

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput

2718 (T703A, T706A)
New (Complete) £20.50
Less Focus Module and
Rectifier
$\mathbf{E 1 0 . 5 0}$
T20, T22 (T705A) £9.00
T26 (T705B) £9.50
Switch Mode
T114A/B
£8.00
Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay Bowtie (12.5 dB) $\mathbf{£ 2 0 . 0 0}$
Above with built-in Broadband amp. (27dB) plus stabilised power supply
845.00

Prompt Postal Service.
Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote, Pinner, Middlesex. HA5-2QT.

Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

T.V
 SPARES, PANELS
 - AND MANUALS
 PHILIPS.GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

GENERAL TELEVISION TRADE SALES

3-5 UNION ST. \geq Telephone:
 (0302) 68416

Regular weekly supplies of good quality TVs, all with excellent cabinets, we look after our sets, we don't knock them about, as you'll see if you call, suitable for re-sale or rent. Working or off the pile. We're always happy to see you, whether its for one TV or one hundred and one.

MONDAY TO SATURDAY 9 to 5.30

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

NORTHERN IRELAND DEALERS

We have the best value in secondhand televisions. And our low, low prices are second to none. Philips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $£ 20$.
Guaranteed workers from $£ 38$.
We deliver bulk orders anywhere in Northern Ireland.
New loads arriving regularly so phone now for latest stocks.
SM ELECTRONICS
11 Sandholes Road, Cookstown N. Ireland.
Tel: Cookstown (NI) 06487/64277.

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services on Cambridge 69215 or Ely 61462

ORDER FORM PLEASE WRITE in block CAPITALS
Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

Send to: Classified Advertisement Dept.
TELEVISION
Classifiod Advertisemont Dept. Room 2812. King's Reach Tower, Stamford Street
Landon $8 E 1$ 9H.
Tolephone 01-281 $8846 . ~$ London 8E1 9Ls.
35 R
ADDRESS
$35 p$ per word, minimum 12 words. Box No. 70p extra.

COLOUR TV PANELS Fully Tested \& Working

	IF	$\begin{aligned} & \text { COAI } \\ & \text { Video } \end{aligned}$	Decoder	178	Line Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-
DECCA 13/30	3.00	-	7.00	5.00	-	4.00
BUSH A823	4.00*	-	10.00*	5.00*	2.50	4.00
THORN 8/81	-		10.00	5.00	-	5.00
PYE 205	3.00	3.50	5.00	10.00	-	0
THORN 3/31	5.00	5.00	5.00	8.00	${ }^{-}$	10.00
G8	6.00	5.00	8.00	7.00	15.00	5.00
-Please specif					frited with	
Please add 15% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ paneis $£ 3.00$ etc.					transformer	
Hybrid panels do not include valves.					Terms cash with order.	

GOLCAR T.V. SERVICES (formerly LAVITE LTD.).
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273
callers by appointment only.

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex.
Tel: Canvey Island (0268) 690577
CURRENT PRICE LIST
DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$
INLINE TUBE TYPE FROM $£ 35.00$
MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

FOR SALE

DUE TO ILLNESS, complete range regunning equipment for sale $£ 5000$ o.n.o. TV Box No. 186.

TOP QUALITY TELEVISIONS SCOTIISH TRADERS

* Wide range of CTV's in good working order from $£ 25$. E.g. Thorn 3500,8500 , 8800, Bush, Philips G8, GEC S/S CTV etc.
* Plenty of working and complete nonworking sets at competitive prices.
\star Ready sell or to rent.
For further particulars telephone: M. S. VISION,

72 Robertson Street, Glasgow.
Telephone: (041) 221-2146.

JVC U-MATIC CR6000E with 6 Tapes. $£ 150+$ VAT - SOUTHAMPTON 814318.

179 COPIES MIXED P.W'S, P.T./Televisions, Radio Constructors, W.W.'S. Dates between 1959/1977. 0742558261.

GOULD DIGITAL STORAGE SCOPE, OS4020, excellent condition, $£ 1000$ + VAT. - SOUTHAMPTON 814318.

VIDEO RECORDERS, Philips V2000 system. Working. $£ 120.00$. RETACH LTD. 01-845 2036 or Northwood (09274) 27019.

JAPANESE COLOUR TVs, Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - to trade only. J. M. PEARSON TELEVISION 0484 863489.

EX RENTAL VHS VIDEO'S. Trade only. Ring 0462 55960 for details.

TRADE COLOUR TV's ALWAYS 200 IN STOCK ush Twin Chip from 5 Pye Chelsea from E15 epairs prompt service scopes etc. E.G. Phillips G8 order from $\mathbf{8 3 5}$. 35. bility Also Videos. V2020 and V2023's etc. (0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5, Worle Industrial Estate,

BRAND NEW PHILIPS 550 PANELS

L.T.B

From $£ 9.00$
F/Decoder $£ 9.00$
P/Supply £6.00
Convergence £7.00
Frame Timebase E 5.00
All panels tested \& working
Please add $\mathbf{5 1 . 5 0}$ P.P. Limited offer. For more details: Phone 01-888 4926
BASEGUIDE, 145 Green Lane, London N13 45P

AERIALS

2 METRE PARABOLIC DISHES

Glassfibre Construction
Suitable for 4 and $12 \mathrm{GHz} £ 290$
Polar Mounts and Feed Suppor's Available.
Send S.A.E. for Details
SP ANTENNA SYSTEMS,
3 Woolpack Corner, Biddenden, Ashford, Kent TN27 8BU Tel: 0580291090

SATELLTE TV RECEIVER. Model KB-1. Receives 4 GHz band. Ideal for demonstration of USSR TV. 100 deg K LNC. $£ 392$ + VAT. Available for hire with dish and Secam TV. LNA/Downconverter. PCB's stocked for the constructor. SAE data. HUGH COCKS TV SERVICES, Cripps Corner, Robertsbridge, Sussex. Tel. 058083317.

[^4]
AERIAL BOOSTERS

B45H/G-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price $£ 8.70$ pep 30
IJHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to $14 \mathrm{~V} / \mathrm{W}$. Price $£ 2.50$. Pap 30p. AMPLIFIED SET TOP AERIALS. Trebles the gain, fully portable, price includes batteries. Price $\mathbf{£ 9 . 7 0}$. P8P 50 p .
CAPACITOR PACKS. Mixed C280 \& Electrolytics values from. Oluf to 500 uf . Price per pack of 150 capacitors $\mathbf{£ 2 . 0 0}$. P\&P 50p

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom
Lancashire, BLO 9AG
Tek: Ramsbottom (070 682) 3036.
S.AE. for lesflets. Access/Viss Welcome.

NWELECTRONICS

25 YEARS SUPPLYING THE TRADE

HUGE STOCKS OF COLOUR TV'S 2000 NOW IN STOCK

ROCK BOTTOM SUMMER PRICES. ALL MAKES, ALL MODELS. 90\% WORKERS (off the pile)
GENUINE REPOSSESSIONS AND EX RENT, NOW IN STOCK! PYE KT 3, PHILIPS G11, G8, BUSH T20, 22, 718, GEC, 2010, 2201, 2002, 2659, HITACHI, SANYO, PYE 222 THORN 9000, 3500, 8800 ETC.

SPECIAL SUMMER OFFERS

BUSH 2 chip 20" $/ 22^{\prime \prime}$ Exc. CAB Cond. GENUINE CHANGE OVERS £15 EACH (special quotes on bulk orders) . . . Single Chip $£ 10$.
PHILIPS 26" G8 EXC. COND. 550 model___ 220 each BUSH 718 PIL TUBE £30
BUSH $22^{\prime \prime}$ REMOTE 718 ONLY_ £30
HI'TACHI 20" MODEL 190 EXC. CAB__ £25
BUSH T2O LIKE NEW £65

THORN 9000 PIL TUBE
in lots of 10 £55
_

VHS VIDEO

SHARP 7300, 8300, 9300. FERGUSON 3V28 3V22. SONY BETA.

> MONO TVS ER EACH

BUSH,GEC,PYE,PHILIPS ETC.THORN 1500 £6.THORN 1600 £15 (like new).

REFURBISHED TV'S TO ORDER

PHILIPS G11 $£ 85$
BUSH T20/22 £75
GEC $2010 € 38$
LATER MODELS PHONE FOR QUOTATION

WHITE GOODS

HOOVER TWINS FROM £6. HOTPOINT 1460 FROM £10. AUTOS ALL MAKES FROM $£ 10$

SPARES! SPARES!TV PANELS

	1.	DECOOER	LIME 0/P	POWER	COnveng	VIOEO	frame t3
BUSH 2 CHIP	3.00	8.00	6.00	3.00	3.00		5.00
3000/3500	2.00	4.00	8.00	8.00	5.00	5.00	6.00
68	$\begin{gathered} 5.00 \\ \text { with sound } \end{gathered}$	7.00	14.00	8.00	5.00	-	5.00
GEC 2310	10.00	5.00	12.00	6.00	5.00	5.00	5.00
BUSH 718	8.00	15.00	25.00	3.00	5.00	-	15.00
BUSH T20	8.00	15.00	20.00	20.00	5.00	-	15.00

Unit 12, Wharfedale Road M606 Euroway Estate Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00$.
3 panels $E 2.50$ etc. Quick Despatch - C.W.O. please ALL FRICES PLUS VAT.
CASH ONLY - DELIVERY CAN BE ARRANGED
YOU CAN REACH US EASILY FROM ANYWHERE

OPEN MON-SAT 9-5.30

Don't forget! We are open
all day Saturday!

WANTED

VIDEO HEAD FOR PHILLIPS N1700. Please phone Lincoln (0522) 680177 evenings.

WANTED

T.V.s, VIDEOS, HI FI, AUDIO $\mathbf{£ 1 0 0 , 0 0 0}$ то SPEND

If you have a surplus, we would be delighted to make an offer.

Contact:

Mr Fred Tuck (0934) 413537

WANTED. National WV241 B/W Video Camera, or similar with ext. sync. Phone Tony 01-658 6174.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies. Weston Super Mare (0934) 514047.

COURSES

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading. Berks RG1 1BR.

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

REDIFFUSION/DORIC Mk. 3 TV

Panel service replacement panels sent by return.
Telepihone: (06582)-3247 "Hillcrest" Roughton, Near Woodhall Spa, Lincoln LN10 6YJ.

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK
 ALSO COLOUR MANUALS AVAILABLE

TV Sheets, Black and White, also Radiograms, Record Flayers, Music Centres. Japanese models in stock. Curcuit diagrams only. Also Tape Recorders etc etc.,

ALL AT £3. Please forward s.a.e. Send cheque or P.O.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European, and Japanese models in stock. Colour $£ 2.00$ Mono $£ 1.50$ (post free) Manual prices on request.
 Send stamped envelope for free catalogue and enquiries
 SANDHURST TV SERVICES (MAIL ORDER) 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

TECHNICAL INFO SERVICES
 76 Church St - Larkhall-Lanarks
 Giant TV \& VCR DIAGRAM MANUALS
 Brit CTVs
 3 vols $£ 45$
 Vol. 1 Decca G.E.C. ITT
 £17
 Vol. 2 Philips Pye Redif
 E 17
 Vol. 3 Rank Bush Thorn $£ 17$
 Foreign CTVs (now updated) 2 vols $£ 32$
 Mono (Stand + Port) 2 vols $£ 32$ Early VCR (VHS/Philips £17 VCR later models inc. Betamax £17 Domestic Equipment Exploded Diagrams in 2 huge binders for or New T.V. Rep. Manuals E7.50 each 1983 Brit. CTV or Foreign CTV 4 1983 Brit, CTV or Foreign CTV 4 Complete set of 15 TV Rep Mans for $\mathbf{£ 1 0 5}$ The only practical radio servicing and repair course
 £9.50
 Large SAE brings FREE 50p magazine inc. service sheet/details of unique T.V. publications. Any quotation plus price lists, etc.
 Full size service sheets $\quad \mathbf{£ 2}+$ I.s.a.e. CTVs/Music Centres $\mathbf{f 3}+1 . s . a . e$.
 Worids largest collection of service manuals 1930 to date. From $\mathbf{£ 4 . 5 0}$ to $£ 35$ each.
 e.g. Autovox/G8/A823 £7.50 each
 Integrated TV repair system
 f195.
 Contains over $£ 250$ normal prices.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

EQUIPMENT

COMPLETE TUBE REGUNNING PLANT, electric ovens, in good working order. Free training available Tel. 0582410787.

BOOKS AND PUBLICATIONS

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $\mathfrak{f} \mathbf{3}+$ LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publications for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 1HE. Phone (0698883334).
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stork. Frices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

LONDON'S LARGEST TELEVISION WHOLESALER... with over $4 \frac{1}{2}$ thousand sq. feet

"TELEMANN"

8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

ALL MAKES IN STOCK AND GUARANTEED COMPLETE

The only wholesaler with a guaranteed single price. If the sets work or not our price is the same! Free delivery to the London area.

Telephone 01-739 2707 NOW!

Philips VCR 1700 with new boxed $1 \frac{1}{2}$ hour cassette and mains lead £45. Single standard mono's £3.

PHILIP:S 22" (Model 520) Parcel of ten $\mathbf{£ 1 5}$ FHILIPS 22" (Piano Key 550) Parcel of ten $£ 20$ JAPANESE MODELS $18^{\prime \prime}-20^{\prime \prime} £ 30$
free delivery to the london areal

If an advertisement is wrolng we're here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below

The Advertising Standards Authority.

ASA Led, Dept 3
Brook House, Torrington Place, London WC1E 7HN

[^0]: ORDERING: All components are brand new and to full specification. Please
 add 45 p postage/packirg (unless otherwise specified) to all orders
 and then add 15% VAT to the total. Either send cheque/cash/postal and then add 15% VAT to the total, Either send cheque/cash/posta order or send/telephone your Access or Visa number. Official orders from schools, universities, colleges etc most welcome. (Do not forget to send tor our 1984 catalogue - only 65 p per copy details in middle of advertisement.)

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London' SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface meil) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: V/DEOMEADS MINOLITH
 HIGH QUALITYUNIVERSAL VIDEOHEAD
 REPLACEMENTS FOR ALL VHS AND BETAMAX VCR MACHINES
 VHS Part No. 3HSS (5 mm Centre Hole) $\mathbf{\varepsilon 2 9 . 9 5}$ PRICE VHS Part No. 4HSS (15 mm Centre Hole) $\mathbf{£ 2 9 . 9 5}$ EACH BETAMAX Part No. PS3B $£ 38.95$ EX, REPLACEMENT KIT (14 Pieces Boxed) $£ 8.25$ V.A.T. PLEASE ADD 15\% V.AT. PLUS P. \& P. £1.50 PER ORDER OUR FULL CATALOGUE AVAILABLE ON REQUEST.

 Please allow between 14 and 28 days for delivar.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributor/Service Organizations
 THE MONOLITH ELECTAONICE CO. LTD 5-7 Church Street, Cneukerne, Somerset. TA19 7HA, Englend Telephone Crewkeme (O4BO) 743e1 Telex 46306 MONLTH G

[^3]: GRUNDIG MILLIVOLTMETERS $100 \mathrm{u} / 300 \mathrm{v}$. Working order $£ 15+£ 3.00 \mathrm{P} \mathrm{\& P}$. Also P.S.U.'s isolating transformers, etc. S.A.E. lists S.H.E. 5 St. Josephs Park, Ballycrutte, Downpatrick BT30 7EN.

[^4]: ## CLEARVIEW AERIALS

 Clearviev have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronically remote controlied masthead pre-amp 1.6db noise. CH. 17-69. Set side amplifiers, distribution amplifiers, notch filters 4 in 1 or 2 in 1 etc. Combiners for $2 U H F$ aerials 3db
 gain or 4 Gdb gain. Trade and retail. gain or 4 gdb gain. Trade and retail.

 Send targe SAE for our comprehensive catalogue
 CLEARVIEW AERIALS
 173 Kings Road,
 Kingston Upon Thames, Surrey.

