JULY 1984

 TEEEUStid

 TEEEUStid}

SERVICING•PROJECTS•VIDEO•DEVELOPMENTS

COPYRIGHT

9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perymount Road, Haywards Heath, Sussex, RH16 3DH

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

473 Leader

475 Electronic Circuit Breaker
Ged Whitney, G8RS/
Save on fuses and get an instant indication when dealing with that bane of servicê engineers, intermittent fuse blowing.
476 All at Fours and Sevens
Les Lawry-Johns
Many of the faults this month seem to involve certain
voodoo numbers. Plus a visit from Mr. Nick Payne and his set.
477 Next Month in Television
479 Letters
480 Video Recording on Tape
Eugene Trundle
To record a video signal on tape economically for domestic purposes is a considerable problem. The reasons for bandwidth limiting and the use of f.m. are explained, along with the way in which the sidebands can be restricted.
484 VCR Clinic
Notes on VCR faults and servicing from Derek Snelling, John Coombes, Philip Blundell, Tech. (C.E.I.) and Michael J. Cousins, T.Eng. (C.E.I.).

486 Teletalk
Malcolm Burrell
Comments on various faults and asperts of the contemporary servicing trade.
488 Spectrum-Monitor Interface John de Rivaz, B.Sc.(Eng.) A circuit to convert the Sinclair Spectrum
microcomputer's YUV output signals to RGB drives for a monitor, using an SL901B i.c. plus a minimum amount of peripheral circuitry.
489 Teletopics News, comment and developments.
492 Servicing the Grundig 2×4 Super, Part 1
Mike Phelan
This machine is available at bargain prices and provides superb performance. The power supply and various basic fault conditions are dealt with in this first instalment.
494 The Ferguson TX100 Chassis
The latest chassis in the Thorn/Ferguson TX series is designed to drive just about every type of tube and to interface with alroost any video/audio/control requirements. A flexible, high-performance chassis to supersede the TX9 and TX10.

TV Fault Finding

Reports on TV faults and servicing problems from Mick Dutton, John Coombes, Malcolm Burrell and Tony Thompson.
TV Test Pattern Generator, Part 3 Preliminary constructional details.

Tony Jenkins, G8TBF

Long-distance Television
Roger Bunney
Reports on DX conditions and reception, and news from abroad. Plus details of a helical serial for satellite reception at 714 MHz .

Service Bureau
Test Case 259

OUR NEXT ISSUE DATED AUGUST WILL BE PUBLISHED ON JULY 18

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR

```
TEST
OEMDNSTRATIONS
    AT }17
WEST END LANE
```



```
* 40 different patterns and variations.
* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\(\star\) EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
* Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
* Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\(\star\) All kits fully guaranteed with back-up service.
* Also available with VHF Modulator.
```


Price of Kit
 $£ 80.50$

```
De Luxe Case ( \(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime}\) ) \(\mathbf{£ 8 . 5 0}\)
Optional Sound Module ( 6 MHz or 5.5 MHz ) \(\mathbf{£ 4 . 5 0}\)
Built \& Tested in De Luxe Case including Sound Module SPECIAL TEST?
\(£ 120.75\)
REPORT
Post/Packing \(£ 2.50\)
'TELEVISION' All above prices include VAT \(15 \%\)
```


PAL COLOUR BAR GENERATOR (Mk4)

4TH SUCCESSFUL YEAR

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.

* Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE £8.50. BATT HOLDERS $£ 3.20$. MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P $£ 2.20$).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $166.70+\mathbf{~} 2.20 \mathrm{P}$ \& P . MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 78.20+\mathbf{~} 2.20$ P \& P.
VHF MODULATOR (CHI to 4) FOR OVERSEAS $\mathbf{5 6 . 6 0 .}$
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) remote control $£ 158.70$ p.p. $£ 3.00$.
MK2 (Mullard) infra red remote control $£ 198.40$ p.p. $£ 3.00$
Further details on request. Tel 01-794 8751/7346
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

TELEVISION MAGAZINE PROJECT PARTS

COLOUR PORTABLE TV
MONO PORTABLE TV, SMALL SCREEN MONITOR ETC
THORN TX 10 TYPE REMOTE \& TUNING CONTROL PANEL $£ 10.80$ p.p. $£ 1.50$ PHILIPS UHF MODULATOR (AUDIO \& VIDEO INPUT) $£ 17.25$ p.p. $£ 1.00$. SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. £1.20
THORN TX9, TX 10 SAW FILTER IF PANEL $£ 9.80$ p.p. 80p.
PAL DECODER KIT FOR RGB MONITORS $£ 31.00$ p.p. $£ 1.00$
SPECIAL OFFER TEXAS XMII TELETEXT DECODER NEW \&
TESTED, AT REDUCED PRICE $£ 46.00$ p.p. $£ 1.60$.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. £1.20. XMII STAB. POWER SUPPLY £4.40 p.p. £1. 20. CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET $\mathbf{£ 1 3 . 8 0}$ p.p. 80 p. (ALUM CASE $£ 2.90$ DE LUXE CASE $£ 7.85$ p.p. $£ 1.40$.) ADDITIONAL GREY SCALE KIT 23.35 p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 23.00$ (VHF version also available). ALUM CASE $£ 2.90$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 32.20$ p.p. $£ 2.80$.
BUSH Z718 BC6100 SERIES IF PANEL 55.75 p.p. 90p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p .
DECCA 80, SERIES, IF, FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$
DECCA 80, SERIES, IF, FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$.
DECCA 80, LINE SCAN UNIT salvaged $£ 11.50$ each p.p. $£ 2.00$
GEC 2040 Convergence panels, Decoder panels $£ 2.88$ each p.p. $£ 1.80$. GEC 2040 IF PANELS $£ 3.22$ p.p. $£ 1.60$.
GEC 2110 CONVERGENCE PANELS $\mathbf{£ 5 . 7 5}$ p.p. £1.80.
PYE 691-7 CDA PANELS. Makers tested stock $£ 6.90$ p.p. $£ 1.45$.
PYE 725 T.B. Unit. Makers tested stock $£ 23.00$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$.
THORN TX9 PANELS salvaged ex factory for spares incl. LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX9 PANELS ex factory salvaged complete cond $£ 23.00$ p.p. $£ 2.80$. THORN TX10 T.B. PANELS salvaged ex factory $£ 17.25$ p.p. $£ 3.00$.
THORN TX10 T.B. PANELS salvaged ex factory $\mathbf{~ 1 7 . 2 5}$ p.p. £3.0.
THORN 3000 LINE T.B., PCB POWER PCB $£ 5.75$ each p.p. $£ 1.30$.
THORN $8000 / 8500$ IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$.
THORN 8000/8500 FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$.
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$ THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. $£ 1.60$.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$. G8 Decoder panels salvaged £4.25. Panels for spares $£ 2.00$ p.p. $£ 1.40$. G9 Scan PaneL Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
G11 Frame Panels $£ 20.70$ p.p. $£ 2.00$.
GRUNDIG 8630 Series Varicap Tuners 55.75 p.p. $£ 1.00$
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05$ £7.82 p.p. 80 p; G.I type (equiv. 1043/05) $£ 4.00$ p.p. 60p. MAKERS VARICAP CONTROLS Pye CT200 4PSN $£ 8.60$, BUSH 4PSN $£ 5.50$, Decca 4 PSN $£ 6.70$ p.p. 80 p. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.p. £1.00.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $\mathbf{£ 4 . 4 0}$ p.p. 95p. VARICAP UHF.VHF ELC 2000 S, ELC 2060 £11.30 p.p. 90 p
VARICAP VHF MULLARD ELC 1042 , PHILIPS £7.95 p.p. 80 p
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position, UHF/625 Tuners, many different types in stock. DECCA Bra
MULLARD 4 position £2.88, JAP Rotary $£ 5.50$ p.p. £1.80.
MULLARD 4 position £2.88, JAP Rotary
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.
T.V. SOUND IF Panels $£ 7.82$ p.p. $£ 1.00$.
LOPT TESTER Serivice Dept approved $£ 17.82$ p.p. $£ 1.20$.

LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour $£ 1.50$ p, Bobbins $\mathbf{8 0 p}$.
BUSH 161 to 186 (twin panel) $56.80 \quad$ R.B.M. A823 85.60
BUSH, MURPHY 774 series $89.80 \quad$ R.B.M. Z179...30
BUSH, MURPHY A816 series ….. 69.80 R.B.M. T20, T22 $\ldots \ldots \ldots-\ldots$
FERG., HMV, MARCONI, ULTRA $950,1400,1500,1580,1590,1591$. $£ 66.80$
THORN 1600 i $1615, ~ 1690,1691$ THORN $1600,1615,1690,1691 \quad £ 10.50$ DECCA 80,100 . state Mod GEC 2028, 2040, 2100 56,70 INDES1T 20/24EGB............................. 88.80 GEC 2110 Series $\mathbf{8 1 2 . 2 0}$ ITT/KB VC 200, 300 88.80 1TT CVC25, CVC30 series10.13 MURPHY 1910 to 2414 (twin panel) $E 6.80$ PHILIPS 170, 210, 300 SERIES 88.8 PYE, INVICTA, EKCO, FERR.
368, 169, 569, 769 series.... DECCA 20/24, 1700, 2000, 2401 DECCA 20/24, 1700, 2000, 2401 ... E4.40 GEC $2114 \mathrm{~J} /$ /Junior Fineline3.25 KYE VC ELEVEN (003)..00 KB VCl
C1 ... $£ 3.25$

$$
\text { PYE } 713,715
$$

THORN 9800 .. 11.90
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono \& Colour
Special Offer: Thom 14005 stick EHT Tray $£ 1.72$ p.p. 65 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.72$ p.p. 60 p. 6.3V CRT Boost Transformers for Colour \& Mono £5.80 p.p. 11.20. CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W. 6.
NEAR: W. Hampetead Tube Sta (Jubileo) Buses 28, 159, C11 pases door W. Hampstend British Rail Smes. (Richmond, Broed SL) (SL, Pancras, Bodford W. Hampated (Brit. Reil) access from all over Grentar London. Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.

ALL PRICES INCLUDE VAT AT 15%
(CLOSED FOR HOLIDAYS JULY 9th TO JULY 21st)

TELEVISION \& VIDEO SERVICING

(FULL-TIME \& EVENING COURSES)

- ELECTRONIC PRINCIPLES
- TELEVISION SERVICING
- VIDEO CASSETTE RECORDER SERVICING

High percentage of practical video servicing provided

Courses from 3 weeks to 15 months. College Diploma \& BTEC Awards.
(Also full-time day courses in Computing Technology \& Robotics).

Free prospectus - please state whether interest is in day or evening training.

LONDON ELECTRONICS COLLEGE 20 Penywern Road, Earls Court, London SW5 9SU.

Tel: 01-373 8721.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success The expert and personal guidance by fully qualified tutors, backed by the long $4 C S$ record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.
You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

WE WILL QUALITY, BR REPUTATIO	NLY SUPPLY DED COMP COUNTS W		 108 SCOTLAN PHONE (0228)	$\begin{aligned} & \text { D ROAD, } \\ & 20358 / 139 \end{aligned}$	RISLE, 3		R1/	A3 9EY	BUY	TH	
INTEGRATED	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (E)			RICE	TYPE PqICE			THORN1500-5S
C	LA4031P 2.45	TBA890 2.96	STK03612.67	UPC 1216 V ... 2.00		BC548		BR100 18	RBM T20/2	. 123	
TYPE PRICE (5)	L440322.34	TBA9200 _.... 1.50	STK043 11.33	UPCi217G3.35	TYPE PRICE	BC557		RR101 32	RBM 2718		
AN103 1.95	La40512.79	TBA950/2X ...2.85	STK050 20.75	UPC1218H.. .2 .75	AC127 22	BC558 10	BR103 …... 56		2.95	THORNSCODO
AN214 2.25	L-41011.88	TBA990........ 1.56	STK07021.96	UPC1222......2.06	AC128 22	BD124P	P..... 56	8T106 1.15	PHIUPS G8		PYE 731 6
AN217 2.44	LA41021.97	TCA270S 1.30	STK0778.55	UPC1223......3.40	AC128K 30	BD131.		BT116 130	PIHUPS G9.		DECCA 230 630
AN240 2.20	LA4400 2.80	TCA800 $\ldots1 .96$	STK0788.45	UPC 1225 3.10	AC187K	BD132.		BU126 1.78	PHIUPS G11.	13.50	DECCA 8030
AN253 1.93	L44420 1.94	TCA940 1.55	STK082	UPC ${ }^{2} 226$...... 2.55	AC188K 33	BD201.		BU204 1.50	THORN 1590/1		DECCA 100
AN264 1.77	L444222.76	TDA1002A ... 1.50	STK08612.89	UPC $1227 \ldots . . .2 .10$	AD149....... 70	BD202.		BU205 1.42	THORN 1690/1		ITT CVC 20/30
AN315 1.66	L-444301.93	TDA1003A ... 2.80	STK415.......9.66	UPC1230H 3.45	AD161....... 42	BD203		BU206.... 1.35	THORN 1615.	975	Universol 5.50
AN3186.96	MC1327A 1.00	TDA1004A2.70	STK $4337 .25$	UPC 12451.99	AD162 $\ldots42$	BD204.		BU208A . 1.40	THORN TX10	$.1250$	Unversal 5
AN337 4.41	MC1358P 1.60	TDA1035 3.20	STK4357.75	UPC ${ }^{\text {12 }} 1250 \ldots2 .45$	AF127 36	BD222.		BU208/021.70	PYE 731/713 (1))... 1020	
AN360 1.45	MC1330P 90	TDA 1044 3.10	STK4377.77	UPC 1350 C 4.50	AU110 2.10	BD232.		BU326A .. 1.48	PYE 735 (90)	1020	
AN7110 1.93	ML231B 1.95	TDA1170....... 1.80	STK4397.86	UPC 1353C $\mathbf{2 . 6 0}$	AU113 ... 3.50	BD233.		BU407..... 1.12	IT CVC 1-9		
AN7114 2.23	ML232B 1.70	TDA1412......... 90	STK4419.52	UPC1356C2 ..3.05	BC107 14	BD234.	.. 40	BU500..... 1.80	DECCA 2330		
AN71152.37	ML237 2.50	TDA2190 3.20	STK 443 11.33	UPC 1358H3.05	BC108 14	BD235.		BU526.... 2.00	OECCA 80,	$1{ }^{1}$	
AN71202.43	ML238 4.22	TDA20202.56	STK459 9.55	UPC1363C ... 3.20	BC109 14	BD236		BUWB1A 3.20	DECCA 100	$\frac{15}{7 \pi}$	
AN71402.10	TA7072P 2.75	TDA2522 1.80	STK463 10.88	UPC1365C5.05	BC141 28	BD237.		R2008B	IT CVC 20		
AN7145 3.25	TA7108P2.10	TDA2523......2.25	STK5018.88	UPC1366C ...2.85	BC142 23	BD238.		R20108 ... 1.45	ITT CVC 25/30		
AN71502.89	TA7120P 2.05	TDA2530 2.10	UPC41C........2.96	UPC1367C285	BC143 25	BD410.		R25440	ANTL-SURG	FUSES	BY179 BY210/800
HA1137......... 2.30	TA7129 3.00	TDA2532 2.20	UPC554C 1.30	UPC1368C ...3.76	BC147 09	BD434.		TIP31C 46	A/S20MM 80	$14 \ldots 275$	
HA1144........ 239	TA7130P 1.20	TDA25401.96	UPC555 H	UPC1370C2 . 3.80	BC148 ….... 09	B0437.	70	T1P32C	$100,160,200 \mathrm{M}$	$(\ldots . . .1 .70$	
HA11511.97	TA7139P 2.80	TDA2560 1.80	UPC566H32.10	UPC1373H	BC157 10	BD438.	.. 78	TIP33B 80	$315,400,500$		
HA1156........1.97	TA7157P 3.00	TDA2581 1.70	UPC577H3.00	UPC1377C 4.60	BC158 11	BD707. 1.05	TIP41C 48	800 MA. 1A	1.6	$8 \mathrm{Y} \times 55 / 600$
HA1166........2.65	TA7171P3.40	TDA2590 2.25	UPC585C	UPC1378H ... 3.80	BC159 11	BDX32 1.65	TIP42C 48	$2 A$	120	$87 \times 56 / 600$ $81 \times 71 / 500$
HA1197 230	TA7172P3.40	TDA2591 2.70	UPC1009H	UPC1384C -..5.50	BC160 22	BF194		T1P2955..... 70	$2,3.15,4,5 \mathrm{~A} \ldots$	${ }_{5} . . .135$	
HA1199........2.30	TA7176AP ...2.90	TDA2593 2.35	UPC1017G	UPC2002H ... $\mathbf{2 . 2 0}$	BC172 10	BF195	.. 13	T1P3055			1 MaONI 7
HA1202........ 1.75	TA7193P 4.20	TDA2600 5.50	UPC1018C		BC177 22	${ }^{\text {BF196 }}$ BF197	\ldots	TV106/02 1.60	OVRO	72	
HA1211....... 1.87	TA7202P	TDA2611A 1.50	UPC1025H		BC182 10	$\begin{aligned} & \text { BF197 } \\ & \text { RF109 } \end{aligned}$	$. . . .11$	2N3054 …..5	PCrem PC1 80	\cdots	BZX61-range
$\begin{array}{\|l\|l} \text { HA1306 } \ldots . \quad . \quad 2.97 \\ \text { HA1319....... } 2.99 \end{array}$	TA7203P TA7204P	TDA2640 1.80	UPC1026C		$\left\|\begin{array}{ll} \mathrm{BC} 182 \mathrm{~L} & . . .11 \\ \mathrm{BC} 183 \mathrm{~L} & \ldots . . \\ \hline \end{array}\right\|$	$\begin{aligned} & \text { BF198 } \\ & \text { BF241 } \end{aligned}$	$\begin{gathered} . . .14 \\ \ldots .15 \end{gathered}$	$\begin{aligned} & \text { 2N3055 } \\ & 2 S C 1172 \mathrm{Y} \end{aligned}$	PCLSQ		BZY8e-range 11
$\begin{aligned} & 1319 \ldots2 .99 \\ & 1322 \ldots2 .10 \end{aligned}$	TA7204P \quad TA7205AP ...1.80	TDAS560S ….... 1.10	UPC10281H $\ldots . .2 .150$		BC183L 11	$\begin{aligned} & \mathrm{BF241} \\ & \text { BF256L } \end{aligned}$	$\begin{array}{ll} \mathrm{LC} \ldots .15 \\ \hline \end{array}$	2SCli......... 1.85			
HA1325........2.30	TA7208P 2.20	SAS570S1.90	UPC1032H $\ldots . .0 .85$		BC208 12	BF258. 25	2SC2029 . 2.00	PCLA6		
HA1338........ 2.78	TA7210P 5.60	SAS580 2.40	UPC1035C2.50		BC212L 10	BF259	. 26	2SC2078 . 2.00	PR200.	.135	
HA1339........ 2.80	TA7222P1.70	SAS590 2.40	UPC1042C ...2.40		BC213L 10	BF337		2SC2078 . 220	PL50M		SUNDRIES
HA1342A 2.33	TA7223P 3.15	SL9018 4.80	UPC1043C ... 2.45		BC214L 10	BF338		2SC1969 .2.45	PL508		PYE IF GAN MOD .78
HA1366	TA72274.65	SL917B6.95	UPC1156H		BC237B..... 11	BF458			P1509/519		W COLL G111的
W/WR2.30	TA7310P 1.70	SN76003N2.05	UPC1168C2.70		BC337 11	BF459			50		VAllo
HA1368........ 2.20	TA7313P 2.10	SN76013N 1.80	UPC1170C -...1.55		BC338 10	BFR90.	1.60		5004		GB TRANSOUCTOR 225
HA13712.97	TAA550 ….... 28	SN76023N 1.80	UPC1176C -..2.15		BC547 10				PY1/800		G8 ON/OFF SW. . . 1.10
HA1374....... 2.56	TBA120AS 70	SN76110N 90	UPC117H H . 2.3 .30								
HA1377........ 3.80	TBA120SB 90	SN76226DN .1.45	UPC1178C ... 2.20		8				ERS		
HA1388........ 4.20	TBA120U 1.00	SN76227N 1.00	UPC1180C	DECCA 30140		2.55	-		45		
HA1397....... 4.15	TBA395 125	SN76660N65	UPC1181H ... 2.20	DECCA $80 / 100$	V		DECCA	TT 6W	.7.96		
HA11211 2.43	TBA396 85	STK0039 6.45	UPC1182H ...2.35	(800)250V		2.90	PYE201		15.8		
HA112212.77	TBA520 1.30	STK0040 5.95	UPC1183H	PHILIPS G8(600)	300V	2.00	PHILIPS	68S/L	13.90		
LA1201 1.88	TBA530 1.00	STK0050 7.50	UPC1185H2 ..3.30	PHILPS G9(2200)	163 V	1.15	PHILIPS	G8S/0	12.00		
LA12302.30	TBA540 1.27	STK0117.35	UPC1188H	PHILIPS G11(470)	250 V	. 2.20	HTACHI	4W	8.50		
LA1365 2.25	TBA550 1.40	STK0147.65	UPC1190C ... 2.10	PYE 691/7(200-30	201350V	.2.10	ITT CV	$57 W$	9.40		
LA22002.25	TBA5600 1.60	STK015 7.15	UPC1198H1.30	RBMA823(2500/2	500)30V	1.10	IT CVO	G11	12.80		
LA31222.10	TBA7500 2.45	STK016 7.45	UPC1200V1.90	THORN3500	00/100/		PHILIPS	G11 (TPP SW.)	25.80 830		
LA33011.97	TBA800......... 80	STK0209.06	UPC1208C 1.85	4001350 V		2.25	$1043 / 05$		8.30 795		STOCK TEMS.
LA3350 1.93	TBAB10AS 1.15	STK032 11.32	UPC1211C 4.06	THORN3500(1000)70V	2.85	U321 TF		7.96 7.40		
LA40311.66	TBA820 1.40	STK035 12.67	UPC1215V2.50	THORN $9000(400)$	400 V	2.75	U322 TF	K....	7.40		

U.K. Post Pald, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders weicome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days,

NEW 1984 CATALOGUE NOW AVAILABLE - Many prices reduced - range increased - fully illustrated. Price 65p, per copy free upon request with
orders over $£ 5$ - - includes 30 p. Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COPY

[VAIVES!

EAST CORNWALL COMPONENTS 119 HIGH STREET WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

두ํํํํ

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our thanks to THORN EMI FERGUSON Ltd. who provided the photograph of their new TX100 chassis on this month's front cover.

READERS' PCB SERVICE

We have received notification from Readers PCB Services Ltd. (TV) of their intention to close the service down. Stocks of some of the boards that have been available are still held and those interested should enquire (for details see page 389, May 1984).

CORRECTIONS

The suggestion that tuner control units in the Philips G8 chassis (page 433 last month) can be replaced without removing the back is incorrect. Our apologies.

TV Test Pattern Generator Part 1, May. The right-hand half LS393 row counter in Fig. 2 should have been shown as IC3, not IC9. The clear pin of IC15 (pin 1) should have been included - it's connected to the 5V line. In Part 2 (June) BR1 should be shown as type KBLO2 and IC2 as type 7805 in the components list.

Digital TV

In this digital age it's perhaps inevitable that TV sets should increasingly use digital techniques. The process started some while back with teletext, sophisticated tuning systems and remote control arrangements. It's taken a major step forward with the introduction of ITT's Digivision receiver in the UK. This carries out all signal processing between demodulators and the video, audio, field and line output stages in digital form.

This calls for considerable extra circuitry of course. though the component count is reduced since most of the circuitry required is contained in six v.l.s.i. chips. The whole operation is controlled by a sophisticated device (type MAA2000) which is referred to as the central control unit. It contains an eight-bit microcomputer (8049), an eight-bit/128 word EAROM (electrically alterable read-only memory), a decoder for remote control commands, a keyboard scanner for front panel controls (maximum 32 keys), a LED channel number display drive, a phase-locked loop to provide tuning at v.h.f. and u.h.f., a crystal-controlled oscillator and an interface section to drive the bus line that links it to the rest of the digital circuitry. The memory's capacity is sufficient to contain the tuning data for up to 30 channels and the factory programmed data for tube drive and timebase control (there's only one preset potentiometer in the set, for h.t. adjustment).

The video signal from the i.f. strip is $A D$ converted by a device called a video coder unit (MAA2100). This also carries out RGB matrixing, beam current limiting, blacklevel clamping, c.r.t. cut-off control, brightness setting, white balancing and DA conversion to drive the RGB output stages. It works in conjunction with the MAA2200 video processor unit which is basically a digital colour decoder capable of NTSC or PAL operation. Two v.l.s.i. chips are used in the sound channel, an MAA2300 AD/DA converter and an MAA2400 audio signal processor. The luminance signal is handled in 7 -bit form, the colour-difference signals in 6-bit form and the audio signals in 14-bit form. The MAA2500 deflection control unit receives 7-bit video and 3-bit bus control information and provides line drive pulses plus field output and EW modulator drives.

This group of six v.l.s.i. chips is complemented by an MEA2600 master clock pulse generator which operates at 17.73 MHz (four times the colour subcarrier frequency) and an MEA2900 tuner interface i.c. to complete the Digivision line up.

A sophisticated system such as this tends to be expensive, at least initially with low volume production of the i.c.s. ITT have invested some $£ 20$ million in developing the system. It will therefore be used in up-market models to start with.

The introduction of the Digivision Model D1000 raises a number of interesting questions. Is there real advantage in going digital and how long will it be before others follow the same path for example. These need to be considered in the light of the fact that the Digivision system is undergoing considerable development. It's at present at quite an early stage in fact. Future developments already scheduled include the use of line and field stores, also digital horizontal convergence correction and digital geometry correction via feedback from the tube's faceplate. Digital horizontal convergence correction works by stretching the RGB scanning lines. The things that will really make a difference however are the line and field stores.
A field store will make it possible to display still pictures and provide selective enlargement (zoom), also picture-within-a-picture. It will probably be some time however before such a store can be produced at the sort of price that will make it feasible for use in TV sets - other than luxury models. Whilst it's nice to think that such features can be provided, one can't help wondering how much use they would get in practice. The whole point of television surely is to watch programmes as they develop. The line store is a more interesting prospect since it will make it possible to increase the number of lines displayed fairly economically, giving a much improved picture. The plan is to use a 2.2 k byte RAM with a one and a half line storage capacity and interpolation to double the number of lines. This calls for 10 MHz bandwidth RGB output stages, high resolution tubes and a line output stage able to operate at 32 kHz .
The Model D1000, whilst having the advantage of digital signal processing, is unfortunately not adaptable for subsequent addition of these future developments. It seems to have been launched to test the market and gain experience of digital TV set operation in the field. For the present one could say that digital signal processing is a nicety. An analogue receiver correctly adjusted will give as good a display and be a lot cheaper. If and when digital TV chips become cheap, they will come into widespread use. Other semiconductor manufacturers are developing such chips, though ITT's decision in 1977 to go digital has put them ahead for the present. In practice it takes quite a time for technology to reach the point where it's suitable for use in mass-produced domestic products. We've seen in the past the gradual way in which analogue i.c.s have taken over from discrete circuitry in TV receivers. Even now the process is not complete - there are still sets with discrete audio and field output stages for example. It might also have been assumed that the SAWF and ceramic filters would by now be universal, but you still find many a discrete coil in current chassis. Digital TV may become the standard eventually, but not for a good few years.

-
 POST A PART ELECTRONICS 236 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN ORDEFS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

Electronic Circuit Breaker

Ged Whitney, G8RSI

Some time ago I had the misfortune to encounter that bane of all service engineers' lives, the phantom fuse blower. The set in question was a Tandberg CTV3 and the fault was incredibly intermittent - the mains and/or h.t. rail fuses would blow at odd times irrespective of temperature or the time the set had been on test. At last, after a small fortune in fuses and near mental breakdown after replacing all the more likely parts, the fault revealed itself. I went to answer the phone - downstairs from the workshop - when "bang"! The set had failed in a big way... Curiously, the owner was on the phone at the time.
For Tandberg fans everywhere, the cause was the $0.91 \mu \mathrm{~F}$ line scan correction capacitor C532 (of course). I also had to replace the line output transistor Q526, the mains bridge rectifier diodes CR701-4, the surge limiter resistor R702, the chopper transistor Q735, one of the chopper driver transistors Q734, the power supply efficiency diode CR735, the mains fuse F701 and the 230 V h.t. line fuse F727.

During a similar tussle with a TX9 I decided to be smart (?) and use my G8 method. This consists of a 22Ω or 30Ω 10 W wirewound resistor connected across the fuseholder in question. It works very well - with G8s. Splat! went the 22Ω resistor, hump! went the set, and I retired for a good strong brew.
The TX9 next devoured a 2A thermal cutout. I was going through the replace the obvious, ditch the rest then hang yourself routine when I got around to replacing the line driver transistor. Bingo! One more cured, and professor Quatermass spared a phone call.

Circuit Description

To assist with such problems, the circuit shown in Fig. 1 was devised. T1 is a current sensing transformer whose output is fed to a voltage-doubling rectifier (D5-6) whose output is in turn applied to a voltage comparator stage (of
sorts) based on Tr1. When the voltage at the slider of VR1 exceeds the forward voltage across D7/8 and the base-emitter forward voltage for $\operatorname{Tr} 1$, i.e. approximately $2 \mathrm{~V}, \mathrm{Tr} 1$ conducts. As a result Tr 3 and, by regenerative action, Tr2 switch on. They hold each other in the conductive state until the reset switch S1 is closed to remove Tr 2 's base-emitter bias. With the switch circuit $\operatorname{Tr} 2 / 3$ in operation, $\operatorname{Tr} 4$ conducts to operate the relay. The latter removes the supply to the set, lighting the indicator instead. The use of the regenerative switch ensures that the circuit is held on when the excess current through T1 ceases.

Construction and Use

The relay is not critical. A suitable type is the RS 348784 (two pole changeover with 475Ω coil). The current sensing transformer consists of a Philips G8 heater transformer which, for the prototype, was rescued from the bin... The 6.3 V secondary winding was completely removed - it can be sawn off using a hacksaw or, as in my case, the C type cores can be removed if loose (they fell

The circuit breaker in use with a Thorn TX9 chassis.

Fig. 1: Circuit diagram of the circuit breaker. Mains transformer 12 has an 18V 1A secondary winding.
out inside the set!). The original primary winding is retained to feed the voltage doubler circuit. The new sense winding consists of 14 turns of $7 / 36$ PVC wire wound close over the outside of the retained mains winding. When complete, the whole core assembly can be secured with epoxy adhesive and held in a vice overnight. Construction of the unit is not critical though the usual safety precautions should be taken, i.e. no exposed live parts. Alternative transistor types could of course be used.

With VR1 and its series resistors of the values shown,
the maximum capacity is some 300 W . Calibration was carried out using various sized bulbs, calculating the trip current from these. The setting varies from chassis to chassis of course. Set VR1 so that the circuit breaker just trips, then back it off a bit. The range at the high current end can be increased by opening S2 to reduce the voltage available at VR1. A three-way switch with extra resistors could be used for greater flexibility. The limiting factor is the relay's contact rating (10A with the suggested relay).

All at Fours and Sevens

Have you ever thought about the numbers four and seven? Frankly, I'd never given them a thought until the other day, when a series of sets came in and the coincidence left me wondering. It's not every day that we're kept so busy at present however, so we rolled up our sleeves and prepared to do battle.

The KT3

The first set in line was a Philips KT3. It was reported not to work at all. So we dived straight at the right side power board and accused the $4 \cdot 7 \Omega$ wirewound surge limiter of being open-circuit, thus removing the supply to the chopper. It was and a new resistor put things right without further delay.

The 9800

The second set was an Ultra 6749 (Thorn 9800 chassis). Apart from a degaussing click when it was first switched on there didn't seem to be much happening. So we asked the mains rectifier thyristor whether it was being supplied at its anode. It was. So the MR510 series diode was o.k. There were no signs of life at the other two legs of the thyristor however, and this led us to suspect the start-up circuit. We looked at the upper power board where the start-up circuit, transistor VT810 etc., lives. The start-up pulses are fed to the thyristor via R814 on this panel. R814, 470 2 . It was open-circuit of course, replacement restoring normal working.

Fancy That!

The next one began to make me think. It was a Bush set (Rank A823 chassis) with a faulty tripler. It had damaged the associated chassis-connected resistor. It's value? 470Ω. Then we had an ITT set, CVC5 chassis, suffering from poor focus. This was cleared by replacing the resistor that feeds the focus stick. Value? $4 \cdot 7 \mathrm{M} \Omega$.

An amplifier suffered from short-circuit 2N3055 output transistors. As a result the emitter resistors had been damaged. $0 \cdot 47 \Omega$. I was afraid to lift the old Thom 1500 on to the bench because I knew without a shadow of doubt what the cause of the loss of sync was going to be. R44 of course: $47 \mathrm{k} \Omega$.

Voodoo Numbers

While I was glad that the jobs were all simple for a

Les Lawry-Johns

change, I was wondering when I'd encounter something without these voodoo numbers being involved.

So this chap struggled in carrying a CVC9. "Ah ha!" I thought. Tuner selectors no doubt. It wasn't. The problem was no results. We found that the h.t. fuse feeding the line output stage had blown. Naturally our first check was on the boost reservoir capacitor under the line output transformer. It was short-circuit. $0 \cdot 47 \mu \mathrm{~F}$. . .

The Ferguson TX90

We haven't encountered many of these little sets so far. This one came in with the complaint of very poor sound. The nature of the fault suggested that the demodulator coil L104 was way off tune, and the presence of a 390 pF polystyrene tuning capacitor in parallel with it was cause enough for us to replace this item. The sound then boomed out loud and clear, with only a trace of buzz which a touch on the core of L104 cleared.

Whilst looking at the circuit my eye was caught by the RGB output stages. Each transistor has three parallel $47 \mathrm{k} \Omega$ resistors as its load, i.e. there are nine of them in this part of the circuit alone. There are four $47 \mathrm{k} \Omega$ resistors in parallel in the boost regulator circuit, also four 270Ω resistors in series. The field output stage bias is provided by four $6.2 \mathrm{k} \Omega$ resistors in series. We're told that this is all in the interests of reducing the total number of different components required in order to keep within the capabilities of the production line equipment. At least the equipment doesn't insist on components in the 47 series ...

Mr. Neck Pain

At last the numbers game seemed to have come to an end. A rather strange gentleman next brought in a Pye CT218/1 (717 chassis). Although he was a strapping big fellow he started on about himself at great length, in this irritating sing-song voice, until I abruptly asked him what the hell was wrong with his set.
"Ah yes. I had trouble carrying it in you see because of my bad back. Haven't been to work for a long time because of it. Must see someone about it but I can't afford it. So I'm hoping the repair won't cost too much because my children will be visiting me this weekend and would like the television. My wife left me a couple of years ago, so I only see them every other weekend. Don't know why she left me. I've always worked hard. I'm supposed to be building a wall for this chap but my back won't let me. He keeps on about it..."
"Could I have your name please?"
"Oh yes. It's Nick Payne. That's right, Nick Payne. I told this chap that I couldn't build his wall this week. He got quite nasty about it. Said he'd been waiting for six months. But I can't help it if my back's bad.
"Do you build walls and things for a living then?" I asked, like a fool.
"Oh no. I'm a railway guard. Just do building work in my spare time. When I can that is, but I can't when my back's playing up."
"Well now, what's wrong with the set?"
"Well it sort of breathed a few times, then it went off. When I say breathed, it sort of fluttered - like it's been doing each time before it blew the fuse. I kept replacing the fuse, then put a stronger one in. Now it doesn't blow the fuse, it doesn't go at all, if you see what I mean Mr. Lorryjohns.

To cut a long story short he wanted the set there and then because of his children. So I lent him one for the weekend.
"Thank you Mr. Lorryjohns. Now could you carry it to my car? Because of my back you see."

The 18in. Pye

At last I was left to battle it out with the 18 in . Pye. This and its close relative (Philips 570) are quite well known to me, so I didn't have any real misgivings. I checked the voltage-regulator thyristor with the ohmmeter. No shorts, but the 3.5Ω wirewound surge-limiter (part of the rear resistance assembly) was open-circuit. Check carefully for h.t. shorts. None. So I fitted a $3 \cdot 9 \Omega, 17 \mathrm{~W}$ wirewound across the defective dropper section, then checked the mains fuse. This should have been a 1.6 A anti-surge type. It was $3 \cdot 15 \mathrm{~A}$. I decided on a middle course and fitted a $2 \cdot 5 \mathrm{~A}$ fuse.

Crossing my fingers I switched the set on. It behaved quite nicely, and there was just over 150 V at the end of the dropper. Then the over-voltage glow switch started to flash, indicating that the h.t. was pulsing. Time to switch off. While I was still looking in the back however there was this brilliant flash. Nearly blinded me as the mains fuse blew to pieces. Now there are only two things that commonly perform this caper. One is the mains filter capacitor, the other a shorted bridge rectifier diode. The filter was in order but two of the diodes in the bridge were short-circuit. Two new BY127s and a 1.6 A fuse were fitted. Check again for shorts, avert eyes and switch on.

The set once more came on nicely enough. Then started to pulse. Next the fuse blew. This time the line output transistor was short-circuit. I replaced it with a BU208A (for convenience), and for good measure also replaced the BT106 thyristor. "That'll do it" I thought. Thought wrong. The glow switch still flickered as the h.t. pumped.

I checked the resistors in the thyristor control circuit, also one or two suspect capacitors. All perfect. But then the set did start up perfectly. So I wouldn't find a faulty part no matter how hard I looked. Something then stirred in my sluggish mind. I looked at the BR101 that triggers the thyristor. A gate controlled switch. Search for but can't find one. Why? The reason I don't keep something in stock is usually because time has proved that something else does the job. In this case a BRY56. Check connections and fit it. Bull's-eye!

The set behaved impeccably and now waits for Mr. Pain in the Neck to return my loan set, which so far he hasn't done. Perhaps he can visualise his bill.

next month in

- SERVICING THE SONY KV2000UB

A comprehensive fault finding guide for this popular Sony set, covering both the Mk. I and Mk. Il versions, by David Botto. Features of the set include a chopper power supply, GCS line output staçe and discrete comoonent colour decoder.

- STEREO TV SOUND

It looks as if four totally different stereo TV sound systems could be in use world-wide in a few years' time. There's more than meets the eye to the problem of adding a second sound channel to a TV transmission. I's not just a question of bandwidth: var ous interference problems make such systems cifficult to engineer. David Looser explains.

- TV FAULT MECHANISMS

Several factors contribute to the development of faults in TV se:s. These include weak points in circuit design, the use of underrated components, mechanical prozlems with component mounting, pocir layout and inadequate quality control. It's a great help with serv cing to be aware of these points. Tony Trompson explains how faults tend to develop in a chassis.

- VINTAGE HI-FI SOUND UNIT

Adding a decent push-pull audio output stage makes a great difference to sound quality. The problem is how to cater for the heater and h.t. current requirements. This plug-in unit provides a neat solution based on a couple of ECL80s. A Chas E. Miller vintage eature.

TEST REPORT

The increasing number of transmissions, wanted and unwanted. that crowd the bands present prablems for the aerial rigger. The ideal solution is to use a spestrum type meter. Eugene Trundle reviews the Uרaohm EP730FM panoramic field strength meter

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

то
(Name of Newsagent)
Please reservaldeliver the August issue of TELEVISION (E1), on sale July 18th, and continue every month until further notice.
NAME
ADDRESS \qquad
\qquad

 Even if it's only the fuse that's blown rather than the meter, it's still an annoying interruption to getting on with the job-assuming, of course, that the engineer has got a spare fuse. The MM 150 however, is no ordinary multimeter.

When it is fed an overload a buzzer sounds and a warning light strikes. And the MM 150 goes one better. Internally, a clever relay disconnects the meter for five seconds giving the engineer time enough to disconnect the probes and check his mode/range selection.

We call this feature our Overload Protection Device.
Considering how much money and inconvenience it will save you, you may call it just plain common sense.

Needless to say, we back it as fully as we know how. With the Eagle 2-year guarantee.

For full details call Eagle on 01-9028832.

Get on the hot-line today!

Up to 19"	£24
Up to 22"	£28
Up to $26^{\prime \prime}$	£32
110° up to 22°.	£32
110° up to $26^{\prime \prime}$	£34
Low focus.	£30
A47 342 New	£32
Delta only. Le Less 10\% 10	$5+$

Up to $22^{\prime \prime}$.	¢40
Up to $26^{\prime \prime}$.	¢45
Bonded Coil	+£5

ALL SIZES OF
NEW MONO TUBES
AT COMPEIITIVE
PRICES PRICES

IN LINE TYPES EX-STOCK SELECTION not rebulds

370 HFB	£45	560 DMB	£62
370 HUB	£45	AXT 56-001	£62
420 CSB	£45	560 ATB	¢65
420 EDB	£45	660 AB	£65
420 EZB	£45	A67.701	¢65
420 ERB	£45	670 CZB	£65
510 UFB/A51-590	£55	H6817.	£65
A51-570	£55		
A51-210	¢55	carriage £5 Singles. $2 \cdot 3$ £ 10,4 f12 10 £15. 10+ Carriage paid	
510 VSB	f60		
AXT 51-001	f60		
560 DYB	¢62	EXCLUSIVE OF VAT	
560 EGB	¢62	Cash with order	
560 CGB	¢62		

[^0]* OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25 A゙sk for MR BUTTERWORTH ON:051-428 8777

Letters

RECEIVER NOISE

In "All About Field Strength" (April) it's suggested that a diode envelope detector produces a better signal-to-noise ratio than a synchronous demodulator. This doesn't agree with accepted theory nor with my own findings during research on teletext distortion. A synchronous demodulator effectively rejects one of the quadrature noise components, reducing the noise output power by half without affecting the signal.

With reference to the intermodulation distortion that occurs under overload conditions, I can confirm that forward acting a.g.c. systems can aggravate the situation. This causes a shift in the 6 dB point on the i.f. response curve relative to 39.5 MHz . As Brown and Glazier show in Telecommunications Volume 1 (pages 69-70), with a vestigial sideband signal this increases the second harmonic distortion.
G.E. Lewis, Senior Lecturer, Radio and TV Courses, Department of Electronics and Electrical Engineering, Canterbury College of Technology.

Harold Peters comments: Mr. Lewis is right of course synchronous demodulators themselves are less noisy than diodes. It's the sets in which they are used that are noisier, as I was careful to say in my article. Customers complained about this. Whilst at Pye Ltd., Lowestoft in 1974 I measured the post-detector signal-to-noise ratio of close on a hundred sets of our own manufacture, together with a score from other UK and Japanese manufacturers. Fig. 1 in my article is based on the results. It ties up with subjective evaluation by our field liaison men, who used the then standard BREMA five-point impairment scale.

What came of it all? Nothing really. The diode has now vanished from the detector scene, and the once critical public seems to be quite content with the quality displayed by second generation copies seen through a well worn VCR.

REDIFFUSION Mk. 1 CHASSIS

The question of teletext lines on the picture with sets that use the Rediffusion Mk. 1 chassis was mentioned in Service Bureau last month. The official modification to overcome this problem is as follows. Change C612 from $16 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ (63 V wkg) and R 607 from $1 \cdot 5 \mathrm{k} \Omega$ to $3 \cdot 3 \mathrm{k} \Omega$ ($0.5 \mathrm{~W} 5 \%$). These components are in the field output stage flyback damping network and are mounted on the output transformer (T601). Change R433 ($15 \mathrm{k} \Omega$) to $12 \mathrm{k} \Omega$ $(0.5 \mathrm{~W} 5 \%)$. This resistor is in the field oscillator timing network, on the timebase panel.

The thermistor mentioned (TH430) is in my experience a very common cause of ragged verticals and line flickering with these sets.
R. T. Rees, Senior Engineer, Just Rentals,

Tonypandy, S. Wales.

ALTERNATIVE GCSs

One of the problems those who handle Sony KV1810s have is that the gate-controlled switch devices used in
chopper and line output stages have to be replaced from time to time. They're expensive, costing about $£ 10$ each. We've recently come across a satisfactory replacement that's a lot less expensive (about $£ 3$). This is the SG264A gate-controlled switch used as the diode modulator driver in the Sony KV2704 (circuit reference Q808, part number $8-726-420-00$). Sony don't recommend this as a replacement but we've found it to be one hundred per cent satisfactory - in fact we've been using it for over eighteen months without a single call back!

Our discovery of this solution to the problem has been a great help to us as we are only a small firm but have quite a few KV1810s out on rental. This tip may help other small shops in a similar position.
A. Christou,

London N21.

THE GREAT PLUGTOP MYSTERY

I think we poor, hard pressed engineers sometimes tend to miss the obvious. Consider the mechanical arrangement of the 13A plug top. The live lead is taken to one side of the fuse mounting bracket while the neutral goes straight to its pin. This gets quite a considerable waggling each time the plug is inserted and removed. The live connection on the other hand is mechanically insulated by the fuse and holder. Solved!
G.C.C. Wride,

Cheltenham, Glos.

SPECTRUIM NO COLOUR

The no colour problem mentioned in the letters column last month when using the Sinclair Spectrum microcomputer with Grundig receivers also occurs with the Sony Model KV1820. In this case changing the value of R333 from $3.3 \mathrm{k} \Omega$ to $47 \mathrm{k} \Omega$ provides a complete cure.
Brian Francis, Tech. (C.E.I.),
Plympton, Plymouth.

FOR DISPOSAL

I have for disposal a Philips Videomatic TV set Model 17TG306U which incorporates v.h.f./f.m. radio. It seems a pity to scrap this set, which is in excellent condition and working order. Anyone wanting the set will have to collect it.
L. Kinane, 38 West Lea Avenue,

Harlow Hill, Harrogate, N. Yorks.

UNSOLDERING COMPONENTS

Mr. Treeby (letters, May) and others may be interested in the method used some years ago in the service department of one of our leading setmakers for removing components from a printed board, though not all service engineers may agree with doing the job in this way. The print side of the board was sprayed with a non-stick oil-based fluid from an aerosol - a Duckhams product. I've been unable to obtain this but find Three-in-One oil satisfactory - brush it on, taking the oil across the board to the nearest edge. You then melt the solder of the component to be removed, blowing the solder off with a compressed air jet. Lift the component out, clean off the oil and loose solder with a cloth and brush, brush over with grease removing solvent spirit, blow off dry, examine for any loose solder particles, then fit the new component.

The ITT CVC9 chassis' i.f. board, with those edge connectors, could be changed in four minutes. A very good method for removing i.c.s, but it won't work with another well known setmaker's double-sided print boards.

One last point: put a piece of cardboard down wind of the job - those molten solder blobs go a long way. G.C. De Fraine,

Hartley, Nr. Dartford, Kent.

Video Recording on Tape

Eugene Trundle

Magnetic tape is far from being ideal as a recording medium for moving pictures. Compared with the relative simplicity of the first recording system, cine film, the practical difficulties involved in getting TV pictures on to and off tape are great indeed. The evolution of video recording techniques has been long and hard, the performance currently available from domestic VCRs and their professional counterparts representing a magnificent engineering achievement. One of the greatest hurdles in the path of the pioneers was the problem of accommodating the large bandwidth of a video signal within the constraints of the tape system. It's upon this aspect that we shall concentrate here.

For a reasonably detailed picture that's free from shading effects, a wide video bandwidth is required. Low frequencies define large objects, "backgrounds" and the overall brightness of the televised scene, the high frequencies representing sharp edges and fine detail. For a broadcast quality picture a bandwidth extending from virtually d.c. to over 5 MHz is required, but no domestic tape system approaches the upper limit of this range about $2 \cdot 5 \mathrm{MHz}$ is the norm for the luminance component of the signal, this being extended by a further 1 MHz or so in some machines when a monochrome signal is being handled.

This reduced bandwidth is necessary to limit the volume of tape required per hour of programme and keep the size of the cassette within reasonable limits. The less information recorded, the less storage space required, though it's possible to squeeze a greater playing time from a given size of cassette as the V2000 format and the VHS-LP mode show.

Tape Limitations

Having limited the luminance bandwidth we're left with a second, much more difficult problem that relates to the nature of the head-to-tape interface and the magnetic signal transfer system we're using. The recording head is of course inductive, which means that its impedance rises with frequency. If a 1 V drive is required at 25 Hz , a signal drive of many kV would be required at 2.5 MHz to achieve the same flux density in the tape! This is a gross simplification, but it makes the point.

The same law works in reverse for playback. The playback head's output is proportional to the rate of change of the flux density in the tape. For an equal-energy recorded signal spectrum, the output from the head will be directly proportional to frequency: it will halve with each halving of the signal frequency recorded on the tape. Hence the well known 6dB/octave curve shown in Fig. 1.

Our $25 \mathrm{~Hz}-2 \cdot 5 \mathrm{MHz}$ example embraces almost $17 \mathrm{oc}-$ taves (an octave is a doubling of frequency). Thus at 25 Hz the output will be at $17 \times 6=102 \mathrm{~dB}$ down on the level at $2 \cdot 5 \mathrm{MHz}$. Now 100 dB is a voltage ratio of $100,000: 1$, so
even if we get an output of 1 V from the head at 2.5 MHz the output at 25 Hz will have dropped to $10 \mu \mathrm{~V}$. One of the basic rules of a tape recording system is that 60 dB or so is the best signal:noise ratio obtainable. So our $10 \mu \mathrm{~V}, 25 \mathrm{~Hz}$ signal will be buried under 1 mV of noise - back to the drawing board!

Modulation

To make video recording practical, a carrier must be used for the signal - this is a common enough solution where the initial signal is not suited to the medium through which it's to be passed. If we use a carrier at say 4 MHz , the upper sideband with our $25 \mathrm{~Hz}-2 \cdot 5 \mathrm{MHz}$ signal will be $4-6.5 \mathrm{MHz}$, which is less than an octave. A full double-sideband signal represents $1 \cdot 5-6.5 \mathrm{MHz}$, which is just over two octaves. We've thus overcome the octave problem, and by using record/playback equalisation something approaching a flat overall response can be achieved.

What sort of modulation system should we use? The main possibilities are f.m., a.m. or p.c.m. (pulse code modulation). The latter two can be quickly dismissed. A.M. would be impossible due to its sensitivity to noise and the need for an a.c. bias waveform to overcome the nonlinearity of the tape/head transfer characteristic. P.C.M. would be ideal, but the very high bit rate required for good definition pushes the bandwidth requirements way beyond the capabilities of a domestic system, though professional digital VCRs have been demonstrated. This leaves f.m. as the obvious choice - with a lot going for it! Above a certain threshold, an f.m. system has a much greater immunity to noise than an a.m. one; and when it comes to recording a second signal (chrominance) simultaneously, the f.m. carrier provides an ideal source of a.c. bias for this.

Having settled upon the use of f.m. for our video modulation, we must optimise the noise performance by introducing a pre-emphasis system. The higher video frequencies occupy a disproportionate bandwidth in relation to the energy they contain: by boosting them prior to modulation and then restoring the balance by depressing them after demodulation, we get a useful reduction in overall system noise. Standard v.h.f./f.m. radio transmissions use this technique. It's taken a step further in most audio and video recording systems by using nonlinear preemphasis, i.e. the degree of h.f. boost is made proportional to signal amplitude - this is the basis of Dolby and similar noise-reduction systems.

FM Parameters

Returning to our f.m. system, we next have to decide upon the parameters to adopt - carrier frequency, deviation and modulation index. Each of these has to be a compromise - cost, performance and tape economy are
the trade-off factors. We'll take carrier frequency first.
To reduce the octave range, the higher the frequency the better. For a given writing speed (video head to tape velocity) however there's a definite upper limit. At the point where a recorded signal cycle on the tape is equal to the head gap, the output falls to zero. This is known as the extinction frequency (fex). In current domestic VCRs the head gap is about 0.3μ and with a writing speed of $5 \mathrm{~m} / \mathrm{sec}$ fex occurs at about 15 MHz . This may seem to be very acceptable, but at $0.5 f \mathrm{ex}(7.5 \mathrm{MHz}$ in this case) the response is 3 dB down on the peak output (see Fig. 1) and is falling rapidly. Other losses occur at these higher frequencies - due to tape self-demagnetisation, head losses, gap effect, etc. - and these all combine to prevent a usuable response much beyond $0.5 f e x$. So the band we have available extends to say 8 MHz . If we set our f.m. carrier at half this frequency, about 4 MHz , there will be equal room for upper and lower sidebands.

At this point let's consider some basic aspects of frequency modulation. The unmodulated carrier $f c$ sits centrally in the allocated channel, the modulating signal fm being used to vary the carrier's frequency. The required result is obtained by employing a voltage-controlled oscillator whose maximum deviation is the amount by which the carrier frequency can be shifted by the modulating signal. This maximum deviation varies with different applications. For CB radio it's 2.5 kHz , for v.h.f./ f.m. radio broadcasting it's 75 kHz . With the VHS video recording system the maximum deviation is 1 MHz . It's worth emphasizing the difference between deviation and swing. Because an audio signal contains positive and negative excursions, it will move the f.m. carrier above and below the centre frequency. Hence the total swing is twice the deviation. For a video recording however, the centre frequency corresponds to the sync tip level. So the video signal can move the carrier frequency in one direction only - in practice upwards. Deviation and total swing are in this case the same.
Maximum deviation occurs when the modulating signal is at maximum amplitude - "peak programme" for sound systems, peak white for video. Thus deviation is proportional to the amplitude of the modulating signal. If this amplitude changes rapidly - due to high frequencies in the modulating signal - the rate of deviation will also be rapid. This has considerable effects on the sideband structure, as we shall see.

Modulation Index

The relationship between the modulating frequency and carrier deviation is known as the modulation index (M). Put simply, $\mathbf{M}=$ carrier frequency deviation/modulating frequency. In an entertainment channel the modulating frequency is continually changing with the sound or picture, so the modulation index is also changing. It will be at a minimum at the highest modulating signal frequency. As with deviation, the modulation index varies with

Fig. 1: The 6dBloctave curve, a plot of playback head output against frequency for an equal-energy tape recording.

Fig. 2: F.M. system sideband distribution. The relative amplitudes of the individual sidebands depend on the nature of the modulating signal and the modulation index.
different systems. For v.h.f./f.m. radio the highest audio modulating frequency is 15 kHz and the deviation limit is 75 kHz . Putting these figures into our equation gives $75 / 15$ $=5$, the minimum modulation index for this system. With our video recording system the highest signal frequency is around 2.5 MHz while the maximum deviation is 1 MHz . So M comes out at $1 / 2 \cdot 5=0 \cdot 4$. We shall soon see the significance of this low minimum modulation index.

Sidebands

All modulation systems generate sidebands. Their extent and nature depends on many factors. Simplest to understand is an a.m. system, in which just one pair of sidebands is produced by a modulating frequency, spaced at each side of the carrier frequency by a distance corresponding to the modulating signal's frequency. When more than one modulating frequency is present, corresponding additional sidebands are produced. A sideband group is thus formed as a symmetrical cluster at each side of the carrier frequency. The sideband limits are set by the highest modulating frequency present - for doublesideband transmission, as used for MW radio etc., the total bandwidth is 2 fm .
With frequency modulation the situation is more complex. An f.m. system generates an infinite number of sidebands, stretching off into the distances at each side of $f \mathrm{c}$, spaced at $f \mathrm{~m}$ intervals from the carrier (see Fig. 2). In practice the number of these sidebands is limited by the bandwidth and signal/noise ratio of their path. What's of significance however is the number of these sidebands required to recreate the original signal adequately after demodulation. This depends on the energy carried in each individual sideband, and this energy distribution is governed by the modulation index. At $M=5$ (the v.h.f. radio case) we need a totai of 14 sidebands ($\mathrm{fc} \pm 7$) for acceptable reproduction, so the receiving bandwidth (the radio's i.f. channel) must be about 200 kHz . That the energy distribution changes with M is demonstrated by considering a modulation frequency of 7.5 kHz . Here $\mathrm{M}=$ $75 / 7 \cdot 5=10$, calling for 26 sidebands for adequate reception, again accommodated within a 200 kHz window.

Sidebands beyond the "significant" range contain negligible energy and are discarded. For calculation of a practical system bandwidth, a general rule of thumb is $\mathrm{B}=$ $2(f \mathrm{~d}+f \mathrm{~m}) \mathrm{Hz}$, where B is the bandwidth, $f \mathrm{~d}$ the maximum deviation frequency (carrier displacement) and $f m$ the maximum modulating frequency. This represents a compromise between channel width and noise on the one hand, and theoretically perfect reception on the other.

When M is reduced below 0.5 , the maximum deviation becomes less than half the maximum modulating frequency and virtually all the sideband energy is concentrated in the first sideband on each side of the carrier frequency. This suits our VCR scheme well in view of the limited bandwidth available. From the formula given

Fig. 3: Typical colour-under VCR recording frequency distribution.
above we get $B=2(1+2 \cdot 5)=7 \mathrm{MHz}$, i.e. a luminance bandspread of 3.5 MHz each side of $f \mathrm{c}$. This is a spread of sidebands from say 1 MHz to 7 MHz , resulting in the familiar diagram shown in Fig. 3, where the f.m. deviation range is given against amplitude.

The reality is shown in Fig. 4. This is a spectrum analysis of the off-tape f.m. signal for a standard colour bar signal. It shows the f.m. deviation range, with the lower luminance sideband sinking to zero at around 1 MHz and, on the left, the "chroma cluster". Note that a colour bar signal is less "busy" than a test pattern or a detailed picture. The latter would give rise to more "meat" in the sidebands.

Folded Sidebands \& Harmonic Interference

When $f \mathrm{c}$ is relatively low, it's important that no significant sideband spacing exceeds $f c$ itself. If this should happen the lower sideband will go below zero frequency. The energy in it can't just disappear - it will fold back into the real spectrum, sitting at a point representing the mirror image of its "ghost" - see Fig. 5. Another possible source of spurious sideband energy is harmonic distortion of the carrier waveform. A second harmonic of the carrier will appear at 2 fc , modulated by fm . The sidebands thus generated, especially $2 \mathrm{fc}-\mathrm{fm}$, will fall within the system bandwidth. Fortunately odd harmonics of $f \mathrm{c}$ give rise to sideband components beyond the spectrum of interest which is as well in view of the basically squarewave output obtained from the i.c.-based and astable modulators used in VCRs. Third harmonic distortion of the first order lower sideband will give rise to a component at $3(f \mathrm{c}-\mathrm{fm})$. This can beat with $\mathrm{fc}-$ see Fig. 6.

Such spurious sideband effects will, if present, cause beat patterns or moiré effects on the reproduced picture.

Fig. 4: Luminance and chroma signals and sidebands for colour bars on playback. This is for the Betamax system but others are similar. The modulator's deviation range can be clearly seen, along with the lower sideband energy distribution. The highly saturated colour bars give rise to considerable energy around the 687 kHz down-converted colour subcarrier. Photo courtesy Sony (UK) Ltd.

Fig. 5: Formation of a folded sideband, drawn to show the effect of a high-amplitude 5 MHz signal modulating an 8 MHz carrier.

Fig. 6: Harmonic distortion of a modulated carrier: the third harmonic of the first lower sideband here gives rise to an interfering signal at 6 MHz (fc 5 MHz , fm 3 MHz).

Increasing the carrier frequency solves many of the problems associated with sideband beats, because the interfering signals move away from the carrier (and thus out of the practical passband) at twice the rate at which $f \mathrm{cc}$ is increased. Professional VTRs use the "high-band" technique to take advantage of this. They also avoid in-band beat effects by using the heterodyne technique for f.m. modulation and demodulation. Typically the modulator takes the form of a voltage-controlled oscillator running at 50 MHz . Its output is mixed with a 60 MHz CW source to produce, after filtering, a very "clean" 10 MHz f.m. carrier. During replay the 10 MHz carrier and its sidebands are mixed with a 60 MHz CW carrier to produce an f.m. signal at 70 MH . Filters before and after the 70 MHz demodulator ensure the absence of beat effects. This elaborate system is capable of very linear and distortionfree operation.

No such luxuries as high-band operation and heterodyne f.m. can be afforded with a domestic machine however. These must depend on baseband frequency limitation and careful design of the filters and modulator to avoid the worst effects of sideband jangling - they do very well within the constraints imposed by cost considerations.

In most machines a switched luminance filter increases the bandwidth for monochrome operation, allowing the low-order f.m. sidebands into the $0-1 \mathrm{MHz}$ spectrum otherwise reserved for the colour-under signal. This greatly enhances the monochrome definition - in fact with the effect of the VCR's replay crispening circuit and the limitations imposed by the colour tube's shadowmask, it's often very difficult to tell off-air and off-tape monochrome material apart.

This "horizontal" elbow room is matched by a potential for "vertical" expansion of the recording f.m. signal some but by no means all machines take advantage of this. As is well known, the f.m. luminance signal acts as the a.c. recording bias for the superimposed chroma signal when a colour programme is being recorded. Because of this, the f.m. carrier amplitude (luminance writing current) must be critically controlled to avoid driving the tape into magnetic saturation with heavily saturated colours (due to its f.m.
state, the luminance signal itself is immune to such limiting). When there's no chroma signal, we can gain extra benefit in noise performance by increasing the writing current, driving the tape to saturation on both half cycles of the f.m. carrier waveform. This can be done by linking the record colour-killer line to the record f.m. output or driver stage to bump up the writing current by 6 dB or so.

Practicalities

This may all be very fascinating, but the serviceman may well ask whether it's a matter for the designer rather than himself. Apart from it being necessary nowadays to know the principles of how equipment works, it does become our business when a filter goes wrong and patterning or moiré effects appear on the screen.

To isolate the problem area, you need a known good prerecorded tape and another VCR with which it can be established whether the trouble is caused by a record or playback fault. For record problems a composite signal is required, containing both colour and an h.f. luminance component - the test card has these, but is not as good as a special pattern from a generator.

Most VCR signal filters consist of $L C$ networks in a pi or ladder arrangement. In the case of a low-pass filter, the parallel capacitor components can come "off-earth", vastly increasing the upper cut-off frequency. More likely, an open-circuit filter will have been bridged by some wellintentioned soul.

Once you know what's going on, oscilloscope fault finding is not too difficult, with an r.f. signal generator hooked to the video input or a composite test pattern

Fig. 7: Spectrum of a colour-under signal. This spectrum goes up to about 1.7 MHz and shows the chroma subcarrier and its sidebands neatly contained within a total bandwidth of about 1 MHz . Photo courtesy Sony (UK) Ltd.
input. In bad cases, vestiges of the chroma signal will be seen during record at the input to the luminance f.m. modulator. During playback, unwanted beat patterns should be eliminated by filters before and after the demodulator. If necessary, both should be checked.

Don't forget the chroma band restriction filter - excessive chroma bandwidth will also lead to patterning effects on luminance transitions and coloured areas of fine detail, due to beating between the outer skirts of the luminance and chroma sidebands. A photo of the chroma subcarrier and its skirts is shown in Fig. 7. It was taken during playback of a chroma-only colour bar pattern formed by removing the luminance signal during record.

Timer Troubles

The complaint that a machine "won't make a timed recording" or that "the timer doesn't work" usually involves more detective work than fault finding. The only timer faults I've had have been with a Ferguson 3V22 where the stretched capstan belts caused failure to load, similar problems with the Panasonic NV7000, and offtune Ferguson 3V29/30s. These were not actual timer faults of course: they were the result of the cold-start conditions that occur with a timed recording. If the cause of the trouble is not one of the above conditions, set the timer a couple of minutes ahead and check its operation this is almost always correct. The next step is to see how the user sets the timer and to spot his error. As a guide, I've come across the following mistakes.

Setting for a twelve-hour clock when a 24 -hour clock is fitted. Trying to set for a 24 -hour clock when a twelvehour clock is fitted. The timer set correctly but the clock set to the wrong day. On Ferguson machines, interpreting 130 as one hour and thirty minutes instead of 130 minutes. On the Hitachi VT8000/8300, setting the timer correctly then altering the switch-on time without resetting the length of recording (this reverts to twelve hours as soon as the start time is altered). Using a tape with the record protect tab removed (this is usually detected and indicated by most machines). Not setting the minutes of the start time on a Ferguson 3V35/36 (zero minutes was wanted) - this meant that the machine wouldn't allow the stop time to be set.

To be fair, manufacturers try to make timers foolproof. Many eject the cassette when the record tab has been removed for example, while on others the timer light flashes. Similarly if all the necessary information has not been fed into the timer, or the operate switch hasn't been set to the correct position, the timer light or the word timer will flash. The meanings of these indications are explained in the instruction books of course - but who reads them?
D.S.

Toshiba V31B

We've taken delivery of some Toshiba V31B VCRs during the last month or two. Only one fault has appeared so far, but it's occurred on four different machines failure of the mains fuse for no apparent reason. In three cases the replacement fuse held, but in the other one two fuses went open (due, we think, to a faulty twin-plug adaptor). Has anyone else come across this fuse blowing problem and its cause - if there is one?
D.S.

Mitsubishi HS700

Another case of fuse blowing concerned a Mitsubishi HS700. The symptoms were no clock or channel change due to the absence of the standby 14 V rail - F902 had gone open-circuit. The fuse can be reached after removing a plastic part labelled "remove to gain access to fuses", but as I tend to ignore labels I first attempted to get at the fuse internally, which is not easy. After changing the fuse the machine was tried out, whereupon the fuse again blew. The front on this model has a screen that covers most of
the control area: a careful check showed that it had come loose at one point, shorting R858 to chassis. Refixing the screen stopped the fuse blowing.
D.S.

Ferguson 3V29/30

A problem that's beginning to become common on early versions of the Ferguson 3V29 and 3V30 concerns the motor drive amplifier board mounted behind the control panel at the front of the machine. On later versions of these models the panel is combined with another one, so you won't find it behind the control panel. The fault is failure of the drum and/or capstan motor to rotate, usually intermittently. This gives the symptom that the machine fails to start or switches off when going. The cause is dryjoints on the transistors on this panel. Q236 is particularly suspect, but if in doubt resolder the lot.
D.S.

Horror Stories

A Sanyo VTC5000 came in with the complaint that there was no output from the r.f. output socket, not even the test signal. When the machine was switched on we found it to be dead. On removing the top the r.f. converter was seen to be disconnected: one of the phono plugs had touched the supply pin, shorting the always 9 V rail with the result that fusible resistor R5207 had gone opencircuit. On replacing this and reconnecting the converter the original fault condition was present - it was cured by fitting a replacement converter. A phone call to the customer revealed that he'd tried checking the plugs inside in case they were loose and had forgotten to reconnect them before sending the machine in for attention...

That was nothing in comparison with the story of a Ferguson 3V22. A man had phoned to ask how much it would cost to have a new head fitted. He subsequently brought the machine in. Now we're always suspicious of people who bring in a machine for a specific job. After all, how to they know what's faulty? And if they do know, how come they can't repair it? Anyway the machine was put on the bench and switched on. Quick replay of a tape showed that the head could indeed be faulty, but on removing the top a series of horrors was revealed.

First, a bridge rectifier was dangling on four long wires by the mains transformer - the wires went to the place where the proper bridge rectifier should have been on the power supply panel. Then a light was noticed, also tucked away by the transformer. It was a bulb taped to two long wires that went off to where the cassette lamp should have been connected. A quick check showed that the cassette lamp and its holder were missing. Further checks showed that one of the video heads was broken, as was one of the record/playback switches, while all the guides had been screwed down fully.

Out of interest we checked the serial number against our records and found that the machine was one we'd sold in 1980. This was intriguing because the mechanics now fitted were of the later type introduced after August 1981. How all this had happened I don't know and probably never will. My guess is that the machine had been sent to
another "repairer" where it had sat for several months and been robbed right and left for spares, and had finally been thrown together from anything that could be found when the customer had insisted on having his VCR back!

Ferguson 3V35/36

We've had several cases where the customer has complained of a jammed cassette in Ferguson 3V35/36 machines. What happens is that the cassette is inserted without the operate button being on. As the machine won't load, the customer pushes the cassette a bit harder. It then rides over the load switch which usually bends and jams in the screw holes under the cassette.
D.S.

Ferguson 3V29

A Ferguson 3V29 switched off after a few seconds operation in playback. With the top removed the cause of the problem was obvious - the head drum wasn't rotating. I've had this before, caused by a dry-joint on the motor drive amplifier board, but tapping this failed to bring any improvement. As all the motor drive transistors are mounted on the board I decided to start here. A quick check at one of the i.c.s revealed that the 12 V rail was present, so meter checks were made on the transistors. All were o.k. Further checks with the machine on then revealed that one coil to the drum motor had no voltage on it. Tracing this back brought to light something I should have seen right away - there are two supplies to the board, the 12 V rail for the i.c.s and a 13 V rail for the drum motor. The latter was at 4 V due to a defective regulator on the power board - transistor Q5 and zener diode D14 had to be replaced (the transistor had a hole blown in it!).
D.S.

Anyone see this?

Here's something odd. On April 20th a colleague noticed that the clocks on the two ITV teletext magazines differed by ten seconds. Did anyone else notice this? Has anyone an explanation?
D.S.

Sharp VC9300

This machine would play for three seconds after which the reel, capstan and head motors would simultaneously stop, leaving the tape threaded around the drum. If the play button was then pressed, the machine would play the tape perfectly to the end. The clue to the fault was a faint scraping noise from the underside of the deck just before the motors stopped. It was coming from the threading motor, the trouble being that the after-load switch was not always making contact. As a result, the microcomputer cut the power when the loading motor had been on for six seconds without the after-load switch closing.
P.B.

ITT 480 (Philips VR2020)

Here's a saga for you! The reported fault was a poor picture, but when I tried the machine it wouldn't play. The head was visibly going slow: after a few seconds the blocked rotor signal would be given and the machine would unthread. A replacement servo panel didn't help, and we then discovered that the head position pulses were missing. No current was passing through the optocoupler

LED due to the reel rotation LED being open-circuit (the three optocoupler LEDs are connected in series).

The next day we found that there was no E-to-E picture due to the U322 tuner not oscillating. A replacement put that right and it was then noticed that one of the clock digits was missing - due to a faulty CD4511.

The poor picture (on its own recordings only) was cured by fitting a new drum - the picture had looked as if it was covered in small squares. Next, after running perfectly all afternoon, the picture blanked out on playback. If the mute circuit was overridden by connecting pins 10 and 11 of the diagnostic plug, the resulting picture looked as if only one head was working.

The f.m. going into the luminance playback module was o.k., a replacement module restoring the picture. This time the fault was due to the TDA2740 i.c. As I write this the machine is running on soak. Is two days enough? . . .

Hitachi Disc Player

We've had a couple of cases of the disc being jammed in the player. There's a hole in the bottom of the player to enable a jammed disc to be removed. In both instances the latch that holds the disc broke and the force required to remove the disc bent the metal runners connected to the caddy rail assembly. As a result, the caddy rail assembly had to be replaced as a complete unit.
J.C.

Sharp VC8300

If the cassette is ejected after insertion, check the drum belt which could be broken, stretched or off.
J.C.

Sharp VC2300

The trouble was "functions dead" with the tape trapped in the laced up position. All the mechanisms in these machines are driven electromagnetically, so the cassette can't be ejected even after the tape has been hand cranked back into the cassette. We found that there was 14 V going to the 9 V regulator transistor Q914 on the servo board but no output. A quick check showed that the transistor (type 2SA770) was open-circuit. Just to add to the confusion, there's another Q914 on the power board.
M.J.C.

Mitsubishi HS302B - and JVC

The fault was intermittent poor playback (as if one head was going low) accompanied by white streaks. When the covers had been removed I was amazed at the debris inside - bits of torn tape boxes, and nuts and bolts that had no connection with the machine. I came to the conclusion that the family's children had used the machine as a post box. When the foreign bodies had been removed, the mechanism and heads were given a good clean. After this the playback was good, so the machine was left for some time on soak test. Eventually the playback went low and streaky.

The f.m. playback waveform was scoped and, as expected, one output was very low. The problem was to decide whether the fault was to do with the preamplifier i.c. (IC201, AN6320N) and its associated circuitry or the heads/rotary transformer. Heat and freezer suggested that the i.c. was suspect, and when a replacement was obtained and fitted the machine ran for some hours before the fault reappeared. The real culprit tumed out to be C204
$(4,700 \mathrm{pF})$ which couples the output from one head to pin 5 of the preamplifier i.c.
Since this fault I've had the same trouble with a couple of JVC HR7350s. The offending capacitors here are C272 and C273 (both $0.022 \mu \mathrm{~F}$).
M.J.C.

JVC HR7700

A machine that obviously escaped JVC's quality control appeared in our workshop recently. The complaint was no sound on playback. On checking with a known good tape, sure enough there was no sound. The voltages on the audio board indicated that the machine thought it was in
the audio record mode. The commands for record, audio dub or playback come from the mechacon board, which was of the later type. It was found that the audio dub command was present at some 15 V , putting the machine in the audio record mode even during playback. Checking through the circuitry produced no logical reason for some 15 V being present at audio dub pin 23 on the mechacon board, but pe-severance revealed that there was a leak between the print tracks leading to connectors 237 and 238. Connector 238 is the "not cue set" line, which is at approximately 25 V regardless of the position of the cue switch. Scraping between the print restored the audio dub line to 0 V , with the sound now normal.
M.J.C.

Teletalk

Malcolm Burrell
TV servicing can be enjoyable. There's satisfaction to be had from restoring something to working order. But there's a difference between doing it for fun and doing it for a job. Many seem to have come into the profession years ago when it was the thing to "get a good trade" after leaving school. It might have been car mechanics, being a draughtsman or builder, but at one time TV was considered to be a good thing to get into. Unfortunately the wages and conditions nowadays leave a lot to be desired.

Those of us who for some misguided reason want to get good pictures and have developed a flair for this probably all too often feel those eyes watching us and hear the unspoken question "why does he spend so long on the job?" It seems that productivity and the need to maximize profit are considered to be more important than achieving reliability and just the right colour.

Whilst talking to someone recently I ventured the suggestion that much servicing was "just a con". The reply I was given was that some people want to be conned. This often seems to be so. For example, it's amazing how just before Christmas you seem to get a flood of calls of the sort that "it's not been right for months", "after two hours the sound fades" and "we wanted it right for Christmas"! If you're a field engineer the chances of putting such matters right are not very good - unless you take up residence. But if you call and make the right noises the customer is usually quite happy.

The wage problem has to be seen against the background that some firms go in for conning the public in a big way. I could go on about the case I was told about recently - of an engineer who was asked to look at a portable VCR brought in because the pictures were poor. He cleaned the heads - and got his $£ 3$ an hour. The job didn't take more than ten minutes, but the customer received a bill for $£ 120$, stating that a new set of heads had been fitted. Apparently the customer was happy - but how was he to know? In another case someone paid maintenance on a Telefunken set for ten years. The firm was happy to collect the money but reluctant to fit a new tube. It was simply boosted from time to time.

One has to acknowledge however that making honest servicing pay is difficult. Suppose that in one or two years' time someone with a Ferguson set fitted with the TX90 chassis pops in with a peculiar fault that takes four or five hours to find and put right. Could you really present an economic bill when maybe only an odd resistor had
changed value? Suppose that six months later the line output transformer failed, then maybe a new tube was required some months after that. It would be cheaper to buy a new set. Have we reached the point where most faults outside the guarantee period have become uneconomical to deal with?

Field Servicing

Field servicing has one or two advantages. You may sometimes get home early, you're relatively free - and just occasionally you might get to chat up someone really nice! There are loads of disadvantages however. For a start, because the nice man from Blogg's fixed the next door's telly in ten minutes flat you're regarded as not up to much if you have "tc get the map out" to discover why the set's dead.

Most people take TV for granted nowadays. This applies to servicing as well. "My husband - he's a plumber - says it can't be much. Probably the picture valve." You sometimes want to say that if he knows so much about it why doesn't he fix the set himself?

You can leave the wrong impression behind in the rush to get from one job to the next. If you know the sets with which you're dealing, it's quite easy to come to a quick decision most of the time. You change say "R23" knowing that in 99 per cent of cases this will cure the fault. You even get to the stage where you've forgotten what R23 actually does! Field servicing becomes a matter of tearing from one place to the next and going through the motions. A great many faults don't even present themselves for diagnosis. Given that "the colour goes after three hours", you have a quick tap around, then check the reference oscillator adjustment and the tuning. In 75 cases out of 100 you won't have to go back again.

This tends to get rather boring. So much so that it comes as a relief to do a stint at the bench and deal with some awkward faults that require a logical approach. Perhaps this is why I tend to get furious when I see the field approach used in the workshop to get a high throughput. You know the sort of thing: switch on, get picture, can't be much wrong, quick twiddle then back to the car magazine.

Problems with Plastics

I had a problem with a Thorn 8500 chassis not long since: the brightness tended to fluctuate, and it seemed that the slider of the brightness control was intermittent. It transpired that the problem was due to the tag at one end of the control. Since the tag at the opposite end was unused, could II connect the wire to this and turn the control upside down? Removing the control panel assem-
bly, I was amazed to find that the plastic bracket that holds the control in place was disintegrating. I managed to effect a satisfactory repair, but wondered why the plastic should be in such a condition in a position where there's little stress.
Such problems are not uncommon on elderly sets. The on/off switch brackets on these and other sets frequently give up, and mounting by means of self-tapping screws in plastic cabinet fronts causes a lot of problems. The GEC C2110 series is notorious - either the switch falls inside or the push-button bank comes away. Repairs are often possible by removing the old mounting flanges and fitting long 6BA screws with spacers - provided there's no risk of them touching the chassis metalwork.

More drastic damage can suddenly occur. The plastic cabinet of a GEC set split almost in two one night. Not long ago a customer with a Thorn TX set found that the aerial socket had become loose - its mounting to the plastic chassis frame had broken.

Remember those little tuning ferrules used with RBM tuners? Nice and pliable when new, they became brittle and fell off after a few years' use. There are also component failures - for example the line output transformer used in the Philips 210 series chassis.

The use of plastics has caused a lot of problems in the past, maybe because ageing effects were not fully understood. One hopes that plastics technology has improved. The Thorn TX90 is a good set for example, but with so much plastic used in its construction one can't help wondering whether it might self-destruct after some eightten years' service.

It's fair to expect ten years' use from a modern TV set. How much longer should you be able to expect if it's been properly serviced?

The Reconditioned Set Market

Secondhand colour TV sets seem to be on offer at ever lower prices. A few years ago I looked into a shop where signs above a number of clean and well-appointed colour sets, at high prices, declared that they were fitted with reconditioned tubes. I've recently heard of "reconditioned" colour sets being on sale "from $£ 35$ ". This would be the price of a reconditioned tube alone. How is it all possible?

I once had cause to complain about a hybrid GEC colour set that had been sold a week or so previously with a three month guarantee. When it came back I found that there was enough dirt inside to grow potatoes in. The fault, no sync, was caused by the sync separator's $56 \mathrm{k} \Omega$ collector load resistor having burnt up. In the process it had damaged the flywheel line sync drive coil. Not an expensive repair, especially with so many scrap panels available, but with a bit of attention to known stock faults the trouble could have been avoided. I was promptly told that these ex-rental sets were being "got rid of". The same set came back as a chargeable repair shortly afterwards. "Too old, not worth it" I said, and was quickly rapped across the knuckles again! Surely if you want to keep your customers the sets you sell should come up to a reasonable standard?

Even if you don't advertise the sets as reconditioned, the customers will tend to assume that they have been. A lot can be done without too much trouble. Inspection will reveal charred print and resistors and swollen capacitors, and you should know the things to look out for on particular chassis. Does the on/off switch feel right or does
it have a feeble click? Tube boosting is a dubious business and seldom lasts very long.

The law of the secondhand set jungle is to sell at ridiculous prices whilst making a handsome profit. In other words you use cheap labour to get the sets going then flog them in the hope that they won't go wrong during the guarantee period. An engineer I once knew maintained that technicians should always adopt a logical approach, and that the practice of bodging would degrade their skills. His worst fears seem to be coming to pass in this cut-price field.

Brightness Fault

My friend Len popped in one day with his Pye T173 portable (Philips TS7 chassis). "It's the brightness control" he said. The control worked, but you couldn't get sufficient brightness - only the highlights were visible. I'd not worked on one of these sets before, and first suspected inadequate first anode voltage. A quick check revealed that this assumption was wrong, but the tube's grid was at only 25 V instead of 65 V at maximum brightness. Furthermore the voltage at the slider of the brightness control increased as the control was moved from minimum to the mid-position, decreasing slightly as maximum was approached. I also noticed that the voltage at the top of the control varied. Obviously something was pulling the voltage down. The prime suspect was the slider's decoupler C 188 , but this proved to be blameless. With some trepidation I checked with the tube's base removed. Fortunately the result was the same.

After running out of further ideas I disconnected the slider and measured the voltage there. The same thing happened, so the control was clearly leaky. As I didn't have a direct slider replacement, the track was removed from the control for inspection - it's quite easy to do this. The cause of the leakage was then apparent - a film of carbon had formed at the bottom between the track and the wiper's track. Cleaning and reassembly provided a complete cure.

That KV1810 Again

My Sony KV1810 Mk. II is beginning to show its age but had been working well enough when I lent it to someone. It was returned in a damp van and when I switched it on all I got was a puff of smoke. This had come from R608, which is in series with the start-up gatecontrolled switch Q602 and had gone open-circuit. The fuse had held and, as it turned out, the demise of R608 was a bit of a red herring.

The chopper drive circuitry was checked whilst powered by an 18 V battery, with no mains input - the correct procedure with this set. Scope checks showed that the monostable circuit and the chopper driver transistor were working, but there was nothing at the gate of the chopper GCS Q603. I began to suspect the driver transformer, but a meter check proved that it was o.k. By chance I put the scope's probe on the transformer connections and got a waveform, so there was obviously a break in the print. Meter checks brought me to the connections to Q603 itself: the pads for the gate and cathode connections had lifted fractionally and cracked.

Repairing the print and applying a mains supply via a variac brought the set back to life. R608 had failed because with the set connected to the mains but no output from the chopper the start-up circuit can't switch off.

Spectrum-Monitor Interface

John de Rivaz, B.Sc. (Eng.)

The interface circuit described in the following article was devised after purchasing a Sinclair Spectrum microcomputer. To obtain the best display I decided to use a monitor with RGB inputs rather than employ a TV set and link the two at u.h.f. Using an RGB link avoids the modulation/demodulation and PAL encode/decode processes and the degradation they introduce. Unfortunately, inspection of the microcomputer revealed that RGB signals are present only within the ULA chip. YUV signals are available however, and pins on the microcomputer's multipin connector at the back are listed as being connected to these signals. An oscilloscope check revealed only low-level rubbish at these points, and on further investigation it was found that the internal wire links that connect the signals to the connector had been omitted. Installing the necessary links gave us YUV outputs at the connector and we then had the problem of converting these to RGB drives for the monitor. The V signal was alternating line by line, PAL fashion, and pulses of alternating polarity were present in the position oc-
cupied by the burst signal in a standard PAL waveform.
Being familiar with the Rank A823 chassis, I decided to use the SL901B i.c. that's employed for chroma signal demodulation and matrixing in the decoder of this chassis. The first problem was to find a way of using this chip with unmodulated signals. A look at the circuit (see Fig. 1) showed that if the U and V input pins (4 and 21) are earthed one half of each balanced synchronous demodulator will be rendered inoperative, enabling the other half to be used as a differential amplifier. These amplifiers have quite high gain, so the large outputs from the Spectrum had to be reduced. This is fortunate, as it enables the bias levels to be set correctly.

Obtaining sync pulses from the Y signal was straightforward. The signal from the Spectrum has posi-tive-going sync pulses. An npn transistor (Tr 1) with no bias produced negative-going pulses which are fed via an emitter-follower (Tr 2) to provide a low-impedance output for the monitor.

The rest of the circuitry external to the SL901B is

Fig. 1: Spectrum-monitor interface circuit for RGB drive.
concerned with removing the V signal PAL swings. This is done by feeding the V signal to pins 19 and 20 of the i.c. on alternate lines, via the switching transistors $\operatorname{Tr} 7$ and Tr 8 . The latter are switched on and off by the outputs from a D-type flip-flop in the 7474 i.c. For ident synchronisation, Tr 3 is switched on during the burst periods by differentiated line sync pulses, thus passing the "V bursts" present at its emitter. The ident signal thus obtained is further processed by $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ and is then applied to the flip-flop's clear input - the flip-flop's clock input is driven by sync pulses after inversion by Trб. To get the circuit working, some adjustment to the value of the resistance in Tr4's base circuit was required.

A d.c. balance control is necessary to prevent the switching waveform appearing at the output. Depending on component tolerances, this may have to be connected between either AA^{\prime} or BB^{\prime}. A V amplitude balance control is also provided. These controls can be set up by
getting the Spectrum to produce colour bars (there's a programme for this in the Spectrum manual), using an oscilloscope or observing the result on the screen. Brightness is controlled by applying d.c. bias to the SL901B's luminance input pin. The signal circuits are d.c. coupled throughout.

The signals from the Spectrum contain some computer noise, so it's not advisable to use speed-up capacitors to increase the picture sharpness.

The monitor I adapted was intended for use with TTL RGB signals, i.e. either an or off. The Spectrum has two levels of brightness however as well as colours. The TTL chip at the monitor's input was therefore removed, giving input via emitter-followers. These were biased by a preset brightness control which was disconnected. The monitor incorporates an 18 V line which feeds a 12 V regulator. It's derived from the line output stage and was used to supply the interface circuit

Teletopics

MAJOR RENTALS MERGER

British Electric Traction, parent company of Rediffusion, has reached an agreement to sell the Rediffusion TV rentals operation to Granada. The combined TV rental group would have an estimated 19 per cent of the market. There are over 850 Rediffusion and Grenada rental branches and it's expected that 100 or so would be closed following the merger. Job losses are put at some 700. The rental market has not been a happy one recently, with the increasing tendency to own both VCRs and TV sets outright. Added to this, Granada manages to make appreciably greater profits from its outlets than Rediffusion. From Granada's point of view benefits will come from economies of scale and the cash flow that investment in VCRs in recent years will produce in the future. BET is to retain the Rediffusion setmaking capacity.

PHILIPS' VHS POLICY

Philips' VCR policy keeps changing. Having decided to manufacture VHS machines, it was initially announced that the only W. European market in which these would be sold would be the UK. A new announcement states that Philips' VHS machines are to be distributed throughout W. Europe from the autumn. What next?

MONITORS AND RECEIVER-MONITORS

The growing use of home computers and video games has brought with it an increasing demand for monitors and receiver-monitors for display purposes. To meet this demand, several companies specialising in monitors and ancillary computer equipment have been set up in recent times while most TV setmakers have either introduced or plan to introduce monitors and/or receiver-monitors. Many users of home computers and video games units link their equipment to the TV display unit via the aerial socket. The disadvantages of this include drift (computer/ games modulators are not exactly on a par with those used by the broadcasters!), patterning and bandwidth limitations. Similar problems arise with VCRs and discs. In all cases an RGB or composite video link gives greatly improved results.
The Ferguson Model MC01 14 in. receiver-monitor,
which is based on the TX90 chassis, is due for release at the end of August at a suggested price of around $£ 229$. In addition to the aerial socket there are separate DIN sockets for composite video and RGB inputs - linear or TTL (on/off) RGB inputs are accepted. To cater for the different composite video signal levels from different equipment, a preset video gain control is included. An added benefit of having separate input sockets is that several items can be connected to the receiver-monitor simultaneously. The MC01 senses the signal selected and switches over automatically. There's automatic sensing of sync polarity with RGB inputs, and sound signals can be fed into the MC01 with both RGB and composite video inputs. A 3.5 mm headphone socket is also provided, and a specially designed battery adaptor with automatic adjustment for $12 \mathrm{~V} / 24 \mathrm{~V}$ d.c. operation is available. The latter gives a typical running time of eight hours when used with a standard 40AH battery.

Because there's no standard connector for home computers, a range of leads to connect to most popular units is being made available through Ferguson dealers. A further range of leads provides connection with the Ferguson Videostar range of VCRs.

Ferguson will also be introducing a 12 in . monochrome monitor, Model MM02, for business and home computer enthusiasts. This has an 80 character per line capability the standard for word processors and some computers, as opposed to the 40 characters per line standard used for teletext and many low-priced computers. Technical features of the monitor include dynamic focusing to maintain clarity right across the screen, video rise and fall times of better than 20 nsec for clean character edges (the average domestic TV receiver has video rise and fall times of around 100 nsec), picture geometry better than 2 per cent and flywheel sync for good character verticals in the presence of noise and interference. The flyback time of only $8 \mu \mathrm{sec}$ means that up to 100 characters per line can be displayed if necessary. The tube has a P31 green phosphor screen which gives clear characters with minimal eye strain (tubes with alternative phosphors can be fitted, subject to negotiation). A further feature is multistandard (US/UK/ Continental) operation to enable the monitor to handle a wide range of software/hardware. The price is expected to be less than $£ 80$.

Ferguson will also be introducing a cassette recorder, Model 3T31, designed specifically for use with microcomputers. The suggested price is $£ 29$.

An Advisory Service has been set up by Ferguson to aid
dealers and users with queries on computer-monitor compatibility and upgrading from one home computer to another. The telephone number is 01-807 3060 .

ITT's first receiver-monitors were mentioned in this column last March. Several additions to the range have since been made. The 14 in . RL2315, which has a suggested price of around $£ 299$, accepts u.h.f., composite video and RGB (both linear and TTL) inputs, with separate DIN sockets for the video signals and an easy to operate VCR/video/RGB switch. For those who require larger screen sizes, the CT2600/R is fitted with a 22 in . tube and the CT2700/M has a 26in. tube. These two models use BNC sockets for the composite video and RGB inputs and in addition have an audio channel. The dot resolution is 420 with the 14 in . tube, 540 with the 22 in. tube and 630 with the 26 in. tube.

Most new TV chassis have either as standard or as an optional extra a SCART socket to enable composite video and RGB inputs to be fed in. This 21-pin socket is also known as a Euroconnector or peritelevision socket.

CETEX

On the TV side the trend at this year's Consumer Electronics Trade Exhibition was towards isolated chassis fitted with SCART sockets to provide video and audio input/output connections, while the first models to be fitted with the new FS type tubes were shown. FST sets were included in the Mitsubishi, Panasonic, Philips, Pye and Toshiba exhibits. Philips and Panasonic were amongst the larger setmakers showing small screen monitors. Centrepiece of the ITT stand was the new Digivision Model D1000 - see separate note. The latest portables in the Philips range, two 12 in . models (one with remote control) and a 14 in . model, are fitted with the new TX3 chassis. On the video side, JVC were showing their Video Movie camcorder Model GRC1, the recorder section being to the VHS-C standard. This extraordinarily compact piece of equipment is just 13in. long and weighs less then 51 b . The Ferguson version is the 3V41. Price is around $£ 1,000$. JVC also introduced their first VCR featuring the hi-fi sound system - Model HRD725EK (Ferguson 3V42). These are top-loading machines with two speed operation. The Konica CV is claimed to be the world's smallest and lightest colour camera, and can be used with most VCRs. The compact design has been achieved by mounting the $\frac{1}{2}$ in. Cosvicon tube vertically in the camera's handle: the optical system consists of a $3: 1$ manual zoom lens, through-the-lens viewfinder and a mirror/prism arrangement to deflect light on to the tube's faceplate.

TUBE SIZE SPECIFICATION

The tradition of specifying tube sizes by the overall diagonal measurement in inches is to be phased out. The change follows an international agreement amongst tube makers to use the visible picture diagonal as the standard measurement for screen size, and pressure from trading standards officers who have argued that the present practice infringes the Trade Descriptions Act (Philips were fined a nominal sum when a test case was brought last year). The packaging for sets fitted with standard types of tube is now supposed to show the diagonal visible screen size in centimetres in brackets, with the word "visible" or the letter "V", following the inch meaurement. For example, a 16 in . set should be described as 16 in . (38 cm V) or 16 in . (38 cm Visible). This interim arrangement is
expected to last for two or three years. The aim with the new FS tubes is to use centimetres only, though inch sizes are being widely quoted at present.

DIGIVISION IS HERE!

CETEX saw the UK launch of the ITT Digivision system in the form of their 26in. Model D1000. The set is unique to date in that after detection the signals are AD converted and processed in digital form, under the control of an eight-bit microprocessor central control unit, then DA converted to crive the deflection output circuits, the c.r.t. drive and the audio output stages (the set is stereo capable of course). The basic system was described in our November 1981 issue. Model D1000 is a full-specification set with infra-red remote control, teletext, 15 W audio output per channel from twin three-speaker systems with double chamber bass reflex loading, and sockets for AV and RGB inputs and headphone/audio outputs.

From the servicing point of view, how do you set up a receiver with only one preset potentiometer? Adjustment is done digitally with a service computer, which ITT call an "electronic screwdriver". The service computer is linked to the receiver via a socket and issues commands to the MAA2000 central control i.c., allowing the service engineer to change the data stored in an EAROM. When reprogramming is complete, control is returned to the MAA2000. The c.r.t. drive conditions, the timebases and picture geometry can all be set up in this way. The SP010 service computer does not come cheap however - it costs £125. To offset this ITT have announced a special introductory offer: with each Digivision set purchased, the dealer will receive a $£ 25$ voucher towards the cost of a service computer.

POLAROID-TOSHIBA 8 mm VIDEO DEAL

The US photographic products group Polaroid is to market an 8 mm portable video system produced by Toshiba. It's due for release in the USA this summer.

DBS UP-DATE

The government has announced that legislative changes will be introduced to enable a DBS service to the UK to start in the late 80 s. The cost will be around $£ 400 \mathrm{~m}$ and the service will be operated by a consortium comprising the BBC, ITV companies and outside operators. There are likely to be three channels, one for films and the other two with mixed BBC/ITV programming.

Where is the money to come from? The BBC is to be barred from using extra cash obtained through licence revenues, while the ITV companies will be unable to count losses against their annual levy. The government seems to think that the consortium will be able to raise the required risk capital: as an inducement it will be given a three-year monopoly, while the IBA will be authorised to extend the franchises of ITV companies participating in the scheme. It's understood that the BBC will have a 50 per cent stake in the venture, with the ITV companies having a 30 per cent stake and the rest held by one or more outside companies. At the end of the threeyear monopoly, the IBA will be able to advertise for participants in a competitive DBS service.

Agreement has been reached between the Luxembourg government and a private consortium to establish a satellite TV distribution company called Societe Luxembourgeoise des Satellite. The plan is to beam 16 TV channels over Europe, mainly for cable networks but
also as a DBS service. The project is called Coronet and the satellites will use the Luxembourg orbital position $\left(19^{\circ} \mathrm{W}\right)$. It's hoped to launch two medium-power satellites late next year. Financial backing is being sought in several European countries, including the UK.

HITACHI HIRWAUN

Radical changes have been introduced by Hitachi at the Hirwaun TV factory in an effort to build up production and change the loss making plant into a profit earner. The labour force is to be reduced by 500 , from 1,300 to 800 , and the production lines will be modernised. As in Toshiba and Sanyo's UK plants, there will be a singleunion agreement with the EEPTU. A "company members board" is to be set up to settle disputes without resort to strike action or lock-outs, and a "single status" employment policy will be introduced, i.e. a single canteen, common working hours and uniform etc. A seven per cent wage increase has been agreed.

THOMSON IN UK

TV sets and VCRs produced by the French government owned consumer electronics firm Thomson are to be marketed in the UK by Heron Electronics Ltd. Thomson is Europe's second largest consumer electronics manufacturer (after Philips), with substantial interests in W. Germany - its subsidiaries include Saba, NordMende and Telefunken.

POCKET COLOUR TV SET

The Japanese electronics concern Seiko has demonstrated a pocket colour TV set with a 2 in . screen. Marketing is expected to begin in Japan and the USA later this year. The set has a liquid crystal display and weighs 450 grams. A price of around $\$ 500$ has been suggested. Seiko"s wristwatch sized monochrome TV set, which also has an LCD, was introduced in December 1982 and will be superseded by the new colour set. Some 70,000 of the monochrome sets have been sold.

VCR SERVICING COURSES

Steve Beeching is planning to run a further series of his VCR servicing courses this autumn. Enquiries should be sent to the Newark Video Centre, 108 London Road, Balderton, Newark, Notts.

NEW PLESSEY TV TUNING SYSTEM

The Plessey SP5000 i.c. is now in volume production: used in conjunction with a varicap tuner, it forms a complete phase-locked loop frequency-synthesis tuning system intended primarily for TV and cable TV applications. External circuitry is reduced to a minimum by incorporating a 1 GHz prescaler, a multimodulus divider, storage register, crystal reference oscillator with divider chain, phase comparator and drive circuitry in the single chip, which requires only a $5 \mathrm{~V}, 50 \mathrm{~mA}$ supply. The circuit can select frequencies from 30 MHz to 1.024 GHz in 62.5 kHz steps.

The SP5000 is controlled by a four- or eight-bit microprocessor which also decodes the remote control and keyboard commands. Plessey offer a series of PIC1655 microprocessors for this purpose to ensure that all common broadcast and cable TV requirements can be met. The microprocessor also controls a memory i.c. if program storage is required, and can drive two seven-segment displays directly for channel or programme number.

The SP5011 and SP5012 i.c.s are in production for cable TV use, offering up to eight options of up or down conversion to frequencies appropriate for connection to a TV receiver's aerial input: these are fixed frequency options of the SP5000, with an aluminium mask variant, so that no microprocessor is required.

Further details are available from Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wilts SN2 2QW.

TELETON'S MOVE

Teleton Electro (UK) Co. Ltd. has moved from Westcliff-on-Sea, Essex to Hatfield, Herts. The new address is 154 Great North Road, Hatfield, Herts AL9 5JN, telephone number 0707272841.

VCR PROTECTION

An ingenious device has been introduced by Videotek Ltd., Unit 20/21, Royal Industrial Estate, Jarrow, Tyne and Wear NE32 3HR for the protection of unattended VHS VCRs. The device is in the form of a cassette which can be loaded into the machine. It's locked on partial insertion and can be removed only after being unlocked 1,000 key patterns are available. The built in tremor switch triggers a 98 dB alarm if the machine is moved or disturbed. The retail price is around $£ 24.95$.

SET TOP AERIAL WITH AMPLIFIER

Electronic Mailorder (Bury) Ltd., 62 Bridge Street, Ramsbottom, Bury, Lancs have introduced a combined set top aerial and amplifier at $£ 9.70$ plus 30 p post and packing. The amplifier is a tuned type that may require adjustment - this is easily done by means of a small trimmer in the aerial base. The amplifier runs off eight HP3/AA type batteries which will last for about a year if the amplifier is switched off after use.

SATELLITE TV COMPANY

A new UK company, Satellite TV Antenna Systems, has been set up to develop and manufacture satellite communications equipment. The technical director is Steve Birkil, who has designed what the company refers to as a "radically new" receiver for which a number of orders have already been taken. Production has started at the company's factory in Builth Wells, Powys: initial production will be mainly for the US market, though European orders are also expected.

SLOW-SCAN CCTV SURVEILLANCE SYSTEM

The latest introduction by Frowds Ltd. (4 Northarbour Road, Cosham, Portsmouth, Hants PO6 3TJ) is Surveyorscan, a slow-scan TV system for operation via the telephone network. It was designed and developed by British Telecom and is being manufactured under licence and marketed by Frowds. Surveyorscan gives the user an unattended surveillance capability to virtually any site worldwide via the normal dial-up telephone network. Up to four cameras can be used to obtain still pictures at one or serveral different sites, the system also providing remote control of the cameras. The pictures can be displayed sequentially or all four together on a single monitor. Other features include movement detection where changes in pictures are noted, automatic activation of alarms, and remote control of such on-site facilities as gate locks, sirens, etc. The system is easy to operate and can be installed quickly and simply.

Servicing the Grundig 2×4 Super

Part 1

Mike Phelan

It's perhaps fortunate for some of us that the V2000 system hasn't turned out to be as successful as it might have been: even late model V2000 VCRs are now available at very low prices. If you intend to use your VCR for recording TV programmes, which after all is the primary purpose of such machines, the Grundig 2×4 Super, at present available for less than $£ 200$ from some outlets, must represent one of the best buys ever. The picture quality is superb, the dynamic track following giving noise-free shuttle search, slow motion and freeze frame.

Features

The machine is a front loader, with an attractive chocolate brown and gold finish. The front panel is uncluttered, with two groups of pushbuttons. Those on the left are a numerical keypad for entering data, plus controls for making timed recordings. The eight buttons in the centre are for the tape transport functions. The nomenclature here is a little odd, "stop" being still/pause and "tape" what we'd normally regard as stop.

Below this are two flaps covering more buttons. Those on the left are search and store for tuning (Bands I, III or u.h.f.). The other group are "go to", "slow" and "APF". The latter winds the tape either way until the beginning of a recording is found, then goes to still frame. There's also "time left", which we'll explain shortly. Although green, the clock display uses LEDs. When the machine is switched on, the clock data is replaced with either "CASS" (no tape in the machine) or "P TIME". In spite of the rather amusing definitions I've heard for this, it's how far along the tape is in hours or minutes. Also displayed is the length of the tape inserted, e.g. 1, 2, 3 or 4 hours (per side). When "TIME LEFT" is pressed, "P TIME" is subtracted from this.
There's no record switch. To record, you have to type in the channel followed by "PROG/DAY" and "START/ STOP". You cannot record unless the clock has been set done by typing in hours and minutes then pressing "CLOCK". If a mistake is made in entering data, the display shows " F "! Five timed recordings can be made over a 99 day period, from 32 channels. If you attempt to enter more time than there is on one side of tape the display shows "FULL".

At the rear of the machine there are sockets for video/ audio input/output, remote and camera. The infra-red remote receiver clips on the side of the cabinet and is controlled by a very slim hand-held unit. If you have one of the current Grundig TV sets, one hand unit will control both the VCR and the set via an adaptor that replaces the remote receiver.

Mechanical Arrangements

To remove the top of the machine, take out two screws at the rear. All is then revealed - the mechanical construction is up to the usual Grundig standard. Six modules of identical size are plugged into the mother board at the bottom of the cabinet. From the left these are the power
supply, chrominance, luminance, servo, DTF and audio panels. The tuner and i.f. modules reside to the right of these in cans. The tuner is the usual Grundig type used in their TV chassis until recently.

In front of this group of modules is the self-seek board, then the keyboard module which is attached to the front of the cabinet. This contains the two microcomputer i.c.s that look after the mechanical and clock functions. The tape deck is on the right and can be removed after taking out three screws. Behind it is the motor connection board containing the direct drive head motor circuit, autostop, reel and loading motor drive circuits. To gain access to the deck, unclip and draw forward the cabinet front, then remove the "tea tray" - the massive screening can above the deck. It's nc small thanks to this can that we've never had one of these machines with last night's supper all over the mechanics!
Although the Grundig machine is cassette compatible with the Philips V2000 series machines it uses a C-wrap rather than an M-wrap system. The motor that turns the loading ring also ejects and loads the cassette, using a very ingenious gear system with a rack and worm. The capstan motor is very small, the reel motors are very large and the drum motor is of the direct drive Hall-effect type. There's but one solenoid, for the reel brakes.

The Power Supply

Now for the problems, which are fortunately not many. We'll start with the power supply - see Fig. 1. This is a fully isolated self-oscillating chopper circuit of the Siemens type, with a BU208A chopper transistor and a TDA4600 control i.c. It's reasonably reliable, but the TDA4600, BU208A and the base drive coupling capacitor C401 must all be replaced together if any of them should fail. If this should happen the usual result is a completely dead machine, but if the 1.25 AT mains fuse has failed the bridge rectifier should be checked for shorts. In the event of a dead machine also ensure that the start-up voltage (about 8 V) from D418/R418 is present at pin 9 of the i.c. Once the circuit has come into normal operation the i.c. is supplied by D419/C419.

A common fault is that C401 goes leaky, the power supply switching on and off at approximately 1 Hz intervals, sometimes clearing after a minute or so. Replace C401, the BU208A and the i.c. to be safe. The BU208A must be coated in heatsink grease and the nuts must be tight.

When working on the power supply, C435 and C485 should first be discharged - they both charge to 150 V with no chassis leakage path and a nasty surprise can be had some minutes after switching off!

On the secondary side of the chopper transformer most of the supplies pass through the relay, which should energise at switch on (at the front panel switch) and deenergise fifteen seconds later if no functions have been selected. If the relay fails to operate, check that transistor T443 (near the bottom) has been turned on. If there's no base bias, R443 (390Ω) is probably open-circuit - it's not present on early panels. This bit of circuitry bypasses the

Fig. 1: The power supply - simplified circuit.
relay to provide the 5 V supply for the microcomputer i.c. IC439 sometimes goes short-circuit, burning out the $0 \cdot 1 \Omega$ surge limiting resistor R438 which again is not present on early machines.

Loss of the 15 V supply shows up with the stop LED illuminated and the orange LED at the on/off switch barely visible. In almost every case you'll find that transistor T447 (BD898) is either dry-jointed or that one or more of its legs have broken off. This is the power transistor on the large heatsink at the front.

Loss of power to the reel motors - symptoms are slow or no fast wind and looping tape on playback - is caused by the $2 \cdot 1 \mathrm{~V}$ zener diode D485 at the top edge of the panel being open-circuit or dry-jointed. If the power transistor (T484) below it runs very hot, check the reel motor drive i.c. - more on this later.

The most common fault of all is failure of either of the 100Ω safety resistors in the 150 V lines (R435 and R485). Symptoms are complete loss of DTF, i.e. noise bars on search and still frame, with a voltage of + or $-70-80 \mathrm{~V}$ on the slip-ring brushes above the head. If R435 is opencircuit there'll also be loss of tuning voltage - and the modulator output will be down at about ch. 21. Replace
both resistors and remove C484 and C437 (if fitted).
The primary side of the power supply - up to the relay can be checked with only the mains connected, but extreme care is required.

The Keyboard Module

If the power supply is o.k. but the relay fails to operate, there's probably a fault on the keyboard module (see Fig. 2). As previously mentioned, the two microcomputer i.c.s are to be found here. They operate from different supplies and have different clock rates, so they cannot "talk" to each other directly. A shift register (IC270) and associated bits are used to transfer information either way.

In the case of no relay operation, check that pin 7 of IC280 goes high at switch on and that pin 16 of IC285 goes low. If the latter stays high, IC285 is probably faulty. Before you replace it, check the diode (D450) across the relay winding in the power supply. If pin 7 of IC280 doesn't go high, check the supplies and clocks at both microcomputer i.c.s. Dry-joints are common on this panel, especialy along the bottom where the ribbon cables connect.

Fig. 2: The keyboard module - simplified block diagram.

We've occasionally had no switch on due tô failure of IC220. The three WS outputs have also caused problems. These tell the servo, DTF etc. which mode the machine is in - if one bit is wrong you can get all sorts of strange results, like record in slow motion etc. More on the WS codes when we come to the servo board.

Sometimes the seven-segment displays give trouble: internal leakage can result in segments being lit that shouldn't be, or segments being dim or missing. R284R293 always look cooked on machines that have had much use.

Next month we'll look at the signals section.

The Ferguson TX100 Chassis

In the past a new chassis from Thorn has usually involved the introduction of something radically different by way of circuitry or overall chassis arrangement. Think of the switch-mode power supply in the 3000 series, Syclops in the 9000 and so on. The theme of the new TX100 chassis however is evolution. It's been developed as a flexible, basic high-performance chassis to replace the TX9 and TX10 - flexible and basic in the sense that it's able to drive a wide range of tubes and is capable, with interfacing panels, of meeting all likely requirements over the next few years. Such requirements include remote control and teletext (of course); viewdata; frequency-synthesis tuning; RGB, composite video and stereo sound inputs; and SECAM colour capability for export models. The need to operate with cable and satellite signals has been taken into account in the design, and provision is made on the board for fitting the components required for stereo TV reception. The chassis may not look particularly innovative at first sight, but the design is elegant from a production viewpoint in the range of its capabilities.

Physically the new chassis is compatible with the TX9. This makes it possible to use existing chassis/cabinet mouldings. The new chassis is mains isolated however, which was never the case with the various versions of the TX9. As a result, for safety it was necessary to ensure that the chassis is not plug compatible with the TX9.

At a time when tube technology is in a state of change,
it's desirable that a new chassis should be capable of driving tubes of various types. The TX100 can drive tubes with 90° or 110° deflection angles in screen sizes $14-26$ in. and with neck diameters of $22.5,29$ and 36 mm , also the new generation of FS (flat, square) tubes and the higher resolution types that are likely to be increasingly used. This has been achieved my making it simple to introduce modifications in the scanning areas of the chassis alternative line output transformers and field output i.c.s and component changes by means of links. The EW correction circuit is on a subpanel fitted to 110° sets only.

The chassis has been designed to interface with the latest digital peripheral circuitry for tuning, remote control and text facilities. The SCART/Peritelevision input socket is an optional extra mounted on a panel with interfacing circuitry. It enables RGB, composite video and audio signals to be fed into the receiver, making the chassis capable of handling home text and graphic displays from computers or sophisticated games, also satellite TV and interactive cable signals.

Block Diagram

A block diagram of the basic chassis is shown in Fig. 1. The chopper power supply is of the Siemens self-oscillating type as used in later versions of the TX9, but in this case providing mains isolation. The safety cover over the

Fig. 1: Block diagram of the Ferguson $T \times 100$ chassis. A relay in the 119 V line gives remate standby.
live section is colour coded - red for sets produced to drive 110° tubes, yellow for standard 90° tubes and blue for mini-neck $(22.5 \mathrm{~mm}) 90^{\circ}$ tubes. The control i.c. is a TDA4600-2 and the chopper transistor a T9063V: a thyristor is used in the start-up circuit.
The i.f. strip is basically the same as with the TX9/10, though an improved i.f. i.c. has been adopted (TDA3540). An emitter-follower at the output of the i.f. strip facilitates interfacing. The TDA3562A decoder i.c. differs from the TDA3561 used in late versions of the TX10 in incorporating black level correction. Each RGB output stage incorporates a beam sensing circuit that provides feedback for this purpose. Only a single feedback connection is required as the i.c. samples the black currents of the three guns sequentially line by line. At first sight the RGB output stages look like the now conventional class $A B$ circuits. The beam sensing circuits enable the circuitry to be subtly rearranged however. The first transistor in each channel is a conventional class A voltage amplifier with a high-value ($15 \mathrm{k} \Omega$) load resistor to reduce dissipation. This is followed by an emitter-follower transistor to give optimum transient response on the positive-going edges of the video waveform. The transistor included for blackcurrent sensing also acts as an emitter-follower to provide a discharge path for the tube capacitance on the negativegoing edges of the video waveform. The new circuit provides good high definition and grey-scale performance.

The sync/timebase generator and field driver/output i.c.s are the same as those used in later versions of the TX10, though the TDA3651 replaces the TDA3652 in 90° chassis. The line output transistor, transformer, tuning capacitor and other components also vary for 90° and 110° operation. An unusual circuit in this area is the line driver stage (see Fig. 2). This is a low-voltage stage using a

BC372 Darlington transistor. A 15 V regulator is incorporated and the supply to the driver transformer is altered for $90 / 110^{\circ}$ operation, an example of the timebase flexibility we've referred to above.

Model Numbering

Sets using the new chassis will be added to the Ferguson range this autumn. They will be easy to spot as a new system of model numbering is to be introduced. The first two digits will indicate the screen size. This will be followed by A to indicate that a 90° tube is fitted or B for a 110° tube. The final digit indicates either 1 a standard set, 2 a set with remote control, 3 a teletext equipped set, 4 a set with teletext and stereo sound and 5 a component set. So 20 A 1 will indicate a standard 20 in . set with a 90° tube. We shall also have to get used to referring to this as a Ferguson rather than a Thorn chassis.

Fig. 2: The low-voltage line driver stage.

Thorn TX9 Chassis

The problem with this set (PC 1044 main panel, i.e. chopper version) was field roll, approaching double speed. It was cured by replacing the oscillator timing capacitor C206 $(0.47 \mu \mathrm{~F})$ connected to pin 9 of the TDA1170S field timebase i.c.
M.D.

Fidelity 20in. CTVs

A problem with these models is that the tuner presets are very touchy. There are two different types: thumbwheel controls or rotary potentiometers with a special adjuster that has a built-in gearbox to make adjustment easier. It's the latter type that seems to cause most problems. We had one set that was particularly sensitive on the first preset on BBC-1. This wasn't due to the tuner potentiometer assembly however but to very slight misadjustment of the video detector coil L1.
M.D.

Philips KT3/K30 Chassis

Something I've often had recently is one colour dropping out as a result of corrosion on the pins of the decoder i.c., where it plugs into its base. It's possible to clean the pins, but a more permanent cure is to solder the i.c. direct. The same problem can also be responsible for running colour.
M.D.

Thorn TX9 Hint

A TX9 Moviestar portable came in recently with the complaint of fuse blowing, something that's been mentioned in these pages before. Whilst testing we found that we were accumulating quite a tidy pile of small black fuses. This is wasteful. I eventually tried hooking the cutout from a Thorn 3000 chassis in place of the mains fuse. This blew quite readily from time to time until the cause of the fault was located after which the correct fuse was fitted.
M.B.

Hitachi Models CPT1471/1473

The STR6020 chopper i.c. (IC901) bolted to the chassis is a prime suspect that can cause various faults on these sets. The trouble we had with two of them was a slight intermittent picture break-up accompanied by a sound rather like internal arcing. A couple of other sets would work normally then suddenly return to standby, the sudden loss of e.h.t. making it seem as if a flashover was responsible.
M.B.

Pye 731 Chassis

The complaint with an Ekco Model CT262 (Pye 731 series chassis) was that the "picture goes off". Not very enlightening! We soak tested the set for several hours over three days but the fault wouldn't put in an appearance for us - despite efforts at prodding around. The set was then returned but came back a few days later, when it again performed faultlessly for hours on end. Whilst I was out my customer liaison/bookkeeper/soak tester/wife noticed
that it went off "just for a few seconds - no sound or picture, just snow and loud hissing, as though the aerial had been disconnected". At last a clue. With this problem the i.f. gain/selectivity module is always suspect on these sets. But I'd already tapped and prodded around, and even flexing the panel didn't help.

I then noticed the wire link that carries the tuner's output to the module. It was this link that was the trouble, due to being positioned so close to the tuner's screening can that an intermittent short was occurring. Why it happened so intermittently, and why tapping had no effect, remains a mystery. I've not come across another of these sets where the link was so critically close: possibly a replacement tuner with an oversized screening can had at some stage been fitted.
T.T.

Thorn 1500 Chassis

The problem with a set fitted with the Thorn 1500 chassis was excessive height. Adjustment of the height control only made things worse, including the linearity. Voltage checks around the PCL805 field timebase valve revealed grossly excessive voltage at the anode of the triode section of the valve. We expected to find a low-value feed resistor, but in fact the filter capacitor $\mathrm{C} 89(1 \mu \mathrm{~F})$ was open-circuit.
T.T.

Pye 725 Chassis

The complaint with a Dynatron set fitted with the Pye 725 chassis was low, distorted sound, worsening the longer the set was left on. The audio output stage showed no signs of distress - nothing overheating - so I suspected the TBA750Q intercarrier sound chip, which can sometimes be responsible for this fault. A replacement made no difference, as \mathbb{I} should have known since freezing the original one had not affected the fault. Voltage checks then revealed that the chip's supply pin was at only about 6.5 V instead of 11.5 V . The feed resistor is R218 (560Ω), and though it looked o.k. it had risen in value, replacement clearing the fault.
T.T.

Thorn 3000 Chassis

Like many engineers, I get a lot of trouble with the first anode supply switches used in these sets. They are of the metal kind, the body of the switch being earthed via print lands on the panel. What actually happens is that the switches leak internally, taking the first anode supply to earth. The switch can of course be replaced - but only if you happen to have one with you, and I rarely seem to be in that position. Or you can remove the switch entirely, linking the print with stout, single-strand copper wire; or sever the print in such a way that the body is no longer earthed. I don't personally favour the latter approach: I think that once a switch has given trouble it's likely to be impaired and should be removed - and don't forget that any switch dealt with in this way would have a metal body with up to 1 kV on it just waiting for some unsuspecting service engineef... It's best I think to link the supply permanently with copper wire.

The problem I had recently on one of these sets was very bad field linearity. I tried all the usual things but drew a blank. In the end, because of a hunch rather than any scientific reasoning, I changed the field output stage h.t. feed resistor R442 (58Ω). It's a wirewound component mounted on the field/audio board, at the top rear. It read all right out of circuit, though the problem would I suppose have been apparent had I checked the voltage across it - probably an instance of familiarity breeding contempt . . .

If you've got one of these sets fitted with the later type of power board and it keeps going dead for no apparent reason, check the two top fuses: lift them and measure the resistance, since you may be misled by voltage checks. If one of the fuses is open-circuit the set can continue to
function, but with the intermittent dead effect.
One last point on this chassis. When the dead set symptom can be cured by pressing the cut-out, this item is not above suspicion. In fact the cut-out is often responsible for the fault nowadays, years of running having burnt away the contact areas until at least one of them has a hole clean through it. You can confirm this by taking the cutout apart. Don't attempt to reuse it: fit a replacement.
T.T.

Thorn 1615/1715 Series

If the problem is bent verticals at the top and bottom of the picture, check for a dry-joint on the tube base - on the earth lead to the Aquadag c.r.t. earthing spring.
J.C.

TV Test Pattern Generator

Part 3

Tony Jenkins, G8TBF

This month we'll deal with the assembly of the PCBs. The layout of the logic board is shown in Fig. 9: this is the most complex board and in order to reduce construction time and errors has plated through holes. It needs to be soldered on the inside only and hasn't any through board links. When an i.c. is soldered on to this type of board the solder tends to run into the through holes, making subsequent extraction more difficult. We therefore recommend that extra care is taken when constructing the board and the use of i.c. sockets or soldercon terminals for the ZNA234E and EPROM i.c.s. Several ceramic and electrolytic capacitors provide local decoupling - see Fig. 9. These should be soldered in last of all.

The encoder and power supply boards are single-sided
types and construction is straightforward. An i.c. socket is suggested for the TEA1002. Layouts next month.

A set of the three PCBs will be available in late July at $£ 27$ inclusive of VAT and postage/package from Coombe Martin Electronics, King Street, Coombe Martin, North Devon, EX34 0AD. Please note that the boards will not be available individually.

A set of the three pre-programmed EPROMs will be available from JRW Developments, 13 Baulk Lane, Worksop, Notts, S81 7DF at $£ 29$ inclusive of VAT, postage and packing.

In next month's concluding article we'll describe the construction of the complete instrument in a suitable case and provide setting up instructions and fault finding hints.

Long-distance Television

Roger Bunney

April was a great improvement on March, which had been unusually quiet. When Sporadic E activity perks up during April it usually means a good season ahead: the signs are certainly auspicious. Ionospheric conditions have been disturbed by solar flares however. These produced magnetic storms and blackouts from 24-28th April - the largest disturbances for several years. This resulted in auroral activity on the 25th and 26th. The m.u.f. rose prior to the 24th, Cyril Willis (Ely) logging Zimbabwe ch. E2 vision during the late aftemoon via trans-equatorial skip. SpE propagation in Band II was noted on the 28th. The main loggings of the month were as follows:

8/4/84 RTVE (Spain) chs. E2, 3, 4.
15-16/4/84 Short-duration Band I SpE signals throughout the day.
17/4/84 CST (Czechoslovakia) R1.
20/4/84 RAI (Italy) IA; ZTV (Zimbabwe) E2 (TE).
22/4/84 RTP (Portugal) E2; RAI IA, IB.
23/4/84 TSS (USSR) R1.
24/4/84 ZTV E2 (TE).
25-26/4/84 Unidentified auroral signals in Band I during the evening - characteristic "rumbling" noises, hum on vision and poor sync.
27/4/84 TSS R1.
28/4/84 RAI IA, IB; EPT E3 (see below); Italian cordless phones at 49 MHz !
1/5/84 TSS R2.
3/5/84 CST R1; many short-duration Band I signals during the morning.
5/5/84 Many short-duration SpE signals throughout the morning, with DFF (E. Germany) ch. E4 and signals on chs. R1 and 2 logged.

The Greek ch. E3 signal logged by Cyril Willis on the 28th lasted for over an hour, from 1830, the EPT identification appearing at 1900 . The signal had no vertical test signals and tends to confirm a previous suspected Greek logging. There's no official Greek ch. E3 listing however. Well done Cyril!
MS activity was not particularly noteworthy, though the Lyrids shower arrived on schedule, with numerous dense bursts especially on the 22 nd.

A static high-pressure system dominated the second half of the month, giving record temperatures and sun. For those in the south however the tropospheric conditions failed to produce a good opening, due in part to a gentle breeze on most days. Conditions were better farther north, a good opening being experienced in Scotland. Reception began to improve on the 22 nd, with signals from the east and south east being widely logged. By the 24th, DXers along the east and north east coasts were receiving signals from Swedish, Norwegian and Danish transmitters in Band III and at u.h.f., the peak days being the 24/25th. Iain Menzies (Aberdeen) reported Band III and the u.h.f. spectrum jammed on the $24 / 25$ th, with W. German stations on all channels and from all three networks. Cyril Willis noted only "several W. German u.h.f outlets" on the 25th, while here at Romsey only French and Benelux stations were logged.

For once the north did best. While a circulatory breeze was present in the south, most days in Aberdeen produced fog banks that rolled in from the North Sea. The good conditions in the north continued until the 28/29th, producing signals from Norway, Sweden and Denmark in Band III and at u.h.f. During the first few days of May however the high-pressure system moved, rain fell and conditions returned to normal.

At least three of the new French Canal Plus transmitters - Lille, Paris and Rouen - are now on test, with daily transmissions from approximately 0900 to 1800 . Excellent signals have been received from Lille - a grey scale and the PM5544 pattern (identification TDF and CENEXBCH). Paris is somewhat weaker, while Rouen has a very distinctive pattern (see photograph).

A smaller tropospheric opening occurred on the 13/ 14th. This was particularly noticeable in the south, with signals from W. Germany and the Benelux countries.

Many thanks to the following for their reports: Tony Privett (Basingstoke), Iain Menzies (Aberdeen), Cyril Willis (Ely), Paul Barton (Harrogate), Gareth Foster (London) and Hugh Cocks (E. Sussex).

News Items

USA: The Broadcast Television Sound Committee (BTSC) has adopted a standard that could result in stereo TV sound transmissions before the end of the year, subject to FCC approval. Zenith's proposal for coding was selected following several years of tests and the evaluation of three basic systems.
Kampuchea: Test transmissions from a ch. A10 (system M) transmitter at Phnom Penh started in January. Regular transmissions are expected to start early next year.
France: The Canal Plus service is to be inaugurated on November 1st in the Paris, Lyons and northern regions.

Left: The RETMA test card used by G1APD (Southampton) - ATV reception in Romsey at 437MHz. Centre: Canal Plus on test from Rouen, received at Romsey. Right: Clock used by TRT (Turkey).

Descramblers to connect via a SCART socket will be available after payment - adaptors for older sets without such a socket will be available.

New DX Publication

Simon Hamer has written a useful nine-page (A5) booklet entitled "TV-DXing for Beginners". It covers the basics of DX-TV reception, signal propagation, channel allocations and methods by which a standard u.h.f. TV set can be used for the purpose. Enquiries should be sent (include a s.a.e.) to the North England Radio Club International, 4 Bryn Bank, Wallasey, Merseyside L44 1 AU .

Transmitter News

AFNTV is operational in Holland on ch. A80 (between E70/71), at 20 kW e.r.p. with horizontal polarisation and a 40 m mast. This provides a strong signal in Rotterdam.

The Polish transmitter network has been increased as follows: Siedlce R1 50kW e.r.p., Przemysl R24 300kW, Opole R40 500 kW , Siedlce R52 300kW (all TVP-1), Przemysl R41 300kW (TVP-2).

Regional programming will be carried by the following Norwegian transmitters from September: Greipstad E2; Bjerkreim E6; Lyngdal E9.

Satellites

ARABSAT is to be launched in November to provide services (DBS and point-to-point) to the Arabic countries at 2.5 GHz . It will have 25 output transponders... Thames Television/Granada TV are planning a satellite service via ECS to compete with Sky Channel... The general trend at 4 GHz in the USA is for increased downlink EIRP levels, now reaching 37 dBW compared to the first generation 34dBW. As a result, TVRO terminals can operate with 6 ft diameter dishes. At 12 GHz Anik-C provides up to 48 dBW on its downlink to the eastern USA, allowing 3.5 ft dishes to be used. Plans are for future EIRP levels of up to 55 dBW so that 2 ft dishes can be used.

Pirate FM Radio

Several unlicensed, commercial f.m. radio stations have been in operation recently, mainly in the London area. The transmitter is normally sited atop a block of flats or at some similar vantage point with a radio link from the studio. Gareth Foster reports that Radio Jackie is using 209 MHz for its link and Skyline Radio 203MHz. Other operators are likely to use this spectrum for the same purpose. The idea is to avoid seizure of the relatively much more expensive studio equipment: the transmitter may be moved around from day to day to avoid detection by the DTI/BT Radio Services.

Aerial Mounting Problems

Ian Moody comments that the boom of his Antiference XG14 u.h.f. array is exactly the correct length for a ch. E4 dipole and wonders whether it could be used for this purpose. I don't think that such a dual use would be feasible even with correct matching, but this does raise an interesting subject. If the boom is mounted so that it's parallel with a Band I aerial and the distance between the two is less than one wavelength (at Band I), there will be a degree of absorption. This will increase as the separation between the two is reduced. The moral is to avoid

SOUTH WEST AERIALS

As the leading UK aerial mail order company, we carry a comprehensive range of equipment for domestic, fringe, DXing and distribution systems. Satellite equipment (TVRO) is also available.
We also supply aerials/equipment for all bands, from large aerials to small filters - and all the bits in between. Aerials for the new 50 MHz amateur band are just available.
We are active DXers - your guerantee of honest and accurate advice efficient equipment at competitive prices.
We've listed just some of our weak signal/DXing UHF aerials below prices include VAT, packing and Securicor carriage.

Fuba. Gold anodised multi-element high
gain (17dBd), the legendary XC391 (availsble
Groups A,E,W) $£ 58$. 85
Jaybeam. JEXB muti-alement (14.5dBd) EZ6.70
JBX21 High gain muti-element (18.5 dBd)
(svaioble Gra. A.B.C/D) E54 O
Wolsay. Budgat high gain (18dBd) multelement HG33 (Grps. A.B.C/D) E34.35 Colour King. Widebend 4 bey bowrie (12.5 dBd d

128.10

Triar. Unix 44. Gold anodised muti-element (14dBd), (Grps A.KE.W)
E33.00 Unix Gotden anodised perfection, high gain (17dBd) (Grps. A,K,E,W) 449.55 BB Grid. Widebend 4 bay bowtie EZZ思 Twin Grid kit., 153dBd gain E51.60 Oued Grid kit. THE ULTIMATE weak signal system 18.8dBd gain 611.10 NB. Grid kits include low loss combining filter, (ellow 7-10 working deys for dalivery of stock items)

SOUTH WEST AERIALS IS UPIQUE - TRY OUR COMPREHENSIVE CATALOGUE AT 54p. Please include an SAE with all enquiries, customer reception consultancies and for our own VHF aerial leaflets. (Access/Barclaycard welcome).

SOUTH WEST AERIALS
11. Kent Road, Parkstone. Poole, Dorset, BH12 2EH.

Tel. 0202738232

mounting arrays so that a boom is in parallel with a close proximity aerial element of similar dimension.

A similar problem occurs when say two aerials rather than a single wideband aerial are used to cover a certain

Fig. 1 (above): Helix details.

Fig. 2 (left): Reflector dimensions.

Fig. 3 (below): Details of the matching section.

Fig. 4: The helical aerial mounted on its stand.
band and are mounted close together. Two narrower bandwidth aerials will be more efficient - provided they are mounted a wavelength or more apart. This can be a problem - a wavelength is 17 ft in the case of ch. E3! The higher the gain, the worse the problem, as a study of stacking information will show. The minimum tolerable distance for stacked arrays is usually quoted as being 0.75λ, one wavelength being suggested as the best compromise. In many cases therefore a single wideband array will be more efficient despite its lower gain. Any observations?

Interference

I've recently encountered a new type of interference that presented itself as heavy patterning with a synchronised white square throughout most of Band I. It was traced to a Sinclair ZX81 on program playout, and despite being nominally on ch. 35 there was sufficient radiation to reach a Band I aerial at a distance of over 70 yards. Fitting a replacement coaxial lead with efficient screening between the ZX81 and the TV set reduced the problem.

Dave Lauder's DX-TV Newsletter recently reported an interesting case of teletext breakthrough with a DX-TV receiving installation. In this case the problem was overcome by fitting ferrite toroids to the aerial feeder and mains lead supplying the teletext receiver. Dave comments that computers etc. could produce similar problems and that fitting ferrite toroids to all connections should provide a cure. Ambit have a wide range of toroids - use v.h.f. types (i.e. dust iron) such as the T50-10, T37-12 and T50-12. The large ferrite toroids used as braid breakers can be obtained from amateur radio suppliers - in this case two similar toroids should be placed together and the mains cable or whatever wound through the centre several times. Let us know of any similar problems - or solutions!

Simple Helical Aerial

Chandra de Silva (Colombo, Sri Lanka) has built a simple helical aerial (see Figs. 1-4) at virtually no cost for the reception of the 714 MHz signals from the Ekran satellite (Stationar-T) at $99^{\circ} \mathrm{E}$. This satellite transmits the Moscow-1 service with a 24 MHz wide f.m. video channel, 6.5 MHz sound subcarrier and right-hand circular polarisation, and is well received in Sri Lanka, India and the Gulf. Unfortunately it's over the horizon in W. Europe.

The helical element consists of six turns of $3 / 8 \mathrm{in}$. aluminium tubing, with 4 in . spacing between turns (looking clockwise from the connection end). The latter is bent to give a spacing of just over 2 in . between the end of the helix and the aluminium reflector. The matching section consists of a metal tube with a thick 50Ω coaxial inner that passes to an SQ239 connector.

The main problem at the feed point is to obtain matching to the cable. Typically the feed impedance is some $130-140 \Omega$. This requires a 102Ω quarter-wave section to match to 75Ω, or an 83Ω quarter-wave section to match to 50Ω. It might be better to make a direct connection at the feed point to a low-noise transistor amplifier such as that shown in the April issue (page 303) - a tapped coil could be used at the input for optimum noise matching.

The aerial has a beam width of about $36^{\circ}(-3 \mathrm{~dB}$ points $)$ and a gain of $11 \mathrm{dBi}(8.8 \mathrm{dBd})$. Comments and findings from anyone constructing an aerial of this type would be welcome.

Service
 Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon printed below and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telaphone.

RANK 720 CHASSIS

There's an odd effect on this receiver: the verticals at the top and bottom flare outwards, with some vertical compression. The EW pincushion control affects onty the main portion of the display, not the top and bottom.

We've come across this effect on several occasions on various chassis and have usually found the cause to be loss of inductance in the EW loading or bridge coils - these are 5L1 and 5L5 in the T20 chassis. Inspect them for signs of overheating, broken or damaged ferrite etc. and replace as necessary.

PHILIPS KT3 CHASSIS

There's misregistration of the colour with respect to the luminance, seen most clearly with saturated colours. Colour from a left-hand object spills about $\mathbf{4} \mathbf{m m}$ across to the right. Otherwise the colours are correct, there are no blinds and all is well.

The colour fit can be improved by realignment of the chroma coupling circuit on panel U3430. Use a test pattern - Ch. 4 is ideal. Screw the core of the 2.2 MHz trap U194 right down then back half a turn. Then tune the bandpass circuit U195 for best transition between the green and magenta bars without producing ringing. The effect of this is to widen the chroma response without spoiling the pulse response of the luminance channel.

HITACHI CNP190

I'm having difficulty with this fault due to its intermittent nature. About two or three times a night the picture contracts all round by about three inches, with loss of colour and sound. The problem doesn't seem to be temperature dependent and the picture may return to normal either suddenly or slowly. In the latter case the picture will expand and contract several times before settling down.

The likelihood is that the h.t. voltage is falling from time to time - this can be confirmed by leaving a meter connected across the 120 V rail. Suspect components are the zener diode CR40 (HZ-7), the set h.t. potentiometer R911 and the three transistors (TR41/3/4) in the series regulator circuit.

RANK T20 CHASSIS

There's an unusual fault on this set - the picture contracts at the sides at points of high brightness. Any ideas?

We suggest you start by checking diodes 4D9 and 4D10, since these affect the breathing performance. If all is well, check the earthing of the c.r.t.'s Aquadag coating then if necessary set up the line output stage fifth harmonic tuning as detailed in the manual.

HITACHI NP6C CHASSIS

We're having trouble with the 2 SC1942 chopper transistor used in this chassis. After a few days of normal operation the set goes dead. If left for a while it will come on again. This happens several times then the transistor goes, severely blowing the 800 mA chopper circuit fuse. A BU208A used as a replacement lasted for about a week before going in the same way.

In our experience a BU208A is not suitable in this position and a 2 SC 1942 will have to be used. To prevent it blowing up again, replace the two HM9102 thick-film modules T901/2 in the power supply and check this area carefully for dry-joints. Also ensure that the two 22Ω resistors R925/R936 in the chopper transistor's base circuit have not changed value.

THORN 1590 CHASSIS

The field hold control is at one end of its track and the frame slips at intervals. Are there any "stock items'" to go for?

If the l.t. supply is exactly right at 11.6 V , and the field hold control and its series resistor R79 haven't changed value (this does happen), the most likely culprits are transistor VT15 on the output side of the multivibrator circuit and the field sync isolating diode D24.

RANK T20/22 SERIES

There seems to be some difficulty in supplying replacement overvoltage crowbar thyristors for these sets. Advertisers don't appear to stock the S2062D.

There's nothing very critical about 7THY2: a Thorn BRC4443 can be used in this position with no problems.

SONY KV1820UB

The initial trouble was intermittent start-up. At switch on the sound would come up but a few seconds later, before the picture appeared, the set would go dead (apart from the indicator neon being lit). Switching on and off would produce the same sequence, but after a few attempts normal operation would be obtained. The fault has subsequently become solid, with the set. refusing to start, though if left for ten minutes or so the earlier sequence will occur, with the addition of a brief multi-coloured flash at screen centre as the set goes dead.

It's very common for these symptoms to be caused by an internally open-circuit gate in the line output device (Q901). This diagnosis will be confirmed if Q901 has h.t. at its anode and line drive at its gate. If there's no h.t. at Q901's anode when the fault is present, check the efficiency diode D806 for being short-circuit, then concentrate on the power supply. Check for voltage at the mains bridge rectifier's reservoir capacitor C606, then check the operation of the chopper transistor Q607.

RANK A823A CHASS/S

The problem is very bad patterning on the colour - it's not present on a monochrome picture. The decoder and i.f. panels have been replaced and the cause is not r.f. interference - it doesn't happen with a similar set.

A common cause of this problem is indifferent decoder panel earthing. This depends on contact between the panel earth print and the metal chassis bar. Ensure that both surfaces are clean and that the panel securing screws are tight. If this fails to cure the fault, check the i.f. panel earthing and that of the earth braids of the interconnecting leads. If necessary carry out decoder alignment as laid down in the manual, paying particular attention to the settings of the harmonic rejectors 3L12/13/14 and the items associated with the oscillator crystal (3 TC 1 and 3L1).

259
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical fauts.

All was tranquil in the workshop one Tuesday morn. The field engineers had left on their rounds, the phone was quiet, and our Jack-of-all-trades was dividing his attention equally between a recalcitrant VCR and the engineering announcements on Channel 4. Suddenly this somnolent scene was disturbed by a flood of light from the screen of a soak-testing ITT colour set - one of the CVC20 type. The job card showed that it stood accused of a "bright blank raster after thirty minutes". Just so!

Two checks with the Avo were made straight away. These showed that the first anode voltage was normal but that there was virtually zero voltage at the cathodes. This established, the set was put on the operating table, the VCR and TV programme being forgotten in the excitement - we had to tackle the fault before it disappeared, as experience had taught us it might.

Our first suspicion was that the 225 V supply to the RGB output stages might be missing, but the heat rising from the collector load resistors indicated otherwise. The three BF458 output transistors were obviously hard on, with about 8 V at each emitter. It didn't take long to find that this was because the TCA800 demodulator/matrixing chip was driving them to saturation, with over 9 V coming from pins 3,5 and 7. It became plain at this point that the job wasn't going to be a two-minute affair, so the c.r.t.'s heater feed was disconnected. Turning off the tube in this way would remove the strain on the tube, the tripler and the line output transformer. At the same time the decoder
panel was refitted on the print side of the panel to give easier access for our Sherlock Holmes.
The TCA800 is a straightforward chip. The luminance signal together with a d.c. bias voltage is fed in at pin 1. We confidently expected to find an outlandish voltage here, but it was almost exactly as specified at 1.9 V . Voltage measurements were then made at the other relevant pins: these were a bit low at the clamp reservoir capacitor pins 2, 4 and 6 , while there was about 1.6 V instead of 1.8 V at the pulse input pin 8 . All other voltages were within a few per cent of normal. So after checking that the earth pin 16 was firmly grounded the chip itself was changed.
The new TCA800 produced the same results, and continued to do so when reduced to Arctic-like conditions with freezer. Back round the pins, with readings as before. Check that the clamp reservoir capacitors are grounded. Yes. R553 which is in series with the drive to the red output stage was then disconnected, bringing relief to this output stage. This proved that the trouble was at the chip side of things, though the primary cause could lie elsewhere .. .
The cause of the trouble was traced after a bit of scoping. If you should consult the block diagram of the TCA800 i.c. given in the service manual, the next step we took, don't be fooled by the absence of a connection that should have been shown but isn't. We'll explain this and the cause of the fault next month.

ANSWER TO TEST CASE 258 - page 447 last month -

Last month we were deep into the decoder of a Grundig Model 2222 GB with no colour. We'd discovered that the basic cause of the fault was an unlocked reference oscillator, and had eliminated various possible causes. The set follows conventional practice, with the crystal reference oscillator controlled by a phase-locked loop. The heart of this is a discriminator that compares the oscillator's output with the burst signal. The discriminator produces an error voltage which biases a varicap diode in the oscillator circuit, pulling it into phase lock. Not when the discriminator diodes are leaky however! The items concerned are Di863 and Di868, type AA119. Being germanium devices, their leakage resistance is difficult to specify. These two had very different reverse readings however. The decoder seemed happy enough when a matched pair of OA90s was fitted, so we left it at that - after setting up the loop.
Finally the business of the test card clue to the colourkiller operation. As with a number of chassis, the 4.43 MHz filter in the luminance channel is switched. The switch is within the TBA970 luminance chip: it's used to open-circuit the filter on a monochrome signal. The fact that the fourth frequency grating (4 MHz) on the test pattern could be seen revealed that the trap was not in operation. We can't rely on the next grating (4.5 MHz) for this, as not all shadowmask tubes can resolve it.

[^1]
TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY		PHILIPS		
2146 A640 dual std mono	7.00	170 series dual std mono 7.00		
Bush A792, A793		$\begin{array}{ll}210300 \text { series mono } & 7.00 \\ \text { G8 \& G9 series colour } & 8.00\end{array}$		
single std mono	7.00			
A774 single std mono	7.00	PYE 169-173-569-368		
A816 solid state mono 9.	9.00	EKCO RV305-769-725-741	8.00	
DECCA MS1700200120202401 mono 7.00			WALTHAM 125 (9.00	
		REWIND SERVICE		
MS2404 24202424 mon	7.00	most continental types, i.e. Kuba,		
S1730 1733 colour	8.00	Luxor, Korting, Tyne, Berry Skantic, K80 $\mathbf{f 1 5 . 0 0}$ inc pp, VAT. Old lopt		
18301835 colour	8.00			
'30' series Bradtord colour	8.00	required.		
80 series colour	8.00			
0 series colour	8.00			
FERGUSON HMV MARCONI1600		SOVEREIGN $14 "$ colour overwind		
		SONY 1320UB overwind 15.00		
G.E.C. 2047 to $2105 \quad 7.00$ 2000 to 2064 dual std mono 7.00 DUAL STO hybrid colour $\quad \mathbf{8 . 0 0}$ SINGLE STD hybrid colour 8.00 .00		$\begin{array}{ll}\text { RANK BUSH MURPHY } \\ \text { T20a T22 Pry \& Sec } & \mathbf{6 . 0 0}\end{array}$		
		$\begin{array}{ll}\text { T20a T22 Pry \& Sec } & 6.00 \\ \text { Z718 series primary } & 6.00\end{array}$		
		2718 series primary Z718 series EHT overwind 7		
		ULTRA THORN		
		16901691 EHT ove	7.00	
Indesit 20EGB 24EGB mono 9.00		1590		
		PYE		
KB		691 to 697 EHT overwind 4.00		
VC200 VC205 VC207 mono CVC5 CVC7 CVC8 CVC9	7.00	691 to 697 primary	5.00	
CVC20 series colour CVC30 CVC32 series colour CVC45	8.00	PRICES INCLUDE		
	8.0	P.P. 815% VAT		
	8			
All lopts and windings are new and guaranteed				
Open Mon.-Fri. 9 to 5.30 pm				
Delivery normally by return.		S.A.E. all enquiries Barclaycard and Access welcome	For orders placed at the	
PAPWORTH				
TRANSFORMER				
80 Merton High Street,				
		01-540 3955		

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production.
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD,

Griftronic
Emission lto
STUDLEY,
WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: $\mathbf{3 3 6 9 2 4}$ Grifem G.

13 WORCESTER ST. WOLVERHAMPTON, WV2 4LJ Tel: (0902) 773122
Telex: $\mathbf{3 3 6 8 1 0}$

Tolepart

Pattern Generator

- Exceptionally light and durable

Pocket size for outside service

- pp3 battery power source
- Five different test patterns for colour and mono TV "Cross hatch grid - Dot matrix - White raster A lightweight, extremely portable and versatile pattern generator for black/white and colour TV. alignment and service at the customers home. At black/white and colour T.V. alignment and service at the customers home. At correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.) POST \& PACKING £1.15

New from Newnes

SERVICING DIGITAL CIRCUITS IN TV RECEIVERS

R Fisher

Spe, zifically for colour television engineers, this book is an in-defth guide 10 digital circuits used in current TV receivers. The early chapters deal with digital techriques and their specific applications like teletext and videotex, their respective decoders being described in detail. Remote control systems, digital tuning and other digital circuits are also covered. A glossary of terms is includeo which will be useful to both eng neers and students.
Softcover 288 pages $£ 13.95$

BEGINNER'S GUIDE TO COLOUR

TELEVISION
Third Edition
Gordon J King - rev sed E Trundle
Colour TV has been greatly developed since it was first introduced n the UK in 1967. This new edi-Ion has been re-writ:en to include, as well as the basic introduction to the subject. an up to the mirute account of such ir novations as satellite and cable, flat panel rece vers. 3-D displays and "digitization" of TV signals.
Sottcover 19く́pages $\quad \$ 4.50$

Also of interest

BEGINNER'S GUIDE TO TELEVISION
 Sixth Edition

Gordon J King - revised E Trundle
An introduction, with tie ninimum of mathematics. to the $t \in c$ niques and equipment used in television broaccasting. recording and reception
Sotcover 240 pages $£ 450$
BEGINNER'S GUIDE TO RADIO
Nirith Edition
Gordon J King
An introduction to radio principles and practice ideal for radio and telecommunications
technicians anc students. Gordon King has updated the text to ake account of recent technological c anges
Solfcover 272 pages $£ 450$

Order now from your Bookseller or direct from
Newnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH

16029	1.5	2SC 1061	0.54	2SD8988	2.67	AN320	4.97	BC171	0.10	BD1e6	0.38	BF137	0.11	BLY49	2.00	BY200/20	0.18
16181	1.13	${ }_{2 S C 1096}$	1.05	40408	0.45	AN322	4.38	${ }^{\text {BC1 }} 172$	0.09	BD188	0.65	BF152	0.26	BR100	0.20		0.17
16182	1.13	$2 \mathrm{SC1104}$	2.50	40594	1.39	AN331	2.99	BC172B	0.24	BD175	0.39	BF153	0.52	BR101	0.37	BY207	0.2
16334	0.10	2SC1106	4.12	40595	1.39	AN337	3.99	BC173	0.15	BD17	0.39	BF154	0.23	BR103	0.45	Br210-400	024
16335	0.72	$2 \mathrm{SC}^{1114}$	5.61	40636	0 c	AN310P	1.05	вС174	0.24	BD179	0.44	BF157	0.23	BR88B	0.54	BY210.600	0.27
16446	0.49	$2 \mathrm{SCl}^{124}$	1.10	40871	1.39	AN355	3.36	${ }^{\text {BC17 }}$	0.12	BD181	0.90	${ }^{\text {BFF158 }}$	0.15	BRC-M. 300	1.50	${ }^{81210800}$	0.30
10000	125	2SC151A	4.29	40872	1.39	AN362	1.47	BC178	0.23	BD182	0.90	BF159	0.16	BRC116	0.60	Br2z	0.55
16799	2.16	$2 \mathrm{SCl1152}$	4.25	6085	1.10	AN5111	2.3	BC179	023	BD188	0.90	${ }^{\text {BFI }} 100$	023	BRC1330	1.00	BY22400	0.90
16801	0.85	$2 \mathrm{SCl157}$	4.12	74.5132	0.72	AN5132	3.99	BC182	0.00	BD14	1.10	BF167	0.34	BRC300	112	BY225-100	0.79
16802	1.03	2SC1162	0.95	74.5138	0.15	AN5250	3.30	BCize	023	B0187	0.40	${ }^{\text {BFI73 }}$	0.30	BRCH^{3}	1.12	${ }^{81225}$	0.24
16803	4.81	2SC1172	1.92	74.515	0.79	AN5635	2.0	BCI88L	0.09	${ }^{\text {BDO }} 189$	0.35	BFIT	0.50	BRCHM	1.12	${ }^{812727}$	0.4
16955	135	2SC1195	2.35	74.S161AN	1.18	AN5610	6.75	BC18LB	0.12	BD190	0.59	BF178	0.36	BRC5296	0.70	Br28	0.54
17074	6.00	2SC1213	0.75	74.5198	125	AN5613	3.72	BC188	0.09	${ }^{80201}$	0.54	${ }^{\text {BFI79 }}$	0.32	BRC6109	0.75	Br255	0.97
17127	3.91	2SC1226	1.32	74.520	0.25	AN5620X	4.10	BC183L	0.09	BD202	0.54	BF180	0.32	brcaz	0.9	Br298	0.25
17376	1.43	2SC1306	0.85	74.524	1.65	Angzon	3.9	BC183LB	0.23	80203	0.54	BF181	023	${ }^{\text {BRCP3 }}$	0.94	${ }^{81} 8299$	0.25
in4001	0.05	$2 \mathrm{SC1307}$	1.35	74.L330	0.29	AN6342	1.36	${ }^{\text {BC1 } 184}$	0.09	${ }^{30204}$	0.50	${ }^{\text {BFI122 }}$	0.30	${ }^{\text {BRCOA }}$	0.58	BY476A	0.76
INaOM	0.05	2 SC 1316	3.40	74.5337	1.05	Ang34	4.0	BC184	0.09	${ }^{30207}$	1.00	${ }^{\text {BFIR133 }}$	035	BRX4	0.54	${ }^{\text {BrW56 }}$	0.30
ina003	0.05	$2 \mathrm{SC1354}$	0.49	74.5373	1.55	ANdisis	10.20	BC184LB	023	BD208	1.00	BF184	0339	${ }^{\text {BRXP19 }}$	0.45	BYX10	0.28
intom	0.05	2SC1383	1.39	74.547	1.05	AN6551	0.55	BC188	0.24	B022	0.4	${ }^{\text {BF198 }}$	0.35	${ }^{\text {Bry }}$ B ${ }^{\text {P }}$	0.50	${ }^{\text {BY }} \times 155-350$	0.40
incous	0.07	${ }^{2 S C 1398}$	0.51	74.573	0.39	ANOE52	0.52	${ }^{\text {BC187 }}$	0.18	${ }_{80278}^{8025}$	0.45	${ }^{\text {BFI94 }}$	0.15 0.12	${ }_{\text {Bry }}{ }^{\text {BRIS }}$	0.60		0.0 .5
1N4008	0.07	2 SCl 1410	2.17	74.574	0.39	AN7145	200	${ }^{\text {BC20 }}$	0.14	${ }^{80278}$	0.57	${ }^{\text {BFF996 }}$	0.12 0.15	Bfy56	1.17	BYX71-60	0.61
INa07	0.07	${ }^{2 S C 1413}$	3.3 .te	74.575	0.52	AN7150	220	${ }^{\text {BCL2 }}$	0.12	${ }^{8029} 8$	0.45	${ }^{\text {BFF989 }}$	0.14	BSS38	0.30	${ }_{\text {B }} \times 1944$	0.18
${ }_{\substack{1 \times 148 \\ \text { infub }}}$	0.03	${ }^{\text {2SC1505 }}$	0.56	74.596	0.49 0.75	AN7151 AN7156	2.05	BC212 $B C 212 B$	0.10	${ }^{80231}$	0.05	${ }^{\text {BFI998 }}$	0.15	BSTBD1409	2.40	BYY5	1.09
in5401	0.12	$2 \mathrm{SC1617}$	3.35	74.592	0.75	AN7158	234	BC212	0.08	80234	0.38	BF99	0.15	BSTBO1405	4.37	82V15-C12	0.72
1 N 5402	0.13	2SC1670	2.4	74.593	0.75	AN7218	1.49	BC21218	023	${ }^{\text {B023s }}$	0.43	${ }^{\text {BF220 }}$	0.33	${ }^{\text {BSTCO146 }}$	225	BZV15-C12R	0.72
1 N 403	0.14	2SC1678	125	74.5958	0.85	AP58076	4.25	BC213	0.09	${ }^{80236}$	0.45	${ }^{\text {BF216 }}$	0.32	${ }^{\text {BSTCOP233 }}$	225	B2V15-C24	0.72
1 N 504	0.15	2SC1110	1.40	7805 T0-220	0.00	AS560S	1.43	BC213	0.03	B0237	0.38	${ }^{8 F 218}$	0.32	BSTCOP46	4.51	82V15-C248	0.72
1NSt08	0.18	2SC1815	0.41	7805 T0-3	1.05	Allio6	1.96	BC213LB	0.23	B0238	0.29	BF2m	0.50	BSTC1233	3.91	B2V15-C30R	0.72
1 N914	0.05	2SC1829	2.01	7806	0.66	AUl10	1.96	BC214	0.04	${ }^{80239}$	0.4	8 8223	0.15	BSTC3146	0.71	BZX61 Range	0.16
1544	0.05	2SC1875	4.7	7808	0.54	AU113	2.15	BC214	0.12	B0220	0.34	${ }^{85237}$	0.59	BSTCCO143	279	B2x ${ }^{\text {co-C11 }}$	0.54
1S5012A	0.73	2SC1891	3.35	7812 TO-3	0.54	AY10	2.8	BC21418	0.23	802400	0.47	${ }^{8} \mathrm{Pr} 210$	0.15	BSTCast3	3.05	${ }^{82 \times 10-C 12}$	0.54
15921	0.09	${ }^{2 S C 1929}$	25	7812 T0-220	1.05	AY105k	1.9	${ }^{8 C 225}$	0.24	B0241	0.45	BF241	0.15	BSW68	${ }_{0} 20$		${ }_{0}^{0.54}$
2582	1.94	${ }^{25 C 190}$	5.70	7815	0.55	AY106	1.96	${ }^{\text {BCL237 }}$	0.009	B0242 BD243	0.45	${ }_{8}^{\text {BF24 }}$	0.33	${ }_{\text {BSX }}$	0	B2070-C37	${ }_{0}^{0.54}$
${ }_{2}{ }^{\text {N13020 }}$	0.24	${ }^{25 C 1945}$	4.11	7818	0.55	BAICP	0.30	${ }^{86238} 8$	0.09	BD243 BD243	0.50	${ }_{82555}$	0.18	BSX20	030	BZ779 Range	0.09
2 N 1303	0.34	${ }^{2 S C 1953}$	1.75	788	0.55	BA1310 (IC) BAI30 (IC)	1.72	BC233A BC238	0.11	80243 8024	0.90	${ }_{\text {BF256 }}$	0.25	BSX21	0.45	BZYse Range	0.09
${ }^{2} \mathrm{~N} 2218^{2}$	0.38	2SC1957	035	${ }_{\text {AC10 }}$	${ }_{0}^{0.05}$	BA1320 (IC) BAI30 (IC)	12	BCz298 BC251A	0.15	${ }_{80244}$	0.71	${ }_{\text {BF256LC }}$	0.3	BSY52	0.45	BZ493-C12	0.99
${ }_{\text {2Nala }}$	0.39	2SC1959 2SC 1982	0.3 1.75 1		-0.39	${ }_{\text {BAIL }}$ BAS	0.17	${ }_{\text {B6252 }}$	0.12	BD245C	0.10	BF25	0.30	BST79	0.45	BZ293-18	0.99
2N2846	0.75	2SC1989	2.98	${ }^{\text {A }}$ C128	0.29	BAIS	0.01	BC258	0.2	${ }^{\text {BD246C }}$	0.74	${ }^{\text {BF258 }}$	029	BT100A	1.45	${ }^{827893-C 24}$	0.99
2N2904	0.32	$2 \mathrm{SCz207}$	2.57	AC138	0.88	BA15501	0.12	BC261A	020	${ }^{80253}$	0.95	${ }^{8 F 259}$	0.30	${ }^{\text {BTIO6 }}$	120	BZ783-C24R	0.99
2N2905	0.39	$25 C 2028$	1.91	AC141	0.26	BA156	0.12	BCzE	020	B0278	0.00	BF282	0.51	BT108	1.31	BZ7s3-c30	0.99
2N2906	0.34	$25 C 2029$	1.49	AC142K	0.39	BA157	0.17	BC23	0.45	BD317	1.98	BF283	0.51	BT109	1.31	${ }^{827893-47}$	0.99
2 N 3053	0.24	$25 C 2057$	1.07	AC151	0.25	BA159	0.12	${ }^{\text {BC39 }}$	0.45	${ }^{\text {BDO }}$ 818	2.0	${ }^{85284}$	0.33	${ }^{8 T 112}$	225	BZYs3-C88	0.59
2 N 3554	0.50	2SC2073	1.40	AC153	0.30	BA182	0.17	BC301	0.35	${ }^{\text {B0375 }}$	0.34	BF271	0.30	${ }^{8 T 113}$	225	${ }^{82793-C T V}$	0.99
2 N 3055	0.55	2SC2078	1.25	A ${ }^{\text {C153K }}$	0.35	BA232 (IC)	1.26	BC30	0.30	${ }^{\text {B03 }} 7$	0.23	${ }^{8 F 273}$	0.14	${ }^{\text {BT116 }}$	1.52	${ }_{7 \times 18}^{2713}$	0.39
2N3055 ${ }^{\text {H }}$	0.7	$25 C 2091$	0.59	AC178	0.17	BA234/2	0.15	BC303	0.3	8 B379	0.69	${ }^{82} 274$	0.18	BT119	1.00	${ }^{\text {Z }} \times 18$	2.47
2 N 342	1.05	2SC212A	4.05	AC176K	0.40	BA301 (IC)	0.92	BC307	0.09	B0380	0.69	$8{ }^{\text {Br324 }}$	0.16	BT120	1.00	C1060	0.45
2N302	0.12	2 SC2141	1.69	AC179	0.25	basor	0.90	${ }^{8 C 307 A}$	0.14	BD10	0.45	${ }^{87336}$	0.27	${ }^{\text {BTI } 121}$	225		0.59
2N3703	0.12	2SC21®日	135	AC183	0.65	BA311 (IC)	1.05	8C308	0.12	BDA 12	5.70	BF337	0.30	BT122	225	CAI310E	2.45
${ }_{2} 2 \mathrm{~N} 37304$	0.12	${ }_{2 S \mathrm{Sc} 216}$	0.62	${ }^{\text {ACIE }}$,	0.30	${ }^{\text {BA312 }}$ (IC)	0.5	${ }_{\text {BCa }}^{\text {BC308 }}$	0.09	80418 80438	0.76	${ }_{8}^{8 F 338}$	${ }_{0}^{0.36}$	-	1.00	ca3304 CA3016	3.18 20 10
2×13 2×3705	0.12	${ }^{\text {2SC223 }}$	3.4	${ }^{\text {ACLIE }}$	0.50	${ }_{\text {BA313 }}$	0.07	${ }_{8}^{863174}$	0.11	${ }^{\text {B }}$	0.39	${ }^{8} \mathrm{BF} 362$	0.54	${ }^{81126}$	225	ca3060	1.50
2 N 3707	0.14	2 SC 278	1.00	AC187-01	0.40	BA317	0.07	BC323	0.98	B043	0.42	BF333	0.54	BT128	225	ca3065	1.17
2 N 3111	0.14	2SC2335-KT	7.61	AC187k	0.39	BA318	0.08	BC327	0.15	BD436	0.42	${ }^{85371}$	0.45	${ }^{\text {BTI } 288}$	2.79	CA3089	3.35 1.30
2 N 371	1.85	2SC2526	1.70	AC188	0.33	bazza (IC)	0.00	8C328	0.10	BD437	0.41	${ }^{87391}$	0.35	${ }^{\text {BTI } 29}$	225	CA3009E	1.30
2N372	1.55	2SC2551	0.95	AC188-01	0.40	BA3z3 (IC)	124	${ }^{\text {BC337 }}$	0.010	${ }^{80438}$	0.4	${ }_{8747} 8$	0.50	${ }^{\text {BT1 }} 1518000 \mathrm{R}$	1.4	casaso	125
2N373	1.05	2SC2570	1.0	AC188k	0.39	BA401 (IC)	0.50	8c338		BD41	1.29	${ }^{8 F 517}$	1.20	${ }^{\text {BT1515 }}$ 5008	125	CA3034	2.00
2N3819	0.21	2SC2570A	0.95	ACl93k	0.59	BA511 (IC)	1.98	BC380	0.30	8040	0.55	8F418	1.70	8TE018	220	CABI31EN	208
${ }^{2} \mathrm{~N} 33233$	1.05	${ }^{25 C 2684}$	4.38	${ }^{\text {ACDI94K }}$	0.59	${ }^{\text {BA5521 IC, }}$	1.1	BC398	0.30	80507	0.54	${ }^{8 \times 42}$	0.8	${ }^{8176218} 8$	2.20	CA3132EN	2.00
${ }_{2}^{2} \mathbf{2} 335098$	0.55	${ }_{2 S C 2728}^{2 S C 271}$	1.99 0.95	${ }_{\text {AD1 }}$ A 140	0.95	BA532 (IC)	1.8		0.99	- ${ }^{805508}$	1.59	${ }^{814435}$	0.49	${ }_{817124}$	4.4	CBF16848N-07	1.41
2 N4101	1.10	2SC372	1.27	AD143	0.95	BA63004 (IC)	2.45	BCasA	0.32	B0510	0.45	BF450	0.30	8TT8214	5.4	CO401	0.24
2N4240	3.00	$2 \mathrm{SC373}$	1.05	AD145	1.45	BABM3 (IC)	3.60	BCa5s	0.32	${ }^{80518}$	1.36	B4541	0.28	${ }^{8181824}$	2.70	co400	0.29
2 N 443	135	2 Sc 383	1.20	ADIM	0.91	BAVII	0.10	BCA60	0.38	80519	1.36	$8 \mathrm{B4} 57$	0.37	BU105	1.6	COU008	0.95
2 NaH	1.12	${ }^{2} \mathrm{SC} 3888$	0.45	AD161	0.30	BAVII	0.10	BCA61	0.42	${ }^{80529}$	0.38	${ }^{\text {BF458 }}$	0.35	${ }^{\text {BU106 }}$	225	${ }^{\text {CO4011 }}$	0.23
$2 \mathrm{NM914}$	0.65	${ }_{2}^{2 S C 4} 1$	1.99	ADIE	0.30	BAVI9	0.10	BC462	0.27	80550	0.00	${ }^{\text {BF4 }}$ 89	0.35	BU108 BU109S	1.90	CO4012	0.24 0.37
${ }^{2} \mathbf{N 5 0 6 4}$	0.45	${ }_{2}^{2 S C 458}$	0.55	AD268	0.95 229	bavzo	0.10	${ }^{\text {BCLI }}$	0.51	${ }^{\text {B0533 }}$	${ }_{0}$	${ }^{\text {Br4460 }}$	0.27	${ }^{\text {BUI }} 10$	2.52	CO4016	0.37 0.37
- 2 2N5293	0.45	2SC508	3,303	${ }^{\text {AFf115 }}$	229 0.79	${ }_{\text {BAX }}{ }^{\text {BA2 }}$	0.10	${ }_{\text {BCabs }}$	0.50	${ }_{\text {BDS35 }}$	0.4	BFAT	0.21	BUlily	3.78	CO4017	0.74
2N5296	0.40	${ }_{2 S C 515 A}$	128	Af)16	0.79	BAX13	0.10	$\mathrm{BCa}^{\text {a }}$	0.25	BD536	0.55	BF771	0.22	BU124	125	CO4020	0.92
2N5297	0.45	$2 \mathrm{SC537}$	0.49	AF117	0.75	BAX16	0.10	${ }^{86478}$	029	${ }^{80537}$	0.60	BF472	0.25	8U126	1.11	C04021	0.24
2N5238	0.55	2SC558	3.35	AF118	0.75	B8105B	0.2	BCa79	0.29	B0538	0.00	B479	0.55	BU134S	4.15	CDOP23	0.25
2 N 5490	1.35	${ }^{25 C 605 L}$	1.05	AF121	0.50	88119	0.15	${ }^{8 C 532}$	0.25	${ }_{805050}^{80}$	0.75	${ }^{\text {BF4 }} 8$	0.54	${ }^{\text {Buz }}$	129		0.54
2NS4969 2N6107	0.45	${ }^{2 S C 620}$	1.38	${ }_{\text {Afl2a }}$	0.36 0.36	${ }_{\text {BC10 }}^{\text {8C10 }}$	0.13	${ }_{\text {BC547 }}$	0.15 0.09	${ }^{\text {B0550 }}$	1.05	${ }_{\text {BFFOS }}$	0.39	${ }^{\text {BUL }}$	120	C04047	0.95
2N6109	1.43	${ }_{2 S C 673}$	1.11	Af126	0.36	${ }^{\text {BC108 }}$	0.12	BC548	0.09	B0598	1.13	BF509	0.37	BU207	1.50	CD4049	0.52
2N6122	1.00	2 SC 81	4.00	AF127	0.35	bC108A	0.12	${ }^{\text {BC549 }}$	0.09	${ }^{80665}$	3.05	${ }^{85523}$	0.18	BU208	0.98	CDOOS5	0.50
2 N 6130	0.55	${ }^{2 S C 884}$	1.50	AF139	0.45	BC1088	0.15	${ }^{\text {BC55 }}$	0.35	${ }^{\text {BDO6 }}$	0.55	B594	0.24	Bu208/02	0.98	CO4052	0.08
${ }^{2} \times 1333$	0.57	2SC685A	2.0	AF178	0.75	${ }^{\text {BCLIOS }}$	0.11	${ }^{8 C 556}$	0.12	80680	0.69	Bras	024	BU208A	0.98	C04053	0.72
${ }_{\text {2N6180 }}$	0.65	${ }_{2 S C 8710}$	0.09	${ }_{\text {AFP190 }}$	0.50	${ }_{\text {BC113 }}$	0.13	${ }_{\text {BC558 }}$	${ }_{0}^{0.09}$	B0681 BDG95	1.34	${ }_{\text {BFF96 }}^{8}$	0.16 0.24	${ }^{\text {BU }}$	1.00	CO4081	0.26
2Nes6	0.39	$2 \mathrm{SC717}$	1.98	AF181	0.46	BC114	0.17	BC559	0.09	BD696	224	BF617	0.95	BU226	2.0	CD4093	0.72
2N698	0.39	${ }^{2 S C 734}$	1.30	AF182	0.50	8C115	0.14	BC560C	0.10	${ }^{30697}$	3.27	88518	0.95	BU312	2.15	C04511	1.00
2N707	0.39	2SC735	1.05	AF188	0.40	BC116	020	${ }^{8} \mathbf{6} 535$	0.18	${ }^{80698}$	1.017	88694	0.20	${ }^{8143268}$	0.75	CDA517	1.05
2 2SA1027	1.15	$2 \mathrm{SC782}$	2.24	AF239	0.48	BC116A	0.53	${ }^{8 C 535}$	0.18	80699	3.17	8757	0.59	Bu326A	1.40	CP5521	16.20
${ }_{2} 2541076$	1.78	$2 \mathrm{SC790}$	1.15	AF279	0.0	BC117	0.18	8cas	0.18	BD700	3.36	87758	0.59	Bu3z6s	225	CV-12E	2.49
${ }^{254359}$	0.36	2Scoob	10.28	Al100	3.65	${ }^{\text {BC118 }}$	0.18	Bcas3	0.18	${ }^{80708}$	2.5	8759	0.30	${ }^{\text {BU406 }}$	135	${ }^{\text {cxa }}$ C184	$\underset{\substack{10.75 \\ \hline 28}}{ }$
	1.05	2SC814 2SC828	125	${ }_{\text {ALIOS }}$	1.75 2.45	${ }_{8}^{\text {BC125 }}$	0.30	$8 C 639$ $8 C 640$	0.18	${ }_{8}^{80707}$	0.55	${ }^{87760}$	0.59	${ }^{\text {Bu }}$	1.29	Cx0950	2.45 8
${ }^{2} \mathrm{SA4} 490$	1.51	${ }_{2 S C 887}$	2.49	AL113	1.0	${ }_{\text {BC12 }}$	0.18	8c879	025	B0710	0.72	8Fe70	0.27	BU412	4.00	Cx108	6.92
2SA493	0.95	2SC926A	129	AN208	3.21	${ }^{\text {BC132 }}$	0.12	${ }^{\text {BC880 }}$	023	80807	0.60	BFF71	0.4	BUA28	1.95	${ }^{\text {cx }} 109$	6.92
${ }^{254528}$	1.03	$2 \mathrm{SCg30}$	0.49	AN210	2.07	${ }^{\text {BCI }} 35$	0.12	${ }^{8 C \times 32}$	0.31	BD099	0.60	${ }^{\text {BFFOO}}$	0.68	BL4264	1.67	${ }_{\text {cx }} 121$	10.75
${ }^{254637}$	1.32	${ }^{2 S C} 5355$	3.75	AN214	2.05	${ }^{81} 136$	0.15	${ }^{8 C \times 33}$	024	808810	0.00	8F907	1.28	${ }^{81427}$	2.67	${ }^{\text {cx }} 13130$	4.95
${ }_{2}{ }_{2 S 4683}$	1.11	${ }_{\text {2SC936 }}$	${ }_{3}^{1.58}$	${ }_{\text {AN2 }}{ }_{\text {A }}$	2.05 5	${ }_{\text {8C138 }}$	0.16 0.30	${ }_{\text {BCx }}{ }_{8}$	0.36	${ }^{80879}$ B0880	0.0 .4	${ }_{8}^{8 \times 979}$	0.58	BU550 Bu508	1.61	cx cx 134 cki	10.75
${ }^{254689} 4$	1.30	2SC940	4.25	AN234	5.08	BCI^{39}	0.32	Вcrio	027	${ }^{80895}$	1.90	BfR29	0.36	BU526	1.65	${ }^{\text {Cx }} 136$	10.75
2SA748	0.6	2SD1138	0.71	AN235	4.90	${ }^{\text {BC140 }}$	0.33	${ }^{\text {BCF71 }}$	0.19	${ }^{80899}$	225	BRF52	0.45	${ }^{\text {Bugiog }}$	1.42	${ }^{\text {Cx }} 137$	10.75
${ }^{254818}$	1.55	2SD198	3.51	AN236	3.00	${ }^{\text {BC141 }}$	028	BC77	0.18	${ }^{\text {B0901 }}$	0.55	Brata	0.35	Buagh	129	${ }^{\text {Cx }} 139$	10.75
2 SA835	2.27	$2 \mathrm{SD234}$	0.12	AN238	4.9	${ }^{\text {BC142 }}$	0.30	BD115	029	Bovas	1.14	Bffig	0.29	BU3060	1.35	C×157	4.40
254940	1.4	250235	0.54	AN239	3.95	BC143	0.8	${ }^{80} 116$	0.03	80vesb	1.14	Bffirl	0.45	${ }^{81} 8807$	1.40	Cx158 $\mathrm{C} \times 170$ (17	3.48
${ }^{254951}$	123	${ }^{250257}$	2.67	${ }^{\text {A N } 2008}$	1.45	${ }_{\text {BC1 }}{ }_{\text {BC14 }}$	0.10	${ }_{\text {BDI }}^{\text {B4P }}$ +KIT	1.19	B0X32	1.50 0.00		0.39	Buaza BuV46	2.19 1.13	cx170 $\mathrm{C} \times 17$	6.92 5.99
${ }_{\text {2SAS362 }}$	${ }_{3.51}$	${ }_{2 S 0292}^{25029}$	2.67	AN241	${ }_{2}^{1.55}$	${ }_{\text {BC148 }}$	0.12	${ }_{\text {BDI }}^{131}$ BD129 + KIT	0.38	${ }_{\text {BDX }}$	3.00	${ }_{\text {Bra }}$	0.37	BUVB4	1.12	${ }^{\text {cx } 506}$	${ }_{8.46}$
2S8337	1.5	2 2S313	2.59	AN247P	2.02	BC148B	0.11	BD132	0.34	BDX5AB	2.37	8F12	0.39	Bunbia	3.15	C×507	6.98
2 28375	3.51	2 2S315	2.67	AN252	233	BC14BC	0.11	${ }^{\text {BDI }} 38$	0.40	BDXEEA	1.98	${ }^{\text {Bra }} 4$	0.39	BUN8A	1.56	Cx758	${ }^{6.92}$
2SB400	0.36	2503250	1.36	AN253	2.70	BC149	0.10	${ }^{80135}$	0.32	BDXE3A	1.95	${ }^{81} 84$	0.36	BUXA	1.47	${ }^{01683}$	235 1 15
258407	2.94	${ }^{2 S 0350}$	7.03	AN282	1.50	${ }^{814488}$	0.11	${ }^{80136}$	0.32	${ }^{\text {BDXEAA }}$	2.37	${ }_{\text {BFW }} \mathrm{BFW}$	0.79	${ }_{\text {BY1 }}{ }^{\text {BY/ }}$	0.11		1.52
258411	3.00	2503504	2.00	AN272	${ }_{5}^{53} 5$	${ }^{8 \mathrm{BC}} 153$	0.12	${ }^{80137}$	0.32	${ }_{\text {B0X65A }}$	2.37	${ }_{\text {Brex }}^{\substack{8 \times 29}}$	0.30	${ }_{\text {BY1 }}{ }^{\text {BY/ }} 127$	0.11	${ }^{\text {DECC2 }}$	1.52 0.36
2S8511 2SE54	1.48	250333 250389	3.25 2.19	AN281 An295	5.52	8C154 BC15	0.12	${ }^{80138} 8{ }^{80139}$	0.41 0.27	B0x76 B0Y20	0.53		0.59	${ }_{\text {BY164 }}$	0.11 0.50	${ }_{\text {E1202 }}$	036 0.25
${ }^{2 S 856}$	124	${ }^{250} 401$	1.57	AN301	330	${ }^{8 C 158}$	0.09	$8{ }^{80140}$	0.33	BDYE/21	4.20	${ }^{B \times 2 \times 85}$	0.25	${ }^{\text {BYY }}$ B76	13.3	${ }^{\text {E5526}}$	022
2SB618A	1.40	2 20551	220	AN302	3.20	BC159	0.14	8014	1.30	B0Y81	1.07	${ }^{8 \times 88} 9$	0.50	BY179	1.42	E5529	022
22^{28681}	2.4	250588A	125	AN303	325	${ }^{8 C 160}$	0.38	80150	1.0	${ }^{\text {BFF } 115}$	0.35	${ }^{8 \times 1} 888$	0.30	BY182	0.95	E8P21	1.17
${ }^{2588895}$	1.70	${ }^{250621}$	$8{ }^{3}$	An306	8.07	${ }^{8 C 161}$	0.38	80157	0.0	${ }^{\text {BFF117 }}$	0.35	${ }_{8}^{8 \times 189}$	0.35		0.42	E99003	0.41
${ }^{2 S 875}$	0.94	${ }^{250657}$	2.54	AN313	3.10	${ }^{8 C 167}$	0.38	${ }^{80159} 8$	0.44	${ }_{\text {BF121 }}^{8 F}$	0.020	8FF50	0.24 0.24	${ }_{\text {BY1 }}{ }^{\text {BY9 }}$	120	ER1400	0.45 10.12
${ }_{\text {2S8861 }}^{\text {2SClios }}$	${ }_{5}^{0.61}$	250731 250811	1.72 3 3	AN315	2.12 5.51	BCIEs BCIE9C	0	${ }^{80190}$	1.45	${ }_{\text {BF123 }}$	0.11	${ }^{\text {BrF55 }}$	0.24	${ }_{\text {BY } 198}$	230	ESN3108P	3.18
2SC1050	3.05	2S0869.	2.40	AN318	4.75	BC170	0.14	B0198	0.56	8F127	0.11	BFY90	0.96	BY201/2	1.36	ESMaze	4.18
IF YOU	T	SEE IT LIS	AS	OR QU	E.	MAKE	MODEL	OCATIO	REM	MBER	DD 0	60p P	HAN	LING	15\%	VAT TO TO	OTAL

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

IF YOU DONT SEE IT LISTED ASK FOR QUOTE. GIVE MAKE MODEL LOCATION. REMEMBER TO ADD 0.60p POST \& HANDLNG. ADD 15\% VAT TO TOTAL

TV TUBE POLISHING

mise

The Kit includes.
Everything you need to polish approx. 25^{*} tubes to a high standard. Detailed uctions on how to do the polishing. All you requlre is an Electric Drill.

Kit Price $£ 45$ inc P\&P and VAT.
*Depends on dapth and are to be polished.
ES TUBE POLISHING
emperature Reprocessing All tubes exchange glass required
king tubes with scratches or small chips, can be POLISHED with our 1 tube £4. 2 or more tubes FREE DELIVERY \star

Send for a fully comprehensive price list and a wall chart of approx 1800 Colour
114-134 Midiand Rd,
WELL VIEW Luton, Beds.

Your Local Tube Stockisi
Woll Viow, Southampton. Tel. 0703331837.
Retach Lid. Northwood, Middx. Tel. 09274-27019
Rushden Rentals Lid., Rushien Northants Tel 0933-314901. 0494-778197 Daventry Rentals, Daventry, Northants. Tel. 0327277436

Please note that we have no connections whatsoev having similar name to ours.

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 100661
6 way interlocked dp. switch 100 K tuning potentiometers
Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by 2^{2} " by $^{\prime \prime} 1^{\prime \prime}$ Ideal for replacement when original parts are obsolete or unobtainable
Template guide supplied for
drilling of your own fascia
design
Range of pre-cut and driled
fascia/mounting fascia/mounting kits for selected TV chassis enabling
our unit to be fitted without further cutting drilling or modification
All orders despatched same
day
DIRECT REPLACEMENT FASCIA/MOUNTING KIT8
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chasais
Type 30-C Replaces 7 piano-key unit as fitted to Dacca console using long perspex illuminated control panel
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectangular push button plus thumbwheel as used in TT

selector f11 + vat

FASCIA/MOUNTING KITS (each) $\mathbb{E} \mathbf{2}+$ VAT
All orders despatched on day of receipt.

ALDERSON-JAMES LTD

160 KINGS ROAD - HARROGATE N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

PROGRAM SORTER IN CHAOS?

SOFTWaR ${ }_{\text {Index }}$

The user guide to microcomputer software

IS THE ANSWER

It's the most comprehensive magazine listing of software programs for the eight leading microcomputers

BBC • COMMODORE 64 • DRAGON VIC 20 • ORIC 1/ATMOS • ATARI 400/800 • SPECTRUM • ZX81
GAMES EDUCATION BUSINESS PERSONAL MANAGEMENT

TRITELL EDMONTON LONDON

SPECIAL RE-OPENING OFFERS

EVERYTHING REDUCED TO LOW, LOW PRICES

Now in stock Philips G11 and ITT Solid State, Decca 80 and 100 series, Pye Solid State. Trading as:

CENTRAL TV, 01-807 4090 HUSSAIN CENTRAL TV

No. 1 distributor in U.K.
Special sale for this month only
G8 $52026^{\prime \prime} £ 6.52022^{\prime \prime} £ 9$. G8 $55026^{\prime \prime} £ 10.55022^{\prime \prime} £ 20$. G9 $£ 18$. Thorn $26^{\prime \prime} £ 5$. Thorn $22^{\prime \prime}$ $\mathbf{£ 1 2}$. Thorn $8500 £ 20$. GEC Hybrid $£ 4$. GEC Solid State $£ \mathbf{2 0}$. Pye Hybrid $£ 4$. Pye Solid State $£ 20$. Chelsea $£ 20$. ITT Hybrid $£ 15$. Decca Hybrid $£ 15$. Also latest stock G11, ITT, Decca 80 and 100 series.
VHS Videos plus Cameras available
Guaranteed all T.V.'s are untouched off the floor. Buy now while stocks last.
Ring us today 021-622 1023 or 021-622 1517
48/52 Pershore St., Birmingham City Centre.

TEL-X BLACKBURN

TELEVISION DISPOSALS

TEL-X BLACKBURN have now moved into larger premises and now offer you a more wider selection of TV's.

Here are a few examples:

Off the pile from	Workers from
$\mathbf{£ 1 5 . 0 0}$	$\mathbf{£ 2 5 . 0 0}$
$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$
$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$
$\mathbf{£ 2 0 . 0 0}$	$\mathbf{£ 3 0 . 0 0}$

Other makes are available. - Min. 4 sets.
WORKING SETS ON DISPLAY

TEL-X BLACKBURN Unit P3,

Roe Lee Industrial Estate, Whalley New Road, Blackburn, Lancs.
Tel. 0254679984

IRISH TV NOTICE

(SUMMER SALE)
We can supply in good working order Bush, Pye and Ferguson from $\mathbf{£ 6 0}$, Philips G.8. From $\mathbf{£ 8 0}$, Decca from $£ 90$, B/White $£ 25$, Re-Gunned C.R.T.s from $£ 40$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

ALL PRICES INCLUDE V.A.T.
We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate,
Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

13 Worcester Street,
Wolverhampton, WV2 4CJ. Phone: (0902) 773122.

VIDEO CASSETTE RECORDER SERVICING COURSE

3 WEEKS FULL-TIME (Sept. 17th to Oct. 5th)

Intensive course intended for qualified television service engineers.

The course combines the advantages of industrial \& academic training \& includes a high percentage of practical work.

Full details:

LONDON ELECTRONICS COLLEGE,
(Dept V6) 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721

HOCKLEY DISCOUNT

 TELEVISIONSMIDLANDS NEWEST WHOLESALERS FRESH STOCK WEEKLY
Bush from£6.00
G8 520 from£5.00
G8 550 from $\mathbf{£ 1 0 . 0 0}$
G.E.C. Solid State£20.00

Pye Solid State $\mathbf{£ 1 8 . 0 0}$
Pye Chelsea $\mathbf{£ 2 0 . 0 0}$
I.T.T. Hybrid $\mathbf{£ 1 8 . 0 0}$

Decca Hybrid $\mathbf{£ 1 2 . 0 0}$
Also latest stock G11. B.R.C. 9000 . Decca 80 \& 100 Series I.T.T. CVC30, 45 etc.

WORKING SETS FROM $£ 18.00$ 100's OF WORKING SETS AVAILABLE RING US NOW 021-551-2233 94 Soho Hill, Hockley, Birmingham B19 1AE

Opening hours 9-7 Monday - Saturday Sundays by appointment.

All sets are Serviced with repolished cabinets ready for sale

Discount on quantity

Some Examples of UNTESTED TVs available

Ex Equipment Panels \& Tubes Available

Deliveries may be arranged to the North and Scotland.
 Ring for quote. Callers welcome.
 419 Barlowmoor Road, Chorlton, Manchester 21 2ER. Tel: 0618618501

 *
TELEVISION TUBE SHOP LTD NEW MONO TUBES

A31-120W/300W	17.00
A31-510W	. 17.00
A34-100W	. 18.50
A38-160W	.18.00
A44-120W	. 25.00
A50-120W	19.00
A61-120W	. 21.00
230DB4	. 25.00
240DB4	22.00
310EUB4	. 19.95
310FXB4	. 17.50
310GNB4A	. 26.50
340CB4/RB4	. 26.00
RIGONDA $6^{\prime \prime}$	14.00
OTHER TYPES STOCKED - RING FOR OUOTE MULLARD COLOUR TUBES STOCKED P.O.A. Please allow 7 days for delivery.	
ALL TUBES TESTED BEFORE SALES AND FULLY GUARANTEED.	
TELEV/SI 52 BAT Tel	TD
CARRIA	

SATELLITE RECEIVING EQUIPMENT
1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Demonstrations by appointment only Dealers wanted HARRISON ELECTRONICS 22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX.
Telephone: Southend (0702) 332338

"NORTH LONDON WHOLESALER'S' TV SALES

Example of working set prices:
GEC Hybrid $£ 15$, Decca $30 £ 24,22^{\prime \prime}$ Philips $520 £ 25$, $22^{\prime \prime}$ Philips 550 £ 35 , Thorn $3000 £ 25$,
$19^{\prime \prime}$ Thorn $8500 £ 30$, Twin Chip Bush $£ 24$. Thorn $8800 £ 39$. Mono from $£ 4$ etc.

Prices for other models or non-workers on request. Re-gunned tubes available. 5 mins. M. 1.
Please telephone us for details on:-
WATFORD 45590

CENTREVISION

MANUFACTURERS SECONDS

Beta Video top make boxed from $£ 149$ + VAT
VHS Sharp Video from $£ 175$ + VAT Ex-rental TV. ITT remote CD752 Stand

+ Meter $£ 120$ + VAT. A1 working.
Thorn 8800 Remote $\mathbf{£ 4 5 + \text { VAT }}$
GEC Solid State from $£ \mathbf{2 5}+$ VAT
Hybrids at give-away prices.

Also:

Tubes, Parts, Stands etc, plus working sets.

Sloper Road, Cardiff.
Telephone: 022244754
Opposite Cardiff City Football Ground

VISIONTEL

 FIRST CHOICE FOR BEST QUALITY EX-RENTAL TVs EXCELLENT WORKING SETS FROM ONLY £25(EXCLUDING VAT)

CLEANED • POLISHED READY

 FOR THE SHOWROOM OR
SILLY PRICES FOR SETS 'OFF THE PILE'

LOW PRICES • FRIENDLY SERVICE FOR CURRENT STOCK DETAILS TELEPHONE US ON 01-328 3787 OR COME ALONG TO 55 KILBURN HIGH ROAD, NW6

20AX APOLLO 30AX
 PHONE FOR TRADE PRICES ON PIL TUBES

Fast Mail Order service to any part G.B. Delivery 2-3 days. Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $£ 20$. $18^{\prime \prime}$ A47-342×343 470 BEB22 ($£ 45.00$) $£ 37.00$ 19" A49-120×/192× £37.00 $\begin{array}{ll}19^{\prime \prime} & \text { A49 - } 120 \times / 192 \times \\ 20^{\prime \prime} & \text { A51 }-220 \times / 110 \times / 161-510 J K B 22 ~(£ 45.00) \\ £ 38.00\end{array}$ 22" A56-120×/123×/140×/410 £38.00 25" A63-120× £39.00 $26 \times \quad$ A $66-120 \times$ A67-120×/140×/150/200 £39.00 $20 \mathrm{AX} 56-510$ £48.00 30AX 56/66-540 \quad £48.50 $20^{\prime \prime}-22^{\prime \prime}$ SOLID STATE COLOUR TVs FULLY SERVICED \& SOAK TESTED. VERY RELIABLE WITH GOOD TUBE £61.00, WITH NEW TUBE $£ 83.00$ inc DELIVERY

061799085424 hour answering service.
43 Clarke Cres, Little Hulton, Nr. Manchester M28 6XM.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, uniess a longe the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by pos in advance of delivery, Television will consider you for compensation if the advertiser should become insolvent or bankrupt provided:

1) You have not received the goods or had your money returned, and
than write to the Publisher of Television summarising the situation not earlier Han 28 days fro
ha day you sant your ordar and hor later han wo mont. Please do not wait until the last moment to inform us. When you write, tell you how to make your claim and what evidence of payment is required.
We auarantee to meet claims from readers made in accordance whth the abov procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarante covers oniy advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to
catalogues etc, received as a result of answering such advertisements. Classified catalogues ent, Ciassified advertisements are excluded.

	IF	TUNER	DECODER	$\begin{gathered} \text { G8/G9 DECODER } \\ \text { IF } \\ \text { COMINED } \end{gathered}$	$\begin{aligned} & \text { OINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00		7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731	8.00		10.00		18.00	10.00	7.00	8.00		
TRIPLERS FOR ALL MODES $£ 3.00$ SPEAKERS $£ 1.50$ CASH P+P 1 PANEL $£ 1.50$ 2 PANELS OR MORE $£ 3.00$ ORDER-PLEASE										
POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!!										

A.B.C. TRADE SALES
 colour t.V.'s

Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's
Prices start from $£ 12$ - Working sets from $£ 20$
Hundreds of Mono T.V.'s from $£ 2.00$ Jap. sets from $\mathbf{£ 3 0 . 0 0}$ Special prices for quantity 9,000 sq. feet Warehouse 83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS. Tel. Wolverhampton 722637

COLOUR TELEVISIONS

PYE CHELSEA - 6 button PYE 723
PHILIPS G8 550
THORN 8000, 8800 THORN 9000, 9200, 9600 Remote Control Working panels and tubes available.

REBUILT TUBES

Delta - In Line - PIL. SOUTHBRIDGE TV CENTRE 120, Selhurst Rd., London, S.E. 25. Tel: 01-771 3535.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only.
THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

[^2]

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ \mathbf{£ 1 . 5 0}$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

TELEVISION

Trade \& Retail supplies of s/h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road,
Brentpark Industrial Estate, Southall, Middx. UB2 5 LL. 01-574 4631, Ext 28

COLOUR T.V.s

THE BEST IN LONDON 200 + TVs WEEKLY

LOADS SMALL SCREEN WORKING SETS TO ORDER - ALL MAKES

WINDSOR WHOLESALE TEL: 01-968 8771.

THE TV WAREHOUSE

Your local trade \& retail suppliers of CTV's special clearance of older models.

THE TV WAREHOUSE,

WOODSDALE COMPONENTS
RANK BUSH MURPHY TRANSFORMERS
Line Ouput
2718 (T703A, T706A)
New (Complete)
Less Focus Module and Rectifier
£20.50

20, T22 (T705A)
$£ 10.50$
T26 (T705B)
Switch Mode T114A/B £9.50
£8.00
Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay Bowtie (12.5 dB
£20.00
Above with built-in Broadband amp.
(27dB) plus stabilised power supply $£ 45.00$

Prompt Postal Service. Add 15\% VAT to all prices DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote. Pinner, Middlesex. HA5-20T. Tel: 01-868 5580
N. Skehan

Agents Office. Callers by appointment onty.

SUFFOLK TV TUBES
 1 Park Road, Hackbridge, Nr. Wallington, Surrey SM6 7ER Tel. 01-669 7825/7826

Are pleased to announce they are now rebuilding customers Japanese and British In Lines including P.I.L. with the fitting of coils as necessary.

Many more tubes available ex stock. Delta's available ex stock, glass not required. Computer and VDU CRT's rebuilt as required.
BRITAIN'S LARGEST INDEPENDENT MANUFACTURER
REBUILDERS SINCE 1958.

EERUICE PAGES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd" Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

GOLCAR T.V.SERVICES (formerly LAvITE LTD.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel. : 0484643273 Callers by appointment on/y.
ritains most reliable source of quality TVs.

* Hundreds of working polished TVs.
* New adjustable TV stands.
* Pye 18" Chelsea's working \& polished $£ 35.00$ in quantity.

Krystal Marketing Ltri, Breedon Cross Storage Dale Road, Selly Dak,

Phone 021-471 3023 Telex 335540-G Ask for Les

TRADE COLOUR TV's
 ALWAYS 200 IN STOCK Phillips 68 from E10
 Pye Chelses from $\mathbf{5 1 5}$
 Avo repairs prompt service scopes etc.
 Colo sr TV's ingood working order from $\mathbf{E 3 5}$. E.G. Phillips G8's 22" $\mathbf{E 3 5}$.
 Ring us for spares and type availability
 Also Videos. V2020 and V2023's etc. ALL STOCK CHANGES WEEKLV
 (0934) $514047 / 512792 / 27560$ P\&R SUPPLIES, Unit 5. Worle Industrial Estate, Weston-Super-Mare. Exit 21 M5.

 COLOUR BAR GENERATORPal Colour Generator with 11 patterns plus sound
Grey scale, Colour Bars, Red, Green \& Blue Raster,
Crosshatch, Dots, Chequer Board, Black Raster, White Crosshatch, Dots, Chequer Board, Black Raster, White
Raster, Half Black \& White
$£ 75.90$.

BLACK AND WHITE GENERATOR Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale
Capacitance Mister Tester $\quad £ 14.25$ moving coil meter $£ 14.75$

Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields, Wolverhampton WV1 30W Tel: (0902) 871563

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement

TELE-MASTER

We are a good reliable supplier of QUALITY colour T.Vs.
We can DELIVER
Try use for SIZE ($18^{\prime \prime}-26^{\prime \prime}$) PHILIPS, PYE, DECCA, BUSH

TELE-MASTER Rotherham (0709) 863614
24 hr Answering Service

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE

 FAREHAM, HANTS.Tel: 0329-235116

TV VALVES COLOUR VALVES PY500/AG5D, PL509/519-E1.50 MONO VALVES ECC82, EFF55, EF183, EFIBe, DY87 PFLLOO. PL36, PL534, PY 800 , PY88 ETC. MONOCHROME VALVES ALL 35ρ EACH ALI VALVES EX-EQUIPMENT \& TESTED ELECTRONIC MALLORDER. 62 Bridge St Ramsbottom, La ccs, BLO 9AG. Tel. (07068A) 3036

SATELLITE TV RECEIVER

Receives 4 GHz band. Ideal for demonstration terminal in U.K. 100 degree Kelvin LNA. $\quad £ 392$ + VAT (+ Carr). LNA/down converter PCB's stocked for the constructor. SAE data.
HUGH COCKS TV SERVICES.
Cripps Corner, Robertsbridge,
Sussex TN32 5RY. Tel. 058083317.

GENERAL
 TALEVISION TRADE SALES
 3-5 UNION ST. DONCASTER

Regular weekly supplies of good quality TVs, all with excellent cabinets, we look after our sets, we don't knock them about, as you'll see if you call, suitable for re-sale or rent. Working or off the pile. We're always happy to see you, whether its for one TV or one hundred and
one.

MONDAY TO SATURDAY 9 to 5.30

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

EX RENTAL C．T．V．＇s \＆REGUN TUBES

RBM，THORN，DECCA，PYE GEC， GRUNDIG，ITT，DHILIPS G8，G9，G11， JAPANESE From $£ 10$
Also all modules from $£ 4$ untested．
STARLITE ELECTRONICS，
80 Como St．，Romford，Essex．
Telephone Romford 752537 London Code 3.

Tpent Tabes 31 RADCLIFFE ROAD，
 WEST BRIDGFORD，NOTTINGHAM

THE QUALITY REBUILDER
PHONE 0602813329
All TUBES CARRY A 2 YEAR GUARANTEE EXTENDABLE TO 4 YEARS

的的的的 $\mathrm{A} 56 / 66-510$（20AX）E40．00號

```
560 O7 B22 &4120
```


JAPANESE TYPES OUR SPECIALITY

VDU MONO INDUSTRIAL TYPES PLEASE PHONE

PETERBOROUGH:

hemesfora:
Redivision Lut, 0504887159

```
Plom2 Valve New ......................................................00
```



```
2Scg13AY Transistor ........90.70 R2008B Transistor............80.80
R20108 Transistor ...........c0.80 SL201B Integrated Circuit £4.00
                VAT INC. ADD 50.50 P&P
```


ACORD ELECTRONICS LTD

``` UNIT 2－3 ENTERPRISE PARK SLYFIELD，GUILDFORD GU1 1RB
```

SECOND HAND Colour TV spares and tubes．Most makes．Telephone Southport（0704）74411．Anytime．

T．V． SPARES，PANELS －AND MANUALS PHILIPS • GRUNDIG
TELEVIEW
01－994 5537
194，Acton Lane，London W．4．

RANK BUSH MURPHY TV PANELS

Repair，exchange，sales service，prompt effi－ cient service．All chassis covered．New PCB available to replace burnt T20 line Panel．We charge only $£ 16$ to repair switch mode power supply．Ring Monday to Saturday and ask for Mr．Kheli．

T．K．Panels Service，
31 Bronte Paths，Stevenage，SG2 OPG Tel．（0438） 61567

LEGAL NOTICE

TRADE MARK 1132859

consisting of SONATA
and registered in respect of＂Radio and television instruments and apparatus；sound recording and and fittings included in Class 9 for all the aforesaid goods＂was assigned on 13 September 1982
by Jacobson Van Den Berg 8 Co（UK） Limited of Jacoberg House， 231 The Vale， London W3 7RN
to Empire Stores（Bradford）Limited of 18 Canal Road，Bradford BD99 4XB．

WITHOUT THE GOODMLL
OF THE BUSINESS IN WHICH THE MARK WAS THEN IN USE

AERIALS

AERIALS AND ACCESSORIES
North Londons Specielist Aoriel Supplier Wholasela and Mal Order．
VHF／UHF antennas，masts，brackets，cable，amplifica－ tion and distribution equipment etc．All types of serial hardware and software supplied．Single and multipoint systems planned and installed
Send 50 p for our new 1983 catalogue and price list． S．C．S．AERIALS
26－28 Port Vale，Hertiord，Herts．SG14 3AB． Tel： 099250478

2 METRE PARABOLIC DISHES

 Glassfibre ConstructionSuitable for 4 and $12 \mathrm{GHz} \mathbf{£ 2 9 0}$
Polar Mounts and Feed Supports Available． Send S．A．E．for Details
SP ANTENNA SYSTEMS， 3 Woolpack Corner，Biddenden， Ashford，Kent TN27 8BU

Tel： 0580291090
AERIAL SYSTEM COMPONENTS：everything you need to instal！multi－outlet systems．Terrific range of filters，diplexers，amplifiers，outlets，cable etc．Use the gear the trade uses and save pounds．Free planning／ advice．Catalogue 50 p （refundable）．WRIGHTS AERIALS， 43 Greavesike Lane，Micklebring， Rotherham．

AERIAL BOOSTERS
 Next to the set fitting

B45H／G－UHF N．gain about 20dbs．Tunable over the compolete UHF TV band PRICE 83.70 ．
AMPLIFIED SET TOP AERIALS for UHF TV，trebles the gain PRICE £9．70．
All Boosters we make work of a PP3／006p／6f22 type battery or ov to 18V D．C．P\＆P 30p PER ORDER．
ELECTRONIC MAIL ORDER， 62 Bridge Strest，Ramsbottom， Lancs BLO 9AG．Tol．（070s82） 3036

Lards Welcome

CLEARVIEW AERIALS

Clearview have pleasure in announcing a full and comprehensive range of signal amplification equip－ ment．For example：low noise electronically remote controlled masthead pre－amp 1.6 db noise．CH．17－69． Set side amplifiers，distribution amplifiers，notch file gain or 4 6db gain．Trade and retail．
Send large SAE for our comprehensive catalogue
CLEARVIEW AERIALS．
173 Kings Road．
Kingston Upon Thames，Surrey．

COURSES

CONQUER THE CHIP ．．．Master modern electronics the PRACTICAL way by SEEING and DOING in your own home．Write for your free colour brochure now to British National Radio \＆Electronics School， Dept．C4，Reading，Berks RG1 1BR．

WANTED

WANTED．Service manuals R．B．M．T20－6．01－776 0284.

NOEL EDMONDS
＂Late Late Breakfast Show＂
Is urgently looking for any bizarre funnies／ bloopers on Film or V．T．（any format）．If you
have a gem please contact
B．B．C．T．V．CENTRE
Wood Lane，W12
Telephone 01－576 1969
Roverse Charges）

WANTED．We will clear any amount of colour sets from small Rental Companies，Hotels，etc．Please phone P \＆R Domestic Electrical Clearance Supplies， Weston Super Mare（0934） 514047.

WANTED

T．V．s，VIDEOS， HI FI，AUDIO

$£ 100,000$ то sereno
If you have a surplus，we would be delighted to make an offer．

Contact：

Mr Fred Tuck
（0934） 413537

OSCILLOSCOPE TUBE type Hitachi 5U PI（F）．New for second hand．HODGE．Tel． 046040645.

WANTED ALBA T1014 semi－portable B／W TV， Phone（0632） 562562

HOME SECURITY

ALTATMS

FREE CATALOGUEI Our Great New Illustrated Catalogue is Packed with Information on Superb Ouality，Profassional Burglar Alarm Equipment．
IT TELLS YOU ALL YOU NEED TO KNOW
TRADE ENQUIRIES WELCOME．

NO CHARGE FOR POST \＆PACKING SEND S．A．E．OR TELEPHONE NOW FOR YOUR FREE COPYI

A．D．FIECTRONIGEm SECURITY MANUF ACTURERS 217 Warbreck Moor， Aintree，Liverpool L9 OHU Tel： 051.5238440

EERUICE PAGES

SERVICE SHEETS

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock. Colour $£ 2.00 \quad$ Mono $£ 1.50$ (post free) Manual prices on request.
Send stamped envelope for free catalogue and enquiries
SANDHURST TV SERVICES (MAIL ORDER) 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

\author{
30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE
 TV Monos. Radios, £3.00. Tuners 23.00. Tape Recorders, Record Players £3.00. Transistors £3.00. Car Radios sheets are not in stock. Circuits $£\}$-colour All TV Sheets agrams $\mathbf{8 3 . 0 0}$. Also Colour available. State if circuit will do if length. All Sheets $£ 1$ except colour. SAE please. Old Valve Radios $£ 3+\mathrm{SAE} 9 \times 3$. Ensure payment with order.
 C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.
 (MAIL ORDER)

}

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request S.A.E with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

TANATON ELECTRONIC LTD.

1A Courtenay Place. Walthamstow E17
Service sheets + manuals new pack of 10 Mixed radio/TV music centres $\mathbf{£ 5 . 0 0}$. 3K5 convergence PCB blank $£ \mathbf{£ 2} \mathbf{5 0}$. 8 K 5 power PCB blank $£ 1.50$. Mixed bag components R.C. TR £2.00. Mixed bag coloured stereo knobs $£ \mathbf{1 . 5 0}$ 2N3055 unmarked, 20 for $\mathbf{£ 1 . 5 0}$. High speed switching diodes ESM 181-800R, 10 for $£ 1.50$.

Cheque or postal order made payable to Tanaton Electronic Ltd.

Add $60 \rho \mathrm{P}+\mathrm{P}$.

TECHNICAL INFO SERVICES

76 Church St-Larkhall-Lanarks
Giant TV \& VCR DIAGRAM MANUALS
Brit CTVs
3 vols $£ 45$
Vol. 1 Decca G.E.C. ITT
Vol. 2 Philips Pye Redif. $\quad \mathbf{£ 1 7}$
Vol. 3 Rank Bush Thorn $£ 17$
Foreign CTVs (now updated) 2 vols $£ 32$ Mono (Stand + Port) 2 vols $£ \mathbf{£ 3}$ Early VCR (VHS/Philips
f17
VCR later models inc. Betamax
f17
Domestic Equipment Exploded Diagrams
in 2 huge binders for
£32 New T.V. Rep. Manuals $£ 7.50$ each 1983 Brit. CTV or Foreign CTV 4 Complete set of 15 TV Rep Mans for $£ 105$ Unique T.V. Repair course $£ 9.50$ The only practical radio servicing and repair course
f9.50
Large SAE brings FREE 50p magazine inc. service sheet/details of unique TV. publications. Any quotation plus price ists, etc.
Full size service sheets $\quad \mathbf{£ 2}+$ I.s.a.e. CTVs/Music Centres f 3 + I.s.a.e. Worlds largest collection of service manuals 1930 to date. From $£ 4.50$ to $£ 35$ each.
e.g. Autovox/G8/A823 £7.50 each Integrated TV repair system £195. Contains over £250 normal prices.

FOR FAST QUOTES RING 0698883334

TO ADVERTISE IN THIS SPACE RING MANDI 01-261 5846

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stork. Prices on request BELLS TELEVISION SERVICES, 190 Kings Roäd, Harrogate, N. Yorkshire. Tel. 0423 55885

COMPLETE FULL-SIZE SETS any published service sheets $£ 2+$ LSAE except CTVs/Music Centres from $£ 3$ + LSAE. Manuals from 1930 to latest. Quotations, free 50 p magazine, price lists, unique technical publicathons for sale. Repair data/circs almost any named TV/ VCR $£ 8.50$ by return. TIST, 76 Church Street, Larkhall, Lanarks ML9 IHE. Phone (0698 883334).

RADIO \& TELEVISION servicing books 1974-1982. Mint condirion inc. rare $75 / 76$ vol $£ 100$. Tel. Durham 719400.

PLEASE MENTION TELEVISION WHEN REPLYING TO bOX NUMBERS

MISCELLANEOUS

BURGLAR ALARM EOUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532

BUSINESS/PROPERTY FOR SALE

COMPLETE TUBE REGUNNING PLANT. Electric ovens. In good working order. Free training available. Tel: 0582410787

FOR SALE

THORN 9600 . Fault guide program 48 K spectrum E.50 p \& p inc. S. WARLAND, 163 Victoria Street, Gillingham, Kent. Medway 576135.

N1700 SPARES, including heads, circuit units, tuner motors, miscellaneous items. Telephone 074632-406.

TRADE TELEVISION SUPPLIES, now available at Bournemouth: from $£ 15$ (minimum 5 sets). Some working sets available £25. Telephone Bournemouth 38081.

FOR SALE A66-510X, A66-120X used, seen working. Offers: Barter 01-776 0284.

JAPANESE COLOUR TVs, Panasonic. Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished - 10 trade only. J. M. PEARSON TELEVISION 0484 863489.

PRACTICAL TELEVISION 220 copies 51-72. Practical Wireless 1957 only. Offers: Yatton 832472

340 NEW individually boxed speakers, $5^{\prime \prime}$ ceramic 3Ω $£ 200$. Will quote for lower quantities. Tel. Bishop Auckland (0388) 604669

REBUILT COLOUR TUBES DELTA TYPES	
Example Prices All sizes up to $22^{\prime \prime}-£ 28.00$	
All In Line P.I.L. Mono Gaming Machine C.R.T.s	
${ }_{\text {20 }}^{\text {20 AX }}$	Fast U.K. Delivery30 AX E 48.00 Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668 Big reductions on Contract Orders Home or Overseas. Wholesalers Required in certain parts of the U.K.	

TO ADVERTISE IN THIS SPACE RING
 MANDI 01-261-5846

A.B.D. TELEVISION LTD.

100 's Colour TV's in stock in excellent condition-working sets for the trade. Fresh stocks weekly Untested - complete (Majority working)
Mono TV's
Bush 22"-26" CTV Solid State £5
Hybrid Decca - ITT £12
Philips G8-550 £18
G.E.C.
£20
Philips G11, Bush T20, ITT CS 600 Prices on quotation
Many other makes to choose from
Refurbished Sets - Showroom Condition Ready to Retail
BRC 9000
Bush T20 £75 ITT CS 600 £85
WE ARE OPEN SEVEN DAYS A WEEK Unit 3 \& 3A, Meadow Trading Estate, Meadow Lane, Nottingham, NG2 3HO. Nottingham (0602) 864627

GRUNDIG, working colour from $£ 40.00$. Reconditioned panels from $£ 4.00$. Remote control handsets wanted. Reconditioned telequipment oscilloscopes. Repairs, spares, manuals. OCHRE MILL, 0785 814643.

TRADE ONLY
YORKSHIRES LATEST OUTLET: Ex Rental Change Over TV's
Colour fromf15.00 Mono fromf 2.00

TELEFIX

PROVIDENCE WORKS
Ellinthorpe Street, Wakefield Road, Bradford 4. Telephone: 0274480281 or 733373

NORTHERN IRELAND DEALERS

We have the best value in secondhand televisions. And our low, low prices are second to none. Philips 550, Decca 100/80/302, Pye 741 series and many other makes available.

Prices: Non workers (complete) from $\mathbf{E 2 0}$. Guaranteed workers from $£ 38$.
We deliver bulk orders anywhere in Northern Ireland. New loads arriving regularly so phone now for latest stocks.

SM ELECTRONICS

11 Sandholes Road, Cookstown N. Ireland. Tel: Cookstown (NI) 06487/64277.

SPECIAL CLEARANCE of G8 $\mathbf{2 2}$ inch from $\mathbf{£ 1 4 . 5 0 , ~ G 8 ~} 26$ inch from $£ 15.00$

Guaranteed-Complete Sets from $£ 10.00$

 Trade Workers from £25.00 Panels By Post Mono's from $£ 3.00$ from $£ 1.00$ Stands - Aerials - Accessories Etc.
WORKING SETS

Phone us first for quantity, we can give an
UNBEATABLE PRICE!!!
OPEN 5 DAYS -
Phone:
Baldock 894905, Hitchin 31644 SECTION THREE, UNIT FOUR, SERLCOMPLEX, LONDON ROAD, BALDOCK, HERTS.

Order form

Please insert the enclosed advertisement in the next available issue of Television
Heading
Signature
Date ..
No. of ins.......... Chq/PO
Classified Advertisement
Department,
Room 2612,
King's Reach Tower,
Stamford Street,
SE1 9LS.
7/84

TYETSTED
PRESENTS AN
UNBEATABLE OFFER
E26 ALL DELTAS ONE PRICE
E4D ALL PILL. ONE PRICE

* SPEAAL CRT POLISHING SERVICE Only \&5
WHILE U WAIT
* ALL DELTA SIZES FROM STOCK
* DISCJUNT FOR ORDERS OF 5 CRTs OR
OVER
* FREE DELIVERY wITHIN 20 MILE
RADIUS OF MAIDSTONE
Ring Now
Maidstone 872400
or visit our factory.
Unit 32, Branbridges Ind Est.
East Peckham, Kent.
* Agents required in South
Prices do not include VAT

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services
on Cambridge 69215 or Ely 61462

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

NWELECTRONICS 25 Years suppiyng The trade

$\begin{aligned} & \text { New low. } \\ & \text { Summer prices } \end{aligned}$	
BTGEOUATMYCO	V's
PHILIPS 520	\& 15
PHILIPS 550	£28
GEC 2010 Plastic or Wood	£25
HITACHI 19" Push Button	£35
SANY ${ }^{\prime}$)	£35
BUSH 2 CHIP	£ 15
BUSH 1 CHIP	\& 10
THORN 9000	£45
BUSH 718	$£ 35$
BUSH T 22 Exc. Cond	$£ 65$

OTHER MODELS IN STOCK INCLUDE: SONY, ITT, PYE, MITSUBISHI, etc. MONO TV's
MANY MONOTV's FROM $£ 2 \mathrm{EACH}$
WORTMGTV's TO ORDER

EXCELLENT CABINETS READY TO SELL OR RENT
BUSH 2 CHIP
PHILIPS G8550 £43
PHILIPS Gll ${ }^{£} 85$
BUSH T20. T22 £ 75
GEC 210 Plastic or Wood £38
BUSH 718 £45
ADJUSTABLE STANDS EACH £3
LATER MODELS: PHONE FOR QUOTATION
WHITE GOODS
HOOVER TWINS FROM £7
HOTPOINT 1460 FROM $£ 10$

AUTO's

$$
\text { FROM £ } 15
$$

SPARES! SPARES! TV PANELS

	1 \|	Dftedotr	1.NF. $1 / 1 /{ }^{\text {a }}$	PM WF.R	(onverici	VIIte 11	FRAMOT. T3	
BUSH2 (HIP	(\|x		स(1)	bim)	(\%)	($\mathrm{ma}^{\text {a }}$		i(m)
3(4)/ $35(\mathrm{~K})$	- 1 ki	$4(1)$	4\|x		(1a)	5(x)	(1)	n(1)
(\%	5 (*)	- (1)	$14(4)$	x(c)	ik\|		ith	
(iEC 21119	1010)	$5(x)$	12 (m)	tix)	5 (m)	[141	5(m)	
BuSH718	$x(1)$	151410	$\underline{51 m}$	\| 1×1	514)			
BlSHi TEO	\% (\%)	15 (4)	(1)(\mathbf{H}^{1}	201(4)	S(m)		17\%	

CASH ONLY - DELIVERY CAN BE ARRANGED YOU CANREACH USFASII.Y FROM ANYWHFRF
(0274) 688458

Unit 12. Wharfedale Road OPEN MON-SAT 9-5.30 Mbilfi Furoway Esiate Bradford

Don'i forget! We are open all dav Saturdan!

[^0]: OUANTITY
 DISCOUNT Ask for detai

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f11, overseas (surface mail) f12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: LONDON'S LARGEST TELEVISION WHOLESALER..
 with over $4 \frac{1}{2}$ thousand sq . feet.

 ## "TELEMANN"

 8-10 RHODA STREET, (Off Bethnal Greer, Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

 ALL MAKES IN STOCK AND GUARANTEED COMPLETE

 The only wholesaler with a guaranteed single price. If the sets work or not our price is the same! Free delivery to the London area.

 Telephone 01-739 2707 NOW!

 Philips VCR 1700 with new boxed 11/ hour cassette and mains lead $£ 45$. Single standard mono's $£ 3$.

 PHILIPS 22" (Model 520) Parcel of ten $\mathbf{£ 1 5}$ PHILIPS 22" (Piano Key 550) Parcel of ten $\mathbf{£ 2 0}$ JAPANESE MODELS 18"-20" £30

 FREE DELIVERY TO THE LONDON AREA!

