

PULI-OUT

\square

$$
\text { Hoici } x \cdot 0 \cdot \text { diseses }
$$

NOME EHW SYGWIM

Interested in Television Servicing?
 Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send large S.A.E. for list of Quantity, Prices and Clearance Lines etc.

Vol. 33, No. 7
Issue 391

COPYRIGHT

${ }^{\text {© IPC Magazines Limited, 1983, Copyright in }}$ all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

345 Leader

346 Long-distance Television
by Roger Bunney
Reports on DX reception and conditions and news from abroad. Also an initial investigation into the use of active aerials for DX use.
351 The Further Adventures of Tiny Tim by Les LawryJohns
All sorts of things are sent to try Tiny Tim. TV sets
seem to be only a part of his troubles.
352 VCR Clinic
Reports on VCR faults and servicing from Mike Phelan, Richard Roscoe and Michael J. Cousins, T.Eng. (C.E.I.).

354 Fault Report
TV receiver servicing problems reported by Richard Roscoe, George R. Wilding and Mick Dutton.

356 Teletopics

News, comment and developments.
358 Test Report
by Eugene Trundle
The Bi-Pak LOPT tester is unique in using a dynamic testing technique. It has been tried out on a wide variety of LOPTs, both good and dud, and also insitu.
360 Vintage Video
by David K. Matthewson, Ph.D., B.Sc. A look at Baird's ideas on the subject of video discs - Phonovision. The discs were on sale for a short period in the early thirties.
361 A New EHT Circuit
by George R. Wilding
When Telefunken came to design the 415/615 chassis they wanted to use the simplest possible LOPT. This led to the adoption of an interesting new e.h.t. rectifier arrangement.

362 Routine TV Receiver Tests
by S. Simon
How to deal with the Thorn 9000 chassis, with its unique Syclops power/line output circuit.
VCR Fault Guide
Colour supplement illustrating basic VCR fault symptoms. Photographs and text by Mike Phelan.
365 Frequency Counter-Timer, Part 2
by Tony Jenkins, G8TBF A start on the constructional details.
367 Next Month in Television
368 Letters
370 Experimental 4GHz Converter
by Hugh Cocks
An experimental single-step converter for the 4 GHz satellite band, featuring image rejection.
373 VCR Servicing, Part 17
by Mike Phelan
Concluding the account of the mechacon panel in the Ferguson 3V23/JVC HR7700 VCR.
376 Service Bureau
377 Test Case 245

OUR NEXT ISSUE DATED JUNE WILL BE PUBLISHED ON MAY 18

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 80.50$
Standard Case ($\left.10 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{\prime^{\prime}}\right)$
$£ 5.50$
De Luxe Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{\prime^{\prime}}\right)^{\prime}$
88.50

Optional Sound Module (6 MHz or 5.5 MHz)
84.50

Built \& Tested in De Luxe Case including Sound Module
SFECILTETMT
$£ 120.75$
1 RFECAL TES
Post/Packing $£ 2.50$
$\left[\begin{array}{c}\text { TELEVSION' } \\ \text { DEC. } 1882\end{array}\right.$ All above prices include VAT 15%

PAL COLOUR BAR GENERATOR (Mk 4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £34.50. DELUXE CASE £8.50. BATT HOLDERS $£ 3.20$ OR MAINS SUPPLY KIT $£ 4.80$ (Combined P\&P $£ 1.80$).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $\mathbf{f 6 6 . 7 0}+\boldsymbol{£ 1 . 8 0} \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80$ P \& P. VHF MODULATOR (CHI to 4) FOR OVERSEAS $£ 5.50$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control £170.20 p.p. $£ 2.80$
MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES
BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF
TELEVISION MAGAZINE PROJECT PARTS NEW COLOUR PORTABLE TV
TV PATTERN GENERATOR SMALL SCREEN MONITOR MONO PORTABLETV LARGE SCREEN COLOUR TV PHONE, CALL, OR SEND FOR LISTS WORKING MODELS \& PANEL TEST SERVICE AT 172 WEST END LANE.
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS

SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, AT REDUCED PRICE $£ 57.50$ p.p. $£ 1.60$
PHILIPS-PYE GHI TYPE TEEFTEXT DECODERS $£ 34.50$ p.p. 11.60 . GELETEXT 23 BUTTONDE LLXE HANDSET WHTH-5 YOS, GABLE 27.80 p.p. 11.20 . XMU STAB. POWER SUPPLY 54.40 p $p-44.20$.

CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES
PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET
£12.65 p.p. 60 . (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45 p .
UHFHENAL STRENGGHI-MEPER-KIT $x 21.60$ (VHF version also available). ALUM CASE $£ 2.60$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO £29.40 p.p. $£ 2.00$.
BUSH A823 POWER $£ 1,00$ BASIC PCB. IN FIBREGLASS 66,40 p.p.
BUSH 2718 BC6100 SERIES IF PANEL 85.75 p.p. 90 p .
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ D.D. 90 D .
DECCA "Bradford" T.B. POWER ex rental $£ 5.75$ each p.p. $£ 1.40$.
DECCA 80, SERIES, IF FRAME T.B. $£ 5.75$ each p.p. $£ 1.40$.
DECCA 80, 100 LINE T.B. salvaged $£ 11.50$ each p.p. $£ 2.00$.
GEC 2110 Decoder, RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$. GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $\mathbf{£ 5 . 7 5}$ p.p. $£ 2.00$
THORN TX9 PANELS salvaged ex factory for spares incl LOPT \& mains transformers $£ 11.50$ p.p. $£ 2.80$.
THORN TX 10 T.B. PANELS salvaged ex factory for spares $\mathbf{\Sigma 1 7 . 2 5}$ p.p. ${ }^{83.00}$
THORN $\mathbf{3 0 0 0}$ LINE T.B., POWER PCB $\mathbf{£ 5 . 7 5}$ each p.p. £1.30.
THORN 8800 Varicap channel selector \& front control unit $£ 437$ p.p. $£ 1.80$. THORN 8000/8500 IF/DECODER PANELS salvaged £3.70 p.p. £1.80. THORN 8000/8500 FRAME T.B. PANELS salvaged/spares $£ 2.88$ p.p. $£ 1.40$. THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT
PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$. PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1$.
THORN 9000 IF/DECODER PANELS Salvaged $\mathbf{5 . 7 5}$ p.p. $\mathbf{~ 1} .60$.
THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p
PHILIPS 210,300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 1.75$ p.p. $£ 1.40$. G8 IF Panels for small spares $£ 1.15$ p.p. 95 p.
G8 Decoder panels salvaged $£ 4.25$. Decoder panels for spares $£ 2.00$ p.p. $£ 1.40$. G9 Scan Panel. Basic PCB in fibreglass $£ 16.68$ p.p. $£ 1.80$.
VARICAP, U321, U322, ELC 1043/06 ELC $1043 / 05$ £7.82 p.p. 80p; G.I. type (equiv. 1043/05) 84.00 p.p. 60p. MAKERS VARICAP CONTROLS Pye CT200 4PSN 88.60 , A823 4PSN 55.50 , Decca 6PSN 86.70 p.p. 80p. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2.10 p.D. £1.00.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $\mathbf{£ 4 . 4 0}$ p.p. 95 p.
VARICAP UHF-VHF ELC 2000S $\mathbf{1 9 . 8 0}$. BUSH TYPE $\mathbf{~ 7 7 . 8 2 ~ p . p . ~} 85$ p.
VARICAP VHF MULLARD ELC 1042 87.95-p.p. 80p.
UHF/625 Tuners, many different types in stock. DECCA Bradford 5 position £2.88 p.p. $£ 1.80$ etc.
LOPTS NEW \& GUAR. P/P Mono $\mathbf{1 1 . 3 5 p}$, Colour $\mathbf{5 1 . 4 5 p}$, Bobbins 80p.
BUSH 161 to 186 (twin panel)........ $\mathbf{E 6 . 8 0}$
BUSH, MURPHY 774 series......... $\mathbf{5 9 . 8 0}$
FERG. HMY. MARCONI, ULIRA
$950,1400,1500,1580,1590,1591166.80$
THORN 1600 , 1615 , 1690, 1691 £10.50
GEC 2000 to 2038 series 17.80
GEC series 1 \& 2 2,20
INDESIT 20/24EGB 28.80

PHILIPS 19TG 170, 210, 300...... 88.80
PYE, INVICTA, EKCO, FERR
368, 169, 569, 769 series.
SPECIAL OFFER
DECCA 20/24, 1700, 2000,2401 . 54.40
GEC 2114J/Junior Fineline $\mathbf{\Sigma 3 . 2 5}$
KB VC ELEVEN (003) ...
KB VC1 $\mathbf{2 3 . 2 5}$

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO F.OPTS.
TRIPLERSFullange available. Mone \&-Cotour:-
TRANSDOGGTQRS suitable for G8, A823, Bradford etc. E1.72 p.p. 60 p. 6.3V CRT Boost Transiomers $\mathbf{5 3 . 8 0}$, Auto Type $£ 3.20$, p.p. £1. 20 .
CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstased Tuhe Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampated British Rail Stns. (Richmond, Broad St) (St. Pancras, Befford)
W. Hempattaad (Brit. Rail) access from all over Greator London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11.
ALL PRICES INCLUDE VAT AT 15\%

P. V. TUBES

 your order38A WATER STREET, ACCRINGTON, LANCS BB5 6PX.

QUALITY REBUILT CRTs

and PROJECTION SYSTEMS ALL HITACHI CRTs
including the 560DZB22 and 510VLB22 series

SCOTLAND \& N ENGLAND T.S.R. Vacuonics Ltd., Tom Stewart Lane, St. Andrews, Fife. Scotland. Tel: (0334) 74035

All In-Line CRTs whatever make.
All monitor CRTs.
All gaming machine CRTs.
SONY, HITACHI,
DZB/VLB glass bought.
ONE YEAR GUARANTEE WITH A FOUR YEAR OPTION REBANDED FOR MAXIMUM SAFETY

Available NOW!
only from sole distributors

Express T.V. Supplies

THE

OTV TUBESHOP

LONDON \& HOME COUNTIES OTV House, 144 Lea Bridge Rd London E5 9RB Tel: 01-985 6111

You won't better these BTC bargains!

Top quality sets to set you up for the winter televiewing boom.
Brighten your winter profits with better sets from BTCP.
HYBRIDS

PHILIPS G8's
2-CHIP BUSH/MURPHY
GEC 2110,8500
3500 VARICAPS
P/BUTTON HITACHI's 18" PHILIPS
1.CHIP BUSHIMURPHY

THORN 3000, THORN 8000 18" PYE's
ROTARY JAPS
LATERS SETS
i.e. THORN 9000

TOUCH TUNE SETS ETC.

UNTESTED
SINGLES
FIVES
TENS
SOLID STATES

UNTESTED	
SINGLES	$£ 25.00$
FIVES	$£ 20.00$
TENS	$£ 18.00$
UNTESTED	
SNGGLES	$£ 20.00$
FIVES	$£ 18.00$
TENS	$£ 15.00$
UNTESTED	
SINGLES	$£ 35.00$
FIVES	$£ 32.00$
TENS	$£ 30.00$

£15.00 £ 12.00 £9.00

WORKING
SINGLES FIVES
TENS
WORKING
SINGLES
FIVES
TENS
WORKING
SINGLES
FIVES
TENS working
SINGLES
FIVES
TENS
$£ 25.00$
£20.00
£18.00
£35.00
£30.00
£28.00
£30.00
$£ 28.00$
£25.00
$£ 45.00$
$£ 42.00$

SINGLE STANDARD MONO TV's IN BATCHES OF 20 @ $£ 4.00$ EACH

CASH \& CARRY SPECIAL SERVICE TO THE TRADE OR ASK ABOUT SPECIAL DELIVERIES ON LARGE QUANTITIES.

OPENING TIMES MON-FRI 9.00-12.00/1.00-5.45 (CLOSE 4.30 SAT)

BRIARWOODTRADINGCOMPANY

BRIARWOOD TRADING COMPANY LEGRAMS MILL, SUMMERVILLE ROAD, BRADFORD BD7 1NH

EDITOR
John A. Reddihough

ASSISTANT EDITOR
 Luke Theodossiou

ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER
Roy Smith
01-261 6671

CLASSIFIED
ADVERTISEMENTS
Barbara Blake
01-261 5897

Technical Prospects

One thing about television is that it never stands still for long. That prevents us getting either bored or complacent. Even in the days BC (before colour), there was a constant succession of developments - flywheel sync, vision a.g.c., new valve ranges, the use of higher and higher frequencies and so on. AC (after colour) brought solid-state circuitry in many forms, the intrusion of digital techniques for teletext and remote control purposes, and the whole gamut of video technology. What next?
It seems reasonably safe to suggest that digital techniques will play an increasingly large role in TV receivers. The use of digital techniques in the timebase generator stages will give rock-steady sync, while converting the video signal into digital form will enable almost anything to be done to it depending on the amount of digital memory available in the receiver. The BBC have promised us digital sound signals for their DBS services, and are investigating the use of digital sound for terrestrial two-channel transmissions.

A digital field oscillator is already in use, as mentioned in our report on the Thorn 1696/1697 chassis in the February 1983 issue - it's in the Monomax i.c. Some eighteen months ago, in November 1981, we reported on the set of LSI and VLSI chips being developed by ITT in W. Germany to provide digital TV receiver signal processing - the ITT Digivision system. The i.c.s were presented at the 1981 Berlin Radio Show and the 1982 Paris Components Show. Sets using the i.c.s are to be demonstrated at this year's Hanover Fair, Berlin Radio Show and the Great Home Entertainment Spectacular to be held in the UK later this year. Digivision ITT sets are expected to be on sale in the UK early next year. They are likely to be up-market models, though it may be only a matter of time before the technology appears in simple, no-frills receivers. It all depends on relative costs as the production of digital TV i.c.s increases.

ITT are not alone of course in developing chips of this sort. Others treading the same path include Philips, RCA, Sony and Hitachi. How long will it be before most TV chassis use digital signal processing? It's probably relevant to recall the long time it took for discrete component i.f. circuitry to become obsolete. I.F. i.c.s have been around for many years, but it took quite a time before performance and cost swung decisively in favour of the i.c. approach. The digitalisation of TV receiver signal processing is likely to follow a similar pattern.

The conventional analogue approach is perfectly satisfactory of course - so are thermionic valves for that matter! - but just think about what can be achieved once the video signal has been converted to digital form. First it can be regenerated - converted to nice square pulses to remove signal distortion effects. Then features such as picture-within-a-picture, picture zoom, still pictures and slow motion become possible. These are probably rather unnecessary - you don't want to spend your time playing with the set rather than viewing, while reports on VCR use suggest that such features are seldom in practice used. More interesting is the prospect of using digital technology to double the number of lines to give high-resolution pictures. One of the problems here is that a highresolution tube would be required to display the picture, though computer requirements have already led to much work being done in this field.
In ten years then the average domestic telly could be a precision instrument compared to today's set. What else? Cable/DBS will extend the range of programmes available, though the extent of the likely increase is open to question. The present problems with TV-am underline the fact that merely filling an empty slot in broadcasting time is of questionable worth. You've got to substantially increase the number of programmes made for television if a real increase in choice is to be provided. Programme production is an expensive business however, and since viewing habits long since reached saturation point the more programmes transmitted the smaller the prospective audience for each. It remains to be seen how the economics will turn out, though the difficulties experienced by US cable operators suggest that cable is not going to be the bonanza it's been made out to be in some quarters.
It's also interesting to note that delays in the establishment of cable networks - the necessary legislation will take time, and an election will probably intervene, while the services have yet to be sold to the public - mean that few people will have the cable at their doorsteps before DBS starts. The cable enthusiasts had hoped to get going before the advent of DBS, and to offer the DBS services via cable. As it is, it's more likely that
the public will be installing DBS dishes and then finding they've enough choice without cable's offerings - especially with the amount of material available on tape and disc. Much was made of the prospects of selling cable technology abroad during the great cable debate - but we might do just as well by selling dishes and microwave electronics.
This leaves the display device. We've not heard so much about flat-screen displays recently. They seem to be as far off as ever. If high-resolution tubes come into wide use the day of the flat-screen display will recede even further. The c.r.t. may be bulky, but there's no more efficient picture source than a phosphor screen activated by an electron beam.
The Readers' PCB Service continues in operation - details as given on page 265 of the February issue. Boards for the Frequency CounterTimer project will be available, also for the In-Circuit Transistor Tester (see next month).

PCB SERVICE

Long-distance Television

Roger Bunney

FEBRUARY 1983 was a relatively quiet month, the only events of note being a tropospheric lift over the 13-19th (peaking on the 18-19th) and enhanced auroral activity on the 4-5th. A very slow moving high pressure system gave almost two weeks of freezing temperatures during the month, with clear skies - the classic condition leading to tropospheric propagation. As the pressure started to fall, so the signals rose. The midlands/north of the UK seem to have faired better than the south for European TV reception. Indeed Ryn Muntjewerff (Holland) reported "a little tropo" on the $16-17$ th which would normally have meant reception of a considerable number of stations. In his case Band III and the u.h.f. bands were open, producing CST (Czechoslovakia) chs. R10/R38, while here at Romsey (Hants) there was improved reception from the east (i.e. France and the Low Countries, and just W. Germany), but nothing on the scale of the trupospheric opening in January.
Reports from Cyril Willis (Cambridge), Garry Smith (Derby) and Iain Menzies (Aberdeen) indicate that things were better in the north. Garry Smith for example received several W. German stations and DFF (E. Germany) at good strength from around 2100 onwards on the 15 th. Following this peak (15th) things died down until the 18 th, when Band III and the u.h.f. bands opened up, giving W. and E. German signals and, at Cambridge, two European ATV stations (DC40N and ON6LM, W. Germany/Belgium). At Derby reception was mainly from Belgium, France, W. Germany and (just) E. Germany (at u.h.f.). The peak occurred on the night of the $18 \mathrm{th} /$ early 19th - when Cyril Willis rose at 0500 he was rewarded with TVP (Poland) on ch. R30. Conditions fizzled out during the morning, and by 1200 things were dead. It's interesting to note that several enthusiasts received forces TV stations - AFN ch. E34 (Shape) and various BFBS outlets - during the period, the main ones being on chs. E28/48. Another small lift occurred on the $23 / 24$ th, experienced mainly in the north - Iain Menzies reported reception of a large number of NRK (Norwegian) Band III transmitters at good strengths.

Intense auroral activity was logged throughout the UK on the $4 / 5$ th, mainly in northern parts, though there was some evidence along the south coast. All the Band I channels were affected and Cyril Willis noted suspected System M signals on chs. A2, 3, 4. Both early and late phases were observed on the 4th, but the 5th was less intense and only the early phase seems to have been seen.

There was the usual meteor scatter reception - short signal bursts of anything from one to ten seconds. The signals generally logged here are from SR (Sweden), CST and TVP (Poland) on chs. E2/R1. For those with no experience of this mode of propagation, the procedure is to leave the set tuned to one of these channels, with the correct line and field settings, and eventually short bursts of picture information will be seen - the best time is early morning, though MS occurs throughout the twenty four hour period.

There were SpE signals on the 7th, during the evening (2100-2300), on chs. E2/E2a/IA/E3. The only identified programmes were from RAI (Italy) on ch. IA, the others showing mainly skiing.

My thanks to Cyril Willis, Iain Menzies, Garry Smith, Arthur Milliken and Ryn Muntjewerff for sending in reports of their reception.

News Items

Eire: A new list of RTE TV transmitters has been issued by RTE (available from Reception Investigation Dept., RTE, Dublin 4). The main transmitters and the relays with over 1 kW e.r.p. are as follows.

Main transmitters	RTE- 1 channel	RTE-2 channel	Vision e.r.p.
Three Rock (Dublin)	29	33	25
Cairn Hill (Longford)	40	43	800
Kippure	H	-	100
Maghera	B	H (V)	100
Mt. Leinster	F (V)	I (V)	100
Mullaghanish	D (V)	G (V)	100
Truskmore	I	G	100
Clermont Carn (Co. Louth)	52 (V)	56 (V)	250
Holywell Hill (N.E. Donegal)	23	26	20
Relays			
Achill	E	H	1
Cahirciveen	F	I	1
Castlebar	D (V)	F (V)	1
Clifden	D	F	1
Fanad	F	D	2
Monaghan	D	-	1

Polarisation is horizontal unless otherwise indicated (V $=$ vertical).

Spain: The "Euskal TeleBista-TV" Basque service is now in operation with studios at Durango (Vizcaya). The Philips PM5544 test pattern with ETB identification in the upper black rectangle is used. Transmitters are: Durangesado ch. E33; Bilbao ch. E35; Vitoria ch. E42; Jaizkibel ch. E51.
E. Germany: The Helpterberg ch. E3 DFF-i transmitter (an old friend of DXers!) has now closed, the service being transferred to ch. E37.
SEBC: As mentioned last month, this stands for Southern European Broadcasting Corporation. The mystery of the ch. A2 TV transmissions from the same direction now seems to have been solved. Duncan Fraser reports that there's an AFRTS transmitter at the base in Vicenza, Italy. Readers will recall that ch. A2 transmissions have been received via SpE from this direction for several years, though the AFRTS deny operation in Band I in Europe or the Middle East.
New EBU listings: Spain Villadiego RTVE-1 ch. E47, 200 kW . The Finish Taivalkoski ch. E2 YLE-1 transmitter has now closed down - yet another old friend of DXers.

Publications

Newsletters have arrived from Cyril Willis and Dave Launder during the month. The former is called "DXTV News" and is issue number one. It's hoped to publish this monthly at $£ 4.50$ for six issues. The publication, on photocopied A4 paper, includes photographs, news items,
details of DX equipment, reception logs and profiles of DXers and their equipment - Iain Menzies and Arthur Milliken are featured in this issue. For further details send s.a.e. to Cyril at 17 Main Street, Little Downham, Ely, Cambs CB6 2ST.

Dave Lauder's "DX-TV Group Newsletter" is published every two-three months on photocopied folded A4 and has a much more technical bias. Items include information on auroral E layer propagation and likely dates, methods of monitoring the TV bands with audio warning of signal onset (a circuit using the MC1310 stereo decoder i.c. tuned to the 15.625 kHz line fequency is shown), a test report on a Hugh Cocks' mosfet preamplifier, satellite information and a brief rundown of reception loggings. A sample can be obtained by sending a SAE to Dave at 18 Burnside Close, Barnet, Herts EN5 5LN.

I feel it's an encouraging sign of the increasing interest in TV-DXing that such newsletters are becoming available. One favourable aspect nowadays is the comparative ease with which equipment for DX use can be obtained no need to modify old 405 -line receivers!

Robert Copeman has sent an Australian list of radio/ TV stations entitled "Sound and Television Broadcasting Stations", dated June 30th 1982, edition three, published by the Australian government's Department of Communications. The book costs $\$ 4$ from the Australian Government Publishing Service, Canberra. Include sufficient postage - the weight is 175 g .
"Build a Personal Earth Station for Worldwide Satellite TV Reception", a Tab book by Robert J. Traister, has been sent by Maplin Electronics. This provides a mainly US approach to the subject and doesn't contain circuitry. It's really a practical guide to the installation and operation of the types of commercial terminal kits available in the USA, at prices now of under $\$ 2,000$ for a complete system. As a general guide to 4 GHz satellite reception I found it interesting and informative. The book has 296 pages and costs $£ 8.25$ in the UK. It concentrates on how the equipment works rather than how to construct boards, feedhorns, etc.

A list of CB filters is available from AKD, 10 Willow Green, Grahame Park Estate, Hendon, London NW9 5 GP on receipt of a SAE. The filters are all in-line types for 75Ω coaxial cable use. There are various types with mainly braid/inner break functions - the BB1 for example has a 1:1 transformer braid break only.

Simple IF Preamplifier

A simple BF254 (or equivalent) transistor wideband i.f. preamplifier circuit has been sent to us by the French TVDX club AFATELD, see Fig. 1. It's for fitting at the output of a standard u.h.f./v.h.f. tuner. An i.f. transformer could be added at the input to increase the selectivity, but

Fig. 1: Simple i.f. preamplifier circuit. A BF254, BF314 or equivalent transistor can be used.

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road, Shaftesbury, Dorset. SP7 8ND tel. 07474370

SOUTH WEST AERIAL SYSTEMS - TODAYS AERIAL TECHNOLOGY AT ITS BEST - AND WITH TOMORROW IN MIND
We provide the consultancy and supply the equipment for ALL receiving installations in the VHF/UHF broadcasting spectra. Our EXTENSIVE RANGES of aerials, amplifiers, filters and allied components cover Western Europe's most respected companies including Antiference, Jaybeam, Pye/ Labgear, RS (Components), Wolsey, Fuba, Triax, Polytron, Teldis, Vorta, Mutek, Channel Master/CDE, Hirschmann and our own exclusive aerial ranges Mutek, Channe Master/CDE, Hirschmand I TV-DXing range.
WHETHER YOUR NEED IS FOR LOCAL OR FRINGE RECEPTION, ALTERNATIVE CHANNELS, TV/FM DXING, OR FOR A DISTRIBUTION SYSTEM, SOUTH WEST IS THE 'ONE-STOP' ADDRESS FOR ALL EQUIP. MENT AT VERY COMPETITIVE PRICES.
We have the practical experience in resolving reception problems, interference reduction and DXing - our customer consultancy service will end your reduction and DXing - our customer conticulty. Babani and BATC technical publications supplied.
We can offer a 4 GHz TVRO satellite terminal package (and in addition a $21 / 2$ metre fibre glass segmented dish suitable to 20 GHz) and with 12 GHz options available shortly.
SOUTH WEST AERIALS IS UNIQUE - TRY OUR 1983 COMPREHENSIVE CATALOGUE AT 54p. Please include an SAE with all enquiries, customer reception consultancies and for our own VHF aerial and 'Wideband UHF Aerials' leaflets. (Access/Barclaycard welcome).

TV LINE OUTPUT TRANSFORMERS

If the Transformer you require is not listed please phone.

fink Bush murphy	DECCA
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable $\quad 9.13$
A816 solid state mono 9.00	GYPSY portable 9.13
2712 T16a T16b mono portable 9.00	CS1730 1733 colour 88.00
A823 A823b A823av colour $\quad 10.00$	CS1830 1835 colour 88.00
21792722 series colour $\quad 10.00$	'30' series BRADFORD colour $\quad 8.00$
$271818{ }^{\prime \prime}$ series $\quad 11.00$	80 series colour 8
$271820^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ series $\quad 11.00$	100 series colour 8.00
T20a T22 series colour 10.0.	PHILIPS
G.E.C.	210300 series mono $\quad 8.00$
2047 to 21053112 to 31358.800	320 series solid state mono
"GAIETY" FINELINE	G8 series colour
2114 portable mono	G9 series colour
$31333135 \mathrm{M1501H}$ portable mono 8.00	G11 series colour 13.70
DUAL STD hybrid colour $\mathbf{1 1 . 0 0}$ SINGLE STD hybrid colour $\mathbf{1 0 . 0 0}$ SINGLE STD solid state 90° 8.50 or 110°	KB $4 T$ VC200 VC205 VC207 mono $\quad 8.00$
	VC300 VC301 VC302 portable 8.00
FERGUSON HMY MARCONI	CVC5 CVC7 CVC8 CVC9 colour $\quad 9.00$
1590159115921593 mono 8.00	$\text { CVC20 series colour } \quad 9.00$
161216131712 mono 8.00	CVC30 CVC32 series colour $\quad 8.00$
16901691 mono 16001615 serias mono	CVC40 series
30003500 EHT or SCAN 7.94	L.O.P.T TESTER Total Price
ADO 15\% VAT to ALL prices.	
Tidman Mail Crder Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kow Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .	Hamond Components (Midland) Ltd., 416 Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. Mon-Fri 9 am to 1 pm . 2 pm to 5.30 pm .

I feel that its merit lies in simplicity and that sufficient selectivity should be available in the later i.f. stages to give adequate DXing performance.

From our Correspondents . . .

Ian Moody (Sutton) has been TV DXing for three years and is now using a Ferguson 3840 (Thorn 1690 chassis) with good results. He's sent details (see Fig. 2) of modifications to the receiver to cater for French u.h.f. vision signals. Switched, parallel detector diodes are used, the subminiature SPDT toggle switch S1 selecting the video sense. R1 is introduced on system L to reduce the bias applied to the base of the video driver transistor to avoid picture flaring. A $10 \mathrm{k} \Omega$ preset could be used in this position, set for optimum results, but the value of $6.8 \mathrm{k} \Omega$ works well enough. Ian mentions reception of aircraft scattered French u.h.f. signals due to his proximity to flight paths!
Ian Johnson (Bromsgrove) reports that the Bush Ranger Model BM6714A Mk. III, with its discrete component i.f. stages, is good for DXing - he's got two of them in use and judging by his reception during January they're working very well. MS signals synchronise easily and over the period January 10-26th there was only one day when he failed to log anything.

Since the Thorn 1690/1 series chassis is no longer in production, I would appreciate comments from readers on alternative current models suitable for DX use. The aim is to compile a list of suitable models for future publication.
Mike Ockenden (Pevensey, Sussex) reports that the French version of Nationwide goes out at 1920-1940 local time and includes regional identifications (Nord, Picardie, etc.) which appear behind the newsreader.

John Tellick (Surrey) reports that the Gorizont downlink channel 3 carried Top of the Pops on January 27th just three hours after the UK transmission but with the links (i.e. announcements between numbers) badly edited out! This was followed by the recent King Kong feature film. On subsequent nights various W. European offerings that were flying around the Eurovision links were to be seen.
Chandra de Silva (Colombo, Sri Lanka) is using a standard domestic Tatung monochrome receiver which, with an eight turn indoor helix aerial and no aerial amplifier, is able to resolve the sound and vision signals from the Ekran satellite (714 MHz downlink).

Miniature Active Aerials

For some years I've been interested in compact active aerials, and have experimentally made a ch. E4 (62 MHz) system using helically wound "rubber ducks". This, with an amplifier, provides better results than a standard dipole whilst being only 18 in . long. The opportunity arose recently to test a commercial active aerial produced in the Far East - one with a combined v.h.f./u.h.f. array and integrated amplifier. The system is so integrated that the riveted PVC container can't be opened - it's not even

Fig. 2: Switched video detector circuit for the Thorn 1690 chassis.
translucent! The length is some 680 mm ., the width 470 mm . and the thickness 50 mm . An optional add-on element extends the coverage via internal filtering to the "hi" band (i.e. Band III), or a larger folded dipole can be added for v.h.f. reception down to 40 MHz . The one I've tested has this folded dipole.
The results at u.h.f. have been surprising. I'd expected poor results considering the size of the aerial, which appears to be some form of log-periodic array at u.h.f. The unit was mounted at 41 ft above ground level and powered. Comparison tests were then made with an Antiference XG21W and Labgear CM7066 amplifier mounted at 63 ft . The measured output from the active aerial system on Crystal Palace ch. E23 was found to be only 5 dB down on the XG21W combination. Obviously if the active aerial was lifted to 63 ft there would be a corresponding increase in its output. There are possibilities for improvement. For example there's no efficient reflector system (I suspect that the rear mounting clamp is all that gives rear protection): a suitably mounted reflector would increase the forward gain and improve the frontback ratio from the present $6-16 \mathrm{~dB}$ to a constant 25 dB . The beamwidth at the -3 dB points resembles that of the Colour King type aerial - around $55-65^{\circ}$.

The Band III performance seemed to be good, at least when compared with an Antiference HC2011R with 12 dB gain amplifier. Again improvement could be obtained by adding a reflector - the Band III element is the sole v.h.f. pickup, the front-back ratio being 0 dB .
The performance on Band I is poor when compared with a two-element wideband aerial of the WB2 type.

It would appear to be best to exploit the active system for its Band III/u.h.f. coverage. I would expect two units correctly stacked for u.h.f. operation to have a 30° beamwidth at the -3 dB points, with a $40-45^{\circ}$ beamwidth in Band III when used with a suitable double reflector system.
The amplifier is again a mystery, being hidden away inside, but is obviously mounted directly on to the u.h.f. array, thus obtaining an optimum noise match. The amplifier operates at $12 \mathrm{~V}, 120 \mathrm{~mA}$ and has a noise figure of $1 \cdot 7-3 \cdot 5 \mathrm{~dB}$.

Further tests will be carried out to establish the aerial's potential for DX use. It certainly resolves the stronger Band I MS and weakish u.h.f. tropospheric scatter signals, and the results on London u.h.f. (a steady, over the horizon signal here) seem convincing.

Small-screen Dual-standard Portables

Some time back I reviewed three small-screen (approximately 5 in .) monochrome portables featuring v.h.f. and u.h.f. tuners and sound i.f. switching between system B/G $(5 \cdot 5 \mathrm{MHz})$ and system I $(6 \mathrm{MHz})$. The one best suited for DX use was the Plustron Model TVR5D, which also has f.m./l.w./m.w. radio coverage. The importers have now. discontinued this model unfortunately, so I'm at present investigating possible alternatives. I expect to be able to report back shortly on this subject.

System L-I Converter

I've received several requests for details from those wishing to wind the coil in the system L-I converter featured in the February issue (see Fig. 2, page 195). The details for L1 are as follows: 7 turns of 22 g . wire wound on a $\frac{3}{8} \mathrm{in}$. coil former, spaced over 1 in . and tapped at two turns.

B.K. ELECTRONICS INCREASE YOUR PROFITS - IMPROVE YOUR SERVICE WTH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-420 DUAL TRACE SCOPE 20 MHz

BANDWIDTH
SPECIFICATION

* CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{v} / \mathrm{div}$ - Time Base: $9 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$ \star Trigger: Level control, \pm slope selection
\star Auto, normal, N triggering - Z-Modulation
\star CAL output 1 V 1 KHz
* Graticule blue ruled 8×10 div $\left(4^{\prime}\right.$ CRT). Very Sharp Trace.
\star Size: H2 $15 \mathrm{~mm}, W 165 \mathrm{~mm}, \mathrm{D} 280 \mathrm{~mm}$ \star Weight: 4kgs

Supply: $200-240 \mathrm{~V}, 40-60 \mathrm{~Hz}$
PRICE $£ 199+£ 29.85$ VAT
Probes as Thandar below.
BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

LEADER LCT-910A

C.R.T. TESTER-REJUVENATOR Our top selling instrument is designed to readily test the various characteristics and rejuvenation of both colour and B/W C.R.T's.

- Tests for shorts and leakage between electrodes.
* Tests cathode emission characteristics.
* Separately checks condition of guns.
* Removal of shorts and leakage be-
tween electrodes.
\star Checks heater warm-up characteris-
tics.
- Rejuvenation of low emission
cathodes with automatic timing.
* Super rejuvenation with manual control.
Complete with tube base adaptors
Size: H $230 \mathrm{~mm} W 330 \mathrm{~mm}$ D 120 mm .

THE VERY LATEST SC110A LOW POWER
FULLY PORTABLE OSCHLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and
controls of a bench oscilloscope.
FITS IN A BRIEFCASE controls of a bench oscilloscope.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe

Full Sized Performance
 10 MHz bandwidth

* 10 mV per division sensitivity
- Runs on 4 to 10 V DC via disposable batteries, re-chargeable cells, or $A C$ adaptor.
-Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.
'Scope $£ 149.00+£ 22.35$ V.A.T.
$\begin{array}{ll} & \text { Carry Case } £ 5.95+£ 0.89 \text { V.A.T. } \\ & \times 1 \text { Probe } £ 7.00+£ 1.05 \text { V.A.T. }\end{array}$
MADE $\times 1 / \times 10$ Switched Probe $£ 9.80+£ 1.42$ V.A.T. GUARANTEED $\times 1 / \times 10$ Switched Probe $£ 1.00+£ 1.65$ V.A.T.
Rechargeable Batteries $£ 11.00+£ 1.65$.

AC Adaptor $\mathbf{£ 6 . 9 5 + £ 1 . 0 4 \text { V.A.T. }}$
Overseas purchasers please state voltage.)

ALSO AVAlLABLE Anslogue Multimeters Digital Multimeters Oscilloscopes Signal Generators Digital Frequency Meters Pattern Generators Patern Generators
CRT Tester/Rejuvenator CRT Tester/Rejuvenator LARGE S.A.E. FOR COMPLETE LIST.
U.K. Post Paid. Export orders welcome, plaase deduct V.A.T. and include an additional $£ 5.00$ for Overseas carriage. Mail Order only. Callers by appointment. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range.

Delivery normally within 7 days.

B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.

Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Electrical Engineering*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership

CACC

Approved by CACC

POST OR PHONE TODAY FOR FREE BOOKLET

COLOUR TELEVISION \& MUSIC CENTRE

Old Mixon Crescent, Old Mixon Trading Estate, Weston Super Mare - (15 mins. past Bristol on M5)

NOT EX-RENTAL
 COLOUR
 TELEVISIONS SOLID STATE

\star FANTASTIC OFFER \star

PYE CHELSEA
18", 6 Button, Sliding Controls,
Brilliant Condition

PYE 721
$20^{\prime \prime}-26^{\prime \prime}$, could be mistaken for new

£65.00 each
 Inc. VAT

FERGUSON 9000
Remote Control, Like New
£85.00 each
Inc. VAT

Minimum 6 sets

$$
\star \star \star
$$

THE ABOVE CHELSEA ARE WORKS MODIFIED FOR ANY PART OF THE WORLD VHF - UHF

BIG REDUCTIONS FOR EXPORT ORDERS OVER 200 SETS ALL OTHER MAKES IN STOCK OFF THE PILE FROM £6

$$
\star \star \star
$$

Ring Now
 W.S.M. 413537

The Further Adventures of Tiny Tim

Les Lawry-Johns

Tiny Tim woke up early in the morning and started to think his usual gloomy thoughts. What was wrong with the world was that there were too many people in it, most of them wanting him to do things that he didn't want to do for them. He killed off a million people mentally. Still too many. So he killed off another million and too many remained. Wouldn't it be nice if there were no people at all?

The animals would be able to go about doing whatever it is that animals do, and the forests would grow nice and big. There would be great big forest fires with no one to put them out. All the animals would be burnt. Oh dear, that wouldn't do. His cat Spock would catch cat flue and die because she wouldn't have had her jab from the vet. Oh dear. Perhaps firemen and vets could live then? Except the vet who was going to bring in his car radiocassette. This frightened Tim because it was a Philips machine and he had a job to get the cassette drive belt back on when it bounced off as it had a habit of doing. So one vet would have to go and another would have to be found to give Spock her jab to ward off cat flue.

Pinnacle of Despair

As he lay there he thought of the nasty letter he'd had from one of the wholesalers. If he didn't pay their account they would do nasty things to him. He always paid his accounts on time, but he wasn't going to pay this one because it was daft. He'd ordered six video cassettes for his wife to play with and they'd sent sixty one. As eight were loose he'd decided to keep these and send the rest (53) back. He'd phoned the firm and the girls who'd answered the phone had laughed and said the rep who'd taken the order must have had a shaky hand. So they'd laughed some more. He'd put the phone down but nothing was done about it. The cassettes were collected by a well known firm of carriers who signed the collection note.

Tiny Tim had again phoned the wholsesalers to let them know that the cassettes were on their way back to them, but the man at the other end said he didn't know what it was all about. Tim was eventually promised a credit note, but it never came despite several more phone calls. One person had said that they hadn't got back the number specified. This had made Tim angry, and he'd said nasty things that his wife had said he should have been ashamed of saying. So the statement had come in, along with a nasty letter which Tim had returned with a comment to the effect that the liaison between their departments was deplorable. This was much nicer than what he'd said on the phone. So he dug in his tiny heels and waited for the nasty things to happen.

Daylight

As it was beginning to get light, Tim decided it was time that someone should get up and make the breakfast. So he stirred around enough to wake up his wife and then snored to "pretend he was asleep. His wife looked at the clock and heaved a sigh.
"He lays awake all night thinking stupid things and when it's time to get up he goes to sleep. God how I suffer."

Tim snored loudly to ensure that his wife wouldn't go back to sleep, and eventually she got up. Tim smiled at the picture of the tiger on the wall. "We each of us have our own ways of getting our food" he told the tiger.

His wife brought up his breakfast, and Tim noticed that she couldn't burn the scrambled eggs like he did to give them a nutty flavour, but he thought it best not to complain. Something about not tampering with your luck.

He ate his breakfast and drank his tea, then laid back and sort of slipped off to sleep. He was rudely awakened by his wife talking to customers in the shop.
"I'm sorry but he's out with the dog at the moment."
Which was a bit shaky since Ben had been standing with the lead in his mouth for the last half hour or so.

Tim waited for the customers to leave, then crept down the stairs.
"Mr. Crankcase wants a new colour set delivered by ten o'clock. He wants a 22 in . without remote control or any trimmings. No later because he's off to America and wants to see it and settle before he goes. So you'd better put your skates on."
"I'll just take the dog for his walk, then I'll get cracking" said Tim.
"Oh excellent" said his wife. "Mr. Crankcase lives at Birling, which is a long way away. You haven't unpacked the set yet and it's now nine fifteen."
"Oh dear" said Tim. "Why didn't I get up earlier? Why did you let me nod off again? I must fly." So he flew, but went in the wrong direction because he'd fogotten where Birling was. He ended up feeling very confused, driving along the M20 towards Maidstone. It all ended happily however, because Mr. Crankcase had delayed his departure.

But Ben was rather peeved. He stopped at a post but missed it, contriving to hit Tim's leg instead. This reminded Tim of the time he'd been standing at the top of Windmill Hill looking out over the river and a big black dog had come and stood beside him. Tim had patted the dog's head, thinking how good he was with dogs, but had suddenly become asware that his leg was soaking wet. It was a very large dog.

Tiny Tim made his way back to the shop, talking to Ben and telling him that in addition to getting rid of all the people in the world the dogs would have to go as well, leaving just a few bitches - they don't cock their legs at every tree, post and leg that happens to be near.

Trying TVs

When they got back, quite a few jobs were waiting to be done. The first was a GEC set fitted with the 20AX tube (Model C2233H). A note on it said "no results". The right side fuse (on the switch-mode power supply panel) had blown, so Tim looked askance at the BU126 chopper transistor. It was short-circuit. As he fitted a new one Tim was thinking. He'd had this trouble a year or so ago and the new one had died very quickly indeed. Then there was
a note on the same subject in a recent Fault Report item in Television. The driver transistor is biased by a nasty $150 \mathrm{k} \Omega$ resistor. Now where was it? Ah, just there, R515. Take it out and measure it. Reading about $4 \mathrm{M} \Omega$.

Tim didn't have a $1 W, 150 \mathrm{k} \Omega$ resistor, so he was a devil and used a $220 \mathrm{k} \Omega$ one instead. It worked well enough, so he logged this information in that magnificent computer he has atop his shoulders - another one not to be forgotten.

The next set was an ITT CVC9 that belonged to one of Tim's old school chums (which makes him very old). It had been in several times of late, suffering from loss of colour which seemed to be restored permanently each time Tim did almost anything around the decoder, only to fail again several days later.

Tim had first found that when the base of the 4.43 MHz reference oscillator transistor T38 was touched with the test prod the colour returned and couldn't be made to go off again. So he'd changed T38. On the next occasion it had seemed that the crystal was faulty, so Tim had fitted a new one. He'd thought that this was unusual in an ITT set, but concluded that as he was very rarely right about anything it must be the case since the colour stayed and stayed. Here it was again however.

He put the probe on the base of T38 and the colour appeared. He looked at the board and the blue 470 pF capacitor (C228) in the oscillator circuit (base-emitter feedback) caught his colour prejudiced eye. He doesn't like blue things. So he changed it and the set has been all right ever since.

The Music Centre

A Fidelity 440 music centre sat there waiting its turn. Its owner, a nice man by the name of Les Woolends, came in just as Tim was about to perform.
"Thought I'd pop in to tell you what's wrong with it. It won't record on one channel."
Tiny Tim scowled at him. "It's a pity you didn't take it back where you bought it."
"I bought it here."
"Just testing, just testing." Tiny Tim was aware of his wife's eyes boring into his back.

Without further ado Tim removed the bottom of the music centre and squirted a jet of Servisol into the record/ playback switchbank. Much to his surprise, it now worked on both channels.

Putting on his 'leave it to the master' air, Tim replaced the bottom cover and chatted away to Mr. Woolends about cats and things.

Night-time

That night Tiny Tim had a nasty dream about being eaten by a great big cat. He awoke bathed in perspiration and decided to have a nice wash to freshen himself up a bit. So down to the bathroom he went, and gave himself a good wash down. He dried off and looked for his talcum powder. It was some distance away, at the far end of the bath, so he decided to use some of his wife's instead. But no matter how hard he shook the pink tube nothing would come out. So he tried the green one which had two nice big holes at the top. He shook the powder all over his private places and rubbed it in, noting that it seemed rather coarse for his little body. He tumbled back into bed, thereby waking up his wife.
"Now what are you up to?"
"Just been to the bathroom for a wash. What's the talc in the green tub?"
"That's not talc, you fool. It's shake 'n vac carpet cleaner."
"Oh dear" said Tiny Tim.

VCR Clinic

Ferguson 3V23

The fault with a Ferguson 3V23 was noticeable only on a stationary picture. It looked as though there was a slight ripple on the verticals - but only on about the centre third of the picture, the top and bottom being o.k. As the fault was also present on still frame we had a look around the drum motor drive circuit. This is a brushless, direct drive motor, so the pole switching is done by Hall sensors and a magnetic ring (instead of a commutator and brushes).
The sensors drive many transistors, culminating in two power stages which supply current to the two sets of poles. When the head is running we should have an equal sinewave on each pole, but in this case one was missing. As a result, the drive was varying. One very discoloured power transistor gave itself away, but while we were measuring voltages we noticed that the supply to the motor was about 22 V instead of 12 V - the regulator transistor in the power supply had gone short-circuit. It's surprising that anything worked at all!
M.P.

Ferguson 3V00

"We've fitted a new head, but can't get the tape guide rollers adjusted" they said. We connected the scope to

Mike Phelan, Richard Roscoe and Michael J. Cousins, T.Eng. (C.E.I.)

TP7 to monitor the video f.m. envelope, and found that while we could get rid of the dip at either end of one channel it was then transferred to the other channel. Now in theory each head follows the same path, so the condition we had shouldn't be - unless the heads were not following the same path, due possibly to the spindle being bent. We removed the head and there is was - a piece of something indescribable, compressed to a few thou and stuck to the mounting flange with the result that the drum tilted fractionally.
M.P.

Ferguson 3V00

The fault with a Ferguson 3V00 was severe herringbone patterning on the chroma on its own recordings only prerecorded tapes played back o.k. The chroma record current control R2 on the pre-rec board was set too high.
M.P.

Ferguson 3V29

There was no capstan servo action with this Ferguson 3 V 29 , and a check showed that there were no off-tape control pulses at TP2 (adjacent to IC2) even with a
prerecorded tape. IC2's supply pin had a 50 Hz waveform on it, and this varied if the head was slowed down! The fault was due to the HA13008 head motor drive i.c. drawing excessive current from the supply, though it was otherwise functioning correctly.
M.P.

Ferguson 3V29

The problem we had with a Ferguson 3V29 was gradually increasing noise on playback while the playback f.m. signal, monitored at the test point, decayed to zero. The same thing happened when a prerecorded tape was tried, so we changed the head amplifier etc. i.c. (IC202, HA11724). Unfortunately the fault symptoms remained exactly the same.

The HA11724 also contains the record current amplifier. On record the playback paths from the heads are earthed by applying the E-E 9V supply to the switching transistors Q216/7. These transistors should thus be off on playback, but we found that the E-E 9 V line, which should then be at 0 V , had risen to 1.5 V . The E-E 9 V line is switched between 0 V and 9 V by transistor Q 102 , which turned out to be leaky.
M.P.

Toshiba V8600

A Toshiba V8600 would not accept a tape - it ejected the tape instead of threading it up, though very occasionally it would work. Now pin 5 of the microcomputer control i.c. is fed with inputs from the dew detector and the slack sensor and is normally high. The slack sensor reed switch is normally disengaged until play is selected. As pin 5 of the i.c. was low, we checked this switch and found that it was sticking (permanently magnetised?) until disturbed.
M.P.

Ferguson 3V22

The problem with a Ferguson 3V22 was intermittent loss of servo action on record. Checks revealed that in the fault condition no control pulses were being recorded. These are derived from the video signal via a sync separator on the servo panel. The video input to this panel seemed to be o.k., so we changed the AN301 amplifier/sync separator i.c. No change. On examining the video input to the panel more closely however we noticed that there was slight distortion in the region of the field sync waveform like poor l.f. response.

The machine worked all right with a video input signal, so we turned attention to the i.f. panel. The video is fed out at pin 36 of this panel via an emitter-follower buffer stage (X201). The signal coupling to and from this transistor is via $47 \mu \mathrm{~F}$ electrolytics, and the one on the input side (C207) turned out to be partially open-circuit. M.P.

JVC HR7200

Failure to record was the fault on a JVC HR7200 (Ferguson 3V29), and a check at the heads confirmed the absence of an f.m. record signal. Tracing farther back, we discovered that the signal disappeared at the point (pin 1) where it enters the HA11724 i.c. There's a switching transistor (Q209) here - the relevant bit of circuitry is shown in Fig. 1. When record is selected, diode D204 conducts. The voltage at its anode is then just under a volt, and as a result the 4.3 V zener diode D208 and transistor Q209 are non-conductive, allowing the record signal to pass through to the heads. The problem was that D208

Record f.m. plus ehroma
HAll724 (IC202), pin 1

0595
Fig. 1: Record signal muting circuit used in the Ferguson Model 3V29. The circuit is inoperative on playback.
was short-circuit, as a result of which Q209 was conductive. A replacement zener diode restored normal operation.
M.J.C.

Grundig 2×4 Super

The trouble with a Grundig 2×4 Super looked like a servo fault - the picture disappeared into noise every few seconds - and we found that the ramp waveform at the drum servo test point disappeared when the fault occurred. This waveform comes from a PLL which is supplied with a reference frequency from the DTF module. It was quickly proved, by substituting known good panels, that the fault wasn't in either the servo or the DTF sections of the machine.

Our next step was to look at the supply lines with a scope. This revealed that the 20 V supply to the servo board had about 0.5 V of very high-frequency ripple (at some 20 kHz) on it. A 15 V supply is derived from the 20 V rail via a UA723C/chopper transistor arrangement, and it looked as if some of the switching signal was getting out. The 20 V line smoothing was checked to no avail, and we next found that the ripple was of higher amplitude on the output side of the 15 V regulator. Whilst making checks in this area we noticed that C455 (100pF), between pins 4 and 13 of the UA723C i.c., had never been fitted. M.P.

Ferguson 3V30

The fault with a Ferguson $3 V 30$ was erratic lines of interference on playback. Now if a normal picture (with tracking lines) was present with pause selected (not freeze frame) then the fault would be in the capstan servo circuit. A check at TP5 on the servo panel showed that the capstan servo trapezoid waveform was present, but there was no sample pulse on the ramp. The off-tape sample/control pulses pass through IC2 and then inverter transistor Q1 before being applied to the HA11711 servo i.c. They were present at the control head but vanished at the base of Q1. Cold checks revealed that $\mathrm{C} 55(0.01 \mu \mathrm{~F})$, which is connected between Q1's base and chassis, was leaky, measuring some $120 \mathrm{k} \Omega$. Replacing C 55 restored the sample pulses and a stable picture.
M.J.C.

Ferguson 3V16

A customer brought his Ferguson 3V16 along for repair one wet and windy day - it was encased in a duffle bag. His complaint was that the machine was "completely dead - probably only the fuse". Well this was the longest fuse change I've ever come across. It was indeed a fuse - the thermal fuse buried deep inside that most inaccessible component the mains transformer. A new transformer was ordered and fitted, restoring normal operation, but can
anyone say why JVC in their wisdom bother to have a thermal fuse that can't be reset?
M.J.C.

Mitsubishi HS303B

Last month I mentioned the trouble we'd had with a brand new Mitsubishi HS303B whilst it was still in the showroom. Then we sold it. Last week it came back again. This time when we switched it on the pause and stop lights both came on and eject wouldn't work - we couldn't even load a tape.
We started with the errant pause light. All the function indicators are driven by the MC14174BCP i.c. IC500 under the control of one of the microcomputer i.c.s, IC5A0 (TMS1400/MP7309). The pause light was on because pin 20 of IC5A0, which drives pin 14 of IC500, was high instead of low. Further laborious checking through the rest of the control circuitry (how a good
circuit description in the manual would have helped!) revealed that the other symptom, no eject, was due to the same thing. So we unsoldered pin 20 of IC5A0 to check whether it was the source of the high signal. It wasn't. An internal fault in IC500 was the cause of the trouble.
R.R

Ferguson 3V23

VCRs don't seem to be prone to stock faults, apart from various mechanical weaknesses (i.e. take-up idlers, motors, etc.). We've recently had three cases of Ferguson 3V23/JVC HR7700 machines with unstable pictures however, and in each case the cause was the 4.433 MHz crystal on the servo- 2 panel. The output from the crystal oscillator is counted down by IC1 (AN6342) and used to produce the 50 Hz reference squarewave for the drum servo circuit.
M.J.C.

Fault Report

Richard Roscoe, Mick Dutton and George R. Wilding

Dead Deccas

Our winters here in Cornwall always take their toll of triplers and line output transformers - especially in the Decca 80 and 100 series chassis. These sets have a couple of evil and potentially expensive tricks it's worth knowing about. For instance, it's quite common for the tripler to fail and the mains fuse to blow. If you replace the fuse for test purposes it can last just long enough for the faulty tripler to kill the output transformer and often the TBA920 sync/oscillator chip and output transistor as well. So we follow a very strict procedure when we get a call to one of these sets with no sound or raster and the 3.15A mains fuse (on the tuner panel) blown.

First we check the bridge rectifiers $\mathrm{D} 600-3$ on the power supply board. One or more of these often goes short-circuit. If they haven't we swing up the main chassis, remove the screen from around the line output transformer (one screw) and disconnect the tripler from the transformer before fitting a new fuse.

We then switch on - keeping our hand on the switch. If the sound comes up and the line output transformer produces a spark, the damage is confined to the tripler alone. Again we breathe a small sigh. If nothing at all happens we fit a new TBA920 sync/oscillator chip and try again. If we hear a hum from the input choke we switch off fast and don't breathe any sighs. The line output transformer will certainly have failed. When replacing the transformer we check the line output transistor and the diodes on the panel, but provided the precautions outlined above have been observed these usually survive - especially the more rugged BU208A transistor used in the 100 chassis.

If the transformer has failed we always change the tripler as well. Even if it seems to be o.k. it won't last long and it will probably kill the new transformer when it does fail. We also carefully check the soldering of all the plug pins on the line output panel, since dry-joints here are often the cause of line output transformer failure in the first place.

This simple procedure takes care of 95 per cent of the cases of blown mains fuses we've had to deal with on these
chassis - and does so at minimum expense in terms of replacement parts.
R.R.

Intermittent Hitachis

We've had trouble with several fairly new Hitachi sets recently - ones fitted with the NP81CQ Mk. II chassis. In each case the symptom has been a tendency to fail to start, though once the set gets going it will run quite happily and can't be induced to stop. John Coombes (Fault Report, December 1982) mentioned dry-joint trouble on the earlier NP81C chassis, which is very similar. We've also had that (dry-joints around the line output transformer), but the situation was slightly different in that the set could be made to start and stop.

The cause of the problem with the more recent sets has been traced to the soldering of the chopper transformer's pins (T901), especially pin 4. It seems that the soldering here must be perfect - any small resistance at this point causes heating as a result of which the joint deteriorates further. Eventually the point is reached where the ability of the power supply to start up is affected, though once it does start the connections are good enough to keep it going.

We've found that the best cure is to remove T901 completely and scrape all the pins clean before carefully resoldering them.
R.R.

Grundig Gremlins

Here are a couple of faults that crop up time after time with Grundig colour sets. If you get these symptoms it's odds on that the culprit will be the same.
Sound o.k., blank screen: This applies to sets fitted with the 29301-046.02 RGB module (Models 8632GB and 8232 GB for example). The fault is usually intermittent: the picture will dramatically disappear and reappear at random, and it can be infuriatingly elusive, showing up perhaps only once in a while. The cure is simple however. At the top of the RGB module, above the three output stages, there's a zener diode (Di1948). It's anode is rather poorly connected to earth via the lead of an adjacent

Fig. 1: Location of a very common source of trouble on later Grundig colour-difference output modules.
resistor through the board - this link gets lost. Solder the diode to the top earth screen (see Fig. 1) without removing it from its existing position and you'll experience no further trouble.
No colour or intermittent colour: This fault occurs on a large number of models (e.g. $6210 \mathrm{~GB}, 6610 \mathrm{~GB}$, 8632GB, 8232GB and 1510B) fitted with colour decoder module type 29301-024.01. The cure is to change both the 0.1μ F decoupling capacitors C861 and C863. They cause the fault by going slightly leaky - in fact we've had so much trouble with them that we fit replacements whenever one of these sets comes into the workshop for whatever reason.
We had a 1510 B portable however where replacing these capacitors failed to restore the colour - in fact a whole new decoder module failed to do so. The fault turned out to be on the colour-difference output panel. Unlike most modern chassis, this Grundig chassis employs colour-difference drive to the tube's grids/cathodes. The cause of the fault was that the three colour-difference output transistors were cut off due to a break in the track of the preset R587 (200 $)$) via which their emitter circuits are returned to chassis. The colour-difference drive coupling capacitors C574/584/594 prevented the altered d.c. conditions affecting the tube's biasing, with the result that it displayed the luminance signal normally.
R.R.

Decca 30 Series Chassis

A Decca hybrid set (30 series chassis) would work perfectly for about half an hour after which faces in particular and the picture in general would suddenly turn a ghastly green. The ident amplifier was obviously working, otherwise there would have been no turn-on bias for the chroma channel via the colour-killer transistor TR208. Drift of the ident coil L205 can cause incorrect operation of the PAL switch, which is inside the MC1327P i.c. The coil turned out to be o.k, the fault being cured by changing the chip.
G.R.W.

Ekco T554 Portable

An Ekco T554 14in. monochrome portable came in with field troubles - unsteady lock, random jitter and bottom cramping. The voltages in the field timebase seemed to be about right, so we put a scope on the output. Riding on top of the field sawtooth was a lot of random, lowfrequency noise - it looked suspiciously like transistor noise.

The field generator circuit is a bit unusual. There are two transistors, TR501 and TR502. TR501 is labelled "vertical oscillator" and provides the discharge action. TR502 acts as a Miller integrator so that the field charging
capacitor C506 produces a linear ramp. Anyway we found that TR502 was faulty, but we didn't have a 2SA609E in stock (who has?). A BC212, carefully fitted the right way round, proved to be a suitable substitute. It cured all the field troubles, but the steadier display revealed that all was not well with the line sync - the verticals were decidedly wavy, though the line lock itself was good.

It's said that lightening never strikes twice, but in this case it did. The sync separator transistor TR209 is another 2SA609E and was also noisy - the noise was passing through the flywheel sync circuit. Another BC212 put an end to that. Incidentally if, like us, you don't have a manual for the T554, you'll find that the circuit for the Teleton TW12BS applies.
R.R.

Thorn 1500 Chassis

A Thorn monochrome set fitted with the 1500 chassis produced ample sound, which was undistorted, but the picture - which could barely be locked in either direction for more than a minute - was weak with little definition or tonal graduation. The sound signal is tapped off at the collector of the video emitter-follower transistor VT8, so the obvious conclusion was that the fault was in the following video output stage or the coupling networks between VT8 and the tube's cathode. As a start we checked the voltages in the emitter-follower and output stages. These were correct, so the operating conditions in these stages were normal.

There are two video coupling capacitors, C37 ($64 \mu \mathrm{~F}$) between the video emitter-follower and output stage and C40 $(0.47 \mu \mathrm{~F})$ between the video output transistor and the tube's cathode. The latter was ruled out since if opencircuit it would not affect the sync. If C37 had partially dried up on the other hand the h.f. response would still have been acceptable.

Attention was directed to the i.f. strip therefore, and it was discovered that the final i.f. transistor VT7 was opencircuit between its collector and base. This transistor is located just under a small clip-on screening can near the bottom of the chassis - if care isn't taken, the securing clip breaks off. Replacing it restored normal results, with first class timebase locking. The sound signal had obviously managed to get through via the shunt capacitance present, though the video signal had been distorted and attenuated.
G.R.W.

Bush BC6338

The problem with a Bush Model BC6338 (Z718 chassis with touch tuning) was that the channel selector was stuck on channel one, with no tuning ability. The touch sensor contacts looked clean, so we decided to change the ETT6016 selector i.c. This enabled us to change channels, with the appropriate neons lighting up, but there was still no tuning ability. The 33 V tuning supply was correct, but the voltage on the tuning line was also 33 V . A check at the slider of the selected tuning potentiometer showed that it did what it was supposed to do, i.e. vary from zero to approximately 30 V , but this voltage was not being applied to the tuning line via the blocking diodes 9D1-11. The voltage at pin 8 of the i.c. was next found to be low, and on checking back we found that the 180 V supply at pin 4 of 9 Z 1 was also low, at approximately 30 V . This voltage comes via 1R116 ($7.5 \mathrm{k} \Omega$) on the Varicap tuner panel, and a check here revealed that 1R116 was virtually open-circuit.
M.D.

Teletopics

EUROPEAN MERGERS

The proposed link up between Grundig and ThomsonBrandt - as reported in our February issue, the French state-owned electronics giant Thomson-Brandt had signed an agreement of intent to purchase the 75.5 per cent of Grundig not owned by Philips - is now off, having been vetoed by the W. German Federal Cartel Office on the grounds that a Thomson-Brandt/Grundig merger would have 40 per cent of the W. German CTV market and 25 per cent of the W. German VCR market. Instead, Thom-son-Brandt now propose to take a 75 per cent controlling interest in Telefunken, whose ailing parent firm AEGTelefunken has been in a form of receivership. It's not expected that the Thomson-Brandt/Telefunken link up will be vetoed by the Federal Cartel Office, even though it will have some 30 per cent of the W. German CTV market. Thomson-Brandt already own Saba and NordMende, each of which have ten per cent of the W. German CTV market, while Telefunken's share of the W. German CTV market increased from six to ten per cent over the past year.

This leaves Grundig, which has been making substantial losses during the past two years (DM 187m in 1980-81 and DM 35 m in 1981-82, though a profit for the year 1982-83 is expected to be announced), in a difficult position. The speculation is that Philips might wish to increase its stake in Grundig, to which it is an important components supplier as well as the two firms being joint developers of the V2000 VCR system, though this might raise fresh problems with the Cartel Office (stringent conditions were imposed when Philips originally acquired 24.5 per cent of Grundig).

The Thomson-Brandt/Telefunken link up has interesting implications in the VCR field. A merger with Grundig would have given Thomson-Brandt an interest in the V2000 system. Telefunken however are part of the J2T joint venture partnership (with Thorn and JVC) manufacturing VHS machines in Europe (in W. Berlin and Newhaven), while Thomson-Brandt have been importing JVC machines for sale in France and had been planning to start assembling VHS machines in about a year's time. The position of the VHS system in the European market has thus been given a considerable and unexpected boost.

In a recent move Thomson-Brandt established the European Electronics Corporation as an umbrella organisation for the activities of Saba and NordMende.

JAPANESE-EEC VCR AGREEMENT

The agreement between the Japanese Ministry of International Trade and Industry and the EEC Commission to limit the export of VCRs (for one year initially) to Europe and to set "floor" prices for Japanese VCRs has now come into effect. As far as the floor price system goes, three classes of machines (basic, mid-range and top-range) have been established, with floor prices of $£ 195, £ 240$ and $£ 280$ respectively f.o.b., i.e. delivered to the docks. Decisions about how the market is to be shared out amongst the various Japanese VCR manufacturers and how the machines will be allocated between countries have not been annouced. To meet the requirements of the General Agreement on Tariffs and Trade, all these matters have to
be decided by the Japanese unilaterally.
The net result in the UK, taken in conjunction with the recent fall in the value of the pound, is expected to be a rise of $£ 100$ or more in VCR prices with corresponding increases in rental charges. Rental at present accounts for 60 per cent of VCR deliveries to consumers, and it has been suggested that the price increases could boost this percentage. Stocks of machines are low at present, and with distributors anxious to increase profit margins price rises in the short term could be quite sharp. The long term prospects will depend on market conditions, the present excess Japanese VCR manufacturing capacity, whether the V2000 system manages to establish a firm position in the market, and what happens to the agreement under its proposed second and third years of operation.

THE COMPACT DISC

Not a TV subject perhaps, but one nevertheless very much of interest to dealers and technicians: the compact ($4 \frac{3}{4} \mathrm{in}$.), laser scanned, digitally recorded audio disc which has now been launched in the UK and three other European markets. The system was developed jointly by Philips and Sony - one could say that it's on offspring of LaserVision. The sound is two-channel of course and the discs have a playing time of an hour per side. The players provide an ouput of some 1.5 V at 500Ω. The great advantages are the elimination of mechanical problems on the signal pick-up side and the clean digital signal. A frequency response of $20 \mathrm{~Hz}-20 \mathrm{kHz}$ and a dynamic range of greater than 90 dB give a rough guide to the excellent quality of which the system is capable.

Players from Philips, Sony, Fisher (Sanyo), Hitachi and Marantz (a Philips subsidiary) have so far been announced in the UK, with prices in the range of roughly $£ 500-£ 550$. Over thirty eight manufacturers worldwide have taken out licences to produce players. The discs cost around $£ 10$ each, and an expanding catalogue of titles from several record companies is already available. Sony expect the UK market for players to be around 40,000 during 1983.

Philips are pressing for a special 19 per cent EEC tariff on the players (the tariff on conventional audio equipment is half that), claiming that Far Eastern manufacturers are planning to flood the European market.

TAPE STORAGE

BASF have issued some simple guidance on video tape storage. The temperature should be $20-22^{\circ} \mathrm{C}$ and the relative humidity $50-60$ per cent. Major temperature fluctuations should be avoided, as of course should be exposure to magnetic fields. Upright storage is best, to prevent slippage, and an extra plastic bag is recommended when tapes are going to be stored for any length of time.

TSR VACUONICS

The Scottish c.r.t. rebuilding firm TSR Vacuonics Ltd. is particularly interesting in being able to process a very wide range of tubes including Trinitrons, the latest Hitachi tubes, and those used in monitors and games machines. The company assemble their own guns and offer a $7-10$ day turn round on an exchange basis, though an off-theshelf service is envisaged when sufficient glass is available. OTV of OTV House, 144 Lea Bridge Road, London E5 9RB have been appointed distributors in the London area.

TSR are now investigating the possibility of rebuilding VCR heads, and have had talks with a number of large national rental and sales companies who have expressed interest in the idea. The process involves laser cleaning of
the gap and rebonding new ferrite pole pieces. It's hoped to be able to provide such a service by the end of the year, initially offering VHS and Betamax heads at $£ 10-£ 12$ each. If there's sufficient interest, TSR would hope to extend the service to cover V2000 heads.

BBC-UNISAT DBS AGREEMENT

The BBC's satellite TV service, which is due to start in 1986, came a step closer with the signing of an agreement on the provision of the satellites by Bryce McCrirrick, BBC Director of Engineering, and Alan Jeffries, Managing Director of United Satellites Ltd. (Unisat). Unisat is jointly owned by British Telecom, British Aerospace and GEC and will be responsible for building and launching two satellites, the first to be operational and the second an in orbit spare. As an additional safeguard, a third satellite will be made available ready for launch. The service's footprint will cover the UK and parts of W. Europe, and the power output will be suitable for high-quality reception by individual households via suitable receivers and dish aerials of less than one metre diameter. The agreement covers a period of operation lasting at least seven years.

The satellites will carry transmitters for the two BBC DBS services. DBS-1 will be a subscription channel carrying feature films and other attractions. DBS-2 will have an international flavour. There will also be a number of digital sound channels, providing stereo TV sound and some high-quality radio channels.

British Telecom will be using the satellite to provide various facilities, including the distribution of TV programmes and feature films to local cable TV networks. This will be entirely separate from the two high-power channels used by the BBC.

The IBA developed C-MAC colour signal encoding system will be used for the two BBC channels. C-MAC was recently demonstrated by the IBA in W. Germany, at the invitation of the German Post Office. About one hundred senior broadcast and telecommunications engineers saw signals sent from Crawley Court to Darmstadt via the European Test Satellite (OTS). A presentation was also made to representatives of German industry, the Post Office and the broadcasting research institute (IRT).

THE BATC

The British Amateur Television Club will be holding an exhibition of amateur television at the Post House, Leicester, on May 22 nd. The doors will be open at 10 a.m., admission is free and all will be welcome. Attractions will include the BATC outside broadcast unit and demonstrations of both fast- and slow-scan television. There will be the usual trade stands plus a comprehensive supply of the Club's books and PCBs. The Post House Hotel provides a reasonably priced Sunday lunch and special half-priced rooms are available for people attending the exhibition.

The latest BATC publication, "TV for Amateurs" by John L. Wood, G3YQC, is available from BATC Publications, 14 Lilac Avenue, Leicester LE5 1FN, at $£ 1.50$ plus $\mathbf{2 5 p}$ post and packing. It's main aim is to serve as an introduction to the world of Amateur TV, but in doing so it provides much useful reference material and a lot of practical information (circuits etc.). Excellent value and highly recommended.

ELECTRACK

A new mains plug-socket system that should prove useful where large numbers of mains connections are required, in
workshops and retail showrooms for example, has been announced. Called Electrack, it consists of a slim aluminium track carrying three copper conductors along which plugs can be inserted at intervals of either 100 or 200 mm . It's totally enclosed, and the safety aspect is enhanced by the fact that contact with the mains supply is completed only when an Electrack key plug is inserted and rotated through 90°.

The track will be available in various standard lengths from 600 to 3600 mm , and can easily be cut to any required length. By adding a clip-on housing it becomes a skirting system. It can also be used as a flush floor distribution system. Apart from the improved safety aspect, the advantages of Electrack include much increased flexibility plus a reduction in installation time and costs.

Electrack will be made available through wholesalers later this year. Details can be obtained from Electrack International Ltd., 45 High Street, Kingston-uponThames, Surrey KT1 1LQ (01-546 7799).

NEWARK VIDEO CENTRE

Steve Beeching's eagerly awaited book "Domestic Videocassette Recorders" can be obtained from Steve's Newark Video Centre, 108 London Road, Balderton, Newark, Notts (0636 71475) at $£ 14.50$ plus post and packing. You might even be able to get an autographed copy! We hope to review the book shortly.

Steve's two-day weekend VCR servicing courses are still being held from time to time as circumstances permit. The next one is on May 14-15th.

TV R \& D

Much work is being done in research departments on methods of processing video signals in digital form for TV receiver applications. Some details of one approach were given in our November 1981 issue. What are the advantages? For one thing the signals can be cleaned up, improving a receiver's performance, the disadvantage (at present) being the added complexity of converting the transmitted signal into a digital one and then converting it back to analogue form to drive the c.r.t. This disadvantage could be eliminated with a fall in the cost of the digital circuitry required. An interesting prospect is the use of digital techniques to increase the number of lines. Converting from 625 to 1,250 lines in the receiver would greatly improve the resolution and could be done using the techniques employed in 525-625 line standards conversion. The idea is to create the extra lines by averaging the information carried by successive pairs of transmitted lines. Eliminating interlace would improve matters further.

Amongst the firms understood to be working on this are ITT, Philips, RCA, Hitachi and Sony. In a recent issue of Radio-Electronics, an RCA spokesman was quoted as saying that a compatible high-resolution system would come "in this decade".

The aim of the 5-D Corporation is just that - a 3-D display plus surround sound. The breakthrough claimed is plans for a camera that provides compatible 3-D pictures, i.e. those viewing without special blue/red spectacles see the picture without the usual double image effect. Another step contemplated is receivers that don't require special glasses to be worn by the viewer.

US set maker Zenith has developed a self-converging colour projection TV system. The three (red/green/blue) projection tubes are mounted in line, the outer tubes having angled screens that distort the images to com-
pensate for the distortion introduced by off-centre mounting.

GLARE

Last month we mentioned a filter to reduce VDU operator eye strain. An alternative approach is to use a spray on treatment. An anti-glare treatment kit called Glarego has been introduced by Vision Products, Unit 10, Wessex Road, Bourne End, Bucks SL8 5DW, and is said to provide a lasting non-reflective surface on TV screens, computer terminals, video games and glass-fronted pictures. It doesn't damage the screen and is easy to remove. The screen is first prepared with Cleanscreen spray, the Glarego spray (which contains anti-static dust repellent) then being applied. The suggested price of the kit, which includes a mask and lint-free cloth and enough spray to treat three screens, is $£ 7.95$ plus postage.

SATELLITE TV LTD

Satellite TV Ltd., which was originally established to provide a European TV service via a spare transmitter aboard the OTS satellite, has been allocated one of the UK transmitters on board the European Communications Satellite ECS-1 which is due to come into operation by the end of 1983. Satellite TV Ltd. is at present in the process
of raising funds from institutional investors for the further developemnt of its service.

IN BRIEF

Under a deal with J.J. Silber, the company that acquired the Murphy brand name from Rank, the Rediffusion subsidiary Doric Radio will in future be marketing Murphy TV sets . . . ITT Consumer Products is to be taken over by STC, which became independent of its former US parent company ITT last October . . . Sony is due to release its 2 in . Watchman flat-screen TV set in the UK shortly. The set measures $7 \frac{3}{4} \times 3 \frac{3}{8} \times 1 \frac{1}{2} \mathrm{in}$. and is expected to sell at around $£ 200$. According to a survey carried out by Oracle, the number of UK homes equipped with teletext sets grew from 300,000 to 800,000 last year, a household penetration of 3.9 per cent. About 16 per cent of sets now being sold/rented are teletext models, the percentage rising with screen size . . . A further round of talks on establishing a new world standard for 8 mm video, i.e. for the coming generation of portable "camcorders", took place in Tokyo this March... The recently introduced Mitsubishi portable VCR, Model HS700, is unusual in incorporating a tuner/timer. The suggested price is around $£ 500$, the weight 16.3 lb and the dimensions $16.7 \times 9.1 \times 6$ in.

Test Report

Eugene Trundle

A PERENNIAL problem for those involved in television servicing is the difficulty in deciding whether a line output transformer is faulty, especially when short-circuit turns or internal leakage is suspected. The diagnosis can often be proved conclusively only by fitting a known good transformer, so the traditional drill is to eliminate all other suspects (such as the e.h.t. rectifier/tripler, the scan coils and the secondary supply rectifiers) first. This is time consuming, and the heavy loading introduced by a defective transformer can take its toll of line output transistors and the like whilst the necessarily repetitive tests are being made. All this assumes that no cut-out or trip is banging away to confuse the situation further!

Many testers have been devised over the years to overcome this problem. The idea is that they test the line output transformer (or the power supply transformer in switch-mode circuits) independently, usually in situ. They work with varying degrees of success, but none has been infallible. Most of them work by acting as a threshold oscillator, with the suspect line output transformer incorporated in the feedback path: if short-circuit turns are present, the damping this introduces prevents oscillation and the transformer is thus condemned. Because there are so many different types of line output transformer in use however, while the effective load on them in situ varies from model to model, a degree of doubt is inevitable and diagnosis cannot be certain in every case.

Dynamic Testing

The Bi-Pak line output transformer tester works on a quite different principle. The idea in this case is to energise the transformer in much the same way as when it's working under normal conditions and see how it performs.

Two or three turns of wire are wound around a winding or limb of the suspect transformer to form a primary which is energised from the mains-powered tester. The transformer's windings now all act as secondaries, and the voltages induced in them are proportional to the drive level. A damped transformer will not respond, and will show no signs of life.

Construction

The Bi-Pak tester is fitted in a small plastic box measuring $10 \times 7.5 \times 4 \mathrm{~cm}$. It has a spring-loaded "on" button, a rotary "drive" knob and a pilot lamp, along with two sockets. The lead which forms the "primary" of the transformer being tested is plugged into these two sockets - the lead comes with the tester. There's just over one metre of mains cable.

The tester's precise mode of operation is not immediately obvious for the very good reason that the internal components are partially potted in epoxy resin! Oscilloscope tests suggest that the incoming mains waveform is chopped by some thyristor like device to produce shortduration output current pulse spikes with very fast rise times indeed - I measured 15 V peak-to-peak across the ends of the test lead. During the test each spike rings the transformer to produce a series of decaying bursts of oscillation at about 25 kHz . This is below the resonant frequency of the transformer itself, and means that there's probably a tuning capacitor inside the mystery box!

Operation and Tests

Operation is very simple. The lead supplied is looped a couple of times around the windings - or a yoke limb - of the suspect transformer, be it in or out of the set. The go button is next pressed, then the drive control is slowly wound clockwise. A good transformer will respond with signs of life such as whining or buzzing. There will be a healthy corona discharge from the overwinding, and often sparking around the primary winding. A neon held several
millimetres away from the transformer will light up. A dud transformer on the other hand will show no signs of life.

I started off with a good selection of new stock transformers, ranging from types used in small monochrome portables to large multi-winding types used in colour sets. The first thing I discovered was that the tester needs a "stiff" mains supply - it didn't work at all when fed from the bench isolating transformer (a 500W type). On raw mains however the results were satisfactory - the response from most of the new line output transformers was good. I was a little alarmed however to find that even at the minimum drive setting many transformers produced internal and external sparking between points up to 8 mm . apart! This happened on pressing and releasing the go button, and I made a mental note to be wary of this when making in situ tests on transistor receivers.

Amongst the stock were jellypot transformers of the type used in many Thorn chassis. These couldn't be tested because of the impossibility of setting up an effective primary winding. The same thing applied to many types of switch-mode power supply output transformers. Most diode-split line output transformers have an exposed ferrite limb, and I had specimens of Mullard, Hitachi and National Panasonic manufacture. Unfortunately on all these the plugs at the end of the lead supplied were too large to go through the gap between this limb and the heavily-sheathed winding block. By improvisation however I was able to set up a test and was rewarded with a beautifully buzzing transformer, with little "snicks" from the e.h.t. and focus connector wells to indicate a good transformer. This required three primary turns and a fairly high drive level, probably due to the foil-type windings used in the particular specimen I chose for the test.

I found that small conventional transformers were very lively, and in the case of a transformer for the ITT VC300 chassis (with e.h.t. rectifier and reservoir capacitor attached) I had no difficulty in raising an e.h.t. output of 15 kV (way above normal) with the tester's drive setting at one third - this was with just two turns of the test lead wound on! An ITT FT110 line output transformer produced 10 kV pulses (normal operation produces 8.5 kV pulses) with modest drive, and 15 kV was registered at a high drive level, all with a two-turn primary winding. The transformer used in the Thorn 8500 chassis has a fullvoltage overwinding, and with the tester's drive control advanced a little the transformer was lively: at about half drive 4 cm . sparks were leaping from inside the e.h.t. connector sleeve to the transformer's metal frame . . . So it's important to heed the warning in Bi-Pak's instructions to avoid excessive drive levels.

Having exhausted the possibilities of testing good transformers out of circuit, I tried introducing short-circuit turns on various types of transformers by winding a loop of wire around the ferrite core and shorting together the free ends. A single short-circuit turn merely called for a higher drive level than before to get the same results. Two short-circuit turns were (in many transformers) betrayed by the need for an abnormally high drive setting before the sparks began to fly. In most cases three short-circuit turns gave an unambiguous dud indication. Strangely enough however an ITT CVC20 transformer could be made very lively at low drive settings with its five-turn c.r.t. heater winding dead short!

The dustbin was next turned out and a rich harvest of dead line output transformers was found. The first, from an ITT CVC32 set, tested dud, but as the drive was wound up the tester's 2A mains plug fuse blew. A 3A replace-
ment fuse was fitted and held out for the remainder of the tests, which confirmed faulty line output transformers from the Decca 100 chassis, the Philips G8 and the Pye 725. The second transformer from a G8 let us down however: it was known to have short-circuit turns in the overwinding, but on test a lively response was seen at the main winding, with sparks in all directions - the overwinding was quite dormant of course.

In-circuit Testing

We always have plenty of working TV sets on test, and several were tried with the Bi-Pak tester. The short mains lead proved to be very inconvenient - the instrument has to be very close to the transformer under test, and it was not always easy to get the transformer within a metre of the mains socket.

In-circuit testing was possible and fruitful with many sets, and good results were obtained provided normal checks around the line output stage had previously eliminated obvious faults. For example, a leaky BU208 line output transistor (500Ω collector-to-emitter both ways) prevented an o.k. indication with a good transformer, as might be expected. The tester was found to be reasonably tolerant of normal loads such as the scan coils and the tube heaters.

I was unlucky with the majority of Japanese colour sets in at the time, either because the transformer was physically incompatible with this sort of testing, for the reasons described above, or because it was buried inside a substantial and well battened down screening can. A known working Pye CT200 didn't give a good indication for reasons that I don't know, and the neighbouring Thorn 9800 was likewise disinclined to co-operate, maybe due to the foil/diode-split type of transformer used. In both these cases removal of the c.r.t. base (to disconnect the heater load) didn't help matters. I must confess that I shied away from in situ testing on certain sets for fear of component damage, though this is not to say that such damage would have actually happened.

Conclusion

As mentioned above, there's no such thing as an infallible line output transformer tester. The Bi-Pak tester is no exception to this rule. It's a lively device, perhaps a little too lively, but if used with care it's unlikely that anything untoward will happen. The sorts of transformers it won't test are the ones that generally don't fail anyway. Use of the tester will provide experience of what it can and cannot do, which counts for a lot in interpreting results. One thing is for sure - if it fails for any reason it's irrepairable due to the encapsulated circuit.

It's a useful diagnostic tool and is worth having, but if it was mine I'd replace the mains lead with a three metre one before putting it in the toolbox. I can't honestly say that it's more effective then the i.c. oscillator type, and where the transformer under test is not physically suited to this particular mode of testing, or where it's buried in heavy screening, the alternative type of tester has the advantage. It seems rather over priced at $£ 41.40$ (including VAT), though there's no doubt that its cost will be saved (in terms of labour time and materials) once a few tests have avoided the need for line output transformer replacement.

The tester is available from Bi-Pak, PO Box 6, Ware, Herts (telephone 0920 3182).

Vintage Video: Baird's Discs

David K. Matthewson, Ph.D., B.Sc.

"Pictures from a silver disc" - so runs the Philips advertisement for the LaserVision disc system. The concept of LaserVision involves the use of advanced technology, which Philips and now Pioneer are doing their utmost to exploit. The idea of recording pictures on disc is far from new however. Indeed the history of video discs goes back to the early pioneering days of television. John Logie Baird conceived the idea of storing TV pictures on disc for two reasons. First to have a means of demonstrating television without too much trouble, and secondly to enable viewers to use their televisors - the mechanical TV receivers used in the early thirties - when programmes were not being transmitted.

Baird's original TV system was a mechanical one, using a Nipkow disc at the studio and at the receiver to produce a scanned picture. There were thirty vertical lines and $12 \frac{1}{2}$ pictures per second, with no interlacing. A photocell was used to sense the light at the studio end, a neon in the televisor being modulated at the receiving end.

Because of the small bandwidth of the signal - the maximum frequency was about 13 kHz , while for broadcast transmission it was around 9 kHz - it could be recorded on a conventional 78 r.p.m. gramophone record. Baird's patent number 289,104, filed on October 15th, 1926, describes a disc cutter and reproducer (see Fig. 1) for use with his proposed TV system. The patent includes details of the disc's groove structure, which was envisaged as consisting of two parallel sections, one carrying the sound and the other the vision signal. A double-headed pickup for reproduction was also described, and Baird coined the name Phonovision for the system. In practice Baird never seems to have developed the double-groove system, the few surviving examples of Baird discs all being single grooved with no sound track.

Problems seemed to have arisen with the disc cutting process when trying to record a signal with a lot of highfrequency content. Other experimenters continued to work on the idea however, and by the mid-thirties it seemed clear that there were two alternatives: using a conventional type of record and player you could have either imperfect reproduction of pictures with a fair amount of detail, or reasonable accuracy if the subject was a simple one. The Major Radiovision Company of London, run by R.O. Hughs, adopted the latter option, and in June 1935 were selling their 30 -line TV discs by mail order (at $7 /$ - plus 6d post and packing) and in Selfridge's London store. The subject matter was not particularly inspiring, consisting as it did of ten still cartoons: the "artistes" apparently included Marconi, Harry Lauder, Charlie Chaplin and Stanley Baldwin. The discs were double sided, ran for just six minutes per side, and used different modulation depths on each side to allow the user to experiment with different types of pickup. Major Radiovision also suggested that by reversing the pickup leads you could obtain negative pictures.

Quite a few televisors were around in the mid-thirties. Plessey had produced about 1,000 for the Baird Company, and kits were available from firms such as Peto Scott. There are no sales records for the discs, so we shall never know how popular they were. They were certainly
not a financial success, and Major Radiovision went out of business shortly afterwards.

One of the main problems with Baird's mechanical TV system was poor sync. No sync pulses were transmitted, reliance being placed on the fact that the signal fell to black level at the end of each line and on motor speed controls. Needless to say the discs suffered from similar

Fig. 1: Baird's 1926 ideas for a video disc recorder and player - Phonovision. The lower part of the diagram shows details of the proposed twin-groove arrangement. (10) Subject matter. (11) Nipkow disc. (12) Light-interrupting device. (13) Photocell. (14) Amplifier. (19) Microphone. (20) Pick-up transducer. (15a/16) Vision signal groove cutter. (21) Sound pick-up microphone. (22/23) Sound signal groove cutter. (18/25/26) Disc. (29) Hill-and-dale modulation for the vision signal. (30) Side modulation for the sound signal.

Fig. 2: Baird's 1928 idea for a combined disc player and televisor. (1) Disc. (2) Combined turntable/Nipkow disc. (3) Scanning holes. (4) Modulated neon light source. (5) Viewing lens. (6) Pick-up.
problems. The televisor's scanning speed was 750 r.p.m., the disc's 78 r.p.m., and it was necessary to keep the two in step. As with an off-air transmission, this was a tricky and time consuming task.

In April 1928 Baird registered a patent for a complex system in which a disc player and televisor were linked via a mechanical gear train. It's not known whether he ever built the device, and in October of that year another Baird patent proposed a more elegant solution. This consisted of a combined disc reproducer and viewer, with the record player turntable also acting as the televisor scanning disc (see Fig. 2). As the turntable/disc were combined, sync could not be lost once it had been set up by carefully
aligning the record with marks on the turntable. The viewer was to watch the pictures, produced by a neon, through a series of lenses. Unfortunately it seems that Baird never built this system either.

In 1966 the BBC "decoded" a Major Radiovision disc, displaying the signal on an adapted oscilloscope. In 1971 the IBA did something similar, this time displaying the output on a renovated televisor. The 30 -line system was finally abandoned for broadcast purposes in September 1935. By August 1936 high-definition television had arrived. The author would like to hear from any readers who may have any further information on Baird type video discs - or even examples!

A New EHT Circuit

THE current Telefunken $415 / 615$ CTV chassis is conventional in most respects, with its self-oscillating chopper power supply which also provides mains isolation, TDA 3560 single-chip decoder, class AB RGB output stages, TDA1670 field timebase i.c. and BU208 line output transistor. The line output transformer is something quite new however.

Line output transformers are nowadays reliable components though a percentage of failures do occur. Tripler breakdown after some years' service is far more common, except in Japanese sets. The transformer is certainly one of the most expensive items in a TV receiver: the pulse windings and secondaries used to provide various supply lines add greatly to the manufacturing cost and increase the insulation problems.

Telefunken decided to do something about this in designing the $415 / 615$ chassis. The aims were to reduce the cost of the transformer, make it as small as possible, mountable without securing screws, and producible by automatic production methods whilst having a power handling capability, reliability and internal resistance equal to or better than conventional designs.

To achieve these aims it was decided to use a half-wave e.h.t. rectifier arrangement. This in itself is not unique of course, but for CTV use the problem of a half-wave rectifier circuit is the high leakage inductance and internal capacitance in the transformer. The result is an e.h.t. system with a high internal resistance.

It was decided therefore to use a transformer with just two windings, the primary and e.h.t. overwinding. The l.t. supplies are derived from the chopper transformer, while a transistor to which the line flyback pulses are fed produces the feedback pulse for the flywheel sync system. The latter is in the TDA1950 sync/line oscillator chip, which also produces the sandcastle pulse used by the TDA3560 decoder i.c. for gating, blanking and clamping.

This decision greatly simplifies the transformer of course, while collaboration with a specialist manufacturer or ferrite cores enabled the cross-sectional area of the core to be reduced by some 25 per cent. The result is a transformer which is extremely compact and light.

The main design advance however is the use of what Telefunken call the "push-pull high-voltage concept". This uses two rectifier diodes, one at each end of the winding as shown in Fig. 1. The action of the circuit is shown in Fig. 2. D1 acts as a conventional peak rectifier when the positive-going flyback pulse arrives at its anode, charging

George R. Wilding

the e.h.t. reservoir capacitor C2 (tube capacitance). During this time D2 conducts, clamping the bottom end of the e.h.t. overwiding to chassis. At the end of the flyback pulse half cycle the bottom end of the winding swings positively and D2 cuts off. It conducts again when the voltage at its cathode (circuit oscillatory action) tries to swing negatively, thus charging the interwinding capacitance C1. The next time the flyback pulse occurs, D1 sees an enhanced voltage at its anode, i.e. the sum of the flyback pulse and the charge on C 1 . The circuit thus acts as a voltage multiplier, and the number of overwinding turns can be substantially reduced in comparison with a simple half-wave rectifier circuit.

Even though it's on such a small former the primary winding has only two layers. These terminate in connection pins which together with two snap-on springs hold the transformer securely to the board for soldering. The diodes and the e.h.t. connection are secured to the body of the overwinding and encapsulated in heat hardened epoxy resin.

The focus supply is obtained via a bleed resistor in the tube's anode cap connector. Fig. 3 shows the feedback pulse generator stage.

Fig. 1: "Push-pull" e.h.t. rectifier circuit.

Fig. 2 (left): Operation of the rectifier circuit.
Fig. 3 (right): Feedback pulse generator stage.

DIGITAL VIDEO STORAGE \& PROCESSING

Technology Transfer California to Europe via a new Waterford facility

An experienced project manager is required for this exciting role.
As our client wants a senior designer with hands-on-experience in real-time digital video processing, exposure to phase-lock loops, micros (Z80 and 8000), 14 MHz digital memory and signal processing and control then salary will not be a limiting factor. Applicants in the first instance to write to Bill Hennessy as adviser to the company:

E.P.I. CONSULTANTS 70 Eccleston Square, London SW1V1PJ
socket, check back to the line linearity coil L705 and the diode modulator transformer T705. If there's continuity through these points, check the $2 \cdot 2 \mu \mathrm{~F}$ scan correction capacitor C724 which could be open-circuit.

Field Timebase

The field timebase lives on the right side panel above the Syclops driver etc. A field hold control may or may not be fitted. In the event of field roll, check C406 ($47 \mu \mathrm{~F}$) which smooths the supply to the field oscillator.
The field timebase is basically reliable but is inclined to suffer from dry-joints, normally at the transistor connections, i.e. the base, emitter or collector. These poor connections can't always be seen, even under a strong light, so a few moments with the soldering iron may be called for.
The field oscillator consists of a pnp-npn pair (VT401/ 2) which periodically discharges $\mathrm{C} 405(0.68 \mu \mathrm{~F})$. The following stage employs a field effect transistor, VT403 (BF256L), the height control being in series with its source connection. The output from this transistor is capacitively coupled to the driver transistor VT404, which has the linearity feedback applied to its base. This is followed by a class AB output circuit which consists of a Darlington pair (VT405/6), a second driver (VT408), the second output transistor (VT407), and the bias diodes W406-8. VT405 is a BC337, VT406 a 16802 , VT407 a 16801 and VT408 a BC327. In the event of incorrect or complete loss of height, check these various items.

Signals Panel

The signals panel closely follows that used in the 8800 chassis, as does the tuner. See the comments made last month. The tuner panel carries the 33 V stabiliser (TAA550) and its $10 \mathrm{k} \Omega$ feed resistor R15, which takes its supply from the 90 V rail. There's no other supply resistor as there is in other models where the source voltage is some 200 V .

Grey-scale problems can be caused by the RGB output stage decoupling/compensating capacitors C174/5/7 (560 pF later 330 pF).

Beam Limiting

Another similarity with the 8000 series is the beam limiter arrangement. The tube's grids should be at about 23 V . If not, check R725 ($180 \mathrm{k} \Omega$) and diode W722 (1N4005). These items can be damaged by a faulty tripler.

Puzzling Symptoms

Returning to the power supply arrangements, various puzzling symptoms can be produced when the 90 V supply smoothing capacitor C715 is defective. If you find that there's marked line pairing ("horizontal lines"), possibly centre foldover and whistling, with intermittent tripping or tripping on channel change, check this item.

Audio ICs

Finally note that where an i.c. audio output stage is used the i.c. is type SN76033N. These have been in short supply for some time. Any that are available should be snapped up, together with any SN76003s, which are commonly used in various popular stereo units.

Supplement to 'Television', May 1983

The purpose of this supplement is to illustrate common VCR fault symptoms to assist newcomers with fault diagnosis.

Photo (1) shows the typical effect produced on a VHS or Betamax machine when one of the video heads is not working or there's a fault in the head circuitry. The fault may be on either record or playback: to prove which, check with a prerecorded tape. The cause could be a defective or dirty head or a fault in one of the preamplifiers. If on record only, check the record/playback switch (Beta) or the switching transistors (VHS) - the result is the same, i.e. alternate fields of noise only.

On V2000 machines, also certain early Philips and Grundig VCRs, the drop-out compensator continually reinserts the last line of "good" video, so one head not working gives an overlay of vertical bars as shown in photo (2), due to the last line of video from the good head being repeated throughout the following field.
Similarly, lesser drop-outs due to tape creases, a worn head etc. produce a series of bands of like appearance on these machines, as shown in photo (3).
If the whole picture on a V2000 machine goes into dropout stripes every few seconds, check on fast search if available - see photo (4). Regularly spaced drop-out or noise bars prove that the dynamic track following is not working - fast search should be noise free, unlike VHS or Beta machines.

Incorrect Head Switching

If the head switching point (controlled by pulses from the head drum or flywheel) is in the wrong place, this will show on the picture as a band of disturbance or, if the switching is too late, the field sync pulses will be mutilated, causing jitter or roll. Photo (5) shows a case where the switching point was way out - it was discovered that the flywheel had been put on in the wrong position.

Noise Bars

Noise bars on a prerecorded tape only - see photos (6) and (7) - point to a fault in the tape path, affecting either the writing angle or the wrap of the tape around the head. Early VHS machines were prone to problems with the mechanical tape loading arm system, as a result of which the tape is not fully wrapped. Troubles on the supply (left-hand) side give a noise bar at the top of the picture and vice versa.

Spaghetti

The fault shown in photo (8), called "spaghetti", can be caused by quite a lot of things, but the basic reason is that the playback f.m. limiter is net coping - due to the f.m. being too low, excessive, noisy or the limiter being misadjusted. Worn heads can give this system, especially with V2000 machines.

Worn/dirty Heads

Worn or dirty heads with VHS and Betamax machines usually produce this symptom - see photo (9). Definition is lost; also the I.f. and h.f. ends of the f.m. spectrum, corresponding to the sync level and peak white respectively, are lost, so we get clogging and "dirty" highlights lacking in
detail. With the cost of replacement heads in mind, a clean is worth a try.

Misadjustments

When a new head has been fitted it's necessary to go through any preamplifier frequency response adjustments there are usually four with VHS machines, four or six with Betamax machines. If not, the picture may contain excessive f.m. noise as shown in photo (10). It looks like grains of rice on mid-grey areas (spaghetti, rice, what next? - that's nothing to the edible matter with which some customers fill their machines!).

There are also normally adjustments for the f.m. (luminance) and chroma record levels. Excessive f.m. gives a noisy playback picture, possibly with some spaghetti. If greatly excessive the chroma will be affected, as it rides on the edge of the f.m. waveform. See photo (11). Excessive chroma record level will not alter the saturation, as the burst and chroma are altered in proportion and the a.c.c. in the TV set compensates. You will however get a diamond pattern effect - see photo (12) - on saturated colours due to crossmodulation between the l.f. chroma and the f.m. If the playback chroma level is too high the effect is different - see photo (13). This time there's a fringe of patterning following all vertical edges - the effect is produced in the r.f. modulator.

Unlocked Colour

When the carrier used for chroma conversion is off frequency, the result is similar to the reference oscillator in a TV receiver's colour decoder being off frequency - see photo (14). A scope is essential for tackling this type of fault.

Displaced Colour

If the chroma is displaced with respect to the luminance, see photo (15), the machine is replaying the wrong number of lines per field. The TV set's flywheel line sync system compensates but the PAL delay line has a fixed period. The cause of the condition can be incorrect tape speed, excessive back tension, a tight head bearing or anything else that loads the head. If the displacement is not steady, suspect the pinch wheel or problems in the tape path. If the head speed is too far out for the TV set to be able to compensate the result is line slip as shown in photo (16). In this case the head servo circuit will have to be checked.

FM Modulator Faults

When confronted with a display such as that shown in photo (17), there are problems in the f.m. sections. In this example the carrier and deviation adjustments in the f.m. modulator had been twiddled. A scope, frequency counter and calibrated power supply are necessary to put things right again.

Drum Earthing Problems

As the head drum rotates in contact with the tape, it becomes charged electrostatically. Random white lines on the picture - see photo (18) - mean that the earthing brush for the drum spindle needs cleaning.

VCR Fault Guide

(1) Typical symptom on a VHS or Betamax machine when one head is not working.

(3) The effect produced by minor drop-outs on a V2000 system machine.

(5) Effect produced when the head switching point is far out - due here to incorrect flywheel position.

(2) The effect when one head is not working on a V2000 system machine.

(4) Effect when the dynamic track following system is not working on fast search with a V2000 machine.

(6) Noise bars at the top and bottom of the picture due to a tape path fault.

VCR Fault Guide

(7) Noise bar at the bottom of the picture due to a tape path fault on the take-up side.

(9) Badly worn heads̀ in VHS and Betamax machines produce this type of display.

(11) Effect produced when the f.m. record current is excessive - noisy playback, possibly with spaghetti.

(8) If the limiting is inadequate or the f.m. noisy the result is "spaghetti" as shown here.

(10) Effect produced when the head preamplifier O and resonance adjustments are incorrect.

(12) Effect produced when the chroma record current is excessive - patterning, not excessive saturation.

VCR Fault Guide

(13) Fringe patterning on vertical edges due to excessive playback chroma signal.

(15) Chrome displaoed with respect to the luminance, due in this case to incorrect head phase control.

(17) Type of display produced when the f.m. modulator adjustments are mis-set.

(14) An off-lock chroma conversion carrier produces unlocked colour.

(16) When the drum speed is too far out the result is line slip as shown here.

(18) Random white lines will be present when the drum's static discharge system is not working.

Digital Counter-Timer

Part 2

Tony Jenkins, G8TBF (WKF Electronics)

WE'Ll assume that those contemplating the construction of the frequency counter-timer are proficient at wiring and assembly. The aim of the following notes therefore is to ensure that the unit goes together with the minimum of problems, thus saving both time and frayed nerves.

Construction

Start with the main board. Fig. 7 shows the component layout. First of all fit the two through-board links under IC1 - it's impossible to do so after fitting the i.c. socket.

Now install the i.c. sockets, which must be spaced sufficiently away from the board to allow access to the pins requiring top soldering. We suggest that the four corner pins on each socket are soldered first, with only about 1 mm . showing on the underside of the board. Next fit the resistors, capacitors, diodes, crystal, etc., making sure that all top-soldered connections are made. Fit the SIL resistor networks with the dot on the body matched to the " 1 " shown on the PCB. Then fit the transistor and preset, followed by the regulator i.c. which also needs to be secured to the board by its tab with a short 3 mm . screw

Fig. 7: Main panel component layout.
[TM1905]

Fig. 8: Front panel cut-outs - dimensions in mm.

TMJ906
Fig. 9: Display panel layout.

COMPONENT LIST - 2
 Prescaler One

Resistors: all 0.25 W carbon film, $\pm 5 \%$, except where stated

R1	47R	R5 \quad 330RVR1 \quad 10kminiature horizontal-mountingskeleton preset	
R2	1k		
R3	10R		
R4	4k7		
Capacitors:			
C1	10n		ceramic plate
C2	22p		ceramic plate
C3-6	10 n		ceramic plate
C7-9	$1 \mu \mathrm{~F}$	35 V	tantalum bead
C10	10 n		ceramic plate
Semiconductors:			
Tr1	83L	IC2	LM2931-Z5-0
IC1	862		

Miscellaneous Items Required:

Set of p.c.b.s
l.c. sockets:

2 40-pin
4 16-pin
2 14-pin
1 8-pin
Case

Printed labels for front panel
4 BNC sockets, single-hole mount, 50Ω
2 20-way, 85 mm Flexstrip jumpers
Knob for function switch
Display bezel
43 mm screws and washers
PP7 battery

Preamplifiers (each of two units)
Resistors: 0.25 W carbon film, $\pm 5 \%$ except where stated

R1	1M	R10	220R
R2	100 k	R11	220R
R3	10 k	R12	47R
R4	22k	R13	470R
R5	150R	VR1	1 k
R6	470R	subminiature cermet preset	
R7	47R	VR2	1 k
R8	2k2	carbon track preset with knob	
R9	$10 k$		

Capacitors:

C1	100n		polyester
C2	15p		ceramic plate
C3	$1 \mu \mathrm{~F}$	35 V	tantalum bead
CA	10n		ceramic plate
C5	10n		ceramic plate
C6	10n		ceramic plate
C7	$100 \mu \mathrm{~F}$	6 V	tantalum bead
C8	10n		ceramic plate
C9	10n		ceramic plate
C10	1 n		ceramic plate
C11	$1 \mu \mathrm{~F}$	35V	tantalum bead

Miscellaneous:

L1 One turn e.c.w. on ferrite bead
and nut. Next fit the terminal pins followed by the remaining through-board links (note that there are two between sections of the switch bank). Finally fit the switch bank.

The next stage is to drill and prepare the front panel. Fig. 8 shows the cut-out details which must be adhered to. Readers purchasing PCBs from Readers' PCB Service will receive a paper template which should ease the task. The March cover showed the suggested lettering, which can be done using a suitable style and size of dry transfer lettering. Protect the finished panel with at least two coats of a suitable spray-on laquer. When the front panel is completed, letter the display bezel in the same way, then fit the bezel on to the front panel.

It's necessary to prepare the front panel prior to the display board since the function switch SW11 is not soldered flat to the board but has to be spaced away from it to provide the correct mounting distance from the front panel. More on that later. Fig. 9 shows the display board component layout. The LCD display has 24 connections on each side. The manufacturers supply it with connector strips which have 26 pins, one spare being located at each end. The socket strips to be soldered into the PCB have 25 pins. So the spare pin at one end of the display connector will go into the socket but the spare pin at the other end will be left floating. As the socket strip pins are offset, ensure that they are mounted the same way round and that the display is offset towards SW11. Then insert the display into the socket strips, making sure that it is correctly orientated and fully seated.

Insert SW11 but do not solder. Put the shakeproof washer on the spindle and strip off the antirotation pin (otherwise the switch will not mount flush to the front panel). Locate the whole assembly on the bezel studs, using a nut at each side for positioning. Align the board so that the display is parallel to the bezel, leaving a gap of about 1 mm . Fit and tighten the securing nut on SW11, then solder the switch to the board.

The whole assembly can now be removed and the two 20-way flex strips soldered to the copper track side of the display board and then through the main board, remembering to solder the top and bottom. The flex strips are supplied cut to size, so don't insert farther than necessary through either PCB or the display may not reach the front panel. After fitting the i.c.s and the battery lead (we suggest using a PP7 battery) the assembly can be tested.

On initially switching on the display should show 00000000 with the "measurement in progress" (MIP) flag flashing. The annunciator flags should change according to the range selected. If all is in order the assembly can be put into the case - after the input sockets and offset controls have been mounted on the front panel.

The earth tags on the input sockets should be linked together, with a short lead attached for connecting to the main board. Likewise the pins at the anticlockwise end of the offset controls.

Corrections

Finally this month some corrections to Part 1. An i.c. pin number was omitted from Fig. 6: pin 5 of IC4b is connected to pin 10 (the missing number) of IC4a. Incorrect type numbers were given for the two 5 V regulator i.c.s: IC9 (incorrectly shown as IC8 in Fig. 6) is type LM2931-T5.0 and IC2 (prescaler 1) type LM2931-Z5.0.

TO BE CONTINUED

next month in

- IN-SITU TRANSISTOR TESTER

This simple in-circuit transistor tester, designed by Alan Willcox, will also check diodes and thyristors. It's quick and easy to use, giving rapid identification of transistor type ($n \mathrm{pn} / \mathrm{pnp}$) and condition, diode polarity and so on, possessing good immunity to the in-circuit conditions. Indication of a device's condition (open-circuit/shortcircuit/o.k.) is by means of a pair of LEDs which either flash or are extinguished (a dual-timer i.c. provides supply line switching at about 5 Hz). There are just two switches, on/off and diode/transistor. Can be built easily and cheaply to give reliable go/no-go testing. Two alternative case arrnagements will be shown.

- TELEVISION RENTALS

So you've renovated a batch of now sparkling CTVs and want to go in for a bit of DIY renting. What are the problems and pitfalls? There are various legal requirements in addition to the business and technical aspects. Tony Thompson draws on his experiences to provide guidance for those about to start out in the rental field there's money and satisfaction to be gained from such an enterprise.

- TRIPLER CONVERSION

Disaster struck when the e.h.t. overwinding in Keith Cummins' Beovision 2600 developed shorted turns. Since these sets provide excellent pictures, a decision was taken to investigate the possibility of conversion to e.h.t. generation using a tripler. This proved to be highly successful, a neat modification to the regulating circuit restoring the performance to almost the original standard.

SERVICING FEATURES

S. Simon on the Thorn 9600 chassis. VCR Clinic. John Coombes on the Toshiba C800B. Mike Phelan on the 3V23's drum servo system.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:

Letters

SONY MODEL KV1810UB

David Botto's article on the Sony Model KV1810UB in the March issue was excellent. The suggested replacement component count for a dead set was very high however, and many service engineers will undoubtedly be reluctant to allocate the time and expense necessary to follow all the recommendations. Few engineers seem to realise that this model can be powered up without using the regulator circuit. The procedure I adopt when the chopper and line output devices (Q603 and Q510) fail is as follows:
(1) Remove but don't replace the chopper GCS Q603. (2) Link across its anode and cathode on the panel. (3) Replace the line output GCS Q510. (4) Connect an 18 V supply to pin 17 on the regulator panel. (5) Supply the set from a variac, adjusting this for 125 V at pin 22.

The set can now be tested (or soak tested) without fear of Q603 locking on and destroying both GCSs. This test does not give sensible results in terms of visible picture content, but for the majority of faults on these sets this is irrelevant

The diagnostic procedure to follow on the regulator panel itself is adequately covered in the article, but I think it's important to point out that IC501 rarely (if ever) goes wrong. Also the value of C624 is not critical for test purposes. Higher values (say $100 \mu \mathrm{~F}$) can be used but will cause a line down the centre of the picture: you can fit values as low as $32 \mu \mathrm{~F}$, but this should be done only if the engineer is prepared to monitor the waveform at pin 16 of IC501.

Finally, the protection transistor Q610 is a complete disaster in these sets. If it conducts, the trigger input to the monostable is clamped to chassis. When this happens the chopper Q603 is left without drive and usually remains on The result is that two more GCSs are destroyed. I remove Q610 and associated components, cut the track, and fit a crowbar circuit - exactly as in the Thorn 3500 chassis but with two zener diodes that come into operation when the 130 V line rises to 140 V .
Grahame Danbury,
Berkhampstead, Herts.

FERGUSON 3292 DRUM ASSEMBLIES

In the December 1982 VCR Clinic Derek Snelling raised the point about the interchangeability of replacement head drums, and the need to replace the lower drum assembly, in early versions of the Ferguson 3292. I've found that it's not necessary to replace the lower drum assembly. The replacement head drums are fitted with plastic relay pins which protrude and foul the mounting. They can be removed and carefully exchanged for the PCB and wires from the old head drum - but do take care to maintain the colour identification of heads 1 and 2. This simple modification can save $£ 50$ in parts alone.
Brian Watkins,
Arun Video, Bognor Regis.

THORN TX10 CHASSIS

The problem of the Thorn TX10 chassis blowing its chopper transistor was mentioned in the March Service Bureau. The fault described has a very strong resemblance
to a great number that have passed through our workshop. The trouble is that the focus unit arcs internally. Replace this and fit a new BU208 and no more trouble will be experienced.
B. Francis, Tech. (C.E.I.), A.M.I.E.E.I.E., Plympton, Plymouth.

Failure of the chopper transistor in the Thorn TX10 chassis was mentioned in Service Bureau, March. I've found that the usual cause, whether a BU208A or BU208B is fitted, is the focus unit, which tends to arc over to chassis - this sometimes can't be seen or heard, and causes much head scratching
David N. Burns,
Penicuik, Midlothian.

WORKSHOPS

Last December Chas Miller commented on the subject of workshops. It's a problem that occurs beyond the UK shores, believe me. My first five years in the trade were spent in Hamilton, Victoria in a workshop that was structurally sound but had a severe lack of test gear, particularly for two-way radio servicing (TV equipment o.k., just). May 1981 saw me up in Cohuna, Victoria. This time the workshop was an old house that was falling down. The floor was uneven, so that CTVs on trolleys ran away to the back wall. There were only four (two double) general purpose 240 V outlets plus a million dual adaptors. The roof leaked - into a VCR one evening, but still nothing was done about it! The service vehicle (1968 Holden) had next to no brakes and big, gaping holes in the back. When delivering a new CTV the set got in one hell of a mess if the client lived on a gravel road! Stocks consisted of two triplers, a couple of BU326s, 2SD380s etc. In the summer the workshop temperature went over $40^{\circ} \mathrm{C}$ whilst in winter it fell to $0^{\circ} \mathrm{C}$. In all, it was a dump. I could go on about it, but won't.

That's why I'm now at Tennant Creek, Northern Territory. The workshop here is an ex-cool room, thermally insulated and air conditioned with a constant temperature of $72^{\circ} \mathrm{F}$, also with controlled humidity. The inner and outer skin is colourbond steel, providing r.f. shielding, an important aspect according to our Department of Communications requirement for transceiver servicing. Test gear is being purchased as we can afford it - we need about $\$ 10,000$ to set up properly - but it's paradise compared to my previous experiences. Les's rusty motor car? - it sounds like a roller to me compared with the heap of rubbish we had to attempt to drive! The moral of all this is to be wary of working for a retailer (we don't retail up here). Retail margins are so narrow that the workshop inevitably suffers.

To close with, here are some fault experiences I've had with the Sony Model KV1800A.
(1) The $2 \cdot 2 \mu$ F RGB output stage h.t. smoothing capacitor C168 goes open-circuit, causing modulation of the raster at line rate - white-going modulation.
(2) No results - press cutout!
(3) The line driver transistor shorts, taking out the line driver transformer in a cloud of smoke.
(4) The line output transistors Q801A and B go shortcircuit, taking with them the pincushion output transistor Q604.
(5) Horizontal tearing/ragged verticals. The line oscillator transistors Q509/Q510 have noisy junctions.
(6) Varying grey scale. The RGB output transistors or more often the 330Ω trim pots in the relevant output stage.
(7) No chroma. The 4.43 MHz driver transistor Q306 open-circuit or the ident coil L308 lossy (not open-circuit - possibly shorted turns). The bistable switch transistors Q314 or Q315 open-circuit.
(8) Varying vertical static convergence - replace the HV block (tripler and thick film potentiometer assembly).
(9) The tube occasionally gives trouble - usually the blue or green gun goes down. Take care when removing the e.h.t. cap - the lead is coaxial, with 25 kV on the braid and the vertical static convergence voltage on the inner conductor. If the spring on the centre contact of the connector is broken off the c.r.t. will be useless.

Finally, regards to Les, Chas and all.
Andy Sutherland, VK8KAS,
Tennant Creek, Northwest Territory, Australia.
Editorial comment: A check with our KV1800UB (UK version) manual suggests that most of the servicing notes above apply to this as well, but the capacitor in item (1) is C161 while a different decoder is used - see item (7).

PLUG PROBLEM

A further point about the failure of the line ouput transistor etc. in the Philips G11 chassis due to arcing in the mains plug. I've also experienced this and on occasions have found that it was caused by loose screws in the mains plug. This was in turn due to the tinned ends of the mains lead not being cut off prior to fitting the plug. The solder on the stranded wires "cold flows", and after a few months the screws become loose and the connector arcs.
Michael Bennett,
Romford.

FERGUSON FEEDBACK

The letter from D. Hazell in your March issue calls for a reply. Ferguson Feedback is issued free of charge to all Ferguson dealers: it's also available, on application, to all full-time, bona fide retail or repair operators on the basis of one per retail or repair organisation.

Due to an administrative error, your correspondent was charged for issue 1 and the binder on a retail basis. As a matter of policy we don't supply this particular publication to members of the public, but our internal procedures require that all the items we stock carry a notional retail price tag. Our apologies to Mr. Hazell for having charged him for something he should have received free of charge, and for adding insult to injury by levying the notional retail price. We shall be sending a refund.

Frank Pack,

Editor, Ferguson Feedback.

VIDEO/AUDIO CONNECTOR

I was interested to read the system L-I converter article in the February issue. Because most UK receivers have only a u.h.f. input, the converter incorporates a u.h.f. modulator. The cost of this and the alignment problems would be avoided if a direct video input could be used. All TV sets now sold in France are equipped with an industry standard "peritelevision" connector, and there are moves to get this adopted throughout W. Europe. This makes interfacing with other video equipment much easier, with better quality than is possible using a u.h.f. modulator. The standard pin connections are as follows:
(1) Audio output B. (2) Audio input B. (3) Audio output A. (4) Audio common earth return. (5) Video B return. (6) Audio input A. (7) Video B. (8) Function
switching. (9) Video G return. (10) Intercom data. (11) Video G. (12) Intercom data. (13) Video R return. (14) Intercom data return. (15) Video R. (16) Blanking. (17) Video return (composite). (18) Blanking return. (19) Video output (composite). (20) Video input (composite). (21) Chassis.

All connectors mounted on equipment are female and various types of cords fitted with male connectors are available. Only sets with mains isolated chassis can be fitted with such connectors of course. It seems to me that you would be doing a service by drawing attention to this new standard.
(Name and address supplied, omitted for professional reasons.)

BACK COPIES WANTED

I've purchased Television, Practical Electronics and Practical Wireless for over eight years, keeping all issues in bound volumes. Unfortunately my house and all that was in it was destroyed during the recent fire storms here in Australia. I'm now seeking any back issues - subjects of particular interest to me are vision mixing and special effects, TV test pattern generators, teletext, audio mixers, and microprocessors (especially the 6800 family). Perhaps other readers could help?
W. Steinke, clo 9 Holehouse Street,

North Sunshine, Victoria 3020, Australia.

PLAYING NTSC TAPES

When a member of my family emigrated to Canada and started to send me NTSC VHS video tapes I naturally turned my thoughts to seeing whether a UK VHS machine could be adapted to play them back. Obviously my first concern was with the servo system, so I started with the simplest type of machine, in fact a mechanically controlled Ferguson 3292.
During playback the capstan in this machine is locked to a 475.2 Hz reference oscillator whose output is divided down to 3.71 Hz , while the drum is locked by the off-tape control pulses. I decided to unlock the capstan and speed it up until I had 30 Hz control pulses coming off the tape for drum control. This was done by earthing the gate of the field effect transistor X 14 , connecting a $1 \mathrm{k} \Omega$ resistor between its source and drain (the usual method of opening the loop when fault finding), and adjusting the capstan sample position potentiometer to get 30 Hz control pulses. Adjustment of the drum sample position potentiometer then gave me locked monochrome pictures. These remain stable due to the drum servo compensating for slight variations in capstan speed as a result of the unlocked capstan servo.

My second effort was with a Ferguson 3V23. During playback the capstan in this machine is controlled by offtape pulses while a 4.43 MHz crystal oscillator provides a common reference for both servos, counted down to 50 Hz by IC1 on the servo- 2 board and then divided by two to 25 Hz in IC3. If pin 6 of ICl is disconnected the reference output is increased to 70 Hz : changing the crystal to a US chroma type (3.579 MHz) gives an output at 60 Hz , as required. Adjusting the drum and capstan sample position potentiometers then produced perfect monochrome pictures with all the facilities this machine provides.
Getting chroma as well is a different matter of course. Has anyone tried this?
D. Plummer, 26 Vicarage Road,

Hastings, E. Sussex.

Experimental 4GHz Converter

Hugh Cocks

WHILST most US 4GHz receiver designs use dual conversion down to an i.f. of about 70 MHz , single conversion is more convenient and also far less expensive. The problem with single conversion is the image frequency. To put the problem simply, if we mix a 4.07 GHz local oscillator signal and an incoming 4 GHz signal and select the difference we get an output at $70 \mathrm{MHz}(4 \cdot 07 \mathrm{GHz}-4 \mathrm{GHz}$ $=70 \mathrm{MHz}$). If there's an incoming signal at $4 \cdot 14 \mathrm{GHz}$ (the image frequency) this will also produce an output at 70 MHz when mixed with the local oscillator signal $(4.14 \mathrm{GHz}-4.07 \mathrm{GHz}=70 \mathrm{MHz})$. Unfortunately 140 MHz is a very small step away from the wanted signal at 4 GHz , and if this image frequency is not sufficiently attenuated the result will be a reduction in the carrier-tonoise ratio of 3 dB . That's like throwing away 1.5 ft diameter on a 6 ft dish! Another possibility is that the two signals could interfere with each other, which is highly undesirable. Hence the need for image frequency rejection with a single conversion receiver, as in the present design. With double conversion to a first i.f. of say 800 MHz the image frequency is 1.6 GHz away at 5.6 GHz .

To keep the cost down, a current-controlled multivibrator is used as the local oscillator in the unit to be described instead of a packaged microwave integrated circuit (MIC) - the latter are expensive for use at these frequencies at one-off prices, especially as they all come from the land of the dollar! The current-controlled multivibrator is a very effective substitute.

Due to the conversion loss, a low-noise amplifier (LNA) is essential. A simple one can be made for under $£ 50$ however now that the price of gallium arsenide field effect transistors is falling. The combination of an LNA and the present design provides a very effective down-conversion system. It should be emphasized however that the project is not one for the inexperienced constructor.

Circuit Operation

The circuit is shown in Fig. 1. The amplified signal from the LNA enters the first hybrid which splits and phase shifts it. The input impedance, as with most microwave gear, is 50Ω. The two outputs from the hybrid are taken to two further hybrids where the input from the local oscillator, at 70 MHz away, is introduced. The outputs are applied to the balanced Schottky diode mixers D1/2 and D3/4, which are forward biased via R8/L6 and R9/L7 respectively for optimum performance. A 4 GHz stub at each output removes any trace of microwave signal, the outputs being passed via the high-pass filters L1/C1 and L3/C8 to the two identical common-emitter amplifiers Tr1 and $\operatorname{Tr} 2$.

From here the signals are resistively combined via C2 (d.c. block), L2 and R3 on one side and VC1 with R4 on the other side. VC1 is adjusted so that the wanted signals are combined in phase, the 140 MHz image signal being out of phase and thus removed. The goodness of the cancelling action depends on the stripline hybrids: cancellation between 18 and 28 dB can be obtained across the band. As the circuit will be preceded by a high-gain LNA, strong image signals will be present at the input but will be
of no great consequence.
The signal finally goes to transistors $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$, which provide amplification and some bandpass filtering, and then leaves the head unit for its trip via coaxial cable to the indoor receiver. Simple, isn't it!

The PCB is the most critical item in the system, being etched from Teflon with a critical dielectric constant of 2.5 (0.8 mm . thick). This can be obtained from several sources in the UK but isn't cheap - a piece of the size required will cost several pounds. The 70 MHz section of the circuit could be made up on cheaper PCB to reduce the cost, but I've not tried it and can't guarantee it.

Microwave Oscillators

The current-controlled multivibrator consists of transistors Tr5 and Tr6. They are fed from the 12V line, the two bases being soldered directly to the board. The emitters are fed with a variable tuning voltage, between about -1 V and -15 V , via R13 and R14 respectively. The higher this voltage the higher the frequency - the opposite to a varicap system. This is a low-impedance tuning supply (see Fig. 2), which is a help with long cable runs from the indoor unit. (Microwave varicap tuned oscillators run at about ten times higher frequency than TV tuner varicap tuned oscillators and give about ten times the trouble with hum pickup, due to the oscillator's voltage/frequency response.) Frequency drift is of little consequence, but a.f.c. derived from the demodulated video can be applied. Diodes D5 and D6 help by giving some thermal tracking in addition to providing reverse voltage protection.

The loop of wire that joins the collectors of the two transistors can be made of coaxial cable inner conductor. Keep about three quarters of the original collector lead lengths on both transistors (they are mounted with the cases almost touching), with the loop having just a slight curve to join the two. With BFR34A transistors the band is tuned across by varying the voltage from -6 V to -10.5 V , though this may differ with other transistors. The oscillator is built off the board, secured to the board by the transistor connections. Mount the loop about a quarter of an inch off the board: fine adjustment of the tuning range is done by bending the loop back and forth.

The oscillator's output is picked up by a piece of wire which goes right over the loop and is soldered through to the microstrip on the other side of the board. When finished, this is positioned to give a level response over the band. It helps to solder a small value capacitor from the "dead" end of the wire, about a quarter of an inch beyond Tr6, to the board. Another capacitor can be soldered from one side of the loop to the pickup wire.

If a MIC oscillator is used instead, it can easily be mounted in the space the multivibrator would occupy. Direct connection from the output pin should be taken through to the stripline. Most of these oscillators present a d.c. short-circuit which our forward-biased Schottky diodes won't like, so a small chip capacitor should be inserted in the feed just before the wire joins the microstrip. Remember to change the polarity of C16 and the tuning voltage supply diode D6, as a positive $0-15 \mathrm{~V}$

Fig. 1: Complete circuit of the converter.
(sometimes 22 V) supply is required - the value of C16 should be reduced to say $2.2 \mu \mathrm{~F}$.

Construction

The PCB should have a tinplate surround with two feedthrough capacitors in the wall for the supply voltage inputs - the thing looks like a u.h.f. tuner when completed. The LNA may be built directly on to the input in order to do away with the need for expensive microwave connectors. If a US type with a gain of 50 dB is used (some reach 57 dB , which is not far off a million!) you will find type N output connectors fitted as standard (with waveguide input via a ferrite isolator), so either a chassis mounting plug or socket with back-to-back plug must be used.
Make sure that there's no danger of the coils touching the PCB. The various supply chokes are not critical in value and can be wound over resistors (high value ones!). I used $\mathrm{BC109}$ s in positions $\operatorname{Tr} 1-4$ - any npn transistor with a cut-off frequency of around 300 MHz will do. It may be more convenient to have the trimmer on the same side as the oscillator: this is permissible though it will be a squeeze - check for obvious touching components. Finally put a lid on the top and bottom, with a hole for adjusting VC1.

Testing

We'll assume that you've some basic DX-TV equipment but no exotic test gear. Tune a TV receiver's tuner to around 70 MHz and switch on (leave the oscillator switched off for the moment). There should be a vast increase in the noise seen on the screen. If not, check Tr3 and $\operatorname{Tr} 4$. If you can't tune to 70 MHz , tune an f.m. radio to 88 MHz . Next touch a screwdriver blade on the input ends of L1 and L3. This should produce a further vast increase in noise. If this happens on only one side, check the appropriate signal path.

When the oscillator is powered a "squegging" may be
seen for an instant. This is normal. Check the voltages around the oscillator transistors. The collector voltages will vary as the emitter currents vary, down to about 8 V at maximum current. It will certainly be oscillating now.
Those with microwave signal generators will have no problem. A lot of u.h.f. signal generators produce harmonics extending into the GHz range however, so you can at least prove that signals are being mixed. The humble u.h.f. tuner radiates microwave harmonics at its aerial input - the fourth or fifth harmonic can be used.

An LNA is essential. Even the Gorizont spot beam signals will be very low without one. No need to go into the design of one here. Castle Microwave (address later), who are NEC microwave component agents in the UK, have a very good application note for an LNA plus power unit. Alternatively an American LNA can be obtained.

In Use

With the LNA connected and the converter powered a lot more noise will be seen on the screen, probably varying as the unit is tuned across the band. The feedhorn used could be the same as that described by Roger Bunney in the November 1982 issue of the magazine. If an American LNA is used with waveguide input a matching horn such as the "Chapparal Superfeed" should be bolted on - it costs about $\$ 30$.

Turn the receiving dish aerial to the Gorizont co-

Fig. 2: (a) Method of obtaining a stable negative bias supply for tuning the microwave oscillator. (b) Method of applying a.f.c. to the bias supply.

Fig. 5: Component layout. VC1 can be mounted on either side of the board.
ordinates of 198° from north and 30° elevation (reference London - the equatorial position is $14^{\circ} \mathrm{W}$). The strong 3.675 GHz spot beam should be quickly located, with its characteristic 2.5 Hz flicker due to the energy dispersal waveform which is superimposed on the signal. It's preferable to set the oscillator on the high side of the signal to prevent weak image signals fouling the $3.825 / 3.875 \mathrm{GHz}$ transponder signals. Tune VC1 on the "lower" tuning position for least signal - you won't lose the image signal completely but it should have a lot less "spread". Confirm that the two weaker transponder signals are present $(3.825 \mathrm{GHz}$ is at present the weakest of the three Gorizont signals and is often off air).

There have been several mentions of f.m. video demodulators in previous issues of the magazine. Phase locked loop i.c.s such as the NE564 (not the NE561) will work at 70 MHz but are happier at 35 MHz . A simple divide by two circuit can be used to convert the signal to 35 MHz (see Long-distance Television, January 1982). An alternative is the quadrature detector type of i.c. such as the MC1357, TAA661 or CA3089 - even the ubiquitous TBA1 20 can be used at 70 MHz - with the appropriate choice of gain, quadrature coil and damping resistor (quite a low value for f.m. video - a 470Ω preset is best).

To remove the unwanted energy dispersal, apply a.f.c. to the local oscillator by taking the d.c. component from
the video demodulator plus up to 5 Hz or so via an active filter, amplifying this with an operational amplifier or discrete component circuit, and feeding the output into the oscillator's tuning voltage supply. A good d.c. clamp in the video circuit will remove the "turning point" of the waveform so that the flicker is entirely removed.

The converter presented here is very much ant experimental design, gleaned from an American source. If anyone builds or improves upon it l'd be interested to hear of their experiences. It certainly represents the lowest cost way of effectively receiving signals at 4 GHz . My thanks to Dave Lewis for sorting out the PCB design.

Sources of Supply

Tr5 and Tr6 can be types BFR90, BFR91, MRF901, BFR34A or anything similar with a $4-5 \mathrm{GHz}$ cut off point. Such transistors are available from Ambit, Electrovalue, Maplin, etc.

Teflon PCB (often referred to as PTFE/woven glass laminate) 0.8 mm . thick with a dielectric constant of around 2.5 can be ordered from Walmore Electronics, 1115 Betterton Street, Drury Lane, London WC2 (telephone 01-836 1228). Ready etched boards (and chip capacitors) will be available from Hugh Cocks TV Services, Cripps Corner, Robertsbridge, Sussex (telephone 058-083 317).

The Schottky diodes D1-4 are NEC type ND4981-7E, Ambit part no. 12-49817, or can be obtained as a batch matched set for about $£ 4$ from Castle Microwave, 2 Clarence Road, Windsor, Berks. Some experimentation with diode types may prove beneficial.

American LNAs are available on a mail order basis from American Microwave Technology, PO Box 824, Fairfield, Iowa, 52556, USA. A 1.5 dB maximum noise type costs about $\$ 360$, a $1 \cdot 3 \mathrm{~dB}$ maximum nuise type about $\$ 400\left(120^{\circ} \mathrm{K}\right.$ and $100^{\circ} \mathrm{K}$ respectively). The feedhorn required costs $\$ 30$.

VCR Servicing

Part 17

Time to take a further look at the 3V23's mechacon board. In Part 16 (March) we described how the basic command encoding system works, but there are some loose ends still to tie up - refer back to the block diagram shown in Fig. 68.

The function keys for the clock, tuning etc. are entirely separate from the mechanical function keys that feed tenbit serial coded command signals to the serial-to-parallel converter IC38 on the mechacon panel - the tuner/timer board has its own key scan system. On remote control however both types of command are initiated by the hand unit, so it's necessary to feed five bits of the eight-bit parallel coded output from IC38 back to the tuner/timer board.

Some of the commands are not processed by the microcomputer IC1 but go from IC38 as four parallel lines to IC12 (a 4028 four to ten lines decoder) and then to the servo and display control panels. These commands are counter reset, frame advance and slow motion forward/ reverse, see Fig. 73.

Although IC12 has ten outputs, only four are used here (the reason for this is that the other six output states have

Mike Phelan

already been used in addressing the data selectors IC23/4/ $5 / 6$). Starting with the Q0 output, this is inverted to give a low for counter reset. This also occurs at switch on. The Q1 (frame advance) output passes through an AND gate whose other input goes high for still/pause. The Q2 and Q3 outputs (slow forward/reverse) operate in conjunction with the voltage-follower IC36 (part) and C19. These latter items form a storage circuit whose output voltage goes to the servo board. When the Q2 output goes high, this appears as a low (after inversion) at C 19 which will discharge via R104. When the Q3 output goes high C19 charges. As there's no load at the input to IC36, C19 retains its charge and the output from IC36 follows the input, varying the slow motion rate via the servo circuit. The "three-in-one" diode D27 acts as a zener diode to set the minimum speed - IC36's output cannot fall to zero.

Another four to ten line decoder (IC11) is used to drive the function LEDs on the front panel (see Fig. 74). This receives its inputs from the microcomputer's C port, while its outputs are passed through inverters. The operational amplifier (part of IC36) shown at the bottom in Fig. 74 is connected as an oscillator whose frequency is about 1 Hz .

Fig. 73: Counter reset, frame advance and slow forward/reverse control.

Fig. 74: Function LED drive circuit.

Fig. 75: Brake and pinch roller solenoid control.

Fig. 76: Cassette housing, shown in the up position.

This is started when the microcomputer's E3 output goes high. Five of the inverters have a third connection. When this goes low, the inverter's output is open-circuit. Thus when the oscillator is running and one of the LEDs is powered it will flash, indicating that the machine is waiting for a previous function to finish or that a fault has developed.

The microcomputer's H1, H2, H3 and E1 outputs control power rail switching transistors via various gates to produce various switched supplies - things like "play 12 V ", "E-E 12V", "Rec 12 V " to name but a few. There are 16 of these rails, which go from the mechacon board to various other boards in the machine.

We'll leave the D port (reel motor drive) until we've covered the servo boards. The remaining microcomputer output ports are F and G.

The F port drives the two solenoids (see Fig. 75), one for the pinch roller and one for the reel brakes. Each solenoid has two inputs: one is fed with a pulse to draw the solenoid in while the other is fed with a hold supply.

Cassette and Tape Loading Motors

The G2, G3 and H0 outputs control the cassette motor (the one that loads the cassette or ejects it). The loading process is initiated by pushing the cassette into the slot in the front of the machine (refer to Fig. 76). This lifts the rubber roller, tightening the chain and moving the shutter with the result that the opto sensor operates. This, via the data selector and microcomputer i.c., turns the cassette motor on for five seconds. The rollers rotate, drawing the cassette in and pushing the sliding plate to the right so that the peg enters a link on the downwards moving chain, drawing the complete carriage down until the cassette switch closes. The motor runs for a further 300 msec , then turns off. If the cassette switch doesn't close within five seconds, eject occurs.

The drive electronics are shown in Fig. 77. It can be seen that the circuit is basically a bridge configuration this arrangement is often used in VCRs to drive motors that need to be reversed, as in this case. ICl output H 0 goes high to unload the cassette while G2 and G3 go high for loading. If the cassette is pushed back in whilst the machine is trying to eject it, the load mode could be entered while the motor's inertia is still turning it in the eject direction. To overcome this problem G3 goes low to initiate reload: X12 turns off, and the motor drive current flows via X11 whose collector resistor provides current limiting.

The tape loading motor circuit (see Fig. 78) is driven by the G0 and G1 outputs and is very similar. In this case however the supply is switched off by transistor X7 to stop the motor. The motor drives toothed rings which move the tape guide rollers along tracks to pull the tape from the cassette and wrap it round the head drum.

Tape Guard Circuit

Fig. 79 shows the tape guard circuit, which provides protection in the event of the drum FF pulses being absent (no drum rotation), reel rotation stopping, lamp failure, and still/pause overtime (to prevent tape wear in one place). R154 and C42 form a timer circuit for the latter purpose.

The reel discs are slotted, the peripheries passing through optical sensors which produce signals to indicate that the reels are rotating. Both these signals and the drum

Fig. 77: Cassette loading motor drive circuit.
FF signal go to a three-input gate which is followed by an inverter. The output from this normally keeps C43 discharged. In the event of any of the three inputs not being present however C43 charges via R158 to start the interrupt routine.

If the machine is in the still/pause or slow modes there will be no or interrupted reel rotation. The tape guard signal input to pin 13 of IC24 is therefore blocked via the NAND gate. After five minutes or so in pause C42 charges, the gate opens and the lack of reel rotation is detected with the result that the machine stops.

Failure of the cassette lamp produces the same effect.
The interrupt routine starts when pin 6 of the microcomputer IC1 goes low, even momentarily and irrespective of mode. The following sequence then occurs. The microcomputer checks its A2 input - this is the input

Fig. 78: Tape loading motor drive circuit.
from the data selector (IC24) that checks the unload switch, record safety switch, counter zero and command bit D2. A2 is high for stop and eject, low in all other modes. If the microcomputer finds that $\mathbf{A} 2$ is high, the tape guard input (IC24, pin 13) is checked. If this is high, the eject light flashes and the tape guard is rechecked. If A2 is low the machine is in a mode other than stop or eject, the outputs from the microcomputer are all cleared, then checked. This is repeated until A2 goes high, i.e. the machine is in the stop or eject mode. That's just a general idea - to go into the complete routine would require a detailed flowchart.

The Other Microcomputer

Before leaving the mechacon board, a brief mention of the other microcomputer here, IC2. This receives signals from both reel rotation sensors and from these calculates the relative reel speeds and thus the amount of tape remaining. The output goes to the tuner/timer board in the form of a five-bit code, to be translated into dots on the display. It also drives an up/down counter which operates the digital tape counter via the display control board.

Next time we'll look at the 3V23's servo circuits.

Fig. 79: The tape guard system.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 0 0}$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 377 and a stamped addressed envelope. We can doal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

NATIONAL PANASONIC TC2203

There are two unusual diodes connected across the 160 V stabilised h.t. line. When they go short-circuit the set goes dead, but removing them allows things to start up and appear normal. What's going on?

The two items you mention, D809 and D818, are special diacs, type TVSK1V11. They are designed to go shortcircuit when the h.t. voltage is excessive, initiating operation of the excess current trip. The usual cause of this trouble is intermittent failure of the 6 V zener diodes D808 and D814 (type TVSQA106SBV) - they go open-circuit intermittently. Replace all four diodes with factory supplied replacements.

ITT CVCA5/1 CHASSIS

The problem with this set is no results. There's 300 V at the switch-mode power supply output instead of 127 V , and there doesn't appear to be any drive to the chopper transistor. R3A in the 187V feed to the control panel has sprung.

This symptom is not uncommon with the CVC45 and derived chassis and is caused by the chopper transistor T807 being short-circuit. Use a TE1233 or BU126 as a replacement. The excessive h.t. voltage shuts down the chopper control circuit, at the same time removing the line drive which comes from the chopper transformer. Don't forget to resolder R3A and adjust R828 for 127V at C11.

TELETON C18BS

The width is excessive on this set - about two inches too wide at each side of the screen. Adjusting the horizontal size tappings has no effect and there doesn't seem to be an e.h.t. preset.

First make sure that the output from the h.t. series regulator transistor is not excessive. There should be 120 V across C409, adjustable by VR701. If the h.t. is correct the probability is that the line flyback tuning is incorrect. This is controlled by the tuning capacitors C432/3/4 ($0.033 / 0.033 / 0.047 \mu \mathrm{~F}$). Replacements should be adequately rated.

FERGUSON 3V16

The plug-in remote control unit's slow-motion button no longer operates - it simply puts the machine into pause, and adjusting the slider has no effect. The slow preset on the servo panel also has no effect when adjusted. The continuity of the remote control system has been checked.

The fact that the tape stops when slow is pressed proves that pin 8 of the control i.c. IC6 on the servo panel is
being earthed via the remote hand unit. The fault would appear to lie between pin 29 of IC6 and the base of X15 in the capstan motor control circuit. First check for a pulse at pin 29 with the slow slider half way (this should show on a meter). The pulse goes via X11 and D22 to pin 5 of IC8, which shortens it. The output at pin 6 goes via D24 to X14. X10 feeds another pulse to add to this, the resultant double pulse being fed via D15 to the base of X15. Likely suspects are IC8 (BA222), X11 and X14. If there's no pulse at pin 29 of IC6, this i.c. is defective. Adjust the slow preset with a tape recorded on the machine, and the slow motion at the minimum rate, for least noise on the picture while the tape is stationary, i.e. between shunts.

GRUNDIG 717

There's distorted sound and no raster on this set. The voltage across the h.t. reservoir capacitors C708/9 is only 80 V instead of 294 V - when the set is first switched on the voltage is $\mathbf{2 0 0 V}$, but it then falls to $\mathbf{8 0 V}$. Disconnect C708/9 and the following smoothing resistor R702 and the result is the same. The diodes (Di7014) used in the bridge rectifier circuit (three SKE-1/06 plus one C1780) don't seem to be readily available.

Whilst the bridge rectifier diodes or the reservoir capacitors could be faulty, it's more likely that either the anodes of diodes Di701/703 in the bridge are not earthed, the negative terminal of C708/9 is not properly earthed, or there's a fault in the surge limiter resistors R701/711. BY127s can be used in the bridge rectifier circuit.

THORN 8500 CHASSIS

The bottom of the raster creeps up very slowly - it takes several hours to reduce by about three inches. I've replaced the field driver and output transistors, the bootstrap and scan coupling electrolytics, also C 432 ($32 \mu \mathrm{~F}$) which decouples the supply to the field oscillator. As the fault develops the supply to the field oscillator falls and the driver transistor gets very hot.

If C432 and its associated smoothing resistor R433 ($5.6 \mathrm{k} \Omega$) are in order we would suspect the 46 V supply smoothing electrolytic $\mathrm{C} 714(2,500 \mu \mathrm{~F})$ on the power supply panel. If the trouble persists, suspect C433 $(2 \cdot 2 \mu \mathrm{~F})$ and W410 in the field charging circuit.

ITT CVC5 CHASSIS

I've seen the following fault on several of these sets alternate vertical purple and green bars right across the picture. These are not really noticeable at high brightness levels but are pronounced on dark scenes. Changing the 20V line decouplers C152 and C219 in the decoder has failed to provide a cure.

This nasty effect afflicted some early CVC5s. Check the phasing of the subcarrier rejector coils L71 and L72 these are towards the top of the board and the direction of winding should be clockwise when viewed from above. Ensure that the leads to the convergence box are dressed tightly against the degaussing shield, and that the green lead to the base of the regulator transistor T46 is dressed well away from the filter coil L95.

TELEFUNKEN 709 CHASSIS

The problem with this set is loss of line hold and picture break up when changing channels after the set has thoroughly warmed up. It's necessary to switch off and wait for a couple of minutes before switching on to the
desired channel. The line lock then dithers for a few seconds before settling down. Very occasionally a camera change will trigger loss of line sync, but this will recover after a few seconds. Adjusting the line hold control (oscillator coil) does not seem to make any difference.
First try a new ECH84 line oscillator valve, then if necessary replace the flywheel line sync discriminator diodes (Gr 451 , in common encapsulation). The latter sometimes go open-circuit intermittently, causing loss of line hold. Another possibility is the coil's tuning capacitor C462 (390pF) which is of a notorious type. Check it for intermittency - the leads sometimes pull loose at the ends. The problem can also be caused by the line output transformer cooking up - when this happens the pulse winding feeding the discriminator tends to go open-circuit, with loss of line hold, usually after an hour or so.

245
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

A minor fault can often lurk for years in a set out on rental. On each service call to attend to a more serious problem the visiting technician may notice the defect, but if the trouble is obscure and diagnosis difficult it may well remain there when he's gone! At some stage the set may have to be brought into the workshop. Such faults can then be studied at leisure and, hopefully, cured.

An example of this sort of skeleton in the cupboard condition was provided recently by a 100 series Decca colour set. A major timebase fault had resulted in the set's arrival in the workshop, and when this had been dealt with and the set readjusted the picture was seen to be definitely below par in a difficult to define way - the symptom was rather like that sometimes seen in old monochrome sets when the vision i.f. alignment has been twiddled a bit.

We are fortunate in having a locally generated monochrome test card in the workshop, and when this was displayed the fault condition was better defined. It took the form of an instability effect, with the white verticals of the pattern being reproduced in faint and distorted form at about quarter inch intervals to the right of the main image. As a result, the picture was hazy and badly defined - this sort of thing is sometimes seen on Thom 3000 series sets when the local-distant control is incorrectly set. The colour reproduction was fair, but not up to the usual standard of this Decca chassis.

Faults like this are never easy to tackle. A start was made by bridging the l.t. supply decoupling capacitors in
the i.f. and tuner departments. This had no effect, and careful checks on the earthing of the tuner and i.f. panels and the braid of the coaxial cable linking them brought nothing to light. The supply to the first i.c. in the i.f. strip is stabilised by a 15 V zener diode (D101). This sometimes does odd things, but turned out to be o.k. Suspicion then fell on the two i.f. chips, MC1349 and TCA270; but substitution checks proved that they were blameless. So the set was put to one side until an i.f. panel could be robbed from another set to try in our patient.
In due course a known good panel was fitted - and had no effect on the fault at all! Perhaps the tuner was responsible? Another tuner was fitted and whilst the instability took a slightly different form it was still present. It was now becoming clear why the problem had never been sorted out over the years in the customer's home!
By now many hours had been spent on this set, and nearly all possible approaches to the trouble had been exhausted. The cause of the fault was finally traced however - to a component which by its nature is seldom guilty of failure. It was "no' very big and awfu' shy" as an old Scottish song goes. What was it? See next month.

ANSWER TO TEST CASE 244 - page 322 last month -

The key to the solution to John's tale of woe recounted last month lay in the e.h.t. meter reading. It will be recalled that the picture on this ITT monochrome set (VC200 chassis) was ballooning very badly, with normal proportions present at only very low brightness levels. All the tests and substitution checks that had been made assumed that the cause of the trouble was faulty e.h.t. stabilisation in the line output/e.h.t. generator circuit. In fact the e.h.t. voltmeter showed that the voltage applied to the tube was correct and rock steady regardless of the setting of the brightness control. This could mean only one thing, that the tube itself was faulty. Such was the case, and good pictures were obtained after fitting a replacement.

It was only the second occasion in many years that we've had this fault with a picture tube. The e.h.t. voltage is linked to the tube's final anode via an internal conductive strip painted on the inside of the flare, and it's likely that this was very high resistance or open-circuit somewhere. We won't send this one back for regunning!

QUERY COUPON

> Available until 18th May 1983. One coupon, plus a $£ 1.00$ (inc. VAT) postal order, must accompany EACH PROBLEM sent in accordance with the notice on page 376.

TELEVISION MAY 1983

[^0]
Newnes Book of Video

Second Edition

Edited by Ken Jackson

When first published in 1980 Newnes Book of Video was described by Television as "a handy book to have around as a reference" - now it has been improved and updated to provide the comprehensive survey of television and other video equipment. Its clear presentation of material and numerous illustrations enable newcomers, enthusiasts and businessmen to understand and choose equipment and assemble systems to their individual requirements.

All the main areas of video are covered, including the TV set itself, as are the various available add-ons - antenna, recorder, camera, game. computer - and extra uses such as teletext reception and security monitoring. For the budding professional, there is a fascinating explanation of programme making with just a single camera. A directory of manufacturers, agents and trade names rounds off this invaluable handbook.
Contents: The Video Centre - TV Receivers - Tape Recorders - Disc Players - Cameras - Programmes with a Single Camera - Antennas - Cable Distribution - Teletext and Viewdata - TV Games and Computers - Security and Surveillance -
Softcover 188 pages $846 \times 189 \mathrm{~mm}$
Illustrated 0408013198
88.98

May 1983

Order from your local Bookseller (TV/5.83)

Newnes Technical Books. Borough Green, Sevenoaks, Kent TN15 8PH

13 WORCESTER ST., WOLVERHAMPTON', WV2 4LJ Tel: (0902) 773122 Telex: 336810

Telepart

 Pattern Generator* Exceptionally light and durable Pocket size for outside service
- PP3 battery power source
- Five different test patterns for colour and mono TV *Cross hatch grid *Dot matrix * Horizontals Vaster Verticle A lightweight, extremely portable and versatile pattern generator for black white and colour T.V. alignment and service at the customers home. A the turn of a switch, the generator can provide five essentity is first class and correct installation, fast checks and repaisly Pulky generators only suitable for compares favourably work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Telepart

Colour Bar Generator

* Exceptionally light \& durable
* Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$
*Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$
* Battery powered for mobility * Cross hatch Grid
* White raster
scale * Colou
* Grey scale * Colour bars
*Sound

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE £49.95 (Subject to V.A.T.)
POST \& PACKING E1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR. This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument
PRICE £5.50 (Subject to V.A.T.)
Supplied by return, off the shelf

COLOUR TV SETS

Philips G8, Pye 222, Decca 30 series, Pye Chelsea, Thorn 3500/8000, ITT, GEC, many others including JAP.

Working hybrids from $£ 15$.
Working solid state from $£ 25$.
Non-working sets, working panels and tubes available.
Huge Selection - Quantity Discounts
Delivery by arrangement.
SOUTHBRIDGE TV CENTRE
120, Selhurst Rd., London, S.E. 25.
Tel: 01-771 3535.

A.B.C. TRADE SALES
 COLOUR T.V.'s

Philips G8, Pye, Decca 30's,
Thorn's 3000's, 3500's, 8000's Prices start from $£ 12$ - Working sets from $£ 20$ Hundreds of Mono T.V.'s from $£ \mathbf{£ 2 . 0 0}$ Jap. sets from $£ \mathbf{\$ 3 0 . 0 0}$
Special prices for quantity 9,000 sq. feet Warehouse
83 SHOWELL ROAD, BUSHBURY, WOLVERHAMPTON, STAFFS. Tel. Wolverhampton 722637

AD161	32p BCO_{34}	19P PN107	79
AD162	32p 80131	309 R2008	1.8
AF139	3 P BF137	20.820108	1.10
AF239	41.8719	150 R2205	1.30
BC10]	15p BF240	29 R 243	25
BC100A	$1508 \mathrm{BF25}$	18 RCAIG46	30°
BC1008	15p Br256S	20. RCA16599	1.25
BC117	2108 F 257	$24 p$ RCA1660	1.40
BC153	16p BF259	27 p 2 N 3103	20
BC154	16p BF274	11 L SAM73	10p
BC171	\% BF459	40. $2 \mathrm{SC3} 46$	8
BC172	9p BPP9\%	$2592 S C 785 R$	12p
BC1748	2308 FF 42	30 p 2 Cs 020	$15 p$
BC184LC	12 P BT43	30. 2SC388	20%
BC209	$98 \mathrm{BU105}$	1.00 R2322	500
BC237	$12 \mathrm{BU128}$	$1.10{ }^{123} 23$	500
BC238	8p 8u207	1.05 TIP31	350
BC251	Ip Buzosa	1.15 Tg 010 V	1.45
8 Cl 7	10p BUz28A	1.30 T 5016 V	1.20
BC308	\% C11728	9 P T9017V	1.20
BC37	20. CU 1129	9p T9050V	1.50
8 CS 4	op MEP404	T9052V	1.30
8 CH 4	$2{ }^{2} \mathrm{MEOL} 12$	Ep t9053y	1.30
BC455	\% Meedon	\% S2800B	
BC400-6	$40 \mathrm{MJES40}$	50 p 28000 C	1.00
B659	${ }^{2} \mathrm{P}$ MJE520	650529000	1.25
8C55	\% NKT241	8p S2800E	1.40
BC50	2 p NT276	200 S2800M	2.00
BC55	8p NKT453	1.55	

ZENER DIODES

TOSHIBA 200MV 10p each $6.2 \mathrm{v}, 12 \mathrm{v}$.
BZY88
10p each
$3.9 \mathrm{v}, 5.6 \mathrm{v}, 12 \mathrm{v}, 16 \mathrm{v}, 20 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$.
TOSHIBA 500MV 10 p each $5.6 \mathrm{v}, 6.8 \mathrm{v}, 7.5 \mathrm{v}, \mathrm{B.2v}, 11 \mathrm{v}, 15 \mathrm{v}$
BZX61
$9.5 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 15 \mathrm{v}, 27 \mathrm{v}, 72 \mathrm{vp}$. each
Thorn 10020 W (3s00) RTSI Saftety Resistor

with Focurs Slider 8 Lleads
Py 713 Control Knobs
Mube Bese Socket ITM CVCs
Tube Base Socket Thorn 3000
Tubs Bases socceat Thorn 3000/8000 atc
IC Insartor 16 Pin
Large ic Extracto
EAF Loed ${ }^{8}$ Cap for Split Diode Lopt
Anode Capacitor
Sarro Anode Cap Assy + Lead. 12TCD-CT. 1685
Dogosuse Themistros: TT37P. IT/GEC
Dogause VOA E29

20 mm type
Singla Fuse Holder on Smell Pax Board

${ }^{15 p}$ Single fuse Hotder on Small Pax Board.

THICK FIL RESISTOR UNITS

3500 Thorn (5 Pin Connection) video $\begin{array}{l}1.70 \\ \mathbf{1 . 9 0}\end{array}$
000 Thom (5 Pin Connection)

TANTALUM CAPACITORS

miniature ceramic disc
1PF to 10 NF HIGH VOLTAGE DISC
Most Valuas Availabla $\quad 2 \mathrm{KV}$ to 12 KV
E5 per 100 or
With these items No Mixed Vatues in Lots of 100
SERVICE ANDS
Amberzil MSA Silicone Grease Ambersil Freezer
Ambersil Amberiube

Ambersii 40+ Protective Lubricant 14.1021 .15
Ambersil Amberclens foaming Cleaner 1302
Amborsil Cirruit Lacquer
300 Mixed Resistors
300 Mixed Capacitors
150 Mixed Electrolytics
100 W/W Resistors
20 Mixed Conv Pots
40 Mixed Pots
20 Mixed Sliders
40 Mixed Presets
20 Mixed VDR \& Thermistors
20 Mixed Ferrite Cores
1.50
1.50
2.00
1.00
1.00
1.50
1.00
$60 p$
1.00
$50 p$
1.00

20 Mixed Valve Bases $\quad 1.00$.

INTEGRATED CIRCUITS

1.00 1.00	8RC
90p	MC
1.00	St
$90 p$	SA
1.00	SN1
65p	SN
rs	SN
1.50	SNT
1.00	SN
	SNT

INTE	RATE	CARCUIT TBAI20CO	70 p
BRC/M/300	1.00	TBA395	1.00
ML237B	2.00	TBA4800	1.40
MC1358P	1.30	TBA540	1.10
MC78M24	259	TBA1440C	1.00
SL432A	1.00	TCA270S	1.05
SAS590	2.60	TDA1035T	3.50
SN15846N	60p	TDA2540	3.50
SN74123N	65	TDA2680	2.80
SN74154N	1.40	TDA2690A	1.50
SN76013ND/HS	1.80	TDA3560	6.00
SN76023N	1.00	MC1426P	4.0
SN76033N	2.00	MC1449P	4.50
SN76115	2.00	MC14514	5.00
SN76660N	80 p	SAA5010	6.00
SN76544N	1.20	TDAII70S	1.50

10.00

00

AERIAL SOCXETS AE. Socket \& Lead. Pye, ITT, Thorn AE. Socket \& Laed GEC AE. Socket \& Lead (long) GEC AE. Socket \& Lead. Pye $691 / 683$ AE. Socket \& Lead. Philips KT3 AE. Sockot \& Lead. Thorn col portable AE. Socket \& Lead. (long) Pye 725/731 AE. Sockgt \& Lead. ITT CVC32, etc

UHF TV Aerial for portable Indoor Aerial Parabolic Type Reflector

Line Connecto
Band Change Switch Assy, Pye 725 Rush Mounting TV/FM Diplexer
Switched Rush Frting Aorial Outio

$\underset{100+150+150}{\text { MUL }}$

$220+47$

xed Valv 10-16 pin Quil IC Socket

10-16 pin Quil to Dil IC Socket $90 p$ 100 Mixed Diodes
50 Mixed Mica Washers 65
300 Mixed Resistors \& Capacitors
10-16 pin Dil to Dil IC Socket 1.00 59 Electrolytics \& 50 Capacitors

200 $32+$ 200 100 400 32 20 22 20 2

600 F				$\begin{array}{ll} C \omega+\angle N O+10 \\ 200+100 & 325 V \\ 305 p \end{array}$		$200+47$	250 V 65
CAPACITORS							
3.3PF	350 V	3000PF	2 KV		ELECTHO	LrTICS	
${ }_{8}^{6.8 P F}$	63V	3300PF	250 V	1 MF GEV	20/E1	lom 100 MF 2 26 V	10/E1
${ }^{8.2 \mathrm{~Pa}}$ 10PF	350 V	4700PF	400 V	2 MF 350 V	10/E1	150 MF 25 V	
12 PF		. 0007 TMF MF	500 V	22 MF 2 SV	20/E1	160MF 25V	20/E1
${ }_{22 \mathrm{PF}}$	10005	.0075MF	2 KV	4MF 64V	$20 / 51$	160 MF 40 N	10/E1
30PF		01MF	250	4 MF 50 V	10/11	$250 \mathrm{MFF}{ }^{16 \mathrm{~V}}$	10/11
47PF	350 V	.015MF	4000	6.8MF 10 MF 40 V	20/E1	250MF 225 N	100f1
182PF	63 V	. 02 MF	200 N	10MF 160 V	10181	3300 MF 35 V	10/E1
250PF	2000 V	.02MF	250 V	15 NFF 16V	20/f1	330 MF E3V	10/f1
330PF	63 V	.022MF	250 V	15 MF E EV	20/E1	470MF 6.3 V	20/E1
330PF	160 V	.047MF	400 V	2MF 10V	20/E1	470MF 10 V	10121
330 PF		.1MF	250 V			470MF 25 V	$10 / 1$
${ }^{430 \mathrm{PF}}$.1MF	600V	32 MF 735	10/F1	680 MF 40 N	10\%1
${ }^{56000 p F}$. $\mathrm{MF}_{2 \mathrm{MF}}$	2 KV	33MF 40V	20151	1000 MF 10 V	10/51
1500 PF	2500	. 23 MF	400V	33MF 33 MF 20V	20/E1	1000 MF 12V	10/E1
1800 PF	160 V	39MF	250 N	33 MF 250V	10/E1	15500 MF 35 V	$10 / 1$
2700PF	63 V	.47MF	250 V	47MF 350V	10/E1	2200 MF 25V	6/51
Amy 10 @ 81.00				50 MF 25 V	20/F1	2200 MF 40 V	6/E1

2R 5W Thorn 3K	WIRE WOUNDS				16p	4K7 7w Fus	25p
	30p	$3 \mathrm{SPR}^{17 W}$	23p	3307 7W			
2.2R 4W	16p	235R 9W Fus.	2 p	370 R 17 W	23p	5 K 17 W	16p
3.3R 9W	30p	2000 W Fus		1K2 10W Fus.	25p	BK2 7 W	15p
108 9W	140		3	2K2 5W Fus.	25p	8K2 9W 8K Thorn	20p
15817 W	23\%	200n 2 W	150	2K2 TW Fus.	25p	10K 7w	15p
22R 9W Fus.	$25 p$	$2 \cos 17 W$	${ }_{26 p}$	2K7 9W Fus.	25p	10K gW	16p
27R 7W Fus.	25p	330 RW	15	3K9 4.5W fus.	25p	39K 4W	15p

NOW! SAME DAY SERVICE

Rank AB23 4 P/B Assy

Telpro 4 P/B Assy
Thorn 35006 P/B Assy + Leads
ITT CVC9 On/Off Switch + Relay
Philips G8 On/Of Switch
Thorn 3/3500 A1 Switch
Thorn 4000 A1 Switch
Korting Shift Pot 50Ω
Korting Shift Pot 50Ω
Thorn 4000 Focus Pot

I wish to pay by Access.
Access No.
Amount
NAME .
ADDRESS

326 FURTHERWICK ROAD, CANVEY ISLAND, ESSEX
 ADD POSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

ELECTRONIC EQUIPMENT SERVICING (TELEVISION/VIDEO)
 full-time College course

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON MONOCHROME \& COLOUR TELEVISION EQUIPMENT. CLOSED CIRCUIT TV \& VIDEO CASSETTE RECORDER PRINCIPLES ARE INCLUDED IN THE COURSE

15 MONTHS COURSE

for beginners to include Electronic Fundamentals

6 MONTHS COURSE
for BSc, HND, CGLI, TEC and similar applicants

Next two courses commence on April 25th \& September 19th. Also courses in Computers/Microprocessors, and Radiocommunication/Radar leading to College Diploma and Technician Education Council awards.

Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept T3/4) 20 Penywern Road, Earls Court, London SW5 9SU
Tel: 01-373 8721

ADD 65 PENCE POSTAGE + 15\% VAT TO ALL ORDERS.
(See CONTRAST U.K. advertisement in this copy, all your component, panel and TV needs under one roof).

TEST CONNECTORS

Are you using the E-Z Hook Test Connector?
Many T.V. service engineers are.
For full information contact:
I \& J Products Ltd.,
7A Christchurch Road, Ringwood,
Hants BH24 1DG.
Telephone: (042 54) 79974

	APOLLO TEMPERATURE PUMPED COLO Mail Order sarvice to any part G.B. Deliver for a quotation. Delivery Manchester year guarantee. Fitting while you wait or in PIL types \& Toshiba.	UBES days. ee same ome E 20
$18^{\prime \prime}$ $19^{\prime \prime}$	$\begin{aligned} & \text { A47 }-342 \times 343 x \\ & \text { A49 }-120 \times / 192 x \end{aligned}$	$\begin{aligned} & £ 37.00 \\ & £ 37.00 \end{aligned}$
$20^{\prime \prime}$	A51 $-220 \times / 110 x$	£38.00
$22^{\prime \prime}$	A56 - $120 \times / 123 \times / 140 \times$	£38.00
25"	A63-120x	£39.00
26x	A66-120×A67-120×/140×/150	£39.00
$17^{\prime \prime}$ F set f anyw	son Colour T.V.'s fully serviced, ide tchen, bedroom or caravan. $\mathbf{E} 75$ Philips Video Spares Available.	second delivery
	1799085424 hour answering 43 Clarke Cres, Little Hulton Nr. Manchester M28 6XM.	

Give us the opportunity to quote for all your requirements. Mixed loads delivered to your door directly from source - at unbeatable prices plus special discounts for bulk purchases.

JUST ARRIVED:

Fresh stocks from our suppliers.

OPENDNG HOURS
 BRAINTREE

 Mon-Fri $\quad 9-6 \mathrm{pm}$Saturday $\quad 9-3 \mathrm{pm}$

LONDON
Mon-Fri $\quad 10-5 \mathrm{pm}$
Saturday $\quad 10-1 \mathrm{pm}$

Warners Mill, South St. Braintree, Essex. Tel; (0376) 43685 10 Shacklewell Rd. London N16. Telephone; 01-249 9265

ARE YOU

USING YOUR SPARE TIME PROFITABLY?
If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to operate, you can easily earn a substantia CASH INCOME with a starting capital of less than E 20 . Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have pooled their knowledge to help you. After all, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tios and suggestions in the guide show exactly how anyone of average intelligence can succeed immodiately.

Evary aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form describing pertormance reliability price and service. particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{\mathbf { 4 }} .95$ - a small price to pay for financial independence!

ORDER TODAY FROM:
GLOBUS INOUSTRIES LTD., UNIT 18, DARLEY ABBEY MILLS, DERBY.

```
To: Olobue Induetree Ltd., Unk 18, Darley Abber MiMo, Derby.
Please send by return post "How to Deal Successfully in Used Colour Televisions"
enclose cheque/p.o. for £4.95
NAME
ADDRESS.
```

\qquad

All sets are Serviced with repolished cabinets ready for sale

Ring for quote. Callers welcome.
2wmoor Road, Chorlton, Manchester 21 2ER.

Philips G8 550s
Philips $18{ }^{\prime \prime}$
Philips G8 520s
GEC S/State
Thorn 17" 8000
Decca 30 18/20/22/26£30
Japanese
Many other makes available from
£25
Discount on quantity
Ex Equipment Panels \& Tubes Available Deliveries may be arranged to the North and Scotland.

22/26 £35 from $£ \mathbf{} \mathbf{3 5}$
£30 from $£ 30$
owmoor Road, Chorlton, Manchester 21 2ER. Tel: 0618618501

Thorn	$\mathbf{1 0}$ for $£ \mathbf{£ 1 2 5}$
Philips	$\mathbf{6}$ for $£ 90$
Bush	$\mathbf{6}$ for $£ 80$
GEC	$\mathbf{6}$ for $£ 60$
Decca	$\mathbf{6}$ for $£ 60$
Mono TVs avail. s/s	$\mathbf{£ 4} \mathbf{e a c h}$
New TV trolly stands.	
All sizes	$\mathbf{£ 4 . 9 5}$
All Prices subject to V.A.T.	

or $£ 125$ E G for 6 for $£ 60$ £4.95
All Prices subject to V.A.T.

Some Examples of UNTESTED TVs available

TOP TWENTY T.V. SPARES

1. Philips G8 LOPTX (genuine Philips)	$\mathbf{£ 7 . 5 0}$
2. Decca 30 Series LOPTX (genuine Decca)	$\mathbf{£ 7 . 0 0}$
3. Decca 100 Series LOPTX (genuine Decca)	$\mathbf{£ 6 . 5 0}$
4. ITT CVC $25 / 30 / 32$ LOPTX (genuine ITT)	$\mathbf{£ 7 . 0 0}$
5. Pye 713/725/731 Vis Gain Module	$\mathbf{£ 6 . 5 0}$
(replaces expensive $212-27327$)	
6. $5 \times$ Universal Aerial Socket Kit	$\mathbf{£ 5 . 5 0}$
(replaces most UK and Continental skts)	
7. $10 \times$ BU208	$\mathbf{£ 7 . 5 0}$
8. $10 \times$ BU208A	$\mathbf{£ 8 . 5 0}$
9. ITT CVC $5 / 8 / 9$ EHT Tray	$\mathbf{£ 3 . 0 0}$
10. Grundig $5010 / 5011$ EHT Tray	$\mathbf{£ 3 . 0 0}$
11. Decca $1730 / 1830$ Doubler	$\mathbf{£ 2 . 0 0}$
12. Decca 80 Series EHT Tray	$\mathbf{£ 3 . 0 0}$
13. GEC 2040 (Hybrid) EHT Tray	$\mathbf{£ 3 . 0 0}$
14. 50X BY127 Diodes	$\mathbf{£ 3 . 0 0}$
15. Thorn 1500 (5 Stick) EHT Tray	$\mathbf{£ 3 . 5 0}$
16. Thorn 8000 Doubler	$\mathbf{£ 2 . 0 0}$
17. Thorn 1400 EHT Tray	$\mathbf{£ 2 . 0 0}$
18. Thorn $1690 / 91$ LOPTX	$\mathbf{£ 7 . 0 0}$
19. Philips G9 EHT Tray	$\mathbf{£ 3 . 5 0}$
20. ITT Universal EHT Tray	$\mathbf{£ 5 . 2 5}$
All components are A1 quality from prime manufacturers, and	
are dispatched by post same day as order received together	
with any refund due. All goods should be delivered within 4	
working days.	

QUICK SAVE T.V. SPARES, Muxton House, Muxton, Telford, Salop.

REG. OFFICE ONLY
CALLERS STRICTLY BY APPOINTMENT UK ONLY

COLOUR SETS GALORE

Hundreds in Stock. From $£ 20$. Guaranteed Complete. Mono's and non-complete sets from $£ 3$.

Most makes available.
QUALITY COLOUR TUBES Reconditioned and used tubes. From $£ 10$ Guaranteed.
Don't delay, ring today.

ALPHA TUBES (DUNSTABLE)

53 Lowther Road, Dunstable.
Tel. (0582) 68934 TRADE

THE NO. 1 SOURCE IN THE SOUTH
 GOOD STOCKS OF MODERN COLOUR UNBEATABLE PRICE AND QUALITY DON'T DELAY RING TODAY

TeleTraders
ST. LEONARDS WAREHOUSE ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

N7128 COLOUR BAR GENERATOR

New improved design with additional features.

\star Six Standard Test Patterns viz. Colour Bars, Red Raster, Linear Grey Scale, Cross Hatch, Dots, White Raster.
All monochrome patterns available with or without burst signal (for checking colour killer action etc).
\star Crystal controlled sub-carrier, Line and Field frequencies.
\star Three outputs to rear panel: Video at $1 V \mathrm{P}$ to P into $750 \mathrm{hm}, 800 \mathrm{~Hz}$ (approx), sine wave audio and modulated UHF (VHF available) 4 mV at 750 hm .
$\star 6 \mathrm{MHz}$ (adjustable to 5.5 MHz) intercarrier sound.

* Front panel LED to indicate "Power On".
* Integral re-chargeable ni-cad battery plus mains unit/charger.
\star Fully built, tested and guaranteed for 12 months.
PRICE $\mathbf{E 8 5 . 0 0}^{\mathbf{0}}$.

N7118 COLOUR BAR GENERATOR KIT

\star Five Standard Test Patterns viz. Colour Bars, Red Raster, Linear Grey Scale, Cross Hatch and White Raster.

* Crystal controlled sub-carrier, Line and Field Frequencies.
\star UHF Output (VHF available).
\star Integral Ni-cad Battery and mains unit/charger.
\star Optional integral sound and video board add-on kits available @ $\mathbf{8 8 . 9 5}$
Still available at special price $£ 39.95$.
Please add 15% VAT + £2.05 postage and packing per Generator.

INTRACEPT ELECTRONICS LTD., 203 PICTON ROAD, LIVERPOOL L15 4LG.

 TEL: 051-733 3042[^1]
Switch to the biggest Wholesaler of quality late model used TV's

- Thousands of Quality Sets always in stock - Colour/Mono/VCR's and Audios available - Murphy/Pye/Philips/Sony/National Panasonic and other big names
- We are big - we buy in bulk - we offer you the keenest prices
Cash and Carry or we will deliver
- New and used stands always in stock

 Telephona: O1-904 2089'

UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 100661
6 way interlocked d.p.
switch 100 K tuning
potentiometers
Top quality through hole plated pcb
Dimensions: 5^{n} by $22^{\prime \prime}$ by $1^{\prime \prime}$
Ideal for replacement when
orignal parts are obsolete or
unobtainable
Template guide supplied for
driling of your own fascia
design
Range of precut and drilled
tascia/mounting kits for
selected TV chassis enabling our unit to be fitted withou further cutting
modification
All orders despatched same
day
DHRECT REPLACEMENT FASCINMOUNTING KTTS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chassis
Type 30-C Replaces 7 piano-key unit as fitted to Decca console using long
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as used in Decca/Telefunken 100 chassis
Type CVC8-9 Replaces 5 rectanguiar push button plus thumbwheel as used in ITT

selector £11 + vat

FASCIA/MOUNTING KITS (each) $\mathfrak{E} \boldsymbol{2}+$ VAT

ALDERSON-JAMES LTD 160 KINGS ROAD - HARROGATE N. YORKS TEL: HARROGATE (0423) 60058 HG1 5JG

CENTREVISION NO. 1 IN WALES 9000 Sq Ft 2000+CTV

DECCA $18^{\prime \prime}$ £18 + VAT
KORTING 22-26 CTV £14 + VAT
\star HITACHI CTV FROM £28 + VAT
\star THORN $9000200^{\prime \prime} £ 40+$ VAT
\star RANK Z719-Z718-T20 VARIOUS PRICES
\star PHILIPS 550 22" REMOTE $£ 35+$ VAT
\star GEC SOLID STATE FROM £28 + VAT

* THE TRADE SAY THE BEST QUALITY SETS ON THE MARKET TODAY
\star BULK TERMS TO OTHER WHOLESALERS
* PYE 17" MONO PORTABLES $£ 32.50$ (GRADED STOCK)
+ VAT
DECCA 30 SERIES $22^{\prime \prime}$ IN 10'S £16.00 SELECTION OF WORKING SETS
DONT DELAY PHONE TODAY 0222-44754
CENTREVISION HOUSE, SLOPER ROAD, CARDIFF CF1 8AB.

HIGH GAIN AERIAL BOOSTERS B45 H/G UHF Television Tunable over the complete UHF band. Gain above 20dB. noise 2.8 dBs . B14 - Band 3 VHF TelovisionTunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meten Amateur Bands. Gain above 28 dBs . Noise 2.8 dB . PRICE each $\mathbf{£ 8 . 7 9}$	AERIAL AMPLIFIERS Aerial amplifiers can \produce remarkable improvement on the picture and sound in fringe or difficúlt areas. 845 - For Mono or Colour this is tunable over complete U'HF television band. B11 - For stereo or standard VHF/FM radio. 812 - for VHF television band $1 / \& 3$. All amplifiers are complete and ready to use Battery type PP3 or 8V to 18 V DC next to the set type fitting. PRICES 66.70 each
AERIAL SP way T-TYPE Goods despatch All Prices Fully inctustine. P \& P per 0	ITTERS 2.70 each an recaipt of order. 30p. S.A.E. for Leaflets. Access Cards.
ELECTRONIC 62 Bridge St, Ramsbottom	AILORDER LTD, a Bury. Lancs. BLO 9AGW 682/3036

M W ELECTRICAL BROOK PARK AVE. (OFF MARINE RD.) PRESTATYN
 '"WE DO NOT BOOST TUBES" COLOUR TV'S

COMPLETE FROM $\mathbf{£ 1 0 . 0 0}$
TRADE WORKERS FROM £25.00 MINIMUM OF TEN
G8, DECCA, BUSH, THORN. ALSO MONOs ETC. NEW \& GRADED TVs ALSO AVAILABLE OPEN SAT MORN, LATE NIGHT THURS 8pm TEL: PRESTATYN (07456) 89849/89970

WHOLESALE COMPONENT
STOCKISTS

INTEGRATED CIRCUTTS

	NEW Valves	
	DY802 72	
22.95	PCF802 86	
7.90	PCL82 78	
8.75	PCL84 81	
. 13.50	PCL805 90	
8.68	PCL86 81	
9.68	PFL200 1.31 .3	
9.75	PL504 1.50	
12.50	PL508 2.95	
. 10.20	PL509/519 5.65	
10.20	PY88 69	
9.60	PY500A 1.90	
$8.58{ }^{\text {3 }}$		
8.589.45	ANTL-SURGE FUSES	
7.00 8	A/S20MM 80MA 2.75	
	$100,160,200 \mathrm{MA} \ldots \ldots . .1 .70$$315,400,500,630,800 \mathrm{MA}$	
315, 400, 500, 630, 800MA.		
7.20		
6.45	$\begin{gathered} \text { A/8 1.28" } \\ 250,500,630,750,1 \mathrm{~A}, 1.25, \end{gathered}$	
4.25	1.5, 2A 1.55	
4.00		
5.90		
7.95	PYE IF GAIN MOD 7.85	
6.55	E/W COIL G11 1.65	
6.30	VA1104 70	
6.30	G8 TRANSDUCTOR 2.25	
6.20	G8 ON/OFF SW.1.40	
6.95	B/L COAX PL 16	
	LINE CONNZ. 14	

	PUSH BUTTONS/TUNERS	
2.55	DECCAITT 4W	45
	DECCAITT 6 W	7.40
2.90	PYE201 6W	15.80
1.15	PHILIPS G8S/L	13.50
2.20	PHILIPS G8S/0	12.00
2.10	HTACHI 4W	8.50
. 1.10	ITT CVC5 7w	9.40
	IT CVC8/9	. 12.80
	PHILIPS G11 (TIP SW.)	23.80
	1043/05TFK	7.95
	U321 TFK	75
	U32	

THIS IS ONLY A VERY SMALL PART OF OUR RANGE, WE WILL BE DELIGHTED TO SEND DETAILS OF OUR WHOLE RANGE

ORDERING
Please Add 50p For P/P U.K.
Export Orders - Cost, Add 15\% To This Total.
DELIVERY BY RETURN ON ALL STOCK ITEMS

Freeway Components

We can now offer our post free service to customers nationwide

E.H.T. Trays		LOPTS	
Decca 100	7.00	B + O $3000+3200$ EHT	17.00
Decca 1730/1830	6.00	B + O $3100+3300$	
Thom 3000/3500	9.00	3400 EHT	19.50
Thom 8000	4.90	B + O $3500+3600$	
Thom 8500	7.95	$4000+5000$	
Thorn 9000	8.50	6400	11.25
Universal Tray	6.20	Decca 30	9.50
		Decca 100	8.00
		Decca 1700	9.50
		Decca $1730+1830$	9.00
Press Buttons		Dynatron TV202 + 203	10.25
Hitachi 4 way 190	8.00	GEC 2623 20AX	
Nat. Pan. 4 way	8.00	Solid State	8.40
Decca 4 way 20 Mono	6.60	ITT CVC 5	10.00
Philips G8:		ITT CVC $25+30+32$	8.40
520 Square	10.50	ITT CVC 45	8.50
550 Sloping	18.00	Philips G8	8.50
Decca 6 way		Philips G9	9.00
1730, 30, 80, 100	7.50	Philips 210 Mono	10.75
ITT 6 way		Philips 570	9.50
CVC20, 30, 32	7.50	Pye 169+569+769	10.25
GEC 6 way 2110	8.40	Pye $691+697$ PCB	14.25
GEC 6 way 2136/7	8.00	Pye $713+715+717$	9.50
Pye 6 way 725	13.50	Pye 725	10.20
Pye 6 way		Pye $731+735+737+741$	10.50
715, 207 Chelsea	11.50	Rank T20A	11.50
Rank 6 way T20A	9.50	Rank A774	11.00
GEC 7 way 2112	12.50	Rank Z718 $\mathbf{2 0}^{\prime \prime}$-26"	23.00
Thom 9000 complete	15.50	Rank Mono Portable 14"	9.50
(switchbank only)	8.00	Tandberg 110°	11.25
		Thom 1615	9.00
		Thorn 1690+1691	8.50
Co-Ax. Plugs		SPECIAL OFFER	
Box of 100	12.50	06 TUNER AEG Made	7.00

Add 15% V.A.T. and send cheque or postal order to:

Freeway Components,

The Airport, Weston Super Mare, Avon. BS24 8RA
Remember that our prices are Post Free. Any queries, quotes or price breaks - Telephone 0934-419147.

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

Some Rebuilt Japanese
 \& European Types
 Available from
 £14.00 +VAT $\mathbf{£ 2 . 1 0}$

230DB4CT468..........31.00
240DB4/240AB4A 22.00
CT507 equiv 21.95
310DGB4/DMB4....... 23.00
310EUB4 19.95
310EUB4A....................18.50
310EYB4 $\mathbf{1 8 . 7 5}$

310FXB4 17.50
310GNB4A.................31.00
310HCB4.................... 31.00
340AB4 22.50
340A YB4..................... $\mathbf{3 0 . 0 0}$
340AXB4................... $\mathbf{3 0 . 0 0}$
340RB4/CB4...............26.00
340AHB4 26.00
RIGONDA 6"............ 14.00

COLOUR TUBES
(NEW \& MULLARD/THORN COLOREX)*

P22	£62.50	A
330AB22	73.50	A56-410X64.00
A44-271X	.60.00	A56-500X/510X63.00
A47-342X	.61.00	A63-120X63.00
A47-343X	61.00	A66-120X65.00
A49-191X	53.00	A66-140X/410X70.50
A51-161X	70.00	A66-500X/510X65.00
A51-220X	55.00	A67-120X65.00
A51-500X/510	.64.50	A67-140X/200X69.50
A51-570X	73.00	A67-150X75.00

OId Bulb Required for 110° Colorex
ADD 15\% VAT TO ALL THE ABOVE PR/CES.
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD
52 BATTERSEA BRIDGE RD., LONDON, SW11.
Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.

VISIONTEL BEST QUALITY EX RENTAL SETS FROM £10 HERE IN CENTRAL LONDON!

Hundreds of sets always in stock AT VERY COMPETITIVE PRICES

For Example:
Philips G8
Philips 550
Thorn 3500

Untested
£15
£20
£10

Good Workers
£25
£35
£25 ALL PRICES SUBJECT TO VAT

We also have PYE, DECCA, GEC, ITT, GRUNDIG, JVC, PHILIPS G9 + G11, THORN 9000 and PORTABLE TVs

FOR FURTHER DETAILS TELEPHONE 3283787 OR COME ALONG TO
 55 KILBURN HIGH ROAD, NW6

TV TUB WORKING Quality, Hig	TUBE WOR ree deliver Temperatur	LISHING NG PANELS * Reprocessing
Colour Tubes	One year guarantee (optional extension up to three years)	Two year guarantee (optional extension up to four years)
90° up to $20{ }^{\text {d }}$	${ }_{\text {E } 26}{ }^{\text {c/ }}$	
${ }^{900}$		¢33
(ex ${ }^{\text {a }}$	${ }_{\text {E33 }} \mathbf{5 3}$	(235
(fast heat, narrow neck)		
In Line \& Pll		
Up to ${ }^{\text {cras}}$	${ }_{\text {E38 }}$	844
Up to 26°	E40	E46

Please add $£ 12$ plus VAT for optional guarantee on any type of colour MONO TUBES (One Year Guarantee) A50-120W/R £12, A61-120W/R £13, Mono Partables $£ 16$ All tubes exchange glass required. FOLOWING TTEMS CALLERS ONLY
Solid state working colour TV's, with well view tubes fitted (1 year guarantee on tubes) from Only EPS_{5}
Your good, working tubes with at Reaches or small chips, can be Your good, working tubes wish scratishing equipment. Only $\mathbf{£ 7}$ per tube.
Delivery Service up to $\mathbf{4 0}$ miles from Luton. Fixed Charge £3. ${ }^{\text {.Free }}$ Delivery for tube orders over £50 + VAT.
Please add 15\% VAT to all prices. Callers welcome. Please phone first.
Send for a fully comprehensive price list and a wall chart of approx 1700 Colour Tube Types that can be processed by us.
WELL VIEN
114-134 Midland Rd.
Luton, Beds.
Open Mow-Fri Bam-Epin, Sat gaw-5pm. Tel. O582-410787
Your Local Tube Stockist:
Your Local Tube Stockist:
Retach Ltd., Northwood, Middx. Tel. $9684-27019$
Weat One Distributors Ltd., Gt. Missenden, Bucks. Tel. 024-06-3609
Ruehden Rentals Ltdd, Rushden, Northants. Tel. 0933-314901
Daventry Rentals, Daventry, Northants. Tei. 0327277436
S.S. TV Services, Bradford, Yorks. Tel. 0274-498180

Ploese note that we have no connections whatsoever with any other business having similar name to ours.

A.B.C. ELECTRONICS

Rear of 20, HANKINSON ROAD, WINTON, BOURNEMOUTH. TEL: 519542
TRADE TV's BEST PRICES
Colour From $\mathbf{£ 1 2 . 0 0}+$ VAT B\&W From $\mathbf{£ 2 . 0 0}+$ VAT
DISCOUNT ON QUANTITIES
ALL MAKES - ALL SIZES - ALL COMPLETE
CALL IN OR RING FOR COMPETITIVE QUOTE FULLY REFURBISHED SETS AVAILABLE + DELIVERY SERVICE

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Schame
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided.
(1) You have not received the goods or had your money returned; and
2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day
Please do not wait until the last moment to inform us. When you write, we will tell you
how to make your cisim and what evidence of payment is required.
We guarantee to meat ciaims from readers made in accordance with the abo
soon as possi
This guarantee covers only advance payment sent in direct response to an advertisemen in this magazine not, for example, payment made in response to catalogues etc., feceived as a result of answering such advertisements. Classifiad advertisaments are excluded."

LONDON'S LARGEST TELEVISION WHOLESALER... with over $4 \frac{1}{2}$ thousand sq. feet.

"TELEMANN"
8-10 RHODA STREET, (Off Bethnal Green Road)
LONDON E.2. FREE CAR PARK TEL: 07-739 2707
ALL MAKES IN STOCK AND GUARANTEED
PYE 22" COLOUR FROM $\mathbf{£ 7 . 5 0}$
PHILIPS 22" G 8 (Teak cabinet) PARCEL OF TEN $\mathbf{£ 1 2}$
MONO DUAL STANDARD £2
- SINGLE STANDARD $£ 5$
FREE DELIVERY TO THE LONDON AREA!
TELEPHONE 01-739 2707 - NOW!

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION
(Certificate No. 004)
2 year guarantee: 4 year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$\mathbf{1 9}^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
Noexchange tube required on delta types.
N.G.T. ELECTRONICS LTD.,

120, SELHURST ROAD. LONDON S.E. 25
Phone: 01-771 3535.
20 years experience in television tube rebuilding. addVAT at 15\%

EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES
 ETC., ETC. - ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE-TRADE ONLY
If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans - smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
IF YOU NEED SPARES FAST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED
Applies to U.K. only
TRERMR (WTON)
THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

1983 PRICE LIST

DISPLAY ELECTRONICS

GOLD LABEL COLOUR TUBES

2 YEAR GUARANTEE

90° up to $19^{\prime \prime}$ E33

90° up to $26^{\prime \prime}$................................... $\mathbf{E 3 9}$
The above prices are for standard 38mm Delta Gun Types.
Add f5 Gun surcharge for 20AX Types. Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES 2 YEAR GUARANTEE
 $19^{\prime \prime} / 20^{\prime \prime}$.£12
 $23^{\prime \prime} / 24^{\prime \prime}$. 14

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE
90° up to 19 . $£ 28$
90° up to $22^{\prime \prime}$ E31
90° up to $26^{\prime \prime}$ 53

Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types take 20% discount.
Buy any 3 mixed types take 10% discount.
Budget prices apply only to colour tubes. The mix can include Gold \& Green Label Types if required.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1
SWAN WHARF
WATERLOO ROAD
UXBRIDGE
MIDDLESEX
Telephone: UXBRIDGE 55800

SETS \& COMPONENTS

WIRELESS COMPANY

NOSTALGIA-COLLECTING 1900-1950s
Publishers of The Antique Wireless Newsheet (Sample on Request)
Suppliers of: • Valve Radio sets a Ampliso - Vaves. Components - Repairs \& Restorations - Servier Data - Historical Data - New and Used Bocka/Magazines
The complete service for the collector and enthusiast of Vintage Radio.
THE VINTAGE WIRELESS COMPANY 64 Broad Street,Staple Hill, Bristol BSI6 5NL Tel Bristol(08272) 565472 -24hour Ansaphone, Closed Mondays.

TUBE RE-GUNS
 2 YEAR GUARANTEE

$56-120$ E30 inclusive Also at $£ 30$ A51-110
A49-191, A44-271, A47, 342 or 3. A66-120, 140, 410, A67-120. £ 35 inclusive.
SLIGHTLY USED TUBES
A56-120, A51-110 £15.00
A66-120 £19.00
3 month guarantee
IN-LINE RE-GUNS £48 inclusive
51-161, 66-500, 56-500 and many more with 1 year guarantee. PROFESSIONAL STICK

DE-GAUSSING-COILS
 £19.50 EACH INCLUSIVE \& DELIVERED 1 Year Guarantee.

No need to spend $£ 5$ returning old glass if you buy from us (except in-line).
Tubes delivered and insured within a few days of receipt of cheque.
£6 delivery per tube, 2 for $£ 10$ including Scotland and N. Ireland.
Discounts for more than 2. U-View (Tubes)
29 Warmsworth Road, Doncaster, Yorks DN4 ORP. 0302855017.
Open 7 days Callers ring first.

Thorn 3000/3500
 Thorn 9000
 Thorn 900 UNIVERSAL l year guarantee

The UNIVERSAL TRIPLERcan be used in most G.E.C., I.T.T., Pye. Rank. Decca \& Continental
sets. WING ELECTRONICS
15 Waylands, of Tudor Rd, Hayes End, Middesex

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 5.64$ per single column centimetre (minimum 2.5 cms). Classified advertisements 33p per word

ARE YOU OVERSTOCKED?
 Turn your surplus stocks into cash £500,000 AVAILABLE

for any surplus electrical stocks ie. TV's, Video's, Washers etc.

Phone in strictest confidence: Mr R. Walker,
 Brighouse (0484) 714413

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL UNOWN Sret FACTORS W:0274.45885 GOUD MUTORWAY ACCESS

MONITOR TUBES
"GREEN"
$12 " 110^{\circ}$
AW31-550GH
MEN-TU ELECTRONICS LTD.
MENERS LANE,
FAREHAM, HANTS.
Tel: 0329 235116.

CASED ISOLATION TRANSFORMERS 500 w max, suitable TV work $£ 8.00+£ 2.85$. Working test equipment Meters, P.S.U's etc. SAE lists: S.H.E. 5, St Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

CAMPBELL ELECTRONICS LTD.

COLOUR T.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.
CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

EX RENTAL C.T.V.'s \& REGUN TUBES

RBM, THORN, DECCA, PYE GEC, GRUNDIG, ITT, PHILIPS G8, G9, G11, JAPANESE From $£ 10$
Also all modules from $£ 4$ untested.
STARLITE ELECTRONICS, 80 Como St., Romford, Essex. Telephone Romford 752537 London Code 3.

TVDX/SATELLITE EOUIPMENT
VHF to UHF Converter. 12 v supply required. Ideal way to start DXing £13.95. Band $1 / 11$ Mosfot mains preamplifier. High gain, low noise £27.50 (BIII available). SOON TO COME complete 4 GHz LNA/downconverter for satellite reception $£ 200$ (approx.).

SAE data lists:
H. COCKS

Cripps Corner, Robertabridge, Sussex TN32 5RY. Triesphone oficies-317

5ERUICE PacEES

(minimum 12 words), box number 60p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settiement.

RANK BUSH MURPHY TV PANELS
REPAIR/SALE SERVICE BY EX RRI EXPERTS. SAME DAY RETURN WITH 3 MONTHS GUARANTEE. GENUINE RBM TECHNOLOGY AT YOUR SERVICE. WE ALSO BUY T20, 22,718 CHASSIS PANELS, TACT MONDAY TO SATURDAY 9 em to 7 pm T.K. PANELS SERVICE Tel: (0438) 61567
31 Bronte Paths, Stevenage, Herts.

Northwood Middx (9684) 27019	01-845 2036
Rear 78 High Street, Northwood, Middx.	
LOOK G11 PHILIPS (inline tube)	£75
Also:	
PHILIPS G8 550 (22 Slant Button) PHILIPS G85 520 (22 Flat Button)	$\begin{aligned} & £ 35 \\ & £ 25 \end{aligned}$
PHILIPS G8 522 (26 Fat Button)	£18
PHILIPS G8 526 (26 Slant Button)	£25
PHILIPS G9 585 (26 Remote)	£35
RANK T20/22 Series (Incline Tube)	£75
RANK 823 (While Stocks Last)	$\underline{10}$
RANK 718 (Incline Tube)	£45
THORN 9600 (Incline Tube)	£55
MONO:- PYE T184-24" Mono (Solid State)	£18
VIOEO's'- PHILIPS N1700, N170, videos	$£ 39$
TUBES:-	
20" Rebuilt Colour Tube, 2yr Guar.	$E 29$
22" Rebuilt Colour Tube, 2yr Guar	£33
26" Rebuilt Colour Tube, 2yr Guar	£35
All Prices+VAT - Callers by Appointmem	

TM SPARES, PANELS - AND MANUALS PHILIPS. GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W.4.
CURE VIDEO INTERFERENCE
Stop interference from spoiling your off-air recordings or breaking into your pre-recorded playbacks. Most TVI filters are ineffective; our braid-braaker design really works. They are recommended by Sony and supplied to British Telecom.

Ilfor details ring or write:
Freepost Lowestott, Suffolk NR32 3BR tolephone: 050268106.
Trade enquiries welcome

CAMPBELL ELECTRONICS LTD.

Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items. Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

CLEABANCE SALE LARGE QUANTITY OF GOOD CLASS COLOUR TELEVISIONS BUSH, PYE, GEC, THORN, PHILIPS ETC. Excellent Cabinet Condition. Genuine Change Over TV's and Repossessions. LARGE OUANTITY SOLID STATE BUSH £10 Each GEC HYbRID ± 5 (Minimum quantity 5) PYE HYBRID £5
 MONO
 £3
 100's to choose fromll

We export large quantities of TV's weekly. Can we help you?
Discount on Quantity Orders.
OVER 1,000 MONO TV's IN STOCK FROM $£ 3$.
100's colour tubes suitable for reconditioning. Working colour TV's to order ie. Bush $20^{\prime \prime} / 22^{\prime \prime} 2$ I.C. excellent picture, ready to sell. Only $£ 39$.

CALL AND SEE OUR SELECTION
WHITE GOODS
All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Auto's, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock. Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details. PAY US A VISIT AND YOU WILL NOT BE DISAPPOINTED.

GRUNDIG, NORDMENDE, complete sets, circuits, reconditioned panels supplied. Television Magazine, colour manuals wanted. 0785814643.

BULK BARGAIN T.V. SERVICE PACK

Contains at least $£ 50$ worth of $T . V$. service components and accessories. Loads of hard to obtain TV.V. spares and components. Ideal for the service engineer. Only E12.50, carr. E2.50. Ref. Guar. HAVE YOU SEEN THE GREEN CAT? 1000s of new components, T.V., radio, and electronic items at unbelievably low prices. Prob-
ably the chaapest in the country. Send 400 for GREEN CAf and reserve FREE RECORD SPED INDICATOR. MYERS ELECTRONICS, Dept. TV2.
12/14 Harper Street, Loods LS2 7EA.
Noxt to Union Jack Clothing Store, Leods LS2 7EA.
Callers welcome at our NEW retail premises. Open 9 to 5 Mon to Sat. Tel. 452045 .

SUFFOLK TUBES LIMITED

214 Purley Way, Croydon, Surrey.
Tel: 01-686 7951/2/3/4
SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

SECOND HAND COLOUR TV SPARES and tubes, most makes. Telephone Southport (0704) 74411. Anytime.

RANK BUSH MURPHY
 TRANSFORMERS
 LINE OUTPUT TRANSFORMERS
 Z718 (T703A, T706A)
 (1) New (Complete)
 (3) Less Focus Module and Rectifier
 £10.50
 2718 SPARES (T703A, T706A)
 Pri. - $£ 5.50$, Sec. $-£ 6.00$,
 Rectifier - $£ 3.00$, Lead - $£ 2.50$
 T20, T22 (T705A) $\quad \mathbf{£ 9 . 0 0}$
 T26 (T705B)
 $\mathbf{£ 9 . 5 0}$
 Switch-mode Transformers
 T114 A/B
 $\mathbf{£ 8 . 0 0}$
 Genuine RBM Units
 Prompt Postal Service.
 Add 15\% V.A.T. to all Prices.
 DISCOUNT For QUANTITIES
 WOODSDALE COMPONENTS
 MR SKEHAN
 34 Field End Road, Eastcote,
 Pinner, Middlesex HA5 2QT.
 01-8685580
 Agents Office, callers by appointment only.

TRADE COLOUR TV'S

MOST MAKES \& SIZES
FROM £10. DISCOUNTS
$5 \% \& 10 \%$ OFF FOR $5+\& 10+$. MONDAY-SUNDAY.
Tel: Southampton 814318

IRISH T.V. DEALERS

(No. 1 for s/hand T.V.s)

1. 400 sets to choose from.
2. Most leading makes sold.
3. Fresh stocks weekly.
4. Delivery to any part of Ireland.
5. All sets with VHF/UHF tuners.
6. Colour from only $£ 70$ mono from $£ 15$.

Visit our new spacious warehouse:
TELE SPARES LTD.
Unit 113 Elm Road, Western Ind. Estate, Dublin 12.
Tel: 01 521756/521211.

EAST ANGLIA BARRY TV SERVICES

Good quality working colour televisions (from £35 plus VAT) straight from our retail shelves, (with good tubes \& cabinets). Available at all times delivery available anywhere.

Contact John, Dave or Steve on

 Cambridge 69215 or Ely 61462Your Satisfaction Is Our Concern.

TRADE TV's

For the best quality at the cheapest prices in Nottingham.

CASTLE TV

100s of ex-rental sets in stock. S/S colour from $\mathbf{£ 1 2 . 5 0}$ S/S mono from $£ 3.00$
TV Sales \& Spares to the Trade. 346 Radford Road, Nottingham.
Tel. Mr. Atkins
Nottingham 785321.

WIZARD DISTRIBUTORS

MANCHESTER

SPECIALIST DISTRIBUTORS TO THE TRADE OF T.V. \& VIDEO SPARES.

WE STOCK A FULL RANGE OF PARTS \&
COMPONENTS INCLUDING C.R.T.'s
RANK - THORN - PHILIPS - ITT - DECCA GEC ETC.
THANDER \& LEADER STOCKIST
TRADE COUNTER OPEN: 9-4.30
CATALOGUE ON REQUEST.
Mail Order Enquiries Welcomed
EMPRESS STREET WORKS, EMPRESS STREET
MANCHESTER M16 9EN
TEL: 061-848 0060

JABC This instrumen Service Works household na ing countless stages and th LOPTS. Mains operat of good or b controls to set Instruction boo Lopts in situ i £16.50 inclusi overseas post 1, Old		OPT TESTER ow used in hundreds of and Manufacturers with round the world. Savin checking Line O.P ecessary fitting of new aight forward indication Red \& Green Leds. No n testing many common jellypots. N.O. delivery 3 days. f 18 a. £ 21 airmail. ER \& CO. am Rd., Southwick, BN4 4RD. hton 593315.
SEMICONDUC	TORS	MODULES
AC 176	0.25	PL802 Solid State 3.25
BC 142	0.25	Dropper Resistors
BT 106	1.00	GEC $2018 \quad 0.70$
BU 105	0.80	Philips G8 50831.30
BU 126	1.00	Philips 210/5051 0.90
MC 1327PQ	1.20	RRI A640 1.20
R2008B	1.00	TCE $1500 \quad 1.30$
R2010B	1.00	TCE 3000/3500 0.90
SL901B	4.00	TCE 8000/A 0.95
SN76013N	2.00	TCE 8500/8800 0.85
SN76131N	0.70	Add 0.50 for postage \& packing Add VAT @ 15% to total. ACORD ELECTRONICS LTD 45 Stoke Road, Guildford GU1 4HT
TAA 550	0.25	
TBA 9900	1.00	
TDA 1327	1.20	
2N4443	0.80	
2SC643AY	1.50	

BOOKS \& PUBLICATIONS

ANY PUBLISHED, full-sized service sheet by return $£ 2+$ L.s.a.e. CTV/Music centres $£ 3$. Repair data with all circuits, layouts, etc. Your named TV or Video $£ 8.50$. Free 50 p mag. all orders, queries: TIS (TV), 76 Churches, Larkhall, Lanarkshire.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME.

TELEVISION

ADDRESS
Claselfied Advertisement Dept, Room 2612. King's Reach Tower, Stamford Street, London SE1 9L8.
Rate
33 p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registerad Office: King's Reach Tower, Stamford Street. London SEI 9LS.

SERUICE PGGES

FOR SALE

TUBE REBUILDING PLANT for sale. Fire salvage in good restorable condition. Offers. Phone 0706 523415.

TRADE TELEVISIONS

- Wide range of used sets in good cabinet condition.
- Plenty of working sets - try ours!
- Delivery arranged anywhere.
B.T.V., 39 St. Stephen's Road, Birmingham B29 7RR
Tel: 021-471-3836
COMPLETE REGUNNING PLANT for sale. Five electric ovens. Apply Box No TV 178
TWO TELEVISION PROJECT CTV's one $26^{\prime \prime}$ completed, in use 2 years. Good order. Other $22^{\prime \prime}$ com pleted but not assembled. Ideal enthusiast. $£ 60$ 01-500 4673.
JVC HR-4100 portable VHS recorder, little used, with Ferguson 3V20 colour camera. £495. 048248900.

WANTED

WANTED Emo, Rigonda, Saba, Telefunken, TV ser vice manuals. Reasonable prices paid. Phone Yateley, Hants. (0252) 876968 evenings.

WANTED

Modern unused TV components Lopts, Trays, Transistors, Fuses etc. Also VHS spares motors, Clutches, Pinch Wheels, Head Drums etc. Job lots purchased. Cash waiting.
Confidential Service Box No: TV 177
WANTED PHILIPS/PYE G11 Colour TVs, any quan tities. Hornchurch 58513, Mr. Morris.
WANTED. 12 good clean working $22^{\prime \prime}$ TV's. Either ITT CVC 30, Thorn 9000 or Philips G11. Box No TV 176
WANTED FOR CASH. Video, TV's, spares, electronic components. Tel: 965 1230. Box No. TV 175.

SPECIAL CLEARANCE

Colour TV's good working order £25
Offer of the month Philips G8s $£ 25$. Any quantities. Most make and sizes available. Complete non workers $£ 10$ each. Mono sets £2 each. Spare parts available.

> | Tel: (0203) 714213 or |
| :---: |
| (041) 221-2146. |

TELEVISION 1978 PROJECT complete in cabinet with remote control board unfinished. Offers: 77 Tedder Road, RAF Halton, Aylesbury, Bucks.
Equipment available.
Comprehensive price list on request.
S.C.S. AERLALS (Aerial Distributors)
14 Tanners Crescent.
Hertford, Herts. SG13 8'DS
Tel: 099250478

SERVICES

VIDEO, HI FL, TELEVISION Servicing by highly experienced engineers. Trade contracts required. Capital Electronics $01-8740885$.

TEST EQUIPMENT SERVICED. Scopes, generators, meters, etc. Telford Communications, 3 Park Road, Much Wenlock, Shropshire. Tel: 0952727719.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674.
burglar alarm equipment. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY

A.D. electronics DEPT. TV
217 WARBECK MOOR
AINTREE LIVERPOOL
L9 OHU/051 5238440

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

SERVICE SHEETS

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono, etc. $£ 2$ + large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: Sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/Videos. E.g. A823 $£ 6.50$; Autovox (eariy) $£ 6.50$. Tyne 5000/6000 Series $£ 7.50$.
COMPREHENSIVE TV REPAIR COURSE - Complete data almost every fault. - Huge beginners section. - Only f8.50.
TV REPAIR MANUALS - All 12 for $£ 75$. - Mono portables (new) $£ 6.50$. - Early VCR, $£ 10.50$.
CIRCUIT DIAGRAM COLLECTIONS IN HUGE BINDERS: British CTV (3) £42.50; Foreign CTV (2) £27; Early VHS/Phillips video £15; Mono TV standard + portables $£ 29$.
REPAIR SYSTEMS (REPAIR DATA, CIRCUITS, ETC): Video 1, $£ 24.50$; Foreign CTV, $\mathbf{£ 4 0}$; Mono TV, $\mathbf{£ 3 1 . 5 0 .}$
SAVE $£ 12$ - BRITISH CTV ONLY $\mathbf{£ 6 0}$ - LIMITED TIME; Complete integrated TV Repair System $£ 160$.
Quotations/free 50p magazine/price lists/etc for large sae.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ S.A.E. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends.
T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios, $\mathbf{£ 2 . 0 0}$. Tuners $\mathbf{£ 2 . 0 0}$. Tape Recorders, Record Players $\mathbf{£ 2 . 0 0}$. Transistors, Stereograms \& Music Centres $\mathbf{£ 2 . 0 0}+$ SAE. Also Colour Available. Car Radios $£ 3.00+$ SAE. All Radiograms $£ 2.00$ State if Circuit will do if sheets are not in stock. All TV Sheets are full-length 24×12, not in Bits \& Pieces All other Data full-lengths.
All sheets from $\mathbf{£ 2 . 0 0}$ except Colour. OLD VALVE Radios $\mathbf{£ 3 . 0 0}+$ SAE $9^{\prime \prime} \times 3^{\prime \prime}$. MAIL ORDER C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 01-458 4882 S.A.E.

SANDHURST PUBLICATIONS

Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$. Upper Floor. Send S.A.E. for Catalogue and Enquiries: 49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.

courises

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate. N. Yorkshire. Tel. (0423) 55885.

CONQUER THE CHIP. . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RGl 1BR.

STEVE BEECHING will be holding another 2 day training Course, on 14 th and 15 th May 1983. If you would like details, please ring or send a letter to: NEWARK VIDEO CENTRE, 108 London Road, New Balderton, Newark, Notts. Tel: Newark 71475.

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) $\mathbf{f 1 2}$ per annum, payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^1]: TELFURB - STS - TELFURB - STS - TELFURB - STS -

 INCORPORATING

 ## STS, LONDON AND TELFURB T.V., OXFORD

 WE NOW OFFER THE VERY BEST IN QUALITY USED WORKING TV's. ALL WITH GOOD CLEAN CABINETS AT FAIR PRICES. WE HAVE FULLY EQUIPPED WORKSHOPS AND QUALIFIED EXPERT ENGINEERS.\star EXPORT ENQUIRIES WELCOME *
 \star VAN LOADS OF STOCK FROM SOURCE
 \star AVAILABLE FOR OTHER WHOLESALERS
 \star GRADED NEW TV's AND VIDEO * AVAILABLE (ORDER NOW)
 \star NEW AND SECOND HAND TV STANDS, TUBES AND PANELS IN STOCK

 * DELIVERY ARRANGED FOR BULK ORDERS

 WRITE OR PHONE NOW TO THE EXPERTS
 HEAD OFFICE: manor buildings. 67 LONDON ROAD, headington OXFORD (0865) 750212

 LONDON BRANCH: 21 COLINDALE AVE LONDON NWG 6t-2007337

 TELFURB - STS - TELFURB - STS - TELFURB - STS -
 TELEVISION MAY 1983

