DECFM=FR1EE2

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.
 300 mixed $\frac{1}{2}$ and $\frac{1}{4}$ watt and minia

ture resistors
150 mixed I and

300 mixed capacitors, most types amazing value

$\mathbf{£ 3 . 9 5}$
$\mathbf{Z 4} \quad 100$ mixed electrolytics $\quad \mathbf{£ 2 . 2 0}$
Z5 $\quad 100$ mixed Polystyrene Capacitors $\mathbf{£ 2 . 2 0}$
300 mixed Printed Circuit
Components
£1.95
300 mixed Printed Circuit
resistors
£1.45
100 mixed High Wattage Resistors, wirewounds etc.
12.95

100 mixed Miniature Ceramic and
Plate caps
f1.50
$\mathbf{Z 1 0} \quad 25$ caps Potentiometers
Z11 25 Assorted Presets Skeleton etc.
Z12 20 Assorted VDR's and Thermistors
$\mathbf{f} .00$

1 lb Mixed Hardware, Nuts, Bolts,
Selftappers, "P" clips etc.
1.20

Z20
10 Assorted switches including
Pushbutton, Slide, Multipole,
Miniature etc. Fantastic Value
100 Assorted Silver Mica caps
Z22
$\mathbf{Z 2 3}$
20 Assorted TV Knobs including
Push Button Aluminium anding
Push Button, Aluminium and Control types
A9ssorted Valve bases
0 Spark Gaps
20 Assorted Sync Diode Blocks
12 Assorted IC Sockets
20 General Purpose Germanium
Diodes
20 Assorted Miniature Tantalum
Capacitors. Superb Buy at
Capacitors. Superb Buy at $\quad \mathbf{£ 1 . 2 0}$
40 Miniature Terry clips,
ideal for small Tools etc. $\quad \mathbf{£ 1 . 0 0}$
5 CTV Tube Bases

0 EY87/DY87 EHT bases

$20 \times$ PP3 Battery Connectors
$6 \times$ Miniature "Press to Make"
Switches, Red Knob
12 Sub Min S.P.C.O. Slide Switches
12 Min D.P.C.O. Slide Switches $£ 1.00$ 8 Standard 2 Pole 3 Pos Switches $£ 1.00$ $4 \times$ HP1I Batt Holders
(2×2 Flat type) $\quad 4$ for $£ 1.00$ 3.5 mm Jack Sockets, switched, enclosed Type

8 for $£ 1.00$ 100 Miniature Reed Switches $\quad \mathbf{£ 2 . 3 0}$ 100 Subminiature Reed Switches $\mathbf{5 4 . 2 0}$
20 Miniature Reed Switches $\quad \mathbf{1 . 0 0}$
12 Subminiature Reed Switches £1.00
ZENER DIODES
$0 \vee 7.2 v 7.4 \mathrm{v} 3,4 \vee 7,5 v 6,6 \vee 2,6 \vee 8$ $7 \mathrm{v} 5.27 \mathrm{v}, 30 \mathrm{v}$. ALL 400 mw . 10 of one value 80 p 10 of each
1.3 watt. $12 \mathrm{v}, 13 \mathrm{v}, 18 \mathrm{v}$ 10 of one value 10 of each DIODES
I.C. sockets for SL901 etc SPECIAL OFFER: 5 for $£ 1.00$ 100 for $£ 12.50$.

SPECIAL OFFERS

100 Assorted Polyester Capacitors.
Mullard C296's and others $160 \mathrm{v}-400 \mathrm{v}$ only $\quad \mathbf{£ 2 . 0 0}$ 100 Assorted Mullard C280 ${ }^{\circ}$ Cosmetic imperfects etc. 200 Mullard Miniature Electrolytics Cosmetic imperfects Electrolytics Cosmetic imperfects PACK OF EACH $\quad \mathbf{~} 2.00$

TRANSISTORS
BC 154. BC 149. BC157, BF195,

$25 \times$ IN 4002	$\mathbf{E 1}$
$20 \times$ IN4003	100 for $\mathbf{£ 2 . 5 0}$

7. BF 195.	I.C.'s	
	CA270AE $£ 1.00$	6 for $\mathbf{5 5 . 0 0}$
159,	MC1327P $£ 1.00$	6 for $\mathbf{5 5 . 0 0}$
651.	TBA810P £1.00	6 for $£ 5.00$
	555 Timer 30p	4 for $£ 1.00$
$\mathbf{1 . 0 0}$	TAA 661B£1.00	6 for $\mathbf{5} 5.00$
$\varepsilon 5$	SN76660N 50p	5 for $\mathbf{1 2 . 0 0}$
60p each	LEDS	
50p each	TIL209 3mm Red	12 for $\mathbf{f} 1.00$
4 for $£ 1.00$	5 mm Red	10 for $£ 1.00$
4 for f 1.00	Infra Red. LED Transmitter. Til 38.	
	Hi-Power. 50p	. 3 for $£ 1.00$
	THORN SPAR	
3500^{-*} Transd		f1.20, 3 for 53.00

S.

195,

 or $£ 2.50$
 or $£ 3.00$
 $\begin{array}{rr}\text { 20 } \\ \text { IN4 } 148 & \mathbf{~} \mathbf{1 . 0 0} \\ & 100 \text { for } £ 2.50\end{array}$ $\begin{array}{lr}25 \times \mathrm{IN4002} & 100 \text { for } \mathbf{£ 2 . 5 0} \\ \mathbf{£ 1 . 0 0} \\ 10 \times \text { SKE 4F2/06 } & \end{array}$ (600 v 2 a fast switching) $\quad \mathbf{f 1 . 0 0}$
$12 \times \mathrm{BY} 127$ $\begin{array}{lr}12 \times \text { BYI } 27 & \boldsymbol{£ 1 . 0 0} \\ 8 \times \text { BY255 (3A } 1000 \mathrm{~V}) & \boldsymbol{£ 1}\end{array}$ $10 \times$ BA $158(600 v 400 \mathrm{ma}) \quad \mathrm{f} 1.00$ IN5402 3a 200v 8 for $£ 1.00$ 6 A .100 V . Bridge Recifier.
Very small. $\quad \mathbf{8 0 p}$ ea. 3 for $£ 2,00$
$\begin{array}{ll}-3500^{\circ} & \text { Focus Assembly with VDR } \\ -8500^{-} & \text {Focus Assembly, Rotary type }\end{array} \quad \mathbf{8 1 . 5 0 , 3 \text { for } £ 4 . 0 0}$

$8500^{\circ} .0022$ 2000v Line Capacitor
$-1590 / 91^{-}$

$* 1500^{*}$ Bias Caps I60

 $\begin{array}{rr}\text { 1600" Dropper } 18+320+70+39 \Omega & \mathbf{E 1 . 0 0 .} 3 \text { for } \mathbf{£ 2 . 5 0} \\ & 3 \text { for } \mathbf{£} 1.50\end{array}$ $\begin{array}{rr}-950^{\circ} \text { Can. } 100+300+100+16 \mu \mathrm{f} & 3 \text { for } \mathrm{f} \mathbf{1 . 5 0} \\ \mathbf{f 1 . 0 0}\end{array}$

PBC 108. BF393S
2N3702, BC148B. BC159, ZTX107, ME8001. BC65
$100+200350 v$
$2000 \mu \mathrm{v} 100 \mathrm{v}$
$1000 \mu \mathrm{f} 100 \mathrm{v}$
$2.200 \mu \mathrm{f} 40 \mathrm{v}$
$2.200 \mu \mathrm{f} 63 \mathrm{v}$
$2.200 \mu \mathrm{f} 6.3 v$
$3.500 \mu \mathrm{f} 35 \mathrm{v}$
$3.500 \mu \mathrm{f} 35 v$
$4.500 \mu \mathrm{f} 35 v$
$220 \mu \mathrm{f} 400 \mathrm{v}$ ITT/RBM

THEYRE BACK

We can now again offer our special TV BARGAIN PARCELS. These contain all manner of useful bits and pieces. Components, semiconductors, videogame boards etc, which we have accumulated over the past year and must clear as we need the space.

1 kg E 3.95
$5 \mathrm{~kg} 19.95 \quad 10 \mathrm{~kg} £ 14.95$
ype 12
Any 6 packs
2 N 3055 H
2 N 3055 H
BD181
BD 131
BD 132
$\mathbf{£ 1 . 0 0}$
£ 1.00
$\mathbf{£} 1.00$
$£ 1.00$
$£ 1.00$

$$
\begin{array}{r}
£ 1 \\
£ 2.50
\end{array}
$$

Z51 Aluminium Finish. Standard Fitting

 Slider Knobs. (Decca) 10 for $£ 1.00$Z52 Decca "Bradford" Control Knobs Black and Chrome. $\frac{1}{4}$ " Shaft 8 for $£ 1.00$
Z53 Tuner P/B Knobs, Black and Chrome. Fit most small Diam Shafts, ITT, THORN, GEC etc.

8 for $£ 1.00$
Z54 Spun Aluminium Control Knobs (ITT) $\frac{1}{3}$ " Shaft, suitable for most sets with recessed spindles 8 for $£ 1.00$ Z55 14 Pin DIL I.C. Sockets 12 for $£ 1.00$ Z56 16 Pin Quil I.C. Sockets 12 for $£ 1.00$ Z57 16 Pin DIL TO QUIL I.C. 16 Pin DIL TO QUIL I.C.
Sockets 12 for $£ 1.00$

Z58 22 Pin DIL I.C. Sockets $\quad 10$ for $£ 1.00$ $\mathbf{Z 5 9}$ B9A Valve Bases P.C. Type 20 for $£ 1.00$ Z60 $0.47 \Omega \frac{1}{2}$ Watt Emitter Resistors
V.C.R. BATTERY PACKS HITACHI PORTABLE V.C.R. Nicad pack. Type VTBP60E 920 each. Brand New and Boxed

520 each
3 for 550
THORN "VIDEOSTAR" 3V25/26 Nicad pack. Type VA214. Also suitable for J.V.C. etc.

£20 each.

These are untested units which contain $10 \times$
${ }^{4}$ C" size (HP11) Nicads, which alone would cost in excess of $\mathbf{5 2 0}$. A Real Bargain at
f10 each 3 for $\mathbf{f 2 5}$

MG100 tripier for CVC45 etc.

Line output transformer for RBM 823A \quad [4.25 each only $\mathbf{£ 3 . 5 0}$ ITT VC 2004 P/B Transistor Tuner. Suitable for 4.25 each. 3 for $\mathbf{8 1 0 . 0 0}$ ITT VC200 4P/B Transistor Tuner. Suitable for some Pye
anad Philips sets. 3 hole fixing
 Decea Rradford Tuners. 5 button type Unt Moxdulator UHF out Video in ch. 36 and plug.
$2 \frac{1}{*} \times 2^{\prime \prime} \times \underline{1}^{\prime \prime}$ complete with 9 foot coaxial lead and plug.
With comnection data
SE.00 each

VDR rod 2040 heries Fowus Aswmbly with lead and
Convergence Panel for above. Brand new leads and plug. GEC 2010 Transistor Rotary Tuner with AE. SK T. and leads
Bush CTV 25 Quadrupler type Q25B equivalent to ITT
Clish. 3 for 55.00 Bush CTV 25 Quadrupler type Q25B equivalent to ITT
TU25 3 QK
$\mathbf{~} 3.00$ TU25 3 QK
PYF 697 Line and powsi Panel, damaged with some each, 2 for $\mathbf{5 5 . 0 0}$ PY E 697 Line and powsr Panel. damaged with some
components missing but ideal for spares Components missing but ideal for spares \quad £2.20 cach, $\mathbf{3}$ for $\mathbf{5 6 . 0 0}$
Grundig UHF/VHF Varicap Tuner for 1500 GB 3010 GB
 EHT Lead with Anede cap (CTV) suitable for split Diodes
60p each. 3 for EL .50
EHT 1 m long
Eable $\begin{array}{ll}\text { EHT Cable } & 30 \mathrm{p} \text { per metre. } 10 \text { metres } £ 2.50 \\ \text { Anti Corona Caps } & \end{array}$ $\begin{array}{lr}\text { Anti Corona Caps } \\ 4.433 \text { Mhz CTV Crystals } & \text { fl.00 each. } 3 \text { for } \mathrm{F} 1.00\end{array}$ Cassette Mains Leads. 7 fith figy 8 plug $\quad \mathbf{~} 1.00$ each. 3 for $\mathbf{2} 2.50$
 10.7 MH/ Ceramic. Filters "Vernitron" FM4 type 50p each, 3 for 51.00 PYE CT200 Control Knobs High quality
fixing
Casset
Cassettc/Calc 5 for $£ 1.00,100$ for f 1250 American plug .5 mm Jack Plug on 2 m of screened lead $\quad 60 \mathrm{p}$ each, 3 for f 1.50 Mains Neons

5 for $£ 1.00$
10 for $£ 1.00$ k 2 Screenfeed Resistors.
hillips CB T. 9 watt. with fusible link.
E.H.T. Dischansductor.

| | |
| :--- | :--- | :--- |\(\quad \begin{aligned} \& 8 for £ 1.00

\& handle,\end{aligned}\)
THYRISTOR \quad 60p enel. 3 for f 1.50
SS 106 (BT 106)65p 5ach 5Ω, 10!. 20!2, 30S2. 50Ω POTS 3 for $£ 1.50,10$ for $£ 4.50200 \Omega$. IK. 8 of one type $£ 1.00 .8$ of

\square

『俍

COPYRIGHTT

©IPC Magazines Limited, 1982. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £11 overseas ($\$ 24.20$ Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes ($45 p$) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

Leader
Long-distance Television
by Roger Bunney
Reports on DX reception and conditions and news from
abroad.

Swiss Radio/TV Show
by Alexander Wiese
A report from the latest continental radio/TV exhibition at Zurich.
VCRs for SECAM by David K. Matthewson, B.Sc., Ph.D. One of the advantages of the SECAM system is the simplified colour processing circuitry that can be used in VCRs. Machines for use in France and the Middle East differ however. Notes on this and multi-standard machines.
Faults in Recent TV Chassis
by John Bourne
Mainly on the Thorn TX9 and Hitachi NP8CO chassis. Some sets fitted with the latter incorporate an unusual tube with directly heated cathodes.
Teletopics News, comment and developments.
VCR Clinic
Notes on VCR faults from Steve Beeching, T.Eng. (C.E.I.), Michael J. Cousins, T.Eng. (C.E.I.) and Derek Snelling.
Spider Walk by Les Lawry-Johns As if sets and people don't cause enough problems, this time there's trouble with spiders as well.
Field Output Transistors
A suggested replacement for use in two-transistor class A field output stages.
Next Month in Television
Letters
Routine TV Receiver Tests
by S. Simon How to tackle basic faults on the Pye 725 series solid-state colour chassis.
Miller's Miscellany by Chas E. Miller Mainly on workshops - theoretical, practical and grand scale.
A Vintage TV Renovation by John Narborough How an HMV Model 905 dating from 1938 was restored to working order.
UHF Tuners for hi-fi at VHF by William Harrison How to adapt a u.h.f. tuner to feed the TV sound to a v.h.f. radio tuner to get hi-fi reproduction.
Test Report
by Eugene Trundle
The Manor Supplies Mk. V pattern generator is given an extended bench test.
Fault Report by John Coombes Notes on a variety of sets, including the more recent Decca and GEC chassis.
Focus on Portables, Part 2 by George Wilding
A detailed look at video circuit techniques, from the detector to the tube.
Twelve-hour Clock Conversions by Derek Snelling If you don't like 24 -hour clocks you don't have to suffer them. Most clock i.c.s can be simply converted to 12 -hour operation.
Readers' PCB Service
Service Bureau
Test Case 240

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.

- Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
* Also available with VHF Modulator.

Price of Kit
£80.50
Standard Case ($10 \frac{1^{\prime \prime}}{} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$)
15.50

De Luxe Case $\left(10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime}\right)$
$£ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 4.50$
Built \& Tested in De Luxe Case including Sound Module
$£ 115.00$
Post/Packing $£ 200$.
All above prices include VAT 15\%
PAL COLOUR BAR GENERATOR (Mk 4)

* Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT £40.25 P\&P $\mathrm{E}^{1.20}$. DE-LUXE CASE $£ 8.50$. ALUMINIUM CASE £3.30, P\&P $£ 1.20$, BATT HOLDERS $£ 1.70$ P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 66.70+£ 1.80 \mathrm{P}$ \& P . MK 4 DE LUXE (MAINS) BULLT \& TESTED $£ 80.50+£ 1.80 \mathrm{P}$ \& P . VHF MODULATOR (CHI to 4) FOR OVERSEAS $\mathbf{~ 4 . 6 0}$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $\mathbf{£ 1 7 0 . 2 0}$ p.p. $£ 2.80$ MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
SPECIAL OFFER THORN 8000A, 8500 Power \& Sound Panels (new and boxed) £5.75 p.p. $£ 1.25$.

TELEVISION MAGAZINE PROJECT PARTS

NEW COLOUR PORTABLE TV
TV PATTERN GENERATOR SMALL SCREEN MONITOR
MONO PORTABLE TY
LARGE SCREEN COLOUR TV
PHONE, CALL, OR SEND FOR LISTS
WORKING MODELS \& PANEL TEST SERVICE AT
172 WEST END LANE.
SPECIAL OFFER Leading makers Tuner-Timer in De Luxe Case. 12 station touch tune UHF-VHF + IF amp. Video Audio Outputs, Digital Clock etc. Less than half original trade price $£ 74.75 \mathrm{p}$-p $£ 3.50$.
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. $£ 1.00$
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $\mathbf{8 3 2 . 8 0}$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, AT REDUCED PRICE $£ 57.50$ p.p. $£ 1.60$
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $\mathbf{£ 7 . 8 0}$ p.p. £1.20. XMII INTERFACE PANEL (THORN) $£ 2.10$ p.p. 75p. CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £12.65 p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 3.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT £3.35 p.p. 45 p .
UHF SIGNAL STRENGTH METER KIT $£ 21.60$ (VHF version also available). ALUM CASE $£ 2.00$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$. CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH 2718 BC6100 SERIES IF PANEL $\mathbf{5 S . 7 5}$ p.p. 90p.
BUSH A816 IF PANEL (SURPLUS) 51.90 p.p. 90 p
DECCA "Bradford" IF T.B. POWER ex rental $£ 5.75$ each p.p. $£ 1.40$
DECCA 80, 100 SERIES, IF, FRAME T.B. $\mathcal{£} .75$ ench p.p. 51.40
GEC SERIES I MONO PANELS $£ 2.10$ p.p. $£ 1.30$.
GEC 2110 Decoder, RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$.
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$
GEC 2040 IF PANEL $£ 3.22$ p.p. $£ 1.40$.
GEC 2040 (SERIES) CDA PANEL $£ 2.88$ p.p. $£ 1.40$
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $E 5.75$ p.p. $£ 2.00$
THORN 3000 LINE T.B., POWER PCB 55.75 each p.p. $£ 1.30$.
THORN 3000 CONVERGENCE PANEL $£ 5.75$ p.p. $£ 1.80$.
THORN 3000 VID, 1 F, DEC, Ex Rental $£ 3.70$ each p.p. $£ 1.30$.
THORN 8800 Varicap channel selector \& front control unit 5437 p.p. $£ 1.80$
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 3.70$ p.p. $£ 1.80$
THORN $8000 / 8500$ FRAME T.B. PANELS salvaged $£ 2.88$ p.p. $£ 1.40$
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares 88.62 p.p. $£ 2.00$
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT
PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$. THORN 9000 IF/DECODER PANELS Salvaged $£ 5.75$ p.p. $£ 1.60$. PHILIPS 210,300 Series Frame T.B. Panels $\boldsymbol{f 1 . 1 5}$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for smali spares $\mathbf{£ 2} 28$ p.p. 1.40 G8 IF Panels for small spares $£ 1.75$ p.p. 95 p.
G8 Decoder panels salvaged £4.25. Decoder panels for spares $\mathbf{£ 2 . 0 0}$ p.p. $£ 1.40$ VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05 ~ £ 7.82$ p.p. 80 p; G.I type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, 3 PSN $\mathcal{L} .40$, 4 PSN £1.75, 5 PSN $£ 2.00,6$ PSN $£ 4.00$ p.p. 60 p. Makers special types available SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT UHF/VHF £2. 10 p.p. $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, Z718 types $£ 4.40$ p.p. 95 p VARICAP UHF-VHF ELC 2000S $£ 9.80$. BUSH TYPE $£ 7.82$ p.p. 85 p. VARICAP VHF MULLARD ELC 1042 £7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted.
incl. s / m drive, Mullard 4 position push button $£ 4.80$ p.p. $£ 1.50$.
LOPTS NEW \& GUAR. P/P Mono $\mathbf{5 1 . 3 5 p}$, Colour 11.45 p, Bobbins 80p. BUSH 161 to 186S...................... $\mathbf{8 . 8 0}$ R.B.M. A823................................ 60 BUSH, MURPHY 774 serices.............. 69.80
BUSH, MURPHY A816 series..... 89.80 BUSH, MURPHY A816 series..... 29.60

DECCA 20/24, 1700, $2000,2401.28 .50$ DECCA 20/24, 1700, 2000, 2401. E8.80 | FERG., HMV, MARCONI, ULTRA |
| :--- |
| 950 to $1580 . ~$ |
| 6.80 |

 GEC 2000 to 2038 series.......... \quad 17.80
 INDESIT 20/24EGB8.8.80 ITT/KB VC1 200, 300..................58.80 MURPHY 1910 to 2414 series 26.80 PHILIPS 19TG 170, 210, 30058.80 PYE, INVICTA, EKCO, FERR.
368, 169, 569, 769 series.
GEC 2114JJ/Junior Finfiner
GEC $2114 \mathrm{~J} /$
J/Junior Fineline
THORN $1590 / 1591 . .$. \qquad . 63.25 KB VC ELEVEN (003) - $\mathbf{6 5 . 5 0}$ OTHERS AYAILABLE PRIC.... 22.00 OTHERS AVAILABLE, PRICES ON PEQUEST ALSO TRIPLERS Full range available. Mono \& Colour
Special Offer: Thorn 14005 stick EHT Tray 11.72 p.p. 65p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.72$ p.p. 60 p. 6.3V CRT Boost Transformers £5.80, Auto Type £3.20, p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
 W. Hmputed (Brit Rai) sccows from oll owr Greater Lomben.

Mail Order: 64 GOLOERS MANOR DRIVE, LONDON N.W. 11 ALL PRICES INCLUDE VAT AT 15\%

SHEILA AND THE GIRLS ATP.V. TUBES THANK THEIR CUSTOMERS FOR THEIR FRIENDLINESS AND SUPPORT DURING 1982 AND SEND SINCERE BEST WISHES TO ALL FOR
A MERRY CHRISTMAS AND HAPPY NEW YEAR

P V TUBES 32811

 NEW PRODUCT LIST

 NEW PRODUCT LIST

 VIDEO TO VIDEO DIRECT RECORDING LEADS

 VIDEO TO VIDEO DIRECT RECORDING LEADS}

We now stock a range of these cables suitable tor connecting two video recorders for direct recording Send us the two makes/models of the video machines being used and we will send the correct type.

PRICE $£ 4.25$ per 2 metre lead

DOMESTIC COMPUTER LEADS

A computer to cassette recorder (suitable for BBC computer) lead-length 1 metre.

7 pin DIN Plug to $2 \times 3.5 \mathrm{~mm}$ Jack Plug
$1 \times 2.5 \mathrm{~mm}$ Jack Plug
B+K TUBE TESTER/REJUVENATOR MODEL 467 DYNASCAN

PRICE $£ \mathbf{~} \mathbf{1 2 . 5 0}$
TESTS: Emission, leakage, tracking (colour tubes), life-focus continuity.

RESTORING FUNCTIONS: Shorts removal - gun cleaning and balancing - cathode rejuvenation

FACTOAY AVO 8 METERS AVO 8 Model Af97 AVO 8 Mark 5 £109 12 months warranty	$\begin{array}{\|c\|} \hline \text { ELECTROLUBE } \\ \text { CM 100 } \\ \text { CIRCUT MAKER } \\ \text { A comprehensive } \\ \text { system for the crea- } \\ \text { tion of professionai } \\ \text { circuit boards. } \\ \text { FREE LEAFLET } \\ \hline \end{array}$	TELETEXT ADAPTOR AYR VIEWDATA Convers any set to Teletext/remote contro PRICE $\mathbf{£ 1 2 0 . 0 0}$

to Order see main advert next page

High quality colour television receiver NEW INFRA-RED FULL FEATURE REMOTE CONTROL TELETEXT
\star Pin diode tuner

* Glass epoxy printed circuit panels
* Full technical construction manual
* Hi-Bri tube
* Eleven integrated circuits
* Ready built and aligned IF module
\star High quality components
* Modern cabinets
* All solid state

THE ULTIMATE in large screen $22^{\prime \prime}$ and $26^{\prime \prime}$ television receiver kits. Deluxe full spec. Teletext, 7 channel + VCR. Also video and audio in/out.
6 models in the 500 range.
Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.
Telephone or Mail Orders accepted on
Access / Barclaycard
\star Fully isolated and protected power supply
\star Diode split L.O.P.T.

* Low consumption

Also ideal as a FULLY isolated COLOUR MONITOR for Home Computer Systems. R.G.B. or PAL Encoded Video inputs, with remote switching.
 colour developments limited
Ketteringham, Wymondham, Norfolk, NR 18 9RY Telephone: Norwich (0603) 810453

P. V. TUBES

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX. OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m.-12 noon.

Top quality sets to set you up for the winter televiewing boom. Brighten your winter profits with better sets from BTC.

OLOUR DECCA BFD 30 TELPRO KORTING PYE 697 , GEL 2040	HYBRIDS UNTESTED SINGLES TENS	$\begin{array}{r} £ 15.00 \\ £ 12.00 \\ £ 9.00 \end{array}$	$\begin{aligned} & \text { WORKING } \\ & \text { SNGLINES } \\ & \text { FENS } \end{aligned}$	¢25.00 ¢20.00 £18.00
	SOLID ST	TES		
OUR PHLLPS G8's	UNTESTED SINGLES	£25.00	WORKING SINGLES	£35.00
3500 VARICAPS PIBUUON HITACH's	FIVES	£20.00	FIVES	£30.00
$18^{\prime \prime}$ PHILIPS	TENS	£18.00	TENS WORKING	£28.00
R 1-CHP PUSH/MURPHY THOR 3000, THORN 8000	SINGLES	£20.00	SINGLES	£30.00
18" PYE's	FIVES	${ }_{\text {¢18, }}^{18.00}$	FIVES	£28.00 ¢2500
OUR LATERS SETS	UNTESTED		WORKING	
Li.e. THORN 9000 TOUCH TUNE SETS	Singiles	£35.00	SINGLES	£45.00
	TENS	¢ $£ 30.00$	TENS	¢ 842.00 8
SINGLE STANDARD MONO TV's IN BATCHES OF 20 @ £4.00 EACH				
CASH \& CARRY SPECIAL SERVICE OPENING TIMES MON-F				
TO THE TRADE OR ASK ABOU			0/1.00	
SPECIAL DELIVERIES ON LARGE QUA	ANTITIES.		4.30 S	

BRIARWOODTRADINGCOMPANY

BRIARWOOD TRADING COMPANY LEGRAMS MILL, SUMMERVILLE ROAD, BRADFORD BD7 1 NH

B.K. ELECTRONICS
 INCREASE YOUR PROFTTS - IMPROVE YOUR SERVICE WITH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-420 DUAL TRACE SCOPE 20 MHz
 BANDWDTH

SPECFICATION

- CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{v} / \mathrm{div}$
- Time Base: 1 sec/div-100ns/div
\star XY Facilty: Matched XY inputs
- Trigger: Level contral, \pm stope selection
tiont
\star Auto, normal, TV triggering - Z-Modulation
- CAL output IV 1 KHz
- Graticule blue ruled 8×10 div 14^{*} CRT). Very Sharp Trace.
* Size: H215mm, W165mm, D280mm
- Supply: $200{ }^{2}-240 \mathrm{~V}, 40-60 \mathrm{~Hz}$

PRICE $5199+$ E29.85 VAT
Price $\mathrm{f199}+\mathrm{fz9} 85 \mathrm{Va}$
Probes as Thander below
BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

LEADER LCT-910A

C.R.T. TESTER-REJUNENATOR Our top saning instrument is designed to readily teat the various charactensB N C.R.T's.

* Tests for shorts and leakage between electrodes.
- Tests cathode emission characteris-
tics.
* Removal of shorts and leakage be-
tween electrodes.
- Checks heater warm-up characteris-
tics.
Rejuvenation of low emission cathodes with automatic timing.
- Super rejuvenation with manual controi.
* Complete with tube base adaptors.

Size: H 230 mm W 330 mm D 120 mm

THE VERY LATEST SC110A LOW POWER, FULIY PORTABLE OSCILOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and weigrols of a bench oscilloscope. FTS IN A BRIEFCASE

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION. the largest Trade Full Sized Performance 10 MHz bandwidth Fa
10 MHz bandwidth. * 10 mV per division sensitivity.

- Full trigger facilities are provided including TV frame, or TV filtering. adaptor.
Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$
'Scope $£ 149.00+£ 22.35$ V.A.T
Carry Case E8. $95+$ £0. 89 V.A.T
BRITISH $\quad \times 1$ Probe $£ 7.00+£ 1.05$ V.A.T. MADE $\quad \times 1 / \times 10$ Switched Probe $\mathbf{~} 8.60+£ 1.42$ V.A.T. FULLY $\times 1 \times 10$ Switched Probe $\cdot £ 8.60+£ 1.42$ V.A.T.
Rechargeable Batteries $£ 11.00+£ 1.65$ V.A.T.

AC Adaptor $\mathbb{E 4 . 9 5}+\mathrm{E} 0.74$ V.A.T.
(Overseas purchasers please state voltage.)

U.K. Post Paid. Export orders welcome. please deduct V.A.T. and include an additional $£ 5.00$ for Overseas carriage. Mail Order only, Callers by appoint
ment. Barclaycard/Access orders welcome, or Cheque. Bank Draft etc, with order please. Large S.A.E. for technical leaflets of complete range.

Delivery normally within 7 days.
B. K. ELECTRONICS, Dept. 'T',

37 Whitohouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.
thaciamand
hu:

Technical Training in Television, Radio and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed"

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

CERTIFICATE COURSES

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting $\boldsymbol{\&}$ Installation

- Qualify for IET Associate Membership

Approved by CACC

Member of $A B C C$
POST OR PHONE TODAY FOR FREE BOOKLET

EDITOR

John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou

ART EDITOR

Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671
CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our cover photo this month shows soldering operations on the Fidelity 20in. colour chassis at Fidelity's NW London plant. New solder cut machinery has been installed. Our thanks to Fidelity Radio PLC for their co-operation.

Video Commentary

Over ten per cent of households in the UK now have the use of a VCR. It's been an extraordinary marketing achievement in just four years. There's still enormous market potential however, and one can't help but wonder as to which of the various competing systems will gain most in the long run. Concern is being expressed in Europe about the flood of Japanese VCRs - the VHS and Beta systems between them have 80 per cent of the European market at present. Calls for import controls are to be heard, but the French have come up with a rather more subtle arrangement. Imports of VCRs are to be channelled through Poitiers, a small inland town about as far as it's possible to be from the main centres of population and with a complement of five customs officers. There's creative use of red tape for you!

Though the European V2000 system is technically excellent, the problem is that the Japanese VCR industry has already established a position of overwhelming dominance. Japanese VCR manufacturing capacity is at present of the order of 17 million machines a year. Between them, Grundig and Philips seem to be able to turn out some 1.5 million machines a year. The difference of scale, with all this means in terms of efficient production and reduced costs, is plain to see.

One striking thing is the confidence the Japanese had from the start in the VCR as an item of mass consumer appeal. Whilst European producers were undecided as to whether the VCR was perhaps mainly a tool for educational and industrial use, the Japanese saw it as a domestic item and invested accordingly. Success in their home market was quickly followed by success in the USA, where the consumer electronics industry had been slow to invest in new technology. This in turn led to world dominance.

The other end of the video market, the software, is curious indeed. According to Thorn EMI Video Programmes Ltd., video piracy of one sort or another currently accounts for some 70 per cent of the video software market. Since the market has such a large illegal element it's difficult to put a figure on its value, but most estimates put this at around $£ 300$ million a year, revenue from rental transactions accounting for a good 90 per cent of the market, cassette sales the remainder.

Part of the illegality problem must be due to the ease with with tapes can be duplicated. Duplicating legitimate tapes and passing them off as the genuine thing is known as counterfeiting, piracy proper being the distribution of programme material that has not been released for the purpose by the owners of the material. The latter is simple for those knowledgeable in the matter to spot, though not for the public. The former can be tricky even for those familiar with tape catalogues and ownership rights. Steps are being taken to solve this problem however. All Thorn EMI tapes for example now carry a special Polaproof security label. When held in the light, this reflects an imprint of the Thorn EMI logo and the word "genuine". The library box also has the logo moulded to it. It's thought that pirates will find these features expensive and difficult to copy.

Whilst some distributors of illegal tapes may be making good profits, it's hard to see that many renters/retailers can be doing well. It's been suggested that the ayerage annual turnover per shop could be as low as $£ 7,200$. Turnover, not profit! It would be difficult even to cover expenses at that level of business. The fact is however that most VCR users don't want to spend the $£ 40$ or so it costs to buy a prerecorded tape of a feature film, while the acceptable lending rate seems to be around $£ 1$ or so a night for cassettes at the cheaper end of the market. Users will pay that - it's a cheap night's entertainment compared to almost anything else - but the renter is going to have to wait a long time before he sees any profit, and by that time the tape could well be showing signs of wear. Nevertheless this cheap tape rental business is now an established part of the industry, and along with the activities of illegal distributors has put great pressure on the legitimate distributors and better known outlets. There have been bankruptcies, one or two quite substantial, amongst distributors whilst well known high street names such as W.H. Smith and Woolworths have pulled out of tape rental.

It's going to be a lengthy business ridding the industry of illegal operators. For one thing the cost of tracing and then taking action against them is considerable - an estimate (from the British Video Association) is around $£ 10,000$ for a major case. The effort is nevertheless required, in order to secure funds for programme making and legal production/distribution quite apart from the moral aspect that piracy is stealing others' work. The public can, and is being encouraged to, play a part in this. Warner Home Video for example are advertising a Freefone number (2681) through which people can report on possible illegal activities, whether the titles involved are Warner ones or not. The service operates on a 24 -hour basis. Thorn EMI Video Programmes Ltd. advise the public to report suspicions to the local Trading Standards Officer at the town hall or to the local police station. Things that should give rise to suspicion include poor packaging, very low prices and poor picture quality. Advice can also be obtained from the Video Trade Association (01-464 8833).

Long-distance Television

Roger Bunney

SEPTEMBER exceeded all expectations. There was in particular a really incredible tropospheric opening midmonth, reported by several enthusiasts - it seems that records have again been broken. Sporadic E reception has occurred on several occasions, F2/TE activity is on the increase, and there were three auroral events.

The mid-month tropospheric opening peaked on September 14 th/15th. Earlier, signals via tropospheric propagation had been received on the 3rd, 4th, 10 th and 11 th. Here at Romsey for example DFF (E. Germany) was received on the 4th. Signals mainly from W. Germany and the low countries were received in most parts of the south and east on the $3 \mathrm{rd} / 4$ th, signals from TDF (France) and W. Germany arriving in central UK on the 10th/11th. The high pressure system present on the 13th really started things going, with many E. and W. German signals. By the 14th Scandinavian signals were arriving. Hugh Cocks (E. Sussex) logged several Band III/u.h.f. Swedish/ Norwegian outlets that day, plus TVP (Poland) chs. R7, 10 and 12. At Torpoint in the south west Reg Roper received the Spanish RTVE-2 ch. E39 outlet (Gamoniteiro at 158 kW e.r.p.) whilst at Ely Cyril Willis logged twelve Swedish Band I/III/u.h.f. transmitters and, unusually, Denmark ch. E3. DFF ch. E34 reached as far as Wigan (Arthur Milliken). Here at Romsey I was fortunate in receiving a ducted signal from Grunten on ch. E43 (Grunten is usually seen on ch. E 2 via SpE !) in addition to DFF chs. E5, 6, 10 and 34. For Romsey, which is similar to DXing down a well, that is good going!

The 15 th continued to give further periods of enhanced tropospheric propagation. BFBS (British Forces Broadcasting Service) chs. 41 and 48 were received at fair strength in E. Anglia, also NRK (Norway) chs. E7 and 9 and, unusually, W. Germany ch. E2. Perhaps the most dramatic reception was of TSS (USSR) chs. R8 and 9 by Cyril Willis. Iain Menzies in Aberdeen also experienced excellent conditions during the period, including reception of many southern UK u.h.f. stations and NOS (Holland). Ray Davies (Norwich) logged TSS
chs. 21-29 inclusive at 0400 on the 15 th, while Clive Athowe (also at Norwich) apparently received Yugoslavia during the opening.

An unusual signal was received by Robin Crossley (St. Albans) on the 14th - suspected Antiope tests with colour bars on system B, ch. E11. From the west Ryn Muntjewerff (Holland) logged RTE (Eire) chs. 40/43 and Divis N. Ireland group A signals on the 13th. On the 14th he received thirty Swedish Band III/u.h.f. outlets, CST (Czechoslovakia) chs. 26/36/38, TVP chs. R27/29 and TSS chs. R6/8/9/10/11/29/30/34. Many signals were also received on the 15 th, perhaps the most interesting one being from Lietovos on ch. R8 - Vilnius area, with positive station identification and clock.

The auroral events occurred on the 6th, 22nd and 26th. The 6th was perhaps the most active, with both Hugh and Cyril reporting reflected TV signals. Hugh had CST and TVP in Band I while Cyril noted signals on chs. E2/3/4, R1/2 and A2/3/4 (N. American system M). The event on the 22nd was logged only by Iain Menzies in Aberdeen. He observed the usual humming and "lines" characteristic of an aurora. Pictures couldn't be locked, but chs. A2 and 3 did produce recognisable American programme sound. The event of the 26th was extremely strong during the afternoon and was present throughout the UK: again chs. E2/3/4, R1/2 and A2/3 were noted, with generally dreadful quality.

The approach of winter has brought increased F2/TE activity, Gwelo Zimbabwe ch. E2 being seen on good days with at times Ghana on the same channel. At the end of September the daytime MUF reached 44 MHz . Gwelo was seen on the 6th-8th either via daytime F2 or evening TE.

There were several excellent SpE openings, which is unusual so late in the year. The following were widely reported:
4/9/82 RTVE chs. E2, 3, 4; RAI (Italy) IA, B.
6/9/82 Mixed with an aurora! RAI IA, B; JRT (Yugoslavia) E3; TVR (Rumania) R2, 3; ORF (Austria) E2a; CST R1; RTVE E3.
8/9/82 RTVE E2-4; RAI IA, B; JRT E3; MTV (Hungary) R1, 2.
14/9/82 RAI IA; RTVE E2-4; SR (Sweden) E2; TSS R1; MTV R1.
15/9/82 RAI IA, B; JRT E3, 4; RTVE E3, 4; MTV R1, 2; TSS R2; RTVE E2; ORF E2a. French ch. F2 and 4819 -line signals from Corsica were received in Wigan.
16/9/82 TSS R1, 2; TVP R1, 2; RAI IA; CST R1; RTVE E4.

An interesting vintage monochrome test card received from Sweden by Trevor Rose during the recent enhanced tropospheric conditions.

Sweden's second PM5544 test pattern, noted by Trevor Rose recently. Photo courtesy of the BDX club journal. TV1 Sverige identification.

Call sign of the amateur TV station G6BIA, South Shields, Tyne and Wear. Received in Holland earlier this year by Ryn Muntjewerff.

So there we have it. A very full month with reception via all modes of propagation.

With the decline in the solar cycle we shall probably see the last of F2 layer reception for many years during the coming months. So it will be worth being vigilant! With plans to use Band I for other purposes, the situation may be very different when the next sunspot cycle peak arrives - perhaps by then we'll all be DXing at 4 GHz !

My thanks to the following for sending in reports: Cyril Willis, Reg Roper, Hugh Cocks, Iain Menzies, Mark Baldwin (Rugby), Ian Johnson (Bromsgrove), Simon Hamer (New Radnor), Trevor Rose (Lowestoft), Arthur Milliken, Robin Crossley and Ryn Muntjewerff.

Ryn Muntjewerff has now received written confirmation of his reception of signals from TV2 Guaiba, Brazil on ch. A2 (see October column). The programme he received was "Guaiba Feminina", which is for women. Our congratulations once again.

Arthur Milliken has received a letter from RUV, Reykjavik, Iceland saying that the mystery "Gothab TV" transmitter he received was a "News Mirror" programme transmitted by RUV on $23 / 2 / 82$ at 2250 . Part of the programme related to the EEC voting in Greenland, the shots including the local TV station "Godthaab Lokal TV".

Finally during the recent improved conditions Trevor Rose noted a variation on the Swedish PM5544 test pattern. Colour sections within it have changed and these are very obvious in monochrome.

News from Abroad

Australia: The multi-culture TV service at present being transmitted on chs. $0 / 28$ in Sydney/Melbourne is to be extended to ten other areas during the next three years. Canberra is expected to be on air by mid-1983, followed by Hobart, Perth and Darwin in 1984/5 and Newcastle, Wollongong, Adelaide and Brisbane later.
India: AIR-TV is to go commercial on an indpendent TV channel for some eight hours daily, with a separate rural service. The revenue earned will be used to expand the service overall. Problems with the INSAT-1A satellite, due to failure of one of the solar sails, has curtailed the output to thirty minutes daily.
N. Africa: Egypt is to start a third channel and Tunisia a second channel. The use of French for the second Tunisian channel will enable the first one to be Arabic only.
USA: Medium wave stations in Texas and Pennsylvania have commenced a.m. stereo transmissions using the Kahn coding system. The Harris Corporation, which has an alternative system, has equipped fifteen stations and is awaiting FCC approval to commence transmissions. There are five such systems in all.

Satellite TV

The FCC has come to certain decisions on DBS (direct broadcasting via satellite) in the USA. A 500 MHz bandwidth in the 12 GHz band is to be used for the downlinks, with a similar 500 MHz in the 17 GHz band for the uplinks; licences will be initially for five years; but there are no recommendations on transmission/technical standards. Nine applications are awaiting approval and transmissions are expected to start in 1986.

RTL-Luxembourg has received approval from stockholders for the start of a DBS service. France and W. Germany are attempting to regulate the commercial basis

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road,Shaftesbury. Dorset. SP7 8ND tel. 07474370

SOUTH WEST AERIAL SYSTEMS WISHES ITS MANY FRIENDS AND CUSTOME RS A MERRY CHRISTMAS AND A SUCCESSFUL NEW YEAR.

With a New Year upon us soon South West Aerials is introducing its new and revised 1983 catalogue. Most of the 1982 ranges have been continued, and with recent aerial and amplifier additions this latest catalogue makes for perhaps the most comprehensive listing in the UK today. The most dramatic addition to our 1983 range is the inclusion of 4 GHz TVRO satellite equipment (subject of a separate leaflet). A range of 'upmarket' amplifiers from the Mutek company intended for domestic VHF-TV and FM DXing is included - Mutek are well known in amateur radio circles for very high quality RF amplifiers. Our unrivalled advisory service continues which, coupled with our in-depth knowledge of system engineering for domestic, 'difficult', multi channel or the TV/FM DXing environment, ensures complete customer satisfaction.

For the best in UK and European aerial \cdot technology contact South West Aerial Systems - the experts.

Our 1983 catalogue costs 54 pence. SAE please for our TVRO satellite equipment leaflet and with all enquiries.

BILLINGTON VALVES
 Specialist valve and vintage service

A selection of new, boxed, guaranteed valves available								
DY802*	59	EF99	75	PC97	E1.45	PFL200	f1e0	JANTT
DY86/7	55	EF183	6	PC900	1.14	PL36	95	ISCOUNTS
ECC81	5	EF184*	56	PCC84	75	PL84	0	SCOUNTS
ECC82	55	EH9O	5100	PCC85	55	PL504*	18.37	
ECC83	58	EL34	80.00	PCC189	\%	PL508*	025	
ECC84	78	EL81	12.75	PCFEO	70	PL508	84.00	EXPORT -
ECC85	50	E184*	65	PCF200	18130	PL509**	${ }^{64.40}$	IMPORT
عCC88	68	El90	2	PCFE02*	83	PL519*	64.40	1 MP
ECFPO	00	EL509	£7.00	PCF806	1120	PL802	66.50	
ECF82	56	EY51	85	PCF808	1120	PY500A*	E1.50	VINTAGE OUR
ECF86	8	EY86/7	4	PCH200	81,40	PY33	5	VINTAGE OUR
ECH81	f1.5	EY500A	2225	${ }^{\text {PCLL } 82 *}$	74	PY800-1*	${ }^{69}$	SPECIALITY
ECH83	95	E280-1	54	PCL83	200	PY800-1	E100	SPECALIT
ECH84	61.15	GY501		${ }^{\text {PCLIP4* }}$	125	PY88		35p (+ SAE) for
ECLPO	6	GZ34	E1.90	PCLP4	1125	${ }^{4} 26$	88	our current vintage
ECLI 28 ECL26	+5600	KT66	68.50	PCL85* PCL86*	9	${ }_{6 F 23}$	5.00	our current vintage
EF90	4	PC86	74	PCLP05*	93	6/3012	45	
EF85	45	PC88	75	PD500	2.50	10 F 18	5	
EF86	18.25	PC92	85	PFL200*	1.10	PLBCOT	E6pp	

Our valves are guaranteed (90 days from despatch). Where availability permits we supply Mullard/Mazda. Types denoted * are imported types (as supplied by most other retailers). Hundreds of other types available. Please inquire for your specific requirements or ask for valve list. Also refer to July 1982 TVM.

WE CAN SUPPLY SERVICE DATA FOR PRE 1970 VALVE EQUPPMENT.
Used, tested valves: PL36 25p; PL504 25p; PL509 £1.15; EF80 20p.
$\frac{1}{2} \mathrm{~kg}$ reels of high quality electrical solder, 16 s.w.g. $£ 7$ post paid.
ALL PRICES QUOTED ARE INCLUSNE. No post or V.A.T. to add. Orders under £10 please add 57p handling charge.

Minimum order £1.35. CWO please. Immediate despatch, expert service.
S.A.E. for valve list and with absolutely all correspondence please.

MAILING ADDRESS ONLY; NO CALLERS

BILLINGTON VALVES.
23 Irwin Drive, Horsham, W. Sussex, RH12 1NL.

Robin Crossley's aerials at St. Albans, Herts.
of the service before its commencement. The manufacturing contract for the French/W. German DBS has now been signed.

Reg Horne (Sydney), managing director of Telecraft Pty., has sent an interesting brochure illustrating and describing the Hills Industries system for reception of the ABC TV National programme at 4 GHz . The aerial consists of a $6-7 \mathrm{~m}$ high reflector panel which converges the signal at a feedhorn/amplifier/down converter mounted on a lattice mast $7-10 \mathrm{~m}$ from the panel. Signals are received from the Intelsat IV satellite and the system is capable of modification for use with the Australian DBS Domsat which is due to come into operation in late 1985.

From our Correspondents . . .

We've received a log covering the SpE season from an unknown Sheffield lady DXer who signs herself "Angel"! Apparently she moved to a position on high ground in
late July and erected aerials on August 10th - including a Band III system for RTE ch. F reception. Angel is clearly experienced with SpE , MS and tropospheric DX-TV reception and one phrase suggests she's a CB enthusiast. Could this lady breaker advise her home 20 please?

Chris Wilson is receiving improved signals at 12 GHz , but Satellite Television Ltd. London presents a problem since the scrambling seems to involve positive and negative video jumping. The other channel has line delay scrambling, resulting in overlapping video. The IBA have been seen testing scrambled and unscrambled signals. We'd naturally be interested in any information on scrambling systems. Apparently decoders are being sold under licence, with the critical sections encapsulated in potting compound...
Ian Johnson (Bromsgrove) started DXing after a motor cycle accident put him in hospital. His initial equipment consisted of a WB1 wideband Band I dipole atop a 30 ft mast with rotor, feeding a dual-standard GEC monochrome set via the BFY90 preamplifier described in the May 1982 issue. Many stations from most parts of Europe were received in Band I between May 9th this year and two months later when the GEC set finally expired. A Bush Ranger u.h.f. monochrome portable is now in use with a Labgear upconverter. This illustrates that successful DX-TV reception can be achieved using a very basic installation. More recently changes have been made, with a MOSFET amplifier and upconverter from Hugh Cocks.
Simon Hamer (New Radnor) uses a Triax bowtie u.h.f. aerial, two-element Band II aerial, Jostykit 395 amplifier, upconverter and Bush TV176 receiver. His site is 500 ft a.s.l. but screened to the north east. His long list of successes includes several low-power W. German BFBS Band II transmitters. During the recent tropospheric openings he logged several W. German/Dutch/Belgian stations including Saarbrucken. Despite the screening to the north east, he's found that reception is possible by pointing an aerial at a hill in the opposite direction - this gives a clean, reflected signal! His SpE reception covers most of Europe apart from Eire, Norway and Finland.

Swiss Radio/TV Fair

The Swiss radio and TV fair "FERA" is held every two years at Zurich. It was interesting to visit this and compare the situation with last year's Berlin show, which is also biennial.

Perhaps the most striking feature was the number of stereo TV sets on show. The W. German second channel ZDF now transmits a few stereo music programmes and bilingual films/news programmes, but none of the Swiss networks have plans to introduce stereo TV in the near future. The fact is however that much of Switzerland is within reach of ZDF, either directly or via cable TV. According to dealers some 50 per cent of large-screen TV sets now being sold are stereo models.

Rediffusion serves Zurich and the surrounding area. Their network is the first German-language one to offer, since July 15 th, the Satellite TV Ltd. programmes via the OTS satellite. They also have a teletext system called Teleziitig (Tele-newspaper) which offers thirty pages of local news, and since April 30th a Pay-TV system called Teleclub. Subscribers to the latter pay 28 Franken per month and receive a decoder to unscramble the Pay-TV

Alexander Wiese

programmes. These consist of twenty recent films per month, with ten changed each month.

Satellite TV was represented by TelSat and SatCom. The TelSat project aimed to provide the first DBS service for the mid-European area but was cancelled by the Swiss parliament shortly before the opening of the fair. The US SatCom company offered the "first private satellite reception dishes" for the 12 GHz band. Unfortunately no prices were mentioned.
Independent local f.m. radio is at present being tested in Switzerland, with the first stations due to commence operations next year. As a consequence, f.m. transmitters were being offered at the fair - by an Italian manufacturer (who else!). One wonders whether such local radio, and perhaps TV, will eventually start in W. Germany and Austria, the only countries in this part of Europe not at present served by illegal local stations. It's interesting to note the number of car stickers put out by the official broadcasters. In W. Germany only WDR, which is in direct competition with the Radio Luxembourg German-language service, issues such stickers.

WTEE WOUNDS	
1.5R 5W Thorn 3 K	2700 5W
22.5W Thorn 3K	27087W
2.24 AW	280817 W
3.319W	330 5 5 W
4 Cll IW fusible	330 TH
7R 9Wfusible	330 A 11 W fusible
8.27 W	Thorn
10R7W	370817w
12R9W	820 A 4 W
${ }^{158} 5 \mathrm{FW}$ fusible	1 K 2 W Thern 3K
${ }^{15 R 7 W}$	1 K 211 W fusible
15R 11W Tharn 3K	2 k 25 W fusible
15 B 17W	2K2 7 W
22R 4W	2 k 27 W fusible
22A 9Wfusible	2 K 29 W husible
2787W	2 K 35 W
27R 7W fusible	2 K 79 W fusible
38817 W	$3 \mathrm{K9} 9 \mathrm{~W}$ fusible
82 AW	$3 \mathrm{k3} 4 \mathrm{~W}$
82R 9W fusible	4 4 7 TW fusible
100R 5W fusible	5kiow
220R TW Kortiny	$8 \mathrm{8k} 2 \mathrm{w}$
220817%	8K2 gW 8K Thorn
235R 9W fusible	10K9W
240R 9W Thorn 4K	39 K 4 W

FX-LOUIPMENI SPARIS

39 HIGH RȮAD, NORTH STIFFORD, GRAYS, ESSEX, RM16 1UF.

(Mail Order Address Only) Delivery within 28 days.
PLEASE ADD 60p P\&P, PRICE INCLUSIVE OF VAT, ADD POSTAGE FOR OVERSEAS ORDERS thousands of addmional items available, enauiries invited

E.A.T. STICK FON THOAN 950/1400/1500 triplers E.C.T. type B0/150 E.H.T. stick. $83 / 200$

FUSES 20 min

Thorn 3000 metal $2 A$ cut out
10 kr 40 p
Thern 8500 plastic 2.5 A cut ou Degause thermistor PT3TP ITH/GEC $2 \mathrm{~F}_{5}$ + fits some PYo/Bush otc.
Dogeuse VDR type E2seO/H P230 3000/800025:
\square

Mains TX TMAMsFOMMERS/OPT
 $3000 / 3500$ Scan TX
$3000 / 3500$
EHT TX ${ }^{30000}$ LOPT
${ }^{85000}$ LOPT
Mono portable LOPT. Thom, GEC, etc. Muhard diode spliting LOPT. GEE, ate. 14.75

Pro 78+161
dnoppens
Pre $147+250$
Thom $6+1+1003$
Thom $6+1+1003 K$
Thorn $56+1 K+47+12$
Thorn $56+1 K+47+12$
Thorn $350+20+148+1 \mathrm{~K} 5+31$
Thorn $50+40+1 \times 5$
RBM $250+14+58 \mathrm{TV} 161$
${ }_{3}^{355}+15 R+45 \mathrm{R} 28 \mathrm{~W}$ Working © $140+14020 \mathrm{~W}$

XED PACKS

2ifured valup thasios

50 in spart gates

CAHBONRESTSTORS

 82R $\frac{1}{2} W, 1008$ 2W, $120 R$ 2W, 120月 $\frac{1}{2} W, 130 R 2 W$
 240R1W, 270 R IW, 270R 1W, 300R 1W, 330R1W,
 IK $5 \mathrm{~W}, 1 \mathrm{~K} 1 \mathrm{~W}, 1 \mathrm{~K} 2 \mathrm{~W}, 1 \mathrm{~K} 5 \mathrm{~W}, 1 \mathrm{~K} 5.1 \mathrm{~W}, 1 \mathrm{~K} 81 \mathrm{~W}$,
 100K $+W$ 110 1 W 270 1W 330 LW 330 1w 350K IW, 500K WW, IMEG HW, IMEG 2W, 2 M $2 \mathrm{jW}, 2 \mathrm{M} 7 \mathrm{LW}, 4 \mathrm{M} 7.1 \mathrm{~W}, 10 \mathrm{M} \frac{1 \mathrm{~W}}{}$ emp io for 25

Thorn 9K thick film units FR1 or FR3 $\mathbf{1 . 2 5}$ 10 Mag thick film focus resiztor

VCRs for Secam

David K. Matthewson, B.Sc., Ph.D.

In the SECAM colour system the two transmitted colour-difference signals frequency modulate carriers at $4.25 \mathrm{MHz}(\mathrm{B}-\mathrm{Y})$ and $4.40625 \mathrm{MHz}(\mathrm{R}-\mathrm{Y})$. The signal on each transmitted line consists of the luminance signal plus one of the colour-difference signals, a $64 \mu \mathrm{sec}$ delay line being used in the receiver so that both colour demodulators get a chroma signal on each line - the f.m. colour demodulators receive direct and delayed signals on alternate lines. Switching is required for this purpose, and the switching must be synchronised so that each demodulator receives the correct signal. One of the advantages of using f.m. for the chroma signals instead of phase/amplitude modulation of a single subcarrier, as in the NTSC and PAL systems, is that a phase-locked loop to generate an accurate reference signal is not required in the decoder.
In the original SECAM transmission system colour sync signals were included in the field blanking periods on lines $7-15$ and $320-328$. This is known as vertical SECAM. Most countries that use SECAM now include a burst of unmodulated subcarrier on the back porch of the line sync pulse for colour sync purposes - horizontal SECAM.

In a PAL or NTSC VCR the chrominance signal is down-converted to around 650 kHz and recorded under the accompanying luminance signal. Hence the term "colour under". Since these two systems rely on the phase of the chroma signal to convey colour information, a lot of circuitry is required in a PAL or NTSC VCR to ensure that the phase conditions of the chroma signal are maintained during the record and playback processes. This brings us to another advantage of SECAM - much simpler chroma circuitry can be used in a VCR.

As an example, in the JVC Model HR4110S the luminance signal frequency modulates a $3 \cdot 8 \mathrm{MHz}$ carrier - as in a PAL VHS machine - but the chroma signal is downconverted to about $1 \cdot 1 \mathrm{MHz}$ using a simple circuit consisting of a pair of D-type bistables to give division by four. For up-conversion a pair of two-diode multipliers is used. All very neat and simple, maintaining the frequency of the chroma information with no problems.

The HR4110S is intended for use in France. For use in the Middle East however JVC produce machines that will record and play back both PAL and SECAM signals, the chroma signal in both cases being converted down to 627 kHz on record. As a result, SECAM tapes recorded on French and Middle Eastern machines are not compatible.

If you get a VHS tape from someone living in France and play it back on a PAL VCR connected to a PAL receiver you'll get a perfect monochrome picture. If you substitute a SECAM receiver for the PAL one you'll get colour - of sorts! This is because the PAL VHS machine is looking for a 627 kHz chroma signal to convert to 4.43 MHz . What it finds is junk which gives a silly picture: the $1 \cdot 1 \mathrm{MHz}$ SECAM colour signal on the tape is ignored. Try the same thing with a SECAM tape recorded in Saudi Arabia and you'll probably get a true colour picture via your PAL machine on your SECAM receiver. Try this

The JVC triple-standard HR3330TS VCR.

Close-up showing the system selection switches.

The extra circuitry for handling SECAM signa/s is on a separate panel mounted at the rear of the machine.
tape in a French VHS VCR and you'll get silly colours! This is because of the two incompatible standards for 625 -line SECAM VHS machines - one for France itself and the other for countries in the Middle East using the SECAM system.

The interesting JVC triple-standard HR3330TS will handle PAL and SECAM signals in the record mode and will play back PAL and SECAM tapes of both types, also NTSC tapes with the chroma converting to $4 \cdot 43 \mathrm{MHz}$ (i.e. not standard $3 \cdot 58 \mathrm{MHz}$ NTSC). For SECAM recording, the PAL/SECAM switch is placed in the PAL position to produce tapes compatible with Middle Eastern SECAM machines and in the SECAM position for French use. In the playback mode, PAL/SECAM selection is automatic, with a slide switch giving NTSC-4.43 operation.

Faults in Recent TV Chassis

John Bourne

RECENT TV chassis have established a high degree of reliability. Nevertheless if you deal with them in sufficient numbers you acquire a certain amount of fault know-how. The following notes relate mainly to the Thorn TX9 and Hitachi NP8CQ chassis.

THORN TX9 CHASSIS

There have been several versions of the TX9 chassis. The original one used main panel PC1002 which featured a $\mu \mathrm{PC} 1365 \mathrm{C}$ colour decoder i.c. The subsequent PC1040 main panel version has a TDA3560 colour decoder i.c. More recently main panel PC1044 has been introduced, featuring a chopper switch-mode power supply. There is also a version of this latest variant featuring stereo sound.

Beware of plugging in the field and line scan coil connector plugs the wrong way round with the original PC1002 panel. There was a production error in that the connector locating holes were incorrectly arranged. To overcome this, Thorn cut the location lug off each connector. Inserting the line scan plug PL9 the wrong way round will simply result in a "mirror image" picture with no damage to the circuitry. In the case of $18 / 20 / 22 \mathrm{in}$. models however inserting the field scan plug PL14 incorrectly will destroy the TDA1170S field timebase i.c., since the beam current limiter link will short-circuit its output pin. On smaller screen models the link is not fitted and no circuit damage is caused.

Fig. 1 shows the power supply circuit used in the PC1002 version. The later PC1040 version is almost identical, though a slightly different component reference lettering system is used - the diodes have D instead of W letters, i.e. W67 = D67, the transistors have the letters TR instead of VT and the thyristors CSR instead of SCR.

No Results

Intermittent blowing of the 1.6 A delay mains fuse FS1 every two days or so, the fuse having a jet black appearance, indicates that the crowbar trip has operated. If no obvious fault is found, the following are suspect: the 130 V zener diode W 85 , the 5.6 V zener diode W 83 , the BF435 transistor VT66 and the crowbar thyristor itself, SCR2 (Y1043 or T9054V). Just to fill in the details, W85 provides over-voltage sensing, conducting and thus firing SCR2 in the event of the h.t. rising above 130 V ; VT66 provides excess current protection by sensing the voltage developed across R197, conducting and firing SCR2 when its base voltage falls sufficiently below the emitter voltage set by W83.

If FS1 has blown as a result of a permanent fault condition the usual cause is a defective h.t. regulating thyristor (SCR1). Note that it will not necessarily be short-circuit. Alternatively the crowbar trip circuitry previously mentioned is often responsible.

A word of warning. If SCR1 goes short-circuit the h.t. may briefly rise to an abnormally high level before FS1 blows. The resultant damage is usually as follows: BU500 line output transistor short-circuit or leaky collector-toemitter; 24V rectifier W94 (BY210-400) short-circuit;
field flyback diode W103 (1N4001) short-circuit; TDA1170S field timebase i.c. faulty. In addition, when you're brave enough to switch the receiver on the picture may black out from the left-hand side of the screen as the sound level is increased. In this event, check the 15 V supply reservoir capacitor $\mathrm{C} 193(4 \cdot 7 \mu \mathrm{~F})$ and the 12 V regulator i.c. (IC56, type LM7812 or LM340T).

Always ensure that the h.t. is correctly adjusted - for 115 V at the cathode of W85, measured with respect to chassis. Incorrect adjustment (h.t. too high) sometimes results in the crowbar trip doing its job.

No results with the 115 V supply present at the cathode of W85 usually means that a defective line driver transistor (VT67, type BD150 or T9057V) is failing to provide the 12 V start-up supply to the line oscillator i.c. If this transistor is short-circuit, R223 in its collector circuit will probably be open-circuit - the value of this resistor was changed from 220Ω to 470Ω.

Miscellaneous Faults

As with other chassis, tuning drift is usually due to the 33 V stabiliser i.c. It's mounted on the relevant tuner drawer assembly, according to model. No colour with little luminance content has been traced to a faulty 12 V regulator i.c. (IC56) giving reduced output.

A rather unusual one we had was when the picture was well over to the right with slight foldover. R 212 ($220 \mathrm{k} \Omega$) which couples the reference pulse from the line output transformer to the line generator i.c. had gone opencircuit.

The three-key ultrasonic remote control transmitter handset used with Ferguson Models 3756 and 3769 can give trouble - the three pressure disc switches tend to go short-circuit. The switch part number is 06E2-032-002, which is not mentioned in the service manual.

THORN TX 10 CHASSIS

We've had very little trouble with the excellent Thorn TX10 chassis. The following notes may help some readers however.
(1) A.F.C. pulls set off tune. Careful, slight adjustment of the a.f.c. coil L36 on the i.f. module required, with the tuning preset drawer closed, i.e. the a.f.c. on. Open and close draw to test for correct operation. The i.f. module is the same as that used in the TX9 chassis.
(2) If the varicap tuner is suspect/faulty, a Mullard ELC1043/05 is a suitable replacement.
(3) No results has in some cases been due to the thermal fuse on the l.t. mains transformer T702 going open-circuit for no apparent reason. T702 can also be responsible for lamination buzz.
(4) Random function changes on sets with infra-red remote control is mainly the result of pulse interference produced by the focus unit, no symptoms being evident on the screen. Alternatively check the c.r.t. earthing and the SAA5010 remote control decoder i.c.
(5) Finally, correct grey scale adjustment is very important. To achieve optimum results, proceed as follows.

Fig. 1: Regulated power supply circuit used in the Thorn TX9 chassis (early version).

Leave the set running for fifteen minutes.
Disconnect RGB drive plug PL11.
Set the colour control to minimum, the brightness control to midway and the contrast control to maximum.

Link the black level check pins together.
Set the first anode preset control RV831 fully anticlockwise.

Set the RGB gain presets RV654/5/6 fully anticlockwise.

Set the c.r.t. black-level presets R V651/2/3 for 150 V at each cathode.

Reconnect plug PL1 1 and adjust the preset brightness control RV601 for 155 V at the green cathode (c.r.t. pin 2).

SPECIAL XMAS OFFER

PAL

intracept electronics

$\star 5$ Standard test patterns viz. Colour Bars, Red Raster, Crosshatch Linear Grey Scale, Peak White \star Built-in Rechargeable Battery PLUS Mains Unit/Charger \star Crystal Controlled Line, Field + Subcarrier Frequency \star Integral UHF or VHF Modulator \star Optional Integral Sound + Video O/P Boards \star Built + Tested version available with full 12 month warranty.
ORDER FORM
Please send me (within 14 days)
$\left.\begin{array}{|l|l|r|l|}\hline \text { QTY } & & \text { PRICE } & \\ \hline & \text { N7118 Kit(s) UHF/VHF* } & £ 39.95 & \\ & \text { Sound or Video* Kit } & \text { add } £ 8.95 \\ & & \text { per kit }\end{array}\right]$

NAME \qquad
ADDRESS \qquad
\qquad
\qquad

Block Capitals Please

Cheque/P.O. No.*
Offer expires 31st January, 1983

INTRACEPT ELECTRONICS LTD., 203 PICTON ROAD, LIVERPOOL L15 4LG. TEL: 051-733 3042

Fig. 2: Fidelity remote control unit modification.

Disconnect the field scan output plug PL15.
Slowly advance the first anode preset RV831 until a line, e.g. red, just appears, then adjust the black-level presets for the missing colours, e.g. blue and green, so that all three colours appear with equal intensity.

Reconnect field scan plug PL15.
Remove the shorting link and with a suitable test pattern displayed inspect the highlights for colouration. Use the appropriate gain preset to reduce the offending colour if necessary. At least one gain preset must be left undisturbed, i.e. at maximum gain.

FIDELITY REMOTE CONTROL

The remote control handset used with the Fidelity CTV14R 14in. colour receiver and the TVR120 monochrome portable is inclined to give trouble. If the problem is no results, first check the condition of the PP3 battery and if necessary replace it. Monitor the current drawn by the handset. A correctly working unit should draw about 14 mA whilst transmitting and a few $\mu \mathrm{A}$ in the quiescent state. Full current drawn continuously is usually due to a duff i.c. (type SL490), though any of the three iransistors in the unit could be responsible.

Battery life is improved by carrying out the following Fidelity modification (see- Fig. 2). Remove the middle transistor (TR12 or TR16 depending on unit) and the $100 \mathrm{k} \Omega$ resistor if fitted on the print side of the board. Connect the collector of the first transistor TR11/15 to the base of the third transistor TR13/17 and add a $47 \mathrm{k} \Omega$ resistor from this point to chassis.

HITACHI NP8CQ CHASSIS

Tube Types

One of the first Hitachi models we began to stock, some three years ago, was the CBP220 (NP8CQ chassis). A novel feature is the instant picture at switch on (approximately one second) Jue to the use of a tube (type 560DZB22) with directly heated cathodes (Fig. 3). Tube life with some of these sets seems to be on the short side however - the tube can be completely low emission after only eighteen months in the field. Hitachi now provide a quick-start tube, type H0433/560DZB22, as a replacement. This is a more conventional tube with indirectly heated cathodes and a warm-up time of about five seconds. The following modifications to the tube base panel are required when this tube is used as a replacement.
(1) Remove the heater voltage set-up coil L852.
(2) Remove heater transformer T850 - or alternatively cut its three secondary windings.
(3) Fit a link between input terminal T1 and pin 10 (TP855) of the c.r.t.
(4) Fit the coil supplied with the tube between terminal T2 and pin 7 (TP853) of the c.r.t.
(5) Fit the silicone rubber spacer supplied to the c.r.t.'s focus pin, with larger diameter hole on the c.r.t. side.
Note that the replacement tube does not come with bonded deflection coils, so these must be removed from the old tube and fitted to the new one. Hitachi suggest changing the value of R305 from 270Ω to 150Ω and replacing R326 with a wire link to give improved picture sharpness. These components are in the luminance circuit. This modification applies only to earlier sets as it was incorporated in later ones. As with any c.r.t. replacement, the set should be left to warm up for twenty minutes before carrying out adjustments, and soak tested for a further three hours before final grey scale, purity etc. adjustments are carried out.

Most other sets fitted with the NP8CQ chassis incorporate conventional quick-heat tubes.

No Results

Now to some general problems with this chassis. No results or intermittent no results should lead to a visual inspection of the panel, as there are many areas where thin print coincides with mechanical stress. Check particularly around the line output transformer and the power supply. Remember that pressing down on the panel gently from the component side will open any hidden breaks or cracks whilst pressing down from the print side will close them.

No results with a high-pitched squealing may be due to R717 being open-circuit. This resistor acts as a fuse (part no. 0119512). It's in series with the 12 V line that supplies

Fig. 3: The c.r.t. used in the Hitachi Model CBP220 has directly heated cathodes, producing a picture in one second after switching on.

Fig. 4: Trip circuit used in the Hitachi NP8CO chassis.

Fig. 5: Simplified circuit of the switch-mode power supply used in the Hitachi NP8CO chassis.
the signal stages - this supply is derived from the line output transformer. In a few instances the solder blobs beneath the tuner head have intermittently shorted the 12 V rail to chassis.

A duff line oscillator i.c. (IC701, type HA11235) may be the cause if the symptom is no results with the set whistling slightly.

A dead set with the 2A delay mains fuse F901 blackened should lead to checks on: the mains filter capacitors C901 and, if fitted, C918; the degaussing thermistor TH901; the mains bridge rectifier diodes D901/2/3/4; the chopper transistor Q901; the chopper control transistor Q903. It's extremely likely that the culprits will be Q901 and Q903, and the use of a variac when making initial tests is strongly recommended - from bitter experience, a fault that results in high (almost double) h.t. does the line output stage no good at all...

Assuming that the mains fuse holds but the set remains inactive, check for h.t. from the bridge rectifier - there should be about 340 V across C 907 . Then check the regulated h.t. rail - there should be $108 \mathrm{~V} \pm 3 \mathrm{~V}$ across C909. If the voltage is low at about 8 V the crowbar thyristor Q705 may be conducting, in which case its gate should be at 0.7 V . The protection circuit (see Fig. 4) is designed to operate in the event of excessive h.t. or excessive current in the line or field output stages. Things to check in the line output stage are the output transistor Q702 (2SC1942) and the efficiency diode D702 (type GH3S). The crowbar thyristor can be overridden by disconnecting R729, but if you do this you must monitor the 108 V h.t. rail and/or the e.h.t. (25 kV maximum). If the h.t. supply returns to normal when the crowbar thyristor is overridden, it's likely that the sensing module CP701 is faulty.

As shown in Fig. 4, the crowbar thyristor is driven by Q704. When triggered, it shorts the h.t. line without fuse blowing. Module CP701. senses the voltages developed in the line output stage. The line output stage current is sensed as the voltage developed across R714 to which zener diode ZD708 is connected. A voltage proportional to the current flowing in the field output stage is
developed across R625.
A simplified circuit of the switch-mode power supply is shown in Fig. 5. The chopper transistor Q901 operates as a blocking oscillator, with feedback to its base via R902/9 and C908 from a winding on the chopper transformer T901. At switch on, the voltage applied to the base of Q901 via R911/7/8 causes it to conduct. Positive feedback then drives it to saturation. Q901's base current charges C908 negatively, with the result that Q901 switches off. C908 then discharges via R911/7/8. Regulation is provided by the h.t. sensing module CP901, the error amplifier transistor Q902, and the control transistor Q903 which acts on Q901's base circuit. If the h.t. rises, Q902's emitter voltage rises and the drive to Q903 is increased. The voltage at the base of Q901 is thus reduced, C908 takes longer to discharge and Q901's switch on is delayed, reducing the h.t. to compensate. C912 feeds a pulse from the line output stage to the base of Q901 to synchronise and stabilise the circuit.
With the remote control sets (Models CBP222 and CTP208), if the set appears to be dead check whether the standby indicator is illuminated - this proves, without removing the back cover, that the mains supply is reaching the set. Again, if a squealing noise is heard R717 is probably open-circuit.
The following GEC models use the NP8CQ chassis: $\mathrm{C} 1650 \mathrm{H}, \mathrm{C} 2055 \mathrm{H}, \mathrm{C} 2057 \mathrm{H}, \mathrm{C} 2255 \mathrm{H}$ and C 2257 H .

TELETEXT MODELS

The following points relating to the teletext Model CPT2218 (NP81CQ chassis) are worth noting. To cure slight picture ringing, change R 315 from $2 \cdot 2 \mathrm{k} \Omega$ to $3.9 \mathrm{k} \Omega$ and remove C308 (if fitted). The suggested cure for a severe ringing effect in the mixed mode, resulting in almost unreadable teletext (picture otherwise o.k.), is to disable the mixed mode blanking circuit by connecting a link from the base of transistor Q2109 to chassis. This removes the "black hole" characters, leaving the text superimposed on the picture.

Teletopics

STEREO TV SOUND TESTS

The BBC has been carrying out experimental stereo TV sound transmissions to test the feasibility of adopting the W. German two-carrier, two-channel sound system for UK use. The initial tests were done at low power, and indicated that it will be difficult to establish a standard that will provide an acceptable compromise between achieving an adequate stereo service in difficult reception areas and avoiding interference to existing mono-only receivers (W. Germany and the UK use different TV systems - G and I respectively). More recent tests, from the BBC-2 Crystal Palace transmitter (and the associated repeater stations), have been carried out at full power. The BBC emphasizes that the tests are aimed at investigating the basic feasibility of the system, and that there is at present no commitment to start regular stereo transmissions or to adopt any particular system. The expectation however is that success with the tests will result in a specification being issued to setmakers some time next year.

HI-FI SOUND FOR BETA SYSTEM

One problem with present VCR standards is the limitation on sound performance due to the narrow sound track and slow longitudinal tape speed. To overcome this, Sony have proposed and produced prototype machines using a "Beta Hi-Fi" system. The idea is to record the sound stereo at that - on a low-frequency f.m. carrier in the same helically-scanned tracks as the video signal. On playback the signals are separated by filtering. The improved performance is quite dramatic - frequency range increased from $50-10,000 \mathrm{~Hz}$ to $20-20,000 \mathrm{~Hz}$ at 0.3 per cent distortion and the dynamic range increased from 40 to 80 dB . Recording sound on the present longitudinal track as well makes the system compatible with present machines.

US SCENE

Two of the three main US TV networks, CBS and NBC, are planning an early start to teletext transmissions using the North American Broadcast Teletext Standard, which is based on the French Antiope teletext system. This follows a successful year-long trial by both networks in the Los Angeles area.

Cable operators are not having it all their own way. In fact CBS has decided to close its cable operation: despite obtaining $5,200,000$ subscribers in less than a year of operation, the system lost over $\$ 30$ million and showed no signs of making a profit. One of the problems is that to become profitable cable operators have to attract a certain amount of advertising. This has increased substantially but major advertisers prefer to stay with the national networks and their much larger audiences.

ORACLE SERVICES EXPAND

The area covered by Thames and London Weekend Television is the third region to have a local Oracle teletext service - following Scottish Television in October 1981 and Channel Television in February 1982. One hundred teletext pages are being devoted to London news, events and information - the nationally networked

Oracle service currently provides some 400 pages of editorial and advertising news and information. Present plans are to offer a local Oracle service in every ITV region by the end of 1984 . Channel 4 is also carrying an Oracle service, which effectively halves the access time.

BANDS I/III

In its interim report to the Home Secretary the Merriman committee has recommended that Bands I/III should no longer be used for broadcasting once the 405 -line service has been phased out, and that the close down should be completed by the end of 1984 instead of 1986. The committee's final report is due by June 1st next year.

The IBA has expressed the hope that land mobile services can be accommodated without Bands I/III being completely lost to broadcasting at a time when so many new developments are in prospect. These bands are used internationally for TV purposes and would be suitable for services such as regional television that could not be broadcast via satellite and could not be economically extended to small towns and villages on cable. The IBA calls for "a broad and comprehensive view of all the new developments rather than piecemeal action."

HI-FI TV SOUND TUNER

Those who want to make the most of the TV sound channel might consider the VT1000 Tele-Video tuner from Kingsbrook Marketing (29 Heathfield, Stacey Bushes, Milton Keynes, Bucks MK12 6HR). The idea is that you plug the aerial into the tuner, which has six preset tuning buttons. The output to the TV set is at u.h.f., on channel 36: the 300 mV r.m.s. per channel audio output is fed to the domestic hi-fi system. By positioning the tuner adjacent to the armchair, remote channel selection is achieved. The unit can also be used with a VCR, and includes various features such as a stereo-wide system and dynamic noise reduction to eliminate background noise and tape hiss. The suggested retail price is $£ 99.50$, including VAT.

ITT's MOVE

ITT have commenced relocation of their service headquarters from Paddock Wood, Kent to Basildon, Essex. The move will be phased over a period of time, the first department to be relocated being Technical Liaison. Correspondence on technical matters should now be addressed to ITT Consumer Products Services; Chester Hall Lane, Basildon, Essex SS14 3BW - telephone 0268 3040, extensions 312/363/622/217. Orders for spares should for the time being continue to be sent to the Paddock Wood address.

VIDEO PHOTOGRAPHY

Olympus, well known for their still film cameras and dictation machines, have introduced a portable VHS VCR system. Of particular interest is the camera, which has been designed to appeal to experienced camera users. Amongst the many features are manual override of all automatic controls and a positive/negative facility for special effects or showing film negatives on TV and recording them. The suggested retail price of the complete system - camera, recorder and tuner/timer - is around $£ 1,500$.

SELECTAVISION FOR EUROPE?

It seems that RCA's video disc system could be launched in Europe some time next year. Talks between RCA and
various European setmakers are under way and the system was demonstrated at the recent Cannes video conference to prove its compatibility with the PAL and SECAM colour systems. It's significant that Hitachi and Toshiba, who make the players under licence in Japan, took part in the demonstrations, along with several software producers. The system is understood to be now reaching target sales levels in the USA, following substantial reductions in the prices of the players, the introduction of stereo versions, and a much expanded catalogue of discs.

TRANSMITTER NEWS

The following relay stations have or will shortly come into operation (for exact opening dates see Ceefax page 196).
Abercynon, mid-Glamorgan Sianel 4 Cymru ch. 54, HTV Wales ch. 58, BBC Wales ch. 64, BBC-2 ch. 66. Horizontal polarisation.
Alexandra Palace TV4 ch. 54, BBC-1 ch. 58, Thames/ London Weekend Television ch. 61, BBC-2 ch. 64. Horizontal polarisation. Welcome back Ally Pally! The new aerials are atop the same mast that was used for the world's first regular high-definition TV service, which was started by the BBC on November 2nd, 1936.
Andoversford, Gloucestershire BBC-1 (Midlands) ch. 55, Central Independent Television ch. 59, BBC-2 ch. 62, TV4 (late 1983) ch. 65.
Buckna, Co. Antrim Ulster Television ch. 41, BBC-2 ch. 44, TV4 (late 1983) ch. 47, BBC-1 (Northern Ireland) ch. 51.

Caterham, Surrey BBC-1 ch. 55, Thames/London Weekend Television ch. 59, BBC-2 ch. 62, TV4 ch. 65. Chiseldon, Wiltshire BBC-1 (West) ch. 30, HTV West ch. 34, BBC-2 ch. 49, TV4 ch. 67. Wideband aerials (group E or W) will be required.
Kenley, Surrey BBC-1 ch. 40, Thames/London Weekend Television ch. 43, BBC-2 ch. 46, TV4 ch. 50.
Melling, Lancashire TV4 (late 1983) ch. 53, BBC-1 (North West) ch. 57, Granada Television ch. 60, BBC-2 ch. 63.
Penryn, Cornwall BBC-1 (South West) ch. 55, Television South West ch. 59, BBC-2 ch. 62, TV4 ch. 65.
Twechar, Strathclyde BBC-1 (Scotland) ch. 22, Scottish Television ch. $25, \mathrm{BBC}-2 \mathrm{ch} .28$, TV4 ch. 32.

The above transmissions are vertically polarised unless otherwise stated.

The IBA comment that completion of the TV4 network should be achieved in roughly a third of the time it took to build the existing u.h.f. networks. An extensive programme of aerial maintenance has been undertaken during the past few months at the high-power transmitters to ensure that the aerials will cope with the added power.

AMSTRAD VIDEO AND TV

Amstrad is to introduce a VCR and a 22 in . colour set next year - the TV set will be produced at Amstrad's new Shoeburyness factory, which is at present under construction. The "very competitively priced" VHS VCR will be released early in the year. Amstrad currently reckon to have over 25 per cent of the racked hi-fi market.

THORN ENTER RECONDITIONED TV MARKET

One of the strengths of Thorn has always been their involvement in the various branches of domestic TV rental, retailing and setmaking. More recently there's been the video software tie-up through the acquisition of EMI. Thorn have now entered a field they previously left

Announced as we go to press, the new award winning Hitachi Model VT11E, a budget VCR (suggested retail price £399) with many features, including full-function remote control, and distinctive styling. The streamlined facia has large, multi-function control buttons.
alone, the sale of reconditioned sets through a new subsidiary, Re-View. Well why not? - they must have a lot of ex-rental sets and the facilities to recondition them. It seems that some very good bargains are to be had. One of the main aims is to go after the second-set market which, with Channel 4 and breakfast TV, is expected to increase demand for TV sets.

VCR LATEST

According to an estimate in a recent Key Note report (Key Note Publications Ltd., 28-42 Banner Street, London EC1Y 8QE) the number of VCRs in use in the UK will have risen to 2.2 million by the end of this year, an increase of 1 million during the year. This will represent a market penetration of 10.2 per cent of all households.
Several new models have been released. Of particular interest is the first VHS machine in the UK from Sanyo under the Fisher brand name. Model FVHP530 is aimed at the middle section of the market with a suggested retail price of $£ 550$. Mitsubishi have introduced a "budget" machine, Model HS303, with a suggested retail price of $£ 450$. The other two new machines are top of the range models. The Hitachi VT9700 (suggested retail price $£ 599$) features a 26 -function infra-red remote control system, Dolby noise reduction and tape indexing for locating programmes on a recorded tape. The Telefunken VR530SA from Paul Spring Electronics (suggested retail price $£ 600$) is unusual in being designed to record and playback both PAL and SECAM signals. It's equipped with v.h.f./u.h.f. tuners.

Philips are hoping to reach an agreement with the French Thomson-Brandt group for the manufacture of V2000 type VCRs - Thomson-Brandt are being offered a stake in Grundig which is now part owned by Philips. The aim is to increase the V2000 system's share of the European market. Philips also hope that Telefunken will become a partner in the European V2000 VCR project.

PRESTEL'S MICRONET

The latest Prestel marketing ploy is aimed at users of microcomputers. For a fee of $£ 1$ a week, microcomputer users would have exclusive access to a substantial data base held in the BT central computer. The data would include telesoftware programming, news and information on microcomputers and their use, hundreds of on-screen games, a buyers guide, a section for members and so on. An adaptor for Prestel-microcomputer interfacing would be required - it's hoped that these will be available for $£ 50$ upwards. Data access charges would not be made at off-peak hours.

VCR Clinic

Reports from Steve Beeching, T.Eng. (C.E.I.), Michael J. Cousins, T.Eng. (C.E.I.) and Derek Snelling

Sony C7

A new head drum was fitted to a Sony C7 and after setting up the various switching points, the tape path and the signal levels we carried out a general check on the operation of the machine. To our amazement, we discovered that channel selection was impossible. Switching off and on had no effect, but unplugging the machine from the mains supply for a short time restored channel selection. If record was then selected, followed by pause or stop, channel selection was again not possible. It seemed reasonable to assume that the fault lay in the circuitry that inhibits channel selection during record see Fig. 1.

When a channel selection button is pressed with the machine in the stop mode, the 34 V present at the appropriate pin of the channel decoder IC1 will be reduced to about 12 V by the potential divider R13/R2 and will be applied to pin 1 of IC7 as a "high" signal. Pin 2 is also high, and as this is an AND gate pin 3 will be high. The "enable" output thus produced goes to pin 37 of the programme timer i.c., which starts a channel count, providing a BCD (binary-coded-digital) output at pins 38-41. These are fed back to the channel decoder i.c. whose channel output pins $1-12$ will each go "low" in turn. This all occurs very quickly and the user's finger will still be on the channel selector button. Hence a low will appear at pin 1 of IC7 when the counting reaches the selected channel. Pin 3 will then go low and, via pin 37 , the counting in the programme timer i.c. will stop.

In the stop mode there are no Rec 12 V and Pause 12 V inputs. Thus pin 5 of IC7 is low while pin 6 is high because of the action of the inverter (IC9 pins 5-6). This is another AND gate, so pin 4 is low. Following a second

Fig. 1: Channel selection system, Sony Model C7.
inverter (IC9 pins 3-4) pin 2 of IC7 will be high.
During record pins 5 and 6 of IC7 will both be high (Rec 12V present). Pin 4 will be high while, via IC9, pin 2 will be low. This inhibits channel selection by preventing pin 3 from going high. A similar action occurs during pause.

Our first step was to check at pin 2 of IC7. As expected, this was found to be low during the fault condition, thus preventing channel selection. Checking back we found that pin 5 of IC7 was "highish" when it should have been low. We next monitored the conditions at pin 5 after the action that restored normal operation had been taken, i.e. unplugging the mains.

During normal operation in the stop mode there was the correct "low", i.e. zero voltage, at pin 5 . Select record and the voltage rises to the correct 12 V . Change back to stop and the voltage falls as C6 discharges - but the voltage levels off at $2-3 \mathrm{~V}$, enough to operate the gate, instead of falling to zero. Where was this voltage coming from?

The Rec 12 V input was at zero as it should be, and the anode of D20 was low while the cathode of D18 was high. D18 could have been leaky, but no. This left two possible sources, IC7 pin 5 or IC1 pin 36 - assuming that R3 was not open-circuit. Shunting R3 with a $100 \mathrm{k} \Omega$ resistor had no effect; shunting it with a $10 \mathrm{k} \Omega$ resistor restored normal operation. To check IC7 we disconnected R35. Pin 5 read low so IC7 was ruled out. Turn attention to pin 36 of IC1 and find 2-3V. Fit new MB8841-180 i.c. and finally clear fault.
S.B.

Sanyo VTC9300

We had a very tricky fault with a Sanyo VTC9300 which was sent to us by another dealer - it could not be set to make a timed recording. When you set the clock for a timed recording you put the on/off switch in the timer position (see Fig. 2). In this position the timer circuit sends a signal to the power supply switching to turn off the 12 V regulator. A cassette is inserted, the record button is pressed, but as there is no 12 V supply the machine enters a waiting period. When the timed recording is due to start, the timer circuit switches the power supply on again and the machine does its stuff.

With the faulty machine normal recording and playback were possible but not timed recordings. When the on/off switch was switched to "timer" the power supply stayed on and sometimes the deck solenoid played a tune. What then happened was that the timer circuit switched the power supply off but as the voltage fell the timer changed state and switched the power supply back on again: the result was very low-frequency oscillations between the timer circuit and the power supply, with the main deck solenoid switching on and off in sympathy with the power supply!

I was fairly sure that my friend (maybe now ex-friend) mentioned that he'd tried a substitute timer board from a known good machine with the same results, but when I checked around the TMS1070 timer i.c. I found that the voltage at the output pin 28 was high instead of low. No amount of on/off switching made any difference so the

Fig. 2: Timer-power supply arrangement, Sanyo VTC9300.
chip was changed. Still the same result, output permanently high unless the machine was in one of its oscillating moods.
. I was by now reasonably sure that the fundamental problem was not on the timer board at all. I did discover that by disconnecting the mains supply and then reconnecting it pin 28 of the timer i.c. would set to low, as required for a timed recording. But if the on/off function switch was operated in any way the i.c.'s output pin went high and stayed there. Why?

The timer i.c.'s power supply is stabilised by a 9.4 V zener diode (D1615). Whilst fault finding we checked this with the scope. We also made a more accurate measurement using a digital voltmeter: 9.77 V , not far off and within the expected tolerance. This was the mistake that led to a further hour's pondering and cross checking.

Note that apart from this timer business the machine worked normally in every way. There were no other problems.

Well, the fault was eventually traced to the 7815 M 15 V regulator on the power supply board. The 9.4 V zener diode on the timer board receives its supply from this regulator, via D1606 and R1631. The 15 V regulator was short-circuit, with the result that its output was nearly 20 V , increasing the voltage across the zener to the 9.77 V measured. The timer i.c. didn't appreciate this increase, giving the curious conditions described.
S.B.

Ferguson 3V30

The recent weather conditions - with thunder and lightning - have produced a number of timer display faults, presumably by confusing the timer i.c.s. Luckily the cure has usually been to switch off at the mains and then reset the clock. A Ferguson 3V30 with an incorrect clock display failed to respond to these tactics however. Observations then revealed that not only was it impossible to reset the clock, but timer set and channel change were also inoperative. These symptoms led us straight to the culprit, the μ PD553-100 microprocessor i.c. on the presetter/ timer board.
M.J.C.

JVC HR7300

A JVC HR7300 worked perfectly in the play and record modes. When the machine was set for a timed recording however the tape would lace up but then stay in the pause mode. The machine should lace up ten seconds before
the set time, and at the set time go into record. Both the prestart and record start signals from the presetter/timer board were present at the mechacon (mechanism control) board, but the enable output from the TMS 1024 multiplexer i.c. was missing. A squirt of freezer on this i.c. brought the machine into action, and no further trouble was experienced after fitting a replacement. M.J.C.

Ferguson 3V30

The complaint with a Ferguson 3V30 was damage to the tape when ejected. When play was selected the tape laced up and normal tape transportation took place. When the machine was stopped, the loading motor unlaced but the reel motor failed to rewind the surplus tape back on to the supply spool. As a result, when the tape was ejected the cassette flap creased the spilled tape. Further investigation showed that the reel motor didn't work in the fast forward, rewind or search modes. The culprit was the 10Ω power feed resistor to the reel motor. On earlier machines this is R 48 , in later production it's a protective device in a transistor encapsulation.
M.J.C.

Ferguson 3V29

The complaint with a Ferguson 3V29 was a rolling picture with the sound out of sync with the vision - sure enough when we got there we found that the sound was coming about one and a half seconds before the appropriate bit of picture on previous recordings. Now this can happen only if the distance between the audio and the video heads alters. Full of trepidation, I opened the machine - and found that there was a simple explanation. A half penny piece had been dropped into the machine and was preventing the loading arm going fully home, thus shortening the tape path between the two heads.
D.S.

Ferguson 3292

I always thought that the early Ferguson 3292, their first VCR, gave better pictures than any of the later machines - even comparing the results obtained from a three-year old machine and nearly new 3V22s. We had a 3292 in the other day with a reasonable picture though it was rather poor near the top of the screen and a lot of odd lines dropped out. We thought that as the machine was over three years old the heads might be a bit worn, but when I checked I found that part of one head was completely missing. Now on any other machine the picture would have been unviewable, but this one just had the defects mentioned - this must say something for the design.
The need to replace the head drum brought us up against an unexpected problem however. If you send for a head drum for a $3292,3 \mathrm{~V} 22$ or $3 \mathrm{~V} 29 / 30$ you will receive the same one, which should be interchangeable on all these machines. We couldn't get the drum to fit properly though, and after comparing the machine with a stock 3 V 22 we found that there was a difference in the design of the lower drum assembly. It appears that this applies only to some early 3292 s . Ferguson were able to help us on this occasion, but the old type of head is no longer officially stocked. As a result, when you replace the head drum you'll have to replace the lower drum assembly as well. It must be stressed that this problem arises only with some early 3292s, but as the lower drum assemblies cost up to $£ 50$ this is just as well. D.S.

Spider Walk

Les Lawry-Johns

ONCE upon a time we would carefully unpack new sets, run them up and align the channels as soon as they were delivered. Having satisfied ourselves that all was well we would return them to their boxes until needed. Until recently, that is. Of late we've become lax and left them in their boxes - simply because their track record has been so good.
So in came a couple we knew quite well. They wanted to buy a new set but hadn't quite made up their minds. They said a plain 22 in . set would do. So I showed them a Pye set fitted with the K 30 chassis and they were quite happy with it. I then put my foot in it by suggesting one with remote control, to save them jumping up every time they wanted a different channel or wanted to alter the volume etc.
They said this was a good idea so I unpacked a nice new 1042 T and put it up on the bench. The little light came on to say that all was ready, but when I pressed channel one the light went out and the set was stubbornly dead. It remained so even after I'd switched off and on again. Even the little light now remained out.
That's funny I thought, and then noticed that the front panel was loose. Off with the back cover, revealing little bits of plastic on the floor of the cabinet. It had apparently sustained a mortal blow somewhere along the line, and I cursed myself for not having checked it earlier. The couple settled for the one without remote control however, and departed quitely happily whilst I repacked the damaged set for return to the wholesalers. During this procedure H.B. came downstairs and stood beside me.
"I think you should go to the bathroom" she said.
I sniffed but found that I was still my usual pleasant self. H.B. sighed. "I don't mean you need a wash you fool. There's an enormous spider in the bath and I can't get it out."

So after I'd packed the set I went up to the bathroom to carry out a rescue operation. The usual process is to drape a towel over the side so that the spider can climb out. Must help them otherwise we'd be knee-deep in other insects. When I saw the size of this one however I was quite amazed: it's body was the size of a peanut, with legs sticking out three inches on either side. When I say a peanut I mean a pair in the shell, not one of your shucked variety. No indeed there was nothing small about this fellow (or girl) and it refused the invitation when I slid a towel down towards it. So I moved the towel round to the other side and tried to drive the ungrateful beast on to it.

It didn't want to know, so I left it too take its time. A while later I found that it was still there. Maybe it was tired out after trying to climb the sides of the bath unaided. I pondered: should I insist on it going up the towel and possibly hurt it, pick it up and risk it hurting me, or feed it some dead flies to give it strength? I decided to pick it up and risk instant death. Up by the legs and out on to the window sill. It would have to take its chance, jumping or climbing down the wall. Shut window and put towel back.

What's this? Three tiny specks scurrying around in the
bath. Looking for mother? Now what had I done? Something had to be done about this and quickly. Fortunately mother spider hadn't made her departure, and with the aid of a piece of toilet paper I was able to get her back into the bath.

I expected the little ones to rush towards their mum, but they didn't. In fact they scooted as far away as they could get. Then another thought hit me. Maybe it was dad. Do the fathers eat their young? Were these the final survivors? There was only one solution, to rescue them all but separately. This was easy enough with the big one, but the others scampered about everywhere. I eventually got them all out, but what subsequently befell them I shall never know.

The White GEC

After this harrowing encounter with the animal world I staggered down to the shop to harrow with humanity again. I didn't have long to wait. In came a young chap carrying a monochrome GEC set in a white cabinet - a Series One type.
"The tube's knackered" he informed me.
"Oh, ah" I said for want of anything better to say whilst removing the back.
"Yes indeed" he babbled on. "When it's going there's a blue light in the back of the tube."
I asked him if it was in the tube's neck and he said it wasn't. It was up the front where the scan coils meet the tube bowl.
I switched on and after the line timebase had warmed up I noticed that a raster appeared. "There it is, just above the coils" he said. It was a reflection from the screen through a section of the bowl with no coating of course. So I turned the brightness down and the glow vanished. "It's gone" he said.

Connect aerial and turn brightness up again. The line hold was way out, but trying to correct this by adjusting the line oscillator coil pulled the picture sideways in fine lines, with the hold still poor. Time to check likely components. The sync separator's $47 \mathrm{k} \Omega$ screen grid feed resistor was o.k., as were the flywheel line sync discriminator diodes and the $100 \mathrm{k} \Omega$ reference pulse feedback/integrating resistor. The PCF802 perhaps? What's this - a PCF80!
"Who put that in?" I demanded. Said he didn't know. Anyway a new PCF802 and adjustment of the coil set things to right, and the young man departed still wondering where the blue glow had gone.

The White Murphy

The owner of a white Murphy complained that the fuse must have gone because it didn't do anything. Also that the Channel 4 button wouldn't get Channel 4 . It was a standard A823 chassis.

The tube heaters glowed and there was h.t. at the top fuse which was intact. The l.t. fuse was also intact, but there seemed precious little 1.t. from the bridge rectifier, suggesting either that the bridge was at fault or that the reservoir capacitor wasn't reservoiring. The bridge (a BY164) measured o.k. when checked with the meter, so we removed the top plug and checked the reservoir capacitor via pin 5 . It too read right so we decided that the bridge wasn't telling the truth. We fitted a BY225 in preference to four separate diodes - because the BY225 is quite adequate for the job and is easier to fit. The l.t.
was then correct, but as there was a suspicious and leaky bulge in the centre of the double smoother another one went in.

We could tune in three buttons, but the bottom one seemed too free, leading us to believe that it had shed its collar. Removing the tuner revealed that this was so, and that the three spindles that did work didn't have collars that fitted snugly - there were fine hair cracks in them. So we removed the front plate and fitted four nice new blue collars, assembling the spindles so that the springs didn't get caught in the rear holes.

The set was then ready for use, complete with a Channel 4 button. The owner was quite pleased with our efforts, and rounded up the bill by an extra 51 p to prove it.

An offer we couldn't refuse

A well known motoring organisation regularly circulates its members with offers of publications, accompanied by various enticements. Some of the publications are well worth having, and on this occasion the book was one I'd have ordered without the added inducement of a Ford Granada to a lucky person plus thousands of pounds if an early order was received. This suited me down to the ground, because we badly needed a new car and the money would come in handy to buy petrol for it. So I sent off for the book without delay and told Honey Bunch that our days of running around in a rusty old car were over.

Time went by and we received a card saying that there was a slight delay in sending out the book but to be patient. So patient I was and the book finally arrived. Very good it was, picturing and describing most parts of the country worth picturing and describing. There was no mention at all of our locality therefore, and I wondered about that.

I was still agog about the opportunity of that top of the range Granada. As the weeks went by however I was forced to the conclusion that I'd been forgotten, and when my foot went through the bottom of our car I was reluctantly forced to buy another one - with a bit of help from the bank.

A few more weeks went by and I received a letter to remind me that I'd not paid for the book. This was quite true: in the excitement of waiting for them to send me the car and a lot of money I'd quite forgotten to send them a cheque for the book. So I wrote and told them that I'd forgotten but so had they, and that I was quite upset because I had needed the car quite badly. I haven't heard from them yet, but I really will send them a cheque in due course to further increase the overdraft. I wonder if someone else got the car and money? Something else we shall never know.

FIELD OUTPUT TRANSISTORS

In S. Simon's article on the GEC C2110 series solid-state colour receivers (July issue) the BD203 was suggested as a suitable replacement transistor for use in the field output stage. In the original circuit two different types of transistor (generally ON447 and ON448) were used, and it should have been made clear that the BD203 can be used in either position. In fact the BD203 can be used generally as a reliable replacement in this type of twotransistor class A field output stage provided the mounting arrangements are suitable.

next month in

- THE PHILIPS CTX CHASSIS

Models fitted with the new Philips CTX colour chassis are now being released. The chassis was developed at the Philips research and development headquarters in Eindhoven to take advantage of the latest TV technology. The single board is about the size of a sheet of A4 paper and the component count is down to 386 - a third less than previous Philips sets. Next month we review the technical features of the chassis.

- TV COMPONENT DISTRIBUTION DIRECTORY

Our first tabulated directory of TV component suppliers. Provides a quick reference to sources of the components you need.

- VCR SERVICING

So far we've been dealing mainly with the original basic JVC machine. Next month we go on to the JVC/Ferguson HR3660/3V16 to see the changes required to provide extra features - still pictures, slow motion and double-speed playback. Amongst other things, the off-tape reference pulses control the capstan instead of the drum servo.

- ROUTINE TV RECEIVER TESTS

S . Simon on the 18 in . Pye/Philips colour chassis the 713/570 series.

- THE FINISHING TOUCH

An otherwise sound set can be let down by the condition of its cabinet. Tony Thompson on simple, practical methods of enhancing the appearance of sets.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO
(Name of Newsagent)
Please reserve/deliver the January issue of TELEVISION (80p), on sale December 15th, and continue every month until further notice.

NAME
ADDRESS \qquad
\qquad

Letters

ASPERSIONS ON TUBES

It was with some concern about my eyesight and also a perhaps more critical than average approach to the images we view on the box that I made a small survey of the current TV sets on display in my local high street and the nearest $\mathrm{C}^{* * *} \mathrm{t}$ branch.
Without ascertaining exactly which type of tube was used in each particular model it nevertheless became apparent, to me at any rate, that the usually good definition of the transmitted signal is seldom if ever to be seen on (a) sets fitted with in-line gun tubes requiring no EW or NS correction and (b) sets fitted with 30AX tubes.
It's possible to regain some definition in peak white areas by reducing the settings of the contrast and brightness controls, but this makes a "hi-bri" tube a "lo-bri" one. There is also the problem that the slot mask, striped phosphor configuration gets in the way of the image. Delta-gun tubes were much better, as are some Hitachi tubes.

I understand that higher definition tubes are now available. Can't the public be offered sets using these?
G. Beard,

London SW18.
Editorial note: This is a very complex subject on which we intend to publish an article in the near future. More important points to bear in mind are as follows. (1) Use of a pincushion distortion free yoke leads to spot distortion, so the focus performance is worse. This is compensated for to some extent by using a longer focus electrode operated at a higher voltage. (2) The distance between identical colour phosphor stripes (i.e. the pitch) for these tubes is 0.65 mm for a 14 in . tube, 0.7 in . for the 16 in . size and 0.8 mm at 20 in . Obviously the resolution is not going to be particularly good, but the apparent image sharpness is acceptable to most viewers - at a reasonable viewing distance of course. (3) Advantages associated with modern tubes include lower cost, a lower component count, lower deflection power requirements, fewer adjustments etc., giving better value, less power consumption and greater reliability.

IN-SITU TRANSISTOR TESTER

A correction is necessary to my letter (May 1982) on the in-situ transistor tester modification. It was not necessary to add a 20 plus 20 winding to the small transformer I initially used. It was approximately $17 / 16 \times 111 / 16 \times 1$ $3 / 8 \mathrm{in}$., with a 240 V primary winding having a d.c. resistance of around $1.3 \mathrm{k} \Omega$ and a 12 V secondary whose d.c. resistance was about 2.75Ω. Any type of small transformer can be tried, but make sure that the secondary has a d.c, resistance of at least a few ohms and a centre tap. I found that the best value for C 1 is $0.22 \mu \mathrm{~F}$ and agree with Victor Rizzo (June issue) that finding the exact coil originally suggested or winding one from scratch would not be easy. A ready made transformer solves the problem - my latest find is a small vertical feedback transformer from an old valve TV set. After testing this out I found that it works very well.
To give an idea of what to look for, this latest trans-
former has a primary winding with a d.c. resistance of about 450Ω and a centre-tapped secondary with a d.c. resistance of about 5Ω. It's not as small as the original one, but that's no problem. I made a wooden case about 6 $\times 4 \times 17 / 8$ in. with an aluminium lid that has a small hole for the window. The probe is separate, linked by a plug and socket. I'm now using a 330Ω resistor in the R1 position as originally suggested.

I would like to mention that a mA meter should not be connected to the circuit to measure current drain. This was the cause of the problems I experienced - and you could damage the meter.
Walter Spencer,
Brisbane, Australia.

WORKSHOP GADGETS

Here are one or two more gadgets I've devised to save time and frustration.

First a dentist's mirror (see Fig. 1) that gives you a glimpse of the other side of the chassis/board, sometimes avoiding the need for any dismantling. The mirror I adopted was taken from a Chinese pencil sharpener that's widely used here - all that's required is a small circular mirror of about $2 \cdot 5-3 \mathrm{~cm}$ diameter. This is held by a holder made from 2 mm thick mild steel wire bent to fit. Paste a piece of stiff paper to the back of the mirror to protect it from scratches, using water soluble glue. Fix the mirror to the holder with contact adhesive. When this has hardened, bend the mirror at an angle to facilitate viewing and add a wooden handle.

The socket shutter openers shown in Fig. 2 are made of plastic with a brass ring at the end - the rings should be as small as practical. For the 5A opener I used a length of sawn off plastic volume control spindle of suitable thickness. The openers are very handy for outside work.

The versatile hanger shown in Fig. 3 is especially useful for the small workshop since it helps to keep the bench clear while wanted items remain in view. Fix it to the wall above the bench with an eye hook at each end and use it to hang soldering irons (with the lead rolled up), small

Fig. 1: DIY dentist's mirror.

Fig. 2: Socket shutter openers - 5A and 13A.

Fig. 3: A versatile hanger for small tools etc.
tools etc. Old copper or mild steel wire of 2 mm thickness is suitable, wound tightly on a broom stick and then stretched (don't overdo this). The hooks can be made of 1 mm mild steel wire, of different sizes to suit whatever is being suspended: leave the eye, which is at right angles to the rest, open so that it will pass through the loops of the hanger. A loaded hanger will sag somewhat in middle, so hang heavy objects at the ends, leaving the middle for lighter items.
Victor Rizzo,
Msida, Malta.

TRANSISTOR TESTER - PRACTICAL DETAILS

I built Mike Phelan's in-situ transistor tester (March 1981) and have found a suitable case that results in a very handy unit. The circuit is shown in Fig. 4. I used the suggested transformer (from the Rank Z918 remote control transmitter unit) but found that I had to rewind it with $20+20$ turns on the primary to get it to work. It was then found that the unit didn't work with certain low-gain types of transistor, so the number of turns used for the secondary winding was increased to 1,000 . To get the turns on, plastic shoulders made from washing up liquid bottles were fitted to the former. These were glued on with Araldite, the extended former just comfortably holding the 1,000 turns.

The resultant tester might be over sensitive, passing very low-gain transistors as o.k. I've had this trouble with other in-situ designs. To overcome this I added a $1 \mathrm{M} \Omega$ potentiometer across the transformer's secondary winding as shown in the circuit.

The unit will fit neatly into an RS 508-217 probe case (see Fig. 5 and accompanying photo). The collectoremitter probe is the one used in the Datong Datest-2 transistor tester and was obtained from Datong Ltd., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE. The neons are miniature RS type 586-015 and are held by a clip made from thin sheet aluminium. The HP 16 batteries are held by clips made by bending the brass connectors from $1289(4.5 \mathrm{~V})$ batteries. The switch is a Maplin subminiature slide type FH35Q, and the base probe heat shrink Maplin type CP32 (catalogue no. BF88V). 8BA and M2 countersunk head screws are also required.
It was found advisable to insulate the switch body with tape to avoid shorting out the batteries. The slots in the case were made by drilling and then using needle files. The coil former shoulders were cut using draughtman's

R. A. Gibson's version of the in-situ transistor tester.

Fig. 4: In-situ transistor tester circuit.

Fig. 5: Transistor tester - constructional details.
dividers. Rubber sleeves on the c-e probe wire will grip in the case and form a grommet.

The $1 \mathrm{M} \Omega$ potentiometer was added afterwards, mounted on a small piece of Veroboard. Drill 8BA clearance holes in the probe end of the battery clips and fit the board flat between the probe and the batteries. Solder the vertical type preset to the board and drill a suitable hole in the case for adjustment.
R. A. Gibson,

Farndon, Chester.

VIDEOTAPE DEVELOPMENTS

Fuji Photo Film Co., Ltd. have developed two new types of videotape, a metal videotape and a vacuum evaporated tape. They are claimed to be the first to achieve recording at wavelengths below the 1μ range. The metal tape requires the use of special heads but gives a higher recording density. The vacuum evaporated tape can be used with conventional heads and has a higher sensitivity for recording wavelengths under 8μ. Both types of tape will enable more advanced recording systems to be developed.

Routine TV Receiver Tests: Pye 725 Series Chassis

S. Simon

The Pye 725 chassis is very similar to the 110° $731 / 735 / 737 / 741$ chassis but is simplified somewhat for 90° scanning. It uses the same arrangement of vertically mounted panels, with the power supply and field timebase to the right of the tube. The field timebase is at the top and the power supply at the bottom. Also on the right-hand side is the convergence panel, which is clearly marked for easy adjustment.

To the centre and under the tube is a resistive assembly and an 800 mA fuse (F971) which feeds h.t. to the line output stage - the mains fuse (F913) is on the power supply panel. It's essential to understand the function of the centre resistive assembly in order to locate faults quickly and also to avoid the risk of quite a severe shock. The latter possibility arises when one section of the resistive assembly goes open-circuit, leaving the h.t. electrolytics fully charged until the circuit is completed by an unwary hand or tool.

Two different types of assembly were used. The first had two sections with a separate $3 \cdot 3 \Omega$ resistor mounted on top. In the later version, the $3 \cdot 3 \Omega$ resistor was incorporated into the unit. The resistors fulfil the following functions: R972 27Ω line timbase anti-breathing; R973 56Ω h.t. smoothing; R978 $3 \cdot 3 \Omega$ surge limiting. See Fig. 1.

It may be thought that if the $3 \cdot 3 \Omega$ section is opencircuit there'll be h.t. at one end but not at the other. This is not so. If the $3 \cdot 3 \Omega$ resistor is open-circuit there'll be no h.t. at either end, because the h.t. reservoir capacitor C880 comes after this section and won't be charged.

If there's no h.t., switch the set off and check the continuity of the $3 \cdot 3 \Omega$ resistor before investigating the power supply panel. If one of the other sections of the resistive assembly is open-circuit, switch the set off and shunt a resistor across the suspect section to discharge the h.t. electrolytics before taking any further action - these capacitors can retain a hefty charge long after the set has been switched off.

The vertical panel immediately to the left of the tube houses the complete line timebase, including the output transformer, tripler, focus unit and first anode supplies, also the field oscillator and the l.t. supplies $(12 \mathrm{~V}, 25 \mathrm{~V}$ and 28V).

The panel on the far left side contains the entire signals circuitry from the tuner, i.f. stages and audio department at the bottom to the decoder and RGB output stages at the top.

Set dead: Initial tests

In the event of a dead set, bear in mind that the tube's heaters are supplied from the line output transformer. Thus a dead set can mean many things. So it pays to be cautious and methodical.

Inevitably the first thing to check is the condition of the mains fuse on the right-hand power supply panel. It's a $3 \cdot 15 \mathrm{~A}$ anti-surge type. If the set has not received much
attention from servicepersons, the top straps may still be in position on the panels. These must be removed in order to withdraw and turn the panel. With the strap off, lift the bottom latch and withdraw the panel, lifting the top slightly to clear. It can then be rotated to expose the fuse, which tends to hide behind the centre section (the panel layout varies slightly on some sets).

If the fuse is blackened, the mains filter capacitor C915 $(0.22 \mu \mathrm{~F})$ is the prime suspect - but not the only one since a short-circuit thyristor rectifier (D888, BT116) is not uncommon and flashovers have been known to happen across the rear of the panel, particularly on the lower part where the soldering around the lugs of the input choke L909 and the main electrolytics C880 and C877 is suspect. The filter capacitor is the most frequent offender however and one normally doesn't have to look farther than this.

If the fuse is intact and is live but most other parts appear to be dead, inspect the lower part of the panel on the print side and if necessary renew the soldering of the input choke lugs - it doesn't take much vibration to loosen the lug connections of this heavy choke.

If there is plenty of a.c. up to the thyristor, remember what we said at the beginning about the 3.3Ω resistor at the centre. If this is intact, return to the power supply panel and carefully check the high-value resistors, the three small BC147 transistors and in particular the two $7 \cdot 5 \mathrm{~V}$ zener diodes.

Fluttering

One condition you may encounter is fluttering, i.e. rapid variation in picture size. This usually means that the over-voltage protection circuit is coming in. The overvoltage preset control RV879 is on the right of the panel when viewed from the print side, roughly in line with the thyristor. The coarse h.t. preset RV917 is towards the top left, whilst the fine h.t. preset RV916 is roughly at the top centre. Reduce the h.t. to stop the flutter, then measure the h.t. voltage at the rear, centre h.t. fuse.

If the h.t. is now 170 V or just over (full width), it was previously excessive and the protection circuit had been doing its job. What this usually means is that the thyristor is starting to leak. Replace it.

If the h.t. cannot be regulated, the thyristor could again be at fault but there may be a more obscure cause which will involve a more detailed investigation of the resistors, transistors and zener diodes as previously mentioned.

If the h.t. voltage is now low, the protection circuit may need a close check (VT881, D884 etc.), particularly if the preset RV879 has little or no effect.

Blown HT Fuse

If there is h.t. at the centre section and the resistors here are intact, the 800 mA h.t. fuse may well have failed

Fig. 1: Power supply arrangements in the Pye 725 and related chassis.
and the question is what blew it? With the set switched off, check the resistance from the fuseholder to chassis. If the reading is low, check the BU208 line output transistor which could well be short-circuit. Replacement is sometimes easy and sometimes most difficult. Not complicated, just difficult.

If the reading is high with the black probe to the fuseholder and the red probe to chassis, suspect a shortcircuit capacitor. If you are not familiar with this type of set, proceed as follows. Shine a light into the top of the screened line output stage section in the area of the focus control. Locate the horizontal $0 \cdot 1 \mu \mathrm{~F}$ capacitor (C563) just under the top housing. Note where its end connections come through to the print, then measure the resistance across these two ends. If a short is indicated, remove the capacitor and replace it with one rated at 1.25 kV or higher. A rating of 1 kV will not do as this is the first anode supply reservoir capacitor, which is charged by the clipper diode inside the tripler. This explains why a resistance check at the fuseholder will not reveal a short, and why disconnecting the tripler will stop the fuse blowing, leading one to suspect the tripler - which could be at fault though the culprit is more likely to be the capacitor.

Unfortunately the capacitor can ruin the tripler and indeed the BU208 line output transistor, but usually the fuse will have blown to prevent these nasty things happening - provided the fuse is of the correct value that is. Do not replace it with one that has a higher rating.

Set dead: HT present

If h.t. is present at the fuse and is reaching the BU208 line output transistor (the route is rather roundabout, via various plugs and sockets, so it could get lost), it's likely that the line oscillator is not oscillating or the line driver is not driving.

The line driver is supplied from the 185 V h.t. line, i.e.
the junction of $\mathrm{R} 972 / 3$. The line oscillator also receives its start-up supply from this line, via R520 ($8 \cdot 2 \mathrm{k} \Omega$). When the line timebase gets going, the oscillator receives its supply via D523 from the line output stage.

Check R520, then check the fusible resistor R536 $(2.2 \mathrm{k} \Omega)$ which feeds the line driver transistor VT541 (BF355). If VT541 is short-circuit, R536 will have sprung. If VT541 is open-circuit, R536 will be cold with the same voltage at each side.

Field Timebase

We have had very little trouble with the field timebase, apart from the occasional need to set the field hold control which is at the bottom centre of the line timebase panel - the oscillator is on the line timebase panel while the rest of the field timebase is on the board at the top right, above the power supply panel.

The Decoder

The decoder is not so reliable, and we could go on about it quite a bit. The object of this series however is not to go into detail on less usual faults but to stick to the general handling of sets and servicing hints. So we'll confine ourselves to the commonplace and immediately point a finger at the thick-film video load unit at the top of the board.

These resistive units are rather fragile and can give rise to several sometimes confusing fault symptoms. This is because the units contain not only the three $5 \cdot 1 \mathrm{k} \Omega$ load resistors for the RGB output transistors but also three $27 \mathrm{k} \Omega$ resistors that provide feedback. So if the grey-scale is affected and the voltages around the BF336 RGB output transistors are not quite right (or maybe hideously wrong), the thick-film unit must loom large on the suspect list, together with the output transistors themselves, the
preceding TBA530Q matrixing i.c. (to which the feedback goes) coming farther down the list.

The TBA990Q demodulator/PAL switch i.c. should not be overlooked if one is searching in vain for a missing primary colour.

To be fair, the majority of the colour faults we've experienced have had their cause at the top end of the panel, and it pays to linger a little in the area where the heat is.

The IF Strip

The i.f. strip is the source of a large percentage of the complaints with these and certain other chassis that have sections in common, i.e. the 18in. Pye 713 and Philips 570 chassis. The complaint is that the picture becomes very noisy (grainy), which at first sight looks like a tuner or a.g.c. fault. In the majority of cases however the trouble is due to a poor connection in the i.f. gain and filter unit, which is on the lower part of the left side panel.

To overcome this problem unsolder the several connections and remove the complete unit. Ignore the side containing the three i.f. transistors and concentrate on the filter side, where the input from the tuner comes in. Note the printed coils and the several small capacitors - particularly those which have connections to both sides of the
panel. Carefully resolder the coil ends with a small iron: repeat with the capacitors, gently easing these up slightly to ensure that the solder makes good contact with the wire legs. Coils L101 and L109 are suspect, together with capacitors C106, C113, C117 and C120. It may be necessary to repeat the operation because the dry-joint has not been dealt with and it was only the disturbance of the unit that apparently cleared the fault.

General Notes

Do not remove the vertical panels unless this is really necessary - replacement can be tedious even though the correct exit and entrance channels are known. Note also that due to the absence of a metal main frame the earthing of the separate panels is important. This accounts for the multi-earth plugs and lugs which must all be in position when the panels are replaced.

As a final point, one might wonder what a 30 V zener diode (D553) is doing connected across the line output stage derived 25 V rail? It's there to provide protection in the event of the line output transistor or the flyback tuning capacitor C549 going short-circuit: the idea is that it goes short-circuit when the voltage across it rises much above 30 V . It doesn't usually do this for the simple reason that the 800 mA fuse blows first.

Miller's Miscellany

Chas E. Miller

WORKSHOPS have been on my mind lately for a variety of reasons. Whilst writing for another magazine on setting one up my thoughts inevitably turned to the various places in which I've had to work.
When I was very young I treasured a book called simply Radio Engineering. It was published by Odhams Press (now part of IPC) who published a great deal of this sort of literature. It contained an illustration of a "typical workshop" which had spacious, uncluttered benches and was staffed by several white coated engineers of irreproachably sober, honest and earnest appearance. Many years on, I've yet to see this "typical" arrangement in practice. Not, I hasten to add, that my many friends are habitually sloshed: I was referring to sobriety of thought have you ever met an engineer who didn't have a lunatic sense of humour? I'm not going to say that such a typical workshop doesn't exist: only that if it does it's well hidden.

Some Practical Examples

The trouble is that so many workshops have been improvised using premises quite unsuited to the purpose. My personal top award in this category goes to one in which I had to perform trade work in the Potteries. It appeared to have been a scullery initially, and was still furnished with a large sink. There was no proper door, merely an old blanket slung on a cord as a half-hearted attempt at keeping out draughts. It failed! Because of its situation, no daylight ever reached this room directly, and consequently no heat from the sun. Admittedly this made
for a pleasant temperature during high summer, but at any other time the place was as cold as charity, even with an electric fire. People wouldn't believe me when I told them that I had to go out into the street for a warm up now and again - until they sampled it for themselves!

Runner up to this delightful place was another never to be forgotten establishment, once more located at the rear of old premises but this time above the scullery. It appeared that a bedroom had been partitioned off in a rough and ready manner to form the workshop on the one side and a toilet on the other. I never actually saw what lay behind the new wall, but its complete lack of soundproofing qualities made speculation quite unnecessary! These alterations having removed the normal means of access, the convertor had hacked a trap-door into the floor of the workshop and fitted a spiral staircase removed from an antique double-decker bus. This might have looked picturesque, but was murder to negotiate when one was burdened with a large piece of domestic equipment. It also provided a splendid upward draught that went straight up the trouser legs. The management had thoughtfully provided an electric fire of incredible age and personal habits. It was a one-bar affair and had long since burnt out its element which had been repaired on numerous occasions. This had rendered it so short of ohms that it dissipated about twice as many watts as it should have and glowed nearly white hot: at intervals one of the many joints would give up and shoot showers of sparks and a molten element across the room. How on earth the place never caught fire I shall never know. I wonder if there are still workshops like that? (All replies will be treated in confidence!)

Mental Block

Whilst slaving away in someone else's workshop recently I happened to glance upwards and see on a high shelf a box marked "channel blocks". I couldn't for the life of me think what they could be: some type of filter
unit perhaps, to block out a certain channel in difficult reception areas? It being too much trouble to climb up and see, I resolved to ask one of the resident engineers later. When one did put in an appearance I quizzed him but he was as perplexed as I. "Don't remember noticing them" he said, "maybe one of the others ordered them."

We continued to speculate on what they might be for and eventually, just before going home time, curiosity got the better of me and I dragged over a tall stool to enable me to take a look inside the mysterious box. Inside were a dozen highly scented chemical blocks of the sort intended for use in gents toilets

ITT Bonding Problems

The CVC32 and related ITT chassis seem to be developing a similar problem to that experienced with certain Bush/Murphy monochrome sets some ten years ago, i.e. poor contacts between the main printed board and the metal framework on which it's mounted. Intermittent field faults such as rolling and loss of height can be tracked down to this problem on these ITT sets. The solution is to bond the various lugs positively with fairly heavy gauge wire - as we used to do with those Rank sets.

Thorn Tuner Problems

The vagaries of certain Thorn u.h.f. tuners are well known. Just lately I've been encountering some variations on the usual theme. In a number of cases the fault was a curious lack of gain on certain channels rather than the familiar drifting off channel. In no instance was the r.f. amplifier transistor faulty. It was usually found that the low channels were reasonably good, and perhaps those around $50-55$, but between channel 35 and 50 the gain was sharply reduced. Two 1500 s displayed this fault within minutes of each other. The same thing was experienced in sets fitted with the 3500 and 8500 chassis, giving the impression that some channels were working with reduced power - a suspicion immediately eliminated by checking with other sets.
The catch about this problem is that in my area, where the low channel Wrekin mast is visible to the naked eye, almost anything will give good pictures. If one just happens to forget to check the performance on the Sutton Coldfield channels as well it can lead to red faces when the set is delivered over the border, where most of my customers live!

Singular Sounds

I've long suspected that some customers buy equipment because their friends have persuaded them they ought to have it rather than because they actually want it. This view was reinforced recently when I collected an expensive stereo music centre for repair. "Do you want to take the speaker as well?" the young lady asked. No, she didn't mean "speakers". "We've only ever used the one. It sounds as good to us." Bring back the horn gramophone, all is forgiven!

On the Grand Scale

And so back to workshops. This time for servicing on the grand scale. My wife and I recently had an opportunity to look around the Radio Rentals factory at Bristol. Our guide was the genial manager Jim Broadhurst, who
explained how they thoroughly recondition TV receivers from various branches.

Jim is himself responsible for some of the ingenious and efficient layout of the plant. On arrival, each set is allocated a repair ticket which identifies it positively during its trip through the factory - cabinets and chassis, when separated, must eventually be mated up again. The former are passed to a room where a giant band sander restores the smoothness of the woodwork. This achieved, the cabinet goes to the spraying department where a good as new (or better) finish is imparted. A special ventilation system keeps the atmosphere pure for the operatives.

Meanwhile the chassis are inspected and repaired by a team of engineers. Rows of benches incorporate a first class idea for easy and rapid handling. In the centre of each bench there's a cut out section which exactly accommodates a trolley of the same height. When this is in position it's almost indistinguishable from the rest of the bench, but the engineer has only to disengage it and move it once the job is completed and then wheel another into position. Like most excellent ideas, it has the quality of simplicity and inspires the thought "why did I never think of that?"

There's a special bay for tuner repairs. The young ladies who carry out this work are equipped with purpose-built oscilloscopes which enable precise alignment to be achieved. The display units are designed around redundant dual-standard monochrome TV sets, still in their original cabinets but mounted on one end. As a confirmed believer in making the most of what's available, I was impressed by this. To my mind it reflects credit on its designer John Wood and on the company as a whole, since this sort of cost effectiveness can only be of benefit to customers.

Again typical of the care exercised during the repair process is the meticulous testing of the c.r.t.s. Colour tubes are plugged into another special scope which resembles a console colour TV built into a metal cabinet. The three guns have their performances displayed visually on the scope's screen so that they can be compared with the strict standards laid down. Any tubes showing discrepancies are weeded out and sent for reconditioning.

The completed repair jobs are performance tested by a team of inspectors under the watchful eye of quality controller Archie Sandford and are then packed for despatch. The system gets my highest praise. My wife and I were also struck by the happy atmosphere of the factory. Jim would probably wish me to say no more than that this sort of thing doesn't happen by accident but is the result of the concern for their employees shown by Radio Rentals top management at the Swindon head office.

And Now . .

If anyone is wondering what I was doing in Bristol, well it was for the purpose of acquiring some rather special though redundant test equipment, to wit a closed-circuit TV transmitter which generates a 405 -line test card C on any of channels $1-13$. I'm told that the example I now have is the only one outside the South Kensington Science Museum (confirmation of this would be welcomed), and without a doubt it's going to be invaluable for testing and demonstrating vintage sets once the BBC/IBA 405-line service finally closes down. Perhaps the editor will permit me to make a Vintage Spot of it in a future issue (why not? - editor).

A Vintage TV Renovation

John Narborough

THE HMV Model 905 and its Marconiphone equivalent, the 707, were first revealed to the public at Radiolympia, 1938 - just two years after the start of the BBC's highdefinition television service. They were table models, described as "television/all-wave radio receivers", with seven-inch tubes. The price was an attractive 39 guineas. There were also a couple of five-inch versions (Models $904 / 706$) which cost only 29 guineas (or 6s 4 d weekly!). The introduction of small-screen television receivers was part of an effort by the industry to increase sales - the larger-screen sets of the time sold at prices in the 60-100 guinea range. As a contemporary advertisement for the 904 proclaimed, "now at last, combined radio and television at radiogram prices!"
Some months ago I was fortunate enough to acquire a 905 , through my hobby interest in vintage radio. It was in long-disused condition, but complete and showing minimal signs of having been interfered with - except for the removal of one of the h.t. smoothing chokes and the wartime replacement of several smoothing electrolytics, the radio side of the set presumably having been used at the time though TV transmissions had been suspended. As I was living close to the Crystal Palace 405 -line transmitter and was aware that the virtually obsolete Channel 1 transmissions to which the receiver's TV circuits were permanently tuned must soon come to an end I decided to restore the set - now 44 years old - to working order without delay. Armed with a copy of the original EMI service manual, courtesy of Gerald Wells' ever-helpful Dulwich wireless museum, I embarked on a task that was to occupy several weeks' of spare evenings.

General Description

Although described as a table model the 905 is neither small nor light. It weighs just over 1001b, the cabinet measuring $26 \times 19 \times 14 \mathrm{in}$. deep. A sturdy instrument table was available for an extra three guineas - surely a wise investment, considering the damage a toppling set could cause! The receiver's sixteen valves, two mains transformers and all the circuitry are mounted on a single steel chassis which almost fills the cabinet's floor area: a false cardboard base gives access to the many components mounted beneath the chassis. When this unit is removed from the cabinet, only the loudspeaker (a sixinch type almost as large as the tube) and the type $3 / 2$ Emiscope tube, hanging with its focus and scan coils from a bracket attached to the top of the cabinet, are left behind.

The tube is a triode type with an unusual six-contact base that includes the 2.4 kV e.h.t. connection. It projects some two inches at the rear, the cardboard back requiring a small "bulge" to accommodate it. A useful feature from the servicing angle (quite literally!) is that the flare of the Pyrex glass tube is completely clear, enabling the picture to be seen from behind whilst making adjustments.

The illuminated tuning scale (long, medium and $52-16.5 \mathrm{~m}$ short-wave ranges) on the front includes a $0-100$ semicircular logging dial. The front controls are as follows: volume-on/off; slow-motion tuning; wavechange
switch which operates a pointer indicator on the dial and has gram and TV at the extreme positions; focus control; and concentric knobs for contrast/brightness and line/ field hold. The only preset controls at the rear are for width, height and, curiously, tone (top cut).

Circuitry

Marconi valves are used thoughout. A simplified block diagram of the set is shown in Fig. 1. The "front end" r.f. amplifier, frequency changer and first i.f. stage - is used for both radio and TV reception. On TV and SW the r.f. amplifier's cathode bias is altered, by means of the wavechange switching, to give increased gain: the frequency changer has a ceramic base to minimise losses at h.f. For radio reception the i.f. is 465 kHz : for TV the i.f.s are 8 MHz vision and 4.5 MHz sound - stagger tuning is used to get adequate vision i.f. bandwidth.

The power supply is shown in Fig. 2. On switching to television a second mains transformer is brought into operation to provide the heater current for the tube and the additional valves and to energise a 1.8 kV winding which feeds the U17 e.h.t. rectifier. In addition, the h.t. supply is boosted for television by bringing an extra $16 \mu \mathrm{~F}$ reservoir capacitor (C64) into operation - this is kept polarised on radio via the $15 \mathrm{k} \Omega$ series resistor R66.
The final, MS4B, vision valve provides anode bend detection and some amplification. On the sync side there's an unusual arrangement with a D42 diode which operates in conjunction with a KTZ63 tetrode limiter valve. For a detailed description of these circuits, see Chas E. Miller's article last February. The timebases are very straightforward. In each case there's a KTZ63 blocking oscillator. The KT63 output tetrode in the field timebase is triode connected and a.c. coupled to the field scan coils. In the line timebase another KT63 is transformer coupled to the line scan coils.

The HMV Model 905 after renovation.

The whole style of circuit design and construction is typical of pre-war practice, though very similar arrangements were found in some immediately post-war models such as the HMV 1803, which had the same twotransformer power supply (but with 4 kV produced from a 3 kV secondary winding) together with a triode tube and many of the same valve types used in the old familiar circuits.

Work on the Power Supplies

My first task (after removing the chassis and blowing out a large quantity of dust) was to ensure that the power supplies were safe and working efficiently. The mains input comes via a 1.6 A heat coil fuse of the type familiar to telephone engineers. For those who've not seen one, it consists of a small coil of resistance wire wound over a thin metal tube about $\frac{8}{8}$ in. long, housed in a "cartridge" rather like a conventional fuse. The electrical contact at one end is made via a pin held within the metal tube by low melting point solder, the whole unit being clipped into a pair of springy forks that tend to pull the fuse apart. Should excess current overheat the tube, the solder melts and the pin flies out, interrupting the circuit. If the pin can be found after this, the fuse can be reset simply by heating the pin with a soldering iron and persuading it to go back down the tube - though complete replacement was no doubt advocated by the manufacturers! Inevitably the pin was missing, and an ordinary 2A fuse had been clumsily soldered across the holder, making an intermittent contact.

Having tidied up this bodge I found that although the mains transformer windings all measured correctly with an ohmmeter the two toggle switches controlling the primaries were reluctant to operate: a squirt of switch cleaner soon remedied this however. On the secondary side the h.t. arrangements are a bit unusual, with three smoothing chokes and the extra switched reservoir capacitor C64 which augments C65 on television. Choke Ck1, which feeds the vision and timebase valves and also the focus coil, was missing, so I had to improvise a replacement from a scrap radio chassis, the main criterion being that it had to fit into the small space available for it beneath the chassis. Luckily the inductance value does not seem to have been too far wrong, since the correct voltage readings were obtained when I was finally able to test the set.
The remaining chokes gave the correct resistance readings, but all the electrolytics in the power supply were

A view of the innards.
leaky and of low capacitance, so I was forced to replace both the previous wartime substitutes and the original upright can types (held to the chassis by a large nut) with modern 450 V types. These were wired in as neatly as possible where space permitted.
On the e.h.t. side, ohmmeter tests revealed that the 1.8 kV transformer winding, the two $0.1 \mu \mathrm{~F}$ reservoir/ smoothing capacitors (sealed together in a large can) and the network of smoothing and bleeder resistors all seemed to be in very good condition, the only action required initially being to replace the perished rubbercovered lead carrying the 2.4 kV to the tube base. I used a length of solid-core car ignition lead.

Component Condition

Having cleaned up the tuning dial and the tube face, which although inside the cabinet behind glass windows had become rather dirty, I was able to replace the chassis and carry out all further work with the set standing on end and the base and rear covers removed. Many of the original paper decoupling capacitors and some of the other electrolytics were in poor condition: discretion being the better part of valour, I replaced all the remaining capacitors that were subject to h.t. voltage. The presence of a well cooked h.t. feed resistor in the audio circuit, with

Fig. 1: Block diagram of the HMV Model 905 radio/TV receiver.
its associated $4 \mu \mathrm{~F}$ decoupler dead short-circuit, revealed the fault that had presumably put the set out of action so many year ago. Apart from this and one open-circuit resistor, all the other resistors in the set proved to be up to scratch - these types, with a paint-coded ceramic body and a blob of moulded solder to hold the leadout wire at each end, always seem to have been very reliable. Having checked the various coils, transformers, and the tube's scan and focus coils for continuity, the moment of truth finally arrived and I was ready to switch on.

Running the Set Up

Being something of a coward when it comes to e.h.t., I initially removed the U17 rectifier valve and tried the receiver on radio. After a brief warm up period I was rewarded with a hum from the loudspeaker and a good loud buzz when I applied by finger to the gramophone pickup input socket, proving that the audio stages were working. Despite a good long aerial however there was no trace of any signals, though loud clicks were present when the wavechange switch was operated. Moving the aerial plug across to the top cap (anode) of the MSP4 r.f. amplifier valve brought in some strong signals, and a new MSP4 (obtained along with a complete set of spare valves from a well-known advertiser in London) restored normal radio operation.

The set was now working well on all three broadcast wavebands, so with the e.h.t. rectifier still removed I switched over to television and attached a few feet of wire to the television aerial input socket. There was an immediate loud mechanical buzz from the second mains transformer, but this was not a destructive sort of noise and after a minute or so faint BBC-1 sound came through. Adjusting the oscillator trimmer brought up the signal strength, but there was no sign of activity from either of the timebases - judged by ear and the temperature (cold) of the timebase valves.

Having nothing better to do, I switched off and exchanged the two pairs of timebase valves. When I switched on again there was a definite but hesitant line whistle and some low-pitched ticking from the field scan coils. After switching off I refitted the e.h.t. rectifier valve, but on reconnecting the set there was no e.h.t. After some head scratching I noticed that the U17's heater was not alight, and when I eventually detached the base from the valve's envelope I found that one of the wires had broken off close to the glass. The spare valve was fitted (how do they manage to supply these brand new valves - no request for a pre-war valve ever seems to beat the people at Streatham!) and I tried again. Since my multimeter reads only 1 kV maximum, I attached the leads two-fifths of the way up the e.h.t. bleeder resistance chain (i.e. across two of the five $1 \mathrm{M} \Omega$ resistors). On switching the set on a healthy 900 V reading was obtained, making the e.h.t. around $2 \cdot 3 \mathrm{kV}$. The television sound was still present and the timebases were apparently working, but as yet nothing on the screen.

Getting a Picture

Removing the aerial plug and reinserting it produced a brief, defocused blob, but even with the brightness control fully advanced the screen was otherwise dark. Then, after a few minutes, shadowy signs of a picture appeared, and following careful adjustment of both hold controls, with the brightness and contrast controls at maximum, a
stable but very dark picture was obtained. The height and width controls were also at the ends of their ranges, and the picture was a very odd $2 \frac{1}{2} \mathrm{i}$. wide by $3 \frac{1}{2} \mathrm{in}$. high instead of approximately 6 by $4 \frac{1}{2} \mathrm{in}$.

Ignoring the picture shape for the moment, I set about investigating the low brightness and found that the tube's grid bias was excessive even with the slider of the brightness control potentiometer at the "high" end of its track. As a temporary expedient I added an extra resistor in series with the earthy end of the control. I now had a bright raster with a good range of control, and could set up the focus properly. Replacing the output valves in the timebases increased the scan amplitudes enough to fill the screen, and I was beginning to congratulate myself on the outcome of all this slow restoration work.

Trouble with the EHT

We all know what happens when we tempt Providence in this way - it happened with a vengeance to my 905 ! After an hour or so in use there was a sudden crackling noise, the picture disappeared, and a small plume of smoke issued from the burning insulation of the e.h.t.winding on the second mains transformer. The winding had developed shorted turns of course, not only robbing the set of e.h.t. but also depriving the television valves and the tube of their various heater supplies. Using five separate new transformers was out of the question since the corner of the chassis underside where this transformer is fitted is very cramped and there's little spare space anywhere else.

I knew that rewinding the transformer was just about out of the question as well, not only because of the cost but because the physical size of the core was so small that proper insulation levels would be as hard to maintain today as they had evidently been when the set was produced. The designer seemed to have used a very small safety factor in putting a 1.8 kV winding on to a small low-voltage transformer almost as an afterthought! I considered cutting the faulty winding off the transformer, hoping that the fault might be in the outermost layers, but when I'd overcome my disgust enough to look more closely I saw that the primary winding was nearest the core with the e.h.t. winding sandwiched between it and the outer heater windings - the whole thing being impregnated in hardened black pitch. I was not going to give up now however, and my eventual solution must rank amongst the bodges of the century!

I carefully unsoldered and removed the transformer, and found that the windings had warped on the core just enough for faint glimmers of light to pass here and there between adjacent layers of paper separating the e.h.t. and the other windings. So I heated up two narrow strips of thin sheet metal (from some phosphor-bronze draught proofing strip) and managed to push these through the gaps between the windings, melting the pitch as they went. As a result I eventually had a section of the shorted winding between these two strips, which protected the other layers from my next rather drastic course of action. Using a \ddagger in. twist drill, I made a hole right through the edge of the winding and out at the other side. I then used a thin file to make the hole into a clear slot, the faulty winding thus becoming hundreds of open-circuit turns which could do no harm whatsoever even if they were all touching. After melting out the metal strips and blowing away the copper dust, I filled the slot with wax and replaced the transformer. A surplus mains transformer

Fig. 2: Power supply circuitry, 1938 style.
with a 1.8 kV secondary winding was then obtained and mounted on the side of the cabinet above the U17 valve. This restored operation, and the 905 has been working in this modified form ever since.

Final Touches

There were just a few minor tasks to do to complete the job. Replacing the vision detector valve improved the tube bias problem, and repositioning the sound output transformer got rid of some annoying mains hum which
was being picked up from the adjacent mains transformer. The set has since been completely realigned, with the aid of a digital frequency meter (apologies to those purists who use only vintage test equipment). The crossbanded figured-walnut veneered cabinet has responded well to a clean and polish and the picture, once correctly adjusted, is now very acceptable with only a trace of ion burn at the centre of the screen, suggesting infrequent use in the past. I wonder what the original owner, who first gazed in awe at the miracle of television 44 years ago, would say if he or she could see the set today?

Using UHF tuners for hi-fi at VHF

William Harrison

Advertisements have appeared from time to time offering u.h.f. tuners for use with a v.h.f. radio tuner/receiver to give hi-fi TV sound. Readers may wonder how this is done. An enquiring friend plus curiosity and a handy music centre prompted this investigation, which showed that good results can be obtained with pre-varicap tuners with little effort. Similar treatment was given to a Hopt rotary tuner as used in GEC sets from around 1965 onwards and to a push-button tuner as used in Philips sets fitted with the 170 chassis. In its new role the tuner becomes a converter, the i.f. being raised so that it falls within the v.h.f. Band II.
If you look at the mixer circuit you'll see that the output is tapped from a chain of components that form the transistor's collector load. Two coils only concern us: the main i.f. coil with dust core, and a small air-cored coil which is connected directly to the transistor's collector.

Short out the main i.f. coil, and connect the tuner's output to the receiver's dipole sockets, with a $9-12 \mathrm{~V}$ d.c. supply to the tuner, negative to chassis. When this has been done a strong carrier should be found on the receiver's v.h.f. band. Move the small coil carefully in its compartment so that this carrier is placed in a signal-free upper part of the band.

Now try the tuner. As we've raised the i.f., the oscillator must also generate a higher frequency. To correct the oscillator tracking, gently spread the outer moving vanes of the oscillator section of the tuning capacitor away from the fixed vanes.

Direct connection of the tuner to the receiver is not essential - a few inches of wire from the output placed near the receiver's aerial sockets will give good signals. Note that some tuners may need a voltage at their a.g.c. input.

Test Report

Eugene Trundle

A WIDE selection of small colour pattern generators is at present available. Each new one that appears reflects current technology, and the price/performance ratio gets better all the time. This time the spotlight is on the latest instrument from Manor Supplies, their Mk. V pattern generator. Its design is based on two i.c.s, both of recent vintage, the Ferranti ZNA234 and the Mullard TEA1002.

The Ferranti chip generates all the basic monochrome patterns - dots, vertical and horizontal lines, luminance staircase and crosshatch. The sync and blanking pulse trains are also generated within this device, all these waveforms being tied to an on-chip 2.5 MHz oscillator which operates in conjunction with an external crystal. The sync and blanking waveforms are to CCIR standard, which means that the patterns are fully interlaced and have broadcast-standard equalizing pulses, with precise pulse timings. The chip is in this respect similar to the earlier ZNA134 sync pulse generator i.c., from which it was developed.

For colour operation the Mullard TEA1002 comes into play. This is an 18 -pin purpose-designed chip for colour encoding and summation. It takes binary RGB inputs and encodes them to the PAL specification, providing a composite video output based on the incoming sync pulses. The 4.43 MHz signal is generated in conjunction with an external 8.86 MHz crystal. As in TV receiver applications, i.e. modern decoders, this doubled frequency technique ensures correct phasing of the $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ signals without any need for preset adjustments.

The external component count with the Ferranti and Mullard devices is very low. In addition to these two special chips the instrument uses a further sixteen i.c.s. Of these, two are simple voltage regulators providing 5 V and 12 V rails, the remainder being standard 14 - and 16 -pin logic and timing chips, mostly CMOS types, which are used for function switching, chequerboard gating, ident processing and so on. All the pattern switching and colour selection is carried out by d.c. control lines, which simplifies the control arrangements and confines all the video waveforms to the printed panel.
The final video output is passed to a front panel mounted socket and to a u.h.f. modulator - this is a standard module as used in some home computers. An interesting feature is the audio tone generator which uses a CMOS counter to produce a 1 kHz tone by division of the conveniently available $\mathbf{7 . 8 \mathrm { kHz }}$ ident signal.

Construction

There is a choice of cases, standard or de luxe. The review unit was housed in the de luxe case, which is of two-piece construction in sheet steel, finished in black leather effect with silk screen printing. All the controls are at the front, along with the coaxial video and u.h.f. output sockets and a LED "on" indicator. Mains switching and pattern selection are by rotary switches, with pushbutton switches for colour selection and audio on/off. The
phono audio output socket is at the back, along with the mains cable entry and the mains fuseholder.

Inside, a single double-sided fibreglass panel holds the entire pattern generator circuit, with all the i.c.s in holders. The power supply and miniature u.h.f. modulator also live on this panel, along with the plug-in sound carrier generator module. This leaves only the mains transformer, output sockets and controls mounted on the metal case: all connections to the main panel are made via plugs and sockets. An auxilliary fibreglass panel supports the push buttons and the leads to the pattern switch. In all, a neat and tidy layout.

The Kit

Having read through the kit assembly instructions I'd not envisage anyone having difficulty in making up the kit and getting it going. The double-sided print makes it important to fit the right components the first time, and the usual precautions regarding static charges must of course be taken with the CMOS chips. As with any kit, assembly should be done methodically and not in too much of a hurry.' Testing and setting up consist of checking two voltages and adjusting two preset trimmers, using an ordinary colour set as a reference.

Outputs

The Mk. V generates six monochrome patterns: step wedge (grey scale), vertical lines, horizontal lines, dots, crosshatch and chequerboard. All but the first of these have border castellations for picture centring checks. The colour bars are available in two forms, EBU (75 per cent amplitude, 100 per cent saturation) and BBC (100 per cent amplitude, 95 per cent saturation) - see Fig. 1. A further colour pattern, in the form of split bars, is primarily intended for VCR work. It consists of the standard colour bar pattern with a broad, horizontal insert band

Fig. 1: Colour bars. (a) BBC version, with normal luminance levels and superimposed bars at 95% saturation. The peak subcarrier level on the first three bars exceeds peak white. (b) EBU version, with 25% of peak white level subtracted from the luminance signal on bars where colour is present. This brings the total subcarrier excursion (now at 100% saturation) within the amplitude limits of the composite luminance signal.
which can be filled with any of the three primary colours by push-button selection. With all three primary colours present the band becomes peak white. The third colour pattern appears at the rotary switch's raster setting. As with the split-field display, push-button selection in the raster mode gives the three primaries, their complementaries yellow, cyan or magenta, plus black or white.

The sound modulation is at 1 kHz , with other frequencies available by changing an internal link. The intercarrier generator frequency modulates this on to a 6 MHz carrier $(5.5 \mathrm{MHz}$ type available for overseas requirements). The audio tone is available at the rear mounted phono socket. Standard 2V peak-to-peak composite video is brought out to a coaxial socket as well as being applied to the u.h.f. modulator (v.h.f. type available on request) whose output appears at a little under 1 mV amplitude on approximately channel 36.

Bench Test

I used the Mk. V for some weeks for all bench TV and video servicing. One of the first checks I made was for the truth of the border castellations on the monochrome patterns. I found that the outer edges of the castellations correspond exactly with the limits of the BBC test card F, the TV scan amplitude being correct when the inner edges are just visible.
The step-wedge pattern (for grey-scale tracking) suffers a little from crosstalk from the border signal, giving rise to vertical rows of faint "phantom" castellations. I found this annoying but in no way detrimental to the purpose of the pattern - apparently it's inherent in the design and to eliminate it would increase the instrument's cost and complexity to an unjustifiable extent. A "clean" step wedge is available by selecting colour bars and killing the chroma by one means or another, but the luminance steps are in this case not linear and I prefer the monochrome grey-scale signal. The other monochrome patterns are flawless. The crosshatch and dot matrixes are 16 $\times 18$ lines, and the lines and dots are very narrow - this is important for setting up modern tubes and high-definition types.

There were no problems with the colour bars. The phase angles are all within 2°, and the availability of both BBC and EBU bars could be useful - the EBU bars are used in Europe and by the IBA. The split-bar pattern offers a white reference at field rate, which I found useful for setting modulator deviation and checking signal processing in VCRs. The EBU/BBC selector works on this pattern too, so that where VCR setting up procedures based on the European standard are encountered these can be carried out easily. The raster facility is useful for checking purity (few sets these days seem to have gun switches), and with all three rasters on the bright white field enabled me to set up beam current limiting circuits with ease.

I found the video output useful when investigating TV and video circuits. The video output is at 2 V peak-topeak and a 6 dB coaxial attenuator will bring this down to the standard 1 V level if required. Apart from direct injection of video signals into equipment, e.g. E-E level in VCRs, I found this output useful for triggering the oscilloscope at line or field rate. Careful examination of the video waveform at the output socket showed an exactly correct 7:3 picture:sync ratio, with the burst amplitude precisely equal to the sync pulse height, just as it should be. The field equalizing pulses and blanking periods were also checked and found to be to broadcast standard. A

Inside the Manor Supplies Mk. V pattern generator.
quick check for this on the TV screen is to look for the black 'pip' half-way along the bottom of the raster - you will see it on broadcast and the Mk. V's pictures, but rarely on the pattern from other vision sources. The burst is not blanked in the Mk. V, and appears on all lines throughout the field blanking interval.

The sound facility is very good, with minimal breakthrough of the vision signal in spite of the fast rise times of the video signals - just a little hash appeared on the sound with the crosshatch signal. Very good indeed! I found that the degree of vision-on-sound experienced depends almost entirely on the condition and alignment of the TV set in use. The a.f. signal from the rear socket is a squarewave of about 400 mV peak-to-peak.

The u.h.f. modulator's performance is highly commendable. I searched in vain for any trace of spurious outputs or harmonics. The vision and sound modulation are clean and linear, with no trace of sound-on-vision. There was no tuning drift with time or temperature, and no sign of microphony - magic!

Conc/usion

This little pattern generator is incredibly good value for money, its performance being almost impeccable. At the time I had it for test several other colour bar generators were available for comparison, ranging from relative cheapies to $£ 700$ wunderbars. In no way was the Mk.V's performance inferior to any of them on similar functions. In some respects, such as u.h.f. modulator performance, provision of border castellations and the EBU/BBC colour bar facility, it beat the lot of them. I feel that if the unit was housed in a fancy cabinet and carried a wellknown test equipment manufacturer's badge on the front it would sell at, and justify, a price of around $£ 200$.
The case's appearance belies the performance and specification of the unit. One technician of my acquaintance condemned it out of hand on the basis of its price and look. But don't be fooled! I can thoroughly recommend this instrument, not only for technicians and service departments but also for demonstrations and teaching. Its performance is well up to detailed analysis, and it lends itself well to colour matrixing demonstrations and so on.

The kit costs $£ 80 \cdot 50$, to which should be added $£ 5 \cdot 50$ for the standard case and $£ 8 \cdot 50$ for the de luxe one. The optional 6 or 5.5 MHz sound module is $£ 4.50$. Specify u.h.f. or v.h.f. modulator when ordering. These prices include VAT, but post and packing costs $£ 2$ extra. The instrument as reviewed is available built and tested, in the de luxe case and with the sound module, at $£ 115$. Available from: Manor Supplies, 172 West End Lane, London NW6.

Fault Report

John Coombes

Decca 70/71/90/91 Series

The Decca 70/71/90/91 series chassis features a Darlington transistor (BUW81A) chopper power supply and a BU500 line output transistor. It's intended to drive 90° tubes, 14 in . in the case of the 70 series and 20/22in. in the case of the 90 series. Fig. 1 shows the basic power supply arrangements used. The h.t. to the line output stage is 121 V for the 70 series and 150 V for the 90 series. Basic faults are as follows.
No results: First check the mains fuses F701/2 (2A delay). If blown, check the $0.001 \mu \mathrm{~F}$ mains filter capacitors C701 and C703 and the bridge rectifier DB601 (KBF08). If the mains fuses are o.k., check the power supply fuse F601 (1A delay). If this has blown, suspect the Darlington chopper transistor Tr605. Check by replacement - if it's short-circuit, Tr604 (BSR59) in the driver circuit must also be replaced before switching on. Other things to check are the 195 V supply rectifier D614 (RGP01-14) and the 18 V supply rectifier D616 (RGP30K).
Power supply tripping: There is probably an overload. Remove plug PL401 to check whether this is in the line output stage, then if necessary open test link TL203 to check the load on the 195 V supply (RGB output stages), 'TL102 to check the sound department and TL204 to check the 12 V regulator and the circuits this supplies. If these steps fail to stop the tripping, turn down the set h.t. control VR618 and if the tripping stops set the h.t. to 121 V or 150 V as appropriate. If the set still trips, check the following components in the power supply: the 6.8 V zener diode D601 (BZX79-B6V8), D608 and D610 (both type 1N4003GP), D613 (RGP10M) and C627 ($10 \mu \mathrm{~F}$).
No picture or low brightness: Check the line output stage h.t. supply at PL401/5. This should be 121 V or 150 V according to model. If low, check the setting of the set h.t. control VR618. Then if necessary check by replacement D611 (BA157) which provides the reference feedback supply for the "set h.t." circuit and the values of the two resistors R617 ($5 \cdot 6 \mathrm{k} \Omega$) and R614 (100Ω) associated with the control. A less obvious cause of this fault is C617 $(0 \cdot 0068 \mu \mathrm{~F})$ which can be leaky or intermittently shortcircuit.
Incorrect field lock: Check the sync i.c. (IC301) by replacement then if necessary $\mathrm{C} 308(10 \mu \mathrm{~F})$ which can go
open-circuit. It should be noted that the i.c. is a TDA2571A in later chassis and a TDA2571 in earlier production. These i.c.s are not interchangeable - if the wrong type is fitted the result will be half field lock.

GEC

The more recent GEC chassis have received little attention in these pages. We've had the following fault experiences.
20AX chassis: In the event of no sound or raster, check the h.t. fuse FS503 (2A). If this has blown, check the BU126 chopper transistor TR502 and the two associated BY210-800 diodes D514 and D515. In the event of hiss on sound but no raster the 160 V supply to the line timebase is probably missing. Check the h.t. rectifier diode D513 (BYX71-600) for being open-circuit. Alternatively the supply to the c.r.t.'s first anodes could be missing. Check R606 ($150 \mathrm{k} \Omega$) for being open circuit. When R604 ($150 \mathrm{k} \Omega$) goes open-circuit the first anode supply is high and the symptom is a bright picture with flyback lines. These two resistors are on the PC687 line output panel. Models involved include the C2215, C2217, C2218, C2623, C2624, C2627 and C2628.
PIL tube chassis: In the event of field collapse, check that the 33 V supply is present at pin 6 of the field timebase panel. If missing, check the relevant rectifier diode and reservoir capacitor in the line timebase - D602 (BY210-600) and $\mathrm{C} 607(330 \mu \mathrm{~F})$ respectively. If the fusible resistor R369 is open-circuit, the TDA1170 field timebase i.c. is probably faulty.

Hitachi

Sets fitted with the NP81C chassis, e.g. Model CPT2016, have given us a bit of trouble with dry-joints around the line output transformer T702. Intermittent field jump and no raster due to the tube's heaters going out are a couple of examples. Picture jumping can also be due to a dry-joint on the 12 V rectifier diode D703 (V09C) in the line output stage. Note that one or two GEC sets are fitted with this chassis, e.g. Models C2065 and C2265.

ITT

CVC20 chassis: In the event of tripping, first check the setting of the chopper output preset R808. Check the operation of the control and the condition of its track. If the tripping persists, the line timebase can be disabled by opening the fusible resistor R 92 which feeds the line driver transistor. If this stops the tripping the tripler and/ or line output transformer are probably at fault. Unfortunately these components tend to damage each other, and the BU208 line output transistor could also be short-

Fig. 1: Power supply arrangements in the Decca 70/71/90/91 series chassis.
circuit. If these items are in order, check the scan coupling capacitor C67 $(2 \cdot 2 \mu \mathrm{~F})$ for being short-circuit. The field timebase could be loading the line output stage - to check, open the fusible resistor R68. If this stops the tripping, suspect the field output transistors T9 (TIP31) and T10 (TIP33).

Rolling only on bright screens should lead to a check on the line output stage derived 12 V supply. If this voltage drops by about 2 V when the setting of the brightness control is increased, suspect the tripler.

Field collapse or variation in height can be due to the field output transistors T9/10 or a defective height control. Another cause worth checking is the metal bonding down the centre of the chassis. You will often find that the problem is caused by the top lug being cracked: connecting an insulated lead from the top lug to the bottom will eliminate this trouble.

Körting Hybrid Chassis

A fault that seems to be occurring more often as these sets get older is loss of, or very little of, one colour due to reduced first anode voltage. There's a tag strip beneath the line output stage can, and the problem is tracking between the various pins. The tag strip must be kept clean.

Mitsubishi CT186B

The customer's complaint was of a dull picture, and on examination we found that the width was also excessive. The e.h.t. was way down at only 12 kV . The fault was eventually traced to C571 ($0.0056 \mu \mathrm{~F}$) being short-circuit - it's one of a group of capacitors in the flyback tuning/ diode modulator circuit.

National Panasonic

Model TC2201: We've had a couple of interesting faults on this model. The problem with the first, no sound or raster, was eventually traced to a leaky capacitor (C537, $1,000 \mathrm{pF}$) in the line output stage - it forms part of the clipper diode's load. The problem with the second one was sound plopping and cutting in and out intermittently. The cause was a dry-joint on the audio output transistor TR251 (2SC1929) - TR251 can also cause the same problems due to an intermittent base-emitter opencircuit.
Model TC2203: In the event of random channel changing, first clean the sensor panel. If this doesn't cure the problem, remove the panel and ensure that none of the neons touches the contact plates - remove and reassemble if necessary. If still no improvement, change R1010 from $9 \cdot 1 \mathrm{k} \Omega$ to $6.8 \mathrm{k} \Omega$. If you remove the tuning panel, make sure you reassemble it correctly beneath the plastic lugs, also that R1001-8 and C1001-8 don't rest on any other components.

If the magic line stays on the screen, first check the fine tuning. If there is no variation of the line, check C903 $(100 \mu \mathrm{~F})$ and $\mathrm{C} 915(1 \mathrm{pF})$ for being short-circuit. If the magic line does vary, check switch SW1101 and transistor Q1004 (BC307B).

The most common cause of field collapse in these sets is failure of D403 (SV02). The safety resistor R442 (1 Ω) will usually be found open-circuit as well. Other things to check are the 37 V supply rectifier D406 (BY299) and R433 ($4 \cdot 7 \Omega$) which is in series with R442.

In the event of reduced height and bottom foldover,
check the voltages around Q401 (2SC1685) in the field oscillator circuit. There should be 4.8 V at its collector, 0.6 V at its base and 0 V at its emitter. If the transistor is all right, check diode D405 (RH1M). Other items to check if necessary are R 431 ($33 \mathrm{k} \Omega$), R432 (100Ω), C414 $(2,200 \mu \mathrm{~F}), \mathrm{C} 410(330 \mu \mathrm{~F})$ and $\mathrm{C} 419(1 \mu \mathrm{~F})$.

Philips

G8 chassis: The fault on a set fitted with the later version of the chassis (550 series) was a dark picture. A check at the 12 V regulator output (TP97) produced a reading of 15 V which could not be adjusted by means of R3396. The lower of the two $5 \cdot 1 \mathrm{~V}$ reference zener diodes D3412 turned out to be open-circuit.
G11 chassis: In the event of no sound or raster the procedure we adopt is as follows. First check for h.t. at fuse FS4037 on the power supply panel. If present, check the voltage across R3106 on the line timebase panel. This resistor feeds the line driver transistor. If the voltage is $15-30 \mathrm{~V}$, the driver stage is working. Move on to the line output stage and check the voltage at the collector of the line output transistor. If there's no voltage here, check R3120 for being open-circuit, check the continuity of winding 13-15 on the line output transformer, then if necessary check for dry-joints at connectors 15A15 and 15A16 on the convergence panel.

The TDA1412 12 V stabiliser i.c. seems to cause quite a few faults. Examples are no colour with a dark picture and violent h.t. pulsating at a high brightness level. Both faults are due to low output from the i.c.

Field collapse is usually due to the TDA2600 field timebase i.c. Obvious enough but worth remembering when ordering spares.

In the event of a slight hum bar with the h.t. correct or high, check the d.c. conditions around the transistors (T4032/3) in the active filter circuit. If the voltages at the collector and emitter of the filter transistor T4032 are the same, either this transistor or its driver T4033 is shortcircuit. If the transistors are in order, check C4034 $(10 \mu \mathrm{~F})$ for being open-circuit.

Thorn

9000 chassis: In the event of tripping, first remove the tripler lead from the line output transformer. If the set still trips, check the thick film unit (in the trip circuit) by replacement. If the tripping continues, the line output transformer is suspect for shorted turns.

For field roll, check $\mathrm{C} 406(47 \mu \mathrm{~F})$. If the field roll is intermittent, becoming continuous, check the linearity transistor VT404 (BC182LB).

Toshiba

Model C800B: Loss of one colour is a common fault on this set. There are three basic causes. The most common is dry-joints on the RGB output module, usually where a wire goes through the panel to link the print on both sides. Other causes are edge connectors making poor contact and dry-joints beneath the RGB module on the main panel.
Model C2090B: We've had trouble with mains fuse blowing due to tracking in the mains on/off switch. Fitting a replacement overcomes the problem.

The TA7193P colour decoder chip can be responsible for no colour, loss of one colour or floating colours. Some Hitachi and Rank sets also use this i.c.

Focus on Portables

Part 2

George Wilding

THE video circuitry extends from the vision detector to the c.r.t.'s driven electrode, which is usually the cathode, sometimes the grid.

Detection

When it comes to detection, there are three possible approaches: the latest, using a synchronous detector within an i.c.; the conventional diode detector; or the use of a transistor as a collector bend detector.
The diode detector is simple, inexpensive and reliable. The problem is that the values of the few peripheral components needed have to be a compromise between the conflicting requirements of efficiency, good h.f. response and effective i.f. filtering.
When the diode conducts for example its forward resistance is in series with the load resistor. Thus to obtain maximum output voltage the value of the latter should be relatively high. On the other hand some stray capacitance must be present across the load resistor and will be added to for i.f. filtering and to improve efficiency. If the response is not to show a marked h.f. roll-off, the value of the load resistor should not be higher than the reactance of the total shunt capacitance at the top video frequency. In practice this means that the value of the load resistor is limited to a few kilohms. The shunt capacitor, which often has a very precise value, usually forms part of a pi filter in conjunction with a small series choke and a further shunt capacitor. In some circuits the choke also acts as a peaking coil to boost the h.f. response.
Another disadvantage of a diode detector is that diodes are insensitive to low-amplitude inputs. As a result there will be some cramping of the video highlights, which represent the lowest modulation levels.
To operate as a collector-bend detector, the transistor is biased to the point of maximum curvature on its collector characteristic, i.e. to near cut-off. As a result, positive-going swings of the i.f. input will, assuming the use of an npn transistor as in Fig. 1, produce a negativegoing output whilst negative-going signal swings at the input will produce negligible output. The example shown (Fig. 1) is used in the Sony Model TV121. A small, stable base bias is provided by the resistive network R208/9/10 with thermistor TH201, while the potential divider R212/3 stabilises the emitter voltage - for optimum efficiency the transistor's d.c. working point must be closely maintained. The negative-going output is developed across the collector load resistor R211, with filtering by means of the pi network C213/L203/C214.
Such detectors are non-linear - otherwise they couldn't function - but have the advantage of providing a degree of amplification. The synchronous type of detector used in an i.c. on the other hand is highly linear.

Video Driver Stage

Whatever the type of detector, the following stage is always an emitter-follower driver to provide impedance matching. This will be a discrete component stage where
the detector is a diode or a transistor but will be within the chip where an i.c. detector is used.
Fig. 2 shows the diode detector/discrete video driver stage circuitry used in the Philips TX chassis. The video driver transistor's base bias is provided by the potential divider $\mathrm{R} 257 / 8$, to which the earthy end of the final i.f. transformer's secondary winding is returned - this point is earthed from the a.c. point of view by C257. The video detector's output, developed across its load resistor R256, is superimposed on this bias.

The circuit is a bit unusual in employing a pnp transistor as the driver. It's interesting to note the result this will have should the driver transistor go open-circuit or baseemitter short-circuit. Assuming d.c. coupling to the output transistor and the cathode of the c.r.t., the output transistor will be saturated (forward biased by R350) and, as its collector voltage will fall to a very low value, the tube will display a bright, unmodulated raster. With the more usual npn type driver transistor, whose emitter load resistor will be returned to chassis, the same fault conditions will leave the output transistor cut off and the tube displaying a blank screen.

Signal Polarity

A brief word about signal polarity. The detectors shown in Figs. 1 and 2 produce a negative-going signal to drive the base of the driver transistor. The signal itself consists of positive-going vision and negative-going sync pulses (with respect to the black level of course). The polarity of this signal will be preserved by the emitterfollower stage and will then be inverted by the commonemitter output transistor. Increased vision signal amplitude will thus drive the tube towards peak white whilst the sync pulses will black out the raster.

The foregoing assumes that the tube is cathode driven, as is usually the case with $12 / 14 \mathrm{in}$. monochrome portables. When it comes to the small (typically 2-3in.) tubes used in combi (combined TV/radio/clock and maybe cassette recorder) sets however the cathode is generally connected to one side of the heater, so the grid must be driven instead. This implies positive-going vision and negative-going sync pulses at the c.r.t. The required signal polarity can be obtained by taking the output from the cathode instead of the anode of a vision detector diode.

Fig. 1: Collector-bend detector circuit used in the Sony Model TV121. C210/1 provide tuning and matching.

Fig. 2: Diode detector and pnp video driver circuits used in the Philips TX chassis.

Fig. 3: Post-detector video circuits used in the Sanyo TPM2180 combi receiver.

Because of the biasing conditions, an npn collector-bend detector can provide only a negative-going output, so that an additional phase-inverting stage is required. As an example, the Sanyo Model TPM2180 uses a collectorbend detector followed by an emitter-follower, an inverter/amplifier and finally the output transistor (see Fig. 3).

The fourth transistor Q507 is used to provide field flyback blanking. When the field flyback blanking pulse arrives at its base Q507 switches on, shorting Q203's emitter to chassis. Q203's emitter voltage falls from 3.3V to almost zero and in consequence it's driven hard on and its collector voltage is sharply reduced. The positive-going line flyback pulses are applied to the emitter of Q202, switching it off. Its high collector voltage is inverted by Q203, thus once more blanking the tube.

Flyback Blanking

Where the c.r.t.'s cathode is driven the video output transistor must be cut off to effect blanking. Fig. 4 shows the arrangements used in the Bush Ranger Model BM6514. Positive-going line flyback pulses are applied to the video output transistor's emitter via R51, while the pnp transistor VT8 is used to effect field flyback blanking. The negative-going field flyback pulses saturate VT8 whose collector current, flowing via R50 and R53, raises VT9's emitter voltage. The 200 V peak-to-peak flyback pulses at the collector of the line output transistor are used for line flyback blanking, reduced to a suitable value by the potential divider action of R51 with R53. D11 provides beam limiting in conjunction with C41 and R55.

Fig. 4: Line and field flyback blanking arrangements used in the Bush Ranger (T16 chassis).

Fig. 5: Brightness control, line flyback blanking and switch-off spot suppression are all carried out at the c.r.t. grid in the Philips T8E chassis.

During normal operation D11 is conductive, providing d.c. coupling to the c.r.t.'s cathode. With excessive video drive the voltage at VT9's collector will fall below the voltage developed across R55. D11 then cuts off and C41 provides a.c. coupling, removing the d.c. component and thus reducing the brightness.

In most portables flyback blanking is carried out by applying positive-going pulses to the emitter of the video output transistor. In some Philips models however a negative-going pulse is applied to the base, whilst a few models use high-amplitude negative-going pulses fed to the c.r.t.'s grid. As an example of the latter arrangement, Fig. 5 shows the circuit used in the Philips T8E chassis. This is of interest in that switch-off spot suppression is also carried out at the grid. Whilst the set is on D709 is forward biased via R854 and the brightness control, thus linking the earthy end of the brightness control and the negative plate of C775 to chassis. The electrolytic will charge to 95 V via R853. At switch off the 95 V rail rapidly falls to chassis potential so that D709 is no longer held conductive, thus isolating the electrolytic's negative plate from chassis. With the capacitor's positive plate now at chassis potential, the negative plate discharges slowly via R855 and R854, thus applying a negative potential to the tube's grid to bias it off.

Contrast Control

Contrast control can be effected in several ways. The most common arrangement is that shown in Fig. 3, where the contrast control VR201 is connected in series with C204. From the a.c. point of view VR201 is in parallel with Q203's emitter bias resistor R210. Thus as its value is varied so the overall negative feedback and thus the a.c. stage gain is altered. This arrangement will alter the input impedance and bandwidth of the stage, but this is of no great consequence in practice. The only real disadvantage is that even when the control's track is made to minimise the effect the action is non-linear, especially

Fig. 6: Two approaches to contrast control. (a) The Sony TV511 uses a.c. coupling to the contrast control via C408 and C401 - also a.c. coupling to the c.r.t. via C405. (b) Contrast control and video output circuits used in the ITT VC301 chassis.
when the slider approaches the minimum resistance end of the track. Note that the other emitter bias resistor R209 is decoupled at medium and high frequencies only, by C203, thus increasing the l.f. negative feedback and increasing the h.f. stage gain.

Other approaches to contrast control are shown in Fig. 6 . In both cases the required amount of video drive is tapped from a potentiometer in the video output transistor's base circuit: to avoid this affecting the transistor's d.c. conditions and thus the brightness level, the control is either d.c. isolated or connected across points that are at the same d.c. voltage at black level.

Fig. 6(a) shows the circuit used in the 5in. Sony Model TV511UK. The two electrolytics C408 and C401 provide d.c. isolation and since adjustment of the control does not affect the circuit impedances its operation is quite linear. The video signal is a.c. coupled to the c.r.t. by C405, with the brightness control acting on the tube's cathode.

The circuit shown in Fig. 6(b) is used in the ITT VC300 chassis. Here the video level control R50 sets the d.c. level at the input end of the contrast control R52, whose other end is connected to the potential divider R51/53. R50 is set so that at black level the voltages at each end of R52 are equal. C60 bypasses R52 at h.f. to maintain the h.f. response.

In Conclusion

This concludes our review of techniques used in monochrome portables. Power supply arrangements have been dealt with in previous articles - see the December 1978 and August 1981 issues. Line timebase circuitry is conventional though operating at around 11 V or less in combi sets. Class B field output circuits are generally used, though some earlier models employed a class \mathbf{A} output stage.

Twelve-hour Clock Conversions

Derek Snelling

WITH the exception of Hitachi machines, nearly all the VCRs sold in the UK come with a 24 -hour clock. This may be the accepted standard on the continent and elsewhere, but if the customers I come across are anything to go by the 12 -hour clock is still preferred in Britain - hands up all those who've set the timer on their VCR for 10 o'clock instead of 22.00 hours! The problem is not difficult to overcome however since the clock i.c.s used in most machines can be set for either 12 - or 24 -hour operation - in some machines the display even has an a.m./p.m. indicator which is not used. For those of you who, like me, are old fashioned enough to prefer a 12 -hour clock, here's how to convert some of the more popular machines.
The Sanyo VTC9300P uses a TMS1070NLL clock i.c. To gain access, remove the top and loosen the bottom this will enable you to remove the front. Take out the two screws that secure the clock panel to the front and locate the clock i.c. (Q1617). Then open-circuit the link marked $12 / 24 \mathrm{Hr}$ adjacent to pin 1 . Reassemble and the clock will then work on a 12 -hour cycle, with a.m./p.m. appearing as appropriate in the display.
The earlier JVC/Ferguson machines (HR3330,

HR3660, HR3320, 3V00, 3V16 and 3V22) use an SC3044 clock i.c. To gain access, loosen the bottom and, by inserting a small screwdriver into the two slots under the clock, release the clock module. Remove the cover and earth pin 33 of the clock i.c. - pin 5 of the connector is a suitable point. Reassemble. The clock will now operate as a 12-hour one and you will notice the appearance of a colon in the top or bottom left of the clock display, indicating a.m. and p.m. respectively.

The original JVC HR3300 and Ferguson 3292 machines use a CK3300 clock i.c. Proceed as with the HR3330 etc. but earth pin 18 of the i.c. to convert to 12 -hour operation. A colon at the top left of the display indicates a.m., a colon at the centre right indicates p.m.

The JVC HR7200/Ferguson 3V29 uses a μ PD552C-060 clock i.c. To gain access, remove the top and bottom and unclip the front. Undo the four screws that hold the clock panel and remove this to the extent of the leads. The clock i.c. is IC401: to convert it to 12 -hour operation, open-circuit pin 34 by cutting the print or lifting the pin clear of the print. The outputs for a.m./p.m. indication are at pins 18 and 19. The display has two colons that separate the hours and minutes digits, and these can
be used to indicate a.m./p.m. They are available at pins 9 (bottom colon) and 20 (top colon) of the display device.
To use these colons, remove link B414 that links pins 16 and 17 of the timer i.c. to pin 29 of the display. Cut the print between pins 9 and 20 of the display and between pin 9 and RA402. Use wire links to connect pin 18 of the i.c. to pin 20 of the display and pin 19 of the i.c. to pin 9 of the display.

Reassemble. The clock now displays 12 hours with the top centre colon indicating a.m. and the bottom colon p.m.

The Ferguson 3V30 uses a μ PD552C-068 clock i.c. To remove the clock panel proceed as with the 3 V 29 . Locate IC401 and open-circuit pin 40 by cutting the print or
lifting the pin from the board. The clock will now work in the 12 -hour mode, with a.m./p.m. being indicated by the first two segments of the first digit of the time display the upper segment indicates a.m. and the lower segment p.m.

The display used on this machine does have proper a.m. and p.m. symbols however. To use them, proceed as follows. Lift the display end of links B454 and B464 and open-circuit pins 8 and 11 of the display either by cutting the print or lifting from the board. Then connect the free end of link B454 to pin 8 of the display and the free end of link B464 to pin 11.

Other machines using the clock i.c.s mentioned can be converted by taking similar action.

Service Bureau

Abstract

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{E 1 . 0 0}$ postal order (made out to IPC Magazines Ltd.), the query coupon provided below and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

TYNE 5223

This set needs a new tripler but I'm having difficulty getting any information. Presumably a universal type would do - could you advise on how to wire it in?

The ITT universal tripler will work in this chassis. The grey lead is the input from the line output transformer, the white lead the output to the focus control, the red lead goes to the c.r.t., the black lead to chassis and the blue lead to chassis via a parallel $R C$ combination (R502 $820 \mathrm{k} \Omega$ and $\mathrm{C} 5080.001 \mu \mathrm{~F}$).

RANK A823B CHASSIS

The set developed a focus fault due to 6R10, which is in series with the focus control, going high in value. A replacement resistor and tripler were fitted and the set worked perfectly for a couple of months. Recently however the focus spark gap 4SG3 has started to spark at a rate of some twenty times a second after the set has been on for about half an hour.

It's unlikely that the focus voltage is too high if the picture is correctly focused: we've often come across this effect and found it to be due to no more than a faulty spark gap. If you get the same results after fitting a replacement, the e.h.t. will have to be checked. If this is correct at 25 kV or thereabouts the c.r.t. may be sparking over internally.

DECCA 80 SERIES CHASSIS

The problem was an intermittent heater-cathode (red) short. I've overcome it by disconnecting the heater circuit from earth. Are there any drawbacks to doing this?

The heaters are earthed simply to prevent them floating and rising to high potentials. To prevent this happening we suggest you connect one side of the heaters to the red cathode (pin 11) via a $100 \mathrm{k} \Omega$, $\frac{1}{2} \mathrm{~W}$ resistor. This will prevent static build up when the fault is not present. Be sure to revert to the normal connections should you replace the tube.

RANK T24E CHASSIS

The picture is good and the set works normally except for the fact that there's not enough horizontal shift to the right. Excessive width is necessary to fill the screen. There is also slight horizontal non-linearity (mostly unnoticeable) at the extreme left-hand side.

Since the tube has a horizontal centring tolerance of 4 mm , no centring adjustment is provided. We suggest you
check the purity, then the scan-correction capacitors C442/3 which might be slightly leaky. If these points prove to be in order, suspect a phasing error in the horizontal generator. If the line hold is correctly set, the suspects are C402, C401, R402 and R401 - in that order. They form the feedback/integrating network between the line output transformer and the flywheel sync discriminator.

THORN 9800 CHASSIS

The problem is a lazy field timebase. At switch on there's a horizontal white line across the screen. This opens out to give a full-sized, normal picture after ten to fifteen minutes. The two field output transistors have been checked and appear to be o.k.

The best approach is to use a scope to check through the oscillator and driver stages during the presence of the fault. Failing this, the items we suspect are the f.e.t. amplifier VT412 (in our experience the Thorn supplied type is the only suitable replacement) and the $6.8 \mu \mathrm{~F}$ electrolytic coupling capacitor C447. A more remote possibility is VT406 in the field oscillator circuit. Careful application of warm air and freezer will narrow the field of search.

LUXOR 90° HYBRID CHASSIS

The picture is very poor and the sound makes all kinds of racket. Any ideas?

If the picture is snowy and the sound hisses, check the setting of the a.g.c. preset R255. If this control has no effect, replace the 18 V zener diode D208 which stabilises the a.g.c. amplifier transistor's emitter voltage. If the fault is a weak picture with hum on sound, check the voltage at the collector of the 24 V stabiliser transistor Q214 (AD149). If the voltage here is less than 24 V , replace the driver/error sensing transistor Q215 (BC142 or BFY50/51 will do). It would also be worthwhile checking the cans that house i.f. coils L222 and L223 - waggle them. They are mounted on a small metal bracket and are prone to damage.

ITT HYBRID COLOUR CHASSIS

An irregular white interference line appears on the righthand side of the screen a few minutes after switching on. The line gradually gets bigger, changes shape and sometimes forms a circle, distorting the picture. Decreasing the settings of the brightness and contrast controls makes the problem worse.

This sort of effect is normally due to parasitic oscillation in the line output valve. If a new PL519 and/or PY500 does not cure the problem, try fitting small r.f. chokes (e.g. RS 1A type) in the leads to the top caps of both these valves.

QUERY COUPON

Available until 15th December 1982. One coupon, plus a $£ 1.00$ (inc. VAT) postal order, must accompany EACH PROBLEM sent in accordance with the usual conditions.

TELEVISION DECEMBER 1982

240

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Some years ago, before transistors such as the BU208 and BU500 had been developed for use in colour receiver line output stages, the only courses open to designers were to adopt the low-voltage/high-current approach used for example by Thorn in their 3000/3500 series or to use a pair of relatively low-voltage devices in series to share the flyback voltage. The best known examples of the latter approach are the Rank A823 and Philips G8 chassis, which both use a fairly simple half-wave, thyristor-regulated power supply providing 200 V or so. Another variation on this theme was adopted by Rank in their Z718 chassis. In this case the power supply is simple indeed, consisting of little more than a bridge rectifier and reservoir capacitor, stabilisation being achieved via the EW modulator circuit. The h.t. of around 260 V is fed to a rather complex, balanced line output stage which is shown in basic form in Fig. 1. The other supply lines used in the set are all derived from the line output stage. Our puzzle this month concerns a Bush Model BC6100 fitted with the Z 718 chassis.

The symptom to start with was no results. As expected, the 260 V supply was present - it was rather more than 260 V in fact, since the dormant line output stage was drawing no current. Our first step was to bypass the two start-up capacitors, 4C18 for the line oscillator and 5C3 for the line driver stage, using a $5 \cdot 6 \mathrm{k} \Omega, 5 \mathrm{~W}$ resistor across each. This got things moving, and with line drive present we were rewarded with a picture. It was narrow however, about an inch in at each side, and a check on the e.h.t. showed that more than 25 kV was present at the c.r.t.'s final anode connector instead of 21 kV ! The combination of low width and high e.h.t. suggested that the line output stage was unbalanced, and further checks showed that 5 R6 (68Ω), which provides the supply to the line driver stage once the line timebase has got going, was burnt and open-circuit. Plainly the ripple voltage at the junction of the two line output transistors was excessive.

We temporarily wired a $5 \mathrm{~W}, 68 \Omega$ resistor in the $5 R 6$ position to withstand the line-rate ripple current while we attempted to balance the line output stage. This is done by monitoring the a.c. (line rate) voltage across 5 R6 while adjusting the differential base-drive coils $5 \mathrm{~L} 1 / 2$ for a null, when the reading should be less than 1 V . We were unable to get below 6 V a.c. however at any setting of $5 \mathrm{~L} 1 / 2$, and the 5 W substitute resistor was getting warm!

Time to switch off and check the line output transistors 5VT2/3.

No faults showed up on ohmmeter checks, but we replaced the two transistors nevertheless because we couldn't find anything else wrong by using our ohmmeter - the resistors in the base networks ($5 \mathrm{R} 2 / 3 / 4 / 5$) and the d.c. resistances of the line output transformer's split primary winding were all correct. We still couldn't balance the stage, and subsequent tests eliminated the scan-correction capacitors 5C14/15. Line output transformer failure was feared, but the transformer turned out to be blameless. So where did the fault lie? See next month.

ANSWER TO TEST CASE 239 - page 44 last month -

The yellow picture displayed by our ITT CVC9 last month was due to the c.r.t.'s blue gun being cut off by excessive voltage at its cathode. We'd established that the blue output transistor T33d was not responsible, and found that its base voltage was low due to a base current of some 10 mA . The enigma was resolved when we finally got around to measuring the voltage at the transistor's collector leadout. We found no voltage here, and quickly saw that the h.f. peaking coil L73d was open-circuit. With no collector current flowing, the output transistor's forward-biased base-emitter junction was simply placing R246d and R247d across the driver transistor T32d, giving the strange voltage readings quoted last month.

Where did the owner's family and cat come into it? Well, close inspection of the offending coil showed that its failure was due to a "green spot" of corrosion and there were signs of a noxious liquid having entered the set. Nobody would admit anything, but when we got into the car to drive away we noticed that the cat was crouching beneath it, apparently full of remorse and intent on ending it all...

Fig. 1: Line output stage circuit (simplified) used in the Rank Z718 chassis.

[^0]
UNIVERSAL PROGRAMME SELECTOR FOR VARICAP TUNING

UK Regd. Design No. 1006611
6 way interlocked d.p
switch 100 K tuning potentiometers Top quality through hole plated pcb
Dimensions: $5^{\prime \prime}$ by $24^{\prime \prime}$ by 1^{*}
Ideal for replacement when original parts are obsolete or unobtainable
Template guide supplied for driling of your own fascia design
Range of pre-cut and drilled tascia/mounting kits for selected TV chassis enabling our unit to be fitted without further cutting drisling or modification
All orders despatched same

day

DMECT REPLACEMENT FASCINMOUNTING KITS
Type 30-80 Replaces 7 piano-key unit as fitted to Decca/Telefunken 30 and 80 chassia
Type 30-C Replaces 7 piano-key unik as fitted to Decca console using long
Type 100 Replaces 8 position touch tune selector (AEG SAS 660 SAS 670) as Replaces 8 position touch tune selector
used in Decca/Telefunken 100 chassis
Type CVCB-9 Replaces 5 rectangular push button plus thumbwheet as used in ITT

selector $\mathbf{f 1 4}$ + vat
FASCIA/MOUNTING KITS (each) $\mathbf{£ 2}+\mathbf{V A T}$

ALDERSONJAMES LTD

160 KINGS ROAD • HARROGATE © N. YORKS TEL: HARROGATE (0423) $\mathbf{6 0 0 5 8} \mathbf{~ H G 1 5 J G}$

A lightweight. extremely portable and versatile pattern gengrator for black/white and colour T.V, alignment and service at phe customers home At the tum of a switch, the generator can provide five essential test pattems for correct installation, fast checks and repairs. Pattem stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams
PRICE E14.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Telepart
Colour Bar Generator
Exceptionally light \& durable

- Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$
powered for mobility - Battery powered for mobility - Cross hatch grid
- White raster
scale Colo
- Grev scale " Colour bars

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility fien not found on more costly generators.
PRICE E49.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR. This compact unit mounts by 2 screws Into the Battery compartment and converts the unit to a bench instrument.
PRICE E5.50 (Subject to V.A.T.)
Supplied by return, off the shelf

SCARBOROUGH T.V. TRADERS CO. LTD.

Offer you quality Colour T.V. at competitive prices with quantity discounts All major makes available - including: PHILIPS G8-GEC SOLID STATE BUSH 2 CHIP - PYE 731 - THORN VARICAP (6 Buttons) - DECCA 30 THORN 8000 17"/8500 19" etc. Delivery arranged
GENUINE CHANGE OVER SETS SPECIAL OFFERS £100 BUYS

10 of PYE 205 10 of GEC HYBRID 10 of TELPRO THIS MONTHS SPECIAL10 BUSH FOR £150
YOU HAVE TRIED THE REST NOW TRY THE BEST

85, Columbus Ravine, Scarborough,
North Yorkshire YO12 7QU. 0723-68087.
1 hour away from A1/A64 Junction.

MANTEL
MANCHESTERS NUMBER ONE SOURCE IN EX-RENTAL TV'S
SPECIAL COLOUR OFFER
10 for $\mathbf{£ 1 2 5}$
PHILIPS G8 BUSH GEC DECCA 6 for $£ 90$ 6 for $£ 80$ 6 for $\mathbf{£ 6 0}$ 6 for $£ 60$
WORKING SETS AVAILABLE - MIN 6 THORN £25 each PHILIPS £30 each BUSH £25 each GEC DECCA MONO
£22 each
£25 each £10 each Repolished Cabinets available P.O.R.

Many other makes incl. JAP, GRUNDIG etc. Ring for quote. Export enquiries welcome. Ex-equipment Tubes/Panels.
Callers welcome
Tel. 061-861 8501
419 BARLOWMOOR ROAD, CHORLTON, MANCHESTER M21 2ER.

ELECTRONIC EQUIPMENT SERVICING

 (TELEVISION/VIDEO)full-time College course

TRAINING INVOLVES A HIGH PERCENTAGE OF WORKSHOP FAULT DIAGNOSIS ON MONOCHROME \& COLOUR TELEVISION EQUIPMENT. CLOSED CIRCUIT TV \& VIDEO CASSETTE RECORDER PRINCIPLES ARE INCLUDED IN THE COURSE

15 MONTHS COURSE

for beginners to include Electronic Fundamentals

6 MONTHS COURSE

for BSc, HND, CGLI, TEC
and similar applicants

Next two courses commence on JANUARY 10th \& APRIL 25th.
Also courses in Computers/Microprocessors, and Radiocommunication/Radar leading to College Diploma and Technician Education Council awards.
Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept T3/4)
20 Penywern Road,
Earls Court, London SW5 9SU
Tel: 01-373 8721

COLOUR TV SETS

Philips G8, Bush 823, Pye 222, Decca 30 series, Pye Chelsea, Grundig.

All complete, workers or untested from £10 (+ VAT).

Spare panels and rebuilt tubes available.
SOUTHBRIDGE TV CENTRE
20 Southbridge Rd., Croydon, Surrey. Tel: 01-771 3536 or 01-681 7848.

TV LINE OUTPUT TRANSFORMERS

fast return of post SERVICE

MICRO-TOUCH PROGRAMME SELECTOR

 TYPE: DECCA, TELEFUNKEN etc.

\author{

- DIRECT
 replacement
 - Custom moulding for
 PROFESSIONAL FINISH
 -7 BUTTONS ALIGN WITH EXISting LEGEND
 -L.E.D CHANNEL INDICATORS
 - USED BY MAJOR MANUFACTURER
 VERMILLION
 ELECTRONICE LTD.
 UNIT 14. HALESFIELD 18.
 TELFORD. TF7 $40 T$ SHROPSHIRE.

 TEL. (0952) 582995
 PRICE: £15:80 POSt fREE U.K + 15\% V.A.T
}

TOP TWENTY T.V. SPARES

1. Philips G8 LOPTX (genuine Philips) $\quad \mathbf{E 7 . 5 0}$
2. Decca 30 Series LOPTX (genuine Decca) $\mathbf{£ 7 . 0 0}$
3. Decca 100 Series LOPTX (genuine Decca) $\mathbf{£ 6 . 5 0}$
4. ITT CVC 25/30/32 LOPTX (genuine ITT) $£ 7.00$
5. Pye 713/725/731 Vis Gain Module $£ 6.50$ (replaces expensive 212-27327)
6. $5 \times$ Universal Aerial Socket Kit
£5.50
(replaces most UK and Continental skts)
7. $10 \times$ BU208
$\mathbf{£ 7 . 5 0}$
8. $10 \times$ BU208A $£ 8.50$
9. $10 \times$ BT106 $£ 8.50$
10. Pye $725 / 731$ EHT Tray $\mathbf{£ 3 . 0 0}$
11. Decca 1730/1830 Doubler $£ 2.00$
12. Decca 80 Series EHT Tray $£ 3.00$
13. GEC 2040 (Hybrid) EHT Tray $£ 3.00$
14. Thorn 1500 (3 Stick) EHT Tray $£ 3.00$
15. Thorn 1500 (5 Stick) EHT Tray $£ 3.50$
16. Thorn 8000 Doubler $£ 2.00$
17. Thorn 1400 EHT Tray $£ 2.00$
18. Thorn 3000/3500 EHT Tray £4.00
19. Philips G9 EHT Tray $£ 3.50$
20. ITT Universal EHT Tray 55.25

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15\% VAT and 90p P \& P
QUICK SAVE T.V. SPARES,
Muxton House, Muxton, Telford, Salop.
REG. OFFICE ONLY
CALLERS STRICTLY BY APPOINTMENT UK ONLY

CENTREVISION NO. 1 IN WALES
 9000 Sq Ft 2000+CTV

\star MITSUBISHI CTV £22
\star KORTING 22-26 CTV £10 + VAT
\star HITACHI CTV FROM $£ 28$ + VAT

* THORN $900020^{\prime \prime} £ 60$ + VAT
* RANK Z719-Z718-T20 VARIOUS PRICES
\star TOP MAKES IN GRADED STOCK
\star GEC SOLID STATE FROM $£ 28$ + VAT
\star THE TRADE SAY THE BEST QUALITY SETS ON THE MARKET TODAY
\star BULK TERMS TO OTHER
WHOLESALERS

> ALSO VIDEO IN STOCK DONT DELAY PHONE TODAY 0222-44754 CENTREVISION HOUSE,

> SLOPER ROAD, CARDIFF CF1 8AB.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc. received as a result of answering such advertisements. Classified advertisements are excluded."

Wearepleased to aminonnce a New National Contract offering the following WDRK/N/G sets....

			CATEGORY 3 £ 40 to $£ 55$ each		
			Thorn 8500 Bush 6100 (Single Chassis) Philips $\mathbf{G 8}$ (Sloping Button)		20"JVC 7825 GEC Plastic Cabinet
			CATEGORY 4 ¢25 to £40 each		
CATEGORY 2 £55 to £70 each			Thorn 3500		Philips 68
Bush 64378.6438 Thorn 8800 GEC 2202 \& 2206	ITT 505, 610 \& 700 Thorn 9000 Phillips 69		CATEGORY 5		
			Thorn 1500 Mono £8.00 each		Thorn 1600 Mono £10.00 each
SOME NON-WORKERS USUALLY AVAILABLE IN ALL CATEGORIES AT APPROX. HALF PRICE					
L ENGLAND				SCOTLAND	$\sqrt{\left.{ }^{(0 \backslash] D^{\top}}=\right]^{\top}}$
LONDO		WARRINGTON		Contact Fraser Hunter	
Contact Tony ${ }^{\text {a }}$ Contact	inLedgerwood	Contact Asif		Peacock Cross	1043 Leeds Road,
Nobel Road Eley Estate. Wating S	Het Hocklifte.	21 Raverihurs		Industrial Estate.	Thornbury Roundabout,
Edmonton. London N18 North Du	table (On A5).	Risley Road	chwood	Burnbank Road Hamilton	Bradford,
NorthCiralar Roed Unction1 Tel (01) 8074090 Tel (0525)	mi Lerghton Buzzard 210768	Warrington Tel (0925) 8	tion IMEE2	OffM74motorway Tel: (0698) 282141	West Yorkshire. Tel: (0274) 665670/665378
Telex: 51119 Tidex G					

HIGH GAIN AERIAL BOOSTERS

B45 H/G UHF Television Tunable over the complete UHF band. Gain above 20dB, noise 2.8 dBs .

314-Band 3 VHF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Also 3 covers Aircraft 82 meter Amateur Bands. Gain meter mateur Bands. Gain above PRICE Noise 2.8 dB
PRICE each $\mathbf{£ 8 . 7 0}$

AERIAL AMPLIFIERS
Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band
B11 - For stereo or standard VHF/FM radio.
B12-for VHF television band $1 \& 3$. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting. PRICES $\mathbf{f 6} \mathbf{7 0}$ each.
PRICES 56
LITTERS
AERIAL SPLITTERS
2 way T-TYPE $£ 2.70$ each
Goods despatched on receipt of order
All Prices Fully Inclusive. P \& P per Order 30 P. S.A.E. for Leatlets. Access Cards.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW Tel Rams (070682) 3036.

THE NO. 1 SOURCE IN THE SOUTH
 GOOD STOCKS OF MODERN COLOUR NOW AVAILABLE BRAND NEW TV, VIDEO AND AUDIO PHONE FOR DETAILS TeleTraders
 ST. LEONARDS WAREHOUSE
 ST. LEONARDS ROAD, NEWTON ABBOT, DEVON

Telephone: (0626) 60154

TELEVISION TUBE SHOP LTD
 BRAND NEW TUBES AT CUT PRICES

19W/20W	230DB4CT468
A31-120W/300W17.95	240DB4/240AB4A 22.00
A31-410/510W17.95	CT507 equiv 21.95
A34-100W/510W $\mathbf{1 8 . 5 0}$	310DGB4/DMB4....... $\mathbf{2 3 . 0 0}$
A34-514W24.25	310EUB4 $\ldots19 .95$
A38-160W/170W17.50	310EUB4A $\mathbf{1 8 . 5 0}$
A44-120W/R 25.00	310EYB4 18.75
A50-120W/R 19.00	
A61-120W/R21.00	310HCB431.00
9AGP4 $\mathbf{2 1 . 8 2}$	340AB4 22.50
190AB4/C4 23.00	340A Y B4....................30.00
	340AXB4.................30.00
Some R	340RB4/CB4.............26.00
8 European Types	340A HB426.00
Available from £14.00 +VAT £2.10	RIGONDA 6"...........14.00

COLOUR TUBES
(NEW \& MUILARD/THORN COLOREX)*

12VARP22	. 62.50	A56-120X	$£ 54.00$
330 AB 22	73.50	A56-410X	00
A44-271X	. 60.00	A56-500X/510X	63.00
A47-342X	.61.00	A63-120X	63.00
A47-343X	.61.00	A66-120X	.. 65.00
A49-191X	53.00	A66-140X/410X	70.50
A51-161X	70.00	A66-500X/510X	. 65.00
A51-220X	55.00	A67-120X	. 65.00
A51-500X/510X	64.50	A67-140X/200X	..69.50
A51-570X	73.00	A67-150X	. 75.00

Old Bulb Required for 110° Colorex

 ADD 15\% VAT TO ALL THE ABOVE PRICES.ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD
52 battersea bridge rd., LONDON, SW11.
Tel. 228 6859/223 5088 CARRIAGE: Mono $£ 3$, Colour $£ 10$.

N. J. ELECTRONICS

(SUPPLIERS OF QUALITY COMPONENTS)
UNIT 94, STORFORTH LANE TRADING ESTATE, CHESTERFIELD, 341 0SN, DERBYSHIRE

Philips G8 Later Push Button Unit $\mathbf{5 9 . 6 0}$
Pye 731 IF Gain Module (original type) $£ 7.80$
Alternative IF Gain (SAWF Type) $\mathbf{E 7 . 6 0}$
ITT CVC9 LOTX $\mathbf{£ 9 . 0 0}$
Philips G8 LOTX (genuine Philips) $\mathbf{£ 7 . 3 0}$
G11 EW Loading Coil $\mathbf{£ 1 . 0 0}$
G11 EW Transformer $\mathbf{£ 1 . 0 0}$
$25 \times$ BY127 . $\mathbf{8 2 . 3 5}$
25×1 A 20mm Anti Surge Fuse $\mathbf{~} \mathbf{2} .00$
$25 \times 2 A 20 \mathrm{~mm}$ Anti Surge Fuse $\mathbf{.} 2.00$
$50 \times 500 \mathrm{~mA} 20 \mathrm{~mm}$ Quick Blow Fuse . . $\mathbf{~} 1.50$
5 x BU208A . 84.50
$5 \times$ R2008 . $\mathbf{~} 4.50$
$5 \times$ R2010 . $\mathbf{.} 4.50$
G11 Diode Split LOTX $\mathbf{E 1 2 . 5 0}$
ITT CVC40 Diode Split LOTX $\mathbf{£ 1 2 . 5 0}$
Thorn 3500 EHT Tray $\mathbf{6 0}$
Decca 100 EHT Tray 6.30
Decca 80 EHT Tray . $\mathbf{£ 6 . 3 0}$
U321 Tuner . $\mathbf{E 7 . 0 0}$
U322 Tuner . $\mathbf{£ 7 . 0 0}$
FT3055 Transistor50
G11 CRT Base Panel $£ 3.00$

Add 65 pence post/packing + 15\% VAT to all orders. Account facilities available (Trade Only). Goods despatched same day by First Class Post. To check stock Telephone Ripley (Derby's) 813596 between 9.30-11.30 am or 2.00-4.00 pm.

THE BEST TV BARGAINS IN THE SOUTH

DECCA BRADFORDS
PHILIPS G8's
Plenty of refurb-working sets
THORN 8-8K5
R.B.M. twin chip
G.E.C. 2040 most working

THORN 3-3K5

THORN 3-3K5

Special discount offers on large orders
Subscription Rates:
UK, Isle of Man, Channel Islands and Irish Republic $£ 10$

Overseas £11
Unless you are phoning your order, complete and post this order form to: Television 2816 King's Reach Tower, Stamford Street, London SE1 9LS.
G.E.C. Solid State

Mono's, 1500 etc. all at 63 in batches of 10.55 singles. Virtuall 5 f100
Mono's, 1500 s etc. all at $£ 3$ in batches of 10 . $£ 5$ singles.
known make in stock inc. Japanese at give away prices.
EXPORT SPECULLSTS - 1000: SETS AVALABLE EVERY WEEK OPEN 7 OAYS
Buff Shipmentre catered for.
C.R.T.s Regun or Ex Equip. T.V. Trolly Stands

E5
Vish our maselve ultra modern premises. Tea, coffee, snacks avallable.
Whatever your needs we are in the lead. Ring today.
Easy Motonway Acess, amplo parking. Open 7 days.
PANELS EX-EQUIPMENT
R.B.M. I.F. Power Conv.

Time Base-Decoder
$7.50+£ 1.60$ P.P
Philipe G.8. All Panels
G.E.C. 2040 Decoder-C.D.A.

Thom 3_3K5. Power Line
E7.00 + E 1.50 P.P.

Thom 3-3K5. Power Line
. $50+\mathrm{E} .00$ P.P. $2.50+\mathrm{E} 1.60$ P.P.

Thom 8-8K5. I.F. Decoder Time Base
$\mathrm{£} 12.00+£ 2.00 \mathrm{P} \cdot \mathrm{P}$
$\mathbf{£ 7 . 5 0}+\boldsymbol{£ 1 . 4 0} \mathbf{P} . \mathbf{P}$
$\mathbf{E 7 . 5 0}+\mathbf{£ 1 . 5 0} \mathbf{P} . \mathbf{P}$
All Parts available all sets
Please telephone your needs. Speedy return of post service.
Special Offer: G-8 lopts (new type) $\quad \mathbf{£ 9 . 0 0}+\mathbf{£ 1 . 0 0}$ P.P.
All prices subject to 15\% V.A.T.

COLOUR T.V. \& MUSIC CENTRE

Old Mixon Trading Estate,
Winterstoke Road, Weston Super Mare, Avon. Tel: 0934413537.

M. W. ELECTRICAL
BROOK PARK AVENUE - Off MARINE ROAD - PRESTATYN "WE DO NOT BOOST TUBES" COLOUR TV's
COMPLETE $\mathbf{£ 1 5 . 0 0}$
TRADE WORKERS £25.00
Minimum 10
G-8 DECCA - THORN 3000
(SPARE PANELS \& TUNERS AVAILABLE) REDUCTIONS ON QUANTITY
TEL: PRESTATYN (07456) 89849/89970

COLOUR SETS GALORE

Hundreds in Stock. From £20. Guaranteed Complete. Mono's and non-complete sets from $£ 3$.

Most makes available.
QUALITY COLOUR TUBES Reconditioned and used tubes.

From $£ 10$ Guaranteed.
Don't delay, ring today.
ALPHA TUBES (DUNSTABLE)
53 Lowther Road, Dunstable.
Tel. (0582) 68934
TRADE

```
LONDON'S LARGEST TELEVISION WHOLESALER...
```

LONDON'S LARGEST TELEVISION WHOLESALER...
with over 41 thousand sq. feet.
with over 41 thousand sq. feet.
*TELENANN**
*TELENANN**
8-10 RHODA STREET,
8-10 RHODA STREET,
(Off Bothman Groen Road)
(Off Bothman Groen Road)
LONDON E.2. FREE CAR PARK
LONDON E.2. FREE CAR PARK
TEL: 01-739 2707
TEL: 01-739 2707
ALL MAKES IN STOCK AND GUARANTEED
ALL MAKES IN STOCK AND GUARANTEED
<8M\&NAE
<8M\&NAE
PYE 22" COLOUR FROM £7.50
PYE 22" COLOUR FROM £7.50
PHILIPS 22"G8 (Teak cabinet) PARCEL OF TEN £12
PHILIPS 22"G8 (Teak cabinet) PARCEL OF TEN £12
MONO DUAL STANDARD £2
MONO DUAL STANDARD £2
- SINGLE STANDARD £5
- SINGLE STANDARD £5
FREE DELIVERY TO THE LONDON AREA!
FREE DELIVERY TO THE LONDON AREA!
TELEPHONE 01-739 2707 - NOW!

```
    TELEPHONE 01-739 2707 - NOW!
```


N.G.T. COLOUR TUBES

First Independent Rebuilder with

B.S.I. CERTIFICATION
 (Certificate No. 004)
 2 year guarantee: 4 year option

All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
No exchange tube required on delta types.
N.G.T. ELECTRONICS LTD.,

120, SELHURST ROAD, LONDON S.E. 25
Phone: 01-771 3535.
20 vears experience in television tube rebuilding. addVAT at 15\%

If you see an advertisement in the press, in print, on posters or a cinema commercial which you find unacceptable, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)
The Advertising Standards Authority.
If an advertisement is wrong, we're here to put it right.
ASA Ltd, Brook House, Torrington Place, London WCIE 7 HN .

APOLLO

HIGH TEMPERATURE PUMPED COLOUR TUBES
Fast Mail Ordor sarvice to any part G.B. Delivery 2-3 deys.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $\mathbf{f 2 0}$ extra. Also PIL types \& Toshiba.

$18^{\prime \prime}$	A47 - 342×343x	£37.00
19"	A49 - $120 \times / 192 \times$	£37.00
$20^{\prime \prime}$	A51-220x/110x	E38.00
22"	A56-120x/123x/140x	£38.00
25"	A63-120x	£39.00
26x	A66-120×A67-120×/140×/150	£39.00

22" Bush all transistor colour TV's fully serviced $£ 59$ inc. delivery or with (new tube guaranteed 2 years) 989. Philips Video Spares Available.
061799088424 hour answering service. 43 Clarke Cres, Littie Hulton, Nr. Manchester M28 6XM.

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS. TEL: 0329-235116

SOLID STATE GRUNDIG, Nordmende, reconditioned panels. Also complete sets circuits. 0785 814643.

TRADE COLOUR TV's

MOST MAKES \& SIZES FROM £10. DISCOUNTS FOR $5+\& 10+$. MON-SUNDAY.
TEL: OWER 318 (southampton)

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.
CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

TELEUIEIOM
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 5.64$ per single column centimetre (minimum 2.5 cms). Classified advertisements 33 p per word

SETS \& COMPONENTS

SATELLITE TV EQUIPMENT

 ARE YOU INTERESTED BUT PUT OFF BY THE PRICE? By building yourself, a complete system, excluding dish can cost not much over $£ 200$. 1 am your 'one stop' 4GHz TVRO component supplier. If you've ever built an aerial amplifier you can cope with the electronics at 4 GHz . Sae data, TVDX lists. Overseas enquiries welcome. H. Cocks,Cripps Corner,
Robertsbridge, Sussex T'N32 5RY Tel: 058083-317.

EX-EQUIPMENT COLOUR TV PANELS

 Complete untestedPye 713 RBM A823, Thorn 2000, 3000, 3500, 8000 . Decca 30 , i.e. Pye 713 Decoder $£ 6$. RBM A823 Convergence \&3. Thorn 2000 Regulator 25 " $£ 3$ including $P \& P$. Sae list:

CAMBER TV CENTRE,
Lydd Road, Camber, Sussex.
Tel: Camber 457.

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL Union Street FACTORS 1030214958368416

GOOD MOTORWAY ACCESS
TRANSISTORISED TEST EQUIPMENT, working order, ex Grundig Meters, P.S.U.s, Isolating Transformers, etc. SAE lists: S.H.E., 5 St Joseph's Park, Ballycrutte, Downpatrick. BT30 7EN.

TRIPLERS - PRICES REDUCED

Thorn $3000 / 3500$
Thorn 9000 UNIVERSAL The UNIVERSAL TRIPLERcan be used in most
G.EC. IT.T. Pye. Rank. Decca \& Continental G.E.C., I.T.T.. Pyc. Rank. Decea \& Continental sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middlesex

TEST EQU/PMENT
 T.V. Pattern Generators.
 Crosshatch \& 4 patterns As above but with Greyscale
 Prices inc/ude P\&P and VAT.
 Also available
 PAL COLOUR BAR GENERATOR
 CAPACITANCE METER
 TRANSISTOR TESTOR
 S.A.E. for prices and full details.
 C. L. JERVIS
 15 Mercer Grove
 Wolverhampton, WV11 3AN. Tel. (0902) 23916.
 T.V.
 SPARES, PANELS
 - AND MANUALS PHILIPS • GRUNDIG

TELEVIEW
01-994 5537

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey.
 Tel: 01-686 7951/2/3/4

SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

194, Acton Lane, London W.4.

WIZARD DISTRIBUTORS MANCHESTER

Specialist distributors to the Trade of T.V. \& Video spares.
We stock a full range of parts \&
components including CRT's:
RANK, THORN, PHILIPS, I.T.T., DECCA, GEC. etc. Trade Counter Open: 94.30.
Catalogue on request. Mail Order enquiries welcomed. EMPRESS ST. WORKS, Empress Street,
Manchester M16 9EN.
Tel: 061-848-0060.

EERUICE PAEES
(minimum 12 words), box number 60p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

G JEFPRIES 01-845 2036
RANK, BUSH, MURPHY TV PANELS
Repair/sale service by ex RRI experts. Same day retum with 3 months guarantee. Genuine RBM technology at your service.

Monday to Saturday 9 am to 7 pm
T. K. PANELS SERVICE,

31 Leaves Spring,
Stevenege, Nirts.
Tal: (0438) 61567.

Colour TUBES 20" $\mathbf{2 2}^{\prime \prime}$
Ex equip. TESTED
ع9.00 plus postage and packing
GEC 2110 PANELS Ex equlp. TESTED
£3.50 each plus postage and packing WORKING SOLID STATE TV's from $\mathbf{£ 4 5 . 0 0}$
B \& H LTD, Bank Top Works, Southowram, Hallifax Tel. 042254581

BULK BARGAIN T.V. SERVICE PACK

 Contains at least $£ 50$ worth of T.V, service components and accassories. Loads of hard to obtain T.V. apares and components. Ideal for the service engineer. Only GREEN CAT 1000 . GREEN CAT 1000 s of new components, T.V., radio, ably the cheapest in the country. Send 40 p for GREEN CAT and reserve FREE RECORD SPEED INDICATOR. MYERS ELECTRONICS, Dept. TV2, 12/14 Harper Street, Leeds LS2 7EA.Naxt to Union Jeck Clathing Store, Leeds LSZ 7EA
Callers wolcome at our NEW retail premises. Open 9 to 5 Mon to Sat. Tel. 452045.

COLOUR T.V.s
 CLEARANCE SALE PHILIPS G8 COMPLETE 22" FROM £25

DISCOUNT FOR BULK BUYERS

TEL: 9651230 8 9613997
SMITH ELECTRONICS
43-43A, PARK PARADE, HARLESDEN, LONDON N.W. 10.

EAST ANGLIA BARRY TV SERVICES

Good quality working colour televisions (from £35 plus VAT) straight from our retail shelves, (with good tubes \& cabinets). Available at all times delivery available anywhere.

Contact John, Dave or Steve on Cambridge 69215 or Ely 81462
Your Satisfaction is Our Concern.

IRELANDS LARGEST TV DISTRIBUTOR
 THOUSANDS IN STOCK INCLUDING BUSH 2 IC, PHILIPS G8, ITT, DECCA BRADFORD, GEC AND PYE SOLID STATE, GRUNDIG, JAPANESE etc. COLOUR FROM $£ 10$ MONO FROM \&1. Delivery can be arranged. SPECIAL: LOTS OF 100 DECCA BRADFORDS, PHILIPS G8, ITT AND BUSH 823. ALL SIZES $£ 15$ each
 ALSO DISTRIBUTORS OF NEW TELEVISIONS, VIDEOS, MUSIC CENTRES, AERIALS, TUBES, SPARES etc. ALL TOP BRANDS (GRUNDIG, HITACHI, PHILIPS), JVC, PANASONIC, LUXOR, MITSUBISHI etc.
 NEW 20 $0^{\prime \prime}$ PHILIPS £ $177,22^{\prime \prime} \mathrm{E} 195,22^{\prime \prime} \mathrm{R} / \mathrm{C}$ E223, $26^{\circ} \mathrm{R} / \mathrm{C}$ £269
 NEW PANASONIC AND MITSUBISHIVIDEOS $£ 317$, INFRA-RED R/C E419
 TELETRONICS WHOLESALE,
 SESKINORE, OMAGH, CO. TYRONE. TEL: Fintona 841389 (STD 0662)

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

EX RENTAL T.V.'s Colour from $£ 10$ Complete Working from £25 (Singles)

Also Quantity Rates Delivery Possible

SOUTH LONDON TELEVISION 45 GRIFFITHS ROAD, SW19. TEL: 01-543 5437

SECOND HAND colour TV spares and tubes, most makes. Telephone Southport (0704) 74411. Anytime.

CAMPBELL ELECTRONICS LTD. COLOUR T.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.

CAMPBELL ELECTRONICS LTD., Unit 5, Heath Hill Estate, Dawley, Telford, Shropshire.

TRADE ONLY
 N. W. ELECTRONICS
 CLEARANCE SALE
 LARGE QUANTITY OF GOOD CLASS

 COLOUR TELEVISIONS

 COLOUR TELEVISIONS}

BUSH, PYE, GEC, THORN, PHILIPS ETC
Excellent Cabinet Condition. Genuine Change Over TV's and Repossessions.

FROM ONLY £15!!! dELIVERY ARRANGED

We export large quantities of TV's weekly. Can we help you? Discount on Quantity Orders.
OVER 1,000 MONO TV's IN STOCK FROM $£ 5$
100 's colour tubes suitable for reconditioning. Working colour TV's to order, i.e. Bush 20"/22" 2 I.C. excellent picture, ready to sell. Only $£ 39$.

CALL AND SEE OUR SELECTION

WHITE GOODS

All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Autos, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock.
Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details.
PAY US A VIST YOU WILL NOT BE DISAPPOINTED
N. W. ELECTRONICS

BOLINGBROKE BUILDINGS, BOLINGBROKE STREET, BRADFORD 5.
3 minutes from Motorways. Telephone 0484-714413

SETS \& COMPONENTS CONT.

RANK BUSH MURPHY TRANSFORMERS

LINE OUTPUT TRANSFORMERS
2718
(1) New (Complete) $£ 20.50$
(2) Refurbished (Complete) $\quad \mathbf{£ 1 1 . 0 0}$ Old Lopt Required.
(3) Less Focus Module and Rectifier
£10.50
2718 SPARES
Pri. - £5.50. Sec. - £6.00,
Rectifier - $\mathbf{£ 3 . 0 0}$, Lead - $\mathbf{£ 2 . 5 0}$.
T20, T22 Complete $\quad £ 9.00$
T20, T22 Windings $\quad \mathbf{E 5 . 5 0}$
Switch-mode Transformers T114 AB
$£ 8.00$
All Units RBM Approved Prompt Postal Service. Add 15\% V.A.T. to all Prices. DISCOUNT For Quantity's WOODSDALE COMPONENTS MR SKEHAN,
34 Find End Roed, Eastcote, Middiceex. TEL 01-868-5580 or 01-789-0027
Agents Oiflee, celliers by appointment onfy.

FOR SALE

COLOUR TV's

Good working order $£ 25$ each, any quantities, most makes and sizes available. Non-workers $£ 10$ each. Mono sets $£ 3$ each. Spares available.

Tel: (0203) 714213.

AVO8 MES5 with genuine AVO leads, probes, and leather case. As new, little used, cost $£ 130$, sell for £89. Mike: 01-841 8394.

REGUNNED A1 TUBES $22^{\prime \prime} £ 25.00$. Mono $£ 11$. PIL in stock. Ring first 021-773 8181, seven days till 8 pm .

BUSH $24 / 20^{\prime \prime}$ S/S MONO'S. Good working $£ 10$ each, minmum ten. C.O.D. Ready to sell. (070682) 7166.

For a good selection of used TV sets in good cabinets

* Large stock of working sets. * U.K. Delivery Service.
* Stands, Aerials, Tubes and Panels.

is now in business at
UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel: Hartlebury 250161 Telex: 334155 MTV G
*No connection with MTV Trade Services or Campion Thompson Ltd.

When replying to Televi sion Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono, etc. $£ 2+$ large sae. CTVs \& Music Centres from £3.
SERVICE MANUALS: Sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/Videos. E.g. A823 £6.50; Autovox (early) $£ 6.50$.
REPAR MANUALS: Complete sets -6 McCourt $£ 35$; 6 Tanbridge $£ 35$; latest mono portables only $£ 6.50 .5$ dif early VHS/Philips types (both $1500+1700 / 2$) £10.50.
CIRCUIT DIAGRAM COLECTIONS IN HUGE BINDERS: British CTV (3) £42.50; Foreign CTV (2) £27; Early VHS/Philips video £15; Mono TV standard + portables £29.
REPAR SYSTEMS (REPAR DATA, CIRCUITS, ETC): Video 1 £29.50; Foreign CTV £40; Mono TV, £54.
SAVE E12-BRIISH CTV ONLY EE0 - LIMITED TIME; Complete integrated TV Repair System $£ 160$. Quotations/free 50p megazinelprice lists/otc for large sac.
£2 plus $8^{\prime \prime} \times 10^{\prime \prime}$ S.A.E. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends.
T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios, $\mathbf{2 . 0 0}$. Tuners $\mathbf{2 . 0 0}$. Tape Recorders, Record Players $\mathbf{8 2 . 0 0}$. Transistors, Stereograms \& Music Centres $£ 2.00+$ SAE. Also Colour Available. Car Radios $\mathbf{8 3 . 0 0}+$ SAE. All Radiograms 2.00. State if Circuit will do if sheets are not in stock. All TV Sheets are full-length 24×12, not in Bits \& Pieces. All other Data full-lengths.
All sheets from $\mathbf{5 2 . 0 0}$ except Colour. OLD VALVE Radios $53.00+$ SAE $9^{\prime \prime} \times 3^{n}$. MALL ORDER
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 014584882 S.A.E.

EQUIPMENT \& TOOLS

LARGE TELEVISION RE-GUNNING COMPANY will shortly have a large assortment of production equipment available for disposal, to include glass lathes, drying tunnels, cleaning and stripping equipment etc. Anyone interested in receiving the above list, with a view to tender should apply on their heading to box number 172

BOOKS \& PUBLICATIONS

ANY PUBLISHED, full-sized service sheet by return $£ 2+$ L.s.a.e. CTV/Music centres $£ 3$. Repair data with all circuits, layouts, etc. Your named TV or Video £8.50. Free 50p mag. all orders, queries: TIS (TV), 76 Churches, Larkhall, Lanarkshire.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

> SANDHURST PUBLICATIONS
> Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$. Upper Floor. Send S.A.E. for Catalogue and Enquiries:

> 49C Yorktown Road,
> Sandhurst, Camberley, Surrey GU17 7AG.

ORDER FORM please Write in block capitals
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for $£$. (Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

$\cdot \boldsymbol{H} \cdot$			

NAME
ADDRESS

Send to: Classified Advertisement Dept.
TELEVISION
Claseffind Advertisement Dapt, Room 2812

London EE1 gLs.
Rate ${ }^{\text {R3p }}$ per word, minimum 12 words. Box No. e0p extra.

PERSONAL

FREELANCE Video and Audio engineer sceks contract work, London. Write: J. R. Coad, 424a Archway Road, Highgate, London N6 or Tel: 3400230.

COURSES

CONQUER THE CHIP . . . Master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR

FULL-TIME AND EVENING COURSES IN

- Microprocessor Computers

Video Cassette Recorders

- Colour TV.

Diploma - Higher Diploma or City and Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 19th January 1983 and 16th September 1983.

VETERAN \& VINTAGE

FINANCIAL

BUSINESS FINANCE. All purposes. Tel. (070682) 7166/(0706) 623404. Ellis Swain, Lodge Mill, Ramsbottom.

WANTED

WANTED: Back numbers monthly magazine "Television" or "Practical Television". 1968/82. Tel: 07073 32909.

WANTED: Used VHS or Betamax video cassette recorders. Ex-rental/traded-in machines welcome. Cash. Tel. 01-948 1603. Anytime.

WANTED - Part time TV/Video Engineer. $£ 5$ per hour minimum. Phone Ray Wooster, 01-422 8032.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674.

> PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS

"TUBE REPLACEMENTS" OFFER SPECIAL TRIAL PRICES

"WELLVIEW" EXCHANGE COLOUR

A44-271X $£ 24$
A47-342X
£24
A47-343X £24 A49-120X
A51-110X $£ 24$

$\mathbf{£ 2 4}$

A51-110LF $\mathbf{£ 2 6}$
A55-14X £28
A56-120X $\mathbf{2 8 8}$
A63-120X $\mathbf{£ 3 3}$
A66-120X £33
A66-140X £33
A67-120X £33
A67-150X If no exchange glass $\mathbf{f 4}$ extra
£33
'"WELLVIEW'' EXCHANGE MONO
A44-120 WR

11

A47-26 WR
A50-120 WR
A59-120 WR $£ 12.50$
A61-120 WR $\quad £ 13.50$
A $31-300$ NEW
A $34-100-510$ NEW £15

If no exchange glass $£ 1$ extra
All above plus VAT @ 15\%.
Carriage $\mathbf{£ 5} \mathbf{0 0}$ inc. VAT.
ALL TUBES 18 MONTHS GUARANTEE

COLOUR SETS

Complete G8's and Pye CT200's $\mathbf{£ 2 0}+$ VAT.
Others from $£ 10$.

ALSO YOUR VALVE SUPPLIER

 NEW AND BOXED (inclusive of VAT)| DY $802=\mathbf{4 4 p}$ | ECC81 $=64 \mathrm{p}$ | EF $183=78$ p |
| :---: | :---: | :---: |
| EF184=64p | ECC $82=64$ p | PCF802 $=98 \mathrm{p}$ |
| PCL82 $=78 \mathrm{p}$ | PCL84=92p | PCL805 $=97 \mathrm{p}$ |
| PFL200 $=\mathbf{1} 1.15$ | PCL86=97p | PL504=£1.38 |
| PY800 $=\mathbf{7 0}$ p | PL508=21.92 | $\begin{aligned} & \text { PY88 }=\mathbf{7 0 p} \\ & \text { PY500A }=\mathbf{8 1 . 8 2} \end{aligned}$ |

PL509-19
$£ 5$ inc. VAT
Postage and Packing 10p per valve. All orders over $£ 10$ Free of charge.

Camping - Self sufficiency - Emergencies Be prepared!
Fantastic 200 watt square wave inverter $12 v$ input $\mathbf{2 0 0 - 2 4 0 v}$ AC output tested but no guarantee $\mathbf{£ 2 0}$ $+£ 3$ VAT, $\mathrm{p} \& \mathrm{p} £ 3$.

24 v transistor fluorescent ballast units will run $2 \times 4 \mathrm{ft}$ tubes and draw under 2 amps (Philips) $\mathbf{\text { £ }}$ each +75 p VAT, p\&p 70.

Dynamo torches complete with spare bulb. You need never buy torch batteries again. 2 for $\mathbf{5 5}$ inc. VAT, p\&p 50p.

Allow up to 14 days for delivery.
TUBE REPLACEMENTS
Unit No. 1, Monmouth St., Bridgwater, Somerset.
Tel. 0278 425690-722816

1982 PRICE LIST

DISPLAY ELECTRONICS

GOLD LABEL COLOUR

 TUBES
2 YEAR GUARANTEE

90° up to $19^{\prime \prime}$. $£ 33$
90° up to 22"......................................E36

The above prices are for standard 38 mm Delta Gun Types.
Add $£ 2$ Gun surcharge for 20AX Types. Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES 2 YEAR GUARANTEE

\qquad
23"/24".. 14

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE

90° up to $26^{\prime \prime}$... $£ 34$
Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect Take 20\% discount. The mix can include Green Label Tubes if required.

PRICES EXCLUDE V.A.T.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

UNIT 1

 SWAN WHARF WATERLOO ROAD UXBRIDGE MIDDLESEXTelephone: UXBRIDGE 55800

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas $£ 11$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television"' is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

