

FREQUENGY SYNTHESIS TUNING

VGR MIGROGOMPUTER CONTROL

PHD COMPONENTS
RADIO \& TV COMPONENT DISTRIBUTORS
UNIT 7 CENTENARY ESTATE
JEFFRIES RD ENFIELD MIDDX
SHOP NOW OPEN TELEX 261295

ALL COMPONENTS OFFERED SUBJECT TO aVAILABILITY. WE RESERVE THE RIGHT TO SUBSTITUTE REPLACEMENTS SHOULD THE ORIGINAL PART BE OUT OF STOCK OR UNAVAILABLE!
PLEASE ADD 50p per parcel post and packing.

October 1982

Vol. 32, No. 12
Issue 384

this month

9IPC Magazines Limited, 1982. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 GLS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £11 overseas ($\$ 24.20$ Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes ($45 p$) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice in dealing with servicing problems should be directed to our Queries Selvice. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

TELEORSLOR

Leader
Routine TV Receiver Tests
by S. Simon
This time how to tackle the common faults
encountered on the popular Philips G8 chassis.

Next Month in Television

Frequency-synthesis Tuning by Stephen Clay
How frequency-synthesis tuning is applied to TV sets,
with specific reference to the Rediffusion Mk. 4 chassis.
The tuner feedback control loop and the way in which this is controlled by digitally stored programme data.
The JVC HR7650 VCR by Steve Beechi
The technical features incorporated in JVC's latest
top-of-the-range machine.

Teletopics

News, comment and developments.
Servicing the Rank 2718 Chassis, Part 3 by John Coombes
Fault-finding in the decoder, i.f. and tuner sections of the chassis.

Letters

Including a simple zener diode checker and the latest version of Victor Rizzo's capacitor tester.

Big Boys Don't Cry
Except, that is, when contronted with a Pye Lawry-Johns

International TV Standards
Characteristics of the various TV standards and a list of the systems used in over 110 countries.
Resistors: Beware! by Bryon Pascoe
Cheap and simple though they are, resistors can be responsible for some confusing, faults. Some typical examples of what might lie in store for you.
VCR Clinic
Reports on VCR faults from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling and Mike Sarre.
Garbledegook
by Eugene Trundle
What to do when confronted with garbled teletext -
the eyeheight technique of assessing receiver performance and the various things to check.
Microcomputer Control of VCRs
As extra features are added to VCRs, so the control
systems required become more complex. Today's solution
is to employ a microcomputer to do the job. The
requirements and how a microcomputer carries them out.
Long-distance Television
by Roger Bunney
Reports on DX reception and conditions, and news from abroad.
Service Bureau
VCR Servicing, Part 12 by Mike Phelan
Faults on the audio side of the basic JVC machine and
the operation of the mechanism control system.
Test Case 238

OUR NEXT ISSUE DATED NOVEMBER WILL BE PUBLISHED ON OCTOBER 20

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR

 TEST GENERATOR FOR TV \& VCR.

* 40 different patterns and variations.
* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
* Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR.
- Facilities for sound output.
* Easy to build kit. Only 2 adjustments. No special test equipment required
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
* Also available with VHF Modulator.

Price of Kit
$\mathbf{£ 8 0 . 5 0}$
Standard Case ($\left.10 \frac{1^{\prime \prime}}{2} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2} \frac{1}{2}^{\prime \prime}\right)$ £5.50
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{4}$)
$£ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 4.50$
Built \& Tested in De Luxe C ase including Sound Module
$£ 115.00$
Post/Packing $£ 2.00$.
All above prices include VAT 15\%

* Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT £40.25 P\&P $£ 1.20$. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE $£ 3.30$, P\&P $£ 1.20$, BATT HOLDERS $£ 1.70$ P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BULLT \& TESTED $£ 66.70+£ 1.80$ P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80$ P \& P. VHF MODULATOR (CH1 to 4) FOR OVERSEAS $£ 4.60$. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$ MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.

[^0]TV SERVICE SPARES
BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
SPECIAL OFFER THORN 8000A, 8500 Power \& Sound Panels (new and boxed) $£ 5.75$ p.p. $£ 1.25$.

TELEVISION MAGAZINE PROJECT PARTS NEW COLOUR PORTABLE TV
TV PATTERN GENERATOR
SMALL SCREEN MONITOR
MONO PORTABLETV
ARGE SCREEN COLOUR TV PHONE CALL OR SEND FOR LISTS
WORKING MODELS \& PANEL TEST SER VICE AT 172 WEST END LANE.

SPECIAL OFFER Leading makers Tuner-Timer in De Luxe Case. 12 station touch tune UHF-VHF + IF amp. Video Audio Outputs, Digital Clock etc. Less than half original trade price $£ 74.75 \mathrm{p}-\mathrm{p} £ 3.50$.
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, AT REDUCED PRICE $£ 57.50$ p.p. $£ 1.60$.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE $£ 7.80$ p.p. $£ 1.20$. XMII INTERFACE PANEL (THORN) $£ 2.10$ p.p. 75 p . CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £12.65 p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. $£ 1.20$.) ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 21.60$ (VHF version also available). ALUM CASE $£ 2.00$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$. CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH Z718 BC6100 SERIES IF PANEL £5.75 p.p. 90p.
BUSH A816 IF PANEL (SURPLUS) 1.90 p.p. 90 p .
DECCA "Bradford" IF T.B. POWER ex rental $£ 5.75$ each p.p. $£ 1.40$. DECCA 80, 100 SERIES, IF FRAME TB 85.75 each p.p. £1.40.
GEC SERIES I MONO PANELS $£ 2.10$ p.p. $£ 1.30$.
GEC 2110 Decoder, RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$.
GEC 2040 IF PANEL $£ 3.22$ p.p. £1.40.
GEC 2040 (SERIES) CDA PANEL $£ 2.88$ p.p. $£ 1.40$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. $£ 5.75$ p.p. $£ 2.00$
THORN 3000 LINE T.B.. POWER PCB 55.75 each p.p. $£ 1.30$.
THORN 3000 BEAM LIMITER PANEL 11.72 p.p. 80p.
THORN 3000 VID, IF, DEC, Ex Rental $£ 5.75$ each p.p. $£ 1.30$.
THORN 8800 Varicap channel selector \& front control unit $£ 4.37$ p.p. $£ 1.80$ THORN $8000 / 8500 \mathrm{IF} / \mathrm{DECODER}$ PANELS salvaged $£ 5.52$ p.p. $£ 1.80$. THORN 8000/8500 FRAME T.B. PANELS salvaged $£ 5.52$ p.p. $£ 1.40$.
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares $£ 8.62$ p.p. $£ 2.00$
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$ THORN 9000 IF/DECODER PANELS Salvaged $£ 8.90$ p.p. $£ 1.60$
PHILIPS 210,300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $\mathbf{£ 4 . 8 0}$ p.p. $£ 1.40$. G8 IF Panels for small spares $£ 1.75$ p.p. 95 p. G8 Decoder panels salvaged £4.25. Decoder panels for spares $£ 2.00$ p.p. $£ 1.40$.
VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05 £ 7.82$ p.p. 80 p; G.I. VARICAP, U321, U322, ELC $1043 / 06$ ELC $1043 / 05 ~ £ 7.82$ p.p. 80p; G.I.
type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, 3PSN $£ 1.40$, 4PSN type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, 3 PSN $£ 1.40,4 \mathrm{PS}$
$£ 1.75,5 \mathrm{PSN} 2.00,6 \mathrm{PSN} £ 4.00$ p.p. 60 p . Makers special types available. £1.75, SPSN $£ 2.00,6$ PSN $£ 4.00$ p.p. 60 p . Makers special types available.
SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNIT SPECIAL OFFER ELEVEN
UHF/VHF $£ 2.10$ p.p. $£ 1.00$.
BUSH "Touch Tune" Varicap Control Z179, 2718 types $£ 4.40$ p.p. 95 p. VARICAP UHF-VHF ELC 2000 S $£ 9.80$. BUSH TYPE $£ 7.82$ p.p. 85 p. VARICAP VHF MULLARD ELC 1042 £7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted. incl. s/m drive, Mullard 4 position push button $£ 4.80$ p.p. $£ 1.50$. LOPTS NEW \& GUAR. P/P Mono £1.35p, Colour $£ 1.45$ p, Bobbins $80 p$. BUSH 145 to 186 SS series.............. 9.20 BUSH, MURPHY A816 series..... 89.80 DECCA 20/24, 1700, 2000, 2401 . 88.80 FERG., HMV, MARCONI, ULTRA 950 to 1580 .

R.B.M. Z179 -..................................70
:---
GEC series $1 \& 2.80$

 ITI/KB VC 1 200, 300............................8.80 MURPHY 1910 to 2417 series ع8.80 PHILIPS 19TG 170, 210, 30088.80 PYE, INVICTA, EKCO, FERR.

368, $169,569,769$ series.. SPECIAL OFFE
GEC 2114J/Junior Fineline.
 THB YC ELEVEN (003) OTHERS AYAILABLE, PRICES ON REQUE TRIPLERS Full range available. Mono \& Colour
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.72$ p.p. 60 p. 6.3 V CRT Boost Transformers $£ 5.80$, Auto Type $£ 3.20$, p.p. $£ 1.20$. CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilioes) Busos 28, 159, C11 pass door W. Hampssead British Aail Sins. Richmond, Broas 2 St,.) St. Pancras. Bedford

Mail Order: 64 GDLDERS MANOR DRIVE, LONDON N.W. 11 ALL PRICES INCLUDE VAT AT 15\%

P. V. TUBES

 Buy with

 Telephone: Accrington (0254) 36521 Accrington (0254) 32611

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX. OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m.-12 noon.

P. V. TUBES

REPLACEMENT ELECTROLYTICS
PHILIPS 320 ($400 / 400 / 200 \mathrm{~V})$
DECCA $30(400 / 400 / 350 \mathrm{~V})$
DECCA $80(400 / 350 \mathrm{~V})$
DECCA $1001800 / 250 \mathrm{~V}$
DECCA $1700(200 / 200 / 400 / 350 \mathrm{~V})$
PHILIPS G8 (600/300V)
PHILIPS G9 G11 (470/250V)
PHI
PYE $691 / 7$ (200/300/350V)
PVE 731 ($600 / 300 \mathrm{~V}$)
RBM A823 (2500/2500/30V)
RBM A823 (600/300V)
RBM Z146 (300/300/35
RR1 T20A $1220 / 400 \mathrm{~V}$)
ITT CVC 20 (220/400V)
GEC $2110(600 / 250 \mathrm{~V})$
GEC $210(600 / 250 \mathrm{~V})$
GEC $2040(1000 / 2000 / 35 \mathrm{~V})$ GEC $20401300 / 300 / 150 / 100$
THORN $3500(400 / 40 \mathrm{~V})$
THORN $950(100 / 300 / 100 / 16 / 275 \mathrm{~V})$
THORN 140 ($150 / 100 / 100 / 100 / 150 / 320 \mathrm{~V}$)
THORN $1500(150 / 150 / 100 / 300 \mathrm{~V})$
THORN 1500 ($12 / 300 \mathrm{~V}$)
THORN 3500 (175/100/100/400/350Vi
THORN $350011000 / 63 \mathrm{~V}$
THORN $85000 / 85000(2500 / 2500 / 63 \mathrm{~V})$
THORN $8000 / 8500(700 / 250 \mathrm{~V})$
THORN $8000 / 8500(400 / 350 \mathrm{~V})$
THORN $9000(400,400 \mathrm{~V})$

ELECTRONIC TUNERS AND ASSEMBLIES	
Mullard ELC1043'05	7.60
Mullard ELCl043/06	7.60
4 P/B DECCA/GEC/IT	5.80
6 P/B DECCA/GEC/IT	7.00
4 P/B PYE	9.00
$6 \mathrm{P} / \mathrm{B}$ PYE	16.00
PHILIPS G8 Tuner	10.50
PHILIPS G8 Ass. (Square/Early)	13.50
PHILIPS G8 Ass. (Sloping/Late)	13.90
PHILIPS G9 Tunet	10.50
PHILIPS G11 Tuner	9.00
IT/PYE/GEC 7 Button P/6	13.95
GEC 21106 way P/B	7.75
U321 UHF Tuner Mullard	7.50
THORN 8800 SELECTOR	
IHMV Model 2725/6 way round buttont	7.50
THORN 9000 SELECTOR	11.40
U322	1.20
HITACHI 4 way Chan Selector (Also Rank A823)	
	8.00
RRI T20A 6 way Chan. Selector	9.75
RR1 T20/22/26	11.00
PHILIPS 8 way TIP Switch Unit (suitable for all 611)	
SWIICHES	
4A Double Pole On/0H Swith	
General Purpose Push/Push	66
Philips G8 Push On/0tt Switch	1.38
4A Double Pole Rotary On/OH	66
A1 Beam Swith (THORN 3500)	50
A1 Controls 5m (THORN 3500)	69
GEC 2110 AI Control IM5 (Red, Blue, Green) 58	
GEC 2040 On/Ot Switch	88
On/0ff Switch G11/G12	1.58
On/0ff Swith GECTCE TX9/10	1.06

B.K. ELECTRONMCS

INCREASE YOUR PROFITS - IMPROVE YOUR SERVICE WTH RELIABLE COST EFFECTIVE TEST EQUIPMENT

SAFGAN DT-420 dUAL TRACE SCOPE

 20 MHz BANDWIDTHSPECIFICATION
\star CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{v} / \mathrm{div}$
\star Time Base: $1 \mathrm{sec} / \mathrm{div} \cdot 100 \mathrm{~ns} / \mathrm{div}$
\# Trigger: Level control, \pm slope selection

* Auto, normal, TV triggering
\star Z-Modulation
\star CAL output IV 1 KHz
* Graticule blue ruled $8 \times 10 \mathrm{div}\left(4^{\prime \prime}\right.$ CRT). Very Sharp Trace.
* Size: H215mm W165mm
\star Size: H215mm, W165mm, D280mm \star Weight: 4 kgs

Supply: $200.240 \mathrm{~V}, 40-60 \mathrm{~Hz}$ PRICE $19199+$ £29.85 VAT Probes as Thandar below

BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

LEADER LCT-910A

THE VERY LATEST SC110A LOW POWER FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope. FITS IN A BRIEFCASE

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.
Full Sized Performance

* 10 MHz bandwidth
- 10 mV per division sensitivity.
* Full trigger facilities are provided including TV frame, or TV filtering
* Runs on 4 to tOV DC via disposable batteries, re-chargeable cells, or $A C$
* \quad Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.
'Scope $£ 149.00+£ 22.35$ V.A.T
$\begin{array}{ll} & \text { Carry Case } £ 7.70+£ 1.16 \text { V.A.T. } \\ \text { BRITISH } & \times 1 \text { Probe } £ 7.00+£ 1.05 \text { V.A.T. } \\ & \times 10 \text { Probe } £ 8.00+£ 1.20 \text { V.A.T }\end{array}$
MADE $\times 1 / \times 10$ Switched Probe $£ 9.50+£ 1.42$ V.A.T Rechargeable Batteries $£ 7.50+£ 1.30$ V.A.T. AC Adaptor $£ 4.95+£ 0.74$ V.A.T. (Overseas purchasers please state voltage.)

ALSO AVAILABLE Analogue Multimeters Digital Multimeters Oscilloscopes Signal Generators Digital Frequency Meters Pattern Generators CRT Tester/Rejuvenator T.V. Field Strength Meter LARGE SA.E. FOR COMPLETE LIST
U.K. Post Paid. Export orders welcome, please deduct V.A.T. and include an
additional $£ 500$ for Overseas carriage. Mail Order only. Cailers by appoint-
ment. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range.
B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.

Technical

 Training in Television, Radio and ElectronicsICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success
Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation

- Quality for IET Associare Membership

EDITOR
John A, Reddihough
ASSISTANT EDITOR
Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT
 MANAGER

Roy Smith
01-261 6671
CLASSIFIED ADVERTISEMENTS
Barbara Blake
01-2615897

ELECTRONIC HOBBIES FAIR

It's planned to hold an electronics hobbies exhibition at Alexandra Palace, N. London, on November 18th-21st. The exhibition is sponsored by "Everyday Electronics", "Practical Electronics" and "Practical Wireless" ${ }^{\prime \prime}$.

COVER PHOTO

Our cover photo this month shows automatic component insertion equipment in use at Rediffusion's Durham CTV plant. Our thanks to Rediffusion for their assistance.

PCB SERVICE

Once again shortage of space has prevented inclusion of the list of panels available through the readers' PCB service. The list given in the August issue (page 543) remains valid.

Historic Times

There have been three occasions when the subject of television has been of major public interest - it's taken for granted most of the time. First when Baird and his associates were calling attention to the possibilities of the new medium in the late twenties/early thirties. Secondly during the epic debate on "independent TV" in the early fifties. And today. The BBC is celebrating its sixtieth anniversary, Channel 4 is about to start, and a decision on the development of cable TV is likely to be made shortly - the Hunt Committee, which was set up last March to consider technical standards and methods of control, is due to report back to the government by September 30th.

Our congratulations to the BBC, which started operations as the British Broadcasting Company (the Corporation bit came in 1927) on November 14 th, 1922 - with a staff of four. There were 35,774 radio licence holders at the time, which was pretty good going. Broadcasting quickly caught on: by the end of 1923 there were almost 600,000 licence holders and the rise continued rapidly thereafter. The BBC's achievement - to have set unmatched standards of programme quality, interest and integrity - is rightly acclaimed throughout the world. One has only to reflect on the way in which broadcasting in most countries is subject to political control to appreciate the heritage created for us by those who led the BBC in its formative years.

The fourth TV network commences operations on November 1st in Wales and on November 2nd elsewhere in the UK. We shall have to fall in line and call it Channel 4 in future in these columns, but before doing so we utter a final, faint protest at the misuse of the term channel. The public is to be offered a "distinctive" sixty hours or so of programmes a week, and it will be interesting to see how this major breakthrough in broadcasting in the UK turns out.

Which brings us to cable. Would this be another breakthrough or a shambles? It would be a useful way of increasing the services available to the public, but one's concern is with its economic viability. Kenneth Baker, the Information Technology, Minister, put the question "can it be that this is the time for further enquiries . . .?" when speaking at the Edinburgh Festival TV conference recently. We'd say "yes indeed" if there are good grounds for doubt, but Mr. Baker seems intent on casting all caution aside. There's such a thing as misplaced enthusiasm, Kenneth.

When we last commented on the subject, we expressed reservations on the financial aspects and on the general vagueness of the original report by the Cabinet Office's Information Technology Advisory Panel in dealing with the ultimate use of an advanced cable network - it seems that a curious cross between multi-channel TV and a souped up telephone system linked to computers is envisaged. Since then, the National Economic Development Office's Electronics Consumer Goods Sector Working Party (another mouthful) has published its report, called for by Mr. Baker, on the technical issues. This doesn't seem to get us much further ("market forces should decide between competing cable technologies") and certainly gives no credibility to the idea that a short time scale is vital. Already the cost figure - suggested as being "of the order of $£ 2.5$ billion" in the original ITAP report - is beginning to creep up. Mr. Baker sees this as "a major new area of economic activity that can generate wealth". It could. It could also generate losses, especially if the public, which would have to pay for the services, fails to show interest. As the SWP report says: "There is a need for more information on what people want and what they will pay for it . .. There is a potential demand for interactive, services, but the only one now available (Prestel) is not yet attractive to consumers." And "the demand for interactive services is expected to grow slowly from a very low base."

Despite these reservations, the SWP supports the view that it's necessary to make an urgent start to multi-channel cable TV - on the curiously pessimistic grounds that the UK's TV setmaking industry can survive only if it moves on to the production of more sophisticated receivers. But if the Japanese consumer electronics industry can produce cheap VCRs, colour cameras, video disc players and what have you, there's no earthly reason why they shouldn't be able to produce TV sets with frequency-synthesis tuning etc. Or has someone a way of stopping them?
There's something odd about the clamour for an urgent decision on the extension of cable services. If everyone's agreed, as seems to be the case, that the likely demand for such services is uncertain, what's the hurry? The attraction for cable operators is extra, paid for entertainment channels of course - none of this "armchair shopping" lark. There are indeed times when extra programme options would be welcome. Provided they are not more of the same!

A final interesting aside. I quote from Jack Bennett, writing in Electrical and Radio Trading after a recent visit to the USA: "One very definite impression I came away with is that cable TV has stunted the demand for video recorders and players. I think it's certain to exert a similar influence when eventually cable TV surfaces here."

Routine TV Receiver Tests: The Philips G8 Chassis

S. Simon

We thought originally to leave the popular Philips G8 chassis out of this series, since it's been written about on a number of occasions in past issues. It's been suggested however that a quick guide to checks for common faults would be a handy thing to have all in one go, and we do of course have new readers to consider. So here goes.

Set Completely Dead

When the complaint is a dead set, remove the rear cover and note whether the tube heaters are alight. If not, check the left side (covered) fuse which has a rating of $3 \cdot 15 \mathrm{~A}$ anti-surge. To gain access, remove the grey plug which connects the a.c. mains supply to the power panel. If the fuse has failed, note the manner of its demise. Did it die of old age or did it meet its end violently as shown by a blackened appearance? If it looks clean, it's fair to try another without further ado, though the more cautious will check for shorts across the h.t. rectifier thyristor's anode to cathode connections. The usual type of thyristor fitted is a BT106, though some models have the tab type with a large washer providing some sort of heatsink. The body of the BT106 is the anode and the longer of the two legs is the cathode. It's extremely common to find the thyristor short-circuit, which will normally result in the 3.15A mains fuse showing signs of distress.

The mains filter capacitor C1366 is rarely the cause of fuse blowing on this chassis - for the record it's on the reverse side of the bulkhead to the fuse and plug.

No Results, Tube Heaters Glowing

If the set appears to be dead except for the stir of the degaussing coils as the set is switched on, plus the fact that the c.r.t. heaters are glowing, it's necessary to carry out the following checks so that the right conclusion can be reached in the minimum time.

Switch the meter to the 250 V or 300 V d.c. range and clip the negative prod to chassis. Apply the positive prod to the fuses (FS1391/2, see Fig. 1) on the rear edge of the power supply panel. Something like 200 V should be recorded. The next step depends on whether this voltage is present or not.

If it's absent, view the front end dropper (the long black one with four tags) with suspicion and proceed with caution. There should be 240 V a.c. at the bottom two tags (R1367) to suggest that the thyristor is being supplied at its anode. We say suggest because there could be an open-circuit track on the panel to prevent this. If there's a.c. at only one tag, the bottom $2 \cdot 2 \Omega$ section of the dropper is open-circuit and the search has ended almost before it began. If there is a.c. at both tags, confirm that it's reaching the body of the thyristor - the connections to the choke (L1378) often become loose on the print, giving rise to sparking etc.

The top section (R1381) of the dropper is the d.c. smoothing resistor and if this is open-circuit the h.t. reser-
voir electrolytic $\mathrm{C} 1385(600 \mu \mathrm{~F})$ will charge fully and will remain charged after the set has been switched off. So if a meter check reveals that there is no voltage at the top tag of the dropper and that there's a high reading at the second tag down, beware: switch the set off and connect a resistor of say 100Ω between the two tags to discharge the electrolytic fully.

The reservoir electrolytic often becomes faulty, normally sparking at its terminals to call attention to itself and thus leaving little doubt as to the source of the disturbance. Fortunately, such behaviour does not lead to the nasty effects that an intermittently poor contact has on the later G11, where frequent failure of the BU208A line output transistor and/or the TDA2600 field timebase i.c. can be traced to a faulty h.t. reservoir electrolytic on the lower power supply board - the suspect capacitor is the large $470 \mu \mathrm{~F}$ one coloured red (if it's not coloured red it's not suspect). Back to the G8 however.

Voltages OK at Power Supply Panel

If the expected 200 V (approximately) is present at the rear edge fuses (this was our original check, remember), move over to the right side line output panel and locate fuse FS5557 (800 mA). This is the horizontal fuse half way up the rear edge.

If the 200 V is present at only one end of the fuseholder, the fuse is open-circuit and you could well have stumbled upon the curse of the G8: the line output transformer is always suspect in this chassis. Remove the metal screen and observe its windings, looking for a black pinhead which will denote sparking. If none can be seen, remove the tripler clip from the transformer and connect the meter, switched to the 500 mA or 1 A range, across the fuseholder, keeping one eye on the meter and the other on the transformer. Switch on and note whether the meter reading exceeds 500 mA , or if there's a spark or sound of protest from the transformer.

A normal reading is in the region of 400 mA . If the reading is well in excess of this and the set is left on the left side power unit h.t. fuse (FS1391) may well fail, so it's a matter of making a quick judgement. If the reading is normal with no sign of stress, reconnect the tripler cap to see whether this is the cause of the problem - a bulge in the side of the tripler may well have called attention to this item during the initial inspection.

The transformer and tripler may prove to be completely innocent and the trouble may turn out to be due to a faulty line output transistor (there are two) or perhaps a defective flyback tuning capacitor (C5545/6 upper left of the line drive panel, the ones at the top).

This is less likely, but there's another point to watch. If the line output transformer is suspect, so too is the scan correction transductor on the bottom right timebase panel. The red socket from the line output panel goes down to this item and can be removed in a matter of seconds to prove whether it's giving trouble. Removal of the socket (H) leaves the set fully working apart from the
lack of scan correction (bowing) which often goes unobserved to the untrained eye. So as well as disconnecting the tripler we should also disconnect plug H (red) on the timebase panel before making our current reading.

If the 200 V h.t. supply is present at both sides of FS5557, proceed to the front end of the same panel and observe the large 47Ω wirewound resistor (R5535) mounted on its own. This could well be open-circuit check the voltage at both ends. It's in the feed to the line output transformer and just dies.

Not So Simple

These then are the usual run of the mill defects to expect.

Once in a while the voltages in the power supply all appear to be correct and reaching the line output stage but nothing else seems to be happening. This can be an awkward and time consuming business. Tackle it logically, after an initial illogical move. This is to disturb the wiring at the top of the panel to the left of the line output transformer (not to it). These leads are the base and emitter connections to the line output transistors from the panel (where dry-joints occasionally lurk). It's often the case that the slightest movement of almost any lead will restore normal working. You then have the job of finding the poor connection - this is best left to the patience or perhaps intuition of the repairer. It really is frustrating to find that the slightest touch almost anywhere in the region is sufficient to start the thing up but the cause is so difficult to locate. We have found the upper part of the line scan panel and the lower part of the line drive panel (the top one) a happy hunting ground for dry-joints that are not always obvious to the eye.

Sometimes a dry-joint on the upper sections is not responsible and the problem is that there is no drive to the output pair of transistors. In this case one has to prove that the line driver stage is working, with drive in turn from the preceding trigger amplifier transistor, and that the line oscillator is functioning.

The line driver transistor is a hefty device (ON188/BD144) and we've yet to find one faulty (we probably now will). First check that h.t. is reaching the collector of this transistor (TR5519). There is no feed resistor, just the primary winding of the driver transformer, between the h.t. line and the transistor's collector, so the voltages at the two points should be well nigh the same. If the preceding stages are working, there should be some $0 \cdot 5-1 \cdot 6 \mathrm{~V}$ (depending on version) at the emitter and a negative voltage of a volt or so at the base.

A fairly common complaint is that there is no supply to the collector of the preceding trigger amplifier transistor
due to its $8.2 \mathrm{k} \Omega$ collector load resistor (R 5515) being open-circuit. If a reading of some 3 V is recorded at the collector of this BC147 transistor (TR5514), or maybe the voltage is much higher, attention should be directed to the line oscillator stage on the right side horizontal timebase panel. A $10 \mathrm{k} \Omega$ wirewound resistor (R 4516 , see Fig. 1) will be seen just to the rear of the transductor on the right side edge, approximately midway. This is the line oscillator's start-up resistor and is connected to the h.t. line - since during normal running the supply to the oscillator comes from the line output stage, something is required to get things started. That something is R4516, which should have 200 V at one side and 18 V at the other if it's intact.

The line oscillator stage uses a couple of BC147 transistors and is generally trouble free. The small electrolytics are a possible source of trouble, but only once in a while.

The Field Timebase

The field timebase is on the same panel. The main items are a silicon controlled switch which acts as the oscillator (BRY39 in early versions, BRY56 in later production), a BC148 discharge transistor, an AC128 driver transistor and the two output transistors (BD124s in early production, BD131s in later production). The output transistors generate a fair amount of heat, and are therefore suspect in the event of severe non-linearity or total field collapse. Where the earlier BD124s are used the soldering to the collectors is suspect, and it's sometimes advisable to add an extra lead to the body (collector) to ensure good contact if this has not already been done.

Of the capacitors in the field timebase, $\mathrm{C} 4451(47 \mu \mathrm{~F})$ and C4452 $(22 \mu \mathrm{~F})$ in the charging circuit can be responsible for height problems and should be taken out and tested when this fault is present.

Inspection of the timebase panel will sometimes show that R4484, which is in series with the transductor's windings on the line side, is charred though red socket H is still fitted. This means that the transductor is faulty, and may look it. Since this leads to slight distortion of the raster at the top and bottom the customer's complaint may be one of a vague "lack of height". The replacement resistor should be one of the same type as fitted (not one of a higher wattage).

Signals Panels

Whilst early models used separate i.f. and decoder panels, later versions have a single combined unit. If the RGB leads from the tube base go to the rear left side it is the early version, whereas if they go roughly amidships

Fig. 1: H.T. supply arrangements used in the Philips G8 chassis.

next month in

- SERVICING THYRISTOR LINE TIMEBASES

Largely due to advances in colour c.r.t. scan coil design, the thyristor line output stage has become obsolete. Large numbers of sets using this type of circuit are still in use however. They can suffer from a variety of faults, including some rather puzzling ones. This article is intended as a practical guide to fault finding and servicing virtually any make or model using a thyristor line timebase, and includes some of the more unusual symptoms that can be encountered with this type of circuit. Some notes on the more critical components used, together with substitution suggestions, are included.

- FOCUS ON PORTABLES

George Wilding takes a look at the circuitry used in monochrome portables, starting with the i.f. strip and a.g.c. arrangements.

- FAULT REPORT

Mick Dutton on a variety of faults, some that are becoming more common and others of a more puzzling nature.

- THE SPIRIT OF '51

Our vintage spot provides a vivid insight into attitudes to TV in those early days when the total number of TV licences was first approaching the million mark.

- ROUTINE TV RECEIVER TESTS
S. Simon on the action to take when confronted with an ailing Pye hybrid colour set.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

under the tube you are dealing with the later version.
Frequent faults include the lack of or predominance of one colour, and this should lead one to investigate the operating conditions of the three BF337 RGB output transistors. While one of the transistors is often at fault, a dry-joint at the base, emitter or collector is a frequent cause of the trouble and these dry-joints are not always as easy to see as we would like them to be. To be sure, remake any that are suspect. Also suspect are the three $39 \mathrm{k} \Omega$ resistors which provide external loads for pins 1,11 and 14 of the TBA530 RGB matrixing i.c. These pins should be at about 8.5 V .

No colour at all often presents a problem, particularly on the older separate panel version where a polystyrene capacitor ($\mathrm{C} 7204,0.027 \mu \mathrm{~F}$) in the ident tuned circuit often gives intermittent results. For example, one may be faced with a no colour problem and then carry out the colour-killer disabling procedure by clipping a shorting lead from TP80 (l.t. line) to TP26 and then immediately get good colour which remains when the link is removed. For a short time that is, perhaps as long as it takes to arrive back at the customer's house. If this sort of intermittent trouble is experienced, look for the polystyrene capacitor near the left side delay line and give it a touch or two - it often suffers from an internal poor contact.

Also ensure that the core of the centre coil L7008 in the reference oscillator circuit is correctly set: with the passage of time it often needs to be screwed in slightly to give reliable colour.
After this the transistors (early versions) are suspect check voltages.
In the event of intermittent sound, first check the speaker leads back to the panel plugs and ensure that these are making good contact. Also check the plugs and sockets to the volume control. These two possibilities are by far and away the most common causes of intermittent sound. If necessary check the BD131 output transistors for dry-joints. The TBA750 intercarrier sound i.c. used on the single panel is sometimes responsible for sound failure.

Whilst on the subject of these later versions, don't forget that there's a 12 V regulator (a BD131 transistor) in the rear right corner of the panel, roughly in line with the three BF337s. If the entire signal section fails to function, check this regulator which takes in 23.5 V and gives out (or should do) a steady 12 V .

Miscellaneous Matters

Most other faults concern the power unit, programme selectors and tuner, and come under the category "run of the mill". For example, a rapidly fluctuating picture is nearly always due to a defective h.t. rectifier thyristor, with the BR100 trigger diac a secondary suspect. Difficulty in obtaining the correct supply voltages should direct attention to the fairly high-value resistors associated with the set h.t. and over-voltage presets, also the 7.5 V and 12 V zener diodes in the power supply unit.

Other zener diodes can cause problems. The beam limiter circuit in earlier and later versions of the chassis differs. The 12 V zener diode D5582 in the later version can be responsible for intermittent low brightness. Line drift can be due to D 4531 (18 V) on the timebase panel or D2166 (12V) in the i.f. strip.

Finally it's worth mentioning that a wide and rather poor picture can be due to one of the line output transistors going short-circuit and the other one soldiering on.

COLOUR BAR GENERATOR UHF AERIALINPUT PATTERN GENERATOR

Price includes P\&P and 15\% VAT. VHF versions available.
Full 12 month guarantee on built units Allow up to 28 days for delivery MAIL ORDER ONLY FROM

TECHNALOGICS LTD. (Dept TV), 13, WESTERN DRIVE, GRASSENDALE,
LIVERPOOL L19 0LX. 051-4274462

High quality colour television receiver new infra-red full feature remote control teletext

* Pin diode tuner
* Glass epoxy printed circuit panels
* Full technical
construction manual
* Hi-Bri tube
\star Eleven integrated circuits
\star Rieady built and aligned IF module
\star High quality components
\star Modern cabinets
* All solid state

THE ULTIMATE in large screen $22^{\prime \prime}$ and $26^{\prime \prime}$ television receiver kits. Deluxe full spec. Teletext, 7 channel + VCR. Also video and audio in/out. 6 models in the 500 range.

Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.
Telephone or Mail Orders
accepted on Access/Barclaycard

* Fully isolated and protected power supply
\star Diode split L.O.P.T.
\star Low consumption
Also ideal as a FULLY isolated COLOUR MONITOR for Home Computer Systems. R.G.B. or PAL Encoded Video inputs, with remote switching.

colour developments limited
Ketteringham, Wymondham,
Norfolk, NR18 9RY
Telephone: Norwich (0603) 810453

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

ture resistors 150 mixed 1 and 2 watt resistors

$£ 1.95$$£ 1.95$

150 mixed 1 and 2 watt resistors
300 mixed capacitors, most types amazing value
100 mixed electrolyties $£ 3.95$
$\mathbf{Z 4} \quad 100$ mixed electrolytics $\quad \mathbf{£ 2 . 2 0}$

Z5 $\quad 100$ mixed Pulystyrene Capacitors $£ 2.20$
$\mathbf{Z 6} \quad 300$ mixed Printed Circuit
Components
$£ 1.95$
300 mixed Printed Circuit
£1.45
Z8 $\quad 100$ mixed High Wattage Resistors.
wirewounds etc.
100 mixed Miniature Ceramic and
$£ 2.95$

100 mixed Miniature Ceramic and
Plate caps
$£ 1$.

$£ 1.50$
Z10 25 Assorted Potentiometers £1.50
Z11 25 Assorted Presets, Skeleton etc. £1.00 20 Assorted VDR's and
c 1.20
Thermistors
$£ 1.20$
I Ib Mixed Hardware, Nuts, Bolts,
Selftappers. "P" clips etc.
100 mixed New and marked
transistors, all full spec. includes:
PBC108, BC148, BF154, BF274,
BC212L, BC238, BC184L and/or
Lots of similar types ONLY $£ 4.95$
Z20

Z21

Z22
Z22
Assorted Silver Mica caps
Z23 20 Mixed TV convergence Pots Push Button, Aluminium and Control types

Valve base B9A. EHT, etc
Z24
Z25
$\mathbf{Z 2 6}$
$\mathbf{Z 2 7}$
Z2
Z29
Z30
731
Z32
Z33
Z34
Z35
(Z14A) 200 Transistors as above but including power types like BD131. 2N3055, ACI28, BFY 50 etc. $£ 9.95$
100 Mixed Diodes including: Germanium. Silicon etc. All full

Z39 spec.
Z16
20 IN4003/10D2
1 watt and 400 mw

SPECLAL OFFER

Etch Kit with Instructions, 150 sq ins Paxolin Board. 1 Nylon Etch Resist Iray, Set of 3 Etch Pens. Tweezers, Abrasive Cleaner, Thermometer lib Ferric Chloride ONLY £5.95.

ELECTROLYTIC	
1 nf 6.3 S	20 for f 1.00
$1 \mu \mathrm{f} 350 \mathrm{~N}$	10 for $£ 1.00$
$2.2 \mu \mathrm{f} 6.3 \mathrm{v}$	20 for $£ 1.00$
$4.7 \mu \mathrm{f} 6.3$	20 for $£ 1.00$
4 Hf 350 *	10 for $£ 1.00$
22, 16	20 for $£ 1.00$
$100 \mu \mathrm{f} 2.5 \mathrm{y}$	20 for $£ 1.20$
$160 \mu \mathrm{f} 25 \mathrm{v}$ *	20 for f1.50
330 uf 25 v	10 for $£ 1.00$
$400 \mu \mathrm{f} 40 \mathrm{v}^{*}$	8 for $£ 1.00$
470 uf 25 v	10 for 11.00
$470 \mu \mathrm{f} 35$	8 for f 1.00
$1000 \mu \mathrm{f} 16$.	10 for f 1.00
$1000 \mu \mathrm{f} 25_{3}$ *	8 for £ 1.00
$1000 \mu \mathrm{f} 35 \mathrm{v}$	6 for $£ 1.00$
*Axtal. All others are Radial.	
CAN TYPES	
$100+200350 v$	¢1.00
$2000 \mu \mathrm{f} 100 \mathrm{y}$	¢1.00
$1000 \mu \mathrm{f} 100 \mathrm{y}$	60p
$2.200 \mu \mathrm{f} 40 \mathrm{v}$	60p
$2.200 \mu \mathrm{f} 6.3 \mathrm{v}$	70p
$3.500 \mu \mathrm{f} 35 v$	50p
$4.500 \mu \mathrm{f} 35 \mathrm{v}$	60p
220رf 400. ITT/RBM	$£ 1.00$

THEYRE BACK

We can now again offer our special TV BARGAIN PARCELS. These contain all manner of useful bits and pieces. Components. semiconductors. videogame boards etc. which we have accumulated over the past year and must clear as we need the space

1kg 13.95
5kg £9.95

Very small. 20 kV 2.5 ma . 30 ma peak

R.B.M. USERS LOOK!

No more messy soldering. 24 pin 1.C. sochets for SL901 etc SPECIAL OFFER: 5 for $£ 1.00$ 100 for $\$ 12.50$.

SPECIAL OFFERS

100 Assorted Polyester Capacitors.
Mullard C246"s and others Mullard 296 s .400 only
160480 100 A ssorted Mullard C280: Cosmetic imperfects etc. 200 Mullard Miniature Electrolvtics Cosmetic imperfect Electrolytics Cosmetic imperfects $\begin{array}{ll}\text { etc. } & \mathbf{~} 2.00 \\ \text { PACK OF EACH } & \mathbf{5 5 . 0 0}\end{array}$

TRANSISTORS BC154. BC149. BC157. BF195. PBC 108. BF 393 S
2N3702. BC148B. BC 159. ZTXIO7. ME8001. BC65I BF 324
12 of one type Any 6055 H 2N 3055 H
BD 181 BD181
BD 131
BD 132
2

of 12

f 1.00 ES 60 peach 50 peach 4 for $£ 1.00$ 4 for $£ 1.00$
 very small. $\quad \mathbf{8 0}$ pea. $\mathbf{3}$ for $£ 200$

 CA270AE $£ 1.00$ C.S 6 for $\mathbf{~} 5.00$ TBA8 10 P £ 1.00 TBA810P 51.00 555 Timer 30p TAA 661 Bf 1.00 SN76660N 50 p

 LEDS
 $\begin{aligned} 5 \mathrm{~mm} \text { Red } & 12 \text { for } £ 1.00 \\ \text { Infra Red, } & 10 \text { for } £ 1.00\end{aligned}$ Infra Red, LED Transmitter. Til 38. Hi-Power. 50p each. 3 for $£ 1.00$ THORN SPARES

. 3500 Focus Assembly with VDR

" 8500 " Focus Assembly, Rutary type
" 8500 ". (0022 2000, Line Capactor
1590/41" Purtable metal hoost Diode (W 1/1)
560° Rlas Caps $160 \mu \mathrm{~F} 25$,
$900 / 450^{-\quad}$ Por L..O.P.T. P
1600° Dropper $18+320+70+395$.
$.450^{\circ}$ Can. $100+300+100+16 \mu \mathrm{f}$

\&1.20, 3 for $\$ 3.00$
 1.50 \& 1.50

50,3 for $£ 4.00$
10 for $£ 1.00$
5 for $£ 1.00$ $\begin{array}{r}5 \text { for } \mathrm{f} 1.00 \\ 20 \text { for } \mathrm{C} \\ \hline\end{array}$
1.00. 3 for K 250

3 for $\$ 1.50$
$\$ 1.00$

Z44 TO3 Mounting kits (BU208) 8 for 60 p Z45 TO220 Mounting kits (TIP33) 10 for 60 p Z46 TO126 Mounting kits (BD131)

Pack of each Mounting kit, 12 for $60 p$ include insulators and washers $\quad \mathbf{1 1 . 5 0}$ 3a 1000v Diodes (IN 5408 type) 8 for $£ 1.00$
Z49 Brushed Aluminium Push Button K nobs, 15 mm long $\times 11 \mathrm{~mm}$ Diam Fit standard $3 \frac{1}{2} \mathrm{~mm}$ square shafts 10 for $£ 1.00$
Z50 Chrome finish $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ Diam as above $\quad 10$ for $£ 1.00$ Aluminium Finish. Standard Fitting Slider Knobs. (Decca) $\quad 10$ for $£ 1.00$ Decca "Bradford" Control Knobs Black and Chrome. $\frac{1}{4}$ Shaft 8 for $£ 1.00$ Z53 Tuner P/B K nobs, Black and Chrome. Fit most small Diam Shafts, ITT, THORN, GEC etc. 8 for $£ 1.00$
Z54 Spun Aluminium Control Knobs (ITT) $\frac{1}{4}$ " Shaft, suitable for most sets with recessed spindles

8 for $£ 1.00$
14 Pin DIL I.C. Sockets 12 for $£ 1.00$ Z56 $\quad 16$ Pin Quil I.C. Sockets $\quad 12$ for $£ 1.00$ 25716 Pin DIL TO QUIL I.C. Sockets

10 for $£ 1.00$
Z58 22 Pin DIL I.C. Sockets 10 for $£ 1.00$
Z59 B9A Valve Bases P.C. Type 20 for $£ 1.00$
Z60 $0.47 \Omega \frac{1}{2}$ Watt Emitter Resistors
40 for $£ 1.00$
V.C.R. BATTERY PACKS.
hitachi portable v.c.r. Nicad pack Type VTBP60E $£ 20$ each.
THORN "VIDEOSTAR" 3V25/2 THORN "VIDEOSTAR" 3V25/26 Nicad pack. Type VA214. Also suitable for J.V.C.
etc.
$£ 20$ each. $\mathbf{2 0}$ each.
3 for $\mathbf{5 5 0}$
All brand new and boxed. MISCELLANEOUS
BG 100 tripler for CVC45 etc. Degausing VDR's. Dualtype. 2322-662.98009 50p each 2 for $£ 1.00$
 LTT VC200 $4 \mathrm{P} / \mathrm{B}$ Transistor Tuner. Sutable for some 9 ye and Philto sets. 3 hole fixme and Phins ects. 3 hole fixmg
Decea Bradford Tuners. 5 tutton type $\quad £ 2.75$ each
£3.00 each. 5 for $£ 12.50$ UHIF Modulator UHF out Video in. Ch. 36 .
$2 t^{\prime \prime} \times$?" \times "" complete with 9 foot coaxal lead and plug.
Wuth comeethon data
GEC Hybrid 2040 weries Focus Assembly with lead and
VIDR red
E 2.00 each, 3 for $£ 5.00$ Coniergence Pancl for above. Brand new leads and plug. $\quad \mathbf{\$ 3 . 0 0}$ each GEC 2010 Transwtor Rotary Tuner with AE. SK T. and

$\begin{array}{ll}\text { BU2S } 3 Q K & \text { Quadrupler type Q25B equivalent to ITT } \\ \text { f } 3.00 \text { each. } 2 \text { for } & 55.00\end{array}$
PYI: 647 Line and poucr Panel. damaged with some
omponents missing but ideal for spares $£ 2.20$ each. 3 for $\mathbf{\Sigma 6 . 0 0}$

HEHT Lead with Anode cap (CTV) suitable for split Diodes 3 for $\mathbb{1 3 0 . 0 0}$

 $\begin{array}{lr}4.433 \mathrm{Mh7} \mathrm{CTV} \text { Crystals } & \left.\begin{array}{l}3 \text { for } £ 1.00 \\ 4.00 \text { each. } 3 \text { for } £ 250\end{array}\right)\end{array}$
Cassette Mains l.eads. 7li with figg 8 plug $\quad 60 \mathrm{p}$ each. 3 for $E 1.50$
 10.7 AH/ Ceramic Fitters "Vernitron" FiMt sop each. 3 for f 1.00 PYE CT200 Control K nobs
High qualit? Metal Coax Plug. Gruh screw 5 for fl 1.00 . 100 for f 1250
lixing:
Casselte/Cale Leads. ?ming. figure 8 skt, to for pin.
American plug $\quad 60$ peach. 3 for 51.50

35 mm Jach Plug on 2 m of vereened lead	$\mathbf{6 0 p}$ each. 3 for $\& 1.50$
5 for $£ 1.00$	

10 for $\$ 1.00$
2k2 Screenfeed Resistors.
White ceramic. 9 watt. with fusible link.
8 for $£ 1,00$
$£ 1.20$ ench. 3 for $£ 3.00$ Pmillips G8 Transductor
handle. with lead and chassis conncctor
THYRISTOR
SS 106 (BT106) 65p each
3 for $£ 1.50,10$ for $£ 4.50$
CONVERGENCE POTS

 2000. IK. 8 of

Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICIAL ORDER. Allow up to 28 days for delivery. Most orders despatched same day.
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send Large S.A.E. for list of Quantity, Prices and Clearance Lines etc.

Frequency-synthesis Tuning

Stephen Clay

Previous articles (July/August) have dealt with the basic Rediffusion Mk. 4 chassis. Probably the most interesting feature however is the remote control/frequencysynthesis tuning system used on some versions. The infra-red remote control system is based on use of the ITT SAA1251 chip - the arrangement was described in detail in the December 1979 issue. Hence we'll concentrate in this article on the operation of the frequencysynthesis (FS) part of the circuitry.

Operation of the Set

The operation and tuning of the set will first be described so that the practical difference between frequency-synthesis tuning and a manually tuned receiver can be seen.

A photograph of the front control panel is shown in Fig. 1. In normal operation the only visible control is the mains switch at the top: it's assumed that all other functions (the analogue controls - volume, brightness etc. and programme change) will be controlled by the user via the remote control handset. A relay coil fitted to the mains switch provides remote switch off, but the switch has to be pressed to switch on.

There are two sets of controls behind the flap at the bottom. First a duplicate set of analogue controls and a programme "step" button to allow the customer to continue to use the receiver should the remote control handset be lost or be unavailable for some other reason. The handset has 16 buttons to give direct selection of the 16 programmes to which the set can be tuned, the step button giving provision to move from programme 2 to 3 etc. Secondly there are the tuning set-up buttons.

On the equivalent manually tuned set there would be 16 programme selector buttons, each of which would be

Fig. 1: Front control panel with the bottom flap lowered.
set to a particular u.h.f. channel by means of a tuning potentiometer. The disadvantages of this are that it's difficult to know exactly which channel you're on when tuning, the tuning can drift and is difficult to set accurately so that a.f.c. is required, and the tuning potentiometers can fail or at least become dirty.

On the remote control version of the Mk. 4 chassis the channels to which each of the programme buttons are tuned are semi-permanently stored in a non-volatile memory (NVM), i.e. one that doesn't require a battery to prevent loss of information when the set is switched off. When a particular programme is selected, the channel number (which is digitally stored) sets the dividers in the frequency-synthesis tuning loop so that the tuner's local oscillator will be at the exact (or almost) frequency - we'll be looking at the reason for the use of dividers shortly.

The layout of the controls beneath the flap on the front panel is shown in Fig 2. The on-screen display is also shown. If the spring-lcaded installation switch is held on and programme 8 is selected, the display shown will be obtained if the memory is storing channel 33 and the recall button on the handset is pressed. If we want to change this to say channel 45 , we press the tens button once, the units button twice and then press the store button so that channel 45 is stored in the NVM in place of channel 33. If you forgot to press store you'd get channel 33 instead of channel 45 next time programme 8 was selected.

It may sometimes be necessary to tune the set to a non-standard frequenzy - for use with a cable system or VCR modulator for example. The fine tune buttons enable the set to be tuned in small, 62.5 kHz steps for this purpose.

Although the system gives very stable and accurate tuning, it may also be necessary to use the set with a signal that drifts, such as one from a VCR or video game, so a.f.c. cannot be dispensed with entirely. For this purpose a.f.c. is applied when programme $7,8,15$ or 16 is selected - the arrangement can be changed internally if required.

The search button gives a slow sweep across the band, stopping where there are signals on programmes $7,8,15$ and 16.

When the installation switch is not held on the tuning controls have no effect: this reduces the possibility of accidental mistuning.
Fig. 3 shows the basic components that comprise the remote control/frequency-synthesis system. These are:

Fig. 2: Layout of the tuning and other controls behind the bottom flap (a); on-screen display (b).

Fig. 3: The various items that comprise the remote controll frequency-synthesis tuning system.
(1) The handset, which contains an ITT SAA1250 i.c. and infra-red LEDs.
(2) The infra-red preamplifier - an ITT TEA 1009 i.c. fitted at the front of the receiver inside a screening can to reduce pick-up. A hole in the end of the can enables the infra-red signal to be picked up by the diode inside.
(3) The pre-scaler. This is a small can which is mounted adjacent to the u.h.f. tuner on the signals panel. The AEG U465B i.c. inside this can divides the local oscillator signal from the tuner to a lower frequency (the u.h.f. tuner is type U321-LO, which has a socket fitted to the top to enable the oscillator signal to be tapped off and fed to the pre-scaler). Use of a screening can reduces local oscillator signal radiation.
(4) The remote control/frequency-synthesis panel. This large PCB contains the following five i.c.s. An ITT SAA1251 remote control receiver/decoder i.c. An ITT SAA1174 frequency-synthesis control i.c.: this contains a programmable divider whose setting depends on the channel selected, in turn producing the appropriate tuning voltage. An ITT SAA1075 non-volatile memory which stores the channel numbers and any off-set for each of the 16 programmes. An ITT SAA1276 on-screen display device to generate the numbers displayed on the picture when activated and fed with the appropriate programme and channel information. And finally an LM358 dual operational-amplifier i.c. which is úsed for a.f.c. correction. The front panel controls and set-up buttons plug into this panel.

The Frequency-synthesis Control Loop

Having looked at the way in which the set is tuned and the main components involved, we can now go on to see how the frequency-synthesis frequency-locked-loop is used for tuning. We'll ignore the NVM for a start and assume that the channel information comes directly from the FS set-up panel. The system is shown in Fig. 4.
The channel information from the FS set-up panel is fed to a temporary store in the SAA1174 i.c.: the division ratios for both the pre-scaler and the programmable divider in the i.c. are calculated from this information. The frequency/phase comparator has two inputs, the divided down local oscillator frequency and a fixed stable
frequency of about $976 \mathrm{~Hz}\left(4 \mathrm{MHz} / 2^{12}\right)$ which is derived from a crystal oscillator. If the tuner's local oscillator is at the correct frequency, there will be no output from either pin 15 or 16 of the i.c. and the tuning voltage, which is stored by C6, will remain constant. If the local oscillator frequency is too high, due to drift or when a channel change is required, there will be an output of pulses from pin 16. These pulses switch transistor TR6 on, thus discharging C6 until the correct tuning voltage is obtained. Similarly if the local oscillator frequency is too low there will be a pulse output from pin 15. As a result, C6 will charge via TR 5 under the control of TR4. The duration of the pulses from pin 15 or pin 16 depends on how far the local oscillator is off tune. R53 and C5 improve the stability of the loop.
As an example of the division process, let's take channel $21(471.25 \mathrm{MHz})$. The local oscillator frequency is 510.75 MHz , and the temporary store will hold two numbers, 515 and 68. The programmable divider is set to 515 . For the first 68 counts of this 515 there will be 0 V at pin 4 of the SAA1174 i.c. and the divide-by-fifteen circuit in the pre-scaler i.c. will be switched in. For the rest of the counts to 515 (447) there will be 5 V at pin 4 and the divide-by-sixteen circuit will be switched in. Hence
$510.75 \mathrm{MHz} \times \frac{1}{64} \times \frac{1}{(68 \times 15)+(447 \times 16)}=976 \mathrm{~Hz}$.
This is the counted down oscillator frequency and is the same as the fixed frequency. It follows that changing the digital numbers fed to the temporary store changes the division ratios and hence the tuning voltage.

The divide by $15 / 16$ circuit is used because it's a relatively simple way of shifting part of the programmable divider into the pre-scaler i.c., which is capable of operating at higher speeds than the FS control i.c.
The tuning resolution of this system is determined by the amount of fixed division (which is 64), and is $64 \times$ 976 Hz (derived from the crystal oscillator) $=62.5 \mathrm{kHz}$. This means that we can fine tune in steps of 62.5 kHz , which is perfectly adequate for TV set use.

It should be noted that although all such loops use the same principle of dividing the local oscillator frequency down and comparing it with a fixed stable frequency to produce the required d.c. tuning voltage, other designs may use different fixed divider ratios, programmable dividers, crystal frequencies etc., depending on the tuning resolution required, the tuning cycle time, technology available and so on.

Fig. 5 shows the non-volatile memory i.c. connected to the FS control i.c. The SAA1075 NVM uses MNOS technology to store the channels, giving a selection of 16 programmes, and can hold this information for at least ten years after the power has been disconnected.
For normal customer operation, when a button on the remote control handset is pressed a signal goes through the infra-red system and outputs appear on the $\mathrm{Pa}-\mathrm{Pd}$ lines from the SAA1251 remote control i.c. These lines are connected to the NVM (IC2), and consist of a parallel four-bit data bus: 0000 means programme 1,0001 means programme 2, 0010 means programme 3 and so on up to 1111 which means programme 16. The step button on the front control panel is connected to the SAA1251 i.c. and simply adds 1 to the four-bit code each time it's pressed.

The four-bit code changes each time another programme is selected, the channel information for the new programme then being fed from the NVM into the tem-

Fig. 5: Links between the FS control and non-volatile memoryi.c.s.

[0439
Fig. 6: The coding system used for holding channel information in the stores. Note that a four-bit system has sixteen possible states: only the first ten are used.
porary store in the FS control i.c. As a result, the tuning frequency changes.

The channel information is held in the two stores using the binary code arrangement shown in Fig. 6. It's sent from the NVM to the temporary store as a serial data stream, i.e. the ones and zeros are fed via a single wire in sequence. With serial data it's necessary to have a clock frequency so that the receiving i.c. reads the zeros and ones at the correct times.

Returning to Fig. 5 you can see that with the installation switch in the on position a positive voltage is fed to the appropriate ICl input pins when the tens, units, FT + or FT - button is pressed. The channel information in the
temporary store is thus changed. If a new programme is selected at this point the temporary store will be overwritten with new information from the NVM: if the store button is pressed however the information in the temporary store is sent in the reverse direction into the NVM.

Normally it's not possible to erase the information in the NVM. When store is pressed however a high voltage of about 30 V is applied to the i.c., erasing the previously stored channel (for whichever programme was selected). The 30 V supply is obtained by adding the 18 V supply that feeds the remote control/frequency-synthesis circuit and a -12 V supply which is obtained from the negative d.c. output from the Mk. 4 chassis' switch-mode power supply.

The SAA 1276 on-screen display i.c. is basically a read-only memory (ROM) which stores the characters 0 to 9 and enables these to be read out and displayed on the screen in a similar manner to teletext: the character output is fed into the green channel of the colour decoder i.c., together with a blanking signal to put a black box around the characters. The i.c. requires field and line sync inputs, and is fed with programme information from the Pa-Pd bus, channel information from the serial data line, and a display clock signal from the FS control i.c. A capacitor and resistor connected to one of the i.c.'s pins determine the length of time during which the characters are displayed.

If the signals on the $\mathrm{Pa}-\mathrm{Pd}$ bus change, the programme number will be displayed on the screen: if the recall button on the handset is pressed, the timing of the display clock and serial data line signals is such that the channel information is also displayed.

Other Versions

The teletext version of the Mk. 4 chassis with remote control/frequency-synthesis tuning has the following additions:
(1) A Mullard teletext decoder module.
(2) 12 V and 5 V stabiliser i.c.s mounted on a heatsink for the teletext decoder's power supply inputs.
(3) A small text buffer panel (plugged into the teletext decoder). This incorporates emitter-followers to enable the SAA5050 TROM i.c. in the teletext decoder to drive the TDA3300 colour decoder i.c.'s data inputs.
(4) A small text interface panel to enable the SAA1251 remote control chip to operate the teletext decoder. The SAA 1272 i.c. on this panel generates a suitable Mullard information bus signal (IBUS) from the data signal available at pin 17 of the SAA1251 i.c.

The text interface panel also contains a bleep generator. This operates on text commands from the remote control handset, to help the user to know that his page selections have been received by the remote control receiver system.

A different handset fitted with text command buttons is used.

In export models fitted with u.h.f. and v.h.f. tuners the SAA1174 i.c. is replaced with an SAA1274 which has outputs for switching the tuner supply between Bands I and III and u.h.f. The division ratios in this i.c. are such that the local oscillator frequencies for each channel will produce an i.f. at 38.9 MHz instead of the 39.5 MHz with the SAA1174.

This article has described the basic features of the ITT system as used in the Rediffusion Mk. 4 chassis. It has not been possible to describe all the circuit details such as search tune, a.f.c., etc., or other ways of using the system such as seven-segment displays or programming from the handset. The system has been in production for over a year and has proved to be extremely successful.

The JVC HR7650

I'VE now received supplies of the new JVC VCR - the HR7650 which, amongst other things, features stereo sound capability. Last Saturday we recorded the Incredible Hulk and the replay was brilliant. The luminance recording and replay circuits have been redesigned: equalisation and peaking circuits enhance the signal without introducing edge noise or ringing, and a luminance comb filter technique hitherto found only in the more advanced Betamax machines (Sony C7 and Toshiba V8600/8700) has been added to reduce crosstalk. The recently introduced JVC HR7200/7300 machines also have the luminance comb filter, and as soon as more details are available I'll produce an article explaining the VHS approach to this technique. Meanwhile, treat recently distributed manufacturer's information explaining it by means of a timing diagram with an open mind!

The HR7650 also has a microprocessor in the capstan servo: its function is to control the noise-free still-frame selection and slow-motion tracking - as the slow-motion tracking is now automatic, there's no slow-motion track-

The JVC HR7650EK stereo VCR which also features insert and assemble editing and full infra-red remote control.

Steve Beeching, T.Eng. (C.E.I.)
ing control. The microprocessor receives from the dropout compensator circuit a pulse which represents any tracking error/noise. The timing of this pulse with respect to the CH 1 edge of the head switching waveform indicates the tracking error. If the pulse appears before the CH 1 edge, the tracking error is at the bottom of the screen, indicating that the tape transport has fallen short of its optimum position. The time between the pulse and the CH 1 edge is measured and added to the next capstan motor stepping pulse, transporting the tape farther to compensate for the shortfall. Similarly if the pulse occurs after the CH 1 edge the tape will have travelled too far and the next capstan stepping pulse is reduced in width.

When still frame is selected the microprocessor has eight frames to get it right, after which it stops anyway. In slow motion the correction is continuous. Unlike other VHS machines, where a tracking error can be seen shunting down the picture out of sight, the HR7650 is so rapid that tracking noise can barely be seen when a still frame is selected. Due to the automatic control it can accommodate, up to a point, tapes made on other machines.

Stereo/two-channel sound is a major feature, with Dolby noise reduction. As there are no stereo TV broadcasts at present in the UK, provision is made for use with simultaneous TV/f.m. radio stereo. A front panel switch enables the audio recording source to be either the tuner or an auxiliary input - hence video can be recorded with an auxiliary audio input.

Andy and I modified a Grundig A7681 stereo TV to switch to external inputs on the AV channel. We enjoyed watching Star Wars in stereo sound for a bit until Andy sold our first HR7650!

Assembly and insert edits are available on the HR7650. During an insert however not all the colour under carrier can be "over-recorded", and as a result a certain amount of colour flicker can sometimes be seen. Other than that, the edits are good. The audio edit flexibility is borrowed from U-matics. During full edits or audio dub edits only channel two (right) of the sound track is replaced. In playback there are three sound options: original audio, original and new audio, or new audio. So audio dubs can be performed and there's a choice to maintain background audio.

Good, innit?!

EsGBNTE

Alexandra Pavilion London November 18-211982

Launched in response to demand for a major national show of the highest quality, PRACTICAL ELECTRONICS,
EVERYDAY ELECTRONICS and PRACTICAL WIRELESS are presenting the biggest and best event ever to be staged for the electronic hobbies enthusiast.
If your company is involved in the manufacture of electronic components, equipment, ancillary systems for
electronic projects, home computers, amateur radio, citizens band, video games, musical instruments - you should be there!
For further information about exnibiting contact: The Exhibition Manager, Electronic Hobbies Fair, IPC Exhibitions Ltd., Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Tél: 01-643 8040. Extn. 4873.

Please send me details about exhibiting at the

Name
Position in Company
Company
Address

Teletopics

PHILIPS VIDEO DEVELOPMENTS

The LaserVision disc system has now been made available throughout the UK, through over 1,000 outlets. Philips Video divisional director Jimmy Dunkley commented that the decision to go national follows the successful introduction of LaserVision through 150 outlets in London and the south east. Though sales figures are not being released, there is talk of a "positive consumer response". The disc catalogue is being expanded beyond the current 120 titles, with additional feature films and special interest programmes, as part of a plan to widen consumer choice. The policy that the players and discs must both be available at all outlets is being maintained, and all current LaserVision stockists in the south east have been regularly visited to check on dealer reactions, shop displays, consumer responses and service back up.

National distribution is being supported with a major autumn advertising campaign which will boost the 1982 LaserVision promotional budget to nearly $£ 3$ million. Adverts will appear on television nationally, in the national press and on networked local radio and in regional newspapers, directing potential buyers to specific outlets.

On the VCR front, Philips have shown pre-production versions of a portable using the V2000 system. The machine is due for release on the UK market this autumn.

The Philips CS3850 22in. TV set with stereo sound also offers a more advanced teletext arrangement which Philips call Super Text. The idea is to simplify user operation by storing in a memory up to twenty frequently used page numbers which can be selected by pressing a single button. The succeeding and preceding pages to the one being displayed can also be selected more easily. Other features of the set include frequency-synthesis tuning and direct video and audio inputs.

TELESOFTWARE EXPERIMENT CONCLUDED

The experimental project on the use of telesoftware for educational purposes, organised by Brighton Polytechnic in conjunction with nine schools from Brighton in the south to Edinburgh in the north and with the support of the BBC, IBA and Mullard, has been successfully concluded. Just to remind you, the idea of telesoftware is to transmit computer programmes in the same way as teletext data is transmitted, so that simple computers with minimal storage capacity can be used at the receiving end. A summary report has been issued, and by the time this is read the full report will be available at $£ 4.50$ from the Faculty Officer, Faculty of Education Studies, Brighton Polytechnic, Falmer, Brighton, Sussex BN1 0 PH . The conclusions can be summed up as follows. Telesoftware was found to be an efficient, cheap, reliable and practical means of making computer programmes available to schools, and proved to be an effective teaching/learning medium. By making television sets "intelligent", the system helped to gain interest in computing and introduce computers into areas where they had not previously been used. The polytechnic comment that it's now up to the broadcasters to decide on what
commitment they will make to developing the idea, and to educationalists to decide on how to incorporate it into their teaching arrangements.

COMPACT VHS MACHINES

Both Sharp and JVC have announced portable VCRs using the new JVC compact VHS system (see Teletopics August). The system is now known as VHS-C. JVC's Model HR-C3 weighs 2 kg without batteries. Sharp's Model VC220N weighs 2.2 kg and has a recommended price of $£ 420$ for the machine alone or $£ 550$ including an a.c. adaptor/r.f. converter, battery pack and cassette. The mini cassette itself has a playing time of half an hour and fits into an adaptor for replay via a standard VHS machine.

PRESTEL'S PROJECT Y

To date Prestel has been a total flop so far as domestic users are concerned - it's seen as an expensive and unnecessary service. To counteract this view and encourage the use of electronic banking and shopping from home, British Telecom are engaged in negotiations with a bank to set up a joint venture which amongst other things will result in the offer of a free Prestel adaptor to some 100,000 households, with installations running at a rate of 2,000 a month. One aim is to get mass production of Prestel adaptors started so that the cost can be reduced to well under $£ 100$ each.

RGB OUTPUTIC

The latest generation of Mullard colour decoder i.c.s was mentioned in the March Teletopics column earlier this year. Mullard have now developed an RGB output i.c., type TDA3602, to partner the TDA3562A decoder chip, thus getting everything between the demodulated video and the c.r.t.'s cathodes into just two chips plus the necessary peripheral components. Black-current sampling is carried out within the TDA3602, with feedback to the TDA3562A to provide compensation. This reduces the number of presets required and provides automatic adjustment for black-level drift with tube ageing.

HITACHI LAUNCH MULTI-STANDARD VIDEO

The latest addition to the Hitachi VCR range is a fourstandard machine capable of operating on the PAL, SECAM, NTSC-3.58 and NTSC-4.43 standards in both the record and playback modes. The new machine, Model VT8040EM, has a suggested retail price of $£ 730$ and is complemented by a similarly multi-standard 20 in . CTV, Model CMT2060, with a recommended price of $£ 477$.

COMPANY COMINGS AND GOINGS

The biggest news on the company front last month was AEG-Telefunken's application for voluntary receivership and its subsequent bailing out with aid from the government and the firm's bankers. Due to the complex company structure, the Telefunken radio and television subsidiary was not affected. The move to link up with Grundig (see Teletopics last month) continues, but objections have been made by the W. German cartels office on the basis that Telefunken's participation in the joint J2T video venture (with JVC and Thorn) would, along with Grundig, give the combined group some 70 per cent of
the W. German VCR market. The outcome of all this remains to be seen.

On the home front both Alba and Wharfedale have been reprieved. Alba Electronics are being bought from the receiver by Harvard International. The plan is to run the firm as an independent division trading as Alba Radio. Wharfedale has been bought by Tradewest Ltd. and renamed Wharfedale Loudspeakers. Only 50-60 of the 300 staff will be taken on initially, but it's hoped to be able to increase the workforce once production is resumed.

Tandberg, who only recently returned to the consumer TV market, have once again withdrawn. Tandberg's Norwegian CTV plant was closed down a couple of years back, its UK plant at the same time being sold to Mitsubishi. The sets being offered by Tandberg recently were manufactured by Loewe-Opta in W. Germany. In future Tandberg will be concentrating on the specialized fields of high technology hi-fi equipment and electronic learning aids, with some involvement in specialist television applications.

Nature abhors a vacuum as they say, and as one firm goes another steps in. The newcomer to the UK market is Zanussi, with a range of CTVs from 16 in . upwards and a VCR manufactured by Grundig. Zanussi's current CTV production is some 250,000 sets a year, with the capacity to expand quickly to 400,000 . Zanussi expect to sell some 18,000 sets during the first year in the UK. Earlier Zanussi sets came ex-rental from British Relay rather than directly through the Zanussi organisation.

EXTENDED PAL

We've mentioned before the BBC's proposed extended PAL system, which would make use of the wider bandwidth available with satellite broadcasting to provide improved reception by removing cross-colour effects - the system has been successfully demonstrated. Fig. 1 shows the signal spectrum, with the h.f. luminance signal components shifted to a higher frequency so that they no longer overlap with the chrominance signal. Fig. 2 shows the additions that would be required to the decoder.

Fig. 1: Extended PAL signal spectrum.

Fig. 2: Decoder arrangement for extended PAL reception.

These are quite simple - just a mixer, some filters and an adder stage. A neat feature is that by shifting the h.f. luminance signal by 4.43 MHz the colour subcarrier can be used as the local oscillator signal. An important point is the compatability of the system with existing TV receivers: since the current generation of shadowmask tubes cannot resolve the h.f. luminance signal anyway, the extended PAL transmissions are displayed with no loss of definition and with the irritating cross-colour patterning removed.

KOREAN US CTV PLANT

Following in the steps of the major Japanese CTV manufacturers the Korean Gold Star company, a subsidiary of the Lucky Group, is setting up a CTV plant in Huntsville, Alabama to manufacture sets for the US market. The aim is production at the rate of 120,000 annually to start with, rising to 400,000 by 1987. S. Korea's vigorous consumer electronics industry could well be eyeing the European CTV market next.

TRANSMITTER OPENINGS

The following relay transmitters are now in operation:
Dumfries South BBC-1 ch. 40, Border Television ch. 46, BBC-2 ch. 48, TV4 ch. 50.
Hove BBC-1 ch. 39, TV4 ch. $42, \mathrm{BBC}-2$ ch. 45 , Television South ch. 49.
Micklefield, High Wycombe BBC-1 ch. 54, Thames Television/London Weekend Television ch. 57, BBC-2 ch. 64, TV4 ch. 67.
Ness of Lewis Grampian Television ch. 41, BBC-2 ch. 44, TV4 (future) ch. 47, BBC-1 ch. 51.
Strathblane Central BBC-1 ch. 21, Scottish Television ch. 24, BBC-2 ch. 27 , TV4 ch. 31.
Tarbert, Harris BBC-1 ch. 39, BBC-2 ch. 45, Grampian Television ch. 49, TV4 (future) ch. 52.

The above transmissions are all vertically polarised.

TV BURGLAR ALARM

Radio Rentals have under test in several areas a TV set that also acts as a burglar alarm. The alarm is incorporated in a teletext model and operates on an ultrasonic basis. After switching the set off the viewer sets the alarm which becomes effective twenty seconds later, emitting a piercing, high-pitched sound should an intruder subsequently enter the room. There's a fail-safe device should the plug be removed, and before switching on again the user has a twenty seconds time interval. Radio Rentals are offering the alarm for an extra $£ 1.50$ monthly.

SANYO'S BUDGET VCR

Another budget-price VCR, Model VTC5000, has been added to the current Sanyo range - joining the VTC5300P and VTC5400P. The new machine has softtouch controls, monochrome picture search in the forward and reverse modes, an eight day, one programme timer and built-in r.f. signal loss compensator, with the timer display doubling as tape counter with memory function. The suggested retail price for this "bargain-hunter" model is $£ 329.95$.

It's been reported that exports of Japanese VCRs to the UK during the first half of the year comfortably exceeded those for the whole of 1981, suggesting that there could well be bargains in the offing.

Servicing the Rank Z718 Chassis

Part 3

John Coombes

In this final instalment we'll be dealing with faults in the signals sections of the receiver.

The Decoder

The decoder is of the Mullard three-chip type TBA560C, TBA540 and TCA800. The latter i.c. is followed by RGB driver and output stages, all direct coupled. Fig. 7 shows the driver and output circuits: the output stages operate under class A conditions, and negative feedback is applied to the bases of the emitterfollower drivers via resistors 3 R60/1/2 to keep the black level constant. 3VT10 forms a common emitter load for the output transistors and provides a convenient method of setting the black level. There are one or two "extras" in the earlier part of the decoder. First a blanking pulse amplifier stage (3VT2). Secondly a timing circuit for the burst gating/black-level clamping pulses (3L12 etc.). And finally an overload circuit which reduces the contrast via pin 2 of the TBA560C i.c. in the event of an excessive output at pins 3,5 or 7 of the TCA800 i.c. Diodes 3D8/9/10 conduct in the event of excessive RGB output signals, driving the base of one transistor in a differential amplifier circuit ($3 \mathrm{VT} 17 / 18$) linked to pin 2 of the TBA560C.
For ease of reference we'll list the various faults and their usual causes.
No luminance: The usual cause is the luminance delay line -3DL1 going open-circuit. The TBA560C i.c. can also be responsible for this fault. Check by substitution - this is easy as all the i.c.s plug in.
Loss of one colour: First check whether the relevant output transistor is open-circuit. Other things to check are: the driver transistors; the drive presets 3 RV6/7/8 (the tracks tend to give rise to intermittent faults); and the TCA800 i.c. by substitution.
If any further difficulty is experienced, check the first anode presets on the timebase panel. If faulty, make sure that the modified $2 \cdot 2 \mathrm{M} \Omega$ type is fitted in each position. Associated modifications that must be carried out are as follows: change 4 R 48 to $430 \mathrm{k} \Omega$ and make sure that 4 R 44 and 4 R 45 are $510 \mathrm{k} \Omega$ and $560 \mathrm{k} \Omega$ respectively and are fitted between the collector of the constant-current transistor 4VT14 and the junction of 4D16/4R48.
Bright red/green/blue raster: Check whether the relevant output transistor is short-circuit or its load resistor 3R69/70/71 is open-circuit. This latter check is easy: switch off and touch the resistors lightly - a cool one is suspect. If necessary check the relevant driver transistor, the TCA800 i.c. and the condition of the first anode presets - careful movement of the relevant control will generally prove the point.
Floating colours: First check the TBA540 i.c. by replacement, then if necessary the 4.43 MHz crystal (3XTL1). Occasional culprits are the chroma delay line and the reference oscillator frequency trimmer 3 C 35 .
Bright raster (no picture) with flyback lines: Check whether 3R55 ($120 \mathrm{k} \Omega$) in the line pulse feed to pin 8 of the TCA800 i.c. is open-circuit. Under this condition the
voltage at 3 TP 2 will fall to about 0.5 V .
Flyback lines at low brightness level: Ensure that the black-level preset 3 RV13 is not set too high and check the condition of its track. If necessary check 3VT10 for being short-circuit.
Bright raster: Check the diodes 3D5/6/7 in the burst gate/clamp pulse timing circuit for being short-circuit.
Intermittent loss of brightness: Check the preset brightness control 3RV11. Then if necessary check 4R46/7 on the timebase panel (see Part 1).
Blank raster: Check the TBA560C i.c. by substitution. The TCA270Q i.c. in the i.f. strip and the tuner unit can also be responsible for this fault.
Black zigzag shading at the top of the picture: This is a strange fault when you first encounter it. The cause is the diode (3D1) in the field flyback pulse feed going shortcircuit. It's type BA317.
No colour or intermittent loss of colour: A clue is given by measuring the voltage at 3 TP2 (TBA540 pin 9, TCA800 pin 14, and, via 3 R 42 , TBA 560 C pin 14). A normal reading is about 1 V . If the reading is 2.5 V the colour-killer is operating - it can be overridden by pulling out link 3LK 2 . If the voltage is 4 V there's no burst signal. This condition can be obtained by shorting together 3 TP $3 / 4$ - so that the set a.c.c. control 3 RV 2 can be adjusted (for 4 V at 3 TP 2). If the reading is 6.5 V there's a mis-ident condition - the burst swings but the bistable is out of step.

When confronted with the no colour condition you will usually find that the voltage at 3 TP2 is 4 V . This may vary according to the particular cause of the fault. As a first step check all three i.c.s by substitution, which is easy enough to do. Make sure that the pins aren't bent or turned over when removing/refitting the i.c.s as this may induce another fault. And don't push too hard as this can cause dry-joints on the print side or even cracks in the panel/print.
Other things to check are the chroma delay line which may be open-circuit and the set a.c.c. control 3RV2 which is sometimes responsible for intermittent loss of colour this can sometimes be detected when setting up the control, i.e. a variation in the voltage at 3TP2 is obtained instead of 4 V .
In stubborn cases check the following items: The 4.43 MHz crystal (3 XTL1) which may be open-circuit. Capacitors $3 \mathrm{C} 12(0 \cdot 1 \mu \mathrm{~F}), 3 \mathrm{C} 24(10 \mu \mathrm{~F}), 3 \mathrm{C} 28(220 \mathrm{pF})$, $3 \mathrm{C} 36(0.33 \mu \mathrm{~F})$ and $3 \mathrm{C} 40(0.33 \mu \mathrm{~F})$ for shorts. These defects will produce a reading of 4 V at 3 TP 2 . If 3 C 22 $(22 \mu \mathrm{~F})$ is short-circuit the reading at 3 TP 2 will be 1 V . If 3C27 $(2 \cdot 2 \mu \mathrm{~F})$ is short-circuit the reading at 3 TP 2 will be 3.5 V .

Finally note that the cause of the fault may lie on the timebase board (see final paragraph of Part 1) or in the tuner (see later).

IF Strip

The main source of trouble in the i.f. strip is the TCA270Q vision demodulator i.c. In the event of a blank raster check this i.c. by substitution or by checking the

Fig. 7: The RGB driver and output stage circuits. $3 V T 10$ forms a common emitter load for the output transistors.
voltages very carefully. This fault can also be caused by the i.f. strip l.t. feed components - check whether 2R4 (10Ω) is open-circuit or $2 \mathrm{C} 13(100 \mu \mathrm{~F})$ short-circuit. The TCA270Q i.c. can also be responsible for poor field sync or, on occasions, loss of sync.

There are three transistors in the i.f. strip. Any of them can go open-circuit, but it's usually 2VT2 (BF198) that's at fault. The result is a very snowy picture or no picture at all, just grain. These faults can also be due to the tuner or the aerial system of course. Voltage checks on the transistors will reveal which one if any is defective.

Mechanical Tuner

Since the tuning buttons are so frequently used they tend to break up around the star shape which pushes over the tuner bar, making it impossible to tune or, in extreme cases, making it impossible to push the bar in to select any channel. The compression springs stretch or get caught under the push-button bar, with the result that it's impossible to change channels.

The main cause of failure is the moulded nylon nuts or slugs which can be responsible for no colour, intermittent
colour, a snowy picture, lines on the picture, picture jumping or rolling, poor sound, buzz on sound - even a poorly focused picture. The nylon nuts can get slack and slide on the bar, or crack and break up altogether.

A word of warning. After removing the metal can that covers the tuning slugs, make sure that it's replaced correctly. If you obtain a replacement; check whether it's received a knock in the post. The problem is that a misfitting cover can cause component short-circuits at the back of the tuning assembly. This may result in a blank raster with no sound or picture, which can be misleading especially if you are out in the field.

If when changing channels you get flicks and flashes and have to retune there's excess grease around the bar on which the tuning vanes are mounted. Remove and clean, also oil the ball bearing at the end of the tuner assembly. Check that there are no particles of solder floating around as these can cause a temporary shortcircuit on the vanes. Check that the vanes themselves aren't touching - when held up to the light it should be possible to see a small gap all round the traverse of the vanes.

When the tuner cover has to be removed make sure that you replace the rubber packing and copper screen when the job has been completed. Failure to do this can lead to mistuning and affect the performance on the higher channels.

A blank raster (no sound or picture) may be due to oscillator failure. Check the BF181 mixer/oscillator transistor 1VT2. It's possible to change this transistor, but make sure that you cut the leads to the same length and insulate them where necessary to avoid short-circuits. The lead length and positioning are important.

If the picture is grainy or snowy, check the BF180 r.f. amplifier transistor lVT1 which sometimes goes opencircuit. Check that the 12 V supply is reaching the tuner unit at 3 Z 5 pin 3 , and that the bias resistor $1 \mathrm{R} 3(1.2 \mathrm{k} \Omega$, mounted on top) is not open-circuit.

One point I feel it's important to emphasize is that the aerial isolator is a safety component which should be replaced only with the correct type from the manufacturer.

Varicap Tuner

The usual faults caused by the varicap tuner are a snowy picture, a blank raster (no signals) or intermittent thin black pencil lines. The tuner is difficult to service and it's much simpler and more economic to unsolder it from the subpanel and fit a replacement. If the picture is slightly grainy after doing this, adjust the r.f. bias control 1R102 for a clean picture - do this with a signal you know and is clean to start with.

One of the most common faults is tuning drift. In this event check the TAA550 tuning voltage stabiliser i.c. You may find that applying freezer and warm air results in a variation on the 33 V line. Take care not to apply excessive heat or you may get extra trouble. I've noticed on several occasions that a voltage reading of 28 V is obtained with a defective TAA550, so this is one clue. Other causes of drift are the tuner unit itself and the tuning potentiometers - check the carbon tracks.

Miscellaneous Points

Random channel changing can occur with touch-tuned sets. Check whether the sensors are clean, also for spray
polish. If still in trouble replace the ETT6016 touch-tune control i.c. Remember to handle it with care as it's a MOS device. On later models a $100 \mathrm{k} \Omega$ resistor was added between the base and emitter of the BC157 shunt stabiliser transistor 9VT1, mounted on the print side, to prevent damage to $9 \mathrm{VT1}$ and/or the ETT6016 i.c.

If the remote control unit won't change channels or mute the sound, check the PP3 9V battery and the switch (11SW1) which cracks the metal strip, resulting in failure to turn on. Also check the switch contacts which can bend and fail to operate. A high- Q coil is used to give maximum battery life - battery failure should lead to a check on the switch contacts in case they are making all the time.

The following circuit changes apply to 20/22/26in. models and should have been noted in the captions to Figs. 3 and 4. An $0 \cdot 1 \mu \mathrm{~F}$ decoupling capacitor is added between pins 3 and 2 of the line output transformer. A $2 \cdot 2 \mu \mathrm{~F}$ decoupler is added between the h.t. end of the line driver transformer's primary winding and chassis. One side of the line windings on the NS transductor is earthed (instead of being taken to pin 5 of the line output transformer). The capacitor in 5VT6's base circuit is $0.33 \mu \mathrm{~F}$.

Finally note that "standard" and quick-heat c.r.t.s have been fitted. If you change from one to the other, it's important to adjust the c.r.t. heater voltage coil 5L14otherwise the tube will be damaged.

Letters

THORN 9000 CHASSIS

I've also had the fault of tripping on channel change with the Thorn 9000 chassis (Service Bureau, September). After a period of time the set would trip intermittently. The problem was cured by replacing the 87.9 V line reservoir capacitor C715 $(22 \mu \mathrm{~F})$ - on removal it had white deposits around the base. Mick Dutton referred to this trouble in the March 1982 issue (page 247).
R.J. Musson,

Solihull.

CAPACITOR TESTER

With reference to my letter on Victor Rizzo's simple capacitor tester in the January 1982 issue and your editorial note, I tried the modified circuit arrangement suggested but found that the voltage across the test probes was only about 26 V . This was increased to 100 V by changing the value of the $47 \mathrm{k} \Omega$ resistor to about $140 \mathrm{k} \Omega$. I've since developed the device to make it more flexible, the resultant circuit being shown in Fig. 1. The initial capacitor test remains as before. To recap, no suggestion of a flicker when a capacitor is tested indicates that it's open-circuit, a continuing glow that it's short-circuit, and continuing flickers that it's leaky: a good capacitor will light the neon (N1) momentarily as it charges, the glow depending on the capacitor's value.

A second capacitor test has been added as follows. If the first test indicates that the capacitor is good, discharge the capacitor through the neon (the power supply can be left on or switched off). A good capacitor will flash the neon as before, but there are advantages in making this second test. First the discharge flash obtained is brighter than the charging flash. If the flash is missed when making the initial test, especially with low capacitor values which produce a weak flash, this second test will prove the point one way or the other. It also proves that the capacitor can hold a charge: I've found that a new $0.1 \mu \mathrm{~F} 600 \mathrm{~V}$ capacitor will flash the neon 24 hours after charging.

In use, check first with probes A and B to each side of the capacitor. If the capacitor is good, remove probe A and after a few seconds apply probe C or D depending on the capacitor's value. Below $0 \cdot 2 \mu \mathrm{~F}$, use probe C ; for $0 \cdot 2 \mu \mathrm{~F}$ or above use probe D which adds the current limiting resistor $\mathrm{R} 5(10 \mathrm{k} \Omega)$.

Note that the tester is not meant for testing electrolytics. Low-value electrolytics of up to $25 \mu \mathrm{~F}$ can be con-
nected across the probes however provided the capacitor is rated at over 100 V - observe polarity! The neon should glow and extinguish in less than thirty seconds. After the electrolytic has charged, leave it for a while before discharging it via the $10 \mathrm{k} \Omega$ resistor. If the neon glows you will know that the electrolytic has held its charge.

Probes A and B can be used to make continuity tests on neons, fuses, lamps, etc. Rectifier diodes can also be checked. With the anode to A the neon will glow - if it glows with the cathode to A the diode is short-circuit. For most other types of diode the tester is unsuitable.

A mains polarity test is also included. Plug the tester into the mains socket, make sure that all probes are clear, then switch the power on. Press push-button switch PB. If both neons are off, link probes A and B. Two electrodes should glow (one in each neon), indicating that the polarity and earth connections are o.k. If all four neon electrodes glow when switch PB is operated the input is a.c. don't use the probes, switch the power off as the polarity is reversed.

Leave switch PB open for all other tests so that the circuit is disconnected from earth. Capacitors being tested must not be connected to earth.

Fig. 1: Modified capacitor tester circuit.

Fig. 2: Method of housing the capacitor tester.

Fig. 3 (right):
Method of securing the neons.

The probes can be connected via suitable sockets as shown in the circuit. A and C are probes, but B can be an insulated crocodile clip. Probe C can be used in the D position by connecting it to SK4 instead of SK3. The voltage across A and B should be 100 V with $\mathrm{R} 3140 \mathrm{k} \Omega$. Increasing the resistance value increases the output voltage. If the polarity test feature is not required, omit R4, PB and N 2 .

I housed my unit in a plastic pill bottle (see Fig. 2). You could alternatively use Victor Rizzo's original idea (see March 1981). There are other possibilities of course.

A bracket to hold the neons can be made from a one inch strip of aluminium as shown in Fig. 3. Cover the leads with plastic tubing and glue the neons in position (I used Araldite).

C1 can be checked by switching on and off and then after about ten seconds linking probes A and B. A good capacitor will discharge and flash the neon.
Walter Spencer,
Brisbane, Australia.

OLDER SONY COLOUR SETS

There are quite a few of the older Sony colour sets in our area, and as the original agents in these parts have ceased to trade the sets tend to come to us when faults arise. A recent case may be of interest to others who find themselves in this position. Because of its symptoms, we christened the fault the "barber's pole". There was weak, incorrect colour, with a barber's pole spiral of red and green bands down the left-hand side of the picture. These bands varied in width but extended roughly a third of the way across the screen. The decoder circuit is not easy to follow - we're referring to the early non-PAL type but we've found that the voltage readings given by Sony are very accurate. We eventually traced the cause of the fault to one of the 2SC633A transistors in the flip-flop circuit that controls the colour switching, the evidence being a slight discrepancy in one of the collector voltages. The same fault, this time intermittent, has since occurred in another of these sets that came our way.
Richard Roscoe,
St. Austell, Cornwall.

SIMPLE ZENER DIODE CHECKER

This simple zener diode checker will help those who buy "bargain" components which are often unmarked or have their markings smudged or illegible. Apart from that it's always worthwhile checking zener diodes before inserting them in circuit - many zeners will zener but are not true to their markings! The checker will distinguish a zener diode from an ordinary rectifier or signal diode and will cater for zener diodes rated at up to 33 V , indicating their polarity and showing whether they are short- or opencircuit. It's very basic and is not to be compared with the checkers/analysers on the market. My prototype has given satisfactory service for over five years however.

The unit can be contained in a common 13A plug (see Fig. 4). Two miniature crocodile clips with the back parts opened flat, then bolted or otherwise fixed to the top of the plug, are used to hold the diode under test. Readings are taken by connecting a $20 \mathrm{k} \Omega / \mathrm{V}$ meter across the clips. There's more than enough space within the plug to house the few components used, but since the thing is plugged into the mains directly it's imperative to ensure that no shorts take place. Use wide sleeving to cover the three resistors, leads and all. Note that the $22 \mathrm{k} \Omega$ resistor is

Fig. 4: Constructional details of the zener diode checker.

Fig. 5: Zener diode checker circuit.
connected to the live terminal and the $56 \mathrm{k} \Omega$ one to neutral (see Fig. 5). Wire a suitable bell push across the $56 \mathrm{k} \Omega$ resistor to short it out as necessary. The bridge rectifier is a high voltage one which fits snugly into the space shown and is rated at $1.6 \mathrm{kV}, 0.5 \mathrm{~A}$ - for safety. Even when the test terminals are shorted together the current flowing will be very small (about 10 mA when the push switch is pressed). A second $22 \mathrm{k} \Omega$ resistor is connected across the output from the bridge rectifier to tame the off-load d.c. voltage across the terminals. It also reduces the slight but sometimes annoying (though quite harmless) shock the user is apt to get if the test terminals are touched when a diode is not in place.
After building the unit, check the voltage and current across the test terminals, using a $20 \mathrm{k} \Omega / \mathrm{V}$ meter. With the bell push off, the readings should be about 40 V and 2.5 mA . When the bell push is pressed the readings should rise to about 100 V and 10 mA .

If everything is all right, connect a zener diode to the crocodile clips and set the meter to a suitable scale. If the zener diode is connected the right way round, the meter should show the zener voltage. Press the switch and note whether the voltage reading changes appreciably. A certain degree of difference between the two readings is acceptable, especially with lower voltage devices. A big difference generally means that the zener diode is defective or second rate.
If the diode is connected the wrong way round the voltage reading will be about 0.6 V . An ordinary silicon diode will give readings of about 40 V when reverse biased and 0.6 V when forward biased. A short-circuit diode of any sort will give no reading or very little reading either way round. Ar open-circuit diode will show the full voltage (40 V) both ways round. A germanium diode will give much the same readings as a silicon diode, but a lot depends on the type.
Victor Rizzo,
Msida, Malta.

Big Boys Don't Cry

Les Lawry-Johns

"Will you pop down and have a quick look at my set? It's fairly new, so there won't be much wrong with it. As you did my sister's the other week and were there only a couple of minutes I thought I'd ask you rather than take it back to where I bought it. I was watching that John Wayne film last night and was just beginning to enjoy it when the set went off."

I scowled at the phone. What she really meant was that I hadn't charged her sister very much since she was getting on a bit, and now she wanted the same treatment. Oh well. So I agreed to call as she had no transport and later that afternoon I arrived at her flat. As she let me in she started off again.
"Just as I was enjoying that John Wayne film, off it went. Makes you sick the way these things let you down just when you're enjoying a film. It's as though they know. Ha, ha."

Battle with a Pye 184

I made my way to the set, which was a Pye Model 184 -solid-state monochrome 176 chassis with 24 in. c.r.t. A set in fact with which I'd rarely tussled. It was on a stand, and had about twenty thousand ornaments and photographs on top. She collapsed into an armchair and fanned herself with a book. I wasn't going to get any help with the clearance then. I started to remove the paraphernalia, and in doing so accidentally dropped an ornament that wouldn't be damaged by the fall.
"Oh dear!" She shot out of the chair and the top of the set was clear in no time. "You really must be more careful - these things are precious to me."
"I never could be trusted to clear the top of a telly" I admitted.
"I hope you're more careful with the inside" she commented.
"I usually muck up more sets than I mend" I cheerfully assured her. I then removed the rear cover (sliding a screwdriver into each slot fastening) and peered into the interior. A vertical printed panel surrounded the tube, held vertically by two side plastic clips. The panel flopped down when the clips were released, revealing two wirewounds (lower centre) that had sprung their thermal springs. Without the circuit I assumed they were in the feed to the line output stage. My spirits sank: no quick job here.
"Have you done it?" the lady enquired.
"No I bloody haven't" I muttered. I hooked up the soldering gun and repaired the two springs, then on second thoughts unsoldered them to check for shorts. There didn't appear to be any, and as the BU205 line output transistor seemed to be o.k. I once more soldered up the springs and applied the mains. The sound came through and the lady beamed. I waved my neon over the line output transformer and it glowed - but only just.

I looked at the screen with the brightness turned up and there was just a dull glow there also. The e.h.t. rectifier is of the stick type, so I switched off, removed the end cap and tried again. The neon didn't respond any better, and I was aware of heat coming from the line
output transformer's overwinding, accompanied by the smell one gets from overheated plastic. The lady must have been watching my face rather than the set, because she knew the news would be bad.
"Will you have to take it away?"
I nodded. "It wants a new transformer and I haven't one with me. There isn't one at the shop either, so I'll have to send off to Philips for one. That means it may be away for quite a few days."
"Oh. Then I'll have to watch my sister's. It was a good job you were able to do her's, wasn't it?"

Back on the Bench

So I hauled the set back to the shop, where I stupidly had another go at it instead of leaving it till the transformer came. I had Sam Magrew's Bush in mind, the occasion when we lost three transformers in a row, and didn't want a repeat performance. Also upon looking at the circuit I couldn't quite see why the second wirewound resistor should have gone open-circuit - it was in the feed to the line driver stage, the other one being in the feed to the line output stage. R615 ($6 \cdot 8 \mathrm{k} \Omega$) and R631 (82Ω) respectively. So I checked the line driver stage carefully, but couldn't find anything amiss here. Whilst in the area I again checked the line output transistor, and was amazed to find that it was now short-circuit. It certainly wasn't so in the lady's flat, so why now? Had the hot line output transformer administered one parting slap in the face before R631 sprang open again, or was there something more sinister here? How could I check without the new transformer?

So I disconnected the overwinding at both ends and made a note of the line output transistor connections white to the collector, grey to base, red to emitter. With some difficulty I removed the faulty transistor and fitted a new one - leaving three on the shelf with a similar number of BU208As. After making sure that there were no leaks, I switched on and checked the supply voltage at R631: 70V where there should have been 200 V or more. I switched off before R631 could spring, and checked the line output transistor. It was short-circuit and the overwinding was still hot, even though disconnected. It would have to come off.

Removing the transformer was easy, removing the overwinding was not. Eventually, by fair means or foul, the winding was rendered impotent (which makes two of us, though I have high hopes of these heart pills I've been swallowing of late). Again with difficulty I fitted another line output transistor, and just to be on the safe side I clipped a wirewound of some 300Ω in series with R631. Everything was in place, including the bare looking transformer, and with some optimism I switched on. Clonk. Another dead line output transistor.

Panic set in. Obviously someone up there didn't like me. So I put the set to one side and repaired a couple of sets that had been waiting patiently for attention. They were both despatched in minutes, which meant that in no time I was back to the horrible Pye. I thought I'd better think.

I thought long and hard but I couldn't make any sense of it, partly because I find it hard to think straight and partly because I haven't much sense anyway. So I wearily swung down the panel and looked at the shorted line output transistor. I looked again and then shone my little torch on it. What was that grey lead doing on the collector, and more ominously what was that white lead (h.t.) doing on the base? Surely I couldn't have been such a fool? Yes I could, and heaven only knows what might be wrong now.
I decided to adopt a different approach. The line output stage circuit is shown in Fig. 1, and as can be seen the line output transistor's emitter is connected to the 35 V rail. This supply is provided by rectifier diode D631, which rectifies the voltage developed across winding 6-7 on the line output transformer to produce 35 V across its reservoir capacitor C 626.12 V and 22 V supply lines are derived from the 35 V supply, the former being stabilised by transistor TS301. If something linked to the 35 V line was the cause of the trouble, we could apply an external 25 V supply and monitor the current without the need for the line output transistor to be connected. This we did, and after a lot of unhooking this circuit and that we discovered that the 12 V regulator transistor TS301 (BC328) was playing about.

A replacement was fitted and the circuit was deemed to be in full working order. Another line output transistor was put in and correctly wired. Some 600Ω worth of wirewounds were inserted in the h.t. feed to the line output stage and the set was switched on. The tube heater lit up (much to my surprise), indicating that the line output stage was at last functioning correctly, even at this reduced power. So we took out some of the wirewounds, leaving about 200Ω in just in case. The line output stage continued to work, so we took out the rest and soldered the spring of R631. We were still left with no e.h.t. of course, so we tried a couple of experiments with a fivestick tripler. As the results were disappointing, we resolved to await the arrival of the new line output transformer from Philips.
There is one point not so far mentioned. When we applied the 25 V to the 35 V line for test purposes we also loaded the h.t. supply to the line output stage (with the transistor disconnected), using a 40 W light bulb to simu-

Fig. 1: Line output stage circuit used in the Pye 176 solidstate monochrome chassis (version with A61-520W c.r.t.).
late the line timebase load. We did this so that we could monitor the h.t. voltage, which was high and not adjustable (R312, labelled width) until the 12 V regulator transistor had been replaced - the 12 V regulator, the 35 V supply and the h.t. regulator circuit are linked. Once the 12 V regulator transistor had been replaced we were able to adjust the h.t., thus making our little light get brighter or darker as the voltage varied between 180 V and 240 V . We set it for the correct 220 V .

When the transformer arrived we fitted it and the set performed quite nicely. We returned it to the lady who had broken quite a large number of the china ornaments that had previously adorned the top of the TV set. This was a blessing in disguise we said, since a lot of bits and pieces on the top of a TV set tend to make it go wrong more often . . .

I've condensed this little story into a few words, but in reality it caused me any amount of heartache and a fair amount of expense - I lost more line output transistors than actually mentioned. I felt like crying.

Errant Chips

Hard on the heels of the Pye came a Bush set fitted with the T22A chassis - the one with the surface-wave filter and TDA2540 i.f. chip. The complaint was that reception would be perfectly acceptable for some time, after which the picture would fade with loss of colour The sound and vision would then be completely lost for a period which varied. On test the fault didn't show up for quite a time. The symptoms were then as described - first loss of contrast, then excessive noise followed by complete loss of signals.
I first suspected the 12 V regulator, since we've had trouble with the 910Ω resistor in this circuit, but a quick check revealed that all was well here. So we checked the voltages around the TDA2540, and found a wild variation at pin 4 (tuner a.g.c. output) where the voltage rose to 8 V as the signals faded out. We had one TDA2540 on the shelf, and this was fitted after removing the signals panel and inspecting it closely for any dry-joints etc.
The board was replaced, and we confidently viewed the picture. Like a rock it was, perfect. For a time that is. Then it started to fade again to suggest that we'd made another hasty and inaccurate diagnosis. The voltage at pin 4 was still varying - probably trying to make up for the lack of signals due to a fault in an earlier stage I thought. What precedes it? The tuner, a two-transistor preamplifier, then the SWAF. The two transistors checked out o.k. and I was not inclined (didn't want) to suspect the filter. So the tuner was the obvious suspect (to me). Out again came the panel, and in went another tuner. Again we had high hopes: again they were dashed after two hours.

I then grabbed the hairdryer and freezer and played for ten minutes. The conclusion was beyond doubt. Everytime the TDA2540 was sprayed, the signals returned as good as gold. I searched the shelf but there was no sign of a TDA2540. So I phoned my friend Geoff of Moon Lane and he said "rest in peace my son, for I have two." Off I went on my little roller skate (Renault 5) to see him. When I got there he was in trouble with an ITT CVC30. He was still in trouble when I left, because he said my remarks added to the confusion. I had my chip however, and lost no time in fitting it. This time we were rewarded and the gain stayed steady despite lots of heat and cold.

Country	Colour	Standard	Mains supply
Abu Dhabi	PAL	B	240 V 50 Hz
Afghanistan	PAL	B	220 V 50 Hz
Algeria	PAL	B	220 V 50 Hz
Antigua	NTSC.	M	230 V 60 Hz
Argentina	PAL	N	220 V 50 Hz
Australia	PAL	B	240 V 50 Hz
Austria	PAL	B,G	220 V 50 Hz
Bahrain	PAL	B	230 V 50 Hz
Bangladesh	PAL	B	230 V 50 Hz
Barbados	NTSC	M	110 V 50 Hz
Belgium	PAL	B,G	220 V 50 Hz
Bermuda	NTSC	M	120 V 60 Hz
Brazil	PAL	M	110 V 50 Hz
Brunei	PAL	B	230 V 50 Hz
Bulgaria	SECAM (V)	D	220 V 50 Hz
Canada	NTSC	M	120 V 60 Hz
Canary Islands	PAL	B	220 V 50 Hz
China	PAL	D	220 V 50 Hz
Colombia	NTSC	M	110 V 60 Hz
Congo	SECAM (V)	D	220 V 50 Hz
Costa Rica	NTSC	M	120 V 60 Hz
Cuba	NTSC	M	120 V 60 Hz
Cyprus	PAL/SECAM	B,G	230 V 50 Hz
Czechoslovakia	SECAM (V)	D, K	220 V 50 Hz
Denmark	PAL	B,G	220 V 50 Hz
Dominican			
Republic	NTSC	M	110 V 60 Hz
Dubai	PAL	B,G	220 V 50 Hz
Ecuador	NTSC	M	110 V 60 Hz
Egypt	SECAM (V)	B	220 V 50 Hz
Eire	PAL	A, I	220 V 50 Hz
El Salvador	NTSC	M	115 V 60 Hz
Ethiopia	PAL	B	220 V 50 Hz
Finland	PAL	B,G	220 V 50 Hz
France	SECAM (V)	E,L	220 V 50 Hz
Germany (West)	PAL	B,G	220 V 50 Hz
Germany (East)	SECAM (V)	B,G	220 V 50 Hz
Ghana	PAL	B	230 V 50 Hz
Gibraltar	PAL	B	240 V 50 Hz
Greece	SECAM (H)	B	220 V 50 Hz
Guatemala	NTSC	M	120 V 60 Hz
Haiti	SECAM (V)	M	115 V 60 Hz
Honduras	-	M	110 V 60 Hz
Hong Kong	PAL	1	200 V 50 Hz

Hungary	SECAM (V)	D, K	220 V 50 Hz
Iceland	PAL	B	220 V 50 Hz
India	PAL	B	230 V 50 Hz
Indonesia	PAL	B	220 V 50 Hz
Iran	SECAM (H)	B	220 V 50 Hz
Iraq	SECAM (H)	B	220 V 50 Hz
Israel	PAL	B,G	230 V 50 Hz
Italy	PAL	B,G	220 V 50 Hz
Ivory Coast	SECAM (V)	K	220 V 50 Hz
Jamaica	-	M	220 V 50 Hz
Japan	NTSC	M	100 V 60 Hz
Jordan	PAL	B	220 V 50 Hz

Table 1: Internatio

CCIR system	Number of lines	Channel bandwidth $(M H z)$	Vision bandwidth $(M H z)$	Sou sep (Mh
A	405	5	3	-3
B	625	7	5	+5
C	625	7	5	+5
D	625	8	6	+6
E	819	14	10	+19
F	819	7	5	+5
G	625	8	5	+5
H	625	8	5	+5
I	625	8	5.5	+6
K	625	8	6	+6
K	625	8	6	+6
M	625	8	6	+6
N	525	6	4.2	+4

The field frequency is 50 Hz except for system M which uses 60 system M which uses $\pm 25 \mathrm{kHz}$. Systems C, E, F and H are bec 220 V 50 Hz

Resistors: Beware!

Bryon Pascoe

Surely I can't be the only one who occasionally spends fruitless hours trying to repair a TV set by changing various major components only to find in the fullness of time that the cause of the trouble was a simple resistor costing a few pence? We may then be left with the exercise of using trade lingo to dress up the customer's bill, since "changing resistor five pence, labour thirty quid" never seems to be acceptable!

As an example, I was confronted with a dead Pye CT200 - the 18 in . colour set, using the 713 chassis. We found that operating the on/off switch produced a buzz, then nothing more. We got out the books, including the faultfinder one that never seems to list the fault you've got. Then the fault-finding merry-go-round started in earnest,
including amongst other things changing the line output transformer. All needless! Several hours later the set was still dead. It stayed that way until R519 (220k Ω) on the main chassis was changed. It read o.k. in circuit, but was open-circuit when tested out of circuit. A lesson there somewhere. In case you're not familiar with this chassis, R519 is the charging resistor in the BR101's triggering circuit (when the BR101 fires, the BT106 controlled h.t. rectifier switches on).

Whilst on this chassis, a couple of other recent resistor faults: tube heaters out due to failure of the two 1Ω resistors $\mathrm{R} 767 / 8$ on the main chassis; and no signals, only noise on sound and vision, due to R209 ($22 \mathrm{k} \Omega$) on the signals panel being open-circuit (thus no tuning voltage supply).

Hands up those of you who've changed a tube on a Pye $731 / 725$ series chassis only to be confronted with the same lousy picture. More than likely our arch enemy the resistor was responsible, this time R642 (270k Ω) and R643 ($390 \mathrm{k} \Omega$) in the first anode supply network on the line timebase panel.

A regular dead set problem occurs on the Rank

TV STANDARDS country guide

Kenya	PAL	B	240 V 50 Hz
Korea	NTSC	M	100 V 60 Hz
Kuwait	PAL	B	240 V 50 Hz
Lebanon	SECAM (V)	B	220 V 50 Hz
Liberia	PAL	B	120 V 60 Hz
Libya	PAL	B	230 V 50 Hz
Luxembourg	PAL/SECAM (V)	C,G,L	220 V 50 Hz
Malaysia	PAL	B	230 V 50 Hz
Malta	PAL	B,G	240 V 50 Hz
Mauritius	SECAM (V)	B	230 V 50 Hz
Mexico	NTSC	M	127 V 60 Hz
Monaco	SECAM (V)/PAL	C,G,L	220 V 50 Hz

nal TV Standards

$n d$-vision zration 'z)	Vestigial sideband $(M H z)$	Vision modulation sense	Sound modulation
.5	0.75	+	a.m.
.5	0.75	-	f.m.
.5	0.75	+	a.m.
.5	0.75	-	f.m.
.15	2	+	a.m.
.5	0.75	+	a.m.
.5	0.75	-	f.m.
.5	1.25	-	f.m.
	1.25	-	f.m.
.5	0.75	-	f.m.
5	1.25	-	f.m.
.5	1.25	+	a.m.
.5	0.75	-	f.m.
.5	0.75	-	f.m.

Iz . The f.m. sound maximum deviation is $\pm 50 \mathrm{kHz}$ except for iming obsolete and are being replaced by B, G or L .

Morocco	SECAM (V)	B	220 V 50 Hz
Netherlands	PAL	B,G	220 V 50 Hz
New Zealand	PAL	B	230 V 50 Hz
Nicaragua	NTSC	M	120 V 60 Hz
Nigeria	PAL	B,G	220 V 50 Hz
Norway	PAL	B	230 V 50 Hz
Oman	PAL	B	240 V 50 Hz
Pakistan	PAL	B	230 V 50 Hz
Panama	NTSC	M	120 V 60 Hz
Peru	NTSC	M	220 V 60 Hz
Philippines	NTSC	M	110 V 60 Hz
Poland	SECAM (V)	D,K	220 V 50 Hz
Portugal	PAL	B,G	220 V 50 Hz
Puerto Rico	NTSC	M	120 V 60 Hz
Oatar	PAL	B,G	240 V 50 Hz
Saba and			
Sarawak	PAL	B	240 V 50 Hz
Saudi Arabia	SECAM (H)	B,G	220 V 50 Hz
Sierra Leone	PAL	B	230 V 50 Hz
Singapore	PAL	B,G	230 V 50 Hz
South Africa	PAL	1	220 V 50 Hz
Spain	PAL	B,G	220 V 50 Hz
Sri Lanka	PAL	B	230 V 50 Hz
Sudan	PAL	B	240 V 50 Hz
Surinam	NTSC	M	115 V 60 Hz
Sweden	PAL	B,G	220 V 50 Hz
Switzerland	PAL	B,G	220 V 50 Hz
Syria	SECAM (H)	B	220 V 50 Hz
Taiwan	NTSC	M	110 V 60 Hz
Tanzania	PAL	B	230 V 50 Hz
Thailand	PAL	B	220 V 50 Hz
Trinidad	NTSC	M	115 V 60 Hz
Tunisia	SECAM (V)	B	220 V 50 Hz
Turkey	PAL	B,G	220 V 50 Hz
UAE	PAL	B,G	220 V 50 Hz
UK	PAL	A,I	240 V 50 Hz
USA	NTSC	M	120 V 60 Hz
USSR	SECAM (V)	D,K	220 V 50 Hz
Uganda	PAL	B	240 V 50 Hz
Uruguay	PAL	N	220 V 50 Hz
Venezuela	NTSC	M	120 V 60 Hz
Yemen	PAL	B	220 V 50 Hz
Yugoslavia	PAL	B,H	220 V 50 Hz
Zaire	SECAM (V)	K^{\prime}	220 V 50 Hz
Zambia	PAL	B,G	220 V 50 Hz
Zanzibar	PAL	B	220 V 50 Hz
Zimbabwe	PAL	B	225 V 50 Hz

T20/T22 chassis. We changed the line output transformer on the first one we came across only to find, as we have on most of them, that 4 R16 (910Ω) on the timebase panel was open-circuit. This is in the 12 V regulator circuit, and with no 12 V supply the line oscillator shuts down.

A real stinker we had was on the later version of the Philips G8 chassis (550 series). The left-hand side of the raster was black whilst the right-hand side was excessively bright: there was also no colour. We began by consulting the oracle on this set, namely Philips Service. They tried to be helpful, but all the suggested remedies failed. Being

Fig. 1: Burst gating/black-leve/ clamping pulse delay circuit used in later versions of the Philips G8 chassis.
a firm believer that two heads are better than one at a time like this, I got together with a senior engineer who smokes a fault-finding pipe. With this in action, after considerable puffing the fault was found. Another resistor open-circuit, this time R212 ($750 \mathrm{k} \Omega$) on the combined decoder/i.f. panel (see Fig. 1). When this happens the gating/clamping pulses don't reach pin 10 of the TBA560C chroma/luminance signal processing i.c. We told Mr. Philips, who said he'd never had that one before and would make a note of it. Even thanked us for telling him! (Someone else who's had it is our friend Les Editor.)

So be warned: the resistor is waiting there to get you running around!

Finally, did you hear the one about the regional TV weather forecaster who used individual adhesive letters on his map to make up words such as cloud and rain? Despite repeated attempts he couldn't get the letter F to stay on and was left with -og. Forecast completed the lady announcer appeared on the screen and said in her most cultured voice "we would like to apologise for the F-in-fog".

Toshiba V8600

We delivered a new Toshiba V8600 to a technical college in Nottingham. The following day we had a panic call to say that there was no picture, on replay or during recording, after the AV technician had moved the machine. Andy suggested that he switch the input selector back to the TV position, which dealt with one aspect of the problem. Elaine was then despatched to the City of Nottingham with a head cleaning tape, two cotton buds and a can of AF spray. There seemed to be some surprise at the college when she announced she'd come to check the video recorder. Head cleaning did no good, so an exchange machine was left and the faulty one came back to me.

I also tried to clean the heads whilst checking the playback f.m. output on the scope. The output from one head, via the preamplifier, was completely missing and no amount of cleaning restored the picture. Attention was then turned to the head preamplifiers, and to my surprise one of the f.e.t.s came off in my hand. 'nuff said.

Another V8600 had two faults. It wouldn't rewind, and intermittently wouldn't operate at all. There were also mutterings about not recording colour. The rewind problem was due to the upper drum assembly being worn the wear is caused by the back tension being set too high during manufacture. So the assembly was replaced.

A cassette was then inserted and the machine went dead. Threading took place, but nothing else would operate - including unthreading. In an instance like this, the first check to make is on the after-loading switch, for if this fails to tell the microcomputer that threading has taken place nothing more will happen. The after-loading switch was all right, so the next step was to check the microcomputer's inputs and outputs - four scan outputs and seven scan inputs.

One of the inputs had data that was of a low level on it. This was linked to a logic chip that decodes the remote control data. It appeared to have an output that shouldn't have been present (confidential data information revealed this), and anyway it was of low amplitude. Replacing the chip, TVH202, restored normal service. The no colour fault has yet to put in an appearance. S.B.

Akai 9300/JVC HR3300

A couple of Akai 9300s (equivalent to the early JVC HR3300s) have been in the workshop recently. The problem with one of them was intermittent audio recording and erasure - the original audio was left on the tape after re-recording. The reason for this is that the bias oscillator is not having the desired effect, a clue being given by patches of colour flickering in the background due to the previous colour under carrier not being erased. If this is found to be the case, both record/replay switches on the audio/servo panel should be changed.

The other machine had a systems control fault: once it had threaded, the keys ejected. We mentioned once before that to prevent the keys resetting the base of transistor X7 in the stop solenoid control circuit can be connected to chassis. We then discovered that the flip-flop (head switching) signal was of low amplitude. It comes
from the AN318 i.c. on the audio/servo panel, and after replacing this i.c. the problem was cured. This second machine also suffered from intermittent audio recording and required replacement switches.
S.B.

Sony C7 - Transformer Trouble

This interesting little problem would have made a fine Television test case item. It concerns a Sony C7 from the local mental hospital (yeah, we know the jokes). It was dead: power supply problems.

The fuses looked intact but one 100 mA fuse was opencircuit - not blown, just high impedance. It was in series with the primary winding of the 20 V mains transformer. A replacement lasted just a couple of milliseconds, so the power unit was removed. On the bench, with the unit supplied via a variable transformer, everything seemed to be all right. The only discrepancy was in the input voltage to the permanent 12 V regulator circuit. This is given as 17.5 V but measured 30 V . As it's peak rectified from a 20 V a.c. supply and the unit was off load things were considered to be normal.

To cut a long story short, the machine worked perfectly with the power supply back in circuit and a 315 mA antisurge fuse fitted in place of the correct 100 mA . But as you know we can't return a VCR with a bigger fuse fitted in case a fire is started. So I phoned Sony - not normal for me, but I can grovel with the best of them. A very nice man there asked whether the 400 mA fuse in series with the secondary winding was all right. I said it was, and we then discussed the pros and cons of the situation. The Sony man said the current in this fuse should be 380 mA a.c. Mine measured 340 mA , whilst the fuse in series with the primary winding carried $80-90 \mathrm{~mA}$. Then it clicked: 240 V down to 20 V is a factor of 12 , so the primary current should have been 340 (say 360) divided by 12, i.e. 30 mA . Well, if you add a generous 10 mA for eddy current leakage you don't get near 80 mA do you? So I ordered an advance replacement mains transformer plus two fuses (there's a 100 mA fuse in series with each of the two 120 V primary windings). Four weeks later they arrived on a chargeable order.

The replacement transformer cured the fault. The correct primary winding current should be around 45 mA , so the original one suffered from high eddy current leakage.
S.B.

Panasonic NV8600 - Motor Trouble

A previously repaired National Panasonic NV8600 was returned with a note to say that it had a fault different from the previous one. A quick look through the records revealed that last time it had a recording fault. This time however the tape speed was varying - an understatement if ever there was one! A prerecorded tape belted through the replay system as though it was in fast forward.

Out came the service manual, and the capstan servo was checked through from beginning to end then back again. The second time around I found that a motor power drive transistor, one 2SA699, was short-circuit. A TIP42 was fitted and play selected - you can't put it into record as the PCB that is hanging out carries the record/
playback switching. The TIP41 got very hot very quickly, though the servo locked - just! I then measured the motor current, a mere 300 mA or more, a bit high I thought.

Order new capstan motor which arrives within days. Check free-running current of new motor with 9 V supply: 30 mA . So as the old motor was still around I checked that too: 200 mA . Even a living brain donor could work out that the motor current was wrong.

Seriously though, most VCR d.c. motors consume around $15-30 \mathrm{~mA}$ off load with the correct voltage applied across them: on load you can expect $80-120 \mathrm{~mA}$. Anything higher than 120 mA means that the motor is suspect. Also check the a.c. ripple across the motor. This is normally fairly low, some 200 mV peak-to-peak. High values of around 1 V peak-to-peak indicate excess motor current and a faulty motor or motor drive amplifier (MDA to you!).
S.B.

Toshiba Head Drums

Another contributor to VCR Clinic (August, page 519) mentioned Toshiba VCRs requiring upper drum cylinder replacement due to advanced wear. This can be due to a cause other than abrasive cleaning tapes. If the tape tension arm is incorrectly adjusted (see above) there's high tape tension towards the end of a cassette. Personally, I don't recommend for use in Toshiba VCRs a particular brand of tape which is not English, Welsh or Japanese . . .
S.B.

Sanyo VTC5300

I have to report a small problem you may encounter with the Sanyo VTC5300. We, or rather Andy, run a video library and are getting complaints from owners of these machines about some of our older tapes. It seems that the preamplifiers or limiters may be slightly below par. When we're called upon to replace an older tape whose magnetic flux is a bit on the low side due to wear, we find that the replay is not viewable: it's covered with white spots, unlike more expensive machines such as the Toshiba which provide a viewable though grainy picture. Any comments please?
S.B.

Ferguson 3V29

The complaint with a Ferguson 3V29 we'd installed quite recently was that it tangled tapes - ever since the customer had first had it in fact. A quick check showed that no braking was being applied to the supply spool at stop. It didn't take long to find out that the brake shoe was missing - nor was it to be found anywhere in the machine. How these things get past quality control I don't know. The fault on another of these machines was failure to record. A scope check revealed that there was an f.m. output at pin 28 of IC202, but the signal was not reentering the i.c. at pin 1. A meter check then showed that the voltage at pin 1 was wrong. There's a shorting switch transistor here (Q209), and the problem was traced to the zener diode (D208) in this transistor's base circuit. It was leaky, with the result that Q209 was being turned on, thus shorting out the signal. We've also had three of these machines with faulty cassette lamps - fortunately they plug in on this model and are much easier to change than in the previous 3V22. In one case however simply changing the bulb, though it was faulty, failed to cure the problem. The bulb is driven by a transistor (Q1) on the small
panel the bulb plugs into. The arrangement is similar to that shown in Fig. 3 (page 520) of the August issue, though in this case Q1 is the transistor on the left-hand side. Checks showed that the voltage at the base of this transistor was varying - replacing it restored normal conditions.
D.S.

Ferguson 3V22

A couple of 3 V 22 s about a year to eighteen months old have required new lower drum assemblies recently, the problem being excessive noise (mechanical) due presumably to worn bearings. In view of the cost and difficulty in carrying out the replacement I hope this doesn't become a common fault with these machines.
D.S.

Panasonic Aerial Amplifiers

In the July VCR Clinic Mike Sarre mentioned the problem of faulty aerial amplifiers in the Panasonic NV2000. During the past six months we've had three NV2000s and three NV7000s with defective amplifiers, so they are clearly a weakness on Panasonic machines. The amplifiers used in the two mociels are similar but have different part numbers: does anyone know whether they are interchangeable?
D.S.

Hitachi VT8000 Series

A problem we occasionally get with VT8000 series Hitachi machines is intermittent tape tangling on rewind. This is due to the supply reel brake operating more quickly than the take-up reel brake, resulting in a loop of slack tape which either gets caught in the machine when you try to remove the cassette or gets trapped in the cassette flap. The cause of the problem is that the take-up brake slips: the cure is to clean and if necessary roughen up the rubber tyre on the turntable. Also check that the brake arms are free to move, and if necessary strip down, clean and lubricate with graphite grease.
D.S.

Philips V2000 Machines

Maybe we're unlucky with our Philips V2000 type machines - we've had another one with a faulty head. This gives a failure rate of 5 per cent on the heads and the machines are barely nine months old - this compares with a failure rate of 1 per cent on our Hitachi machines over a twelve-month period.
D.S.

Sony C5

Fault: Line slip, poor tracking and tape speed fluctuations.

After checking all functions I found that field lock on the TV set could not be obtained with the test signal. The test signal generator i.c. (IC13) is synchronised by the output from IC12, which is in turn counted down from the 4.43 MHz chroma oscillator. This counted down signal is also used as the servo reference. On checking these frequencies I found that the 4.43 MHz oscillator was correct but the output from IC12 was at 69 Hz instead of 50 Hz (hence the rolling test signal). Changing IC12 (M58478P) cleared all the fault symptoms. So what initially appeared to be two separate faults turned out to be only one, thus enhancing the advice to check all functions first before leaping in.
M.S.

Garbledegook

Eugene Trundle

As the price of teletext equipped TV receivers comes down and public awareness of the service increases, so text receiver installations are becoming more widespread. In 19818.7 per cent of TV receivers sold/rented in the UK were text equipped. In most cases reception of the text signals is quite acceptable, and in our experience the decoders used have proved to be very reliable. We've found that the level of customer usage of the text facility drops off considerably once the novelty has worn off, and that when display errors occur people tend to be less concerned about them than they are about faults that affect normal viewing. My own view is that teletext will come into its own only when a comprehensive regional service is available, so that viewers can call up local information at the touch of a button.

Coming back to the problem of garbled displays however, we find that the incidence of problems is increasing in proportion to the number of installations. Where a garbled display of text pages is encountered, the traditional approach has been to blame the aerial (rather too much emphasis was placed on aerial performance in the early days of teletext) and to call out the poor old rigger, sometimes umpteen times, to replace, reorientate, realign and curse the aerial system. This situation arose because the teletext system is not widely understood the decoder itself is a "black box" - and the cause of a decoding error was difficult to establish.

So what's changed? It's becoming obvious that the decoder will remain a closed book to the TV service engineer. There would be little point in setmakers issuing circuit information - you can't wade in with an ordinary scope and Avo with much hope of diagnosing the cause of a problem, even if you fully understand the decoder. It's much simpler to operate an exchange module service.

Acceptable Reception

How then can we decide whether the aerial, the receiver or the decoder is faulty - or the customer is perhaps being over fussy? Let's take the last question first. It's generally accepted that an error probability of one bit per thousand or better will provide subjectively satisfactory text displays. This corresponds to less than

Fig. 1: A typical eyeheight display. The individual ellipses represent separate 0 and 1 pulses and are overlaid to give average and worst-case conditions.
eight character errors in a full page of data (e.g. the clock-cracker page) on first acceptance of the signal. At the first update, i.e. within 25 seconds, all errors will normally be corrected. On an average page, the one in a thousand error probability will give rise to less than eight character errors at the first go.

The clock-cracker page is a particularly useful subjective test of text reception, containing as it does alternative character codes of 11111110,01111111 throughout the page. It's a stringent test of clock synchronisation, and the regular pattern makes blanks or errors easy to spot. It won't test the control codes for colour and other facilities, but if the cracker page is acceptable there's no doubt that the control data is being correctly received. So much for "acceptable" reception then: what do you do when you've got a badly corrupted page or fifty per cent garbledegook?

Binary Decisions

We don't propose to go into the technicalities of the teletext system here. Suffice it to say that it's a digital system, based on the transmission of pulses - pulse present signifies one, pulse absent zero. Under the control of the synchronised clock, the decoder takes a brief look at the text signal at the instant when any pulse present is at a maximum. At this instant the circuit has to make a decision between one and zero. It sounds easy enough, the answer depending on whether the instantaneous pulse amplitude is above or below the "slice" level set by the decoder manufacturer. All subsequent decoder operations depend on the accuracy of this decision. An inbuilt correction system is able to cope with a reasonable error rate, but a serious deficiency in the incoming data stream will result in a badly corrupted display.

Eyeheight Measurement

So we come to one of the few tests we can make on a text system - eyeheight measurement. The idea is to overlay the text pulses transmitted over a period so that their varying amplitudes are integrated to form a blur or fuzz at the top and bottom of an eye-shaped display (see Fig. 1). The upper ellipse represents all the one signals and the lower ellipse all the noughts. Because the amplitude of an individual pulse depends very much on the status and position of preceding pulses, some are greater in amplitude than others. The average amplitude of the lot depends on the propagation conditions between the studio and the output from the set's vision detector. Thus by superimposing the pulses we are able to see worst-case conditions, i.e. the lowest one and the highest zero. The typical display shown in Fig. 1 represents an eyeheight of about 58 per cent - fairly typical in a domestic installation under average conditions, and quite adequate for a commercial teletext decoder to work with.

Unfortunately the equipment required to produce an eye display of the sort shown in Fig. 1 is fairly complex. The X-axis of the Lissajous pattern is produced by a sinewave at half the teletext bit rate $(3.469 \mathrm{MHz})$, derived from a bit-synchronous clock generator similar to that used in a teletext decoder. The Y-axis signals are derived from the video signal, while the Z-axis (intensity modulation) must be unblanked during the teletext lines only. Such an apparatus cannot be produced cheaply enough to justify its occasional use in the service depart-

Fig. 2: BBC line 20, the second half of which provides a teletext eyeheight display.

Fig. 3: Lines 20 and 333 superimposed, showing the complementary form of the teletext test pulses on these lines.

Fig. 4: An expanded portion of the trace shown in Fig. 3, with examples of worst eyeheight arrowed.
ment - the broadcasting authorities have gone a stage further, with portable eyeheight indicator/recorders giving a digital readout.

Practical Displays

What can we do with an ordinary oscilloscope? Given a degree of patience, it's possible to arrive at an idea of eyeheight without special equipment. The method was described by Harold Peters in the January 1978 issue (page 128), but in case that issue is not to hand we'll repeat the relevant details.

Find a full-bandwidth output from the vision detector in the receiver under test, and connect this to a scope with a bandwidth of at least 10 MHz . Trigger from the field sync, either internally from the video signal or preferably via an external trigger input from the field timebase. With
a sweep speed of about 150μ sec per division, you should be looking at the whole of the field blanking period. The four active teletext lines, numbers $15,16,17$ and 18 , will be seen to be busily twinkling. Checks can be made on these, but it's easier to see what's happening by studying line 20 (BBC transmissions) where a stationary teletext test signal is inserted. Zoom is on this line by manipulation of the scope's X-shift and X-gain controls. If your scope has a delay sweep, count 20 lines or 1.28 msec .

Close examination of the second half of line 20 will show that it has a variety of pulse spacings (see Fig. 2). These are designed to show up the effects of ISI (intersymbol interference) and form a good test of eyeheight. Now we need to superimpose line 333 - line 20 's twin on the other field. This carries a similar signal but all the digits are reversed, complementary to those on line 20 , providing a series of "eyes" when the two lots are superimposed. If you are using a single-beam scope lines 20 and 333 will be there already, like it or not. The same applies to a double-trace instrument when switched to single-trace operation.

A dual-trace scope can be used to see the complementary nature of lines 20 and 333. Select dual-beam operation, hook both probes to the video signal and the alternate trace switching in the scope will do the rest. If required, the traces can then be overlaid with the Y-shift controls. Fig. 3 shows the effect. The fuzziness at the tops and bottoms of the eyes can be seen, with a clear area between them containing only vertical lines. It's in this area that the decoder has to operate, and the clear part (hopefully symmetrical about the zero line) is the effective eyeheight.

Fig. 4 shows an expanded portion of the trace in Fig. 3. The areas of worst eyeheight are arrowed. How much of this you will be able to see depends very much on your scope: almost certainly you'll have the room lights out by now!

Eyeheights Compared

Once we've arrived at a figure for worst eyeheight, we can go on to relate this to expectancy of text page errors.

What sort of eyeheight can we expect? The one digits are transmitted with an amplitude of 66 per cent of the peak white level, though the effect of overshoot means that the peak pulse level is usually greater than this. Thus the text pulse amplitude displayed should be two-thirds of the peak amplitudes of the bar and pulse signals on line 19 next door, or just over twice the amplitude of the sync pulses.

Let's assume that we've set up the scope's vertical gain (or the a.g.c. in the TV set) for a total signal excursion sync tip to peak white - of four divisions on the scope's screen, and that each screen division is 1 cm . This is the condition in Fig. 2. Since the picture-sync ratio is $7: 3$, the sync pulses should occupy six of the small (2 mm) divisions, the burst six, and black level to peak white (bar and pulse) fourteen. If any of these are far out, the set is off tune, the scope probe needs setting up, or there's something wrong somewhere! If the relative proportions are correct, the eyeheight figure we get will be valid.

One hundred per cent eyeheight would be represented by a clear eye of 9.3 small divisions - this is something that's impossible in theory and in practice. A 50 per cent eyeheight would show a clear area of just over 4.5 small divisions, while a 32 per cent eyeheight would be equal to half the sync pulse amplitude. According to the broadcast-
ing authorities, setmakers aim at a minimum eyeheight of 25 per cent at the input to the decoder - modern receivers usually do much better than this, given an average aerial signal input.

At the other extreme, the main transmitters radiate a signal with an eyeheight of about 70-80 per cent. Relays loose very little of this, especially the transposer relays which work by heterodyning the incoming signal to achieve rebroadcast at new frequencies. Relays which demodulate the sound and vision signals then remodulate them on to a new carrier are more likely to degrade the final eyeheight, but under worst-case and cascaded transmitter conditions the eyeheight will rarely be under 60 per cent.
Under ideal conditions then we'll rarely see an eyeheight at the receiver's detector better than 70 per cent. We average about 50 per cent with our local measurements here, and good teletext can be expected with this figure.

Decoder and Peripherals

The Mullard decoder doesn't start to make mistakes until the eyeheight falls to about 20 per cent. Other makes are on their limit at around 25 per cent. If text reception is bad with an eyeheight greater than say 30 per cent, there's a good chance that the decoder is defective. Before condemning it however there are several points worth checking.
First and foremost, check the supply voltage to the decoder module. It's usually derived from some sort of stabilizer, either a fixed-voltage i.c. type or a discrete component, adjustable regulator. We've known decoders become incoherent if their supply voltage exceeds $5 \cdot 25 \mathrm{~V}$, and the same applies at 4.6 V . Ideally, the supply voltage should lie between 4.9 V and $5 \cdot 1 \mathrm{~V}$.

Decoupling is also important - there are decouplers for l.f. and h.f. Make sure, with the scope and by substitution, that they haven't dried up or gone open-circuit. Beware of earth loops and high-impedance chassis connections. The current consumption of a decoder (5 V line) is between 500 mA and 1 A , and good low-resistance connections at the interfacing are important.

If the signal input to the decoder is separately earthed, check this connection too. Finally check the eyeheight right at the decoder module's input if possible, in case the video interface amplifier/impedance matcher has problems.

Receiver Faults

If the measured eyeheight is between 20 and 30 per cent, the result will be marginal operation of the decoder. We'll assume that you're dealing with a commercially produced teletext receiver with a synchronous vision demodulator and SAW filter. If you're experimenting, or adding teletext to an existing receiver, go back to the January 1978 article!

A common cause of poor eyeheight is incorrect tuning. If the tuner has a drift problem, data reception will be unreliable. Reduced eyeheight can occur if the a.f.c. performance and alignment are not absolutely correct, and a degree of mistuning unnoticeable on the picture and sound can badly impair the text performance.

If necessary, set up the a.f.c. for best eyeheight performance. Although i.f. and detector alignment are best left to the setmaker, slight and careful adjustment of the
tuner's i.f. output coil and the synchronous vision detector's tank coil can do wonders for eyeheight, especially where the module concerned has been replaced or repaired since factory alignment of the original set. Sometimes the SAW filter or i.f. chip may be responsible for poor eyeheight, but this is unlikely. Where problems are encountered we've generally found setmaker's service departments to be most helpful, sometimes to the point of making available complete tuner/i.f. strip assemblies, aligned for text reception, on an exchange basis.

Aerial and Propagation Problems

When the decoder and the set have been eliminated, preferably by trying another teletext set at the site, it's time to look beyond the aerial socket. Field trials by both broadcasting authorities have shown that generally speaking teletext is a robust system, and that in terms of signal-to-noise ratio the service area of a given transmitter is greater than for ordinary TV reception by as much as 11 dB . Thus text reception is maintained until the picture performance has deteriorated to EBU grade 5 ("definitely objectionable") and the picture signal-to-noise ratio is down to 23 dB or so. A noisy signal alone is unlikely to cause problems.

In surveys using a good quality but otherwise perfectly normal aerial, the greatest cause of text failure was found to be a combination of noise and reflections. It's in these circumstances that attention to the domestic aerial system - type, gain and alignment - is beneficial. Don't forget the feeder cable - mismatching, bad joints or kinking will cause reflections. It is significant that the broadcasters' survey results from test vehicles showed very few cases where text reception failed due to reflections alone in the presence of adequate field strength. When it came to domestic aerial installations however no less than 32 per cent of teletext failure cases were predominantly due to reflections. This suggests that the average TV aerial installation leaves something to be desired - we understand that one viewer was watching u.h.f. programmes using a Band III array, and that several others had aerials of the wrong channel group in use.

With the correct aerial, polarisation and alignment, it's unlikely that trouble will be encountered. We've heard of a few cases where text reception was perfect on two of the three available channels but very corrupt on the third. This is usually due to reflections from objects within a metre of the aerial causing very short-term echoes and thus nulling out the text pulses on the affected channel. It's similar to the "colour suck-out" problem that sometimes occurs: a remedy for either is usually slight repositioning of the aerial.

How does teletext fare in the presence of other reception problems? Ignition interference is seldom troublesome, due to the negative-modulation characteristic of the TV signal and the fact that to have any real effect the pulse repetition frequency would have to coincide with the data rate. Co-channel interference is usually a weather-dependent and short-lived phenomenon, and modern decoders tolerate co-channel interference down to $20-26 \mathrm{~dB}$ below the strength of the local channel.

Cable and relay systems can cause problems if a mismatch exists in the network, and there's no doubt that relay systems using h.f. carriers are difficult to maintain in this respect. Where upconversion to u.h.f. is carried out at the receiving site it may be difficult to achieve a good eyeheight.

Microcomputer Control of VCRs

Brian Dempster

EARLY VCRs were relatively uncomplicated. The electrical safety circuit generally consisted of a pick-up coil which sensed the passing of a small magnet attached to the flywheel of the capstan and/or head drum motor. The signal thus picked up was amplified, and if it disappeared the safety circuit switched the machine off. The beginning and end of mechanical operations such as threading and unthreading were signalled by limit microswitches, perhaps operating relays. Since the front controls were mechanically operated, protection against misuse generally took the form of mechanical interlocks to prevent undesirable combinations of control operation. The protection and monitoring requirements were modest, and could be dealt with by means of a few mechanical linkages and a couple of logic chips.
As the domestic VCR came of age however more and more features came on offer. Microswitches replaced mechanically linked front controls; clock-timers became multi-choice over longer periods of time; still frame, picture search and slow-motion became the in things; extremely fast wind/rewind speeds became possible; and infra-red remote control appeared on the scene. All these introduced new control or monitoring requirements. The problem could have been tackled by using the "traditional" methods along with some specially designed logic i.c.s, but the result would have been unwieldy and inflexible to say the least. The sheer number of different combinations of control requirements would have made a lot of the logic circuitry redundant for most of the time, while much redesign would have been necessary if a new feature was required on a subsequent model.

Let's illustrate the problem by considering a single control requirement (play) in a hypothetical machine - see Fig. 1. Before the logic array produces a play output and maintains this, at least ten conditions should correct: (1) cassette in place; (2) tape fully threaded; (3) fast forward not selected; (4) fast rewind not selected; (5) head drum rotating; (6) tape capstan rotating; (7) take-up spool rotating; (8) brakes released; (9) pressure roller engaged (delayed); (10) tape not at end. A fairly simple bit of logic circuitry would suffice, but a different combination of requirements is needed for each mode of VCR operation

Fig. 1: Example of play control requirements.

- and for the transition from each mode to any other

The feedback signals required are usually obtained from microswitches (to indicate the correct operation of solenoids etc.), optotransistor/LED combinations or tachogenerators of one form or another, but the signal must generally be processed to make it suitable for application to the logic circuitry.

Apart from monitoring the conditions needed for each mode, the machine must constantly check the control buttons to see whether a new operation has been selected, must update the time, store timed recording requests, check these against the actual time and carry out the recordings, respond to remote control commands and have a high degree of immunity from user abuse.

All this suggested the need for a new approach. In its simplest sense, a programmable logic array could handle the control and monitoring operations, each combination being selected by the control keyswitches. But that would simply provide go/no-go control. Take Fig. 1 again. Say we've switched the machine on and require play, but are initially in fast forward. We press the play key but logic array 1 will not allow play to commence since there's a fast forward signal present. We would have to press stop and then play. Clearly for foolproof operation we need some kind of "intelligent" control.

Suppose that we've designed a VCR and made a list of the requirements for each mode of operation and the responses required when each control button is operated. We connect each button to a lamp, with the lamps labelled and mounted on a panel. On another panel we mount a switch to operate each machine function - brakes, pressure roller, head drum etc., again clearly labelled. Each function supplies a feedback signal to indicate that it has taken place, lighting up lamps beneath the appropriate switches - so that if say the brake release switch is pressed, the lamp beneath the switch lights only when the brakes have actually been released. As well as the lists of requirements for each mode of operation, we must prepare lists of functions to be continually checked whilst in each mode, together with instructions to be followed should any function fail. So far then we have:
(1) A panel of lamps indicating which function is requested by the user.
(2) Detailed lists of responses to each request and the conditions to be monitored in each mode.
(3) A panel of switches to operate each appropriate machine function.
(4) Lamps to indicate that the functions have been carried out.

All that's left to do is to sit an intelligent, trustworthy person at the two paneis to carry out the necessary tasks the machine's user simply presses his buttons and, provided you've prepared your lists of instructions correctly, the end result is foolproof, reliable and safe operation of the machine. If the control panels and the machine's "driver" were present in a small room, the effective block diagram would look like Fig. 2.

Suppose next that you decide to improve the machine's

Fig. 2: Control block diagram.

Fig. 3: Master/slave control arrangement.
specification, with say more timed recording choices and a clock which updates every second. The driver you've trained to perform the original tasks may not be up to, or may not have time to carry out, these additional requirements. What you can do is to write new instructions to cover the extra tasks, and employ a less skilled person to do the work under the driver's control. We now have the arrangement shown in block diagram form in Fig. 3.

Human drivers are out of course. What's wanted is a device that will obey the instructions quickly and faultlessly. A microcomputer will clearly serve the purpose. The same facilities as before are required:
(1) An indication as to which key has been pressed, now signalled by a logic level.
(2) A list of instructions on how to react to all possible circumstances - the computer's programme.
(3) Outputs to operate the appropriate machine functions, now logic level signals.
(4) Feedback from the relevant functions, again signalled as logic levels.

The block diagram remains as in Fig. 2, but the "black box" is now a microcomputer, complete with programme. If extra "help" is needed, a "master/slave" arrangement can be used as in Fig. 3 - here the slave computer has its own programme, but follows only that part of it instructed by the master computer at any given time.

There are some practical limitations to this simple approach. For example, on the Philips VR2020 VCR there are some twenty nine control buttons. If we assume that about the same number of outputs to the rest of the machine are required (including updating the displays), and that there are say twelve feedback signals, our microcomputer chip would need at least seventy pins. Obviously then some form of multiplexing must be used, i.e. employing the same group of input or output lines for
several purposes (we refer to a group of lines as a bus). In practice, time multiplexing is used - one set of signals is put on the bus to activate various device(s), the signals are then removed and another set applied and so on. If this is done very rapidly, a large amount of data can be handled apparently simultaneously.

The signals can be put into an input/output expander a sort of electronic multipole, multiposition switch (see Fig. 4). The chip has the ability to "switch" the data from the bus port to any of ports A-D and vice versa. Instructions as to which port to select, and in which direction, are also fed in at the bus port. A two-cycle sequence is needed therefore. First, instructions as to port and direction are placed on the bus and the chip is enabled by an appropriate logic level at the enable input. The programme/data pin is simultaneously pulled low to tell the chip that instructions are present at the bus port. The data is next placed on the bus and the programme/data pin is driven high, so that the data is transferred to or accepted from the port requested. The ports are usually latched, i.e. they "remember" the data until new data comes along and overwrites the previous data. They can thus serve as drivers for external interfacing devices such as transistors.

The use of one or more expander chips greatly increases the capability of a microcomputer i.c. Each expander can be connected to the same bus, accepting data intended only for itself under the control of chip enable signals from the microcomputer.

Another limitation is the programme memory (ROM) capability of a one chip microcomputer. In some cases an additional ROM (read-only memory) may be needed to carry part of the programme. This extra ROM can be conveniently housed in the same chip as an input/output expander. The instruction to this type of chip must also include the required memory address for requests for information from the memory.

The method of monitoring the keyboard for instruc-

Fig. 4 (right): Input/output expander.

Fig. 5 (below): Keyboard scanning arrangement.

tions from the user (keyboard scanning) usually takes the form shown in Fig. 5. The microcomputer continually generates scanning pulses each of which lasts from about

Fig. 6: Multiplexing system using bus buffers.

Fig. 7: Keyboard scanning economy arrangement used in the Philips VR2020 VCR.

Fig. 8: Block diagram of a microcomputer VCR control system.
half to say ten or so milliseconds. The pulses are sequential, so that SP1 occurs for say one millisecond whilst $\mathrm{SP} 2 / 3 / 4$ are at zero, then SP2 is present for a millisecond whilst SP1/3/4 are at zero and so on. If any of the switches is operated, a scanning pulse will appear on the appropriate output line. By checking which output line is active during which scanning pulse, the microcomputer identifies the user instruction.

An alternative method of multiplexing is often found, generally for feedback inputs. The principle remains the same - see Fig. 6. B1-8 are "bus buffers", devices which are normally open-circuit but switch on when a scanning pulse is applied. They can be selected for either logic zero or logic one gate pulse requirements. In Fig. 6, buffers $1 / 2$ and 5/6 are enabled (switched on) by sample pulse one, $3 / 4$ and $7 / 8$ being enabled by sample pulse 2 . Thus an output on say line OP3 during SP2 can be only from input IP7 and so on.

Another economy in output lines is found in the keyboard scanning unit used in the Philips VR2020. Only two scanning pulses are generated - see Fig. 7. Input pulse one has a timing of 36 milliseconds while input pulse two has a timing of 18 milliseconds. Thus during the first half cycle of IPI, IP2 has two states. During an "a" period, both IP1 and IP2 are high. Examination of Fig. 7 reveals that the NAND gate N1 is the only one with both inputs at logic one under these conditions, thus SP1 is the only low output. This continues for nine milliseconds after which IP2 goes low and the output from N1 goes high. During a " b " period N2's two inputs are high IP1 and IP2 via inverter 2. Thus SP2 goes low for nine milliseconds. In this way the two binary inputs IP1 and IP2 are converted to four sequential nine millisecond pulses to scan the keyboard.

Summary

Microcomputers are now widely used in domestic VCRs - some use more than one. The microcomputer carries a programme containing instructions to deal with all likely situations. Inputs from the keyboard to the microcomputer give access to the appropriate part of the programme for each key, the computer then carrying out the programme's instructions. These tell the microcomputer to check various machine operating conditions before selecting a new mode of operation. The information about machine operating conditions is fed back to the microcomputer as logic levels from transducers of various kinds.

The programme carries instructions to bring about various conditions such as brakes on, pressure roller off, etc., also to check that these conditions have occurred, before giving an output in the form of a change in logic level which is sent to the appropriate part of the machine to bring about the mode requested.

Obviously the microcomputer or its peripheral devices cannot directly switch relays, operate solenoids and drive motors: interfacing devices such as transistors are required as drivers for these purposes.

Expansion or multiplexing chips are frequently employed to enable each microcomputer i.c. input/output pin to do different jobs at different times.

This has been only a very general review of the way in which microcomputers are used to control VCRs. Most machines now employ the principles outlined, and the block diagram shown in Fig. 8 will serve as a starting point before you delve into individual circuit diagrams.

Long-distance Television

Roger Bunney

JULY produced signals from a wider area than in earlier months. Instead of the predominance of signals from southerly/south eastern directions, there has been reception from most of Europe. TVR (Rumania) has been sighted on several occasions via single-hop sporadic E, while an Aurora livened things up a bit in mid-July. There have also been two sightings of NTA (Nigeria) ch. E3 via double-hop SpE , so the results for July have perhaps exceeded those for June. The following log of UK SpE reception is based on my own and reports from regular contacts:

5/7/82 RTVE (Spain) E4; RTP (Portugal) E2, 3.
6/7/82 RTVE E2, 3, 4; RTP E2; YLE (Finland) E3; TVP (Poland) R1; SR (Sweden) E2.
7/7/82 TSS (USSR) R1, 2, 3; TVR R2; MTV (Hungary) R1, 2; JRT (Yugoslavia) E3; RTVE E2, 3, 4; RTP E3; RAI (Italy) IA, B; NCT (Italian free station) E3; ARD (W. Germany) E2; plus many unidentified signals.
8/7/82 TSS R1-4; TVP R1, 2; CST (Czechoslovakia) R1; MTV R1, 2; TVR R2; JRT E4; SR E2; RAI IA, B; RTVE E2-4; RTP E2, 3; Switzerland E2, 3; ORF (Austria) E2a, 4 - the E4 outlet is now listed as only 60 W ; ARD E2.
9/7/82 SR E2, 3; NRK (Norway) E2-4; RTVE E2-4; RTP E3; MTV R1; RAI IA.
10/7/82 RTVE E2-4; RAI IA, B; MTV R1, 2; CST R2; JRT E3; DFF (E. Germany) E4; ARD E2.
11/7/82 TSS R1, 2; TVR R2; RTVE E2-4; RAI IA, B; RTP E3; Switzerland E3; ARD E2, 4; TF1 (France) F2 (819 lines).
12/7/82 CST R1, 2; MTV R2; JRT E4; ARD E4; RAI IA; Switzerland E3; RTVE E2-4; RTP E3.
13/7/82 RAI IA; TSS R1, 2; MTV R1; RTVE E2-4.
15/7/82 RTVE E2-4; TVP R1, 2; ARD E2; JRT E3, 4; DFF E4; RAI IA, B; SR E3, 4; NRK E2; RUV (Iceland) E4.
16/7/82 RTVE E2-4; RAI IA; ORF E2a; JRT E3; RTP E3; TSS R1; RUV E4.
17/7/82 SR E2, 3; NRK E2-4; TSS R2; CST R2; ORF E2a, 4; RTVE E2-4; RAI IA; RUV E3, 4.

18/7/82 RTVE E2-4; RTP E2, 3; RAI IA, B; CST R1; JRT E3; MTV R1, 2; TSS R2; TVP R1; TF1 F4.
19/7/82 RAI IA, B; RTVE E2-4; TF1 F2, 4; RTE (Eire) ch. B.
20/7/82 JRT E3, 4; RAI IA, B; RTP E3; MTV R1; TSS R1, 2; CST R1; TVP R2; TF1 F4.
21/7/82 RTVE E2-4; RAI IA, B; JRT E3; CST R2; MTV R1; TSS R1; TF1 F4.
22/7/82 RTVE E2-4; RAI IA, B; MTV R1; RTP E2, 3; TVR R2, ORF E2a, 3; TF1 F4.
23/7/82 TVR R2, 3; MTV R1, 2; TSS R1, 2.
24/7/82 RTVE E2-4; RAI IA, B; CST R2; RTP E3.
25/7/82 TSS R1, 2; ORF E2a.
26/7/82 TSS R1, 2; SR E2; RTVE E3.
27/7/82 TSS R1-4; YLE E3; SR E2, 4; NRK E2; RUV E3, 4; TVP R1.
28/7/82 RAI IA.
29/7/82 RAI IA, B; TSS R2, MTV R1, 2; SR E2; ORF E2a. 4; CST R1, 2.
30/7/82 TVR R2, 3; MTV R1, 2; JRT E3; ORF E2a, 3, 4; ARD E2; CST R1; TSS R1-4; TVP R1; RTVE E2-4; RTP E3; NCT E3; SR E2; DFF E3; RUV E3.
1/8/82 RTVE E3, 4; TSS R1, 2.
A mystery signal - an IBA type test pattern (colour-bar version) - was noted by Cyril Willis (Cambridge) on ch. E4 on July 20th. A similar pattern was seen on ch. E 3 on the 30th - weak, from the south east. Reg Roper (Plymouth) logged NTA Sokoto (Nigeria) for almost three hours (1500-1800) on the 18 th, via multiple-hop SpE at "fair" strength. The Sokoto identification could be clearly seen. Hugh Cocks had Sokoto from 1845-1900 on the 20th. Earlier, on the 17th, he logged Dubai ch. E2 via double-hop SpE from 1030-1045, on programme with sound.

The Auroral event occurred on the 13/14th. Reg Roper noted unusual sound effects in the 27 MHz CB band, and checking on Band I received NRK ch. E3 - in addition to the usual rumbling. On the following day he again noted ch. E3 signals during the first phase 1700-2100. It will be interesting to see if the 27 day repeat pattern occurs.

There was enhanced tropospheric reception during July, with the period 7-9th being particularly active. Reports from Suffolk to the west country and up into Lancashire indicate reception along a largely east/west path. Fair strength u.h.f. signals from W. Germany were noted here at Romsey, while Trevor Rose (Lowestoft) logged Grunten ch. 28 (S.W. Germany), a good haul. Cyril Willis had Swiss u.h.f. signals on the 7th, DDF in Band III and at u.h.f. on the 8th, also ATV stations in

Left, the station logo for Guaiba TV2, Porto Alegre, Brazil. Centre, the logo received by Ryn Muntjewerff on June 4th (ch. A2). Right, a station announcer received during the same period.

Holland (PA3CHH) and Belgium. There was a further slight lift on the 12th, with W. German u.h.f. signals in the eastern UK, and on the 20-22nd. Further enhanced conditions gave Band III and u.h.f. reception in the south/ east UK over the 29-30th, including DR (Denmark) in Band III.

I was on holiday in the Isle of Wight from the 23rd-30th, armed with a 5 in . Plustron set and WB1 wideband Band I dipole array atop the Shanklin cliffs. Despite this minimal equipment, it was obvious that the S.E. of the island is a prime location for DX-TV. The Dutch ch. E4 was present all the time, also ch. E29 at times, and even the slightest lift would produce French signals throughout the u.h.f. bands (including the 819-line ch. E65). So if anyone has a job available thereabouts . . .

In summary then, a very active month. My thanks to the following who contributed to the co-ordinated log: Hugh Cocks (E. Sussex); Cyril Willis (Cambridge); Garry Smith (Derby); Arthur Milliken (Wigan); Trevor Rose (Lowestoft); Brian Renforth (Chippenham); Reg Roper (Plymouth); David Moller (Eastbourne); Neil Carnegie (Glasgow); and Ian Mitchell, G4NSD (Biggin Hill, Kent).

Ryn Muntjewerff (Beemster, Holland) reports an unusual and exciting logging - a system M (525 lines) ch. A2 signal on June 4th. Several photos were taken, but the signal remains unidentified. The detail in one shot taken during the reception suggests however that the signal comes from station TV Guaiba, Porto Alegre, Brazil with some 42 kW e.r.p. The time was 1517-1548 GMT, the reduced height confirming the system M standard. This looks like an SpE record, the multiple imaging suggesting triple hop.

CB Filter

Some months ago I received for testing a small filter, the label saying that it was a CB filter. The unusually packaged device consisted of a small, flying coaxial lead with aluminium coaxial plug and a chassis-mounting coaxial socket, the main body being a shallow polythene box measuring some $1 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{1}{2}$ in., filled with potting compound. Tests proved that the unit, about which I was initially doubtful, provided an impressive performance. It's essentially a 27 MHz notch filter with a very low insertion loss at over 40 MHz - ideal for Band I DX use. There's no braid break. The measured figures were: $16 \cdot 2 \mathrm{MHz}-22 \mathrm{~dB} ; 23 \cdot 2 \mathrm{MHz}-29 \mathrm{~dB} ; 25 \cdot 2 \mathrm{MHz}-28 \mathrm{~dB}$; $27 \cdot 2 \mathrm{MHz}-49 \cdot 5 \mathrm{~dB} ; 29 \cdot 2 \mathrm{MHz}-19 \mathrm{~dB} ; 45 \cdot 2 \mathrm{MHz}$ less than -1 dB . I can recommend the unit, which costs $£ 4.99$ plus 50 p post and packing, from PAM Ltd., 47 Holly Court, St. Modwen Road, Marsh Hills, Plymouth (tel. Plymouth 666107).

News Items

France: The French communications minister has announced that an experimental fourth channel using system L will replace the present 819 -line v.h.f. service. Sri Lanka: The first network now has nationwide coverage and the government owned ITN network is to be expanded to give similar coverage. Viewers in S. India will also be in range. The Indian transmissions are at present in monochrome with no adverts, as a result of which many viewers tune to Sri Lankan TV and many of the commercials are aimed at them.
Australia: The Australian broadcasting satellite project AUSSAT has been given the go ahead, with two orbiting and a backup craft. Each will have eleven 12 W transpon-

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road,Shaftesbury, Dorset. SP7 8ND tel. 07474370

AGC

Reception of TV signals over long paths (eg. Eire to UK etc) can produce extremes of signal level, a normally weak signal rising to overloading levels in certain weather conditions. To prevent overload of an amplifier/receiver installation the Triax $9000 / 45$ AGC unit is fitted after the head preamplifier and regulates maximum output voltage levels to avoid saturation of the receiving installation (there are 3 preset output levels). The unit is housed in a masthead weatherproof case and requires 24 volts at 50 mA , with a DC pass for head preamplifier operation.
To ensure optimum system noise performance we can offer a 24 volt version of the Labgear CM7066 for head preamplifier use.
Simple installation instructions are included with each AGC unit, the UHF version is ex stock, Band 1; Band 2 FM; Band 3; VHF; VHF/UHF versions are available to order.
Triax 9000/45 UHF AGC head unir
£39.50
Triax 601/100 24 volt 100 mA . manns PSU
£15.25
Labgear CM7066 $470-860 \mathrm{MHz}$., 26 dB gain, 1.8 dB noise head amplifier. (modified for 24 volt operation)
£18.85
Antiference MH473 High gain 'export aerial' wideband operationchs. E2-4/chs. E5/12
£56.25
Jaybeam MBM46 High gain (17.3dBd peak) multiple element
array - Group B only (to clear stocks at this reduced price)
£19.75
Our 1982 catalogue costs 50 p. Please include SAE with ALL enquiries All prices include VAT, post, paching. Access/Barclaycard welcome. We are the specialists in domestic, fringe and DXing installation supply. (allow 10-14 working days for delivery)
ALL SETS GUARANTEED COMPLETE OVER SIX HUNDRED SETS ALWAYS IN STOCK
Philips G8; Pye Thorn Sets i.e. 3000 series, 8000 series, 9000 series Murphy, Bush, Decca, GEC All from £20.00
Mono's from: £2.00 ALL MODELS All include VAT OPPORTUNITIES
9A, Chapel Street, Luton, Beds. LUTON 38716
9.30-6.00 p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

Left, the Belgian PM5544 test pattern taken with a 1/60th frame speed. Reducing the speed to 1/15th will remove the shading. Centre, the new TVR (Rumania) first chain identification caption, received by Garry Smith (Derby) on ch. R3. Right, the BBC's 1949 tuning signal - Band I, ch. B1.
ders and four 30W transponders, the higher-power outputs providing services to specific regions via spot beams - the ABC TV service will be brought to the outback and other remote parts. The 30 W capability will also enable a start to be made to services to Papua/New Guinea.
In brief: The EBU have confirmed that Morocco has a station operating on ch. E4 . . The Dutch government has expressed concern over a proposed AFRTS TV transmitter at Soesterberg - it's intended to use a channel above E68 . . . The DFF ch. E3 Helpterberg transmitter continues to be received at good strength despite reports of its closure ... Greek radio/TV intend to introduce regional TV over the coming year, starting at Thessaloniki, with a third service to start in Athens next year. Yened is to be demilitarised ... Zimbabwe is to commence a colour service this month, following a long experimental period . . . Plans to adopt the PAL colour system in Kenya are at an advanced stage . . . The French are giving aid to Benin to expand the relatively small Band III service around Cotonou.

From our Correspondents . . .

T. S. Nanda Kumar (Madras, India) continues to receive good sound/vision at 714 MHz from the Russian Stat T craft, using a home-constructed multi-element Yagi, a 27dB gain preamplifier and ELC2060 tuner feeding the i.f. strip in a standard Indian hybrid TV set. The sound is resolved using a second aerial/u.h.f. tuner combination feeding a locally produced i.c. (CA3065) i.f. section tuned to $6 \cdot 5 \mathrm{MHz}$. The Russian consulate staff at Madras have viewed the results and were very impressed.

During recent SpE openings Neil Carnegie (Glasgow) has been very active with f.m. radio reception. He apparently heard - with an American accent - "the South European Broadcasting Corporation/Network". I've no idea what this could be unless AFRTS have an outlet in S. Italy or N. Africa. Any ideas? Two French TV pirates are listed in a free radio movement publication: further information is awaited with interest.

Robin Crossley (St. Albans) has been re-equipping with a new v.h.f. amplifier, two-element Band I aerial and XG8W aerial. His receivers are modified Bush TV161 series models capable of wide/narrowband i.f. operation and adjustment for $5 \cdot 5$, 6 or $6 \cdot 5 \mathrm{MHz}$ intercarrier sound. He finds the ET021 tuner (with MOSFETS) superior to the valved tuners he used previously. Attempts at offscreen photography have produced shots with hum bars Robin used a Praktica manual SLR camera, 400 ASA film and a $1 / 60$ th frame speed. Fortunately the camera has a $1 / 15$ th frame speed, and use of this slower shutter speed should solve the problem.

Ian Johnson (Bromsgrove) started TV-DXing earlier this year, using an "ageing" GEC dual-standard monochrome receiver, a wideband Band I aerial and v.h.f. preamplifier. He's sent us an impressive list of receptions, including the RTVE teletexto on July 21st. Earlier, on the 12 th, another teletexto transmission covered the theory of digital coding for such operations, including decoder and matrix layouts. In contrast, Worzel Gummidge was seen via RAI-1 on June 25 th! Ian has unfortunately had to spend a considerable amount of time in hospital: we wish him well.

Graeme Wilson (Middlesbrough) has been using a Tandy Patrolman 50 as a tunable i.f. strip. The output from the TV tuner is fed to the aerial input via a f.e.t. amplifier/impedance matcher to save loading down the tuner's output. He's found that the system works well, with the sound on chs. E3 and 4 easily resolvable, though the ch. E2 sound is more difficult, probably due to the local ch. B3 signal (the radio's a.f.c. is probably making the receiver lock to this signal). Use of this relatively cheap radio with its $30-50 \mathrm{MHz}$ coverage enables the TV sound signals to be tuned independently. During the improved tropospheric conditions on July 21 st, Graeme logged NRK E5, 6; DR E7; and DFF E9, 11.

The Way We Were

By great good fortune I was recently sent some very early copies of Practical Television. The issue for March 1949 , labelled Vol. 1, No. 1, was actually a supplement to Practical Wireless Vol. 25, No. 512. So there were at least three Vol. 1, No. 1 issues, the first in the present series (now Television of course) appearing in April 1950 while a pre-war series started back in 1934 - when it was all Nipkow discs and spinning mirror drums.

The September 1949 issue illustrates the new BBC tuning signal, with the clock face representing a definition of 2.5 MHz . Considerable space was devoted to how to adjust the contrast and brightness controls. The October 1949 issue mentioned that local councils were prohibiting the erection of TV aerials on council houses, also that W. Jones of Wellington, Salop, a radio dealer, had been the first to receive satisfactory reception from the new Sutton Coldfield transmitter. There's also a report of an unnamed experimenter in S. Africa receiving the BBC's ch. B1 Alexandra Palace transmissions using a singleelement aerial (in preference to a three-element design) and a Pye Model B16T TV set. The first DX-TV report of fast-scan reception? Apparently mounting the aerial horizontally or vertically made little difference.

If anyone is having a clear out and comes across any very early issues, please don't burn them but let us know!

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 659 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

THORN 8500 CHASSIS

There are two problems on this set. First, slight jittering of the picture at the top of the screen. This usually occurs after switching on or changing channel after a long period of time, but also occurs less frequently at other times. The second problem starts shortly after switching on - a popping and crackling from the speaker, similar to the sound of frying bacon.

The MJE340 sound output transistor VT701 is notorious for this sound crackle and hiss. The intercarrier sound i.c. (IC2, MC1358PQ or equivalent) is a less likely possibility. For the jitter, first check carefully for bad connections or dry-joints in the field timebase, then suspect the following, given in order of likelihood: the field R/G balance control R460, the bootstrap capacitor C438 ($10 \mu \mathrm{~F}$), the 2N6178 field output transistor VT410, the field scan coupling capacitor $\mathrm{C} 439(160 \mu \mathrm{~F})$ and diode W413 (OA91) in VT410's base circuit.

DECCA 30 SERIES CHASSIS

There's an intermittent fault on this set. Usually the valves light up when it's switched on, but occasionally they don't.

Wait for the fault to occur, then check with a meter that h.t. is present at the h.t. fuse F1. If not, check the mains fuse F3, its connections and the holder. If the h.t. is present there's an intermittently open-circuit connection on the mains transformer or at some point in the heater chain. In the latter case the PY500A boost diode and the print around the PL508 field output valve's holder are suspect.

TYNE 5265

The sound is being almost blotted out by a steady whistle whose frequency seems to be around $2-5 \mathrm{kHz}$. The frequency of the whistle changes when the volume control is at about 75\% of its maximum setting, but at all other settings the volume and frequency of the whistle remain the same.

As the vision signal is not affected, the cause of the fault appears to be around the TDA1190 intercarrier sound/audio output i.c. Check the various decoupling/ smoothing capacitors associated with this - C831 ($0 \cdot 1 \mu \mathrm{~F}$) which decouples the differential input, C835 ($0.01 \mu \mathrm{~F}$) which decouples the volume control's slider, C844 $(33 \mu \mathrm{~F})$ which decouples the 24 V rail and $\mathrm{C} 838(220 \mu \mathrm{~F})$ and $\mathrm{C} 837(100 \mu \mathrm{~F})$ in the power amplifier gain setting network. These capacitors can be checked by bridging. C839 (220 pF) and C841 ($0 \cdot 001 \mu \mathrm{~F}$) which prevent parasitic oscillation in the chip should be checked by substitution if necessary, also the damping network R839 (1 Ω) and C842 $(0.22 \mu \mathrm{~F})$. If the fault persists, the TDA1190
chip itself is suspect. Before replacing it, make sure that it's earth tabs are well jointed and that the print land to which they are connected is well earthed to chassis.

ITT VC300 CHASSIS

The problem with this 12 in portable is reduced line scan the picture is only about half the normal width.

Start by checking that the l.t. supply is correct at 11 V . The simplest place to do this is at pin 3 of the c.r.t. If the voltage is lower, suspect the power supply. Check the 8.2 V zener diode D6, the series regulator transistor T2 and the setting of R20. If the 11 V supply is correct, move over to the line output stage. Suspects here include the $1.8 \mu \mathrm{~F}$ line scan coupling capacitor C 92 , the boost capacitor C93 $(220 \mu \mathrm{~F})$, the boost diode D15 and the line output transistor T14. If the overwinding on the line output transformer is very warm, the e.h.t. stick D17 (TV11) could be leaky.

RANK A774 CHASSIS

Once the set has warmed up the picture shrinks till it's only five inches high, with blank areas at the top and bottom. A new PCL805 field timebase valve has been tried without success.

If the reduced field scan is linear, the trouble is probably in the height circuit. Check the boost supply filter network $3 \mathrm{R} 64 / 3 \mathrm{C} 38$, the height supply feed resistor 3R31, the control itself for a dud spot on the track and if necessary the height stabilising VDR (3VDR3). If the reduced field scan is non-linear, check the output valve's cathode bias components 3C18/3R37 and the linearity coupling capacitor 3 C 17 .

AQUADAG COATING

I have a salvaged colour tube which checks out at about 60% on my tube tester, so it should be worth using. The graphite coating at the rear of the tube has flaked off in places however. I've considered painting it with powdered graphite, but am not sure whether the coating is in any way critical.

The external Aquadag coating is mainly present to provide the e.h.t. smoothing capacitance (in conjunction with the glass and the internal coating). If 70% or more of it is still there the tube will work all right. If more than 30% of the external coating is missing a conductive paint with sufficient adhesion will need to be applied.

GRUNDIG 1500

There's no raster and as the usual negative voltage at the control grid of the PL509 line output valve is absent I assume that the line oscillator has stopped. A new PCF802 line oscillator valve and checks on most of the components in this stage have failed to cure the fault however. The voltages in the line oscillator stage seem to be correct.

We suggest that you start by disconnecting the line output valve's screen grid feed resistor R563 to prevent overheating in this stage whilst investigating the cause of the fault. The usual cause is failure of the PCF802 valve or one of the four associated capacitors $\mathrm{C} 611 / 2 / 3 / 4$, but if the voltages in the stage are indeed correct, especially the -36 V at the control grid of the pentode section of the valve (pin 2), the oscillator is running correctly and suspicion must fall on the transistor line driver stage (Tr621, type BF259G). If this transistor has failed, the normal -90 V at the control grid of the PL509 will not be present.

VCR Servicing

Part 12

Mike Phelan

To round off our discussion of the basic VHS machine (JVC HR3330/Ferguson 3V00 etc.) we'll cover the few odds and ends not yet mentioned. The audio circuitry is fairly simple and reliable, but there are one or two stock faults.

Continuous slight variations in audio level, whether on the machine's own recordings or on prerecorded tapes, are usually caused by one or both of the switches on the audio-servo panel being dirty. They are both slide switches, one for record/playback and the other smaller one for the audio dub facility. When in audio dub the sound track only is erased by the audio erase head mounted next to the audio-control head, the full erase head on the left-hand side not being in operation. A word of warning here: when replacing the board, the actuating rods do not go into the holes in the switches (see Fig. 53).

A nother common audio fault is that the machine will play prerecorded tapes perfectly but its own recordings have a varying sound level. This is usually caused by short-circuit turns in the audio record/playback head. Why doesn't it affect playback? Those of you familiar with audio recorder servicing will probably have guessed why. The signal developed at the head on playback is infinitesimally small, not nearly enough to break across the defective insulation between the windings. On record however there's an a.c. bias voltage of $70-80 \mathrm{~V}$ peak-to-

Fig. 53: Audio switch actuator arrangement.

Fig. 54: The mechanism control system.
peak plus the audio signal - this "bridges the gap" quite effectively.

It's worth noting that it's not much use looking for the audio record signal past the point where the bias is added - the relative signal amplitudes are such that the bias makes the audio difficult to see on a scope.

The only other problem in this part of the machine concerns the erase/bias oscillator. This sometimes fails intermittently due to the oscillator's l.t. supply feed resistor R135 (5.0 Ω) increasing in value. Where the oscillator is running but the output amplitude is very low, try disconnecting the full erase (FE) head. If the amplitude suddenly increases, the head has short-circuit turns and must be replaced.

It's as well to remember that if the erase function is not working the f.m. luminance erases the previous recording quite well, leaving the audio and traces of the chrominance information. The result is that the new recording appears with a vestige of the old audio and erratic flashing chroma or no chroma at all. This latter possibility depends to a great extent on whether both recordings are from the same channel, as to reproduce chroma it must be in phase with the sync. So always listen as well as watching.

The only other part of the circuit to discuss is the mechacon board below the operating keys. This controls the pause and stop solenoids, using a special-purpose i.c. (MSM5830) which receives several inputs - from the microswitches operated by the keys and several safety inputs (see Fig. 54). The after load, unload and keyboard switches cause the pause solenoid and motor control to operate in the correct sequence. The stop solenoid will operate under the following conditions: when the cassette lamp shines on the end sensor in fast forward, record or playback; when the light shines on the start sensor in rewind; and when the light shines on both sensors (i.e. no cassette inserted or tape broken) in any mode.

If the cassette lamp fails, the auto-stop facility no longer works. To prevent damage to tapes in this event the circuit is arranged as follows. The current through the bulb turns on transistor X1 due to the voltage developed across R5: if the bulb fails, X1 switches off and operates the stop solenoid via the MSM5830 i.c. In addition, if the cassette housing has not been depressed the cassette switch remains closed, shorting the base of X1 to chassis to switch it off.

Should the take-up spool stop rotating in any mode, or the drum stop rotating in record or playback, the machine will go to "stop" after a delay of several seconds. In the case of the head drum this is done by monitoring the drum FF signal, i.e. the head switching signal. If the flywheel has moved on the spindle so that the magnets are not close enough to the pick-up head, if the latter is open-circuit (sometimes intermittently), or the AN318 servo i.c. is defective, the machine will run for only ten seconds or so in record or playback but the rewind and fast forward modes will not be affected. Take-up spool rotation is sensed by a Hall effect i.c. mounted near a rotating magnet on the counter pulley which is driven by the take-up spool. The Hall effect i.c. produces an output when the magnetic field around it varies. This control function is obviously overridden in the pause mode, but only for five minutes or so - after this time the stop solenoid operates to prevent wear of the tape as a result of the video head scanning the same portion all the time.

Finally, if the "memory" switch is depressed the stop solenoid operates when the tape reaches 9999 - on rewind only.

Earlier machines used discrete CMOS logic i.c.s and transistors in place of the MSM5830 i.c.

This part of the machine is fairly reliable. Both the phototransistors occasionally go leaky, giving rise to random tripping, but this can also be caused by holes in the tape oxide. Beware also of stray light when operating the machine with the top removed, particularly in the case of the start (right-hand) sensor which has only a short rubber cover on it. If you put black tape on the sensors to avoid this, don't forget to remove it!

238
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
The circuit used in the GEC C2110 series follows the conventional practice of the time. It's a well known chassis, still in widespread use. The various stock faults don't cause much trouble with diagnosis and repair, and apart from the mixed blessing of the double-sided print on the panels the design is a likeable one so far as we are concerned. A recent workshop job gave us rather more trouble than usual however.
The symptom was lack of field sync when hot. We switched the set on to run for a while, and checked that the field hold control had a normal locking range when cold. After an hour or so field hold was lost, so the set was wheeled to the operating table. Being very subtle, we started by shunting a $47 \mu \mathrm{~F}$ capacitor across the a.g.c. reservoir capacitor $\mathrm{C} 117(47 \mu \mathrm{~F})$, but this had no effect at all. The line sync was satisfactory, so we connected the oscilloscope to the field sync input connection (PL47) on the field timebase panel. What we found was a 5 V positive-going spike sticking up from the line frequency pulses, i.e. the correct conditions as shown in oscillogram 26 in the manual.

This pulse is applied to the base of the field sync pulse amplifier transistor TR451, so we went on to make a check at its collector and found a 30 V negative-going spike here, just like the book says. At this point we emerged from the back of the set and looked at the screen, only to find the picture solidly locked. Damn intermittent faults! As we didn't want to hang about we replaced the following items: TR451, its emitter decoupling capacitor $\mathrm{C} 452(4.7 \mu \mathrm{~F})$, the sync pulse integrating capacitor C451 ($0.01 \mu \mathrm{~F}$), and the sync separator bias resistor R404 ($2 \cdot 2 \mathrm{M} \Omega$) on the sync/line generator panel. We then left the set on soak test.

Twenty minutes later the picture was rolling like a fruit
machine again. Hardly daring to breathe on it we gently checked once again at PL47. Sync input o.k. Clipping the scope's earth lead firmly to the metal chassis frame, we once more moved on to the collector of TR451. The -30 V sync pulse was present, but was riding on a sawtooth waveform of several volts amplitude. What was this? The field scan sawtooth is developed later in the circuit, at the collector of TR452. What was it doing back at TR451? It couldn't be getting back via TR452 and the BR101 field oscillator, not with the timebase working - as it was. The mysterious sawtooth was also present at the emitter of TR451. Just before the fault disappeared and normal sync was resumed, we noticed that the rolling picture was lacking a bit in height.

With the above symptoms in mind we settled down to study the circuit diagram whilst having a cup of tea. Soon it all fell into place, and the soldering iron was wielded to good effect. What was happening then? See next month!

ANSWER TO TEST CASE 237 - page 605 last month -

A Toshiba V8600B VCR was the patient on the bench last month, the rather daunting symptom being failure to record when under the control of the timer. We'd found that head rotation was correct, and that the tape slack sensor was shutting the machine down soon after it started to record. It remained for us to find the cause of the momentary tape slackness when starting.

In this machine the take-up spool is belt driven from the direct-drive head drum motor. The drive in fact comes via three belts, the third and smallest coupling the fast-forward pulley to the take-up spool pulley. The trouble lay here: the small belt was slipping at the moment the machine started up, with the result that the take-up spool was not accelerating fast enough to maintain correct tape tension. A degreasing operation was carried out on the belt and pulleys and this did the trick.

The slack sensor switch is linked to the system control department via a time-constant delay consisting of R697/C628. The race between the take-up spool and the slack sensor can be a rather close-run thing, especially when the machine starts from cold. To overcome this problem, Toshiba recommend lengthening the timeconstant by adding a $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ tantalum capacitor across C628 - on the print side of the servo/logic board. C628 lives at the edge of this board, near IC603.

[^1]

Telepart
 Pattern Generator

- Exceptionally light and durable
 * Pocket size for outside service

*ive different test power source - Five different test patterns for colour and mono TV "Cross hatch grid *Dot matrix
*Horizontals "Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE $£ 14.95$ (Subject to V.A.T.) POST \& PACKING $£ 1.15$

Telepart

Colour Bar Generator

* Exceptionally light \& durable

Compact $13 \times 17.5 \times 5.5 \mathrm{cms}$
Battery powered for mobility * Cross hatch
"White raster
*Grey scale * Colour bar
mound

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.

$$
\text { PRICE } £ 49.95 \text { (Subject to V.A.T.) }
$$

POST \& PACKING E1. 15

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrumen.

PRICE £5.50 (Subject to V.A.T.)

Supplied by return, off the shelf

TV LINE OUTPUT TRANSFORMERS

If the Transformer you require is not listed please phone.

RANK BUSH MURPHY	DECCA
2146 A640 dual std mono 8.51	MS1700 200120202401 mono 8.00
Bush A792, A793 single std mono8.51	MS2404 24202424 mono 8.00
A774 single std mono 8.50	121012111511 portable 9.13
A816 solid state mono 9.00	GYPSY portable $\quad 9.13$
2712 T16a T16b mono portable 9.00	CS1730 1733 colour $\quad 8.00$
A823 A823b A823av colour 10.00	CS1830 1835 colour 8.00
21792722 series colour $\quad 10.00$	'30' series 8RADFORD colour 8.00
271818 " series $\quad 11.00$	80 series colour 8.00
2718 20" $22^{\prime \prime} 26^{\prime \prime}$ series $\quad 11.00$	$\mathbf{1 0 0}$ series colour $\quad 8.00$
T20a T22 series coleur $\quad 10.00$	
G.E.C.	PHILIPS 210300 series mono
2047 to 21053112 to $3135 \quad 8.00$	210300 series mono
"GAIETY" FINELINE 8.00	68 series colour $\quad 8.00$
2114 portable mono 8.00	G9 series colour 8.50
31333135 M 1501 H portable mono 8.00	Gll series colour $\quad 13.70$
OUAL STD hybrid colour 11.00 SINGLE STO hybrid colour 10.00 SINGLE STD solid state 90° 8.50 or 110°	
	VC300 VC301 VC302 portable $\quad 8.00$
	CVC1 CVC2 colour $\quad 9.00$
FERGUSON HMV MARCONI 1590159115921593 mono 8.00	CVC5 CVC7 CVC8 CVC9 colour $9 \mathbf{9 . 0 0}$
$\begin{array}{ll}161216131712 \text { mono } & 8.00 \\ \end{array}$	CVC20 series colour $\quad 9.00$
$\begin{array}{ll}16901691 \text { mono } & 8.50\end{array}$	CVC30 CVC32 series colour $\quad 8.00$
16001615 series mono $\quad 9.74$	CVC40 series 14.56
	PYE, ECKO
ADD 15\% VAT to ALL prices.	$\begin{aligned} & 72590^{\circ} \text { series } \\ & 731-741 \text { series } \end{aligned}$
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fti 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .	Hamond Components (Midland) Ltd., 416 Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. Mon-Fri 9 am to 1 pm . 2 pm to 5.30 pm .

SEMICONDUCTORS			
BC153	10p BD131	25p Bu126	1.00p
BC154	10p BD183	1.00p ME0404	7p
BC171	7 p EF137	20p ME0412	$7 p$
BC172	7 p BF240	8 p ME6002	$7 p$
BC208	7p BF255	10 p NKT241	7p
BC237	10 p 8F256c	35p NKT276	20p
8С238	7 p BF256LC	35 p PN107	$7 p$
BC250	7 p 8F257	30p R20108	1.00p
BC251	7 p BF259	40 p 2443	25p
BC307	10 p B 274	10 ¢ R2540	1.00 p
BC308	7p 8F337	25p R2761	1.25p
BC347	7 p BF391	7p RCA16446	30p
BC394	7 p BF394	8 p TIS30	20p
BC455	7 p BF459	80 p TIS91	20 p
${ }^{\text {BC546 }}$	7 p 8F596	7p 2N2193	70
BC549	7p BFR87	25p 2N3703	20 p
BC556	7p BU105	$75 \mathrm{p} 2 \mathrm{SA473}$	12p
BC559	7 p 8U108	1.00p 2SC346	7p
8C595	7p BU207	1.00 p TIC 106 C	30 p
8C×34	10p BU208	1.00p R2265	1.35p

General purpose mono scan coils. Thorn etc.3.40	
Tube base ITT CVC32	85p
Thorn $4000 \mathrm{red} / \mathrm{green} / \mathrm{blue}$ static controls and blue lateral control	3.75
Thorn 4000 côl 1401	55p
-Thorn 4000 coil L701/2/3	25p
Korting shift pot 50R	75p
Philips G9 lum. detay line	1.25
7 segment display red (Toshiba) TLR306	1.45
4 segment display red (Toshiba) TLR307	1.10
4 push button swith assy. 20K resistance	
35006 push button unit plus knobs. Thorn v/cap	
Most values of presets available, Morizon or vertical, miniature or standard.	
10 of anj; value	1.00

MIXED PACKS
300 mixed resistors
300 mixed capacitors
150 mixed electrolytics
100 W/W resistors
20 mixed conv pots
40 mixed potentiometer
20 mixed sliders
40 mixed presets
20 mixed VDR \&
thermistors.
20 mixed ferrite cores
E...t. Trays

Thern 8000 Eht		Thorn 4008 5.0	
3.12			
Thcren 8500			
E.H.T. Stick for thorn			
950/1400/1500 triplers E.C.T. type 30/150 E.H. T. stick. 83/200			
FUSES 20			
MA	10 for 70 p		
Sma 10 for 50p A Amp 10 for 40p			
Tharn 3000 matal 2A cut out Thorn 8500 plastic 2.5 A cut out + fits some Pye/Bush atc.			

$\begin{array}{ll}1.50 & 2 \\ 1.50 & 1\end{array}$
20 mixed valve bases
1.30

10 spark gaps
$2.00 \quad 10-16$ pin Ouil IC socket
1.0020 assoried T.V. knobs
1.00 10-16 pir Ouil to Dil IC 1.50 socke:

100 mixed Jiodes
60 p .50 mixed mica washers 300 mixed resistors \&
1.00 capacito-s
$50 \mathrm{p} \quad 10-16$ pin Cil to Dil IC socket TRANSFORMERS/LOPT
Mains TX $3000 / 3500$
Mains TX 8(000/1500
S. O.P T. 800]/8500
$3000 / 3500 \mathrm{Szan} T X$
$3000 / 3500 \mathrm{ETT}$
3000/3500 ETT IX
8500 LOPT
9000 LOPT
Mono portable LDPT. Thorn, GEC, etc Mullard diolle qulitting LOPT. GEC, etc. 14
PYe $78+161$ OROPPERS
Pye $147+260$
Thorn $6+1-1003 \mathrm{~K}$
Thorn $56+1 K+47+12$
Thorn $350+20-148+1 \mathrm{~K} 5+317$
Thorn $350+20-148+$
Thorn $50+40+1 K 5$
RBM $250+{ }^{\prime} 4+58$ TV 161
$3 R 5+15 R-45 \lambda 28 W$ Working ©

WIRE WOUNDS
1.5R5W Thorn 3K 30p 270R5W
2 2R 4 W orn 3 K 30p 270 R 7 W
2.2R 4W
3.3R 9W
4R11W fusib

4R 11W fusible
7R 9 W fusible
350R 7W
$\begin{array}{lll}8.27 \mathrm{~W} & \text { 25p } & \text { 330R IIW insible }\end{array}$
10R 7W 15p 370R17W
12R 9W 20 p 820R4W
15R 7W
15R IIW Thorn $3 \times 30 \mathrm{~F}$ 1K211W fusible
15R 17W
22 W 4 W
$22 R 4 W$
$22 R 9 W$

$27 R 7 W$
27
W

27R 7 W fusible
$36 R 17 W$
$82 R 4 W$
$32 \mathrm{Cl} \quad \begin{array}{ll}23 \mathrm{p} & 3 \mathrm{~K} 95 \mathrm{~W} \text { fusible }\end{array}$
$\left.\begin{array}{lll}\text { 82R 9W fusible } & 25 p & 4 K 77 W\end{array}\right)$ fusible
200R TU Tusible
200 TW Korting
fusible
220 R 17 W
220R17W $\quad 30 \mathrm{p} 8 \mathrm{8K} 2 \mathrm{WW} 8$
235R 9W fusible 25p 10K 9W

EX-EQUIPMENT SPARES
Convergence voke 30
Scan coils $3000 / 3500$
please state which
3000/3500 LTB Itestedt
L501/L502/L503/L504/T502/T501. $3000 / 3500$ PSU (tested)
T602/L601 T602/L601 \qquad $3000 / 3500$ chroma delay line DL301 fested) $65 p$ $3000 / 3500$ lum delay line L203 tiested) 65p 3500 convergence (tested)

3000/3500 fra

39 HIGH ROAD, NORTH STIFFORD, GRAYS, ESSEX, RM16 1UF.

(Mail Order Address Only) Delivery within 28 days.
PLEASE ADD 60p P\&P, PRICE INCLUSIVE OF VAT, ADD POSTAGE FOR OVERSEAS ORDERS
thousands of additional items available, enauiries invited

I wish :o pay by Access

Access No.
Ameurt
NANE
ADDRESS

Sigr alure

DIODES

A $\mathrm{Al}_{1} 12$	8 p BZU15C12R		1W2070	8 p
A 4119	8 p	14p	IW5254B	8 p
AAld3	8 p BY204	8 p	1W4742A	8 p
EA115	8 p BYX22/400	8 p	13025	8 p
- A131	8 p BZY79C 20 V		151658	8 p
BA154	8 p	8 p	17638 CV9	
EA157	8p DA002	8p		6 p
B6103	8p IM 102255		20150	8 p
ER3]3	26p IN60		¢KE1/02	18p
${ }^{8} \mathrm{Y} 127$	12p IN5349		MR854	30 p
3 Y 133	10p		MCR406	35p

INTEGRATED CIRCUITS
3AV40 50p SN74123N 40p TBA480 1.00 3AV40 50p SN74123N 40p TBA480
3RC/M/2001.00SN77154N 1.40 TBA1440C 1.00 3RC/M/200 1.00SN74154N 1.40 IBA1440C 1.00
3RC/M/300 1.00SN76110N 40p TDA2680 40 p JM74123N 50p SN6622N 40p IDA2690A 40p SN15846N 40p TAA570 1.00 TBA540 90p

3000, 8500 Thorn focus pot	1.25
9000 Thorn focus pot	1.00

gu00 horn focus pot $\quad 1.00$
IC inserters. 16 pin 50 p
targe IC exiractor 50 p
Crystals $4.433619 \mathrm{MHz} \quad 50 \mathrm{p}$
EHT lead for split diode LOPT 1.00 Litesold 20 watt 240 V soldering iron
element $\quad 65 \mathrm{p}$ each or 4 for 2.00
EHT final anode cap lixterther 47p

ITT bridge rec. FXS 244/2A 15p
Castors, sets of $4-2.50$
Direct panel mounting. 20nm fuse clips
pair for 25 p

CARBON RESISTORS
 $82 R \frac{1}{2} W, 100 R \frac{1}{2} W, 120 R+W, 120 R 12 W, 130 R 2 W$. $150 \frac{1}{2} \mathrm{~W}, 180 \mathrm{R} 1 \mathrm{~W}, 220 \mathrm{R}$ tW, $220 \mathrm{R} 2 \mathrm{~W}, 240 \mathrm{R} \mathrm{LW}$,
 $1 \mathrm{~K} \frac{1}{2} \mathrm{~W}, 1 \mathrm{~K} 1 \mathrm{~W}, 1 \mathrm{~K} 2 \mathrm{~W}, 1 \mathrm{~K} 5 \frac{1}{2} \mathrm{~W}, 1 \mathrm{~K} 5 \mathrm{WW}, 1 \mathrm{~K} 8 \frac{1}{2} \mathrm{~W}$, $2 \mathrm{~K} 21 \mathrm{~W}, 2 \mathrm{~K} 7.1 \mathrm{~W}, 4 \mathrm{~K} 7 \mathrm{JW}, 11 \mathrm{~K}+\mathrm{N}, 12 \mathrm{~K}+\mathrm{W}, 18 \mathrm{~K}$
 100K 2 W . 110 K W, 270 K 2W, $330 \mathrm{~K} 1 \mathrm{~W}, 330 \mathrm{~K} 1 \mathrm{~W}$

Thorn 9K thick film units FR1 or FR3 $\mathbf{1 . 2 5}$ 10 Veg thick film focus resistor

MULTISCCTION CAPAEITOAS	
$175+100+100350 \mathrm{~V}$	$200+230+100$
Tharn 3K 2.00	350 L 70p
$100+150+50350 \mathrm{~V} 50 p$	$200+130+50300 \mathrm{~V} 60 \mathrm{p}$
$200+32+300+100$	$150+130+100300 \mathrm{~V}$
350 V -50p	Thom 1K5 1.90
$2530+250063 \mathrm{~V}$ Thorn	$32+32+16350 \mathrm{~V}$ 40p
8K 1.20	$32+32350 \mathrm{~V}$ 30p
$200+190+100+50$	$200+100325 \mathrm{~V}$-70p
350 V 50p	$200+47250 \mathrm{~V} \quad 65 p$
CAN TYPES	
2 MF 20 V - 50 p	800MF250V 70p
22MF375V 500	1250M 40V 50 p
50 MF 350 V 50p	1250M 50V 50p
100MF 150V 65p	1500 MF 70V Tharn
220 MF 400 V Thorn	3 K , 1.00
9×6	2000NF 30V - 50 p .
2 COMF 450 V Tharn	2200NF 40 V Thorn
4 K (1.30	4 K
4 COMF 350 V Tharn	$2500 \mathrm{~N}+35 \mathrm{~V}$ - 65 p
8 K (90p	$2500 \mathrm{NF} 40 \mathrm{~V} \quad 65 \mathrm{p}$
8 coMF 250 V print	300 MF 25 V -50p
type 80p	3300 NF 25 V 60p

(SUPPLIERS OF QUALITY COMPONENTS) UNIT 94, STORFORTH LANE TRADING ESTATE, CHESTERFIELD, S41 OSN, DERBYSHIRE

THIS MONTHS SPECIAL OFFERS

G8 LINE TRANSFORMER
$£ 7.30$
PYE 731 I.F. GAIN MODULE $£ 7.80$ G8 LATER TYPE P.B. UNIT $£ 9.60$
G11 P.B. UNIT $£ 4.50$
$5 \times$ B U 208 $£ 4.00$
$5 \times$ B U 208A
$5 \times \mathrm{B}$ Y223
$5 \times$ BYX71/600
$5 \times$ G EC/THORN MULTITURN POTS
$5 \times$ D. P. PUSH/PUSH SWITCH
5×4 A ROTARY D.P. SWITCH
ITT CVC9 LINE TRANSFORMER
DECCA 100 EHT TRAY
DECCA 80 EHT TRAY
G11 E.W. LOADING COIL
G11 E.W. TRANSFORMER
ADD 65 PENCE P/P + 15% VAT TO ALL ORDERS
FREE WALL CHART SUPPLIED WITH EVERY
ORDER OR SEND LARGE SAE.
SAME DAY DESPATCH
TELEPHONE RIPLEY (DERBY'S) 813596
BETWEEN 9.30-11.30 OR 2.00-4.00 TO CHECK STOCK AVAILABILITY.

INSTANT HEATSOLDER GUN

ONLY £5.95

Tired of waiting for ordinary Irons to
heat up, but put off by high price of instant guns?
Now you can purchase a superb istant Heat Gun for only
55.95 plus $\$ 1.30 \mathrm{p} .8 \mathrm{p}$.

Send Cheque or Postal Order for $£ 7.25$ for immediate despatch. to Nash Smithtield Lid, Mail Order Dept. 11 Victoria Road. Saltaire Shipley West Yorkshire Telephone 582967

COLOUR SETS GALORE

Hundreds in Stock.
From £20. Guaranteed Complete.
Mono's and non-complete sets from £3. Most makes available. QUALITY COLOUR TUBES Reconditioned and used tubes. From $£ 10$ Guaranteed.
Don't delay, ring today.
ALPHA TUBES (DUNSTABLE)
53 Lowther Road, Dunstable. Tel. (0582) 68934 TRADE

N7118 PAL COLOUR BAR GENERATOR

An extremely light, compact and durable instrument, designed for mobile Colour T.V. Maintenance in the customers home. The basic model includes a built-in rechargeable battery plus a Power Unit/Charger. (A fully charged battery gives 10 hours continuous use). All patterns and sync. pulses are derived from a single crystal controlled oscillator, producing extremely accurate, stable displays. The patterns available are: Standard Colour Bars, Red Raster, Linearised Grey Scale Step Wedge, Crosshatch and Peak White Raster. A Coaxial Socket on the rear panel provides a modulated UHF or VHF (please specify) signal of approx. 1 mV for direct connection to Receiver Aerial Socket. An (optional) integral Sound board is available, producing a Sound Carrier (6 MHz or 5.5 MHz), frequency modulated by a 1 KHz Sinewave. The N 7118 will also house a third board that provides a 1 Volt p to p, 75 ohm Video Signal to a rear panel B.N.C. Socket

Complete kit, including a professional finished case, screen printed P.C.B. Ready Built P.S.U, and all components - 5950 inclusive Sound and Video Boards, add $\mathbf{£ 1 0 . 2 9}$ per board.
Ready Built - £88.25 inclusive, Sound and Video Boards add £11.45 per board
S.A.E. for details and specification

PAL COLOUR BAR
GENERATOR

- 0 \square
\square既
 intracept electronics N 7118

N7121 VIDEO PATTERN GENERATOR

This Generator, based on the N7118 is designed for the mobile servicing of Colour Monitors and V.D.U.'s. It produces three separate colour output signals at 1 Volt peak to peak into 75 ohms . Also provided is a separate sync. output which may be adjusted for positive or negative-going sync. tips. The Generator may be operated at $625 / 50 \mathrm{~Hz}$ or (by operating a push switch on the rear panel) $525,60 \mathrm{~Hz}$.

The patterns available are colour bars, crosshatch, 8 step grey scale wedge, peak white plus many other combinations i.e., red raster, blue raster, yellow crosshatch etc., as defined by the three (red, green bluel beam switches on the front panel. The generator is powered by an internal Ni-Cad battery and is supplied complete with the Charger/Power Unit.

VIDEO
Generator

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

TOP TWENTY T.V. SPARES

1. Philips G8 LOPTX (genuine Philips)
£7.50
2. Decca 30 Series LOPTX (genuine Decca) $\mathbf{£ 7 . 0 0}$
3. Decca 100 Series LOPTX (genuine Decca) $£ 6.50$
4. ITT CVC $25 / 30 / 32$ LOPTX (genuine ITT) $£ 7.00$
5. Pye 713/725/731 Vis Gain Module $£ 6.50$ (replaces expensive 212-27327)
6. $5 \times$ Universal Aerial Socket Kit
£5.50 (replaces most UK and Continental skts)
7. $10 \times$ BU208
£7.50
8. $10 \times$ BU208A $\mathbf{£ 8 . 5 0}$
9. $10 \times \mathrm{BT} 106$ £8.50
10. Pye $725 / 731$ EHT Tray
£3.00
11. Decca 1730/1830 Doubler
£2.00
12. Decca 80 Series EHT Tray $\mathbf{£ 3 . 0 0}$
13. GEC 2040 (Hybrid) EHT Tray $£ 3.00$
14. Thorn 1500 (3 Stick) EHT Tray $£ 3.00$
15. Thorn 1500 (5 Stick) EHT Tray £3.50
16. Thorn 8000 Doubler $£ 2.00$
17. Thorn 1400 EHT Tray $£ 2.00$
18. Thorn $3000 / 3500$ EHT Tray $£ 4.00$
19. Philips G9 EHT Tray £3.50
20. ITT Universal EHT Tray $£ 5.25$

All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15% VAT and 90 p P \& P
QUICK SAVE T.V. SPARES, Muxton House, Muxton, Telford, Salop.

REG. OFFICE ONLY
CALLERS STRICTLY BY APPOINTMENT UK ONLY

SCARBOROUGH T.V. TRADERS CO. LTD.

Offer you quality Colour T.V. at competitive prices with quantity discounts All major makes available - including: PHILIPS G8 - GEC SOLID STATE BUSH 2 CHIP - PYE 731 - THORN VARICAP (6 Buttons) - DECCA 30 THORN 8000 17" $850019^{\prime \prime}$ etc. Delivery arranged
GENUINE CHANGE OVER SETS SPECIAL OFFERS $£ 100$ BUYS

10 of PYE 205 10 of GEC HYBRID 10 of TELPRO
YOU HAVE TRIED THE REST NOW TRY THE BEST
85, Columbus Ravine, Scarborough,
North Yorkshire YO12 70U. 0723-68087.
1 hour away from A1/A64 Junction.

GET INTOTHE PICTUREWITH...

BEGINNER'S GUIDE TO
TELEVISION - 6TH EDITION
Gordon J King
Revised by E Trundle

Beginner's Guide to Television is an introduction to the techniques and equipment used in modern television broadcasting, recording and reception. The sixth edition has been carefully updated and will prove most valuable to students, technicians and all who need a clear, concise guide to the subject.
0408012153256 pages approx $£ 3.95$

SERVICING MONOCHROME PORTABLE TELEVISION George Wilding

A comprehensive servicing guide covering the operation, fault-finding and repair of a range of popular sets.

0408011432160 pages approx $£ 6.50$ approx

TELEVISION ENGINEERS' POCKET BOOK - 7TH EDITION Malcolm Burrell

A fully revised and updated handbook providing a summary of basic facts, circuit techniques and technical data for everyday reference. Useful to all concerned with, or interested in, the installation and servicing of modern television receivers.
0408004444324 pages $£ 7.95$

ORDER NOW
from your local Bookseller. In case of difficulty send cheque/PO with order to Publicity Department at the address below.

75
PL519-PY500A 75p each All mono valves 35p each. Goods despatched on racaipt of order.
All Prices include VAT at 15\%. P \& P per Ordar 30p. SA.E. for Leafiets. Access Cards.
ELECTRONIC MAILORDER LTD.
62 Bridge St, Ramsbottom, via Bury, Lancs, BLO 9AGWW. Tel Rams (070682) 3036.

M. W. ELECTRICAL

BROOK PARK AVENUE - Off MARINE ROAD - PRESTATYN
"WE DO NOT BOOST TUBES" COLOUR TV's
COMPLETE
£15.00
TRADE WORKERS £25.00 Minimum 10

G-8 DECCA - THORN 3000
(SPARE PANELS \& TUNERS AVAILABLE) REDUCTIONS ON QUANTITY
TEL: PRESTATYN (07456) 89849/89970

PROGRAMME SELECTOR

REPLACES 7 PIANO KEY TYPE AS USED IN DECCA - TELEFUNKEN etc.

DIRECT FIT

NO DRILLING
NO CUTTING
NO MODS
£16

+ VAT
POST FREE
ORDER AS UPB-30-80

UK Redg design No 1006611 (pending).
Allow 28 days for delivery

ALDERSON-JAMES LTD

160 Kings Road, Harrogate, N. Yorks HG1 5JG.
Tel. Harrogate (0423) 60058
MANTEL
MANCHESTERS NUMBER ONE SOURCE IN EX-RENTAL TV'S
SPECIAL COLOUR OFFER

THORN
10 for $\mathbf{£ 1 2 5}$
PHILIPS G8
BUSH
GEC
DECCA
WORKING SETS AVAILABLE - MIN 6
THORN £25 each
PHILIPS £30 each
BUSH £25 each
GEC
DECCA
$\mathbf{£ 2 2}$ each
MONO
$\mathbf{£ 2 5}$ each
£10 each
Many other makes incl. JAP, GRUNDIG etc. Ring for quote. Export enquiries welcome. Ex-equipment Tubes/Panels.
Callers welcome Tel. 061-861 8501
419 BARLOWMOOR ROAD, CHORLTON, MANCHESTER M21 2ER.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.'

REBUILT CATHODE RAY TUBES
C.R.T. SERVICES LTD.

369, Chepstow Road, Newport, Gwent. Tel. Newport (0633) 272005.

Also available from the following stockists:

L. R. Jones,
 Manorbier,
 Nr. Tenby.

Tel. 083-482 630
G.R.T.

Talwryn-y-Bont, Pontrhydfendigaid, Nr. Aberystwyth. Tel. 09745629.

THE NO. 1 SOURCE IN THE SOUTH
GOOD STOCKS OF MODERN COLOUR NOW AVAILABLE BRAND NEW TV, VIDEO AND AUDIO PHONE FOR DETAILS TeleTraders
ST. LEONARDS WAREHOUSE
ST. LEONARDS ROAD, NEWTON ABBOT, DEVON
Telephone: (0626) 60154

HOW DARE THEY!

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd, Brook House, Torrington Place, London WCIE 7HN.

TELEVISION TUBE SHOP LTD

BRAND NEW TLBES AT CUT PRICES

Some Rebuilt Japanese
 8. European Types Available from
 £14.00 +VAT £2.10 Old Bulb required.

9AGP421.82 190AB4/C423.00 $240 \mathrm{DB} 4 / 240 \mathrm{AB} 4 \mathrm{~A} \ldots .22 .00$ CT507 equiv 21.95 310DGB4/DMB4......23.00 310EUB4.................... 19.95 310EYB418.75 310FXB4 17.50 310GNB4A31.00 310HCB4.................... 31.00 340AB4 22.50 340A YB4................... 30.00 340AXB4 $\mathbf{3 0 . 0 0}$ 340RB4/CB4..............26.00 340AHB4 26.00 RIGONDA $6^{\prime \prime}$............ 14.00

COLOUR TUBES

(NEW \& MULLARD/THORN COLOREX)*

12VARP22	. $\mathbf{6 2 . 5 0}$	A56-120X	£54.00
330 AB 22	73.50	A56-410X	64.00
A44-271X	60.00	A56-500X/510X	63.00
A47-342X	61.00)	A63-120X	63.00
A 47-343X	.61.00)	A66-120X	65.00
A $49-191 \mathrm{X}$	53.00)	A66-140X/410X	70.50
A51-161X	70.00)	A66-500X/510X	. 65.00
A51-220X	55.00	A67-120X	65.00
A51-500X/5	.64.50	A67-140X/200X	.69.50
A51-570X	73.00)	A67-150X	75.00

Old Bulb Required for Colourex

ADD 15\% VAT TO ALL THE ABOVE PRICES.
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD
52 BATTERSEA BRIDGE RD., LONDON, SW11.
Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.

N.G.T. COLOUR TUBES

First Independent Rebuilder with

B.S.I. CERTIFICATION

(Certificate No. 004)
2 year guarantee: $\mathbf{4}$ year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band. $19^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
No exchange tube required on delta types.
N.G.T. ELECTRONICS LTD.,
120. SELHURST ROAD, LONDON S.E. 25

Phone:01-771 3535.
20 vears experience in television tube rebuilding. addVAT at 15%

APOLLO
 HIGH TEMPERATURE PUMPED COLOUR TUBES

Fast Mail Order service to any part G.B. Delivery 2-3 days.
Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in vour home $£ 20$ extra. Also PIL types \& Toshiba.

$18^{\prime \prime}$	A47 $-342 \times 343 \times$	$£ 37.00$
$19^{\prime \prime}$	A49 $-120 \times / 192 \times$	$£ 37.00$
$20^{\prime \prime}$	A51-220×/110×	$£ 38.00$
$22^{\prime \prime}$	A56 $-120 \times / 123 \times / 140 \times$	$£ 38.00$
$25^{\prime \prime}$	A63 $-120 \times$	$£ 39.00$
$26 \times$	A66-120×A67-120×/140×/150	$£ 39.00$

$22^{\prime \prime}$ Bush all transistor colour TV's fully serviced $\mathbf{£ 5 9}$ inc delivery or with (new tube guaranteed 2 years) $£ 89$.

Philips Video Spares Available
061799085424 hour answering service. 43 Clarke Cres, Little Hulton, Nr. Manchester M28 6XM.

SMALL ADS

The prepaid rate for classified advertisements is 33p per word (minimum 12 words), box number 60 pextra. Semi-display setting 55.64 per single column centimetre (minimum 2.5 cms) All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SETS \& COMPONENTS

IRELANDS LARGEST TV DISTRIBUTOR

THOUSANDS IN STOCK INCLUDING BUSH 2 IC, PHILIPS G8, ITT, DECCA BRADFORD, GEC AND PYE SOLID STATE, GRUNDIG, JAPANESE etc. COLOUR FROM £10 MONO FROM £1. Delivery can be arranged. SUMMER SPECIAL: LOTS OF 100 DECCA BRADFORDS, PHILIPS G8, ITT AND BUSH 823. ALL SIZES $£ 10$ each.
ALSO DISTRIBUTORS OF NEW TELEVISIONS, VIDEOS, MUSIC CENTRES, (GRUNDIG, HITACHI, GEC etc.)
C.Bs, TELEPHONE EQUIPMENT, AERIALS, + AMPS, TUBES, SPARES etc.

NEW NATIONAL PANASONIC VIDEOS £317 + VAT
 TELETRONICS WHOLESALE,

SESKINORE, OMAGH, CO. TYRONE. TEL: Fintona 841389'(STD 0662)

T.VSPARES, PANELS - AND MANUALS PHILIPS.GRUNDIG
TELEVIEW
01-994 5537
194, Acton Lane, London W.4.

TVDX EQUIPMENT

VHF-UHF convertor. 12 V supply required. Superb DX performance $£ 11.90$. Bandi double notch filter $40 \mathrm{~dB}+$ attenuation, state channel $£ 17.50 .48-88 \mathrm{MHz}$ Mosfet preamp, 25 dB gain, very low noise, mains powered E26.50. Band III model same price. Data now available on 4 GHz satelite equipment. Please send S.A.E
H. COCKS,

Robertsbridge, Sussex TN32 5RY
Tel. 058083.317 Tel. 058083.317.

CASED ISOLATION TRANSFORMERS 500W max suitable TV work. $£ 8.00+£ 2.85$. Good working Test Equipment. P.S.U.'s List. Write S.H.E., 5 St Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

SECOND HAND COLOUR TV Spares and Tubes. Most makes. Telephone Southport (0704) 74411, anytime.

GRUNDIG, NORDEMENDE reconditioned panels. Also complete sets all solid state. 078581464.3
TRIPLERS - PRICES REDUCED Thorn 3000/3500
Thern 9000 Thern 9000 UNIVERSAL £3.65 ${ }^{\mathrm{mon}}$
The UNIVERSAL TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental G.E.C.. I.T.T.. Pye. Rank. Decca \& Continenta «ct. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middlesex

T.V. PANELS

Large stock of C.T.V. Panels available. Fully serviced, 60 days guarantee. Most panels available for the following:

THORN 3K-9K. RBM Z718, A823, T20. DECCA 30, 80, 100. PHILIPS G8. GEC 2110.

Panels/Modules also available for some models of ITT, Sony, Grundig, Nat Pan, SABA, JVC, etc, etc. Ex-equipment and salvaged panels for spares - very cheap!! We also have switches, knobs, tubes, tuners, valves, triplers, smoothers etc., etc. Try us now by phoning: 061-223 0605 or send for list to:

Tel-E-VideO,

Ashford Avenue, Reddish Stockport, Cheshire SK5 6PU

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey. Tel: 01-686 7951/2/3/4
 SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL
 all Colour tubes hot pumped at 385c and rebanded to BRITISH STANDARD. 4151972 CLAUSE 18-2.
 $19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
 BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

 COMPANIES.TELEVISION
Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL UNIONSTREET FACTORS DONCASTER (0302) 49583-68416
 GOOD MOTORWAY ACCESS

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special
T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD.,

Unit 5, Heath Hill Estate.
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.
TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

NEW MULLARD 20" COLOUR TUBES A51-570X

WITH SCANNING ASSEMBLY FITTED AT 1232

£85 + f6p8p
 IMMEDIATE DELIVERY

WEST DEVON ELECTRONICS
15 STATION ROAD, HORRABRIDGE YELVERTON, DEVON PL20 7ST. TEL. YELVERTON (0822) 853434

```
TEST EQUIPMENT
T.V. Pattern Generators.
Crosshatch \& 4 patterns
As above but with Greyscale
Prices include P\&P and VAT. Also available:
PAL COLOUR BAR GENERATOR
CAPACITANCE METER
TRANSISTOR TESTOR
S.A.E. for prices and full details. C. L. JERVIS 15 Mercer Grove
Wolverhampton, WV11 3AN Tel. (0902) 23916.
```


EAST ANGLIA BARRY TV SERVICES

Good quality working colour televisions (from £35 plus VAT) straight from our retail shelves, (with good tubes \& cabinets). Available at all times delivery available anywhere.

Contact John, Dave or Steve on Cambridge 69215 or Ely 61462

Your Satisfaction is Our Concern.

EX EQUIPMENT PANELS. Thorn 2000, 3000, 3500 , 8,500 , RBM A823. Pye 713, Decca 30. Sae list Camber Television Centre, Lydd Road, Camber, Sussex.

JABCO LOPT TESTER

This instrument for detecting shorted turns on Line O.P. Transformers is now used in hundreds of service workshops and manufacturers all round the world. Mains operated. No controls to set up.
Designed around two I.C.s. giving constant stable results with a straightforward indication of the Lopt under test by Red \& Green Lads.
With instruction booklet on testing many common Lopts in deys. £18 overseas post by sea. £21 aimail.

J. B AKER B CO.
 Old Shorehem Road Southurck

 Suspex BN4 4RD. Tol Brighton 593315 Aurtrolatian sogents: Malah Pty, Ltal. 5/37 Byron Street Coogee RLS.W. 2034| Tel: Northwood 27019 | 01-845 2036 |
| :---: | :---: |
| RETACH LTD. Rear 78 High St, Nortimood, Middx | |
| COLOUR SET RANK \& THORN | |
| COLOUR TUBES REBUILT 2 yr guar.from $£ 28$ RANK PANEL (TESTED OK) | |
| | |
| DECODER 1 IC ONLY.....f11 | POWER SUPPLYf6 |
| TIME BASE $\mathbf{1 1}$ | CONVERGENCE..................f6 |
| IF99 | TUNERS 15 |
| All PRICE + VAT | £2 POST \& PACKING |

NETT (NE) LTD
 UNIT 38 BEDESWAY BEDE IND ESTATE, JARROW, TYNE \& WEAR Tel. 0632896197

100s of choice colour \& mono TV's in stock including Bush, Thorn G8, ITT, Decca. Working or untested.

> Please Ring Sam Wilson For quotation soon!

N. W. ELECTRONICS

CLEARANCE SALE
LARGE QUANTITY OF GOOD CLASS

COLOUR TELEVISIONS

BUSH, PYE GEC, THORN, PHILIPS ETC. Excellent Cabinet Condition. Genuine Change Over TVs and Repossessions.

FROM ONLY £15!!! dELIVERY ARRANGED

We export large quantities of TV's weekly. Can we help you? Discount on Quantity Orders.
OVER $\mathbf{1 , 0 0 0}$ MONO TV's IN STOCK FROM £5
100 's colour tubes suitable for reconditioning. Working colour TV's to order, i.e. Bush 20"/22" 2 I.C. excellent picture, ready to sell. Only $£ 39$.

CALLAVD SEE OUR SELECTION

WHITE GOODS

All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Autos, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock.
Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details PAY US A VISIT YOU WILL NOT BE DISAPPOINTED

N. W. ELECTRONICS

BOLINGBROKE BUILDINGS, BOLINGBROKE STREET, BRADFORD 5. 3 minutes from Motorways. Telephone 0274390121

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
TEL: 0329-235116

CAMPBELL ELECTRONICS LTD.
COLOURT.V.PANELEXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.

CAMPBELL ELECTRONICS LTD. Unit 5. Heath Hill Estate. Dawley. Telford, Shropshire.

SETS \& COMPONENTS CONTINUED

G8 WORIKING PANELS

TELE-Q, Lutwidge Ave., Deepdale, Preston.

Rank, Bush, Murphy

 TV PanelsRepair/Exchange Service With 3 Months Guarante
Also On The Spot Repair To BUSH TV's Brought in T.K. Panels Service,

31 Leaves Spring Stevenage, Herts Tel: (0438) 61567.

PROFESSIONAL STICK
DE-GAUSSING-COILS
$£ 18$ EACH INCLUSNE \& DELINERED
1 Year Guarantee.
U.View (Tubes)

29 Warmsworth Road, DONCASTER,
Yorkshire DN4 ORP. Tei: (0302) 855017.

SERVICE SHEETS

Thousands of different full size service sheets Thousands of different manuals of all kinds in stock. (Many of above are unigue to us and obtainable nowhere else.) Any published single service sheet still only $£ 1+$ s.a.e. Brish CTV circuit/layouts from dual to latest from Dacca, G.E.C., ITT, Philips, Pye, Rank, Thorn, atc. Continually updated - 3 giant binders only $£ 39.50$ - latest update includes Thorn 9200 to 9800 Revised foreígn C.T.V. Repair System in 2 huge binders plus 3 Repair Manuals for $£ 39.50$.
om Grundig, Hitachi, Korting. Kuba, Luxor, Mitsubishi, National P., Nordmende, Sharp, Skantic, Toshiba, Zanussi. Contains chassis from Grundig. Hitachi, Korting, Kuba, Lux ${ }^{\prime}$, for
Save $\mathbf{£ 6 . 5 0}$ on complete set of $\mathbf{1 1}$ unique fV repair manuals - only $\mathbf{£ 6 0}$. Mono + colour from dual standards to recent sets, McCourt \& Tunbridge Thousands of different full size service sheets Thousands of different manuals of all kinds in stock. $£ \mathbf{Z}$ for catalogues with $\mathbf{£ 4}$ vouchers. L.S.A.E. brings free 50p, magazine, any quotations, details of unique T.V. publications and bargain offers.

Phone: 0698 883334, anytime. Callers $4-6 \mathrm{pm}$. weekdays, Saturdays $11 \mathrm{am} .-1 \mathrm{pm}$ only.

> G.T. T.

76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

30,000 SERVICE SHEETS IN STOCK. COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios, $\mathbf{£ 2 . 0 0}$. Tuners $\mathbf{£ 2 . 0 0}$. Tape Recorders, Record Players $\mathbf{£ 2 . 0 0}$. Transistors, Stereograms \& Music Centres $£ \mathbf{2 . 0 0}+$ SAE. Also Colour Available. Car Radios $\mathbf{£ 3 . 0 0}+$ SAE. All Radiograms $\mathbf{£ 2 . 0 0}$. State if Circuit will do if sheets are not in stock. All'TV Sheets are full-length 24×12, not in Bits \& Pieces. All other Data full-lengths.
All Sheets $£ 2.00$ except Colour. Old Valve Radios
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 01-458 4882 MAIL ORDER

SANDHURST PUBLICATIONS

Television Service Sheet Specialists
Workshop Manuals, large selection of Japanese and European TV Sheets. Callers 5.30-7.00 pm, Upper Floor. Send S.A.E. for Catalogue and Enquiries:

49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.

SERVICES

SERVICE ENGINEER AVAILABLE for contract work in London. Own w/shop, equipment and transport. 01-521 8914.

PERSONAL

REQUIRED. Part time or Freelance Engineer. 021-7738181.

NEWLY ESTABLISHED video showroom requires part-time or free-lance colour video service engineer, with own workshop or equipment. Phone Mr Shaw, Windsor 67774.

WANTED

EMI CABLE TV, valve ALC bias unit for use on RE703, any condition, also any 700 series info. 87 Bath Street, Abingdon, Oxon. 023520005

COLOUR T.V's PORTABLE (or small screen) any quantity, new/secondhand (worker/non-worker). Tel: (0203) 714213.

WANTED Privately $26^{\prime \prime}$ Teletext T.V.. preferably Thorn or Phillips, but other makes considered. Cash waiting, might collect. Telephone (0608) 3050 day, (0993) 841999 evenings.

WANTED. Television magazines, before October 1977. North Walsham 404552.
 free).

T.I.S.T.

76 CHURCH ST., LARKHALL

BaCK NUMBERS P.E., Television May ' 80 August '82. A CRAIG, 27 Dans Road, Ballymena, N.I. BT43 SEB. 'Tel: 42949.

TELEVISION, January 1970-October 1981. 10 missing. 2 incomplete. Offers, 0272-557076.

COLOUR T.V.'s. Good working, $£ 25$ each, any quantity. Most makes, sizes available. Tel: Coventry (0203) 714213.

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 682674.

BOOKS \& PUBLICATIONS

VCR REPAIRS MADE EASY

Comprehensive repair data with all circuits, layouts, modifications for any early model from AKAI (7100/9300), Baird (), Ferguson 3292, JVC (), Thorn (3V00/3V01/3V16/3V22/3V23) and others using same format (for only $\mathbf{£ 8 . 5 0}$ each). Comprehensive VCR Circuit Diagrams/Layouts, etc. collections - Volume 1 in hardwearing $17^{\prime \prime} \times 12^{\prime \prime}$ binder covering the early Philips and VHS types (for only £15 post

Set of 4 Repair Manuals to match above collection $\mathbf{£ 8 . 5 0}$ Most VCR Service Manuals by return.
Repair data with circuits almost any named TV £8.50.
L.S.A.E. for tree $50 p$ magazine/quotes etc.

LANARKSHIRE ML9 1HG. PHONE 0698883334.

FOR SALE

REGUNNED A1 TUBES 22" $£ 25.00$. Mono $£ 11$ - Sub $£ 11.00$ PIL in stock. Ring first 021-773 8181, 772-1573 seven days till 8 pm .

CLEARANCE OF ENGINEERS repair stock spares, manuals, sets. Job lot sale preferred. Tel. Guisborough (0287) 23548.

TV TUBE Process and Pumping equipment for sale. In very good condition. Phone 026459053 during working hours.

For a good selection of used TV sets in good cabinets

* Large stock of working sets. * U.K. Delivery Service * Stands, Aerials, Tubes and Panels.

is now in business at
UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel: Hartlebury 250161 Telex: 334155 MTV G

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

COURSES

CONQUER THE CHIP \therefore. Master modern electronics the practical way by seeing and doing in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C4, Reading, Berks RG1 1BR

FULL-TIME AND EVENING COURSES IN

- Microprocessor Computers
- Video Cassette Recorders
- Colour TV.

Diploma - Higher Diploma or City and Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 15th Sept 1982 and 19th Jan 1983

EDUCATIONAL

TELEVISION COMPUTER RADIOCOMMUNICATIONS \& RADAR SERVICING

2雬 YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES (1st)
- ELECTRONIC PRINCIPLES (2nd)
- MONOCHROME TV
- COLOUR TV, CCTV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics \& Communication Enginearing on completion of the full course.
Next session starts September 13th.
Prospectus from:
LONDON ELECTRONICS COLLEGE

Dept: PP, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

"TUBE REPLACEMENTS" OFFER
 SPECIAL TRIAL PRICES

"WELIVIEW" EXCHANGE COLOUR
A44-271X
£24
A47-342X £24
A47-343X
A49-120X
A51-110X $£ 26$ 224

A51-110LF $£ 26$
A55-14X $£ 28$
A56-120X £28
A63-120X $£ 33$
A66-120X £33
A66-140X
£33
A67-120X
A67-150X
If no exchange glass $£ 4$ extra
"WELLVIEW" EXCHANGE MONO
A44-120 WR
A47.26 WR £12
A50-120 WR £11
A59-120 WR $\mathbf{£ 1 2 . 5 0}$
A61-120 WR $£ 13.50$
A31-30
A 34-100-510 NEW
If no exchange glass $£ 1$ extra All above plus VAT @ 15\%. Carriage $£ 5.00$ inc. VAT.
ALL TUBES 18 MONTHS GUARANTEE

COLOUR SETS
Complete G8's and Pye CT200's $£ 25+$ VAT.
Others from $£ 10$.
ALSO YOUR VALVE SUPPLIER NEW AND BOXED (inclusive of VAT)

DY802 $=74 \mathrm{p}$	$\mathrm{ECC} 8 \mathrm{I}=64 \mathrm{p}$	EF $183=78 \mathrm{p}$
EF $184=64 \mathrm{p}$	ECC8 ${ }^{\text {= }}$ 64p	PCF802=98p
$\mathrm{PCL} 82=78 \mathrm{p}$	PCL84 $=92 \mathrm{p}$	PCL805=97p
PFL200-£1.15	PCL86=97p	PL504 $=11.38$
PY $800=70 \mathrm{p}$	PL51) $8=£ 1.92$	$\begin{aligned} & \text { PY } 88=70 p \\ & \text { PY } 500 A=£ 1.52 \end{aligned}$

Mullard PL509-19 $£ 5$ inc. VAT

Postage and Packing 10 p per valve. All orders over $£ 10$ Free of charge.

Camping - Self sufficiency - Emergencies Be prepared!
Fantastic 200 watt square wave inverter $12 v$ input $200-240 \mathrm{v}$ AC output tested but no guarantee $£ \mathbf{~} \mathbf{2 0}$ + £3 VAT, p\&p£3.

24 y transistor fluorescent ballast units will run $2 \times 4 \mathrm{ft}$ tubes and draw under 2 amps (Philips) 5 each + 75p VAT, p\&p 70.
Dynamo torches complete with spare bulb. You need never buy torch batteries again. 2 for $\mathbf{£ 5}$ inc. VAT, p\&p 50p.

Allow up to 14 days for delivery.
TUBE REPLACEMENTS
Unit No. 1, Monmouth St., Bridgwater, Somerset.
Tel. 0278 425690-722816

1982 PRICE LIST

 DISPLAY ELECTRONICS
GOLD LABEL COLOUR TUBES

2 Year guarantee
90° up to $19^{\prime \prime}$. $£ 33$
90° up to $22^{\prime \prime} . ~ £ 36 ~$
90° up to $26^{\prime \prime}$...................................... $£ 39$
The above prices are for standard 38 mm Delta Gun Types.
Add $£ 2$ Gun surcharge for 20AX Types Other in-line \& P.I.L. Types, prices on application.

GOLD LABEL MONO TUBES
2 YEAR GUARANTEE
$19^{\prime \prime} / 20^{\prime \prime}$
$23^{\prime \prime} \mid 24^{\prime \prime} . ~$

GREEN LABEL COLOUR TUBES

12 MONTHS GUARANTEE

 90° up to $26^{\prime \prime}$...................................... $£ 34$

Green Label Prices apply only to standard 38 mm Delta Gun Types. They will be of particular interest to customers refurbishing ex-rental sets.

BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect Take $2 \mathrm{C} \%$ discount. The mix can include Green Label Tubes if required.

PRICES EXCLUDE V.A.T.

CALLERS WELCOME

Late night Thursdays until 8 p.m. Saturdays until Midday
N.B. Customers intending to collect orders ase requested to telephone in advance:- even popular types may be out of stack for short periods

UNIT 1 SWAN WHARF WATERLOO ROAD UXBRIDGE MIDDLESEX
Telephone: UXBRIDGE 55800

NEW PHILIPS Infra-red Transmitter. 9 c.h. \& Vol \& brightness change	$\begin{aligned} & \text { Thorn } 3500 \text { I.F. Panel. } \\ & \text { NEW } \end{aligned}$	DL 20A			$£ 1.00$			
		8 Core Screen	le R.S.	35p p	metre			
THORN Front Panels, 6 slider pots \& knobs \& touch button. Ultrasonic transductor \& I.C. \& components \& Mains Suitch $\{3.75$	Thorn Tuner Panel. $6 \cdot 100 \mathrm{~K}$ Pots \& Components. NEW. NO 	Line O/P Transformer						
		ITT CVC9			£7.00			
	GEC Line O/P Trans \& Rec Stick for Portable	AT2076/38 ITT CVC40 Split Diode			£10.00			
(BECC2110Line ()PTransformer		Philips G8 Line O/P			£7.00			
	RANK TOSHIBA	Philips G11 Split Diode			£ 12.00			
$\begin{array}{llll}\text { ZTX 109K } & \text { 3p } & \text { BC548 } & \text { 4p } \\ \text { BC307 } & \text { 3p } & \text { TIP29 } & \mathbf{1 0 p}\end{array}$	Tube Base 25p	ITT CVC32 Chassis			£ 30.00			
BC147 4 dp SN76550/3R	LPI162 O/PSTAGE 75p	$\begin{aligned} & \text { IT PAN PAN } \\ & \text { CMA10 } \\ & \text { CMU40 } \\ & \text { CMN } 40 \\ & \text { CMC67 } \\ & \text { CMH31 } \\ & \text { CMS } 30 \end{aligned}$	£2.00	IF PANEL CVC4()-45	£5.00			
BC148								
BC338 $\mathbf{4 p}$ BFT34 $\mathbf{1 0 p}$ BC237 $\mathbf{3 p}$ IR106A $\mathbf{2 0 p}$			$\mathbf{8 7 . 0 0}$	CMF40	£2.00			
3p IR106A 20p	Y933 $\mathbf{5 p}$ 1N914 BA248 $\mathbf{5 p}$		$\mathbf{1 . 0 0}$ $\mathbf{8} 3.75$	CMU30	$£ 7.00$			
DECCA 80-100 Thyristors 35p			£1.50	CMU45	$£ 1.50$			
TDA1003 15p				CMA40	$£ 1.50$			
TBA540 TDA2540 $\mathbf{4 0 p}$ 10 p	Gll PowerSupplies $£ 12$	DIODE MR856						
TDA2560 50p	REC \& TRANS EACH			CMA11	£2.0			
TBAS400 SN76660	4)K Transducer 50 p	BF470	30p	MC78M18	20p			
TBA800 30p	TIC 12612 A 800 V BPW41	$\begin{aligned} & \text { BF757 } \\ & \text { ZTX213 } \end{aligned}$	$\begin{array}{r} 30 \mathrm{p} \\ 4 \mathrm{p} \end{array}$	$\begin{aligned} & \text { SL } 432 \mathrm{~A} / \mathrm{T} \\ & \text { CA } 3094 \mathrm{AE} \end{aligned}$	20p75p50p			
SN76707 50p								
TBA810 30p		Infra Red Hand Set KT3			£18.00			
CVC 45 Line O.P. Trans ${ }^{\text {¢ }}$	PHILIPS NE511N $£ 1.20$	BD4.37 and BD438 on Heat Sink			30p			
CVC 45 Triplers $\mathbf{£ 3 . 5 0}$	GEC 2040 Line OP Transformer $\mathbf{£ 5 . 0 0}$				50 p			
$\mathbf{3 5 0 0}$ Triplers $\quad \mathbf{£ 3 . 5 0}$		International Rectifier EHT Diodes G770/HV34 6KV			for 8p			
KT3AE Sockets $\quad 25 p$	L.D57 CA Infrared L.E.D. 15p	6A/600V Stuad Diodes2App20000 $/ 1000 \mathrm{Stud}$ Diodes$\mathbf{2 0 p}$		EHT Rectifier wire-ends 16 Kv	10p			
Gll Tuner Units $\mathbf{x 6 . 0 0}$	SAA5010 ${ }^{\text {2 }}$							
Gll 6 Button Key Switch $£ 2.00$	BD131 10 off $£ 1.50$	Bridge Rec kiblo2 4 Amp		5p 25 A473 PNP O/P	10p			
GIIE/W Coil $\mathbf{5 0 p}$	BD136 10 off $£ 1.25$	10 BU126 $\mathbf{8 6 . 0 0}$ BF363 10 BU208A $\mathbf{8 8 . 0 0}$ BF362 $\mathbf{2 0}$ BU204 $\mathbf{8 8 . 0 0}$ BF480 10 BU205 $\mathbf{8 8 . 0 0}$ BU322 10 BU105 $\mathbf{8 8 . 0 0}$ BU52			15p			
Gll E/W Transformer 50p	BD226 20p				15p			
GII Line OSE Tran. 50p	BD239 10 off£1.50				50p			
G11.47/250 10p	BUX84 50p				75p			
Gll $8200 \mathrm{pF} / 2000 \mathrm{~V} \quad 15 \mathrm{p}$	LM337M Reg. 30p				£4.00			
G1111000/1500V 15p	PYE Line O.P. Trans Mono $\mathbf{~} 3.00$	DECCA 100 Tripler			15p			
$\begin{aligned} & \text { G11 Transient Suppressors } \\ & 245 \mathrm{~V} \end{aligned}$		BSX 19-20						
	BY229/400 30p	20 Large Red LED $\mathbf{£ 1 . 0 0}$ 20 Small Red LED $\mathbf{£ 1 . 0 0}$		4000 Tube Base Print				
Gl1 Scan Coils $\quad \mathbf{8 5 . 0 0}$				Board \& Pots	£4.00			
KT3 AE Sockets $\quad 25$ p	G116 Push Buttons Switch £1.00p	RANK \& IT7 Mains Remote On-Off Switch (720R)			¢1.50			
Gll Mains On/Off Switch 40p	BYX72/300 20p	Mains-dropper PYE 3R5+15R+45R			50p			
ELCl043/05 NEW on Panel $\mathbf{~} 4.00$	2SD180 TO380V.6A 15p	Thyristor $600 \mathrm{~V} / 4 \mathrm{amp} \mathrm{Cl} 06 \mathrm{M} / 2$			24p			
20 BY2983 Amp fast recovery diodes $£ 1.50$	2 SB407 Sanyo TO3 10p	9500 THORN Tripler			£4.50			
4000) Thorn Frame Panel $\mathbf{£ 5 . 0 0}$	Thorn T605 IV NPN TO66 80 V 6 A	Gl1 Preh Red LED Push Button for C.H. Change			20p			
4000 Thorn Power Supply $\mathbf{£ 3 . 0 0}$	50 Mixed High Voltage Ceramic Condenser $\quad \mathbf{1 . 0 0}$	THORN $3500175+100+100.350 \mathrm{~V}$			£2.00			
4000 Thorn Line OPPanel$\mathbf{~} \mathbf{2 0 . 0 0}$		2 SC 2073 on Heat Sink 150 NPN 1.5 Amps			7 p			
	20 GEC Black Spark Gaps $£ 1.00$							
Post £4. 15" T.V. Tube Hitachi; New £6.00	Mono Rank Line Trans T704 A	RANK TOSHIBA Transductors TPC-2011			50p			
NPN PNP 80V 6 Amp TO66 O.P. Trans Piar		Ultrasonic Gll Hand Set			£12.00			
	4000 Thorn Mains Dropper 35p	Remote unit THORN 11 I.C. MAINS Transformer Relay \& 5 volt Reg \& Component Unit $£ 1.00$ (post $£ 1.50$)						
GEC IC CBFI 6848, SN 16861,SN168250peach	20) I.C. Socket Mixed f1							
	G11Line DriverTransformer							
Mixed Packs, Mounting Kits and Washers for Power Transistor		COMPONENT D. Whitworth, 63 Bishopsteignton, Shoeburyness, Essex SS3 8AF. Telephone: 070232992 VAT 15\%, 50p Post. Goads despatched on receipt of order.						
	2 SD350A BU208A £1							
DECCA 1.F.80-100 $£ 3.50$	G11 IF Detector $\quad \mathbf{£ 3 . 0 0}$							
BRIDGE REC Wire leads KBP()4	G11 Teletext $\mathbf{£ 3 . 0 0}$ Transmitter $\mathbf{1 9 . 0 0}$							
Gll Time Base Panel $\mathbf{\$ 1 2 . 0 0}$	Gl1 Chrome/Lumin Can $£ 3.00$							
A.E.C. V/cap Resistor Unit U.H.F. with I.C.SAS 660 SAS 670	KT3 LOPT $£ 3$							
	BG200/43 Tripler $\mathbf{8 3}$							
KT3200 $25 \times 25385 \mathrm{v}$ ¢ fl	BU208A £1							
BF458 10 for $£ 1$	RCA CA270 40p							
Thorn 3500 Frame Panel $£ 1.50$	KT3 2SD 200 Line Transistord2							
Thorn 900 Sound O.P. Panel. NEW $£ 1.00$	V.H.F. 3 Transistor Rotary Tuner Units D.X.T/V £ÍNEW							
U321 T/Unit on Panel Cum 40 $\mathbf{5 6 . 0 0}$	ITT CVC 32 Line O.P. Trans $\mathbf{~} 6.50$							

INTEGRATED CIRCUITS		SN29848	50p	BD131	30 p	BY298 10p	with Heatsink T9038v ${ }^{\text {9 }}$	
CA270CE	50p	SN7472N	20p	BD132	30 p	BY299 10p		
CA270CW	50 p	SN75108AN	£1.00	BD135	30p.	BYF3123 40p	SW150 Surface Wave Colour	
CA30890	50p	SN76001	£1.00	BD136	30p	BYF3126 40p	TV Filter	
MC1327	£1.00	SN76003**	£1.00	BD207	30p	BYX55/350 10p	TiC 126N Thyristor	
MC1349	50p	SN76013**	¢1.50	BC221	20p	BYX38/600 50p	800v/12A 50 p	
MC1352	£1.00	${ }_{\text {SN76023 }}{ }^{\text {SN76115 }}$	E1.50 50	BD228	25p	BYX38/300	Mullard Surface Wave Filter RW154 Colour T/V Filter 60 p	
MC1358	£1.00	SN76115 SN76131	${ }^{50 \mathrm{p}}$	BD238	20p	BYX71/350 20p		
MC14066BCP	81.00	SN76131	50 p $\mathbf{f 1 . 0 0}$	BD239	12p	BYX71/600 30p		
MC14069	81.00	SN76226 SN76227	£1.00	BD331	20p	BYX72/300 20p	7 Seg Display, Led, Red 50p	
MEM4956PT	¢1.00	SN76227 SN76530P	60p	BD332	20p	2N2222 7p	LM340T12 Reg 25p	
M102485	¢1.00	SN76532	50p	BD253B	35p	2N3055 40p	1800/4KV 5 - 5	
MCM2114	£1.00 ¢ 4.00	SN76533	f1.00	BD416	25p	2N4444 \quad \&1.00	4.7NF/5KV 10p	
SAA1020 SAA 1021	E4.00	SN76544N	¢1.00	BD595	35p	2SN30A 7p	180/8KV - 10p ${ }^{\text { }}$	
SAA1024	12.50	SN76546	£1.00	BD596	35p	TIP29C/A ${ }^{\text {a }}$ 20p	210PF/8KV 10p	
SAA1025	£2.50	TBA480Q	$£ 1.00$	BD681	25p	TIP31A/B 25p	270PF/8KV 10p	
SA1130	£2.50	SN76650	50 p	BD807	20p	TIP32 20p	330PF/8KV 10p	
SAA5000	1.50	SN76660	50p	BD534	20p	TIP33B 50 p	1000PF/10KV 10p	
SAA5040	$£ 2.50$	SN76620AN	50 p	BF127	20p	TIP34 50p	1200PF/12KV 10p	
SAS560	11.00	SN76666 SN76707N	50p	BF137	20p	T1P35 50p	ITT SPARE PANELS CVC9 Power Supply	
SAS570	1.1 .00	SN76707N SN76708N	$75 p$ $75 p$	BF157	20p	TIP36 50p		
SL901	£3.50	SN76708N	$75 p$ c	BF180	20p	TIP41 30p		
SL918-SL917 MOD	$£ 2.50$	TBA820	£1.00	BF181	20p	TIP42 30p	Board $\quad \mathbf{1 1 . 5 0}$	
TAA320A	50	ML237B	¢1.50 ¢1.50	BF182	20p	TIP100 30p	DECODER PANEL ITT CVC20-25 30-32-40 £7.50	
TAA470	¢1.50	ML238	¢1.50 £ 3.50	BF185	20p	TIP130 30p		
TAA550 SAA570	25p $\mathbf{£ 1 . 0 0}$	${ }_{\text {M }}{ }^{\text {BTT } 2322}$	£3.50 £1.00	BF195	7 p	T1P2955S 40p		
SAA570 TAA700	£1.00 $\mathbf{8 1 . 0 0}$	BTT6018-ML237B	$\underline{81.50}$	BF198	7 p	IN60 3p		
TAA700 TBA120A	11.00 $40 p$	BTT8124	£1.00	BF199	7 p	Y716 20p	Audio Amp Driver Mod £1.50	
TBA120AS	40p	В'ГT8224	£1.00	BF200)	20p	Y827 30p	ITT Control Panel 5 Sliders	
TBA120SA	40p	SAS660	$£ 1.00$	BF240	7 p	BYW56 2A/1000v 8p	and Mains Lead $\quad \mathbf{1 1 . 5 0}$	
TBA120B	40p	SAS670	$£ 1.00$	BF245	7 p	BYV95 8p	ITT 3 Sliders Control	
TBA120SB	40p	TDA2522	$£ 1.00$	BF263P	15p	BYV96D 10p	Panel $\quad \mathbf{£ 3 . 5 0}$	
TBA120U	40p	UA783P3C	40 p	BF264	15p		2SC1030 \quad £1.00	
TBA120C	40p	UPC 1365C	50p	BF273	7 p	MIXED PACKS	BF858 ${ }^{\text {a }}$ - ${ }^{\text {p }}$	
TBA1441-TBA440	£1.00	EQV TBA810	40p	BF274	7 p	20 Convergence Pots $\quad \mathbf{8 0 p}$	TDA1010 $\quad \mathbf{£ 1 . 0 0}$	
TBA231	75p	SEMICONDUCTORS			$\begin{aligned} & 24 \mathrm{p} \\ & 24 \mathrm{p} \end{aligned}$	100 Mixed Sticks $\quad \mathbf{1 1 . 0 0}$	TA7607 $£ 1.00$	
TBA395	50p	AC128	25p	BF338		10 Thermisters $\quad 50 \mathrm{p}$	TA7609 $\quad \mathbf{£ 1 . 0 0}$	
TBA396	75p	AC153K	25p	BF458	12p	20 Slider Pots $\mathbf{1 1 . 0 0}$	TA7315 $\quad \mathbf{8 1 . 0 0}$	
TBA440	£1.00	AC176K	25p	BFR79	15p	30 Presets 50p	TDA2653 $\quad \mathbf{8 1 . 0 0}$	
TBA440G TBA510	¢ 1.00 $\mathbf{£ 1 . 0 0}$	AF139	25p	BFT43	25p	40 Pots \quad ¢1.50	TDA2560 $\quad \mathbf{8 1 . 0 0}$	
TBA520	£1.00	AF239	25p	BFY50	15p	300 Condensors $\quad 11.50$	TDA7315 \quad £1.00	
TBA530	£1.00	AU113	£1.20	BFY90	20p	300 Resistors $\quad \mathbf{1 1 . 5 0}$	Delay Lines TAU80 $\quad \mathbf{£ 1 . 0 0}$	
TBA540	£1.00	BA159	7 p	BR100	25p	150 Electrolytics $\quad \mathbf{£ 2 . 0 0}$	TAU80 $\quad \mathbf{8 1 . 0 0}$	
TBA5500	£1.00	BA182	7 p	${ }^{\text {BSX } 20}$ BT100A	$7 p$ 30 p	15 Bulbs 40 p	DL50 - $\quad \mathbf{1 1 . 0 0}$	
TBA560CQ	£1.00	BA248	7 p	BT100A	${ }_{\mathbf{c}}^{\mathbf{3 0 p}}$	100 Diodes $\quad \mathbf{8 1 . 0 0}$	DL70 $\quad \mathrm{£1.00}$	
TBA560C	£1.00	BB103	7 p	BT106	£1.00	100 Fuses $\quad \mathbf{8 2 . 0 0}$		
TBA570	£1.00	BB105	7 p	BT109	£1.00	100 W/WRes $\quad \mathbf{1 1 . 5 0}$	DL600 $£ 1.00$	
TBA673	81.00	BC107	7 p	BT138/10A	70p	300 Carton Film Res $\quad \mathbf{8 1 . 5 0}$	DL700 $\quad \mathbf{8 1 . 0 0}$	
TBA720A	£1.00	BC108	7 p	BT151/800R	70p	20 Slider Knobs 70p	3.15 AS Fuses 5 5p	
TBA750	£1.00	BC109	7 p	BTY80	20p	8 Mixed Gun Switches $\quad 50 \mathrm{p}$	$\begin{aligned} & \text { G11 Teletex Panel No. } \\ & 3113-267-1597 \quad £ 30.00 \end{aligned}$	
TBA800	40p	BC139	7 p	BU105/104	80 p	201/C Holders $\quad \mathbf{8 1 . 2 0}$		
TBA810S	70p	BC147	7 p	BU108	81.00	Red Green L.E.D. - $\mathbf{1 1 . 0 0}$	THORN R1039 \quad 50p	
TBA820	£1.00	BC148	7 p	BU124	50p		THORN R1038 50p	
TBA890	£1.00 $\mathbf{1} 1.00$	BC149	7 p	BU126	$80 p$	DIODE	FE04/1/220/4 3 pin ITT 1 MFD 4 Amp Mains Filters	
TBA920Q	£1.00	${ }^{\text {BC154 }}$	7 p	BU137 BU204	50p	1 Amp 1600v $\mathrm{v}^{\text {d }}$ (7 p		
TDA2541	£1.00	BC157	7 p	BU204	50p	3 Amp 100v 7 p	25p	
TBA950	£1.00	BC158	7 p	BU208		3 Amp 1200v 10p	G11 Philips $0.91 \mathrm{M} / 210 \mathrm{v}$ Scan	
TBA9900	£1.00	${ }^{\text {BC171 }}$	7 p	BU208A	$60 p$ $\mathbf{8 1 . 0 0}$	MR8563 ampdiodes 10p	Coil Correction 25 p	
TCA270	$\underline{1.00}$	${ }^{\text {BC173 }}$	7p	${ }^{\text {BU }}$ B407 408	¢1.00 $\mathbf{5 0 p}$	W004 Bridge 15p	Pots $10 \mathrm{~K} \Omega$ with switch $\mathbf{2 5 p}$ Pots $47 \mathrm{~K} \Omega$ with switch $\mathbf{2 5 p}$	
TCA270Q	$\underline{1.00}$	BC174	7 p		50p	W005 Bridge 20p		
TCA4500A	£1.00	BC182L	7 p	BU426V	50p	-		
TCA640	11.00	BC183	7 p	BU526	£1.00	SENDZ COMPONENTS 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX, SS38AF Reg. Office Only. Callers by appointment only. Add 15\% VAT and 50p postage. All items subject to availability. Add postage for all overseas parcels. Goods despatched on receipt of order.		
TCA650	£1.00	BC207	7 p	CA3089	50p			
TCA660	£1.00	BC212	7p	R2008B	£1.00			
TCA740	¢1.00	BC213	7 p	R2010B	81.00			
TCA800	£1.00	BC237	7p	E1222	20p			
TCA830S	£1.00	BC238	7p	BDX32	£1.00			
TCEP100	£2.25	BC245	7 p	OA90	7 p			
TDA1003 TDA1170	£1.00	BC250	7 p	MJE5IT	25p			
TDA1190	£1.00	BC251	7p	MJE2801	30p			
TDA1327A	£1.00	BC252	${ }^{7 p}$	BY127 ${ }^{\text {BY133 }} 1600 \mathrm{~V} / 1$ Amp	10p			
TDA1412	30p	BC257	30p	BY134	10 p 10 p			
TDA2010	£1.00	BC300 BC303	30 p 30 p	BY176 Type	25p			
TDA2540	E1.00 80 p $\mathbf{8 0}$	BC307	30 $7 p$	BY179	35p			
TDA2541	£1.00	BC308	7p	BY184	25p			
TDA2590	£1.00	BC327	7p	BY187	10p			
TDA2560	50p ¢ 275	BC337	7 p	BY190 BY206	40p			
TD A2653	£1.00	BC338 BC350	$7 p$ 70 $20 p$	Fast Recovery	8 p			
TDA2002	£1.00	BC365	10p	600 Volt 3 A	10p			
TDA2640	80p ¢1.00	BC413	7 p	DIODE 2AM 600/8				
TDA2680	$£ 1.00$ $£ 1.00$	BC454	7p	BY164	30 p			
TDA2593	f1.00	BC460	25p	RGP30G	${ }^{10 p}$			
TDA3190	¢1.00	BC462 BC463	7 p	BY2101400	5p			
TDA3500	£2.00	BC463 BC546	$7 p$ $7 p$	BY210/800 BY223	10p			
SN168ZAN SN16964AN	£1.00 $\mathbf{5 0 p}$ cher	BC547 BC548	$7 p$ $7 p$	BY226	15p 10p			
SN29764	£1.00	BC559	7 p	BY255	10p			
SN297728N	50p	BD130Y	25p	BY296	10p			

[^0]: Goods available if in stock immediately over shop counter (Mail order between 3 days and 2 weeks

[^1]: Published on approximately the 22 nd of each month by IPC Magazines Limited, King's Reach Tower Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems. 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas £11 per annum payable to IPC Services, Oaktield House, Perrymount Road, Haywards Heath, Sussex."Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affized to or as part of any publication or advertising, literary or pictorial matter whatsoever.

