TELEEUISION

 SERMENGYIDEDGUSTRUGIDNDEVELDPMENS
TV REGEPMON AT M6. GHz LOPP HBAMEPLANT HESTS OU TUIE GII GIISSEIS FCULT REPORT जaimalic rai sailo showans

PHD COMPONENTS
RADIO \& TV COMPONENT DISTRIBUTORS
UNIT 7 CENTENARY ESTATE
JEFFRIES RD ENFIELD MIDDX
SHOP NOW OPEN TELEX 261295

SEMICONDUCTOR		$\begin{aligned} & \text { AU113 } \\ & \text { AL. } 103 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { BF273 } \\ & \text { BF274 } \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.25 \end{aligned}$	$\begin{array}{ll}\text { TBA3960 } & 200 \\ \text { TDA440 } & 2.50 \\ \text { SN7030 }\end{array}$			
		EHT MULTIPLIERS							
AA116	0.16		AY102	300	BF336	0.50	SN76301N 1.50	TCE950 Doubler TCE950/1400 Tripler	2.00 5.04
AA117	0.16	BC107	0.20	${ }_{\text {BF }} \mathrm{B} 337$	050	TBA520 2.00 SA120S	TCE950/ ${ }_{\text {TCE }} 1400$ (Piped Stipler System Oniv)	456	
AA119	0.16	${ }^{\text {BC }} 108$	0.20	${ }_{\text {BF }} \mathrm{BF} 338$	0.50	TBA120S $\quad 1.00$	TCEE 1500 Doubler	4.16	
0491	0.12	${ }^{8 C 109}$	0.20	BF355 BF458	0.80 100	TBA396 2000	TCEE 1500 Tripler	4.16	
OA202	0.18	BC114	0.15	BF459	1.00	TDA2.330 8.00	DECCA CS 1730/1830 Doubler	423	
BA100	0.18	${ }^{\text {BCO } 15}$	0.20	$\mathrm{BFT43}^{\text {BFx }}$	0.50	TDA2140 6.00	DECCA CS 1910/2213 Tripler	6.67	
BA102 BA130	0.10 0.15	BC116 BC1 cli	020 0.20	CFX29	0.50 0.50	$\begin{array}{ll}\text { TDA2150 } & 600 \\ \text { TDA2160 } & 6.00\end{array}$	DECCA 30 Senes Tripler	6.01	
BA154	010	8 C 118	0.20	BFY88	0.50	TDA1230 300	DECCA 80 Series Tripler	6.43	
BA 155	0.20	BC119	0.50	BFX89	0.50	TDA3089 200	DECCA 100 Series Tripler	6.68 6.43	
84164	0.12	BC125	020	BFY50	0.50	TDA1054M 2.00	GEC 21110 Tripler Pre JAN77	7.21	
BAX13	016	8C126	0.20	${ }^{\text {BFY51 }}$	0.50	MC1349P $\quad 1.50$	GEC 2110 Tripler Post JAN77	6.43	
BAX16	008	BC136	0.20	BFY52 BFY90	0.50 120	SAA651 0.60		6.51	
8 AY 38	0.16	${ }^{\text {BCL137 }}$	020	BFY90	1.20	SAS550S 200	iTT CVC $20 / 25 / 30$	6.45	
BY206	0.20	${ }^{\text {BC1 }} 138$	0.40	BF381 BFR39	0.50 0.30	SAS570S 200	Philips 520 Tripler	651	
IN4148	0.04	BC139	040	BFR39 BFR79	0.30 0.30	SN74DON	Philios 550 Tripler	642	
	0.20	${ }^{8 C 140}$	040	BFR79 EFR81	0.30 0.30	SN7413N SN7412	Philips 550 Tripler Philips G9 Tripler	642 6.63	
BY127 BY133	0.15 0.22	BC 142 BC 143	0.40 040	BFR81 BFR89	0.30 0.50	$\begin{array}{ll}\text { SN74122N } & 1.00 \\ \text { SN74141N } & 1.00\end{array}$	PYE 691/693/697 Tripler	66.68	
BY164	0.50	${ }_{\text {BC1 }} 47$	0.15	BF259	025	TBA395 ${ }^{\text {S }}$	RR1 823 Tripler	5.48	
SKB2/08	1.00	BC148	0.10	BDx32	2.50	TBA3950 ${ }^{\text {c }}$	RREE $3000 / 3500$ Tripler	6.68 5 5	
BY238	0.15	${ }^{\text {BC149 }}$	0.15	BU206	1.60	TBA950 400	TCE 4000 Tripler	8.00	
Brx10	018	${ }^{\text {BCC153 }}$	0.15	BU208/02	2.80	$\begin{array}{ll}\text { TCABj0 } & 400 \\ \text { TCAB00 }\end{array}$	TCE 8000 Doubler	3.53	
\| N 4001 in 4002	010 010	BC154 BC 157	0.15 0.15	BU326S Bu406	1.00 2.00	$\begin{array}{ll}\text { TCAB000 } & 400 \\ \text { TDA1180 } & 300\end{array}$	TCE 8500 Tripler	3.63 5.60	
\| N 4003	0.12	BC158	015	BU406D	2.50	TDA1190 	TCE 9000 Tripler	728	
IN4004	012	BC159	0.15	BU407	1.70	TDA2.002H 3.60	TVK 76/13 Continental Sets	5.50 668	
IN4005	0.12	${ }^{\text {BCL } 160}$	040	BU407D	2.50	TDA25900 500	Koring 90% Tripler	6.50	
IN4006 in4007	0.14 0.16	BC151 BC170	0.40 0.15	R2008B R20108	2.50 2.50	$\begin{array}{ll}\text { TDA2600 } & 500 \\ \text { TDA2640 } & 3.30\end{array}$	Autovox Tripler	6.50 6.50	
\|N5407	0.33	BC171	0.15	R2540	300	TDA3950 3.00	Redifitusion MK 1 Tripler	${ }_{4}^{600}$	
BR100	0.30	${ }^{\text {BC }} 1717$	0.20	ME0402	0.20	TAA6 21 AX1 3.30	${ }_{\text {RRI }}$ R20 25 Quadrupler	7.04	
BR101	0.60	BC177	0.20	ME0412	0.20	TBA6.2505 200	RRIT20	704	
BRY39 ${ }_{\text {TIC160N }}$	0.60 1.50	BC178 BC179	0.20 020	ME4003 M 6002	0.15 0.20	TCA830S 2.00 TDA2020/A2 5.00	MULTISECTION CAPACITORS		
BT119	2.00	BC182L	015	ME8001	020	$\begin{array}{ll}\text { TDA2020P } & 5.00\end{array}$	DECCA 400 400 350	3.72	
BT120	2.00	BC183L	0.15	M.E2955	1.50	TDA2030V 3.60	800/250	4.00	
BYX ${ }^{1 / 600}$	0.80	BC184L	0.15	MJE3005	1.30	TDA2010/BD2 4.50	GEC $20020015050 / 350$	3.00	
2 N 444	1.50	BC184LC	0.15	MPB113 MPSU05	1.20	TDA2:302V 5	GEC 100 2000/35	1.10	
	-1.10	${ }_{\text {BC178 }}^{\text {BC187 }}$	0.30 0.30	MPSU55	1.20	TCA940E 3.00	GEC Prilips $68600 / 250$	210	
BzY88 3v0	0.10	8C203	0.15	TP2955	1.30	We can othen supply equivalents	IT KB $2002007525 / 350$	3.00	
BZY88 3V3	0.10	BC204	0.15	TIP3055	1.30	to transistors \& I C's not listed. Free	ITT CVC $20200 / 400$	2.20	
BZY88 3V6	010	${ }^{\text {BC205 }}$	0.15	TIS90M	030	list on request with any order.	Philips G11 470/250	1.90	
BZY888 3V9 BZY88 4V3	0.10 010	BC206 $8 \mathrm{BC207}$	0.15	${ }^{2}$ 2N2904	O.50		PYE 691200 300/350	2.80	
BZY88 4V7	010	BC208	015	2N2905	0.50	Valves	PYE $731800 / 250$	2.50	
BZY88 5V1	0.10	BC209	0.15	2N3053	050	DY/86/87 1.87	RRI $2500-2500 / 30$	1.30	
BZY88 5V6	0.10	BC212L	0.15	2N3703 2N3075	0.20 0.20	DY80? ECC82	RR1 $600 / 300$	250	
BZY88 6V2	010	${ }^{\text {BC2 }}$ BC213L	0.15	2 N 3710	0.20	ECC82 ECC84	RR1 300 , 300/300	2.50	
BZY88 7V5	0.10	${ }_{\text {BC } 225}$	0.40	2 N 3055 H	060	ECH83 ${ }^{\text {en }}$	TCE 95010030010016	. 00	
BZY88 8V2	0.10	${ }^{8 C 237}$	0.15	TAAB50	0.80	ECH84 EC180	100150	370	
	0.10 0.10	${ }_{\text {BC238 }}^{\text {BC251A }}$	0.15 0.5	TAA550 TAA570	0.50 1.80	ECL80 ECL88 1.10 1.10	TCE 1500150150100	2.10	
BZY88 11V	0.10	${ }_{\text {BC301 }}$	040	TAA611	1.75	ECL86 110	TCE 3000/3500 175/400	270	
BZY88 12 V	0.10	BC303	0.40	taA630S	2.50	EF80 1.10	TCE 3000/3500 600,70	1.00	
BZY88 13 V	0.10	${ }^{8 C 307}$	0.15	TAA661B	2.00	EF95 EF183	TCE 3000/3500 220/100	0.70	
BZY 88815 V $8 Z Y 8818 \mathrm{~V}$	0.10 0.10	BC308 BC327	0.15 0.15	TAD 100	2.00	EFF 184 El	TCE 8000/8500 2500-2500/63	1.50	
BZY 8820 V	0.10	BC328	0.15	tbalzoas	075	EL34 3.00	TCE 8000/8500 400/350	1.00	
BZY88 22 V	010	${ }^{\text {BC337 }}$	0.15	TBA231	1.20	$\begin{array}{ll}\text { EL84 } \\ \text { GY501 } & 2.00 \\ 3000\end{array}$	TCE 9000 400/400	3.00	
BZY88 $B Z Y 8833 \mathrm{~V}$	0.10 0.10	BC338 8 C 547	0.15 0.15	TBA4800 TBA5200	2.20 2.00	$\begin{array}{ll}\text { GY501 } & 3.00 \\ \text { PC97 } & 1.50\end{array}$	TCE 9500 220/400	2.20	
BZX61 7×5	0.20	BC141-10	0.80	tBA530	2.00	$\begin{array}{ll}\text { PCSOO } & 1.50\end{array}$	MAINS DROPP		
BZX61 8V2	0.20	BD115	0.50	tBa5300	2.00	PCF8C 1.74	TCE 140 12R 16. IK7 - 116		
BZX619, ${ }^{\text {a }}$	0.20	BD124	1.80	TBA540	2.20	PCF8C2 PCFP6	462.126	1.16	
$82 \times 6110 V$ $8 Z \times 6111 / 2$	020 0.20	BD131 BD 132	0.70 0.60	TBA5400 TBA550	2.20 300	PCFPO6 110 PCL82 2.51 18		1.10	
BZX61 12 V	0.20	BD133	0.70	tBA5500	300	PCL.84 1.80 1	TCE 160018 Thermal Link		
BZX61 13 V	0.20	BD134	0.70	tra560C	2.20	PCL85/805 ${ }^{\text {P }}$	320.70.39	1.10	
BZX61 15V	020	BD144	2.50	TBA560CO	22.20	PCLECE $\mathrm{PD} 50 \mathrm{C} / 510$ 2.91	TCE 3000/3500 ${ }_{\text {TCE 8000, }}$ - 1 K 47	0.80	
BZX61 BZX61 188 l 18 V	0.20 0.20	BD159 BD238	080 0.50	TBA570 TBA5700	2.50 250	PD500/510 5.00 PFL200	TCE 8000, 8000A $56-1 \mathrm{~K}, 47$. SR.1R. 100 R	100	
BZX61 20 V	0.20	B 3380	070	tBa641BX	3.00	PL36 $\quad 2.60$	Phaips G8 2.268	0.90	
BZX61 22 V	0.20	${ }^{80} 441$	0.70	tBA641B11	4.00	Pl81 P1504		0.80	
${ }^{\text {BZX61 }}$ B7X61 27 V	0.20 0.20	BD537 80538	070 070	${ }_{\text {TBA720 }}^{\text {TBA6 }}$	300 1.50	PL504 3.75 PL508 3.80 PLS		0.70	
BZX61 130 V	0.20	${ }_{8}^{8} 8507$	0.70	tBa730	1.50	PL509 603	(Link)	0.65	
BZX61 33V	020	80508	0.75	TBA750	200	PL51G P1802	$\begin{array}{llll}\text { RR1 154. } & 50 & 1694\end{array}$	0.60	
BZX61 36 V	0.20	16181	1.20	tBA7500	2.00	Pl802 PY88	RRI A640 250, 14.156	0.80	
BZX61 BZX61 87 V	0.20 0.20	16182 80709	1.20 100		1.00 1.50	$\begin{array}{ll}\text { PY88 } \\ \text { PY50CA } & 1.70 \\ & 3.51\end{array}$	GEC $2784010,15.19$ 10.63 .188	1.00	
BZX61 72 V	0.20	BD710	1.00	TBA820	1.50	PY80C.801 2.28	GEC 2000	0.80	
AC107	0.35	BD442	0.70	T8A920	2.00	UCL82 $30512+1$	PYE 731, 73536,27	1.00	
${ }^{\text {AC127 }}$ AC12701	0.50 0.60	B0379 BF115	0.50 0.60	TBA9900	200 200	$\begin{array}{ll}\text { 30FL21 } \\ \text { PCF805 } & 1.40 \\ & 1.20\end{array}$	PYE $1100960 \cdot 70 \cdot 173$ $26 \cdot 16,17 \cdot 19$	1.00	
AC128	0.60	BF118	0.60	TBA9900	2.00	PCF8CB $\quad 1.20$	RR1823 56R.68R	0.80	
AC128/01	0.60	BF152	0.40	TCA2205A	3.00		CONNECTORS		
AC141	0.50	${ }^{\text {BF }} 154$	0.20	TCA900	1.00 200	VALVES NOT SHOWN HERE MAY	Sets of AVO Leads	10.00	
${ }_{\text {ACl }}^{\text {AC142 }}$	0.60 0.40	BF157 BF158	0.70 0.40	TCA940 TDA1170	200	BEIN STOCK. PLEASE WRITE	Plug 13A (Box of 20)	88.00	
AC142K	0.60	BF160	0.60	TDA 1200	3.00	FOR QUOTE.	AL Coax Plugs Pack of Ten	1.80	
AC176 AC176/01	0.60 0.60	BF163 BF167	060 0.50 0.50	TDA1270 TDA1412	4.00 1.00	DIRECT REPLACEMENT PARTS	6DB Attenuator 12 DB Attenuator	1.00 1.00	
AC176/01 AC186	0.60 0.40	BF167 BF173	0.50 0.50	TDA1412	1.00 4.00	Decoa 30 Series Lopt 8.00	18 DB Attenuator	1.00	
AC187	040	BF177	050	SN7615N	2.00	173 Timer (Repl Elc 4.443 MHz Cnstals 4	Back to Back Coax	040	
AC187K	0.60	BF179 BF180	0.50	SN76227N SN76530P	1.20 1.00	$\begin{array}{ll}\text { 4.443M HZ Crystals } & 2.00 \\ \text { Cut Out TCE } 3500 & 250\end{array}$	SERVICE AIDS \& TOOLS		
AC188 AC 188 K	0.40 0.60	BF180 BF181	0.50 0.60	SN76651N	1.50	Cut Out GEC 2.50	Super Servisol	1.20	
AD140	1.50	BF182	0.50	SN76003N	3.00	Cut Out TE 8500 200	Foam Cleanser	1.20	
AD142	1.50	BF183	0.50	SN76013N SN76013NO	2.00 2.00	$\begin{array}{ll}\text { TV18 Rectifiel Stick } & 2.00 \\ \text { TV20 Rectifier Stick } & 2.00\end{array}$	Plastic Seal	1.20	
AD 143 AD 145	1.50 1.50	BF184 BF185	050 0.50	SN76013ND	2.00	VA 1104 Theimister $\quad 0.80$	Aeroklene	1.20	
AD149	1.00	BF194	0.20	SN76023N	2.00	Transductor TCE 3000 $\quad 1.50$	Freezit	1.20	
AD161/2	1.50	BF195	0.20	SN76023ND	1.00	AEG Tuner (Repl Elc 1043/06) 9.00	Antistaric Solder 18 SWG 60/40 5 KGM	1.20 1000	
AD162	0.70	8F196	0.20	SN76033N SN76110N	2.00 2.00	$\begin{array}{lr}\text { Aeriel tsolator Kit } & 160 \\ \text { Prilias G88 Lopt } & 12.00 \\ & 11.00\end{array}$	Solder 18 SWG 60/40.5 KGM	970	
AD262	1.50 0.60	8F197	020 0.15	SN76226DN	2.00	PYE $691 / 697$ Lopt $\quad 11.00$	SR3AS Mini Silver	700	
AF124	060	BF199	015	SN76227N	1.20	Bush A 774 Lopt $\quad 1800$	SR3A Mini Orange	6.80	
AF 125	060	BF200	0.15 0.15	SN76532N SN76533N	200 200	$\begin{array}{lr}\text { Bush C823 Liopt } & 5.00 \\ \text { Pye } 731 \text { IF Gain } & 1050\end{array}$	Repiacement Nozzles Replacement Washers	0.80 09	
AF126	${ }_{0}^{0.60}$	BF224 BF240	0.15	SN76544N	2.00	A823 Bush Power Panel $\quad 20.00$	Solder Mop Red	0.60	
AF139	0.60	8 F 241	0.20	SN766504	1.00	PL 80ZT Transistorised 400	Solder Mop Brown	0.60	
AF239	1.00	BF256LC	0.50	SN76665N	1.50	BAHCO TOOLS - Come and see the	Side Cutters ORYX TVTY 80/80 Transistor EOV	3.20	
AL102	3.00 300 3	${ }_{\text {BF257 }}^{\text {BF258 }}$	0.50	SN76666N	6	full range at our shop or send for full catakusue free on request, with any		0 each	
Aul10	3.00	BF271	0.60	SL. 9178	800	order	Books PR 9.0	9.00 PF	

COPYRIGHT

OIPC Magazines Limited, 1982. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £11 overseas ($\$ 24.20$ Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice in dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "'correspondence").

September 1982

Vol. 32, No. 11
 Issue 383

this month

569 Leade
570 Routine TV Receiver Tests
Routine TV Receiver Tests
This time the Pye/Philips G11 chassis. Quick checks for the more common fault conditions.

Service Notebook
Feedback on servicing problems.
Reception at 11.6 GHz
by George Wilding
by Chris Wilson, G8ZCK and Grahame Harding, G3WRU
The authors set out to receive the TV transmissions from the OTS-2 satellite. Their success serves as an introduction to TV reception at microwave frequencies.

VCR Clinic

Reports on VCR faults from Steve Eeeching. T.Eng. (C.E.I.), Derek Sneiling and Mike Phelan.
A Successful LOPT Transplant by Keith Hamer and Garry Smith Line output transformer failure in an otherwise good old set presents something of a problem. The authors decided to experiment with a known reliable transformer from a different chassis.
Next Month in Television
Fault Report
by Robin D. Smith
TV servicing problems - causes and cures.

Letters

Ripples on the Mill Pond
by Les Lawry-Johns
Troubles with 12 V regulators, then a visit to a pub - with a smoking TV set - in the middle of a field.
A Satellite TV Installation, Part 2 by Steve Birkill Aligning the aerial, a scan across the skies for satellite TV signals, and the eventual successful conclusion.
Servicing the Rank 2718 Chassis, Part 2 by John Coombes
This time the rather complex field timebase, sync problems and sound faults.
VCR Servicing, Part 11 by Mike Phelan
Drum and capstan servo faults - the symptoms and how to go about fault diagnosis.
Servicing Luxor 90° Hybrid CTVs by Tony Thompson
Fault finding in the sync and timebase sections of the
receiver.
Teletopics
News, comment and developments.
Colour Portable Project
A field timebase modification to remove teletext lines and improve the linearity.
Inside the Philips VR2020, Part 5
by Brian Dempster
The power supply arrangements used in the initial and
later versions of these machines.
Service Bureau
Long-distance Television by Roger Bunney
DX reception and conditions, plus news from abroad.
Test Case 237

OUR NEXT ISSUE DATED CCTOBER WILL BE PUBLISHED ON SEPTEMBER 22

MANOR SUPPLIES

NEW MKV CHEQUERBOARD \& PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.

* Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 80.50$
Standard Case $\left(10 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}\right) \quad £ 5.50$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime}$)
$£ 8.50$
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 4.50$
Built \& Tested in De Luxe Case including Sound Module
£115.00
Post/Packing $£ 2.00$.
All above prices include VAT 15\%

PAL COLOUR BAR GENERATOR (Mk 4)

* Output at UHF, applied to receiver aerial socket.
* In addition to colour bars $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
* Simple design, only five i.c.s. on colour bar P.C.B.

PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT $£ 40.25$ P\&P $£ 1.20$. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE $£ 3.30$, P\&P $£ 1.20$, BATT HOLDERS £1.70 P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).
MK 4 DE LUXE (BATTERY) BUILT \& TESTED $\mathbf{£ 6 6 . 7 0 + £ 1 . 8 0 ~ P ~ \& ~ P . ~}$ MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80 \mathrm{P}$ \& P . VHF MODULATOR (CHI to 4) FOR OVERSEAS £4.60.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

MK 1 (Texas XMII) Cable remote control $£ 170.20$ p.p. $£ 2.80$ MK 2 (Philips/Mullard) Infra-red remote control $£ 227.70$ p.p. $£ 2.80$. Further details on request.

Goods available if in stock immediately over shop counter (Mail order
between 3 days and 2 weeks

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
Large selection tested colour panels for popular models. SPECIAL OFFER Leading makers Tuner-Timer in De Luxe Case. 12 station touch tune UHF-VHF + IF amp. Video Audio Outputs, Digital Clock etc. Less than half original trade price $£ 74.75 \mathrm{p}-\mathrm{p} £ 3.50$.

TELEVISIDN MAGAZINE PROJECT PARTS NEW COLOUR PORTABLE TV
TV PATTERN GENERATOR SMALL SCREEN MONITOR MONO PORTABLE TV LARGE SCREEN COLOUR TV PHONE, CALL, OR SEND FOR LISTS
WORKING MODELS \& PANEL TEST SERVICE AT
172 WEST END LANE.
TV SOUND IF PANELS, FULLY TESTED $£ 7.82$ p.p. $£ 1.00$
SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND tested for T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& TESTED, AT REDUCED PRICE $£ 57.50$ p.p. $£ 1.60$.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE £7.80 p.p. £1.20. XMII INTERFACE PANEL (THORN) £2.10 p.p. 75 p CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET $£ 12.65$ p.p. 60p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. £1.20.) ADDITIONAL GREY SCALE KIT £3.35p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 21.60$ (VHF version also available). ALUM CASE $£ 2.00$ DE LUXE CASE $£ 8.50$ p.p. $£ 1.80$. CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 29.40$ p.p. $£ 2.00$.
BUSH 2718 BC6100 SERIES IF PANEL $£ 5.75$ p.p. 90p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p.
DECCA "Bradford" IF T.B. POWER ex rental $£ 5.75$ each p.p. $£ 1.40$
DECCA 80, SERIES. IF FRAME TB $£ 5.75$ each p.p. $£ 1.40$.
GEC SERIES I MONO PANELS £2.10 p.p. $£ 1.30$.
GEC 2110 Decoder. RGB panels (ex rental) $£ 5.75$ each p.p. $£ 1.00$.
GEC 2040 DECODER PANEL $£ 2.88$ p.p. $£ 1.60$
GEC 2040 IF PANEL $£ 3.22$ p.p. $£ 1.40$.
GEC 2040 (SERIES) CDA PANEL $£ 2.88$ p.p. $£ 1.40$.
THORN TX9 PANELS ex factory for small spares. Includes I.C.s \& Semiconductors etc. £5.75 p.p. $£ 2.00$
THORN 3000 LINE T.B., POWER PCB $£ 5.75$ each p.p. £1.30.
THORN 3000 BEAM LIMITER PANEL $£ 1.72$ p.p. 80 p.
THORN 3000 VID, IF, DEC, Ex Rental $£ 5.75$ each p.p. $£ 1.30$.
THORN 8800 Varicap channel selector $\&$ front control unit $£ 4.37$ p.p. $£ 1.80$
THORN 8000/8500 IF/DECODER PANELS salvaged $\$ 5.52 \mathrm{p} . \mathrm{p}$. $£ 1.80$
THORN 8000/8500 FRAME T.B. PANELS salvaged $£ 5.52$ p.p. $£ 1.40$
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares 88.62 p.p. $£ 2.00$
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$. THORN 9000 IF/DECODER PANELS Salvaged $£ 8.90$ p.p. $£ 1.60$
PHILIPS 210, 300 Series Frame T.B. Pancls $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 4.80$ p.p. $£ 1.40$ G8 IF Panels for small spares $£ 1.75$ p.p. 95 p.
G8 Decoder panels salvaged $£ 4.25$. Decoder panels for spares $£ 2.00$ p.p. $£ 1.40$ VARICAP, U321, U322, ELC 1043/06 ELC $1043 / 05 \$ 7.82$ p.p. 80 p; G.I. type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, 3PSN $£ 1.40$, 4PSN type
$£ 1.75,5 \mathrm{PSN}$
$£ 2.00,6 \mathrm{PSN} £ 4.00$ p.p. 60 p . Makers special types available. SPECIAL OFFER ELEVEN POSITION VARICAP CONTROL UNJT SPECIAL OFFER ELEVE
UHF/VHF $£ 2.10$ p.p. $£ 1.00$.
BUSH "Touch Tune", Varicap Control Unit Z179, Z718 types $£ 4.40$ p.p. BUSH.
VARICAP UHF-VHF ELC 2000 S $\mathbf{£ 9 . 8 0}$. BUSH TYPE $£ 7.82$ p.p. 85 p
VARICAP VHF MULLARD ELC 1042 £7.95 p.p. 80p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted.
incl. s / m drive. Mullard 4 position push button $£ 4.80$ p.p. $£ 1.50$.
LOPTS NEW \& GUAR. P/P Mono $£ 1.35$ p, Colour $£ 1.45$ p, Bobbins 80p.

FERG., HMV, MARCONI, ULTRA
950 to 1580 $\mathbf{£ 6 . 8 0} 0$
THORN 1600. 1615. 1690
1691..50
GEC 2000 to 2038 series E 11.30

GEC series $1 \& 2 \ldots \ldots . ~$
$£ 9.20$
INDESIT 20/24EGB
ITT/K B VC 1 200, 300.............................88.80 MURPHY 1910 to 2417 series8.80 PHILIPS 19TG 170, 210. $300 \ldots \ldots . . \mathbf{£ 8 . 8 0}$
PYE, INVICTA, EKCO, FERR.

SPECIAL OFFER

GEC $2114 \mathrm{~J} /$ FINELINE................. $£ 5.50$
PYE 40, 67... 50

THORN $8000 / 8500 / 8800$............ $£ 14.80$ THORN 9000 to 9600 $£ 10.15$ ORIPLSAVAILABLE, PRICES ONREQUEST. ALSO F.OPTS.
TRIPLERS Full range available. Mono $\&$ Colour.
Special Offer: Thorn 14005 stick EHT Tray $£ 1.72$ p.p. 65 p
THORN $3000 / 3500,8000$, 8500 , MAINS TRANSF. $£ 10.15$ p.p. $£ 1.80$ 6.3 V CRT Boost Transformers $£ 5.80$, Auto Type $£ 3.20$, p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES Telephone 0I-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENQUIRIES INVITED

LAR GE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door
W. Hampstead (Brit. Rail) accesss from all over Greater London.

Mail Order: 64 GOLDERS MANDR DRIVE, LONDON N.W. 11. ALL PRICES INCLUDE VAT AT 15%

SAFGAN DT-420 DUAL TRACE SCOPE 20 MHz валоМотt

 Srearacanon\star CH1, CH2: $5 \mathrm{mv} / \mathrm{div}$-2Ov/div * Time Base: $1 \mathrm{sec} / \mathrm{div}-100 \mathrm{~ns} / \mathrm{div}$ - XY Facility: Matched XY inputs * Trigger: Level control, \pm slope selec tion

* Auto, normal, TV triggering - Z-Modulatior
* CAL output 1 V 1 KHz
* Graticule blue ruled 8×10 div ($4^{\prime \prime}$ CRT). Very Sharp Trace.
- Size: H215mm, W165mm, D280mm - Weight: 4 kgs

PRICE $5199+529.85$ PRICE $\mathbf{£ 1 9 9}+£ 29.85$ VAT
Probes as Thandar below.

BRITISH MADE - RELIABLE - 18 MONTH GUARANTEE

LEADER LCT-910A

C.R.T. TESTER-REJUVENATOR Our top selling instrument is designed tics and rejuvenation of both colour and B/W C.R.T's.
\star Tests for shorts and leakage between electrodes.
\star Tests cathode emission characteris-
\star Separately checks condition of guns.
« Removal of shorts and leakage be-
tween electrodes
Checks heater warm-up characteris-
tics.
\star Rejuv
Rics.
Cathodes with automatic timing.

* Super rejuvenation with manual con-
trol.
\star Complete with tube base adaptors.
Size: $H 230 \mathrm{~mm} W 330 \mathrm{~mm}$ D 120 mm

THE VERY LATEST SCT10A LOW POWER, FULLY PORTABLE OSCHLOSCOPE.
The new Thandar SC110A represents a break-through in oscilloscope development. The SC110A is ONLY TWO INCHES thick and scope development. The SC110A is ONLY weighs under two pounds, yet retains the standard features and weighs under two pounds, yet retains the sils IN A BRIEFCASE
controls of a bench oscillose.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe
Full Sized Performance
. 10 MHz bandwidth.

* 10 mV per division sensitivity.
- Full trigger facilities are provided including TV frame, or TV filtering
* Runs on 4 to 1OV DC via disposable batteries, re-chargeable cells, or $A C$ adaptor
- Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.
'Scope $£ 149.00+£ 22.35$ V.A.T.
$\begin{array}{ll}\text { Carry Case } £ 7.70+£ 1.16 \text { V.A.T } \\ & \times 1 \text { Probe } £ 7.00+£ 1.05 \text { V.A.T }\end{array}$
$\begin{array}{ll}\text { BRITISH } & \times 1 \text { Probe } £ 7.00+£ 1.05 \text { V.A. } \\ \text { MADE } & \times 10 \text { Probe } £ 8.00+£ 1.20 \text { VAT }\end{array}$
MADE $\quad \times 1 / \times 10$ Switched Probe $£ 9.50+£ 1.42$ V.A.T Rechargeable Batteries $£ 7.50+£ 1.30$ V.A.T.
 (Overseas purchasers please state voltage.)

U.K. Post Paid. Export orders welcome, please deduct V. A.T. and include an additional $f 5.00$ for Overseas carriage. Mail Order only. Callers by appointorder please. Large S.A.E. for technical leaflets of complete range

Delivery normatly within 7 days.
B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY. Tel: (0702) 527572.

Technical

 Training in Television, Radio and ElectronicsICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the speecialised training so essential to success.
Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and \mid am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job praspects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership
$=A$

Approvec by CACC
POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE Schoch of Electronics Prospectus
Subject of Interest
Name
Address
ost to:
Dept 285 Y
ICS School of Electronic 60 Stewarts Road
$4 \square$
E

P. V. TUBES

Telephone: Accrington (0254) 36521
Accrington (0254) 32611

38A WATER STREET, ACCRINGTON, LANCS BB5 6PX. OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m.-12 noon.

P. V. TUBES

REPLACEMENT ELECTROLYTICS PYE 169 (200/200/100/32)
PHILIPS 320 (400/400 200 V$)$ PHILPS 320 (400)/400 200 V OECCA

OECCA $80(4000 / 350 \mathrm{~V})$ DECCA $100(800 / 250 \mathrm{~V})$ OECCA 1700 (2000/200)/400/350V) | PHILIPS $68(6000 / 300 \mathrm{~V})$ |
| :--- |
| PHILPS |
| 9 | PHILLPS G9 (500) 300 V)

PHLLIPS G11
(470/250V) PHILIPS $611 / 470 / 250 \mathrm{~V})$
PYE $691 / 7(200 / 300 / 350 \mathrm{~V})$ PYE $691 / 71200 / 300 / 3$
PYE $731(600 / 300 \mathrm{~V}$ RBM A823 (2500/2500/30V) RBM Z146 (300 /300/350 RR1 T20A (2201400V) iT CVC5/9(200/200/75/25) $1 T \mathrm{CVC} 20$ 220/4000 GEC $2110(600 / 250 \mathrm{~V})$
GEC $2040(1000 / 2000 / 35$ GEC 2040 (1300/300/150/100/50) THORN 3500 (400/40V) THORN 950 O 1100 /300/ $100 / 16 / 2775 \mathrm{~V}$, THORN 140 (150/100/100/100/150/320V THORN $1500(12 / 300 \mathrm{~V}$
THORN 3500 (1755/100/10
THORN $3500(1000 / 63 \mathrm{~V}$)
THORN 8000/8500 (2500/2500/63V) THORN 800/ $8500(7700 / 250 \mathrm{~V})$
THORN $8000 / 8500(1400: 250 \mathrm{~V}$ THORN 8000/8500 (400/350)
THORN $9000(400 / 400 \mathrm{~V})$ THORN $9000(400 / 400 \mathrm{~V})$
GEC (200/200/150/50)

ELECTRONIC TUNERS AND ASSEMBLIES Mullard ELCI $1043 / 05$
Mullard ELC1043/06
 6 P/B DECCA/GEC/ITT 4 P/B PYE
6 P/B PYE ${ }^{6}$ PHILIPS G8 Tuner PHHLIPS 68 Ass. (Square/Early
PHILIPS G8 Ass. (ISloping/ate) PHILIPS G8 Ass. (Sloping/Late) PHILIPS 69 Tuner
PHILIPS $G 11$ Tuner PHILLPS G11 Tuner
ITI/PE/GEC 7 Button P GEC 21106 way P/B
U321 UHF Tuner THORN 8800 SEIECTOR THORN 8800 SELECTOR
(HMV Model 2725/6 way round button) THORN 9000 SELECTOR U322
HITAC RR1 T20A 6 way Chan Selector
RR1 TTOP/22/26
PHIUPS 8 way TIP Switch U itit s PHILIPS 8 way TIP S witch Ulit (suitable for all $\begin{array}{r}91.00 \\ 6.11 \\ 23.00\end{array}$
 ETON PRESET POTS
1." ouick blow

FUSES Per
rype $\begin{array}{rr}\text { Per } & \text { Pack } \\ \text { type } & \text { of } 10\end{array}$ 100 ma 2
$250 \mathrm{ma}-500 \mathrm{ma}-750 \mathrm{ma}-1 \mathrm{~A}$ 15A-2A-2.5A-3A-5A 1. ANTISURGE
$250 \mathrm{ma}, 500 \mathrm{ma}, 60 \mathrm{ma}$, E $30 \mathrm{ma}, 750 \mathrm{ma}, 850 \mathrm{ma}, 1 \mathrm{~A}, 1.25 \mathrm{~A}$
1.60 $\begin{array}{lll}15 A & 2 A \\ 25 A & 3 A & 5 A\end{array}$ 20 m ANTISURGE 80 ma
100 ma
\qquad

| | |
| :--- | :--- | :--- |
| $315 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{ma}, 300 \mathrm{ma}, 1 \mathrm{~A}, 1.25 \mathrm{~A}, 16 A$, | $2 \mathrm{~A} \quad 1.18$ |

20 mm Quick blow
100 ma . 250 ma , 500 ma , 630 ma . 800 ma
1 MAINS
$1 /$ MAINS
2A, 3A, 5A, 10A, 13A

	91
M.H.AP.U the pair	18.00
Aerial Isolator Kit	2.08

ANTIFERENCE

Comb/Splitter	2.96
Billindoo Spliter	

PHILIPS 69 AXIAL

SLIDER POTENTIOMETERS			
Lin or Log			
470R	55p	4K7	55p
1k	550	10K	55p
2K2	550	47K	55p
		470k	550

	SUNDRY TUNER ACCESS.	
	RANK Tuner P 6	
	$12^{\prime \prime} \times \frac{1}{2}$	35
5	$2^{\prime \prime} \times{ }^{\prime \prime \prime}$ (ives we have some ${ }^{\text {d }}$	35
	$2^{\prime \prime} \times{ }^{\prime}$	35
	Rank Drive Cams	10
	GEC 2110 Tuner Neons	14

40 V

SUNDRIES
Delay Lines DL60, DL700, OL50
CRT Tube Base
EHT Final Anode Cap
EHT Cobl

CM7025 UHF High $\frac{\text { LABGEAR }}{\text { Gam MAF } 24 V}$ (Specity A. 8 C/D)
CM706
CM7061 Power Unit 12 V
CM7062 Reg. Power Unt 12 V
CM7060 MHA 10 do 12 V W/B
CM7060 MHA 10 DE 12V W/B
CM 7065 VHF UHF MHA W/B

CM7065 VHF UHF MHA W/B 12V	$\mathbf{1 1 . 1 1}$
51	

 CM7068 UHF 12 V MHA High Gain (Specify A. 8 or
$\begin{array}{lll}\text { CM7053 Behind Set UHF Amp. (Mains) } & 13.78 \\ & 11.24\end{array}$ CM7054 8ehind Set UHF Amp (8attery e. 9.
Caravans)
CM7043 Second Set Amp UHF
CM7093 Behind Set UHF Amp. 3 Sets
CM7063 Dist. Amp. VHF/UHF 17db/output 12 V 19
CM7073 VHF/UHF $8+1$ Dist. Amp
CM9700 27 mhz C8 Suppress
CM6011 Dutdoor Spliter (2 way) W
CM6011 Dutdoor Splitter (2 w
CM9003 Flush Single Dutlet CM9010 Flush Iwin Dutlet
CM6006 6 Way Passive Splitter
CM7042 TV Games Combin.
CM9009 Flush TV/FM Outlet
$\begin{array}{ll} & 1.99 \\ \text { CM9009 Flush TV/FM Outtet } & 243 \\ \text { CM7069 Tri Star Amplified Set Top Aerial WIB } & 2.63 \\ \text { CM } & \end{array}$
CM7090 Amplified Caravan Aerial 12V DC W/8 14.78
CM6038 UHFNHF 625 Pattern Gen
CM6052 UHF NHF PAL Colour
CM7056 Teletext Adaptor

T12062 Station Intercom	15.95

PANELS + UNITS
AFC UNIT PHILIPS G8
F GAIN MODULE PPye/Philips $\begin{array}{ll}73 & \text { IF GAIN MODULE (Pye/Pritips) } \\ 69 & \text { CDA PANEL (PYe/Invicta/Ecko/Dynatron) } 20.00 \\ \text { REAR CONVERGENCE PANEL (Philips 68) } 23.00\end{array}$

DATA BOOKS (No VAT)
Transistor Equiva
TVT $80 \mathrm{~A}-\mathrm{Z}$ only
TV $802 \mathrm{~N} / 2$ S series only
TVI $80 / 80 \mathrm{~A}-\mathrm{Z}$ and $2 \mathrm{~N} / 2 \mathrm{~S}$ together LINIC Books LIN 1 that you order out of the latest
magazine 10
avoid missing

some inevitable	some inevitable
price changes	

CAPACITORS
8kV(12kV Wlag) $\begin{aligned} & \text { Heat transter compo } \\ & \text { Silicone compound }\end{aligned}$

ELECTROLUBE PRODUCTS
ELECTROLUBE PR
ctro-Mech lubricant Special conta
Permagard

THE BEST T.V. BARGAINS IN THE SOUTH

THORN 8-8K5
5 FOR £100

R.B.M.
 TWIN CHIP 5 FOR £95.00

PLENTY OF REFURBWORKING SETS FROM £35.00
G.E.C. 2040 MOST WORKING 5 FOR £60.00

EXPORT SPECIALISTS - 1000s SETS AVAILABLE EVERY WEEK - OPEN 7 DAYS

Bulk Shipments catered for

PANELS EX-EQUIPMENT
R.B.M. I.F. Power Conv.

Time Base-Decoder
Philips G.8. All Panels
G.E.C. 2040 Decoder-C.D.A. I.F. Panel

Thorn 3-3K5. Power Line $\quad £ 12.00+£ 2.00$ P.P.
All others
$£ 7.50+£ 1.40$ P.P.
Thorn 8-8K5. I.F. Decoder Time Base
$£ 7.50+£ 1.50$ P.P.
All Parts available all sets.
PLEASE TELEPHONE YOUR NEEDS SPEEDY RETURN OF POST SERVICE
Special Offer G-8 lopts (new type)
£9.00 + £1.00 P.P.

All prices subject to 15% V.A.T.
COLOUR T.V. \& MUSIC CENTRE

Tel: 0934413537.
C.R.T.s Regun or Ex Equip.
T.V. Trolly Stands $£ 5.00$
\qquad
Visit our massive ultra modern premises Tea, coffee, snacks available

Whatever your needs we are in the lead. Ring today

Easy Motorway Access
Ample Free Parking
Open 7 Days

POST A PART,

SEMICONDUCTORS			
${ }^{6} \mathrm{C} 153$	10p 8 D131	25p Bu1	.00p
EC154	10p BD183	1.00 p ME0404	7p
EC171	7 p BF137	20p ME0412	7p
-C172	7 p BF240	8p ME6002	7 p
BC208	7p BF255	10 p NKT241	7p
EC237	10p BF256c	35p NKT276	20p
EC238	7p BF256LC	35 p P 107	$7{ }^{\circ}$
BC250	7 p BF257	30 p R20108	1.00 p
${ }^{\text {BC251 }}$	7p ${ }^{\text {PF259 }}$	40 p 2443	25p
EC307	10 p BF274	10p R2540	$1.00{ }^{\text {p }}$
EC308	7p BF337	25p R2781	1.25p
${ }^{\text {BC3 }} 37$	7 p BF391	7p RCA1644	6 30p
BC394	7 p BF394	8 p TIS90	${ }^{20} \mathrm{p}$
BC455	7p BF 459	80 p TIS91	20 p
BC546	7 p B596	7p 2N2193	7 p
${ }^{\text {BC549 }}$	7 p BR87	25p 2N3703	20 p
BC556	7 p BU105	75p 2SA473	12p
${ }^{\text {BC559 }}$	7p BU108	1.00p 2 SC 346	7 p
BC595	7p BU207	1.00p TIC106C	30 p
ECX34	10p BU208	1.00p R2265	1.35p

AA112	8 p 82 U 15 C 12 R	in2070	8 p
AA119	8 p	14p P N52548	8 p
AA143	8 p BY204	8 p IN4742A	8 p
BA115	$8 \mathrm{p} 81 \times 22 / 400$	8p IS025	${ }^{8 p}$
${ }^{\text {BA131 }}$	8 p 82Y79C 20v	IS1653	8 p
BA154	8 p	8 p IT638 Cv9	
BA157	8 p DA002	8 p	$6 p$
88103	8 p 1 M102255	8 p 2 $\times 150$	8 p
8R303	26 p IN60	8p SKE1,02	18 p
BY127	12p IN5349	8 p MR854	
BY133	10p	MCR406	35p

BAV40 50 p SN74123N CIRC TBA BRC/M/200 1.00 SN741 54N 1.40 TBA1440C 1.00 BRC/M/3001.00SN761 foN 40p TDA2680 40p DM74123N 50p SN6622N 40p TDA2390A 40p SN15846N 40p TAA570 1.00 TBA540 90 p

WIRE WOUNDS 1.5R 5 W Thorn 3 K

 | $2 R \mathrm{~W}$ |
| :--- |
| 2 W |
 15 p 280 P 17 W
 气.3R 9W
 - C 11 W fusible
 $\varepsilon .27 \mathrm{~W}$ 3087 W
 22A 9W
 ${ }^{15 R} 5 \mathrm{~W}$ fusible
 15R7W
 ${ }_{5}^{\text {F5R }} 5 \mathrm{~F} 11 \mathrm{~W}$ Thorn 3 K

 2R9Wfusiol

 36 B 17 W
 ER4W
 $\begin{array}{lll} & 15 p & 3 K 34 W \\ E 2 R 9 W & \\ \text { E2 fusibie } & 25 p & 4 K 77 W\end{array}$
 100R 5W fusible
 220R 7W Korting
 fusible 20R 17 W
 30 Z 17W 235 R 9W fusible
 \therefore-40R 9W Thorn 4 K 25p 30 p

EX EOUIPMENT SPARES	
Convergence yoke 3000/3500	1.75
Scan coils 3000/3500 please state which	2.75
$3000 / 3500 \mathrm{LTB}$ (tested)	
3000/3500 PSU (tested)	
T602/1601	50peach
$3000 / 3500$ chroma delay line DL301 (1e ste	(tested) 65 p
3000/3500 lum. delay line L203 (tested)	ted) $\quad 65 p$
3500 convergence (tested) 1751, L751, L752, L753, 1754	

39 HIGH ROAD, NORTH STIFFORD, GRAYS, ESSEX, RM16 1UF

(Mail Order Address Only) Delivery within 2ε days.
PLEASE ADD 60p P\&P, PRICE INCLUSIVE OF VAT, ADD POSTAGE FOR OVERSEAS ORDERS
thousands of additional items available, enouiries invited

300 mixed resistars	1.50	20	1.30
300 mixed capac tors	1.50	10 spark gaps	1.30
150 mixed electrelytic	2.00	10-16 pin Quil IC socket	90p
100 W/W resistcrs	1.00	20 assoried T.V. knobs	
20 mixed conv pats	1.00	10-16 pin Quil to Dil IC	
40 mixed potent ometers	1.50	socket	90
20 mixed sliders	1.00	100 mixed diodes	11
40 mixed presets	60p	50 mixec mica washers	ETp
20 mixed VDR \& thermistors	. 1.00	300 mixed resistors \& capacitors	150
20 mixed ferrite core	50 p	10-16 pir Dil to Dil IC socket	

MIXED PACKS

Thorn 8000 EHT

E.H.T. TRAYS
doubler
$\begin{array}{ll}\text { P1174 } & 3.12 \\ & 3.50\end{array}$

PYE731	3.50
.50	
	5.00

$\begin{array}{llll}\text { Thern } 9000 & 5.00 & \text { Tturn } 900 / 350 & 2.50 \\ & 5.00 & \text { Tleven } 3000 & 6.00\end{array}$

E.H.T. STICK FAZ THORN

$\begin{array}{ll}950 / 1400 / 1500 \text { triplers E.C T. type } 80 / 150 & 5 p \\ \text { E.H.T. stick. } 83 / 200 & 5 p\end{array}$

FUSES 21mm

50MA $\quad 10$ tor 70 p 5COMA 10 for 40 p 315MA 10 for $50 \mathrm{p} 1 \mathrm{Amp} \quad 10$ tor 40 p
Thorn 3000 metal 2 A cut ant
1.25 Thom 8500 plastic 2.5 Acmt out $\quad \mathbf{1 . 2 5}$ Degause thermistor PT37 ${ }^{3}$ IT/GEC $\quad 25 p$
Degause VDR type E299D $\$$ P230 3900/800025p
TRANSFORMERS/LOTT

TRANS
Mains TX $3000 / 350$
100
Mains TX $3000 / 3500$
Mains TX $8000 / 8500$
S.O.P T. $800 \mathrm{~m} / 8500$
$3000 / 3500$ Sean TX
$3000 / 3500$ EHT TX

10
0.0
3.5
$3000 / 3500$ Sean TX
$3000 / 3500$ EHT TX

O00 LOPT

8500 LOPT

Mono portalle LOPT Thorn GE= $\quad \mathbf{1}$ Mullard diode solitting LOPT GEE, etc. 4.7

Pye $78+161$
 DROPPERS

Pye $78+161$
Pye $147+26$)
Pye $147+26$ J
Thorn $6+1+1003 \mathrm{~K}$
Thern $56+1<+47+12$
Thorn $350+20+148+1 K 5+317$
Thorn $50+46+1$ K5
RBM $250+1++58$ TV161
$385+15 R+45 R 28 W$ Working @
$140+14028 \mathrm{v}$

CARBONRESISTORS
12R $\frac{1}{3} \mathrm{~W}, 22 \mathrm{R} \ddagger \mathrm{W}, 27 \mathrm{R}{ }_{2} \mathrm{~W}, 39 \mathrm{R}{ }_{2} \mathrm{~W}, 56 \mathrm{R} \frac{1}{2} \mathrm{~W}, 56 \mathrm{R}$ $\frac{1}{2} W, 62 R 1 W, 68 R \frac{1}{1} W, 68 R \frac{1}{2} W, 68 R \frac{1}{2} W, 75 R \frac{1}{2} W$, $82 R 1 W, 100 R \frac{1}{2} W, 120 R \div W, 120 R \div W, 130 R 2 W$, $1501 \mathrm{~W}, 180 \mathrm{R} 1 \mathrm{~W}, 220 \mathrm{R}$, $\mathrm{W}, 220 \mathrm{R} 2 \mathrm{~W}, 240 \mathrm{R} \frac{1}{2} \mathrm{~W}$. 240 RiW, $270 R \frac{1}{2} W, 270 R 1 W, 300 R \frac{1}{2} W, 330 R \frac{1}{2} W$ 470R $\frac{1}{2} \mathrm{~W}, 560 \mathrm{R} \frac{1}{2} \mathrm{~W}, 680 \mathrm{R} \frac{1}{2} \mathrm{~W}, 820 \mathrm{R} \frac{1}{2} \mathrm{~W}, 820 \mathrm{RIW}$ $1 \mathrm{~K} \frac{1}{3} \mathrm{~W}, 1 \mathrm{~K} 1 \mathrm{~W}, 1 \mathrm{~K} 2 \mathrm{~W}, 1 \mathrm{~K} 5 \frac{1}{2} \mathrm{~W}, 1 \mathrm{~K} 5.1 \mathrm{~W}, 1 \mathrm{~K} 8 \frac{1}{2} \mathrm{~W}$ $2 \mathrm{~K} 2.1 \mathrm{~W}, 2 \mathrm{~K} 7.1 \mathrm{~W}, 4 \mathrm{~K} 7 \mathrm{bW} 11 \mathrm{~K} 3 \mathrm{~W}, 12 \mathrm{~K} \frac{\mathrm{~W}}{} \mathrm{~W}, 18 \mathrm{~K}$ $2 \mathrm{~W}, 22 \mathrm{~K} 1 \mathrm{~W}, 33 \mathrm{~K}, 36 \mathrm{~K}, 3 \mathrm{~W}, 47 \mathrm{~K}{ }_{2} \mathrm{~W}, 68 \mathrm{~K}{ }_{3} \mathrm{~W}$, $100 \mathrm{~K} \frac{1}{2} \mathrm{~W}, 110 \mathrm{~K} 1 \mathrm{~W}, 270 \mathrm{~K}, \mathrm{~W}, 330 \mathrm{~K} \frac{1}{2} \mathrm{~W}, 330 \mathrm{~K} 1 \mathrm{~W}$ $390 \mathrm{~K}, 500 \mathrm{~K}$ W. 1 MEG $3 \mathrm{~W}, 1 \mathrm{MEG} 2 \mathrm{~W}, 2 \mathrm{M}$

Thorn 9K thick film units FR1 or FR3 $\quad 1.25$ 10 Meg thick film focus resistor

I wish to pay by Access.

Access No
Amount
NAME
ADDRESS

Signature

EDITOR
John A. Reddihough

ASSISTANT EDITOR

Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 667

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-2615897

TELEOT5LOL

Video glut?

1981 was certainly a boom year for VCRs. The following delivery figures speak for themselves:

Japan	USA
925.000	895,000
550.000	1360000

UK
400.000
1.050,000

When other markets are taken into account, production must have been well in excess of five million machines, overwhelmingly in Japan. In fact VCR production accounted for over 70% in value of the production of the Japanese consumer electronics industry last year. Well done JVC, Sony. Hitachi, Toshiba et al, and their various agents and distributors world wide - especially as the sales were achieved against a background of international economic stagnation. It must neverthelless be cause for some concern in Japan. Excessive reliance on one particular product is never a healthy state of affairs, and mushroom growth can easily be followed by a disastrous collapse. Not that the Japanese would allow things to get out of hand to that extent: they pay attention to economic planning and are all too well aware of the pace of change, while MITI (the ministry of international trade and industry) acts as a powerful co-ordinating force.

In the UK, VCR market penetration is now around 9% and is expected to reach 12% next year. This leaves considerable market potential, though the point at which market saturation will occur is difficult to assess. Clearly VCRs do not fall into quite the same category as TV sets, vacuum cleaners, fridges, washing machines and cookers - things most people would not be without. A 50 per cent market penetration might seem reasonable - unless the machines become so cheap that anyone with a few idle pounds in his pocket decides that he might as well have one.

The economics of scale should certainly apply to the VCR. The machines are relatively complex as domestic equipment goes, and this in turn means high development costs and heavy expenditure in laying down production plant. Once these things have been done however the costs fall - especially when, as in Japan, the cost of borrowing is low.

There have nevertheless been awkward moments in recent months. Some Japanese VCR manufacturers have been operating below capacity, and stocks are understood to be high, particularly in the USA. Price cutting has been a feature of the US market this summer, with Sanyo Betamax machin es for example being offered at a suggested retail price of well under $£ 300$ - and suggested prices don't carry much weight in the US. where many shops seem to run perpetual sales. Speaking at this summer's Chicago Consumer Electronics Show, William E. Boss of RCA Consumer Electronics commented "with . . product availability no longer a retardant, the lack of stability in pricing has been an industry concern." Do they really talk like that? Anyway, one can see what he's getting at.

The world recession could well have bottomed this summer. As interest rates in the USA and UK fall, so consumer demand will increase. The beneficiaries will include Japanese VCR manufacturers. UK VCR production could also be assisted - we must hope that Thorn Newhaven. Sanyo Lowestoft and Fidelity get their timing right.

For the Japanese, the problem of over reliance on a particular product remains. One can't help but feel that the effort at present being put into the development of the next generation of computers in Japan is in some way their answer. As we all know, Japanese industry does not stand still: on the consumer side, it went into and moved out of transistor radio production, then followed mass production of CTVs, now overtaken by VCR production in both quantity and value. Something is bound to follow.

One thing that's unlikely to fulfil this role is the video disc. Both Europe (Philips) and the USA (RCA) got in first this time. It doesn't seem to be doing them all that much good so far, though it's early days yet. Could the Japanese VHD system be just that little bit too late now that RCA's CED system and Philip's LaserVision have been well and truly launched? RCA have found that CED players will sell at a certain price level a reduction in the list price of the original machine to around $£ 150$ late last winter saw sales accelerate. LaserVision too now seems to be doing somewhat better in the states, ironically since disc production was moved to Japan. There were severe disc yield problems with US production, and all too many defective discs reached the public. "Second generation" LaserVision disc players are now on sale in the USA.

For the time being however the VCR reigns supreme in the video market, and by the time that market saturation has been reached one feels that MITI will have directed the Japanese electronics industry along an appropriate new course. Have you noticed that Japanese defence expenditure, for long so much less than that of comparable countries, is beginning to increase?

Routine TV Receiver Tests: The Philips G11 Chassis

S. Simon

THE Philips G11 chassis was produced in large quantities. It's to be found in Dynatron, Roberts Video and Pye sets as well as Philips models. There are some differences in the remote control versions, but the basic concept remains the same and the following notes apply to all.

The mains input panel is at the bottom centre (see Fig. 1), the a.c. output from this being connected to the lower right side power unit via plugs and sockets (see Fig. 2). There are two $3 \cdot 15 \mathrm{~A}$ anti-surge fuses on the mains input panel (except for very late production sets in which one fuse is replaced by a surge-limiting resistor). The condition of these fuses will indicate the nature of the fault in the event of one or both being open-circuit. If they are severely blown, i.e. discoloured, it's a fair bet that the trouble is on the lower right power supply panel - in fact it's likely that one or more of the small power diodes D4091-4 near the left-hand edge of this panel is shortcircuit. This is an extremely common fault, and the defective diode(s) should be replaced with more beefy types. As a matter of fact it's as well to replace all four diodes at the same time, whether faulty or not, to save trouble later. The BY127 is a suitable replacement.

D4091-2 are the ones that usually fail. The reason for this may not be immediately obvious since they are connected as a bridge (see Fig. 3) and one would expect the load to be shared by all four equally. This is not so however. The diode bridge supplies the power supply control circuit (R4044, R4059 etc.) only. The rest of the receiver is supplied by a bridge which consists of the two controlled rectifiers Th4018 and Th4020 in conjunction with D4091/2. Hence the extra load imposed on these two diodes. The thyristors Th4018/20 themselves are fairly reliable and should not be the first suspects.

The output from the power unit is fed to the rest of the set via the 1 A h.t. fuse FS4037, and this is the fuse that will have failed in the event of a fault elsewhere in the receiver, say in the top right line scan section (this is quite common). Thus we have a general initial guide line: if the mains fuses are intact but the 1 A fuse at the top of the power supply board is open-circuit, the fault is likely to be on the upper right side panel. The supplies to most of the other parts of the set are derived from the line output stage via separate fuses.

Having checked the mains fuses at the bottom centre and found them to be intact, we know that the a.c. supply should be reaching the power unit and if you don't know the location of the 1 A fuse you will have to swing open the right side "door" to find it. The door is secured by one screw at the bottom - it may or may not be present - and a swing latch at the top. With this released the whole right side unit, power supply and line driver/output stage, can be lifted and swung round for access. The 1 A fuse can then be seen at the top of the lower power supply panel.

If the fuse has blown it's probable that D3133, which is located towards the top of the line scan panel, has failed. It's a BY223, with a plate and clip as heatsink, and is one of the EW modulator diodes. It goes short-circuit with monotonous regularity, blowing the 1 A fuse as it does so.

Once you have the location of these two items in mind they can be checked without having to swing the panels out.

The upper line scan panel is a hot bed of dry-joints, and it's well worthwhile examining the goodness of every soldered connection here, preferably under a strong light. It can be said that approximately three out of four complaints on this chassis are due to poor contacts on the line scan panel, ranging from complete non-operation to intermittent lack of width and bowed sides. These latter faults call for more detailed explanation, since they can lead one a merry dance if the facts are not fully appreciated.

The upper, left-hand timebase panel carries the sync/ line oscillator i.c., the field timebase i.c. and the EW raster correction circuit, i.e. the circuit that drives the diode modulator on the line scan panel. Of the preset controls ranged along the top of the timebase panel, the two on the left-hand side are the width and EW shaping controls. The former varies the amount of correction applied to the line scan whilst the latter determines the shape of the correction. Adjust them using a test pattern.

The snag occurs when they don't have any effect, thus showing that the circuit is inoperative. Whilst the trouble could be due to a faulty component on this left side panel (the EW output transistor Tr2150, type BD238, is suspect), all too often the point of disconnection is on the right side line output section - a sharp tap on the panel will often produce a distinct spark to reveal where the faulty contact is hiding, probably in the area of the filter coil L3134.

Whilst in this neck of the woods, a prime cause of loss of line scan is the scan correction/coupling capacitor C3135 ($0.91 \mu \mathrm{~F}$).

We have said that D3133 (the BY223) is a frequent offender. Quite often during its dying moments it feeds a high pulse voltage back into the EW correction circuit. It's not unusual therefore to find that the raster is a peculiar shape after this diode has been replaced, with the EW control having no effect. It is then necessary to check the correction circuit, particularly $\operatorname{Tr} 2150$ which will often be

Fig. 1: Panel layout, Philips G11 chassis.

Fig. 2: Power supply paths. Connectors 15A15 and 15A16 are on the convergence correction panel.

Fig. 3: H.T. supply circuit used in the G11 chassis.
found open-circuit. This is the pnp power transistor mounted on the left-hand heatsink. The collector is the centre pin, the connections being marked on the panel. Test with the red probe of the ohmmeter connected to the base and the black probe to the collector or emitter to get the low conductive reading. The readings with the probes reversed should be much higher, including collector (earthed) to emitter, but allowance must be made for the presence of D3132 on the line output panel when checking with the red probe to the emitter. If $\operatorname{Tr} 2150$ is in order, check back to $\operatorname{Tr} 2149$ (npn), $\operatorname{Tr} 2140$ (pnp) and for good measure Tr2119 (npn) - see Fig. 4.

A fairly common situation is that the power supply panel is properly supplied with a.c. but will not produce a d.c. output, i.e. there's no voltage at the h.t. fuse. One then turns attention to the control circuit, which includes a beam limiter arrangement. The transistors used for this purpose ($\operatorname{Tr} 4085 / 6$) are definite weak links. Check them both before taking any other action and you may save yourself a considerable amount of time. Then check the

Fig. 4: EW modulator drive circuit.
other transistors in this area and their supply resistors. There are quite a few high-wattage resistors which can go open-circuit, and a simple finger check will soon verify
whether they are performing their usual function or not, i.e. high-wattage resistors do not remain cold if they are working and being supplied. A regular offender is R4059 ($15 \mathrm{k} \Omega, 9 \mathrm{~W}$).

Failure to Start

There are several possibilities when there's h.t. at FS4037 but the set fails to start. The h.t. must reach the line output transformer and thence via the windings and R3120 (15ת) the collector of the BU208A line output transistor. This can be speedily checked by applying the meter's probe to the body of the transistor. If h.t. is present, the circuit is intact. All too often it isn't present, generally due to a dry-joint at one of the interconnecting plugs and sockets - 3D7, 15A15, 15A16, 3D6. Time spent checking through these edge connectors may not only reveal the cause of the trouble but also uncover a possible source of future trouble. If you think we're being rather pessimistic about dry-joints on this chassis you are right, we are.

Whilst the hot bed is the top right panel, there are other areas prone to this trouble, mainly the top centre convergence correction panel and the top left timebase panel. Indeed the reason for the failure to start may well be found on this latter panel, since the line oscillator start-up resistor $\mathrm{R} 2010(5.6 \mathrm{k} \Omega)$ is to be found here - it's a wirewound in a fairly obvious position at the lower centre of the board. Whilst it is unusual to find this resistor open-circuit, it does tend to develop a poor connection to the panel, thus causing intermittent operation with the complaint "once it starts it doesn't go off again - it's getting it to start that's the trouble".

Another cause of no results is failure of the line driver stage. Check its feed resistor R3106 which may be opencircuit.

Fault Summary

Suppose there's e.h.t. but no sound or raster. It's worth knowing that the 12 V regulator IC5073 (TDA1412) on the bottom left i.f. panel can be responsible for this. With no 12 V line the RGB output transistors will be without base bias and thus cut off, in turn biasing off the tube.

The BU208A line output transistor goes short-circuit from time to time, and there can be repeated failure for no apparent reason. In the latter event the recommendation from Philips is to replace the h.t. reservoir electrolytic C4029 - some types fitted during production have a tendency to develop a high internal resistance, resulting in damaging h.t. surges.

Such a surge can also kill the TDA2600 field timebase i.c., whose heatsink occupies a central position on the timebase panel. This is one of the items that is likely to require attention sooner or later. Trouble here is usually heralded by the unmistakable white line across the centre of the screen, i.e. field collapse. The 800 mA LT3 supply fuse FS3143 on the line scan panel may or may not be blown, but the i.c. is nearly always to blame. Good contact with the heatsink and a smear of heatsink compound are necessary to avoid an early repeat performance.

So there we are then, a fairly reliable chassis but let down by the items mentioned above - and those dryjoints. In our experience the succeeding K30 chassis has proved to be 100 per cent reliable to date, so we won't be dealing with it in the present series of articles.

Service Notebook

George Wilding

The owner of a Pye hybrid colour set reported that the sound had suddenly gone and at the same time the picture had collapsed to a few bright horizontal lines. He'd then hurriedly switched off. Since the sound and field timebase circuits both depend on the presence of negative l.t. rails it seemed that the common cause of the faults was the absence of these supplies. On switching on however the fault we were presented with was a blank raster though adequate e.h.t. soon developed. We then noticed that the tube's heaters were out, revealing the true cause of the fault - the fact that the primary winding of the mains transformer was open-circuit. The horizontal lines that had been seen briefly before switching off were due to the thermal lag of the c.r.t.'s heater/cathode assemblies.

A few days later we came across a similar case, though this time the cause was slightly different. The transformer, though electrically and physically similar, had a different tag arrangement and a miniature thermal fuse in series with the primary winding. This fuse was opencircuit.

Incidentally the mains transformer and h.t. smoothing choke in these sets are mounted in line, with a common centre securing screw which is particularly difficult to get at unless you have the correct size box spanner. The best way sometimes is to grip the base of this self-tapping
screw with a pair of cutters and turn it clockwise. Replacing the screw is worse still. I've found that the best way is to lay the subchassis on its side, then use a two or three inch long machine screw, securing this with a nut on the outside. The excess screw length can then be broken or cut off.

Line Oscillator Trouble

We had an unusual fault the other day with an ITT hybrid monochrome set (VC200 chassis) that had been stored away for some months in a somewhat damp atmosphere. When we switched the set on we got the no results symptom, due to lack of drive at the control grid of the PL504 line output valve. A new PCF802 oscillator valve failed to restore the drive, so as the capacitors (C124-7) in this stage are often the cause of line oscillator failure they were replaced. This produced a first class picture, but after a short while a very pronounced quivering on the line developed, while at almost regular intervals the raster would greatly reduce in width - erratically - and then collapse to a thin vertical line before the screen blacked out. Within seconds there'd be a full sized raster, followed by the same symptoms.

There was no voltage at the PL504's control grid when the raster collapsed, so there was obviously a further fault in the line oscillator circuit. There's not much else here, so after checking resistor values we decided to replace the line oscillator coil. This resulted in completely stable operation of the line timebase. We've never before come across such symptoms due to a faulty oscillator coil, and can only assume that storage in the damp atmosphere greatly impaired its insulation.

Phone Braintree - FOR THE CHEAPEST PRICES IN TOWN!
Video Scoop
COLOUR CAMERAS 3 3VO $\& 3 v 17$ MONO CAMERA

FERGUSON TUNER/TIMER CARRY CASES LEAD SETS BATTERY PACE ETC.

OPENING HOURS BRAINTREE Mon-Fri $\quad 9-6 \mathrm{pm}$ Saturday $9-3 \mathrm{pm}$ Saturday $10-1 \mathrm{pm}$

Wamers Mill, South St. Braintree, Essex. Tel; (0376) 43685 10 Shacklewell Rd. London N16. Telephone; 01-249 9265

skotel EBU Time Code

New... 8 colour field sequence identification is now available in these proven Skotel Time Code Generators and Readers.

These three units also include full User Data facilities and external Jam Sync capability to efficiently use EBU Time Code.
Other major features include:
PTC-100 Portable Generator/Reader (see illustration)

* Rugged unit is combination Generator and Reader.
* Low level input for direct head connection.
* Jam Sync: several units can be synchronised together

Low power: 5 days of nomal operation with 4 AA cells.

TCG-80P Generator

* Measures sync to subcarier phase relationship to determine and identify 8 colour field sequence in Code. * User Data can be entered from the front panel.

TCR-80 Wide Band Reader

*Reads data from all sources from hand turn speed to greater than 40 times play speed.

Editing options for TCG-80P and TCR-80 include: * Video Character/Inserter for simultaneous display of

Time Code, User Data and PAL 8 colour field sequence in the monitor picture.

*Vertical Interval Time Code options in the reader and generator complement the flexibility of Helical Format VTRs from freeze-frame to shuttle speeds.

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

21	300 mixed $\frac{1}{2}$ and $\frac{1}{4}$ watt and minia-		Z20
22	ture resistors 150 mixed I	$£ 1.95$	
Z3	300 mixed capacitors, most types		
		$£ 3.95$	221
24	100 mixed electrolytics	2220	Z22
25	100 mixed Polystyrene Capacitors	$£ 2.20$	23
26	300 mixed Printed Circuit		
	Components	$£ 1.95$	Z24
Z7	300 mixed Printed Circuit resistors	£1.45	
Z8	100 mixed High Wattage Resistors.		26
	wirewounds etc.	$£ 2.95$	226
29	100 mixed Miniature Ceramic and		28
	Plate caps	$£ 1.50$	828
Z 10	25 Assorted Potentiometers	$£ 1.50$	729
Z11	25 Assorted Presets, Skeleton etc.	$£ 1.00$	229
Z 12	20 Assorted VDR's and	$£ 1.20$	Z30
213	1 lb Mixed Hardware, Nuts, Bolts, Selftappers, "P" clips etc.	$£ 1.20$	231
Z14			232
	100 mixed New and marked		233
	PBC 108, BC 148, BF154, BF274, BC121L, BC238, BC184L and/or		
	Lots of similar types ONLY	£4.95	235
(Z14A)	200 Transistors as above but		Z36
	including power types like BDI3		237
	2N3055. AC128, BFY50 etc.	29.95	Z38
Z15	100 Mixed Diodes including:		
	Germanium, Silicon etc. All full		Z39
	spec.	¢4.95	
Z16	20 IN4148 Gen Purpose Diodes	£1.00	240
Z17	20 IN4003/10D2	£1.00	241
Z 18	20 Assorted Zeners.		Z43
	1 watt and 400 mw	$£ 1.50$	243

SPECIAL OFFER

Etch Kit with Instructions, 150 sq ins Paxolin Board, 1 Nylon Etch Resist Tray, Set of 3 Etch Pens, Tweezers, Abrasive Cleaner,
Thermometer $1 l b$ Ferric Chloride. ONLY £5.95.

ELECTROLYTIC	
$1 \mu \mathrm{f} 63 \mathrm{v}$	20 for $£ 1.00$
$1 \mu \mathrm{~F} 350 \mathrm{v}$	10 for $£ 1.00$
2.24 f 6.3 v	20 for $£ 1.00$
$4.7 \mu \mathrm{f} 63 \mathrm{v}$	20 for $£ 1.00$
$4 \mu \mathrm{f} 350 \mathrm{v}$ *	10 for 51.00
$22 \mu \mathrm{fl} 16 \mathrm{v}$	20 for $£ 1.00$
$100 \mu \mathrm{f} 25 \mathrm{v}$	20 for El .20
160 uf $25 \mathrm{v}^{*}$	20 for $¢ 1.50$
330^f 25 v	10 for $£ 1.00$
$400 \mathrm{uf} 40 \mathrm{v}^{*}$	8 for 11.00
$470 \mu \mathrm{f} 25 \mathrm{v}$	10 for $£ 1.00$
$470 \mu \mathrm{f} 35 \mathrm{v}$	8 for $\mathrm{\Sigma 1.00}$
$1000 \mu \mathrm{fl}$ liv	10 for E 1.00
$1000 \mu \mathrm{f} 25 \mathrm{v}^{*}$	8 for $£ 1.00$
$1000 \mu \mathrm{f} 35 \mathrm{v}$	6 for $¢ 1.00$
*Axial. All others are Radial. CAN TYPES	
$100+200350 \mathrm{v}$	81.00
2000 ff 100 v	81.00
$1000 \mu \mathrm{f} 100 \mathrm{v}$	${ }^{60 p}$
$2.200 \mu \mathrm{f} 40 \mathrm{v}$	60 p
$2.200 \mu \mathrm{f} 63 \mathrm{v}$	70p
3,500uf 35 v	50p
4.500 ff 35 v	60p
220رf 400v ITT/RBM	£1.00

EHT DIODES

Very small. 20kV 2.5 ma . 30 ma peak

R.B.M. USERS

 LOOK!No more messy soldering. 24 pin I.C. sockets for SL901 etc. SPECIAL OFFER: 5 for $£ 1.00$ 100 for $£ 12.50$.

> SPECIAL OFFERS
> 100 Assorted Polyester Capacitors.
> Mullard C296's and others
> $\begin{aligned} & \text { Mullard } \mathrm{C} 296 \mathrm{~s} \text { and others } \\ & \mathbf{1 6 0}-400 \mathrm{v} \text { only } \\ & \mathbf{2 2 . 0 0}\end{aligned}$
> 100 Assorted Mullard C280's
> Cosmetic imperfects etc. $\quad \mathbf{2} 2.00$
> $\begin{aligned} & \text { Cosmetic imperfects etc } \\ & 200 \text { Mullard Miniature }\end{aligned}$
> 200 Mullard Miniature
> Electrolytics Cosmetic imperfects
> $\begin{array}{lr}\text { etc. } & \mathbf{£ 2 . 0 0} \\ \text { PACK OF EACH } & \mathbf{\Sigma 5 . 0 0}\end{array}$ TRANSISTORS PBC108. BF 393 S 2N3702. BC 148B, BC159. ZTX107. MF8001. BC159. ZTX107.
BF 324
12 of one type
12 of each
2 N 3055 H
BD181
BD131
BD132

THEY'RE BACK

We can now again offer our special TV BARGAIN PARCELS. These contain all manner of useful bits and pieces. Components. semiconductors, videogame boards etc, which we have accumulated over the past year and must clear as we need the space.
$\mathbf{1 k g} \mathrm{kg} £ 9.95$

10 Assorted switches including

Pushbutton, Slide, Multipole,

Miniature etc. Fantastic Value 21 100 A ssorted Silver Mica caps
Z22 10 Mixed TV convergence Pots 20 Assorted TV Knobs including:
Push Button, Aluminium and Control types
0 Assorted Valve bases B9A, EHT, etc.

0 Spark Gaps

20 Assorted Sync Diode Blocks
2 Assorted IC Sockets
20 General Purpose Germanium Diodes
20 Assorted Miniature Tantalum
Capacitors. Superb Buy at
40 Miniature Terry clips.
deal for small Tools etc.
CTV Tube Bases
0 EY87/DY87 EHT bases $20 \times$ PP3 Battery Connectors $6 \times$ Miniature "Press to Make" Switches. Red Knob 12 Sub Min S.P.C.O. Slide Switches
2 Min D.PCO Slide Switches $£ 1.00$
$\begin{array}{ll}1 & \text { Min D.P.C.O. Slide Switches } \\ \mathbf{1 . 0 0}\end{array}$ $4 \times$ HP11 Batt Holders
(2×2 Flat type) $\quad 4$ for $£ 1.00$ 3.5 mm Jack Sockets, switched, enclosed Type 8 for $£ 1.00$, 100 Miniature Reed Switches $\quad \mathbf{£ 2 . 3 0}$ 100 Subminiature Reed Switches $\mathbf{\Sigma 4 . 1 0}$ 20 Miniature Reed Switches $\quad 1.00$ 2 Subminiature Reed Switches $£ 1.00$

ZENER DIODES
)v7. $2 \vee 7,4 \vee 3$. $4 \vee 7.5 \vee 6.6 \vee 2,6 \vee 8$.

$7 \mathrm{v5} .27 \mathrm{v}, 30 \mathrm{v}$. ALL 400 mw .
10 of one value
$\mathbf{8 0 p}$
6.60

80 p
$\mathbf{£ 6 . 6 0}$
1.3 watt, $12 \mathrm{v} .13 \mathrm{v}, 18 \mathrm{v}$ 10 of one vatue DIODES

$20 \times$ IN4003 \quad| $£ 1.00$ |
| ---: |
| |
| |
| 100 for $£ 3.00$ |

$20 \times$ IN4005 $\quad \mathbf{8 . 5 0}$
$20 \times$ IN4 $148 \quad 100$ for $\mathbf{5} \mathbf{5 . 0 0}$
$25 \times$ [N4002 $\quad 100$ for $\mathbf{£ 2 . 5 0}$
$10 \times$ SKE 4F2/06 (600 v 2 a fast switching) $\quad \mathbf{~} 1.00$ $\mathbf{\$ 1 . 0 0}$
$\mathbf{~} 1.00$ $\begin{array}{ll}12 \times \text { BY } 127 \\ 10 \times \text { BA } 158(600 \mathrm{v} 400 \mathrm{ma}) & \mathbf{£ 1 . 0 0} \\ & \mathbf{1 . 0 0}\end{array}$ IN $54023 \mathrm{a} 200 \mathrm{v} \quad 8$ for $£ 1.00$ 6A. 100 V . Bridge Recifier 6 A .100 V . Bridge Recifier.
Very small. $\quad 80 \mathrm{pea} .3$ for $\mathrm{\Sigma 2.00}$. C.'s
 CA270AE $£ 1.00 \quad 6$ for $\mathbf{5} 5.00$ MC1327P $£ 1.00 \quad 6$ for $£ 5.00$ TBA810P $\mathbb{1} 1.00$ 555 Timer 30 p TAA 661 BE 1.00 SN76660N 50p LEDS 6 for 55.00 4 for $£ 1.00$ 6 for $£ 5.00$ 5 for $£ 2.00$ 12 for $\$ 1.00$ 12 for $£ 1.00$ 5 mm Red $\quad 10$ for $£ 1.00$ Hi-Power 50peach 3 for $\$ 1.00$

THORN SPARES
${ }^{3} 3500^{-}$Transductor
-3500" Focus Assembly with YDR
-8500" Focus Assembly Retary

- 8500^{*}. 00222000 v Line Capacitor
- $1590 / 91^{\text {" }}$ Portable metal boost Diode (WII)
- 1500^{*} - Bias Caps 160 uf 25 V
$900 / 950^{\circ}$ Jellypot. L.O.P.T. Pink spot
${ }^{16000^{*}}$ Dropper $18+320$
-950° Can. $100+300+100+16 \mu \mathrm{f}$
\qquad $1.20,3$ for $£ 3.00$
51.50
1.50. 3 for $£ 4.00$

10
3 for $£ 1.00$
20 for $£ 1.50$
$£ 3.50$
$£ 1.00,3$ for $£ 250$
3 for $\{1.50$ Z45 TO220 Mounting kits (TIP33) 10 for 60 p TOI26 Mounting kits (BD131)

12 for 60p
 Pack of each Mounting kit. All

 include insulators and washers $£ 1.50$ 3a 1000v Diodes (INS408 type) 8 for $£ 1.00$ Brushed Aluminium Push Button Knobs, 15 mm long $\times 11 \mathrm{~mm}$ Diam. Fit standard $3 \frac{1}{2} \mathrm{~mm}$ square shaftsChrome finish $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ Diam as above $\quad 10$ for $£ 1.00$ Aluminium Finish. Standard Fitting Slider Knobs. (Decca) 10 for $£ 1.00$ Decca "Bradford" Control Knobs Black and Chrome. $\frac{1^{\prime \prime}}{}$ Shaft 8 for $£ 1.00$ Tuner P/B Knobs, Black and Chrome. Fit most small Diam Shafts, ITT, THORN, GEC etc. $\mathbf{8}$ for $£ 1.00$ Spun Aluminium Control Knobs (ITT) $\frac{1}{4}$ 'Shaft, suitable for most sets with recessed spindles 8 for $£ 1.00$ Z55 $\quad 14$ Pin DIL I.C. Sockets $\quad 12$ for $£ 1.00$ Z56 16 Pin Quil I.C. Sockets $\quad \mathbf{1 2}$ for $£ 1.00$ Z57 16 Pin DIL TO QUIL I.C. Sockets

10 for $£ 1.00$ $258 \quad 22$ Pin DIL I.C. Sockets 10 for $£ 1.00$ 259 B9A Valve Bases P.C. Type 20 for $£ 1.00$ $260 \quad 0.47 \Omega \frac{1}{2}$ Watt Emitter ResistorsChassis Coax. Socket $\quad 6$ for $£ 1.00$
Chassis 5 Pin Din Socket. 8 for $£ 1.00$$1^{\prime \prime}$ Jack Socket enclosed. SPNC SwitchContact 6 for $£ 1.00$ Z65 S0239 C.B. Chassis Socket 2 for $£ 1.00$
Z66 3.5 mm Metal Jack Plug $\quad 6$ for $£ 1.00$

MISCELLANEOUS

BGI00 tripler for CVC4S etc. $\quad 232-662-98009 \quad$ only $£ 3.50$ Degausing VDR's. Duty for RBM $823 \mathrm{~A} \quad £ 4.25$ each, 3 for $£ 10.00$ ITT VC200 4P/B Transistor Tuner. Suitable for some Pye
and Philips sets. 3 hole fixing
Decca Bradford Tuners. 5 button type
f2.75 each
5 for $£ 12.50$
$\mathbf{£ 3 . 0 0}$ each. 5 for $£ 12.50$ UHF Modulator UHF out Video in. Ch. 36. ead and plue
 With connection data
GEC Hybrid 2040 series Focus Assembly with lead and eac
 GEC 2010 Transistor Rotary Tuner with AE. SKT. and \quad fi 95 each. 3 for $\mathbf{5 5 . 0 0}$
 PYE 697 Line and power Panel. damaged with some components missing but ideal for spares $£ 2.20$ each, 3 for $£ 6.00$ Grundig UHF/VHF Varicap Tuner for $1500 \mathrm{~GB}, 3010 \mathrm{~GB}$

sets Im long	60 p each, $\mathbf{3}$ for $£ 1.50$
EHT Cable	30 p per metre. 10 metres $£ 250$

EHT Cable	30 p per metre. 10 metres $£ 250$
$\mathbf{3}$ for $£ 1.00$	

4.433 Mhz CTV Crystals $\quad £ 1.00$ each. 3 for $£ 2.50$

Cassette Mains Leads. 7 ft with fig 8 plug $\quad 60 \mathrm{p}$ each. 3 for f 1.50 6 MHZ sound filters. ceramic 3 pin "TAIYO" type 50 p each, 3 for $£ 1.00$
 PYE CT200 Control K nobs
High quality Metal Coax Plug. Grub screw $\quad 5$ for $£ 1.00,100$ for f 12.50
fixing

American plug
3.5 mm Jack Plug on 2 m of screened lead $\quad 60 \mathrm{peach}, 3$ for $£ 1.50$
5 for $£ 1.00$
$\begin{array}{lr}3.5 \mathrm{~mm} \text { Jack Plug on } 2 \mathrm{~m} \text { of screened lead } & 5 \text { for } £ 1.00 \\ \text { Mains Neons } & 10 \text { for } £ 1.00\end{array}$
2 k 2 Screenfeed Resistors.
White ceramic. 9 watt. with fusible link.
Phillips G8 Transductor.
vily insulated ead and chassis connector.
51.20 eseh $\begin{array}{r}8 \text { for } 51.00 \\ \hline\end{array}$ die, with lead and chassis connetor

60 pench. 3 for 51.50
THYRISTOR
CONVERGENCE POTS
3 for (BT106) 65p each
3 for $£ 1.50,10$ for $£ 4.50$
S. L0S 20Ω 30@ 50』. 100』. 200Ω. 1 K .8 of one type $£ 1.00 .8$ of each type $£ 6,00$.

Reception at $\mathbf{1 1 \cdot 6 G H z}$

Chris Wilson, G8ZCK and Grahame Harding, G3WRU

IT should be made clear at the outset that the receiving equipment described in the following article is entirely experimental. We set out to receive signals from the OTS-2 satellite and achieved our aim, though the results in terms of a reasonable quality display leave much to be desired. Our experiments are continuing, and the next steps we will be taking are mentioned later.

The OTS-2 satellite was launched into geostationary orbit by the European Space Agency in May 1978. The purpose was to carry out propagation studies to provide experience prior to the start of DBS (Direct Broadcast Satellite) transmissions in the mid-eighties. A further satellite, the ECS (European Communications Satellite), is due to be launched next year as the life of OTS-2 approaches its end -OTS-2 has already been moved from its original position at $10^{\circ} \mathrm{E}$ to $5^{\circ} \mathrm{E}$ to make way for the ECS.

The uplink to OTS-2 is in the band $14 \cdot 1-14 \cdot 5 \mathrm{GHz}$. The centre frequency for the spot-beam, i.e. high-gain aerial, downlink is $11 \cdot 64 \mathrm{GHz}$. Two 120 MHz bandwidth transponders use this aerial. There are also two 40 MHz bandwidth transponders which use a low-gain aerial and have a centre frequency of 11.51 GHz and two beacons, for telemetry and propagation/alignment, which transmit at
$11 \cdot 786 \mathrm{GHz}$ (just inside the new DBS Band VI) with circular polarisation.

Of most interest to us were the two 120 MHz channels as these carry TV signals, in particular the Satellite Television Ltd. transmissions during the evening between 7.30 and 9.00 p.m. and experimental programmes from the EBU. The spot-beam aerial has an e.r.p. of 35 kW , either vertical or horizontal polarisation being used. Frequency modulation is used for the video signals, with a bandwidth of 27 MHz (sometimes 38 MHz) and a peak deviation of 13 MHz (25 MHz when the bandwidth is 38 MHz). The path loss from the satellite is 206 dB plus, and with a 3 metre dish orientated to receive the spotbeam carrier an output of -111 dBW can be achieved. In reality this means that with a smaller (1.8 m) dish and a simple amateur 10 GHz receiver realigned for reception at around $11 \cdot 6 \mathrm{GHz}$ recognisable pictures can be received, with fairly low naise in the grey parts of the picture rising towards white or black depending on whether the video modulation is positive- or negative-going. There is some scrambling, and a 25 Hz triangular waveform is added to the signal to give energy dispersal the idea of this is to prevent the video sidebands settling at any spot frequency that might interfere with terrestrial

N7118 PAL COLOUR BAR GENERATOR

An extremely light, compact and durable instrument, designed for mobile Colour T.V. Maintenance in the cusiomers home. The basic model includes a built-in rechargeable battery plus a Power Unit/Charger. (A fully charged battery gives 10 hours continuous use). All patterns and sync. pulses are derived from a single crystal controlled oscillator, producing extremely accurate, stable displays. The patterns available are: Standard Colour Bars, Red Raster, Linearised Grey Scale Step Wedge, Crosshatch and Peak White Raster. A Coaxial Socket on the rear panel provides a modulated UHF or VHF (please specify) signal of approx. 1 mV for direct connection to Receiver Aerial Socket. An (optional) integral Sound board is available, producing a Sound Carrier (6 MHz or 5.5 MHz). frequency modulated by a 1 KHz Sinewave. The N 7118 will also house a third board that provides a 1 Volt p to p. 75 ohm Video Signal to a rear panel B.N.C. Socket.

Complete kit, including a professional finished case, screen printed P.C.B., Ready Built P.S.U., and all components - $\mathbf{£ 5 9 . 5 0}$ inclusive. Sound and Video Boards, add $£ 10.29$ per board. Ready Built - $£ 88.25$ inclusive. Sound and Video Boards add $\mathbf{£ 1 1 . 4 5}$ per board.
S.A.E. for details and specification.

N7121 VIDEO PATTERN GENERATOR

This Generator, based on the N7118 is designed for the mobile servicing of Colour Monitors and V.D.U.s. It produces three separate Colour output signals at 1 Volt peak to peak into 75 ohms. Also provided is a separate sync. output which may be adjusted for positive or negative-going sync. tips. The Generator may be operated at $625 / 50 \mathrm{MHz}$ or (by operating a push switch on the rear panel) $525 / 60 \mathrm{~Hz}$.
The patterns available are colour bars, crosshatch, 8 step grey scale wedge, peak white plus many other combinations i.e., red raster, blue raster, vellow crosshatch etc., as defined by the three (red, green blue) beam switches on the front panel. The generator is powered by an internal Ni-Cad battery and is supplied complete with the Charger/Power Unit.

Price (Built \& Tested) $\mathbf{£ 7 5 . 0 0}+$ VAT \& p. \& p. Total £88.25.

The head unit.
microwave links.
We approached the problem with experience of DX-TV reception but very little experience of microwave matters. It seemed logical to experiment with 10 GHz amateur equipment, and the head unit we devised was based on a receiver we'd already used. The basic arrangement is shown in Fig. 1 and it will be seen that waveguide is used to carry all the s.h.f. signals. The waveguide is rectangular and conveys the signals with little attenuation, at the same time ensuring a fixed polarisation. For those new to s.h.f. work it should perhaps be mentioned that coaxial cable introduces unacceptable losses at such frequencies due to the series resistance and shunt capacitance present. A waveguide of appropriate dimensions enables an s.h.f. signal to be propagated from one point to another with little loss.

A feed horn at the focus of the dish collects the signal from the satellite and couples it to the waveguide. To change from one polarisation to another the whole unit is simply rotated through 90°. For initial checking of the signal the unit can be mounted at 45° to receive either polarisation. The signal travels along the waveguide and is picked up by a probe at the other end. A point-contact diode mixer (AEI type CS8B from Birkett of Lincoln) is also connected to this probe.

A second section of waveguide is mounted at 90° to the first and is coupled to it by means of two directional cross-coupling holes (see Fig. 2). The Gunn diode local

Typical reception - STL on programme.
oscillator is mounted at one end of this section of waveguide, the other end being terminated by a wedge of wood which forms a dummy load to prevent energy reflection. A small proportion $(10 \mathrm{~dB})$ of the local oscillator's energy is thus directionally coupled to the first section of waveguide and travels along this towards the diode mixer. The mixer produces an i.f. output which we chose to be at 180 MHz with the local oscillator operating at around $11 \cdot 46 \mathrm{GHz}$.

The Gunn diode is mounted in a resonant cavity and is tuned by a micrometer rod which screws into the cavity. A stabilised power source of $6-11 \mathrm{~V}$ at 150 mA is required for the diode. The i.f. output must be matched and coupled directly into the low-noise i.f. amplifier. This first i.f. amplifier uses a 3SK88 dual-gate MOSFET with an untuned output to preserve a fairly wide bandwidth. The noise factor of this stage should not exceed 1.5 dB .

The accompanying photograph shows the complete head unit at present being used. The 180 MHz output is conveyed to the indoor unit by means of standard coaxial cable. No attempt has been made to improve the image response at the head, whose overall noise figure is estimated to be around 8 dB .

Fig. 3 shows a block diagram of the indoor unit - Fig. 4 shows some of the circuitry in more detail. The i.f. input is fed to an ELC2060 tuner unit, tuned to Band III, and then passes via a 6.5 MHz filter (a Philips selectivity module tuned for maximum bandwidth) to an OM355 hybrid i.c. acting as a wideband amplifier. This in turn feeds an NE561 phase-locked loop i.c. that acts as the f.m. demodulator. TV people to whom this idea might appear novel should simply recall how a line sync phase-locked loop produces an output voltage proportional to frequency shift to control the line oscillator. The circuit used here was originally proposed by Steve Birkill (see Television June 1980, page 430).

The rest of the circuit consists of a two-transistor plus i.c. video amplifier, with a phase-splitter to cater for positive- or negative-going vision modulation. The TDA1034 operational amplifier provides a lowimpedance output for feeding to a monitor or upconverter.

Results

Our initial attempts at receiving a signal were hampered by an unstable Gunn oscillator and the fact that we didn't know at the time that the satellite's position had been changed. Reception was finally achieved after several weeks of experiments. The results, after adjusting and aligning the system, can be seen from the accompanying photograph. We have not so far managed to receive the sound, though $5 \cdot 5,6$ and $6 \cdot 5 \mathrm{MHz}$ subcarriers have been tried. Weak colour has been noted on occasions.

At the moment we are both changing over to a Cassegrain feed system, i.e. the use of a small hyperbolic subreflector to reflect the signal back so that it can be taken from the rear of the dish, with some increase in the gain. We are also working on adding gallium-arsenide f.e.t. low-noise amplifiers to our systems. Further work is required to eliminate the effects of the energy dispersal and to probe the signals for sound and colour.

Setting Up the Head Unit

To set up such a head unit you will require a freshly calibrated cavity wavemeter and a Gunn oscillator source at 11.64 GHz . The set-up shown in Fig. 5 is recommended

Fig. 1: The head unit. The waveguide dimensions given apply to standard X band ($8 \cdot 2 \cdot 12 \cdot 5 \mathrm{GHz}$) waveguide type WG 16, which is available new, with flanges, from Earth Stations Ltd., 22 Howie Street, London SW11 4AR. Type WG17, which handles $9.84-15 \mathrm{GHz}$, would be suitable for Band VI DBS use. The lower cut-off frequency for waveguide occurs when the wider dimension is twice the free-space wavelength of the signal - the wave then bounces against the sides of the guide at too steep an angle to be propagated along the guide.

Fig. 2: Mechanical head unit arrangements in more detail. The configuration of the cross-coupling holes is such that the signal to be coupled cancels in one direction and is reinforced in the other, thus giving directional coupling.
local oscillator diode to 11.46 GHz , using the same means except that the mixer diode current reading must be set between $200-1,500 \mu \mathrm{~A}$. Connect the indoor equipment

Fig. 3: Block diagram of the indoor unit.

Fig. 4: Demodulator and video circuits. Tune the trimmer between pins 2 and 3 of the demodulator i.c. for best looking video and noise - the deviation of the voltage, which is negative- and positive-going, can be reasured at pin 9 of the i.c.

Fig. 5: Set up for aligning the head unit.

- note that an open Gunn waveguide is a health risk, especially to the eyes. Provision must be made for reading the mixer diode current.
Set the 11.64 GHz reference signal source on frequency, using the cavity wavemeter and mixer diode current meter. The cavity wavemeter will show a dip as resonance is found in the diode current reading. Tune the
and tune the first i.f. stage for maximum noise. Tuning either Gunn diode to obtain the chosen difference frequency $(180 \mathrm{MHz})$ will then remove the screen noise.

Advance the attenuator until noise creeps back, then adjust the first i.f. amplifier again, this time for lowest noise. The mixer tuning screw's position can be predetermined. At this stage the $11 \cdot 64 \mathrm{GHz}$ Gunn source and the attenuator can be located at some distance and the adjustments rechecked. Once you've done this, attempts at OTS-2 reception can be made - with the dish correctly aligned of course.

The system at present being used by Grahame Harding differs in some respects to that described above. The i.f. is 430 MHz , with a GaAs f.e.t. as the first i.f. stage feeding an amateur TV converter. The two systems have provided identical results so far, but after further work Grahame's system will have a better image response while the noise factor of the first i.f. stage is lower at 0.7 dB . Special thanks are due to Glen Brunt who assisted with the construction of the system.

VCR Clinic

Reports from Steve Beeching, T.Eng. (C.E.I.), Derek Snelling and Mike Phelan

Toshiba V8600

Had a call from a school the other day, the complaint being that the remote control on a Toshiba V8600 didn't work. The playback of recorded information was fine, but if cue and review, slow motion or still frame was selected there was no picture. Well, that's to say that on the school's TV set, an old Pye valve receiver with a long time-constant in the line sync circuit, the screen was just black with a couple of large white horizontal bands.

On my test TV set it became clear that the output from one of the slow-motion heads $\mathrm{B}^{\prime} 1 / \mathrm{B}^{\prime} 2$ was missing. The scope, triggered from the head switching pulses, was then linked up to display the slow-motion outputs from the heads. That from $\mathrm{B}^{\prime} 2$ was a bit low whilst that from $\mathrm{B}^{\prime} 1$ was very high, much higher than normal, as though there was instability. The preamplifiers were cleared of suspicion by swopping over the head connectors. The $\mathrm{B}^{\prime} 1 / \mathrm{B}^{\prime} 2$ preamplifiers provided reasonable outputs when fed from the normal heads, though with multiple tracking errors of course.

So it was down to the heads, and the four-head assembly was removed for inspection. Close examination revealed that head $\mathrm{B}^{\prime} 2$ had a chip missing from it. It was head B'1 that was the problem however - established fairly simply by inserting a small link across the head connections. With the link shorting out head B'2 there was no output at all, whereas with the link across the $\mathrm{B}^{\prime} 1$ head connections a residual display could be seen. Now although the $\mathrm{B}^{\prime} 1$ head produced the highest output this didn't contain any picture, so its output was noise.

A new head drum was fitted, with all the alignment this involves, but the result was the same. So it was necessary to remove all connections and check through the rotary transformer and interconnecting transformer windings, looking for an open-circuit. None was found. Eventually, a small amount of resistance was measured between the red $\mathrm{B}^{\prime} 1$ connecting wire and chassis. The rotary transformer connecting wires enter the drum assembly via a hole which is blocked by a plastic plug, thereby securing the wires or in this case squashing them against the lower drum chassis and cutting through one of them. The cure was to throw away the plastic plug and sleeve the damaged cable. The new head assembly was then refitted and realigned. I say realigned - initially proper slow motion couldn't be obtained as one of the $\mathrm{B}^{\prime} 1 / \mathrm{B}^{\prime} 2$ heads was out of alignment. The $\mathrm{B}^{\prime} 2$ head is higher off the deck assembly reference than head $\mathrm{B}^{\prime} 1$, and there's a complex dihedral adjustment which involves setting the heights of the heads. This should not be attempted without the supplementary information from Toshiba.

Panasonic NV8600

A dealer asked me to look at a Panasonic NV8600 which wouldn't record. It had been back to Panasonic several times and had run up a fair bill - also insinuations that the dealer had been "at it". When I took a look at it there were no signs of maladjustment, apart from the fact that the record f.m. carrier was way off frequency and was not being modulated by any video. The record colour-killer switching didn't function either.

Further checks were made around the f.m. modulator i.c. (IC301), and I couldn't find any output from the preemphasis section - there was no signal at the peak-white clipper or black clipper or pin 12 of the i.c. It was reasonable to assume that the i.c. was defective, so I sent for a new one and fitted it. All to no avail.

I decided to trace a grey-scale signal through the i.c. The signal levels were correct up to pin 18 , which feeds Q301, a buffer transistor for a signal peaking network. The signal at TP304 was suspiciously low, and Q301 was found to be open-circuit base-to-collector. It was thus providing no amplification, whilst its low base impedance was attenuating the signal. After replacing Q301 full alignment of the f.m. carrier circuit was required - C320 for 3.8 MHz corresponding to sync tips, and R316 for 4.8 MHz corresponding to peak white. The white and dark clipper levels and the record colour-killer control were also reset.
S.B.

Toshiba V8600

The fault with a Toshiba V8600 was "o.k. in fast forward or rewind, but won't play or record". We found that the tape slack detector (a magnet and reed switch, operated by tape tension) was energised, with the result that the stop solenoid was in operation. The slack tape was due to no tape take-up because the play solenoid was not pulling in. When given a slight push the core snapped home and the machine worked perfectly - unless stopped again.

Solenoids of this type have a tapped winding (see Fig. 1), with one section to pull the solenoid in and another added to hold it, using less current. A pulse is used to energise the start winding, and the cause of the fault was

Fig. 1: Play solenoid circuit, Toshiba V8600.

Fig. 2: Pilot burst switching, Toshiba V8600.

Fig. 3: Sound muting circuit, Ferguson 3V23.
simply the absence of this pulse due to Q626 being open-circuit.

A fairly common fault on this machine is no output from the r.f. modulator due to Q661 going open-circuit. This robs the modulator of its 12 V supply.

There was a very strange fault on another V8600: the playback picture had a vertical black stripe in the centre and the colour at the top was broken up into horizontal bars. When we looked at the video waveform at the rear socket we could see a notch in the middle of each line, with no chroma and the pilot burst (inserted on record in the Beta system) still present on the line sync pulses. The pilot burst should be removed on play-back by the "cleaning" circuit. This consists of a switching i.c., type CX130, which "dumps" the pilot burst into an electrolytic (see Fig. 2). The switch drive pulse at pin 6 was far too wide and varied with the picture content. It's derived from the sync pulses in the composite video signal, so it appeared that the sync separator stage's bias was incorrect. On checking here, the coupling electrolytic C275 was found to be very leaky.
M.P.

Ferguson 3V22

Two Ferguson 3V22s came in with clock faults: in both cases the tens of hours digit would show only 2 or 3 , cycling from 20.00 hours to 39.59 hours. In neither case was the clock i.c. at fault, the two transistors X1 and X2 having to be replaced in both machines to cure the problem. Incidentally the clock/timer board uses double-sided print, making the removal of these transistors rather tricky.
D.S.

Ferguson 3V23

Things are not always what they seem to be in the world of VCR servicing. The fault on a Ferguson 3V23 was no sound in the E-to-E mode, and we thought that this would be due to a simple i.f. or audio fault. Our first check was in the i.f. strip, to see if any audio output was coming from the detector i.c. (IC2, see Fig. 3). There was, but it was being muted by the conduction of X5 and X6. This was in turn due to the output from pin 14 of IC14 being low instead of high.

IC14 is on the tuner/timer board, the idea being to mute the sound during sweep tuning. Briefly, the sweep tuning system works by first detecting the presence of a sync signal. This slows down the sweep rate, via the microprocessor. The positive end of the a.f.c. S-curve is then met, slowing the sweep rate down further. The a.f.c. then crosses zero and goes negative. The sweep slows down
and reverses, stopping at zero a.f.c.
IC14's output was stuck low, so that although the sweep tuning was apparently normal no sync detection was taking place. A standard AN5750 sync/line oscillator i.c. is used for sync detection, followed by a discrete component coincidence detector circuit. On checking back we found that there was no video signal at pin 1 of IC15 whilst X14 was cut off, both due to R116 being dryjointed.
M.P.

Hitachi VT8500

The problem with a Hitachi VT8500 was no stop when using the remote control. Use of another remote control unit confirmed that the fault was in the machine, and a quick look at the circuit showed that as the stop function only was affected the most likely suspects were Q23A and IC04A. A meter check showed that the gate in IC04A was not working, a replacement i.c. curing the problem.
D.S.

Sanyo VTC9300

We've had several Sanyo VTC9300s with the complaint "intermittent recording". In each case the cause has been a noisy luminance record current potentiometer - VR1, on the left-hand (W1) panel.
M.P.

Philips V2000

We had our first Philips V2000 type machine in for repair the other day. The complaint was noise in the top half of the picture, getting worse as the machine warmed up. Luckily we had a stock machine, so a quick go at panel swapping eliminated what seemed to be the most likely boards (tape servo, drum servo and dynamic tracking). The next step, replacing the head drum, cured the problem - I don't think that the drum is any easier to change than on a VHS machine.
D.S.

Sanyo VTC9300

I've had another Sanyo VTC9300 with the problem that it would go into pause after half an hour, then switch off. Bearing in mind the previous case (June VCR Clinic), I immediately changed the diode (D817) across the pause solenoid coil. This farled to cure the fault however, as did changing the driver transistor. Freezer was used and it seemed that D819 was defective - sure enough it read short-circuit. Changing it still left us with the fault however, and we eventually had to replace D814 as well. D.S.

A Successful LOPT Transplant

Keith Hamer and Garry Smith

Perhaps the most irritating fault that can occur on an ageing TV set is failure of the line output transformer especially when the c.r.t. and the rest of the receiver are in good working order. Over the past decade we've been operating several Bush TV125 series dual-standard sets as DX-TV monitors. They were originally obtained as "scrap", but following renovation have given reliable service.
A couple of years ago the inevitable happened: the width on one of the sets suddenly decreased, with an accompanying dark patch in the centre of the screen. We'd had this fault many times on the later A640 and A774 chassis, and on nearly every occasion the cause had been the line output transformer. Other possibilities were checked, but it was obviously the line output transformer that was responsible. We had several salvaged transformers as spares, but each turned out to be defective - we fitted no fewer than seven before substituting one from a working set to prove the point. We could have obtained a replacement of course, but as one of the salvaged ones looked relatively new this was considered to be risky.

An alternative solution was sought therefore, and we decided to consider using a transformer from a completely different chassis. After careful consideration we decided to try the 15 kV jelly-pot line output transformer, with its clip-on e.h.t. doubler, from the Thorn 1500 chassis. Line output transformer failure is rare in the 1500 chassis, though the doubler or tripler (high e.h.t. versions) sometimes fails, while the transformer is easy to fit with the minimum of mechanical ingenuity. The e.h.t. unit simply clips on to the transformer assembly - the fullyencapsulated type is preferable to the open-tray variety. There's no reason why a transformer and tripler from an earlier Thorn chassis should not be used, but it's important to bear in mind that 23 and 24 in . models employ a tripler giving an e.h.t. of 20 kV . When using a Thorn transformer as a replacement it's important to use the correct combination of transformer and e.h.t. unit. The 1500 's 15 kV transformer is identified by a pink or green stick-on disc, while the 20 kV type has a white disc. The original e.h.t. units are similarly coded to match the transformers.

Wiring in the New LOPT

A look at the TV125's circuit diagram revealed a rather complex rat's nest of circuitry around the line output stage. The set operates on 405 and 625 lines however, and as only 625 -line operation was required a certain amount of simplification was immediately possible. Our main concerns were whether the PL36 line output valve used in the TV125 would be suitable for use with the jelly-pot line output transformer, and whether the scan coils could still be used.

As a start, all the line timebase components associated with 405 -line operation, including the system switch beneath the chassis, were removed and the wiring tidied as necessary. The vertically mounted subpanel carrying the scan-correction components (adjacent to the trans-
former's screen cover) was then dismantled and the existing line output transformer was removed from its mounting base. Rather surprisingly, the 1500 transformer fitted on to the base neatly, and we secured it with self-tapping screws. When in position the new transformer looked a little lost, and there was plenty of space for the voltagedoubling e.h.t. unit. The e.h.t. unit was clipped into place and the e.h.t. lead routed so that it was clear of any metalwork or high-temperature components. There are only seven connections to make to the jelly-pot transformer (see Fig. 1), and provided care is taken the wiring is straightforward. The 160 pF 8 kV fifth harmonic tuning capacitor (disc type) was mounted on the transformer and connected between tags B and E.

Testing

After a thorough check on the wiring, we switched the set on and allowed it to warm up. A back-to-front picture appeared, so the set was switched off and the line scan coil connections were reversed. This was simple, as the original plug and socket on the scan-correction panel had been retained. The set was then switched on again, but when the picture appeared its linearity was totally unacceptable. A set of Thorn scan coils was next tried, and as this gave only a marginal improvement we fitted a "paper" horizontal linearity correction sleeve between the tube's neck and the scan coils (a linearity inductor was used in the original circuit). This dramatically improved the linearity and width. The Thorn 1500 manual recommends positioning the sleeve with its moulded ring 3 mm . from the edge of the deflection coil moulding, adjustment being within the tolerance limits of $0-5 \mathrm{~mm}$. Further improvement was obtained by increasing the value of the scan-correction capacitance - by adding a capacitor of approximately $0 \cdot 022-0.05 \mu \mathrm{~F}$ in parallel with the $0.1 \mu \mathrm{~F}$ correction coupling capacitor. Also by adding a 180 pF capacitor from the anode of the pentode section of the PCF80 line oscillator valve (pin 6) to chassis to modify the line drive waveform.

Results

This transformer transplant has been found to be worthwhile. Apart from a new lease of life, the receiver's warm-up time is appreciably quicker with the nonthermionic e.h.t. system. Anyone contemplating this particular modification to the TV125 is advised to have both circuit diagrams available for reference. Great care should be taken when making the soldered tag connections to the line output transformer - due to the construction, prolonged application of heat can cause damage.

Flywheel Sync Modification

An important point is that two opposite-polarity reference pulses are required by the flywheel sync discriminator used in the TV125, the 1500 's transformer being intended to provide a single pulse (from tag D).

Fig. 1: The jelly-pot line output transformer used in the Thorn 1500 chassis installed in a Bush TV125 - components prefixed 3 are present in the original Bush circuit, those marked with an asterisk are additional.

Fig. 2: Improved flywheel line sync circuit for the Bush Model TV125 (Murphy V849).

This was not a problem for us as we'd already fitted the improved flywheel sync circuit shown in Fig. 2, and this requires only one reference pulse feed. This modification should also be made therefore - the components can be grouped on a short length of tagstrip, which can be secured to the chassis in the space vacated when the original flywheel-sync components have been removed.

Other Sets

A similar approach to line output transformer substitution is feasible in other sets. Note that in some chassis the 1.t. supply is derived from a winding on the transformer. This could possibly be derived from the mains via a small transformer, though additional smoothing would be required since the output from the rectifier would be at 50 or 100 Hz instead of at line frequency.

We subsequently carried out the modification on another Bush TV125, and both sets have worked for over two years without problems. It should be pointed out however that when a major modification of this type has been carried out only the passing of time will tell whether it has been a success. Also that no such modifications should be carried out to more recently manufactured BEAB-approved receivers.

next month in

- FREQUENCY SYNTHESIS TUNING

The modern way to go about channel tuning in a TV set - no switches or potentiometers, everything done electronically instead. Basically, the local oscillator requencies are stored in digital form in an i.c. memory. To tune in, the required programme is selected and the tuning system compares the actual local oscillator frequency witt the required frequency. The local oscillator is then pulled in to tune to the required channel by the frequency synthesis control system.

GARBLEDEGOOK

Last year saw a signif cant rise in sales/rentals of teletext equipped sets. This increase seems to be continuing From the servicing viewpoint, this means a much greate chance of being called out to deal with a garbled text display. The basic problem is to decide whether the aerial, the receiver or the decoder is faulty - or maybe the customer is being over fussy. Eugene Trundle outlines the approac 7 to adopt and some test procedures (eyeheight checking etc.).

- MICROCOMPUTER CONTROL OF VCRs

Mic-ocomputer control is rapidly becoming the norm with VCRs, to cope with the increased number of modes cf operation. Basically, it's necessary to ersure that a machine operates on the fail-safe principle, i.e. that no operation is authorised by the cortrol system unless the conditions are correct. Specialised i.c.s could be devised to do tee necessary monitoring, but it's simpler to use a microcomputer chip. Brian Dempster describes what happens and why.

INTERNATIONAL TV SYSTEMS CHART
Most countries now have a TV service, in colour, but a variety of systems are in use, giving rise to many questions and problems. Time we thought to publish a list of :hese systems, country by country.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:
то
(Name of Newsagent)
Please reserve/deliver the October issue of TELEVISION (80p), on sale September 22nd, and continue every month until further notice.

NAME \qquad
ADDRESS \qquad
\qquad
\qquad

Fault Report

Robin D. Smith

Rank A823 Chassis

On several occasions I've drawn attention to the fact that $6 \mathrm{R} 8(820 \mathrm{k} \Omega)$ in the pulse feed network between the line output transformer overwinding and the e.h.t. tripler in the Rank A823 chassis can go open-circuit, the symptoms being a poor picture with flyback lines. A clue is given by the fact that the voltage at test point 4TP1 in the beam limiter circuit falls from -90 V to typically -30 V . I recently for the first time came across a case where 6R8 had decreased in value, causing very low brightness - the voltage at 4TP1 was in excess of -130 V .

On another of these sets that suffered from low brightness I came to the conclusion, after making several tests, that the tube was faulty. The customer agreed to a replacement, but whilst dismantling the set I found that the earth strip from the tube base panel to chassis via the degaussing panel was disconnected. Reconnecting it restored normal brightness and in fact an excellent picture considering the set's age.
I was asked to modify one of these sets for VCR operation, and on checking found that it suffered from intermittent field roll. The field hold control was correctly set, and after thinking for a bit I remembered that there was a modification - it was one of the later versions fitted with the Z513 varicap tuner panel. The modification consists of adding a couple of $4.7 \mu \mathrm{~F}$ electrolytics (1C54/5 when present) in series between the slider of the a.f.c. preset 1RV2 and its earthy end (the negative terminals of the electrolytics are connected together). The fault was completely cleared after fitting these capacitors - and the customer was happy with his TV set/VCR combination.

GEC C2110 Series

The set was one of the later ones in the GEC C2110 series - one of those with light-action touch-button tuning (Models C2001H/C2201H/C2601H). The channel selection circuit is on boards PC677/8, the former having four i.c.s on it. The problem we had was random channel changing, and on the advice of GEC technical we added $0 \cdot 001 \mu \mathrm{~F}$ capacitors between pins 5 and 15 of IC1 and IC3 to decouple the 12 V supplies to these i.c.s. This cured the fault - also check whether the smoothing capacitor $\mathrm{C} 9(1 \mu \mathrm{~F})$ is open-circuit. Here are some other recommendations: if the tuner jumps to channel 8 , suspect transistor TR1; for sticking on channel 1 when the set is warm, suspect C5; for sticking on any single channel, suspect $\mathrm{C} 1-8$ depending on the channel concerned.

An Off Day

We all have our off days. A 20AX GEC set - Model C 2217 H - was brought in the other day, the complaint being that the aerial socket was broken. My colleague proceeded to prove the point by connecting the aerial directly to the tuner unit. Switch on and bang! - smoke and fuse blowing. This is one of those chassis with a mains bridge rectifier and switch-mode power supply you see,
the chassis being at half mains potential. Fortunately the only consequence of the mishap - apart from the blown fuse - was that the surge limiter resistor R502 (2.7 $)$ in the power supply had gone open-circuit.

There were other sillies that day. First came an old Thorn monochrome set - one fitted with the 1400 chassis. The h.t. supply was only 20 V , but why? - there were no shorts, and if there had been the fuse or a spring-off resistor would have opened. There was 240 V a.c. at the mains fuse, but only 110 V a.c. at the anode of the h.t. rectifier. The only thing between these points is the surge limiter section of the mains dropper - R125 (16 Ω). Well, it transpired that some bodging had taken place. R125 had been replaced by a $6.8 \mathrm{k} \Omega 17 \mathrm{~W}$ resistor and a 22Ω 5 W resistor in parallel, and the 22Ω resistor had gone open-circuit. At least they'd got the total resistance about right.

Next came a Thorn 1500 with a fault I can only describe as an inverted "wine glass" effect - severe lack of width at the top, hardly any width at the centre, widening out to almost full width at the bottom. We suspected the scan coils or the line output transformer, though the latter is very reliable in this chassis. Replacements were tried with no effect, then we did what we should have done to start off with - measure the h.t. This was way down at 160 V instead of 295 V . The $150 \mu \mathrm{~F}$ h.t. reservoir capacitor C88 was open-circuit of course.

Finally a customer brought in a Philips portable (T8 chassis) with the complaint of intermittent field roll. He said he'd replaced the field hold control and this turned out to be so. Only he's used a $22 \mathrm{k} \Omega$ potentiometer instead of $10 \mathrm{k} \Omega$. The correct value put matters right.

Rank $\mathbf{Z 1 7 9}$ Chassis

The fault on a Rank set fitted with the Z179 chassis (110° delta gun tube) was field jitter with poor field lock. The 25 V supply for the field timebase comes from the EW diode modulator and was found to be correct, but a scope check revealed excessive ripple on the line. The reservoir capacitor $4 \mathrm{C} 36(4,700 \mu \mathrm{~F})$ was low in value.

Whose Responsibility?

The public has to get its sets repaired, but it seems to me that all too many dealers shirk their responsibilities in this respect. We keep getting people in the shop asking us to repair sets because the dealer or discount house from whom they bought the set doesn't want to know once the set is out of guarantee. Our view is that we're not these dealers' service department, and where possible we try to repair only the sets we ourselves have sold. On the other hand we're here to make money. So in walks this gent with a 16 in . ITT CVC40, the complaint being that it's dead. The discount house didn't want to know, and it went wrong only when he connected his brand new VCR that he'd bought the day before from the same discount house. Well I thought, he's asked for it. The problem was simply that the mains fuse was open-circuit. It took us two minutes to put this right, but the charge we made was rather more than our usual one.
That same day we received a letter pleading with us to repair a CVC30 which we'd refused to look at previously. Again it wouldn't work with a brand new Sony C 7 that its owner had bought from a discount house the week before. They didn't want to know of course. A detailed list of faults was enclosed, together with a cheque for $£ 55$
to cover our expenses. Oh well I thought, could be easy money. All the faults turned out to be due to one dryjoint on an earth connection and a faulty coaxial plug. Time taken, half an hour. We'd no conscience about putting the $£ 55$ in the till, and the customer was only too happy to have his set back in working order.

Rank $\mathbf{Z 7 1 8}$ Chassis

There were a couple of faults on a Rank set fitted with the Z718 chassis - very bad field linearity and very poor focus. The latter was the usual trouble on the tube base assembly (corrosion at the focus pin). For the field linearity fault we had to check back to the preamplifier transistor 4VT3, where 4R12 ($390 \mathrm{k} \Omega$) in the base bias network was found to be open-circuit.

Pye Hybrid Colour Chassis

The fault we had on a Pye hybrid colour set with varicap tuning was very intermittent snow. In view of the intermittent nature of the fault we decided to replace the tuner. This failed to provide a cure, and after much probing around we found that R389 ($3.9 \mathrm{k} \Omega$) on the CDA panel was dry-jointed - the h.t. supply to the tuning voltage circuit passes via this resistor.

GEC 3135

A GEC monochrome portable gave us a certain amount of trouble recently - it was a 3135 , one of those sets with a transistor pump circuit. There was no operation on either the mains supply or a battery, and various checks suggested that the line output transformer was faulty. A replacement was obtained and fitted, and the set sprang to life. An hour later it died again. The drive waveform was correct at the base of the BU312 line output transistor (TR203), but there was no waveform at its collector. Disconnect the scan coils and a healthy waveform appeared. No, it wasn't the coils - disconnecting them had removed most of the load from the transformer. The line output transistor, efficiency diode (D205) and flyback tuning capacitor (C208) all seemed to be in order, so consult GEC. "Ah! - they may read all right, but change them anyway. The transistor can give some funny faults."

Obtain and fit correct replacement parts, switch on and bingo, everything o.k. Ten minutes later the picture disappeared, though the e.h.t. was still present. Tube heater out. This time is was simply a disconnected wire to the heater on the c.r.t. base.

Rank T20 etc.

Like other contributors, I'm finding a high failure rate for 4 R 16 (910Ω) in the 12 V regulator circuit in the Rank $\mathrm{T} 20 / \mathrm{T} 22$ chassis (4 R 77 in the Z 718 chassis). I replace it with a $1 \mathrm{~W}, 1 \mathrm{k} \Omega$ resistor without any further problems.

Pye Hybrid Colour Chassis

R210 ($100 \mathrm{k} \Omega$) which is in series with the line hold control in the Pye hybrid colour chassis has a certain notoriety. It's inclined to decrease in value, the usual result being hold control problems. A recent case we came across was somewhat different however. The fault for which the set was brought in was that the brightness

Fig. 1: Line oscillator circuit used in Pye hybrid colour sets.
decreased with time. We noticed that the line output valve glowed rather brightly when this happened. Well, there are two basic reasons for this sort of thing. Either loading on the line output stage, or insufficient drive to the line output valve. So we checked the line drive waveform. This was of the correct shape, but the amplitude was only 120 V instead of 200 V . We then checked back to the line oscillator stage, taking voltage readings around the PCF802. The voltage at pin 1 (triode anode) was only 100 V instead of 227 V . Clearly something was pulling down the h.t. supply to the stage, that something being R210 which had fallen in value to only $5 \mathrm{k} \Omega$! As you can see from Fig. 1, a value fall of this magnitude will have a considerable effect on the voltages in the stage due to the potential divider effect of R210 with R208. Replacing R210 improved the line hold as well of course.

GEC Teletext Model

The fault we had on a GEC teletext set (Model C2269) was no line or field sync. With a standard set you would follow through from a video stage to the sync separator, but on these sets the signal passes via the teletext decoder. A scope check revealed that there was video on the signals panel but no waveform at the input to the sync separator, so the fault had to be in the decoder panel. The signal is applied to Q2101/2/3/4/5 on this panel, and on making checks we found that Q2104 (BC548B) was short-circuit.

ITT CVC20

An old age pensioner enquired about renting a set, and on being given details asked whether I would be interested in her old set - she said it was an ITT CVC20, and that her usual engineer had told her it needed a new tube. On paying her a visit, she showed me a bill for $£ 35$ for work carried out the previous day. Apparently she'd recalled him to complain about the focus, and he'd tried to sell her a new set. On inspection I found that the focus control had been wound round to maximum - I could see that this had just been done, because the dust on the control had been disturbed. Resetting the control produced a perfectly focused picture - what a dirty trick! I lost a sale and couldn't very well make a charge, but at least I've gained a new customer. If you do get focus trouble with these sets, check the feed resistor R604 $(2 \cdot 2 \mathrm{M} \Omega)$ on the c.r.t. base panel.

Letters

SANYO VTC9300 PROTECTION

I purchased a Sanyo VTC9300 VCR recently and knowing of the 12 V regulator transistor's tendency to go short-circuit decided to provide protection by fitting a $13 \mathrm{~V}, 400 \mathrm{~mW}$ zener diode between the 12 V line and chassis. Should the 12 V rail attempt to rise to 17 V , the 13 V zener diode will clamp it at 13 V and then go shortcircuit, providing a crowbar action. This seems a simpler solution to that suggested by Keith Cummins in the June issue, though I'd be interested in any comments. The protection depends on the zener diode going shortcircuit and not open-circuit of course, but I've never known a zener diode go open-circuit.
B. Webb,

Havant, Hants.
Keith Cummins comments: The zener diode would certainly provide useful protection, but would not be 100 per cent reliable. It would be most likely to go shortcircuit in the event of a gross overload, but this cannot be guaranteed. There's a large amount of energy available from the $10,000 \mu \mathrm{~F}$ reservoir capacitor, and this could blow the zener diode open-circuit. If you place a 6 V zener diode across a 12 V car battery it won't conduct for long! This is an extreme case of course, but the same principle applies - remember that the fuses are in series with the rectifier diodes, not the output from the reservoir capacitor.

Another point worth making is that whilst a fuse is designed to fail as a protective device a zener diode is designed to act as a voltage stabiliser and its characteristics when driven to the limit are not defined. It's my belief that circuits should be designed in a way that employs devices doing what they are supposed to do: you venture on to dubious ground when you expect a device to do something for which the manufacturer provides no performance specification.

GEC C2110 SERIES

S. Simon's series on routine TV receiver tests is a good idea - information like this is worth its weight in gold in terms of time and effort saved. In connection with the GEC C2110 series of CTVs (July) I'd like to add the following points. We've many of these sets still in service, doing quite nicely thank you despite their age.
(1) No sound or intermittent sound. Before anything else, check the soldering around C192 in the coupling network between the two i.c.s in the sound channel. The tracks from pin 11 of IC1 80 via C192 to pin 1 of IC181 run on both sides of the board, and as with all GEC boards the plating through from one side to the other can crack and give trouble.
(2) Loss of one colour - for some reason usually green. Check the connection at the end of the relevant output transistor's emitter resistor. As with the previous fault, the plating through gives trouble.
(3) The tuning button unit causes quite a lot of trouble, though it's easy enough to change. We've also found that the tuner in these sets is more prone to failure than others we know. Tuner faults we've encountered range
from one channel noisy (the customer had a new aerial fitted before we found that this wasn't necessary) to patterning, tuning drift, low gain or nothing at all.
(4) Intermittent colour. This is almost always due to bad connections in the edge connectors on the small reference oscillator panel and/or the jumper board in front of it.
(5) The line hold preset, being mounted directly above the heat-producing line output stage, often develops a bad contact at its wiper. This causes the line speed to alter suddenly, the picture breaking up. Sometimes it will correct itself, sometimes not. We've found that cleaning the preset is not enough - replacement is the only cure. The field timebase presets higher up the chassis are also prone to this roblem - fluttering height or linearity should indicate which presets to replace.
(6) A blank raster and no sound usually means that the TCA270Q chip in the i.f. strip has lost its earth connection at pin 16. This is another case of plating through between tracks on the double-sided board.
(7) Finally, this is not a stock fault but knowing about the problem might help you to avoid the merry dance we were led. Question: why does a C2110 very occasionally fail to spring to life? Anyone answering that the line oscillator's start-up resistor R409 is going open-circuit gets five out of ten for effort. Anyone who said D401 (start-up isolation diode) was going leaky - where were you when we needed you!

I look forward to further articles in the series. Richard Roscoe, St. Austell, Cornwall.

RANK T22 CHASSIS

I was interested in the Rank T22 chassis servicing problem mentioned in the July Service Bureau (page 490), having had the identical problem myself. Instead of fitting a new line output transformer however I'd fitted new windings. I subsequently obtained new windings from a different source, and this time they came with a leaflet saying "replace small plastic spacers between both core poles". This solved the problem - when I fitted the first new windings I didn't notice any spacers. Since the mistake is an expensive one, I feel it's worth drawing to the attention of other readers.

J. Jordan,

Stroud, Glos.

THE BRIGHTER SIDE

I'm prompted to write following recent letters in the magazine from TV engineers moaning about pay and conditions. If like myself they'd spent some time on the dole after the small family firm they'd worked for had sold out to one of the big boys they might agree that the trade is not as black as some people tend to paint it. I was able to get a new job after five months, and this gave me a completely new outlook. The pay could of course be better, but at least most of us get the use of a car which is worth quite a bit these days.

In answer to K. Wells (July), although VCRs have been with us for some years it's only recently that the market for them has taken off. I personally find that it's a new and exciting challenge. On my first look inside a VCR I too thought that this was for geniuses only, but since the initial panic died down and I've had the chance to go on some good video courses I've come to wonder what I was worrying about. With a little patience and
study (the VCR Servicing articles in Television are most helpful) I think that VCR servicing is well within the capabilities of most of us. It certainly gives the job fresh interest, as I'm sure most TV men will agree.
Andrew Green, Tech. (C.E.I.), North Walsham, Norfolk.

BACK INJURIES

May I thank all those who have written to me so far in support of the matter to which I drew attention in your June letters column - the problem of back injuries due to lifting TV sets. The point that a TV set should not be lifted by one person alone has now been proved, and I'd like to urge all those in the trade to refuse to do this. It's just not worth it in view of the injuries that can all too easily be sustained.

Installers, apprentices and everyone else must insist on having help. This will add to costs, but the important point is fewer injuries now or showing later in life. If there are any others who would like to let me know of injuries or occurrences, please do so - every bit of evidence will be helpful in trying to get action taken.
Harry J. Todd, Martins Bend,
Sunnyhill Lane, Oare, Marlborough, Wilts.

AUDIO SIGNAL SOURCE

Here's a handy trick I've used successfully for over a year now. The Sinclair portable scope has a 1 kHz calibration squarewave output which can be used when checking audio circuits. Use a probe to inject the signal at various points in the audio channel, taking the squarewave via a series $R C$ combination - say $47 \mathrm{k} \Omega$ and $0 \cdot 1 \mu \mathrm{~F}$.
G. Foster,

Newbury, Berks.

WHAT'S IN A "TRADE"?

How I agree with K. Wells (July) about the attitude of many in the TV business. I've worked in the industry for 21 years, have studied at college during the day and also at night during later years in order to improve my knowledge and qualifications - as no doubt have many other engineers - and yet at 37 I find myself redundant, for the second time and with very little prospect of a job in the immediate future.

I recall when starting in the trade in 1961 being warned that the money was poor and the prospects even worse, but the thing then was to have a "trade". It was considered that once you'd gone through the "slave labour" training period and got your qualifications you'd be o.k. for life. What rubbish! With the continual changes in TV technology any engineer who doesn't keep abreast of developments will be left behind to work on the older sets and will eventually find himself "phased out". I feel sympathy for the young of today who have great difficulty in finding work - at least there was a choice of jobs when I was younger.

Excessive discounting, cut-throat competition and "give away" rental charges are responsible for many of the problems in our trade today. Let's face it: if a trader doesn't make a reasonable profit he can't pay himself a proper wage let alone his service staff. Yet I heard of a dealer who sold colour sets at a gross profit of $£ 20$ each in order to compete with a large discount organisation. If
the sets went wrong during guarantee he would have lost his "profit". This is the economics of the madhouse.
M. J. McHugh,

Hednesford, Staffs.

LINE OUTPUT TRANSISTOR FAILURE

I've also had the problem (Service Bureau, July) of a G11 that kept on blowing line output transistors - one a week. On fitting the third I discovered quite by chance that pulling the mains lead produced an arcing sound after which the line output transistor went short-circuit yet again. Checking the plug showed signs of arcing on the live pin - the wall socket turned out to be faulty. A similar thing could presumably happen if the leads were loose in the plug.
Derek Snelling,
Brownhills, Staffs.

LUXOR 90° HYBRID CTVs

I've established a routine for overhauling those 90° Luxor hybrid CTVs and find that with the aid of a handful of inexpensive components one can usually be sure of a most reliable and good quality receiver. As I don't believe in working in two inches of dust I first open up the chassis and, using a soft brush attachment, thoroughly vacuum the set, both the component and print sides of the boards, noting any damage as I go mostly components falling apart that would have done so anyway.

Next, as Tony Thompson rightly says, these sets suffer from dry-joints. So I go over any suspicious looking joints, particularly arourd the valve bases - the bases in the line output stage often have to be removed and the pins cleaned with a file before fresh solder will take. Charred areas of the print in the power supply section should be cleaned and overlaid with tinned copper wire to the next pad on the board.

If the following items are not replaced they'll amost certainly give trouble before long: the field hold control R746 ($250 \mathrm{k} \Omega$); the height control R753 ($2 \cdot 5 \mathrm{M} \Omega$), and its $2 \cdot 2 \mathrm{M} \Omega, 1 \mathrm{~W}$ feed resistor R 754 ; R909 $(2 \cdot 2 \mathrm{M} \Omega, 1 \mathrm{~W})$ in the width circuit; the convergence potentiometers R827 (250) and R801 (470) ; the line linearity coil damping resistor $\mathrm{R} 913(1 \cdot 5 \mathrm{k} \Omega)$ to cure striations on the left-hand side of the screen; the blue and green drive presets R461 and R458 (both 500k Ω); R501-3 (1-5M) in the first anode supply network; R609 in the line output stage's h.t. supply (replace with an 11W type); and C901 ($0.015 \mu \mathrm{~F})$ in the NS correction circuit. Replacing the inexpensive PC92 valve can avoid having to replace the costly line output transformer at a future date. The e.h.t. setting is also important - adjust R911 for 685 V between pin 11 of the line output transformer and the 285 V h.t. line (B1).

The most common causes of no colour are: R125 (47Ω) which is mounted on the smoothing capacitor at the right, rear of the chassis and feeds the colourdifference output pentodes; the 4.43 MHz crystal; and the emitter-follower transistor Q206 (BC147B) on the i.f. panel. The other common i.f. panel fault is failure of Q205 (BF271): this causes no picture and sometimes loss of sound.

Caption buzz can be reduced by adjusting the sound discriminator coils L219/220 and L205 (31.9MHz trap). Doing the VCR modification, i.e. changing R748 and

R749 to $680 \mathrm{k} \Omega$ and the balance potentiometer R 752 to $220 \mathrm{k} \Omega$, results in solid, stable line sync.
Now for some general comments. First, although I agree that a smoothing electrolytic can should be replaced complete I have on numerous occasions fitted separate $33 \mu \mathrm{~F}, 470 \mathrm{~V}$ electrolytic capacitors to decouple the 220 V supply to the luminance output valve on the CDA panel and the 240 V supply to the PCF802 line oscillator on the timebase panel without any problems.
Secondly, taking the earth off test equipment is not the answer to workshop safety - the aerials and many other things are earthed. All workshop benches, or at least the set being worked on, should be fed via an isolating transformer to remove any risk.

Thirdly, I've been covering these sets successfully for many years. If a few rules are followed the results are excellent. First remove all old polish using a foam cleanser, then give all the edges a thin coat of Evostik contact adhesive and allow it to go off - this will ensure no curling at the back and front. There's a contact material available that matches the wood perfectly.

A last but most important point. Many of these sets have been used on stands with the feet removed. If the set is then put on a flat surface without some type of replacement feet being fitted the result will be overheating due to poor ventilation.
Steven Howard,
Ashford, Middlesex.

Ripples on the Mill Pond

Les Lawry-Johns

IT's been very quiet around here lately. Not many laughs, but quite a few headaches with some of the sets that have come in. The chief trouble maker at present seems to be the Rank Z718 chassis (Bush Model BC6100 etc.), closely followed by the Philips G11.

Mr Nosegrinder's 2718

Take for example the Z 718 Mr Nosegrinder brought along.
"There's not much wrong" he said helpfully. "You're watching a good picture, when all of a sudden it goes down to a short, dark picture - mainly blue."

I closed my eyes in apprehension. Whenever someone tells you not much is wrong, you can bet your life you're in for a nightmare - albeit one probably helped by you not thinking carefully enough about the symptoms. This was a classic case, and I never seem to learn since I made the same mistake later with a G11.

I hooked up the Z718 and studied the picture it displayed. Not much to complain about. Ten minutes later it suddenly went dark and the height shrank to a little over half. My reaction was to assume (wrongly) that there was a fault in the field timebase, and that this was pulling down a supply line going to other sections of the set. The obvious step to take was to check out the field timebase circuit, preferably with a can of freezer since the fault seemed to be heat sensitive.

So I squirted away with the aerosol, first at this, then at that. Output transistors, drivers, amplifiers and oscillator transistors were all subjected to the freezing blast, until I began to feel cold myself. Needless to say it made no difference, so I started to make voltage checks on the output and driver transistors. The voltages didn't seem to be far from what was to be expected, so we moved over to the field scan generator department (another five transistors). The voltages here seemed to be a little on the low side, but the relationships between the base and emitter readings were right. I then switched off and checked every transistor, each one proclaiming its innocence. Switch on again and everything's back to normal, so the transistor checks had been inconclusive. Again the height shrank and the brightness went down.

In desperation I checked the voltages on everything in
sight on the timebase panel - and found a wildly incorrect reading between the base and emitter of 4 VT 21 . Take a look at the circuit and find that this transistor is part of the 12 V regulator circuit. Bloody fool! All that mucking about and you didn't stop to think of a possible common cause for all the symptoms. Check both transistors in the circuit and find them to be o.k., though the reverse reading between the base and collector of the regulator transistor 4VT20 wasn't the expected 910Ω (4R77). The reading was very high in fact, gradually falling to something like $2 \mathrm{k} \Omega$ as the set cooled. So out came 4 R 77 and as the nearest value we had was either 820Ω or $1 \mathrm{k} \Omega$, in went 820Ω. The set then worked very well, and continued to work for as long as it was left on.
I made a mental note of that one, but later discovered that everyone else in the world already knows about 4R77 going high in value. Funny that.

And the Next Gent Please!

A Philips G11 was next. Mr Dry Joint himself. The set, not the owner. The symptoms were that the picture would come on all right for about five minutes, then fade - at the same time losing colour. On the bench this was indeed what happened, and we noticed with our eagle eye that the picture also became grainy and the sound went down slightly. "Tuner or early in the i.f. strip" I said, so I checked the operating voltages in the i.f. unit and went over the joints carefully. No joy. Next fit a new tuner. The picture seemed to stay on longer, but faded nevertheless.

I looked hard at the suspect lower panel, and noted the sound output transistors on their heatsinks and the single power transistor below them. "I wonder what you do?" I thought. So I checked the voltages around it and found that they were wrong. Better look into this. It's not a transistor! It's an i.c., type TDA1412 - the 12 V regulator. Oh no, not again.

Look around for a replacement, but none in stock. The stock book said no, but it sometimes lies. Anyway we didn't have one, so I carried out a check by bridging it with a 120Ω resistor and connecting a 12 V zener diode from the low voltage end to chassis. The picture remained perfect, and the rail remained at less than 12 V - so the
zener diode wasn't being asked to do anything much, but it was comforting to have it there just in case of a sudden rise. It would have to remain there for only a couple of hours, until I could con someone into nipping out to the wholesalers for me - my friends didn't seem to have one either.
"Hallo Geoff. Have you a 1412?"
"A what?"
"You know. 1412 as in the French retreat from Moscow overture."
"That's 1812 you nuthead."
"Sorry Geoff. What I want is a TDA1412."
"Well I haven't got one and if I had you wouldn't get it. Not after telling that pretty redhead I was queer."
"I meant you were unwell, Geoff, honest."
The phone went down so I tried Raymondo who didn't have one either, which is why we have to go to the wholesalers. O.K., so what have we learnt from this time wasting exercise? Simply that to check voltages approximately is not enough. A fall of something like 2 V on a 12 V line is enough to affect the whole set badly. A drop of 2 V in one stage would perhaps not be noticed, but when all the l.t. fed stages are affected equally a far more dramatic effect is to be expected.

In future I'll pay more attention to the exact readings, even if it means putting on my glasses and taking them off again more often than I do now. We don't want to make any more boobs, do we? Which reminds me that a pretty little redhead is expecting me to call and check her remote control.

The Pub in a Field

When Mr Piddlewell popped in we thought it was his Thorn 8000 that was giving trouble again.
"Has it gorn again?" we asked, with bitter memories of the set's history of intermittent starting.
"Na. It ain't mine this time. It's a customer of mine out in the sticks." He gave me directions on how to get there, "so that even a fool like you can't get lost." Nice fellow, Mr Piddlewell.

It turned out that our destination was a pub, and the directions sounded weird to me though I knew the locality well enough. It was just that I'd never seen a pub there.

I decided to make an evening call of it (for once), and since it was a pub several miles out H.B. said I wasn't going on my own or heaven knows what time I'd get back home. The truth is of course that she likes a drink and a natter in a strange pub once in a while. So that evening we loaded the van, taking everything we could think of since Mr Piddlewell hadn't bothered to ask his friend what sort of set it was. In went triplers and transformers, transistors and transductors, my case of "get you home" i.c.s, droppers, the lot.

Then down the yellow brick road we went, heading for the rainbow. Down the lower road, through the countryside, skirting the marshes, shouting obscenities athe cows and sheep, scattering the crows and rooks in the road, mile after mile. Over the bridge and straight down the road that doesn't go anywhere. Turn left at the end, down the lane that comes to an abrupt end in a field, or rather thick countryside where horses grazed and ducks splashed about on a reed filled pond, quacking at each other and I think at us.

There was no sign of a pub such as you might expect. Just a sort of outhouse - in the final throws of decay. A
board on the front had been weathered away, but we could just make out some words, or part of them, that said "free house".
"Just look at that" I said to Honey Bunch. "They're so glad to see anyone here they give the booze away."
"You daft bugger" said H.B. shortly. "Free house means they can sell any brand they like - and charge what they like. Anyway, I'll have a Vat 19 and coke to start with."

So in we went and found a rather bare room with one customer at the bar or counter. It just had to be one of our own well known customers. He looked startled to see us.
"Hello Bert" I said. He didn't look happy.
"Of all the bars in all the world, you had to pick this one."

A door opened and closed and who should walk in and up to Bert but the pretty little redhead whose controls I'd played with earlier. I now appreciated Bert's discomfort. His wife is a rather handsome fifty or so. At the same time I had to play my cards right, so I turned my attention to the bar.
"Vat 19 please" I asked the robust landlady.
"Ain't no Vat 19. Only Bacardi. That do?"
O.K. love. With a coke and half a bitter please. And could you put some ice and a slice of lemon in the Bacardi?"
"Ain't got no ice yet. No lemon either."
"All right love. Just as it comes then. By the way, I've come to fix the TV, so I'll have a quick swig and then pop through to where it lives."
"He's watching it at the moment. Smoke and all. Mustn't miss his football."

I could see whisps of smoke coming from the back room, and there was a familiar smell. I went through, half expecting to see a hybrid ITT colour set - the ones that emit lots of smoke from the mains filter capacitor occasionally, whilst still working normally in all other respects. I was surprised to see a Philips G8 however, sitting in the corner emitting smoke from the rear while the landlord sat in front wearing a World War two gas mask.
"Switch the bloody thing off" I bawled.
"Any minute now. Wait for the whistle."
Much to my relief the whistle sounded and I knocked the switch off, at the same time trying to wave away the choking smoke. When I'd taken the back off I immediately saw a black hole in the top winding of the line output transformer, with whisps of smoke still issuing from it.

By this time the old boy (I should talk) had taken his mask off and started on about how quickly the job could be done. "About half an hour at normal rate plus fifteen mintes at double time" I told him. "Don't hurry" he said, "I've some cellar work to do before the next match comes on."

He didn't look much like a publican, any more than his wife did, so I asked him how long he'd had the place? The answer was "four hundred years", which surprised me since I'd have thought three hundred a more realistic estimate. I nipped back to the bar to finish off my bitter before getting the transformer, and found Bert long gone.
"His niece seemed a nice girl" said Honey Bunch.
"Er yes, very nice" I replied, wondering whether I'd misjudged poor old Bert. "I thought it was his daughter."

The landlady put me right. "He came in with his daughter last week. A pretty blond girl."

How does he do it?

A Satellite TV Installation

Part 2

Steve Birkill

THE $14^{\circ} \mathrm{W}$ Atlantic geostationary satellite position is known by the Russians as Statsionar-4. Their first satellite here was Gorizont-2, which began life in July 1979 with one telephony and five TV channels, dropping over the course of a year to three TV channels and eventually one. Its replacement, Gorizont-4, was launched in time for the. 1980 the Moscow Summer Olympic Games, and during that event operated five TV channels. Afterwards the beams were reconfigured to inaugurate the Moskva service. By early 1982 the spot-beam transponder was looking decidedly sick, the power level having fallen by something like 6 dB , and the handful of two-metre terminals in Western Europe were in serious trouble.

It's likely that the Russian Moskva terminals were struggling as well, and when it was announced on March 14th that a new satellite, Gorizont-5, had been launched we assumed that this would be a replacement for Gorizont-4. The assumption was reinforced when on March 26th it became apparent that the 3.675 GHz spotbeam's EIRP had increased by at least 6dB since the previous day. Six dB may not sound a lot to those who deal with terrestrial a.m. broadcast signals, but in an f.m. system with a hard threshold it's almost the difference

The assembled aerial: time to begin alignment of the mount.
between no signal and no noise!
Pictures could now be resolved with a 12 in . square pyramidal horn attached to an LNA looking out of the window, and I knew we would achieve a 50 dB plus video signal-to-noise ratio using the three-metre dish. It was subsequently announced that Gorizont-5 was on its way to $53^{\circ} \mathrm{E}$ to replace Gorizont- 3 at Statsionar-5, so we can only infer that spare equipment on board Gorizont-4 was brought into operation on March 26th, accounting for the restored EIRP.

As soon as the structural contractors had fixed the steel girderwork that would form the foundation for the aerial on the roof of the Thorn-EMI building, and the aerial contractors had laid the necessary cables through the building's warren of ducts, we arranged a day for the installation.

April 22nd dawned a warm, dry day with light winds and hazy sunshine. During the morning the mount and the aerial were assembled on the prepared base, under the supervision of Michael Aarons who was to become Sonic Sound's satellite division director. Meanwhile I drove down from my home near Sheffield with the receiver, LNA, feed horn and test gear. When I arrived I was told that the aerial was assembled in place and that the cables were laid but not terminated. After a cup of tea we went to the rooftop, fifteen storeys up, and surveyed a skyline dominated by the American aerial standing proudly on its raised dais. We had only to make it work.
Two other rooftop satellite receiving aerials were within view nearby, Satellite Television PLC's dish for monitoring their 11 GHz test transmissions to Europe via the OTS (Orbital Test Satellite), and a British Telecom data communications terminal at London University. The latter dish was also looking at OTS, which coincidentally was that week in the course of moving station from $10^{\circ} \mathrm{E}$ to $5^{\circ} \mathrm{E}$ to make way for its operational replacement ECS (European Communications Satellite).
First a check on the mount's alignment. The contractors had marked a north/south line on the base, but a quick solar transit check at local noon showed it to be a massive fifteen degrees in error. Perhaps they'd left BST out of their calculations. This was no problem however, due to the excellent orientation adjustments provided on the SatFinder aerial. With the aid of an ordnance survey map and a makeshift theodolite a bearing was taken on the Crystal Palace TV tower, which was just visible through the haze, and the mount was adjusted for true north/south alignment.
Setting the polar axis was less straightforward, as it was not possible with the unmodified SatFinder to achieve the required declination offset of 6.78° between the aerial plane and the polar axis as required for optimum tracking at latitude $51.52^{\circ} \mathrm{N}$. So a compromise setting was reached, with some 4° offset and the polar axis inclined to a value between true polar and modified polar. This was nevertheless to prove acceptable.

The aerial's actuator arm was attached in the "eastern sky" position while the LNA and feed horn were fitted, but we decided to look at our primary target first. Crank-

Saudi Arabia's full-time Inte/sat lease TV channel put in a good showing during our orbital scan.
ing hard against the westerly stop, I figured we should be close to the $14^{\circ} \mathrm{W}$ look angle. The LNA was then powered and a spectrum analyser connected.

The extent of the opposition was now revealed. At 30 MHz intervals throughout the upper four fifths of the band there were carriers 80 dB above noise, with a 1 MHz bandwidth. Intermodulation products extended outside this range, and with the downconverter in circuit there were image carriers tuning through in the opposite direction, revealing a response in the 2 GHz band despite bandpass filtering in the LNA and the converter. Switching over to demodulation revealed that most of the interfering signals were f.m./f.d.m. telephony and data carriers, plus some TV. But wait - here's a TV signal with SECAM ident . . . and here's another! The "ten green bottles" in the SECAM field blanking period were clearly visible, and we realised that the aerial was indeed aligned directly with the Soviet satellite. There were the familiar three channels battling through the terrestrial garbage, despite being 50 dB lower in level at this look angle. And the Moskva spot-beam channel sat right in the centre of the only clear section on the dial, its slow dispersal unmistakeably revealing its identity.

Clearly any serious Intelsat work would be out of the question here, even with a bank of notch filters, but out of curiosity - having confirmed that the channel we were after was interference free - we set out to scan the rest of the sky. First back over east to the Indian Ocean, where the dispersed telephony carriers from transponders one

A successful conclusion: 2000 in London, 2300 in Moscow.
and two of Intelsat IVA F3 at $60^{\circ} \mathrm{E}$ came in low over the city. No TV though, as the three leases operate higher up the band and were completely lost in the interference at this low elevation angle. Climbing up the eastern sky, the next bird was the Indian Ocean Gorizont-3 at $53^{\circ} \mathrm{E}$, again with a 3.675 MHz TV channel - "Orbita-III Vostok" well clear, the others difficult. Raduga- 9 at $35^{\circ} \mathrm{E}$, Statsionar-2, suffered a similar fate, its 3.875 GHz TV "Il Programma, Dubl'-IV' resolvable close by a terrestrial signal at 3.87 GHz while its telephony at 3.655 GHz and below was in the clear.

The actuator arm was transferred to the opposite side of the frame and we now cranked west from $14^{\circ} \mathrm{W}$. At $18^{\circ} \mathrm{W}$, up came the big telephony carriers of Intelsat IVA F1, the Major Path 2 Atlantic bird. No TV on that one this afternoon. On westward to Intelsat IVA F2 at $21 \cdot 5^{\circ} \mathrm{W}$ and there was the familiar Saudi Arabian announcer in his robe and head-dress, out in the clear on transponder 1E hemispheric, the JVC monitor just resolving the SECAM colour from the narrow-band receiver.

The team of helpers were quite taken with these results. No luck though with the other three TV leases on this satellite, in amongst the terrestrials. Then at $24 \cdot 5^{\circ} \mathrm{W}$ to the Atlantic Primary satellite Intelsat V F3, with a transatlantic report on the situation in Argentina on global-beam transponder 12, more than a little noisy on our three-metre terminal. Farther westward to Major Path 1, Intelsat IVA F4 at $34.5^{\circ} \mathrm{W}$, the home of the Spanish lease and much transatlantic TV traffic, though there was no TV at the time.

At this point the Telecom Tower was just 90° off to the side of our dish and the rooftop was becoming quite cool and windy. So after an unsuccessful attempt to find TV signals on the $53^{\circ} \mathrm{W}$ special lease Intelsat (IV F3) we decided to lock the aerial on to the Soviet satellite and adjourn to the shop premises below.

By the time we'd carried all the gear (including TV camera and U-matic as well as triple-standard Betamax recorders) down a ladder, two flights of stairs and twelve floors by lift to street level and round to the retail shop entrance it was well into the evening. So we were spared the attentions of the public. The two cable ends were dragged across the showroom floor to the vicinity of a 27 in . Sony three-standard monitor. BNC plugs were fitted, everything was connected up, and the receiver was switched on. A touch on the tuning knob and at 2300 Moscow time Russia's coverage of the ice hockey championships from Finland came up on the screen - in full colour with crisp audio and no trace of noise or residual dispersal. The moment had come for congratulations all round: the pictures were as good as the store could display from any source, live or recorded.

The hemi/zone and global-beam channels, sitting respectively directly between and hard up against terrestrial carriers, required a further small modification to the receiver. A switch was fitted to disable the a.f.c., which otherwise "snatched" the receiver's tuning away from the wanted signal and locked it on to the adjacent interference (some 50 dB higher in level). All now worked satisfactorily, and we went off to celebrate our achievement in bringing a high quality satellite TV demonstration to London.
Editorial note: Sonic Sound Audio have ceased to trade since publication of these two articles commenced. We understand that their problems were due to excessive stocks at a time of severe depression in the audio/hi-fi market.

Servicing the Rank Z718 Chassis

Part 2

John Coombes

THE field driver/output stage circuit in this chassis (see Fig. 5) is one of the most complex ever to have been used in a mass-produced receiver, so a few words on its operation may help. The basic idea of the circuit is to avoid the centre screen crossover effect that can be a problem with simple class B circuits. The circuit is certainly capable of providing a very linear field scan.

Field Driver/Output Stage Operation

The output transistors are 4VT7 and 4VT8: 4VT7 conducts throughout the scanning cycle while 4 VT 8 starts to conduct towards the centre of the forward scan and remains on during the second half of the scan.

The drive at the base of 4 VT 5 consists of a negativegoing sawtooth. 4VT5/6 form an npn/pnp Darlington driver stage, producing a negative-going sawtooth across 4R25. During the first part of the scan, current flows via 4 R 24 , the scan coupling capacitor 4 C 10 , the NS correction circuit (transductor 5T4 and phase coil 5L11), the field scan coils, 4D3, 4VT7 and the network 4R30/4D4/4D5. The scan current falls to zero at the centre of the scan.

During the first part of the scan 4VT9, which is the driver for 4 VT 8 , is cut off - since the conduction of $4 \mathrm{D} 4 / 5$ and 4D4/7 mean that its base and emitter voltages are the same. Towards the centre of the screen the voltage across 4R30 falls below 1.4 V and 4D5 cuts off. The emitter of 4VT9 is then driven positively with respect to its base, producing a positive-going output across 4 R 28 to drive

4VT8. The current path reverses, with 4C10 discharging via the scan coils, 4 VT 8 and the other series-connected components.

At the end of the forward scan 4VT7 is driven hard on and 4 VT 8 is cut off (via 4 VT 9 which is also cut off). At this point 4 C 12 and the scan coils form a resonant circuit which provides the flyback action, the positive-going pulse at the junction of these items switching off diode 4D3. 4D6 clamps the voltage at the upper plate of 4C12 to the supply rail voltage. When the oscillation tries to swing negatively, 4D3 switches on again and 4VT7 takes over to produce a linear scan current flow under the control of the drive waveform. The feedback via 4R24 assists with scan linearisation.

Field Faults

Field collapse is a fairly common fault and the cause may not be in the field timebase at all - check for dryjoints on the NS transductor 5T4, which is on the line output panel. In the field timebase itself, the first things to check are the supply feed/decoupling components 4R32/ 4 C 14 and the condition of 4 R 30 which may be burnt or open-circuit. Then check 4D4/5/7, which often give trouble and may well be the cause of 4R30's discomfort. Make sure that they are not leaky. Check 4D6 as well. Check whether 4R33, 4R24 or 4R25 is open-circuit, then turn to the transistors. The output transistors 4VT7/8 may be short-circuit - 4VT8 short-circuit emitter-to-collector may be the cause of the overload trip operating. 4VT6

Fig. 5: Field driver and output stage circuits. In 20-26in. mode/s $5 R V 2$ is 470Ω and $5 R 12200 \Omega$

Fig. 6: The audio circuit.
may be short- or open-circuit while 4VT5 may be opencircuit. Make sure that 4 VT 's emitter connection is good. Another possibility is 4 C 10 open-circuit.

Less likely possibilities are the linearity transistors 4VT3 (BC158) and/or 4VT4 (BC148) - they tend to go short-circuit - and open-circuit field scan coils. Also check pins 11 and 12 of plug/socket $4 \mathrm{Z2}$ for dry-joints.

Lack of height is another fault whose cause can lie in the line rather than the field timebase - check the setting of the fifth harmonic tuning coil 5L3. This is done with a scope - couple the probe loosely to the focus adjustment access hole and tune for minimum ringing at minimum brightness. This should be consistent with minimum change of raster size as the brightness control setting is varied. The usual cause of lack of height in the field timebase is 4 R 9 which is in series with the height control. This resistor was $2.7 \mathrm{M} \Omega$ in earlier sets and was subsequently changed to $470 \mathrm{k} \Omega$. Use this latter value in all cases.

In the event of field jitter, check that the field hold control 4RV1 ($470 \mathrm{k} \Omega$) is set correctly in the centre of its track. If this is all right, check the safety resistor 4R33 in the vertical shift circuit. The metal rings at the ends of this resistor tend to crack - they can be soldered as a temporary measure, but replacement is the correct course. Later resistors are wirewound ones, eliminating the problem.

A fault which occasionally occurs is a bright line two inches from the top of the screen with incorrect pincushion correction at the top. The usual cause is the pincushion amplitude control 5RV2 (on the line output panel) going open-circuit or burning up. Its value is 220Ω or 470Ω depending on screen size. Also check 5R12 which is in series with it and sometimes goes open-circuit.

The field convergence circuit has a driver (4VT10) and class B output stage (4VT11/12). The usual cause of field convergence faults is the pnp output transistor 4VT12 (BD510) going short-circuit. As a result, the bias resistor 4 R39 (56Ω) will burn. If 4VT12 is in order but $4 R 39$ is cooking, the npn transistor 4VT11 (BD509) is probably open-circuit.

Sync Faults

In the event of loss of sync it's worth starting by checking the adjustment of the field and line hold controls
(4RV1 and 4RV13 respectively). The next suspect is the sync separator/line oscillator i.c. 4SIC1 (TBA950). If this proves to be in order the fault is almost certainly over on the i.f. strip, where replacement of the TCA270Q demodulator i.c ($2 \mathrm{SIC1}$) will usually restore normal operation. 2 SICl can also be responsible for poor field sync only.

First Anode Presets

We've now covered all the usual timebase faults. The first anode presets 4 R10/1/2 are mounted on the timebase panel and can be responsible for too much or too little of one colour - due to dirt on the tracks or changed values respectively. They were $10 \mathrm{M} \Omega$ in early models and $2 \cdot 2 \mathrm{M} \Omega$ in later versions, with changed value resistors in the associated network.

Audio Output Stage

Moving over to the signals side of the set, the only power handling section is the audio output stage, which is again a little unusual (see Fig. 6). The Darlington pair 3VT13/14 provide the output, driving the loudspeaker via the coupling capacitor 3C58. 3VT15 provides a constant-current supply, its base being driven by 3 VT16 which senses the voltage across 3R88, with 3RV9 setting the standing current.

Sound Faults

In the event of no sound, first check 3 VT15 and 3 VT 16 . If these are in order, check 3 VT 16 , the speaker 13LS1 (80Ω), 3C58 and 3R88. The connection to the negative side of 3C58 can break if the panel has had much handling, giving rise to intermittent sound. Possible causes of loss of sound on the i.f. panel are the coupling capacitor 2C48, the intercarrier sound chip 2SIC2 (TBA120SB) and the latter's supply feed/decoupling components 2 R25 (100Ω) and 2C45 ($100 \mu \mathrm{~F}$).
For sound distortion, first check whether 3RV9 can be set for a reading of 0.44 V across 3 R 88 . If this cannot be set correctly, suspect $3 \mathrm{VT} 14 / 15 / 16,3 \mathrm{R} 88$, and 3RV9 (check the condition of its carbon track). Displacement of the loudspeaker's cone is another cause of distortion.

VCR Servicing

Part 11

Mike Phelan

OUR subject this time is servo faults. Let's start by summarizing the basic requirements. In the VHS and Betamax systems the speeds of the drum and capstan motors are kept constant during record, using fixed frequency references, and control pulses are recorded on the control track. During playback, the control pulses provide the reference for either the drum or capstan servo, the other servo being controlled by a fixed frequency reference.

As usual, we'll take as our basic example the Ferguson $3 V 00$ (JVC HR3330) and its equivalents. In these machines the off-tape control pulses control the drum servo on playback, so we'll start off with the capstan servo which is simply a circuit to drive the capstan motor at a constant speed compatible with the VHS system - there is no difference in the servo's operation on record and playback.

The Capstan Servo

Pulses from magnets on the capstan flywheel are compared with a reference consisting of pulses which are divided down from the output of a crystal oscillator (see Fig. 49). The error voltage thus obtained is used to control the capstan motor drive amplifier.

As with any phase-locked loop of this type, faults are of two basic sorts - either no control is exercised on the motor, or the control results in incorrect speed. With this particular system, using an i.c. for comparison followed by a d.c. coupled amplifier, it's unusual for the control loop to fail and the speed to remain correct. If the i.c. or either input to the comparator (from the oscillator or the capstan pick-up head) fails, the speed will be far enough out to affect the sound. So what do we get?

If we record on the faulty machine and then play the tape back, things will probably seem fairly normal - the picture may be slightly impaired due to the relative head-to-tape speed (writing speed) being incorrect. Also the tracking control may require adjustment. As the motor speed will be reasonably constant, albeit incorrect, the machine will play back its own tapes with passable results - provided the speed is not too far out. The true story will emerge when we try to play back a prerecorded tape. Any appreciable speed error will be immediately obvious from the sound, while the picture will display bars of noise moving up or down. The reason for the latter condition is that if the tape speed is incorrect the angle at which the video heads scan the tape will also be incorrect. As a result, the heads will cross the video tracks, producing noise bars when one head scans a track that should be scanned by the other track (remember the slant azimuth mounting of the heads). If the speed is nearly correct, the sound will be normal but the picture will go into total noise every few seconds or so. If the picture has one or more stationary noise bars, the fault is not in the servos wait till we come to mechanical faults and tape path adjustments.

When confronted with a capstan servo problem the first check should be at TP11, where a 3.71 Hz trapezoid of about 7 V peak-to-peak should be present. Note the fre-
quency - a scope with fairly good triggering is needed to display this waveform.

Absence of the trapezoid is likely to be due to the pulse at TP12 being absent or of low amplitude. Although IC3 could be defective, the most likely cause is that the capstan pick-up head is open-circuit (sometimes intermittently). A resistance reading of greater than $1 \mathrm{k} \Omega$ between pins 1 and 2 of plug 6 will confirm this. If the pulse is present but of low amplitude, check for excessive endfloat in the capstan flywheel assembly - anything more than 1.5 mm is suspect, and may be the result of the machine being dropped or put down heavily, the inertia of the flywheel bending the bottom bracket. The latter can be removed and carefully straightened, a little at a time.

With the trapezoid present but no servo action, check for a waveform at pin 3 of IC4 to prove that the oscillator is running. Absence of this would bring the i.c. and the crystal under suspicion.

If there is a gross speed error, it's as well to see whether or not the servo is trying to provide correction. This means breaking into the vicious circle that goes with this type of fault - you get the same problem with flywheel sync, a.g.c. and numerous other things. A good starting point is pin 16 (the control voltage) of the i.c. This will speed up the motor if high and vice versa. If the servo is working normally, an increase in capstan speed will result in the control voltage falling in an effort to provide compensation. Thus a check on this voltage should show whether the servo is trying to correct speed errors or the voltage here is the cause of the incorrect speed.

To provide an example, suppose that the capstan is obviously running too fast and a voltage check at pin 16 produces a reading of say 3 V . This indicates that the servo is working but cannot control the motor's speed. Slowing the flywheel down by hand will result in the control voltage rising, thus proving the point. In this case the fault will be in the motor drive amplifier - probably transistor X2 short-circuit. Had the voltage at pin 16 been high on the other hand, the motor drive amplifier would have been working correctly, the high voltage being due to a servo fault - probably the i.c.

If the control voltage is high but the motor runs slow, there's probably some resistance to its turning. Apart from the motor itself, which sometimes gives trouble, we must leave this point until we get to mechanical faults any mechanical resistance to the passage of the tape will result in the servo producing a high error voltage in an effort to overcome the resistance.

The Drum Servo

Next to the drum servo. Once again we'll first consider what happens when the speed is incorrect. If there is much of an error the picture will look as if the line hold needs adjusting - because the number of lines per second being picked up by a head depends on its speed. As each track is one field, there will also be regular noise bars due to the error in the relative head-to-tape speed. If the error is not too severe, the picture will float from side to

Fig. 49: The capstan servo.

Fig. 50: The drum servo.

Fig. 51: Drum motor assembly.

Fig. 52: Head switching adjustment.
side, probably with no colour. If the servo is attempting to correct the speed there'll be a rhythmic change from a still picture to lines. Anything that affects the tape speed or causes wrinkles on the lower edge of the tape will result in variations in the frequency of the control pulses which in these machines form the reference pulses for the drum servo. We'll discuss these latter faults in more detail when we deal with the mechanics.

When confronted with a drum servo fault the first thing to do is to attempt adjustment. R49 and R52 are the two presets concerned in this machine. R52 must be adjusted first: it alters the loop gain and must be set so that the servo's gain is at maximum without oscillation. The easiest way to carry out the adjustment is to damp the motor by connecting a $100 \Omega, 1 \mathrm{~W}$ resistor between TP16 and TP13, then put the machine in play and pause: scope the waveform at the collector of transistor X9, turn R52 clockwise until the trace becomes unstable with
negative-going spikes, and finally back off until the spikes only just disappear (don't give the customary 10° for luck!).

If this adjustment is out, the servo will "hunt", the picture shifting sideways and the colour becoming displaced rhythmically. It's interesting to consider why. If R52 is turned too far anticlockwise, the motor drive amplifier will have insufficient gain to stabilise the servo: if it's turned too far the other way, the loop gain will be too great and the system will oscillate. Both effects give similar results.

The other preset (R49) sets the free running speed. The easiest way to adjust it is to put the machine in record, switched to the "camera" input. This ensures that no sync pulses are produced and the drum servo runs free. When the speed is correct, the drum will appear to be stationary when viewed under a 50 Hz mains fluorescent light. When the free running speed is not correct, the drum will take a long time to lock up - if it does so at all. As the trapezoid's slope is steeper on record, the machine may work on playback.
If you find that it's necessary to carry out these adjustments frequently, the head drum motor is probably defective. To check this, look at the waveform at TP16 with the machine in play and the pause key depressed. This will remove the control pulses by stopping the tape, with the result that the output voltage from the comparator circuit should be constant. Provided the motor drive amplifier is correctly set up (R52), the ripple at TP16 should be less than 1 V . If it's more than this, the motor is drawing excessive current and in consequence there's ripple in the feedback loop.

In this case you might think that the only cure is to fit a new motor. It's possible to repair these motors quite successfully however. There are various causes of excessive current demand, but the most common one is that the gaps between the commutator segments have filled with copper dust, shorting out the armature windings. If you remove the belt and spin the motor pulley it should feel smooth: if any roughness is detectable the armature is distorted and fouling the polepiece - there is no cure for this.

If the motor feels smooth, proceed as follows. Remove and disconnect the motor and remove the circlip and shims from the shaft (if fitted). Earlier motors did not have the circlip. File out the parts where the case is staked over the endplate, at the opposite end to the shaft (see Fig. 51). The endplate can then be carefully levered out, taking care not to damage the brushes. The armature cannot be removed until the annular polepiece has been taken out - provided the case has not been burred, the polepiece will slide out without difficulty. Once the armature is out, the gaps in the commutator can be cleaned, using a fine needle or a scalpel blade. Take care not to cut the copper. Wash off, using switch cleaner or alcohol, and clean the brushes with the same solution. When reassembling, don't try to stake the case over: if it's not a tight fit, a few spots of epory adhesive should do the trick. The motor should now wark.

Head Switching

The only point left to cover is adjustment of the head switching (refer back to Fig. 15 to see what's involved). There are three adjustments, two (R21 and R24) for playback and one (R8) for record. Those for playback must be adjusted first, using a known good tape (prefer-
ably the manufacturer's alignment tape). A double-beam scope is required, with one channel connected to TP7 and the other to TP2 (both on the servo board). Adjust for the condition shown in Fig. 52, using the scope's positive trigger for R21 and the negative trigger for R24. Then adjust R8 on record. In each case adjust for six and a half lines between the bistable's changeover point (TP7) and the start of the field sync pulse at TP2.

A quick word on the effect of incorrect adjustment. If the switching occurs too late, it may obliterate the field sync pulse, causing jitter or rolling, or may even appear at
the top of the picture. If the switching occurs too soon, it will appear at the bottom of the picture area as a few displaced lines.

Preset Tracking Control

One final adjustment - the preset tracking control R10. To adjust this, make a recording and play it back with the front tracking control in its click position. Connect the scope to TP7 on the pre-rec board and adjust R10 slowly for maximum level f.m.

Servicing Luxor 90 Hybrid CTVs

Part 2

This final instalment deals with the sync and timebase sections of the receiver.

In the event of lack of sync - field, line or both - check the sync separator transistor Q701 (BC134) and the attendant noise inverter transistor Q702 (BC148). Weak sync shows up first on the field scan. If the sync fault is confined to one of the timebases only, note that there's a pulse amplifier stage in each sync pulse feed. Check the appropriate transistors - Q704 (BC153) in the field sync circuit, and Q703 (BF178) which is transformer coupled to the flywheel line sync discriminator circuit. Fig. 3 shows the sync circuitry.

The Field Timebase

The field timebase consists of a PCL805 in a fairly straightforward circuit. Note that the triode section is used as a blocking oscillator rather than being crosscoupled with the pentode section. The hold control set-

Tony Thompson

ting is critical, but little drift should be experienced.
The PCL805 works hard and is a regular offender. Lazy opening, field slip, jitter - all the usual tricks. If lack of height can be cured by adjusting the height control R753 ($2 \cdot 5 \mathrm{M} \Omega$ - you may find it labelled "hold") it's likely that the control is in need of replacement. Don't rely on switch cleaner - the effect of this won't last. Some sets were fitted with a PL508 on an adaptor. This gives much wider hold control and is an altogether more acceptable arrangement. The hold control itself (R746, 250k Ω) is vulnerable to damage since it has a spindle that sticks through the back of the cabinet. I've used a standard volume control as a replacement in several sets.

If almost complete field collapse cannot be cured by changing the valve, check the $2 \cdot 2 \mathrm{M} \Omega$ resistor R 754 that's in series with the height control. There should be 530 V at the feed end of this resistor. If you find a pulse voltage instead - check with your meter on the 1 kV a.c. range the rectifier that provides the 530 V supply is short-circuit.

Fig. 3: The sync circuit used in Luxor 90° hybrid colour sets. This must be one of the most complex discrete component sync circuits to have been used in a production chassis. 0701 is a conventional sync separator, producing negative-going sync pulses at its collector (positive-going sync at its base). 0702 is normally forward biased at its base, but a negative-going noise spike (which will be positive-going at the base of 0701 I) will pass to its base via D701, thus preventing conduction of 0702 and 0701 . The field sync pulses are passed via a two-section integrating network and coupling capacitor to the base of the amplifier/clipper transistor 0704, which produces constant-amplitude pulses to synchronise the field oscillator. The line sync pulses pass via 0705 to the base of 0703, cutting it off and thus applying a pulse to the tuned circuit coupled to its collector. The tuned circuit provides a sinewave (one complete cycle per sync pulse) to drive the flywheel sync diodes -the flywheel sync discriminator circuit is of the type used in early versions of the Rank A823 chassis.

It's D902, type E250C10, over in the line output stage. Replace it and R754 which will have suffered, and check the reservoir capacitor C911 (•001 $\mu \mathrm{F}$) - a high-voltage type should be used in this position.

Line Timebase Faults

There are four valves in the line timebase. A PCF802 line oscillator drives the PL509 (or PL519) line output valve, the unusual feature of the line output stage being the use of a miniature PC92 triode in the width/e.h.t. stabilising circuit (see Fig. 4). This triode is mounted on the upright panel but is buried inside the line output stage screened compartment, beneath the line output transformer. It's consequently difficult to locate and replace, causing much head-scratching if it's late in the day and you've the problem of a seemingly impossible opencircuit heater chain. The other line output stage valve is the PY500A boost diode.

Preset line hold control is provided by the line oscillator coil L703, which is behind the PCF802. Because of its position, the chassis should be withdrawn should adjustment be necessary. The use of a screwdriver-ended plastic knitting needle also helps. Unless you're brave enough to reach in with your hand . . . Cases of line drift will nearly always respond to a new PCF802. Get a good brand. Lack of or weak line sync can be caused by the high-value ($2 \cdot 7 \mathrm{M} \Omega$) resistors R748/9 in the flywheel sync discriminator circuit.

Difficulty in setting the width should lead to investigation of the PC92 valve. Check particularly for 16 V positive at its cathode. If this is not present, the chances are that the 16 V zener diode D901 (BZY85/C16) is shortcircuit. R911 is the width/set e.h.t. potentiometer - it's adjustable from the print side of the line output stage panel. The other troublesome item here is the high-value $(2 \cdot 2 \mathrm{M} \Omega)$ resistor R 909 . Though rated at only 1 W , it's a big, imposing looking component and tends to be overlooked in the quest for why the e.h.t. is excessive and the action of the width/set e.h.t. control is limited or nonexistent. I find that resistance measurement is inconclusive, the best course being replacement. Using two resistors in series to make up the value approximately is worthwhile, since the cause of failure seems to be the high pulse voltage developed across R909.

You may well find a number of dry-joints on the line output panel, particularly around the valve bases and the high-wattage wirewound resistors. But check the entire panel carefully: this can save early failure. The connections from the valve caps to the line output transformer are particularly suspect, as metal strips are used instead of wire. Flexing of the Paxolin tag panel on the line output transformer here can cause cracked or dry-joints.
The focus control itself is reliable, apart from the unfortunate tendency for its centre spindle to push through when provoked - handle with care. Focus variations are much more likely to be due to moisture in or around the tube's cavity connector, especially if this is of the older type. Fit a moisture resistant type if possible, especially if the set's working location is likely to be dampish. Unfortunately another cause of focus variation is the tube itself. Soft boosting helps for a while.
Black, flickering lines accompanied by picture tinting will be caused by one of the many spark gaps on the c.r.t. base arcing: listen for the faint ticking if you can't see the offender. A good brushing may clear this, or gentle needle filing. I've found lots of these spark gaps simply cut

Fig. 4: The line output stage circuit used in Luxor 90° hybrid colour receivers. Widthle.h.t. stabilisation is carried out by the PC92 triode and its associated components - "active" stabiliser circuits were popular amongst Scandinavian set designers at that time. The triode acts as a pulsed amplifier, conducting when a positive-going line flyback pulse is applied to its anode via C907. The triode's conduction depends on the pulse amplitude and the bias applied to its grid via R911. When the triode conducts, C907 acquires a negative charge to add to the bias developed at the control grid of the PL509 line output valve. This charge leaks away via R907 between pulses. The conventional stabilising element R903 is included to ensure that a degree of stabilisation continues in the event of failure of the PC92 triode. Note that the height control is fed (via R754) from a separate rectifier circuit (D902/C911) instead of from the 950V boost rail.
out of circuit: can't be good, yet the sets have probably run for years without this protection.
The e.h.t. tripler is as reliable as any I've come across: the occasional failure is easily put right by using a universal tray.
Finally, just to show that fault-finding can at times be confusing, here's a recent example. The customer's complaint was of a slowish field collapse followed by a blank screen (no raster). Investigation showed that the supply to the anode of the field oscillator was missing, and I caught sight of a sprung-open wirewound resistor on the power supply panel. Resoldering this produced a different set of symptoms however - low field scan, a rolling picture and what looked shockingly like a worn-out tube. Only I knew that it wasn't! Then I twigged it - the line output valve was glowing dimly red at its anode. Hasty replacement of the PCF802 restored everything to normal.

Teletopics

HIGH-DEFINITION TV DEMONSTRATED

This year's annual meeting of the EBU General Assembly, held at Killarney under the auspices of Radio Telefis Éireann, was the occasion for the first European demonstration of the Japanese NHK high-definition TV system. The system uses 1,125 lines and an aspect ratio of $5: 3$, giving an improvement in definition of some five times in comparison with present TV standards. The main problem of course is the extra bandwidth required (20 MHz): NHK are carrying out a programme of band compression technology studies, whilst bandwidth is less of a problem with DBS transmission. A report on the demonstration says that coverage of American football displayed on a 100 in . projection TV screen enabled the stitches on the leather football to be clearly seen, whilst a scan of the stadium enabled the seat numbers to be identified. This material was provided by CBS, whose head of engineering and development Joe Flaherty commented "somewhere during the period 1986-90 a high-definition television system is going to do to the current generation of domestic TV systems what colour did to black-and-white in the sixties." The Japanese Broadcasting Corporation (NHK) is clearly determined that should this happen the system that will be adopted as an international standard will be theirs. Work on the system has been continuing since 1970, with various Japanese manufacturers (including Sony, Ikegami, Panasonic and Hitachi) contributing by developing suitable equipment.

Some of the steps in the development of the system are as follows, in chronological order. 1972 saw the development of a 22 in ., high-definition shadowmask tube. A 2 in . RBS (return beam saticon) pickup tube with high resolution and signal-to-noise ratio was developed for highdefinition TV use in 1974, and an experimental camera was built. In 1978 a 30 in . high-definition tube with 5:3 apect ratio was developed, along with a convergence system using a digital memory - this system was subsequently used in projection TV displays. 1978 also saw the first test transmission of high-definition TV via satellite, using the BSE satellite: because of the satellite's low output power, the luminance and chrominance signals were transmitted separately, using f.m. with bandwidths of 75 MHz and 25 MHz respectively. Reception was achieved with a 1.6 m dish.

A camera using a DIS (diode-operation impregnated cathode saticon) tube was developed in 1980, also a telecine capable of converting 70 mm movie film to highdefinition TV using a laser flying-spot scanner, and a high-speed analogue-to-digital converter for highdefinition TV use. The development of digital highdefinition TV equipment started, including a VTR timebase corrector and image enhancer. A series of experiments were conducted in the 38 GHz band.
A VTR for high-definition TV use was developed in 1981, using high-speed, high-density recording technology. Developments this year include a DIS tube with improved signal-to-noise ratio (achieved by taking the signal from the faceplate end of the tube) and a 220 in . projection system.
Whilst this is all very commendable, we are left a little concerned by NHK's comment that the system "will be
acceptable and most suitable for an imaging system in the future post industrial society."

STATION NEWS

The following relay transmitters are now in operation: Afon Dyfi (Powys) BBC-Wales ch. 22, HTV-Wales ch. $25, \mathrm{BBC}-2$ ch. 28, Sianel 4 Cymru (future) ch. 32.
Boscastle (Cornwall) Television South West ch. 23, BBC-2 ch. 26 , TV4 (future) ch. 29, BBC-1 ch. 33.
Chipping Norton (Oxfordshire) BBC-2 ch. 48, Central Independent Television ch. 55, BBC-1 ch. 65, TV4 (future) ch. 67.
Hartland (N. Devon) BBC-1 ch. 48, Television South West ch. 52, BBC-2 ch. 56, TV4 (future) ch. 66.
Holmfield (W. Yorkshire) BBC-1 ch. 55, Yorkshire Television ch. 59, BBC-2 ch. 62, TV4 (future) ch. 65.
Mevagissey (Cornwall) BBC-1 ch. 40 , Television South West ch. 43, BBC-2 ch. 46, TV4 (future) ch. 50.
Ogbournes (Wiltshire) BBC-1 ch. 40, HTV-West ch. 43, BBC-2 ch. 46, TV4 (future) ch. 50.
Swimbridge (N. Devon) Television South West ch. 23, BBC-2 ch. 26, TV4 (future) ch. 29, BBC-1 ch. 33.

The above transmissions are all vertically polarised.
All new BBC transmitter openings are now being announced on Ceefax - by selecting page 196 a series of rotating pages giving details of new transmitters, lowpower working at existing stations, BBC survey work and other news is obtained. The Thursday morning BBC-2 service information programme now simply presents information about reduced-power working and off-air periods, as on the other weekday mornings.

Channel 4 trade test transmissions from many of the high-power transmitters have now commenced. These are from 9 a.m. to 8 p.m. daily (including Sundays) and are subject to interruption or power reduction to enable engineering work to be carried out. Since many recently installed relay stations are already equipped for $\mathrm{C} 4 / \mathrm{S} 4 \mathrm{C}$ transmission, these too will be carrying the trade test transmissions - provided a programme feed is available.

NEW TV ICs

Five new TV i.c.s are now available from Mullard. The TDA3540 and TDA3541 are direct replacements for the TDA2540 and TDA2541 i.f. i.c.s, with a much improved specification. The synchronous demodulator has been redesigned to give $10-20 \mathrm{~dB}$ less intermodulation than before with about 3 dB higher sensitivity. The video bandwidth is now 7 MHz , and the performance of the a.g.c. and a.f.c. circuits has been improved. Other features include a white spot inverter, video preamplifier with noise protection, a.f.c. with on/off switching, a.g.c. with noise gating and provision for external switching to enable a VCR playback signal for example to be inserted. The i.c.s are available in 16 -lead plastic DIL or QIL packs.

There are three i.c.s for use in the sync and timebase sections of the receiver. The TDA2578 combines the sync operations with line and field oscillators - the flywheel line sync circuit has two control loops. It also supplies a three-level sandcastle pulse, with continuous blanking in the event of a field fault being detected. The TDA3651 and TDA3652 provide the field output to drive 90° and 110° tubes respectively. Whilst the power and current ratings of the field output chips differ the pin connections are the same, enabling the same board to be used in both 90° and 110° sets. The TDA3651 will drive various deflection coils at currents up to 2 A peak-to-
peak, the TDA3652 providing a drive at up to 4 A peak-to-peak. The maximum flyback voltage is in each case 50 V . Use of a TDA 2578 plus TDA3651/TDA3652 combination results in a slightly simpler circuit than with the TDA3576A plus TDA3650 combination as a result of the omission of the field sync count-down circuit. The TDA2578 comes in an 18-pin plastic DIL pack: the TDA3651/TDA3652 are available in 9-lead plastic power SIL or SIL bent to DIL configurations.

INDUSTRIAL GLOOM

The failure of the oft-promised economic recovery to show any signs of starting is affecting much of the radio/audio/TV industry. Excessive stocks are blamed by GEC-Hitachi for plans to reduce the workforce at their Hirwaun, S. Wales plant from 1,900 to 1,070 . The plant is working at about half its production capacity of 300,000 colour sets a year - a three-day week was implemented last April. The consequences for Alba and loudspeaker manufacturer Wharfedale have been more drastic: Alba have called in the receivers while Rank have closed the Wharfedale factory. Alba continues to trade - the receivers hope to be able to offer parts of the business for sale as going concerns - but Rank's action seems final after failure to find a buyer for the Wharfedale business.

Alba is one of the oldest firms in the UK radio/TV industry, having been started by Alfred Balcombe in 1917. The firm produced its own TV chassis until 1966, when it started to use Philips chassis and later Thorn chassis. In 1960 they were the first firm to offer a printed panel exchange scheme. Wharfedale were 50 years old this year, having been started by Gilbert Briggs in 1932. The story goes that he bought a couple of old German loudspeakers in a junk shop and decided he could produce a better product. Wharfedale became well known for extension speakers before the war. In the rarly fifties Gilbert Briggs did much to get the cult of hi-fi started - his book entitled "Sound Reproduction" was the bible for many of us in those days, and his de monstrations at the Royal Festival Hall and elsewhere will long be remembered. The firm was sold to Rank in 1959, with G.A. Briggs remaining in charge until his retirement in 1963.

EUROPEAN VCR PRODUCTION

Production of VHS VCRs has now started in Europe, at the J2T joint-venture plant in W. Berlin. The plant is expected to produce some 300,000 standard machines next year whilst the Newhaven plant in the UK, due to commence operations this October, will be able to produce up-market models at a rate of some 200,000 a year.

Sony have been assembling Betamax machines at Fellbach, near Stuttgart, W. Germany since this May and hope to have a fully fledged production plant in operation there by 1984. Philips are planning to start manufacture of V2000 system VCRs in France by the end of the year, with a sales target of 250,000 machines in 1984. Thomson-Brandt, who have signed a separate agreement with JVC, expect to produce 100,000 VHS machines at Moulins, central France, next year.

GRUNDIG-TELEFUNKEN DEAL

An announcement of plans for Grundig to take over control of AEG-Telefunken's consumer electronics operations has been made. AEG-Telefunken have been making heavy losses for several years now and GEC are interested in the heavy electrical and telecommunications
side. Because of the need for approval by the W. German cartel office, the complex deal between Grundig and Telefunken is awaiting finalisation as we go to press.

CINEVISION 200

The bright display provided by the ITT CineVision 200 projection TV system received favourable comment at CETEX - no need to view under darkened ambient lighting conditions. This superior performance is obtained by using Novabeam projection tubes and a parabolic, silvered screen - both manufactured by the Kloss Video Corporation in the USA. The Novabeam tube incorporates the c.r.t. plus Schmidt mirror and lens in a single unit - in fact it's a form of lightguide tube (see Developments in Projection TV, June 1981).

TV COURSES

The South London College's annual autumn practical colour television servicing course starts on September 30th. The 16 lecture/practical class meetings will be held on consecutive Thursday evenings from 6-15-9•15. An examination is held at the end of the course, which is intended for those already having some qualifications and experience. The examination is conducted by the RTEEB and a recognised certificate is awarded. Details can be obtained from the Senior Administrative Officer, South London College, Knights Hill, London SE27 0TX.

The Southern Centre of the Royal Television Society is sponsoring a course of nine evening lectures to be held at the Southampton Technical College, starting on October 19th. The title of the course is "An Introduction to Broadcast Television": it's intended for those interested in the engineering side of studio work. Details are available from C. Terry, Educational Television Unit, Southampton Technical College, St. Mary Street, Southampton SO9 4WX.

NEW VCRs FROM HITACHI

The latest VCRs from Hitachi are the VT9300 and VT9500 which supersede the VT8300 and VT8500 respectively. Derek Snelling reports that they represent a complete redesign from the previous models, even down to different mechanics in some areas, particularly the brakes. The VT9300 is a basic, budget-priced machine designed to sell to the first time VCR buyer at around $£ 460$. The mechanical tape counter used in the previous model has been superseded by an electronic digital readout which doubles as the timer display indicator for set-

COLOUR PORTABLE PROJECT

Some constructors have had difficulty with teletext lines superimposed on the picture. On investigation, this has been found to be the result of slight foldover due to the field deflection coils being used having a different $L R$ ratio to those on the sample tube on which our original development work was done. The solution is simple change the values of the stabilising components associated with the field timebase i.c. The new recommended values are $150 \mathrm{k} \Omega$ for R 30 and 100 pF for C 25 . These changes also improve the field linearity, especially at the top of the picture. Where they are made to a set that has already been built the field linearity control will need to be reset.
ting the current time and for timing recordings. The visual search facility now runs at nine times the normal speed, and there's microcomputer function control. A ten day, one programme timer which is particularly simple to set is used. The audio dub and frame advance facilities have been dropped.
The VT9500 is a more sophisticated version of the machine, offering in addition Dolby sound, still frame and frame advance, audio dub and a ten day, three programme timer. The tape index and half/double speed features have been dropped. A retail price of around $£ 565$ is suggested.

An interesting feature tucked away inside these machines where the customer can't get at it is an "auto replay switch": when this is in the on position, the machine goes straight back into play after rewinding at the end of a tape. Useful for demonstrations - or for servicing in the event of an intermittent fault.

SUBSCRIPTION TV

Most of the two-year trial subscription TV services authorised by the Home Secretary in 1981 have now been in operation long enough for those running them to be able to make a preliminary assessment of the
response. Under the trial scheme, cable operators serving some 110,000 homes are permitted to offer their customers an exira channel, at an additional charge of around $£ 6-£ 12$ a month, carrying mainly feature films.

A shortage of decoders has hampered the services in some areas, but that apart the response seems to have been quite variable from place to place. Radio Rentals for example report that the response to their Cinematel service in the Medway towns was considerably more successful than in Swindon, while Rediffusion report a success rate of 28 per cent in Hull compared to an average of 13 per cent overall in the five towns where their Starview service is available. Rediffusion also report that there is a degree of resistance to charges in excess of $£ 8$ a month: they have recently reduced the charges in three towns. Visionhire report an "encouragingly high" response from subscribers to their Showcable service in N.E. London.

It's difficult to know quite what to make of all this. At $£ 8$ a month for say $15-20$ titles you're getting a limited choice rather more cheaply than by hiring cassettes, especially since you don't have to acquire a VCR. The quality should also be better, but the fact is that the amount of material now available in cassette form is vast. Cheap discs will add further to the complications in coming to an eventual conclusion.

Inside the Philips VR2020
 \section*{Part 5}

Brian Dempster

Power supply panels P30/P80 were modified at production code WD53: the outputs remain about the same, but the method of derivation changes somewhat. The various rails provided are suffixed a or b. Those suffixed a are available continuously (assuming a mains input of course) whilst those suffixed b appear only when an instruction is received from the microcomputer on panel U20. This instruction arrives when the machine is switched on or any tape transport button is pressed. A guide to the presence of the instruction to activate the blines is the tape counter and channel displays, since these are enabled by the same signal. A simplified circuit of the earlier version of the power supply is shown in Fig. 35.

The primary winding of the mains transformer is energised all the time, there being no mains on/off switch. Two thermal fuses, TF1 and TF2, are incorporated, one in each limb. The three secondary windings feed bridge rectifiers via anti-surge fuses.

The $+12 \mathrm{a},+15 \mathrm{a}$ and +35 a lines are produced by bridge rectifier BR1. The +12 a supply feeds the sync and motor control panels U140 and U180 and the aerial amplifier U300. The series regulator REG1 is mounted on subpanel P80 at the rear of the machine and is of the three-terminal type. It embodies both excess current (short-circuit) and thermal protection.

Over-voltage protection for the +12 a line is provided by zener diode $\mathrm{Z1}$ in conjunction with thyristor TH1 and relay R. If the voltage on the line exceeds 13 V , zener diode Z 1 conducts, the voltage at its anode in turn triggering thyristor TH1 which turns on and latches via relay R. The relay's normally-closed contacts then open, disabling all three supply lines. The same situation occurs when a switch-off signal arrives from the motor control panel (see Fig. 34). These supply lines remain disabled until the
mains input has been removed for thirty seconds or so. A switch-off signal does not occur when there's no tape in the machine, thus assisting with fault-finding.

The +15 a line feeds the wind and rewind motors and, on earlier machines, the pressure roller and brake solenoids. The +35 a line feeds the position sensing switches for the brake, pressure roller and eject solenoids and the drum servo driver transistors, also the circuit that produces the " +11 " supply for the wind and rewind motors (see Fig. 33). These two lines do not need to be stabilised.

The +5 a supply goes to the microcomputer panel U20 and the control/display panel. A high degree of stability and smoothing is required here, so a switch-mode system is used (chopper transistor T1, inductive reservoir L1, plus D1 and C2).

Bridge rectifier BR2 charges the high-value $(4,700 \mu \mathrm{~F})$ reservoir capacitor C 1 , the resultant voltage being applied via the 2 A quick-blow fuse to the emitter of T1 which is switched on and off by the variable mark-space ratio drive waveform at its base - the circuit is a conventional series chopper arrangement. The greater the ratio of the transistor's on time to its off time, the higher the voltage developed across C2. To achieve stabilisation, a sample of the output voltage is obtained from the potential divider R1/2 and fed to control circuit.

The latter contains a sawtooth generator, whose frequency is set at about 30 kHz by an $R C$ network, and a voltage comparator circuit - the principle was illustrated in Fig. 6 on page 546 last month. The sample voltage from R1/2 is compared to a reference voltage, the output from the comparator and the sawtooth being the two inputs to a pulse-width modulator. When the sawtooth voltage exceeds the voltage from the comparator, the modulator's output goes high - and vice versa. The net

Fig. 35: Power supply circuitry - original version.
result is a squarewave output whose mark-space ratio is determined by the sample voltage from R1/2. After current amplification in the control i.c., this squarewave output is used to drive T1. To avoid excessive dissipation, T1 is over-driven so that it's either saturated or cut-off.

When T1 switches on, current flows via L1 and D1 is switched off. As a result, energy in the form of a magnetic field is stored in the reservoir inductor. When T1 switches off, the collapsing field around L1 switches D1 on, clamping the left-hand side of L1 to chassis. Current continues to flow therefore, T1 eventually switching on again to begin a new cycle.

The +5 a supply current flows via R 3 , thus producing a voltage proportional to the current flow. This voltage is applied to another comparator in the control i.c. When the +5 a current reaches about 600 mA limiting commences, any attempt to increase the current flow resulting in reduced output voltage.

Over-voltage protection is provided by $\mathrm{Z} 2, \mathrm{TH} 3$ and TH2 in conjunction with the 2 A quick-blow fuse. If the voltage on the +5 a line exceeds 5.6 V , zener diode D 2 conducts, triggering TH3. The latter's cathode current turns on and latches TH2, blowing the fuse to isolate the supply.

The failure indicator output is normally 5 V and feeds
one of the microcomputer's test inputs, T0. If a mains failure occurs or the voltage at the emitter of T1 falls below 14 V , the failure indicator's output goes to zero. The microcomputer checks T0 very frequently and when it detects a zero input it brings about a sequence of data dumping. This sequence lasts for a very short time and is completed well before the +5 a line decays. The failure indicator"s output also provides the microcomputer reset command when the mains supply is restored. The failure indicator is a very simple two transistor configuration.

Another, similar chopper circuit produces the $+12 b$ and $+45 b$ lines. Its operation, stabilisation and the current limiting are the same as with the +5 a supply except for the following differences. Over-voltage protection is again of the crowbar type, but both the 45 V and 12 V lines are sampled, via Z 4 and Z 3 respectively, so that the 4 A fuse will blow if either line goes high. The current at which limiting occurs is this time 3.5A.

The b lines are available only when the microcomputer sends a logic high to the base of T3 to switch it on. The +45 b line is used for the varicap tuning supply and is obtained from an auxiliary winding on L2, via D5 and its associated reservoir capacitor.

The actuators require $\pm 140 \mathrm{~V}$ supplies. These are derived from the 12 V rail via a d.c.-to-d.c. push-pull con-

Fig. 36: Power supply circuitry - later version.
verter - a couple of transistors oscillating in push-pull at about 30 kHz , with a small transformer to step up the voltage to the required level and diodes to rectify the output.

Later Version.

A simplified circuit of the later version of the power supply is shown in Fig. 36. The $+12 \mathrm{a},+15 \mathrm{a}$ and +35 a supplies remain as in the earlier version.

The +5 a line is now derived via D1 from the +15 a rail before the protection relay (to ensure continuing operation of the microcomputer). A series regulator is used, mounted on panel U80. The over-voltage protection remains the same, and though the failure indicator serves the same purpose there are now four operational amplifiers instead of two transistors.

The +12 a supply is also as in the earlier version, but
without the auxiliary winding on L2 and the push-pull converter.
$45 \mathrm{~V}, 175 \mathrm{~V}$ and -175 V supplies are produced by half-wave rectification from 66 V secondary windings. The h.t. supplies are for the actuators and the 45 V supply for the tuning voltage. Initially the 45 V line was not stabilised, and as a result it could under no load conditions, i.e. when the tuning panel U 60 is removed, rise to 80 V . Damage to the U60 panel could occur when it was subsequently replaced. To avoid this a 47 V zener diode (Z3) was added - the manufacturers recommend that a BZX61/C47 diode is fitted to any unmodified panels.

Since these three supplies are required only when the +12 b supply has been activated by the microcomputer, the earthy end of the transformer's secondary windings is taken to chassis via a triac (TR1). When switched on this device is a virtual short-circuit; when it's off it presents a very high resistance.

Service
 Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 605 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ASA CT5004

There's lack of width, two-three inches at each side of the screen. The line output stage valves - PL509, PY500A and ECC81 - have been replaced and the panel checked for any obvious faults but nothing has come to light. If I fit a faulty ECC81 valve there's excessive width with flyback lines!
The section of the ECC81 used in the line output stage provides width stabilisation. It acts in conjunction with the 20 V zener diode D45 which could well be faulty. The next thing to check is R386 ($2 \cdot 2 \mathrm{M} \Omega$) which links the valve's grid to the boost rail. If necessary, go on to check the other high-value resistors in this area - R383 $(1 \cdot 5 \mathrm{M} \Omega)$, R381 ($1 \cdot 5 \mathrm{M} \Omega$) and R384 ($470 \mathrm{k} \Omega$).

ITT CVC32 CHASSIS

The colour went, leaving a monochrome picture. The TBA560C and TBA540 i.c.s in the decoder have been replaced without curing the fault, but disconnecting R536 from pin 7 (colour-killer output) of IC502 restores the colour. Pin 9 of this i.c. (a.c.c./ident output) is at 5 V instead of 1.5 V .

We suggest you check D507 and C524 ($4 \cdot 7 \mu \mathrm{~F}$) in the colour-killer bias feed line, preferably by substitution. It's possible that a fault in IC503 could be pulling up the voltage at pin 14 and hence at pin 9 of IC502.

THORN 9000 CHASSIS

When the set is switched on the picture is split by horizontal lines an eighth to a quarter of an inch apart. There is also a slight high-pitched hum. Switching off and on clears this. When the channel is changed the set switches itself off for one-two seconds. After about five hours use the horizontal lines keep coming back for about twenty seconds and the set will switch itself off for one-two seconds.

This symptom can be caused by a discharge at the focus spark gap on the c.r.t. base - associated with pin 1. It should be possible to see this in darkness. Either widen the spark gap by filing or fit a new one. Then adjust the focus control for best definition.

RANK A823 CHASSIS

The line output transistors have been replaced but voltage balancing can be brought down to 0 V for only about a minute. The voltage then rises and the transistors start to overheat. The colour is also very weak, with the colour control having no effect.

Imbalance between the two line output transistors or failure of one of them upsets the colour in this chassis
because of the low amplitude pulses fed to the decoder. Concentrate on the line cutput stage, replacing the transistors if they seem to have been damaged. Before switching on, check (preferably by substitution) the resistors in the line output transistor base drive circuits - 6R1/2/3/4also the flyback tuning capacitors $6 \mathrm{C} 5 / 6$. Finally, ensure that you carry out the balancing procedure at a low setting of the h.t. control.

ITT CVC5 CHASSIS

There's no raster or sound. A new line output transformer was fitted, producing a fair amount of e.h.t. The transformer's field gives a healthy glow in a neon screwdriver, but after a short time the windings begin to smoke. F4 has blown, removing the 20 V line and hence the raster, but the bridge rectifier and 20 V stabiliser circuit seem to be o.k. The l.t. current is nearly 2 A , but if the vertical shift circuit is disconnected the current is normal.
Disconnect the vertical shift circuit from the l.t. department then check with an ohmmeter whether it's earthed - it should be floating. If it's earthed, a sliver of solder on the component side of the board or a blob on the print side will probably be responsible. Both problems could be due to the raster correction transductor's insulation having broken down. Whenever we've seen smoke coming from a newly fitted line output transformer on one of these sets it's been due to the pulse lead to the decoder having been accidentally earthed - often trapped between the tuner bracket and chassis. Disconnect pin 4 of the line output transformer to prove the point.

PYE 731 CHASSIS

The h.t. fuse blew and the line output transistor and the 30 V zener diode in series with it were found to be shortcircuit. These items were replaced, as was the c.r.t. first anode reservoir capacitor C563 as a precaution. Unfortunately the fuse promptly blew again. The tripler was then disconnected, but another fuse blew. With all circuits connected the h.t. current reads $2 \cdot 5 \mathrm{~A}$ and the h.t. feed resistors R972/3 glow visibly red hot within a matter of seconds.

Unfortunately a chain-reaction fault can occur - the focus potentiometer goes low in value, destroying the tripler, then the line output transformer, followed by the line output transistor and the thyristor in the h.t. supply the latter goes into the diode mode. Progressive disconnection of these items is the only way of handling this situation.

THORN 9000 CHASSIS

There is no pincushion or width control on this set. W712 in the diode modulator circuit has been replaced, also the associated l.t. reservoir capacitor. The only clue is lack of voltage on the diode modelator driver transistor VT702.

Make sure that VT702 and its driver VT654 are not leaky or short-circuit. Then check $\mathrm{C} 728(4 \cdot 7 \mu \mathrm{~F})$, the other diode (W711) in the modulator circuit and the continuity of L715. Make sure that there are no bad joints around the modulator transformer T705.

ITT VC300 CHASSIS

The problem with this monochrome portable is top foldover. The voltages on all the transistors (T6-T12) in the field timebase are correct however.

Check the field flyback diode D14, the flyback tuning capacitor C70 and the scan coil coupling capacitor C71. If these are in order it's likely that either the scan coils or the thermistor within them (R93A) is faulty.

Long-distance Television

Roger Bunney

The Sporadic E season is now well established, with many signals from the south and east - especially the USSR - though reception from Scandinavia has unfortunately been rather limited. The openings during June were "patchy", with excellent periods followed by lulls lasting for several days. Most days produced at least something for someone, though many openings were sudden to arrive - and as quick to depart! To save space, the following log lists sources only, not channels:
3/6/82 RTVE (Spain).
4/6/82 RTP (Portugal); RTVE; RAI (Italy); TSS (USSR); MTV (Hungary). Also improved tropospheric reception at u.h.f.
5/6/82 A very intense opening from the late afternoon. NRK (Norway); TSS; MTV; TVP (Poland); RAI; RTP; RTVE; TDF (France); ARD (W. Germany). Band III SpE signals in chs. E5/R6 were noted at 1936, with Hugh Cocks logging reception in ch. R7.
6/6/82 TSS; NRK; TVP; ORF (Austria); RTVE.
7/6/82 RTP; RTVE. Also improved tropospheric reception in eastern UK, with signals from DR (Denmark) and ARD (in Band III and at u.h.f.).

8/6/82 RTVE; RTP; RAI; JRT (Yugoslavia); CST (Czechoslovakia); TVP; DFF (E. Germany); TSS; YLE (Finland); MTV; SR (Sweden). Improved tropospherics as on the previous day, with TDF stations in addition.
9/6/82 TSS; TVP; CST; MTV; TVR (Rumania) - a rare visitor this year, on ch. R3; RAI; DFF. Plus tropospheric reception, both normal and via ducting from W. Germany to central UK at u.h.f.

10/6/82 RTVE; RAI; TDF; DFF.
11/6/82 TVR; TVP; DFF; CST; MTV; ORF; ARD.
12/6/82 RTVE; JRT; MTV; TSS; NCT (Italian Udine free station, ch. E3).
14/6/82 SR; RUV (Iceland); RAI; TSS; Switzerland.
15/6/82 RUV; SR; TSS; TVP; ORF; TVP; CST.
16/6/82 MTV; TSS; JRT; RTVE; lunchtime Band I F2 and possible double hop SpE; RTVE/Canary Islands.
17/6/82 NRK; SR; TSS; RTVE.
18/6/82 RTVE; TDF; RAI; SR; NRK; YLE; RTM (Morocco) ch. E4 with PM5544 pattern at 1845 BST.
19/6/82 ARD.
20/6/82 RTVE.
21/6/82 ORF; TSS; MTV; RTVE; RAI.
23/6/82 RTVE; RTP; RTVE/Canary Islands ch. E3; TSS.
24/6/82 RTVE; RAI; RTP; JRT; MTV; ARD; TSS; SR; NRK.
25/6/82 TSS; SR; JRT; MTV; ORF.
26/6/82 TSS; NRK; RAI; RTVE; JRT.
27/6/82 RTVE; RAI; JRT; NRK.

28/6/82 SR; TSS; YLE; RTVE
 29/6/82 RTVE; RAI; RTP.
 30/6/82 RTP; RTVE; NRK.

There were several small SpE openings up to July 5th.
Those experienced in double-hop SpE and $\mathrm{F} 2 / \mathrm{TE}$ reception received some interesting signals. ZTV (Gwelo, Zimbabwe ch. E2) was present on the 9th, 13th and 21 st , Dubai ch. E2 on the 16th, and GBC (Ghana) ch. E2 on the 24th - all via F2. Cyril Willis had suspected Syrian double-hop SpE reception on the 9 th, Ryn Muntjewerff (Holland) receiving JTV Amman ch. E3 on the same day. There was similar reception on the 24th.

To the west, two Dutch enthusiasts logged lunchtime F2 reception of a ch. A2 system M (525 lines) signal on the 4th. Hugh had night-time double-hop SpE reception from N. America on the 5th (ch. A3 at after 2300), 23rd (Mash on ch. A2 at 2300), 24th (ch. A2 at 2315) and 29th (ch. A2 with Spanish sound). To the south Brian Renforth logged NTV (Nigeria - Sokoto) ch. E3 on May 27th; Hugh also had Sokoto on June 27th, with a clear identification at 1500 .

Altogether then a varied and active month. My thanks to the following for their reception reports: Hugh Cocks (E. Sussex), Brian Renforth (Chippenham), Cyril Willis (Cambridge), Arthur Milliken (Wigan), Iain Menzies (Aberdeen) and our Dutch correspondents Ryn Muntjewerff, Gosta van der Linden and Henny Demming.

News /tems

India: A third Insat TV satellite ($2 \cdot 5 \mathrm{GHz}$ band) may be required since the 1 A craft has run into problems - the on-board fuel stocks are depleted and a solar sail is jammed, giving the craft an expected life of two and a half years.
W. Germany: The second chain (ZDF) is inserting an identification in the top corner for several seconds at intervals. ARD does so less frequently and AFN inserts the identification at the bottom corner. It's assumed that this measure is for copyright/anti video piracy purposes. TVP-1 has been noted in W. Berlin, converted to PAL on ch. E25: the FUBK test pattern is used, with the identification "FuuStBLN-Funk-uber tragungs Stelle Berlin".
E. Germany: The Helpterberg ch. E3 transmitter has apparently been closed, though it was received in the UK as recently as June.

New EBU Listings

Denmark: Vendsyssel ch. E51 22kW e.r.p. horizontal - a must for the next tropospheric opening.
Spain: Monreal chs. E23/29 RTVE1/2 158kW e.r.p. horizontal.
Finland: Tervola ch. E22 YLE-2 1,000kW e.r.p. horizontal.
France: Bergerac/Addrix ch. E37 TDF-1 250/100kW e.r.p. horizontal.

Greece: Saitas-Achaia ch. E4 ERT-1 200W - possible during a good SpE opening.
Portugal: Foia ch. E47 RTP-2 550kW e.r.p. horizontal.

From our Correspondents . . .

Anthony Mann (Perth, Western Australia) reports an unusually active period for SpE during June (these are their winter months), with multiple-hop signals from New Zealand and Malaysia. A PM5544 test card was received with the identification "RTM ?AR?A" at the bottom can any Malaysian reader help identify this? Another overseas reader is seeking a penfriend with interests in
technical matters - and football. Write to John Cromwell, Box 475, Sekondi, Ghana - he's a 16-year old technical student.

A recent series of articles (see February/March/April) described a DX receiving system in which the signal was tuned in, converted to i.f. and processed, then upconverted to u.h.f. for feeding to a standard receiver - the idea being to provide selectivity switching without having to modify the receiver. Paul Barton has constructed a similar system that apparently works very well. The output from an ET021 tuner unit is fed to a Philips G8 selectivity module and a further BF195 amplifier, after which there's another switchable (in/out of circuit) G8 selectivity module giving - once alignment is complete switchable dual i.f. bandwidth working. The first G8 module is aligned for the best/narrowest response. The cores of the second one are tuned to give further bandwidth reduction by providing a "notch-like" effect. Despite the local ch. B2 transmissions, Paul can now receive clear signals on ch. R1. His next project is the construction of a Band I TV spectrum analyser. We wish him good luck with this!

I'm told that the Radioshack Patrolman 50 is available at $£ 24.95$ in the Tandy summer sale - it's a mainsoperated transistor portable with the useful $30-50 \mathrm{MHz}$ band (amongst others). This highly recommended unit enables one to monitor chs. E2/R1 audibly without having to switch on a TV set: it's also useful for general F2 checking in the spectrum below ch. B1.

Italian Free Stations

Neil Carnegie has sent us a detailed report on the present situation in Italy. In the mid-1970s, the Constitutional Court ruled that private radio/TV stations could provide local services via realistically powered transmitters, with each station independently owned, i.e. no one could own more than one station. To be able to purchase better quality programmes, groups of station operators subsequently got together to obtain overseas programmes for simultaneous showing. Such transmissions were given a common identification, i.e. "Canale 5", though the stations themselves remain independent. There are five main programme networks of this type at present. Many small rural stations continue to provide wholly local services, with quiz shows and other home-made programmes. A complete list of stations can be obtained from Dario Monferrini, Via Davanzati 8, I-20158, Milano, Italy for ten IRC.

Other Independents

Back in the UK a "porno pirate" is reported to be setting up in South London under the name "South London Independent TV". It has apparently already been seen testing. The Dutch Ranstad group are rumoured to be involved - they are well known for their pirate VTARanstad TV activities in Amsterdam.
"Gothab TV" was mentioned recently in this column. It seems that there is a form of pirate TV in the Faroes, with a hotelier in the capital transmitting from video cassettes. Since the Danish authorities don't seem to regard the start of TV services in these remote parts as particularly pressing, the locals are apparently being left to provide their own entertainment.

Meanwhile to the good ship Odelia which at the time of writing is in Limassol harbour. This ship has a 3 kW e.r.p. u.h.f. TV transmitter which for a time broadcast to the Israeli mainland. It was badly received and the project

SOUTH WEST AERIAL SYSTEMS

10 Old Boundary Road, Shaftesbury, Dorset. SP7 8ND tel. 07474370

The stacked bowtie aerial system offers the best compromise for high gain and wideband UHF reception. The Triax 'Grid' twin-stack gives a 12 dBd gain (ch.20) rising to a high of 15.2 dBd (ch.50), a $30^{\circ} 3 \mathrm{~dB}$ beamwidth (hor) and front/back 28 dB . The wide capture area ensures optimum signal gathering essential for fringe/scattered signal working. The 'Grid' is available in single, twin or quad formation. Our 'UHF DX Package' comprises 2 'Grids', low loss combiner, cross support boom and cllamp.
South West provides both the 'know-how' and equipment for the TV/FM Dxer and all types of domestic installation. Customer consultancy is available to resolve reception difficulties. A large range of VHF TV/Air/Marine aerials is available, SAE leaflets.
Triax single 'Grid' 12.5 dB peak gain $\mathbf{~} \mathbf{4 7 0} \mathbf{- 8 6 0 M H z}$) £19.75 Triax Grid 'UHF DX Package' $470-860 \mathrm{MHz}$ (see above) $£ 49.75$ Triax Quad 'Grid', $14-18 d$ Ed gain, $470-860 \mathrm{MHz}$. Includes all hardware/combiner etc. f74.65
Triax $470-860 \mathrm{MHz}$ masthead amplifier, 25 dB gain, 2.2 dB noise $£ 21.86$ matching pes 24OV AC $£ 10.95$
Hirschmann/Stolle RO250 derial rotor and control consul
£42.50
Above prices include carriage, packing and VAT. Include SAE with ALL enquiries please. Access/Barclaycard welcome. Aillow 10-14 working days for detwery. Our 1982 catalogue costs 50p.

> LOOK! Phone: LUTON BEDS. 38716 OPPORTUNITIES TRADE SALES

ALL SETS GUARANTEED COMPLETE OVER SIX HUNDRED SETS ALWAYS IN STOCK

Philips G8; Pye
Thorn Sets i.e. 3000 series, 8000 series, 9000 series Murphy, Bush, Decca, GEC All from £20.00
Mono's from: $\mathbf{£ 2 . 0 0}$ ALL MODELS All include VAT OPPORTUNITIES
9A, Chapel Street, Luton, Beds. LUTON 38716
9.30-6.00 p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

The Philips PM5544 pattern with Abu Dhabi identification. Photo from H . Lloyd-Bennett, Saudi Arabia.

Logo used by the TV ship Odelia, which has a 3 kW e.r.p. transmitter. The ship is at present in Limassol, Cyprus.

NCT Udine station logo, ch. E3 north Italy. Photo courtesy of Jan Pluimers, Holland.

Cuban TV received by Steve Birkill via the Gorizont satellite at 4 GHz System M in monochrome.

Malayan news announcer, received by Anthony Mann in Perth, Australia via SpE on ch. E2.

Colour blockboard with digital clock insert used by TSS-1, Tallin. Photo from Petri Pöppönen, FInland.
was something of a financial and technical disaster. A report suggests that an Iranian is negotiating purchase of the ship to start transmitting in the Arabian Gulf. An earlier attempt had been made to buy the "Voice of Peace", but the ship was in no fit state to travel. It's generally felt that Iran will be less than tolerant if the Odelia actually arrives to start broadcasting in the Gulf.

My thanks to Neil for the above information.

Satellite TV

Following details in recent columns of dishes suitable for satellite reception, readers may find the graph shown in Fig. 1 of interest - it gives an indication of typical gains for a 60 per cent (the usual figure) efficient dish. The diagram is based on details provided by the Luly Telecommunications Corporation of San Bernardino, California, to whom our thanks are due. Their UK agents are

Fig. 1: Frequency/gain graphs for 12 and 6tt parabolic dish aerials. Courtesy Luly Telecommunications Corporation.

Satellite TV Antenna Systems Ltd., Elm House, Green Man Lane, Hatton, Feltham, Middx. Luly point out that dish gain must exceed satellite EIRP.

Further details of OTS reception by Chris Wilson and Grahame Harding are given elsewhere in this issue.

Satellite Television Ltd., the UK company providing the first 12 GHz TV service, commenced transmissions from the OTS satellite on Easter Monday. There are about two hours of programmes a night, using mainly ITV network material, intended for the Scandinavian audience. The advertising slots are understood to be 75 per cent booked. Programmes are uplinked to the OTS craft from Martelsham, Suffolk. The Dutch government hasn't been too enthusiastic about allowing cable networks to distribute STL programmes, since commercial material of this type is not supposed to be fed down the cables. The Gorizont (Soviet TV Channel 1) transmissions at 3.7 GHz are now allowed down the cables however. The government originally objected to this on the grounds that the transmissions were point-to-point for telecommunications use only, but has since agreed provided the originators don't object - and Russia hasn't complained about its increased audience! Several Dutch networks now relay TSS-1 down their cables, in the form originally transmitted - TSS has no plans for subtitling.

The European Large Telecommunications Satellite (L-SAT) has been given the go ahead, with British Aerospace the prime contractor. A 12 GHz DBS payload will be included. Eight countries in all are to participate in the project, with a planned launch in early 1986.

The Russian Stat-T satellite at $99^{\circ} \mathrm{E}$, with "Orbita III" identification, is transmitting with programme times of 1145-1430 and 1445-2030 Madras time, with rare extensions to 2230 . The transmissions are at 714 MHz .

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The rate at which VCR technology is advancing seems to us quite extraordinary. Four or five years ago we were wondering at the VCRs of the period, with their pianokey controls and what in retrospect seems relatively simple circuitry. Now here we are in the era of microprocessor control, trick-speed replay and goodness knows what else - and we're not sure that we're wholly familiar with the clunk-and-twang types of machines yet!

An example of the latest generation of VCRs is the Toshiba V8600B, a Betamax machine with remote control, a microprocessor brainbox and a four-head drum. The still-frame reproduction this machine provides is the best we've seen yet, and for all its sophisticated electronics and mechanics it doesn't look too forbidding with the covers removed - another Betamax machine we know is quite otherwise! So the first V8600B to come along for repair didn't panic us unduly, even though the symptom reported was intermittent failure to record when the machine was under the control of the timer.

We found that the fault was easy to reproduce when the machine had been standing for some hours. We would set the timer and at the appointed time the machine would whirr into life with the pilot and recording lamps on. A second or two later the machine would shut down, with the record light extinguished and the tape at a standstill. It seemed that the control system was telling the machine to stop - but why? Everything appeared to be in order, the manual playback and record functions worked normally, and both the machine and the tape were almost new. With the covers off, we studied the mechanical sequence of events when the fault arose. We noted that the head drum was running up to normal speed quickly, so the head rotation detector would be satisfied. Hmm.

When the fault next occurred we observed the slack sensor arm closely and saw that it gently moved over to the point where its reed switch closed. This was why the machine was shutting down then. We next found that the machine never failed to get under way when the slack sensor was restrained by fingertip pressure, and that the initial tape slackness was soon taken up as the mechanics got going. The fault was fairly easily diagnosed then, and we were subsequently able to return the machine to its owner with the certainty that the fault would not recur. What did we do? See next month.

ANSWER TO TEST CASE 236
 - page 544 last month -

In explaining the operation of the slightly unusual l.t. regulator circuit used in the ITT VC400/1/2 series of monochrome portables last month we almost gave away the answer. If you recall, we were faced with a VC402 in which the series regulator transistor's driver transistor was without forward bias once the start-up capacitor C101 had fully charged.

In the usual type of regulator circuit used in monochrome portables the base and emitter of the driver/error sensing transistor are both fed from the regulator's stabilised output. In this design however T101's emitter is connected to the output directly while its base is fed from a preset which is linked to the 24 V boost line generated in the line output stage. A 12 V zener diode (D201) stabilises the supply to the preset, so that T101's base is provided with a stable reference while its emitter does the error sensing.
The advantage of this arrangement is that an excessive load on the line output transformer will shut down the power supply. The action is as follows. The overload will reduce the boost voltage to the point where the current flowing via R204 and D202 is insufficient to keep D201 conductive. As the voltage at the slider of the preset drops, D107 cuts off followed by T101 and T1. The circuit was in fact working as it was designed to do. Once C101 has charged, the set has to be switched off for a few seconds to allow it to discharge via R101. Then, on switching the set on again, the start-up action occurs, followed in our case by shut-down due to an overloaded line output stage.

Any of the various rectifier diodes/reservoir capacitors associated with the line output transformer, or indeed the transformer itself, could have been responsible for the overload, but we found that the e.h.t. stick D15 (type TV11) was the cause, being very leaky. We could have tackled the problem by sequential load shedding with repeated start-ups to see when the set finally got going, but found it easier to connect a $25 \mathrm{k} \Omega$ potentiometer across C101 temporarily, thus driving a suitable "diagnostic" current through the faulty line output stage.

What are all those diodes for? D106/7 are included to isolate the start-up and normal bias at T101's base. D202 compensates for the voltage drop across D107.

[^0]
PROGRAMME SELECTOR

REPLACES 7 PIANO KEY TYPE AS USED IN DECCA - TELEFUNKEN etc.

DIRECT FIT

NO DRILLING
NO CUTTING NO MODS

516 + VAT
POST FREE
ORDER AS UPB-30-80

UK Redg design No 1006611 (pending).

ALDERSON-JAMES LTD
160 Kings Road, Harrogate, N. Yorks HG1 5JG.
Tel. Harrogate (0423) 60058

Starting your own TV rental company? Or in business already? Either way, MTV can offer you a great commercial break

Because we're the biggest name in used TVs. And give you only the best.

With over 8000 sets in our computerised warehouse we can offer a continuous supply of top name, quality sets. Serviced or unserviced.
 Also available:

Full range of stands. Tested tubes. Untested panels. TV aerials. Quantity discount.
Contact: Derek Harbone (0562) 743735

All offers subject to avaliability at time of order

MIDLAND TV TRADE SERVICES

Campion House, Franchise St
Kidderminster,
Worcestershire

DY11 6RE

APOLLO

high TEMPERATURE PUMPED COLOUR TUBES
Fast Mail Order service to any part G.B. Delivery 2-3 days. Just phone for a quotation. Delivery Manchester area free same day. Two year guarantee. Fitting while you wait or in your home $£ 20$ extra. Also P/L types \& Toshiba.

Telepart Pattern Generator

Exceptionally light and durable

- Pocket size for outside service
* PP3 battery power source
- Five different test patterns for colour and mono TV "Crosshatch grid *Dot matrix -Horizonta/s •Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers home. A the turn of a switch, the generator can provide five essential test patterns fo correct instand f, bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING £1.15

Telepart

Colour Bar Generator

- Exceptionallight \& durable Battery powered for mobility * Cross hatch - White rast
* Grey scale *Colour bars
$*$ Sound
* Sound

A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE £49.95 (Subject to V.A.T.)
POST \& PACKING $£ 1.15$

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR. This compact unit mounts by 2 screws into the Battery compartment and converts the unit to a bench instrument.
PRICE £5.50 (Subject to V.A.T.)
Supplied by return, off the shelf

$18{ }^{\prime \prime}$	A47 - $342 \times 343 \times$	£37.00
$19^{\prime \prime}$	A49 - $120 \times / 192 \times$	£37.00
$20^{\prime \prime}$	A51 - $220 \times / 110 \times$	£38.00
$22^{\prime \prime}$	A56-120x/123x/140x	£38.00
25'	A63-120x	$£ 39.00$
$26 \times$	A66-120×A67-120×/140×/150	£39.00
G8 transistorised colour TVs Ready Serviced and Polished for resale $£ 89$ inc. delivery. Philips 1500/01 Video Long Play Kits $\mathbf{£ 9 9}$.		
061799085424 hour answering service. 43 Clarke Cres, Little Hulton, Nr. Manchester M28 6XM.		

REBUILT CATHODE RAY TUBES

C.R.T. SERVICES LTD.

369, Chepstow Road, Newport, Gwent.
Tel. Newport (0633) 272005.
Also available from the following stockists:

L. R. Jones,	G.R.T.
Manorbier,	Talwryn-y-Bont,
Nr. Tenby.	Pontrhydfendigaid,
Tel. $\mathbf{0 8 3 - 4 8 2 6 3 0}$	Nr. Aberystwyth.
	Tel. 09745 629.

L. R. Jones, Manorbier, Nr. Tenby.
Tel. 083-482 630

Pontrhydfendigaid, Nr. Aberystwyth. Tel. 09745629.

USING YOUR SPARE TIME PROFITABLY?
If not, youre losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact, provided you start correctly and know exactly how to pperate, you can easily earn a substantial CASH INCOME with a starting capital of less than E20. Our new unique publication "How to Deal Successtully in Used Colour Televisions" enables publication how to for in the experience in this lucrative home business, and who have pooled their expowledge to knowelled e he the is be given the best possible stan And the travelled the gro hundreds of valuable trade secrets, hints, tips and suggestions in the guid exactly how anyone of average intelligence can succeed immediately.
Every aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on almost all makes of television is presented in clear tabular form, describing performance, reliability, price and service, In particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximam sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are "invisible" sabinet repairs Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you"ll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{1 4 . 9 5}$ - a small price to pay for financial independence!

ORDER TODAY FROM:
GLOBUS INDUSTAIES LTD. UNIT 18. DARLEY ABBEY MILLS, DEABY

To: Globus Indugtriea Ltd., Unit 18, Dartay Abbay Mills, Darby.
Please send by return post "How to Deal Successfully in Used Colour Televisions"
I enclose cheque/p.o. for $£ 4.95$
NAME
ADDRESS

N. J. ELECTRONICS (SUPPLIERS OF QUALITY COMPONENTS) UNIT 94, STORFORTH LANE TRADING ESTATE, CHESTERFIELD, S41 OSN, DERBYSHIRE					
TRANSISTORS		DIODES		INTEGRA	Ums
BC107	00.11	BY127	00.11	TBA4800	01.00
BC108	00.11	BY176	00.60	TBA530	01.60
BC109	00.11	BY184	00.40	TBA540	01.60
BC147	00.11	BY187	00.55	TBA570	01.50
BC148	00.11	BY223	00.60	TBA800	01.00
BC149	00.11	BY298	00.20	TBA810S	01.40
BC171	00.11	BY299	00.20	TBA920	01.90
BC172	00.11	BYX71/600	00.60	TCA270	01.60
BC173	00.11	BYX10	00.24	TCA800	01.95
BC174	00.11	BY210/800	00.25	TDA1170	01.80
BC237	00.11	0A90	00.11	TDA1190	0200
BC238	00.11	0A91	00.11	TDA2010	01.80
BC327	00.11	IN4148	00.04	TDA2540	02.00
BC337	00.11	IN4004	00.09	TDA2002	01.80
BF194	00.11	IN4007	00.12	TDA2680	01.85
BF195	00.12			TDA3560	02.75
BF196	00.14			TDA3950	0260
BF197	00.14	BRIDGE RECT.		TBA120A	00.75
BF337	00.36	BY164	00.50	TBA120B	00.75
BF355	00.52	BY179	00.70	TBAI20C	00.75
BF458	00.40	W005	00.35	TBAI20U	00.75
BU105	01.40	C3200/2200	00.80		
BU108	01.60			4.43MZ C	90p
BU124	01.00			8.86MZ C	$90 p$
BU208	01.40	$3 \mathrm{~V}-30 \mathrm{~V}$ ZENERS		1043 TUN	07.50
BU208A	01.60	3V-30V		U321 TUN	06.95
BU407	01.35	1W ZENERS		U322 TUN	07.00
T9038V	0260	$3 \mathrm{~V}-30 \mathrm{~V}$	18p	G8 TUNER	10.00
THIS IS ONLY A FRACTION OF OUR STOCK, WE SUPPLY TRANSISTORS, TUNERS, DIODES, I.Cs, RESISTORS, VALVES, LOTXS, EHT TRAYS, CAPACITORS AND MANY MORE ITEMS FROM STOCK. PLEASE SEND CHEQUE/POSTAL ORDER FOR 35 PENCE TO COVER POSTAGE AND WE WILL SEND YOU OUR COMPREHENSIVE WALL CHART BY RETURN OF POST. PLEASE ADD 15% VAT + 65 PENCE FOR POST/PACKING. GOODS DESPATCHED SAME DAY. MAIL ORDER ONLY, NO CALLERS.					

TOP TWENTY T.V. SPARES

| 1. Philips G8 LOPTX (genuine Philips) | $\mathbf{£ 7 . 5 0}$ |
| :--- | :--- | ---: |
| 2. Decca 30 Series LOPTX (genuine Decca) | $\mathbf{£ 7 . 0 0}$ |
| 3. Decca 100 Series LOPTX (genuine Decca) | $\mathbf{£ 6 . 5 0}$ |
| 4. ITT CVC $25 / 30 / 32$ LOPTX (genuine ITT) | $\mathbf{£ 7 . 0 0}$ |
| 5. Pye 713/725/731 Vis Gain Module | $\mathbf{£ 6 . 5 0}$ |
| (replaces expensive 212-27327) | |
| 6. $\mathbf{5} \times$ Universal Aerial Socket Kit | $\mathbf{£ 5 . 5 0}$ |
| (replaces most UK and Continental skts) | |
| 7. $10 \times$ BU208 | $\mathbf{£ 7 . 5 0}$ |
| 8. $10 \times$ BU208A | $\mathbf{£ 8 . 5 0}$ |
| 9. $10 \times$ BT106 | $\mathbf{£ 8 . 5 0}$ |
| 10. Pye 725/731 EHT Tray | $\mathbf{£ 3 . 0 0}$ |
| 11. Decca $1730 / 1830$ Doubler | $\mathbf{£ 2 . 0 0}$ |
| 12. Decca 80 Series EHT Tray | $\mathbf{£ 3 . 0 0}$ |
| 13. GEC 2040 (Hybrid) EHT Tray | $\mathbf{£ 3 . 0 0}$ |
| 14. Thorn 1500 (3 Stick) EHT Tray | $\mathbf{£ 3 . 0 0}$ |
| 15. Thorn 1500 (5 Stick) EHT Tray | $\mathbf{£ 3 . 5 0}$ |
| 16. Thorn 8000 Doubler | $\mathbf{£ 2 . 0 0}$ |
| 17. Thorn 1400 EHT Tray | $\mathbf{£ 2 . 0 0}$ |
| 18. Thorn $3000 / 3500$ EHT Tray | $\mathbf{£ 4 . 0 0}$ |
| 19. Philips G9 EHT Tray | $\mathbf{£ 3 . 5 0}$ |
| 20. ITT Universal EHT Tray | $\mathbf{£ 5 . 2 5}$ |

All componerts are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days.
Please add 15% VAT and $90 p$ P \& P
QUICK SAVE T.V. SPARES,
Muxton House, Muxton, Telford, Salop.
REG. OFFICE ONLY
CALLERS STRICTLY BY APPOINTMENT UK ONLY

MANTEL

Manchester Number One source in ex-rental T/Vs.

All sets guaranteed complete. PYE PHILIPS BUSH DECCA ITT THORN JAP GEC GRUNDIG FROM $£ 10$

Callers welcome.
Telephone 0618618501 419 Barlow Moor Road, Chorlton, Manchester 21 2ER.

OLD TUBES WANTED!

SUPERVISION REQUIRE ALL TYPES OF OLD IN-LINE GLASS, BEST PRICES PAID, collection arranged.
Ring: (045 424) 421/426 for details, or write to: GLASS PURCHASE DEPT.,
ARNOLDSFIELD TRADING ESTÁATE, WICKWAR, NR. WOTTON-UNDER-EDGE, GLOUCESTER.

A.B.C. ELECTRONICS

Rear of 20, HANKINSON ROAD, WINTON, BOURNEMOUTH. TEL: 519542
TRADE TV's BEST PRICES
Colour From $\mathbf{£ 1 2 . 0 0}+$ VAT B\&W From $\mathbf{£ 2 . 0 0}+$ VAT DISCOUNT ON QUANTITIES

ALL MAKES - ALL SIZES - ALL COMPLETE CALL IN OR RING FOR COMPETITIVE QUOTE FULLY REFURBISHED SETS AVAILABLE + DELIVERY SERVICE

GUARANTEED COMPLETE - GOOD CABINETS SPARES AVAILABLE PYE CT 205/CT 200. BUSH A823 - TH 3500/8500 • PHIL G8 DECCA BRAD • ITT CVC5 • JAP GRUNDIG

DES MADCTHONICS
 656 WIMBORNE RD, BOURNEMOUTH.

 TEL: 0202522592
SCARBOROUGH T.V. TRADERS CO. LTD.

Offer you quality Colour T.V. at competitive prices with quantity discounts All major makes available - including: PHILIPS G8 - GEC SOLID STATE BUSH 2 CHIP - PYE 731 - THORN VARICAP (6 Buttons) - DECCA 30 THORN 8000 17"/8500 19" etc.

Delivery arranged
GENUINE CHANGE OVER SETS SPECIAL OFFERS $£ 100$ BUYS

10 of PYE 205
10 of GEC HYBRID 10 of TELPRO

YOU HAVE TRIED THE REST

 NOW TRY THE BEST85, Columbus Ravine, Scarborough,
North Yorkshire YO12 70U. 0723-68087.
1 hour away from A1/A64 Junction.
Access makes regular viewing
 even easier
If you watch our TELEVISION every month why not take out a regular subscription and have this important magazine delivered direct to your door every month. It's straightforward, quick and easy because now you can use your Access Card to take out a subscription. Just use the order form below to get your Access card account charged with the price of a subscrittion or order through Access by phone on (01) 8866433 . If you pay by cheque or postal order, use the subscription order form in the usual way.

SUBSCRIPTION ORDER FORM

I wish to become a subscriber to Television for one year and enclose cheque/postal order value no. made payable to IPC Magazines Ltd.

Complete this portion if you are using your Access card account. I authorise you to debit my Access card account with the above amount

My Access no. is Block letters please)
\square

Subscription Rates:
UK, Isle of Man, Channel Islands and Irish Republic £10 Overseas £11

Unless you are phoning your order, complete and post this order form to: Television 2613 King's Reach Tower, Stamford Street, LondonSE19LS

COLOUR BAR GENERATOR UHF AERIALINPUT PATTERN GENERATOR

* HORIZONTALS

CROSS HATCH \star

* ADD ON PAL COLOUR BARS *

Send SAE for full specifications. Batteries not included.

PG6RF Kit $£ 28.75$	Built $£ 37.95$	ACCESS	
C6	Kit $£ 20.75$	Built $£ 29.90$	ORDERS
CPG6RF Kit $£ 48.30$	Built $£ 72.45$	ACCEPS	

Price includes P\&P and 15\% VAT VHF versions available.
Full 12 month guarantee on built units.
Allow up to 28 days for delivery.
MAIL ORDER ONLY FROM
TECHNALOGICS LTD. (Dept TV), 13, WESTERN DRIVE

GRASSENDALE, LIVERPOOL L19 OLX

051-427 3212

THE NO. 1 SOURCE
 IN THE SOUTH COLOUR FROM £8.00
 1000's OF SETS TO CHOOSE FROM TeleTraders

ST. LEONARDS WAREHOUSE
ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

HIGH GAIN AERIAL BOOSTERS

845 H/G UHF Television
Tunable over the complete UHF band. Gain above 20dB, noise 2.8 dBs .

14 - Band 3 VHF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Also covers Aircraft \& 2 meter Amateur Bands Gain above 28 dBs Noise 28 dB 28 dBs . Noise 2.8 dB
PRICE aach £8.70.

AERIAL AMPLIFIERS Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or dificult areas.
845 - For Mono or Colour this is tunable over complete UHF television band.
11 - For stereo or standard VHF/FM radio.
B12-for VHF television band 1 \& 3. All amplifiers are complete and ready to use Battery type PP3 or 8 V to 18 V DC next to the set type fitting. PRICES $\mathbf{E} 6.70$ each.

TELEVISION VALVES
PL519-PY500A 75p each All mono valves 35p each. Goods despatched on receipt of order.
All Pricas include VAT at 15\%. P P Per Ordar 30p. S.A.E. for Leaflets. Access Cerds.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW. Tel Rams (070 682) 3036.

If the Transformer you require is not listed please phone.		
RANK BUSH MURPHY	DECCA	
Z146 A640 dual std mono 8.51	MS1700 200120202401 mono	8.00
Bush A792, A793 single std mono 8.51	MS2404 24202424 mono	8.00
A774 single std mono 8.50	121012111511 portable	9.13
A816 solid state mono 9.00	GYPSY portable	9.13
Z712 T16a T16b mono portable 9.00	CS1730 1733 colour	8.00
A823 A823b A823av colour 10.00	CS1830 1835 colour	8.00
Z179 2722 series colour $\mathbf{1 0 . 0 0}$	${ }^{\circ} 30$ series BRADFORD colour	8.00
Z718 $18^{\prime \prime}$ series 11.00	80 series colour	8.00
$271820^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ series 11.00	100 series colour	8.00
T20a T22 series colour $\quad 10.00$		
G.E.C.	PHILIPS	
2047 to 21053112 to 3135	320 series solid state mono	8.50
"GAIETY" FINELINE 8.00	G8 series colour	8.00
2114 portable mono 8.00	G9 series colour	8.50
31333135 M 1501 H portable mono 8.00	G11 series colour	13.70
DUAL STD hybrid colour 11.00		
SINGLE STD hybrid colour 10.00	KB-ITT	
SINGLE STD solid state $90^{\circ} \quad \mathbf{8 . 5 0}$	VC200 VC205 VC207 mono $8 \mathbf{8 0 0}$	
or 110°	VC300 VC301 VC302 portable CVC1 CVC2 colour	8.00
FERGUSON HMV MARCONI		9.00
$1590 \$ 59115921593$ mono 8.00	CVC5 CVC7 CVC8 CVC9 colour CVC20 series colour	
161216131712 mono 8.00	CVC20 series colour CVC30 CVC32 series colour	8.00
16901691 mono 8.50	CVC40 series	14.56
16001615 series mono 9.74		
30003500 EHT or SCAN 7.94	PYE, ECKO	
ADD 15\% VAT to ALL prices.	72590° series $731-741$ series	$\begin{aligned} & 8.50 \\ & 8.50 \end{aligned}$
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm . 1.30 to 4.30 pm . Sat 10 am to 12 pm .	Hamond Compone (Midland) Ltd., 416 Moseley Roa Birmingham B12 9 Phone: 021-440 61 Mon-Fri 9 am to 1 pm. 2 pm to 5.30 pm .	

TELEVISION TUBE SHOP LTD

BRAND NEW TUBES AT CUT PRICES

A28-14W£21.95	9AGP4£21.82
A31-19W/20W 19.95	190AB4/C4..............23.00
A31-120W/300W 17.95	230DB4CT468.........31.00
A31-410/510W 17.95	240DB4/240AB4A ... $\mathbf{2 2 . 0 0}$
A $34-100 \mathrm{~W} / 510 \mathrm{~W} . .$. ...18.50	CT507 equiv 21.95
A34-514W 24.25	$310 \mathrm{EUB} 419 .195$
A38-160W/170W17.50	310EYB4 18.75
A44-120W/R 25.00	310FXB4 17.50
A50-120W/R 19.00	310GNB4A.............31.00
A59-23W/R 21.50	310HCB4................ 31.00
A61-120W/R 21.00	$340 \mathrm{AB} 4 . . . \ldots \ldots \ldots \ldots \ldots . . .122 .50$
Some Rebuilt Japanese	340AYB4...............30.00
\& European Types	340RB4/CB4.............26.00
Available from	340AHB426.00
$\mathbf{£ 1 4 . 0 0 ~ + V A T ~ £ 2 . 1 0 ~}$ Old Bulb required.	RIGONDA $6^{\prime \prime}14 .00$
COLOUR TUBES	
(NEW \& MULLARD/THORN COLOREX)*	
12VARP22£62.5]	A56-120X $\mathbf{8 5 4 . 0 0}$
330AB2273.50	A56-410X64.00
A44-271X...............60.00	A56-500X/510X63.00
A47-342X61.00	A63-120X63.00
A47-343X61.0)	A66-120X65.00
A49-191X53.0.)	A66-140X/410X70.50
A51-161X70.00	A66-500X/510X65.00
A 51-220X55.00	A67-120X65.00
A51-500X/510X64.50	A67-140X/200X69.50
A51-570X73.00	A67-150X75.00

Old Bulb Required for Colourex

ADD 15\% VAT TO ALL THE ABOVE PRICES.
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED TELEVISION TUBE SHOP LTD
52 BATTERSEA BRIDGE RD., LONDON, SW 11.
Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$.

COLOUR SETS GALORE

Hundreds in Stock. From $\mathbf{£ 2 0}$. Guaranteed Complete.

$$
\text { Mono's and non-complete sets from } £ 3 \text {. }
$$

Most makes available.
QUALITY COLOUR TUBES
Reconditioned and used tubes.
From $£ 10$ Guaranteed.
Don't delay, ring today.
ALPHA TUBES (DUNSTABLE)
53 Lowther Road, Dunstable.
Tel. (0582) 68934
TRADE

N.G.T. COLOUR TUBES

First Independent Rebuilder with

B.S.I. CERTIFICATION

(Certificate No. 004)
2 year guarantee: 4 year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band. $1^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$. No exchange tube required on delta types.
N.G.T. ELECTRONICS LTD.,

120, SELHURST ROAD, LONDON S.E. 25 Phone: 01-771 3535.
20 years experience in television tube rebuilding.
addVAT at 15\%

SMALL ADS

The prepaid rate for classified advertisements is 33p per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 5.64$ per single column centimetre (minimum 2.5 cms) All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

notice to READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TEST EQUIPMENT

TV. Pattern Generators.

Crosshatch \& 4 patterns

 As above but with Greyscale£ 17.25 Prices include P\&P and VAT. Also available: pal COLOUR bar generator CAPACITANCE METER TRANSISTOR TESTOR
S.A.E. for prices and full details. C. L. JERVIS 15 Mercer Grove
Wolverhampton, WV11 3AN. Tel. (0902) 23916.

SETS 8 COMPONENTS

REGUNNED A1 TUBES $22^{\prime \prime} £ 25.00$, Mono $£ 11.00-$ Sub $£ 11.00$ PlL in stock. Ring first 021-773 8181/772 1573. Seven days till 8 p.m.

GRUNDIG, Nordmende reconditioned panels, also complete sets. Oscilloscope for sale. Servicing books wanted. 0785814643.

TELEVISION TUNER REPAIRS ALL TYPES

BRITISH, EUROPEAN JAPANESE ETC.

MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS. TEL: 0329-235116

SECOND HAND colour TV spares and tubes, most makes. Telephone Southport (0704) 74411, anytime.

CAMPBELL ELECTRONICS LTD.
COLOUR T.V. PANEL EXCHANGE/ REPAIR SERVICE
THORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc.
90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422
for catalogue and price list.
CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

COLOUR TV PANELS
 Fully Tested \& Working

	IF	CDA	Decoder	LTB	Line Board	Frame Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-	-
DECCA 13/30	3.00	-	5.00	5.00	-	-	4.00
BUSH ' ${ }^{\text {' }}$	2.00	-	5.00	5.00	2.50	-	2.00
THORN 8-81/ ${ }^{\prime \prime}$	-	-	7.00	5.00	-	-	3.00
PYE 205	3.00	3.50	5.00	8.00	-	2.00	-
TELPRO	3.00	-	5.00	-	3.00	3.50	3.00
G8	6.00	-	8.00	5.00	10.00	-	5.00
	Post \& packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc. Hybrid panels do not include valves. Terms cash with order. 26' CRT's fully tested $\mathbf{£ 1 0}$						

TVDX EQUIPMENT

VHF-UHF convertor. 12 V supply required. Superb DX performance $£ 11.90$. Bandi double notch filter, $40 \mathrm{~dB}+$ attenuation, state channel $\mathbf{£ 1 7 . 5 0 .} \mathbf{4 8}-88 \mathrm{MHz}$ Mosfet preamp, 25 dB gain, very low noise, main powered £26.50. Band III model same price Data now available on 4 GHz satellite equipment Please send S.A.E.
H. COCKS.
Robertsbridge, Sussex TN32 5RY. Robertsbridge, S
Tel. 058083-317.

BULK BARGAIN T.V. SERVICE PACK
Contains at least $£ 50$ worth of T.V. service components and accessories. Loads of hard to obtain T.V. spares and components. Ideal for the service engineer, Only
f12.50 carr. £2.50. Ref. Guar. HAVE YOU SEEN THE GREEN CAT 1000s of new components, TV, radio, and electronic items at unbelievably low prices. Probably the cheapest in the country. Send 40 p for GREE CAT and receive FREE RECORD SPEED INDICATOR. MYERS ELECTRONICS, Dept, IV2'
Next to Union Jack Clothing Store, Leeds LS2 7EA.
Callers welcome at our NEW retail premises.
Open 9 to 5 Mon to Sat. Tel. 452045.

IRELANDS LARGEST TV DISTRIBUTOR

THOUSANDS IN STOCK INCLUDING BUSH 2 IC, PHILIPS G8, ITT, DECCA
BRADFORD, GEC AND PYE SOLID STATE, GRUNDIG, JAPANESE etc.
COLOUR FROM £10 MONO FROM £1. Delivery can be arranged. SUMMER SPECIAL: LOTS OF 100 DECCA BRADFORDS, PHILIPS G8, ITT AND BUSH 823. ALL SIZES $£ 10$ each.
ALSO DISTRIBUTORS OF NEW TELEVISIONS, VIDEOS, MUSIC CENTRES, (GRUNDIG, HITACHI, GEC etc.)
C.Bs, TELEPHONE EQUIPMENT, AERIALS, + AMPS, TUBES, SPARES etc.

NEW NATIONAL PANASONIC VIDEO $£ 317$ + VAT
TELETRONICS, WHOLESALE,
SESKINORE, OMAGH, CO. TYRONE. TEL: Fintona 841389 '(STD 0662)

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

Rank, Bush, Murphy TV Panels

Repair/Exchange Service
Same Day Return
With 3 Months Guarantee
Also On The Spot Repair To BUSH TV's Brought in T.K. Panels Service,

31 Leaves Spring Stevenage, Herts.

DECCA £13.80, KORTING £9.75, THORN $£ 20.50$. No extras. Others. H.T.C., Lodge Mill, Turn, Ramsbottom (070682) 3845.

TRIPLERS - PRICES REDUCED Thorn 3000/3500 Thorn 9000
 UNIVERSAL

The UNIVERSAL TRIPLERcan be year guarantee G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental sets. WING ELECTRONICS
15 Waylands, off Tudor Rd, Hayes End, Middlesex

T.V. PANELS

Large stock of C.T.V. panels available. Fully serviced, 60 days guarantee. Most panels available for the following:

```
THORN 3K-9K DECCA 30, 80, 100
```


RBM Z718, A823, T20

 PHILIPS G8. GEC 2110Panels/Modules also available for some models of ITT, SONY, GRUNDIG, NAT PAN, SABA, JVC etc., etc. Ex equipment and salvaged panels for spares - very cheap!! We also have switches, knobs, tubes, tuners, valves, triplers, smoothers, etc., etc. Try us now by phoning 061-223 0605 or send SAE for list to:

TEL-E-VIDEO,
Ashford Avenue, Reddish, Stockport, Cheshire, SK5 6PU.

SETS \& COMPONENTS

 CONTINUED
TRADE ONLY
 N. W. ELECTRONICS

CLEARANCE SALE LARGE QUANTITY OF GOOD CLASS

COLOUR TELEVISIONS

BUSH, PYE, GEC, THORN, PHILIPS ETC.
Excellent Cabinet Condition. Genuine Change Over TV's and Repossessions.

FROM ONLY E151! DELIVERY ARRANGED

We export large quantities of TV's weekly. Can we help you?
Discount on Quantity Orders.

OVER $\mathbf{1 , 0 0 0}$ MONO TV's IN STOCK FROM £5

100 's colour tubes suitable for reconditioning. Working colour TV's to order, i.e. Bush 20"/22" 2 I.C. excellent picture, ready to sell. Only £39.

> CALL AND SEE OUR SELECTION

WHITE GOODS

All types of Washing machines, Vacs, Fridges, Cookers, etc. Hoover Autos, Servis, Hotpoint, Hoover Uprights, Vacs. 500 always in stock.
Fully reconditioned Hoover Twin Tubs and Upright Vacs, all models. Phone for details.
PAY US A VISIT YOU WILL NOT BE DISAPPOINTED

N. W. ELECTRONICS
 BOLINGBROKE BUILDINGS, BOLINGBROKE STREET, BRADFORD 5. 3 minutes from Motorways. Telephone 0274390121

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey.
 Tel: 01-686 7951/2/3/4
 SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL
 ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
 $19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
 BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

 COMPANIES.

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special
T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.

CAMPBELL ELECTRONICS LTD.

Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

TELEVISION

Trade Supplies of Good Quality Colour \& Mono TV's. Most Makes available, suitable for Sale or Re-Rent.

GENERAL union street

 DONCASTER FACTORS (0302) 49583-68416 GOOD MOTORWAY ACCESS
SERVICES

SERVICE ENGINEER AVAILABLE for contract work in London. Own w/shop, equipment and transport. 01-521 8914.

WANTED

GOOD QUALITY TV/Audio Test Equipment. Telephone Rotherham 548334.

WANTED Dual Beam Oscilloscope $10 / 15$ meg transistonsed. 251 The Avenue, Seaham County, Durham. Tell: Seaham 818164.

WANTED Privately $26^{\prime \prime}$ Teletext T.V., preferably Thorn or Phillips, but other makes considered. Cash waiting, might collect. Telephone (0608) 3050 day, (0993) 841999 evenings.

COLOUR T.V's PORTABLE (or small screen) any quantity, new/secondhand (worker/non-worker). Tel: (0203) 714213.

ORDER FORM PLEASE WRITE in block CAPITALS
Please insert the advertisement below in the next available issue of Television for insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME. \qquad

TELEVISION

ADDRESS \qquad

SERVICE SHEETS

Thousands of different full size service sheets Thousands of different manuals of all kinds in stock
British CTV circuitlayouts from dual to latest from Decca, G.EC. ITT philips Pre sheet still only $£ 1+$ Continually updated - 3 piant binders only $£ 39.50$ - latest update includes Thorn 9200109800 .
Revised foreign C.T.V. Repair System in 2 huge binders plus 3 Repair Manuals for $£ 39.50$
Revised foreign C.T.V. Repair System in 2 huge binders plus 3 Repair Manuals for f39.50.
Contains chassis from Grundig, Hitachi, Korting. Kuba, Luxor, Mitsubishi, National P., Nordmende, Sharp, Skantic, Toshiba, Zanussi

Thousands of different full size service sheets. Thousands of different manuals of all kinds in stock 2 LSAE brings free 50 . Phone: 698 , pepi magazine, any quotations, detaus of unique T.V. publications and bargain offers. G.T

TECHNICAL INFORMATION SERVICE
76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE
30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios f1.25. Tuners $\mathbf{£ 1 . 2 5}$. Tape Recorders, Record Players $\mathbf{f 2 . 0 0}$. Transistors, Stereograms and Music Centres f2.00 + SA.E. Also Colour available. Car Radios f2.00 + SAE. All Radiograms f2.00. State if Circuit will do, if sheets are not in stock. All TV Sheets are full length 24×12, not in Bits \& Pieces. All other Data full lengtlis. TV Catalogue with order. Crossed PO's Returned if Sheets Not in Stock. £2.00 Old Valve Radios C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.01-458 4882. MAIL ORDER SAE.

BOOKS \& PUBLICATIONS

VCR REPAIRS MADE EASY

Comprehensive repair data with all circuits, layouts, modifications for any early model from AKAI (7100/9300), Baird (), Ferguson 3292, JVC (), Thorn ($3 \mathrm{~V} 00 / 3 \mathrm{~V} 01 / 3 \mathrm{~V} 16 / 3 \mathrm{~V} 22 / 3 \mathrm{~V} 23$) and others using same format (for only $\mathbf{£ 8} \mathbf{5 0} \mathbf{~ e a c h) . ~}$ Comprehensive VCR Circuit Diagrams/Layouts, etc. collections - Volume 1 in hardwearing $17^{\prime \prime} \times 12^{\prime \prime}$ binder covering the early Philips and VHS types (for only $£ 15$ post free).

Set of 4 Repair Manuals to match above collection $\mathbf{£ 8 . 5 0}$ Most VCR Service Manuals by return.
Repair data with circuits almost any named TV £8.50.
L.S.A.E. for free 50 p magazine/quotes etc.
T.I.S.T.

76 CHURCH ST., LARKHALL,
LANARKSHIRE ML9 1HG. PHONE 0698883334

SITUATIONS VACANT

TRILION VIDEO LTD.

The leading London based Television facility company require a fully experienced TV SERVICE ENGINEER for general duties with our fleet of outside broadcast trucks and post production suites.

Please contact John Edwards or Barry Sheffield:
TRILION VIDEO LTD.,
36-44 Brewer Street, London W.1.
Telephone 01-439 4177.

FOR SALE

QUALITY REGUNNED Colour TV Tubes. Please send S.A.E. for list. Re-View Electronic Tubes, 39 Mount Road, Hastings, E. Sussex. Tel. 0424442536.

RADIO AND T.V. SERVICING. Vols. 1-6 also 61-62 book. Offers to: Smith, 79 Withnell Road, Blackpool.

COLOUR T.V.'s. Good working, $£ 25$ each, any quantity. Most makes, sizes available. Tel: Coventry (0203) 714213.

OSCILLOSCOPE - SCOPEX 40-10. Model as new f130. Tel: 021-421-6512 evenings or early mornings.

LARGE QUANTITIES

of ex rental colour sets for disposal from $£ 7.50$. For details of minimum quantities and full price range:
Tel: Blackburn 691340.

VINTAGE TELEVISIONS: Invicta 9 inch \& Murphy 12 inch consoles; 17 inch HMV Mullard Valve Tester. Many TV Valves \& Tubes. Sensible offers Chokesbury

SANDHURST PUBLICATIONS
Television Service Sheet Specialists Workshop Manuals, large selection of Japanese and European TV Sheets. Callers $5.30-7.00 \mathrm{pm}$, Upper Floor. Send S.A.E. for Catalogue and Enquiries:

49C Yorktown Road,
Sandhurst, Camberley, Surrey GU17 7AG.
EDUCATIONAL

TELEVISION COMPUTER

 RADIOCOMMUNICATIONS \& RADAR SERVICING2 $\frac{1}{3}$ YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES (1st)
- ELECTRONIC PRINCIPLES (2nd)
- MONOCHROME TV
- colour TV, CCTV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR
Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Subject to approval, students will be awarded a TEC Diploma in Electronics \& Communication Engineering on completion of the full course.
Next session starts September 13th.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: PP, 20 Penywern Road London SW5 9SU. Tel: 01-3738721.

For a good selection of used TV sets in good cabinets ...

* Large stock of working sets. * U.K. Delivery Service. * Stands, Aerials, Tubes and Panels.

UNIT 40, HARTLEBURY TRADING ESTATE, NR. KIDDERMINSTER, WORCS. DY10 4JB Tel: Hartlebury 250161 Telex: 334155 MTV G

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

MATURE ENGINEERS AND

 TECHNICIANSFeeling left out of Technological Developments?
Then we have the course to suit you at HASTINGS COLLEGE OF ARTS AND TECHNOLOGY Archery Road, St Leonards on Sea, East Sussex.

Starting September 1982

* AM/FM Reception and Audio Systems

Digital Electronic Systems
Electronics for Industry - Short Courses

* Electronic Instruments and Testing
* Electronic Measurement and Control
* Microelectronics

Microprocessors + Interfacing + basic fault finding

* Television and Information Reception
* Teletext and Remote Control
* Video Recording and playback
* Special Courses arranged for companies*

Many Courses lead to Nationally recognised qualifications if required. Contact:
Department of Engineering \& Science (STD 0424) 423847)

FULL-TIME AND EVENING COURSES IN

- Microprocessor Computers
- Video Cassette Recorders

Colour TV.
Diploma - Higher Diploma or City and
Guilds Qualifications.
Apply:
Registrar,
Reeswood College,
299A Edgware Road,
London W2 1BB.
01-402 9985.
Courses commence 15th Sept 1982 and 19th Jan 1983.

CITY AND GUILDS
 RADIO, TV and ELECTRONICS

PAMT-TME COUNBEs - FOR SEPTENAER 1902
C\&G 224 Electronics Servicing Parts I, II and III Options al Part III
AM/FM Reception and Audio Systems
Electronic Instruments and Testing
Television and Information Reception
Microprocessor Computer Systems
Mature students working within the electronics industry considered for Part III.
C\&G 765 Radio Amateurs.
For details please reply to Head of Department of Technology by telephone or writing

Langley College of Further Education, Station Road, Langley, Slough, SL3 8BY.
Tel: Slough 49222).

PERSONAL

NEWLY ESTABLISHED Video Showroom requires part-time or free-lance Colour Video Service Engineer, with own workshop or equivalent. Phone Mr. Shaw, Windsor 67774.

MISCELLANEOUS

CTV2. Tubular Degausser as supplied to colleges and rental companies only $11^{\prime \prime} \times 1 \frac{1 z^{\prime \prime}}{} 200-240 \mathrm{v} £ 15.00+$ $£ 1.90$ p\&p. I.T.S., 97 Marton Drive, Blackpool, Lancs. Tel. 025365089.
BURGLAR ALARM EQUIPMENT. Latest Discount catalogue out now. Phone C.W.A.S. Alarm. 0274 682674.

"TUBE REPLACEMENTS" OFFER

SPECIAL TRIAL PRICES

"WELLVIEW" EXCHANGE COLOUR
A44-271X £24

A47-342X £24
A47-343X £26
A49-120X $£ 24$
A5I-110X £24
A51-110LF £26
A55-14X £28
A56-120X £28
A63-120X £33
A66-120X $£ 33$
A66-140X £33
A67-120X £33
A67-150X £33
If no exchange glass $\boldsymbol{£ 4}$ extra
"WELLVIEW" EXCHANGE MONO

A44-120 WR
 £11

A47-26 WR
$£ 12$
A50-120 WR
£11
A59-120 WR
$£ 12.50$
A61-120 WR
£13.50
A31-300 NEW £15
A34-100-5 10 NEW
£16
If no exchange glass $£ 1$ extra
All abave plus VAT@ $\mathbf{1 5 \%}$.
Carriage $£ 5.00$ inc. VAT.
ALL TUBES 18 MONTHS GUARANTEE

COLOUR SETS

Complete G8's and Pye CT200's $£ 25$ VAT.
Others from $£ 10$.
ALSO YOUR VALVE SUPPLIER
NEW AND BOXED
(inclusive of VAT)

DY $802=74 \mathrm{p} \quad$ ECC $81=64 \mathrm{p} \quad$ EF $183=78 \mathrm{p}$
EF $184=64 \mathrm{p} \quad \mathrm{ECC8} 2=64 \mathrm{p} \quad$ PCF802 $=98 \mathrm{p}$ $\begin{array}{lll}\text { EF } 184=64 \mathrm{p} & \text { ECC } 82=64 \mathrm{p} & \text { PCF } 802=98 \mathrm{p} \\ \text { PCL } 82=78 \mathrm{p} & \text { PCL } 84=92 \mathrm{p} & \text { PCL } 805=97 \mathrm{p}\end{array}$
 $\begin{array}{lll}\text { PFL200 }=1.15 & \text { PCL86 }=97 p & \text { PLS04 } \\ \text { PY } 800=70 p & \text { PL508 } & \mathbf{£ 1 . 9 2}\end{array}$ PY88=70p
PY $500 \mathrm{~A}=£ 1.52$

NEWSFLASH

Mullard PL509-19
£5 inc. VAT
Postage and Packing 10p per valve. All orders over $£ 10$ Free of charge.

Camping - Self sufficiency - Emergencies Be prepared!
Fantastic 200 watt square wave inverter 12 v input $200-240 \mathrm{v}$ AC output tested but no guarantee $£ 20$ + £3 VAT, p\&p £3.

24v transistor fluorescent ballast units will run $2 \times 4 \mathrm{ft}$ tubes and draw under 2 amps (Philips) $\mathbf{\Sigma 5}$ each + 75p VAT, p\&p 70.
Dynamo torches complete with spare bulb. You need never buy torch batteries again. 2 for $\mathbf{£ 5}$ inc. VAT, p\&p 50p.

Allow up to 14 days for delivery.

TUBE REPLACEMENTS

Unit No. 1, Monmouth St., Bridgwater, Somerset.
Tel. 0278 425690-722816

DISPLAY ELECTRONICS

LEADERS
 IN TUBE TECHNOLOGY SINCE THE 60's.

```
            REGUNNED
        COLOUR TUBES
2 YEAR GUARANTEE
Up to 19"................................£33.00
22"...........................................................36.00
26"........................................£39.00
The above prices are for standard
38mm Delta Gun Types. Add £3
Gun surcharge for 20AX Types.
Other in-line & P.I.L. Types, prices
on application.
```

```
        MONO TUBES
    2 YEAR GUARANTEE
20" ......................................... £12.00
24"..........................................£14.00
```


BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect - Take 20\% discount.

PRICES EXCLUDE VAT

CALLERS WELCOME

Late night Thursdays until 8pm Saturdays until midday.
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

> WATERLOO ROAD, UXBRIDGE, MIDDLESEX

Telephone: Uxbridge 55800

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £10, Overseas $£ 11$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever

