PHD COMPONENTS
 RADIO \& TV COMPONENT DISTRIBUTORS UNIT 7 CENTENARY ESTATE
 JEFFRIES RD ENFIELD MIDDX
 SHOP NOW OPEN TELEX 261295

SEMICONDUCTORS		AU113	300	BF273	0.20	TBA3960 2.00	EHT MULTIPLIERS	
AA113	0.16	${ }^{\text {AL }} 103$	300 300	BF274 BF3	0.25	$\begin{array}{ll}\text { TDA440 } & 250 \\ \text { SN76001N } & 1.50\end{array}$		
AA) 16	0.16	AY102	3.00	${ }^{\text {BF336 }}$	0.50	SN76001N 1.50	TCE950 Doubler	2.00 5.04
A A 117 AA119	0.16	BC107 BC108	0.20 020	BF337 BF338	0.50 050	TBA520 200	TCE1400 (Piped System Only)	5.04 4.56
OA95	0.12	BC113	0.15	BF458	1.00	$\begin{array}{ll}\text { TBA396 } & 2000 \\ \text { TCA270SO } & 200\end{array}$	TCE1500 Tripler	4.64
OA202	0.18	BC114	015	BF459	1.00	TDA2030 800 1	TCE $16001 / 2$ Wave	3.95
BA100	0.18	BC115	0.20	BFT43	0.50	TDA2140 6.00	DEECA CS 1730/1830 Doubler	4.23
BA102	0.10	$8 \mathrm{BC116}$	0.20	BFX29	0.50	$\begin{array}{ll}\text { TDA2150 } & 6.00\end{array}$	DECCA CS 1910/2213 Tripler	6.67
BA130	015	${ }_{8 C 117}$	0.20	BFX84	050	TDA2160 6.00	DECCA 30 Series Tripler	6.01
BA154	010	BC118	0.20	BFX88	0.50	TDA1230 3.00	OECCA 80 Series Tripler	6.43
BA155	0.20	BC119	0.50	$8 \mathrm{BX89}$	0.50	TDA3089 2.00	DECCA 100 Series Tripler	6.68 6.43
BA164	0.12	BC125	0.20	BFY50	0.50	TDA1054M 2.00	GEC Hybrid 2028 Tripler ${ }_{\text {GEC }} 2110$ Tripler Pre JAN77	${ }^{6.43}$
BAX13	0.16	BC126	0.20	BFY51	0.50	MC1349P $\quad 1.50$		7.21 6.43
BAx 16	0.08	${ }^{8 C 136}$	0.20	BFY52	0.50	SAA661 0.60	GEC 2110 Tripler Post JAN77 IT CVC 5899 Trioler	6.43 6.51
Bar38	0.16	BC137	0.20	${ }^{\text {BFY }}$ 80	1.20	SAS560S 200	ITT CVC 5,8/9 Tripler ITI CVC 20/25/30	6.51 6.45
BY206	0.20	BC138	040	BF381	0.50	SAS570S 200		6.45 6.51
IN4148	0.04	${ }^{8 C 139}$	340	BFR39	0.30	SN7400N 0.40	Philps 520 Tripler	6.42
BY126	0.20 0.15	BC140 BC142	0.40 0.40	BFR79 BFR81	030 0.30	$\begin{array}{ll}\text { SN7413N } & 0.90 \\ \text { SN74122N } & 1.00\end{array}$	Philips 69 Tripler	${ }_{6}^{6.63}$
BY133	0.22	BC143	0.40	BFR89	0.50	$\begin{array}{ll}\text { SN74122N } & 1.00 \\ \text { SN74141N } & 1.00\end{array}$	PYE 691/693/697 Tripler	6.68
BY164	0.50	BC147	0.15	BF259	0.25	$\begin{array}{ll}\text { TBA395 } & 1.80\end{array}$	RR: 823 Tripler	548
SKB2/08	1.00	BC148	0.10	B0×32	2.50	TBA3950 1.80	RR1 2179/823	6.68
BY238	0.15	BC149	0.15	BU206	1.60	TBA950 4.00	TCE 3000 3500 Tripler	5.51
8×10	0.18	BC153	0.15	BU208/02	280	TCA800 4.00	TCE 4000 Tripler	${ }_{3} 8.00$
IN4001	0.10	BC154	0.15	BU326S	1.00	TCAB000 4.00	TCE 8000 Doubler	3.53 5.60
IN4002	0.10	${ }^{\text {BCL }} 157$	0.15	BU406	2.00	TDA1180 3.00	TCE 8500 Tripler	5.60
IN4003	0.12	BC158	0.15	BU406D	250	$\begin{array}{ll}\text { TDA1190 } \\ \\ \text { TD } & 3300\end{array}$	TCE 9000 Tripler	7.28
IN4004	0.12	${ }_{8}^{8 C 159}$	0.15	${ }^{8 U 407}$	1.70 250	$\begin{array}{ll}\text { TDA } 2002 \mathrm{H} & 3.60\end{array}$	TVK 52 IT Replacement	${ }_{6}^{5.68}$
1 10005 in4006	0.12 0.14	BC 160 BC 161	0.40 0.40	BU407D R2008B	2.50 2.50	TDA 25900 5.00 TDA2600 5.00 S	MKK 52 IT Replacement	6.68 650
\|N4007	0.16	BC170	0.15	A2010B	250	$\begin{array}{ll}\text { TDA2654 } & 3.00 \\ \\ \end{array}$	Autovox Tripler	6.50
1N5407	0.33	BC 171	0.15	R2540	3.00	TDA3950 3.00	Redifusion MK 1 Tripler	6.00
BR100	0.30	BC172	0.20	ME0402	0.20	TAA621 AX $1 \quad 3.30$	RRITV 25 Quadrupler	4.00
BR101	0.60	BC177	020	ME0412	020	TBA625X5 200	RRIT 20	7.04
8RY39	060	BC178	020	ME4003	0.15	TCA830S 200	MULTISECTION CAPACITORS	
TiC1160N	1.50	BC179	0.20	ME6002	0.20	TDA2020/A2 5.00	DECCA 400 400/350	372
BT120	200	BC182L BC 183 L	- 015	MJE2955	1.50	$\begin{array}{ll}\text { TDA } 2020 \mathrm{P} & 5.00 \\ \text { TDA2030V } & 3.60\end{array}$	DECCA 80/100 400/350	4.00
BYX $1 / 600$	0.80	BC184L	0.15	MJE3005	130	TDA2010/BD2 4.50	GEC $20020015050 / 350$	300
2N444	1.50	BC184LC	0.15	MP8113	1.00	TDA2002V 5.00	GEC 100 2000/35	1.10
TV106/2	1.50	${ }_{8}^{8 C 186}$	0.30	MPSU05	1.20	TCA940E 3.00	GEC Philips G8 600/250	210
BYx BZY88 2vo	0.10	${ }^{\mathrm{BCL}} 81$	030	MPSU555	1.20		GEC Phhlips G8 600/300	2.50
BZY88 3 3 3	0.10	BC204	0.15	TIP3055	1.30	We can often supply equivalents		3.00 2.20
BZY88 3V6	0.10	BC205	0.15	TIS90M	030	to transistors \& I.Cs not listed. Free	Philips G1 1 470/250	1.90
BZY88 3V9	0.10	${ }^{\text {BC206 }}$	015	2 N 2904	0.50	ist on request with any order.	PYE $691200300 / 350$	2.80
BZYB8 BZY88 $4 V 7$	0.10 0.10	BC207 BC208	0.15 0.15	${ }_{2}$ 2N2905A	0.50 0.50	VALVES	PYE 1000 1000/40 PYE $731800 / 250$	0.90 250
BZY88 5V1	0.10	BC209	0.15	2N3053	0.50	DY/86/87 1.30	RR1 2500.2500/30	1.30
BZY88 5V6	0.10	BC212L	0.15	2N3703	0.20	DY802	RR11600/300	2.50
BZY88 BZY88 6V8	0.10 0.10	${ }^{\text {BC2 }}$ BC213L	015 015	2N3015 2N3710	0.20 020	$\begin{array}{ll}\text { ECC82 } & 1.40 \\ \text { ECC84 } & 1.20\end{array}$	RRI 300:300/300	2.50
BZY88 7V5	0.10	${ }_{\text {BC2 }}$	0.40	2 N 3055 H	0.60	ECH83 ECH8	TCE 95010030010016	1.00
BZY88 8V2	0.10	BC237	015	TAA350	0.80	ECH84 1.10	100 150	3.70
BZY88 9V1	0.10	BC238	015	TAA550	+180	ECL80 ECI82	TCE 1500150150100	2.10
BZY88 BZY88 $1 / \mathrm{V}$	0.10 0.10		015 0.40	TAA570	1.80 1.75	ECL82 ECL86 1.10 110	TCE 3000 3500 175/400	
BZY88 12 V	0.10	BC303	040	TAA630S	2.50	EF80	TCE 3000/3500 600/70	270 1.00
BZY88 13 V	0.10	${ }^{\text {BC307 }}$	0.15	TAA661B	2.00	EF95 EF183	TCE 3000/3500 220/100	0.70
BZY BZY 88818 l 18 V	0.10 0.10	BC308 BC327	0.15 0.15	SN76540N TAD 100	1.50 2.00	EF183 EF184	TCE 8000/8500 2500-2500/63	150
BZY8820	0.10	BC328	015	TBA120AS	0.75	EL34 3.00	TCE 80000/8500 $400 / 350$	1.00
BZY88 22 V	0.10	BC337	0.15	T8A231	1.20	EL84 ${ }^{\text {E }}$	TCE 9000 400/400	3.00
BZY88 BZY 278 3	0.10 0.10	BC338 BC547	015 0.15		2.20	$\begin{array}{ll}\text { GY501 } & 3 \\ \text { PC97 }\end{array}$	TCE 9500 220/400	2.20
8ZX61 7 v 5	0.20	BC 141-10	0.80	TBA530	2.00	$\begin{array}{ll}\text { PC900 } & 1.50\end{array}$	MAINS DROPPERS	
BZX61 8V2	0.20	BD115	0.50	tBA5300	2.00	PCF80 174	TCE 140 12R 16. 1 K. 7 - 116	
BZX61 9V1	0.20	BD 124	1.80	T8A540	2.20	PCF802 PCF806	462.126	1.16
8ZX61 10 V	0.20	BD131	070	TBA5400	2.20	PCF806 PCL80	TCE 1500 350 - 20, 128.	
BZX61 11 V	020	BD 132 BD 133	0.60 070	TBA550	3.00 3.00	PCL82 PCL84 1.70 808	IK5, 317 TCE 160018 Thermal Link	1.10
BZX61 13 V	0.20	${ }^{\text {BD }}$ B134	070	tBA560C	2.20	PCL85/805 $\quad 1.90$		1.10
BZX61 15v	0.20	BD144	2.50	tBa560C0	2.20	PCL86 ${ }^{\text {c }}$	TCE 3000,3500	0.80
$87 \times 6116 \mathrm{~V}$	0.20	BD159	0.80	TBA570	2.50	PD500/510 PFL200	TCE 8000/8000A 56 - $1 \mathrm{~K}, 47.12$	12
8ZX61 18V	0.20	BD238	0.50	TBA5700	250	PFL200 260	5R 1R 100R	1.00
8ZX61 20 V	0.20	BD380	0.70	TBA641BX	3.00	$\begin{array}{ll}\text { PL36 } & 2.60 \\ \text { PL81 } & 1.50\end{array}$	Philips G8 2.2 Prilios G847 ar	0.90
$8 \mathrm{8X6} 124 \mathrm{~V}$	0.20	${ }^{80} 8537$	0.70	TBA651	3.00	PL504 250	Philips 6847 Philips 210 30, 125, 2K85	0.70
BZX61 27 V	0.20	BD538	070	tBa720A	1.50	PL508 250	$\begin{array}{llll}\text { Philips } 210 & 18 & 118 & 148\end{array}$	
B2X61 30V	0.20	BD507	070	TBA730	1.50	PL509 - 400	(Link)	0.65
BZX61 33 V	0.20	BD508	0.75	TBA750	200	PL519 PL502	RRI 154.50. 1694	060
$8 z \times 6136 \mathrm{~V}$ $8 Z \times 61$ 39 V	0.20 0.20	16181 16182	1.20	TBA7500 T8A800	200 100	PL802 PY88	RR1 A640 $250 \cdot 14 \quad 156$	0.80
$8 \mathrm{8Z} \mathrm{\times 614} 4$	0.20	16182 80709	1.00	trasios	1.50	PY5004 2.80		1.00
BZX61 72 V	0.20	BD710	1.00	tBA820	150	$\begin{array}{ll}\text { PY800/801 } & 1.70\end{array}$	GEC 2000	0.80
AC107	0.35	80442	070	TBA920	2.00	UCL82 $\quad 1.10$	PYE 731, 73536.27	1.00
AC127/01 AC	0.50 0.60	BD379 8 F 115	050 0.60	TBA9200	200 200	3OFL2/ PCF805 1.40 1.20	PYE $1100960 \cdot 70,173$ $26.16 .17 \quad 19$	100
AC128	0.60	BF118	0.60	TBA9900	2.00	$\begin{array}{ll}\text { PCF808 } & \\ \text { P1519 } & \text { PY500A }\end{array}$	RR1823 56R -68R	080
AC 128/01	0.60	BF152	0.40	TCA2205A	3.00	P.L519 PY500A 500	CONNECTORS	
${ }_{\text {ACl }}^{\text {ACl4 }}$ (${ }^{\text {a }}$	0.50 0.60	BF154 BF157	020 0.70	TCA900	1.00 2.00	VALVES NOT SHOWN HERE MAY BE IN STOCK. PLEASE WRITE		
AC142	0.40	BF158	0.40	TDA1170	200		Plug 13A (Box of 20)	800
AC142K	0.60	BF160	0.60	tDA 1200	3.00		AL Coax Plugs Pack of Ten	1.80
${ }_{\text {AC176 }}^{\text {AC176/01 }}$	0.60	BF163	0.60	TDA1270	4.00	DIRECT REPLACEMENT PARTS	6DB Attenuator	1.00
AC 186	0.60 0.40	BF 167 BF 173	0.50	TDA1412	100 400		1208 Attenuator 180 B Attenuetor	1.00 100
AC187	0.40	8 FF 177	0.50	SN76115N	2.00	173 Tuner (Repl Eic 1043/05) 8.00	Back to Back Coax	0.40
AC187K	0.60	8 F 179	050	SN76227N	1.20	4443 MHZ Crystals $\quad 2.00$	SERVICE AIDS \& TOOLS	
AC188 AC188K	040 0.60	BF180 EF181	050 0.60	SN76530P	. 50	$\begin{array}{ll}\text { Cut Out TCE 3500 } & 250 \\ \text { Cut Out GEC } & 2.50\end{array}$	Super Servisol	1.20
AD 140	1.50	BF182	0.50	SN76003N	3.00	Cut Out TCE 8500200	Foam Cieanser	1.20
AD142	1.50	${ }_{\text {BF } 183}$	050	SN76013N	2.00	TV18 Recitifer Stick 200	Silicone Grease	1.20
AD143	1.50	BF184	0.50	SN76013NO	2.200	TV20 Rectifier Stick VA 1104 Thermister 200	Plastic Seal	1.20 1.20
AD145 AD149	1.50 1.00	BF185 BF194	0.50 0.20	SN76013ND	2.00 2.00	$\begin{array}{ll}\text { VA } 1104 \text { Thermister } & 0.80 \\ \text { Transductor TCE } 3000 & 1.50\end{array}$	Aerokiene	1.20
AD161/2	1.50	8 F 195	0.20	SN76023ND	1.00	AEG Tuner (Repl Elc 1043/06) 9.00	Antistatic	1.20
AD162	0.70	8F196	0.20	SN76033N	2.00	Aeriel Isolator Kit $\quad 1.60$	Solder 18 SWG 60/40.5 KGM	10.00
${ }_{\text {AD }}^{\text {AD } 262}$ A 121	1.50 0.60	BF197 EF198	0.20	SN76110N	2.00 2.00	$\begin{array}{ll}\text { Philips G8 Lopt } & 12.00 \\ \text { PYE } 691 / 697 \text { Lopt } & 1100\end{array}$	SR2 Desoldering Tool SR3AS Mini Silver	770
${ }_{\text {AF }}^{\text {AF }} 124$	0.60	BF198 BF199	0.15 0.15	SN76227N	1.20	$\begin{array}{ll}\text { Bush A } 774 \text { Lopt } & 18.00 \\ \end{array}$	SR3A Mini Orange	6.80
AF125	0.60	EF200	015	SN76532N	2.00	Bush 0823 L-opt 5.00	Repa acement Nozzles	0.80
${ }_{\text {AF }}^{\text {AF }} 126$	060	${ }_{\text {BF224 }}$	0.15	SN76533N	200	Pre 731 IF Gain $\quad 10.50$	Replacement Washers	0.19
${ }^{\text {AFF }} 127$	0.60	BF240	0.45	SN76544N	2.00	A823 Bush Power Panel 2000	Solder Mop Red	060
AF139 AF239	0.60 1.00	${ }^{\text {BF24 }}$ BF256L	020 0.50	SN766504	1.50	BAHCO TOOLS - Come and see the full range at our shop or send tol full catalogue free on request, with any order.	Solder Mop Brown Side Cutters ORYX	060 320
AL102	3.00	BF257	0.50	SN76666N	120		TVTY 80/80 Transistor EQV	
AU107	3.00	${ }^{8 F 258}$	050	SL9018	600		A-Z or 2 N 5	00 each
AU110	300	BF27:	0.60	SL9178	8.00		Books PR 9.	3.00 PF

COPYRIGHT

olPC Magazines Limited, 1981. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

SUBSCRIPTIONS

An annual subscription costs $£ 10$ in the UK, £ 11 overseas ($\$ 24.20$ Canada or USA). Send orders with payment to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex.

BINDERS AND INDEXES

Binders ($£ 4.40$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at 85 p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We, will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice in dealing with serviciny problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

625

Leader
Teletopics
News, comment and developments.
VCR Clinic
by Derek Snelling
Fault reports from the video bench.
Letters
TV Pattern Generator
by Luke Theodossiou
A compact unit based on the Ferranti ZNA234E chip.
Provides grey-scale, crosshatch, horizontal line,
vertical line, dot, blank and white raster outputs via a u.h.f. modulator. A single step-through switch is used for pattern selection.
Practical TV Servicing: Tackling Focus Faults
by S. Simon
Poor focus is a common complaint in colour sets.
Whilst focus circuits are simple, there are important differences to note, while the symptoms themselves can be misleading.
Satellite TV Up-date by Roger Bunney
Satellite TV broadcasting will be with us within a few
years' time. Details of the European satellite TV
channel allocations, the assumed reception conditions,
likely receiver units and some new terminology.
Readers' PCB Service
Letter from America
by Jim Edwards
All about tuning in the 'States, ranging from simple
rotary tuners to microcomputer phase-locked loop systems.
Pattern Generator Follow-up
by Malcolm Burrell
Details of how to modify our February 1979 colour pattern generator design to obtain colour bars, a crosshatch pattern and a red raster.
Long-distance Television
by Roger Bunney
Another remarkable month, with signals from all quarters (including the Carribean I). Plus news from abroad and a circuit for a simple band-sweeper.

Ridley Relents

by Les Lawry_Johns
Sets that go Hrrrump bonk and others that attract
lightning. Also a method of dealing with difficult screws.

Station Openings

Service Briefs
Service notes from ITT and Philips.
Next Month in Television

VCR Servicing, Part 2
by Mike Phelan
An investigation of the drum and capstan servos - what
they are called upon to do and how they do it.
Vintage TV: Ferguson 842T/843T
Another trip down memory lane. Amongst the features of these early Ferguson sets are a separate e.h.t. generator and an unusual full-wave h.t. rectifier circuit.
Servicing Switch-mode Power Supplies by Derek Snelling An introduction for those still uncertain about switchmode power supplies. Self-oscillating, separate oscillator and line synchronised circuits are explained and fault-finding methods outlined.
Colour Portable Project, Part 6
by Luke Theodossiou
A DIY infra-red remote control transmitter using the SAA1250 i.c.
Service Bureau
Test Case 226
OUR NEXT ISSUE DATED NOVEMBER WILL
BE PUBLISHED ON OCTOBER 21

MANOR SUPPLIES

ANOTHER BREAKTHROUGH UNBEATABLE

NEW MKV CHEQUERBOARD \& PAL COLOUR UHF TEST GENERATOR FOR TV \& VCR.
\star Broadcast transmission accuracy.

* 40 different patterns and variations.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots.
UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.

PRICE OF KIT £80.50.
 DE LUXE CASE $\mathbf{1 6 . 5 0 .}$
 Post/Packing $£ 2.00$.

ALL ABOVE PRICE INCLUDE VAT 15%.

PAL COLOUR BAR GENERATOR plus CROSS HATCH KIT (Mk. 4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s. on colour bar P.C.B.
PRICE OF MK4 COLOUR BAR \& CROSS HATCH KIT £40.25 P\&P $£ 1.20$. DE-LUXE CASE $£ 5.95$. ALUMINIUM CASE $£ 3.30$, P\&P $£ 1.20$, BATT HOLDERS $£ 1.70$ P\&P 85p, ALTERNATIVE STAB. MAINS SUPPLY KIT £5.55 (Combined P\&P £1.80).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $166.70+£ 1.80 \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 80.50+£ 1.80 \mathrm{P}$ \& P. VHF MODULATOR (CHI to 4) FOR OVERSEAS $£ 4.60$. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
(ALL PRICES INCLUDE 15\% VAT)

MANOR SUPPLIES TELETEXT ADAPTOR KITS

Remote control of stations \& teletext.

MK 1 (Texas XMII)

£181.70.
MK2 (Mullard 6101) infra red £273.70. Further details on request P/P $£ 2.80$.

TELEVISION PROJECTS \& SERVICE SPARES
"TELEVISION" NEW COLOUR PORTABLE PROJECT (Parts available)
SWITCH MODE POWER SUPPLY KIT £26.00 p.p. £1.60. SIG BOARD KIT (Incl. ALT. SAW IF) £70.00 p.p. £1.60. Also time base \& CRT base. (PHONE, CALL, SEND FOR LIST). FULL TECHNICAL ADVICE \& PANEL TEST SERVICE FOR OUR CUSTOMERS, BACKED BY YEARS OF EXPERIENCE ON PREVIOUS MAGAZINE TV PROJECTS "TELEVISION" MONITOR PARTS AVAILABLE.
"TELEVISION" MONO PORTABLE RECEIVER PARTS AVAILABLE. WORKING MODEL \& PANEL TEST SERVICE.
"TELEVISION" COLOUR RECEIVER (LARGE SCREEN) PROJECT ALL PARTS AVAILABLE. SEND OR PHONE FOR LIST. WORKING MODEL ON SHOW WITH TELETEXT. (PANEL TEST SERVICE) NEW SAW FILTER IF AMPLIFIER PLUS TUNER COMPLETE AND TESTED FOR T.V. SOUND \& VISION $£ 32.80$ p.p. $£ 1.20$ (SUITABLE FOR USE WITH TELEVISION SIGNAL BOARDS).
SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW \& SPECIAL OFFER TEXAS XMII TELETEXT MODULE NEW $\&$
TESTED, LIMITED QUANTITY AT HALF PRICE $£ 69.00$ p.p. $£ 1.60$. TESTED, LIMITED QUANTITY AT HALF PRICE £69.00 p.p. £1.60.
TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE TELETEXT 23 BUTTON DE-LUXE HANDSET WITH 5 YDS. CABLE
$£ 7.80$ p.p. $£ 1.20$. XMII INTERFACE PANEL (THORN) $£ 2.10$ p.p. 75 p. $£ 7.80$ p.p. £1.20. XMII INTERFACE PANEL (THORN) £2.10 p.p. 75p.
CROSS HATCH UNIT KIT, AERIAL INPUT TYPE, INCL. T.V. SYNC AND UHF MODULATOR. BATTERY OPERATED. ALSO GIVES PEAK WHITE \& BLACK LEVELS. CAN BE USED FOR ANY SET £ 12.65 p.p. 60 p. (ALUM CASE $£ 2.60$ DE LUXE CASE $£ 5.50$ p.p. £1.00.) ADDITIONAL GREY SCALE KIT $£ 3.35$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $£ 20.00$ (VHF VERSION £21.60). ALUM CASE $£ 2.00$ DE LUXE CASE $£ 5.95$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT FOR COLOUR \& MONO $£ 28.00$ p.p. $£ 2.00$.
BUSH Z718 BC6100 SERIES IF PANEL 55.75 p.p. 90p.
BUSH A816 IF PANEL (SURPLUS) $£ 1.90$ p.p. 90 p .
BUSH 161 TIMEBASE PANEL A634 $\mathbf{\$ 3 . 2 5}$ p.p. $£ 1.40$
DECCA "Bradford" IF T.B. POWER ex rental $£ 5.75$ each p.p. $£ 1.40$
DECCA 80, 100 SERIES, IF FRAME TB $£ 7.90$ each p.p. $£ 1.40$.
GEC SERIES I MONO PANELS $£ 2.10$ p.p. $£ 1.30$.
GEC 2110 Decoder, RGB panels (ex rental) £5.75 each p.p. £1.00.
GEC 2010 SERIES TIM EBASE PANEL $£ 1.15$ p.p. $£ 1.00$.
GEC 2040 (TYPE) CDA PANEL $£ 288$ p.p. £1.25.
PYE $713 / 715$ Convergence $£ 5.75$ each p.p. $£ 1.40$.
PYE 697 Frame T.B. ex Rental $\mathbf{2} 2.88$ p.p. 90 p.
PYE 697 Line T.B. P.C.B. type salvaged $\mathbf{\$ 4 . 8 0}$ p.p. $£ 1.50$.
THORN $\mathbf{3 0 0 0}$ LINE TB PCB $\mathbf{5 5 . 7 5}$ each p.p. 85p.
THORN 3000 VID, IF, DEC, Ex Rental £5.75 each p.p. $£ 1.30$
THORN 8500 SERIES CHANNEL SELECTOR \& FRONT CONTROL UNIT $£ 4.37$ p.p. $£ 1.80$
THORN 8000/8500 IF/DECODER PANELS salvaged $£ 5.52$ p.p. $£ 1.60$ THORN 8000/8500 FRAME T.B. PANELS salvaged $£ 5.52$ p.p. £1. 40.
THORN 8000/8500 POWER/SALV. SPARES $£ 288$ p.p. 60 p.
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares $£ 8.62$ p.p. $£ 1.60$
THORN 9000 LINE T.B. (incl. Lopt etc.), Salv., spares £8. $^{6} \mathbf{6 2}$ p.p. £1. 60.
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT
THORN 9000 SERIES TOUCH TUNE REMOTE CONTROL UNIT
PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.84$.
PLUS ULTRASONIC TRANSMITTER HANDSET $£ 19.32$ p.p. $£ 1.8$
THORN 9000 IF/DECODER PANEIS Salvaged $£ 8.90$ p.p
THORN 9000 IF/DECODER PANELS Salvaged $\mathbf{1 8 . 9 0}$ p.p. $£ 1.60$.
PHILIPS 210,300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS 210, 300 Series Frame T.B. Panels $£ 1.15$ p.p. 80 p.
PHILIPS G8/G9 IF/DECODER Panels for small spares $£ 4.80$ p.p. $£ 1.30$.
G8 IF Panels for small spares $£ 1.75$ G8 IF Panels for small spares $£ 1.75$ p.p. 95 p.
G8 Decoder panels salvaged $\mathbf{~ 4 . 2 5}$. Decoder panels for spares $£ 2.00$ p.p. $£ 1.35$ VARICAP, U321, U322, ELC 1043/06 £7.82, ELC 1043/05 16.35 p.p 60 p ; G.I. type (equiv. $1043 / 05$) $£ 4.00$ p.p. 60 p. Control units, $3 P S N$ £1.40, 4PSN $£ 1.75,5 \mathrm{PSN} £ 2.00,6 \mathrm{PSN} £ 2.88$ p.p. 60p.
BUSH "Touch Tune" and Varicap Control Unit 84.40 p.p. 95 p.
VARICAP UHF-VHF ELC 2000S $\mathbf{1 9 . 8 0}$. BUSH TYPE $\mathbf{1 8 . 6 0}$ p.p. 85p.
VARICAP VHF MULLARD ELC 1042 £ 7.95 p.p. 60p.
UHF/625 Tuners, many different types in stock. UHF tuners transisted incl. s/m drive, $£ 3.28$. Mullard 4 position push button $£ 4,80$ p.p. $£ 1.30$.
TRANSISTORISED 625 IF for T.V., sound, tested. $\mathbf{£ 7 . 8 2}$ p.p. 95 p.
MULLARD EP9000 A udio Unit incl. LP 1162 Module £4.38 p.p. 85 p.
LINE OUTPUT TRANSFORMERS. New guar. p.p. £1.25.

BUSH 145 to 186SS series.
 ع8. 80
BUSH, MURPAY A816 series...... $\mathbf{£ 9 . 8 0}$
FERG., HMV, MARCONI, ULTRA
850 to 1580 ...
THORN 1690,1691

GEC 2000,2047 series NDESIT 20 ITT/KB VC1 200 300 MURPHY 1910 to 2417 series $\quad \mathbf{8 8} 80$ PHILIPS 19TG 170, 210, 300 $\mathbf{\Sigma 8 . 8 0}$ PYE, INVICTA, EKCO, FERR. 368, 169, 569, 769 series........ . 88.80

SPECIAL OFFER

GEC $2114 \mathrm{~J} /$ FINELINE. \qquad £5.50
PYE 40,67.. £5.50 THORN $1590 / 1591$.. 50 KB VC ELEVEN (003) $£ 3.25$
 OTHERS AVAILABLE, PRICES ON REQUEST A 900
TRANSDUCTORS Suitable for G8, A823, Bradford etc. £1. 72 p.p. 60 p.
THORN 9503 Stick Tray $£ 1.15$ p.p. 55p. Most others available.
THORN 3000/3500, 8000, 8500, MAINS TRANSF. £10.15 p.p. £1.80 6.3V CRT Boost Transformers $£ 5.00$, Auto Type £3.20, p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES Telephone 01-794 8751/7346 THOUSANDS OF ADDITIONAL ITEMS AVAILABLE, ENOUIRIES INVITED

LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Sun. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St.) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11. ALL PRICES INCLUDE VAT AT 15\%

Can youaffordNOT to switch to the fantastic BRIARWOOD TV trade offer?

100's of colour TVs
 100 \% complete-as they arrive-inbatches of ten ONLY $£ 20.00$ per set

COLOUR TVs WITH TESTED TUBES GUARANTEED 100\% COMPLETE

GOOD WORKING

IN 10's
£30.00 each
£25.00 each $£ 30.00$ each $£ 35.00$ each $£ 28.00$ each $£ 35.00$ each $£ 35.00$ each $£ 35.00$ each $£ 30.00$ eacา

In 20's
£27.00
£21.00
£25.00
£30.00
£25.00
£30.00
£30.00
£30.00
£27.00
in 10's
$£ 50.00$
£48.00
£50.00
$€ 50.00$
£50.00
£50.00
£50.00
$£ 50.00$
£45.00

Please note there is 15% VAT on all the above prices.

Foreign makes of TV's i.e. Skantic/Luxors, ASA's, Mitsubishi, Teleton, Grundigs, Saba's etc., © $£ 40.00$ each

Later types of sets i.e. G8, Thorn 3500 Varicap, ITT/KB, Thorn 8500, GEC 2100 etc., © £50.00 each. @ $£ 50.00$ each.

OPENING TIMES MON-FRI 9.00-12.00/1.00-5.45 (CLOSE 4.30 SAT)
CASH \& CARRY SPECIAL SERVICE TO THE TRADE
OR ASK ABOUT SPECIAL DELIVERIES ON LARGE QUANTITIES

BRIARWOOD TELEVISION
Briarwood House, Preston Street
BRADFORD, West Yorkshire ND7 1LU
Tel: (0274) 306018

PCL82	0.10	30C1
PCL83	0.25	30C17
PCL84	0.10	PCF802
PCL85	0.10	PCF805
PCL86	0.10	PCF806
PFL200	0.10	PCF808
PCF801	0.10	PCF80

0.10	PCC189	0.10	EF183	0.10	PL504
0.10	$30 C 15$	0.10	EF184	0.10	$6 / 30 L 2$
0.10	$30 C 18$	0.25	6 BW7	0.10	30 PL1
0.25	PC97	0.20	EH90	0.10	30 PL13/4
0.10	PC900	0.10	DY802	0.10	$30 \mathrm{FL} 1 / 2$
0.25	EF80	0.10	PY800/1	010	ECC82
0.10	EF85	0.10	PL36	0.25	ECC81
Please note there is 50p Postage and Packing per order.					

PLEASE ADD 15% V.A.T. TO ALL ITEMS AND OVERSEAS AT COST. CASH WITH ALL ORDERS		
0.25	ECL80	0.10
0.10	PL509	1.00
0.25	PY500	1.00
0.10	GY501	1.00
0.25	PL508	0.50
0.10	PCF200	0.50
0.10	EY51	0.15

BRIARWOOD TV LTD (Export Division)

TEL: 0274-306018 FOR PRICES \& FREIGHT DETAILS

COLOUR \& MONO TV'S ALWAYS AVAILABLE FOR WORLDWIDE USE

Briarwood T.V. Ltd., have international experience in quality used T.V. supply. Fully tested \& converted where necessary - by our experienced Export Division.

LUM	CHROMA	VIDEO	CON	POWER	L/TB	F/TB
-	12.00	-	6.00	6.00	12.00	-
6.50	9.00	-	5.00	-	-	12.00
-	10.00	-	5.00	-	-	6.00
6.00	6.00		5.00	15.00	15.00	6.00
6.00	8.00	-	5.00	-	15.00	5.00
6.00	6.00	6.50	12.00	15.00	15.00	6.00

Korting and other foreign panels available on request.
Postage \& Packing $£ 1.25$

\section*{TV scores with quality NEWSPARESELECTION
 All transistors. IC's offered are new and branden Manufactured by Muliard IT T. Texas. Molorola etc

 MAIL ORDER TV BARGAINS
 PYE 691 PYE 691 PYE 697
 BUSH 184
 BUSH 184
 GEC 2040
 GEC2040
 GEC 2040
 GEC 2040
 KORTING
 KORTING
 THORN 3000
 Good working mono's Pye, GEC, Bush etc.
 $19^{\prime \prime}$ \& $23^{\prime \prime}$ D/S Rotary
 Cheques, P.O. or Cash with orders Please. Please note there is 15% VAT on all the above prices. Plus $£ 10.00$ p \& p for colour TV, $£ 5.00$ for mono. ENGLAND WALES and SCOTLAND Inland N \& S IRELAND $£ 15.00$ for colour
 | $20^{\prime \prime} \& 24^{\prime \prime} \mathrm{S} / \mathrm{S}$ | $£ 20.00$ |
| :--- | :--- |
| $20^{\prime \prime} \& 24^{\prime \prime} \mathrm{D} / \mathrm{S}$ | $£ 18.00$ |
| $19^{\prime \prime} \& 23^{\prime \prime} \mathrm{D} / \mathrm{S} /$ P/Button | $£ 15.00$ |

 E.H.T. Trays Colour TYPE PRICE ε Pye 6916934.50 Pye 715/731/ $\begin{array}{ll}735 & 5.50 \\ \text { Pye } 737 & 5.40\end{array}$ Pye 737 (Large

Decca Screen) CS2030/2232/ 2233 2631 $\begin{array}{ll}2631 & 5.00 \\ \text { Decca } 80 & 5.30\end{array}$ Decca $100 \quad 5.30$ Philips G8 520/540 $\begin{array}{ll}\text { Philips G9 } & 5.30 \\ 5.50\end{array}$ Philips 5505.30 GEC C2110 5.
GEC Hybrid CTV
Thorn 3000 3500 $\begin{array}{ll}\text { Thorn } 800 & 5.00 \\ & 2.42\end{array}$ Thorn 85004.75 Thorn 9000 5.50 ITT KB CVC 5/7/8/9 20/25 $30 / 32 \quad 5.50$ Bush CTB2 Quadrupler 80 Bush X179 4.50 RRI (RBM)
 Bang \& Oluisen 4/5000 Grundig $5010 / 5011 / 5012$ 2052/2210/2252R Tandberg (radionette) Autovox Grundig
$3000 / 3010$ Saba 2705 3715
Telefunken 709/710/ $\begin{array}{ll}717 / 2000 & 6.80 \\ \text { Korting } & 6.80\end{array}$ E.H.T. TRAYS
 950 MK2
 Single Stick Thorn TV
 11. 16 K 70 V 0.75 TV 202 M
TV 2016 K TV 20
18 V BUSH $718 \quad 1.30$
 Briarwood House, Preston Street, Bradford West Yorkshire BD7 1LU}

P.V.TUBES

Telephone: Accrington (0254) 36521
WHOLESALE SUPPLIERS
$38 A$ WATER STREET, ACCRINGTON, LANCS BB5 6PX.
OF TELEVISION COMPONENTS
TRADE COUNTER OPEN MON-FRI 9 a.m.-4.30 p.m. SAT MORN. 9.30 a.m.-12 noon.

P. V. TUBES

Telephone: Accrington (0254) 36521
REPLACEMENT ELECTRDLYTICS

DECCA 30 (400/400/350V)	2.82
DECCA 80 (400/350V)	3.00
DECCA 100 (800/250V)	3.00
DEECA 1700 (200/200/400/350V)	4.80
PHALPS 68 (600/300V)	2.11
Prellips 69 ($600 / 300 \mathrm{~V}$)	2.11
PHLIPS G11 1470/250V)	2.68
PYE $691 / 7(200 / 300 / 350 \mathrm{~V})$	2.28
PYE 731 (60/300V)	2.20
RRM A823 (2500/2500/30V)	1.20
(2500/2500/25V)	1.10
RBM A823 (600/300V)	2.10
R⿴囗 2148 (300/300/350V)	3.00
ITT CVC5/9 1200/200/75/25)	2.35
ITT CVC 20 (220;400V)	1.92
GEC 2110 (800/250V)	1.85
GEE 2040 (1000/2000/35V)	1.14
GEC 2040 (300/300/150/100/50)	3.80
THORN 3500 (400/40V)	
THORN 950 (100/300/100/16/275V)	1.7
THORN 1400 (150/100/100/100/150/320V)	2.6
THORN 1500 (150/150/100/300V)	1.92
THORN 1500 (12/300V)	30
THORN 3500 (175/100/100/400/350V)	2.3
THORN 3500 (1000/63V)	6
THORN 3500 (1000/70V)	80
THORN 8000/8500 (2500/2500/63V)	1.4
THOAN 8000/8500 (700/250V)	2.2
THORN 8000/8500 (400/350V)	2.4
Thionn 9000 (480/400V)	280
MIXEO DIELECTRIC CAPACITORS	

Vots DC		
600 V	0.1 mFd	38
1000V	0.01 mfd	20
	0.047 mFd	29
	0.1 mFd	32
	0.22 mFd	4
	0.47 mFd	75
1250V	0.1 mfd	45
1500 V	0.0022 mFd	19
	0.0047 mFd	20
	0.022 mfd	24
	0.033 mFd	58

CAPACITORS					
AXIAL TYPE					
Voll	MF	Price	Volt	MF	Price
10	22	1		4.7	7
	47	7		100	11
	100	1		220	30
	220	11		470	38
	470	16		1000	53
16	1000	20		2200	65
			100	10	12
25	10	7		22	14
	22	?		47	11
	47	9		100	28
	100	10		220	35
	220	17			
	470	22	300	12	30
	1000	36	450	1	23
	2200	46		4.7	21
	4700	40		10	$2{ }^{\text {2 }}$
40	22	9		22	56
50	500	38		33	82
63	1	7	500V	1	30
	2.2	1			

DISC CERAMIC CAPACITOAS			
	${ }^{\text {High }}$		
eKV de. 12 KV d.c.	22	180 pF	22
39 pF	22	${ }^{2000 p}$	22
${ }^{68 p \mathrm{FF}}$	22	220 OF	22
1400pF	${ }_{22}^{22}$	250 pF	22

TEST EQUIPMENT		Phillps 68 5R-10R-20R-50R	
Porrable Oscilloscope 143.00			
TF200 Fropuency Melte		EAGLE PRODUCTS	
CRT Tesalefaivenator 150.00			
Labgear Coloun Ba/Cooss hatch	210.50	Pluse send lare SAE for tull Eagle Colalogue.	
Labgear Pateen Ceneratar (Pocket Siral	97.60		
		Matimemars 2000 opv	
		KEW 7N EM5	4.95
		EM10 10.000 opv	10.95
EAGLE PRODUCTS		${ }^{\text {EM50 }}$ 5030 50.000 opv	cings
		EMC321 Carring Case tor ${ }^{\text {above }}$	2.00 42.50
Sf540 Hexdphones with Valume Control	4.85	KHP 30N Messuring Probe (30kV\| (E.M.T.)	${ }^{28.95}$
SE600 Lighweight Headhhones	4.85	T1206 2 Staion intercom.	6.95

EDITOR

John A. Reddihough
ASSISTANT EDITOR
Luke Theodossiou
ART EDITOR
Roy Palmer

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Colin R. Brown
01-2615762

Time to beat the drum

Here we are with National Teletext Month and you'll all be doing your bit, won't you? talking teletext and so on. That's the idea anyway, and why not? Teletext certainly seems to need every assistance possible in being put over to and getting accepted by the public. According to a recent survey for example, many people believe that an extra fee has to be paid to receive teletext. There's much confusion between teletext and viewdata, which is understandable but doesn't help matters - and things will get worse if articles about different teletext standards add to the general puzzlement. Whilst it might be reasonably simple to correct misconceptions such as these by talking teletext, the problem of actually selling teletext remains.

For a start teletext is basically an information service, and despite all the glib talk about the information age there are limits to the amount of information people want or need. Then you've either to buy a new set or an adaptor. So there are the problems of cost and motivation. The price differential between teletext (with remote control of course) and non-teletext (no remote control) sets has been considerable in the past - around $£ 325$ in 1978. The differential has now fallen to a much more acceptable $£ 130$ ($£ 70$ for remote control, $£ 50$ for the decoder), and will fall further as the prices of sets of teletext decoder chips decreases. But how often do people change sets, especially now that they are so reliable? Adaptors are reasonably priced and work well, but there tends to be some resistance to little boxes that stand atop the TV set, as those of us who recall the early days of Band III know all too well.

One comes to the conclusions that strong motivation is required to pay out the extra $£ 100$ or so, and that the process of increasing the market penetration of teletext sets is likely to be slow since it will tend to be geared to the replacement market. Progress to date has not been negligible however. The figures for sales/rentals of teletext equipped sets/adaptors have been roughly as follows:

1977	2,500
1978	7,000
1979	30,000
1980	80,000
1981	300,000 (target)

That targetted increase for 1981 is based on the expectation that the publicity etc. associated with National Teletext Month will have a significant effect - in fact the government has already given the bandwaggon a welcome push by halving the minimum down payments for hire purchase/rental. To double or treble sales/rentals year on year as has already been achieved is good going, and looks feeble only if considered in terms of total TV set placements or of course in comparison with the VCR boom. The later emphasizes the point that whilst VCRs are mainly about entertainment, teletext is about information, a situation one can't see being altered much despite the provision of novel subject matter on some teletext pages.

Information available brings us to the number of lines used for teletext transmissions two per field so far for Ceefax and Oracle. It's welcome news that Oracle (ITV teletext Oracle has never seemed a very attractive tag from a sales point of view) is to start using four lines later this autumn, one of the aims being to introduce regional news. Oracle has also started to carry advertisements - at $£ 400$ per page per week, or $£ 200-£ 300$ for part of a page, the rate depending on whether the advertiser chooses the page on which his advert is to appear. One might wonder who on earth would ever call up complete advertisement pages, but they could prove popular for holiday ads and the like. More lines will help by increasing the amount of information available and reducing the time taken to gain access to particular pages.

How do you spot the most likely teletext user as he comes into your shop? Well according to a survey carried but recently by Philips he's fairly young, male, affluent and TV-orientated. It seems that teletext is still looked upon as an up-market product, and the problem here is that those with plenty of money don't watch much television. All of which emphasizes once more the difficult problem of the teletext sales pitch. There is also the fact that teletext is an active rather than a passive medium. You have to use it - to select your page, call it up and then read it. Shoving a cassette in the VCR and sitting back is not the same thing at all: the cassette will usually present the same sort of thing you'd have watched anyway (or maybe gone to the cinema to see).

What to emphasize then? Well, there's a lot of information on tap, it's constantly updated, and it's free! If it's there for the asking, why not have it? See what you can do!

Teletopics

NEW UK SETMAKER

A TV receiver assembly plant has been set up by Network Industries, a newcomer to the domestic TV field, at Wibsey, Bradford, W. Yorkshire. The initial product is a 12in. monochrome portable which uses a Korean tube, a board made in the Far East and assembled in Turkey, and a moulded cabinet produced by a Plessey subsidiary in the UK. Plans are to install automatic board assembly plant and increase production to 160,000 sets a year, following up with a 14 in . colour set which would be produced at a rate of around 40,000 sets a year. The monochrome portable and prototype versions of the 14 in . colour set were on show at the recent Harrogate International Festival of Sound.

Network's $£ 2$ million plant has been set up with aid from the Bradford Economic Development Unit and a $£ 0.25$ million City Council mortgage. The monochrome portable is expected to sell at around $£ 60-£ 65$, while the colour set should sell at around $£ 200$.

With Fidelity now active in these fields and Decca/Tatung talking about expansion plans, the UK's TV industry seems to be taking on a new lease of life. Thorn report continued success with their TX series sets, the latest export order coming from Greece - for dual-standard PAL/SECAM sets based on the TX 10 chassis. The sets will be supplied in kit form for assembly in a new factory at Attiki near Athens. It's the first time that a dual-standard (PAL/SECAM) version of the chassis has been produced, and prototypes are at present undergoing extensive field tests in Greece.

PUBLIC PRESTEL

An experiment is to be conducted, with government aid, to discover how Prestel can best meet the needs of the general public. Forty sets will be installed in public buildings in Brighton, Gateshead and Kingston-upon-Thames to assess possible use by individuals rather than businesses etc.

Prestel is undoubtedly too expensive for general domestic use. The benefits of the information available in British Telecom's computers could however be made available through public Prestel installations.

PHILIPS SURVEYS TELETEXT

Philips have issued a report summarizing the conclusions reached after a three year research programme into teletext. This involved an in depth investigation into users' needs and reactions and a more recent check on the general public's awareness and understanding of teletext. The latter shows that much remains to be done. A series of 2,000 short interviews showed that whilst 80% of those interviewed were aware of the basic idea of transmitting pages of text on television, only a quarter of these understood the service, over half said they didn't know much about it whilst a further quarter claimed to understand teletext but in fact got it wrong.

User satisfaction on the other hand seems to be high: 34% found it extremely useful and said they wouldn't be without it, 41% found it most useful and 20% found it quite
useful as a second source of information to a paper etc. Only 5% regarded it as a seldom used luxury. Teletext was used on average 77 times a week, the average time spent watching teletext being 116 minutes a week. The number of different pages watched per week was 29 , indicating that for many users there are several key pages they consult many times a week. About 70% of users experienced interference, though it appears that this is generally a shortterm intermittent problem that's not regarded as a major irritation.

Deliveries of teletext equipped sets to the trade during the first quarter of this year were 177% up on the equivalent period last year.

THE NEW DECCA CHASSIS

We've been taking a look at the circuitry used in the new Decca/Tatung 120/130 series chassis, which follows the modern trend with UK designs - a single main panel, low component count and low power consumption. Most of the circuitry is packed into a handful of i.c.s. On the signals side there's the now conventional TDA2540 i.f. chip, a TDA3190 intercarrier sound/audio i.c., and a μ PC1365C colour decoder chip. A SAWF and single-transistor (type BF959) preamplifier couple the output from the tuner to the i.f. i.c. The RGB output circuits are of the cascode class A variety, with background level stabilisation which is coupled to the beam limiting - this section is on the c.r.t. base panel. On the timebase side there's a TDA2576A sync processor chip, a TDA 1170 field timebase chip and a BU500 transistor line output stage with a separate e.h.t. tripler. Perhaps the most interesting feature however is the power supply, which is of the self-oscillating chopper type using a BU426A transistor: most of the control circuitry is incorporated in a new i.c., type TDA4600. A series of articles describing the chassis starts next month.

FUTURE TV SERVICES

TV4, which is due to start in November 1982, is likely to remain on air later than the present BBC/ITV services, with a close down at around $2 \mathrm{a} . \mathrm{m}$. on two or three nights a week. The normal close down will be at $12 \cdot 30 \mathrm{a} . \mathrm{m}$. Chief executive Jeremy Isaacs is reported to have said that he's not "absolutely overwhelmed by the innovative nature of the programme submissions" so far received from independent producers and the present ITV companies.

The BBC would like to see satellite TV transmissions in operation by 1986, and hopes to lease a satellite channel.

RTE MUSEUM OF BROADCASTING

The Radio Telefis Eireann Museum of Broadcasting (27 Lower Rathmines Road, Dublin 6) has been officially opened. Radio Eireann started broadcasting on New Year's Day 1926, Telefis Eireann commencing operations on New Year's Eve, 1961. The corporate name Radio Telefis Eireann was adopted in 1966. The Museum traces the history of radio and television to the present day, with equipment, photographic displays, sound archives and a recreation of Studio 3 on the night that television broadcasting in Eire started - the studio setting is complete with cameras and vision and sound monitors. The items on display have come from within RTE and from donors nationwide, and go as far back as early trans-Atlantic cables dating from 1858.

The Museum grew from the hobby and personal interest of its Curator, Paddy Clarke, who has restored to working
order most of the early sound items on display: it's at present housed in interim premises, the plan being to move eventually to the RTE headquarters at Donnybrook. Individuals and groups can make appointments by 'phoning RTE at 01693111 ext. 2053 or by writing to the address given above.

NEW MULLARD LINE OUTPUT TRANSISTOR

Mullard have introduced a new line output transistor, type BU508A - it's an up-dated version of the BU208A with the advantage of a simple, low-cost mounting. The BU508A's SOT-93A package can be clip mounted, using only one or two mountirg accessories (the BU208A requires up to thirteen accessories). The BU508A has a higher maximum d.c. collector current rating at 8 A , though the recommended operating current for both devices is $2-4 \cdot 5 \mathrm{~A}$. The two transistors are otherwise electrically identical.

LATEST VCRs

Sony are apparently making a comeback in the US market with a completely redesigned Betamax VCR. The new machine has front loading and is just over three inches high. Instead of belt drive there are six small motors - the reel drive motor is so small that it fits into the spindle!

In the UK, Mitsubishi have introduced two new VHS machines, Models HS310 and HS302. The HS310 replaces the HS300 and retains all the features of that machine plus a nine-programme/14-day timer and an infra-red remote control handset which fits into a slot in the machine's front panel. A retail price of around $£ 650$ is suggested. The HS302 is a "basic" machine with a one-programme/14-day timer and cable remote control. The suggested price is £550.

TELETEXT DEVELOPMENTS

Advertising on ITV's Oracle teletext service started on September lst - 15% of the pages have been made available for advertising use, the aim being to make the operation self-financing. The use of two extra lines per field for teletext transmissions is at present under test in the Anglia region and is expected to be adopted later in the autumn - this will involve a restructuring of the Oracle page numbers. An experimental regional service is to open in the Scottish Television central region during the autumn: Channel TV will start "some time" later and a full regional service is expected to be in operation by 1984/5.

INTERNATIONAL NEWS BRIEFS

Philips are to start manufacturing small-screen colour tubes in Austria - this will be the first European source of such tubes.

One of the major Korean TV manufacturers, the Gold Star Company, is to start producing colour TV sets in the USA. The plant will be in Alabama, and sets are due to start coming off the lines next July.

VCR BOOM CONTINUES

Estimates of the likely number of VCR sales/rentals in the UK this year are constantly being revised upwards, and now range from 750,000 (City brokers W. Greenwell and Co.) to one million (Mackintosh Consultants). This compares with a figure of around 400,000 for 1980. One of the problems with forecasting at present seems to be the fact that demand exceeds supply - the market is said to be
"supply led" - making it difficult to assess the market potential. Apparently Thorn did twice as much business with VCRs in June, on the run up to the Royal Wedding, as they did with TV sets.

Present demand seems to be so great that Japanese manufacturers are diverting production to the UK from other markets - this could explain why VCRs sell at comparatively higher prices in the UK than in the USA. Rental has certainly helped to boost interest, accounting for 70% of VCR placements. 1982 is expected to see a further increase in VCR sales/rentals.

HOME COUNTIES ATV GROUP

A number of amateur television (ATV) enthusiasts have formed a local group for the home counties, with the objects of promoting interest in ATV, arranging demonstrations and lectures for the public and other amateur radio organisations and helping those wishing to become involved. The group will be holding meetings on the fourth Wednesday in each month at The Swan Hotel, High Street, Iver, Bucks (Iver is about twenty miles west of London), starting at $8 \mathrm{p} . \mathrm{m}$. All those interested in amateur television are invited to attend. Further details can be obtained from the acting chairman John Betts (G4HMG) on 0753651652 or the acting secretary Mike Sanders (G8LES) on 01-398 4618.

VIDEO DISC DELAYS

As we go to press Philips are still being non-committal about the exact date for the launch of their LaserVision disc system in the UK. The problems are understood to relate to the yields obtained from the pressing plants. Meanwhile JVC in Tokyo have announced that there will be some slight delay in the launch of the VHD disc system, which is now expected to be given a world wide launch in mid-1982. The delay in this case appears to relate to achieving compatibility between the three world colour TV standards (it seems that NTSC is the problem!).

NEW TUBE TESTER/REACTIVATOR

Sinclair Electronics have announced the introduction of the Leader LCT910A c.r.t. tester/reactivator on the UK market, at a price of $£ 145$ plus VAT, including a range of sockets covering most current tubes. The LCT910A can be used with both monochrome and colour tubes and provides easy measurement of tube condition, reactivation, and provision for clearing shorts. Colour tube guns can be dealt with separately, and gun tracking can be checked. The tester is housed in a briefcase-type carrying case which is handy and provides good protection.

VIDEO STILL CAMERA

Sony have announced details of development work on a project to produce a colour video camera which could replace the conventional chemical-film still camera. The images are stored on reusable magnetic discs: each holds fifty pictures which can be played back via a TV set or printed separately - work on the printer is at an early stage, though the camera itself has been proved and demonstrated. The system seems on the expensive side - $£ 460$ is the price envisaged for the camera, though a 50 -picture disc would be only $£ 1 \cdot 40$. The system is expected to become available commercially in about two years' time. Film companies, including Kodak and Polaroid, are understood to be working along similar lines.

VCR Clinic

Derek Snelling

Hitachi VT8500

We've had a couple of interesting faults on Hitachi VT8500s recently. The complaints with the first were no colour on playback and no visual search in the reverse direction. As colour problems don't come along all that often, I decided to tackle this fault first. After going round in circles with a scope and a meter for about half an hour however I found myself coming to the conclusion that the machine was in fact o.k. and that I'd become colour blind everything seemed to check out all right. So I decided to deal with the other fault and come back to the colour one later.

On selecting forward visual search the machine worked, but when reverse visual search was selected the tape stopped and gave out a tortured scream. On removing the cassette housing and operating the machine without a tape the reason for this became apparent - whilst the supply reel began turning to pull the tape backwards on reverse search, the capstan motor continued to go forwards. A check at pin 4 of the microprocessor i.c. (IC901) showed that the reverse signal was coming out and a further check revealed that it was reaching the visual search board. It was not coming out of this board however. In addition, whilst the review output was present on review and absent on cue, the cue output was present all the time, including during play, though slightly low. Further checks revealed that gate one of IC1 105 was faulty, giving an output regardless of its inputs. It was also providing a voltage at one of its inputs (pin 2) via an internal fault. This was preventing the output of invertor one in IC 1106 going low to reverse the capstan motor. Replacing IC1105 cured the problem - and also cured the colour fault. The only reason I can think of for the latter is that the capstan speed was off during playback.

The second VT8500 exhibited the symptoms of being dead apart from the clock. The first thing to do in cases like this is to check the presence or absence of the $18 \mathrm{~V}, 15 \mathrm{~V}$ and 9 V supplies on the main system control board. In this case we had 18 V but no 15 V and 9 V supplies (the latter is derived from the 15 V supply). This didn't necessarily mean that the fault was in the power supply however, since the 15 V rail is switched on and off by pin 2 (power control) of the microprocessor. Checks here showed that although switching the operate switch on and off fed a voltage to pin 41 , the voltage at pin 2 didn't change. So either the i.c. was faulty or something was preventing it operating normally.

Having had problems with the reset circuit before, we scoped the reset input. This appeared to be normal, so we carried out some voltage checks. These quickly revealed that there was no 5 V supply to the i.c. due to ZD055 being short-circuit (it just shows - you should check the obvious things first!). How we were getting an output from pin 2 with no supply I don't know. Unfortunately, replacing ZD055 and switching on again produced the same symptoms - apart from a click from the solenoids at the moment of switch on. Checks showed that the 5 V supply to the 'i.c. was now present, but the output at pin 2 was still unaffected by the operate switch. We decided to disconnect pin 2 so that the power supply would operate (the output
from pin 2 turns on Q051, which shunts the zener diode for the 15 V supply). We now had the operate and channel lights on and, significantly, a flashing stop light. This is supposed to occur when the dew sensor detects condensation. The output goes to pin 33 of the i.c., and a check here showed that there was a voltage present. By disconnecting the various feeds to this pin one by one we finally tracked the fault down to D920, which is connected between this point and the 5 V rail - it was short-circuit. The machine was restored to normal working after replacing this diode and reconnecting pin 2.

Bodgers Again

When I moved to video I thought I'd be leaving the world of bodgers behind. It seems however that video has opened up whole new fields for tampering by the customer and his friends. The latest example we had was a Panasonic NV8600 with the complaint of lines on the picture. Switching on and playing a tape produced a few seconds of poor monochrome picture, then the machine appeared to go into the pause mode, the tape stopping and the picture freezing, with a large band of noise on it (the linus on the picture?). I say appeared to go into the pause mode because on this machine when pause is selected the picture is normally blanked out.

The first thing I noticed on removing the top was a short black wire attached to one of the terminals of the pinch wheel solenoid, the other end just floating. If this free end was touched to chassis (the only place it would reach), the machine began working normally, though in black and white. As the picture quality was poor, I decided to check the heads before going farther - an estimate was required. The heads were badly worn and whilst checking I noticed that the drum was fitted 180° out of position. Having read Steve Beeching's comments on this situation not so long since, I realised that it was probably the reason for the monochrome picture.

It was pretty obvious by now that the machine had been tampered with, but as the machine appeared to work all right with the pinch wheel solenoid in operation we decided that the only major fault was the heads. So an estimate for this and a couple of hours' labour was presented to the customer, along with a note saying we believed that the machine had been tampered with. A few days later the estimate was accepted, to everyone's surprise, and work commenced. First the new head drum was fitted the right way round, then attention was turned to the pause problem. With VCRs, if the machine switches off after a few seconds the cause is usually the absence of pulses from the take-up reel. In this machine these pulses are obtained from a pulley on the counter spindle, and checking here revealed that the belt from the take-up spool to the counter had come off. Replacing this solved the problem. Why however did the machine go into the pause mode rather than stop as it should have done?

At this point I noticed, while rewinding the tape, that both the counter memory and the tape end sensor seemed to be inoperative. Now the common denominator of these three problems is the stop solenoid and its drive circuitry, so I decided to check around here. It didn't take long to discover that the stop solenoid had in fact been unplugged from the mechacon board: reconnecting it finally got the machine going properly. As far as I can see the sequence of events must have been that the counter belt had come off and, unable to sort it out, whoever was messing about had disconnected the stop solenoid. As this didn't completely solve the problem he'd then earthed one end of the pinch

Kits which have PROVED themselves! Forgestone 500 teletext

High quality colour television receiver NEW INFRA-RED FULL FEATURE REMOTE CONTROL TELETEXT

* Pin diode tuner
* Glass epoxy printed circuit panels
* Full technical construction manual
* Hi-Bri tube
\star Eleven integrated circuits
* Ready built and aligned IF module
* High quality components
\star Modern cabinets
* All solid state

THE ULTIMATE in large screen $22^{\prime \prime}$ and $26^{\prime \prime}$ television receiver kits. Deluxe full spec. Teletext, 7 channel + VCR. Also video and audio in/out.
6 models in the 500 range.
Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products.
Telephone or Mail Orders accepted on
Access/Barclaycard
\star Fully isolated and protected power supply
\star Diode split L.O.P.T.

* Low consumption

Also ideal as a FULLY isolated COLOUR MONITOR for Home Computer Systems. R.G.B. or PAL Encoded Video inputs, with remote switching.
 colour developments limited
Ketteringham, Wymondham, Norfolk, NR18 9RY Telephone: Norwich (0603) 810453

THE VERY LATEST SC110 LOW POWER, FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC1 10 represents a break-through in oscilloscope development. The SC1 10 is LESS THAN TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.
Full Sized Performanc

- 10 mV per division sensitivity.
- Full trigger facilities are provided including TV frame, or TV filtering.
* Runs on 4 to $10 \mathrm{~V} O C$ via disposable batteries, re-chargeable cells. ar $A C$ adaptor.
Size $255 \mathrm{~mm} \times 148 \mathrm{~mm} \times 50 \mathrm{~mm}$.
'Scope £139.00 $+£ 20.85$ V.A.T.
Carry case $£ 7.70+£ 1.16$ V.A.T.
$\times 1$ Probe $£ 8.50+£ 1.28$ V.A.T.
$\times 10$ Probe $£ 10.00+£ 1.50$ V.A.T.
(AC Adaptor $\mathbf{£ 4 . 9 5}+\mathrm{E}$ (0.74 V.A.T.)
verseas purchasers please state voltage.)
(Overseas purchasers please state voltage.)
Re-chargeable cells $\mathbf{£ 7 . 5 0 + £ 1 . 1 3 ~ V . A . T . ~}$
THANDAR TM354 HAND HELD LCD DIGITAL MULTIMETER The TM354 is a compact $3 \frac{1}{2}$ digit hand held multimeter featuring a LARGE 0.5 " liquid crystal display. 0.75% basic accuracy and a 2000 HOUR battery life. The meter provides five functions in fourteen ranges.

AC voltages 1 mV to 1000
OC voltages iV to 500 V

- Resistance 1Ω to 2 Mmps
- Resistance 1Ω to $2 \mathrm{M} \Omega$
- Diode check

Complete with test prods and vinyl fouch $\mathbf{f 3 9 . 9 5}+£ 5.99$ V.A.T
World-wide post free service. Overseas orders welcome. Please deduct U.K. V.A.T. Mail Order only. Callers by appointment
Barclaycard/Access orders welcome, Cheque/Bank dratt etc., with order please.
Large S.A.E. for technical leaflet and complete Thandar list.
B. K. ELECTRONICS, Dept. 'T',

37 Whitehouse Meadows, Eastwood,
Leigh-on-Sea, Essex SS9 5TY.
Tel: (0702) 527572.

Technical Training in Radio, Television and Electronics

Start training TODAY and make sure you are qualified to Jake advantage of the many opportunities open to trained people. ICS can fur:her your technical knowledge and provide the specialist training so essential to success.
ICS, the world's most experienced home study college has helped thousands of people to move up into higher paid jobs - and they can do the same for you.
Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including:

City and Guilds Certificates:-

Teecommunicatic ns Tezhnicians,
Radio, TV and Eleztronics Technicians,
Electrical Ins:allation Work,
Tezhnical Communications,
Radio Amate'ur,
MF'T General Radio Communications Certificate

Diploma Courses:-

Electronic Engineering,
Electrical Engineering,
Computer Engineering
Radio, TV, Audio Engineering, Servicing and Maintenance. (inc Colour TV)
New Self-Build Radio Courses with Free Kits

Colour TV Servicing

Technicians trained in TV Servicing are in constant demand. Learn all the techniques ycu need to service Colour and Mono TV sets through new home study courses which are approved by a leading manufacturer.

The ICS Guarantee

If you are studying for an examination, ICS w:1l guarantee coaching until you are successful - at no extra cost.

POST OR PHONE TODAY FOR FREE BOOKLET.

I am interested in
Name
Address.
Phone No:
International Correspondence Schools,
Dept. 285N Intertext House,
LONDON SW8 4UJ. Tel. 6229911
(all hours)

Interested in Television Servicing? Try a ZED Pack. Effect Repairs at Minimum Cost.

GEMINI ELECTRONIC COMPONENTS
Dept. TV, The Warehouse, Speedwell Street, London S.E.8.
Please quote ZED code where shown. Send cheque* or Postal Order. Add 60p P\&P and 15\% VAT.
*Schools etc. SEND OFFICIAL ORDER
ZED PACKS now available for CALLERS at 50 Deptford Broadway, London, S.E.8.
Send Large S.A.E. for list of Quantity, Prices and Clearance Lines etc.
wheel solenoid by means of the added black wire. What I can't see is how the head drum came to be the wrong way round!

Ferguson 3V22

A common fault seems to have appeared in our area with the Ferguson 3V22. Whether it's a batch problem or something more general I don't know. We've had five of these machines in as many weeks with the complaint that the customer stopped the tape but was unable to eject it - in fact none of the keys except stop could be depressed. This usually means that the machine has failed to unload properly, as during the unload sequence all the keys are disabled.

The first problem is to get the top off, as with the Ferguson 3V22 the cassette compartment needs to be in the up position. The way to do this is to remove the two top screws and tilt the top up as far as it will go, then insert a screwdriver in the left-hand side and remove the two screws securing that side of the cassette compartment lid: The top can then usually be removed, but if necessary take out the two right-hand lid securing screws.

On removing the top of the first machine to come along we found that the loading sequence appeared to be complete but the head was still rotating. So, thinking that the loading mechanism was stuck just short of completion, we gave it a prod with a screwdriver (see later). The head then stopped and the keys became functional. Further operation of the machine revealed no problems, so after extensive testing it was returned to the customer.

A week later the machine came back with the same symptom. This time we noticed that there was some play on lever 1 in direction B (see Fig. 1). Further close inspection revealed that the securing screw had come out. To replace this involves removing the spring, the two circlips arrowed, and pushing levers 2 and 3 aside. We've had four more cases of this fault since the first one, and have found that to free the mechanism in order to remove the tape and carry out the repair lever 1 should be pushed in direction A with a screwdriver and released sharply, repeating if necessary. The screw is usually to be found lying by the lever, but if it has fallen into the machine it's essential, when refitting, to make sure you've a screw, a shakeproof washer, a plain washer and a spacer. The latter is most important as without it the lever won't move freely. A spot of screwlock or similar is a good idea.

Foreign Bodies

I'm building up a nice collection of things found in VCRs. We've had a Ferguson 3V22 that wouldn't lace up due to part of a Cindy doll gramophone in the mechanism, another of these machines with a similar fault due to a piece of 'lego, and a third whose cassette compartment wouldn't go down with or without a tape due to a 2 p piece. The worse case however (from the customer's point of view) was an Hitachi machine we had in recently because it wouldn't play. On switching on and selecting play we noticed that the tape didn't lace up. This is usually due to the $2 \cdot 2 \Omega$ resistor we've mentioned before, and sure enough on removing the bottom this was found to be the case. We next turned the machine over to test it , and as we did so we heard a rattling from within. At this point we'd not removed the top, since this is not normally necessary with the fault we'd just dealt with. On pressing eject, out popped an E-type Jaguar, matchbox type!

I had a nasty feeling about what this might have done to

Fig. 1: Troublesome screw in Ferguson 3V22 machines.
the machine, as the heads rotate normally with this fault. Sure enough, on attempting to playback a tape there was no picture, and on examining the heads we found that each had a piece missing. This must have happened before the machine was brought in, or we'd have heard the car hitting the heads. It was not covered by the guarantee of course . .

Two Bush VCRs

The problem we had with a Bush BV6900 was that it wouldn't eject the tape. Removing the top revealed that the machine was stopping just short of completing the unlacing, and on examining the mechanism we found that at this point the whole thing became stiff. After careful inspection we found that the small wheel at the left-hand side of the loading ring had gone under the ring, jamming it. Freeing the wheel allowed the loading/unloading to proceed freely for a while, then the wheel slipped back under. Thinking that the loading ring was perhaps warped, we fitted one from another machine, aligning it carefully as per the manual. This was no help however and we then noticed that cue would not operate immediately after using review, and that the rewind (review) key was stiff and reluctant to return to its normal position when released.

Further checking here revealed that the failure to operate in cue was because the review mechanism was not returning to the correct position, and that a lever from this part of the mechanism connects (eventually) to the area of the unlacing mechanism where the trouble was being experienced. The problem seemed to be that the grease had become stiff, and stripping the mechanism down as far as possible, removing all the old grease and relubricating cured the trouble. (It took a couple of hours mind you!)

Another Bush BV6900 worked perfectly except on rewind, the key tripping as soon as it was depressed. As the rest of the machine was working normally, suspicion fell on the rewind end sensor circuit. In Betamax machines, the end of the tape is indicated by a piece of foil which alters the inductance of the tape end sensor. This in turn stops the oscillator connected to it. As separate oscillators are used for forward and rewind, the problem was dealt with by checking the rewind oscillator - its output was slightly low. When this was set up in accordance with the manual there was no further problem.

Slow Clock

We had a slightly unusual fault recently on a Sanyo

VTC9300 - the clock ran slow, taking seventy seconds for every minute (without varying). Replacing the TMS 1070 i.c. on the timer board cured that.

Miscellaneous Faults

We've also had the usual crop of minor faults - dead Sanyos with either faulty 12 V regulators or blown mains fuses, a Panasonic NV7000 with only the eject working due to a faulty cassette lamp, and a Ferguson 3V22 which for the same reason tripped the keys as soon as they were depressed. We also had a Sanyo VTC9300 and a

Panasonic NV7000 which would both stop after a few seconds due to the belt which turns the take-up spool having snapped. Unfortunately in the case of the Sanyo machine (a Betamax type) this meant that when eject was pressed the slack tape was not wound back into the cassette - so the customer had a damaged tape as well.

Where's Steve?

Steve Beeching, who started this column off, is at present busy writing a book on VCR servicing for Butterworths.

Letters

DRAWING ARCS

George Wilding, in Service Notebook in the July issue, mentions the size of the arc that could be drawn from the collector of the line output transistor. This was common practice in the days of PY81s, PL81s and so on, but is surely not good practice when dealing with solid-state sets, especially those containing CMOS devices. Perhaps the comments should have been qualified to indicate how the arc was produced, so that less well informed readers would be deterred from the screwdriver "collector to chassis" method, causing instant power supply destruction etc. The experienced engineer may be able to judge the situation by the size of an arc drawn by a test meter prod with the meter on an appropriate a.c. or d.c. range (the meter on a.c. would surely be a better indication anyway), but any more brutal methods should be discouraged. Fig. 1 shows the circuit of a simple diode probe which will measure transistor peak collector voltages from 1.5 kV peak (line) down to 60 V peak - it's also useful for checking video output levels etc.
G. C. C. Wride,

Cheltenham.
George Wilding comments: Sorry for any misunderstanding. It certainly wasn't my intention to suggest that anyone should try checking for the presence of pulses at the collector of a line output transistor with a screwdriver blade to chassis. Checking with the tip of a small screwdriver's blade or the tip of a test prod (with the meter on the highest d.c. range) is standard practice however. Using a d.c. range is better since the equivalent a.c. range is usually of lower impedance.

If you want a positive check for the presence of e.h.t., remove the anode connector and, after making sure that it can't flop about near any earthed metalwork or metalising, switch on. The resulting corona and hiss will prove whether adequate e.h.t. is present. Alternatively, a slight tingle

Fig. 1: Diode probe circuit suggested by reader G. C. C. Wride for measuring transistor collector peak voltages. Resistor R1 is. included to reduce the initial charging current, i.e. the probe's input capacitance.
should be felt when a hand is placed in front of the screen.
Whilst a diode probe of the type suggested can be helpful in showing approximate signal and peak-to-peak waveform values in some circuits, with the component values shown the set should first be switched off - otherwise you could get a large though brief pre-contact arc, followed by a high initial surge. I've experimented with various forms of diode probe linked to a high-impedance meter to check simply for the presence of signals and waveforms, and have found that to minimize circuit loading etc. the capacitors should be about 800 pF in value (unless checking in field-frquency circuits of course).

If a tripler is suspected of being responsible for the no picture condition, and possibly of fuse blowing or causing a trip to operate, remove the pulse feed to the tripler from the transformer. If this stops the fuse blowing/trip operating you'll still want to know whether there's a normal pulse supply from the transformer. The usual way of checking this is with a screwdriver. The main enemies of transistors and i.c.s are e.h.t. crackovers, inadvertent h.t. shorts and electrolytic shunting actions.

AERIAL TIP

Here's a tip for those who take down their aerials from time to time for alterations or to experiment. They'll probably find that corrosion has taken its toll, and that damage has to be attended to before starting the intended work. Before erecting an aerial I always encase certain parts in Plasticine. This provides protection against the effects of weather for years on end - components will be found to be in mint condition when the Plasticine is eventually removed.

The parts I treat are: (1) the cable connections to the dipole, inside the plastic or hard rubber case (screws, nuts, washers) - make an air-tight seal; (2) the U-bolts that fix the boom to the mast (the thread, washers, nuts or flynuts); (3) the bolts and nuts that hold the mast to the building (the exposed parts); (4) the turnbuckles attached to the guywires (if used); (5) any other additions to the aerial proper, e.g. boosters etc.

Leave the Plasticine well alone after application. It hardens with time but is quite easy to remove.
Victor Rizzo,
Msida, Malta.

RENOVATING A PYE 569 CHASSIS

Whilst reading through a recent issue of Television I was reminded of the battle I had when renovating a monochrome Pye hybrid set (569 chassis). Here's how it went.

First I looked over the board for obvious faults. The line output transformer was found to be held in position by a single screw, whilst all the soldered connections were bereft
of solder! I put this right, replaced the missing mains fuse and switched on. This produced nothing due to the surge limiter resistor (R59) being open-circuit. A 10W replacement was fitted and a check made for shorts. Switching on again produced h.t. but no e.h.t., and I then noticed that the line output valve's fusible screen grid feed resistor was open-circuit. Resoldering this still didn't produce e.h.t., but drawing an arc from the PL504's anode did. I came to the conclusion that this action must have sealed a dodgy connection, so I went over the line output transformer connections again with a hot iron.

I now had e.h.t. but still no picture, and a check around the video output stage revealed that the output transistor's load resistor was open-circuit. This was replaced, along with the associated resistor to chassis (it looked a bit the worse for wear) - the transistor itself was all right. So l'd a picture but no sync. As the picture could be made to hover on the screen I replaced the PCF802 line oscillator valve. This made no difference, and as the voltage readings seemed to be about right C 49 which smooths the valve's h.t. supply was replaced. This time success, and the only other action that seemed necessary in this area was to replace the flyback pulse feedback resistor R 69 ($27 \mathrm{k} \Omega$) - it was charred and had risen in value considerably.

The picture could now be seen to be cramped at the bottom and was rolling. A new PCL805 cured the rolling, and replacing the pentode's cathode bias components (R96, R97 and C76) cured the cramping. This gave me a fair picture, but the field would roll about once every fifteen seconds, regularly. This trouble was eventually cured by replacing VT12 (BC148) in the field sync circuit. As synchronisation had been a bit of a problem, I decided to check over the sync separator circuit to avoid further trouble - the sync separator's base bias resistor R125 ($4.7 \mathrm{M} \Omega$) was replaced as it was slightly high in value.

I now had a good, rock steady picture. Turning up the contrast only increased the brightness of the display however - the front mounted brightness control was found to be at almost maximum setting. The video preamplifier and a.g.c. circuits are mounted on a subpanel which is at 90° to the main panel. Setting up the presets on this panel cleared the contrast problem and also rid the display of slight graininess. I found that the best way of setting up this panel is to monitor the emitter voltage of VT16 (a.g.c. detector) and the base voltage of VT18 (tuner a.g.c. delay), adjusting RV21 and RV22 for 3 V and 6.7 V respectively. The adjustments are interdependent and can be a fiddly business in the confined space. Following this I noticed tiny arcing within the PY800 boost diode, so this too went into the bin and the PL504 was replaced in case it had been damaged.

After all this I began to wish I hadn't bothered. I pressed on however - after all there couldn't be anything else wrong, could there? Turning up the volume produced excellent sound, but there was an annoying buzz from the speaker. As there was no hum bar, the h.t. smoothing was ruled out. A replacement audio valve made no difference, so the earthing of the volume control to chassis was checked. This was found to be o.k., and to be sure of the h.t. smoothing I tried extra decoupling on the HT3 and HT4 lines. At this point 1 noticed that the buzz almost disappeared if the chassis was left in the down position. Extensive checks and extra earth leads to various points and cans failed to remove the buzz, so I called it a day on this one.

By this time I'd a very good working set, especially as the tube was in excellent condition. As a final measure I tidied up the board generally. There'd been a burn up around the
line linearity coil, so the connections were made good, the board was cleaned up, and the parallel damping resistor R91 ($1.5 \mathrm{k} \Omega$) was replaced, using a 4 W wirewound component. The front panel was resprayed and the lettering renewed, and I was very pleased with the outcome.

S. Leatherbarrow,
 Middleton, Manchester.

PHILIPS G11 TIP

I had a strange fault recently on a set fitted with the Philips G11 chassis, the symptoms being no sound or raster. Ah! I said, attacking the tube base with the Avo, but the voltages here were all present and correct. The power supply and line timebase seemed to be in order, and there was some e.h.t. Well I thought, tackle the sound problem first as the set was almost new and the tube surely o.k. A quick run round the intercarrier sound i.c. revealed that there was no 10.5 V supply at pin 2 , so I moved over to the 12 V stabiliser i.c. (IC5073, type TDA 1412) which was producing no voltage at its output pin (pin 2). Replacing this restored the sound and the raster, and I thought I'd better get a few of these three-leg monsters ordered quickly.

The line oscillator is normally powered from the stabilised 12 V rail. The input to the 12 V stabiliser i.c. comes from the line output stage however, so there's a start up feed (via R2010). It seems that in the start-up mode there's insufficient e.h.t. to produce a raster. So a defective 12 V stabiliser i.c. can remove the raster as well as the signals. A bit of a head scratcher, and I thought that other readers might like to be alerted to this possibility.
F. W. Kelly,

Sacriston, Durham.

PREH PUSH-BUTTON UNITS

In your August 1980 issue the use of a Bush push-button unit as a replacement in the Hitachi Model CNP 190 was mentioned. Later, in the May 1981 issue, the part number was given (76012426). I bought one of these from Manor Supplies and wired it up similarly to the unit already in the TV set but found it wouldn't work. On getting in touch with Manor Supplies I was sent a wiring diagram (see Fig. 2) and found this to be somewhat different from the way in which the original Hitachi unit was wired. Anyway, I'm now able to tune in the channels o.k., and mention this in case anyone else has difficulties when following the same course. The push-buttons are longer than those on the original unit incidentally, but can easily be reduced in size using a fine hacksaw (saw off about an eighth of an inch), smoothing off with a fine file.
R. Jelley,

Abertillery, Gwent.

Fig. 2: Connections to the Preh push-button channel selector unit used in the Bush Model TV313. The positive and negative connections may be reversed if necessary. All Preh varicap control units conform to this pinning. The unit is available from Manor Supplies.

TV Pattern Generator

Luke Theodossiou

WITH a variety of TV pattern generators already on the market, we had to think very hard before committing ourselves to yet another design. However, we feel that our approach is both interesting and flexible and can result in a useful instrument contained in a very small case which is equally at home on the bench or in the field.

The heart of the unit is a chip from the Ferranti ULA (Uncommitted Logic Array) range. We've used another device from this range in previous designs - the sync pulse generator i.c. ZNA134. This time Ferranti has produced an i.c. (the ZNA234E) which makes available all the necessary waveforms to produce crosshatch, dot, vertical lines, horizontal lines and greyscale test patterns on a TV screen. The block diagram of the device is shown in Fig. 1. All that is required is a 2.5 MHz crystal and a minimum of external components for mixing the video, sync and blanking pulses to give a composite video signal. The device is contained in a 16-pin DIL plastic package.

The circuit diagram of our particular way of using the i.c. is shown in Fig. 2. The outputs from the ZNA234E (IC4) are passed through analogue switches contained in IC2 and IC3 (4066). A particular pattern is selected by activating the CMOS switch from one of seven outputs derived from ICl. This is a 5 -stage Johnson decade counter whose active-high outputs are advanced by one on every high-tolow transition on the clock input pin 13. When the counter reaches the eighth position (pin 6) this is fed to pin 15 which is a master clear input. This sets all outputs to low and as soon as the selector switch SW1 is released, the first pattern is selected again.

This method provides a convenient way of dispensing with a 7 -way switch and keeps the front panel of the generator much simpler. Of course there is no reason why a mechanical switch cannot be employed if preferred but the
p.c.b. was designed to accept the circuit in Fig. 1. Apart from the five patterns generated by IC4, blank raster and white raster are also offered; the former by taking the base of Tr 1 to ground and the latter by taking it to +5 V via R3. Resistors R4, R5 and R6 increase the edge speeds of patterns containing short-duration pulse components.

The reason why digital gates cannot be used in place of the analogue switches is the greyscale pattern which is of course an analogue signal. It is generated by the i.c. from a digital to analogue converter which acts as a switched current sink providing 8 equal current steps of approximately $60 \mu \mathrm{~A}$ per step. With the external pull-up resistor comprising R2 and VR1, $0.3 \mathrm{~V} /$ step are produced when the effective load resistance is $5 \mathrm{k} \Omega$, which is made variable by VR1. The output has a saturation level of 2 V and requires a buffer stage before it can be mixed with the sync pulses. This is performed by Tr1. The selected generated pattern is fed to its base, whilst video blanking pulses are added via D1. Mixed sync pulses are applied to the emitter from pin 3 of IC4. VR2 sets the sync/video ratio, whilst VR3 sets the composite video output amplitude. This is coupled to the Astec u.h.f. modulator via D2 which offers a d.c. offset to match the requirements of the modulator.

The power supply utilises a 7805 regulator which allows the unit to operate from any external d.c. source in the range +7 V to +15 V . A proprietary battery adaptor is suggested. This approach leads to a smaller unit than if a mains supply was to be incorporated. The current consumption of just over 100 mA prevents the use of reasonable sized dry batteries.

Construction is quite straightforward using the doublesided p.c.b. The track patterns will be shown next month Fig. 3 shows the component locations. Start by inserting

Fig. 1: Block diagram of the Ferranti ZNA234E TV pattern generator i.c.

Fig. 2: Circuit diagram of the pattern generator. Pins 6 and 15 of IC4 are connected to chassis.

\star Components List

Resistors: all 0.25W, carbon film, $\pm 5 \%$
\(\left.\begin{array}{ll}R1 \& 100 \mathrm{k}

R2 \& 2 \mathrm{k} 7

R3 \& 1 \mathrm{k}

R4 \& 1 \mathrm{k}

R5 \& 1 \mathrm{k}

R6 \& 1 \mathrm{k}

R7 \& 270 \Omega

VR1 \& 4 \mathrm{k} 7

VR2 \& 1 \mathrm{k}

VR3 \& 1 \mathrm{k}\end{array}\right\}\)| miniature horizontal-mounting |
| :--- |
| skeleton presets |

Capacitors:
C1 10 n ceramic plate
C2 22p ceramic plate
C3 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ radial electrolytic
C4 $220 \mu \mathrm{~F} 16 \mathrm{~V}$ radial electrolytic

Semiconductors:

D1 1N4148
D2 BZY88 C2V7
D3 $0.2^{\prime \prime}$ red I.e.d.
D4 1N4001
Tr1 BC182L
IC1 4017
IC2 4066
IC3 4066
IC4 ZNA234E
IC5 7805

Miscellaneous:

U.h.f. modulator: Astec UM1233 E36

SW1: momentary push-to-make
switch RS 336-747
Case: RS 509-579
P.c.b. ref. no.: D094

Co-axial output socket
Power input socket: 2.5 mm jack socket Phono socket \& screened cable
XL1: $2 \cdot 5 \mathrm{MHz}$ crystal
all the small components, then the i.c.s and finally the modulator. Note that there are a number of top soldered joints including some on i.c.s. A little care should be exercised to avoid overheating or bridging across adjacent pins. Soldercon connectors may be used if desired. The completed unit is then secured to the case using self-tapping screws and finally the power input socket, u.h.f. socket, l.e.d. and switch are secured into place and wired up.

To adjust the unit, connect the output to a receiver and tune in to around channel 36 . Select the crosshatch pattern and using a scope adjust VR3 for a 1 V pk-pk composite video signal at its wiper. Adjust VR2 for a 7:3 video to sync ratio. The two adjustments are interdependent, so repeat the process until the desired results are obtained. Select the greyscale pattern and adjust VR1 for the lowest step to correspond to black level. These adjustments can be made without a scope by observing the results on the screen.

A slight breakthrough of vertical lines and/or dots may be found on the greyscale pattern. This is due to the use of CMOS switches, but doesn't detract from the usefuiness of the greyscale pattern.

Fig. 3: Component layout.

Practical TV Servicing: Tackling Focus Faults

S. Simon

To achieve optimum focus with a colour set the voltage applied to the c.r.t.'s focus electrode must be held within close limits. With most tubes, some 4.5 kV is required at the focus electrode. Not all tubes require this high focus voltage however, the main exception being some of the older, smaller-sized Japanese tubes, such as the 18 in . 470DUB22 used in earlier versions of the Pye 713 series chassis. These are referred to as unipotential tubes, and are operated with similar voltages applied to the first anode and the focus electrode. Anyway, if the focus is not up to scratch and you're in doubt about the tube's focus voltage requirement, refer to the appropriate circuit. In this area as in most others, different sets use different techniques and have different habits, a knowledge of which can be a tremendous asset.

As we said at the start, most colour tubes require a high focus voltage. The method of obtaining this varies however. Things have become rather more standardised in recent years, with the advent of the e.h.t. tripler and the use of the thick-film type of focus unit. If we consider some representative chassis, it will be noticed that the greatest variation occurred in the earlier models - some of which are still around and giving a good account of themselves.

The Philips G6 Chassis

Take the Philips G6 chassis for example, with its valve line timebase and e.h.t. system. The use of a PD500 triode stabiliser to equalize the load on the e.h.t. system under varying conditions (i.e. brightness/beam current varying from high to low) resulted in very good e.h.t. regulation the picture size didn't vary in accordance with overall brightness variations. For focus purposes, the flyback pulse appearing at the anode of the PL509 line output valve was fed to the anode of a small high-voltage rectifier (type EY51) which charged its 270 pF reservoir capacitor to several kV . The output was connected to chassis via a chain of high-value resistors which included the $5 \mathrm{M} \Omega$ focus control. The slider of the focus control was linked to the appropriate tube electrode via a $1 \mathrm{M} \Omega$ resistor (R1090), and this is our first service point.

It's usual to find a resistor on the tube base panel to link the focus control to the relevant tube pin, and it's a simple matter to check the value of this resistor. The value may be anything from $100 \mathrm{k} \Omega$ to around $2 \cdot 2 \mathrm{M} \Omega$, but the resistor will often be found to be open-circuit when checked. Don't omit to make this simple initial check - the resistor is usually readily accessible - or much time may be wasted looking for the cause of poor focus elsewhere.

In the G6 chassis however it was more often one of the high-value resistors in the focus chain that caused the trouble, the two $3 \cdot 3 \mathrm{M} \Omega$ resistors on the earthy side of the circuit being particularly suspect. When one of these went high in value or open-circuit, the focus voltage rose. Since the source of the focus voltage was around 5 kV , there were no fireworks from the focus spark gap to call attention to
the excessive voltage. The focus voltage source is not always this low however. You may for example find that the focus voltage is tapped from a rod VDR which is connected across the e.h.t. supply to provide stabilisation. The two voltages thus track together.

Pye Hybrid Chassis

Whilst the original (dual-standard) Pye hybrid chassis used a low potential source (a TV6•5/3 metal rectifier), in the later single-standard Pye hybrid chassis (with an e.h.t. tripler) the focus voltage was obtained from a slider at the lower end of a long rod-type VDR which had the e.h.t. at one end (via a fairly small $5.6 \mathrm{M} \Omega$ resistor which was tucked inside the VDR's gondola housing). Faulty focusing with these later chassis should direct attention to the $5 \cdot 6 \mathrm{M} \Omega$ resistor, to the VDR rod itself, to the spring slider and to the $100 \mathrm{k} \Omega$ resistor between the latter and the tube's focus pin. Of these various possibilities, the spring seems to be the most common offender. Fig. 1 shows the circuitry.

Shorter Rod Focus VDRs

It's far more common however to find that the source of the focus voltage is a tapping from within the e.h.t. tripler, i.e. the output obtained at the cathode of the first rectifier diode in the tripler is made available via a separate lead which goes to the focus control network. If the focus control is of the rod VDR type, it's far shorter than that used in the Pye sets since the voltage source is so much lower.

Setmakers who've used this shorter type of VDR rod fed from the tripler include Rank, Decca, ITT and many others, the VDR having one or more high-value resistors in series with it. It's these high-value resistors that most often give rise to incorrect focus voltage. Typical values are $4.7 \mathrm{M} \Omega$ and $5 \cdot 6 \mathrm{M} \Omega$, but as the values are low compared to the rod itself the actual value is not unduly critical. The direction in which the slider of the focus control has to be moved to restore some degree of focus indicates the end of the rod to which the faulty resistor is probably connected. For example, with the ITT CVC5 series chassis if the lever has to be raised it's the resistor between the top end of the rod and the tripler (R429) that's likely to have gone high in value - but bear in mind the resistor on the tube base, since if this is the faulty resistor the effect will be the same. The value of the former resistor is $4.7 \mathrm{M} \Omega$ while the latter has a value of $2 \cdot 2 \mathrm{M} \Omega$.

Thick-film Units

More recent chassis use a rotary focus unit with a thickfilm resistive element. These are more inclined to give trouble on their own account because the high-value resistors are incorporated within the unit. One has little

Fig. 1: Examples of different colour receiver focusing arrangements. (a) Circuit used in early (dual-standard) Pye hybrid colour sets. The focus rectifier MR1 rectified the flyback pulses appearing at the cathode of the PY500 boost diode, charging its reservoir capacitor $C 230$ to approximately 5 kV . A degree of control was provided by means of the alternative feed to the rectifier from a tap on the d.c. feed choke. The "earthy" end of C230 was taken to the focus control potentiometer RV17, which was connected between taps on the line output transformer carrying negative- and positive-going flyback pulses. Depending on the setting of RV17, these added to or subtracted from the pulses fed to the rectifier. To avoid polarisation of the line output transformer, the PL509 line output valve was a.c. coupled to the primary winding via C225, the feed coil providing d.c. continuity. (b) Circuit used in later Pye hybrid (single-standard) colour sets. The focus voltage was obtained from the slider of a VDR connected, via a series resistor (R234), across the e.h.t. supply. The VDR provides a degree of e.h.t. stabilisation, while the e.h.t. and the focus voltages track together. (c) A rather more common circuit, with the focus VDR fed from a lower voltage source within the e.h.t. tripler. The circuit shown was used in the CVC5 and later ITT hybrid colour chassis. (d) In more recent sets a thick-film focus unit replaces the focus VDR and its series resistors. This example is taken from the GEC C2110 series, which does not employ a series resistor in the feed to the tube's focus electrode.
option therefore but to replace the complete unit. Unfortunately one may well find that the trouble is still present after doing this, and that it's not resolved until the tripler has been replaced. In some chassis in fact the e.h.t. tripler is the first suspect when the focus is poor, the focus unit itself rarely being at fault. This is the case with the Thorn 3000 and 3500 series chassis. With the Thorn 8500 and 8800 chassis one is equally suspicious of the focus unit and the e.h.t. rectifier. The reason for this difference is the robust design of the focus unit used in the 3000/3500 chassis compared to the more flimsy unit used in the $8500 / 8800$ chassis. The small-screen 8000 series chassis is fitted with a unipotential tube, with the focus unit fed from the 630 V first anode supply source.

Trouble with the Focus Pin

There's another possibility which seems to be getting more common and was rarely encountered with older sets poor contact between the tube's focus pin and the base connector. This leads to pitting, due to the sparking that takes place when the contact is poor. The trouble is mainly experienced with Rank sets (Bush, Murphy, Co-op), and seems to be confined to the white moulding bases used in the " $B C$ " series.

The Spark Gap

This sort of thing, plus the possibility of the focus spark gap being bunged up or otherwise conductive when it shouldn't be, adds more items to the check list. If the spark gap persistently sparks across, either the gap is too small and needs cleaning or the focus voltage is excessive. In the latter event the probability is either that the earthy end of the focus control is not connected to chassis or that a resistor at this end has gone high in value. The resistor concerned may be a separate component which can be replaced easily, or the resistive element may be within the control's housing. The possibilities don't end here however, and a merry chase often ensues before the real culprit is
located. The spark gap itself may consist of a slot cut in the tube base panel or may be a separate component in the form of a red plastic ring with wires that are a critical distance apart embedded in it. A slot is usual in later sets.

Ground Rules

If the focus is poor and we've only a multimeter for measuring purposes (such a meter will impose a load on the high-resistance focus system), a few ground rules should be followed to save time. If there's a resistor on the tube base, check this first. Then move on to the actual focus circuit or, in the case of the Thorn $3000 / 3500$ chassis, to the e.h.t. tripler. If only a slight movement of the focus lever or adjuster restores normal working, there could be a "hot spot" on the control. If on the other hand the control has to be moved to one end, the resistor (if there is a separate one) at this end is probably in need of replacement. Don't omit to check the goodness of the contact between the base socket and the tube's focus pin.

Related Symptoms

We've talked about poor focus on the assumption that the symptom is quite obvious. It's possible however that the symptoms displayed may be confusing. A check on the picture size can be most revealing: if it's enlarged, no amount of fiddling with the focus circuit is likely to produce any worthwhile result. The enlarged picture, with attendant poor focus, is the symptom of low e.h.t., and it's to this section of the receiver that attention must be turned. If a tripler is used, you may find that it has a hot spot where one of the rectifier elements has gone high-resistance. Replacing the tripler will usually clear all the symptoms in this event.

On the other hand poor focus is often the complaint when the real culprit is the tube. If the emission is low or the vacuum impaired, a clear picture will not be resolved. The clue here is the variation in definition from low brightness, when the picture is fairly well resolved, to the smudging and flaring that occur as the brightness is increased.

Satellite TV Up-date

Roger Bunney

THE government, following a Home Office study on the subject, seems to be willing to authorize the start of a satellite TV service for the UK and is under quite a lot of pressure to do so. What the government doesn't want to do is to get involved in the financing of such a service. A number of companies have already declared their willingness to become involved however, so that shouldn't be too great a problem. With a French/German direct broadcast satellite (DBS) service scheduled to start by 1984, the pressure will be on to start a UK service.

The satellite itself shouldn't pose great problems in this era of space labs and so on, neither should receiving equipment. The problem will be what to broadcast and how to finance the programmes. Subscription services are one suggestion, but there's likely to be much debate on this front. The satellites are powered by solar cell arrays of course, their position in space relative to the earth being controlled by the emission of hydrazine gas stored in tanks on the satellite. This emission is earth controlled, the satellite's life span depending on gas usage - the average life is around seven years.

Forty channels within the $11 \cdot 7-12 \cdot 5 \mathrm{GHz}$ spectrum were allocated for satellite TV use at the 1977 Geneva ITU conference. Most of the countries within the European region were allocated five channels each, with specific polarisation characteristics (either right- or left-hand circular) and various orbit positions (see Table 1). Each channel is capable of carrying a frequency-modulated TV transmission with a bandwidth of 27 MHz . The actual channel spacing is 19.2 MHz , co- and adjacent-channel problems being catered for by the beamwidth and
polarisation characteristics.
The use of a standard 0.9 metre dish aerial is assumed, with the satellite transmitter providing a signal power flux density of at least $-103 \mathrm{dBW} / \mathrm{m}^{2}$. This should provide good reception, with an adequate signal/noise figure, for at least 99% of the time. It follows that the use of a larger dish aerial, with a correspondingly higher gain, would increase the area over which reception is possible - something that's likely to cause concern from political and copyright viewpoints!

The service area covered by a satellite transmitter is referred to as its footprint. This is defined by the signal strength of course, and as Figs. 1 and 2 show varies considerably under different assumed reception conditions. Fig. 1 shows satellite footprints for UK and Irish services defined as above: if the use of larger aerials (1.75 m) with a signal strength reduced to $-111 \mathrm{~dB} / \mathrm{Wm}^{2}$ is assumed, the footprints are as shown in Fig. 2. Transmitter powers would be of the order of $100-300 \mathrm{~W}$ per channel.

Fig. 3 shows the $-103 \mathrm{~dB} / \mathrm{Wm}^{2}$ footprints for various European satellite services. Comparing the UK and Luxembourg service areas, with the satellites at $31^{\circ} \mathrm{W}$ and $19^{\circ} \mathrm{W}$ respectively and with the -3 dB (half power) points on current production 12 GHz dish aerials being under 2°, it follows that without accurate realignment the Luxembourg satellite's signal will not be received on a dish aligned to receive the UK satellite's signals. This emphasizes the importance, of accurate aerial alignment for satellite reception.

The use of f.m. for satellite transmissions offers considerable advantages, particularly reduced transmitter

Table 1: European satellite TV channel assignments.

Band	Orbital position			
	$37^{\circ} \mathrm{W}$	$31^{\circ} \mathrm{W}$	$19^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{E}$
$11 \cdot 7-12 \cdot 1 \mathrm{GHz}$ RH polarisation	San Marino chs. $1,5,9,13,17$ Lichtenstein chs. 3, 7, 11, 15, 19	Eire chs. $2,6,10,14,18$ UK chs. $4,8,12,16,20$	France chs. 1, 5, 9, 13, 17 Luxembourg chs. 3, 7, 11, 15, 19	Turkey chs. 1, 5, 9, 13, 17 Greece chs. $3,7,11,15,19$
$12 \cdot 1-12 \cdot 5 \mathrm{GHz}$ RH polarisation	Monaco chs. $21,25,29,33,37$ Vatican chs. $23,27,31,35,39$		Belgium chs. $21,25,29,33,37$ Holland chs. 23, 27, 31, 35, 39	Cyprus chs. $21,25,29,33,37$ Iceland* chs. $23,27,31,35,39$
$11 \cdot 7-12 \cdot 1 \mathrm{GHz}$ LH polarisation	Andorra chs. $4,8,12,16,20$	Portugal chs. $3,7,11,15,19$	W. Germany chs. 2, 6, 10, 14, 18 Austria chs. 4, 8, 12, 16, 20	Finland chs. 2, 6, 10 Norway chs. 14, 18 Sweden chs. 4, 8 Denmark chs. 12, 16, 20
$12 \cdot 1-12 \cdot 5 \mathrm{GHz}$ LH polarisation		Iceland chs. $21,25,29,33,37$ Spain chs. $23,27,31,35,39$	Switzerland chs. 22, 26, 30, 34, 38 Italy chs. $24,28,32,36,40$	Nordict chs. 22, 24, 26, $28,30,32,36,40$ Sweden ch. 34 Norway ch. 38

[^0]

Fig. 1: Footprints for Irish and UK TV satellites, assuming the use of an 0.9 m dish aerial for reception and a signal strength of $-103 d B W / m^{2}$.

Fig. 2: The much larger Irish and UK TV-satellite faotprints with signal strengths of $-111 \mathrm{dBW} / \mathrm{m}^{2}$ and the use of 1.75 m dish aerials.
power (from say a peak power of 10 kW a.m. to about 100 W with f.m.). Obviously at the receiving end the signal has to be converted to a conventional a.m. one for feeding to a standard domestic receiver. Transmitter power also depends on beamwidth. For example, to cover the envisaged Luxembourg satellite's footprint an r.f. output of

Fig. 3: Footprints for continental European satellites, on the same assumptions as Fig. 1.

45W per channel would be required, whilst for the French satellite's vastly increased footprint the comparative figure would be some 375 W per channel. For a UK satellite an output of about 270 W per channel seems likely.
The channel allocations have been arranged so that only 400 MHz of the 800 MHz spectrum is used in a specific geographical area. Prototype 12 GHz receiver units are already available - at a price and intended for experimental use. They do give an indication of the arrangements such units will employ however (see Fig. 4). The received 400 MHz segment has to be down converted at the aerial to allow conventional low-loss coaxial downlead cable to be used. Conversion of the f.m. signal to a.m. and remodulation on to a standard v.h.f. or u.h.f. channel (u.h.f. in the UK) can be undertaken at the aerial or by a set-side unit. Japanese setmakers are likely to follow an NHK design which uses direct s.h.f./f.m. to v.h.f./a.m. conversion within the aerial head unit - this lends itself to mass production and is capable of achieving remarkable noise performance figures. The design shown in Fig. 4 features a noise figure of less than 3.8 dB with a 500 MHz bandwidth; the u.h.f. i.f. gain is over 40 dB .

There is much interest world-wide in satellite TV at present. By the end of the decade it seems certain that several European satellite services will be in operation. Services are also planned for Japan, Australia and Canada. In many countries it's possible at present to receive the 714 MHz transmissions from the Russian Stat-T satellite at $99^{\circ} \mathrm{E}$ - for example Japanese Yagi aerials are being sold in Sri Lanka with 70dB head amplification to feed into standard domestic sets, giving excellent quality Moscow-1 programmes at a cost of around $£ 100$! Many enthusiasts in

Fig. 4: Block diagram of a Japanese satellite receiver terminal at present in production. The device has separate head and indoor converter units. Other designs carry out most operations at the masthead.
the USA have been jumping the gun, with satellite terminals to receive the 4 GHz satellite-distributed signals intended for cable TV operators. With so many backyard terminals coming into use, and with the FCC giving apparent approval to "experimental reception" (because they can't stop it!), signal scrambling is now being adopted.

Aerial riggers and TV engineers will eventually find themselves confronted with various new terms. Here are a few for a start:
G/T (gain/temperature) figure of merit. An overall merit figure for receiving systems, taking into account carrier/noise ratio, the receiver f.m. threshold characteristic, the transmitted EIRP (see below), the bandwidth, thermal noise and various system losses. A typical figure might be $6 \mathrm{~dB} / \mathrm{K}$ for a small receiving system with a 1 m dish aerial, a figure of $20 \mathrm{~dB} / \mathrm{K}$ being suggested for a higher performance
system to feed into a cable distribution network.
\mathbf{C} / \mathbf{N} (carrier/noise) ratio. Ratio of the wanted carrier signal received to the noise detected at the same frequency. Noise can arise from rain attenuation, general atmospheric absorption, the alignment accuracy of the receiving/transmitting aerials, the polarisation and receiver noise. Other factors that have to be born in mind are the path loss (typically 200 dB) and the noise/bandwidth figure (the wider the bandwidth the greater the noise).
C/I (carrier/interference) ratio. The ratio of the wanted carrier signal received to other possible interference, i.e. signals from other satellites and terrestrial microwave transmissions.
EIRP (effective isotropic radiated power). The satellite's transmitted power taking the aerial gain into account.
FM threshold. The receiver's signal capture point.

Letter from America: Tuning in the 'States

Jim Edwards

As any of you who've visited the States will appreciate, the TV tuning systems used could in many cases be described as "simply light years behind" (sorry Philips!). The rotary switch tuner, now an archaic item to most European eyes, is still common, at least so far as v.h.f. is concerned - and a large proportion of the transmissions are even today confined to v.h.f. The reasons for this are partly the "better the devil you know" approach and partly economic and legislative ones. The economic angle is simple enough: the old turret type tuner has been around a long, long time, so that the product has reached its lowest possible cost. The legislative aspect is the result of the Federal Communications Committee's ruling that 'all channels must be equally accessible", which means either a rotary tuner or one button per channel. O.K. so far as v.h.f. is concerned, as there are only twelve channels, but for u.h.f.

Things had to change following the introduction of u.h.f. transmissions. A detent rotary mechanical tuner for 70 channels is not an easy thing to construct for a start, and that's putting it mildy! So the FCC made a concession, allowing the use of preset tuning for the u.h.f. channels, allocating them to extra positions on the v.h.f. knob. This may sound fairly familiar but it's effect on the market was devastating, allowing the Japanese in with their greater knowledge of varactor tuning. They made fast inroads, though this is past history now.

A common solution today is the use of two detent tuning knobs, one for v.h.f. and one for u.h.f., both controlling varicap tuners via special-law potentiometers, plus band switching etc. To make up for the errors in this system, the tuners have manual fine tuning and strong a.f.t. (a.f.c.). This arrangement works well, but is now slowly being replaced by sophisticated microcomputer based systems - from upmarket models down through the ranges. Continuous tuning over u.h.f. is the order of the day for portables.

These microcomputer based systems are being employed in sets with screen sizes from 13 to 26 in ., and are the main tuning method used by some setmakers. In their most basic

Fig. 1: Modern TV tuning systems, with remote control. (a) Typical European system, using special-purpose i.c.s. (b) System that's popular with US setmakers, with a microcomputer i.c. doing most of the work. With both arrangements an extra i.c. would be required to give an on-screen display, a feature that's becoming popular in the USA.
telephone control, screen up/down movement for a projection TV system, a real-time clock and so on.

Such TV sets now tune to up to 112 channels, taking in the extra frequencies used by the cable networks. The latter feature makes external converter boxes unnecessary, though a descrambler is still required. These TV sets are described as cable-ready, and are starting to become popular as the use of cable distribution increases - they offer the full remote control option with only one remote control transmitter (converter boxes with remote control are available, but they need their own transmitter unit).
To add to all this front end sophistication, the introduction of teletext and allied systems is expected shortly. Unfortunately the lack of a single standard and the add-on costs will slow things down - like the average Briton, the average American is not prepared to pay more
than $\$ 50$ for the benefit he would obtain from the current teletext database. A substantial increase in the data available would increase the access time of course.

Finally a word on the tuners themselves. Tuning is now by and large by means of varicap diodes, which sets the basic design. US tuners are thus now similar to European ones, with a Schottky diode mixer (something that's been employed for a long time in Europe). Integrated v.h.f./u.h.f. tuners are common, with an increasing number incorporating the PLL prescaler to reduce local oscillator leakage radiation and susceptibility to broadcasts of the wrong frequency - in this land of the CB.

Bye for now. Tune in next time when the topic will be comb filters and their use in the NTSC system - if I can find out what they do. Some setmakers are using them to obtain better chroma/luminance signal separation.

Pattern Generator Follow Up

Malcolm Burrell

THE colour pattern generator design we published in the May-July 1979 issues aroused considerable interest. The aim was to provide a comprehensive test pattern for the assessment of receiver performance. With the original handwired prototype, it was possible to use many of the patterns generated within the unit in addition to the full pattern. Carrying this feature through to the final published design would have involved quite a bit of extra complication and wasn't considered worthwhile. Many readers seem to want to extend the facilities available however, whilst others have asked about using the coder to enable graphics to be displayed on a normal domestic TV set. We haven't tried this latter possibility, though some comments are given later. The present article deals in the main with the most common requests, for crosshatch and colour bar outputs.

The pattern generator's logic circuitry generates many waveforms at both line and field rate, these being gated to produce separate $R G B$ colour signals and a luminance signal. In fact a complete non-composite luminance signal is present at pin 8 of the logic board, and this may be useful for those wanting only a monochrome pattern.

Switching

Since most of the generators that have been built will have been incorporated in a case of some kind, constructors are unlikely to want to carry out the extensive drilling that would be required if push-button switches are used. The simplest way of getting the extra outputs mentioned above is to use a rotary three-way, four-pole wafer switch plus a little wiring, an extra i.c. and cuts to four tracks on the logic boards.

With a sharp knife, cut the logic board tracks at IC43 pins 6 and 8, IC40 pin 8, and between R 17 and output pin 8 (see Fig. 1). Using the switch diagram (Fig. 2), connect cables as indicated and check that with the switch rotated fully anticlockwise the original test pattern appears on the screen.

Colour Bars

Now for some bars. Full screen height colour bars are available at IC $10-\operatorname{pin} 8$ is green, pin 10 red and pin 6 blue. Since our new switch (SW1) bypasses the summing and
blanking circuitry in positions two and three, the bars from IC10 must be fed to an additional 7408 AND gate i.c. (see Fig. 3), blanked and summed (to obtain a luminance signal) before being passed to the coder on the analogue board. In addition, we've bypassed the insertion of the burst gate pulse in the red channel. Fortunately IC43 on the original panel has a spare OR gate, so the gate pulse can be fed in at pin 13: with the red bars fed in at pin 12, the red signal plus burst emerges at pin 11. It will be recalled that we avoided B-Y burst gating. Wire up and check that with SW1 in position two colour bars are displayed.

Crosshatch

A fully blanked crosshatch pattern is present at pin 6 of IC32. This is taken to switch contact 12 via an additional 27Ω series resistor which limits the signal amplitude to be in keeping with the other patterns. At the same time switch

Fig. 1: Modifications required to the original board in order to add a iest pattern/colour bar/crosshatch pattern selector switch.

Fig. 2: Connections to the rotary three-way pattern selector switch SW1. Connections viewed from the rear.

Fig. 3: Extra circuitry required for colour bars.

Fig. 4 (left): Use of a three-input AND gate to obtain dots.
Fig. 5 (right): Use of extra switching to obtain a red raster.
contacts 3,6 and 9 are connected to chassis, grounding the inputs to IC44 to prevent spurious colour on the screen. Switch position three thus gives us a crosshatch display.

Other Possibilities

A check with an oscilloscope will reveal plenty of square waveforms which could be used to form a checkerboard pattern if required. A good 50 Hz l.f. pattern could also be produced. Such patterns are of limited appeal. Of greater interest are dots instead of a crosshatch and a red raster.

Vertical grill lines are combined with horizontal lines in OR gate IC 18 on the logic board, giving the basic test pattern crosshatch. By taking the inputs to this gate (from IC38 pin 6 and IC39 pin 5) to an AND gate which produces an output only when all its inputs are simultaneously high, only the intersections of the grill lines will be seen, giving dots. The idea is shown in Fig. 4. An additional switch could be fitted to select either dots or crosshatch, with SW1 in position 3.
Many colour pattern generators provide a red raster output, which is useful for checking purity - you don't have to take the back off the set, perhaps unnecessarily, to switch off the other two guns. This facility can be provided by grounding the green and blue inputs to the additional AND gates (see Fig. 5) and feeding the blanking input to the red gate. A more comprehensive check, particularly useful with in-line gun tubes, would be to make it possible to select
either red, green or blue rasters. An attempt to produce different colours by earthing the red channel and raising the appropriate input during the active picture time to logic one was successful, though the setting of the subcarrier oscillator to obtain blue was for some reason more critical.
All or some of the patterns so far mentioned can be incorporated, depending on how elaborate you wish to make the switching. It's essential however that the test pattern generator is working correctly as originally designed before any attempt is made to carry out modifications.

Those who wish to use the coder alone experimentally should note that it's desirable to include the original chroma blackout combination of IC44, IC36 and IC40, and that all the inputs to the coder, except luminance, are at TTL level.

Problems and Corrections

We still get the occasional letter from a constructor having difficulty in getting the generator going correctly. Most problems arise on the logic board, and the many odd effects which faults produce are almost always due to dryjoints, particularly on the top printed circuit, and missed through-links. There were one or two mistakes on the original circuit diagram (see corrections in the June 1979 issue), but the boards themselves have been tried and tested as a practical design. It's inadvisable to build such a complex circuit without using these boards, since the effects of stray coupling can be disastrous.

The following corrections are in addition to those listed in the June 1979 issue and apply to the logic board circuit diagram (the note on frequency gratings in the June 1979 issue should be disregarded when using boards D062/3).

IC39 pin 7 goes to earth; pin 6 is not connected.
IC8 pin 9 goes to IC 42 pin 1; pins 1, 6 and 12 of IC 8 go to IC42 pin 5.

IC15 pins 5 and 11 go to IC20 pin 10 (not 12); IC 14 pins 2 and 6 go to IC20 pin 12.

Pins 2 and 3 (the latter was not shown) of IC7 are strapped together so that it acts as an inverter.

Once again we emphasize that the boards themselves are correct (D062/3).

If the width of the left-hand border is excessive, alter the value of R1 to compensate.

A point worth noting is that the pin configurations for BC212 and BC212L transistors (the latter were specified) are not the same. Typical voltage readings are as follows: Trl emitter 2.75 V , base 1.9 V , collector $0.75 \mathrm{~V} ; \mathrm{Tr} 2$ emitter 4 V , base 3 V , collector 2.5 V ; $\operatorname{Tr} 3$ emitter 4 V , base 3 V , collector 3.5 V . Some slight variation does not necessarily indicate a fault.

One or two readers have mentioned that the yellow and red colour bars are incorrectly rendered - in particular the yellow bar can be too orange or green. We suggest altering the value of R9 on the analogue board in steps of 100Ω or so to get the best rendition. We've also heard that changing the value of R25 can be effective. In bad cases try shunting R16 with a $470 \mathrm{k} \Omega$ resistor.

The simple sync pulse generator for the economy version of the pattern generator was described in the August 1979 issue. Unfortunately there's an error on the circuit diagram. Possibly many will not have noticed that there's no front porch on the sync pulses. A slip of the pen combined with counting i.c. pins back-to-front resulted in pins 4 and 9 of IC3 being linked instead of pins 9 and 13.

Finally, individual requirements vary and it's not always possible to guarantee deviations from published designs: television is a fascinating hobby however, and a little experimentation is what it's all about!

Long-distance Television

Roger Bunney

IT'S all been happening again! Signals from far and wide North America, Africa, the Middle East, even the Caribbean. Apart from the relatively local European stations that is. Before going into this month's delights however a recap on June.

June 7th will most certainly go into propagation history, with the reception in both Holland and the UK of the USSR on channels R6 through to R 11 via SpE during the period 1540-1710GMT. Ryn Muntjewerff (Holland) and others were fortunate in receiving relatively good quality signals from several of the TSS transmitters. Mike Allmark (Leeds) also received the TSS ch. R7 signal, plus many USSR amateurs at 144 MHz (2 metres). On the same day f.m. radio signals from Jerusalem ($90 \cdot 2 \mathrm{MHz}$) at 1700 and from BFBS Akrotiri, Cyprus $(92 \cdot 1 \mathrm{MHz})$ at 1915 were heard in Holland. On the 7th and the 11th UK and Israeli radio amateurs were in contact on 144 MHz . Remarkable conditions, and congratulations to all concerned.

After a slowish start, July produced some amazing reception. SpE events are listed below.
3/7/81 RTVE (Spain) chs. E2, 3.
4/7/81 RTVE E2, 3, 4; RAI (Italy) IA, B; NTV (Nigeria) ch. E3 at 1915 over much of the UK via double-hop SpE , with a clear view of the clock (with NTV identification) at 1930.
5/7/81 Private Italian station NCT (Udine) on ch. E3/IA.
6/7/81 RTVE E2, 3, 4.
7/7/81 RAI IA.
8/7/81 An excellent, prolonged opening. JTV (Jordan) E3; MTV (Hungary) R 1, 2; TSS (USSR) R1, 2, 3, 4; TVR (Rumania) R2; JRT (Yugoslavia) E3, 4; RAI IA, B; RTS (Albania) IC; also 144 MHz radio amateurs from this area.
9/7/81 RTVE E2, 3, 4; JRT E3, 4; RAI IA, B; TVP (Poland) R1; NCT E3/IA; JTV E3; plus many unidentified signals on all channels and 144 MHz radio amateur signals from SE Europe.
10/7/81 A day to be remembered! A prolonged SpE opening continued for most of the day, from early morning to 2400 . Switzerland E2; RAI IA, B; RTVE E2, 3, 4; ORF (Austria) E2a; RTP (Portugal) E3; BR Grunten (W. Germany) E2; TVP R1, 2; CST (Czechoslovakia) R1; SR (Sweden) E2; RTVE-Canary Is E3; Puerto Rico ch. A2 plus unknown ch. A3 video (see later). Mike Allmark in Leeds also logs RTVE E6 Alfabia, Majorca and E7 Grenada at 1645 and RTM (Morocco) ch. M5 at 1647. Moroccan 144 MHz amateur radio signals also heard.
11/7/81 TSS R1, 2; MTV R1, 2; RTVE E2, 3; JRT E3; RAI IA; JTV E3.
12/7/81 TSS R1; ORF E2a.
13/7/81 TVP R1; TSS R1; RAI IA; RTVE E3; CST R1; SR E2.
14/7/81 RAI IA; RTVE E3; RTP E3.

15/7/81 DFF (E. Germany) E3; RAI IA, B; TVR R2, 3; RTVE E2, 3, 4; RTP E3; RTS IC; JRT E3; TVP R1, 2 .
16/7/81 Hugh Cocks logs NTV ch. E3 at 1630-1700BST.
17/7/81 NRK (Norway) E2, 3; MTV R2, RTVE E3; RTP E3; TSS R1; ORF E2a.
18/7/81 TSS R1, 2; RAI IA, B; RTVE E2, 3, 4; many unidentified signals.
19/7/81 RTVE E2, 3, 4; RTP E3.
20/7/81 TSS R1, 2, 3; TVP R1, 2; SR E2, 3, 4; JRT E3; RTVE E3; many unidentified signals.
21/7/81 MTV R1, 2; TSS R1; RTVE E3; RAI IA; JRT E3, 4; TVR R2.
22/7/81 RTVE E3; Hugh Cocks logs system M chs. A2, 3 again - see later.
23/7/81 RAI IA; MTV R1; TSS R1; an Auroral event from 1815.
24/7/81 RAI IA; RTVE E2, 3, 4; RTP E3; TSS R2; TVP R1; MTV R1; CST R1; NRK E2, 3, 4; TVR R2; Cyril Willis and others \log ZTV (Zimbabwe) ch. E2 via TE at very good signal levels, with sound, from 1810-1831BST; Hugh Cocks strikes again with system M signals on chs. A2, 3, 4 see later.
25/7/81 RAI IA, B; RTVE E2, 3, 4; a very strong Auroral event from 1435-1800 (first phase 14301800, second phase 1835-0030); RTE (Eire) Gort ch. B; suspect system M signals on chs. A2, 3 via Auroral propagation; Ray Davies logs Auroral interference noises through Band III reaching to ch. E29 u.h.f.! - another record?
26/7/81 RTVE E2, 3, 4; RAI IA; RTP E3; French language sound heard on ch. E2 (SW harmonic or CLT Lebanon?).
27/7/81 RTP E2, 3; RTVE E2, 3, 4; TVP R1, 2; CST R1; TSS R1, 2; SR E3; JRT E3.
29/7/81 RTVE E2, 3.
30/7/81 DR (Denmark) E2, 3; RTVE E2, 3, 4; modified EBU pattern seen on ch. E4/IB at 2029 for five minutes, suspected from an Italian private station; also NTV ch. E3 again very strong at 1700.

31/7/81 NRK E2, 3, 4; SR E2; TSS R1; RTVE E4.

There has also been tropospheric reception, with signals on the 7th from Denmark and W. Germany in Band III and at u.h.f., and again on the 27th through to the 31 st with central European signals. The evening of the 30th/early 31st was perhaps the most rewarding, with E. German Band III/u.h.f. signals and Hugh Cocks receiving TVP ch. R12 with co-channel interference and CST ch. R7 (at 0740).

The reception on July 10th was most unusual. System M signals appeared at 2200 at Hugh Cocks's East Sussex location during an RTVE opening, though the signals were not visible here at Romsey. At 2220, audio became apparent, in Sussex very clear but at Romsey just above the noise level (both of us using SX200N scanners). Ch. A3 appeared in Sussex but there was only RTVE news here on ch. E4. Ian Becket (Buckingham) also logged ch. A2 video, which was also seen in Derby. The system M signals faded at approximately 2315 . My only consolation at missing the A2/3 signals was reception of RTP with co-channel RTVE Canary Isles signals on ch. E3. Confirmation that the ch. A2 signal came from Puerto Rico (WKAQ, San Juan) was obtained by monitoring the audio, which included local news in Spanish.

Wednesday July 22 nd produced double-hop SpE signals from N. America on chs. A2 and A3 between 1845-1905,
with a clear "CBC News" identification on ch. A2 (CKCW-TV) - the origin of the ch. A3 signal is unknown. Friday the 24th again produced N. American double-hop SpE signals: Hugh logged them between 1945-2110 on chs. A2, A3 and (just) A4. The ch. A2 signal differed from the Wednesday one in having a positive frequency offset father than a negative one.

So July was an incredible month! Apart from my own loggings, the above list is supplemented by receptions noted by Brian Fitch (Scarborough), Simon Hamer (mid-Wales), George North (Walton), Hugh Cocks (East Sussex), Ray Davies (Norwich), Mike Allmark (Leeds), Ed Baker (Northumberland) - and especial thanks to Cyril Willis (Cambridge) who kept a detailed log over the period 1927 th when I was on holiday.

In Australia Robert Copeman and Anthony Mann have both reported excellent SpE conditions - it's thought that the drop in sunspot activity may have a bearing on the conditions of late. Robert has recently moved from Sydney to Melbourne, where DX-TV conditions are somewhat better. During a recent trip he took his portable on a tram at Ballarat (70 miles north of Melbourne) and received several good strength Band I SpE signals - he wonders whether this is the first tram DX?!

New EBU Transmitter Listings

France:

Troyes	TF1	1000kW e.r.p. ch. 27.
Gex	TF1	900 kW e.r.p. ch. 27.
Mezieres	TF1	500 kW e.r.p.ch. 29.
Vittel	TF1	50 kW e.r.p. ch. 29.
Metz	TF1	1000 kW e.r.p.ch. 37.
Avignon	TF1	250 kW e.r.p. ch. 42.
Ussel	TF1	150 kW e.r.p. ch. 42.
Besancon	TF1	400 kW e.r.p. ch. 47.
Autun	TF1	500 kW e.r.p. ch. 48.
Grenoble	TF1	100 kW e.r.p. ch. 56.
Chaumont TF	50 kW e.r.p. ch. 31 (increased e.r.p.)	
All with horizontal polarisation.		

Hungary:

Szentes MTV-2 480kW e.r.p., ch. 23; Kekes MTV-2 880 kW e.r.p. ch. 36. Both with horizontal polarisation listed for optimists! Nagykanizsa ch. R1 reduced to 50 kW e.r.p. and Pecs ch. R2 to 25 kW e.r.p.

Amateur TV

Several interesting leaflets have been sent to me by a firm that supplies ATV equipment - Fortop Ltd., 13 Cotehill Road, Werrington, Stoke-on-Trent, Staffs. The equipment includes a $425-445 \mathrm{MHz} / \mathrm{ch}$. $38-40$ converter, an inexpensive 435 MHz vision transmitter and other items. Send a 9×4 in. s.a.e. for details.

News Items

Australia: Subscription TV services are due to start in Melbourne and Sydney by late summer 1983, with the transmissions scrambled and the viewer hiring a descrambler. Scrambling may take the form of segmented video with the syncs removed. The present ethnic service on chs. 0 and 28 is to go conmercial to make it self-financing. TV station GTW 11 (Geraldton, WA) suffered considerable interference recently, thought to have come from US naval equipment on the USS Midway which was on exercise off the coast. Station manager Bruce Carty intends to take out a Supreme Court writ against the three navies concerned to prevent further problems...

GOLDEN ANODISED AERIALS: SUPERB ECONOMY AMPLIFIERS; EST. 26 YRs. ALL PRICES INCLUDE VAT. EST. 26 YRs.

Masthead Amps	Type	Gain	Price
Astrax 1441	VHF/UHF	21 dB	$\mathbf{f 1 2 8 2}$
Astrax 1450 LN	Bands 485 (TV)	28 dB	$\mathbf{1 5}$
Astrax 1455	Bands 183 (TV)	25 dB	$\mathbf{1 5 . 4 9}$
Astrax 1520	power unit for above amps	$\mathbf{£ 9 . 8 1}$	
All mast amps require a 1520 power unit.			

All mast amps require a 1520 power unit
SPECIAL OFFER HIRSCHMANN ROTATOR £39.95

ASTRA (GOLDEN D.I.Y.) AERIALS SOME OF OUR SUPERB TV \& FM AERIALS

ma	:W/Band	Gain dB	Price	nt
Margon 103 (TV)	h stocked	19.5/21.5	£61.	22.
Margon 91 (TV)	both stocked	18.5/20.5	£44.16	¢37.53
Fuba 91 (TV)	both stocked	18.5/20.5	£48.61	¢43.75
Optimax 14 (FM)	Band 11 W/B	14	£57.50	¢48.88
Optimax 8 (FM)	Band 11 W/B	9.5/10.5	£32.54	£29.29
Fuba 8 (FM)	Band 11 W/B	10.5	£40.85	£36.71
Over 3.000 aerials stocked, all tranemitters. poles: lashings. rotators; clamps, wall brackets. amplifiers, diplexers, triplexers, notch fitters. coax white or brown				
Many of our customers come from recommendation. 53 WHITEHORSE ROAD, CROYDON, SURREY.				
Nr . Spurgeons Bridge Tel: 01-6844300				
Open 9.00-5.30 TUE-SAT.$01-684526$				
Closed 12.30-1.30 Closed All Day Mon.				
FM \& TV AERIALS AND ROTATORS ON DISPLAY				

South West Aerial Systems

10 OLD BOUNDARY ROAD, SHAFTESBURY, DORSET.

A new addition to the Wolsey range of quality aerials is the HG20, a compact rear mounting UHF array of high gain intended for group operation in A, B or C/D. It features a 15dB (typically) forward gain, a front/back ratio of $24-28 \mathrm{~dB}$ and a 3 dB horizontal beamwidth of $\pm 16^{\circ}$.

South West Aerials supply all aerial equipment for domestic, DXing, active deflectors, 2 nd (or morel) channel reception and for the small distribution system. We've our own manufactured range of wideband Band 1, Band 2 , PSB and communication aerials - and of course our CB department. A consultancy service is available to resolve customers' reception problems.
Wolsey HG20 A compact high gain multiple director UHF yagi (state group)
£23.35
Labgear CM7066 470-860MHz UHF head amplifier; gain 26dB. $\mathrm{NF}<2 \mathrm{~dB}$.
£22.00
(mafching 23 mA .12 V . mains PSU for above amplifier $£ 14.00$)
Triax 'Stereo 8' 'Continental" style twin reflector FM array; gain $9.5 \mathrm{~dB}, \mathrm{f} / \mathrm{b} 24 \mathrm{~dB}$.
£ 35.75
Labgear Teletext adaptor CM7056 (leaflet on request) £231.00 operation/practice

The above prices include VAT, postage/packing.
Our 1981 catalogue costs 45p. Please include SAE with ALL enquiries

ZTV (Zimbabwe) Gwelo ch. E2 station identification, received in Holland by Ryn Muntjewerff.

AFN-TV Shape identification (ch. 34). Photo courtesy Alan Reekie. The transmissions are on system M.

Decibel TV, a Dutch pirate TV station specializing in adult films. Photo from Ryn Muntjewerff.
W. Germany: John Tellick reports that the French/German satellite consortium intends to start DBS TV transmissions by January 1st 1984.
Nigeria: The Bendel TV station is due to come into operation this October.
Israel: The government is to start its own ch. 59 transmissions to counter the transmissions from the pirate TV ship Odelia. In the same area, Jordan is to increase its TV transmissions.
Eire: Following our report last month of a pirate operator on ch. C calling itself "Channel 3 ", it seems that an exBBC transmitter is being used, located at the Camelot Hotel, Malahide, Dublin, with a coverage of five miles. The plan to transmit feature films has been halted as a result of legal action by US film companies.
Spain: An application to run twelve private commercial TV stations covering 80% of the population has been made by an ex-director of the government RTVE network.
France: Private f.m. radio stations seem to be coming into operation in large numbers. An independent TV service, "Tele Ici et Maintenant", is likely to come into operation shortly.
Luxembourg: A Belgian air force jet demolished the upper section of the Dudelange TV transmitting mast on July 3 Ist, killing three people (including the pilot). The mast is used for the ch. E7, E21 and the external E27 TV services. A temporary service has been started from aerials at a greatly reduced height.
USSR: The new Moskva satellite TV distribution network operates at $3 \cdot 6-4 \cdot 2 \mathrm{GHz}$, with a 40 W transmitter but a narrower beam than the Ekran wide-angle system, which operates on ch. 51 and can be received in eastern/southern Africa, the Middle East, west and north Australia and east of a line running through Libya, Poland and the Baltic.

Fig. 1: Band-sweeper circuit used by Brian Williams. The value of R1 depends on the supply voltage. The LED can be mounted on the front panel to give a visual indication that the circuit is operational. VR1 controls the sweep rate and VR2 the sweep range (I.f. - h.f. as the slider is "raised").

Tropospheric signals can be received at Lahti, Finland, some 120 miles over the horizon, under good conditions. Ekran's 200W transmitter feeds a 25 dB gain array, consisting of 90 small helical arrays, giving an e.r.p. of approximately 63 kW , with a beamwidth of $9^{\circ}(-3 \mathrm{~dB})$ aimed at $70^{\circ} \mathrm{N}$.

From Our Correspondents .

Brian Walsh (6 Hucknall Close, Romford, Essex, RM3 9QS) has access to several East European language reference sources (including Russian) and has kindly offered to assist readers with signal identification problems. If you write, enclose an s.a.e.

Gosta van der Linden (Holland) reports that there's apparently a ch. E2 transmitter in operation in Iceland. Enquiries are being made. I received a 10 W relay in the early 70 s but this was later replaced by a Band III transmitter. The picture was clear however, which shows what even rsmall transmitter powers can achieve via SpE. The Belgian army has a 34 W relay transmitter in operation at Ophestan on ch. E12.

The chaotic TV situation in Italy is now well known. During a recent visit to Florence, John Tellick noted twelve local "private" stations in operation - they remain on air, with programmes or test transmissions, for 24 hours a day, presumably to ensure that other stations don't claim any vacant air space. John has received the NCT Udine private station (ch. E3/IA) back home in Surbiton.

Brian Williams has sent in a circuit (see Fig. 1) which serves as a low-cost spectrum analyser or "band sweeper". He's found it very very useful for DX checking at his Penarth location. The basic idea is that C 1 is periodically charged and discharged, providing a band-sweep tuning voltage to feed to a varicap tuner. $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ form a slowspeed multivibrator which switches $\operatorname{Tr} 3$ on and off. When Tr 3 conducts, C 1 charges quickly via D1 etc. from the 33 V rail. When Tr 3 is off, C 1 discharges slowly via the parallel potentiometer network. The charging time is about three seconds and the sweep time two minutes, h.f. to l.f. The LED is included to show the charge. Due to the exponential discharge curve, the sweep is slowest at the l.f. end: to partially offset this effect, R2 is included.

Alan Reekie reports that regular reception of the 525 -line (system M) transmissions from the AFN-TV transmitter at Shape is possible at his location in the southern suburbs of Brussels - despite, as he says, the modest power (1.5 kW e.r.p.). The transmissions are on ch. 34, with vertical polarisation. NTSC colour bars are radiated between 12001400 (local time) on Mondays-Fridays, followed by programmes until close down after 2300. The weekend test transmissions are from 0830-0930 when programmes start.

A white "AFN" symbol is superimposed from time to time, presumably to prevent unauthorised copying (similar to the Italian RAI practice). The only vision identification is at the start of programmes (see accompanying photo), though there are audio identifications - "you're watching AFN, Shape" - during many breaks between programmes.

Alan uses a Grundig TV set which switches automatically between the $4 \cdot 5 / 5 \cdot 5 \mathrm{MHz}$ sound signals
(Grundig have dual-standard sound i.f. modules for systems B / M and $B / I)$. He mentions that the pull-in range of the TDAll 10 field timebase i.c. used in his set is such that the field frequency control can be set for perfect sync with both 50 and 60 Hz signals. With the height control set for a $625-$ line picture however the height will be about 20% short on 525 -lines. To overcome this problem it's necessary to reduce the resistance between pin 7 of the i.c. and chassis.

Ridley Relents

Les LawryJohns

RIDLEY'S been a valued customer of mine for many years, and a friend to be even more valued when the wind has blown against us which, fingers crossed, it hasn't done for a considerable time. Throughout the colour boom Ridley stuck to his monochrome set, saying that colour had no fascination for him at all. Anyway, I'd just sold a 22 in . Pye colour set (K30 chassis) to a chap who'd come to buy a pair of headphones when Ridley came in.
"You'll never guess what I want" he said.
"I think," I said carefully, "you've decided it's about time you had a colour set. Why?"
"I was out at Bob's place last night and he put his set on to catch the golf highlights and you know, Leslie, it does look better in colour after all. So I thought I'd pop in and give old Les a shock, and here I am."
"You certainly have Ridley. If you can do a U-turn anything can happen."
"Well what do you suggest? It's got to be British of course."
"Of course. What about a nice 22 in. Pye set like the one that chap's just chosen - with a bit of help of course."
"Is it British? I thought they were part of that Dutch lot."
"Well yes. European co-operation and all that. The tube's French, but we'll insure it for four years so you've nothing to worry about. Have a look and see what you think" I said, busy unpacking one from its box. Up on the bench the picture appeared in a matter of seconds and Ridley was clearly impressed with the clarity of the picture and sound.

So we piled it into the van and installed it in its appointed place in Ridley's lounge. Switching on didn't produce the fine picture we expected however. It immediately started to trip. Hrrrump bonk it went.
"Oh dear" said Ridley. "It doesn't like living here". "'Course it does" I said. "Probably didn't like the journey. Jet lag or something."
"That's just fine" said Ridley. "Can't travel half a mile before it starts huffing and puffing. My old set could travel to Cornwall and back without turning a hair."

I knew I had to do something, so I took the back off and stared at the large panel. Employing the latest of servicing techniques, I gave it a sharp tap with the end of the screwdriver, somewhere around the centre section. The set stopped huffing and puffing, produced a perfect picture and talked to us nicely enough. "There you are. You just have to show them who's boss." I tapped it some more, thinking that the something or other that was playing about would play about some more, but it didn't. The set continued to behave impeccably, which was just as well since I've not yet become an expert on the K30.

If Ridley had any doubts he kept them well hidden and
seemed pleased with the performance (the set's, not mine). So another sale was made and another triumph was notched up by my screwdriver.

More Puffing

Back at the ranch Honey Bunch told me that another old friend had phoned to say that his set was playing about. So I rang him to ask what was up.
"Hallo Len. What are you moaning about now?"
"It"s this set of mine Les. It comes on and then goes hrrump and goes off and won't come on again till I press the red button at the back. It'll go for some time and then starts to bugger about all over again. You know it's too bloody big to put in the car, so you'll have to stir yourself and come down. Oh yes, and bring one of those colour portables with you. Dot wants one for the kitchen so she doesn't have to watch football."
So we prepared to do battle with Len's 26 in. Ferguson (3500 chassis). Pile in everything just in case, including a spare power panel, and don't forget the portable and the battery for the remote control unit. Off we set, wondering whether the portable would show symptoms of jet lag when we arrived.

First we demonstrated the portable, which performed perfectly. So Dot (Len's wife) took it off to the kitchen, proclaiming that Len wasn't going to watch it even if the big set did huff and puff.

The 3500 wouldn't play up when we wanted it to. So we switched it off and tried again after taking some liquid refreshment. This time it did play about, and as the red button cut out seemed to restore normal operation we changed this first. No difference of course.

As there was plenty of voltage on the body of the chopper transistor when the set went off we turned our attention to the 30 V line. There was only 30 V instead of about 45 V at the $1,000 \mu \mathrm{~F}$ reservoir capacitor, i.e. at the input to the 30 V regulator, but the voltage increased to normal when we prodded the capacitor, the set coming to life again. The electrolytic usually dries up, preventing the set working altogether, but on this occasion there seemed to be a poor leadout contact. A replacement capacitor cured the huffing and puffing - presumably the act of pressing the red button had momentarily interrupted the supply and sealed the poor contact.

I've been Struck

We've had some pretty severe storms of late, so it was no surprise when Mr. Allen phoned to say he'd been struck by lightning. Not really him you understand but his set, another large Ferguson - this time with the more up-to-date 9800 chassis.

When I arrived he pointed to a heavy chrome ornament. "That was on top of the cabinet. Must have attracted the lightning to the set" he proclaimed. I've found it best over the years not to disagree unless it's absolutely necessary, since I don't know all that much about these
things. So I nodded my head and then shook it in sympathy.
"Funny thing lightning. Scares me stiff. Never know what it's going to get up to next." "It struck my umbrella once" said Mr. Allen. "There was nothing left but the wood. Made me feel quite funny at the time." I tut-tutted as I removed the set's rear cover.

It seemed to be perfectly all right until I took a closer look at the upper left mains input subpanel. A diode here was in two halves, while a resistor was a small, charred mass. I thought at first that the diode was the one in series with the thyristor h.t. rectifier/regulator, and then realised that this is on the lower power board. The damaged diode was the first one (W810) in the start-up circuit, the resistor being the following 470Ω one (R814). The path appeared to have been via W810, C810, R814 and VT810, which appeared only as three small wires with no transistor body to contain them.

A small voice inside my head told me not to muck about with the set there and then, but to take it back to the shop as it was going to be a long story. The voice was right, because when I ignored it and replaced the damaged components the set immediately began to trip like mad.

So we hauled the monster into the van and subsequently spent several unhappy hours on the bench. A replacement power panel was eventually fitted. This stabilised the supply lines (the line output transistor had been replaced earlier in the proceedings, along with quite a few associated components which had been dealt a deadly blow). We then had a raster but no signals, and naturally thought that the tuner must have been the first casualty. In the event, the tuner seemed to be about the only item completely unharmed. This is not quite true of course, but we had to replace two i.c.s on the signals board before normal reception was restored, suggesting that there'd been a sudden and drastic increase in the supply voltage.

Mr. Allen also appeared to have been struck by lightning when I presented him with the bill. When he recovered, he told me that lots of funny things had happened up and down his road as a result of the storm - and not only to TV sets. Cookers wouldn't cook, freezers wouldn't freeze, and one house will have to be completely rewired because the wiring vanished, leaving only trails of dust where the cables had been.
"All the copper just vapourised - puff" said Mr. Allen impressively.
"You were lucky it only got to your TV set then Mr. Allen, very lucky."

Who Needs Friends?

You may recall that one of our customers lives in a back-to-front house in a quiet and select area. He's a bookie or turf accountant rather, and seems to travel around the world a lot. So we go for some time without hearing from him. He turned up the other day however. Strode in demanding to see the books and claiming to be the Vatman - to the consternation of a couple of customers who were in the shop at the time. I explained to them that he wasn't really an angry Vatman but only a friend having his little joke. This seemed to amuse them as one was actually a Customs and Excise man on his day off.

It appeared that his old Dynatron was giving trouble again, so I promised to visit him later. For his part he promised to remove the twenty thousand screws that hold the back on before I arrived. The set's a CTV25, with a VCR in the top, the chassis being a 733 or 743 (I can never remember, they all look like the 725 to me). It has the vertical panels and centre power resistor and fuse in the h.t.
line, and it appeared that the 56Ω section of the power resistor was open-circuit. There was a fairly low resistance reading at the end of this that feeds the line timebase, so suspicion centred on the line output transistor which proved to be short-circuit.

After a struggle we removed the timebase panel completely and then attempted to remove the transistor. Attempted is the operative word. The screws were stuck fast and no amount of heating, twisting or turning would shift them, and time was slipping by. At last I gave up and took the panel back to the shop (not having the courage to remove the set itself).

On the bench the comedy continued, until the screws were just bits of metal with holes in the top and there seemed no possibility of cutting a slot with a hacksaw. At this point son-in-law Douggie appeared.
"No problem" said Douggie, who although Greek claims to have mastery over every language including ancient Chinese. "Wait while I get my socket set."

He returned with a tool box and his brother Soffie. With a socket under each screw to support the panel, Soffie held a screwdriver (standard blade) on the screw and Douggie dealt it several almighty blows with a hammer to cut a slot in the top. The process was repeated, before my horrified but fascinated gaze, on the second screw. The screws then offered no further resistance, and the transistor was changed in a trice.

As I soldered the base and emitter contacts, my eyes were attracted to the myriad of fine lines fanning out from the source of the operation. Many tracks were in need of repair, and the panel presented a somewhat different appearance when it was at last ready for operation.
"Thanks Doug. I wouldn't have thought of doing that myself. Glad you popped in."
"No problem" said Doug.
In fact the set worked quite well when the panel was refitted and the power resistor was replaced. Once I'd located the remote control unit that is.

STATION OPENINGS

The following relay transmitters are now in operation:
Backbarrow (South Cumbria) TV4 (future) ch. 50, BBC-1 ch. 57, Granada Television ch. 60, BBC-2 ch. 63.
Beer (Devon) BBC-1 ch. 55, Westward Television/Television South West ch. 59, BBC-2 ch. 62, TV4 (future) ch. 65.
Belper (Derbyshire) BBC-2 ch. 56, TV4 (future) ch. 62, BBC-1 ch. 66, ATV ch. 68.
Collafirth Hill (Shetlands) Grampian Television ch. 41, BBC-2 ch. 44, TV4 (future) ch. 47, BBC-1 ch. 51.
Fetlar (Shetlands) BBC-1 ch. 40. Grampian Television ch. $43, \mathrm{BBC}-2$ ch. 46 , TV4 (future) ch. 50.
Fintry (Scotland) Scottish Television ch. 24, BBC-2 ch. 27, TV4 (future) ch. $31, \mathrm{BBC}-1 \mathrm{ch} .34$.
Fishguard (Dyfed) Sianel 4 Cymru (future) ch. 54, BBCWales ch. 58, HTV Wales ch. 61, BBC-2 ch. 64.
Kirkfieldbank (near Lanark) TV4 (future) ch. 53, BBC-1 ch. 57, Scottish Television ch. 60, BBC-2 ch. 63.
Methven (near Perth) BBC-1 ch. 22, Grampian Television ch. 25, BBC- 2 ch. 28 , TV4 (future) ch. 32.
Millbrook (Southampton) Southern Television/Television South ch. 41, BBC-2 ch. 44, TV4 (future) ch. 47, BBC-1 ch. 51 .
Penny Bridge (South Cumbria) Granada Television ch. 23, BBC-2 ch. 26 , TV4 (future) ch. 29, BBC-1 ch. 33.
Strathallan (Scotland) BBC-1 ch. 39, TV4 (future) ch. 42,

BBC-2 ch. 45, Grampian Television ch. 49.
All the above transmissions are vertically polarised.

SERVICE BRIEFS: ITT

Hybrid colour chassis: The original yellow moulded type of mains filter capacitor (C257) continues to give trouble. To avoid any further problems the later grey moulded type (part no. 081066) should be fitted whenever one of these sets is serviced.
CVC20 chassis: When replacing the field output transistors, the associated diodes D7/8 should be mounted on end and stood off the board to reduce their operating temperature.
CVC25/30 series: Where BD807 transistors are used in the field output stage (T8/9) to replace FT3055 transistors, the field scan coupling capacitor C22 must be increased in value from $2,200 \mu \mathrm{~F}$ to $3,300 \mu \mathrm{~F}$ to prevent cramping at the top and/or bottom of the raster.

Note that different EW modulator transformers are used in the CVC25 and CVC30 chassis: use of the incorrect type will result in poor EW correction and failure of the EW driver transistor T13 (BD238).
ITT 80 chassis: In cases of random channel change, check that C3 on the remote control receiver panel (CMC90) is $1,000 \mu \mathrm{~F}$ (not $100 \mu \mathrm{~F}$). If the problem persists, replace the focus spark gap SG1001 on the c.r.t. base panel.

Tuning drift can be caused by the emitter-follower transistor T2 on the remote control receiver panel. Suitable replacement types are the BC337 or BFY50 (originally type BC546A). If drift still occurs, change R9 to $3 \cdot 3 \mathrm{k} \Omega$ (originally $470 \mathrm{k} \Omega$) and connect a 1 N 4148 diode between the base and emitter of T2 (on the copper side of the board), with the diode's cathode to the base of T2.

If C23 on channel selector type VCA45/1 fails (Model CS0624/1), cut link WL3. C23 is omitted in later production.

When fault finding, the 125 V h.t. supply can be isolated from the line output stage by removing scan coil plug B. The h.t. supply should then rise to 145 V . A 150 W (240 V) bulb can be connected across the h.t. rail (from socket B1 to chassis) as a substitute load: the power supply should not shut down and the h.t. should read approximately 125 V . Intermittent power supply shut down during passages of loud music can occur if coils L407 and L409 in the line output stage are incorrectly positioned so that they touch each other or surrounding components. They are mounted beneath the BU208A line output transistor's heatsink assembly.

SERVICE BRIEFS: PHILIPS

GII chassis: "Background slush" on sound has been a problem, due to short-wave interference. An earlier modification was to use a screened quadrature coil (L5025) in the detector circuit. An alternative approach is to use a ceramic filter kit which is now available from Philips Service. Care is required in fitting this kit, which replaces L5025/C5023/C5027/C5028/R5026. In addition to the ceramic filter, the kit includes a 100 pF capacitor and two resistors (220Ω and 120Ω).
TX chassis: A major alteration to the field oscillator circuit has been introduced to improve the height stability with change of temperature. Panels incorporating the modification are coded HU30. The revised design involves deletion of the constant-current charging transistor TS505 (type BC584C) and associated component deletions/value changes.

next month in

- TV RECEIVER DESIGN

The new Tatung/Deccacolour 120/130 series shassis is one of the latest UK colour receiver Jesigns to go into production. It's representative therefore of up-10-the-minute thinking on TV receiver design. Ray Wilkinson, Assistant Head of Receiver Design at Decca, describes the circuitry used and summarizes the design philosophy behind it. Manufacturing problems are also considered.

- VCR TOPICS

More on VCRs, including our regular features VCR Clinic and VCR Servicing - this time on the Philips servo system anc some luminance circuitry. An article on servicing the heads used in the Philips N1700 machine tells how to go about doing the impossible - refurbishing head drums. Also Steve Beeching on the new Toshiba V8600 VCR - the one with the super still and super slow features.

- SERVICING FEATURES

Mike Phelan reports on the Luxor 110° hybrid colour receivers that were imported during the colour boom: nice sets with good access - obvious candidates for re ovation. Steven Knowles provides a fault repcrt which includes an encounter with the fuzz while "doing a job" and a visit to the barbers.

- TV STANDARDS

Our postbag always seems to contain several letters about the use of TV sets bought in various other countries - or alternatively what to do when going abroad for an extended period. The trouble of course is the different TV standards in use world wide, and the difficulties have increased with the availability of video equipment at cheap prices in various foreign parts. David Matthewson summarizes the problem and mentions some multistandard equipment.
pLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW.

TO.
(Name of Newsagent)
Please reserve/deliver the November issue of TELEVISION (70p), on sale October 21st, and continue every month until further notice.

NAME
ADDRESS..

VCR Servicing

Mike Phelan

Time to go into VCR servo systems in further detail. As mentioned last month, the speeds of both the tape and the head drum must be closely controlled during recording and playback. Why? First the situation when recording. The tape speed must be constant and, for compatibility, must be the same on all machines made to the same standard.

Capstan Servo on Record

Fig. 13 shows the capstan servo system in outline. It's mostly contained in the purpose-designed MSM5816 i.c. (remember that we're using the basic JVC HR3330 machine to illustrate these articles). Within this i.c., the frequency of the 3.71 Hz pulses picked up from magnets on the capstan flywheel is compared with the frequency of pulses derived from a 2.51 MHz crystal oscillator after division down to 3.71 Hz .

The system works like this. The low-amplitude pulse from the pickup head is fed first to a NAND gate which is used as an inverting amplifier - it's part of IC3. The amplified pulse from this gate goes into the MSM5816 i.c. at pin 2. It's then converted into a trapezoid as a result of the action of the $R C$ network connected to pins 13 and 14. The trapezoid thus produced is one of the two inputs to the following sample and hold gate. The output from the 2.51 MHz crystal oscillator is divided down to produce a positive-going 3.71 Hz pulse which is the other input to the sample and hold gate. When the machine is running at the correct speed, this 3.71 Hz pulse coincides in time with the centre of the trapezoid's falling slope (see Fig. 14). The slope voltage at this point is sampled and charges the $0 \cdot 01 \mu \mathrm{~F}$ capacitor connected to pin 15 . This voltage controls the motor via IC5, X12 and X2 which provide current amplification.

If the motor should tend to slow down, the pulses from the flywheel will arrive at a slower rate and the trapezoid will arrive progressively later compared to the timing of the reference pulses. As a result, the pulses will climb up the ramp, the output voltage at pin 16 will rise, and the motor
will be speeded up until equilibrium is restored. Simple! The converse happens should the speed of the motor tend to increase. The trapezoid then comes along early, the pulse falls down the ramp and the output voltage decreases. The idea is similar to that of another phase-locked loop with which we should be familiar - flywheel sync.

This arrangement takes care of long-term speed variations but not of short-term ones under load remember that the capstan is pulling the tape through a fairly obstacle-strewn path (all those guides and things). This problem is resolved quite simply. Notice (Fig. 13) that the motor is fed via an 0.47Ω resistor which is connected between the inverting and non-inverting inputs (pins 6 and 5 respectively) of IC5. The voltage developed across this resistor is proportional to the current drawn by the motor. Any increase in the load will result in the voltage developed across this resistor increasing. As a result, the ratio of the voltages at IC5's input pins alters and the output rises.

Drum Servo on Record

Now to the drum servo. The head drum must rotate at a speed of 25 Hz so that one complete field is recorded per rotation by each head. As well as this however the video tracks must always be recorded with the field sync pulse in the same place, i.e. the relationship between the field sync pulse and the rotational position of the head drum must be fixed. This is done by comparing a 25 Hz trapezoid derived from magnets on the head drum flywheel with a pulse obtained by dividing the field sync pulses on the incoming video signal by two (by using a monostable multivibrator whose period is longer than $20 \mu \mathrm{sec}$). See Fig. 15. This monostable multivibrator (MMV) is followed by another one whose period is adjustable. The adjustment is called the "record switching point", and determines where the field sync pulse appears on the recorded track. This part of the circuit is contained in IC1 (AN301), the final pulse output appearing at pin 8. The pulse goes to the sample and hold gate in IC2 (AN3 18), this part of the servo working in the

Fig. 15: Block diagram of the drum servo system used in the JVC HR3330 and similar machines.
same way as the capstan servo, with the output from pin 12 being amplified to drive the motor.

The two magnets on the drum flywheel are of opposite polarity, so that the pickup head feeds alternate positiveand negative-going pulses to the amplifiers and monostables in IC2. We'll come back to the bistable and "PB switch phase" potentiometers in a moment - they're used on playback. The tracking control also has no effect in the record mode. The pulse from the first monostable in IC1 is also fed to the control head to be recorded on the bottom edge of the tape (the control and audio heads are in practice a single assembly).

It's time to explain the "REC 12 V " labels here and there in Fig. 15. Those of us with experience of audio tape recorders will doubtless know that the record/playback switch has many cortacts. With a video machine we would require switching on different panels, and the outcome would be something like the $405 / 625$ line switching on a dual-standard colour set. In the machine under discussion there's one switch on the audio/servo board - some functions are directly switched, but many are operated by sending a "record 12 V " supply around the machine, the supply being present only on record. The REC 12 V supply to the first monostable in IC1 (pins 9/11/12) brings the monostable into operation on record.

Fig. 16 summarizes the timing of the drum servo reference signal path on record, and will make the reason for the presence of the various monostables clearer. Fig. 17 is a similar diagram for the feedback signal.

Operation on Playback

We'll look next at the servo requirements during playback. The tape must again run at a constant speed, so we don't have to switch anything in the capstan servo
system. The drum servo must run at the same speed as when recording, but in addition its position must be accurately controlled so that the heads scan the recorded video tracks centrally, taking into account any variations in track spacing as a result of tape stretching and the inc. i+able slight wow and flutter that are always present. This is done by using the control pulses from the tape as a reference to be compared with the trapezoid derived from the pulses from the drum magnets.

This involves a minimum amount of switching (see Fig. 15). The REC 12 V supply is removed from the first monostable in IC1 so that the field sync pulses are not passed to the control head; it's also removed from the tracking control circuit so that the latter now determines the period of the second monostable in IC 1, giving adjustment of the sample pulse position. When the manual tracking control is turned off, the preset control is switched in - this will have been set to give optimum results on the machine's own tapes (the manual tracking control may need adjusting when playing prerecorded tapes).

The bistable in IC2 now feeds a squarewave to the trapezoid circuit instead of the input coming from monostable B. The two playback "switch phase" controls adjust the periods of monostables A and B separately, and thus the relationship between both the rising and falling edges of the bistable's output and hence the position of the head drum.

Head Switching

When a tape is being played back, as one head scans the tape the other rotates in fresh air - except for an overlap of a few lines. To avoid picking up noise, the head not in use is switched off. This is the main purpose of the bistable. Later, when we come to examine the head preamplifiers, we'll see

Fig. 16: Drum servo reference path signals in the record mode, showing the time relationships.

Fig. 17: Timing of the drum servo feedback path signals in the record mode.
how this is done. Suffice it to say here that every time the bistable changes state one head is switched out and the other one in. The heads are not switched during record of course. The playback "switch phase" controls are adjusted on playback so that the switching (a slight horizontal disturbance on the picture) appears in the centre of the bottom castellations of a test pattern, the two switching points (referred to as CH 1 and CH 2) overlapping. They will then be visible only if the height control of the set being used to display the picture is reduced. Don't start twiddling yet!

The output from the bistable is in all modes fed to the mechanism control (abbreviated mechacon in the manuals) system to tell it that the head is rotating - if not the stop solenoid operates.

Fig. 18 shows the drum servo timing.

Alternative Approach

This concludes our look at the VHS servo system as used in the JVC based machine. One point deserves mention however. We could just as easily have controlled the tape position during playback instead of the drum position - the narrow angle of the video tracks means that the effect is the same. This indeed is the technique used on the Philips N1500/N1700 series machines, and next month we'll describe the simpler servo system they use.

Pulse from control (CTL) head

Pulse at TP3

Fig. 18: Drum servo signal timing in the playback mode. (a) Feedback path, (b) reference path. Not to same time scale.

0

It's so easy and tidy to file your copies away using the Easibind binder. Each binder is designed to hold twelve issues and is attractively bound and blocked with the TELEVISION logo.
UK price $£ 4.40$ including postage, packing and VAT. For overseas orders add 25p. Please allow three-four weeks for delivery. Why not place your order now? Send the completed form below with the remittance payable to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 OPF.

Vintage TV: Ferguson 842T/843T

Vivian Capel

PERHAPS surprisingly, the UK's largest TV manufacturer for many a year was not active in the TV field before the 1939-45 war. The first Ferguson TV models seem to have been the post-war 841 T and $841 \mathrm{~T} / 12$. Shortly after came the 842 T and 843 T , the subject of the present article -9 and 12 in . consoles respectively. They were housed in simple, elegant cabinets with nicely grained wood and horizontal fluting across the loudspeaker aperture. Three black, skirted knobs for brightness (coupled with the on/off switch), volume and contrast were mounted beneath the screen. The usual presets were at the back of the cabinet.
T.R.F. receiver circuitry was employed, the sets being designed for reception of the Alexandra Palace transmissions. The amplifying valves in the receiver section were EF50s - red-coloured, metal-cased valves with B9G bases. Pin contact with the holder was frequently a problem with these valves - we'd no silicone grease in those days to keep oxidation at bay. Cleaning with carbon tetrachloride would cure the problem but would not prevent it recurring. The gain was not all that high - the sets were intended for service area use - and this was particularly a problem with any sets that were converted to operate at higher frequencies. Being large in size, the r.f. section took up most of the chassis space - unlike the compact r.f. strips that followed in later years when miniature valves came into use.

Most sets that employed EF50s had little gain to spare unless they were used well within the service area. If the complaint was poor contrast therefore, quite a few of the valves usually had to be replaced - we would check the whole lot on a tester, replacing those that were well down but trying out replacements for those that were doubtful to see if a new one made sufficient difference to warrant the expense of renewal. Sometimes the valves used in the sound section could be switched over to the vision circuit if they were well up to standard. Since the EF50 had been designed for radar use however large numbers were unloaded on the surplus market at a nominal cost. These could often be used to save an expensive repair bill.

The first two r.f. stages amplified both the sound and vision signals. The third stage amplified the vision signal and provided a tap-off point for the sound channel in its cathode circuit. There was a fourth vision only r.f. amplifier and two sound only r.f. amplifier stages. EF50s were also

Fig. 1: The power supply circuit. Note the use of an autotransformer in a full-wave rectifier circuit.
used in the video output and sync separator circuits, EB41 double-diodes being used for detection and interference limiting in each channel.

In the 9 in . set the field sync pulses were integrated and applied to the field oscillator. This wasn't considered to be good enough for the 12 in . model, which employed an integrating diode (a WX6 "Westector") to give improved interlace. With a simple integrator the capacitor is not fully discharged on alternate fields when the pulse arrives half way through a line (405 -line system): thus alternate pulses are unequal in amplitude and the result is uneven triggering and poor interlace. The use of the diode gave integrated field sync pulses of closer amplitude and thus more accurate oscillator synchronisation on successive fields.

The contrast control varied the cathode bias applied to the first r.f. amplifier valve. The system used for volume control was most unusual - the potentiometer varied the first sound r.f. amplifier valve's screen grid voltage! This meant that the noise and hum in the following stages were not controlled, with the result that the sound-to-noise ratio was poor at low volume control settings. Since the control was not in a signal path however and the wiper was decoupled, noise due to dirt on the track was less likely when it was operated.

Power Supply Arrangements

The power supply components were mounted on a separate chassis which was connected by means of a lead and an eight-pin plug. Whilst the earlier 841 T used a mains isolating transformer with the valve heaters fed in parallel, the 842 T and 843 T employed a series heater chain with a thermistor to limit the current surge at switch on. The h.t. was derived in a novel manner (see Fig. 1) - from an autotransformer. This was not unusual with a half-wave rectifier circuit, but the $842 \mathrm{~T} / 843 \mathrm{~T}$ used a full-wave rectifier that produced around 300 V across the reservoir capacitor C49. The result was an economical, non-isolated system with full-wave rectification.

Another unusual feature (see Fig. 2) was the use of a separate e.h.t. generator. It was more common to derive the e.h.t. from the line flyback, as later became the standard practice, or from a mains step-up/rectifier arrangement as in the earlier 841 T . Separate e.h.t. generator circuits were usually encountered only in projection receivers. The PL33 valve was used in a self-oscillating circuit (frequency

Fig. 2: The e.h.t. generator circuit, consisting of a tuned oscillator driving a rectifier.

Fig. 3: The video circuit. Potential divider R2O/R21 set the d.c. level at the cathode of the c.r.t. The vision interference clipper diode V5 operates in conjunction with an RC network that has a long time-constant.
approximately 80 kHz), with an overwinding to feed the EY51 e.h.t. rectifier: its anode circuit was tuned by a fixed capacitor which was shunted by a trimmer to provide adjustment of the e.h.t. voltage. This was 6.5 kV , which was not outstanding considering the trouble taken to get it!

As the c.r.t.s were of the tetrode type, the problem of supplying the first anode arose. This should be operated at
about 200 V above the cathode voltage. Since the main h.t. line was around 290 V , this was applied to the first anode while the cathode was taken to a d.c. potential divider (see Fig. 3) connected between the anode of the video output pentode and chassis. The divider consisted of two $47 \mathrm{k} \Omega$ resistors ($\mathrm{R} 20 / 21$), so the centre point produced half the voltage at the anode of the video output valve. Since the later voltage was 166 V , the voltage at the cathode of the c.r.t. was about 80 V , giving the required first anode/cathode difference. The $0.5 \mu \mathrm{~F}$ coupling capacitor ensured that the video signal was not greatly attenuated by the presence of the voltage divider network.

Timebases

Without the complication of flyback e.h.t., the line timebase was simple indeed. Another EF50 was used as a blocking oscillator, driving a PL38 which had a simple twowinding output transformer to feed the scan coils. The field generator again consisted of an EF50 used as a blocking oscillator. The field output transformer was $R C$ coupled to the anode of the PL33 field output pentode, with a.c. feedback to linearise the scan. Neither the field nor the line timebase was provided with a linearity control.

A far cry from the TX9 and TX10!

Servicing Switch-mode Power Supplies

MOST recent TV chassis employ some form of switch-mode (chopper) power supply - examples that spring to mind are the Rank T20/T22 series, the ITT CVC20 and subsequent chassis, the Decca 70 series, the Philips KT3 and K30 and the Thorn TX10. The reason for this is the high efficiency and small size of a chopper system - very important with the trend to ever lower power consumption in TV sets. There is quite a bit of design flexibility: a switch-mode power supply can provide mains isolation, as in the TX10 chassis; it can be run synchronously with the line timebase as in the KT3/K30 series etc.; or it can be a self-oscillating circuit running at some other frequency as in the Rank T20/T22 and other chassis that use the Siemens type circuitry.

Unfortunately many engineers treat switch-mode power supplies with some trepidation, partly because their operation is not fully understood and partly because, being active switching circuits (unlike the "passive" series regulator for example), they call for different fault-finding techniques. The aim of the present article is to explain the basic operation in simple terms and to outline appropriate fault-finding methods.

In a switch-mode power supply the smoothed output from a bridge rectifier is chopped up to provide pulses at line frequency or some higher frequency. These pulses are rectified and smoothed to provide the regulated d.c. output. This may seem rather nonsensical, but the reasons for doing things this way are logical enough. First, at the higher frequency of the chopper's output the smoothing components can be quite small - reservoir/smoothing capacitors of only say 100μ F. Secondly, by varying the mark-space ratio of the chopper's output, i.e. the ratio of the time during which it conducts to the time during which it's switched off, we can control the power fed into the set and
thus regulate the supply. And thirdly, since the chopper transistor acts purely as a switch, being either fully on or fully off, it's working under the most efficient conditions and the losses are minimal.
To achieve all this a switch-mode power supply requires a switching device, i.e. the chopper transistor, to switch the power on and off, a means of switching the chopper transistor on and off at the required frequency (either a separate oscillator can be used or the chopper can form part of a self-oscillating circuit), and a means of sensing the load and, by feedback action, controlling the ratio of the chopper's on/off times.

Self-oscillating Circuits

We'll look first at the self-oscillating type of chopper circuit used in the Rank T20/T22/T26 series chassis. This type of circuit was originally devised by Siemens, and its first appearance in a commercial set seems to have been in the Tandberg CTV2 series chassis. Though the idea is far from new, it has been gaining favour with set designers recently - it's used in the latest Decca and Grundig chassis for example, and in the GEC/Hitachi 30AX chassis.

The circuit used in the Rank T20/T22 chassis is shown in Fig. 1. The mains input is applied to the bridge rectifier 7D14-17, which produces some 300 V across its reservoir capacitor 7 C 13 . The chopper transistor 7VT2 is connected across this supply, via 7R10 in its emitter circuit and the primary winding (16-10) of the chopper transformer 7T1. 7D1 rectifies the pulses developed across the primary winding of 7T1 when 7VT2 conducts, developing a regulated 200 V supply across its reservoir capacitor 7C2.

Though the chopper is self-oscillating, it's not selfstarting. To get it going, a positive pulse is applied to its

Fig. 1: Self-oscillating switch-mode power supply circuit used in the Rank T20/T22 chassis.
base via 7D11/7C10/7R9. Once it starts up, oscillation is sustained by feedback from winding $1-14$ on the transformer. Regulation is effected by switching 7VT2 off before it would do so left to itself. Thyristor 7THY1 provides the switch-off action, firing to short-circuit the base and emitter of 7 VT 2 via $7 \mathrm{C} 5 / 7 \mathrm{R} 10$.

The main complication is in controlling 7THY1's switchon time. The sawtooth developed across 7R10 when 7VT2 conducts is applied to the gate of 7THY1 via 7RV1. When the sawtooth is sufficiently positive, 7THY1 conducts. Regulation is effected by applying a variable bias to 7THY1's gate. The rectifier circuit 7D8/7C7 provides the basic bias, which is modified by the action of 7VT1 whose collector current flows via 7RV1. The load is sensed by winding 5-12 on the transformer, the output from this being rectified by 7D2/7C4 to control, in conjunction with zener diode 7D6, the conduction of 7VT1.
The circuit oscillates at about 25 kHz . Protection is provided by the crowbar thyristor 7THY2, which fires to blow fuse 7FS1 in the event of excessive current flow or excessive output voltage. These conditions are sensed at its gate, via 7D7 and 7D13 respectively.

Fault Finding

If the mains fuse 7 FS 2 (2.5 A , uprated from 1.6 A originally) is found to have blown, the things to check are the mains filter capacitor 7C19, the bridge rectifier diodes and the reservoir capacitor 7C13. If the h.t. fuse 7FS1 has blown on the other hand the prime suspects are 7VT2, 7D 1, 7 C 2 and 7 THY 2 - the latter may be defective, or may have been triggered, due to a power supply fault or a fault in the crowbar circuit. How do you tell which? After checking the componeris mentioned, disconnect the power supply from the rest of the set (by removing the output plug 5Z2) disable the crowbar (lift one end of 7R15), fit a new fuse and switch on. Measure the h.t. If this is about right (it might be a bit high with the circuit unloaded), the fault lies
in the crowbar circuit. Normal load conditions can be simulated by connecting two 60 W bulbs in parallel across the output. Note that it's essential to disconnect the power supply from the rest of the set before disabling the crowbar, since if the h.t. is excessive damage may occur in the line output stage. The disconnection must be made after 7R1, as otherwise there's no load at all and the power supply won't operate.

If the h.t. supply is found to be high, try adjusting 7RV2. If this has no effect, 7VT1 and the associated components will have to be checked as necessary.

If 7VT2 has to be replaced as a result of it going shortcircuit. 7THY1 and 7VT1 must also be replaced as they will probably have suffered damage.

Should the fuses be intact and the power supply fails to operate, check that a start pulse appears at the base of 7VT2 at switch on. If this is absent, check the components in the start-up circuit. If present, check 7VT2, 7THY1, 7R10 etc. - and 7R17 of course!

If the h.t. voltage is low but returns to normal after disconnecting 5Z2, check for faults in the line timebase.

These simple steps will resolve the vast majority of faults. If the problem is more elusive, the use of a variac to enable the mains voltage to be increased gradually is a great help.

The circuit used in the Tandberg CTV2 chassis differs from the Rank one in two main respects: first of all a transistor start-up circuit is used, and secondly there are extra windings on the chopper transformer to provide the set with extra voltage lines. As in the Rank circuit, if the C'opper transi: \quad fails, the control thyristor and transistor should be replaced.

Separate Oscillator Circuits

In the other basic type of switch-mode power supply circuit the chopper transistor receives its variable markspace ratio drive waveform from a separate oscillator. We'll look at two circuits of this type, one which doesn't drive the
line output stage (ITT CVC20) and one which does (Thorn TX10).

The ITT circuit, shown in simplified form in Fig. 2, is simpler than the one we've just looked at since most of the operations are carried out within the TDA2640 i.c. This contains the oscillator, the pulse-width modulator (to vary the mark-space ratio of the output), the comparator (to sense the output), and the slow-start and protection circuits. The variable mark-space ratio output pulses are obtained at pin 6. These are fed to a driver transistor (T11) which is transformer coupled (L8/9) to the chopper transistor (T12). The chopper drives transformer L11/12/13, the primary winding L11 forming its load. The rectifier circuit D18/C51 provides a stabilised 125 V h.t. rail, and since the circuits supplied by this are in parallel with L11 the circuit is referred to as a parallel chopper. Of the other two windings on the transformer, L13 provides a 20 V supply (after rectification by D17/C50) while L12 is used to sense the output. D16/C45 provide the feedback voltage for the comparator circuit, which is also fed with a $6 \cdot 2 \mathrm{~V}$ reference voltage obtained from zener diode D802. The comparator controls the pulse-width modulator and in turn the markspace ratio of the output.

To provide excess current protection, the voltage developed across R89, which is in series with the chopper transistor, is fed back to pin 12. When the voltage at this pin exceeds 0.7 V the current trip operates.
The other input comes from a winding on the line output transformer. This supplies pulses to pin 2, via R816, to synchronise the oscillator. The pulses are also rectified by D803/C809 whose output is applied to pin 8. The overvoltage circuit compares the voltage at pin 8 with the reference voltage at pin 9 : if the voltage at pin 8 exceeds the voltage at pin 9 , the over-voltage trip operates.

When either of the trips comes into operation, the duration of the output pulses at 6 is reduced for approximately half a second, after which the pulses are restored to their normal width. If the fault has then cleared, normal operation continues. If the fault persists, the trip process is repeated. After several trip cycles, usually $5-10$, the power supply shuts down completely and can be restarted only by switching the set off for a few seconds then switching on again.

Servicing Procedures

If F3 blows at switch on, check the chopper transistor. If this is short-circuit, check R80 - it had a habit of going open-circuit on earlier sets, blowing the chopper transistor.

If the set is tripping, remove the scan coil connection plug (S) - this removes the supply to the line output stage. If the pulsing stops when the-set is switched on again, the fault is in the line output stage. If the trip still operates, there's probably a fault in the power supply.

The trip will operate under any of the following three conditions: TDA2640 faulty; voltage at pin 8 excessive; voltage at pin 12 excessive. As the power supply is pulsing, the voltage at pin 12 must be measured with a scope. If the pulses exceed $6 \cdot 2 \mathrm{~V}$, the fault is either in the current sensing circuit (R89/R810/R809/R805) or there's excessive current flowing through the chopper transistor. If the pulses at pin 12 are o.k.. remove the scan coil plug, lift one end of R812, and check the output voltage. If this is normal, the fault is in the over-voltage circuit (D803/C809/R817/R812). If the voltage is high, try adjusting R808. If this has no effect, the i.c. is probably faulty. If the trip continues to operate with R812 disconnected, check the voltage at pin 9 . If this is not $6 \cdot 2 \mathrm{~V}$, suspect D802 or the i.c.

If the power supply appears to be dead, check the voltage at pin 1 of the i.c. This should be 12 V . If not check R79 or the i.c. Then check the voltage at the collector of T11. If this is zero, check T11 and the i.c.

The TX10 Circuit

To bring us right up to date, Fig. 3 shows a simplified circuit of the switch-mode power supply used in the Thorn TX10 chassis. The chopper itself, TR701 and its load transformer T705, is again of the parallel type and in this chassis provides mains isolation (in conjunction with transformers T702/3/4 and the network R701/C701). TR 721 is the chopper driver transistor, and the control circuitry is incorporated in IC801, type TDA2582, which is similar to the TDA2640 but of more recent design. The oscillator in IC801 is synchronised to the line frequency by the sync processor i.c. IC791 (type TDA2576), the linefrequency signal from pin 10 of IC791 entering IC801 at pin 14. As the whole circuit is synchronised to the line frequency, the line drive for the BU208B line output transistor is taken from a winding on the chopper transformer.
The chopper primary circuit has some interesting features, with D704/C711 forming a boost/damping circuit, excessive energy being returned to the mains bridge rectifier's reservoir capacitor C708 via D702.

Various trips are incorporated in IC801. If the supply voltage at pin 9 falls below 9.4 V a low-voltage trip (not shown) operates. Excessive beam current is detected by linking the earthy end of the e.h.t. winding to pin 6 (via R868 etc.). This trip operates when the voltage at pin 6 exceeds 0.7 V (negative). Excessive output voltage and excessive chopper current are detected at pin 7. Transformer T 703 senses the chopper current, the current pulses in the secondary winding being clipped by D733 and applied via D727 to pin 7. To sample the output voltages developed by the chopper transformer, pin 7 is linked to the anode of D728 via R810. This trip operates when the voltage at pin 7 exceeds 6.2 V . The power supply will start up again via the slow-start system in IC801 shortly after one of the trips has operated. If the fault condition is still present, the trip will again operate. After $8-14$ cycles, the set will shut down until switched off for a few seconds.
There is no fault history to date with the TX10 of course. The following brief servicing guide has been adapted from notes given in the Thorn manual.
In the event of no sound or raster, first check the mains input fuse FS701. If this has blown, check D701 and its reservoir capacitor C708. If FS701 is o.k., check FS702. If this has blown, check the chopper transistor TR 701 and its emitter circuit for shorts. If both fuses are intact, the set is probably in the tripping mode. In this event, check the 150 V line with an Avo 8 or similar meter. If the voltage attempts to rise (to some 40 V or more) when the set is switched on, the fault is on the secondary winding side of the chopper transformer T705. If the voltage does not rise the fault is on the primary side. In the latter event check D702/3/4, C711/2, L702 and the primary printed circuit for cracked copper. In the former event, unload the transformer until the tripping stops.

Conclusions

So there we are! Switch-mode power supplies lend themselves to methodical trouble-shooting once you appreciate what does what. One fortunate thing - chopper transformers very rarely give trouble.

Fig. 2: Chopper circuit (simplified) used in the 171 CVC2O chassis.

Fig. 3: The Thorn TX10's power supply circuit (simplified).

Colour Portable Project

Part 6

Luke Theodossiou

THE remote control transmitter which we are describing this month concludes the construction of the receiver. The only remaining task is the interwiring, testing and setting up.

It was originally intended to make available a ready-built unit which has the advantage over a d.i.y. version of being aesthetically more pleasing and therefore finding ready acceptance in the living room. Unfortunately our negotiations with the supplier proved fruitless and we are therefore forced into building one. One of course is likely to save money which is always a plus point, but also, with a little patience and a steady hand, the recommended case can be made to look quite attractive. Down to business.

Circuit Description

The circuit diagram of the transmitter is shown in Fig. 1. They can't possibly get any simpler than this, can they? The internal oscillator is set at around 190 kHz by C1, R3 and R4. By using the specified tolerances on these components, the operating frequency range $(160-220 \mathrm{kHz})$ is never exceeded.
The keyboard switches momentarily connect one of the
row input pins (from the group 8 to 15) with one of the column input pins (from the group 16 to 23). The i.c. then does the rest and produces a pulsed, coded output at pin 5.

The output stage uses a Darlington npn transistor to drive three infra-red emitting diodes connected in parallel. The $R C$ combination R1 and C2 serves as a reservoir to allow a high peak current to flow through the diodes. The complete circuit is powered from a standard 9V PP3 bype battery.

Construction

Construction of the p.c.b. will pose no problems but note that the battery lead, C2, D1, D2 and D3 are all mounted on the copper side of the board. The ceramic capacitor Cl should be bent towards IC1 after soldering, to below the height of the i.c. The battery lead should be passed through the battery compartment on the bottom section of the case before soldering. Fig. 2 shows the component/switch layout and Fig. 3 the p.c.b. track pattern.

The case itself will require a carefully positioned cutout to allow the switch push-buttons through - refer to Fig. 2. The four threaded pillars have to be cut away using a

N7118 PAL COLOUR BAR GENERATOR

An extremely light, compact and durable instrument, designed for mobile Colour T.V. Maintenance in the customers home. The basic model includes a built-in rechargeable battery plus a Power Unit/Charger. (A fully charged battery gives 10 hours continuous use). All patterns and sync. pulses are derived from a single crystal controlled oscillator, producing extremely accurate, stable displays. The patterns available are: Standard Colour Bars, Red Raster, Linearised Grey Scale Step Wedge, Crosshatch and Peak White Raster A Coaxial Socket on the rear panel provides a modulated UHF or VHF (please specify) signal of approx. 1 mV for direct connection to Receiver Aerial Socket. An (optional) integral Sound board is available, producing a Sound Carrer (6 MHz or 5.5 MHz , frequency modulated by a 1 KHz Sinewave. The N 7118 will also house a third board that provides a 1 Volt p to $p, 75$ ohm Video Signat to a rear panel B.V.C. Socket.

Complete kit, including a professional finished case, screen printed P.C.B., Ready Built P.S.U., and all components - $\mathbf{£ 5 9 . 5 0}$ inclusive. Sound and Video Boards, add $\mathbf{£ 1 0 . 2 9}$ per board.
Ready Built - $\mathbf{£ 8 8 . 2 5}$ inclusive, Sound and Vido Roards add £11.45 per board
S.A.E. for details and specification.

N7121 VIDEO PATTERN GENERATOR

$\left.\begin{array}{c} 1 \\ (13 \\ 23 \end{array}\right)$	$\begin{gathered} 2 \\ (1322) \end{gathered}$	$\begin{gathered} 3 \\ \left(133^{2}\right) \end{gathered}$	$\binom{4}{20}$	
$\begin{gathered} 5 \\ (13 \quad 19) \end{gathered}$	$\left.\begin{array}{c} 6 \\ (13 \end{array} 18\right)$	$\begin{gathered} 7 \\ (1317) \end{gathered}$	$\left.\begin{array}{c}\text { (13 } 16\end{array}\right)$	
$\left.\begin{array}{l} \text { vol.t } \\ (10 \end{array} 17\right)$	$\begin{aligned} & \text { Bri.t } \\ & \{10 \text { 19 } \end{aligned}$	$\begin{gathered} \mathrm{Col} .+ \\ (1021 \end{gathered}$	$\left.\begin{array}{c} \text { Con.t } \\ (10 \\ 23 \end{array}\right)$	
$\begin{aligned} & \text { Vol. - } \\ & (10 \quad 16) \end{aligned}$	$\begin{aligned} & \text { Bri.- } \\ & (10 \mathrm{18} \end{aligned}$	$\begin{aligned} & \text { Col - } \\ & (1020) \end{aligned}$	$\left.\begin{array}{c} \text { Con - } \\ (10 \end{array} 22\right)$	
Mute $\left(\begin{array}{ll}15 & 17\end{array}\right)$	Normal (15 20)	Step (15 16)	$\left.\begin{array}{c} \text { Off } \\ (1522 \end{array}\right)$	

When any one switch is depressed the two i.c. pins shown in brackets are connected toge ther.

Fig. 1: Remote control transmitter circuit and switch details.
scalpel, as will the little notches on the side of the case which are designed to support vertically-mounted p.c.b.s. Space is at a premium since the switches determine the overall size of the board and we are using a rather small case. Finally three holes are drilled in the aluminium front panel to allow the infra-red diodes to protrude slightly. The board is fixed to the top of the case by two self-tapping screws. A thin piece of foam glued to the battery compartment will help support the bottom end of the board when the whole unit is assembled.

Now that we have lost the screw pillars, the only way we can secure the two halves of the case is by a few drops of cyanoacrylate adhesive. Obviously the transmitter will have to be tested first but once it is found to be working satisfactorily there is really no reason why the box needs to be opened up again. It is just possible that if only three or four drops of adhesive, strategically placed, are used the box may be prised open, but we haven't tried it.

On our prototype a range of about 30 feet was achieved which should be sufficient for most applications.

Next month we shall be describing how to put the whole receiver together.

Components List

R1 68Ω carbon film, $\pm 5 \%$
R2 2 k 2 carbon film, $\pm 5 \%$
R3 33 k carbon film, $\pm 5 \%$
R4 18 k metal film, $\pm 2 \%$
C1 $\quad 100 p \pm 2 \%$ ceramic plate
C2 $\quad 470 \mu \mathrm{~F} 16 \mathrm{~V}$ axial electrolytic
$\begin{array}{ll}\text { D1, D2, D3 } & \text { TIL 38 } \\ \text { Tr1 } & \text { BD } 675 \\ \text { IC1 } & \text { SAA1250 }\end{array}$
P.c.b. ref. no.: D084

Instrument case with integral PP3 battery compartment: RS stock no. 508-560.
P.c.b. keyboard switches:

5 off red RS stock no. 337-598
11 off grey RS stock no. 337-611
4 off blue
RS stock no. 337-605
Battery lead suitable for PP3 battery PP3 battery

Fig. 2: Component/switch layout.

Fig. 3: PCB track layout - scale 1:1.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a 75 p postal order (made out to IPC Magazines Ltd.), the query coupon from page 661 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

RANK A823A CHASSIS

This is a Rediffusion colour set fitted with the Rank A823A chassis. It was working normally when suddenly the picture became darker and slightly enlarged. The colours were also affected, with broad horizontal bands. The obvious thing to do was to check the tube voltages, which revealed that the first anode voltages were low. All components in this circuit, from the line output stage to the tube pins, were checked and found to be in order. The h.t. is correct, and the line driver stage seems to be operating normally.

One half of the line output stage has failed. Replace the short-circuit BU105-01 transistor, along with both flyback tuning capacitors ($6 \mathrm{C} 5 / 6$) - these must be of the correct type. When the repairs are complete, reduce the h.t. slightly and rebalance the line output stage with $6 \mathrm{~L} 4 / 5$ - the procedure is given in the manual. If 6R6 is not fitted, the cores can be adjusted for a minimum width raster.

THORN 1500 CHASSIS

There are four-five $\frac{1}{8}$ in. curved black and white lines at the extreme left-hand side of the screen on this set.

The first thing to do is to check $\mathrm{C} 98(0.1 \mu \mathrm{~F})$ which decouples the screen grid of the line output valve. If this is o.k., check the scan-correction capacitor $\mathrm{C} 90(0.1 \mu \mathrm{~F})$ and if necessary the continuity of the pulse winding D-E on the line output transformer. If you are very unlucky, the transformer could be responsible.

ITT VC200 CHASSIS

There's a reduced width raster with no picture. Also no sound, only warbles and birdies. The voltage at the cathode of the 20 V supply rectifier D 9 is only 13 V .

There are no signals due to the low l.t. supply, in turn due to the low line scan since the 20 V rectifier is fed from a winding on the line output transformer. If you're sure that the PL504 line output valve is good, it's likely that R159 $(10 \mathrm{M} \Omega)$ in the width circuit has gone high in value. Replace it with two resistors whose values add up to $10 \mathrm{M} \Omega$. If necessary check the width control and the third harmonic tuning capacitors $\mathrm{C} 135 / \mathrm{C} 141$ (both $270 \mathrm{pF}, 8 \mathrm{kV}$).

THORN 1500 CHASSIS

I'm having difficulty with a sound distortion problem on this set. The PCL82 audio valve has been replaced, also the associated components, including the h.t. smoothing components and the volume control.

We've had problems with defective audio output transformers on these sets, the symptoms being lower than
normal volume with some distortion. The d.c. resistance of the primary winding should be 270Ω : anything lower indicates shorted turns. A scraping loudspeaker cone can also be responsible for distortion of a characteristic nature. We assume that the components you've replaced include R80 ($10 \mathrm{M} \Omega$) which biases the grid of the triode section of the valve - if it goes high in value, a positive voltage builds up at the grid, causing distortion. If the problem is actually vision-on-sound buzz, check the setting of the ratio detector balance control R84, the detector diodes W5/6 (for equal forward resistance) and the electrolytic C65. If all else fails it might be worth checking the sound i.f. transistor VT11. This can become faulty, causing much reduced volume with some distortion.

SABA H CHASSIS

The problem with this set is flyback lines, some 25 in all, terminating before they actually reach the extreme righthand edge of the screen. To start with the lines are not conspicuous with full colour saturation, except when there's a dark background. After about twenty minutes however the lines are present even with full colour saturation, while monochrome reception is a problem due to excessive contrast.

Transistor T776 (BC237A) in the field flyback blanking circuit is almost certainly the culprit, it's collector voltage providing a quick check. Under normal operating conditions the voltage should be $28 \cdot 5-30 \mathrm{~V}$. It can fall drastically after the set's been on for twenty minutes to half an hour, the picture darkening at the same time. The transistor is easy to replace, being situated at the centre top of the timebase panel.

RANK A640 CHASSIS

On advancing the setting of the contrast control on this set (Bush TV161 series) to obtain a satisfactory picture I get field slip on dark scenes - a problem I understand is common with these sets. The voltages in the field timebase, sync separator, video and a.g.c. circuits seem to be about right, and I've changed the video amplifier and sync separator anode load resistors and 2C48 which decouples the sync separator's screen grid.

We find that the following components are suspect for this: 2C44 and 2C45 which decouple the screen grid and the cathode of the video section of the PFL200 valve, the black-level correction diode 2MR9 and the field sync diode 3MR3. If necessary, check the values of the $470 \mathrm{k} \Omega$ resistors $2 R 78 / 2 R 42$ in the sync/a.g.c. circuit.

HITACHI CSP680

There is a blue convergence problem with this set - looking at the test card, the blue convergence is o.k. at the centre but towards the sides of the screen the blue sweeps upwards. Adjusting the convergence controls has no effect at all on the problem.

The usual cause of the trouble on this and similar early Hitachi colour sets is the $3 \cdot 3 \mu \mathrm{~F}$ electrolytic capacitor C 853 on the convergence panel.

RANK T20 CHASSIS

The fault was no results with the line output transformer burning. The latter was replaced and the set came on for a few minutes, though with bad regulation. The line then collapsed a couple of times and the raster disappeared, the h.t. supply shutting down. The line output transistor was
found to be leaky (not short-circuit). Replacing this restored the picture for about thirty seconds, though with lack of width and poor regulation. The line then collapsed and we were back to square one, with a defective line output transistor (leaky). Cold checks have revealed nothing amiss, and replacing the 1Ω resistor (5R8) in series with the base of the line output transistor simply lost us another transistor. The tripler has also been changed.
In cases like this we've often found that if there's no detectable damping or loading on the line output transformer the flyback tuning capacitor is responsible. It's $5 \mathrm{C} 14(0.0091 \mu \mathrm{~F})$ in this chassis.

TELETON CPL142

Whenever there are horizontal lines on the picture, the verticals become wavy. Any suggestions?

The sync separator is on the sync/video board LA. Check the components associated with the sync separator transistor TR 209 , particularly C208 $(4 \cdot 7 \mu \mathrm{~F})$ which couples the video signal to its base. The flywheel sync circuit is on the audio/horizontal board LD. Components worth checking here are C912 $(2 \cdot 2 \mu \mathrm{~F})$ in the flywheel filter circuit, the discriminator diodes X901/2, and C911 ($10 \mu \mathbb{F}$) which decouples the supply to the line oscillator.

BUSH CTV25

The picture gradually became brighter and it's now no longer possible to turn it down using the brightness control. The control and the associated components have been checked and seem to be o.k. There are also 'two or three light bands across the screen - their position varies.

Both problems are likely to be to do with the PL802 luminance output valve, which seems to be working at the wrong point. Check the valve (a solid-state replacement type can be tried) and the two clamp diodes in the brightness/d.c. restorer circuit (6D1/2, use OA91s as replacements). If necessary check the blanking transistor 6VT6 in the PL802's cathode circuit, also the transistor's base circuit components (6D9/6R68). A more remote possibility is that 9 R 5 has gone high in value, increasing the c.r.t.'s first anode voltages - there should be about 740 V on pins 4,5 and 13 of the c.r.t.

THORN 1600 CHASSIS

There's an odd fault here - the c.r.t. heater won't light up, though it's not open-circuit and the feed resistor R 164 from the line output transformer is o.k. We had the same problem a few months ago, when the 32 V supply reservoir capacitor was found to be open-circuit. Replacement restored normal operation, but on odd occasions the picture would disappear briefly then return before complete breakdown occurred. We then found that there was no voltage at the collector of the driver transistor VT17 in the shunt stabiliser circuit. This component and the associated 6.2 V zener diode were replaced and all voltages appear to be correct except for the a.c. voltage across the heater winding on the line output transformer. The voltage here is just over IV. All the components in the area seem to be o.k. however, and a very good e.h.t. spark can be drawn.

On these sets it's always worth checking R157 (39) in the shunt stabiliser circuit. It's part of the "mains dropper", and can go open-circuit without too much obvious effect. If this is o.k., there's 32 V across C 128 , and the heater connections are all in order, the line output transformer is suspect. Note that the heater is fed with a "spiky" waveform whose r.m.s. value is correct for the heater but won't be
measurable with anything other than a true-r.m.s. reading meter, i.e. a hot-wire or moving-iron type.

WALTHAM W125

When the set is first switched on the e.h.t. squeals for fourfive minutes: it then works all right except that the picture is pasty, pale and rather expanded. Also the contrast control turns the picture off when turned anticlockwise.

Thoroughly clean around the area of the tube's e.h.t. connector to ensure that there's no discharge. 'Then check on the insulation of the e.h.t. stick's housing and replace the stick itself. This will clear up the large picture effect and improve the general "attack". Replace the PCL84 video valve and reset the nearby preset contrast control to suit.

VDU ADAPTATION

We have a 12 im . monochrome portable (Thorn 1690 chassis) we're using as a computer VDU, in conjunction with a u.h.f. modulator. It gives reasonable results and a true monitor would cost much more. There are two problems however. First there's excessive line scan, causing loss of some characters. Secondly the display would be better if we could feed in a composite video signal - but where?

It should be possible to reduce the line scan by inserting a low-value inductor in series with the line scan coils, shunted by a resistor of just sufficiently low value to reduce any ringing. Some experimentation will be required however. We suggest you try feeding the external video to the base of the video driver (VT5) or video output (VT7) transistor via a $100 \mu \mathrm{~F}$ d.c. blocking capacitor (negative lead to the video source). Disconnect the detector diode W1 to prevent noise from the i.f. strip affecting the display.

TELEFUNKEN 711 CHASSIS

When the set is switched on, the bottom half of the picture is folded up, resulting in a bright line across the centre of the screen. The bottom half will then flick up and down, finally settling in either one or the other position.
The field timebase in this chassis is rather unusual. The output stage consists of four transistors (T458/T459/T461/T462) in a bridge configuration. Each pair of output transistors has its own driver stage, which is preceded by a phase-splitter. Failure of driver transistor T456 or the output pair T459/T461 will result in the bottom of the picture folding up, so these transistors should be checked, the main suspects being the output transistors. If necessary check the flyback diode D451 (1N4001) which is in series with the 28 V supply to these two output transistors and can go intermittent, also the current limiting resistor R483 (6.8Ω) which gets very hot and can become dryjointed where it rests in little metal "legs" protruding from the chassis.

ITT CVC32 CHASSIS

When the set is switched on it pumps for a while then dies (no sound or raster). There's voltage at the output from the mains bridge rectifier and from D15, but the h.t. voltage fluctuates with the pumping. The BU 126 chopper transistor seems to be in order. As there doesn't seem to be anything obviously wrong with the set, I'm not sure what action to take next.

The "pump and die" effect is initiated by the TDA2640 power supply chip when there's a heavy load on the h.t. line. The main suspect is the e.h.t. tripler - disconnect from the line output transformer and see whether the tripping ceases. Unfortunately the line output transformer itself can be
damaged by a faulty tripler, in which case normal working will be restored only when both these items have been replaced.

B AND O 3400 CHASSIS

The problem is field collapse, with some 30 V measured at the field scan coils.

This can be a nasty problem on these sets, since the fault is usually due to multiple failure of the transistors in the rather inaccessible field timebase. First make sure that the 74 V supply is present at 2 R 55 , then check and replace as necessary 0TR 1, 2TR 7, 2TR9, 2TR8, 2TR6 and 2TR5.

226
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

In our trade a "bounce" is a set that keeps coming back not necessarily with the same fault and, in the case of chargeable repairs, seldom or never with adequate financial recompense for the second and subsequent calls. One of our children of sorrow is a certain Philips colour set fitted with the G8 chassis. It's no stranger in the workshop!

On its most recent visit the symptom written on the job card was no sound or picture, and h.t. fuse FS5557 $(800 \mathrm{~mA})$ on the line scan panel was found to have blown. Much work has been done on this receiver on previous occasions, and it was difficult to get anyone interested in it! Finally a technician got around to inserting an ammeter in place of the fuse. The reading he got was about 1A, and this was maintained when the e.h.t. tripler was disconnected. In the interval before the h.t. fuse (FS1391, 800mA anti-surge) on the power supply panel blew, an ominous crackling noise was heard coming from the direction of the line output transformer. Now line output transformer failure is not uncommon on this chassis, so the technician went off to the stores for a new transformer and a couple of fuses. The fuses were there, but no transformer. The stores are one of your present scribe's many burdens, and he lamely explained to the man with the fuses and the scowl that there'd just been a run on the one he'd got in stock! So the set was put on one side to await a replacement transformer.

When the new transformer arrived it was given to John to fit. Now John is a much put upon soul, and after carefully fitting the transformer he discovered that the symptom was still there, much as before . . . The technicians present went into a huddle and bandied various theories and expletives about. The upshot was a majority vote that the transformer
in question was being loaded down. This was born out, so we thought, by the fact that with no line drive the output stage drew no current. A look was taken at the line drive, but the shape and amplitude of the waveform were good. No shorts or leakage could be detected when in situ tests were made on the two BU205 line output transistors, so one by one the transformer's secondary windings were disconnected from the circuit.

We finally arrived at the situation where only the primary winding (pins 11 and 13) was connected, but the sizzle was still there and 1A still flowed in the h.t. supply to the line output stage. Another transformer (we'd ordered two) was tried, with just the primary connected - symptoms the same! So the flyback tuning capacitors across the line output transistors were replaced. Still no change. At this point John washed his hands of the affair, lock, stock and l.o.p.t. The original diagnosis man was called in and he retired to his corner with the offending G8. He eventually emerged with the culprit - and it was something we had to obtain from Philips Service! What was it, and how long before the set returned to the workshop with another, totally different fault? Get next month's issue and see!

ANSWER TO TEST CASE 225
 - page 605 last month -

The problem last month was the apparently simple one of lack of width on a monochrome Thorn set fitted with the 1500 chassis. The scan-correction capacitor is very often responsible for this fault on the 1500 and 1400 series chassis, but in our case the component proved to be o.k. All the common causes (and some uncommon ones!) had been checked, with no result. An experiment was then carried out - altering the value of the harmonic tuning capacitor by adding another one in parallel.

This restored normal results, suggestiong that the line output transformer itself was at the heart of the trouble. The d.c. resistances of the windings were checked and found to be within 10% of the figures given in the manual. This is not a conclusive test however, so we decided to fit a replacement. Now these jellypot transformers are very reliable - so much so that we don't carry any stock of them. A replacement had to be obtained therefore, and on fitting it the fault was finally cured. Probably a few shorted turns had been responsible for the trouble. TV life is full of surprises. .

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by Carlisle Web Offset, Newtown Trading Estate, Carlisle. Distributed by IPC Business Press (Sales and Distribution) Lid., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Sole Agents for Australia and New Zealand Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Lid. Subscriptions: Inland £10, Overseas $£ 11$ per annum payable to IPC Services, Oakfield House, Perrymount Road, Haywards Heath, Sussex. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by wav of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

13 WORCESTER ST., WOLVERHAMPTON, WV2 4LJ Tel: (0902) 773122 Telex: 336810

Telepart

 Pattern Generator- Exceptionally light and durable
- Pocket size for outside service - PP3 battery power source - Five different test patterns for colour and mono TV Crosshatch grid "Dot matrix White raster
-Horizontals *Verticles
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customers hame. At the turn of a switch, the generator can provide five essential test patterns for compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams.
PRICE £14.95 (Subject to V.A.T.)
POST \& PACKING E1.04

Telepart

 Colour Bar Generator- Exceptionally light \& durable - Battery powered for mobility - Cross hatch Wrid
* White raster
"Grey scale "Colour bars
*Sound *Sound
A Versatile Generator for Servicing or aligning mono or colour TV receivers. Lightweight and very compact for outside service. Features sound facility often not found on more costly generators.
PRICE £49.95 (Subject to V.A.T.)
POST \& PACKING E1.04

Power Supply

A Power Supply can be supplied for the Telepart COLOUR BAR GENERATOR. This compact unit mounts by 2 screws into the Bartery compartment and

PRICE £5.50 (Subject to V.A.T.)

THE NO. 1 SOURCE IN THE SOUTH

Colour Mono
From $£ 15$
From £2

BULK DISCOUNTS, DELIVERY ARRANGED.
1000's OF SETS TO CHOOSE FROM

TeleTraders

ST. LEONARDS WAREHOUSE
ST. LEONARDS ROAD, NEWTON ABBOT, DEVON Telephone: (0626) 60154

TV LINE OUTPUT TRANSFORMERS

FAST RETUFN OF POST SERVICE

RANK BUSH MURPHY
Z146 A640 A774 A816 A792 A793
A823 A823b A823av colour
DECCA 1700200120202401 MS2000 MS2400 240424202424 mono CS1730 1733 '30' series BRADFORD colour CS1830 183580100 series colour

FERGUSON HMV MARCONIA

 ULTRA THORN1590159115921593 mono
16001615 series mono

G.E.C.

2000 to 2064 dual std mono 2047 to 21053112 to 3135 DUAL STD hybrid colour
SINGLE STD hybrid colour
PRICESINCLUDE
P. \& P. \& 15\% VAT

COLOUR LOPTS
£10.50 RETAIL
f9.00 TRADE
MONO LOPTS
£9.50 RETAIL
£8.00 TRADE PYE

INDESIT 20EGB 24EGB mono
KB-ITT VC200 VC205 VC207
CVC5 CVC7 CVC8 CVC9 colour
CVC20 CVC30 CVC32 series colour

PHILIPS	COLOUR
170 series dual std mono	G8 series
210300 series mono	G9 series

PYE
169173569573769 series RV293B 368 series

WALTHAM 125

WINDINGS

RANK BUSH MURPHY
Colour hybrid quadrupler type T20a T22 2719 Z722 Pry \& Sec $\mathbf{f 6 . 0 0}$ 2718 series primary 66.00 2718 series EHT overwind.................. $\mathbf{f . 0 0}$ ULTRA THORN 16901691 EHT overwind.................f7.00 PHILIPS
G6 EHT (exchange basis onty) $\mathbf{£ 7 . 0 0}$ G6 primaryf5.00

691 to 697 EHT overwind................. $\mathbf{£ 3 . 0 0}$
691 to 697 primary*
f4.00
All dopts and windings are new and guaranteed for 6 months.
Open Mon.-Fri. 9 to 5.30 pm
Rewind Service Available

PAPWORTH	Barclaycard and Access welcome
TRANSFORMERS	\%om
80 Merton High Street	01-540 3955

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. In fact. provided you start correctly and know exactly how to operate, you can easily earn a substantial CASH INCOME with a starting capital of less than f 20 . Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' their knowledge to help you. Aftel all, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.

Every aspect, from securing the first television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain succass. Indexed information on almost all makes of television is presented in clear tabular form, describing performance, reliability, price and service. In particular, the tips on expanding the business are very practical, and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - fo both televisions and new/used spares. Monochrome sets are also covered, as are "inv sible" cabinet repairs. Plus FREE on-going advice and FREE regular updating service.

You can start tomorrow - but you'll need our guide. The latest big illustrated edition is out now, and costs just $\mathbf{£ 4 . 9 5}$ - a small price to pay for financial independence!

ORDER TODAY FROM:
GLOBUS INDUSTRIES LTD., UNIT IB, DARLEY ABBEY MILLS, DERBY.

```
To: Blobus Industrioe Led,, Unkt 1%, Derloy Abboy MmMa, Dorby.
Please send by return post "How to Deal Successfully in Used Colour Televisions
enclose cheque/p.o. for £4.95
NAME..
ADDRESS.
```


IDEAL FOR FEEDING INTO YOUR HI FI TELEVISION SOUND

TV Sound Tuner Kit $£ 9.50$ plus VAT plus 50 pence P.\&P.

SENDZ COMPONENTS

63 Bishopsteignton,
Shoeburyness, Essex SS3 8AF.

COLOUR BAR GENERATOR

 UHF AERIAL INPUT PATTERN GENERATOR

* HORIZONTALS

CROSS HATCH *

* ADD ON PAL COLOUR BARS *

Send SAE for full specifications. Batteries not included.

Price includes P\&P and 15\% VAT. VHF versions available.
Full 12 month guarantee on built units.
MAIL ORDER ONLY FROM
TECHNALOGICS LTD. (Dept TV), 394 SCOTLAND ROAD.
TAYLOR STREET INDUSTRIAL ESTATE, LIVERPOOL, 5. 0512073799

LOOK!
 Phone: LUTON BEDS. 38716
 OPPORTUNITIES TRADE SALES
 ALL SETS GUARANTEED COMPLETE

OVER SIX HUNDRED SETS
ALWAYS IN STOCK
Pye 20T, Philips G8;
Ferguson 3-3k5
Murphy, Bush, Decca, GEC All from
$£ 35.00 \quad £ 50.00$
Square Screen, Mono's from
£5.00 ALL MODELS
Sets for spares from
£2.00
All include VAT
OPPORTUNITIES
9A, Chapel Street, Luton, Beds. LUTON 38716
9.30-6.00 p.m. Weekdays, $10.30-1.00$ p.m. Sundays.

REBUILT CATHODE RAY TUBES IN

C.R.T. SERVICES LTD.

274 Chepstow Road, Newport, Gwent.
Tel. Newport (0633) 272005.
Also available from the following stockists:
L. R. Jones, Manorbier, Nr. Tenby.
Tel. 083-482 630
G.R.T.

Talwrn-y-Bont, Pontrhydfendigaid, Nr. Aberystwyth.
Tel. 09745629.

WITWORTH TRANSFORMERS
TV LINE OUTPUT
TRANSFORMERS

buy direct from the manufacturers of the largest range
of LOPT's IN THE COUNTRY:
150 DIFFERENT TYPES IN STOCK TOP QUALITY. COMPETITIVE PRICES
All items new and guaranteed.

Contact your nearest depot for service by return. Callers welcome. Please phone before calling. PHONE, OR S.A.E. WITH YOUR REQUIREMENTS.

Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx 1 mile from Kew Bridge.

Phone: 01-948 3702

$$
\begin{aligned}
& \text { Mon- Fri am to } 12.30 \mathrm{pm} \\
& 1.30 \text { to } 4.30 \mathrm{pm} \\
& \text { Sat } 10 \text { am to } 12 \mathrm{pm} .
\end{aligned}
$$

Hamond Components
(Midland) Ltd., 416, Moseley Road, Birmingham B12 9AX. Phone: 021-440 6144. 2 pm to 5.30 pm .

FAST RETURN OF POST SERVICE

WARNERS MILL, SOUTH ST., BRAINTREE, ESSEX (0376) 43685 UNIT 5A. KEMPS SHIPYARD, QUAYSIDE ROAD. BITTERNE, SOUTHAMPTON 0703331899

APOLLO

RATURE PUMPED COLOUR TUBES
Fast Mail Order service to any part G.B. Just phone for a Manchester area frue. Two year extra.

\[

\]

WMTV LTD. - THE TV PROFESSIONALS

With Discount TV's

* Britains most reliable source of Quality T.V.'s.
* Hundreds of working polished T.V.'s.
\star Full customer testing facilities.
* Thousands of untested S/S Colour T.V.'s from $£ 10$.
* Quantity deliveries arranged anywhere in Britain or the World.

MAIL ORDER TV's - Fully Tested

* BRC $22^{\prime \prime} / 26^{\prime \prime} £ 70$
* BRC 8000 17" $\mathbf{£ 6 5}$
* BUSH $18422^{\prime \prime} \mathbf{£ 4 0}$
* BUSH A823 $22^{\prime \prime} / 26^{\prime \prime}$ £60

Above MAIL ORDER prices include V.A.T. but please add $£ 12$ p \& $\mathbf{p} / T . V . S e t$.

* New T.V.Stands.
\star Fully adjustable.
* £6.25 plus $£ 1.75$ p \& p.
\star Quantity discounts.
\star Price inc. V.A.T.

With Express Spares Service

\star Ex-equipment Panels
ALL PRICES INCLUDE VAT

RBM 823
 BRC 3000
 BRC 3500
 GEC 2100

Con	Power	Line	Decoder	Video	IF	Frame	Tripler	LOPTX
7.00	6.00	14.00	14.00		6.00	9.00	3.00	3.00
6.00	12.00	12.00	6.00	6.00	6.00	6.00	4.00	6.00
9.00	12.00	12.00	6.00	6.00	6.00	6.00	4.00	6.00
6.00	-	-	8.00	6.00	6.00	10.00	5.00	5.00
6.00	-	12.00	8.00	7.00	6.00	5.00	5.00	7.00

Postage \& packing £1.25 Panels 50p Triplers
Ex-Equipment
Valves Valves

Untested

ECC82	10
PCF8O	10
PCF802	9
PCL82	10
PCL84	10
PCL85/805	9
PCL86	10
PFL200	10
PL36	10
PL504	10
PL508	18
PL509	30
PL519	40
PL802	-
PY500	20
PY800/81	10
PY801/88	10
30FL1/2	20
* p \& p pald but minimum order of $£ 3.00$ please. - Deduct 10\% discount on orders over $£ 20.00$.	

Ex-Equipment Colour Tubes All fully tested

17" (A44-271X)
$18^{n} \quad$ (A47-342X)
$1 g^{n} \quad$ (A47-343X)
19 ${ }^{n}$ (A49-191X)
20^{n} (A51-120X)
22^{n} (A56-120X
25" (A63-200X)
2lin (A66-120X)
26" (A67-120X)
c 18.00
£18.00
ع18.00
£18.00
£25.00
$\$ 17.00$
£10.00
£20.00
$⿷ 17.00$
Please add $£ 5.00$ p \& per C.R.T.

Equipment Spares *Always available

* Colour and Mono Scan Coils $£ 1.50+£ 1.00 p$ $\& p$.
- Tuners for all makes of Colour and Mono £4.00 $+£ 1.00$ p \& p.
- Mono Tubes fully tested. Callers only $£ 3.00$.
- Reconditioned 50p meters $\mathbf{f 9 2 . 0 0 / B o x}$ of 10 incl. p \& p.
- PLESSEY SL918 colout ICs with circuit for $\mathbf{£ 2 . 0 0}+25$ p p \& p .
* NEW VHF/UHF Varicap Tuners with circuit and fulf data $£ 1.25+75 p p$ \& p .

WMTV LTD. 92 HIGH Street, kings heath, birmingham b147Jz tel: 021-444 6464/2575

QUALTYCOLOUR
SETS
DECCA BRADFORD
18" $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ - $£ 32$ each working IT CV5
20" $22^{\prime \prime} 26^{\prime \prime}$ - 40 each working
EKCO 262 SOLID STATE 110° $22^{\prime \prime}$ or $26^{\prime \prime}-\mathbf{5 7 2}$ each working
Plus off the pile at giveaway prices
TEL: NORTH-
Mr whtson (0274) 665670 SOUTH-
RITEL Mr Ledaer
GROUP SCOTLAND SCOTLAND
Mr Hunter
(0698)
282141

AERIALAMPLIFIERS Aerial amplifiers can produce remarkable improvement on the pic ture and sound in fringe or difficult areas
B45 - for mono or colour this is tunable over complete UHF television band
B11 - for stereo or standard VHF/FM radio.
B12 - for VHF television band 1 \& 3. All amplifiers are complete
and ready to use.
Battery type PP3 or 8 v to 18 v dc, next to the set type fitting. Prices $\mathbf{£ 6 . 7 0}$ to the

LW/MW Maims/Battery Radios $£ 9.00$ each (P \& $\mathrm{P} £ \mathrm{f} .00$).
LW/MW Car Radios with Speaker $£ 9.00$ each ($\mathrm{P} \& \mathrm{P}$ £ LOO)
Small VHF/MW Battery Radios $\mathbf{£ 7 . 0 0}$ each (P\&P 50p).
8-C60 High Gain Cassettes $£ 2.00$ (P\&P 50p).
5-C90 High Gain Cassettes $£ 2.00$ (P\&P 50p).
Stereo Headphones with Lead \& Jack Plug £4.50 (P\&P 5Cp).

RADIO/TAPES BARGAINS

SIGNAL INJECTORS with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts dc. Complete with leads $£ 5.70$ each.
All prices include VAT at 15%. P\&P per order 30 p. S.A.E. for leaflets. Access cards.
ELECTRONIC MAILORDER LTD,
62 Bridge Street, Ramsbottom,
Via Bury. Lancs. Blo 9AGT. Tel. Ramsbottom (070 682) 3036.

CARDIFF CENTREVISION

EX RENTAL T/V's

"In stock now. Philips G8 Thorn 3500

Philips K9 $26^{\prime \prime} 110^{\circ}$ VCR Position from $\mathbf{4 5 . 0 0}$ Capacity to supply 300 working sets weekly. Large range of spares. Call and see our 4000 sq . ft. warehouse, you won't be disappointed.

Over 1,000 sets in stock
Unit 2 corner of Penarth Road and Hatfield Road.
Tel. Cardiff 022244754

POST-A-PART ELECTRONICS

VARIOUS MIXED PACKS
300 Resistors
300 Condensers
150 Electrolytics
$100 \mathrm{~W} / \mathrm{W}$ Resisto
20 Mixed Conv. Pots
40 Mixed Conv. Po
10-16 Pin Quil IC sackets 20 Assorted । V knobs

SI 50 SPECIAL OFFER E 1.50
E .50 \qquad Thorn 3500 Thick Film Unit
BT106
UHF T/V Aerial for portable UHF Aerial Socket \& Lead Pye, ITT, Thorn etc.
R2540

39, High Road, North Stifford, Grays, Essex RM16 1 UF.

MAIL ORDER ADDRESS ONLY
All prices include VAT at 15%. P\&P 50 p. Add postage for all overseas orders Thousands of additional items available, enquiries invited.

TELEVISION TUBE SHOP LTD

bRAND NEW TUBES AT CUT PRICES

$£ 21.95$	9AGP4 £21.82
A31-19W/20W.......... 19.95	190AB4/C4................ 23.00
A31-120W/300W....... 17.95	230A DB4 28.50
A31-410W/510W....... 17.95	230DB4/CT468......... 26.60
A34-100W/510W....... 18.50	CT507 equiv.............. 21.95
A38-160W/170W....... 17.50	CT512...................... 27.50
A44-120W/R 27.00	310DGB4/DMB4....... 23.00
A50-120W/R 17.95	310EUB4.................. 19.95
A59-23W/R 21.50	310EYB4................... 18.75
A61-120W/R 19.95	310FXB4................... 17.50
	310GNB4A 27.50
Some Rebuilt Japanese	310HCB4 27.50
\& European Types	
Available from	340R B4/CB4 26.00
$\mathbf{£ 1 4 . 0 0 + V A T ~} \mathbf{£ 2 . 1 0}$	340AHB4 26.00
	RIGONDA 6' ${ }^{\prime \prime}$.......... 14.00

COLOUR TUBES

(NEW \& MULLARD/THORN COLOREX)*

12VARP22............... $£ 62.50$	A56-120X $£ 54.00$
330AB22 73.50	A63-120X 69.50
A44-271X 60.00	A66-120X
A47-342X 63.00	A66-140X/410X 70.50
A47-343X 53.00	A67-120X 65.00
A49-191X 53.00	A67-140X/200X 69.50
A51-161X 67.00	A67-150X 75.00

"Old Bulb Required for Colourex" ADD 15\% VAT
ALL TUBES TESTED BEFORE SALE \& FULLY GUARANTEED
52 BATTERSEA BRIDGE RD., LONDON, SW 11. Tel. 228 6859/223 5088 CARRIAGE: Mono £3, Colour $£ 10$

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION
(Certificate No. 004)
2 year guarantee: 4 year option
All Colour Tubes are debanded, high temperature pumped and rebanded using new adhesives and new tension band.
$1^{\prime \prime} £ 30,20^{\prime \prime} £ 32,22^{\prime \prime} £ 33$, and $26^{\prime \prime} £ 38$.
Exchange prices: add VAT at 15%
N.G.T. ELECTRONICS LTD.,

120, SELHURST ROAD, LONDON S.E. 25
Phone: 01-771 3535.
20 vears experience in television tube rebuilding.

EMO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC., ETC. - ALL SPARES READILY AVAILABLE IMMEDIATE CREDIT AVAILABLE—TRADE ONLY

Almost any TV Component supplied by return "off the shelf" e.g. LOPTX
EHT trays - droppers - OSC coils - switches - cans - smoothers - I.C.'s, etc., etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.
S.A.E. FOR FREE WALL CHART

THE TELECENTRE, WORCESTER ST., WOLVERHAMPTON (0902) 773122

SETS \& COMPONENTS

THORN 3000/3500. Scrap sets, complete $£ 10$. Untested from $£ 29$. Working from $£ 39$. Ex-equipment spares available. Panels repaired/exchanged. Télephone Peterborough 253480.

CAMPBELL ELECTRONICS LTD.
 COLOUR T.V. PANEL EXCHANGE/

 REPAIR SERVICETHORN, RANK, PHILIPS, GEC, DECCA, TELPRO, GRUNDIG etc. 90 Day Guarantee on all repairs - same day postal service.

Telephone Telford (0952) 502422 for catalogue and price list.

CAMPBELL ELECTRONICS LTD..

Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact Coles-Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

SMALL ADS

The prepaid rate for classified advertisements is 29 p per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 5.64$ per single column centimetre (minimum 2.5 cms) All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertismement Manager, Television, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BUSH $2 \mathbf{2 4}^{\prime \prime} / \mathbf{2 0}^{\prime \prime}$ single standard mono's, good work- TRIANGLE TELEVISIONS, Coleraine, N.I. Quality ing! Clean! $£ 10$ each. Minimum ten. Delivery anywhere. C.O.D. (0706) 623404.
working sets. Clean cabinets, Decca, Bush, Kirting. Phone Coleraine 3600.

TVDX
65/17-65. Gain 22-26dB Noise ration amplifiers. UHF, RB45/45a masthead, remotely controlled, tunable amp.ch 21 VHF RB3 mas $7,5-10 \mathrm{mV}$. Price $\mathbf{2 3 3 . 0 0}$.
VHF, RB3 masthead, remotely controlled, tunable amp.ch $5-11$. Gain $22-30 \mathrm{~dB}$. Noise ratio $2,5 \mathrm{~dB}$, Overioad 10 mV .
Price $£ 48.00$. Price \&48.00.
2nd line amp. SBB268-V ch 2-68. Gain 15-12dB with DC bypass. Price $£ 14.50$.
UHF ch.amp (state) with 2nd unamplified UHF input. Gain 26dB. Bandwidth $10-15 \mathrm{mH}$. Price $£ 31.00$.
UHF ch.amp (state) converted to other ch. with 2nd unamplified UHF input. Gain 26dB. Price £37.50.
Power-Supply V12 18 V/50mA 2 outp. Price 28.00 .
Power tuning supply VR $12 / 6$ preset. Price $£ 25.00$.
All prices include $P \& P$. Trade enquiries welcome.
Robert van Reysen, 28 Pemberton Road, East Molesey, Surrey. Phonc: 01-979 7380.

T- SPARES, PANELS
 - AND MANUALS

PHILIPS •GRUNDIG
TELEVIEW 01-994 5537
194, Acton Lane, London W.4.
GOOD WORKING CTV's: Thorn $19^{\prime \prime} 3 \mathrm{~K} £ 55.22^{\prime \prime}$ 3 K $5 £ 67$. ITT CVE5 $20^{\prime \prime} £ 65$. Thorn 4K $22^{\prime \prime} £ 85,26^{\prime \prime}$ £85. Bush 2718 20"£75. (No VAT) Tele-Q, Preston (0772) 792547.

COLOUR TELEVISION PANELS. Ex-equipment complete. Thorn $2000,3000,8000$. Also Gec, Philips, Pye, Hybrid. Sae for list, Camber T.V. Centre, Lydd Road, Camber, Sussex.

T.V.s FOR EXPORT

We have a selection of Bush and Ferguson colour T.V.s in good working order.
VHF/UHF suitable for countries using PAL system. We also supply The Home Market.

Write:
Tele Spares Ltd.,
7 Walkinstown Road,
Dublin 12, Ireland.
Tel: Dublin 520485.

When replying to Television Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

SUFFOLK TUBES LIMITED
 214 Purley Way, Croydon, Surrey.
 Tel: 01-686 7951/2/3/4

SUPPLIERS OF MONO AND COLOUR TUBES TO MAJOR RENTAL COMPANIES.
ALL COLOUR TUBES HOT PUMPED AT 385c AND REBANDED TO BRITISH STANDARD. 4151972 CLAUSE 18-2.
$19^{\prime \prime}$ and $22^{\prime \prime}$ TUBES APPROVED. OTHER TYPES PENDING.
BRITAINS LARGEST INDEPENDENT REBUILDER FOR 21 YEARS.

	FOR QUALITY USED T.V.s
HIGH TEMPERATURE PUMPING COLOUR (2 year Guarantee)	200 EX RENTAL COLOUR AND MONO TVS ARRIVING WEEKLY
90° up to $19^{\prime \prime} \quad \mathbf{£ 3 3}$	GOOD CLEAN CABINETS
$90^{\circ} 20^{\prime \prime}-22^{\prime \prime}$ ¢ $£$	THIS MONTHS SPECIAL OFFERS
90${ }^{\circ} 25^{\prime \prime}-26^{\prime \prime}$ £36	Thorn $\mathbf{3 0 0 0} \mathbf{2 5} \mathbf{5}^{\prime \prime} £ 17.25$
110° and PIL £40	Thorn 3500 26" $£ 23.00$ Many other makes $£ 17.25$
MONO (including thin necks) from £14.	Many other makes $£ 17.25$ Good Mono sets from £3.45
All prices + VAT	$\begin{aligned} & \text { ALL SETS COMPLETE WITH } \\ & \text { GOOD CABINETS. } \end{aligned}$
Delivery UK Mainland $£ 6$. 4 year Optional Guarantee	DELIVERY IF REQUIRED Call or phone now to:
Send or phone for full list and terms.	
WELTECH PICTURE TUBES Unit 3-10 Wembley Commercial Centre, East Lane, Wembley, Middx. 01-908-1816	SOUTHERN TRADE SERVICES 21 COLINDALE AVE., LONDON NW9 TEL 01-200-7337.

QUALITY
 REBUILT TUBES

high temperature pumping COLOUR (2 year Guarantee)
90° up to $19^{\prime \prime}$
£33
$90^{\circ} 20^{\prime \prime}-22^{\prime \prime}$
£35
$90^{\circ} 25^{\prime \prime}-26^{\prime \prime}$
£36
£40 £14.
All prices + VAT
Delivery UK Mainland $£ 6$.
4 year Optional Guarantee
end or phone for full list and terms.
WELTECH PICTURE TUBES
East Lane, Wembley, Middx. 01-908-1816

LOOK!

THORN 3000/3500 \& 9000 TRIPLERS
High Quality Silicon Replacement Units
$T 3500$ only $\mathbf{£} 4.95$ inc. P.P. Add 74p V.A.T
$T 9000$ only $£ 5.45$ inc. P.P. Add 82p V.A.T
Quoves for 50+.
1 Vear Guarantea
WING ELECTRONICS
15, Weytands, off Tudior Roed, Hayes End,

VALVE BARGAINS

BOXED \& TESTED 30p EACH
ECC82, EF85, EF 183, EF 184, PFL200, PCF80, PCF802, PCC84, PCC89, PC97, PC86, PC88, PCL84, PCL805, PCL86, PY800, PY88, PL36, PL504, 6F28, 30PL13, 30PL14.

COLDUR VALVES 65 EACH
PY500/A, PL508, PL509/519, PL802.
Postage \& Packing 30p, no VAT
VELCO ELECTRONICS
9 Mandeville Terrace, Hawkshaw, Vis Bury, Lancs.

COLOUR T.V.s

phLLPs ge complete 22" £45 26" £55
DISCOUNT FOR BULK BUYERS

TEL: 9651230 \& 9613997 SMITH ELECTRONICS

43-43A, PARK PARADE, HARLESDEN, LONDON N.W.10.

CAMPBELL ELECTRONICS LTD.
Distributors of specialist spares to radio and television service depts.
We stock semiconductors, I/Cs, special T.V. and audio spares, service aids, rebuilt CRTs etc.
Fast off the shelf delivery of stock items.
Send S.A.E. or telephone for full catalogue and price list.
CAMPBELL ELECTRONICS LTD.,
Unit 5, Heath Hill Estate,
Dawley, Telford, Shropshire.
Telephone Telford (0952) 502422.

WANTED

TV ENGINEER. Also experienced in audio. Holds City and Guilds, seeks work anywhere. Box No. 163.
EX-RENTAL televisions wanted for export. Must be complete for refurbishing terms. Strictly cash. Phone 0272775865.

NEW VALVES and CRT's required, PCL805, PL504, PL509, PY500A etc. Cash waiting. Bearman, 8 Potters Road, New Barnet, Herts. Tel: 01-449 1934/5.
WANTED DEAD OR ALIVE, early type R.F. heater suitable for CRTS. Phone after midday 01-520 2907.

BUSH AND PHILIPS C.T.V's and spares for cash. Rowlands Castle 2464 (Hants)

MISCELLANEOUS

RIGONDA AGENTS. For all spares and repairs. Fast despatch trade service available. 01-476-1298. STAR RADIO. 272 Barking Road, London E. 13.

BURGLAR ALARM EQUIPMENT. Latest Discount catalogue out now. Phone C.W.A.S. Alarm. 0274682674.
C.E.D., C.R.T., tester reactorvator suitable for most types of colour and mono including P.I.L. and 20AX types. checks emission, detects and measures inter electrode leakage, incorporates a very effective boost facility. Not a kit but a professional instrument $£ 85.10$ inc. VAT. 10 day money back assurance. C.E. Developments. 54, Baronsmead Road, High Wycombe, Bucks HP12 3PG. Tel. High Wycombe 30307.

PRE-PACKED. Screws, nuts, washers, solder tags studding. Send for price list. A1 Sales (TV), P.O. Box 402, London SW6 6LU

EX EQUIPMENT TELEVISION SPARES, S.A.E. for lists. P. N. Discount Supplies, Electric House, Suttons Lane, Hornchurch, Essex.

EDUCATIONAL

BETTER JOB! BETTER PAY!

GET QUALIFIED WITH ICS IN: COLOUR\&MONOTV SERVICING COLOUR \& MONO TV ENGINEERING COLOUR \& MONO TV MAINTENANCE PLUS: Telecommunications, radio, electronics, electrical engineering, technical communications, radio communications, etc., etc.
NEW: Self-build radio courses with free kits
Train in your own home, in your own time with ICS, the world's most experienced home study college.
RETURN THIS COUPON TODAY FOR FREE BROCHURE!

TELEVISION COMPUTER

 RADIOCOMMUNICATIONS \& RADAR SERVICINGTWO YEAR full-time Modular
Diploma course to include a high
percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONOTV \& CCTV
- cOLOUR TV \& VCR
- MICROELECTRONICS \& DIGITAL TECHNIQUES
- MICROPROCESSORS \& COMPUTERS
- RADIOCOMMUNICATIONS \& RADAR

Each of the above Modules are 13 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) $£ 1500$ per year (i.e. $£ 500$ per Module).

Next session starts September 14

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: TT, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721

COURSES

BE A COLOUR TV ENGINEER

Two years full time Higher Diploma Course in Electronics, Colour TV and V.C.R.

Next course commences Sept 81 and Jan 82.

APPLY:

Registrar, Reeswood College. 299a Edgware Road, London W2 1BB. Tel. 01-402 9985.

FOR SALE

NEW BACK ISSUES of 'Television' available 95p each post free. Cheque or uncrossed P/O returned if not in stock. Bell's Television Services, 190 King's Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

BUSH $24^{\prime \prime} / \mathbf{2 0}$ S/S mono's, good working order, clean, polished. $£ 10$ each, minimum ten. Delivery anywhere (0706) 623091.
TVDX EQUIPMENT. Vhf to Uhf converter, 12 V supply required $£ 10 \cdot 50$. Band I double notch filter, 40 db , plus attenuation $£ 18.30$ (state Channel). BI mosfet preamplifier, high gain, low noise, mains powered $£ 25.95 \mathrm{BI} / \mathrm{II}$ version (to 88 MHz) $£ 1$ extra. Tuneable set side mosfet Uhf preamplifier, mains powered $£ 25.95$ Band III type $£ 25.50$. Sae date, lists, H. Cocks, Cripps Corner, Robertsbridge, Sussex. Tel. 058083-317.
PHILIPS V100 mono cameras. This excellent sound and vision camera was made to sell at over $£ 400$. We have just a few, brand new, at an all-time low price. The spec is quite outstanding with zoom lens, TV-type view-finder, electret mike, high sensitivity, complete with modulator/power unit to match any TV or video. Delivered Securicor. Cheque/PO for $£ 125.00$ to Peter Ross, 27 King Street, Ulverston, Cumbria. S.A.E. brings copy of spec. Or phone 0229-52271.

BOOKS \& PUBLICATIONS

OUT OF PRINT BOOK SERVICE, 17, Fairwater Grove (E), Cardiff. Send S.A.E. for details.

ANY SINGLE SERVICES SHEET \&I. L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named TV 16 (with circuits £8). S.A.E. Newsletter, price lists, quotations. AUS (T), 76 Church Street, Larkhall, Lanarkshire. (0698 883334).

VETERAN \& VINTAGE

SOUNDS VINTAGE' The only magazine for all vintage sound writers, covering gramophones, phonographs, 78 s , wireless, news, history All back-numbers to No. 1 available. Send 75 p for sample copy. 28 Chestwood Close, Billericay, Essex

> ADVERTISERS PLEASE NOTE
> Our Box Number
> Service is NOT available for MailOrder Advertising

ORDER FORM PLEASE WRITE in block capitals

Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower. Stamford Street. London SE1 9LS.

Nowis rourchare
 Now isyour chance electronic background in the Services, industry to become or aviation. You must have been away from full-time education for a total of two years and not have been on a TOPS course in a Closed Circuit a Closed Circuit Television Studio Television Studio the last three years.
 You should be looking for a job, or be prepared to leave your present one to take up training, and be resident in Great Britain at the time of application.
 TOPS allowances. Tuition is free and

By taking a twenty-four week full-time course you'll receive a TOPS weekly allowance. Travelling and/or lodging allowances underTOPS, theTrainingOpportunitiesScheme.

It starts 1st February 1982 at Northumberland County Technical College, Ashington.

What do you learn? The course is intended to meet the needs of technicians who would like to follow a career in industrial, educational and television studios or audio-visual aid centres.

The syllabus includes: presentation skills, television techniques and engineering, programme control, E.N.G., graphics and photography.

On completion of the course, you will sit the City and Guilds 278 examination.

Would it suit you? You should be aged 19 or over, and hold a City and Guilds 272: 242: 222 radio, television and electronic certificate (orT.E.C. equivalent). may also be paid in approved circumstances. This course is open to men and women. Get the facts. Just send this coupon to Mrs Rita Jones, Manpower Services Commission, Training Services, Newcastle District Office, Plummer House, Market St., Newcastle uponTyne.

SERVICE SHEETS

Thousands of different full size service sheets Thousands of different manuals of all kinds in stock. Many of above are unique to us and obtainable nowhere else.)
Updated collection of British colour TV circuits/layouts otc. Contained in 3 huge binders - special price $£ 39.50$. Revised foreign C.T.V. Repair System in $\mathbf{2}$ huge binders plus 3 Repair Manuals for $\mathbf{£ 3 9 . 5 0}$. (Foreign C.T.V. Repair Manual No. 3 - £6.)
Contains chassis from Grundig. Hitachi, Korting, Kuba, Luxor, Mitsubishi. National P.. Nordmande. St:arp, Skantic, Toshiba, Zanussi. Complete sat of 11 unique TV repair manuals - only £55. Mono + colour from dual standards to latest models, McCourt \& Tunbridge.

Phone:0698883334, anytime. Callers 4-6 pm. weekdays, Saturday from 10 am.
TECHNICAL INFORMATION SERVICE
76 CHURCH ST., LARKHALL, LANAR
76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE

TV Monos, Redios, f1.25. Tuners f1.25. Tape Recorders, Record Players, Triansistors and Stersograms + S.A.E. from $\mathbf{£ 1 . 2 5}$ each except Colour TV Circuits $£ 2$. Car Radios $£ 2.00+$ SAE. All Radiograms FROM $\mathbf{£ 1 . 2 5}$.

State if Circuit will do, if sheets are not in stock. All TV Sheets are full length 24×12, nor in Bits \& Pieces. All other Data full lengths. Free Fault Finding Chart or TV Catalogue with order. Crossed PO's Returned if Sheets Not in Stock.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. 01-458 4882.

[^1]SERVICE SHEETS, Radio, TV, etc., 10,000 models Catalogue 25 p plus SAE with orders-enquiries. Telray. 5 Henderson Street, Preston FRI 7XP.

[^2]SANDHURST PUBLICATIONS Television service sheet specialists Workshop manuals. Large selection Japanese TV sheets. Thorn step by step repair guides. SAE for catalogue and enquiries.
49c Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG.

AERIALS

OLYMPIC 2 WIDEBAND set top aerial for all U.H.F. transmissions. Special price $£ 2 \cdot 35+50$ p P\&P. Refundable. H.T.C. 48, Broadford Court, Heywood. Lancs.

DISPLAY ELECTRONICS

LEADERS

IN TUBE
TECHNOLOGY
SINCE THE 60's.

REGUNNED COLOUR TUBES 2 YEAR GUARANTEE

REGUNNED
MONO TUBES
2 YEAR GUARANTEE

20" $£ 11.00$
24" £13.00

BUDGET CORNER

Buy any 5 mixed types Cash ' n Collect - Take 20\% discount.

OR

Buy any 5 Mono mixed sizes Cash ' n Collect at $\mathbf{£ 8 . 5 0}\left(20^{\prime \prime}\right)$ and $\mathbf{£ 1 0}\left(24^{\prime \prime}\right)$.

```
PLEASE ADD 15% VAT.
```


CALLERS WELCOME

Late night Thursdays until 8pm Saturdays until midday.
N.B. Customers intending to collect orders are requested to telephone in advance:- even popular types may be out of stock for short periods.

V.D.U./RADAR TUBES

Home and export enquiries for Radar Display Tubes manufactured from new (with phosphors to specification) are invited.

> WATERLOO ROAD, UXBRIDGE, MIDDLESEX

Telephone: Uxbridge 55800

STANDARD T.V. TUBE

high auality colour REPLACEMENT TUBES AT COMPETITIVE PRICES.
\star Complete New Gun fitted to every Tube.
\star Two year Guarantee
\star Every Tube Electrically Tested.
\star Every Tube Picture Tested.

* Supplier to Major Rental Companies.

18' ${ }^{\prime \prime}$, 19'	$\boldsymbol{£ 2 5}$
20', $22^{\prime \prime}$	$\mathbf{£} 27$
25'', 26'	$\boldsymbol{£} 29$

S.STANDARD TV TUBE CO. 11-29, Fashion Street. London E1

Tel. 01-247 3097

TRIDENT TUBE'S "DIFFERENT ADDRESS"

> NOW AT
> Lyttelton Road, Leyton,

London E10 5NH Tel. 01-558 3749
SAME KEEN PRICES AND QUALITY
COLOUR TUBES 17"', 18', $19^{\prime \prime}$,
$20^{\prime \prime}, 22^{\prime \prime}$
£30.00
25', 26"
£34.00

MONO TUBES

20'A50-120WR
£11.00
24"' A61-120WR
$£ 12.50$
PENCIL NECK TYPES ON APPLICATION
ALL TUBES CARRY A 2 YEAR GUARANTEE
DISCOUNTS ON 5 OR MORE

"TUBE REPLACEMENTS" PROUDLY OFFER

"WELLVIEW" EXCHANGE CDLOUR
A44-271X $£ 29$
A47-342X $£ 29$
A47-343X
A49-120X
A51-110X $£ 29$

A51-110LF
A55-14X
A56-120X
A63-120X £31 £33

A66-120X £38.50
A66-140X £38.50
A67-120X £38.50
"WELLVIEW" EXCHANGE MONO

A44-120 WR £11	
A47-26 WR	¢12
A50-120 WR	¢11
A59-120 WR	£12.50
A61-120 WR	£13.50
NEW A31-300 (18 months guarantee)	
	£15.00
ALSO YOUR VALVE SUPPLIER	
NEW AND BOXED	

DY802=74p	ECC82=64p	EF183=78p
EF $184=64 p$	PCC $=72 \mathrm{p}$	PCF802 ${ }^{\text {9 }}$ 9 ${ }^{\text {p }}$
PCL82=78p	PCL84 ${ }^{\text {P }}$ 2p	PCL805=97p
PFL200= 11.15	PCL86=97p	PL504=11.38
PL509 $=$ ¢282	PL519 $=\mathbf{1 2 . 9 2}$	PY88=70p
PY800 $=10 \mathrm{p}$		PY500A $=\mathrm{f} 1.5$

Colour Sets

1000 ex-rental TVs Good sets good prices Sets from $£ 10$ only Bush, Pye, GEC, Grundig, ASA, BRC, Philips, Skantic
The prices will amaze you.

TUBE REPLACEMENTS

Unit No. 1, Monmouth St., Bridgwater, Somerset.
Tel. 0278 425690-722816

EHT lead for split diode LOPT. $£ 1.00$	GEC 8 ohm. 70 p GEC 15 ohm. 70 p	NEW SONY KV.1400. Chroma Panel cost $£ 60.00$ Tuner unit Touch button unit with I.C.		$\begin{array}{r} £ 7.00 \\ \mathbf{£ 3 . 5 0} \end{array}$		
6 push button unit UHF	NE 2B6H 2 small neon lamps used in GEC.			£3.5		
Pye $\quad £ 7.00$		FRONT END FOR MUSIC CENTREVHF/MW/LW size $1 \mathbf{3 \times 3 \frac { 1 } { 2 }}{ }^{\prime \prime}$.4 push button unit. 7 transistors, V/condenser, 10 coils rodaerial I/C decoder CA 758 E (no power supply and outputstage). Circuit supplied.Output stage for music centre.Pre-amp panel 4 pots transistor etc. Plugs and sockets.$\mathbf{8 6 . 0 0}$$\mathbf{£ 1 . 0 0}$				
CVC 9 ITT Control panel. $£ 4.00$	Red and Green LED, $14 \begin{aligned} & \text { mixed. } \\ & £ 1.00\end{aligned}$					
CVC 20 ITT 6 push button unit \& Input panel.						
Philips TV IF Modules $38 \mathrm{Mc} / \mathrm{s}$ 1st and 2nd IF. each £1.50	MAINS DROPPERS Thorn 50R-40R-1K 5 $\mathbf{5 0 p}$ Thorn $6+1+100 \mathrm{r}$. $\mathbf{3 5 p}$ Pye $6-161$. $\mathbf{4 0 p}$ Pye $147+260 \mathrm{r}$. $\mathbf{4 0 p}$ (731) $3+56+27 \mathrm{r}$. $\mathbf{5 0 p}$					
35006 push button unit for Thorn 3500 . Varicap 1.00		Mains on/off rotary. $\mathbf{1 3 p}$ Mains on'off push. $\mathbf{2 0 p}$ D/P push button on/off. $\mathbf{1 0 p}$ ITT mains on/off push button suitches. $\mathbf{2 5 p}$	TS25-11TBW fits Autovox, Saba. Bang Olufson. Grundig. Tanberg. $£ 3.75$			
6 position 12.5 KV Resistor Unit for varicap.						
	CERAMIC FILTERS 5.5 MHz. $\mathbf{1 5 p}$ 6 MHz. $\mathbf{2 5 p}$		Chroma Panel ITT. CVC20.25 .30 .35 .40 . New$\mathbf{1 0}$			
unit for V/cap tuning $£ \mathbf{£ 7 . 0 0}$		IF panel. Decca $5.5 \quad \mathbf{1 3 . 0}$				
New portable T/V chassis. Mono $\quad £ 10.00$	3.5 mm Jack socket. $\quad 7 \mathrm{p}$	20 watt O/Put stage. $\quad £ 1.00$	Grundig 3000/3010, Seimens TVK 52.			
New	NPN/PNP 60v $5 \mathrm{amp} / 80 \mathrm{w}$. pair. 660-661.	DE-SOLDER PUMPS. $£ 4.00$				
TB		ORP 12.	ITT LP $1174 / \mathrm{NC}$. $£ \mathbf{8 3 . 0 0}$			
MSC950 $\quad \mathbf{£ 3 . 0 0}$	6 way ribbon cable. per metre.	LP 1173/10 watt. $\quad 11.00$	MULTI CAPACITORS $1000+2000 / 35 \mathrm{v}$. $\mathbf{2 5 p}$ $2000+2000 / 35 \mathrm{v}$. $\mathbf{3 0 p}$ $2500+2500 / 63 \mathrm{v}$. $\mathbf{5 0 p}$ $150+200+200 / 300 \mathrm{v}$. $\mathbf{7 0 p}$ $100+200 / 325 \mathrm{v}$. $\mathbf{4 0 p}$ ELC 1043 on panel for $\mathbf{4 0 0}+200+200 \mathrm{~m} 350 \mathrm{v}$ $\mathbf{~} \mathbf{2 . 0 0}$			
ELC 2000 M New. $\quad \mathbb{£ 7 . 0 0}$		LP 1170. 50p				
ELC 2060 New $\quad \mathbf{£ 7 . 0 0}$	TV XTALS4.433:610 KHz. $\quad \mathbf{5 0 p}$	AM/FM tuner unit (seconds).				
V / U Meter $\quad 50 \mathrm{p}$						
GEC VHF/UHF 8CH touch tune units 4 IC $1 \times S N$	$\begin{aligned} & 6 \text { volt } 23 \text { watt soldering } \\ & \text { iron. } \\ & \mathbf{£ 2 . 0 0} \\ & \hline \end{aligned}$	10 watt Mullard amps. NEW.				
$29862 N+1 \times S N$	Infra-red emitting diode. TIL30. $\mathbf{2 0 p}$	AT 1025;'08 Blue lateral. $\quad \mathbf{1 5 p}$				
16848 N . $\quad \mathbf{5 5 . 0 0}$	750 MFD 50V.	Thorn hearing aid unit for ext loudspeaker.	600/250v 60p			
New circuit supplied. CVC panel with pots and main	THERMISTORS $200+200+75+254$ fuse holder $+2 \mathrm{BY} 133+$ resistors. I.T.T. panel. CVC 9.	AD161/162, pair. 60 p	$\begin{aligned} & 175+100+100 / 350 \times \text { to fit } \\ & 3500 \text { Thorn. } \end{aligned}$			
$\begin{aligned} & \text { switches } 250 \mathrm{~K}, 100 \mathrm{~K}, 423 \\ & 500 \mathrm{~K} . \end{aligned}$		731 PYE $600 / 300 \mathrm{v}$, also Bush \& GEC.	For T/V Sony Transformer \& Lead \& Sockets for earpiece. 8 ohms. $£ 1.00$			
New (NSF/AEG) UHF/VHF	ITT PT266 3W12 (Thermistor degausing) fits most sets. 15p PTH451A or B. PT 37P. Fit Pye, Bush etc.	EHT rectifier BY212. $\mathbf{1 0}_{\text {P }}$				
\checkmark aricap tuner units.		3X G770/HU37EHT. 10p	THORN SPEAKERS $15005 \frac{1}{2} \times 2 \frac{1}{2}$ 3R $35007 \times 380 \mathrm{R}$ 35005×3 80R $\quad 90007 \times 316 \mathrm{R}$ 5×3 loudspeaker for GEC 15 $£ 1.00$			
		EHT rec $2 \mathrm{~m} / \mathrm{a}$ small. $\quad 20 \mathrm{p}$				
Convergence panel for GEC		EHT rec $2 \mathrm{~m} / \mathrm{a}$ large. ${ }^{\text {a }}$				
Cesistors etc. New. res. rest	H.T. thermistor neg. VAl104 35p	Both 12 KV . EHT rec used in Thorn $1400 / 1500 \times 80 / 150$				
PYE 7316 push button unit	GEC $4700 \mathrm{M} / 25 \mathrm{v}$. 15p		25 ohm 6×4 G 11 Philips $£ 1.00$			
	1000M/63v ITT axle. 15p		UHF Modulator, CCIR. $£ 3.00$			
New circuit supplied with UHF 8ch Light action unit $4 \mathrm{i} / \mathrm{c}$ for Varicap tuning GEC C2001/C2201. $\{5.00$	22M/375v ITT. 20p	CSD 118 xMH rec for Thorn 3500 . 10 p	Circuit supplied. Flush mounting socket. FM/TV 35p			
	THYRISTORSPhilips G11.G122M. $\quad \mathbf{6 0 p}$	GEC 8N 2/2000V. 8p				
		UHF T/V aerial forportable T/V				
UHF M	$5 \mathrm{amp} / 300 \mathrm{v}$, 25p		ELC 1042. Mullard. ELC $\mathbf{~} 643$.00			
tuner unit. $£ 2.00$	52600D $7 \mathrm{amp} / 400 \mathrm{v} . \quad 30 \mathrm{p}$	Thorn TS 25-11TDT. $£ 2.50$				
ITT Control Panel with Mains lead. 4 slider pots, Mains filter. £2.50	RCA 40506. 50p	PYE TS25-11TBQ. £1.50	Moss Fits VHF/UHF D.X.T./Unit N.S.F. $£ \mathbf{1 0 . 0 0}$			
	PYE 22N4444. $85 p$	DECCA 80 ¢4.0 ${ }^{\text {\% }}$				
		GEC Serics 10282028 10401060 CS108 C2115 $\mathbf{\$ 4 . 0 0}$	Power supply 30V lamp Reg.			
4 push button unit (for Varicap	MR $5013 \mathrm{amp} / 100 \mathrm{v}$. 7p					
Tuning) 20K. 50p	MR $5083 \mathrm{amp} / 800 \mathrm{v}$. 12p		Small DX Tuner V/cap 48-88 MHz and $175-220 \mathrm{MHz}$. automatic changeover. $£ 5.00$			
for Varicap. Mains on	MR 856. 12p	G9 Tripler $£$				
switch + Nains filter	SP 8385 Thorn. 25p	CVC20/25/30 $\quad £ 3.50$	New V/Cap tuner $\quad £ \mathbf{3 . 5 0}$50 MHz to 300 MHz AutomaticChangeover			
I.T.T. CVC 20.1	ELC 1043 AEG. $\mathbf{1 4 . 0 0}$	Thorn 9.000 $£ 4.00$ Thorn 9.500 $£ 4.00$				
Philips T/unit UHF. $£$	PHILIPS SNIPS: CUTS MOST THINGS. $£ 1.50$					
Transistor UHF units with			Thorn Transductor. $\quad \mathbf{1} 1.00$			
socket and leads. GEC 2000	CO-AX plugs. 12 p	GEC 2110 $\mathbf{£ 3 . 5 0}$ GEC 2100 TVM25 $\mathbf{£ 2 . 5 0}$	$\begin{aligned} & \hline \text { Transductor AT4041/41 50p } \\ & \hline 8 \text { push button switch and } 1 \text { to } 8 \\ & \text { V/Ristor unit } 21-68 \mathrm{CH} . \quad £ 2.00 \end{aligned}$			
rotary lype. $£ 2.00$	UHF Aerial socket and leads. PYE. ITT, THORN. 35p					
Thorn UHF tuner unit and panel		LP1194 731 Pye $\quad £ 3.50$				
for 900 series. $\quad \mathbf{8 8 . 0 0}$	AE Isolating socket. UHF and lead. PYE. THORN, ITT. 35p	Grundig TV52 $£ 3.00$ ITT BG $100 / 41$ $\mathbf{3 . 0 0}$	$\begin{array}{ll} \hline \text { R2540. } & £ 1.00 \\ \hline \end{array}$			
Thorn 900 frame panel. $\quad \mathbf{£ 9 . 0 0}$						
Mullard VHF Tuner	Plug and socket $3+6$ pin printed circuit type. pair. 10p	ITT BG 100/41 $\mathbf{£ 3 . 0 0}$ BUY 69 (RCA 1693). ¢1.00				
V314. $£ 5.00$		SENDZ COMPONENTS 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS 3 8AF. Reg. Office only. Callers by appointment only. Add 15\% VAT. Add 50p P. \& P. Add postage for all overseas parcels				
U321 T/unit V/cap. $£ 6.00$ U322 T/unit V/cap $£ 6.00$	$\begin{aligned} & \text { GEC aerial T/V socket \& } \\ & \text { lead } \end{aligned}$					
U322 T/unit V/cap ${ }^{\text {¢ }}$ (6.00						
Thorn 3500 . Thorn 8500 focus unit. Decca focus unit. Large or small. $£ 1.00$ each	GEC Mains and battery switch. Or stand by. B9A print V/holder.					
BUW 84 40p	$\begin{array}{ll}\text { PYE 697 long. } & \text { 15p } \\ \text { TV 11 } & \mathbf{2 5 p}\end{array}$					
Decca Bradford Tuner, 5	$\begin{array}{ll}\text { TV } 13 \\ \text { TV } 18 \text { EHT. } & \mathbf{2 5 p} \\ \text { d0p }\end{array}$					
Line O/P Trans. CVC 20. $£ 5.00$	l00k 40 turn pots for V/cap tuning. G9-G11 \& Thorn. 20p					
12" TV tube Hitachi	IF Mod CVC $25 \quad$ £5.00					
A31/300w.	ITT CVC23 Decoder $£ 10$ NEW					
SPEAKERS $5 \times 380 \mathrm{r}$ or 50 r. $\mathbf{5 0 p}$ G970r. $\mathbf{8 1 . 0 0}$ $5 \times 3.35 \mathrm{ohm}$. $\mathbf{7 5 p}$ $6 \times 415 \mathrm{ohm}$. $\mathbf{£ 1 . 0 0}$ Philips G11 $\mathbf{£ 1 . 0 0}$	ITT CVC20 Audio amp $£ 1.50$					
	ITT C VC20 Driver mod $£ 1.50$					
	ITT CVC9 Power supply board $£ 1.50$					
	Neon Screwdriver 50 p					

[^0]: *This allocation covers Iceland, the Azores and part of Greenland, with chs. 27 and 35 registered under Denmark.
 \dagger Eight wide beam channels assigned as follows: chs. 24, 36 Denmark; chs. 22, 26 Finland; chs. 28,32 Norway; chs. 30,40 Sweden.

[^1]: AIL ORDER SAE.

[^2]: SERVICE SHEETS, Radio, Television, Stereo etc. from 50 p. Catalogue 25 p. S.A.E. with orders, en quiries. Hamiltons, 47 Bohemia Road, St. Leonards, Sussex.

